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ABSTRACT 

 

Electric vehicles (EVs) are emerging as a component of the global solution to combat climate 

change. However, in North America, particularly in the United States and Canada, the transition 

away from internal combustion engines (ICE) has been slow. North America faces unique 

challenges due to its geographical size and population in comparison to other continents. The 

good news is that EV adoption is increasing within North America. Along with increased EV 

adoption, governments and public companies are constructing charging infrastructure to support 

increased consumer EV purchases. Despite increased adoption, many future and current owners 

throughout North American society have concerns about an electric vehicles’ key feature: the 

battery.  

Many EV owners are concerned about the battery's State of Health (SOH) – how to keep 

batteries healthy and use best practices to keep their range at maximum capacity. SOH is 

influenced by five key factors: (1) temperature, (2) charge/discharge rate, (3) charge/discharge 

depth, (4) cyclic charging, and (5) ending State of Charge (SOC). This study primarily focuses 

on data centered around charging. 

This dissertation examines data generated by everyday EV users and uses it to predict how 

charging habits affect batteries over time. Charging effects include decreasing battery SOH and 

capacity degradation. Lowering the SOH reduces the battery's viability for continuous use; at 

approximately 70% SOH the battery is 'typically' deemed End of Life (EoL). The overall range 

of the EV is affected by capacity degradation; as batteries degrade, the total km (or miles) 
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available decreases. This study uses regression analysis to examine relationships and predictors 

of SOH, temperature, levels of charging, and SOC. The data collected and analyzed determine 

best practices for charging batteries at home and abroad for consumers. There were two methods 

for analyzing data: (1) Using EV generated data (SOH, Charger Type) saved in CSV files via a 

smartphone application, and (2) Analyzing consumed energy in a large dataset using a 

segmentation process based on equivalent SOC differences between two points in time. The 

current study makes use of one of the largest datasets of "real world" data ever collected from 

EVs in the United States and Canada, with over one million lines. Eighteen models of EVs are 

used to make comparisons for amounts of degradation over one year. A discussion of how these 

findings affect EV owners’ usage of models from 2010-2020 is included. Multiple 

recommendations for future studies are provided. 
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CHAPTER 1 

 

INTRODUCTION 

 Climate change is having an effect on the world we live in. Corals are dying in the 

oceans, smog is covering our cities, and the polar ice caps are melting. Cars and trucks that run 

on fossil fuels have been polluting our air and water for over a century. With the mass production 

of electric cars beginning in 2008, a transition away from fossil fuels began. This transition to 

electric vehicles (EVs) began globally. Norway and the United Kingdom are leading the way in 

removing Internal Combustion Engine (ICE) vehicles from their roads. In many countries, 

federal and state governments have provided consumers with incentives to purchase EVs in order 

to discourage ICE vehicle consumption. EV purchase incentives and a focus on lowering 

greenhouse gas emissions have resulted in increased EV adoption globally. 

EVs are becoming more popular, while ICE sales are decreasing. Global car sales fell by 

16% in 2020, but EV sales increased by 41% to around three million vehicles. In 2020, 

consumers spent approximately $120 billion on EVs (EV sales soared, 2021). The same global 

vehicle consumption pattern was observed in the United States. Only three of the twelve vehicle 

manufacturers in the United States increased sales in 2020, including Tesla. Tesla only 

manufactures electric vehicles. Tesla increased vehicle sales the most compared to the other two 

manufacturers, Mazda and Volvo, with +20.3 percent versus +.2 percent and +1.8 percent, 
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respectively (Hurd, 2021). This increase in sales is being driven by the popularity of the Tesla 

Model 3. 

Although electric vehicles are becoming more popular, the United States and Canada lag 

far behind in terms of EV purchasing, as a percentage of the population, when compared to many 

European countries. The various levels of government in North America including Federal, 

Provincial, and State, emphasize that they will "catch up" through promotion and infrastructure 

development. Large-scale EV infrastructure projects developed in many European countries but 

yet to be implemented in states and provinces across Canada and the United States are one 

reason for the slow adoption of EVs in North America. As recently as 2019, there were few 

Level 3 (DC Fast) chargers in western New York state or Southwestern Ontario, Canada, to 

support EVs on trips of two hours or more. To support longer trips, charging infrastructure must 

be convenient for consumers in terms of both time, using fast charging, and location. Due to the 

lack of convenience because of required charging time and an undeveloped charging 

infrastructure in 2022, ICE vehicles will continue to be consumed at high rates. 

Mass Producing EVs 

Tesla and Nissan were among the first companies to mass-produce electric vehicles. 

Tesla began production of the Roadster in 2008. The Roadster is an all-electric sports car that 

was far beyond anything else marketed by a car company in 2008. One distinguishing feature is 

its range, which is twice that of previous EVs built before 2008. (Mangram, 2012). When 

compared to previous EVs, the large range assisted Tesla in gaining popularity in the EV market, 

ultimately leading to market dominance. Although the general public could purchase a Roadster, 

the price was more than $80,000 USD ($100,000 CDN), placing it out of reach for the vast 

majority of consumers. Nissan built the Leaf not long after the Roadster was released. The all-
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electric Leaf debuted in 2010, but it was not yet ready for mass production. Both electric 

vehicles, the Nissan Leaf and the Tesla Roadster, were widely available to consumers in 2012 

versions. The Leaf charges at Level 3 speeds via a CHAdeMO port and Level 2 using a J1772 

connector port. Tesla has a proprietary connector solution for charging at home and its 

SuperChargers. Since J1772 port chargers are the most commonly used type for public charging, 

Tesla created an adapter to work with them. The majority of EV charging was done at home 

using a 120V connection or a proprietary charger for early adopters. The Leaf was a more 

affordable EV that was available to the general public in the United States in 2010. In 2010, the 

Leaf was priced at $35,000 USD ($43,000 CDN). These two vehicles from Nissan and Tesla 

influenced other manufacturers, including Ford, General Motors, Kia, and Hyundai, to become 

involved in the development of EVs. As of 2019, there were over 82,000 charging stations 

available to the public (Plugshare.com, 2021).  

The Nissan Leaf went into mass production in 2012, despite being available in multiple 

markets, including the United States, since 2010. Kinoshita et al. (2013) created an article 

"Newly Developed Lithium-Ion Battery Pack Technology for a Mass-Market Electric Vehicle" 

where they provide an overview of the Nissan Leaf and its lithium-ion battery pack. Nissan 

employed all six of the authors. The physical construction of the battery pack and its structure 

are shown in Figure 1, this includes the BMS (Battery Management System). The BMS is 

included in EV development to help maintain battery health by monitoring cells. A conclusion 

from the Kinoshita et al., 2013 article is EVs should develop smaller, lighter, and less expensive 

battery packs suitable for global mass manufacturing. The newly developed battery pack should 

scale comparable to vehicle mass-production because it will be an important factor in supporting 

the widespread diffusion of EVs (Kinoshita et al., 2013). One important omission from the 
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Kinoshita et al. (2013) article is about how to charge the EV battery pack. Charging is such an 

important factor in mass deployment because users are not driving an EV in a closed 

environment. EV battery charging is critical, as discussed by Tomaszewska et al., 2019, 

Figenbaum, 2019, Yang et al., 2018, and Collin et al., 2019. Weight is an important aspect of an 

EV, but so is charging. The battery and charging system must be viewed as a process for 

improved societal acceptance of EVs; this review was overly focused on how the car was mass-

produced. 

 

Figure 1. Battery pack configuration for a 2010 Nissan Leaf 

Note. Design of a 2010 Nissan Leaf battery pack including BMS. From Lithium-Ion Batteries in 

Electric Drive Vehicles (p. 7), Pesaran, A. (Ed.)., by Kinoshita et al., 2013. Copyright 2016 by 

SAE International. Reprinted with permission (see Appendix IV). 

Charging Basics 

A Nissan Leaf EV can charge at approximately eight km (five miles) per hour using a 

120V electrical outlet in 20 ̊°C (68 ̊ F) weather. The inconvenience of waiting twelve hours for 

less than 100 km (62 miles) at home discourages many consumers from adopting an EV, so 

developing Level 2 and 3 charging infrastructure across North America is critical according to 

Egbue and Long. Egbue and Long (2012) discovered that barriers to EV adoption included 
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battery range, cost, and charging infrastructure. The ability to drive to work or attend a baseball 

game and charge while owning an EV needs to become convenient. One group of researchers 

reviewed studies involving annual EV miles traveled; their findings indicate an increase of 25% 

or more chargers is required in areas where drivers have access to DC fast charging stations 

(Yang et al., 2018). Furthermore, researchers offer a suggestion that both safe and fast charging 

of lithium-ion batteries will lead to successful adoption for EVs (Wandt et al., 2018).  

Based on the experiences of the author, how to "properly" charge with Level 2 and 3 

chargers is a topic that EV owners frequently discuss at public charging stations. The author has 

had many EV owners remark about charging to 80 percent SOC with a Level 3 charger because 

it is the best value and it could cause battery pack damage after that point. What happens when a 

continuously charged battery reaches 85 percent or 100 percent capacity on a Level 3 charger? 

There is little research and literature for consumers to discuss the exact charging levels that could 

degrade their battery over the life of the EV. 

There was talk from the Society of Automotive Engineers (SAE) about standardizing a 

format for charging EVs as early as 2009. For charging EVs, a J1772 connection, as shown in 

Figure 2 on the right side, was chosen as the standard for North American vehicles. The J1772 

choice was motivated primarily by concerns the EVSE could handle three functions: ac-dc 

rectification, voltage regulation, and a physical coupling usable by the operator (Tuite, 2011). 

One of the standard's primary functions is to define an interface that an EV owner can use safely, 

with safety implying both protection from electric shock and protection of the charging 

electronics and traction battery (Tuite, 2011). J1772 connectors continue to be one of the most 

used types for charging EVs as of 2020. 
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Figure 2. Nissan Leaf Level 2 and 3 Charger Ports 

 

Note. The charging ports located at the front of a 2017 Nissan Leaf. The left is the CHAdeMO 

 

Level 3 port and right is the Level 2 J1772 port. The left port can only use Level 3 connectors  

 

and the right port only Level 2. (Ferrier, 2021) 

 

From 2010 to 2020, electric vehicles in North America were charged in four different 

ways. This study will employ all four charging methods. Level 1 charging is accomplished by 

connecting a cable to the EV via a J1772 connector on one end and a standard 120V three-

pronged plug on the other. The three-pronged plug is used with a 120V electrical outlet, which 

can be found in homes and businesses throughout North America. A 240V power supply is 

connected to an EV via a J1772 connector for Level 2 charging. Level 2 chargers are installed in 

private homes, malls, businesses, parking lots, and carpools across North America. In most 

cases, using a Level 2 charger is inexpensive costing around $1.00 - $2.00 US dollars per hour at 

the time of writing. Level 3 chargers, also known as DC Fast chargers, are most found in 

commercial buildings or parking lots. DC Fast chargers are powered by a 480V power supply. In 

North America, three connection ports are used for employing DC Fast chargers – (1) CCS, (2) 

CHAdeMO, and (3) Tesla V3. Many domestic vehicles, including Ford and GM, use CCS 

connections. Manufacturers such as Kia, Mitsubishi, and Nissan use CHAdeMO connections. 

CHAdeMO chargers are also popular in Europe, but not so much in North America. Using a 
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public Level 3 charger usually comes at a per minute cost. The Tesla V3 Supercharger is the 

third and only proprietary connection. Tesla built their own charging stations across North 

America. The Superchargers can only be used by Tesla vehicles at the time of writing. Every 

year, Tesla vehicle owners receive 400 kWh of free power from Superchargers. After owners 

consume the first 400 kWh, using a Supercharger incurs a fee. All three of these methods will 

appear in log files created by data loggers or the BMS ECU (as 1,2,3) (Electronic Control Unit). 

When used with a data logger, Tesla V3 Superchargers appear as Level 3 in log files. Tesla V3 

Superchargers have a maximum charge rate of 250 kWh. 

Consumers in the United States purchased 244,713 EVs in 2019. (Crider, 2020). Along 

with the increase in purchases, there has been an increase in charging stations. Figure 3 depicts a 

starting point, in the United States, of approximately 5,000 public stations in 2012, rising to over 

82,000 by 2019. Public charging stations are now available in public places such as department 

stores and hotels. Customers are taking advantage of opportunities to use public transportation to 

make their lives easier. Unlike ICE vehicles, however, EV batteries can be negatively impacted 

by a variety of factors, including charging at various SOC levels (Redondo-Iglesias et al., 2020). 

 

Figure 3. U.S. Public Charging Stations 
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Note. Plugshare is a smartphone app available to help EV consumers (or potential ones) find 

charging stations around the world. Data from Plugshare.com, 2021. 

Big Data Analysis 

 Big data technologies will be utilized in the current study because they have 

transformative potential and significant opportunities for various aspects of human life (Jena, 

2020). Many businesses use "Big Data" to improve business practices through analytics. What 

exactly is "Big Data?" The most used definition of big data comes from a Gartner Group revision 

in 2013: Big data is high-volume, high-velocity, and/or high-variety information assets that 

demand cost-effective, innovative forms of information processing that enable enhanced insight, 

decision making, and process automation (Sicular, 2013). FleetCarma, part of the Geotab 

company, created one of the largest EV datasets which included monitoring 1,000 EVs, 

including PHEVs, across Canada for more than two years. FleetCarma's dataset contains 941,142 

lines of data generated by EVs. Combine 941,142 rows by 11 columns to get a total of 

10,352,562 data cells. Vehicle Make, Vehicle Model, Province, Start Time, End Time, Charger 

Energy, Charger Loss, Charging Level, Start Session SOC, End Session SOC, and Charge 

Location are included in the dataset. This study incorporates a portion of their dataset. 

Generating Data from “Spy” Software 

The Nissan Leaf and Kia Soul EV are two popular types of EVs purchased by consumers 

during the study's target years. To learn more about the internal systems and battery packs of 

both EVs, software developers created smartphone applications. Leaf Spy Professional (Pro) and 

Kia Soul Spy were developed. Nissan Leaf data will be collected using Leaf Spy Pro and saved 

in CSV files as reporting logs. Leaf Spy Pro connects to a Nissan Leaf's OBD2 port via a 

Bluetooth dongle, as shown in Figure 4, to provide data such as battery health (SOH). Kia Soul 
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Spy owners, like Leaf Spy owners, can use a similar connection, smartphone plus a Bluetooth 

dongle, to generate and collect data in log files. For an hour trip, the data generated by various 

Spy Apps is frequently over a thousand lines contained within a single CSV file. A thousand 

lines of data are spread across 159 columns of data generated by Leaf Spy Pro– this amounts to 

an accumulation of “Big Data” across a year for just one EV.  

 
Figure 4. Bluetooth Dongle connector for the OBD2 port 

Note. A Bluetooth-enabled dongle used for sending data to a smartphone application which 

 

interprets and saves EV diagnostics. (Ferrier, 2020) 

 

Other Logged Data 

 

 Other EVs, such as the BMW i3, Kia Niro, and Chevrolet Bolt, produce seven or more 

columns of data in a charging report. Charging reports, like "Spy" log files, are stored in CSV 

files. The log files contain the following information: Start Date, Duration, Charging Power 

(Level), Charger Energy (kWh), Charger Loss (kWh), Start SOC (%), and End SOC (%). 

Unfortunately, no SOH is reported in any of these log files; this will have to be calculated as part 

of the current study. This study includes all three EVs, the BMW i3, Kia Niro, and Chevrolet 

Bolt. 

Terminology 

 

 This dissertation employs several terms. A brief description for such terms is provided 

below: 
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Big Data 

Big data is high-volume, high-velocity and/or high-variety information assets that demand cost-

effective, innovative forms of information processing that enable enhanced insight, decision 

making, and process automation (Sicular, 2013). Big data can be structured or unstructured. 

Electric Vehicle 

Acronym: EV or EVs. Vehicles that have no Internal Combustion Engine (ICE) and are powered 

only by batteries. EVs do not create emissions. 

Bluetooth 

A short-range technology is used to connect devices to share files or information between them. 

Bluetooth technology is used with laptops, smartphones, and OBD2 devices such as dongles. 

OBD2 Port  

Acronym: On-Board Diagnostics. OBD2 ports have been included inside ICE vehicles for years. 

OBD2 ports can help diagnose car problems via the codes it provides a car scanner; when 

connected. For electric vehicles, the OBD2 port can be used with a Bluetooth dongle connected 

to a smartphone application for gathering information about the battery or other car features such 

as tire pressure. 

CSV File 

Acronym: Comma Separated Value. A delimited file with fields separated by commas. It is a 

standard format used with Microsoft products such as MS Excel and MS SharePoint. 

Hybrid Vehicle 

The big difference between a PHEV and an HEV (Hybrid Electric Vehicle) is how the electric 

motor is integrated with the combustion engine. HEV batteries are charged either by the 
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combustion engine or by regenerative braking and are not plugged in externally (to a charging 

station), which limits its electric range (Panday & Bansal, 2014) 

BEV 

Acronym: Battery Electric Vehicle. A BEV is the original term used to discuss a vehicle solely 

powered by electric power. BEV was often used around 2014 and 2015. Today, in 2021, the 

usage is no longer BEV; it has been replaced by EV. 

PHEV or Plug-in Hybrid 

A Plug-in Hybrid vehicle (PHEV) has both a combustion engine and an electric motor. The 

electric motor can plug into a charging station which adds range to the vehicle. The electric 

motor can propel the vehicle independently without help from the combustion engine until 

battery depletion. 

EVSE 

Electric Vehicle Supply Equipment. In general, these are all the chargers used with EVs 

regardless of level.  

FCEV 

Acronym: Fuel Cell Electric Vehicle. These are vehicles powered by hydrogen. 

SOC 

Acronym: State of Charge. The amount of current battery level available in the EV. A SOC of 

75% means 25% of the total available charge has been used. 

SOH 

Acronym: State of Health. Battery SOH is defined as the difference between the usable capacity 

and the end-of-life (EoL) capacity (Marra, Træholt, Larsen & Wu, 2010) 
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J1772 Connection 

A standard Level 2 charger uses a J1772 connector consisting of 5 circular inputs. Public 

charging stations use these connections operating at 6.6 kWh for a dedicated vehicle.  

CCS 

Acronym: Combined Charging System. These chargers are used by GM, Ford, BMW, and 

Jaguar. Most chargers provide up to 150 kWh of power – these are classified as Level 3.  

CHAdeMO 

Acronym: CHArge de MOve, meaning: ‘move by charge’. These chargers are used by 

Mitsubishi, Kia, Porsche, and Nissan EVs. CHAdeMO DC Fast Chargers provide up to 50 kWh 

of power – these are classified as Level 3. 

LiOH 

Lithium Hydroxide. Many lithium-ion batteries used in EVs are created using it. 

LiCO3 

Lithium Carbonate. Many lithium-ion batteries used in EVs are created using it. 

Supercharger 

A Supercharger is a proprietary charging system used with EVs developed by Tesla. There are 

two versions currently in use. The pre-2019 versions had a maximum output of 150 kW, but the 

capped value was 120 kW. Version three (v3) was released in 2019. A v3 Supercharger is 

capable of charging some of the Model 3s at a rate of 250 kW. Those Tesla vehicles able to use 

the maximum charging rate will be capable of adding up to 75 miles (120 km) of range in five 

minutes (O’Kane, 2019).  
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SEI 

Acronym: Solid Electrolyte Interface (SEI).  A thin film layer that grows on the anode (negative 

electrode) within the battery 

Significance of the Study 

 

  Both the Canadian and US governments are making a concerted effort to accelerate EV 

adoption to combat climate change. Some provinces and the federal government in Canada 

provide rebates to encourage adoption. British Columbia, Canada offers $5,000 CDN ($4,000 

USD) incentives for new battery electric vehicles, and a $5,000 CDN federal rebate is now 

available for vehicles under $45,000 CDN ($36,000 USD). (B.C. sets 2040, 2019). President 

Biden has goals specific to electric vehicles, including working on adding more than 500,000 

public electric-vehicle charging stations over the next decade and restoring tax credits to 

encourage the purchase of electric vehicles (Orr, 2021).  

Based on interactions with EV buyers at charging stations, there is typically little 

discussion from salespeople to new owners on how to recharge the vehicle to keep the battery in 

a healthy state over long-term ownership or lease. One EV owner who purchased the vehicle in 

2021 said he was told to “not charge past 80% at fast chargers” and that’s it. The author has test-

driven six EVs from various manufacturers, with only the Tesla salesperson discussing charging 

due to their proprietary stations. Many EV owners have adopted charging habits based on word 

of mouth, but there are no precise figures on how each charge affects the battery in short and 

long-term scenarios. The following study will summarize how charging practices, using log 

analysis and multiple regression, can predict battery SOH. Furthermore, charger levels from 1–3 

and Superchargers will be compared to determine best practices for charging an EV. All data will 

be representative of "real world" conditions. The current research does not aim to develop or 
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improve a specific technology, but rather to improve the charging process used by EV owners in 

everyday life. Consumers will benefit from the dissemination of findings because it will provide 

them with clear and objective information on how to charge their EVs based on quantitative 

analysis, thereby reducing battery degradation. 

This research will benefit the Technology Management profession by expanding our 

understanding of the technologies used with EVs. For researchers, the application of “real world” 

data will help in deciphering differences between it and how batteries are used or tested in a lab 

environment. EV dealerships can use these findings for professional development of salespeople. 

The efficient use of charging technologies discussed here will eventually benefit society by 

reducing EV battery disposal in landfills and lowering air pollution by requiring less electricity 

generation. 

Problem Statement 

 

Consumers must understand how to properly charge their EVs; otherwise, battery 

degradation, resulting in less range, or other battery-related issues may occur over time. Two 

studies, Jiang, Shi, Zheng, Zuo, Xiao, Chen, Xu and Zhang (2014) and Lu, Han, Li, Hua and 

Ouyang (2013), discovered that EV batteries operating between 20% and 80% SOC exhibit 

excellent cycling performance with reduced capacity degradation. Outside of these values had 

negative consequences, resulting in degradation. In 2021, Chevrolet Bolts are experiencing 

battery issues because 30% of owners charge them to 100% when a maximum level of 90% is 

recommended (Nedelea, 2021). Some consumers may recharge to 100% on a Level 2 charger 

(240V), while others recharge to 90 percent on a Level 3 charger (480V); both options have 

negative consequences for owners including possible degradation or thermal runaway.  
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This research will address the problem of charger-related battery degradation in EVs. If the 

problem of exact battery degradation amounts caused by all levels of EV chargers is not solved, 

tens of thousands of consumers will charge more frequently than necessary, damaging battery 

packs over time. Other reasons for resolving this issue include consumers losing money due to 

inefficient DC Level 3 quick charging, wasting time due to slow charger output, and premature 

battery pack replacement. Due to general resources used to create and dispose of batteries, early 

replacement contributes to environmental damage. There is a significant gap in current 

knowledge about consumer charging techniques between owners who use "real world" EV 

batteries and researchers' findings from lab experiments—this study aims to close that gap. 

Addressing this gap will result in proper charging procedures being passed on to consumers via 

promotion of these findings and follow-up educational activities based on analysis of current EV 

owners. 

Research Questions 

 The research questions in this study pertain to North American EV owners and those 

researchers interested in “real world”, not lab-based, studies. Based on this audience, the 

following questions need answering to provide clarity on the issue of charging EVs and battery 

degradation: 

1) What are the effects of various types of charging (Levels 1-3, SuperChargers) on battery 

pack degradation for North American EVs built from 2010-2020? 

2) Based on data analysis, how can altering charging practices lessen battery degradation in 

EVs used by North American owners? 

3) What is the impact of an above-average battery pack size on the speed of degradation in 

North American EV models? 
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4) Out of the North American EV models, what battery packs degrade at the fastest and 

slowest rates? 

5) How much of an impact does temperature have on different levels (1-3, SuperChargers) 

of charging for North American EVs? 

Assumptions 

 

Since early 2017, the author has owned an EV and has charged it in Ontario, New York, 

and Pennsylvania. The author has met several EV owners at public charging stations and talked 

about charging. Therefore, based on these discussions, the author has been presented with 

commonly known charging practices among consumers. Other written discussions about how EV 

owners charge their EV have occurred through numerous postings, read by the author, on social 

media.  

It is assumed sample data collected represents the EV population owned from 2010 to 

2020 in North America because of the large dataset provided by FleetCarma, a third-party EV 

research company. Due to data privacy concerns, the dataset will not be made available. The 

FleetCarma study included over 1,000 electric vehicles, including plug-in hybrids (which are 

excluded from the current study). FleetCarma's study, titled "Results from the World's Largest 

Electric Vehicle Charging Study," includes 727,000 EV charging events from across Canada 

(FleetCarma, 2019). It is assumed that the data will be applicable to EVs driven in northern states 

(the United States) and Canada. Participants used a variety of chargers (FLO, ChargePoint, Sun 

Country, Electrify America, Tesla, and so on) and Levels 1-3. The data supplied by EV 

consumers will span multiple months for the same EV, providing a good cross-section of 

charging activities. Because of groups called Nissan LEAF Owners USA and Canada Nissan 
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Leaf Owners, it is assumed that many of the social media forums where information about the 

study is focused had citizens from the United States and Canada. 

 It is assumed that the data loggers and smartphone applications used in this study are 

accurate. The data submitted is assumed to be unaltered and correct. The same data will be 

generated by various smartphones. Bluetooth connections will be used to connect to 

smartphones. Bluetooth dongles of various types will be used to connect to smartphone 

applications. All data is generated by the EV. EV owners will send CSV files via e-mail, and it is 

assumed no manual changes to numbers, SOH, dates, or charger level will be made. Participants 

will send data with the understanding that precise location information (longitude/latitude) will 

be removed from the files. It is assumed that people submitting data wanted to help the 

researcher for altruistic reasons and because of their interest in the EV community. 

Limitations 

 There are limitations to this study. The current study only includes North American EVs 

from 2010 to 2020; no European model data was requested for manufacturer comparisons. 

However, European data was requested to help validate the processing of North American EV 

data. There is no data for the 2008-09 Tesla Roadster or 2021 models. Data on hybrid and plug-

in hybrid vehicles is irrelevant to this study and will not be collected. None of the generalized 

findings will apply to Roadsters from 2008 to 2009, 2021 models, hybrids, or plug-in hybrid 

battery packs. There are additional limitations to the CSV files submitted by 2010-2015 EV 

owners because few were sold, consumers did not retain or store their generated data, and few 

smartphone applications were developed to provide owners insight into the behaviour of their 

vehicles. Only 67,944 electric vehicles were sold in the U.S. in 2015 (Argonne, 2020). The Leaf 

Spy smartphone application (for Nissan Leafs) began distribution in 2013.   
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The location of EVs is limited to Canada and the United States. Since a large dataset is 

being provided by FleetCarma (part of GeoTab), a Canadian company, most data were from 

Canada. Due to the large amount of data from Canada, the results may not be applicable to the 

southern states. The average temperature in Canada is much lower than in southern states such as 

New Mexico, Florida, Georgia, Arizona, and Texas. The country's data is unbalanced for three 

reasons: (1) No company or federal government department in the United States has ever 

conducted a large, comprehensive, multi-year study on EVs like Canada has (via FleetCarma), 

(2) Participation through social media forums has been minimal by U.S. participants, and (3) The 

U.S. has been slow to adopt EVs (compared to places such as Quebec, Canada, and British 

Columbia, Canada) before 2020 which limits the amount of historical data available. 

Data collection may be limited. Social media postings were featured in a variety of areas; 

however, many forum participants did not save or store their historical data, removing some of 

the randomness from data collection. There are fewer EV groups on Facebook for US owners 

than for Canadians, limiting access to US data. Those with historical EV data can participate, 

including those who no longer own one but have saved CSV files. In 2021, all data will be 

collected. When comparing SOH, not all data from EVs is the same, and alternate calculations 

are required. Data loggers generate far less data than their smartphone "Spy" software 

counterparts, leading to more difficult calculations.  

Data analysis may be limited around EV models. There may not be enough data retrieved 

from certain EV models to conduct accurate comparisons to others. In the case of limited EV 

model data, comparisons will be removed. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 There have been many articles written on different topics about EVs and their batteries 

since the 2000s. Important topics related to EVs include alternatives to charging (battery 

changing), batteries, temperature, SOH, calendar aging, cycling aging, and DC fast charging. 

Batteries are the most important part of an EV, so that topic is divided into sub-sections such as 

lithium plating and basics. This dissertation begins with examining what has occurred in the 

recent past so mistakes are not repeated, and successes are built upon for future solutions. 

Brief History of Battery Packs 

EV batteries have changed over the years in terms of size – they are much bigger in 2020 

compared to 2010. “Older” EVs such as the 2015 Chevrolet Spark or 2015 Mitsubishi iMiev 

started with small battery pack sizes of 20 and 16 kWh, respectively. Similarly, the original 

Nissan Leaf and Tesla Roadster have much smaller batteries than their predecessors. The mass- 

produced 2012 Leaf uses a 24-kWh battery pack while 2008-2012 Tesla Roadsters employ a 53 

kWh. As EVs have matured, so has the size and development of battery packs. Nissan Leaf 

battery packs moved from 24 kWh to 30 kWh to the current model. 2020 Leafs use a 40-kWh 

battery pack, and a 2020 Tesla Model X 100D utilizes a 100 kWh. There were no Tesla 

Roadsters built the last few years, but a new model has been announced for 2022, and it may 

include a 200-kWh battery which would be the largest available on any EV. Table 1 clearly 
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shows that most EVs built from 2010-2020 use a battery pack of 30 kWh or more, with larger 

batteries appearing around 2018-2019. Battery size was a factor considered in this study. As size 

of batteries increase, so have needs to keep charging convenient for consumers. Aside from 

charging, other alternatives have been tried making EVs more convenient on long-distance trips. 

Table 1 

Models, manufacturers, battery pack sizes for EVs included in dataset 

Make and Model Year Battery Pack (kWh) SOH 

Nissan Leaf 2013 24 Leaf Spy 

Nissan Leaf 2014 24 Leaf Spy 

Nissan Leaf 2016 30 Leaf Spy 

Nissan Leaf 2017 30 Leaf Spy 

Nissan Leaf  2018 40 Leaf Spy 

Nissan Leaf 2019 40 Leaf Spy 

Kia Soul 2020 64 Soul Spy 

Kia Soul 2019 30 SOH Calculation 

Kia Soul 2018 30 SOH Calculation 

Kia Soul 2016 27 Soul Spy 

Chevrolet Spark 2014 20 SOH Calculation 

Chevrolet Spark 2015 19 SOH Calculation 

Smart Fortwo Electric Drive 2018 16.5 SOH Calculation 

Volkswagen eGolf 2017 35.8 SOH Calculation 

Volkswagen eGolf 2018 35.8 SOH Calculation 

Volkswagen eGolf 2019 35.8 SOH Calculation 
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Table 1 Models, manufacturers, battery pack sizes for EVs included in dataset (continued). 

Make and Model Year Battery Pack (kWh) SOH 

Mitsubishi i-MiEV 2015 16 SOH Calculation 

Mitsubishi i-MiEV 2016 16 SOH Calculation 

Hyundai Niro 2019 64 SOH Calculation 

Hyundai Ioniq 2017 28 SOH Calculation 

BMW i3 2019 42 SOH Calculation 

BMW i3 2018 33.2 SOH Calculation 

Chevrolet Bolt 2017 60 SOH Calculation 

Chevrolet Bolt 2018 60 SOH Calculation 

Tesla Model S P85D 2016 85 SOH Calculation 

Tesla Model S 2016 75 SOH Calculation 

Tesla Model S 2017 75 SOH Calculation 

Tesla Model S 90D 2016 90 SOH Calculation 

Telsa Model S P90D 2016 90 SOH Calculation 

Tesla Model S 100D 2018 100 SOH Calculation 

Tesla Model X P90D 2018 90 SOH Calculation 

Tesla Model X 100D 2019 100 SOH Calculation 

Tesla Model X 75D 2016 75 SOH Calculation 

Tesla Model X P90D 2016 90 SOH Calculation 

Tesla Model X P100D 2017 100 SOH Calculation 

Tesla Model 3 2019 50 SOH Calculation 

Ford Focus EV 2017 33.5 SOH Calculation 
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Battery Changing/Swapping 

Battery changing or swapping stations were one of the first ideas to add convenience for 

EV owners. Experts wanted to implement these stations to remove long charging times by EVs 

(Mak, Rong & Shen, 2013). One of the first studies was entirely theoretical and created based on 

Israel. Mass adoption of EVs had yet to take place when the Mak et al. (2013) study was 

completed. There were two crucial parts to their study: (1) a proposed plan for battery changing 

stations, and (2) battery standardization as an option to help implement changing stations. There 

were two challenging aspects to their research – (1) Developing a battery changing station 

infrastructure is a costly pursuit when different battery packs exist from various manufacturers, 

and (2) Israel is quite small compared to many other countries such as the United States and 

scaling up needs additional planning. However, a positive aspect of swapping stations is battery 

charging completed by experts instead of consumers, possibly lessening degradation. Battery 

standardization, in the marketplace, did not occur in Europe or North America (as we know in 

2021), making it difficult to employ battery swapping stations. Mak et al. (2013) never 

implemented their theoretical solution with EVs.  

Battery swapping is mentioned by Sun, Li, Wang & Li (2019) as an alternative to 

charging and one of the most time-saving methods for consumers. After the battery is swapped, 

then charging is completed by people at the swap station. Similar to Mak et al. (2013), 

challenges using this system are noted as standardization of EV battery packs, recognition by 

consumers of this alternative, and how to measure SOH of various battery packs accurately. One 

item not mentioned under the Battery Swap Station (BSS) model is the role of battery SOH in 

swapping the batteries for equality. For example, if a 2017 Nissan Leaf swaps its battery for a 

full capacity version previously in a 2016 model, the SOH may be lower and therefore provide 
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less range than the previous model. BSS appears impractical due to SOH issues. However, 

battery swapping stations were eventually tried by the Better Place company in Israel (Sun et al., 

2019). 

A review by researchers discusses Better Place’s plan to create battery changing stations 

at gas stations across Israel; approximately 100 were planned (Naor et al., 2015). Better Place 

tried to get around recharging EV batteries in public areas by employing battery swapping. In 

2015, Naor’s group tested the Better Place business model (Naor et al., 2015). Better Place 

worked with the car manufacturer Renault-Nissan and had completed some research in 2009. 

Better Place used the idea of separating the battery from the EV and leasing the batteries. By 

separating the battery, which is expensive, from the EV, it makes them more affordable. Better 

Place battery changing stations were created and used instead of ‘typical’ EV charging stations 

used in 2021. Their solution was developed to increase adoption and remove the inconvenience 

of extended charging times during long trips. Less battery degradation would happen because no 

Level 3 chargers would be utilized. Charging EV batteries could be completed on Level 1 or 2 

chargers after business hours. It was found that keeping spare battery inventories of different 

batteries is expensive. Unfortunately, Better Place went bankrupt, which illustrates the difficulty 

in developing battery charging alternatives. Israel is a small country in geographical size 

compared to Canada and the United States, so implementing battery changing stations would be 

more challenging in North America due to large distances between stations. The battery 

changing/swapping system does not appear to be a viable solution to reduce battery degradation 

with EVs in 2021, especially with all different battery and EV configurations available to 

consumers. 

 

https://www-emerald-com.ezproxy.indstate.edu/insight/search?q=Yoram%20Shiftan
https://www-emerald-com.ezproxy.indstate.edu/insight/search?q=Yoram%20Shiftan
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Battery Basics 

 EVs use different types of lithium-ion batteries in their vehicles. Nissan Leafs, BMW i3s, 

and Chevrolet Bolts use lithium-manganese oxide (LMO) batteries (Yang, Xie, Deng, Yuan & 

Argonne National Lab, 2018; Hannan, Hoque, Hussain, Yusof & Ker, 2018). Tesla uses Lithium 

Nickel Cobalt Aluminum Oxide (NCA) for their popular Model 3 (Bower, 2018). Both Smart 

Fortwo and Tesla Roadsters (2008-2010) use Lithium Cobalt Oxide (LiCoO2) batteries 

(Buchmann, 2011). Smart Fortwo, Leafs, BMW i3, and Bolt data was included in this study. 

Battery cells operate at an average of 3.7 V. Battery characteristics play an essential role in 

lessening degradation; this was determined during a manufacturer comparison within this study. 

Generally, most manufacturers consider the End of Life (EoL) for a battery to be 70% of 

its original SOH, representing nine bars (in a Nissan Leaf, see Figure 5) or under on the battery 

capacity level bar gauge. Information gathered in one study by Yang et al. (2018) calculated EV 

battery EoL ranged between 5.2 years in Florida and 13.3 years in Alaska under current EV 

driving conditions in each state. The elevated ambient temperature in Florida impacts SOH, as 

noted below, thereby increasing EoL. Researchers calculated initial charging–discharging 

efficiency of the EV battery is 98%, decreasing at different rates annually in different states 

(Yang et al., 2018). The current study uses SOH to determine the level of battery degradation. 

 
 

Figure 5. 2017 Nissan Leaf bar gauge 

 

Note. Showing 10 of 12 bars indicating battery degradation (Ferrier, 2021) 
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Lithium Plating 

One of the key reasons for analyzing and predicting battery degradation from charging is 

the after-effects. One of the central effects on the battery can be lithium plating. Reducing 

lithium plating is imperative to keeping a healthy battery. Lithium-ion batteries that undergo fast 

charging can increase the risk of a lithium plating reaction and deteriorate battery cells (Yang & 

Wang, 2018; Tomaszewska, Chu, Feng, O'Kane, Liu, Chen, Ji, Endler, Li, Liu, Li, Zheng, 

Vetterlein, Gao, Du, Parkes, Ouyang, Marinescu, Offer & Wu, 2019). Plating reduces the 

porosity within the battery cell causing positive feedback and nonlinear reduction in useable 

capacity (Tomaszewska et al., 2019). Deteriorating cells through a reduction in capacity can lead 

to reduced EV range.  

All lithium-ion batteries have a cathode, known as the positive electrode, and anode, the 

negative electrode. A lithium deposit, known as plating, along the negative electrode lessens the 

porosity within the battery cell. The anode electrode is often made of graphite because it reacts 

well with lithium ions in the electrolyte solution. Cathodes are often formed of lithium metal 

oxide. The electrolytes composition varies based on the choice of electrode materials but is 

typically composed of a mixture of lithium salts (e.g., LiPF6) and an organic solvent (e.g., 

diethyl carbonate) to allow for ion transfer (Miao et al., 2019). Graphite electrodes can develop 

lithium plating.  

There are different ways lithium-ion batteries can be aged, and the effect of those aging 

mechanisms is essential to examine for solutions to plating (Broussely et al., 2005). Back in 

2005, lithium carbonate was predominately used for the creation of lithium-ion batteries. In one 

experiment, lithium deposits were found after cycling batteries in the lab. Broussely et al. (2005) 

applied both 40°C (104° F), and 60°C (140° F) temperatures, while in storage, to lithium-ion 



26 

   

 

batteries, and lithium loss was analyzed. Lithium loss was more predominant in battery samples 

where higher temperatures were applied. The current study will review higher temperatures in 

battery packs when charging EVs, although the amounts differ based on the type of charging. 

Similar findings occurred in a study conducted by Yang et al. (2018), who found capacity issues 

with batteries in warmer states. Broussely et al. (2005) found that moderate temperatures, like 

those in northern American states or Canadian provinces, applied to lithium-ion batteries during 

storage over time will not affect the capacity. Although lithium-ion batteries were used in the 

study by Yang et al. (2018), EV batteries and their mass production did not happen for several 

years after 2005. However, the results do apply to the current study because EVs from 2010-

2020 can experience plating under higher recharging temperatures, similar to lab findings. 

Researchers in 2018 examined ways to avoid lithium plating with lithium-ion batteries 

(Yang, Zhang, Ge, Wang & EC Power LLC, 2018). As previously noted, electrodes in batteries 

are often made of graphite – this is where plating occurs. A new solution was sought to create a 

cell structure that can be actively controlled, thereby removing lithium plating under ambient 

temperatures. Temperature plays a vital role in lithium plating, as past researchers discovered 

(Broussely et al., 2005; Tomaszewska et al., 2019). The Arrhenius law significantly affects fast 

charging (Level 3) and lithium plating because chemical reactions slow down as temperatures 

are lowered. It takes a much longer time for an EV on a DC Fast charger at -5°C (23° F) than 

+5°C (41° F) because of the Arrhenius law. Researchers desired to eliminate the lithium plating 

due to the extra time spent on the DC Fast charger because of the cold (Yang et al., 2018). 

Heating the batteries before charging would reduce the time spent on a DC Fast charger – this 

can be achieved by using nickel foils (through a switch) in the battery cells. Using this process 

with temperatures between -40°C (-40°F) and 45°C (113°F) was found to remove chances of 
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lithium plating. Temperatures above 45°C (113°F) increase the SEI (film), thereby reducing 

battery capacity; this needs to be avoided. This EV battery heating strategy was not employed 

from 2010-2020 by anyone other than Tesla.  

Tesla revealed a new technology to address charging issues while in ‘cold’ weather with 

their Model 3. Known as “on-route battery warmup”, a Model 3 heats the battery to the ideal 

temperature for charging when the driver begins to route the vehicle towards a Supercharger 

station, it can reduce charge times by 25 percent (Martinez, 2019). The SEI film should be 

reduced during this process too. The current study seeks to find the effects of different charging 

options, and based on Yang et al., 2018 findings, it can be expected that those using DC fast 

chargers in cold weather should experience lithium plating, thereby reducing battery SOH. 

However, Tesla Model 3 cars (which are included in the current study) may have less 

degradation because of the battery warmup feature – it will need to be compared to other EVs to 

see if this is true. 

Konz, McShane & McCloskey (2020) looked at the onset of lithium plating with various 

levels of SOC during DC fast charging. Lab testing involved charging batteries to SOC: 30%, 

40%, 50%, 60%, 70%, 80%. Charging to various SOC levels for lithium-ion batteries, as shown 

in Figure 7, is different from the “real world” charging of EVs. Most “real world” charging at 

home involves going to 100%. However, adding 50% of power to a starting SOC of 30% is very 

common for EV owners, especially when using public Level 3 chargers (30% + 50% = 80%). 

Their research findings indicate an increased SOC cut-off resulted in lowering the capacity of 

batteries that were tested (Konz et al., 2020). Another result was lithium plating being stripped at 

higher rates during discharging at a lower SOC. For example, a 50% SOC showed 72% stripping 

efficiency compared to 65% SOC having only 50%. Consumers use Level 3 chargers to achieve 
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80% SOC (during most charging sessions), so very little plating would be stripped in most cases. 

Even with stripping, there is a lithium plating effect as shown in Figure 6. 

 
Figure 6. Lithium plating on the graphite anode in a battery 

Note. How DC fast charging affects a battery to create lithium plating. From ACS Energy Letters 

(p. 1750), by Konz et al., 2020. Copyright 2020 by American Chemical Society. Reprinted with 

permission. 

Consumers need to learn about lithium plating to negate its effects and extend the life of 

their EV battery. Consumers want to get the most range from their EV, and plating can reduce it. 

EV owners keeping the battery healthy for the long term helps increase the value of their 

investment. It appears there is a correlation between DC Fast chargers, lithium plating, and 

temperature. 
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Figure 7. Lithium-ion battery setup 

Note. A basic lithium-ion battery diagram with each of the electrodes showing. Current flows 

from positive to negative when discharging and negative to positive when charging. 

Temperature Influence 

Temperature is one of the key influencers of battery health in an EV. Multiple studies 

starting in 2015 examined the effects of temperature on lithium-ion batteries. A report by (Leng, 

Tan & Pecht, 2015; Chen, He, Li & Chen, 2019) had results showing lithium-ion batteries 

increasing their capacity in the short-term when temperature increased, but in the long-term 

battery degradation happened at a faster rate. For example, one study showed degradation at 

45°C (113°F) for 900 cycles increased nearly 20% compared to that at 25°C, or 77°F (Chen et 

al., 2019). The Ferrier and Appiah-Kubi (2020) study involving weight and EVs showed a 

heating source applied to the battery pack improved range, but added to degradation. One of the 

Leng et al. (2015) findings, tied to increasing temperature, is a film that develops in the battery 
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cell. A solid electrolyte interface (SEI) film is created which lowers the batteries’ reaction rate, 

thereby decreasing the capacity in the long term (Leng et al., 2015).  

 SEI is a significant concept for EV batteries because lithium ions need unimpeded 

movement across the interface for optimized functioning. The interface (in the case of SEI 

development) is where the negative electrode, as shown in Figure 8, interacts with the electrolyte 

solution. Battery degradation is mainly caused by the growth of SEI film on the negative surface, 

as seen in Figure 8, of the battery in the early stage of aging (Chen et al., 2019). Ions move from 

positive to negative while discharging (traveling) or negative to positive when charging. If a film 

develops across the interface, it makes the ions’ movement more difficult resulting in loss of 

capacity. EVs need to keep a high battery capacity to optimize their range.  

 
Figure 8. Lithium-ion battery with SEI film 

Note. Increasing temperature in lithium-ion batteries causes an SEI film to develop on the 

 

negative electrode (often made of graphite) 
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Shirk and Wishart (2015) did a comparison study with four 2012 Nissan Leafs’ over a 

total of 50,000 miles (approximately 80,000 kms) under the same ambient temperature in 

Phoenix, Arizona. The comparison study relates to the current topic since they used similar 

vehicles, Nissan Leafs, and had data loggers attached to all vehicles. The large dataset from 

FleetCarma included in the present study used data loggers. Part of the Shirk and Wishart (2015) 

study used public roadways for testing; this scenario was used in the current research. Two of the 

EVs used Level 2 charging, and the other two were exclusively Level 3. The study used 

Controller Area Network (CAN) data, including EV speed, battery-pack current, voltage, 

temperature, and SOC. A discovery was that battery packs on EVs using Level 3 (DC Fast) 

chargers were 2.1°C hotter (3.78° F) on average than Level 2 packs after each morning drive 

(Shirk & Wishart, 2015). At the end of charging, findings included EVs charged on Level 3 were 

4.9°C (8.82°F) warmer than those on Level 2 chargers. Findings included Level 3 charged 

vehicles having less battery capacity under all three conditions (lab, track, road). Level 3 EVs 

had 3.5%, 8.8%, and 6.7% less capacity; respectively. The conclusion from the Shirk and 

Wishart (2015) study was that greater losses in battery capacity were observed for the fast 

charged vehicles (Level 3), though the difference compared to the Level 2 charged vehicles was 

small in comparison to the overall capacity loss. The present study should demonstrate similar 

results for EVs regularly using Level 3 chargers. 

Opposite to the Shirk and Wishart (2015) study, which used one central location, the 

study from (Yang et al., 2018) took information from multiple U.S. locations where the ambient 

temperatures were much different. Part of the study by Yang et al., 2018 examined how the 

environment impacted EV battery degradation in the United States, including Hawaii and 

Alaska. 2013 Nissan Leafs (24 kWh battery pack) were used for the Yang et al., 2018 study—the 
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same size battery pack and composition, lithium-manganese oxide (LMO), is included in the 

current study and Shirk and Wishart (2015) study. Does the size of the battery play a role in 

degradation? This was examined in the current study. The prediction for battery degradation to 

the 70% level ranged between 5.2 years in Florida to 13.3 years in Alaska under current EV 

driving conditions (Yang et al., 2018). Although an actual EV battery was used in the Yang et al. 

(2018) study, all predictions were made in a lab using COMSOL Multiphysics and MATLAB 

software. The current study uses all “real world” data, none from the lab, and most vehicles from 

Canada which has much cooler ambient temperatures than Florida.  

The third section in the Collin, Miao, Yokochi, Enjeti & von Jouanne (2019) article has 

findings and discussion topics that directly apply to the current study. They discuss battery SOH 

and factors affecting it, including (1) Temperature, (2) Charge/Discharge Rate, (3) 

Charge/Discharge Depth, and (4) How to extend the life of lithium-ion batteries. Higher 

temperatures within the battery pack can lead to overheating. Overheating is caused by EV 

charging using a high current (up to 50 kWh CHAdeMO/150 kWh CCS/150 kWh Tesla 

Supercharger), which stresses the battery (Miao et al., 2019). Overheating affects the 

performance of lithium-ion batteries and leads to possible “thermal runaway” (Collin et al., 

2019; Miao et al., 2019; Leng et al., 2015; Martinez, 2019). Collin et al. (2019) defines “thermal 

runaway” as one cell heating up and causing a chain reaction leading to a possible fire. There are 

three parts to thermal runaway as shown in Figure 9. The BMS (Battery Management System) 

helps monitor and control the battery’s temperature, so a fire is avoided in stage 3 of Figure 9. A 

BMS is present in all EVs. The BMS can (1) protect the EV from safety hazards such as fire and 

shock (Collin et al., 2019; Zhao, Zhang, Liu & Gu, 2015); (2) maintain an optimal operating 

environment (30-40°C or 86-104°F), SOC, depth of discharge (DOD), SOH, charge/ discharge 
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power and assist with battery cell balancing for the enhancement of battery life and efficiency 

(Haiying, Long, Jianhua, Shuanquan & Feng, 2011), and (3) accurately predicting the remaining 

driving distance that the battery can support. In addition to the BMS, EVs use thermal 

management systems to maintain a regular battery temperature. An EV can use both cooling and 

heating systems, depending on the climate, which leads to the prevention of performance 

degradation (Collin et al., 2019). 

 
Figure 9. Chain reactions of the thermal runaway process in fast charged batteries 

Note. The three stages of how thermal runaway occurs in fast-charged batteries. From ECS 

Meeting Abstracts (p. 585), by Li, Y., Feng, X., Ren, D., Ouyang, M., & Lu, L, 2019. Copyright 

2019 by IOP Publishing. Reprinted with Permission. 

A review paper from Zhao et al. (2015) details heat generation, management of it, and 

running batteries above average operating temperatures. Zhao et al. (2015) mention three types 

of EVs using lithium-ion batteries: Nissan Leaf, Tesla Model S, and BMW i3. All three of these 

EVs are included in the present study. EVs have TMS (Thermal Management Systems), which 

deal with maintaining proper heat dissipation outside the battery. The heating of a battery pack in 

an EV could cause multiple problems related to degradation, so it must be managed. TMS has 

different ways to cool batteries, including air, liquid, PCM (Phase Change Material), and heat 

pipe cooling. Each manufacturer uses a different type of TMS which may contribute to varying 

amounts of battery degradation—comparisons of manufacturers was included in the present 
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study. Researchers Zhao et al. (2015) acknowledge that without proper thermal management, the 

heat accumulated may overheat the battery, resulting in shortened lifespan, reduced capacity, 

power with cycling, and even “thermal runaway” in some extreme conditions. Reduced capacity 

means less range which presents a challenge to older EVs with smaller battery packs or those 

operating in colder climates. It appears heat generation needs management within EVs and 

manufacturers require comparisons of battery degradation to note possible enhancements in 

future TMS. 

Calendar Aging 

One type of battery aging common to EVs is Calendar Aging. Calendar Aging is capacity 

loss due to a combination of SOC, aging time, and ambient temperature. Calendar capacity loss 

occurs during battery energy storage and is mainly caused by battery self-discharge and side 

reactions (Yang, Xie, Deng, Yuan, & Argonne National Lab, 2018). It is calculated using a 

modified Arrhenius-form empirical equation. The Arrhenius law was originally used to model 

the dependence of a reaction rate with temperature (Redondo-Iglesias, Venet & Pelissier, 2020). 

Reaction rates accelerate as temperature increases. The Arrhenius law applies to EV batteries 

because different locations have various ambient temperatures that affect the lithium-ion battery 

over time. 

Both calendar and cycling data were examined in the Yang et al. (2018) study. Yang et 

al. (2018) found the top five states for calendar (battery) loss were Florida, Texas, Hawaii, 

Louisiana, and Mississippi. These calendar losses can be attributed to the “hot” weather in each 

of these states. Southern states ‘typically’ have warmer temperatures than their northern 

counterparts. A majority of current study participants were based in northern states and 

provinces. Studies from Figenbaum (2020), Yang et al. (2018), and Chen et al. (2019) used 
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temperature as an independent variable within their studies. Researchers Chen et al. (2019) 

investigated how temperature affected a lithium-ion battery over time. There were three 

temperatures used to test how the SOC was affected after 30 days: 25°C (77°F), 45°C (113°F), 

and 60°C (140°F) – this is an example of calendar aging. The results were consistent across all 

three temperatures – calendar aging of batteries affects them negatively when the ambient 

temperature is warm. Calendar aging will play a role in the current study because historical data 

for EVs was generated and stored over months or years. 

A novel data-driven battery health monitoring algorithm for usage in fleet management 

systems was developed by Nuhic, Bergdolt, Spier, Buchholz & Dietmayer (2018). There were 

two core portions to the study: (1) Testing and simulating with batch modeling, which 

approximates the capacity degradation trend the best (Nuhic et al., 2018), and (2) the incremental 

model, which looks at adjusting the degradation on-board while in operation. The study is 

essential because they tried different mathematical models to predict capacity degradation. They 

used a battery from a Mercedes Hybrid to test battery cells under various conditions- Smart 

Fortwo EVs from Mercedes are included in the current study. A prognosis for the current state of 

battery health was attempted to help in creating the algorithm. Their critique of other studies is 

that most of the accomplished investigations are based on very uniform tests, batteries are cycled 

only at one or a few values of SOC, temperature, and DODs (Depth of Discharges), so that the 

obtained approaches are at least not validated for an application in real-world dynamical 

situations (Nuhic et al., 2018). The current study has data from a wide range of temperatures, 

hundreds of cycling events, and SOC. Charging procedures are not noted in the Nuhic et al. 

(2018) study. As shown, 200 days of calendar aging are shown in Figure 10. A “real world” 

environment was tested on their hybrid battery—for example, 55% SOC and 15°C or 59° F. 
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Their predictions of battery aging over time were accurate. Unfortunately, their life-cycle 

investigations on single cells are not practical for daily use EVs. The current study incorporates 

“real world” data, so this model cannot be applied to it since it is lab-based. 

 
Figure 10. Incremental model results 

Note. The initial batch model is updated iteratively on the same data set containing different cells 

of SOH. Both support vector regression and relevance vector machine models are shown. From 

World Electric Vehicle Journal (p. 16), by Nuhic et al., 2018, Copyright 2018 by MDPI. 

Reprinted with permission. 

Cycling Aging 

Cycling Aging is very relevant to the current study because the prediction of battery 

degradation is influenced by the number of charging/discharging cycles and how driving is 

conducted. Many studies reviewed include battery cycling in the lab. The cycling process in the 

lab assumes that conditions remain the same, which is not the case for EV batteries used by 

consumers. However, lab studies help provide a baseline for “real world” trials.  

The cycling of batteries is influenced by many factors such as temperature, charge/ 

discharge current, charging cut-off voltage, and discharging cut-off voltage plus charging 

methods (Lin, Tang & Wang, 2015). Chen et al. (2019) used 900 cycles to test degradation (see 
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Figure 11) under three scenarios (a) different temperatures, (b) under different DOD and (c) at 

different discharge rates. A 900-cycle test would approximate three years of “real world” driving 

where people would use their EV to commute to work daily. DOD and discharge rate were not 

found as influential compared to temperature. The combination of higher temperature and more 

cycling had the most degradation—this result can be expected in the current study. When testing 

involved cycling, (Broussely et al., 2005; Redondo-Iglesias et al., 2020; Tomaszewska et al., 

2019) large lithium metal deposits (lithium plating) which caused a rapid capacity decay, also 

known as capacity fading. Capacity fading, as shown in Figure 11 below, is from the Chen et al. 

(2019) study. 

 
Figure 11. Cycles and capacity of the battery 

Note. Relative capacity of the battery based on the amount of cycling. The prediction and actual 

measurement are shown. From Energies (p. 8), by Chen et al., 2019, Copyright 2019 by MDPI. 

Reprinted with permission. 

Chen et al. (2019) looked at multiple factors affecting batteries’ degradation, including 

calendar and cyclic aging. Cycling was considered in the current study since each charge and 

discharge is accounted for in logged files for an EV. Factors Chen et al. (2019) examined were 

temperature, SOC, and depth of discharge. The experiment took place in a lab. According to 
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Chen et al. (2019) and Tomaszewska et al. (2019), battery degradation through cycling is mainly 

caused by the growth of the SEI film on the negative surface of the battery in the early stage of 

aging. Findings indicate that the rate of discharge only has a minimal effect on the capacity of a 

battery. Temperature is a key to helping predict capacity loss and should be incorporated into 

future regression analysis calculations. Battery temperature is perhaps the most influential factor 

on the impact of capacity loss, as it affects the growth of SEI film.  

 Cycling degradation is impacted by SOC and ∆SOC (Chen et al., 2019; Lin et al., 2015; 

Redondo-Iglesias et al., 2020). Cycling at very low and at very high levels of SOC (0% to 20% 

and 80% to 100%) caused respectively the slowest and the fastest degradations (Redondo-

Iglesias et al., 2020). Fast charging to a cut-off of 80% (SOC) is often regarded as a best practice 

(see DC Fast Charging section) because of degradation. Based on Redondo-Iglesias et al. (2020) 

findings, continually charging after 80% SOC would create faster battery degradation which is to 

be avoided. Cycling numbers and SOC are available in reported numbers (log files) within this 

study; these were used to help predict degradation.    

Longer distances can explain cycling losses traveled from point to point. The top five 

states with cycling losses include Mississippi, Maryland, Indiana, Maine, and North Dakota 

(Yang et al., 2018). For example, in Indiana, many live-in rural areas that travel “long” distances 

to the nearest city for goods. Traveling to those cities may involve an extra charging period 

going to or from the destination. During a long trip with an EV, cycling occurs more often with 

smaller battery pack sizes (2012 Nissan Leaf, 2015 iMiev, 2015 Chevrolet Spark, etc…). It can 

be expected in the current study that cycling will occur in large numbers because some 

participant vehicles have smaller battery packs and drive within the Canadian prairies, like North 

Dakota’s environment. 
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Lin, Tang & Wang (2015) discuss a power-law concerning batteries and cycles. The 

power-law relates battery capacity loss to the number of cycles a battery has undergone. 

However, the power-law and battery capacity discussions are not specifically aligned with EVs 

because those cycles are not consistent from day to day. All reviewed articles were written 

before 2012—years before substantial data had been gathered on EVs. The current study will 

examine cycles and how they potentially impact capacity loss. 

State of Health (SOH) 

 SOH is an essential factor in the current study, so various methods used to obtain it were 

examined. The battery SOH is how a person determines the current capacity for the battery. A 

new EV starts with a 100% SOH. There is degradation to EV batteries over time and the SOH 

expresses how much has occurred. When buying a used EV, SOH should determine the price and 

how long the vehicle will last. SOH has been calculated several ways over the past twenty years 

and is featured in many smartphone applications that connect to the EV. However, the SOH 

calculation cannot be conducted through direct measurements (Noura, Boulon & Jemeï, 2020). 

Therefore, obtaining a complete battery SOH diagnosis compatible with EV applications is still a 

significant challenge (Lin et al., 2015). 

Semanjski & Gautama (2016) studied the SOH of batteries and car sharing in Europe. 

The study looked at data generated by users using Level 2 and 3 charging stations and sensors 

included in the EV. Level 2 and 3 data was used for prediction in the current study. Mitsubishi 

iMievs were used in their study, they are included in the current one too. iMievs have a 16 kWh 

battery; 14.2 kWh is usable, according to Semanjski and Gautama (2016). Other sources say the 

usable battery is 14.5 kWh (EVExpert.EU, 2021). With conflicting data, the calculation of SOH 

for various models needs to be cross-referenced with manufacturer specifications making it 
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challenging to apply on a wide range of EVs in the “real world.” A SOH calculation (see below) 

was derived from detailed EV and charging station transaction data to forecast the EV 

battery SOH for two identical EVs shared under different practices. The calculated numbers are 

accurate but charging station data may be difficult to obtain due to privacy concerns, making this 

calculation not applicable to the current study. SOH calculation derived from EV and charging 

station transaction data: 

SOH = Total net energy supplied by the battery / Battery capacity at 100% SOH * (SoC1 – SoC2) 

 (Semanjski & Gautama, 2016) 

 Lin, Tang, & Wang (2015) used five different approaches to SOH estimation for 

lithium-ion batteries including, (1) Spectroscopy and electrochemical techniques, (2) Circuit-

based models, (3) Semi-empirical based models, (4) Analytical models, and (5) Statistical 

approach. Many of these models require numerous data before analysis can be completed; data is 

not always available for EV researchers. Spectroscopy is not useful for analyzing EV batteries in 

the “real world” because of practicality. Circuit-based models work with practical applications 

and can be used with EVs. Semi-empirical models use temperature and cycles. The cycling 

assumes that conditions remain the same, which is not the case for EV batteries used by “real 

world” consumers. Temperatures fluctuate in everyday life, and different types of charging are 

used with EVs; therefore, conditions differ, and semi-empirical models should not be used with 

EVs outside the lab. The coulomb counting method is introduced for the Analytical modes and 

Statistical approach; it uses an electrical current “over time” calculation. However, the BMS 

does not provide the consumers with current information. Gismero, Schaltz & Stroe (2020) 

developed a method for calculating SOH via coulomb counting (see below). SOC and OCV 

(open circuit voltage) are used in the calculation; they do not have a linear relationship. The SOH 
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method is estimated by evaluating the accumulated charge between two different SOC (ΔSOC = 

starting minus ending) using a recursive least squares (RLS) solution (Gismero et al., 2020). The 

ΔSOC and RLS method is a good starting point. A variation of this method using charger energy 

instead of SOC was employed within this study. All tests were completed in the lab. The 

calculation they use for SOC = Qrem / Qact - Qrem is the remaining capacity, and Qact is the actual 

capacity when full. The capacity is based on a point in time plus the Current Rate (C-Rate) and 

temperature. I in this model is battery current. dt represents “over time.” SOC or SOH is present 

in all files created by data loggers or smartphone applications; there is no need for manual SOC 

calculations in the current study. The actual capacity would need to be measured or tracked (due 

to the previous degradation) before each charge or journey, not practical for “real world” 

measurements. Figure 12 shows SOC calculations (as per Gismero et al., 2020): 

q = ꭍt t0 Ib dt 

SOCt = SOCt0 + q / Qact 

Qest = q / ΔSOC 

ΔSOC = SOCt 
OCVupdate – SOCt0 

OCVupdate 

Figure 12. Coulomb Counting Calculations 

Wang, Zeng, Guo & Qin (2019) are referenced for the circuit-based models because they 

determined that battery SOH can be estimated by constant current-constant voltage (CC-CV). 

Wang et al. (2019) took a more practical approach to determine SOH because impedance and 

capacity are difficult to calculate in a “real world” EV. An EV discharges at varying currents, 

and the battery does not fully discharge, vastly different than how lithium-ion batteries are tested 

in the lab. In the lab, batteries can be fully discharged without repercussion. Wang et al. (2019) 
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say the failure to discharge fully does affect the charging process. Since the current study will 

use battery data from EVs in the “real world”, the CC-CV approach is not practical. 

Huang et al. (2017) created a new and different SOH estimation model that no longer 

needs to find the number of charges that a battery has undertaken in the past. Lithium cobalt 

oxide (LiCoO2) batteries were used for their experiment, which is excellent because Smart 

Fortwo EVs (Mercedes-Benz) and Tesla Roadsters use them. Like most tests on batteries in the 

past, a lab was used. Huang et al. (2017) say that their model is to help monitor a battery in use 

(real-time), and a full discharge should not occur. Removing the full discharge requirement 

represents a more accurate method to measure EV batteries. According to Huang et al. (2017), 

their new model is essential because the cycle number is no longer needed; it is often unavailable 

with real-time applications. For this experiment, our data will have the number of cycles over an 

extended period. They used a SOH regression model for a specific SOC level that translates to 

SOH(%) = A⋅(1/V′)+B (a linear equation). The A and B example uses a 70% SOC because it is 

common. A and B are regression coefficients to be determined. The study proposed a new 

parameter called the unit time voltage drop V′=ΔV / Δt (Huang et al., 2017). The ΔV is the 

voltage drop in the discharging process. The new model accurately predicted SOH using 900 or 

more cycles. The correlation was R2 > 0.983 for three of four batteries, with an anomaly 

occurring in the fourth due to early cycles showing battery resistance. The Huang et al. (2017) 

model appears to be a good method to estimate SOH for batteries removed from EVs for testing 

or recycling, but not “real world” measurements. 

 As technology has grown more sophisticated, so have the means to test a battery SOH. 

Noura et al. (2020) completed a comprehensive review on battery SOH estimation methods. 

They divide the estimation methods into three areas: Experimental, Model-based, and Machine 
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Learning methods. As noted, many practical ways to find battery SOH involve work in the lab- 

this cannot be applied to “real life” scenarios involving ownership of an EV. Experimental 

methods for the SOH will, therefore, not be applied in the current study. There are a few Model-

based methods; common ones listed are Kalman-based filters, Least squared-based filters, and 

Electrochemical models (EM). Machine Learning methods include Support Vector Regression 

Algorithm (SVR), Fuzzy Logic, and Neural Networks. The Machine Learning methods for 

obtaining SOH have two drawbacks (1) They depend heavily on the quality, the diversity, and 

the quantity of the training data used, and (2) All require a high-performance controller (Noura et 

al., 2020). Machine Learning methods will not be used due to the drawbacks. EIS 

(Electrochemical Impedance Spectroscopy) is used by Noura et al. (2020) within multiple 

machine learning experiments including one with a lead-acid battery—this method will not work 

with an EV battery pack because EVs do not utilize no lead-acid batteries. The conclusion is that 

Model-based methods are the most practical for use with EVs. As previously noted, a variation 

of the Recursive Least Squared method appears valid for EV-generated data. 

The Xu, Wang, Lind & Zhang (2021) study is the most promising for applying their 

methods to the current study. They attempted something vastly different than previous studies 

involving EVs because “real world” driving data was used. The discrete incremental capacity is 

calculated and used to predict a battery SOH at a specific time. Mileage between two points is 

used. One drawback, voltage information is needed for calculations. Data was used from nine 

cars with a prediction value of 100,000 km or more. Nine SOH graphs were created, one for each 

car, with all having slight variations in their outcomes. Conclusions are much different with “real 

world” data than from the lab! The findings demonstrate there is not a linear relationship as the 

mileage increases, there is fluctuation based on temperature, driving habits, and charging (Xu et 
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al., 2021). Since findings fluctuated based on temperature and charging, the current study 

expects to see similar results. Some negative consequences of using this method include the time 

required for the segmentation of data. However, segmentation may be an appropriate approach 

for the current study because of field data generated by an EV. The example from Xu et al. 

(2021) was completed with a small number of cars and may not lend itself to large numbers of 

vehicles unless automation of the calculations can be applied—this was attempted.  

DC Fast Charging 

There have been many projects from 2010-2020 to create and implement EV fast-

charging infrastructure in North America. Public chargers have been installed at locations such 

as hotels, malls, carpools, and government offices. Chargers installed in public places are Level 2 

or 3. Consumers need to understand how chargers affect batteries, as detailed in Figure 13, in 

their EVs to make informed decisions for present and future use. A lack of knowledge leads to 

the question: Does the amount of DC fast charging of batteries contribute to a shortened lifespan 

and capacity of EVs? Yang et al. (2018) and Tomaszewska et al. (2019) concluded that fast-

charging technologies could induce extra degradation in the battery pack if they were regularly 

used. However, how much degradation? The current study seeks to answer this question. 
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Figure 13. Key factors affecting Li-ion battery fast charging at different length scales 

Note. Possible problems related to battery fast charging and available system fixes. From  

 

eTransportation (p. 2), by Tomaszewska et al, 2019, Copyright 2019 by Elsevier. Reprinted with 

 

permission. 

 

 Norway was far ahead in the adoption of EVs compared to North America as of 2020. 

One of the top EV researchers in Norway is Figenbaum. He has produced numerous studies 

involving EVs. In 2019, he looked at practices of using fast charging in Norway. Data from 2017 

was analyzed and used to provide results and conclusions – many of the EVs used in the current 

study are from 2017. One of the important results discovered in his 2019 study was the average 

EV fast charging time of 20.5 minutes. The length of time on a fast charger can impact lithium 

plating and SEI formation as previously shown. According to Figenbaum (2019), users who fast 

charge beyond 80% SOC are inefficiently charging their vehicles. Figenbaum’s statement leads 

to the questions: (1) Is there an impact on the EV charging to 81%, 85%, or 90%? and (2) If 

charging is free of cost, does inefficiency matter? Answers to these questions were sought out for 

the current study. Another recommendation is for charging companies to provide instructions for 

the efficient use of their fast chargers. Figenbaum (2019) suggests charging stations have an 
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automatic stop at 80% SOC. This automatic stop does have ramifications in colder countries 

where more than 80% of battery capacity is often needed for travel, especially with older 

vehicles containing smaller battery packs. An interesting consideration from the 2019 study 

results was that all Tesla Supercharger data were excluded. However, Tesla vehicles can charge 

on CHAdeMO networks with an adapter. Therefore, readers of the Figenbaum (2019) study 

cannot generalize these findings to owners of Tesla vehicles. Tesla vehicles and cold weather 

will factor into the current study’s results. 

Another study by Figenbaum (2020) examined Level 3 charging records kept between 

2016-2018 in Norway. Norway has a high adoption rate of EVs. The study looked at four 

different effects of fast charging: (1) Vehicle Effects, (2) User Effects, (3) Climatic Effects, and 

(4) Network Effects. The study found an average fast charge (Level 3) session lasted 20.5 

minutes and provided 9.6 kWh of energy at a power rate of 30.2 kW in 2017 (Figenbaum, 2020). 

One interesting note is the size of EV batteries being used that averaged 26 kWh, this is smaller 

than many common battery packs in EVs from model years 2017 and newer. Battery pack size 

and temperature during charging are two variables that were examined during the current study. 

One finding was that charging power (or power rate in kWh) consumed between summer and 

winter months was smaller the longer the charge took. It is common for a Level 3 charger to 

lower the speed as the battery pack fills up and cold slows down charging speed meaning 

extended sessions are required. This speed alteration is due to the heating effect of the battery 

while charging (Figenbaum, 2020). Unfortunately, the heating effect can be detrimental to EV 

batteries, as discussed in the previous Temperature section. Many of the participants using fast 

chargers stopped charging around 80% SOC (Figenbaum, 2020); this is not always the case in 

North America. There is no mention of harming the battery above 80% SOC, but it mentions the 
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common finding that fast chargers will show lower consumption rates than possible, contributing 

to less efficiency. In addition to the extra time used with lower consumption rates, EV owners 

paying for charging while moving from a higher starting speed (for example) 36 kWh to 18 kWh 

(after time) creates an inefficient scenario. Both Figenbaum (2020) and Figenbaum (2019) 

studies took place in Norway, where winter temperatures are colder than many locations, such as 

Washington state or Vancouver, British Columbia, taking part in the current study. Many of the 

findings, including battery pack size and Level 3 charging time, can be compared to current 

study results.  

The research group Collin et al. (2019) included a full review of impacts to batteries used 

with EVs and fast charging (DC Fast – Level 3). The discharge section reviews why Level 3 

chargers (ultra-fast or DC Fast) can impact an EV. The fast-charging of EVs produces even 

greater amounts of heat, thereby damaging the battery SOH (Collin et al., 2019). The section 

concludes with an essential statement for EV consumers – it is recommended to use ultra-fast 

chargers only when necessary (Collin et al., 2019). The current study will predict the level of 

degradation occurring when using DC fast charging with different EVs.  

Sun et al. (2019) created an article that is a comprehensive review on EVs, including 

information on batteries, motors, infrastructure, and emerging technologies. All EVs mentioned 

as using lithium-ion batteries, in the battery section, were utilized in this study, including the 

Nissan Leaf, various Tesla vehicles, and BMW i3. They discuss the reason for two ports on EVs. 

Level 1 and Level 2 chargers use the smaller J1772 port in conjunction with an onboard AC/DC 

converter system. Level 3 chargers use larger ports, either CCS or CHAdeMO, with DC/DC 

converters inside them. As Sun et al. (2019) note, EVs can only store power in their batteries 

with DC power, so converters need to be used. Another option mentioned is inducive recharging 
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(wireless). No inductive charging stations exist for public use in Ontario, Canada, as of 2020. 

Level 1 recharging equipment prices are noted as costing $500-800 (Australian Dollars (AUD) 

/CDN or $386-618 USD), but these chargers ‘usually’ come with a new EV. The price of Level 2 

chargers is slightly more costly at $1000-3000 (CDN/AUS or $773-2319 USD). Sun et al. (2019) 

state that the building of charging infrastructure is a challenge. There are comparisons between 

countries in Asia and Europe to American projects involved with EV infrastructure. 

BYD (Chinese car manufacturer) EVs in Beijing were used by Yang, Tan & Ren (2020) 

to help predict fast charging behavior. They define a slow charge as a 120V connection and 

220V as a fast. A Level 2 charger in North America uses 220V and is not defined as a ‘fast 

charger’; only Level 3s use DC fast charging technology. There were 130 EVs used in their 

study. Although this is a reasonable number of subjects, the current study aspires to include over 

1000 vehicles. Slow charging was more prominent during the daytime in their study. Slow 

charging, Level 1, was examined as part of the current study. In the Yang et al. (2020) study, 

distances traveled during the day were shorter than other times, meaning less cycling. Cycling 

was examined in terms of the total numbers associated with a vehicle. The following were 

analyzed and reported as descriptive statistics: start-SOC, time origin, time duration, driving 

distance, driving speed, day of the week, wind scale, temperature, weather (snow, rain, etc…), 

and fast charging – yes or no. While dates are recorded in the data, the actual day (Monday, 

Tuesday, etc.) was not. The day of the week has no impact on the current study. Findings 

indicate start-SOC, time-origin, travel time duration, driving distance, driving speed, and 

temperature all have a significant effect on predicting the use of fast charging (Level 2 – 240V). 

They found that subjects using fast charging one day often followed the next day with the same 

behavior – if this is the case for the current study, then it could be expected that people using 
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Level 3 chargers will frequently use them. A binary regression model was used to describe 

factors that predicted charging behavior, the prediction rate was 89.36%. The current study used 

regression analysis to help predict battery degradation. 

Resistance 

 Lots of research has been done on batteries and internal resistance. Studies from GeoTab, 

including FleetCarma, include measuring energy consumption, in kwh, and losses. Hoque, 

Nurmi, Kumar, Varjonen, Song, Pecht & Tarkoma (2021) examined internal cell resistance and 

found it is an excellent candidate feature for battery health prediction. Their study looked at three 

key areas relating to the current study: internal resistance, temperature, and battery capacity. 

Hoque et al. (2021) had a key finding that during discharging a strong negative correlation 

implies that the internal resistance of batteries increases as the capacity degrades, their study 

used room temperature as a gauge. A difference for this study is the battery is charging, not 

discharging, and temperature does not remain constant for an EV. Battery degradation or 

lowered SOH will correlate to lower resistance. Higher energy consumption when recharging 

should occur because of battery degradation and increasing internal resistance as capacity is 

reached. It is important to compare when ending SOC, or capacity, is reached. FleetCarma data 

including energy will be analyzed to see if battery degradation has happened. Hx increases with 

age and degradation because capacity is lessened. The odometer reading was 110,729 km or 

68,803.81 miles, lowering the internal resistance to 57.09 percent. 

Big Data and EVs Background 

 Multiple studies involving EVs have used big data to help analyze the characteristics of 

their travels. Pan, Tian, Tang & Yang (2019) examined data from almost 200,000 connected EVs 

in Shanghai, and each sends back information regarding battery data, driving data, insulation 
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resistance data, and power consumption. Battery data was obtained for the current study too. 

Data from the 200,000 EVs was uploaded every 10-20 seconds during 24 hours, thereby creating 

a large-scale dataset with diverse information. The diverse dataset allowed the researchers to 

map out and select the best locations to set up EV charging points.  

 Big data was used with thermal runaway, as discussed earlier, in EVs. A thermal runaway 

prognosis scheme for battery systems in EVs was proposed based on the big data platform 

(Hong, Wang & Liu, 2017). Big data was recorded through a centralized management center—

similar to data loggers used in the current study but much different than retrieving smartphone 

application data. Generated data from EVs included battery voltage, cell voltage, battery 

temperature, ambient temperature, temperature difference, and charge/discharge current. Current 

charges (SOC) were used within this study to determine starting and ending points for charging. 

There were aspects to the Jena (2020) study that relate to the current one. Jena, (2020) used big 

data from social media sources to analyze the sentiment towards EVs. The current study uses 

social media to gather data from users. Some data was collected from 2016 to 2018 in Jena’s 

study and the current one.  
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CHAPTER 3 

 

METHODOLOGY 

 Since this study is based on charging data, the most important part is locating EVs that 

had historical or recorded information about connecting to an EV charger. The level of charger 

used, the length of time it was used, the starting and ending SOC values, and the general location 

must all be included in the data. The section that follows explains how charging data was 

obtained, who took part, how data was processed, and the experimental design. Before any 

analysis began, the total data evaluated exceeded one million lines (MS Excel—CSV files). 

Participants and Data 

 

 All EV data are from North American-based vehicles sold between 2010 and 2020. Any 

EV from those model year groups was eligible to participate in this study. The study did not 

include any hybrid or plug-in hybrid vehicles because they have smaller battery packs and gas-

powered engines, which have a lower impact on battery packs. North American EVs have a 

multitude of challenges not found in Europe, including less developed infrastructure, larger areas 

to travel, and a wide range of temperatures from Florida to Alaska. For an example of less 

infrastructure development, there is not one Level 2 or 3 charger between Terre Haute, IN and 

Indianapolis, IN (Plugshare.com, 2021) – a total of 108.54 km or 67 miles. In Europe, Antwerp, 

Belgium to Rotterdam, Netherlands is 95.6 km or 59.01 miles and has six Level 3 and two Level 

2 chargers (Chargemap.com, 2021).  
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This study relies on four different dataset sources – social media, Internet forums, EV 

Society of Canada, and the FleetCarma dataset. One reason for using each of these dataset 

sources is that they are all focused on North American content. Data was gathered from four 

sources in order to access a wide range of data generated by various makes and models of EVs.  

The first source of data was social media connections, such as Facebook groups related to 

electric vehicles in North America. Data in the form of CSV files was requested from social 

media group participants; all information was EV generated. CSV files were e-mailed to the 

author. Each type of EV generates unique data in the CSV columns (See Data Files section 

below). Jena (2020) observes that social media connections are easily accessible and a low-cost 

method of data acquisition. Facebook groups included in the data request were: All Things Tesla, 

Tesla Model 3 Canadian Group, The Canadian Electric Vehicle Owners, Kia Soul EV, Chevy 

Bolt EV/EUV Owners Group, Nissan Leaf Owners English, Hyundai Kona EV, Nissan Leaf 

Owners USA, Hoosier Electric Vehicle Association, and Canada Nissan Leaf Owners. On the 

home page of each EV-related Facebook group, as shown in the above list, information about the 

study and requests for historical EV data files were posted (see Appendix III for an example). 

The posting request for EV data files in the social media groups was posted indefinitely, though 

they were replaced on the home page with newer posts. There were nine people who sent CSV 

files based on this request. Files sent in were from The Canadian Electric Vehicle Owners, 

Chevy Bolt EV/EUV Owners, and Canada Nissan Leaf Owners. There was no data sent in from 

any Tesla-specific groups including All Things Tesla and Tesla Model 3 Canadian Group. 

Furthermore, no data was received from any U.S-based groups, Kia Soul EV, or Hyundai Kona 

EV.  
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A second set of data requests consisted of postings on two forums - 

https://www.mykiasoulev.com and https://www.mynissanleaf.com, both requested CSV data 

from Soul Spy and Nissan Leaf Spy smartphone applications. These two forums were chosen 

because historical data from the applications used with these EVs could be easily retrieved. The 

forum postings were conducted on August 31, 2021 and are still visible as of today (November 

12, 2021). Only forum members could respond to the posting. Members could respond to the 

request via the posting or e-mail address provided. No respondents from either forum posting 

sent in or posted data files.  

The third set of data was from members of the EV Society of Canada. Members of the 

society were sent an email on April 5, 2021 requesting EV-generated data for this study (see 

Appendix I). Also, anyone who visited the EV Society website after April 5, 2021 could view the 

news item sent out in the email about the study, it is visible at https://evsociety.ca/ev-data-

wanted-for-research-project. In addition, data were sought from people associated with the EV 

society through personal connections of the Vice-President. The VP spoke with his connections 

about the study. There were three people from Europe, connected to the VP, who sent data files – 

these were used as part of the validation process. The VP of the EV Society sent in historical 

data files from his two personal EVs. I, the author, am a member of the EV Society, added in 

data files from my 2017 Nissan Leaf. There was a total of six people who sent in data from the 

EV Society. One person connected to the EV Society sent in data from Europe that was unusable 

due to lack of information contained within the CSV file. 

A total of 15 people sent in data to take part in this study. There were nine from social 

media groups, six from the EV Society, and zero from the forums. One person sending in data 

from a 2016 Kia Soul EV was not included, see below for further details. The person from 
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Europe with improper data that could not be analyzed was excluded. FleetCarma data was used, 

but hybrid data inside the dataset was not included for analysis. 

As previously stated, FleetCarma provided the fourth dataset from its "Charge the North" 

study. FleetCarma files are in CSV format. Data collection for their study began on June 14, 

2017. There dataset includes 941,142 lines of generated data from EVs including hybrids. Only 

EV data was included in the current study, not hybrid or plug-in hybrid vehicles, so the numbers 

decreased to 847,410 lines. The data contains Vehicle Make, Vehicle Model, Province, Start 

Time, End Time, Charger Energy, Charger Loss, Charging Level, Start Session SOC, End 

Session SOC, and Charge Location. There were multiple reasons why data from this study was 

requested – a variety of EVs are included, charging data is available, more than a year of data 

collection exists, and a large number of vehicles took part.  

One dataset not included in the FleetCarma study was sent from an owner of a 2016 Kia 

Soul EV. The Soul EV data was not included in this study because the battery was replaced. The 

information from the original battery had many null values and atypical results because it was 

defective. All other vehicles taking part in this study used the original battery pack supplied by 

the manufacturer. 

There were 371,239 lines of data not used from the FleetCarma study because they were 

generated from hybrid models. Apart from hybrid vehicles not used from the FleetCarma dataset, 

there was one vehicle model removed from this data too: Hyundai Kona EVs. None of the data 

involving Kona EVs were analyzed due to a recall on them. There were 135 lines of data from 

two Kona EVs located in Ontario and Quebec, Canada. Model years 2017-2020 have possible 

battery issues that could lead to fires. For some of the vehicles data available for this study, the 

vehicle year is unknown and could include 2017-2020 models.  
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 Unfortunately, there were a number of companies across Canada and the United States 

who have established networks of EV charging stations, but declined to take part in providing 

data. Charging companies such as FLO were contacted because they have data on customers 

such as personal information (address, phone number, email), vehicle, charging start time, end 

time, location, charger number, date, how long it took to charge, how much energy the EV 

consumed, and cost. Table 2 lists companies that were approached, but declined to participate in 

this study: 

Table 2 

 

Charging companies contacted regarding data 

 

Company Name Date Type of Contact 

(email, phone, 

app) 

Response 

FLO March 9, 2021 email Thank you for your email. 

Unfortunately we do not 

share our data externally for a 

number of reasons, so we are 

not in a position to assist you 

with your research project.  

We wish you good luck with 

your project and are sorry we 

cannot be of any support.  

ChargePoint March 10, 2021 email Thank you for reaching out. 

Unfortunately, ChargePoint 

won’t be able to participate as 

we do not share this type of 

information publicly. We do 

however have a wealth of 

information on our website 

and our blogs cover a lot of 

the trends. I have included 

links below for your 

reference 

ChargePoint March 23, 2021 phone ChargePoint won’t be able to 

participate as we do not share 

this type of information 

Tesla March 2021 phone No response 
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Table 2 Charging companies contacted regarding data (continued). 

Company Name Date Type of Contact Response 

 

 

Tesla March 10, 2021 email As it turns out, we are not 

able to provide this 

information on any Tesla 

vehicles, nor do we have the 

local capability of doing so 

anywhere at the ground level 

of our local stores or service 

centres. Gurjyot has also 

informed me that you have 

reached out to 

press@tesla.com which 

would be your absolute best 

avenue for this type of 

inquiry. 

I wish you the best in your 

study, and thank you for 

supporting our mission to 

accelerate the world’s 

transition to sustainable 

energy. 
Electrify America March 2021 phone We do not have this 

information at this time. 

Sorry… 

Greenlots March 16, 2021 email No response 

Sun Country March 16, 2021 email No response 

Ford July 12, 2021 email It took me a while to find the 

right contacts in the U.S. to 

ask the question. 

Unfortunately, the group I 

spoke to (EV product & 

engineering team plus 

internal legal counsel), are 

not looking to enter into new 

agreements and share that 

data externally at this 

time.  I’m sorry I wasn’t able 

to get the response you were 

hoping for. 

 

Note. Phone and email responses in regard to the study 

 

mailto:press@tesla.com
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The collection of data for the current study began in March 2021 with postings in social 

media groups. Data from any EV was acceptable, but it could not be from a hybrid or plug-in 

hybrid. An EV generates data during its journeys and charging. All generated data in this study 

was completed using a data logger or smartphone app. Data loggers are one method of tracking 

generated data from an EV. The FleetCarma EV study employed data loggers with all the 

participants. Both data loggers and smartphone apps are connected to the OBD2 port through 

plugging in directly to it or using a Bluetooth connector, or dongle, with a smartphone app. Data 

had to include the charging level (1, 2, 3), date, time, province or state, starting SOC, ending 

SOC, charging time, charger energy, vehicle model, and vehicle make. Since this study is 

looking into the effects of chargers on battery degradation, the charging level is required. SOC is 

required to determine where the EV begins and ends the charge, which aids in segmentation (see 

below). Charging time may impact battery degradation; regression analysis was required to test 

this. Charger energy aids in detecting degradation because if all other variables are equal, it 

should remain constant; otherwise, degradation may have occurred; ambient temperature needs 

to be reviewed. Vehicle model and make are required because manufacturers and battery sizes 

are compared. The province or state plays a role in determining the ambient temperature. If 

available, the ambient temperature during the charge was accepted and documented. SOH, Quick 

Charges (QC), Range, and Total Time to Charge (TTC) are all useful fields. As the dependent 

variable, SOH is used. The other three useful fields, QC, Range, and TTC can aid in the 

detection of battery degradation. For example, if the range is consistently deteriorating, this 

indicates that battery degradation is occurring; if ambient temperature remains the same. All 

personally identifiable information (PII) was removed from any data collected. The removal of 

information pertaining to the precise location, latitude and longitude, VIN (Vehicle Identification 
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Number), and profile name information was part of the data scrubbing process. Pan et al. (2019) 

collected exact locations, but did not remove it because they were selecting charge points based 

on it—this is not the case in the current study. All data is kept private and will not be published 

as part of the study. 

Amazon Web Services (AWS) allows users to store their data in relational databases such 

as Microsoft SQL Server and PostgreSQL. AWS is cloud-based, meaning all services are 

accessed, and utilized from remote locations. All data from various sources was uploaded and 

stored in a secured PostgreSQL database at Amazon with a password and user id. The Amazon 

data center used for this study is located in the eastern United States. No data was stored on a 

Local Area Network (LAN) within a file server, thus preventing a possible security risk. To 

ensure security, the HTTPS protocol was used to connect to and access cloud-based data. To 

access and process data from AWS, the DBeaver SQL client is used from a remote laptop with 

Windows 10/11 installed. 

Data Validation 

 

 Although the study is primarily focused on North American vehicles, data from European 

vehicles was collected to validate findings. The same types of data were gathered – all of it was 

generated by EVs. Data was gathered from two of the four North American sources, including 

contacts from the EV Society of Canada and Facebook groups. Leaf Spy Pro data, in CSV file 

format, from a Nissan Leaf situated in Europe was the same as those Leafs’ used in North 

America thereby showing consistency of collected data. Data gathered from Europe is from the 

same period in North America – 2010-2020. File formats from EV generated data is the same for 

European and North American models. Location and VIN number in any files sent from 

European respondents were scrubbed. The findings were validated by using EU data (on a 



59 

   

 

smaller scale) and replicating the process used to determine battery degradation with North 

American vehicles. SOH was used with Nissan Leafs and Kia Soul EVs. The segment model was 

used for other EV battery degradation analysis. Results were analyzed across manufacturers due 

to similar building processes; however, models differed slightly between Europe and North 

America. The research questions apply to data from the EU and yielded similar results. 

Data Analyzed 

 All data was converted to CSV or MS Excel file format so that it could be easily imported 

into a relational database. The DBeaver client version 21.0.2 was used to import data into a 

cloud-based PostgreSQL Server. SQL statements are used to select data from the tables and 

export it to result sets. SQL is used to keep track of the number of cycling events for each EV. 

The export includes the charger type, starting and ending SOC, location (state or province), start 

and end time, charger energy, and vehicle make/model. The data exported from the database was 

analyzed using IBM SPSS. Descriptive statistics are created through SPSS. The analysis includes 

regression testing to predict how various charging levels affect rates of battery degradation. 

Temperature affects batteries and was required for determining energy consumption or SOH 

comparisons. Ambient temperatures were obtained through extractions from CSV files or the 

website timeanddate.com. Timeanddate.com has historical temperature data from countries and 

cities around the world. Times on the site were matched with logged times from data files to 

retrieve a high temperature from the site at that specific location. High temperatures were used 

for consistency. Locations affect temperatures too. This study was very liberal in how it 

approached using the location of chargers. For example, the GTA, Greater Toronto Area, fell 

under Toronto when determining temperature, but encompasses all surrounding areas including 

Pickering, Mississauga, Oakville, and Burlington. Similar inclusions of the surrounding areas 
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were made in regards to Montreal, Vancouver, Calgary, and Fredericton. Keeping a constant 

location and consistent temperature format leads to more accurate results.        

Scatter plots were used to aid in the analysis. To predict battery degradation, all charging 

levels – Levels 1-3, Supercharger – were used. ANOVA testing was used, as needed, to compare 

the degradation of vehicle batteries between manufacturers. Any significant findings between 

manufacturers were subjected to post-hoc analysis, which includes a Scheffe test. A Scheffe test 

is a good post-hoc test because it can keep the margin of error under control (Tas & Minaz, 

2021). To run this test equal variances are required. The Scheffe test determines which pairs of 

means are significant. The Scheffe test corrects alpha for both complex and simple mean 

comparisons. Complex mean comparisons involve comparing more than one pair of means 

simultaneously (Glen, 2016). Battery degradation is based on SOH as a percentage rounded 

down to two decimal points.  

 Subjects' information was provided in the form of XLSX, text, or CSV files. CSV files 

from the same vehicle were merged with Windows 10 using a CMD prompt. A 'copy' command 

is issued in the same directory as all of the CSV files, followed by the name of the new file, 

which includes the person's first name and car type. The final CSV file, for example, could be 

named "bob 2018 Leaf.csv." VINs and exact location information were removed from the 

merged CSV file. Using the DBeaver client, the merged file was uploaded to the PostgreSQL 

database. Some CSV files from EVs other than the Nissan Leaf and Kia Soul EV contained 

information about the type of charger used based on amperage. In order to import the amperage 

into the database, it was converted to charger Levels 1-3 in a separate column. The amperage 

from a Level 1 outlet is "typically" 20A, a standard outlet, while a Level 2 outlet is 30A or 40A, 
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and a Level 3 outlet is greater than 40A. A Level 2 ChargePoint charger at home operates on a 

40A service. 

Data Files 

 Data files sent in CSV format via e-mail from Facebook group participants contained a 

minimum seven columns of EV generated data not including SOH or four columns including it. 

Start Date and Time, Duration, Charging Power or Level, Charger Energy (kWh), Charger Loss 

(kWh), Starting SOC (%), and Ending SOC (%) are all included in the BMW i3 and Chevrolet 

Bolt data. Vehicle Make, Vehicle Model, Province, StartTime and Date, EndTime and Date, 

Charger Energy, Charger Loss, Charging Level, Starting SOC, Ending SOC, and Charge 

Location are all included in the edited CSV dataset files from FleetCarma. Four columns 

included in the Kia Soul EV data are Amperage, ChargeTo (SOC), SOH, and Temperature. To 

include an EV in the study, SOC or SOH data must be present for proper analysis. Facebook 

group members involving Nissan Leafs sent in CSV files via e-mail. Leaf Spy data generated by 

various Nissan Leafs contain 156 columns, 96 of them contain Cell Pair (CP) values in 

millivolts; these were not used or analyzed. The columns used from Leaf Spy data include 

Date/Time, Odometer, Quick Charges (QC), Level 1 or 2 (L1/L2), Ambient Temperature, SOH 

shown in Figure 14, Plug State, Charge Mode, Resistance (Hx), and Motor Temperature. A 

Facebook group member owning a Kia Niro sent in CSV files containing Date and Time, 

Duration, Trip Distance, Electricity Consumed, Total Energy Consumed, Start SOC, End SOC, 

Ambient Temperature, Average Speed, and six other columns not used in this study. 

 Figure 14 depicts the first screen produced by Leaf Spy Professional when used with an 

Android (operating system) smartphone. The screen displays a number of important items for EV 

owners and researchers. AHr is a calculated value that indicates how much capacity the battery 
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has – this is unique to the Nissan Leaf. SOH is the percentage of battery health – it always starts 

at 100 percent when the EV is new. The pack or battery voltage is 353.78V. Hx is the internal 

resistance of the battery, which begins at 100% for a new battery and decreases with age and 

charging. As shown in Figure 14, the odometer reading is 110,729 km, lowering the internal 

resistance to 57.09 percent. QCs are when DC Fast Level 3 chargers are used during a session. 

L1/L2 represent the total number of Level 1 and Level 2 chargers used with the vehicle; 1831 

were used up until the screen capture. The vehicle's SOC at the time the screenshot was taken. 

The numbers 1 to 96 labelled on the x-axis represent the 96 cell pair voltages, measured in 

millivolts, in the 2017 Nissan Leaf. Shunts, as shown on the y-axis, are small resistors that can 

be switched to drain small amounts of energy from one or more of the high voltage battery pack's 

96 cells (Pollock, 2018). All data in Figure 14 can be saved in a CSV file for future use. 

 

 
  Figure 14. Leaf Spy Professional screen 

 Note. Leaf Spy Professional application on a smartphone screen as shown on a Samsung A10  

 

with Android 10 Operating System. (Ferrier, 2020) 
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Experiment Design 

 The FleetCarma dataset was segmented by vehicle make and model, as well as Starting 

and Ending SOC. For the same vehicle, the StartSOC or starting SOC and EndSOC or ending 

SOC values were matched at two different points in time as shown in the highlighted areas of 

Figure 15. In their study of "real world" EV scenarios, Xu et al. (2021) used a similar 

segmentation method as shown in Figure 14. Xu et al. (2021) matched the voltage to the 

charging capacity – applying 322 V multiple times resulted in a different charging capacity 

value. Similarly, in the current study, two SOC values must match across dates and locations in 

order to create Charger Energy used comparisons as shown in Figure 15 – these are the 

segments. A 2018 Volkswagen e-Golf in Quebec, Canada, for example, could begin with a SOC 

of 67 percent and end with a SOC of 100 percent on December 20, 2018. The matching process 

necessitates a starting and ending SOC in Quebec with the same vehicle, resulting in the creation 

of a data segment. Except for Nissan Leafs and Kia Souls (as detailed below), all EV data was 

segmented the same way because their data includes a calculated SOH used to determine battery 

degradation.  

 
Figure 15. 1 Sample segment after voltage precision adjustment 

Note. Voltage is shown in the left column. Overall charging capacity is shown in the right  

 

column. From Energy (p. 8), by Xu et al., 2021, Copyright 2021 by Elsevier. Reprinted with  

 

permission. 
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Table 3 contains values from a dataset that was used to show what happens to an EV 

during a charging event. The Start and End Time indicate the time and date when the EV began 

and ended charging. Charger Energy is the amount of energy consumed by the EV during 

charging, measured in kilowatts. Charger Loss refers to the inefficiency of the charging system, 

which loses power due to cables, conversion, heat generation, and plugs; it is measured in 

kilowatts. Conversion references an EV having an onboard converter that takes the AC based 

energy from a Level 1 or 2 charger and converting it to DC, Direct Current, for storage. Level 3 

charging sessions do not have a “Charger Loss” when listed in the log files because the 

conversion takes place within the charger and sent through large insulated cables to the EV as 

DC. The Charging Level refers to the type of charger used during the event; for example, a 

SuperCharger is labelled as a 3 when used with a Tesla. Levels 1-3 are the only ones that are 

generated. The Start SOC and End SOC are the starting and ending state of charge values for the 

EV battery in percent format, an End SOC cannot be larger than 100 and Start SOC is never 

under 0. The first highlighted example shows a Start SOC of 67% and concludes at 100% SOC, a 

full battery pack.  

Table 3 

 

Sample Segment with Matching SOCs 

 

Start 

Time 

End 

Time 

Charger 

Energy 

Charger 

Loss 

Charger 

Level StartSOC EndSOC 

12/20/2018 2:40 12/20/2018 4:19 11.474 0.762 2   67.0 100 

12/21/2018 2:02 12/21/2018 3:41 11.340 0.776 2   68.5 100 

12/21/2018 11:34 12/21/2018 12:15   1.338 1.324 2 100.0 100 

12/23/2018 21:38 12/24/2018 1:10 24.176 1.725 2   28.0   99 

12/24/2018 11:32 12/24/2018 12:15   2.513 0.302 2 100.0 100 

12/25/2018 6:05 12/25/2018 7:38 10.335 0.708 2   71.5 100 

12/25/2018 11:32 12/25/2018 12:15   2.538 0.305 2 100.0 100 

12/26/2018 4:35 12/26/2018 5:54   8.786 0.606 2   76.0 100 

12/27/2018 23:59 12/28/2018 2:06 14.453 1.008 2   59.5 100 
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Table 3 Sample Segment with Matching SOCs (continued). 

 

Start 

Time 

End 

Time 

Charger 

Energy 

Charger 

Loss 

Charger 

Level StartSOC EndSOC 

12/28/2018 11:33     12/28/2018 12:14        2.157 0.259 2 100.0 100 

12/30/2018 20:23 12/30/2018 22:13 12.503 0.855 2   65.0 100 

12/31/2018 11:34 12/31/2018 12:15   2.297 2.296 2 100.0 100 

1/1/2019 11:34 1/1/2019 12:15   1.459 0.175 2 100.0 100 

1/2/2019 11:32 1/2/2019 12:15   2.543 0.305 2 100.0 100 

1/3/2019 11:34 1/3/2019 12:15   2.319 0.278 2 100.0 100 

1/4/2019 11:33 1/4/2019 12:14   2.181 0.261 2 100.0 100 

1/5/2019 19:38 1/5/2019 22:49 21.780 1.584 2   37.0 100 

1/6/2019 21:02 1/6/2019 23:52 19.354 1.383 2   44.0 100 

1/7/2019 11:32 1/7/2019 12:15   2.556 0.307 2 100.0 100 

1/8/2019 11:34 1/8/2019 12:15   2.273 0.273 2 100.0 100 

1/8/2019 21:23 1/8/2019 23:08 11.816 0.807 2 67.0 100 

 

Note. Segment matching on Charger Level, StartSOC, and EndSOC 

 If the same SOC values occurred on January 8, 2019, then the charging energy was 

compared. The number of charges or cycles was counted in-between the two dates. Charger 

energy, in kWh, used is available for all vehicles. A percent is yielded after the first amount of 

energy consumed, shown in the first date, is divided by the second later date. AmtNeeded = (1 - 

(Charger EnergySTART / Charger EnergyEND)) x 100. If the Charger Energy value from a later date 

is greater than the first, and temperature is negligible, degradation has occurred. According to the 

findings of the literature review, temperature will influence the energy required to recharge and 

may cause degradation. The results for the same EV were compared over time to see how much 

temperature affects the possible degradation while charging—this is known as the Adjusted 

Degradation (AD). For temperature comparisons, data from the website Timeanddate.com was 

used, it has temperatures for every major city in Canada and the U.S. While both cold and hot 

temperatures have an effect on range, colder climates have a greater impact on EVs and their 

batteries (Argue, 2020). The degradation, in percent, per cycle is calculated by dividing the 
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percent difference, for Charger Energy, by the number of charging cycles from start to finish. 

Each segment will receive a charger type or types mean score, which was used in SPSS 

regression testing. SOCDiff, or SOC difference, is shown because it helps determine similar 

values for comparability. 

Table 4 

Example of Energy Consumed 

EV Model  StartSOC%   EndSOC%   Energy (kwh)    Charger SOCDiff% 

e-Golf 67 100 11.474 2 33 

e-Golf 64 100 13.073 2 36 

e-Golf 74 100   9.244 2 26 

 

Note.  Using Volkswagen eGolf data 

 

SOH for all Nissan Leaf and Kia Soul EV vehicles was extracted from the tables located 

in the PostgreSQL database – it helps to determine the current health of the battery. Original data 

from Leafs and Souls was generated through smartphone applications Leaf Spy Professional and 

Soul Spy. The Nissan Leaf calculates its own SOH through the BMS ECU (Electronic Control 

Unit), recorded via Leaf Spy Professional. Table 5 is the part of a CSV file generated by a 2017 

Nissan Leaf using Leaf Spy Professional. The headings for Table 5 are: QC is Quick Charge 

(Level 3 charges), L1/L2 are the Level 1 or 2 charges, and SOH for the battery (in percent 

format). 

Table 5 

 

2017 Nissan Leaf data from Leaf Spy Pro with Level 1/2 and QC 

 

QC L1/L2 SOH 

275 1408 85.59 

367 1775 83.65 

367 1791 83.05 

 

Note. Only provided in this format by Leaf Spy and Soul Spy smartphone applications 
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 The total of charges between changes in SOH can be gathered by counting cycles using a 

SQL statement. Changes in the SOH following a charging event was noted. Any patterns of 

degradation, as determined by a lower SOH, can be attributed to charging. Scores for each 

charger type was analyzed independently for use in SPSS regression testing. Charger types were 

used in regression testing to help predict battery degradation due to SOH. The temperature, like 

that of the other EVs in the study, was examined, and data was categorized into four seasons. 

SOH calculations from Nissan Leafs or Kia Soul EVs do not require charger energy. 
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CHAPTER 4 

 

RESULTS AND DISCUSSIONS 

 This study used four resources for gathering data. As previously noted, FleetCarma (via 

GeoTab) data has 847,410 lines for analysis. Leaf Spy and Soul EV Spy users supplied log files. 

A total of 87,032 lines were provided by participants using Leaf Spy. Soul EV Spy was used by 

one participant and 146 lines were analyzed. Members of the EV Society of Canada supplied log 

files for analysis. Six participants from Facebook Groups called Canadian EV Owners and 

Nissan Leaf Owners sent in data from their EVs. Unfortunately, only these four sources provided 

user-submitted data for this study, no users of Internet forums for Nissan Leafs or Kia Soul EVs 

sent CSV files for analysis. A 2014 Leaf that took part did not have decimal values in the SOH 

column as part of the CSV file provided. 

 Charger loss or loss headings are frequently shown starting from Table 19 until the end of 

FleetCarma data analysis. A Level 1 or Level 2 charger uses Alternating Current (AC) to charge 

the battery within the EV. Batteries can only store Direct Current (DC) so there is an onboard 

converter switching AC to DC. The process of switching is not efficient and results in loss of 

energy, or charger loss. A Level 3 charger uses DC to charge. The process of switching from AC 

to DC is completed within the charger itself, not the EV. Since DC is used with Level 3 chargers 

there is no charger loss associated with it. 
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 Internal resistance of the battery is available via the Leaf Spy CSV files. Table 6 below 

was developed from CSV files created by 2013, 2017, and 2018 Leafs. Hx is the resistance in 

Leaf Spy tables as a percentage value. The internal resistance of the battery pack increases as the 

SOH percentage decreases (Pollock, 2018). Internal resistance percentages will show as lower in 

Leaf Spy data, but represent more resistance. For example, if battery SOH is 80% and Hx is 

80%, there is 20% more resistance than when using a new battery. If the battery SOH 

deteriorates to 75% then Hx will move lower to 75% thus increasing resistance to 25%. As 

shown with Leaf Resistance Data, there is a moderate-strong correlational relationship between 

resistance and SOH. Therefore, energy consumed should be higher as degradation increases. A 

higher Ending SOC (or capacity) will create more resistance and require more energy. There is a 

large sample of 626,812 lines of data.  

Table 6 

 

 Leaf Resistance Data 

 SOH2 Temp2 Hx 

Pearson Correlation SOH2 1.000 0.000 0.612 

Temp2 0.000 1.000 0.213 

Hx 0.612 0.213 1.000 

Sig. (1-tailed) SOH2 . 0.388 0.000 

Temp2 0.388 . 0.000 

Hx 0.000 0.000 . 

 

Note: all Leaf data from Leaf Spy CSV files (N = 626,812). 

A 2013 Leaf employs a 24-kwh battery pack. This study used generated data from a 2013 

Leaf including SOH % combined with Quick Charges, L1/L2 charging, and Temperature. A total 

of 78,970 lines of data were submitted. The battery SOH started measuring at 88.04% and ended 

at 79.97%, a total degradation of 8.07%. Degradation was measured after 787 days or two years, 

one month, three weeks, and four days. Pro-rated to per year, there was a degradation of 3.74%. 
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The first cell using 2013 Leaf data is within Table 7. Table 7 has a segment produced 

using the same Temperature, number of QC, and identical L1/L2 charges. There is a drop of 

0.2% SOH within the first cell. The cell with 85.01%/85.01% happened three days after the 

initial 85.01% SOH was measured. An additional six L1/L2 charges and one QC happened at 

this time. At the same time measurements of SOH were taken, the ambient temperature raised 

3°C which accounts for why SOH did not reduce via the charging events. The loss of SOH from 

84.76% to 84.69% in the first row, second column, shows a difference of 0.07% after one L1/L2 

charging event while ambient temperature remained constant at 24.5°C. However, just prior to 

leveling out to 24.5°C there were entries up to 27°C, while at a cumulative 1,810 L1/L2 charges, 

before the EV was plugged in. There were twenty days where events were not logged between 

84.76% and 84.69%. For the 84.65%/84.61% cell, a reduction in temperature from 24°C to 23°C 

appears to have temporarily reduced SOH by 0.05%. The drop in SOH by 0.05% based on a 

reduction of temperature is consistent with earlier findings where a 3°C increase temporarily 

increased the SOH. The last segmented entry, row four, shows a total of nine additional charging 

events at L1/L2 resulting in a 0.25% SOH loss. An average of 0.03% SOH loss occurred per 

L1/L2 charge for row four. In row four, increasing the temperature 2.5°C has not temporarily 

increased the SOH because of the large number of L1/L2 events that have reduced it. The entry 

with a sole charging event has created larger differences because of calendar aging. 

There are two cells showing an increase in SOH within the 2013 Leaf data, these values 

are 84.65%/84.67% in the third row, second column, and 84.56%/84.61% in the fourth row, 

second column, which is unique compared to other cells which have losses. An increase in SOH 

shows a lack of degradation within the battery pack and is not possible over long periods. 

Reviewing additional information from the CSV file provides reasoning as to why this 
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irregularity in SOH data occurred. The 12 V battery is registering as NA in the log files. Either a 

disconnection to the battery terminal occurred or it was low and not registering. Due to a lack of 

12 V battery support, disconnection to Leaf Spy from the ODB-II Bluetooth device occurred. 

Finally, the odometer recording for each of the cells, with an increase, via the logs goes blank 

from 67,490 to 0 and 67,502 to 0, respectively, which happened at the same time the connection 

to the 12 V battery was lost. Based on the finding of a disconnected or low battery, the increase 

of battery health over a long period of time is not applicable. 

Table 7 

2013 Nissan Leaf data segments 

Row SOH % QC L1/L2 Temp SOH % QC L1/L2 Temp  

1 85.01 85 1,810 25.0 °C 

84.81 85 1,810 25.0 °C 
 

84.76 85 1,810 27.0°C 

84.69 85 1,811 24.5°C 
 

2 84.81 85 1,810 25.0 °C 

84.76 85 1,810 25.0 °C 
 

84.65 85 1,811     24.0°C 

84.61 85 1,811     23.0°C 
 

3 84.69  85 1,811   25.0 °C 

84.56  85 1,813  25.0 °C 
 

84.65  85 1,811   24.0°C 

84.67  85 1,814 24.0°C 
 

4  84.56  85      1,813        21.5 °C 

84.31  85      1,822        24.0 °C 
 

85.01        84    1,804 21.0°C 

85.01 85      1,810 24.0°C 
 

 

Note: all data from Leaf Spy CSV file. 

 The 2013 Nissan Leaf had a total of sixteen values from eight segments analyzed to find 

Pearson Correlations between the dependent variable, SOH, and three independent variables: 

QC, L1/L2, and Temperature. It had a mean SOH of 84.72% which shows battery degradation 

had occurred. There was only one change in QCs out of the eight segments, the final cell went 

from 84 to 85 QCs. There was a mean L1/L2 charging events of 1,811.31. Temperature had a 

mean score of 24.19°C. 

Based on these eight segments in Table 8, a multiple regression was completed on all 

values. QC and SOH have a moderate negative correlation of -.413 based on these findings. It 



72 

   

 

was expected that as QC increases, SOH will be reduced. It should be noted that only one change 

in the QC value occurred which accounts for a lower-than-expected correlational value. L1/L2 

and SOH have a strong negative correlation at -.822. At -.822, charging of the 2013 Nissan Leaf 

using a Level 1 or 2 charger shows evidence that charging at lower levels can negatively impact 

SOH. In addition, SOH can be predicted based on L1/L2 charging. Temperatures occurring while 

data measurements were made appear to have almost no correlation with SOH in regards to long 

term degradation. A correlational value of .014 for temperature clearly demonstrates that it 

cannot help in the prediction of SOH over a long period of time. However, the sample is small 

for this vehicle with 16 values. 

Table 8 

 

2013 Nissan Leaf Segment Correlations 

 SOH QC L1L2 Temp 

Pearson Correlation SOH  1.000     -0.413     -0.822 0.014 

QC -0.413 1.000 0.546 0.592 

L1L2 -0.822 0.546 1.000 0.131 

Temp  0.014 0.592 0.131 1.000 

Sig. (1-tailed) SOH . 0.056 <0.001 0.479 

QC  0.056 . 0.014 0.008 

L1L2  0.000 0.014 . 0.315 

Temp  0.479 0.008 0.315 . 

 

Note: 16 values (N = 16) from the Leaf Spy data segments to create correlations. 

 Table 9 shows 2014 Nissan Leaf segments. The 2014 Leaf uses a 24-kwh battery pack. 

Data was recorded in Ontario, Canada. There were two unusual items, compared to other Leaf 

logs, appearing in the raw data logs: (1) no decimals used for noting SOH, and (2) entries in the 

QC column of “65535” until an actual QC charging event happened. These logs may have been 

from an earlier version of Leaf Spy or Leaf Spy Pro. 
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 The Leaf Spy software started recording when there was 10% battery degradation 

resulting in an SOH of 90%. The 90% occurred after 172 L1/L2 charges and no QCs. A 

reduction to 89% SOH did not occur until 279 additional L1/L2 charges. At 491 charges, the 

SOH returned to 90%, this is due to an increase in temperature. A lack of decimals makes it 

difficult to pinpoint exact fluctuation levels involved in increasing the SOH. SOH never returned 

to 90% or above after 596 L1/L2 charging events. However, SOH did fluctuate multiple times 

after 723 charging events. At 727 charges there is an escalation of 1% SOH. A rise in 

temperature of 5°C explains the temporary increase.    

After 733 charging events the SOH stood at 88%. There were only three QC completed 

on the 2014 Leaf between August 2014 to February 2015. A common occurrence, based on 

Table 9 data, happened for two days, August 6 to 8, 2014, where the SOH temporarily went up to 

89% from 88% after four charges. The change to a temporary higher SOH can be explained by 

the increase in ambient temperature, it returned to 88% after two days. A similar occurrence 

happened when the SOH increased from 87% to 88%. There was total battery degradation of 2% 

after 587 L1/L2 and three QC charging events over six months and eight days in 2014-2015. On 

a pro-rated basis, this 2014 Leaf had 3.96% degradation, slightly more than the 2013 Leaf. 

Overall, the 2013 Leaf had an additional 873 L1/L2 and 82 QC charging events compared to the 

2014 model. Unfortunately, the 2014 had limited data compared to all other Leafs in this study.  

The last row was the final addition to Table 9, it shows ending state after data collecting 

had finished. Temperature was back into the negative range, same as the first row, first column. 

Two more QC events and 386 L1/L2 happened with a 2% further degradation. In total, the 2014 

Leaf had battery degradation of 8% after five QCs and 2,050 L1/L2 charges, this happened over 

two years and 361 days or a total of 1,091 days. 
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Table 9 

2014 Nissan Leaf data segments 

Row SOH % QC L1/L2 Temp SOH % QC L1/L2 Temp 

1 90.00  0  172   -6 °C 90.00 0 491   19 °C 

89.00  0  451  16 °C 89.00 0 596   20 °C 

2  88.00     0     723  18 °C 

 89.00     0     727  23 °C 
 

88.00    0     896     18 °C 

   87.00   0    911     11 °C 
 

3  89.00    0   733    22 °C 

 88.00    0   733    22 °C 
 

87.00    1  949   9 °C 

87.00   3  949 12 °C 
 

4    86.00  3 1,478   8 °C   84.00  3    1,664     27 °C 

   85.00  3 1,524 17 °C   82.00  5    2,050     -5 °C 

 

Note: 16 values from the Leaf Spy CSV file. 

 

The 2014 Nissan Leaf had sixteen values from four segments analyzed to find Pearson 

Correlations. It had a mean battery SOH of 87.38% which shows battery degradation had 

occurred. Only three QC events occurring within sixteen segments. L1/L2 charging events had a 

mean value of 940.44. Temperature had a mean score of 14.44°C, substantially lower than 

24.19°C generated from the 2013 Leaf. 

Table 10 shows multiple regression analysis via SPSS was completed on all values from 

the four segments created from the 2014 Leaf data. The variable QC has a strong negative 

correlation of -.897. It was expected QC would be impactful to SOH and it was. Like the 2013 

Leaf, L1/L2 and SOH have a strong negative correlation. A negative correlation of -.970 shows 

charging the 2014 Nissan Leaf using Level 1 or 2 can negatively impact SOH. Based on these 

findings, a mean L1/L2 of 940.44 charges would create substantial degradation. Like the 2013, 

SOH can be a good predictor based on L1/L2 charging. One vast difference between 2013 and 

2014 data is Temperature. Temperature appears to have a weak correlation to SOH at .239, this 

was expected over a long period of time such as two years. However, as Temperature rises for a 

short period, the temporary SOH will rise too. If there are a number of L1/L2 charges followed 
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by a rise in Temperature, as shown in Table 11, row three, column two, then the lowering of 

SOH will be negated and it will show an increase.  

Table 10 

 

2014 Nissan Leaf Segment Correlations 

 SOH QC L1L2 Temp 

Pearson Correlation SOH  1.000      -0.897  -0.970  0.239 

QC -0.897  1.000   0.892       -0.358 

L1L2 -0.970  0.892   1.000 -0.133 

Temp  0.239 -0.358  -0.133   1.000 

Sig. (1-tailed) SOH .     <0.001 <0.001   0.187 

QC 0.000 .   0.000   0.087 

L1L2 0.000   0.000 .   0.311 

Temp 0.187   0.087   0.311 . 

 

Note: sample of 16 (N = 16) used from the data segments to create correlations. 

Table 11 shows data from a used 2016 Leaf, the new owner started using Leaf Spy with 

it. A 2016 Leaf uses a 30-kwh battery pack, 6 kwh larger than the 2013 and 2014 models. 

Temperatures are listed in Fahrenheit. The first segment from 85.97 SOH to 85.9 SOH had eight 

L1/L2 charging sessions over two days. Reducing 0.07% over eight sessions is 0.0088% per 

charging session. In the second cell, first row, moving from 5,832 to 5,834 charges shows an 

increase in SOH to 85.98%. There were two charging sessions during the increase to 85.98% 

SOH, meaning the ambient temperature is impactful. The initial measurement of SOH at 85.90% 

was completed with a temperature of 0.5°C or 33°F. At the time of charging, the temperature 

moved up to 2.5°C or 36.5°F. The increase of 2°C has temporarily raised the SOH. In the second 

row, first column, the SOH decreases by 0.18% after twenty L1/L2 charges. The ambient 

temperature increase of 15.3°F did not override the twenty charging events. A decrease of 0.22% 

over six days, with the same temperature, occurs with a combination of one QC and seventeen 

L1/L2 charges. The third row provides consumers evidence that one QC can affect battery SOH 
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in a Leaf. The ambient temperature goes down by 3.3°F, yet the SOH drops by 0.01% after the 

QC. In the third row, second column, an additional nine L1/L2 charges were added over three 

days ending at a total of 5,880. Yet the SOH increases 0.12% over the three days. Reduction of 

ambient temperature by 6.6°F temporarily negates any negative affect of charging. For every °F 

decrease, the SOH increases 0.02%. Overall, the battery degraded from 85.97% to 85.45%, or 

0.52% from February 22 to March 20, 2021, less than one month. Degradation pro-rated over a 

year would be 6.24%, a result from the high numbers of L1/L2 charging. 

Table 11 

2016 Nissan Leaf data segments   

Row SOH % QC L1/L2 Temp   SOH % QC L1/L2 Temp 

1    85.97 6     5,819   38.3 °F 

85.90 6    5,827 24.8 °F 
 

85.90 6 5,832   37.4 °F 

85.98 6 5,834   36.5 °F 
 

2 85.98    6  5,834  36.5 °F 

85.80    6  5,854  51.8 °F 
 

85.80 6 5,854   50.9 °F 

85.58 7 5,871   50.9 °F 
 

3 85.48          7 5,871  58.1 °F 

85.47            8 5,871  55.4 °F 
 

85.47 8 5,871   56.3 °F 

85.59 8 5,880   50.9 °F 
 

 

Note: sample of 16 used from the data segments. 

The 2016 Nissan Leaf had twelve values from six segments analyzed to find descriptive 

statistics and Pearson Correlations. It had a mean SOH value of 85.74% which shows evidence 

of battery degradation. There were eight QC events analyzed within the segments. A mean 

number of 5,851.5 L1/L2 charging events occurred, more than seven times the amount from 

previous 2014 Leaf data. Temperature is in Fahrenheit and had a mean score of 45.65°F or 

7.58°C., almost half what the 2014 Leaf registered. 

In Table 12, the 2016 Leaf data included more segments and had similar findings to 2014 

L1/L2 charging. QCs had a strong negative correlation of -.888. It was expected QCs would be a 

good predictor of SOH, and it is for a 2016 Leaf. The L1/L2 charging events and SOH have a 
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strong negative correlation. A negative correlation of -.924 shows charging a 2016 Nissan Leaf 

using Level 1 or 2 chargers can negatively impact SOH. Like a 2013 Leaf, SOH can be predicted 

based on L1/L2 charging. Temperature appears to have a strong negative correlation to SOH at -

.841. Over a long-term period, SOH can be negatively affected by temperature as discussed by 

Yang et al. (2018). 

Table 12 

2016 Nissan Leaf Segment Correlations 

 SOH QC L1L2 Temp 

Pearson Correlation SOH   1.000      -0.888  -0.924   -0.841 

QC  -0.888  1.000   0.836    0.674 

L1L2  -0.924  0.836   1.000    0.876 

Temp  -0.841  0.674   0.876    1.000 

Sig. (1-tailed) SOH .     <0.001 <0.001  <0.001 

QC   0.000 .   0.000    0.008 

L1L2   0.000  0.000 .    0.000 

Temp   0.000  0.008   0.000 . 

 

Note: sample of 12 (N = 12) used from the data segments for correlations. 

A 2017 Nissan Leaf owned by the author of this study was analyzed. The 2017 Leaf 

employs a 30-kwh battery. Data consists of sixteen rows and two columns created through using 

Leaf Spy Professional starting in 2019, although the EV model year is 2017. Data was gathered 

in Ontario, Canada. This EV had more data available for analysis than any other within the 

study. All charging events were either Level 2 or Level 3. A home charger at L2 was most 

frequently used. Overall, SOH for the 2017 Nissan Leaf started at 85.06% on November 6, 2019, 

and finished recording at 77.5% on October 20, 2020, an 11-month and two-week span or 349 

days. Pro-rated degradation over a year was 7.53% which is high. A high rate of degradation can 

be explained by a large number of QCs and charging to 100% SOC. Based on these values, the 

permanent reduction in SOH per month averaged to 0.66% for this Leaf. The average 
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temperature recorded was 10.49°C. From December 9, 2019, to January 16, 2020, there was 

some data not evaluated because the EV was either not connected via a smartphone to a cellular 

network or it was parked for more than a week. There were six temperatures of 87°C or above 

that were disregarded, either the value was incorrectly saved or was altered to a Fahrenheit value. 

The very first cell of 2017 Nissan Leaf data has a constant temperature of 8.5°C and one 

additional QC from 297 to 298. SOH reduced from 85.06% to 85.01% after the QC, thereby a 

decrease of 0.05% occurred after one Level 3 charging event. In the second cell, first line, there 

are an additional 10 QCs and 31 L1/L2 charging events with degradation of 0.11%. However, 

unlike a constant temperature, it changed by 7°C colder for the SOH measurement of 84.73%. 

The temperature has altered the measurement of degradation because the value would be 0.50%, 

not 0.11%, if temperature remained at 8.5°C for ten QCs. The colder temperature has decreased 

the measured degradation.  

The second row, first column, and sixth row, second column of Table 13 show a similar 

pattern to the 2013 Leaf, the SOH increases instead of showing degradation. For the second row, 

a substantial increase of 10°C occurred where 85.14% SOH temporarily increased to 85.20%. 

Temperature began as a minus value and climbed upward which positively impacted the SOH. 

Similarly, the sixth row, second column SOH went up from 82.21% to 82.24% after one charge 

and a temperature increase of 2.5°C. The increase of 10°C results in .01% SOH temporarily 

gained per 1°C. For the sixth row, the 2.5°C temperature increase raised the SOH, a change of 

0.03% provides 0.01% per 1°C.  

In the 82.05% segment, second row, second column it is very clear the SOH degraded 

from 82.05% from one L2 charge under identical temperatures. There were three days and three 

charges at L1/L2 where SOH dropped from 82.26% to 82.05%, in the third row, for a total 
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degradation of 0.21%. The 0.21% degradation over three days averages to 0.07% per charging 

event, this is extremely high compared to previous L1/L2 charging degradation. However, it is a 

small sample time. A drop of 11°C during three days negatively influenced the SOH value. In 

the 82.28% cell, third row, a degradation of 0.02% occurred after one L1/L2 charge and a 5°C 

increase. Based on the 0.02% SOH degradation, the value for row four, 82.26%, having three 

L1/L2 events, should create a value of 0.06 at 5°C, but this shows 11°C. Taking 0.06 and 

multiplying the temperature by 2.2 to reach an 11°C difference would result in 0.13% SOH, not 

0.21% as shown. A 6°C increase from 5°C to 11°C appears to degrade a battery an additional 

0.15% over time or 0.03% per 1°C, twice the increase as the previous example. Therefore, 

starting above 9°C is more impactful on battery SOH than below 0°C when using an L2 charger. 

The difference between the 82.26%/82.05% and 82.28%/82.26% cells can be explained by the 

increase of 5°C in temperature. The 82.34%/82.34% cell shows an increase of one L1/L2 charge, 

but a reduction in SOH appears to be negated by the lower temperature. This is an important cell 

because an 0.5°C increase is not altering the measured SOH. 

The 83.71%/83.65% segment created from 2017 Leaf data was calculated over the same 

day. An L2 charging event happened, as did an increase in ambient temperate, resulting in a loss 

of 0.06% SOH. At .01% per 1°C, a temperature increase of 2°C would account for 0.02% of the 

0.06% SOH loss. The 0.036% loss can be attributed to the L2 charging event. This is slightly 

higher than usual based on other Leafs, but not uncommon. 

The sixth row, first column has a constant temperature of 12.5°C and yet a degradation of 

0.09% SOH after one L1/L2 charging event. This is the highest single difference for one L1/L2 

charge compared to the previous five rows. One part of the explanation is that 82 37% SOH was 

a temporary value, the previous value only a day before was 82.34%. Based on this information, 
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the degradation of 0.06% for a single charging event, after use, is like past findings with a Nissan 

Leaf. A value of 0.06% is still high because 20 L2 charges per month would equate to losing 

1.2% SOH, this is not the long-term loss as shown above, 0.66% per month. The reduction in 

SOH from 82.37% to 82.28% happened on the same day, May 14. A total of 93 km was driven 

this day between 11:14 A.M. and 12:33 P.M. The other part of the explanation centers around a 

temperature decrease. Temperature decreased 1°C from 13.5°C to 12.5°C during the drive until 

the next charge, it appears the change negatively effected the SOH. Charging occurred before 

11:14 A.M. and after 12:36 P.M. when a 93 km trip was completed, this is when the SOH was 

measured. The day before, May 13, the EV was charging on an L2 charger. Based on a small 

amount of time between charges, cyclic charging has not influenced degradation of the battery. 

Row seven has 82.17% SOH as a starting value and ends with 82.15%. There were only 

two L2 charging events plus a temperature decrease of 5.5°C. Based on row eight data the 

temperature under 10°C should equate to 0.01% per 1°C reduction. It cannot be determined that 

degradation occurred here because the 0.02% loss is equivalent to impact via temperature.    

Row eight shows two segments that add clarity to how temperature impacts SOH. QC 

and L1/L2 remains constant while SOH increases 0.02% and 0.06% in the first and second cells 

respectively. The only independent variable changing is temperature. An increase of 4°C in cell 

one, starting above 0°C, added 0.02% to SOH. This averages out to 0.01% per 2°C raise, or 

0.005% per 1°C in temperature. Row eight, second column shows an SOH increase of 0.06% 

starting at 82.99% and ending 83.05%. A 5°C raise in temperature, above 9°C, averages to 

0.012% SOH increase per 1°C. The higher starting temperature in the second column impacts the 

SOH more as shown by a higher increase per 1°C. 
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Row ten, column one has a reduction of 0.64% SOH, 82.99% to 82.35%. Five additional 

L1/L2 charging events happened plus a reduction of 4.5°C. The 4.5°C change occurred right at 

9°C, based on row 7 data it should equate to 0.01% per 1°C reduction or 0.05% total. The five 

charging events equate for 0.59% of degradation or 0.12% per charge, this is extremely high.  

Like row ten, row eleven shows a big drop in SOH, a total loss of 0.66% occurred. 

Taking temperature into account, 0.01% SOH decrease per 1°C occurs. At 5.5°C degrees less 

from the starting point, a total of 0.07% from an overall 0.66% decrease is accounted for while 

the other 0.53% is due to sixteen Level 2 charges. Each Level 2 charge averages to a reduction of 

0.03% SOH for the battery. If SOH degradation averages to 0.66% per month for this Leaf, then 

0.03% equates to 19.87 charges per month which is common and validates these findings. 

 Row thirteen has two important cells of information—cell one helps calculate impact of 

temperature and cell two helps define QC degradation. Column one has one L1/L2 charge with a 

2°C temperature decrease. A decrease of 0.04% SOH happens after charging. Using 0.01% per 

1°C decrease, and SOH loss of 0.02% per L2 charge, same as row fourteen, then a calculation of 

0.04% SOH is valid. Column two shows the first additional QC recorded since the third row, it 

also shows a decrease of 0.2% in SOH. Temperature is at 29°C and 23°C. There are seven new 

L2 charging events, a reduction of 6°C, plus one QC at .025%. A decrease of .012% per 1°C, 

based on previous results, accounts for 0.069%. Adding QCs plus seven L2 charges equals a 

0.2% SOH reduction. Using the first cell in Table 13, the QC accounts for a 0.05% SOH 

reduction. Adding QC and temperature equals 0.12% which means 0.08% is created by seven L2 

events or 0.01% per charge. 

Row fourteen, column two has evidence of battery degradation from charging with a 

lowered SOH of 0.20%. There was one additional QC, seven L2, and a temperature decrease of 
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6°C to 23°C. The degradation based on a temperature of 23°C appears to be 0.02% per L2 charge 

or 0.11% in total. Two QC events represent 0.095% of the overall 0.20% SOH degradation.  

Row fifteen, column one has an SOH reduction of 0.06%. Column one has one additional 

L2 charge and a 5°C increase to 29°C. The starting temperature of 24°C is lower than 29°C from 

row sixteen, and therefore it represents less than 0.10% degradation. Using the final row value of 

0.03% SOH degradation for one L2 charge plus 0.03% accounted for by temperature at 24°C 

provides consistent results across rows. Lower ambient temperatures create lower degradation 

values which is consistent in findings from Yang et al. (2018). There was a reduction of 0.26% 

SOH in row fifteen, column two, it decreased from 81.49% to 81.23% SOH. Based on column 

one, a temperature of 23°C in column two accounts for less than 0.03% SOH degradation, and 

the rest is from charging. Two QC events occurred accounting for 0.10% based on previous 

findings. Temperature plus QCs total a 0.11% SOH decrease. Twenty-four L2 charging events 

occurred between measurements, a decrease of 0.15% SOH or 0.006% per L2 event. 

The final row of Table 13 provides insight into both influence of temperature and Level 2 

charging on SOH. Column two is examined first because it provides a rationale behind the 

obtained numbers in column one. Column two has no additional charges, but a drop of 0.10% 

SOH occurs as the temperature rises 1°C to 30°C. At 30°C, this is an above average temperature 

for Ontario, Canada and has impacted the battery health. The original degradation of 0.01% per 

1°C does not appear to be valid in the 29-30°C range. If a decline of 0.10% SOH happens around 

29°C, then this would apply to column one. Row sixteen, column one has a drop of 0.19% SOH 

after three L2 charges and increasing the temperature 9°C to 28°C. A 30°C temperature accounts 

for 0.10% of a total decline at 0.19%, this leaves 0.09% based on three L2 charging events. 

Using both temperature and charging events creates an average of 0.03% loss per L2 charge at 
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28°C. Row eleven had similar findings to the final row thereby validating the final value of 

0.03% SOH is lost through charging a 2017 Nissan Leaf on a L2 charger during 30°C weather.    

Table 13 

2017 Nissan Leaf data segments 

Row SOH %   QC L1/L2     Temp  SOH %   QC L1/L2 Temp 

1 85.06 297 1,519  8.5°C 

85.01 298 1,519  8.5°C 
 

84.84  336  1,662  3.0°C 

84.73  346  1,693 -4.0°C 
 

2 85.14 277 1,420   -3.5°C 

85.20 290 1,453      6.5°C 
 

82.05 367 1,825 11.0°C 

82.00 367 1,826 11.0°C 
 

3 84.93 332 1,643  2.0°C 

84.84 336 1,661  5.0°C 
 

82.28 367 1,820 13.0°C 

82.26 367 1,821 18.0°C 
 

4 83.71 367  1,774 15.5°C 

83.65 367  1,775 17.5°C 
 

82.34 367 1,817   9.5°C 

82.34 367 1,818 10.0°C 
 

5 82.26      367 1,822    24.5°C 

82.05      367 1,825    13.5°C 
 

82.29 367 1,813   3.0°C 

82.22 367 1,812   4.5°C 
 

6 82.37    367     1,819     12.5°C 

82.28    367     1,820     12.5°C 
 

82.21 367 1,809   9.5°C 

82.24 367 1,810 12.0°C 
 

7 82.17   367   1,804 14.0°C     

82.15   367   1,806   8.5°C     
 

82.33 367 1,800   1.5°C 

82.14 367 1,803 12.0°C 
 

8 82.22    367    1,811    4.0°C 

82.24    367    1,811    8.0°C 
 

82.99 367 1,791 10.0°C 

83.05 367 1,791 15.0°C 
 

9 82.17 367  1,804  11.0°C 

82.14 367  1,803  11.5°C 
 

83.71 367 1,774 15.5°C 

83.65 367 1,775 17.5°C 
 

10 82.99   367  1,792    9.5°C 

82.35   367  1,797    5.0°C 
 

81.96    367     1,828  17.0°C 

81.92    367     1,830  18.0°C 
 

11 83.71   367 1,774   16.0°C 

83.05   367 1,790   10.5°C 
 

81.88     367    1,831  19.0°C 

81.99     367    1,836  20.0°C 
 

13 81.92    367   1,830      21.0°C 

81.88    367   1,831      19.0°C 
 

81.82      367  1,849  29.0°C 

81.62      368  1,856  23.0°C 
 

14 81.99  367      1,837   19.0°C 

81.89  367      1,848   16.0°C 
 

81.43       368    1,861 31.0°C 

81.33       368    1,861 39.0°C 
 

15 81.88   367    1,848  24.0°C 

81.82   367    1,849  29.0°C 
 

81.49  372   1,869      24.0°C 

81.23  374   1,893      23.0°C 
 

16 81.62    368       1,858 19.0°C 

81.43    368       1,861 28.0°C 
 

81.23      374  1,894  29.0°C 

81.13      374  1,894  30.0°C 
 

 

Note: largest CSV file from 2017 Nissan Leaf. 
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The 2017 Nissan Leaf had sixty-four values from thirty-two segments analyzed to find 

descriptive statistics. It had a mean battery SOH of 82.54% which shows battery degradation. 

There was a mean of 360 QC events analyzed within the segments, much higher than other 

Leafs. A mean of 1,792.47 L1/L2 charging events occurred. Temperature had a mean score of 

14.73°C, much higher than the 2016 Leaf. 

The 2017 and 2016 Leaf findings for correlation were similar for QC, L1/L2, and 

Temperature values. A 2016 Leaf uses the same battery pack size as a 2017 Leaf. In Table 14, 

strong negative correlations were present for all three correlational values. QC and SOH have a 

negative correlation of -.797 over sixty-four values, this pattern is consistent with previous 

findings using 2016 data. A strong predictor of SOH is L1/L2 with a negative correlation of        

-.903. With more values analyzed than previous participants, temperature appears to have a 

moderate-strong negative correlation with SOH. A -.631 represents a moderate-level negative 

correlation, slightly less than the 2016 Leaf. 

Table 14 

 

2017 Nissan Leaf Segment Correlations 

 SOH QC L1L2 Temp 

Pearson Correlation SOH   1.000      -0.797   -0.903 -0.631 

QC  -0.797  1.000    0.967  0.461 

L1L2  -0.903  0.967    1.000  0.595 

Temp  -0.631  0.461    0.595   1.000 

Sig. (1-tailed) SOH .     <0.001  <0.001 <0.001 

QC    0.000 .    0.000    0.000 

L1L2    0.000  0.000 .    0.000 

Temp    0.000  0.000    0.000 . 

 

Note: sample of 64 (N = 64) used from data segments for correlations. 
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 Table 15 provides a summary of findings from above in regards to how temperature is 

affecting various years of Nissan Leafs. As one would expect, extremes at either end, cold or hot, 

have an impact on battery degradation. The extreme heat at 27-30°C will degrade the SOH over 

the long term as Yang et al. (2018) detailed in their study. These findings validate past findings 

with 0.10% SOH degradation happening during L2 charging sessions. Compared to 30°C, 21°C 

is 9°C lower and has less impact on the SOH degradation when charging. Similar findings from 

FleetCarma (2019) have the optimal driving temperature at 21.5°C for an EV. Using Level 3 

chargers can have a serious negative impact even at moderate temperatures such as 8.5°C. A 

0.05% reduction in SOH can be correlated to using a Level 3 charger. Based on this information, 

it is best to reduce Level 3 charging to a minimum. 

Table 15 

Nissan Leafs Charging, Temperature and SOH Degradation Evaluations  

Charger Type Temperature SOH Degradation 

L2 27 - 30°C 0.10% 

L2 21 - 23°C 0.012% 

L2 9 - 18°C 0.012% 

QC/L3 8 - 9°C 0.05% 

QC/L3* 13 - 23°C 0.03% 

 

Note: values provided from2017 Nissan Leaf results. * value from 2018 Nissan Leaf 

 Table 16 has values of a 2018 Nissan Leaf beginning at the start of ownership. All 

temperatures are shown in Fahrenheit (°F). A temperature of 56.3°F is equivalent to 13.5°C. The 

2018 Leaf has a 40-kwh battery, larger than both the 2016, 2017, and 2013 models. SOH started 

at 99.76% and ended at 85.98% in the CSV file. An overall SOH reduction after 143 QCs and 
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2,597 L1/L2 charges is 13.78%, this indicates battery degradation happened over 1,052 days or 

two years, ten months, two weeks, and one day. The yearly pro-rated degradation amount is 

4.78%. There were anomalies in the February 2021 data with 2,010 kms missing and multiple 

cells with “NA” - this data was not analyzed. 

 The first cell shows an increase of one QC and five additional L1/L2 charges, yet the 

SOH results are 0.07% less. Based on previous results, one QC for a smaller battery pack can 

remove 0.05% SOH, but this seems unlikely with the 40-kwh. As 56.3°F or 13.5°C is colder than 

21°C, SOH degradation will be less than 0.01% per charge based on previous Leaf findings. At 

0.01% per charge for five charges, there should be 0.05% attributed to L1/L2 charging. A QC for 

0.03%, or half the impact level on a 30-kwh battery, represents the remainder of the 0.07% SOH 

degradation. Temperature remains consistent during both measurements negating any impact on 

SOH.  

The first row, second column of Table 16 has an additional eight QCs and 73 L1/L2 

charging sessions resulting in an SOH reduction of 0.18%. At 0.05% SOH reduction for a QC, as 

shown with the 2013 and 2017 Leafs, the total SOH should be reduced by 0.40% which is not 

feasible. The value of 0.003% per charge from the second row is not feasible for 0.18% 

degradation; it is slightly less. Therefore, using a larger battery pack than 30-kwh renders a QC 

less impactful and has a value of less than 0.025%. 

The second row, first cell shows an additional four QCs and 59 L1/L2 charging sessions 

creating a 0.93% SOH decrease. More charging occurred in the first row, column two than the 

second row, and from these numbers it was expected a larger drop in SOH would occur. 

However, the SOH drop in the second row is more than triple than the first row, second column. 

The second row, second column shows a reduction of 0.15% SOH, this happened over 14 days. 
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Two QC and 27 L1/L2 charging events happened, almost two per day. From June 15 to June 29, 

2019, there is a temperature difference of 12.6°F or 7°C. Degradation of 0.025% per event or 

0.05% overall can be accounted for through QCs at temperature 13.5°C. A 0.10% SOH change 

remains unaccounted for, this is due to 27 L1/L2 charges for an average of 0.003% per charge, 

much less than battery packs 30 kwh and under.  

Table 16 

2018 Nissan Leaf data segments 

Row SOH % QC   L1/L2 Temp  SOH % QC L1/L2 Temp 

1 99.68 1 20 56.3 °F 

99.61 2 25 56.3 °F 
 

94.17 33  1,020 56.3 °F 

93.99 41  1,093 56.3 °F 
 

2 93.99 41 1,093 56.3 °F     

93.06 45 1,152 56.3 °F     
 

93.06      45   1,152   56.3 °F 

92.91 47  1,179   68.9 °F 
 

 

Note: limited data was available for this EV. 

 

The 2018 Nissan Leaf had a mean SOH of 95.06% which shows slight battery 

degradation. There were 47 QC events occurring within eight segments, a small sample size but 

moderate QC use. A mean of 841.75 L1/L2 charging events occurred. Temperature had a mean 

of 57.88°F or 14.38°C lower than the 2013, 2016, and 2014 Leafs. A higher SOH happened for 

this vehicle compared to other Leafs due to size of battery and charging temperature. 

Table 17 shows strong correlations except for SOH and Temperature. QC has an 

extremely strong negative correlation to SOH at -.994. Like the 2013 and 2014 Leafs, L1/L2 and 

SOH have a strong negative correlation. A strong negative correlation of -.996 shows charging 

the 2018 Nissan Leaf using a Level 1 or 2 can negatively impact SOH. Like the 2013 and 2014, 

SOH can be predicted based on L1/L2 charging. Temperature appears to have a weak negative 

correlation to SOH at -.302, this was expected because there are only four segments and some 

were matched on temperature.  
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Table 17 

2018 Nissan Leaf Segment Correlations 

 SOH QC L1L2 Temp 

Pearson Correlation SOH    1.000  -0.994  -0.996  -0.302 

QC  -0.994   1.000   0.992   0.318 

L1L2  -0.996   0.992   1.000   0.268 

Temp  -0.302   0.318   0.268   1.000 

Sig. (1-tailed) SOH . <0.001 <0.001   0.233 

QC   0.000 .   0.000   0.221 

L1L2   0.000    0.000 .   0.260 

Temp   0.233    0.221   0.260 . 

 

Note. sample of 8 (N = 8) used from data segment for correlations. 

Leaf Comparisons 

 Descriptive statistics were created for all five Leaf vehicles utilizing Leaf Spy. Statistics 

are cumulative and not based on segments. An N of 87,032 represents total lines of data 

processed within the CSV files provided by participants. A mean of 86.18% for SOH shows 

moderate battery degradation, End of Life (EoL) is defined as 70% SOH and under. The L1/L2 

represents the mean number of charges using either a Level 1 or 2 charger. A value of 1,702 for 

L1/L2 is a large number considering most EVs only have time to charge once per day. The mean 

for QCs is 245.71, this indicates they make up 14.44% of charging events compared to 85.56% 

for L1/L2 chargers.  

 The obtained correlation coefficient, R value, for all Leaf Spy data was R = .783, R 

Square = .613, Adjusted R Square = .613, and the Standard Error of the Estimate was 1.519. A 

value of .783 demonstrates a strong predictor relationship between charging events and SOH for 

Leaf batteries, this takes into account all types of charging used by a Nissan Leaf. 

The correlations table for Leafs, Table 18, provides two areas of interest: a Pearson Correlation 

and Significance between the dependent variable, SOH, and two independents, L1/L2 and QC. A 
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correlation of -.236 for L1/L2 charging displays a weak negative correlation to SOH while a 

value of -.682 is much stronger for QCs. Temperature shows a weak correlation, approaching 

moderate, of .345 which explains a temporary raise in SOH for some data.  

Table 18 

Cumulative Leafs Correlations 

 SOH QC L1L2 TEMP 

Pearson Correlation SOH   1.000  -0.682  -0.236   0.345 

QC  -0.682   1.000  -0.200  -0.340 

L1L2   -0.236  -0.200   1.000  -0.082 

TEMP   0.345  -0.340  -0.082   1.000 

Sig. (1-tailed) SOH .   0.000   0.000   0.000 

QC   0.000 .   0.000   0.000 

L1L2   0.000   0.000 .   0.000 

TEMP   0.000   0.000   0.000 . 

 

Note: values from 87,032 (N = 87,032) lines of Leaf data as analyzed in SPSS. 

 

Within the regression analysis, an ANOVA was completed to see if regression variables 

could provide a good prediction of the dependent variable: SOH. L1/L2, QCs, and Temperature 

were used as the three predictors of SOH. As the number of L1/L2 and QC charging events 

increase over the life of the EV, the SOH for the battery decreases indicating degradation. As a 

whole, L1/L2, QCs, and Temperature provide good predictors of SOH (See Appendix VII). The 

significance was analyzed using a .95 Confidence Interval. 

The information presented in Figure 16 below shows data interaction points between 

SOH and QC. A linear relation was expected based on previous research. A scatterplot is an 

excellent way to show linearity. One of the questions to answer is “What are the effects of 

various types of charging on battery pack degradation on North American EVs?” The scatterplot 
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shows the long-term effect of QCs on Nissan Leafs SOH. Values hug the line of fit as the 

number of QCs grow. After approximately 300 QCs, SOH has deteriorated to 86%. 

 

Figure 16. Scatterplot of SOH by QC for Nissan Leafs 

 Like Figure 16, information presented within the scatterplot of Figure 17 shows data 

interaction points between SOH and L1/L2 charging for Nissan Leafs. The line of fit has a large 

congregation of data from 1,500-2,000 L1/L2 charges. SOH will be in the 85-90% range after 

approximately 1,500 L1/L2 charges. There are outlier values near the 6,000 L1/L2 charging 

events created by the 2016 Leaf. The 2016 Leaf has a very low number of QCs, mean of 6.67, 

and it appears to have made a significant difference in keeping a healthy battery. For the 30-kwh 

battery pack used in 2016 and 2017 Leaf models, there is a negative impact of using a Level 3 

charger for quick charging. 
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 Figure 17. Scatterplot of SOH by L1/L2 for Nissan Leafs 

 

 There was data from multiple Nissan Leafs taking part in the FleetCarma study. Leafs 

from British Columbia, Ontario, Alberta, Manitoba, Nova Scotia, and Quebec took part. The 

following Leaf data in Table 19 was chosen from Ontario because previously analyzed Leafs 

using Leaf Spy were from there. Table 19 has one Nissan Leaf using a data logger to see if 

results are consistent with Leaf Spy generated data.  

In segment one, 603 lines were analyzed with a SOC difference of 1% or greater. SOC 

difference, Charger Level, Starting SOC, and Ending SOC were equivalent. No Level 1 charger 

was used. Three Level 3 and 600 Level 2 charging events happened. An increase in energy from 

August 9, 2017 to July 13, 2018 required an additional 0.44 kwh or 2.81%. Pro-rated for one 

year shows an energy increase of 3.03%. 

In segment two, charger level and ending SOC were equivalent because of which SOC 

difference had to be adjusted for comparisons. At 34.51%, 10.658 kwh becomes 10.695 kwh. An 

energy increase happened over the year and seven days of 4.08%. Pro-rated for one year the 
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required energy is 4.00% higher. A range of 3.03% – 4.00% appears accurate because only three 

Level 3 charges occurred. Results are similar to other Nissan Leafs using Leaf Spy and limited 

Level 3 charges with SOH degradation values of 3.74%, 3.96%, and 4.78%. The 2017 Leaf with 

excessive Level 3 charging and frequent 100% Ending SOC shows the impact on SOH with the 

highest value 7.53%.  

Table 19 

Nissan Leaf Data from Ontario via FleetCarma 

StartTime 

Energy 

(kwh) 

 

Loss Level 

Starting-

SOC% 

Ending-

SOC% SOC-Diff% 

8/9/2017 2:00 15.336 1.840 2 50.00 100.00 50.00 

7/13/2018 0:00 15.779 2.090 2 50.00 100.00 50.00 

7/21/2017 2:00 10.658 0.853 2 65.61 100.00 34.39 

7/28/2018 1:26 11.149 1.799 2 65.49 100.00 34.51 

 

A 2017 Chevrolet Bolt employs a 60-kwh battery pack. Data in Table 20 shows battery 

degradation for a 2017 Chevrolet Bolt over time starting in November 2018 and continuing to 

March 2021, using a 10.2% capacity increase, for the first five entries. The last two entries show 

a 15.68% capacity increase. The EV is located in Canada. A total of 1,900 charging events were 

documented. Of the 1,900, 838 or 44.11% of charging events ended with an SOC above 80%. Of 

838, 184 or 21.95% were to a 100% SOC. Charging at this level appears to increase degradation 

levels based on previous data. Degradation is expected to be higher than in many other EVs due 

to frequent charging to 100% SOC. There were no Level 3 chargers used at any time. 

The energy used for a 10.2% SOC increase in the November 2018-2019 entries are 

relatively close, a 1.43% decrease occurred from November 2, 2018 to December 6, 2019. 

Another energy decrease happened comparing November 16, 2019 to December 6, 2019, a total 

of 4.34% more was required to add 10.2% SOC. Both these small decreases in energy consumed 
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can be explained by a previous charging event. First, on November 2, 2018, a charging event 

started at 8:29 P.M. for 55 minutes and ended with 71.76% SOC, the next recorded event is 

shown in Table 20 at 9:28 P.M. There is a four-minute gap with no data which cannot be 

accurately explained. Second, data from November 15, 2019 shows an 11 hour and 28-minute 

Level 1 charging event followed by recorded data in Table 20. Many owners, myself the author 

included, use a combination of chargers to “top up” the range because of time, cost, or access to 

a faster charger. Moving from one charger to another creates a new line of data in the CSV files. 

Other data analyzed from July 12, 2020 shows no other charging events occurring the same day, 

previous to data line creation, or the day before. Like July 12, March 1, 2021, had no previous 

day charging events. Prior to the 7:40 P.M. charging event on March 1, there was no charging for 

1 hour and 48 minutes. There was driving that reduced the SOC by 5.5% during the period of no 

charging. Based on the sequence of charging and two small decreases in consumed energy after 

time, these were anomalies and should be treated as such. Other numbers in the segments clearly 

show battery degradation.  

In July 2020 and March 2021, comparative differences to November 2018 data shows 

0.81 kwh and 1.86 kwh increases in consumed energy, 11.4% and 22.8% respectively, to reach 

the same SOC three years earlier. It would be expected, based on Arrhenius Law, that more 

energy is required at -5.1°C compared to 6.9°C, a difference of 12°C. However, at 28°C in July 

2020, the cold weather is no longer a factor and cannot explain the 0.81 kwh difference. A 0.81 

kwh or 11.4% difference from November 2, 2018 to July 12, 2020, a total of 21 months and 11 

days, is 0.54% kwh per month more energy or a minimum energy increase of 6.51% per year. 

Charging to 100% SOC has negatively affected the Bolt, even with a larger battery pack. One 

can see battery degradation has occurred after 1,253 L1/L2 charging events. Similarly, as shown 
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in the Figure 16 scatterplot, Nissan Leaf data clearly shows over 10% SOH degradation after 

1,000 L1/L2 charges. 

The last two entries of Table 20 are based on an SOC increase of 15.68%. A difference of 

0.04 kwh shows temperature has impacted charger loss and possible degradation has occurred 

over one year, three months, and 16 days. Unfortunately, with a 3.5°C temperature difference it 

is not possible to calculate exact degradation. The Start-SOC, End-SOC, and SOC-Diff are all 

equal values using 15.68%. Temperature can be accounted for through additional energy loss via 

the Level 2 charger. One unique aspect to all CSV data for this 2017 Bolt is no Level 3 charging. 

Table 20 

2017 Chevrolet Bolt Segmented Data 

Date/Time Level 

Energy  

(kwh) Loss 

Start-

SOC% 

End-

SOC% 

SOC-

Diff% 

 

Temp 

2021-03-01 19:40 2 8.18 2.41 77.25 87.45 10.20 -5.1 °C 

2020-07-12 13:07 2 7.13 0.74 50.98 61.18 10.20 28.0 °C 

2019-12-06 10:05 2 6.23 0.53 80.39 90.59 10.20   1.7 °C 

2019-11-16 11:06 2 5.96 0.46 74.51 84.71 10.20 -5.6 °C 

2018-11-02 21:28 2 6.32 0.51 71.76 81.96 10.20  6.9 °C 

2021-03-06 10:49 2 10.91 2.74 72.16 87.84 15.68 -3.1 °C 

2019-12-21 5:11 2 10.95 2.63 72.16 87.84 15.68    .4 °C 

 

Note: selected segments based on equivalent SOC-Diff scores. 

 Descriptive statistics developed from analyzing 2017 Chevrolet Bolt data provide an 

excellent assessment of how the vehicle was treated under “real world” circumstances. A 

charging report generated by the 2017 Bolt was used and a total of 1,900 lines were analyzed. 

The starting SOC had a mean score of 71.32% which is much higher than 20%, below this level 

was found to be harmful to the battery over time as studies in labs have shown by both Jiang et 

al. (2014) and Lu et al. (2013). A mean ending SOC of 83.82% is above 80% which may add to 

degradation based on lab research by Jiang et al. (2014) and Lu et al. (2013). Based on charging 
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events above 80%, it was expected that ample degradation would happen, and it did! A minimum 

energy increase of 6.51% per year occurred with this specific Bolt. 

 A 2018 Chevrolet Bolt uses the same size battery pack as the 2017 model, 60 kwh. Table 

21 data is from a 2018 Chevrolet Bolt having 20 Level 1, 1,185 Level 2, and 52 Level 3 charges. 

All charging sessions analyzed had an increase of 1% or more SOC%. Including all the charging 

events, only 20 or 1.59% were to 100% SOC. There was only one charging event to 100% SOC 

using a Level 3 charger. A total of 949, or 75.5%, charging events occurred with the End SOC 

higher than 80%. Two 2019 data lines in Table 21 show energy consumption of 0.72 and 0.70 

kwh for a battery gain of 10.2% SOC. Increasing energy 10.3% and 9.1% are required for adding 

10.2% SOC between the value of 0.7 kwh from October 2019 and two from 2021, 0.78 and 0.77 

kwh. For 0.72% in April 2019, there were energy increases of 6.5% and 7.7% compared to the 

2021 values of 0.78 and 0.77 kwh. One consistent trend from the data is an increase in energy 

loss for ending SOC values above 70.2%. As mentioned in the Literature Review, many 

operators of EVs do not charge past 80% because it is less efficient. These findings support an 

ending SOC above 87.45% for a minimal gain of 10.2% SOC results in greater energy loss, or 

less efficiency, during the charging session. 

 Table 21 is unique because it shows a large amount of loss with a small amount of energy 

gained by the EV. There are two explanations to the large loss, (1) the Starting SOC value is 

high, and more losses can occur above 80% SOC due to resistance; and (2) the charger itself is 

not efficient. Weather does not factor into these results because losses range from 5.81% to 

6.85% across summer and winter months. 
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Table 21 

2018 Chevrolet Bolt Segmented Data 

Date/Time Level 

Energy  

(kwh) Loss Start-SOC% End- SOC% SOC-Diff% 

2021-02-13 14:04 2 0.78 6.51 84.31 94.51 10.20 

2021-01-28 19:20 2 0.77 6.44 84.31 94.51 10.20 

2020-08-17 17:25 2 0.81 6.77 77.25 87.45 10.20 

2020-06-15 12:59 2 0.82 6.85 77.25 87.45 10.20 

2019-10-25 3:28 2 0.70 5.81 60.00 70.20 10.20 

2019-04-29 16:32 2 0.72 5.96 42.35 52.55 10.20 

 

Note: sent in from a participant. 

 The 2018 Bolt had 542 charging events adding more than 1.00% SOC difference. This 

specific Bolt had a lot of charging to 100% SOC, 405 events or 74.72%. Using a SOC difference 

of 10.2%, an Ending SOC of 100% for June 3, 2018, and May 5, 2018, are both higher in loss 

energy values compared to those charging events ending at an 87.45% SOC. As noted in the 

literature, EV batteries work best between 20-80% SOC, these results are in line with previous 

tests completed in the lab. Results suggest starting at 77.25% SOC and charging to 87.45% will 

take less energy than starting at 89.80% and going to 100%. There were forty charging events 

above a 1% SOC increase from May 5, 2018, to June 3, 2018.  

 The segment in Table 22 from December and September 2018 has values charging to 

74.11% and 74.90% SOC respectively, not 100%. Using the lesser value of 7.01 kwh from May 

2018 and an Ending SOC 100%, the required energy for increasing 32.94% SOC should be 3.23 

times or 22.63 kwh. For December 14, 2018, 20.62 kwh is much less energy, an 8.89% decrease, 

than the equivalent charging to 100% for a 32.94% SOC increase starting at 41.17%. In addition, 

December is colder than May in Ontario, and based on Arrhenius Law energy consumption 

should be higher than in May while charging to the same SOC difference. Data shows 8.89% 

more energy is needed for adding the same amount SOC difference in May if a user charges to 
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100% compared to 74.11%. Charging practices should change based on this information, less 

charging to 100% SOC would result in more efficiencies for energy consumption. Charging to 

74.11% SOC is a better option for saving money because less energy is required. 

Table 22 contains values from a 2018 Chevrolet Bolt situated in Ontario, Canada. The 

last segment is created from the bottom three values. There are exactly eleven months difference 

from July 26, 2018 to June 26, 2019, all comparison data is equivalent including Charger Level, 

Starting SOC, and Ending SOC. Over eleven months, the 2018 Bolt showed an increase of 

3.15% which equates to 0.29% per month or 3.44% more energy required per year, much less 

than the 2017 Bolt. During the same time, 400 L1/L2 charging events happened. No Level 3 

charging occurred during the eleven months, and a total of three happened throughout data 

recording.  

Table 22 

2018 Chevrolet Bolt from Ontario via FleetCarma 

Date/Time 

Energy  

(kwh) Loss Level Start-SOC% End-SOC% SOC-Diff% 

5/5/2018 17:38   7.007 0.840 2 89.80 100.00 10.20 

6/3/2018 17:02   7.234 0.868 2 89.80 100.00 10.20 

6/29/2018 0:41   6.211 0.745 2 77.25   87.45 10.20 

8/25/2018 11:38   6.982 0.838 2 77.25   87.45 10.20 

12/14/2018 0:01 20.621 2.475 2 41.17   74.11 32.94 

9/17/2018 23:01 20.202 2.424 2 43.52   74.90 31.37 

7/18/2018 23:02 29.057 3.487 2 54.90 100.00 45.10 

7/26/2018 23:02 29.468 3.536 2 54.12 100.00 45.88 

6/26/2019 23:00 30.419 3.650 2        54.12 100.00  45.88 

 

After analyzing data from Table 22, there can be good comparisons made between the 

2017 and 2018 Chevrolet Bolt, the latter from Ontario using FleetCarma data. Both are using 

the same sized battery pack and have less than two years of use before data recording began. 

Based on cyclic charging patterns, the 2017 Bolt would be expected to have more battery 
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degradation, and this is the case. An average of 1.15 charging events happened per day for the 

2018 Bolt and 1.56 occurred for the 2017 Bolt. It would require a minimum energy increase of 

6.51% per year for the 2017 Bolt whereas the 2018 Bolt required 3.44% more energy per year. 

The 2018 Bolt had a total of 473 days analyzed with 542 charging events while the 2017 Bolt 

had 1,216 days and 1,900 charging events. Neither EV used Level 3 chargers often, only three 

for the 2018 Bolt versus none for the 2017 Bolt.  

A 2019 BMW i3 uses a 42.2 kwh battery pack. The BMW i3 in this study was frequently 

charged to 100% SOC, 71.60% of charging events. No location information was received for this 

vehicle which disallows temperature influence on calculations. There were 11 Level 1, 83 Level 

2, and 11 Level 3 QCs. Energy data from this i3 is only available in integers, no decimals. The 

first segment uses two different level chargers, so although energy consumption is 2 kwh or 

13.34% more after five days, an accurate degradation level cannot be determined.  

Table 23 shows three segments, 26.5%, 73.3%, and 75.2%, available from the BMW i3 

data based on the SOC difference. The second segment has equivalent SOC differences of 

73.3%, yet the energy consumption is higher in the earlier date. It is a small decrease of one kwh 

from September 21, 2019 compared to January 4, 2020. Two factors could account for the small 

decrease over time, temperature and rounding. Unfortunately, based on the data, these two 

factors do not allow for accurate determination of degradation with such a small gap in 

consumed energy. 

The third segment from December 12, 2019 to March 9, 20202 is a good comparison of 

data because Charger Level, Starting SOC, Ending SOC, and SOC Difference are equivalent. 

Unfortunately, the timeframe between calculations is minimal. Energy consumption shows an 

increase of 2 kwh or 6.07% after 87 days, thereby signifying battery degradation. Warmer 
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temperatures in December will impact the level of degradation shown because more energy will 

be required in March. Using data from this segment combined with the last segment 

demonstrates a continual pattern of degradation as charging continues.   

A fourth segment comparison using data from September 7, 2019 to March 9, 2020, was 

completed, and it shows the same amount of energy used: 33 kwh. A 4.69% increase in SOC 

difference happened using equivalent energy for both dates. Results show a loss of 3.70% SOC. 

A total of 31 charging events happened between September 7, 2019 and March 7, 2020. Based 

on increased SOC difference comparison, some battery degradation did occur, but energy 

differences need examining over a longer period of time so definitive values can be determined.  

The last segment of Table 23 is from September 2019-2020, a total of 370 days or one 

year and four days. Energy consumption of 14 kwh created a 32.70% SOC increase in September 

2019 whereas one year later it took 15 kwh for a 32.20% SOC increase. From 14 to 15 kwh 

required a 6.67% increase in power for 1.53% less in SOC. Pro-rated for one year including the 

higher SOC difference is 6.77%; this amount of degradation is in line with battery packs of the 

same size. Charger loss is higher on September 11, 2020; the reason is because the EV is 

charging to a much higher Ending SOC compared to September 7, 2019. Removing the charger 

loss inequality, due to the higher Ending SOC, would negate the additional energy needed and a 

6.67% increase is still required. Based on the higher charger loss when charging to 92% Ending 

SOC, it is not efficient or advised to charge to 92% SOC or higher with a Level 1 charger.  

Table 23 

2019 BMW i3 Segmented Data 

Date/Time Level 

Energy 

(kwh) Loss Start-SOC% End-SOC% SOC-Diff% 

9/9/2020 18:15 2 13 1.61 73.50 100.00 26.50 

9/14/2020 17:05 1 15 1.82 73.50 100.00 26.50 
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Table 23 2019 BMW i3 Segmented Data (continued). 

 

Date/Time               Level    Energy   Loss     Start/SOC%     End-SOC%        SOC-Diff% 

9/21/2019 19:36 2 32 3.84 26.70 100.00 73.30 

1/4/2020 5:18 2 31 3.79 26.70 100.00 73.30 

12/12/2019 21:36 2 31 3.82 24.80 100.00 75.20 

3/9/2020 19:00 2 33 3.96 24.80 100.00 75.20 

9/7/2019 18:48 2 33 4.06 21.10 100.00 78.90 

9/7/2019 13:45 2 14 1.68 40.30   73.00 32.70 

9/11/2020 21:11 1 15 1.82 59.80   92.00 32.20 

 

 The first segment examined within data from the lone 2019 Kia Niro EV is shown in 

Table 24. A 2019 Niro EV uses a 64-kwh battery, larger than most others in this study. There 

were 462 charging events completed between 2019 and 2021. There were 49 times that the Niro 

charged to 100% SOC. All charging was done on a Level 2 ChargePoint home charger. 

Unfortunately, no charger loss was tracked or documented. A value of 10.5% SOC-Diff was 

common in the data and usable for comparisons. Any charging event with a SOC difference 

score of zero was removed due to a charge not properly starting and finishing.  

Comparing values in the first segment of Table 24 is difficult because of the Starting and 

Ending SOC. The SOC difference is the same, but the energy consumed to add a 10.5% SOC is 

vastly different. An energy increase of 2.46 kwh or 26.80% can be partly explained via the 

starting SOC and ending SOC which are different. As previously mentioned, Jiang et al. (2014) 

and Lu et al. (2013), discovered that EV batteries operating between 20% and 80% SOC exhibit 

excellent cycling performance with reduced capacity degradation, this is the case for December 

31, 2020 data. However, values of more than 80% had negative consequences in both studies, 

which explains the additional 2.46 kwh required to reach 100% SOC while adding only 10.5%. 

Thus, charging to 64% is more energy efficient than to 100%. Consideration for the Starting and 

Ending level of SOC must be taken into account when comparing data, these are confounding 
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variables for this segment. Energy numbers appear accurate and degradation is occurring, but a 

better comparison using similar values of Starting SOC and Ending SOC needs completion.  

 The second segment in Table 24 has a more accurate indication of degradation because it 

has a constant temperature of 10°C, same SOC difference, equivalent Charger Level, and Ending 

SOC under 80%. There were twenty-two charging sessions between March 8, 2020 and October 

26, 2020. A total of 232 days or seven months, two weeks, and four days happened between 

measurements. A difference of 0.12 kwh or 1.73% exists between 6.94 kwh and 6.82 kwh, 

therefore .005% per charge is the required energy to continue charging to a difference of 10.5% 

SOC over time. Pro-rated for one year, the increase of energy required is 2.72%. The need for 

added energy at an equivalent temperature provides evidence of battery degradation, but a small 

amount. A large battery is helping minimize the negative affects of charging to 100% SOC on 

multiple occasions.  

Table 24 

2019 Kia Niro EV Segmented Data 

Date 

Energy  

(kwh) Temp 

     Start- 

SOC% 

End- 

SOC% SOC-Diff% Level 

2020-12-31 11:31 6.72   2 °C 53.50   64.00 10.50 2 

2021-01-01 11:05 9.18   2 °C 89.50 100.00 10.50 2 

2020-03-08 12:59 6.82 10 °C 64.00   74.50 10.50 2 

2020-10-26 17:20 6.94 10 °C 44.50   55.00 10.50 2 

 

 There was only one 2017/2018 Ioniq in Ontario, Canada taking part in the FleetCarma 

study. The battery pack in 2017 and 2018 Ioniq models is 28 kwh. There were 84 lines of data 

where 1% or more SOC difference were analyzed. A total of 27 Level 3 and 17 Level 1 charging 

events were documented. Data was segmented by equality of SOC Difference and level of 

charger. All four charging events of Table 25 resulted in an ending SOC of over 90%. The first 
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two dates shown in Table 25, April 13, 2018, and April 20, 2018, create the first segment. Level 

2 chargers were used in both segments. March 2018 had similar results to April 2018. Both sets 

of segmented results show an increase of energy needed to raise the SOC 59.50% and 66.00% 

respectively. This is evidence of battery degradation considering Temperature and Ending SOC. 

The temperature was a negligible factor in the first segment because it went higher and based on 

Arrhenius Law energy should decrease due to warmer climate—it does not. A high temperature 

of 5°C occurred on April 13, 2018 and 8°C on April 20, 2018 (timeanddate.com, 2018). Both 

ending SOC values in the first segment are in the 92-99% range, a minimal difference. Energy 

consumption between April 13, 2018 to April 20, 2018 saw an increase of 0.84 kwh or 4.31%. 

From March 9 to May 11, 2018 an increase of 0.78 kwh or 3.81% was noted. A 0.50% SOC 

difference exists between March and May, 2018 data. Neither of these dates had substantial time 

between measurements, so another segment with further distributed end points was added to see 

if the previous results were consistent. 

 The final segment consists of data between 111 days or three months, two weeks, and 

five days. Charger Level and SOC Difference were consistent. Energy consumption between 

May 10 to June 29, 2018 saw an increase of 0.36 kwh or 1.69% degradation. Pro-rating a 1.69% 

rate of degradation creates a yearly value of 5.56%. 

Table 25 

2018 Ioniq Electric Segmented Data from Ontario via FleetCarma  

StartTime 

Energy 

(kwh) Loss Level Start-SOC% End-SOC% SOC-Diff% 

4/13/2018 15:00 18.699 1.513 2 33.00 92.50 59.50 

4/20/2018 11:00 19.540 1.712 2 40.00 99.50 59.50 

3/9/2018 16:53 20.206 1.726 2 34.50 100.00 65.50 

5/11/2018 11:08 21.005 1.703 2 25.50 91.50 66.00 

3/10/2018 10:00 20.997 1.520 2 27.00 93.50 66.50 

6/29/2018 11:20 21.356 1.919 2 26.50 93.00 66.50 
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There were 146 lines of data generated by a 2020 Kia Soul. No SOH battery degradation 

occurred as shown in the warning message shown in Figure 18. The warning message occurred  

because all of the entries in the SOH column show 100%. A combination of Level 1-3 chargers 

was used to reach 100%. The Kia Soul can charge to a set SOC by configuring it in the console 

settings. Only 13 of 146, or 8.9%, charging events were completed to 100%. A segment of 109 

lines of data shows the EV was charged to a maximum SOC of 80%. Setting the charging value 

to 80% can partially explain why no degradation occurred. 

Warnings 

The dependent variable SOH is constant and has been deleted. 

Statistics cannot be computed. 

 Figure 18. Warning Message from SPSS 

 

 The first Tesla data examined is a Model S located in British Columbia, Canada 

employing a 85 kwh battery pack. This one particular Tesla had a total of 452 charging events 

with a minimum increase of 1% SOC, many occurred with a SOC difference increase of 45%. A 

total of 8 Level 1, 316 Level 2, and 128 Level 3 charging events occurred. Level 3 charges make 

up 28.32% of all charging. 

The Tesla Model S 85 kwh had an increase of .459 kwh or 1.22% more energy required 

over one month, August to September 2017, to add 45% of battery capacity ending at 90% SOC. 

This doesn’t include charger loss. A total of thirteen charging events happened over 31 days 

between August 5 and September 5, 2017, so results indicate it took 0.02 kwh more energy per 

charging cycle to reach the same SOC Difference of 45%. The high temperature on August 5 

was 23°C and on September 5 it was 22°C (Timeanddate.com, 2017). Based on the minor 

temperature discrepancy, degradation has occurred, but less than 1.22% because of the 1°C 

decrease. A longer period of time needed to be examined, so November 6, 2017 to November 8, 

2018 was used for comparison, as shown below. Energy numbers should rise if battery 
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degradation was happening, but month-to-month changes often happen due to temperature and 

cannot be representative of the whole year. 

The next segment comparison has two differences in data from September 5 compared to 

November 6, 2017: (1) the much higher temperature of 20°C versus 5°C (Timeanddate.com, 

2017), respectively; and (2) location of charger is Home in September and Other in November. 

As per results from the Nissan Leafs, temperature can affect the battery in different ways. The 

warmer temperature in September should account for less energy required to charge as per the 

Arrhenius Law. However, the difference here is location. Chargers at different locations often 

have different kwh output. Some have 3.3, 6.6, or 7.2 kwh. The output is unknown and is not a 

good representative of what is happening with the battery pack. 

Another segment used for comparison was from November 6, 2017 to November 8, 2018, 

one year and two days difference, which helps in the estimation of degradation for a single year. 

An increase of 1.17% of energy was required over the 367 days. As noted, a high of 5°C on 

November 6, 2017 at 10:30 A.M. happened whereas November 8, 2018 was 5°C at 12:59 A.M. 

With an identical Temperature, Level of Charger, Charging Location, and SOC Difference, the 

comparison of the two dates is very good. The Ending SOC is different and will affect the energy 

consumed, but it should lessen the value. Based on the lower SOC, a 1.17% is the minimum 

value of degradation over one year.  

The value of 1.17% as a minimum level of yearly degradation can be compared to the 

month-to-month degradation from August to September, 2017. A value of 1.22% degradation for 

the month appears to not represent a cumulative value, twelve months at 1.22% each, but a 

steady value for a year. Adjusting for different Ending SOC levels creates a more accurate 

representation of data from 70% to 90%, these appear to validate the yearly total. Therefore, 
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1.17% can be modified to 1.22% to create an accurate comparison of 90% Ending SOC for 

November 2017 to 90% for November 2018. 

 The last segment in Table 26 is created from three different values using a Level 3 

charger, location of “Other”, plus a SOC Difference of 47%. High temperatures on March 13, 

April 24, and June 13, 2019 were 9°C, 12°C, and 22°C, respectively (Timeanddate.com, 2019). 

A comparison of March to April, 2019 yields an energy difference of 0.23 kwh or 1.65%. April, 

2019 to June, 2019 has a variance of 1.07 kwh or 2.95%. The longest span of comparison is 

March to June, 2019. This created a difference of 1.30 kwh or 3.58%. For June, 2019, a Starting 

SOC of 8% is very low as is the Ending SOC of 55%. Using an Ending SOC 55% is efficient and 

no extra energy is required unlike the March, 2019 and April, 2019 values that charge to 87% 

and 90%, respectively. A constant progression of degradation is shown within this segment. 

From previous results, the degradation should be higher than 1.22% which is true for both 

values. Similar to Nissan Leafs, using a Level 3 charger increases the amount of degradation. 

Table 26 

Tesla Model S 85 kwh Segmented Data from British Columbia  

Start 

Energy 

(kwh) Loss Level 

Start-

SOC% End-SOC% 

SOC-

Diff% 

 

Location 

8/5/2017 9:30 37.233 4.21 2 45 90       45  Home 

9/5/2017 22:57 37.692 4.37 2 45 90   45 Home 

11/6/2017 10:30 36.975 4.30 2 45           90   45 Other 

12/23/2017 11:00 37.424 4.40 2 45          90   45 Home 

3/2/2018 10:00 37.703 4.36 2 45          90   45 Home 

11/8/2018 0:59 37.412 4.31     2 25       70   45       Other  

3/13/2019 23:22 35.145 0.00 3   40          87              47    Other 

4/24/2019 21:07 35.374 0.00 3   43          90                          47      Other 

6/13/2019 5:29 36.447 0.00 3          8    55    47   Other 

 

A total of 539 lines of data were generated by the Tesla Model S 85D found in Table 27. 

The Tesla resided in British Columbia, Canada employing an 85-kwh battery pack. There were 
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36 Level 1, 267 Level 2, and 236 Level 3 charging events from July 2017 – 2019, all had a 

minimum increase of 1% SOC. Of these, 43.78% of the charging events used a Level 3.  

In the first two rows of Table 27, all energy consumption was from Level 2 chargers. 

Based on energy, it took 8.23% more energy in August compared to November, 2017. There 

were forty charging events between August 31 and November 6, 2017. August in British 

Columbia is warmer than November and should require less power. Further investigation 

resulted in finding charger location differences that account for atypical findings in Table 27, 

these are discussed below. 

For the three rows beginning with 21.691 kwh, SOC differences are equivalent and 

location is identical which makes it excellent for comparisons. None of the Ending SOC values 

are higher than 90%. The November 27, 2017 energy required for a 26% SOC increase was 

21.69 kwh. In comparison, slightly less than one year later, 354 days, on November 16, 2018, it 

required 21.92 kwh. An increase of 1.03% in energy required from November 2017 to 2018. Pro-

rated for one year this is 1.06% of degradation. There were 205 charging events during this time. 

From November 6, 2017 to December 12, 2018 an energy increase of 5.07% was required for an 

additional 26% SOC. Temperature had a high of 9°C on November 27, 2017, compared to 11°C 

on November 16, 2018 and 8°C on December 12, 2018 (Timeanddate.com, 2018). Based on a 

higher temperature by 2°C on November 16, 2018, the increase of 1.03% should be higher to 

adjust for temperature equivalency. Similarly, an increase of 5.07% should be slightly decreased 

for equivalent measurement because it is 1°C less. So, the range of degradation is 1.06%-5.07%. 

In the final segment of Table 27, Level 3 charging results were examined. A difference of 

0.138 kwh or 0.41% increase in energy was required over one month, January to February, 2019, 

with 47 charging events in-between. There are two unique aspects to this data—location and 
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temperature. Location is Other in January and Public in February. A problem exists comparing 

these two values because Level 3 chargers vary immensely in their charging rates, the Tesla 

could be using a Supercharger at 150 kw or a CHAdeMO (with adapter) at 50 kw. Temperature 

had a high of 7°C in Vancouver, B.C. on January 25 and 6°C on February 26, 2019 

(Timeanddate.com, 2019). Although there appears to be slight degradation of 0.41% over a 

month, the previous segment with three values is more accurate because of similar locations. 

Table 27 

Tesla Model S 85D kwh Segmented Data from British Columbia 

Start Energy (kwh) Loss Level 

Start-

SOC% 

End-

SOC% 

SOC-

Diff%  

 

Location 

  

8/31/2017 19:00 25.084 5.540 2 62 88 26 Other   

11/6/2017 16:05 23.021 3.192 2 62 88 26 Public   

11/27/2017 15:55 21.691 1.873 2 63 89 26 Public   

11/16/2018 19:29 21.915 1.860 2 26 52 26 Public   

12/12/2018 17:52 22.848 3.192 2 34 60 26 Public   

1/25/2019 16:34 34.091 0.000 3 48 93 45 Other   

2/26/2019 15:47 34.229 0.000 3 48 93 45 Public   

 

Results using a 2016/2017 Tesla Model X took place in Alberta, Canada, and all charging 

involved Level 2 chargers. Prior to these charging events there was one Level 1 charge on 

August 28, 2017, at 11:46 A.M. with an energy of 0.35 kwh and charger loss of 0.03% to keep a 

Starting and Ending SOC of 90%. A total of 199 charging events adding 1% SOC or more were 

examined, this is very low compared to the previous two Teslas having 452 and 539 events. Data 

may be slightly skewed due to the smaller sample size. The 2016/2017 Tesla Model X base 

model uses a 75-kwh battery pack. There were one Level 1, 166 Level 2, and 32 Level 3 

charging events from July 21, 2017 to September 14, 2018. Level 3 charges made up 16.08% of 

the overall total, much higher than some EVs such as the 2014 Leaf that saw only five total 

Level 3 charges. A total of 21 charging sessions ended at 100% SOC. Based on the high 
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percentage of Level 3 charges plus charging to 100%, it was expected that degradation would be 

higher than many other Tesla vehicles. 

The 2016/2017 Tesla Model X had equivalent Starting and Ending SOC values for 

September 1st and 23rd entries. There was a 33.83% or 5.77 kwh decrease in energy required for a 

26% SOC increase. There were nineteen charging events of more than 1 kwh between September 

1 and 23, 2017. Based on the large energy decrease required between the two dates, this does not 

show degradation and requires further explanation. Temperature does not fully explain the 

results because on September 23, 2017, Calgary, Alberta had a high temperature of 11°C 

whereas on September 1, 2017 it was 26°C (Timeanddate.com, 2017). A higher temperature 

should help the flow of energy, based on Arrhenius Law, not reduce it. Both charging events 

took place at home. One difference in log data is no charging for three days preceding the 

September 1, 2017 date, but the previous charging was using a Level 1 as discussed above. The 

car was driven from 90% to 64% SOC after a Level 1 charge. There was a similar incident of 

SOH increasing after a Level 1 charge with a Nissan Leaf. It appears that moving from a Level 1 

to a Level 2 with usage in-between temporarily alters battery measurement.   

The second set of results have a 46% and 45% increase in SOC. Location and Ending 

SOC were equivalent, these were two reasons why the difference in energy consumed between 

August 2017 and July 2018, 340 days or eleven months and six days between measurements, had 

an increase of 15.87%. The August, 2017 entry had a SOC difference of 46% which would 

decrease energy consumed, if taken proportionately, compared to a 45% SOC difference in July, 

2018. Pro-rated to 45%, energy of 30.26 kwh would become 29.60 kwh. Pro-rated for one year, 

the degradation is 19.00%. This extremely high level of degradation is an anomaly and needs 

explanation. There were 145 charging events of one or more kwh between August 6, 2017 and 
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July 12, 2018. Six Level 3 and one Level 1 charge were included in the 145 charging events. 

August 6, 2017 at 11:06 A.M. had a high temperature of 25°C whereas July 12, 2018 at 5:04 

A.M. was 22°C (Timeanddate.com, 2018). Temperatures are within 2°C, not enough to alter 

degradation by a large amount. Three situations are possible to explain the large amount of 

degradation: (1) a defective data logger, (2) this vehicle is a 2016 model with extensive 

degradation from previous use, or (3) a defective battery. A further segment needs to be 

reviewed for clarification. 

 The segment using August 17, 2017 and 2018 has dates one year apart using the same 

level charger and Ending SOC. Temperature was 16°C on August 17, 2017 and 19°C on August 

17, 2018 (Timeanddate.com, 2018). Energy needs to be pro-rated based on 63% SOC Difference 

for consistent comparisons. Pro-rated energy is 44.05 kwh. An increase of 9.69% or 6.182 kwh 

was required to reach 63% SOC Difference one year later thereby indicating battery degradation. 

This is the highest amount of degradation discovered in the current study. As mentioned, large 

amounts of Level 3 sessions and charging to an ending SOC of 100% would greatly increase the 

degradation, or this could be a defective battery. 

Another segment in Table 28 starting on July 21, 2017 was added because it clearly 

shows charging under 80% SOC with a Level 3 charger is more efficient. Temperature was 16°C 

on July 21, 2017 and -13°C on March 4, 2018. Using a 29°C lower temperature for 3% SOC 

Difference should require much more energy, but it does not. The independent variable of 

Starting and Ending SOC are 21% different. The Ending SOC of 80% is a clearly a negative 

factor because energy increases while temperature remains much higher than the corresponding 

March, 2018 value.  
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A final segment in Table 28 was added to confirm the irregular findings for this vehicle. 

The SOC difference and charger level are equivalent which is why this data was chosen. Sample 

data from October 2, 2017 and June 1, 2018 have Ending SOC values under 80% which should 

not raise energy consumption due to increased resistance. An increase of 14.53% or 2.01 kwh 

has happened over 242 days or seven months, four weeks, and two days. Pro-rating 14.53% 

degradation over a year is 21.91%, this is an outlier or anomaly compared to all other results due 

to one, two, or all three situations enumerated above. Another Model X will be examined to 

confirm these results as an anomaly. 

Table 28 

2016/2017 Tesla Model X Segmented Data from Alberta 

Start 

Energy 

(kwh) Loss 

Lev

el 

Start-

SOC% 

End-

SOC

% SOC-Diff% 

9/1/2017 3:32  17.055     1.869 2 64 90  26 

9/23/2017 2:00  11.286     0.902 2 64 90  26 

8/6/2017 11:06  30.264     3.247 2 54     100  46 

7/12/2018 5:04  35.969     3.767  2      55  100         45 

8/17/2017 2:00  42.604     4.585  2      28    90         62 

8/17/2018 2:00  48.786     5.261     2    27    90         63 

3/4/2018 2:54    2.264   0.272   3 56   59          3 

10/2/2017 18:50  11.819   1.244      2 54   72        18 

6/1/2018 18:48  13.828   1.222   2 40   58        18 

 

 In Table 29, there are 392 charging events above 1% SOC difference for the second Tesla 

Model X. British Columbia temperature was 8°C on March 14, 2018 and 8°C on November 29, 

2018 (Timeanddate.com, 2019). Many of the charging sessions early on in the data logging 

process saw Ending SOC around 90% whereas later it was in the 70-79% range. March 14, 2018 

charged to 90% SOC which adds.190 kwh, as a minimum, according to Level 3 charging for the 

previous Model X. Without the adjustment for an increased SOC, an additional 6.06% or 1.35 
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kwh was required from March 14 to November 29, 2018. It was 260 days or eight months, two 

weeks, and one day between energy measurements. Pro-rated for a year there was an energy 

increase of 7.37% required, this is a similar level of degradation to other EV results. Temperature 

is not a confounding variable because values are equal. 

 A second segment in Table 29 was completed for a comparison. The Ending SOC was 

equivalent at 90%. British Columbia temperatures were 15°C on May 29, 2018 and 11°C on 

October 18, 2018. Without any adjustment for 90% SOC, the second segment starting with May 

29, 2018 required an additional 1.46% kwh. Adjusting for ending SOC by adding 0.19 kwh to 

energy in October, 2018 between May and October, a total of 142 days or four months, two 

weeks, and five days, an extra 2.73% kwh was required. Pro-rated for a year there was an energy 

increase of 7.02% needed, this is not adjusted for temperature. Averaging these two segments is 

7.19% degradation. Using these segments that contain consistent results invalidates the previous 

results from the Model X located in Alberta, Canada. 

Table 29 

2016/2017 Tesla Model X Segmented Data from British Columbia 

Start 

Energy  

(kwh) Loss Level Start-SOC% End-SOC% SOC-Diff% 

3/14/2018 0:50 20.889 2.442 2 64 90 26 

11/29/2018 0:40 22.236 4.424 2 51 77 26 

5/29/2018 0:14 14.345 1.719 2 72 90 18 

10/18/2018 23:46 14.557 2.202 2 48 66 18 

 

The 2016/2017 Tesla Model S 60D had the smallest battery pack available from Tesla 

until the Model 3 was introduced. “D” means it is an all-wheel drive vehicle. A 60-kwh battery 

pack was 10 kwh larger than the 2017 Model 3 standard battery of 50 kwh. As noted in the 

validation section, a Model 3 LR, like the one participating from Austria, uses a 75-kwh battery 
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pack. There were 696 charging events above 1% SOC Difference between September 10, 2017 

and July 31, 2019. No Level 1 charging happened. There were 208 Level 3 and 488 Level 2 

charges out of 696 total charges.  

A six-month, thirteen-day span between similar charging characteristics is shown in 

Table 30. The high temperature on October 6, 2018, in Montreal, Quebec was 11°C and for April 

19, 2019, it was 13°C (Timeanddate.com, 2019). The small difference between measurements of 

0.08 kwh is explainable by the 2°C increase in temperature. Using a 2°C increase, the energy 

required to charge on a Level 2 charger decreases 0.04 kwh per 1°C increase in temperature. A 

six-month period, used in the first segment, with a Tesla battery pack of 60 kwh does not show 

degradation. Like the 2020 Kia Soul which uses a 64-kwh battery, no battery degradation 

occurred after 146 charging events. Another segment was used to provide an additional sample 

for clarification. 

 The second segment in Table 30 was chosen because the Charger Level, Starting SOC, 

Ending SOC, and SOC Difference. A large gap between dates of measurements is apparent also. 

It was -5°C on January 29, 2018 and -8°C on January, 6, 2019 (Timeanddate.com, 2019). For a 

3°C increase, the energy required to charge on a Level 2 charger decreases by 0.21 kwh per 1°C 

increase in temperature when starting at -5°C. No battery degradation can be detected, the same 

results as the first segment. 

Table 30 

2017/2018 Tesla Model S 60D Segmented Data from Quebec 

Start 

Energy  

(kwh) Loss Level Start-SOC% End-SOC% SOC-Diff% 

10/6/2018 6:19 37.185 3.380 2 31 90 59 

4/19/2019 2:28 37.101 3.444 2 31 90 59 

1/29/2018 0:25 34.065 2.962 2 37 90 53 

1/6/2019 23:36 33.434 3.144 2 37 90 53 
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 A Smart Fortwo EV from Mercedes-Benz had data for analyzing. The charging events 

shown in the segment used Level 2 chargers in Ontario, Canada and ended with 100% SOC. 

There were 421 lines of data with 1% of more SOC Difference which were analyzed. A segment 

of three was chosen due to similarity including StartSOC, EndSOC, SOCDiff, and Charger 

Level. There were 58 charging events from February 7, 2018 to March 27, 2018. However, six 

events were only a 1% increase in SOC during this time. Less energy was required to add 45% 

SOC, as temperatures increased, over a six-week period from February 7 to March 27, 2018. 

February 7, 2018 required the most energy while March 27, 2018 used the least amount thereby 

signifying temperature played a role in required energy. February 8, 2018 at 12 A.M. was -8°C, 

March 15, 2018 at 2:25 A.M. was -4°C, and March 27, 2018 at 11 P.M. was 4°C 

(Timeanddate.com, 2018). The charger loss decreased as temperature increased. Using this 

information, no noticeable degradation can be calculated. 

 In Table 31, the second segment consisted of values taken 51 days apart. Starting in 

August 2018, energy was 11.50 kwh and in September 2018 it raised to 11.52 kwh, a 0.17% 

difference. Pro-rated for one year this would equal 1.18% degradation, with equal temperature 

data. This increase of energy was required to raise the SOC difference to an identical level of 

45%. There were 48 charging events between August 2 and September 22, 2018, with 22 of them 

showing only a 1% increase through battery charging. August 2, 2018 had a high temperature of 

27°C while September 22, 2018 was 16°C (Timeanddate.com, 2018). Based on Arrhenius Law, 

September, 2018 should require extra energy because the temperature was 11°C lower. 

September, 2018 required an additional 0.02 kwh compared to August, 2018. Taking an energy 

difference of 0.17% and dividing by 11°C is .02% per 1°C, very close to the obtained value for a 
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Nissan Leaf, 0.012%. It’s not possible to determine degradation because of the large temperature 

gap and reduction of energy consumed 51 days later.   

 In the segment beginning on October 18, 2018, the Smart Fortwo used 4.07 kwh and on 

October 31, 2018 it consumed 4.09 kwh. Comparing October 2018 results shows an increase of 

0.49% for energy required to add 20% SOC. There were eleven charging events between 

October 18-31, 2018, with three resulting in an increase of 1% or more. The temperature in 

Toronto on October 18, 2018 was cool at 8°C for a high while it was much warmer on October 

31, 2018 at 14°C (Timeanddate.com, 2018). Location is identical for charging on October 18 and 

31, 2018. With a warmer ambient temperature on October 31, energy used to increase SOC 20% 

should be lower unless there is another factor such as battery degradation. Degradation happened 

at a minimum value of 0.49% over 13 days because Location, Level, Starting SOC, Ending SOC, 

and SOC Difference are equivalent. Pro-rated, the degradation would be 13.76% for a year. This 

is extremely high and needs to be re-examined using additional dates with a larger gap between 

measurements. 

 The last segment used dates 76 days apart or two months, two weeks, and one day. 

Equivalent data including Charger Level, Ending SOC, Starting SOC, and SOC Difference were 

used for the comparison. The additional energy required to reach 34% SOC difference was 0.12 

kwh or 1.74%. Pro-rated for one year, an energy increase of 8.35% was required. Although this 

is the highest value of degradation, it is only slightly higher than for the 2017 Leaf. No Level 3 

charging happened. Other factors have created this large amount of degradation including cyclic 

charging and using an Ending SOC of 100%. A small battery pack requires frequent charging for 

daily use. Similar to other EVs, charging to 100% SOC takes extra energy and is not efficient. 

Based on these results, charging to 100% correlates with higher degradation. 
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Table 31 

Smart Fortwo Electric Drive Segmented Data from Ontario 

Start 

Energy  

(kwh) Loss Level Start-SOC% End-SOC% SOC-Diff% 

2/7/2018 0:00  8.675 1.041 2 55 100 45 

3/15/2018 2:25  8.582 1.030 2 55 100 45 

3/27/2018 23:00  7.751 0.930 2 55 100 45 

8/2/2018 23:58 11.503 1.380 2 40 100 60 

9/22/2018 14:46 11.522 1.383 2 40 100 60 

10/18/2018 23:00  4.073 0.489 2 80 100 20 

10/31/2018 23:00  4.093 0.491 2 80 100 20 

3/3/2018 17:33  6.644 0.797 2 66 100 34 

5/18/2018 23:00  6.761 0.811 2 66 100 34 

 

 Data from a Volkswagen e-Golf located in Quebec was used, there were 460 lines of 

charging with a SOC increase of 1% or more. Only 17 Level 3 charging events took place, 

3.70%. The first segment starts with 15.79 kwh and ends at 15.59 kwh, a decrease of 1.27% over 

nine days. The slight decrease in energy is because the SOC difference is 0.5% less on January 

22, 2019. There were seven charging events between January 13 and 22, 2019. The temperature 

in Montreal on January 13 was -8°C for a high while it was much warmer on January 22 at -1°C 

(Timeanddate.com, 2019). Charging occurred at home on January 13 and January 22. SOC 

differences of 44.5% and 45.0% combined with a warmer temperature on January 22 does not 

show degradation. 

 The next segment was created by taking charges close in time to one another, using the 

same Level, Starting and Ending SOC value equality, and a SOC Difference of 59.5%. The high 

temperature for February 1 and 2, 2019, in Montreal was -14°C and -7°C, respectively 

(Timeanddate.com, 2019). No long-term degradation should happen over one day and one 

charging session. The importance of this segment is isolating temperature for calculating 
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influence on batteries. A decrease of 0.60 kwh happened with a 7°C increase, this equates to 0.09 

kwh per 1°C increase when temperatures ranged from -7°C to -14°C. 

The third segment from Table 32 was selected because dates were multiple months apart 

with the same Starting SOC, Ending SOC Level, Charging Location, and SOC Difference. 

Energy value comparisons between 19.72 kwh and 20.18 kwh created an increase of 2.26% over 

178 days or 5 months, 3 weeks, and 4 days. The temperature was 28°C on September 17, 2018 

and 8°C on May 14, 2019 (timeanddate.com, 2019). With positive temperatures at 30°C 

occurring on September 17, 2018, compared to the second segment analyzed from February 

2019, the past findings of 0.09 kwh per 1°C decrease are not valid. The cooler temperatures on 

May 14, 2019 will cause an increase of energy consumed according to Arrhenius Law, but not 

2.26%. A new segment needs to be added to the study to validate if battery degradation has 

happened. 

 The final segment in Table 32 was selected to confirm validation occurred with the 

Volkswagen e-Golf. Selected dates were one year and three days, or 368 days, apart, from June 

5, 2018 to June 8, 2019. The same Charger Level, Charging Location, and SOC Difference were 

used. There were 289 charging events between the two dates. There was a 7.11% increase in 

energy required from June 2018 to 2019. June 5, 2018 had a high of 14°C while it was 23°C on 

June 8, 2019 (Timeanddate.com, 2019). Due to an increase in temperature, energy consumed 

should decrease, but it did not because degradation happened. Using a previous value of 2.26% 

over 178 days equals 4.67% over 368 days or 4.63% over a year. A range of 4.63-7.11% of 

battery degradation occurred over 368 days.   
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Table 32 

Volkswagen e-Golf Segmented Data from Quebec 

Start 

Energy 

 (kwh) 

 

Loss Level Start-SOC% End-SOC% SOC-Diff% 

1/13/2019 18:40 15.788  1.098 2 55.0 100.0 45.0 

1/22/2019 21:08 15.589  1.068 2 55.0 100.0 44.5 

2/1/2019 22:26 20.700  1.508 2 40.0 100.0 59.5 

2/2/2019 19:02 20.097  1.443 2 40.0 100.0 59.5 

9/17/2018 19:49 19.723  1.580 2 42.0 100.0 58.0 

5/14/2019 0:37 20.178  1.532 2 42.0 100.0 58.0 

6/5/2018 22:39 16.082  1.218 2 31.5   80.0 48.5 

6/8/2019 20:26 17.312  1.329 2 51.0   99.5 48.5 

 

A Ford Focus EV from Ontario, Canada created data from 729 charging events between 

2017-2019. The first segment in Table 33 involves the Focus using a SOC Difference of 45%. 

This segment used the most Level 1 charges of participant data analyzed, a mean of 1.33 was 

calculated. A Level 1 charger was used for 136 charges or 69.74% while a Level 2 charger had 

59 charges. There were no Level 3 chargers used during the first segment. A decrease of 0.21% 

kwh in energy was required for an increase of 45% in SOC. A total of 195 charging events with 

an increase of at least one kwh happened during the first segment. Toronto, Ontario had a high of 

8°C on March 28, 2018, and October 1, 2018, was 12°C (Timeanddate.com, 2018). The 

difference in temperature provides evidence of why the increase occurred. Degradation is not 

detectable in this segment.  

 The last segment in Table 33 used a SOC difference of 58% and a Level 2 charger 

located at home. There were 100 charging events within the segment. Data was captured three 

months and one day between May and August, 2018. Temperatures in Toronto on May 18, 2018 

and August 19, 2018 were 15°C and 23°C, respectively (Timeanddate.com, 2018). It took an 

extra 0.20 kwh or 1.11% to increase SOC 58% over 93 days or three months and one day. Pro-
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rated for one year, the degradation is 4.36%.  The 8°C increase in temperature should lower the 

energy required to increase the SOC. Therefore, degradation of 4.36% is the minimum level 

because of the influence of temperature on the final calculation. 

Table 33 

Ford Focus EV Segmented Data from Ontario 

Start 

Energy  

(kwh) Loss Level Start-SOC% End-SOC% SOC-Diff% 

3/28/2018 21:30 15.916 1.910 1 53 98 45 

10/1/2018 22:46 15.884 1.906 1 53 98 45 

5/18/2018 7:59 18.233 2.086 2 19 77 58 

8/19/2018 16:31 18.437 0.780 2 42         100 58 

 

An ANOVA calculation was completed through regression testing with the Ford Focus 

EV data using the dependent variable of Energy Consumed, and as independent variables 

Charger Level and Ending SOC. The regression predictors found significance between energy 

levels consumed and both independent variables, Ending SOC and Charger Level. Significance 

for the predictor variables was found at the .001 confidence interval.  

The Pearson Correlation between charger energy and charger level is low at .118. As the 

charger type changes it will not help in the prediction of energy consumed. Since the mean 

Charger Level approaches 1, the levels of energy are relatively close, making it hard to use for 

prediction. No Level 3 charging was involved so prediction is limited. Ending SOC is a moderate 

predictor of charger energy with a correlation of .521. An SOC rising to 100% affects the amount 

of energy required. Increasing the amount of energy due to a higher Ending SOC is not efficient; 

the cost will increase using a Level 1 or 2 charger. 
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Table 34 

 

Ford Focus EV Correlations 

 

Charger 

Energy Charging Level Ending SOC 

Pearson Correlation Charger Energy   1.000   0.118   0.521 

Charging Level   0.118   1.000   0.107 

Ending SOC   0.521   0.107   1.000 

Sig. (1-tailed) Charger Energy . <0.001 <0.001 

Charging Level   0.001 .   0.002 

Ending SOC   0.000   0.002 . 

Note: N = 729. 

 

 Tesla Model S 90D were represented in data from two different Canadian provinces, 

Quebec and Alberta. The data from the Quebec-based Tesla shows data from either a 2016 or 

2017 using 90 kwh battery; both used the same size battery. Level of Charger, Starting SOC, 

Ending SOC, and SOC Difference were all equivalent in segment one. A total of 448 charging 

events of 1% SOC difference or more happened from July 2017 to July 2019. One unique aspect 

to this EV was the number of Level 1 charges: 25 events. For a large battery of 90 kwh, it would 

be expected to have a small amount of Level 1 charging due to the extensive time it would take 

to charge. There were 377 Level 2 charges and 46 Level 3 charges. The high temperature on 

March 25, 2018 was 4°C and 1°C on November 30, 2018. The energy consumption difference 

was 2.71%. There was a 250 day span between these two dates. Pro-rated for one year, the 

energy increase is 3.96%. 

 Segment two starting with 18.286 shown in Table 35 had a 20% SOC increase while 

charging. Montreal, Quebec, December 30, 2017, had a high temperature of -18°C whereas it 

was -10°C on January 1, 2019 (Timeanddate.com, 2019). These results have temperatures 8°C 

apart. An increase of 0.35 kwh or 1.90% happened over 367 days or 12 months and 2 days. Pro-
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rated for a year, the energy required was 1.89%. The impact of the 8°C is much more profound 

on calculating the energy consumption. There is evidence of battery degradation, but it needs to 

be adjusted based on a lower temperature.  

   The final entry in Table 35 is from March 15, 2018 to March 4, 2019. There are 354 

days or eleven months, two weeks, and three days between data points. March 15, 2018, had a 

high temperature of 0°C and March 4, 2019 was -6°C, a 6°C difference. An energy increase of 

0.40 kwh or 1.29% from March 2018 to March 2019 happened. Pro-rated for one year, the 

energy required was 1.33%. An Ending SOC of 90% increased the energy consumed due to 

resistance and the temperature decreased by 6°C thereby further increasing the energy consumed. 

Using these two variables, it can be assumed the previous value of 1.89% is an accurate measure 

of degradation over one year. 

Table 35 

2016/2017 Tesla Model S 90D from Quebec 

Start 

Energy  

(kwh) Loss Level Start-SOC% End-SOC% SOC-Diff% 

3/25/2018 22:17 38.661 3.373 2 45 90 45 

11/30/2018 1:51 39.736 4.963 2 45 90 45 

12/30/2017 22:37 18.286 2.741 2 49 69 20 

1/1/2019 23:07 18.640 2.340 2 76 96 20 

3/15/2018 12:23 31.046 2.637 2 22 58 36 

3/4/2019 22:53 31.450 4.020 2 54 90 36 

 

 Compared to the Ford Focus EV, the Tesla Model S 90D had much different descriptive 

statistics. The mean Charging Level of 2.05 was 35.03% higher than the Focus EV, this can be 

explained through wanting to charge at Level 2 to complete the charging cycle in a “reasonable” 

timeframe. The large battery pack in a Model S 90D is more than twice the size of a Ford Focus 
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EV which means longer charging times. Mean charger energy was much higher at 51.36% more. 

Mean Ending SOC was similar at only 0.91% more in the Tesla Model S 90D. 

Regression testing with the Tesla Model S 90D, as referenced in Appendix VII, used a dependent 

variable of Energy Consumed, while Charger Level and Ending SOC were independent 

variables. Regression predictors found significance between Energy Levels consumed and both 

independent variables. Significance for the predictor variables was found at the .001 confidence 

interval.  

The Pearson Correlation between Charger Energy and Charger Level is almost non-

existent at .150. Since mean Charger Level is right at 2.05, levels of energy are relatively close 

making it hard to use for prediction. Ending SOC is a weak predictor of Charger Energy with a 

correlation of .338, lower than for the Focus EV. The consistent results between a lack of 

correlation between Charger Energy and Charging Level are evident. The Ending SOC 

correlation with Charging Energy fluctuates slightly more than Charging Level, this is due to the 

number of 100% charging events. There are only 29 of 448, or 6.47%, events culminating in 

100% SOC. 

Table 36 

 

Correlational Data for Tesla Model S 90D 

 
Charger 

Energy Charging Level Ending SOC 

Pearson Correlation Charger Energy   1.000   0.150   0.338 

Charging Level   0.150   1.000   0.162 

Ending SOC   0.338   0.162   1.000 

Sig. (1-tailed) Charger Energy . <0.001 <0.001 

Charging Level   0.001 .   0.000 

Ending SOC   0.000   0.000 . 

 

Note: N = 448. 
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The Mitsubishi i-MiEV is no longer made, but many are still on the road today. I-MiEVs 

from New Brunswick, Ontario, Quebec, and British Columbia had data submitted via 

FleetCarma for this study. There were 11,984 lines of data provided from participants. Both 2016 

and 2017 versions of the i-MiEV used 16 kwh batteries, much smaller than most others such as 

the Nissan Leaf with 24, 30, and 40 kwh battery packs. A total of 203 charging events were 

examined, each had an increase of 1% SOC or more. A total of 18 Level 1 and 185 Level 2 

charges happened. No Level 3 charging occurred. Of the 203 charging events, 74 or 36.45% 

were to 100% SOC. 

Data from the Mitsubishi i-MiEV shows the energy required to increase SOC by 26%. 

Charging events in 2019 ended at 93.5% and 96% SOC, this can explain some of the additional 

energy required. There were 46 charging events with more than 1% SOC increase between 

January 18, 2019 and June 7, 2019. Temperature plays a key factor in reducing the charger loss, 

there is a vast difference in New Brunswick weather from January to June. With temperature 

increases, less energy is lost and EA is lowered based on Arrhenius Law. Therefore, battery 

degradation has occurred—but how much? 

The first set of results were inconclusive because of two other important factors: (1) 

Temperature, and (2) Ending SOC. January 18, 2019 in Fredericton, NB saw a high of -4°C 

whereas June 7, 2019 was 23°C, a difference of 27°C. Using June 7, 2019, if 6.08 kwh EA is 

used for a 26% SOC increase, then it takes 1 kwh to change 4.27% SOC. With a SOC increase of 

50.5% on June 6, 2019, it requires 1 kwh for a 5.47% SOC change. If no other factors are 

examined, the energy increase from year-to-year has not occurred which signifies no battery 

degradation. June 6, 2018 had a high of 18°C while June 7, 2019 saw 23°C. Based on 

temperature, June 7, 2019 should require less energy to increase SOC per kwh, which it does. 
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Ending SOC is 2% higher on June 6, 2018, although the Starting SOC value is much lower at 

28.5%. Further investigation was needed, so an additional segment with similar data was added.  

Comparable data for the last segment was important to reach conclusive results. There 

were 86 charging events between October 29, 2017 and September 21, 2018. Taking into 

account the starting SOC was 48.5% in October 2017 and the comparative was 48% in 

September 2018, the energy used needs to be proportional. The per kwh energy is 5.72% within 

Starting SOC for October 29, 2017, this results in 8.39 kwh to reach 48% Starting SOC. Ending 

SOC and Charger Level were equivalent in this segment. October 29, 2017 had a high of 17°C 

while September 21, 2018 was 16°C, a small 1°C difference. There was almost one year 

difference, a total of 327 days elapsed between entries. There is a 2.1% difference between the 

kwh used on October 29, 2017 and September 21, 2018. Using energy results in a definitive 

increase in kwh being consumed thereby showing battery degradation. For a full year, 365 days, 

the battery degradation would be 2.32%.  

Table 37 

Mitsubishi i-MiEV Segmented Data from New Brunswick 

Start 

Energy  

(kwh) Loss Level Start-SOC% End-SOC% SOC-Diff% 

1/18/2019 16:09 4.230 1.636 2 67.5   93.5 26.0 

6/7/2019 13:42 4.647 1.436 2 70.0   96.0 26,0 

6/6/2018 19:00 7.464 1.740 2 47.5   98.0 50.5 

10/7/2018 15:13 7.838 1.716 2 28.5   79.0 50.5 

10/29/2017 19:24 8.474 2.131 2 48.5 100.0 51.5 

9/21/2018 18:25 8.560 2.036 2 48/0 100.0 52.0 

 

The i-MiEV had descriptive statistics created to allow for comparisons. Compared to the 

Ford Focus EV, the mean Charging Level of 1.91% was 0.58% higher. Mean charger energy was 



124 

   

 

very different than the Focus EV, less than half at 5.31 kwh. A smaller battery pack explains less 

required consumed energy. Mean Ending SOC was 93.22%, 10.45% higher than the Focus EV.   

I-MiEV data was tested using SPSS and, like the Focus EV, the dependent variable was 

Energy Consumed and independent variables were Charger Level and Ending SOC. Regression 

predictors found significance between energy levels consumed and both independent variables. 

Same as with the Focus EV, significance for the predictor variables was found at the .001 

confidence interval.  

 Correlational data between Charger Energy and Charger Level shows a very weak 

relationship at .192 for the i-MiEV. A big difference between the Charger Energy and Ending 

SOC for the Focus EV compared to the i-MiEV is that there is less than a moderate correlation. 

There are only two charging sessions where the i-MiEV went below 10% SOC, Starting SOC is 

high with a mean of 74.17%. A high Starting SOC explains why the correlation is slightly lower 

than for the Ford. 

Table 38 

Correlational Data for i-MiEV 

 Charger Energy Charging Level Ending SOC 

Pearson Correlation Charger Energy   1.000   0.192   0.258 

Charging Level   0.192   1.000  -0.058 

Ending SOC   0.258  -0.058    1.000 

Sig. (1-tailed) Charger Energy .   0.003 <0.001 

Charging Level   0.003 .   0.207 

Ending SOC   0.000   0.207 . 

 

Note. I-MiEV data from FleetCarma (N = 203). 

Other comparable EVs to the i-MiEV were the 2015 and 2016 Chevrolet Spark EV with a 

19-kwh battery. No Spark EVs were made in 2017. There were Sparks from Alberta, British 

Columbia, and Quebec from the FleetCarma dataset. A total of 7,227 lines were submitted. There 
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were three Sparks from Quebec. The second dataset was chosen for the segmentation because it 

was the largest sample at 1,952 lines. Of these 1,952, 628 lines were used because the charging 

sessions added a minimum of 1% SOC. All types of chargers were used for multiple sessions 

including Level 1 – 22, Level 2 – 595, and Level 3 – 11. The Spark was charged to 100% SOC 

505 times or 80.41% of the time. 

Table 39 has energy values exactly one month apart. The SOC difference, Starting SOC, 

Ending SOC, and Level are all equivalent in the first segment. On April 27, 2018, Montreal, 

Quebec had a temperature of 14°C at 4:48 P.M. while on May 5,2018 it was 18°C at 8:02 P.M. 

(Timeanddate.com, 2018). Based on a slightly higher temperature, the energy charging the Spark 

would be less based on Arrhenius Law, but this is not true which signals some degradation is 

present. There is 0.54% more energy used in one month. For one year, the degradation would be 

6.48% which is similar to a Nissan Leaf using all three levels of chargers. 

 The second segment was added to show the impact of charging to 100% SOC compared 

to a lower value of 64.71%, yet both add 20.39% SOC to the EV. In both 2018 and 2019, April 4 

had a high temperature of 1°C for the day. If Temperature, Charger Type, SOC Difference, Start 

SOC, and Ending SOC were the same, then it would be expected Energy Consumption would be 

higher one year afterwards due to degradation, but data is not showing that trend. Based on this 

data, the table clearly shows more energy is consumed, or is less efficient, when charging to 

100% with a Level 2 charger versus stopping at 64.71%. It took 20.12% more energy to add 

20.39% SOC to the Spark when charging to 100% SOC.  
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Table 39 

Chevrolet Spark EV Segmented Data from Quebec 

Start 

Energy 

 (kwh) Loss Level Start-SOC% End-SOC% SOC-Diff% 

4/27/2018 16:48 5.793 0.695 2 70.98 100.00 29.02 

5/27/2018 20:02 5.824 0.699 2 70.98 100.00 29.02 

4/8/2018 17:27 4.503 0.540 2 79.61 100.00 20.39 

4/8/2019 20:38 3.597 0.432 2 44.31   64.70 20.39 

 

Note. Data from FleetCarma. 

 

Chevrolet Spark data included 628 lines of data that was analyzed to create descriptive statistics 

for comparisons. The Spark had a higher mean charging level compared to the previously 

analyzed Focus and i-MiEV data. The Tesla 90D had the highest mean charging level compared 

to all previously analyzed EVs. For the Spark, a mean Charging Level of 1.98% is 0.7% higher 

than the i-MiEV. Charger Energy mean is 2.12 kwh higher in the Spark compared to the i-

MiEV. Ending SOC mean was extremely high at 95.71%, it is higher than the i-MiEV which 

had a mean score of 93.22%.  

An ANOVA was completed with Chevrolet Spark data within the regression testing. The 

Spark had consistent results with the Focus, regression predictors found significance between 

Energy Levels consumed and both independent variables. Significance for the predictor variables 

was found at the .001 confidence interval. Regression testing with these specific dependent and 

independent variables is a good way to predict correlations. 

 Charging Level correlated with Charger Energy was a negative value, but it is an 

extremely weak correlation at -.052. Ending SOC, similar to the 2017/2018 Kia Soul EV, 

showed a weak-moderate correlation at .458. Ending SOC correlation is consistent with previous 

findings demonstrating that charging to 100% is less efficient than 64.71%.  
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Table 40 

 

Correlational Data for Chevrolet Spark EV 

 Charger Energy Charging Level Ending SOC 

Pearson Correlation Charger Energy   1.000  -0.052   0.458 

Charging Level  -0.052   1.000  -0.082 

Ending SOC   0.458  -0.082   1.000 

Sig. (1-tailed) Charger Energy .   0.098 <0.001 

Charging Level   0.098 .   0.020 

Ending SOC   0.000   0.020 . 

 

Note: data from FleetCarma (N = 628). 

Kia Soul EVs from Quebec, Ontario, and British Columbia took part in the FleetCarma 

study. Earlier Kia Soul EV data was gathered from a 2020 model using Soul EV Spy, it shows no 

battery degradation after 146 charging events. A 2020 Kia Soul EV uses a 64-kwh battery pack. 

The 2020 Soul was the only Kia Soul EV using the larger 64 kwh battery pack. 

Participant data does not specify the Kia Soul model year, but it was from 2018 or 2019 

based on times for data collection. Both the 2018 and 2019 used the same sized battery pack of 

30 kwh. Interestingly, the 2018/2019 model had only one Level 3 charge out of 85. 

There were 85 charging events having a 1% SOC increase or more for a 2018/2019 Kia 

Soul EV. Of 85 charges, 84 were Level 2 and one was Level 3. The Ending SOC from the 

2018/2019 Soul shows charging events beyond 80% multiple times. For comparison, the 2020 

Kia Soul EV was never charged past 80% SOC because of a setting available in the vehicle. It 

took 6.41% more energy on June 27, 2019 to increase SOC 26%. Only four additional charging 

events occurred between June 21, 2019 and 27, 2019. June 21 had a high temperature of 21°C 

while on June 27 it was 29°C. Charging to 100% SOC on June 21 should take additional energy, 

based on previous results and increased resistance, compared to 61.5%. Similarly, the warmer 

temperature on June 27 should help with reducing energy consumption. Battery degradation can 
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explain the higher energy required during warmer temperatures and charging to a lower SOC. A 

minimum of 6.41% degradation has occurred for this EV.    

  The second segment within Table 41 shows two close dates from April 2019, only 

twelve days apart. It was 0°C on April 9, 2019 in Montreal while on April 21, 2019 it had a high 

temperature of 16°C (Timeanddate.com, 2019), a large difference with a warmer temperature 

explains why less energy was required on April 21, 2019. Ten charging events of more than 1% 

SOC occurred between April 9 and 21. Based on the second segment, no degradation can be 

determined. 

Table 41 

2018/2019 Kia Soul EV Segmented Data from Quebec 

Start 

Energy 

(kwh) Loss Level Start-SOC% End-SOC% SOC-Diff% 

6/21/2019 6:30 9.175 1.222 2 74.0 100.0 26 

6/27/2019 21:29 9.803 1.370 2 35.5   61.5 26 

4/9/2019 6:20 16.968 2.211 2 53.5   99.5 46 

4/21/2019 6:20 16.850 2.259 2 53.5   99.5 46 

 

 Note. Data from FleetCarma. 

 Both Kia Soul EV model years 2018/2019 use a similar sized battery pack to the 

2016/2017 Nissan Leafs. Kia did not upgrade the battery pack for the Soul EV until 2020 where 

it increased to 64 kwh. Nissan increased the battery pack for the 2018 model to 40 kwh, up from 

the 30 kwh in the 2016/2017 models.           

 The 2018/2019 Kia Soul EV data had some unique findings compared to previously 

analyzed EV data. There were only 85 data entries for this specific Soul EV, the Spark had 628 

or 543 more lines. Charger Energy mean was 6.86 kwh higher than the Spark. Other than the 

Tesla Model S 90D, Charging Level mean was highest compared to previous vehicle data used 

from the FleetCarma study. Ending SOC was lower than the Spark and i-MiEV.   
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An ANOVA was completed with a 2018/2019 Kia Soul EV having a dependent variable 

of Energy Consumed via Charger Energy. Charger Level and Ending SOC were independent 

variables. Using SPSS, regression predictors found significance between Energy Consumed and 

both independent variables. Like the Focus EV, significance for predictor variables was found at 

the .001 confidence interval.  

This Kia Soul EV had correlational results comparable to the Chevrolet Spark EV. 

Charging Level correlated with Charging Energy was a negative value, but it is an extremely 

weak correlation at -.094, the Spark has -.052. Ending SOC was lower than 0.40 resulting in a 

weak correlation between Charging Energy and Ending SOC of 0.39. Charging Level and 

Ending SOC had a weak negative correlation at -.320. Overall, there were no strong or moderate 

correlations associated with 2018/2019 Kia Soul EV data.  

Table 42 

 

Correlational Data for a 2018/2019 Kia Soul EV 

 Charger Energy Charging Level Ending SOC 

Pearson Correlation Charger Energy   1.000  -0.094   0.388 

Charging Level  -0.094   1.000  -0.320 

Ending SOC   0.388  -0.320   1.000 

Sig. (1-tailed) Charger Energy .   0.195 <0.001 

Charging Level   0.195 .   0.001 

Ending SOC   0.000   0.001 . 

 

Note. FleetCarma data (N = 85). 

Validation 

Two submissions of data occurred from participants in Europe, a 2017 Hyundai Ioniq and 

a 2019 Tesla Model 3 LR. North America offered both of these EVs for purchase in the past. A 

European participant’s data was used for comparisons to validate previous analysis using similar 

vehicles. One item unique to the Tesla data was the participants use of TeslaFI – it is a 
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smartphone application similar to Leaf Spy Professional. There are future recommendations 

regarding TeslaFI at the end of this study.  

There were 971 lines of data submitted from a participant in Europe who owns a 2017 

Hyundai Ioniq. The Ioniq uses a 30-kwh battery pack, of which 28 kwh is usable by the operator, 

which is similar in size to the 2016-2017 Nissan Leaf. There are no dates listed for data. Data is 

listed from new to old entries based on the accumulated kilometers. The charger types were 

converted to the North American equivalents. For example, “keba” is a standard Level 2 charger 

a person would use at a home or business, any “keba” entries were converted to a “2.” One 

unique aspect to the European chargers, not found in North America, is the low-speed CCS 

chargers at 20 kwh. In North America there are usually speeds from 50-150 kwh from CCS 

chargers. Any CCS connection charges in Europe were converted to Level 3 for analysis. 

To compare with data from the North American Ioniq, the SOC difference of 59% was 

chosen. For the first segment, the exact same starting and ending point were provided along with 

the same charger. There are two key differences in the data here relating to battery degradation. 

A difference of 5,357 kms were travelled between the two values of the first segment—this has 

elements of calendar and cyclic aging. The kwh difference went up over time by 0.1 which 

shows possible degradation, but temperature has not been accounted for! The final segment uses 

a same SOC difference, 59%, as the first one, but the kwh increased to reach that identical value. 

Both the Level 3 and Level 1 charging events, in segment two, have a greater kwh difference 

than the previous two entries indicating possible degradation. Level 1 charging data from row 

four occurs before the first row based on the number of kilometers, so degradation is not shown, 

but the Ending SOC is unique to the Level 1 charge: 99%. As noted previously, charging past 

80% is less efficient which explains the extra 0.6 kwh required to achieve a 59% SOC difference. 
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The final comparison is the only Level 3 charging event shown in Table 43. After 29,626 kms 

driven, a Level 3 charger was used to reach 76% SOC, up 59% from its starting value. The kwh 

difference of 17.2 was tied for the highest value analyzed, but no charging occurred after 80%. A 

difference of 0.7 kwh (17.2 – 16.5 kwh) or 4.07% increase in energy, after 6,641 additional 

kilometers occurred indicating battery degradation.  

Table 43 

2017 Hyundai Ioniq Segmented Data from Europe 

StartSOC EndSOC Startkwh Endkwh KMs SOC-Diff 

kwh-

Difference Level 

 

22 81 4787.0 4803.6 28342 59 16.6 2  

22 81 3908.5 3925.0 22985 59 16.5 2  

17 76 4976.0 4993.2 29626 59 17.2 3  

40 99 4617.0 4634.2 27243 59 17.2 1  

 

Note: sent in by a participant. 

Table 44 shows the first segment from Table 25 and is used for a comparison to 

demonstrate validity of data. Both Table 43 and 44 use a SOC difference of 59%. 2017 and 2018 

Hyundai Ioniqs employ the same size battery pack—28 kwh usable. Segmented results for Table 

44 show an increase of energy needed to raise the SOC 59%, this is evidence of battery 

degradation. An increase in temperature will lower energy required, this didn’t occur. Similar 

results happened with 2018 Ioniq data from North America. Table 44 uses the same Charger 

Levels on April 13 and 20, 2018. Although Temperature is not available, only one week between 

data points will have a minimal effect. A 4.31% energy increase is shown in Table 44, this is 

evidence of degradation and is comparable to the 2017 Ioniq from Europe. As noted above, a 

4.07% increase in energy occurred indicating battery degradation. A degradation difference of 

0.24% between European and North American models can be attributed to Ending SOC 
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differences. Both data lines from the 2018 Ioniq charge past 90% SOC while the Ending SOC of 

the second and third entry are 81% and 76% respectively. The second and third values were 

chosen because they have the largest differences in kilometers. As noted above, charging to 

levels approaching 100% SOC is not efficient and creates a need for added energy. Based on 

these results, data for the North American Ioniq is consistent and valid.  

Table 44 

2018 Ioniq Segmented Data from FleetCarma (Canada) 

StartTime 

Energy 

(kwh) Level Start-SOC% End-SOC% SOC-Diff% 

4/13/2018 15:00 18.70 2 33 92 59 

4/20/2018 11:00 19.54 2 40 99 59 

 

Note: selected for comparison. 

 Table 45 is part one of two log files generated from TeslaFi that provides valuable 

insights into what happens with a battery pack inside a Tesla Model 3 Long Range (LR). In 

addition to Leaf Spy Professional, TeslaFi is very similar to the Soul EV Spy smartphone 

application. A 75-kwh usable battery is utilized within a 2019 Tesla Model 3 LR. A total of 332 

charging events happened between April 9, 2019 and September 10, 2021. Of 332 charges, there 

were 36 Level 3 charging events which represent 10.84%. A 59% SOC difference is used for 

analysis. The same starting and ending point of SOC is used for comparisons. Charging time is 

four minutes less than it was two years prior because the EV cannot add as much range due to 

battery degradation. The higher temperature in August will reduce the amount of charging time 

compared to October in Austria. The range decrease is 2.04 km over 17 months from 2019 to 

2021 which demonstrates battery degradation, although only a small amount. 
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Table 45 

2019 Tesla Model 3 LR AWD from Austria 

Date Charging 

Time 

from 

SOC% 

to 

SOC% 

SOC 

Diff 

kWh 

Used 

kWh 

Added 

Range 

Added 

Odometer Charge 

Number 

08-11-

2019 

4 Hours 5 

Min 

31 90 59 44.73 43.05 282.76 10,701.67 91 

10-06-

2021 

4 Hours 1 

Min 

31 90 59 43.87 42.75 280.80 30,642.94 303 

 

This study had Tesla Model 3 SR (Standard Range) data from Quebec, Canada. This is 

the only one taking part in this study. No charging events occurred using a Level 1 charger or 

Level 3. All charging was completed on a Level 2 charger. The 2019 Tesla Model 3 LR did use 

Level 3 charging. There were no 59% SOC difference items within Table 46. A Model 3 LR is a 

“Long Range” model, different than base Model 3 SR. Although there are no 59% SOC 

segments, it is possible to generalize from other information found in this study. A Tesla Model 

3 SR has a smaller battery pack than an LR. Cyclic degradation will happen faster with the SR 

versus LR—this happened. The LR from Europe had less degradation than the SR. 

Estimated battery degradation of the 2019 Tesla Model 3 LR AWD is shown in Figure 19 below. 

The blue line indicates the estimated battery range, it descends as time moves forward. A 

baseline in green is shown to compare other Model 3s using TeslaFI. After 2,807 km of 

traveling, data suggests a range of approximately 500 km whereas at 35,424 km a capacity of 

465 km was available, a 7% decrease over three years or 2.33% per year on average.   
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Figure 19. TeslaFI Battery Degradation Report 

Note. Sent in from ‘Christian’ of Austria, generated from his European Tesla Model 3 LR AWD 

Data for one Model 3 from Quebec, Canada was available for analysis. There was a delay 

in the distribution of 2017 Model 3s in Canada which explains the limited amount of them 

included in this study. The battery size is unknown; but it is not listed as an LR, therefore it is 50 

kwh based on the model. Both the 50 and 75 kwh battery packs are bigger than other EVs such 

as the Nissan Leaf, Ford Focus EV, Kia Soul EV, e-Golf, and Smart Fortwo. There are twenty-

eight entries that include a 1% capacity increase for the Tesla Model 3. No charging events 

occurred using a Level 1 or QC, Level 3, charger during data collection. For these segments, all 
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charging was completed on a Level 2 charger. Four segments were produced having comparable 

information, and all data is from July 2019.  

 Initially there were three segments examined to realize if degradation happened. The first 

segment from July 3 and 5, 2019, have SOC difference increases of 16.07% and 16.80% 

respectively. An energy increase of 2.53% happened from July 3 to July 5, 2019. Based on the 

increased SOC difference of 0. 74% (16.80%-16.07%), no noticeable degradation occurred. The 

other two segments have dates spread apart of 17 and 11 days. A segment from July 4 and 21, 

2019, had an exact SOC difference of 5.04%. July 4 had a 2.81 kwh and July 21 required 2.77 

kwh EA. A high of 29°C occurred on July 21, 2019, at 10:51 P.M. while July 4, 2019, was 

28.5°C at 9:37 P.M. (timeanddate.com, 2019).  Examining charging energy, consumption should 

be higher on July 21 compared to July 4 to show degradation, but this is not the case. The minor 

discrepancy can be explained by a higher ambient temperature on July 21. Montreal, Quebec had 

a high temperature of 25°C on July 7 and 28°C on July 18, 2019 (Timeanddate.com, 2019). In 

the final segment from July 7 to 18, 2019, there were SOC increases of 15.02% and 15.44%; 

respectively. July 7 had 8.50 kwh consumed and July 18 required 9.22 kwh, an increase of 

7.85%. To compare the unique SOC differences, a calculation was required to create comparable 

units. Using the SOC difference divided by energy creates a percent difference per kwh which is 

1.77 for July 7 and 1.67 on July 18, 2019. This does not show any degradation. All values in the 

first three segments were close in time and no discernable degradation occurred, so a fourth 

segment was analyzed to see if degradation was present using dates further apart. 

 A fourth segment was created from July 6 and July 31, 2019, because the location of the 

chargers was equivalent and differences in time had the greatest comparable information. The 

high temperature was 28°C on July 31 and 29°C on July 6, 2019 (timeanddate.com, 2019). A 



136 

   

 

percent difference per kwh was created for each date, July 6 had a value of 1.73% and July 31 

was 1.74%, a difference of 9.52%. Pro-rating 25 days over a year shows battery degradation at 

7.59%, this is excessive for a larger battery of 40+ kwh. This does not appear to be an accurate 

representation of degradation for a Model 3 SR. An explanation for high degradation such as this 

is a small sample size and pro-rating based on relatively close dates. Only 28 lines of data were 

available for analyzing and so generalizability is limited because of the small sample size.   

Table 46 

2018 Tesla Model 3 Segmented Data from Quebec 

Start 

Energy 

(kwh) Loss Level Start-SOC% End-SOC% SOC-Diff% 

7/3/2019 14:22 9.344 1.136 2 64.720 80.785 16.065 

7/5/2019 22:32 9.586 1.014 2 63.985 80.785 16.800 

7/4/2019 21:37 2.811 0.276 2 69.760 74.800   5.040 

7/21/2019 22:51 2.771 0.274 2 30.385 35.425   5.040 

7/7/2019 14:45 8.498 0.915 2 62.515 77.530 15.015 

7/18/2019 16:36 9.221 1.236 2 65.350 80.785 15.435 

7/6/2019 18:11 11.391 1.260 2 61.045 80.785 19.740 

7/31/2019 22:07 6.570 0.642 2 69.130 80.575 11.445 

 

Note: no Level 3 or Level 1 charging events occurred with any data. 

Other than the Model 3 SR, these results are consistent across manufacturers and models 

which validates minimal degradation in larger 60-75 kwh battery packs found in most Tesla 

models and newer models from manufacturers such as Kia and Hyundai. The Tesla Model 3 LR 

had the same range after six months or approximately 6,500 km. 

Validation was completed with a third comparison using different sources of data, 

FleetCarma and Leaf Spy, used with the same model of EV—a Nissan Leaf. This Leaf data from 

FleetCarma is either a 2016 or a 2017 based on time of data collection. It can be compared with 

the previously analyzed 2016 Leaf. There were 611 rows analyzed which were over 1% SOC 

difference. A total of five Level 3, or 0.08%, and 606 Level 2 charging events were completed. 
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Of the 611, 558, or 91.32%, were completed to 100%. this is extremely high and provides a 

reason for degradation. 

Table 47 has energy values 338 days apart or eleven months and four days. The SOC 

difference, Starting SOC, Ending SOC, and Charger Level are all equivalent in the first segment. 

On August 9, 2017, Toronto, Ontario had a temperature of 19°C at 2:00 A.M. while on July 13, 

2018 it was 24°C at 12:00 A.M. Based on a slightly higher temperature, energy consumed in July 

would be decreased based on Arrhenius Law. Therefore, the 2.81% energy increase happened 

over 338 days. This gives a pro-rated value of 3.03% per year degradation. 

To further validate Nissan Leaf data, a second segment was chosen. The level of charger 

is the same for both values. Measurement of data points were 369 days or one year and four days 

in-between. SOC difference was slightly different at 20.45% and 20.12%, this needed adjustment 

for comparisons. An adjusted value of 4.77% is the result of moving to 20.49% SOC difference. 

On May 26, 2018, Toronto, Ontario had a temperature of 23°C at 2:00 A.M. while on May 30, 

2018 it was 21°C at 5:55 P.M. Based on a slightly lower temperature on May 30, 2019, energy 

consumed on May 30 is lower than the equivalent on May 26, 2018. Energy required 369 days 

after the initial measurement would be an increase of 5.46%. Pro-rated for one year it is 5.40%. 

Based on temperature, the lowest value of degradation is 5.40%. Using the previous value of 

3.03% over 365 days, the total degradation over 659 days is 5.48%. The two values, 5.40%, and 

5.48%, are extremely close to equivalency and rounding adjustments can account for the 0.08% 

in difference. 

The 2016 Nissan Leaf generating data with Leaf Spy utilized Level 3 chargers for 

0.136% of charging sessions. Using the FleetCarma 2016/2017 Leaf, there were 0.82% charging 

events using Level 3 chargers. Based on Level 3 or QC data from other Nissan Leafs within this 
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study, higher degradation didn’t occur because of it. The elevated degradation in the 2016/2017 

Nissan Leaf is higher due to the number of cyclic charges, thereby validating both numbers. A 

degradation rate of 5.48% for 606 L1/L2 and five Level 3 charging sessions happened to the 

2016/2017 Leaf based on FleetCarma data. The 2016/2017 Leaf charging over 659 days had 

degradation of 5.48%. A sole participant had 6.24% degradation with their 2016 Leaf. The 2016 

Leaf had 67 L1/L2 charging sessions in 26 days or 2.58 charges per day.  

Table 47 

2016/2017 Nissan Leaf Segmented Data from Ontario via FleetCarma 

Start 

Energy  

(kwh) Loss Level Start-SOC% End-SOC% SOC-Diff% 

8/9/2017 2:00 15.336 1.840 2 50.00 100.00 50.00 

7/13/2018 0:00 15.779 2.090 2 50.00 100.00 50.00 

5/26/2018 2:00 4.510 0.541 2 39.63   60.12 20.49 

5/30/2019 17:55 4.687 0.551 2 65.98   86.10 20.12 

 

Note: evidence of charging to 100% ending SOC. 

 

Manufacturer Comparison 

The battery degradation across most manufacturers shows similar results, but Tesla does 

stand out. For example, the participant 2017 Chevrolet Bolt EV required an energy increase of 

6.51% per year, whereas the two 2017 Nissan Leafs required 5.48% and 7.53%. Higher values of 

degradation can be linked to more Level 3 charges for the smaller-sized batteries under 40 kwh. 

Volkswagen and Ford had similar degradation results at 4.36% and 4.63%, respectively, both use 

smaller battery packs.  

Tesla has lower levels of degradation compared to competitors. Most of their vehicles 

had between 1.06% to 3.58%. It was determined that their sample Model 3 SR had irregular 

results due to a small sample size. The European model used for validation of degradation falls 

within this range of 1.06% to 3.58% showing valid and consistent results across Tesla models. 
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Table 48 

Manufacturer Comparison of Degradation using Percent 

 2013 2014 2016 2017 2018 2019 2020 

Nissan Leaf 3.74 3.96   5.48*   5.48* 4.78  4.00* N/A 

Nissan Leaf N/A N/A 6.24 7.53 N/A N/A N/A 

Kia Soul EV N/A N/A N/A N/A 6.41 N/A 0.00 

Kia Niro EV N/A N/A N/A N/A N/A 2.72 N/A 

Smart Fortwo N/A N/A N/A   8.35* N/A N/A N/A 

Tesla S 85    N/A          N/A N/A  **** N/A N/A N/A 

Tesla 85D    N/A          N/A   1.06* N/A N/A N/A N/A 

Tesla Model X - AB N/A N/A    ***                  *** N/A N/A N/A 

Tesla Model X – BC N/A N/A   7.19* N/A N/A N/A N/A 

Tesla Model 3 N/A N/A N/A N/A   7.59* N/A N/A 

Tesla Model 3 LR** N/A N/A N/A N/A N/A 2.33 N/A 

Tesla Model S 60D N/A N/A N/A   0.00* N/A N/A N/A 

Tesla Model S 90D N/A N/A   1.89* N/A N/A N/A N/A 

Chevrolet Bolt EV N/A N/A N/A 6.51 3.44 N/A N/A 

Chevrolet Spark EV N/A   6.48* N/A N/A N/A N/A N/A 

BMW i3 N/A N/A N/A N/A N/A 6.77 N/A 

Mitsubishi i-MiEV N/A N/A   2.32* N/A N/A N/A N/A 

Hyundai Ioniq N/A N/A N/A    4.07** 5.56 N/A N/A 

Ford Focus EV N/A N/A N/A   4.36* N/A N/A N/A 

Volkswagen e-Golf N/A N/A N/A   4.63* N/A N/A N/A 

 

Note: per year results developed by Ferrier, 2022.  

* Unknown year ** European model *** Invalid Results **** Range from 1.22-3.58% 

Another anomaly from Tesla was the Model X. A Tesla Model X from Alberta showed extreme 

degradation within the range of 9.69 – 19.00%, it appears defective as previously noted. 
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Summary 

  The Results and Discussion section provides an in-depth statistical analysis of EV data 

sent in by participants. The first part used generated data from a smartphone application called 

Leaf Spy used with Nissan Leafs. There was battery degradation found in all Nissan Leafs. No 

degradation was found in the 2020 Kia Soul EV or the Tesla Model S 60D. A second part 

involved analyzing data provided through the FleetCarma study that took place in Canada. 

Descriptive statistics were included with FleetCarma data for comparison of three key values: 

Charging Level, Charging Energy, and Ending SOC. Data was validated through the use of 

European submissions for comparisons. The manufacturer comparison section was completed to 

answer the question: “Out of the North American EV models, what battery packs degrade at the 

fastest and slowest rates?”  
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CHAPTER 5 

 

CONCLUSIONS AND RECOMMENDATIONS 

 There were many challenges involved within this study, including the collection of 

historical data, analyzing different content within CSV files, and validating information received 

from various sources. Some files had no temperature information while others had it in °F 

Fahrenheit, thereby needing conversion for consistency and comparability. Data generated from 

a Nissan Leaf or Kia Soul via a smartphone application is much different than a data logger; this 

needed to be analyzed with different methods. The amount of FleetCarma data was enormous, 

but the lack of SOH made it difficult to develop meaningful results. However, using the 

segmentation method was a unique and helpful way to approach comparative data while seeking 

to explain the degradation through energy consumption over time. 

Conclusions 

Segmentation as a method for analyzing and comparing results was suitable for this study 

due to varying data contained within gathered CSV files. After reviewing the results, one 

challenge was discovering lines of data to create a wide enough segment where degradation 

would or could happen. One EV only had a month of sample data, a very short period, which 

made it difficult to detect patterns and degradation—these results were not generalizable to the 

population. The 2016 Nissan Leaf had battery degradation occur from February 22 to March 20, 

2021, less than one month, but data failed to develop long-term patterns because of a shortened 
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timespan within CSV log files. Likewise, the single 2020 Kia Soul EV participating had 146 

lines compared to most EVs such as the 2016/2017 Leaf from FleetCarma that had 611 lines. 

Fortunately, the FleetCarma study had several large datasets available for analysis. 

Answering questions regarding the effects of charging, it is obvious that L1/L2 and QCs do 

affect EVs battery degradation over time, but the type of EV also has an impact. For Nissan 

Leafs, there is a measurable negative impact on battery SOH using a Level 3 CHAdeMO charger 

for QCs. The 2016 and 2017 Leafs provide evidence that one QC can negatively affect battery 

SOH in vehicles with smaller battery packs. A combination of high temperatures and L1/L2 

charges degrade the battery at faster rates than lower ones. Examining the data shows that 

owners should charge cars under 24°C or 75.2°F over time to lessen battery degradation.   

Research Questions Addressed 

Altering charging practices can help an EV charge more efficiently. Charging practices 

should be altered due to a moderate correlation of charger energy and ending SOC. As ending 

SOC approaches 100%, the amount of energy is increased disproportionately due to resistance, 

this is inefficient for charging an EV. The practice of charging to 100% needs to be changed to a 

reduced level. Even with Level 1 charging on a battery pack of 42.2 kwh, a 92% ending SOC 

was not energy efficient. A Kia Niro using a Level 2 required additional energy for 100% ending 

SOC while adding only 10.5% SOC, the same EV charging to 64% SOC did not require extra 

energy. Charging an EV to 100% is less efficient than 64.706%, but for practical reasons, not all 

users can reach their destination using a fraction of capacity. Charging to 77% is less than 80% 

and shows more efficiency than 100%, this is a good value if the required capacity demands it. 

Ultimately, charging practices need to change so that (1) EV charging is to a minimal ending 
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SOC% that allows an owner or user to get from point A to point B, and (2) Charging is 

infrequent as possible to reduce cyclic degradation.  

One of the key conclusions is that charging to 100% SOC is not only inefficient, but it is 

harmful via battery degradation to the EV too. The eGolf and BMW i3 are prime examples of 

why not to charge to 100% SOC. Only 17 Level 3 charging events for the eGolf took place and 

there was 6.33% degradation because a majority of charging events ended at 100% SOC. 

Likewise, the BMW i3 had 71.60% of charging events to 100% SOC resulting in a 6.67% battery 

degradation. A 2018 Ioniq taking part in the study had fewer 100% ending SOC and less battery 

degradation. It is recommended to charge less than 100%, even if efficiency is not required from 

a free EV charger, because over time degradation happens at a higher rate. 

Results from all EVs suggests the use of Level 3 chargers should be minimal and limited. 

Using Level 3 chargers can have a serious negative impact even at moderate temperatures such 

as 8.5°C or 47.3°F. For pre-2018 Leafs, .05% SOH can be removed through using a Level 3 

charger one time. Larger battery packs lessen the effect, but Level 3s are harmful in the long-

term. Based on this information, it is best to reduce Level 3 charging to a minimum.  

Changing charging practices can have significant impacts on the health of battery packs 

for users in North America. As shown with the 2020 Kia Soul, which experienced no 

degradation after 146 charging events, setting the ending SOC to 80%, within the charger or EV, 

for all types of charging appears to increase battery SOH. 2018 Bolt data found inefficient Level 

2 charging above 87.45% SOC. Like North American models, the Ioniq from Europe found 

charging past 80% is less efficient, which explains extra energy required to achieve the same 

ending SOC at a lower energy value. These results are consistent and validated using multiple 

EVs of the same model which means owners or operators of EVs should charge to 80% or lower.  
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For some newer EVs taking part in the study such as the 2019 Kia Niro EV and 2020 Kia 

Soul EVs, a digital display provides an ability to change the maximum charging level to various 

points such as 90%, 80%, 70%, and lower. This feature should be used by owners often to 

decrease battery degradation through limiting higher ending SOC%. In addition, newer EV 

models such as the 2019 Kia Niro EV include a smartphone application that allows setting SOC 

to the desired level. The maximum charging level can be altered for Level 2 and Level 3 

chargers. An ability to alter the ending SOC provides help to keep the battery healthier over 

long-term usage. 

An above-average battery pack size, 40-kwh and higher, impacts the speed of degradation 

in North American EV models. Larger batteries need less charging, and this lessens the 

degradation rate. Large numbers of cyclic charging used with smaller battery packs introduce 

degradation. Multiple examples of 40-kwh or higher batteries exist in this study including the 

2018 Leaf, 2016/2017 Tesla 90D/85D, and 2020 Kia Soul EV. Comparing the 2017 Leaf using a 

30-kwh battery to the 2018 Leaf using a 40-kwh highlights a lessening impact of QCs. A 2018 

Leaf has less than a .025% reduction in SOH after a QC whereas the 2017 is between .025% and 

.05%, both based on temperature. Tesla Models 90D and 85D are all-wheel-drive models using a 

90-kwh and 85-kwh battery; respectively, both have large battery packs. Both Tesla models 

show less than 2% degradation over a year. It doesn’t appear that Tesla makes “better” batteries 

or has a “superior” BMS system, it’s the larger size that is stopping them from faster degradation 

compared to their competitors. Another example, the 2020 Kia Soul taking part in the study 

showed no degradation after 146 charging events, it uses a large 64-kwh battery, this was not the 

case for its predecessors that used under a 40-kwh and degraded at a quicker rate.  
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Cyclic charging does negatively impact battery packs over long periods of time. Pre-2018 

models of Nissan Leaf, Ford Focus EV, Hyundai Ioniq, Volkswagen eGolf, Mercedes Smart 

Fortwo, and Chevrolet Spark degrade at faster rates compared to many others because these EVs 

have small battery packs of less 40-kwh and require frequent charging. A good example of a 

vehicle with a high level of degradation is the Smart Fortwo from Mercedes. The Smart Fortwo 

goes through lots of charging sessions due to the small size of its battery and limited range. A 

degradation rate of 8.352 is higher than all others analyzed because it is more frequently cycled. 

There are negative implications associated with temperature and how it applies to EV 

batteries. The temperature has been discussed throughout this paper because it is correlated with 

battery SOH and has a major impact on charging EV batteries. This study used multiple 

regression tests to demonstrate the correlation between temperature and battery health. It is clear 

that without confounding conditions, such as charging to 100% SOC, SOH declines as 

temperature increases. A finding from analyzing Leaf data is SOH can temporarily go up with 

increased temperature, but in the long-term it reflects higher rates of degradation. This finding 

matches the studies from Leng, Tan & Pecht, 2015 and Chen, He, Li & Chen, 2019 which had 

results showing lithium-ion batteries increasing their capacity in the short-term when the 

temperature increased, but in the long-term battery degradation happened at a faster rate. Nissan 

Leafs’ data demonstrate strong negative correlations between SOH and temperature, which can 

be generalized to other EVs operating 30-kwh and under batteries.  

There are positives to how temperature can help charging too. When consuming energy 

during charging, it takes less when higher temperatures are present. A 2018/2019 Kia Soul EV 

presented an excellent example where the ambient temperature was greatly increased thereby 

lowering the energy consumed. Another positive from temperature is an ability to narrowly 
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define degradation rates in conjunction with temperatures. Table 19 clearly shows how 

temperature can affect L1/L2 and QC charging. 

One unexpected occurrence was how previous charging sessions could affect the 

measurement of data. The author has moved from a Level 1 to Level 2 charger, after a short 

period of driving, with his 2017 Nissan Leaf in the past. It appears to move from a Level 1 to a 

Level 2 with usage in-between temporarily alters battery measurement, this happened to two EVs 

with batteries 50-kwh or over. The 2017 Tesla Model X and 2017 Chevrolet Bolt had Level 1 

charging temporarily affect the energy consumed after switching to a Level 2. For the Bolt, 

Level 1 charging was followed by driving which reduced SOC by 5.5% during the period of no 

charging. Based on the sequence of charging and two small decreases in consumed energy over 

time, the process of switching charger types with limited use between should not be completed if 

an accurate SOH measurement is required. One possible cause of this discrepancy is with the 

conversion from AC to DC and changing from Level 1 to Level 2, there appears to be a primacy 

effect, or influence of the first charge on the second; this needs to be investigated in future 

research. 

Future Research 

A recommendation for future studies is to use online forums and social media to promote 

more use of Leaf Spy and Soul Spy to Nissan Leaf and Kia Soul EV owners. Data in the CSV 

“Spy” files is much more detailed than data loggers, therefore it is much easier to track trends 

than most other EVs. Integration of a DropBox account into both “Spy” smartphone applications 

has made it easy to store log files over long periods of time.  

Another recommendation is to contact more Tesla owners using TeslaFI in North 

America to add knowledge about how their EVs are performing over time via the detailed data 



147 

   

 

generated from the application. Although difficult, it would be beneficial to have comparison 

data from Nissan Leafs and Teslas from years not currently covered, i.e., 2015 Nissan Leaf. As 

is, there is very limited public information coming from owners and users of Tesla vehicles. It 

was difficult to find anyone wanting to discuss Tesla data through online channels. 

New types of EVs are entering the marketplace this year and next. Replication of this 

study with newer models would be a good comparison to see if battery technology is advancing. 

New EV models include the Hyundai Ioniq 5, BMW iX, Cadillac Lyriq, Rivian R1S, Tesla 

Cybertruck, Mercedes EQS, Nissan Ariya, Fisker Ocean, and Lucid Air. It would be a good idea 

to get consumers tracking and storing data about these vehicles, from the initial purchase, so that 

an examination of battery degradation can occur after a year of use. Newer vehicles have the 

ability to limit charging to a specific percentage such as 70%, 80%, and 90% SOC. A 

comparison of EVs set at various charging limits would allow for battery degradation analysis 

for each limit.  

New materials are starting to be used in developing batteries for the future. One battery 

composition started to be employed by Tesla uses LFP or Lithium-Iron-Phosphate (LiFePO4). 

Many current batteries use Cobalt which can be expensive, LFP is cheaper. Once Tesla or other 

manufacturers start to mass develop EVs with LFP batteries, a recommendation is to test battery 

degradation after charging over time with various types of charger levels to replicate this study. 

A final idea is to replicate this study with data from newer models, including 2021, 2022, 

and 2023 versions. Batteries continue to get larger and technology is improving. Various BMS’ 

are being updated to prevent thermal runaway which occurred in many of the 2017-2020 

Chevrolet Bolts. It would be a good idea to examine if degradation rates are lower due to 

technology advancements such as the ability to set charging thresholds. 
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APPENDIX I 

EV data wanted for research project 

 

by Sean Hart | Apr 5, 2021 | EV Society News, News | 0 comments 

 

Do you collect data on your EV? 

An EV Society member, Doug Ferrier, is working on a Ph.D. Dissertation project and is looking 

for EV owners who collect data on their vehicle status such as; charging level, distance travelled, 

state of health, etc. The research will look at the impact of charging practices on the health of EV 

batteries over time. Many owners have apps that collect this kind of data (e.g. Leaf Spy, Soul 

Spy, Tesla app, etc) and Doug is looking for owners willing to share that data to be used for his 

analysis. 

Data from BEVs built between 2010 to 2020 (inclusive) is acceptable. Hybrids and PHEVs are 

not part of this research. Any personally identifiable information will be removed from any data 

received (such as names, GPS coordinates, VIN numbers, etc). 

If you are interested in participating, please contact Doug Ferrier at: dougfms (AT) msn (DOT) 

com. 

 

 

 

 

 

 

 

 

 

 

 

https://evsociety.ca/author/weeva/
https://evsociety.ca/category/news/localnews/
https://evsociety.ca/category/news/
https://evsociety.ca/ev-data-wanted-for-research-project/#respond
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APPENDIX II 

My name is Doug Ferrier, I am a Professor and Ph.D. student. I have written a few 

articles for Automotive Innovations magazine along with a journal article in the American 

Journal of Vehicle Design. All my articles are on EVs. I am currently working on my dissertation 

as part of my Ph.D. In addition, there will likely be a journal article and multiple magazine 

articles created from this study. 

              I am looking for data from EV-related companies that have kept a history regarding 

their vehicles (or customers) over a period of time. This data could be from any EV, but it cannot 

be a hybrid or plug-in hybrid. Data has to include charging level including Superchargers, battery 

health at the time, charging time, dates, time, quick charges, etc.… I am looking for vehicles 

from 2010-2020. I have one organization involved as of now - the EV Society of Canada will be 

providing data as part of this study. 

I am looking to accumulate over 1 million lines from combining records of various EVs. 

This is a “Big Data” project. I am going to be looking at charging practices and how it effects the 

battery over time – if it does effect the battery. I will be looking at all three levels of chargers 

plus Superchargers. Here is one more important piece: “Any data gathered will have all 

personally identifiable information erased from it. Data scrubbing will include removing 

information related to location (latitude and longitude), VIN (Vehicle Identification Number), 

and profile name. All data will remain confidential. Data will be stored in a secured location – a 

password or fingerprint will be required to access it. None of the data will reside on a Local Area 

Network (LAN).” 

Would Tesla have information that fits these criteria? Would you be interested in 

participating?   

I look forward to hearing from you. 

 

Thank you, 

 

Prof. Doug Ferrier, M.S., ITIL., Ph.D. (Candidate) 
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APPENDIX III 

Hello, I am reaching out to EV owners who would be interested in taking part in a 

university research project. I am an EV owner myself. I am a member of the EV Society of 

Canada. The study centers around EV batteries. Any type of EVs built between 2010-2020 are 

eligible. All EV data will be from North American based-vehicles sold during model years 2010-

2020. I have already obtained over 350,000 lines of data.  

 

Data collection started in March 2021. I have a few sets of data from Chevy Bolts at this 

present time. Data can be from any EV, but it cannot be a hybrid or plug-in hybrid (Volts are 

disqualified). Data from log files created in any app (Leaf Spy, Soul Spy, Tesla app, GM, Ford, 

etc...) would be very useful. Data should include charging level (Level 1,2,3), dates, time, battery 

state of health (SOH), charging time, and quick charges. Temperature during the charge will be 

accepted; if available. Other data will be accepted, but will scrubbed down to only those fields 

helpful for the study. Any data gathered will have all personally identifiable information erased 

from it. Data scrubbing will include removing information related to location (latitude and 

longitude), VIN (Vehicle Identification Number), and profile name. All data will remain 

confidential. None of the data will reside on a Local Area Network (LAN) within a file server. 

Data will be stored in the cloud at one of Amazons’ data centers in the eastern United States. 

PostgreSQL will be used to structure the data. The HTTPS protocol will be used to update and 

access cloud-based data to ensure security. 

Please contact me via this group to participate. 

 

Thank you, 

 

Doug Ferrier, M.S., ITIL., Ph.D. (Candidate) 
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Lithium Ion Batteries in Electric Drive Vehicles (Figure 1) 
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APPENDIX V 

IRB Notice 

 

Dear Mr. Ferrier, 

 

Thank you for contacting the IRB at Indiana State with an inquiry about the need for IRB 

oversight for your dissertation research. 

 

You stated that you are collecting data about electronic vehicles and information related to their 

charging systems.  It is possible or even likely that you will collect VIN numbers due to the 

manner of data collection.  The concern is that a VIN number is potentially identifiable and 

therefore may be the kind of personal information the IRB oversees. 

 

I appreciate your care in thinking about the protection of human subjects. Since a VIN is actually 

able to be seen in public, it does not seem to the IRB to be the kind of personal information the 

IRB would need to oversee. In addition, a VIN is unique to a vehicle, not to a person.  However 

likely it is that the VIN would point back to the specific owner of the vehicle, there is no inherent 

relationship between the VIN and a person's behavior or characteristics. 

 

I therefore do not see any human subjects in your research, meaning the IRB does not need to 

review your project. 

 

Please be in touch if you have any additional questions. 

take care, 

Dr. Foster 

chair, IRB 

Indiana State University 
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APPENDIX VI 

2017 Nissan Leaf S – Leaf Spy Professional Log File 

Date/Time Elv Speed Gids SOC AHr 

12v 
Bat 
Amps Hx 

12v 
Bat 
Volts Odo(km) QC L1/L2 Ambient SOH 

 

11/26/2019 
20:57:25 88 0 301 941786 677648 0 63.16 12.56 93584 292 1466 8 85.1 
11/26/2019 
20:57:30 88 0 301 941001 677648 0 63.16 12.56 93584 292 1466 8 85.1 

 

 

SOC AHr Pack Volts Pack Amps 
Max CP 
mV 

Min CP 
mV Avg CP mV CP mV Diff 

Judgment 
Value 

649981 680350 380.93 0 3977 3961 3968 16 0 

721966 680350 374.98 13.612 3917 3896 3906 21 0 

         
 

Pack T1 F Pack T1 C Pack T2 F Pack T2 C Pack T3 F Pack T3 C Pack T4 F Pack T4 C CP1  

70.3 21.3 66.7 19.3 none none 59.3 15.2 3973  
74.7 23.7 71.1 21.7 none none 63.3 17.4 3903  
         

Motor 
Pwr(w) 

Aux 
Pwr(100w) A/C Pwr(250w) 

A/C 
Comp(0.1MPa) 

Est Pwr 
A/C(50w) 

Est Pwr 
Htr(250w) 

Plug 
State 

Charge 
Mode 

OBC 
Out 

0 1 12 0 0 12 2 2 2000 

0 1 12 0 0 12 2 2 1800 

 
 
HVolt1 HVolt2 

GPS 
Status Power SW BMS OBC Debug 

Motor 
Temp 

Inverter 
2 Temp 

Inverter 4 
Temp   

350.91 393.5 7F 0 0 1 0 40 40 40   
350.91 393.5 7F 0 0 1 0 40 40 40   

 
TP-FL TP-FR TP-RR TP-RL 

44.75 41.5 42 44 

44.25 41.25 41.75 43.5 

 
CP1 CP2 CP3 CP4 CP5 CP6 CP7 CP8 CP9 

3973 3973 3973 -3965 -3965 -3965 3977 -3961 3973 

3903 3908 3913 -3905 -3905 -3905 3908 -3901 3913 
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APPENDIX VII 

ANOVA Calculations 

Cumulative Leafs ANOVA based on Regression Variables 

Model Sum of Squares df Mean Square F Sig. 

1 Regression 317,905.315 3 105,968.438 45,903.931 .000b 

Residual 200,902.648 87028 2.308   

Total 518,807.963 87031    

Note. a. Dependent Variable: SOH; b. Predictors: (Constant), TEMP, L1L2, QC. 

 

 

Ford Focus EV ANOVA using Regression 

Model Sum of Squares df Mean Square F Sig. 

1 Regression 10,882.408 2 5,441.204 137.753 <.001b 

Residual 28,676.718 726 39.500   

Total 39,559.126 728    

Note: a. Dependent Variable: Charger Energy b. Predictors: (Constant), Ending  

 

SOC, Charging Level  

 

 

Tesla Model S 90D ANOVA using Regression 

 

Model Sum of Squares df Mean Square F Sig. 

1 Regression 24,341.325 2 12,170.662 31.298 <.001b 

Residual 173,044.955 445 388.865   

Total 197,386.280 447    

Note: a. Dependent Variable: Charger Energy; b. Predictors: (Constant),  

 

Ending SOC, Charging Level.  
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I-MiEV Charger Energy ANOVA 

 

Model Sum of Squares df Mean Square F Sig. 

1 Regression 324.027 2 162.014 12.317 <.001b 

Residual 2630.780 200 13.154   

Total 2954.807 202    

Note. a. Dependent Variable: Charger Energy; b. Predictors: (Constant),  

 

Charging Level, Ending SOC. 

 

 

Chevrolet Spark EV Charger Energy ANOVA 

 

Model Sum of Squares df Mean Square F Sig. 

1 Regression 1,535.206 2 767.603 82.842 <.001b 

Residual 5,791.177 625 9.266   

Total 7,326.383 627    

Note. a. Dependent Variable: Charger Energy; b. Predictors: (Constant),  

 

Ending SOC, Charging Level. 

 

 

2018/2019 Kia Soul EV Charger Energy ANOVA 

 

Model Sum of Squares df Mean Square F Sig. 

1 Regression 977.937 2 488.968 7.334 .001b 

Residual 5467.292 82 66.674   

Total 6445.229 84    

Note. a. Dependent Variable: Charger Energy; b. Predictors: (Constant), Ending  

 

SOC, Charging Level. 
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