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Abstract. Power loss in the Distribution System (DS)
is often higher than that of other parts of the power
system because of its low voltage level. Therefore,
reducing losses is always an important task in de-
sign and operation of the DS. This paper aims to
apply a new approach based on Artificial Ecosystem
Optimization (AEO) for the Distributed Generation
Placement (DGP) and combination of DGP and net-
work REConfiguration (DGP-REC) problems to reduce
power loss of the DS to satisfy the technical constraints
including power balance, radial topology, voltage and
current bounds, and DG capacity limit. The AEO is
a recent algorithm that has no special control parame-
ters, inspired from the behaviours of living organisms
in the ecosystem including production, consumption,
and decomposition. The efficiency of the AEO is eval-
uated on two test systems including the 33-node and
119-node systems. The numerical results validated on
the 33-node and 119-node systems show that DGP-REC
is a more effective solution for reducing power loss com-
pared to the DGP solution. In addition, evaluation re-
sults on small and large systems also indicate that AEO
is an effective approach for the DGP and DGP-REC
problems.
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1. Introduction

Reducing power loss is one of the top priorities in the
operation of the DS due to its low voltage operat-
ing characteristics. Reasonable installation of DG is
one of the effective solutions to improve the operating
efficiency of the DS. The advantage of this technique is
the ability to supply electricity at the load side. This
way, the DG Placement (DGP) reduces the losses on
the lines significantly. Despite costly equipment, in the
context of the robust proliferation of renewable ener-
gies and the support of governments, the DGP solution
is attracting a lot of attention from the managing and
operating companies of the DS.

To maximize the efficiency of DG, the choice of
capacity and installation location for DG is one of
the main concerns of researchers. This problem
with a huge number of possible solutions has at-
tracted a lot of attention from researchers. Recent
works include metaheuristic-based approaches, such
as Particle Swarm Optimization (PSO) [1], adap-
tive PSO [2], Symbiotic Organisms Search (SOS) [3],
modified SOS [4], monarch butterfly optimization [5],
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differential evolution [6], hybrid elephant herding and
PSO [7], spring search algorithm [8], quasi-oppositional
chaotic SOS [9], Salp Swarm Algorithm (SSA) [10],
ant colony algorithm [11], manta ray foraging
optimization [12].

In addition, choosing the optimal radial topology
is also one of the most effective ways to enhance the
DS’s performance. In terms of definition, this process
is called network REConfiguration (REC) due to its
characteristic of finding a new radial topology to re-
place the existing one of the DS. This technique does
not require any additional equipment but it is accom-
plished through the selection of the open/close state of
the electric switches available on the DS.

The target of the REC process is transmission loads
among branches in the system to ensure an optimal
load carrying of the lines and reduce losses in the sys-
tem. However, choosing the optimal structure is a chal-
lenge for the operators since there are 2 powers of
z structures for systems with z switches. Therefore,
study on finding optimal structure is one of the issues
being solved by many researchers.

Previously, the REC problem was mainly solved by
heuristic methods that rely on the knowledge of the
power system. The typical methods are the branch-
and-bound method [13] and [14] and branch exchange
approach [15]. However, in the recent years, the
metaheuristic methods are used for their strengths
such as flexibility in the process of changing tar-
get function and handling constraints. Thus, these
methods are not only widely used in power systems
like shunt capacitors placement [16] and [17] estima-
tion of transmission line parameters [18] and [19],
phasor measurement unit [20], reactive power plan-
ning [21], [22], [23] and [24], but they are also
widely applied for the REC problem such as fire-
work algorithm [25], SOS [26], binary PSO [27], mod-
ified PSO [28], enhanced binary cuckoo search algo-
rithm [29], improved whale optimization approach [30],
combination of wild goats and exchange market
algorithms [31].

Since both DGP and REC approaches are performed
on the DS, the result of implementation of one ap-
proach is completely affected by the other one. There-
fore, implementing two approaches at the same time is
one of the techniques to ensure that the obtained radial
structure and DG parameters are optimal. However,
when combining two problems, the DGP and REC
(called DGP-REC), the discrete and continuous com-
bination problem becomes more complicated with dis-
crete control variables representing switches and DG
installation positions and continuous variables repre-
senting the capacity of the DG. Then, the search of
the optimal DGP-REC solution becomes a significant
challenge.

In recent years, with the problem has been
solved by methods such as enhanced Sine-Cosine
Algorithm (SCA) [32], Adaptive Modified Whale
Optimization Algorithm (AMWOA) [33], Thief and
Police Algorithm (TPA) [34], Moth-Flame Optimiza-
tion (MFO) [35], Tabu Search (TS) [36], Equilib-
rium Optimization (EO) [37] and SSA [38]. In [32],
SCA algorithm has been adjusted for the DGP-REC
problem to minimize power loss and operating costs.
In [33], AMWOA has been successfully applied to the
DGP-REC problem to minimize power loss and im-
prove voltage stability. In [34], the DGP-REC method
based on TPA is considered to reduce the power
loss, operating costs, and voltage stability. In [35],
MFO has been applied to the DGP-REC problem
with the considered target function including reducing
power loss, improving reliability and voltage. In [36],
the efficiency of TS is compared with PSO for the
DGP-REC problem to reduce switch costs and power
loss. In [37], EO has been improved to successfully
solve the DGP-REC problem for reducing power loss
and enhancing the voltage stability of the DS. Simi-
larly in [38], SSA has also been successfully applied to
the DGP-REC problem for reduction of power loss and
improvement of the voltage of the DS.

The summary above shows that for the DGP-REC
problem, for most studies, loss reduction is of consider-
able interest in the process of determining the optimal
solution. It is considered as the main module of the
DGP-REC problem because reducing power loss will
lead to improvement of some other technical factors
such as voltage configuration, voltage stability or load
balancing.

Furthermore, setting the appropriate value for the
control parameters is one of issues suitable for the
use of metaheuristic algorithms. For example, using
PSO [1], the velocity scale coefficients must be se-
lected before executing the algorithm or the mutation
probability of GA has to be set as applying it for the
optimization problem [39]. By using SCA [32], the pa-
rameters including maximum and minimum weights as
well as step length for search orientation have to be
selected. As using TPA [34], the percentage of the ar-
mature and professional members also have to adjust
for finding the optimal solution. In order to simplify
the use of algorithms for the DGP-REC problem, se-
lection the algorithms without or less extra parameters
should be prioritized. Thus, finding suitable and effec-
tive methods for the DGP-REC problem should be also
encouraged to diversify methodological choices for the
designers and operators of the DS.

In this study, an AEO-based approach is suggested
for the DGP and DGP-REC problems. AEO is the
recent optimization algorithm taken the idea of energy
flow in the ecosystem including production, consump-
tion and decomposition [40]. AEO has been applied
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successfully in a number of problems such as maximum
power from photovoltaic array [41], optimal configura-
tion of the renewable energy system [42], DG place-
ment [43], determining parameters of proportional-
integral-derivative controller [44], or photovoltaic
parameter estimation [45]. An outstanding advan-
tage of AEO compared to many previous algorithms
is that there is no demand to set special parameters
in the calculation process. Therefore, AEO promises
to be an efficient and easy-to-use tool for the designers
and operators of the distribution system in their work
once it has been successfully applied to the DGP and
DGP-REC problems.

The novelty of this study is that the AEO is adjusted
to successfully solve the DGP and DGP-REC problems
to reduce power loss and satisfy the equality binding
conditions of radial structure and power balance and
inequality binding conditions such as voltage, current
and DG power limits. The 33- and 119-node DSs are
used to evaluate the effectiveness of the proposed ap-
proach. The results are compared to other methods in-
cluding Cuckoo Search Algorithm (CSA) [46], Heuristic
Technique of the Exact Loss Formula (HTELF) [47],
Stochastic Fractal Search (SFS) [48], SSA [38],
hybrid of Grey Wolf Optimization (GWO) and
PSO (GWO-PSO) [49], SCA [32], AMWOA [33],
EO [37] and COyote Algorithm (COA) [50]. The
contributions of this work can be listed as follows:

• The method based on AEO for the DGP and
DGP-REC problems is proposed.

• The proposed method has been successfully
applied for determining the optimal DGP and
DGP-REC solutions on 33-node and 119-node
power systems.

• The effectiveness of DGP and DGP-REC
approaches in reducing power loss for distribution
system is validated.

• The effectiveness of the AEO-based approach
is compared with the previous approaches to
prove the effectiveness of AEO for the DGP and
DGP-REC problems.

2. Problem of Power Loss
Reduction of the
Distribution System

Power loss of a distribution system is determined as
follows:

∆Ps =

nbr∑
i=1

ki∆Pi, (1)

where ∆Ps is the system’s loss. ∆Pi is the i-th branch’s
loss. ki is a binary variable that represents the partic-
ipation of the i-th branch in the DS and nbr is total
number of the DS’s branches.

During the process of DGP-REC, equality binding
conditions for the obtained solution must be ensured
including radial-shaped structure and power balance as
well as inequality constraints including voltage, current
and DG capacity as follows:

Radial-shape structure: The radial-shape structure
is maintained and all of loads are served if the following
condition is met [51] and [52]:

|det(M)| = 1, (2)

where M is a connected-matrix with 0 and 1 values that
show the connections between branches and nodes in
the system.

Power balance:
Pgr +

nDG∑
i=1

PDG,i =
nbu∑
i=1

Pl,i +∆Ps,

Qgr +
nDG∑
i=1

QDG,i =
nbu∑
i=1

Ql,i +∆Qs,

(3)

where Pgr and Qgr are active and reactive power of
the transmission system supplying for the distribution
system. PDG,i and QDG,i are the active and reactive
capacity of the i-th DG. Pl,i and Ql,i are the active and
reactive loads at the i-th node. ∆Qs is reactive power
loss of the DS, nDG and nbu are the number of DGs
and nodes of the DS, respectively.

Voltage limits:{
Vlo ≤ Vi ≤ Vhi; i = 1, 2, . . . , nbu,

0 ≤ CCFi ≤ CCFhi; i = 1, 2, . . . , nbr,
(4)

where Vlo and Vhi are the allowable voltage limits.
CCFhi is the allowable current carrying factor of the
i-th branch. Vi and CCFi are voltage at the i-th node
and current carrying factor of the i-th branch, wherein
CCFi is defined by the ratio of the current flowing on
the i-th branch and its rated current value.

DG capacity:

P lo
DG,i ≤ PDG,i ≤ P hi

DG,i, (5)

where i is from 1 to nDG. P lo
DG,i and P hi

DG,i is the
capacity limit of the i-th DG. PDG,i is the capacity
of the i-th DG.

The quality of each candidate solution is assessed
through a Fitness function (F ) that includes the objec-
tive function and inequality constraints as described in
Eq. (6). Meanwhile, if the equality constraints are not
met, the fitness function will be assigned to extremely
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large values.

F = ∆Ps + kp (max (Vlo − Vmin, 0)+

+max (Vmax − Vhi, 0)+

+max (CCFmax − CCFhi, 0)) ,

(6)

where kp is the penalty factor. Vmin and Vmax are mini-
mum and maximum voltages of the DS. CCFmax is the
maximum current carrying factor of the DS.

3. Application of AEO for the
DGP-REC and DGP
problems

In the AEO, the ecosystem is examined as a popu-
lation that contains consumption organisms, one pro-
duction organism, and one decomposition organism.
The organism’s energy level is represented by its fit-
ness value. The organism with the highest energy level
in the ecosystem is the production one and the best
organism is the decomposition organism that has the
lowest energy levels. The process of creating and up-
dating organisms in the ecosystem of AEO for the DGP
and DGP-REC problems are described in detail below,
wherein the main steps are presented for the DGP-REC
problem. For the DGP problem, the adjustment will
be described in the individual steps.

Step 1: Initialize the ecosystem

To find a solution for the DGP-REC problem, each
solution is treated as an organism. Each organism is
generated as follows:

O⃗i = r⃗v1

(
U⃗ − L⃗

)
+ L⃗, (7)

where i is from 1 to n. O⃗i is the i-th organism. r⃗v1
is a random number vector in [0, 1]. n is the size of
ecosystem. U⃗ and L⃗ are limit vectors of the variables
that are defined as shown in Eq. (8), where [Slo

i , Shi
i ]

are the limits of the variable indicating the location of
the i-th switch; [Llo

i , L
hi
i ] and [P lo

DG,i, P
hi
DG,i] are limits

of variables indicating position and capacity of the i-th
DG respectively. ns is the number of opened switches
of the DS. For the DGP problem, the limit vectors will
consist of two elements [Llo

i , L
hi
i ] and [P lo

DG,i, P
hi
DG,i].

To be appropriate for the DGP and DGP-REC prob-
lems, the variables corresponding to the opened switch,
DG position and capacity of each organism need to be
adjusted as follows:

Si,j = fr (Si,j) ; j = 1, 2, . . . , ns,

Li,j = fr (Li,j) ; j = 1, 2, . . . , nDG,

Pi,j = Pi,j ; j = 1, 2, . . . , nDG.

(9)

where fr is the rounding function.

From the solution of the vector O⃗i, the parameters
of the DS are adjusted and the energy level of the or-
ganism O⃗i is determined by using the fitness function
(Eq. (6)). The organism with the lowest F value is the
best organism (O⃗best) in the ecosystem.

Step 2: Update the production organism

To identify production organisms, all organisms in
the ecosystem are rearranged in the direction of in-
creasing quality. Then, the first organism is considered
as the production organism. The production organ-
ism needs to contain new information about the search
space to navigate other ones. Hence, it is created as
follows:

O⃗new
1 = r1

(
1−

(
1− G

Gmax

))
O⃗best+

+

(
1− G

Gmax

)(
r⃗v2

(
U⃗ − L⃗

)
+ L⃗

)
,

(10)

where r1 is a random number in [0, 1], r⃗v2 is a random
number vector in [0, 1]. G and Gmax are the current
and maximum iteration, respectively.

Step 3: Update the consumption organisms

The consumption organisms may eat herbivores, car-
nivores with higher energy levels, or both of them.
Consequently, the consumption organisms are updated
according to three different techniques depending on
their classification. The probability of an organism
classified as one of the three above categories is equal.

Herbivore will only interact with the production
organism as follows:

O⃗new
i = O⃗i + αc

(
O⃗i − O⃗new

1

)
, (11)

where i belongs to the range of [2, . . . , n] and αc is the
consumption coefficient determined as follows:

αc =
1

2

u1

u2
; u1 ∼ N(0, 1); u2 ∼ N(O, 1), (12)

where N(0, 1) is a standard normal distribution.

Carnivore will interact with other carnivore that
carries the higher energy level as follows:

O⃗new
i = O⃗i + αc

(
O⃗i − O⃗j

)
, (13)

where i and j belong to the ranges of [3, . . . , n] and
j = randi([2, i− 1]), respectively.

If the consumption organism is omnivorous, it will
interact with a producer and a carnivore with higher
energy level as follows:

O⃗new
i = O⃗i + αc

(
r2

(
O⃗i − O⃗new

1

)
+

+(1− r2)
(
O⃗i − O⃗j

))
,

(14)
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{
L⃗ =

[
Slo
1 , . . . , Slo

ns
, Llo

1 , . . . , L
lo
nDG

, P lo
DG,1, . . . , P

lo
DG,nDG

]
,

U⃗ =
[
Shi
1 , . . . , Shi

ns
, Lhi

1 , . . . , Lhi
nDG

, P hi
DG,1, . . . , P

hi
DG,nDG

]
.

(8)

where r2 is a random number in [0, 1], i and j belong
to the ranges of [3, . . . , n] and j = randi([2, i − 1]),
respectively.

New organisms are adjusted to fit to the DGP and
DGP-REC problems using Eq. (9). Their quality is
then assessed using Eq. (6). The ecosystem is updated
by using selective technique as follows:

O⃗i =

{
O⃗new

i ; if F new
i < Fi,

O⃗i; otherwise,
(15)

Fi =

{
F new
i ; if F new

i < Fi,

Fi; otherwise,
(16)

where Fi is the fitness function value that is defined in
Eq. (6) of the solution O⃗i. In addition, the best organ-
ism O⃗best is also updated after the ecosystem updated.

Step 4: Update the whole ecosystem by decomposi-
tion mechanism

Organisms that die will be decomposed by a decom-
position organism. Therefore, in the ecosystem, each
organism will interact with the decomposition one as
follows:

O⃗new
i = O⃗i + 3αd

(
β1O⃗best − β2O⃗i

)
, (17)

where i is from 1 to n, αd is the decomposition rate de-
fined by αd ∼ N(0, 1), β1 and β2 are weight coefficients
that are calculated as follows:{

β1 = r3 randi([1, 2])− 1,

β2 = 2r3 − 1,
(18)

where r3 is a random number in [0, 1].

New organisms are adjusted to fit to the DGP and
DGP-REC problems using Eq. (9). Their quality is
then assessed using Eq. (9). Selective mechanisms like
Eq. (15) and Eq. (16) are used to update the ecosys-
tem again. Similarly, the best organism O⃗best is also
updated after the ecosystem updated.

The ecosystem update process from step 2 to step 4
is executed until the number of iterations reaches the
maximum value. Then, the best organism O⃗best is con-
sidered as the result of the considered problem. The
AEO pseudocode for the DGP and DGP-REC problem
is depicted in Alg. 1.

Algorithm 1 AEO pseudocode for the DGP-REC and
DGP problems.
1: Set the ecosystem size n and maximum iteration

Gmax.
2: Generate and adjust the population of solutions by

Eq. (7) and Eq. (9).
3: Determine the fitness value of each solution by

Eq. (6) and the best one O⃗best.
4: Set G = 1.
5: while G < Gmax do
6: Sort the ecosystem in descending order of the

fitness value.
7: Generate the new production organism using

Eq. (8).
8: for i = 2 : n do
9: if rand ≤ 1/3 then

10: Generate new organism Onew
i by Eq. (11).

11: else if 1/3 < rand ≤ 2/3 then
12: Generate new organism Onew

i by Eq. (13).
13: else
14: Generate new organism Onew

i by Eq. (14).
15: end if
16: end for
17: Adjust the population of new solutions by

Eq. (9).
18: Determine the fitness value of each new solution

Onew
i by Eq. (6).

19: Update the consumption organisms by Eq. (15)
and Eq. (16) and update O⃗best.

20: Generate each new organism Onew
i by Eq. (17).

21: Adjust the population of new solutions by
Eq. (9).

22: Determine the fitness value of each new solution
Onew

i by Eq. (6).
23: Update the consumption organisms by Eq. (15)

and Eq. (16) and update O⃗best.
24: end while
25: return the best organism O⃗best

4. Numerical Results

In this section, the effectiveness of each DGP and
DGP-REC technique in reducing the system’s power
loss is assessed. In addition, the obtained results of two
problems by AEO are also compared with other works
to prove the effectiveness of the DGP and DGP-REC
methods based on AEO. The proposed DGP-REC and
DGP methods are implemented using the Matlab to
search the optimal solution for the DSs consisting of
the 33-node and 119-node. The power flow program

© 2022 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 422



POWER ENGINEERING AND ELECTRICAL ENGINEERING VOLUME: 20 | NUMBER: 4 | 2022 | DECEMBER

to calculate the power loss, node voltage, and branch
current in the fitness function equation is implemented
relied on the Matpower tool [53].

4.1. The First System

The first DS has voltage level of 12.66 kV, 33 nodes,
37 branches and the total load 3.72 + j2.3 MVA with
the single-line diagram shown in Fig. 1 [54]. The rated
current of all branches is assumed as 255 A [55]. The
loss of the original structure with Opened Switches
(OS) of {33, 34, 35, 36, 37} is 202.6863 kW. The number
and capacity of DG installed on this system are limited
to 3 and 2 MW, respectively. For the penalty factor,
if the penalty value is too high compared to the objec-
tive value, the algorithm will not converge because the
objective function value takes up the small portion of
the fitness function value. Conversely, if the penalty
value is too small, the constraints might be ignored.
Based on the results of many trials, the penalty value
for the DS is set to 1000. For the AEO, the popula-
tion size n is set to 30 for all two cases of DGP and
DGP-REC while the maximum number iterations
Gmax is set to 300 and 500, respectively.
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Fig. 1: The 33-node distribution system.

The effectiveness of AEO for the first system is
shown in Tab. 1. After implementing the DGP and
DGP-REC approaches, the power Loss Reduction (LR)
in comparison with that of the initial structure is
64.7 % for DGP and 75.0 % for DGP-REC. The results
show that, although implementing DGP approach re-
duces significantly power loss, DGP-REC method ob-
tained better result than DGP. The decrease of power
loss of DGP-REC is 10.3 % higher than that of DGP.

In addition, the DGP-REC approach’s node voltage
and branch current improvements are higher than that
of the DGP approach. Specifically, the lowest volt-
age has been raised from 0.9131 in the original sys-
tem to 0.9687 and 0.9734 respectively after performing
DGP and DGP-REC. Furthermore, the DGP-REC is

the solution that achieves the better results in reduc-
ing the highest current carrying factor. Specifically, the
maximum current carrying factor has decreased from
0.8250 to 0.4475 and 0.4407 respectively when perform-
ing DGP and DGP-REC.

Figure 2 shows an overview of node voltage, current
carrying coefficient and line power loss in the DS. The
figure shows that the improvement of voltage, current
and line power loss profiles is significant after imple-
menting the DGP and DGP-REC approaches, wherein
the improvement in ascending order is DGP-REC and
DGP respectively.
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Fig. 2: The voltage (a), current (b) and power loss (c) profiles
in the 33-node DS obtained by AEO.

The comparison of the results between AEO and
other approaches in Tab. 1 shows the superior effi-
ciency of AEO for all three problems. When perform-
ing the DGP, the result obtained by AEO is similar to
SFS [48], HTELA [47], SSA [38] and GWO-PSO [49].
Compared with CSA [46], SCA [32] and AMWOA [33],
the loss reduction obtained from the AEO is higher by
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Tab. 1: The results of DGP and DGP-REC for the 33-node DS.

DGP solution DGP-REC solution

Method OS
PDG

(MW)
[node]

∆P
(kW)

LR
(%)

Vmin

(p.u.)
[node]

Method OS
PDG

(MW)
[node]

∆P
(kW)

LR
(%)

Vmin

(pu)
[node]

Initial
33
to
37

202.6863
0.9131
[18] AEO

33, 34,
11, 31,

28

0.7530 [17]
0.9570 [7]
1.2796 [25]

50.7189 75.0
0.9734
[32]

AEO
33
to
37

0.7540 [14]
1.0994 [24]
1.0714 [30]

71.4599 64.7
0.9687
[33]

CSA
[46]

33, 34,
11, 31,

28

0.8968 [18]
1.4381 [25]
0.9646 [7]

53.21 73.7 0.9806

CSA
[46]

33
to
37

0.7798 [14]
1.1251 [24]
1.3496 [30]

74.26 63.4 0.9778
SFS
[48]

7, 9,
14, 27,

30

0.7753 [22]
0.7356 [33]
1.2858 [25]

53.01 73.8 0.972

SFS
[48]

33
to
37

0.7540 [14]
1.0994 [24]
1.0714 [30]

71.47 64.7 0.9687
HTELA

[47]

11, 28,
30, 33,

34

0.8997 [7]
0.8651 [18]
1.2956 [25]

51.3 74.7
0.968
[31]

HTELA
[47]

33
to
37

0.7406 [14]
1.0094 [24]
1.0542 [30]

71.5 64.7
SSA
[38]

6, 14,
11, 17,

28

1.027 [8]
1.180 [24]
0.837 [31]

56.42 72.2
0.9762
[18]

SSA
[38]

33
to
37

0.7536 [13]
1.1004 [23]
1.0706 [29]

71.45 64.7
0.9686
[32]

GWO-PSO
[49]

11, 28,
30, 33,

34

0.9569 [7]
0.7529 [17]
1.2795 [25]

50.8905 74.9 0.9734

GWO-PSO
[49]

33
to
37

1.0717 [30]
1.1003 [24]
0.7540 [14]

71.4571 64.7
SCA
[32]

7, 14,
9, 27,
30

0.5672 [12]
0.7125 [18]
1.190 [25]

53.53 73.6
0.9651
[31]

SCA
[32]

33
to
37

0.929 [30]
0.789 [13]
0.826 [24]

73.18 63.9
0.9635
[33]

AMWOA
[33]

11, 28,
31, 33,

34

0.8299 [8]
1.3412 [17]
0.7109 [31]

50.61 75.0

AMWOA
[33]

33
to
37

1.1066 [24]
1.3383 [30]
0.8086 [14]

71.70 64.6
EO
[37]

7, 10,
13, 27,

31

0.399 [8]
0.669 [17]
1.160 [29]

57.40 71.7

1.3, 0.8 and 0.1 %, respectively. Meanwhile, for the
DGP-REC combination problem, only the power loss
reduction obtained by AMWOA [33] is equal to that of
AEO, all other methods including CSA [46], SFS [48],
HTELA [47], SSA [38], GWO-PSO [49], SCA [32] and
EO [37] have lower power loss reduction than that of
AEO. Specifically, their power loss reduction is 1.3, 1.2,
0.3, 2.8, 0.1, 1.4 and 3.3 % respectively lower than
AEO.

The AEO’s statistical results including the max-
imum (Fmax), minimum (Fmin), mean (Fmean) and
STandard Devitation (STD) of the fitness function, the
number of converging iterations (Gmean) and the aver-
age computation time as well as minimum, maximum
and average convergence characteristics of 30 runs for
a 33-node network are presented in Tab. 2 and Fig. 3.
During 30 runs, Fmean value in two cases DGP and
DGP-REC is 71.8166 and 53.6995, respectively. These
values are only 0.3567 and 2.9806 respectively lower
than the corresponding Fmin values. Compared to the
EO [37], the Fmax, Fmin and Fmean values gained by
AEO are lower than that of EO method. The mean
convergence line is close to the minimum convergence
one, the mean convergence value is close to the mini-
mum convergence value and the small STD value shows
the efficiency and reliability of AEO for the DGP and
DGP-REC problem.
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Fig. 3: The maximum, minimum and mean convergence curves
of AEO for the 33-node DS.
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Tab. 2: The results of AEO for the 33-node DS.

Method Fmax Fmin Fmean STD Gmean Time (s)
DGP problem

AEO 76.8099 71.4599 71.8166 1.3573 216 63.9172
DGP-REC problem

AEO 59.3672 50.7189 53.6995 2.5796 389 84.4297
EO [37] 71.19 57.4 66.63 0.0452

Tab. 3: The results of DGP and DGP-REC for the 119-node DS.

DGP solution DGP-REC solution

Method OS
PDG

(MW)
[node]

∆P
(kW)

LR
(%)

Vmin

(p.u.)
[node]

Method OS
PDG

(MW)
[node]

∆P
(kW)

LR
(%)

Vmin

(pu)
[node]

Initial 118÷ 132 1273.45
0.8676
[77] AEO

42, 25,
21, 121,
122, 58,
39, 125,
70, 74,
98, 82,

130, 131,
33

2.6382
[50]

3.3265
[109]
3.7533
[91]

569.1325 55.3
0.9552
[99]

AEO 118÷ 132

3.1203
[109]
2.9814
[71]

2.8627
[50]

645.98 49.3
0.9505
[99]

COA
[50]

42, 25,
21, 121,
122, 58,
39, 125,
70, 74,
98, 82,

130, 131,
33

2.6382
[50]

3.7533
[91]

3.3265
[109]

569.1325 55.3
0.9552
[99]

CSA
[46] 118÷ 132

3.2664
[71]

3.1203
[109]

2.86267
[50]

648.10 49.1 0.9515
CSA
[46]

42, 25,
22, 121,
122, 58,
39, 125,
70, 127,
128, 81,
130, 131,

33

2.5331
[50]

3.6819
[109]
3.7043
[73]

586.24 54.0 0.9644

4.2. The Second System

The system with 11 kV, 119 nodes, 132 branches and
total load 22.7097+j17.4051 MVA has a single line dia-
gram in Fig. 4 [56]. The loss of the original structure is
1273.45 kW. The number and capacity of DG installed
on this system is limited to 3 and 5 MW, respectively.
For AEO, the maximum number of iterations Gmax

for the DGP and DGP-REC problems is set to 800
and 1000, respectively, while the other parameters are
selected similar to the first system.

The efficiency of AEO for the 119-node network is
shown in Tab. 3. After implementing the DGP and
DGP-REC approaches, the reduction of power loss
compared to the original structure is 49.3 and 55.3 %,
respectively. The power loss decrease of DGP-REC is
6.0 % higher than that of DGP. Furthermore, the volt-
age improvement of DGP-REC measure is better than
that of DGP. Specifically, the lowest voltage has been
raised from 0.8678 in the original system to 0.9505 and
0.9552 respectively after performing DGP and DGP-
REC. Figure 5 and Fig. 6 show that the improvement
of voltage and power line loss is significant after imple-

menting the DGP and DGP-REC approaches, wherein
the improvement in DGP-REC is better than that of
DGP.

The comparison with the other methods is shown in
Tab. 3. For DGP problem, AEO has obtained better
results than CSA [46] and SFS [48]. Loss reduction
obtained by AEO is 0.2 and 1.7 % higher than that
of CSA [46] and SFS [48], respectively. Meanwhile, for
the DGP-REC problem, the result obtained by AEO is
similar to COA [50] and better than CSA [46]. The loss
reduction of CSA [46] is 1.3 % lower than that of AEO.
Compared to the SFS [48], the power loss reduction
of the AEO is lower by 0.2 %, but the capacity limit
of DGs for AEO is only set to 5 MW while this value of
SFS [48] is higher because the optimal value obtained
by SFS [48] for a DG is up to 8.7132 MW. Thus, AEO
is an effective technique to the DGP and DGP-REC
problem on the large networks such as the 119-node
system.

The statistical results of AEO in 30 runs for the
119-node network are presented in Tab. 4 and Fig. 7.
During 30 runs, the Fmean value for two cases of DGP
and DGP-REC is almost equal to Fmin value. Note
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Fig. 4: The 119-node system.
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Fig. 5: The voltage profile in the 119-node DS obtained by
AEO.
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Fig. 6: The voltage profile in the 119-node DS obtained by
AEO.

that in DGP problem, the Fmean value rounded to
two decimal places is equal to the Fmin value. This
shows the stability of the AEO for three problems
on large networks. Compared to the COA [50], the
Fmax and Gmean gained by AEO are lower than that of

COA while the Fmean value is 5.24 higher than that of
COA method. The convergence curve of the DGP and
DGP-REC problems in Fig. 7 shows that DGP-REC is
the technique able to reduce the fitness function value
better compared to DGP. In addition, the proximity
of the average curves to the minimum ones shows high
reliability of the AEO in each run for the DGP and
DGP-REC problems.

5. Conclusion and Future
Research

In this paper, the AEO-based method is used to the
DGP and DGP-REC problems to reduce power loss
on the distribution network. The AEO-based method
is applied to find optimal solutions for two problems
on the 33-node and 119-node systems. The calculation
results demonstrate that for the purpose of power loss
reduction, DGP-REC is a better solution than DGP
in reducing the power loss in the DS. The power loss
reduction in percent for the two systems obtained by
DGP-REC is {75.0, 55.3} while this value for DGP is
{64.7, 49.3}. The results compared with selected im-
plemented methods also show that AEO is one of the
potential options for finding optimal solution of the
DGP and DGP-REC problems on the practical dis-
tribution networks. Future works should investigate
the DGP and DGP-REC considering the uncertainties
of loads and the primary energy sources of the DGs.
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Tab. 4: Results of statistical analysis of AEO for the 119-node DS.

Method Fmax Fmin Fmean STD Gmean Time (s)
DGP problem

AEO 645.98 645.98 645.98 1.1 · 10−11 497 705.90
DGP-REC problem

AEO 623.58 569.13 591.00 17.181 858 613.58
COA [50] 828.25 569.13 585.76 46.39 1312 569.13
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Fig. 7: The maximum, minimum and mean convergence curves
of AEO for the 119-node DS.

In addition, the efficiency of AEO for the practical DS
systems might be addressed in future works.
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