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ABSTRACT  

   

The aftermath of unconventional oil (UO) accidents highlights the lack of preparedness of 

governments to deal with UO emergencies. Because bioremediation is considered slow 

process, physicochemical treatment processes are necessary in removing contaminants to 

constrain the spread of oil. In preliminary phase of study, bed systems for adsorption of oil 

compounds packed with modified dolomite were applied as pre-treatment for 

bioremediation systems. The high affinity of oil molecules to the active sites due to 

hydrophobic nature of dolomite surface, as well as low solubility of oil in water, resulted 

in rapid process of oil adsorption on external surface of modified dolomite. UO 

contaminated site contain high concentration of polyaromatic hydrocarbons (PAHs). Thus, 

the final phase of study focused on finding enzyme mixture for biodegradation of PAHs 

contaminated sites for water and soil treatment. In this regard, screening of indigenous 

bacteria, identification of involved enzymes, and biodegradation tests were carried out. 

Several combinations of the pre-selected strains were used to create most prompting 

consortium for enzyme production. To mimic in situ application of enzyme mixture, 

bioremediation of pyrene contaminated soil was carried out in soil column tests. 

The average values of pyrene removal after 6 weeks indicated that the enzyme cocktail can 

be an appropriate concentration for soil enzymatic bioremediation in the soil column 

system. A bioinspired device was fabricated as a sustainable remedial method. Our results 

showed that after 200 seconds of circulating the enzyme solution 100% of anthracene in 

1.5 L of 4.6 mg/L was removed from the beaker side. In addition to the circulation of PAH 

degrading enzymes in hollow fiber lumens, aliphatic degrading enzymes confined in 

multilayer nanofibrous membrane systems play an important role in the removal of oily 

compounds.  Based on our studies, modified polyimide aerogels were suitable to support 

enzyme immobilization. The degradation tests clearly showed that immobilized enzymes 

had biodegradation ability for model substrate in contaminated water.  Our results 

confirmed that immobilization of cocktail enzyme mixture enhanced their storage 

stability, more than 45% of its residual activity at 15 ± 1 ºC for 16 days. This study could 

set the guideline for the enzymatic bioremediation of aromatic pollutants especially 

polycyclic aromatic hydrocarbons in highly contaminated soil and water body.
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PART 1- INTRODUCTION  

It is a general understanding that unconventional oil is petroleum-extracted and processed into 

petroleum products using the unconventional method. Oil extracted from the oil sands is referred 

to as Bitumen. Due to its high viscosity, the bitumen is diluted with lighter petroleum products and 

benzene-containing diluents to produce diluted bitumen (hereafter mentioned as Dilbit ). Currently, 

the majority of the Dilbit  from the oil sands is sent to upgrading and refining facilities in Canada 

and the United States of America (U.S.A.) (Stout and Wang, 2017). In Canada, oil sands are found 

in the form of bitumen in three main geological zones, named Canadaôs oil sands region (COSR), 

including the Athabasca, Peace River, and Cold Lake which make up the third-largest proven oil 

reserves in the world, after Venezuela and Saudi Arabia. The technology of unconventional oil 

extraction from the rock, the costs of production, and the management of wastes and residues 

together with the oil transportation from sources are generally more complex and expensive than 

traditional petroleum, for example, in North Africa and the Persian Gulf. Oil generated by the 

Bakken shales is the other unconventional oil source of petroleum that is generally different from 

traditional crudes, for example, Texas crude oil. Bakken production has also increased in Canada 

since the 2004 discovery of the Viewfield Oil Field in Saskatchewan with the advent of horizontal 

drilling and hydraulic fracturing technologies.  

Despite difficulties in extraction, production and ultimately the transport of crude oil, numerous 

oil industries are investigating these sources. This has increased the risk of incidents during the 

transportation of crude oils. It is the case in the U.S. with a light oil that has largely come from 

tight resource formations in regions of the Bakken Permian Basin with a prevision of 2 M barrels 

per day (bbl/day) in 2025 or Canada with bituminous sands (as Dilbit  from Athabasca) with 

previsions exceeding the 3 M bbl/day in 2024. Multiple factors including aging infrastructure, 

ground failures, such as densifications, pipeline incidents, and increased rail transport, that uses 

unsafe tanker cars have increased the risk of unconventional oil spill incidents during the 

transportation of these hydrocarbons (EIA, 2008; Fielding et al., 2010; Gordon, 2012; Speight, 

2013; Stout and Wang, 2017). With this rapid development of new supply sources, the other 

environmental problems associated with unconventional oils that have raised concerns over oil 

spills include waste generation and leakage from the streamer, underground tanks, and abandoned 

bitumen refinery sites. The aftermath of recent high-impact oil spill incidents (i.e., The 
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Northwestern Ontario derailment incident) highlights the lack of preparedness of governments to 

deal with unconventional oil emergencies (Fielding et al., 2010). 

The inability to timely control the hazards; constrain the spread of oil, and efficiently protect 

polluted zones has been attributed to the differences between unconventional oil and traditional 

petroleum characteristics and their behavior in the environment. In order to address these issues, 

novel Dilbi t/Bakken spill response techniques classified as chemical and physical/chemical have 

been recently applied to decrease the remediation time by: (1) limiting the movement of surface 

oil slicks using high-temperature oil booms, (2) reducing the water/oil interfacial tension using 

dispersants, (3) uptake of unconventional oil using superhydrophobic sorbents and magnetic 

particles applied in novel absorbent techniques, and (4) separating oil and water in situ without 

additional energy input using hydrophobic meshes. (Prendergast and Gschwend, 2014; Ridley, 

2018) Moreover, the use of dispersants which makes water resources more toxic than oil has 

changed the scenario for spilled oil clean-up. Therefore, the removal of spilled oil from water 

resources is still a very topical issue (Hua et al., 2018). Coalescers for oil/water separation are not 

appropriate for dispersions that contain surfactants and electrolytes. Hence, among 

physicochemical methods, adsorption has attracted much attention in recent years. The 

manufacture and use of modular equipment for control and recovery of oil spills by engineered 

adsorption systems using granular activated carbon and organoclay is an example of this 

physicochemical method. Due to the low initial cost and low maintenance costs, packed bed 

systems are commonly used to perform separation processes in industrial processes, such as 

absorption, stripping, and distillation, and to carry out chemical reactions involving sold 

particulates either as a reactant or a catalyst. For environmental water treatment, many studies 

using packed beds for the adsorption of oil and VOCs from an aqueous phase are also well 

documented in the literature (Pintor et al., 2016; Refining, 1969; Wang, 2011). 

Regarding the biological degradation of unconventional oil, traditional remediation such as 

organic amendments using activated sludge, dead plant biomass has been applied to enhance the 

biodegradation of asphaltene, resin fractions and high molecular weight (HMW) alkylated 

polynuclear aromatic hydrocarbon (PAH). However, it was generally thought that hydrocarbon-

degrading microorganisms isolated from hydrocarbon polluted sites can only grow on the lighter 

components of bitumen/Bakken, not on the recalcitrant asphaltene, resin fractions, and HMW 

alkylated polynuclear aromatic hydrocarbon (PAH). Even though biodegradation of these 
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hydrocarbons has been extensively improved using bioaugmentation and biostimulation (such as 

organic/active sludge amendments), integrated methods and mechanisms including 

bioaugmentation, biostimulation, and phytoremediation are necessary to be applied to improve the 

performance of bioremediation of high concentrations of weathered hydrocarbons and bitumen. 

Other biotechnological approaches (such as genetically engineering bacteria, immobilization 

method, and enzyme remediation technology) and newly found potential microbes might also 

promote the degradation of recalcitrant components (Agamuthu et al., 2013). 

In other to develop innovative efficient devices and/ or processes for the recuperation of oil and 

attenuation measures, there has been a great need to gain in-depth knowledge on the following 

aspects: (a) fate of dangerous compounds during environmental emergencies, (b) integrated 

methods for evaluating residual toxicity, (c) methods for understanding biological degradation 

while treating soils, and (d) the specific mechanism by which microorganisms degrade 

hydrocarbons, biodegradation patterns, the chemistry of transformation products, and their 

residual toxicity. (Davoodi et al., 2020) 

PART 2- PROBLEM  STATEMENT  

Based on the literature review, certain problems have been identified for the current research work 

that should be addressed before formulating hypotheses and objectives. In recent years, 

remediation companies have applied a variety of technologies to clean up groundwater, soils, and 

sediments, including chemical methods, thermal treatments, and bioremediation. There is a risk of 

additional environmental impacts associated with conventional methods due to the production of 

certain intermediates during the process as well as their high cost and energy consumption. 

Compared to conventional methods, bioremediation has been found to be more effective, 

economical, and less damaging to the environment. In the literature, the biodegradation of 

petroleum hydrocarbons, particularly polyaromatic hydrocarbons, is well documented. In spite of 

this, most studies have reported a low rate of biodegradation.  

Since enzymes transform the substrate in a minute timescale, the enzymatic method requires a 

shorter treatment period than the microbial method. Nevertheless, enzymatic biodegradation is 

hampered by inherent instability and high production costs. During these discussions, some 

technological bottlenecks were identified, and further research inputs were suggested for making 
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the overall treatment process more sustainable, economical, effective, and toxic-free. Moreover, 

bioremediation is more effective for confined contaminated areas such as shoreline pond or 

residential area. Thus, most of the physicochemical treatment processes are found to be effective 

in removing contaminants as pre remediation to constrain the spread of oil and accelerate the 

bioremediation and detoxification. 

PART 3- CHALLENGES  IN APPLICATION OF ENZYMATIC BIODEGRADATION  

 

Based on the literature review, certain problems have been already defined and addressed for the 

current research work; however, some other issues need to be addressed before formulating the 

hypotheses and objectives. Different potential approaches for the bioremediation of 

unconventional oil were discussed in the literature. Some of the relevant problems associated with 

the current bioremediation practices that need timely attention are as follows: 

1.3.1 Toxic intermediate and detection 

Some bioremediation treatment methods resulted in the biotransformation of targeted 

contaminants into intermediate products despite being found effective in removing petroleum 

hydrocarbons. It should be noted that some of these intermediate products are more toxic than the 

initial parent compounds, which is why biotransformation is not always a preferred strategy for 

the management and remediation of pollutant contamination. Consequently, biodegradation 

should focus on mineralizing the target contaminate into harmless compounds. In order to detect 

intermediate products, there are two key points to consider:  

A) Intermediate compounds may be volatile, semi-volatile, or nonvolatile, requiring a different 

detection method compared to their parent compounds. It is necessary to use more than two 

chromatography methods in this case.  The first step in determining all the products formed during 

a reaction is through full scan mass detection. As a result, each compound can be detected 

according to its nature and according to the appropriate protocol.  

B) Different samples exhibit different times and conditions for the formation of intermediates, so 

sampling should be performed at different times and under different conditions (e.g., without or 
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with shaking). To study the pathway of newly isolated bacteria, the formation of intermediates is 

critical. 

1.3.2 Low efficiency of oil adsorbents at a high concentration of oil  

One problem that arises in practicing the biological method is that toxicity prevents or slows 

metabolic reactions as well as the growth of the biomass needed to stimulate the rapid removal of 

contaminants. One potential solution is to remove the contaminant from the environment using 

non-chemical oil adsorbents and oxidants. Bioremediation is more effective for confined 

contaminated areas such as shoreline ponds or residential areas. Thus, most of the physicochemical 

treatment processes are found to be effective in removing contaminants as pre-remediation to 

accelerate the bioremediation and detoxification.  

1.3.3 Challenges in the application of enzyme remediation methods 

One of the major challenges in the commercial application of hydrocarbon-degrading enzymes is 

their inherent instability. The slow rate of bioremediation for unconventional crude oil might be 

addressed by using enzymes instead of the whole microorganism. Enzymatic technologies for the 

remediation of unconventional oils can be especially suitable for conditions where rapid 

bioremediation is needed to mitigate the adverse effects of indigenous microbes. A great deal of 

effort has been made to address issues regarding the application of enzymes for soil and water 

remediation. However, the production of purified target enzymes is a costly process; thus, 

recombinant strains are usually constructed to overproduce the specific enzymes.  

There are two points that should be considered for the stability of produced enzyme. First of all, 

most of hydrocarbon-degrading enzymes such as oxidoreductases have some hydrophobic 

peptides since they are membrane-associated enzymes. Thus, extraction of them from the cell 

might affect their activity and it is necessary to mimic the condition in the membrane to enhance 

their activity after extraction. Secondly, these enzymes usually catalyze the exchange of electrons 

between donor and acceptor molecules. To perform this function, they employ redox-active centers 

(i.e., amino acid residues, metal ions, and coenzymes) that depend on co-factors. Other practical 

issues and challenges in the application of enzyme remediation methods such as cofactor 

regeneration rates, oxygen mass transfer, overoxidation, and substrate uptake. Moreover, redox 
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enzymes including oxygenases (e.g., monooxygenase and dioxygenase) require expensive 

cofactors, such as NAD(P)H and improved cofactor regeneration that increase the specific 

oxygenase activity of whole-cell oxygenase biocatalysts.  

The above-mentioned problem together with the high hydrophobicity of contaminants such as 

PAHs that makes their diffusion from soil particles by hydraulic flow difficult, inspired researchers 

to combine two approaches for the adsorption and degradation of contaminants in soil via a phase 

transfer procedure. In other words, the release of substrates (e.g., PAHs) into the water from the 

soil particles is very slow because of the hydrophobicity of contaminants; however, innovative 

processes/devices can accelerate the mass transfer of contaminants and result in little contaminant 

left in aqueous phase and more of them can be released from the soil particles under the stress of 

equilibrium.  A feasible method for contaminant to interphase transfer and subsequent degradation 

procedure by providing access for mass transfer and biocatalyst for degradation is crucial for 

contaminant removal.  

PART 4- HYPOTHESES 

Petrol hydrocarbons are organic contaminants that can be biodegraded by indigenous 

microorganisms due to their organic nature. However, due to the difficulties in biodegrading 

polyaromatic hydrocarbons, remediation alternatives such as oil adsorbents to remove oil from the 

environment as well as biotechnological improvements, such as enzyme encapsulation, 

immobilization and regeneration seem promising methods for increasing bioremediation 

efficiency. It is necessary to prove the following hypotheses in order to provide effective 

decontamination of polyaromatic hydrocarbons 

 

Hypothesis I: Following the oil spill, other alternative methods are needed to constrain the spread 

of oil using oil adsorbent. Dolomite is a locally available material, and the surface modification 

of dolomite sorbent particles can be carried out to obtain sorbents for Dilbit  and Bakken oil 

removal. Modified dolomite might outperform other filter media technologies in stand-alone 

applications for the removal of higher molecular weight hydrocarbons. 

Hypothesis II: The practical application of oil adsorbents in large-scale water treatment is limited 

due to the difficulty of separating them from aqueous solution.  To evaluate the effectiveness of 

prepared oil adsorbents, a continuous process must be developed.  Thus, both packed and fluidized 

bed treatment columns of low-cost chemical hydrophobic sorbents for removing unconventional 
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oil from laboratory synthetic oil-in-water emulsions could ensure a proper interpretation of the 

laboratory results and determine the efficiency of the adsorption of contaminants. Modified 

dolomite should be designed for column operation. It should be placed in appropriately sized fluid 

contactor vessels in the same manner as granular activated carbon. Such adsorbents, if they can 

remove oil from water, can be very advantageous as they are low-cost locally available materials 

for effective water treatment.  

Hypothesis II I:  The aftermath of UO accidents highlights the lack of preparedness of cities to 

deal with these emergencies that is attributed to UO different behavior in the environment 

compared to traditional petroleum. More notably, following the Kalamazoo River incident, local 

officials did not discover that pipeline was carrying UO and the submerged oil surprised them. 

Thus, devices/processes are needed to target oil below the water surface and provide common 

places for degraders and contaminants. Jellyfish, a marine animal with umbrella-shaped bells and 

trailing tentacles, may have a thing to teach us. Their tentacles covered with sticky substrates 

contain triggers that release the stingers. A jellyfish can catch food through a passive process, in 

which it floats into the pieces of food. Taking inspiration from nature to solve environmental issues 

is the idea behind the proposed biomimetics in our study. For oil recuperation and attenuation 

measures, a jellyfish type of process can be applied by developing multi-layer and hollow fiber 

membranes with immobilized enzymes via electrospinning for bioremediation application. A 

synergistic effect between membrane adsorption, enzymatic degradation, and ultrafiltration can 

be applied for the removal of contamiannt from the column of water using jellyfish like device. 

Moreover, the inherent instability of oxidoreductases is one major challenge in the commercial 

application of dioxygenase enzymes. Since most oxidoreductases are membrane-associated 

enzymes, they contain some hydrophobic peptides, which can interfere with their activity when 

they are extracted from the cell. To increase their activity after extraction, various attempts can be 

made to mimic the membrane condition. Thus, jellyfish-like devices could protect the produced 

enzymes from surrounding environment. Encapsulation of hydrocarbon-degrading enzyme using 

jellyfish built from multilayer membranes and hollow fiber membranes could facilitate the 

degradation of contaminations.   
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Hypothesis IV: One challenge for in-situ application of enzymatic biodegradation for 

decontamination of soil is the instability of oxidoreductase enzymes. In oxidoreductases, electrons 

or redox equivalents are exchanged between donor and acceptor molecules. A variety of redox-

active centers are employed by oxidoreductases to accomplish their physiological functions. Some 

of the most common redox centers are amino acid residues (e.g., tyrosine or cysteine), metal ions 

or complexes (e.g., Cu, Fe, Mo, Fe-S cluster, or heme), and coenzymes (e.g., FMN; FAD; or 

pyrroloquinoline quinone, or PPQ). Formulation of synthetic bacterial consortia for more 

operational stability in soil as well as the addition of activators can enhance the effectiveness of 

enzymatic bioremediation methods for the land-based oil spills. Coenzyme dependence and/or 

signature catalysis of target enzymes should be taken into account when designing enzyme 

formulations.  In order to validate enzymatic biodegradation in soil, batch testing, soil columns, as 

well as 3D-tank testing are necessary. A soil column test or a tank test can be used to simulate in 

situ application of an enzyme mixture to predict the consequences of bioremediation. The 

formulated enzyme mixture could therefore be produced at different scales (bench to large scale) 

and applied to soil and groundwater (laboratory, pilot scale). As a result of the scale-up tests, 

laboratory results would be properly interpreted, and the efficiency of enzymatic bioremediation 

would be determined. 

 

Hypothesis V: Other major challenges in the practical application of oxygenase are high 

production cost and their inherent instability. Immobilization improves enzymes resistance to a 

variety of operating conditions. Due to their prolonged availability and re-usability, immobilized 

enzymes are preferred over their free counterparts in biotechnological processes. An effective 

method for reducing costs is to immobilize enzymes as it enables efficient recovery, reuse, and 

recycling, as well as increased stability in harsh operating conditions such as high or low pH and 

temperature. In last phase of this project, immobilization of target enzymes on polyimide aerogels 

can enhance the degradability of residual unconventional oil in the water. Moreover, a continuous 

fixed-bed process could be employed to resolve potential problems regarding the large-scale 

application of aerogel.   
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PART 5- OBJECTIVES 

To demonstrate that polyaromatic hydrocarbons can be effectively bioremediated, the following 

objectives have been investigated. 

Objective 1: Synthesizing low-cost hydrophobic dolomite sorbent for oil spill clean-ups: Kinetic 

modeling and isotherm study 

Objective 2: Investigate the feasibility of packed and fluidized bed treatment columns of 

hydrophobic dolomite granules for removing unconventional oil from laboratory synthetic oil-in-

water emulsion. 

Objective 3: Simulation of the jellyfish type process by developing multi-layer membranes with 

encapsulated hydrocarbon-degrading enzymes via electrospinning for bioremediation application. 

Objective 4: Investigate the feasibility of enzymatic biodegradation of Polyaromatic 

Hydrocarbons contaminated soil using cold-active enzymes: A soil column study. 

Objective 5: Investigate the feasibility of a continuous fixed-bed column to remove polycyclic 

aromatic hydrocarbons by degrading enzymes immobilized on polyimide aerogels. 

PART 6- ORIGINALITY  

The present study comprises of the following original concepts: 

V This study for the first time presents the practical application of modified dolomite in large-

scale water treatment using a continuous fixed-bed process. Moreover, a comparative analysis 

of results with other adsorbent materials has been reported. 

 

V This study will improve existing water- and land-decontamination methods by developing 

microbial products for environmental cleanup, fabricating remediation tools by focusing on 

formulation and polymer processing to accelerate and encourage the removal of pollutants 

from affected sites. 

 

V In addition, this study reported for the first time the enzymatic bioremediation of pyrene 

contaminated site soil with batch and column systems, as well as kinetic and tandem LC-

MS/MS analyses of psychrozymes, microbial communities, and biotoxicity tests of the soil 

before and after bioremediation. Currently, no studies have been conducted on the 
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bioremediation of soil using psychrophilic enzyme cocktails for the complete detoxification of 

cold climate regions or the impact of microbial diversity prior to and following bioremediation 

treatment. The use of soil column tests can mimic the application of enzyme mixtures in situ, 

in order to simulate the essential characteristics of the environment and predict the effects of 

bioremediation on the environment. According to our knowledge, no studies have been 

conducted on the characterization and application of soil column systems for enzymatic 

biodegradation of petroleum hydrocarbons. 

 

V Our lab study yielded positive results prompting us to proceed with fixed bed columns to 

develop an industrial process for enzymatic bioremediation. To the best of our knowledge, no 

study is available for the application of fixed bed columns with spiral baffles for enzymatic 

biodegradation of polyaromatic hydrocarbons as a viable remedial option. Our study method 

stands to be a much cheaper and more effective alternative which benefits environmental 

consultants looking for ways to meet cleanup standards without investing large amounts of 

money. 

V This manuscript proposed an easily scalable and reproducible process for removal of 

polyaromatic hydrocarbons and even emerging contaminants such as carbamazepine from 

contaminated water (continuous fixed beds using enzyme-loaded aerogels for water 

decontamination.  

Overall, the originality of the proposed research is ñDevising in-situ remediation tools using local 

and natural mimics for unconventional oil contaminated sedimentsò 

PART 7- THESIS LAYOUT  

This dissertation consists of five chapters, hypotheses and objectives as described below.   
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Table.1. List of thesis chapters and corresponding objectives, and hypotheses 

 

Chapters Title for a major goal Hypotheses Objectives 

1 
Introduction and research 

objectives 
- - 

2 Literature Review - - 

3 

Treatment of unconventional 

oil contaminated water using 

modified dolomite 

Hypothesis I and II Objective 1and 2 

4 

In-situ application of cocktail 

enzymes for contaminated 

soil 

Hypothesis III  Objective 3 

5 

In-situ application of cocktail 

enzymes for surface water 

cleanup 

Hypothesis IV Objective 4 

5 
In-situ application of cocktail 

enzymes for water treatment 
Hypothesis V Objective 5 

7 
Conclusions and 

Recommendations 
- - 
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Abstract 

It is a general understanding that unconventional oil is petroleum-extracted and processed into 

petroleum products using unconventional means. The recent growth in the United States (US) 

shale oil production and the lack of refineries in Canada built for heavy crude processes have 

resulted in a significant increase in U.S imports of unconventional oil since 2018. This has 

increased the risk of incidents and catastrophic emergencies during the transportation of 

unconventional oils using transmission pipelines and train rails. A great deal of effort has been 

made to address the remediation of contaminated soil/sediment following the traditional oil spills. 

However, spill response and clean-up techniques (e.g., oil recuperation, soil-sediment-water 

treatments) showed slow and inefficient performance, when it came to unconventional oil, 

bringing larger associated environmental impacts in need of investigation. Remediation techniques 

for this contaminant, can be chemical, physical, and biological treatment. However biological and 

bioremediation has attracted more attention because it is cost effective and environmentally 

friendly technology. To the best of our knowledge, there is no coherent review available on the 

biodegradability of unconventional oil, including Dilbit  and Bakken oil. Hence, in view of the 

insufficient information and contrasting results obtained on the remediation of petroleum, this 

review is an attempt to fill the gap by presenting the collective understanding and critical analysis 

of the literature on bioremediation of products from the oil sand and shale (e.g., Dilbit  and Bakken 

oil). This can help evaluate the different aspects of hydrocarbon biodegradation and identify the 

knowledge gaps in the literature. 
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2.1. Introduction  

Unconventional oils are generally defined as hydrocarbons obtained by unconventional means and 

they are classified into the following groups:  heavy oil, extra-heavy oil, oil sand (bitumen) and oil 

shale (Kerogen) (Speight, 2016). In Canada, oil sands is found in the form of bitumen in three 

main geological zones, named Canadaôs oil sands region (COSR), including the Athabasca, Peace 

River and Cold Lake which make up the third-largest proven oil reserves in the world, after 

Venezuela and Saudi Arabia (Gordon, 2012; Transportation Safety Board of Canada Pipeline 

Investigation Report. 2007; Turner, 2017). The technology of unconventional oil extraction from 

the rock, the costs of production and management of wastes and residues together with the oil 

transportation from sources are generally more complex and expensive than traditional petroleum 

e.g., North Africa and Persian Gulf. Despite these difficulties, the production of unconventional 

oil has increased with the rising price of crude oil after the economic recession in the US since the 

beginning of 2009. It is the case in the US with light oil that has largely come from tight resource 

formations in regions of the Bakken Permian Basin with a prevision of 2 M barrels per day 

(bbl/day) in 2025 or in Canada with bituminous sands (as Dilbit  from Athabasca) with previsions 

exceeding the 3M bbl/day in 2024 (EIA, 2015; Radoviĺ et al., 2018). 

Multiple factors including aging infrastructure, ground failures, such as densifications, pipeline 

incidents and increased rail transport that use unsafe tanker cars have increased the risk of 

unconventional oil spill incidents during the transportation of these hydrocarbons. With this rapid 

development of new supply sources, the other environmental problems associated with 

unconventional oils that have raised concerns over oil spills include waste generation and leakage 

from the streamer, underground tanks, and abandoned bitumen refinery sites. The aftermath of 

recent high impact oil spill incidents (e.g., spill of Bakken oil in Lac Megantic and Dilbit  from 

Albertaôs oil in Kalamazoo) highlights the lack of preparedness of governments to deal with 

unconventional oil emergencies (Saint-Laurent et al., 2018). The inability to timely control the 

hazards; to constrain the spread of oil and to efficiently protect polluted zones has been attributed 

to the differences between unconventional oil and traditional petroleum characteristics and their 

behavior in the environment. In order to address these issues, novel Dilbit /Bakken spill response 

techniques classified as chemical and physical/chemical  have been recently applied to decrease 

the remediation time by: (1) promoting biodegradation and limiting the movement of surface oil 
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slicks using high-temperature oil booms,(Prendergast and Gschwend, 2014) (2) reducing the 

water/oil interfacial tension using dispersants, (Hua et al., 2018) (3) uptake of unconventional oil 

using superhydrophobic sorbents and magnetic particles applied in novel absorbent techniques, 

(Prendergast and Gschwend, 2014) and (4) separating oil and water in-situ without additional 

energy input using hydrophobic meshes (Khosravi and Azizian, 2017). Moreover, microbial 

metabolism of unconventional oil has also been considered as a cost-effective process in both 

microbially-enhanced recovery and upgrading of bitumen and bioremediation.(Ridley, 2018) 

However, it was generally thought that hydrocarbon-degrading microorganisms isolated from 

hydrocarbon polluted sites can only grow on the lighter components of bitumen/Bakken, not on 

the recalcitrant asphaltene, resin fractions and high molecular weight (HMW) alkylated 

polynuclear aromatic hydrocarbon (PAH) (Deshpande, 2016). There has been a great need to gain 

in-depth knowledge on the following aspects: a) fate of dangerous compounds during 

environmental emergencies, b) innovative attenuation measures and the recuperation of oil, c) 

integrated methods for evaluating residual toxicity, d) methods for understanding biological 

degradation while treating soils, and e) the specific mechanism by which microorganisms degrade 

hydrocarbons, biodegradation patterns, chemistry of transformation products and their residual 

toxicity. 

In this review, the current state of knowledge about the biodegradability of unconventional oil in 

aquatic and terrestrial environments was presented. It is necessary to apply multidisciplinary 

strategic research to address technical and economic challenges regarding the biodegradability of 

Dilbit  and Bakken petroleum. This review, thus, discusses the significance of microbes in 

unconventional oil biodegradation and risk-based assessment through responses of environment 

receptors (eco-toxicity and ecological impact) coupled with chemical analyses to study the 

bioremediation efficacy. 

2.2. Problems of Unconventional Oil 

2.2.1. The High Risk of Unconventional Oil spill Incidents 

As mentioned previously, technological advancement in hydraulic fracturing and horizontal 

drilling caused a spike in unconventional oil well development in 2009 for oil-producing states of 

the US (Patterson et al., 2017). Subsequently, it raised concerns over oil spills at unconventional 

oil wells. For example, A. Patterson et al. analyzed databases of spills related to 31,481 

unconventional oil wells located in the US and reported a spike in annual spill rates (14 and 16 % 
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increase in spill rates in Pennsylvania and North Dakota). Given the present situation, the transport 

of these hydrocarbons will also increase, raising the risk levels of spills or releases of chemicals 

and wastes (Gan, 2017; Huang et al., 2018). Table 1.1 shows spills attributed to unconventional 

oils that occurred in very close proximity to streams. 
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Table 1.1. North Americaôs Major Unconventional Oil Spills 

 

Events Location Oil  Year  
Amount 

(Liters)  
Reference 

1.     A 

Rupture in the 

Trans 

Mountain 

Pipeline 

Westridge, Canada  
Dilsynbit 

2007 
0.2 Million (Crosby et 

al., 2013) 

2.  Rupture in 

the Enbridge 

Energy 

Pipeline 

Kalamazoo River, 

US 

Diluted 

Bitumen 
2010 3.2 Million 

(de 

Santiago-

Martín et 

al., 2015; 

USEPA 

Dredging 

Begins on 

Kalamazoo 

River) 

3.     A 

Rupture in the 

Pegasus 

Pipeline 

Arkansas, US  
Diluted 

Bitumen 
2013 - 

(Deshpande 

et al., 2017) 

4.     Railway 

disaster 
Quebec, Canada Bakken 2013 5.7 Million 

(Saint-

Laurent et 

al., 2018) 

5.     Rupture 

in Tesoro 

Logistics 

Pipeline 

North Dakota, US  Bakken 2013 0.9 Million 
(McMurray 

et al., 2018) 
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2.2.2 Oil Spill Location 

2.2.2.1 Soil 

The condition of the spill location might adversely affect the bioremediation of unconventional oil 

spills. For example, the predominant soil types in COSR are chernozems and organic-rich lucidols. 

(Radoviĺ et al., 2018). For weathered or crude unconventional oil, the adsorption of higher 

molecular weight compounds to these organic fractions of soils increased retention of oil in soils. 

Even though the retained oils could be easily removed by reclamation measures or bioremediation, 

the microbial degradation of adsorbed compounds largely decreased. The region where the 

hydraulic conductivity is very high might also cause ground-water contamination even if the 

unconventional oil spill is low. Price et al. studied landscape restoration in dry Western Boreal 

Plains near Fort McMurray, Alberta. They reported the areas underlying a sloping layer of fine-

grained materials with low hydraulic conductivity maintained a concentrated plume of crude 

unconventional oil in a sand layer with the conductivity of 10-5 m/s. This retained concentrated 

plume is very concerning because it can act as a long-term source of pollution (Gordon et al., 2018; 

Radoviĺ et al., 2018). 

2.2.2.2 Ecosystem 

Cleanup and recovery from an oil spill is difficult and depends on the ecosystem involved. For 

example, wetland areas that cover approximately 21 percent of Alberta are ecologically sensitive 

to the oil spill, owing to slow anaerobic biodegradation of substrates, such as PAHs and polar 

hydrocarbons (Radoviĺ et al., 2018).  Anaerobic environments limit the number of microbial 

species and slow down the natural attenuation by preventing oxygen from acting as the most 

favorable electron acceptor. Further, the presence of the water might decrease the permeability of 

the subsurface so that the retained oil can act as a long-term source of pollution in the subsurface 

(McGenity, 2014; Price et al., 2010). 

2.2.2.3 Climate 

Exploration and production facilities, as well as transportation activities including pipelines, are 

often located in cold regions where Dilbit  spills from ruptured pipelines cause more serious 

environmentally damaging pollution problems. For many cold region sites, natural attenuation is 

probably not a satisfactory option in these circumstances and petroleum contaminants rapidly 
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migrate off-site. On the other hand, the environmental consequences of bulk extraction and the 

cost of excavation varies with a wide range of factors and the removal of contaminated soil and 

media for off-site treatment as well as disposal might cause more damage to the fragile wetland 

than the oil itself (Atlas; Manzetti, 2014) .
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2.2.2.4 Behavior of Unconventional oil in the Environment 

The pattern of ecotoxicity and biodegradation might be different from traditional petroleum in aquatic and terrestrial environments due 

to the physicochemical differences between conventional and unconventional oils properties and characteristics as presented in Table 

1.2 (Hodson, 2017). 

Table 1.2. Comparison of selected properties for conventional Dilbit  and Bakken crudes 
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With regard to Dilbit , the US NAS reported that in comparison to other transported crudes, the 

properties relevant to environmental impacts of the bitumen component such as exceptionally high 

density, viscosity, acidity and adhesion differ from traditional crudes when the oil is subjected to 

weathering.(National Academies of Sciences and Medicine, 2016) Moreover, there is no good 

understanding of the fate of toxic and recalcitrant fractions in an environment following oil spills. 

Saint et al. demonstrated that the most toxic components in Bakken oil (e.g., the trace metals and 

alkylated PAHs) were very low in the river sediments due to the river currents that prevented the 

accumulation of contaminated sediments during spring floods (Saint-Laurent et al., 2018). But, 

Hossain et.al reported that gravel sediments with large pore spaces can trap oil for a longer period 

of time and are considered as a source of contamination (Hossain et al., 2017). Figure 1.1 shows 

the ultimate fate of the plumes for fresh (A) and weathered (B) diluted bitumen, influenced by the 

density of the fluid and the hydraulic conductivity of the subsurface, which might change the 

environmental engineering option for remediation of these contaminants. In the case of the 

weathered Dilbit  spills on land regarded as dense nonaqueous phase liquids (DNAPL), the plume 

of oil will sink and when it interacts with the water table, less concentrated plumes move into the 

water table, but the main plume continues to sink into very deep subsurface. From an 

environmental health perspective this plume acts as a long-term source of pollution for the aquifer 

(Figure.1.1 B). When the plume reaches the bedrock surface, it might flow in a direction opposite 

to the flow of ground water. As a result, it can spread in unexpected directions from the leaking 

zone (Fetter et al., 1999). 
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Figure 2.1 Subsurface contamination and transport of: (A) light non-aqueous phase liquid, such as 

traditional petroleum, gasoline and Dilbit ; (B) dense non-aqueous phase liquid, such as weathered 

Dilbit , 

2.3 Potential Solutions 

The presence of complex mixtures of petroleum hydrocarbons, trace metals, volatile compounds 

have been reported in polluted sites after spills of unconventional oils, all of which presented high 

risks to the ecosystems and human health (de Santiago-Martín et al., 2015). A great deal of effort 

has been made to investigate the feasibility of applying new technologies of tar sand recovery 

(mass transfer practices such as vapor extraction, solvent extraction) to the remediation of soils 

contaminated with bitumen and other heavy oils (Prendergast and Gschwend, 2014). An 

environment agency survey conducted in 2009 indicated that about 90 % of the remediation 

techniques used on highly contaminated soils, particularly with heavy oils, were civil engineering 

methods and biological treatments were not considered as a treatment option in most 

cases.(Brassington, 2008) Still no single remediation practice is considered the best option for 

removal of two main classes of the major constituents of unconventional oils including polar 

nonhydrocarbons (heavy non-volatile compounds) and PAH from the environment (Dollhopf and 

Durno, 2011; Lacoursière et al., 2015). Figure 1.2 shows a three-component research project that 
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will be required to make a decision concerning the technologies to remediate the unconventional 

oil-contaminated site. In fact, a multiple lines of evidence approach is needed to study: a) advanced 

physical and chemical characterization of unconventional oil (i.e. Dilbit  and Bakken oils)(Saint-

Laurent et al., 2018) ; b) development of innovative efficient oxidants and non-chemical oil 

adsorbents; (Korfiatis and Christodoulatos, 1993) and finally, c) evaluation of in-situ toxicity (eco-

toxicity bioassay); natural degradation and improvement of assisted oil-biodegradation. The 

assessment of the contamination characterization, ecotoxicity and the impact of unconventional 

oil on the indigenous microbial community is required to determine whether unconventional oil 

spill could be the worst-case scenario of all oil spills.(Grant, 2014) For example, following the 

Kalamazoo River incident, local officials did not discover that pipeline was carrying bitumen and 

not conventional oil. The submerged oil surprised them and the cost of the oil spill cleanup ($700 

million) exceeded the companyôs $ 650 million insurance policy that it had for the pipeline in the 

event of a rupture (Dollhopf and Durno, 2011). Multidisciplinary research, thus, could deliver 

innovative assessment tools (genomics), eco-engineering sustainable cleaning processes and the 

ecological impact on the microbial community (analysis of 16s rRNA gene sequence or stable 

carbon isotope fractionation) as given in Figure 1.2. (Logeshwaran et al., 2018). 

 

Figure 2.2. Illustration of a multidisciplinary strategic and structuring research approach to 

address unconventional oil contaminants. 
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2.3.1. Physical and Chemical Treatment 

To enhance the efficiency of remediation, a series of physicochemical techniques, such as chemical 

oxidation, extraction, washing, and microbial biosorption has been developed for soil and water 

remediation (Das and Dash, 2017; Gisi, 2017). As seen in Figure 1.3, some of the physical 

treatment methods designed to remove unconventional oils do not remediate or detoxify toxic 

components. 

2.3.1.1 Aquatic Ecosystem 

Recently, the application of functionalized meshes, membranes or granular adsorbents has been 

studied to improve existing oil/water separation systems for oil recovery following a marine oil 

spill (Coene et al., 2018). The other treatment method to remediate an unconventional oil spill on 

the water is the use of a hybrid oil sorbent/boom. Warner et al recommended magnetizing oil spill 

which could then be magnetically manipulated and captured.(Warner) They implemented the 

simple principle, the addition of naturally-occurring magnetic minerals might form some sort of a 

bond with the oil, into an electromagnetic boom. This technique, unlike traditional boom and 

skimmers, target the unconventional oil below the water surface.(Schreiber et al., 2019) For 

weathered or crude oils that are unable to flow rapidly into a sorbent material, the available external 

surface area will determine the performance of adsorbents. Thus, loose strands of sorbent such as 

treated peat moss with a greater surface area than a boom might be expected to be more effective 

with these hydrocarbons (Wang et al., 2019b). 

In order to remediate groundwater pollution, hydraulic control of unconventional oil movement 

and oil removal using discharge and recharge wells is the first option. The second option is to treat 

the pumped groundwater using ex-situ treatment, such as treatment columns. The pump-and-treat 

method was very common until 2000, but as the understanding of bioremediation increased, this 

method is less favored today. It might be difficult to pump out oil-contaminated water at a higher 

depth. Moreover, the entrapped oil between soil particles is never removed and this entrapped 

unconventional oil can disperse a low level of contamination for a long time (Figure 1.1) (Mercer). 

2.3.1.2 Soil System 

Even though physicochemical methods (e.g., dispersants, in-situ burning, and mechanical 

recovery) are the fastest treatments, they have not been considered eco-friendly and sustainable 

approached compared to bioremediation of oil spills. Recently, a great deal of effort has been 

invested in making these methods more environmentally friendly by applying pyrolysis techniques 
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(ShiungLam and Chase, 2015). A. Dominguez et.al studied the application of microwave 

irradiation method for drying, pyrolyzing and gasification of valuable sources (e.g. sewage sludge 

and used adsorbents that are abundant in the volatile matter) to produce useful products, such as 

gas, oil or char (Bandura et al., 2017; Domínguez).  Thus, the sorbed oil might be used and recover 

as a source of energy and input for the production of lightweight compounds (Bandura et al., 2017). 

Figure 1.4 shows oil adsorbent applications as an environmentally friendly technique and methods 

that allow the recovery of oil, sorbents, and energy. As can be seen in Figure 1.4, modification of 

surface properties is needed to enhance the sorption capacity of oil adsorbents so that it can be 

further channelized to a small-scale pyrolysis plant for making fuel. Sustainable, reusable and 

recyclable oil adsorbents are recommended for the removal of land-based and marine oil spills that 

might be applicable to the treatment of spilled unconventional oil (Yu et al., 2018a). To the best 

of our knowledge, the feasibility of applying oil adsorbents to remove unconventional oils from 

contaminated soils and using them as valuable sources to produce gas, oil or char is not yet 

explored  
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UCM: Unresolved Complex Mixture. 

Figure 2.3. Measurements to reduce remediation time following an unconventional oil spill




















































































































































































































































































































































































































































































































































































































































