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Abstract. The neurobiological origin of dyslexia allows
the study of this disorder by examining functional con-
nectivity between regions of the brain. During rest-state
or at task completion, Electroencephalograms (EEG)
are used to observe brain signals. By using Partial
Directed Coherence (PDC) analysis, the correct anal-
ysis of functional connectivity was assessed. In spite
of that, the estimation of functional connectivity can
be inaccurate due to the presence of artifacts. Several
methods have been employed by researchers to remove
artifacts, including Moving Average Filters (MAF),
Wiener Filters (WF), Wavelet Transforms (WT), and
hybrid filters. Despite this, no research has been con-
ducted on the effects of artifact removal methods on
functional connectivity. Consequently, Artifact Can-
cellation (AC) algorithms are developed to reduce the
effects of eye blinks, eye movements, and muscle move-
ments on functional connectivity estimation. In this
work, the denoising filters discussed earlier are utilized
as part of the AC algorithm. Additionally, a compar-
ison was conducted to determine the effectiveness of
the filters. According to the results, AC-MAF removed
all artifacts with the least computational complexity
after improving the MAF. In order to test its efficacy in
real-world conditions, it was applied to the real signals
recorded while children with dyslexia were participat-
ing in rapid automatized naming activities. Utilizing
the PDC approach, the developed algorithm accurately
assessed functional connectivity.
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1. Introduction

Dyslexia is commonly conceptualised as a specific
learning deficit that affects the ability to identify letter-
sound correspondence (phonemic awareness), which in
turn affects decoding ability. It is considered a neurobi-
ological disorder due to the differences in the network of
neurons and how one part of the brain communicates
with other regions [1] and [2]. Hence, brain imagery
techniques, such as Electroencephalography (EEG),
Magnetoencephalography (MEG), Positron Emission
Tomography (PET), and Functional Magnetic Reso-
nance Imaging (fMRI) are required to examine the
complex cortical brain connectivity [3]. EEG was
selected due to its excellent temporal resolution that
displays the connectivity within the brain regions dur-
ing any given time intervals [4]. Further, EEG can be
useful in identifying brain functional connectivity in
children with dyslexia when they perform Rapid Au-
tomatized Naming (RAN) tasks. RAN has been used
widely as it is one of the predictors for early reading
development [5]. It is based on how rapid and accurate
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a person names a string of digits, objects, colours, and
letters [6].

The brain functional connectivity can be analyzed
using methods such as Granger Causality (GC), Direct
Transfer Function (DTF), and Partial Directed Coher-
ence (PDC) were developed to detect the functional
connectivity between two or more channels [7]. More-
over, the GC method depends on the predicted error
for the model prediction, whereas the DTF and PDC
methods vary depending on the predicted coefficients
[8]. However, since EEG signals can be contaminated
with a non-neural signal known as artifacts, they must
be removed during the pre-processing step before the
clean signal can be analysed to see the functional con-
nectivity. The artifacts always corrupt EEG signals
due to eye movement and blinking, as well as muscu-
lar movements such as the jaw, neck movements and
swallowing, causing additional interaction between the
channels [9] and [10]. Also, it can be caused by the
interference of power lines (50/60 Hz), substan-
dard technology, and electronic devices that create
electromagnetic field interferences [9].

Despite that, there are various methods used to
remove artifacts from EEG signals and one of the com-
monly used methods based on Blind-Source Separa-
tion (BSS) is known as the Independent Component
Analysis (ICA) method [11], [12] and [13]. However,
this method still requires a reference signal to select
the right source of artifacts, or it can be done by
asking the subjects to produce artifacts [14]. There-
fore, one-channel methods using denoising filters such
as: Discrete Wavelet-based Denoising (DWD), Sta-
tionary Wavelet-based Denoising (SWD), Wiener Fil-
ter (WF), Median Filter (MF), and Moving Average
Filter (MAF), were developed by researchers in [15],
[16], [17], [18] and [19] to remove the artifacts. De-
spite the successful results achieved by these tech-
niques in removing either ocular or muscular artifacts,
each technique has its own limitations. More recently,
a combination of methods (known as a hybrid method)
was used to enhance the performance of the artifacts
removal technique, and to evaluate a single EEG chan-
nel [20] and [21]. One of these methods is the com-
bination of DWD and SWD. Nonetheless, the compu-
tational complexity of using a hybrid technique can
be complex and take longer process time compared to
the standard denoising techniques [15]. Also, there are
no studies conducted to investigate the effectiveness of
removing EEG artifacts on EEG functional connectiv-
ity. As a consequence, it is crucial to improve artifact
removal methods and ensure proper functional
connectivity estimation.

In this paper, the Artifact Cancellation (AC)
algorithm is developed and implemented with various
filters, those are: MF, MAF, DWD, SWD, WF, and
hybrid of DWD/SWD with Linear Prediction Filter

(LPC), as well, with WF. Additionally, this study com-
pares the computational complexity of the modified
MAF to the other filters in the proposed AC algorithm.
Furthermore, simulated and real EEG signals were
analyzed from a PDC perspective before and after the
artifact removal process. This is to ensure estimating
the correct functional connectivity between the brain
areas produced by the brain (clean EEG) signal.

The remaining of this paper is organized as follows:
Sec. 2. covers the brain anatomy, including the
areas involved in the learning of the reading process.
Section 3. describes the signal mode and includes
EEG signal characteristics, characteristics of artifacts,
and EEG signal measurement procedure. Section 4.
presents artifacts removal methods, including the AC
algorithm. Section 5. presents the results for simu-
lated and real signals, including the effects of the arti-
facts on the estimation of functional connectivity using
PDC, the consequences of using the proposed method,
and the computational complexity for each method.
Conclusions are stated in Sec. 6.

2. Brain and Dyslexia

The reading process is a recent cultural invention and
the human brain adapted to this activity by making
connections between several regions [22]. Although the
entire brain works during any given task, multiple stud-
ies have revealed that there are essential areas in the
left hemisphere that play significant roles in acquiring
reading skills as well as reaching reading mastery [23],
[24], [25], [26], [27] and [28].

Dyslexia occurs across different levels of intelligence,
but the prominent identification factor is the tendency
for an individual to struggle in mastering the reading
process or to break the ‘reading code’ despite main-
stream educational experiences [29]. At the early
stage of learning to read, children master how let-
ters (grapheme) relate to their corresponding sounds
(phoneme) [30]. As children with dyslexia face chal-
lenges in grasping these basic reading skills, they are
unable to gain sufficient knowledge since the education
system relies heavily on text mastery. Therefore, early
detection is vital to provide a systematic intervention
to help children with dyslexia to learn to read [31].

A pathway is also formed in the left hemisphere that
is dominant in the reading process. In this pathway, as
one views the visual stimuli, the occipital lobe becomes
activated and sends signals to the temporal lobe and
Wernicke’s area. The temporal area is important to
access known words from memory, whereas the Wer-
nicke’s area is vital to make connections between letter
and sound based on the visual stimuli (word or string
of words). Finally, the signal is sent to the Broca’s
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area (phonological processor) before proceeding to the
motor cortex, which controls the muscles in the lips,
tongue, and face [32]. The brain regions crucial dur-
ing the reading process are shown in Fig. 1. Thus,
any disconnection in the pathway may lead to dyslexia
or reading difficulties, depriving their ability to decode
words [24].

Temporo-parietal  
cortex

Visual
cortex

Occipito-temporal
cortexInerior frontal

cortex

Fig. 1: Reading circuit [6].

3. Signal Model and Analysis

In this section, EEG signals were modelled and
described as a Multivariate Autoregressive (MVAR)
process, followed by the description of artifacts,
their characteristics and causes. Also, in the last
sub-section, the effect of artifacts on EEG signals is
presented.

3.1. Multivariate Autoregressive
Model

The EEG signals that are measured and collected by
attaching electrodes to the subjects’ heads are non-
stationary signals – time-varying signals that will arise
during any activation in the brain regions. It can
be simulated by adding signals epochs with differ-
ent frequencies chosen randomly in the range between
0.04–120 Hz that includes the bands: Delta, Theta,
Alpha, Beta, and Gamma [33]. Nevertheless, there are
no correlations between those signals in terms of time
and frequency. Therefore, the MVAR model was cho-
sen for this matter due to its similarity to the EEG sig-
nals [34] and [35]. It is identical to an Autoregressive
(AR) signal, but usefull for more than one-time series
model (M channels) and all the channels interact with
each other by a set of coefficients. These coefficients
will reflect the relationship between the channels and
the strength of functional connectivity between two or
more channels [36]. The MVAR model can be written
in the following form:


x1(n)
x2(n)

...
xM (n)

 =

p∑
r=1

Ar


x1(n− 1)
x2(n− 1)

...
xM (n− 1)

+


w1(n)
w2(n)

...
wM (n)

 , (1)

where wi(n) is an uncorrelated white noise source,
xi(n) is the stationary processes for each channel,
p is the order. The coefficients Ar in Eq. (1)
is defined as:

Ar =



a11 (r) a12 (r) . . . a1M (r)
...

...
...

...
...

... aij (r)
...

...
...

...
...

aM1 (r) . . . . . . aMM (r)


, (2)

where the coefficients aij(r) are the interaction effect
due to xj(n− r) on xi(n) for each delay point r.

3.2. Artifacts Model

The MVAR models simulate the functional connectiv-
ity between two or more channels, where the parame-
ters (the optimum order of MVAR model and the coeffi-
cients) are not constant, and they will change for each
second because those channels are time-variant [37].
Apart from that, artifacts will result in new interac-
tion between channels leading to the wrong estimation
of MVAR parameters and hence the wrong functional
connectivity [38]. Consequently, the artifacts are mod-
elled according to their type and added to the MVAR
model’s channels. The MVAR model for five channels
as explained in [39] is used in this paper, with artifacts
added as described in the following equation:

x1(n) = 0.95
√
2x1(n− 1) + 0.9025x1(n− 2)+

+ s(n) + w1(n),

x2(n) = 0.5x1(n− 2) + w2(n),

x3(n) =− 0.4x1(n− 3) + w3(n),

x4(n) =− 0.5x1(n− 2) + 0.25
√
2x4(n− 1)+

+ 0.25
√
2x5(n− 1) + w4(n),

x5(n) =− 0.25
√
2x4(n− 1)+

+ 0.25
√
2x5(n− 1) + s(n) + w5(n),

(3)

where xi(n) represents the simulated EEG signals for
5 channels with sampling frequency of 250 Hz that fol-
lows the Nyquist–Shannon sampling theorem for sam-
pling the continuous-time signals with a finite band-
width. The artifacts (eye blinking/movement and mus-
cular artifacts) are modelled by s(n) that is defined as:
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s(n) = b(n) + o(n) +m(n), (4)

where b(n), o(n), and m(n) represent the blinking,
eye-movement, and muscular artifacts, respectively.

The eye blinking artifacts occur in a period of
15–20 times per minute [40], when the duration of each
blink is 150–400 msec with high magnitude (800 µV
and above) [41]. On the other hand, eye-ball movement
has a tremendous amplitude compared to blinking at
a frequency of below 5 Hz [16]. The characteristics of
blinking signals are described in [42]. Thus, this signal
is a convolution of a unit sample response h(n) with
pulse train x(n) that can be expressed as:

b(n) =

M−1∑
m=0

h(m)x(n−m), (5)

where h(n) is a Hamming function with size (M = 80)
samples, while the pulse train x(n) is designated as:

x(n) =

1 0 0 . . . 0︸ ︷︷ ︸
k segments

1 . . .

 , (6)

where the space (segments) is randomly selected for
each period (k ∈ [38 : 50]) to follow the characteristics
of eye blinking artifacts. Consequently, each peak’s
duration is 100 samples, while the period between two
blinking peaks is [750 : 1000] samples. As a result,
simulated eye blinking is shown in Fig. 2.

Fig. 2: Simulated eye-blinking signal [42].

The eye-movement signal is simulated using half
a period of a sine wave with immense magnitude, along
with a frequency lower than 5 Hz [16]. The signal can
be defined as:

o(n) =

A sin(2πf1n) 0 < x <
(N − 1)

2
,

0 otherwise,
(7)

where A is amplitude, N is the number of samples
within an observed interval, and f1 is frequency. For

simulation purposes, the amplitude and frequency were
selected as 20 and 4 Hz, respectively [16].

The frequency range of muscular movements ranges
from 20 to 50 Hz, and it is difficult to remove them
from the EEG signals because they overlap one another
[43], [43] and [45]. Muscular signals were simulated ac-
cording to the attributes of Electromyography (EMG)
signals [46] and [47] where the muscle fibre membranes
create an action potential during depolarization and
repolarization of the muscle. Figure 3 shows an ex-
ample of a Motor Unit Action Potential (MUAP) and
its firing frequency as one important factor influencing
both magnitude and density. The mathematical model
for the EMG signal can be expressed as:

m(n) =

N−1∑
r=0

MU(r)w(n− r), (8)

where m(n) is the simulated EMG signal, MU(n) is
the MUAP, w(n) is point processed (firing impulse),
and N is the number of motor unit firing. The MUAP
can further be defined as:

MU(n) =

M−1∑
l=0

A(l) sin(2πfln), (9)

where M is the number of muscle-fiber action poten-
tials, and A(l) represents the l-th amplitude for each
action potential that would be randomly selected – pos-
itive or negative for each (l). The firing frequency is
defined in (fl), which is randomly chosen in the interval
(fl ∈ [20 : 50]).
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Fig. 3: Requirements and firing frequencies of MUAP [44].

Figure 4 shows the simulated signal with effects from
ocular and muscular artifacts on time and frequency
domains. The simulated blinking effect appears in the
same time domain as sharp peaks, while the simulated
eye movements appear as the typical shape of a half
sine wave. On the other hand, the simulated mus-
cular artifacts overlap with the simulated EEG signal
but have slightly higher amplitude compared to the
simulated EEG signal, as shown in the time intervals

© 2022 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 595



BIOMEDICAL ENGINEERING VOLUME: 20 | NUMBER: 4 | 2022 | DECEMBER

(10–20), (40–60), and (90–110). In the frequency do-
main, major effects of ocular artifacts are seen within
the (0–10) Hz range, while for muscular artifacts,
the effect overlaps with the simulated EEG within
(20–50) Hz range.

(a) Time representation.

(b) Power spectrum.

Fig. 4: Simulated signal for channel x5(n) with artifacts.

3.3. Functional Connectivity

In brain neural networks, nodes (channels) are con-
nected to each other and transmit signals from one
node to another for example, 1→ 2, 2→ 3, and 3→ 4
with arrows showing the direction of information flow.
This flow can be detected by using statistical relation-
ship methods such as the cross-correlation method, by
which leading and lagging signals are detected from
output delays. However, it cannot differentiate direct
and indirect interactions between the channels, such
as the indirect interaction between 1 → 4. Moreover,
correlation or coherence methods can be used only be-
tween two channels [48], while in brain neural networks,
each channel can be affected by more than one chan-
nel. Furthermore, as stated in Granger Causality (GC)
[49] and [50] , if a process in channel Y is caused by
another process in channel X, then the prediction of
the earlier one is enhanced by using information from
the latter one. Therefore, methods such as GC, Direct
Transfer Function (DTF), and Partial Directed Coher-
ence (PDC) were developed to detect the functional

connectivity between two or more channels [7]. More-
over, the GC method depends on the predicted error
for the model prediction, whereas the DTF and PDC
methods vary depending on the predicted coefficients
[8].

Both DTF and PDC can estimate the functional
connectivity since both are applicable to EEG signals.
However, the latter was selected due to its ability to
detect only direct interactions for more than two chan-
nels [34]. Additionally, applying the DTF method to
more than two channels cannot detect the correct di-
rection of information [39]. The PDC is computed for
the estimated MVAR coefficients in Eq. (2), as defined
in [39] using the following equation:

πij(f) =
|aij(f)|√

aHj (f) aj(f)
, (10)

where aij(f) represents the difference between the
Fourier transform of the coefficient series Ar in Eq. (2),
and an identity matrix of the same size as Ar. While
πij is the PDC result - between 0 and 1 where the
higher value represents stronger functional connectiv-
ity between i← j at a frequency f . The average func-
tional connectivity between each of the two channels
among the frequencies was calculated using Eq. (11)
from [51], as described:

πij(f) =

∫ ∞

0

f πij(f) df, (11)

where πij(f) is the average of the functional connec-
tivity between i← j.

The result from this equation was then compared to
a threshold γ to determine if functional connectivity
was present. The threshold range of (0.05–0.2) was
described in [52]; thus, the selected threshold in this
work is (γ = 0.2).

The number of coefficients for each channel depends
on the order of the AR signal [53] and the parameters
(the optimum order of MVAR model and the coeffi-
cients), which can be estimated using the ARFIT algo-
rithm [36]. The algorithm uses different methods, such
as Akaike Information Criterion (AIC) and Schwarz’s
Bayesian Criterion (SBC), for the MVAR model esti-
mation. Nevertheless, the latter is preferable for time
series analysis [54].

Since the characteristics of the EEG signals changes
in time, the signals are segmented into epochs to sat-
isfy local stationary conditions and compute the PDC
accordingly. Meanwhile, the number of samples N was
discussed in [37] and [49] and described as:

N > Mp, (12)
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where M is the number of channels and p is the order as
defined in Eq. (1). Therefore, the selected size for each
epoch is 250 samples (1 sec for a sampling frequency of
250 Hz), and the number of parameters for each delay
(r) should be as low as possible (p ≤ 5) [55].

The PDC analysis results for Eq. (3) can be plot-
ted as shown in Fig. 5, where the vertical and hori-
zontal axis represents the magnitude and frequency in
samples, respectively.

Fig. 5: PDC analysis of the simulated signal from Eq. (3) [39].

From Fig. 5, the functional connectivity was consid-
ered when the average was equal to or higher than the
selected threshold (γ = 0.2). Consequently, it can be
observed that the diagonal plots are higher in magni-
tude as compared to the other plots due to the repre-
sentation of how much a channel is connected to itself.
The off-diagonal plots represents the functional connec-
tivity of the four channels, namely: 1 to 2, 1 to 3, 1 to
4, and 4 and 5 from/to each (the desired results of the
PDC). Moreover, the functional connectivity caused by
artifacts’ effect such as 4 to 1, 5 to 1, and 1 to 5, were
demonstrated. Therefore, artifacts need to be removed
to ensure the correct estimation of the parameters in
Eq. (1).

4. Artifacts Removal Method

Artifacts Cancellation (AC) algorithm was developed
based on a previous approach [42] to remove the major
artifacts such as ocular and muscular artifacts. Also,
most of the artifacts cancellation methods, as described
in [16], [17], [33] and [40] follows the structure shown
in Fig. 6. The denoising filter used in the AC structure
can be any filtering or denoising method. In Fig. 6,
x(n) is the input signal to the denoising filter – by
which, it is the raw EEG recording received from one
of the channels or the simulated signals as defined in
Eq. (3). The output of the denoising filter is y(n), while
the clean EEG recording z(n) is the difference between
system output y(n) and the input signal x(n).

The various AC algorithm described in this sec-
tion can be implemented using Median Filter (MF),

Denoising 

Filter
∑

( )y n

AC

x(n)
_

+
z(n)

Fig. 6: AC algorithm structure for single EEG channel.

Moving Average Filter (MAF), Discrete Wavelet-based
Denoising (DWD), Stationary Wavelet-based Denois-
ing (SWD), Wiener Filter (WF), and hybrid of wavelet
denoising methods with linear prediction filter or with
Wiener filter.

4.1. Wiener Filter

A Wiener filter is an optimum filter that derives coef-
ficients from the desired and noisy observed signals by
minimizing the mean square error (accuracy depends
on the signal-to-noise ratio). It is used in [17] to remove
eye-blinking artifacts by estimating the artifacts sig-
nal and subtracting the estimated signal from the raw
EEG data, as shown in Fig. 7. In other words, simu-
lated EEG data was considered as a noisy signal, while
blinking signal is approximately deterministic since
it would be modelled as a mathematical function as
described in Eq. (5).

y(n)
( )h n

Reference 

signal [s(n)]

∑
_

+x(n)=

s(n)+v(n)
e(n)

Fig. 7: Block diagram for Wiener filter.

In Fig. 7, s(n) represents the signal – in this case
the blinking signal, while v(n) is the white noise signal
and x(n) is the combination of both. The clean arti-
facts represented by y(n) is the output of the optimum
linear filter h(n), and e(n) is the error that is used to
optimize the impulse response filter h(n) by minimiz-
ing the mean-square error. Moreover, for the Wiener
filter to function effectively, the reference signal must
be the same as the signal of interest.

4.2. Wavelet Denoising

Non-stationary signals such as EEG can be analyzed
using Wavelet Transform (WT) [15]. For EEG signals,
the WT can be applied using either Discrete Wavelet
Transform (DWT) or Stationary Wavelet Transform
(SWT) [16]. The DWT decomposes the signals to L
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level through high-pass filters and low-pass filters using
bases functions known as wavelets [16]. Next, down-
sampling is applied to reduce computational complex-
ity and obtain the detail coefficient (DL) as well as
approximate coefficient (AL). Next, a thresholding al-
gorithm is staged at each (DL) to ensure the correct
selection of artifacts’ coefficients without selecting the
EEG signal coefficients. After that, upsampling was
applied before reconstructing the decomposed coeffi-
cients into a single signal. This process is known as
Discrete Wavelet-based Denoising (DWD). The block
diagram of DWD is described in Fig. 8.

DWT 

Decomposition
( )x n ( )y nThreshold

DWT 

Reconstruction

DWD

Fig. 8: Block diagram for discrete wavelet denoising.

EEG signals have a band frequency range of 0.5 to
120 Hz, while the band frequency for eye movement,
blinking, and muscular activity are 0 to 7 Hz, 8 to
13 Hz and 20 to 50 Hz, respectively. Moreover, the
DWD decomposition should have five levels (as shown
in Fig. 9), and the artifacts caused by eye movement,
blinking, and muscular contraction should be at de-
composition levels 5, 4, and 3, respectively. After that,
the statistical thresholding is used for denoising at each
decomposition level with artifacts. In the current case,
the selected threshold was applied on the detailed coef-
ficients to allow the artifacts signals’ coefficients to pass
each decomposition level and cancel the EEG signals.
Moreover, the wavelet used in this work was symlet
(sym3) due to its effectiveness, as stated in [12], [15],
[16] and [21].

D1D2D3D4D5A5

125 Hz62.5 Hz31.2 Hz15.6 Hz7.8 

Hz

3.9 

Hz

0

Eye 

movement

Blinking

Muscular 

movement

Fig. 9: Wavelet decomposition levels and the presence
of artifacts [42].

In contrast to DWD, the SWD decomposes signals
without a downsampling algorithm to maintain all the
coefficients within the decomposition levels. This step
is helpful for essential wave shapes (especially with
white noises) [18] and pulses – in this case, blink-signal
shape and occurring time for localization calculations.
However, the computing time is longer due to the ex-
clusion of the downsampling algorithm, which retains
the redundancy in the calculations. Similar to the
DWD, the wavelet used is (sym3) and the decompo-
sition level for the SWD is five, as shown in Fig. 9.

4.3. Moving Average Filter

The MAF employs a window function to smooth the
signal from noise. It is frequently used in the time do-
main due to the weak frequency response (unable to
separate one band of frequency from another) caused
by the weak stopband attenuation [56]. Yet, it provides
the faster step response for a given noise reduction.
After using this filter in a three-stage algorithm called
gradient artifact correction in [57], the clean EEG sig-
nals were restored, where (N=155) was the estimated
filter size. However, the size of the filter in this case
does not follow the characteristics of the MAF to re-
move the artifacts. The filter length is inversely pro-
portional to the frequency; therefore, increasing the
length of the filter will maintain low frequencies and
vice versa. For example, if the selected filter size is
(N=10) and the sampling frequency is 250 Hz, then
the cut-off frequency is 25 Hz, as described in [58] us-
ing the following equation:

N =
fs
f
, (13)

where N is filter size, fs is the sampling frequency,
and the artifacts’ frequency is f . Figure 10 shows the
frequency representation for various filter lengths fol-
lowing Eq. (13).

Ocular artifacts Muscular artifacts

Fig. 10: Frequency response of moving average filter for various
filter lengths.

The length for the MAF can be determined using
the presence of the artifacts in the time and frequency
domains (as described earlier in Sec. 3.2. ), where the
magnitude of the artifacts is higher than the magnitude
of the clean EEG signals in the time domain. Also,
since the muscular artifacts are within the range of
20–50 Hz and the sampling frequency is 250 Hz, the
selected size of the filter is (N = 5), which covers up
both ocular and muscular artifacts.
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4.4. Median Filter

Median Filter (MF) is a non-linear filter that relies on
a sorting algorithm to select the middle-ranked value
within a set of data. Since MF is inherently an imaging
technique [59], it is usually used for two-dimensional
signals to maintain white noise-like signals and to re-
move impulse artifacts. Nevertheless, the filter can
be used in the process of one-dimension signals [60].
For example, if the data set is x = {6, 5, 4, 9, 3}, the
data will be sorted following the merge sort algorithm
(shown in Fig. 11) to become {3, 4, 5, 6, 9}, and the
middle value is (y = 5), as described in [60] according
to the equation:

y(n) = median (X(n)) ,

X(n) =

{
x(n− N

2
) , . . . , x(n) , . . . x(n+

N

2
)

}
,

(14)

where y(n) is the output of the median filter, x(n) is
the input data, and N is the window size of the filter.

{ 6 , 5 , 4 , 9 , 3 }

{ 6 , 5 , 4 } { 9 , 3 }

{ 3 , 9 }

{ 9 } { 3 }{ 6 , 5 }

{ 5 , 6 }

{ 6 } { 5 }

{ 4 }

{ 4 , 5 , 6 }

{ 3 , 4 , 5 , 6 , 9 }

Unsorted Array

Sorted Array

Fig. 11: Visualization of merge sort algorithm [64].

Although the MF filter is similar to the MAF, it is
deemed to be better than the latter one due to the
fact that it does not average the values specified in the
window [62], [63] and [64]. The MF was used previously
in [64], [65] and [66] to remove the ocular artifacts from
the EEG signals where the window size used to remove
the artifacts was three (N = 3). Therefore, this work
will be performed with the same window size.

4.5. Hybrid Methods

In recent years, researchers have focused on using a hy-
brid strategy to remove the artifacts by merging two
approaches [19], [20] and [21]. These techniques remove
artifacts more accurately from the EEG signals com-
pared to a single method. Besides, hybrid methods can

estimate the reference signals and eliminate the need
for these signals. In this work, the hybrid methods are
Linear Predictive Coding (LPC) with DWD and LPC
with SWD, as shown in Fig. 12. Also, the hybrid WF
with DWD was used in the proposed study, as shown
in Fig. 13.

( )x n

LPC

coefficients

Whitening
De-

whitening
( )y nDWD/SWD

Fig. 12: Block diagram for (LPC-WD) hybrid denoising filter.

Based on Fig. 12, the whitening filter (whitening
transform) uses the inverse of an all-pole system [58]
– in this case, derived from the LPC predictor – to
whiten the signals. This step increases the level of the
EEG signal to ensure the removal of the EEG signal
from the raw signals at the wavelet denoising stage.
Subsequently, de-whitening is applied to retrieve the
clean artifacts’ signals to be subtracted from the raw
EEG signals in the AC algorithm.

In Fig. 13, the output of the DWD filter was used
as a reference signal for Wiener filter, to ensure all the
EEG signals were removed and retrieve clean artifacts
in the output. Subsequently, the clean artifacts’ signals
will be subtracted from the raw EEG signals in the AC
algorithm.

( )y n
( )e n( )h n

DWD 

(reference)

∑
_

+x(n)=

s(n)+v(n)

ˆ( )s n

Fig. 13: Block diagram for (WF-DWD) hybrid denoising filter.

5. Results

In this section, functional connectivity using PDC was
used to compare the effect of artifacts on simulated
and real EEG signals. Also, the performance measures
used were based on the Probability Density Function
(PDF) and Cumulative Density Function (CDF) for
the signals before and after removing the artifacts.
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5.1. Performance for Simulated
Signal

From the characteristics of the EEG signals modelled
as MVAR, the distribution of the signal’s amplitude
measured at each channel should be symmetric about
the mean and approximately follows a Gaussian distri-
bution.

(a) PDF before using AC. (b) PDF after using AC DWD.

(c) PDF after using AC SWD. (d) PDF after using AC MAF.

(e) PDF after using AC
LPC-DWD.

(f) PDF after using AC
LPC-SWD.

(g) PDF after using AC
WF-DWD.

(h) PDF after using AC MF.

Fig. 14: PDF comparison for various AC algorithms.

Figure 14 shows the PDF applied before and after
removing the artifacts using MF, MAF, DWD, SWD,
and hybrid methods, such as LPC-DWD/SWD and
WF-WT. The artifacts caused a non-symmetric dis-
tribution for the amplitude at the lower range from
−20 to −8 and upper range from 8 to 40, as shown in
Fig. 14(a). Nevertheless, the distribution of amplitude
is symmetric at around zero mean after the artifacts are

removed, as shown in Fig. 14(b), Fig. 14(c), Fig. 14(d),
Fig. 14(e), Fig. 14(f), Fig. 14(g) and Fig. 14(h)

In order to verify conformity to Gaussian PDF,
a comparison was made between the distribution of
the measured amplitude and a standard normal Gaus-
sian distribution, as shown in Fig. 15. Similarly, this
is also true for the CDF after artifact removal, result-
ing in a CDF closer to the standard normal CDF. The
AC MAF and AC DWD results were also closest to
standard normal CDF compared to other methods.

(a) CDF before using AC. (b) CDF after using AC DWD.

(c) CDF after using AC SWD. (d) CDF after using AC MAF.

(e) CDF after using AC
LPC-DWD.

(f) CDF after using AC
LPC-SWD.

(g) CDF after using AC
WF-DWD.

(h) CDF after using AC MF.

Fig. 15: CDF comparison for various AC algorithms.

Based on Fig. 15 the removal of artifacts does not
guarantee the restoration of functional connectivity
between the various channels. Therefore, a comparison
of functional connectivity between the various channels
for the simulated signals before and after removing the
artifacts is necessary. Figure 16 shows the functional
connectivity at various threshold ranges from 0.05 to
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0.2 for simulated signals before removing the artifacts,
where the x-axis represents sources, and the y-axis
represents the destinations.

(a) Functional connectivity for
γ = 0.2.

(b) Functional connectivity for
γ = 0.1.

(c) Functional connectivity for
γ = 0.05.

Fig. 16: Functional connectivity for Eq. (3) using various
threshold levels.

The interactions between the channels in Fig. 16 are
regular connections, such as channel 1 to channels 2,
3, and 4, and channels 4 and 5 from/to each other (the
desired PDC results). However, the artifacts produced
a connection between channel 5 and 1 from/to each
other for threshold level of 0.2, as shown in Fig. 16(a).
Additionally, for threshold levels of 0.1 and 0.05, the
connections are from 1 to 5, 5 to 1, and 4 to 1, as shown
in Fig. 16(b) and Fig. 16(c). The areas marked in blue
shows connectivity and yellow shows no connectivity.

Figure 17 shows the functional connectivity before
and after applying the AC algorithm with a threshold
level of 0.2 to estimate the correct functional connectiv-
ity. This threshold level was selected since this study
aims to find the strong connectivity between the chan-
nels, and the effect of the artifact was observed in this
level as well.

Figure 17(a) shows the connectivities caused by ar-
tifacts from channel 5 to 1 and 1 to 5. Meanwhile, for
AC DWD in Fig. 17(b), it was observed that the effects
of artifacts are removed. However, most of the signal’s
information was eliminated due to downsampling and
upsampling in the DWD during decomposition and re-
construction, respectively, which distorts the signal res-
olution [18]. As well, for AC MF in Fig. 17(h), some of
the information bearing signal was lost due to the fact
that MF is not as efficient at handling large amounts
of non-stationary signals as MAF [67]. Moreover, for
AC SWD (Fig. 17(c)), AC LPC-DWD (Fig. 17(e)),

(a) Functional connectivity
before AC.

(b) Functional connectivity
after using AC DWD.

(c) Functional connectivity
after using AC SWD.

(d) Functional connectivity
after using AC MAF.

(e) Functional connectivity
after using AC LPC-DWD.

(f) Functional connectivity
after using AC LPC-SWD.

(g) Functional connectivity
after using AC WF-DWD.

(h) Functional connectivity
after using AC MF.

Fig. 17: Comparison of functional connectivity for
AC algorithms.

and AC WF-WT (Fig. 17(g)), artifacts are not en-
tirely removed from the simulated signal. However, for
AC MAF (Fig. 17(d)) and AC LPC-SWD (Fig. 17(f)),
the artifacts are removed for the threshold (γ = 0.2).
Thus, AC MAF and AC LPC-SWD methods are suit-
able for removing artifacts and retrieving the desired
results.
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5.2. Computational Complexity

The calculation of computational complexity is nec-
essary in order to know the processing time for each
method in the AC algorithm. For clarity in terminol-
ogy for the next paragraph, N is the length of the sig-
nal, Nh is the size of the MAF, MF, and the size of
the low-pass and high-pass filters in wavelet, L is the
levels of wavelet, and M is the filter length for LPC
and Wiener filter. The computational complexity (C)
can be calculated for each method using the formulas
from [64], [68], [69], [70] and [71] as follows:

CDWT = 4NhN [1− 0.5L], (15)

CSWT = 6LNh N, (16)

CMAF = Nh N, (17)

CMF = N Nh logNh, (18)

CWiener Filter = M3 + 2M2N, (19)

CLPC = M3N. (20)

Assuming that L = 5 [16], N = 30000, Nh = 5, and
M = 12 [17], the results become:

CDWD = 581250,
CSWD = 4500000,
CMAF = 150000,
CMF = 104845,

CWiener Filter = 8641728,
CLPC = 51840000.

(21)

The results show the differences regarding the com-
plexity between the methods. However, hybrid meth-
ods can be calculated by adding the results from two
methods; therefore, the results for the hybrid methods
are as follow:

CLPC-DWD = 52421250,
CLPC-SWD = 56340000,
CWiener-DWD = 9222978.

(22)

Based on the calculation, the least complexity was
obtained from the AC MAF method, while the highest
complexity showed the AC LPC-SWD. Since the AC
MAF is able to remove artifacts from simulated EEG
signals with lower complexity, it is more suitable for
removing artifacts from EEG recordings.

5.3. Performance for Real Signal

For this paper, the signals from one child with dyslexia
and one non-dyslexic child (typical reader) have been
used to examine the performance of the methods for
the real signals. An electrode cap with 19 channels
(Electro-Cap International, Inc., Eaton, OH) was con-
nected to an EEG machine (NVX-52) for data record-
ing. Reading performance of the test subjects during

RAN tasks was video recorded using a mobile phone.
After comparing the video recordings to the signal
data, a suitable time interval was determined for anal-
ysis [6].

Based on the results from Sec. 5.1. , the AC
MAF and the AC LPC-SWD were selected due to the
highest effectiveness for removing artifacts. The PDF,
CDF, and the functional connectivity (with and with-
out threshold) for the typical reader were compared
before and after removing artifacts using the AC MAF
and AC LPC-SWD. Differences in channel (T3) before
and after removing the artifacts are shown in Fig. 18.
The magnitude for a clean EEG signal is in the range
of 50 – 100 µV [72]; therefore, the distribution should
be within that range. However, the observed range
in Fig. 18(a) shows different results (−160 – 200 µV)
due to the artifacts, while for AC MAF and the AC
LPC-SWD in Fig. 18(b) and Fig. 18(c), respectively,
the distribution is symmetric around the mean (zero).

(a) PDF for channel T3 before
using AC algorithm.

(b) PDF for channel T3 after
using AC MAF.

(c) PDF for channel T3 after
using AC LPC-SWD.

Fig. 18: PDF comparison for channel T3.

The CDF is also compared for both standard normal
Gaussian (zero mean σ = 16.7) in red, and the signal
from channel (T3) in blue, as shown in Fig. 19. The
results show that the CDF, after using AC MAF and
AC LPC-SWD to remove the artifacts, is closer to the
standard normal CDF in Fig. 19(b) and Fig. 19(c),
repectively.

Besides, a comparison of functional connectivity be-
tween the real signals before and after removing the
artifacts with and without using threshold level of 0.2
for the functional connectivity level, is shown in Fig. 20
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(a) CDF for channel T3 before
using AC algorithm.

(b) CDF for channel T3 after
using AC MAF.

(c) CDF for channel T3 after
using AC LPC-SWD.

Fig. 19: CDF comparison for channel T3.

and Fig. 21, respectively. The threshold range was dis-
cussed in Sec. 3.3. based on the results obtained
from previous work in [52]. Also, the threshold level of
0.2 was chosen as described in the previous Sec. 5.1.
.

(a) Functional connectivity
before using AC algorithm.

(b) Functional connectivity
after using AC MAF.

(c) Functional connectivity
after using AC LPC-SWD.

Fig. 20: Functional connectivity before and after removing the
artifacts.

In Fig. 20(a), high connectivity for the channel Fp1
caused by the artifacts such as blinking and eye move-
ment can be observed. Also, this effect causes wrong

estimations for the strength of connectivity in other
channels such as O2, P3, F7, and T3. However, the
artifacts effect is removed using both AC MAF and
AC LPC-SWD methods, as shown in Fig. 20(b) and
Fig. 20(c), respectively.

(a) Functional connectivity
before using AC algorithm.

(b) Functional connectivity
after using AC MAF.

(c) Functional connectivity
after using AC LPC-SWD.

Fig. 21: Functional connectivity before and after removing the
artifacts for (γ = 0.2).

After selecting the threshold level in Figure 21(a), it
can be observed that the high connectivity for channel
Fp1 causes the wrong estimation for the other chan-
nels. On the other hand, AC MAF and AC LPC-SWD
methods are able to remove the effect of artifacts, and
the results are almost the same, as shown in Fig. 21(b)
and Fig. 21(c), respectively. However, AC LPC-SWD
omits a significant amount of connectivity that should
be included for typical readers, including the F7 and
T3. Since the AC MAF can remove the artifacts and
is more accurate than the AC LPC-SWD, it is chosen
to remove the artifacts from the real signal.

For the subject with dyslexia, the functional con-
nectivity between the channels can be seen in Fig. 22,
where the x-axis represents sources and the y-axis
represents the destinations. Figure 22(a) shows the
connectivity between the channels for the subject with
dyslexia before setting a threshold, whereas Fig. 22(b)
shows connectivity for the subject with dyslexia after
the threshold level of 0.2. The signal was captured
when the subject involved in the RAN task for letter
naming similar to the control subject. However, the
subject with dyslexia misnamed the letter by saying
‘q’ instead of ‘p’, unlike the normal reader who could
say the letter correctly. Based on Fig. 22(b), there was
a flow of information from the visual cortex (O1) to the
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temporal area of the left hemisphere (T3 and T5) as
well as to the Broca’s Area (F7). The connectivity and
information flow throughout the mentioned regions is
crucial to enable a person to read the stimuli being
presented.

(a) Functional connectivity for
subject with dyslexia.

(b) Functional connectivity
for subject with dyslexia

(γ = 0.2).

Fig. 22: Functional connectivity for the subject with dyslexia
before and after threshold.

On the other hand, Fig. 22(b) shows no flow of infor-
mation to the crucial areas for reading. There was no
connectivity between the visual cortex (O1) and the
occipital-temporal area (T5), which is crucial for re-
trieving words from the memory during any reading
task. Apart from that, there was also no connectivity
to the Broca’s area (F7), which is crucial for phono-
logical processing and articulation, as shown in Fig. 1.
The subject only depends on the right visual cortex
(O2) and temporal area (T6) during the task comple-
tion. Any disruption in the functional connectivity be-
tween the vital regions as mentioned in Fig. 1, can be
detrimental during the reading process, which is the
case for the subject with dyslexia.

6. Conclusion

Knowledge of the flow of information in the human
brain is essential to understand each region’s func-
tion, the areas it stimulates, and the connections be-
tween them. In subjects with dyslexia, EEG recordings
help estimate functional connectivity in the brain cells
during task completion. The functional connectivity
analysis was performed by utilizing the PDC approach
since it focuses on the direct and indirect nature of
the interactions. The PDC method can detect right-
directional connectivity between two channels or more.
However, as EEG artifacts are known to produce addi-
tional interactions between the channels, an AC algo-
rithm based on the MAF is found to be effective over
MF, DWD, SWD, LPC-DWD, LPC-SWD, and WF-
WT to remove the effect of the artifacts from the EEG
signals. In a nutshell, the AC algorithm enhanced the
analysis of functional connectivity, which contributes

to a better understanding of the flow of information
between each brain region.
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