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Abstract. The essential purpose of an energy sys-
tem is to provide electricity to its loads effectively and
economically, as well as safely and reliably. Therefore,
the solutions to the problems of Optimal Power Flow
(OPF) and Optimal Reactive Power Dispatch (ORPD)
to enable the efficient employment of various energy
distributions should be found. Our work focuses on the
ORPD issue; it can be formulated as a non-linear con-
straint and with single or multiple objectives optimiza-
tion problems. Minimizing total losses is one of the
main objective functions to solve the ORPD problem.
This paper presents the use of an improved particle
swarm optimization -with a disturbance term- (called
PSO-DT) algorithm, to find the solution of ORPD
in the standard IEEE 30-bus power system for reduc-
ing electrical power transmission losses. The obtained
results demonstrate that the proposed method is more
efficient and has a more extraordinary ability to get
better solutions compared to the basic PSO method.

Keywords
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1. Introduction

Providing a balanced and reliable source of electrical
energy to consumers is the principal goal of power pro-
ducers. Reactive and active powers of generators (in
an interconnected electrical network) must vary within
the usage limits to meet a specific load request at the
lowest fuel costs. In the production station, there are
two factors that must be taken into account at each
variation of load, namely the load division and the
economic component. Following the liberalization of
the industry, Optimal Power Flow (OPF) is utilized to
deal with these issues. The OPF was presented for the
first time by Dommel and Tinney in 1968; it is one
of the fundamental issues in the planning and opera-
tion of the energy system [1]. The main purpose of an
OPF is to find the optimal settings of control variables
in an electrical power system by optimizing a specific
goal along with the satisfaction of certain operational
constraints [2].

Solving the problem of the Optimal Reactive Power
Dispatch (ORPD) is another important factor in the
electrical energy management system [3]. ORPD is
considered a complex, non-linear, concave, discontin-
uous and multi-model problem involving both dis-
crete and continuous variables. Thus, its solution
includes various objective functions such as reducing
power losses, improving voltage stability and minimiz-
ing transmission costs, etc. [4] and [5]. In electrical
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networks, the main goal of ORPD is to find the best
values of control parameters including the voltage of
generators, reactive power provided by shunt compen-
sators and tap positions of transformers, so as to op-
timize the objective function taking into account the
constraints. Moreover, dependent variables such as the
voltage of charging buses, reactive power of generators
and flow of apparent power in transportation lines must
be within the specified permissible range [6].

Several conventional methods such as Linear Pro-
gramming (LP) [7], Quadratic Programming (QP) [8]
and [9] and Interior Point (IP) [10] methods have solved
the problem of ORPD in certain situations. However,
they are stagnating at the local optimum level in other
situations, particularly to find optimal values of reac-
tive and active power flows for large-scale systems [11]
and [12].

To avoid shortages of the above methods, many opti-
mization algorithms were applied: Particle Swarm Op-
timization (PSO) [13], Comprehensive Learning PSO
(CLPSO) [14], Quasi Oppositional Teaching-Learning-
Based Optimization (QOTLBO) [15], Moth-Flame
Optimization (MFO) [16], two-Archive Multi-
Objective Grey Wolf Optimizer (2Arch-
MGWO) [17], Water Wave Optimiza-
tion (WWO) [18], Whale Optimization
Algorithm (WOA) [19], Modified Stochastic Fractal
Search Algorithm (MSFSA) [6], and PSO hybrid with
Imperialist Competitive Algorithm (PSO-ICA) [20].
All of these meta-heuristic techniques have their
own significance, special impact, limitations and
application in solving the ORPD problem [12].

Basic PSO is a part of the various stochastic
(random) search modalities. It evolved by simulat-
ing a simplified social system and has proven powerful
for finding solutions to problems of nonlinear continu-
ous optimization. This original optimization method
was introduced for the first time by Eberhart and
Kennedy in 1995; fundamentally grounded on the soci-
ological behavior related to a flock of birds. Several
amendments have been suggested for improving the
performance of this method, such as the coordinated
aggregation PSO method and parallel vector evaluated
PSO method [21].

One of the best developments to improve a stan-
dard PSO performance was made by He and Han
in 2007 using an improved PSO algorithm that adds
a Disturbance Term (PSO-DT) to the velocity update
equation by trying to avert the default value of
a standard PSO [22]. For solving the problem of
ORPD, the applied PSO-DT is performed on an IEEE
30-bus power system wherein the control of bus
voltage of generators, tap ratio of transformers, and
reactive power provided by shunt compensators are

involved for reducing transmission losses in the energy
system.

Simulation results have shown that the PSO-DT
technique was superior to the old PSO method in
order to find the best solutions in terms of algorithm
diversity and durability.

2. Problem Formulation of
ORPD

ORPD case is considered as a non-linear optimization
problem that contains the constraints of inequality and
equality in the electrical network.

Generally, ORPD determines the loss of active
power in a transport network, by setting the optimum
parameters for controlling the energy system while
simultaneously respecting the constraints of inequality
and equality [3].

2.1. Reduction of Total Real Power
Losses

Minimizing active power losses is one of the main
objectives for the ORPD in a transport system F which
may be edited in the following form:

F = min
∑
k∈Nn

Ploss =

= min

[ ∑
k∈Nn

Gk

(
V 2
i + V 2

j − 2ViVj cosφij

)]
,

(1)

where:

•
∑

k∈Nn

Ploss: total losses of active power in the trans-

port network.

• k = (i, j); i ∈ Nb; j ∈ Na.

• Nb: total number of buses in a specific network.

• Na: number of buses adjacent to bus i (including
bus i) in a particular network.

• Nn: number of network branches in a system.

• Gk: conductance at the branch k.

• Vi and Vj : voltages at buses i and j respectively.

• φij : difference in loading angle between buses i
and j in a network.

2.2. System Constraints

A problem of reactive power distribution has inequality
and equality constraints in processing.
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1) Equality Constraints

In this case, there are two equality constraints that can
be expressed as follows:

The two equations below reveal the balance of active
and reactive power needed in each normal electric grid:

PGi
− PDi

− Vi

Na∑
j=1

Vj (Gij cos θij +Bij sinφij) = 0,

(2)

QGi −QDi − Vi

Na∑
j=1

Vj (Gij sin θij −Bij cosφij) = 0,

(3)
where PGi

and PDi
are the active power injected and

demanded at the bus i, respectively. Gij and Bij are re-
spectively the real and fictional parts of the admittance
matrix at buses i and j. QGi and QDi are respectively
the reactive power injected and demanded at the bus i
in a network [13] and [23].

2) Inequality Constraints

There are several inequality constraints that must be
taken into account in the ORPD formulation, such as:

Equation (4) represents the voltage limits of buses
Vi. V min

i and V max
i are the minimum and maximum

voltage of the i-th bus, respectively. Nb is the overall
number of buses:

V min
i ≤ Vi ≤ V max

i , i = 1, . . . , Nb. (4)

Equation (5) and Eq. (6) give the limits of active
and reactive power for generators PGi

and QGi
, re-

spectively. In this case, Pmin
Gi

and Pmax
Gi

are respectively
the minimum and maximum generation of the active
power of the i-th bus. Qmin

Gi
and Qmax

Gi
are respectively

the minimum and maximum reactive power generation
of the i-th bus in a system. Ng is the number of bus
generators in a network:

Pmin
Gi

≤ PGi
≤ Pmax

Gi
, i = 1, . . . , Ng, (5)

Qmin
Gi

≤ QGi ≤ Qmax
Gi

, i = 1, . . . , Ng. (6)

Equation (7) explains the limits of reactive power
provided by capacitor banks QCi

. In this case, Qmin
Ci

and Qmax
Ci

are respectively a minimum and maximum
injection of reactive power of the i-th parallel compen-
sator, while Nc is the number of capacitor banks:

Qmin
Ci

≤ QCi ≤ Qmax
Ci

, i = 1, . . . , Nc. (7)

Equation (8) describes the bounds of tap positions
of transformers Ti. In this case, Tmin

i and Tmax
i are

respectively the minimum and maximum tap setting

of the i-th transport line and Nt is a number of trans-
former branches available for tap changing:

Tmin
i ≤ Ti ≤ Tmax

i , i = 1, . . . , Nt. (8)

Finally, Eq. (9) indicates the limit of power flow for
each line of transport SLi . Smax

Li
is the maximum flow

of apparent power in the i-th line, and Nl is the number
of load branches in a network [13], [20] and [23]:

|SLi
| ≤ Smax

Li
, i = 1, . . . , Nl. (9)

The constraints of dependent variables are incorpo-
rated into the target function as terms of penalty. For
that, Eq. (1) is replaced by Eq. (10) as follows:

FGlobal = min
∑
k∈Nn

Ploss + FPenalty, (10)

where

FPenalty = KP f (PG1
) +KV

Nb=30∑
i=1

f (Vi)+

+KQ

Ng=6∑
i=1

f (QGi) +KS

Nl=41∑
i=1

f (SLi) ,

(11)

while the three penalty factors are defined as
KP = KV = KQ = KS = 104.

Calculation of the penalty value for active power
violation of slack generator PG1

is:

f (PG1
) =


0 if Pmin

G1
≤ PG1 ≤ Pmax

G1
,(

Pmin
G1

− PG1

)2 if PG1 < Pmin
G1

,(
PG1

− Pmax
G1

)2 if PG1
> Pmax

G1
.

(12)
Penalty value calculation for bus voltage violation is:

f (Vi) =


0 if V min

i ≤ Vi ≤ V max
i ,(

V min
i − Vi

)2 if Vi < V min
i ,

(Vi − V max
i )

2 if Vi > V max
i .

(13)

Calculation of the penalty value for the reactive power
violation of complete generators (the PV buses and the
slack bus) is expressed by Eq. (14):

f (QGi
) =


0 if Qmin

Gi
≤ QGi ≤ Qmax

Gi
,(

Qmin
Gi

−QGi

)2 if QGi < Qmin
Gi

,(
QGi

−Qmax
Gi

)2 if QGi
> Qmax

Gi
.

(14)
Penalty value calculation for line flow violations is:

f (SLi
) =

{
0 if SLi ≤ Smax

Li
,(

SLi
− Smax

Li

)2 if SLi
> Smax

Li
.

(15)

© 2022 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 480



POWER ENGINEERING AND ELECTRICAL ENGINEERING VOLUME: 20 | NUMBER: 4 | 2022 | DECEMBER

Therefore, the penalty function values will be zero
if the whole control settings are within their bounds.
Conversely, the expressions of the penalty function will
be appended to the target function to punish a viola-
tion that can happen if the control variables exceed
their limits.

3. Overview of the Improved
PSO-DT

For improving the ability of global optimization,
particle diversity should be preserved throughout the
iteration process; thus, the particles must not widely
converge at a late stage.

The velocity updating formula has been improved as
follows [24]:

V t+1
id = wV t

id + c1r1
(
Pbesttid −Xt

id

)
+

+c2r2
(
Gbesttd −Xt

id

)
+ α(r3 − 0.5).

(16)

The position update equation is as follows:

Xt+1
id = Xt

id + V t+1
id , (17)

where:

• i ∈ [1, 2, . . . , N ]; N : the number of particles in
a swarm (population size).

• The index t indicates the iteration counter, and d
is the dimension index of the optimization search
space.

• V t+1
id and Xt+1

id : the speed (velocity) value and
position of the particle at the new iteration (t+1),
respectively.

• V t
id and Xt

id: the particle’s speed value and
position at the current iteration (t), respectively.

• w: the inertia weight that controls a particle’s
exploration for research purposes.

• c1 and c2: numbers greater than zero, called
cognitive and social components, respectively.

• r1, r2 and r3: distinct indiscriminate numbers
divided into a group [0, 1].

• Pbesttid: the best personal position for each
particle at t iteration in a swarm.

• Gbesttd: the best global position for all particles
at t iteration [25], [26] and [27].

• α is a small constant.

We call the fourth part of Eq. (16): α(r3 − 0.5) as
the disturbance term. Compared to the basic PSO,
this term is not added to the velocity equation.

During the first phase of the calculation, the PSO
has a fairly strong global search capacity; this is due
to the relatively high velocity of particles. At this mo-
ment, the disturbance term is much smaller than the
previous three parts of the velocity equation and its ef-
fect on the algorithm’s search ability is small enough to
be neglected. During the final or intermediate phases
of the search process, the convergence property of the
particles will slow down their speed. This allows the
fourth element of Eq. (16) to guarantee that the par-
ticle search velocity will not drop down to zero. Con-
sequently, the whole optimization will not allow the
update for continuing and overcoming faults falling
facilely into the local optimum of an basic PSO; thus,
obtaining precise solutions [13].

The detailed procedure for updating individuals’
speed and position for the PSO-DT method is
displayed in Fig. 1.

t=t+1

No

Yes

End

Print results: best global position and fitness

Satisfying 
stopping 
criteria?

Update velocity and position

Update the best personal and global fitness values

Start

Initialize the PSO-DT algorithm parameters

Randomly generate particle positions and velocities

Evaluate the fitness function for each particle

Fig. 1: Block diagram of suggested algorithm.

4. Results and Discussions

For proving the ability of the PSO and PSO-DT
methods proposed in this study, an IEEE 30-bus
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power system is considered as a test system. This
network contains 41 branches and is shown in Fig. 2.
The bus load and injection data of the IEEE 30-bus
system, reactive power limit of the same network and
system summary are presented in Tab. 1, Tab. 2 and
Tab. 3, respectively. Both methods have been imple-
mented using the computing environment MATLAB
2014b.

29 27 28

30
26 25

23 24

15 18 19

20

21
17

22

10

1614

13 12

11 9

6 8431

2 5

Fig. 2: IEEE 30-bus system single-line diagram [28].

Tab. 1: Bus load and injection data of the IEEE 30-bus
system [28].

Bus Load (MW) Bus Load (MW)
1 0.0 16 3.5
2 21.7 17 9.0
3 2.4 18 3.2
4 67.6 19 9.5
5 34.2 20 2.2
6 0.0 21 17.5
7 22.8 22 0.0
8 30.0 23 3.2
9 0.0 24 8.7
10 5.8 25 0.0
11 0.0 26 3.5
12 11.2 27 0.0
13 0.0 28 0.0
14 6.2 29 2.4
15 8.2 30 10.6

In both algorithms, the number of populations
(swarm size), maximum iteration, learning factors
(C1 = C2), minimum and maximum inertia weights
are 40, 300, 2, 0.4 and 0.9, respectively, knowing that
α = 0.04.

Tab. 2: Reactive power limit of the IEEE 30-bus system [28].

Bus Qmin
(p.u.)

Qmax
(p.u.) Bus Qmin

(p.u.)
Qmax
(p.u.)

1 −0.2 0.0 16 – –
2 −0.2 0.2 17 −0.05 0.05
3 – – 18 0.0 0.055
4 – – 19 – –
5 −0.15 0.15 20 – –
6 – – 21 – –
7 – – 22 – –
8 −0.15 0.15 23 −0.05 0.055
9 – – 24 – –
10 – – 25 – –
11 −0.1 0.1 26 – –
12 – – 27 −0.055 0.055
13 −0.15 0.15 28 – –
14 – – 29 – –
15 – – 30 – –

In this work, 10 tests are performed for solving the
problem of ORPD. The best results using a suggested
method and those of a PSO approach are presented in
Tab. 4.

A set of solutions of the optimal control variables
obtained from PSO-DT and PSO are summarized in
Tab. 5.

Convergence features of an old PSO and a proposed
algorithm are presented in Fig. 3.
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Fig. 3: The real power losses curve of PSO and PSO-DT.

According to Fig. 3 and Tab. 4, a minimum loss of
active power acquired by a suggested technique was set
at 17.44 MW at the 282nd iteration.

The bus data obtained by PSO is shown in Tab. 6
in App. B.

The bus data obtained by PSO-DT is shown
in Tab. 7 in App. B.

The branch data obtained by PSO is shown in Tab. 8
in App. B.

The branch data obtained by PSO-DT is shown
in Tab. 9 in App. B.

This value of power loss resulting from PSO-DT is
less than 0.08 MW, compared with the results of basic
PSO which is 17.52 MW at the 50th iteration or more
(in lower simulation implementation time than the
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Tab. 3: Summary of the IEEE 30-bus system.

How many?
How much?

P
(MW)

Q
(Mvar)

Buses 30 Total gen capacity 900.2 −125.6 to 251.1
Generators 6 On-line capacity 900.2 −125.6 to 251.1

Committed gens 6 Generation (actual) 300.9 108.6
Loads 21 Load 283.4 126.2
Fixed 21 Fixed 283.4 126.2

Dispatchable 0 Dispatchable −0.0 of −0.0 −0.0
Shunts 3 Shunt (inj) −0.0 50.9

Branches 41 Losses (I2Z) 17.51 67.98
Transformers 4 Branch charging (inj) – 34.7

Inter-ties 0 Total inter-tie flow 0.0 0.0
Areas 1

Minimum Maximum
Voltage magnitude 0.962 p.u. at bus 30 1.061 p.u. at bus 1

Voltage angle −18.37 deg at bus 30 0.00 deg at bus 1

P losses (I2R) – 5.11 MW at line 1–2
Q losses (I2X) – 15.31 Mvar at line 1–2

Tab. 4: Power losses obtained before and after optimization.

Parameters Losses before
optimization

Losses after
optimization

by PSO

Losses after
optimization
by PSO-DT

Active power
losses

18.430 MW
6.124 %

17.518 MW
5.821 %

17.436 MW
5.790 %

Reactive power
losses

68.350 Mvar
62.937 %

67.980 Mvar
62.596 %

66.780 Mvar
61.491 %

Tab. 5: Control variables obtained before and after optimization.

Bus Control
variables

Initial
values

Optimized values
by PSO

Optimized values
by PSO-DT

3 QC3
(Mvar) 0.000 19.9918 19.9035

10 QC10
(Mvar) 0.000 19.9666 19.9472

24 QC24
(Mvar) 0.000 15.0408 15.1290

1 V1 (p.u.) 1.050 1.0613 1.0619
2 V2 (p.u.) 1.040 1.0417 1.0465
5 V5 (p.u.) 1.010 1.0086 1.0104
8 V8 (p.u.) 1.010 1.0082 1.0205
11 V11 (p.u.) 1.050 1.0069 0.9936
13 V13 (p.u.) 1.050 1.0012 1.0216

6-9 (branch 11) T1 (p.u.) 1.078 1.0315 1.0344
6-10 (branch 12) T2 (p.u.) 1.069 0.9827 0.9843
4-12 (branch 15) T3 (p.u.) 1.032 1.0134 1.0030
28-27 (branch 36) T4 (p.u.) 1.068 0.9912 0.9911

Total 65.1459 65.1470

proposed algorithm). The point of intersection of the
two curves of the real power losses between the two
methods is 17.52 at iteration 181, which corresponds
to the lower value obtained by PSO.

In order to validate the results obtained, we
have compared our data with other articles already
published. Authors in [33] proposed a MAS-based
Reinforcement Learning (MASRL) algorithm and
other algorithms such as Discrete Particle Swarm Op-
timization (DPSO) and Interior Point (IP) to solve
the Optimal Reactive Power Dispatch (ORPD) prob-
lem for the purpose to minimize transmission active
power losses in power systems. These methods were

applied in the Ward-Hale 6-bus, IEEE 30-bus, and
IEEE 162-bus systems. Comparing our simulation
results and those obtained in the IEEE 30-bus, it
was observed that our optimal value (17.436 MW)
was better than their best active power values
(17.94 MW, 17.93 MW and 18.15 MW), respectively.
For another comparison, authors in [34] used the
Hierarchically Distributed approach using a Mixed-
Integer extension of the Augmented Lagrangian-based
Alternating Direction Inexact Newton (ALADIN) al-
gorithm for solving the line loss minimization prob-
lem. Their proposed method was tested on the IEEE
14-bus and 30-bus systems. The best real power
value obtained was 17.999 MW on the last network
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used. Our value (17.436 MW) was also better than
theirs.

This quick comparison between the different
results allowed us to demonstrate the applicability and
efficiency of our proposed algorithm.

From Tab. 3, it may also be noticed that the
proposed method achieves the least reactive power
loss of 66.78 Mvar, compared to the result of PSO
(67.98 Mvar).

Consequently, the PSO-DT algorithm clearly
appears to have a big capacity to identify optimal
or near-ideal solutions and to respond efficaciously to
constraints imposed by optimization issues. Includ-
ing a disturbance term founded on actual structure
strongly corrects faults [29].

5. Conclusion

An ORPD is a sub-group of an OPF, that has been
defined as a nonlinear problem of optimization by
a combination of continuous and/or discrete variables
in an electrical network.

In this paper, PSO and PSO-DT methods are
employed to properly resolve this issue. Obtained re-
sults from simulation clearly demonstrate that a chosen
method PSO-DT yields better quality of the optimal
global or near-global solutions compared to other stan-
dard PSO results. It was found that PSO-DT can be
more sensitive in response to changing environments
and maintain greater particle diversity than basic PSO.

The optimization results confirm the effectiveness of
this method in providing near-optimal solutions and
explain the superiority and robustness of a selected
algorithm to correctly solve an ORPD issue regard-
ing power losses. Consequently, the PSO-DT technique
can be advised as a highly promising algorithm to solve
several complex optimizations of engineering issues for
researchers in future.
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Appendix A
Some Basic Concepts of PSO

• Fitness function:

The inertia mass of each particle is calculated accord-
ing to its fitness (appropriate) value. Its updated
formula is as follows:

mi(t) =
fiti(t)− worst(t)

best(t)− worst(t)
,

Mi(t) =
mi(t)∑N
j=1 mj(t)

,
(18)

where fiti(t) is the fitness function value of particle i at
t iteration, best(t) and worst(t) represent respectively
the optimal and worst fitness function value of all par-
ticles at t iteration, and Mi(t) is the mass of the i-th
particle at iteration t.

For the minimization problem, best(t) and worst(t)
are defined as follows:

best(t) = min
i∈1,...,N

fiti(t), (19)

worst(t) = max
i∈1,...,N

fiti(t). (20)

And vice versa for the maximization problem, so

best(t) and worst(t) are defined as follows [32]:

best(t) = max
i∈1,...,N

fiti(t), (21)

worst(t) = min
i∈1,...,N

fiti(t). (22)

In this paper, we have minimized the function objective
to reduce electrical power transmission losses.

• Stopping criteria:

Typically, there are two types of stopping criteria that
are used to terminate the PSO run. In the first stop-
ping criterion, the execution of PSO stops when a pre-
determined number of iterations is reached (Max itera-
tions). The second stopping criterion is the maximum
number of function evaluations (MaxFEs) and is called
automatic stopping, which is calculated as follows:

MaxFEs = S · T, (23)

where S is the swarm size and T is the maximum
number of iterations.

The algorithm is terminated when the global optimal
solution best(t) reaches the predefined accuracy or the
maximum number of iterations has been reached [33]
and [34]. In our case, we resorted to the first criterion
to reduce the computation time.
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Appendix B
Bus and Branch Data

Tab. 6: Bus data obtained by PSO.

Bus
Voltage Generation Load

Magnitude
(p.u.)

Angle
(deg)

P
(MW)

Q
(Mvar)

P
(MW)

Q
(Mvar)

1 1.061 0.000 260.91 −17.14 – –
2 1.042 −5.286 40.00 40.47 21.70 12.70
3 1.030 −7.623 – – 2.40 1.20
4 1.017 −9.279 – – 7.60 1.60
5 1.009 −14.120 0.00 36.44 94.20 19.00
6 1.010 −11.026 – – – –
7 1.001 −12.824 – – 22.80 10.90
8 1.008 −11.765 0.00 34.04 30.00 30.00
9 0.993 −14.473 – – – –
10 0.994 −16.267 – – 5.80 2.00
11 1.007 −14.473 0.00 6.80 – –
12 0.990 −15.380 – – 11.20 7.50
13 1.001 −15.380 0.00 7.94 – –
14 0.978 −16.395 – – 6.20 1.60
15 0.977 −16.583 – – 8.20 2.50
16 0.984 −16.089 – – 3.50 1.80
17 0.986 −16.440 – – 9.00 5.80
18 0.970 −17.251 – – 3.20 0.90
19 0.969 −17.432 – – 9.50 3.40
20 0.975 −17.205 – – 2.20 0.70
21 0.984 −16.814 – – 17.50 11.20
22 0.985 −16.819 – – – –
23 0.976 −17.172 – – 3.20 1.60
24 0.985 −17.562 – – 8.70 6.70
25 0.985 −16.847 – – – –
26 0.967 −17.295 – – 3.50 2.30
27 0.994 −16.125 – – – –
28 1.005 −11.684 – – – –
29 0.973 −17.431 – – 2.40 0.90
30 0.962 −18.369 – – 10.60 1.90

Total 300.91 108.55 283.40 126.20
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Tab. 7: Bus data obtained by PSO-DT.

Bus
Voltage Generation Load

Magnitude
(p.u.)

Angle
(deg)

P
(MW)

Q
(Mvar)

P
(MW)

Q
(Mvar)

1 1.069 0.000 260.60 −12.34 – –
2 1.047 −5.152 40.00 27.63 21.70 12.70
3 1.039 −7.523 – – 2.40 1.20
4 1.026 −9.154 – – 7.60 1.60
5 1.019 −13.906 0.00 38.70 94.20 19.00
6 1.020 −10.863 – – – –
7 1.001 −12.631 – – 22.80 10.90
8 1.020 −11.621 0.00 39.96 30.00 30.00
9 0.994 −14.192 – – – –
10 1.001 −15.921 – – 5.80 2.00
11 0.993 −14.192 0.00 −0.49 – –
12 1.007 −15.187 – – 11.20 7.50
13 1.024 −15.187 0.00 12.42 – –
14 0.994 −16.169 – – 6.20 1.60
15 0.992 −16.326 – – 8.20 2.50
16 0.997 −15.799 – – 3.50 1.80
17 0.995 −16.115 – – 9.00 5.80
18 0.982 −16.943 – – 3.20 0.90
19 0.980 −17.100 – – 9.50 3.40
20 0.985 −16.868 – – 2.20 0.70
21 0.992 −16.467 – – 17.50 11.20
22 0.993 −16.474 – – – –
23 0.990 −15.889 – – 3.20 1.60
24 0.996 −17.258 – – 8.70 6.70
25 0.998 −16.571 – – – –
26 0.980 −17.007 – – 3.50 2.30
27 1.008 −15.872 – – – –
28 1.015 −11.518 – – – –
29 0.988 −17.140 – – 2.40 0.90
30 0.976 −18.051 – – 10.60 1.90

Total 300.60 105.88 283.40 126.20
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Tab. 8: Branch data obtained by PSO.

Branch# From
bus

To
bus

From bus
P (MW)

Injection
Q (Mvar)

To bus
P (MW)

Injection
Q (Mvar)

Loss (I2Z)
P (MW) Q (Mvar)

1 1 2 172.67 −16.38 −167.55 25.85 5.112 15.31
2 1 3 88.24 −0.76 −85.12 7.72 3.126 11.42
3 2 4 43.14 0.01 −42.16 −0.93 0.980 2.99
4 3 4 82.72 7.69 −81.86 −6.11 0.859 2.47
5 2 5 82.35 1.86 −79.40 6.17 2.957 12.42
6 2 6 60.36 0.05 −58.40 1.94 1.953 5.92
7 4 6 75.16 −2.16 −74.51 3.50 0.650 2.26
8 5 7 −14.80 11.27 14.97 −12.91 0.168 0.42
9 6 7 38.15 −2.55 −37.77 2.01 0.382 1.17
10 6 8 29.89 −5.23 −29.78 4.69 0.108 0.38
11 6 9 28.09 −5.74 −28.09 7.53 0.000 1.78
12 6 10 16.78 6.90 −16.78 −5.16 0.000 1.73
13 9 11 0.00 −6.71 −0.00 6.80 0.000 0.09
14 9 10 28.09 −0.82 −28.09 1.70 0.000 0.88
15 4 12 41.26 7.60 −41.26 −3.13 0.000 4.47
16 12 13 −0.00 −7.85 0.00 7.94 0.000 0.09
17 12 14 7.31 1.26 −7.24 −1.11 0.069 0.14
18 12 15 16.59 2.01 −16.40 −1.64 0.189 0.37
19 12 16 6.17 0.21 −6.13 −0.14 0.037 0.08
20 14 15 1.04 −0.49 −1.03 0.49 0.003 0.00
21 16 17 2.63 −1.66 −2.63 1.68 0.005 0.02
22 15 18 5.26 0.42 −5.23 −0.36 0.031 0.06
23 18 19 2.03 −0.54 −2.03 0.55 0.003 0.01
24 19 20 −7.47 −3.95 7.50 4.00 0.026 0.05
25 10 20 9.81 4.96 −9.70 −4.70 0.114 0.26
26 10 17 6.40 7.57 −6.37 −7.48 0.032 0.08
27 10 21 15.46 6.42 −15.37 −6.21 0.099 0.21
28 10 22 7.39 2.25 −7.35 −2.16 0.044 0.09
29 21 22 −2.13 −4.99 2.14 5.00 0.004 0.01
30 15 23 3.97 −1.77 −3.95 1.81 0.020 0.04
31 22 24 5.21 −2.84 −5.17 2.90 0.042 0.06
32 23 24 0.75 −3.41 −0.74 3.44 0.017 0.03
33 24 25 −2.80 1.54 2.82 −1.50 0.020 0.03
34 25 26 3.55 2.37 −3.50 −2.30 0.048 0.07
35 25 27 −6.36 −0.87 6.41 0.96 0.046 0.09
36 28 27 19.71 5.96 −19.71 −4.33 0.000 1.63
37 27 29 6.20 1.68 −6.11 −1.51 0.092 0.17
38 27 30 7.10 1.68 −6.93 −1.36 0.173 0.33
39 29 30 3.71 0.61 −3.67 −0.54 0.036 0.07
40 8 28 −0.22 −0.64 0.22 −3.69 0.001 0.00
41 6 28 20.00 1.19 −19.93 −2.27 0.067 0.24

Total 17.51 67.98
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Tab. 9: Branch data obtained by PSO-DT.

Branch# From
bus

To
bus

From bus
P (MW)

Injection
Q (Mvar)

To bus
P (MW)

Injection
Q (Mvar)

Loss (I2Z)
P (MW) Q (Mvar)

1 1 2 172.21 −11.09 −167.22 20.11 4.989 14.94
2 1 3 88.39 −1.25 −85.30 8.00 3.088 11.29
3 2 4 43.13 −2.13 −42.17 1.12 0.967 2.95
4 3 4 82.90 7.63 −82.05 −6.09 0.848 2.43
5 2 5 82.27 −0.58 −79.35 8.36 2.915 12.25
6 2 6 60.12 −2.47 −58.20 4.29 1.915 5.81
7 4 6 74.42 −3.90 −73.79 5.14 0.627 2.18
8 5 7 −14.85 11.34 15.01 −13.02 0.166 0.42
9 6 7 38.19 −2.72 −37.81 2.12 0.376 1.15
10 6 8 29.96 −10.29 −29.84 9.76 0.115 0.40
11 6 9 27.30 −3.96 −27.30 5.59 0.000 1.63
12 6 10 16.42 6.89 −16.42 −5.24 0.000 1.65
13 9 11 0.00 0.49 −0.00 −0.49 0.000 0.00
14 9 10 27.30 −6.08 −27.30 6.96 0.000 0.87
15 4 12 42.20 7.27 −42.20 −2.76 0.000 4.51
16 12 13 −0.00 −12.21 0.00 12.42 0.000 0.21
17 12 14 7.48 1.62 −7.41 −1.47 0.071 0.15
18 12 15 17.02 3.53 −16.82 −3.14 0.197 0.39
19 12 16 6.50 2.32 −6.46 −2.23 0.044 0.09
20 14 15 1.21 −0.13 −1.21 0.13 0.003 0.00
21 16 17 2.96 0.43 −2.95 −0.41 0.005 0.02
22 15 18 5.59 1.59 −5.55 −1.52 0.037 0.07
23 18 19 2.35 0.62 −2.35 −0.61 0.004 0.01
24 19 20 −7.15 −2.79 7.17 2.83 0.021 0.04
25 10 20 9.47 3.75 −9.37 −3.53 0.097 0.22
26 10 17 6.07 5.45 −6.05 −5.39 0.022 0.06
27 10 21 15.18 5.46 −15.09 −5.26 0.090 0.19
28 10 22 7.20 1.63 −7.16 −1.55 0.039 0.08
29 21 22 −2.41 −5.94 2.42 5.95 0.005 0.01
30 15 23 4.24 −1.08 −4.22 1.12 0.019 0.04
31 22 24 4.74 −4.40 −4.69 4.47 0.049 0.08
32 23 24 1.02 −2.72 −1.01 2.74 0.011 0.02
33 24 25 −3.00 1.09 3.02 −1.05 0.019 0.03
34 25 26 3.55 2.37 −3.50 −2.30 0.046 0.07
35 25 27 −6.57 −1.32 6.61 1.41 0.049 0.09
36 28 27 19.91 6.39 −19.91 −4.76 0.000 1.63
37 27 29 6.19 1.68 −6.10 −1.51 0.089 0.17
38 27 30 7.10 1.67 −6.93 −1.36 0.167 0.32
39 29 30 3.70 0.61 −3.67 −0.54 0.035 0.07
40 8 28 −0.16 0.20 0.16 −4.63 0.004 0.01
41 6 28 20.13 0.65 −20.07 −1.77 0.066 0.23

Total 17.195 66.78
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