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ABSTRACT 

Medicaid is the largest health insurance in the U.S. It provides health coverage to over 68 

million individuals, costs the nation over $600 billion a year, and subject to improper payments 

(fraud, waste, and abuse) or inaccurate payments (claim processed erroneously). Medicaid 

programs partially use Fee-For-Services (FFS) to provide coverage to beneficiaries by 

adjudicating claims and leveraging traditional inferential statistics to verify the quality of 

adjudicated claims. These quality methods only provide an interval estimate of the quality errors 

and are incapable of detecting most claim adjudication errors, potentially millions of dollar 

opportunity costs. This dissertation studied a method of applying supervised learning to detect 

erroneous payment in the entire population of adjudicated claims in each Medicaid Management 

Information System (MMIS), focusing on two specific claim types: inpatient and outpatient. A 

synthesized source of adjudicated claims generated by the Centers for Medicare & Medicaid 

Services (CMS) was used to create the original dataset. Quality reports from California FFS 

Medicaid were used to extract the underlying statistical pattern of claim adjudication errors in 

each Medicaid FFS and data labeling utilizing the goodness of fit and Anderson-Darling tests. 

Principle Component Analysis (PCA) and business knowledge were applied for dimensionality 

reduction resulting in the selection of sixteen (16) features for the outpatient and nineteen (19) 

features for the inpatient claims models. Ten (10) supervised learning algorithms were trained 

and tested on the labeled data: Decision tree with two configurations - Entropy and Gini, 

Random forests with two configurations - Entropy and Gini, Naïve Bayes, K Nearest Neighbor, 

Logistic Regression, Neural Network, Discriminant Analysis, and Gradient Boosting. Five (5) 
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cross-validation and event-based sampling were applied during the training process (with 

oversampling using SMOTE method and stratification within oversampling). The prediction 

power (Gini importance) for the selected features were measured using the Mean Decrease in 

Impurity (MDI) method across three algorithms. A one-way ANOVA and Tukey and Fisher LSD 

pairwise comparisons were conducted. Results show that the Claim Payment Amount 

significantly outperforms the rest of the prediction power (highest Mean F-value for Gini 

importance at the α = 0.05 significance) for both claim types. Finally, all algorithms' recall and 

F1-score were measured for both claim types (inpatient and outpatient) and with and without 

oversampling. A one-way ANOVA and Tukey and Fisher LSD pairwise comparisons were 

conducted. The results show a statistically significant difference in the algorithm's performance 

in detecting quality issues in the outpatient and inpatient claims. Gradient Boosting, Decision 

Tree (with various configurations and sampling strategies) outperform the rest of the algorithms 

in recall and F1-measure on both datasets. Logistic Regression showing better recall on the 

outpatient than inpatient data, and Naïve Bays performs considerably better from recall and F1-

score on outpatient data. Medicaid FFS programs and consultants, Medicaid administrators, and 

researchers could use this study to develop machine learning models to detect quality issues in 

the Medicaid FFS claim datasets at scale, saving potentially millions of dollars.  
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CHAPTER 1 

INTRODUCTION 

The purpose of chapter one is to clarify the importance of the problem at hand, offer 

some background information, and then explain the problem statement and research questions 

clearly. The chapter starts with an introduction and some background information about the 

importance of Medicaid, different Medicaid programs, and the typical quality challenges in the 

Medicaid claim processing. The problem statement will then be discussed related to leveraging 

machine learning as an innovative method to detect quality issues in the Medicaid claim 

adjudication process. After that, the research questions and hypotheses will be formulated, and 

the goal of this research will be discussed. Finally, a list of the assumptions and limitations of 

this research will be provided, research methodology will be introduced, and the chapter will be 

concluded with a list of terms and definitions. 

Background 

Medicaid is a subsidized healthcare program for low income or individuals with special 

needs (e.g., disable and senior citizens). Federal and State governments collaboratively fund 

Medicaid to provide health care services to over 67 million individuals in 50 states and the 

District of Colombia (Medicaid.gov, 2018). Medicaid cost taxpayers over $570 billion a year 

(The Henry J. Kaiser Family Foundation, 2018) and subject to improper payments estimated to 

be over $29 billion (Testimony of Ann Maxwell Before the United States House of 

Representatives, 2017). Medicaid programs are usually divided into two subcategories: Fee-For-
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Services (FFS) and the Managed Care Organization (MCO). Both FFS and MCO models 

typically require a Medicaid claim to be processed either by a health plan or a Fiscal 

Intermediary (FI). As a result, it is crucial to ensure all Medicaid claims are processed correctly 

and free from payment errors. In an FFS model, a Medicaid beneficiary goes to a provider to 

receive a healthcare service. The provider then sends the bill (claim) to a FI contractor to be 

processed. FI contractors use an elaborate system consisting of various software, hardware, and 

processes called the Medicaid Management Information System (MMIS) to adjudicate millions 

of claims. 

In the past few decades, FI contractors and MCO health plans have invented and 

implemented several methods to detect and prevent improper payments, fraud, waste, and abuse 

in Medicaid programs. They have also implemented quality systems augmented by conventional 

quality control reviews and process audits. Such programs are usually based on traditional 

inferential statistics and sampling processes. In this method, a relatively small sample of 

processed claims is reviewed to detect claim processing errors and extrapolate the sample 

statistics to estimate population parameters. If used correctly and effectively, these methods can 

provide a point or interval estimate of population parameters, including the average error rate of 

adjudicating claims. For example, a sample of a few hundred manually reviewed random claims 

could give us an interval estimate of the quality of millions of claims processed during a week 

with an acceptable confidence level. However, if the client wants to detect and identify all 

quality issues in the entire population (e.g., all claims processed erroneously), a standard 

acceptance sampling method cannot solve it. Quality reviews based on sampling and inferential 

statistical methods, trying to infer a “population parameter” using “sample statistics.”  As a 
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result, while these methods are appropriate to provide an overall estimation of the proportion of 

the population's quality issues, they only identify a few actual quality issues that happened to be 

in the reviewed samples.  

Machine Learning (ML) and its application to identify quality issues in the Medicaid claim 

adjudication process 

Machine learning is a collective name for a group of computer algorithms and statistical 

methods that use computational learning and artificial intelligence principles to enable computers 

to learn a pattern or make a prediction without being explicitly programmed (Simon, 2013) 

(Kohavi & Provost, 1998). Recent advancements in algorithm design and rapid increase in 

hardware processing power resulted in the popularity of machine learning methods in various 

subject matters. Machine learning algorithms are categorized into two major categories (in 

chapter 2, other categories are introduced in more details): 

1. Supervised learning: the principal function of supervised learning algorithms is to infer 

a function from labeled training data. In this group of algorithms, the researcher uses historical 

data as a baseline (also called training data set) to produce an inferred function that predicts a 

pattern in the future datasets, commonly referred to as test data (Mohri et al., 2014). A regression 

model is an example of the supervised model in which a probabilistic model predicts the future 

behavior of a dependent variable (test data) based on existing data for independent variables 

(training data). 

2. Unsupervised learning: These types of machine learning algorithms do not require pre-

labeled training data and analyze a set of unlabeled data to find and model hidden structures in 
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the data set. Cluster analysis is an example of unsupervised methods in which an algorithm 

analyzes and divides a dataset into different clusters. 

Detecting quality issues is a form of classification problem and could be formulated as a 

supervised learning problem if labeled data is available. ML methods (specifically supervised 

learning), in theory, can classify claims in scale if they are correctly configured. This is a 

significant advantage over conventional sampling methods currently used by FIs to detect quality 

issues in the claim adjudication process. At least on an abstract level, there is a method to detect 

all claim adjudication problems before FI sends the payment to a provider, translating to millions 

of dollars of saving for budget-constraints Medicaid programs. However, in practice, doing this 

requires a careful formulating of the problem, selecting proper algorithms, and extensive data 

prep. Many technological limitations may prevent us from using machine learning to solve this 

problem, including the processing power needed to handle massive computations. This 

dissertation aims to offer a practical approach to using supervised learning to detect most claim 

adjudication issues in the entire population of claims processed by an FI. The proposed model 

should use the claim attributes and suggest a specific ML algorithm (e.g., Decision Tree or 

Logistic Regression) to classify a particular Medicaid claim payment as “correctly adjudicated” 

or “erroneously adjudicated” using the training data. Examples of such attributes (also known as 

features of independent variables) could include claim attributes such as International 

Classification of Diseases (ICD) codes, payment data, and Current Procedural Terminology 

(CPT) codes, provider attributes, beneficiary attributes, claim adjudication team attributes, policy 

attributes, etc. 
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Statement of the Problem 

Conventional quality methods used to detect quality issues in the Medicaid FFS claim 

adjudication process only provide a population proportion estimate of the claims processed 

erroneously. This study aims to apply supervised learning as a method to detect erroneously 

adjudicated claims in the entire population and find out the most important feature and most 

effective supervised learning algorithm in detecting if an inpatient or outpatient Medicaid FFS 

claim has been erroneously adjudicated. 

Research Questions and Hypothesis 

The following research questions will be answered, and hypotheses will be tested to 

complete this study.   

Research Question 1 (RQ1): What supervised machine learning algorithms can be used to 

determine Medicaid claim payment issues? 

Research Question 2 (RQ2): What are the most critical measures to compare the performance of 

different machine learning algorithms (resulted from RQ1) for our problem? 

Research Question 3 (RQ3): What are the claim attributes that could predict if a given FFS claim 

has been adjudicated correctly or erroneously (also known as predictors or independent 

variables)?  

Research Question 4 (RQ4): Is there any statistically significant difference among predictors' 

predictability power in identifying erroneously processed Medicaid outpatient claims?  
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o Hypothesis 4.1: there is no significant difference among the feature importance score 

(Gini importance) of the predictors in identifying erroneously processed Medicaid 

outpatient claims: 

  𝐻଴ర.భ: 𝜇ଵ.ଵ =  𝜇ଵ.ଶ = ⋯ =  𝜇ଵ.௡  where 𝜇ଵ௜ is the feature importance score (Gini 

importance) of the i-th outpatient predictor.  

 𝐻ଵర.భ: There is at least one predictor (j) for which 𝜇ଵ௝ is not equal to the rest. 

Research Question 5 (RQ5): Is there any statistically significant difference among predictors' 

predictability power in identifying erroneously processed Medicaid inpatient claims?  

o Hypothesis 5.1: there is no significant difference among the feature importance score 

(Gini importance) of the predictors in identifying erroneously processed Medicaid 

inpatient claim: 

  𝐻଴ఱ.భ: 𝜇ଶ.ଵ =  𝜇ଶ.ଶ = ⋯ =  𝜇ଶ.௡  where 𝜇ଶ௜ is the feature importance score (Gini 

importance) of the i-th inpatient predictor. 

 𝐻ଵఱ.భ: There is at least one algorithm (j) for which 𝜇ଶ௝ is not equal to the rest. 

Research Question 6 (RQ6): Is there any statistically significant difference among the selected 

supervised learning algorithms (the result of RQ1) in identifying erroneously adjudicated 

Medicaid outpatient claims (as measured by the result of the RQ2)? 

o Hypothesis 6.1: there is no significant difference among the average recall of selected 

supervised learning algorithms in identifying erroneously processed Medicaid outpatient 

claims: 

 𝐻଴ల.భ: 𝜇ଷ.ଵ =  𝜇ଷ.ଶ = ⋯ =  𝜇ଷ.ଵ଴  (𝜇ଷ.௜: the mean recall of algorithm i). 
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 𝐻ଵల.భ: There is at least one algorithm (j) for which 𝜇ଷ.௝ is not equal to the rest. 

o Hypothesis 6.2: there is no significant difference among the average F1-score of selected 

supervised learning algorithms in identifying erroneously processed Medicaid outpatient 

claims: 

  𝐻଴ల.మ: 𝜇ସଵ =  𝜇ସଶ = ⋯ =  𝜇ସ.ଵ଴  (𝜇ସ.௜: the mean F1-score of algorithm i). 

 𝐻ଵల.మ: There is at least one algorithm (j) for which 𝜇ସ.௝ is not equal to the rest. 

Research Question 7 (RQ7): Is there any statistically significant difference among the selected 

supervised learning algorithms (the result of RQ1) in identifying erroneously adjudicated 

Medicaid inpatient claims (as measured by the result of the RQ2)? 

o Hypothesis 7.1: there is no significant difference among the average recall of selected 

supervised learning algorithms in identifying erroneously processed Medicaid inpatient 

claims: 

 𝐻଴ళ.భ: 𝜇ହ.ଵ =  𝜇ହ.ଶ = ⋯ =  𝜇ହ.ଵ଴  (𝜇ହ௜: the mean recall of algorithm i). 

 𝐻ଵళ.భ: There is at least one algorithm (j) for which 𝜇ହ௝ is not equal to the rest. 

o Hypothesis 7.2: there is no significant difference among the average F1-score of selected 

supervised learning algorithms in identifying erroneously processed Medicaid inpatient 

claims: 

  𝐻଴ళ.మ: 𝜇଺.ଵ =  𝜇଺.ଶ = ⋯ =  𝜇଺.ଵ଴  (𝜇ସ௜: the mean F1-score of algorithm i) 

 𝐻ଵళ.మ: There is at least one algorithm (j) for which 𝜇ସ௝ is not equal to the rest. 
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Research Question 8 (RQ8): Are the most powerful predictors different between outpatient and 

inpatient claims? Are the most accurate algorithms in detecting erroneously paid claims different 

between the two types of Medicaid claims studied? 

Research Objectives  

There are two specific objectives for this research: 

1. Find the most important feature (predictor or independent variable) in detecting if an 

inpatient or outpatient Medicaid FFS claim has been erroneously adjudicated. 

2. Find the most effective supervised learning algorithm in detecting if an inpatient or 

outpatient Medicaid FFS claim has been erroneously adjudicated. 

Statement of the Need 

The most significant portion of the expenditure budget in different states is allocated to 

Medicaid. All Medicaid programs are dealing with improper payments and erroneously 

adjudicated claims, especially claims processed by FIs. In 2015 the average nationwide improper 

payment for FFS Medicaid was 10.6%, but a similar MCO metric was estimated to be 0.1%. This 

means just the federal share of FFS improper payments was over $20 billion (The Centers for 

Medicare and Medicaid Services, 2015). Undetected Medicaid claim adjudicating issues are just 

one form of improper or erroneous payments. Many of these erroneous payments are not caused 

or controlled by FIs; some are caused by the way claims are adjudicated. FI contractors use 

sampling to “estimate” the error rates in the population of adjudicated claims. Still, such reviews 

barely result in a large-scale detection and correction of erroneously adjudicated claims. An 

innovative method to detect issues on the entire population of adjudicated FI claims could result 
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in millions of dollars saving in taxpayers’ money. This research allows the Medicaid 

administrators, researchers, FI managers, and Centers of Medicare and Medicaid Services (CMS) 

to leverage the power of machine learning to increase the chance of finding inaccurate payments 

in a Medicaid Management Information System (MMIS) claim adjudication process. 

Statement of the Assumption 

The study assumes no significant changes in the Medicaid payment policy would change 

the test supervised learning model's effectiveness. A substantial transformation in the Medicaid 

program (something like the impact of the Affordable Care Act) may have an unknown effect on 

the importance of claim features in predicting quality issues. Researchers are advised to review 

the potential impact of the significant Medicaid policy changes before generalizing this study's 

findings to other cases.   

Statement of the Limitation 

These are the limitations pertain to this research: 

1. This research has used a set of synthesized data; a dataset created using the “characteristics” 

of real Medicaid data from scratch. Due to security and privacy concerns, the actual data 

could not be used. Using synthesized data adds some limitations to the generalization of the 

findings, as explained in more detail in chapter 3. 

2. The scope of this study is limited to two types of Medicaid claims: outpatient and inpatient. 

Other researchers can continue this method and try to reproduce the result and modify the 

model to apply them to all different claim types (e.g., pharmacy, medical, dental, long-term 

care, crossover, etc.). 
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3. The focus of this research is on Medicaid claims processed by FI contractors. Medicaid 

health plans are part of the MCO model and usually have slightly different processes for 

claim adjudication. These differences may impact or change the predictive model (e.g., the 

predictors), thus require a fine-tuning in the model to make it customized to an MCO claim 

adjudication process. 

4. The performance of various machine learning algorithms may be impacted by the 

hardware's processing power used for this research. This limits researcher’s ability to study 

algorithms like SVM, which requires excessive processing power.  

Statement of the Methodology 

The research methodology starts with synthesizing data and creating a simulated dataset 

from scratch to ensure private information is protected. A selected group of algorithms (e.g., 

decision tree, gradient boosting, neural network, etc.) are built using a proper ML tool (e.g., an 

open-source ML scripting language). The researcher uses a proper split strategy to train, test, and 

validate selected models. A cross-validation method is used to reduce model bias and overfitting. 

The researcher repeats all the steps above for both inpatient and outpatient claims. The result of 

the predictive models is then used to examine the hypothesis tests. The research methodology is 

explained in detail in chapter 3. 

Definition of Terms 

There is not a universally accepted terminology for machine learning, but the researchers 

tried to find the lowest common denominator amongst practical definitions and propose the 

following vocabularies: 
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 Data Mining is defined as “the application of specific algorithms for extracting patterns from 

data” (Fayyad et al., 1996). In practice, data mining has often referred to a preliminary study 

of data to find interesting but unknown patterns from which an initial hypothesis could be 

derived.  

 Analytics is the discovery, interpretation, and communication of meaningful patterns in data 

(Ravishanker, 2018). This definition focuses on the function of Analytics and not on tools or 

methods. This definition includes all statistical techniques applied to both big and small 

datasets. 

 Data Science (DS) is the interdisciplinary sciences and art of using computers, algorithms, 

mathematics, statistics, and subject matter expertise to extract insights from structured and 

unstructured data (Parks, 2017) (Manish, 2017). Extracting insight from unstructured data 

(e.g., images, text, and voice) has a significant implication here. Most conventional quality 

tools use structured data like nominal, categorical, and ratio data. In this dissertation, the 

terms Analytics and Data Science are used interchangeably.  

 Big Data Analytics (BDA): ISO/IEC JT defines BDA as “analytical functions to support the 

integration of results derived in parallel across distributed pieces of one or more data 

sources” (ISO/IEC JTC 1 Information technology, 2015). This definition is technically 

accurate but too broad to specify the type of data subject to analytical functions. The 

researcher offers a slightly more focused description: BDA is the science of applying 

computer science and statistical learning to discover non-trivial patterns in massive datasets. 

This definition emphasizes two critical aspects of BDA: “non-trivial” patterns and “massive 

datasets.” “Non-trivial” is not a scientific notion but a practical Occam's razor heuristic. If a 

problem is not complex and could be solved using simple methods, it is not economical to 
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use complex BDA methods. Many studies use BDA and Data Mining interchangeably (What 

Is Data Mining, n.d.). However, in this dissertation, data mining is defined as the exploratory 

analysis of massive datasets to find interesting (and unknown) patterns, especially before an 

exact research problem is formulated. 

 Machine Learning (ML) is a collective name for a group of algorithms based on statistical 

learning and artificial intelligence principles that enable computers to learn patterns or make 

predictions without being explicitly programmed (Simon, 2013) (Kohavi & Provost, 1998). 

Machine learning is not limited to big data; however, DBA shows its strengths when using 

machine learning to solve problems with massive datasets. ML a subset of BDA with a focus 

on the method (algorithm) by which data is mined. 

 Structured data refers “to any data that resides in a fixed field within a record or file” (Beal, 

2018). Examples of structured data are data that reside in a relational database or a 

spreadsheet. 

 Unstructured data is defined as “information that either does not have a pre-defined data 

model or is not organized in a pre-defined manner” (Wikipedia, n.d.). Examples of structured 

data are emails, PDFs, images, videos, audios, social media posts, text files, websites, MP3 

files, and most sensor data. About 80% of the data in the world is unstructured (Cano, 2014). 

 Optimization: is defined as “searching for the extreme value of some objective function. The 

variables of the objective function represent the system parameters, and the extreme value 

corresponds to the optimized state of the system” (Knobloch et al., 2017). 

 Cost function: when trying to optimize a situation by finding the minimum of the objective 

function, it is referred to it as a cost function (Knobloch et al., 2017). 
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 Protected Health Information (PHI): under the US Health Insurance Portability and 

Accountability Act of 1996 (HIPAA), any information that is created or received by a health 

care provider and relates to the past, present, or future physical or mental health or condition 

of any individual and identifies the individual or could be used to determine the individual, is 

called PHI. 45 CFR 164.514 Federal law (HIPAA Protected Health Information Identifiers) 

lists 18 specific PHIs items. This list includes name, all geographical identifiers, dates (other 

than year) directly related to an individual, phone, fax, email, social security number, medical 

record number, health insurance beneficiary numbers, account numbers, certificate/license 

numbers, vehicle identifiers and serial numbers, including license plate numbers, device 

identifiers, and serial numbers, URLs, IP addresses, biometric identifiers, full face images, 

any other unique identifying number, and record or payment history (Other Requirements 

Relating to Uses and Disclosures of Protected Health Information, 1996).  
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Chapter Summary 

Medicaid provides medical services to 67 million Americans permanent residents and 

costs taxpayers $600 billion a year. Medicaid runs through two models, MCO (covering most 

Medicaid beneficiaries) and FFS. In the FFS model, the Medicaid claims are processed by an FI 

contractor and prone to processing errors. This costs taxpayers over $20 billion a year.  FIs often 

use conventional inferential statistics to estimate population parameters using sample statistics. 

This method is incapable of detecting all quality issues in the claim adjudication process. ML 

algorithms are technically capable of computing the population parameters directly, resulting in 

millions of dollars saving for taxpayers. The goal is to find the most accurate supervised learning 

algorithm to detect FI claim adjudication issues. Seven research questions are formulated with 

the corresponding hypothesis and defined the research objective, need, limitation, assumption, 

and briefly explain our methodology. This chapter is concluded by defining some key terms. 
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CHAPTER 2 

REVIEW OF LITERATURE 

 

Chapter Overview 

This chapter starts with some background information about the Medicaid program and 

its importance as a massive government-funded entitlement program for Americans and how 

Medicaid operates. Two standard Medicaid models are presented and explained why detecting 

quality issues in Medicaid claim adjudication is essential. Next, the overall impact of machine 

learning as a dominant “Disruptive Technology” and its increasing importance due to the 

exponential growth of analytical data in industry and society is discussed. The evolution of 

quality and machine learning as two analytical disciplines are explained. Then, it is shown how 

big data analytics fits into the quality paradigm. Different classes of machine learning algorithms 

are briefly discussed, and then the researcher reviews the variety of machine learning 

applications to detect quality issues in various industries. The researcher then summarizes 

multiple approaches to protect PHI and propose “synthesizing a simulated dataset” as the proper 

approach for this dissertation. A summary of the literature on the process of building, training, 

and validating supervised learning models (including selection criteria to choose an ML 

algorithm) is provided. Based on the literature review results, the researcher selects a few 

specific algorithms to be tested. Finally, the researcher reviews the literature's lessons and then 
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focuses on the problem's scope and concludes the literature review with a few guidelines in this 

research's next chapters. 

Medicaid Background 

Medicaid is a government-funded healthcare program managed by each State to assist 

low-income beneficiaries and people with disability in paying for healthcare costs and long-term 

medical and custodial care costs (What Is “Medicaid,” n.d.). Medicaid is authorized by the Title 

XIX of the Social Security Act and runs since 1965. The federal government and each State 

mutually fund Medicaid programs. Centers for Medicare & Medicaid Services (CMS) is the 

administrator of the Medicaid and Medicare programs on a federal level. A department under the 

Health and Human Services Agency (HHS) administers the Medicaid program on a state level in 

each state. The collective name for state organizations administrating the Medicaid programs on 

the state level is State Medicaid Agency (SMA).  

As of March 2018, over 67 million individuals were enrolled in Medicaid in 50 states and 

the District of Colombia (Medicaid.gov, 2018). The number of Medicaid enrollee has increased 

to over 71 million in October 2019 (The Centers for Medicare and Medicaid Services, 2020). In 

the Fiscal year 2016, the total Medicaid expenditure (on both federal and state levels), including 

administrative costs and accounting adjustments, was $574.2 billion (The Henry J. Kaiser Family 

Foundation, 2018). This number increased to $616.1 billion in 2018 (The Centers for Medicare 

and Medicaid Services, 2020). To put things in perspective, in FY 2016, the U.S. government 

collected $2.99 trillion in tax revenues and had a $587 billion budget deficit, so Medicaid 

spending was equaled to 19% of tax revenue and almost equal to the U.S. government budget 

deficit (USAID, 2016) and (Congressional Budget Office, 2017). CMS has predicted the total 



17 
 

 

Medicaid expenditures to increase from 3.1 percent of GDP in 2017 to 3.3 percent of GDP in 

2027 (The Centers for Medicare and Medicaid Services, 2020).  

Medicaid programs are usually divided into two subcategories:  

1. Fee-For-Services (FFS): in this model, a Medicaid provider (e.g., a physician, pharmacy, a 

long term facility, hospital, etc.) provides medical services to a Medicaid beneficiary and 

sends the bill (medical claim) to an SMA. SMAs either process claims directly, or more 

commonly, through a claim adjudication contractor known as Fiscal Intermediary (FI). FIs 

leverage a state-owned computer system known as the Medicaid Management Information 

System (MMIS) to adjudicate and process claims.  

2. Managed Care Organization (MCO): in this model, the State hires Health Plans (HP) and 

assign Medicaid beneficiaries to them through a complex enrollment process. This model 

(also known as the Capitated model) pays each HP a fixed monthly amount per covered 

beneficiary through a Per Member Per Month (PMPM) method. SMAs or FIs do not process 

capitated claims; however, SMAs request HPs to submit an informative document calls 

encounter form for each service provided by MCO contractors. Encounters give the detail of 

medical services provided to the Medicaid beneficiary and the amount MCO paid to the 

provider (if any). SMAs use the encounter data to adjust the PMPM rates and communicate 

the Medicaid program's effectiveness to the state legislators and regulators (Henderson, 

2017). 

Medicaid Improper and Erroneous Payments  

It is vital to ensure Medicaid programs are administrating the taxpayer funds effectively 

and detect, correct, and prevent improper or erroneous payments both at administrative and 
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policy levels. Total Medicaid improper payments are estimated to be over $29.1 billion in FY 

2015 with an estimated improper payment rate of %9.8 (Testimony of Ann Maxwell Before the 

United States House of Representatives, 2017). The term improper has a broad range of 

applications and subject to various interpretations. This research offers the following definitions 

of these terms (these are not standard definitions but will allow the research to clarify the scope 

of the study): 

1. Intentional improper payments: including fraud, waste, and abuse (FWA). These types of 

issues are usually outside of the control of an FI and mainly initiated by providers.  

2. Unintentional improper payments: unintentional improper payments are operational quality 

issues in the claim adjudication processes and systems. FIs, health plans, and SMAs have 

more control over such problems compared to FWA cases.  In this research, these terms are 

interchangeable with unintentional improper payments: “erroneous payments,” “payment 

errors,” and “quality issues in the claim adjudication process” (which include erroneous 

denials). Any of the classic five Ms could cause an erroneous payment: 

 Men power: claim examiners processing errors, Miscalculation of manually priced 

claims, data entry issues, etc. 

 Machines: scanners, optical character recognition (OCR), and MMIS systems (logic 

issues in MMIS applications). 

 Methods: claim adjudication procedures, MMIS software defects, system update, and 

documentation issues (e.g., lack of timely updates in MMIS tables) 

 Materials: inputs to the process of quality claims submitted by providers like illegible or 

duplicative claims. 
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 Measurement: issues in SMA and CMS policies and policy materials and execution, 

including problems with error codes, operational instruction letters (OILs), and standard 

operating procedures (SOPs) resulting in a claim under or overpayment 

This research focuses on erroneous payments, specifically those caused by quality issues 

in the process of adjudicating claims. 

Both FFS and MCO models usually require a Medicaid claim to be proceeds either by a 

health plan or an FI. As a result, it is crucial to ensure all Medicaid claims are processed 

correctly and free from payment errors. There are three types of payment errors in the processing 

of Medicaid claims (The Centers for Medicare and Medicaid Services, 2014): 

1. Medical review errors include claims deemed medically unnecessary or not following the 

State’s written policies.   

2. Inaccurate eligibility determination: including paying a Medicaid claim for an ineligible 

person.    

3. Claim processing and adjudication error: including errors cause by the FI and MMIS 

operations. The two major types of these errors are:  

a. Claim pricing issues (caused by the MMIS software defects or medical examiners’ 

miscalculations)  

b. Data entry issues (caused by the claim adjudicators and data entry staff)  

The focus of this study is the third type of erroneous payments. This research's proposed 

approach could be applied to other kinds of erroneous payments, subject to labeled data 

availability. 
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In the past few decades, FI contractors and MCO health plans have invented and 

implemented several methods to detect and prevent improper payments, fraud, waste, and abuse 

in Medicaid programs. They have also implemented quality systems augmented by conventional 

quality control reviews and process audits. Such programs are usually based on traditional 

inferential statistics and sampling processes. A sample of processed claims is reviewed to detect 

claim processing errors and extrapolate the sample statistics to estimate population parameters. If 

used correctly and effectively, these methods can provide a point or interval estimate of 

population parameters. For example, a sample of a few hundred manually reviewed random 

claims could give us an interval estimate of the quality of millions of claims processed during a 

week with an acceptable confidence level. However, if the client wants to detect and identify all 

quality issues in the entire population (e.g., all claims processed erroneously), a sampling method 

cannot answer the question. Quality reviews based on sampling and inferential statistic methods, 

by nature, are not able to “directly” compute population parameters.  

Improper payments in the context of two Medicaid Models  

Both Medicaid models (FFS and MCO) are dealing with improper payment issues. Study 

shows as of 2015, 9.8% of all Medicaid payments (over $50 billion) were contributed to 

improper payments (The Centers for Medicare and Medicaid Services, 2015). However, there is 

a significant difference between the rate of improper payment for FFS and MCO. While the 

average improper payment for MCO is less than 0.1%, a similar FFS measure is estimated to be 

closer to 10.6%. This means just the federal share of FFS improper payments was over $20 

billion (The Centers for Medicare and Medicaid Services, 2015). As a result, while the FFS 
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portion of the Medicaid population is on average 20% or less, they contribute to 70% of 

improper payments (The Centers for Medicare and Medicaid Services, 2015).  

This dissertation focuses on “erroneous payments” in the FFS claim adjudication process 

caused by FI and MMIS operations. Not only do these issues have a significant contribution to 

overall waste Medicaid waste ($20 billion a year), but also there are much easier to be fixed 

compared to intentional improper payments. There two reasons for this: Firstly, fraud and abuse 

are complex and ever-changing patterns that are adjusted deliberately by those who want to take 

advantage of the system and try to make them undetectable. Secondly, fixing a quality issue, if it 

is found before the payment, is easy and requires a simple reprocessing of the claim. In contrast, 

even after the fraudulent activity is detected in many cases, it needs to go through a complicated 

legal process to recover any overpayment. 

Figure 1 illustrates the two Medicaid models (explained earlier in this chapter), the role 

of parties in each model, and how Medicaid fraud analytics is different from this dissertation's 

scope. This research aims to create a training data set using the known patterns of erroneous 

payment in a given Medicaid FFS. Then, a few well-known supervised learning algorithms will 

be trained and tested using synthesized data.  
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Figure 1. Improper payments in the context of two Medicaid Models  
 

Disruptive Technologies, Big Data Analytics, and Machine Learning 

Global Technology Innovation Insights is the title of a series of annual studies conducted 

by the big consulting firm KPMG to offer the clients a view of the upcoming challenges and 

issues in the world of technology. “The Changing Landscape of Disruptive Technologies” is one 

of these reports published in 2015. The study was based on the data gathered and analyzed in 

2014 based on 768 surveys conducted with tech-leaders from 14 countries, including start-up, 

Mid-market and large corporations (each represented about 30% of the interviewees) as well as 

angel investors and venture capitalists (Matuszak et al., 2015). The central premise of this article 

is to analyze the impact of disruptive technologies on business models. The challenges and 

opportunities will become a result of the emergence of such technologies. Cloud and mobile 

computing, Internet of Things (IoT), Big Data Analytics (BDA), Machin-2-Machin (M2M) 

interactions, Biotech, and 3D printing, Autotech (including self-driving and parking cars) are the 
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leading technologies listed in this report as disruptive. Cloud computing and mobile technology 

are named as the two significant foundations for technology that will continue to be the basis for 

cutting-edge advances, while they are losing their high positions (compare to last years) as a 

disruptor. Cloud computing and mobile technology continue to drive more efficiency and cost-

saving by transforming business models and making decision making faster and more efficient 

by streamlining the process of gathering and analyzing data. But the underlying technology for 

all disruptive technologies is BDA. As an ever-increasing technology trend, BDA plays a more 

critical role in driving incremental business value. 

The exponential growth in the amount of data generated through customers' and devices' 

interaction caused a rapid expansion of the need for better analytics and data science practices. 

The rapid growth of IoT, artificial intelligence, and robotics directly improves the power of 

machine learning and big data analytics. The evolution of analytics and data science improved 

productivity on a global scale. It has also shortened the innovation cycle and improved customer 

loyalty. BDA has disrupted many industries in the past two decades and introduced new 

challenges and opportunities in many disciplines. Quality, as a scientific and practical body of 

knowledge, is no exception. The exponential growth of data in industry and society in the past 

few decades calls for new analytical paradigms. New methodologies, algorithms, and solutions 

powered by machine learning are opening the door to exciting breakthroughs. Supervised and 

unsupervised learning methods have solved many operational and quality problems. 

How much data is “Big Data”?  

The volume of operational data grows daily, so the need for extracting meaningful quality 

insight from massive datasets becomes increasingly essential. Research shows the global dataset 
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size to analyze will increase by a factor of 50 to 5.2 ZB in 2025 and by a factor of 100 to 1.4 ZB 

in 2025. (Reinsel et al., 2017).  Figure 2 illustrates the global data growth between 2004 and 

2017. The scale is not exact, but the picture fully demonstrates the exponential growth of global 

data. These are some statistics to help estimate the typical size of a dataset (How Much Data 

Does Each DVD Format Hold?, 2018), (Tozzi, 2017), and (J. Lee, 2014): 

- 700 MB: is the size of a CD-ROM 

- 1.8 GB: is the data an average U.S. customer uses on her or his cell phone per month 

- 16 GB: is the size of a double-sided double-layer DVD 

- 1 TB: equals approximately 1,500 CD-ROMs 

- 1.5 PT: is the size of 10 billion Facebook photos 

- 20 PT: is the data processed by Google every day 

 

Figure 2. Global Growth of Data 2004-2017. 
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The Volume of the data is essential and directly impacts the complexity and the 

computational power needed to solve a problem. However, the volume is not the only important 

factor, and there are three other classic V’s that impact the complexity: 

 Velocity: velocity is defined as how fast data should be processed or a decision should be 

made. Google processes over 40,000 search queries per second (Firican, 2017), so any 

technology that uses such a velocity of input data has to be very efficient to produce timely 

results. Data streaming platforms and broad application of IoT rapidly increasing the data 

velocity and amplifying the need for real-time decision-making technologies (e.g., in-

memory analytics).  

 Variety: quality professionals are familiar with structured data. However, extracting insights 

from a massive unstructured dataset is a relatively new challenge for them. Over 80% of data 

in the world is unstructured (Cano, 2014). Many unstructured data sources (e.g., videos, 

images, social media comments, doctor notes, medical images, etc.) contain Critical to 

Quality (CtQ) information and need to be adequately analyzed. 

 Veracity: refers to the “biases, noise, and abnormality in data” (Normandeau, 2013). Lack of 

data quality is the most significant barrier to the proper implementation of DBA. Quality 

professionals spend substantial time to prepare data. As the size and complexity of data 

increase, data veracity becomes more critical. Low data quality costs the US economy over 

$3 B annually, and one in three business leaders doesn’t trust the quality of data they use for 

decision making (IBM Big Data & Analytics Hub, n.d.). 

As a practical rule-of-thumb, a messy set of structured and unstructured data more 

massive than 1 TB is a sensible minimum for a massive dataset. You can apply BDA 
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technologies to small, structured, and static datasets, but a conventional quality approach would 

be more cost-effective. 

Evolution of Quality and BDA over time 

Quality discipline is evolving, but the emergence of revolutionary quality management 

concepts and methodologies seems to have reached a plateau. When was the last time you 

encounter a groundbreaking quality management idea, something like TQM, SPC, Lean, or Six 

Sigma? It appears in the past two decades, many of the advancements in quality management fall 

into one of these two categories: 

1. New quality standards, including Capability Maturity Model Integration (CMMI), 

Information Technology Infrastructure Library (ITIL), and standards developed by various 

standard organizations including International Organization for Standardization (ISO) and 

Institute of Electrical and Electronics Engineers (IEEE). ISO 9000 family of standards and 

IEE 730 are examples of quality standards developed and evolved in the past couple of 

decades. 

2. New applications of the old concepts (e.g., leveraging social media to measure customer 

satisfaction).  

In contrast, as depicted in Figure 3, new and innovative BDA concepts, tools, and 

techniques are introduced every year. Quality and BDA are data-driven disciplines and have 

overlaps so quality practitioners can review the DBA advancements and leverage BDA to tackle 

quality problems using new tools and techniques. 
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Figure 3. Evolution of Quality and BDA over time. 
 

How does BDA fit into the Quality paradigm? 

There are three data analysis areas in statistics: descriptive statistics, inferential statistics (or 

inferential analysis), and the Design of Experiments (DoE) (Bartz-Beielstein et al., 2010). As 

illustrated in figure 4, inferential statistics and descriptive statistics are observational, and DoE is 

experimental by nature. Descriptive statistics could be easily applied on large datasets and the 

first candidate to be augmented by BDA. Rapid progress in data management technologies is 

changing the landscape. Now, it is possible to run analytics on the entire operational data and 

directly measure population parameters. BDA is also used to search patterns and find 

associations among variables on a massive scale (Han & Kamber, 2001) and apply the detected 
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patterns to new subsets of data and validate the findings (Hastie et al., 2009). 

 

Figure 4. statistical analysis and data size. 

 

Inferential statistics is a popular data analysis approach among quality practitioners, 

especially in the service industry. The idea is to review a relatively small sample and extrapolate 

the sample statistics to the entire population. In this sense, inferential statistics is the art of 

extracting meaningful information from small data. The core of many quality systems in the 

service industry is to design a set of checks and balances, find a proper sampling plan, and 

execute a series of measurements to ensure processes can produce the intended results. How 

could BDA support inferential statistics? By automating the measurement. Detecting quality 

problems is essentially a “classification” problem and could be solved through supervised 

learning. Researchers only need to have examples of conforming and non-conforming samples to 

use them as labeled data. DoE also deals with small datasets. It seems quality professionals know 

the art of small data, but big data is a new paradigm.  
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Machine Learning (ML) algorithms at the heart of BDA  

ML is the main engine of DBA. ML methods have been around for decades, but recent 

increases in the computers’ processing power, made them available to a broader user community. 

Advancements in data processing, like matrix, parallel, and distributed computation, also made it 

possible to leverage massive datasets and implemented scalable deep-learning solutions. As a 

result, the performance of the algorithms improves as data grows. All these made ML a popular 

and economical method to solve many operational and quality problems.  

ML algorithms use probabilistic models. A probabilistic model is a way to prove the 

existence of a structure by creating a probability space (choosing random elements) and “prove 

any random element from the space has both a positive probability and the properties sought 

after” (Probabilistic: Definition, Models and Theory Explained, n.d.). ML algorithms are 

commonly clustered in four primary categories (Fumo, 2017) and (Ayodele, 2010): 

1. Supervised learning: the principal function of supervised learning is to infer a function from 

labeled data. In this group of algorithms, the researcher uses historical data as a baseline 

(training data) to produce an inferred function that predicts a pattern in the future data (test 

data) (Mohri et al., 2014). A regression model is an example of supervised learning in which 

the future behavior of a dependent variable is predicted based on the independent variables. 

The most used supervised learning algorithms are Nearest Neighbor, Naive Bayes, Decision 

Trees, Linear Regression, Support Vector Machines (SVM), and Neural Networks (NN). The 

biggest challenge with supervised learning is the labeling process, usually a manual, time 

consuming, and expensive process.  
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2. Unsupervised learning: These algorithms analyze a set of “unlabeled” data to find and model 

hidden structures in the dataset. Cluster analysis is an example of unsupervised methods in 

which an algorithm analyzes and divides a dataset into different clusters. K-means clustering 

and Association Rules (AR) algorithms are examples of unsupervised learning methods. 

3. Semi-supervised (or Hybrid) learning: semi-supervised algorithms use a combination of 

labeled and unlabeled data for training. In these algorithms, a small set of labeled data is used 

to identify specific groups of data elements present in the labeled and could be used to label 

unlabeled data. The algorithm is then trained on the unlabeled data to define the boundaries 

of those data elements and even found new characteristics for labeling (Castle, 2018). 

4. Reinforcement learning: These types of algorithms use an iterative approach to learning. In 

these methods, the algorithm (a.k.a. agent) gathers observations from the interaction with the 

environment and tries to optimize the outcome (minimize risk or maximize the profit) using a 

reward feedback (a.k.a. reinforcement signal) and continues with the iterations until it 

explores the full range of possible states (Fumo, 2017). Q-learning, Temporal Difference 

(TD), and Deep Adversarial Networks (DAN) are examples of reinforcement learning 

methods. 

Application of ML to solve quality problems  

Machine learning techniques have been used to solve production control problems since 

the late 90s. As an example, Bowden and Bullington successfully applied an unsupervised 

learning method called the Genetic algorithm rule discovery system (GARDS) to solve a flexible 

cellular manufacturing system (eMS) problem (Bowden & Bullington, 1996). However, 

leveraging machine learning to solve quality problems is a much newer trend. The literature has 
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reviewed extensively to find examples of the application of machine learning to solve quality 

problems. In most cases, machine learning methods are used to detect quality issues in a product, 

process, or service. Our literature review's focus was to summarize cases that are more relevant 

to this dissertation's scope.  This includes studies about leveraging ML to augment a quality 

control or quality assurance process or detect quality issues in service. The researcher has also 

included studies in which different machine learning algorithms' performance in solving a 

quality problem was compared.  

Examples of ML application to detect quality issues in the service industry 

Yussupova and colleagues used several machine learning techniques, including Text 

Mining, Aspect Sentiment Analysis, and Decision Trees, to emulate the service quality and 

customer satisfaction for hotel customers (Yussupova et al., 2016). Peddamuthu & Srivastava 

used statistical and rule-based natural language processing (NLP) techniques to categorize 

sentiment and emotions, detect quality issues (e.g., anger and delays) to augment the QA process 

for calls center conversations (Peddamuthu & Srivastava, 2014). Ucar and colleagues leveraged 

Extreme Learning Machine (ELM) to detect smart-grid Power Quality Events (PQE) in a dataset. 

They combined a histogram-based method with a Discrete Wavelet Transform (DWT) to 

improve their algorithm's performance and then tested the result on a real-world like PQE 

database and validated the accuracy of the classification method (Ucar et al., 2018). To augment 

the QA process and detect inaccurate coding in financial contribution, Blomquist & Möller 

applied supervised classification methods (e.g., SVM) and tested ten classification models. They 

concluded the Adaboost procedure performed better and more steadily on most models, 

primarily when an ensemble classifier supports it (Blomquist & Möller, 2015). Honda leveraged 
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Text Analytics and Machine Learning to extract and classify useful information from the 

unstructured feedback it receives from a pull of our 20 million customers resulting in an 80% 

reduction in the time required by Quality Assurance staff (Kumar, 2018). To estimate the mobile 

phone provider service quality using social media (Twitter), Calvin & Setiawan developed a 

supervised learning model and Naïve Bayes classifier. This study has several limitations, 

including limited use of training data, trying just one supervised learning algorithm, and a lack of 

proper validation method of test results (Calvin & Setiawan, 2014). Paprzycki et al. compared 

the performance of Six ML algorithms to predict the quality of call center services. They 

compared Multi-layer perceptron (MLP), Linear neural networks (LNN), Probabilistic neural 

networks (PNN), Classification and regression trees (CART), SVM (with a third degree 

polynomial kernel), and a hybrid decision tree-ANN. They concluded the CART algorithm 

prfomes the best in overal prediction accuracy and also resulting in lowest false positive and 

false negative prediction  (over 80% customer service satisfaction prediction accuracy and close 

to 90% in predicting business need satisfaction) (Paprzycki et al., 2004). 

Examples of ML application to detect quality issues in a product or manufacturing process 

As an alternative to expensive chemical QC test for olive oils, Ordukaya & Karlik used 

classification ML algorithms. First, they used Principal Component Analysis (PCA) to reduce the 

number of predictors from 32 to 8. Then they compared the performance of classifiers 

algorithms, including SVM, ANN, Naïve Bayesian, -Nearest Neighbors (-NN), Linear 

Discriminate Analysis (LDA), and Decision Tree. Then performances of these classifiers were 

compared according to their accuracies finding Naïve Bayes performs the best as a classifier 

algorithm in their case (Ordukaya & Karlik, 2017). Escobar and Morales-Menendez applied 
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supervised learning classification methods, including the least absolute shrinkage and selection 

operator (LASSO) and Logistic Regression, to detect rare quality defects in a high-conformance 

manufacturing environment with a near-perfect result (Escobar & Morales-Menendez, 2018). 

Ribeiro proposed a classification model based on SVMs (C-SVM and v-SVM algorithms) to 

monitor plastic injection molding quality issues. He used process data (cycle time, metering time, 

injection time, barrel temp, cushion, and injection velocity) as predictors (independent variables). 

The accuracy results ranged from 70.83% up to 99.16%, which shows an acceptable 

performance. She also validated the model using a radial basis function (RBF) NNs as an 

alternative classification method and concluded SVMs have a performance advantage over NNs 

(Ribeiro, 2005). ML and Predictive modeling in junction with IoT is used for predictive 

maintenance and predicting the equipment failure, which resulted in a significant increase in the 

overall equipment efficiency (OEE) and reliability (Tracy, 2018). Researchers used a massive 

dataset containing three years of process and sensor data from 350 lines across 33 manufacturing 

plants and 15 countries. They built a machine learning model using N-dimensional Euclidean 

distance-based scoring algorithms normalized that predicts potential quality failures of a process 

and then applied the model to 1,400 manufacturing lines and over 20 million sensor events 

resulting in a potential $300 million annual saving (RTInsights Team, 2017). Lieber and 

colleagues proposed a hybrid ML model consisting of unsupervised (k-Means) and supervised 

algorithms (nearest neighbor and SVM) to predict intermediate products' quality in interlinked 

manufacturing processes. With the k-NN algorithm (k=11), they achieved a 97% accuracy level 

in prediction, while SVM produced about 90% prediction accuracy (Lieber et al., 2013). Irgens 

and colleagues proposed a hybrid model consisting of unsupervised (Cluster Analysis) and 

Supervised ML algorithms (SVM) to improve the product and process quality in the 
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manufacturing process (Irgens et al., 2012). In a detailed study, researchers used the 

manufacturing quality control data. They proved deep learning algorithms (specifically deep 

restricted Boltzmann machine and the stacked autoencoder) have a performance advantage over 

shallow learning methods (in this case, a feed-forward neural network with one hidden layer and 

the least squares support vector machine with no hidden layers). Also, they found the 

performance of deep learning algorithms is proportional to the sample size (Bai et al., 2017). 

Chou, Ho, & Hoang collected ten years’ worth of data from 20 reservoirs in Taiwan and applied 

four ML algorithms (ANN, SVM, classification and regression trees, and linear regression) and 

concluded the ANN model performs best in predicting the water quality (Chou et al., 2018). To 

correlate arc sound with the weld quality, Sumesh et al. used ML classification algorithms 

(namely J48 and Random Forest) and concluded J48 is outperforming the random forest in 

detecting weld quality issues (88.69% accuracy for J48 vs. 70.78% for random forest) (Sumesh 

et al., 2015). 

Examples of application of ML to detect quality issues in the food industry 

To identify quality issues in Salmon using a computer vision, Sture applied ML and 

classification methods using Support Vector Machines (SVM) with a nonlinear kernel function 

(RBF), with success and then validated the geometric classification results using nearest-

neighbor classification, with slightly less accuracy (Sture, 2015). Lotfi and the team successfully 

applied vision processing techniques augmented by an ML method based on neural networks to 

detect French fries' quality issues (Lotfi et al., 2008). To expand machine vision and measure the 

quality of mixed raisins, Karimi and the team built an ML model with 146 predictors and then 

applied a Principal Components Analysis (PCA) method to reduce them predictors to an optimal 
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level. They used SVM and ANN to classify the raisin mixtures and found SVM surpasses ANN 

in this classification problem and produces a high-level accuracy in prediction (Karimi et al., 

2017). Gonzalez Viejo et al. leveraged ML and used physical measurements of color and foam 

(as independent values) to predict beer quality (defined by the intensity levels of sensory 

descriptors like perceived foam–related parameters and beer color). Their research used principal 

component analysis to identify the most relevant predictors and an artificial neural network 

(ANN) regression algorithm, which resulted in an R = 0.91correlation to predict the beer’s 

quality (Gonzalez Viejo et al., 2017). To check the quality of Pistachio automatically and 

through machine vision, Çitak & Genç formulated a classification problem and used support 

vector regression (SVR) and deep convolutional networks with over 98% accuracy (Çitak & 

Genç, 2017). 

Examples of ML application to detect quality issues in Software and Information Technology 

ML and predictive modeling have long been used to augment the quality assurance and 

testing practices in software engineering and information technology. Morales used a generic 

title for all such algorithms as “Predictive quality analytics” and defined it as: “the process of 

extracting useful insights from test data from various sources by applying statistical algorithms 

and machine learning to determine patterns and predict future outcomes and trends.” The core 

statistical algorithms used in such methods include various classification, clustering, regression, 

time series, and association techniques (Morales, 2017). Parra and colleagues used a supervised 

learning model and text analytics approach to classify the software requirements (into two 

classes of good and bad quality requirements), emulating quality experts' assessments using two 

different methods. They compared the accuracy, stability, and efficiency for six different 
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machine learning algorithms: PART, C4.5, bagging PART, bagging C4.5, boosting PART, and 

boosting C4.5.  They concluded C4.5 has the highest efficiency and accuracy rate (87.72%) but 

has the highest standard deviation (7.12%). They found bagging-PART has the lowest standard 

deviation (2.44%) and is the most stable algorithm with the second-highest accuracy of 87.02% 

(Parra et al., 2015). Khoshgoftaar & Seliya used tree-based software quality classification 

models, software metrics, and SPRINT decision tree algorithm to build a predictive model to 

forecast if a software module is fault-prone or not. They also collected software metrics from 

extensive telecommunications systems and compared the SPRINT decision tree algorithm's 

result with a CART decision tree algorithm (a more generic form of SPRINT). They found 

advantages in how the SPRINT decision tree algorithm uses a unique tree pruning technique 

based on the Minimum Description Length (MDL) principle resulting in improved accuracy and 

stability of the model (Khoshgoftaar & Seliya, 2003). Many researchers have leveraged machine 

learning to predict which module in software has a higher chance of failure. Elish & Elish 

compared the performance of 8 different ML algorithms, including SVM, Logistic regression 

(LR), k-nearest neighbor (kNN), multi-layer perceptrons (MLP), Radial basis function (RBF), 

Bayesian belief network (BBN), Naïve Bayes (NB), Random forest (RF), and Decision tree 

(DT). They found SVM outperforms other algorithms in predicting defect-prone modules on the 

four NASA datasets (Elish & Elish, 2008). In a similar attempt, Gondra used the same NASA 

open-source dataset and 21 software product metrics as predictors and compared SVM and 

ANN's performance as supervised learning methods. He concluded SVM outperforms ANN in 

this binary classification problem (87.4%, to 72.61% accuracy rate). He also noted the advantage 

of SVM and ANN as nonlinear approaches to solving this problem compared to linear ones and 

even the benefit of sensitivity analysis to PCA in selecting software metrics that are more robust 
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indicators of a defect in a module (Gondra, 2008). To overcome the challenge of skewness in 

defect-prediction datasets, Pelayo & Dick applied Synthetic Minority Over-sampling Technique 

(SMOT). This improved the geometric mean classification accuracy by over 20% (Pelayo & 

Dick, 2007).  

Bouguil and the team applied a Bayesian model based on finite Dirichlet mixture models 

to predict software quality of fault-prone and non-fault-prone program modules. They used 

Gibbs sampler to implement their Bayesian algorithm (Bouguila et al., 2008). ML algorithms 

like SVM and Bayesian methods are widely applied to predict the quality of Web Services (Kai 

et al., 2016).   

ML application examples of detecting quality issues in healthcare 

 A group of researchers used over 7,500 human-rated samples and applied specific 

supervised ML techniques (kernelized Support Vector Machine and Gradient Boosted Decision 

Trees classifiers) to detect meshes of failing quality. They improved the accuracy of quality 

assessment of MRI-derived data conducted by medical professionals resulting in a human 

workload reduction by 30-70% (Petrov et al., 2017). Gupta applied NN and SVM algorithms to 

determine the dependency of wine quality on different physicochemical characteristics. He first 

used linear regression to measure the dependency of the target variable (wine quality) on 

predictors and then leveraged the SVM and NN and concluded that SVM performs better than 

NN to predict the wine quality (Gupta, 2018). 

Examples of application of ML to detect quality issues in healthcare fraud detection 

 ML in healthcare services is frequently used to detect Fraud, Waste, and Abuse (FWA). 

Anomaly detection, which mainly uses “unsupervised learning” methods, has been used often for 
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this purpose (Anbarasi & Dhivya, 2017). Some researchers advanced anomaly detection methods 

through a combination of several algorithms. For example, to detect Korean outpatient clinics 

with abusive utilization patterns, Shin and the team proposed an algorithm consisting of a 

scoring model to measure the degree of abusiveness and segmentation method to cluster clinics 

with similar utilization patterns. Their algorithm leveraged decision tree for clustering and 

conditional probability distributions of the composite degree of anomaly (CDA) score to 

categorize clinics in intervention or non-intervention subgroups (Shin et al., 2012). Kose and 

colleagues proposed an interactive machine learning approach combined with the pairwise 

comparison method of analytic hierarchical processing (AHP) for weighting the actors and 

attributes and expectation maximization (EM) to detect electronic fraud and abuse in the 

healthcare system. To overcome the limitation of normality and outlier free assumptions of 

parametric methods, they invented a non-parametric unsupervised method (Kose et al., 2015). 

Gallardo used convolutional deep neural networks (CNN), and recurrent neural networks (RNN) 

have also been patented as an algorithm to create an analytics engine for detecting medical 

frauds (Gallardo, 2017). Van Capelleveen et al. used multivariate clustering and outlier detection 

along with an expert system to detect fraud cases in Medicaid dental claims. A group of experts 

manually reviewed the flagged cases and validated 71% of cases proved to be fraudulent, a 

considerable improvement over the conventional method, which is, on average, detect 10% of 

fraud cases (van Capelleveen et al., 2016). 

Summary of examples ML application to detect quality issues in different industries 

Table 1 summarizes the studies discussed in the literature review. 
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Table 1. Summary of literature review of the application of ML to detect quality issues. 
Item Description 
Industry Food 

Quality Problem Detect the quality issues in Salmon 

Data Type Unstructured 

Inputs Images 

ML Algorithms Applied  Support Vector Machines (SVM) with a nonlinear kernel function (RBF) [B]1 
 Nearest-neighbor classification 

Note and Reference  (Sture, 2015) 

Industry Food 

Quality Problem QC test for olive oils 

Data Type Structured and Unstructured 

Inputs Chemical and visual measures 

ML Algorithms Applied  Naïve Bayesian [B] 
 SVM 
 ANN 
 k-Nearest Neighbors (kNN) 
 Linear Discriminate Analysis (LDA) 
 Decision Tree  

Note and Reference Researchers first used Principal Component Analysis to reduce the number of predictors from 
32 to 8  (Ordukaya & Karlik, 2017) 

Industry Food 

Quality Problem Detect quality issues in French fries 

Data Type Unstructured 

Inputs Images 

ML Algorithms Applied Vision processing techniques augmented by an ML method based on neural networks 

Note and Reference (Lotfi et al., 2008) 

Industry Food 

Quality Problem Measure the quality of mixed raisins 

Data Type Unstructured 

Inputs Images 

ML Algorithms Applied  SVM [B] 
 ANN 

Note and Reference First used Principal Components Analysis (PCA) method to reduce 146 predictors to an 
optimal level prediction (Karimi et al., 2017) 

Industry Food 

Quality Problem Predict wine quality 

Data Type Structured 

Inputs Physicochemical characteristics 

ML Algorithms Applied  SVM [B] 
 NN 

Note and Reference First used linear regression to measure the dependency of the target variable (wine quality) on 
predictors  (Gupta, 2018) 

 

1 [B] best performing algorithm among tested ones 
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Item Description 
Industry Food 

Quality Problem Predict the quality of the beer (defined by the intensity levels of sensory descriptors like 
perceived foam–related parameters and beer color) 

Data Type Structured and Unstructured 

Inputs Physicochemical characteristics 

ML Algorithms Applied  ANN 
 Regression 

Note and Reference Researchers first used principal component analysis to identify the most relevant predictors. 
The final resulted in an R = 0.91correlation to predict the quality of the beer (Gonzalez Viejo et 
al., 2017) 

Industry Manufacturing 

Quality Problem Detect rare quality defects in a high-conformance manufacturing environment 

Data Type Structured 

Inputs Sensor data 

ML Algorithms Applied  least absolute shrinkage and selection operator (LASSO) 
 Logistic Regression (LR) 

Note and Reference Supervised Learning  (Escobar & Morales-Menendez, 2018) 

Industry Manufacturing 

Quality Problem Predict potential quality failures of a process 

Data Type Structured 

Inputs Process and sensor data 

ML Algorithms Applied N-dimensional Euclidean distance-based scoring algorithms 

Note and Reference Resulting in a potential $300 million annual saving (RTInsights Team, 2017) 

Industry Manufacturing 

Quality Problem Detect manufacturing quality issues 

Data Type Structured 

Inputs QC data 

ML Algorithms Applied  Deep Learning (deep restricted Boltzmann machine and the stacked autoencoder) [B] 
 Shallow learning (feed-forward neural network with one hidden layer and the least-squares 

SVM with no hidden layers) 

Note and Reference Researchers proved deep learning methods outperforming shallow learning methods. They also 
found the performance of deep learning algorithms is proportional to the sample size (Bai et al., 
2017) 

Industry Manufacturing 

Quality Problem Predict the quality of intermediate products in interlinked manufacturing processes 

Data Type Structured 

Inputs Process and sensor data 

ML Algorithms Applied A hybrid model of unsupervised (k-Means) and supervised (k-nearest neighbor [B] and SVM) 
algorithms 

Note and Reference With the k-NN algorithm (k=11), researchers achieved a 97% accuracy level in prediction 
(Lieber et al., 2013) 

Industry Manufacturing 

Quality Problem Improve the product and process quality in the manufacturing process 

Data Type Structured 

Inputs Process data 

ML Algorithms Applied The hybrid model consists of unsupervised (Cluster Analysis) and Supervised ML algorithms 
(SVM) 

Note and Reference (Irgens et al., 2012) 
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Item Description 
Industry Manufacturing 

Quality Problem Predict the quality of welding 

Data Type Unstructured 

Inputs Arc sound and images 

ML Algorithms Applied  J48 [B] 
 Random Forest 

Note and Reference 88.69% accuracy rate for J48 vs. 70.78% for random forest (Sumesh et al., 2015) 

Industry Manufacturing 

Quality Problem Monitor quality issues in plastic injection molding 

Data Type Structured 

Inputs Process data (cycle time, metering time, injection time, barrel temp., cushion, and injection 
velocity) 

ML Algorithms Applied SVMs (C-SVM and v-SVM) radial basis function (RBF) NNs 

Note and Reference Accuracy results ranged from 70.83% up to 99.16%. SVMs have a performance advantage over 
NNs (Ribeiro, 2005). 

Industry Call Center 

Quality Problem Detect quality issues (e.g., anger or delay) and categorize sentiment and emotions 

Data Type Unstructured 

Inputs Calls, Text 

ML Algorithms Applied Rule-based natural language processing (NLP) 

Note and Reference (Peddamuthu & Srivastava, 2014)  

Industry Call Center 

Quality Problem Predict the quality of service in a call center 

Data Type Structured 

Inputs Call Performance Evaluation data 

ML Algorithms Applied  CART [B] 
 Multi-layer perceptron (MLP) 
 Linear NN 
 Probabilistic NN 
 SVM (with a third-degree polynomial kernel) 
 Hybrid decision tree-ANN 

Note and Reference Over 80% of customer service satisfaction prediction accuracy and close to 90% in predicting 
business need satisfaction (Paprzycki et al., 2004) 

Industry Hospitality 

Quality Problem Measure service quality and customer satisfaction 

Data Type Unstructured 

Inputs Text 

ML Algorithms Applied  Aspect Sentiment Analysis 
 Decision Trees 

Note and Reference (Yussupova et al., 2016) 

Industry Utilities 

Quality Problem Detect smart-grid Power Quality Events (PQE) 

Data Type Structured 

Inputs Network data 

ML Algorithms Applied Discrete Wavelet Transform (DWT) 

Note and Reference Ucar, Alcin, Dandil, & Ata, 2018)  



42 
 

 

Item Description 
Industry Financial services 

Quality Problem  Detect inaccurate coding in financial contribution 

Data Type Structured 

Inputs Financial data 

ML Algorithms Applied  Adaboost supported by ensemble classifier [B] 
 SVM 

Note and Reference Supervised Learning (Blomquist & Möller, 2015)  

Industry Medical 

Quality Problem Improve the accuracy of quality assessment of MRI-derived data conducted by medical 
professionals 

Data Type Unstructured 

Inputs Medical images 

ML Algorithms Applied  Kernelized SVM 
 Gradient Boosted Decision Trees classifiers 

Note and Reference Supervised learning using over 7,500 human-rated samples resulting in a human workload 
reduction by 30-70% (Petrov et al., 2017) 

Industry Natural Resource 

Quality Problem Measure water quality 

Data Type Structured 

Inputs Lab data 

ML Algorithms Applied  ANN [B] 
 SVM 
 Classification and regression trees (CART) 
 LR 

Note and Reference Very large sample size (10 years’ worth of data from 20 reservoirs in Taiwan) (Chou et al., 
2018) 

Industry Telecommunication 

Quality Problem Estimate the mobile phone provider service quality using social media 

Data Type Unstructured 

Inputs Twits from Twitter 

ML Algorithms Applied Naïve Bayes 

Note and Reference Lack of proper validation method of test results (Calvin & Setiawan, 2014). 

Industry Telecommunication 

Quality Problem Predict if a software module is fault-prone or not 

Data Type Structured 

Inputs Software metrics 

ML Algorithms Applied  The SPRINT decision tree [B] 
 CART decision tree 

Note and Reference They found the way SPRINT decision tree leverages a unique tree pruning technique based on 
the Minimum Description Length (MDL) principle improves the accuracy and stability of the 
model (Khoshgoftaar & Seliya, 2003) 

Industry Software 

Quality Problem Predict which module in software has a higher chance of failure. 

Data Type Structured 

Inputs Software metrics 



43 
 

 

Item Description 
ML Algorithms Applied  SVM [B] 

 LR 
 KNN 
 Multi-layer perceptrons (MLP) 
 Radial basis function (RBF) 
 Bayesian belief network (BBN) 
 Naïve Bayes (NB) 
 Random forest (RF) 
 Decision tree (DT) 

Note and Reference (Elish & Elish, 2008) 

Industry Healthcare 

Quality Problem Detect fraud in outpatient clinics claims 

Data Type Unstructured 

Inputs Hospital visit information 

ML Algorithms Applied  Unsupervised clustering methods: 
 Decision tree 

Note and Reference Used conditional probability distributions of the composite degree of anomaly (CDA) to adjust 
the risk score (Shin et al., 2012) 

Industry Healthcare 

Quality Problem Detect fraud in electronic claim data 

Data Type Unstructured 

Inputs Hospital visit information 

ML Algorithms Applied Non-parametric unsupervised method 

Note and Reference AHP was used  for weighting (Kose et al., 2015) 

Industry Healthcare 

Quality Problem Detect fraud in electronic claim data 

Data Type Unstructured 

Inputs Hospital visit information 

ML Algorithms Applied  convolutional deep neural networks (CNN)  
 recurrent neural networks (RNN) 

Note and Reference Patented proprietary algorithm (Gallardo, 2017) 

 

Application of ML to fraud in Medicaid and its challenges 

Medicaid fraud analytics is the most common application of analytics and ML in 

Medicaid.   

Most ML methods used for fraud detection in Medicaid are based on unsupervised 

methods. In supervised Medicaid fraud detection techniques, subject matter experts use prior 

information on class membership to select a set of training data (Travaille et al., 2011). This 

training data set is used by the algorithm to label each reviewed value as a suspicious or legal 
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item. For example, subject matter experts review a set of paid and denied Medicaid claims and 

label each one legitimate or fraudulent. There are many supervised techniques listed as potential 

algorithms for Medicaid Fraud detection, including (Copeland et al., 2012) (Li et al., 2008) 

(Phua, C., Lee, V., Smith-Miles, K. and Gayler, 2005) (Valdes & Skinner, 2000), (Getchius, 

2014) (Li et al., 2008): 

 Multi-layer perceptron network 

 Artificial Neural Network including Backpropagation (backward propagation of errors) 

 Support Vector Machine 

 Decision Trees 

 Fuzzy Logic 

 Bayesian Network including Bayesian Belief Network (BBN) 

 Probable Graph Model (PGM) 

 Linear Gaussian Model  

Researchers also presented some innovative methods to evaluate supervised methods' 

performance by calculating their return on investment and costs versus benefits. At least two 

metrics are introduced in research to measure the performance of anomaly detection methods 

tradeoff between detection probability and false alarm ratio and the tradeoff between false alarm 

ratio and detection delay (Siris & Papagalou, 2004). Phua and the team described how statistical 

methods should be classified, utilized, interpreted, and validated to detect healthcare fraud. They 

compared statistical methods applied to health care fraud detection by focusing on, reviewing, 

and analyzing the investigations conducted in this field (Phua, C., Lee, V., Smith-Miles, K. and 

Gayler, 2005). While supervised methods are more accurate in detecting previous fraud types, 
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they also suffer from some shortcomings, primarily when used to detect Medicaid fraud.  The 

shortcomings include: 

 Bolton and hand (2001) indicated that supervised methods' accuracy relies on the accurate 

identification of fraudulent and non-fraudulent transactions in the historical dataset where 

information is missed or limited. 

 Creating training data is a tedious task and requires expensive subject matter experts to 

develop training data sets (especially nonfraudulent or legal data sets). One way to overcome 

this burden is to create just fraudulent datasets, which are much more limited.  

 The constant change in the healthcare landscape changes the claim patterns. This includes 

demographical changes (e.g., aging population, shrinkage of middle-class, baby boomer 

retirement) and policy changes (e.g., the Affordable Care Act). As a result, there is a constant 

need to update training data sets. 

 Periodic changes in healthcare systems force the users of supervised methods to update their 

training data sets regularly. Examples of such changes include implementing the hospital's 

performance-based payment, HIPAA 5010, and ICD-10 code migrations. 

Unsupervised Medicaid fraud detection techniques do not assume prior class labels of 

legitimate or fraudulent behavior (Travaille et al., 2011). These algorithms mine the entire 

dataset and try to find a Medicaid data pattern and identify outliers. For example, an 

unsupervised algorithm could analyze the utilization of a specific prescription drug among a 

group of Medicaid beneficiaries and identify the anomalies. All anomalies then need to be 

researched and validated. The important fact about all probabilistic fraud detection models is that 

they will find likely fraud cases, and each case requires future research and validation. These 
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algorithms' strengths are their sensitivity (detecting most true positives) and specificity (reducing 

false positives). Examples of unsupervised methods that could be used for fraud detection 

(including Medicaid fraud) are Anomaly Detection, K-mean, Benford’s Law, Linear Regression, 

Modified Batch Library Method (MBLM), Adaptive threshold algorithm, and CUSUM 

(Cumulative SUM) algorithms (Heino & Toivonen, 2003), (Siris & Papagalou, 2004), (Issa & 

Vasarhelyi, 2011), (Tsung et al., 2007). Unsupervised Medicaid Fraud algorithms also have 

strengths and weaknesses. A few of these are listed below:   

 The neural network is an excellent method to handle complex data sets and manage noisy 

data, but its black-box approach limits the researchers' understanding of how a system works. 

(Li et al., 2008) 

 Anomaly Detection is not robust toward the number of metrics used to flag fraudulent cases. 

This means too many metrics negatively impact the anomaly detection method’s efficiency. 

When metrics features are increasing, more cases will be flagged as potential fraud cases, 

increasing the number of false-positive and making the process ineffective (Copeland et al., 

2012). 

 A decision tree is useful for handling missing data and generates rule from a tree (white-box 

approach) but is not suitable for complex datasets. (Li et al., 2008) 

 Fuzzy Logic allows approximate reasoning but is difficult to tune and lack sufficient learning 

capability (Li et al., 2008) 

 Genetic Algorithm could be used very well for systematic random search but is difficult to 

tune. 
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Application of ML to detect quality issues in FFS Medicaid claim adjudication process  

The researcher found several instants in the literature on applying BDA and ML in 

detecting fraud in many industries, including Medicaid, and finding quality issues in several 

industries. However, the researcher did not find any reference in the literature (focusing on 

master and Ph.D. dissertations and peer-reviewed journals) about applying ML to detect quality 

issues in adjudicating Medicaid FFS claims. Conventional methods of quality control, including 

statistical sampling methods and acceptance sampling (e.g., military standards) is still the most 

common method to control and manage the quality of operation in healthcare, from the claim 

adjudication process to pharmaceuticals (Fu et al., 2004) and (Borget et al., 2006). 

How to prevent the PHI from potential breaches 

As explained in chapter 1, PHI's protection is a stringent requirement enforced by the 

HIPAA law and impacting all the research using health information, including studies on 

Medicaid claim and payment data. Researchers proposed many methods to protect PHI, but all 

follow one of these two approaches: “PHI de-identification” and “Synthesizing Data.” In the next 

few pages, each procedure is briefly introduced, and the justification for this research method is 

provided. 

PHI de-identification approach: in this approach, the researcher starts with a dataset 

containing actual PHI and then use different tools and techniques to either remove the 

identifiable data elements or scramble or mask them in a way they cannot be used to identify any 

PHI data element. In his book, El Emam explained in detail the process by which a researcher 

should de-identify PHI. Per him, this process has two significant steps (El Emam, 2013): 
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1. Prove that the applied method has a negligible chance that allows any identification of 

protecting data by the data recipient in any stage of the data processing 

2. Provide proper documentation including methodology and test results that prove such 

determination 

Researchers have offered many advanced methods to de-identify PHI, including 

combining knowledge-driven (dictionaries and rules) and data-driven (machine learning) 

methods (Dehghan et al., 2015).  Neamatullah and colleagues offered another way to use lexical 

look-up tables, regular expressions, and simple heuristics to locate PHI and replace them with 

imitated data (Neamatullah et al., 2008). The Office for Civil Rights classifies all PHI de-

identification methods under two major categories (The Office for Civil Rights & Malin, 2012), 

as depicted in Figure 5. 

Figure 5. Two methods to achieve de-identification per the HIPAA Privacy Rule. 
 



49 
 

 

1. Expert Determination” method: in these methods, an expert with proper subject matter 

expertise and knowledge of statistical and scientific principles ensures that the method used 

would not allow any PHI disclosure or decrease the chance of PHI disclosure to a minimal 

amount and documents the technique.  

2. Safe harbor: in this method, the researcher finds and removes any instance of 18 PHI data 

elements as described in chapter 1 or replace them with a dummy data element. 

Meystre and the team conducted a comprehensive literature review and compared 18 

methods in de-identifying PHI information. They concluded all methods have some strengths, 

but neither of them obliterates the possibility of data disclosure, and de-identified data may have 

less value for researchers due to the removal of information-rich contents (Meystre et al., 2010). 

Synthesizing Data: in this approach researcher starts with understating the behavior of 

the actual data (e.g., population proportion, underlying distribution, descriptive statistics, etc.). 

The next step is to generate a dummy dataset from scratch without using any PHI input (e.g., 

using a computer algorithm). The advantage of this approach is that it eliminates the chance of 

any PHI disclosure. The biggest drawback of using a synthesized dataset is the limitation of 

multivariate modeling and model validation. As explained in the CMS’s DE-SynPUF codebook, 

when the dynamic relationships between variables are altered (in this case, demographic, 

clinical, financial, and provider data), analyses from multivariate modeling should be interpreted 

with caution because the generated dataset may or may not inherit all the critical characteristic of 

the original dataset  (The Centers for Medicare and Medicaid Services, 2013a). The researcher 

uses this method for data preparation in this research to eliminate all concerns about the privacy 

and confidentiality of the PHI. 
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Criteria to consider before selecting an ML algorithm 

There are quite a few supervised algorithms in the literature, and the list is evolving. Not 

all these methods are appropriate for this research. The researcher looked at the literature to find 

some guidelines to help us select an initial list for the study, and then the results of the 

preliminary research guide the final list. 

 Accuracy: perhaps the most popular metric to select an appropriate machine learning 

algorithm is the model accuracy, which is defined as total true positives and true negatives of 

all results produced by an algorithm. Numerous articles compared the accuracy of different 

supervised classifiers in solving different types of problems. As an example, Singh and Kaur 

compared the accuracy of J48 and REP Tree to predict the performance of computer science 

students and found J48 outperforms REP Tree in model accuracy 67.37% to 56.78% (Singh 

& Kaur, 2016). 

 Stability: an algorithm is defined as β-stable (or stable, in general) when its losses incurred by 

the corresponding hypotheses on two similar but different datasets are equal or less than β 

(Mohri et al., 2014). There are specific limitations to how big β could grow and still a 

training algorithm to be convergence. Convergence to a particular measure is required for the 

learning algorithm to have an endpoint. Convergence to the optimal point is necessary to 

ensure the algorithm effectively solves the problem (it stops when it finds the global 

optimum or a reasonable local optimum). 

 Interpretability vs. prediction accuracy: there is an inherited trade-off between the statistical 

models' interpretability and prediction accuracy (James et al., 2015). Many flexible and 

accurate ML algorithms (e.g., SVM and NN) lack interpretability. Such algorithms are black-
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box approaches and are not good choices if there is a need to look inside the box. When there 

is a lack of trust in the ML model, or stakeholders demand the model logic to be clearly 

explained, the choice is to compromise the flexibility and choose a more interpretable model 

(e.g., LASSO). 

 Bias-variance trade-off: In the context of ML, bias is the overall fitness of the model to the 

training data, and variance is the overall fitness of the model to the test and unseen data. As a 

rule of thumb, as model flexibility and complexity increase, the bias will decrease, and 

variance will increase, so the complex models (e.g., NN and SVM) have an inherited 

tendency to over-fit and should be used with caution (James et al., 2015). Brian and Webb 

found the size of the dataset may impact variance and bias in an ML model. Specifically, the 

hypothesized variance can be expected to decrease as training set size increases, but no 

apparent effect of training set size on bias was observed (Brain & Webb, 1999). These results 

have profound implications for data mining from large data sets, indicating that developing 

effective learning algorithms for large data sets is not merely a matter of finding 

computationally efficient variants of existing learning algorithms. 

 The impact of data reduction: one way to increase the efficiency of a machine learning model 

is to appropriately reduce the version of data or a lower number of attributes. El-hasnony and 

colleagues compared the accuracy of classification nine algorithms using data reduction 

techniques like Correlation Feature Selection (CFS), Rough Set Attribute Reduction (RSAR), 

Fuzzy Rough Feature Selection (FRFS), PCA, and gain ratio. These are the list of 

classification algorithms they tested in their research: C4.5, fuzzy rough nearest neighbor, 

Multi-layer perceptron (MLP), Nearest-neighbor-like algorithm using non-nested generalized 
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exemplars (NNGE), Fuzzy nearest neighbor, sequential minimum optimization (SMO), 

classification via clustering, NB-tree and Naïve Bayes. They concluded that fuzzy rough 

feature selection outperforms rough set attribute selection, gain ratio, correlation feature 

selection, and principal components analysis (El-hasnony et al., 2015). The importance of 

this study is not only in the selection of the ten popular classification techniques (that could 

be used as a data input to select the most commonly used classifier algorithms for this study) 

but also in understanding the performance of different data reduction techniques in data 

validation and testing phases. 

 Model fitness: Akaike’s Information Criterion Akaike’s information criterion (AIC) is a 

statistical measure of the goodness of fit for a particular model. It maximizes the expression 

−2(LL+ k) where k is the number of features, and LL is the maximized value of the log-

likelihood function for the given model.  The smaller the AIC, the better the model fits the 

data. Because of the k term, the smaller number of model parameters is favored. (Dean, 

2014) 

Summary of literature review in applying ML to detect the quality issue and Medicaid fraud and 

select supervised algorithms for this research 

In previous sections, detail of several use cases was provided. These researches were 

related to ML's application to solve quality problems and detect Medicaid fraud cases. Table 2 

summarizes the appearance of various ML algorithms in these researches as a tested algorithm 

and, in some cases, as the best performing one. 
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Table 2. ML algorithms in used literature to solve quality problems or detect Medicaid fraud 

Algorithm Frequency of 
application 

Times listed as the best 
performer 

Decision Tree 9   

Support Vector Machines 9 2 

Logistic Regression 7   

Neural Network 6 1 

Naïve Bayes 4 1 

k-Nearest Neighbor 3 1 

Random Forest 2   

Discriminant Analysis 1   

Gradient Boosting 1   

Others 6 1 

 These are a few lessons learned from the researches reviewed and summarized on the 

application of ML in detecting quality problems (in general) and Medicaid fraud:  

 The most common application of machine learning in the examined cases is to “detect quality 

issues through supervised learning.” This problem could be formulated as a classification 

problem. The second most common application was to “predict quality” using supervised or 

semi-supervised learning. Depends on the nature of the quality measure (variable vs. 

attribute), the problem could be formulated as a regression or a classification problem. 

 Supervised learning has more applications in detecting quality issues. Unsupervised learning 

methods are mainly based on unsupervised methods. This is due to the changing nature of the 

fraud patterns and the cost of data labeling. 

 There is no magic bullet for the best algorithm, and each algorithm may perform better in 

solving a specific problem. The most popular choices among algorithms are Decision Tree 
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(various configurations for both supervised and unsupervised learning), SVM (for supervised 

learning for binary classification problems), Logistic Regression (supervised), NN (for 

unsupervised and semi-supervised learnings), and Naïve Bayes (supervised). 

 Complex (aka black box) algorithms like SVM and NN may perform better in many cases, 

but they are hard to explain. Simpler models like decision trees also have disadvantages, 

including low stability. Computation time for complex models tends to be higher. SVM 

requires massive computational power for mixed and massive datasets. 

 The biggest challenge in leveraging supervised learning is the labeling process, usually a 

tedious and expensive process. 

 Principal Components Analysis (PCA) is frequently used to reduce the number of features 

without compromising the model performance.  

Based on all these studies, the researcher proposes to use the following algorithms to 

build, test, and validate our supervised model:  

1. Decision tree with two configurations Entropy (DTE) and Gini coefficient (DTG)  

2. Random forests with two configurations Entropy (RFE) and Gini configuration (RFG) 

3. Naïve Bayes (NN) 

4. K Nearest Neighbor (kNN) 

5. Logistic Regression (LR) 

6. Neural Network (NN) 

7. Discriminant Analysis (DA) 

8. Gradient Boosting (GB)  
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Statistics for Model Selection 

Our research problem uses both ratio and categorical data (as independent value) and 

predicts a categorical data type target. As a result, different algorithms' performances should be 

compared using proper statistics that work with categorical data. The most common statistics to 

compare supervised learning models' performance with categorical data are accuracy, recall, and 

precision extracted from the confusion matrix using the formula explained in Table 3 (Vihinen, 

2012). 

Table 3. Confusion Matrix and its related metrics 

 
Actual 

Measure 
+ - 

Predicted 
+ True Positive (TP) False Positive (FP) Positive Predictive Value (PPV) = 

TP/(TP+FP) 

- False Negative (FN) True Negative (TN) Negative Predictive Value (NPV) = 
TN/(FN+TN) 

Measure 
Recall or Sensitivity = 

TP/(TP+FN) 
Precision or Specificity 

= TN/(TP+TN) 
Accuracy= (TP+TN)/(TP+FP+FN+TN) 

F-measure (F1 Score) = 
2.(Precision.Recal)/(Percision+Recal) 

There are many metrics to select the optimal model to solve an ML problem with the 

massive dataset, including: 

 Computation and tuning time 

 Algorithm performance metric (e.g., accuracy, specificity, recall, balanced or weighted 

accuracy, F1 score, prediction power, etc.) 

 Explainability of the model and the associated algorithm, stability, and scalability (Vijaya 

Beeravalli, 2018), (Rácz et al., 2019). T 

here are also many other metrics used to precisely evaluate the performance of supervised 

learning models. Each has its advantages and disadvantages based on the problem statement and 
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the nature of the data. Researchers have offered various metrics for model validation and 

selecting the most appropriate model for each particular problem (Shah et al., 2016), (Marc-

Oliver Arsenault, 2017).  

 Average squared error (ASE): The sum of squared errors (SSE) divided by the number of 

observations.  

 Area under the curve (C-statistic): A measure of goodness of fit for a binary outcome. It 

is the concordance rate, and it is calculated as the area under the curve. 

 Area under the ROC curve: The area under the ROC curve presents accuracy. 

 Captured response: The number of response events in each bin divided by the events' 

total number. 

 Cumulative captured response: Cumulative of the captured response. 

 Kolmogorov- Smirnov statistic (KS): A goodness-of-fit statistic representing the 

maximum separation between the model ROC curve and the baseline ROC curve. 

 F1 score: The weighted average of precision (positive predicted value) and recall 

(sensitivity). It is also known as the F-score or F-measure. 

 False discovery rate: he expected proportion of type error I - incorrectly reject the null 

hypothesis (false positive rate). 

 Gini: A measure of the quality of the model. It has values between -1 and 1. Closer to 1 is 

better. It is also known as Somer's D. 

 KS (Youden): A goodness-of-fit index representing the maximum separation between the 

model ROC curve and the baseline ROC curve. 
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 Lift: A measure of the advantage (or lift) uses a predictive model, compares the target to 

when the model is not used and improves it. It is a measure of the predictive model's 

effectiveness calculated as the ratio between the results obtained with and without the 

predictive model.  

 Misclassification (Event): Considers only the classification of the event level versus all 

other levels. Thus, a non-event level classified as another non-event level does not count 

in the misclassification. For binary targets, these two measures are the same. It is 

computed in the context of the ROC report. That is, at each cutoff value, this measure is 

calculated. 

 Misclassification (MCE): A measure of how many observations are incorrectly classified 

for each response variable's value. 

 Multiclass log loss: The loss function applied to a multinomial target. It is the negative 

log-likelihood of the true labels given a probabilistic classifier's prediction. 

 ROC separation: ROC separation allows a ROC-based cutoff to compare the model's 

performance under different accuracy ranges.  

 The root-mean-square deviation (RMSD) or root-mean-square error (RMSE): is the 

square root of the average of squared errors and measures the differences between the 

predicted and observed value. 

Accuracy is the most popular measure to compare supervised learning models’ 

performance for categorical targets. It is easy to calculate and understand. However, when 

dealing with rare events as the target group (dependent variable), accuracy could be misleading. 

This is because of many true negatives in the denominator; accuracy would be a near-perfect 
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measure even for low performing models. Recall, precision, and F-measure (a balanced measure 

of precision and recall) focus on the target category (a rare event) and are more relevant to the 

problem. For our specific problem statement, recall is the most critical measure. This is because 

quality problems in a massive claim adjudication data are rare events, and it is paramount not to 

lose the chance to detected all of them. Precision has less importance; however, having many 

false positives will result in extra work by the quality team to manually research each false 

positive. To ensure our model considers the number of false positives as performance metrics, 

the researcher selected the F-measure (F1 score) as the second most essential metrics to compare 

model performance without losing sight of the recall. ROC separation is another popular metric; 

however, research shows F1-score’s superiority to ROC separation in selecting the best 

performing model when dealing with imbalanced data (Yahya, 2018). The datasets used for this 

research are imbalanced datasets; thus, F1-score is selected as the second performance metric. 

Chapter Summary 

This chapter provided some background information about the Medicaid program and its 

critical impact on the lives of millions of people in the U.S. and its overall financial implications 

on expenditure budget on a national and state level. Medicaid has two models: MCO and FFS. 

The researcher also reviewed two models' characteristics and shows how FFS, the smaller subset 

of Medicaid, contributes to the highest amount of potential fraud, waste, abuse, and quality 

issues mainly because, in this model, the risk is not transferred to the providers. The researcher 

reviewed the impact of machine learning and its importance on a global scale. The evolution of 

quality and machine learning, and then it was reviewed how ML could detect quality issues in 

the Medicaid FFS claim adjudication process. Different classes of machine learning methods 
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were then discussed, and an extensive literature review was presented on applying machine 

learning algorithms to solve various quality problems. The conclusion was that detecting quality 

issues through supervised learning is a general approach in different industries and often 

formulated as a classification problem. It was also concluded no ML algorithm generally 

performs better than others. Still, SVM and Naïve Bayes (supervised learning) and NN 

(unsupervised and semi-supervised learnings) are very popular among researchers. Labeling is 

the most challenging part of a supervised learning process and immensely impacts the solution's 

accuracy. Constant changes in the healthcare landscape changes and claim patterns negatively 

impact fraud analytics solutions, which heavily rely on unsupervised methods. A few lessons 

about the performance of different algorithms were learned. For example, NN is useful in 

managing complex and noisy datasets, and the decision tree helps to handle missing data. It is 

still not suitable for complex datasets, and the Fuzzy Logic and Genetic Algorithm are 

challenging to tune. 

The researcher reviewed two approaches to protect PHI (de-identification and 

synthesizing) and explained why the latter is more favorable for this dissertation. The literature 

was reviewed on building, training, and validating supervised learning models and proposed a 

unique research process and the selection criteria to choose an ML algorithm, including model 

Accuracy, model Stability, Interpretability-prediction trade-off, Bias-variance trade-off, and its 

impact data reduction. While unsupervised learning methods (including anomaly detection and 

clustering) have been frequently used to detect fraud in Medicaid claims, a supervised method is 

a more proper approach for our problem. This is because the starting point is a selection of 

labeled data (defective and non-defective Medicaid claims). Then models were built to find a 
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similar pattern in the test dataset. As in fraud analytics, the pattern of fraud is usually unknown 

and frequently changing, so staring with a set of label data is not practical. The researcher 

concluded this chapter by selecting ten algorithms to compare and two primary performance 

metrics. 
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CHAPTER 3 

METHODOLOGY 

Chapter Overview 

This chapter starts by reviewing the statement of the problem, research questions, and 

hypotheses. Then five steps of the research procedure are evaluated in detail, including the type 

of statistical tests used to validate that the synthesized data have the same error pattern as the 

actual one. This chapter concludes with some preliminary findings and a chapter summary. 

Statement of the Problem 

Conventional quality methods used to detect quality issues in the Medicaid FFS claim 

adjudication process only provide a population proportion estimate of the claims processed 

erroneously. This study aims to apply supervised learning as a method to detect erroneously 

adjudicated claims in the entire population and find out the most important feature and most 

effective supervised learning algorithm in detecting if an inpatient or outpatient Medicaid FFS 

claim has been erroneously adjudicated.  

Research Questions and Hypotheses 

The following research questions will be answered, and hypotheses will be tested to 

complete this study.   
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Research Question 1 (RQ1): What supervised machine learning algorithms can be used to 

determine Medicaid claim payment issues? 

Research Question 2 (RQ2): What are the most critical measures to compare the performance of 

different machine learning algorithms (resulted from RQ1) for our problem? 

Research Question 3 (RQ3): What are the claim attributes that could predict if a given FFS claim 

has been adjudicated correctly or erroneously (also known as predictors or independent 

variables)?  

Research Question 4 (RQ4): Is there any statistically significant difference among predictors' 

predictability power in identifying erroneously processed Medicaid outpatient claims?  

o Hypothesis 4.1: there is no significant difference among the feature importance score 

(Gini importance) of the predictors in identifying erroneously processed Medicaid 

outpatient claims: 

  𝐻଴ర.భ: 𝜇ଵ.ଵ =  𝜇ଵ.ଶ = ⋯ =  𝜇ଵ.௡  where 𝜇ଵ௜ is the feature importance score (Gini 

importance) of the i-th outpatient predictor.  

 𝐻ଵర.భ: There is at least one predictor (j) for which 𝜇ଵ௝ is not equal to the rest. 

Research Question 5 (RQ5): Is there any statistically significant difference among predictors' 

predictability power in identifying erroneously processed Medicaid inpatient claims?  

o Hypothesis 5.1: there is no significant difference among the feature importance score 

(Gini importance) of the predictors in identifying erroneously processed Medicaid 

inpatient claim: 
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  𝐻଴ఱ.భ: 𝜇ଶ.ଵ =  𝜇ଶ.ଶ = ⋯ =  𝜇ଶ.௡  where 𝜇ଶ௜ is the feature importance score (Gini 

importance) of the i-th inpatient predictor. 

 𝐻ଵఱ.భ: There is at least one algorithm (j) for which 𝜇ଶ௝ is not equal to the rest. 

Research Question 6 (RQ6): Is there any statistically significant difference among the selected 

supervised learning algorithms (the result of RQ1) in identifying erroneously adjudicated 

Medicaid outpatient claims (as measured by the result of the RQ2)? 

o Hypothesis 6.1: there is no significant difference among the average recall of selected 

supervised learning algorithms in identifying erroneously processed Medicaid outpatient 

claims: 

 𝐻଴ల.భ: 𝜇ଷ.ଵ =  𝜇ଷ.ଶ = ⋯ =  𝜇ଷ.ଵ଴  (𝜇ଷ.௜: the mean recall of algorithm i). 

 𝐻ଵల.భ: There is at least one algorithm (j) for which 𝜇ଷ.௝ is not equal to the rest. 

o Hypothesis 6.2: there is no significant difference among the average F1-score of selected 

supervised learning algorithms in identifying erroneously processed Medicaid outpatient 

claims: 

  𝐻଴ల.మ: 𝜇ସଵ =  𝜇ସଶ = ⋯ =  𝜇ସ.ଵ଴  (𝜇ସ.௜: the mean F1-score of algorithm i). 

 𝐻ଵల.మ: There is at least one algorithm (j) for which 𝜇ସ.௝ is not equal to the rest. 

Research Question 7 (RQ7): Is there any statistically significant difference among the selected 

supervised learning algorithms (the result of RQ1) in identifying erroneously adjudicated 

Medicaid inpatient claims (as measured by the result of the RQ2)? 
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o Hypothesis 7.1: there is no significant difference among the average recall of selected 

supervised learning algorithms in identifying erroneously processed Medicaid inpatient 

claims: 

 𝐻଴ళ.భ: 𝜇ହ.ଵ =  𝜇ହ.ଶ = ⋯ =  𝜇ହ.ଵ଴  (𝜇ହ௜: the mean recall of algorithm i). 

 𝐻ଵళ.భ: There is at least one algorithm (j) for which 𝜇ହ௝ is not equal to the rest. 

o Hypothesis 7.2: there is no significant difference among the average F1-score of selected 

supervised learning algorithms in identifying erroneously processed Medicaid inpatient 

claims: 

  𝐻଴ళ.మ: 𝜇଺.ଵ =  𝜇଺.ଶ = ⋯ =  𝜇଺.ଵ଴  (𝜇ସ௜: the mean F1-score of algorithm i) 

 𝐻ଵళ.మ: There is at least one algorithm (j) for which 𝜇ସ௝ is not equal to the rest. 

Research Question 8 (RQ8): Are the most powerful predictors different between outpatient and 

inpatient claims? Are the most accurate algorithms in detecting erroneously paid claims different 

between the two types of Medicaid claims studied? 

Research Design and Procedures 

There are many popular books on ML, and each proposes a slightly different process to 

build, train, validate, and implement an ML model. Some of them focus on the statistical 

learning process, proof ability, and validity of an approach like “Machine Learning: A 

Probabilistic Perspective” by Kevin  Murphy (Kevin P. Murphy, 2014).  Some focus more on the 

technical aspects of implementing a scalable and effective model using proper technologies or 

tools like “Machine Learning: Hands-On for Developers and Technical Professionals” by Jason 

Bell (Bell, 2014). Machine learning researchers offer a verity of models and process to build an 
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effective machine learning process and propose different steps, sometimes as little as three steps 

and sometimes up to 20 steps (Bernardi et al., 2019), (Levinger, 2019), (Niwratti, 2020), (Mayo, 

2020), (Chang, 2017). In his book Finlay offers an iterative 10-step model construction process, 

which is an excellent example of how a predictive model could be built (Finlay, 2014):  

1. Explore data landscape 

2. Sampling and shaping 

3. Data preparation (data cleansing) 

4. Create derived data 

5. Visualization and understanding 

6. Preliminary variable selection 

7. Pre-processing 

8. Model construction 

9. An iterative process to select the best model 

10.  Model completion 

Bell summarizes the ML model building process in five steps: Planning, Developing, 

Testing, Reporting, Refining, and Production  (Bell, 2014). Similarly, Witten and colleagues 

explained the ML model building process in five steps: data understanding, data preparation, 

modeling, evaluation, development (Witten et al., 2016).  Building and implementing a machine 

learning model follow the same steps as any improvement project and Plan, Do, Study, Act 

(PDSA) cycle: 

 Define the problem and parameters based on the plan (Plan) 

 Collect, prepare, and label data, select split strategy, train, and test the model(s) (Do) 
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 Review the performance of the model(s), fine-tune the model (s), and check the performance 

of the modified model(s) (S) 

 Execute the fine-tuned model(s) and start solving the business problem (A).   

Using the lessons learned from the literature, the researcher proposes a three-step process 

to build, train, validate, and implement our model, as depicted in Figure 6: 

1. Manage data, including: 

a. Selecting proper machine learning toolset 

b. Collecting and creating research dataset 

c. Feature Selection 

2. Build, train, and test models, including: 

a. Dealing with rare events and sampling strategy 

b. Select the split strategy and cross-validation 

c. Train and test Decision Tree, Random Fore, and Gradient Boosting 

d. Review feature importance 

e. Train and test the rest of the selected models and review the results 

3. Evaluate models' performances, including: 

a. Calculate and compare the performance of the models 

b. Evaluate the statistical difference among models' performances 

c. Review the results and discussions 
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Figure 6. Research procedure steps. 

 

Table 4 describes research procedures and statistical methods used to test the research 

hypotheses, answer research questions, and relate to each research methodology step.  

Table 4. Research procedures and statistical methods. 
Research 
Question 

Goal Method Research Step 

RQ1 
Selecting ML algorithms for this 
research 

Literature review and 
select appropriate 
algorithms 

Literature 
Review and 
Build, Train, 

and Test 
Models  

RQ2 
Selecting performance metrics to 
compare ML algorithms performance 
for the problem statement 

Literature review and 
select appropriate 
metrics 

Literature 
Review and 
Build, Train, 

and Test 
Models 

Manage Data

•Selecting proper machine learning toolset
•Collecting and creating research dataset
•Feature Selection

Build, Train, 
and Test 
Models

•Dealing with rare events and sampling strategy
•Select the split strategy and cross-validation
•Train and test Decision Tree, Random Fore, and Gradient 
Boosting

•Review feature importance
•Train and test the rest of the selected models and review the 
results

Evaluate 
Models' 

Performances

•Calculate and compare the performance of the models
•Evaluate the statistical difference among models' performances
•Review the results and discussions
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Research 
Question 

Goal Method Research Step 

RQ3 
Finding the most critical claim 
attributes (features) to predict the 
outcome (classify the claim correctly) 

Review the data and 
PCA 

Manage Data 

RQ4 
(H4.1) 

Examine if there exist differences 
among predictors' predictability power 
in identifying erroneously processed 
Medicaid outpatient claims 

 Mean Decrease in 
Impurity (MDI) [Gini 
importance] and one-
way ANOVA 

Build, Train, 
and Test 
Models 

RQ5 
(H5.1) 

Examine if there exist differences 
among predictors' predictability power 
in identifying erroneously processed 
Medicaid inpatient claims 

 Mean Decrease in 
Impurity (MDI) [Gini 
importance] and one-
way ANOVA 

Build, Train, 
and Test 
Models 

RQ6 
(H6.1, 
H6.2) 

Examine if there are differences among 
the performance of selected algorithms 
to detect quality issues in outpatient 
claims 

Classification 
Algorithms (Recall and 
F1-score), Gini 
Measure, and one-way 
ANOVA 

Evaluate 
Models' 

Performances 

RQ7 
(H7.1, 
H7.2) 

Examine if there are differences among 
the performance of selected algorithms 
to detect quality issues in inpatient 
claims 

Classification 
Algorithms (Recall and 
F1-score), Gini 
Measure, and one-way 
ANOVA 

Evaluate 
Models' 

Performances 

RQ8 

Review the differences among the 
feature importance and algorithms 
performance between two selected 
claim types 

Review the results 
Evaluate 
Models' 

Performances 

Selecting proper machine learning toolset  

The researcher reviewed several machine learning software, including open source 

predictive modeling applications, with the following criteria in mind: 

 Ease of use and model building: Python and R with readily available libraries (e.g., 

Scikit-learn library) are usually prime choices to build machine learning models. The 

challenge is that using Python and R requires scripting skills. Non-scripting tools (e.g., 

KNIME and RapidMiner) do not need coding and usually are easier for model building. 
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 Cost-effectiveness: some applications offer compelling features (e.g., SAS Viya and 

Microsoft Azure ML); however, they could be expensive and cost-prohibitive for 

research projects. KNIME, RapidMiner, and Microsoft ML offer free or low-cost options 

for education purposes, with some limitations in the free version features. R and Python 

libraries are mainly free of charge.  

 User community: a large user community, offers comprehensive support to the users. 

Among all tools, Python and R have the largest user community, in which a researcher 

can find examples of codes, similar problems, and tested solutions. Some (like KNIME 

and RapidMiner) have smaller user communities.  

 Capabilities: It is essential to ensure ML algorithms selected for this research are 

supported by the chosen tool. As an example, available ML supervised classifier in 

KNIME (KNIME, n.d.) include: decision tree, NN,  naive Bayes,  gradient boosted trees, 

logistic regression, SVM, and decision tree ensemble (including random forests). Among 

all tools, Python, R, and SAS Viya offer the most supported algorithms targeted by this 

research. 

The researcher tried the free version of several tools (namely KNIME, Microsoft Azure 

ML, SAS Viya in an educational mode with the predefined dataset, and Python and its libraries 

like Scikit-learn). He also contacted several other researchers and data scientists to gather their 

inputs about ML tools to solve problems with similar datasets. The summary of the results is 

shown in Table 5. 
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Table 5. Tool selection criteria. 

Selection Criteria Python R KNIME 
Microsoft 
Azure ML 

RapidMiner SAS Viya 

Ease of use Moderate Moderate Excellent Excellent Excellent Excellent 

Cost-effectiveness Excellent Excellent Excellent Good Moderate 
Cost 

prohibitive 

User community Excellent Excellent Moderate Good Good Very Good 

Capabilities Excellent Very Good Excellent Very good Excellent Excellent 

Python is a high-level and general-purpose programming language and very popular 

among data scientists as the top selection (Piatetsky, 2018). As a result, it has an excellent user 

community. It is easy to find examples of scripts that solved problems with Python. Its modular 

architecture and simple syntax improve its readability. Python is easy to install and performs 

well with complex datasets. Online documentation of Python features and libraries also is 

considerable and makes it easier to get the result. The researcher selected Python based on the 

criteria listed in Table 5. Many models are fully configured in the Scikit-learn library, and when 

there are features to choose to fine-tune a model, the researcher provides the selected features 

and the logic for such selection.  

Collecting and Creating research dataset 

To create a dataset for this research, the researcher has taken several steps to collect data 

from publicly available sources, protect the sensitive data, test our hypotheses, and examine our 

models' performance in a safe environment. All steps for collecting and creating a research 

dataset are explained in detail in this section to ensure an independent researcher can reproduce 

similar results.  
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Step 1- Select a source for the claim data 

This dissertation focuses on finding quality issues in the Medicaid FFS claim data, 

containing sensitive data. An alternative to using real-world data is to use publicly available PHI-

free data. As discussed in chapter two, there are two principal methods to protect PHI data: de-

identifying a real dataset and synthesizing a dataset that behaves like a real one. CMS has created 

five massive datasets called Synthetic Public Use File (DE-SynPUF) (The Centers for Medicare 

and Medicaid Services, 2013b). To make such a dataset, CMS has selected five percent random 

samples of Medicare beneficiaries in 2008 and their claims from 2008 to 2010 and used them to 

generate millions of Medicare claim data samples for various claim types, as shown in Table 6.  

Table 6. Tool selection criteria. 

File Name 
Type of 

Data 
Claim 
Type 

Number of the records per year 

2008 2009 2010 

Beneficiary Summary DE-SynPUF  Beneficiary N/A 2,326,856 2,291,320 2,255,098 

Inpatient Claims DE-SynPUF  Claim Inpatient 547,800 504,941 280,081 

Outpatient Claims DE-SynPUF Claim Outpatient 5,673,808 6,519,340 3,633,839 

Carrier Claims DE-SynPUF Claim Medical 34,276,324 37,304,993 23,282,135 

Prescription Drug Events (PDE) DE-SynPUF Claim Pharmacy 39,927,827 43,379,293 27,778,849 

A unique identification number is assigned to each synthetic beneficiary to link synthetic 

claims to a synthetic beneficiary. This beneficiary ID carries no information about the enrollee or 

any patient records and is provided solely for reference and data processing purposes. Table 7 

shows the list of features (data elements) for outpatient claims with their data types (The Centers 

for Medicare and Medicaid Services, 2013a): 

Table 7. List of features (data elements) for outpatient claims.  

# Feature names Labels Data Type 

1  DESYNPUF_ID  DESYNPUF: Beneficiary Code  Categorical/Nominal 
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# Feature names Labels Data Type 

2  CLM_ID  DESYNPUF: Claim ID  Categorical/Nominal 

3  SEGMENT  DESYNPUF: Claim Line Segment  Categorical/Nominal 

4  CLM_FROM_DT  DESYNPUF: Claims start date  Ordinal (Date) 

5  CLM_THRU_DT  DESYNPUF: Claims end date  Ordinal (Date) 

6  PRVDR_NUM  DESYNPUF: Provider Institution  Categorical/Nominal 

7  CLM_PMT_AMT  DESYNPUF: Claim Payment Amount  Ratio/Real number (Payment) 

8  NCH_PRMRY_PYR_CLM_PD_AMT  
DESYNPUF: NCH Primary Payer Claim 

Paid Amount  
Ratio/Real number (Payment) 

9  AT_PHYSN_NPI  
DESYNPUF: Attending Physician – National 

Provider Identifier Number  
Categorical/Nominal 

10  OP_PHYSN_NPI  
DESYNPUF: Operating Physician – National 

Provider Identifier Number  
Categorical/Nominal 

11  OT_PHYSN_NPI  
DESYNPUF: Other Physician – National 

Provider Identifier Number  
Categorical/Nominal 

12  
NCH_BENE_BLOOD_DDCTBL_LBLTY_

AM  
DESYNPUF: NCH Beneficiary Blood 

Deductible Liability Amount  
Ratio/Real number (Payment) 

13-22 ICD9_DGNS_CD_1 – ICD9_DGNS_CD_10 
DESYNPUF: Claim Diagnosis Code 1 – 

Claim Diagnosis Code 10  
Categorical/Nominal 

23-28 
ICD9_PRCDR_CD_1 – 
ICD9_PRCDR_CD_6  

DESYNPUF: Claim Procedure Code 1 – 
Claim Procedure Code 6  

Categorical/Nominal 

29  NCH_BENE_PTB_DDCTBL_AMT  
DESYNPUF: NCH Beneficiary Part B 

Deductible Amount  
Ratio/Real number (Payment) 

30  NCH_BENE_PTB_COINSRNC_AMT  
DESYNPUF: NCH Beneficiary Part B 

Coinsurance Amount  
Ratio/Real number (Payment) 

31  ADMTNG_ICD9_DGNS_CD  
DESYNPUF: Claim Admitting Diagnosis 

Code  
Categorical/Nominal 

32-76 HCPCS_CD_1 – HCPCS_CD_45  
DESYNPUF: Revenue Center HCFA 

Common Procedure Coding System 1 – 
Categorical/Nominal 

77 Year Year Ordinal (Date/year) 

 

Table 8 shows the list of features (data elements) for inpatient claims with their data 

types (The Centers for Medicare and Medicaid Services, 2013a). 

Table 8. List of features (data elements) for inpatient claims. 

# Variable names Labels  

10 OP_PHYSN_NPI  
DESYNPUF: Operating Physician – 
National Provider Identifier Number  

Categorical/Nominal 

11 OT_PHYSN_NPI  
DESYNPUF: Other Physician – National 

Provider Identifier Number  
Categorical/Nominal 
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# Variable names Labels  

12 CLM_ADMSN_DT  DESYNPUF: Inpatient admission date  Ordinal (Date) 

13 ADMTNG_ICD9_DGNS_CD  
DESYNPUF: Claim Admitting Diagnosis 

Code  
Categorical/Nominal 

14 CLM_PASS_THRU_PER_DIEM_AMT  
DESYNPUF: Claim Pass-Thru Per Diem 

Amount  
Ratio/Real number 

(Payment) 

15 NCH_BENE_IP_DDCTBL_AMT  
DESYNPUF: NCH Beneficiary Inpatient 

Deductible Amount  
Ratio/Real number 

(Payment) 

16 
NCH_BENE_PTA_COINSRNC_LBLTY_

AM  
DESYNPUF: NCH Beneficiary Part A 

Coinsurance Liability Amount  
Ratio/Real number 

(Payment) 

17 
NCH_BENE_BLOOD_DDCTBL_LBLTY

_AM  
DESYNPUF: NCH Beneficiary Blood 

Deductible Liability Amount  
Ratio/Real number 

(Payment) 

18 CLM_UTLZTN_DAY_CNT  DESYNPUF: Claim Utilization Day Count Categorical/Nominal 

19 NCH_BENE_DSCHRG_DT  DESYNPUF: Inpatient discharged date  Ordinal (Date) 

20 CLM_DRG_CD  
DESYNPUF: Claim Diagnosis Related 

Group Code  
Categorical/Nominal 

21-30 
ICD9_DGNS_CD_1 – 
ICD9_DGNS_CD_10  

DESYNPUF: Claim Diagnosis Code 1 – 
Claim Diagnosis Code 10  

Categorical/Nominal 

31-36 
ICD9_PRCDR_CD_1 – 
ICD9_PRCDR_CD_6  

DESYNPUF: Claim Procedure Code 1 – 
Claim Procedure Code 6  

Categorical/Nominal 

37-81 HCPCS_CD_1 – HCPCS_CD_45  

DESYNPUF: Revenue Center HCFA 
Common Procedure Coding System 1 – 

Revenue Center HCFA Common 
Procedure Coding System 45  

Categorical/Nominal 

 

Step 2- Ingest the claim data  

CMS’s DE-SynPUF database contains five massive datasets and over 120 separate 

flat files. Using the data for any data manipulation and machine learning purposes require 

creating a database, ingesting all the data, and providing reporting services to query easily, 

sample, and study the data. With a database developer's help, a data pipeline was created with 

a reporting layer to ingest all 120 flat files. The separate files were then merged using the 
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data pipeline's capabilities, creating five massive tables: one for beneficiary data and four for 

each claim type (Inpatient, Outpatient, Medical, and Pharmacy claims). Our database is a 

platform-agnostic solution using a web server and a firebase database that consists of four 

components: webserver in Express.js, UI/UX design using React, Postgres for persistence 

database, and Firebase real-time database as the message broker. Researchers do not 

necessarily need to create a data pipeline to use CMS’s DE-SynPUF datasets. The purpose of 

the data pipeline for this project was to ensure our simple random sampling of the 

synthesized claims is genuinely random. This requires the entire population of synthesized 

claims data to be available for random sampling, and each member of the population to have 

the same chance of being selected. APPENDIX A provides the architecture designed for the 

data pipeline. 

A researcher can use cluster sampling, which does not require the entire CMS’s DE-

SynPUF datasets to be ingested and is less costly. To do so, first, a random sample of files 

should be drawn from the 120 available files (depends on the study's scope). Then, the 

required claim samples can be drawn from the selected files. This could be done quickly in 

Excel. The drawback is that cluster sampling makes the statistical analysis more complicated 

and increases the sampling error.  Research shows if the heterogeneity among clusters is low 

and homogeneity of the sampled item in each cluster is high, the accuracy will be suffered 

(Kerry & Bland, 1998). The 120 files available in the CMS’s DE-SynPUF dataset are 

cultured so that claims for a particular beneficiary are in samples with the same number are 

in the same file as much as possible (The Centers for Medicare and Medicaid Services, 

2019b). As a result, records within each file are similar (homogenous); however, the 
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variation across clusters (files) is high, which means cluster sampling will increase error in 

the estimations.   

Step 3: Study the selected dataset to verify it works for the Medicaid data 

“Medicaid Analytic eXtract Data (MAX)” was used as the primary source of 

available public data to understand Medicaid inpatient and outpatient claims' typical 

coverage (Williams & Baugh, 2016). MAX is defined as a ”research-ready data source for 

Medicaid and CHIP calendar year person-level data on eligibility, service utilization and 

payment information in the 50 states and the District of Columbia (DC)” (Williams & Baugh, 

2016). The procedure codes (CPT and ICD codes) on our claim dataset were compared 

against the Medicaid coverage of several states, including California, New Hampshire, 

Arizona, Nevada, and Hawaii, to verify the state level coverage of the Medicare-covered 

inpatient and outpatient FFS claims (Hawaii Department of Human Services & Med-QUEST, 

n.d.), (NM Human Services Department (HSD), n.d.), (Arizona Health Care Cost 

Containment System, n.d.), and (Nevada Department of Health and Human Services, n.d.). 

As appropriate, the researcher used the state level to add some adjustments and try to make 

the dataset as generic as possible  (Hawaii Department of Human Services & Med-QUEST, 

n.d.). In general, Medicaid FFS programs tend to cover more procedures than the standard 

coverage for Medicare FFS. As a second payer, Medicaid FFS covers all inpatient and 

outpatient procedures covered through Medicaid part A and B; however, the scope of 

Medicaid coverage is usually beyond Medicare, especially on other claim types like long 

term care. As a result, one can consider the Medicare Synthesized dataset equivalent to a 

subset of a generic Medicaid claim payment dataset. The impact of this difference in our 
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research is that our predictive models will be more generic. If the predictive models resulted 

inform this research are applied to Medicaid FFS payment data, the applicability of the 

model will not suffer because the same predictors (features) to exist in any Medicaid FFS 

payment dataset. The difference is that an actual Medicaid FFS data set has more features so 

the predictive model could improve by adding new features. The researcher will discuss how 

one could improve this research using a real or synthesized Medicaid FFS payment dataset in 

the recommendations section. 

Step 4- Make Synthetic claim data available for sampling 

The designed data pipeline was essential to ingest and merged split files into a 

coherent dataset. However, running queries in the pipeline is not fast, and it is costly. To 

overcome this challenge and draw random samples from various tables in the dataset quickly, 

the researcher, with the help of a database admin, moved the datasets into Amazon Web 

Services (AWS) cloud. Two AWS services were utilized for this purpose: 

1. Amazon DynamoDB: a fully managed, multi-region, multi-master database with built-in 

security, backup and restore, and in-memory caching for applications requiring massive 

scale of handling data (Amazon, n.d.-b). 

2. Amazon Athena: an interactive query service that makes it easy to analyze Amazon's data 

restored in Amazon DynamoDB tables using standard SQL (Amazon, n.d.-a).  

Moving the cohesive datasets to the AWS cloud allowed the researcher to design and 

run complex queries and test various scenarios with proper speed and accuracy. The 

dissertation committee and peer reviewers can request access to this dataset for independent 
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validation and verification of the data and the study results. An instruction to access AWS 

instant established for this research is provided in APPENDIX B.  

Step 5- Select a random sample from the dataset 

Our ingested dataset consists of over 1.3 million inpatient claims and close to 16 

million outpatient claim payments. Two random samples were selected to build our 

supervised learning models, as illustrated in Table 9.  The researcher used the SQL queries 

like the following example, which pulls 5,00 random sample of inpatient claims for the year 

2010: 

SELECT * FROM "de_synpuf"."inpatient_claims"  
WHERE "de_synpuf"."inpatient_claims"."clm_from_dt" >= 20100101 and  
"de_synpuf"."inpatient_claims"."clm_from_dt" <= 20101230   
ORDER BY random() limit 5000; 

Independent researchers can use SQL query or Excel function (RAND and 

RANDBETWEEN) and get the same results.  

Table 9. Selected sample size. 

Claim Type Category 2008 2009 2010 Total 

Inpatient Claims 

Total Population in DB 547,800 504,941 280,081 1,332,822 

Initial Sample Size 5,478 5,049 2,801 13,328 

Outpatient Claims 

Total Population in DB 5,673,808 6,519,340 3,633,839 15,826,987 

Initial Sample Size 56,738 65,193 36,338 158,269 
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Step 6- Cleansing sampled dataset 

data cleansing is an extensive task in real data and mainly consists of finding and 

dealing with missing data and anomalies. Our ingested dataset consists of over 1.3 million 

inpatient claims and close to 16 million outpatient claim payments. Two random samples 

were selected to build our supervised learning models, as illustrated in Table 9. Many such 

issues are not prevalent in our synthesized dataset. Two steps were taken in our datasets: 

a. Eliminate negative payments: in the world of Medicaid FFS claims, a negative 

payment amount is usually an indication that the provider was overpaid in the past 

and had a negative balance. In those situations, the claim will result in a zero payment 

with a negative number on the claim explanation documents, also known as 

Remittance Advice Details (RAD) Codes. The researcher removed such incidents 

from the sample to avoid unnecessary complications.    

b. The researcher also eliminated rows with missing data in key fields (e.g., payment, 

NPIs). 

Step 7- Understand the type and percentage of quality issues in Medicaid FFS claims 

adjudication using PERM audits 

The most comprehensive public source for Medicaid FFS quality issue information is 

the Payment Error Rate Measurement (PERM) program reports. PERM is an independent 

audit on all Medicaid programs. PERM’s goal is “to measure and report a national improper 

payment rate for Medicaid and the Children’s Health Insurance Program (CHIP) to comply 

with the requirements of the Improper Payments Elimination and Recovery Improvement 

Act” (The Centers for Medicare & Medicaid Services, 2015). PERM measures the quality 
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issues on both Medicaid MCO and FFS programs. For Medicaid FFS, PERM measures a 

wide verity of quality issues, including improper payments caused by beneficiary eligibility 

problems, provide enrollment, provider diagnosis, policy-related matters, claim adjudication 

related issues, etc. Typical Medicaid claim adjudication processing errors more or less follow 

the same pattern as edited criteria, including the following categories: Eligibility, Pricing, 

Correct Coding, third part liability related issues, suspected duplicate, and Frequency or 

Utilization of Services (Iowa Medicaid Enterprise Performance Report, 2006). PERM 

groups all the problems found during the audit of Medicaid FFS claims into several 

categories, including the following groups (The Centers for Medicare and Medicaid Services, 

2019a): 

1. Pricing Error 

2. Data Entry Error 

3. Erroneously Paid Claims [should have been denied] (including Duplicate Claim Error, 

Non-covered Service/Beneficiary Error, FFS Payment for a Managed Care Service Error, 

etc.) 

4. Erroneously Denied Claims [should have been paid] 

5. Third-Party Liability Error 

6. System Logic Edit Error 

7. Claim Filed Untimely Error 

8. Administrative/Other Error 

The researcher selected the first four categories from the abovementioned list to label our 

target group based on these two types of quality errors. The reason for choosing these groups is 
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that they contribute to the most erroneous payment found in Medicaid FFS PERM audits. There 

are two significant challenges with generalizing the findings of PERM audit reports to Medicaid 

FFS MMIS claim adjudication processes: 

a) PERM reports aggregate results and presents statistics on the highest level and do not 

provide granule level information to allow researchers to see detailed level data and 

compare the results on claim level or even state level. 

b) The definition and application of claim issues may differ from one MMIS program to 

another. For example, suppose a claim adjudication logic is programmed into one 

MMIS and is applied to claim manually in another state. In that case, the related 

pricing errors may be categorized as “System Logic Edit Error” and “Pricing Error” 

in another one. 

To get an overall sense of the percentage of the pricing and data entry errors, the 

researcher used the PERM reports for 2019 and 2017, as shown in Table 10 (The Centers for 

Medicare and Medicaid Services, 2017) (The Centers for Medicare and Medicaid Services, 

2019a). 
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Table 10. Selected error rates in PERM audit reports for 2017 and 2019. 

Year2 Claim Type 
Claims 

Sampled 
Improper 
Payments 

Improper 
Payment 

Rate 
95% CI 

2017 
Inpatient and Outpatient Hospital 
Services- Medical Review Errors 

3,672 38 1.3% 0.9%-1.8% 

2017 
Inpatient and Outpatient Hospital 
Services- Data Processing Errors 

3,672 235 3.8% 2.9%-4.8% 

2019 
Inpatient Hospital Services- Medical 
Review Errors 

2,651 9 0.69% 0-1.47% 

2019 
Outpatient Hospital Services- 
Medical Review Errors 

1,670 29 1.24% 0.39%-2.10% 

2019 
Inpatient Hospital Services- Data 
Processing Errors 

2,651 156 2.17 % 1.30% - 3.05% 

2019 
Outpatient Hospital Services- Data 
Processing Errors 

1,670 78 3.27% 1.01% - 5.52% 

 

This study focuses on a subset of the improper payments reported in PERM audits related 

to claim adjudication, including claim pricing issues and data entry issues. The results of PERM 

audits show a 1%-5% should be an overall acceptable interval estimate for data entry and claim 

pricing issues in a Medicaid FFS program. 

Step 8- Estimate the overall percentage of claim adjudication errors (population proportion) in 

a given Medicaid FFS program 

As mentioned before, the PERM audit report only provides a high-level understanding of 

the type of quality issues in a typical Medicaid FFS claim adjudication process. However, to 

label the target group in our synthesized dataset, detailed level information about the pattern of 

quality issues in each Medicaid program is needed. To achieve this goal, the researcher selected 

the California Medicaid Management Information System and submitted several formal “Public 

 

2 2018 PERM is not available on the CMS website 
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Information Request (PRA)” to the California Department of Health Care Services to receive 

weekly and monthly quality reports. CA-MMIS was selected for several reasons: 

a. CA-MMIS is the most extensive Medicaid FFS program in the nation that processes over 

200K claims per day. CA-MMIS is a data-rich program in which hundreds of reports are 

available. 

b. CA-MMIS quality reports generate large sample sizes, increasing the chance to see 

samples of rare events (quality issues) in the quality reports. 

c. The familiarity of the research team with CA-MMIS data streamlines the data gathering 

process. 

Redacted copies of two quality reports requested from CA-MMIS:  

1. Monthly Quality Management Performance Report (MQMPR)  

2. Weekly Payment Data Review (WPDR) report for three years (2016-2019).  

The researcher received the PHI-free version of these reports in which individually 

identifiable information (e.g., Providers’ names and NPIs) were redacted. MQMPR contains 

large samples (over 1,000 samples from all adjudicated claims per month), and WPDR contains 

statistically significant (over 300 per week) samples of high-dollar claims. MQMPR did not 

provide detailed information on each quality issue per claim type, so the researcher used it to 

estimate the population proportion of quality issues and study the pattern of data entry issues in 

general. Per the MQMPR report of 2018, the estimated overall error rate on the CA-MMIS claim 

adjudication process is 2.1%, as shown in Table 11. 
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Table 11. Summary of claim adjudication errors per CA-MMIS MQMPR for 2018. 

Month 
Sample 

Size. 
Overpayments Underpayments Overpayment% Underpayment% 

Erroneous 
Payment% 

Jan    1,040  11 12 1.1% 1.2% 2.2% 

Feb 927  9 6 1.0% 0.6% 1.6% 

Mar 987  11 8 1.1% 0.8% 1.9% 

Apr 954  8 12 0.8% 1.3% 2.1% 

May 921  12 11 1.3% 1.2% 2.5% 

Jun 938  8 9 0.9% 1.0% 1.8% 

Jul 907  10 11 1.1% 1.2% 2.3% 

Aug 911  13 9 1.4% 1.0% 2.4% 

Sep 902  8 8 0.9% 0.9% 1.8% 

Oct 945  7 3 0.7% 0.3% 1.1% 

Nov 969  13 17 1.3% 1.8% 3.1% 

Dec 1,008  19 8 1.9% 0.8% 2.7% 

Average 2.1% 

 

Step 9- Understand the underlying pattern of quality issues in Medicaid FFS claims 

adjudication using detailed reports from a selected Medicaid program 

CA-MMIS MQMPR reports do not provide detailed information on each quality issue per 

claim type. However, CA-MMIS WPDR reports include detail of the quality issues per claim 

type, so the researcher extracted the detail of the quality issues (erroneous payments) in the CA-

MMIS WPDR 9/9/2016- 5/1/2020. Details of these reported findings are presented in 

APPENDIX C, and Table 12 summarizes the high-level statistics for the results.  
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Table 12. Claim adjudication errors reported in CA-MMIS WPDR 9/9/2016- 5/1/2020. 
Claim Types Count of Error 

Outpatient 376 

Inpatient 52 

Medical 117 

Long Term Care 6 

Pharmacy 4 

Total 555 

The researcher used the detail of the WPDR results to study and simulate the pattern of 

erroneous payments. It is important to note all reported findings in the CA-MMIS WPDR reports 

were caught and fixed before the providers' final payment, so they are not essentially erroneous 

“payments.” However, they carry the same characteristics of erroneous payments in a typical 

Medicaid FFS. CA-MMIS WPDR targets high dollar value claims, and it is not using a simple 

random sample of all adjudicated claims. Therefore, while the findings of CA-MMIS WPDR 

reports are appropriate for data labeling, they do not provide a statistically valid interval estimate 

of the population proportion (estimated rate of erroneous payments in a typical Medicaid FFS). 

Therefore, PERM audit reports in step 8 were used to provide an interval estimate of erroneous 

payments in a typical Medicaid FFS program.  

As explained in step 6, the researcher simulated four types of erroneous payments to 

create labeled data for the target group: pricing errors, data entry error, erroneously paid, and 

erroneously denied claims. As depicted in Figure 7, these target groups are categorized into two 

major categories: 
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 P0- Negatives (not targeted group). As explained later in this chapter, the researcher did not 

change the payment amount for these groups and only applied the feature engineering for 

data cleansing.  

 P1- Positives (target group). These are simulated labels and are categorized into three 

subgroups: 

o P1.1- Erroneously denied (should have been paid) 

o P1.2- Erroneously paid (should have been Denied) 

o P1.3- Pricing and data entry issues  

 

Figure 7. Hierarchy of target labels. 

 

Table 13 presents the number of labels created for the target category for both inpatient 

and outpatient datasets. 

 

Outpatient

Negative (P0): 
No issues 

Positive or 
Target (P1)

P1.1

P1.2

P1.3
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Table 13. Number of labels created for the target category. 
    Outpatient Inpatient 

Labels   Count Percentage Count Percentage 
P0   112,335 98.65% 12,833 97.07% 
P1   1,532 1.35% 388 2.93% 
  P1.1 800 0.70% 200 0.18% 
  P1.2 400 0.35% 100 0.09% 
  P1.2 332 0.29% 88 0.08% 

Total   113,867 100.00% 13,221 100.00% 

A detailed explanation of this simulation process is provided in steps 9.1 to 9.3. 

Step 9.1- simulating pricing errors and data entry error 

This category contains the most complicated erroneous payments. CA-MMIS WPDR 

findings for inpatient and outpatient claims between 9/9/2016- 5/1/2020 were used to simulate 

these labels. First, results related to other erroneously paid and documentation issues were 

removed because they are not related to pricing issues and simulated in step 9.2. The claim 

adjudication errors' underlying probability distribution function (PDF) for the percentage 

difference for outpatient and inpatient claims was studied. Two separate Anderson-Darling (AD) 

tests were conducted. The AD test has been widely used to test the goodness of fit (GoF) of a 

distributional family. AD method compares the fit of the observed cumulative distribution 

function with that expected. AD test is derived as a modification of the Cramér–von Mises test, 

and the test statistics are given by (Upton & Cook, 2014): 

𝐴ଶ = −
1

𝑛
෍(2j − 1)

௡ஶ

௝ୀଵ

ൣln {𝐹൫𝑥(௝)ൟ + ln {1 − 𝐹൫𝑥(௝)ൟ൧ − 𝑛 

where F is the hypothesized cumulative distribution function, n is the sample size and 

𝑥(௝) is the jth ordered observation (𝑥(ଵ) ≤ 𝑥(ଶ) ≤ ⋯ ≤ 𝑥(௡)). Researchers have been using the 

AD test for estimating the distribution function of operational risk, which is very similar to how 
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it is used in this research (Feuerverger, 2016). The researcher uses the AD statistic to determine 

if our dataset (here, the distribution of the pricing errors in each Medicaid FFS program) follows 

a specified distribution (null hypothesis) or not (alternate hypothesis).  The smaller the AD 

statistics, the better are the fit for the specific distribution. The researcher also looks at the p-

value. If the p-value is less than alpha (0.05 or 0.10), the null hypothesis (that assumes the data 

will come from that distribution) is rejected. The Anderson-Darling statistic can be used to 

compare the fit of several distributions to determine which one is the best. However, to claim 

that one distribution is the best, its Anderson-Darling statistic must be substantially lower than 

the others. When the statistics are close together, one should use additional criteria, such as 

probability plots, to choose between them. Minitab was used for this test because it tests 16 

different distribution functions for the AD test (Minitab, 2017). AD tests were run in Minitab for 

the absolute percentage difference (between the paid and correct amounts) for outpatient and 

inpatient samples. The complete results are presented in APPENDIX D. Table 13 summarizes 

the results of the GoF and AD tests for the outpatient claim issues. 

Table 14. The goodness of Fit Test using AD for outpatient claim issues at CA-MMIS. 
Distribution AD P LRT P 

Normal 115.373 <0.005  
Box-Cox Transformation 22.670 <0.005  

Lognormal 27.851 <0.005  
3-Parameter Lognormal 26.811 * 0.001 

Exponential 270.653 <0.003  
2-Parameter Exponential 277.286 <0.010 0.112 

Weibull 41.427 <0.010  
3-Parameter Weibull 39.024 <0.005 0.000 

Smallest Extreme Value 122.999 <0.010  
Largest Extreme Value 93.428 <0.010  
Gamma 67.728 <0.005  

3-Parameter Gamma 64.935 * 0.000 
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Distribution AD P LRT P 

Logistic 84.572 <0.005  
Loglogistic 26.410 <0.005  

3-Parameter Loglogistic 25.357 * 0.000 

There is no statistically significant proof (with P>0.05) that any tested distributions fit the 

data. Per AD test recommendations, the Loglogistic distribution offers the lowest AD 

(AD=26.410) and the best fit among the 2-parameter distributions (Minitab, 2019). Please note 

because the goal is to find the actual data's underlying distribution function. As a result, no 

transformation is selected, even if they have the lowest AD. Also, adding a third parameter 

significantly improves the fit of the Loglogistic distribution (LRT P = 0.000). Also, per 

guideline, a distribution with data points that roughly follow a straight line should be selected. 

This means Loglogistic and 3-parameter Loglogistic are acceptable rough estimates (Griffith, 

2015). Table 14 is the summary of the results of the GoF and AD tests for the inpatient claims. 

Table 15. The goodness of the Fit Test using AD for inpatient claim issues at CA-MMIS. 
Distribution AD P LRT P 

Normal 10.531 <0.005   
Box-Cox Transformation 4.130 <0.005   
Lognormal 5.555 <0.005   
3-Parameter Lognormal 5.297 * 0.169 
Exponential 8.078 <0.003   
2-Parameter Exponential 8.473 <0.010 0.051 
Weibull 6.733 <0.010   
3-Parameter Weibull 6.287 <0.005 0.004 
Smallest Extreme Value 11.243 <0.010   
Largest Extreme Value 9.380 <0.010   
Gamma 7.646 <0.005   
3-Parameter Gamma 7.191 * 0.011 
Logistic 8.817 <0.005   
Loglogistic 4.641 <0.005   
3-Parameter Loglogistic 4.449 * 0.134 
Johnson Transformation 0.190 0.894   
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For the inpatient data, the researcher came to a similar conclusion as outpatient data. 

There is no statistically significant proof (with P>0.05) that any tested distributions fit the data, 

but the Loglogistic distribution offers the lowest AD among two-parameter distributions 

(AD=4.641). Here adding the third parameter does not improve the fit (LRT P = 0.134). While 

the underlying pattern of pricing issue percentage difference is relatively close to a Loglogistic 

distribution, there is no perfect among 16 tested PDFs to fit these data. As a result, during the 

labeling process, the exact pricing issue percentage differences are directly applied to the labeled 

data (instead of using a function to generate a dataset with the desired PDF) following these 

steps: 

1. Select a random sample of 332 outpatient claims and 88 inpatient claims with a paid amount 

greater than zero. This could be done in SQL, as described in step 6 of using Excel RAND 

function. 

2. Extract the absolute difference between paid and correct payment amounts from the CA-

MMIS WPDR reports listed in APPENDIX C. Excel ABS function could be used for this 

purpose: ABS (Paid Amount-Correct Amount) 

3. Select a random percentage from step 2 and multiple it by the selected sample from step 1. 

Sampling without replacement should be used. When the number of samples is greater than 

the number of percentage differences (Sept 2), repeat the process from setp1. All selected 

samples were labeled P1. 

Step 9.2- simulating erroneously denied claims 

This category contains the erroneously denied claims. Using numbers presented in Table 

13, 800 random samples of outpatient claims and 200 samples of inpatient claims were selected. 
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This could be done in SQL, as described in step 6 of using Excel RAND function. The total 

payment amount of these selected samples was changed to zero, and they were labeled as P1. 

Step 9.3- simulating erroneously paid claims 

This category contains the erroneously paid claims. Using numbers presented in Table 

13, 400 random samples of outpatient claims with payment amount equal zero, and 100 samples 

of inpatient claims with payment amount equal zero were selected. For each claim, the researcher 

found the first ICD code used in the claim and queried claims with similar first similar ICD 

codes. A random sample of those claims was selected, and their claim paid amounts were used to 

replace the zero paid amount. This could be done in SQL, as described in step 6 of using Excel 

RAND function. The total payment amount of these selected samples was changed to zero, and 

they were labeled as P1. 

Chapter Summary 

This chapter started by reviewing the statement of the problem and research questions 

and hypotheses. Then, three steps of the research procedure were explained in detail, including 

the type of statistical tests that will be used to validate that the synthesized data has the same 

error pattern as the actual one. Nine steps of collecting and creating a research dataset and 

labeling data were explained in detail. Anderson-Darling and GoF tests were applied to the data 

collected from California Medicaid FFS (aka CA-MMIS) to detect the underlying distribution 

function of potential erroneous payments and to simulate labels for the target group. PERM audit 

results were reviewed, and an overall interval estimate of population proportion for erroneous 

payments in a typical Medicaid FFS was extracted. Finally, two complete datasets were created 

and labeled to be used to train and test ML models.  
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CHAPTER 4 

RESULTS 

Chapter Overview 

In this chapter, the results of this study are reviewed, hypotheses are tested, and the 

findings' details are discussed. As reviewed in the previous chapter, this chapter is organized into 

three major sections: 

1. This chapter is tarted with completing the last part of manage data: "Feature Selection." 

2. Then, ML models are built, and training to be conducted. The research approach and result of 

event-based sampling, oversampling, and stratification will be discussed. The selected split 

strategy will be addressed, two different cross-validation strategies will be compared, and 

one will be selected. Decision tree models, random forest models, and gradient boosting 

model will be trained and tested, and outcomes will be presented. The results from these 

three models will be used to calculate the feature importance for both datasets (inpatient and 

outpatient claims). After that, all other selected models will be trained and tested; the results 

will be presented.  

3. This chapter will be concluded by evaluating selected models' performances. Models' 

performance metrics will be calculated and compared, the statistical difference among 

models' performance metrics will be assessed, and the results will be reviewed and discussed. 

The result of the hypothesis tests will be discussed in detail.  
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Feature Selection 

This section discusses methods applied for feature selection to reduce the feature space 

dimension for our data. Feature selection aims to find and eliminate the independent variables 

(from all N features), which are less informative and make the computation difficult and even 

cause confusion. The idea here is to create an M-dimensional hyperspace, such M (where M < N) 

features that the data variates most  (PCA For Categorical Features? - Stack Overflow, n.d.). 

Feature selection is a collective name for a group of methods that are a sub-class of data 

dimensionality reduction techniques that aim to reduce data complexity and improve machine 

learning and statistical learning results. As discussed by many data scientists, there is no 

universal best method for feature selection, and the complexity of the problem, nature of the 

dataset and business, and computational power availability and limitation may dictate choosing 

one method over another (Shamsaei & Gao, 2016), (Brownlee, 2019). While they are several 

methods that for feature selections, the most popular methods are Principal component analysis 

(PCA), which appropriate for continuous (ratio) data, and Multiple Correspondence Analysis 

(MCA), which works with categorical data.  

Our problem consists of a mix of ratio and categorical features (independent variables) 

and categorical target (dependent variable). MCA function in Minitab only supports binary 

categories and does not perform well on the massive datasets with high dimensions in our 

experience. The researcher has tried methods recommended by researchers to conduct 

PCA/MCA on mixed data (ration and categorical) but found they require extreme and cost-

prohibitive processing power (Stackexchange, n.d.). For example, to run a Python code to 
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implement a mix-data PCA/MCA method recommended by Nancy Chelaru-Centea, a test was 

conducted (Chelaru-Centea, 2019). After several unsuccessful attempts on a very powerful 

server (in this case, centOS server with 16 intel CPUs with 64 GB RAM), it was found that more 

than 205 GB memory should be allocated the data to run the algorithm. This is logistically 

unfeasible. Even if the processing capability is available to conduct complex PCA/MCA on 

mixed data to identify all variables' statistical significance, one should not assume the features 

selected by such methods are the best predictors of the target group. As shows by Lo et al., 

relying solely on the statistical significance of the predictor in a similar situation may increase 

classification errors (Lo et al., 2015). For this research, the researcher used a heuristic and hybrid 

method for feature selection consist of three steps:  

1. Eliminating data with no-low information value 

2. Conduct PCA for continuous (ratio) features 

3. Use business knowledge to select categorical features 

Eliminating data with no-low information value 

Independent values with one (unique), irrelevant, identical, or near-identical values do 

not improve a machine learning model's prediction power. This is even more important when 

dealing with high dimensional data (datasets with over 15-20 features) and massive (hundreds 

and thousands of rows). Our original datasets each had over 70 elements and more than ten 

thousand rows. The researcher reviewed datasets and found the following features to have unique 

or near-unique values, so they were removed from the model: 

 Segment 
 QAREVIEW_RESULT 
 hcpcs_cd_45 
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 nch_bene_blood_ddctbl_lblty_am (for outpatient dataset had single value) 

The researcher also removed feature with no-information values, including identifiers, as 

they have no prediction power by nature, so the following features were removed:  

 at_physn_npi  
 op_physn_npi  
 ot_physn_npi 
 prvdr_num 
 clm_from_dt  
 clm_thru_dt 

 

Conduct PCA for continuous (ratio) features  

As discussed in the literature review, PCA has been frequently used as a successful 

method to reduce the dimensionality of the data, improving the performance of the algorithms, 

and enhance the model interpretability without losing the performance. The PCA function of the 

Minitab (Stat > Multivariate > Principal Components) was used on the reduced dataset resulted 

from the previous steps and selected five (5) features (independent variables) for the outpatient 

dataset PCA, including:  

 clm_pmt_amt 

 nch_prmry_pyr_clm_pd_amt 

 nch_bene_ptb_ddctbl_amt 
 nch_bene_ptb_coinsrnc_amt 
 clm_utlztn_day_cnt 

Following the same process, six (6) features (independent variables) selected for the 

inpatient dataset PCA, including 

 clm_pmt_amt 
 nch_prmry_pyr_clm_pd_amt 
 clm_pass_thru_per_diem_amt 
 nch_bene_pta_coinsrnc_lblty_am 
 nch_bene_blood_ddctbl_lblty_am 
 nch_bene_ip_ddctbl_amt 
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The summary result of PCA analysis from Minitab is illustrated in Tables 16 and 17, and 

details are presented in APPENDIX E.  

Table 16. PCA Analysis for five ratio features for the outpatient dataset. 

Eigen analysis of the Correlation Matrix 

Eigenvalue 1.2556 1.1104 0.9846 0.8969 0.7525 

Proportion 0.251 0.222 0.197 0.179 0.151 

Cumulative 0.251 0.473 0.67 0.849 1 

12794 cases used; 727 cases contain missing values 

Eigenvectors 

Variable PC1 PC2 PC3 PC4 PC5 

clm_pmt_amt 0.698 -0.017 0.09 -0.071 0.707 

nch_prmry_pyr_clm_pd_amt 0.211 0.214 -0.944 0.116 -0.071 

clm_pass_thru_per_diem_amt 0.1 -0.683 -0.204 -0.677 -0.158 

nch_bene_ip_ddctbl_amt 0.047 -0.691 -0.059 0.718 0.017 

clm_utlztn_day_cnt 0.676 0.1 0.236 0.088 -0.685 

The first principal component for outpatient claims accounts for 22.2% of the total 

variance. To keep the most information in the selected features, a 90% cumulative cut-ff 

threshold was set for the Correlation Matrix's Eigen analysis. This means all ratio features must 

be chosen to explain the least 90% of the variance in our dataset. As shown in Table 16, even if 

one ratio feature is removed, the remaining ratio features only account for up to 82.2% of the 

variation. As a result, all ratio features are kept in the outpatient model.  

Table 17. PCA Analysis for five ratio features for the inpatient dataset. 
Eigen analysis of the Correlation Matrix    

Eigenvalue 1.1655 1.1056 1.0034 0.9832 0.8896 

Proportion 0.194 0.184 0.167 0.164 0.148 

Cumulative 0.194 0.379 0.546 0.71 0.858 

12504 cases used; 717 cases contain missing values   
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Eigenvectors      

Variable PC1 PC2 PC3 PC4 PC5 

clm_pmt_amt 0.658 -0.209 -0.057 -0.007 -0.075 

nch_prmry_pyr_clm_pd_amt 0.298 -0.351 0.338 -0.738 -0.019 

clm_pass_thru_per_diem_amt 0.38 0.567 -0.071 -0.11 0.71 

nch_bene_pta_coinsrnc_lblty_am 0.518 -0.233 0.059 0.612 -0.079 

nch_bene_blood_ddctbl_lblty_am 0.071 -0.174 -0.935 -0.219 -0.059 

The first principal component for inpatient claims accounts for 19.4% of the total 

variance. To keep the most information in the selected features, a 90% cumulative cut-ff 

threshold was set for the Correlation Matrix's Eigen analysis. As shown in Table 17, even if just 

one ration feature is removed, the remaining ration features only account for up to 85.8% of the 

variation. As a result, all ratio features are kept in the inpatient model.  

Use business knowledge to select categorical features 

Medicaid FFS claims data allows a researcher to use business knowledge and make a 

judgment call to eliminate categorical features with low predictability power. Two right 

candidates for such heuristic feature selection are diagnosing and treating medical codes (CPT 

and ICD codes). A Medicaid FFS claim may contain several diagnoses and treatments, so there 

are up to 45 columns (features) to capture all codes related to one claim in the dataset. However, 

most claims contain less than a handful of CPT and ICD codes. A simple exploratory analysis of 

the data shows the only the first three CPT, and ICD codes for each claim have considerable 

values. The rest are usually with no value. Table 18 listed all features selected at the end of the 

feature selection process to build our supervised learning models. 
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Table 18. PCA Analysis for five ratio features for the inpatient and outpatient dataset. 
Inpatient  Outpatient 

clm_pmt_amt clm_pmt_amt 

nch_prmry_pyr_clm_pd_amt nch_prmry_pyr_clm_pd_amt 

at_physn_npi at_physn_npi 

op_physn_npi op_physn_npi 

ot_physn_npi ot_physn_npi 

admtng_icd9_dgns_cd icd9_dgns_cd_1 

clm_pass_thru_per_diem_amt icd9_dgns_cd_2 

nch_bene_ip_ddctbl_amt icd9_dgns_cd_3 

nch_bene_pta_coinsrnc_lblty_am icd9_prcdr_cd_1 

nch_bene_blood_ddctbl_lblty_am nch_bene_ptb_ddctbl_amt 

clm_utlztn_day_cnt nch_bene_ptb_coinsrnc_amt 

clm_drg_cd admtng_icd9_dgns_cd 

icd9_dgns_cd_1 hcpcs_cd_1 

icd9_dgns_cd_2 hcpcs_cd_2 

icd9_dgns_cd_3 hcpcs_cd_3 

hcpcs_cd_1 YEAR 

hcpcs_cd_2 
 

hcpcs_cd_3 
 

YEAR   

Build, Train, and Test Models 

In this section, ML models are built, and algorithms will be trained. First, the challenge 

of dealing with rare events and proposing event-based sampling to improve model performance 

will be discussed. Approach to oversampling, stratification strategy and the cross-validation 

method will be presented. Decision Tree, Random Forest, and Gradient Boosting models are the 

first models to be trained. The outputs of these models are required to calculate the feature 
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importance score for both datasets’ features. Finally, the ML model for the rest of the chosen 

algorithms will be built and trained, and test results will be presented. 

Dealing with rare events and event-based sampling 

The biggest challenge in applying supervised learning to detect quality issues is dealing 

with rare events. Quality issues tend to be a rare event. When a process operates around four 

sigma level (a typical Sigma Level for large operations), the percentage of quality issues (if the 

quality data is attribute data) is less than one percent. A supervised algorithm needs to see lots of 

similar data to be trained on a specific pattern. In applying machine learning to quality data, a 

researcher has a considerably more extensive set of non-target events in the dataset (non-quality 

issues) than target events (quality issues). Event-based sampling is a method to overcome this 

challenge through oversampling of the rare-events. This method also comes with guidelines to 

apply various techniques (like adjusting posterior probability) to offset the impact of 

oversampling and avoid overfitting the algorithm (James et al., 2015). The researcher will be 

using event-based sampling within our cross-validation process. 

Select the split strategy and cross-validation 

The classic method to create train and test data for supervised learning is based on a 

simple split strategy in which a specific percentage of the dataset (e.g., 80%) to train the model, 

and the trained model is tested on the rest of the data. More modern supervised learning models 

usually use cross-validation. The researcher selected an n-fold cross-validation strategy for our 

problem. In this method, the entire data is split into n equal folds (partitions) randomly. Then, the 

model is trained on n-1 folds in each iteration and tested on the n-th fold.  
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Several researchers have discussed various methods to deal with unbalanced data through 

oversampling, before, during, and after cross-validation. In summary, they emphasize the 

separation of oversampled training data and test or validation data and suggest the following 

guidelines (Altini, 2015) (Mencar, 2016): 

 Oversampling and stratification to be conducted during the cross-validation. 

 Ensure the oversampled train data is not used for other purposes (e.g., features selection, test, 

or validation).  

 Draw an oversample from the rare events (target subgroup, which is P1 for our case) after 

excluding the samples taken before. 

 Create test data by combining excluded samples (from training phase), oversampled the rare 

events, and majority class (P0 in our case). 

 Repeat the process n-times, where n is the number of cross-validation folds.  

Figure 8 illustrates the oversampling implementation within a cross-validation strategy. 

This method prevents the model from leaking the training data to the test that causes over-

optimism.  

Figure 8. Oversampling within cross-validation. 
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Popular choices for n are n=5 and n=10, and while there almost no limit on how large n can 

be, many experts recommend keeping n less than 10 (James et al., 2015). N=5 reduces the 

complexity of our calculations. However, to validate the there is no significant difference 

between n=5 and n=10, a test was designed. First, a balanced dataset (by applying oversampling 

on both train and test data) was created. Please note, this method is not the same as the proper 

oversampling method described before, and it is only designed to compare the performance on 

n=10 and n=5 cross-validation. The detailed result of this test is in APPENDIX F. Table 19 

shows a summary of the result showing no significant difference in the performance of 5 and 10 

fold cross-validation on a balanced dataset (the outpatient dataset, with multiclass classification 

and Decision Tree and Random Forest with entropy configuration, were used). 

Table 19. The average difference in calculating various performance measures between 5-fold 
and 10-fold validation on a balanced dataset. 

  Precision Recall Accuracy F Score ROC 

DTE 0.83% 0.80% 0.33% 0.89% 0.51% 

RFE -0.39% -0.51% -0.11% -0.57% -0.18% 

Adjusting posterior probability after the oversampling as recommended by some 

researchers in our case skewed the outcomes by assigning the majority (or all) of rare events (in 

our case, P1) to the none-targeted category (P0) (Bhalla, 2016), (SAS Institute Inc., 2020).  The 

researcher used the Synthetic Minority Oversampling Technique (SMOTE) within the 

oversampling procedure to create synthetic samples. SMOTE uses nearest neighbors and Naive 

Bayes classifier to generate new and synthetic data examples (Chawla et al., 2002). Python 

Scikit-learn SMOTE() function was used to implement this method. 



101 
 

 

Train and test Decision Tree, Random Fore, and Gradient Boosting 

Decision Tree, Random Fore, and Gradient Boosting are the first three models to be 

trained and tested. The researcher needed their output to calculate the feature importance score 

(Gini importance) for independent variables and test the first two hypotheses. One crucial notion 

here is the difference between an “algorithm” and a predictive (or supervised leaning) “model.” 

An algorithm is a generic method that could apply to various datasets and could usually be tuned 

through some configuration features. For example, a Decision Tree is the name of a group of 

algorithms with similar approaches and have several configuration features like a maximum 

number of leaves. A model (in our definition) is a mathematical equation that resulted from 

running an algorithm with specific configuration features on a dataset. It is impractical to 

compare “algorithms performance” in the abstract due to the massive permutation among 

configuration features. The focus of this research is on the models derived from running selected 

algorithms. As a result, an algorithm with and one without oversampling creates two different 

predictive models. If common themes are found across various models, it shows that the 

algorithm performs similarly across different configurations and datasets.  

To build and train the Decision Tree, the researcher used the DecisionTreeClassifier 

function in Python Scikit-learn library with the following features: 

 Decision Tree with Gini classifier (DTG): default, random_state=0, max_depth=10, 

max_leaf_nodes=115 

 Decision Tree with Entropy classifier (DTE): critrion=entropy, random_state=0, 

max_depth=10, max_leaf_nodes=115 
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 DTE and DTG models were trained on both inpatient and outpatient datasets with and 

without oversampling. A partial view of the inpatient DTE is depicted in Figure 9 to provide an 

example that shows the claim payment amount as the highest predictor (splitter) for inpatient 

claims. 

 

Figure 9. A partial view of the inpatient DTE. 

 

RFG, RFE, and GB algorithms on inpatient and outpatient datasets were trained with and 

without applying the oversampling methods. RandomForestClassifier and 

GradientBoostingClassifier from the Python Scikit-learn library were utilized, and results were 

tested. Test results for all algorithms are presented together in APPENDIX H. 

Review feature importance 

Mean Decrease in Impurity (MDI) is a method in the Python Scikit-learn library to 

calculate the feature importance score (Gini importance). This method and associated codes were 
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applied for the independent variables the researcher selected for inpatient and outpatient models. 

The result of these calculations is presented in APPENDIX G and discussed in detail in the 

“Results of Testing Research Hypotheses” section. 

Train and test the rest of the selected models and review the results 

Table 20 listed the Python Scikit-learn library functions and configuration selected to 

build, train, and test the rest of the selected algorithms. 

Table 20. Scikit-learn configuration selected to build the ML models. 
Al Configurations Main SL Function 

NB default + fit_prior=False BernoulliNB 

kNN default + weights='distance KNeighborsClassifier 

LR 
default + solver='liblinear', 

random_state=0, dual=False 
LogisticRegression 

NN default + solver='adam' MLPClassifier 

DA default + solver='lsqr', shrinkage='auto' LinearDiscriminantAnalysis 

Detailed results for all tested algorithms and models on both datasets are presented in 

APPENDIX H. Table 21 summarizes the result of the performance metrics (recall and F1-score) 

for all tested algorithms for both outpatient and inpatient claims. 

Table 21. Performance metrics for tested algorithms. 

Algorithm 
Outpatient Data Inpatient Data 

Recall F1-Score Recall F1- Score 

DTG  6.27% 10.92% 58.47% 71.38% 

DTG (OS) 42.24% 6.78% 60.55% 53.05% 

DTE 5.68% 10.18% 58.50% 72.70% 

DTE (OS) 47.00% 7.19% 58.77% 54.88% 

RFG 2.74% 5.32% 57.19% 72.52% 

RFG(OS) 11.03% 8.80% 49.73% 50.52% 

RFE 2.61% 5.06% 55.41% 71.22% 
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Algorithm 
Outpatient Data Inpatient Data 

Recall F1-Score Recall F1- Score 

RFE (OS) 11.42% 9.07% 52.32% 52.35% 

NB 52.42% 19.74% 54.39% 38.25% 

NB (OS) 52.29% 4.23% 55.94% 20.15% 

kNN 0.46% 0.70% 1.55% 2.12% 

kNN (OS) 16.38% 2.57% 13.65% 3.71% 

LR 76.39% 2.71% 1.29% 1.96% 

LR (OS) 78.25% 2.67% 39.08% 4.70% 

NN 0.78% 0.45% 2.05% 0.77% 

NN (OS) 36.53% 2.19% 48.40% 5.53% 

DA 0.20% 0.39% 0.00% 0.00% 

DA (OS) 48.56% 2.76% 60.02% 7.10% 

GB 11.29% 14.00% 59.76% 73.46% 

GB (OS) 25.00% 19.51% 63.89% 66.33% 

Evaluate Models' Performances 

This section will use the previous section's algorithm results to test the main hypotheses 

for this research. Appropriate statistical tests will be used, hypotheses will be tested, results will 

be reviewed, and the outcomes will be discussed.  

Results of Testing Research Hypotheses 

The results of testing the four main hypotheses of our research will be discussed in this 

section. Here assumptions, results of the primary hypothesis test, and post-hoc analysis 

performed are discussed.  

Research Hypothesis 1 (H4.1) 

The first hypothesis (hypothesis 4.1) stated there is no significant difference among the 

predictors' feature importance in identifying erroneously processed Medicaid outpatient claims. 

This means all predictors (selected independent variables) are the same from the feature 
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importance or Mean Decrease in Impurity (MDI) perspective. Detailed results of these 

calculations are presented in APPENDIX G. A one-way ANOVA was run on the means of 

feature importance score (Gini importance) for selected outpatient claims independent variables. 

Detailed results of the one-way ANOVA test from Minitab are included in Appendix I. Table 22 

indicates that there was enough evidence at the α = 0.05 significance level to reject the null 

hypothesis (p = 0.001). This means at least one of the feature importance scores (Gini 

importance) for outpatient claims independent variables performed significantly different from 

the rest of the features. 

Table 22. One-Way ANOVA results for comparing feature importance scores (Gini importance) 
for outpatient claims independent variables. 

Source DF Adj SS Adj MS F-Value P-Value 

Factor 15 0.6359 0.042394 8.02 0.000 

Error 64 0.3383 0.005286     

Total 79 0.9742       

The Tukey pairwise comparisons using the Tukey method and a 95% confidence level in 

Table 23 shows clm_pmt_amt has the highest Mean F-value, significantly higher than the rest of 

the features.  

Table 23. Tukey pairwise comparisons for feature importance scores (Gini importance) for 
outpatient claims independent variables. 
Factor N Mean Grouping 
clm_pmt_amt 5 0.389 A   

icd9_dgns_cd_1 5 0.1100   B 
at_physn_npi 5 0.0983   B 

hcpcs_cd_1 5 0.0539   B 
icd9_dgns_cd_2 5 0.0521   B 

hcpcs_cd_2 5 0.0484   B 
nch_bene_ptb_coinsrnc_amt 5 0.04511   B 
ot_physn_npi 5 0.04454   B 

icd9_dgns_cd_3 5 0.04191   B 
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Factor N Mean Grouping 

hcpcs_cd_3 5 0.03497   B 
admtng_icd9_dgns_cd 5 0.03077   B 

op_physn_npi 5 0.02340   B 
YEAR 5 0.01583   B 

nch_bene_ptb_ddctbl_amt 5 0.00787   B 
nch_prmry_pyr_clm_pd_amt 5 0.004190   B 

icd9_prcdr_cd_1 5 0.000005   B 
Means that do not share a letter are significantly different. 

The Fisher pairwise comparisons using the LSD method and a 95% confidence level in 

Table 24 shows clm_pmt_amt, which has the highest Mean F-value and significantly higher than 

the rest of the features. Fisher LSD test also presents a slight difference among other predictors' 

importance. In both tests, icd9_dgns_cd_1 and at_physn_npi have the second and third highest 

F-value for the feature importance significantly lower than clm_pmt_amt.  

Table 24. Fisher LSD pairwise comparisons for feature importance scores (Gini importance) for 
outpatient claims independent variables. 

Factor N Mean Grouping 
clm_pmt_amt 5 0.389 A    
icd9_dgns_cd_1 5 0.1100  B   
at_physn_npi 5 0.0983  B C  
hcpcs_cd_1 5 0.0539  B C D 
icd9_dgns_cd_2 5 0.0521  B C D 
hcpcs_cd_2 5 0.0484  B C D 
nch_bene_ptb_coinsrnc_amt 5 0.04511  B C D 
ot_physn_npi 5 0.04454  B C D 
icd9_dgns_cd_3 5 0.04191  B C D 
hcpcs_cd_3 5 0.03497  B C D 
admtng_icd9_dgns_cd 5 0.03077  B C D 
op_physn_npi 5 0.02340  B C D 
YEAR 5 0.01583   C D 
nch_bene_ptb_ddctbl_amt 5 0.00787   C D 
nch_prmry_pyr_clm_pd_amt 5 0.004190    D 
icd9_prcdr_cd_1 5 0.000005    D 
Means that do not share a letter are significantly different. 
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Research Hypothesis 2 (H5.1) 

The second hypothesis (hypothesis 5.1) stated there is no significant difference among 

the predictors' feature importance in identifying erroneously processed Medicaid inpatient 

claims. This means all predictors (selected independent variables) are the same from the feature 

importance or Mean Decrease in Impurity (MDI) perspective. Detailed results of these 

calculations are presented in APPENDIX G. A one-way ANOVA was run on the means of 

feature importance score (Gini importance) for selected inpatient claims independent variables. 

Detailed results of the one-way ANOVA test from Minitab are included in Appendix I. Table 25 

indicates that there was enough evidence at the α = 0.05 significance level to reject the null 

hypothesis (p = 0.001). This means at least one of the feature importance scores (Gini 

importance) for outpatient claims independent variables performed significantly different from 

the rest of the features.  

Table 25. One-Way ANOVA results for comparing feature importance scores (Gini importance) 
for inpatient claims independent variables. 

Source DF Adj SS Adj MS F-Value P-Value 

Factor 18 0.8838 0.049103 23.60 0.000 

Error 76 0.1581 0.002080     

Total 94 1.0419       

The Tukey pairwise comparisons using the Tukey method and a 95% confidence level in 

Table 26 shows clm_pmt_amt and nch_prmry_pyr_clm_pd_amt have the highest Mean F-value, 

whereas clm_pmt_amt is significantly higher than the rest of the features.  
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Table 26. Tukey pairwise comparisons for feature importance scores (Gini importance) for 
inpatient claims independent variables. 

Factor N Mean Grouping 

clm_pmt_amt 5 0.3601 A  
nch_prmry_pyr_clm_pd_amt 5 0.2898 A  

clm_drg_cd 5 0.08992  B 
at_physn_npi 5 0.0441  B 

icd9_dgns_cd_1 5 0.0352  B 
icd9_dgns_cd_2 5 0.0334  B 

icd9_dgns_cd_3 5 0.0332  B 
admtng_icd9_dgns_cd 5 0.0302  B 

op_physn_npi 5 0.02552  B 
clm_utlztn_day_cnt 5 0.01947  B 

clm_pass_thru_per_diem_amt 5 0.01288  B 
YEAR 5 0.00761  B 

nch_bene_ip_ddctbl_amt 5 0.00721  B 
ot_physn_npi 5 0.00694  B 

nch_bene_pta_coinsrnc_lblty_am 5 0.002416  B 
nch_bene_blood_ddctbl_lblty_am 5 0.002045  B 

hcpcs_cd_3 5 0.000000  B 
hcpcs_cd_2 5 0.000000  B 

hcpcs_cd_1 5 0.000000  B 

Means that do not share a letter are significantly different. 

The Fisher pairwise comparisons using the Fisher LSD method and a 95% confidence 

level are also shown in Table 27, showing clm_pmt_amt has the highest F-measure and 

significantly higher than the rest of the predictors. nch_prmry_pyr_clm_pd_amt has the second-

highest F-measure and significantly higher than the rest of the predictors. Fisher LSD test results 

are slightly different from the Tukey test results in the grouping, but the predictors' ranking is 

similar.  
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Table 27. Fisher LSD pairwise comparisons for feature importance scores (Gini importance) for 
inpatient claims independent variables 

Factor N Mean Grouping 
clm_pmt_amt 5 0.3601 A    
nch_prmry_pyr_clm_pd_amt 5 0.2898  B   
clm_drg_cd 5 0.08992   C  
at_physn_npi 5 0.0441   C D 
icd9_dgns_cd_1 5 0.0352   C D 
icd9_dgns_cd_2 5 0.0334   C D 
icd9_dgns_cd_3 5 0.0332   C D 
admtng_icd9_dgns_cd 5 0.0302    D 
op_physn_npi 5 0.02552    D 
clm_utlztn_day_cnt 5 0.01947    D 
clm_pass_thru_per_diem_amt 5 0.01288    D 
YEAR 5 0.00761    D 
nch_bene_ip_ddctbl_amt 5 0.00721    D 
ot_physn_npi 5 0.00694    D 
nch_bene_pta_coinsrnc_lblty_am 5 0.002416    D 
nch_bene_blood_ddctbl_lblty_am 5 0.002045    D 
hcpcs_cd_3 5 0.000000    D 
hcpcs_cd_2 5 0.000000    D 
hcpcs_cd_1 5 0.000000    D 

Means that do not share a letter are significantly different. 

Research Hypothesis 3 (H6.1) 

The third hypothesis (hypothesis 6.1) stated there is no significant difference among the 

average recall of algorithms in identifying Medicaid outpatient claim issues. The researcher runs 

a one-way ANOVA based on 5-fold cross-validation recall results across all selected algorithms 

to investigate this hypothesis. Detailed results of the ANOVA test from Minitab are included in 

Appendix J. Table 28 shows that there was enough evidence at the α = 0.05 significance level to 

reject the null hypothesis (p = 0.001). This means the recall for at least one algorithm is 

significantly higher than the others in detecting quality issues in outpatient claims. 
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Table 28. One-Way ANOVA results for comparing algorithms’ recall for outpatient claim issues 
Source DF Adj SS Adj MS F-Value P-Value 

Factor 19 6.2851 0.33080 29.21 0.000 

Error 80 0.9060 0.01132     

Total 99 7.1911       

The Tukey pairwise comparisons using the Tukey method and a 95% confidence level in 

Table 29 shows the Logistic Regression model (with oversampling) has the highest F-Value (not 

be confused with the F1-score used as a performance metrics) and significantly outperforms 

other algorithms in detecting erroneous payments in the research outpatient data. This will make 

the Logistic Regression (regardless of sampling approach) the favorite algorithm in finding true 

positives in outpatient claim adjudication. Logistic Regression (with oversampling) and Naïve 

Bayes (with and without oversampling) are the next best performers and grouped together (group 

B). Tuckey test also shows the recall of some algorithms, including Discriminant Analysis, 

Neural Network, and Decision Trees, improves with oversampling. This means these algorithms 

may not perform well on unbalanced data. Oversampling improves the performance of 

algorithms like Logistic Regression, Naïve Bays, and Gradient Boosting. However, there is no 

statistical significance to this difference (Naïve Bays slightly performed better without 

oversampling, which could be due to random effects in the cross-validation process). Neural 

Networks recall for inpatient claims is significantly improved by oversampling. 
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Tukey grouped algorithms’ recalls into several overlapping groups, whereas the groups 

that do not share a letter are significantly different. For example, Naïve Bayes (with and without 

oversampling) is in groups B and C. Gradient Boosting (with oversampling) listed in groups D, 

E, and F. This means there is a significant difference between their recalls on the outpatient 

dataset because they do not share same letters in the grouping. This will make the Logistic 

Regression (regardless of sampling approach) the favorite algorithm in finding true positives in 

outpatient claim adjudication. The Tukey test does not recognize a statistically significant 

difference in the recall rate for the following algorithms compare the Logistic Regression: 

Discriminant Analysis (with oversampling), Naïve Bayes (with and without oversampling), 

Decision Tree (both with Gini and Entropy feature and oversampling), Neural Network (with 

oversampling), and Gradient Boosting (with and without oversampling) with various Mean F-

value.  

Table 29. Tukey pairwise comparisons for algorithms’ recall for outpatient claim issues 
Factor N Mean Grouping 
LR (OS) 5 0.7825 A       
LR 5 0.7639 A B      
NB 5 0.5242  B C     
NB (OS) 5 0.5229  B C     
DA (OS) 5 0.48565   C D    
DTE (OS) 5 0.4700   C D    
DTG (OS) 5 0.4224   C D    
NN (OS) 5 0.365   C D E   
GB (OS) 5 0.25000    D E F  
kNN (OS) 5 0.16383     E F G 
RFE (OS) 5 0.11424      F G 
GB 5 0.1129      F G 
RFG (OS) 5 0.1103      F G 
DTG 5 0.06266      F G 
DTE 5 0.05680      F G 
RFG 5 0.02741      F G 
RFE 5 0.02611      F G 
NN 5 0.00782      F G 
kNN 5 0.00457      F G 
DA 5 0.00196       G 
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Means that do not share a letter are significantly different. 

The Fisher LSD pairwise comparisons with a 95% confidence level in Table 30 presents 

the same ranking of the algorithms’ recall means with slightly different pairwise grouping. 

Table 30. Fisher LSD pairwise comparisons for algorithms’ recall for outpatient claim issues 
Factor N Mean Grouping 
LR (OS) 5 0.7825 A       
LR 5 0.7639 A       
NB 5 0.5242  B      
NB (OS) 5 0.5229  B      
DA (OS) 5 0.48565  B C     
DTE (OS) 5 0.4700  B C     
DTG (OS) 5 0.4224  B C     
NN (OS) 5 0.365   C D    
GB (OS) 5 0.25000    D E   
kNN (OS) 5 0.16383     E F  
RFE (OS) 5 0.11424      F G 
GB 5 0.1129      F G 
RFG (OS) 5 0.1103      F G 
DTG 5 0.06266      F G 
DTE 5 0.05680      F G 
RFG 5 0.02741       G 
RFE 5 0.02611       G 
NN 5 0.00782       G 
kNN 5 0.00457       G 
DA 5 0.00196       G 

Means that do not share a letter are significantly different. 

Research Hypothesis 4 (H6.2) 

The fourth hypothesis (hypothesis 6.2) stated there is no significant difference among the 

average F1-score of selected supervised learning algorithms in identifying erroneously processed 

Medicaid outpatient claims. This means all selected algorithms have similar recall and F1-score.  

The researcher runs a one-way ANOVA based on 5-fold cross-validation F1-score results across 

all selected algorithms to investigate this hypothesis. Detailed results of the ANOVA test from 
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Minitab are included in Appendix J. Table 31. they are indicating that there was enough evidence 

at the α = 0.05 significance level to reject the null hypothesis (p = 0.001). This means the F1-

score for at least one algorithm is significantly higher than the others in detecting quality issues 

in outpatient claims. 

Table 31. One-Way ANOVA results for comparing algorithms’ F1-score for outpatient claim 
issues 

Source DF Adj SS Adj MS F-Value P-Value 

Factor 19 0.31920 0.016800 126.77 0.000 

Error 80 0.01060 0.000133     

Total 99 0.32980       

The Tukey pairwise comparisons using the Tukey method and a 95% confidence level in 

Table 32 shows the Naïve Bays (without oversampling), and Gradient Boosting (with 

oversampling) outperformed the rest of the algorithms from the F1 score perspective. Gradient 

Boosting (without oversampling) is the third performing algorithm on recall for outpatient 

claims. Oversampling significantly improves the F1-score of the Gradient Boosting algorithm on 

the outpatient data. Various configuration of Decision Tree and Random Forest (with entropy 

and Gini, with and without oversampling) are the next group in the rank.  There is evidence to 

support a statistically significant difference between their performance and the rest of the 

algorithms. Decision Tree (with Gini feature) without oversampling has its own group, followed 

by Gradient Boosting with oversampling. Decision Tree and Gradient Boosting algorithms 

(regardless of their feature configuration and sampling approach) are the favorite algorithms 

from the F1 score point of view (a balance between recall and precision).  
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Table 32. Tukey pairwise comparisons for algorithms’ F1 score for outpatient claim issues 
Factor N Mean Grouping 
NB 5 0.19742 A          
GB (OS) 5 0.19513 A          
GB 5 0.1400  B         
DTG 5 0.10924   C        
DTE 5 0.10178   C        
RFE (OS) 5 0.09074   C D       
RFG (OS) 5 0.08799   C D       
DTE (OS) 5 0.07190    D E      
DTG (OS) 5 0.06783    D E F     
RFG 5 0.05316     E F G    
RFE 5 0.05063     E F G H   
NB (OS) 5 0.042270      F G H I  
DA (OS) 5 0.027570       G H I J 
LR 5 0.027106       G H I J 
LR (OS) 5 0.026677       G H I J 
kNN (OS) 5 0.02572        H I J 
NN (OS) 5 0.02195         I J 
kNN 5 0.00702          J 
NN 5 0.00449          J 
DA 5 0.00390          J 

Means that do not share a letter are significantly different. 

The Fisher LSD pairwise comparisons with a 95% confidence level in Table 33 presents 

the same ranking of the algorithms’ F1 score means with slight differences in the grouping of the 

low performing models: 

Table 33. Fisher LSD pairwise comparisons for algorithms’ F1 score for outpatient claim issues 
Factor N Mean Grouping 
NB 5 0.19742 A        
GB (OS) 5 0.19513 A        
GB 5 0.1400  B       
DTG 5 0.10924   C      
DTE 5 0.10178   C D     
RFE (OS) 5 0.09074    D     
RFG (OS) 5 0.08799    D     
DTE (OS) 5 0.07190     E    
DTG (OS) 5 0.06783     E    
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Factor N Mean Grouping 
RFG 5 0.05316      F   
RFE 5 0.05063      F   
NB (OS) 5 0.042270      F   
DA (OS) 5 0.027570       G  
LR 5 0.027106       G  
LR (OS) 5 0.026677       G  
kNN (OS) 5 0.02572       G  
NN (OS) 5 0.02195       G  
kNN 5 0.00702        H 
NN 5 0.00449        H 
DA 5 0.00390        H 

Means that do not share a letter are significantly different. 

Research Hypothesis 5 (H7.1) 

The fifth hypothesis (hypothesis 7.1) stated there is no significant difference among the 

average recall of selected supervised learning algorithms in identifying erroneously processed 

Medicaid inpatient claims. The researcher runs a one-way ANOVA based on 5-fold cross-

validation recall results across all selected algorithms to investigate this hypothesis. Detailed 

results of the ANOVA test from Minitab are included in Appendix J. Table 34 indicates that 

there was enough evidence at the α = 0.05 significance level to reject the null hypothesis (p = 

0.001). This means the recall for at least one algorithm is significantly higher than the others in 

detecting quality issues in inpatient claims. 

Table 34. One-Way ANOVA results for comparing algorithms’ recall for inpatient claim issues 
Source DF Adj SS Adj MS F-Value P-Value 

Factor 19 6.0195 0.316815 33.38 0.000 

Error 80 0.7594 0.009492     

Total 99 6.7789       

The Tukey pairwise comparisons using the Tukey method and a 95% confidence level in 

Table 35 shows the Gradient Boosting (with oversampling) outperformed the rest of the models 
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in recalling quality issues of the inpatient claim data. However, the Tukey test does not suggest a 

statistical difference among the recall of the top 14 algorithms and models. This test shows k-

Nearest Neighbor, Neural Network, Discriminant Analysis, and Logistic Regressions (without 

sampling) have significantly lower recall than the rest of the algorithms. Oversampling has 

significantly improved the recall of the Logistic Regression model, which is a sign of the impact 

of imbalanced data on this algorithm's performance. 

Table 35. Tukey pairwise comparisons for algorithms’ recall for inpatient claim issues 
Factor N Mean Grouping 
GB (OS) 5 0.6389 A   
DTG (OS) 5 0.6055 A B  
GB 5 0.5976 A B  
DTE (OS) 5 0.5877 A B  
DTE 5 0.5850 A B  
DTG 5 0.5847 A B  
RFG 5 0.5719 A B  
NB (OS) 5 0.5594 A B  
RFE 5 0.5541 A B  
NB 5 0.5439 A B  
RFE (OS) 5 0.5232 A B  
RFG (OS) 5 0.4973 A B  
NN (OS) 5 0.484 A B  
LR (OS) 5 0.391  B  
kNN (OS) 5 0.1365   C 
NN 5 0.0205   C 
kNN 5 0.01548   C 
LR 5 0.01289   C 
DA (OS) 5 0.000000   C 
DA 5 0.000000   C 

Means that do not share a letter are significantly different. 

The Fisher LSD pairwise comparisons with a 95% confidence level in Table 36 presents 

the same ranking of the algorithms’ recall means with slightly different pairwise grouping: 
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Table 36. Fisher LSD pairwise comparisons for algorithms’ recall for inpatient claim issues 
Factor N Mean Grouping 
GB (OS) 5 0.6389 A     
DTG (OS) 5 0.6055 A B    
GB 5 0.5976 A B    
DTE (OS) 5 0.5877 A B    
DTE 5 0.5850 A B    
DTG 5 0.5847 A B    
RFG 5 0.5719 A B    
NB (OS) 5 0.5594 A B    
RFE 5 0.5541 A B    
NB 5 0.5439 A B    
RFE (OS) 5 0.5232 A B    
RFG (OS) 5 0.4973  B C   
NN (OS) 5 0.484  B C   
LR (OS) 5 0.391   C   
kNN (OS) 5 0.1365    D  
NN 5 0.0205    D E 
kNN 5 0.01548    D E 
LR 5 0.01289     E 
DA (OS) 5 0.000000     E 
DA 5 0.000000     E 

Means that do not share a letter are significantly different. 

Research Hypothesis 6 (H7.2) 

The sixth hypothesis (hypothesis 7.2) stated there is no significant difference among the 

average F1-score of selected supervised learning algorithms in identifying erroneously processed 

Medicaid inpatient claims. The researcher runs a one-way ANOVA based on 5-fold cross-

validation F1-score results across all selected algorithms to investigate this hypothesis. Detailed 

results of the ANOVA test from Minitab are included in Appendix J. Table 37 indicates that 

there was enough evidence at the α = 0.05 significance level to reject the null hypothesis (p = 

0.001). This means the F1-score for at least one algorithm is significantly higher than the others 

in detecting quality issues in inpatient claims. 
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Table 37. One-Way ANOVA results for comparing algorithms’ F1-score for inpatient claim 
issues 

Source DF Adj SS Adj MS F-Value P-Value 

Factor 19 8.2962 0.436642 237.27 0.000 

Error 80 0.1472 0.001840     

Total 99 8.4434       

The Tukey pairwise comparisons using the Tukey method and a 95% confidence level in 

Table 38 shows Gradient Boosting (both without oversampling), Decision Tree (using Entropy 

and Gini), Random Forest (with entropy and without oversampling) outperformed the rest of the 

algorithms from the F1 score perspective on inpatient data. There is evidence to support a 

statistically significant difference between their performance and the rest of the algorithms. 

Tukey's ranking suggests that oversampling has reduced the F1-score (by decreasing the 

precision) for inpatient claims. This may result from oversampling and applying the SMOTE 

method on a very complex dataset that resulted in simulated samples not carrying the 

characteristics that could be easily modeled as a feature.  

Table 38. Tukey pairwise comparisons for algorithms’ recall for inpatient claim issues 
Factor N Mean Grouping 
GB 5 0.7346 A      
DTE 5 0.7270 A      
RFG 5 0.7252 A      
DTG 5 0.7138 A      
RFE 5 0.7122 A      
GB (OS) 5 0.6633 A B     
DA 5 0.6002  B C    
DTE (OS) 5 0.5488   C    
DTG (OS) 5 0.5305   C    
RFE (OS) 5 0.5235   C    
RFG (OS) 5 0.5052   C    
NB 5 0.3825    D   
NB (OS) 5 0.2015     E  
DA (OS) 5 0.07102      F 
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Factor N Mean Grouping 
NN (OS) 5 0.05532      F 
LR (OS) 5 0.04701      F 
kNN (OS) 5 0.03712      F 
kNN 5 0.02125      F 
LR 5 0.01959      F 
NN 5 0.00766      F 

Means that do not share a letter are significantly different. 

The Fisher LSD pairwise comparisons with a 95% confidence level in Table 39 presents 

the same ranking of the algorithms’ F1 score, with some differences in the algorithms' grouping. 

Table 39. Tukey pairwise comparisons for algorithms’ recall for inpatient claim issues 
Factor N Mean Grouping 
GB 5 0.7346 A        
DTE 5 0.7270 A        
RFG 5 0.7252 A        
DTG 5 0.7138 A B       
RFE 5 0.7122 A B       
GB (OS) 5 0.6633  B       
DA 5 0.6002   C      
DTE (OS) 5 0.5488   C D     
DTG (OS) 5 0.5305    D     
RFE (OS) 5 0.5235    D     
RFG (OS) 5 0.5052    D     
NB 5 0.3825     E    
NB (OS) 5 0.2015      F   
DA (OS) 5 0.07102       G  
NN (OS) 5 0.05532       G H 
LR (OS) 5 0.04701       G H 
kNN (OS) 5 0.03712       G H 
kNN 5 0.02125       G H 
LR 5 0.01959       G H 
NN 5 0.00766        H 

Means that do not share a letter are significantly different. 



120 
 

 

Chapter Summary 

In this chapter, all research questions were reviewed, and the results of hypotheses tests 

and their implications were discussed. Table 40 summarizes research questions, hypothesis, 

results, and findings. 

Table 40. Summary of Research Results and Key Findings 
Item Description 

Research 
Question 1 

What supervised machine learning algorithms can be used to determine 
Medicaid claim payment issues? 

Results There is no set of universally accepted “best” supervised learning algorithms, 
but SVM, Naïve Bays, and Neural Network are among the algorithms most 
used in solving quality problems. SVM requires more computational power, 
especially for massive datasets. The researcher selected ten algorithms for our 
research: Decision tree with Entropy configuration (DTE), Decision tree with 
Gini coefficient configuration (DTG), Random forests with Entropy 
configuration (RFE), Random forests with Gini configuration (RFG), Naïve 
Bayes (NN), K Nearest Neighbor (kNN), Logistic Regression (LR), Neural 
Network (NN), Discriminant Analysis (DA), and Gradient Boosting (GB). 

Findings 1.  Principal Components Analysis (PCA) is the most used dimensionality 
reduction technique. 
2. There are several trade-offs in selecting classification algorithms, including 
interpretability vs. prediction accuracy and bias-variance trade-offs. 

Research 
Question 2 

What are the most critical measures to compare the performance of different 
machine learning algorithms (resulted from RQ1) for our problem? 

Results  Based on the nature of our problem at hand and the literature review, the 
researcher selected Recall and F1-score as two metrics to compare our 
supervised learning models' performance 

Findings 1. Most popular performance metrics are derived from the confusion metrics, 
including recall, precision, accuracy, and F1-score. 
2. For the problem dealing with imbalanced data, accuracy will be inflated 
due to the high number of true negatives in the denominator. Recall and F1-
score can measure the sensitivity and specificity of the model more 
realistically. 
3. F1-score outperformers the ROC charts measure the performance of an 
algorithm on imbalanced data. 

Research 
Question 3 

What are the claim attributes that could predict if a given FFS claim has been 
adjudicated correctly or erroneously (also known as predictors or independent 
variables)? 
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Item Description 

Results The researcher used PCA on the ratio features and concluded all independent 
ratio variables should be kept in the model to account for over 90% of the 
variation. The researcher also used business knowledge and subject matter 
expertise to eliminate the low-information categorical features and selected 16 
features for outpatient and 19 features for the inpatient dataset. 

Findings 1. Dealing with mixed predictors (categorical and ratio) adds to the complexity 
of feature reduction.  
2. PCA works with ratio and continuous data, while Multiple Correspondence 
Analysis (MCA) works with categorical data. Methods that could handle both 
are complex and requires massive computational powers on large datasets.  

Research 
Question 4 

Is there any statistically significant difference among predictors' predictability 
power in identifying erroneously processed Medicaid outpatient claims? 

Hypotheses  𝐻଴ర.భ: 𝜇ଵଵ =  𝜇ଵଶ = ⋯ =  𝜇ଵଵ଺ , 𝜇ଵ௜ = feature importance score (Gini 
importance) of the i-th outpatient predictor. 

Tests Gini importance was calculated, and the hypothesis was tested with one-way 
ANOVA. 

Results The hypothesis was rejected at α = 0.05 significance level 

Findings clm_pmt_amt has the highest Mean F-value, significantly higher than the rest 
of the features. icd9_dgns_cd_1 and at_physn_npi have the second and third 
highest F-value for the feature importance significantly lower than 
clm_pmt_amt.  The "claim payment amount" is the most powerful predictor of 
detecting quality issues in our outpatient claim dataset. 

Research 
Question 5 

Is there any statistically significant difference among predictors' predictability 
power in identifying erroneously processed Medicaid inpatient claims? 

Hypotheses  𝐻଴ఱ.భ: 𝜇ଶଵ =  𝜇ଶଶ = ⋯ =  𝜇ଶ.ଵଽ , 𝜇ଵ௜ = feature importance score (Gini 
importance) of i-th inpatient predictor. 

Tests Gini importance was calculated, and the hypothesis was tested with one-way 
ANOVA. 

Results The hypothesis was rejected at α = 0.05 significance level. 

Findings clm_pmt_amt and nch_prmry_pyr_clm_pd_amt have the highest Mean F-
value, whereas clm_pmt_amt is significantly higher than the rest of the 
features. The "claim payment amount" is the most powerful predictor of 
detecting quality issues in our inpatient claim dataset. 

Research 
Question 6 

Is there any statistically significant difference among the selected supervised 
learning algorithms in identifying erroneously adjudicated Medicaid outpatient 
claims? 

Hypotheses 𝐻଴ల.భ: 𝜇ଷ.ଵ =  𝜇ଷ.ଶ = ⋯ =  𝜇ଷ.ଵ଴ , 𝜇ଷ.௜ = the mean recall of algorithm i 
𝐻଴ల.మ: 𝜇ସଵ =  𝜇ସଶ = ⋯ =  𝜇ସ.ଵ଴  𝜇ସ.௜: the mean F1-score of algorithm i 



122 
 

 

Item Description 

Tests Two hypotheses were tested with one-way ANOVA. 

Results Two hypotheses were rejected at α = 0.05 significance level. 

Findings 1. LR (with oversampling) significantly outperforms other algorithms in 
detecting erroneous payments in the research outpatient data. 
2. LR (with oversampling), NB (with and without oversampling) are the next 
best performers and group together (group B).  
3. Oversampling improves LR, NB, GB recall, but there is no statistical 
significance to this difference. 
4. NB slightly performed better without oversampling. This could be due to 
random effects in the cross-validation process. 
5. NN recall for inpatient claims is significantly improved by oversampling. 
6. There is a statistically significant difference in the recall rate for the 
following algorithms compare the LR: DA (with oversampling), NB (with 
and without oversampling), DT (both with Gini and Entropy feature and 
oversampling), NN (with oversampling), and GB (with and without 
oversampling). 
7. NB (without oversampling) and GB (with oversampling) outperformed the 
rest of the algorithms from the F1 score perspective. 
8. GB (without oversampling) is the third performing algorithm on recall for 
outpatient claims. 
9. Oversampling significantly improves the F1-score of the GB in outpatient 
data. 
10. DT and GB (regardless of their feature configuration and sampling 
approach) have the highest F1 score for inpatient data. 

Research 
Question 7 

Is there any statistically significant difference among the selected supervised 
learning algorithms) in identifying erroneously adjudicated Medicaid inpatient 
claims? 

Hypotheses 𝐻଴ళ.భ: 𝜇ହ.ଵ =  𝜇ହ.ଶ = ⋯ =  𝜇ହ.ଵ଴  (𝜇ହ௜: the mean recall of algorithm i) 
𝐻଴ళ.మ: 𝜇଺.ଵ =  𝜇଺.ଶ = ⋯ =  𝜇଺.ଵ଴  (𝜇ସ௜: the mean F1-score of algorithm i) 

Tests Two hypotheses were tested with one-way ANOVA. 

Results Two hypotheses were rejected at α = 0.05 significance level. 

Findings 1. GB (with oversampling) outperformed the rest of the models in recalling 
quality issues of the inpatient claim data. 

2. kNN, NN, DA, and LR (without sampling) have significantly lower recall 
than the rest of the algorithms. 

3. Oversampling has significantly improved LR recall. A sign of the potential 
impact of imbalanced data on the performance of this algorithm. 

4. GB (both without oversampling), DT (using Entropy and Gini), RF (with 
entropy and without oversampling) have significantly higher F1 on 
inpatient data. 
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Item Description 

Research 
Question 8 

Are the most powerful predictors different between outpatient and inpatient 
claims? Are the most accurate algorithms in detecting erroneously paid claims 
different between the two types of Medicaid claims studied? 

Results 1. clm_pmt_amt is the most powerful predictor for both datasets.  
2. For outpatient claims, icd9_dgns_cd_1 and at_physn_npi have the next 
highest importance scores.  
3. For inpatient claims nch_prmry_pyr_clm_pd_amt, and clm_drg_cdn the 
have the next highest importance scores. 
4. GB and DT (with various configurations and sampling strategies) 
outperform the rest of the algorithms in recall and F1-measure on both 
datasets.  

Findings 1. NB and LR performed considerably better in outpatient data than inpatient 
data. This shows this algorithm requires more labeled data to train and 
performed well.  
2. DA, kNN, and NN algorithms did not perform as well as the rest of the 
algorithm.  
3. In general, oversampling has improved the performance of the algorithms.  
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CHAPTER 5 

DISCUSSIONS, CONCLUSIONS, AND RECOMMENDATIONS 

Chapter Overview 

This chapter discusses the research result in more detail for each research question, 

provides conclusions, and offers further studies. This chapter is concluded by giving a summary 

table that presents research questions, hypotheses, results and findings, and discussions of 

significant findings concisely and tabularly.   

Discussion of the Results 

The purpose of this study was to develop a supervised learning model to detect the 

Medicaid FFS claims with the high chance of being adjudicated erroneously. Eight research 

questions were articulated, seven hypotheses were formulated, hypothesis testing and other 

statistical tests were performed, and the results were reviewed. Here crucial findings will be 

reviewed and discussed.  

Research Question 1 (RQ1)- What supervised machine learning algorithms can be used to 

determine Medicaid claim payment issues? 

The researcher started this research by reviewing the literature to understand what 

supervised machine learning algorithms can determine Medicaid claim payment issues. The 

researcher examined the literature extensively and found out among major classes of machine 

learning algorithms, supervised learning, and the most used method to detect quality issues, 
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which is essentially a classification problem. While there is no set of universally accepted “best” 

supervised learning algorithms, SVM, Naïve Bays, and Neural Network are among the 

algorithms most used in solving quality problems. The researcher also found Principal 

Components Analysis (PCA) is the most used dimensionality reduction technique allowing 

researchers to limit the number of features without compromising overall performance. Many 

factors should be considered in selecting proper algorithms, including their accuracy, detection 

power (recall), stability, and computation time. There are several trade-offs in selecting 

classification algorithms, including interpretability vs. prediction accuracy and bias-variance 

trade-offs. The researcher concluded this review by selecting ten different supervised learning 

algorithms for our problem. 

Research Question 2 (RQ2)- What are the most critical measures to compare the performance of 

different machine learning algorithms (resulted from RQ1) for our problem? 

The second research question was around finding the most critical measures to compare 

different machine learning algorithms' performance. While there are many metrics that could be 

used to compare machine learning algorithms' performance, the problem's nature dictates the 

superior metrics. Significant findings related to this research question could be summarized in 

three points:  

1. The most famous performance metrics are around false and true positives and all derived 

from the confusion metrics, which is easy to calculate and communicate. 

2. For the problem dealing with imbalanced data, accuracy will be inflated due to the high 

number of true negatives in the denominator. Recall and F1-score can measure the sensitivity 

and specificity of the model more realistically. 
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3. F1-score outperformers the ROC charts measure the performance of an algorithm on 

imbalanced data. 

 Based on the nature of our problem at hand and the literature review, Recall and F1-

score were selected as two metrics to compare the supervised learning models' performance.  
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Research Question 3 (RQ3)- What are the claim attributes that could predict if a given FFS 

claim has been adjudicated correctly or erroneously (also known as predictors or independent 

variables)? 

The third research question was about finding the predictors to detect quality issues FFS 

inpatient and outpatient claims? There were two massive datasets with over 100 features. In 

theory, all features could be used to build a supervised learning model. The researcher found 

thorough the literature review and some tests that this will increase the models' complexity 

without improving their performances. Dealing with mixed predictors (categorical and ratio) 

adds to the complexity of feature reduction. PCA on the ratio features showed all ratio features 

should be kept in our model to account for over 90% of the variation. Business knowledge and 

subject matter expertise were applied to eliminate the low-information categorical features. The 

researcher finally reduced the number of features by over 80% and selected 16 features for 

outpatient models and 19 features for inpatient models. 

Research Question 4 (RQ4) and Research Question 5 (RQ5)- Is there any statistically significant 

difference among predictors' predictability power in identifying erroneously processed Medicaid 

outpatient claims? Is there any statistically significant difference among predictors' 

predictability power in identifying erroneously processed Medicaid inpatient claims? 

Research questions 4 and 5 were related to finding the most powerful predictors in 

detecting quality issues in our claim datasets for outpatient claims (RQ4) and inpatient claims 

(RQ5). Gini importance was calculated, and the hypothesis was tested with one-way ANOVA. 

For both outpatient and inpatient claims, the Tukey pairwise comparisons using the Tukey 

method and a 95% confidence level shown the features (clm_pmt_amt, 
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nch_prmry_pyr_clm_pd_amt, and clm_drg_cd) have the highest Mean F-value, whereas 

clm_pmt_amt is significantly higher than the rest of the features. The Fisher LSD method also 

presented a significant difference in clm_pmt_amt’s feature importance scores compared to other 

features. However, the Fisher test results are slightly different from the Tukey test results for 

inpatient claims. This test grouped nch_prmry_pyr_clm_pd_amt and clm_drg_cdn together with 

a significant difference between these two features and the rest of the features. This is because 

the Tukey test is more conservative (Andy, 2015). Also, Fisher’s LSD does not control the 

family-wise error rate (FWER) (Scheffe, 1953). Some researchers suggested using a more liberal 

method like Fisher’s LSD to avoid being unnecessarily conservative (with weak statistical 

power) and detect a real difference when the goal is to prevent type II errors (S. Lee & Lee, 

2018). In our case, it is preferred not to lose the opportunity to detect a real power of a feature in 

predicting the result, so both Tukey and Fisher LSD tests were conducted, and results were 

presented. From a practical point of view, proving that “Claim Payment Amount” 

(clm_pmt_amt) is our most crucial predictor was somehow expected. Differences in claim 

payment, especially for large under or overpayments, make a payment an outlier in our dataset. 

The researcher applied the pattern of adjudication errors on the claim payments using the claim 

errors distribution function, without providing and adjusting relevant data elements, including: 

 Who has processed the claim? 

 What were applicable policies impacting the claim pricing methodology: 

 What was the degree of difficulty in interpreting specific claim pricing policies? 

The second most powerful predictor is a payment-related feature, too: “NCH Primary 

Payer Claim Paid Amount” (nch_prmry_pyr_clm_pd_amt). Its prediction power is probability 
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contributed to the fact that this amount provides a comparison point across various payments. 

The third predictor with a significantly higher feature important score is: “Claim Diagnosis 

Related Group Code” (clm_drg_cd). Its prediction power could be explained by the fact that for 

inpatient claims, pay-per-performance methods require providers like hospitals to bundle the 

related claims, thus providing another point of comparison for the algorithm to create a baseline 

and detect anomalies.   

Research Question 6 (RQ6)- Is there any statistically significant difference among the selected 

supervised learning algorithms in identifying erroneously adjudicated Medicaid outpatient 

claims? 

To examine if there is a significant difference among the selected supervised learning 

algorithms in identifying quality issues in outpatient claims, the researcher conducted a one-way 

ANOVA test. The result showed the Logistic Regression model (with oversampling) has the best 

detection power (recall). Logistic Regression model (with oversampling) and Naïve Bayes (with 

and without oversampling) are the next best performers and group together (group B). The 

oversampling strategy applied in this research (as explained in chapter 3) has improved the recall 

and F1-score of models most of the time. In a few cases, the improvement done by oversampling 

is statistically significant (e.g., Neural Network recall improvement for inpatient claims, F1-

score of the Gradient Boosting in outpatient data, etc.). Naïve Bays (without oversampling) and 

Gradient Boosting (with oversampling) outperformed the rest of the algorithms from the F1 

score perspective in outpatient data. Oversampling significantly improves the F1-score of the 

Gradient Boosting algorithm in outpatient data. As described in chapter 3, the SMOTE algorithm 

was used for oversampling of the minority class and improved the Gradient Boosting 
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performance. This is congruent with the findings of other researchers working on imbalanced 

data (Cahyana et al., 2019).  

Research Question 7 (RQ7)- Is there any statistically significant difference among the selected 

supervised learning algorithms) in identifying erroneously adjudicated Medicaid inpatient 

claims? 

To examine if there is a significant difference among the selected supervised learning 

algorithms in identifying quality issues in inpatient claims, the researcher conducted a one-way 

ANOVA test.  Gradient Boosting (with oversampling) outperformed the rest of the models in 

recalling quality issues of the inpatient claim data. k-Nearest Neighbor, Neural Network, 

Discriminant Analysis, and Logistic Regression (without sampling) have significantly lower 

recall than the rest of the algorithms on the inpatient dataset. Gradient Boosting (both without 

oversampling), Decision Tree (using Entropy and Gini), and Random Forest (with entropy and 

without oversampling) have significantly higher F1 on inpatient data. Oversampling has 

significantly improved LR recall. A sign of the potential impact of imbalance data on the 

performance of this algorithm 

Research Question 8 (RQ8)- Are the most powerful predictors different between outpatient and 

inpatient claims? Are the most accurate algorithms in detecting erroneously paid claims 

different between the two types of Medicaid claims studied? 

Research question 8 has two parts: 

1. Are the most powerful predictors different between outpatient and inpatient claims? The 

result of our ANOVA tests shows clm_pmt_amt is the most powerful predictor for both 

datasets, which was expected. For outpatient claims, icd9_dgns_cd_1, and at_physn_npi have 
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the second-highest importance scores. For inpatient claims nch_prmry_pyr_clm_pd_amt, and 

clm_drg_cdn the have the second-highest importance scores. 

2. Are the most accurate algorithms in detecting erroneously paid claims different between the 

two types of Medicaid claims studied? 

This question is complex and requires comparing several measures. Table 41 

illustrates the difference among various tested algorithms on both datasets. Tested algorithms 

are sorted based on their recall and F1-score from 1 to 20, whereas 1 shows the algorithm 

with the highest score for recall or F-score. Then an average rank is calculated, and 

algorithms are sorted based on their average rank.  

Table 41. Summary of Research Results and Key Findings 

Ranking of Algorithms on Outpatient Data Ranking of Algorithms on Inpatient Data 

Algorithm 
Recall 
Rank 

F1-Score 
Rank 

Average 
Rank 

Algorithm 
Recall 
Rank 

F1-Score 
Rank 

Average 
Rank 

NB 3 1 2.0 GB 4 1 2.5 
GB (OS) 9 2 5.5 GB (OS) 1 6 3.5 
DTE (OS) 6 8 7.0 DTE 6 2 4.0 
GB 12 3 7.5 DTG (OS) 2 8 5.0 
DTG (OS) 7 9 8.0 DTG 7 4 5.5 
LR 2 14 8.0 RFG 8 3 5.5 
LR (OS) 1 15 8.0 DTE (OS) 5 7 6.0 
NB (OS) 4 12 8.0 RFE 10 5 7.5 
RFE (OS) 11 6 8.5 DA (OS) 3 13 8.0 
DA (OS) 5 13 9.0 NB (OS) 9 12 10.5 
DTG 14 4 9.0 RFE (OS) 12 9 10.5 
DTE 15 5 10.0 NB 11 11 11.0 
RFG (OS) 13 7 10.0 RFG (OS) 13 10 11.5 
NN (OS) 8 17 12.5 NN (OS) 14 14 14.0 
kNN (OS) 10 16 13.0 LR (OS) 15 15 15.0 
RFG 16 10 13.0 kNN (OS) 16 16 16.0 
RFE 17 11 14.0 kNN 18 17 17.5 
kNN 19 18 18.5 NN 17 19 18.0 
NN 18 19 18.5 LR 19 18 18.5 
DA 20 20 20.0 DA 20 20 20.0 
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Table 41 shows there are commonalities between the best and least effective algorithms 

across both datasets. Gradient Boosting (with or without sampling), Decision Tree (both with 

entropy and Gini classifiers), and Random Forests have the best overall performance from both 

recall and F1-scores. There are some critical differences in the performance of some algorithms 

on two different datasets. Naïve Bayes is the best performing algorithm on outpatient data. This 

algorithm’s precision, and consequently its F1-score, decreased with oversampling. This could 

have caused because of overfitting of the data. Logistics Regression has an excellent recall on an 

outpatient dataset but not so much for inpatient claims. Random Forest models performed better 

on the inpatient dataset.  

Importance of the findings and practical implications 

As mentioned in previous chapters, sampling and inferential statistics are the dominant 

quality tools utilized by Medicaid FFS programs. Such methods simply offer an interval estimate 

of the size of the problem in payments (e.g., estimated erroneous payments). They are not 

designed to detect potential erroneous payment at scale. This study aims to apply supervised 

learning as a method to detect such possible erroneous payments at scale. The average accuracy 

and recall rate for the test algorithms are not as high as one would like to see. However, if this 

method is implemented successfully using operational data, it would be a game-changer. Let us 

provide a rough estimate of the potential saving that could be realized by implementing this 

method in a typical Medicaid FFS. Assume the following assumptions: 

 The number of adjudicated claims a year 1,000,000 (many Medicaid FFS programs process a 

considerably higher volume). 

 Percentage of erroneous payments 5% (a conservative estimate per PERM reports). 
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 Estimate the number of erroneously processed claims: 50,000. 

 The average cost per erroneously adjudicated claim: $300. The average cost of a claim varies 

based on the claim type, but $300 is a conservative estimate (Substance Abuse and Mental 

Health Services Administration, 2015). 

 Total potential saving: $15 million a year. 

 Average manually sampled and review claims by the QM team at a typical Medicaid FFS: 50 

a day, 10,000 reviewed claim a year.  

 Potential saving through detecting potential erroneous payment (if they are detected pre-

payment): 10,000*%5*$300= $150K. 

 Cost of each review: $5, so the total cost of review 10,000 samples is $50 K. 

 Actual saving for the Medicaid FFS program: $150k-$50k= $100K. 

So, in this scenario, conventional sampling will save about $100K. If the same program 

can design and implement a model with a recall rate of 50% and precision of 10% (which equals 

an F1-score of 16.7%), the researcher calculates the potential saving using the assumptions listed 

in the previous scenario: 

 Recall 50% means the model could potentially detect half of 50K erroneous payments or 25K 

claims. 

 10% precision means to detect the 25K erroneous claims, 250K claims should be reviewed. 

 Potential saving through detecting possible erroneous payment (if they are caught pre-

payment): 25,000*$300=$7.5M 

 The total cost of reviewing 55K claims (25K true positives and 250K false positives): 

255K*$10=$2.5M 
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 Actual saving for the Medicaid FFS program: $7.5-$2.5M= $5M 

When real-world data is used, and the model is fine-tuned, then the accuracy rate will 

increase, and the cost-saving would be even more substantial. One recommendation is to use 

several algorithms in tandem and create a scoring model to reduce the number of to improve 

overall accuracy. A Medicaid FFS program can set up a multi-phase approach in which 

algorithms with higher recall used to collect as many true positives as possible and then use 

algorithms with higher accuracy to detect true positives. 

Recommendations for Further Research 

The most prominent recommendation for further research based on this dissertation's 

findings is to apply the same method to detect quality issues on other Medicaid FFS claim types. 

This research methodology can be used for other Medicaid FFS claim typos, including medical 

(e.g., DME, vision, etc.), dental, and crossover claims. Medicare does not pay for most of the 

long-term care (LTS) claims. So, one should start with finding a set of Medicaid FFS LTC 

claims before applying the method recommended by this dissertation. As shown in the result 

gathered from the CA-MMIS project, quality issues in the Medicaid FFS claim adjudication 

process are rare events. As a result, collecting enough data to label target training datasets for 

specific claim types may require access to years’ worth of data and be very time-consuming. One 

way to overcome this challenge is to study the possibility of using text analytics and 

unsupervised learning methods to automate the data labeling process and then train the 

supervised algorithms built in this project. 

Another aspect of this research that could be expanded is to apply the same process and 

include other algorithms. For example, SVM was not selected for testing because it requires 



135 
 

 

massive computation power on the mix and massive datasets like datasets used for this research. 

However, it is recommended that other researchers with more computational power at their 

disposal to include SVM in their list of algorithms. As shown in chapter two- SVM has been 

successfully applied to solve many classification quality issues and frequently came on the top of 

this list from the accuracy and recall point of view. 

As discussed in the manage data section, a synthesized dataset created by CMS was used 

for this research. The method explained in CMS’s DE-SynPUF codebook user manual (The 

Centers for Medicare and Medicaid Services, 2013b) has described the data synthesizing process 

in detail. Then, to create labels, the general pattern of quality issues on a Medicaid FFS program 

was studied (e.g., population proportion, underlying distribution function, descriptive statistics, 

etc.). This approach eliminates the chance of any PHI disclosure. The biggest drawback of using 

a synthesized dataset is the limitation of multivariate modeling and model validation. As 

explained in the CMS’s DE-SynPUF codebook, when the dynamic relationships between 

variables are altered (in this case, demographic, clinical, financial, and provider data), analyses 

from multivariate modeling should be interpreted with caution because the generated dataset may 

or may not inherit all the critical characteristic of the original dataset (The Centers for Medicare 

and Medicaid Services, 2013a). It may be appropriate for future research to use the claim and 

quality issues data from the same Medicaid program and start with the deidentification of 

sensitive data. As explained in chapter two, the de-identification of PHI data has its 

disadvantages compared to the method used in this study (data de0identification). However, 

using a real or de-identified dataset will result in a more useful predictive model. This may 

require the researcher(s) to include other related datasets to the research data, including 
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beneficiary data, claim examiners’ information and information related to the pricing policies 

(e.g., error codes). These following data elements are examples of data elements that were not 

used in this research. A researcher can include them to their dataset, follow the steps explained in 

chapter 4, and examine if they can find better predictors for quality issues in the Medicaid FFS 

claim adjudication data: 

 Media Type Electronic vs. paper claims) 

 Policy information (e.g., Error Code) 

 Procedure Code/NDC/Revenue Code 

 MMIS internal processing codes including Roll Numbers and Remittance Advice Details 

(RAD)  

 Programs (e.g., FQHC, GHPP, etc.) 

 Provider Type 

 Information about claim examiners   

During the review of the claim adjudication quality issues (in our sample gathered from 

the CA-MMIS project), the researcher has also observed anecdotal evidence that answering yes 

or no to the following question could be used as a predictor for quality issues: 

 Is the Error Code an audit type or not? 

 Is claim a crossover or not? 

 Is it paid as billed? (Billed Amount = Paid Amount) 

 Is payment based on the Provider Master File? 

 Is the Provider's Frequency over the limits? 
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 Is the Zip Code, including DRG/ACA, negotiated ZIP Codes? 

 Is the procedure code Hemophilia? 

 Is payment based on modifiers? 

Chapter Summary 

In this chapter, the researcher reviewed all research questions, discuss the results of 

hypotheses tests and their implications, and concluded the section with recommendations for 

further research.  
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APPENDIX A: DATA PIPELINE ARCHITECTURE 

The dataset used for this research is extracted from CMS’s DE-SynPUF database. This 

database contains five massive datasets and over 120 flat files in separate files. The researcher 

needed an integrated dataset for this research, so a data pipeline was developed (with support by 

a data engineer) to ingest and merged 120 segregated flat files. This pipeline is a platform-

agnostic solution using a web server and a firebase database that consists of four components: 

webserver in Express.js, UI/UX design using React, Postgres for persistence database, and 

Firebase real-time database as the message broker. After ingesting and merging all the data, the 

was moved database to the cloud. The system is built using a web server with a firebase database 

client listening to change on the firebase real-time database. When a message is written on the 

firebase database, an action gets triggered on the server and operates. The system comprises four 

components - web server built using Express.js framework, front-end built using react, Postgres 

for persistence database, and Firebase real-time database as the message broker.   
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The system is designed to have a single administrator with a global scope of control over 

the message broker. CRUD operations on the database can only be performed by the 

administrator in which sockets on the webserver listens to the UID of the registered admin 

account on Firebase.   

Message Broker 

The system mainly listens to the message written by the admin on its UID. Actions under 

the admin UID are as follows: 

 columnsAvailable: Contains available columns of all the tables in the database. 

 createCsv: Stores all the available CSV files created by the admin with download links. 

 csvToTable: Stores a record of CSV files being converted to database elements. 

 navigation: Contains the record of 100 buffered data to be displayed as well as page control. 

 savedSqlStatements: Contains the saved SQL statements created by the admin account. 

 userList: Stores the record of users with their corresponding UID and action nodes created 
by the admin account. 

Each of the following action nodes is being listened to on the webserver with 

corresponding processes upon detecting change on the action nodes. 

 Front-end  Message 
Broker 

 Hosted Web 
Server 

CRUD 

 Persistent 
Database 
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Web Server 

The web server is built using Express.js framework utilizing firebase database client to 

listen for changes. This setup serves as the real-time message detection to perform the action 

required by the admin. The server is decoupled from each of the components allowing flexibility 

on demand. If the server is not running, the process will be frozen as is, and the system will 

retain the last 100 rows of data retrieved previously. The process will resume running the server, 

and all the changes that have been made in the absence of the server will proceed. The server 

contains the following action listeners waiting for a message from the broker: 

 

Features and Usages 

Navigation: 

All tables created within the system will appear on the “Database” tab, allowing users to 

switch tables by selecting the table's name. 

 

//===================== ADMIN ACTIONS 

//======= ADD USERS 

addUserListener({adminActions, userAccount, admin}); 

//======= UPDATE USERS 

updateUserListener({adminActions, userAccount, admin}); 

//======= Remove USERS 

removeUserListener({adminActions, userAccount, admin}); 

//======= UPLOAD CSV 

uploadListener({adminActions, storage, fs, csv, pool, Client}); 

//======= REMOVE STORAGE CSV 

removeStorageCsv({adminActions, storage, fs, csv, pool, Client}); 

//======= NAVIGATION 

navigator({adminActions, db, pool}); 

//======= SQL STATEMENTS 

sqlStatementListener({adminActions, storage, fs, csv, pool, toCsv}); 

//======= SQL STATEMENTS GENERATE CSV 

sqlToCsv({adminActions, userAccount, storage, fs, csv, pool, toCsv}) 

//======= CSV ACCESS 

csvAccessListener({adminActions, userAccount, admin}); 
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Page navigation is located at the bottom of each table and allows users to browse through 

the database. Each page is paginated to 100 rows of data. 

 

Uploading CSV: 
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Uploading CSV to create a table in the database requires two fields: the “Table Name” 

and the “ProcessId.” 

NOTE: It is imperative to add a unique “ProcessId” for each upload to avoid file 

collision when creating a new table to insert existing ones.  

SQL Statements: 
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This feature allows the user to test and qualify their SQL statements. Users can write their 

statements and test to see the results by clicking “preview.”  

 

 

 

NOTE: This feature is not intended to be used for huge queries, so it is essential to limit 

each request. Statements for huge processing size do not need to undergo the “Preview” function 

and may simply be saved for CSV generation. 

CSV Generation: 
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After saving the statement, a record should be saved on the “Saved SQL Statements.” 

 

 

Clicking “Generate CSV” will process creating a CSV file that will be available for 

download. 

Create Account and Adding CSV Access: 
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Accounts can be created by merely providing a username and password. Adding CSV 

access for a user can be done by clicking “CSV Access” and choosing the checkbox on the left to 

be added. 

 

 

In revoking access, select the CSV on the left and click remove. The process is near real-

time, so each action performed on the admin side can expect almost immediate change to the 

user accounts. 

Clearing the CSV off the system: 
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Removing the CSV file will remove the saved SQL statement, while removing the 

statement will still retain the created CSV file. 

   System Build and Operations 

The system is built to run under Node Version 10 or higher and assumes to have a 

Postgres SQL installed on the host machine. To start the system, a few requirements will have to 

be met. The system will require the SQL credentials to make a connection, the Firebase service 

account to access a real-time database, and the admin user UID to start to create a message map 

and start listening for a request. 

 

Provide the credentials to the database: 

 

Provide the Firebase service account: 

Import firebase service account 
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Add the service account 

 

Provide the firebase UID of the admin: 

Enable the email sign-in method 

 

Register an admin account 

 

 

 

 

Seed the initial database with the following pattern 
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Set the database rules 

 

Install the dependencies: 

 

Execute the server: 
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APPENDIX B: HOW TO CONNECT TO THE AWS ATHENA AND ACCESS THE 

DATASETS USED FOR THIS RESEARCH  

Step 1: use the link provided below to get connected to the AWS Athena services. You 
need the 12-digit Service Account number (provided below) and the username and password you 
received via email to connect to this service and the datasets used in this dissertation in the cloud. 

 
URL for Amazon Athena: https://signin.aws.amazon.com 
Login Using IAM account Service Account: Use the account number provided by the 

researcher 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
  
  
 
 
 
 
 
 
 
 
Step 2: search for Athena service, as shown below, and click on “Get Started” with 

Amazon Athena. 
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** Below the Get Started button is the link to the documentation of the service
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Step 3: On the top right side of the page, select “US West (Oregon)us-west-2” as the server hub 
as shown in the below picture: 

 

 
 
 
Step 4:  If the database is not selected, switch it to de_synpuf (highlighted in yellow)  
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Step 5:  design and run your SQL queries in the query box. Please note Amazon Athena 
uses Presto with full standard SQL support and works with various standard data formats, 
including CSV, JSON, etc. However, some of the functions may be slightly different than 
standard SQL. This is a sample query to select 5,000 random inpatient claims from the 2010 
table:  

 
SELECT * FROM "de_synpuf"."inpatient_claims"  
WHERE "de_synpuf"."inpatient_claims"."clm_from_dt" >= 20100101 and  
"de_synpuf"."inpatient_claims"."clm_from_dt" <= 20101230   
ORDER BY random() limit 5000; 
 

 
 
You can also retrieve saved queries by going through the “Saved Queries” tab, as shown 

below: 
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APPENDIX C: DETAIL OF CA-MMIS WEEKLY PAYMENT DATA REVIEW FINDINGS   

This appendix provides the detail of post-adjudication and pre-payment findings reported 

in CA-MMIS weekly payment data reports between 9/9/2016 and 5/1/2020. This dataset is used 

to extract the pattern of erroneous payments. It is important to note all these reported findings 

were caught and fixed before the providers' final payment, so they are not technically erroneous 

payments. However, they carry the same characteristics of typical erroneous payments in a 

Medicaid FFS. Reviewed samples in these reports are targeted samples because the process 

targets high dollar value claims. Therefore, these results are not used to provide an interval 

estimate for the overall error rate in a typical Medicaid FFS. As explained in detail in chapter 3, 

PERM audit reports were used for this purpose.  

Report Date Weekly 
Sample Size 

Claim type Amount Paid Overpayment Underpayment Amount that should 
have been paid 

Percentage difference to 
apply 

9/9/16 253 3 $59,483.32 $59,483.32   $0.00 Erroneously Paid 
9/9/16 253 4 $7,947.72 $6,914.16   $1,033.56 768.97% 
9/9/16 253 4 $7,947.72 $6,914.16   $1,033.56 768.97% 
9/9/16 253 4 $7,947.72 $6,914.16   $1,033.56 768.97% 
9/9/16 253 4 $3,853.44 $3,352.32   $501.12 768.97% 
9/9/16 253 4 $6,829.92 $1,727.57   $5,102.35 133.86% 

9/16/16 ? 3 $177,427.97 $163,376.16   $14,051.81 1262.67% 
9/16/16 ? 3 $26,649.86 $5,204.56   $21,445.30 124.27% 

9/16/16 ? 5 $5,180.40 $5,180.40   $0.00 Erroneously Paid 

9/16/16 ? 5 $2,609.28 $194.75   $2,414.53 108.07% 
9/23/18 325 4 $2,234.23   $39.31 $2,273.54 98.27% 
9/23/18 325 4 $2,043.60 $25.95   $2,017.65 101.29% 
9/23/18 325 4 $43,211.79 $35,863.33   $7,348.46 588.04% 
9/30/16 287 4 $46,978.56 $27,404.56   $19,574.00 240.00% 
9/30/16 287 4 $43,485.75 $38,549.44   $4,936.31 880.94% 
9/30/16 287 4 $75,243.00   $1,024.80 $76,267.80 98.66% 
9/30/16 287 5 $3,822.58 $42.62   $3,779.96 101.13% 
10/7/18 215 4 $2,256.47 $2,256.47   $0.00 Erroneously Paid 
10/7/18 215 4 $8,984.97 $6,532.51   $2,452.46 366.37% 

10/14/16 287 3 $37,944.12 $29,555.08   $8,389.04 452.31% 
10/21/16 306 3 $32,184.23   $466.10 $32,650.33 98.57% 
10/21/16 306 4 $24,355.10   $989.00 $25,344.10 96.10% 
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Report Date Weekly 
Sample Size 

Claim type Amount Paid Overpayment Underpayment Amount that should 
have been paid 

Percentage difference to 
apply 

10/21/16 306 4 $25,882.00 $20.00   $25,862.00 100.08% 
10/21/16 306 4 $21,482.30 $20.00   $21,462.30 100.09% 
10/21/16 306 4 $25,279.75   $0.01 $25,279.76 100.00% 
10/21/16 306 4 $30,507.12 $28,328.04   $2,179.08 1400.00% 
10/21/16 306 5 $3,677.40 $3,542.40   $135.00 2724.00% 
10/28/16 250 3 $31,434.78 $6,676.60   $24,758.18 126.97% 
10/28/16 250 3 $35,660.36   $30.00 $35,690.36 99.92% 
10/28/16 250 5 $3,455.28   $0.65 $3,455.93 99.98% 
10/28/16 250 4 $57,081.40 $20.00   $57,061.40 100.04% 
10/28/16 250 4 $45,780.68 $43,601.60   $2,179.08 2100.92% 
11/4/16 477 4 $13,702.08 $160.44   $13,541.64 101.18% 
11/4/16 477 4 $7,829.76 $91.68   $7,738.08 101.18% 
11/4/16 477 4 $5,872.32 $68.76   $5,803.56 101.18% 
11/4/16 477 4 $4,514.79 $1.99   $4,512.80 100.04% 

11/11/16 396 4 $88,084.80   $29,361.60 $117,446.40 75.00% 
11/11/16 396 4 $88,084.80   $29,361.60 $117,446.40 75.00% 
11/11/16 396 4 $88,084.80   $29,361.60 $117,446.40 75.00% 
11/18/16 426 1 $2,385.63 $0.75   $2,384.88 100.03% 
11/18/16 426 3 $43,638.00 $1,530.00   $42,108.00 103.63% 
11/18/16 426 4 $44,520.00 $34,966.20   $9,553.80 465.99% 
11/18/16 426 4 $11,361.60   $2,210.30 $13,571.90 83.71% 
11/18/16 426 4 $2,442.66 $488.53   $1,954.13 125.00% 
11/18/16 426 4 $4,538.78   $47.41 $4,586.19 98.97% 
11/23/16 424 4 $30,952.32   $366.72 $31,319.04 98.83% 
11/23/16 424 4 $30,952.32   $366.72 $31,319.04 98.83% 
11/23/16 424 5 $2,876.40 $2,876.40   $0.00 Erroneously Paid 
11/23/16 424 4 $5,372.00   $268.60 $5,640.60 95.24% 
12/2/16 322 5 $2,755.44 $194.75 $269.60 $2,830.29 97.36% 
12/9/16 424 3 $45,757.59 $8.00 $270.60 $46,020.19 99.43% 
12/9/16 424 4 $176,169.60 $29,361.60 $271.60 $147,079.60 119.78% 
12/9/16 424 4 $176,169.60 $88,084.80 $272.60 $88,357.40 199.38% 
12/9/16 424 4 $146,808.00 $58,723.20 $273.60 $88,358.40 166.15% 

12/16/16 406 5 $5,180.40   $72.00 $5,252.40 98.63% 
12/16/16 406 5 $4,630.35 $321.27   $4,309.08 107.46% 
12/16/16 406 5 $5,328.18   $37.26   $5,365.44 99.31% 
12/23/16 416 4 $15,476.16   $183.36 $15,659.52 98.83% 
12/23/16 416 4 $10,018.68 $392.88   $9,625.80 104.08% 
12/23/16 416 4 $6,261.68 $245.56   $6,016.12 104.08% 
12/23/16 416 4 $2,504.67 $98.22   $2,406.45 104.08% 
12/23/16 416 4 $6,261.68 $2,652.01   $3,609.67 173.47% 
12/23/16 416 4 $6,261.68 $2,652.01   $3,609.67 173.47% 
12/23/16 416 4 $17,565.12 $5,745.60   $11,819.52 148.61% 
12/30/16 405 4 $2,137.41   $530.86 $2,668.27 80.10% 

1/6/17 241 5 $6,385.50 $4,802.46   $1,583.04 403.37% 
1/6/17 241 4 $61,083.83 $2,668.27   $58,415.56 104.57% 
1/6/17 241 4 $2,475.50 $0.20   $2,475.30 100.01% 
1/6/17 241 6 $16,199.96 $16,199.96   $0.00 Erroneously Paid 

1/13/17 331 4 $5,768.18     $5,768.18 Documentation Issue 
1/27/17 385 4 $9,622.80 $42.60   $9,580.20 100.44% 
1/27/17 385 4 $2,679.09 $16.59   $2,662.50 100.62% 
1/27/17 385 4 $2,679.09 $16.59   $2,662.50 100.62% 
2/3/17 423 3 $36,750.00   $10,500.00 $47,250.00 77.78% 
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Report Date Weekly 
Sample Size 

Claim type Amount Paid Overpayment Underpayment Amount that should 
have been paid 

Percentage difference to 
apply 

2/3/17 423 4 $2,010.96 $131.95   $1,879.01 107.02% 
2/10/17 365 2 $4,450.00   $0.90 $4,450.90 99.98% 
2/10/17 365 4 $58,254.90 $1,082.67   $57,172.23 101.89% 
2/10/17 365 4 $2,340.48 $0.02   $2,340.46 100.00% 
2/17/17 387 3 $76,133.00   $62.00 $76,195.00 99.92% 
2/17/17 387 3 $56,574.00   $28.00 $56,602.00 99.95% 
2/17/17 387 4 $2,026.08   $57.89 $2,083.97 97.22% 
2/17/17 387 5 $4,316.80   $236.09 $4,552.89 94.81% 
2/24/17 411 3 $35,911.45   $6,605.19 $42,516.64 84.46% 
2/24/17 411 4 $3,658.62 $3,628.94   $29.68 12326.89% 
2/24/17 411 4 $5,745.64   $35.80 $5,781.44 99.38% 
2/24/17 411 4 $8,810.29   $54.90 $8,865.19 99.38% 
2/24/17 411 4 $2,950.00 $937.00   $2,013.00 146.55% 
2/24/17 411 5 $2,560.70 $140.91   $2,419.79 105.82% 
3/3/17 370 4 $24,180.84 $0.20   $24,180.64 100.00% 
3/3/17 370 5 $3,659.06   $75.15 $3,734.21 97.99% 
3/3/17 370 4 $5,386.56 $6.40   $5,380.16 100.12% 

3/10/17 305 4 $5,325.00 $2,662.50   $2,662.50 200.00% 
3/10/17 305 5 $10,139.40 $8,683.20   $1,456.20 696.29% 
3/17/17 356 2 $4,732.89   $54.41 $4,787.30 98.86% 
3/17/17 356 3 $72,318.75 $18,503.62   $53,815.13 134.38% 
3/17/17 356 3 $26,185.60 $268.54   $25,917.06 101.04% 
3/17/17 356 5 $3,226.74   $404.81 $3,631.55 88.85% 
3/24/17 323 4 $2,279.20   $0.30 $2,279.50 99.99% 
3/24/17 323 4 $5,049.58   $0.30 $5,049.88 99.99% 
3/24/17 323 4 $28,059.17 $28,059.16   $0.01 280591700.04% 
3/31/17 354 3 $60,037.97 $60,037.97   $0.00 Erroneously Paid 
3/31/17 354 4 $19,985.00 $15,185.00   $4,800.00 416.35% 
3/31/17 354 4 $4,800.00   $15,185.00 $19,985.00 24.02% 
3/31/17 354 4 $8,344.71 $7,290.36   $1,054.35 791.46% 
4/7/17 392 4 $10,610.22   $4,428.49 $15,038.71 70.55% 
4/7/17 392 5 $3,281.65 $1,581.52   $1,700.13 193.02% 
4/7/17 392 4 $83,575.70 $79,427.74   $4,147.96 2014.86% 
4/7/17 392 5 $5,069.41 $260.15   $4,809.26 105.41% 
4/7/17 392 4 $25,104.00 $50.00   $25,054.00 100.20% 

4/14/17 407 3 $46,334.72   $1,882.87 $48,217.59 96.10% 
4/14/17 407 4 $3,570.56   $124.67 $3,695.23 96.63% 
4/14/17 407 4 $3,570.56   $124.67 $3,695.23 96.63% 
4/21/17 438 4 $11,866.40 $8,833.82   $3,032.58 391.30% 
4/21/17 438 4 $11,866.40 $8,833.82   $3,032.58 391.30% 
4/21/17 438 4 $12,052.95 $8,972.69   $3,080.26 391.30% 
4/21/17 438 4 $11,930.10 $8,889.24   $3,040.86 392.33% 
4/21/17 438 5 $3,006.75   $16.24 $3,022.99 99.46% 
4/28/17 419 3 $26,690.99 $4,500.00   $22,190.99 120.28% 
4/28/17 419 4 $9,542.54 $475.72   $9,066.82 105.25% 
4/28/17 419 4 $8,344.71 $7,290.36   $1,054.35 791.46% 
5/5/17 367 3 $52,860.10 $8,428.26   $44,431.84 118.97% 
5/5/17 367 3 $45,002.36 $2,336.02   $42,666.34 105.48% 
5/5/17 367 5 $3,868.56   $348.17 $4,216.73 91.74% 
5/5/17 367 5 $5,201.66 $8.64   $5,193.02 100.17% 

5/12/17 338 3 $32,586.47 $18,949.78   $13,636.69 238.96% 
5/12/17 338 4 $15,115.41 $13,115.92   $1,999.49 755.96% 
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Report Date Weekly 
Sample Size 

Claim type Amount Paid Overpayment Underpayment Amount that should 
have been paid 

Percentage difference to 
apply 

5/19/17 469 4 $4,633.96 $3,447.90   $1,186.06 390.70% 
5/19/17 469 5 $4,531.85 $9.05   $4,522.80 100.20% 
5/26/17 422 4 $31,500.00 $7,458.00   $24,042.00 131.02% 
6/2/17 412 4 $9,589.80 $36.00   $9,553.80 100.38% 
6/2/17 412 4 $4,087.78   $29.96 $4,117.74 99.27% 
6/9/17 311 4 $71,512.00 $20.00   $71,492.00 100.03% 

6/16/17 431 4 $19,866.00   $52.80 $19,918.80 99.73% 
6/16/17 431 4 $5,318.28   $265.91 $5,584.19 95.24% 
7/10/17 572 5 $4,599.94   $21.21 $4,621.15 99.54% 
7/10/17 572 3 $44,532.34 $1,415.66   $43,116.68 103.28% 
7/10/17 572 3 $39,563.13 $39,563.13   $0.00 Erroneously Paid 
7/10/17 572 3 $36,208.39 $13,707.90   $22,500.49 160.92% 
7/10/17 572 3 $34,166.95 $34,166.95   $0.00 Erroneously Paid 
7/10/17 572 5 $3,313.34   $122.45 $3,435.79 96.44% 
7/10/17 572 4 $2,368.00   $2.00 $2,370.00 99.92% 
7/10/17 572 5 $4,019.57   $120.27 $4,139.84 97.09% 
7/11/17 377 5 $5,039.58   $0.13 $5,039.71 100.00% 
7/11/17 377 4 $6,986.40   $8.64 $6,995.04 99.88% 
7/21/17 411 5 $4,469.38   $7.76 $4,477.14 99.83% 
7/21/17 411 5 $2,509.26 $62.02   $2,447.24 102.53% 
7/21/17 411 5 $3,770.46   $270.00 $4,040.46 93.32% 
7/21/17 411 3 $28,184.88 $1,657.13   $26,527.75 106.25% 
7/21/17 411 4 $7,139.78   $1,004.46 $8,144.24 87.67% 
7/21/17 411 4 $6,317.19   $4.46 $6,321.65 99.93% 
7/28/17 446 4 $23,839.20 $11,919.60   $11,919.60 200.00% 
7/28/17 446 5 $9,895.50 $989.55   $8,905.95 111.11% 
8/11/17 404 4 $11,678.20 $10,029.34   $1,648.86 708.26% 
8/11/17 404 4 $23,356.40 $20,063.14   $3,293.26 709.22% 
8/11/17 404 4 $20,188.13 $20,141.81   $46.32 43584.05% 
8/18/17 485 4 $2,134.71 $23.04   $2,111.67 101.09% 
8/18/17 485 4 $2,134.71 $23.04   $2,111.67 101.09% 
8/18/17 485 4 $2,134.71 $23.04   $2,111.67 101.09% 
8/18/17 485 4 $2,134.71 $23.04   $2,111.67 101.09% 
8/18/17 485 5 $3,060.00 $1,727.71   $1,332.29 229.68% 
8/18/17 485 4 $2,994.17   $153.88 $3,148.05 95.11% 
8/18/17 485 3 $31,574.83   $3.00 $31,577.83 99.99% 
8/25/17 445 4 $4,504.11   $0.84 $4,504.95 99.98% 
8/25/17 445 4 $5,584.48   $0.32 $5,584.80 99.99% 
8/25/17 445 5 $7,590.52   $0.46 $7,590.98 99.99% 
8/25/17 445 5 $10,265.49 $144.18   $10,121.31 101.42% 
9/1/17 401 4 $3,568.67 $2,695.08   $873.59 408.51% 
9/1/17 401 4 $2,976.00   $172.05 $3,148.05 94.53% 
9/8/17 400 4 $7,479.68     $7,479.68 Documentation Issue 
9/8/17 400 4 $7,479.68     $7,479.68 Documentation Issue 
9/8/17 400 4 $5,928.00     $5,928.00 Documentation Issue 
9/8/17 400 4 $5,457.86     $5,457.86 Documentation Issue 
9/8/17 400 4 $2,620.54     $2,620.54 Documentation Issue 
9/8/17 400 4 $6,125.60     $6,125.60 Documentation Issue 
9/8/17 400 4 $6,032.40     $6,032.40 Documentation Issue 
9/8/17 400 4 $2,418.96     $2,418.96 Documentation Issue 
9/8/17 400 4 $5,584.00     $5,584.00 Documentation Issue 

9/15/17 388 4 $2,182.18   $14.34 $2,196.52 99.35% 
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Report Date Weekly 
Sample Size 

Claim type Amount Paid Overpayment Underpayment Amount that should 
have been paid 

Percentage difference to 
apply 

9/15/17 388 3 $64,583.54 $280.34   $64,303.20 100.44% 
9/22/17 492 3 $167,862.46 $72,233.04   $95,629.42 175.53% 
9/22/17 492 4 $4,451.00 $4,249.77   $201.23 2211.90% 
9/22/17 492 5 $7,180.26 $10.37   $7,169.89 100.14% 
9/29/17 368 4 $3,146.39   $1.66 $3,148.05 99.95% 
9/29/17 368 4 $27,502.62 $27,502.62   $0.00 Erroneously Paid 
9/29/17 368 5 $2,585.46 $0.16   $2,585.30 100.01% 
10/6/17 380 5 $2,939.71 $2,939.71   $0.00 Erroneously Paid 

10/20/17 420 4 $2,134.71 $23.04   $2,111.67 101.09% 
10/20/17 420 4 $3,663.48 $698.08   $2,965.40 123.54% 
10/20/17 420 4 $2,134.71 $23.04   $2,111.67 101.09% 
10/20/17 420 4 $5,318.28   $265.91 $5,584.19 95.24% 
10/27/17 428 4 $5,124.27 $51.55   $5,072.72 101.02% 
10/27/17 428 4 $5,801.90 $160.00   $5,641.90 102.84% 
10/27/17 428 4 $32,721.00 $32,721.00   $0.00 Erroneously Paid 
10/27/17 428 4 $5,203.61 $2.20   $5,201.41 100.04% 
11/17/17 448 3 $77,846.67   $359,168.25 $437,014.92 17.81% 
11/17/17 448 4 $13,366.98 $11,507.76   $1,859.22 718.96% 
11/17/17 448 4 $13,366.98 $11,507.78   $1,859.20 718.96% 
11/17/17 448 4 $13,366.98 $11,507.76   $1,859.22 718.96% 
11/17/17 448 4 $25,671.00 $20,469.59   $5,201.41 493.54% 
11/24/17 413 4 $4,407.72 $2,189.15   $2,218.57 198.67% 
12/1/17 394 4 $7,947.75 $7,265.61   $682.14 1165.12% 
12/1/17 394 4 $8,344.71 $7,263.13   $1,081.58 771.53% 
12/1/17 394 4 $8,344.71 $7,267.59   $1,077.12 774.72% 
12/1/17 394 4 $8,344.71 $7,265.61   $1,079.10 773.30% 
12/1/17 394 4 $8,344.71 $7,265.61   $1,079.10 773.30% 
12/1/17 394 4 $8,344.71 $7,263.13   $1,081.58 771.53% 
12/1/17 394 4 $4,045.92 $3,522.72   $523.20 773.30% 
12/8/17 376 3 $236,894.61 $814.62   $236,079.99 100.35% 
12/8/17 376 4 $10,520.00 $8,448.80   $2,071.20 507.92% 
12/8/17 376 4 $6,803.75   $257.87 $7,061.62 96.35% 
12/8/17 376 4 $7,945.00   $965.00 $8,910.00 89.17% 

12/22/17 398 4 $21,208.76 $14,545.20   $6,663.56 318.28% 
12/22/17 398 4 $80,117.10 $67,626.40   $12,490.70 641.41% 
12/22/17 398 2 $5,482.70   $10.00 $5,492.70 99.82% 

1/5/18 280 5 $17,595.88   $9.00 $17,604.88 99.95% 
1/5/18 280 4 $2,010.10 $0.05   $2,010.05 100.00% 
1/5/18 280 4 $2,010.10 $0.05   $2,010.05 100.00% 
1/5/18 280 4 $2,010.10 $0.05   $2,010.05 100.00% 
1/5/18 280 4 $2,010.10 $0.05   $2,010.05 100.00% 
1/5/18 280 4 $2,010.10 $0.05   $2,010.05 100.00% 

1/12/18 308 4 $18,691.00   $0.20 $18,691.20 100.00% 
1/12/18 308 5 $4,567.81 $633.97   $3,933.84 116.12% 
1/12/18 308 5 $3,527.16   $272.46 $3,799.62 92.83% 
1/26/18 426 4 $10,493.05   $7,082.19 $17,575.24 59.70% 
2/2/18 393 2 $4,591.06   $1,000.00 $5,591.06 82.11% 
2/2/18 393 3 $26,891.21 $15,120.00   $11,771.21 228.45% 
2/2/18 393 4 $65,993.40 $44,926.69   $21,066.71 313.26% 
2/2/18 393 4 $2,402.02   $1,637.90 $4,039.92 59.46% 
2/2/18 393 4 $4,955.66   $187.83 $5,143.49 96.35% 
2/2/18 393 4 $16,318.80   $3,600.00 $19,918.80 81.93% 
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2/16/18 426 5 $10,638.54   $95,746.86 $106,385.40 10.00% 
2/16/18 426 4 $27,472.00   $6.00 $27,478.00 99.98% 
2/16/18 426 4 $11,000.00 $9,900.00   $1,100.00 1000.00% 
2/16/18 426 4 $5,826.88 $5,826.88   $0.00 Erroneously Paid 
2/16/18 426 5 $7,328.20 $3.00   $7,325.20 100.04% 
2/23/18 371 4 $2,071.62 $0.42   $2,071.20 100.02% 
2/23/18 371 4 $2,644.37   $2,644.37 $5,288.74 50.00% 
2/23/18 371 5 $11,203.02 $24.30   $11,178.72 100.22% 
2/23/18 371 2 $5,503.90   $63.00 $5,566.90 98.87% 
2/23/18 371 4 $13,139.20 $1,000.00   $12,139.20 108.24% 
2/23/18 371 4 $4,855.68   $43,701.12 $48,556.80 10.00% 
2/23/18 371 4 $4,855.68   $43,701.12 $48,556.80 10.00% 
2/23/18 371 4 $2,123.17   $424.63 $2,547.80 83.33% 
3/2/18 392 4 $2,086.81   $54.76 $2,141.57 97.44% 
3/2/18 392 4 $2,072.14   $12.02 $2,084.16 99.42% 
3/2/18 392 4 $2,071.20 $31.20   $2,040.00 101.53% 
3/2/18 392 3 $61,593.08 $100.00   $61,493.08 100.16% 
3/9/18 350 4 $4,095.12   $122.36 $4,217.48 97.10% 
3/9/18 350 4 $11,250.00 $8,250.00   $3,000.00 375.00% 

3/16/18 411 4 $12,136.50 $10,963.96   $1,172.54 1035.06% 
3/16/18 411 3 $46,829.63 $71.26   $46,758.37 100.15% 
3/16/18 411 3 $27,868.40 $692.27   $27,176.13 102.55% 
3/16/18 411 4 $20,436.85 $17,436.74   $3,000.11 681.20% 
3/23/18 432 4 $5,669.40 $467.99   $5,201.41 109.00% 
3/30/18 388 4 $2,600.00 $2,600.00   $0.00 Erroneously Paid 
3/30/18 388 4 $3,143.40   $2.99 $3,146.39 99.90% 
3/30/18 388 5 $42,473.50 $29,174.39   $13,299.11 319.37% 
3/30/18 388 5 $10,935.80 $8,359.14   $2,576.66 424.42% 
4/6/18 441 4 $3,240.00 $1,167.86   $2,072.14 156.36% 
4/6/18 441 5 $4,077.60   $7.76 $4,085.36 99.81% 
4/6/18 441 5 $11,205.60 $6,534.94   $4,670.66 239.91% 
4/6/18 441 4 $5,429.34 $4,295.13   $1,134.21 478.69% 
4/6/18 441 5 $6,171.00 $5,928.94   $242.06 2549.37% 
4/6/18 441 4 $30,663.60 $20,877.10   $9,786.50 313.33% 
4/6/18 441 5 $5,201.41   $117.70 $5,319.11 97.79% 
4/6/18 441 4 $6,663.56   $14,545.20 $21,208.76 31.42% 
4/6/18 441 4 $4,653.99 $4,653.99   $0.00 Erroneously Paid 

4/13/18 481 4 $6,381.12 $0.01   $6,381.11 100.00% 
4/13/18 481 4 $3,667.93 $65.05   $3,602.88 101.81% 
4/13/18 481 4 $3,547.80 $1,000.00   $2,547.80 139.25% 
4/13/18 481 4 $2,435.87   $125.60 $2,561.47 95.10% 
4/13/18 481 4 $2,248.20   $22,482.00 $24,730.20 9.09% 
4/13/18 481 4 $2,263.50 $2,263.50   $0.00 Erroneously Paid 
4/13/18 481 5 $6,665.87   $6,665.88 $13,331.75 50.00% 
4/13/18 481 5 $5,426.22 $29.82   $5,396.40 100.55% 
4/20/18 483 4 $2,980.00 $20.00   $2,960.00 100.68% 
4/20/18 483 4 $6,293.49   $9,241.15 $15,534.64 40.51% 
4/20/18 483 4 $9,487.30 $9,050.21   $437.09 2170.56% 
4/27/18 447 4 $2,259.47 $2,259.47   $0.00 Erroneously Paid 
4/27/18 447 4 $2,500.80   $107.53 $2,608.33 95.88% 
4/27/18 447 4 $2,259.47 $17.34   $2,242.13 100.77% 
4/27/18 447 5 $4,373.59   $159.48 $4,533.07 96.48% 
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5/4/18 381 4 $2,276.15   $24.69 $2,300.84 98.93% 
5/4/18 381 4 $2,276.15   $24.69 $2,300.84 98.93% 
5/4/18 381 5 $4,104.00 $4,104.00   $0.00 Erroneously Paid 

5/11/18 395 4 $12,564.00   $7,635.60 $20,199.60 62.20% 
5/11/18 395 4 $32,708.00 $2.00   $32,706.00 100.01% 
5/11/18 395 5 $4,419.32   $2.26 $4,421.58 99.95% 
5/11/18 395 5 $6,664.96   $0.91 $6,665.87 99.99% 
5/18/18 484 4 $6,320.00   $128.00 $6,448.00 98.01% 
5/25/18 461 4 $4,367.11 $0.04   $4,367.07 100.00% 
5/25/18 461 4 $5,868.00 $484.54   $5,383.46 109.00% 
6/1/18 408 4 $21,964.80 $17,322.24   $4,642.56 473.12% 
6/1/18 408 4 $81,232.20   $3.00 $81,235.20 100.00% 
6/1/18 408 4 $4,945.14   $0.05 $4,945.19 100.00% 
6/1/18 408 5 $10,143.90   $1,182.10 $11,326.00 89.56% 
7/6/18 540 4 $15,836.34 $12,952.18   $2,884.16 549.08% 
7/6/18 540 5 $22,696.80   $47.88 $22,744.68 99.79% 
7/6/18 540 4 $17,828.56 $200.00   $17,628.56 101.13% 
7/6/18 540 4 $3,124.80   $18.60 $3,143.40 99.41% 

7/13/18 284 4 $2,136.00 $102.00   $2,034.00 105.01% 
7/13/18 284 4 $5,026.32   $1,003.82 $6,030.14 83.35% 
7/13/18 284 4 $2,760.00 $155.18   $2,604.82 105.96% 
7/20/18 534 4 $45,511.20 $729.00   $44,782.20 101.63% 
7/20/18 534 4 $40,454.40 $648.40   $39,806.00 101.63% 
7/20/18 534 4 $45,511.20 $729.00   $44,782.20 101.63% 
7/20/18 534 4 $50,568.00 $810.00   $49,758.00 101.63% 
7/20/18 534 4 $15,170.40 $243.00   $14,927.40 101.63% 
7/20/18 534 4 $40,454.40 $648.00   $39,806.40 101.63% 
7/20/18 534 5 $4,015.32 $15.77   $3,999.55 100.39% 
7/20/18 534 5 $4,093.71   $1,289.75 $5,383.46 76.04% 
7/20/18 534 3 $43,352.83 $37,347.09   $6,005.74 721.86% 
7/27/18 465 4 $2,632.09   $2,632.09 $5,264.18 50.00% 
7/27/18 465 4 $2,614.66   $2,674.08 $5,288.74 49.44% 
7/27/18 465 4 $2,518.09   $2,518.09 $5,036.18 50.00% 
7/27/18 465 4 $4,532.83   $3.00 $4,535.83 99.93% 
7/27/18 465 4 $2,614.66 $66.86   $2,547.80 102.62% 
7/27/18 465 4 $65,798.88 $50.00   $65,748.88 100.08% 
7/27/18 465 4 $65,498.88 $510.72   $64,988.16 100.79% 
7/27/18 465 4 $9,213.79 $8,617.27   $596.52 1544.59% 
7/27/18 465 5 $5,383.46   $156.75 $5,540.21 97.17% 
7/27/18 465 5 $4,093.71   $1,446.50 $5,540.21 73.89% 
8/10/18 400 5 $55,694.72   $10,000.00 $65,694.72 84.78% 
8/10/18 400 3 $98,005.35 $83,081.65   $14,923.70 656.71% 
8/10/18 400 4 $8,582.27 $5,547.42   $3,034.85 282.79% 
8/10/18 400 4 $31,436.40 $21,649.90   $9,786.50 321.22% 
8/10/18 400 4 $3,175.43 $91.99   $3,083.44 102.98% 
8/10/18 400 4 $3,714.50   $252.70 $3,967.20 93.63% 
8/17/18 449 3 $172,328.48 $165,668.35   $6,660.13 2587.46% 
8/24/18 435 3 $1,526,574.33 $274,925.70   $1,251,648.63 121.97% 
8/24/18 435 5 $5,535.75   $4.46 $5,540.21 99.92% 
8/31/18 398 4 $6,430.06   $2,732.66 $9,162.72 70.18% 
9/7/18 401 4 $6,004.42   $75.58 $6,080.00 98.76% 
9/7/18 401 5 $3,171.40   $40.33 $3,211.73 98.74% 
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9/7/18 401 5 $3,330.96   $303.16 $3,634.12 91.66% 
9/14/18 340 4 $2,688.96   $1,000.00 $3,688.96 72.89% 
9/14/18 340 5 $19,497.69 $4.72   $19,492.97 100.02% 
9/21/18 500 4 $2,364.72 $292.58   $2,072.14 114.12% 
9/21/18 500 5 $3,189.60   $254.37 $3,443.97 92.61% 
9/21/18 500 5 $2,530.15   $133.17 $2,663.32 95.00% 
9/28/18 407 4 $32,210.40 $17,712.00   $14,498.40 222.17% 
9/28/18 407 5 $2,661.56   $249.04 $2,910.60 91.44% 
10/5/18 318 2 $6,155.30 $333.25   $5,822.05 105.72% 

10/12/18 367 4 $2,347.85   $770.65 $3,118.50 75.29% 
10/12/18 367 4 $2,403.65 $1,413.99   $989.66 242.88% 
10/12/18 367 4 $5,029.90 $1,112.07   $3,917.83 128.38% 
10/12/18 367 4 $3,518.40 $2,909.55   $608.85 577.88% 
10/19/18 393 4 $5,773.36 $3,708.00   $2,065.36 279.53% 
10/19/18 393 4 $10,836.00 $264.00   $10,572.00 102.50% 
10/19/18 393 4 $5,179.71 $0.10   $5,179.61 100.00% 
10/26/18 441 5 $2,989.44 $319.20   $2,670.24 111.95% 
10/26/18 441 4 $2,098.08   $27.12 $2,125.20 98.72% 
10/26/18 441 4 $25,629.12   $377.28 $26,006.40 98.55% 
10/26/18 441 4 $2,621.99 $87.19   $2,534.80 103.44% 
10/26/18 441 3 $143,688.42 $6,717.22   $136,971.20 104.90% 
10/26/18 441 5 $4,739.43 $17.87   $4,721.56 100.38% 
10/26/18 441 4 $4,170.00 $2,002.80   $2,167.20 192.41% 
11/2/18 283 4 $10,705.56   $3.00 $10,708.56 99.97% 
11/2/18 283 4 $3,025.93   $4.46 $3,030.39 99.85% 

11/16/18 408 4 $2,134.08   $273.78 $2,407.86 88.63% 
11/16/18 408 4 $3,026.92   $4.46 $3,031.38 99.85% 
11/16/18 408 5 $3,611.26   $478.42 $4,089.68 88.30% 
11/16/18 408 5 $4,356.68   $4.66 $4,361.34 99.89% 
11/23/18 403 4 $31,068.00   $648.00 $31,716.00 97.96% 
11/23/18 403 4 $62,136.00   $1,296.00 $63,432.00 97.96% 
11/23/18 403 4 $62,136.00   $1,296.00 $63,432.00 97.96% 
11/23/18 403 4 $31,068.00   $648.00 $31,716.00 97.96% 
11/23/18 403 4 $62,136.00   $1,296.00 $63,432.00 97.96% 
11/23/18 403 4 $23,405.76 $339.55   $23,066.21 101.47% 
11/23/18 403 5 $6,750.42   $0.04 $6,750.46 100.00% 
11/23/18 403 4 $3,019.23 $0.02   $3,019.21 100.00% 
11/23/18 403 4 $24,639.12 $24,639.12   $0.00 Erroneously Paid 
11/30/18 373 4 $3,450.33 $133.96   $3,316.37 104.04% 
11/30/18 373 5 $4,791.34 $310.47   $4,480.87 106.93% 
11/30/18 373 5 $26,816.72   $0.03 $26,816.75 100.00% 
12/7/18 361 4 $8,465.76 $278.40   $8,187.36 103.40% 
12/7/18 361 5 $4,180.52   $160.31 $4,340.83 96.31% 

12/14/18 370 1 $1,124.55 $530.74   $593.81 189.38% 
12/14/18 370 4 $2,518.09   $2,518.09 $5,036.18 50.00% 
12/14/18 370 3 $876,192.81 $835,784.23   $40,408.58 2168.33% 
12/14/18 370 4 $10,125.00 $9,952.20   $172.80 5859.38% 
12/14/18 370 5 $2,912.90   $0.02 $2,912.92 100.00% 
12/14/18 370 5 $2,839.39   $379.87 $3,219.26 88.20% 
12/21/18 471 4 $3,254.22   $2,710.62 $5,964.84 54.56% 
12/21/18 471 4 $8,126.73   $1,073.61 $9,200.34 88.33% 
1/11/19 252 4 $67,555.56 $53,190.01   $14,365.55 470.26% 
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1/11/19 252 5 $8,414.24 $1,308.70   $7,105.54 118.42% 
1/11/19 252 4 $6,962.04 $211.92   $6,750.12 103.14% 
1/18/19 491 4 $12,016.83 $0.03   $12,016.80 100.00% 
1/18/19 491 5 $4,477.63   $3.24 $4,480.87 99.93% 
1/18/19 491 5 $2,894.08   $16.38 $2,910.46 99.44% 
1/18/19 491 5 $4,216.46   $1.05 $4,217.51 99.98% 
1/25/19 436 1 $27,526.22   $0.08 $27,526.30 100.00% 
1/25/19 436 4 $2,031.94   $33.42 $2,065.36 98.38% 
1/25/19 436 4 $2,116.44 $85.56   $2,030.88 104.21% 
1/25/19 436 4 $2,325.00 $0.02   $2,324.98 100.00% 
1/25/19 436 4 $23,424.40 $9,996.40   $13,428.00 174.44% 
1/25/19 436 5 $10,131.66   $30.87 $10,162.53 99.70% 
2/1/19 345 4 $20,731.20 $531.60   $20,199.60 102.63% 
2/1/19 345 4 $51,828.00 $1,329.00   $50,499.00 102.63% 
2/1/19 345 4 $51,828.00 $1,329.00   $50,499.00 102.63% 
2/1/19 345 4 $62,193.60 $1,594.80   $60,598.80 102.63% 
2/1/19 345 4 $82,924.80 $2,126.40   $80,798.40 102.63% 
2/1/19 345 4 $103,656.00 $2,658.00   $100,998.00 102.63% 
2/1/19 345 4 $62,193.60 $1,594.80   $60,598.80 102.63% 
2/1/19 345 4 $41,642.40 $1,243.20   $40,399.20 103.08% 
2/1/19 345 4 $20,731.20 $531.60   $20,199.60 102.63% 
2/1/19 345 4 $2,677.14 $34.67   $2,642.47 101.31% 
2/1/19 345 4 $2,241.19   $0.73 $2,241.92 99.97% 
2/1/19 345 4 $2,241.19   $0.72 $2,241.91 99.97% 
2/8/19 360 4 $4,594.09 $1,710.28   $2,883.81 159.31% 
2/8/19 360 4 $16,380.45 $15,907.72   $472.73 3465.08% 
2/8/19 360 4 $3,255.00 $575.00   $2,680.00 121.46% 
2/8/19 360 4 $4,594.09 $3,099.55   $1,494.54 307.39% 

2/15/19 398 4 $9,370.00 $7,451.16   $1,918.84 488.32% 
2/15/19 398 5 $6,690.60 $5,982.48   $708.12 944.84% 
2/15/19 398 5 $3,765.45 $0.04   $3,765.41 100.00% 
3/8/19 318 4 $6,026.13 $4,851.00   $1,175.13 512.81% 
3/8/19 318 4 $6,026.13 $4,851.00   $1,175.13 512.81% 
3/8/19 318 4 $21,840.60 $21,367.87   $472.73 4620.10% 
3/8/19 318 4 $30,677.00 $50.00   $30,627.00 100.16% 
3/8/19 318 5 $5,750.12   $1,000.00 $6,750.12 85.19% 

3/15/19 346 4 $10,336.59 $10,329.05   $7.54 137090.05% 
3/15/19 346 4 $4,696.16 $4,696.16   $0.00 Erroneously Paid 
3/15/19 346 4 $7,089.20 $5,914.07   $1,175.13 603.27% 
3/15/19 346 4 $10,336.59 $10,329.05   $7.54 137090.05% 
3/15/19 346 4 $6,120.18 $5,974.65   $145.53 4205.44% 
3/15/19 346 4 $6,120.18 $5,970.19   $149.99 4080.39% 
3/15/19 346 4 $6,026.13 $4,851.00   $1,175.13 512.81% 
3/15/19 346 4 $6,418.67 $5,362.24   $1,056.43 607.58% 
3/15/19 346 4 $5,697.47 $4,760.14   $937.33 607.84% 
3/22/19 589 4 $4,474.95 $4,285.61   $189.34 2363.45% 
3/22/19 589 4 $8,763.87 $8,671.76   $92.11 9514.57% 
3/22/19 589 4 $6,026.13 $4,851.00   $1,175.13 512.81% 
3/22/19 589 4 $6,025.14 $4,850.01   $1,175.13 512.72% 
3/22/19 589 4 $6,025.14 $4,850.01   $1,175.13 512.72% 
3/22/19 589 4 $6,026.13 $4,851.00   $1,175.13 512.81% 
3/22/19 589 4 $6,025.14 $4,850.01   $1,175.13 512.72% 
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Claim type Amount Paid Overpayment Underpayment Amount that should 
have been paid 

Percentage difference to 
apply 

3/22/19 589 4 $6,025.14 $4,850.01   $1,175.13 512.72% 
3/22/19 589 4 $6,026.13 $4,851.00   $1,175.13 512.81% 
3/22/19 589 4 $6,025.14 $4,850.00   $1,175.14 512.72% 
3/22/19 589 4 $6,025.14 $4,850.01   $1,175.13 512.72% 
3/22/19 589 4 $6,026.13 $4,850.00   $1,176.13 512.37% 
3/22/19 589 4 $6,026.13 $4,851.00   $1,175.13 512.81% 
3/22/19 589 4 $6,025.14 $4,850.01   $1,175.13 512.72% 
3/22/19 589 4 $6,025.14 $4,850.01   $1,175.13 512.72% 
3/22/19 589 4 $6,025.14 $4,850.01   $1,175.13 512.72% 
3/22/19 589 4 $6,025.14 $4,850.01   $1,175.13 512.72% 
3/22/19 589 4 $6,025.14 $4,850.01   $1,175.13 512.72% 
3/22/19 589 4 $6,025.14 $4,850.01   $1,175.13 512.72% 
3/22/19 589 4 $6,025.14 $4,850.01   $1,175.13 512.72% 
3/22/19 589 4 $6,025.14 $4,850.01   $1,175.13 512.72% 
3/22/19 589 4 $6,026.13 $4,851.00   $1,175.13 512.81% 
3/29/19 532 4 $6,349.32   $57,143.88 $63,493.20 10.00% 
4/19/19 509 4 $43,200.00 $34,734.24   $8,465.76 510.29% 
4/19/19 509 5 $5,051.97 $4,131.63   $920.34 548.92% 
4/26/19 383 4 $7,600.00 $10.00   $7,590.00 100.13% 
5/3/19 367 5 $5,040.53   $41.19 $5,081.72 99.19% 

5/10/19 392 5 $4,453.60 $325.12   $4,128.48 107.88% 
5/17/19 434 4 $8,029.46 $2,140.00   $5,889.46 136.34% 
5/17/19 434 4 $3,463.29   $42.86 $3,506.15 98.78% 
5/17/19 434 4 $20,245.68 $1,557.36   $18,688.32 108.33% 
5/17/19 434 4 $13,497.12 $1,038.24   $12,458.88 108.33% 
5/24/19 432 4 $6,424.46 $535.00   $5,889.46 109.08% 
6/7/19 345 4 $115,416.00 $113,236.92   $2,179.08 5296.55% 
6/7/19 345 4 $6,359.40   $30.96 $6,390.36 99.52% 
6/7/19 345 4 $6,359.40   $30.96 $6,390.36 99.52% 
6/7/19 345 5 $30,902.51   $1,163.67 $32,066.18 96.37% 

6/14/19 361 5 $5,787.72 $9.85   $5,777.87 100.17% 
7/5/19 541 1 $149,994.00 $30,941.10   $119,052.90 125.99% 
7/5/19 541 3 $30,316.10 $3,146.87   $27,169.23 111.58% 
7/5/19 541 5 $32,066.14   $0.04 $32,066.18 100.00% 

7/12/19 291 5 $9,790.12 $2,711.37   $7,078.75 138.30% 
7/12/19 291 5 $19,236.96 $406.02   $18,830.94 102.16% 
7/19/19 480 3 $123,104.44   $36,678.00 $159,782.44 77.05% 
7/19/19 480 4 $3,791.04 $3,205.44   $585.60 647.38% 
7/19/19 480 3 $228,611.85 $228,611.85   $0.00 Erroneously Paid 
7/19/19 480 4 $12,458.34   $27.00 $12,485.34 99.78% 
7/19/19 480 4 $4,066.89   $4,066.88 $8,133.77 50.00% 
8/2/19 397 4 $15,480.63 $15,480.63   $0.00 Erroneously Paid 
8/9/19 486 3 $29,356.83 $16,560.00   $12,796.83 229.41% 

8/16/19 405 4 $10,890.99     $10,890.99 Documentation Issue 
8/16/19 405 4 $10,890.99     $10,890.99 Documentation Issue 
8/23/19 521 4 $100,003.46   $273,001.00 $373,004.46 26.81% 
8/23/19 521 4 $100,003.46   $273,001.00 $373,004.46 26.81% 
8/30/19 391 4 $2,355.84   $3.92 $2,359.76 99.83% 
8/30/19 391 4 $2,355.84   $3.92 $2,359.76 99.83% 
9/6/19 389 3 $96,626.70 $5,692.63   $90,934.07 106.26% 
9/6/19 389 4 $2,152.43   $9.01 $2,161.44 99.58% 
9/6/19 389 4 $6,551.87   $115.71 $6,667.58 98.26% 
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9/6/19 389 5 $4,015.44 $260.19   $3,755.25 106.93% 
10/11/19 358 5 $5,756.40 $72.00   $5,684.40 101.27% 
10/18/19 482 5 $9,391.95 $9,391.95   $0.00 Erroneously Paid 
10/18/19 482 5 $17,232.00   $129.14 $17,361.14 99.26% 
10/25/19 436 5 $3,905.28 $600.48   $3,304.80 118.17% 
10/25/19 436 4 $6,324.00 $4.00   $6,320.00 100.06% 
10/25/19 436 4 $4,830.66   $1.48 $4,832.14 99.97% 
11/1/19 418 5 $4,465.71 $8.91   $4,456.80 100.20% 
11/1/19 418 4 $7,064.16   $1,328.16 $8,392.32 84.17% 
11/1/19 418 4 $111,333.00 $111,333.00   $0.00 Erroneously Paid 
11/1/19 418 4 $111,333.00 $111,333.00   $0.00 Erroneously Paid 
11/1/19 418 4 $111,333.00 $111,333.00   $0.00 Erroneously Paid 
11/1/19 418 4 $111,333.00 $111,333.00   $0.00 Erroneously Paid 
11/1/19 418 4 $37,114.46 $37,114.46   $0.00 Erroneously Paid 
11/1/19 418 4 $37,114.46 $37,114.46   $0.00 Erroneously Paid 
11/1/19 418 4 $37,114.46 $37,114.46   $0.00 Erroneously Paid 
11/1/19 418 4 $37,114.46 $37,114.46   $0.00 Erroneously Paid 
11/1/19 418 4 $37,114.46 $37,114.46   $0.00 Erroneously Paid 
11/1/19 418 4 $111,334.46 $111,334.46   $0.00 Erroneously Paid 
11/1/19 418 4 $39,938.89 $39,938.89   $0.00 Erroneously Paid 
11/1/19 418 4 $57,051.25 $57,051.25   $0.00 Erroneously Paid 
11/1/19 418 4 $57,051.25 $57,051.25   $0.00 Erroneously Paid 
11/1/19 418 4 $171,133.65 $171,133.65   $0.00 Erroneously Paid 
11/1/19 418 4 $171,133.65 $171,133.65   $0.00 Erroneously Paid 
11/1/19 418 4 $171,133.65 $171,133.65   $0.00 Erroneously Paid 
11/8/19 405 5 $5,474.03   $219.29 $5,693.32 96.15% 
11/8/19 405 4 $2,309.26   $4,609.60 $6,918.86 33.38% 
11/8/19 405 5 $6,015.49   $31.54 $6,047.03 99.48% 

11/15/19 361 5 $30,902.46   $1,163.72 $32,066.18 96.37% 
11/15/19 361 5 $33,620.95 $1,554.77   $32,066.18 104.85% 
11/15/19 361 5 $2,669.33 $5.33   $2,664.00 100.20% 
11/22/19 455 4 $7,097.62 $7,097.62   $0.00 Erroneously Paid 
12/13/19 394 4 $62,489.20 $40.00   $62,449.20 100.06% 
12/13/19 394 4 $11,000.00 $9,900.00   $1,100.00 1000.00% 
12/20/19 472 4 $14,665.00 $1,982.00   $12,683.00 115.63% 

1/3/20 369 4 $8,263.14   $739.23 $9,002.37 91.79% 
1/3/20 369 4 $8,787.14   $786.11 $9,573.25 91.79% 

1/10/20 318 3 $94,681.94 $94,681.94   $0.00 Erroneously Paid 
1/17/20 550 5 $24,128.34   $9,492.61 $33,620.95 71.77% 
1/17/20 550 3 $30,757.30   $2,010.00 $32,767.30 93.87% 
1/24/20 418 4 $2,366.54 $1,883.40   $483.14 489.82% 
2/7/20 406 4 $8,817.18   $106.33 $8,923.51 98.81% 
2/7/20 406 4 $4,147.28   $50.02 $4,197.30 98.81% 

2/21/20 437 3 $50,538.00 $50,538.00   $0.00 Erroneously Paid 
3/6/20 369 4 $2,545.60   $100.00 $2,645.60 96.22% 

3/13/20 438 5 $10,775.70 $594.00   $10,181.70 105.83% 
3/13/20 438 5 $5,245.16 $4.68   $5,240.48 100.09% 
3/13/20 438 4 $16,143.93   $4.46 $16,148.39 99.97% 
3/20/20 484 3 $581,730.13 $12,908.21   $568,821.92 102.27% 
3/20/20 484 4 $4,489.61   $400.00 $4,889.61 91.82% 
3/20/20 484 5 $3,056.82   $1,678.80 $4,735.62 64.55% 
3/20/20 484 5 $5,868.56   $2,661.04 $8,529.60 68.80% 
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3/20/20 484 5 $5,868.56   $533.10 $6,401.66 91.67% 
3/20/20 484 5 $12,755.91 $10,933.64   $1,822.27 700.00% 
3/27/20 456 3 $143,048.13 $3,292.80   $139,755.33 102.36% 
3/27/20 456 4 $32,000.00   $4.46 $32,004.46 99.99% 
3/27/20 456 4 $4,274.82 $83.82   $4,191.00 102.00% 
3/27/20 456 5 $3,721.81   $483.59 $4,205.40 88.50% 
3/27/20 456 5 $4,638.33   $261.19 $4,899.52 94.67% 
4/3/20 364 5 $14,419.84   $26.96 $14,446.80 99.81% 
4/3/20 364 5 $5,868.56   $533.10 $6,401.66 91.67% 

4/18/20 457 4 $4,920.74   $232.13 $5,152.87 95.50% 
4/18/20 457 5 $4,695.62   $95.95 $4,791.57 98.00% 
4/24/20 453 3 $47,439.01 $47,439.01   $0.00 Erroneously Paid 
4/24/20 453 4 $7,824.22   $8,756.90 $16,581.12 47.19% 
5/1/20 349 4 $16,458.79 $14,812.92   $1,645.87 1000.01% 
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APPENDIX D: DETAIL RESULTS OF ANDERSON-DARLING AND HYPOTHESES TEST 

TO IDENTIFY ERRNOUSE PAYMENTS’ PROBABILITY DISTRIBUTION FUNCTION  

This appendix provides the detailed result of two separate Anderson-Darling (AD) tests 

on the CA-MMIS WPDR findings on inpatient and outpatient claims as detailed in APPENDIX 

C. Minitab was used as the tool to conduct 16 goodness of fit (GoF) of a distributional family for 

each distribution and AD results are presented. 

Distribution Identification for Outpatient (CA-MMIS WPDR Data) 
* NOTE * Fail to select a Johnson transformation function with P-Value > 0.05. No 
transformation is made. 

2-Parameter Exponential 

* WARNING * Variance/Covariance matrix of estimated parameters does not exist. The threshold 
parameter is assumed fixed when calculating confidence intervals. 

3-Parameter Weibull 

* WARNING * Variance/Covariance matrix of estimated parameters does not exist. The threshold 
parameter is assumed fixed when calculating confidence intervals. 

3-Parameter Gamma 

* WARNING * Variance/Covariance matrix of estimated parameters does not exist. The threshold 
parameter is assumed fixed when calculating confidence intervals. 
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Descriptive Statistics 

N N* Mean StDev Median Minimum Maximum Skewness Kurtosis 
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335 0 13.4829 108.489 1.01529 0.0909091 1370.90 11.9812 147.094 
Box-Cox transformation: λ = -0.287532 

Goodness of Fit Test 

Distribution AD P LRT P 
Normal 115.373 <0.005   
Box-Cox Transformation 22.670 <0.005   
Lognormal 27.851 <0.005   
3-Parameter Lognormal 26.811 * 0.001 
Exponential 270.653 <0.003   
2-Parameter Exponential 277.286 <0.010 0.112 
Weibull 41.427 <0.010   
3-Parameter Weibull 39.024 <0.005 0.000 
Smallest Extreme Value 122.999 <0.010   
Largest Extreme Value 93.428 <0.010   
Gamma 67.728 <0.005   
3-Parameter Gamma 64.935 * 0.000 
Logistic 84.572 <0.005   
Loglogistic 26.410 <0.005   
3-Parameter Loglogistic 25.357 * 0.000 

ML Estimates of Distribution Parameters 

Distribution Location Shape Scale Threshold 
Normal* 13.48288   108.48887   
Box-Cox Transformation* 0.88942   0.25790   
Lognormal* 0.58927   1.23092   
3-Parameter Lognormal 0.52174   1.29323 0.06535 
Exponential     13.48288   
2-Parameter Exponential     13.43207 0.05081 
Weibull   0.53945 3.63364   
3-Parameter Weibull   0.52622 3.38616 0.09081 
Smallest Extreme Value 103.15020   338.72883   
Largest Extreme Value 2.59818   11.53885   
Gamma   0.33636 40.08457   
3-Parameter Gamma   0.31890 41.99428 0.09091 
Logistic 3.29619   11.29919   
Loglogistic 0.41604   0.61167   
3-Parameter Loglogistic 0.35048   0.65303 0.08141 

* Scale: Adjusted ML estimate 

 
 

 

Distribution Identification for Inpatient (CA-MMIS WPDR Data) 

2-Parameter Exponential 

* WARNING * Variance/Covariance matrix of estimated parameters does not exist. The threshold 
parameter is assumed fixed when calculating confidence intervals. 
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3-Parameter Weibull 

* WARNING * Variance/Covariance matrix of estimated parameters does not exist. The threshold 
parameter is assumed fixed when calculating confidence intervals. 

3-Parameter Gamma 

* WARNING * Variance/Covariance matrix of estimated parameters does not exist. The threshold 
parameter is assumed fixed when calculating confidence intervals. 
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Descriptive Statistics 

N N* Mean StDev Median Minimum Maximum Skewness Kurtosis 
44 0 2.77840 5.13097 1.04269 0.178133 25.8746 3.60498 13.0846 

Box-Cox transformation: λ = -0.5 
Johnson transformation function: 
-0.558044 + 0.273480 × Asinh( ( X - 1.00096 ) / 0.00924874 ) 

Goodness of Fit Test 

Distribution AD P LRT P 
Normal 10.531 <0.005   
Box-Cox Transformation 4.130 <0.005   
Lognormal 5.555 <0.005   
3-Parameter Lognormal 5.297 * 0.169 
Exponential 8.078 <0.003   
2-Parameter Exponential 8.473 <0.010 0.051 
Weibull 6.733 <0.010   
3-Parameter Weibull 6.287 <0.005 0.004 
Smallest Extreme Value 11.243 <0.010   
Largest Extreme Value 9.380 <0.010   
Gamma 7.646 <0.005   
3-Parameter Gamma 7.191 * 0.011 
Logistic 8.817 <0.005   
Loglogistic 4.641 <0.005   
3-Parameter Loglogistic 4.449 * 0.134 
Johnson Transformation 0.190 0.894   

ML Estimates of Distribution Parameters 
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Distribution Location Shape Scale Threshold 
Normal* 2.77840   5.13097   
Box-Cox Transformation* 0.89477   0.33382   
Lognormal* 0.38792   0.91148   
3-Parameter Lognormal 0.28350   0.97898 0.10306 
Exponential     2.77840   
2-Parameter Exponential     2.66074 0.11766 
Weibull   0.84741 2.45644   
3-Parameter Weibull   0.79093 2.17195 0.15739 
Smallest Extreme Value 5.95838   8.39066   
Largest Extreme Value 1.34502   1.69089   
Gamma   0.91970 3.02099   
3-Parameter Gamma   0.79068 3.31980 0.15350 
Logistic 1.63515   1.62851   
Loglogistic 0.22854   0.40720   
3-Parameter Loglogistic 0.11605   0.45333 0.12744 
Johnson Transformation* 0.04042   0.94763   

* Scale: Adjusted ML estimate 
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APPENDIX E: DETAIL RESULTS OF PRINCIPLE COMPONENT ANALYSIS (PCA) FOR 

RATIO FEATURES FOR INPATIENT AND OUTPATIENT DATASETS  

This appendix provides the detail result of PCA analysis from Minitab for ratio features 

in outpatient and inpatient datasets. 

OUTPATIENT_LABELLEDSAMPLE_ALL 

Principal Component Analysis for ratio features- outpatient 
Eigenanalysis of the Correlation Matrix 

Eigenvalue 1.2556 1.1104 0.9846 0.8969 0.7525 
Proportion 0.251 0.222 0.197 0.179 0.151 
Cumulative 0.251 0.473 0.670 0.849 1.000 

12794 cases used, 727 cases contain missing values 

Eigenvectors 

Variable PC1 PC2 PC3 PC4 PC5 
clm_pmt_amt 0.698 -0.017 0.090 -0.071 0.707 
nch_prmry_pyr_clm_pd_amt 0.211 0.214 -0.944 0.116 -0.071 
clm_pass_thru_per_diem_amt 0.100 -0.683 -0.204 -0.677 -0.158 
nch_bene_ip_ddctbl_amt 0.047 -0.691 -0.059 0.718 0.017 
clm_utlztn_day_cnt 0.676 0.100 0.236 0.088 -0.685 



193 
 

 

 

 



194 
 

 

 

 



195 
 

 

 

 
 

INPATIENT_LABELLEDSAMPLE_ALL 

Principal Component Analysis for ratio features- Inpatient 
Eigenanalysis of the Correlation Matrix 

Eigenvalue 1.1655 1.1056 1.0034 0.9832 0.8896 0.8527 
Proportion 0.194 0.184 0.167 0.164 0.148 0.142 
Cumulative 0.194 0.379 0.546 0.710 0.858 1.000 

12504 cases used, 717 cases contain missing values 

Eigenvectors 

Variable PC1 PC2 PC3 PC4 PC5 PC6 
clm_pmt_amt 0.658 -0.209 -0.057 -0.007 -0.075 0.717 
nch_prmry_pyr_clm_pd_amt 0.298 -0.351 0.338 -0.738 -0.019 -0.358 
clm_pass_thru_per_diem_amt 0.380 0.567 -0.071 -0.110 0.710 -0.116 
nch_bene_pta_coinsrnc_lblty_am 0.518 -0.233 0.059 0.612 -0.079 -0.542 
nch_bene_blood_ddctbl_lblty_am 0.071 -0.174 -0.935 -0.219 -0.059 -0.198 
nch_bene_ip_ddctbl_amt 0.244 0.654 -0.003 -0.143 -0.693 -0.108 
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APPENDIX F: TESTING THE PERFORMANCE OF A 5-FOLD VS. 10-FOLD CROSS 

VALIDATION ON A DATASET 

This appendix provides the detailed result performance of two algorithms on one dataset 

(outpatient). The result shows there is no significant difference between 5 vs. 10-fold cross-

validation for our datasets. 
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K Al Run 
Precision Recall Accuracy F Measure ROC KS 

(Measur
e) 

KS (P 
Value) P0 P1 P2 P3 P4 P0 P1 P2 P3 P4 P0 P1 P2 P3 P4 P0 P1 P2 P3 P4 P0 P1 P2 P3 P4 

5 DT 

1 74.50% 97.89% 37.04% 46.94% 28.96% 69.37% 95.36% 37.91% 35.38% 50.48% 88.32% 99.03% 75.28% 72.24% 80.11% 71.85% 96.61% 37.47% 40.35% 36.80% 83.14% 99.39% 60.94% 62.75% 60.93% 8.53% 0.00% 

2 66.58% 93.32% 72.44% 22.64% 38.84% 66.80% 95.15% 46.60% 39.78% 46.88% 86.70% 98.98% 77.89% 77.67% 78.97% 66.69% 94.23% 56.72% 28.86% 42.48% 79.15% 99.36% 75.85% 57.04% 63.92% 12.05% 0.00% 

3 69.19% 94.89% 55.10% 27.40% 38.90% 82.51% 95.20% 42.55% 39.28% 34.78% 90.90% 98.99% 76.14% 77.01% 73.19% 75.26% 95.05% 48.02% 32.28% 36.72% 82.76% 99.37% 68.25% 58.41% 60.33% 3.67% 0.00% 

4 73.52% 95.17% 44.68% 34.50% 41.90% 77.56% 95.18% 40.86% 33.89% 47.08% 90.45% 98.99% 76.00% 73.44% 78.96% 75.48% 95.18% 42.69% 34.20% 44.34% 84.10% 99.37% 64.26% 58.84% 65.06% 2.20% 0.00% 

5 74.09% 95.35% 50.33% 49.63% 34.07% 70.24% 95.20% 46.17% 44.26% 49.87% 88.54% 98.99% 78.33% 77.43% 79.96% 72.11% 95.27% 48.16% 46.79% 40.48% 83.12% 99.37% 67.83% 67.00% 62.75% 6.34% 0.00% 

Averag
e 

71.57% 95.32% 51.92% 36.23% 36.53% 73.29% 95.22% 42.82% 38.52% 45.82% 88.98% 99.00% 76.73% 75.56% 78.24% 72.28% 95.27% 46.61% 36.50% 40.17% 82.45% 99.37% 67.42% 60.81% 62.60% 6.56% 0.00% 

10 DT 

1 75.53% 94.80% 56.68% 35.11% 46.62% 73.91% 95.80% 41.48% 47.84% 55.85% 89.77% 99.11% 75.35% 79.36% 81.95% 74.71% 95.30% 47.91% 40.50% 50.82% 84.43% 99.41% 68.35% 62.77% 68.70% 8.62% 0.00% 

2 78.32% 93.78% 34.44% 29.33% 45.44% 68.18% 95.80% 43.39% 32.67% 40.49% 88.35% 99.01% 77.90% 73.78% 75.73% 72.89% 94.78% 38.40% 30.91% 42.82% 84.59% 99.15% 61.60% 57.11% 64.37% 3.73% 0.00% 

3 73.60% 91.30% 44.07% 45.02% 34.18% 74.77% 95.56% 41.33% 41.60% 40.08% 89.75% 98.49% 76.30% 76.37% 76.62% 74.18% 93.38% 42.65% 43.24% 36.90% 83.69% 97.91% 64.21% 64.61% 60.71% 2.94% 0.00% 

4 72.01% 95.25% 48.49% 39.44% 38.16% 69.04% 95.13% 39.19% 44.80% 48.42% 87.94% 98.98% 74.65% 78.17% 79.50% 70.49% 95.19% 43.35% 41.95% 42.68% 81.97% 99.36% 64.84% 63.65% 64.00% 6.63% 0.00% 

5 66.16% 94.68% 38.25% 24.83% 36.52% 77.48% 95.43% 28.25% 24.35% 49.41% 89.39% 98.78% 68.22% 69.54% 79.83% 71.38% 95.05% 32.50% 24.59% 42.00% 80.68% 98.72% 56.98% 52.77% 63.58% 5.22% 0.00% 

6 69.62% 96.35% 51.20% 32.97% 33.24% 77.84% 95.12% 36.25% 36.67% 44.76% 89.96% 98.97% 72.23% 75.21% 78.44% 73.50% 95.73% 42.45% 34.72% 38.15% 82.33% 99.36% 64.34% 59.37% 61.49% 7.17% 0.00% 

7 71.98% 95.64% 69.41% 17.28% 30.90% 62.35% 95.39% 40.62% 36.19% 50.52% 85.70% 99.02% 73.59% 77.36% 80.13% 66.82% 95.51% 51.25% 23.39% 38.35% 80.56% 99.37% 72.02% 54.83% 61.67% 18.22% 0.00% 

8 64.42% 95.03% 59.16% 50.63% 31.09% 69.19% 95.04% 51.93% 42.50% 45.32% 87.15% 98.96% 80.88% 76.42% 78.72% 66.72% 95.03% 55.31% 46.21% 36.88% 78.63% 99.35% 72.73% 66.75% 60.86% 6.28% 0.00% 

9 72.17% 95.15% 60.88% 25.06% 35.74% 63.75% 94.71% 40.72% 37.80% 54.66% 86.23% 98.88% 74.45% 76.76% 81.22% 67.70% 94.93% 48.80% 30.14% 43.22% 80.96% 99.30% 69.36% 57.37% 64.16% 13.66% 0.00% 

10 70.50% 93.46% 65.08% 33.81% 21.62% 71.45% 95.41% 44.22% 34.97% 39.23% 88.47% 98.59% 76.59% 74.19% 77.63% 70.97% 94.42% 52.66% 34.38% 27.88% 81.73% 98.23% 72.28% 59.04% 56.62% 9.64% 0.00% 

Averag
e 

71.43% 94.54% 52.77% 33.35% 35.35% 70.80% 95.34% 40.74% 37.94% 46.87% 88.27% 98.88% 75.02% 75.72% 78.98% 70.94% 94.93% 45.53% 35.00% 39.97% 81.96% 99.02% 66.67% 59.83% 62.62% 8.21% 0.00% 

5 vs. 10-fold Diff. 0.14% 0.78% -0.85% 2.88% 1.18% 2.50% -0.12% 2.08% 0.58% -1.06% 0.71% 0.12% 1.71% -0.16% -0.74% 1.34% 0.33% 1.08% 1.49% 0.20% 0.50% 0.35% 0.75% 0.98% -0.02% 
-1.65% 0.00% 5 vs. 10-fold 

Average Diff. 
0.83% 0.80% 0.33% 0.89% 0.51% 

  
 

                           

K Al Run 
Precision Recall Accuracy F Measure ROC KS 

(Measur
e) 

KS (P 
Value) P0 P1 P2 P3 P4 P0 P1 P2 P3 P4 P0 P1 P2 P3 P4 P0 P1 P2 P3 P4 P0 P1 P2 P3 P4 

5 RF 

1 81.69% 96.17% 46.01% 21.12% 33.44% 64.58% 95.77% 41.35% 29.72% 38.26% 87.38% 99.00% 76.15% 74.24% 75.90% 72.14% 95.97% 43.55% 24.70% 35.69% 85.25% 99.15% 64.85% 54.32% 59.97% 8.31% 0.00% 

2 82.54% 95.45% 40.33% 18.56% 42.23% 67.88% 95.86% 43.96% 32.06% 33.75% 88.70% 99.01% 77.78% 75.85% 71.87% 74.50% 95.65% 42.07% 23.51% 37.52% 86.39% 99.14% 63.74% 54.36% 60.75% 5.05% 0.00% 

3 80.85% 96.51% 36.17% 14.14% 33.23% 60.03% 95.29% 33.38% 21.81% 38.07% 85.40% 98.99% 72.80% 72.69% 75.83% 68.90% 95.90% 34.72% 17.16% 35.48% 83.69% 99.34% 59.06% 50.73% 59.86% 9.57% 0.00% 

4 80.91% 95.85% 58.74% 16.07% 33.48% 60.85% 95.57% 47.18% 32.70% 37.68% 85.77% 99.05% 78.60% 76.60% 75.62% 69.46% 95.71% 52.33% 21.55% 35.46% 83.95% 99.37% 71.15% 53.90% 59.82% 12.40% 0.00% 

5 81.81% 94.84% 52.08% 14.18% 42.33% 60.24% 95.51% 45.24% 33.47% 41.07% 85.56% 98.87% 77.81% 77.20% 76.32% 69.39% 95.18% 48.42% 19.92% 41.69% 84.16% 98.92% 68.16% 53.57% 63.57% 10.91% 0.00% 

Averag
e 

81.56% 95.76% 46.66% 16.81% 36.94% 62.72% 95.60% 42.22% 29.95% 37.77% 86.56% 98.99% 76.63% 75.31% 75.11% 70.88% 95.68% 44.22% 21.37% 37.17% 84.69% 99.18% 65.39% 53.38% 60.80% 9.25% 0.00% 

10 RF 

1 82.32% 95.40% 40.49% 20.64% 34.50% 58.43% 96.12% 42.12% 31.56% 36.47% 84.75% 99.00% 76.97% 75.18% 74.88% 68.34% 95.76% 41.29% 24.96% 35.46% 83.84% 98.99% 63.29% 54.73% 59.74% 8.78% 0.00% 

2 81.70% 95.91% 52.87% 23.55% 39.99% 65.38% 95.82% 55.47% 30.16% 40.80% 87.69% 98.99% 82.09% 73.80% 76.39% 72.64% 95.86% 54.14% 26.45% 40.39% 85.44% 99.11% 71.13% 54.96% 62.74% 5.72% 0.00% 

3 83.22% 95.57% 40.82% 18.14% 34.44% 62.60% 95.80% 39.06% 28.20% 36.14% 86.70% 98.86% 75.43% 74.39% 74.72% 71.45% 95.69% 39.92% 22.08% 35.27% 85.39% 98.76% 62.45% 53.30% 59.61% 8.07% 0.00% 

4 82.29% 97.05% 55.80% 23.74% 27.12% 63.80% 95.52% 39.75% 33.36% 49.48% 87.12% 99.05% 74.24% 75.26% 79.89% 71.88% 96.28% 46.43% 27.74% 35.04% 85.31% 99.38% 67.33% 55.94% 60.10% 14.80% 0.00% 

5 82.45% 96.19% 42.72% 26.28% 37.61% 63.38% 94.82% 39.90% 37.96% 42.33% 86.96% 98.78% 75.67% 76.67% 77.28% 71.67% 95.50% 41.26% 31.06% 39.83% 85.27% 98.98% 63.32% 57.77% 62.40% 8.39% 0.00% 

6 81.24% 96.88% 33.21% 15.84% 40.98% 63.34% 95.69% 28.36% 26.72% 45.10% 86.85% 99.09% 69.86% 74.48% 78.22% 71.19% 96.28% 30.59% 19.89% 42.94% 84.74% 99.41% 56.12% 52.49% 64.25% 9.97% 0.00% 

7 81.35% 96.59% 52.73% 14.07% 30.80% 62.15% 95.44% 41.45% 21.26% 43.36% 86.36% 99.02% 75.65% 72.39% 78.11% 70.47% 96.01% 46.41% 16.94% 36.02% 84.48% 99.35% 67.05% 50.52% 60.37% 12.55% 0.00% 

8 81.24% 96.52% 38.38% 28.48% 42.90% 64.56% 96.10% 41.12% 32.51% 48.03% 87.33% 99.16% 76.68% 73.87% 79.30% 71.95% 96.31% 39.70% 30.36% 45.32% 85.04% 99.43% 62.32% 56.85% 65.65% 5.95% 0.00% 

9 82.29% 96.38% 53.08% 18.39% 41.12% 62.34% 95.42% 47.93% 32.57% 42.80% 86.52% 99.02% 79.08% 76.06% 77.23% 70.94% 95.90% 50.38% 23.51% 41.94% 84.93% 99.34% 69.33% 54.44% 63.69% 9.49% 0.00% 

10 81.06% 95.75% 42.93% 9.57% 34.33% 58.91% 95.64% 37.80% 17.80% 37.40% 84.90% 98.85% 74.46% 73.08% 75.37% 68.23% 95.70% 40.20% 12.45% 35.80% 83.46% 98.81% 62.63% 49.26% 59.98% 10.89% 0.00% 

Averag
e 

81.92% 96.23% 45.30% 19.87% 36.38% 62.49% 95.64% 41.29% 29.21% 42.19% 86.52% 98.98% 76.01% 74.52% 77.14% 70.87% 95.93% 43.03% 23.54% 38.80% 84.79% 99.16% 64.50% 54.03% 61.85% 9.46% 0.00% 

5 vs. 10-fold Diff. -0.36% -0.46% 1.36% -3.06% 0.56% 0.23% -0.03% 0.93% 0.74% -4.43% 0.05% 0.00% 0.61% 0.80% -2.03% 0.00% -0.25% 1.19% -2.18% -1.63% -0.10% 0.03% 0.89% -0.65% -1.06% 
-0.21% 0.00% 5 vs. 10-fold 

Average Diff. 
-0.39% -0.51% -0.11% -0.57% -0.18% 
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APPENDIX G: DETAIL RESULT OF FEATURE IMPORTANCE CALCULATIONS 

This appendix presents Mean Decrease in Impurity (MDI) is used to calculate the feature 

importance score (Gini importance) presented here. 

Outpatient Independent Variable DTE DTG GB RFE RFG 

clm_pmt_amt 0.764439 0.591168292 0.195357038 0.251641813 0.14127222 

nch_prmry_pyr_clm_pd_amt 0.003081 0.004518558 0.005640962 0.004061057 0.003648207 

at_physn_npi 0.037157 0.02053663 0.161360039 0.125938191 0.146309041 

op_physn_npi 0.004684 0.029549666 0.025856541 0.026117104 0.030777697 

ot_physn_npi 0.015246 0.041652799 0.05563106 0.052157129 0.058011679 

icd9_dgns_cd_1 0.046217 0.102061247 0.138662911 0.122238481 0.140702307 

icd9_dgns_cd_2 0.018545 0.0201475 0.07084581 0.070175518 0.080594996 

icd9_dgns_cd_3 0.02204 0.036491813 0.046828383 0.048401513 0.055770272 

icd9_prcdr_cd_1 0 0 0 3.65541E-06 2.21377E-05 

nch_bene_ptb_ddctbl_amt 0.011737 0.000742858 0.010755506 0.006728204 0.009395545 

nch_bene_ptb_coinsrnc_amt 0.015625 0.049211418 0.051435501 0.052257289 0.057007891 

admtng_icd9_dgns_cd 0.020557 0.015539273 0.036952278 0.037077828 0.043708748 

hcpcs_cd_1 0.019915 0.020086936 0.073544404 0.073292543 0.082820058 

hcpcs_cd_2 0.011368 0.036739697 0.064096762 0.060626544 0.069250005 

hcpcs_cd_3 0.007935 0.028615234 0.042537076 0.044039248 0.051712673 

YEAR 0.001453 0.002938079 0.020495729 0.025243882 0.028996524 
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Inpatient Independent Variable DTE DTG GB RFE RFG 

clm_pmt_amt 0.484431 0.341661 0.292049 0.374654 0.307621 
nch_prmry_pyr_clm_pd_amt 0.337463 0.524377 0.336782 0.082812 0.167485 

at_physn_npi 0.024932 0.004257 0.054808 0.07008 0.06667 
op_physn_npi 0.011089 0.002188 0.027201 0.043157 0.043952 
ot_physn_npi 0 0 0.011013 0.012117 0.011579 

admtng_icd9_dgns_cd 0.004301 0.000556 0.03304 0.058085 0.054768 
clm_pass_thru_per_diem_amt 0 0.005087 0.015935 0.020719 0.022672 

nch_bene_ip_ddctbl_amt 0 0 0.007959 0.013739 0.014329 
nch_bene_pta_coinsrnc_lblty_am 0 0.00065 0.004432 0.004664 0.002334 
nch_bene_blood_ddctbl_lblty_am 0 0.005011 0.003224 0.001734 0.000257 

clm_utlztn_day_cnt 0.007286 0 0.014681 0.03827 0.037108 
clm_drg_cd 0.100582 0.090917 0.07945 0.09042 0.088241 

icd9_dgns_cd_1 0.009922 0.010403 0.040799 0.058452 0.056347 
icd9_dgns_cd_2 0.009222 0.004184 0.037543 0.057865 0.058257 
icd9_dgns_cd_3 0.010772 0.00612 0.032677 0.060532 0.056032 

hcpcs_cd_1 0 0 0 0 0 
hcpcs_cd_2 0 0 0 0 0 
hcpcs_cd_3 0 0 0 0 0 

YEAR 0 0.004592 0.008407 0.012701 0.012347 
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APPENDIX H: DETAIL RESULT OF PERFORMANCE METRICS FOR TESTED 

ALGORITHMS 

This appendix presents performance metrics measured across all 5-fold runs for each 

algorithm in both with and without oversampling configuration. 

 

Performance Metrics for all Algorithms on Outpatient Datasets 

Algorithm Run FP TP FN TN 

Performance Metrics for Target Group 
(P1) 

Recall 
F1- 

Score 
Precision Accuracy 

DTG 

1 15 17 290 22452 5.54% 10.03% 53.13% 98.66% 

2 26 17 289 22441 5.56% 9.74% 39.53% 98.62% 

3 37 23 284 22430 7.49% 12.53% 38.33% 98.59% 

4 18 21 285 22449 6.86% 12.17% 53.85% 98.67% 

5 31 18 288 22436 5.88% 10.14% 36.73% 98.60% 

Average 6.27% 10.92% 44.31% 98.63% 

DTG (OS) 

1 3365 114 193 19102 37.13% 6.02% 3.28% 84.38% 

2 3337 138 168 19130 45.10% 7.30% 3.97% 84.61% 

3 3219 127 180 19248 41.37% 6.95% 3.80% 85.08% 

4 2981 114 192 19486 37.25% 6.70% 3.68% 86.07% 

5 3980 154 152 18487 50.33% 6.94% 3.73% 81.86% 

Average 42.24% 6.78% 3.69% 84.40% 

DTE 

1 21 13 294 22446 4.23% 7.62% 38.24% 98.62% 

2 13 21 285 22454 6.86% 12.35% 61.76% 98.69% 

3 13 17 290 22454 5.54% 10.09% 56.67% 98.67% 

4 23 21 285 22444 6.86% 12.00% 47.73% 98.65% 

5 19 15 291 22448 4.90% 8.82% 44.12% 98.64% 

Average 5.68% 10.18% 49.70% 98.65% 

DTE (OS) 

1 3381 143 164 19086 46.58% 7.47% 4.06% 84.43% 

2 3376 152 154 19091 49.67% 7.93% 4.31% 84.50% 

3 3922 146 161 18545 47.56% 6.67% 3.59% 82.07% 

4 3518 152 154 18949 49.67% 7.65% 4.14% 83.88% 

5 3641 127 179 18826 41.50% 6.23% 3.37% 83.23% 

Average 47.00% 7.19% 3.89% 83.62% 

RFG 
1 2 11 296 22465 3.58% 6.88% 84.62% 98.69% 

2 0 10 296 22467 3.27% 6.33% 100.00% 98.70% 

3 0 7 300 22467 2.28% 4.46% 100.00% 98.68% 
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Algorithm Run FP TP FN TN 

Performance Metrics for Target Group 
(P1) 

Recall 
F1- 

Score 
Precision Accuracy 

4 0 7 299 22467 2.29% 4.47% 100.00% 98.69% 

5 2 7 299 22465 2.29% 4.44% 77.78% 98.68% 

Average 2.74% 5.32% 92.48% 98.69% 

RFG (OS) 

1 430 45 262 22037 14.66% 11.51% 9.47% 96.96% 

2 436 32 274 22031 10.46% 8.27% 6.84% 96.88% 

3 436 32 275 22031 10.42% 8.26% 6.84% 96.88% 

4 406 35 271 22061 11.44% 9.37% 7.94% 97.03% 

5 428 25 281 22039 8.17% 6.59% 5.52% 96.89% 

Average 11.03% 8.80% 7.32% 96.93% 

RFE 

1 1 9 298 22466 2.93% 5.68% 90.00% 98.69% 

2 1 11 295 22466 3.59% 6.92% 91.67% 98.70% 

3 0 5 302 22467 1.63% 3.21% 100.00% 98.67% 

4 1 6 300 22466 1.96% 3.83% 85.71% 98.68% 

5 2 9 297 22465 2.94% 5.68% 81.82% 98.69% 

Average 2.61% 5.06% 89.84% 98.69% 

RFE (OS) 

1 420 38 269 22047 12.38% 9.93% 8.30% 96.97% 

2 459 39 267 22008 12.75% 9.70% 7.83% 96.81% 

3 439 28 279 22028 9.12% 7.24% 6.00% 96.85% 

4 445 31 275 22022 10.13% 7.93% 6.51% 96.84% 

5 393 39 267 22074 12.75% 10.57% 9.03% 97.10% 

Average 11.42% 9.07% 7.53% 96.91% 

NB 

1 1149 159 148 21318 51.79% 19.69% 12.16% 94.30% 

2 1190 166 140 21277 54.25% 19.98% 12.24% 94.16% 

3 1192 152 155 21275 49.51% 18.41% 11.31% 94.09% 

4 1087 154 152 21380 50.33% 19.91% 12.41% 94.56% 

5 1182 172 134 21285 56.21% 20.72% 12.70% 94.22% 

Average 52.42% 19.74% 12.16% 94.27% 

NB (OS) 

1 7031 152 155 15436 49.51% 4.06% 2.12% 68.45% 

2 7162 175 131 15305 57.19% 4.58% 2.39% 67.98% 

3 7151 155 152 15316 50.49% 4.07% 2.12% 67.93% 

4 7165 162 144 15302 52.94% 4.24% 2.21% 67.90% 

5 7049 157 149 15418 51.31% 4.18% 2.18% 68.39% 

Average 52.29% 4.23% 2.20% 68.13% 

kNN 

1 91 2 305 22376 0.65% 1.00% 2.15% 98.26% 

2 89 0 306 22378 0.00% 0.00% 0.00% 98.27% 

3 86 1 306 22381 0.33% 0.51% 1.15% 98.28% 

4 86 2 304 22381 0.65% 1.02% 2.27% 98.29% 

5 98 2 304 22369 0.65% 0.99% 2.00% 98.23% 

Average 0.46% 0.70% 1.51% 98.27% 

kNN (OS) 

1 3652 60 247 18815 19.54% 2.99% 1.62% 82.88% 

2 3524 45 261 18943 14.71% 2.32% 1.26% 83.38% 

3 3408 46 261 19059 14.98% 2.45% 1.33% 83.89% 

4 3568 49 257 18899 16.01% 2.50% 1.35% 83.20% 
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Algorithm Run FP TP FN TN 

Performance Metrics for Target Group 
(P1) 

Recall 
F1- 

Score 
Precision Accuracy 

5 3558 51 255 18909 16.67% 2.61% 1.41% 83.26% 

Average 16.38% 2.57% 1.40% 83.32% 

LR 

  18147 250 57 4320 81.43% 2.67% 1.36% 20.07% 

  15747 219 87 6720 71.57% 2.69% 1.37% 30.47% 

  9314 140 167 13153 45.60% 2.87% 1.48% 58.37% 

  20394 281 25 2073 91.83% 2.68% 1.36% 10.34% 

  20619 280 26 1848 91.50% 2.64% 1.34% 9.34% 

Average 76.39% 2.71% 1.38% 25.72% 

LR (OS) 

  20273 285 22 2194 92.83% 2.73% 1.39% 10.89% 

  9584 130 176 12883 42.48% 2.59% 1.34% 57.14% 

  19999 271 36 2468 88.27% 2.63% 1.34% 12.03% 

  20063 280 26 2404 91.50% 2.71% 1.38% 11.79% 

  16940 233 73 5527 76.14% 2.67% 1.36% 25.29% 

Average 78.25% 2.67% 1.36% 23.43% 

NN 

  1 0 307 22466 0.00% 0.00% 0.00% 98.65% 

  0 0 306 22467 0.00% 0.00% 0.00% 98.66% 

  749 12 295 21718 3.91% 2.25% 1.58% 95.42% 

  0 0 306 22467 0.00% 0.00% 0.00% 98.66% 

  0 0 306 22467 0.00% 0.00% 0.00% 98.66% 

Average 0.78% 0.45% 0.32% 98.01% 

NN (OS) 

  3123 41 266 19344 13.36% 2.36% 1.30% 85.12% 

  129 2 304 22338 0.65% 0.92% 1.53% 98.10% 

  21071 297 10 1396 96.74% 2.74% 1.39% 7.43% 

  8298 99 207 14169 32.35% 2.28% 1.18% 62.65% 

  8603 121 185 13864 39.54% 2.68% 1.39% 61.41% 

Average 36.53% 2.19% 1.36% 62.94% 

DA 

  0 0 307 22467 0.00% 0.00% 0.00% 98.65% 

  0 1 305 22467 0.33% 0.65% 100.00% 98.66% 

  0 0 307 22467 0.00% 0.00% 0.00% 98.65% 

  0 0 306 22467 0.00% 0.00% 0.00% 98.66% 

  0 2 304 22467 0.65% 1.30% 100.00% 98.67% 

Average 0.20% 0.39% 40.00% 98.66% 

DA (OS) 

  10544 154 153 11923 50.16% 2.80% 1.44% 53.03% 

  10486 152 154 11981 49.67% 2.78% 1.43% 53.28% 

  10387 140 167 12080 45.60% 2.58% 1.33% 53.66% 

  10269 146 160 12198 47.71% 2.72% 1.40% 54.20% 

  10023 152 154 12444 49.67% 2.90% 1.49% 55.31% 

Average 48.56% 2.76% 1.42% 53.90% 

GB 

  144 28 279 22323 9.12% 11.69% 16.28% 98.14% 

  156 43 263 22311 14.05% 17.03% 21.61% 98.16% 

  159 34 273 22308 11.07% 13.60% 17.62% 98.10% 

  145 40 266 22322 13.07% 16.29% 21.62% 98.20% 

  157 28 278 22310 9.15% 11.41% 15.14% 98.09% 
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Algorithm Run FP TP FN TN 

Performance Metrics for Target Group 
(P1) 

Recall 
F1- 

Score 
Precision Accuracy 

Average 11.29% 14.00% 18.45% 98.14% 

GB (OS) 

  375 77 230 22092 25.08% 20.29% 17.04% 97.34% 

  421 74 232 22046 24.18% 18.48% 14.95% 97.13% 

  393 77 230 22074 25.08% 19.82% 16.38% 97.26% 

  455 76 230 22012 24.84% 18.16% 14.31% 96.99% 

  374 79 227 22093 25.82% 20.82% 17.44% 97.36% 

Average 25.00% 19.51% 16.02% 97.22% 

 

 

Performance Metrics for all Algorithms on Inpatient Datasets 

Algorithm Run FP TP FN TN 

Performance Metrics for Target Group 
(P1) 

Recall 
F1- 

Score 
Precision Accuracy 

DTG 

1 6 42 35 2561 54.55% 67.20% 87.50% 98.45% 

2 1 49 29 2565 62.82% 76.56% 98.00% 98.87% 

3 1 39 38 2566 50.65% 66.67% 97.50% 98.52% 

4 3 49 29 2563 62.82% 75.38% 94.23% 98.79% 

5 9 48 30 2558 61.54% 71.11% 84.21% 98.53% 

Average 58.47% 71.38% 92.29% 98.63% 

DTG (OS) 

1 42 43 34 2525 55.84% 53.09% 50.59% 97.13% 

2 47 48 30 2519 61.54% 55.49% 50.53% 97.09% 

3 64 45 32 2503 58.44% 48.39% 41.28% 96.37% 

4 51 51 27 2515 65.38% 56.67% 50.00% 97.05% 

5 60 48 30 2507 61.54% 51.61% 44.44% 96.60% 

Average 60.55% 53.05% 47.37% 96.85% 

DTE 

1 1 43 34 2566 55.84% 71.07% 97.73% 98.68% 

2 3 49 29 2563 62.82% 75.38% 94.23% 98.79% 

3 2 45 32 2565 58.44% 72.58% 95.74% 98.71% 

4 0 48 30 2566 61.54% 76.19% 100.00% 98.87% 

5 3 42 36 2564 53.85% 68.29% 93.33% 98.53% 

Average 58.50% 72.70% 96.21% 98.71% 

DTE (OS) 

1 32 47 30 2535 61.04% 60.26% 59.49% 97.66% 

2 48 46 32 2518 58.97% 53.49% 48.94% 96.97% 

3 42 47 30 2525 61.04% 56.63% 52.81% 97.28% 

4 51 47 31 2515 60.26% 53.41% 47.96% 96.90% 

5 43 41 37 2524 52.56% 50.62% 48.81% 96.98% 

Average 58.77% 54.88% 51.60% 97.16% 

RFG 
1 0 46 31 2567 59.74% 74.80% 100.00% 98.83% 

2 0 42 36 2566 53.85% 70.00% 100.00% 98.64% 

3 0 35 42 2567 45.45% 62.50% 100.00% 98.41% 
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4 0 49 29 2566 62.82% 77.17% 100.00% 98.90% 

5 0 50 28 2567 64.10% 78.13% 100.00% 98.94% 

Average 57.19% 72.52% 100.00% 98.74% 

RFG (OS) 

1 39 39 38 2528 50.65% 50.32% 50.00% 97.09% 

2 27 40 38 2539 51.28% 55.17% 59.70% 97.54% 

3 38 33 44 2529 42.86% 44.59% 46.48% 96.90% 

4 39 40 38 2527 51.28% 50.96% 50.63% 97.09% 

5 40 41 37 2527 52.56% 51.57% 50.62% 97.09% 

Average 49.73% 50.52% 51.49% 97.14% 

RFE 

1 0 43 34 2567 55.84% 71.67% 100.00% 98.71% 

2 0 49 29 2566 62.82% 77.17% 100.00% 98.90% 

3 0 41 36 2567 53.25% 69.49% 100.00% 98.64% 

4 0 42 36 2566 53.85% 70.00% 100.00% 98.64% 

5 0 40 38 2567 51.28% 67.80% 100.00% 98.56% 

Average 55.41% 71.22% 100.00% 98.69% 

RFE (OS) 

1 28 42 35 2539 54.55% 57.14% 60.00% 97.62% 

2 42 42 36 2524 53.85% 51.85% 50.00% 97.05% 

3 40 39 38 2527 50.65% 50.00% 49.37% 97.05% 

4 38 43 35 2528 55.13% 54.09% 53.09% 97.24% 

5 37 37 41 2530 47.44% 48.68% 50.00% 97.05% 

Average 52.32% 52.35% 52.49% 97.20% 

NB 

1 108 45 32 2459 58.44% 39.13% 29.41% 94.70% 

2 100 48 30 2466 61.54% 42.48% 32.43% 95.08% 

3 88 42 35 2479 54.55% 40.58% 32.31% 95.35% 

4 111 36 42 2455 46.15% 32.00% 24.49% 94.21% 

5 98 40 38 2469 51.28% 37.04% 28.99% 94.86% 

Average 54.39% 38.25% 29.53% 94.84% 

NB (OS) 

1 171 43 34 2396 55.84% 29.55% 20.09% 92.25% 

2 444 54 24 2122 69.23% 18.75% 10.84% 82.30% 

3 800 48 29 1767 62.34% 10.38% 5.66% 68.65% 

4 225 33 45 2341 42.31% 19.64% 12.79% 89.79% 

5 231 39 39 2336 50.00% 22.41% 14.44% 89.79% 

Average 55.94% 20.15% 12.77% 84.55% 

kNN 

1 39 1 76 2528 1.30% 1.71% 2.50% 95.65% 

2 36 0 78 2530 0.00% 0.00% 0.00% 95.69% 

3 32 2 75 2535 2.60% 3.60% 5.88% 95.95% 

4 36 1 77 2530 1.28% 1.74% 2.70% 95.73% 

5 32 2 76 2535 2.56% 3.57% 5.88% 95.92% 

Average 1.55% 2.12% 3.39% 95.79% 

kNN (OS) 

1 479 9 68 2088 11.69% 3.19% 1.84% 79.31% 

2 465 10 68 2101 12.82% 3.62% 2.11% 79.84% 

3 470 10 67 2097 12.99% 3.59% 2.08% 79.69% 

4 506 15 63 2060 19.23% 5.01% 2.88% 78.48% 

5 483 9 69 2084 11.54% 3.16% 1.83% 79.13% 

Average 13.65% 3.71% 2.15% 79.29% 

LR 
  18 1 76 2549 1.30% 2.08% 5.26% 96.44% 

  29 2 76 2537 2.56% 3.67% 6.45% 96.03% 
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  20 1 76 2547 1.30% 2.04% 4.76% 96.37% 

  21 1 77 2545 1.28% 2.00% 4.55% 96.29% 

  24 0 78 2543 0.00% 0.00% 0.00% 96.14% 

Average 1.29% 1.96% 4.20% 96.26% 

LR (OS) 

  927 29 48 1640 37.66% 5.61% 3.03% 63.12% 

  2284 67 11 282 85.90% 5.52% 2.85% 13.20% 

  20 2 75 2547 2.60% 4.04% 9.09% 96.41% 

  1317 35 43 1249 44.87% 4.90% 2.59% 48.56% 

  1008 19 59 1559 24.36% 3.44% 1.85% 59.66% 

Average 39.08% 4.70% 3.88% 56.19% 

NN 

  10 0 77 2557 0.00% 0.00% 0.00% 96.71% 

  0 0 78 2566 0.00% 0.00% 0.00% 97.05% 

  0 0 77 2567 0.00% 0.00% 0.00% 97.09% 

  332 8 70 2234 10.26% 3.83% 2.35% 84.80% 

  0 0 78 2567 0.00% 0.00% 0.00% 97.05% 

Average 2.05% 0.77% 0.47% 94.54% 

NN (OS) 

  234 10 67 2333 12.99% 6.23% 4.10% 88.62% 

  1339 39 39 1227 50.00% 5.36% 2.83% 47.88% 

  1836 50 27 731 64.94% 5.09% 2.65% 29.54% 

  1133 33 45 1433 42.31% 5.31% 2.83% 55.45% 

  1841 56 22 726 71.79% 5.67% 2.95% 29.57% 

Average 48.40% 5.53% 3.07% 50.21% 

DA 

  0 0 77 2567 0.00% 0.00% 0.00% 97.09% 

  0 0 78 2566 0.00% 0.00% 0.00% 97.05% 

  0 0 77 2567 0.00% 0.00% 0.00% 97.09% 

  0 0 78 2566 0.00% 0.00% 0.00% 97.05% 

  0 0 78 2567 0.00% 0.00% 0.00% 97.05% 

Average 0.00% 0.00% 0.00% 97.07% 

DA (OS) 

  1152 36 41 1415 46.75% 5.69% 3.03% 54.88% 

  1192 41 37 1374 52.56% 6.25% 3.33% 53.52% 

  1154 46 31 1413 59.74% 7.20% 3.83% 55.18% 

  1214 53 25 1352 67.95% 7.88% 4.18% 53.14% 

  1210 57 21 1357 73.08% 8.48% 4.50% 53.46% 

Average 60.02% 7.10% 3.77% 54.04% 

GB 

  1 42 35 2566 54.55% 70.00% 97.67% 98.64% 

  5 51 27 2561 65.38% 76.12% 91.07% 98.79% 

  1 40 37 2566 51.95% 67.80% 97.56% 98.56% 

  3 52 26 2563 66.67% 78.20% 94.55% 98.90% 

  0 47 31 2567 60.26% 75.20% 100.00% 98.83% 

Average 59.76% 73.46% 96.17% 98.74% 

GB (OS) 

  28 46 31 2539 59.74% 60.93% 62.16% 97.77% 

  21 54 24 2545 69.23% 70.59% 72.00% 98.30% 

  22 44 33 2545 57.14% 61.54% 66.67% 97.92% 

  20 54 24 2546 69.23% 71.05% 72.97% 98.34% 

  20 50 28 2547 64.10% 67.57% 71.43% 98.19% 

Average 63.89% 66.33% 69.05% 98.10% 
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APPENDIX I: DETAIL RESULTS OF ONE-WAY ANOVA TESTS ON FEATURE 

IMPORTANCE SCORES  

This appendix provides the detailed result of one-way ANOVA conducted on the feature 

importance scores calculated for inpatient and outpatient features. 

 

OUTPATIENT-FIS 102220 

ANOVA Outpatient-feature importance score 
* NOTE * Cannot draw the interval plot for the Tukey procedure. Interval plots for 
comparisons are illegible with more than 45 intervals. 

* NOTE * Cannot draw the interval plot for the Fisher procedure. Interval plots for 
comparisons are illegible with more than 45 intervals. 

Method 
Null hypothesis All means are equal 
Alternative hypothesis Not all means are 

equal 
Significance level α = 0.05 

Equal variances were assumed for the analysis. 

Factor Information 

Factor Levels Values 
Factor 16 clm_pmt_amt, nch_prmry_pyr_clm_pd_amt, at_physn_npi, op_physn_npi, 

ot_physn_npi, icd9_dgns_cd_1, icd9_dgns_cd_2, icd9_dgns_cd_3, 
icd9_prcdr_cd_1, nch_bene_ptb_ddctbl_amt, nch_bene_ptb_coinsrnc_amt, 
admtng_icd9_dgns_cd, hcpcs_cd_1, hcpcs_cd_2, hcpcs_cd_3, YEAR 

Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 
Factor 15 0.6359 0.042394 8.02 0.000 
Error 64 0.3383 0.005286     
Total 79 0.9742       

Model Summary 

S R-sq R-sq(adj) R-sq(pred) 
0.0727050 65.27% 57.13% 45.74% 
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Means 

Factor N Mean StDev 95% CI 
clm_pmt_amt 5 0.389 0.274 (0.324, 0.454) 
nch_prmry_pyr_clm_pd_amt 5 0.004190 0.000969 (-0.060765, 0.069146) 
at_physn_npi 5 0.0983 0.0649 (0.0333, 0.1632) 
op_physn_npi 5 0.02340 0.01068 (-0.04156, 0.08835) 
ot_physn_npi 5 0.04454 0.01753 (-0.02042, 0.10950) 
icd9_dgns_cd_1 5 0.1100 0.0389 (0.0450, 0.1749) 
icd9_dgns_cd_2 5 0.0521 0.0302 (-0.0129, 0.1170) 
icd9_dgns_cd_3 5 0.04191 0.01306 (-0.02305, 0.10686) 
icd9_prcdr_cd_1 5 0.000005 0.000010 (-0.064950, 0.064961) 
nch_bene_ptb_ddctbl_amt 5 0.00787 0.00441 (-0.05708, 0.07283) 
nch_bene_ptb_coinsrnc_amt 5 0.04511 0.01672 (-0.01985, 0.11006) 
admtng_icd9_dgns_cd 5 0.03077 0.01206 (-0.03419, 0.09572) 
hcpcs_cd_1 5 0.0539 0.0312 (-0.0110, 0.1189) 
hcpcs_cd_2 5 0.0484 0.0242 (-0.0165, 0.1134) 
hcpcs_cd_3 5 0.03497 0.01726 (-0.02999, 0.09992) 
YEAR 5 0.01583 0.01281 (-0.04913, 0.08078) 

Pooled StDev = 0.0727050 

Tukey Pairwise Comparisons 

Grouping Information Using the Tukey Method and 95% Confidence 

Factor N Mean Grouping 
clm_pmt_amt 5 0.389 A   
icd9_dgns_cd_1 5 0.1100   B 
at_physn_npi 5 0.0983   B 
hcpcs_cd_1 5 0.0539   B 
icd9_dgns_cd_2 5 0.0521   B 
hcpcs_cd_2 5 0.0484   B 
nch_bene_ptb_coinsrnc_amt 5 0.04511   B 
ot_physn_npi 5 0.04454   B 
icd9_dgns_cd_3 5 0.04191   B 
hcpcs_cd_3 5 0.03497   B 
admtng_icd9_dgns_cd 5 0.03077   B 
op_physn_npi 5 0.02340   B 
YEAR 5 0.01583   B 
nch_bene_ptb_ddctbl_amt 5 0.00787   B 
nch_prmry_pyr_clm_pd_amt 5 0.004190   B 
icd9_prcdr_cd_1 5 0.000005   B 

Means that do not share a letter are significantly different. 

Tukey Simultaneous Tests for Differences of Means 

Difference of Levels 
Difference 
of Means 

SE of 
Difference 95% CI 

T-
Value 

Adjusted 
P-Value 

nch_prmry_py - clm_pmt_amt -0.3846 0.0460 (-0.5485, -0.2207) -8.36 0.000 
at_physn_npi - clm_pmt_amt -0.2905 0.0460 (-0.4544, -0.1266) -6.32 0.000 
op_physn_npi - clm_pmt_amt -0.3654 0.0460 (-0.5293, -0.2015) -7.95 0.000 
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Difference of Levels 
Difference 
of Means 

SE of 
Difference 95% CI 

T-
Value 

Adjusted 
P-Value 

ot_physn_npi - clm_pmt_amt -0.3442 0.0460 (-0.5081, -0.1804) -7.49 0.000 
icd9_dgns_cd - clm_pmt_amt -0.2788 0.0460 (-0.4427, -0.1149) -6.06 0.000 
icd9_dgns_cd - clm_pmt_amt -0.3367 0.0460 (-0.5006, -0.1728) -7.32 0.000 
icd9_dgns_cd - clm_pmt_amt -0.3469 0.0460 (-0.5107, -0.1830) -7.54 0.000 
icd9_prcdr_c - clm_pmt_amt -0.3888 0.0460 (-0.5526, -0.2249) -8.45 0.000 
nch_bene_ptb - clm_pmt_amt -0.3809 0.0460 (-0.5448, -0.2170) -8.28 0.000 
nch_bene_ptb - clm_pmt_amt -0.3437 0.0460 (-0.5075, -0.1798) -7.47 0.000 
admtng_icd9_ - clm_pmt_amt -0.3580 0.0460 (-0.5219, -0.1941) -7.79 0.000 
hcpcs_cd_1 - clm_pmt_amt -0.3348 0.0460 (-0.4987, -0.1710) -7.28 0.000 
hcpcs_cd_2 - clm_pmt_amt -0.3404 0.0460 (-0.5042, -0.1765) -7.40 0.000 
hcpcs_cd_3 - clm_pmt_amt -0.3538 0.0460 (-0.5177, -0.1899) -7.69 0.000 
YEAR - clm_pmt_amt -0.3730 0.0460 (-0.5368, -0.2091) -8.11 0.000 
at_physn_npi - nch_prmry_py 0.0941 0.0460 (-0.0698, 0.2579) 2.05 0.790 
op_physn_npi - nch_prmry_py 0.0192 0.0460 (-0.1447, 0.1831) 0.42 1.000 
ot_physn_npi - nch_prmry_py 0.0403 0.0460 (-0.1235, 0.2042) 0.88 1.000 
icd9_dgns_cd - nch_prmry_py 0.1058 0.0460 (-0.0581, 0.2697) 2.30 0.625 
icd9_dgns_cd - nch_prmry_py 0.0479 0.0460 (-0.1160, 0.2117) 1.04 1.000 
icd9_dgns_cd - nch_prmry_py 0.0377 0.0460 (-0.1262, 0.2016) 0.82 1.000 
icd9_prcdr_c - nch_prmry_py -0.0042 0.0460 (-0.1681, 0.1597) -0.09 1.000 
nch_bene_ptb - nch_prmry_py 0.0037 0.0460 (-0.1602, 0.1676) 0.08 1.000 
nch_bene_ptb - nch_prmry_py 0.0409 0.0460 (-0.1230, 0.2048) 0.89 1.000 
admtng_icd9_ - nch_prmry_py 0.0266 0.0460 (-0.1373, 0.1905) 0.58 1.000 
hcpcs_cd_1 - nch_prmry_py 0.0497 0.0460 (-0.1141, 0.2136) 1.08 0.999 
hcpcs_cd_2 - nch_prmry_py 0.0442 0.0460 (-0.1196, 0.2081) 0.96 1.000 
hcpcs_cd_3 - nch_prmry_py 0.0308 0.0460 (-0.1331, 0.1947) 0.67 1.000 
YEAR - nch_prmry_py 0.0116 0.0460 (-0.1522, 0.1755) 0.25 1.000 
op_physn_npi - at_physn_npi -0.0749 0.0460 (-0.2387, 0.0890) -1.63 0.957 
ot_physn_npi - at_physn_npi -0.0537 0.0460 (-0.2176, 0.1102) -1.17 0.998 
icd9_dgns_cd - at_physn_npi 0.0117 0.0460 (-0.1522, 0.1756) 0.25 1.000 
icd9_dgns_cd - at_physn_npi -0.0462 0.0460 (-0.2101, 0.1177) -1.00 1.000 
icd9_dgns_cd - at_physn_npi -0.0564 0.0460 (-0.2202, 0.1075) -1.23 0.997 
icd9_prcdr_c - at_physn_npi -0.0983 0.0460 (-0.2621, 0.0656) -2.14 0.735 
nch_bene_ptb - at_physn_npi -0.0904 0.0460 (-0.2543, 0.0735) -1.97 0.834 
nch_bene_ptb - at_physn_npi -0.0532 0.0460 (-0.2170, 0.1107) -1.16 0.998 
admtng_icd9_ - at_physn_npi -0.0675 0.0460 (-0.2314, 0.0964) -1.47 0.982 
hcpcs_cd_1 - at_physn_npi -0.0443 0.0460 (-0.2082, 0.1195) -0.96 1.000 
hcpcs_cd_2 - at_physn_npi -0.0498 0.0460 (-0.2137, 0.1140) -1.08 0.999 
hcpcs_cd_3 - at_physn_npi -0.0633 0.0460 (-0.2272, 0.1006) -1.38 0.990 
YEAR - at_physn_npi -0.0824 0.0460 (-0.2463, 0.0814) -1.79 0.910 
ot_physn_npi - op_physn_npi 0.0211 0.0460 (-0.1427, 0.1850) 0.46 1.000 
icd9_dgns_cd - op_physn_npi 0.0866 0.0460 (-0.0773, 0.2505) 1.88 0.874 
icd9_dgns_cd - op_physn_npi 0.0287 0.0460 (-0.1352, 0.1925) 0.62 1.000 
icd9_dgns_cd - op_physn_npi 0.0185 0.0460 (-0.1454, 0.1824) 0.40 1.000 
icd9_prcdr_c - op_physn_npi -0.0234 0.0460 (-0.1873, 0.1405) -0.51 1.000 
nch_bene_ptb - op_physn_npi -0.0155 0.0460 (-0.1794, 0.1483) -0.34 1.000 
nch_bene_ptb - op_physn_npi 0.0217 0.0460 (-0.1422, 0.1856) 0.47 1.000 
admtng_icd9_ - op_physn_npi 0.0074 0.0460 (-0.1565, 0.1712) 0.16 1.000 
hcpcs_cd_1 - op_physn_npi 0.0305 0.0460 (-0.1333, 0.1944) 0.66 1.000 
hcpcs_cd_2 - op_physn_npi 0.0250 0.0460 (-0.1389, 0.1889) 0.54 1.000 
hcpcs_cd_3 - op_physn_npi 0.0116 0.0460 (-0.1523, 0.1754) 0.25 1.000 
YEAR - op_physn_npi -0.0076 0.0460 (-0.1714, 0.1563) -0.16 1.000 
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Difference of Levels 
Difference 
of Means 

SE of 
Difference 95% CI 

T-
Value 

Adjusted 
P-Value 

icd9_dgns_cd - ot_physn_npi 0.0654 0.0460 (-0.0984, 0.2293) 1.42 0.987 
icd9_dgns_cd - ot_physn_npi 0.0075 0.0460 (-0.1564, 0.1714) 0.16 1.000 
icd9_dgns_cd - ot_physn_npi -0.0026 0.0460 (-0.1665, 0.1612) -0.06 1.000 
icd9_prcdr_c - ot_physn_npi -0.0445 0.0460 (-0.2084, 0.1193) -0.97 1.000 
nch_bene_ptb - ot_physn_npi -0.0367 0.0460 (-0.2005, 0.1272) -0.80 1.000 
nch_bene_ptb - ot_physn_npi 0.0006 0.0460 (-0.1633, 0.1644) 0.01 1.000 
admtng_icd9_ - ot_physn_npi -0.0138 0.0460 (-0.1776, 0.1501) -0.30 1.000 
hcpcs_cd_1 - ot_physn_npi 0.0094 0.0460 (-0.1545, 0.1733) 0.20 1.000 
hcpcs_cd_2 - ot_physn_npi 0.0039 0.0460 (-0.1600, 0.1678) 0.08 1.000 
hcpcs_cd_3 - ot_physn_npi -0.0096 0.0460 (-0.1734, 0.1543) -0.21 1.000 
YEAR - ot_physn_npi -0.0287 0.0460 (-0.1926, 0.1352) -0.62 1.000 
icd9_dgns_cd - icd9_dgns_cd -0.0579 0.0460 (-0.2218, 0.1060) -1.26 0.996 
icd9_dgns_cd - icd9_dgns_cd -0.0681 0.0460 (-0.2319, 0.0958) -1.48 0.981 
icd9_prcdr_c - icd9_dgns_cd -0.1100 0.0460 (-0.2738, 0.0539) -2.39 0.561 
nch_bene_ptb - icd9_dgns_cd -0.1021 0.0460 (-0.2660, 0.0618) -2.22 0.680 
nch_bene_ptb - icd9_dgns_cd -0.0649 0.0460 (-0.2287, 0.0990) -1.41 0.988 
admtng_icd9_ - icd9_dgns_cd -0.0792 0.0460 (-0.2431, 0.0847) -1.72 0.933 
hcpcs_cd_1 - icd9_dgns_cd -0.0560 0.0460 (-0.2199, 0.1078) -1.22 0.997 
hcpcs_cd_2 - icd9_dgns_cd -0.0616 0.0460 (-0.2254, 0.1023) -1.34 0.993 
hcpcs_cd_3 - icd9_dgns_cd -0.0750 0.0460 (-0.2389, 0.0889) -1.63 0.956 
YEAR - icd9_dgns_cd -0.0942 0.0460 (-0.2580, 0.0697) -2.05 0.789 
icd9_dgns_cd - icd9_dgns_cd -0.0102 0.0460 (-0.1740, 0.1537) -0.22 1.000 
icd9_prcdr_c - icd9_dgns_cd -0.0521 0.0460 (-0.2159, 0.1118) -1.13 0.999 
nch_bene_ptb - icd9_dgns_cd -0.0442 0.0460 (-0.2081, 0.1197) -0.96 1.000 
nch_bene_ptb - icd9_dgns_cd -0.0070 0.0460 (-0.1708, 0.1569) -0.15 1.000 
admtng_icd9_ - icd9_dgns_cd -0.0213 0.0460 (-0.1852, 0.1426) -0.46 1.000 
hcpcs_cd_1 - icd9_dgns_cd 0.0019 0.0460 (-0.1620, 0.1657) 0.04 1.000 
hcpcs_cd_2 - icd9_dgns_cd -0.0036 0.0460 (-0.1675, 0.1602) -0.08 1.000 
hcpcs_cd_3 - icd9_dgns_cd -0.0171 0.0460 (-0.1810, 0.1468) -0.37 1.000 
YEAR - icd9_dgns_cd -0.0362 0.0460 (-0.2001, 0.1276) -0.79 1.000 
icd9_prcdr_c - icd9_dgns_cd -0.0419 0.0460 (-0.2058, 0.1220) -0.91 1.000 
nch_bene_ptb - icd9_dgns_cd -0.0340 0.0460 (-0.1979, 0.1298) -0.74 1.000 
nch_bene_ptb - icd9_dgns_cd 0.0032 0.0460 (-0.1607, 0.1671) 0.07 1.000 
admtng_icd9_ - icd9_dgns_cd -0.0111 0.0460 (-0.1750, 0.1527) -0.24 1.000 
hcpcs_cd_1 - icd9_dgns_cd 0.0120 0.0460 (-0.1518, 0.1759) 0.26 1.000 
hcpcs_cd_2 - icd9_dgns_cd 0.0065 0.0460 (-0.1574, 0.1704) 0.14 1.000 
hcpcs_cd_3 - icd9_dgns_cd -0.0069 0.0460 (-0.1708, 0.1569) -0.15 1.000 
YEAR - icd9_dgns_cd -0.0261 0.0460 (-0.1900, 0.1378) -0.57 1.000 
nch_bene_ptb - icd9_prcdr_c 0.0079 0.0460 (-0.1560, 0.1717) 0.17 1.000 
nch_bene_ptb - icd9_prcdr_c 0.0451 0.0460 (-0.1188, 0.2090) 0.98 1.000 
admtng_icd9_ - icd9_prcdr_c 0.0308 0.0460 (-0.1331, 0.1946) 0.67 1.000 
hcpcs_cd_1 - icd9_prcdr_c 0.0539 0.0460 (-0.1099, 0.2178) 1.17 0.998 
hcpcs_cd_2 - icd9_prcdr_c 0.0484 0.0460 (-0.1155, 0.2123) 1.05 0.999 
hcpcs_cd_3 - icd9_prcdr_c 0.0350 0.0460 (-0.1289, 0.1988) 0.76 1.000 
YEAR - icd9_prcdr_c 0.0158 0.0460 (-0.1481, 0.1797) 0.34 1.000 
nch_bene_ptb - nch_bene_ptb 0.0372 0.0460 (-0.1266, 0.2011) 0.81 1.000 
admtng_icd9_ - nch_bene_ptb 0.0229 0.0460 (-0.1410, 0.1868) 0.50 1.000 
hcpcs_cd_1 - nch_bene_ptb 0.0461 0.0460 (-0.1178, 0.2099) 1.00 1.000 
hcpcs_cd_2 - nch_bene_ptb 0.0405 0.0460 (-0.1233, 0.2044) 0.88 1.000 
hcpcs_cd_3 - nch_bene_ptb 0.0271 0.0460 (-0.1368, 0.1910) 0.59 1.000 
YEAR - nch_bene_ptb 0.0080 0.0460 (-0.1559, 0.1718) 0.17 1.000 
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Difference of Levels 
Difference 
of Means 

SE of 
Difference 95% CI 

T-
Value 

Adjusted 
P-Value 

admtng_icd9_ - nch_bene_ptb -0.0143 0.0460 (-0.1782, 0.1495) -0.31 1.000 
hcpcs_cd_1 - nch_bene_ptb 0.0088 0.0460 (-0.1550, 0.1727) 0.19 1.000 
hcpcs_cd_2 - nch_bene_ptb 0.0033 0.0460 (-0.1606, 0.1672) 0.07 1.000 
hcpcs_cd_3 - nch_bene_ptb -0.0101 0.0460 (-0.1740, 0.1537) -0.22 1.000 
YEAR - nch_bene_ptb -0.0293 0.0460 (-0.1932, 0.1346) -0.64 1.000 
hcpcs_cd_1 - admtng_icd9_ 0.0232 0.0460 (-0.1407, 0.1870) 0.50 1.000 
hcpcs_cd_2 - admtng_icd9_ 0.0176 0.0460 (-0.1462, 0.1815) 0.38 1.000 
hcpcs_cd_3 - admtng_icd9_ 0.0042 0.0460 (-0.1597, 0.1681) 0.09 1.000 
YEAR - admtng_icd9_ -0.0149 0.0460 (-0.1788, 0.1489) -0.32 1.000 
hcpcs_cd_2 - hcpcs_cd_1 -0.0055 0.0460 (-0.1694, 0.1584) -0.12 1.000 
hcpcs_cd_3 - hcpcs_cd_1 -0.0190 0.0460 (-0.1828, 0.1449) -0.41 1.000 
YEAR - hcpcs_cd_1 -0.0381 0.0460 (-0.2020, 0.1258) -0.83 1.000 
hcpcs_cd_3 - hcpcs_cd_2 -0.0134 0.0460 (-0.1773, 0.1504) -0.29 1.000 
YEAR - hcpcs_cd_2 -0.0326 0.0460 (-0.1965, 0.1313) -0.71 1.000 
YEAR - hcpcs_cd_3 -0.0191 0.0460 (-0.1830, 0.1447) -0.42 1.000 

Individual confidence level = 99.93% 

 

Fisher Pairwise Comparisons 

Grouping Information Using the Fisher LSD Method and 95% Confidence 

Factor N Mean Grouping 
clm_pmt_amt 5 0.389 A       
icd9_dgns_cd_1 5 0.1100   B     
at_physn_npi 5 0.0983   B C   
hcpcs_cd_1 5 0.0539   B C D 
icd9_dgns_cd_2 5 0.0521   B C D 
hcpcs_cd_2 5 0.0484   B C D 
nch_bene_ptb_coinsrnc_amt 5 0.04511   B C D 
ot_physn_npi 5 0.04454   B C D 
icd9_dgns_cd_3 5 0.04191   B C D 
hcpcs_cd_3 5 0.03497   B C D 
admtng_icd9_dgns_cd 5 0.03077   B C D 
op_physn_npi 5 0.02340   B C D 
YEAR 5 0.01583     C D 
nch_bene_ptb_ddctbl_amt 5 0.00787     C D 
nch_prmry_pyr_clm_pd_amt 5 0.004190       D 
icd9_prcdr_cd_1 5 0.000005       D 

Means that do not share a letter are significantly different. 

Fisher Individual Tests for Differences of Means 

Difference of Levels 
Difference 
of Means 

SE of 
Difference 95% CI T-Value 

Adjusted 
P-Value 

nch_prmry_py - clm_pmt_amt -0.3846 0.0460 (-0.4764, -0.2927) -8.36 0.000 
at_physn_npi - clm_pmt_amt -0.2905 0.0460 (-0.3824, -0.1987) -6.32 0.000 
op_physn_npi - clm_pmt_amt -0.3654 0.0460 (-0.4572, -0.2735) -7.95 0.000 
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Difference of Levels 
Difference 
of Means 

SE of 
Difference 95% CI T-Value 

Adjusted 
P-Value 

ot_physn_npi - clm_pmt_amt -0.3442 0.0460 (-0.4361, -0.2524) -7.49 0.000 
icd9_dgns_cd - clm_pmt_amt -0.2788 0.0460 (-0.3707, -0.1869) -6.06 0.000 
icd9_dgns_cd - clm_pmt_amt -0.3367 0.0460 (-0.4286, -0.2449) -7.32 0.000 
icd9_dgns_cd - clm_pmt_amt -0.3469 0.0460 (-0.4387, -0.2550) -7.54 0.000 
icd9_prcdr_c - clm_pmt_amt -0.3888 0.0460 (-0.4806, -0.2969) -8.45 0.000 
nch_bene_ptb - clm_pmt_amt -0.3809 0.0460 (-0.4728, -0.2890) -8.28 0.000 
nch_bene_ptb - clm_pmt_amt -0.3437 0.0460 (-0.4355, -0.2518) -7.47 0.000 
admtng_icd9_ - clm_pmt_amt -0.3580 0.0460 (-0.4499, -0.2661) -7.79 0.000 
hcpcs_cd_1 - clm_pmt_amt -0.3348 0.0460 (-0.4267, -0.2430) -7.28 0.000 
hcpcs_cd_2 - clm_pmt_amt -0.3404 0.0460 (-0.4322, -0.2485) -7.40 0.000 
hcpcs_cd_3 - clm_pmt_amt -0.3538 0.0460 (-0.4457, -0.2619) -7.69 0.000 
YEAR - clm_pmt_amt -0.3730 0.0460 (-0.4648, -0.2811) -8.11 0.000 
at_physn_npi - nch_prmry_py 0.0941 0.0460 (0.0022, 0.1859) 2.05 0.045 
op_physn_npi - nch_prmry_py 0.0192 0.0460 (-0.0727, 0.1111) 0.42 0.678 
ot_physn_npi - nch_prmry_py 0.0403 0.0460 (-0.0515, 0.1322) 0.88 0.383 
icd9_dgns_cd - nch_prmry_py 0.1058 0.0460 (0.0139, 0.1976) 2.30 0.025 
icd9_dgns_cd - nch_prmry_py 0.0479 0.0460 (-0.0440, 0.1397) 1.04 0.302 
icd9_dgns_cd - nch_prmry_py 0.0377 0.0460 (-0.0541, 0.1296) 0.82 0.415 
icd9_prcdr_c - nch_prmry_py -0.0042 0.0460 (-0.0960, 0.0877) -0.09 0.928 
nch_bene_ptb - nch_prmry_py 0.0037 0.0460 (-0.0882, 0.0955) 0.08 0.936 
nch_bene_ptb - nch_prmry_py 0.0409 0.0460 (-0.0509, 0.1328) 0.89 0.377 
admtng_icd9_ - nch_prmry_py 0.0266 0.0460 (-0.0653, 0.1184) 0.58 0.565 
hcpcs_cd_1 - nch_prmry_py 0.0497 0.0460 (-0.0421, 0.1416) 1.08 0.283 
hcpcs_cd_2 - nch_prmry_py 0.0442 0.0460 (-0.0476, 0.1361) 0.96 0.340 
hcpcs_cd_3 - nch_prmry_py 0.0308 0.0460 (-0.0611, 0.1226) 0.67 0.506 
YEAR - nch_prmry_py 0.0116 0.0460 (-0.0802, 0.1035) 0.25 0.801 
op_physn_npi - at_physn_npi -0.0749 0.0460 (-0.1667, 0.0170) -1.63 0.108 
ot_physn_npi - at_physn_npi -0.0537 0.0460 (-0.1456, 0.0381) -1.17 0.247 
icd9_dgns_cd - at_physn_npi 0.0117 0.0460 (-0.0801, 0.1036) 0.25 0.800 
icd9_dgns_cd - at_physn_npi -0.0462 0.0460 (-0.1381, 0.0457) -1.00 0.319 
icd9_dgns_cd - at_physn_npi -0.0564 0.0460 (-0.1482, 0.0355) -1.23 0.225 
icd9_prcdr_c - at_physn_npi -0.0983 0.0460 (-0.1901, -0.0064) -2.14 0.036 
nch_bene_ptb - at_physn_npi -0.0904 0.0460 (-0.1822, 0.0015) -1.97 0.054 
nch_bene_ptb - at_physn_npi -0.0532 0.0460 (-0.1450, 0.0387) -1.16 0.252 
admtng_icd9_ - at_physn_npi -0.0675 0.0460 (-0.1594, 0.0244) -1.47 0.147 
hcpcs_cd_1 - at_physn_npi -0.0443 0.0460 (-0.1362, 0.0475) -0.96 0.339 
hcpcs_cd_2 - at_physn_npi -0.0498 0.0460 (-0.1417, 0.0420) -1.08 0.282 
hcpcs_cd_3 - at_physn_npi -0.0633 0.0460 (-0.1552, 0.0286) -1.38 0.173 
YEAR - at_physn_npi -0.0824 0.0460 (-0.1743, 0.0094) -1.79 0.078 
ot_physn_npi - op_physn_npi 0.0211 0.0460 (-0.0707, 0.1130) 0.46 0.647 
icd9_dgns_cd - op_physn_npi 0.0866 0.0460 (-0.0053, 0.1784) 1.88 0.064 
icd9_dgns_cd - op_physn_npi 0.0287 0.0460 (-0.0632, 0.1205) 0.62 0.535 
icd9_dgns_cd - op_physn_npi 0.0185 0.0460 (-0.0734, 0.1104) 0.40 0.689 
icd9_prcdr_c - op_physn_npi -0.0234 0.0460 (-0.1153, 0.0685) -0.51 0.613 
nch_bene_ptb - op_physn_npi -0.0155 0.0460 (-0.1074, 0.0763) -0.34 0.737 
nch_bene_ptb - op_physn_npi 0.0217 0.0460 (-0.0702, 0.1136) 0.47 0.638 
admtng_icd9_ - op_physn_npi 0.0074 0.0460 (-0.0845, 0.0992) 0.16 0.873 
hcpcs_cd_1 - op_physn_npi 0.0305 0.0460 (-0.0613, 0.1224) 0.66 0.509 
hcpcs_cd_2 - op_physn_npi 0.0250 0.0460 (-0.0668, 0.1169) 0.54 0.588 
hcpcs_cd_3 - op_physn_npi 0.0116 0.0460 (-0.0803, 0.1034) 0.25 0.802 
YEAR - op_physn_npi -0.0076 0.0460 (-0.0994, 0.0843) -0.16 0.870 
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Difference of Levels 
Difference 
of Means 

SE of 
Difference 95% CI T-Value 

Adjusted 
P-Value 

icd9_dgns_cd - ot_physn_npi 0.0654 0.0460 (-0.0264, 0.1573) 1.42 0.160 
icd9_dgns_cd - ot_physn_npi 0.0075 0.0460 (-0.0843, 0.0994) 0.16 0.871 
icd9_dgns_cd - ot_physn_npi -0.0026 0.0460 (-0.0945, 0.0892) -0.06 0.955 
icd9_prcdr_c - ot_physn_npi -0.0445 0.0460 (-0.1364, 0.0473) -0.97 0.336 
nch_bene_ptb - ot_physn_npi -0.0367 0.0460 (-0.1285, 0.0552) -0.80 0.428 
nch_bene_ptb - ot_physn_npi 0.0006 0.0460 (-0.0913, 0.0924) 0.01 0.990 
admtng_icd9_ - ot_physn_npi -0.0138 0.0460 (-0.1056, 0.0781) -0.30 0.766 
hcpcs_cd_1 - ot_physn_npi 0.0094 0.0460 (-0.0825, 0.1013) 0.20 0.839 
hcpcs_cd_2 - ot_physn_npi 0.0039 0.0460 (-0.0880, 0.0957) 0.08 0.933 
hcpcs_cd_3 - ot_physn_npi -0.0096 0.0460 (-0.1014, 0.0823) -0.21 0.836 
YEAR - ot_physn_npi -0.0287 0.0460 (-0.1206, 0.0631) -0.62 0.535 
icd9_dgns_cd - icd9_dgns_cd -0.0579 0.0460 (-0.1498, 0.0339) -1.26 0.212 
icd9_dgns_cd - icd9_dgns_cd -0.0681 0.0460 (-0.1599, 0.0238) -1.48 0.144 
icd9_prcdr_c - icd9_dgns_cd -0.1100 0.0460 (-0.2018, -0.0181) -2.39 0.020 
nch_bene_ptb - icd9_dgns_cd -0.1021 0.0460 (-0.1940, -0.0102) -2.22 0.030 
nch_bene_ptb - icd9_dgns_cd -0.0649 0.0460 (-0.1567, 0.0270) -1.41 0.163 
admtng_icd9_ - icd9_dgns_cd -0.0792 0.0460 (-0.1711, 0.0127) -1.72 0.090 
hcpcs_cd_1 - icd9_dgns_cd -0.0560 0.0460 (-0.1479, 0.0358) -1.22 0.227 
hcpcs_cd_2 - icd9_dgns_cd -0.0616 0.0460 (-0.1534, 0.0303) -1.34 0.185 
hcpcs_cd_3 - icd9_dgns_cd -0.0750 0.0460 (-0.1669, 0.0169) -1.63 0.108 
YEAR - icd9_dgns_cd -0.0942 0.0460 (-0.1860, -0.0023) -2.05 0.045 
icd9_dgns_cd - icd9_dgns_cd -0.0102 0.0460 (-0.1020, 0.0817) -0.22 0.826 
icd9_prcdr_c - icd9_dgns_cd -0.0521 0.0460 (-0.1439, 0.0398) -1.13 0.262 
nch_bene_ptb - icd9_dgns_cd -0.0442 0.0460 (-0.1361, 0.0477) -0.96 0.340 
nch_bene_ptb - icd9_dgns_cd -0.0070 0.0460 (-0.0988, 0.0849) -0.15 0.880 
admtng_icd9_ - icd9_dgns_cd -0.0213 0.0460 (-0.1132, 0.0706) -0.46 0.645 
hcpcs_cd_1 - icd9_dgns_cd 0.0019 0.0460 (-0.0900, 0.0937) 0.04 0.968 
hcpcs_cd_2 - icd9_dgns_cd -0.0036 0.0460 (-0.0955, 0.0882) -0.08 0.937 
hcpcs_cd_3 - icd9_dgns_cd -0.0171 0.0460 (-0.1090, 0.0748) -0.37 0.711 
YEAR - icd9_dgns_cd -0.0362 0.0460 (-0.1281, 0.0556) -0.79 0.434 
icd9_prcdr_c - icd9_dgns_cd -0.0419 0.0460 (-0.1338, 0.0500) -0.91 0.366 
nch_bene_ptb - icd9_dgns_cd -0.0340 0.0460 (-0.1259, 0.0578) -0.74 0.462 
nch_bene_ptb - icd9_dgns_cd 0.0032 0.0460 (-0.0887, 0.0951) 0.07 0.945 
admtng_icd9_ - icd9_dgns_cd -0.0111 0.0460 (-0.1030, 0.0807) -0.24 0.809 
hcpcs_cd_1 - icd9_dgns_cd 0.0120 0.0460 (-0.0798, 0.1039) 0.26 0.795 
hcpcs_cd_2 - icd9_dgns_cd 0.0065 0.0460 (-0.0854, 0.0984) 0.14 0.888 
hcpcs_cd_3 - icd9_dgns_cd -0.0069 0.0460 (-0.0988, 0.0849) -0.15 0.881 
YEAR - icd9_dgns_cd -0.0261 0.0460 (-0.1179, 0.0658) -0.57 0.573 
nch_bene_ptb - icd9_prcdr_c 0.0079 0.0460 (-0.0840, 0.0997) 0.17 0.865 
nch_bene_ptb - icd9_prcdr_c 0.0451 0.0460 (-0.0468, 0.1370) 0.98 0.330 
admtng_icd9_ - icd9_prcdr_c 0.0308 0.0460 (-0.0611, 0.1226) 0.67 0.506 
hcpcs_cd_1 - icd9_prcdr_c 0.0539 0.0460 (-0.0379, 0.1458) 1.17 0.245 
hcpcs_cd_2 - icd9_prcdr_c 0.0484 0.0460 (-0.0435, 0.1403) 1.05 0.296 
hcpcs_cd_3 - icd9_prcdr_c 0.0350 0.0460 (-0.0569, 0.1268) 0.76 0.450 
YEAR - icd9_prcdr_c 0.0158 0.0460 (-0.0760, 0.1077) 0.34 0.732 
nch_bene_ptb - nch_bene_ptb 0.0372 0.0460 (-0.0546, 0.1291) 0.81 0.421 
admtng_icd9_ - nch_bene_ptb 0.0229 0.0460 (-0.0690, 0.1148) 0.50 0.620 
hcpcs_cd_1 - nch_bene_ptb 0.0461 0.0460 (-0.0458, 0.1379) 1.00 0.320 
hcpcs_cd_2 - nch_bene_ptb 0.0405 0.0460 (-0.0513, 0.1324) 0.88 0.381 
hcpcs_cd_3 - nch_bene_ptb 0.0271 0.0460 (-0.0648, 0.1190) 0.59 0.558 
YEAR - nch_bene_ptb 0.0080 0.0460 (-0.0839, 0.0998) 0.17 0.863 
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Difference of Levels 
Difference 
of Means 

SE of 
Difference 95% CI T-Value 

Adjusted 
P-Value 

admtng_icd9_ - nch_bene_ptb -0.0143 0.0460 (-0.1062, 0.0775) -0.31 0.756 
hcpcs_cd_1 - nch_bene_ptb 0.0088 0.0460 (-0.0830, 0.1007) 0.19 0.848 
hcpcs_cd_2 - nch_bene_ptb 0.0033 0.0460 (-0.0886, 0.0952) 0.07 0.943 
hcpcs_cd_3 - nch_bene_ptb -0.0101 0.0460 (-0.1020, 0.0817) -0.22 0.826 
YEAR - nch_bene_ptb -0.0293 0.0460 (-0.1211, 0.0626) -0.64 0.527 
hcpcs_cd_1 - admtng_icd9_ 0.0232 0.0460 (-0.0687, 0.1150) 0.50 0.616 
hcpcs_cd_2 - admtng_icd9_ 0.0176 0.0460 (-0.0742, 0.1095) 0.38 0.702 
hcpcs_cd_3 - admtng_icd9_ 0.0042 0.0460 (-0.0877, 0.0961) 0.09 0.927 
YEAR - admtng_icd9_ -0.0149 0.0460 (-0.1068, 0.0769) -0.32 0.746 
hcpcs_cd_2 - hcpcs_cd_1 -0.0055 0.0460 (-0.0974, 0.0863) -0.12 0.905 
hcpcs_cd_3 - hcpcs_cd_1 -0.0190 0.0460 (-0.1108, 0.0729) -0.41 0.681 
YEAR - hcpcs_cd_1 -0.0381 0.0460 (-0.1300, 0.0538) -0.83 0.410 
hcpcs_cd_3 - hcpcs_cd_2 -0.0134 0.0460 (-0.1053, 0.0784) -0.29 0.771 
YEAR - hcpcs_cd_2 -0.0326 0.0460 (-0.1245, 0.0593) -0.71 0.481 
YEAR - hcpcs_cd_3 -0.0191 0.0460 (-0.1110, 0.0727) -0.42 0.679 

Simultaneous confidence level = 18.26% 

 

Hsu Multiple Comparisons with the Best (MCB) 

Hsu Simultaneous Tests for Level Mean - Largest of Other Level Means 

Difference of Levels 
Difference 
of Means 

SE of 
Difference 95% CI T-Value 

Adjusted 
P-Value 

clm_pmt_amt - icd9_dgns_cd 0.2788 0.0460 (0.0000, 0.3996) 6.06 0.000 
nch_prmry_py - clm_pmt_amt -0.3846 0.0460 (-0.5054, 0.0000) -8.36 0.000 
at_physn_npi - clm_pmt_amt -0.2905 0.0460 (-0.4114, 0.0000) -6.32 0.000 
op_physn_npi - clm_pmt_amt -0.3654 0.0460 (-0.4862, 0.0000) -7.95 0.000 
ot_physn_npi - clm_pmt_amt -0.3442 0.0460 (-0.4651, 0.0000) -7.49 0.000 
icd9_dgns_cd - clm_pmt_amt -0.2788 0.0460 (-0.3996, 0.0000) -6.06 0.000 
icd9_dgns_cd - clm_pmt_amt -0.3367 0.0460 (-0.4576, 0.0000) -7.32 0.000 
icd9_dgns_cd - clm_pmt_amt -0.3469 0.0460 (-0.4677, 0.0000) -7.54 0.000 
icd9_prcdr_c - clm_pmt_amt -0.3888 0.0460 (-0.5096, 0.0000) -8.45 0.000 
nch_bene_ptb - clm_pmt_amt -0.3809 0.0460 (-0.5018, 0.0000) -8.28 0.000 
nch_bene_ptb - clm_pmt_amt -0.3437 0.0460 (-0.4645, 0.0000) -7.47 0.000 
admtng_icd9_ - clm_pmt_amt -0.3580 0.0460 (-0.4789, 0.0000) -7.79 0.000 
hcpcs_cd_1 - clm_pmt_amt -0.3348 0.0460 (-0.4557, 0.0000) -7.28 0.000 
hcpcs_cd_2 - clm_pmt_amt -0.3404 0.0460 (-0.4612, 0.0000) -7.40 0.000 
hcpcs_cd_3 - clm_pmt_amt -0.3538 0.0460 (-0.4747, 0.0000) -7.69 0.000 
YEAR - clm_pmt_amt -0.3730 0.0460 (-0.4938, 0.0000) -8.11 0.000 

Individual confidence level = 98.93% 
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INPATIENT-FIS 102220 

ANOVA Inpatient-feature importance score 
* NOTE * Cannot draw the interval plot for the Tukey procedure. Interval plots for 
comparisons are illegible with more than 45 intervals. 

* NOTE * Cannot draw the interval plot for the Fisher procedure. Interval plots for 
comparisons are illegible with more than 45 intervals. 

Method 
Null hypothesis All means are equal 
Alternative hypothesis Not all means are 

equal 
Significance level α = 0.05 

Equal variances were assumed for the analysis. 

Factor Information 

Factor Levels Values 
Factor 19 clm_pmt_amt, nch_prmry_pyr_clm_pd_amt, at_physn_npi, op_physn_npi, 

ot_physn_npi, admtng_icd9_dgns_cd, clm_pass_thru_per_diem_amt, 
nch_bene_ip_ddctbl_amt, nch_bene_pta_coinsrnc_lblty_am, 
nch_bene_blood_ddctbl_lblty_am, clm_utlztn_day_cnt, clm_drg_cd, 
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icd9_dgns_cd_1, icd9_dgns_cd_2, icd9_dgns_cd_3, hcpcs_cd_1, hcpcs_cd_2, 
hcpcs_cd_3, YEAR 

Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 
Factor 18 0.8838 0.049103 23.60 0.000 
Error 76 0.1581 0.002080     
Total 94 1.0419       

Model Summary 

S R-sq R-sq(adj) R-sq(pred) 
0.0456100 84.83% 81.23% 76.29% 

Means 

Factor N Mean StDev 95% CI 
clm_pmt_amt 5 0.3601 0.0765 (0.3195, 0.4007) 
nch_prmry_pyr_clm_pd_amt 5 0.2898 0.1713 (0.2492, 0.3304) 
at_physn_npi 5 0.0441 0.0285 (0.0035, 0.0848) 
op_physn_npi 5 0.02552 0.01875 (-0.01511, 0.06614) 
ot_physn_npi 5 0.00694 0.00635 (-0.03368, 0.04757) 
admtng_icd9_dgns_cd 5 0.0302 0.0271 (-0.0105, 0.0708) 
clm_pass_thru_per_diem_amt 5 0.01288 0.00992 (-0.02774, 0.05351) 
nch_bene_ip_ddctbl_amt 5 0.00721 0.00703 (-0.03342, 0.04783) 
nch_bene_pta_coinsrnc_lblty_am 5 0.002416 0.002126 (-0.038209, 0.043041) 
nch_bene_blood_ddctbl_lblty_am 5 0.002045 0.002101 (-0.038580, 0.042670) 
clm_utlztn_day_cnt 5 0.01947 0.01743 (-0.02116, 0.06009) 
clm_drg_cd 5 0.08992 0.00754 (0.04930, 0.13055) 
icd9_dgns_cd_1 5 0.0352 0.0238 (-0.0054, 0.0758) 
icd9_dgns_cd_2 5 0.0334 0.0258 (-0.0072, 0.0740) 
icd9_dgns_cd_3 5 0.0332 0.0250 (-0.0074, 0.0739) 
hcpcs_cd_1 5 0.000000 0.000000 (-0.040625, 0.040625) 
hcpcs_cd_2 5 0.000000 0.000000 (-0.040625, 0.040625) 
hcpcs_cd_3 5 0.000000 0.000000 (-0.040625, 0.040625) 
YEAR 5 0.00761 0.00539 (-0.03302, 0.04823) 

Pooled StDev = 0.0456100 

Tukey Pairwise Comparisons 

Grouping Information Using the Tukey Method and 95% Confidence 

Factor N Mean Grouping 
clm_pmt_amt 5 0.3601 A   
nch_prmry_pyr_clm_pd_amt 5 0.2898 A   
clm_drg_cd 5 0.08992   B 
at_physn_npi 5 0.0441   B 
icd9_dgns_cd_1 5 0.0352   B 
icd9_dgns_cd_2 5 0.0334   B 
icd9_dgns_cd_3 5 0.0332   B 
admtng_icd9_dgns_cd 5 0.0302   B 
op_physn_npi 5 0.02552   B 
clm_utlztn_day_cnt 5 0.01947   B 
clm_pass_thru_per_diem_amt 5 0.01288   B 
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Factor N Mean Grouping 
YEAR 5 0.00761   B 
nch_bene_ip_ddctbl_amt 5 0.00721   B 
ot_physn_npi 5 0.00694   B 
nch_bene_pta_coinsrnc_lblty_am 5 0.002416   B 
nch_bene_blood_ddctbl_lblty_am 5 0.002045   B 
hcpcs_cd_3 5 0.000000   B 
hcpcs_cd_2 5 0.000000   B 
hcpcs_cd_1 5 0.000000   B 

Means that do not share a letter are significantly different. 

Tukey Simultaneous Tests for Differences of Means 

Difference of Levels 
Difference 
of Means 

SE of 
Difference 95% CI T-Value 

Adjusted 
P-Value 

nch_prmry_py - clm_pmt_amt -0.0703 0.0288 (-0.1753, 0.0347) -2.44 0.609 
at_physn_npi - clm_pmt_amt -0.3159 0.0288 (-0.4210, -0.2109) -10.95 0.000 
op_physn_npi - clm_pmt_amt -0.3346 0.0288 (-0.4396, -0.2295) -11.60 0.000 
ot_physn_npi - clm_pmt_amt -0.3531 0.0288 (-0.4582, -0.2481) -12.24 0.000 
admtng_icd9_ - clm_pmt_amt -0.3299 0.0288 (-0.4350, -0.2249) -11.44 0.000 
clm_pass_thr - clm_pmt_amt -0.3472 0.0288 (-0.4522, -0.2422) -12.04 0.000 
nch_bene_ip_ - clm_pmt_amt -0.3529 0.0288 (-0.4579, -0.2478) -12.23 0.000 
nch_bene_pta - clm_pmt_amt -0.3577 0.0288 (-0.4627, -0.2526) -12.40 0.000 
nch_bene_blo - clm_pmt_amt -0.3580 0.0288 (-0.4631, -0.2530) -12.41 0.000 
clm_utlztn_d - clm_pmt_amt -0.3406 0.0288 (-0.4457, -0.2356) -11.81 0.000 
clm_drg_cd - clm_pmt_amt -0.2702 0.0288 (-0.3752, -0.1651) -9.37 0.000 
icd9_dgns_cd - clm_pmt_amt -0.3249 0.0288 (-0.4299, -0.2199) -11.26 0.000 
icd9_dgns_cd - clm_pmt_amt -0.3267 0.0288 (-0.4317, -0.2216) -11.32 0.000 
icd9_dgns_cd - clm_pmt_amt -0.3269 0.0288 (-0.4319, -0.2218) -11.33 0.000 
hcpcs_cd_1 - clm_pmt_amt -0.3601 0.0288 (-0.4651, -0.2550) -12.48 0.000 
hcpcs_cd_2 - clm_pmt_amt -0.3601 0.0288 (-0.4651, -0.2550) -12.48 0.000 
hcpcs_cd_3 - clm_pmt_amt -0.3601 0.0288 (-0.4651, -0.2550) -12.48 0.000 
YEAR - clm_pmt_amt -0.3525 0.0288 (-0.4575, -0.2474) -12.22 0.000 
at_physn_npi - nch_prmry_py -0.2456 0.0288 (-0.3507, -0.1406) -8.52 0.000 
op_physn_npi - nch_prmry_py -0.2643 0.0288 (-0.3693, -0.1592) -9.16 0.000 
ot_physn_npi - nch_prmry_py -0.2828 0.0288 (-0.3879, -0.1778) -9.81 0.000 
admtng_icd9_ - nch_prmry_py -0.2596 0.0288 (-0.3647, -0.1546) -9.00 0.000 
clm_pass_thr - nch_prmry_py -0.2769 0.0288 (-0.3819, -0.1719) -9.60 0.000 
nch_bene_ip_ - nch_prmry_py -0.2826 0.0288 (-0.3876, -0.1775) -9.80 0.000 
nch_bene_pta - nch_prmry_py -0.2874 0.0288 (-0.3924, -0.1823) -9.96 0.000 
nch_bene_blo - nch_prmry_py -0.2877 0.0288 (-0.3928, -0.1827) -9.97 0.000 
clm_utlztn_d - nch_prmry_py -0.2703 0.0288 (-0.3754, -0.1653) -9.37 0.000 
clm_drg_cd - nch_prmry_py -0.1999 0.0288 (-0.3049, -0.0948) -6.93 0.000 
icd9_dgns_cd - nch_prmry_py -0.2546 0.0288 (-0.3596, -0.1496) -8.83 0.000 
icd9_dgns_cd - nch_prmry_py -0.2564 0.0288 (-0.3614, -0.1513) -8.89 0.000 
icd9_dgns_cd - nch_prmry_py -0.2566 0.0288 (-0.3616, -0.1515) -8.89 0.000 
hcpcs_cd_1 - nch_prmry_py -0.2898 0.0288 (-0.3948, -0.1847) -10.05 0.000 
hcpcs_cd_2 - nch_prmry_py -0.2898 0.0288 (-0.3948, -0.1847) -10.05 0.000 
hcpcs_cd_3 - nch_prmry_py -0.2898 0.0288 (-0.3948, -0.1847) -10.05 0.000 
YEAR - nch_prmry_py -0.2822 0.0288 (-0.3872, -0.1771) -9.78 0.000 
op_physn_npi - at_physn_npi -0.0186 0.0288 (-0.1237, 0.0864) -0.65 1.000 
ot_physn_npi - at_physn_npi -0.0372 0.0288 (-0.1423, 0.0678) -1.29 0.998 
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Difference of Levels 
Difference 
of Means 

SE of 
Difference 95% CI T-Value 

Adjusted 
P-Value 

admtng_icd9_ - at_physn_npi -0.0140 0.0288 (-0.1190, 0.0910) -0.49 1.000 
clm_pass_thr - at_physn_npi -0.0313 0.0288 (-0.1363, 0.0738) -1.08 1.000 
nch_bene_ip_ - at_physn_npi -0.0369 0.0288 (-0.1420, 0.0681) -1.28 0.999 
nch_bene_pta - at_physn_npi -0.0417 0.0288 (-0.1468, 0.0633) -1.45 0.994 
nch_bene_blo - at_physn_npi -0.0421 0.0288 (-0.1472, 0.0629) -1.46 0.993 
clm_utlztn_d - at_physn_npi -0.0247 0.0288 (-0.1297, 0.0804) -0.86 1.000 
clm_drg_cd - at_physn_npi 0.0458 0.0288 (-0.0593, 0.1508) 1.59 0.984 
icd9_dgns_cd - at_physn_npi -0.0090 0.0288 (-0.1140, 0.0961) -0.31 1.000 
icd9_dgns_cd - at_physn_npi -0.0107 0.0288 (-0.1158, 0.0943) -0.37 1.000 
icd9_dgns_cd - at_physn_npi -0.0109 0.0288 (-0.1160, 0.0941) -0.38 1.000 
hcpcs_cd_1 - at_physn_npi -0.0441 0.0288 (-0.1492, 0.0609) -1.53 0.989 
hcpcs_cd_2 - at_physn_npi -0.0441 0.0288 (-0.1492, 0.0609) -1.53 0.989 
hcpcs_cd_3 - at_physn_npi -0.0441 0.0288 (-0.1492, 0.0609) -1.53 0.989 
YEAR - at_physn_npi -0.0365 0.0288 (-0.1416, 0.0685) -1.27 0.999 
ot_physn_npi - op_physn_npi -0.0186 0.0288 (-0.1236, 0.0865) -0.64 1.000 
admtng_icd9_ - op_physn_npi 0.0046 0.0288 (-0.1004, 0.1097) 0.16 1.000 
clm_pass_thr - op_physn_npi -0.0126 0.0288 (-0.1177, 0.0924) -0.44 1.000 
nch_bene_ip_ - op_physn_npi -0.0183 0.0288 (-0.1234, 0.0867) -0.63 1.000 
nch_bene_pta - op_physn_npi -0.0231 0.0288 (-0.1281, 0.0819) -0.80 1.000 
nch_bene_blo - op_physn_npi -0.0235 0.0288 (-0.1285, 0.0816) -0.81 1.000 
clm_utlztn_d - op_physn_npi -0.0060 0.0288 (-0.1111, 0.0990) -0.21 1.000 
clm_drg_cd - op_physn_npi 0.0644 0.0288 (-0.0406, 0.1695) 2.23 0.750 
icd9_dgns_cd - op_physn_npi 0.0097 0.0288 (-0.0954, 0.1147) 0.34 1.000 
icd9_dgns_cd - op_physn_npi 0.0079 0.0288 (-0.0971, 0.1129) 0.27 1.000 
icd9_dgns_cd - op_physn_npi 0.0077 0.0288 (-0.0973, 0.1128) 0.27 1.000 
hcpcs_cd_1 - op_physn_npi -0.0255 0.0288 (-0.1306, 0.0795) -0.88 1.000 
hcpcs_cd_2 - op_physn_npi -0.0255 0.0288 (-0.1306, 0.0795) -0.88 1.000 
hcpcs_cd_3 - op_physn_npi -0.0255 0.0288 (-0.1306, 0.0795) -0.88 1.000 
YEAR - op_physn_npi -0.0179 0.0288 (-0.1230, 0.0871) -0.62 1.000 
admtng_icd9_ - ot_physn_npi 0.0232 0.0288 (-0.0818, 0.1283) 0.80 1.000 
clm_pass_thr - ot_physn_npi 0.0059 0.0288 (-0.0991, 0.1110) 0.21 1.000 
nch_bene_ip_ - ot_physn_npi 0.0003 0.0288 (-0.1048, 0.1053) 0.01 1.000 
nch_bene_pta - ot_physn_npi -0.0045 0.0288 (-0.1096, 0.1005) -0.16 1.000 
nch_bene_blo - ot_physn_npi -0.0049 0.0288 (-0.1099, 0.1001) -0.17 1.000 
clm_utlztn_d - ot_physn_npi 0.0125 0.0288 (-0.0925, 0.1176) 0.43 1.000 
clm_drg_cd - ot_physn_npi 0.0830 0.0288 (-0.0221, 0.1880) 2.88 0.310 
icd9_dgns_cd - ot_physn_npi 0.0282 0.0288 (-0.0768, 0.1333) 0.98 1.000 
icd9_dgns_cd - ot_physn_npi 0.0265 0.0288 (-0.0786, 0.1315) 0.92 1.000 
icd9_dgns_cd - ot_physn_npi 0.0263 0.0288 (-0.0788, 0.1313) 0.91 1.000 
hcpcs_cd_1 - ot_physn_npi -0.0069 0.0288 (-0.1120, 0.0981) -0.24 1.000 
hcpcs_cd_2 - ot_physn_npi -0.0069 0.0288 (-0.1120, 0.0981) -0.24 1.000 
hcpcs_cd_3 - ot_physn_npi -0.0069 0.0288 (-0.1120, 0.0981) -0.24 1.000 
YEAR - ot_physn_npi 0.0007 0.0288 (-0.1044, 0.1057) 0.02 1.000 
clm_pass_thr - admtng_icd9_ -0.0173 0.0288 (-0.1223, 0.0878) -0.60 1.000 
nch_bene_ip_ - admtng_icd9_ -0.0229 0.0288 (-0.1280, 0.0821) -0.80 1.000 
nch_bene_pta - admtng_icd9_ -0.0277 0.0288 (-0.1328, 0.0773) -0.96 1.000 
nch_bene_blo - admtng_icd9_ -0.0281 0.0288 (-0.1332, 0.0769) -0.97 1.000 
clm_utlztn_d - admtng_icd9_ -0.0107 0.0288 (-0.1157, 0.0944) -0.37 1.000 
clm_drg_cd - admtng_icd9_ 0.0598 0.0288 (-0.0453, 0.1648) 2.07 0.843 
icd9_dgns_cd - admtng_icd9_ 0.0050 0.0288 (-0.1000, 0.1101) 0.17 1.000 
icd9_dgns_cd - admtng_icd9_ 0.0033 0.0288 (-0.1018, 0.1083) 0.11 1.000 
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Difference of Levels 
Difference 
of Means 

SE of 
Difference 95% CI T-Value 

Adjusted 
P-Value 

icd9_dgns_cd - admtng_icd9_ 0.0031 0.0288 (-0.1020, 0.1081) 0.11 1.000 
hcpcs_cd_1 - admtng_icd9_ -0.0302 0.0288 (-0.1352, 0.0749) -1.05 1.000 
hcpcs_cd_2 - admtng_icd9_ -0.0302 0.0288 (-0.1352, 0.0749) -1.05 1.000 
hcpcs_cd_3 - admtng_icd9_ -0.0302 0.0288 (-0.1352, 0.0749) -1.05 1.000 
YEAR - admtng_icd9_ -0.0225 0.0288 (-0.1276, 0.0825) -0.78 1.000 
nch_bene_ip_ - clm_pass_thr -0.0057 0.0288 (-0.1107, 0.0994) -0.20 1.000 
nch_bene_pta - clm_pass_thr -0.0105 0.0288 (-0.1155, 0.0946) -0.36 1.000 
nch_bene_blo - clm_pass_thr -0.0108 0.0288 (-0.1159, 0.0942) -0.38 1.000 
clm_utlztn_d - clm_pass_thr 0.0066 0.0288 (-0.0985, 0.1116) 0.23 1.000 
clm_drg_cd - clm_pass_thr 0.0770 0.0288 (-0.0280, 0.1821) 2.67 0.442 
icd9_dgns_cd - clm_pass_thr 0.0223 0.0288 (-0.0827, 0.1273) 0.77 1.000 
icd9_dgns_cd - clm_pass_thr 0.0205 0.0288 (-0.0845, 0.1256) 0.71 1.000 
icd9_dgns_cd - clm_pass_thr 0.0203 0.0288 (-0.0847, 0.1254) 0.71 1.000 
hcpcs_cd_1 - clm_pass_thr -0.0129 0.0288 (-0.1179, 0.0922) -0.45 1.000 
hcpcs_cd_2 - clm_pass_thr -0.0129 0.0288 (-0.1179, 0.0922) -0.45 1.000 
hcpcs_cd_3 - clm_pass_thr -0.0129 0.0288 (-0.1179, 0.0922) -0.45 1.000 
YEAR - clm_pass_thr -0.0053 0.0288 (-0.1103, 0.0998) -0.18 1.000 
nch_bene_pta - nch_bene_ip_ -0.0048 0.0288 (-0.1098, 0.1003) -0.17 1.000 
nch_bene_blo - nch_bene_ip_ -0.0052 0.0288 (-0.1102, 0.0999) -0.18 1.000 
clm_utlztn_d - nch_bene_ip_ 0.0123 0.0288 (-0.0928, 0.1173) 0.43 1.000 
clm_drg_cd - nch_bene_ip_ 0.0827 0.0288 (-0.0223, 0.1878) 2.87 0.315 
icd9_dgns_cd - nch_bene_ip_ 0.0280 0.0288 (-0.0771, 0.1330) 0.97 1.000 
icd9_dgns_cd - nch_bene_ip_ 0.0262 0.0288 (-0.0788, 0.1313) 0.91 1.000 
icd9_dgns_cd - nch_bene_ip_ 0.0260 0.0288 (-0.0790, 0.1311) 0.90 1.000 
hcpcs_cd_1 - nch_bene_ip_ -0.0072 0.0288 (-0.1123, 0.0978) -0.25 1.000 
hcpcs_cd_2 - nch_bene_ip_ -0.0072 0.0288 (-0.1123, 0.0978) -0.25 1.000 
hcpcs_cd_3 - nch_bene_ip_ -0.0072 0.0288 (-0.1123, 0.0978) -0.25 1.000 
YEAR - nch_bene_ip_ 0.0004 0.0288 (-0.1046, 0.1055) 0.01 1.000 
nch_bene_blo - nch_bene_pta -0.0004 0.0288 (-0.1054, 0.1047) -0.01 1.000 
clm_utlztn_d - nch_bene_pta 0.0171 0.0288 (-0.0880, 0.1221) 0.59 1.000 
clm_drg_cd - nch_bene_pta 0.0875 0.0288 (-0.0175, 0.1926) 3.03 0.227 
icd9_dgns_cd - nch_bene_pta 0.0328 0.0288 (-0.0723, 0.1378) 1.14 1.000 
icd9_dgns_cd - nch_bene_pta 0.0310 0.0288 (-0.0740, 0.1360) 1.07 1.000 
icd9_dgns_cd - nch_bene_pta 0.0308 0.0288 (-0.0742, 0.1359) 1.07 1.000 
hcpcs_cd_1 - nch_bene_pta -0.0024 0.0288 (-0.1075, 0.1026) -0.08 1.000 
hcpcs_cd_2 - nch_bene_pta -0.0024 0.0288 (-0.1075, 0.1026) -0.08 1.000 
hcpcs_cd_3 - nch_bene_pta -0.0024 0.0288 (-0.1075, 0.1026) -0.08 1.000 
YEAR - nch_bene_pta 0.0052 0.0288 (-0.0999, 0.1102) 0.18 1.000 
clm_utlztn_d - nch_bene_blo 0.0174 0.0288 (-0.0876, 0.1225) 0.60 1.000 
clm_drg_cd - nch_bene_blo 0.0879 0.0288 (-0.0172, 0.1929) 3.05 0.220 
icd9_dgns_cd - nch_bene_blo 0.0331 0.0288 (-0.0719, 0.1382) 1.15 1.000 
icd9_dgns_cd - nch_bene_blo 0.0314 0.0288 (-0.0737, 0.1364) 1.09 1.000 
icd9_dgns_cd - nch_bene_blo 0.0312 0.0288 (-0.0739, 0.1362) 1.08 1.000 
hcpcs_cd_1 - nch_bene_blo -0.0020 0.0288 (-0.1071, 0.1030) -0.07 1.000 
hcpcs_cd_2 - nch_bene_blo -0.0020 0.0288 (-0.1071, 0.1030) -0.07 1.000 
hcpcs_cd_3 - nch_bene_blo -0.0020 0.0288 (-0.1071, 0.1030) -0.07 1.000 
YEAR - nch_bene_blo 0.0056 0.0288 (-0.0995, 0.1106) 0.19 1.000 
clm_drg_cd - clm_utlztn_d 0.0705 0.0288 (-0.0346, 0.1755) 2.44 0.605 
icd9_dgns_cd - clm_utlztn_d 0.0157 0.0288 (-0.0893, 0.1208) 0.54 1.000 
icd9_dgns_cd - clm_utlztn_d 0.0139 0.0288 (-0.0911, 0.1190) 0.48 1.000 
icd9_dgns_cd - clm_utlztn_d 0.0138 0.0288 (-0.0913, 0.1188) 0.48 1.000 
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Difference of Levels 
Difference 
of Means 

SE of 
Difference 95% CI T-Value 

Adjusted 
P-Value 

hcpcs_cd_1 - clm_utlztn_d -0.0195 0.0288 (-0.1245, 0.0856) -0.67 1.000 
hcpcs_cd_2 - clm_utlztn_d -0.0195 0.0288 (-0.1245, 0.0856) -0.67 1.000 
hcpcs_cd_3 - clm_utlztn_d -0.0195 0.0288 (-0.1245, 0.0856) -0.67 1.000 
YEAR - clm_utlztn_d -0.0119 0.0288 (-0.1169, 0.0932) -0.41 1.000 
icd9_dgns_cd - clm_drg_cd -0.0547 0.0288 (-0.1598, 0.0503) -1.90 0.918 
icd9_dgns_cd - clm_drg_cd -0.0565 0.0288 (-0.1616, 0.0485) -1.96 0.895 
icd9_dgns_cd - clm_drg_cd -0.0567 0.0288 (-0.1617, 0.0484) -1.97 0.892 
hcpcs_cd_1 - clm_drg_cd -0.0899 0.0288 (-0.1950, 0.0151) -3.12 0.189 
hcpcs_cd_2 - clm_drg_cd -0.0899 0.0288 (-0.1950, 0.0151) -3.12 0.189 
hcpcs_cd_3 - clm_drg_cd -0.0899 0.0288 (-0.1950, 0.0151) -3.12 0.189 
YEAR - clm_drg_cd -0.0823 0.0288 (-0.1874, 0.0227) -2.85 0.323 
icd9_dgns_cd - icd9_dgns_cd -0.0018 0.0288 (-0.1068, 0.1033) -0.06 1.000 
icd9_dgns_cd - icd9_dgns_cd -0.0020 0.0288 (-0.1070, 0.1031) -0.07 1.000 
hcpcs_cd_1 - icd9_dgns_cd -0.0352 0.0288 (-0.1402, 0.0699) -1.22 0.999 
hcpcs_cd_2 - icd9_dgns_cd -0.0352 0.0288 (-0.1402, 0.0699) -1.22 0.999 
hcpcs_cd_3 - icd9_dgns_cd -0.0352 0.0288 (-0.1402, 0.0699) -1.22 0.999 
YEAR - icd9_dgns_cd -0.0276 0.0288 (-0.1326, 0.0775) -0.96 1.000 
icd9_dgns_cd - icd9_dgns_cd -0.0002 0.0288 (-0.1052, 0.1049) -0.01 1.000 
hcpcs_cd_1 - icd9_dgns_cd -0.0334 0.0288 (-0.1385, 0.0716) -1.16 1.000 
hcpcs_cd_2 - icd9_dgns_cd -0.0334 0.0288 (-0.1385, 0.0716) -1.16 1.000 
hcpcs_cd_3 - icd9_dgns_cd -0.0334 0.0288 (-0.1385, 0.0716) -1.16 1.000 
YEAR - icd9_dgns_cd -0.0258 0.0288 (-0.1309, 0.0792) -0.89 1.000 
hcpcs_cd_1 - icd9_dgns_cd -0.0332 0.0288 (-0.1383, 0.0718) -1.15 1.000 
hcpcs_cd_2 - icd9_dgns_cd -0.0332 0.0288 (-0.1383, 0.0718) -1.15 1.000 
hcpcs_cd_3 - icd9_dgns_cd -0.0332 0.0288 (-0.1383, 0.0718) -1.15 1.000 
YEAR - icd9_dgns_cd -0.0256 0.0288 (-0.1307, 0.0794) -0.89 1.000 
hcpcs_cd_2 - hcpcs_cd_1 0.0000 0.0288 (-0.1050, 0.1050) 0.00 1.000 
hcpcs_cd_3 - hcpcs_cd_1 0.0000 0.0288 (-0.1050, 0.1050) 0.00 1.000 
YEAR - hcpcs_cd_1 0.0076 0.0288 (-0.0974, 0.1127) 0.26 1.000 
hcpcs_cd_3 - hcpcs_cd_2 0.0000 0.0288 (-0.1050, 0.1050) 0.00 1.000 
YEAR - hcpcs_cd_2 0.0076 0.0288 (-0.0974, 0.1127) 0.26 1.000 
YEAR - hcpcs_cd_3 0.0076 0.0288 (-0.0974, 0.1127) 0.26 1.000 

Individual confidence level = 99.95% 

 

Fisher Pairwise Comparisons 

Grouping Information Using the Fisher LSD Method and 95% Confidence 

Factor N Mean Grouping 
clm_pmt_amt 5 0.3601 A       
nch_prmry_pyr_clm_pd_amt 5 0.2898   B     
clm_drg_cd 5 0.08992     C   
at_physn_npi 5 0.0441     C D 
icd9_dgns_cd_1 5 0.0352     C D 
icd9_dgns_cd_2 5 0.0334     C D 
icd9_dgns_cd_3 5 0.0332     C D 
admtng_icd9_dgns_cd 5 0.0302       D 
op_physn_npi 5 0.02552       D 
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Factor N Mean Grouping 
clm_utlztn_day_cnt 5 0.01947       D 
clm_pass_thru_per_diem_amt 5 0.01288       D 
YEAR 5 0.00761       D 
nch_bene_ip_ddctbl_amt 5 0.00721       D 
ot_physn_npi 5 0.00694       D 
nch_bene_pta_coinsrnc_lblty_am 5 0.002416       D 
nch_bene_blood_ddctbl_lblty_am 5 0.002045       D 
hcpcs_cd_3 5 0.000000       D 
hcpcs_cd_2 5 0.000000       D 
hcpcs_cd_1 5 0.000000       D 

Means that do not share a letter are significantly different. 

Fisher Individual Tests for Differences of Means 

Difference of Levels 
Difference 
of Means 

SE of 
Difference 95% CI T-Value 

Adjusted 
P-Value 

nch_prmry_py - clm_pmt_amt -0.0703 0.0288 (-0.1278, -0.0128) -2.44 0.017 
at_physn_npi - clm_pmt_amt -0.3159 0.0288 (-0.3734, -0.2585) -10.95 0.000 
op_physn_npi - clm_pmt_amt -0.3346 0.0288 (-0.3920, -0.2771) -11.60 0.000 
ot_physn_npi - clm_pmt_amt -0.3531 0.0288 (-0.4106, -0.2957) -12.24 0.000 
admtng_icd9_ - clm_pmt_amt -0.3299 0.0288 (-0.3874, -0.2725) -11.44 0.000 
clm_pass_thr - clm_pmt_amt -0.3472 0.0288 (-0.4047, -0.2897) -12.04 0.000 
nch_bene_ip_ - clm_pmt_amt -0.3529 0.0288 (-0.4103, -0.2954) -12.23 0.000 
nch_bene_pta - clm_pmt_amt -0.3577 0.0288 (-0.4151, -0.3002) -12.40 0.000 
nch_bene_blo - clm_pmt_amt -0.3580 0.0288 (-0.4155, -0.3006) -12.41 0.000 
clm_utlztn_d - clm_pmt_amt -0.3406 0.0288 (-0.3981, -0.2832) -11.81 0.000 
clm_drg_cd - clm_pmt_amt -0.2702 0.0288 (-0.3276, -0.2127) -9.37 0.000 
icd9_dgns_cd - clm_pmt_amt -0.3249 0.0288 (-0.3824, -0.2674) -11.26 0.000 
icd9_dgns_cd - clm_pmt_amt -0.3267 0.0288 (-0.3841, -0.2692) -11.32 0.000 
icd9_dgns_cd - clm_pmt_amt -0.3269 0.0288 (-0.3843, -0.2694) -11.33 0.000 
hcpcs_cd_1 - clm_pmt_amt -0.3601 0.0288 (-0.4175, -0.3026) -12.48 0.000 
hcpcs_cd_2 - clm_pmt_amt -0.3601 0.0288 (-0.4175, -0.3026) -12.48 0.000 
hcpcs_cd_3 - clm_pmt_amt -0.3601 0.0288 (-0.4175, -0.3026) -12.48 0.000 
YEAR - clm_pmt_amt -0.3525 0.0288 (-0.4099, -0.2950) -12.22 0.000 
at_physn_npi - nch_prmry_py -0.2456 0.0288 (-0.3031, -0.1882) -8.52 0.000 
op_physn_npi - nch_prmry_py -0.2643 0.0288 (-0.3217, -0.2068) -9.16 0.000 
ot_physn_npi - nch_prmry_py -0.2828 0.0288 (-0.3403, -0.2254) -9.81 0.000 
admtng_icd9_ - nch_prmry_py -0.2596 0.0288 (-0.3171, -0.2022) -9.00 0.000 
clm_pass_thr - nch_prmry_py -0.2769 0.0288 (-0.3344, -0.2194) -9.60 0.000 
nch_bene_ip_ - nch_prmry_py -0.2826 0.0288 (-0.3400, -0.2251) -9.80 0.000 
nch_bene_pta - nch_prmry_py -0.2874 0.0288 (-0.3448, -0.2299) -9.96 0.000 
nch_bene_blo - nch_prmry_py -0.2877 0.0288 (-0.3452, -0.2303) -9.97 0.000 
clm_utlztn_d - nch_prmry_py -0.2703 0.0288 (-0.3278, -0.2129) -9.37 0.000 
clm_drg_cd - nch_prmry_py -0.1999 0.0288 (-0.2573, -0.1424) -6.93 0.000 
icd9_dgns_cd - nch_prmry_py -0.2546 0.0288 (-0.3121, -0.1971) -8.83 0.000 
icd9_dgns_cd - nch_prmry_py -0.2564 0.0288 (-0.3138, -0.1989) -8.89 0.000 
icd9_dgns_cd - nch_prmry_py -0.2566 0.0288 (-0.3140, -0.1991) -8.89 0.000 
hcpcs_cd_1 - nch_prmry_py -0.2898 0.0288 (-0.3472, -0.2323) -10.05 0.000 
hcpcs_cd_2 - nch_prmry_py -0.2898 0.0288 (-0.3472, -0.2323) -10.05 0.000 
hcpcs_cd_3 - nch_prmry_py -0.2898 0.0288 (-0.3472, -0.2323) -10.05 0.000 
YEAR - nch_prmry_py -0.2822 0.0288 (-0.3396, -0.2247) -9.78 0.000 
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Difference of Levels 
Difference 
of Means 

SE of 
Difference 95% CI T-Value 

Adjusted 
P-Value 

op_physn_npi - at_physn_npi -0.0186 0.0288 (-0.0761, 0.0388) -0.65 0.520 
ot_physn_npi - at_physn_npi -0.0372 0.0288 (-0.0947, 0.0202) -1.29 0.201 
admtng_icd9_ - at_physn_npi -0.0140 0.0288 (-0.0715, 0.0435) -0.49 0.629 
clm_pass_thr - at_physn_npi -0.0313 0.0288 (-0.0887, 0.0262) -1.08 0.282 
nch_bene_ip_ - at_physn_npi -0.0369 0.0288 (-0.0944, 0.0205) -1.28 0.204 
nch_bene_pta - at_physn_npi -0.0417 0.0288 (-0.0992, 0.0157) -1.45 0.152 
nch_bene_blo - at_physn_npi -0.0421 0.0288 (-0.0996, 0.0153) -1.46 0.149 
clm_utlztn_d - at_physn_npi -0.0247 0.0288 (-0.0821, 0.0328) -0.86 0.395 
clm_drg_cd - at_physn_npi 0.0458 0.0288 (-0.0117, 0.1032) 1.59 0.117 
icd9_dgns_cd - at_physn_npi -0.0090 0.0288 (-0.0664, 0.0485) -0.31 0.757 
icd9_dgns_cd - at_physn_npi -0.0107 0.0288 (-0.0682, 0.0467) -0.37 0.711 
icd9_dgns_cd - at_physn_npi -0.0109 0.0288 (-0.0684, 0.0465) -0.38 0.706 
hcpcs_cd_1 - at_physn_npi -0.0441 0.0288 (-0.1016, 0.0133) -1.53 0.130 
hcpcs_cd_2 - at_physn_npi -0.0441 0.0288 (-0.1016, 0.0133) -1.53 0.130 
hcpcs_cd_3 - at_physn_npi -0.0441 0.0288 (-0.1016, 0.0133) -1.53 0.130 
YEAR - at_physn_npi -0.0365 0.0288 (-0.0940, 0.0209) -1.27 0.209 
ot_physn_npi - op_physn_npi -0.0186 0.0288 (-0.0760, 0.0389) -0.64 0.522 
admtng_icd9_ - op_physn_npi 0.0046 0.0288 (-0.0528, 0.0621) 0.16 0.873 
clm_pass_thr - op_physn_npi -0.0126 0.0288 (-0.0701, 0.0448) -0.44 0.663 
nch_bene_ip_ - op_physn_npi -0.0183 0.0288 (-0.0758, 0.0391) -0.63 0.527 
nch_bene_pta - op_physn_npi -0.0231 0.0288 (-0.0806, 0.0344) -0.80 0.426 
nch_bene_blo - op_physn_npi -0.0235 0.0288 (-0.0809, 0.0340) -0.81 0.418 
clm_utlztn_d - op_physn_npi -0.0060 0.0288 (-0.0635, 0.0514) -0.21 0.834 
clm_drg_cd - op_physn_npi 0.0644 0.0288 (0.0070, 0.1219) 2.23 0.029 
icd9_dgns_cd - op_physn_npi 0.0097 0.0288 (-0.0478, 0.0671) 0.34 0.738 
icd9_dgns_cd - op_physn_npi 0.0079 0.0288 (-0.0496, 0.0653) 0.27 0.785 
icd9_dgns_cd - op_physn_npi 0.0077 0.0288 (-0.0497, 0.0652) 0.27 0.790 
hcpcs_cd_1 - op_physn_npi -0.0255 0.0288 (-0.0830, 0.0319) -0.88 0.379 
hcpcs_cd_2 - op_physn_npi -0.0255 0.0288 (-0.0830, 0.0319) -0.88 0.379 
hcpcs_cd_3 - op_physn_npi -0.0255 0.0288 (-0.0830, 0.0319) -0.88 0.379 
YEAR - op_physn_npi -0.0179 0.0288 (-0.0754, 0.0395) -0.62 0.537 
admtng_icd9_ - ot_physn_npi 0.0232 0.0288 (-0.0342, 0.0807) 0.80 0.424 
clm_pass_thr - ot_physn_npi 0.0059 0.0288 (-0.0515, 0.0634) 0.21 0.837 
nch_bene_ip_ - ot_physn_npi 0.0003 0.0288 (-0.0572, 0.0577) 0.01 0.993 
nch_bene_pta - ot_physn_npi -0.0045 0.0288 (-0.0620, 0.0529) -0.16 0.876 
nch_bene_blo - ot_physn_npi -0.0049 0.0288 (-0.0623, 0.0526) -0.17 0.866 
clm_utlztn_d - ot_physn_npi 0.0125 0.0288 (-0.0449, 0.0700) 0.43 0.665 
clm_drg_cd - ot_physn_npi 0.0830 0.0288 (0.0255, 0.1404) 2.88 0.005 
icd9_dgns_cd - ot_physn_npi 0.0282 0.0288 (-0.0292, 0.0857) 0.98 0.331 
icd9_dgns_cd - ot_physn_npi 0.0265 0.0288 (-0.0310, 0.0839) 0.92 0.362 
icd9_dgns_cd - ot_physn_npi 0.0263 0.0288 (-0.0312, 0.0837) 0.91 0.365 
hcpcs_cd_1 - ot_physn_npi -0.0069 0.0288 (-0.0644, 0.0505) -0.24 0.810 
hcpcs_cd_2 - ot_physn_npi -0.0069 0.0288 (-0.0644, 0.0505) -0.24 0.810 
hcpcs_cd_3 - ot_physn_npi -0.0069 0.0288 (-0.0644, 0.0505) -0.24 0.810 
YEAR - ot_physn_npi 0.0007 0.0288 (-0.0568, 0.0581) 0.02 0.982 
clm_pass_thr - admtng_icd9_ -0.0173 0.0288 (-0.0747, 0.0402) -0.60 0.551 
nch_bene_ip_ - admtng_icd9_ -0.0229 0.0288 (-0.0804, 0.0345) -0.80 0.429 
nch_bene_pta - admtng_icd9_ -0.0277 0.0288 (-0.0852, 0.0297) -0.96 0.339 
nch_bene_blo - admtng_icd9_ -0.0281 0.0288 (-0.0856, 0.0293) -0.97 0.333 
clm_utlztn_d - admtng_icd9_ -0.0107 0.0288 (-0.0681, 0.0468) -0.37 0.712 
clm_drg_cd - admtng_icd9_ 0.0598 0.0288 (0.0023, 0.1172) 2.07 0.042 
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Difference of Levels 
Difference 
of Means 

SE of 
Difference 95% CI T-Value 

Adjusted 
P-Value 

icd9_dgns_cd - admtng_icd9_ 0.0050 0.0288 (-0.0524, 0.0625) 0.17 0.862 
icd9_dgns_cd - admtng_icd9_ 0.0033 0.0288 (-0.0542, 0.0607) 0.11 0.910 
icd9_dgns_cd - admtng_icd9_ 0.0031 0.0288 (-0.0544, 0.0605) 0.11 0.915 
hcpcs_cd_1 - admtng_icd9_ -0.0302 0.0288 (-0.0876, 0.0273) -1.05 0.299 
hcpcs_cd_2 - admtng_icd9_ -0.0302 0.0288 (-0.0876, 0.0273) -1.05 0.299 
hcpcs_cd_3 - admtng_icd9_ -0.0302 0.0288 (-0.0876, 0.0273) -1.05 0.299 
YEAR - admtng_icd9_ -0.0225 0.0288 (-0.0800, 0.0349) -0.78 0.437 
nch_bene_ip_ - clm_pass_thr -0.0057 0.0288 (-0.0631, 0.0518) -0.20 0.845 
nch_bene_pta - clm_pass_thr -0.0105 0.0288 (-0.0679, 0.0470) -0.36 0.718 
nch_bene_blo - clm_pass_thr -0.0108 0.0288 (-0.0683, 0.0466) -0.38 0.708 
clm_utlztn_d - clm_pass_thr 0.0066 0.0288 (-0.0509, 0.0640) 0.23 0.820 
clm_drg_cd - clm_pass_thr 0.0770 0.0288 (0.0196, 0.1345) 2.67 0.009 
icd9_dgns_cd - clm_pass_thr 0.0223 0.0288 (-0.0352, 0.0798) 0.77 0.442 
icd9_dgns_cd - clm_pass_thr 0.0205 0.0288 (-0.0369, 0.0780) 0.71 0.479 
icd9_dgns_cd - clm_pass_thr 0.0203 0.0288 (-0.0371, 0.0778) 0.71 0.483 
hcpcs_cd_1 - clm_pass_thr -0.0129 0.0288 (-0.0703, 0.0446) -0.45 0.656 
hcpcs_cd_2 - clm_pass_thr -0.0129 0.0288 (-0.0703, 0.0446) -0.45 0.656 
hcpcs_cd_3 - clm_pass_thr -0.0129 0.0288 (-0.0703, 0.0446) -0.45 0.656 
YEAR - clm_pass_thr -0.0053 0.0288 (-0.0627, 0.0522) -0.18 0.855 
nch_bene_pta - nch_bene_ip_ -0.0048 0.0288 (-0.0622, 0.0527) -0.17 0.869 
nch_bene_blo - nch_bene_ip_ -0.0052 0.0288 (-0.0626, 0.0523) -0.18 0.858 
clm_utlztn_d - nch_bene_ip_ 0.0123 0.0288 (-0.0452, 0.0697) 0.43 0.672 
clm_drg_cd - nch_bene_ip_ 0.0827 0.0288 (0.0253, 0.1402) 2.87 0.005 
icd9_dgns_cd - nch_bene_ip_ 0.0280 0.0288 (-0.0295, 0.0854) 0.97 0.335 
icd9_dgns_cd - nch_bene_ip_ 0.0262 0.0288 (-0.0312, 0.0837) 0.91 0.366 
icd9_dgns_cd - nch_bene_ip_ 0.0260 0.0288 (-0.0314, 0.0835) 0.90 0.370 
hcpcs_cd_1 - nch_bene_ip_ -0.0072 0.0288 (-0.0647, 0.0502) -0.25 0.803 
hcpcs_cd_2 - nch_bene_ip_ -0.0072 0.0288 (-0.0647, 0.0502) -0.25 0.803 
hcpcs_cd_3 - nch_bene_ip_ -0.0072 0.0288 (-0.0647, 0.0502) -0.25 0.803 
YEAR - nch_bene_ip_ 0.0004 0.0288 (-0.0570, 0.0579) 0.01 0.989 
nch_bene_blo - nch_bene_pta -0.0004 0.0288 (-0.0578, 0.0571) -0.01 0.990 
clm_utlztn_d - nch_bene_pta 0.0171 0.0288 (-0.0404, 0.0745) 0.59 0.556 
clm_drg_cd - nch_bene_pta 0.0875 0.0288 (0.0301, 0.1450) 3.03 0.003 
icd9_dgns_cd - nch_bene_pta 0.0328 0.0288 (-0.0247, 0.0902) 1.14 0.260 
icd9_dgns_cd - nch_bene_pta 0.0310 0.0288 (-0.0265, 0.0885) 1.07 0.286 
icd9_dgns_cd - nch_bene_pta 0.0308 0.0288 (-0.0266, 0.0883) 1.07 0.289 
hcpcs_cd_1 - nch_bene_pta -0.0024 0.0288 (-0.0599, 0.0550) -0.08 0.933 
hcpcs_cd_2 - nch_bene_pta -0.0024 0.0288 (-0.0599, 0.0550) -0.08 0.933 
hcpcs_cd_3 - nch_bene_pta -0.0024 0.0288 (-0.0599, 0.0550) -0.08 0.933 
YEAR - nch_bene_pta 0.0052 0.0288 (-0.0523, 0.0626) 0.18 0.858 
clm_utlztn_d - nch_bene_blo 0.0174 0.0288 (-0.0400, 0.0749) 0.60 0.548 
clm_drg_cd - nch_bene_blo 0.0879 0.0288 (0.0304, 0.1453) 3.05 0.003 
icd9_dgns_cd - nch_bene_blo 0.0331 0.0288 (-0.0243, 0.0906) 1.15 0.254 
icd9_dgns_cd - nch_bene_blo 0.0314 0.0288 (-0.0261, 0.0888) 1.09 0.280 
icd9_dgns_cd - nch_bene_blo 0.0312 0.0288 (-0.0263, 0.0886) 1.08 0.283 
hcpcs_cd_1 - nch_bene_blo -0.0020 0.0288 (-0.0595, 0.0554) -0.07 0.944 
hcpcs_cd_2 - nch_bene_blo -0.0020 0.0288 (-0.0595, 0.0554) -0.07 0.944 
hcpcs_cd_3 - nch_bene_blo -0.0020 0.0288 (-0.0595, 0.0554) -0.07 0.944 
YEAR - nch_bene_blo 0.0056 0.0288 (-0.0519, 0.0630) 0.19 0.848 
clm_drg_cd - clm_utlztn_d 0.0705 0.0288 (0.0130, 0.1279) 2.44 0.017 
icd9_dgns_cd - clm_utlztn_d 0.0157 0.0288 (-0.0417, 0.0732) 0.54 0.587 
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Difference of Levels 
Difference 
of Means 

SE of 
Difference 95% CI T-Value 

Adjusted 
P-Value 

icd9_dgns_cd - clm_utlztn_d 0.0139 0.0288 (-0.0435, 0.0714) 0.48 0.630 
icd9_dgns_cd - clm_utlztn_d 0.0138 0.0288 (-0.0437, 0.0712) 0.48 0.635 
hcpcs_cd_1 - clm_utlztn_d -0.0195 0.0288 (-0.0769, 0.0380) -0.67 0.502 
hcpcs_cd_2 - clm_utlztn_d -0.0195 0.0288 (-0.0769, 0.0380) -0.67 0.502 
hcpcs_cd_3 - clm_utlztn_d -0.0195 0.0288 (-0.0769, 0.0380) -0.67 0.502 
YEAR - clm_utlztn_d -0.0119 0.0288 (-0.0693, 0.0456) -0.41 0.682 
icd9_dgns_cd - clm_drg_cd -0.0547 0.0288 (-0.1122, 0.0027) -1.90 0.062 
icd9_dgns_cd - clm_drg_cd -0.0565 0.0288 (-0.1140, 0.0009) -1.96 0.054 
icd9_dgns_cd - clm_drg_cd -0.0567 0.0288 (-0.1141, 0.0008) -1.97 0.053 
hcpcs_cd_1 - clm_drg_cd -0.0899 0.0288 (-0.1474, -0.0325) -3.12 0.003 
hcpcs_cd_2 - clm_drg_cd -0.0899 0.0288 (-0.1474, -0.0325) -3.12 0.003 
hcpcs_cd_3 - clm_drg_cd -0.0899 0.0288 (-0.1474, -0.0325) -3.12 0.003 
YEAR - clm_drg_cd -0.0823 0.0288 (-0.1398, -0.0249) -2.85 0.006 
icd9_dgns_cd - icd9_dgns_cd -0.0018 0.0288 (-0.0592, 0.0557) -0.06 0.951 
icd9_dgns_cd - icd9_dgns_cd -0.0020 0.0288 (-0.0594, 0.0555) -0.07 0.946 
hcpcs_cd_1 - icd9_dgns_cd -0.0352 0.0288 (-0.0926, 0.0223) -1.22 0.226 
hcpcs_cd_2 - icd9_dgns_cd -0.0352 0.0288 (-0.0926, 0.0223) -1.22 0.226 
hcpcs_cd_3 - icd9_dgns_cd -0.0352 0.0288 (-0.0926, 0.0223) -1.22 0.226 
YEAR - icd9_dgns_cd -0.0276 0.0288 (-0.0850, 0.0299) -0.96 0.342 
icd9_dgns_cd - icd9_dgns_cd -0.0002 0.0288 (-0.0576, 0.0573) -0.01 0.995 
hcpcs_cd_1 - icd9_dgns_cd -0.0334 0.0288 (-0.0909, 0.0240) -1.16 0.250 
hcpcs_cd_2 - icd9_dgns_cd -0.0334 0.0288 (-0.0909, 0.0240) -1.16 0.250 
hcpcs_cd_3 - icd9_dgns_cd -0.0334 0.0288 (-0.0909, 0.0240) -1.16 0.250 
YEAR - icd9_dgns_cd -0.0258 0.0288 (-0.0833, 0.0316) -0.89 0.374 
hcpcs_cd_1 - icd9_dgns_cd -0.0332 0.0288 (-0.0907, 0.0242) -1.15 0.253 
hcpcs_cd_2 - icd9_dgns_cd -0.0332 0.0288 (-0.0907, 0.0242) -1.15 0.253 
hcpcs_cd_3 - icd9_dgns_cd -0.0332 0.0288 (-0.0907, 0.0242) -1.15 0.253 
YEAR - icd9_dgns_cd -0.0256 0.0288 (-0.0831, 0.0318) -0.89 0.377 
hcpcs_cd_2 - hcpcs_cd_1 0.0000 0.0288 (-0.0575, 0.0575) 0.00 1.000 
hcpcs_cd_3 - hcpcs_cd_1 0.0000 0.0288 (-0.0575, 0.0575) 0.00 1.000 
YEAR - hcpcs_cd_1 0.0076 0.0288 (-0.0498, 0.0651) 0.26 0.793 
hcpcs_cd_3 - hcpcs_cd_2 0.0000 0.0288 (-0.0575, 0.0575) 0.00 1.000 
YEAR - hcpcs_cd_2 0.0076 0.0288 (-0.0498, 0.0651) 0.26 0.793 
YEAR - hcpcs_cd_3 0.0076 0.0288 (-0.0498, 0.0651) 0.26 0.793 

Simultaneous confidence level = 11.92% 

 

Hsu Multiple Comparisons with the Best (MCB) 

Hsu Simultaneous Tests for Level Mean - Largest of Other Level Means 

Difference of Levels 
Difference 
of Means 

SE of 
Difference 95% CI T-Value 

Adjusted 
P-Value 

clm_pmt_amt - nch_prmry_py 0.0703 0.0288 (-0.0068, 0.1473) 2.44 0.084 
nch_prmry_py - clm_pmt_amt -0.0703 0.0288 (-0.1473, 0.0068) -2.44 0.084 
at_physn_npi - clm_pmt_amt -0.3159 0.0288 (-0.3930, 0.0000) -10.95 0.000 
op_physn_npi - clm_pmt_amt -0.3346 0.0288 (-0.4116, 0.0000) -11.60 0.000 
ot_physn_npi - clm_pmt_amt -0.3531 0.0288 (-0.4302, 0.0000) -12.24 0.000 
admtng_icd9_ - clm_pmt_amt -0.3299 0.0288 (-0.4070, 0.0000) -11.44 0.000 
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Difference of Levels 
Difference 
of Means 

SE of 
Difference 95% CI T-Value 

Adjusted 
P-Value 

clm_pass_thr - clm_pmt_amt -0.3472 0.0288 (-0.4243, 0.0000) -12.04 0.000 
nch_bene_ip_ - clm_pmt_amt -0.3529 0.0288 (-0.4299, 0.0000) -12.23 0.000 
nch_bene_pta - clm_pmt_amt -0.3577 0.0288 (-0.4347, 0.0000) -12.40 0.000 
nch_bene_blo - clm_pmt_amt -0.3580 0.0288 (-0.4351, 0.0000) -12.41 0.000 
clm_utlztn_d - clm_pmt_amt -0.3406 0.0288 (-0.4177, 0.0000) -11.81 0.000 
clm_drg_cd - clm_pmt_amt -0.2702 0.0288 (-0.3472, 0.0000) -9.37 0.000 
icd9_dgns_cd - clm_pmt_amt -0.3249 0.0288 (-0.4019, 0.0000) -11.26 0.000 
icd9_dgns_cd - clm_pmt_amt -0.3267 0.0288 (-0.4037, 0.0000) -11.32 0.000 
icd9_dgns_cd - clm_pmt_amt -0.3269 0.0288 (-0.4039, 0.0000) -11.33 0.000 
hcpcs_cd_1 - clm_pmt_amt -0.3601 0.0288 (-0.4371, 0.0000) -12.48 0.000 
hcpcs_cd_2 - clm_pmt_amt -0.3601 0.0288 (-0.4371, 0.0000) -12.48 0.000 
hcpcs_cd_3 - clm_pmt_amt -0.3601 0.0288 (-0.4371, 0.0000) -12.48 0.000 
YEAR - clm_pmt_amt -0.3525 0.0288 (-0.4295, 0.0000) -12.22 0.000 

Individual confidence level = 99.08% 
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APPENDIX J: DETAIL RESULTS OF ONE=WAY ANOVA TEST ON TESTED 

ALGORITHMS’ PERFORMANCE METRICS  

This appendix provides the detail result of the one-way ANOVA test run on the recall 

and F1-score for tested algorithms on both outpatient and inpatient claims. 

Inpatient F1 ANOVA 102220 
* NOTE * Cannot draw the interval plot for the Tukey procedure. Interval plots for 
comparisons are illegible with more than 45 intervals. 

* NOTE * Cannot draw the interval plot for the Fisher procedure. Interval plots for 
comparisons are illegible with more than 45 intervals. 

Method 
Null hypothesis All means are equal 
Alternative hypothesis Not all means are 

equal 
Significance level α = 0.05 

Equal variances were assumed for the analysis. 

Factor Information 

Factor Levels Values 
Factor 20 DTG, DTG (OS), DTE, DTE (OS), RFG, RFG (OS), RFE, RFE (OS), NB, NB (OS), kNN, 

kNN (OS), LR, LR (OS), NN, NN (OS), DA, DA (OS), GB, GB (OS) 

Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 
Factor 19 8.2962 0.436642 237.27 0.000 
Error 80 0.1472 0.001840     
Total 99 8.4434       

Model Summary 

S R-sq R-sq(adj) R-sq(pred) 
0.0428983 98.26% 97.84% 97.28% 

Means 

Factor N Mean StDev 95% CI 
DTG 5 0.7138 0.0455 (0.6757, 0.7520) 
DTG (OS) 5 0.5305 0.0327 (0.4923, 0.5687) 
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Factor N Mean StDev 95% CI 
DTE 5 0.7270 0.0322 (0.6889, 0.7652) 
DTE (OS) 5 0.5488 0.0368 (0.5106, 0.5870) 
RFG 5 0.7252 0.0642 (0.6870, 0.7634) 
RFG (OS) 5 0.5052 0.0381 (0.4671, 0.5434) 
RFE 5 0.7122 0.0360 (0.6741, 0.7504) 
RFE (OS) 5 0.5235 0.0336 (0.4854, 0.5617) 
NB 5 0.3825 0.0402 (0.3443, 0.4206) 
NB (OS) 5 0.2015 0.0691 (0.1633, 0.2397) 
kNN 5 0.02125 0.01510 (-0.01693, 0.05943) 
kNN (OS) 5 0.03712 0.00756 (-0.00106, 0.07530) 
LR 5 0.01959 0.01303 (-0.01859, 0.05777) 
LR (OS) 5 0.04701 0.00944 (0.00883, 0.08519) 
NN 5 0.00766 0.01712 (-0.03052, 0.04583) 
NN (OS) 5 0.05532 0.00442 (0.01714, 0.09350) 
DA 5 0.6002 0.1078 (0.5620, 0.6383) 
DA (OS) 5 0.07102 0.01141 (0.03284, 0.10919) 
GB 5 0.7346 0.0438 (0.6964, 0.7728) 
GB (OS) 5 0.6633 0.0485 (0.6252, 0.7015) 

Pooled StDev = 0.0428983 

Tukey Pairwise Comparisons 

Grouping Information Using the Tukey Method and 95% Confidence 

Factor N Mean Grouping 
GB 5 0.7346 A           
DTE 5 0.7270 A           
RFG 5 0.7252 A           
DTG 5 0.7138 A           
RFE 5 0.7122 A           
GB (OS) 5 0.6633 A B         
DA 5 0.6002   B C       
DTE (OS) 5 0.5488     C       
DTG (OS) 5 0.5305     C       
RFE (OS) 5 0.5235     C       
RFG (OS) 5 0.5052     C       
NB 5 0.3825       D     
NB (OS) 5 0.2015         E   
DA (OS) 5 0.07102           F 
NN (OS) 5 0.05532           F 
LR (OS) 5 0.04701           F 
kNN (OS) 5 0.03712           F 
kNN 5 0.02125           F 
LR 5 0.01959           F 
NN 5 0.00766           F 

Means that do not share a letter are significantly different. 

Tukey Simultaneous Tests for Differences of Means 



234 
 

 

Difference of Levels 
Difference 
of Means 

SE of 
Difference 95% CI T-Value 

Adjusted 
P-Value 

DTG (OS) - DTG -0.1834 0.0271 (-0.2827, -0.0840) -6.76 0.000 
DTE - DTG 0.0132 0.0271 (-0.0862, 0.1126) 0.49 1.000 
DTE (OS) - DTG -0.1651 0.0271 (-0.2644, -0.0657) -6.08 0.000 
RFG - DTG 0.0113 0.0271 (-0.0881, 0.1107) 0.42 1.000 
RFG (OS) - DTG -0.2086 0.0271 (-0.3080, -0.1092) -7.69 0.000 
RFE - DTG -0.0016 0.0271 (-0.1010, 0.0978) -0.06 1.000 
RFE (OS) - DTG -0.1903 0.0271 (-0.2897, -0.0909) -7.01 0.000 
NB - DTG -0.3314 0.0271 (-0.4308, -0.2320) -12.21 0.000 
NB (OS) - DTG -0.5124 0.0271 (-0.6117, -0.4130) -18.88 0.000 
kNN - DTG -0.6926 0.0271 (-0.7920, -0.5932) -25.53 0.000 
kNN (OS) - DTG -0.6767 0.0271 (-0.7761, -0.5774) -24.94 0.000 
LR - DTG -0.6943 0.0271 (-0.7936, -0.5949) -25.59 0.000 
LR (OS) - DTG -0.6668 0.0271 (-0.7662, -0.5675) -24.58 0.000 
NN - DTG -0.7062 0.0271 (-0.8056, -0.6068) -26.03 0.000 
NN (OS) - DTG -0.6585 0.0271 (-0.7579, -0.5592) -24.27 0.000 
DA - DTG -0.1137 0.0271 (-0.2131, -0.0143) -4.19 0.010 
DA (OS) - DTG -0.6428 0.0271 (-0.7422, -0.5435) -23.69 0.000 
GB - DTG 0.0208 0.0271 (-0.0786, 0.1201) 0.77 1.000 
GB (OS) - DTG -0.0505 0.0271 (-0.1499, 0.0489) -1.86 0.940 
DTE - DTG (OS) 0.1966 0.0271 (0.0972, 0.2959) 7.24 0.000 
DTE (OS) - DTG (OS) 0.0183 0.0271 (-0.0811, 0.1177) 0.67 1.000 
RFG - DTG (OS) 0.1947 0.0271 (0.0953, 0.2941) 7.18 0.000 
RFG (OS) - DTG (OS) -0.0253 0.0271 (-0.1246, 0.0741) -0.93 1.000 
RFE - DTG (OS) 0.1818 0.0271 (0.0824, 0.2811) 6.70 0.000 
RFE (OS) - DTG (OS) -0.0070 0.0271 (-0.1063, 0.0924) -0.26 1.000 
NB - DTG (OS) -0.1480 0.0271 (-0.2474, -0.0487) -5.46 0.000 
NB (OS) - DTG (OS) -0.3290 0.0271 (-0.4284, -0.2296) -12.13 0.000 
kNN - DTG (OS) -0.5092 0.0271 (-0.6086, -0.4099) -18.77 0.000 
kNN (OS) - DTG (OS) -0.4934 0.0271 (-0.5927, -0.3940) -18.18 0.000 
LR - DTG (OS) -0.5109 0.0271 (-0.6103, -0.4115) -18.83 0.000 
LR (OS) - DTG (OS) -0.4835 0.0271 (-0.5829, -0.3841) -17.82 0.000 
NN - DTG (OS) -0.5228 0.0271 (-0.6222, -0.4235) -19.27 0.000 
NN (OS) - DTG (OS) -0.4752 0.0271 (-0.5745, -0.3758) -17.51 0.000 
DA - DTG (OS) 0.0697 0.0271 (-0.0297, 0.1691) 2.57 0.538 
DA (OS) - DTG (OS) -0.4595 0.0271 (-0.5589, -0.3601) -16.94 0.000 
GB - DTG (OS) 0.2041 0.0271 (0.1048, 0.3035) 7.52 0.000 
GB (OS) - DTG (OS) 0.1329 0.0271 (0.0335, 0.2322) 4.90 0.001 
DTE (OS) - DTE -0.1783 0.0271 (-0.2776, -0.0789) -6.57 0.000 
RFG - DTE -0.0019 0.0271 (-0.1012, 0.0975) -0.07 1.000 
RFG (OS) - DTE -0.2218 0.0271 (-0.3212, -0.1224) -8.18 0.000 
RFE - DTE -0.0148 0.0271 (-0.1142, 0.0846) -0.55 1.000 
RFE (OS) - DTE -0.2035 0.0271 (-0.3029, -0.1041) -7.50 0.000 
NB - DTE -0.3446 0.0271 (-0.4440, -0.2452) -12.70 0.000 
NB (OS) - DTE -0.5256 0.0271 (-0.6249, -0.4262) -19.37 0.000 
kNN - DTE -0.7058 0.0271 (-0.8052, -0.6064) -26.01 0.000 
kNN (OS) - DTE -0.6899 0.0271 (-0.7893, -0.5906) -25.43 0.000 
LR - DTE -0.7075 0.0271 (-0.8068, -0.6081) -26.08 0.000 
LR (OS) - DTE -0.6800 0.0271 (-0.7794, -0.5807) -25.06 0.000 
NN - DTE -0.7194 0.0271 (-0.8188, -0.6200) -26.52 0.000 
NN (OS) - DTE -0.6717 0.0271 (-0.7711, -0.5724) -24.76 0.000 
DA - DTE -0.1269 0.0271 (-0.2263, -0.0275) -4.68 0.002 
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Difference of Levels 
Difference 
of Means 

SE of 
Difference 95% CI T-Value 

Adjusted 
P-Value 

DA (OS) - DTE -0.6560 0.0271 (-0.7554, -0.5567) -24.18 0.000 
GB - DTE 0.0076 0.0271 (-0.0918, 0.1070) 0.28 1.000 
GB (OS) - DTE -0.0637 0.0271 (-0.1631, 0.0357) -2.35 0.696 
RFG - DTE (OS) 0.1764 0.0271 (0.0770, 0.2758) 6.50 0.000 
RFG (OS) - DTE (OS) -0.0436 0.0271 (-0.1429, 0.0558) -1.61 0.986 
RFE - DTE (OS) 0.1634 0.0271 (0.0641, 0.2628) 6.02 0.000 
RFE (OS) - DTE (OS) -0.0253 0.0271 (-0.1246, 0.0741) -0.93 1.000 
NB - DTE (OS) -0.1663 0.0271 (-0.2657, -0.0670) -6.13 0.000 
NB (OS) - DTE (OS) -0.3473 0.0271 (-0.4467, -0.2479) -12.80 0.000 
kNN - DTE (OS) -0.5275 0.0271 (-0.6269, -0.4282) -19.44 0.000 
kNN (OS) - DTE (OS) -0.5117 0.0271 (-0.6111, -0.4123) -18.86 0.000 
LR - DTE (OS) -0.5292 0.0271 (-0.6286, -0.4298) -19.51 0.000 
LR (OS) - DTE (OS) -0.5018 0.0271 (-0.6012, -0.4024) -18.49 0.000 
NN - DTE (OS) -0.5411 0.0271 (-0.6405, -0.4418) -19.95 0.000 
NN (OS) - DTE (OS) -0.4935 0.0271 (-0.5929, -0.3941) -18.19 0.000 
DA - DTE (OS) 0.0514 0.0271 (-0.0480, 0.1507) 1.89 0.931 
DA (OS) - DTE (OS) -0.4778 0.0271 (-0.5772, -0.3784) -17.61 0.000 
GB - DTE (OS) 0.1858 0.0271 (0.0865, 0.2852) 6.85 0.000 
GB (OS) - DTE (OS) 0.1146 0.0271 (0.0152, 0.2139) 4.22 0.009 
RFG (OS) - RFG -0.2199 0.0271 (-0.3193, -0.1206) -8.11 0.000 
RFE - RFG -0.0129 0.0271 (-0.1123, 0.0864) -0.48 1.000 
RFE (OS) - RFG -0.2016 0.0271 (-0.3010, -0.1023) -7.43 0.000 
NB - RFG -0.3427 0.0271 (-0.4421, -0.2433) -12.63 0.000 
NB (OS) - RFG -0.5237 0.0271 (-0.6231, -0.4243) -19.30 0.000 
kNN - RFG -0.7039 0.0271 (-0.8033, -0.6046) -25.95 0.000 
kNN (OS) - RFG -0.6881 0.0271 (-0.7874, -0.5887) -25.36 0.000 
LR - RFG -0.7056 0.0271 (-0.8050, -0.6062) -26.01 0.000 
LR (OS) - RFG -0.6782 0.0271 (-0.7775, -0.5788) -25.00 0.000 
NN - RFG -0.7175 0.0271 (-0.8169, -0.6181) -26.45 0.000 
NN (OS) - RFG -0.6699 0.0271 (-0.7692, -0.5705) -24.69 0.000 
DA - RFG -0.1250 0.0271 (-0.2244, -0.0256) -4.61 0.002 
DA (OS) - RFG -0.6542 0.0271 (-0.7535, -0.5548) -24.11 0.000 
GB - RFG 0.0094 0.0271 (-0.0899, 0.1088) 0.35 1.000 
GB (OS) - RFG -0.0618 0.0271 (-0.1612, 0.0376) -2.28 0.743 
RFE - RFG (OS) 0.2070 0.0271 (0.1076, 0.3064) 7.63 0.000 
RFE (OS) - RFG (OS) 0.0183 0.0271 (-0.0811, 0.1177) 0.67 1.000 
NB - RFG (OS) -0.1228 0.0271 (-0.2222, -0.0234) -4.53 0.003 
NB (OS) - RFG (OS) -0.3038 0.0271 (-0.4031, -0.2044) -11.20 0.000 
kNN - RFG (OS) -0.4840 0.0271 (-0.5834, -0.3846) -17.84 0.000 
kNN (OS) - RFG (OS) -0.4681 0.0271 (-0.5675, -0.3687) -17.25 0.000 
LR - RFG (OS) -0.4856 0.0271 (-0.5850, -0.3863) -17.90 0.000 
LR (OS) - RFG (OS) -0.4582 0.0271 (-0.5576, -0.3588) -16.89 0.000 
NN - RFG (OS) -0.4976 0.0271 (-0.5970, -0.3982) -18.34 0.000 
NN (OS) - RFG (OS) -0.4499 0.0271 (-0.5493, -0.3505) -16.58 0.000 
DA - RFG (OS) 0.0949 0.0271 (-0.0044, 0.1943) 3.50 0.079 
DA (OS) - RFG (OS) -0.4342 0.0271 (-0.5336, -0.3348) -16.00 0.000 
GB - RFG (OS) 0.2294 0.0271 (0.1300, 0.3288) 8.45 0.000 
GB (OS) - RFG (OS) 0.1581 0.0271 (0.0587, 0.2575) 5.83 0.000 
RFE (OS) - RFE -0.1887 0.0271 (-0.2881, -0.0893) -6.96 0.000 
NB - RFE -0.3298 0.0271 (-0.4292, -0.2304) -12.16 0.000 
NB (OS) - RFE -0.5108 0.0271 (-0.6101, -0.4114) -18.83 0.000 
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Difference of Levels 
Difference 
of Means 

SE of 
Difference 95% CI T-Value 

Adjusted 
P-Value 

kNN - RFE -0.6910 0.0271 (-0.7904, -0.5916) -25.47 0.000 
kNN (OS) - RFE -0.6751 0.0271 (-0.7745, -0.5757) -24.88 0.000 
LR - RFE -0.6927 0.0271 (-0.7920, -0.5933) -25.53 0.000 
LR (OS) - RFE -0.6652 0.0271 (-0.7646, -0.5659) -24.52 0.000 
NN - RFE -0.7046 0.0271 (-0.8040, -0.6052) -25.97 0.000 
NN (OS) - RFE -0.6569 0.0271 (-0.7563, -0.5575) -24.21 0.000 
DA - RFE -0.1121 0.0271 (-0.2115, -0.0127) -4.13 0.012 
DA (OS) - RFE -0.6412 0.0271 (-0.7406, -0.5418) -23.63 0.000 
GB - RFE 0.0224 0.0271 (-0.0770, 0.1218) 0.82 1.000 
GB (OS) - RFE -0.0489 0.0271 (-0.1483, 0.0505) -1.80 0.955 
NB - RFE (OS) -0.1411 0.0271 (-0.2405, -0.0417) -5.20 0.000 
NB (OS) - RFE (OS) -0.3221 0.0271 (-0.4214, -0.2227) -11.87 0.000 
kNN - RFE (OS) -0.5023 0.0271 (-0.6017, -0.4029) -18.51 0.000 
kNN (OS) - RFE (OS) -0.4864 0.0271 (-0.5858, -0.3870) -17.93 0.000 
LR - RFE (OS) -0.5039 0.0271 (-0.6033, -0.4046) -18.57 0.000 
LR (OS) - RFE (OS) -0.4765 0.0271 (-0.5759, -0.3771) -17.56 0.000 
NN - RFE (OS) -0.5159 0.0271 (-0.6153, -0.4165) -19.01 0.000 
NN (OS) - RFE (OS) -0.4682 0.0271 (-0.5676, -0.3688) -17.26 0.000 
DA - RFE (OS) 0.0766 0.0271 (-0.0227, 0.1760) 2.82 0.360 
DA (OS) - RFE (OS) -0.4525 0.0271 (-0.5519, -0.3531) -16.68 0.000 
GB - RFE (OS) 0.2111 0.0271 (0.1117, 0.3105) 7.78 0.000 
GB (OS) - RFE (OS) 0.1398 0.0271 (0.0404, 0.2392) 5.15 0.000 
NB (OS) - NB -0.1810 0.0271 (-0.2804, -0.0816) -6.67 0.000 
kNN - NB -0.3612 0.0271 (-0.4606, -0.2618) -13.31 0.000 
kNN (OS) - NB -0.3453 0.0271 (-0.4447, -0.2460) -12.73 0.000 
LR - NB -0.3629 0.0271 (-0.4622, -0.2635) -13.37 0.000 
LR (OS) - NB -0.3354 0.0271 (-0.4348, -0.2361) -12.36 0.000 
NN - NB -0.3748 0.0271 (-0.4742, -0.2754) -13.81 0.000 
NN (OS) - NB -0.3271 0.0271 (-0.4265, -0.2278) -12.06 0.000 
DA - NB 0.2177 0.0271 (0.1183, 0.3171) 8.02 0.000 
DA (OS) - NB -0.3114 0.0271 (-0.4108, -0.2121) -11.48 0.000 
GB - NB 0.3522 0.0271 (0.2528, 0.4515) 12.98 0.000 
GB (OS) - NB 0.2809 0.0271 (0.1815, 0.3803) 10.35 0.000 
kNN - NB (OS) -0.1802 0.0271 (-0.2796, -0.0809) -6.64 0.000 
kNN (OS) - NB (OS) -0.1644 0.0271 (-0.2637, -0.0650) -6.06 0.000 
LR - NB (OS) -0.1819 0.0271 (-0.2813, -0.0825) -6.70 0.000 
LR (OS) - NB (OS) -0.1545 0.0271 (-0.2538, -0.0551) -5.69 0.000 
NN - NB (OS) -0.1938 0.0271 (-0.2932, -0.0944) -7.14 0.000 
NN (OS) - NB (OS) -0.1462 0.0271 (-0.2455, -0.0468) -5.39 0.000 
DA - NB (OS) 0.3987 0.0271 (0.2993, 0.4981) 14.69 0.000 
DA (OS) - NB (OS) -0.1305 0.0271 (-0.2298, -0.0311) -4.81 0.001 
GB - NB (OS) 0.5331 0.0271 (0.4338, 0.6325) 19.65 0.000 
GB (OS) - NB (OS) 0.4619 0.0271 (0.3625, 0.5612) 17.02 0.000 
kNN (OS) - kNN 0.0159 0.0271 (-0.0835, 0.1152) 0.58 1.000 
LR - kNN -0.0017 0.0271 (-0.1010, 0.0977) -0.06 1.000 
LR (OS) - kNN 0.0258 0.0271 (-0.0736, 0.1251) 0.95 1.000 
NN - kNN -0.0136 0.0271 (-0.1130, 0.0858) -0.50 1.000 
NN (OS) - kNN 0.0341 0.0271 (-0.0653, 0.1334) 1.26 0.999 
DA - kNN 0.5789 0.0271 (0.4795, 0.6783) 21.34 0.000 
DA (OS) - kNN 0.0498 0.0271 (-0.0496, 0.1491) 1.83 0.948 
GB - kNN 0.7134 0.0271 (0.6140, 0.8128) 26.29 0.000 
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Difference of Levels 
Difference 
of Means 

SE of 
Difference 95% CI T-Value 

Adjusted 
P-Value 

GB (OS) - kNN 0.6421 0.0271 (0.5427, 0.7415) 23.67 0.000 
LR - kNN (OS) -0.0175 0.0271 (-0.1169, 0.0818) -0.65 1.000 
LR (OS) - kNN (OS) 0.0099 0.0271 (-0.0895, 0.1093) 0.36 1.000 
NN - kNN (OS) -0.0295 0.0271 (-0.1288, 0.0699) -1.09 1.000 
NN (OS) - kNN (OS) 0.0182 0.0271 (-0.0812, 0.1176) 0.67 1.000 
DA - kNN (OS) 0.5630 0.0271 (0.4637, 0.6624) 20.75 0.000 
DA (OS) - kNN (OS) 0.0339 0.0271 (-0.0655, 0.1333) 1.25 0.999 
GB - kNN (OS) 0.6975 0.0271 (0.5981, 0.7969) 25.71 0.000 
GB (OS) - kNN (OS) 0.6262 0.0271 (0.5269, 0.7256) 23.08 0.000 
LR (OS) - LR 0.0274 0.0271 (-0.0720, 0.1268) 1.01 1.000 
NN - LR -0.0119 0.0271 (-0.1113, 0.0874) -0.44 1.000 
NN (OS) - LR 0.0357 0.0271 (-0.0636, 0.1351) 1.32 0.999 
DA - LR 0.5806 0.0271 (0.4812, 0.6800) 21.40 0.000 
DA (OS) - LR 0.0514 0.0271 (-0.0479, 0.1508) 1.90 0.930 
GB - LR 0.7150 0.0271 (0.6157, 0.8144) 26.35 0.000 
GB (OS) - LR 0.6438 0.0271 (0.5444, 0.7431) 23.73 0.000 
NN - LR (OS) -0.0394 0.0271 (-0.1387, 0.0600) -1.45 0.995 
NN (OS) - LR (OS) 0.0083 0.0271 (-0.0911, 0.1077) 0.31 1.000 
DA - LR (OS) 0.5532 0.0271 (0.4538, 0.6525) 20.39 0.000 
DA (OS) - LR (OS) 0.0240 0.0271 (-0.0754, 0.1234) 0.88 1.000 
GB - LR (OS) 0.6876 0.0271 (0.5882, 0.7870) 25.34 0.000 
GB (OS) - LR (OS) 0.6163 0.0271 (0.5170, 0.7157) 22.72 0.000 
NN (OS) - NN 0.0477 0.0271 (-0.0517, 0.1470) 1.76 0.965 
DA - NN 0.5925 0.0271 (0.4931, 0.6919) 21.84 0.000 
DA (OS) - NN 0.0634 0.0271 (-0.0360, 0.1627) 2.34 0.705 
GB - NN 0.7270 0.0271 (0.6276, 0.8263) 26.79 0.000 
GB (OS) - NN 0.6557 0.0271 (0.5563, 0.7551) 24.17 0.000 
DA - NN (OS) 0.5448 0.0271 (0.4455, 0.6442) 20.08 0.000 
DA (OS) - NN (OS) 0.0157 0.0271 (-0.0837, 0.1151) 0.58 1.000 
GB - NN (OS) 0.6793 0.0271 (0.5799, 0.7787) 25.04 0.000 
GB (OS) - NN (OS) 0.6080 0.0271 (0.5087, 0.7074) 22.41 0.000 
DA (OS) - DA -0.5292 0.0271 (-0.6285, -0.4298) -19.50 0.000 
GB - DA 0.1345 0.0271 (0.0351, 0.2338) 4.96 0.001 
GB (OS) - DA 0.0632 0.0271 (-0.0362, 0.1626) 2.33 0.709 
GB - DA (OS) 0.6636 0.0271 (0.5642, 0.7630) 24.46 0.000 
GB (OS) - DA (OS) 0.5923 0.0271 (0.4930, 0.6917) 21.83 0.000 
GB (OS) - GB -0.0713 0.0271 (-0.1707, 0.0281) -2.63 0.495 

Individual confidence level = 99.96% 

 

Fisher Pairwise Comparisons 

Grouping Information Using the Fisher LSD Method and 95% Confidence 

Factor N Mean Grouping 
GB 5 0.7346 A               
DTE 5 0.7270 A               
RFG 5 0.7252 A               
DTG 5 0.7138 A B             
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RFE 5 0.7122 A B             
GB (OS) 5 0.6633   B             
DA 5 0.6002     C           
DTE (OS) 5 0.5488     C D         
DTG (OS) 5 0.5305       D         
RFE (OS) 5 0.5235       D         
RFG (OS) 5 0.5052       D         
NB 5 0.3825         E       
NB (OS) 5 0.2015           F     
DA (OS) 5 0.07102             G   
NN (OS) 5 0.05532             G H 
LR (OS) 5 0.04701             G H 
kNN (OS) 5 0.03712             G H 
kNN 5 0.02125             G H 
LR 5 0.01959             G H 
NN 5 0.00766               H 

Means that do not share a letter are significantly different. 

Fisher Individual Tests for Differences of Means 

Difference of Levels 
Difference 
of Means 

SE of 
Difference 95% CI T-Value 

Adjusted 
P-Value 

DTG (OS) - DTG -0.1834 0.0271 (-0.2374, -0.1294) -6.76 0.000 
DTE - DTG 0.0132 0.0271 (-0.0408, 0.0672) 0.49 0.628 
DTE (OS) - DTG -0.1651 0.0271 (-0.2190, -0.1111) -6.08 0.000 
RFG - DTG 0.0113 0.0271 (-0.0427, 0.0653) 0.42 0.678 
RFG (OS) - DTG -0.2086 0.0271 (-0.2626, -0.1546) -7.69 0.000 
RFE - DTG -0.0016 0.0271 (-0.0556, 0.0524) -0.06 0.953 
RFE (OS) - DTG -0.1903 0.0271 (-0.2443, -0.1363) -7.01 0.000 
NB - DTG -0.3314 0.0271 (-0.3854, -0.2774) -12.21 0.000 
NB (OS) - DTG -0.5124 0.0271 (-0.5664, -0.4584) -18.88 0.000 
kNN - DTG -0.6926 0.0271 (-0.7466, -0.6386) -25.53 0.000 
kNN (OS) - DTG -0.6767 0.0271 (-0.7307, -0.6227) -24.94 0.000 
LR - DTG -0.6943 0.0271 (-0.7483, -0.6403) -25.59 0.000 
LR (OS) - DTG -0.6668 0.0271 (-0.7208, -0.6128) -24.58 0.000 
NN - DTG -0.7062 0.0271 (-0.7602, -0.6522) -26.03 0.000 
NN (OS) - DTG -0.6585 0.0271 (-0.7125, -0.6045) -24.27 0.000 
DA - DTG -0.1137 0.0271 (-0.1677, -0.0597) -4.19 0.000 
DA (OS) - DTG -0.6428 0.0271 (-0.6968, -0.5888) -23.69 0.000 
GB - DTG 0.0208 0.0271 (-0.0332, 0.0748) 0.77 0.446 
GB (OS) - DTG -0.0505 0.0271 (-0.1045, 0.0035) -1.86 0.066 
DTE - DTG (OS) 0.1966 0.0271 (0.1426, 0.2505) 7.24 0.000 
DTE (OS) - DTG (OS) 0.0183 0.0271 (-0.0357, 0.0723) 0.67 0.502 
RFG - DTG (OS) 0.1947 0.0271 (0.1407, 0.2487) 7.18 0.000 
RFG (OS) - DTG (OS) -0.0253 0.0271 (-0.0792, 0.0287) -0.93 0.355 
RFE - DTG (OS) 0.1818 0.0271 (0.1278, 0.2357) 6.70 0.000 
RFE (OS) - DTG (OS) -0.0070 0.0271 (-0.0609, 0.0470) -0.26 0.798 
NB - DTG (OS) -0.1480 0.0271 (-0.2020, -0.0940) -5.46 0.000 
NB (OS) - DTG (OS) -0.3290 0.0271 (-0.3830, -0.2750) -12.13 0.000 
kNN - DTG (OS) -0.5092 0.0271 (-0.5632, -0.4552) -18.77 0.000 
kNN (OS) - DTG (OS) -0.4934 0.0271 (-0.5474, -0.4394) -18.18 0.000 
LR - DTG (OS) -0.5109 0.0271 (-0.5649, -0.4569) -18.83 0.000 
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Difference of Levels 
Difference 
of Means 

SE of 
Difference 95% CI T-Value 

Adjusted 
P-Value 

LR (OS) - DTG (OS) -0.4835 0.0271 (-0.5375, -0.4295) -17.82 0.000 
NN - DTG (OS) -0.5228 0.0271 (-0.5768, -0.4688) -19.27 0.000 
NN (OS) - DTG (OS) -0.4752 0.0271 (-0.5292, -0.4212) -17.51 0.000 
DA - DTG (OS) 0.0697 0.0271 (0.0157, 0.1237) 2.57 0.012 
DA (OS) - DTG (OS) -0.4595 0.0271 (-0.5135, -0.4055) -16.94 0.000 
GB - DTG (OS) 0.2041 0.0271 (0.1501, 0.2581) 7.52 0.000 
GB (OS) - DTG (OS) 0.1329 0.0271 (0.0789, 0.1869) 4.90 0.000 
DTE (OS) - DTE -0.1783 0.0271 (-0.2322, -0.1243) -6.57 0.000 
RFG - DTE -0.0019 0.0271 (-0.0559, 0.0521) -0.07 0.945 
RFG (OS) - DTE -0.2218 0.0271 (-0.2758, -0.1678) -8.18 0.000 
RFE - DTE -0.0148 0.0271 (-0.0688, 0.0392) -0.55 0.587 
RFE (OS) - DTE -0.2035 0.0271 (-0.2575, -0.1495) -7.50 0.000 
NB - DTE -0.3446 0.0271 (-0.3986, -0.2906) -12.70 0.000 
NB (OS) - DTE -0.5256 0.0271 (-0.5796, -0.4716) -19.37 0.000 
kNN - DTE -0.7058 0.0271 (-0.7598, -0.6518) -26.01 0.000 
kNN (OS) - DTE -0.6899 0.0271 (-0.7439, -0.6359) -25.43 0.000 
LR - DTE -0.7075 0.0271 (-0.7615, -0.6535) -26.08 0.000 
LR (OS) - DTE -0.6800 0.0271 (-0.7340, -0.6260) -25.06 0.000 
NN - DTE -0.7194 0.0271 (-0.7734, -0.6654) -26.52 0.000 
NN (OS) - DTE -0.6717 0.0271 (-0.7257, -0.6177) -24.76 0.000 
DA - DTE -0.1269 0.0271 (-0.1809, -0.0729) -4.68 0.000 
DA (OS) - DTE -0.6560 0.0271 (-0.7100, -0.6020) -24.18 0.000 
GB - DTE 0.0076 0.0271 (-0.0464, 0.0616) 0.28 0.781 
GB (OS) - DTE -0.0637 0.0271 (-0.1177, -0.0097) -2.35 0.021 
RFG - DTE (OS) 0.1764 0.0271 (0.1224, 0.2304) 6.50 0.000 
RFG (OS) - DTE (OS) -0.0436 0.0271 (-0.0976, 0.0104) -1.61 0.112 
RFE - DTE (OS) 0.1634 0.0271 (0.1095, 0.2174) 6.02 0.000 
RFE (OS) - DTE (OS) -0.0253 0.0271 (-0.0793, 0.0287) -0.93 0.355 
NB - DTE (OS) -0.1663 0.0271 (-0.2203, -0.1124) -6.13 0.000 
NB (OS) - DTE (OS) -0.3473 0.0271 (-0.4013, -0.2933) -12.80 0.000 
kNN - DTE (OS) -0.5275 0.0271 (-0.5815, -0.4736) -19.44 0.000 
kNN (OS) - DTE (OS) -0.5117 0.0271 (-0.5657, -0.4577) -18.86 0.000 
LR - DTE (OS) -0.5292 0.0271 (-0.5832, -0.4752) -19.51 0.000 
LR (OS) - DTE (OS) -0.5018 0.0271 (-0.5558, -0.4478) -18.49 0.000 
NN - DTE (OS) -0.5411 0.0271 (-0.5951, -0.4871) -19.95 0.000 
NN (OS) - DTE (OS) -0.4935 0.0271 (-0.5475, -0.4395) -18.19 0.000 
DA - DTE (OS) 0.0514 0.0271 (-0.0026, 0.1054) 1.89 0.062 
DA (OS) - DTE (OS) -0.4778 0.0271 (-0.5318, -0.4238) -17.61 0.000 
GB - DTE (OS) 0.1858 0.0271 (0.1318, 0.2398) 6.85 0.000 
GB (OS) - DTE (OS) 0.1146 0.0271 (0.0606, 0.1685) 4.22 0.000 
RFG (OS) - RFG -0.2199 0.0271 (-0.2739, -0.1659) -8.11 0.000 
RFE - RFG -0.0129 0.0271 (-0.0669, 0.0411) -0.48 0.635 
RFE (OS) - RFG -0.2016 0.0271 (-0.2556, -0.1476) -7.43 0.000 
NB - RFG -0.3427 0.0271 (-0.3967, -0.2887) -12.63 0.000 
NB (OS) - RFG -0.5237 0.0271 (-0.5777, -0.4697) -19.30 0.000 
kNN - RFG -0.7039 0.0271 (-0.7579, -0.6499) -25.95 0.000 
kNN (OS) - RFG -0.6881 0.0271 (-0.7420, -0.6341) -25.36 0.000 
LR - RFG -0.7056 0.0271 (-0.7596, -0.6516) -26.01 0.000 
LR (OS) - RFG -0.6782 0.0271 (-0.7322, -0.6242) -25.00 0.000 
NN - RFG -0.7175 0.0271 (-0.7715, -0.6635) -26.45 0.000 
NN (OS) - RFG -0.6699 0.0271 (-0.7239, -0.6159) -24.69 0.000 
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Difference of Levels 
Difference 
of Means 

SE of 
Difference 95% CI T-Value 

Adjusted 
P-Value 

DA - RFG -0.1250 0.0271 (-0.1790, -0.0710) -4.61 0.000 
DA (OS) - RFG -0.6542 0.0271 (-0.7082, -0.6002) -24.11 0.000 
GB - RFG 0.0094 0.0271 (-0.0445, 0.0634) 0.35 0.729 
GB (OS) - RFG -0.0618 0.0271 (-0.1158, -0.0078) -2.28 0.025 
RFE - RFG (OS) 0.2070 0.0271 (0.1530, 0.2610) 7.63 0.000 
RFE (OS) - RFG (OS) 0.0183 0.0271 (-0.0357, 0.0723) 0.67 0.502 
NB - RFG (OS) -0.1228 0.0271 (-0.1768, -0.0688) -4.53 0.000 
NB (OS) - RFG (OS) -0.3038 0.0271 (-0.3578, -0.2498) -11.20 0.000 
kNN - RFG (OS) -0.4840 0.0271 (-0.5380, -0.4300) -17.84 0.000 
kNN (OS) - RFG (OS) -0.4681 0.0271 (-0.5221, -0.4141) -17.25 0.000 
LR - RFG (OS) -0.4856 0.0271 (-0.5396, -0.4317) -17.90 0.000 
LR (OS) - RFG (OS) -0.4582 0.0271 (-0.5122, -0.4042) -16.89 0.000 
NN - RFG (OS) -0.4976 0.0271 (-0.5516, -0.4436) -18.34 0.000 
NN (OS) - RFG (OS) -0.4499 0.0271 (-0.5039, -0.3959) -16.58 0.000 
DA - RFG (OS) 0.0949 0.0271 (0.0409, 0.1489) 3.50 0.001 
DA (OS) - RFG (OS) -0.4342 0.0271 (-0.4882, -0.3802) -16.00 0.000 
GB - RFG (OS) 0.2294 0.0271 (0.1754, 0.2834) 8.45 0.000 
GB (OS) - RFG (OS) 0.1581 0.0271 (0.1041, 0.2121) 5.83 0.000 
RFE (OS) - RFE -0.1887 0.0271 (-0.2427, -0.1347) -6.96 0.000 
NB - RFE -0.3298 0.0271 (-0.3838, -0.2758) -12.16 0.000 
NB (OS) - RFE -0.5108 0.0271 (-0.5648, -0.4568) -18.83 0.000 
kNN - RFE -0.6910 0.0271 (-0.7450, -0.6370) -25.47 0.000 
kNN (OS) - RFE -0.6751 0.0271 (-0.7291, -0.6211) -24.88 0.000 
LR - RFE -0.6927 0.0271 (-0.7466, -0.6387) -25.53 0.000 
LR (OS) - RFE -0.6652 0.0271 (-0.7192, -0.6112) -24.52 0.000 
NN - RFE -0.7046 0.0271 (-0.7586, -0.6506) -25.97 0.000 
NN (OS) - RFE -0.6569 0.0271 (-0.7109, -0.6029) -24.21 0.000 
DA - RFE -0.1121 0.0271 (-0.1661, -0.0581) -4.13 0.000 
DA (OS) - RFE -0.6412 0.0271 (-0.6952, -0.5872) -23.63 0.000 
GB - RFE 0.0224 0.0271 (-0.0316, 0.0764) 0.82 0.412 
GB (OS) - RFE -0.0489 0.0271 (-0.1029, 0.0051) -1.80 0.075 
NB - RFE (OS) -0.1411 0.0271 (-0.1951, -0.0871) -5.20 0.000 
NB (OS) - RFE (OS) -0.3221 0.0271 (-0.3761, -0.2681) -11.87 0.000 
kNN - RFE (OS) -0.5023 0.0271 (-0.5563, -0.4483) -18.51 0.000 
kNN (OS) - RFE (OS) -0.4864 0.0271 (-0.5404, -0.4324) -17.93 0.000 
LR - RFE (OS) -0.5039 0.0271 (-0.5579, -0.4500) -18.57 0.000 
LR (OS) - RFE (OS) -0.4765 0.0271 (-0.5305, -0.4225) -17.56 0.000 
NN - RFE (OS) -0.5159 0.0271 (-0.5699, -0.4619) -19.01 0.000 
NN (OS) - RFE (OS) -0.4682 0.0271 (-0.5222, -0.4142) -17.26 0.000 
DA - RFE (OS) 0.0766 0.0271 (0.0226, 0.1306) 2.82 0.006 
DA (OS) - RFE (OS) -0.4525 0.0271 (-0.5065, -0.3985) -16.68 0.000 
GB - RFE (OS) 0.2111 0.0271 (0.1571, 0.2651) 7.78 0.000 
GB (OS) - RFE (OS) 0.1398 0.0271 (0.0858, 0.1938) 5.15 0.000 
NB (OS) - NB -0.1810 0.0271 (-0.2350, -0.1270) -6.67 0.000 
kNN - NB -0.3612 0.0271 (-0.4152, -0.3072) -13.31 0.000 
kNN (OS) - NB -0.3453 0.0271 (-0.3993, -0.2913) -12.73 0.000 
LR - NB -0.3629 0.0271 (-0.4169, -0.3089) -13.37 0.000 
LR (OS) - NB -0.3354 0.0271 (-0.3894, -0.2814) -12.36 0.000 
NN - NB -0.3748 0.0271 (-0.4288, -0.3208) -13.81 0.000 
NN (OS) - NB -0.3271 0.0271 (-0.3811, -0.2731) -12.06 0.000 
DA - NB 0.2177 0.0271 (0.1637, 0.2717) 8.02 0.000 
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Difference of Levels 
Difference 
of Means 

SE of 
Difference 95% CI T-Value 

Adjusted 
P-Value 

DA (OS) - NB -0.3114 0.0271 (-0.3654, -0.2574) -11.48 0.000 
GB - NB 0.3522 0.0271 (0.2982, 0.4062) 12.98 0.000 
GB (OS) - NB 0.2809 0.0271 (0.2269, 0.3349) 10.35 0.000 
kNN - NB (OS) -0.1802 0.0271 (-0.2342, -0.1262) -6.64 0.000 
kNN (OS) - NB (OS) -0.1644 0.0271 (-0.2184, -0.1104) -6.06 0.000 
LR - NB (OS) -0.1819 0.0271 (-0.2359, -0.1279) -6.70 0.000 
LR (OS) - NB (OS) -0.1545 0.0271 (-0.2085, -0.1005) -5.69 0.000 
NN - NB (OS) -0.1938 0.0271 (-0.2478, -0.1398) -7.14 0.000 
NN (OS) - NB (OS) -0.1462 0.0271 (-0.2002, -0.0922) -5.39 0.000 
DA - NB (OS) 0.3987 0.0271 (0.3447, 0.4527) 14.69 0.000 
DA (OS) - NB (OS) -0.1305 0.0271 (-0.1845, -0.0765) -4.81 0.000 
GB - NB (OS) 0.5331 0.0271 (0.4792, 0.5871) 19.65 0.000 
GB (OS) - NB (OS) 0.4619 0.0271 (0.4079, 0.5159) 17.02 0.000 
kNN (OS) - kNN 0.0159 0.0271 (-0.0381, 0.0699) 0.58 0.560 
LR - kNN -0.0017 0.0271 (-0.0557, 0.0523) -0.06 0.951 
LR (OS) - kNN 0.0258 0.0271 (-0.0282, 0.0798) 0.95 0.345 
NN - kNN -0.0136 0.0271 (-0.0676, 0.0404) -0.50 0.618 
NN (OS) - kNN 0.0341 0.0271 (-0.0199, 0.0881) 1.26 0.213 
DA - kNN 0.5789 0.0271 (0.5249, 0.6329) 21.34 0.000 
DA (OS) - kNN 0.0498 0.0271 (-0.0042, 0.1038) 1.83 0.070 
GB - kNN 0.7134 0.0271 (0.6594, 0.7674) 26.29 0.000 
GB (OS) - kNN 0.6421 0.0271 (0.5881, 0.6961) 23.67 0.000 
LR - kNN (OS) -0.0175 0.0271 (-0.0715, 0.0365) -0.65 0.520 
LR (OS) - kNN (OS) 0.0099 0.0271 (-0.0441, 0.0639) 0.36 0.716 
NN - kNN (OS) -0.0295 0.0271 (-0.0835, 0.0245) -1.09 0.281 
NN (OS) - kNN (OS) 0.0182 0.0271 (-0.0358, 0.0722) 0.67 0.504 
DA - kNN (OS) 0.5630 0.0271 (0.5091, 0.6170) 20.75 0.000 
DA (OS) - kNN (OS) 0.0339 0.0271 (-0.0201, 0.0879) 1.25 0.215 
GB - kNN (OS) 0.6975 0.0271 (0.6435, 0.7515) 25.71 0.000 
GB (OS) - kNN (OS) 0.6262 0.0271 (0.5722, 0.6802) 23.08 0.000 
LR (OS) - LR 0.0274 0.0271 (-0.0266, 0.0814) 1.01 0.315 
NN - LR -0.0119 0.0271 (-0.0659, 0.0421) -0.44 0.661 
NN (OS) - LR 0.0357 0.0271 (-0.0183, 0.0897) 1.32 0.192 
DA - LR 0.5806 0.0271 (0.5266, 0.6346) 21.40 0.000 
DA (OS) - LR 0.0514 0.0271 (-0.0026, 0.1054) 1.90 0.062 
GB - LR 0.7150 0.0271 (0.6610, 0.7690) 26.35 0.000 
GB (OS) - LR 0.6438 0.0271 (0.5898, 0.6978) 23.73 0.000 
NN - LR (OS) -0.0394 0.0271 (-0.0933, 0.0146) -1.45 0.151 
NN (OS) - LR (OS) 0.0083 0.0271 (-0.0457, 0.0623) 0.31 0.760 
DA - LR (OS) 0.5532 0.0271 (0.4992, 0.6071) 20.39 0.000 
DA (OS) - LR (OS) 0.0240 0.0271 (-0.0300, 0.0780) 0.88 0.379 
GB - LR (OS) 0.6876 0.0271 (0.6336, 0.7416) 25.34 0.000 
GB (OS) - LR (OS) 0.6163 0.0271 (0.5623, 0.6703) 22.72 0.000 
NN (OS) - NN 0.0477 0.0271 (-0.0063, 0.1017) 1.76 0.083 
DA - NN 0.5925 0.0271 (0.5385, 0.6465) 21.84 0.000 
DA (OS) - NN 0.0634 0.0271 (0.0094, 0.1174) 2.34 0.022 
GB - NN 0.7270 0.0271 (0.6730, 0.7810) 26.79 0.000 
GB (OS) - NN 0.6557 0.0271 (0.6017, 0.7097) 24.17 0.000 
DA - NN (OS) 0.5448 0.0271 (0.4909, 0.5988) 20.08 0.000 
DA (OS) - NN (OS) 0.0157 0.0271 (-0.0383, 0.0697) 0.58 0.564 
GB - NN (OS) 0.6793 0.0271 (0.6253, 0.7333) 25.04 0.000 
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Difference of Levels 
Difference 
of Means 

SE of 
Difference 95% CI T-Value 

Adjusted 
P-Value 

GB (OS) - NN (OS) 0.6080 0.0271 (0.5540, 0.6620) 22.41 0.000 
DA (OS) - DA -0.5292 0.0271 (-0.5831, -0.4752) -19.50 0.000 
GB - DA 0.1345 0.0271 (0.0805, 0.1884) 4.96 0.000 
GB (OS) - DA 0.0632 0.0271 (0.0092, 0.1172) 2.33 0.022 
GB - DA (OS) 0.6636 0.0271 (0.6096, 0.7176) 24.46 0.000 
GB (OS) - DA (OS) 0.5923 0.0271 (0.5383, 0.6463) 21.83 0.000 
GB (OS) - GB -0.0713 0.0271 (-0.1253, -0.0173) -2.63 0.010 

Simultaneous confidence level = 10.32% 

 

Hsu Multiple Comparisons with the Best (MCB) 

Hsu Simultaneous Tests for Level Mean - Largest of Other Level Means 

Difference of 
Levels 

Difference 
of Means 

SE of 
Difference 95% CI T-Value 

Adjusted 
P-Value 

DTG - GB -0.0208 0.0271 (-0.0936, 0.0520) -0.77 0.749 
DTG (OS) - GB -0.2041 0.0271 (-0.2769, 0.0000) -7.52 0.000 
DTE - GB -0.0076 0.0271 (-0.0804, 0.0652) -0.28 0.901 
DTE (OS) - GB -0.1858 0.0271 (-0.2586, 0.0000) -6.85 0.000 
RFG - GB -0.0094 0.0271 (-0.0823, 0.0634) -0.35 0.885 
RFG (OS) - GB -0.2294 0.0271 (-0.3022, 0.0000) -8.45 0.000 
RFE - GB -0.0224 0.0271 (-0.0952, 0.0504) -0.82 0.724 
RFE (OS) - GB -0.2111 0.0271 (-0.2839, 0.0000) -7.78 0.000 
NB - GB -0.3522 0.0271 (-0.4250, 0.0000) -12.98 0.000 
NB (OS) - GB -0.5331 0.0271 (-0.6060, 0.0000) -19.65 0.000 
kNN - GB -0.7134 0.0271 (-0.7862, 0.0000) -26.29 0.000 
kNN (OS) - GB -0.6975 0.0271 (-0.7703, 0.0000) -25.71 0.000 
LR - GB -0.7150 0.0271 (-0.7878, 0.0000) -26.35 0.000 
LR (OS) - GB -0.6876 0.0271 (-0.7604, 0.0000) -25.34 0.000 
NN - GB -0.7270 0.0271 (-0.7998, 0.0000) -26.79 0.000 
NN (OS) - GB -0.6793 0.0271 (-0.7521, 0.0000) -25.04 0.000 
DA - GB -0.1345 0.0271 (-0.2073, 0.0000) -4.96 0.000 
DA (OS) - GB -0.6636 0.0271 (-0.7364, 0.0000) -24.46 0.000 
GB - DTE 0.0076 0.0271 (-0.0652, 0.0804) 0.28 0.901 
GB (OS) - GB -0.0713 0.0271 (-0.1441, 0.0015) -2.63 0.057 

Individual confidence level = 99.12% 
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