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Abstract

Unsupervised Fine-Tuning Data Selection for ASR

Using Self-Supervised Speech Models

Reem A Goudy, M.S.C.S

The University of Texas at Austin, 2022

Supervisor: David Harwath

Self-supervised learning (SSL) has been able to leverage unlabeled data

to boost the performance of automatic speech recognition (ASR) models when

we have access to only a small amount of transcribed speech data. However,

this raises the question of which subset of the available unlabeled data should

be selected for transcription. Our work investigates different unsupervised

data selection techniques for fine-tuning the HuBERT model under a limited

transcription budget. We investigate the impact of speaker diversity, gender

bias, and topic diversity on the downstream ASR performance. We also devise

two novel techniques for unsupervised data selection: pre-training loss based

data selection and the perplexity of byte pair encoded clustered units (PBPE)

and we show how these techniques compare to pure random data selection.
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Finally, we analyze the correlations between the inherent characteristics of the

selected fine-tuning subsets as well as how these characteristics correlate with

the resultant word error rate. We demonstrate the importance of token diver-

sity, speaker diversity, and topic diversity in achieving the best performance

in terms of WER.
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Chapter 1: Introduction

Self-supervised speech recognition models like wav2vec 2.0 and Hu-

BERT [2, 19] have achieved very low WER when pre-trained on a large dataset

of untranscribed speech and fine-tuned on as little as 1 hour of transcribed

data. This motivates using these models for automatic speech recognition

for low-resource scenarios where we may have access to a moderate to large

amount of untranscribed speech but a finite budget is available for data tran-

scription. However, this raises the question of how to optimally choose which

subset of the data should be transcribed for fine-tuning the model. Using small

amounts of data in fine-tuning is associated with the risk of having high vari-

ance in the WER at test time, depending on the characteristics of the subset

selected for fine-tuning. Moreover, the fact that the data selection pool is un-

transcribed implies the necessity of devising unsupervised techniques for data

selection that do not rely on the existence of transcriptions. Our goal in this

work is to investigate different selection criteria for choosing the fine-tuning

subset, and their effect on downstream ASR performance. In our setup, we

assume that we have a large pool of unlabeled in-domain data and a limited

transcription budget, e.g. 10 hours. We need to select a subset of this data

pool to transcribe and use for fine-tuning the model. We probe the impact of

speaker diversity, gender bias and topic diversity on the model performance.
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Moreover, we devise two novel techniques for unsupervised data selection: Pre-

trained loss based data selection and Perplexity of byte pair encoded clustered

units (PBPE) and we show how these techniques compare to pure random

data selection.

The main contributions of this thesis can be summarized as follows:

• Studying the impact of different selection criteria for data used in fine-

tuning pre-trained speech models like HuBERT on the downstream au-

tomatic speech recognition task when a limited budget is available for

transcription.

• Introducing two new techniques for unsupervised fine-tuning data selec-

tion for the HuBERT model. The first technique is based on the pre-

training loss of HuBERT, and the second one is based on the perplexity

computed over BPE HuBERT clustered units.

• Conducting deep analysis on how the different properties of the selected

fine-tuning subsets correlate with the final WER obtained on the test

sets.

• To the best of our knowledge, this is the first work that studies and

analyzes the impact of the different variables associated with data se-

lection for fine-tuning (e.g.,number of speakers, number of vocabulary

words,total number of utterances, etc.) on the downstream performance

of the HuBERT model when selecting a limited subset of data for fine-

tuning from a pool of unlabeled in-domain data.
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The thesis is organized as follows. In chapter 2, we present an overview

of the speech recognition pipeline and highlight some related work that has

been conducted for data selection in both the semi-supervised as well as the

self-supervised learning paradigms. In chapter 3, we present the different fine-

tuning data selection criteria that we investigate in this work. In addition to

this, we describe the novel data selection criteria that we devise. In chapter

4, we describe our experimental setup, present the results of our work, and

provide a deep analysis of the impact of the different variables associated with

the fine-tuning data selection on the downstream word error rate on the test

sets that we use in this work. Finally, we highlight our conclusions in chapter

5 and propose directions for future work.
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Chapter 2: Background and Related Work

In this chapter, we provide a brief overview of the history and tech-

niques used in automatic speech recognition (ASR). The ASR pipeline has

evolved from using Hidden Markov Model (HMM) trained in a supervised

manner to employing large neural network architectures for building speech

recognition models in either a hybrid or end-to-end manner. Various methods

have been investigated in training neural networks for the ASR task. Super-

vised learning methods have been explored in that regard, and then the need

for large amounts of data and the desire to build larger models with more

learnable parameters have driven the exploration of other training techniques

as semi-supervised learning and self-supervised learning. Using these tech-

niques, the training pipeline can benefit from the abundance of large amounts

of unlabeled data and leverage that for improving the ASR models. However,

the sensitivity of the neural networks to the data that they are fed during

training and the deployment of the ASR models in systems operating in spe-

cific domains among other factors have driven research in data selection and

filtration to achieve better performance. In section 2.1, we give an overview of

the automatic speech recognition pipeline. Furthermore, section 2.2 highlights

the techniques used in training the ASR models and some work related to

data selection techniques in both the semi-supervised and the self-supervised
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learning paradigms. The work presented in this thesis aims to investigate un-

supervised data selection methods for fine-tuning speech models trained in a

self-supervised manner for the ASR task.

2.1 Overview on Automatic Speech Recognition Pipeline

The automatic Speech Recognition (ASR) pipeline has evolved tremen-

dously in the last decade. The typical ASR pipeline comprises front-end pro-

cessing which is mainly about feature extraction, acoustic modeling, language

modeling, pronunciation modeling and decoding. Scientists have studied dif-

ferent representations for speech signals throughout the years, and have deeply

investigated the use of different features that capture the information in the

speech signal. The most popular features that are being used in ASR to this

time are: mel frequency cepstral coefficients (MFCC), Log-Mel filter banks

(LFB), discrete wavelet transforms (DWT), linear predictive coding (LPC),

and perceptual linear predictive coefficients (PLP) [32, 42]. In addition to fea-

ture engineering and extraction, massive work has been done on the modeling

side. As the speech signal is a temporal complex signal that exhibits a lot of

variability based on the content, the speaker and the background noise, build-

ing models that are robust to such conditions, and are simultaneously able to

capture the sequential information in a given context has been crucial. More

formally, the main task in speech recognition is to find the most probable se-

quence of words that account for a specific utterance, i.e. that maximize this

probability P (W |X), where W is the sequence of words, and X is the sequence
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of features encoding a particular utterance. This probability can be re-written

using Bayes rule as:

P (W |X) =
P (X|W )P (W )

P (X)
∝ P (X|W )P (W ) (2.1)

and the problem is reduced to finding the optimal sequence of words W ∗ such

that

W ∗ = argmaxWP (X|W )P (W ) (2.2)

where P (X|W ) is the likelihood given by the acoustic model and represents

how likely it is for a sequence of words to correspond to a given utterance,

and P (W ) is given by the language model and represents how likely it is for a

sequence of words to be observed in the language in general.

2.1.1 Acoustic Model

Acoustic modeling is tackled as a multi-class classification problem,

where it is required to find a class label for each feature vector, taking its

context into consideration. The inherent sequential nature of a speech signal

makes it hard to ignore the temporal dependencies and hence extremely im-

plausible to find a class label for each feature vector in isolation. For each

feature vector, presumably extracted from a stationary segment of the speech

signal, the class label is the corresponding unit of sound that accounts for

the observed feature vector. Using the phonemes as class labels often results

in high variability within the same class, as the acoustic realization of each

phoneme also depends on the context in which it occurs. As a result, context-

dependent phones (also known as triphones) have also been studied as more
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fine-grained class labels since they assign different labels to the same phone

depending on its acoustic context. Accordingly, each word is represented as a

sequence of phonemes/triphones and a pronunciation model or lexicon is used

to provide that mapping.

Due to its ability to model temporal dependencies resulting in a se-

quence of observations, the HMM has been one of the most popular statistical

models used in ASR for years [12]. For each class (phoneme or triphone), an

HMM is trained using feature vectors corresponding to that class which are

extracted from multiple speech signals. The typical HMM used in this con-

text consists of three states, in addition to a start state and an end state to

account for the acoustic variability and duration variance observed within the

same class label. Gaussian Mixture models (GMMs) have been used to model

the density functions associated with the HMM states, due to their ability

to model complex distributions as a weighted sum of Gaussian distributions,

which in turn makes them suitable for the multi-modal distributions of the pho-

netic features. As this can result in a large number of parameters associated

with the Gaussian components, state tying has been used to achieve parameter

sharing between similar states. Despite this approach being a successful solu-

tion for the acoustic modeling problem, the HMM has unrealistic conditional

independence assumptions, not applicable to the nature of the speech signals,

but put in place to make the training and decoding tractable. For this reason,

scientists have looked into neural networks as an alternative to HMMs. In

2009, Abdel-rahman Mohamed et al [31] proposed using Deep Belief Networks
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(DBNs) for acoustic modeling and were able to achieve 23% phone error rate

(PER) on the Timit test set beating the bayesian triphone HMM [30] which

had a PER of 25.6% on the same test set. However, instead of giving up on

the HMM approach and replacing it with neural networks, the use of neu-

ral networks has been explored as an alternative to GMMs [43] in the HMM

framework, and in 2011, Frank Seide et al [46] introduced Context-Dependent

Deep-Neural-Network HMMs (CD-DNN-HMMs) that achieved an impressive

33% relative improvement on Switchboard test set compared to GMM-HMM.

This result highly encouraged the use of neural networks with HMMs in acous-

tic modeling and triggered explorations of different neural architectures within

the same framework. This has also been accompanied by drastic improvements

in hardware and an increase in the amounts of available training data, making

it more feasible to train neural networks for acoustic modeling. Among the

other architectures that have been explored in the HMM framework are: deep

belief networks (DBN-DNN)[18], recurrent neural networks (RNNs) and their

variants as long short term memory (LSTM) and gated recurrent units (GRU)

[23], bi-directional long short term memory networks (BiLSTMs) [15, 55], time-

delayed Neural networks (TDNNs) [39], convolutional neural networks (CNNs)

[38, 44] , and transformers [50].

2.1.2 Language Model

The language model assigns scores to each sentence depending on how

likely it is to occur in the language. In ASR, n-gram language models are
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commonly used, as they can be easily defined as weighted finite-transducers

(WFST) and hence composed with the rest of the components of the ASR

system which are the HMM finite state machine (FST) and the lexicon FST

to form the decoding graph [6]. One other common use for language models

in ASR is rescoring the n-best hypotheses that result from decoding. In this

context, the rescoring language model could be an n-gram language model or

a neural language model [13].

2.1.3 End to End Architectures in ASR

In parallel to the research conducted on hybrid acoustic models which

is described in section 2.1.1, scientists have investigated the employment of a

single neural model for ASR; a model that is fed with raw speech or featurized

speech and is able to produce the text transcription in an end to end manner.

In end-to-end speech recognition, the alignment between the input frames and

the phonetic transcription is not required, and neither is the pronunciation lex-

icon. This represents a major simplification in the ASR pipeline, which makes

it an attractive direction for the next generation of speech models. However,

this comes at a cost of an increase in the computation requirements, as well as

the required data to achieve good performance using this technique. In 2014,

Hannun et Al [17] proved the technique to be very promising by achieving

16% WER on the full SwitchBoard test set, which was a competitive result to

existing hybrid systems at that time [26, 44, 45]. In that work, they trained an

RNN model using CTC loss and managed to scale the labeled training data
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to 5000 hours of read speech from 9600 speakers. Since then, the end-to-end

approach in ASR has witnessed several explorations in terms of the network ar-

chitecture, the training loss function, and the training techniques. In addition

to the common supervised training pipeline, semi-supervised training, as well

as self-supervised learning, have been investigated in ASR in order to leverage

larger amounts of training data to train even larger neural architectures.

2.2 Overview on the Main Training Techniques for an
ASR Model

In the previous section, we shed light on hybrid and end-to-end mod-

els in ASR. For a long time, supervised learning has been the main method

for training these models. Hence, the abundance of labeled data has been

a limiting factor in achieving good performance on downstream ASR, espe-

cially on low-resource languages. This has led to the implementation of other

techniques such as semi-supervised learning and self-supervised learning that

aim to leverage unlabeled data which is naturally available in much larger

quantities.

2.2.1 Supervised Learning in ASR

Supervised learning has been the standard method of training speech

recognition models for a long time. It requires access to large amounts of

transcribed speech, and in the context of hybrid models mandates the align-

ment of speech to its corresponding transcription. In spite of this approach
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achieving good performance in ASR in terms of WER, it isn’t easily scalable to

large network architectures, which require large amounts of data to avoid the

over-fitting phenomenon. The need for more labeled data incurs an extra cost

of transcription and exposes limitations to scaling across multiple languages,

especially the low resource ones. In addition to this, supervised training ex-

hibits more robustness and generalization when trained on large amounts of

data from different sources as shown by the authors in [7, 28]. In [7], the au-

thors mix a total of 5,140 hours of labeled English data in their model training.

This amount of data can’t be easily collected for all the languages and it’s small

when compared to the amount of unlabeled data that can be obtained. One

solution to scale the data in supervised learning is to relax the requirement of

golden transcription that undergoes human validation and leverage automated

pipelines to obtain more labeled data. This sacrifices quality for quantity and

introduces a learning technique known as weakly supervised learning. [41] in-

troduces whisper, which is a demonstration of weakly supervised learning at

scale. In this work, 680,000 labeled hours are used in training a sequence to

sequence model that operates on multiple speech related tasks. This data is

scraped from the internet and is the result of applying a set of heuristic filter-

ing steps in order to pick the cleanest data to use for training. The aim of this

work is to show how robust supervised pre-training can be in a zero-shot setup.

While achieving robustness and high generalization on multiple domains has

been a long sought goal in ASR, specializing the ASR model on a particular

target domain has been another active research area with more promise in
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terms of feasibility and good performance. In that direction, data selection

techniques have been studied to improve the performance of supervised mod-

els through domain adaptation. This entails leveraging labeled out-of-domain

data by selecting utterances that are similar to a particular target domain.

2.2.2 Semi-supervised Learning in ASR

Semi-supervised learning has been considered to increase the amount

of data that can be used to train neural networks for speech recognition. It is

a means by which we can leverage unlabeled data to train a model in a super-

vised way. One major direction in semi-supervised learning is self-training. In

self-training, a teacher model is trained in a supervised manner using labeled

data, and is used to generate predictions for unlabeled data. The probabil-

ity distributions over the predicted class labels are used as soft labels, or the

maximum scoring class labels are used as hard labels for the originally unla-

beled samples. Since these labels are artificially generated, they are known as

pseudo-labels. A student model is then trained on both the labeled and pseudo-

labeled examples in a supervised manner. One flavour of self-training is called

noisy student training (NST) and involves injecting noise through drop-out

or data augmentation during training the student. This technique has been

initially studied in an image classification problem, and significantly improved

the performance on ImageNet test set [53]. It has then been applied in speech

recognition, where SpecAugment [36] has been used as a means of generating

noise during the student training [37, 51, 56]. Iterative pseudo-labeling has also
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been considered as a means of obtaining more refined pseudo-labels [40, 54].

In this technique, the pseudo-labels are iteratively refined as the performance

of the model used in the decoding is improved across the iterations. In [54],

the authors only label one subset of the unlabeled data in each iteration, and

fine-tune the existing model on this subset rather than starting from scratch.

Semi-supervised data has also been studied when the available unlabeled data

is out-of-domain. In [4], the author uses out-of-domain data to improve low re-

source ASR performance. A seed model is trained on the available domain data

and then used to transcribe the out-of-domain data. In this work, the WER

improvements obtained when training a model with the pooled in-domain and

out-of-domain data, then fine-tuning it with the in-domain data, are higher

than those obtained by just training on the pooled data.

2.2.2.1 Data Selection Techniques in Semi-supervised Learning

Since semi-supervised learning involves artificially generating data by

using a seed model to transcribe unlabeled data, it is certainly entitled to

suffer from transcription errors, and hence the pseudo-labeled data quality be-

comes a major concern. Accordingly, data selection and filtration have been

extensively studied in the semi-supervised training paradigm, with the most

common technique being data filtration based on confidence scores [1, 9, 21, 48].

Kahn et al [21] revisit self-training in the context of end to end (E2E) mod-

els. They use an ensemble of four models to ensure pseudo-label diversity

and investigate the use of heuristic based mechanisms relevant to sequence to
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sequence models for data filtration. As looping and early generation of end of

sentence (EOS) tokens are two common phenomena occuring in the context of

sequence to sequence models, they filter the utterances that either have a rep-

etition of a particular n-gram more than a specific number of times, as well as

utterances in which the EOS token has been generated with a low probability.

In addition to this, they combine their heuristic based filtration techniques

with confidence based measures. In [48], the authors use utterance level con-

fidence scores for data selection. They hypothesize that different domains

are likely to exhibit different performance, and hence different thresholds for

filtration. Accordingly, they used a natural language understanding (NLU)

system to find the domain of each utterance. They investigate fine-tuning on

a single domain vs fine-tuning on the combined domains. They show that

sampling from a particular domain improves the performance on that domain

without significant degradation on the other domains. Wotherspoon et al [52]

show that they can achieve good WER results when they have transcribed

out-of-domain data and untranscribed in-domain data if they carefully select

the in-domain data for which they generate the pseudo-labels. They train a

model with labeled out-of-domain data in a supervised manner, then they use

it to transcribe the in-domain data. They use phone confidence based data

selection criterion and achieve the best results on the target domain when

selecting 3% of their unlabeled data subset. In their experiments, larger se-

lections degrade the performance. They hypothesize that it is better to use a

smaller subset of the pseudo-labeled in-domain data because the transcripts
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originally generated by a model trained on out-of-domain data are expected

to have more errors in case of a large domain shift.

The most obvious drawback of data selection based on confidence scores

is its sensitivity to the choice of the confidence threshold, leading to a trade-

off between data quality and quantity. For this reason, other tracks for data

selection in semi-supervised training have also been investigated. In [11], the

authors used an ensemble technique that relies on the agreement of models

trained on different dialects of the same language in selecting high quality

utterances. They hypothesize that models trained on different dialects of the

same language that are close to each other can result in diversity in the output

mistakes. Consequently, if these models agree on a transcription of a partic-

ular utterance, then it is likely to be correct and is thus selected. However,

this approach has the drawback of discarding utterances with dialect-specific

keywords.

2.2.3 Self-supervised Learning in ASR

Self-supervised learning is an alternative method to self-training that

is also designed to leverage large amounts of unlabeled data to improve the

downstream performance of ASR models. Instead of using a seed model to

generate pseudo-labels for the unlabeled data as in the semi-supervised train-

ing paradigm, this approach relies on using various pre-training objectives

that don’t rely on the existence of transcriptions for the available data, but

rather utilize the internal structure of the data. In this paradigm, the train-
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ing procedure is divided into two stages: pre-training and fine-tuning. In the

pre-training stage, all the unlabeled data is used to train the model in an unsu-

pervised way. After, that the model is fine-tuned on a downstream task (like

ASR) using a much smaller amount of the available transcribed data. The

most popular models that utilize this technique are wav2vec 2.0 [2], HuBERT

[19] and wavLM [10].

2.2.3.1 Wav2vec 2.0 Model

Wav2vec 2.0 is the first model to show that learning speech represen-

tations from raw audio and fine-tuning on transcribed data can outperform

semi-supervised training methods. The model is composed of a feature en-

coder that gets raw speech as input and outputs latent speech representations.

The latent speech representations are contextualized by passing them through

a transformer model. In the same time, the latent speech representations pass

through a quantization module, which uses product quantization to choose

quantized representations from multiple codebooks. During pre-training, a

percentage of the latent representations that are output from the feature en-

coder are masked, then the model needs to identify the quantized representa-

tion corresponding to each masked step among a set of k distractors that are

uniformly sampled from other quantized representations in the same utterance

using a contrastive loss objective. For fine-tuning the pre-trained model for

ASR, a randomly initialized linear layer is added on top of the transformer to

project the output into a number of classes which represent the target units

30



(letters or subwords) and a connectionist temporal classification (CTC) loss

is used for fine-tuning the model on transcribed speech. It is demonstrated

that wav2vec 2.0 can be fine-tuned on as little as 1 hour of transcribed data

and produce competitive performance [2], and hence making self-supervised

learning an intriguing technique for low resource tasks that lack the appro-

priate amount of labeled data required to obtain decent performance in the

supervised paradigm.

2.2.3.2 HuBERT Model

The HuBERT model follows the same architecture as wav2vec 2.0. It

has a convolutional waveform encoder, which downsamples the audio by 320x

and generates the feature sequence at 20 ms frame rate for audio sampled at 16

KHZ. Spans of length l of encoded features are then masked, where the start

of the span is selected for masking with probability p%. The masked sequence

is then passed through a BERT like transformer encoder which generates the

contextualized embeddings. The contextualized embeddings are projected and

their cosine similarity with the codeword embeddings are computed. Finally, a

softmax function is applied to find the output distribution over the codewords.

To pre-train HuBERT, an offline K-means clustering step is used to generate

the training labels. First, the MFCC features are clustered to generate the

labels and the model is pre-trained using cross entropy loss over the masked

frames for a specified number of training steps. The cluster labels are then

refined, by applying the clustering step over the learned latent representations
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that are extracted from an intermediate layer in the transformer stack to pro-

duce better labels and then the training is repeated for more iterations. Similar

to the result demonstrated in wav2vec 2.0, HuBERT shows impressively low

WER results when fine-tuned with 1 hour or 10 hours of transcribed speech

[19]. The experiments in this thesis are based on the HuBERT model.

2.2.3.3 Data Selection in Self-supervised Learning

In line with the impressive results obtained by using very small amounts

of transcribed data in the self-supervised learning paradigm, it becomes very

important to analyze the impact of the choice of the pre-training data and

the fine-tuning data on the downstream performance in both the in-domain

and the out-of-domain setups. The huge amounts of data that are utilized

in pre-training the models imply the large dependence on computing power,

which is unlikely to be available for the research community to build similar

models. This gives rise to multiple questions:

• What is the impact of the domain shift between pre-training

and fine-tuning?

If it is difficult to replicate the pre-trained models for each domain, either

due to the lack of computing resources or the shortage of unlabeled

data in that particular domain, it is important to know the impact of

fine-tuning an existing pre-trained model on transcribed data from a

different target domain. It can also be the case that we have a myriad

of unlabeled data from a particular target domain, and enough compute
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resources for pre-training the model on that data, but we only have

out-of-domain transcribed data, which also encourages investigating the

impact of domain shift between pre-training and fine-tuning. The works

in [20, 24] study this problem. In [20], the authors show that better

results are obtained when the pre-training data includes in-domain data.

• Is a very large amount of unlabeled data required in the pre-

training stage?

If we are going to fine-tune the pre-trained model on a target domain,

then it might be the case that we can select a certain portion of the

unlabeled data to use for pre-training in such a way that it is similar

to the intended target domain without incurring performance loss after

fine-tuning. This has the advantage of decreasing the amount of com-

pute resources required for pre-training by using a smaller subset without

suffering degradation in performance. [29] uses a contrastive data selec-

tion method applied to the learned discrete tokens for selecting data

for pre-training an ASR model. They show a significant improvement

when selecting pre-training data that is matched to the target domain

compared to pre-training using a full data set of 1 million youtube hours.

• Is there a way to select the fine-tuning data that guarantees

optimal performance?

In situations in which the transcription budget is limited (for example,

1 hour or 10 hours), it is highly plausible that the performance on the
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downstream speech recognition task exhibits high variance based on how

the fine-tuning data is selected. This implies the importance of devis-

ing unsupervised techniques for fine-tuning data selection that guarantee

optimal performance in test time. The work in this thesis falls in this

category, where we study the impact of the different data selection crite-

ria on the downstream WER of an ASR model when we have a limited

transcription budget. The experiments we conduct assume access to a

large pool of unlabeled data from a particular target domain, and the

task is to select only 1 hour or 10 hours of data to transcribe and use

for fine-tuning a model that is pre-trained on the same domain. We

show the impact of speaker diversity, content diversity, and gender bias

on the WER. Furthermore, we devise two novel techniques for unsu-

pervised data selection: perplexity of byte pair encoded clustered units

and pre-training loss based data selection. To the best of our knowl-

edge, this is the first work that studies the different selection techniques

for fine-tuning data subsets in the low resource setup for the HuBERT

model.

In this chapter, we gave a brief overview of the automatic speech recog-

nition pipeline and the techniques that are used for training ASR models. In

addition to this, we highlighted some of the data selection techniques used in

semi-supervised and self-supervised learning. We showed that our work lies

under unsupervised techniques for fine-tuning data selection for self-supervised
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speech recognition models. In the next chapter, we discuss our proposed cri-

teria for fine-tuning data selection in more detail.
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Chapter 3: Proposed Selection Criteria

In this chapter, we describe the different selection criteria that we apply

for selecting the fine-tuning data for the HuBERT base model. We try several

criteria for data selection using the Librispeech [34] dataset with a limited

transcription budget of 1 hour or 10 hours of speech and compare these crite-

ria to pure random selection. We investigate the effect of speaker diversity by

forcing a specified number of speakers into the fine-tuning subset. Moreover,

we probe the impact of gender bias by selecting subsets with either female or

male speakers only. We examine the impact of topic diversity by limiting our

selection to a specified number of audiobooks. Moreover, we test the effect of

batching short utterances vs long utterances on the downstream performance.

We investigate two novel techniques for unsupervised in-domain data selec-

tion: pre-training loss based data selection (PL-based) and perplexity of byte

pair encoded clustered units (PBPE). We enumerate all of our data selection

criteria in Table 3.1. Appendix A has more details and statistics for some of

the properties of the fine-tuning subsets associated with each data selection

criterion.
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Criterion Description
PUR RND Sample 10 hours randomly
GNDR DIV Sampled subset contains 24 speakers of one gender

( male / female )
UTTLN DIV RND LNG DUR TAIL Sample from the 15% of the utterances with the

longest duration
UTTLN DIV RND SHRT DUR TAIL Sample from the 15% of the utterances with the

shortest duration
UTTLN DIV RND MIDDLE DUR Sample from the middle 15% of the utterances in

terms of duration
SPK DIV RND Sample utterances from a specified number of

speakers (24 - 96)
BK DIV RND Sample utterances from a specified number of

books (16 - 64)
PRETRAIN U LOSS AVG NO MASK Compute the average unmasked pre-training loss

for each utterance after turning off the mask.
Sample from the 15% with the lowest loss (HEAD)
vs the 15% with the highest loss (TAIL).

PRETRAIN M LOSS AVG Compute the average masked pre-training loss for
each utterance.
Sample from the 15% with the lowest loss (HEAD)
vs the 15% with the highest loss (TAIL).

PERPLEXITY 5k LM 15 Use PBPE to compute utterance score.
Sample from the 15% with the lowest score (HEAD)
vs the 15% with the highest score (TAIL).

PERPLEXITY 5k LM 40 MIDDLE Sample utterances with PBPE from the middle
40% of the data

Table 3.1: Description of data selection criteria for the fine-tuning subsets

3.1 Pre-training Loss Based Data Selection

We base our experiments on the HuBERT model and investigate the use

of the HuBERT pre-training loss function as a means of data selection. Similar

to wav2vec 2.0, HuBERT selects p% of the time steps as start indices for

masking, and then spans of l time steps are masked. Using targets derived via

K-means clustering of MFCCs or features extracted using a previous snapshot

of the model, the cross-entropy loss is then computed over the masked and the

unmasked time steps as Lm and Lu and the weighted sum of both is taken as
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the final loss as defined in the following equation:

L = αLm + (1− α)Lu (3.1)

For our data selection, we compute the score of each utterance as a function

of the pre-training loss. First, we compute the utterance score as the average

pre-training loss over all the masked frames in the utterance. We sort the

utterances ascendingly based on the computed scores and select the first x

hours or the last x hours, where x is either 1 or 10 in our experiments. Since

the masking is inherently random, we hypothesize this may lead to a criterion

that is close to pure random selection as the same utterance will get some

different score each time we compute the loss. In light of this, we also consider

turning off the mask and computing the utterance score as the average cross-

entropy loss over all the unmasked frames. The advantage of this second

method is that we get a deterministic score for each utterance. We sort the

utterances ascendingly based on the computed scores and randomly sample

utterances from both the top and the bottom 15% of the data. Figure 3.1

shows that the average unmasked loss per utterance spans a small range. A

similar observation holds for the average masked loss per utterance as shown

in figure 3.2.
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Figure 3.1: Histogram for the average unmasked loss per utterance in Lib-
rispeech
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Figure 3.2: Histogram for the average masked loss per utterance in Librispeech.
The masked loss per utterance is the mean value computed over 8 runs.

3.2 Perplexity of Byte Pair Encoded Clustered Units
(PBPE)

HuBERT uses K-means clustering to generate noisy labels for the pre-

training step. The primary reason this approach works is that even though

the labels are noisy, they tend to be consistent [19]. We hypothesize that these

labels are highly correlated to the tokens in the actual text transcripts in a way

that enables us to utilize the same algorithms used for labeled data selection.

First, we apply run-length encoding to collapse consecutive repetitions of the
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frame-level HuBERT cluster labels. Next, we use sentencepiece [27] to train

a BPE model on the run-length encoded sequences with a vocab size of 5k.

Finally, we tokenize each sequence using that BPE model. We use fairseq [33]

to train a 1-Layer LSTM language model with 512 hidden units over these

unit-BPE sequences. We use the language model to compute the perplexity

of each utterance in Librispeech train set. We then sort the utterances based

on their perplexity and sample utterances from the top 15% and the bottom

15% of the whole train set to compare both criteria. Figure 3.3 shows the

histogram for the utterance length in terms of number of BPE tokens, and

figure 3.4 illustrates the perplexity range for the utterances in the training set.

In this chapter, we demonstrated the different methods that we used for

selecting data for fine-tuning the HuBERT model. Moreover, we introduced

two novel criteria for unsupervised data selection which are pre-training loss

based data selection and PBPE. In the next chapter, we describe the setup for

our experiments and analyze the results that we obtained.
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Figure 3.3: Histogram for the number of BPE tokens per utterance in Libri-
speech after tokenizing using a BPE model with a vocabulary size of 5k.
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Figure 3.4: Histogram for the perplexity over BPE units for utterances in
Librispeech. The histogram bins with fewer than 500 utterances are dropped
for clarity.

43



Chapter 4: Experimental Setup and Results

In this chapter, we describe the setup used for our experiments in terms

of the model and the data set used for training and evaluation. We demonstrate

the results of the conducted experiments and provide a detailed analysis of the

obtained results.

4.1 Model and Data

In our experiments, we use the HuBERT base model which is pre-

trained on the full 960 hours of Librispeech [34] and is available on fairseq.

Moreover, we use the same K-means clustering model with 500 clusters that is

trained on the latent representations of HuBERT’s 9th transformer layer after

pre-training for 2 iterations.

For our data selection experiments, we use the full 960 hours of Lib-

rispeech as our data selection pool. Because each of our data selection criteria

still utilizes random sampling in some form, we prepare 8 fine-tuning subsets,

of 10 hours each. We experiment with different selection criteria for these

subsets to probe how the model would behave under a differing number of

speakers, a differing number of topics (books), and speaker gender bias. We

also examine the impact of grouping utterances with similar lengths to see

whether this would help the model learn better given the same number of up-
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dates and the same maximum number of tokens per batch. In addition to this,

we experiment with our proposed novel criteria: pre-training loss based data

selection and PBPE. Table 3.1 summarizes the different data selection crite-

ria that we used in our fine-tuning experiments. To examine whether we get

the same observations at a more limited transcription budget, we experiment

with selecting 1-hour subsets in a purely random fashion, as well as using our

proposed novel selection criteria. We use Librispeech dev-other for validation

and we test our models on both Librispeech test-clean and test-other.

4.2 Training

For the 10-hour experiments, we fine-tune the pre-trained HuBERT

base model with target letter labels using each of the selected subsets described

in table 3.1 for 25k updates. Similar to [19], we fix the convolutional waveform

encoder for the whole training. We freeze the transformer encoder for the first

10k updates and then allow it to train with the rest of the model for the

remaining updates. We use the adam optimizer [25] with betas set to 0.9 and

0.98 for model optimization. We fine-tune using a two stage learning rate

scheduler, where the model ramps up to a peak learning rate of 2e-5 for the

first 8k updates and then decays for the remaining updates. We use 2 gpus,

and set the batch size to a maximum of 3200000 frames per gpu, and allow

padding to the length of the longest utterance per batch. We start validation

after 10k updates and keep the best checkpoint on dev-other subset. For the

1-hour setup, the transformer encoder is frozen for the first 5k updates, and
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the training uses a warm-up of 4k steps, until it reaches a peak learning rate

of 2e-5, then decays for 9k updates.

Figure 4.1: Box plot showing theWER on test-clean and test-other for different
data selection criteria for 10-hour subsets. The green triangle represents the
mean, while the red line represents the median. Also shown for each criterion
are the minimum, maximum, 25th percentile, and 75th percentile.

Figure 4.2: Box plot showing theWER on test-clean and test-other for different
data selection criteria for 1-hour subsets. The green triangle represents the
mean, while the red line represents the median. Also shown for each criterion
are the minimum, maximum, 25th percentile, and 75th percentile.

4.3 Results

For each data selection criterion, we create 8 different random sub-

sets and fine-tune the model on each of these subsets. We evaluate the best
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checkpoint on dev-other for each fine-tuning subset and then record the mean,

minimum, maximum, median, 25th percentile, and 75th percentile WER on

both test-clean and test-other for each group of 8 random subsets. A 4-gram

language model trained on Librispeech is used for all the decoding experi-

ments. The box plots in Figure 4.1 summarize the results of our experiments

using 10-hour fine-tuning subsets. Appendix B has a more detailed breakdown

of the WER results of each experiment.

For PBPE, we see that for test-other, we score 8.93% WER on aver-

age when selecting from the 15% of utterances with the highest perplexity

score (TAIL). On the other hand, we observe that the mean WER degrades

to 9.36% when sampling from the 15% of the utterances with the lowest per-

plexity score (HEAD). We have a similar observation for test-clean, where the

mean WER for TAIL is 4.25% compared to 4.42% for HEAD. For average

masked pre-training loss, fine-tuning with the utterances with the smallest

loss leads to a mean WER of 9.00% and 4.28% on test-other and test-clean

respectively. However, using the largest loss utterances in fine-tuning leads

to a mean WER of 9.36% on test-other and 4.46% on test-clean. For aver-

age unmasked pre-training loss, the mean WER on test-clean is 4.23% when

sampling the fine-tuning subsets from the 15% utterances with the largest loss

(TAIL), while it degrades to 4.41% when sampling from the 15% utterances

with the smallest loss (HEAD). For test-other the mean WER is 9.1% for

HEAD and 9.16% for TAIL, which is almost the same. We observe that the

best results obtained from our proposed criteria are almost on par with the
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pure random selection criterion which scores a mean WER of 9.00% and 4.24%

on test-other and test-clean respectively. It is worthwhile mentioning that our

experiments demonstrate that randomly selecting data from a diverse pool

can lead to good performance when using this data for fine-tuning. In some

real-world scenarios, it may be tempting to use whatever transcribed data is

available for fine-tuning. However, selecting data from one audiobook with a

single speaker, for example, may lead to sub-optimal results. On the other

hand, randomly selecting data from a diverse pool makes the selected sample

richer in vocabulary and more representative of different speakers and topics.

Accordingly, it will most likely help to sample randomly from the pre-training

data for transcription. In case the data selection pool is not diverse, it may be

the case that our proposed selection criteria behave better than pure random

selection.

Moreover, our experiments emphasize the importance of speaker diver-

sity when selecting data for fine-tuning. We see that increasing the number of

speakers from 24 to 96 leads to a significant boost in the mean WER reduction.

It is interesting to see that the mean WER does not vary much regardless of

whether the 24 speakers were of the same gender or selected randomly which

suggests that the learned representations from SSL may be somewhat tolerant

of gender bias in the fine-tuning data. However, we do find that topic diversity

is crucial as it enriches the vocabulary that is present in the audio. Accord-

ingly, the mean WER significantly improves when increasing the number of

different audiobooks sampled for fine-tuning from 16 to 64. Lastly, when sam-
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pling from the shortest 15% of the utterances, the mean WER on test-other

significantly improves, but the opposite happens on test-clean.

When evaluating the 1-hour fine-tuning experiments, our observations

are consistent with the 10-hour setup.

• PBPE performs better when selecting from the 15% of the utterances

with the highest score (TAIL), compared to selecting from the utterances

with the lowest perplexity score (HEAD). The mean WER for TAIL is

12.09% on test-other and 6.57% on test-clean, while the mean WER for

HEAD is 12.3% on test-other and 6.86% on test-clean.

• The meanWER when selecting utterances with the lowest average masked

pre-training loss (ASC) is better than when selecting utterances with the

highest loss (DESC). The mean WER for the former is 12.04% and 6.66%

on test-other and test-clean respectively, while the latter has a signifi-

cantly worse mean WER of 12.45% on test-other and 7.1% on test-clean.

• The mean WER on test-clean when selecting utterances with the highest

average unmasked pre-training loss (TAIL) is better than when selecting

utterances with the lowest average unmasked pre-training loss (HEAD).

It is 6.7% in the former compared to 6.83% in the latter case. However,

the mean WER on test-other is almost on par when selecting the utter-

ances with the lowest or the highest average unmasked pre-training loss,

where it is 12.27% for the former and 12.3% for the latter.
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• The best results obtained from our proposed selection criteria are almost

on par with pure random data selection which has a mean WER of

11.98% and 6.61% respectively.

The box plot in figure 4.2 summarizes the results for our 1-hour fine-tuning

experiments. In the next section, we dig deeper to analyze the results obtained

on both the 1-hour and the 10-hour setups.

4.4 Analysis

We investigate how the different properties of the selected subsets cor-

relate with each other and with the WER. Figures 4.3 and 4.4 show some

interesting relations between the underlying properties of the selected subsets

and the WER observed on both test-clean and test-other for the 10-hour and

the 1-hour setups respectively. We observe a strong negative correlation be-

tween the WER on both test sets and the number of unique vocabulary words

in the fine-tuning subset. This correlation is even stronger than the correlation

between the WER and the total number of vocabulary words in these subsets.

It is obvious that a strong positive correlation exists between the number of

unique vocabulary words observed in the fine-tuning set and the perplexity

computed over the BPE clustered units (PBPE). To compute this correlation,

we averaged the perplexity over the total number of utterances in each fine-

tuning subset (avg ppl). Figure 4.5 highlights this correlation for the 10-hour

fine-tuning subsets and we get the same observation for the 1-hour fine-tuning

subsets as shown in figure 4.6. This correlation suggests that sampling from
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Figure 4.3: Correlation between the different properties of the selected 10-hour
fine-tuning subsets and the WER on test-other and test-clean

the higher perplexity scoring utterances leads to more unique vocabulary words

in the selected fine-tuning subset. This is an interesting observation because,

in our unsupervised selection setup, we have no access to the transcription
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Figure 4.4: Correlation between the different properties of the selected 1-hour
fine-tuning subsets and the WER on test-other and test-clean

tokens. However, we have access to the HuBERT clustered units that we can

use as a proxy for the text. Figures 4.7 and 4.8 show the correlation between

the WER on test-other and test-clean and the number of unique vocabulary
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Figure 4.5: Correlation between the average sentence perplexity computed
over the BPE clustered units and the number of unique vocabulary words
appearing in the 10-hour fine-tuning subset
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Figure 4.6: Correlation between the average sentence perplexity computed
over the BPE clustered units and the number of unique vocabulary words
appearing in the 1-hour fine-tuning subset

words in the fine-tuning subset and how the different selection criteria result

in different numbers of unique vocabulary words in both the 10-hour and the
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Figure 4.7: Correlation between WER on both test-other and test-clean and
the number of unique vocabulary words appearing in the 10-hour fine-tuning
subset
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Figure 4.8: Correlation between WER on both test-other and test-clean and
the number of unique vocabulary words appearing in the 1-hour fine-tuning
subset
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Figure 4.9: Correlation between WER on both test-other and test-clean and
the total number of vocabulary words appearing in the 10-hour fine-tuning
subset
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Figure 4.10: Correlation between WER on both test-other and test-clean and
the total number of vocabulary words appearing in the 1-hour fine-tuning
subset
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Figure 4.11: Correlation between WER on both test-other and test-clean and
the average sentence perplexity over BPE clustered units in the 10-hour fine-
tuning subset

1-hour setups. As pointed out, this correlation is stronger that the correlation

between the WER on both test sets and the total number of vocabulary words

in the fine-tuning subset, which is shown in figures 4.9 for the 10-hour subsets

and 4.10 for the 1-hour subsets. Figures 4.11 and 4.12 illustrate the correlation

between the WER on both test-other and test-clean and the average sentence

perplexity over BPE clustered units and how the average sentence perplexity

over BPE clustered units relates to the different data selection criteria in both

the 10-hour and the 1-hour setups. Moreover, we observe a strong negative
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Figure 4.12: Correlation between WER on both test-other and test-clean and
the average sentence perplexity over BPE clustered units in the 1-hour fine-
tuning subset
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Figure 4.13: Correlation between WER on both test-other and test-clean and
the total number of speakers in the 10-hour fine-tuning subset
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Figure 4.14: Correlation between WER on both test-other and test-clean and
the total number of speakers in the 1-hour fine-tuning subset
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Figure 4.15: Correlation between WER on both test-other and test-clean and
the total number of audiobooks in the 10-hour fine-tuning subset
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Figure 4.16: Correlation between WER on both test-other and test-clean and
the total number of audiobooks in the 1-hour fine-tuning subset

0 500 1000 1500 2000 2500 3000 3500
chapters

8.8

9.0

9.2

9.4

9.6

9.8

10.0

10.2

W
ER

[test-other] WER vs #chapters in fine-tuning subset

0 500 1000 1500 2000 2500 3000 3500
chapters

4.2

4.3

4.4

4.5

4.6

4.7

W
ER

[test-clean] WER vs #chapters in fine-tuning subset
BK_DIV_RND_16
BK_DIV_RND_64
GNDR_DIV_F_24
GNDR_DIV_M_24
PERPLEXITY_5k_LM_15_HEAD
PERPLEXITY_5k_LM_15_TAIL
PERPLEXITY_5k_LM_40_MIDDLE
PRETRAIN_M_LOSS_AVG_ASC
PRETRAIN_M_LOSS_AVG_DESC
PRETRAIN_U_LOSS_AVG_NO_MASK_HEAD
PRETRAIN_U_LOSS_AVG_NO_MASK_TAIL
PUR_RND
SPK_DIV_RND_24
SPK_DIV_RND_96
UTTLN_DIV_RND_LNG_DUR_TAIL
UTTLN_DIV_RND_MIDDLE_DUR
UTTLN_DIV_RND_SHRT_DUR_TAIL

Figure 4.17: Correlation between WER on both test-other and test-clean and
the total number of chapters in the 10-hour fine-tuning subset

correlation between the number of speakers and the WER and similarly for

the number of audiobooks or chapters. Figures 4.13, 4.15 and 4.17 highlight
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Figure 4.18: Correlation between WER on both test-other and test-clean and
the total number of chapters in the 1-hour fine-tuning subset

these correlations for the 10-hour subsets, while figures 4.14, 4.16 and 4.18

demonstrate these correlations for the 1-hour subsets.

Driven by these observations, we conduct two experiments. In the

first experiment, we select utterances from all the speakers in the top 15%

highest scoring utterances in terms of perplexity over BPE clustered units.

This ensures speaker diversity and maximizes the number of unique vocabulary

words, and enables us to beat pure random selection on both test-clean and

test-other. In the second experiment, we select utterances from almost every

book in the top 15% highest scoring utterances in terms of perplexity. We

arrive at similar results where we are able to beat pure random selection.

Finally, we compare our results to fine-tuning HuBERT base model with libri-

light 10-hour subset [22] and observe that our techniques are scoring better in

terms of WER with a large margin. Tables 4.1 and 4.2 summarize the results

of these experiments.

In Figures 4.3 and 4.4, we observe an interesting correlation between

the average unmasked loss and the number of utterances selected from train-

58



other or train-clean. As the average unmasked loss decreases, sampling is more

biased to the train-other subset, which can account for scoring a lower mean

WER on test-other when sampling from the smaller loss utterances compared

to the higher loss ones. However, as the average unmasked loss increases,

sampling is more biased to train-clean subset, leading to an improved mean

Fine-tuning subset WER-other WERR over WERR over
libri-light PUR RND

Libri-light 9.61 0.00% -6.78%
PPL 8.93 7.08% 0.78%
PPL+speaker diversity 8.89 7.49% 1.22%
PPL+book diversity 8.8 8.43% 2.22%

Table 4.1: Librispeech test-other results’ summary for PBPE experiments
and fine-tuning with libri-light. In the table, PPL refers to PERPLEX-
ITY 5k LM 15 TAIL. The WER results for our criteria are the mean WER
computed over 8 runs. WERR over libri-light refers to the word error rate
reduction obtained when using each fine-tuning subset relative to fine-tuning
with libri-light. WERR over PUR RND refers to the word error rate reduc-
tion obtained when using each fine-tuning subset relative to fine-tuning with
a randomly selected subset.

Fine-tuning subset WER-clean WERR over WERR over
libri-light PUR RND

Libri-light 4.48 0.00% -5.66%
PPL 4.25 5.05% -0.32
PPL+speaker diversity 4.06 9.38% 4.25%
PPL+book diversity 4.21 6.03% 0.71%

Table 4.2: Librispeech test-clean results’ summary for PBPE experiments
and fine-tuning with libri-light. In the table, PPL refers to PERPLEX-
ITY 5k LM 15 TAIL. The WER results for our criteria are the mean WER
computed over 8 runs. WERR over libri-light refers to the word error rate
reduction obtained when using each fine-tuning subset relative to fine-tuning
with libri-light. WERR over PUR RND refers to the word error rate reduc-
tion obtained when using each fine-tuning subset relative to fine-tuning with
a randomly selected subset.
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WER on test-clean when sampling from the higher loss utterances. In case of

the average masked loss, the mean WER on both test-other and test-clean is

better when sampling from the lower loss utterances. Despite the correlation

directions with the number of utterances from train-clean and train-other being

maintained in case of average masked loss, the improved mean WER on test-

clean when sampling from lower loss utterances suggests that other factors are

involved. Our investigation shows that for average masked loss criterion, we

end up with more speakers and more topics when sampling from the lower

loss utterances compared to the higher loss utterances. However, the same

does not happen for the average unmasked loss criterion which can account

for the different behaviour. We hypothesize that since all the utterances in

our selection pool are included in the pre-training stage of the model, the

pre-training loss based criterion will be highly impacted by how frequently

each utterance was fed to the model during pre-training as well as the whole

pre-training setup causing some biases in the selection process.

In this chapter, we presented our experimental setup and the results

obtained in the experiments conducted for fine-tuning data selection. More-

over, we analyzed the obtained results and shared various insights. In the next

chapter, we summarize our conclusions and propose directions for future work.
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Chapter 5: Conclusions and Future Work

In this thesis, we investigate different criteria for selecting data for fine-

tuning a self-supervised speech model to perform ASR. We select in-domain

data from a large pool of unlabeled data using unsupervised techniques. We

build our study on top of HuBERT base model because it allows us to make

use of the K-means clustered units as a proxy for the transcription. Our study

aims at providing answers to the following questions:

• Given an unlabeled pool of in-domain data, are we guaranteed

optimal or near-optimal performance if we randomly select data

for fine-tuning in low-resource scenarios?

Our experiments show that pure random data selection is a good tech-

nique that can be hard to beat in both the 1-hour and the 10-hour setups.

The analysis conducted shows that selecting data in a purely random way

guarantees that the selected samples exhibit a lot of diversity regarding

speakers, topics, and vocabulary words as long as the data selection pool

is inherently diverse. If the data selection pool is not sufficiently diverse,

it is possible that our proposed novel criteria may work better than pure

random data selection.

• Can we arrive at an unsupervised technique for data selec-

tion from a pool of in-domain unlabeled data that guarantees
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optimal or near-optimal performance on the ASR task when

fine-tuning a self-supervised speech model like HuBERT?

Our study investigates the possibility of arriving at unsupervised data se-

lection techniques that show better performance than pure random data

selection. We devise two novel techniques in that regard. In the first

technique, we make use of the pre-training loss of the HuBERT model to

compute a score for each utterance in the data pool. We experiment with

the masked pre-training loss as well as the unmasked pre-training loss.

We show that selecting utterances with the lowest masked pre-training

loss leads to a much better performance than selecting the utterances

with the highest masked pre-training loss. However, the analysis con-

ducted shows that data selection based on pre-training loss can inherit

some biases from the pre-training stage depending on how the examples

are fed to the model during pre-training. This is demonstrated in the

correlations between the number of utterances selected from train-clean

or train-other and the pre-training loss.

The second technique we propose for unsupervised data selection is

PBPE. It makes use of the labels that are used in pre-training the

HuBERT model, which are generated by applying K-means clustering

either on MFCC features or the latent representations extracted from

some intermediate layer in the transformer stack of the HuBERT model.

We treat these labels as a proxy for text, apply BPE on top of them,

and train a language model on the resulting pseudo-transcripts. The
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language model is used to compute the perplexity score for each utter-

ance. Our experiments show that PBPE works very well on the ASR

task and performs better or on par with pure random data selection in

the different setups when selecting the utterances with the highest per-

plexity score. PBPE beats pure random data selection when enforcing

speaker diversity by selecting utterances from all the speakers in the top

15% highest scoring utterances in terms of perplexity. The analysis con-

ducted shows that the average sentence perplexity over BPE clustered

units in the fine-tuning subsets positively correlates with the number of

unique vocabulary words in the fine-tuning subsets. Since our analysis

demonstrates that the WER gets better as the fine-tuning subset has

more unique vocabulary words, PBPE can be used to drive more vocab-

ulary words into the fine-tuning subset in the absence of transcriptions,

and hence provides better performance on the ASR task.

• Are the learned HuBERT representations robust enough in the

sense that we can guarantee the same performance regardless

of the number of speakers in the fine-tuning subsets as well as

their genders?

Our investigation shows that speaker diversity in the fine-tuning subsets

is important in achieving better WER. This has been demonstrated in

various ways. Increasing the number of speakers in the fine-tuning subset

from 24 to 96 leads to a boost in the WER reduction on both test-clean

and test-other. In addition to this, PBPE achieves the best performance
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when combined with enforcing speaker diversity in the selected subsets.

Moreover, the data selection criteria that result in a diversity of speak-

ers lead to much better results than those obtained by fine-tuning with

libri-light which has 24 speakers (12 female speakers and 12 male speak-

ers). It is interesting to observe that the average WER obtained at a

fixed number of speakers is almost the same regardless of the choice of

speakers’ genders.

• Does the ASR performance get better when enriching the vo-

cabulary in the audio by representing more topics in the fine-

tuning subsets?

Our experiments show that topic diversity in the fine-tuning subsets is

important in multiple ways. Increasing the number of books in the se-

lected fine-tuning subsets from 16 to 64 results in improving the WER

significantly. In addition to this, our analysis shows a negative corre-

lation between the number of audio books in the fine-tuning subsets

and the WER. A similar observation holds for the relation between the

number of chapters and the WER. Intuitively, adding more topics in

the fine-tuning subsets enriches the vocabulary that is present in these

subsets and hence improves the WER, which aligns with our observation

that a correlation exists between the number of unique vocabulary words

and the WER.

• When the fine-tuning subset is in the range of 1 to 10 hours, do

the WER results exhibit high variance based on the utterances
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selected for each criterion?

It is obvious that working in a low resource setup, in which the fine-

tuning data subsets can only be a few hours (1 or 10 hours in our exper-

iments) is associated with the risk of having high variance in the ASR

performance depending on the choice of utterances in each fine-tuning

subset. For this reason, we prepare 8 fine-tuning subsets for each data

selection criterion to test this behavior. Our experiments show that the

standard deviation of the WER associated with each data selection cri-

terion in the 10-hour setup is small (0.06 on average for the WER on

test-clean and 0.12 on average for the WER on test-other). A similar

observation holds for the 1-hour setup, where the standard deviation of

the WER is 0.13 on test-clean and 0.17 on test-other on average. Ac-

cordingly, we can draw distinctions between the data selection criteria

and sort them based on the downstream performance on the ASR task.

Several questions still remain open for future work. We would like to

investigate whether our observations and conclusions hold when the target do-

main differs from the pre-training domain. In addition to this, it would be

interesting to evaluate our proposed approaches on test sets other than Lib-

rispeech. Furthermore, we would like to investigate perplexity-based selection

for a target domain when the unlabeled data pool has a diverse set of domains.
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Appendix A: Exact Statistics for the Selected

Subsets for Fine-tuning Experiments

A.1 Statistics for the 10-hour Subsets

Average Average Number of Number of Total Total Unique Total Average Maximum Minimum Average Maximum Minimum books chapters utterances utterances

Subset perplexity unmasked female male speakers tokens vocabulary utterances utterance utterance utterance utterance utterance utterance from from

loss speakers speakers words length length length duration duration duration train-other train-clean

BK DIV RND 16 0 50.23 9.13 39 33 72 95409 10517 2996 31.85 80 2 12.03 22.80 1.43 16 120 1379 1617

BK DIV RND 16 1 48.86 9.15 48 24 72 102554 10129 2914 35.19 70 2 12.44 17.34 1.71 16 129 1718 1196

BK DIV RND 16 2 49.32 9.15 33 38 71 99619 10211 2935 33.94 64 2 12.23 19.65 1.63 16 99 1382 1553

BK DIV RND 16 3 49.87 9.13 34 33 67 92867 9799 2866 32.40 80 1 12.53 22.80 0.83 16 95 1671 1195

BK DIV RND 16 4 49.44 9.13 43 27 70 98916 9742 2847 34.74 69 2 12.65 18.09 1.49 16 116 1347 1500

BK DIV RND 16 5 49.61 9.14 35 24 59 103692 10504 2922 35.49 75 1 12.32 22.91 1.26 16 87 1201 1721

BK DIV RND 16 6 51.21 9.13 37 37 74 96439 10231 2978 32.38 67 1 12.07 17.17 1.34 16 112 1798 1180

BK DIV RND 16 7 50.93 9.14 52 42 94 99671 11337 2898 34.39 72 1 12.39 17.34 1.41 16 145 1367 1531

BK DIV RND 64 0 51.19 9.15 135 127 262 100022 11819 2952 33.88 66 2 12.25 17.15 1.58 64 405 1628 1324

BK DIV RND 64 1 49.73 9.14 150 112 262 99011 10794 2886 34.31 72 1 12.50 17.77 1.28 64 400 1535 1351

BK DIV RND 64 2 49.15 9.16 155 133 288 97783 11273 2897 33.75 74 2 12.46 22.59 1.43 64 434 1539 1358

BK DIV RND 64 3 50.59 9.14 149 146 295 98482 11518 2927 33.65 69 2 12.35 19.52 1.44 64 444 1527 1400

BK DIV RND 64 4 49.82 9.15 137 137 274 97667 11049 2933 33.30 65 2 12.29 17.32 1.66 64 415 1490 1443

BK DIV RND 64 5 50.28 9.15 127 145 272 97676 11786 2892 33.77 68 2 12.45 17.28 1.81 64 423 1606 1286

BK DIV RND 64 6 50.93 9.14 154 116 270 97396 11440 2979 32.69 63 1 12.07 17.13 1.24 64 397 1663 1316

BK DIV RND 64 7 49.68 9.15 155 131 286 96654 11429 2897 33.36 63 2 12.37 19.65 1.58 64 430 1489 1408

Table A.1: Statistics for the 10-hour fine-tuning subsets selected to test the
impact of book diversity

Average Average Number of Number of Total Total Unique Total Average Maximum Minimum Average Maximum Minimum books chapters utterances utterances

Subset perplexity unmasked female male speakers tokens vocabulary utterances utterance utterance utterance utterance utterance utterance from from

loss speakers speakers words length length length duration duration duration train-other train-clean

GNDR DIV F 24 0 51.23 9.13 24 0 24 99326 9896 2943 33.75 65 2 12.24 17.21 1.81 38 59 1689 1254

GNDR DIV F 24 2 52.15 9.12 24 0 24 98889 10200 2956 33.45 62 1 12.19 17.19 1.13 33 46 1512 1444

GNDR DIV F 24 4 50.57 9.14 24 0 24 101785 10370 2940 34.62 86 2 12.25 26.21 1.80 45 61 1504 1436

GNDR DIV F 24 5 47.01 9.17 24 0 24 101068 10141 2907 34.77 67 1 12.38 18.78 1.35 41 68 787 2120

GNDR DIV F 24 6 48.10 9.13 24 0 24 100899 10316 2871 35.14 68 1 12.54 19.30 1.51 36 61 1105 1766

GNDR DIV F 24 7 51.18 9.12 24 0 24 99973 10957 3053 32.75 74 1 11.80 18.81 1.43 39 69 1455 1598

GNDR DIV F 24 8 47.52 9.16 24 0 24 95905 10330 2942 32.60 65 2 12.23 17.31 1.49 37 61 519 2423

GNDR DIV F 24 9 47.86 9.16 24 0 24 94528 9774 2949 32.05 66 1 12.20 17.28 1.27 42 61 1144 1805

GNDR DIV M 24 0 48.08 9.17 0 24 24 88885 11026 2950 30.13 59 1 12.21 17.21 1.08 37 63 1104 1846

GNDR DIV M 24 1 48.68 9.17 0 24 24 96284 10671 2872 33.53 64 3 12.55 19.64 2.03 36 59 1338 1534

GNDR DIV M 24 2 50.37 9.16 0 24 24 94720 10760 2923 32.41 63 1 12.32 16.94 1.24 36 60 914 2009

GNDR DIV M 24 3 50.57 9.15 0 24 24 96026 11260 2941 32.65 63 1 12.26 20.00 1.08 43 66 1738 1203

GNDR DIV M 24 4 49.47 9.15 0 24 24 90572 10475 2997 30.22 60 1 12.02 19.64 1.24 36 65 989 2008

GNDR DIV M 24 5 48.60 9.17 0 24 24 94096 10920 2958 31.81 64 1 12.17 17.15 1.24 35 54 1048 1910

GNDR DIV M 24 6 49.28 9.15 0 24 24 92854 10485 2922 31.78 62 2 12.33 17.26 1.36 30 59 1265 1657

GNDR DIV M 24 7 50.01 9.15 0 24 24 95508 10511 2855 33.45 62 3 12.62 17.06 1.86 33 58 1220 1635

Table A.2: Statistics for the 10-hour fine-tuning subsets selected to probe
gender bias
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Average Average Number of Number of Total Total Unique Total Average Maximum Minimum Average Maximum Minimum Number Number utterances utterances

Subset perplexity unmasked female male speakers tokens vocabulary utterances utterance utterance utterance utterance utterance utterance of of from from

loss speakers speakers words length length length duration duration duration books chapters train-other train-clean

PERPLEXITY 5k LM 15 HEAD 0 35.35 9.20 670 696 1366 93719 10171 2940 31.88 66 2 12.26 20.09 1.51 883 1894 980 1960

PERPLEXITY 5k LM 15 HEAD 10 35.33 9.19 686 669 1355 94006 10080 2941 31.96 63 1 12.25 17.09 1.51 898 1876 972 1969

PERPLEXITY 5k LM 15 HEAD 13 35.41 9.19 661 699 1360 94033 10149 2954 31.83 66 1 12.20 18.35 1.61 889 1879 972 1982

PERPLEXITY 5k LM 15 HEAD 14 35.33 9.19 690 695 1385 93862 10085 2945 31.87 61 3 12.23 17.42 1.73 895 1870 1016 1929

PERPLEXITY 5k LM 15 HEAD 3 35.27 9.19 682 693 1375 93834 10004 2931 32.01 66 2 12.29 18.35 1.57 877 1872 970 1961

PERPLEXITY 5k LM 15 HEAD 4 35.30 9.19 671 680 1351 93516 10127 2927 31.95 67 2 12.31 17.27 1.66 877 1858 995 1932

PERPLEXITY 5k LM 15 HEAD 7 35.30 9.20 667 687 1354 93453 10142 2967 31.50 65 2 12.15 17.28 1.54 883 1866 989 1978

PERPLEXITY 5k LM 15 HEAD 9 35.29 9.20 664 676 1340 93879 9984 2917 32.18 67 1 12.35 17.24 1.17 882 1823 948 1969

PERPLEXITY 5k LM 15 TAIL 0 72.44 9.07 604 712 1316 100199 14208 3475 28.83 70 1 10.37 22.19 1.19 915 1933 2564 911

PERPLEXITY 5k LM 15 TAIL 2 72.92 9.06 591 709 1300 101380 14013 3459 29.31 85 1 10.42 23.70 1.23 899 1910 2582 877

PERPLEXITY 5k LM 15 TAIL 3 72.71 9.07 620 703 1323 100413 14154 3462 29.00 71 1 10.41 19.36 1.30 914 1923 2559 903

PERPLEXITY 5k LM 15 TAIL 4 72.52 9.07 615 698 1313 100301 14132 3453 29.05 66 1 10.43 19.12 1.07 918 1933 2525 928

PERPLEXITY 5k LM 15 TAIL 5 72.74 9.07 640 695 1335 100440 14219 3411 29.45 80 1 10.56 22.80 0.92 908 1961 2516 895

PERPLEXITY 5k LM 15 TAIL 7 73.17 9.06 606 727 1333 100896 14145 3453 29.22 71 1 10.43 22.19 0.92 904 1958 2589 864

PERPLEXITY 5k LM 15 TAIL 8 72.51 9.07 616 705 1321 100857 14106 3458 29.17 76 1 10.42 19.63 1.11 908 1927 2545 913

PERPLEXITY 5k LM 15 TAIL 9 72.88 9.07 625 694 1319 100923 14235 3466 29.12 72 1 10.40 18.61 1.07 929 1922 2614 852

PERPLEXITY 5k LM 40 MIDDLE 0 48.50 9.15 758 848 1606 98564 12323 2819 34.96 64 1 12.78 17.20 1.32 990 2101 1447 1372

PERPLEXITY 5k LM 40 MIDDLE 1 48.65 9.15 780 833 1613 98702 12306 2814 35.08 67 3 12.81 17.13 1.93 992 2098 1438 1376

PERPLEXITY 5k LM 40 MIDDLE 2 48.49 9.15 766 814 1580 98364 12477 2790 35.26 64 2 12.92 17.00 1.94 1012 2088 1395 1395

PERPLEXITY 5k LM 40 MIDDLE 3 48.52 9.15 773 830 1603 98233 12466 2832 34.69 69 2 12.72 17.58 1.38 1019 2089 1428 1404

PERPLEXITY 5k LM 40 MIDDLE 4 48.68 9.15 780 847 1627 98646 12512 2847 34.65 71 1 12.65 21.11 1.74 998 2132 1471 1376

PERPLEXITY 5k LM 40 MIDDLE 5 48.55 9.15 741 839 1580 98166 12422 2831 34.68 69 2 12.73 20.03 1.85 970 2098 1478 1353

PERPLEXITY 5k LM 40 MIDDLE 6 48.58 9.15 754 834 1588 98054 12544 2843 34.49 64 1 12.67 20.03 1.40 959 2095 1468 1375

PERPLEXITY 5k LM 40 MIDDLE 7 48.59 9.15 748 815 1563 99068 12573 2831 34.99 69 2 12.73 17.25 1.86 978 2080 1476 1355

Table A.3: Statistics for the 10-hour fine-tuning subsets selected based on
perplexity of Byte Pair Encoded (BPE) clustered units

Average Average Number of Number of Total Total Unique Total Average Maximum Minimum Average Maximum Minimum Number Number utterances utterances

Subset perplexity unmasked female male speakers tokens vocabulary utterances utterance utterance utterance utterance utterance utterance of of from from

loss speakers speakers words length length length duration duration duration books chapters train-other train-clean

PRETRAIN M LOSS AVG ASC 0 65.13 8.98 753 772 1525 102316 13741 5625 18.19 62 1 6.40 19.87 0.83 993 2369 4362 1263

PRETRAIN M LOSS AVG ASC 1 65.07 8.98 738 796 1534 101878 13769 5689 17.91 67 1 6.33 21.64 1.04 988 2378 4400 1289

PRETRAIN M LOSS AVG ASC 2 64.58 8.98 760 798 1558 102031 13611 5707 17.88 68 1 6.31 19.87 0.83 992 2405 4357 1350

PRETRAIN M LOSS AVG ASC 3 64.94 8.98 744 798 1542 102038 13773 5704 17.89 68 1 6.32 17.13 0.92 999 2400 4418 1286

PRETRAIN M LOSS AVG ASC 4 64.73 8.98 737 807 1544 102064 13611 5639 18.10 69 1 6.39 17.07 0.92 984 2383 4358 1281

PRETRAIN M LOSS AVG ASC 5 65.29 8.97 764 793 1557 102147 13846 5685 17.97 65 1 6.34 17.07 0.92 1003 2408 4379 1306

PRETRAIN M LOSS AVG ASC 6 65.16 8.98 743 795 1538 102446 13657 5609 18.26 67 1 6.42 19.19 0.92 971 2373 4316 1293

PRETRAIN M LOSS AVG ASC 7 65.10 8.97 753 776 1529 102162 13781 5643 18.10 68 1 6.39 17.22 1.04 987 2422 4306 1337

PRETRAIN M LOSS AVG DESC 0 42.40 9.29 572 661 1233 84369 9545 3517 23.99 54 1 10.25 16.98 1.07 834 1713 1116 2401

PRETRAIN M LOSS AVG DESC 1 42.53 9.29 565 689 1254 84128 9582 3547 23.72 56 1 10.16 17.06 1.07 850 1737 1194 2353

PRETRAIN M LOSS AVG DESC 2 42.27 9.29 573 678 1251 84191 9595 3492 24.11 62 1 10.32 17.13 1.13 845 1737 1165 2327

PRETRAIN M LOSS AVG DESC 3 42.67 9.29 586 683 1269 84118 9672 3557 23.65 58 1 10.13 17.10 1.07 860 1744 1204 2353

PRETRAIN M LOSS AVG DESC 4 42.58 9.29 572 677 1249 84370 9577 3539 23.84 54 1 10.18 17.22 1.07 839 1740 1149 2390

PRETRAIN M LOSS AVG DESC 5 42.62 9.29 556 668 1224 83903 9525 3530 23.77 60 1 10.21 17.22 1.13 825 1703 1178 2352

PRETRAIN M LOSS AVG DESC 6 42.50 9.29 581 681 1262 84276 9611 3480 24.22 54 1 10.35 17.03 1.07 842 1740 1195 2285

PRETRAIN M LOSS AVG DESC 7 42.64 9.29 562 664 1226 83752 9518 3503 23.91 57 1 10.28 17.22 1.07 836 1700 1186 2317

PRETRAIN U LOSS AVG NO MASK HEAD 0 58.65 8.96 631 587 1218 95689 12037 3365 28.44 71 1 10.71 19.12 1.34 854 1783 2763 602

PRETRAIN U LOSS AVG NO MASK HEAD 1 59.03 8.96 663 576 1239 96119 12041 3402 28.25 62 1 10.59 21.64 1.05 862 1806 2790 612

PRETRAIN U LOSS AVG NO MASK HEAD 2 58.50 8.96 656 590 1246 95692 12024 3353 28.54 72 1 10.74 17.27 1.24 848 1827 2731 622

PRETRAIN U LOSS AVG NO MASK HEAD 3 58.93 8.96 641 590 1231 96154 12097 3364 28.58 68 1 10.71 17.24 1.32 867 1807 2797 567

PRETRAIN U LOSS AVG NO MASK HEAD 4 58.57 8.96 661 570 1231 95967 12005 3352 28.63 67 1 10.75 21.01 0.83 871 1818 2759 593

PRETRAIN U LOSS AVG NO MASK HEAD 5 58.56 8.96 620 598 1218 95847 12089 3318 28.89 66 1 10.86 17.14 1.07 840 1758 2759 559

PRETRAIN U LOSS AVG NO MASK HEAD 6 58.89 8.96 639 594 1233 95335 11988 3359 28.38 71 1 10.73 21.64 1.08 862 1801 2760 599

PRETRAIN U LOSS AVG NO MASK HEAD 7 58.98 8.96 627 599 1226 95759 12211 3380 28.33 65 1 10.66 21.01 1.27 856 1819 2767 613

PRETRAIN U LOSS AVG NO MASK TAIL 0 45.36 9.31 570 718 1288 97983 11907 2913 33.64 63 1 12.37 19.64 1.51 874 1778 825 2088

PRETRAIN U LOSS AVG NO MASK TAIL 1 45.56 9.31 556 716 1272 97723 12014 2939 33.25 66 1 12.26 17.22 1.48 869 1737 836 2103

PRETRAIN U LOSS AVG NO MASK TAIL 2 45.18 9.31 563 718 1281 97398 11978 2927 33.28 72 2 12.31 20.68 1.71 862 1774 819 2108

PRETRAIN U LOSS AVG NO MASK TAIL 3 45.14 9.30 555 711 1266 97981 11883 2955 33.16 66 2 12.19 17.09 1.89 885 1762 785 2170

PRETRAIN U LOSS AVG NO MASK TAIL 4 45.11 9.31 573 710 1283 97686 11824 2951 33.10 63 2 12.21 17.08 1.82 875 1805 804 2147

PRETRAIN U LOSS AVG NO MASK TAIL 5 45.17 9.31 584 734 1318 97324 11812 2938 33.13 62 2 12.26 17.09 1.64 876 1809 859 2079

PRETRAIN U LOSS AVG NO MASK TAIL 6 45.22 9.31 591 698 1289 97048 11793 2932 33.10 63 1 12.29 17.39 1.51 866 1800 837 2095

PRETRAIN U LOSS AVG NO MASK TAIL 7 45.32 9.31 582 719 1301 97912 11875 2928 33.44 63 2 12.31 17.10 1.80 875 1792 795 2133

Table A.4: Statistics for the 10-hour fine-tuning subsets selected based on pre-
training loss

Average Average Number of Number of Total Total Unique Total Average Maximum Minimum Average Maximum Minimum Number Number utterances utterances

Subset perplexity unmasked female male speakers tokens vocabulary utterances utterance utterance utterance utterance utterance utterance of of from from

loss speakers speakers words length length length duration duration duration books chapters train-other train-clean

PUR RND 10 50.52 9.14 784 836 1620 98183 12311 2942 33.37 67 1 12.25 20.88 0.83 1019 2172 1602 1340

PUR RND 11 50.31 9.14 788 856 1644 97718 12279 2932 33.33 68 1 12.29 18.09 1.24 1015 2209 1529 1403

PUR RND 13 50.63 9.14 788 860 1648 98337 12258 2926 33.61 75 1 12.31 19.18 1.58 1019 2158 1568 1358

PUR RND 14 50.46 9.14 790 857 1647 97999 12510 2951 33.21 73 1 12.21 21.01 1.53 1017 2203 1579 1372

PUR RND 4 50.56 9.14 804 862 1666 98498 12395 2925 33.67 67 1 12.32 17.32 1.48 1002 2179 1574 1351

PUR RND 6 50.37 9.14 805 849 1654 97722 12447 2920 33.47 68 1 12.34 19.88 1.43 1001 2173 1534 1386

PUR RND 7 50.56 9.14 776 833 1609 98409 12422 2918 33.72 70 3 12.35 23.39 1.88 1007 2179 1543 1375

PUR RND 9 50.40 9.14 782 861 1643 98121 12531 2954 33.22 86 1 12.20 22.48 1.30 1000 2158 1553 1401

Table A.5: Statistics for the 10-hour fine-tuning subsets selected in a purely
random way
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Average Average Number of Number of Total Total Unique Total Average Maximum Minimum Average Maximum Minimum Number Number utterances utterances

Subset perplexity unmasked female male speakers tokens vocabulary utterances utterance utterance utterance utterance utterance utterance of of from from

loss speakers speakers words length length length duration duration duration books chapters train-other train-clean

SPK DIV RND 24 0 48.55 9.16 8 16 24 97507 10385 2879 33.87 64 3 12.52 17.19 1.99 35 51 1117 1762

SPK DIV RND 24 1 50.46 9.13 11 13 24 96505 10814 2870 33.63 66 2 12.55 18.24 1.83 35 58 1825 1045

SPK DIV RND 24 3 48.10 9.16 13 11 24 98980 10268 2949 33.56 68 1 12.21 19.64 1.35 40 66 900 2049

SPK DIV RND 24 4 49.99 9.14 15 9 24 94185 10060 3008 31.31 61 1 11.97 17.31 1.24 34 60 1309 1699

SPK DIV RND 24 5 48.96 9.16 10 14 24 97200 10699 2949 32.96 63 1 12.22 17.23 1.51 40 66 1267 1682

SPK DIV RND 24 6 48.04 9.16 10 14 24 95412 10317 2907 32.82 60 1 12.39 17.19 1.87 32 58 1259 1648

SPK DIV RND 24 7 47.61 9.15 17 7 24 94306 10498 2980 31.65 64 1 12.09 17.19 1.32 34 64 724 2256

SPK DIV RND 24 8 47.08 9.17 10 14 24 97316 9887 2836 34.31 64 2 12.70 17.11 1.24 40 65 981 1855

SPK DIV RND 96 0 50.40 9.14 39 57 96 99173 11619 2929 33.86 69 1 12.31 17.15 1.08 131 217 1426 1503

SPK DIV RND 96 1 49.52 9.15 49 47 96 96915 11382 2956 32.79 67 1 12.18 18.78 1.49 134 226 1488 1468

SPK DIV RND 96 2 51.61 9.12 49 47 96 97145 11304 3023 32.14 74 1 11.92 27.14 0.83 134 216 1781 1242

SPK DIV RND 96 3 51.26 9.13 44 52 96 96593 11322 2975 32.47 66 1 12.10 20.65 1.29 141 219 1689 1286

SPK DIV RND 96 4 51.18 9.13 47 49 96 98004 11413 2959 33.12 67 1 12.19 17.22 1.19 145 219 1624 1335

SPK DIV RND 96 5 48.72 9.16 43 53 96 97886 11325 2972 32.94 64 1 12.12 18.78 1.08 114 231 1302 1670

SPK DIV RND 96 6 50.63 9.15 46 50 96 96934 11226 3031 31.98 80 1 11.89 22.80 1.49 119 225 1294 1737

SPK DIV RND 96 7 49.48 9.16 45 51 96 96133 11471 2987 32.18 67 1 12.05 20.00 1.32 108 237 1116 1871

Table A.6: Statistics for the 10-hour fine-tuning subsets selected to test the
impact of speaker diversity

Average Average Number of Number of Total Total Unique Total Average Maximum Minimum Average Maximum Minimum Number Number utterances utterances

Subset perplexity unmasked female male speakers tokens vocabulary utterances utterance utterance utterance utterance utterance utterance of of from from

loss speakers speakers words length length length duration duration duration books chapters train-other train-clean

UTTLN DIV RND LNG DUR TAIL 0 49.53 9.15 699 751 1450 98120 12146 2254 43.53 70 21 16.00 21.39 15.54 904 1788 1151 1103

UTTLN DIV RND LNG DUR TAIL 1 49.51 9.14 693 740 1433 98145 12197 2252 43.58 86 14 16.02 22.80 15.54 915 1774 1156 1096

UTTLN DIV RND LNG DUR TAIL 2 49.35 9.14 682 725 1407 98098 12149 2252 43.56 80 17 16.01 29.74 15.54 910 1778 1156 1096

UTTLN DIV RND LNG DUR TAIL 3 49.43 9.15 676 739 1415 97894 12345 2254 43.43 73 19 16.00 22.72 15.54 916 1763 1156 1098

UTTLN DIV RND LNG DUR TAIL 4 49.36 9.15 701 732 1433 98622 12311 2253 43.77 75 17 16.01 21.63 15.54 902 1773 1111 1142

UTTLN DIV RND LNG DUR TAIL 5 49.41 9.14 691 724 1415 98455 12331 2254 43.68 72 16 16.00 25.85 15.54 892 1758 1172 1082

UTTLN DIV RND LNG DUR TAIL 6 49.25 9.15 686 719 1405 98304 12195 2255 43.59 74 9 16.00 23.39 15.54 890 1753 1101 1154

UTTLN DIV RND LNG DUR TAIL 7 49.27 9.14 684 730 1414 97847 12215 2251 43.47 70 16 16.02 27.92 15.54 911 1770 1141 1110

UTTLN DIV RND MIDDLE DUR 0 48.54 9.16 752 806 1558 97884 12379 2619 37.37 59 12 13.77 14.23 13.24 950 1984 1299 1320

UTTLN DIV RND MIDDLE DUR 1 48.47 9.16 728 813 1541 97917 12181 2618 37.40 61 15 13.78 14.23 13.24 977 1977 1328 1290

UTTLN DIV RND MIDDLE DUR 2 48.77 9.16 742 813 1555 97633 12272 2619 37.28 61 11 13.77 14.23 13.24 961 2010 1312 1307

UTTLN DIV RND MIDDLE DUR 3 48.56 9.16 742 801 1543 97910 12390 2616 37.43 61 12 13.77 14.23 13.24 973 2000 1309 1307

UTTLN DIV RND MIDDLE DUR 4 48.46 9.16 744 796 1540 97696 12277 2617 37.33 58 13 13.77 14.23 13.24 970 1986 1328 1289

UTTLN DIV RND MIDDLE DUR 5 49.04 9.16 746 809 1555 97779 12430 2616 37.38 60 12 13.77 14.23 13.24 979 2021 1317 1299

UTTLN DIV RND MIDDLE DUR 6 48.61 9.16 742 811 1553 97376 12292 2616 37.22 62 11 13.77 14.23 13.24 971 2012 1318 1298

UTTLN DIV RND MIDDLE DUR 7 48.61 9.16 720 826 1546 97588 12563 2617 37.29 63 10 13.77 14.23 13.24 969 2023 1311 1306

UTTLN DIV RND SHRT DUR TAIL 0 56.30 9.10 959 1054 2013 98214 12774 7767 12.65 32 1 4.64 7.32 0.83 1187 3457 4729 3038

UTTLN DIV RND SHRT DUR TAIL 1 56.07 9.10 980 1046 2026 98126 12575 7763 12.64 31 1 4.65 7.32 0.92 1183 3417 4688 3075

UTTLN DIV RND SHRT DUR TAIL 2 56.99 9.10 957 1060 2017 98203 12583 7756 12.66 33 1 4.65 7.32 1.13 1179 3421 4713 3043

UTTLN DIV RND SHRT DUR TAIL 3 56.57 9.10 943 1055 1998 98182 12687 7797 12.59 32 1 4.63 7.32 0.83 1174 3383 4732 3065

UTTLN DIV RND SHRT DUR TAIL 4 56.63 9.10 974 1035 2009 98258 12814 7725 12.72 32 1 4.67 7.32 1.11 1181 3421 4660 3065

UTTLN DIV RND SHRT DUR TAIL 5 56.60 9.10 976 1048 2024 98384 12567 7724 12.74 32 1 4.67 7.32 0.83 1184 3414 4679 3045

UTTLN DIV RND SHRT DUR TAIL 6 56.50 9.10 965 1062 2027 98062 12592 7823 12.54 32 1 4.61 7.32 0.92 1195 3465 4735 3088

UTTLN DIV RND SHRT DUR TAIL 7 56.45 9.10 950 1054 2004 98534 12633 7747 12.72 31 1 4.66 7.32 1.16 1167 3408 4689 3058

Table A.7: Statistics for the 10-hour fine-tuning subsets selected to test the
impact of utterance length

A.2 Statistics for the 1-hour Subsets

Average Average Number of Number of Total Total Unique Total Average Maximum Minimum Average Maximum Minimum Number Number utterances utterances

Subset perplexity unmasked female male speakers tokens vocabulary utterances utterance utterance utterance utterance utterance utterance of of from from

loss speakers speakers words length length length duration duration duration books chapters train-other train-clean

PERPLEXITY 5k LM 15 HEAD 0 35.50 9.19 138 132 270 9452 2408 294 32.15 57 4 12.27 16.79 1.97 238 281 101 193

PERPLEXITY 5k LM 15 HEAD 1 35.18 9.19 132 135 267 9605 2469 294 32.67 56 5 12.63 16.75 2.06 238 281 99 195

PERPLEXITY 5k LM 15 HEAD 2 35.07 9.20 138 126 264 9601 2569 297 32.33 55 3 12.35 16.93 2.01 232 282 101 196

PERPLEXITY 5k LM 15 HEAD 3 35.26 9.19 146 125 271 9542 2501 293 32.57 58 3 12.37 17.02 2.14 228 279 92 201

PERPLEXITY 5k LM 15 HEAD 4 35.25 9.19 143 128 271 9188 2449 293 31.36 56 5 12.08 16.58 2.33 226 278 106 187

PERPLEXITY 5k LM 15 HEAD 5 35.26 9.19 145 129 274 9422 2579 294 32.05 56 3 12.33 17.23 1.91 229 284 91 203

PERPLEXITY 5k LM 15 HEAD 6 35.26 9.20 121 136 257 9272 2532 295 31.43 60 4 12.31 16.62 1.81 223 277 104 191

PERPLEXITY 5k LM 15 HEAD 7 35.25 9.19 132 137 269 9332 2466 297 31.42 63 3 12.03 16.80 1.64 233 280 113 184

PERPLEXITY 5k LM 15 TAIL 0 72.05 9.07 129 159 288 9761 3138 348 28.05 62 3 10.28 16.80 1.77 265 319 256 92

PERPLEXITY 5k LM 15 TAIL 1 71.56 9.07 150 160 310 10204 3104 348 29.32 61 3 10.45 17.05 1.77 267 326 245 103

PERPLEXITY 5k LM 15 TAIL 2 72.87 9.06 130 157 287 10026 3123 346 28.98 64 2 10.34 17.05 1.46 261 319 260 86

PERPLEXITY 5k LM 15 TAIL 3 71.98 9.07 147 152 299 10386 3145 346 30.02 60 2 10.70 16.97 1.96 270 324 264 82

PERPLEXITY 5k LM 15 TAIL 4 73.64 9.05 153 137 290 10312 3186 345 29.89 63 1 10.59 16.78 1.39 265 321 241 104

PERPLEXITY 5k LM 15 TAIL 5 72.75 9.07 129 160 289 9980 3075 341 29.27 67 3 10.40 16.90 1.94 266 318 264 77

PERPLEXITY 5k LM 15 TAIL 6 71.72 9.08 151 154 305 9912 3150 345 28.73 75 2 10.47 24.53 1.71 275 329 245 100

PERPLEXITY 5k LM 15 TAIL 7 73.97 9.06 137 150 287 9939 3035 345 28.81 65 3 10.30 17.00 1.90 246 316 264 81

Table A.8: Statistics for the 1-hour fine-tuning subsets selected based on per-
plexity of Byte Pair Encoded (BPE) clustered units
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Average Average Number of Number of Total Total Unique Total Average Maximum Minimum Average Maximum Minimum Number Number utterances utterances

Subset perplexity unmasked female male speakers tokens vocabulary utterances utterance utterance utterance utterance utterance utterance of of from from

loss speakers speakers words length length length duration duration duration books chapters train-other train-clean

PRETRAIN M LOSS AVG ASC 0 64.87 8.98 205 221 426 10297 3089 562 18.32 62 1 6.48 19.87 1.51 357 478 423 139

PRETRAIN M LOSS AVG ASC 1 64.74 8.98 222 206 428 9994 3071 569 17.56 64 1 6.23 16.74 1.04 364 479 433 136

PRETRAIN M LOSS AVG ASC 2 64.50 8.98 224 218 442 10463 3056 571 18.32 64 1 6.39 16.52 1.11 378 497 440 131

PRETRAIN M LOSS AVG ASC 3 65.29 8.98 208 221 429 10289 3068 570 18.05 58 1 6.33 16.98 1.19 350 484 437 133

PRETRAIN M LOSS AVG ASC 4 64.37 8.98 208 208 416 10244 3096 564 18.16 58 1 6.45 16.89 1.15 350 477 435 129

PRETRAIN M LOSS AVG ASC 5 64.81 8.97 207 211 418 10020 3080 568 17.64 55 1 6.28 16.98 1.25 343 474 434 134

PRETRAIN M LOSS AVG ASC 6 65.60 8.98 214 209 423 10467 3174 561 18.66 56 1 6.51 17.18 1.07 357 469 432 129

PRETRAIN M LOSS AVG ASC 7 64.99 8.97 196 204 400 10176 3058 564 18.04 59 1 6.38 16.65 1.17 351 467 447 117

PRETRAIN M LOSS AVG DESC 0 43.28 9.29 135 150 285 8354 2213 352 23.73 52 1 10.17 16.45 1.07 241 307 121 231

PRETRAIN M LOSS AVG DESC 1 42.47 9.29 113 158 271 9016 2462 355 25.40 50 1 10.78 17.06 1.33 217 300 107 248

PRETRAIN M LOSS AVG DESC 2 41.95 9.30 136 154 290 8422 2295 349 24.13 51 3 10.22 16.89 1.57 233 310 111 238

PRETRAIN M LOSS AVG DESC 3 44.04 9.29 131 144 275 8237 2378 356 23.14 58 2 10.14 16.20 1.79 243 303 115 241

PRETRAIN M LOSS AVG DESC 4 41.82 9.29 132 150 282 8359 2339 354 23.61 53 1 10.20 16.87 1.26 227 311 109 245

PRETRAIN M LOSS AVG DESC 5 42.28 9.30 127 163 290 8492 2357 353 24.06 50 1 10.34 16.77 1.13 236 305 115 238

PRETRAIN M LOSS AVG DESC 6 42.42 9.29 135 138 273 8212 2251 348 23.60 48 1 10.17 16.93 1.32 246 305 119 229

PRETRAIN M LOSS AVG DESC 7 43.24 9.30 127 156 283 8502 2282 350 24.29 50 1 10.24 16.96 1.43 246 310 118 232

PRETRAIN U LOSS AVG NO MASK HEAD 0 56.93 8.97 156 130 286 9553 2679 336 28.43 62 2 10.67 17.07 1.62 251 308 263 73

PRETRAIN U LOSS AVG NO MASK HEAD 1 59.04 8.96 156 130 286 9560 2785 340 28.12 56 1 10.54 17.01 1.48 258 311 278 62

PRETRAIN U LOSS AVG NO MASK HEAD 2 58.67 8.96 149 137 286 9558 2768 335 28.53 63 1 10.71 17.11 1.24 250 312 272 63

PRETRAIN U LOSS AVG NO MASK HEAD 3 58.06 8.95 152 142 294 9507 2717 336 28.29 58 2 10.68 17.13 1.91 252 315 278 58

PRETRAIN U LOSS AVG NO MASK HEAD 4 59.87 8.95 152 131 283 10046 2837 335 29.99 59 4 11.20 16.74 1.98 243 299 281 54

PRETRAIN U LOSS AVG NO MASK HEAD 5 58.87 8.96 149 132 281 9857 2775 332 29.69 57 2 11.13 17.08 1.70 253 305 273 59

PRETRAIN U LOSS AVG NO MASK HEAD 6 59.28 8.96 171 125 296 9452 2752 336 28.13 59 2 10.57 16.75 1.61 254 314 276 60

PRETRAIN U LOSS AVG NO MASK HEAD 7 58.01 8.95 156 132 288 9672 2836 338 28.62 57 1 10.74 16.89 1.45 249 317 282 56

PRETRAIN U LOSS AVG NO MASK TAIL 0 44.84 9.31 115 145 260 9830 2755 291 33.78 61 3 12.39 17.20 2.04 232 273 82 209

PRETRAIN U LOSS AVG NO MASK TAIL 1 45.90 9.31 113 146 259 9604 2701 294 32.67 59 5 11.95 16.77 2.07 227 272 85 209

PRETRAIN U LOSS AVG NO MASK TAIL 2 44.67 9.30 118 143 261 9750 2795 293 33.28 63 2 12.21 16.84 2.25 234 275 83 210

PRETRAIN U LOSS AVG NO MASK TAIL 3 45.02 9.31 97 166 263 9779 2730 296 33.04 66 6 12.11 16.70 2.53 243 273 75 221

PRETRAIN U LOSS AVG NO MASK TAIL 4 44.78 9.30 127 146 273 9586 2783 295 32.49 54 2 11.97 17.01 2.18 230 282 94 201

PRETRAIN U LOSS AVG NO MASK TAIL 5 44.82 9.31 113 153 266 9491 2759 294 32.28 59 4 12.26 16.86 1.89 236 279 89 205

PRETRAIN U LOSS AVG NO MASK TAIL 6 45.16 9.30 115 144 259 9756 2769 293 33.30 61 3 12.31 17.08 1.58 231 275 85 208

PRETRAIN U LOSS AVG NO MASK TAIL 7 45.36 9.30 119 149 268 9919 2857 293 33.85 61 5 12.47 16.87 2.06 236 280 71 222

Table A.9: Statistics for the 1-hour fine-tuning subsets selected based on pre-
training loss

Average Average Number of Number of Total Total Unique Total Average Maximum Minimum Average Maximum Minimum Number Number utterances utterances

Subset perplexity unmasked female male speakers tokens vocabulary utterances utterance utterance utterance utterance utterance utterance of of from from

loss speakers speakers words length length length duration duration duration books chapters train-other train-clean

PUR RND 0 48.83 9.14 128 144 272 9558 2760 292 32.73 58 1 12.10 16.63 1.62 233 284 164 128

PUR RND 1 48.38 9.15 123 144 267 10134 2859 291 34.82 62 4 12.67 16.96 1.99 241 281 154 137

PUR RND 2 50.89 9.15 136 138 274 9542 2770 292 32.68 59 4 11.92 16.93 1.97 244 284 156 136

PUR RND 3 49.70 9.14 124 150 274 9854 2833 292 33.75 59 4 12.42 16.56 1.94 246 283 145 147

PUR RND 4 49.69 9.14 132 146 278 9665 2818 292 33.10 67 3 12.32 17.32 1.78 246 283 146 146

PUR RND 5 50.23 9.13 132 136 268 10123 2854 292 34.67 60 4 12.53 16.86 2.00 227 281 147 145

PUR RND 6 50.76 9.14 129 144 273 10008 2955 292 34.27 57 4 12.61 17.01 2.24 242 282 147 145

PUR RND 7 50.48 9.14 133 143 276 10103 2912 292 34.60 62 5 12.56 17.31 2.27 242 285 158 134

Table A.10: Statistics for the 1-hour fine-tuning subsets selected in a purely
random way
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Appendix B: Results Breakdown for the

Different Data Selection Criteria

This appendix provides a detailed breakdown of the WER obtained

on Librispeech test-other and Librispeech test-clean when fine-tuning using

each data selection criterion. The result for each of the 8 runs belonging to

a particular criterion is presented, then the minimum, maximum, mean and

standard deviation of the WER are demonstrated to summarize the results of

all the data selection criteria.

B.1 Results Breakdown on Librispeech Test-other

This section breaks down the WER results on test-other achieved when

fine-tuning the HuBERT base model using each selection criterion. It demon-

strates the results of pure random data selection. Moreover, it shows the

impact of book diversity, gender bias, speaker diversity, utterance duration as

well the proposed data selection criterion in this work: PBPE and pre-training

loss on the downstream WER.
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B.1.1 Results Obtained when Fine-tuning with 10-hour Subsets

run WER
PUR RND 10 8.83
PUR RND 11 9.12
PUR RND 13 9.04
PUR RND 14 9.04
PUR RND 4 9.03
PUR RND 6 8.95
PUR RND 7 8.95
PUR RND 9 9.03

Table B.1: WER on Librispeech test-other for pure-random data selection in
the 10-hour setup

run WER
BK DIV RND 16 0 9.69
BK DIV RND 16 1 9.52
BK DIV RND 16 2 9.48
BK DIV RND 16 3 9.67
BK DIV RND 16 4 9.28
BK DIV RND 16 5 9.55
BK DIV RND 16 6 9.57
BK DIV RND 16 7 9.37

BK DIV RND 64 0 9.28
BK DIV RND 64 1 9.11
BK DIV RND 64 2 9.03
BK DIV RND 64 3 9.23
BK DIV RND 64 4 9.36
BK DIV RND 64 5 9.36
BK DIV RND 64 6 9.16
BK DIV RND 64 7 9.09

Table B.2: WER on Librispeech test-other when fixing the number of audio-
books during data selection in the 10-hour setup
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run WER
GNDR DIV F 24 0 9.68
GNDR DIV F 24 2 10.14
GNDR DIV F 24 4 9.5
GNDR DIV F 24 5 9.72
GNDR DIV F 24 6 9.56
GNDR DIV F 24 7 9.61
GNDR DIV F 24 8 9.77
GNDR DIV F 24 9 9.57

GNDR DIV M 24 0 9.63
GNDR DIV M 24 1 9.44
GNDR DIV M 24 2 9.61
GNDR DIV M 24 3 9.44
GNDR DIV M 24 4 9.81
GNDR DIV M 24 5 9.75
GNDR DIV M 24 6 9.58
GNDR DIV M 24 7 9.78

Table B.3: WER on Librispeech test-other when biasing the selected subset
to a particular gender in the 10-hour setup
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run WER
SPK DIV RND 24 0 9.99
SPK DIV RND 24 1 9.58
SPK DIV RND 24 3 9.75
SPK DIV RND 24 4 9.8
SPK DIV RND 24 5 9.66
SPK DIV RND 24 6 9.44
SPK DIV RND 24 7 9.92
SPK DIV RND 24 8 9.52

SPK DIV RND 96 0 9.09
SPK DIV RND 96 1 9.35
SPK DIV RND 96 2 9.01
SPK DIV RND 96 3 9.04
SPK DIV RND 96 4 9.07
SPK DIV RND 96 5 9.24
SPK DIV RND 96 6 9.1
SPK DIV RND 96 7 9.24

Table B.4: WER on Librispeech test-other when fixing the number of speakers
during data selection in the 10-hour setup
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run WER
PERPLEXITY 5k LM 15 HEAD 0 9.33
PERPLEXITY 5k LM 15 HEAD 10 9.45
PERPLEXITY 5k LM 15 HEAD 13 9.39
PERPLEXITY 5k LM 15 HEAD 14 9.23
PERPLEXITY 5k LM 15 HEAD 3 9.2
PERPLEXITY 5k LM 15 HEAD 4 9.46
PERPLEXITY 5k LM 15 HEAD 7 9.4
PERPLEXITY 5k LM 15 HEAD 9 9.43

PERPLEXITY 5k LM 15 TAIL 0 8.81
PERPLEXITY 5k LM 15 TAIL 2 9
PERPLEXITY 5k LM 15 TAIL 3 8.85
PERPLEXITY 5k LM 15 TAIL 4 8.88
PERPLEXITY 5k LM 15 TAIL 5 8.93
PERPLEXITY 5k LM 15 TAIL 7 9.04
PERPLEXITY 5k LM 15 TAIL 8 8.94
PERPLEXITY 5k LM 15 TAIL 9 8.97

PERPLEXITY 5k LM 40 MIDDLE 0 9.07
PERPLEXITY 5k LM 40 MIDDLE 1 8.85
PERPLEXITY 5k LM 40 MIDDLE 2 9.08
PERPLEXITY 5k LM 40 MIDDLE 3 8.97
PERPLEXITY 5k LM 40 MIDDLE 4 8.85
PERPLEXITY 5k LM 40 MIDDLE 5 9
PERPLEXITY 5k LM 40 MIDDLE 6 9.14
PERPLEXITY 5k LM 40 MIDDLE 7 9.12

Table B.5: WER on Librispeech test-other for data selection based on the
perplexity of byte pair encoded clustered units (PBPE) in the 10-hour setup
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run WER
PRETRAIN M LOSS AVG ASC 0 8.93
PRETRAIN M LOSS AVG ASC 1 9.08
PRETRAIN M LOSS AVG ASC 2 9.05
PRETRAIN M LOSS AVG ASC 3 9.1
PRETRAIN M LOSS AVG ASC 4 9.08
PRETRAIN M LOSS AVG ASC 5 8.98
PRETRAIN M LOSS AVG ASC 6 8.92
PRETRAIN M LOSS AVG ASC 7 8.88

PRETRAIN M LOSS AVG DESC 0 9.28
PRETRAIN M LOSS AVG DESC 1 9.17
PRETRAIN M LOSS AVG DESC 2 9.42
PRETRAIN M LOSS AVG DESC 3 9.49
PRETRAIN M LOSS AVG DESC 4 9.26
PRETRAIN M LOSS AVG DESC 5 9.5
PRETRAIN M LOSS AVG DESC 6 9.42
PRETRAIN M LOSS AVG DESC 7 9.33

PRETRAIN U LOSS AVG NO MASK HEAD 0 8.95
PRETRAIN U LOSS AVG NO MASK HEAD 1 9.04
PRETRAIN U LOSS AVG NO MASK HEAD 2 9.05
PRETRAIN U LOSS AVG NO MASK HEAD 3 9.32
PRETRAIN U LOSS AVG NO MASK HEAD 4 9.1
PRETRAIN U LOSS AVG NO MASK HEAD 5 9.2
PRETRAIN U LOSS AVG NO MASK HEAD 6 9.14
PRETRAIN U LOSS AVG NO MASK HEAD 7 9.01

PRETRAIN U LOSS AVG NO MASK TAIL 0 9.15
PRETRAIN U LOSS AVG NO MASK TAIL 1 9.16
PRETRAIN U LOSS AVG NO MASK TAIL 2 9.06
PRETRAIN U LOSS AVG NO MASK TAIL 3 9.09
PRETRAIN U LOSS AVG NO MASK TAIL 4 9.15
PRETRAIN U LOSS AVG NO MASK TAIL 5 9.28
PRETRAIN U LOSS AVG NO MASK TAIL 6 9.26
PRETRAIN U LOSS AVG NO MASK TAIL 7 9.14

Table B.6: WER on Librispeech test-other for data selection based on pre-
training loss in the 10-hour setup
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run WER
UTTLN DIV RND LNG DUR TAIL 0 9.07
UTTLN DIV RND LNG DUR TAIL 1 9.14
UTTLN DIV RND LNG DUR TAIL 2 9.09
UTTLN DIV RND LNG DUR TAIL 3 9.18
UTTLN DIV RND LNG DUR TAIL 4 9.08
UTTLN DIV RND LNG DUR TAIL 5 8.94
UTTLN DIV RND LNG DUR TAIL 6 8.95
UTTLN DIV RND LNG DUR TAIL 7 9.18

UTTLN DIV RND MIDDLE DUR 0 9.2
UTTLN DIV RND MIDDLE DUR 1 9.03
UTTLN DIV RND MIDDLE DUR 2 9.02
UTTLN DIV RND MIDDLE DUR 3 9.36
UTTLN DIV RND MIDDLE DUR 4 9.09
UTTLN DIV RND MIDDLE DUR 5 9.24
UTTLN DIV RND MIDDLE DUR 6 8.96
UTTLN DIV RND MIDDLE DUR 7 9.28

UTTLN DIV RND SHRT DUR TAIL 0 8.99
UTTLN DIV RND SHRT DUR TAIL 1 9.02
UTTLN DIV RND SHRT DUR TAIL 2 8.97
UTTLN DIV RND SHRT DUR TAIL 3 8.95
UTTLN DIV RND SHRT DUR TAIL 4 8.99
UTTLN DIV RND SHRT DUR TAIL 5 9.04
UTTLN DIV RND SHRT DUR TAIL 6 8.83
UTTLN DIV RND SHRT DUR TAIL 7 9.09

Table B.7: WER on Librispeech test-other based on utterance duration in the
10-hour setup
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Criterion Mean WER StdDev of WER Min WER Max WER
PERPLEXITY 5k LM 15 TAIL 8.93 0.08 8.81 9.04
UTTLN DIV RND SHRT DUR TAIL 8.99 0.08 8.83 9.09
PUR RND 9.00 0.09 8.83 9.12
PRETRAIN M LOSS AVG ASC 9.00 0.09 8.88 9.1
PERPLEXITY 5k LM 40 MIDDLE 9.01 0.11 8.85 9.14
UTTLN DIV RND LNG DUR TAIL 9.08 0.09 8.94 9.18
PRETRAIN U LOSS AVG NO MASK HEAD 9.10 0.12 8.95 9.32
SPK DIV RND 96 9.14 0.12 9.01 9.35
UTTLN DIV RND MIDDLE DUR 9.15 0.14 8.96 9.36
PRETRAIN U LOSS AVG NO MASK TAIL 9.16 0.08 9.06 9.28
BK DIV RND 64 9.20 0.13 9.03 9.36
PRETRAIN M LOSS AVG DESC 9.36 0.12 9.17 9.5
PERPLEXITY 5k LM 15 HEAD 9.36 0.1 9.2 9.46
BK DIV RND 16 9.52 0.14 9.28 9.69
GNDR DIV M 24 9.63 0.14 9.44 9.81
GNDR DIV F 24 9.69 0.20 9.5 10.14
SPK DIV RND 24 9.71 0.19 9.44 9.99

Table B.8: Librispeech test-other WER Summary for different data selection
criteria in the 10-hour setup

B.1.2 Results Obtained when Fine-tuning with 1-hour Subsets

run WER
PUR RND 0 12
PUR RND 1 12
PUR RND 2 12.05
PUR RND 3 12.13
PUR RND 4 11.88
PUR RND 5 12.19
PUR RND 6 11.85
PUR RND 7 11.77

Table B.9: WER on Librispeech test-other for pure-random data selection in
the 1-hour setup
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run WER
PERPLEXITY 5k LM 15 HEAD 0 12.34
PERPLEXITY 5k LM 15 HEAD 1 12.27
PERPLEXITY 5k LM 15 HEAD 2 11.9
PERPLEXITY 5k LM 15 HEAD 3 12.43
PERPLEXITY 5k LM 15 HEAD 4 12.29
PERPLEXITY 5k LM 15 HEAD 5 12.21
PERPLEXITY 5k LM 15 HEAD 6 12.32
PERPLEXITY 5k LM 15 HEAD 7 12.6

PERPLEXITY 5k LM 15 TAIL 0 12.12
PERPLEXITY 5k LM 15 TAIL 1 11.78
PERPLEXITY 5k LM 15 TAIL 2 12.03
PERPLEXITY 5k LM 15 TAIL 3 12.04
PERPLEXITY 5k LM 15 TAIL 4 12.11
PERPLEXITY 5k LM 15 TAIL 5 12.39
PERPLEXITY 5k LM 15 TAIL 6 12.01
PERPLEXITY 5k LM 15 TAIL 7 12.2

Table B.10: WER on Librispeech test-other for data selection based on the
perplexity of byte pair encoded clustered units (PBPE) in the 1-hour setup
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run WER
PRETRAIN M LOSS AVG ASC 0 12.06
PRETRAIN M LOSS AVG ASC 1 12.07
PRETRAIN M LOSS AVG ASC 2 12.19
PRETRAIN M LOSS AVG ASC 3 12
PRETRAIN M LOSS AVG ASC 4 12.11
PRETRAIN M LOSS AVG ASC 5 11.85
PRETRAIN M LOSS AVG ASC 6 11.97
PRETRAIN M LOSS AVG ASC 7 12.04

PRETRAIN M LOSS AVG DESC 0 12.55
PRETRAIN M LOSS AVG DESC 1 12.12
PRETRAIN M LOSS AVG DESC 2 12.67
PRETRAIN M LOSS AVG DESC 3 12.43
PRETRAIN M LOSS AVG DESC 4 12.26
PRETRAIN M LOSS AVG DESC 5 12.49
PRETRAIN M LOSS AVG DESC 6 12.55
PRETRAIN M LOSS AVG DESC 7 12.54

PRETRAIN U LOSS AVG NO MASK HEAD 0 12.6
PRETRAIN U LOSS AVG NO MASK HEAD 1 12.28
PRETRAIN U LOSS AVG NO MASK HEAD 2 11.97
PRETRAIN U LOSS AVG NO MASK HEAD 3 12.22
PRETRAIN U LOSS AVG NO MASK HEAD 4 12.15
PRETRAIN U LOSS AVG NO MASK HEAD 5 12.51
PRETRAIN U LOSS AVG NO MASK HEAD 6 12.19
PRETRAIN U LOSS AVG NO MASK HEAD 7 12.22

PRETRAIN U LOSS AVG NO MASK TAIL 0 12.35
PRETRAIN U LOSS AVG NO MASK TAIL 1 12.29
PRETRAIN U LOSS AVG NO MASK TAIL 2 12.77
PRETRAIN U LOSS AVG NO MASK TAIL 3 12.18
PRETRAIN U LOSS AVG NO MASK TAIL 4 12.31
PRETRAIN U LOSS AVG NO MASK TAIL 5 12.1
PRETRAIN U LOSS AVG NO MASK TAIL 6 12.15
PRETRAIN U LOSS AVG NO MASK TAIL 7 12.25

Table B.11: WER on Librispeech test-other for data selection based on pre-
training loss in the 1-hour setup
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Criterion Mean WER StdDev of WER Min WER Max WER
PUR RND 11.98 0.14 11.77 12.19
PRETRAIN M LOSS AVG ASC 12.04 0.10 11.85 12.19
PERPLEXITY 5k LM 15 TAIL 12.09 0.17 11.78 12.39
PRETRAIN U LOSS AVG NO MASK HEAD 12.27 0.20 11.97 12.6
PERPLEXITY 5k LM 15 HEAD 12.30 0.20 11.9 12.6
PRETRAIN U LOSS AVG NO MASK TAIL 12.30 0.21 12.1 12.77
PRETRAIN M LOSS AVG DESC 12.45 0.18 12.12 12.67

Table B.12: Librispeech test-other WER Summary for different data selection
criteria in the 1-hour setup

B.2 Results Breakdown on Librispeech Test-clean

This section breaks down the WER results on test-clean achieved when

fine-tuning the HuBERT base model using each selection criterion. Similar to

the previous section, it demonstrates the results of pure random data selection.

Moreover, it shows the impact of book diversity, gender bias, speaker diversity,

utterance duration as well as the proposed data selection criterion in this work:

PBPE and pre-training loss on the downstream WER.

B.2.1 Results Obtained when Fine-tuning with 10-hour Subsets

run WER
PUR RND 10 4.33
PUR RND 11 4.2
PUR RND 13 4.25
PUR RND 14 4.21
PUR RND 4 4.22
PUR RND 6 4.26
PUR RND 7 4.18
PUR RND 9 4.26

Table B.13: WER on Librispeech test-clean for pure-random data selection in
the 10-hour setup
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run WER
BK DIV RND 16 0 4.58
BK DIV RND 16 1 4.62
BK DIV RND 16 2 4.44
BK DIV RND 16 3 4.69
BK DIV RND 16 4 4.54
BK DIV RND 16 5 4.56
BK DIV RND 16 6 4.69
BK DIV RND 16 7 4.45

BK DIV RND 64 0 4.36
BK DIV RND 64 1 4.38
BK DIV RND 64 2 4.33
BK DIV RND 64 3 4.41
BK DIV RND 64 4 4.41
BK DIV RND 64 5 4.45
BK DIV RND 64 6 4.4
BK DIV RND 64 7 4.31

Table B.14: WER on Librispeech test-clean when fixing the number of audio-
books during data selection in the 10-hour setup
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run WER
GNDR DIV F 24 0 4.62
GNDR DIV F 24 2 4.6
GNDR DIV F 24 4 4.53
GNDR DIV F 24 5 4.48
GNDR DIV F 24 6 4.5
GNDR DIV F 24 7 4.56
GNDR DIV F 24 8 4.47
GNDR DIV F 24 9 4.56

GNDR DIV M 24 0 4.45
GNDR DIV M 24 1 4.53
GNDR DIV M 24 2 4.56
GNDR DIV M 24 3 4.53
GNDR DIV M 24 4 4.63
GNDR DIV M 24 5 4.47
GNDR DIV M 24 6 4.69
GNDR DIV M 24 7 4.48

Table B.15: WER on Librispeech test-clean when biasing the selected subset
to a particular gender in the 10-hour setup
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run WER
SPK DIV RND 24 0 4.35
SPK DIV RND 24 1 4.53
SPK DIV RND 24 3 4.48
SPK DIV RND 24 4 4.53
SPK DIV RND 24 5 4.55
SPK DIV RND 24 6 4.58
SPK DIV RND 24 7 4.69
SPK DIV RND 24 8 4.49

SPK DIV RND 96 0 4.24
SPK DIV RND 96 1 4.51
SPK DIV RND 96 2 4.28
SPK DIV RND 96 3 4.42
SPK DIV RND 96 4 4.3
SPK DIV RND 96 5 4.34
SPK DIV RND 96 6 4.38
SPK DIV RND 96 7 4.33

Table B.16: WER on Librispeech test-clean when fixing the number of speakers
during data selection in the 10-hour setup
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run WER
PERPLEXITY 5k LM 15 HEAD 0 4.38
PERPLEXITY 5k LM 15 HEAD 10 4.37
PERPLEXITY 5k LM 15 HEAD 13 4.55
PERPLEXITY 5k LM 15 HEAD 14 4.36
PERPLEXITY 5k LM 15 HEAD 3 4.5
PERPLEXITY 5k LM 15 HEAD 4 4.36
PERPLEXITY 5k LM 15 HEAD 7 4.35
PERPLEXITY 5k LM 15 HEAD 9 4.51

PERPLEXITY 5k LM 15 TAIL 0 4.27
PERPLEXITY 5k LM 15 TAIL 2 4.26
PERPLEXITY 5k LM 15 TAIL 3 4.21
PERPLEXITY 5k LM 15 TAIL 4 4.27
PERPLEXITY 5k LM 15 TAIL 5 4.22
PERPLEXITY 5k LM 15 TAIL 7 4.24
PERPLEXITY 5k LM 15 TAIL 8 4.29
PERPLEXITY 5k LM 15 TAIL 9 4.27

PERPLEXITY 5k LM 40 MIDDLE 0 4.25
PERPLEXITY 5k LM 40 MIDDLE 1 4.17
PERPLEXITY 5k LM 40 MIDDLE 2 4.19
PERPLEXITY 5k LM 40 MIDDLE 3 4.23
PERPLEXITY 5k LM 40 MIDDLE 4 4.21
PERPLEXITY 5k LM 40 MIDDLE 5 4.25
PERPLEXITY 5k LM 40 MIDDLE 6 4.33
PERPLEXITY 5k LM 40 MIDDLE 7 4.27

Table B.17: WER on Librispeech test-clean for data selection based on the
perplexity of byte pair encoded clustered units (PBPE) in the 10-hour setup
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run WER
PRETRAIN M LOSS AVG ASC 0 4.25
PRETRAIN M LOSS AVG ASC 1 4.26
PRETRAIN M LOSS AVG ASC 2 4.32
PRETRAIN M LOSS AVG ASC 3 4.26
PRETRAIN M LOSS AVG ASC 4 4.29
PRETRAIN M LOSS AVG ASC 5 4.28
PRETRAIN M LOSS AVG ASC 6 4.3
PRETRAIN M LOSS AVG ASC 7 4.3

PRETRAIN M LOSS AVG DESC 0 4.39
PRETRAIN M LOSS AVG DESC 1 4.53
PRETRAIN M LOSS AVG DESC 2 4.53
PRETRAIN M LOSS AVG DESC 3 4.43
PRETRAIN M LOSS AVG DESC 4 4.43
PRETRAIN M LOSS AVG DESC 5 4.38
PRETRAIN M LOSS AVG DESC 6 4.52
PRETRAIN M LOSS AVG DESC 7 4.45

PRETRAIN U LOSS AVG NO MASK HEAD 0 4.39
PRETRAIN U LOSS AVG NO MASK HEAD 1 4.48
PRETRAIN U LOSS AVG NO MASK HEAD 2 4.33
PRETRAIN U LOSS AVG NO MASK HEAD 3 4.48
PRETRAIN U LOSS AVG NO MASK HEAD 4 4.36
PRETRAIN U LOSS AVG NO MASK HEAD 5 4.4
PRETRAIN U LOSS AVG NO MASK HEAD 6 4.43
PRETRAIN U LOSS AVG NO MASK HEAD 7 4.37

PRETRAIN U LOSS AVG NO MASK TAIL 0 4.27
PRETRAIN U LOSS AVG NO MASK TAIL 1 4.18
PRETRAIN U LOSS AVG NO MASK TAIL 2 4.2
PRETRAIN U LOSS AVG NO MASK TAIL 3 4.24
PRETRAIN U LOSS AVG NO MASK TAIL 4 4.21
PRETRAIN U LOSS AVG NO MASK TAIL 5 4.26
PRETRAIN U LOSS AVG NO MASK TAIL 6 4.32
PRETRAIN U LOSS AVG NO MASK TAIL 7 4.17

Table B.18: WER on Librispeech test-clean for data selection based on pre-
training loss in the 10-hour setup
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run WER
UTTLN DIV RND LNG DUR TAIL 0 4.31
UTTLN DIV RND LNG DUR TAIL 1 4.37
UTTLN DIV RND LNG DUR TAIL 2 4.35
UTTLN DIV RND LNG DUR TAIL 3 4.33
UTTLN DIV RND LNG DUR TAIL 4 4.23
UTTLN DIV RND LNG DUR TAIL 5 4.17
UTTLN DIV RND LNG DUR TAIL 6 4.26
UTTLN DIV RND LNG DUR TAIL 7 4.25

UTTLN DIV RND MIDDLE DUR 0 4.37
UTTLN DIV RND MIDDLE DUR 1 4.2
UTTLN DIV RND MIDDLE DUR 2 4.19
UTTLN DIV RND MIDDLE DUR 3 4.24
UTTLN DIV RND MIDDLE DUR 4 4.27
UTTLN DIV RND MIDDLE DUR 5 4.25
UTTLN DIV RND MIDDLE DUR 6 4.3
UTTLN DIV RND MIDDLE DUR 7 4.35

UTTLN DIV RND SHRT DUR TAIL 0 4.47
UTTLN DIV RND SHRT DUR TAIL 1 4.49
UTTLN DIV RND SHRT DUR TAIL 2 4.43
UTTLN DIV RND SHRT DUR TAIL 3 4.43
UTTLN DIV RND SHRT DUR TAIL 4 4.44
UTTLN DIV RND SHRT DUR TAIL 5 4.41
UTTLN DIV RND SHRT DUR TAIL 6 4.44
UTTLN DIV RND SHRT DUR TAIL 7 4.44

Table B.19: WER on Librispeech test-clean based on utterance duration in
the 10-hour setup
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Criterion Mean WER StdDev of WER Min WER Max WER
PRETRAIN U LOSS AVG NO MASK TAIL 4.23 0.05 4.17 4.32
PERPLEXITY 5k LM 40 MIDDLE 4.24 0.05 4.17 4.33
PUR RND 4.24 0.05 4.18 4.33
PERPLEXITY 5k LM 15 TAIL 4.25 0.03 4.21 4.29
UTTLN DIV RND MIDDLE DUR 4.27 0.07 4.19 4.37
PRETRAIN M LOSS AVG ASC 4.28 0.02 4.25 4.32
UTTLN DIV RND LNG DUR TAIL 4.28 0.07 4.17 4.37
SPK DIV RND 96 4.35 0.09 4.24 4.51
BK DIV RND 64 4.38 0.05 4.31 4.45
PRETRAIN U LOSS AVG NO MASK HEAD 4.41 0.05 4.33 4.48
PERPLEXITY 5k LM 15 HEAD 4.42 0.08 4.35 4.55
UTTLN DIV RND SHRT DUR TAIL 4.44 0.03 4.41 4.49
PRETRAIN M LOSS AVG DESC 4.46 0.06 4.38 4.53
SPK DIV RND 24 4.53 0.10 4.35 4.69
GNDR DIV F 24 4.54 0.05 4.47 4.62
GNDR DIV M 24 4.54 0.08 4.45 4.69
BK DIV RND 16 4.57 0.10 4.44 4.69

Table B.20: Librispeech test-clean WER Summary for different data selection
criteria in the 10-hour setup

B.2.2 Results Obtained when Fine-tuning with 1-hour Subsets

run WER
PUR RND 0 6.43
PUR RND 1 6.42
PUR RND 2 6.69
PUR RND 3 6.76
PUR RND 4 6.6
PUR RND 5 6.69
PUR RND 6 6.76
PUR RND 7 6.55

Table B.21: WER on Librispeech test-clean for pure-random data selection in
the 1-hour setup
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run WER
PERPLEXITY 5k LM 15 HEAD 0 6.89
PERPLEXITY 5k LM 15 HEAD 1 6.89
PERPLEXITY 5k LM 15 HEAD 2 6.74
PERPLEXITY 5k LM 15 HEAD 3 6.98
PERPLEXITY 5k LM 15 HEAD 4 6.82
PERPLEXITY 5k LM 15 HEAD 5 6.87
PERPLEXITY 5k LM 15 HEAD 6 6.76
PERPLEXITY 5k LM 15 HEAD 7 6.92

PERPLEXITY 5k LM 15 TAIL 0 6.65
PERPLEXITY 5k LM 15 TAIL 2 6.4
PERPLEXITY 5k LM 15 TAIL 3 6.76
PERPLEXITY 5k LM 15 TAIL 4 6.65
PERPLEXITY 5k LM 15 TAIL 5 6.59
PERPLEXITY 5k LM 15 TAIL 6 6.3
PERPLEXITY 5k LM 15 TAIL 7 6.66

Table B.22: WER on Librispeech test-clean for data selection based on the
perplexity of byte pair encoded clustered units (PBPE) in the 1-hour setup
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run WER
PRETRAIN M LOSS AVG ASC 0 6.65
PRETRAIN M LOSS AVG ASC 1 6.57
PRETRAIN M LOSS AVG ASC 2 6.8
PRETRAIN M LOSS AVG ASC 3 6.65
PRETRAIN M LOSS AVG ASC 4 6.69
PRETRAIN M LOSS AVG ASC 5 6.46
PRETRAIN M LOSS AVG ASC 6 6.65
PRETRAIN M LOSS AVG ASC 7 6.82

PRETRAIN M LOSS AVG DESC 0 7.1
PRETRAIN M LOSS AVG DESC 1 6.92
PRETRAIN M LOSS AVG DESC 2 7.09
PRETRAIN M LOSS AVG DESC 3 7.16
PRETRAIN M LOSS AVG DESC 4 7.01
PRETRAIN M LOSS AVG DESC 5 7.01
PRETRAIN M LOSS AVG DESC 6 7.25
PRETRAIN M LOSS AVG DESC 7 7.23

PRETRAIN U LOSS AVG NO MASK HEAD 0 7.1
PRETRAIN U LOSS AVG NO MASK HEAD 1 6.74
PRETRAIN U LOSS AVG NO MASK HEAD 2 6.74
PRETRAIN U LOSS AVG NO MASK HEAD 3 6.79
PRETRAIN U LOSS AVG NO MASK HEAD 4 6.72
PRETRAIN U LOSS AVG NO MASK HEAD 5 6.88
PRETRAIN U LOSS AVG NO MASK HEAD 6 6.92
PRETRAIN U LOSS AVG NO MASK HEAD 7 6.77

PRETRAIN U LOSS AVG NO MASK TAIL 0 6.52
PRETRAIN U LOSS AVG NO MASK TAIL 1 6.84
PRETRAIN U LOSS AVG NO MASK TAIL 2 6.99
PRETRAIN U LOSS AVG NO MASK TAIL 3 6.74
PRETRAIN U LOSS AVG NO MASK TAIL 4 6.7
PRETRAIN U LOSS AVG NO MASK TAIL 5 6.55
PRETRAIN U LOSS AVG NO MASK TAIL 6 6.66
PRETRAIN U LOSS AVG NO MASK TAIL 7 6.62

Table B.23: WER on Librispeech test-clean for data selection based on pre-
training loss in the 1-hour setup
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Criterion Mean WER StdDev of WER Min WER Max WER
PERPLEXITY 5k LM 15 TAIL 6.57 0.16 6.3 6.76
PUR RND 6.61 0.14 6.42 6.76
PRETRAIN M LOSS AVG ASC 6.66 0.12 6.46 6.82
PRETRAIN U LOSS AVG NO MASK TAIL 6.70 0.15 6.52 6.99
PRETRAIN U LOSS AVG NO MASK HEAD 6.83 0.13 6.72 7.1
PERPLEXITY 5k LM 15 HEAD 6.86 0.08 6.74 6.98
PRETRAIN M LOSS AVG DESC 7.10 0.11 6.92 7.25

Table B.24: Librispeech test-clean WER Summary for different data selection
criteria in the 1-hour setup
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