The University of Texas CENTER FOR RESEARCH IN WATER RESOURCES Environmental Health Engineering Research Laboratory Department of Civil Engineering

MANAGEMENT OF RETURN FLOWS IN TEXAS

Dan M. Wells, Research Engineer

E. F. Gloyna, Project Director

U. S. Public Health Service Water Supply and Pollution Control Division Grant 5T1 - WP - 20 - 04

EHE-07-6603 CRWR - 12

May 31, 1966

ACKNOWLEDGEMENTS

The assistance provided by Grant 5T1 - WP - 20 - 04 from the Water Supply and Pollution Control Division of the U. S. Public Health Service in the performance of this research is gratefully acknowledged.

I wish to thank Dr. E. F. Gloyna for his guidance, encouragement, and material help in all phases of this research. Dr. J. O. Ledbetter has also given freely of his time and encouragement, and his assistance is appreciated. My appreciation is also extended to Dr. Walter L. Moore and Dr. Orville Wyss, who provided critical comments.

My thanks to Dr. John Stockton, who provided estimates of water requirements, and to Dr. Frank Masch, who provided the bay segmentation models used in this research. I am appreciative of the assistance given me by many students at The University of Texas. Mr. C. S. Shih has been most helpful.

I am indebted to The Texas Water Development Board, The Texas State Department of Health, and The Texas Water Pollution Control Board for their cooperation and assistance. Many individuals in each of these organizations made valuable contributions to the research, and their assistance is gratefully acknowledged.

iii

ABSTRACT

MANAGEMENT OF RETURN FLOWS IN TEXAS

The present quantity, quality, and location of municipal and industrial return flows in Texas were estimated on the basis of available data at state regulatory agencies. Similarly, the potential impact of these return flows on the state's waterways has been evaluated. Previously developed methods for projecting water requirements and both quantity and quality of return flow were refined and used to make projections for each decade through the year 2020 for the entire state.

Trading areas and drainage basins were the basic units for the projections. A trading area includes from one to 27 counties surrounded by either a Standard Metropolitan Statistical Area or a locally important population center. A drainage basin is defined as either a river basin, an intervening coastal area between river basins, or the 10- to 15-mile wide strip of land adjacent to a bay or estuary.

The effects of projected return flows on bays and estuaries were estimated by means of simplified mixing and dissolved oxygen

iv

models. Although much of the important input data required by the models were estimated, results generally agreed with present field conditions, so far as they are known.

The applicability of optimization techniques to stream quality management was demonstrated by development of a dynamic programming model for quality control. Indications are that savings made possible by use of the model are accompanied by a substantial improvement in average stream quality.

CONCLUSIONS AND RECOMMENDATIONS

 Projected Wastewater Quantities: The present municipal and industrial wastewater releases, respectively, are 0.8 and 1.3 million acre-feet per year. The total projected wastewater releases by the years 1980 and 2020 are expected to reach about 3 and 6 million acre-feet per year. These estimates are based on potential water requirements.

The present municipal water use (1963 basis) and industrial use (1964 basis) involve about 1.3 and 1.9 million acre-feet per year, respectively. The total projected quantities of water for the same uses by the years 1980 and 2020 are estimated to be 5 and 12 million acre-feet per year.

- 2. <u>Projected Wastewater Quality</u>: The condition of surface waters in the future will become increasingly dependent on the quality of municipal and industrial effluents. Planned and incidental reuse of water will increase as water requirements increase, and such reuse will be made feasible only by effective effluent quality control. By the year 1970, advanced wastewater treatment will be required in some areas.
- 3. <u>Projected Quality Control</u>: Estimates provided herein indicate that localized pollution, eutrophication of entire rivers and bays, and loss of the fisheries and other water-related industries may occur unless appropriate remedial wastewater treatment or waste disposal actions are taken.

The present treatment levels will not be adequate for treating the projected future inflows from municipal and industrial wastewater treatment plants. Considering the additional nutrients and oxygendemanding wastes that will be produced by increased urban runoffs and agricultural return flows, one concludes that much of the state's waters will not be available for man's indirect use and personal enjoyment if the total concentrations of certain pollutants are not materially reduced in the future.

Present biological wastewater treatment plants will require upgrading to include denitrification and phosphate removal processes. Industrial processes will need to make increasing use of product recovery and process modification.

4. <u>Projected Dilution Requirements</u>: The dispersal of the potential organic pollutants and the solution of the nutrient problem in bays and estuaries cannot be accomplished solely by dilution with either high purity freshwaters or saline Gulf waters.

Within the limits of available data, future dilution water requirements to maintain present quality conditions were found to increase rapidly. This increase is more rapid than potential pollutant quantity increases. It is estimated that about one million acre-feet of dilution water may be required for Galveston Bay by 1980 to maintain the present level of dissolved oxygen and about three million acre-feet per year may be required to maintain relative phosphate levels. By the year 2020 the requirements in Galveston Bay may be three million acre-feet per year for dissolved oxygen control and twelve million acre-feet per year for phosphate control.

5. <u>Stream Quality Control</u>: The applicability of dynamic programming methods to the optimization of treatment aimed at maintenance of stream standards was demonstrated. With the cost function used, indications are that the application of optimization techniques to the maintenance of stream standards will result in much better average stream quality at a fairly nominal reduction in total cost, particularly when a low allowable stream concentration is specified.

It is recommended that the modest program developed in this

research be expanded to include degradable pollutants, the effects of reservoirs on pollution control, low-flow augmentation, and other factors which affect stream quality.

Return flows from agricultural water use and runoff from rural and urban developments are known to contribute to the degradation of stream quality, but very little quantitative data exist. It is recommended that research be undertaken for the purpose of evaluating the contributions of these sources to stream pollution.

Finally, it is recommended that a comprehensive research program be undertaken on one of the major river systems in Texas for the purpose of evaluating some of the variables that determine the effects of return flows on such systems, and for the purpose of establishing a system of quality measurement for future quality control.

TABLE OF CONTENTS

	Page
ACKNOWLEDGMENTS	iii
ABSTRACT	iv
CONCLUSIONS AND RECOMMENDATIONS	vi
TABLE OF CONTENTS	ix
LIST OF FIGURES	xii
LIST OF TABLES	xiii

Chapter

I	INTRODUCTION	1
	Objectives Scope Limitations	2 2 3
II	QUANTITY, QUALITY, AND LOCATION OF PRESENT AND PROJECTED RETURN FLOWS	5
	Organization of the Research Evaluation of Municipal Return Flows Municipal Sewage-to-Water (S/W) Ratios Quality of Municipal Return Flows Evaluation of Industrial Return Flows Industrial Return Flow to Water Use (S/W) Ratios Quality of Industrial Return Flows Projection of Municipal and Industrial Water Requirements Projection of Municipal and Industrial Return Flows Projection of Quality of Return Flows Maintaining Present Stream Quality Present Effluent Quality Reduction of Concentrations of BOD and Suspended Solids in Effluents	5 7 8 13 13 13 17 20 21 22 24 26 26
III	EFFECTS OF RETURN FLOWS ON SURFACE WATER QUALITY	28
	Distribution of Return Flows Quality of Return Flows Effects on Streams	28 30 31

TABLE OF CONTENTS (Cont'd.)

Chapter		Page
	Effects on Bays and Estuaries	34
	Galveston Bay Matagorda Bay Aransas-Copano-San Antonio Bays Corpus Christi Bay	38 42 44 45
IV	OPTIMIZATION ANALYSIS	47
	Nature of the Problem Optimization Technique Program Development Practical Application Appraisal of Results	48 49 55 58 60
V	DISCUSSION	64
	Validity of Methodology	64
	Projection Technique Return Flow Quantity Estimation Return Flow Quality Estimation Estimation of Return Flow Effects Optimization Technique	64 65 66 67
	Management Responsibilities	67
APPENDICES		
А	SUMMARY OF PROJECTED MUNICIPAL AND INDUSTRIAL WATER REQUIREMENTS (MGY)	68
В	SUMMARY OF PROJECTED MUNICIPAL AND INDUSTRIAL RETURN FLOWS (MGY)	72
С	MUNICIPAL AND INDUSTRIAL TREATMENT PLANT EFFLUENT QUALITY REQUIRED TO MAINTAIN PRESENT BURDEN OF POLLUTANTS IN STREAMS	76
D	QUANTITIES OF POLLUTANTS (IN THOUSANDS OF POUNDS PER YEAR) CONTRIBUTED BY MUNICIPAL AND INDUSTRIAL TREATMENT PLANTS IF PRESENT LEVEL OF TREATMENT IS MAINTAINED	94
Ε	ADDITIONAL POLLUTANT REMOVAL REQUIRED (IN THOUSANDS OF POUNDS PER YEAR) TO IMPROVE BOD AND SUSPENDED SOLIDS OF EFFLUENTS TO 20 MG /L	112

TABLE OF CONTENTS (Cont'd.)

APPENDICES		Page
F	PROJECTED MUNICIPAL AND INDUSTRIAL RETURN FLOWS BY DRAINAGE BASINS (MGY)	124
G	QUANTITIES OF WASTES DISCHARGED BY MUNICIPAL AND INDUSTRIAL TREATMENT PLANTS IF PRESENT LEVEL OF TREATMENT IS MAINTAINED (1000 lb/year)	128
Н	OPTIMIZATION PROGRAM	144
BIBLIOGRAPHY		156

LIST OF FIGURES

Figure		Page
2-1	Location of Trading Areas in Texas	6
2-2	Effect of Recycling on Industrial S/W Ratio	14
2-3	Summary of Present and Projected Water Use and Return Flow in Texas	23
3-1	Location of Drainage Basins in Texas	29
3-2	Illustration of Dissolved Oxygen and Mixing Model	36
3-3	Galveston Bay Segmentation Model (Four MileExcursion)(20)	39
3-4	Present and Projected DO Concentrations in Galveston Bay	40
3-5	Present and Projected Phosphate Concentrations in Galveston Bay	42
3-6	Matagorda Bay Segmentation Model (20)	43
3-7	Aransas-Copano-San Antonio Bays Segmentation Model (20)	44
3-8	Corpus Christi Bay Segmentation Model (20)	45
4-1	Block Diagram for Reach of Stream	49
4-2	Simplified Stream System	51
4-3	Schematic Representation for a Reach of Stream	56
4-4	Location of Cities on Upper Trinity River	5 9

LIST OF TABLES

<u>Table</u>		Page
2-1	Municipal S/W Ratios	9
2-2	Summary of Quality of Municipal Return Flow (1964)	10
2-3	Summary of Quality of Municipal Tap Water	12
2-4	Summary of Industrial Water Use in 1964 by Industrial Classification (MGY)	15
2-5	Summary of Industrial Return Flow and Usage of Water in 1964 by Industrial Classification (MGY)	15
2-6	Summary of Industrial Water Use and Return Flow in 1964 (MGY)	16
2-7	Industrial S/W Ratios	18
2-8	State Summary – Quantity and Quality of Municipal and Industrial Return Flow, Based on Waste Discharge Permits	19
2-9	State Summary of Present and Projected Annual Municipal and Industrial Water Requirements	21
2-10	State Summary of Present and Projected Annual Municipal and Industrial Return Flows	22
4-1	Pollutant Removal Required and Cost of Removal at City 1	52
4-2	Pollutant Removal Required and Cost of Removal at City 2	52
4-3	Pollutant Removal Required and Cost of Removal at City 3	52
4-4	Total Cost of Treatment and Effluent Charges at City 3	53
4-5	Optimum Policy at City 3	53
4-6	Total Cost of Treatment and Effluent Charges for Cities 2 and 3	54
4-7	Optimum Policy at City 2 , Including City 3	54

LIST OF TABLES (Cont'd.)

Table		Page
4-8	Total Cost of Treatment and Effluent Charges for all Cities	55
4-9	Optimum Operating Policy for System	55
4-10	Comparison of Optimum and Normal Treatment Cost for Maintaining Stream Standard of 1 mg/l in Upper Trinity River	61
4-11	Comparison of Optimum and Normal Treatment Cost for Maintaining Stream Standard of 2 mg/l in Upper Trinity River	62

I INTRODUCTION

Important work is being done by many investigators who are attempting to elucidate the relationships that control water and wastewater treatment processes. Others are seeking improved techniques for defining and quantifying the variables involved in determining the fate of pollutants that are introduced into streams, and still others are attempting to refine the methodology used in forecasting stream flows. The fact that these and many other separate aspects of water resources management are being investigated separately suggested the need for a broad-based study of the overall water quality management problem in Texas. Such a study could focus attention on present problems, indicate the magnitude of these problems, and perhaps cast some light on future problem areas.

For purposes of this research, a potential water quality problem exists when the return flows from municipal and industrial uses of water so degrade the quality of the receiving water as to significantly reduce its value to potential downstream users. In this context, the utilization of a receiving water's assimilative capacity for waste disposal is considered to be a legitimate and rational action.

The assimilative capacity of some receiving waters has been exceeded under present conditions (1). Unless return flow quality is steadily upgraded in the future, this condition will become more widespread.

Continued progress in the management of water resources through transbasin diversions and regulation of streamflow by the construction of dams and reservoirs will require constant upgrading of stream quality in many cases because of the tendency of such reservoirs to concentrate dissolved inorganic materials by evaporation, segregate waters by stratification, and enhance nuisances by eutrophication. In some cases these effects are offset by increased detention time in reservoirs, and by the beneficial effects

of low-flow augmentation.

It seems to be evident that increasing economic resources will be devoted to the water resources management field in the future. Optimum allocation of these resources will depend upon a knowledge of the nature of obstacles to be overcome, and the sequence in which they will be encountered.

<u>Objectives</u>

The primary objectives of this research were (a) to delineate and to localize present and projected municipal and industrial return flows in Texas, (b) to quantify some of the constituents of these return flows, (c) to identify some of the problems that may result from projected return flows, (d) to point out some of the shortcomings in present water-quality data collection practices, and (e) to develop a generally applicable computational method of minimizing the treatment cost for maintaining a predetermined stream quality.

Scope

Data related to the use, consumption, and quality of water were obtained from the Texas State Department of Health, the Texas Water Pollution Control Board, the Texas Water Development Board, the Bureau of Business Research of The University of Texas, and the literature. Detailed analyses of these data were made utilizing the CDC 1604 computer at The University of Texas. Results were obtained for all cities with a population in excess of 5000, for all counties, and for all Standard Metropolitan Statistical Areas as defined by the Bureau of the Census of the United States Department of Commerce. These results were then grouped into the trading areas and drainage basins for which results are shown in subsequent sections.

Some duplication of effort is involved in obtaining results based on both trading areas and drainage basins, but both concepts are necessary to an adequate evaluation of the water resources problem. Trading areas are the more logical units on which to project water requirements because water will be required where people and industry congregate, regardless of topographic features of the area. Drainage basins are more logical units on which to project return flows, because natural watercourses are usually the ultimate waste conveyance systems for areas which they drain. Hence, the interdependency of water use and return flow makes it desirable to relate both water use and return flow to both trading areas and drainage basins.

Limitations

Many inadequacies of data were encountered, but field checking of questionable data was beyond the scope of this research. In cases of conflict between two or more sources of data, judgment was used in selecting the more reasonable value. Such inadequacies serve to emphasize the need for more comprehensive and reliable means of gathering quality data.

Bays and estuaries that receive substantial quantities of freshwater inflow are vastly more complex systems than are streams, in both physical and biological senses. For example, transport by a flowing stream occurs only in a downstream direction, with primary currents caused by gravitational forces. Transport in a bay or estuary may occur in any direction as a result of currents from tidal action, wind action, density gradients, freshwater inflows, and other factors. The direction is not constant with time as is the case in a stream.

It is therefore a simple matter to infer that the introduction of biologically degradable organic wastes to a bay or estuary will depress the dissolved oxygen concentration in the receiving water, but it is not possible to predict with a high level of confidence either the magnitude or the areal extent of the depression that will result from the introduction of a

particular quantity of such wastes. The basic data relative to transport, mixing, reaeration, deoxygenation, effects of bottom deposits, and many other factors are not available to the extent and with the degree of accuracy necessary for such a prediction.

Regardless of these inadequacies of available data, a computational model based on many simplifications was developed in order to obtain estimates of the general effect of projected return flows. As more nearly complete and more useful data become available in the future, it should be possible to refine the model so that estimates obtained will be more indicative of actual results.

II QUANTITY, QUALITY, AND LOCATION OF PRESENT AND PROJECTED RETURN FLOWS

Future return flow may be an important factor in determining the value and usefulness of the total water resource in Texas. This used water represents a large potential source of usable supply only if it is properly managed. If return flow is mismanaged, it may seriously damage the quality of available surface and ground waters throughout most areas of the state. Factual data on which to base decisions are essential to the development of rational management policies. Effective management of the total water resources of the state therefore requires a knowledge of the quantity and quality of all potential water supplies, including return flows.

The research discussed in this section was undertaken for the purpose of quantifying, qualifying, and localizing present municipal and industrial return flows throughout the state, and projecting these data to the year 2020. Most of the results obtained in this research have been included in detail in a report to the Texas Water Development Board by the Center for Research in Water Resources. (2)

Organization of the Research

The research discussed in this section is based on a fundamental concept which assumes that the quantity of return flow in a limited geographic area is related in a rational and determinable manner to the quantity of water used in that area. This concept was used in a study of water reuse made in 1957, (3) and the validity of the concept was confirmed by the research reported herein. Historical records of water use and return flow were used in evaluating the relationship of return flow to water use (S/W ratio), and projections of return flow were made by applying the relationship to water use projections made jointly by the Bureau of Business Research of The University of Texas and The Texas Water Development Board.

Present and projected municipal and industrial water requirements

were developed for all urban areas with a population of 5000 or more, for all Standard Metropolitan Statistical Areas (SMSA) as defined by the U. S. Department of Commerce, and for all counties that are not included in any of the 21 Standard Metropolitan Statistical Areas in the state. Water requirements that were developed for the above areas were grouped into 32 trading areas as defined by The Bureau of Business Research of The University of Texas, Fig. 2-1. Projected return flows were developed in the same detail as were water requirements, but results for units smaller than trading areas have not been included in this section.

FIG.2-ILOCATION OF TRADING AREAS IN TEXAS

. 6

Qualitative projections of return flow were made for three different assumptions regarding future effluent quality. Results obtained for these three conditions should be useful in the future establishment of water quality criteria.

Evaluation of Municipal Return Flows

All computations of municipal S/W ratios were based on water use and return flow data provided by the Texas State Department of Health (TSDH). Water use data available from this source consist of routine reports filed by operators of public water supply systems and summary reports published periodically by the TSDH (4). Return flow data included routine reports filed by plant operators, and published and unpublished data based on inventories of municipal waste treatment plants as made by the TSDH (5, 6).

Present qualities of municipal return flows were synthesized from data obtained from the literature, the TSDH, and the Texas Water Pollution Control Board (7, 8, 9, 10).

Municipal Sewage-to-Water (S/W) Ratios

The relationship of return flow to water use is influenced by the total population, population density, water uses, climatic variation, economic conditions, water costs, water quality, and many other factors. The relationship varies widely from year to year for any particular city, but annual precipitation appears to be the most important single factor in determining what the relationship will be. The influence of annual precipitation on the S/W ratio can be expressed in an equation of the form: Y = a + bX, in which Y is the S/W ratio, a and b are constants, and X is the annual precipitation in inches.

Equations of this type were derived for each major city for which adequate historical records are available, and the S/W ratios for normal annual precipitation were determined. Return flow projections were then made on the basis of projected water requirements and normal S/W ratios.

Where adequate historical records were not available, S/W ratios were based on such records as were available and on the calculated ratios for cities in similar climatic areas.

Present municipal S/W ratios, adjusted for average precipitation, decrease in a westerly direction from a high of 0.86 in the Lower Sabine Trading Area to a low of 0.31 in the El Paso Trading Area. Most of the S/W ratios fall within the range of 0.45 to 0.75 and the weighted mean of all values is 0.60.

Projected S/W ratios have generally been reduced slightly each decade to account for the fact that the S/W ratio for a city normally declines as the population increases. The weighted mean of all values projected to the year 2020 is about 0.55. Present and projected municipal S/W ratios for each trading area for each decade are presented in Table 2-1. Quality of Municipal Return Flows

The quality of municipal return flow, summarized by trading area in Table 2-2, is determined by two primary factors—the concentration of dissolved solids in the tap water from which the return flow is derived and the concentration of pollutants added through one cycle of municipal use. Concentrations of 5-day BOD and of suspended solids in municipal effluents are routinely evaluated by the Texas State Department of Health as an integral part of the inventory of municipal waste treatment plants referred to earlier. BOD and suspended solids concentrations data were therefore obtained directly from this source.

The concentrations of dissolved solids in tap water, which greatly affect the quality of return flow, were evaluated in a less direct manner and were found to vary widely among different areas of the state. For the entire state, the weighted average concentrations of total solids, chlorides,

				Year			
Trading Area	1960	1970	1980	1990	2000	2010	2020
Fort Worth	.72	.70	.69	.67	.65	.64	.62
Dallas	.70	.67	.64	.61	.57	.54	.51
Tyler	.72	.69	.66	.63	.61	.58	.55
Longview-Marshall	.70	.70	.70	.70	.70	。70	.70
Waco	.65	.64	.63	.63	.62	。61	.60
Palestine	.65	.65	.65	.65	.65	。65	.65
Lufkin	。55	.53	。51	.49	.47	.45	.43
Middle Sabine	。75	.75	。75	.75	.75	.75	.75
Austin	。51	.49	。46	.44	.42	.39	.37
Bryan	.49	.49	.48	。48	。48	。47	.47
Houston	.68	.67	.66	。65	。64	。63	.62
Lower Sabine	.86	.85	.85	。84	。83	。83	.82
San Antonio	。73	.71	.68	。66	。64	.61	。59
Victoria	。50	.48	.47	。45	。43	.42	。40
Corpus Christi	。44	.43	.41	。40	。38	.37	。35
Lower Valley	。37	.37	.37	.36	。36	.36	.36
Laredo	。45	.44	.43	.43	。42	.41	.40
Del Rio	。35	.34	.33	.33	。32	.31	.30
Brownwood	。45	.45	。44	。44	.44	.43	.43
San Angelo	。45	.44	。43	。43	.42	.41	.40
Abilene	。53	.5 2	。50	。49	.48	.46	.45
Big Spring	.46	.45	。44	.43	。4 2	.41	.40
Midland-Odessa	.46	.45	。44	.43	。42	.41	.40
El Paso	.31	.31	。31	.31	。30	.30	.30
Lubbock	。53	.51	.50	.48	.46	。45	.43
Amarillo	、46	.45	.44	.43	.42	。41	.40
Wichita Falls	、43	.43	.42	.42	.41	。41	.40
Gainesville	。65	.64	.63	.63	.62	.61	。60
Sherman-Denison	。65	.64	.63	.63	.62	.61	。60
Paris	。64	.63	.63	.62	.61	.61	。60
Sulfur Springs	.80	.78	.77	。75	.73	。72	.70
Northeast Texas	.75	.74	.73	。73	.72	。71	.70

Table 2-1. Municipal S/W Ratios

***** .

	Con	centration	of Pollut	ants (m	ng/l)	
Trading Area	BOD	Susp. Solids	Total Solids	Cl	NO3	PO4
Fort Worth	27	32	488	102	22	24
Dallas	32	40	602	127	22	24
Tyler	30	37	409	93	22	24
Longview-Marshall	6	26	347	104	23	24
Waco	40	38	642	138	24	24
Palestine	69	63	560	116	22	24
Lufkin	43	61	526	97	22	24
Middle Sabine	27	46	508	96	23	24
Austin	17	29	915	144	26	24
Bryan	25	52	515	110	22	24
Houston	26	42	674	171	22	24
Lower Sabine	12	22	421	122	22	24
San Antonio	21	19	555	$\begin{array}{c}108\\248\\251\end{array}$	27	24
Victoria	18	25	694		22	24
Corpus Christi	17	49	785		23	24
Lower Valley	32	72	1019	258	23	24
Laredo	94	50	785	117	27	24
Del Rio	2	5	494	89	30	24
Brownwood	34	36	422	110	23	24
San Angelo	50	42	639	180	23	24
Abilene	24	34	510	116	23	24
Big Spring	59	36	517	106	22	24
Midland - Odessa	22	51	957	196	31	24
El Paso	44	37	682	160	23	24
Lubbock	95	103	844	152	30	24
Amarillo	70	6 2	603	100	27	24
Wichita Falls	50	74	499	111	30	24
Gainesville	41	41	633	100	23	24
Sherman-Denison	38	48	87 2	206	23	24
Paris	47	17	471	105	22	24
Sulfur Springs	22	30	$\begin{array}{c} 288\\ 466 \end{array}$	81	22	24
Northeast Texas	53	35		116	23	24
State Total	32	40	646	146	24	24

Table 2-2. Summary of Quality of Municipal Return Flow (1964)

and nitrates in tap water were found to be 424, 71, and 3 mg/l, respectively.

Concentrations of dissolved solids in tap water, Table 2-3, were obtained from a report on the chemical analyses of water supplied by public water systems throughout the state (9). Since many cities have more than one source of supply, the report may list data for more than one set of analyses for a city. It was therefore necessary to study the listings and determine, partly on the basis of judgment, the most reasonable concentrations of dissolved solids in the tap water of each city. Average values of pollutant buildup through one cycle of municipal use were added to these tap water concentrations in order to find the return flow concentrations of dissolved solids.

On the average, one cycle of municipal use adds 222 mg/l of total solids, 75 mg/l of chlorides, 22 mg/l of nitrates, and 24 mg/l of phosphates to the tap water concentrations (7,8,11). It was assumed that these average values were valid for all areas of the state, although it is recognized that the values may vary from city to city. The concentrations of total solids, chlorides, nitrates, and phosphates shown in Table 2-2 therefore represent the tap water concentrations plus the average buildup for one cycle of municipal use.

Concentrations of phosphates and nitrates, evaluated as described above, were practically uniform at 24 mg/l throughout the state; but 5-day BOD, suspended solids, total solids, and chlorides were found to have relatively wide ranges of values. The weighted average concentration of reported 5-day BOD in the state was calculated to be 32 mg/l, ranging from a high of 95 mg/l in the Lubbock Trading Area to a low of 2 mg/l reported in the Del Rio Trading Area. The low value is probably not realistic but rather indicative of data reporting techniques.

Total solids concentrations were found to vary from 1019 mg/l in the Lower Valley to 288 mg/l in the Sulphur Springs Trading Area, with the

	Concentration	of Polluta	ants (mg/l)
Trading Area	Total Solids	C1	NO ₃
Fort Worth	266	27	0
Dallas	380	52	0
Tyler	187	18	0
Longview-Marshall	125	29	1
Waco	420	63	2
Palestine	338	41	0
Lufkin	304	22	0
Middle Sabine	286	21	1
Austin	693	69	4
Bryan	293	35	0
Houston	452	96	0
Lower Sabine	199	47	0
San Antonio	333	33	5
Victoria	47 2	173	0
Corpus Christi	563	176	1
Lower Valley	797	183	1
Laredo	563	102	5
Del Rio	272	14	8
Brownwood	200	35	1
San Angelo	417	105	1
Abilene	288	41	1
Big Spring	295	31	0
Midland-Odessa	735	121	9
El Paso	460	85	1
Lubbock	622	77	8
Amarillo	381	25	5
Wichita Falls	277	36	8
Gainesville	411	25	1
Sherman-Denison	650	131	1
Paris	249	30	0
Sulfur Springs	$\begin{array}{c} 66\\ 244\end{array}$	6	0
Northeast Texas		41	1
State Average	42.4	71	2

Table 2-3. Summary of Quality of Municipal Tap Water

average for Texas being 646 mg/l. Variations in the concentrations of suspended solids and chlorides were determined to parallel the variations in BOD and total solids, respectively.

Water quality in Texas tends to improve in an easterly direction, with the best quality water occurring in the Sulphur Springs Trading Area, as indicated above.

Evaluation of Industrial Return Flows

All computations of industrial S/W ratios were based on water use and return flow data obtained from a survey of industrial water users which was made by the Texas Water Commission in the spring of 1965. For this survey, questionnaires were mailed to approximately 3500 industrial firms throughout the state. More than 90 percent of the industries responded to the questionnaire, and approximately 1200 replies contained usable information. It is believed that over 95 percent of the actual water use was covered in the usable replies.

Present quality data for industrial return flow were obtained by analysis of waste discharge permits issued by the Texas Water Pollution Control Board.

Industrial Return Flow to Water Use (S/W) Ratios

Industrial S/W ratios were found to vary widely for different areas of the state and, while they tend to be somewhat lower in the more arid portions of the state, they also vary greatly among different types of industries, regardless of location.

Industrial S/W ratios vary over a wider range of values than do municipal S/W ratios. The Victoria Trading Area reported the highest ratio, 0.95, while the lowest ratio, 0.11, was reported in the Laredo Trading Area. The overall average for the state was found to be 0.88, but this ratio included large quantities of saline water. When saline water was excluded from calculations, the state average ratio was 0.69. Saline water accounts for about 64 percent of the total industrial water intake, with the chemical industry using about 79 percent of the total saline water intake. Petroleum refining and miscellaneous minor industries together use another 20 percent of the saline water intake, leaving about 1 percent for all other industries.

The major water-using industries tend to use about four times as much water for cooling purposes as for process water. Because of reuse of cooling water, the quantity used for cooling was more than the total intake for all industrial classes except the textile, paper, stone, clay, and glass industries. All industrial classes except the paper industry reported that the quantity of water recirculated within the plant exceeded the total intake. For the entire state, recirculated water volume was about four times the total intake, including saline water, indicating that intake water is put through five cycles of use before being discharged, Tables 2-4 and 2-5. Industrial water use and return flow by Trading Area are tabulated in Table 2-6.

Industrial S/W ratios are highly dependent on the number of times water is recycled within the plant before being discharged. Each use cycle consumes about 1.8 percent of the intake water as shown in Fig. 2-2.

		Quanti	ity and So	urce of	Intake	
Industrial Class	Total	Fresh	Munic Sewage	Other Contar	Saline n.	Present Need
Mining	20716	17514	0	3212	44	41
Primary Metals	2 0438	6786	0	3365	104 27	15
Transportation	12967	1991	0	10975	0	0
Stone, Clay, Glass	s 14112	11872	6	1032	1202	51
Food Production	13442	13147	5	279	7	422
Textiles	1119	1119	0	0	0	0
Paper & Products	292 08	24516	0	2	4690	8663
Chemicals	1185501	68051	1426	196948	916090	657
Petroleum Refining	196930	62771	487	30472	103124	53
Miscellaneous	30 9 436	47188	912	131883	129452	3 2 1
Total	1802870	254957	2836	378171	1165036	10221

Table 2-4.	Summary of Industrial Water Use in 1964 by Industrial
	Classification (MGY)

Table 2-5. Summary of Industrial Return Flow and Usage of Water in 1964 by Industrial Classification (MGY)

	Quantity of Water						
Industrial Class	Reused	Return Flow	Process Usage	Cooling Usage	Boiler Feed	S/W Percent	
Mining	1557141	5195	384532	1088983	11451	25	
Primary Metals	76887	15194	15382	79132	3280	74	
Transportation	24789	1 2 188	16880	16974	796	94	
Stone, Clay, Glass	s 45457	9955	13406	6882	543	71	
Food Production	28605	10604	14183	22469	4822	79	
Textiles	2571	968	3432	39	219	87	
Paper & Products	21322	28213	28353	18134	10671	97	
Chemicals	1469718	1119653	557468	2055914	29018	95	
Petroleum Refining	2309496	149824	592926	1877868	43802	76	
Miscellaneous	1611745	235362	$7103\\1633664$	1901098	5912	76	
Total	7147731	1587157		7067492	110513	88	

and and an end of the second	110	Quantity of Water						
Trading Area	Total	Fresh	Mun	Other	Saline	Reused	Return	S/W
	Water	Water	Sew	Contam	Water	Water	Flow	Pct
Fort Worth	17713	6185	0	11209	303	322350	13501	76
Dallas	17849	17771	0	78	0	303298	4982	28
Tyler	3593	3532	0	35	0	103065	948	26
Longview-Marsh	all 6247	1412	0	4835	0	162912	2047	33
Waco	7840	4681	0	3159	0	172017	1632	21
Palestine	205	195	0	0	0	1506	137	67
Lufkin	546	458	0	16	72	2307	429	79
Middle Sabine	896	820	0	76	0	22527	404	45
Austin	1872	1733	1	138	0	1956	1593	85
Bryan	46	46	0	0	0	930	18	39
Houston	1039751	91785	5	138246	807851	2389383	955259	92
Lower Sabine	487312	44683	4	155179	287445	1281561	434338	89
San Antonio	15265	9747	0	5523	0	$41697 \\ 146056 \\ 363662$	5833	38
Victoria	76271	18237	0	57105	929		72808	95
Corpus Christi	34071	9362	0	301	24254		27062	80
Lower Valley Laredo Del Rio	$\begin{array}{r} 45591 \\ 103 \\ 467 \end{array}$	$\begin{array}{r}1028\\86\\467\end{array}$	0 0 0	573 17 0	43990 0 0	42735 4076 2227	45125 12 150	99 11 32
Brownwood	33	33	0	0	0	$50 \\ 8524 \\ 40981$	33	100
San Angelo	402	395	0	0	7		205	51
Abilene	341	301	0	22	18		190	56
Big Spring Midland-Odessa El Paso	$1794 \\ 6472 \\ 4439$	$1489 \\4619 \\4333$	186 1242 0	119 551 100	0 60 6	162965 717408 113946	437 2257 1695	24 35 38
Lubbock	4160	4018	0	142	0	57590	1474	35
Amarillo	19386	18033	1399	26	0	398467	9452	49
Wichita Falls	398	185	0	186	0	7639	200	50
Gainesville	68	68	0	0	0	95	36	53
Sherman-Denisor	3037	2734	0	303	0	162409	674	22
Paris	850	850	0	0	0	40320	191	23
Sulfur Springs	76	67	0	9	0	612	55	72
Northeast Texas	5833	5612	0	221	0	70463	3983	68

Table 2-6. Summary of Industrial Water Use and Return Flow in 1964 (MGY)

This study is concerned with potentially reusable return flows, so the industrial S/W ratios obtained from the survey were modified to exclude saline water from the calculations. The modification was based on the assumptions that saline water would be used on a once through basis only and that this single use cycle would consume about 1.8 percent of the saline intake. Thus, saline intake was subtracted from total intake, and waste was reduced by 98.2 percent of saline intake to compute the nonsaline S/W ratio for each Trading Area. Results obtained from this modification indicate that non-saline water is recycled an average of about eleven times before being discharged.

Projections of S/W ratios were based on the assumption that increasingly efficient use of water will reduce all ratios to 75 percent of their present values by the year 2020, unless the ratio is now less than 0.25, in which case the S/W ratio was assumed to remain constant. Present and projected industrial S/W ratios are listed by decade for each Trading Area in Table 2-7.

Quality of Industrial Return Flows

The quality of industrial return flow was found to be much less uniform and generally much lower than the quality of municipal return flow. Average concentrations of pollutants in the total return flow for the state are about five times as great for industrial return flows as for municipal return flows, as shown in Table 2-8 (12). As noted in this table, many industries and municipalities, as represented by return flows, do not presently report concentrations of contaminants in commonly accepted terms. For example, it is noted that COD concentration is reported for less than 1 percent of municipal return flows.

Waste discharge permits, upon which the quality of industrial return flow was based, were unchecked and unverified by the Water Pollution Control Board, were incomplete in most cases, and are believed to

		Year							
Trading Area	1960	1970	1980	1990	2000	2010	2020		
Fort Worth	.76	。72	.69	.66	.63	.60	.57		
Dallas	.28	。27	.25	.24	.23	.22	.21		
Tyler	.26	。25	.24	.23	.21	.20	.19		
Longview - Marshall	.33	。31	.30	。29	。27	.26	。25		
Waco	.21	。21	.21	。21	。21	.21	。21		
Palestine	.67	。64	.61	。58	。55	.53	。50		
Lufkin	.79	。75	.72	.68	。65	.62	。59		
Middle Sabine	.45	。43	.41	.39	。37	.35	。34		
Austin	.85	。81	.77	.74	。70	.67	。64		
Bryan	.39	.37	.35	。34	。32	.31	.29		
Houston	.66	.63	.60	。57	。54	.52	.49		
Lower Sabine	.76	.72	.69	。66	。63	.60	.57		
San Antonio	。38	.36	。35	.33	。31	。30	.28		
Victoria	。95	.91	。86	.82	。78	。75	.71		
Corpus Christi	。33	.31	。30	.29	。27	。26	.25		
Lower Valley	.80	.76	.73	.69	.66	.63	.60		
Laredo	.11	.11	.11	.11	.11	.11	.11		
Del Rio	.32	.30	.29	.28	.26	.25	.24		
Brownwood	.99	。94	.90	。86	。82	.78	。74		
San Angelo	.51	。49	.46	。44	。42	.40	。38		
Abilene	.56	。53	.51	。48	。46	.44	。42		
Big Spring	。24	。24	。24	。24	.24	。24	.24		
Midland - Odessa	。35	。33	。32	。30	.29	。28	.26		
El Paso	。38	。36	。35	。33	.31	。30	.28		
Lubbock	.35	.33	.32	.30	.29	。28	.26		
Amarillo	.49	.47	.45	.42	.40	。39	.37		
Wichita Falls	.50	.48	.45	.43	.41	。39	.37		
Gainesville	.53	.51	.48	.46	。44	.42	.40		
Sherman - Denison	.22	.22	.22	.22	。22	.22	.22		
Paris	.23	.23	.23	.23	。23	.23	.23		
Sulfur Springs	.72	。69	.65	.62	。59	。57	.54		
Northeast Texas	.68	。65	.62	.59	。56	。53	.51		

Table 2-7. Industrial S/W Ratios

contain generous safety factors to allow for future expansion in other cases, but they are the only available source of information. Concentrations shown in Table 2-8 should therefore be considered as indicating the order of magnitude rather than the absolute values of pollutant concentrations.

M	unicipal	Industrial	Total
Quantity (MGY)	201269	1301671	1502940
Quality			
BOD Avg. Reporting (mg/l) Not Reporting (%)	34 5	170 31	148 28
Suspended Solids Avg. Reporting (mg/1) Not Reporting (%)	59 20	360 50	301 46
Total Solids Avg. Reporting (mg/l) Not Reporting (%)	1221 69	6418 88	4920 85
Chlorides Avg. Reporting (mg/l) Not Reporting (%)	177 72	6713 49	6207 52
COD Avg. Reporting (mg/l) Not Reporting (%)	Neg. 100	815 54	815 60
Sulfates Avg. Reporting (mg/l) Not Reporting (%)	123 79	657 95	441 93

Table 2-8. State Summary - Quantity and Quality of Municipal and Industrial Return Flow, Based on Waste Discharge Permits

Evaluation of industrial return flow quality is difficult because of its

variability with time, type of manufacturing process, type of product, production volume, operating techniques, conservation practices, cost of water, quality of water, and many other factors.

Projection of Municipal and Industrial Water Requirements

Projections of municipal and industrial water requirements were made by the Bureau of Business Research of The University of Texas and the Texas Water Development Board.

The method employed in making the projections is widely used for making long-range projections. In essence, this method consists of evaluating the resources available in a limited geographic area, determining the employment in basic industries that these resources will support, calculating the service industry employment that will be generated by the basic industries, and, from the total employment, estimating the total population. Municipal (domestic) water requirements are then projected on the basis of population projections, and future industrial water requirements are estimated on the basis of the total predicted industrial development.

In general, projections are indicators of potential trends. Longrange predictions for small geographic areas are likely to be grossly inaccurate because the growth of a small area is a function of economics rather than biology. Projections for larger areas, such as the entire state or one of the larger trading areas can be expected to deviate less because the future population expansion and water use may be more clearly defined.

For convenience of reference, future municipal and industrial water requirements estimated by the Bureau of Business Research of The University of Texas and the Texas Water Development Board are presented in summary form in Table 2-9 and in detail in Appendix A.

	Muni	Municipal		Industrial		Total	
Year	Bil	1000	Bil	1000	Bil	1000	
	Gal	Ac Ft	Gal	Ac Ft	Gal	Ac Ft	
1960	409	1255	430	1320	839	2575	
1970	588	1804	675	2071	1263	3875	
1980	787	2415	948	2909	1735	5324	
1990	974	2989	1142	3505	2117	6494	
2000	1209	3710	1381	4238	2591	7948	
2010	1505	4618	1677	5146	3183	9764	

Table 2-9. State Summary of Present and Projected Annual Municipal and Industrial Water Requirements

Projection of Municipal and Industrial Return Flows

Projected return flows are the products of estimated future water requirements and the appropriate S/W ratios. Return flows from industrial water users are slightly greater than those from municipal users at the present, and they are expected to increase at the same rate as municipal return flow through the year 2020. Approximately one-third of the total return flow will be produced in the Houston Trading Area throughout the period covered. The municipal return flow from the Houston Trading Area will increase slightly faster than will industrial return flow.

The Houston and Lower Sabine Trading Areas together will account for about 78 percent of the total industrial return flow by the year 2020, and the Houston and Dallas Trading Areas together will account for about 42 percent of the total municipal return flow, as they now do.

In general, most areas except the Lower Valley will tend to maintain their present rank as producers of return flow throughout the period covered by the study. These data are given in Table 2-10 and Appendix B.

	Mun	Municipal		dustrial		Total		
Year	Bil	1000	Bil	1000	Bil	1000		
	Gal	Ac Ft	Gal	Ac Ft	Gal	Ac Ft		
1960	248	761	2 60	798	508	1559		
1970	350	1074	399	1224	749	2299		
1980	459	1409	543	1666	1002	3075		
1990	554	1700	629	1930	1183	3630		
2000	671	2059	731	2243	1402	4302		
2010	815	2501	853	2618	1668	5119		
2020	991	3041	999	3066	1990	6107		

Table 2-10. State Summary of Present and Projected Annual Municipal and Industrial Return Flows

Municipal, industrial, and total water requirements and return flows for the entire state are presented in graphical form in Fig. 2-3. Statewide figures are of little practical value because the potential for use or reuse of water depends on the location of water with respect to the need for it. <u>Projection of Quality of Return Flows</u>

Future effluent or stream standards which will determine return flow quality are not known. For this reason, projections based on three different possible standards have been made. The first projection is based on the assumption that present stream quality will be maintained; the second assumes that present effluent quality will be maintained; and the third assumes that the concentrations of suspended solids and 5-day BOD will be reduced to 20 mg/l. These three possible standards are likely to bracket the range of standards considered by regulatory authorities and should provide a reasonable basis for long range planning as related to all phases of water resource management.

FIG. 2-3. SUMMARY OF PRESENT AND PROJECTED WATER USE AND RETURN FLOW IN TEXAS.
Maintaining Present Stream Quality

On an average basis the present organic quality of Texas streams can be maintained by conventional secondary biological treatment of all wastes until about 1975, although more advanced treatment processes will be required in some areas before 1970. Areas which should be likely candidates for nutrient removal are municipalities in the Ft. Worth, Dallas, Houston, and San Antonio Trading Areas. Agriculture is also a significant contributor of nutrients, but indications are that the agricultural contribution is considerably less than the municipal contribution (11). Similarly, surface runoff from urban and rural developments may add a highly significant waste load to the receiving waters (13).

In areas such as Ft. Worth, Dallas, San Antonio, and possibly Houston, it appears that 5-day BOD removals to levels less than 20 mg/l will be required within 10 to 15 years in order to avoid increasing the organic waste loads imposed on receiving waters. Such removals cannot generally be attained by conventional secondary biological treatment processes; hence, more advanced treatment methods will have to be employed.

Much of the increased waste loads in these areas will result from industrial activities and 5-day BOD tests, or even COD tests, may not be realistic indicators of industrial waste loads; therefore, a total carbon index or some other reliable indicator may need to be used along with improved treatment processes in the management of stream quality in these areas.

Because the absolute quantities of pollution additives from rural and urban runoff and from agricultural return flows are unknown, any water quality management plan that is developed at this time must contain a generous safety factor. It is reasonable to expect that the contribution from urban runoff will increase with increasing urban development, and that the contribution from agricultural return flows will increase with increasing use of fertilizers and pesticides. Under present conditions, only three avenues are available for organic pollution abatement; namely, exhaustive treatment of municipal and industrial effluents, stream reaeration, and low-flow augmentation. Only the first of these three, exhaustive effluent treatment, can be used effectively for nutrient control for all stages of a waterway.

The contribution of other potential pollutants such as heat, dissolved solids, settleable solids, suspended solids, taste-and-odor-causing agents, and short- and long-term toxicants can also be evaluated. The effect of all these materials on the value of water resources can be determined only after appropriate systems analyses and economic evaluations have been made.

The present concentrations of pollutants in streams can be maintained only if the total quantity of pollutants added to the streams remains constant. Hence, increases in waste stream quantities will have to be accompanied by corresponding decreases in the concentrations of pollutants in the waste streams if it is desired to maintain present stream quality. The effluent quality required to maintain present conditions, as shown in Appendix C, is therefore inversely proportional to the projected quantity of return flow, but this may be misleading so far as total solids and chlorides are concerned. Concentrations of chlorides and total solids are lower in some return flows than the present concentrations in the receiving streams. Such is the case of specific effluents in the Wichita Falls Trading Area because of the high concentrations of chlorides in natural watercourses resulting from salt-spring seepage (14).

Based on the data and assumptions contained herein, by the year 2020 most of the return flow will have to be so highly treated for organic and general nutrient removal that it may be an attractive source of water supply, particularly for industrial users. The limiting factor for reuse will be the buildup of dissolved inorganic solids.

25

Present Effluent Quality

If the present quality of return flows is maintained through the year 2020, the quantity of pollutants released to receiving waters will increase in direct proportion to the increase in return flow quantity. Thus, while the quantity of dilution water available will be reduced through increased consumption, the quantity of pollutants discharged may increase more than threefold. Receiving water quality in year 2020 under such conditions can be expected to be generally poor. Roughly equivalent quality would prevail at the present time if two-thirds of the presently existing waste treatment plants were removed from service.

The significance of the pollutant quantities shown in Appendix D is that removal of these pollutants from return flow may solve the water quality problem, but it will generate a large solid waste disposal problem so far as the removed materials are concerned.

Reduction of Concentrations of BOD and Suspended Solids in Effluents

Since maintaining present effluent quality will result in conditions which are likely to be unacceptable, a projection was made to show the additional quantities of BOD and suspended solids that could be removed by biological treatment processes, Appendix E. Specifically, this projection is the difference between the quantities that would be discharged if the concentrations of 5-day BOD and suspended solids remain constant, and the quantities that would be discharged if the concentrations of 5-day BOD and suspended solids were reduced to 20 mg/1.

It should be noted that industrial quality data are rather incomplete and that figures shown only indicate general ranges. Furthermore, the ultimate BOD would probably be a better indicator of this level of planning. The numbers shown and as printed by the computer may imply a high degree of precision, but this is not the case. Relative relationships are significant in that they indicate the extent to which pollutional characteristics of wastes can be reduced in various areas without the necessity of employing advanced or tertiary treatment processes. The latter process usually indicates an additional advanced form of biological treatment such as denitrification or chemical treatment to remove phosphorus and other undesirable materials.

This projection points up the necessity for obtaining more nearly exact information regarding the quality of effluent streams. Plans for future control measures will be no better than the data on which they are based.

III EFFECTS OF RETURN FLOWS ON SURFACE WATER QUALITY

The present and projected return flows evaluated in the previous chapter are, in most cases, released to the nearest natural watercourse. However, the effluents from approximately 80 municipal treatment plants serving about six percent of the total population of the state are used for irrigation (5), and a much smaller quantity of municipal effluent is used for industrial purposes, as can be seen in Table 2-4. A portion of the municipal effluent that is used for irrigation ultimately becomes return flow from irrigation, and this return flow will contain most of the dissolved inorganic minerals that were in the applied water (15). Hence, no significant degree of accuracy is lost by the assumption that all return flows are released to natural watercourses.

The Texas Water Development Board has established boundaries for 23 drainage basins in Texas. Fifteen of these drainage basins are either rivers or river systems, and the remaining 8 are intervening coastal areas between the mouth of the rivers. Six additional drainage basins, each one encompassing one of the major bay systems and the adjacent 10 to 15 mile wide strip of land around the bay, were defined for this research, Fig. 3-1.

Each city and each county were assigned to the appropriate drainage basin or basins, and the computations previously described for trading areas were repeated for the 29 drainage basins.

Distribution of Return Flows

Approximately 29 percent of the total return flow derived from the use of fresh water in Texas is discharged to the Galveston Bay Basin, as defined above. This percentage is projected to remain practically constant through the year 2020. Another 15 percent of the total return flow is discharged into the Trinity River, which empties into Galveston Bay. Hence, about 44 percent of the total return flow produced in the entire state passes through Galveston Bay on its way to the Gulf of Mexico.

28

FIG. 3-1. LOCATION OF DRAINAGE BASINS IN TEXAS

The Sabine Lake Basin is the next largest recipient of return flow, with 10 percent of the present total and a projected 12 percent in the year 2020. Fourth in order is the Neches River, with about 8 percent of the present discharge and almost 10 percent projected for the year 2020.

These four basins, which include about 11 percent of the total land area of the state, receive about 62 percent of the total municipal and industrial return flow at the present, and this portion is projected to increase to practically two-thirds of the total by the year 2020. The Brazos, Colorado, San Antonio, and Canadian River Basins together receive about 18 percent of the total return flow, and the remaining 20 percent is contributed to the other 20 basins. Only minor changes in this pattern are projected to occur by the year 2020.

The distributions of both municipal and industrial return flow differ in several cases from that of total return flow, because industry is more highly concentrated along the eastern Gulf Coast than elsewhere. Almost 37 percent of the industrial waste water is released to the Galveston Bay area. Another 15 percent is released to Sabine Lake, and the Neches River gets over 13 percent of the total. Less than 5 percent of the land area of the state is included in these three basins, which together receive almost two-thirds of the total industrial return flow. About 14 percent of the state total is released to the Trinity and Canadian Rivers and Matagorda Bay, leaving approximately 21 percent for the remaining 23 basins.

The Trinity River Basin, at 27 percent, is the leading recipient of municipal return flow, followed by Galveston Bay with 19 percent. The San Antonio and Brazos Rivers receive about 10 and 9 percent, respectively, followed by the Colorado, 7 percent, the Rio Grande, 4 percent, and Sabine Lake, 3 percent. No other basin in the state accounts for as much as 3 percent of the total municipal return flow.

A complete tabulation of present and projected municipal, industrial, and total return flows for each drainage basin is presented in Appendix F. A more detailed breakdown by counties, cities, and zones of river basins can be found in the report "Return Flows, Impact on Texas Bay Systems" (1). Quality of Return Flows

Quality data developed for trading areas as described previously were also computed for the drainage basins considered in this section. Since most of the estimates of the effects of return flows are based on the assumption that the present effluent quality will be maintained in the future, the quantities of pollutants that will be discharged in the future under this condition are presented in Appendix G.

Effects on Streams

The total effect of the addition of return flow to a stream can probably never be determined, but the gross effect on the parameters of primary interest from a water resources management standpoint will depend on the quantity and quality of the return flow added. Any combination of three fairly distinct generations of quality problems may result from the discharge of wastes into a stream. These three problems are (a) depletion of the dissolved oxygen concentration in the stream as a result of the introduction of degradable organic material, (b) excessive plant growth in the stream resulting from the introduction of inorganic nutrients, and (c) buildup of chlorides or total solids resulting from multiple reuse, evaporation, and excessive concentrations in effluents. All three problems were found to exist in various reaches of different streams in the state.

Only six streams in the state receive significant fractions of the total return flow produced by municipal and industrial water users. These streams are the Trinity, Neches, San Antonio, Brazos, Colorado, and Canadian Rivers. Large scale problems that may result from return flows can logically be expected to be associated with these streams. However, the effect of return flow on a stream depends not only on the quantity and quality of return flow but also on the flow of the stream to which it is introduced. Therefore, problems that are smaller in scale, but no less severe in intensity, may occur in any area of the state. In fact, some 80 municipal waste treatment plants have been reported to discharge their effluents to watercourses which are intermittently dry (5). It is likely that many other plants, particularly in the western area of the state, discharge effluents to streams that are dry periodically during the year, resulting in locally obnoxious stream conditions. From a water quality standpoint, the most serious effect of such conditions may well result from the quantities of

dissolved inorganics that are deposited in the stream, to be flushed to downstream reservoirs with the first flood. No effort was made in this research to determine where such conditions exist.

The Trinity and San Antonio Rivers both originate in relatively dry sections of the state, and both are characterized by wide variations of flow, particularly in the upper reaches. Very low dry weather flows may occur in the upper reaches of both streams, and this condition may persist throughout the length of the San Antonio River.

These periodic low flow conditions, combined with the major population centers located near the headwaters of both streams have resulted in quality control problems that provide some insight into the entire water quality management problem.

The large municipal return flow from the Ft. Worth-Dallas area is subjected to secondary biological treatment; nevertheless, because of the low dry-weather flow available in the Trinity, the assimilative capacity of the stream is frequently exceeded, and it has been reported to be devoid of oxygen for about 100 miles below Dallas during dry summer months (16). It does not appear that this condition could be rectified by biological treatment processes. Rather, aside from augmenting the low flow condition by the importation of substantial quantities of dilution water, it appears that advanced treatment by chemical precipitation to remove possibly 98 or 99 percent of the 5-day BOD from effluents might be required in order to maintain aerobic conditions throughout the river. Unless inorganic nutrients were also removed to a similar extent, it seems to be evident that the water quality would remain poor. As mentioned earlier, similar conditions that differ only in scale undoubtedly exist in other areas of the state.

The major water quality control problem of the San Antonio River apparently results from excessive inorganic nutrient concentrations in return flows, rather than from excessive organic pollution. Secondary biological treatment of return flows that are discharged to the stream is followed by oxidation ponds in which most of the remaining BOD is satisfied. The return flow to the river thus contains a low BOD, but relatively high concentrations of inorganic nutrients. As a result, a high algal concentration has been reported to exist in this stream from San Antonio to the mouth (17). It is logical to assume that this same condition would occur in the Trinity if the current problem of DO deficiency were overcome by advanced treatment that did not also remove inorganic nutrients.

Return flows have not adversely affected the Brazos, Neches, and Colorado Rivers to the extent that they have affected the Trinity and San Antonio largely because of three reasons: smaller quantities of return flows, more even distribution, and release in lower reaches where streamflows are higher. Increasing return flow quantities in the future can be expected to affect these streams in exactly the same patterns as the Trinity and San Antonio now display, although it is not possible to foretell the exact degree to which they will be affected.

Agricultural return flows have not been studied in this research, but their importance to the overall management of water quality needs to be noted. For example, essentially the entire flow of the Rio Grande is diverted to agricultural use in the El Paso area. Drainage ditches in the irrigated area maintain the water table a few feet below the ground surface, and return a portion of the spent irrigation water to the river below the city. Chloride concentration in this return flow has been reported to be in excess of 2000 mg/l, about 4 times the concentration in the applied water (15).

The problem of excessive chloride concentration has not yet occurred as a result of municipal and industrial use of water, but it can be seen in Appendix G that the quantity of chlorides projected to be discharged to the Trinity River by the year 2020 could easily cause problems. The onset of these problems will be hastened by the increased evaporation resulting from proposed dams and locks on the river.

Quantities of phosphates estimated in this research to be discharged to various drainage basins, Appendix G, have been found to be in excellent agreement with quantities measured in the streams by Connell (11). For example, quantities estimated in this research for the Trinity, Colorado, Brazos, and San Antonio Rivers are 22, 5, 7, and 9 tons per day, respectively. Quantities reported by Connell on the basis of his measurements were: for the Trinity, from 20 to 25 tons per day; for the Colorado, from 2 to 3 tons per day; for the Brazos, 3 to 4 tons per day; and for the San Antonio, 5 to 7 tons per day. Effects on Bays and Estuaries

The gross effect of return flows on bays and estuaries is similar to the effect on streams, even to the extent that excessive concentrations of chlorides in return flows may become a problem. Oxygen depletion is likely to be the most important effect of releases directly into a bay, while problems attributable to excessive nutrient concentrations are likely to be predominant in the case of return flows entering via tributaries. An estuary's value as a spawning and nursery area is related to the existence of a well-defined salinity gradient across the estuary, and this gradient may be destroyed by excessive chloride concentrations in return flows (18).

The complex nature of a bay or estuary, with its varying currents caused by wind and tidal action, density gradients, and freshwater inflows, makes the determination of the precise effects of return flows on the system impossible. The problem is complicated by the lack of basic data relative to transport, mixing, reaeration rates, deoxygenation rates, effects of bottom deposits; and many other factors.

Regardless of these inadequacies of data, and of the complexities of the systems involved, a computational model based on many simplifications was developed in order to make estimates of the general effects of projected return flows. When better data become available, refinements can be made, but with present return flows as inputs, the mixing and dissolved oxygen model developed yields results that are in general agreement with presently known conditions, and responds logically to changes in input. Thus, the estimates obtained by using the model are useful for long range planning purposes and they are believed to be at least indicative of the magnitude of the correct results.

The computational model developed was adapted from one previously reported by Frankel (19). Mixing, physical exchange, and biological degradation are accounted for in the model, but the relationships of these phenomena as they are treated in the model to the same phenomena as they occur in a bay are very tenuous in many respects. For example, the tidal prism concept, a first guess at best, was used in computing physical exchange, and the model considers the total exchange so computed to occur in 12 equal increments throughout the day. Mixing of return flows with the waters in a bay is a very complex and variable mechanism, but the model treats it as simple and constant.

Segmentation models and physical exchange coefficients, as well as current velocities, segment volumes, and depths required in the model were estimated by Masch (20). Many inadequacies of available data were noted by Masch, to the extent that except for Galveston and Matagorda Bays, the segmentation models were made largely on the basis of topographic features.

Present and projected return flows to each of the bay drainage basins, as previously defined, were assumed to discharge directly to the nearest segment of the bay, although in fact many of these wastes are discharged into creeks and bayous a few miles from the adjacent bay. Wastes transported into the bays by tributaries were assumed to have been substantially degraded by stream biota by the time they entered the bay. Unpublished data available in the files of the Texas State Department of Health indicate that the BOD of the Trinity River near the mouth may average about 5 mg/l during the summer months (21).

35

Other variables which were required by the computational model but were not available from any source included the rate of sedimentation of BOD and the BOD exerted by bottom deposits. Both of these variables were judged to have low values because all wastes are given at least primary treatment before release. Typical deoxygenation rates were approximated, as were hourly variations of dissolved oxygen concentration in a bay before the addition of pollution.

Thus, although biological degradation was treated in a fairly sophisticated manner in the model, the input data were of undeterminable accuracy. However, the relative relationships are of importance.

FIG. 3-2. ILLUSTRATION OF DISSOLVED OXYGEN AND MIXING MODEL

Each bucket in Fig. 3-2 represents a segment of a bay, and provision was made for adding a waste stream to any segment. In operation, volumes, depths, exchange coefficients, and velocities for each segment of a bay were read into the computer along with all other variables required. Beginning with the uppermost segment in a bay, the waste stream was introduced and the computational procedure: was started.

The procedure which was followed converted the volume of each segment into an equivalent flow rate to which the tributary flow rate, waste stream flow rate, and exchange rate were added. These flows were assumed to be completely mixed, and the BOD and DO concentrations of the mixture were determined. Degradation and exchange then proceeded for 24 hours, with new values of BOD and DO being computed each 2 hours. A new cycle was started every two hours to provide for variation in flow rate and concentration of BOD in the waste stream, as well as variations in the DO concentration of the unpolluted bay water.

After 12 such cycles had been run, corresponding to one full day of operation, the 12 final values of BOD and DO were stored for future reference. The entire process was then repeated, using the computed BOD and DO values as the concentrations in bay water. The values of BOD and DO computed for the second day of operation were then compared to those obtained on the first day. If the difference was greater than a small predetermined amount, the new values were stored, and the program was run for another day. This process was repeated until no significant change was noted, that is, until "equilibrium" was attained. The equilibrium values were then printed out, and the computation moved on to the next segment.

For the second segment, the input BOD included the direct return flow to the segment plus the amount added by exchange with the first segment. The computational procedure described for the first segment was then used to find equilibrium values for the second segment, and this entire process was repeated until the mouth of the bay was reached.

The dissolved oxygen concentrations in all segments of all bays were estimated in this manner using present return flow quality with present, 1980, and 2020 projected quantities of return flow.

The program was then revised and used to estimate the quantity of dilution water that would be required to maintain present DO levels with projected return flows. This was accomplished by modifying the program to compute DO values, add water to the return flow and reduce the BOD accordingly, recompute DO values, and repeat this process until the DO values were approximately equal to those estimated for present conditions. The quantity of dilution water estimated to be required by this method should be in the same range of accuracy as the estimated dissolved oxygen concentrations.

Present and projected phosphate concentrations were estimated by means of a much simpler model. Since phosphates are non-degradable, the quantity entering any segment of a bay must be equal to the quantity leaving under long-term equilibrium conditions; so the phosphate concentration in a segment is dependent only on the quantity of water and amount of phosphates crossing the segment boundary.

<u>Galveston Bay</u>: As stated earlier, approximately 44 percent of the entire quantity of return flow produced in the state passes through Galveston Bay. This bay is an important recreational area for the heavy concentration of people in the adjacent area, and it serves as a nursery for over 80 percent of the total poundage of fishery products taken from the Texas Gulf Coast. When these facts are considered along with the heavy industrial concentration and the activity of the Port of Houston, the importance of Galveston Bay to the economy of the entire state is easily recognized.

Partly for the above reasons, and partly because physical data related to Galveston Bay are less incomplete than is the case for other bays, a major portion of the effort in this research was expended in the study of Galveston Bay. The segmentation model of the bay for a four-mile excursion, Fig. 3-3, was used in estimating present and projected DO concentrations.

FIG. 3-3. GALVESTON BAY SEGMENTATION MODEL (FOUR MILE EXCURSION) (20)

Most of the direct return flow to the bay enters through the Houston Ship Channel into segment 1 of Northwest Bay, although a substantial quantity is introduced into segments 1 and 2 of Northeast Bay from the Baytown industrial complex. Most of the tributary contribution enters Trinity Bay via the Trinity River.

Present and projected DO concentrations estimated for segments of Galveston Bay are presented in Fig. 3-4. Values shown in Fig. 3-4 represent the 24-hour average concentrations of DO in the full depth of the segments, and these values are in general agreement with reported values (22). Both the diurnal variation and the variation of concentration with depth have been masked by the values presented.

FIG. 3-4. PRESENT AND PROJECTED DO CONCENTRATIONS IN GALVESTON BAY

The concentrations of dissolved oxygen in most regions of the bay can be seen to decrease toward the mouth of the bay. This decrease in dissolved oxygen concentration is the result of increasing water depth. Thus, although DO concentration might be relatively constant at the surface throughout the bay, it is assumed that the concentration decreases with depth. For this reason the average concentration in deep sections is less than that in shallow sections.

The only area of the bay that appears to be deficient in dissolved oxygen at this time is the upper end of Northwest Bay. Similarly, for the projected 1980 and 2020 loading conditions, the only significant effect appears to be a further deterioration of quality in the same area.

Fig. 3-4 may be misleading because a superficial examination of it indicates that no very severe problem exists now, or is projected to exist in the future. However, such is not the case. The 1980 projection for Northwest Bay indicates that 6 or 8 square miles of bay will be practically devoid of dissolved oxygen, and the 2020 projection increases the area to around 20 or 25 miles. In both cases, the entire upper ship channel can be expected to be at least as deficient as the bay. Ten or twenty square miles of septic bay, plus 15 or 20 miles of septic channel surely could constitute at least a major aesthetic problem.

Dilution water that would be required to maintain present dissolved oxygen levels, which levels appear to marginal at best in some areas, was estimated to be about one million acre feet per year in 1980, and about three million acre feet per year in 2020. Obviously this is an expensive use of fresh water.

Present and projected phosphate concentrations throughout the bay are presented in Fig. 3-5. As was the case with dissolved oxygen concentrations, values computed by the model were in general agreement with observed values (23). Again, Northwest Bay is shown to be the greatest problem area, but concentrations that are likely to result in luxuriant algal growth are projected to occur in all areas of the bay by the year 2020.

Three million acre feet of dilution water per year were estimated to be required in order not to exceed present phosphate concentrations in the bay for projected 1980 loading conditions. Twelve million acre feet per year were estimated to be required for the same purpose in the year 2020. It thus appears that much less dilution water would be required to maintain present dissolved oxygen levels in the bay than would be required to maintain present phosphate concentrations.

<u>Matagorda Bay:</u> Return flows to Matagorda Bay are low in quantity, and are reported to be of good quality. For example, present total return flow to the bay amounts to about seven percent of the return flow to Galveston Bay, but the total BOD discharged is only about two percent of the quantity discharged in Galveston Bay. For these reasons, dissolved oxygen concentrations in Matagorda Bay, Fig. 3-6, were estimated to be satisfactory for the present and projected 1980 and 2020 return flows.

Gulf of Mexico

FIG. 3-6 MATAGORDA BAY SEGMENTATION MODEL (20)

The present phosphate concentrations were estimated to range from about 0.6 mg/l in segment seven to about 0.1 mg/l in segment twenty. These fairly high values result from a relatively minor quantity of return flow because of the low exchange coefficients assumed for the bay. Respective values for the same segments were estimated to be 0.8 mg/l and 0.2 mg/l in 1980, and 0.9 mg/l and 0.3 mg/l in 2020.

In this bay, the increased quantity of return flow projected for 1980 and 2020 provides additional flushing action and prevents phosphate concentrations from increasing approximately linearly with return flow, as is the case in most of the other bays.

It was estimated that about 50,000 acre feet of dilution water per year in 1980, and about 100,000 acre feet per year in 2020 would be required to maintain present phosphate concentrations.

<u>Aransas-Copano-San Antonio Bays</u>: San Antonio Bay, Fig. 3-7, is the direct recipient of only minor quantities of return flow. Hence no deficiencies of dissolved oxygen concentration were estimated from present or future return flows.

FIG. 3-7. ARANSAS - COPANO - SAN ANTONIO BAYS SEGMENTATION MODEL (20)

Large quantities of phosphates are transported into the bay by the San Antonio River, resulting in an estimated phosphate concentration of about 6 mg/l in segment 35 of the bay and a concentration of about 3 mg/l at the mouth. Corresponding values for 1980 and 2020 were estimated to be about 1.5 and 2.5 times present values.

Dilution water required to maintain present concentrations was estimated to be 200,000 acre feet in 1980, and 650,000 acre feet in 2020, although it should be noted that there does not appear to be any particularly good reason for maintaining such a high phosphate concentration as 6 mg/l.

The Aransas-Copano Bay system was estimated to have no present or future problems other than those attributable to its interchange with San Antonio Bay. By the same token, maintaining the present quality in San Antonio Bay will automatically maintain present quality in the Aransas-Copano Bay system.

<u>Corpus Christi Bay</u>: No widespread oxygen deficiency was estimated to occur in Corpus Christi Bay, Fig. 3-8, for either present or projected 1980

FIG. 3-8. CORPUS CHRISTI BAY SEGMENTATION MODEL (20)

return flows. For the predicted 2020 return flow however, a marked decrease in dissolved oxygen level was noted in segment 6 of the bay.

Phosphate concentrations were estimated to be much higher at the present than is the case for Galveston Bay, ranging from about 5 mg/l in segment 6 to about 0.9 mg/l at the mouth.

Return flows to Corpus Christi Bay were projected to increase to about 1.9 times their present value by 1980 and to about 3.5 times their present values by 2020, and phosphate concentrations are estimated to increase accordingly. On the basis of the model used, it was estimated that about 700,000 acre feet of dilution water would be required per year to maintain present quality in 1980, and about 1.6 million acre feet per year would be required in 2020.

IV OPTIMIZATION ANALYSIS

The purpose of the research discussed in this section was to develop a generally applicable, flexible computational system for minimizing the total cost of maintaining a stream standard related to non-degradable pollutants, where a number of cities are located along a stream and are discharging wastes to it. Steady state conditions were assumed to exist, and the stream standards were assumed to be known.

The computer program developed was designed specifically for maintaining a standard related to phosphate concentration, but adapting it to any other nondegradable pollutant would simply require changing of the cost function used. The program could also be made applicable to a degradable pollutant with only slight modification.

Frankel has shown that as a general rule for biologically degradable pollutants, downstream water treatment is a less costly method of maintaining water quality in a downstream user's distribution system than is upstream waste treatment. (19). Recent work by Thomas and Spofford illustrates the value of making use of a stream's transit storage time, exchange capacity, coagulant aid effect, and dilution capacity in regulating the concentration of a radioactive element in a downstream user's distribution system (24).

Unpublished work by Dr. C. S. Beightler indicates that for non-degradable wastes, the maintenance of quality in a given water distribution system can be accomplished more economically by downstream water treatment than by upstream waste treatment (25). This effect was much more pronounced when a reservoir in which evaporation considerably exceeded rainfall was added between the waste discharger and the water user, because of concentration of the pollutant by evaporation of water from the reservoir. It therefore appears that for either conservative, biologically degradable, or radioactive wastes, the prime function of waste treatment in general is the maintenance of stream

47

standards, rather than the avoidance of water treatment costs. If drinking water standards with respect to a particular pollutant are only very slightly higher than are stream standards for the same pollutant, it is possible that the optimum solution would be to increase upstream waste treatment slightly in order to avoid downstream treatment costs.

The determination of fully optimum stream standards is, according to Kneese, an unattainable goal (26). Lack of demonstrable optimality in the establishment of future stream standards does not preclude the possibility, nor lessen the desirability, of determining the optimum means of meeting whatever standard may be established. Indeed, a convenient method of computing the cost of meeting any particular standard would be helpful in determining what standards should be adopted.

Nature of the Problem

A stream which serves as a source of supply and a recipient of wastes for a number of cities located along its length, and in which a given water quality must be maintained, is a serial multistage system in which a series of decisions must be made in sequence. Each stage of this system includes a reach of the stream with natural inflow and evaporation and a city that withdraws water from the stream or other sources, adds pollutants to a portion of the withdrawn water, and returns this polluted portion to the stream. At each stage, a decision must be made regarding the quantity of pollutant to be removed before returning the waste to the stream, and any particular decision has a particular cost associated with it. Also, the decision made at each stage affects the circumstances under which the next decision in sequence will be made. Hence, if more pollutant is removed at one city than that required to meet the stream criteria, the amount that must be removed at the next city will be decreased.

If M possible degrees of treatment were considered at each of N cities located along a reach of stream, a total of M^N permutations of degrees of treatment would exist. Finding the minimum cost for maintaining a stream standard by direct comparison of all possible permutations would be a very tedious, if not impossible, task unless both M and N were fairly small. Optimization Technique

The serial multistage system shown in Fig. 4-1 represents a reach of stream which is divided into N stages by the location of N cities along the stream. In the figure the stage influent and effluent concentrations are respectively represented by I_i , i=1, ..., N, and E_i , i=1, ..., N. Similarly, the decision to be made and the returns (costs) associated with the decisions are respectively represented by D_i , i-1, ..., N, and R_i , i=1, ...N. The CA_i , i=2, ... N+1 are the allowable stream concentrations.

For the system shown, the objective is to minimize the function $\mathbf{\hat{R}} = \sum_{i=1}^{N} \mathbf{R}_i$ where $\mathbf{\hat{R}}$ is the total cost, subject to the restriction,

$$0 \le E_i \le CA_{i+1}, i=1, ... N$$

The following functional relationships can be determined from observation of Fig. 4-1:

$$R_{i} = F(I_{i}, D_{i}) , i-1, ..., N$$
$$D_{i} = G(I_{i}, E_{i}) , i=1, ..., N$$
$$I_{i} = H(E_{i-1}) , i=2, ..., N$$
$$E_{i} = W(I_{i}) , i=1, ..., N$$

The value of the $I_{\rm i}$, i=1,...,N, must also lie between 0 and CA $_{\rm i}$, i=1,..., N.

At stage N, the optimal return, $f_n(D_n)\,,$ is a function of the input and decision at this stage only; thus,

$$f_n(D_n) = Min \qquad F(I_n, D_n) = 0 \le D_n \le CA_n$$

Similarly, the optimal return at stage N-1, including stages N and N-1, can be seen to be:

$$f_{n-1}(D_{n-1}) = Min_{0} \leq Min_{n-1} CA_{n-1} F(I_{n-1}, F_{n-1}) + f_{n}(D_{n}),$$

or substituting,

$$= F(I_{n-1}, D_{n-1}) + f_n [G\{H(E_{n-1}), W[H(E_{n-1})]\}]$$

In general, then the total optimum return at any stage, including all subsequent stages is,

$$f_{i}(D_{i}) = \min_{0 \leq D_{i} \leq CA_{i}} F(I_{i}, D_{i}) + f_{i+1}[G\{H(E_{i}), W[H(E_{i})]\}], \quad i=1,...N-1,$$

and for the entire system the optimum return, \hat{R}^* , becomes:

$$\mathbf{\hat{R}}^{\star} = \mathbf{f}_{1}(\mathbf{D}_{1}).$$

Following Bellman's dynamic programming procedure as outlined above, the number of permutations that must be considered in finding the optimum solution is reduced from M^N to NM^2 , and only N problems must be solved in order to accomplish this (27). The solution of these N essentially identical problems is a repetitive process that is ideally suited to the capability of an electronic computer.

The computational procedure employed can be explained most easily by means of a very simple example illustrated in Fig. 4-2.

For illustrative purposes, the following conditions are assumed:

- 1. Pollutant concentration added at each city = 30 mg/l
- 2. Maximum permissible concentration at points B, C, and D = 9 mg/l, but effluent charges are levied if concentration at point D exceeds 2 mg/l
- 3. Charge = \$144 if concentration at point D = 5 mg/l
- 4. Charge = \$242 if concentration at point D = 9 mg/l
- 5. Concentration at point A = 1 mg/l
- 6. At any plant the first 50 gal of pollutant removed costs \$3/gal, the next 150 gal removed costs \$2/gal, and all additional removal costs \$1/gal. The concentration at point B must be either 1, 5, or 9 mg/l; at point C, it must be either 3, 6, or 9 mg/l, and at point D it must be either 2, 5, or 9 mg/l.

The quantities of pollutants that would have to be removed at each city to meet all combinations of concentrations considered are shown in Tables 4-1, 4-2, and 4-3, which also show the costs associated with each quantity.

In tables 4-1, 4-2, and 4-3, infeasible solutions are indicated by the ∞ symbol.

At city 3, effluent charges of \$144 and \$242 are associated with effluent concentrations of 5 and 9 mg/l, respectively. If these effluent charges are added to the appropriate costs shown in Table 4-3, the total

	Eff	luent	Concenti	ration	(mg/l)	
Influent			5		9	
tration (mg/l)	Removal (Gal)	Cost (\$)	Removal (Gal)	Cost (\$)	Removal (Gal)	Cost (\$)
1	2 10	410	146	34 2	8 2	2 14

Table 4-1. Pollutant Removal Required and Cost of Removal at City 1

Table 4-2. Pollutant Removal Required and Cost of Removal at City 2

	Ef	fluent	Concent	ration	(mg/l)	
Influent	3		6		9	
Concen- tration (mg/l)	Removal (Gal)	Cost (\$)	Removal (Gal)	Cost (\$)	Removal (Gal)	Cost (\$)
1 5 9	92 ∞ ∞	2 34 ∞	50 106 ∞	150 264 ∞	8 64 1 2 0	_ 2 4 178 290

Table 4-3. Pollutant Removal Required and Cost of Removal at City 3

	Effluent Concentration (mg/l)					
Influent	2		5		9	
tration (mg/l)	Removal (Gal)	Cost (\$)	Removal (Gal)	Cost (\$)	Removal (Gal)	Cost (\$)
3	19 2	392	156	356	108	266
9	8	8	228	428	180	380

costs for any combination of influent and effluent concentrations at city 3 will be those shown in Table 4-4.

Influent Concen- tration (mg/l)	Effluent Concentration (mg/l)				
	2	5	9		
	Cost of Treatment (\$)				
3	392	500	508		
6	8	536	580		
9	8	572	622		

Table 4-4. Total Cost of Treatment and Effluent Charges at City 3

It can be seen in Table 4-4 that if the influent concentration to City 3 were 3 mg/l, the optimum decision would be to reduce the effluent concentration from City 3 to 2 mg/l, and avoid paying the effluent charges. If the influent concentration were either 6 or 9 mg/l, the optimum policy would be to discharge at 5 mg/l concentration and pay only \$144 in effluent charges. These optimum policies are tabulated in Table 4-5.

Influent Concentration (mg/l)	Cost (\$)	Effluent Concentration (mg/l)
3	3 92	2
6	536	5
9	5 72	5

Table 4-5. Optimum Policy at City 3

Since the optimum policy to be followed for any possible influent concentration at point C has been found, these optima can be added to the costs associated with the corresponding effluent concentrations for City 2, (Table 4-2), and the optimum policy for the combined stages can be determined, Tables 4-6

and 4-7.

Hence, regardless of the influent concentration at City 2, the optimum policy for Cities 2 and 3 will be to discharge from City 2 at a concentration of 9 mg/l.

	-			
Influent Concen- tration (mg/l)	Effluent Concentration (mg/l)			
	3	6	9	
	Cost of Treatment (\$)			
1	62.6	686	596	
5	8	798	750	
9	ω	8	862	

Table 4-6. Total Cost of Treatment and Effluent Charges for Cities 2 and 3

Table 4-7. Optimum Policy at City 2, Including City 3

Influent Concentration (mg/1)	Cost (\$)	Effluent Concentration (mg/l)
1 5 9	596 750 862	9 9 9 9

Proceeding upstream to City 1 it is seen, Table 4-8, that the minimum cost for the entire system under the conditions assumed is \$1006 per unit time, and that this cost is associated with an effluent concentration from City 1 of 1 mg/l.

Tracing back through Tables 4-5 and 4-7, the minimum cost is found to occur if the operating policy is that shown in Table 4-9.

Influent Concen- tration (mg/l)	Effluent Concentration (mg/l)			
	1	5	9	
	Cost o	f Treatmen	t (\$)	
1	1006	10 92	1076	

Table 4-8. Total Cost of Treatment and Effluent Charges for all Cities

Table 4-9. Optimum Operating Policy for System

Point	Concentration (mg/1)
B]
C	9
D	5

It should be emphasized that this optimum solution applies only to the assumed possible conditions. If more freedom of choice were permitted at each stage, a more economical solution could undoubtedly be found, but the computational procedure would be exactly the same.

Program Development

Each of the blocks shown in Fig. 4-1 represents a reach of stream similar to that shown schematically in Fig. 4-3. The program developed was dimensioned to optimize up to 30 such reaches on the main stem and each of as many as 6 tributaries of a stream.

The computational procedure used was started by reading the streamflow and pollutant concentration at the upper end of the upstream tributary into the computer. Next, all required input data for each city on the tributary were read into the computer in sequence, and all other variables shown in Fig. 4-3 except T were calculated. The minimum possible concentration attainable at the lower end of each reach was computed, and the range between this value

Symbols used in Fig. 4-3 are the following:

i - Reach number in stream Q_i, - Streamflow at upper end of reach 1** - Streamflow diverted to city 2* 3* - Other supply to city 4 - Streamflow bypassing city 5 - Return flow from city 6* - Inflow per mile of stream 7* - Evaporation per mile of stream C_i, 1** - Pollutant concentration at upper end of reach 2 - Pollutant concentration in diverted streamflow 3* - Pollutant concentration in other supply 4 - Pollutant concentration in bypassing streamflow 5 - Pollutant concentration in return flow after treatment 6* - Pollutant concentration in inflow CC CS - Concentration in return flow before treatment * - Pollutant concentration added by city T D - Fraction of pollutant removed at treatment plant - Length of reach in miles SV - Ratio of return flow to water use at city CA - Allowable concentration at control plant - Input data required for each reach ** - Input data required for reach 1

and the allowable concentration at the same point was divided into 10 equal increments, with the incremental values being stored for later use.

These incremental values were later used as the input concentrations for the adjacent downstream reach, and as output concentrations for the upstream reach.

This same procedure was followed for all tributaries, then, with a slight modification, for the main stem. For the main stem, each tributary was treated as though it were a city which was supplied from other sources.

The optimization procedure was started at the farthest downstream stage on the main stem by computing the cost of meeting each of the 10 possible effluent concentrations for each of the 10 permissible influent concentrations. The optimum effluent concentration was then chosen for each of the 10 permissible influent concentrations, and these optima were stored in the computer in the manner illustrated in Table 4-5.

At the next stage upstream, the cost of meeting each of the 10 effluent concentrations for each of the 10 influent concentrations was computed. Then since the effluent concentrations for this stage were identical to the influent concentrations for the last stage, the previously stored optima were added to the appropriate costs for the various effluent concentrations.

Again, the optimum effluent concentration was chosen for each influent concentration, and these optima were stored in the manner previously described. It is essential that these latter optima be recognized as including both the last and the next to last stages.

An identical procedure was followed for all other stages until the entire system had been completed. The optimum value found in this manner at the farthest upstream reach is, by the theory previously developed, the optimum value for the entire system under the assumed possible conditions.

The procedure followed for stages that were tributaries, rather than cities, was identical in concept, but somewhat different in detail from that described above. Briefly, it consisted of computing the optimum policies to be followed for 10 possible tributary effluent concentrations. The best of these 10 possibilities was then selected for each of the 10 main stem stage effluent concentrations associated with each of the 10 stage influent concentrations considered. Thus, only 10, rather than the normal 100, different costs were considered for main stem stages that were tributaries.

An obvious shortcoming of the procedure thus far developed is that removals at each stage have been assumed to be variable in only 10 incremental values, while in theory they are continuously variable from zero to complete removal. In order to overcome this shortcoming, the range of permissible concentrations at each control point was narrowed to 0.2 of the original range after the optimum solution under the assumed conditions was found. The new range limits set at each control point were the optimum value for that point plus and minus 0.1 times the original range. A new optimum was found, the range was again narrowed, and this procedure was repeated for as many times as the total cost could be significantly reduced. Usually, not more than three repetitions were required for any system. Three repetitions effectively divides the permissible range at each point into 1250 increments.

Four hundred cost computations at each stage of the main stem, and 4000 cost computations at each stage of each tributary were thus required to obtain the solution by this method. More than 1.6 million computations at each stage of the main stem, and more than 16 million at each stage of each tributary would have been required to obtain results with the same degree of accuracy if the original permissible range at each control point had been divided into 1250 increments in the beginning. Computation time was thus reduced by a factor of over 4000 by the dynamic programming method.

Practical Application

Twenty seven cities are located along the main stem and 5 tributaries of the Trinity River in the Fort Worth - Dallas area, Fig. 4-4. Preliminary

FIG. 4-4. LOCATION OF CITIES ON UPPER TRINITY RIVER

.
estimates of the flow in various reaches of these streams reflecting 2010 conditions have been made by the Bureau of Reclamation, and these figures were reduced to an inflow-per-mile basis in order to fit the program (28). Average values of phosphate concentrations in runoff from agricultural lands were obtained from the literature, and both the projected water use in and return flows from the 27 cities for the year 2010 were obtained as described earlier (29).

These and other required data were punched on cards and the program was used to determine the optimum treatment policy for maintaining concentrations of one and two mg/l in the stream. Results for the one mg/l allowable are shown in Table 4-10, while Table 4-11 shows results for the two mg/l allowable concentration. These two assumed allowables are entirely arbitrary, and are shown only for the purpose of demonstrating that greater relative savings are made possible by the greater flexibility inherent in a higher allowable concentration.

For the one mg/l allowable concentration, the total cost of the optimum system can be seen to be about 2.3 percent less than the total cost of the normal system of requiring each city to just meet the allowable. This saving in cost is accompanied by a substantial improvement in the quality of the water in more than half the reaches of the stream. These two factors together make the system much more attractive.

Appraisal of Results

The results obtained demonstrate the desirability of using optimization techniques rather than effluent standards as a means of maintaining stream standards. The entirely arbitrary stream standards used in the program and the relatively simple cost function used do not detract from the method described. Any other cost function that provides for scale economy would yield similar results, although the magnitude of the resultant saving would depend upon the variation of unit cost with size of plant. Similarly, the magnitude of the possible saving through optimization is dependent on the allowable

-		Norma	l System		Opti	mum System			
Tres 1		Concentrat	ion (mg/l)	0	Concentra	Concentration (mg/l)			
No.	No.	Influent	Effluent	: (\$)	Influent	Effluent	Cost (\$)		
2	1 2	0.10 1.00	1.00 1.00	359 166	.10 1.00	1.00	359 166		
3	1 2	0.10 1.00	1.00 1.00	468 351	.10 .06	.06 .99	$\begin{array}{c} 504\\ 313\end{array}$		
4	1 2 3 4	0.10 1.00 1.00 1.00	1.00 1.00 1.00 1.00	205 956 1013 286	.10 .20 .18 .14	.20 .18 .14 1.00	319 1014 1058 0		
5	1 2 3 4 5	0.10 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00	450 1207 1448 883 544	.10 .88 .37 .22 1.00	.89 .37 .22 1.00 .99	45512551509754547		
6	1 2	0.10 1.00	1.00 1.00	274 496	.10 1.00	1.00 1.00	274 496		
1**	1 2* 3 4 5	0.10 0.47 1.00 1.00 1.00	.47 1.00 1.00 1.00 1.00	0 _ 7303 316 108	.10 .47 .53 .10 .19	.47 .53 .10 .19 .31	0 - 7634 265 0		
	6 7 8 9 10*	1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00	628 1373 660 971 -	.31 .30 .27 1.00 1.00	.30 .27 1.00 1.00 1.00	654 1433 63 971		
	11* 12 13 14 15*	1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00	- 4121 250 231 -	1.00 1.00 .79 .89 .98	1.00 .79 .89 .98 .97	- 14406 0 -		
	16 17	1.00 1.00 Totals	1.00 1.00	110 	.97 1.00	1.00	0		

 Table 4-10.
 Comparison of Optimum and Normal Treatment Cost for Maintaining Stream Standard of 1 mg/l in Upper Trinity River

* Main stem stages that are tributaries ** Tributary #1 is the main stem

		Normal System			Optim	um System	
	~	Concentrat	ion (mg/l)	<u> </u>	Concentra	tion (mg/l)	~ .
Trib. No.	No.	Influent	Effluent	Cost (\$)	Influent	Effluent	Cost (\$)
2	1 2	0.10 2.00	2.00 2.00	328 157	0.10 2.00	2.00 2.00	328 157
3	1 2	0.10 2.00	2.00 2.00	429 336	0.10 0.06	0.06 1.98	504 254
4	1 2 3 4	0.10 2.00 2.00 2.00	2.00 2.00 2.00 2.00	51 888 966 270	0.10 2.00 1.48 1.20	2.00 1.48 1.20 2.00	51 980 1052 0
5	1 2 3 4 5	0.10 2.00 2.00 2.00 2.00	2.00 2.00 2.00 2.00 2.00	406 1158 1386 846 523	0.10 0.08 0.04 0.03 0.02	0.08 0.04 0.03 0.02 2.00	491 1255 1509 919 93
6	1 2	0.10 2.00	2.00 2.00	195 451	0.10 2.00	2.00 2.00	$\begin{array}{c} 195\\ 451 \end{array}$
]**	1 2* 3 4 5	0.10 0.47 2.00 2.00 2.00	0.47 2.00 2.00 2.00 2.00	0 - 6993 300 100	0.10 0.47 0.64 0.12 0.53	0.47 0.64 0.12 0.53 0.58	0 - 7637 0 66
	6 7 8 9 10*	2.00 2.00 2.00 2.00 2.00	2.00 2.00 2.00 2.00 2.00	595 1310 619 930	0.58 1.42 1.28 2.00 2.00	1.42 1.28 2.00 2.00 2.00	0 1433 0 928 -
	11* 12 13 14 15*	2.00 2.00 2.00 2.00 2.00 2.00	2.00 2.00 1 2.00 2.00 2.00	- 3749 227 211 -	2.00 1.99 1.80 1.89 1.97	1.99 1.80 1.89 1.97 1.94	13747 0 0 -
	16 1 7*	2.00	2.00 2.00	100	1.94 1.98	1.98 2.00	0
		Totals	3	3254			32050

Table 4-11. Comparison of Optimum and Normal Treatment Cost for Maintaining Stream Standard of 2 mg/l in Upper Trinity River

* Main stem stages that are tributaries ** Tributary #1 is the main stem

stream concentration. A higher allowable concentration permits greater flexibility and greater possibilities for reducing costs.

Much further work needs to be done to extend the steady state technique established in this research to the unsteady state of nature. However, regardless of the sophistication of this technique used, the low-flow condition of streams, for which this program was designed, must remain the critical factor in the design of treatment plants.

V DISCUSSION

Return flows are of vital importance to the water economy of the state because they represent a growing quantity of potentially reusable water, and because of the effect they may have on the quality of receiving waters. The definition of receiving waters must include all water downstream from the release point to some reasonable distance offshore in the Gulf. This point is well illustrated by the phosphate concentration estimated to exist at the present time in San Antonio Bay. The high estimated concentration is derived mainly from well-treated municipal effluent originating about 150 miles upstream. Another point illustrated by the present phosphate concentration in San Antonio Bay is that the effect of return flow on any particular receiving water depends more on the relationship of the quantity of return flow to the quantity of receiving water available for dilution than on the absolute quantity of return flow. Evaluations made on the basis of drainage basins are therefore more meaningful than are those made on a statewide basis.

The potential effect of return flows on future water quality makes a knowledge of the location, quality, and quantity of returnflow essential to the development of quality management plans. Concepts used and refined in this research provide a rational method of evaluating return flows. If the concepts used are valid, a step has been taken toward the development of input data for more complete systems analyses of the total water resource quality management problem.

Evaluation of the degree of accuracy of results obtained in this research would require many years of data collection and analysis and the expenditure of large sums of money. Because such expenditures of time and money are not justifiable for determining the efficacy of the concepts used, a logical discussion of the validity of the major concepts used is in order.

Validity of Methodology

<u>Projection Technique</u>: The technique used in projecting water requirements is a rational approach in that it assumes that people will migrate to areas

64

where employment opportunities exist and away from areas where there are limited employment opportunities as a result of resource development. That is, it relates population changes to economic as well as biological factors. The logic of the method is unassailable, but an obvious defect in the method is the impossibility of completely evaluating the resources available in even a limited area. Climatic and other somewhat intangible resources must be included in the evaluation along with the more obvious resources such as mineral deposits. Thus, projections made by this method can be expected to be good indicators of trends on a short term basis, but as with all other forecasting techniques, long-range projections are likely to be less accurate. Inaccuracies of input data will tend to magnify errors in long range projections to the extent that they may become practically meaningless unless they are updated periodically.

The purpose of making projections is to allow time for orderly planning and development of facilities to meet approaching problems before they become crises. The technique used fulfills this purpose by providing good short term estimates and reasonable long-range indications of future needs.

Return Flow Quantity Estimation: That return flows are related to water usage is self-evident. The method used in evaluating municipal S/W ratios is essentially a straightforward mathematical means for separating municipal wastewater from other water that enters the sanitary sewer system largely as a result of precipitation, and for determining the fraction of total municipal water use that is consumptive use.

Many factors other than precipitation influence the S/W ratio that will prevail in a given city, but if constant economic conditions exist, these factors may remain fairly constant from year to year. For example, in any particular family, the quantity of water used for bathing, and the quantity of wastewater discharged as a result of bathing is not likely to vary radically from year to year.

The method used accounts for the effects of these constants without actually evaluating them individually. Results obtained for normal precipitation

can therefore be expected to be reasonable approximations of future trends.

Industrial S/W ratios are apparently relatively independent of annual precipitation, and highly dependent on the availability of low cost water. It is therefore logical to assume that the presently existing ratios in specific areas will decline in the future as the availability of low cost water decreases. No concrete evidence is available to support this argument per se, but the fact that ratios are higher in areas of plentiful supply strongly suggests that it is well founded.

<u>Return Flow Quality Estimation</u>: The methods used for estimating municipal return flow quality can be expected to yield reasonably accurate results, especially for larger areas such as river basins. The assumption that pollutant concentration in return flow is the sum of pollutant concentration in the water supply and pollutant concentration added by water users is certainly correct except for the effect of infiltration to the sewer system. The assumption that the same concentration is added by all cities can be expected to yield reasonable overall results, but to be inaccurate for many individual cities. Thus, from the standpoint of basin wide water resources management, the results should be reasonable approximations of actual conditions.

The method used in estimating industrial return flow quality may give a reasonable approximation of the worst conditions that may occur, but results are probably not indicative of average conditions. If permits are revised in the future to apply more stringent standards, the quality data reported on them should become increasingly abundant and reliable.

Estimation of Return Flow_Effects: Models used in estimating gross effects of return flows include many simplifications of complex phenomena. Results obtained should be considered no more than indications of actual results that would be obtained if all the required input data were available. Mixing and exchange relationships used in the model need to be made more representative of field conditions before concrete conclusions can be drawn. It is well to note, however, that the models as used yield results that are in general agreement with known field conditions.

Optimization Technique: The optimization technique used is merely an application of well-known dynamic programming techniques to the maintenance of stream standards. As such it requires no justification. Results obtained by the method can be expected to reflect the degree of accuracy of input data and cost functions used. Savings made possible by use of the method will be dependent on the stream standards that are established.

Management Responsibilities

Municipal and industrial return flows are a significant and growing fraction of the total water resources in Texas. Detailed knowledge of the quantity, quality, and location of these return flows is essential to the development of quality management plans. Presently available data are generally inadequate except for the quantities of municipal return flows and their concentrations of suspended solids and 5-day BOD. Available data are located in several different state agencies and a lack of consistency among agencies in data processing practices is readily apparent.

Local solutions to water resource problems are not generally adequate now, and they will become less adequate in the future because the factors that influence the availability and quality of water transcend local artificial political boundaries. Conditions that adversely affect the quality of a stream may persist for hundreds of miles downstream.

More stringent data reporting regulations should be adopted for both municipal and industrial water use and return flow, and a Central Data Processing and Evaluation Center should be established to receive and process all data related to water quality, water use, and return flow.

APPENDIX A

SUMMARY OF PROJECTED MUNICIPAL AND INDUSTRIAL WATER REQUIREMENTS (MGY)

APPENDIX A

SUMMARY OF PROJECTED MUNICIPAL AND INDUSTRIAL WATER REQUIREMENTS (MGY)

TRADE AREA		1960	1970	1980	1990	2000	2010	2020
FORT WORTH	MUN	30670	42127	55502	70058	88510	111910	141595
FORT WORTH	IND	9640	10421	11480	12868	14442	16227	18256
FORT WORTH	TOT	40311	52548	66982	82926	102952	128138	159851
DALLAS	MUN	62444	98761	137694	169234	208065	255895	314846
DALLAS	IND	24264	27932	31392	34437	37780	41450	45479
DALLAS	TOT	86708	126693	169085	203671	245845	297345	360325
	101	00100	120073	10,000	205011	213013	271312	500525
TYLER	MUN	4983	7924	11562	15413	20628	27713	37361
TYLER	IND	5075	6807	8365	9280	10347	11598	13068
TYLER	TOT	10059	14731	19927	24692	30976	39311	50429
	MEIN	6160	8344	11010	14426	19029	24940	22710
LONGVIEW MARSHAL	TND	9240	12402	17606	22440	10720	24007	52110
LUNGVIEW MARSHAL	TOT	14290	12005	11090	22409	20217	41204	70201
LUNGVIEW MARSHAL	101	14389	20847	28700	20022	4/20/	01284	79201
WACO	MUN	12680	19155	26258	32529	40427	50398	63018
WACD	IND	6836	7992	9355	10967	12893	15196	17952
WACO	TOT	19516	27147	35613	43497	53321	65595	80970
		107/	1000		2075	2000	1701	5075
PALESTINE	MUN	1376	1899	2489	30.75	3808	4126	5875
PALESTINE	INU	100	197	221	253	282	314	350
PALESTINE	101	1542	2097	2715	3328	4090	5040	6225
LUFKIN	MUN	1561	2403	3357	4239	5360	6787	8607
LUFKIN	IND	6897	8764	10947	13449	16526	20313	24973
LUFKIN	TOT	8458	11167	14305	17687	21886	27100	33580
MIDDLE SABINE	MUN	758	1046	1368	1684	2073	2552	3144
MIDDLE SABINE	IND	787	1024	1201	1265	1335	1410	1493
MIDDLE SABINE	TOT	1545	2070	2569	2949	3407	3963	4637
AUSTIN	MUN	15414	23167	32461	42029	54479	70691	91814
AUSTIN	IND	2346	4089	6029	6756	7572	8487	9515
AUSTIN	TOT	17759	27256	38490	48785	62051	79178	101329
BRYAN	MUN	3480	5041	6791	8508	10694	13483	17046
BRYAN	IND	65	87	107	119	133	149	167
BRYAN	TOT	3545	5128	6898	8627	10827	13632	17213
HOUSTON	MUN	78663	112869	153394	197443	254151	327158	421160
HOUSTON	IND	154897	248763	347627	422156	512724	622788	756561
HOUSTON	TOT	233559	361632	501021	619599	766874	949945	1177721

69

[

SUMMARY OF PROJECTED MUNICIPAL AND INDUSTRIAL WATER REQUIREMENTS (MGY)

TRADE AREA		1960	1970	1980	1990	2000	2010	2020
LOWER SABINE	MUN	9809	14571	20493	27259	36264	48251	64209
LOWER SABINE	IND	79020	151920	245828	312597	399039	511033	656235
LOWER SARINE	TOT	88828	166491	266321	339856	435304	559285	720444
Lowen SAOINE		00020	100471	LOUJLI	337020	122201	177207	120444
SAN ANTONIO	MUN	9298	11731	14314	16872	19953	23679	28202
SAN ANTONIO	IND	10278	14258	18124	20932	24212	28045	32526
SAN ANTONIO	TOT	19576	25989	32438	37804	44165	51723	60728
VICTOPIA	MUN	2480	4086	5028	7515	9534	12106	15384
VICTORIA		2400	25152	51405	62226	77001	12100	110700
VICTORIA	100	20522	20220	51435	70941	07516	100260	126002
VICTURIA	101	23002	39238	21423	10841	87510	108260	134093
CORPUS CHRISTI	MUN	14909	20549	27848	37135	49699	66729	89856
CORPUS CHRISTI	IND	18234	29770	41477	48993	57909	68490	81050
CORPUS CHRISTI	TOT	33143	50319	69325	86128	107608	135219	170906
LOUED VALLEY	A43 (N 1	22052	20475	34345	40120	11001	E 4 9 0 E	44303
LOWER VALLET	MON	22002	20415	54505	40129	40004	24602	04103
LUWER VALLEY	IND	4318	4111	5211	5811	6400	1048	1162
LUWER VALLEY	IUI	27170	33252	39642	45940	53283	61853	71866
LAREDO	MUN	3449	4429	5469	6493	7713	9167	10899
LAREDO	IND	214	302	383	434	493	559	635
LAREDO	TOT	3662	4731	5852	6928	8206	9726	11533
	MILLAR	1021	2271	204E	2275	2000	1721	5424
DEL RIU	MUN	1921	2311	2865	3315	3990	4134	2034
DEL RIU	IND	52	48	48	54	60	67	14
DEL RIO	TOT	1973	2419	2913	3428	4050	4801	5709
BROWNWCOD	MUN	2053	2785	3477	4000	4606	5308	6125
BROWNWOOD	IND	659	815	978	1130	1307	1510	1746
BROWNWOOD	TOT	2712	3600	4456	5131	5912	6819	7870
	101			1150	2232	378E	0017	1010
SAN ANGELD	MUN	4568	6145	7867	9578	11677	14254	17421
SAN ANGELO	IND	728	875	1021	1128	1247	1379	1525
SAN ANGELO	TOT	5296	7019	8888	10706	12923	15632	18946
		7990	0(2)	12012	14002	1/22/	10072	22205
ADILENE	TND	1220	7021	12013	14003	10330	19013	22285
ABILENE	IND	1964	2490	3125	3355	3606	3879	4175
ABILENE	TOT	9184	12117	15138	17358	19942	22951	26460
BIG SPRING	MUN	3024	4619	6192	7150	8257	9535	11012
BIG SPRING	IND	4427	5288	6060	6659	7322	8054	8865
BIG SPRING	TOT	7451	9907	12252	13810	15578	17589	19877

.

.

SUMMARY OF PROJECTED MUNICIPAL AND INDUSTRIAL WATER REQUIREMENTS (MGY)

TRADE AREA		1960	1970	1980	1990	2000	2010	2020
MIDLAND ODESSA	MUN	10339	13848	17297	20081	23330	27124	31559
MIDLAND ODESSA MIDLAND ODESSA	IND TOT	5735 16074	8507 22355	11676 28973	13739 33821	16234 39564	19258 46381	22932 54491
EL PASC EL PASC	MUN IND	20826 4414	27188 5880	34580 7333	42850 8563	53109 10009	65839 11708	81637 13705
EL PASC	TOT	25240	33067	41913	51414	63118	77547	95343
LUBBOCK	MUN	13439	19153	24923	29522	35035	41654	49610
LUBBOCK	TOT	20503	27632	34840	40487	47227	55300	65011
AMARILLO	MUN	15465	24757	33788	38700	44360	50886	58416
AMARILLO	TOT	44062	42573 67330	55503 89291	60943 99643	111305	124458	139312
WICHITA FALLS	MUN	8317	11023	13759	16101	18855	22097	25913
WICHITA FALLS	TOT	10104	13213	16323	18898	21908	25428	29548
GAINESVILLE	MUN	733	1083	1456	1779	2175	2658	3249
GAINESVILLE	TOT	812	1167	1546	1879	2284	2778	3381
SHERMAN DENISON	MUN	2729	3712	4860	6112	7690	9677	12182
SHERMAN DENISON	TOT	5222	7024	8962	10659	12760	15366	18603
PARIS	MUN	1095	1757	2440	2901	3449	4103	4882
PARIS	TOT	3708	5883 8640	12368	14312	20017	23291	27114
SULFUR SPRINGS	MUN	326	547	828	1128	1536	2092	2850
SULFUR SPRINGS	TOT	60 385	620	910	86 1214	91 1627	95 2188	100 2950
NORTHEAST TEXAS	MUN	3419	4504	5757	7030	8605	10557	12982
NORTHEAST TEXAS	TOT	17637 21056	22570 27073	26134 31891	27316 34345	28560 37165	29870 40427	31251 44233
STATE TOTAL	MUN	376440	539591	722405	898351	1120180	1400510	1755595
STATE TOTAL	1110	806556	1214519	1670415	2040159	2501198	3077553	2044303

.

APPENDIX B

,

SUMMARY OF PROJECTED MUNICIPAL AND INDUSTRIAL RETURN FLOWS (MGY) APPENDIX B

٠

SUMMARY OF PROJECTED MUNICIPAL AND INDUSTRIAL RETURN FLOWS (MGY)

TRADE AREA		1960	1970	1980	1990	2000	2010	2020
FORT WORTH	MUN	220.83	29629	38111	46939	57827	71249	87789
FORT WORTH	IND	7327	7547	7924	8465	9053	9695	10394
FORT WORTH	TOT	29409	37177	46035	55404	66880	80944	98183
		23403	51211	40000	33404	00000	00744)010J
DALLAS	MUN	43711	66005	87665	102387	119290	138610	160571
DALLAS	IND	6794	7453	7983	8346	8726	9123	9540
DALLAS	TOT	50505	73458	95648	110732	128016	147733	170111
TYLER	MUN	3588	5481	7670	9787	12515	16027	20549
TYLER	IND	1320	1687	1975	2088	2219	2370	2545
TYLER	TOT	4908	7168	9645	11875	14734	18398	23094
LONGVIEW MARSHAL	MUN	4258	5771	7707	10098	13249	17408	22903
LONGVIEW MARSHAL	IND	2722	3963	5304	6418	7779	9446	11491
LONGVIEW MARSHAL	TOT	7020	9734	13011	16516	21029	26854	34394
			10001	1 / / 20				
WACU	MUN	8242	12291	16630	20331	24930	30659	37811
WACU	INU	1436	1678	1965	2303	2708	3191	3770
WALU	IUI	9018	13969	18594	22634	27638	33850	41581
PALESTINE	MUN	895	1235	1618	1999	2475	3072	3819
PALESTINE	IND	111	126	138	147	156	165	176
PALESTINE	TOT	1006	1361	1756	2146	2631	3237	3994
LUFKIN	MUN	858	1274	1712	2077	2519	3054	3701
LUFKIN	IND	5449	6598	7855	9196	10769	12614	14779
LUFKIN	TOT	6307	7871	9567	11273	13288	15668	18480
MIDDLE SABINE	MUN	568	785	1026	1263	1555	1914	2358
MIDDLE SABINE	IND	354	439	491	493	495	499	503
MIDDLE SABINE	TOT	923	1224	1517	1755	2050	2413	2862
		, 25					6419	
AUSTIN	MUN	7861	11275	15040	18493	22700	27805	33971
AUSTIN	IND	1994	3312	4654	4970	5309	5671	6059
AUSTIN	TOT	9855	14587	19695	23463	28008	33476	40030
BRYAN	MUN	1705	2453	3282	4084	5098	6382	8012
BRYAN	IND	25	32	38	40	43	46	49
BRYAN	TOT	1731	2485	3320	4124	5140	6428	8060
HOUSTON	MUN	53491	75623	101240	128338	162656	206110	261119
HOUSTON	IND	102232	156467	208374	241155	279125	323108	374063
HOUSTON	тот	155722	232089	309614	369493	441781	529218	635183
							- 0m / 0m +0 W	

SUMMARY OF PROJECTED MUNICIPAL AND INDUSTRIAL RETURN FLOWS (MGY)

.

74

TRADE AREA		1960	1970	1980	1990	2000	2010	2020	
LOWER SABINE	MUN	8435	12434	17351	22898	30220	39888	52652	
LOWER SABINE	IND	60055	110032	169680	205626	250150	305300	373620	
LOWER SABINE	TOT	68490	122467	187031	228523	280371	345188	426272	
SAN ANTONIO	MUN	6788	8290	9781	11136	12704	14523	16639	
SAN ANTONIO	IND	3906	5163	6255	6885	7589	8377	9259	
SAN ANTONIO	TOT	10693	13453	16036	18020	20293	22900	25898	
VICTORIA	MUN	1240	1975	2766	3382	4132	5044	6153	
VICTORIA	IND	19496	31825	44430	52069	61106	71805	84482	
VICTORIA	Tot	20736	33800	47196	55451	65238	76849	90636	
CORPUS CHRISTI	MUN	6560	8733	11417	14668	18886	24356	31450	
CORPUS CHRISTI	IND	6017	9362	12431	13993	15763	17767	20037	
CORPUS CHRISTI	TOT	12577	18096	23849	28662	34648	42123	51486	
LOWER VALLEY	MUN	8455	10488	12600	14647	17034	19821	23077	
LOWER VALLEY	IND	3454	3642	3834	4024	4223	4432	4652	
LOWER VALLEY	Tot	11910	14130	16435	18671	21257	24253	27729	
LAREDC	MUN	1552	1956	2370	2760	3214	3743	4359	
LAREDC	IND	24	33	42	48	54	62	70	
LAREDO	TOT	1575	1989	2412	2807	3268	3805	4429	
DEL RIC	MUN	672	810	955	1097	1263	1460	1690	
DEL RIC	IND	17	14	14	15	16	17	18	
DEL RIO	TOT	689	825	969	1112	1279	1476	1708	
BROWNWOOD	MUN	924	1244	1542	1760	2011	2300	2634	
BROWNWOOD	IND	652	769	880	969	1067	1175	1295	
BROWNWOOD	TOT	1576	2013	2421	2729	3078	3476	3928	
SAN ANGELO	MUN	2055	2714	3409	4071	4865	5820	6968	
SAN ANGELO	IND	371	425	473	498	524	553	583	
SAN ANGELO	TOT	2427	3139	3882	4568	5390	6373	7551	
ABILENE	MUN	3826	4971	6047	6861	7787	8837	10028	
ABILENE	IND	1100	1332	1589	1626	1666	1707	1751	
ABILENE	TOT	4927	6303	7636	8488	9452	10544	11780	
BIG SPRING	MUN	1391	2079	2725	3075	3468	3909	4405	
BIG SPRING	IND	1063	1269	1454	1598	1757	1933	2128	
BIG SPRING	TOT	2454	3348	4179	4673	5225	5842	6533	

SUMMARY OF PROJECTED MUNICIPAL AND INDUSTRIAL RETURN FLOWS (MGY)

TRADE AREA		1960	1970	1980	1990	2000	2010	2020
MIDLAND ODESSA	MUN	4756	6231	7611	8635	9799	11121	12624
MIDLAND ODESSA	IND	2007	2838	3711	4162	4687	5298	6013
MIDLAND ODESSA	TOT	6763	2050	11322	12707	14495	16610	19636
MIDEARD ODE35A	101	0705	9009	11922	12171	14403	10419	10030
EL PASC	MUN	6456	8383	10605	13069	16110	19861	24491
EL PASO	IND	1677	2129	2531	2817	3137	3497	3902
EL PASO	TOT	8134	10512	13135	15886	19247	23359	28393
	MUN	7123	0832	12378	14171	16223	18605	21222
	INC	2472	2022	2152	2222	2520	2755	4030
	TOT	2712	2020	15521	17602	10750	2222	9030
LUDDUUK	101	9292	12000	10001	11492	19/00	22360	25370
AMARILLO	MUN	7114	11141	14867	16641	18631	20863	23367
AMARILLO	IND	14013	19880	24700	25846	27057	28338	29695
AMARILLO	TOT	21127	31021	39567	42487	45689	49202	53061
WICHITA FALLS	MUN	3576	4685	5770	6687	7731	8040	10365
WICHITA EALLS	TND	2010	1044	1164	1211	1250	1200	1262
WICHITA FALLS	TOT	6670	5720	1104	1211	1239	10050	11702
WIGHINA FALLS	101	4470	2129	0943	1093	0990	10258	11/21
GAINESVILLE	MUN	476	695	922	1112	1341	1617	1949
GAINESVILLE	IND	42	42	43	46	48	50	52
GAINESVILLE	TOT	518	737	966	1158	1389	1667	2002
SHERMAN DENISON	MIIN	1774	2382	3078	3820	4742	5987	7309
SHERMAN DENISON	IND	548	729	903	1000	1116	1251	1413
CHEDMAN DENTSON	TOT	2222	2110	2000	4920	5057	7120	1413
SHERMAN DENISON	101	2322	2110	3900	4020	2021	1100	0122
PARIS	MUN	701	1113	1529	1798	2115	2489	2929
PARIS	IND	601	1583	2845	3292	3811	4413	5113
PARIS	TOT	1302	2696	4374	5090	5926	6902	8043
SULFUR SPRINGS	MUN	260	429	635	846	1126	1500	1995
SULFUR SPRINGS	IND	43	50	54	54	54	54	54
SULFUR SPRINGS	TOT	304	478	688	899	1180	1553	2049
NORTHEAST TEXAS	MUN	2564	3340	4222	5097	6167	7478	9087
NORTHEAST TEXAS	IND	11993	14626	16140	16077	16019	15966	15919
NORTHEAST TEXAS	TOT	14557	17966	20361	21173	22186	23445	25007
STATE TOTAL	MUN	224000	315745	414290	504019	614393	750363	918108
STATE TOTAL	IND	260208	398920	543024	628796	731003	852990	998823
STATE TOTAL	ø 0	484208	714666	957314	1132815	1345396	1603353	1916931

APPENDIX C

MUNICIPAL AND INDUSTRIAL TREATMENT PLANT EFFLUENT QUALITY REQUIRED TO MAINTAIN PRESENT BURDEN OF POLLUTANTS IN STREAMS

APPENCIX C

MUNICIPAL AND INDUSTRIAL TREATMENT PLANT EFFLUENT QUALITY REQUIRED TO MAINTAIN PRESENT WASTE LOADS IN STREAMS (MG/L)

TRADING AREA NUMBER 1 FORT WORTH

POLLUTANT 1960 1970 1980 1990 2000 2010 2020

MUNICIPAL

BCD	29	22	17	14	11	9	7
SUS SCL	35	26	20	16	13	11	9
TOT SCL	533	397	309	251	204	165	134
CHLORIDE	111	83	65	52	43	35	28
NITRATES	24	18	14	11	9	7	6
PHOSPHATES	26	20	15	12	10	8	7

INDUSTRIAL

BOD	2	2	2	2	2	2	1
SUS SCL	437	424	404	378	354	330	308
TOT SCL	6613	6419	6114	5724	5352	4998	4661
CHLORIDE	133	129	123	115	108	101	94
COD	-0	-0	-0	-0	-0	-0	-0
SULFATES	6130	5951	5668	5306	4961	4633	4321

TRADING AREA NUMBER 2 DALLAS

1960	1970	1980	1990	2000	2010	2020
36	24	18	15	13	11	10
45 681	30 451	23 340	19 291	250	14 215	185
144	95	72	61	53	45	39
s 27	18	14	12	10	9	7
L						
1198	1092	1019	975	933	89 2	853
226	206	193	184	176	168	161
2920	2662	2485	2377	2274	2175	208 0
10	9	9	8	8	8	7
-0	~0	~0	-0	-0	-0	-0
77	70	66	63	60	57	55
	1960 36 45 681 144 25 S 27 L 1198 226 2920 10 -0 77	36 24 45 30 681 451 144 95 25 16 S 27 18 L 1198 1092 226 206 2920 2662 10 9 -0 -0 77 70 70 70	1960 1970 1980 36 24 18 45 30 23 681 451 340 144 95 72 25 16 12 S 27 18 14 L 1198 1092 1019 226 206 193 2920 2662 2485 10 9 9 -0 -0 -0 77 70 66 6 6 6 6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

-O INDICATES THAT NO DATA REGARDING CONCENTRATION OF PCLLUTANT WAS AVAILABLE

MUNICIPAL AND INDUSTRIAL TREATMENT PLANT EFFLUENT QUALITY REQUIRED TO MAINTAIN PRESENT WASTE LOADS IN STREAMS (MG/L)

TRADING AREA NUMBER 3 TYLER

POLLUTANT 1960 1970 1980 1990 2000 2010 2020 MUNICIPAL

BOD	34	22	16	12	10	8	6
SUS SCL	42	28	20	15	12	9	7
TOT SCL	464	304	217	170	133	104	81
CHLORIDE	106	69	49	39	30	24	18
NITRATES	25	16	12	9	7	6	4
PHOSPHATES	27	18	13	10	8	6	5
INDUSTRIAL							
BOC	235	184	157	148	140	131	122
SUS SCL	786	615	525	497	467	437	407
TOT SCL	953	745	636	602	566	530	494

CHLORIDE	83	65	55	52	49	46	43
COD	-0	-0	-0	-0	-0	-0	-0
SULFATES	167	131	111	105	99	93	86

TRADING AREA NUMBER 4 LONGVIEW MARSHAL

POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BOD	7	5	4	3	2	2	1
SUS SOL	28	21	16	12	9	7	5
TOT SCL	379	282	211	161	123	94	71
CHLORIDE	114	85	63	48	37	28	21
NITRATES	25	19	14	11	8	6	5
PHOSPHATE	S 26	20	15	11	9	6	5
INDUSTRIA	L						
BCD	142	98	73	60	50	41	34
SUS SCL	608	417	312	258	213	175	144
TOT SCL	2543	1747	1305	1079	890	733	602
CHLORIDE	993	682	510	421	347	286	235
COD	369	254	190	157	129	106	88
SULFATES	725	498	372	308	254	209	172

-O INDICATES THAT NO DATA REGARDING CONCENTRATION CF PCLLUTANT WAS AVAILABLE

MUNICIPAL AND INDUSTRIAL TREATMENT PLANT EFFLUENT QUALITY REQUIRED TO MAINTAIN PRESENT WASTE LOADS IN STREAMS (MG/L)

TRADING AREA NUMBER 5 WACC

POLLUTANT 1960 1970 1980 1990 2000 2010 2020 MUNICIPAL BOD 45 30 22 18 15 12 10

43	29	21	17	14	12	9
724	485	359	293	239	195	158
156	104	77	63	51	42	34
27	18	13	11	9	7	6
27	18	13	11	9	7	6
	43 724 156 27 27	43 29 724 485 156 104 27 18 27 18	43 29 21 724 485 359 156 104 77 27 18 13 27 18 13	43 29 21 17 724 485 359 293 156 104 77 63 27 18 13 11 27 18 13 11	43 29 21 17 14 724 485 359 293 239 156 104 77 63 51 27 18 13 11 9 27 18 13 11 9	43 29 21 17 14 12 724 485 359 293 239 195 156 104 77 63 51 42 27 18 13 11 9 7 27 18 13 11 9 7

INDUSTRIAL

80D	13	11	9	8	7	6	5
SUS SCL	9673	8274	7069	6029	5129	4351	3683
TOT SCL	786	672	574	490	417	354	299
CHLORIDE	79	67	57	49	42	35	30
COD	-0	-0	-0	-0	-0	-0	· -0
SULFATES	156	134	114	97	83	70	59

TRADING AREA NUMBER 6 PALESTINE

POLL	UTANT	1960	1970	1980	1990	2000	2010	2020
MUNI	CIPAL							
BOD		76	55	42	34	27	22	18
SUS	SGL	69	50	38	31	25	20	16
тот	SCL	617	447	341	276	223	180	145

IUI SUL	011	-4 ·4 (291	210	663	700	147
CHLORIDE	128	93	71	57	46	37	30
NITRATES	24	18	13	11	9	7	6
PHCSPHATES	26	19	15	12	10	8	6

INDUSTRIAL

80D	-0	-0	-0	~0	-0	-0	-0
SUS SCL	3114	2750	2509	2362	2224	2095	1972
TOT SCL	10379	9168	8365	7875	7415	6984	6575
CHLORIDE	3114	2750	2509	2362	2224	2095	1972
CCD	-0	-0	-0	-0	-0	-0	-0
SULFATES	156	138	125	118	111	105	99

-O INCICATES THAT NO DATA REGARDING CONCENTRATION OF PCLLUTANT WAS AVAILABLE

MUNICIPAL AND INDUSTRIAL TREATMENT PLANT EFFLUENT QUALITY REQUIRED TO MAINTAIN PRESENT WASTE LOADS IN STREAMS (MG/L)

TRADING AREA NUMBER 7 LUFKIN

POLL	UTANT	1960	1970	1980	1990	2000	2010	2020
MUNI	CIPAL							
BOD		48	33	24	20	16	14	11
SUS	SCL	69	46	34	28	23	19	16
TOT :	SCL	592	399	297	245	202	166	137
CHLO	RIDE	109	74	55	45	37	31	25
NITR	ATES	25	17	12	10	8	7	6
PHOSI	PHATE	S 27	18	14	11	9	8	6
INDU	STRIA	L						
BOD		371	306	257	220	188	160	137
SUS :	SCL	37	31	26	22	19	16	14
TOT :	SCL	3176	2623	2203	1882	1607	1372	1171
CHLO	RIDE	371	306	257	220	188	160	137
COD		-0	-0	-0	-0	-0	-0	-0
SULF	ATES	37	31	26	22	19	16	14
TRAD	ING A	REA NU	MBER	8 MIDC	LE SAB	INE		
POLL	UTANT	1960	1970	198 0	1990	2000	2010	2020
MUNI	CIPAL							

8CD	30	22	16	13	11	9	7
SUS SOL	51	37	28	23	19	15	12
TOT SCL	560	405	310	252	205	166	135
CHLORIDE	106	77	59	48	39	31	25
NITRATES	25	18	14	11	9	8	6
PHOSPHATES	26	19	15	12	10	8	6

INDUSTRIAL

BOD	10	8	7	7	7	7	7
SUS SCL	23	19	17	17	17	17	17
TOT SCL	5939	4791	4289	4270	4247	4217	4181
CHLORIDE	4913	3963	3548	3533	3513	3489	3458
COD	-0	-0	-0	-0	-0	-0	-0
SULFATES	373	301	270	268	267	265	263

-O INDICATES THAT NO DATA REGARDING CONCENTRATION OF PCLLUTANT WAS AVAILABLE

MUNICIPAL AND INDUSTRIAL TREATMENT PLANT EFFLUENT QUALITY REQUIRED TO MAINTAIN PRESENT WASTE LOADS IN STREAMS (MG/L)

TRADING AREA NUMBER 9 AUSTIN

POLLUTANT 1960 1970 1980 1990 2000 2010 2020

MUNICIPAL

BCD	19	13	10	8	7	5	4
SUS SCL	32	23	17	14	11	9	7
TOT SCL	1020	711	533	433	353	288	236
CHLORIDE	160	112	84	68	56	45	37
NITRATES	29	20	15	12	10	8	7
PHOSPHATES	5 27	19	14	11	9	8	6
THOUGTOTAL							

INDUSTRIAL

BCD	-0	-0	-0	-0	-0	-0	-0
SUS SCL	1686	1015	722	676	633	593	555
TOT SOL	961	578	412	385	361	338	316
CHLORIDE	41	25	17	16	15	14	13
COD	-0	-0	-0	-0	-0	-0	-0
SULFATES	41	25	17	16	15	14	13

TRADING AREA NUMBER 10 BRYAN

POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BCD	26	18	13	11	9	7	5
SUS SCL	58	40	30 -	24	19	15	12
TOT SCL	574	399	298	240	192	153	122
CHLORIDE	123	85	64	51	41	33	26
NITRATES	25	17	13	10	8	7	5
PHOSPHATE	S 27	19	14	11	9	7	6
INDUSTRIA	L						
BCD	-0	-0	-0	-0	-0	-0	-0
SUS SCL	162	126	107	101	95	89	84
TOT SCL	3232	2522	2149	2026	1903	1786	1672
CHLORIDE	-0	-0	-0	-0	-0	-0	-0
COD	-0	-0	-0	-0	-0	-0	~0
SULFATES	-0	-0	-0	-0	-0	-0	-0

-O INDICATES THAT NO DATA REGARDING CONCENTRATION OF PCLLUTANT WAS AVAILABLE

MUNICIPAL AND INCUSTRIAL TREATMENT PLANT EFFLUENT QUALITY REQUIRED TO MAINTAIN PRESENT WASTE LOADS IN STREAMS (MG/L)

TRADING AREA NUMBER 11 HOUSTON

POLLUTANT 1960 1970 1980 1990 2000 2010 2020

MUNICIPAL

BCD	29	20	15	12	9	7	6
SUS SCL	47	33	25	19	15	12	10
TOT SCL	748	529	395	312	246	194	153
CHLORIDE	190	134	100	79	62	49	39
NITRATES	24	17	13	10	8	6	5
PHOSPHATES	27	19	14	11	9	7	5

INDUSTRIAL

BCD	214	139	105	91	79	67	59
SUS SCL	348	227	170	148	128	110	96
TOT SCL	9023	5886	4423	3834	3332	2848	2488
CHLORIDE	8031	5239	3936	3412	2965	2535	2215
COD	933	609	457	396	345	295	257
SULFATES	1378	899	675	585	509	435	380

TRADING AREA NUMBER 12 LOWER SABINE

POLLUTANT	1960	1970	1980	1990	2000	2010	202 0
MUNICIPAL							
80 D	13	9	7	5	4	3	2
SUS SCL	25	17	12	9	7	5	4
TCT SCL	473	321	230	174	132	100	76
CHLORIDE	137	93	67	50	38	29	22
NITRATES	25	17	12	9	7	5	L.
PHOSPHATE	S 27	18	13	10	8	6	4
INDUSTRIA	L						
BCD	53	29	19	15	13	10	8
SUS SCL	108	59	38	31	26	21	17
TOT SOL	3529	1938	1249	1027	843	691	567
CHLORICE	4552	2499	1612	1325	1088	892	731
CCD	867	476	307	252	207	170	139
SULFATES	262	144	93	76	63	51	42

⁻O INDICATES THAT NO DATA REGARDING CONCENTRATION OF POLLUTANT WAS AVAILABLE

MUNICIPAL AND INCUSTRIAL TREATMENT PLANT EFFLUENT QUALITY REQUIRED TO MAINTAIN PRESENT WASTE LOADS IN STREAMS (MG/L)

TRADING AREA NUMBER 13 SAN ANTONIO

POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BOD	23	1.7	13	12	10	9	8
SUS SCL	21	15	12	10	9	8	7
TCT SCL	615	437	345	304	268	237	209
CHLORIDE	120	85	67	59	52	46	41
NITRATES	30	21	17	15	13	12	10
PHESPHATES	5 27	19	15	13	12	10	9
INDUSTRIAL	-						
BCD	103	78	64	59	53	48	44
SUS SCL	3000	2269	1873	1702	1544	1399	1265
TOT SCL	4606	3484	2876	2613	2370	2147	1943
CHLORIDE	694	525	433	394	357	323	293
COD	-0	-0	-0	-0	-0	-0	-0
SULFATES	583	441	364	331	300	272	246

TRADING AREA NUMBER 14 VICTORIA

POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BCD	21	13	9	8	6	5	4
SUS SCL	29	18	13	11	9	7	6
TOT SOL	798	501	358	293	239	196	161
CHLORIDE	285	179	128	105	86	70	57
NITRATES	25	16	11	9	8	6	5
PHOSPHATE	S 28	17	12	10	8	7	6
INDUSTRIA	L						
80 D	41	25	18	15	13	11	9
SUS SCL	131	80	57	49	42	36	30
TOT SCL	3474	2128	1524	1301	1108	943	802
CHLORIDE	993	608	436	372	317	270	229
CCD	405	248	178	152	129	110	94
SULFATES	22	13	10	8	7	6	5

-O INCICATES THAT NO DATA REGARDING CONCENTRATION OF PCLLUTANT WAS AVAILABLE

MUNICIPAL AND INCUSTRIAL TREATMENT PLANT EFFLUENT QUALITY REQUIRED TO MAINTAIN PRESENT WASTE LOADS IN STREAMS (MG/L)

TRADING AREA NUMBER 15 CORPUS CHRISTI

POLLUTANT 1960 1970 1980 1990 2000 2010 2020 MUNICIPAL

BCD SUS SCL TOT SCL CHLORIDE NITRATES PHOSPHATE	19 53 855 273 25 S 26	14 40 643 205 19 20	11 31 491 157 14 15	8 24 383 122 11 12	6 19 297 95 9	5 14 230 74 7 7	4 11 178 57 5 5
INDUSTRIA							
BOD	357	233	173	151	137	121	106
TOT SCL	454 3501	2282	1693	192	1347	1183	1040
CHLORIDE	1535	1001	742	650	591	519	456
COD	371	242	179	157	143	125	110
SULFATES	1544	1007	747	654	594	522	458

TRADING AREA NUMBER 16 LOWER VALLEY

PCLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BCD SUS SCL TOT SCL CHLORIDE NITRATES PHOSPHATE INDUSTRIA	34 77 1087 275 25 S 26 L	28 62 876 222 20 21	23 52 729 185 16 17	20 44 628 159 14 15	17 38 540 137 12 13	15 33 464 117 10 11	13 28 398 101 9 9
BOD SUS SCL TOT SCL CHLORIDE COD SULFATES	2 36 -0 3045 -0 -0	2 34 -0 2897 -0 -0	2 32 -0 2730 -0 -0	2 31 -0 2623 -0 -0	2 29 -0 2491 -0 -0	2 28 -0 2369 -0 -0	2 -0 2258 -0 -0

-O INDICATES THAT NO DATA REGARDING CONCENTRATION OF POLLUTANT WAS AVAILABLE

MUNICIPAL AND INCUSTRIAL TREATMENT PLANT EFFLUENT QUALITY REQUIRED TO MAINTAIN PRESENT WASTE LOADS IN STREAMS (MG/L)

TRADING AREA NUMBER 17 LAREDO

POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
8CD	101	80	66	57	49	42	36
SUS SCL	54	43	35	30	26	22	19
TOT SCL	841	668	551	473	406	349	300
CHLORIDE	190	151	124	107	92	79	68
NITRATES	29	23	19	16	14	12	10
PHOSPHATES	S 26	20	17	14	12	11	9
INDUSTRIAL	-						
BCD	-0	-0	-0	-0	-0	-0	-0
SUS SCL	-0	-0	-0	-0	-0	-0	-0
TOT SCL	-0	-0	-0	-0	-0	-0	-0
CHLORIDE	3328	2355	1857	1636	1443	1272	1120
COD	-0	-0	-0	-0	-0	-0	-0
SULFATES	8319	5889	4644	4090	3607	3179	2801

TRADING AREA NUMBER 18 DEL RIO

1960	1970	1980	1990	2000	2010	2020
2	2	1	1	1	1	1
5	4	4	3	3	2	2
522	434	368	320	278	241	208
94	78	66	58	50	43	37
32	26	22	19	17	15	13
25	21	18	16	14	12	10
-0	-0	-C	-0	-0	-0	-0
34	38	40	38	36	33	31
2881	3298	3416	3231	3046	2846	2687
805	921	954	903	851	795	750
144	165	171	162	152	142	134
668	765	792	750	707	660	623
	1960 2 522 94 32 25 -0 34 2881 805 144 668	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1960 1970 1980 1990 2000 2 2 1 1 1 1 5 4 4 3 3 522 434 368 320 278 94 78 66 58 50 32 26 22 19 17 25 21 18 16 14 -0 -0 -0 -0 -0 34 38 40 38 36 2881 3298 3416 3231 3046 805 921 954 903 851 144 165 171 162 152 668 765 792 750 707	196019701980199020002010 2 2 1 1 1 1 1 5 4 4 3 3 2 522 434 368 320 278 241 94 78 66 58 50 43 32 26 22 19 17 15 25 21 18 16 14 12 -0 -0 -0 -0 -0 -0 34 38 40 38 36 33 2881 3298 3416 3231 3046 2846 805 921 954 903 851 795 144 165 171 162 152 142 668 765 792 750 707 660

-O INDICATES THAT NO DATA REGARDING CONCENTRATION OF PCLLUTANT WAS AVAILABLE

÷.

MUNICIPAL AND INCUSTRIAL TREATMENT PLANT EFFLUENT QUALITY REQUIRED TO MAINTAIN PRESENT WASTE LOADS IN STREAMS (MG/L)

TRADING AREA NUMBER 19 BROWNWOOD

POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
80D	37	28	22	20	17	15	13
SUS SOL	39	29	24	21	18	16	14
TOT SCL	461	343	277	242	212	185	162
CHLORIDE	120	89	72	63	55	48	42
NITRATES	25	19	15	13	12	10	9
PHOSPHATE	S 26	19	16	14	12	11	9
INDUSTRIA	L						
BOD	-0	-0	-0	-0	-0	-0	-0
SUS SOL	1691	1433	1254	1138	1033	938	852
TOT SOL	8407	7126	6234	5660	5139	4665	4235
CHLORIDE	871	738	64 6	587	532	483	439
COD	-0	-0	-0	-0	-0	-0	-0
SULFATES	743	630	551	500	454	412	374

TRADING AREA NUMBER 20 SAN ANGELO

.

POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BOD SUS SCL TOT SCL CHLORIDE NITRATES PHOSPHATES	54 46 695 196 25 26	41 35 526 148 19 20	33 28 419 118 15 16	27 23 351 99 13 13	23 19 293 83 11 11	19 16 245 69 9	16 13 205 58 7 8
BOD SUS SOL TOT SOL CHLORIDE COD SULFATES	14 36 781 364 -0 -0	12 32 682 318 -0 -0	11 29 614 286 -0 -0	10 27 583 272 -0 -0	10 26 553 258 -0 -0	9 24 525 245 -0 -0	9 23 498 232 -0 -0

-O INDICATES THAT NO DATA REGARDING CONCENTRATION OF POLLUTANT WAS AVAILABLE

MUNICIPAL AND INDUSTRIAL TREATMENT PLANT EFFLUENT QUALITY REQUIRED TO MAINTAIN PRESENT WASTE LOADS IN STREAMS (MG/L)

TRADING AREA NUMBER 21 ABILENE

POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BOD SUS SOL TOT SOL CHLORIDE NITRATES PHOSPHATES	26 37 552 125 25 S 26	20 28 425 97 19 20	16 23 349 79 16 16	14 21 308 70 14 14	13 18 271 62 12 13	11 16 239 54 11 11	10 14 210 48 9 10
INDUSTRIA	L						
BOD SUS SCL TOT SOL CHLORIDE COD SULFATES	-0 37 6700 166 -0 3177	-0 31 5533 137 -0 2624	-0 26 4638 115 -0 2200	-0 25 4532 112 -0 2149	-0 24 4425 110 -0 2098	-0 24 4317 107 -0 2047	-0 23 4208 104 -0 1996
TRADING A	REA NU	MBER 2	2 BIG	SPRING			
POLLUTANT	1960	1970	1980	1990	2000	2010	2020
BOD SUS SCL TOT SCL CHLORIDE NITRATES PHOSPHATES	67 41 583 120 25 5 27	45 27 390 80 17 18	34 21 298 61 13 14	30 18 264 54 11 12	27 16 234 48 10 11	24 14 208 43 9 10	21 13 184 38 8 9
INDUSTRIA	-						
BOD SUS SCL TOT SCL CHLORIDE COD SULFATES	37 267 4609 407 79 364	31 223 3859 341 66 305	27 195 3367 297 58 266	25 177 3064 271 53 242	22 161 2787 246 48 220	20 147 2533 224 43 200	18 133 2302 203 40 182

-O INDICATES THAT NO DATA REGARDING CONCENTRATION OF PCLLUTANT WAS AVAILABLE

MUNICIPAL AND INDUSTRIAL TREATMENT PLANT EFFLUENT QUALITY REQUIRED TO MAINTAIN PRESENT WASTE LOADS IN STREAMS (MG/L)

TRADING AREA NUMBER 23 MIDLAND ODESSA

POLLUTANT 1960	1970	1980	1990	2000	2010	2020
MUNICIPAL						
BOD24SUS SCL55TOT SCL1038CHLORIDE213NITRATES34PHOSPHATES26	18 42 792 162 26 20	15 35 649 133 21 16	13 30 572 117 19 14	12 27 504 103 16 13	10 24 444 91 14 11	9 21 391 80 13 10
INDUSTRIAL						
BOD 29 SUS SCL 8644 TOT SCL 9262 CHLORIDE 3265 COD 83 SULFATES 713	20 6114 6551 2310 59 505	16 4675 5009 1766 45 386	14 4168 4466 1575 40 344	12 3702 3966 1398 36 306	11 3274 3509 1237 32 270	10 2885 3092 1090 28 238
TRADING AREA NU	IMBER 2	4 EL P	ASO			
POLLUTANT 1960	1970	1980	1990	2000	2010	202 0
MUNICIPAL						
BCD48SUS SCL40TOT SCL738CHLORIDE173NITRATES25PHOSPHATES26	37 31 568 133 19 20	29 24 449 105 15 16	24 20 364 85 12 13	19 16 296 69 10 10	15 13 240 56 8 8	13 11 194 46 7 7
INDUSTRIAL						
BOD 31	25	21	19	17	15	13

1.3 h. 1.2	1 E	6 2	6 L	2 4	A. 4	10 1	6
SUS SCL	~0	-0	-0	-0	-0	-0	-0
TOT SGL	8328	6561	5520	4960	4453	3994	3581
CHLORIDE	487	383	323	290	260	233	209
COD	-0	~0	-0	-0	-0	-0	-0
SULFATES	1085	855	719	646	580	520	466

-O INDICATES THAT NO DATA REGARDING CONCENTRATION OF POLLUTANT WAS AVAILABLE

MUNICIPAL AND INCUSTRIAL TREATMENT PLANT EFFLUENT QUALITY REQUIRED TO MAINTAIN PRESENT WASTE LOADS IN STREAMS (MG/L)

TRADING AREA NUMBER 25 LUBBOCK

POLLUTANT	1960	197 0	1980	1990	2000	2010	2020
MUNICIPAL							
BOD SUS SCL TOT SCL CHLORIDE NITRATES PHCSPHATES	105 113 930 167 33 5 26	76 82 674 121 24 19	60 65 535 96 19 15	53 57 467 84 17 13	46 50 408 73 14 12	40 43 356 64 13 10	35 38 310 56 11 9
INDUSTRIAL	-						
BCD SUS SCL TOT SCL CHLORIDE COD SULFATES	-0 36 781 156 -0 156	-0 32 683 137 -0 137	-0 29 612 122 -0 122	-0 27 581 116 -0 116	-0 26 549 110 -0 110	-0 24 514 103 -0 103	-0 22 478 96 -0 96
TRADING AF	REA NU	MBER 2	6 AMAR	ILLO			
POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BOD SUS SCL TOT SOL CHLORIDE NITRATES PHOSPHATES	80 71 690 114 31 5 27	51 45 441 73 20 18	38 34 330 55 15 13	34 30 295 49 13 12	31 27 263 44 12 10	27 24 235 39 11 9	24 22 210 35 9 8
INDUSTRIA	L						
BCD SUS SCL TOT SCL CHLORIDE CCD SULFATES	535 22 3297 576 -0 4087	377 16 2324 406 -0 2881	304 13 1871 327 -0 2319	290 12 1788 313 -0 2216	277 12 1708 299 -0 2117	265 11 1631 285 -0 2021	253 10 1556 272 -0 1929
-O INCICA	IES TH	AT NO	UATA R	EGARDI	NG CON	CENTRA	ILUN

OF POLLUTANT WAS AVAILABLE

. ·

MUNICIPAL AND INDUSTRIAL TREATMENT PLANT EFFLUENT QUALITY REQUIRED TO MAINTAIN PRESENT WASTE LOADS IN STREAMS (MG/L)

TRADING AREA NUMBER 27 WICHITA FALLS

POLLUTANT 1960 1970 1980 1990 2000 2010 2020 MUNICIPAL BCD SUS SCL TOT SCL CHLORIDE NITRATES PHOSPHATES INDUSTRIAL BOD SUS SCL TOT SCL CHLORIDE COD SULFATES

TRADING AREA NUMBER 28 GAINESVILLE

POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BCD SUS SCL TOT SCL CHLORIDE NITRATES PHOSPHATES INDUSTRIAL	46 46 709 112 26 27	31 31 486 77 18 18	24 24 366 58 13 14	20 20 304 48 11 12	16 16 252 40 9 10	14 14 209 33 8 8	11 11 173 27 6 7
BOD SUS SCL TOT SCL CHLORIDE COD SULFATES	-0 -0 -0 -0 -0	-0 -0 -0 -0 -0	-00 -00 -00 -00	-0 -0 -0 -0 -0	-0 -0 -0 -0 -0	-0 -0 -0 -0 -0 -0	-0 -0 -0 -0 -0

-O INDICATES THAT NO DATA REGARDING CONCENTRATION OF POLLUTANT WAS AVAILABLE

•

MUNICIPAL AND INDUSTRIAL TREATMENT PLANT EFFLUENT QUALITY REQUIRED TO MAINTAIN PRESENT WASTE LOADS IN STREAMS (MG/L)

TRADING AREA NUMBER 29 SHERMAN DENISON

POLLUTANT	1960	1970	198C	1990	2000	2010	2020
MUNICIPAL							
BOD SUS SCL TOT SCL CHLORIDE NITRATES PHOSPHATE:	42 52 953 225 25 S 26	31 39 710 168 19 20	24 30 549 130 14 15	19 24 442 105 12 12	16 20 356 84 9 10	13 16 287 68 8 8	10 13 231 55 6 6
INDUSTRIA	L						
BCC SUS SCL TOT SCL CHLORIDE COD SULFATES	81 82 3267 -0 6534 -0	61 61 2459 -0 4918 -0	49 50 1985 -0 3969 -0	44 45 1791 -0 3581 -0	40 40 1606 -0 3212 -0	35 36 1431 -0 2863 -0	31 32 1268 -0 2536 -0
TRADING A	REA NU	MBER 3	O PARI	S			

POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BOD SUS SCL TOT SCL CHLORIDE NITRATES PHOSPHATE	54 20 541 121 25 S 28	34 12 341 76 16 17	25 9 248 55 12 13	21 8 211 47 10 11	18 6 179 40 8 9	15 5 152 34 7 8	13 5 129 29 6 7
INCUSTRIA	L						
BCD SUS SCL TOT SCL CHLORIDE COD SULFATES	-0 -0 4012 -0 13	-0 -0 1523 -0 5	-0 -0 848 -0 3	-0 -0 732 -0 2	-0 -0 633 -0 2	-0 -0 546 -0 2	-0 -0 471 -0 2

-O INDICATES THAT NO DATA REGARDING CONCENTRATION OF POLLUTANT WAS AVAILABLE

٠

MUNICIPAL AND INCUSTRIAL TREATMENT PLANT EFFLUENT QUALITY REQUIRED TO MAINTAIN PRESENT WASTE LOADS IN STREAMS (MG/L)

TRADING AREA NUMBER 31 SULFUR SPRINGS

POLLUTANT 1960 1970 1980 1990 2000 2010 2020 MUNICIPAL 3 BOD 26 16 10 8 4 6 SUS SCL 35 8 5 21 14 11 6 44 TOT SOL 334 203 137 103 77 58 29 12 CHLORIDE 94 57 39 22 16 3 NITRATES 26 16 10 8 6 4 5 PHOSPHATES 28 17 11 9 6 4 INDUSTRIAL -0 BCD -0 -0 -0 -0 -0 -0 SUS SCL -0 -0 -0 -0 -0 -0 -0 145 145 TOT SCL 182 157 146 146 146 CHLORIDE 78 68 63 63 63 63 63 -0 -0 -0 CCD -0 --0 -0 -0 SULFATES -0 --0 -0 -0 -0 -0 -0

TRADING AREA NUMBER 32 NORTHEAST TEXAS

POLLUTANT	1960	1970	1980	1990	2000	2010	202 0
MUNICIPAL							
BOD SUS SCL TCT SCL CHLORIDE NITRATES PHOSPHATES INDUSTRIA	57 38 504 126 25 5 26	44 29 387 96 19 20	35 23 306 76 15 16	29 19 254 63 13 13	24 16 210 52 10 11	20 13 173 43 9 9	16 11 142 35 7 7
BOD SUS SCL TOT SOL CHLORIDE CCD SULFATES	-0 -0 3184 -0 -0	-0 -0 2611 -0 -0	-0 -0 2366 -0 -0	-0 -0 2375 -0 -0	-0 -0 2384 -0 -0	-0 -0 2392 -0 -0	-0 -0 2399 -0 -0

-O INDICATES THAT NO DATA REGARDING CONCENTRATION OF POLLUTANT WAS AVAILABLE

MUNICIPAL AND INDUSTRIAL TREATMENT PLANT EFFLUENT QUALITY REQUIRED TO MAINTAIN PRESENT WASTE LOADS IN STREAMS (MG/L)

TRADING AREA NUMBER 33 STATE TOTAL

POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BOD	35	25	19	15	13	11	9
SUS SCL	45	31	24	20	16	14	11
TOT SOL	699	494	377	312	258	212	175
CHLORIDE	158	111	85	70	58	48	39
NITRATES	26	19	14	12	10	8	7
PHOSPHATE	S 27	19	14	12	. 10	8	7
INDUSTRIA	L						
BOD	182	119	87	75	65	55	47
SUS SCL	400	261	192	165	142	122	104
TOT SOL	5552	3622	2661	2298	1976	1694	1446
CHLORIDE	4625	3017	2216	1914	1646	1411	1205
COD	625	408	299	259	222	191	163
SULFATES	1086	709	521	450	387	331	283

٠

APPENDIX D

QUANTITIES OF POLLUTANTS (IN THOUSANDS OF POUNDS PER YEAR) CONTRIBUTED BY MUNICIPAL AND INDUSTRIAL TREATMENT PLANTS IF PRESENT LEVEL OF TREATMENT IS MAINTAINED

APPENDIX D

QUANTITIES OF WASTES DISCHARGED BY MUNICIPAL AND INDUSTRIAL TREATMENT PLANTS IF PRESENT LEVEL OF TREATMENT IS MAINTAINED (1000 LB/YEAR)

TRADING A	REA NUMBE	R 1 FORT	WORTH				
POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
800	4973	6672	8582	10570	13021	16044	19768
SUS SCL	5893	7907	10171	12527	15433	19015	23429
TOT SCL	89874	120589	155111	191038	235350	289979	357294
CHLORIDE	18785	25205	32421	39930	49192	60610	74680
NITRATES	4052	5436	6993	8612	10610	13073	16108
PHOSPHATE	S 4420	5931	7628	9395	11575	14261	17572
INDUSTRIA	L						
BOD	122	126	132	141	151	. 162	173
SUS SCL	26458	27256	28614	30568	32693	35009	37534
TOT SOL	400480	412549	433112	462684	494857	529910	568129
CHLORIDE	8066	8309	8723	9319	9967	10673	11442
COD	-0	-0	-0	-0	-0	-0	-0
SULFATES	371272	382461	401524	428939	458765	491263	526694
TRADING A	REA NUMBE	R 2 DALL	AS				
POLLUTANT	1960	1970	1980	199 0	2000	2010	2020
MUNICIPAL							
BOD	11666	17615	23396	27325	31836	36992	42853
SUS SOL	14582	22019	29245	34156	39795	46240	53567
TOT SOL	219458	331390	440138	514050	598919	695914	806178
CHLORIDE	46298	69911	92853	108446	126350	146813	170074
NITRATES	8020	12111	16085	18786	21887	25432	29462
PHOSPHATE	S 8749	13212	17547	20494	23877	27744	32140
INDUSTRIA	L						
800	66010	72418	77562	81088	84779	88642	92688
SUS SOL	12465	13675	14647	15313	16010	16739	17503
TOT SOL	160918	176538	189077	197673	206671	216088	225951
CHLORIDE	567	622	666	696	728	761	796
COD	-0	-0	-0	-0	-0	-0	-0
SULFATES	4250	4662	4993	5220	5458	5707	596 ⁷
-O INDICA	TES THAT	NO DATA R	EGARDING	CONCENTRA	TION OF	POLLUTANT	WAS

AVAILABLE

95
QUANTITIES OF WASTES DISCHARGED BY MUNICIPAL AND INDUSTRIAL TREATMENT PLANTS IF PRESENT LEVEL OF TREATMENT IS MAINTAINED (1000 LB/YEAR)

TRADING A	REA NUMBER	3 TYLER	ł.				
POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
80D	898	1371	1919	2449	3131	4010	5141
SUS SOL	1107	1691	2367	3020	3862	4946	6341
TOT SCL	12239	18696	26162	33384	42688	54670	70093
CHLORIDE	2783	4251	5949	7591	9706	12431	15938
NITRATES	658	1006	1407	1796	2296	2941	3770
PHOSPHATE	S 718	1097	1535	1959	2505	3208	4113
INDUSTRIA	L						
80D	2399	3066	3591	3797	4035	4310	4628
SUS SOL	8034	10268	12025	12714	13510	14431	15496
TOT SOL	9740	12449	14579	15414	16379	17496	18787
CHLORIDE	847	1083	1268	1341	1425	1522	1635
COD	-0	-0	-0	· -0	-0	-0	-0
SULFATES	1706	2180	2553	2700	2869	3064	3290
TRADING A	REA NUMBER	4 LONG	IEW MARS	SHAL			
POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL					,		
800	215	200	204	505	662	071	1144
	212	1251	1671	2100	2972	2775	4066
TOT SOL	12438	16700	22204	20222	28243	50378	66279
CHINRINE	3728	5005	6685	8750	11492	15099	19865
NITDATES	924	1107	1479	1027	2541	7330	4303
DHOCDHATE	6 860	1155	1542	2021	2652	3484	4584
FRUSPRATE	5 600	1100	1343	2021	2072	2404	4704
INDUSTRIA	L						
BOD	2883	4198	5618	6797	8240	10005	12171
SUS SCL	12328	17949	24019	29063	35229	42779	52039
TOT SCL	51583	75102	100499	121604	147404	178995	217739
CHLORIDE	20138	29320	39235	47475	57547	69880	85006
COD	7492	10908	14597	17663	21410	25998	31626
SULFATES	14712	21420	28663	34683	42041	51051	62102
-0 INDICA	TES THAT N	O DATA RE	GARDING	CONCENTRA	TION OF	POLLUTANT	WAS

AVAILABLE

QUANTITIES OF WASTES DISCHARGED BY MUNICIPAL AND INDUSTRIAL TREATMENT PLANTS IF PRESENT LEVEL OF TREATMENT IS MAINTAINED (1000 LB/YEAR)

TRADING A	REA NUMBE	R 5 WAC	C				
POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BOD	2750	4100	5548	6782	8317	10228	12614
SUS SCL	2612	3895	5270	6443	7901	. 9716	11983
TOT SCL	44131	65809	89041	108857	133483	164157	202449
CHLORIDE	9486	14146	19140	23399	28693	35286	43517
NITRATES	1650	2460	3329	4069	4990	6137	7568
PHOSPHATE	S 1650	2460	3329	4069	4990	6137	7568
INDUSTRIA	L						
BOD	144	168	197	230	271	. 319	377
SUS SCL	110510	129193	151224	177288	208426	245653	290200
TOT SCL	8980	10498	12288	14406	16936	19961	23581
CHLORIDE	898	1050	1229	1441	1694	1996	2358
CCD	-0	-0	-0	0	-0	-0	-0
SULFATES	1784	2086	2441	2862	3365	3966	4685
TRADING A	REA NUMBE	R 6 PAL	ESTINE				
POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
800	515	710	931	1150	1424	1768	2198
SUS SGL	470	649	850	1050	1301	1614	2006
TCT SCL	4179	5766	7554	9336	11561	14346	17835
CHLORIDE	866	1194	1565	1934	2395	2972	3694
NITRATES	164	227	297	367	454	564	701
PHOSPHATE	S 179	247	324	400	495	615	764
INDUSTRIA	L						
BCD	-0	-0	-0	-0	-0	-0	-0
SUS SCL	2785	3153	3455	3670	3898	4138	4396
TOT SCL	9282	10508	11518	12235	12994	13794	14653
CHLORIDE	2785	3153	3455	3670	3898	4138	4396
CCD	-0	-0	-0	-0	-0	-0	-0
SULFATES	139	158	173	184	195	207	220
-O INDICA	TES THAT	NO DATA	REGARDING	CONCENTRA	TION OF	POLLUTANT	WAS

AVAILABLE

97

QUANTITIES OF WASTES DISCHARGED BY MUNICIPAL AND INDUSTRIAL TREATMENT PLANTS IF PRESENT LEVEL OF TREATMENT IS MAINTAINED (100C LB/YEAR)

TRADING ARE	EA NUMBER	7 LUFK	IN				
PCLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BCD SUS SOL TOT SCL CHLORIDE NITRATES PHOSPHATES INDUSTRIAL	308 437 3766 694 157 172	457 648 5587 1030 234 255	614 871 7512 1385 314 343	745 1057 9111 1680 381 416	903 1282 11050 2038 462 504	1095 1554 13398 2471 560 611	1327 1883 16236 2994 679 741
BOD SUS SCL TOT SCL CHLORIDE COD SULFATES	15905 1590 136281 15905 -0 1590	19259 1926 165022 19259 -0 1926	22928 2293 196457 22928 -0 2293	26842 2684 229997 26842 -0 2684	31434 3143 269346 31434 -0 3143	36821 3682 315502 36821 -0 3682	43141 4314 369655 43141 -0 4314
TRADING ARE	EA NUMBER	8 MIDCL	E SABINE				
POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BCD SUS SCL TOT SCL CHLORIDE NITRATES PHOSPHATES	128 218 2408 455 109 114	177 301 3325 628 151 157	231 394 4348 822 197 205	284 484 5350 1011 242 253	350 596 6586 1245 298 311	431 734 8110 1533 367 383	531 905 9992 1888 452 472
INDUSTRIAL							
BOD SUS SOL TOT SOL CHLORIDE COD SULFATES	27 65 16453 13610 -0 1034	33 81 20395 16871 -0 1282	37 90 22782 18846 -0 1432	37 90 22880 18927 -0 1438	37 91 23005 19030 -0 1446	37 92 23167 19165 -0 1456	38 92 23372 19334 -0 1469

-O INCICATES THAT NO DATA REGARDING CONCENTRATION OF POLLUTANT WAS AVAILABLE

QUANTITIES OF WASTES DISCHARGED BY MUNICIPAL AND INDUSTRIAL TREATMENT PLANTS IF PRESENT LEVEL OF TREATMENT IS MAINTAINED (1000 LB/YEAR)

TRADING AF	REA NUMBER	9 AUSTI	N				
POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BOD SUS SCL TOT SOL CHLORIDE NITRATES PHCSPHATES	1115 1901 59989 9441 1705 1573	1599 2727 86038 13540 2445 2257	2132 3638 114775 18063 3261 3010	2622 4473 141120 22209 4010 3701	3218 5490 173223 27261 4922 4544	3942 6725 212183 33393 6029 5565	4816 8216 259238 40798 7366 6800
INDUSTRIAL							
BOD SUS SGL TOT SCL CHLORIDE COD SULFATES	-0 24077 13718 582 -0 582	-0 39997 22788 967 -0 967	-0 56206 32023 1359 -0 1359	-0 60023 34198 1451 -0 1451	-0 64110 36527 1550 -0 1550	-0 68484 39019 1655 -0 1655	-0 73168 41688 1769 -0 1769
TRADING AF	REA NUMBER	10 BRYAN					
POLLUTANT MUNICIPAL	1960	1970	1980	1990	2000	2010	2020
BOD SUS SCL TOT SCL CHLORIDE NITRATES PHOSPHATES	327 740 7324 1564 313 5 341	471 1064 10537 2251 450 491	630 1424 14098 3011 602 657	783 1771 17541 3747 749 817	978 2211 21895 4677 935 1020	1224 2768 27411 5855 1171 1277	1537 3474 34411 7350 1470 1604
INDUSTRIAL	-						
BCD SUS SCL TOT SCL CHLORIDE CCD SULFATES	-0 32 631 -0 -0 -0	C 40 808 0 0 0	-0 47 948 -0 -0	-0 50 1006 -0 -0 -0	-0 54 1071 -0 -0 -0	-0 57 1141 -0 -0 -0	-0 61 1218 -0 -0 -0

-O INDICATES THAT NO DATA REGARDING CONCENTRATION OF POLLUTANT WAS AVAILABLE

99

QUANTITIES OF WASTES DISCHARGED BY MUNICIPAL AND INDUSTRIAL TREATMENT PLANTS IF PRESENT LEVEL OF TREATMENT IS MAINTAINED (100C LB/YEAR)

IRAUI	NG AREA	NUMBER 11	HOUSTON				
POLLU	TANT	1960	1970	1980 1	99 0 2000	2010	2020
MUNIC	IPAL						
BCD	1	1599 1	.6398 2	1953 27	829 35270	44693	56621
SUS SU		8737 2	26489 3	5462 44	954 5697	5 72196	91465
TOT SI	CL 30	0679 42	25086 56	9087 721	408 91431	7 1158574	1467793
CHLOR	IDE 7	6285 10	17848 14	4383 183	J28 231971	293941	372393
NITRA	TES	9814 1	3875 1	8576 23	547 29844	4 37817	47910
PHOSPI	HATES 1	0707 1	.5137 2	0264 25	588 3255	7 41255	52266
INDUS	TRIAL						
BOD	16	0291 24	5725 32	7030 3772	287 43411)	507770	581251
SUS SI	CL 26	0899 39	19957 53	2294 614	095 70658	5 826477	946079
TOT SC	OL 676	8030 1037	5361 1380	8334 15930	342 18329649	9 21439783	24542409
CHLOR	IDE 602	3701 923	14307 1228	9730 14178	366 16313803	3 19081893	21843300
COD	69	9994 107	3088 142	8148 1647	520 1895772	2 2217443	2538337
SULFA	TES 103	3365 158	4144 210	8302 2432	297 2798631	3273497	3747216
TRADI	NG AREA	NUMBER 12	LOWER SA	BINE			
POLLUT	TANT	1960	1970	1980 19	990 2000	2010	2020
MUNICI	IPAL						
BOD		844	1244	1736 23	192 3024	3992	5269
BOD SUS SC	01	844	1244 2281	1736 22	292 3024 201 5546	3992 37319	5269 9661
BOD SUS SC TOT SC	CL DL 2	844 1548 9618 4	1244 2281 3659 6	1736 22 3184 42 0921 803	292 3024 201 5545 397 106108	3992 7319 140051	5269 9661 184867
BOD SUS SO TOT SO CHLORI	CL DL 2 I DE	844 1548 9618 4 8583 1	1244 2281 3659 6 2652 1	1736 22 3184 42 0921 803 7654 232	292 3024 201 5545 397 106108 298 30745	3992 7319 140051 40585	5269 9661 184867 53572
BOD SUS SO TOT SO CHLORI NITRAI	CL DL 2 IDE TES	844 1548 9618 4 8583 1 1548	1244 2281 3659 6 .2652 1 2281	1736 2: 3184 4: 0921 803 7654 232 3184 4:	292 3024 201 5545 397 106108 298 30749 201 5545	3992 7319 140051 40585 7319	5269 9661 184867 53572 9661
BOD SUS SC TOT SC CHLORI NITRAT PHOSPI	CL 2 IDE TES HATES	844 1548 9618 4 8583 1 1548 1688	1244 2281 3659 6 .2652 1 2281 2489	1736 23 3184 43 0921 803 7654 233 3184 43 3473 45	292 3024 201 5545 397 106108 298 30749 201 5545 383 6049	3992 7319 140051 40585 7319 7984	5269 9661 184867 53572 9661 10539
BOD SUS SC TOT SC CHLORI NITRAT PHOSPH INDUST	CL 2 IDE TES HATES TRIAL	844 1548 9618 4 8583 1 1548 1688	1244 2281 3659 6 2652 1 2281 2489	1736 2: 3184 4: 0921 80: 7654 23: 3184 4: 3473 4:	292 3024 201 5545 397 106108 298 30749 201 5545 383 6049	3992 7319 140051 40585 7319 7984	5269 9661 184867 53572 9661 10539
BOD SUS SC TOT SC CHLORI NITRAT PHOSPH INDUST	CL 2 IDE TES HATES TRIAL	844 1548 9618 4 8583 1 1548 1688	1244 2281 3659 6.2652 2281 2489	1736 2: 3184 4: 0921 803 7654 232 3184 4: 3473 4:	292 3024 201 5545 397 106108 298 30749 201 5545 383 6049 100 02255	3992 7319 140051 40585 7319 7984	5269 9661 184867 53572 9661 10539
BOD SUS SC TOT SC CHLORI NITRAT PHOSPH INDUST BOD	CL 2 IDE TES HATES TRIAL 2	844 1548 9618 4 8583 1 1548 1688 2038 4	1244 2281 3659 6 2652 1 2281 2489	1736 2: 3184 4: 0921 803 7654 232 3184 4: 3473 4: 22244 757	292 3024 201 5545 397 106108 298 30749 201 5545 383 6049 109 92252 200 188402	3992 7319 140051 40585 7319 7984	5269 9661 184867 53572 9661 10539
BOD SUS SC TOT SC CHLOR NITRAT PHOSPH INDUST BOD SUS SC TOT SC	CL 2 IDE TES HATES TRIAL 2 CL 4 CL 47	844 1548 9618 4 8583 1 1548 1688 2038 4 5077 8	1244 2281 3659 6.2652 2281 2489 0139 62102 12	1736 2: 3184 4: 0921 80: 7654 232 3184 4: 3473 4: 2244 757 7318 1548	292 3024 201 5545 397 106108 298 30749 201 5545 383 6049 109 92252 359 188697 107 188697	3992 7319 140051 40585 7319 7984 112517 230149	5269 9661 184867 53572 9661 10539 137263 280765
BOD SUS SC TOT SC CHLOR] NITRAT PHOSPI INDUST BOD SUS SC TOT SC	CL CL 2 IDE TES HATES TRIAL CL 4 OL 147	844 1548 9618 4 8583 1 1548 1688 2038 4 5077 8 6527 268	1244 2281 3659 6.2652 2281 2489 0139 62102 12 9303 417	1736 2: 3184 4: 0921 80: 7654 232 3184 4: 3473 4: 2244 757 7318 1548 0359 50725	292 3024 201 5545 397 106108 298 30749 201 5545 583 6049 709 92252 359 188697 307 6180871 307 6180871	3992 7319 140051 40585 7319 7984 112517 230149 7538657	5269 9661 184867 53572 9661 10539 137263 280765 9196609
BOD SUS SC TOT SC CHLORI NITRAT PHOSPH INDUST BOD SUS SC TOT SC CHLORI	CL CL 2 IDE TES HATES TRIAL 2 CL 4 OL 147 IDE 190	844 1548 9618 4 8583 1 1548 1688 2038 4 5077 8 6527 268 4759 346	1244 2281 3659 6.2652 2281 2489 0139 62102 9303 417 9274 537	1736 2: 3184 4: 0921 80: 7654 232 3184 4: 3473 4: 2244 757 7318 1548 0359 50725 9876 65436	292 3024 201 5545 397 106104 298 30749 201 5545 303 6049 583 6049 599 188697 507 6180871 572 7973491	3992 7319 140051 40585 7319 7984 112517 230149 7538657 9725073	5269 9661 184867 53572 9661 10539 137263 280765 9196609 11863875
BOD SUS SC TOT SC CHLORI NITRAT PHOSPH INDUST BOD SUS SC TOT SC CHLORI COD	CL CL 2 IDE TES HATES TRIAL 2 CL 4 OL 147 IDE 190 36 FES 10	844 1548 9618 4 8583 1 1548 1688 2038 4 5077 8 6527 268 4759 346 2620 66	1244 2281 3659 6.2652 2281 2489 60139 62102 9303 417 9274 9274 9274 9274 9274 9274 9274 927	1736 2: 3184 4: 0921 80: 7654 232 3184 4: 3473 4: 2244 757 7318 1548 0359 50725 9876 65436 4199 12457	292 3024 201 5545 397 106104 298 30749 201 5545 307 106104 298 30749 201 5545 583 6049 599 188697 507 6180871 572 7973491 583 1517961	3992 7319 140051 40585 7319 7984 112517 230149 7538657 9725073 1851421	5269 9661 184867 53572 9661 10539 137263 280765 9196609 11863875 2258597
BOD SUS SC TOT SC CHLORI NITRAT PHOSPH INDUST BOD SUS SC TOT SC CHLORI SULFAT	CL 2 IDE TES HATES TRIAL 2 CL 4 OL 147 IDE 190 36 TES 10	844 1548 9618 4 8583 1 1548 2038 4 5077 8 6527 268 4759 346 2620 66 9688 19	1244 2281 3659 62652 2281 2489 60139 62102 12 9303 417 9274 537 0467 102 9782 30	1736 2: 3184 4: 0921 80: 7654 232 3184 4: 3473 4: 2244 757 7318 1548 0359 50725 9876 65436 4199 12457 9806 3768	292 3024 201 5549 397 106108 298 30749 201 5549 383 6049 709 92252 359 188697 507 6180871 572 7973491 758 1517961 125 459162	3992 7319 140051 40585 7319 7984 112517 230149 7538657 9725073 1851421 560029	5269 9661 184867 53572 9661 10539 137263 280765 9196609 11863875 2258597 683194

-O INDICATES THAT NO DATA REGARDING CONCENTRATION OF POLLUTANT WAS AVAILABLE

QUANTITIES OF WASTES DISCHARGED BY MUNICIPAL AND INDUSTRIAL TREATMENT PLANTS IF PRESENT LEVEL OF TREATMENT IS MAINTAINED (1000 LB/YEAR)

TRADING AREA NUMBER 13 SAN ANTONIO

POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BOD SUS SCL TOT SCL CHLORIDE NITRATES PHOSPHATES	5329 4821 140828 27404 6851 6090	7500 6785 198206 38570 9642 8571	9496 8592 250963 48836 12209 10852	10775 9749 284767 55414 13854 12314	12217 11054 322880 62831 15708 13962	13843 12525 365857 71194 17798 15821	15675 14182 414259 80613 20153 17914
INDUSTRIAL							
BOD SUS SCL TOT SCL CHLORIDE COD SULFATES	3094 89866 137974 20781 -0 17459	4091 118806 182407 27473 -0 23081	4956 143923 220971 33281 -0 27960	5455 158415 243221 36632 -0 30776	6013 174623 268106 40380 -0 33925	6637 192760 295952 44574 -0 37448	7336 213050 327104 49266 -0 41390
TRADING ARE	A NUMBER	14 VICT	ORIA				
POLLUTANT MUNICIPAL	1960	1970	1980	1990	2000	2010	2020
BOD SUS SCL TOT SCL CHLORIDE NITRATES PHCSPHATES	186 259 7176 2565 227 248	296 412 11431 4085 362 395	415 577 16012 5722 508 554	508 705 19573 6994 620 677	620 861 23914 8545 758 827	757 1052 29196 10433 926 1010	924 1283 35616 12727 1129 1232
INDUSTRIAL							
BGD SUS SCL TOT SCL CHLORIDE CCD SULFATES	5691 18373 487620 139343 56908 3089	9290 29992 795989 227463 92896 5043	12969 41872 1111271 317559 129691 7040	15199 49071 1302345 372161 151991 8251	17837 57588 1528365 436749 178369 9683	20960 67670 1795955 513215 209598 11378	24660 79618 2113038 603826 246603 13387

-O INDICATES THAT NO DATA REGARDING CONCENTRATION OF POLLUTANT WAS AVAILABLE

QUANTITIES OF WASTES DISCHARGED BY MUNICIPAL AND INDUSTRIAL TREATMENT PLANTS IF PRESENT LEVEL OF TREATMENT IS MAINTAINED (100C LB/YEAR)

TRADING AREA NUMBER 15 CORPUS CHRISTI

POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BOD SUS SOL TOT SOL CHLORIDE NITRATES PHOSPHATES	930 2681 42948 13732 1258 1313	1238 3569 57176 18282 1675 1748	1619 4666 74749 23901 2190 2285	2080 5994 96033 30706 2814 2936	2678 7718 123642 39534 3623 3780	3453 9953 159458 50986 4672 4875	4459 12852 205897 65835 6033 6295
INDUSTRIAL							
BOD SUS SCL TOT SCL CHLORIDE COD SULFATES	15758 20024 154517 67749 16360 68150	24168 30710 236982 103906 25091 104522	32586 41407 319527 140098 33831 140928	37207 47279 364843 159967 38629 160915	40946 52030 401502 176040 42510 177083	46633 59257 457274 200494 48415 201682	53062 67426 520315 228134 55090 229486
TRADING ARE	A NUMBER	16 LOWER	VALLEY				
POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							Î
BCD SUS SCL TOT SCL CHLORIDE NITRATES PHOSPHATES	2257 5077 71856 18193 1622 1692	2799 6298 89135 22568 2012 2099	3363 7566 107084 27113 2417 2522	3909 8795 124477 31516 2810 2932	4546 10229 144765 36653 3268 3410	5290 11902 168450 42650 3802 3967	6159 13857 196120 49655 4427 4619
INCUSTRIAL							
BOD SUS SCL TCT SCL CHLORIDE COD	58 1008 -0 86429 -0	61 1060 -0 90835 -0	64 1125 -0 96390 -0	67 1170 -0 100323 -0	70 1233 -0 105674 -0	74 1296 -0 111091 -0	78 1360 -0 116531 -0

-O INDICATES THAT NO DATA REGARDING CONCENTRATION OF POLLUTANT WAS AVAILABLE

-0

-0

-0

-0

-0

-0

--- O

-0

SULFATES

X.

1

QUANTITIES OF WASTES DISCHARGED BY MUNICIPAL AND INDUSTRIAL TREATMENT PLANTS IF PRESENT LEVEL OF TREATMENT IS MAINTAINED (1000 LB/YEAR)

TRADING AREA	NUMBER	17 LAREI	DO				
POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BOD SUS SCL TOT SCL CHLORIDE NITRATES PHOSPHATES	1217 647 10159 2291 349 311	1534 816 12807 2888 440 392	1858 988 15515 3498 534 474	2163 1151 18067 4074 621 552	2520 1340 21041 4744 724 643	2934 1561 24506 5525 843 749	3418 1818 28541 6435 982 873
INDUSTRIAL							
BOD SUS SCL TOT SCL CHLORIDE COD SULFATES	-0 -0 588 -0 1470	-0 -0 831 -0 2077	-0 -0 1053 -0 2633	-0 -0 1196 -0 2990	-0 -0 1356 -0 3390	0 -0 1539 -0 3847	-0 -0 1746 -0 4366
TRADING AREA	NUMBER	18 DEL 1	RIO				
POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BOD SUS SCL TCT SCL CHLORIDE NITRATES PHOSPHATES	11 28 2771 499 168 135	14 34 3338 601 203 162	16 40 3935 709 239 191	18 46 4518 814 274 220	21 53 5206 938 316 253	24 61 6013 1083 365 292	28 70 6964 1255 423 338
INDUSTRIAL							
BCD SUS SCL TOT SCL CHLORIDE CCD SULFATES	-0 5 415 116 21 96	-0 4 363 101 18 84	-0 4 350 98 18 81	-0 4 370 103 19 86	-0 5 393 110 20 91	-0 5 420 117 21 98	-0 5 445 124 22 103
-O INDICATES AVAILABLE	THAT N	O DATA RI	EGARDING	CONCENTRATIO	ON OF PO	OLLUTANT	WAS

1

.

QUANTITIES OF WASTES DISCHARGED BY MUNICIPAL AND INDUSTRIAL TREATMENT PLANTS IF PRESENT LEVEL OF TREATMENT IS MAINTAINED (1000 LB/YEAR)

•

TRADING AREA NUMBER 19 BROWNWOOD

POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BOD SUS SCL TCT SCL CHLORIDE NITRATES PHOSPHATES	262 277 3252 848 177 185	353 373 4378 1141 239 249	437 463 5426 1414 296 309	499 528 6195 1615 338 352	570 604 7078 1845 386 403	652 691 8096 2110 441 460	747 791 9269 2416 505 527
INDUSTRIAL							
BOD SUS SCL TOT SCL CHLORIDE CCD SULFATES	-0 8752 43515 4509 -0 3846	-0 10325 51334 5320 -0 4537	-0 11802 58680 6081 -0 5186	-0 12999 64632 6697 -0 5712	-0 14318 71190 7377 -0 6291	-0 15771 78416 8126 -0 6930	-0 17374 86382 8951 -0 7634
TRADING ARE	A NUMBER	20 SAN	ANGĖLO				
POLLUTANT	1960	1970	1980	1990	2000	2010	2020
BOD SUS SCL TOT SCL CHLORIDE NITRATES PHOSPHATES	857 720 10954 3086 394 411	1132 951 14463 4074 521 543	1422 1194 18169 5118 654 682	1697 1426 21693 6111 781 815	2029 1704 25928 7304 933 974	2427 2039 31018 8737 1116 1165	2906 2441 37136 10461 1337 1395
INDUSTRIAL							
BOD SUS SCL TOT SCL CHLORIDE COD SULFATES	40 108 2323 1084 -0 -0	46 124 2659 1241 -0 -0	51 138 2957 1380 -0 -0	54 145 3114 1453 -0 -0	57 153 3281 1531 -0 -0	60 161 3457 1613 -0 -0	63 170 3644 1701 -0 -0

-O INDICATES THAT NO DATA REGARDING CONCENTRATION OF POLLUTANT WAS AVAILABLE

QUANTITIES OF WASTES DISCHARGED BY MUNICIPAL AND INDUSTRIAL TREATMENT PLANTS IF PRESENT LEVEL OF TREATMENT IS MAINTAINED (1000 LB/YEAR)

TRADING AREA NUMBER 21 ABILENE POLLUTANT MUNICIPAL BOD SUS SCL TOT SCL CHLORIDE NITRATES PHCSPHATES INDUSTRIAL BOD -0 -0 -0 -0 -0 ~0 -0 SUS SCL TOT SCL CHLORIDE COD -0 -0 -0 ~0 -0 -0 -0 SULFATES TRADING AREA NUMBER 22 BIG SPRING POLLUTANT MUNICIPAL SUS SCL TOT SCL CHLOR IDE NITRATES PHOSPHATES INDUSTRIAL BCD SUS SCL TOT SCL CHLORIDE COD SULFATES

-O INDICATES THAT NO DATA REGARDING CONCENTRATION OF POLLUTANT WAS AVAILABLE

QUANTITIES OF WASTES DISCHARGED BY MUNICIPAL AND INDUSTRIAL TREATMENT PLANTS IF PRESENT LEVEL OF TREATMENT IS MAINTAINED (1000 LB/YEAR)

TRADING AREA NUMBER 23 MICLAND ODESSA

POLLUTANT	1960	1970	1980	1990	2000) 2010	2020
MUNICIPAL							
BOD SUS SCL TOT SCL CHLORIDE NITRATES PHOSPHATES	873 2023 37960 7775 1230 952	1143 2651 49736 10186 1611 1247	1396 3237 60744 12441 1968 1523	1584 3673 68918 14115 2232 1728	1798 4168 78206 16017 2533 1961	2040 4730 88759 18179 2875 2226	2316 5369 100755 20635 3264 2527
INDUSTRIAL							
80D SUS SCL TOT SCL CHLORIDE COD SULFATES	435 130415 139739 49264 1255 10763	615 184379 197560 69648 1775 15217	805 241155 258396 91095 2321 19903	903 270441 289775 102157 2603 22320	1016 304527 326299 115033 2932 25133	1149 344267 368880 130045 3314 28413	1304 390680 418611 147577 3761 32243
TRADING AR	EA NUMBI	ER 24 EL	PASO	-			
POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BOD SUS SCL TOT SOL CHLORIDE NITRATES PHOSPHATES	2369 1992 36722 8615 1238 1292	3076 2587 47681 11186 1608 1678	3891 3272 60318 14151 2034 2123	4796 4033 74337 17440 2507 2616	5912 4971 91631 21497 3090 3225	2 7288 6129 112969 26503 3810 3975	8987 7557 139303 32681 4698 4902
INDUSTRIAL							
BOD SUS SCL TCT SCL CHLORIDE CCD SULFATES	406 -0 108461 6337 -0 14129	515 -0 137674 8044 -0 17935	612 -0 163635 9561 -0 21317	681 -0 182115 10641 -0 23725	759 -0 202858 11853 -0 26427	846 -0 226135 13213 -0 29459	944 -0 252271 14740 -0 32864
-O INDICAT	ES THAT	NO DATA	REGARDING	CONCENTR	ATION OF	POLLUTANT	WAS

AVAILABLE

QUANTITIES OF WASTES DISCHARGED BY MUNICIPAL AND INDUSTRIAL TREATMENT PLANTS IF PRESENT LEVEL OF TREATMENT IS MAINTAINED (1000 LB/YEAR)

TRADING AREA NUMBER 25 LUBBOCK

POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BCD SUS SCL TOT SCL CHLORIDE NITRATES PHOSPHATES	5643 6118 50136 9029 1782 1426	7790 8446 69204 12463 2460 1968	9807 10633 87130 15692 3097 2478	11227 12173 99746 17964 3545 2836	12861 13945 114264 20578 4062 3249	14741 15982 130963 23586 4655 3724	16902 18325 150157 27042 5337 4270
INDUSTRIAL							
BCC SUS SCL TCT SCL CHLORIDE COD SULFATES	-0 722 15465 3093 -0 3093	-0 826 17691 3538 -0 3538	-0 920 19719 3944 -0 3944	-0 970 20777 4155 -0 4155	-0 1027 22014 4403 -0 4403	-0 1096 23485 4697 -0 4697	-0 1179 25258 5052 -0 5052
TRADING AR	EA NUMBER	R 26 AMAR	ILLO				
POLLUTANT MUNICIPAL	1960	1970	1980	1990	2000	2010	2020
BOD SUS SCL TOT SCL CHLORIDE NITRATES PHOSPHATES	4153 3678 35775 5933 1602 1424	6504 5761 56026 9291 2509 2230	8679 7687 74765 12399 3348 2976	9715 8605 83688 13879 3747 3331	10877 9634 93697 15538 4195 3729	12180 10788 104921 17400 4698 4176	13641 12082 117511 19488 5262 4677
INCUSTRIAL							
BCD SUS SCL TOT SCL CHLORIDE COD	56330 2337 346980 60654 -0	79917 3316 492270 86052 ~0	99291 4120 611608 106913 -0	103899 4311 639992 111875 -0	108768 4513 669983 117117 -0	113917 4727 701700 122662 -0	119368 4953 735279 128531 -0

-O INCICATES THAT NO DATA REGARDING CONCENTRATION OF POLLUTANT WAS AVAILABLE

SULFATES 430073 610156 758073 793254 830427 869740 911360

QUANTITIES OF WASTES DISCHARGED BY MUNICIPAL AND INDUSTRIAL TREATMENT PLANTS IF PRESENT LEVEL OF TREATMENT IS MAINTAINED (1000 LB/YEAR)

TRADING ARE	A NUMBER	27 WICHI	TA FALLS				
POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BCD SUS SCL TOT SCI	1491 2207 14884	1954 2891 19497	2410 3566 24049	2786 4124 27807	3224 4771 32173	3732 5523 37243	4322 6397 43136
CHLORIDE NITRATES PHOSPHATES	3311 895 716	4337 1172 938	5350 1446 1157	6186 1672 1337	7157 1934 1547	8285 2239 1791	9595 2593 2075
INDUSTRIAL							
BOD SUS SCL TOT SCL CHLORIDE CCD SULFATES	2816 3240 22214 10623 1117 2287	3290 3786 25954 12411 1306 2672	3670 4224 28956 13847 1457 2981	3817 4393 30112 14400 1515 3100	3969 4568 31314 14974 1575 3224	4128 4750 32565 15572 1638 3353	4293 4940 33865 16194 1703 3486
TRADING ARE	EA NUMBER	28 GAINE	SVILLE				
POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BOD SUS SCL TOT SCL CHLORIDE NITRATES PHOSPHATES	163 163 2514 397 91 95	238 238 3669 580 133 139	315 315 4868 769 177 185	380 380 5871 927 213 223	459 459 7080 1119 257 268	553 553 8536 1349 310 324	667 667 10291 1626 374 390
INDUSTRIAL							
BCD SUS SCL TOT SCL CHLORIDE COD SULFATES	-0 -0 -0 -0	-0 -0 -0 -0 -0	- 0 - 0 - 0 - 0 - 0 - 0	-0 -0 -0 -0 -0 -0	-0 -0 -0 -0 -0 -0	-0 -0 -0 -0 -0 -0	-0 -0 -0 -0 -0
	-	-		·····		* * * *** * * * ***	a

-O INDICATES THAT NO DATA REGARDING CONCENTRATION OF POLLUTANT WAS AVAILABLE

QUANTITIES OF WASTES DISCHARGED BY MUNICIPAL AND INDUSTRIAL TREATMENT PLANTS IF PRESENT LEVEL OF TREATMENT IS MAINTAINED (1000 LB/YEAR)

TRADING	AREA NUMBE	R 29 SHEF	MAN DENIS	SON			
POLLUTAN	T 1960	1970	1980	1990	2000	2010	2020
MUNICIPA	L						
BOD SUS SCL TOT SCL CHLORIDE NITRATES PHOSPHAT	562 710 12903 3048 340 ES 355	755 954 17322 4092 457 477	975 1232 22383 5288 590 616	1211 1529 27781 6563 733 765	1503 1898 34485 8147 910 949	1866 2357 42812 10114 1129 1178	2316 2926 53155 12557 1402 1463
INDUSTRI	AL						
BCD SUS SCL TOT SCL CHLORIDE CCD SULFATES	338 343 13718 -0 27437 -0	450 456 18227 -0 36454 -0	557 565 22583 -0 45166 -0	617 626 25030 -0 50060 -0	688 698 27910 -0 55820 -0	772 783 31313 -0 62625 -0	872 884 35346 -0 70692 -0
TRADING	AREA NUMBE	R 30 PARI	S				
POLLUTAN	T 1960	1970	1980	1990	2000	2010	2020
MUNICIPA	and the second se						
BOD SUS SCL TOT SCL CHLORIDE NITRATES PHOSPHATI	275 99 2753 614 129 ES 140	436 158 4371 974 204 223	599 217 6007 1339 281 306	705 255 7064 1575 330 360	829 300 8310 1852 388 423	976 353 9777 2180 457 498	1148 415 11506 2565 537 586
INCUSTRI	AL						
BOD SUS SOL TOT SOL CHLORIDE COD SULFATES	-0 -0 15037 -0 50	-0 -0 39609 -0 132	-0 -0 71174 -0 237	0 0 82358 -0 275	-0 -0 95341 -0 318	-0 -0 110421 -0 368	-0 -0 127937 -0 426
-O INCIC.	ATES THAT	NO DATA P	EGARDING	CONCENTRA	ATION OF	POLLUTANT	WAS

AVAILABLE

QUANTITIES OF WASTES DISCHARGED BY MUNICIPAL AND INDUSTRIAL TREATMENT PLANTS IF PRESENT LEVEL OF TREATMENT IS MAINTAINED (100C LB/YEAR)

TRADING AR	EA NUMBE	R 31 SUL	FUR SPRIN	GS			
POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BOD SUS SCL TOT SCL CHLORIDE NITRATES PHOSPHATES	48 65 626 176 48 52	79 107 1029 290 79 86	116 159 1524 429 116 127	155 212 2031 571 155 169	207 282 2706 761 207 225	275 375 3602 1013 275 300	366 499 4792 1348 366 399
INDUSTRIAL							
BCD SUS SCL TOT SCL CHLORICE CCD SULFATES	-0 -0 63 27 -0 -0	-0 -0 72 31 -0 -0	-0 -0 78 34 -0 -0	-0 -0 78 34 -0 -0	-0 -0 78 34 -0 -0	-0 -0 78 34 -0 -0	-0 -0 78 34 -0 -0
TRADING AR	EA NUMBE	R 32 NOR	THEAST TE	XAS			
POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BCD SUS SCL TOT SCL CHLORIDE NITRATES PHOSPHATES	1133 748 9966 2481 492 513	1476 975 12982 3232 641 669	1866 1232 16408 4084 810 845	2253 1488 19808 4931 978 1020	2726 1800 23967 5966 1183 1234	3306 2183 29064 7235 1434 1497	4017 2653 35318 8792 1743 1819
INDUSTRIAL							
BOD SUS SCL TCT SCL CHLORIDE COD SULFATES	-0 -0 300072 -0 -0	-0 -0 365943 -0 -0	-0 -0 403813 -0 -0	-0 -0 402242 -0 -0	-0 -0 -0 400793 -0 -0	-0 -0 399477 -0 -0	-0 -0 398301 -0 -0
-O INDICAT AVAILABLE	ES THAT	NO DATA I	REGARDING	CONCENTRA	ATION OF	POLLUTANT	WAS

110

•

QUANTITIES OF WASTES DISCHARGED BY MUNICIPAL AND INDUSTRIAL TREATMENT PLANTS IF PRESENT LEVEL OF TREATMENT IS MAINTAINED (100C LB/YEAR)

TRADING A	AREA NUMBE	R 33 STATE	E TOTAL				
POLLUTANI	г 1960	1970	1980	1990	2000	2010	2020
MUNICIPAL	_						
BCD	64545	91436	119291	142685	170998	205321	246994
SUS SCL	82995	116961	152716	184061	222302	269037	326247
TOT SOL	1302559	1835740	2398566	2895632	3502569	4244857	5154037
CHLORIDE	293895	413149	540439	655781	797393	971553	1186086
NITRATES	48899	69085	90294	108803	131390	159007	192836
PHOSPHATE	ES 49567	70111	91819	110970	134396	163106	198352
INDUSTRIA	AL.						
BOD	355095	507945	655324	740294	835945	956324	1084331
SUS SCL	782077	1112446	1447019	1654090	1891923	2184812	2508287
TOT SCL	10622390	16247035 2	21947556	25425401	29440923	34509668	39965368
CHLORIDE	8762425	13832490	19070397	22246867	25951170	30638925	35734840
COD	1173870	1902797	2680339	3156857	3717468	4421683	5207762
SULFATES	2125210	3027041	3897768	4390128	4943752	5641267	6372659

APPENDIX E

ADDITIONAL POLLUTANT REMOVAL REQUIRED (IN THOUSANDS OF POUNDS PER YEAR) TO IMPROVE BOD AND SUSPENDED SOLIDS OF EFFLUENTS TO 20 mg/l

APPENDIX E

ADDITIONAL WASTE REMOVAL REQUIRED TO IMPROVE BOD AND SS OF EFFLUENTS TO 20 MG/L (1000 LB/YEAR)

TRADING AREA	NUMBER	1 FORT	WORTH				
POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BOD SUS SOL	1289 2210	1730 2965	2225 3814	2740 4698	3376 5787	4160 7131	5125 8786
INDUSTRIAL							
BOD SUS SOL	0 25236	0 25997	0 27293	0 29156	0 31183	0 33392	0 35801
TRADING AREA	NUMBER	2 DALLA	S				
POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BOD SUS SOL	4375 7291	6606 11010	8774 14623	10247 17078	11939 19898	13872 23120	16070 26783
INDUSTRIAL							
BOD SUS SOL	64877 11332	71175 12432	76230 13315	79696 13921	83323 14554	87120 15217	91097 15912
TRADING AREA	NUMBER	3 TYLER					
POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BOD SUS SOL	299 509	457 777	640 1087	816 1388	1044 1774	1337 2272	1714 2913
INDUSTRIAL							
BOD SUS SOL	2179 7814	2785 9987	3262 11696	3448 12366	3664 13140	3914 14036	4203 15072
-0 INDICATES	THAT NO	DATA RE	GARDING	CONCENTRA	TION OF	POLLUTANT	WAS

AVAILABLE

٩,

ADDITIONAL WASTE REMOVAL REQUIRED TO IMPROVE BOD AND SS OF EFFLUENTS TO 20 MG/L (1000 LB/YEAR)

TRADING ARE	A NUMBER	R 4 LCN	GVIEW MARS	SHAL			
POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BOD SUS SOL	0 215	0 289	0 386	0 505	0 663	0 871	0 1146
INDUSTRIAL							
BOD SUS SOL	2429 11874	353 7 17288	4733 23134	5727 27992	6942 33931	8430 41203	10254 50122
TRADING ARE	A NUMBER	R 5 WAC	5				
POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BOD SUS SOL	1375 1237	2050 1845	2774 2496	3391 3052	4158 3743	5114 4603	6307 5676
INDUSTRIAL							
BOD SUS SOL	0 110270	0 128913	0 150896	0 176904	0 207975	0 245121	0 289571
TRADING ARE	A NUMBER	R 6 PALI	ESTINE				
POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BOD SUS SOL	366 321	505 443	661 580	817 717	1012 888	1255 1102	1561 1369
INDUSTRIAL	·						
BOD SUS SCL	-0 2766	-0 3132	-0 3432	-0 3646	-0 3872	-0 4111	-0 4367
-O INDICATE AVAILABLE	S THAT N	NO DATA I	REGARDING	CONCENTR	ATION OF	POLLUTANT	WAS

٠

ADDITIONAL WASTE REMOVAL REQUIRED TO IMPROVE BOD AND SS OF EFFLUENTS TO 20 MG/L (1000 LB/YEAR)

TRADING AREA	NUMBER	7 LUFKI	N				
POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BOD SUS SOL	165 294	244 435	328 586	398 710	483 861	586 1044	710 1266
INDUSTRIAL							
BOD SUS SCL	14996 682	18158 825	21617 983	25308 1150	29638 1347	34717 1578	40676 1849
TRADING AREA	NUMBER	8 MIDDL	E SABINE				
POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BOD SUS SOL	33 123	46 170	60 223	74 274	91 337	112 415	138 511
INDUSTRIAL							
BOD SUS SOL	0 6	0 7	0 8	0 8	0 8	0 8	0 8
TRADING ARE	NUMBER	9 AUSTI	N				
POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BOD SUS SOL	0 590	0 846	0 1129	0 1388	0 1704	0 2087	0 2550
INDUSTRIAL							
BOD SUS SOL	-0 23744	-0 39444	-0 55429	-0 59194	-0 63224	-0 67538	-0 72157
-O INDICATES	S THAT NO	DATA RE	GARDING C	ONCENTRAT	ION OF PO	LLUTANT	WAS

ADDITIONAL WASTE REMOVAL REQUIRED TO IMPROVE BOD AND SS OF EFFLUENTS TO 20 MG/L (1000 LB/YEAR)

TRADING AREA NUMBER 10 BRYAN

POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BOD SUS SOL	43 455	61 655	82 876	102 1090	128 1360	160 1703	200 2138
INDUSTRIAL							
BOD SUS SOL	-0 27	-0 35	-0 41	-0 44	-0 46	-0 49	-0 53
TRADING AREA	NUMBER	11 HOUST)N				
POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BOD SUS SOL	2677 9814	3784 13875	5066 18576	6422 23547	8139 29844	10314 37817	13066 47910
INDUSTRIAL							
BOD 1 SUS SOL 2	43239 43847	219584 373816	292240 497504	337150 573958	387929 660403	453752 772459	519416 884244
TRADING AREA	NUMBER	12 LOWER	SABINE	-			
POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BOD SUS SOL	0 141	0 207	0 289	0 382	0 504	0 665	0 878

INDUSTRIAL

 BOD
 12021
 21894
 33951
 41296
 50319
 61373
 74871

 SUS SOL
 35060
 63857
 99025
 120446
 146764
 179005
 218373

 -0 INDICATES THAT NO DATA REGARDING CONCENTRATION OF POLLUTANT WAS AVAILABLE
 41296
 50319
 61373
 74871

ADDITIONAL WASTE REMOVAL REQUIRED TO IMPROVE BOD AND SS OF EFFLUENTS TO 20 MG/L (1000 LB/YEAR)

ADDITIONAL WASTE REMOVAL REQUIRED TO IMPROVE BOD AND SS OF EFFLUENTS TO 20 MG/L (1000 LB/YEAR)

TRADING ARE	A NUMBER	16 LOWER	VALLEY				
POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BOD SUS SOL	846 3667	1050 4549	1261 5465	1466 6352	1705 7387	1984 8596	2310 10008
INDUSTRIAL							
BOD SUS SCL	0 432	0 454	0 482	0 502	0 528	0 555	0 583
TRADING ARE	A NUMBER	17 LARED	00				
POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BOD SUS SOL	958 388	1207 489	1463 593	1703 690	1983 804	2310 937	2690 1091
INDUSTRIAL							
BOD SUS SOL	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0
TRADING ARE	A NUMBER	18 DEL R	IC				
POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BOD SUS SOL	0 0	0 0	0 0	0 0	0 0	0 0	0
INDUSTRIAL							
BOD SUS SOL	-0 2	-0 2	-0 2	-0 2	-0 2	-0 2	-0 2
-O INCICATES	S THAT N	O DATA RE	GARDING	CONCENTRA	TION OF	POLLUTANT	WAS

ADDITIONAL WASTE REMOVAL REQUIRED TO IMPROVE BOD AND SS OF EFFLUENTS TO 20 MG/L (1000 LB/YEAR)

TRADING AREA NUMBER 19 BROWNWOOD

POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BOD SUS SOL	108 123	145 166	180 206	206 235	235 268	269 307	307 351
INDUSTRIAL							
BOD SUS SOL	-0 8643	-0 10196	-0 11655	-0 12837	-0 14140	-0 15575	-0 17158
TRADING AREA	NUMBER	20 SAN	ANGELO				
POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BOD SUS SOL	514 377	679 498	853 626	1018 747	1217 893	1456 1068	1743 1279
INDUSTRIAL							
BOD SUS SCL	0 46	0 53	0 59	0 62	0 66	0 69	0 73
TRADING AREA	NUMBER	21 ABIL	ENE				
POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BOD SUS SOL	128 447	166 580	202 706	229 801	26 0 909	295 1032	335 1171
INDUSTRIAL							
BOD SUS SOL	-0 138	-0 167	-0 199	-0 203	-0 208	-0 214	-0 219
-O INDICATES AVAILABLE	THAT NO	DATA R	EGARDING	CONCENTRA	TION OF	POLLUTANT	WAS

ADDITIONAL WASTE REMOVAL REQUIRED TO IMPROVE BOD AND SS OF EFFLUENTS TO 20 MG/L (1000 LB/YEAR)

TRADING	AREA	NUMBE	R 22 BIG	SPRING				
POLLUTAN	ΝT	1960	1970	1980	1990	2000	2010	2020
MUNICIP	4 L							
BOD SUS SOL		453 186	676 277	886 364	1000 410	1128 463	1272 522	1433 588
INDUSTRI	[AL							
BOD SUS SOL		133 2065	159 2466	182 2826	200 3106	220 3415	242 3756	266 4134
TRADING	AREA	NUMBE	R 23 MID	LAND ODES:	SA			
POLLUTAN	١T	1960	1970	1980	1990	2000	2010	2020
MUNICIPA	4L							
BOD SUS SOL		79 1230	104 1611	127 1968	144 2232	163 2533	185 2875	211 3264
INDUSTRI	(AL							
BOD SUS SOL	13	100 30080	142 183905	186 240536	208 269746	235 303746	265 343384	301 389677
TRADING	AREA	NUMBE	R 24 EL	PASO				
POLLUTAN	١T	1960	1970	1980	1990	2000	2010	2020
MUNICIP	4L							
BOD SUS SOL		1292 915	1678 1189	2123 1504	2616 1853	3225 2284	3975 2816	4902 3472
INDUSTRI	AL.							
BOD SUS SCL		126 -0	160 -0	190 -0	211 -0	235 -0	263 -0	293 -0
-O INDIC AVAILABL	CATES	THAT	NO DATA	REGARDING	CONCENTRA	TION OF	POLLUTANT	WAS

ADDITIONAL WASTE REMOVAL REQUIRED TO IMPROVE BOD AND SS OF EFFLUENTS TO 20 MG/L (1000 LB/YEAR)

TRADING AREA NUMBER 25 LUBBOCK

POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BOD SUS SOL	4455 4930	6150 6806	7743 8569	8864 9809	10154 11237	11638 12879	13343 14767
INDUSTRIAL							
BOD SUS SOL	-0 309	-0 354	-0 394	-0 416	-0 440	-0 470	-0 505
TRADING AREA	NUMBER	26 AMARI	LLO				
POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BOD SUS SOL	2966 2492	4646 3902	6199 5208	6939 5829	7769 6526	8700 7308	9744 8185
INDUSTRIAL							
BOD SUS SCL	53993 0	76601 0	95171 0	99588 0	104255 0	109190 0	114415 0
TRADING AREA	NUMBER	27 WICHI	TA FALLS				
POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BOD SUS SOL	895 1611	1172 2110	1446 2602	1672 3009	1934 3482	2239 4030	2593 4668
INDUSTRIAL							
BOD SUS SOL	2667 3091	3116 3612	3476 4030	3615 4191	3759 4358	3910 4532	4066 4713
-O INDICATES	S THAT N	O DATA RE	GARDING	CONCENTRAT	TION OF P	OLLUTANT	WAS

ADDITIONAL WASTE REMCVAL REQUIRED TO IMPROVE BOD AND SS OF EFFLUENTS TO 20 MG/L (1000 LB/YEAR)

TRADING AREA NUMBER 28 GAINESVILLE

POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BOD SUS SOL INDUSTRIAL	83 83	122 122	161 161	195 195	235 235	283 283	341 341
BOD SUS SOL	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0

TRADING AREA NUMBER 29 SHERMAN DENISON

POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BOD SUS SOL	266 414	358 556	462 719	573 892	712 1107	884 1375	1097 1707
INDUSTRIAL							
BOD SUS SOL	247 252	328 334	406 414	451 459	502 512	564 574	636 648
TRADING AREA	NUMBER	30 PARIS					
POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BOD SUS SOL	158 0	251 0	344 0	405 0	476 0	560 0	660 0
INDUSTRIAL							
BOD SUS SCL	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0	-0 -0

-O INDICATES THAT NO DATA REGARDING CONCENTRATION OF POLLUTANT WAS AVAILABLE

ADDITIONAL WASTE REMOVAL REQUIRED TO IMPROVE BOD AND SS OF EFFLUENTS TO 20 MG/L (1000 LB/YEAR)

TRADING AREA NUMBER 31 SULFUR SPRINGS 2000 POLLUTANT 1960 1970 1980 1990 2010 2020 MUNICIPAL BOD 4 7 11 14 19 25 33 SUS SOL 22 36 53 71 94 125 166 INDUSTRIAL BOD -0 -0 -0 -0 -0 -0 -0 SUS SOL -0 -0 -0 -0 -0 -0 ~0 TRADING AREA NUMBER 32 NORTHEAST TEXAS POLLUTANT 1960 1970 1980 1990 2000 2010 2020 MUNICIPAL 706 BOD 919 1403 1162 1697 2058 2501 SUS SOL 321 418 528 638 771 936 1137 INDUSTRIAL BOD -0 -0 -0 ~0 -0 -0 -0 SUS SOL -0 -0 -0 -0 -0 -0 -0 TRADING AREA NUMBER 33 STATE TOTAL POLLUTANT 1960 1970 1980 1990 2000 2010 2020 MUNICIPAL 24786 BOD 35169 45684 53968 63863 75701 89881 SUS SOL 42044 59021 76810 92281 111098 134019 161985 INDUSTRIAL BOD 316642 447479 571626 642556 721751 821625 926536 SUS SOL 741073 1049076 1360026 1552871 1774038 2046191 2346319 -O INDICATES THAT NO DATA REGARDING CONCENTRATION OF POLLUTANT WAS AVAILABLE

APPENDIX F

PROJECTED MUNICIPAL AND INDUSTRIAL RETURN FLOWS BY DRAINAGE BASINS (MGY)

APPENDIX F

PROJECTED MUNICIPAL AND INDUSTRIAL RETURN FLOWS (MGY)

DRAINAGE BASIN		1960	1970	1980	1990	2000	2010	2020
CANADIAN RIVER	MUN	5512	8940	12058	13526	15165	16993	19030
CANADIAN RIVER	IND	12282	17775	21847	22805	23804	24847	25937
CANADIAN RIVER	TOT	17794	26715	33905	36331	38969	41841	44967
RED RIVER	MUN	6266	8455	10567	12234	14159	16382	18949
RED RIVER	IND	2515	3248	3794	4006	4231	4468	4718
RED RIVER	TOT	8781	11703	14361	16240	18390	20850	23667
SULPHUR RIVER	MUN	5583	7702	9960	12074	14635	17738	21496
SULPHUR RIVER	IND	6910	11266	14823	15742	16717	17752	18852
SULPHUR RIVER	TOT	12493	18968	24783	27816	31352	35491	40348
CYPRESS CREEK	MUN	1462	1799	2154	2507	2919	3397	3954
CYPRESS CREEK	IND	3425	4142	4551	4543	4535	4527	4520
CYPRESS CREEK	TOT	4887	5941	6704	7050	7454	7925	8474
SABINE RIVER	MUN	5410	7426	9879	12739	16425	21176	27301
SABINE RIVER	IND	3259	6172	9128	10543	12178	14066	16247
SABINE RIVER	TOT	8669	13598	19007	23282	28603	35242	43547
NECHES RIVER	MUN	6475	9775	13751	18028	23632	30972	40588
NECHES RIVER	IND	31511	54381	78518	94854	114589	138431	167234
NECHES RIVER	Tot	37986	64156	92269	112882	138221	169403	207822
NECHES TRINITY C NECHES TRINITY C NECHES TRINITY C	MUN IND TOT	0 0 0	0 0	0 0	0 0 0	0 0 0	0 0 0	0 0 0
TRINITY RIVER	MUN	65859	95262	124268	146167	171411	200344	233281
TRINITY RIVER	IND	19212	23074	26763	29980	33584	37621	42143
TRINITY RIVER	TOT	85071	118336	151031	176147	204995	237965	275424
TRINITY SAN JACI	MUN	0	0	0	0	0	0	0
TRINITY SAN JACI	IND	0	0	0	0	0	0	0
TRINITY SAN JACI	TOT	0	0	0	0	0	0	0
SAN JACINTO RIVE	MUN	733	1036	1387	1758	2229	2825	3580
SAN JACINTO RIVE	IND	1249	1915	2550	2953	3419	3959	4584
SAN JACINTO RIVE	TOT	1982	2950	3937	4711	5648	6784	8164
SAN JACINTO BRAZ	MUN	1424	2013	2695	3418	4333	5491	6958
SAN JACINTO BRAZ	IND	3167	4855	6468	7490	8673	10043	11630
SAN JACINTO BRAZ	TOT	4592	6869	9164	10908	13006	15534	18588

1

PROJECTED MUNICIPAL AND INDUSTRIAL RETURN FLOWS (MGY)

DRAINAGE BASIN		1960	1970	1980	1990	2000	2010	2020
BRAZOS RIVER	MUN	22544	31588	40932	49056	58779	70409	84320
BRAZOS RIVER	IND	4573	5401	6247	7077	8018	9084	10291
BRAZCS RIVER	TOT	27117	36988	47179	56134	66797	79493	94611
BRAZOS COLORADO	MUN	5C6	734	986	1228	1530	1905	2371
BRAZOS COLORADO	IND	377	782	1245	1517	1849	2254	2747
BRAZOS COLORADO	TOT	883	1516	2231	2746	3379	4159	5118
COLORADO RIVER	MUN	16543	23177	30010	35912	42934	51280	61185
COLORADO RIVER	IND	7539	10745	13517	15011	16669	18511	20556
COLORADO RIVER	TOT	24082	33922	43528	50923	59604	69791	81741
COLORADO LAVACA	MUN	158	233	316	391	485	602	745
COLORADO LAVACA	IND	1687	2851	4023	4741	5589	6587	7765
COLORADO LAVACA	TOT	1846	3084	4338	5133	6074	7189	8510
LAVACA RIVER	MUN	534	695	855	995	1157	1345	1563
LAVACA RIVER	IND	83	168	260	311	372	445	533
LAVACA RIVER	TOT	617	863	1115	1306	1529	1790	2096
LAVACA GUADALUPE LAVACA GUADALUPE LAVACA GUADALUPE	MUN IND TOT	0 0	0 0 0	0 0 0	0 0 0	0 0	0 0 0	0 0 0
GUADALUPE RIVER	MUN	4693	6519	8467	10284	12474	15112	18280
GUADALUPE RIVER	IND	8066	10170	11919	12984	14144	15408	16784
GUADALUPE RIVER	TOT	12758	16689	20386	23267	26618	30519	35064
SAN ANTONIO RIVE	MUN	23849	34658	44475	50398	57038	64467	72758
SAN ANTONIO RIVE	IND	2218	3125	3923	4387	4905	5486	6134
SAN ANTONIO RIVE	TOT	26068	37783	48398	54785	61944	69953	78893
SAN ANTONIO NUEC	MUN	411	528	651	772	911	1070	1248
SAN ANTONIO NUEC	IND	133	180	224	254	287	326	369
SAN ANTONIO NUEC	Tot	544	708	875	1026	1199	1396	1617
NUECES RIVER	MUN	1962	2375	2766	3098	3461	3855	4279
NUECES RIVER	IND	1305	1640	1907	2052	2208	2375	2555
NUECES RIVER	TOT	3268	4015	4673	5150	5669	6230	6834
NUECES RIO GRAND	MUN	5214	6372	7637	8971	10489	12197	14093
NUECES RIO GRAND	IND	4246	6431	8393	9439	10616	11939	13427
NUECES RIO GRAND	TOT	9460	12803	16030	18411	21105	24137	27521

PROJECTED MUNICIPAL AND INDUSTRIAL RETURN FLOWS (MGY)

DRAINAGE BASIN		1960	1970	1980	1990	2009	2010	2020
RIO GRANDE	MUN	10489	13370	16553	19905	23926	28748	34528
RIO GRANDE	IND	2862	3485	4026	4412	4835	5299	5808
RIO GRANDE	TOT	13351	16855	20579	24317	28761	34047	40335
SABINE LAKE	MUN	8037	11950	16712	21968	28877	37957	49893
SABINE LAKE	IND	34944	62567	92440	112546	137063	166967	203453
SABINE LAKE	TOT	42981	74516	109152	134514	165940	204924	253346
GALVESTON BAY	MUN	48726	68877	92210	116921	148219	187850	238020
GALVESTON BAY	IND	98549	151032	201186	232955	269740	312334	361658
GALVESTON BAY	TOT	147276	219909	293396	349876	417960	500185	599678
MATAGCRDA BAY	MUN	581	886	1210	1458	1757	2119	2554
MATAGORDA BAY	IND	9983	17790	25931	30904	36832	43897	52319
MATAGCRDA BAY	TOT	10565	18677	27141	32362	38589	46016	54874
SAN ANTONIO BAY	MUN	20	36	52	63	. 76	91	109
SAN ANTONIO BAY	IND	561	1007	1476	1762	2104	2512	2999
SAN ANTONIO BAY	TOT	581	1043	1528	1825	2179	2603	3108
ARANSAS COPANO B	MUN	597	786	998	1222	1495	1825	2225
ARANSAS COPANO B	IND	334	433	512	553	597	645	696
ARANSAS COPANO B	TOT	931	1219	1510	1775	2092	2470	2922
CORPUS CHRISTI B	MUN	8081	9926	11952	14103	16576	19397	22580
CORPUS CHRISTI B	IND	4651	6977	9058	10167	11413	12813	14385
CORPUS CHRISTI B	TOT	12731	16903	21010	24271	27990	32209	36965
STATE TOTAL	MUN	251671	355117	463501	559198	675094	815548	985888
STATE TOTAL	IND	265642	411613	554729	643988	748972	872596	1018345
STATE TOTAL	TOT	517312	766730	1018230	1203186	1424066	1688144	2004233

APPENDIX G

QUANTITIES OF WASTES DISCHARGED BY MUNICIPAL AND INDUSTRIAL TREATMENT PLANTS IF PRESENT LEVEL OF TREATMENT IS MAINTAINED (1000 lb/year)

APPENDIX G

AVAILABLE

QUANTITIES OF WASTES DISCHARGED BY MUNICIPAL AND INDUSTRIAL TREATMENT PLANTS IF PRESENT LEVEL OF TREATMENT IS MAINTAINED (100C LB/YEAR)

RIVER BASI	N NUMBER	1 CANA	CIAN RIVE	ર			
POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
HOD SUS SCL TOT SCL CHLORIDE NITRATES PHOSPHATES	3218 2299 27352 4597 1241 1103	5219 3728 44363 7456 2013 1789	7039 5028 59835 10056 2715 2414	7896 5640 67120 11281 3046 2707	8853 6324 75253 12648 3415 3035	9921 7086 84324 14172 3826 3401	11110 7936 94433 15871 4285 3809
INDUSTRIAL							
BOD SUS SOL TOT SOL CHLORIDE COD SULFATES	2561 780838 844448 307398 7682 66376	3706 1130060 1222119 444879 11118 96062	4555 1388941 1502090 546794 13665 118068	4755 1449847 1567957 570771 14265 123246	4963 1513359 1636643 595775 14889 128644	5181 1579668 1708354 621879 15542 134281	5408 1648966 1783297 649160 16224 140172
RIVER BASI	N NUMBER	2 RED	RIVER				
POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BOD SUS SCL TOT SOL CHLORIDE NITRATES PHOSPHATES	2665 3867 31564 6794 1463 1254	3596 5218 42591 9167 1974 1692	4495 6522 53230 11457 2468 2115	5204 7550 61627 13264 2857 2449	6022 8738 71324 15351 3306 2834	6968 10110 82522 17761 3826 3279	8060 11695 95453 20545 4425 3793
INDUSTRIAL							
BOD SUS SOL TOT SOL CHLORIDE COD SULFATES	839 12354 23219 1573 1279 1091	1084 15955 29987 2032 1652 1409	1266 18637 35028 2373 1930 1645	1336 19679 36985 2506 2038 1737	1411 20784 39062 2646 2152 1835	1491 21948 41250 2795 2273 1938	1574 23176 43558 2951 2400 2046
-0 INDICAT	ES THAT	NO DATA	REGARDING	CONCENTR	ATION OF	POLLUTANT	WAS

129

QUANTITIES OF WASTES DISCHARGED BY MUNICIPAL AND INDUSTRIAL TREATMENT PLANTS IF PRESENT LEVEL OF TREATMENT IS MAINTAINED (100C LB/YEAR)

RIVER BASIN	NUMBER	3 SULPH	UR RIVER				
POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BOD SUS SOL TOT SOL CHLORIDE NITRATES PHOSPHATES	2607 1769 21279 4889 1024 1117	3597 2441 29355 6745 1413 1542	4652 3157 37961 8722 1827 1994	5639 3826 46019 10573 2215 2417	6835 4638 55780 12816 2685 2929	8284 5622 67606 15533 3255 3550	10039 6813 81929 18824 3944 4303
INDUSTRIAL							
BOD SUS SOL TOT SOL CHLORIDE COD SULFATES	2305 33944 63796 4322 3515 2997	3758 55342 104012 7047 5731 4886	4945 72814 136852 9272 7541 6428	5252 77329 145336 9847 8009 6827	5577 82118 154338 10456 8505 7250	5922 87202 163893 11104 9031 7699	6289 92606 174049 11792 9591 8176
RIVER BASIN	NUMBER	4 CYPRE	SS CREEK				
POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
ROD SUS SCL TOI SCL CHLORIDE NITRATES PHOSPHATES	463 512 6743 1683 268 293	570 630 8297 2071 330 360	683 755 9934 2479 395 431	795 878 11562 2885 460 502	925 1022 13462 3360 536 584	1077 1190 15667 3910 623 680	1253 1385 18236 4551 725 791
INDUSTRIAL							
BOD SUS SCL TOT SOL CHLORIDE COD SULFATES	1143 16824 31621 2142 1742 1485	1382 20347 38241 2591 2107 1796	1518 22356 42017 2847 2315 1974	1516 22316 41943 2842 2311 1970	1513 22277 41869 2837 2307 1967	1510 22238 41795 2832 2303 1963	1508 22203 41730 2827 2300 1960
A THOTOATES	THAT	NO DATA D	CADDING	CONCENTO	TTON OF F	OLIUTANT	LAC

-O INDICATES THAT NO DATA REGARDING CONCENTRATION OF POLLUTANT WAS AVAILABLE

QUANTITIES OF WASTES DISCHARGED BY MUNICIPAL AND INDUSTRIAL TREATMENT PLANTS IF PRESENT LEVEL OF TREATMENT IS MAINTAINED (1000 LB/YEAR)

RIVER BASIN	NUMBER	5 SABINE	RIVER				
POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BOD SUS SOL TOT SOL CHLORIDE NITRATES PHOSPHATES	587 1444 16333 4467 1038 1083	805 1982 22420 6131 1424 1486	1071 2637 29825 8157 1895 1977	1381 3400 38460 10518 2444 2550	1781 4384 49588 13561 3151 3288	2296 5651 63932 17484 4062 4239	2960 7286 82424 22541 5237 5465
INDUSTRIAL							
BOD SUS SOL TOT SOL CHLORIDE COD SULFATES	408 3724 45961 32535 3995 16879	772 7052 87043 61615 7567 31966	1142 10429 128732 91125 11191 47275	1319 12046 148687 105251 12926 54604	1523 13914 171746 121573 14930 63072	1760 16072 198372 140421 17245 72850	2032 18563 229130 162193 19918 84145
RIVER BASIN	NUMBER	6 NECHES	RIVER				
POLLUTANT	1960	1970	1980	1,990	2000	2010	2020
MUNICIPAL							
BOD SUS SOL TOT SOL CHLORIDE NITRATES PHOSPHATES	1782 2376 24571 5238 1188 1296	2690 3587 37093 7908 1794 1957	3785 5046 52181 11124 2523 2752	4962 6616 68411 14584 3308 3608	6504 8672 89676 19118 4336 4730	8524 11365 117529 25056 5683 6199	11171 14894 154019 32835 7447 8124
INDUSTRIAL							
BOD SUS SCL TOT SOL CHLORIDE COD SULFATES	30748 25492 839126 870662 156893 46779	53064 43993 1448145 1502570 270762 80730	76616 63519 2090905 2169485 390940 116562	92557 76735 2525926 2620856 472276 140813	111814 92700 3051462 3166142 570536 170110	135078 111988 3686365 3824907 689245 205504	163184 135289 4453378 4620746 832655 248262

-O INDICATES THAT NO DATA REGARDING CONCENTRATION OF POLLUTANT WAS AVAILABLE
52.7

AVAILABLE

QUANTITIES OF WASTES DISCHARGED BY MUNICIPAL AND INDUSTRIAL TREATMENT PLANTS IF PRESENT LEVEL OF TREATMENT IS MAINTAINED (100C LB/YEAR)

RIVER BASI	N NUMBEI	R 7 NECH	ES TRINIT	Y COASTAL	Α		
POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BOD SUS SOL TOT SCL CHLORIDE NITRATES PHUSPHATES	0 0 0 0 0		0 0 0 0 0	0 0 0 0 0			0 0 0 0 0 0
INDUSTRIAL							
BOD SUS SOL TOT SCL CHLORIDE COD SULFATES	0 0 0 0		0 0 0 0 0	0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0
RIVER BASI	N NUMBER	R 8 TRIN	ITY RIVER				
POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BOD SUS SOL TOT SOL CHLORIDE NITRATES PHOSPHATES	17576 20872 313081 65912 12084 13182	25424 30190 452856 95338 17479 19068	33165 39383 590745 124367 22801 24873	39009 46323 694849 146284 26819 29257	45746 54324 814854 171548 31450 34310	5 53468 63493 952395 200504 36759 40101	62258 73931 1108971 233468 42802 46694
INDUSTRIAL							
BOD SUS SOL TOT SCL CHLORIDE COD SULFATES	176411 56881 803223 808030 -0 977391	211873 68315 964687 970461 -0 1173867	245747 79237 1118919 1125615 -0 1361541	275287 88762 1253416 1260917 -0 1525203	308380 99432 1404094 1412497 -0 1708552	345449 111384 1572875 1582287 -0 1913931	386971 124773 1761932 1772476
~U INDICAL	ES IMAI	NU UAIA	KEGARDING	CUNCENTR	ATION OF	PULLUTANT	WAS

QUANTITIES OF WASTES DISCHARGED BY MUNICIPAL AND INDUSTRIAL TREATMENT PLANTS IF PRESENT LEVEL OF TREATMENT IS MAINTAINED (100C LB/YEAR)

RIVER BASIN	NUMBER	9 TRINITY	SAN JA	CINTO COA	S		
POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BOD SUS SOL TOT SOL CHLORIDE NITRATES PHOSPHATES	0 0 0 0 0		0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0
INDUSTRIAL							
BOD SUS SOL TOT SCL CHLORIDE COD SULFATES	0 0 0 0 0		0 0 0 0 0	0 0 0 0 0	0 0 0 0 0		0 0 0 0 0
RIVER BASIN	NUMBER	10 SAN JAC	INTO RI	VER			
POLLUTANT MUNICIPAL	1960	1970	1980	1990	2000	2010	2020
BOD SUS SOL TOT SOL CHLORIDE NITRATES PHOSPHATES	134 141 3674 862 134 147	190 199 5193 1218 190 207	254 266 6952 1631 254 278	323 337 8812 2067 323 352	409 428 11173 2621 409 446	518 542 14160 3322 518 565	657 687 17944 4210 657 717
INDUSTRIAL							
BOD SUS SOL TOT SOL CHLORIDE COD SULFATES	24740 19760 44281 21760 18990 13187	37931 30297 67893 33364 29115 20219	50509 40343 90406 44427 38770 26924	58492 46719 104694 51448 44897 31179	67722 54092 121215 59567 51982 36099	78418 62635 140360 68975 60192 41801	90798 72523 162518 79864 69694 48400

QUANTITIES OF WASTES DISCHARGED BY MUNICIPAL AND INDUSTRIAL TREATMENT PLANTS IF PRESENT LEVEL OF TREATMENT IS MAINTAINED (1000 LB/YEAR)

RIVER BASIN NUMBER 11 SAN JACINTO BRAZOS COAST

POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BOD SUS SOL TOT SOL CHLORIDE NITRATES PHUSPHATES	475 546 14026 4038 273 285	672 772 19827 5708 386 403	899 1034 26545 7642 517 539	1140 1311 33666 9692 656 684	1445 1662 42678 12287 831 867	1832 2107 54084 15570 1053 1099	2321 2669 68533 19730 1335 1393
INDUSTRIAL							
BOD SUS SOL TOT SCL CHLORIDE COD SULFATES	31537 27205 179158 126280 34205 18357	48346 41705 274648 193586 52435 28141	64408 55561 365896 257902 69856 37490	74585 64341 423711 298653 80894 43414	86365 74503 490634 345823 93671 50271	100008 86271 568135 400450 108467 58212	115811 99904 657912 463729 125607 67411
RIVER BASIN	N NUMBER	12 BRAZ	DS RIVER				
POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BOD SUS SCL TOT SOL CHLORIDE NITRATES PHOSPHATES	10341 11093 129732 25006 4700 4512	14489 15543 181776 35038 6586 6323	18776 20141 235547 45403 8534 8193	22502 24138 282298 54414 1C228 9819	26962 28923 338250 65199 12255 11765	32297 34645 405176 78099 14680 14093	38678 41490 485228 93529 17581 16877

INDUSTRIAL

BOD	496	586	677	767	869	985	1116
SUS SOL	6255	7387	8544	9680	10967	12425	14076
TOT SOL	355263	419588	485311	549792	622895	705710	799478
CHLORIDE	284973	336571	389291	441014	499654	566083	641299
COD	29252	34549	39961	45270	51289	58108	65829
SULFATES	4729	5585	6460	7319	8292	9394	10643

QUANTITIES OF WASTES DISCHARGED BY MUNICIPAL AND INDUSTRIAL TREATMENT PLANTS IF PRESENT LEVEL OF TREATMENT IS MAINTAINED (100C LB/YEAR)

RIVER BASIN	NUMBER	13 BRAZCS	COLORADO	COASTAL			
POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BOD SUS SOL TOT SOL CHLORIDE NITRATES PHOSPHATES	118 190 2684 663 97 101	171 275 3893 961 141 147	230 370 5230 1291 189 197	287 461 6514 1608 236 246	357 574 8115 2003 293 306	445 715 10105 2494 365 381	554 890 12576 3105 455 475
INDUSTRIAL							
BOD SUS SOL TOT SOL CHLORIDE COD SULFATES	41 1962 17129 1223 1207 2132	85 4070 35531 2537 2504 4422	135 6479 56568 4039 3987 7040	164 7895 68927 4922 4858 8578	200 9622 84012 5999 5922 10455	244 11730 102413 7313 7219 12745	298 14296 124814 8912 8797 15533
RIVER BASIN	NUMBER	14 COLORA	DO RIVER				
POLLUTANT	1960	1970	1980	1990	2000	2010	2020
BOD SUS SCL TOT SCL CHLORIDE NITRATES PHOSPHATES	4139 5933 116032 22075 3587 3311	5799 8312 162562 30927 5026 4639	7509 10762 210488 40045 6507 6007	8985 12879 251885 47921 7787 7188	10742 15397 301136 57291 9310 8594	12830 18390 359675 68428 11120 10264	15308 21942 429148 81645 13267 12247
INDUSTRIAL							
BOD SUS SOL TOT SOL CHLORIDE COD SULFATES	817 68157 99406 19869 -0 77399	1165 97141 141679 28318 -0 110314	1466 122201 178229 35623 -0 138773	1627 135708 197928 39561 -0 154111	1807 150697 219790 43930 -0 171133	2007 167350 244078 48785 -0 190044	2229 185838 271042 54174 -0 211039

QUANTITIES OF WASTES DISCHARGED BY MUNICIPAL AND INDUSTRIAL TREATMENT PLANTS IF PRESENT LEVEL OF TREATMENT IS MAINTAINED (1000 LB/YEAR)

RIVER BASIN NUMBER 15 COLORADO LAVACA COASTAL

POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BOD	41	60	82	101	125	156	193
SUS SUL	29	43	58 1402	2004	2507	110	137
CHLORIDE	202	297	403	499	619	768	3989 951
NITRATES	29	43	· 58	72	89	110	137
PHOSPHATES	32	47	63	78	97	120	149
INDUSTRIAL							
BOD	507	856	1208	1423	1678	1978	2331
SUS SCL	11720	19807	27949	32937	38828	45761	53945
TOT SOL	32191	54403	76767	90467	106649	125693	148171
CHLORIDE	10172	17191	24258	28587	33701	39718	46822
COD	-0	-0	- 0	-0	-0	-0	()
SULFATES	10102	17072	24090	28390	33468	39444	46498

RIVER BASIN NUMBER 16 LAVACA RIVER

POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
800	196	255	314	365	425	494	574
SUS SOL	192	249	307	357	415	482	561
TOT SCL	3897	5072	6239	7261	8443	9815	11406
CHLORIDE	900	1171	1440	1676	1949	2266	2633
NITRATES	107	139	171	199	232	269	313
PHOSPHATES	107	139	171	199	232	269	313
INDUSTRIAL							
80D	42	84	130	156	186	223	267
SUS SCL	403	815	1262	1510	1806	2160	2587
TOT SOL	2073	4195	6492	7766	9289	11112	13309
CHLORIDE	782	1582	2448	2928	3503	4190	5019
COD	-0	-0	-0	-0	-0	-0	-0
SULFATES	142	287	445	532	636	761	911

QUANTITIES OF WASTES DISCHARGED BY MUNICIPAL AND INDUSTRIAL TREATMENT PLANTS IF PRESENT LEVEL OF TREATMENT IS MAINTAINED (1000 LB/YEAR)

RIVER BASIN NUMBER 17 LAVACA GUADALUPE COASTAL

POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
нор	.)	0	0	0	0	U	0
SUS SOL	0	С	0	0	0	0	Ũ
TOT SCL	0	0	0	0	0	0	Ū
CHLORIDE	U	0	Ū	0	0	0	0
NITRATES	0	0	0	0	0	0	0
PHOSPHATES	0	0	Û	0	0	Û	0
INDUSTRIAL							
BOD	0	0	Û	0	. 0	0	Ō
SUS SCL	Ŭ	0	0	0	0	0	0
TOT SCL	0	0	0	0	0	0	Û
CHLORIDE	· 0	0	0	0	0	0	0
COD	U	0	0	0	0	0	0
SULFATES	0	0	0	0	0	0	Ũ

RIVER BASIN NUMBER 18 GUADALUPE RIVER

POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BOD SUS SOL TOT SCL CHLORIDE NITRATES PHOSPHATES INDUSTRIAL	1057 1566 22505 5714 1057 939	1468 2175 31262 7938 1468 1305	1907 2825 40603 10310 1907 1695	2316 3431 49317 12522 2316 2058	2809 4161 59819 15189 2809 2497	3403 5041 72470 18401 3403 3025	4116 6098 87662 22258 4116 3659
BOD SUS SOL TOT SOL CHLORIDE COD SULFATES	3094 62023 199121 46484 23545 2489	3902 78202 251061 58609 29686 3138	4573 91651 294237 68688 34792 3678	4981 99840 320528 74826 37900 4007	5426 108760 349164 81511 41286 4365	5911 118480 380368 88795 44976 4755	6439 129060 414337 96725 48992 5179

-O INDICATES THAT NO DATA REGARDING CONCENTRATION OF POLLUTANT WAS AVAILABLE

÷.

QUANTITIES OF WASTES DISCHARGED BY MUNICIPAL AND INDUSTRIAL TREATMENT PLANTS IF PRESENT LEVEL OF TREATMENT IS MAINTAINED (1000 LB/YEAR)

RIVER BASIN NUMBER 19 SAN ANTONIO RIVER

.

POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BOD SUS SOL TOT SOL CHLORIDE NITRATES PHOSPHATES INDUSTRIAL	3779 2586 105020 19691 5370 4774	5492 3758 152617 28616 7804 6937	7048 4822 195847 36721 10015 8902	7986 5464 221929 41612 11349 10088	9038 6184 251168 47094 12844 11417	10215 6990 283882 53228 14517 12904	11529 7888 320391 60073 16384 14563
ROD SUS SOL TOT SOL CHLORIDE COD SULFATES	851 17055 54754 12782 6474 684	1199 24030 77145 18009 9122 964	1505 30166 96845 22608 11451 1211	1683 33734 108299 25282 12806 1354	1882 37717 121087 28267 14318 1514	2105 42184 135430 31615 16014 1693	2353 47167 151426 35350 17905 1893

RIVER BASIN NUMBER 20 SAN ANTONIO NUECES COAST

1960	1970	1980	1990	2000	2010	2020
86	110	136	161	190	223	260
106	137	168	200	236	277	323
5550	7129	8790	10424	12301	14448	16851
1693	2175	2682	3181	3753	4408	5142
75	97	119	142	167	196	229
82	106	130	155	182	214	250
201	272	338	383	433	492	557
603	817	1016	1152	1302	1479	1674
2200	2977	3705	4201	4746	5391	6103
1007	1363	1696	1923	2173	2469	2794
2218	3002	3736	4237	4787	5438	6155
900	1217	1515	1718	1941	2205	2496
	1960 86 106 5550 1693 75 82 201 603 2200 1007 2218 900	1960 1970 86 110 106 137 5550 7129 1693 2175 75 97 82 106 201 272 603 817 2200 2977 1007 1363 2218 3002 900 1217	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

QUANTITIES OF WASTES DISCHARGED BY MUNICIPAL AND INDUSTRIAL TREATMENT PLANTS IF PRESENT LEVEL OF TREATMENT IS MAINTAINED (100C LB/YEAR)

RIVER BASIN NUMBER 21 NUECES RIVER

POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BOD SUS SOL TOT SOL CHLORIDE NITRATES PHOSPHATES	311 1080 12796 3158 409 393	376 1307 15489 3823 495 475	438 1523 18040 4452 577 554	491 1705 20205 4987 646 620	548 1905 22572 5571 722 693	611 2122 25142 6205 804 772	678 2355 27907 6888 892 856
INDUSTRIAL BOD SUS SOL TOT SCL CHLORIDE COD SULFATES	3428 1807 10949 12233 39715 17240	4308 2270 13760 15374 49910 21665	5010 2640 16000 17877 58035 25193	5391 2841 17216 19236 62448 27108	5801 3057 18525 20698 67195 29169	6239 3288 19926 22264 72278 31375	6712 3537 21437 23951 77755 33753

RIVER BASIN NUMBER 22 NUECES RIO GRANDE COASTA

POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BOD	1305	1594	1911	2245	2624	3052	3526
SUS SOL	3000	3667	4395	5162	6036	7019	8110
TOT SOL	54356	66428	79616	93523	109348	127154	146920
CHLORIDE	13524	16527	19808	23268	27206	31636	36554
NITRATES	1044	1275	1529	1796	2099	2441	2821
PHOSPHATES	1044	1275	1529	1796	2099	2441	2821
INDUSTRIAL							
BOD	2656	4023	5250	5904	6640	7468	8399
SUS SOL	5312	8045	10500	11808	13281	14936	16797
TOT SOL	106235	160904	209993	236164	265612	298714	335944
CHLORIDE	77906	117996	153995	173187	194782	219057	246359
COD	12394	18772	24499	27552	30988	34850	39193
SULFATES	-0	-0	-0	-0	-0	-0	-0

QUANTITIES OF WASTES DISCHARGED BY MUNICIPAL AND INDUSTRIAL TREATMENT PLANTS IF PRESENT LEVEL OF TREATMENT IS MAINTAINED (100C LB/YEAR)

RIVER BASIN NUMBER 23 RIO GRANDE

POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
80D	4811	6133	7593	9130	10975	13187	15838
SUS SOL	4024	5129	6350	7636	9179	11029	13246
TOT SOL	58698	74820	92633	111391	133893	160878	193224
CHLORIDE	13734	17506	21674	26063	31328	37642	45210
NITRATES	2099	2676	3313	3984	4789	5754	6911
PHOSPHATES	2099	2676	3313	3984	4789	5754	6911
INDUSTRIAL							
BOD	454	552	638	699	766	840	920
SUS SOL	79842	97222	112315	123083	134883	147828	162028
TOT SOL	104714	127508	147302	161424	176901	193878	212501
CHLORIDE	67287	81934	94653	103728	113673	124582	136549
COD	1193	1453	1679	1840	2016	2210	2422
SULFATES	33441	4072 0	47041	51551	56494	61915	67863

RIVER BASIN NUMBER 24 SABINE LAKE

POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BOD	737	1096	1533	2015	2649	3482	4577
SUS SOL	1408	2093	2927	3847	5058	6648	8738
TOT SOL	28085	41759	58399	76766	100910	132639	174349
CHLORIDE	8245	12259	17144	22535	29623	38937	51181
NITRATES	1475	2193	3066	4031	5298	6964	9154
PHOSPHATES	1475	2193	3066	4031	5298	6964	9154
INDUSTRIAL							
BOD	12823	22960	33922	41300	50297	61270	74659
SUS SOL	26229	46963	69385	84477	102879	125325	152712
TOT SOL	859144	1538292	2272759	2767092	3369875	4105104	5002161
CHLORIDE	1108320	1984439	2931921	3569624	4347230	5295696	6452923
COD	210997	377790	558168	679571	827608	1008173	1228482
SULFATES	63824	114276	168838	205561	250340	304959	371599

.

QUANTITIES OF WASTES DISCHARGED BY MUNICIPAL AND INDUSTRIAL TREATMENT PLANTS IF PRESENT LEVEL OF TREATMENT IS MAINTAINED (1000 LB/YEAR)

RIVER BASI	N NUMBER	25 GALVI	ESTON BAY				
POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BOD SUS SOL TOT SOL CHLORIDE NITRATES PHOSPHATES	9347 16255 264550 65833 8940 8940	13212 22977 373957 93058 12638 12638	17688 30761 500639 124583 16919 16919	22428 39005 634804 157970 21453 21453	28431 49446 804731 200256 27195 27195	36033 62667 1019902 253800 34467 34467	45657 79403 1292292 321584 43672 43672
INDUSTRIAL							
BOD SUS SOL TOT SOL CHLORIDE COD SULFATES	154517 251501 6524232 5806714 674779 996963	236806 385440 9998759 8899123 1034137 1527903	315444 513435 13319101 11854302 1377549 2035282	365255 594510 15422301 13726198 1595075 2356671	422931 688387 17857576 15893647 1846948 2728803	489715 797089 2C677423 18403375 2138595 3159702	567051 922966 23942816 21309649 2476323 3658684
RIVER BASI	N NUMBER	26 MATA	GORDA BAY				
POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BOD SUS SOL TOT SOL CHLORIDE NITRATES PHOSPHATES	184 233 3435 887 107 107	281 355 5239 1352 163 163	383 484 7155 1847 222 222	462 584 8621 2225 268 268	557 703 10389 2682 322 322	672 848 12530 3234 389 389	809 1022 15102 3898 469 469
INDUSTRIAL							
BOD	2914	5193	7569	9021	10751	12814	15272

-O INDICATES THAT NO DATA REGARDING CONCENTRATION OF POLLUTANT WAS AVAILABLE

•

QUANTITIES OF WASTES DISCHARGED BY MUNICIPAL AND INDUSTRIAL TREATMENT PLANTS IF PRESENT LEVEL OF TREATMENT IS MAINTAINED (1000 LB/YEAR)

RIVER BASIN NUMBER 27 SAN ANTONIO BAY

POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BOD	20	36	52	63	76	91	109
SUS SOL	11	20	29	35	42	50	60
TOT SCL	138	249	360	436	526	630	755
CHLORIDE	38	68	98	119	143	172	205
NITRATES	4	7	10	12	14	17	20
PHOSPHATES	4	7	10	12	14	17	20
INDUSTRIAL							
80D	819	1470	2154	2572	3071	3666	4377
SUS SOL	1198	2150	3151	3762	4492	5363	6403
TOT SOL	14219	25523	37410	44658	53326	63667	76010
CHLORIDE	5165	9272	13590	16223	19372	23129	27613
COD	1581	2839	4161	4967	5931	7081	8454
SULFATES	3224	5786	8481	10125	12090	14435	17233

RIVER BASIN NUMBER 28 ARANSAS COPANO BAY

POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BOD	90	118	150	183	224	274	334
SUS SCL	119	157	200	245	299	365	445
TUT SCL	5128	6752	8573	10497	12842	15677	19113
CHLORIDE	1514	1993	2530	3098	3790	4627	5641
NITRATES	110	144	183	224	274	335	408
PHOSPHATES	110	144	183	224	274	335	408
INDUSTRIAL							
80D	875	1134	1341	1448	1563	1689	1823
SUS SOL	1111	1441	1704	1840	1987	2146	2316
TOT SCL	8577	11119	13148	14200	15330	16563	17872
CHLORIDE	3761	4875	5765	6226	6722	7262	7836
COD	908	1177	1392	1504	1623	1754	1892
SULFATES	3783	4904	5799	6263	6761	7305	7883

AVAILABLE

QUANTITIES OF WASTES DISCHARGED BY MUNICIPAL AND INDUSTRIAL TREATMENT PLANTS IF PRESENT LEVEL OF TREATMENT IS MAINTAINED (100C LB/YEAR)

RIVER BASIN	NUMBER	29 CORPUS	CHRISTI	BAY			
POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BOD SUS SOL TOT SCL CHLORIDE NITRATES BHOSPHATES	809 3235 41516 13816 1483	993 3974 50994 16970 1821	1196 4785 61403 20434 2193 2193	1411 5646 72453 24112 2588	1659 6636 85158 28340 3041	1941 7765 99651 33163 3559	2260 9039 116003 38605 4143
INDUSTRIAL	1400	1021	2175	200	5041	7666	C + 1 +
BOD SUS SOL TOT SOL I CHLORIDE COD SULFATES	12180 15477 19432 52366 12645 52676	18271 23217 179161 78554 18969 79020	23721 30142 232599 101984 24627 102588	26625 33832 261077 114470 27642 115149	29888 37979 293073 128499 31030 129260	33554 42637 329023 144262 34836 145116	37671 47868 369390 161961 39111 162920
RIVER BASIN	NUMBER	30 SUMMA	RY OF ST	ATE			
POLLUTANT	1960	1970	1980	1990	2000	2010	2020
MUNICIPAL							
BOD SUS SOL TOT SOL 13 CHLORIDE 2 NITRATES PHOSPHATES	66878 84885 13589 95170 49407 49272	94448 118918 1843242 412422 69719 69538	122986 154732 2398464 536502 90908 90720	147480 186749 2890942 648959 109454 109331	176914 225474 3485988 785345 131874 131840	212292 272330 4205214 950822 158996 159083	254829 329045 5074858 1151677 191829 192075
INDUSTRIAL							
BOD 4 SUS SOL 15 TOT SOL 116 CHLORIDE 97 COD 12 SULFATES 24	67404 537086 534164 757098 274353 15851	664780 2228848 17723338 2 15001041 2 2016329 3379169	855786 2808817 3605884 0157916 2755937 4298451	984497 3065507 27293657 23491908 3233494 4912324	1133459 3354535 31600141 27403929 3797427 5618358	1306015 3680958 36633828 31997991 4463964 6430981	1506048 4050581 42522900 37397617 5252420 7366972
	IMAL	NU DATA RE	GARUING	LUNCENTRA	ALLUN UF	PULLUIANI	MAD

APPENDIX H

OPTIMIZATION PROGRAM

PRCGRAM ANSWER DIMENSION G(7,30,8),C(7,30,8),JP(30),SW(7,30),CS(7,3C),D(7,30),CA(17,3C),CMIN(7,3C),F(1C,1C),TRI(2C,3O),TRIB(20,7),ITCP(3C,10,10) DIMENSION CSTEP(7,30,1C), NCIT(30), STEM(20,30), KOP(7,30,10) NCP = 0€ # NTRIE =1+NC OF ACTUAL TRIEUTARIES. (MAIN STEM 1S TRIE 1) REAC 5,NTRIE \$IF (NTRIB.EC.1)110,6 C * * IF THERE ARE TRIBUTARIES, THEY ARE COMPUTED FIRST 5 FCRMAT (10X, I1) 6 DC 1CO I=2,NTRIB IF(NCP.EQ.0)7,26 7 READ 10, NCIT(I), JP(I), G(I, 1, 1), C(I, 1, 1) NCIT =NO OF CITIES, JP=JUNCT PT WITH MAIN STEM C # NUM = NCIT(I) \$CMIN(I,1)=C(I,1,1) \$CA(I,1)=C(I,1,1) REAC IN DATA FOR ALL CITIES ON TRIBUTARIES C # # DC 20 N=1,NUM \$L=N+1 READ 15, Q(I, N, 2), C(I, N, 3), Q(I, N, 6), Q(I, N, 7), SW(I, N), CS(I, N), C(I, N 1,3),C(I,N,6),C(I,N),CA(I,L)CS =CENC ADDED BY CITY, D= DIST ALONG STREAM C # C ** * SUBROUTINE ROCKY COMPUTES RETURN FLOW,Q AT NEXT CONTROL POINT, ETC. CALL ROCKY (Q(I,N,1),Q(I,N,2),Q(I,N,3),Q(I,N,6),Q(I,N,7),SW(I,N),C $1S(I_{2}N)_{2}CMIN(I_{2}N)_{2}C(I_{3}N_{2}2)_{2}C(I_{2}N_{2}C)_{2}D(I_{2}N)_{2}CA(I_{2}L)_{2}CMIN(I_{2}L)_{2}Q(I_{2}L)_{2}$ 21), CA(I,N)) $Q(I,N_{2}4) = Q(I,N,1)-Q(I,N,2)$ C # # CCMPUTE FLCW BYPASSING CITY 15 FCRMAT (10X, 6F7.0, 7X, F4.0, F3.0, 2F7.0) 10 FCRMAT (10X, 212, 2F10.0) **2C CENTINUE** NP1 = NUM + 1C # # MATRIX CSTEP STORES 10 CONCENTRATIONS FOR EACH CONTROL POINT DC 25 N=1, NP1 CSTEP(I,N,1)=CMIN(I,N)C * * CMIN IS THE LOWEST CONCENTRATION ATTAINABLE $CSTEP(I_N, 10) = CA(I_N)$ Cas CA IS THE MAXIMUM ALLOWABLE CONCENTRATION $X = (CSTEP(I_1, N_1, IC) - CSTEP(I_2, N_1, I))/9.$ DC 25 J=2,9 CSTEP(I,N,J)=CSTEP(I,N,J-1)+X 25 CENTINUE C # # COMPUTE OPTIMUM TREATMENT PLAN FOR 10 TRIB EFF CONCENTRATIONS 26 NLM = NCIT(I)DC 100 IM=1,10 DC 85 NN=1,NUM N=NLN+1-NN \$L=N+1 DC 50 J=1,10 A = CSTEP(I, N, J)A IS INPUT CONCENTRATION TO STAGE Счи DC 50 K=1,10 B=CSTEP(I, N+1, K)C * * B IS EFFLUENT CONCENTRATION FROM STAGE SUBROUTINE DOG COMPUTES COST ASSOCIATED WITH INPUTS AND OUTPUTS C * * CALL CCG (A, B, $CCLL_{p}CS(I,N), Q(I,N_{p}1), Q(I,L_{p}1), Q(I,N_{p}2), Q(I,N_{p}3)$ l ([, N , 6] , G (I , N , 7) , Sh (I , N) , C (I , N , 3) , C (I , N , 6)) F(J,K)=DOLLC # # MATRIX F TEMPERARILY STERES COSTS FOR ALL INPUTS AND OUTPUTS

C** MATRIX F TEMPCRARILY STCRES COSTS FOR ALL INPUTS AND OUTPUTS 50 CONTINUE

145

```
ICFECK = 2
C # #
      CHANGE ICHECK TO 1 IF MATRIX TO BE PRINTED AS CHECK
      IF(ICHECK.EC.1)49,56
   49 PRINT 51, I, N
   51 FCRMAT (17H TRIBUTARY NUMBER, I3, 14H, PLANT NUMBER, I3)
      PRINT 52,(CSTEP(I,L,K),K=1,10)
   52 FCRMAT (13H CUTPUT CONC=2X, 10F1C.3/5X, 5HINPUT)
      CC 53 M=1,1C
   53 PRINT 54, CSTEP(I, N, M), (F(N, K), K=1, 10)
   54 FCRMAT(5X, F5.3, 5X, 10F1C.2)
   56 IF(N.EQ.NUM)55,60
C # #
      CHECK FOR LAST CITY ON TRIBUTARY
   55 KK=11-IM
      GC TC 61
   60 KK=10 $GO TC 70
   61 DC 65 IL=1,10
      X = F(IL, 1)  $NT=1
      DC 64 JL=2,KK
      IF (F(IL, JL).LT.X)63,64
   63 X=F(IL,JL) $NT=JL
   64 CENTINUE
C # #
      FINE OPTIMUM CUTPUT CONCENTRATION FOR EACH INPUT, STORE IN MATRIX
C # #
      TRI ALONG WITH INCEX FOR CUTPUT CONCENTRATION
      TRI(IL,N) = X
      TRI(IL+10, N) = NT
   65 CENTINUE
      GC TC 80
C # #
      ACC OPTIMA FOR SUCCEEDING STAGES TO THIS STAGE
   70 DC 75 IL=1,10
      CC 75 JL=1,10
   75 F(JL,IL)=F(JL,IL)+TRI(IL,L)
      GC TC 61
   80 CONTINUE
      IF(ICHECK.EQ.1)88C,85
  88C PRINT 81
   81 FERMAT (16H CUMULATIVE SUMS)
      CC 82 K=1,1C
   82 PRINT 83, (F(K,KP), KP=1,1C)
   83 FCRMAT(15X,1CF10.2)
   85 CENTINUE
      KK=11-IM
   88 FCRMAT (10X,7F1C.C)
C # #
      FIND AND STORE TRIB OPTIMA FOR EACH OF 10 TRIB EFFLUENTS
      II=1
      DC 89 JJ=1,NUM
      KCP(I_{J}J_{K}K) = TRI(II+1C_{J}J)
      II= TRI(II+10,JJ)
   89 CONTINUE
   91 FCRMAT (1X,5HKCP =,1X,1CI3)
      TRIB(KK, I) = TRI(1, 1)
      TRIE(KK+10, I) = TRI(11, 1)
  1CC CENTINUE
      IF(NCP.EQ.C)11C,136
      SKIP STATEMENTS 6 -1CC IF ALL CITIES ARE CN MAIN STEM
C # #
  111 FCRMAT (10X,12,2F1C.C)
  110 REAE 111,NSTEN,Q(1,1,1),C(1,1,1) $CMIN(1,1)=C(1,1,1)$CA(1,1)=C(1,1)
```

```
1,1)
      NSTEM IS NO OF CITIES + NO OF TRIBUTARIES ON MAIN STEM
С*
      DC 130 I=1,NSTEM $N=I+1
C * *
      READ DATA FOR ALL CITIES ON MAIN STEM
      READ 15,Q(1,I,2),G(1,I,3),Q(1,I,6),Q(1,I,7),SW(1,I),CS(1,I),C(1,I,
     13, C(1, I, 6), C(1, I), CA(1, N)
C # #
      CHECK TO SEE WHETHER CITY OR TRIB AT THIS LOCATION. IF TRIB, GO TO 125
      DC 114 IC=2,NTRIB
      IF(JP(IC).EC.I)125,114
  114 CCNTINUE
  115 Q(1,I,4)=Q(1,I,1)-G(1,I,2)
      Q(1,I,5)=(Q(1,I,2)+Q(1,I,3))*Sw(1,I)
      Q(1,N,1)=Q(1,I,4)+Q(1,I,5)+(Q(1,I,6)-G(1,I,7))*D(1,I)
      CMIN(1,N) = (Q(1,I,4)*CMIN(1,I)+ G(1,I,6)*D(1,I)*C(1,I,6))/G(1,N,1)
      IF (CA(1,N).LT.CMIN(1,N))116,130
C * *
      IF ALLOWABLE CANNOT BE NET, PRINT ALARM, END PROGRAM
  116 PRINT 117, CA(1,N),N
  117 FCRMAT (17H CENCENTRATION CF,F5.2, 8H AT CITY,I3,63H EN MAIN STEM
     ICAN NOT BE MET. REDUCE ALLOWABLE AT PREVIOUS CITY)
      GC TC 300
  125 L = NCIT(IC) + 1
      L IS NO. OF CENTREL PEINT BELOW LAST CITY ON TRIB
C * *
      Q(1,N,1)=Q(1,I,1)+(Q(1,I,6)-G(1,I,7))*D(1,I)+Q(IC,L,1)
      CNIN(1,N) = (Q(1,I,I) * CNIN(1,I) + Q(1,I,6) * D(1,I) * C(1,I,6) + Q(IC,L,1)
     1*CMIN(IC,L))/S(1,N,1)
      IF (CMIN(1,N).GT.CA(1,N))116,13C
  13C CCNTINUE
      NS1 = NSTEM + 1
      IF(ICHECK.EG.1)1331,1332
 1331 PRINT 131
C # #
      PRINT STREAMFLOW AT END OF EACH REACH AS CHECK
  131 FORMAT (1X, 19HMAINSTEM CUANTITIES)
      DC 132 I = 1, NS1
  132 PRINT 133, Q(1,1,1)
  133 FCRMAT (1X,F1C.2)
 1332 \text{ CMIN}(1, \text{NS1}) = CA(1, \text{NS1})
C * *
      ESTABLISH INCREMENTAL CONCENTRATIONS FOR MAIN STEM
      DC 135 I=1,NS1
      CSTEP(1, I, 1) = CMIN(1, I)
      CSTEP(1, I, 1C) = CA(1, I)
      X = (CA(1, I) - CMIN(1, I))/S.
      DC 135 J=2,9
  135 CSTEP(1,1,J)=CSTEP(1,I,J-1)+X
  136 DC 225 II=1,NSTEM
      I=NSTEM+1-II $N=I+1
C # #
      DETERMINE WHETHER CITY OR TRIB
      DC 139 IC=2,NTRIB
      IF(JP(IC).EQ.I)15C,139
  139 CENTINUE
C * *
      IF CITY, COMPUTE COSTS ASSOCIATED WITH INPUTS AND CUTPUTS
  140 DC 145 J=1,1C
      A = CSTEP(1, I, J)
      DC 145 K=1,10
      B=CSTEP(1,N,K)
      CALL CCG (A, B, COLL, CS(1, I), G(1, I, 1), G(1, N, 1), G(1, I, 2), G(1, I, 3), Q(1
     1, I, 6), Q(1, I, 7), Sw(1, I), C(1, I), C(1, I, 3), C(1, I, 6))
```

```
145 F(J,K)=DOLL
                      $GC TC 175
  150 L=NCIT(IC)+1
      L IS LAST CONTROL POINT ON TRIB IC
( ≉ ∗
      FIND MIN TRIB COST TO MEET OUTPUT
C # #
      DC 170 J=1,10
      A=CSTEP(1, I, J)
      DC 170 K=1,10
      B=CSTEP(1,N,K)
      P = P \neq G(1, N, 1)
      U = A * G(1, I, 1) + G(1, I, 6) * C(1, I, 6) * C(1, I)
      P=F-L
      IF (P.LT.-0.1)151,155
  151 DCLL =10000000.
      GC TC 170
  155 DCLL =1C0000000.
      DC 160 M = 1, 10
      TC=CSTEP(IC,L,M)*G(IC,L,1)
      IF(TC.GT.P+.1)160,156
  156 DCLL=TRIB(M,IC)
      ITCP(I, J, K) = M
  160 CENTINUE
  170 F(J,K)=DOLL
  175 CENTINUE
C # #
      MLC IS A CONTROL INDEX USED TO ALLOW PRINTING STAGE RETURNS AND
() * *
      TCTAL RETURNS AT STAGE WITH SAME PRINT STATEMENT
      MUD=C $GO TO 191
  176 IF(I.EG.NSTEM)180,195
      IF I = NSTEN, CITY IS LAST CITY ON MAIN STEM
C # #
  231 FCRMAT (1X,1CF10.C)
  180 DC 190 M=1,10
      X = F(N_{1})  SNN = 1
      DC 185 J=2,10
      FIND OPTIMUM FOR EACH CONCENTRATION
C * *
      IF(F(M,J).LT.X)181,185
  181 X = F(M, J)  SMM = J
  185 CCNTINUE
C # #
      MATRIX STEM STORES OPTIMA FOR MAIN STEM
      STEM(M, I) = X
      SIEM(M+10, I) = NN
  190 CENTINUE
      GC TC 225
  191 PRINI 196, I
  196 FERMAT (31H RETURNS FER MAIN STEM LOCATION, 13)
      PRINT
               52, (CSTEP(1,N,J),J=1,1C)
      DC 197 J=1,10
  197 PRINT 54, CSTEP(1,I,J), (F(J,K), K=1,10)
      IF (MUC.EQ.C) 176, 180
  195 DC 2CC M=1,1C
      DC 200 J=1,10
  20C F(J, M)=F(J, M)+STEM(M, N)
      MLC=1 $GO TC 191
  225 CENTINUE
      Y = STEM(1,1)
      FOR THE ASSUMED CONDITIONS, STEM, 1, 1. WILL ALWAYS BE OPTIMUM
C # *
  281 PRINT 282,Y
  282 FORMAT (1H1,10X,34HTOTAL COST OF OPTIMUM SYSTEM IS $,F9.2,35H PER
```

```
1DAY, DISTRIBUTED AS FOLLOWS
                                         //11x,45HMAIN STEM LCCATION, INCLUD
     2ING TRIBUTARY COSTS/)
      PRINT 283
C # #
      PRINT REMOVALS AND COSTS FOR OPTIMUM SYSTEM ON MAIN STEM
  283 FERMAT (10X,73FCITY CR STAGE INF CONC QUANTITY EFF CONC QUANTI
     1 T Y
           LBS REM
                          CCST/)
      K = 1
      L = STEM(11, 1)
       A = CSTEP(1, 1, 1)
      DC 29C I = 1,NSTEM
      B = CSTEP(1, I+1, L)
      CC 284 J=2,NTRIB
       IF(JP(J).EQ.I)285,284
  284 CENTINUE
      P = B * Q(1, I+1, 1)
C # #
      P IS THE PERMISSIBLE GUANTITY OF POLLUTANT AT END OF STAGE
      U = A * G(1, I, 4) + G(1, I, 6) * E(1, I) * C(1, I, 6)
C * *
      U IS THE POLLUTANT QUANTITY THAT CANNOT BE REMOVED
      PC = P - U
      CT = ((A+CS(1,I))*Q(1,I,2)+(C(1,I,3)+CS(1,I))*Q(1,I,3))*SW(1,I)
      R = (CT - PC) * 8.34
      GALI = Q(1, 1, 2) + G(1, 1, 3)
C * *
      GALI IS THE INFLUENT QUANTITY, GALO IS THE EFFLUENT CUANTITY
      GALC = GALI * Sh(1, I)
      GC TC 286
  285 GALI = 0.
      JJ = NCIT(J)
      GALC = Q(J, JJ+1, 1)
      R = -.000001
  286 CCST = STEM(K,I) -STEM(L,I+1)
      PRINT 287, I, A, GALI, B, GALC, R, COST
  287 FCRMAT (20X, 13, 6F10.2)
      Δ=Ε
      K = L
      L = STEM(L+10, I+1)
  290 CENTINUE
      NCP CONTROLS THE NUMBER OF SUCCESSIVE APPROXIMATIONS MADE
C * *
      NCP = NOP + 1
      L = STEM(11, 1)  S = 1
      IF(NCP.EQ.5)300,232
(**
      REDUCE THE RANGE OF CONCENTRATIONS CONSIDERED AT THE MAIN STEM
(##
      LCCATIONS TO C.2 TIMES THE PREVIOUS VALUES
  232 DC 27C I = 1.NSTEM
      IF(L.EQ.10)236,238
  236 CSTEP(1,I+1,1)=CSTEP(1,I+1,9)
      GC TC 244
  238 IF(L.EQ.1)240,242
  240 \text{ CSTEP}(1, I+1, 1C) = \text{CSTEP}(1, I+1, 2)
      GC TC 244
  242 \text{ CSTEP}(1, I+1, 1) = \text{CSTEP}(1, I+1, L-1)
      CSTEP(1, I+1, 1C) = CSTEP(1, I+1, L+1)
  244 CENTINUE
      DC 235 II = 2, NTRIB
      IF(JP(II).EC.I)25C,235
  235 CENTINUE
      GC TC 261
```

```
250 PRINT 301, II
  301 FERMAT (1HC,1CX,43FCEST OF OPTIMUM SYSTEM FOR TRIBUTARY NUMBERI37)
      ITT=ITCP(I, N, L)
C * *
      PICK CUT OPTIMUM CONCENTRATION FOR TRIBUTARY
      ICT = NCIT(II)
      DC 26C LL = 1, ICT
      LE = ICT + 1 - LL
      II = KOP(II, LB, ITI)
      B=CSIEP(II,LB+1,IT)
C * *
      RECUCE RANGES OF CONCENTRATIONS CONSIDERED AT TRIBUTARY STAGES
      IF (LB.EQ.1) 271,272
  271 A = CSTEP(II, 1, 1)
      GC TC 273
  272 IS=KCP(II, LB-1, ITT)
      A=CSTEP(II,LB,IS)
  273 CENTINUE
      IF(IT.EQ.10)251,252
  251 CSTEP(II,LB+1,1) =CSTEP(II,LB+1,5)
      GC TC 255
  252 IF(IT.EQ.1)253,254
  253 CSTEP(II,L8+1,10) = CSTEP(II,L8+1,2)
      GC TC 255
  254 CSTEP(II,L8+1,10)=CSTEP(II,L8+1,IT+1)
      CSTEP(II,LB+1,1) = CSTEF(II,LB+1,IT-1)
  255 P=E*G(II,LB+1,1)
      U=A*G(II_{1}LB_{1}4)+G(II_{1}LB_{1}6)*C(II_{1}LB_{1}6)
      PC=P-U
      CT=((A+CS(II,LE))*C(II,LE,2)+(C(II,LB,3)+CS(II,LB))*C(II,LB,3))*SW
     1(II,LE)
      CCN=CT/((Q(II_2LB_2)+Q(II_2LE_3))*SW(II_2LB))
      R=(CT~PC)*8.34
      GALI = G(II, LE, 2) + G(II, LE, 3)
      GALC= GALI*SW(II,LB)
      IF(R.LT.1)257,258
  257 CEST =0. $GE TE 266
  258 IF(R.LT.100)262,263
  262 CALL SMALL(R,CCST,CON)
      GC TC 266
  263 IF (R.LT.16000.)264,265
  264 CALL MED (R, COST, CON)
      GC TC 266
  265 CALL LARGE(R, CCST, CCN)
  266 PRINT 287, LB, A, GALI, E, GALC, R, CCST
C * *
      PRINT OPTIMUM RESULTS FOR TRIBUTARIES
  26C CENTINUE
  261 M=L
      L = STEM(L+1C, I+1)
  270 CENTINUE
      DC 28C I = 1,7
      DC 28C J = 1,3C
      X = (CSTEP(I, J, 10) - CSTEP(I, J, 1))/9.
      CC 280 K = 2,9
  280 \text{ CSTEP(I,J,K)} = \text{CSTEP(I,J,K-1)} + X
      PRINT 302
  302 FCRMAT (1H1)
      IF (NTRIB.EG.1)136,6
```

C** C** 5 1C	SUBRCUTINE RECKY (G1,G2,G3,G6,G7,S,CS,CM1,C3,C6,D,CA,CM2,Q8,CA11) THIS SUBROUTINE IS USED TO COMPUTE STREAMFLOWS, CONCENTRATIONS, ETC. FROM CRIGINAL DATA G4= G1-Q2 G5=(G2+Q3)*S G8=G4+Q5+(G6+G7)*C CM2=(CM1*Q4+G6*D*C6)/G8 PA=G8*CA U=G4*CA1+Q6*C6*D IF(U.GT.PA)5,1C U=L-PA CA1=CA1-U/G4 ENC
C * * 5	SUBRCUTINE DCG (A,B, DCLL,SC,Q1,CN,Q2,Q3,Q6,Q7,W,D1,C3,C6) THIS SUBROUTINE COMPLTES COSTS OF REMOVALS U=A*(G1-Q2)+G6*C6*D1 P=B*GN \$G5=(G2+G3)*W IF(U.GT.P+.1)5,10 DCLL=100000CC. RETURN P=D=1
10 C * *	R = (((A+SC)*G2 +(C3+SC)*G3)*W - P)*8.34 R IS THE QUANTITY CF PCLLUTANT (POUNDS) TO BE REMOVED CCN = (R/8.34 + P)/Q5 IF(R.LT.1.)15,20 DCLL =0.
20 25 30 35 40	RETURN IF(R.LT.100.)25,3C CALL SMALL (R,DOLL,CCN) RETURN IF(R.LT.160CC.)35,40 CALL MED (R,DOLL,CCN) RETURN CALL LARGE (R,DOLL,CCN) END
C * *	SUBROUTINE SMALL (R,COLL,CON) THIS SUBROUTINE COMPUTES COST IF R IS LESS THAN 100 FOUNDS DOLL = (30.0 + 0.36*R)*SCRTF(20.0/CON) END
(**	SLERCUTINE MED (R,DCLL,CCN) THIS SUBROUTINE COMPLTES COST IF R IS FROM 100 TO 16COC POUNDS DCLL = R*(.66074*(LCGF(R)-LOGF(1CO.)))*SQRTF(20./CCN) END
C * *	SUBROUTINE LARGE (R,CCLL,CCN) THIS SUBROUTINE COMPUTES COST IF R IS GREATER THAN 16000 POUNDS DCLL=R*.28*SGRTF(20./CCN) END

Ŷ

TCTAL COST OF OPTIMUM SYSTEM IS \$ 34651.26 PERDAY, DISTRIBUTED AS FOLLOWS MAIN STEM LOCATION, INCLUDING TRIBUTARY COSTS-FIRST APPROXIMATION

CITY	C R	STAGE	INF CONC	ςι	ANTITY	EFF	CONC	QUANTI	TΥ	LBS	REM	CCST
		1	.10		1.90		.50	1.	22	-18	3.31	0
		2	• 50		0		<u>.</u> 60	9.	32	6	- • 00	524.77
		3	.60		242.50		.13	155.	20	28703	3.54	7628.39
		4	.13		5.70		.13	3.	65	668	3.28	330.22
		5	.13		1.70		.24	1.	09	19	0.25	35.13
		6	.24		12.80		.24	8.	19	1490).89	652.49
		7	.24		32.80		.24	20.	99	3824	.48	1420.16
		8	.24		13.70		1.00	8.	77	3(.97	39.15
		9	1.00		21.40		1.00	13.	70	2403	8.68	971.16
		10	1.00		0		1.00	16.	25	a	00	816.07
		11	1.00		O		1.00	83.	71	~	00	2409.09
		12	1.00		470.00		.78	300.	80	54238	3.35	14425.33
		13	.78		4.50		. 89	2.	88	-77	.20	0
		14	. 89		4.10		1.00	2.	62	-127	1.54	õ
		15	1.00		G		1.00	66.	60	6- 6 ₀ 7	- 00	4518,81
		16	1.00		2,10		1.00	1.	12	101	.67	110.50
		17	1.00		0		1.00	26.	31		00	769.99
CC S1	r c f	CPTIMU	SYSTEM	FCR	TRIBUT	ΔRΥ	NUMBER	2				
		2	1.CC		2.70		1.00	1.	73	307	.30	165.97
		1	.10		6.80		1.00	4 .	35	736	.27	358.80
C C S 1	ſĊŀ	CPTIMU	SYSTEM	FCR	TRIBUT	ARY	NUMBER	3				
		2	.06		6.40		1.00	4.	10	626	.11	312.26
		1	•1C		5.30		.06	5 "	95	1097	.04	503.81
C C S 1	CF	CPTIMUN	SYSTEM	FCR	TRIBUT	ARY	NUMBER	4				
		4	.07		5.10		1.00	3.	26	-48	.55	0
		3	•C8		22.60		•C7	14.	46	2665	6.92	1057.67
		2	.10		21.60		·C 8	13.	82	2547	.96	1018.99
		1	.10		8.70		.10	3.	65	673	.48	332.43
CCSI	CF	CPTIMUN	SYSTEM	FCR	TRIBUT	SRΥ	NUMBER	5				
		5	1.00		12.60		1.00	6.	80	1229	.18	543.70
		4	.24		22.60		1.00	12.	20	1785	.30	758.69
		3	.35		41.40		.24	22.	36	4104	.11	1503.61
		2	.79		33.00		25	17.	82	3279	44	1253.26
		1	.10		10.70		.79	5.	78	984	.29	459.54
CCST	ĊF	CPTIMUN	SYSTEM	FCR	TRIBUT	ARYI	NUMBER	6				
		2	1.00		11.90		1.00	6.	43	1101	.58	495.59
		1	.1C		7.00		1.00	3.	78	538	.78	274.40

TCTAL COST OF OPTIMUM SYSTEM IS \$ 34506.26 PERDAY, DISTRIBUTED AS FOLLOWS MAIN STEM LOCATION, INCLUDING TRIBUTARY COSTS-SECOND APPROXIMATION

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
2 .49 0 .54 9.32 00 524 3 .54 242.50 .12 155.20 28692.62 7627 4 .12 5.70 .16 3.65 589.70 296 5 .16 1.70 .30 1.09 -21.23 6 .30 8.19 1485.61 650 7 .30 32.80 .27 20.99 3859.05 1430	0
3 .54 242.50 .12 155.20 28692.62 7627 4 .12 5.70 .16 3.65 589.70 296 5 .16 1.70 .30 1.09 -21.23 6 .30 12.80 .30 8.19 1485.61 650 7 .30 32.80 .27 20.99 3859.05 1430	•77
4 .12 5.70 .16 3.65 589.70 296 5 .16 1.70 .30 1.09 -21.23 6 .30 12.80 .30 8.19 1485.61 650 7 .30 32.80 .27 20.99 3859.05 1430	.40
5 .16 1.70 .30 1.09 -21.23 6 .30 12.80 .30 8.19 1485.61 650 7 .30 32.80 .27 20.99 3859.05 1430	.59
6 .3C 12.80 .30 8.19 1485.61 650 7 .30 32.80 .27 20.99 3859.05 1430	0
7 .30 32.80 .27 20.99 3859.05 1430	.55
	.56
8 .27 13.70 1.00 8.77 101.44 63	.59
9 1.00 21.40 1.00 13.70 2403.68 971	.16
	.07
	05
	• 2 3
	0
	0
15 .58 0 .56 66.6000 4522	• 31
16 .56 2.10 1.00 1.13 -23.96	0
17 1.00 0 1.00 26.3100 769	•99
CCST CF CPTIMUM SYSTEM FCR TRIBUTARY NUMBER 2	
2 1.00 2.70 1.00 1.73 307.30 165	.97
1 .10 6.80 1.00 4.35 736.27 358	.80
COST OF OPTIMUM SYSTEM FOR TRIBUTARY NUMBER 3	
2 .06 6.40 1.00 4.10 626.11 312	.26
1 .10 9.30 .C6 5.95 1097.04 503	.81
COST OF OPTIMUM SYSTEM FOR TRIBUTARY NUMBER 4	
4 .14 5.10 1.00 3.26 -3.02	0
3 .16 22.60 .14 14.46 2661.65 1056	.28
2 .20 21.60 .16 13.82 2538.68 1015	.93
1 .10 8.70 .20 3.65 641.49 318	.83
	•••
COST OF OPTIMUM SYSTEM FOR TRIBUTARY NUMBER 5	
5 1.00 12.60 .98 6.80 1242.50 548	.66
4 .23 22.60 1.00 12.20 1779.63 756	.68
3 .35 41.40 .23 22.36 4119.30 1508	.11
2 .90 33.00 .39 17.82 3281.44 1253	.89
1 .10 1C.70 .90 5.78 972.76 454	.97
CCST CF CPTIMUM SYSTEM FCR TRIBUTARY NUMBER 6	
	50
	40

TCTAL COST OF OPTIMUM SYSTEM IS \$ 34451.56 PERDAY, DISTRIBUTED AS FOLLOWS MAIN STEM LOCATION, INCLUDING TRIBUTARY COSTS-THIRD APPROXIMATION

~

CITY CR	ST/	GE I	NF CCNC	ςι	ANTITY	EFF	CCNC	QUAN	TITY	LBS	REM	CCST
		1	.10		1.90		.47		1.22	45	1.10	0
		2	.47		0		• 5 3		9.32		~.00	525.14
		3	.53	1	242.50		.10	15	5.20	2871	3.25	7633.48
		4	.10		5.70		.19		3.65	52	0.15	266.20
		5	.19		1.70		.31		1.09	~	3.88	0
		6	• 31		12.80		• 30		8.19	150	3.11	656.98
		7	• 30		32.80		.27	2	0.99	386	8.94	1433.52
		8	.27		13.70		1.00		8.77	9	6.22	61.49
		9	1.00		21.40		1.00	1	3.70	240	3.68	971.16
		10	1.00		0		1.00	1	6.25		~.00	816.68
		11	1.00		0		1.00	8	3.71		- • 00	2390.75
		12	1.00	4	470.00		.79	3C	0.80	5416	3.23	14405.45
		13	.79		4.50		, 89		2.88	-2	0.84	0
		14	<u>،</u> 89		4.10		۶8 ،		2.62		3.23	0
		15	°25°		0		. 57	6	6.60		- • 00	4520.73
		1.6	• 57		2.10		1.00		1.13		.00	0
		17	1.00		0		1.00	2	6.31		00	769.99
CCST C	FCF	PTIMUM	SYSTEM	FCR	TRIBUTA	RY	NUMBER	2				
		2	1.00		2.70		.99		1.73	30	8.08	166.34
		1	.10		6.80		1.00		4.35	73	6.27	358.80
CCST C	F CF	TIMUM	SYSTEM	FCR	TRIBUTA	RY	NUMBER	3				
		2	•C6		6.40		° č č		4.10	62	7.53	312.87
		1	.10		9.30		°C 6		5.95	109	7.04	503.81
CCST C	FCF	TIMUM	SYSTEM	FCR	TRIBUTA	RY	NUMBER	4				
		4	.14		5.10		1.00		3.26		.50	0
		3	.18		22.60		.14	1	4,46	266	6.71	1057.93
		2	.20		21.60		.18	1	3.82	253	2.79	1013.99
		ĩ	.10		8.70		•20		3.65	64	1.49	318.83
CCST C	FCF	PTIMUM	SYSTEM	FCR	TRIBUTA	RY	NUMBER	5				
		5	1.00		12.60		. 58		6.80	123	8.80	547.29
		4	. 22		22.60		1.00	1	2.20	177	3.32	754.44
		3	.37		41.40		. 22.	2	2.36	412	0.67	1508.51
		2	. 89		33.00		.37	1	7.82	328	5.24	1255.07
		1	. 1 C		10.70		ę3.		5.78	97	3.90	455.42
CCST C	FCF	PTIMUM	SYSTEM	FCR	TRIBUTA	RY	NUMBER	6				
		2	1.00		11.90		1.00		6.43	110	1.58	495.59
		1	.10		7.00		1.00		3.78	53	8.78	274.40

TETAL CEST OF CPTIMUM SYSTEM IS \$ 34448.6C PERDAY, DISTRIBUTED AS FELLOWS MAIN STEM LOCATION, INCLUDING TRIBUTARY CESTS-FOURTH APPROXIMATION

CITY	CR	STAGE	INF CONC	GLANTITY	EFF CCNC	QUANTITY	LBS REM	CCST
		1	.10	1.90	,47	1.22	.57	0
		2	•47	0	•53	9.32	00	525.09
		3	.53	242.50	.10	155.20	28715.21	7634.06
		4	.10	5.70	.19	3.65	518.27	265.37
		5	.19	1.70	.31	1.09	.07	0
		6	.31	12.80	.30	8.19	1495.07	654.03
		7	• 30	32.80	.27	20.99	3868.57	1433.41
		8	.27	13.70	1.00	8.77	\$9.70	62.68
		9	1.00	21.40	1.00	13.70	2404.01	971.27
		10	1.00	0	1.00	16.25	00	816.68
		11	1.00	0	1.00	83.71	00	2390.33
		12	1.00	470.00	.79	300.80	54163.66	14405.56
		13	.79	4.50	. 89	2.88	-5.05	0
		14	.89	4.10	.98	2.62	-14.71	Ō
		15	.58	0	.97	66.60	00	4520.14
		16	. 57	2.10	1.00	1,13	-4.41	0
		17	1.00	C	1.00	26.31	00	769.99
C C S 1	r cf	CPTIMUN	SYSTEM	FCR TRIBUT	ARY NUMBER	2 ·		
		2	1.00	2.70	. 59	1.73	307.99	166.30
		1	.10	6.80	1.00	4.35	736.27	358.80
CCSI	CF	CPTIMUM	SYSTEM	FCR TRIBUT	ARY NUMBER	3	,	
		2	.06	6.40	. 59	4.10	627.55	312.87
		1	.10	9.30	.06	5.95	1097.04	503.81
CCSI	CF	CPTIMUM	SYSTEM	FCR TRIBUT	ARY NUMBER	4		
		4	.14	5.10	1.00	3.26	•92	. 0
		3	•18	22.60	.14	14.46	2665.40	1057.50
		2	•20	21.60	.18	13.82	2532.79	1013.99
		1	.10	8.70	.20	3.65	641.49	318.83
C C S 1	CF	CPTIMUN	SYSTEM	FCR TRIBUT	ARY NUMBER	5		
		5	1.00	12.60	.99	6.80	1237.32	546.73
		4	•22	22.60	1.00	12.20	1772.48	754.14
		3	.37	41.40	• 2 2	22.36	4121.35	1508.71
		2	.83	33.00	.37	17.82	3285.30	1255.09
		1	.10	10.70	.83	5.78	973.99	455.46
CCSI	CF	CPTIMUM	SYSTEM	FCR TRIBUT	ARY NUMBER	6		
		2	1.00	11.90	1.00	6.43	1101.58	495.59
		1	.10	7.00	1.00	3.78	538.78	274.40

BIBLIOGRAPHY

- <u>Return Flows Impact on Texas Bay Systems</u>, Bryant-Curington, Inc., Consulting Engineers, Austin, Texas, Technical Report to the Texas Water Development Board (January, 1966)
- Wells, Dan M. and Gloyna, E.F., <u>Return Flows in Texas Quality</u> and <u>Quantity of Municipal and Industrial Wastewater Streams</u>, Technical Report to the Texas Water Development Board, The University of Texas (January, 1966)
- Gloyna, E.F., Hermann, Edward R., and Drynan, W. Ronald, <u>Report</u> on Water Reuse in Texas, Prepared for U.S. Department of Interior, Bureau of Reclamation (June 30, 1957)
- 4. Division of Sanitary Engineering Water Supply Program, Texas State Department of Health, <u>Water Usage Data on Public Water Supply</u> <u>Systems</u>, Undated report
- 5. Inventory Municipal Waste Facilities, Unpublished data from the files of the Texas State Department of Health (1964)
- Inventory Municipal Waste Facilities, U.S.P.H.S. Publication 1065, <u>7</u> (1962)
- Bunch, R.L. and Ettinger, M.B., "Water Quality Depreciation by Municipal Use," <u>Jour. Water Pollution Control Federation</u>, <u>36</u>, 1411– 1414 (November, 1964)
- Connell, C.H. and Forbes, M.C., "Industrial Water Supply City Sewage Plant Effluent is Worth Your Study," <u>The Oil and Gas Jour.</u>, 94-96 (November 27, 1962)
- 9. Bureau of Sanitary Engineering, Texas State Department of Health, Austin, Texas, <u>Chemical Analyses Reports of Water Supplied by</u> <u>Public Water Systems</u>, Undated Report
- 10. Municipal Waste Discharge Permits, Unpublished data from the files of the Texas Water Pollution Control Board
- 11. Connell, C.H. <u>Phosphates in Texas Rivers and Reservoirs</u>, Research Demonstration Studies, The University of Texas, Medical Branch, Undated Report.

- 12. Industrial Waste Discharge Permits, Unpublished Data from the files of the Texas Water Pollution Control Board
- Dunbar, D.D., and Henry, J.G.F., "Pollution Control Measures for Stormwaters and Combined Sewer Overflows," <u>Jour. Water Pollution</u> <u>Control Federation</u>, <u>38</u>, 9-27 (January, 1966)
- 14. Hughes, Leon S., and Leifeste, Donald K., <u>Chemical Composition</u> of Texas Surface Waters, 1963, Texas Water Development Board Report 7, prepared by the U.S. Geological Survey (December, 1965)
- 15. Eldridge, Edward F., "<u>Irrigation as a Source of Water Pollution</u>," <u>Jour. Water Pollution Control Federation</u>, <u>35</u>, 6, (May, 1963)
- 16. Comprehensive Survey Report on Trinity River and Tributaries Texas, U.S. Army Engineer Districts Fort Worth and Galveston, Texas (June, 1962) p. 61
- 17. Connell, C.H., Paper presented at Texas Water and Sewage Works Short School, Texas A&M University (March 9, 1966)
- 18. Copeland, B.J., Unpublished Report. The University of Texas, Austin, Texas
- 19. Frankel, R.J., Water Quality Management: An Engineering-Economic Model for Domestic Waste Disposal. Doctoral Dissertation, University of California, Berkeley
- 20. Masch, Frank D., Unpublished report. The University of Texas, Austin, Texas
- 21. Unpublished data from the files of the Texas State Department of Health
- 22. Gloyna, E.F., and Malina, J.F., Jr., "<u>Galveston Bay Water Quality</u> <u>Study – Historical and Recent Data</u>," Prepared for The Texas Water Pollution Control Board, The University of Texas (March 1, 1964)
- 23. Pullen, E.J., 1962. A study of the bay and gulf populations of shrimp: <u>Penaeus aztecus</u>, <u>Penaeus setiferus</u>, and <u>Penaeus duoarun</u>, Marine Fisheries Projects Reports for 1961-62. Texas Game and Fish Commission
- 24. Thomas, Harold A., and Spofford, Walter O., Jr., <u>Operations</u> <u>Research in Liquid Radioactive Waste Disposal</u>, Harvard Water Resources Group, Harvard University (December 1965)

- 25. Beightler, Charles S., Unpublished study of the feasibility of maintaining downstream water quality by upstream waste treatment, based on non-degradable wastes. The University of Texas, Austin, Texas
- 26. Kneese, Allen V., Water Pollution, <u>Economic Aspects and Research</u> <u>Needs</u>, Resources for the Future, Inc., Washington, D. C. (1962)
- 27. Bellman, R., and Dreyfus, S., <u>Applied Dynamic Programming</u>, Princeton (1962)
- 28. <u>Runoff Trinity River Basin</u>, Bureau of Reclamation, Austin Development Office, Prepared for the United States Study Commission - Texas, (Preliminary), <u>1</u>, (September, 1960)
- 29. Fruh, E. Gus, "The Overall Picture of Eutrophication," Paper presented at the Texas Water and Sewage Works Association's Eutrophication Seminar held in College Station, Texas, on March 9, 1966.