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Abstract. Zero-crossing point detection in a sinusoidal
signal is essential in the case of various power systems
and power electronics applications like power system
protection and power converters controller design.
In this paper, 96 data sets are created from a distorted
sinusoidal signal based on MATLAB simulation. Dis-
torted sinusoidal signals are generated in MATLAB
with various noise and harmonic levels. In this pa-
per, a decision tree classi�er is used to predict the zero
crossing point in a distorted signal based on input fea-
tures like slope, intercept, correlation and Root Mean
Square Error (RMSE). Decision tree classi�er model
is trained and tested in the Google Colab environment.
As per simulation results, it is observed that decision
tree classi�er is able to predict the zero-crossing points
in a distorted signal with maximum accuracy of 98.3 %
for noise signals and 100 % for harmonic distorted
signals.
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1. Introduction

In many electrical domains like industrial electronics,
grid synchronization, power quality and power system

protection etc., accurate Zero-Crossing Point (ZCP)
detection is critical. To provide a proper �ring an-
gle to trigger switching devices in power converters,
a ZCP detection is required as the �ring angle is mea-
sured as a delay angle from ZCP. Similarly, the circuit
breaker at ZCP should be open upon the occurrence
of a fault for fast arc extinction. Practical line volt-
ages are distorted in general, and they usually include
a lot of harmonics and noise, which can cause synchro-
nisation issues. ZCP detection is an easy task in case
of a pure sinusoidal signal, it can be identi�ed using
simple comparator circuits. However, the ZCP detec-
tion in a distorted sinusoidal signal using comparator
circuits is not appropriate as it contains multiple false
ZCPs. So there is a need to build an accurate mecha-
nism to detect ZCPs in a distorted sinusoidal signal.

Many researchers are working on ZCP detection
problem and had provided various solutions. A Deep
Neural Network (DNN) model is developed in [1]
to predict the ZCPs in the distorted signal. Distorted
signal simulated in MATLAB with noise levels 10 %
to 50 %, and with Total Harmonic Distortion (THD)
levels 10 % to 50 %. Data samples are extracted
from these signals with a window size of 15. A phase-
delay free method is proposed in [2] to detect the ZCPs
of back electromotive force in spindle motors. The im-
pact of asymmetric machine parameters and resistance
tolerance of back emf measurement circuit on ZCP de-
tection based sensor-less control of high speed brush
less DC motor is studied in [3]. In this study,
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the authors did not analyze the impact of asymmet-
ric mutual inductance on ZCP detection.

A digital zero-crossing detector circuit is used for
phase synchronization and frequency tracking to con-
trol the grid-tie power converter for an ef�cient energy
conversion system in [4]. Zero-crossing point detec-
tion based methodology is proposed in [5] to estimate
the synchronization between the signals. This tech-
nique observes the synchronization between signals by
detecting the phase change within the half cycle. This
methodology works well in the frequency range of 50 Hz
to 52 Hz only. Power quality is analyzed based on mea-
surements like RMS value, frequency and harmon-
ics. For accurate measurements, proper zero-crossing
detection is required. In [6], a comparative analysis
between digital �lters for ZCP detection in power qual-
ity measurement in presence of 3rd and 5th harmonics
and noise is presented.

ZCP detection using a digital pulse-frequency mod-
ulator based on Field Programmable Gate Array
(FPGA) is implemented in [7] to identify the zero cur-
rent and zero voltage transition. This methodology
is implemented to change the resonant pulse width
in a quasi-resonant pulsed converter under different
load conditions. Analog ZCP detection based on digi-
tal zero-crossing detection algorithm with signal recon-
struction and least square �tting technologies is used
in [8] for high precise time difference measurement
in ultrasonic �ow measurement unit. ZCP detection
in line voltage based on a multistage �lter, least square
line �tting model and extrapolation of the ZCP is im-
plemented in [9]. This methodology is implemented
only on a 50 Hz sinusoidal signal but caes that this
can be applicable to a signal upto 60 Hz. ZCP de-
tection in inductor current for high current switched
mode DC-DC converters is presented in [10]. In this
paper, voltage polarity detector based on the transis-
tor memory cell and auto zero-comparator is used for
ZCP detection.

Identi�cation of Safety operation area represented by
back emf ZCP in a high speed Brushless DC (BLDC)
motor in terms of free wheeling angle is implemented
in [11]. The effect of Pulse Width Modulation (PWM)
techniques mechanism on free wheeling angle is investi-
gated. For given motor parameters, torque and speed
area of BLDC motor are identi�ed. A robust ZCP
detection mechanism is developed in [12] using sup-
port vector machine. In this study, authors considered
noise level up to 20 % and THD level 50 %. ZCP
detection using voltage sensors, voltage shifter and mi-
cro controller is discussed in [13]. Machine learning is
a powerful approach to �nd the solution for various
problems in electrical engineering like load forecast-
ing [14], [15] and [16] and health care [17] etc., Most
of the researchers are also using machine learning based
approach to detect the ZCP in distorted signals. In this

paper, also machine model called a decision tree clas-
si�er model is used for ZCP detection. ZCP detection
in a distorted sinusoidal signal with a smaller range
of noise and THD using decision tree model is discussed
in [18]. ZCP detection in a distorted sinusoidal signal
with a larger range of noise and THD using a logistic
regression model is discussed in [19].

A digital frequency measuring approach is presented
in [20] to solve the obstacle that the standard dual
mixer time difference measurement method's single
ZCP identi�cation is sensitive to noise. Sinusoidal
beat technology, multi-channel synchronous acquisi-
tion technology, and digital frequency measurement
technology are all used in [21] for sensorless control
of a BLDC motor based on ZCP detection in the Back
Electromotive Force (BEMF). Estimation line back
electromotive force via a sensor-less control technique
is proposed in [22]. The phase relationship between
the optimal commutation points of the brush-less di-
rect current motor and the ZCPs of the line back-
electromotive force is used to establish a commutation
rule for different rotor locations in this study. Most
of the researchers are also using machine learning based
approach to detect the ZCP in distorted signals.

Main contributions of this paper are as follows:

� ZCP detection in a wide range of distorted signals
by considering noise levels from 10 % to 60 %,
THD level from 10 % to 60 %.

� Decision tree classi�er which is a machine learning
model is used for the �rst time for ZCP detection.

� New data consists of 96 datasets that are devel-
oped to work on ZCP detection problem and are
available in https://data.mendeley.com/
datasets/d2hs6zt8gw/1.

� Performance of the decision tree classi�er model
to detect ZCP in distorted signal with various win-
dow sizes is observed.

The remaining part of this paper is organized as:
Sec. 2. describes dataset and machine learning
model, Sec. 3. presents results discussion and
Sec. 4. demonstrates the conclusions of the paper.

2. Methodology

This section consists of the architecture and training
process of decision tree classi�er used for the ZCP de-
tection. The information about the complete data that
is used to train and test the decision tree model is con-
sidered from [19]. The features like slope, correlation,
intercept and Root Mean Square Error (RMSE) are
extracted from various distorted signal as mentioned
in [12].
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2.1. Decision Tree Classi�er

Decision Tree Classi�er has tree based architecture
which is used for both binary and categorical classi-
�cation problems [23]. It follows a supervised learn-
ing [24] approach and is used to solve the classi�ca-
tion problems like discussed in [25], [26], [27], [28]
and also to solve regression problems like [29]. Any
one of the two cost functions called entropy and Gini
index can be used to construct the tree based on data
samples. The mathematical representation of the en-
tropy cost function is shown in Eq. (1) and Eq. (2),
and for Gini index is shown in Eq. (3) and Eq. (4).
Entropy is a measure of a random variable's un-
certainty; it characterises the impurity of any arbi-
trary collection of samples. The greater the entropy,
the greater the information content.The Gini Index is
a statistical measure of how frequently a randomly se-
lected piece is erroneously recognised. This suggests
that a characteristic with a lower Gini index should be
chosen. The performance of the decision tree classi�er
is measured in terms of accuracy [30], [31] and [32] as
shown in Eq. (5). The complete work for ZCP detec-
tion in the form of block diagram is shown in Fig. 1.
The main strengths of decision tree methods are as
follows:

� Decision trees can provide rules that are easy
to grasp.

� Decision trees perform classi�cation with little
processing.

� Decision trees can handle both continuous and dis-
crete data.

� Decision trees clearly show which �elds are most
relevant for prediction or categorization.

Entropy (label) =

= −
∑

i ϵ labels

−p (i.value) log2 p (i.value) .
(1)

Entropy (label, feature) =

=
∑

j ϵ featurecategories

−probability (j)Entropy (j) .

(2)
Gini (feature.value) =

= 1−
∑

feature.value ϵ class

[]p (feature.value)]2. (3)

Gini (class, feature) =
∑

feature.value ϵ class

[p (feature.value)]Gini (feature.value) .

(4)

Accuracy =

=
TZCP + TNZCP

TZCP + TNZCP + FZCP + FNZCP
.

(5)

Feature
Extraction
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Signal With various
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harmonic levels

m

C
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Fig. 1: Block diagram representation of proposed work.

3. Result Analysis

Decision tree classi�er is trained with all 96 datasets
which are created with various levels of noise, THD
and window size in Google Colab. The performance
of the model is observed in terms of accuracy.

3.1. Decision Tree Classi�er Model

Performance on Distorted

Signal with Noise

The Decision Tree (DT) model is trained and tested
on datasets which are created with a distorted si-
nusoidal signal with various noise levels from 10 %
to 60 %. To get a better DT model, this model
is trained by tuning the hyperparameters like depth
of the tree and cost functions i.e. entropy and Gini in-
dex. Testing and training accuracy for the DT model
on these 28 datasets for various combinations of several
trees and the cost functions are presented in Tab. 1.
The combination of depth of the tree and cost func-
tion that gave better testing accuracy is considered as
optimal DT model for each dataset and is highlighted
in Tab. 1.

The performance of the DT model on ZCP detec-
tion in distorted signals with various noise levels is
observed in terms of testing and training accuracy
with respect to various window sizes i.e. 5, 10, 15
and 20 are presented in Fig. 2. If testing accuracy
of the DT model for different window sizes is equal then
the model that gives better training accuracy consid-
ered as an optimal model. To avoid a DTmodel speci�c
to a particular noise level, A new DT model is trained
and tested on a distorted signal with all noise levels
10 % to 60 % using datasets "ZCP-Noise-25", "ZCP-
Noise-26", "ZCP-Noise-27" and "ZCP-Noise-28" with
different window sizes i.e. 5, 10, 15 and 20. The impact
of window size on the performance of the DT model
in terms of testing accuracy is presented in Fig. 3.
From Fig. 3, it is observed that the DT model at
performs well during training and testing with
a window size of 20.
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Tab. 1: Testing and training accuracy of DT model to detect ZCP in distorted signal with different noise levels.

Dataset

Entropy Gini

Dataset

Entropy Gini

Depth

Accuracy Accuracy

Depth Depth

Accuracy Accuracy

DepthTesting Training Testing Training Testing Training Testing Training

ZCP-NOISE-01

12 98.3 100 97.3 100 7

ZCP-NOISE-15

10 97.3 100 95.6 100 9
9 97.3 99.7 97.6 99.7 6 9 97.3 99.8 94.3 98.2 6
6 97.3 98.9 97 99.1 4 6 97.3 97.9 96 96.8 4
3 97.6 97.8 96.3 98.1 2 3 93.6 94.9 95.3 93.5 2

ZCP-NOISE-02

9 94 100 94.6 100 11

ZCP-NOISE-16

9 96 100 96.3 100 9

6 93.6 97.9 94.6 98.4 6 8 96 99.7 96 98.8 6
4 93.3 97.1 94.6 97.1 4 6 96 98.9 95.6 97.5 4
2 93.6 95.2 94.3 95.8 2 3 95 96.4 95.6 95.6 2

ZCP-NOISE-03

9 98 100 95.6 96.8 9

ZCP-NOISE-17

12 96.3 100 96.6 100 9
6 97.6 99.5 98.3 99.5 6 9 96.3 99.5 96 99.5 6
4 97.6 98.5 98 98.5 4 6 96 98.9 96.6 98.8 4
2 95.6 96.8 95.3 96.8 2 3 97.6 98.1 95.6 97.5 2

ZCP-NOISE-04

12 96.3 100 96.6 100 11

ZCP-NOISE-18

12 94.6 100 95 100 8
9 96.3 99.5 95 97.9 6 9 94.6 99.4 94 99.4 6
6 96.3 97.9 95 95.9 4 6 93.6 96.9 95.6 97.7 4

3 94.6 94.9 95 93.5 2 3 94.6 95.9 94.6 94.6 2

ZCP-NOISE-05

9 96 100 96 100 8

ZCP-NOISE-19

9 94.3 100 96 100 9

6 95.6 99.1 96 99.2 6 8 94.6 99.8 95 99.7 6
4 96 98.7 95.6 98.7 4 6 95 99.7 94.3 98.7 4
2 95.6 97.5 95.6 97.5 2 3 94.3 97.2 95.3 96.2 2

ZCP-NOISE-06

10 93 94.5 93.3 100 9

ZCP-NOISE-20

8 94.6 100 95.6 100 9
9 96 99.8 94 99.2 6 6 95.3 98.7 96.3 99.4 6

6 93.6 98.2 95.6 96.9 4 4 93.3 96.2 95.3 97.4 4
3 93.6 93.1 93 94.5 2 3 92.6 95.6 95 95.5 2

ZCP-NOISE-07

11 96.6 100 97 97.9 8

ZCP-NOISE-21

6 96 100 96 100 6
9 97.3 99.7 96.6 99.5 6 5 96.6 99.4 96.6 99.5 4
6 96.6 98.9 97 98.5 4 4 96.6 98.8 96.6 98.8 3
3 97 97.9 96.3 97.5 2 3 96.6 98.1 96.6 98.1 2

ZCP-NOISE-08

12 95.3 100 97.3 100 10

ZCP-NOISE-22

13 93.3 100 91.6 100 10
9 96 99.4 97 98.9 6 9 91.6 98.1 92.6 98.1 6
6 94.6 98.2 96.3 97.8 4 6 92.3 96.9 92.6 96.5 4
3 95.3 95.9 95.6 95.6 2 3 91.3 93.6 91.6 95.2 2

ZCP-NOISE-09

6 95.3 95.9 97.6 100 6

ZCP-NOISE-23

13 93.3 100 91.6 95.2 10
4 98 98.5 97.6 99.8 5 8 91.6 97.7 91.6 99.5 6
3 98.3 98.4 97.6 99.4 4 6 92.3 96.9 92.6 96.5 4
2 97.6 98.1 97.6 98.1 2 3 91.3 93.6 91.6 95.2 2

ZCP-NOISE-10

16 92.3 100 94.3 100 11

ZCP-NOISE-24

8 95.3 100 95 100 10
9 92.6 98.1 94 98.5 6 7 95.3 99.5 95 99.2 6
6 94 96.8 93 96.9 4 6 95 98.4 95 97.8 4
3 91.3 93.9 91.3 95.2 2 3 95 95.1 93.6 96.7 2

ZCP-NOISE-11

8 97.6 100 97 100 8

ZCP-NOISE-25

27 94.9 100 95.7 100 18
7 96.6 99.8 96.6 99.8 6 14 95 98.3 95.5 98.3 10
6 96.6 99.8 97 98.8 4 6 96.1 96.8 96.1 97.1 6
3 98 97.9 98 97.9 2 3 96.3 96.1 96.4 96 2

ZCP-NOISE-12

9 95.6 100 95.3 100 9

ZCP-NOISE-26

23 89.1 100 89.5 100 21
8 96 99.7 94.6 98.8 6 15 89.6 98.8 90.5 98 13
6 95.6 98.9 95.6 97.5 4 6 90.8 93 90.8 96.4 10

3 94.6 96.4 95.3 95.6 2 3 88.3 91 90 94.8 8

ZCP-NOISE-13

10 96.3 100 96.3 100 11

ZCP-NOISE-27

24 92 100 92.2 100 23
9 96.3 99.8 96 99.1 6 20 92.3 99.6 91.8 99.4 16
6 96 99.1 96 98.7 4 14 92.7 98.3 91.7 95.9 9
3 96 98.5 95.6 97.5 2 8 92 94.6 90 91 2

ZCP-NOISE-14

15 94 100 95 100 9

ZCP-NOISE-28

19 94 100 94.7 100 19

9 95.3 98.4 96 98.9 6 10 93.5 96.4 94.5 97.5 10
6 93.3 97.5 95.6 96.7 4 6 91.8 93.2 93.8 96.3 8
3 93.6 93.5 96.6 94.8 2 3 89.1 88.4 87.4 87.1 2

The performance of the DT model on ZCP detec-
tion in distorted signals with various noise levels is
observed in terms of testing and training accuracy
with respect to various window sizes i.e. 5, 10, 15
and 20 are presented in Fig. 2. If testing accuracy
of the DT model for different window sizes is equal then
the model that gives better training accuracy consid-
ered as an optimal model. To avoid a DTmodel speci�c
to a particular noise level, A new DT model is trained
and tested on a distorted signal with all noise levels
10 % to 60 % using datasets "ZCP-Noise-25", "ZCP-
Noise-26", "ZCP-Noise-27" and "ZCP-Noise-28" with
different window sizes i.e. 5, 10, 15 and 20. The impact
of window size on the performance of the DT model
in terms of testing accuracy is presented in Fig. 3.
From Fig. 3, it is observed that the DT model

at performs well during training and testing with
a window size of 20.
Finally, the parameters of optimal DT models like

cost function and depth of the tree, the performance
of the optimal models in terms of training and testing
accuracy with respect to each noise level are presented
in Tab. 2. From Tab. 2, DT model has the maximum
testing accuracy of 98.3 % with a noise level of 10 %
and 30 % but if all noise signals are added then it
has the minimum accuracy of 96.4 %. The informa-
tion about correctly and incorrectly predicted ZCPs
are presented in Tab. 3. From Tab. 3, it is observed
that the DT model can detect ZCP with good accu-
racy for noise levels 10 % to 60 % but when all signals
are combined then it has more false ZCP detection
problems. The confusion matrix which is built with
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Fig. 2: Impact of window size on testing accuracy of DT model on distorted signal with various noise levels.

Tab. 2: Optimal DT model parameters for various noise levels.

Noise Level Dataset
Accuracy

Depth
Cost function

Testing Training Entropy Gini
10 % ZCP-NOISE-01 98.3 100 12 Yes No
20 % ZCP-NOISE-08 97.3 100 10 No Yes
30 % ZCP-NOISE-09 98.3 98.4 3 Yes No
40 % ZCP-NOISE-15 97.3 100 10 Yes No
50 % ZCP-NOISE-17 97.6 98.1 3 Yes No
60 % ZCP-NOISE-21 96.6 99.4 4 Yes No

10�60 % ZCP-NOISE-25 96.4 96 2 No Yes

Tab. 3: Training and testing accuracy details of optimal DT models for various noise signals.

Dataset
Testing Data Training Data

NZCP ZCP NZCP ZCP
TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE

ZCP-NOISE-01 289 4 6 1 682 0 15 0
ZCP-NOISE-08 245 5 46 4 566 0 131 0
ZCP-NOISE-09 284 2 11 3 662 2 24 9
ZCP-NOISE-15 269 4 23 4 633 0 64 0
ZCP-NOISE-17 281 6 12 1 663 1 21 12
ZCP-NOISE-21 279 8 11 2 663 1 30 3
ZCP-NOISE-25 1726 1 6 62 3995 5 29 159
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testing data extracted from all distorted noisy signals is
presented in Tab. 4.
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Fig. 3: Impact of window size on testing accuracy of DT model
on distorted signal with all noise levels.

Tab. 4: Confusion Matrix with testing data for various noise
signals.

Confusion Predicted
Matrix ZCP NZCP

Actual
ZCP 115 30
NZCP 77 3373

3.2. The Decision Tree Classi�er

Model Performance

on Distorted Signal with THD

The DT model is trained and tested on datasets which
are created with a distorted sinusoidal signal with var-
ious THD levels from 10 % to 60 %. To get the better
the DT model, it is trained by tuning the hyperparam-
eters like the depth of the tree and the cost functions
i.e. entropy and Gini index. Testing and training ac-
curacy for DT model on these 28 datasets for various
combinations of several trees and the cost functions is
presented in Tab. 5. The combination of the depth
of the tree and cost function that gave better testing
accuracy is considered as optimal DT model for each
dataset and is highlighted in Tab. 5.

The performance of the DT model on ZCP
detection in distorted signals with various THD lev-
els is observed in terms of testing and training accu-
racy using various window sizes i.e. 5, 10, 15 and 20
are presented in Fig. 4. If testing accuracy of the DT
model for different window sizes is equal then model
which gives better training accuracy is considered as
the optimal model. To avoid a DT model speci�c
to a particular THD level, a new DT model was trained
and tested on a distorted signal with all THD levels
10 % to 60 % using datasets "ZCP-THD-25", "ZCP-
THD-26", "ZCP-THD-27" and "ZCP-THD-28" with
different window sizes i.e. 5, 10, 15 and 20. The im-
pact of window size on performance of the DT model
in terms of testing accuracy is presented in Fig. 5.
From Fig. 5, it is observed that the DT model

performs well during training and testing with
a window size of 10.

Finally, the parameters of an optimal DT models like
the cost function and the depth of the tree, the per-
formance of the optimal models in terms of training
and testing accuracy with respect to each THD level
are presented in Tab. 6. From Tab. 6, the DT model
has maximum testing accuracy of 100 % with noise
level 10 % and 60 % but with all the noise signals,
it has minimum accuracy of 96.4 %.

The information about correctly and incorrectly pre-
dicted ZCPs are presented in Tab. 7. From Tab. 7,
it is observed that DT model has more false ZCP de-
tection problem with combined signals. The impact
of THD level on testing accuracy of the DT model is
shown in Fig. 6, from the Fig. 6 it is observed that
the performance of the DT model is slightly decreas-
ing for distorted signals with all combined THD levels.
Confusion matrix which is build with testing data that
extracted from all distorted signals due to harmonics
is presented in Tab. 8.

3.3. Decision Tree Classi�er

Performance on Distorted

Signal with Harmonics

and Noise

The DT model is trained and tested on datasets which
are created with a distorted sinusoidal signal with var-
ious THD and noise levels. To get the better the DT
model, it is trained by tuning the hyperparameters like
the depth of the tree and the cost functions i.e. entropy
and Gini index. Testing and training accuracy for DT
model on these 40 datasets for various combinations
of several trees and the cost functions are presented
in Tab. 9. The combination of the depth of the tree
and cost function that gave better testing accuracy is
considered as optimal DT model for each dataset and
is highlighted in Tab. 9.

The performance of the DT model on ZCP detection
in distorted signals with various THD and noise level
combination is observed in terms of testing and train-
ing accuracy using various window sizes i.e. 5, 10, 15
and 20 are presented in Fig. 7. If testing accuracy
of the DT model for different window sizes is equal
then model that gives better training accuracy is con-
sidered as the optimal model. To avoid a DT model
speci�c to a particular THD and noise level combina-
tion, a new DT model was trained and tested on a dis-
torted signal with all THD and noise level combinations
using datasets "ZCP-NTHD-37", "ZCP-NTHD-38",
"ZCP-NTHD-39" and "ZCP-NTHD-40" with different
window sizes i.e. 5, 10, 15 and 20.
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Tab. 5: Testing and training accuracy of DT model to detect ZCP in distorted signal with different THD levels.

Dataset

Entropy Gini

Dataset

Entropy Gini

Depth

Accuracy Accuracy

Depth Depth

Accuracy Accuracy

DepthTesting Training Testing Training Testing Training Testing Training

ZCP-THD-01

2 100 100 100 100 2

ZCP-THD-15

5 100 100 100 100 5
1 97.67 97.84 97.67 97.84 1 3 98 97.99 98 97.99 3

ZCP-THD-02

7 98.33 100 100 100 7

ZCP-THD-16

6 100 100 100 100 6
5 98 99.71 98 99.57 5 3 96 95.98 96 95.98 3
3 97.66 98.56 97.67 98.56 3 2 91 90.67 91 90.67 2
1 95.67 97.27 95.67 97.27 1 1 87.33 84.36 91 90.67 1

ZCP-THD-03

2 100 100 100 100 2

ZCP-THD-17

3 100 100 100 100 3
1 97.66 97.85 97.66 97.85 1 2 100 99.85 100 99.85 2

ZCP-THD-04

3 100 100 100 100 2

ZCP-THD-18

8 100 100 100 100 8
2 97.66 97.85 97.67 97.85 1 6 96.67 97.13 96.67 97.13 6
1 95.33 95.26 4 93.33 94.41 93.33 94.41 4

ZCP-THD-05

3 99.67 100 99.67 100 3

ZCP-THD-19

2 100 100 100 100 2
2 100 99.85 100 99.85 2 1 91.67 89.67 91.67 89.67 1

ZCP-THD-06

2 100 100 100 100 2

ZCP-THD-20

8 98 100 98 100 8
1 95.33 95.26 97.66 97.84 1 6 98 99.14 98.33 99.14 6

ZCP-THD-07

2 100 100 100 100 2

ZCP-THD-21

7 100 100 100 100 7
1 95 95.41 95 95.41 1 5 98 97.7 98.33 97.84 5

ZCP-THD-08

7 97 100 97 100 7

ZCP-THD-22

8 100 100 100 100 8
5 97.33 99.71 97.33 99.71 5 6 97.33 98.42 97.33 98.42 6
3 96.33 98.13 96.33 98.13 3 4 90.67 92.4 90.67 92.4 4
1 93 94.84 93 94.84 1 2 87 85.93 91.67 92.25 2

ZCP-THD-09

2 100 100 100 100 2

ZCP-THD-23

3 100 100 100 100 3
1 95 95.41 95 95.41 1 2 100 99.85 100 99.85 2

ZCP-THD-10

2 100 100 100 100 2

ZCP-THD-24

10 100 100 100 100 9
1 95 95.41 95 95.41 1 8 96.33 96.41 96 96.27 7

ZCP-THD-11

3 100 100 100 100 3

ZCP-THD-25

9 99.55 100 99.44 100 9
2 100 99.85 100 99.85 2 7 99.27 99.95 99.61 99.78 7
1 95 95.41 95 95.41 1 5 98.9 99.23 98.1 98.1 5

ZCP-THD-12

3 100 100 100 100 5

ZCP-THD-26

11 99.49 100 99.33 100 12
2 95 95.41 97.67 98.13 3 9 99.66 99.95 99.27 99.88 9
1 91.67 89.67 97.67 98.13 2 6 99.11 99.4 97.43 98.49 6

ZCP-THD-13

5 99.67 100 99.67 100 6

ZCP-THD-27

17 99.44 100 99.16 100 16
3 99.33 99.13 99.33 99.13 3 12 98.38 99.31 98.66 99.54 12
2 99.33 99.13 99.33 99.13 2 8 96.49 96.63 96.49 96.96 8
1 93.33 92.53 93.33 92.53 1 4 91.69 92.12 91.69 92.12 4

ZCP-THD-14

6 98.33 100 98.33 100 6

ZCP-THD-28

22 99.27 100 99.49 100 13
3 97.33 98.27 97.66 98.85 3 16 98.38 99.16 97.04 97.87 8
2 97.66 98.13 97.33 98.27 2 9 94.31 94.26 93.7 93.69 5
1 91.67 91.82 91.33 91.96 1 2 81.89 81.2 83.45 82.92 2

Tab. 6: Optimal DT model parameters for various THD levels.

Noise Level Dataset

Accuracy

Depth

Cost function
Testing Training Entropy Gini

10 % ZCP-THD-01 100 100 2 Yes No
20 % ZCP-THD-06 100 100 2 Yes No
30 % ZCP-THD-09 100 100 2 Yes No
40 % ZCP-THD-15 100 100 5 Yes No
50 % ZCP-THD-17 100 100 3 Yes No
60 % ZCP-THD-21 100 100 7 Yes No

10�60 % ZCP-THD-26 99.66 99.95 9 Yes No

Tab. 7: Training and testing accuracy details of optimal DT models for various THD signals.

Dataset

Testing Data Training Data
NZCP ZCP NZCP ZCP

TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE
10 % 286 0 14 0 664 0 33 0
20 % 286 0 14 0 664 0 33 0
30 % 275 0 25 0 625 0 72 0
40 % 262 0 38 0 588 0 109 0
50 % 262 0 38 0 588 0 109 0
60 % 248 0 52 0 552 0 145 0

10�60 % 1635 0 154 6 3765 0 420 2

Finally, the parameters of an optimal DT models like
the cost function and the depth of the tree, the per-
formance of the optimal models in terms of train-
ing and testing accuracy with respect to each THD
and noise level combination are presented in Tab. 10.

From Tab. 10, the DT model has minimum testing ac-
curacy of 99.4 % with all noise and THD and noise
level combinations due to highly diversi�ed data.
The information regarding correctly and incor-

rectly predicted ZCPs are presented in Tab. 11.
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(c) THD Level 30 %.
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(e) THD Level 50 %.
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Fig. 4: Impact of window size on testing accuracy of DT model on distorted signal with various THD levels.
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Fig. 5: Impact of window size on testing accuracy of DT model
on distorted signal with all THD levels.

Tab. 8: Confusion Matrix with testing data for all THD signals.

Confusion Predicted
Matrix ZCP NZCP

Actual ZCP 181 0
NZCP 0 3254

From Tab. 11, it is observed that the DT model
has more false ZCP detection problem with consid-
eration of all THD and noise level combinations.
The confusion matrix which is built with testing data
that extracted from all distorted signals due to both
noise and harmonics is presented in Tab. 12.

3.4. Comparative Analysis

The comparison of the performance of each model i.e.,
logistic regression and decision tree classi�er in terms
of testing accuracy for detection of ZCP on various
signals is presented in this section.

1) Comparative Analysis on Noise Signals

Comparison between machine learning models i.e.
logistic regression and decision tree classi�er based
on the performance of ZCP detection on various
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Tab. 9: Testing and training accuracy of DT model to detect ZCP in distorted signal with different THD and noise level
combinations.

Dataset

Entropy Gini

Dataset

Entropy Gini

Depth

Accuracy Accuracy

Depth Depth

Accuracy Accuracy

DepthTesting Training Testing Training Testing Training Testing Training

ZCP-NTHD-01

2 99.66 100 99.66 100 3

ZCP-NTHD-22

3 100 100 100 100 3
1 96.66 96.7 99 98.99 2 2 100 99.85 100 99.85 2

ZCP-NTHD-02

4 99.66 100 99 100 3 1 95 95.4 95 95.4 1
3 99 99.85 97.66 98.99 2

ZCP-NTHD-23

3 100 100 100 100 3
2 99 99.85 97.66 98.99 1 2 100 99.85 100 99.85 2

ZCP-NTHD-03

6 98.33 100 98 100 5 1 93.33 92.53 93.33 92.53 1
4 98.66 99.71 97.33 99.13 3

ZCP-NTHD-24

20 97.33 100 98 100 19

3 97.33 99.13 97 98.56 2 15 94 95.98 92 93.68 13
2 96.66 98.42 97 98.56 1 10 89.33 8923 88.33 86.94 7

ZCP-NTHD-04

6 98.66 100 97.66 100 9 5 86 85.22 83 81.2 1
4 98 98.7 97.33 99.28 6

ZCP-NTHD-25

19 98 100 97.66 100 15
3 98 96.98 98.33 98.27 3 13 98 98.42 97 98.42 10
2 96.66 94.83 95.66 95.55 2 7 96.33 96.84 96.33 96.98 5

ZCP-NTHD-05

2 99.66 100 99.66 100 3 1 95.33 95.26 95.33 95.4 2
1 94 95.83 99.66 99.85 2

ZCP-NTHD-26

3 100 100 100 100 3

ZCP-NTHD-06

4 99.33 100 99.33 100 3 2 100 99.85 100 99.85 2
3 99.33 99.825 99.33 99.42 2 1 95 95.4 95 95.4 1
2 99.66 99.56 98.66 98.13 1

ZCP-NTHD-27

2 100 100 100 100 2

ZCP-NTHD-07

3 99.66 100 99.66 100 3 1 93.33 92.53 93.33 92.53 1
2 99.66 99.85 99.66 99.85 2

ZCP-NTHD-28

2 99.33 100 99.33 100 2
1 93.66 99.53 93.66 92.53 1 1 91 89.67 91 89.67 1

ZCP-NTHD-08

6 97.66 100 97 100 6

ZCP-NTHD-29

5 99.66 100 100 100 4

4 97.66 99.85 97.66 99.85 4 3 99.33 99.42 100 99.71 3
3 98 95.56 98 99.56 3 2 99.33 99.28 100 99.28 2
2 98 99.42 98 99.56 2 1 94.33 97.13 98 98.56 1

ZCP-NTHD-09

4 99.66 100 99.66 100 4

ZCP-NTHD-30

3 100 100 100 100 3
3 99.33 99.56 99 99.56 3 2 100 99.85 100 99.85 2
2 99.33 99.42 99.33 99.42 2 1 95 95.4 95 95.4 1
1 98.33 97.77 98.33 97.77 1

ZCP-NTHD-31

7 97 100 97 100 7

ZCP-NTHD-10

3 100 100 100 100 3 5 97.66 99.85 96 99.85 5
2 100 99.85 100 99.85 2 3 97 98.99 97.66 99.13 3
1 95 95.4 95 95.4 1 1 97.33 97.13 98.66 97.41 1

ZCP-NTHD-11

3 99.66 100 99.66 100 3

ZCP-NTHD-32

6 97.33 100 97 100 7
2 99.66 99.85 99.66 99.85 2 4 97.33 99.13 97.66 99.71 5

1 93.66 92.53 93.66 92.53 1 3 97.33 98.7 97 98.42 3

ZCP-NTHD-12

2 100 100 100 100 2 2 97.33 97.27 97.33 99.13 1
1 91.66 89.69 91.66 89.69 1

ZCP-NTHD-33

6 100 100 99.66 100 6

ZCP-NTHD-13

4 100 100 100 100 4 4 99.33 99.28 99.66 99.71 4
3 99.33 99.56 99.56 99.33 3 3 98.66 99.13 99.66 99.71 3
2 99.33 99.42 99.33 99.42 2 2 98.66 99.13 98 97.27 2
1 98.33 97.7 98.33 97.7 1

ZCP-NTHD-34

4 99 100 99 100 4

ZCP-NTHD-14

3 100 100 100 100 3 3 99.33 99.85 99.33 99.85 3
2 100 99.85 100 99.85 2 2 99.33 99.13 99.33 99.13 2
1 95 95.4 95 95.4 1 1 99.33 98.7 99.33 98.7 1

ZCP-NTHD-15

3 99.66 100 99.66 100 3

ZCP-NTHD-35

7 98.66 100 98.66 100 6
2 99.66 99.85 99.66 99.85 2 5 98.66 99.28 98.33 99.13 4
1 93.66 92.53 93.66 92.53 1 3 98.33 97.84 98.66 98.7 3

ZCP-NTHD-16

3 100 100 100 100 3 1 97.33 97.27 98 97.41 2
2 100 99.85 100 99.85 2

ZCP-NTHD-36

9 96 100 94.33 100 10
1 91.66 89.67 91.66 89.67 1 6 94.33 98.99 93.66 99.56 7

ZCP-NTHD-17

4 100 100 100 100 4 3 94.33 96.98 94.66 97.27 4
3 99.33 99.56 99.33 99.56 3 2 89 88.23 83.33 85.07 1
2 99.33 99.42 99.33 99.42 2

ZCP-NTHD-37

24 99.4 100 99.21 100 24
1 98.33 97.7 98.33 97.7 1 18 99.21 99.84 99.03 99.84 18

ZCP-NTHD-18

4 99.66 100 99.66 100 4 12 99.21 99.64 99.07 99.63 12
3 99.33 99.85 99.33 99.85 3 6 97.99 97.99 98.06 98.04 6
2 100 99.71 100 99.71 2

ZCP-NTHD-38

10 99.44 100 99.4 100 11
1 95 95.26 95 95.26 1 7 99.33 99.77 99.07 99.61 7

ZCP-NTHD-19

8 98 100 98 100 8 4 98.4 98.29 98.1 97.93 4
6 98 99.85 98 99.85 6 1 93.68 93.28 93.68 93.56 1
4 98 99.71 98 99.71 4

ZCP-NTHD-39

13 98.84 100 98.88 100 12
2 98 99.28 98 99.28 2 9 98.84 99.72 98.95 99.93 9

ZCP-NTHD-20

6 97.66 100 97.66 100 6 6 98.51 98.93 98.73 99.23 6
4 97.66 99.85 97.66 99.85 4 3 95.02 94.85 95.02 94.85 3
3 98 99.42 98 99.42 3

ZCP-NTHD-40

22 98.17 100 98.32 100 21

2 98 99.42 98 99.42 2 17 97.91 99.53 97.91 99.52 17

ZCP-NTHD-21

4 100 100 100 100 4 12 97.43 98.67 97.58 98.59 12
3 100 99.85 100 99.85 3 7 96.43 96.78 96.84 96.95 7
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Fig. 6: Impact of THD level on testing accuracy of DT model.
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(b) Noise Level 10 % and THD Level 40 %.
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(c) Noise Level 10 % and THD Level 60 %.
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(d) Noise Level 30 % and THD Level 20 %.
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(f) Noise Level 30 % and THD Level 60 %.
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Fig. 7: Impact of window size on testing accuracy of DT model on distorted signal with various THD and noise level combinations.
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Tab. 10: Optimal DT model parameters for various THD and noise level combinations.

Noise Level THD Dataset

Accuracy

Depth

Cost function
Testing Training Entropy Gini

10 % 20 % ZCP-NTHD-02 99.66 100 4 Yes No
10 % 40 % ZCP-NTHD-07 99.66 100 3 Yes No
10 % 60 % ZCP-NTHD-10 100 100 3 Yes No
30 % 20 % ZCP-NTHD-13 100 100 3 Yes No
30 % 40 % ZCP-NTHD-17 100 100 4 Yes No
30 % 60 % ZCP-NTHD-21 100 100 4 Yes No
60 % 20 % ZCP-NTHD-26 100 100 3 Yes No
60 % 40 % ZCP-NTHD-29 100 100 4 N0 YES
60 % 60 % ZCP-NTHD-33 100 100 6 Yes No

10 %, 30 %, 60 % 20 %, 40 %, 60 % ZCP-NTHD-37 99.4 100 24 Yes No

Tab. 11: True and false zcp detection information of optimal DT models for various THD and noise level combinations.

Dataset

Testing Data Training Data
NZCP ZCP NZCP ZCP

TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE
ZCP-NTHD-02 275 2 22 1 626 0 68 0
ZCP-NTHD-07 262 1 37 0 588 0 109 0
ZCP-NTHD-10 275 0 25 0 625 0 72 0
ZCP-NTHD-13 286 2 12 0 664 3 30 0
ZCP-NTHD-17 288 0 12 0 667 0 30 0
ZCP-NTHD-21 288 0 12 0 664 0 33 0
ZCP-NTHD-26 275 0 25 0 625 0 72 0
ZCP-NTHD-29 285 1 14 0 664 0 33 0
ZCP-NTHD-33 286 0 14 0 664 0 33 0
ZCP-NTHD-37 2570 0 103 11 5987 0 294 0
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Fig. 8: Comparison of performance of machine learning models on noisy signals.
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Fig. 9: Comparison of performance of machine learning models on harmonic signals.

noise signals in terms of testing accuracy is presented
in Fig. 8. From Fig. 8, it is observed that the decision

tree classi�er model can detect ZCPs on a noisy signal
with good accuracy than the logistic regression model.
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Fig. 10: Comparison of performance of machine learning models on combined harmonic and noise signals.

Tab. 12: Confusion Matrix with testing data for all combined
noise and THD distorted signals.

Confusion Predicted
Matrix ZCP NZCP

Actual ZCP 173 1
NZCP 6 5090

2) Comparative Analysis on Harmonic
Signals

Comparison between machine learning models i.e.,
the logistic regression and the decision tree classi�er
based on the performance of ZCP detection on vari-
ous harmonic signals in terms of testing accuracy is
presented in Fig. 9. From Fig. 9, it is observed that
the decision tree classi�er model can detect ZCPs
on harmonic signals with better accuracy than the
logistic regression models.

3) Comparative Analysis on Harmonics
and Noise Combined Signals

Comparison between machine learning models i.e.,
the logistic regression and the decision tree classi�er
based on the performance of ZCP detection on various
harmonics and noise combined signals in terms of test-
ing accuracy is presented in Fig. 10. From Fig. 10, it
is observed that the decision tree classi�er model can
detect ZCPs on combined noise and harmonic signals
with better accuracy than the logistic regression model.

4. Conclusions

Accurate ZCP detection in a distorted signal is a com-
plex task and essential to operate the power system
network without power quality issues, protect the sys-
tem against faults and for ef�cient power electronics

converter controller design. In this study, the perfor-
mance of the decision tree classi�er model on accu-
rate ZCP detection in a distorted sinusoidal signal is
discussed.

The distorted sinusoidal signal is generated in MAT-
LAB with various noise and THD levels and from each
signal features like slope, intercept, correlation
and RMSE are extracted in order to prepare the data
for training and testing the decision tree classi�er.
From the observations based on simulation results,
decision tree classi�er model can predict ZCP points
with good accuracy and is performing better than
the logistic regression model.

ZCP detection problem is further extended by
incorporating the voltage swell in the sinusoidal
signal also by considering other machine learning
models like random forest, deep learning sequence
models like recurrent neural network, long-short term
memory and gated recurrent unit.
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Appendix

Appendix A Conversion
of Continuous
Features into
Categorical
Features

This section demonstrates step by step procedure
that is used to to convert continuous features into
categorical features.

� Read data that is shown Tab. 13.

Tab. 13: Few data samples from the dataset that prepared
from noisy distorted signal.

m c R E Class
−448 4.4 0.96 0.027 0
−313 3.1 0.98 0.010 0
−331 3.3 0.99 0.009 0
−299 3.0 0.99 0.009 1
−269 2.7 1.00 0.009 1
−301 3.0 1.00 0.003 1
−293 2.9 1.00 0.004 1
−319 3.2 1.00 0.003 1
−303 3.0 0.99 0.005 0
−324 3.2 0.99 0.007 0

� Identify the unique threshold values for each input
feature i.e. m (Slope), c (Intercept), R (Correla-
tion) and E (RMSE) as shown below.

� Unique threshold values for m: ≥ −448,≥
−313,≥ −331,≥ −269,≥ −299,≥ −301,≥
−293,≥ −319,≥ −303,≥ −324 .

� Unique threshold values for c: ≥ 4.4,≥ 3.0,≥
2.7,≥ 3.1,≥ 3.2,≥ 2.9.

� Unique threshold values for R: ≥ 0.96,≥
0.98,≥ 0.99,≥ 1.

� Unique threshold values for E: ≥ 0.027,≥
0.01,≥ 0.009,≥ 0.004,≥ 0.003,≥ 0.005,≥
0.007.

� Now identify the best threshold value for each fea-
ture to convert continuous data into categorical
based on Information Gain (IG) as shown below.
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1.1. Identi�cation of Best Threshold

for m

1) Calculate IG for Threshold ≥ −448
Using Tab. 14

Tab. 14: Sub Table: m Vs. class with threshold ≥ −448.

m Class m Class
≥ −448 0 < −448 1
< −448 0 < −448 1
< −448 0 < −448 1
< −448 1 < −448 0
< −448 1 < −448 0

� Calculate probability for class label.

Parameter 1 0

Count 5 5

Probability P(1)= 5
10

P(0)= 5
10

� Calculate entropy for class label.

E (class) = E (1, 0) =

= −P (1) log2 P (1)− P (0) log2 P (0) .
(6)

E (class) = E (1, 0) = − 5

10
log2

5

10
− 5

10
log2

5

10
= 1.

(7)

� Calculate probability with respect to feature m
threshold ≥ −448.

Threshold 1 0 Probability

≥ −448 5 5 10
10
=1

< −448 0 0 0

� Calculate entropy with respect to feature m
threshold ≥ −448.

E (m ≥ −448) = E (5, 5) =

= − 5

10
log2

5

10
− 5

10
log2

5

10
= 1.

(8)

E (m < −448) = E (0, 0) = 0. (9)

� Calculate entropy of feature with respect to class.

E (class,m) = P (m ≥ −448)E (m ≥ −448)+

+P (m < −448)E (m < −448) =

= (1) (1) + (0) (0) = 1.
(10)

� Calculate information gain of feature m ≥ −448.

IG (m ≥ −448) = E (class)− E (class,m) =

= 1− 1 = 0.
(11)

2) Calculate IG for Threshold ≥ −313
Using Tab. 15

Tab. 15: Sub Table: m Vs. class with threshold ≥ −313.

m Class m Class
< −313 0 ≥ −313 1
≥ −313 0 ≥ −313 1
< −313 0 < −313 1
≥ −313 1 ≥ −313 0
≥ −313 1 < −313 0

� Calculate probability with respect to feature m
threshold ≥ −313.

Threshold 1 0 Probability

≥ −313 4 2 6
10
=0.6

< −313 1 3 4
10
=0.4

� Calculate entropy with respect to feature m
threshold ≥ −313.

E (m ≥ −313) = E (4, 2) =

= −4

6
log2

4

6
− 2

6
log2

2

6
= 0.723.

(12)

E (m < −313) = E (1, 3) =

= −1

4
log2

1

4
− 3

4
log2

3

4
= 0.811.

(13)

� Calculate entropy of feature with respect to class.

E (class,m) = P (m ≥ −313)E (m ≥ −313)+

+P (m < −313)E (m < −313) = (0.6) (0.723)+

+ (0.4) (0.811) = 0.7582.
(14)

� Calculate information gain of feature m ≥ −313.

IG (m ≥ −313) = E (class)− E (class,m) =

= 1− 0.7582 = 0.2418.
(15)

3) Calculate IG for Threshold ≥ −331
Using Tab. 16

Tab. 16: Sub Table: m Vs. class with threshold ≥ −331.

m Class m Class
< −331 0 ≥ −331 1
≥ −331 0 ≥ −331 1
≥ −331 0 ≥ −331 1
≥ −331 1 ≥ −331 0
≥ −331 1 ≥ −331 0
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Tab. 17: Probability for each spilt: m ≥ −313 and m < −313.

Threshold 1 0 Probability

≥ −331 5 4 9
10
=0.9

< −331 0 1 1
10
=0.1

� Calculate probability with respect to feature m
threshold ≥ −331 and presented in Tab. 17.

� Calculate entropy with respect to feature m
threshold ≥ −331.

E (m ≥ −331) = E (5, 4) =

= −5

9
log2

5

9
− 4

9
log2

4

9
= 0.991.

(16)

E (m < −331) = E (0, 1) =

= −0

1
log2

0

1
− 1

1
log2

1

1
= 0.

(17)

� Calculate entropy of feature with respect to class.

E (class,m) = P (m ≥ −331)E (m ≥ −331)+

+P (m < −331)E (m < −331) =

= (0.9) (0.991) + (0.1) (0) = 0.8919.
(18)

� Calculate information gain of feature m ≥ −331.

IG (m ≥ −331) = E (class)− E (class,m) =

= 1− 0.8919 = 0.1081.
(19)

4) Calculate IG for Threshold m ≥ −269
Using Tab. 18

Tab. 18: Sub Table: m Vs. class with threshold ≥ −269.

m Class m Class
< −269 0 < −269 1
< −269 0 < −269 1
< −269 0 < −269 1
< −269 1 < −269 0
≥ −269 1 < −269 0

� Calculate probability with respect to feature m
threshold ≥ −269 and presented in Tab. 19 .

Tab. 19: Probability for each spilt: m ≥ −269 and m < −269.

Threshold 1 0 Probability

≥ −331 1 0 1
10
=0.1

< −331 4 5 9
10
=0.9

� Calculate entropy with respect to feature m
threshold ≥ −269.

E (m ≥ −269) = E (1, 0) =

= −1

1
log2

1

1
− 0

1
log2

0

1
= 0.

(20)

E (m < −269) = E (4, 5) =

= −4

9
log2

4

9
− 5

9
log2

5

9
= 0.991.

(21)

� Calculate entropy of feature with respect to class.

E (class,m) = P (m ≥ −269)E (m ≥ −269)+

+P (m < −269)E (m < −269) =

= (0.1) (0) + (0.9) (0.991) = 0.8919.
(22)

� Calculate information gain of feature m ≥ −269.

IG (m ≥ −269) =

= E (class)− E (class,m) = 1− 0.8919 = 0.1081.
(23)

5) Calculate IG for Threshold m ≥ −299
Using Tab. 20

Tab. 20: Sub Table: m Vs. class with threshold ≥ −299.

m Class m Class
< −299 0 < −299 1
< −299 0 ≥ −299 1
< −299 0 < −299 1
≥ −299 1 < −299 0
≥ −299 1 < −299 0

� Calculate probability with respect to feature m
threshold ≥ −299 and presented in Tab. 21.

Tab. 21: Probability for each spilt: m ≥ −299 and m < −299.

Threshold 1 0 Probability

≥ −299 3 0 3
10
=0.3

< −299 2 5 7
10
=0.7

� Calculate entropy with respect to feature m
threshold ≥ −299.

E (m ≥ −299) = E (3, 0) =

= −3

3
log2

3

3
− 0

3
log2

0

3
= 0.

(24)

E (m < −299) = E (2, 5) =

= −2

7
log2

2

7
− 5

7
log2

5

7
= 0.8631.

(25)
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� Calculate entropy of feature with respect to class.

E (class,m) = P (m ≥ −299)E (m ≥ −299)+

+P (m < −299)E (m < −299) =

= (0.3) (0) + (0.7) (0.8631) = 0.6042.
(26)

� Calculate information gain of feature m ≥ −299.

IG (m ≥ −299) = E (class)− E (class,m) =

= 1− 0.6042 = 0.3958.
(27)

6) Calculate IG for Threshold m ≥ −301
Using Tab. 22

Tab. 22: Sub Table: m Vs. class with threshold ≥ −301.

m Class m Class
< −301 0 ≥ −301 1
< −301 0 ≥ −301 1
< −301 0 < −301 1
≥ −301 1 < −301 0
≥ −301 1 < −301 0

� Calculate probability with respect to feature m
threshold ≥ −301 and presented in Tab. 23.

Tab. 23: Probability for each spilt: m ≥ −301 and m < −301.

Threshold 1 0 Probability

≥ −301 4 1 5
10
=0.5

< −301 1 4 5
10
=0.5

� Calculate entropy with respect to feature m
threshold ≥ −301.

E (m ≥ −301) = E (4, 1) =

= −4

5
log2

4

5
− 1

5
log2

1

5
= 0.7212.

(28)

E (m < −301) = E (1, 4) =

= −1

5
log2

1

5
− 4

5
log2

4

5
= 0.7212.

(29)

� Calculate entropy of feature with respect to class.

E (class,m) = P (m ≥ −301)E (m ≥ −301)+

+P (m < −301)E (m < −301) =

= (0.5) (0.7212) + (0.5) (0.7212) = 0.7212.
(30)

� Calculate information gain of feature m ≥ −301.

IG (m ≥ −301) = E (class)− E (class,m) =

= 1− 0.7212 = 0.2788.
(31)

7) Calculate IG for Threshold m ≥ −293
Using Tab. 24

Tab. 24: Sub Table: m Vs. class with threshold ≥ −293.

m Class m Class
< −293 0 < −293 1
< −293 0 ≥ −293 1
< −293 0 < −293 1
< −293 1 < −293 0
≥ −293 1 < −293 0

� Calculate probability with respect to feature m
threshold ≥ −293 and presented in Tab. 25.

Tab. 25: Probability for each spilt: m ≥ −293 and m < −293.

Threshold 1 0 Probability

≥ −293 2 0 2
10
=0.2

< −293 3 5 8
10
=0.8

� Calculate entropy with respect to feature m
threshold ≥ −293.

E (m ≥ −293) = E (2, 0) =

= −2

2
log2

2

2
− 0

2
log2

0

2
= 0.

(32)

E (m < −293) = E (3, 5) =

= −3

8
log2

3

8
− 5

8
log2

5

8
= 0.9544.

(33)

� Calculate entropy of feature with respect to class.

E (class,m) = P (m ≥ −293)E (m ≥ −293)+

+P (m < −293)E (m < −293) =

= (0.2) (0) + (0.8) (0.9544) = 0.7635.
(34)

� Calculate information gain of feature m ≥ −293.

IG (m ≥ −293) = E (class)− E (class,m) =

= 1− 0.7635 = 0.2364.
(35)

8) Calculate IG for Threshold m ≥ −319
Using Tab. 26

� Calculate probability with respect to feature m
threshold ≥ −319 and presented in Tab. 27.

� Calculate entropy with respect to feature m
threshold ≥ −319.
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Tab. 26: Sub Table: m Vs. class with threshold ≥ −319.

m Class m Class
< −319 0 ≥ −319 1
≥ −319 0 ≥ −319 1
< −319 0 ≥ −319 1
≥ −319 1 ≥ −319 0
≥ −319 1 < −319 0

Tab. 27: Probability for each spilt: m ≥ −319 and m < −319.

Threshold 1 0 Probability

≥ −319 5 2 7
10
=0.7

< −319 0 3 3
10
=0.3

E (m ≥ −319) = E (5, 2) =

= −5

7
log2

5

7
− 2

7
log2

2

7
= 0.8631.

(36)

E (m < −319) = E (0, 3) =

= −0

3
log2

0

3
− 3

3
log2

3

3
= 0.

(37)

� Calculate entropy of feature with respect to class.

E (class,m) = P (m ≥ −319)E (m ≥ −319)+

+P (m < −319)E (m < −319) =

= (0.7) (0.8631) + (0.3) (0) = 0.6042.
(38)

� Calculate information gain of feature m ≥ −319.

IG (m ≥ −319) = E (class)− E (class,m) =

= 1− 0.6042 = 0.3958.
(39)

9) Calculate IG for Threshold m ≥ −303
Using Tab. 28

Tab. 28: Sub Table: m Vs. class with threshold ≥ −303.

m Class m Class
< −303 0 ≥ −303 1
< −303 0 ≥ −303 1
< −303 0 < −303 1
≥ −303 1 ≥ −303 0
≥ −303 1 < −303 0

� Calculate probability with respect to feature m
threshold ≥ −303 and presented in Tab. 29.

� Calculate entropy with respect to feature m
threshold ≥ −303.

E (m ≥ −303) = E (4, 1) =

= −4

5
log2

4

5
− 1

5
log2

1

5
= 0.7212.

(40)

Tab. 29: Probability for each spilt: m ≥ −303 and m < −303.

Threshold 1 0 Probability

≥ −303 4 1 5
10
=0.5

< −303 1 4 5
10
=0.5

E (m < −303) = E (1, 4) =

= −1

5
log2

1

5
− 4

5
log2

4

5
= 0.7212.

(41)

� Calculate entropy of feature with respect to class.

E (class,m) = P (m ≥ −303)E (m ≥ −303)+

+P (m < −303)E (m < −303) =

= (0.5) (0.7212) + (0.5) (0.7212) = 0.7212.
(42)

� Calculate information gain of feature m ≥ −303.

IG (m ≥ −303) = E (class)− E (class,m) =

= 1− 0.7212 = 0.2788.
(43)

10) Calculate IG for Threshold m ≥ −324
Using Tab. 30

Tab. 30: Sub Table: m Vs. class with threshold ≥ −324.

m Class m Class
< −324 0 ≥ −324 1
≥ −324 0 ≥ −324 1
< −324 0 ≥ −324 1
≥ −324 1 ≥ −324 0
≥ −324 1 ≥ −324 0

� Calculate probability with respect to feature m
threshold ≥ −324 and presented in Tab. 31.

Tab. 31: Probability for each spilt: m ≥ −324 and m < −324.

Threshold 1 0 Probability

≥ −324 5 3 8
10
=0.8

< −324 0 2 2
10
=0.2

� Calculate entropy with respect to feature m
threshold ≥ −324.

E (m ≥ −324) = E (5, 3) =

= −5

8
log2

5

8
− 3

8
log2

3

8
= 0.9544.

(44)

E (m < −324) = E (0, 2) =

= −0

2
log2

0

2
− 2

2
log2

2

2
= 0.

(45)
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� Calculate entropy of feature with respect to class.

E (class,m) = P (m ≥ −324)E (m ≥ −324)+

+P (m < −324)E (m < −324) =

= (0.8) (0.9544) + (0.2) (0) = 0.7635.
(46)

� Calculate information gain of feature m ≥ −324.

IG (m ≥ −324) = E (class)− E (class,m) =

= 1− 0.7635 = 0.2365.
(47)

� Information Gain of each split of feature m is pre-
sented in Tab. 32. From the Tab. 32, it is observed
that split ≥ −299 and ≥ −319 have highest infor-
mation gain value i.e 0.3958. Hence, ≥ −299 is
considered as a best split.

Tab. 32: Information Gain of each split of feature m.

Split IG Split IG
≥ −448 0 ≥ −301 0.2788
≥ −313 0.2418 ≥ −293 0.2364
≥ −331 0.1081 ≥ −319 0.3958

≥ −269 0.1081 ≥ −303 0.2788
≥ −299 0.3958 ≥ −324 0.2365

1.2. Identi�cation of Best Threshold

for c i.e. Intercept Feature

1) Calculate IG for Threshold ≥ 2.9 Using
Tab. 33

Tab. 33: Sub Table: c Vs. class with threshold ≥ 2.9.

c Class c Class
≥ 2.9 0 ≥ 2.9 1
≥ 2.9 0 ≥ 2.9 1
≥ 2.9 0 ≥ 2.9 1
≥ 2.9 1 ≥ 2.9 0
< 2.9 1 ≥ 2.9 0

� Calculate probability with respect to feature c
threshold ≥ 2.9 as shown in Tab. 34.

Tab. 34: Probability for each spilt: c ≥ 2.9 and c < 2.9.

Threshold 1 0 Probability

≥ 2.9 4 5 9
10
=0.9

< 2.9 1 0 1
10
=0.1

� Calculate entropy with respect to feature c thresh-
old ≥ 2.9.

E (c ≥ 2.9) = E (4, 5) =

= −4

9
log2

4

9
− 5

9
log2

5

9
= 0.991.

(48)

E (c < 2.9) = E (1, 0) =

= −1

1
log2

1

1
− 0

1
log2

0

1
= 0.

(49)

� Calculate entropy of feature with respect to class.

E (class, c) = P (c ≥ 2.9)E (c ≥ 2.9)+

+P (c < 2.9)E (c < 2.9) =

= (0.9) (0.991) + (0.1) (0) = 0.8919.

(50)

� Calculate information gain of feature c ≥ 2.9.

IG (c ≥ 2.9) = E (class)− E (class, c) =

= 1− 0.8919 = 0.1081.
(51)

2) Calculate IG for Threshold ≥ 3.2 Using
Tab. 35

Tab. 35: Sub Table: c Vs. class with threshold ≥ 3.2.

c Class c Class
≥ 3.2 0 < 3.2 1
< 3.2 0 < 3.2 1
≥ 3.2 0 ≥ 3.2 1
< 3.2 1 < 3.2 0
< 3.2 1 ≥ 3.2 0

� Calculate probability with respect to feature c
threshold ≥ 3.2 as shown in Tab. 36.

Tab. 36: Probability for each spilt: c ≥ 3.2 and c < 3.2.

Threshold 1 0 Probability

≥ 3.2 1 3 4
10
=0.4

< 3.2 4 2 6
10
=0.6

� Calculate entropy with respect to feature c thresh-
old ≥ 3.2.

E (c ≥ 3.2) = E (1, 3) =

= −1

4
log2

1

4
− 3

4
log2

3

4
= 0.811.

(52)

E (c < 3.2) = E (4, 2) =

= −4

6
log2

4

6
− 2

6
log2

2

6
= 0.9183.

(53)

� Calculate entropy of feature with respect to class.
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E (class, c) = P (c ≥ 3.2)E (c ≥ 3.2)+

+P (c < 3.2)E (c < 3.2) =

= (0.4) (0.811) + (0.6) (0.9183) = 0.8753.

(54)

� Calculate information gain of feature c ≥ 3.2.

IG (c ≥ 3.2) = E (class)− E (class, c) =

= 1− 0.8753 = 0.1247.
(55)

3) Calculate IG for Threshold ≥ 3.1 Using
Tab. 37

Tab. 37: Sub Table: c Vs. class with threshold ≥ 3.1.

c Class c Class
≥ 3.1 0 < 3.1 1
≥ 3.1 0 < 3.1 1
≥ 3.1 0 ≥ 3.1 1
< 3.1 1 < 3.1 0
< 3.1 1 ≥ 3.1 0

� Calculate probability with respect to feature c
threshold ≥ 3.1 as shown in Tab. 38.

Tab. 38: Probability for each spilt: c ≥ 3.1 and c < 3.1.

Threshold 1 0 Probability

≥ 3.1 1 4 5
10
=0.5

< 3.1 4 1 5
10
=0.5

� Calculate entropy with respect to feature c thresh-
old ≥ 3.1.

E (c ≥ 3.1) = E (1, 4) =

= −4

5
log2

4

5
− 1

5
log2

1

5
= 0.7212.

(56)

E (c < 3.1) = E (4, 1) =

= −1

5
log2

1

5
− 4

5
log2

4

5
= 0.7212.

(57)

� Calculate entropy of feature with respect to class.

E (class, c) = P (c ≥ 3.1)E (c ≥ 3.1)+

+P (c < 3.1)E (c < 3.1) =

= (0.5) (0.7212) + (0.5) (0.7212) = 0.7212.

(58)

� Calculate information gain of feature c ≥ 3.1.

IG (c ≥ 3.1) = E (class)− E (class, c) =

= 1− 0.7212 = 0.2788.
(59)

Tab. 39: Sub Table: c Vs. class with threshold ≥ 3.3.

c Class c Class
≥ 3.3 0 < 3.3 1
< 3.3 0 < 3.3 1
≥ 3.3 0 < 3.3 1
< 3.3 1 < 3.3 0
< 3.3 1 < 3.3 0

4) Calculate IG for Threshold ≥ 3.3 Using
Tab. 39

� Calculate probability with respect to feature c
threshold ≥ 3.3 as shown in Tab. 40.

Tab. 40: Probability for each spilt: c ≥ 3.3 and c < 3.3.

Threshold 1 0 Probability

≥ 3.3 5 2 7
10
=0.7

< 3.3 0 3 3
10
=0.3

� Calculate entropy with respect to feature c thresh-
old ≥ 3.3.

E (c ≥ 3.3) = E (5, 2) =

= −5

7
log2

5

7
− 2

7
log2

2

7
= 0.8631.

(60)

E (c < 3.3) = E (0, 3) =

= −0

3
log2

0

3
− 3

3
log2

3

3
= 0.

(61)

� Calculate entropy of feature with respect to class.

E (class, c) = P (c ≥ 3.3)E (c ≥ 3.3)+

+P (c < 3.3)E (c < 3.3) =

= (0.7) (0.8631) + (0.3) (0) = 0.6041.

(62)

� Calculate information gain of feature c ≥ 3.3.

IG (c ≥ 3.3) = E (class)− E (class, c) =

= 1− 0.6041 = 0.3959.
(63)

5) Calculate IG for hreshold ≥ 3.0 Using
Tab. 41

Tab. 41: Sub Table: c Vs. class with threshold ≥ 3.0.

c Class c Class
≥ 3.0 0 ≥ 3.0 1
≥ 3.0 0 < 3.0 1
≥ 3.0 0 ≥ 3.0 1
≥ 3.0 1 ≥ 3.0 0
< 3.0 1 ≥ 3.0 0
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Tab. 42: Probability for each spilt: c ≥ 3.0 and c < 3.0.

Threshold 1 0 Probability

≥ 3.0 3 5 8
10
=0.8

< 3.0 2 0 2
10
=0.2

� Calculate probability with respect to feature c
threshold ≥ 3.0 as shown in Tab. 42.

� Calculate entropy with respect to feature c thresh-
old ≥ 3.0.

E (c ≥ 3.0) = E (3, 5) =

= −3

8
log2

3

8
− 5

8
log2

5

8
= 0.9546.

(64)

E (c < 3.0) = E (2, 0) =

= −2

2
log2

2

2
− 0

2
log2

0

2
= 0.

(65)

� Calculate entropy of feature with respect to class.

E (class, c) = P (c ≥ 3.0)E (c ≥ 3.0)+

+P (c < 3.0)E (c < 3.0) =

= (0.8) (0.9546) + (0.2) (0) = 0.7636.

(66)

� Calculate information gain of feature c ≥ 3.0.

IG (c ≥ 3.0) = E (class)− E (class, c) =

= 1− 0.7636 = 0.2364.
(67)

6) Calculate IG for Threshold ≥ 2.7 Using
Tab. 43

Tab. 43: Sub Table: c Vs. class with threshold ≥ 2.7.

c Class c Class
≥ 2.7 0 ≥ 2.7 1
≥ 2.7 0 ≥ 2.7 1
≥ 2.7 0 ≥ 2.7 1
≥ 2.7 1 ≥ 2.7 0
≥ 2.7 1 ≥ 2.7 0

� Calculate probability with respect to feature c
threshold ≥ 2.7 as shown in Tab. 44.

Tab. 44: Probability for each spilt: c ≥ 2.7 and c < 2.7.

Threshold 1 0 Probability

≥ 2.7 5 5 10
10
=1

< 2.7 0 0 0
10
=0

� Calculate entropy with respect to feature c thresh-
old ≥ 2.7.

E (c ≥ 2.7) = E (5, 5) =

= − 5

10
log2

5

10
− 5

10
log2

5

10
= 1.

(68)

E (c < 3.0) = E (0, 0) = 0. (69)

� Calculate entropy of feature with respect to class.

E (class, c) = P (c ≥ 2.7)E (c ≥ 2.7)+

+P (c < 2.7)E (c < 2.7) =

= (1) (1) + (0) (0) = 1.

(70)

� Calculate information gain of feature c ≥ 2.7.

IG (c ≥ 2.7) = E (class)− E (class, c) = 1− 1 = 0.
(71)

7) Calculate IG for Threshold ≥ 4.4 Using
Tab. 45

Tab. 45: Sub Table: c Vs. class with threshold ≥ 4.4.

c Class c Class
≥ 4.4 0 < 4.4 1
< 4.4 0 < 4.4 1
< 4.4 0 < 4.4 1
< 4.4 1 < 4.4 0
< 4.4 1 < 4.4 0

� Calculate probability with respect to feature c
threshold ≥ 4.4 as shown in Tab. 46.

Tab. 46: Probability for each spilt: c ≥ 4.4 and c < 4.4.

Threshold 1 0 Probability

≥ 4.4 0 1 1
10
=0.1

< 4.4 5 4 9
10
=0.9

� Calculate entropy with respect to feature c thresh-
old ≥ 4.4.

E (c ≥ 4.4) = E (0, 1) =

= −0

1
log2

0

1
− 1

1
log2

1

1
= 0.

(72)

E (c < 4.4) = E (5, 4) =

= −5

9
log2

5

9
− 4

9
log2

4

9
= 0.9911.

(73)

� Calculate entropy of feature with respect to class.
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E (class, c) = P (c ≥ 4.4)E (c ≥ 4.4)+

+P (c < 4.4)E (c < 4.4) =

= (0.1) (0) + (0.9) (0.9911) = 0.8919.

(74)

� Calculate information gain of feature c ≥ 4.4.

IG (c ≥ 4.4) = E (class)− E (class, c) =

= 1− 0.8919 = 0.1081.
(75)

� Information Gain of each split of feature c is pre-
sented in Tab. 47. From the Tab. 47, it is ob-
served that split ≥ 3.3 gives highest information
gain value i.e 0.3959. Hence, ≥ 3.3 is considered
as a best split.

Tab. 47: Information Gain of each split of feature c.

Split IG Split IG
≥ 4.4 0.1081 ≥ 2.9 0.1081
≥ 3.0 0.2364 ≥ 3.3 0.3959

≥ 2.7 0 ≥ 3.1 0.2788
≥ 3.2 0.1247

1.3. Identi�cation of Best Threshold

for R i.e. Correlation Feature

1) Calculate IG for Threshold ≥ 0.96 Using
Tab. 48

Tab. 48: Sub Table: R Vs. class with threshold ≥ 0.96.

R Class R Class
≥ 0.96 0 ≥ 0.96 1
≥ 0.96 0 ≥ 0.96 1
≥ 0.96 0 ≥ 0.96 1
≥ 0.96 1 ≥ 0.96 0
≥ 0.96 1 ≥ 0.96 0

� Calculate probability with respect to feature R
threshold ≥ 0.96 as shown in Tab. 49.

Tab. 49: Probability for each spilt: R ≥ 0.96 and R < 0.96.

Threshold 1 0 Probability

≥ 0.96 5 5 10
10
=1

< 0.96 0 0 0
10
=0

� Calculate entropy with respect to feature R
threshold ≥ 0.96.

E (R ≥ 0.96) = E (5, 5) =

= − 5

10
log2

5

10
− 5

10
log2

5

10
= 1.

(76)

E (R < 0.96) = E (0, 0) = 0. (77)

� Calculate entropy of feature with respect to class.

E (class,R) = P (R ≥ 0.96)E (R ≥ 0.96)+

+P (R < 0.96)E (R < 0.96) =

= (1) (1) + (0) (0) = 1.

(78)

� Calculate information gain of feature R ≥ 0.96.

IG (R ≥ 0.96) = E (class)− E (class,R)

= 1− 1 = 0.
(79)

2) Calculate IG for Threshold ≥ 0.98 Using
Tab. 50

Tab. 50: Sub Table: R Vs. class with threshold ≥ 0.98.

R Class R Class
< 0.98 0 ≥ 0.98 1
≥ 0.98 0 ≥ 0.98 1
≥ 0.98 0 ≥ 0.98 1
≥ 0.98 1 ≥ 0.98 0
≥ 0.98 1 ≥ 0.98 0

� Calculate probability with respect to feature R
threshold ≥ 0.98 as shown in Tab. 51.

Tab. 51: Probability for each spilt: R ≥ 0.98 and R < 0.98.

Threshold 1 0 Probability

≥ 0.98 5 4 9
10
=0.9

< 0.98 0 1 1
10
=0.1

� Calculate entropy with respect to feature R
threshold ≥ 0.98.

E (R ≥ 0.98) = E (5, 4) =

= −5

9
log2

5

9
− 4

9
log2

4

9
= 0.9911.

(80)

E (R < 0.98) = E (0, 1) =

= −0

1
log2

0

1
− 1

1
log2

1

1
= 0.

(81)

� Calculate entropy of feature with respect to class.

E (class,R) = P (R ≥ 0.98)E (R ≥ 0.98)+

+P (R < 0.98)E (R < 0.98) =

= (0.9) (0.9911) + (0.1) (0) = 0.892.

(82)

� Calculate information gain of feature R ≥ 0.98.

IG (R ≥ 0.98) = E (class)− E (class,R) =

= 1− 0.892 = 0.108.
(83)
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3) Calculate IG for Threshold ≥ 0.99 Using
Tab. 52

Tab. 52: Sub Table: R Vs. class with threshold ≥ 0.99.

R Class R Class
< 0.99 0 ≥ 0.99 1
< 0.99 0 ≥ 0.99 1
≥ 0.99 0 ≥ 0.99 1
≥ 0.99 1 ≥ 0.99 0
≥ 0.99 1 ≥ 0.99 0

� Calculate probability with respect to feature R
threshold ≥ 0.99 as shown in Tab. 53.

Tab. 53: Probability for each spilt: R ≥ 0.99 and R < 0.99.

Threshold 1 0 Probability

≥ 0.99 5 3 8
10
=0.8

< 0.99 0 2 2
10
=0.2

� Calculate entropy with respect to feature R
threshold ≥ 0.99.

E (R ≥ 0.99) = E (5, 3) =

= −5

8
log2

5

8
− 3

8
log2

3

8
= 0.9544.

(84)

E (R < 0.99) = E (0, 2) =

= −0

2
log2

0

2
− 2

2
log2

2

2
= 0.

(85)

� Calculate entropy of feature with respect to class.

E (class,R) = P (R ≥ 0.99)E (R ≥ 0.99)+

+P (R < 0.99)E (R < 0.99) =

= (0.8) (0.9544) + (0.2) (0) = 0.7635.

(86)

� Calculate information gain of feature R ≥ 0.98.

IG (R ≥ 0.99) = E (class)− E (class,R) =

= 1− 0.7635 = 0.2365.
(87)

4) Calculate IG for Threshold ≥ 0.99 Using
Tab. 54

Tab. 54: Sub Table: R Vs. class with threshold ≥ 0.1.

R Class R Class
< 0.1 0 ≥ 0.1 1
< 0.1 0 ≥ 0.1 1
< 0.1 0 ≥ 0.1 1
< 0.1 1 < 0.1 0
≥ 0.1 1 < 0.1 0

Tab. 55: Probability for each spilt: R ≥ 0.1 and R < 0.1.

Threshold 1 0 Probability

≥ 0.1 4 0 4
10
=0.4

< 0.1 1 5 6
10
=0.6

� Calculate probability with respect to feature R
threshold ≥ 0.1 as shown in Tab. 55.

� Calculate entropy with respect to feature R
threshold ≥ 0.1.

E (R ≥ 0.1) = E (4, 0) =

= −4

4
log2

4

4
− 0

4
log2

0

4
= 1.

(88)

E (R < 0.1) = E (1, 5) =

= −1

6
log2

1

6
− 5

6
log2

5

6
= 0.65.

(89)

� Calculate entropy of feature with respect to class.

E (class,R) = P (R ≥ 0.1)E (R ≥ 0.1)+

+P (R < 0.1)E (R < 0.1) =

= (0.4) (1) + (0.6) (0.65) = 0.79.

(90)

� Calculate information gain of feature R ≥ 0.1.

IG (R ≥ 0.1) = E (class)− E (class,R) =

= 1− 0.79 = 0.21.
(91)

� Information Gain of each split of feature R is pre-
sented in Tab. 56. From the Tab. 56, it is observed
that split ≥ 0.99 gives highest information gain
value i.e 0.2365. Hence, ≥ 0.99 is considered as
a best split.

Tab. 56: Information Gain of each split of feature R.

Split IG Split IG
≥ 0.96 0 ≥ 0.99 0.2365

≥ 0.98 0.108 ≥ 0.1 0.21

1.4. Identi�cation of Best Threshold

for RMSE i.e. Root Mean

Square Error Feature

1) Calculate IG for Threshold ≥ 0.027
Using Tab. 57

� Calculate probability with respect to feature
RMSE threshold ≥ 0.027 as shown in Tab. 58.
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Tab. 57: Sub Table: RMSE Vs. class with threshold ≥ 0.027.

RMSE Class RMSE Class
≥ 0.027 0 < 0.027 1
< 0.027 0 < 0.027 1
< 0.027 0 < 0.027 1
< 0.027 1 < 0.027 0
< 0.027 1 < 0.027 0

Tab. 58: Probability for each spilt: RMSE ≥ 0.027
and RMSE < 0.027.

Threshold 1 0 Probability

≥ 0.027 0 1 1
10
=0.1

< 0.027 5 4 9
10
=0.9

� Calculate entropy with respect to feature RMSE
threshold ≥ 0.027.

E (RMSE ≥ 0.027) =

= E (0, 1) = −0

1
log2

0

1
− 1

1
log2

1

1
= 0.

(92)

E (RMSE < 0.027) = E (5, 4) =

= −5

9
log2

5

9
− 4

9
log2

4

9
= 0.9911.

(93)

� Calculate entropy of feature with respect to class.

E (class,RMSE) =

= P (RMSE ≥ 0.027)E (RMSE ≥ 0.027)+

+P (RMSE < 0.027)E (RMSE < 0.027) =

= (0.1) (0) + (0.9) (0.9911) = 0.8919.

(94)

� Calculate information gain of feature
RMSE ≥ 0.027.

IG (RMSE ≥ 0.027) = E (class)−

+E (class,RMSE) = 1− 0.8919 = 0.1081.
(95)

2) Calculate IG for Threshold ≥ 0.01 Using
Tab. 59

Tab. 59: Sub Table: RMSE Vs. class with threshold ≥ 0.01.

RMSE Class RMSE Class
≥ 0.01 0 < 0.01 1
≥ 0.01 0 < 0.01 1
< 0.01 0 < 0.01 1
< 0.01 1 < 0.01 0
< 0.01 1 < 0.01 0

� Calculate probability with respect to feature
RMSE threshold ≥ 0.01 as shown in Tab. 60.

Tab. 60: Probability for each spilt: RMSE ≥ 0.01
and RMSE < 0.01.

Threshold 1 0 Probability

≥ 0.01 2 3 5
10
=0.5

< 0.01 3 2 5
10
=0.5

� Calculate entropy with respect to feature RMSE
threshold ≥ 0.01.

E (RMSE ≥ 0.01) = E (2, 3) =

= −2

5
log2

2

5
− 3

5
log2

3

5
= 0.971.

(96)

E (RMSE < 0.01) = E (3, 2) =

= −3

5
log2

3

5
− 2

5
log2

2

5
= 0.971.

(97)

� Calculate entropy of feature with respect to class.

E (class,RMSE) =

= P (RMSE ≥ 0.01)E (RMSE ≥ 0.01)+

+P (RMSE < 0.01)E (RMSE < 0.01) =

= (0.5) (0.971) + (0.5) (0.971) = 0.971.

(98)

� Calculate information gain of feature RMSE ≥
0.01.

IG (RMSE ≥ 0.01) = E (class)−

+E (class,RMSE) = 1− 0.971 = 0.029.
(99)

3) Calculate IG for Threshold ≥ 0.003
Using Tab. 61

Tab. 61: Sub Table: RMSE Vs. class with threshold ≥ 0.003.

RMSE Class RMSE Class
≥ 0.003 0 ≥ 0.003 1
≥ 0.003 0 ≥ 0.003 1
≥ 0.003 0 ≥ 0.003 1
≥ 0.003 1 ≥ 0.003 0
≥ 0.003 1 ≥ 0.003 0

� Calculate probability with respect to feature
RMSE threshold ≥ 0.003 as shown in Tab. 62.

Tab. 62: Probability for each spilt: RMSE ≥ 0.003
and RMSE < 0.003.

Threshold 1 0 Probability

≥ 0.003 5 5 10
10
=1

< 0.003 0 0 0
10
=0
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� Calculate entropy with respect to feature RMSE
threshold ≥ 0.003.

E (RMSE ≥ 0.003) = E (5, 5) =

= − 5

10
log2

5

10
− 5

10
log2

5

10
= 1.

(100)

E (RMSE < 0.003) = E (0, 0) = 0. (101)

� Calculate entropy of feature with respect to class.

E (class,RMSE) =
= P (RMSE ≥ 0.003)E (RMSE ≥ 0.003)+

+P (RMSE < 0.003)E (RMSE < 0.003) =

= (1) (1) + (0) (0) = 1.
(102)

� Calculate information gain of feature
RMSE ≥ 0.003.

IG (RMSE ≥ 0.003) = E (class)−

+E (class,RMSE) = 1− 1 = 0.
(103)

4) Calculate IG for Threshold ≥ 0.004
Using Tab. 63

Tab. 63: Sub Table: RMSE Vs. class with threshold ≥ 0.004.

RMSE Class RMSE Class
≥ 0.004 0 < 0.004 1
≥ 0.004 0 ≥ 0.004 1
≥ 0.004 0 < 0.004 1
≥ 0.004 1 ≥ 0.004 0
≥ 0.004 1 ≥ 0.004 0

� Calculate probability with respect to feature
RMSE threshold ≥ 0.004 as shown in Tab. 64.

Tab. 64: Probability for each spilt: RMSE ≥ 0.004
and RMSE < 0.004.

Threshold 1 0 Probability

≥ 0.004 3 5 8
10
=0.8

< 0.004 2 0 2
10
=0.2

� Calculate entropy with respect to feature RMSE
threshold ≥ 0.004.

E (RMSE ≥ 0.004) = E (3, 5) =

= −3

8
log2

3

8
− 5

8
log2

5

8
= 0.9554.

(104)

E (RMSE < 0.004) = E (2, 0) =

= −2

2
log2

2

2
− 0

2
log2

0

2
= 0.

(105)

� Calculate entropy of feature with respect to class.

E (class,RMSE) =

= P (RMSE ≥ 0.004)E (RMSE ≥ 0.004)+

+P (RMSE < 0.004)E (RMSE < 0.004) =

= (0.8) (0.9554) + (0.2) (0) = 0.7643.
(106)

� Calculate information gain of feature
RMSE ≥ 0.004.

IG (RMSE ≥ 0.004) = E (class)−

+E (class,RMSE) = 1− 0.7643 = 0.2357.
(107)

5) Calculate IG for Threshold ≥ 0.005
Using Tab. 65

Tab. 65: Sub Table: RMSE Vs. class with threshold ≥ 0.005.

RMSE Class RMSE Class
≥ 0.005 0 < 0.005 1
≥ 0.005 0 < 0.005 1
≥ 0.005 0 < 0.005 1
≥ 0.005 1 ≥ 0.005 0
≥ 0.005 1 ≥ 0.005 0

� Calculate probability with respect to feature
RMSE threshold ≥ 0.005 as shown in Tab. 66.

Tab. 66: Probability for each spilt: RMSE ≥ 0.005
and RMSE < 0.005.

Threshold 1 0 Probability

≥ 0.005 2 5 7
10
=0.7

< 0.005 3 0 3
10
=0.3

� Calculate entropy with respect to feature RMSE
threshold ≥ 0.005.

E (RMSE ≥ 0.005) = E (2, 5) =

= −2

7
log2

2

7
− 5

7
log2

5

7
= 0.862.

(108)

E (RMSE < 0.005) = E (3, 0) =

= −3

3
log2

3

3
− 0

3
log2

0

3
= 0.

(109)

� Calculate entropy of feature with respect to class.

E (class,RMSE) =

= P (RMSE ≥ 0.005)E (RMSE ≥ 0.005)+

+P (RMSE < 0.005)E (RMSE < 0.005) =

= (0.7) (0.862) + (0.3) (0) = 0.6034.
(110)
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� Calculate information gain of feature
RMSE ≥ 0.005.

IG (RMSE ≥ 0.005) =

= E (class)− E (class,RMSE) =

= 1− 0.6034 = 0.3966.

(111)

6) Calculate IG for Threshold ≥ 0.007
Using Tab. 67

Tab. 67: Sub Table: RMSE Vs. class with threshold ≥ 0.007.

RMSE Class RMSE Class
≥ 0.007 0 < 0.007 1
≥ 0.007 0 < 0.007 1
≥ 0.007 0 < 0.007 1
≥ 0.007 1 < 0.007 0
≥ 0.007 1 ≥ 0.007 0

� Calculate probability with respect to feature
RMSE threshold ≥ 0.007 as shown in Tab. 68.

Tab. 68: Probability for each spilt: RMSE ≥ 0.007
and RMSE < 0.007.

Threshold 1 0 Probability

≥ 0.007 2 4 6
10
=0.6

< 0.007 3 1 4
10
=0.4

� Calculate entropy with respect to feature RMSE
threshold ≥ 0.007.

E (RMSE ≥ 0.007) = E (2, 4) =

= −2

6
log2

2

6
− 4

6
log2

4

6
= 0.918.

(112)

E (RMSE < 0.007) = E (3, 1) =

= −3

4
log2

3

4
− 1

4
log2

1

4
= 0.8112.

(113)

� Calculate entropy of feature with respect to class.

E (class,RMSE) =

= P (RMSE ≥ 0.007)E (RMSE ≥ 0.007)+

+P (RMSE < 0.007)E (RMSE < 0.007) =

= (0.6) (0.918) + (0.4) (0.8112) = 0.8753.
(114)

� Calculate information gain of feature
RMSE ≥ 0.007.

IG (RMSE ≥ 0.007) = E (class)−

+E (class,RMSE) = 1− 0.8753 = 0.1247.
(115)

� Information Gain of each split of feature RMSE
is presented in Tab. 69. From the Tab. 69, it is ob-
served that split ≥ 0.005 gives highest information
gain value i.e 0.3966. Hence, ≥ 0.005 is considered
as a best split.

Tab. 69: Information Gain of each split of feature RMSE.

Split IG Split IG
≥ 0.007 0.1247 ≥ 0.004 0.2357
≥ 0.005 0.3966 ≥ 0.003 0
≥ 0.01 0.029 ≥ 0.027 0.1081

Based on identi�cation of best split for each feature,
the continuous data shown in Tab. 13 is converted into
categorical data as presented in Tab. 70, and the data
shown in Tab. 70 is used to build decision tree model.

Tab. 70: Categorical dataset that is used to build decision tree.

m c R RMSE Class
< −299 ≥ 3.3 < 0.99 ≥ 0.005 0
< −299 < 3.3 < 0.99 ≥ 0.005 0
< −299 ≥ 3.3 ≥ 0.99 ≥ 0.005 0
≥ −299 < 3.3 ≥ 0.99 ≥ 0.005 1
≥ −299 < 3.3 ≥ 0.99 ≥ 0.005 1
< −299 < 3.3 ≥ 0.99 < 0.005 1
≥ −299 < 3.3 ≥ 0.99 < 0.005 1
< −299 < 3.3 ≥ 0.99 < 0.005 1
< −299 < 3.3 ≥ 0.99 ≥ 0.005 0
< −299 < 3.3 ≥ 0.99 ≥ 0.005 0

Appendix B Decision Tree
Formulation using
Information Gain
(IG)

In this section, decision tree formulation based on data
available in Tab. 70 using information gain is explained.

2.1. Identi�cation of Root Node

1) Calculate IG for Feature m

� Calculate probability with respect to feature m as
shown in Tab. 71.

Tab. 71: Probability for the feature m.

Threshold 1 0 Probability

≥ −299 3 0 3
10
=0.3

< −299 2 5 7
10
=0.7

� Calculate entropy with respect to feature m.
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E (m ≥ −299) = E (3, 0) =

= −3

3
log2

3

3
− 0

3
log2

0

3
= 0.918.

(116)

E (m < −299) = E (2, 5) =

= −2

7
log2

2

7
− 5

7
log2

5

7
= 0.8631.

(117)

� Calculate entropy of feature with respect to class.

E (class,m) = P (m ≥ −299)E (Rm ≥ −299)+

+P (m < −299)E (m < −299) =

= (0.3) (0) + (0.7) (0.8631) = 0.6041.
(118)

� Calculate information gain of feature m.

IG (m) = E (class)− E (class,m) =

= 1− 0.6041 = 0.3959.
(119)

2) Calculate IG for Feature c

� Calculate probability with respect to feature c as
shown in Tab. 72.

Tab. 72: Probability for the feature c.

Threshold 1 0 Probability

≥ 3.3 0 2 2
10
=0.2

< 3.3 5 3 8
10
=0.8

� Calculate entropy with respect to feature c.

E (c ≥ 3.3) = E (0, 2) =

= −0

2
log2

0

2
− 2

2
log2

2

2
= 0.

(120)

E (c < 3.3) = E (5, 3) =

= −5

8
log2

5

8
− 3

8
log2

3

8
= 0.9544.

(121)

� Calculate entropy of feature with respect to class.

E (class, c) = P (c ≥ 3.3)E (c ≥ 3.3)+

+P (c < 3.3)E (c < 3.3) =

= (0.2) (0) + (0.8) (0.9544) = 0.7635.

(122)

� Calculate information gain of feature c.

IG (c) = E (class)− E (class, c) =

= 1− 0.7635 = 0.2365.
(123)

3) Calculate IG for Feature R

� Calculate probability with respect to feature R as
shown in Tab. 73.

Tab. 73: Probability for the feature R.

Threshold 1 0 Probability

≥ 0.99 5 3 8
10
=0.8

< 0.99 0 2 2
10
=0.2

� Calculate entropy with respect to feature R.

E (R ≥ 0.99) = E (5, 3) =

= −5

8
log2

5

8
− 3

8
log2

3

8
= 0.9544.

(124)

E (R < 0.99) = E (0, 2) =

= −0

2
log2

0

2
− 2

2
log2

2

2
= 0.

(125)

� Calculate entropy of feature with respect to class.

E (class,R) = P (R ≥ 0.99)E (R ≥ 0.99)+

+P (R < 0.99)E (R < 0.99) =

= (0.8) (0.9544) + (0.2) (0) = 0.7635.

(126)

� Calculate information gain of feature R.

IG (R) = E (class)− E (class,R) =

= 1− 0.7635 = 0.2365.
(127)

4) Calculate IG for Feature RMSE

� Calculate probability with respect to feature
RMSE as shown in Tab. 74.

Tab. 74: Probability for the feature RMSE.

Threshold 1 0 Probability

≥ 0.005 2 5 7
10
=0.7

< 0.005 3 0 3
10
=0.3

� Calculate entropy with respect to feature RMSE.

E (RMSE ≥ 0.005) = E (2, 5) =

= −2

7
log2

2

7
− 5

7
log2

5

7
= 0.8631.

(128)

E (RMSE < 0.005) = E (3, 0) =

= −3

3
log2

3

3
− 0

3
log2

0

3
= 0.

(129)
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� Calculate entropy of feature with respect to class.

E (class,RMSE) =

= P (RMSE ≥ 0.005)E (RMSE ≥ 0.005)+

+P (RMSE < 0.005)E (RMSE < 0.005) =

= (0.7) (0.8631) + (0.3) (0) = 0.6041.
(130)

� Calculate information gain of feature RMSE.

IG (RMSE) = E (class)−

+E (class,RMSE) = 1− 0.6041 = 0.3959.
(131)

� Information Gain of each feature is presented
in Tab. 75. From the Tab. 75, it is observed that
both m and RMSE have highest information gain
value i.e 0.3959. Hence, m is considered as root
node.

Tab. 75: Information Gain of each feature.

Split IG Split IG
m 0.3959 c 0.2365
R 0.2365 RMSE 0.3959

After the identi�cation of best feature, the data
shown in Tab. 70 is split into two sub tables based
on categorical values in feature m and these sub ta-
bles shown in Tab. 76 and Tab. 77. From Tab. 77,
the branch ≥ −299 for the root node m has a leaf node
with value '1'.

Tab. 76: Categorical dataset with m < −299.

c R RMSE Class
≥ 3.3 < 0.99 ≥ 0.005 0
< 3.3 < 0.99 ≥ 0.005 0
≥ 3.3 ≥ 0.99 ≥ 0.005 0
< 3.3 ≥ 0.99 < 0.005 1
< 3.3 ≥ 0.99 < 0.005 1
< 3.3 ≥ 0.99 ≥ 0.005 0
< 3.3 ≥ 0.99 ≥ 0.005 0

Tab. 77: Categorical dataset with m ≥ −299.

c R RMSE Class
< 3.3 ≥ 0.99 ≥ 0.005 1
< 3.3 ≥ 0.99 ≥ 0.005 1
< 3.3 ≥ 0.99 < 0.005 1

2.2. Identi�cation of Decision Node

under Branch m < −299

1) Calculate IG for Feature c

� Calculate probability with respect to feature c
based on data in Tab. 76 and presented in Tab. 78.

Tab. 78: Probability for the feature c.

Threshold 1 0 Probability

≥ 3.3 0 2 2
7
=0.286

< 3.3 2 3 5
7
=0.714

� Calculate entropy with respect to feature c.

E (c ≥ 3.3) = E (0, 2) =

= −0

2
log2

0

2
− 2

2
log2

2

2
= 0.

(132)

E (c < 3.3) = E (2, 3) =

= −2

5
log2

2

5
− 3

5
log2

3

5
= 0.971.

(133)

� Calculate entropy of feature with respect to class.

E (class, c) = P (c ≥ 3.3)E (c ≥ 3.3)+

+P (c < 3.3)E (c < 3.3) =

= (0.286) (0) + (0.714) (0.971) = 0.6932.

(134)

� Calculate information gain of feature c.

IG (c) = E (class)− E (class, c) =

= 1− 0.6932 = 0.3068.
(135)

2) Calculate IG for Feature R

� Calculate probability with respect to feature R
based on data in Tab. 76 and presented in Tab. 79.

Tab. 79: Probability for the feature R.

Threshold 1 0 Probability

≥ 0.99 2 3 5
7
=0.714

< 0.99 0 2 2
7
=0.286

� Calculate entropy with respect to feature R.

E (R ≥ 0.99) = E (2, 3) =

= −3

5
log2

3

5
−−2

5
log2

2

5
= 0.971.

(136)

E (R < 0.99) = E (0, 2) =

= −0

2
log2

0

2
− 0

2
log2

0

2
= 0.

(137)

� Calculate entropy of feature with respect to class.

E (class,R) = P (R ≥ 0.99)E (R ≥ 0.99)+

+P (R < 0.99)E (R < 0.99) =

= (0.714) (0.971) + (0.286) (0) = 0.6932.

(138)
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� Calculate information gain of feature R.

IG (R) = E (class)− E (class,R) =

= 1− 0.6932 = 0.3068.
(139)

3) Calculate IG for Feature RMSE

� Calculate probability with respect to feature
RMSE based on data in Tab. 76 and presented
in Tab. 80.

Tab. 80: Probability for the feature RMSE.

Threshold 1 0 Probability

≥ 0.005 0 5 5
7
=0.714

< 0.005 2 0 2
7
=0.286

� Calculate entropy with respect to feature RMSE.

E (RMSE ≥ 0.005) = E (0, 5) =

= −0

5
log2

0

5
−−5

5
log2

5

5
= 0.

(140)

E (RMSE < 0.005) = E (2, 0) =

= −2

2
log2

2

2
− 0

2
log2

0

2
= 0.

(141)

� Calculate entropy of feature with respect to class.

E (class,RMSE) =

= P (RMSE ≥ 0.005)E (RMSE ≥ 0.005)+

+P (RMSE < 0.005)E (RMSE < 0.005) =

= (0.714) (0) + (0.286) (0) = 0.
(142)

� Calculate information gain of feature RMSE.

IG (RMSE) = E (class)−

+E (class,RMSE) = 1− 0 = 1.
(143)

� Information Gain of each feature is presented
in Tab. 81. From the Tab. 81, it is observed that
RMSE has highest information gain value i.e 1.
Hence, RMSE is considered as decision node un-
der branch m < −299.

Tab. 81: Information Gain of each feature.

Feature IG Feature IG Feature IG
c 0.3068 R 0.3068 RMSE 1

After the identi�cation of the decision node, the data
shown in Tab. 76 is split into two sub tables based

on categorical values in feature RMSE and these sub
tables shown in Tab. 82 and Tab. 83. From Tab. 82,
the branch ≥ 0.005 for the decision node RMSE has
a leaf node with value '0'. Similarly, From Tab. 83,
the branch < 0.005 for the decision node RMSE has
a leaf node with value '1'. Complete decision tree
model is shown in Fig. 11. From the Fig. 11, it is
observed that tree end with leaf nodes and it will not
grow further.

Tab. 82: Categorical dataset with RMSE ≥ 0.005.

c R Class
≥ 3.3 < 0.99 0
< 3.3 < 0.99 0
≥ 3.3 ≥ 0.99 0
< 3.3 ≥ 0.99 0
< 3.3 ≥ 0.99 0

Tab. 83: Categorical dataset with RMSE < 0.005.

c R Class
< 3.3 ≥ 0.99 1
< 3.3 ≥ 0.99 1

m

ZCP (1)

ZCP (1) NZCP (0)

RMSE

Leaf
Node

Leaf
Node

Root
Node

Decison
Node

Leaf
Node

RMSE<0.005

m>=-299 m<-299

RMSE>=0.005

Fig. 11: Decision tree model with information gain.

4) Accuracy of Decision Tree Model

In this section, the performance of the decision tree
model shown in Fig. 11 is observed using data shown
in Tab. 13 based on accuracy. The predicted class label
for the data shown in Tab. 13 is presented in Tab. 84.

� Formation of confusion matrix.

Confusion matrix is shown in Tab. 85. Accuracy
of the developed decision tree model is calculated using
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Tab. 84: Predicted label for few data samples from the dataset
that prepared from noisy distorted signal.

m c R RMSE Class Pred
−448 4.4 0.96 0.027 0 0
−313 3.1 0.98 0.010 0 0
−331 3.3 0.99 0.009 0 0
−299 3.0 0.99 0.009 1 1
−269 2.7 1.00 0.009 1 1
−301 3.0 1.00 0.003 1 1
−293 2.9 1.00 0.004 1 1
−319 3.2 1.00 0.003 1 1
−303 3.0 0.99 0.005 0 0
−324 3.2 0.99 0.007 0 0

below equation and it is equal to 100 %.

Accuracy =

=
TNZCP + TZCP

TNZCP + TZCP + FNZCP + FZCP
=

=
5 + 5

5 + 5 + 0 + 0
= 100 %.

(144)

Tab. 85: Confusion Matrix for the decision tree model with
information gain.

Confusion Matrix

Acutal Label
0 1

Predicted label

0 TNZCP:5 FNZCP:0
1 FZCP:0 TZCP:5

Appendix C Decision Tree
Formulation using
Gini Index (GI)

In this section, decision tree formulation based on data
available in Tab. 70 using Gini Index (GI) is explained.

3.1. Identi�cation of Root Node

based on GI

1) Calculate GI for Feature m

� Calculate GI with respect to feature m as shown
in Tab. 86.

Tab. 86: GI for the feature m.

Thres. 1 0
No. of

P(1) P(0) P(m) GI
samples

≥ −299 3 0 3 3
3

0
3

3
10

0

< −299 2 5 7 2
7

5
7

7
10

0.408

� Calculate GI with respect to feature m.

GI (m ≥ −299) = GI (3, 0) =

= 1−

[(
3

3

)2

+

(
0

3

)2
]
= 0.

(145)

GI (m < −299) = GI (2, 5) =

= 1−

[(
2

7

)2

+

(
5

7

)2
]
= 0.408.

(146)

GI (class,m) = P (m ≥ −299)GI (m ≥ −299)+

+P (m < −299)GI (m < −299) =

=
3

10
· 0 + 7

10
· 0.408 = 0.2856.

(147)

2) Calculate GI for Feature c

� Calculate GI with respect to feature c as shown
in Tab. 87.

Tab. 87: GI for the feature c.

Thres. 1 0
No. of

P(1) P(0) P(m) GI
samples

≥ 3.3 0 2 2 0
2

2
2

2
10

0

< 3.3 5 3 8 5
8

3
8

8
10

0.468

� Calculate GI with respect to feature c.

GI (c ≥ 3.3) = GI (0, 2) =

= 1−

[(
0

2

)2

+

(
2

2

)2
]
= 0.

(148)

GI (c < 3.3) = GI (5, 3) =

= 1−

[(
5

8

)2

+

(
3

8

)2
]
= 0.468.

(149)

GI (class, c) = P (c ≥ 3.3)GI (c ≥ 3.3)+

+P (c < 3.3)GI (c < 3.3) =

=
2

10
· 0 + 8

10
· 0.468 = 0.374.

(150)

3) Calculate GI for Feature R

� Calculate GI with respect to feature R as shown
in Tab. 88.

� Calculate GI with respect to feature R.
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Tab. 88: GI for the feature R.

Thres. 1 0
No. of

P(1) P(0) P(m) GI
samples

≥ 0.99 5 3 8 5
8

3
8

8
10

0.468

< 0.99 0 2 2 0
2

2
2

2
10

0

GI (R ≥ 0.99) = GI (5, 3) =

= 1−

[(
5

8

)2

+

(
3

8

)2
]
= 0.468.

(151)

GI (R < 0.99) = GI (0, 2) =

= 1−

[(
0

2

)2

+

(
2

2

)2
]
= 0.

(152)

GI (class,R) = P (R ≥ 0.99)GI (R ≥ 0.99)+

+P (R < 0.99)GI (R < 0.99) =

=
8

10
· 0.468 + 2

10
· 0 = 0.374.

(153)

4) Calculate GI for Feature RMSE

� Calculate GI with respect to feature RMSE as
shown in Tab. 89.

Tab. 89: GI for the feature RMSE.

Thres. 1 0
No. of

P(1) P(0) P(m) GI
samples

≥ 0.005 2 5 7 2
7

5
7

7
10

0.408

< 0.005 3 0 3 3
3

0
3

3
10

0

� Calculate GI with respect to feature RMSE.

GI (RMSE ≥ 0.005) = GI (2, 5) =

= 1−

[(
2

7

)2

+

(
5

7

)2
]
= 0.408.

(154)

GI (RMSE < 0.005) = GI (3, 0) =

= 1−

[(
3

3

)2

+

(
0

3

)2
]
= 0.

(155)

GI (class,RMSE) =

= P (RMSE ≥ 0.005)GI (RMSE ≥ 0.005)+

+P (RMSE < 0.005)GI (RMSE < 0.005) =

=
7

10
· 0.408 + 3

10
· 0 = 0.2856.

(156)

� GI of each feature is presented in Tab. 90.
From the Tab. 90, it is observed that both m
and RMSE have lowest GI value i.e 0.2856.
Hence, RMSE is considered as root node.

Tab. 90: GI value of each feature.

Feature GI Feature GI
m 0.2856 c 0.374
R 0.374 RMSE 0.2856

After the identi�cation of the best feature, the data
shown in Tab. 70 is split into two sub tables based
on categorical values in feature RMSE and these sub
tables shown in Tab. 91 and Tab. 92. From Tab. 91,
the branch < 0.005 for the root node RMSE has a leaf
node with value '1'.

Tab. 91: Categorical dataset with RMSE < 0.005.

m C R Class
< −299 < 3.3 ≥ 0.99 1
≥ −299 < 3.3 ≥ 0.99 1
< −299 < 3.3 ≥ 0.99 1

Tab. 92: Categorical dataset with RMSE ≥ 0.005.

m C R Label
< −299 ≥ 3.3 < 0.99 0
< −299 < 3.3 < 0.99 0
< −299 ≥ 3.3 ≥ 0.99 0
≥ −299 < 3.3 ≥ 0.99 1
≥ −299 < 3.3 ≥ 0.99 1
< −299 < 3.3 ≥ 0.99 0
< −299 < 3.3 ≥ 0.99 0

3.2. Identi�cation of Decision Node

under Branch RMSE ≥ 0.005

1) Calculate GI for Feature m

� Calculate GI with respect to feature m as shown
in Tab. 93 using data shown in Tab. 92.

Tab. 93: GI for the feature m with respected
to RMSE ≥ 0.005.

Thres. 1 0
No. of

P(1) P(0) P(m) GI
samples

≥ −299 2 0 2 2
2

0
2

2
7

0

< −299 0 5 5 0
5

5
5

5
7

0

� Calculate GI with respect to feature m.

GI (m ≥ −299) = GI (2, 0) =

= 1−

[(
2

2

)2

+

(
0

2

)2
]
= 0.

(157)
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GI (m < −299) = GI (0, 5) =

= 1−

[(
0

5

)2

+

(
5

5

)2
]
= 0.

(158)

GI (class,m) = P (m ≥ −299)GI (m ≥ −299)+

+P (m < −299)GI (m < −299) =

=
2

7
· 0 + 5

7
· 0 = 0.

(159)

2) Calculate GI for Feature c

� Calculate GI with respect to feature c as shown
in Tab. 94 using data shown in Tab. 92.

Tab. 94: GI for the feature c with respected to RMSE ≥ 0.005.

Thres. 1 0
No. of

P(1) P(0) P(m) GI
samples

≥ 3.3 0 2 2 0
2

2
2

2
7

0

< 3.3 2 3 5 2
5

3
5

5
7

0.48

� Calculate GI with respect to feature c.

GI (c ≥ 3.3) = GI (0, 2) =

= 1−

[(
0

2

)2

+

(
2

2

)2
]
= 0.

(160)

GI (c < 3.3) = GI (2, 3) =

= 1−

[(
2

5

)2

+

(
3

5

)2
]
= 0.48.

(161)

GI (class, c) = P (c ≥ 3.3)GI (c ≥ 3.3)+

+P (c < 3.3)GI (c < 3.3) =

=
2

7
· 0 + 5

7
· 0.48 = 0.342.

(162)

3) Calculate GI for Feature R

� Calculate GI with respect to feature c as shown
in Tab. 95 using data shown in Tab. 92.

Tab. 95: GI for the feature R with respected
to RMSE ≥ 0.005.

Thres. 1 0
No. of

P(1) P(0) P(m) GI
samples

≥ 0.99 2 3 5 2
5

3
5

5
7

0.48

< 0.99 0 2 2 0
2

2
2

2
7

0

� Calculate GI with respect to feature R.

GI (R ≥ 0.99) = GI (2, 3) =

= 1−

[(
2

5

)2

+

(
3

5

)2
]
= 0.48.

(163)

GI (R < 0.99) = GI (0, 2) =

= 1−

[(
0

2

)2

+

(
2

2

)2
]
= 0.

(164)

GI (class,R) = P (R ≥ 0.99)GI (R ≥ 0.99)+

+P (R < 0.99)GI (R < 0.99) =

=
5

7
· 0.48 + 2

7
· 0 = 0.342.

(165)

� GI of each feature is presented in Tab. 96.
From the Tab. 96, it is observed that m has lowest
GI value i.e 0. Hence, m is considered as decision
node.

Tab. 96: GI value of each feature with respected
to RMSE ≥ 0.005.

Feature GI Feature GI Feature GI
m 0 c 0.342 R 0.342

After the identi�cation of the decision node, the data
shown in Tab. 92 is split into two sub tables based
on categorical values in feature m and these sub ta-
bles shown in Tab. 97 and Tab. 98. From Tab. 97,
the branch ≥ −299 for the decision node m has a leaf
node with value '1'. Similarly, from Tab. 98, the branch
< −299 for the decision node m has a leaf node with
value '0'. The �nal decision tree based on GI value is
shown in Fig. 12.

Tab. 97: Categorical dataset with m ≥ −299.

C R Label
< 3.3 ≥ 0.99 1
< 3.3 ≥ 0.99 1

Tab. 98: Categorical dataset with m < −299.

C R Label
≥ 3.3 < 0.99 0
< 3.3 < 0.99 0
≥ 3.3 ≥ 0.99 0
< 3.3 ≥ 0.99 0
< 3.3 ≥ 0.99 0

4) Accuracy of Decision Tree Model

In this section, the performance of the decision tree
model shown in Fig. 12 is observed using data shown
in Tab. 13 based on accuracy. The predicted class label
for the data shown in Tab. 13 is presented in Tab. 99.
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ZCP (1)

ZCP (1) NZCP (0)

m

RMSE

Leaf
Node

Leaf
Node

Root
Node

Decison
Node

Leaf
Node

RMSE<0.005 RMSE>=0.005

m>=-299 m<-299

Fig. 12: Decision tree model with Gini Index.

Accuracy =

=
TNZCP + TZCP

TNZCP + TZCP + FNZCP + FZCP
=

=
5 + 5

5 + 5 + 0 + 0
= 100 %.

(166)

Tab. 99: Predicted label for the dataset that prepared
from noisy distorted signal using decision tree with
GI.

m c R RMSE Class Pred
−448 4.4 0.96 0.027 0 0
−313 3.1 0.98 0.010 0 0
−331 3.3 0.99 0.009 0 0
−299 3.0 0.99 0.009 1 1
−269 2.7 1.00 0.009 1 1
−301 3.0 1.00 0.003 1 1
−293 2.9 1.00 0.004 1 1
−319 3.2 1.00 0.003 1 1
−303 3.0 0.99 0.005 0 0
−324 3.2 0.99 0.007 0 0

� Formation of confusion matrix.

Confusion matrix is shown in Tab. 100. Accuracy
of the developed decision tree model based on GI is cal-
culated using below equation and it is equal to 100 %.

Tab. 100: Confusion Matrix for decision tree model based
on GI.

Confusion Matrix

Acutal Label
0 1

Predicted label

0 TNZCP:5 FNZCP:0
1 FZCP:0 TZCP:5
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