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ABSTRACT 

        Heavy construction equipment owners and managers have few predictive tools that can 

estimate wear rate of undercarriage track propulsion systems working in various soil types and 

changing operational conditions. Managing the timely maintenance of these track systems is 

critical for they represent over half of the non-fuel operating cost of the equipment fleet.  

Understanding the major influencing factors that impact undercarriage system wear rate can 

help determine the most economical time to stop a machine for track maintenance thus 

positively impacting the equipment’s return on investment (ROI). 

 This research analyzed the population of track type dozers in the eastern half of North 

Carolina, United States of America. This region has markedly different soil types, topography 

and precipitation amounts making this to be an excellent study canvas.  Sand percentage in the 

soil where the machine is working is thought to be a primary factor influencing the wear rate.  In 

addition, other factors like precipitation, temperature, machine model, machine weight, altitude 

above sea level, and work type code are also considered and analyzed to determine which of 

these factors have significance.  A regression model is developed that can be used as a predictive 

model to help manage this high value maintenance wear item. 

 This research is important because the results can assist machine owners in maximizing the 

life of the undercarriage system in eastern North Carolina and will result in better machine 

maintenance decisions.  In addition, this research can be utilized to accurately bid construction 

jobs predicting machine operating expense for each specific job site soil makeup.   
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      PREFACE 

 Individual concepts of knowledge and understanding are as vast as the countless grains of 

sand comprising the shoreline.  “God gave Solomon wisdom and very great insight, and a 

breadth of understanding as measureless as the sand on the sea shore” (NIV Study Bible, 2011).  

This vast body of knowledge is ever changing and evolving and it is my hope that this study  

contributes one more grain of sand to the expansive landscape of knowledge.  Although one 

grain of sand may seem insignificant, the massive shoreline is comprise of countless unique and 

individual grains with each adding to the sum.   

 Like these grains of sand, there is a huge amount of information at the disposal of todays 

equipment managers and owners. The hope of this research is to provide one more useful tool for 

equipment managers and owners to use in managing their equipment fleets.  As with any new 

knowledge, this study will be added to and hopefully will strengthen the current body of 

knowledge that already exists today.  This will help make better equipment management 

decisions and if utilized properly, helping to optimize the utilization and efficiency of today’s 

equipment fleets.  
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CHAPTER 1 

INTRODUCTION 

 It has been long hypothesized in the equipment management industry that working in 

sandy soil accelerates the wear rate of the steel track undercarriage.  Few scientific field studies 

have been found regarding this relationship and quantifying it would help in the management of 

diverse track type equipment fleets. This understanding would provide valuable information 

creating impetus for more profitable equipment management decisions.  Understanding the 

relationships of the critical operational conditions that impact undercarriage wear rate could 

assist organizations in the bidding process of large earth moving projects to gain an 

understanding of true equipment cost depending on the soil types and working conditions.   

                                                                     Background 

 This research is an extension of previous research performed by this author and Dr. 

Christopher Kluse. (Rich & Kluse, 2018).  In the original study, it was determined that differences 

in the track system life of heavy construction equipment depends on the geographic location in 

which the machine was working in the study area.  The research analyzed track wear life of two 

populations of track type machinery where one population resided in the coastal plain area and the 

other in the western piedmont region of North Carolina. Some interesting characteristics of these 

two regions is the marked distinction in the geological composition of the soil texutures, 

topography and precipitation totals.  The results of the research determined there is statistical 

different between the eastern and western populations however, the research did not investigate the 
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causation of this finding.  One of the main differences between the two regions is soil composition.  

The eastern region is in the coastal plains of the state where the soil is composed of a higher 

percentage of sand while, the western half of the territory is comprised of far less sand with much 

more silt and clay.  This research expands upon the previous study and quantifies the wear rate 

differences between the regions.  Once this relationship is quanitified it is leveraged in designing a 

tool set to assist equipment managers by accounting for the additional cost of working in very 

sandy environments or other operational soil conditions. 

 To fully understand the setting for this research, there are several topics discussed in this 

background section.  A description of track systems on dozers which include the components 

comprising the track system, track system maintenance and track system measurement are 

discussed. Understanding the management of track components helps in the understanding of how 

the different machine operational conditions impacts the undercarriage track systems. There is a 

general overview of the soils in the study area focusing on the differences in the soil components 

as one moves from west to east within the study region of eastern North Carolina.  Moisture, 

elevation, and other factors could play a role of an accelerant on undercarriage track bushing wear.   

Track System Background 

 Undercarriage systems on heavy construction equipment propels the machine utilizing a 

sprocket and chain arrangement that rolls on a foundation of idler wheels and bottom rollers.  

Figure 1 illustrates the complete undercarriage system of a large track dozer. In addition to 

propelling the machine forward and reverse, the tracks are designed to turn the machine by 

reducing the power to one side or even counterrotating to turn quickly.  The track system also 

transfers power into the ground engaging tools such as blades and rippers that performs the work of 

moving and manipulating the soil.  Engine horsepower is transferred from the engine through the 
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power train and into the tracks to push the blade in the front of the machine or to pull a ripper in 

the rear.  The blade arrangement pushes dirt, rocks or tree stumps while the ripper is used to 

fracture hard dirt or sandstone to make it bladeable.  This entire track system is designed to wear 

together as a system and is considered sacrificial iron which must be either maintained or replaced 

at wear point intervals.  

 

Figure 1.  Heavy Construction Equipment Undercarriage System 

The area of concern in this track system is the contact area of the pin and bushing where the 

sprocket tooth contacts the bushing of the track chain.  The pin and busing are part of the link 

assembly and this assembly is produced by pressing the links, pins and bushings together into the 

chain shown below.  Track shoes are bolted to this chain and this track assembly is then wrapped 

around the sprockets, rollers and idlers and bolted together at a master link assembly.  As the 
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sprocket is turned by the drivetrain of the machine, the track assembly propels the machine in a 

circular motion as it rolls on the foundation of the rollers and idler assemblies. 

 

Figure 2.  Main Components of Undercarriage System 

 The components referenced in Figure 2 displays the major components of the 

undercarriage system with some critical ones defined in the terminology section.  Figure 3 

illustrates the most critical area for undercarriage management.  That is where the sprocket 

segment, as it rotates around with the final drive movement, contacts the link bushing. Daily 

maintenance is needed in this area to ensure the tracks are cleaned of excess dirt and mud 

buildup to prevent unnecessary and premature wear (Nunnally, 2000).  Without daily cleaning, 

dirt packs on top of the track frame as well as inside the track shoe and bushing area of the link 
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assembly creating additional opportunity for dirt to get between the sprocket and bushing contact 

area. 

 

 

Figure 3.  Sprocket and Bushing Contact Area 

 

If one is to look up into the sprocket area directly where the red arrow is pointing in Figure 3, the 

contact area where the sprocket and busing areas can be seen.  This is where most engine 

horsepower is transferred to the link assembly resulting in pressures being exerted on the wear 

surfaces.  As the sprocket engages with the bushing, not only are there pressures exerted between 

the surfaces, there is also sliding between these two metal surfaces which generates the friction 

for wear to occur.  To compound this issue, dirt can become trapped between the sprocket tooth 

and track bushing acting as an abrasive which can accelerate the wear of the sprocket and 
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bushing surfaces.  Figure 4 is a close-up picture of this area where the most critical wear on the 

undercarriage system occurs.  The worn paint on the bushing shows exactly where the sprocket 

contact patch of the bushing surface is located. 

 

Figure 4.  Sprocket and Track Bushing Wear Surfaces 

Over time, the sprocket wears into the track bushing surface. This is expected and is part of the 

sacrificial material that needs to be managed. Normal wear for a bushing surface is shown in 

Figure 5. One can see how the bushing surface has eroded the once round surface into an oval 

one where the sprocket contacts the bushing. This wear is acceptable until the bushing diameter 

reaches a point of 100% worn which is the trigger for the equipment manager to schedule 

maintenance.   

The typical track bushing is cold extruded from low carbon steel.  After cold extrusion 

the bushings are induction heated and carburized for maximum hardness and toughness (Parts 

Sales Kit, 2005).  The actual specifications for other physical property values such as toughness, 

yield strength and UTS of the bushing steel are proprietary and not available for public 

disclosure.  Matching new sprockets with the new bushing wear surface is critical in matching 

these hardness levels and the profiles of the new mating surfaces.  Keeping old sprocket 
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segments on the machine after a bushing turn can create a pitch mismatch and will also have 

differences in the hardness levels of the two surfaces. 

 

Figure 5.  Normal Bushing Wear 

 Keeping accurate wear measurements of a dozer track system is one key factor to 

successful track system management.  All components showed in Figure 2 can be measured 

ultrasonically to determine the percentage of the wear material that has been worn.  Technicians 

gather this information to produce reports that predict how much life is left in the undercarriage 

system before maintenance is performed.  This data is housed in a central data base and has been 

utilized for this study.  Table 1 shows the critical data in the report provided to the machine 

owner assisting them in undercarriage management.  The track bushing with the most wear is on 

the left-hand side of the machine and currently is at 102% worn at 3,277 hours of operation.  

This is shown by the yellow highlight. All components of the undercarriage are listed in the 

complete report.  The focus of this study is on the bushing wear percentage as it is the most 

important component to measure and interpret for bushing maintenance hours can be optimized 

if managed properly (“Custom Track”, 2013).    
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Table 1 

Track System Wear Report                  
 

Model 

 

D6TXL 
   

Manufacturer Cat    

Serial Number KMR00XXX    

Hour Meter 3277    

     
 Left % Worn Right % Worn 100% Projection Left 100% Projection Right 

Track Link 22 25 5891 4905 

Track Bushing 102 96 1251 1330 

Track Shoe 7 7 18229 18229 

Front Idler 48 40 2659 2849 

Rear Idler 20 20 4381 4381 

Roller 1 30 32 4254 3958 

Roller 2 29 30 4421 4388 

Roller 3 29 29 4421 4421 

Roller 4 22 25 5801 5105 

  

When the track bushing reaches 100% worn, level 1 bushing turn maintenance is required 

to the link assembly.  At this maintenance interval the track assembly is removed from the 

machine and the track shoes are removed from the link assembly.  This isolates the link assembly 

which is placed on a large press that separates the links from the track bushing.  Pressing both 

links away from the bushing allows for the bushing to be manually rotated 180 degrees from its 

original press fit position.  After the bushing is rotated 180 degrees the links are pressed back 

together which now exposes a new wear surface to the sprocket.  At this maintenance interval the 

sprocket segments are also replaced to provide a new mating surface for the newly exposed 

bushing surface to contact.  Figure 6 depicts this maintenance process. 



9 

 

 

Figure 6. Bushing turn Maintenance of Rotating the Track Bushing 

If for some reason this bushing turn maintenance is not performed the failure of the link 

assembly can occur and is shown in Figure 7.  If the bushing fails, level one maintenance cannot 

be performed, and the link assembly must be replaced prematurely creating waste of the 

remaining sacrificial metal.  This reduces the useful life of the track system by approximately 

one-half equating to thousands of dollars in lost undercarriage value.  To optimize the 

undercarriage track system life, the equipment manager continues to operate the dozer until the 

critical bushing reaches 100% and then perform maintenance.  If maintenance is performed too 

soon, perfectly good sacrificial metal is wasted as unused wear potential.  Conversely, if the 

maintenance is pushed out too far, the bushing ruptures, and a catastrophic failure as shown in 

Figure 7 ensues. 
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Figure 7.  Failed Track Bushing Due to Missed Maintenance 

After the level one maintenance is completed the track system is now in the run-out stage 

of its lifecycle.  The undercarriage should be operated until the destruction of the tracks occurs.  

Once the undercarriage is worn beyond operational capacity, the entire undercarriage system is 

replaced including rollers, track groups, sprockets and idlers.  This generates the normal 

bushing/link replacement interval for complete system replacement. Figure 8 describes the 

maintenance cycle of a track type undercarriage system and the steps that occur.  If the bushing 

turn maintenance is missed and the bushing fails, the second life of the track system is also  

forfeited.  Therefore, the inspections are critical for accurate forecasting of these maintenance 

intervals to account for the different input factors that may be affecting the wear rate. 
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Figure 8.  Life Cycle of Track Undercarriage Systems 

Input Factors 

 This study investigates how soil texture impacts the wear rate of the undercarriage 

components mentioned and explores if higher sand content in the soil accelerates the wear rate.  

To determine this correlation, one must have a general understanding of soil texture and how the 

sand content is determined in a soil sample.  This is critical in the collection of the data and for 

the determination of the sand content percentages required. All soils are classified by use of a 

soil texture.  The specific soil texture refers to the makeup and physical characteristics of the soil 

and specifically is the proportion of three sizes of soil particles being sand (large), silt (medium) 

and clay (small) (Plaster, 1997).  For this research, the proportion of sand in the soil sample is 

the main input factor to determine the correlation to metal track wear rate.  Depending on the 

proportion of sand, silt and clay, the soil texture could fall within 12 different textural 

classifications.  If the silt and clay soil component proportions are known, the sand percentage 
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can be extrapolated (Davis & Bennett, 1927).  This relationship developed by Davis and Bennett 

is very important in this research for it assists in the determination of the sand percentage in the 

soil in which the heavy equipment is working. 

Soils in Eastern North Carolina, USA 

 The location of this field study is performed in the geologically diverse eastern half of 

North Carolina, USA which is represented in the counties lying roughly east of the 79.79 west 

latitude.  This area for study was chosen for two reasons.  The undercarriage reporting for the 

track type dozers in this study area is readily available in an interactive data base designed to 

monitor track wear.   Secondly, the geology in this area is diverse and changes gradually along a 

continuum from west to east.  As one moves from west to east, the geology changes from one of 

a metamorphic composition of granite-based soils to one of high sand and silicon-based soils in 

the coastal plane.  Generally, as one moves from west to east, the soils continuum gravitates to 

proportionally more sand based soil.  It is found that soils in the western third of the territory 

generally has 20-40% sand content and a higher percentage of silt and clay.   As one moves west 

to the central third of the territory there is comingling of soil types that represents a transition 

zone between the piedmont and coastal plain zones.  Here there are streaks of different soil types 

that have more variability of sand content.  As one transitions to the eastern third or coastal plain 

area the sand content steadily increases to 80-90% with less variability.  There are soil types 

directly on the coast in Dare County that are comprised of 99% sand (Tant & Byrd, 2019). 

 In studies of soils across eastern North Carolina it is found the “soil samples varied most 

widely in texture” with sand being the largest in differentiation across the geologic continuum 

(Lu, Bowman, Rufty & Shi, 2015). This study area provides the researcher with many different 
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soil textures which reflects a very diverse sand percentage.  This allows for variability in the 

determination of the regression model. 

 Precipitation across this territory is quite diverse with far more precipitation occurring in 

the eastern half (NOAA, 2019).  2017 annual rainfall data reflects much more precipitation along 

the coastal areas with lesser amounts as one travels west.  One major cause for this higher level 

of coastal precipitation is tropical storm activity.  On average there are 2.27 tropical systems that 

impact this study area creating spikes in the yearly rainfall averages (“Hurricanes”, 2019).  

Another factor to this gradient is the on-shore winds that create storm activity during the 

summer.  As warm ocean waters are driven by a typically persistent easterly breeze, this 

phenomenon can create coastal rain episodes that the piedmont region does not experience.  In 

the summer months, the differences between the land and the ocean waters create a strong 

eastern sea breeze that increases the precipitation in the coastal plain area of the state (Sims & 

Raman, 2016).   This east to west gradient provides another opportunity to gauge the bushing 

wear rate to determine if this gradient of moisture differential creates a correlation to faster 

bushing wear. 

 As with sand percentages and precipitation, topography tends to mirror the same gradient 

patterns exemplified in these other two input factors.  As one begins at the coast, the topography 

is very flat with very few undulations.  The further one travels west into the piedmont, there are 

many more gentle rolling hills.  This increase in undulation continues to grow until one reaches 

the high peaks of the mountainous region of the state.  There is a line of demarcation where the 

coastal plain ends and the piedmont begins which closely mirrors the same gradient as sand 

content and elevation (NCOnemap.gov, 2019). This correlates very closely with the silicon-

based soil line and this discovery is the basis of some of the input factor measurements.  The 
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rationale in measuring the input factor of terrain by gauging elevation above sea level is due to 

this predictable gradient.  As one moves east to west both the elevation increases as well as the 

undulation of the terrain.   

 The machinery that is a part of this analysis is quite diverse in size and the applications in 

which the equipment is operating.  Some of the different types of work performed in this 

territory consists of landscapers, utility installation and residential job sites which are typically 

requiring smaller machines to perform the work.  Another type of work is the heavy construction 

projects comprising roadwork and large industrial projects.  These projects are typically large 

earth moving projects that must use the full gambit of machinery models with proportionally 

more large equipment being used on this type of project.  Finally, the mine sites require the 

largest machines and these machines are operating in very harsh and high impact applications. 

These mining machines are designed for this type of work and the undercarriages systems are 

designed to withstand the abuse found in this application.  Each of these types of work 

applications are grouped together in the data base by using a work type code.  This is a code that 

designates the type of work each machine is involve in to discern whether the type of work 

performed by the machine has any impact on the undercarriage hours per percent worn. 

     Statement of Problem 

 Equipment managers and owners have a challenging task in determining track system wear 

rate when working in unfamiliar locations or in areas with diverse soil textures and other variable 

operational factors.  This makes it difficult to accurately time maintenance intervals and to 

calculate the true cost of operation of track type equipment.  This lack of track wear visibility could 

cause missed maintenance intervals and erode profitability for a construction job if the extra track 

wear due to high sand content is not accounted for in the job bid.  Therefore a need exists to 
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quantify the impact of these input factors and create a model to aid in the prediction of the wear 

rate based on these factors. 

        Statement of Hypotheses 

1. The null hypothesis to test is:  Is there a correlation between the percent of sand present 

in soil, elevation above sea level, machine weight, temperature, precipitation and the 

wear rate of steel track undercarriage systems? 

Ho: βsand content = βelevation = βweight = βTemperature = βPrecipitation = 0 

HA: βsand content or βelevation or βweight or βTemperature or βPrecipitation ≠ 0 

 

2. The null hypothesis to test is:  Is there a difference between the model number of the 

machine and the wear rate of steel track undercarriage systems? 

Ho: μ Mod 3 = μ Mod 4 = μ Mod 5 = μ Mod 6 = μ Mod 7 = μ Mod 8 = μ Mod 9  

HA: At least one mean is not equal 

3. The null hypothesis to test is:  Is there a difference between the machine population 

groups by work type code and the wear rate of steel track undercarriage systems? 

Ho: μ Landscape = μ General Contracting = μ Utilities = μ Residential = μ Mining= μ Landfill 

HA: At least one mean is different. 

 

 

 

 



16 

 

   Statement of Research Questions 

1. Do steel track undercarriage systems hours per percent bushing wear vary depending on 

the percent of sand present in the soil in which the machine is working? 

2. Do steel track undercarriage systems hours per percent bushing wear vary depending on 

the annual precipitation totals in the location on which the machine is working? 

3. Do steel track undercarriage systems hours per percent bushing wear vary depending on 

the elevation above sea level at the location on which the machine is working? 

4. Do steel track undercarriage systems hours per percent wear vary depending on the 

model number of the machine being investigated? 

5. Do steel track undercarriage systems hours per percent bushing wear vary depending on 

the weight of the machine being investigated? 

6. Do steel track undercarriage systems hours per percent bushing wear vary depending on 

the work type code that is assigned to the customer grouping? 

7. Do steel track undercarriage systems hours per percent bushing wear vary depending on 

the yearly average ambient temperature at the location the machine is working? 

Statement of Purpose 

 The purpose for this research is to develop a regression model that describes the 

correlation and quantifies the differences between steel track undercarriage wear rate to the sand 

content in the soil, other significant input factors and their interactions to assist equipment 

managers better manage undercarriage system cost. 
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  Statement of Need 

 There are presumptions in the equipment industry that the higher the sand content in the 

soils the faster the undercarriage on heavy equipment wears. There could be other input factors that 

affect wear rate as well.  The need for research in this topic is to quantify the actual impact of the 

sand content in soil and other factors have on the wear rate of the steel track undercarriage systems.  

With this regression equation coupled with other analysis tools, equipment managers can 

determine the impact of these factors on the rate of wear of the undercarriage system. In addition, 

the engineers who are bidding on earth moving and construction jobs can utilize these tools to 

better ascertain the true cost of operating the heavy equipment in the specific soil types and 

operational conditions in which the machine is working in.  Today there could be general  

allowances made with a lack of quantification of these major input factors in quoting jobs for 

construction company future work sites.  These tools help equipment managers be more precise 

with their equipment management decisions thus more effeceively managing the cost of machine 

operation.  It also helps the job estimators be more precise in the quoting of their jobs for the high 

cost of undercarriage system utilization will be better estimated depending on the soil type and 

other factors at the specific job site location. 

     Statement of Assumptions 

This research adheres to the following assumptions: 

1. The machine is used in only one localized area during the research study therefore is 

working in the same soil type.  All efforts were exhausted to ensure that machines that 

are not domicile to one area are not part of this study. 
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2. The calculation process of percent worn is consistent throughout the entire make and 

model spectrum within the study area.  A measurement system analysis was performed to 

validate the measurement data. 

3. The soil type classifications developed by the United States Department of Agriculture 

(USDA) are accurate. 

4. The equipment owner primarily works in only one type of business which correlates to an 

appropriate work type code. 

   Statement of Limitations 

 The location in which the machine is operating, and the associated soil type is acquired 

using the USDA soil survey mapping system using longitude and latitude coordinates provided 

by a telematic system data feed from the machines. If there are multiple soil types present the 

soil type closest to the border line used in the data point determination. It is assumed that the soil 

data in the mapping system is accurate.  

 There is some localized error in the measurement of terrain however accurately 

quantifying local terrain differences would be nearly impossible in the field with such a large and 

physically dispersed population of equipment.  A United States Geological Survey (USGS) 

document stated the accuracy of the USGS mapping system is accurate to an average of plus or 

minus 2.7 feet (Gesch, Oimoen, & Evans, 2014). 

Undercarriage branding, metal composition and metallurgy was not considered part of 

this research. 

 There is some localized error in the measurement of annual precipitation rate for the data 

output is delivered by weather stations. There may be some between station to station variation 
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depending on the location of the GPS coordinates provided due to thunder storms that may 

bypass any of the gauges in the study area.  

      Statement of Delimitations 

 This study focuses only on the eastern half of the state of North Carolina, United States 

of America since the undercarriage wear data is the accessible for this area only. 

 This study uses the research data which is comprised of machines whose undercarriage 

system measurements are currently available.  Only machines being monitored by undercarriage 

reporting and with GPS location hardware and is included in this research. 

     Statement of Terminology 

 Steel track undercarriage: The propulsion system for many heavy equipment models of 

dozers, excavators and loaders designed for heavy duty earthmoving appliations.  This proplusion 

system also transfers horsepower from the engine into the ground engaging tools that are 

performing the work (Moore, 2010). 

 Soil texture classifications: The descriptive name given to different soils designating the 

percent of sand, silt and clay seperates present in the soil makeup (Foth, 1984). 

 Soil texture triangle:  The tool used to classify soil texture when two of the three soil 

components of sand, silt and clay are known. Conversely, if the soil type is given these three 

component percentages can be described using this tool.  It visually depicts the soil texture 

reflecting the diffent proportions of sand, silt and clay in the soil sample (Foth, 1984). 

 Percent worn:  The useful life of a track type tractor system that has been worn away with 

100% being the maintenance point (“Custom Track”, 2013). 



20 

 

 Ground engaging tool:  Sacrificial metal on heavy construction or earth moving machinery 

that contact the soil directly to do work or to propel the machine.  Examples are undercarriage 

systems, ripper shanks, bucket teeth or dozer blades  (Finning, 2019). 

 Service Meter Unit (SMU):  Hours of machine operation measured by electronic meter on 

dash typically used for machine billing and maintenance interval calculation (“Custom Track”, 

2013). 

 Track Bushing:  The track system component that is pressed into the track links and is the 

most critical component in determining track maintenance (Moore, 2010). 

 Hours per % worn:  The number of hours the machine operates before one percent of the 

useful life is removed from the bushing surface. 

 Soil classification:  The name assigned to a soil with a specific soil textural profile based on 

morphology, origin and developmental factors of the soil sample (Foth, 1984). 

 Bushing turn or level 1 maintenance:  Where only the pins and bushings are turned 180 

degrees to expose a new second contact surface for the sprocket segments to drive (“Custom 

Track”, 2013). 

 Bushing/link replacement or level 2 maintenance:  After bushing turn maintenance has 

been performed the machine’s track system is to be ran to destruction and a new track system 

installed (“Undercarriage”, 2013). 
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        CHAPTER 2 

REVIEW OF LITERATURE 

                                                        Equipment Maintenance  

There are three types of equipment maintenance cost which include acquisition, 

operational maintenance and residual cost.  Operational maintenance cost has the largest 

financial impact, is the one that is very controllable, and the cost being researched in this study 

(Tsimerdonis & Murphree, 1994). Undercarriage components can comprise 50% of this non-fuel 

operational cost (Kalousdian, 2008).  Unfortunately, it has been found that up to one third of the 

maintenance costs is wasted because of unnecessary or improperly managed (Fan & Fan, 2015).  

OEM and dealer support in the management of this maintenance cost is increasingly important as 

new equipment becomes more sophisticated and technically advanced (Caterpillar, 2018).  One 

of the support functions performed by the OEM is to measure the undercarriage track system to 

determine the rate of wear and the hours of operation until maintenance intervals are reached.  

To maintain the high performance of earthmoving equipment and to reduce operational 

maintenance cost, proper and timely maintenance of the track system is required.  Understanding 

when to perform this maintenance and the input factors impacting this timing is critical to 

minimizing equipment maintenance costs (Schexnayder & David, 2002).  It is also found that 

properly maintained machines hold their value better and can expect higher residual value at the 

end of the machine’s useful life (Lucko, Anderson-Cook & Vorster, 2006).  To be profitable in 

managing an equipment fleet, it is critical to accurately forecast the cost of replacement wear 

materials and to schedule the downtime rather than repairing after failure (Mitchell, Hildreth, & 
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Vorster, 2011).  Downtime resulting from an unscheduled breakdown of equipment 

unexpectedly drives additional cost and affects project schedule significantly is one of the most 

important areas for research on equipment management (Praseryrungruang & Hadikusumo, 

2009).  Knowing when to schedule the machine’s downtime before failure occurs improves 

operating efficiency and the ROI for the machine owner (Townsend & Badar, 2018).  

Understanding the factors that drive machine part wear is critical to this management strategy 

and it is proposed the soil texture and other factors could have a major impact. It has been found 

that wear rate of certain ground engaging tools and other non-undercarriage track system 

maintenance wear parts are directly related to the abraisivity of the soil and depending on the 

material being tested the time to failure could be predicted (Lee, Kim & Young, 2014).  Sand 

crystals are 2-5 times harder than the ground engaging tools attached to the machines therefore 

are very abrasive (Gharahbagh, Qiu, & Rostami, 2013).   

      Science of Metal Wear 

 Metal wear is the result of metal particles being separated from the parent material due to 

the interacting, fractioning surfaces and extreme pressures being generated at the sprocket/track 

bushing interface. “In the course of abrasive wear between the surfaces moving on each other, 

the peaks of the harder material gouges grooves into the softer material, peeling some  

material, so it is a groove-proceeding process (appearances: craters, scores, scratches, scrape 

traces)” (Szuchy,2013). The erosion of metals under pressure with sand particles occurs when 

the impacting particles cause severe localized plastic strain on the parent material.  Figure 7 

shows the erosion of the track bushing area and the location of this bushing on the undercarriage 

system and this area of the undercarriage system is the most critical in determining the 
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maintenance interval for the machine.  This area of the undercarriage system must be maintained 

before any other part and is the pace maker for further maintenance intervals.  This material 

removal occurs when the strain to failure of the deformed material is exceeded (Yoganandh, 

Natarajan & Babu, 2013).  The pin and bushing area of the undercarriage system is one critical 

area on the undercarriage system where this metal wear occurs and is the first major maintenance 

opportunity required by the OEM. There are tremendous loading and pressures exerted in the 

sprocket and bushing area of the undercarriage system for much of the engine horsepower is 

being transferred there. The greater the pressure the greater the wear impact generated by the 

detachment of metal layer and cracks generated by these higher loads (Kamalpreet & Pandey, 

2013).   

 In laboratory studies of metal wear, there are many studies where the introduction of sand 

into the experimentation resulted in much higher wear rate.  During these tests “a further increase 

in sand content caused a greater mechanical damage” and “the critical ranges of sand  

here proposed are related to the effects of increasing the sand content” (Flores, Neville, Kapur & 

Gnanavelu, 2011). In addition to the amount of sand introduced into the experimentation, the 

type of sand also creates differences in the wear rate of metals.  The metals being tested were 

“abraded by two types of abrasive sand (alumina and silica) in three different grain sizes” with 

the two types having vastly different granular hardness (Kasparova, Zahalka, Houdkova & 

Ctibor, 2010). The size of the sand particle also impacted the rate of wear which “may be due to 

higher embeddability of particles in one of the rubbing surfaces, and additionally the separation 

and elimination of worn surfaces. We noticed that the average value of friction coefficient 

increases with increasing sand particle size “(Ramadan, 2016). Heavy equipment can operate in 

other material besides soils.  Working in fly ash, organic muck soil or coal can produce a 
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radically different wear rate and should be considered during the field study of this research 

(Nikhilesh, Dash, Mishra, Patra & Mahapatra, 2010).  The laboratory studies seem to correlate 

sand with accelerated wear rate with particle size and physical harness being a significant 

characteristic. 

 The material makeup and heat treatment of the steel comprising the undercarriage system 

is critical in weathering the severe impact of sand introduction into the system. “Due to its 

properties of high hardness, good toughness and high wear resistance, steel is widely used in 

applications such as mine and rock crushing, etc. which involve impact and abrasion”  

 (Dumrudkarn & Muangjunburee, 2015).  “Both hardness and toughness play the important roles 

in wear resistance” and in some applications where impacts are severe, tough buffering layers are 

often needed to prevent breakage (Srikarun & Muangjunburee, 2015). The choice of steel in 

undercarriage is an important input factor where “amorphous steel has better wear resistance 

than traditional crystalline steels and a good linear correlation was found between wear 

resistance and microhardness (Ji, Shan, Chen & Wang, 2016).   One critical factor to consider 

here could be the choice of undercarriage brands which uses many different types of steel 

configurations in their undercarriage link design. Metallurgical properties of undercarriage 

systems may be different between manufacturers and should be a concern for the most profitable 

operation of the heavy equipment fleet. 

Past Wear Mitigating Technology 

 To help mitigate wear to the bushing surface there have been some technological 

innovation utilizing creative application of some of the metallurgical principles discussed.  Wear 

resistant material has been infused into the bushing structure to help the impact of the metal to 

metal contact of the segment and bushing surface (Haslett & Blunier, 1975).  Another approach 
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to help mitigate this wear is to employ a metallizing process to spray a hardened coating onto the 

bushing area to “improve abrasion and galling resistance” (Anderton, Chuong, Dremann, Holt & 

Shankwitz, 2000).  To remove the movement component of friction a revolving bushing was 

invented in 1963.  This prevents the bushing from sliding down the face of the sprocket contact 

surface thus reducing sliding movement and reducing the wear rate (Zeller, 1965).  This 

invention was very simplistic and impractical until 1970 when a more advanced and producible 

derivation of this idea was employed.  This idea replaced the sleeve to make the bushing rotate 

about the pin (Boggs & Dadds, 1970). Many of these innovations seem to be the breakthrough 

ideas to revolutionize track undercarriage management but this type of track was initially not 

reliable in the field.  These early technological innovations were all designed to reduce abrasive 

friction in the bushing and sprocket area. This technology continues to develop and in the future, 

a bushing design could remove “much of the friction, and the wear out of the track chain” by 

using this rotating bushing technology (Stewart, 2010).  It has been found that the standard 

undercarriage is reliable and is by far the overwhelming track system used in the market today 

(Moore, 2013).  As technology continues to evolve and advance, this premise may and probably 

will change in future tractor designs. 

Eastern North Carolina Soil Structure 

 The study area of this research is the eastern half of North Carolina and the geological 

makeup of the soils are quite diverse.  “North Carolina is a state of diverse geography, ranging 

from sandy barrier islands on the Atlantic coast to the rugged Appalachian Mountains on its 

western border” (Williams, 2018).  The diverse geography results in equally diverse ecosystems 

each comprised of a broad range of soil types and textures within the state. These three 

physiographic regions are named the mountain, piedmont and coastal plain regions. Within these 
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three regions of North Carolina there are over 400 different types of soil, though certain soil 

types are more common to the state.  The different types of soils found in the research territory 

depends primarily on the underlying rock substrate and geological conditions that are present in 

the specific region. Other factors that play a role are drainage, climate, vegetation and historical 

attributes of the land (UNC, 2018). Each soil type contains a different percent of sand, clay and 

silt content thus defining the textural composition of the soil type classification. The 

physiographic regions being studied in this research is the eastern half of the piedmont and the 

coastal plain regions of the state.   

 One of the largest factors driving the soil diversity is the gradient of sand percentages 

present in the soils in the two regions of this research study.  In the piedmont area of the state the 

land mass is composed of soil types and textures comprised largely of clay containing a lower 

percentage of sand and silt.  The piedmont is resting on a metamorphic base of granite rock and 

the resulting soils reflect this parent material (UNC-1, 2018). Almost all the piedmont region 

soils are ultisols, with light upper layers and a reddish sub-soil which is the result of erosion of 

the granite and other metamorphic rock formations from hilly outcrops and underlying rock 

formations (UNC-1, 2018). 

 The coastal plain area of the research zone was undersea for millions of years and a 

limestone base was formed during this time with much silicate sand being created.  In some 

temperate regions formed by limestone, calcite and dolomite may dominate the soil.  In other 

temperate regions quartz dominates the resistant inherited mineral (Rowell, 1994).  This 

limestone produced lands along the coastal plains that are diverse and very rich with high quality 

agriculture lands.  “These soils can vary tremendously, particularly in texture, which depends on 

exactly how the parent material was deposited when this region was under the ocean at the edge 
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of the continent and consists of gently rolling land with a rather sandy soil” (UNC-1,2018). The 

resulting geological composition of the soil types range from low levels of sand in the piedmont 

with much higher concentration of sand in the soil types of the coastal plain regions of the state 

and this geological diverse area is the focus of this research study.  

 Soils throughout the research territory are classified by soil texture.  Soil textural classes 

represent the proportion of sand, silt and clay that is present in the soil determined by lab testing. 

Sand is technically defined by silica groupings with very course sand separates having a diameter 

from 2 to 1 mm.  The smallest sand classification is that of very fine sand which measures 

between 0.10 and 0.05 mm.  Anything between 0.05 and 0.002 mm is considered silt and 

separates with diameter less than 0.002 is considered clay particles (Foth, 1984). If the 

percentage of two of the soil components are known then the other can be calculated using the 

textural triangle (Ease, Sauer, Razvi, Walker & Bratz, 2015).  In using the textural triangle, if 

one knows the soil textural classification, the researcher can determine the percent of sand in the 

soil in which the piece of heavy equipment is working.  

Impact of Moisture on Metal Wear 

 In laboratory studies, adding moisture to the abrasive sand types has a “significant 

impact” to the abrasivity impacting the wear components (Gharahbagh, Qiu & Rostami, 2014).  

Beyond laboratory studies, the premise of moisture in the soil increasing wear permeates into the 

field studies of tunneling equipment. From these tunneling machinery studies it was concluded 

that the “water content is a crucial factor in tool wear as well as shear resistance, especially in 

soils with higher mineral hardness” (Mirmehrabi, Ghafoori & Lashkaripour, 2016).   If adding 

moisture as an input factor to laboratory and field studies increases the metal wear rate then the 

addition of moisture to the operating conditions of construction equipment undercarriage should 
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increase wear as well. It has long been hypothesized that working in high moisture soils could 

impact the wear rate of the track systems. Some track manufacturers state that working on “wet 

job sites” can increase track wear (West-Trak, 2019).  In John Deere’s Undercarriage Wear and 

Care Guide, they talk about how working in wet conditions is not conducive to long track life 

(Deere, 2019).  If this is case, the use of rain fall totals may be a significant input factor 

measurement for this study to determine the impact of the soil moisture.  Precipitation is “the 

dominant source for soil moisture” and “precipitation has the most direct and important influence 

on the estimation of soil moisture” in modeling studies (Liu, Reichle, Bindlish, Cosh, Crow, De 

Jeu, De Lannoy, Huffman & Jackson, 2011). If such correlations exist the annual precipitation 

measurements across the study area should be a good measure of soil moisture.   

There is a gradient of increased rainfall as one goes from east to west or from the coastal 

plain to the piedmont regions.  This precipitation variation across the study area can be 

attributable to several factors.  It was also found that in the case of the coastal plain area of North 

Carolina, certain interactions between the sea breeze and the thermally driven local circulation 

creates higher rainfall amounts in the coastal plain.  It has been found that “much of the 

precipitation that falls in the coastal region can be attributed to locally driven convection 

process” (Sims & Raman, 2016).  This is one reason for the precipitation gradient being present 

for as the sea breeze blows across the increasingly elevated land mass, rising air and precipitation 

are produced. Tropical cyclones are another reason the coastal plain area has an increased 

precipitation totals compared to the piedmont region.  Tropical cyclones are attributable to 

between 10-15% of the total rainfall totals in the coastal plain region of the state of which the 

piedmont is often spared this additional rain (Nogueira & Keim, 2011).  With hurricane landfalls, 
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the amount of rain produced by each storm is very unpredictable but most of the rains fall in the 

coastal areas (Kehoe, Raman & Boyles, 2010) 

                                                                    Topography 

 Topography is another input factor of the track bushing area that could have impact to 

wear rate.  As tractors navigate across undulated terrain or are constantly working on sloped 

ground, additional torsional loads are placed on the bushing area.  Deere states that working on 

slopes or depression will “accelerate wear on the inside track contact surface. Working in 

depressions will put loads on the outside bushing ends” (Deere, 2019).  Deere does not however 

discuss the impact on the wear rate of the bushing surface.  Caterpillar states that working uphill 

increases the weight load on the sprocket/busing area which increases the pressures on the 

forward drive side of the bushing.  Working on a downhill slope shifts weight to the idler and 

front rollers creating more extreme pressures there.  Also noted by Caterpillar that working on 

side slopes, depressions and crowns has greater impacts the roller flanges and idler surfaces with 

no mention of the bushing surface (“Work”, 2019).  As with the sand content and moisture in the 

soil, the terrain varies quiet differently on ironically the same gradient.  From east to west the 

topography is quite different.   

       Other Peer Reviewed Studies 

 In many studies on heavy equipment maintenance, undercarriage track systems are often 

not included in the analysis due to the variability in their wear rate. “These expendables can wear 

at greatly different rates depending upon a wide variety of factors” (Mitchell, Hildreth, &Vorster, 

2011).  There has been one notable and well performed study found that investigates specifically 

the wear of top carrier rollers in a pit mining environment. The study used a Weibull analysis to 

predict the mean time to failure (MTTF) of this non-load bearing component between three 
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populations of dozers.  These three dozer fleets were in three different mine sites with different 

quartz percentages in the material being mined.  It was found that there was a linear relationship 

between this quartz content and the MTTF of the carrier roller (Djuric & Milisavljevic, 2016).  

The Djuric & Milisavljevic study differs from this study in that:  

 -The carrier roller does not trigger level one or two track system maintenance as the track 

bushing does.  If a carrier roller fails between a bushing turn or level two maintenance interval, 

the roller is simply and comparatively quickly replaced. Track bushing wear, on the other hand, 

is widely used by equipment managers as the bell weather for bushing turn and bushing/link 

replacement windows which can result in much longer unplanned downtime if not properly 

managed. 

 -The carrier roller, although it supports the track group weight between the idler and 

sprocket, does not have the extreme forces placed upon it by the sprocket as the track bushing 

does.  Targeting the bushing helps better predict the entire system maintenance interval for the 

machine when compared to the carrier roller replacement thus bringing more value to the 

machine maintenance decision process.   

 -The diversification of the machines used in this study was vastly different.  Rather than a 

high population of one machine model in three separate geologically diverse locations, this study 

investigates a wide array of machinery models of various sizes across a much wider continuum 

of geological variation of sand content. This approach better simulates a typical diverse machine 

fleet by having multiple machine models over a wider and varied geologic landscape.   

 Elverman also discussed in a trade magazine article that he found that working in 

abrasive materials in the oil sands area of Canada can reduce steel undercarriage life from 14,000 
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hours to 3,000 and the abrasiveness impacts not only tracks but other sacrificial metal containing 

areas of the machine (Elverman, 2004).  This reinforces Djuric & Milisavljevic’ s work in a 

different machine application. 

 These studies argue the presence of a cause and effect relationship of sand between the 

soil and the accelerated wear on undercarriage and other heavy equipment maintenance items.  

Both studies mentioned focused specifically at certain job sites with like machine populations 

and one soil type or one specific component of the machine for replacement.  This study 

investigates variable sand content’s impact on the entire replacement management strategy of the 

entire undercarriage system throughout a wide study area.  This approach should be more 

applicable to strategic decisions on machine fleets using the regression equation that is 

developed through this research.   

  Research Method 

 This study is a quantitative correlational study of several machine operational input 

factors and how they impact the wear rate of the undercarriage system.  This study evaluates “an 

interrelated set of constructs (or variables) formed into propositions or hypotheses, that specify 

the relationship among variables” (Creswell, 2014).  The quantitative inquiry begins with a 

specific plan which includes a set of hypotheses.  The research seeks facts and causes to disprove 

these hypotheses which can and does include ex post facto data (Roberts, 2010).   In this study 

there are seven variables of either continuous or categorical data types which are the input 

factors.  Quantitative data are said to be objective, which indicates that the behaviors and in this 

case the correlational relationship are easily classified or quantified by the researcher (Gliner & 

Morgan, 2000).  For the study to be correlational, one needs to determine if there is a statistical 

relationship between the variables.  (Terrell, 2016).  The correlational aspect of this quantitative 
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study looks at how these seven factors impact the dependent factor of hours per percent of 

bushing wear.  Variables are related to answer research questions or to make some type of 

prediction the researcher wishes to show in the form of a hypothesis (Creswell, 2014). When one 

is interested in the relationship between two or more variables, one asks if the input factor 

statistically impacts the dependent variable.  In most quantitative research, the relationships may 

have been already established and the hypotheses deal more with the investigation of which 

variables are significant, and to what extent, in a scientific way (Walker, 1997).  The quantitative 

correlative analysis of this data satisfies the requirements of such a study and the correlation 

determination impacts many stakeholders in the equipment management space. 
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CHAPTER 3  

RESEARCH METHODOLOGY 

 This quantitative correlational research study utilizes multiple data sources and 

technologies to determine the relationship between seven input factors on track bushing wear 

rate in the eastern half of the state of North Carolina.   The seven independent variable factors for 

this study are listed in Table 2.  Each input factor is analyzed to determine its significance on the 

output or dependent variable which is hours per % bushing wear. 

Table 2   

Independent and Dependent Variables 

Input Factor Variable Data Type 

Sand Percentage Independent Continuous 

Machine Model Independent Categorical 

Machine Weight Independent Continuous 

Annual Precipitation Independent Continuous 

Mean Average Temperature Independent Continuous 

Elevation Above Sea Level Independent Continuous 

Marketing Code Independent Categorical 

Hours Per % Worn Dependent Continuous 

   

 For each machine, it is important to determine the transiency of each machine being 

considered to ensure it does not perform work in multiple geographic locations.  High transiency 

places the machine in different soil strata and other job specific differences for extended periods 

of time creating location to location variation that would influence the results of the study.  The 

equipment contained in the undercarriage report data base comprises machines that are being 

systematically monitored for undercarriage wear. The process shown in Figure 9 must be 
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followed to make these determinations.  Each machine inspection identified represents one data 

point in the research study.  It is not required that the same order is followed but to reduce 

variation in the study the data point determination process is followed.  
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Candidate for 
this study

Is Machine
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Figure 9.  Process of Determining each Machine Data Point 

 Once the machine localization has been determined, the next step is to pinpoint the 

machine’s exact physical location using latitude and longitude coordinates provided by the 
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telematics when the undercarriage wear report was generated.  This file is downloaded from an 

undercarriage report management file system which is the data base that produces the reporting 

found in Table 1.  Included in this file are dealer telematic location data files which provide 

longitude and latitude coordinates to locate the exact position of the individual construction 

equipment units at the time of wear report inspection (Gregory Poole, 2019). This location data 

is automatically captured for machines equipped with telematic technology.  When an 

undercarriage inspection is performed, the telematic system pings the machine to retrieve and 

capture its exact coordinates. Construction equipment equipped with telematic functionality  

produces the automated location updates and can be tracked along with the undercarriage report 

data.  The location coordinate data is transmitted to the web portal to 5 decimal places.  GPS 

technology today can detect geographic differences up to 80 mm (Gorski, Breuer, Konopka & 

Napieraj, 2019) however, the telematics used on the study targets are accurate to about 1 meter 

which is adequate for this study’s needs.  The telematic output is visualized onto a map with pins 

representing the exact location of the machine being measured.  If one were to click the location 

pin, the undercarriage report would be shown.  The precise location of the machine is critical in 

determining the corresponding map location on the soil map to determine the soil type.   

 High hour machines that may have had the original undercarriage system replaced at a 

prior maintenance interval require additional investigation.  This requires delving into the 

equipment service history file to determine when the machine’s original undercarriage was 

replaced.  The service meter unit (SMU) reading from the last major maintenance is the new 

starting point of reference from which the current undercarriage wear percentage is calculated.  

Once these high hour machines are identified, the rate of undercarriage wear is calculated for 

each data point from the updated SMU reading.  This requires dividing the number of hours 
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derived from the above investigation by the percent worn on the undercarriage.  This  produces a 

wear rate measure of operating hours per one percent of undercarriage wear which is the output 

factor of our research.  If this connection to an earlier repair cannot be made, the machine is then 

removed from consideration for the true hours of operation cannot be accurately determined. 

 The undercarriage wear report data set is a historical record of undercarriage inspection 

results.  These results are gathered and documented by highly experienced and trained 

undercarriage specialists employed by heavy equipment dealership customer support staff who 

understand the undercarriage systems.  These specialists utilize ultrasonic tools to gauge the 

critical measurements of the wear surfaces of the undercarriage components and these 

measurements are captured into a web portal.  The wear charts built into the portal tool convert 

the measurements of the wear surfaces into percent worn calculation.  The percent worn 

represents the percent of the sacrificial metal that has been worn off the components where 100% 

represents the maintenance interval of the track system.  Figure 10 shows the actual measuring 

process of the track components. 

 

Figure 10.  Physical Measurement of Undercarriage Components  
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The information gleaned from this data is used to assist equipment managers and owners in 

managing this very expensive part of the track type piece of construction equipment.  As 

mentioned earlier, properly timing the service of the equipment wear components are critical in 

achieving optimized ROI that the large investment each piece of equipment represents 

(Townsend, Badar & Szekerces, 2015).  The flat file generated from this detailed inspection is 

extensive and is the foundation for the web portal that marries the telematic tracking to the 

undercarriage report information.  Only certain value-added fields are extracted for this analysis.  

The fields captured include the machine serial number, county, GPS coordinates, measurement 

of left and right-hand bushings, percent worn of both the left and right-hand bushings, 

measurement of left and right-hand links, percent worn of left and right-hand links, customer 

name, SMU reading, and work type code. The most critical of these data fields are the SMU, 

bushing percent worn, and the GPS coordinates. 

 Now that the precise location of the construction equipment target is identified and the 

undercarriage wear report is generated, the research needs to acquire the soil textural data for the 

final piece of required data.  The GPS coordinates of the machine is used to search the soil 

survey data base to determine the soil texture.  From this data, the percent of sand, silt, and clay 

can be determined. The United States Department of Agriculture Natural Resources 

Conservation Service soil survey data has meticulous records on soil types and textures 

throughout the country based on field research of coring the soils and measuring the texture in a 

fine grid pattern (Soil Survey Staff, 2019).  The latitude and longitude are entered into the search 

engine of the web portal and the location of the machine is denoted by an orange box with the 

plus sign in the middle.  Surrounding the target in a green square is the area of interest (AOI).  

Within this AOI one can see the different soil classifications of the soil in the AOI. A data box 
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displays the percent of each soil classification that comprises the AOI.  The researcher now 

determines which soil classification the target resides in to determine the percent of sand, silt and 

clay.   The search engine also displays how the soil types are shown down to a granular detail of 

study area.  The different colors on the map designates the different soil types in the AOI. 

 The search engine delivers the soil classification name in which the machine is working.  

For example, the search engine results tell the researcher the machine is working in a ChA or 

Chapanoke Silt Loam soil classification.  Knowing this, one can further query the data set to 

determine the percent clay classification of 18.5%, the percent silt of 42.8% and percent sand of 

38.7%.  The sand percent is the input factor needed to correlate to the undercarriage wear rate 

and is entered into the data table as the independent variable. 

 The next input variable is the work type code for the machine and corresponding machine 

owner.  This work type code compartmentalizes the large customer data file into like business 

groupings.  For example, all landscaping companies are placed in the landscape group.  This 

input factor allows this study to determine if the type of work a machine performs impacts the 

bushing wear rate.  This input factor is a categorical factor that needs to be analyzed using 

ANOVA to determine significance.  To gather this code, there must be an inquiry performed in 

the dealer’s business system to determine this code for each machine.  This requires the customer 

number of the machine owner being entered into the system and the resulting code entered into 

the data base.  The codes include mining, heavy construction, landscaping, utility and residential 

customer groups. 

 Machine model and machine weight are two input factors that are very interrelated.  The 

model numbers being investigated designates the size of the machinery being studied.  The 

smallest machine to be investigated is a model 3 dozer which is the smallest and lightest weight 
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machine in the territory.  Conversely, the model 9 dozer is an extremely large and heavy machine 

that is on the other end of this continuum.  In addition to the actual weight of the machine, the 

larger the model number, the higher the horsepower ratings of the engines.  Although the 

bushing size increases proportionately with model number, there is much more horsepower being 

transferred through the bushing as the machine is propelled and work is being performed.  

Machine model is a categorical variable and weight is the continuous factor. These two variables 

help to evaluate if equipment weight and model categories have any bearing on the rate of 

bushing wear.  The machine model is gathered from the undercarriage report.  Once the machine 

model is known, the weight can be determined by referencing auction search engines which 

monitors and captures machine weights for a wide array of equipment models (“Construction 

Equipment Guide”, 2019), (Performance Information, 2019).   

 As one moves from west to east across the study territory, the topography of the state of 

North Carolina moves from very hilly to almost flat.  One way to measure this change is 

topography is to identify the elevation above sea level where each machine is working.  The 

higher the elevation, in the case of North Carolina, the more undulation in the landscape (USGS-

1, 2019).  This is exemplified by how the slope of the land increases from east to west.  There is 

naturally a high correlation between the elevation above sea level and slope increase as one 

moves from east to west (NC One Map, 2019).  The elevation in the most eastern part of the 

figure is in most locations virtually at sea level.  As one moves from east to west the transition 

occurs indicating the increasing in the elevation above sea level (NC One Map, 2019).  With the 

increase in elevation mirroring the slope gradient increase, the elevation above sea level could be 

a good continuous measure for the undulation of slope change across the study area. 
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  The question here would be if this undulation has any impact on the bushing wear rate. 

To determine this input factor, one needs to enter the longitude and latitude coordinates into the 

United States Geological Survey website to pinpoint the contour mapping functionality (USGS, 

2019).  The results show a blue dot inside the blue circle of the figure representing the output of 

the longitude and latitude query into the site.  By interpolating the values of the contour lines that 

surround the blue dot, one can determine through interpolation the elevation above sea level.  In 

this example, this machine is working in an area with 28 feet elevation.  This machine is working 

near the coastal areas thus very close to sea level.  The closer the lines are together the greater 

the slope in the landscape. In this example the lines are very far apart denoting a very flat 

landscape. 

 There is of course a component of error in this measurement.  The United States 

Geological Survey performed as study of vertical accuracy between data points being measured.  

In this study there were 1,068 data point pairs compared and the relative vertical accuracy was a 

negligible 0.81 meters or 2.7 feet (Gesch, Oimoen, & Evans, 2014). It should also be noted that 

localized variation in the terrain as it also changes as the machinery moves about on the job.  

This measure of elevation correlates to the changes in topography undulation as jobs progress. 

The next two factors to measure are both climatological in nature and can be found from 

the same data source.  The first is mean annual rainfall and second is the mean annual 

temperature where the machine is working.  To collect these input factors, one needs to access 

the well respected and location rich US Climate Data network (US Climate Data, 2019).  This 

search engine produces both the annual mean values for temperature and precipitation depending 

very near the location, to the nearest community, where the machine is working.  This search 

engine produces an average rainfall to the closest weather station nearest the machine’s GPS 
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coordinates. The deliverable from each query adds to the data set where the average precipitation 

and temperature can be calculated.   

 When considering the temperature average in this study there is a factor of error present. 

One of the main concerns with temperature variation is the location of the temperature 

instruments with regards to the location of the job site.  In this ex post facto data study, real time 

measurements at the jobsite was not available to acquire.  For example, if the closest 

thermometer is located 25 miles from the jobsite, there may be some differences between the 

measured temperature at the weather station and the actual temperatures as the jobsite.  Another 

factor could be the jobsite being in a low-lying area when compared to the location of the 

thermometer.  This would tend to reflect a slightly lower temperature reading at the jobsite.   

 Precipitation measurement also has a component of error and the reasons are very similar 

to the temperature discussion above.  Again, there is some negligible between station variation 

due to the instrument measurement systems which is present to some extent with all instruments. 

The larger and more impactful component to any precipitation measurement error in this 

research is due to the randomness of intense thunderstorms that can travel across eastern North 

Carolina. For example, an intense storm travels over the jobsite but bypasses the rain gauge. This 

common phenomena understates the precipitation at the jobsite.  Another cause for this is the 

randomness of the rain bands of tropical systems.  The random travel of these bands can create 

great variation that may be missed by any precipitation gathering system unless it is located at 

each jobsite. The research design produces a data table that is shown in Table 3 that is populated 

with representative hypothetical data to show how the data fields is laid out.  The data is then 

analyzed using Minitab. 
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Table 3 

Representative Data Set to be Used in Analysis 

Hours per % 

Bushing Wear 
% Sand 

Market 

Code 
Rainfall Elevation Weight Temperature Model 

39.4 50.1 Landscape 4.30 35 15984 64.5 3 

42.8 31.9 Mining 3.81 58 369865 62.5 9 

45.7 26.4 GCI 4.06 458 89254 60.8 5 

18.4 91.5 Landscape 3.74 389 16734 59.6 3 

24.8 73.3 GCI 4.19 603 98235 59.5 8 

45.3 36.6 GCI 3.83 23 88348 63.7 6 

50.3 46.8 Landscape 4.39 3 17873 62.5 4 

 

 One tool to be used to test the significance of the input factors in Table 1 is a regression 

model for regression analysis has proven accurate in predicting equipment maintenance over 

medium range planning horizons (Bayzid, Mohamed & Al-Hussein, 2016). ANOVA is utilized 

to determine the significance of the categorical variables.   The data sources used consist of 

undercarriage wear reports (Gregory Poole, 2019), the United States Department of Agriculture 

Natural Resources Conservation Service soil survey data (Soil Survey Staff, 2019), the National 

Geographic Survey website and the National Oceanic and Atmospheric Administration website.  

These resources are utilized to build the data set where the statistical tools is employed. 

 The dependent variable in this research study reflects the hours it takes to wear one 

percent of sacrificial metal lift off the bushing surface.  This is calculated by dividing the number 

of SMU in which the bushing is in operation by the percent worn from the undercarriage 

condition report.  For all categorical input variables, an ANOVA analysis is performed to 

determine if there are significant differences between the categorical groupings in the hours of 

operation per percent worn.  For the input factors of machine model and work type code 

ANOVA is the analysis tool of choice.  For the remainder of the continuous input factors of 

weight, elevation, temperature and precipitation and percent sand, a multiple regression analysis 
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is performed.  As it is determined a factor is insignificant at an alpha value of 0.05, the factor is 

removed from the model and further iterations of the analysis is performed until only significant 

factors are included. 

 This study acquires data points for the entire population sample of machines in the study 

area meeting the domicile and other criteria.  There were 353 data points generated across the 

continuum of the research territory. This produces a robust model for this territory using an alpha 

value of 0.05.  Having this large sample size helps to mitigate common noise factors that 

permeates the research space.  Much of the noise and uncontrollable input factors is common 

throughout the study area.  One example is having multiple operators on the same machine on 

the same jobsite.  For example, when multiple operators are used, this occurrence typically 

occurs across a generalized area of eastern half of North Carolina and not on just job site.   

 To validate data accuracy from the undercarriage reporting, a Gage Repeatability and 

Reproducibility analysis is performed specifically focusing on the bushing diameter 

measurement of the track specialist creating the undercarriage wear reports. The bushing is the 

most critical component of the components measured and is used to derive the dependent 

variable of this research.  The gage study calculates the variation components based on standard 

deviation of the different measurements by different people (Cepova, Kovacikova, Cep, Klaput 

& Mizera, 2018).   

 The matrix for this gauge study required 10 bushings be measured three different times 

by three different technicians (AIAG, 2010). Three replicates of the matrix comprise the study 

producing 90 data points in the study.  The study is performed during a one-day event on 10 

various track bushings of various percent worn percentages to represent the full range of the 

bushing measurement spec limit.  Each of the ten selected bushings were marked 1-10 with a 
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paint pen for measurement traceability.  Three certified track specialists were chosen appraisers 

to perform the measurements of the 10 marked bushings and the measurements were kept 

confidential until the completion of the study.  The measurements were entered into Minitab 

utilizing the Gage R&R Study (Crossed) functionality.  This study validates the measurement 

system is robust enough in that no more than 10% of the total variation in the bushing 

measurements is due to the measurement system (AIAG, 2010). 
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CHAPTER 4  

DATA ANALYSIS 

 Research data was gathered per the instructions described in the Chapter 3 research 

methods which utilizes various data collection sources.  The foundational data for this research is 

derived from the undercarriage inspection report data base which is interrogated using a sequel 

query.  The query results produced 1765 report lines representing 1072 different serial numbered 

track type tractors.  The most critical information pulled from this data set is machine model 

number, bushing wear percentages, GPS coordinates and hour meter readings.  The GPS 

coordinates were used to pull additional data from other web-based sources while the hour meter 

reading and bushing wear was used to calculate the dependent output of hours per percent 

bushing wear.   

Continuous Input Factor Data Analysis 

Undercarriage Inspection Report Data 

After the undercarriage report data was acquired, the process shown in Figure 9 was 

followed to determine if each machine report represented would be a candidate for this study.  

The first requirement stated the machine must be domicile within the territory being studied for a 

complete track maintenance cycle.  If the machine was a transient machine and only on a jobsite 

for a partial maintenance interval, it was removed from the study data set.  The issue with a 

transient machine being in the study is the variability of the soil the machine would be exposed 
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to.  If a machine moved from place to place periodically, the soil and other input variables would 

contain unwanted variability.  After completing the domicile machine evaluation there were 

1117 undercarriage reports remaining representing 297 machines. Most of these domicile 

machines have multiple inspections performed for they were localized machines within the study 

territory and their undercarriage health is being closely monitored. Other issues found were SMU 

missing, bushing percentage missing or GPS coordinates not being found in the data base. After 

these reports were removed from consideration there was 353 usable data points available for the 

study.   

 For each of the 353 study data points, all 7 input factor data were acquired through the 

various methods noted in the research method. For each input factor there is an overview of the 

descriptive statistics generated, the null hypothesis is restated, and the statistical analysis is 

provided to determine the acceptance of the null hypothesis.  Once all continuous input factor 

data is acquired, the first analysis to be performed is a multiple regression analysis to determine 

input factor significance.  The two categorical input factors are then summarized and tested using 

ANOVA. The first input factor to be discussed is the percent of sand content in the soil.    

Input Factor Sand 

The sand percentage in the soil was determined by utilizing the longitude and latitude 

location of the machine being investigated.  These coordinates were entered into the USDA soil 

survey website to determine the sand content in the soil where the machine is working (Soil 

Survey Staff, 2019).  All 353 input readings for the percent of sand in the soil is displayed in the 

histogram in Figure 11.  It appears the bulk of the readings fall between the 50 and 75 percent 

marks by the high concentration of data points in the center of the graph.  The center section of 

the graph represents many of the readings in the southern and northern piedmont area.  There is 
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large histogram bar at the 95% mark representing a large population of machines along the 

coastal areas. Another interesting concentration of data points is at 15% and 30-35% which 

represents many of the machines in the high clay areas of the central piedmont. 

 

Figure 11.  Graphical Summary of Percent Sand Content in Soil 

Table 4 documents the descriptive statistics of the data from this input factor.  The data is not 

normal having a low AD p-value and has a mean of 59.349.  The standard deviation is rather 

large at 21.408 which dovetails with the expectations of the wide gradient of sand content as one 

moves from west to east in this study area.  The spread between the minimum of 13.9% and a 
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maximum of 99.10% is also expected for the same reasons.  The data reinforces the soil sand 

content gradient exists from west to east with the soil in the upper piedmont areas are very low in 

sand content while on the outer banks the soil is almost pure sand (Tant & Byrd, 2019). 

Table 4. 

 

Descriptive Statistics for Sand Content 

______________________________________________________________________________ 

Mean St Dev Variance N Min Med Max Skewness  AD-P value 

59.349 21.408 458.321 353 13.90 58.700 99.10 -0.117 <0.005 

 

Input Factor Elevation Above Sea Level 

 The next input factor to consider is the elevation above sea level where the machine 

being investigated is working.  The longitude and latitude of the machine’s location is entered 

into the USGS topographic map website (USGS-1. 2019).  The elevation is determined by 

interpolating between the elevation contour lines and is measured in feet.  Once the elevation is 

determined it is logged into the data set with the corresponding machine inspection.  The data 

shown in Figure 12 shows data that is skewed to the right with a large proportion of the data 

points at less than 100 feet above sea level.  This is understandable considering the high level of 

development that is occurring in the eastern half of the territory and consequently where a high 

number of machines are now located.  The machines along the coastal area are naturally at a 

lower elevation and the terrain is extremely flat.  Another interesting observation is the gradient 

up to about 900 feet above sea level which represents the machines between the coastal plain and 

the western edge of the study area.  The western areas of the study area have a much more 

undulated and hillier terrain as shown by the data.  There are only two outliers which one would 

expect due to the gradual increase in elevation across the territory and there are no excessively 

high elevations in the piedmont area.  These two outliers were in the most north west corner of 

the territory where the rolling hills become more elevated compared to the rest of the territory. 
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Figure 12.  Graphical Summary for Elevation Above Sea Level 

The minimum elevation in Table 5 is noted at 2 feet above sea level which is not unexpected for 

there are beach renourishing projects and residential developers working directly on the seashore 

performing beach renourishment.  There are also many low-lying and swampy areas that are very 

near sea level with elevations in the single digits.    

Table 5 

 

Descriptive Statistics for Elevation 

______________________________________________________________________________ 

Mean St Dev Variance N Min Med Max Skewness  AD-P value 

204.84 204.07 41664.28 353 2.00 122.00 963 0.9967 <0.005 

 



50 

 

Input Factor Machine Weight 

The next continuous input factor is the weight of the machine in pounds.  Based on the 

model number, the weight of the machine is entered into the data set.  Figure 13 shows the 

distribution of the weights of the machines in the study.  This distribution is skewed to the right 

slightly which is expected due to the majority of the machines being in the small to mid-sized 

dozer range.  There are a few large dozers having much heavier operating weights resulting in 

the number of outliers.  If machine arrangements have been modified, there may be some error in 

the weight data results.  For example, if a straight blade is retrofitted with a KG Blade or a winch 

added, the weight of the machine being analyzed would be understated.  Typically, this is an 

anomaly but needs to be mentioned for accuracy. 

 

Figure 13.  Graphical Summary of Machine Weight. 



51 

 

The machine weights range from 16,103 to the maximum of 106,618 pounds.  The standard 

deviation of 18,825 reflects the diversity of the machine population with a wide range of 

machines from the smallest to some of the largest dozers in the world.  The Anderson Darling p-

value is <0.005 meaning the data for this data category is not normally distributed. 

Table 6 

 

Descriptive Statistics for Weight 

______________________________________________________________________________ 

Mean St Dev Variance N Min Med Max Skewness  AD-P value 

40687 18825 354395275 353 16103 40446 106618 1.304 <0.005 

 

Independent Input Factor Precipitation  

Annual precipitation is an input factor to be considered in this research, for it is shown 

that adding moisture to laboratory tests increases metal wear rate (Gharahbagh, Qiu & Rostami, 

2014).  It will be interesting to determine if this premise holds true with precipitation in the field.  

To acquire the yearly precipitation averages, the location where the machine was working was 

matched to the nearest weather station in the US Climate Data network (US Climate Data, 2019). 

The data from this station is then queried and the average annual precipitation is recorded in 

inches.  The histogram in Figure 14 reflects a large grouping between 45 and 50 inches per year 

which is reflective of most of the inland regions of the study area.  The large spikes between 56 

and 59 inches per year are along the coastal counties which typically receive more precipitation 

due to storms and the sea breeze generated precipitation during the summer months (Sims & 

Raman, 2016), (Nogueira & Keim, 2011).  It should be noted that histogram bars between 56 and 

59 inches all are statistical outliers when considering the entire study area’s rainfall totals.  For 

each of the 353 machine inspections entries, the precipitation is added to the data set for analysis. 
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Figure 14.  Graphical Summary for Average Annual Precipitation. 

Table 7 reflects the descriptive statistics for precipitation.  The minimum value is 42.96 inches 

which is in north west corner of the piedmont and a maximum of 59.06 inches which is in the 

central coastal area very near the coastline.   

 

Table 7 

 

Descriptive Statistics Precipitation 

______________________________________________________________________________ 

Mean St Dev Variance N Min Med Max Skewness  AD-P value 

48.997 3.985 15.880 353 42.960 47.950 59.060 1.087 <0.005 
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Temperature Impact 

Average annual temperature is an input factor in this analysis.  The data for temperature 

is gathered at the same time the precipitation data is collected from the same website (US 

Climate Data, 2019). For each of the machine inspection entries the average annual temperature 

was entered in to the data base.  Figure 15 displays a data set that is slightly skewed to the right 

with a negative skewness value and a large histogram bar at the 61-degree mark which includes 

the mean value.   

 

 

Figure 15.  Graphical Summary of Average Annual Temperature. 
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From Table 8, the minimum value of 56.75 came from the northern border of the study area 

while the maximum shows a value of 65.0 from the southernmost border location in the area.  

The standard deviation is rather small at 1.851 degrees F and the data set is very slightly 

negatively or left skewed.  

Table 8 

 

Descriptive Statistics Temperature 

______________________________________________________________________________ 

Mean St Dev Variance N Min Med Max Skewness  AD-P value 

61.306 1.851 3.426 353 56.750 61.150 65.000 -0.0192 <0.005 

 

Dependent Variable Hours Per Percent Worn 

The first five factors described thus far are the independent variables for the regression 

analysis of significance.  The dependent variable is derived from the number hours of machine 

operation required to wear one percent of wear metal off the track bushing.  To calculate this, the 

undercarriage wear report for all 353 machines are compiled and the hours of operation on the 

bushing is divided by the percent worn off the track bushing.  This measure reflects a rate of 

track wear and the bushing is used to predict maintenance intervals (“Custom Track”, 2013). The 

goal of this preliminary regression analysis is to determine if either sand content in the soil, 

machine elevation, machine weight, annual precipitation and annual temperature are significantly 

correlated to the rate of track bushing wear.  Figure 16 reflects the wear rate distribution for the 

353 machines in this study.  There seems to be a rather normally shaped histogram with larger 

distribution category bars on the lower end of the wear rate range.  The median is slightly larger 

than the mean and is slightly right skewed. 



55 

 

 

 

 

 

 

 

 

 

 

 

Figure 16.  Graphical Summary for Dependent Variable of Hours per Percent Worn. 

Table 9 reflects the minimum value of a very low 2.225 hr/% worn while working in the most 

southeastern coastal counties.  The maximum value was 64.25 hr/% worn from the clay fields of 

central piedmont where clay bricks are manufactured. The mean value is 31.587 and the data is 

slightly right skewed.   

Table 9 

 

Descriptive Statistics for Dependent Variable Hours Per Percent Worn 

______________________________________________________________________________ 

Mean St Dev Variance N Min Med Max Skewness  AD-P value 

31.587 13.844 191.650 353 2.225 31.857 64.250 0.1915 0.021 
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Initial Regression Analysis 

Now that the data for the first hypothesis test has been compiled, a multiple regression 

analysis can be performed to determine the significance of the factors.  This preliminary analysis 

is used to identify any insignificant factors so they can be removed from the final model to be 

assembled.  The null hypothesis to test is:  Is there a correlation between the percent of sand 

present in soil, elevation above sea level, machine weight, average temperature and average 

precipitation to the wear rate of steel track undercarriage systems? 

Ho: βsand content = βelevation = βweight = βTemperature = βPrecipitation = 0 

HA: βsand content or βelevation or βweight or βTemperature or βPrecipitation ≠ 0 

The regression analysis first determines if there are any input variables that are 

significantly correlated to the output dependent variable and designates those variables of 

significance at an alpha value of 0.05.  Table 10 reflects the output of the initial regression 

analysis.  Only the p-value for sand content in the soil shows a significantly low p-value of 0.000 

with a corresponding high F-value of 235.18.   Knowing there is one significant input value, the 

null hypothesis can be rejected and the alternate accepted that the βsand content is greater than zero. 

Table 10 

Regression of Hours vs Sand %, Elevation, Precipitation, Temperature and Machine Weight 

Source DF Adj SS Adj MS F-Value P-Value S R-sq R-sq Adj 

Regression 5 34071.6 6814.3 70.82 0.000 9.809 50.51% 49.79% 

Sand 1 22629.8 22629.8 235.18 0.000    

Weight 1 25.5 25.5 0.26 0.607    

Elevation 1 15.6 15.6 0.16 0.687    

Precipitation 1 71.7 71.7 0.75 0.388    

Temperature 1 7.9 7.9 0.08 0.775    

Error 346 33389.2 96.2      

Lack of Fit 329 32658.1 99.3 2.44 0.014    

Pure Error 18 731.0 40.6      

Total 352 67460.7       
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Table 10 Cont. 

Regression of Hours vs Sand %, Elevation, Precipitation, Temperature and Machine Weight 

Coefficients 

Term Coef SE Coef T-Value P-Value VIF 

Constant 57.3 25.3 2.27 0.024  

Elevation 0.00133 0.00331 0.40 0.687 1.67 

Weight 0.000014 0.000028 0.51 0.607 1.01 

Sand -0.4452 0.0290 -15.34 0.000 1.41 

Precipitation -0.186 0.216 -0.86 0.388 2.70 

Temperature 0.146 0.511 0.29 0.775 3.28 

      

         

The R-squared value is 50.51% for this model which states that 50.51% of the variability in the 

dependent variable can be explained by the input variables in this model.  This value is not 

exceedingly high but is an acceptable value for significance consideration. 

Figure 17 displays a fitted line plot graphically describing the relationship of the 

significant variable of sand content in the soil to the dependent variable of hours per percent 

bushing wear.  The relationship is a negative one for as the percent of sand in the soil increases, 

the hours per percent worn decreases.  This negative relationship is graphically depicted by the 

red fitted plot line in the center of the data points.  The prediction interval represented by the 

purple dotted line is used to predict where the next data point calculated by the regression model 

can be expected to fall.  There are several data points outside the prediction interval that seem to 

be evenly distributed both above and below the prediction line.  There are some soil types that 

are prevalent in the study area.  These appear as vertical lines on the fitted line plot where 

multiple machine inspections occur in the same soil type.  In most cases there is rather even 

distribution of inspection results both above and below the regression line. 
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Figure 17.  Fitted Line Plot of Hours per % Worn vs Sand Percent. 

To express this regression model including the insignificant variables, the equation would read:  

Hours / % = 57.3 – 0.4452 Sand + 0.000014 Weight + 0.00133 Elevation 

– 0.186 Precipitation + 0.146 Temperature 

  The 57.3 value in the equation denotes where the red regression line in Figure 17 

intersects with the y axis of the dependent variable. The other values explain the constant value 

of impact each of the input variables has on the output variable Y and due to the insignificance 

shown in the high p-values, only the sand constant is of any great impact as a multiplier. 

 Figure 18 displays the standardized effects plot for the multiple regression.  The line of 

significance is drawn through the 1.97 value and only factor C or sand has a significant value of 

15.336 and is the only factor that has a standardized effect greater than the critical value of 1.97. 



59 

 

This means only sand is statistically significant in impacting the output variable.  This also 

means the other values are insignificant and can be removed from the model. 

 

 

Figure 18.  Pareto of Standardized Effects. 

 Figure 19 is a display of the residuals 4 pack and the residuals look randomly distributed 

with the residual points aligning rather nicely with the normal residual plot line.  There are a 

couple of data points on the tails of the normal probability plot that are of concern but for most 

of the data points, the residuals look random and evenly distributed. 
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Figure 19.  Residual 4 Pack of Initial Regression. 

Non-Linear Analysis of Precipitation 

 Given the strong and  vast amount of literature discussion on the effect of moisture on 

metal wear rates, it seems prudent to perform a non-linear analysis on the input factor of 

precipitation.  A quadratic regression analysis was performed on this input factor to determine if 

there was significance in using this model configuration.  Table 11 displays the results of this 

analysis.  Note that the p-value of 0.00 showing precipitation as a significant value using 

quadratic regression. 

Table 11 

Non-Linear Quadratic Regression Analysis of Precipitation 

Source DF SS MS F-Value P-Value R-sq R-sq Adj 

Regression 2 8143.2 4071.58 24.24 0.00 12.20% 11.70% 

Error 349 58611.9 167.94     

Total 351 66755.1      
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 Figure 20 displays the fitted line plot for this quadratic regression as well as the equation 

of:  Hours / % Worn - -145.3 + 8.056 Precipitation – 0.09015 Precipitation^2.  This figure 

also shows a R square value of only 12.20% which is a low value. 

 

Figure 20.  Non-Linear Quadratic Regression Analysis of Precipitation 

 

In addition to the low R square value of 12.20% there are residuals that are not random 

nor are they symmetrical about the residual value of 0.  Figure 21 displays the residual 4 pack of 

this analysis.  Looking at the versus graph, one sees where the residuals are not random at all 

with most of the residual values congregating between the 32 and 35 fitted value.  These 

residuals are problematic for having an acceptable model. 
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Figure 21.  Residuals for Quadratic Regression Analysis for Precipitation. 

 Even though the p-value for this quadratic regression is 0.00, the low R square value and 

the problematic distribution of the residuals will confirm the removal of this input factor from 

further consideration in this study.  Future study of this input factor would be recommended 

possibly using moisture in the soil as a dependent variable. 

Categorical Factor Data Analysis 

Input Variable Machine Model 

Now that the continuous variables have been considered for significance, the categorical 

variables should be as well.  The first to be considered is the machine model number.  There are 

7 models to consider with model 3 being the smallest and model 9 the largest in physical size.  
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An ANOVA was performed to compare the categorical input factor of model to the output of 

hours per percent bushing wear.  The first output is reflected in the confidence interval for the 

mean shown in Figure 22. All confidence intervals overlap with the variability in the number of 

machines in each group being reflective in the width of the individual model’s graph.  Many 

more of model 6 were present in the analysis than model 9’s.  This graphic would lead to the 

conclusion that model number does not impact the hours per percent worn output. 

 

Figure 22.  95% Confidence Interval for Mean of Hours per Percent Worn by Machine Model. 

The boxplot in Figure 23 provides additional graphic representation of the spread of the 

same data shown in Figure 22.  Models 3-8 share many of the same graphical attributes with 

model 9 seemingly having slightly different dispersion in the overall values than the other 

models and the mean slightly lower.  It should be noted that models 3 and 9 had by far the lowest 

number of data points for consideration. 
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Figure 23.  Box Plot of Hours Per Percent Worn By Machine Model. 

Figure 24 displays the distribution of machines in this study by model.  There are by far 

more model 6 in the data set than any other model with the next model 5 being less than half of 

the model 6 total.  This is reflective of the model mix in the study territory for there are by far 

more model 6’s in the territory than any other machine model.  The low number of models 9, 3, 

and 4 making this analysis of model less robust than if all machine models were represented by a 

large n value.  In the case of 9, 3, and 4, there is simply not that many of these machines in the 

study territory to measure.  
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Figure 24.  Pareto Chart of Machine Model Count. 

For this statistical analysis, the null hypothesis to test is:  Is there a difference between the 

model number of the machine and the wear rate of steel track undercarriage systems? 

Ho: μ Mod 3 = μ Mod 4 = μ Mod 5 = μ Mod 6 = μ Mod 7 = μ Mod 8 = μ Mod 9  

HA: At least one mean is not equal 

Table 12 reflects the 0.717 p-value result of this test and as Figure 22 would suggest, there is 

no significant difference in the mean output value for any of the model numbers.  It makes no 

statistical difference which model grouping is being considered, for there is a very low 

probability that the model number impacts the wear rate of the undercarriage system.  The R-

squared value is 1.06% meaning there is very little dependent variable output impact due to 

model number.   
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Table 12 

Anova of Hours per Percent Worn by Machine Model 

Source DF Adj SS Adj MS F-Value P-Value R-sq R-sq Adj 

Model 6 714.1 119.0 0.62 0.717 1.06% 0.00% 

Error 346 66746.6 192.9     

Total 352 67460.7      

 

Input Variable Work Code 

 The next categorical variable to be analyzed for significance is the work code.  The work 

code is a marketing code identifying the type of work a customer generally performs.  Marketing 

departments use these codes to target like industry customer groups with programs specifically 

geared for customers in the different industries.  The equipment is used for different tasks 

between these groups with some applications being more extreme than others.  Figure 25 shows 

the confidence interval for the mean for the 6 customer groupings in this study.  From the visual 

interpretation of this graph, none of the confidence intervals overlap.  Grouping “heavy” has the 

smallest variability of all groups and landfill application having the greatest.           

 

Figure 25.  Confidence Interval of the Mean for Hours Per Percent Worn by Work Code 
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The boxplots of work code in Figure 26 shows similar distribution of hour/percent worn 

output values for all but landfill and landscaping work codes.  It should be noted that the 

groupings of landfill and landscaping have low n values in the data set which may be driving 

these graphical differences in variation. 

 

Figure 26.  Box Plot of Hours per Percent Worn by Work Code. 

 Figure 27 graphically displays the distribution of undercarriage reports by work code.  

Heavy by far has the most machine data points represented with 138 followed by residential 

having numerous with 98 machine inspections being represented.  Landscaping and landfill 

machinery are on the small end of this spectrum with only 8 and 6 undercarriage inspections 

respectively.  There is a large population of landscaping machines in the territory however, 

landscaping customers have smaller jobs and move frequently.  Many of the landscape machines 

are considered as transient which unfortunately removes them for inclusion in this. With regards 

to landfill machines, there is simply a small population of them in the territory. Figure 27 
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graphically depicts the type of work being undertaken in this study area for there is much heavy 

road work and large commercial construction projects underway.  The customers performing this 

type of work are the heavy customers.  

 

Figure 27.  Pareto Chart of Work Code Count. 

The null hypothesis to test is:  Is there a difference between the machine population groups by 

work type code and the wear rate of steel track undercarriage systems? 

Ho: μ Landscape = μ Heavy = μ Utilities = μ Residential = μ Mining= μ Landfill 

HA: At least one mean is different. 

 The result of this categorical analysis shown in Table 13 returns a high p value which 

tells us to reject the null and that there is no difference in undercarriage wear rate means between 

the different work groups. With a R squared percentage for this analysis is 1.16%, the variability 

of the output mean value is negligible between the different type of work being performed by 
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your study machine population. The mean values of the wear rate between work types are 

statistically the same.   

Table 13 

Anova of Hours per Percent Worn by Machine Work Code 

Source DF Adj SS Adj MS F-Value P-Value R-sq R-sq Adj 

Work Code 5 781.9 156.4 0.81 0.540 1.16% 0.00% 

Error 347 66678.8 192.2     

Total 352 67460.7      

 

Final Analysis of Significant Factors 

 Now that the significance of all variables is known, the final regression analysis of 

the lone significant variable can be performed.  Sand percentage of the soil in which the machine 

is working in is the only significant variable found.  The insignificant variables are removed 

from the analysis and only sand is run in the regression study of this continuous variable.  Table 

14 illustrates the results of the analysis.  The R squared adjusted value is now 50.11% which tells 

us that 50.11% of the variation seen in the track wear rate can be attributable to the percent of 

sand in the soil in which the machine is working. The remaining variation is attributable to other 

factors that are not included in this initial regression model.  Some of the additional factors that 

could impact the wear rate could be operator, track adjustment, materials packing on the bushing 

or sprocket segment and possibly other unknown factors. Further research will need to be 

performed in order to determine what percent if any these possible factors could add to the R 

square value. The p-value is 0.000 with a very high F value of 354.52.  Sand is a significant 

factor in the rate of wear of steel track undercarriage systems. 
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Table 14 

Regression of Hours vs Sand Percent 

Source DF Adj SS Adj MS F-Value P-Value S R-sq R-sq Adj 

Regression 1 33899 33898.8 354.52 0.000 9.778 50.25% 50.11% 

Sand 1 33899 33898.8 354.52 0.000    

Error 351 33562 95.6      

Lack of Fit 128 12628 98.7 1.05 0.370    

Pure Error 223 20934 93.9      

Total 352 67461       

 

Coefficients 

Term Coef SE Coef T-Value P-Value VIF 

Constant 58.79 1.54 38.28 0.00  

Sand -0.4584 0.0243 -18.83 0.00 1.00    

 

Figure 28 shows a similar graph as shown in Figure 18 except the insignificant variables have 

removed.  The critical value is still the same at 1.97 however the sand standardized effect is now 

18.829 with the insignificant variables removed.  The value if the standardized effect of sand 

only is far above the critical value of 1.97 validating the significance of the variable on the 

response variable. 

 

Figure 28.  Pareto of Standardized Effects. 



71 

 

 Figure 29 illustrates the residuals 4 pack of the final regression analysis.  The residuals 

look randomly distributed and the residual points align rather nicely with the normal residual plot 

line.  There are a couple of data points that are of concern but for most of the data points, the 

residuals look random and evenly distributed. 

 

Figure 29.  Residual 4 Pack of Final Regression Analysis. 

 The equation derived to describe the sand percentage to the rear rate can be expressed in 

the following equation:     

Hours of Machine Operation / 1 % Bushing Wear = 58.79 - 0.4584*Sand 

The equation states when sand percent is entered into the equation, it is multiplied by -0.4584 

and subtracted from the Y intercept of 58.79. The results reflect the hours per percent worn off 

the track bushing which can be used as a tool to predict track wear in the eastern North Carolina 

study territory.  Stated another way, for every 0.4584 increase in sand percentage, one could 

expect the rate of undercarriage wear will decrease by 1 hour per percent worn.  
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CHAPTER 5  

INTREPRETATION AND RECOMMENDATIONS 

Interpretation of Input Variables 

Elevation 

The input factor of elevation reflects the elevation above sea level at the GPS coordinate 

location where the undercarriage inspection occurred.  Figure 12 displays the distribution of 

these elevations for the 353 machine inspections performed.  The most interesting thing about 

this histogram is the largest bar representing 0 to 25 feet above sea level.  There are 67 machines 

working at this elevation and 147 machines working from 0 to 75 feet if the first and second bars 

are summed.  The coastal plain is very flat for many miles inland with most all the land being 

less than 75 feet above sea level.  Much of the coastal machine fleet population falls within this 0 

to 75 feet elevation and is reflected in the histogram.  Where this flat topography changes and 

more undulation begins is the beginning of the piedmont region and closely mirrors the sand and 

metamorphic soil composition changeover (NCOnemap.gov, 2019).  Once this changeover 

occurs, there is a gradual increase in elevation which is evident in the consistent increase in 

elevation from 75 to about 550 feet above sea level.  These higher elevations were seen in 

undercarriage reports from the western most portions of the study area.  The machine population 

dwindles at greater than 600 feet due the lower machine population in the western most part of 

territory which is very rural and economically less vibrant than the eastern areas. When this input 

factor was considered in the multiple regression, the p-value was 0.687 therefore, elevation did 

not impact the track system wear rate in the machines whose tracks were measured.  This input 
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factor is insignificant to our regression model and is removed from the final regression model.   

The insignificance could be a result of the measurement chosen for this input factor.  In this 

study area when elevation increases so does the average slope.  However, this now appears to be 

a correlation that may be missing some localized variation of topography. For example, if a 

machine elevation is well above the level ground of the coastal plains, the localized topography 

could be flat or undulated depending on the localized terrain. A more accurate measurement of 

this factor could be the actual slope of the ground at the job site.  This would be a more granular 

measure that would incorporate any localized terrain undulations that a GPS coordinate derived 

elevation value would not deliver.  Slope calculations would have to be captured at the time of 

each undercarriage measurement.  There is also a possibility there could be within jobsite slope 

variation which would also allow bias to creep into this input factor measurement and this could 

change over time.  Job sites can be extremely flat after much of the dirt transfer has occurred or 

extremely steep in topography when sloping operations on exit ramps or other highly sloped 

areas are occurring.    

Machine Weight 

 The input factor of weight reflects machine weight based on the model number and 

special configurations the machine may have.  It does not include any additional dirt that may 

have accumulated on the track roller frames or any other customer added attachment or guarding.  

The histogram in Figure 13 shows the distribution of these machine weights.  Although the 

weight is a continuous measure, it appears that this distribution follows model designations.  The 

four large bars reflect models 4, 5, 6 and 7 which has the largest population in this study area.  

Within each of these models, there are different machine configurations that impacts the weight 

but does not elevate the weight of the machine up to the next model number weight category.  
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For example, the model 6 dozer could have an extra-long track roller frame which adds weight to 

the base model weight or different types of blades can be on the same model machine.  This 

explains the differences in the within model weights and the small bars between the larger ones.  

The very large machines are shown in the 90,000 and 105,000 pound bars.  There are only 20 of 

these machines in the machine population and are shown as outliers due to their extremely large 

weight values.  Machine weight was another regression factor that was statistically insignificant 

with a p-value of 0.607 therefore, machine weight does not significantly impact the track system 

wear rate in the machines whose tracks were measured.  This input factor is insignificant to our 

regression model and will consequently be removed from the final regression model.  One 

possible reason for the insignificance of this factor could be the proportional sizing of the 

undercarriage to fit the machine size and weight. Larger machines have proportionally larger 

undercarriage systems. With this undercarriage size proportionality, the rate of wear appears very 

close to the same no matter the machine size.  There is more wear metal removed from a larger 

machine but the rate of that wear to the stated service intervals doesn’t seem impacted by the 

weight of the machine.  

Precipitation 

The input factor for precipitation reflects the annual precipitation at the nearest weather 

station to where the machine undercarriage inspection was performed.  Figure 14 shows the 

distribution of the precipitation totals for the machine population inspection GPS coordinates.  

This shows some interesting results that validates the higher coastal precipitation of the coastal 

plain due to both tropical systems and the on-shore wind generated precipitation (Sims & 

Ramon, 2016). With the average precipitation being 48.997 inches and a standard deviation of 

3.985. Most all the coastal machines are located areas where precipitation totals are statistical 
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outliers shown by the asterisks in the box plot.  There is a large gap between 49 and 55 inches 

and the outliers easily show where the coastal machines are located.  The p-value of 0.388 

reflects that precipitation did not impact the track system wear rate in the machines whose tracks 

were measured.  This input factor is insignificant to our regression model and is removed from 

the final regression model.  This insignificance could be due to multiple reasons.  There could be 

between weather station variation that could be creating bias.  For example, if a small but potent 

thunderstorm travels through a jobsite, the measurement of this precipitation could go 

unmeasured by the nearby weather station not in the storm’s path.  This would create errors in 

the measurement outcome.  In addition, there is some variation in precipitation annual totals 

between the coastal plain areas and the piedmont, but is this difference enough drive 

significance? The minimum value is 42.96 and the maximum is 59.06 which is only 16.1 inches. 

Another possible reason for insignificance could be the measure itself.  Different results may 

have been achieved if average moisture content of the soil could be measured rather than 

precipitation totals.  Much like topography, this measurement would have to be proactively 

measured over time to gain a better understanding of the average soil moisture the undercarriage 

is experiencing.  This approach also considers the different soil hydraulic conductivity through 

the soil with sandy soil dissipating moisture much faster than clay soils (Rowell, 1994), (Jarvis, 

Koestel, Messing, Moeys,  & Landahl, 2013). 

Temperature 

The input factor for temperature reflects the average annual temperature at the weather 

station nearest to the GPS coordinates of the track inspection location.  Figure 15 displays the 

distribution of the 353 data points and there is a very large bar about the mean of 61.31.  One 

interesting fact to glean here is the small range of the temperature readings with only an 8.25 
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degrees difference between the most north west and highest elevation and the most south east 

and lowest elevation data point. Temperature was another regression factor that was statistically 

insignificant with a p-value of 0.775. This small temperature range may be one reason this input 

factor was statistically insignificant.  Temperature does not impact the track system wear rate in 

the machines whose tracks were measured.  This input factor is insignificant to our regression 

model and is removed from the final regression model. One possible reason for this 

insignificance is the small range of the yearly average temperature variation.  The maximum 

temperature reading was 56.75 and the maximum being 65.0.  This represents a differential of 

8.25 degrees Fahrenheit in temperature variation between the extreme inspection points in the 

study territory. This may not be enough temperature variation to make a difference in the 

bushing wear rate. 

Machine Model 

Machine model is a categorical input variable that represents the model designation of 

each machine.  Figure 23 shows a graphical display of the hours per percent worn by machine 

model.  There is very little difference in the box plots and is reflected by the one-way ANOVA p 

value of 0.717 and an R Square Adjusted value of 1.06%.  The undercarriage for each model is 

designed proportionally to the size and weight of the machine.  Smaller machines have 

proportionally smaller undercarriage systems than larger ones and explains one reason why the 

rate of wear are essentially the same.  There is no statistical difference in the wear rate of steel 

track undercarriage systems when comparing model numbers in this study.  This insignificance 

could be due to the same reasons as the weigh factor discussion.  As the model number increases 

so does the weight and the proportional undercarriage size.  Much like machine weight the 

machine model does not seem to impact the rate of wear.  
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Work Code 

  Work code is a marketing code given to all customers that describes the type of work the 

customer performs and each track report was tagged with this customer work code.  Figure 26 

displays the rate of track wear by customer work code and the graphical evidence shows very 

little differences in the wear rate.  A one-way ANOVA was performed, and the p value was 

0.540 with an R Square Adjusted value of 1.16%.  Based on these results, it does not matter 

which type of work is performed for the track system wear rate was statistically the same.  This 

may not hold true for power train, hydraulic systems or structural framework but for track wear 

there was no difference noted here.  This does not reflect any crossover jobs that the customer 

may have. For example, there is nothing to tell the researcher if the utility contractor performs a 

residential job.  This may create some undetectable bias in this measurement. 

Sand Content 

    The input factor of sand content reflects the percentage of sand in the soil where the 

undercarriage inspection was performed based on longitude and latitude coordinates from the 

instrument telematics.  The histogram in Figure 11 displays the distribution of the percent of 

sand data points for all 353 soil percentage readings from each of the qualifying undercarriage 

reports.  The mean of 59.35% sand is not unexpected for most of the machine population are 

concentrated in the central Research Triangle area of the state which is in the center of the study 

territory.  This region represents the transition zone in the geological gradient containing a 

mixture of sand and clay soils. There is currently much residential and road construction 

occurring in this area therefore, the high concentration of machines in the 53% to 68% sand zone 

is not surprising.  Another interesting observation is the histogram bar spike at the highest end of 

the sand scale.  This is representative of the machines working on the coast working in greater 
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than 90% sand content soils.  Currently, there is an economic boom along the coastal plain and 

especially directly on the coastline.  In addition, there is much beach renourishment occurring 

with a large population of dozers being used to complete this work.  The data set looks almost 

trimodal with a population from the 15 to 40% range, the largest at the 45 to 75% range and the 

third representing sand percentages of greater than 75%.  This aligns nicely with the description 

of the geological gradient of increasing sand content from west to east in the research study area 

(Tant & Byrd, 2019), (Lu, Bowman, Rufty & Shi, 2015).  The sand regression input factor shows 

to be statistically significant with a p-value of 0.000 and is included in the final regression 

analysis equation. 

Final Regression Equation  

It was found the two categorical factors of machine model and work code were 

insignificant to the steel track wear rate in our study.  It was also found that the continuous data 

input factors of machine weight, elevation, precipitation and temperature were also insignificant 

to track wear rate of the machines studied.  After the removal of these insignificant factors sand 

content remains the sole significant factor.  The removal of all the insignificant factors only 

impacted the R squared value by 0.26% so the insignificant factors were contributing very little 

to the variation in wear rate.  Simplifying the regression equation to only the significant factor 

leaves the equation: 

Hours of Machine Operation / 1 % Bushing Wear = 58.79 - 0.4584 Sand  

This equation provides a tool for the equipment manager to help predict undercarriage 

wear.  If the manager knows the type of soil the machine is working, she/he can more accurately 

predict track bushing wear rate. Being able to better predict wear rate helps the manager to better 
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optimize the operational cost of steel track undercarriage systems and ultimately creating more 

profit for the equipment fleet owner.   

Scenario of Equation Application 

A hypothetical construction company is based out of and typically works in the central 

piedmont of the study area.  The equipment owner has been quoting jobs in this area for many 

years and consistently realizes high profit margins in most of the jobs completed. The sand 

content in the soil in this localized area was consistently a very low 18%.  Hypothetical 

construction manages their maintenance very well and as a result enjoyed long undercarriage 

life. By using the equation and entering 18% sand content into the equation, the hours per 

percent worn can easily be calculated. 

Hours per 1% Bushing Wear = 58.79- (0.4584*18) = 50.54 Hours per Percent Worn 

Knowing this hourly wear rate, we can now estimate the life of a steel track undercarriage for his 

machines to be:   

2 * (50.54 Hours per Percent Bushing Wear*100%) = 10,108 Hour Undercarriage Life 

The 2 multiplier is used for the level one and level two maintenance intervals wears out two 

bushing surfaces if managed properly.  The equipment manager for hypothetical construction 

was accustomed to this hourly rate of 50.54 hours per percent worn and the job estimator used 

this known cost in calculating the job bids.  For a typical model 6 machine the undercarriage 

level one maintenance and level 2 maintenance replacement cost are typically $40,000.00 US 

dollars.  Now the cost per hour for the undercarriage system can be calculated: 

         ($40,000) / 10,108 Hours = $3.95 Dollars per Hour 

Hypothetical construction was asked to bid on a job on the eastern edge of the study territory 

where the sand content was 98%.  The equipment manager knows that the hours per percent 
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bushing wear needed to be recalculated for the sand content is different and is stated in the 

equation: 

Hours per 1% Bushing Wear = 58.79- (0.4584*98) = 13.86 Hours 

Instead of 50.54 hours per percent bushing wear, the same machine working in sand rich soils 

only achieves 13.86 hours per percent bushing wear.  This is a 364% difference and has major 

impact on the equipment operating cost.  The same model 6 machine will now only achieve an 

undercarriage life of 2,772.  

2 * (13.86 Hours per Percent Bushing Wear*100%) = 2,772 Hour Undercarriage Life 

Factoring in the same undercarriage estimated cost of $40,000.00 US dollars the following cost 

per hour can be calculated: 

($40,000) / 2772 Hours = $14.43 Dollars per Hour 

If this awarded job located in a sandy soil area would have required 16,500 model 6 dozer hours 

of operation to accomplish.  If this cost was not factored into the job bid the impact to 

profitability would have been: 

16,500 hours * ($14.43 – $3.95) = $172,920.00 

 Understanding the sand content in the soil and accounting for it in this job bidding 

example could have either added $172,920.00 dollars to the bottom line or would be realized as a 

loss if the increased wear rate of the undercarriage was not accounted for.  In addition to the 

dollar savings, moving from the clay soil jobsites to sandy soil jobs accelerates the level one 

maintenance intervals.  If this difference in maintenance interval hours is not accounted for the 

bushing would be ran past service interval prohibiting the service to be completed.  The level one 

service interval hour meter reading in the clay soil would be at 5,104 hours while the sand-based 

soil service interval would be at only 1,386. The regression equation can  help predict the level 
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one maintenance interval to ensure the service interval is not missed. Understanding and 

accounting for the sand content in the soil is very important for profitability and sustainability of 

construction companies.   

Research Question Answers 

1.  Do steel track undercarriage systems hours per percent wear vary depending on the 

percent of sand present in the soil in which the machine is working? Yes, it does.  In this 

study area, it is found that steel track wear is correlated to the hours per percent of 

bushing wear as described by the equation: Hours of Machine Operation / 1 % Bushing 

Wear = 58.79 - 0.4584 Sand.  50.11% of the variation witnessed in the study was due to 

the sand content of the soil in which the machine was working. 

2. Do steel track undercarriage systems hours per percent wear vary depending on the 

annual precipitation totals in the location on which the machine is working?  No. In this 

study area, it was found that there is no statistical correlation between steel track wear 

and annual precipitation however further field research should be performed here with a 

different measurement. 

3. Do steel track undercarriage systems hours per percent wear vary depending on the 

elevation above sea level at the location on which the machine is working? No, at least 

not in this study area.  There is insignificant correlation to elevation above sea level 

where the machine was working and the wear rate of the track bushing in this study. 

4. Do steel track undercarriage systems hours per percent wear vary depending on the 

model number of the machine being investigated? No.  The track wear rate between the 

models was not statistically different in this study area. 
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5. Do steel track undercarriage systems hours per percent wear vary depending on the 

weight of the machine being investigated?  No.  The weight of the machine did not 

correlate to significantly increased track wear in this study area. 

6. Do steel track undercarriage systems hours per percent wear vary depending on the work 

type code that is assigned to the customer grouping?  No. The type of work performed by 

the equipment did not significantly impact the bushing wear rate in this study area. 

7. Do steel track undercarriage systems hours per percent wear vary depending on the 

yearly average ambient temperature at the location the machine is working?  Not in this 

study.  There was no statistical correlation between the differences in temperature in the 

study area and the track system wear rate in this study area. 

Opportunities for Further Research 

 Only 50.11% of the track wear rate variation is attributable to the sand content in the soil.  

Further research should be considered to discover the sources for the remaining 49.89% of 

variability impacting undercarriage bushing wear rate.  There are a few input variables that could 

be additional significant factors to consider.   

Equipment operator experience level or training are similar in nature and could both be 

good possibilities for further investigation. Do trained operators with experience understand 

efficient machine operating practices and take great care to follow all daily maintenance 

practices?  Measuring years of operator experience and formal training taken could be a very 

worthwhile exercise to further investigate and quantify this impact to track bushing wear rate. 

Equipment operator negative habitual actions could be another area for further 

investigation.  Actions such as consistently turning the machine in one direction more than 

another, unnecessary sloping work and excessive operation in reverse drive could all be 
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possibilities to investigate (Caterpillar, 2018).  If an operator continually operates equipment in 

these manners could these actions accelerate wear rate and to what extent? These negative habits 

could be mitigated if the operator is trained properly to ensure they know the negative impacts of 

these actions so this may also be tied back to operator training and experience which is already 

mentioned above. 

 Track tension maintenance could be an input factor that may offer some significance to 

the wear rate variability. Improper track tension is spoken in general terms as an attributing 

factor for track wear (Deere, 2019).  Track tension is a daily maintenance check that measures 

the slack in the track group as it drapes across the carrier roller and idler assembly.  Tracks that 

are too tight can generate triple the pressures where the bushing contacts the sprocket assembly 

(Customer Track, 2013).  This increased track tension can be the result of dirt or other debris 

packing in the bushing cavity or simply the track adjuster being pumped out too far. Keeping the 

tracks clean and properly adjusted reduces the impact of this additional input factor but the 

correlation to hours per percent bushing wear is not understood. Track tension is an easily 

measured input factor that could be another viable next step in research in this study territory. 

Conclusion 

 This research investigated several input factors for possible impact to steel track bushing 

wear rate in a population of dozers in the eastern half of North Carolina.  The input factors 

considered were temperature, precipitation, machine model, machine weight, elevation and sand 

content in the soil.  It was found that only sand content had significant impact on the wear rate of 

the track bushing which is the critical component to monitor in track system maintenance.  This 

impact was quantified in a regression equation that can be used to better predict undercarriage 

wear in soils with different sand percentages.  Bidding jobs in different soil types can now be 
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better estimated to help account for the differences in wear rate and cost per hours of operations.  

This indeed helps construction companies be more profitable and assisting them better time the 

undercarriage maintenance intervals.  
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APPENDIX:  MEASUREMENT SYSTEM ANALYSIS 

A measurement system analysis was performed to assess the accuracy of the 

undercarriage measurement system. Ten different track bushings of various sizes from different 

machine models were assembled and each assigned a number with a paint marker for tractability.  

The bushing sizes ranged from the smallest model 3 bushing to the largest model 9 bushing 

found in this research.  These 10 bushings were to be measured by three different track 

inspectors using the same ultrasonic instrument specifically designed to measure these 

components.  Each operator randomly measures each of the 10 bushings for three different 

replicates.  This results in all 10 of the bushings being measured three times by three different 

operators producing 90 measurements.  Figure 30 shows the ultrasonic tool being used by the 

operator and the different sized bushings being measured. 

 

Figure 30.  Gage R&R Measurement Process 
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 Table 15 is the output of the Gage R&R analysis.  The measurement system shows to be 

very robust.  The total Gage R&R is only 0.76% meaning of which 0.63% is the measurement 

repeatability measurement variation.  Only 0.13% reflects reproducibility or between operator 

measurement variation.  The remaining 99.24% of the variation is due to the part to part 

variation.  The total Gage R&R is well below the 10% threshold for acceptability of a 

measurement system. 

Table 15 

Gage R&R Two Way Anova Table with Interactions 

Source DF SS MS F-Value P-Value   

Parts 9 68.661 7.62900 3491.24 0.000   

Operators 2 0.0762 0.03811 17.44 0.000   

Parts*Operators 18 0.0393 0.00219 0.35 0.993   

Repeatability 60 0.3800 0.00633 0.10    

Total 89 69.157      

        

        

Gage R&R Results 

Source 
Variation 

Components  

% Contribution of Variation 

Components 

 

Total Gage R&R 0.006467 0.76  

Repeatability 0.005376 0.63    

Reproducibility 0.001091 0.13    

Operators 0.001091 0.13    

Part-To-Part 0.847069 99,24    

Total Variation 0.853537 100.00    

      

 

 The graphical output of Gage R&R study is show in Figure 31.  In the top left graph of 

this six pack is a bar chart of the components of variation.  As expected, most of the variation is 

due to the differences between the parts. The repeatability and reproducibility bars are much 

smaller and when added together, comprises the Gage R&R total.   In the top right graph 

showing the measure by parts, there is very little variation shown.  Part one does have one 
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measurement that was noticeably high along with some other small variations in other parts.  The 

box plot “measure by operator” graph shows very little variation.  Overall the MSA is very 

robust and with a Gage R&R value of less than 1% is most acceptable. 

 

Figure 31.  Gage R&R Graphical Results. 

 


