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ABSTRACT

The operating policy for a multireservoir distribution
system is determined by many factors, including benefits and
priorities for the current use of water, size and use limita—
tions of the facilities of the system, costs and delays in
transmitting water through the system and the current and
future weather. Some of these factors have been modelled using
a network flow model which allows determination of optimum
policies for complex systems. This report describes three ex—
tensions to the current modelling capabilities. The first part
discusses the water losses which occur in the system and pro-
poses a computerized algorithm which can solve networks with
losses. The second part treats the same problem but derives a
much more efficient algorithm. The third part considers the
uncertainty inherent in estimates of future water supplies and
demands and provides a representation for this uncertainty for
the network model. The general approach is to calculate a mathe-
matical expression which determines the value of water stored
for the future. This work expands the generality of the network
flow models as related to water systems and also makes contri—
butions to the general theory of network flow analysis.
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INTRODUCTION

Within the last decade many mathematical models have been
proposed to represent multireservoir distribution systems.
Comprehensive reviews o f  this work are presented later i n  this
report. Models have been formulated for the design of the sys-
tem in terms of locating, sizing and timing of the various
facilities, for the determination of the optimum use of limited
quantities of water in a reservoir, and for planning the operat-
ing policies which b e s t  balance the present and future uses o f
w a t e r .

Any model is an abstraction of the real world situation.
The least abstract models bear a close resemblance to the real
world and hence would generally b e  expected to have the great—
est accuracy in detail and the most useful outputs. Alterna—
tively these models would require the most input data, involve
the greatest effort i n  model preparation and probably they
require the greatest computational effort for solution. The
most abstract o f  models would bear little detailed similarity
to the real world situation. However to be useful at all an
abstract model must bear some resemblance to some important
aspect of the situation modelled. Although such a model is
inaccurate in many details it is hopefully accurate in the
aspect for which it is designed and its output would be expected
to be useful for the control of that aspect. Such a model will
generally be easier for model preparation and require minimal
computational effort for solution. The analyst faced with
these tradeoffs when constructing a model will usually find the
model with the least abstraction possible within his data and
computational limitations.

For some applications computational effort i s  an important
consideration in the choice of the model form. This is true
for capacity expansion studies which require the determination
o f  the location, time o f  construction and size o f  each o f  a
number o f  facilities i n  a complex water system. Planning hori-
zons on the order o f  fifty years are usual for such problems.
In order to evaluate a particular plan it is necessary to deter~
mine the operating cost for the system over the time horizon.
This has been done by the Texas Water Development Board using
a mathematical model of the system for discrete time steps of
one month. For a fifty year horizon such a model requires 600
monthly models. Operating costs are determined by applying an
optimization algorithm to this model. Even if the model is
linear the computational effort and cost required to solve such
a large problem i s  significant. I f  a large number o f  expansion
alternatives are to be considered computational cost i s  the
limiting factor to the analysis.



For the long range planning function i t  i s  not necessary
that the model used to estimate operating cost  be completely
accurate with regard to detailed water movements within the
system. It is only important that the model provide a reason-
able estimate of operating cost. For example it is not unrea-
sonable to impose historical rain fall data on a model of a
proposed system to evaluate its operating cost and effective-
ness. Historical data has the important characteristic o f
periods of drought and flood which a new system will also ex"
perience. The difficulty with this approach is that mathe—
matical optimization algorithms have the capacity to look
ahead and operate the system to anticipate periods of drought
or flood. Thus flows i n  the system model are directed in  ways
that do not reflect the operation of a real system in which
foreknowledge of the weather is not entirely possible. Esti—
mates of operating costs obtained in this way are considered
to be reasonable. Optimization with deterministic inflows is
used in the analysis because the consideration of uncertainty
in inflows is computationally difficult.

Water distribution systems can conveniently be represented
by a network flow model. Thus the arrangements of canals, res—
ervoirs and river reaches can be represented by an abstraction
of nodes and arcs which form a network. The network represen-
tation allows flow of water in both time and space. Time flows
represent storage i n  reservoirs and space flows represent trans-
fer of water from one part of the system to another. When in—
flows and outflows to the system are given, algorithms exist to
determine the optimum flow in the network. These algorithms
are generally very efficient computationally and hence are use-
ful for the solution of very large models. The network flow
models and algorithms have been used extensively by the Texas
Water Development Board for planning studies.

The primary disadvantage o f  the network flow models i s  the
limited set of constraints that can be represented. The only
constraints that are explicitly represented are conservation of
flow at each node and upper and lower bounds on flow for each
arc. This report attempts to expand the modeling capabilities
of network flow models in two ways; first by allowing flow to
be lost or gained as i t  traverses an arc and second to allow
the consideration of uncertainty in inflows and demands for the
system.

The report is divided into three main sections. The first
section discusses the network model for water systems with
losses such as evaporation or seepage. The model with this ex—
tension is called the networks with gains model. Here a gain
on an arc may be any positive quantity and loss is represented
by a fractional gain. This section presents some theoretical
results concerning the optimization of the flows for such a
model and describes a rudimentary algorithm for optimization.



The second section of the report presents an advanced optimiza-
tion algorithm for the network with gains model. This algori-
thm is superior to the algorithm presented in the first section
in  respect to computational speed and memory requirements. I t
is of course also more complex. The third section of the
report describes an attempt to represent uncertainty of inflows
and demands for a water system. This is accomplished by deter—
mining a value function for water stored for the future. The
value of stored water function is used to determine operating
policies at each period. The approach suggested in this sec-
tion should be useful for both planning studies and for actual
determination of operating policies on a real time basis.





OPTIMUM OPERATING POLICIES OF A
WATER DISTRIBUTION SYSTEM

WITH LOSSES

b y

Gora Bhaumik
and

P a u l  A .  J e n s e n

I. Flow in a Water Distribution System with Losses

1 . 1  Introduction

I n  the last few years the Texas Water Development Board
(TWDB) has been engaged in a number of studies to determine the
policies for optimally managing the water resources of the State
o f  Texas [43, 4 4 ,  45]. I n  analyzing the problem they have de~
termined the total water resources available i n  the state and
have developed projections of water requirements for the next
fifty years. To meet the differences between the supply and
demand of water in the different regions, the TWDB proposed in
1968  the Texas Water Plan [45]. I t  consists o f  a system o f
reservoirs, rivers, canals, and pumping stations to distribute
the water from the surplus areas o f  East Texas and imported
water from Louisiana to the needy parts of the West and South—
west. This is shown schematically in Figure l and Figure 2.

The storage and conveyance facilities o f  the Texas Water
System can be conveniently modeled by a network. This network
model has been used extensively in a number of TWDB simulation
studies [43, 44]. They have analyzed the economic effects of
different sizes and locations of reservoirs and canals to meet
the demand sChedule at the lowest reasonable cost. This is done
by determining the optimal storage and shipping policies for a
set of reservoirs and canals and iteratively improving the con—
figuration until a solution is reached which minimizes the
present worth of construction costs, Operating costs, and main-
tenance costs.

An important assumption of this model is that of conserva—
tion of flow at all points within the network. This precludes
losses from the system such a s  spillage, evaporation and seep"
age. Although, there is provision for forcing a known loss
from every reservoir, this loss must be prespecified before the
flows can b e  determined. Therefore, the losses which are a
function of the flows in the network are not properly reflected
i n  the present model o f  the system. I t  i s  necessary to incor—
porate this loss function o f  the system components i n  the net-
work model. The economic distribution policy depends not only

2—1
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o n  the cost o f  transportation and storage o f  water but also
upon the loss characteristics of the canals and reservoirs.
Hence, evaporation and seepage may play a decisive role in
determining the optimal operating policies o f  a water distri~
bution system with losses.

To generalize the proposed model, the term 'gain' will be
used instead o f  losses. Losses may be defined to be fractional
gains. The goal of this study is to develop an algorithm to
determine the optimal flows in a network with gains. It should
b e  comparable i n  speed and efficiency to the algorithms for
pure networks o r  networks without gains. The model for net—
works with gains should include all the characteristics of the
pure network model i n  addition to the gain parameter. I n  par—
ticular, this model should adequately describe a water distri—
bution system by including the losses associated with storing
and transporting water.

The proposed model is similar to models in other fields
such as in electrical power transmissions. In power transmis—
sion grids part o f  the power i s  lost due to electrical resis~l
tance o f  the transmission lines [16]. Still, there are other
examples cited by Jewell [ 26 ]  which can be modeled by a network
with gains. These include the machine loading problem [40],
warehousing with 'breeding' and 'evaporation‘ [28], financial
budgeting problem [ 8 ] ,  aircraft routing problem [11], and the
catering problem [39]. I n  general, these problems can b e  re—
presented with the help o f  a network which includes a gain fac—
tor with each arc in addition to the other cost and bound para—
meters. The gain can be any nonunegative quantity. If the
gain on an arc is less than unity it signifies that part of the
flow along that arc is lost and if it is greater than one it
indicates that the flow is amplified (as in the machine load—
ing problem [40]) on passing through that arc.

The Network Model with Gains [ 26 ]  i s  also known as Gener—
alized Networks { 9 ]  or Lossy Networks [16]. These are a class
of network problems for which there is a strong need for a fast
and simple algorithm. Hence, the proposed algorithm is not
only applicable to water distribution systems with losses but
also to a large number of similar models which include a gain
with each are.

1 . 2  The Network Model

The physical facilities comprising The Texas Water System
a re the canals, storage and regulatory reservoirs, river basins
and pumping stations. In the TWDB studies [43, 44, 45] the
water distribution system has been represented by a directed
network. The canals and river reaches which distribute the
water form the arcs and the storage reservoirs and pumping sta—
tions are represented by nodes. Figure 3 shows part of this
reservoir-river—canal system.



There are three important parameters associated with each
o f  the arcs, the upper and lower bounds on the flow and the
cost per unit o f  flow along the arc. The upper bound on the
flows are determined by the capacities of the canals and rivers.
The unit cost is given by the cost of transporting one unit of
water across the corresponding canal. The operating policies
are determined on a monthly basis over a fifty year time span.
To represent these s i x  hundred time periods, a similar network
is considered for each month. Storage of water is represented
by joining the corresponding nodes which represent the same
reservoir with an arc. A simplified example o f  such a system
is shown in Figure 4a. This example consists of six nodes
(four reservoirs and two link junctions) and eight arcs (seven
canal links and one river reach). This node—arc representation
is expanded spacially to include four time periods as shown in
Figure 4b. The networks for each of the time periods are con“
nected by the storage arcs. Thus, the time—space representa—
tion of the problem can be envisioned as a layered network,
each layer representing a time period with reservoir storage
contents connecting the layers [44}. These carry over storage
arcs are also called inventory arcs. Water stored from one
month to the next appears a s  a flow along these arcs. The
upper bound on these arcs are the limiting storage capacities
of the reservoirs and the unit cost is the cost of storing
water over one time period.

This expanded network still does not represent the problem.
The system must have some initial reservoir storage contents;
inputs to and demands from the system must b e  made; imports
must b e  allowed to enter the system; and after the last time
period, provisions must be made for the final reservoir storage
contents. All these are accommodated by adding additional arcs
and nodes with the corresponding bounds and costs. The problem,
now,is to determine the flows which minimize the cost. A num~
ber of algorithms, such as the Out- of— Kilter algorithm of Ford
and Fulkerson [12, l 4 ,  l 7 ] ,  exist which can solve this problem
very efficiently.

To include the evaporation and seepage characteristics of
the canals and reservoirs an additional parameter, the gain
factor, may b e  introduced for each o f  the arcs. The gain fac~
tor, or simply gain, is defined to be the fraction of flow that
is transmitted through an arc. If the gains for all the arcs
are equal to one then the problem i s  the same as the pure net—
work problem. The pure network algorithms can not solve net—
work problems with gains. A number of algorithms have been
proposed for this generalized network problem by Jewell [26],
Johnson [27], Charnes and Raike [ 9  ], Fujisawa [l6], Glover,
Klingman and Napier [ 21 ]  and Maurras [34]. Most of these are
either not applicable to the water distribution problem or are
too complex to be easily implemented. The algorithm presented
i n  this r e p o r t  i s  simple enough f o r  hand computations and fast
enough on the digital computer to be viable for large network
problems with gains.
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I.3 Evaporation and Seepage

In a water storage and distribution system, such as the
Texas water system, evaporation and seepage losses play a major
role in determining the optimal operating policies of the sys-
tem [41, 42]. Anticipated evaporation can be a crucial element
in the design of reservoirs in arid regions such as West Texas.
Evaporation losses in this area are known to be as high as one-
third the annual inflow. Likewise, seepage of water into the
soil from unlined canals or from reservoirs located in areas
where the ground water level is low can play a decisive role in
determining their location and utilization. Therefore, the es—
timation and accounting for these factors are a very important
function of the planning and operation stages of a water dis-
tribution system.

On a free water surface there i s  a continuous exchange o f
water molecules between the water and atmosphere.‘ This rate of
exchange i s  governed by the temperature and vapor pressure at
the surface o f  the water. I f  the temperature increases or the
vapor pressure decreases, the rate o f  transfer o f  water mole—
cules from the water to the atmosphere increases. The evapora-
tion from the surface of a large reservoir is highly dependent
upon these two factors. The increase o f  temperature o f  a body
of water is usually governed by solar radiation. Therefore,
evaporation is usually higher during the summer months as com-
pared to the winter months. The vapor pressure of the over"
lying air is dependent upon the relative humidity and the wind
over the surface o f  the water. Dry air increases evaporation
due to lower vapor pressure. On the water surface a layer o f
vapor is built up due to evaporation. When wind blows over
this surface, this partially saturated layer o f  vapor i s  blown
away, thereby increasing the rate of evaporation. The evapora-
tion rate is greater at the leading edge of the wind because of
a wedge of vapor that is formed down-wind. An increase in  wind
speed increases evaporation. At the Aswan reservoir in Egypt,
wind has been credited with significantly increasing the eva—
poration rate.

The relative effects of controlling meterological factors
i s  difficult to evaluate. However, i t  can b e  stated that the
rate of evaporation is influenced by solar radiation, air
temperature, vapor pressure, wind and possibly atmospheric
pressure. Solar radiation is an important faCtor; evaporation
varies with latitude, season, time of day, and sky conditions.
Direct measurement of evaporation under field conditions is not
feasible, a t  least not i n  the sense that one i s  able to measure
river stage, discharge and s o  o n .  As a consequence a variety
of techniques have been developed for determining or estimating
vapor transport from water surface. Reference [ 31 }  describes
several indirect procedures for estimating the evaporation rate
per unit area. The total evaporation rate for a body of water
i s  the product o f  the evaporation rate and surface area° The
gain factor k (fraction of flow transmitted) can be estimated
from:
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M _ S - Ek — 1 "VM' (1)

where E is the evaporation rate in volume per unit area and V
and S are the volume and surface area o f  the water respec—
tively.

The surface area o f  a canal o r  reservoir i s  determined by
its shape and the quantity of water in it. Some simplified
lateral cross sections are presented in Fig. 5. The surface
areas per unit volume for a unit length of these cross sections
can be easily computed from the geometry. For example, the
surface area for the Vertical sided canal or reservoir is con—
stant and i s  independent o f  the volume o f  water. The surface
area of the triangular cross section with respect to the vol—
ume is linear and is given by 2/tana. Where a is the slope of
the sides. Similarly, relationships between the volume and
surface areas o f  the other cross sections can also be deter-
mined. These calculations are quite accurate for canals which
have regular geometric shapes such as those shown i n  F i g .  5 .
However, it is not always a simple matter to estimate the sur*
face areas o f  reservoirs from the volume o f  water stored i n  i t .
Reservoirs are usually highly irregular i n  shape and do not
have uniform cross sections along their length. Moreover, re~
servoirs formed upstream of a dam slope down river as shown in
Fig. 6. Therefore, i t  becomes very difficult to estimate the

Figure 6 A Reservoir Formed Upstream of a Dam

relationship between the volume and surface area o f  a reservoir
from geometric considerations.

Although, rough estimates may be obtained for preliminary
analysis by considering uniform lateral cross sections o f  sim—
ple geometric shapes, a more accurate measurement of the sur—
face area with respect to the volume can be obtained from the

2~lO



contour maps of the reservoir terrain. Charts showing the sur—
face area v s .  depth, depth vs. volume and volume v s .  surface
area are usually prepared by the hydrologic designers before
the construction of a reservoir. An example of such a chart
for a typical reservoir i s  presented i n  Fig. 7 .

operating range

*
-

S
u
r
f
a
c
e

A
r
e
a

———————————a— volume

Figure 7 Operating Curve for a Reservoir

I t  can be seen from the curve, and i s  usually true, that the
relationship between the volume and surface area i s  linear i n
the operating range o f  the reservoir. This linear relationship
i s  important i f  the gain factor, k ,  i s  to remain constant for
all flows. Non—linearities in this relationship are discussed
i n  Chapter I I .

Once the surface area, S ,  with reSpect to the volume and
the evaporation rate, E ,  are known i t  i s  a simple matter to
estimate the gain factor from equation 1. If the ratio of the
surface area and volume are not constant, curves for the gain



factor vs. volume can be prepared for the analysis of the prob—
lem. In the previous discussion it  was assumed that seepage
does not play a significant role in  water distribution. If,
however, this is not true then seepage vs. volume curves have
to be prepared. No general statements can be made about this
seepage curve because seepage characteristics are very diffi—
cult to predict. The composite seepage and evaporation gain
factor can now be introduced as an additional parameter in the
network model. The operation of the water distribution system
can now be optimized by considering the losses together with the
cost considerations in  determining the optimal flows through the
network.

1 . 4  Overview

In this chapter The Texas Water Plan has been introduced
and the important role of losses in the water distribution sys—
tem has been discussed. Based upon the water requirements of
the State o f  Texas the plan provides for reservoirs, canals and
pumping stations for transporting the water to the locations
where i t  i s  needed. The c ost o f  operating this system depends
upon the transportation costs and the loss characteristics of the
system. For example, to meet the water demands i n  West T e x a s ,
where evaporation rate is high, it would be economical to store
surplus water i n  East Texas, where the evaporation rate i s  low,
and ship it to West Texas as the demand arises. This policy
would not be apparent i f  the evaporative nature o f  water store
age in West Texas is not reflected in the model.

In the following chapters an algorithm which can determine
the optimum water distribution policy in the presence of losses
is derived and illustrated. This algorithm has the capability
to deal with any network flow with gains problem in which gains
are positive, flows are bounded from above and below and costs
p e r  unit flow are constant for  each arc.



I I .  P r o b l e m  Statement and Mathematical Formulation

II.l Graphs and Networks

Geometrically, a graph may b e  considered to b e  a collec-
tion of nodes (verticies, points, junction points) in space
connected by a system o f  arcs (edges, lines, links, branches,
curves). O r ,  abstractly, a graph

G = [N,A]

may be defined to consist of a nonempty set N, a set A (possi-
bly empty).

E N & N

and a mapping Q of A into the unordered product N&N, that is

Q: A+N&N

The elements o f  N and A are called the nodes and arcs o f  the
graph respectively and Q is called the incidence mapping asso—
ciated with the graph. Figure 8 shows the geometric represen—
tation of a graph which can be described by:

N = {nl,n2,n3,n4,n5,n6}

A = {al,a2,a3,a4,a5,a6}

® = {al+(n3&n6),a2+(n2&n3),a3+(n2&n3),

a4+(nl&nl),a5+(nl&n4),a6+(n2&n6)}

n3

Figure 8 Geometric Representation of a Graph
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The term network i s  frequently used instead of graph,
especially when quantitative characteristics are imparted to
the verticies and edges, in addition to the purely structural
relationship that a r e  the defining characteristics o f  a graph
[6]. In networks i t  is customary to associate a number of
parameters with each are or node of the graph. These represent
the natural limitations and capabilities of the system being
modeled. The important characteristics o f  the system are in~
corporated into the model as numbers, or weights, on the arcs
and nodes o f  the network. For the water distribution problem,
discussed in Chapter I ,  the arcs represent the canals and river
reaches of the Texas Water Distribution System. The nodes re-
present the reservoirs, pumping stations and canal intersections.
Since storage of water and other associated properties of the
nodes are represented specially by the inventory arcs, a l l  the
characteristics of the system can be described completely by
parameters on the arcs. These are; the capacities of the res—
ervoirs and canals, unit cost o f  storage and transportation,
and leakage and evaporation coefficients. In addition, the
arcs may be constrained to transmit flow in one direction only.

Mathematically, a directed network,

D = [N,A]

can be defined to consist of a finite set N of elements (usu—
ally numbers from the natural number system) together with a
subset, A ,  of the ordered pairs o f  elements taken from the or—
dered product NDN. That is,

A‘E-NSN

and a mapping Y o f  A into the ordered product NSN, given.by

Y :  A+N®N

The elements o f  N are called nodes and the elements o f  A are
commonly known as arcs. To represent the parameters associated
with each o f  the arcs, a E A ,  o f  the network i t  i s  convenient
to define a vector valued function which we shall call the flow
parameter function, as

W(a)  = (la,ua,ca)

where 1a - lower bound on flow along the arc, a.

ua — upper bound on flow along the a r c, a .

ca - unit cost of flow along the arc, a.

A network can be represented graphically by selecting a
point corresponding to each node XEN and directing an arrow
from x to y if the ordered pair (x,y)EA. For example, the
network shown in Figure 9 consists of four nodes and six arcs.



N [ l l 2 l 3 l 4 ]

A [(1,2),(ll3),(2,3).(2.4),(3,2),(3,4)]

The flow parameter function W is shown directly on the
network.

Figure 9 A Directed Network

A few commonly used terms in Network Flow Theory can now
be defined for the network D = [N,A]. If xl,x2,---,x are a
s e t  o f  distinct nodes from N such that (x.,x. ) i s  ah are from
the s e t  A f o r  each i = l,2,~--,n-l. Thenlthe+éequence of nodes
and arcs:

x l l ( x l l x 2 ) I x 2 I ( x 2 1 x 3 ) I x 3 I _ - _ I ( x n _ l l x n ) l x n

is called a simple chain leading from X1 to X n .  If x1 = Xn

then this sequence I§_E§lled a c cle. Often the term "chain"
is used loosely to denote both directed chain or directed cycle.
If (xi,Xi+1) or (Xi+1,Xi) i s  an arc from the s e t  A for i = 1,2,
——~,n-l, then the resulting sequence of nodes and arcs given by
the equation is called a path from X 1  to X n .  And, if X 1  = Xn

the sequence is called a Ioop. A path and a loop differs from
a directed chain or cycle by allowing an arc to be traversed i n  a
direction opposite to that of its orientation.

I I . 2  The Pure Network Problem

The pure network problem, as defined to distinguish it
from the network with gains or generalized network problem, is
one where the flow in  each arc is constant over the length of



the arc. That i s ,  there i s  no gain o r  loss o f  flow during
transmission. Also, there i s  conservation o f  flow at each
node. The total quantity of flow into each node is equal to
the total flow out o f  the node, Also, the total input into
the network i s  equal to the total output from the network.
The s e t  o f  nodes o f  the network, N ,  w i l l  b e  denoted by i = 1,2,
w h e n  and the arcs, A ,  w i l l  b e  denoted by (i,j) i f  node i i s
joined to node j by an arc. Similarly, l i j ,  u i j  and 0 1 '  will
represent the lower and upper bounds and costs respectively for
each of the arcs. For the moment, the arc (i,j) will be consi—
dared to be unique, That is, there is only one arc joining any
two nodes i and j, For multiple arcs this restriction can be
met by introducing an additional node i n  the middle o f  some o f
these arcs.

I f  f i -  i s  the flow i n  a r c  (i,j)EA, then, the conservation
o f  flow constraints for a pure network can b e  written a s :

rfij m rfji = bi for all 1 E N (2)
3 J
rbi = 0 (3)
J.

The bi’s are equal to zero a t  a l l  nodes except where flows
are introduced into the system (source nodes) o r  taken out o f
the system(sink nodes), Since the flow into the system equals
the flow out, the sum of the b i ' s  is equal to zero as denoted
by Equation 3. For networks with a single source node, s ,  and
a single sink node, t ,  (e.g. Figure 9 )  Equation 2 can be writ~
ten a s :

v ,  i = 8

rfij » rfji = o, 1%s,t
J 3

« v ,  i = t

for all igiN

The assumption o f  single source and sink i s  really not
very restrictive, a s  multiple sources and sinks can b e  joined
to a super-source or superwsink by appropriate arcs to convert
the problem to one of single source and single sink (see [14]).

I n  a pure network problem, since the total flow into the
system equals the total flow out o f  the system, i t  i s  possible
to connect the outflow with the inflow and create a circulation
problem as shown in Figure 10° The arc parameters of the cir—
culation are are determined by the objective of the problem,
The conservation of flow Equation 2 can now be generalized over
the entire network

Zfij — i i  = o for all 16in



(lulguu1,cu1)

Figure 10 The Circulation Problem

The objective of the pure network problem is to find the
arc flows which minimize the total cost of flow:

Minimize: Z c..f.. (5)

(i.j){A 13 13
Subject to:

gfij - gfji = o for all 16 N, (6)
J 3

- - 7and r lij s f i j  s uij for all (l,j)€:A ( )

fij 3 o for all (i,j)€A (8)

This problem fits the Linear Programming Model and can be
solved by the simplex algorithm. However, there are several
more efficient algorithms which take advantage of the special
structure of the problem. These are described in Chapter III.

11.3 The Network with Gains

There are many flow problems for which the conventional
pure network model described in the previous section is inade—
quate. In some practical network problems flow suffers loss
during transmission due to leakage and damage while in others



flow may be amplified due to conversion or inflows into the
system. For such systems an additional parameter, the gain
factor, may be introduced into the flow parameter function.
The gain factor, k i ' ,  i s  the amplification or gain i n  the flow
as i t  passes throug the arc (i,j). I t  denotes the fraction o f
the flow that is transmitted from node i to node j while pass—
ing through the arc (i,j).

If fji is the flow leaving node j by arc (j,i) then,
k j i f j i  is the amount of flow that arrives node i through the
same arc. If this new flow property is imposed upon the pure
network model o f  Section 11.2, the minimum cost flow problem can
be stated a s :

Minimize Z c..f.. (9)
(i,j)eA 13 l3

Subject to: gfij - gkjifji = 0 l$s,t (10)

g f i t  _ F t
3

and f i j  .<_ uij for (i,j)€A (11)

f.. z 0 for (i,j)€A (12)1 3

The introduction of the k ' i  factor in Equation 10 signi-
fies that any flow to node i from node j along arc (i,j) is
amplified by a factor of k ' i  after i t  leaves node j and before
i t  arrives at node 1. Figure 11 illustrates the notation used
for the network with gains model.

Figure 11 The Network with Gains Model
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Notice that the problem as stated here is to obtain a
given quantity, F t '  of flow at the sink at minimum cost. This
particular form is chosen because most flow problems involve
meeting some specified output requirements at minimum cost.
Other authors ( 16 ,24 ,25 ,37 )  consider alternative formulations
for network with gains problems.

The introduction o f  the gain factors on the arcs o f  the
network with gains introduces some special features in the net—
work. These were first identified by Jewell [ 25 ] .  First, flow
may be destroyed by passing around a directed cycle whose total
gain is less than unity as shown in Figure 12. The arrows and
the numbers above them denote the flow. The numbers below the
are are the gains. The cycle shown absorbs any amount of flow
determined by the upper bounds of the arcs ( 1 ,2 )  and ( 3 ,2 )  and
half the upper bound of arc ( 2 ,3 ) .  Second, flow may be created
in an amount limited only by the branch capacities in a cycle
whose total gain is greater than one, as shown in Figure 13.

_._2_,,

o 2 o1

Figure 12 A Flow Absorbing Cycle

Figure 1 3  A Flow Generating Cycle
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Most network algorithms, including the one presented here,
assume lower bounds o f  zero. I n  many situations such as dis—
charge along rivers etc. the flow along an arc may b e  con-
strained by a positive lower bound. Zero lower bounds on a l l
arcs in a network can be assumed without any loss of generality,
because all positive lower bounds can easily be transformed
into zero lower bounds by the following transformation o f  the
flow variable.

For any are (i,j) with a positive lower bound li- the
following substitution can be made for the flow variable fij:

f.. = ff. + l..
1 3  1 3  l ]

The corresponding upper bound, u i j /  should b e  reduced to
— l...1 ]uij ‘

Physically this transformation i s  illustrated by Figure 14.
The lower bound on the arc (i,j) can be reduced to zero by
forcing a flow of l i j  from the node i to the sink t, and a flow
o f  1 1 '  from the source s to the node j and reducing the upper
bound of the arc (i,j) to u i '  ~ 1 i » .  This is achieved by add—
ing two arcs (i,t) and (s,j) with upper bounds of l i j  and a
very large negative cost m M ,  as shown in Figure 14b. The large
negative costs attempt to induce a flow through these arcs. If
a flow can b e  found which saturates the arcs (i,t) and (s,j) i t
can be transformed to a feasible solution for the original prob—
lem. Arcs with non—unity gain can  b e  transformed i n  the same
manner but with a gain of l on arc (i,t) and a gain of k i j  on
arcs (i,j) and (s,j).

a. Original arc b. Transformed arc

Figure 1 4  Transformation o f  Lower Bounds



The algorithm develOped in Chapter IV and many other netn
work algorithms assume a single source and a single sink. Mul—
tiple sources and sinks like those of Figure 15a can easily be
changed into a single source and sink by introducing a super
source and a super sink and appropriate arcs joining these to
the original sources and sinks as shown in Figure 15b. A large
negative cost of —M can be put on the arcs joining the original
sinks to the super sink so as to force the required flow out of
the network. Hence, it is seen that a single source and a sin—
g l e  sink can b e  assumed for any network without any loss o f
generality.

Finally, an important requirement of most network algori~
thms is that there be no negative cycles in the network. A
negative cycle is defined to be a directed cycle such that the
weighted sum of the costs around it is negative. A negative
cycle gives rise to an interesting situation where it is pos—
sible to realize revenue or minimize cost by sending flow
around the cycle without having any input to or output from the
network. Most practical networks are usually free from nega—
tive cycles, therefore, this is usually not a major problem.

f 1 < a

a. Original Network

F <a+b

Super
Source

;;;;y/~ Super
Sink

b .  Transformed Network

Figure 15 Transformation of Multiple

Sources and Sinks into a Single Source and Sink
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While estimating the leakage characteristics of the res—
ervoirs and canals, it was seen in Chapter I that the gain
factor ki. may not always be linear with respect to the flow
through an arc. Whereas, an important assumption of the dis—
cussion in Section 11.3 has been that the loss is proportional
to the flow through an arc. If this property is violated then
the mathematical properties discussed in this chapter and in
Chapter IV are no longer valid» However, if the curve for the
relationship between the flow transmitted and originating flow
is concave as shown in Figure 16 it is possible to meet the
restriction of linearity for the gain factor by a piecewise
linear approximation as shown in Figure 17. (Note: Gain fac—
tor is equal to flow transmitted per unit of originating flow).
The curve shown in Figure 16 has been approximated by three
linear segments AB, BC and CD. If k l ,  2 and k 3  are the slopes
respectively o f  these three segments and u l i  U 2  and u3 are the
flows corresponding to points B, C and D and if the unit cost
of flow is the same over the entire flow range then the flow can
be represented by the three arcs shown i n  Figure 17. I t  i s
seen that when flow i s  to b e  transmitted between node 1 and 2 ,
arcl will be chosen first as it transmits a greater percentage
of its flow at the same unit cost as compared to the other arc.
After arcl is saturated, flow will be sent through arcz and so
on. This corresponds to the desired flow pattern. However, if
the relationship between the originating and transmitted flow
was convex, similar piecewise linear approximation could not be
used because arc3 would be chosen first to transmit flow between
node 1 and 2 as it would have had the highest gain and would
have therefore been unrealistic. Similar piecewise linear a p -
proximation can be used to represent flow which has a convex
cost function, or a concave revenue function, with respect to
the flow (see [14]). If both unit cost and gain vary with flow,
it can be shown by similar reasoning that piecewise linear ap—
proximation is possible as long as the curve for cost/gain vs.
flow is convex. But, i f  the cost/gain curve i s  not convex, the
procedure developed in this study are not applicable.

Now, considering the various cross sections of Figure 5
and assuming that evaporation is the predominant loss and that
i t  i s  linearly dependent upon the surface area, the losses from
the canals and reservoirs with respect to the flow volume can
be represented by the arcs shown i n  Figure 18, where node n is
a sink node. Gains are shown below the arcs.

a) The rectangular cross section gives a uniform loss
independent o f  the volume. I t  can be represented by a constant
leakage arc (2,n),12n = u 2 n '  is the constant leakage.

b) The triangular cross section gives a linear loss with
respect to volume and is represented by a constant gain factor
k 12-

c) The circular cross section is responsible for a con-
vex gain parameter with respect to volume and cannot be rep—
resented by piecewise linear approximation.
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d) The trapezoidal cross section gives rise to a loss
function which is a combination of a and b ,  above. I t  is
represented by an arc with a constant gain parameter k 1 2  and a
constant leakage arc (2,n).

Flow i n  a reservoir arc represents volume o f  water stored
in a reservoir. The evaporation of water over a storage period
is represented by a gain factor on the corresponding reservoir
arc. These arcs are treated like any other arc in the network.

1 l s u l z s c l z )  _ 2

a) G } (72,,
’ 0

720 .0 )\@

b )  6) 0 1 2 9 : : : , C 1 2 )  = ®

c) Cannot be represented.

d )  (3:); (1129U12’C12)  2
k 1 2  f]

Figure 18 Network Representation of the Cross Section of

Figure 5



III. Literature Survey

The minimum cost flow pure network problem formulated i n
Section 11.2 fits the linear programming model and can be
solved by any existing linear programming algorithm. However,
a number o f  procedures have been developed which take advantage
of the special structure of this problem. Notable among these
are the algorithms of Busacher and Gowen [5], Klein [29] and the
Out—of—Kilter algorithm o f  Ford and Fulkerson [14]. The method
o f  Busacher and Gowen starts with all flows equal to zero i n
the network and incrementally increases the flow at the lowest
possible cost until the desired flow i s  reached. Although the
solution of the problem takes place entirely in the primal
space, it has been called a dual algorithm by Hu [23], because
the primal problem is not feasible until the last iteration.
Klein's method starts with a feasible flow through the network
and then improves upon the solution iteratively by recirculat-
ing the flow through the network to decrease the cost. This
method may b e  classified as a primal method because the prob—
lem is always feasible in the primal space from the first to
the last step. Ford and Fulkerson's algorithm can be classi-
fied as a primal-dual method because the problem starts with
any flow through the network and iteratively changes the flow
until the primal—dual properties at optimality are satisfied.

Of these solution procedures, the Outnof—Kilter algorithm
is the only method that considers lower bounds explicitly and
allows multiple sources and sinks. The only requirement is
that of circulation of flow as described in Section II.2. In
almost all other solution procedures the lower bound on the
flows along arcs are assumed to be zero, and only single
sources and sinks are permitted. This can always be assumed
without any loss of generality because all networks can be
transformed to an equivalent network with zero lower bounds
having a single source and a single sink as described in Sec-
t i o n  I I . 4 .

Recently studies have been undertaken by Glover, Karney,
Klingman and Napier [18] to compare the computational effective—
ness o f  primal simplex type procedures against the methods men—
tioned above for transportation problems. The‘results indicate
that the primal simplex type of algorithm is faster than exist-
ing linear programming or Out-of-Kilter codes. Klingman, et.
al. are trying to develop a similar simplex type of procedure
for network problems. Since, not enough information is avail-
able a t  this time about this procedure, it has been omitted
from this discussion.

The network problem with gains was first introduced by
William S .  Jewell [25,26]. His work provides the most com—
plete treatment of flow with gains. In his paper, Jewell des—
cribes a generalization o f  network flow problems to 'process
flow networks'. The flow i n  any branch o f  the network may b e



multiplied by an arbitrary constant, called the branch gain,
before leaving the branch and flowing into the remainder of the
network. This generalization permits the description of net—
works in which different kinds of flow may be converted one to
another without constant returns to scale. Jewell claims that
his method is a natural extension of the Ford and Fulkerson
technique. Jewell considers any gain factor, positive or nega—
tive. Since flow into a network with gains does not have to
equal the flow out, some additional arcs are created to account
for the constraints on the boundary conditions and to create
circulation. These boundary conditions may be either inequali—
ties or equality constraints on the amount of input and output
flow.

A closely related problem to the network with gains is the
transportation problem with gains or the generalized transpor-
tation problem. The generalized transportation problem is the
same as the classical (pure) transportation problem except that
the flow in an arc (i,j) from origin i to destination j is sub-
ject to amplification or attenuation by the factor ki-. It has
been shown by Lourie [32], Balas [2], and Eisemann [1%] that
this generalization of the classical transportation problem has
a drastic effect upon the basic structure of such problems. So
that, even finding an initial primal feasible basic solution
becomes a difficult task. As a consequence of this altered to-
pology existing procedures for solving the transportation pro—
blem fail. Several approaches have been suggested for solving
this problem by Balas [l], Balas and Ivanescu [2], Eisemann
[l3], Glover, Klingman and Napier [21] and Louire [32]. Some
of these [21] are start prOCedures which provide an initial
feasible solution. They can be used together with Lemke's [30]
dual method or the method of Glover, Klingman and Napier [20]
to solve certain generalized transportation problems.

It has been shown by Glover, Klingman and Napier [22] that
any generalized network can be transformed into a generalized
transportation problem. One possible solution technique for
networks with gains may be to transform it into a generalized
transportation problem and solve i t  by one of the methods men-
tioned above. A number of special purpose algorithms have been
presented in recent years which have tried to solve a restricted
class of the network with gains problem. Two such algorithms
are due to Charnes and Raike [9]. Both of these procedures are
"one pass" shortest path algorithms. They also point out the
possibilities o f  obtaining a dual feasible solution to the gen-
eralized network problem by their method. Glover, Klingman and
Napier [21] have characterized the properties of a special class
of generalized network problems that permit a dual feasible
basic solution to be determined in "one pass” through the net~
work. They suggest using Lemke's [30] dual method or Charnes and
COOper's [7] poly-w technique to solve the problem from there.
Glover and Klingman [19] also propose a method of transforming
certain special generalized networks into pure networks by a
method of scaling. They have proved that any generalized net-
work incidence matrix that does not have full row rank can be
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transformed by this procedure. Charnes and Raike [9] have
pointed out and proved that the pure network problem i s  o f  rank
m—l while the generalized network problem is of rank either m
or m—l. Where m is the number of rows in the incidence matrix.
Therefore, i t  i s  possible to transform some specially struc—
tured network problems into pure network problems by the trans—
formation algorithm o f  Glover and Klingman [19]. Johnson [ 27 ]
i s  concerned with solving the problem directly on the network
with the help of the simplex procedure. He presents a triple
labeling technique to keep the solution basic for pure network
problems and suggests an extension of his prosedure to the net-
work with gains. Maurras [ 34 ]  has extended Johnson's idea and
developed an algorithm that solves networks with gains problems
with the help of the simplex procedure directly on the network
structure.

Jarvis and Jezior [ 24 ]  have recently presented an algori—
thm for determining the maximal flow through a directed (acy-
clic) network with positive gains. The proposed method is a
primal-dual algorithm comparable to Ford and Fulkerson's [ 15 ]
max-flow algorithm. Minieka [ 36 ]  has recently suggested a me-
thod for extending Jewell's [ 25 ]  algorithm to include multiple
sinks and negative costs on the arcs. The problem of maximiz-
ing flow through a "lossy" network has also been considered by
a number of persons in the field of communication. The most
comprehensive graph theoretic treatment is due to Onaga [37,38],
who introduced the concept o f  optimal flows i n  communication
networks. Fujisawa [ 16 ]  has presented topological solution
procedures for the maximum flow through a lossy communication
net. Mayeda and Van Valkenburg [ 35 ]  have proved the max—flow
min-cut theorem for this problem.

One of the obvious solution procedures for the network
with gains problem is with the help of the classical simplex
linear programming algorithm. From the mathematical statement
o f  the problem i n  Chapter I I  i s  i s  seen that the problem can be
modeled as a linear programming problem where the objective is
to minimize the linear sum of the products of the costs and
flows in each of the arcs subject to the conservation of flow
and bound constraints, which are also linear. Although this
method is quite feasible for small problems, the simplex matrix
grows geometrically with the dimension of the network. There—
fore, the storage requirement even for a moderate sized problem
can be prohibitive. The time required to solve the problem can
be very high and degeneracy which is inherent in  most networks
adds to the complexity and computation time. The network based
simplex procedure of Maurras [ 34 ]  overcomes most of these dif—
ficulties. The computation times presented by Maurras look
impressive. However, i t  seems that the problem solved by him
is un-capacitated. This is not a serious problem as Dantzig's
[ 10 ]  upper bounding technique could be extended to cover this
problem. Details of the algorithm are not yet available and it
is too early to tell how useful this algorithm will be to solve
typical network with gains problems.
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Jewell's work [ 26 ]  provides the most complete treatment of
network with gains. The class of problems that he analyzes is
very general. However his solution technique is too complex to
make it a useful tool for the solution of large scale real
world problems. His absorbing network detection, transfer fac-
tor determination and dual variable calculation are a l l  very
long and complicated. No computational results are available
even for small problems.

The max~flow algorithms of Jarvis and Jezoir [24], Fuji—
sawa [l6], Onaga [ 37 ,38 ]  and Mayeda and Van Valkenburg [ 35 ]  are
inappropriate for determining the minimum cost flow through a
network with gains. The shortest path algorithm of Charnes and
Raike [9] is also inapplicable to the problem under considera-
tion. They solve a very restricted minimum cost flow problem,
and the network is assumed to be uncapacitated. Capacitated
networks are those that have a specified upper bound on flows
along the arcs. The transformation algorithm oelover and
Klingman [ 19 ]  is apparently a very powerful technique if the
problem in  question is of rank m—l. However, it is not yet
known what special structure of a network problem causes it to
have one less than row rank. Since it is good only for a re-
stricted class of problems, its general applicability for net-
works with gains is of limited value.



IV. The Networks with Gains Minimum Cost Flow Algorithm

The algorithm to be described determines the distribution
of flow in a network with gains which provides a given amount
of flow to the sink at minimum cost. An example network is
shown in Figure 19. Each arc has three associated parameters
which are upper bound to flow, cost per unit flow and gain.
These are shown on each arc with a triplet ( u i '  C i r  k i )  for
arc i. A lower bound to flow is not included in the parameter
list as it is assumed to be zero. Let the required flow at the
sink be F t .  An unbounded quantity of flow is available at the
source. Let the network D = [N,A] for which the problem is
defined be called the original network to distinguish i t  from
the marginal network which w i l l  b e  defined later.

Source S i n k

(
6
,
1
,
1
/
2
)

Figure 19 Example Network. The Parameters on each
are are (Upper Bound, Cost, Gain).

The algorithm is based on the Busacher and Gowen algorithm
for pure networks [5]. The principal steps of the algorithm are
a s  follows:

step 0 — St a rt  with z e r o  flow o n  a l l  a r c s .

step 1 — Define a marginal cost network with respect to the
original network and the current flow through it.

step 2 - Find the mimimum cost flow augmenting chain in the
marginal network that can deliver flow at the sink.
If there are none, stop—-the maximum flow through
the network has been found.

step 3 - I f  such a chain i s  found, route a s  much flow a s
possible through it.



step 4 ~ Augment the flow in the original network with the
flow found for the marginal network. I f  the desired
output flow is reached, stop. The current flow is
the minimum cost flow. Otherwise return to step 1.

The flows obtained a t  each iteration o f  the algorithm are
optimal for the amount of flow obtained at the sink. This is
true because the initial flow i s  optimal (all arc flows are
zero for zero flow at the sink) and flow is augmented at each
step through the minimum cost chain. The solution is infeasi-
ble with respect to the desired output flow until the final
step when the flow is both feasible and optimal.

IV.l The Marginal Network

The marginal network i s  to reflect the costs of changing
flows in the original network. Parameters of this network
depend on the flow i n  the original network. Let F be the flow
for the original network. F defines the flow f i '  for each arc
( i , j ) E  A. F i s  feasible i n  that flow i s  conserved at each node
and arc upper bounds are satisfied.

Call the marginal network D *  = [N*,A*]. The s e t  o f  nodes
i n  the marginal network i s  the same a s  i n  the original network,
thus N* = N. The arcs in D* will be of two types called re~
spectively forward and mirror arcs. Forward arcs correspond
directly to the arcs in the original network. Thus if A l *  is
the set of forward arcs in  D*:

(i,j)€;Al* if (i,j)€A
The parameters on the forward arcs are determined from the
parameters of the arcs in the original network and the current
values of flow in the original network. In the following defi-
nitions the starred parameters are for the marginal network and
unstarred are from the original network. Thus for each are
(i ,j) 6 Al* define:

9 : :  ..
u i j  u i j  f i j

* =c i j  c i j

* =k i j  k i j

Thus the forward arcs in  the marginal network are the same
as the arcs in the original network except the capacities are
reduced by the flows i n  the original network. I f  an arc i n  the
original network is saturated (flow equal to capacity) the cor—
responding arc has zero capacity in the marginal network.

The mirror arcs i n  the marginal network are the reverse of
the arcs in  the original network. Let A 2 *  be the set of mirror
arcs. Then



(i,j)€ A2* if (j,i)€ A

The parameters o f  the mirror arcs reflect the effect of
removing flow from the arcs in the original network. Thus for
each arc (i,j)€.A2* define:

u . . *  = f - u ' k o -13 31 31
* = —cij cji/kji

* =

In step 4 of the algorithm stated above it is required that
flows in the original network be augmented with flows found
for the marginal network. This process is now defined. As-
sume a feasible flow F is defined for the original network.
This flow defines a marginal network as above.

The arcs of the marginal network are the collection of
forward and mirror arcs. Thus: A* = A 1 * L I A 2 * .  Assume a
feasible flow F *  has been determined for the marginal network
Let K* be the total cost for flow in the marginal network.
Thus

K *  = Z c i . *  f i . *

(1,3) EA* 3 3
Let the total cost for flow in  the original network be K

where

K = Z c . . - f . .

(i,j)E A 13 13

Let a new flow F' defined for the following augmentation
rule

I :  a n  I | * _  o l *  . .a f i j  fl] + f l j  f j l  /k13

for all (i,j)E.A

K', the cost of the new flow in the original network is:

K '  = c i ' f i ' l

(i,j)é A 3 3
* _  * 'c..[f.. + f i '  f.. /kij](i,j)€ A 13 13 3 31

= Z c i j f - -  + X Ci.fi.*
(irj)E A 13 (i,j)E A l *  3 J

— 2 Ci.- - * 2



Noting that C i j *  = C i j  for (i,j)€iAl* and C j i *  = 'Cij/kij
i t  can be observed that:

K' =K+-K*

Thus the cost of the augmented flow in the original net—
work can be obtained by summing the cost o f  the ol d flow and
the cost of the flow in the marginal network.

It can also be shown that the augmented flow is feasible
for the original network.

' = * .. *f i j  f i j  + f i j  f j i  / k i j

- I *f i j  s f i j  + f i j

Since f..* s u.. — f..1 3  1 3  l ]

' <f i j  _ u i j

' .. *Also f i j  2 f i j  f j i  /kij

Since f..* s f..-k..
3 1  1 3  . 1 3

f..' 2 Ol ]  .

These results are important to show:

Theorem 1

Let the flow (F) be optimum in the original network
for a quantity of flow X delivered at sink. Let the
marginal network D* be defined for this flow. Let the
flow (F*) in the marginal network be determined which
will deliver Y units of flow to the sink of the marginal
network a t  minimum cost. The new flow F '  determined by

I = * _ * ' -f i j  f i j  + f i j  f j i  /kij for (1,3)EZX

is optimum in the original network for the flow X+Y
delivered to the sink.

Proof: For a proof by contradiction assume that the flow F'
is not optimum for the flow X+Y at the sink. Then there
exists some feasible flow F "  whose cost K "  is lower than
the cost, K ' ,  o f  the flows F ' .

Define the flow F** for marginal network:

,** = , . - -  _ f.. nd f..** = 0If fij"> fij let fi] fl] 13 a 31



. . "  . .  ..** . .  f . . "  ° .. .,**=I f  £ 1 3  < f 1 ]  let f:ll l 3  1] ) k l ]  and f 1 ]  0

II = * *  d f..**=0I f  f i j  f i j  let f i j  0 an 3 1

n ‘
R I

It can easily be shown that F** is feasible for the
marginal network and that it delivers Y units of flow to
the sink. The cost K "  can be determined as

K "  =K+K**

where K** is the cost of the flow F** i n  the marginal net—
work.

Since K " < K ' ,  K**<K*. But this contradicts the pro—
position that F *  is the minimum cost flow in  D* which
delivers Y units of flow to the sink. Thus the theorem
is proved. -

Theorem 1 provides the basis for the algorithm. In step
2 the directed chain is found in the marginal network which
can deliver flow to the sink at minimum cost. This is either
a simple chain from the source to the sink or on a simple chain
that originates at node in a flow generating cycle. In either
case the chain will be called the minimum cost flow augmenting
chain.

IV.2 Finding the Minimal Cost Flow Augmenting Chain

The minimum cost flow augmenting chain in the marginal
network is found using a slightly modified version of the dy—
namic programming shortest path algorithm of Bellman [4] with
adjustments to account for the possibility of cycles.

Before explaining the algorithm i t  will b e  helpful to
determine several costs associated with flows i n  the marginal
network. Consider a simple chain from the source to the sink:

C = {11,bl,12,b2... i m - l ’ b m — l ’ l m }

where the 1 1 ,  i 2 . . . i  are node indices and b l !  b 2 . . .  b m—l
are arcs. Note thatmb£= {i3 i £ + l }  and i l  is the sourcek and
1 k  is the sink. Let the parameters of arc b3 be {u£rc£1k£}-

Assign flows on the arcs of the chain to obtain one unit
of flow at the sink. Let the flow on arc b 2  be f i '  For
simplicity the asterisk has been dropped from the flow variable.
Recall however that all flows in this section are in the mar-
ginal network. To obtain one unit of flow at the sink requires
the following are flows:



H) I
I l/k

m — l  m - l

f m — Z  = l / ( k m — l ' k m — 2 )

m — l
f 2  = 1/.n k i

l = 2

m — l
f l  = l/'w k i

l = l

The cost o f  this flow i s :

K =m'z'2'l C Z

c _ m—l (l3)[—1
w k i

i=£

Let V -  be the cost of obtaining one unit of flow at node
i. Then it will beknoted that: V i l  = V S  = 0 and that:
V -  = V -  + C )  .

l £ + l  ( l g  Z / g

It can be shown that a necessary and sufficient condition
for C to be the minimum cost flow augmenting chain is:

Vj = (i,?§23A* {[vi + cij)/kij}

for each node j on the chain.

This suggests an algorithm for finding the minimum cost
flow augmenting chain. The variable Pi is a pointer which will
be used to recover the chain at termination.

1. Let V S = O .  Let V i = M  for iEN, i#s. (Here M is a
large number) Let P i = 0  for all iEN.

2. For each arc (i,j)€iA* such that u i j > 0 :

If V j  3 (Vi + c i j ) / k i j l  take no action.

If Vj > (Vi + c i j ) / k i j r  let V j  = (Vi + C i j ) / k i j

3. If some V -  has been changed in step 2, repeat step 2.
If all args are inspected without changing any node
cost, V - ,  then terminate. V t  ( t  i s  the sink) i s  the
cost of the minimum cost flow augmenting chain. The
chain itself can be recovered from the pointers Pi.
If at termination Pt = 0 there is no chain to the
sink in the marginal network.



Figure 20 illustrates the algorithm applied to the example
problem. Since the initial flows are zero, the marginal net-
work is the same as the original network. Note that arcs with
zero upper bound are not  shown. The labels o n  the nodes indi-
cate (Pi/Vi). The labels have been crossed out a s  they are
changed. The small circled numbers indicate the order in which
the arcs are inspected in step 2. Observe that the flow augment“
ing chain in the example is found by tracing the pointers back-
wards from node 4. The chain is:

C = {1,(l,2),2,(2,3),3,(3,4),4}

(6
,1

,1
/2

)

Figure 20 Initial Marginal Network with Minimum
Cost Flow Augmenting Chain Algorithm Labels

The algorithm finds the flow augmenting chain to each node
in the marginal network. The arcs indicated by the pointers
define what is called the flow augmenting tree. One complica-
tion that has not been discussed is that flow can be generated
from either the source or from a flow generating cycle. If the
flow augmenting tree consists of no flow generating cycles the
algorithm above terminates in a finite number of steps. If
flow generating cycles are in the tree the algorithm will not
terminate but values of V' will converge in the limit to the
proper values. The algorithm must be modified to provide fi-
nite termination.



Consider a flow augmenting chain which includes a flow
generating cycle. The chain is:

b ...b i , b ...b
2 g-l’ g g m—l' t }

C = { i 1 '  b1, i2,

here 1 1  2 l g  hence the branches b 1  through b g — l  form a cycle.
The branches b g  to § m — l  form a simple chain from 1 to the
sink. Notice that 1 would be the sink if the sin were on the
cycle. To calculate the cost of obtaining one unit of flow at
the sink through this chain it is first necessary to calculate
the cost of generating one unit of flow at node l g .  Flow can
be generated at l g  only the gain of cycle

g - l
B = n k-

i=1 1

is greater than one. If this is true, in order to obtain f g = l

then i t  i s  necessary that:

fg = fg_l.kg_l — fl
g - 2

but f = f - N k .

then fg= fl[B—l]

_ _ 1
when f g  - 1 t h e n  f l  — Fi-

Thus to obtain one unit of flow in arc ;% the kfollowing flows
are required: f 1  = 1/8——1, f 2  = k l / B -  l ,  / B * 1  , etc.
The cost o f  obtaining one unit o f  flow at  3 i g  i s1 t h e r e f o r e

g-l K— 1
vi = 2 (c1- n k-l ) / ( B -  

l )

9 [=1 i=1
g — 1  9‘1

= 2 (CK/ w ki)'(B/B—l) (l4)
[=1 i=1

Equation (14) provides a means for calculating node costs for
nodes on a cycle. If equation (14) calculates the node cost
for V i l  = V i  then equation (15)can be used to calculate other
node costs on the chain

v. = (v. + c )/k for £21 (15 )11+1 13 3 K
The algorithm can now be rewritten incorporating equation

(14). The only change will be in step 3. The new step 3 is
written



3. If some V' has been changed in step 2, use the pointers
to determine if a cycle has been formed. If so use
equation (14) to calculate the node cost for one node
on the cycle. Use equation (15) to calculate the node
costs for other nodes on the cycle. Then return to
step 2 .

I f  no cycles are found simply return to step 2 .

If all arcs are inspected without changing any node
cost, V j ,  then terminate. V t  (t is the sink) is the
cost of the minimum cost flow augmenting chain. The
chain itself can be recovered from the pointers Pi.
If at termination Pt = 0 there is no chain to the
sink in the marginal network.

The modified algorithm will terminate in  a finite number
of steps even if cycles are part of the flow augmenting tree.
Figure 21 illustrates a marginal network in  which the minimum
cost flow augmenting chain to the sink does include a cycle.
The sink lies on the cycle. The labels are shown in the figure.
Notice that the cycle can be detected after node 3 is assigned
the label (4 /11 )  through arc 5. The final labels on the cycle
are calculated using equation 14 and 15.

(O/M) ‘
(1/9)
(3/8)
(3/7)

©

(O/M)
(1/12)
(4/11)
(4/10)

Figure 21 A flow augmenting chain with a cycle



A flow generating cycle can only occur i f  the cycle gain
is greater than one. Thus if all arc gains are less than one
(for arcs with capacity greater than zero) the modified algori»
thm need not be used. Even if the original networtas all arc
gains less than o n e ,  however, the marginal network w i l l  have
gains greater than one on its mirror arcs. The modified mini—
mum cost flow augmenting chain algorithm is therefore a critim
cal part of the network with gains algorithm.

IV.3 Augmenting the Flow

Once the minimum cost flow augmenting chain is found, i t
is necessary to increase the flow in the arcs of the chain in
order to increase the flow into the sink by as much as possim
ble. We will calculate the flow change in the original network
by calculating the maximum flows that can pass through the flow
augmenting chain in the marginal network. The amount of the
flow change depends on the upper bounds on the arcs o f  the mar—
ginal network. - '

Let C = {11, b i1' 2 ,  b b i , bg...im}.'2 .9 .  g — l '  g

Consider first the case in  which the flow augmenting Chain
is a simple path from source to sink. Let the flow increase at
the sink be AFt. For arc b 2  in the chain the flow is:

mél
* :-fZ A F t / . I £ k i  ( 16 )

1-»

(the asterisk is to denote flow in the marginal network)

The amount the flow can increase is limited by the upper
bound on the flow in the marginal network. Thus

* <  3%fie ” 1 1 . 8

m~l
or AF./ n k. S u *t i=£ 1 Z

m—l
or AF S u * n k.t K i-Z 1

To obtain the maximum flow change

m - l
AF = Min {u * n k.} (17)
t iszsm—l K i-Z 1

Once A F t  is known equation (16) is used to calculate the
flow change for each arc in the marginal network.



If the flow augmenting chain includes a cycle such that
1 1  = i g  a slightly different approach must be taken for the

. . b .
arcs i n  the cycle. The flow 1ncrease in are 9 1 5  from (16)

m-l
f * = AF / n k. (18)g t i=g 1

To generate this amount of flow requires that in arc b 1 :

f l *  f g * / B - 1  (19)

I
A

and in arc b 3  in the cycle (L g-l):

[-1
f * f * n k.K 1 i-l 1

9-1
*fl B / ‘ fl i k i

1;:

9-1
* .—fg s/(B 1)( n ki)

i=£

Inserting the value for f g *  from equation (18):

m—l
f£* = AFt 8/(8 1)( w ki ) for l<£Sg-l (20)

i= £ 1

Thus since f £ *  S Q£*

g I m—l <
AF B/B-  l ) ‘  ( n k i  ) _ u*

t ; i = £ l  K

for 1 5 Z S g-l
F < B? m- l

or AFt - ( —  ) u £ (  1:£ki)

for l S i 5 9-1

Arcs on the chain connecting the cycle to the sink follow the
relationships previously given for the chain from source to
sink. Thus the maximum flow increase at the sink for a chain
including a cycle is:



. 8"]. 1* . 1. .AF ,= Min { Min [( . _ ) u  (-% k.)],
. t ' 4  , 1E“ZSg-l"_B—' £ V ~ i é £ ' l '

I. mél
Min '[u£. w k. l} (21)

gSZSm-l i: K

The flow changes i n  the arcs o f  the chain are calculated
by equation (16) for arcs not i n  cycle and equation (20) for
arcs i n  the cycle.

Given the maximum flows i n  the arcs o f  the marginal net-
work, the flow changes i n  the original network are determined
by . . ,

Af.. = f..*v‘— f‘..*/k... (22)

Notice that although flows i n  the marginal network are
always positive the flow change in the original network is posi—
tive or negative depending on  whether the flow is in the for-
ward o r  mirror arc.

I V . 4  Example Problem

Figure 22 shows the sequence of marginal networks as the
algorithm progresses through the example problem. Notice that
the first marginal network is the same as the original network
because the initial flows are zero. The flow augmenting chain
algorithm yields a simple chain {l,(l,2),2,(2,3),3,(3,4),4}.
The minimum per unit cost of flow at the sink is 64. The maxi-
mum flow that can be obtained at the sink through in chain is
1/2. With this flow both arcs ( 1 ,2 )  and (3,4) become saturated.
The flows i n  the marginal network are used to adjust the flows
according to equation (22 )  in the original network. The new
flows appear i n  22b.

These flows are uSed to construct the marginal network in
22b. The minimum cost flow augmenting chain in this network
is a cycle and is {4,(4,3),3,(3,2),2,(2,4),4}. The cost per
unit of flow obtained through this chain is 80 and the maximum
flow that can be obtained at the sink is 1/2. With this flow
arcs (3,2), ( 4 ,  3 )  and (2,  4 )  become saturated i n  the marginal
network. The flows i n  the marginal network are used to adjust
the flows i n  the O r i g i n a l  netWork which now appear i n  2 2 c .  7
The total flow at the sink is now 1. Notice that saturation
of arc (3, 2) and (4,3) in the marginal network corresponds to
complete removal o f  the flows i n  arcs (2,3) and (3,4) respec-
tively in the original network.

21—40



Figure 22 The original and marginal networks
for an example problem.
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The flows in the original network in'22c are used to cons—
truct the marginal network of 22c. The flow augmenting chain
yields a cost of 168 per unit of flow at the sink and maximum
increase o f  1/2. The modified flows i n  the original network
appear in 22d. The marginal network for these flows shown in
22d has no flow augmenting chain to the sink (both arcs (2,4)
and (3,4) are saturated in the original network).' Thus the
maximum flow a t  the sink has been obtained for the example
problem. The flows on the original network of 22d are the
minimum cost flows for the sink flow of 3/2. The flows shown
on the original networks of 22c and 22b are the minimum cost
flows for 1 unit and l/2 unit of output flow respectively.



V. Example Water Distribution Problem

As an example of the application of these procedures to a
water distribution problem consider a hypothetical system for
the State of Texas. The system consists of four reServoirs;
A ,  B, C and E and a junction point D,  interconnected by a set
of five canals and a river as shoWn in Figure 23. Reservoirs
A and B are assumed to b e  i n  East and Northeast Texas respec-
tively. Reservoir C is in North-Central Texas and E in West
Texas. Demands for water can be made at eaCh of the four res—
ervoirs. The inflows into the system are the rainfall at res—
ervoirs A, B and C and the availability of import water at
reservoir A. The monthly capacities of the reservoirs and canals
and the maximum import water availability are shown on the arcs
and nodes of Figure 23 in thousands of acre-feet. The unit
cost of transporting water over the canals and the cost of im—
ported water i s  also shown i n  S/lOOO acre-feet. The demands and
rainfall for a twelve month period are shown in Tables 1 and 2
respectively.

The leakage coefficients or gain factors were computed
from the following equations:

k i j  = l for supply and demand arcs

2-m, otherwise

where 2 i s  the location factor. For canal flow,

2 = .985 in West Texas (E)

2 = .99 for Central Texas (C,D)
2 = .995 for East Texas (A,B)

a _ 2 = .98 i n  West Texas (E)

2 = .985 in Central Texas (C,D)
2 = .99 in East Texas (A,B)

and m i s  the seasonal factor.

m = .995 in Winter from November to February
m = .99 in Spring and Fall. September to_

October or March to April

m = .985 in Summer from May to August

To determine the optimal operating policies of this water
distribution system a similar network was considered for each
of twelve months. The storage of water was depicted by joining
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MONTH A

JANUARY 1

FEBRUARY 2

' MARCH 3

APRIL 4

MAY 5

JUNE 6

JULY 7

AUGUST 8 - 5.00

.SEPTEMBEfi  9 1 .00

‘ OCTOBER 10

NOVEMBER 11

DECEMBER 12

'RESERVOIR

- 421

'61

212.

229;

375.

122.

834.

1098.

425.

20

19 .

22

Table 1 Demands f o r  Water f o r  t he  Example

Water Dis t r i bu t i on  Problem

00

.00

00

00

00

00

00

00

00

.00

00

.00



MONTH

JANUARY 1

. FEBRUARY 2

-:MARCH 3

APRIL 4

MAY 5

JUNE 6

JULY 7

AUGUST 8 -

3EPTEMBER-9

OCTOBER 10

'NOVEMBER 11

DECEMBER 12

Table

29

32.

33.

33 .

41

11

12 .

23

2 Ra in fa l l  and Inflows f o r  Example

Water Dis t r i bu t i on  PrQbIem

. 00

00

00

00

.00

.00

.00

.00

00

.00

B

200

196.

211

301

284 .

173

20 .

35.

66 .

100.

RESERVOIR

.00

00

I 00

. 00

00

.00 .

00

.00

oo

00

00

37 .00

44.00

‘ 45 .00

52.00

64.00

'20.00

22.00

'33 .00



the nodes representing the same reservoir across the adjacent
months. The storage arcs from the month of December were con~
nected back to the respective nodes in the month of January as
carry over arcs from the previous year. This in fact simulates
the continuous operation of the system from year to year with a
deterministic supply and demand pattern. Part of the resulting
network is shown in Figure 24.

The optimal solution for this network was determined with
computerized implementation of this algorithm. The solution is
interpreted in terms of the problem in Tables 3 through 5.
Table 3 shows the import water requirements for the six months
when import water is available. Table 4 shows the shipping
policies along the five canals for the twelve month period and
Table 5 provides the guidelines for reservoir storage for the
year. From these tables it is seen that the canal A—B of Fig-
ure 23 is completely unused and that canal D—E is used to capa-
city for nine months out of the year. Reservoirs B and E are
grossly oversized and reservoir E which has the highest rate o f
evaporation i s  used to store water almost over the entire year.
This is due to the limited size of the canal D-E, which cannot
transmit all the required water to reservoir E during the peri-
ods of highest demand in July and August. Therefore, water has
to be shipped to West Texas beginning from the month of Decem-
ber and stored in the West Texas reservoir to meet the high
summer demands there. Hence, if the canals and reservoirs of
this model represent a proposed system it  would be beneficial
to analyze the effect of increasing the size of canal D—E and
eliminating canal A—B and reducing the sizes of reservoirs B
and E .

This problem has also been solved as a pure network prob-
1em. That is, by ignoring the losses and setting the gain fac-
tors, k i ' ,  for a l l  the arcs equal to o n e. The optimum solution
without leakages (76,308,250) was found to be over 10% less
than the optimum solution with leakages (85,039,136). This
shows that even with the conservative leakages that were con—
sidered (maximum 3% per month) the cost difference is significant.

is



January

Feb rua ry

1 ‘

' e tc .

December

‘V  ‘14: i .

Ifigure 24 Twelve Month Representation o f  the

Exampie Water D is t r ibu t ion  Probiem
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IMPORT
MONTH . . . IREQUIREMENT

JANUARY 1 - 122.76

FEBRUARY 2 , 116.70

MARCH 3 102.91

APRIL 4‘ _ _ , 31.19
' .  MAY 5 - 398.68

JUNE 5 ' 0 . 1202.68,

Tte  3_ . Impo r t  Requirements f o r  the '

Exampie Water Dis t r i bu t i on  Problem
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A-B A-D B-C C-D D-E
CAPACITY,-1000 ,
ACRE-FEET/MONTH 452 392 422 392 380
$/1000 ACRE-FEET 584 484 309 346 200
MONTH

JANUARY 1 0.00 151.76 200.00 234.01 380

FEBRUARY 2”‘ 0.00 148.70 196.00 237.07 380

MARCH 3 0.00 135.91 211.00 1251 80 380.

APRIL 4 0.00 64.19 277.04' 323.53 380

MAY 5 0.00 389.68 0.00 0.00 380

JUNE 6 0.00 389.68 0.00 0.00 380

JULY 7 0.00 348.83 0.00 40.85 380

AUGUST 8 0.00 389.68 0.00 0.00 380

SEPTEMBER-9 - 0.00 ~ 47.70 3354.07--.34;02 380.

OCTOBER 10 '0.00 3.00 :20.33 “17.93 20.

NOVEMBER 11 0.00 0.00 0.00 19.68 19.

OEOEMBER 12 0.00 0.00 271.44 302.66 332.

CANAL

.93

.00

.00

00

.00

.00

.00

.60

.00

00

51

39

43'

16b1e 4 Cana] Shipping Pol icy for the

Example Water D is t r ibu t ion  Probiem
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CAPACITY IN
1000 ACRE-FEET
MONTH

JANUARY 1

FEBRUARY 2

' MARCH 3'

APRIL 4

MAY 5

JUNE 6

JULY 7-

AUGUST 8

SEPTEMBER 9“

OCTOBER 10

NOVEMBER 11

DECEMBER 12

Tab1e 5

824

0 .00

0 .00

0.00'

0 .00

0 .00

824.00

455.69

49.68

0 .00

0 .00

12.00

0 .00

RESERVOIR

B

2430

0 .00

0.00,'

0 .00

23.96

307.36

472.73

480.98

453.03

96.96

109.69

174.05

0 .00

946

0 1

64.00

82.09

26.80

0 .00

0 .00

0 .00

2 .32

0.00

E

' 31OO

626.67

922.50

1053.56

1163.73 1

' 1117.03

1324.95

7813 .66

56.12

0.00

0.00

0.00

303.81

Reservoir Storage Pol icy  fo r  the

Exampie Water D is t r ibu t ion  Problem

2 -51



VI. Conclusions

The algorithm developed i n  this study to solve network prob—
lems with gains has proved to be very successful in solving a
large number of dififerent types of network problems with various
gain parameters. The gain parameter associated with each of the
arcs in the network can be any nonzero quantity. The unit costs
can be any positive or negative quantity and any directed net—
work cyclic or acyclic can be considered as long as the cos’t to
traverse any cycle i s  not negative. Multiple arcs between two
nodes are permissible. The solution technique is simple in con-
cept and very easy to implement either for hand calculations or
on a digital computer. A l l  optimal intermediate solutions are
available. Also, the algorithm can be used to find the maximal
flow through the network. This maximal flow i s  a t  the minimal
cost. ‘

. With respect to the distribution o f  water, the proposed
algorithm adds a new dimension to the c o s t  considerations that
determine the optimal operating policies of the system. The
simulation studies of  water distribution plans can now bé per—
formed to a greater depth of analysis than before by considering
the evaporation and seepage characteristics o f  the reservoirs
and canals. The selection of the cana1-reservoir system and the
optima1 policy for managing these can now be achieved with a
greater degree of understanding of the system than has been pos—
sib1e before. _ _ _
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A Computationally Efficient Algorithm

for the Network with Gains Problem

by P .  A .  Jensen_
and Gora Bhaumik

I - Terresygfiisn

The networks with gains model i s  a useful extension o f  the

pure network model. Applications have been suggested in water

resources planning ( 2 ) ,  electrical power planning (6), and

others (9). >Several authors have suggested solution approaches

(4,7,8,9;10,12). This paper suggests an approach which is

simple in concept and very efficient computationally. The ap—

proach i s  based on (3) with the addition o f  several modifications.

Large problems have been solved in times comparable to those

required for the most efficient pure network codes.

The network with gains problem treated here i s  structured

on a network with m vertices denoted v1,v2,...,vm and n directed

branches denoted b ,bl 2 , . . . , b n .  When necessary, a branch w ill

be identified by its end points using the notation bk(i,j) or

simply (i,j) where the initial vertex of the branch is vi and

the terminal vertex is v j .  Associated with each branch bk will

be a flow f , a capacity for flow, ck a c o s t  per unit flow, h
k '  k

and a positive gain, a The branch flows are the decisiOn Vari-k .

ables of the problem while the branch costs, capacities and gains



l a r e  parameters. Flows are bounded from below by zero. A single

source vertex is defined and called vs, and a single sink vertex

i s  defined and called vt.

The structure o f  the problem is described by the network

G=(V,P) where V is the set of vertices and F is the set of bran—

ches. A useful definition related to structure i s  that the set

Ak is the set o f  branches whose initial vertex i s  V k '  and Bk

is the set o f  branches whose terminal vertex i s  vk.

A path in the network is a sequence of alternating vertices

and branches written as:

v;i_1'bjl'v:i.2'bj2'”"Vi(k--l) ’bj(k-1)’Vik

).Where b j z  = (i£,iz+l

Here i represent indices of vertices, while jl,j2,....,l . i 2 , . . . , i k

j k - l  represent indices of branches. The branches of a path will

be distinct but the vertices of a path may be repeated. A path

with distinct vertices is called a simple path. Note that a

path as defined here is directed. A circuit is a path whose

vertices are all distinct except the end points. Thus Vil=vik

for a circuit.

The problem to be solved is to find an assignment of flows

to branches such that a given amount of flow is obtained at the

sink at‘a minimum total cost. In addition, the flow must not



exceed the capacity for any branch, and flow must be conserved

at each vertex except the source and sink. Flow w i l l  not be

conserved in branches as a flow o f f k  which enters a branch

bk(i,j) at v i  w i l l  arrive a t  v j  with a value o f  a k f k '  A g ain

is allowed to be any positive number.

This is a linear programming problem and can be written

in the u s u a l  f o r m a t :

n _ .
Min 2 f (l)

k=lhk k

subject t o :

Z akfk — Z fk = 07 i=l,...,m; 1 # s,t (2)
k e B  k e A .  ‘

1 l

kZB a k f k  = F s , t  (3)

e t

Here FS t is a given amount of output flow that is to  be

obtained. The omission o f  a conservation o f  flow constraint a t

vS implies that an unlimited quantity of flow is available at

the source. Most network with gains problems with positive

gains can be put into this format with a suitable construction

o f  the network. ‘

An assignment of flows to the branches that satisfies (2)

w i l l  be called F .  A n  F that satisfies (1) for some value o f

flow a t  the sink less than F s  w i l l  be called an intermediate
,t



optimum. The flow F which satisfies (1), (2) and (3) is called

the optimum.

The general approach taken to obtain a solution will be

similar to that of Busacher and Gowen (3) for the pure network

problem. The procedure begins with an intermediate optimal F0

for some value of output flow at Vt. All flows equal to zero

are acceptable starting solutions when there are no directed

circuits in the network with negative cost. Next an augmenting

network is constructed G: which determines for each vertex the

minimum cost per unit of  additional flow to the vertex and the

path over which that flow may be obtained.

For a pure network this network would take a tree struc-

ture; but for the network with gains, the network may consist

o f  one or more components. Each component contains either a

flow generating circuit or the source. The output flow

is increased in 62 along the minimum cost path defined for the

sink until one or more branches in G2 become saturated. This

to obtain the flow F . The flow F thus ob-0 1 l

tained is an intermediate optimum. A new augmenting network

flow augments F

is constructed, 6:, and the output flow is again augmented to

obtain F2. This process continues iteratively until the desired

output flow or the maximum flow is obtained. At every step Fk



is an intermediate optimum; hence at termination the flow pattern

must be the optimum or the maximum flow through the network i f

F s , t  is greater than the maximum flow.

The approach can be made computationally efficient by using

a simplex operation to go from one augmenting network to the

next. Computerized versions o f  the algorithm have been tested

on large problems (up to 2400 branches) and take only about twice

as much time as the most efficient pure network algorithms on

problems with the same structure but no gain.

3-5



II. Flow Generating Circuits

Flow can be augmented into a vertex from one o f  two sources.

Either the flow can originate at v s ,  at which an unlimited amount

o f  flow i s  available, or it can originate at a flow generating

circuit. A flow generating circuit is a set of  branches which

form a circuit sudh that the circuit gain (the product of the

branch gains) is greater than one. Figure 1 illustrates the

concept. In the figure the triplets show (hk,ck,ak). Flows are

shown by the arrows above the arcs.

Figure 1 :  Flow generating circuit

Note that the flow f(l,2) = 1 produces a flow f(2,3) = . 7 ;

furthermore, this produces the flow f(3,l) = 1 .4 .  At vl conser—

vation o f  flow requires that f(l,4) = .4. Thus the flow in the

circuit with circuit gain greater than 1 has generated flow in

b(1,4).

In general, the circuit is defined by a sequence o f  vertices



and branches which can be written a s :

b b n o - o b .  V ,V11 jlvi2 j2 3k 11

Where b j z  = b(l£,1£+l) for z = l,2,...,k—l

and bjk = b(ik,1l).

_ k
The gain of the circuit is B where B = n a j z '  For a flow

£=1
generating circuit 8 > 1. Flow can be generated out of the cir—

cuit at any vertex of the circuit. Let Ti be the flow generated
1

by the circuit and removed at vertex vi Let f. and f_ be the
l .  31 3k

flows in the first and last branches.

By conservation of flow at vi1

k-l
But fjk = Lilajz - fjl

£ 3 1  + Til = afjl

fTil = f j l ( B - 1 )  (4)

Thus 8-1 units of flow can be generated at vi1 for every

unit o f  flow routed around the circuit.

Let T. be the flow entering v. from b. in the circuit.3k 11 3k

thus Tjk = a k f j k ’  A l s o  Tjk = i i '  Thus the flow out o f  Circuit

can be represented a s :

Til = Tjk(l-l/B). (5)

3-7



III. The Augmenting Network

For any intermediate optimal flow,F, the augmenting network

GA = (V,TA) is constructed from the original network G = (V,F)

for the purpose of finding the minimum cost path over which flow

can be augmented into the sink.

The vertices of GA are the same as those of  G .  The branches

o f  GA depend on the flow F on the branches o f  G . :  The branches

o f  GA are chosen from the s e t  o f  admissible branches. Define

the set o f  admissible branches PD as follows:

bk(1,j)e FD i f  bk(1,3)e F and fk < ck

I n ' f  ’b I vb k + n ( 3 . 1 ) e  TD 1 k ( 1 . 3 M ;  1“ and fk > o

I f  the branch bk appears in G A '  its parameters are derived from

the corresponding branch in G .  The capacity of  bk will be ck-fk,

its cost w ill be hk and its gain will be a The branch b k + n ( j ’ i )
k .

is called the mirror branch o f  bk(i,j). Its parameters are

ck+n = fk . 3 k ,  
hk+n = --hk/ak and ak+n = l/ak. Branch bk ls also

called the mirror branch o f  b .
k+n

An augmenting network is a collection of admissible branches

which define one and only one augmenting path for each vertex.

Augmenting paths ar e o f  two types, those that originate a t  the

source and those that originate at a flow generating circuit.

An augmenting path originating at the source is a simple path



Whose initial vertex i s  the source. An augmenting path originam

ting at a circuit consists o f  the circuit and possibly a simple

path originating at some vertex in the circuit. Figure 2 shows

an augmenting network with one and only one augmenting path dew

fined for each vertex. Note the paths for two vertices a r e not

necessarily branch disjoint.

Figure 2 :  A Flow Augmenting Network



Note that a component o f  GA without a circuit, i s  a tree with

k vertices and k m l  branches, while a component o f  GA with a cir—

cuit connects k vertices with k branches. There is at least one

component which i s  a tree rooted at the source ( i t  may be vS

alone). Thus the augmenting network has m vertices and m—l bran-

ches.

The problem now i s  to choose PA from the set o f  admissible

branches to form GA such that for each vi there exists one and

only one augmenting path into v i .  Furthermore, the path thus

defined must be the path which can provide flow into vi at the

minimum cost per unit. To calculate the per unit cost, i t  is

necessary to consider the branch gains ak as well as branch

costs h k '  as one unit flow at vi may require more or less than

one unit of flow in each of the branches of the augmenting path.

Define for each vertex, v i ,  a potential 6 ( i )  that i s  the

cost of obtaining one unit of flow at vi using only the branches

in F A ”  For a t ree rooted a t  the source, the values o f  5(1 )  are

easily assigned by setting 5(s) = 0 and applying recursively

the relation 6(j) = ( 6 (1 )  + h k ) / a k  where bk(i,j)eFA. This

relationship follows from:

Theorem 1 :  If 5(i) is the cost of  obtaining one unit o f  flow

at V i ’  then the cost o f  obtaining one unit of flow at vertex

3-10



j through the branch bk(i,j) i s :

6(3) = (5(1) + hk)/ak' (6)
Proof: To obtain one unit of flow at vj requires that 1/ak

units of flow be transmitted through vi. The cost of bringing

this flow to vi is 6(i)/ak. The cost of transmitting it through

bk is hk/ak. ' T h u s  5(j) = (5 (1 )  + hk)/ak.

For components o f  GA with a circuit the potentials for the

vertices on the circuit must first be obtained.

h ' . . . v . 1 .  . I ' O I I - l - I .T eorem 2 .  Given the Circuit vi1 b j l  v12,b32 v1h b3h v l l

the potential at vil is:

/ h / h5 ( i  ) = (B 8 - 1 )  2 h .  H a .  . (7)
l k=l 3k £=k 3”

Proof: First find the cost of routing one unit of flow around

the circuit starting at V i l '

The flow in b .  i s  1 with cost h .
31 31

The flow in b j 2  i s  a j l  with cost a j l h j Z

The flOW'ln b j 3  18 a jlaj2 With cost a j l a t j 3

. h-l h-l
The flow in b .  i s  H a.. with cost H a .  h .  .

3h i=1 31 £=1 jfi 3“

Thus the total cost to route one unit o f  flow around the circuit

starting at vi1 i s :

h k — l

h ,  + 2 ( H a .  ) h .  .
k=2 2:1 31 3k



One unit of flow out of circuit at vi1 requires l/(B—l)

units in branch b .  .
3 1

Thus the cost per unit o f  flow at vi1 is:

h k - l
h. + Z ( H a, )h.

5(i ) = 31 k=2 ”=1 32 3k1 8 -1

Multiplying and dividing this expression by 3 yields:

h
/ H a .

h6(11) = (e/e—l) 2 h. 32
k=l 3k £=k

This proves theorem 2.

Given 6(i1), potentials can be determined for all other

vertices in the flow_component using Equation 6 .

An optimal augmenting network is G; such that for any other

allowable augmenting network GA

6*(i) s 6 (1 )  for all V i '

tere 6*(i) are calculated according to the rules above for the

graph 3; and 6(i)¢are calculated for G A '

Theorem 3: A necessary and sufficient condition that G; = (V,T£)

is an optimal augmenting network is that:

6*(3’) s (5*(1) +hk)'/ak
for all bk(i,j)ePD. '

Proof: To prove necessity, assume that there does exist a n  ad -

missible branch bk(i,j) not in G; such that:
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* ' * '5 (J) > (5 (1) + h k ) / a k .

Since the branch is admissible, flow can be increased from vi to

V j '  The cost of obtaining a unit of flow at vj from V1 is

(6*(i) + hk)/ak. Since this cost is less than 6*(j), G; cannot

be optimum. Therefore, we have a contradiction.

To show sufficiency assume that GA is not optimum but that:

6(j) s (6(i)+hk)/ak for all admissible branches. Since GA is

not optimum there must be some vk such that 6(k )  > 6*(k). Then

there must be some augmenting path to vk in G; which is different

0 ‘ l *from that in G A '  Let the path in GA be ( V i l ' b  ).l i v i z y o o a ' v i k

Consider the vertices in this path in GA and let V i z  be the first

vertex (in the order they appear in the path) such that 6(iz) >

5*(iz). Thus 6(i ) = 6*(i ). By the rules for determining
1 — 1  2—1

vertex potentials

6*(iL) = ( “ ( 1 2 4 )  +h£_1)/a£.
Thus 5(i2) >*(6(i2_1) + hz_l)/a£ for the admissible branch b z - l

and a contradiction has been found. Thus theorem 3 has been

proved.

Theorem 3 suggests an algorithm that can be used to construct

an optimal augmenting network. This algorithm was used in ( 2 )

to find every G A. In the procedures o f  this paper, it is used

to find only the initial one. In the algorithm Pi is a pointer



for v ,  which indicates the branch o f  TD which terminates at vi
1

i n  G .
A

Algorithm to find an Optimal Flow Augmenting Network

1. Let 6(i) = M for all VieV except vs, where M is a large

number.

Let 6(5) = 0.

Let P .  = 0 for V . e V
1 1

For each branch bk(i,j)eT

. . > .
1f fk < ck and 6 (3 )  (5 (1 )  + hk)/ak,

set 6 ( j )  = (a (i) + Inkvak

s e t  P ,  = k
3

. . > . _1f fk > o and 6(1) (6(3) hk/ak)/(l/ak).

set 5(1) = (6m — hk/akVu/ak)
set P .  = k+n

l .

i f  neither condition occurs, make no change.

If none o f  the P i  changed in step 2 ,  stop with the G;

defined by the pointers. If  one or more o f  the P i

changed, use the P i  to find any flow generating circuits

that may have been formed. I f  s o ,  u s e  equations 6 and

7 to set the potentials for the vertices in the circuit.

Repeat step 2 .



IV. The Maximum Flow in the Augmenting Network

The augmenting network i s  used to determine the change in

the branch flows of the original network which will augment the

flow into the sink at the minimum cost per unit. This is accom-

plished in two steps. First the maximum flow to the sink o f  GA

is determined. This flow is then used to modify the flow of  G .

In this section branch designations, flows and parameters refer

entirely to the graph GA. it will be the flow out of the sink

in GA.

The flow augmenting path for v may be rooted at vS or a t
t

a circuit. First consider the case when the path is rooted at

the source. This is a simple path which can be written:

vil'bjl'viZ'  ‘ ' ' 'bjk'vi (k+l)

where

v ,  = v and v ,  = v .
11 s i(k+l) t

:,.,s

Define for each vertex via on the path a gain parameter 3(ia)

which is the product o f  the gain on each branch between va and

. Thvt us
k

Xua) = E a. a = l...k.

This is a useful parameter because it indicates the change in

3 for a unit change in f j a '  Thus for a unit change in f j a '



ft increases to 5(ia). Alternatively for a unit increase in f ,

the flow fja must change by l/X(ia).

Theorem 5: When the augmenting path is rooted at the source,
the maximum value o f  S t  i s :

A = Min cjz - x (3.2) (8)
i

where i z  is the index of the 2th vertex in the path and jz is

the index o f  the Lth branch.

Proof: A value of A for ft results in a flow of A / X ( i z )  in

branch L. For feasibility this must be less than C j z  or:

= ' S Cs A/X(1£) jg

A s cm: ’ X(iz)

and theorem 5 is proved.

When the augmenting path is rooted at a circuit, the path

consists of two parts, the circuit and a simple path to the sink

from some vertex in the circuit. The branches bjl through b j h

form the Circuit and the branches b j ( h + l )  through bjk form the

simple path. It is possible that the sink is a vertex on the

circuit in which case the augmenting path consists only of the

circuit.

It follows from theorem 5 that for the portion o f  the path

not in the circuit, the maximum flow increase at vt i s :

A = Min c w  - hit) ( 9 )
h+ls2sk J



Theorem 6 :  For the branches in the flow generating circuit, the

maximum flow increase in f i s :
~t

A = (1-1/5) MinEMin {c. - 25(1)},c. 'B-X(' 3(10)
c ZSLSh 3 1  2 3 1  lh+l

Proof: It has been established that

'Til = fjlm-l) or fjl = Til/(B—l)

where B is the circuit gain and Til is the quantity of flow genera-

ted out of the circuit at V i l '  It can be shown that the flow on

the 2th branch o f  the circuit is

s fjl ' B 'X(ih+1)/x(iz) °r

f
3'2 Til

 ' B "6(1h+1)/[X(1£) ' (5—1)} 2s£sh

To obtain an increase of A at Vt, T i l  must increase by A/‘klh+l).

Thus

fjl = A/[8(ih+l)-(s-1)] s cj1 or

A s l '8 (ih+l>-(s-1)
and from theuexpression for s :

[A/x(jh+l)] 'B.X(ih+l)/l.x(iz).(B—l)] s cjz

Simplifying

A s [(3-1)/e]° cj!’ - X(i£) ZsLsh
Combining these results:

A 1 - 1  M '  M '  . ° ' I . ' ' Is /B 1n{2:21Sh{cj£ ¥(1£)] C31 8 x ( l h + l ) }



which proves theorem 6 .

Considering all the branches on the flow augmenting path,

the maximum increment is:

A = Min {AP,AC} ( 11 )

Equations 8 through 1 1  determine the maximum value o f  gt

that can be obtained by increasing flows on branches of the aug—

menting path. That value is A. A in turn determines the flows

in the branches. Thus for branches not on a circuit

f . = '32 A/8(l£) h+l s 2 s k.

For the branches on a flow generating circuit

fjfl ~ AtB/B-11/5(i£) 2 s 2 s h
and f11 - A/[8<1h+1) - (as-1)]
With these flows imposed on the augmenting network, at least one

branch becomes saturated (flow equals capacity).



V. Augmenting the Flow in the Original Network

The flow on the augmenting network is now used to augment

the flow in the original network to find a new intermediate op-

timum. Let FK be the flow on G used to define the admissible

branches (which i n  turn determine G A ) .  Let f§(i,j) be the flow

on branch bL(i,j) determined by FK. Let FK+1 be the augmented

flow on c. and f§+l(i,j) be the branch flow. Let fz(i,j) and

f£+n(j,i) be flows from GA as defined in the last section. The

augmented flows are determined as follows:

+1 . . _ K . . . . . .f’; (1.3) — f£(1.3) + f£(1.3) fflmwnn/afl
for all bleF.

It can easily be shown that the flow FK+1 is feasible. The flow

at sink for FK+1 has been increased by the quantity A over its

value for F K '  FK+l 18 an intermediate optimum because FK was

an intermediate optimum, and the augmenting flows provide in—

creased flow at the sink at the minimum cost per unit.
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V I .  Optimization o f  the Augmenting Network

With the augmentation o f  the sink flow, one or more o f  the

branches on the augmenting path becomes saturated and hence

inadmissible. The problem now is to find an optimum augmenting

network for the new flow. This task is pursued in an iterative

manner with each augmenting network derived from the previous

K
one. Therefore identify GA = (V,r:) as the augmenting

network at the Kth iteration, and address the problem of finding

G§+l= (V,P§+l) after the flow has been changed.

Consider first the case in which only one branch becomes

saturated. This branch is called the leaving branch, b L '  De-

K
leting the leaving branch from GA forms two graphs G = ( X ' P A l )

Al

and G = (i)?A2 The latter graph includes the sink and all
A2) '

other vertices disconnected from the source or a flow generating

circuit by the removal of the leaving branch. It can be shown

that GA is a directed tree rooted at the terminal vertex o f  the2

leaving branch. GAl consists of the remaining vertices and bran-

Ches of GA. GAl includes the source and all flow generating cir—

c u i t s  o f  G A '  I t  follows that:



In addition to the branch leaving the admissible set, i t  i s

also possible that some branches will enter the admissible s e t

due t o  the flow change at iteration K. Let MD be the set of

branches which enter the admissible set at  this iteration. It

is apparent that MD must consist only of mirror branches on the

augmenting path, because flow has been increased only on these

branches.

It is convenient to define the network GAZ = (i3rA2). The

s e t  n consists o f  P A Z  plus the mirror branches o f  F There2 .

exists in G A Z  a unique path between every pair o f  vertices of  i.

The quantity X(i) is defined for vie? as the product of the branch

gains on the path from vi to v in G '  i )  can be interpreted
t Az'

as the gain in flow which occurs along this path. Alternatively,

l/X(i) is the amount of flow required at vi to obtain one unit

o f  flow at V t .  The quantity X(i) i s  called the vertex gain o f
.2".

v,.
1

There are now two quantities associated with the vertices

o f  the graph, the vertex potentials 5 ( i )  determined for each ver-

tex by the structure of G; and the vertex gains 3(i) assigned

only for the vertices in i. These two quantities are used ex—

tensively in the development to follow and are the key to the

efficiency of the algorithm. Two important relationships can be



written in terms of  vertex potentials and gains. The proofs o f

these relations are straight forward.

Let vé and vb be two vertices in i. The gain of the unique

. g - . .path in GA2 from va to vb 1s BQaL/Xflfl. The gain of the path is

the product of the branch gains on the path. Thus one unit o f

flow a t  vb through this path requires X(b)/XXa) units at V a .

The cost to obtain one unit o f  flow at vb through the path

from v i s :
a

wan-6 (a) ° «was
This quantity might be termed the cost of the path. These re-

lationships are important because characteristics of a path can

be calculated using only values associated with the ends o f  the

path.

The new augmenting network w i l l  be constructed by one o f  two

approaches. I t  will later be shown that one o f  these approaches

K 1. + . . . .
yields an optimal GA . For the follow1ng dlsCUSSlonu define

the following subsets o f  admissible branches:

U l
l

{b(1.3)l b ( 1 . 3 ) e P D .  viex. vjex}

U l
l2 {b(1.3)l b(113)€FDr v i e x ,  VjeX}

U l
l

{b(1.j)| b ( 1 . 3 ) e P D .  viex, vjex}

U l
l {b(i,j) | b(i,j)el"D: v i e i ,  vjei}
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The first approach constructs G:+l by adding some branch

h{(i,j) which is a member of D to the graph GA and the sub-
1

which forms a directed tree rooted at v j .  Thus

2
lgraph o f  GA2

the sink and the other vertices o f  f are connected to the source

through the branch b . Thisor a flow generating circuit of G k
Al

approach is shown in Figure 3a.

K+1 .
The second approach constructs GA by adding some branch

H{(i,j) which is a member of D Together with branches of GA4' 2

this branch forms a circuit. If the gain of the circuit is greater

than one, it is a flow generating circuit. This circuit is

source of flow for the vertices of i. Gi+l is formed by G A l '

the circuit formed by b k ’  plus selected branches o f  G A Z  which

form a directed tree rooted at the circuit. This approach is

shown in Figure 3b.

Both constructions form an augmenting network when all the

branches of G A Z  are admissible. We assume for the present that

this is true and will discuss later the implications When it is

not. Note that adding branches from the  sets D1 or D 3  do not

yield an augmenting network.

K+l F th
A . or eLet 5(i)”be the vertex potential for vi in G

optimum augmenting network 6(t)‘ will be at a minimum. Let

A = 6(t)'—6(t), or the increase i n  the sink potential obtained



a)

b)

Figure 3 Two Constructions for the augmenting network



for optimum flow augmenting network. Consider the first con—

struction approach.

Theorem 9

A 5 Minimum [(5 (i) + hk)/ak—6 (jfl/Eém (:2)

E£22£z The addition o f  bk(i,j) to form an augmenting network,

would result in an augmenting path to the sink consisting o f  three

p a r t s :  A ,  the path from v j  t o  vt which c o n s i s t s  o f  branches from

A 2 ;  B ,  the branch b k ;  and C ,  the path from the source (or from

a flow generating circuit) to V1 which lies entirely in G A l '

Consider the flows in these three parts required t o  obtain

one unit of flow at Vt. One unit of flow at vt requires l/6(j)

units at vj and l/ZS(j)-ak at vi. The cost of these flows are

computed a s  follows:

For part A the cost i s :

“6 (t)-5 <j>/2i<j>

For part B the flow through the branch results in a c o s t  o f :

h k / 6 ( j ) ' a k -

For part C ,  the cost to obtain one unit o f  flow at v i  is

6(i). T o  obtain the required flow the c o s t  i s :

5 ( i ) / 3 5 ( j ) ' a k -

Adding the three costs yields:



6(t)‘ = 6(t) + [(M1) + hk)/ak-s(j)]/25<j>;
Thus for any bkeD2

A s [(M1) + hk)/ak- mum-3)
and theorem 9 i s  proved.

Now consider the second construction approach.

Theorem 10

The addition o f  bk(i,j)eD4 to 6A2 forms a directed circuit

with gain:

a = M5.) ~ak/IS(i) (13)

P r o o f :

b e D  implies that v . e §  and v.3i. Thus b does form a
k 4 :L j k

directed circuit with branches o f  G '  The gain of the path
A 2 .

from Vj to vi in GAZ is 6(j)/5(i). Thus the circuit formed by

adding bk has gain 25(j) -ak/z§(i) .

Theorem 1 1

A s Min[(6(i) + tak — 5(‘jfl/[X(j)'(l-1/B)] (14)
S

where
s = £k bk<i,j>ev4. al -2§(j)/25<i) > 1}.

Proof: When the addition o f  the branch bk(i,j) forms a circuit

with gain greater than one, the augmenting path to vt consists

o f  four parts: A ,  a simple path from some vertex vz on the cir-

cuit to the sink; B ,  a path from v ,  to v2
3

circuit; C ,  the branch bk(i,j); and D ,  the path from v

which forms part of

L to V 1



which completes the circuit. Note that except for b k '  the path

. t '  . , .
lleS en irely in GA2

In order to  calculate the potential at vt for the augmenting

path produced by b , consider first the flOWS required in the
k

four parts to obtain one unit o f  flow a t  vt. O f  course, the

flow at vt is to be 1. The flow out of V 2  must then be l/6(£).

The flow into v2 from the circuit must be, according to previous

arguments, L4Kl-l/B)'5(£flo

The flow out of node vj is to be:

1 . 13(2) 1
(1-1/a)x<z) 3(j) ‘ (1—1/B)'X(j)

The flow out o f  node vi (through bk) i s  then:

1/[(1-1./a) -X(j) - akl

NOW to calculate the cost of this flow in four parts. The cost

in part A to obtain one unit o f  flow at vt from vz is:

_§(t) - 6(£> /5 (£ )

The c o s t  t o  obtain one unit o f  flow a t  v2 from v .  i s :

6(2) — am ~6<z>mj>
Thus to obtain the required flow the cost in part B is:

[5(z)—6(j)-x<z>/X(j>1[1/(1—1/e)-28(2>1
= [1/(1—1/mfl6wvm2) — 6(j)/X(j)’]

The c o s t  O f  the required flow in branch b (part C )  i s :
k

[1/(1-1/5Mg/‘Mh -ak1



The cost to obtain one unit of flow at vi from v2 is:

5 m  — 6(2) ° Min/5(2)
Thus the cost in part A i s :

[5(1) - MM-Mivmm  1/(1—1/e)-X(j).ak]

Adding the costs of flow in the four parts and reordering terms,

the modified potential at v i s  6(t)‘:
t

a (t)- a (JD/6(2)
6(1%)[1/(1—1/8)“1/X(£)-3(i)/X(£)'X(j)°ak]

[1/(1-1/3) - Km] [-5 (j)+hk/ak+6 (i)/ak]

6(t)’

+
+

Recognizing that 6(i)/2S(j)'ak = 1/8. the terms involving 5(z )

drop out and the change in potential at v caused by adding b
t k

i s :

6(t)’ - 6(t) = [(5(i)+hk)/ak]/[(1-1/e)'x (j)] .
This difference must be at least as great as minimum difference

A. Thus theorem 11 is proved.

The branch which will enter the augmenting network to form

G:+1 w ill be the member o f  D 2  or D4 which causes the smallest

increase in 6 ( t )  a s  measured by the equations 1 2  and 14. Let

this be branch b E .  The potentials for the vertices in GK+1 are
A

determined by the following. First:

5 ( t ) '  =5(t) + A .



Each V i e i  will be connected to V t  through a path chosen

from G '  Thus the following relationship is true:
A2‘

6 (t) - 6 (i)/2§(i) = 6 (t)' - 6(1 )  '/b’(i)

Rearranging

'6<i)' — a<i> = 5(i)[:a<t)' — 6(t)j
or a (i)' = 5 (i) + 601M for via? (15';

For v . e X :
l

6 (i) ' = 6(1 )  (16)

Thus when the entering branch i s  determined, the vertex poten—

. K+l . .
tials for GA are eaSily determined.

Theorem 12

The augmenting network formed by adding the branch from D 2

or D4 which yields the minimum increase in 5(t) is optimal.

Proof: According to theorem 3 a necessary and sufficient con—

dition for a n  optimum augmenting network i s  that the network

defines a unique augmenting path for each vertex and that

6 (j>'s (6(1) + hkvak
for a ll bk(i,j)eTD

,=', . . K+l =
where 6 (1) 15 the vertex potential determined for G . The

theorem w i l l  be proved for a l l  branches in the sets D1,D2,D3

and D . F i r s t  for b (i,j)eD the condition above must be true
4 k l



because VieX and vjex, 5(2 ) ‘  = 6(2 )  for vzex, and G: i s  optimal.

For bk(i,j)eD the condition i s  satisfied because vieX and
2

Vjei. a<i)' = 6(1) and 6(j)' 6(j) + 5( j )A .  From the condition

for choosing bE

[(a(i) + hkvak 6 ( w 1 / n j ) 2  m
or

N(6(1) + hkvak 6(j) + X(j)A
OI‘

(6(i)' + tak 2 6(j)'
For bk(i,j)eD3, viei and vjeX, 5(i)‘ = 5(1)  + AX(i) and 5(j)'= 6(j)a

Since (5(i) + hk)/ak 2 6(j)

certainly (a<i) + AX<i> + tak 2 6(j)
or

(5(i)' + hk)/ak 2 5 ( j ) ' -

For bk(i,j)eD4. viei, vjei,

5 ( i ) '  = 5 ( i )  + A5(i). 5 (3 ) ‘  = 5 ( j )  + A5( j ) .

From theorem 1 1 ,

(5(1) + hk)/ak — 6(3)
X(j)(1-1/B)

A S

where a = K<j> - ak/‘(i)

Substituting for B and manipulating yields:

A3(j)(1-6(i)/K(j>-ak) s (6(1) + hk)/ak - 6(j)

or a<j> + Ax(j) s (6(1) + A6(i) + hk)/ak

or 6 ( j ) ‘  S (6(i)' + h k ) / a k



This completes the proof.

Theorems 9 ,  1 0 ,  and 11 provide a simple basis for choosing

the variable to enter the augmenting network. One must search

through each branch in D and calculate the potential change2

noted in Theorem 9 ,  then for each branch in D one calculates4 .

the circuit gain of  Theorem 10 and the potential change noted

in Theorem 11. The branch to enter is that one which gives the

smallest change in 6(t). Note that a l l  the calculations for each

branch require quantities only associated with two terminals o f

the branch.

The two approaches considered for constructing the new aug-

menting network both require the selection of branches o f  GAZ to

form a directed tree (or perhaps a directed circuit) in G:+l.

One difficulty that may arise is that not all the branches of

GAZ need be admissible. This is the case when a branch o f  G A 2

has zero flow in the original network. In this case the mirror

branch i s  not admissible. Another way this can occur i s  when

more than one branch becomes saturated at a particular iteration.

In this case the practice is to choose the branch nearest the

source (or flow generating circuit) as the leaving branch. Thus

a branch of  GA2 is not admissible. No provision is made to pre—

vent these occurrances in the algorithm, and indeed inadmissible



branches do  on occasion enter the augmenting network. This causes

the amount of flow to the sink to be augmented by zero for some

iterations. This corresponds to degeneracy in a linear programming

algorithm. The inefficiencies caused by degeneracy are more

than compensated by the efficiencies introduced in the process

o f  generating augmenting networks.



VII. Triple Label Representation of the Augmenting Network

The flow augmenting network GA = V,TA can be described

completely using a triple labeling scheme suggested in (10).

For this representation each vertex i s  provided three labels,

each indicating a branch of the graph (a member of FA). These

labels for vi are called the back pointer PB(i), the forward

pointer PF(i) and the right pointer PR(i). The back pointer

of vi is that branch of the GA which terminates at vi. The

forward pointer of vi is a branch of GA which originates at vi.

The right pointer of vi is a branch of GA which originates at

v , Where vk k is the initial vertex of the branch indicated by

the back pointer of vi. Figure 4 illustrates the use of the

pointers.

l
l

1
3
"

P B ( i )
1

PF(1 )  = b 2

PR(1)  = b3

Figure 4 :  An example of the triple label representation

It is characteristic of GA that each vertex is the terminal

vertex of at most one branch. However, each vertex may initiate

more than one branch. Thus, for a given G A ’  the assignment



of back pointers is unique, but the assignment of forward and

right pointers may not be unique. Figure 5 shows a directed

tree and its representation with vertex pointers. An equiva—

lent representation would replace PF(S)  = b , PR(2) = b , PR(l) =2 1

O with all other pointers remaining unchanged.

PB(s) = 0 38(2) = b2

PF(S)  = bl PF(2) = b3

PR(s) = 0 PR(2) = 0

PB(1)  = b1 PB(t) = b3

PF(1 )  = O PF(t) = O

PR(1)  = b2 PR(t) = 0

Figure 5: The representation of a tree

Figure 6 shows a component which includes a circuit and

its pointer representation. Again this representation is not

unique because of  the two branches leaving v1'

PB(1) = bl PB(3) = b3

PF(1 )  = b2 PF(3) = b1

PR(1) = O PR(3) = O

PB(2)  = b2 PB(t) =‘b4

PF(2) = b3 PF(t) = O

PR(2) = b4 P R ( t ) . =  0

Figure 6 :  The representation o f  a circuit



It may be noted that every vertex in the graph will have a

baCk pointer, except perhaps the source. The scurce will have

a nonzero back pointer only if it is in a directed circuit of

the graph. A vertex may or may not have nonzero forward and

right pointers. The triple labeling representation is used ex-

tensively in the algorithm to calculate vertex pctentials and

gains and for constructing a new flow augmenting network.



VIII. The Algorithm

The theorems described in the subsequent sections lead to

an efficient algorithm to solve the network with gains problem.

The algorithm is presented here with references to the theorems

which justify the various steps.

1.

2.

Set all branch flows in G equal to zero.

Use the algorithm described in section III to find

0
the initial augmenting network G A '  Let K = 0.

Augment the flow into v by adjusting flows on thet

branches o f  G defined by the augmenting path for v

. K . .
in G A '  The max1mum flow change which causes one o f

t

the branches on the path to become inadmissible is de-

fined by Theorems 5 and 6. If the maximum flow change

would cause the sink flow to exceed the required flow,

increase the flow only to the required amount and ter-

minate the algorithm. Otherwise the branch which be-

comes inadmissible is bL. If more than one branch be—

comes inadmissible, choose the one which appears

closest to the source of the augmenting path.

Delete bL from the augmenting network. Use theorems 9 ,

10, and 11 to determine bE, the branch which enters the

augmenting network and causes the minimum increase in
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the sink potential. I f  there are no admissible branches

which can enter, the maximum flow has been found. Stop.

Otherwise, go to step 5.

. K+
5 .  Introduce bE into the augmenting network and form GA 1

using GA and a suitable selection of the branches1' b E '

in G A Z  to obtain an augmenting network.

6. Increase K by one and go to step 3.

For an example of the algorithm consider the network of Figure

7a. This figure shows the branch parameters and vertex indices

associated with the network. These are eliminated from subse—

quent copies for clarity. The required flow at the sink is 10

for this example. Initially the flows are taken to be zero.

Figure 7b. shows G: determined for the initial flows using the

algorithm of section III. The numbers in parentheses indicate

vertex potentials. The arrows indicate the augmenting path to

the sink and the maximum flow that can pass through it. This

f l o w  causes branch (3,6) to become saturated; hence, it i s  re-

moved from the graph. The flows found in 7b. are impressed on

the network to obtain the flows in 7c. Figure 7d. shows the G:

found using the results of section VI. Note the entering branch

is (2,7). This graph yields a degenerate iteration because the



flow augmentation i s  zero. This occurs because branches (7,5),

(5,8) and (8,6) are inadmissible. They entered the augmenting

network as a result of the selection of branches in 6A2 to obtain

a directed tree rooted at vertex 7 when ( 2 ,7 )  entered. The

next iteration causes ( 7 ,5 )  to leave and the flow increase i s  non-

zero. Subsequent augmenting networks are shown iaigures 7 f.,

h . ,  j., 1 . ,  and n .  and the corresponding flows in the original

network are shown in Fugures 7 e., g., i., k . .  and m .  Figure

70. shows the optimum flows. Note in these figures the poten—

tial of the sink steadily increases as the algorithm progresses.

An interesting augmenting network appears in 71. This was

formed from 7j. by the removal of (1,4) and the addition of (6,3).

The resultant network includes a flow generating circuit.



Figure 7 :  Example Prcblem
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IX. Computational Efficiency

T o  determine the computational efficiency of this approach,

four large network problems were solved with: an efficient

linear program which operated entirely within the core of the

computer (SP6600), an implementation o f  the algorithm o f  Bhaumik

(2) for the networks with gains problem (LEAKY), and an imple—

mentation of the algorithm of this paper (GAIN).( The problems

solved were large transshipment problems generated by Klingman

(11), to test pure network algorithms. The problems were modi—

fied by assigning a randomly selected gain factor to each branch

from the range . 5  to 1.5. The problems were run for various

values of output flow up to the maximum flow at the sink. They

were run on a CDC 6600 computer using the RUN compiler. The

results shown in Table 1 indicate the current algorithm is ap-

proximately twenty times faster than the linear program and

approximately ten times faster than the Bhaumik algorithm.

The problems shown in Table l are in fact pure network prob—

lems drawn from the reference (11), modified to incorporate

branch gains. Problems 1,2,3, and 4 are respectively problems

16.17.18 and 24 from the reference. The total output flow for

each pure problem was 400,000 as compared to the maximum flows
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Table 1

Csmputatiosal Times for Solving Network with Gains Problems
Using Linear Programming and Two

Network with Gains Algorithms

Problem 1

400 vertices, 1306 branches, 8 sources, 6 0  sinks

Output Flow

114,609 362,198 384,868*

LP6600 181(623) 178(586) ——--
LEAKY 20.5(14) 150.2(71) —-——
GAIN 1.75(14) 8.52(103) 9.15(ll3)

must;
400 vertices, 2443 branches, 8 sources, 60 sinks

Output Flow

73,894 394,806 438,559*

LEAKY 21.5(10) 183(64) - - -—
GAIN 2.1(10) 12.4(107) 15.4(135)

Problem 3

400 vertices, 1306 branches, 8 sources, 60 sinks

Output Flow

152,041 398 ,380  404,865*

LEAKY ” 2 0 . 5 ( 1 1 )  181.2(67) -—--
GAIN 2.09(l4) 7.48(9l) 7.93(98)

Problem 4

400 vertices, 1382 branches, 4 sources, 12 sinks

Output Flow

191,942 364,614*

LP66OO 217.2(732) 178.4(623)
LEAKY 20.3(9) 86.3(34)
GAIN 4.l7(39) 7.85(91)

* Maximum flow in network. Entries in table are time in
seconds~and the number of iterations are shown in paren-
thesis.
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for the problems with gains that appear in the last column o f

Table l. Computation times for the pure problems solved on the

CDC 6600 with the RUN COmPilef as obtained from the reference

are reproduced in Table 2. The codes shown are PNET, a special

purpose simplex network code written by Glover, Harney and King-

man, SUPERK(1), an efficient out-of—kilter algorithm and SHARE

( 5 ,13 )  a generally available out-of—kilter algorithm. Although

the computation time for these codes cannot strictly be compared

to that of GAIN since the network with gains problem is more comm

plex than the pure network problem, i t  is apparent from Table 2

that the time for GAIN is of the same order of magnitude as for

pure network codes.

Table 2

Comparison of Computational Times (seconds) For
Pure Networks and for Networks with Gains

Problem Pure Network Solution §olution with Gains

PNET SUPERK SHARE GA IN
1 2.02 5.22 21.51 9.15
2 3.23 8.47 32.40 15.4
3 2.38 4.77 20.06 7.93
4 2.68 5.51 23.46 7.85

The computerized algorithm in its present form requires ap-

proximately 8m+8n words of core memory where m is the number of

vertices and n is the number of  branches in the original network.
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X .  Problem S e t  Up

The algorithm described here finds the minimum cost flow

for a specified required output flow. This may appear to be a

restricted class o f  problems; however, there are several problem

set-up techniques that can be used to put other kinds o f  problems-

into this form.

Consider the problem of providing some specified quantity

of flow at each of a number of sinks from limited amounts of

flow at each of a number of sources. This problem is modeled

by creating a super sink with a branch from each sink to the

super sink with capacity equal to the desired flow. Likewise a

super source is created with branches from the super source to

each of the sources with capacity equal to the amount of flow

available at each source. The super scurce and super sink are

used as the source and sink of the algorithm with the required

output flow set equal to the sum of the required output flows

at the original sinks.

For some problems it may be necessary to impose lower bounds

on the flow in some branches. Thus a particular branch bk(i,j)

might have an additional parameter n which is the lower boundk

on flow. Such a situation would be represented for this algorithm

by two parallel branches from i to j. The parameters on one
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branch will be (Lk, —M, ak) where 2 is upper bound on flow for
k

this branch, an i s  large negative cost for the branch and ak is

original branch gain. The second branch has the parameters

(ck — 2k, h k ’  ak). Because of the large negative cost, the

algorithm will saturate the first branch if possible. This con—

struction is possible only if the negative costs used do not

result in a circuit with a negative cost.

Some problems include both positive and negative branch

costs (negative costs model revenues). No specific output flow

is specified but the goal o f  the problem is to find the output

flow which minimizes total cost. This is equivalent to the flow

which maximizes profit. For this situation an additional branch

is constructed from the source to the sink with parameters

( M ,  O ,  l )  where M i s  a large number. Thus this branch transmits

any amount at zero cost with gain one. The required output flow

is s e t  t o  some large number greater than the optimum flow for

the Original problem. With this construction the algorithm will

increase flow to the sink only if the sink potential is negative.

When the flow reaches the point where the minimum cost flow aug—

menting path in the original network has a positive cost, the

added branch becomes the augmenting path. Thus the flow in the

original network is the profit maximizing flow.
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X I .  Conclusion

This paper has described and provided the theoretical foun-

dation for an algorithm for the network with gains problem. The

algorithm is similar in spirit to that of Busacker and Gowen for

pure networks; however, the incorporation of gains makes for a

considerably more complex situation. The algorithm has been

coded for computer implementation and has been found to be very

efficient. Large problems have been solved with the algorithm

in approximately one twentieth of the time required for an ef-

ficient linear programming algorithm.
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Appendix

The Network with Gains Computer Program

This program solves the generalized network minimum cost
flow problem. The user must specify the arcs o f  the network to
b e  solved and four parameters for each arc. The parameters are
cost per unit flow, lower bound on flow, upper bound on flow,
and the gain for flow passing through the arc. The user must
also Specify an input node which is assumed to be an infinite
source o f  flow and the output node which i s  to be the sink for
flow. The user will specify a desired output flow. A require-
ment on the network for this program is that zero flows on all
arcs must be otpimum for zero output flow. The program will
determine the flows i n  the arcs o f  the network which w i l l  pro“
vide the desried output flow at minimum cost. These flows are
printed by the program.

Input D a t a :

Card 1 TITLE

FORMAT ( 8 0 A l )

The title is an arbitrary alpha—numeric identifier of the run.

Card 2 S O U R C E ,  S I N K ,  N O D E S ,  N P R I N T ,  IPRINT

F o r m a t  5110

SOURCE i s  the node number o f  the infinite source o f  flow.

SINK i s  the node number o f  the sink o f  flow.

NODES i s  the number o f  nodes i n  the network.

NPRINT determines the number o f  arcs for  which input and output
data will be printed. The input data for the first NPRINT arcs
are printed and output results are printed for the first and
last NPRINT arcs. This option i s  useful for large problems.

IPRINT controls the intermediate printout. IPRINT = 0 results
in only input and output printout. IPRINT = 1 shows in addition
the output flow, cost, entering arc, leaving arc and change
in output node potential at each iteration. IPRINT = 2 shows
in addition the triple label representation of the tree, all
node potentials and all node gains at each iteration.

Card 3 OUTFLO
Format F l O . 2

OUTFLO i s  the d e s i r e d  amount o f  flow that i s  to b e  delivered to
the S I N K  a t  minimum c o s t .

Cards 4 and following IARC(I), JARC(I), LOWER(I), UPPER(I),
C O S T ( I ) ,  A M P ( I )

Format (ZIIO, 4FlO.2)

Read one c a r d  f o r  each arc o f  the network. P l a c e  a blank card
a f t e r  the s e t  o f  arc c a r d s .



I A R c ( I )  is the node which originates are I.

JARC(I) is the node which terminates arc I.

LOWER(I) is the lower bound on the flow entering arc I.

UPPER(I) i s  the upper bound on the flow entering are I. (Note:
because o f  the gain factor a different amount o f  flow leaves
an arc than enters it. This should be a positive quantity.)

COST(I) i s  the cost per unit o f  flow entering are I .  This cost
may be positive or negative.

AMP(I) is the gain factor for arc I. The flow leaving are I is
equal to the flow entering the arc multiplied by the quantity
AMP(I). This should be a positive quantity greater than zero.
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Program Listing o f  Network with
Gains Algorithm

PROGRAM GAINIINPUT.DUTPOT)
PROGRAM TO SOLVE THE NETUORK NITR GAINS PROBLEM FOR A GIVEN DUANTI
TY OF OUTPUT FLOW.
PROGRAM BY P .  JENSEN AND GORA BHAUMIKe UNIVERSITY OF TEXAS. 1973.
READ DATA As POLLows~-—

CARD 1 TITLE PDRNATIGOAI)
CARD 2 SOURCE NOD5.SINK NODEANUMBER OF NOOES.NUNGER OF ARcs To

BE LISTED IN  PRINTDUT, PRINT OPTION (0 FOR SHORT PRINT. 1 FOR LONG
PRINT. 2 FOR EXTRA LONG PRINT).
EDRNATISIIOT

CARD 3 DESIRED OUTPUT FLOw.
FORMATIP10.2I

CARD 4 AND FOLLOWING FOR EACH ARC IN  THE NETNORK.
ORIGIN NOOE OF ARC, TERMINAL NODE 0F ARC, LowER BOUND ON PLow.

UPPER BOUND ON FLOWG COST PER UNIT FLOU. GAIN FACTOR FOR ARC.
FORMAT IE I IO.GFIO.2 I

THE LIST OF ARcs I s  TERMINATED wITH A BLANK CARD.
COMMON /1 /  IARC(SOOO)/2/JARC(5000)/3/COST(2509)/4/AMP(2500)/5/

1 FLOW(2500)/6/UPPER(2500)/7/LOWER(2500)
COMMON l 8 /  V(500 ) /9 /BARC(500 ) /10 /RARC(500 ) /11 /FARC(500 ) /12 /

1 DISSET(500 ) l 13 /GANK500 ) /14 / ICHK(500 )115 /L IST t500 )
COMMON l l é /  T ITLE(80 )
COMMON IV /  SOURCE9SINK9NARCQOUTFL0’FLONETOCSTNOWDTOTCSTQNODESQIFSQ

1 IROOTPEPSQBIGDNOEGDNLopv lHDITERDNPHITDTIMAXDTIMEDIPRINT
INTEGER SOURCEDSINK,BARCOFARCDRARC9DISSET
REAL LOWER
EXTERNAL FLMXCQAMPF!COSTF
NDEG=0
NLOP=0
ITER=0
FLONET=0o0
TOTCST=000
IF$=0
NPRIT34O
EPS=1 .E '6
BIG=1e56
HEAD 709  (T ITLE(1 )9 I=1080 )
NARCSIOOOO

PRINT 809  (T ITLE t I ) g I=1980 )
READ 909  SOURCEDSINKDNODESONPRINTDIPRINT
PRINT  1009  SOURCE’SINK
READ 1109  OUTFLO
PRINT 120g  OUTFLO
PRINT 130
PRINT  140
PRINT 150
130
CONTINUE
I = I+1
READ 160 !  IARC( I )9JARC( I )aLOWER¢I I0UPPER( I )9COST( I )oAMP ‘ I )

I F  ( IARC ‘ I )OEQOO)  GO TO ?0
I F  ( ( I uGToNPRIT ) .AND. ( IALT0 (NARC”NPRIT ) ) )  GO TO 10

PRINT 1709  I o IARCI I IOJARC( I I I LONER( I )0UPPER( I )GCOST( I )DAMP( I )
GO TO 10

CONTINUE
NARCSI - I
OREATE A DUMMY ARC TO PROVIDE FEASIBLE  OUTPUT FLOW IN  CASE THE
OESIRED OUTPUT IS  NOT FEASIRLEA
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30

40

50

60

70

90
100
110
120
130
140

150
160
170
180
190

NARC=NARC+1
IARC(NARC)=SOURCE
JARC‘NARC)=S INK
LOWER(NARC)=O
UPPERINARC)=B IG
COST(NARC)=BIG/IO
AMP(NARC)=1~
IN IT IAL IZE  FLOWS AND CREATE MIRROR ARCS.
DO 30  I=1ONARC
NN=NARC+I
FLOW( I )=0 .0

IARC ‘NN)=JARC( I )
JARC(NN)=IARC(I)
CONTINUE
NARCSSNARC“2
CONTINUE
CALL  SHORT ( IENTERQILEAV)

I F  (IENTEROEQOO) GO TO 60
CALL  MAXFLO
TOTC$T=TOTCST+CSTNOW
TOTCSP=TOTCST-COST(NARC)*FLON(NARC)
FLONEP=FLONET 'FLOW(NARC)
ITER=ITER+1

IF (IPRINToEQoO) GO TO 50
PRINT  1809  ITEROFLONEPQTOTCSP
PRINT 1909  ILEAVOIENTEROSICH
CONTINUE

IF  (ABS(FLONET-OUTFLO).LEOOOOOOOOI) GO TO 60
GO TO 40

CONTINUE
CALL PROUT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
1 COST
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
END

(BOAI )
(1H1 | / / / 80A1 / / / )
(S I IO )
(é  SOURCE NODE=#O1505X9*SINK NODE =*O ISO/ / / )
(F1002 )
( “  OUTPUT FLOW REQUIREMENT*9F10029 / / / )
( é iH  * * * * “ INPUT DATA* “ * * “9 / / )
( *  ARC START END LOWER UPPER

AMPLIF ICAT ION“ )
( *  NO.  NODE NODE BOUND BOUND” ! / / )
( £11094F1002 )
(3110 :6F11 -2 )
( *  ITERATION *915 .5Xg*  FLOW “9F10 .295XO*  COST *QFZOOZ)
( “  REMOVE*1595X*ENTER“ ISOSX*DELTA*F20¢5)



C

10

20

30

40

50

60

70

80

SUBROUTINE SHORT (IENTEReILEAV)
SUBROUTINE TO F IND THE IN IT IAL  AND SUBSEOUENT FLOW AUGMENTING TREE
COMMON /1 /  IARC(1 ) /2 / JARC(1 ) /3 /COST(1 ) /4 /AMP( I ) /S /FLOH(1 ) /6 /

1 _ UPPER( I I /T /LOWER(1 ) /8 /V (1 ) / 9 /BARC( I ) / IO /RARC( I ) / I I /
2 FARC( I ) / 12 /D ISSET( I ) / 13 /GAN( l ) / I a / ICHK( l ) / 15 /L IST ( I )

COMMON /V /  SOURCE.S INK .NARC.OUTFL09FL0NEToCSTNOWoTOTCSTgNODE59 IFS ,
1 IROOToEPSoBIG .NDEGoNLOPoSICH9 ITERgNPRITgT IMAXgT IMEn IPRINT

INTEGER SOURCE~SINK.BARCoFARCoRARCcDISSfiT
REAL LowER
EXTERNAL FLMXC.AMPF.COSTF

‘ I F  (IFSONEon) GO To 150
SET UP POINTERS To FIND IN IT IAL  TREE.
DO 10 I=19NODES
BARC( I )=0
FARC(I)=O
RARC( I )=0
UISSET(1 )=1
GAN( I )=1
V( I )=999999 .
CONTINUE
V(SOURCE)=O
ICHANGE=0
IENTER=1
ITF=0
I FS=1
SET UP SHORTEST PATH TREE FOR FIRST ITERATION.
CONTINUE
DO 70 K=19NARC

I F  I (UPPER(K) -FLON(K) I .GT .EPS)  GO TO 30
IF  ( (FLOHIK )~LOHER(K) ) . LT .EPS)  GO TO 70

I I =JARC(K)
JJ=IARC(K)
POT=V(1 I ) *AMP(K) -COST(K)

I =K+NARC
GO To 50

CONTINUE '
I =K
JJ=JARC( I )
I I = IARC( I )

I F  ( (LOWERII)*FLOW(I I )oGToEPS) so  To 40
POT=(V ( I I ) °COST( I ) I IAMP( I )

GO TO 50
CONTINUE
POT=(V ( I I ) -B IG) /AMP( I )

CONTINUE
I F  ( (V I JJ ) -POT) .LT .O-001 )  GO TO 70

VtJJ)=POT
BARC(JJ )= I

I F  ( ITF .EQ.0 )  GO To 60
CALL  LOOP ( I aJJ )
CONTINUE
ICHANGE=1
CONTINUE

I F  ( ICHANGE.EQ.O)  GO To  80
ICHANGE=0
I TF=1

GO TO 20
CONTINUE



90

100

110

120
130

140

150

160

170

180

CALCULATE FORWARD POINTERS FOR F IRST  ITERATIONo
DO 120  1219N00ES

IF  (D ISSET( I )¢E0 .0 )  GO TO 120
KK=BARC( I )

IF  (KKoEQoO) GO TO 120
LL= IARC(KK)

IF  (FARC(LL ) .NE00 )  GO TO 90
FARC(LLT=KK

GO TO 120
CONTINUE
MMSFARC(LL)
CONTINUE
MN=JARCIMMI

I F  (RARC(MN)oNE.0 )  GO TO 110
RARC(MN)=KK

GO TO 120
CONTINUE
MM:RARC(MN)

GO TO 100
CONTINUE
CONTINUE

IF  ( IPR INToLToZ I  GO TO 140
PRINT 3209  (BARC( I )Q I=19NODES)
PRINT 3309  (FARC( I )9 I=10NODES)
PRINT  3400  (RARC( I )9 I=19NOOES)
PRINT  3009  (D ISSET ITT9 I=19NOOES)
PRINT  2909  (V ( I )C I= IQNODES)
PRINT 3109  (GAN( I )9 I=19NODES)
CONTINUE
RETURN
FIND NEW FLOW AUGMENTING TREE AFTER THE F IRST  ITERATION.
CONTINUE
DO 160  I319NODES
DISSET( I )=O
CONTINUE
DELETE BRANCH FROM BASIS  AFTER THE F IRST  ITERATION.
I I= IROOT
I =BARCI I I )
I LEAV= I  VT
IA= IARCT1T
CALL DESUB (191A)
RARCTI IT=0
BARC( I I )=O
SET NEW NODE GAINS ON DISCONNECTED NOEDS.
CONTINUE
I =FARCTI I )

IF  ( I oEQoO)  GO TO 180
JJ=JARC( I )
IF  ( I oGT-NAHC)  GAN(JJ )=GAN( I I ) “AMP ‘ I -NARC)
IF  ( I oLEoNARC)  GAN(JJ )BGAN( I I ) /AMP ‘ I )
I I =JJ

IF  ( I I -EQo IROOT)  GO TO 180
GO TO 170

CONTINUE
J=RARC( I I )
D ISSET( I I )=1

IF  ( J .E0 .0 )  GO TO 190
I I=JARC(J )



190

200

210

220

230

240

250

260

270

H=RARcIII>
JJ=IARC(K)
IF  (K .  GT. NARC) GAN(II)=GAN(JJ)*AMP(K-NARC)
IF  (K.LE.NARC) GAN(II)=GAN(JJ)/AMP(K)

GO TO 170
CONTINUE
KaaARCTIII

IF  (IIaEQalROOT) GO To 200
II=IARC<KT

60 T0 180
CONTINUE
DETERMINE THE NEW BRANCH TO ENTER THE BASIS.
SICH=I.E+IO
IENTER= 0
DO 250 K=1oNARC I

IF  T(URPERIKI—FLOHIKT).GT.EPSI GO To 210
LOOKING AT A BACKWARD BRANCH

IF  ((FLOWéK)-LOWER(K))eLTeEPS) GO TO 250
JJ=IARC(K)

IF  (DISSETIJJ) .E0.0)  GO TO 250
II=JARC(K)
I=K+NARC

IF  (DISSET(II)-EQ.O) GO TO 240
NEW BRANCH FORMS A LOOP

GO TO 220
CONTINUE
I =K
JJ=JARC(I)

IF  (DISSETIJJ) .E0.0)  GO TO 250
I I= IARC( I )

IF  (DISSET(I I ) .EQ.0)  GO T0 240
NEW BRANCH FORMS A LOOP.
CONTINUE
GALPIV=GAN(II)/(GAN(JJ)*AMPF(I))

IF  <6ALPIV.GE..999999> GO TO 250
POTCH=(( (VI I I )+COSTF( I ) I IAMPF(I ) ) -V(JJ) ) / ( (1-GALPIV)“GAN(JJ) )
CONTINUE

IF  (ROTCH.GE.SICH) GO TO 250
SICH=POTCH
IENTER=I

GO TO 250
NEw BRANCH DOES NOT FORM A LOOP.
CONTINUE
POTCH=T I (V I I I >+COSTF( I )T IAMPFI I )T -V (JJ )> /GAN(JJ I

GO TO 230
CONTINUE

IF  (IENTERoEQoo) GO To 270
CHANGE NODE LABELS AND POINTERS To REFLECT ENTERING BRANCH.
CHANGE POINTERS. -
CALL TRECHG (IENTERoILEAV)
CHANGE NODE POTENTIALS-
Do 260 II=I.NOOES

I F  (D ISSET( I I>OEQOO)  GO TO 260
V( I I )=s ICHRGAN( I I )+v ( I I )
CONTINUE

GO To 130
CONTINUE
PRINT 2309 FLONET



280
290
300
310
320
330
340

I I= IARC( ILEAV)
CALL ADSUB ( I LEAVo I I )
JJSJARCTILEAV)
BARC(JJ)=ILEAV

GO TO 130
MAXIMUM FLOW FOUND *oFZOnIO)FORMAT

FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
END

(fl
(fl
(fl
( '5
(6
(iv?
(6

LAB
DISSET
GAIN
BARC
FARC
RARC

99 (21F5023 )

*0(2115))
“ 9 (21F503 ) )
“9(2115’ )
«9(2115))
“9(2115))
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SUBROUYINE TRECHG ( IENTERQILEAV)
SUBROUTINE TO FORM THE FLOW AUGMENTING TREE BY DELET ING ONE ARC
FROM THE TREE AND INSET ING A NEW ARC INTO THE TREE-
COMMON I l l  IARC(1 ) /2 / JARC(1 ) /3 /COST(1 ) /4 /AMP(1 ) /5 /FLOH(1 ) /6 /

UPPER( I ) / ? /LOWER(1> /8 /V ( I J /Q /NARC( l ) / 10 /PARC(1 ) /11 /
FARC(1 ) I IZ ID ISSET( I ) l lB /GAN( l ) / 14 / ICHK(1 ) /15 /L IST (1 )

COMMON IV /  SOURCE951NKoNARCoOUTFLOoFLONET9CSTN0H9T0TCSTyNODE50IFS.
IROOT9EPSoBIGgNDEGoNLOPySICH9ITERuNPRITcTIMAXoTIMEvIPRINT

INTEGER SOURCEoSINKoBARCoFARCcRARCvo l sn
REAL  LOWER
EXTERNAL FLMXCoAMPFgCOSTF
PRINT IOOIENTERoILEAV
IROOT=JARC( ILEAV)
NLIS=0

JJ=JARC( IENTER)
DELETE PATH FROM JARC( IENTER)  T0  IROOT
CONTINUE
JB=BARC(JJ)

I F  ( JJeEOa IROOT)  GO TO 20
NLIS=NL IS+1

I I = IARC<JB)
CALL DESUB (48 :11 )
I F  ( JBQLEONARC)  I=JB+NARC
IF  ‘ JBOGTQNARC,  I=JB -NARC
ICHK(NL IS )= I
BARC‘JJ330
RARC(JJ )=0
JJ= I I

GO TO l 0
CONTINUE
ADD IN  THE REVERSE OF THE PATH JUST DELETED

I F  (NLIS-EQoo) Go TO 30
I = ICHK(NL IS )
NLIS=NL IS~1

I I = IARC( I )
JJ=JARC( I )
CALL ADSUB ( I o I I )
BARCtJJ )= I

GO TO 20
CONTINUE
I I = IARCI IENTER)
CALL ADSUB ( IENTERy I I )
JJ=JARC( IENTER)
BARC(JJ )= IENTER
RARC‘JJ )30
RETURN

END
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SUBROUTINE LOOP ( I oJJ )
SUBROUTINE TO DETERMINE IF  THE FLOW AUGMENTING TREE INCLUDES A

FLOW GENERATING CYCLE. IF  SO NODE POTENTIALS ARE ADJUSTED
ACCORDINGLY. USED ONLY IN  THE FIRST ITERATION.
COMMON I l l  IARC(1 ) IZ I JARC(1 ) /3 /COST(1 ) l 4 /AMPI IT IS IFLOH( I ) / 6 /
1 UPPERI1 ) /7 /LOWER( I ) / 8 /V ( l ) / 9 /BAR§( l ) / 10 /RARC( I ) / I l /
2 FARC(1 ) / IZ /D ISSET( I ) / 13 /GAN(1 ) /14 / ICHT(1 ) / 15 /L IST (1 )

COMMON /V /  SOURCEaslNKgNARC.OUTFL09FLONET0CSTNOH9TOTCST.NODES.IFS.
1 IROOT9EP59BIGoNDEG¢NLOPcSICH9ITERcNPRIToTIMAXoTIME9IPRINT

INTEGER SOURCEOSINKoBARC9FARC0RARC9DISS§T
REAL LOWER
EXTERNAL FLMXCQAMPF.COSTF
DIMENSION‘ICHK(IOO)
DETERMINE IF  POINTERS INDICATE A LOOP.
DO 10 KsloNODES
ICHK lK I=0
CONTINUE
ICHKTJJ )=1
I J=JJ
CONTINUE
IJK=BARCTIJT
IF  ( I JK .EQ.0 )  RETURN
IA= IARC( I JK )

‘ I F  TIA-EQoJJ) GO TO 30
“ IF  ( ICHK( IA )oEO. I )  RETURN
ICHKI IAT=1
I J= IA

GO TO 20
CONTINUE
TEMP=0
GN=1
I J=JJ  ’
CALCULATE THE COST TO OBTAIN ONE UNIT OF FLOW INTO JJ
CONTINUE
IJK=8ARC<IJ)
GN=GN*AMPF(IJK)
TEMP=TEMPwCOSTF(IJK)/GN
1A= IARC( I JK )

IF  ( IAoEQoJJ )  GO TO 50
I J= IA

GO TO 40
CONTINUE
CALCULATE COST TO OaTAIN ONE UNIT OF FLOW OUT OF LOOP AT JJ
V(JJ )=TEMPI (1 -1 /GN)
CONTINUE
I J= IA
I JK=BARC( I J )
IA= IARC( I JK )
IF  ( IA .EQ.JJ )  RETURN
v( IAT=V( I J ) *AMPF( I JK ) -COSTF( I JK !

GO TO 60
END
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SUBROUTINE MAXFLO
SUBROUTINE T0  CALCULATE THE MAXIMUM FLOW INCREASE INTO THE S INK .
ARC TO LEAVE THE TREE IS  ALSO DETERMINED. THE FLOW IS  CHANGED IN
THE AUGMENTING PATHE
COMMON /1 /  IARC(1 I /E / JARC(1 ) /3 /COST(1 ) l 4 /AMP(1 ) /5 /FLOU(13 /6 /

I UPPER(1 ) /7 /LOWER(1 ) /8 /V (1 ) / 9 /BARC( l ) / 10 /RARC(1 ) /11 /
2 FARC(1 ) I IZ /D ISSET( I ) / 13 /GAN(1 ) /14 / ICHK( I I / IS /L IST (1 )

COMMON IV /  SOURCEpsK,NARC90UTFL09FLONET9CSTNOW9TOTCST9NODESQIFS.
1 IROOTOEPSOBIG9NDEGQNLOPVSICH9ITERONPRITOTIMAXQTIMEOIPRINT

INTEGER SOURCEOSINKqBARCOFARC9RARCQDISSET
REAL LOWER
EXTERNAL FLMXCoAMPFgCOSTF
F IND OUT IF  THERE IS  A LOOPe IF  30  JJ  IS  THE JUNCTION OF THE LOOP-
DO 10  I=1 ,NODES ’
ICHK( I )=O
CONTINUE
JJ=SOURCE
1=S INK
CONTINUE
ICHKTI )=1

IF  ( IaEQ.SOURCE)  GO TO $0
I I=BARC( I )

IF  ( I I oEQaO)  GO TO 130
I= IARC( I I )

IF  ( ICHK( I ) .EO.1 )  GO TO 30
GO TO 20

CONTINUE
JJ= I
NLOP=NLOP¢1
F IND MAXIMUM FLOW CHANGE POSSIBLEo
CONTINUE
FLMX=999999o
GN=1
13$ INK
GAN( I )=1 .
CONTINUE

IF  ( I oEQsdJ )  GO TO 60
KK=BARC( I )
GN=GN§AMPF(KK)
FLMXT=FLMXC(KK91o) “GN
I= IARC(KK)
GAN(1 )=GN

IF  (FLMXTaGTpFLMX) GO TO 50
FLMX=FLMXT
IROOT=JARC(KK)

GO TO 50
CONTINUE

IF  ‘JJOEQOSOURCE, GO TO 70
CALL FLOP (JJOFLMAX.GLOOP91ROOTL)
FLMXT=FLMAX*GN

IF  (FLMXT¢GT0FLMX) GO To  70

FLnFLMXT
IROOT=IROOTL
CONTINUE
INCREASE TOTAL FLOW BY THE MAXIMUM FLOW CHANGE.
FLO=OUTFLO"FLONET
1F  (FLO¢GT0FLMX) FLO=FLMX
IF  (FLOoLTo loE~6 )  NDEG=NDEG+1



CSTNOH=0 .0
FLONET=FLONEI¢FLO

IF  (FLOOLTOEPS)  GO TO 120
CALCULATE FLOW CHANGE ON EACH ARC.
I :S INK

80  CONTINUE
IF  ( IQEQOJJ)  GO To  90

I I =BARC( I )
I F  ( 110E900 )  GO TO 130

I= IARC( I I )
FLONOW=FLO/GAN( I )
CALL FLCHG~( I IOFLONOW)

GO TO 80
90  CONTINUE

IF  ( JJoEQoSOURCE)  GO To  120
FLO0P=FLO/ ‘GAN ‘ I ) * ( 1 ' ( l /GLOOP) ) )
IBJJ
FLGA=FLOOP“GAN(JJ )

100  CONTINUE
I I =BARC( I )
I=IARC‘II )
FLONOWgFLGA/GAN( I )

IF  ( I oNEcJJ )  GO TO 110
J=JARC<I1’
FLONOWgFLGA/ (GAN(J ) *AMPF ‘11 ) )

110  CONTINUE
CALL FLCHG ( I I I FLONOW)

IF  ( IOEQOJJ)  GO To  120
GO TO 100

120  CONTINUE
RETURN

130  CONTINUE
PRINT  1409  FLONETgTOTCST
CALL EXIT

140  FORMAT ‘ / / / I *  PROBLEM IS  INFEASIBLE I  THE MAXIMUM FLOW I 5  “ IF IO IZO
1“  AT A LOTAL COST OF “QF IOOZ ’

END
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SUBROUTKNE FLOP (JJQFLMAXeGNalROOTL)
SUBROUTINE TO DETERMINE THE GAIN9 MAXIMUM FLOW CHANGE. AND ROOT OF
A FLOW GENERATENG CYCLE IN  THE FLOW AUGMENTING TREE.
COMMON /1 /  IARC(1 ) /2 / JARC(1 } /3 /COST(1 ) /4 /AMP(1 ) /5 /FLOW(1 ) /6 /

1 UPPER( l ) I 7 /LOWERCI ) IB /V (1 ) / 9 /BARQTI ) I IO IRARCTIT I I I I
2 FARC(1 ) /12 /DTSSETT1) /13 /GAN(1 ) /14 / ICHK( l ) / 15 /L IST (1 )

COMMON IV /  SOURCEoSINKoNARCoOUTFLOoFLONETQCSTNOWQTOTCSTQNODESQIFSQ
1 IROOT9EP$9BIGgNOE69NLOPOSICH9ITERoNPRITeTIMAXoTIMEvTPRTNT

INTEGER SOURCE9SINK.BARCQFAPC9RARCvOISSET
REAL LOWER
EXTEQNAL FLMXC9AMPF9CO§TF
FLMAX=999999999900
GN=1
1J=JJ
CONTINUE
1JK=BARC(1J )
GN=GN*AMPF( IJK)
FLMXT=FLMXCCIJK910) *GN

I?  (FLMXToGToFLMAX) GO TO 20
FLMAX=FLMXT
IROOTLBJARCTIJK)
CONTINUE

IF  ( IARC( I JK ) .EQ.JJ )  GO TO 30
I J= IARCTIJKT
GAN( I JT=GAN(JJ ) *GN

GO TO 10
CONTINUE
FLMAX=FLMAX* ( l ' l /GN)
RETURN
END

SUBROUTINE FLCHG (IIQFLONOW)
SUBROUTINE TO INCREASE THE FLOW IN  AN ARC BY A GIVEN AMOUNT.
COMMON I l l  IARC(1 ) lZ / JARC(1 ) /3 /COST(1 ) /4 /AMP( l ) / 5 /FLOW(1 ) /6 /
1 UPPERT1) /7 /LOWER(1 ) /8 /V (1 ) / 9 /BAR§(13 /10 /RARCTIT I I I I
2 PARC( IT / IZ /D ISSET(1 ) / 13 /GAN(1 ) /14 / ICHK(1 ) I IS /L IST (1 )

COMMON IV /  SOURCE9SINKoNARCgOUTFL0.FLONETvCSTNOWgTOTCSTgNODEScIFS.
l TROUTOEPSOBIGQNDEGONLOP9SICHOITERQNPRITOTIMAXOTIME’IPRINT

INTEGER SOURCE9SINK,BARCQFARCQRARCIDISSET
REAL  LOWER
EXTERNAL FLMXC0AMPFyCOSTF

IF  (11.6TeNARC) GO TO TO
CHANGE FLOW IN  A FORWARD ARC.
FLOW(I I )2FL0W(I I ) *FL0NOW
CSTNOW=CSTNOW¢FLONOW¢COST(II)

GO TO 20
CHANGE FLOW IN  A MIRROR ARC.
CONTINUE
KK= I I¢NARC
FLONOW=FLONOWIAMPTKK)
FLOW(KK)=FLOW(KK) 'FLONOW
CSTNOW=CSTNOW«FLONOW*COST(KK)
CONTINUE
RETURN
END
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SUBROUTINE AUSUB (1911 )
SUBROUTINE TO ADD AN ARC TO THE TR lPLE  LABEL  REPRESENTATION OF THE
FLOW AUGMENTING TREE.
COMMON l l /  IARC( l ) / 2 / JARC(1 ) /3 /COST( IT /4 /AMP( l ) / 5 /FLOW(1 ) /6 /

1 UPUER(1 ) /7 /LOWER(1 ) /8 /V (1 ) l 9 /BARC(1 ) /10 /RARC(1 ) /11 /
2 FARC(1 ) /12 /D ISSETT1T /13 /GAN(1 ) /14 / ICHK( l ) / 15 /L IST ( I )

COMMON /V /  SOURCEQSINK.NARC.OUTFLO!FLONETvCSTNOWQTOTCSTONODESOIFS !
l IROOTeEPSoBIGoNDEGoNLOPQSICHoITERQNPRITQTIMAXQTIMfioIPRINT

INTEGER SOURCEWSINKQBARCOFARCSRARC’D ISSET
REAL LOWER
EXTERNAL  FLMXCoAMPFQCOSTF
ADDS ARC I TO THE L IST  OF SUBSEQUENT ARCS T0  NUDE 110
PRINT 50919119FARC( I I )

I F  ‘ FARCTI I )QNEQO,  60  T0  10
FARC( I I )= I

GO TO 40
CONTINUE
MM=FARC(II)
CONTINUE
MN=JARCTMM)

IF  (RARC(MN)ONEIO)  GO TO 30
RARC‘MN)= I

GO TO 40
CONTINUE
MMSRARCTMN)

GO TO 20
CONTINUE
RETURN
END

SUBROUTINE DESUB (1911)
SUBROUTINE TO DELETE AN ARC FROM THE TRIPLE LABEL REPRESENTATION
OF THE FLOW AUGMENTING TREE.
COMMON l l /  IARC(1 ) /2 / JARC(1 ) l 3 /COST(1 ) /4 /AMP(1 ) /5 /FLOW(1 ) /6 /

1 UPPER( l ) / 7 /LOWER(1 ) /8 /V (1 ) / 9 /BAR§(1 ) / 10 /RARC(1 ) /11 /
2 FARC(1 ) l 12 /D ISSET(1 ) / 13 /GAN(1 ) /14 / ICHK(1 ) /15 /L IST ( ] )

COMMON /V /  SOURCEcSINKgNARCoOUTFL09FLONET9CSTNOWgTOTCST9NODESQIFS;
1 IROOT9EPS,BIG.NDEG.NL0P.SICH9ITERoNPRITgTIMAnIME.IPRINT

INTEGER SOURCEOSINKOBARCDFARCORARC'DISSET
REAL  LOWER
EXTERNAL FLMXCQAMPFcSTF
DELETES ARC I FROM THE L IST  OF SUBSEQUENT ARCS TO NODE 11 .
PRINT 509 I9119FARC( I I )
JJ=JARC(I)

I F  (FARC( I I ) .NE . I )  GO TO 10
FARC(I I )=RARC(JJ)
RETURN
CONTINUE
MM=FARC(II)
CONTINUE
MN=JARC(MM)

IF  (RARCTMN).NE.I) GO TO 30
RARC<MNT=RARCTJJT
RETURN
CONTINUE
MM=RARC(MN)

GO TO 20
END
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SURROUTINE PROUT
bUBROUTINE TO PRINT  OUT THE OPTIMAL SOLUTION.
COMMON /1 /  IARC(1 ) /2 / JARC(1 ) l 3 /COST(1 ) /4 /AMP(1> l5 /FLOW‘1 ) /6 /

1 UPPER( l ) / 7 ILOWER(1 ) /8 /V ( l ) / 9 /BARC(1 ) /10 /RARc(1 ) / l l /
2 FARC(1 ) /12 /D ISSET(1 ) I 13 /GAN( l ) / 14 / ICHK(1 ) /15 /L IST (1 )

COMMON / 16 /  T ITLE iflo )
COMMON IV /  SOURCEQSINKONARCIOU ‘FLO ’FLONETOCSTNOWQTOTCSTONODESOIFS !

1 IROQTOEPSQBIGQNDEGQNLOPQSICHQITERONPRITQTIMAXQTI t IPRINT
INTEGER SOURCE9SINK .BARCoFARC9RARC9DISSET
REAL  LOWER
EXTERNAL  FLMXCQAMPF9COSTF
CONTINUE
PRINT 309  (T ITLE( I ) c I=1980 )
PRINT  40
DO 20  I=19NARC

I F  ( ( I eGToNPRIT ) .AND¢( I . LT . (NARC-NPRIT ) ) )  GO TO 20
ACOST=COST( I ) “FLOW( I )
PRINT 509  I . IARC( I ) . JARC( I )9LOWERt l ) oUPPERl I ) cCOST( I )9AMP( I )a

1 FLOW( I ) .ACOST
CONTINUE
TOTCSP=TOTCST~FLOW(NARC)*COST(NARC)
PRINT  60 .  TOTCSP
PRINT  709  ITERvNDEGoNLOP
RETURN
FORMAT (1H1 I I IOX980A1 / /31H*§* * “0PT IMAL  FLOW PATTERN** * * *9 / / / )

1 FLOW*v / / )
FORMAT ( *  ARC START END LOWER UPPER COST GAIN

1 FLOW ARC COST“ )
FORMAT T1592X92159  SF lOoZOFISoZ)
FORMAT ( / I / nH  #fifififiTOTAL COST»»¢¢¢.F20.4)
FORMAT ( *  NUMBER OF ITERATIONS “9110 / “  NUMBER OF DEGENERATE ITERAT

I IONS “9110 / “  NUMBER OF LOOP ITERATIONS “9110 /1
END



EUNCYION gLMXC ( 19$?
FUNCTEON 7O DETERMINE MAXIMUM FLOW CHANGE KN AN ARC
COMMON /1 /  IARC(1 ) /? / JARC(1? /3 /CO$T( l ) / 4 /AMP(1 ) /5 /FLON(1 ) /6 /

1 UPPER(1 ) /7 /LOWER(1 ) /8 /V (1 ) / 9 /BARC( l ) / 10 /RARC§ l ) / 11 /
2 FAROK1) /12 /D ISSET(1 ) / 13 /GAN(1 ) /14 / ICHK ‘1 ) / 15 /L IST (1 )

COMMON /V /  SOURCEOSINKQNARCeOUTFLQOFLONET9CSTNOWQTOTCST9NODESOIFS!
1 IROOTQEPSvBIGoNDEGaNLOPOSICHQITERoNPRITQTIMAvIM§9IPRINT

INVEGER SOURCEOSINKQBARC9FARC'RARC9OISSET
REAL LOWER
EXTEQNAL COSTFoAMPF
I I=1APC( I )
JJ=JARC( I )

IF  (5 )  10910950
FLOW IS  TO B ;  DECREASED

10  CONTINUE
IF  ( IoGToNARC) GO TO 30
IF  (FLOW( I )@GTOU9PER( I ) )  GO TO 20

FLMXC:FLON( I ) ‘ LONER€ I )
RETURN

20  CONTINUE
FLMXC=FLOW( I ) “UPPEP( I )
RETURN

3O CONTINUE
K= I “NARC

1F (FLOW( I )0LT¢LOWER( I ) )  GO TO 40
FLMXC3(UPPER(K) -FLOW(K) ) “AMP(K)
RETURN

40  CONTINUE
FLMXC3(LOWER(K) 'FLOW(K)3 “AMP(K)
RETURN
FLOW IS  TO BE INCREASED

50 CONTINUE
I F  ( IoGTeNARC) GO TO an
IF  (FLOW‘ I )oGEeUPPER( I ) )  GO TO 110
I F  (FLOW(I)¢LT¢LOWER(I))  GO TO 70
1F ( ( ( (V ( I I ) +COSTF( I ) ) /AMP( I ) ) “EPS)OGTCV(JJ ) )  GO TO 60

FLMXC=UPPER( I ) ”FLOW( I )
RETURN A

60  CONTINUE
70  CONTINUE

FLMXCgLOWER( I ) °FLOW( I )
HETURN

80  CONTINUE
K=I-NARC

I F  (FLOW(K)¢GTQUPPER(K))  GO TO 100
I F  (FLOW(K>¢LE¢LOWER(K)) GO TO 110
I F  ( ( ( (VQI I ) ¢COSTF( I ) ) IAMPF ‘ I ) ) 'EPS)oGT-V ‘ JJ ’ )  GO TO 90

FLMXC=¢FLOW(K) ' LOWER(K) ) “AMP ‘K ’
RETURN

90 CONTINUE
100 CONTINUE

FLMXC3(FLOW(K) 'UPPER(K) ) “AMP(K)
RETURN

110  CONTINUE
FLMXC2000
RETURN
END
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FUNCTION COSTF ( I )
FUNCTION T0 CALCULATE THE COSTS ON AN ARC CONSIDERING UPPER AND
LOWER ROUNDS
COMMON /1 /  IARC(1 ) /2 / JARC(1 ) l 3 /COST(13 /4 /AMP(1 ) /5 /FLOH(1 ) /6 /

1 UPPER(1 ) /7 /LOWER!1 ) /8 /V ( IT /Q IBARC(1 ) /10 /RARC( l ) / 11 /
2 FARC(1 ) l l Z /D ISSETT1) l 13 /GAN(1 ) /14 / ICHK(1 ) /15 /L IST (1 )

COMMON /V /  SOURCEoSINKvNARC9OUTFL09FLONET9CSTNOW9T0TCSTgNODE50IFS,
1 IROOT9EPSIBIGeNDEGeNLopeSICH9ITERoNPRITQTIMAX9TIMEoIPRINT -

INTEGER SOURCEpslNKeBARCoFARCQRARC9DISSET
HEAL  LOWER

IF  ( I oGTeNARC)  GO TO 50
I F  (FLOW(I ) -LOWER(I ) )  10930930

CONTINUE
COSTF=°BIG
RETURN
CONTINUE
COSTF=COST( I )
RETURN
CONTINUE

IF  (UPPER‘ I ) *FLOW( I ) )  40940920
CONTINUE
COSTF=BIG
RETURN
CONTINUE
K= I¢NARC

I F  (FLOWTKT'LOWER(K)) 80 .80 .70
CONTINUE
COSTF2-COST(K)/AMP(K)
RETURN
CONTINUE

IF  (UPPER(K)-FLOW(K)) 90 '60960
CONTINUE
COSTF=BIG/AMP(K)
RETURN
CONTINUE
COSTF=*B IG /AMP(K)
RETURN
END

~_._«—--_-_ ~7 __.«_V _ ._ ' . . __W_ .0.»

FUNCTION AMPF ( 1 )
COMMON l l /  IARC(1 ) l 2 / JARC(1 ) /3 /COST(1 ) /4 /AMP(1 ) /5 /FLOW(1 ) /6 /
1 UPPER(1 ) /7 /LOWER(1 ) IB /V ( l ) / 9 /BARC(1 ) /10 IRARC(1T / I I /
2 PARC( IT / IZ ID ISSET(1 ) / 13 /GAN(1 ) /14 / ICHK(1 ) /15 /L IST (1 I

COMMON IV /  SOURCE9$INK9NARC90UTFLOoFLONET9CSTNOW9TOTCST9NODE$9IFS,
1 IROOTcEPSoBIGqNDEGoNLOP¢SICH9ITERoNPRIToTIMAXoTIMEoIPRINT

INTEGER SOURCE.SINK.BARCoFARCoRARCvDISSET
REAL LOWER

IF  (IQGT.NARC) GO TO 10
AMPF=AMP(I)
RETURN

CONTINUE
AMPF=1IAMP(I-NARC)
RETURN

END



Input Data for the Example Problem
The iterations of this problem are illustrated in Figure 7.

EXAMPLE PROBLEM
I 10 10 30 2. 10 .

9 8 0 .  6 .  10. . 8 0
9 1 0  O .  4 .  2 .  1 .

1 2 0. 10. 4 0 .  lo
1 3 ( ) 0  8 .  a .  0 8
l 4 0. 6. 10. .85
2 5 0 .  6 0  6 O  . 7 5
2 7 0 .  2 0 .  1 0 0  . 9 0

3 2 0 .  4 .  4 .  . 8 5
3 4 0. 10. 12. .653 6 o. 4. 2. .90.
4 6 0 '  8 0  I .  . 8 0

5 3 0 ’  8 .  2 .  . 8 0
5 6 O .  2 .  2 .  9 7 °
5 7 0 :  1 2 -  4 O  1 0
6 8 0. 4. 4. .75
6 $ 1 9  0 .  8 .  . 3 .  1 .

7 8 0 0  5 .  2 .  1 .

7 10 0o 8. lo .85
8 5 00 120 0- 095
8 10 0o 2. 20. 19
z 4 0- ' 29 6o . 7 5
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Intermediate Output for NPRINT = l .
FLOW
COST
REMOVE

ENTER
DELTA

is the output flow for the iteration.
i s  the total cost of the flow.
i s  the arc which leaves the tree a t
the current iteration.
i s  the arc which enters the tree.
is the increase in the node potential at

liERATION
REMOVE
ETERATION
REMOVE
ITERATION
REMOVE
XTERATION
REMOVE
ITERATION
REMOVE
IYERATION
REMOVE
ETERATION
REMOVE

8

10

36

2

4

S

8

0‘
4]

!

the s i n k .

FLOW 3 .60  COST
ENTER 1 DELTA 24olh736

FLOW 3060 COST
ENTER 7 DELTA 077255

FLOW 4 .00  COST
ENTER 11 DELTA 1085000

FLOW 5°56 COST
ENTER 18 DELTA 20 .82266

FLOW 7 .79  COST
ENTER 14 DELTA 3 .05470

FLOW 7 .96  COST
ENTER 32 DELTA 3.55535

FLOW 10900  COST
ENTER 3 DELTA 24914736

4¢.ao

44¢4o

50.38
106.22

192.77

199.90

335.79



Intermediate Output for NPRINT = 2.
BARC is the backward pointer in the three label

tree representation.
FARC is the forward pointer.
RARC is the right pointer.
DISSET indicates the nodes in 

G A 2 .

LAB shows the node potentials.

GAIN shows the node gains.

BARC 0 8 a 5 19 10 14 15 16 Z
FARC 4 0 8 0 14 15 0 19 2 0
RARC 0 10 5 0 0 0 0 16 0 0
DISSET 1 1 1 1 1 1 1 1 1 1
LAB 00001604710000110762493313.3328033230111003312933
GAIN 1-0001o0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001o000

ITERATION 1 FLOW 3 .60  COST
REMOVE 0 ENTER 1 DELTA 0 .00000

BARC 0 8 4 5 36 37 7 41 16 2
FARC 4 7 8 0 41 16 36 37 2 0
RARC 0 0 5 0 0 O 0 0 O 0
DISSET 0 0 0 0 1 1 1 1 1 1
LAB 0.0016.4710.0011.7625.4114.1129.4124.1411.1113.11
GAIN . 7201-000  . 9001o0001 .4041o0001o404 lo3331-0001o000

ITERATION s? FLOW 3 .60  COST
REMOVE 10 ENTER 7 DELTA .77255

BARC 0 8 4 5 19 11 7 15 16 2
FARC 4 7 8 11 0 16 0 19 2 0
RARC. 0 0 5 0 0 0 0 0 15 0
DISSET 0 0 0 0 1 1 0 1 1 1
LAB 0-0016.4710.0011.7628.0115.9629.4126o6112.9614-96
GAIN . 8591o2631 .0741 .0001 .4041 .0001 .4o41o333100001o000

ITERATION 3 FLOW 4 .00  COST
REMOVE 36 ENTER 11 DELTA 1 .85000
g c  0 8 4 5 19 11 7 15 16 18
RARC 4 7 8 11 0 16 18 l9 0 0

RC 0 0 5 0 0 0 0 0 15 0
DISSET 0 0 0 O 0 0 0 0 0 1
gn 0833:6523i05321157628.0115.9629.4126.6112.9635.78

O O o O I a

ITERATION 4 FLOW 001 agtéboOOI.4gggTBB31.0001°000
REMOVE 2 ENTER 18 DELTA 20082266

44.40

44 .40

50 .38

106.22



EfiRC
FARC
RARC
DESSET
L38
GAIN

ITERATION
REMOVE

BARC
FARC
RARC
DISSET
LAB
GAIN

ITERATION
REMOVE

BéRC
FARC
RARC
DISSET
LAB
GAIN

ITERATION
REMOVE

O 29 30 5 19  11  14  15  16  18
5 30 0 11  14  16  18 19  0 0
0 0 0 0 0 0 0 0 15  29
O 1 1 0 0 0 1 0 0 1

0900180311169911@7628-0115096320012606112¢9638o83
e520  e765 9650 98001540419000 .8501e3331a0001o000

5 FLOW 7 .79  COST
k ENTER 14 DELTA 3005470

0 8 32 33 36 37 7 41  16  18
O 7 8 0 41  16 18  37 0 0
0 0 0 32 0 0 0 0 33 36
0 1 1 1 1 1 1 1 l 1

090021.531493013a4931e0318¢1135.0329o4815o1142o39
e412 9765 . 650  a484 9850 0606 «850 . 807 ‘060610000

6 FLOW 7o96 COST
5 ENTER 32 DELTA 3e55535

0 3 32  33  36  37  7
3 7 0 0 41  16  18  37  O 0
0 O 0 32  O 0 0 0 33  36
0 1 1 1 1 1 l l 1 1

0o0040a0027o$625o1951956329735595648 .98299T366954
«412  “765  9545  9484  9850  9606  . 8 5 0  0807  060610000

7 FLOW 10 .00  COST
8 ENTER 3 DELTA

41  16 18

24e14736

1 9 2 0 7 7

199 .90

335979



MULTIRESERVOIR OPERATING P O L I C I E S  CONSIDERING UNCERTAINTY

b y

W .  D .  Driscoll

I .  Introduction

Between 1968 and 1970 the Texas Water Development Board
engaged in extensive development of planning techniques for a
large multireservoir water distribution system. The out-of-
kilter algorithm for determining a minimum cost flow pattern in
a network was an important part of these planning techniques.
The out-of-kilter algorithm operates on a model consisting of
nodes and arcs arranged in  any desired pattern. For each arc
three parameters are Specified: a cost per unit flow, a lower
bound on flow, and an upper bound on flow. For a canal these
parameters might represent pumping cost per acre—foot per month,
minimum throughput per month, and maximum throughput per month.
The out-of-kilter algorithm will find the minimum cost circula~
tion for such a network, that is an assignment of flows to arcs
which minimizes the total cost while requiring that the flow on
each arc remains between the bounds for that arc and that flow
be conserved at each node. Negative flows are permissable if
they satisfy these requirements.

To illustrate a network consider the following hypothetical
multireservoir system.

= reservoir

= non-storage junction

A
O

===5 = canal

“"> = river

Associated with each canal there is a pumping cost per unit of
water per month, a minimum throughput per month, and a maximum
throughput per month. Associated with each reservoir there is
an initial storage level, a minimum final storage level, a maxi—
mum final storage level, and a cost of storage per unit of
water per month ( which may be negative to represent a benefit).
There are also a supply and a demand at each reservoir. At
some reservoirs water can be imported from outside the system.

4 — 1



The following diagram illustrates the network which when solved
by the out~of~kilter algorithm would yield the optimum water
distribution policy for a single month.

final
storage

initial
storage

initial

initial “"399
storage mport

x’v %
supply—

final demand

. storage final
supply- storage
demand

source(::>node

All unattached arc ends should connect to the source node. Of
course each arc would have the three parameters mentioned ear-
lier. At each reservoir the supply—demand arc would have flow
equal to the net of demand (water used or sold) and supply
(rainfall and runoff). Hence flow will be negative if supply
exceeds demand. In order to allow for the possibility that a
demand cannot be satisfied (in the case where demand exceeds
supply) the upper bound on the demand are can be set equal to
the net demand, the lower bound set equal to zero, and a per
unit cost of -M where M is a large positive number can be
assigned to the arc. The physical characteristics of the
multireservoir system determine the costs and bounds on the
arcs representing canals, rivers, reservoir storages, or imports.

To determine optimal reservoir operating rules over a
longer time span, a multiperiod model is required. The fol~
lowing network is a three-month model for determining an opti-
mal reservoir operating policy for the multireservoir system
depicted earlier.





As before all unconnected arc ends  should connect to the source
node. To make the diagram more easily readable initial stor—
age, final storage, and intermonth storage arcs are depicted
with dashed lines. A multiperiod netWork of this type consist—
ing of up to 36 months was used by the Texas Water Development
Board. However there are inherent difficulties in using a
multiperiod model of this type.

1. The necessity for perfect information. The assumption
is made that inflows and demands are known exactly for
the entire time horizon.

2. The large size of the network. Computation time for
the Out-of—kilter algorithm increases rapidly as the
number o f  arcs i n  the network increases.

. Economic value of final reservoir storage is ignored.
4. Wasted computation. Since inflows and demands will

not exactly duplicate their expected values, the solu—
tion obtained may no longer be optimal or even feasi—
ble in later months. The multiperiod network is
needed to allow planning for the future, but the op-
erating policy determined for later months will pro—
bably not b e  useful.

It would be desirable to work exclusively with one—month
networks. However, i f  this i s  done, some means must be pro-
vided to encourage the algorithm to store water in the reser~
voirs in appropriate amounts for use in subsequent months. One
method of accomplishing this is to assign a benefit to water
stored for the future so that water will be stored if it is
valuable to do so. The Texas Water DeveIOpment Board took this
approach, but encountered difficulties as to what benefits to
assign to water stored for the future i n  the reservoirs. They
found that solutions were very sensitive to these values.

For given values of storage i n  other reservoirs, a curve
can be determined that will express the value of the water
stored in a single reservoir as a function of the amount of
water stored in the reservoir. For the multireservoir system
as we have modeled i t ,  this benefit curve w i l l  be continuous
piecewise—linear and concave.

Benefit
from
stored
water

Water stored i n  reservoir 1



A curve such as this is compatible with the out—of~kilter
algorithm but requires multiple final storage arcs for each
reservoir. The non-linear out—ofekilter algorithm developed by
Jensen and Reeder can handle a benefit curve such as this
with a single arc. In fact any continuous concave benefit
function (or convex cost function) would be allowable. The
benefit function could be found by changing the amount of water
parametrically from 0 to the maximum capacity of the reservoir,
and using the out—of—kilter algorithm to find the effect on cost
over some time horizon. The out—of-kilter algorithm is well
sutied to parametric analysis of this sort. The difficulty
with this approach i s  that i t  neglects the fact that the value
of water stored in a particular reservoir of a multi-reservoir
system is effected by the amount of water stored in the other
reservoirs. Due to these interactions, separate benefit func-
tions cannot be expressed for each reservoir.

The purpose o f  this research has been to develop a method
whereby reservoir operating policies can be determined using
iterative out-of-kilter solutions of simple one-month networks.
This requires the development of benefit functions that express
the future value of any configuration of reservoir storages at
the end of each month. The benefit functions and the out—of—
kilter algorithm are made compatible, so that a good solution can
be found rapidly. The method is able to take into account
uncertainties in supply and demand. The following diagram
illustrates this approach to the multireservoir problem.

Future Benefit

Function

o u r c :
node



I I .  Literature Review

Most of the research involving mathematical analysis of
multireservoir systems has occurred during the last decade.
There has been a great deal of variation in both the scope of
the problem investigated and in  the mathematical techniques
employed. Roefs [20], Buras [l], and Hall and Dracup [ll]
discuss the mathematical techniques used and those variations
of the problem for which each technique is most suitable.
Butcher [2] notes that a mathematical tool useful for one
water resources problem may be unsuitable for other seemingly
similar problems. Multireservoir models can be roughly clas-
sified in the following three categories depending on their
emphasis and scope.

1. Design models. These models make decisions concerning
the construction o f  the reservoir system. They are
sometimes called capacity expansion models. Decisions
are made concerning the size, location, and time of
construction of reservoirs and canals in addition to
determining water allocation.

2. Water-use models. In these models the reservoirs are
considered to be multipurpose; that is, several pos—
sible uses are available for water at each reservoir.
Decisions are made concerning such things as the tim—
ing and extent of irrigation for various crops. These
models most often concern a single reservoir.

3. Time planning models. The main objective with these
models is to determine the use and storage of  water in
several interconnected reservoirs in such a way as to
b e  prepared for future storages or excesses. This
research concerns itself with a model of this type.

Just as there is great variation in the scope of the model
for multireservoir problems, the mathematical methods employed
are diverse. Included are the following:

Linear programming
Dynamic programming, both deterministic and stochastic
Chance-constrained programming
Decomposition approaches
Simulation
Markov chains
Network methods

\
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We will try to give references to papers employing these
methods, the strengths and weaknesses o f  the methods with re-
gard to the multireservoir problem, and the type of multi-
reservoir models to which they are most suitable.

Network methods have already been mentioned. They in—
clude the techniques used by the Texas Water Development Board
and those proposed in this paper. The out~of~ki1ter algorithm
has been used in  both timenplanning and design models. Its
strengths are speed of computation and ease in diagramming the

4—6



problem. Its greatest weakness is the lack of flexibility of
the network form. -

Linear programming has been applied to all types of multi-
reservoir models. Roefs [20, p. 43—52] gives an example of a
four-reservoir model of the time planning variety. This model'
is similar in nature to the network model of the Texas Water
Development Board. The linear programming method is consider-
ably slower than the linear outmof—kilter algorithm, but has
more flexibility. For instance monthly evaporation can be in-
eluded in the model as a percentage of reservoir storage. For
a multiperiod model, linear programming has the same short—
comings as previously mentioned for the linear out—of—kilter
algorithm--the necessity for perfect information, the large
size of the problem, failure to make use of final reservoir
storage, wasted computation, and of course the restriction to
linearity. As stated by Buras [ l ,  p .  112], " .  . . linear pro-
gramming yields only point solutions in the policy space, no
matter how many dimensions this space may have. Most situations
i n  which the state of the system changes (in time or in space)
and in  which decisions have to be taken successivley are clearly
outside the grasp of linear programming."

Windsor and Chow [25] present a linear programming model
that is a combination design and water-use model. The linear
programming method appears to be more suitable for models of
these types where the number of time periods can be kept to a
minimum. They consider their model a practical one computation-
ally, but admit its weakness in  not considering the stochastic
nature of the problem. Other linear programming models that
take stochastics into account are discussed later, under the
topic of chance-constrained programming. Salcedo [22] employs
linear programming as one of his tools in  a water-use model.

Dynamic programming is the most theoretically appealing
approach to multiperiod reservoir models of all types since
these problems invlove sequential decision—making processes.
Also the outcome of each decision (or set of decisions in a
time period) appears as a function rather than as a point solu—
tion. That is, the optimal decision to be made is determined
for any state of the system. This allows suboptimal policies
to be examined, a desirable feature due to the inherent uncer-
tainty in  multireservoir problems. This feature makes dynamic
programming especially useful for real-time system operation.
The limitation on the usefulness of dynamic programming is the
so—called "curse of dimensionality." Each reservoir gives rise
to a new state variable (usually the final reservoir storage).
If there are n reservoirs and each reservoir has k possible
levels there are kn possible state combinations per time period.
For this reason most of the dynamic programming models have
been for systems with either one or two reservoirs. Buras
[ 1 ,  p .  125] fixes four as the maximum number o f  reservoirs that
can be handled computationally by dynamic programming. Dynamic
programming also fails to take into account the stochastic na-
ture of the multireservoir problems. This can be rectified by



using stochastic dynamic programming as will be discussed soon.

Dynamic programming formulations can be found i n  Roefs
[ 20 ,  p. 53w58], Hall and Dracup [ 11 ,  p. 172—176], and Buras
[1, p. 123w125]  for timeeplanning multireservoir models. Fults
and Hancock [ 10 ]  present a statemincrement dynamic programming
algorithm they applied to a two~reservoir system in California.
Dynamic programming has also been applied to onemreservoir
watereuse models, but this has been largely the stochastic vari—
ety. Buras [1] presents a dynamic programming formulation for
a design—type model [p. 143el49] and for a water—use model
[p. 155~l7l]. Young [ 26 ]  combines dynamic programming with a
simulation approach. Rood [ 21 ]  presents a dynamic programming
model of the timeeplanning variety that is especially designed
for serially linked reservoirs. This reduces the state space
dimensionality problem.

Butcher [2] defines stochastic dynamic programming to be
. . . those formulations of dynamic pr0gramming in  which the

value of one of the state variables is related in a probabilis~
t i c  way to the value o f  that same variable i n  adjacent time
periods." I n  terms o f  multireservoir problems, stochastic dy—
namic programming allows the demand (or net demand, i.e. demand
minus inflow) at a reservoir in one time period to be dependent
probabilistically on the demand at that reservoir i n  the previ—
.ous time period. The optimal policy developed is that which
minimizes expected costs (or maximizes expected returns) for the
system. As with traditional dynamic programming the optimal
policy is in a form that can readily be used for real time sys—
tem operation. However the dimensionality problem is compound~
ed due to the additional state variables which are the demands
at the various reservoirs in the previous period. Hence Butcher
states [2, p .  6 ]  "Any attempt to u s e  stochastic dynamic program-
ming for a two~reservoir formulation involves so  many possible
states that the problem is too highly dimensional for feasible
computation."

For this reason stochastic dynamic programming models have
been applied mainly to waterwuse models, rather than the other
models that tend to have a multiplicity of reservoirs. Butcher
[3] presents such a model for one multipurpose reservoir.
Loucks [ 16 ,  p .  Vlm8 through VI—lB} presents three stochastic
dynamic programming models that he used to define operating po—
licies for several of the Finger Lakes in New York. These are
also one—reservoir models. Instead of economic objectives
Loucks minimized the sum of squares of the departures of relea-
see from a set of target releases specified by the state. Roefs
[ 20 ,  p. 72m77] presents stochastic dynamic programming formula~
tion for one~ and two» reservoir systems.

Chancewconstrained linear programming is another tool that
has been applied to multireservoir problems i n  an attempt to
account for stochastic variation. Like deterministic linear
programming, this method is more suitable for design or water—
use models than i t  is for timewplanning models. The fact that
point solutions are found, causes chancemconstrained linear



programming to be less applicable to realwtime system operation
over a long time span. Loncks £17] proposes a one~reservoir
waternuse modell Roefs [ 20 ,  p. 70] extends this model to two
reservoirs but expresses doubts about its computational feasim
bility. Curry and Helm [5] present a chance—constrained model
for a single multi~purpose reservoir and then [61 extend this
to a system of linked multi-purpose reservoirs. They allow the
unregulated inflow into each reservoir at each time period to
be stochastic with known probability distribution. There is
independence between reservoirs and for the same reservoir in
different time periods. They show how their formulations res
duce to a deterministic linear programming problem. In addi-
tion to these water-use models Curry and Helm [12] present a
design model for a system of reservoirs. This formulation em~
ploys a mixed continuous and integer linear programming form
that is solved by Benders' decomposition technique.

The remaining mathematical methOds have been less used
and are not easily classified. Parikh [l8] and [19] presents
a linear decomposition method designed for use in a Northern
California system. Bodin and Roefs [4] present a non—linear
decomposition approach that employs simulation and regression
analysis. Young [26] combines dynamic programming with Monte
Carlo simulation of stochastic inflows. Su [ 23 ]  presents a
markov chain approach for serially connected reservoirs. He
solves the markov system by a method of successive approxima—
tions rather than be dynamic programming. It is interestnng
to note that Butcher [2] foresees more extensive use of simu-
lation methods as multireservoir models grow in complexity.



III. Proposed Solution Method

A. An Overview of‘the'Proposed‘Method‘and‘itS‘Objectives

The method to be presented here for determining an Optimal
operating policy for a multireservoir system combines the basic
ideas of several of the approaches that have been previously
proposed. We make u s e  o f  a network formulation and the out-of—
kilter algorithm. The idea of decomposition is present in that
we break up the larger problem of determining operating policy
for a number of years into a sequence of one—month optimizations.
Communication between one—month problems is provided by a bene—
fit function which assigns a numerical value or benefit to any
configuration of reservoir storage levels. The idea of dynamic
programming is employed in iteratively computing these benefit
functions.

Our basic objective is to model the reservoir operating
problem with simple one—month networks. Future needs will be
taken into account through benefit functions that express the
future value of stored water at the end of each month. The
model will be adaptable to uncertainties in  net demand. Flexi-
bility and ease of use will be important considerations.

The method of presentation will be to first consider a
multireservoir system with deterministic monthly demands at
each reservoir and a fixed time horizon. Shortcomings of this
model will be discussed and the changes will be made to make
the model more usable. In the next section the idea of benefit
functions will be introduced. Properties of the benefit func—
tions will be shown and a method of decomposing a long—term
problem into a sequence o f  monthly problems w i l l  b e  presented.
This will entail a few additional assumptions which require a
further reformulation of the deterministic problem. The final
section of this chapter will adapt the benefit function concept
to stochastic demands. Properties and use o f  the resulting
stochastic benefit functions will be shown.

B .  Definition o f  the Deterministic Problem

Let us consider a multireservoir system with deterministic
monthly demands at each reservoir and a fixed time horizon.

Parameters o f  the System

R Number of reservoirs (treat junctions as reservoirs
with zero storage capacity)

r = Reservoir number, an integer index with range
1 s r s R

C = Number o f  canals

O H Canal number, an integer index with range 1 s c S C
A = Beginning month B = ending month



t = Time period, an integer index with range A s t s B

s(r) = Maximum storage capacity of reservoir, r,\fr

u(c) = Maximum pumping capacity per menth in canal c)Vc

d(r,t) = Demand at reservoir r in month t,‘Vr and t

i(r,t) = Unregulated inflow (runoff and rainfall) at reservoir
r i n  month t ,  V r  and t

m(r,t) = The maximum amount of water that may be imported at
reservoir r in month t,‘Vr and t

k(c) = Cost for pumping one unit of water through canal c,
Vc

p(r,t) = Cost for importing one unit of water at reservoir r
in month t, Vr and t

F(r) = The set of canals branching away from reservoir r,‘Vr

T(r) = The set of canals branching into reservoir r,‘Vr

l(r,0) = The initial storage of reservoir r,‘Vr subject to the
restriction O s 2(r,0) s s(r)Vr

R ,  r ,  C ,  c ,  A ,  B, and t are positive integers

s(r), u(c), d(r,t), i(r,t), m(r,t), and L(r,0) are non-negative
numbers.

Variables of the System

2(r,t) = The storage level o f  reservoir r at the end of month
t,\fr and t

f(c,t) = The amount of flow in canal c in month t, Vc and t
w(r,t) = The amount of water imported at reservoir r in month

t, Vr,t.
Vt let £(t) = The Vector whose rth element is 2(r,t0b&

Deterministic Problem #1
Given fiked values for the parameters, find values for the

variables that satisfy the following problem:

B ' C  R
min Z 2 2  k(c) f(c,t) + E p(r,t) “7(t

t=A c=l r=l

s . t .

w(r,t) + i(r,t) - d(r,t) + i(r,t-l) - i(r,t)

+ Z f(c,t) — E f(c,t) = o \fr,t
CST(r) CEF(r) ,

0 s £(r,t) é S ( r )  Vr,t

0 s f(c,t) s u(c) ‘Vc,t
o s w(r,t) s m(r,tWr,t



Problem one is a linear problem that may be directly trans~
lated into network form and solved by the out—ofmkilter algori~
thm previously described. However, it may be the case that the
above problem has no solution, that is, that the existing water
system cannot meet all the specified future demands. In these
cases a policy is needed that will make "best" use of the avail—
able resources. One possible method is to reward the releasing
for use of water at a reservoir. Let x(r,t) be a new system
variable denoting the amount of water released for consumptive
use at reservoir r in month t for all r,t and sub'ect to the
constraint 0 < x(r,t) s d(r,t). Let<3(r,t,x(r,t) denote the
return or reward for providing x(r,t) units of Water at reser—
voir r i n  month t for a l l  r,t. Thus the return functions
q(r,t,x(r,t)) are new system parameters. In order to remain
within the confines of the linear network formulation the
q , t , x ( r , t ) )  must be piecewise linear and concave in x(r,t).
That is the graph of q(r,t,x(r,t)) must consist of linear seg-
ments with successively decreasing slope. An exam 1e of an
allowable piecewise—linear and concave form for q r,t,x(r,t))
consisting of four linear pieces is as follows.

q(r,tIX(r,t))

400’

300

200.

100'

50 100 150 260 2§o
x(r,t)

Return functions of this sort may be used to insure that
as much of the demands will be satisfied as possible. In order
to accomplish this a large positive per unit return is assigned
to each unit of demand satisfied. Let M be a large positive
number and define q(r,t,x(r,t)) = M x(r,t) where O s x(r,t) s
d(r,t). If M is chosen large enough, it will always be profit—
able to supply unfullfilled demands if possible. Feasibility
of the problem may also be affected by large surpluses of water,
hence i t  is also necessary to allow dumping or Spillage of
water at each reservoir if we are to insure feasibility. Since



dunaping consists o r  re leasing more water than the demand, the
upper bound on x(r,t} is :cemoved for ail r and t The penalty
or cost of dumping may be incor:poxated into the q(; t,x(r t))
with an additional linear segment having negative slope. Hence
qir,  t ,x(r,t)) would take on a form of the type

q(r,t,x(r,t}) = Mi- x(r,t) for 0 S x(r,t) s d(r,t)
- P{x(r,t) - d(r,t)J + M d(r,t) for x(r,t) 2 d(ryt}

where 0 s x(r,t) and P is the per—unit penalty for dumping. Of
course, other forms are possible for the return functions. For
instance, there might be a stepwise decreasing marginal return
for water at a reservoir. A graph of a return function of this
s o r t  i s  shown on the previous page.

Incorporating the additional system variables x(r, t)\/r, t
and the additional system parameters q(r, t ,x(r, t))Vr, t the prola
lem can be reformulated as follows:

Deterministic Problem #2
Given fixed values for the parameters, find values for the

variables that satisfy the following problem.

B c R.
min 2 2 k m )  f(c,t) + Z p(r,t)w(r,t)

t=A c=l r=l

R
— .E q(r,t,x(r,t))

r=l

s.t.

w(r,t) + i(r,t) — x(r,t) + 2(r,t—l) - m(r,t)

+ E f(c,t) - E f(c,t) = 0  Vr,t
c€T(r) c€F(r)

s $2,_‘_(r,t) s s(r) \‘lr,t
s f(c,t) s u(c) \ d c , t

s w(r,t) s m(r,t) \ f r , t

s x(r,t) ‘Vr,t00
00

Note that the d(r,t) no longer explic'tly appear in  the formu-
lation. They may be present in the q r,t,x(r,t)) or there may
be no explicit d(r,t).

I t  is evident that problem 2 has a feasible solution con-
sisting of the following:



sz,(r,t) = m o m  V r , t

f(c,t) -'~= 0 Vc,t

w(r,t) = 0 Vr,t

x(r,t) = i(r,t) Vr,t

If the q(r,t,x(r,t)) are piecewise linear and concave, then
problem 2 can be solved as a linear network problem. I t  may be
characterized as a deterministic problem with perfect informa-
tion since the q(r,t,x(r,t)) are deterministic and known for
all r,t. This is equivalent to having perfect knowledge of all
inflows and demands.

C .  Definition and Use o f  Benefit Functions

In practice, problem 2 has several deficiencies as a model
for the operation o f  a multireservoir system. Most important
of these is the need for perfect information. This usually
involves the assumption that the past record of rainfall and
demands can be used to exactly predict the future rainfall and
demands. Another deficiency is the large size of the optimiza~
tion problem when a number of months are considered simultane—
ously. Problem 2 assumes perfect information of not just one
month, but for months A through B. Although we initially ob-
tain a solution for months A through B, deviations in rainfall
and demands from the assumed values will often yield our solu-
tion suboptimal and perhaps even infeasible after a few months.
This means another optimization needs to be performed and the
results from the previous optimization might as well be thrown
out. Quite naturally the question arises, why not optimize
over one month at a time, since the solution for most later
months will be updated anyway. The response, of course, is

'that some account must be taken of the future water requires
ments. To overcome the need for including a large number of
months i n  the optimization, the idea arises o f  using a benefit
function to express the future value of stored water.

The value of the objective function in problem 2 will be
referred to as the cost of operating the multireservoir system
for months A through E. For all t let b(t,£(t)) be a function
with the following property: b(t,£(t)) equals the optimal cost
of Operating the multireservoir system for months t + 1 through
B with initial storages in month t + 1 equal to zero, minus the
optimal cost of operating the water system for the same inter—
val of time with initial storages £(t) in  month t + 1. That is
b(t,£(t)) is the amount of future cost that may be saved by
having initial storages £(t) in  month t + 1 instead of having
all reservoirs dry. The b(t,£(t) will be more precisely de—
fined subsequently.

By use of the function b(A,£(A)) an optimal policy for
months A through B can be determined by optimizing over month A
and then optimizing over months A + 1 through B. The important
feature here is that in a one~month optimization a policy can



be found for month A that will be part of an optimal policy for
months A through B. The following development shows that this
can be done.

Let 2b designate the multireservoir problem 2, but for
months A + 1 through B (instead o f  A through B). Le t K(2b,z)
denote the optimal cost for 2b given initial storages £(A) = z
in  month A + 1. Define the function b(A,z) by b(A,z) = K(2b,0)
- K(2b,z) for all 2.

Let 2a designate the multireservoir problem for month A
(i.e. for months A through A instead of A through B) with the
alteration that the term -b(A,2(A)) is added to the objective
function (except where otherwise indicated). Let K(2a) denote
the optimal cost for 2a. Let K(2a,z) denote the optimal cost
for 2a when £(A) is set equal to z ,  a vector. Hence K(2a) =
minz K(2a,z). Let 2a' denote 2a with the alteration that the
term -b(A,£(A)) i s  omitted from the objective function. Let
K(2a') denote the optimal cost for 2a' and K(2a',z) denote the
optimal cost for 2a' when £(A), the final storage in month A ,
is set equal to 2.

Recall that 2 designates the multireservoir problem for
months A through B. Let K(2) denote the optimal cost for 2.
Let K(2,z) denote the optimal cost for 2 when £(A) is set equal
to 2. Then K(2) = minz K(2,z). The solutions to 2a and 2b can
be combined to form a solution to 2 where £(A) is determined in
2a. Let K(2d) denote the cost of this solution to 2.

The definitions just given can be summarized on the follow-
ing table:

Problem 2a 2a' 2b 2

Months A A A + 1 thru B A thru B

Optimal Cost K(2a) K(2a') K(2)

Optimal Cost K(2a,z) K(2a',z) K(2b,z) K(2,z)
given £(A),
the final
storage in
Month A
equals Z.

Several properties of the above defined quantities will now
be presented. The objective is to show that K(2d) = K(2), that
is an optimal solution to 2 can be found by sequentially solv—
ing 2a and 2b.

Properties:

1. b 0. This follows directly from the definition,
K(2b,0) - K(2b,0) = 0.



ii. K(2,z) = K(2a',z) + K(2b,z). This is apparent since
fixing K(A) at z decomposes 2 into two problems, one
being problem 2a' with £(A) fixed at z and the other
being problem 2b with 2(A) fixed at 2.

iii. K(2) = minz K(2,Z) = minz K(2a',z) + K(2b,z) from i i .

iv. K(2d) = K(2a) + K(2b,z') + b(A,z') where z' is the
value of £(A) from the optimization K(2a). This fol—
lows directly from the definition of K(2d). The term
b(A,z') is present to offset the term —b(A,z') in
K(2a). This is necessary since there is no —b(A,z)
term in the objective function for 2.

v. K(2a,z) = K(2a',z) — b(A,z). This follows since b(A,z)
is a constant for each 2.

vi. K(2) = K(2d). The proof is as follows:=

K(2d) = K(2a) + K(2b,z') + b(A,z') where z '  i s  the
value of £(A) from the optimization K(2a).
This is property iv. above.

K(2d) = K(2a) + K(2b,z') + K(2b,0) - K(2b,z'), using
the definitions of b(A,z')

K(2d) = K(2a) + K(2b,0)

K(2d) : minZ{K(2a,z)} + K(2b,0)
K(2d) = minz {K(2a,z) + K(2b,0)}

K(2d) = minz {K(2a',z) — b(A,z) + K(2b,0)} by property v
K(2d) = min {K(2a',z) ~ K(2b,0) + K(2b,z) + K(2b,0)}

by definition of b(A,z)

K(2d) = minz {K(2a',z) + K(2b,z)}
K(2d) = minz K(2,z) property ii

K(2d) = K(2).

Hence a solution to problem 2a gives a policy for month A
that is part of an optimal policy for problem 2. The benefit
function b(A,z) can be shown to be concave in 2. (See Appendix)

The concavity of b(A,z) is an important property when con—
sidering a method for solving problem 2a. It should be noted
here that problem 2a, unlike problems 2b and 2, is not a linear
network problem even when the q(r,t,x(r,t)) are piecewise line—
ar and concave. The distinction is that b(A,z) is not separa-
ble into terms each involving only one variable. Hence prob—
lem 2a is not directly amendable to an out-of—kilter algorithm
solution. An out-of-kilter method of approximating a sdlution
to 2a will be discussed later.

D. Computation of Benefit'Functions

A method for computing the benefit functions will now be
discussed. This method is based on a periodic trend in rainfall



and demands, and the resulting periodic benefit functions. By
definition b(A,z) = K(2b,0) — K(2b,z), hence b(A,z) could be
found for any value of z by solving problem 2b with £(A) = 0
and then with £(A) = 2. Since problem 2b encompasses a number
of months this would be a cumbersome process. Instead we will
propose computing a sequence of benefit functions using one—
month networks at each stage. This sequence will converge to
the desired benefit functions. In order to justify this pro—
cedure a few changes in the formulation of the problem will be
necessary.

We w i l l  now assume that the return functions q , t , x ( r , t ) )
are periodic in nature and examine the effect of this periodi-
city on the other elements in the water distribution system.
This assumption is not necessary to the solution method, but it
does reduce the amount of computation involved. For some posi-
tive integer p ,  assume q(r,t,f) = q(r,t + p,f) for all r,t,f.
It follows that optimal policies are, in a sense, periodic.
Suppose we have an optimal policy for months A through A + k
with initial storages z in month A. Call this policy #1. An
optimal policy for months A + p through A + p + k with initial
storages z in month A + p can be found by following the deci-
sions of month A + i of policy #1 in month A + p + i for
O s i g k. This is evident since the optimization problems in
question would be identical except for the variable names.

Two further assumptions will be made in order to establish
the periodicity of the benefit functions. Let us assume the
following.

i. There is a positive integer M such that maximum bene-
fit can always be obtained from stored water within
M months. It is not necessary for M to be known in
the case where the return functions are periodic. The
purpose of this assumption is to allow consideration
of only a finite number of months when investigating
a particular benefit function. The explicit value of
M becomes important when the assumption of periodic
return functions is abandoned. This will be discussed
later.

ii. The time horizon is infinite. Alternatively we may
assume that the horizon is finite with T months and
only consider those b(t,z) where t s T - M.

In light of the above assumptions we let B, the final month
in problems 2b and 2, equal A + M. Consider M as fixed and A
as a parameter. For any value of A ,  the problem 2b determines
a benefit function b(A,f). We will now show that the b(A,Z)
are periodic with respect to A, i.e. that b(A,z) = b(A + p,z)
for all A, f where p is the period of the return functions.
Let K(2e, 2) denote the optimal cost for months A + p + 1 through
A + p + M given initial storages £(A + p) = z in month A + p + 1.
Suppose we have a policy for months A + 1 through A + M with
initial storages z in month A + 1. This policy will have cost
K(2b, 2). By applying the decisions in month A + i of this
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policy to month A + p + i for l s i s M we obtain an optimal
policy for months A + p + 1 through A + p + M. Recall Optimal
policies were previously shown to be periodic in  this respect.
This policy will still have cost K(2b,z) ; hence K(2e,z) = .
K(2b,z). For 2 = 0 this yields K(2e,0) = K(2b,0). I t  follows
that K(2b,0) — K(2b,z) = K(2e,0) — K(2e,z) and therefore b(A,z)
= b(A + p,z). Hence b(A,z) is periodic.

We will now show that given a benefit function the benefit
function for the previous month can be found by parametrically
solving a one—month optimization problem. Begin with a known
benefit function b(A,z). Consider the one-month optimization
problem.

C R
c(SHA-D) = min 5 k(c) f(c,A) + g p(rl,A) w(r,A)

' c=l r=l

R
_ Z q r,A,x(r,A)) - b(§,£(A))
r=l

s . t .

w(r,A) + i(r,A) - x(r,A) + 2(r,A - l )  - £(r,A)

+ E f ( c , A )  — E f(c,A) = o V r
c€T(r) c€F(r)

o s Mr,A) _<, s(r) W

s f(c,A) s u(c) \fc

0 S w(r,A) S m(r,A) V r

S. X ( r r A )  V1“

The optimal Cost c(£(A—l)) can be expressed as c(&(A-l))
= c(A,l(A—l)) -.b(A,£(A)) where c(A,2(A-1)) is the cost incurred
during month A and b A,£(A) is the cost savings realizable
over the next M months from final storages £(A) as compared to
zero final storage. Let us consider the difference c(O) — c(z).
Let 2 (1 )  denote the optimal value o f  2(A) i n  C ( 0 )  and 2(2) de-
note the optimal value of £(A) in c(z). Then

c m )  - c(Z) c(A,0) — b(A,z(1)) - c(A,z) + b(A,z(2))
c(A,0) — c(A,z) + b(A,z(2)) — b(A,z(1)).

C(A,0) - c(A,z) represents the c ost savings during month A due
to initial storages z. b(A,z(2)) - b A,z(l) is the cost sav—
ings realized over months A + l throug A + for initial stora—
gas i n  month A + 1 equal to 2(2 )  a s  opposed to 2(1 ) .  Hence
c(O) — c(z) is the cost savings over months A through A + M due
to initial storages 2. By assumption this same cost savings
can be realized in  months A through A + M - 1  and equals, by
definition, b(A - 1,2). Hence b(A — 1,2) = 0(0) - c(z) and for
any z,b(A - 1,z) can be found by solving two one-month optimi-



zation problems once b(A,z) is known. We can fully define
b(A — l,z)by parametrically varying the initial reservoir lev—
els and solving a ‘one-month optimization problem for each
possible r-tuple of initial storages in month A.

Since the benefit functions are periodic, there are only
p benefit functions to be found. Once one of these is known,
the other p - 1 may be found iteratively using parametive vari~
ations in  p - l one—month optimizations as described in the
previous paragraph. In order to find a benefit function that
will serve as a starting point for calculating the remaining
benefit functions, we make use of the assumption that maximum
benefit can be derived from stored water within M months. For
some integer T ,  where T > M ,  define b(T,z) = 0 for all 2. Then
it is possible to iteratively find b(t,z) for t = T - l ,  T ~ 2,
T - 3 . . . By our assumption when t s T — M, b(t - p,z) =
b(t,z) for all 2. we can terminate the iterative process with
all b(t,z) determined when t = T - M - p.

I t  may not be necessary to perform M + p iterations to
determine all the b(t,z). The iterative process of finding
b(t,z) for t = T - l, T — 2, T - 3,. . . will be said to con—
verge when for SOme A ,  b(A,z) = b ( A  - p,z) for a l l  2. Once
this occurs the process can be terminated since b(t,z) =
b(t + p , z )  for all z and t s A. This can be shown as follows:

1. for t = A—l, the one-month optimization problem that
finds b(A — l,z) knowing b(A,z) is identical with
the problem that found b(A + p —l,z) knowing b(A + p,z).
Hence b(A — 1,2) = b(A + p — 1,2) for all z.

2. let t* be an integer, t* s A and assume b(t,z) =
b(t + p,z) for all z for t *  s t s A. The one—month
optimization problem that finds b(t* — l,z) knowing
b(t*,z) is identical with the’problem that found
b(t* + p - l,z) knowing b(t* + p,z). Hence b(t* - 1,2)
= b$t* + p — 1,2) for all p .

3. Hence by induction b(t,z) = b(t + p,z) for all z and
t s A .

As we have seen we are guaranteed convergence in the
iterative computation o f  the b(t,z) as described above given
the assumption that maximum benefit can be derived from stored
water within M months. I t  may be possible to speed up the con—
vergence by making a judicious choice for b(T,z) instead of
b(T,z) = 0 .  No guarantee o f  improved convergence can be made,
but at most M + p benefit function would have to be computed
as before. In practice, the computational savings may be
considerable.

When the net demands are not periodic in nature, the re—
turn functions q(r,t,x(r,t)) will also not be periodic. Hence
the benefit functions b(t,z) will not be periodic. In this



case the explicit value of M becomes important because it de~
termines how far into the future we must look in order to de-
termine the benefit functions. If we begin with some month T ,
and an assumption for b(T,z) then b(t,z) for t = T e l, T - 2,
T m 3, a . . can be iteratively calculated as previously des-
cribed. For t such that t s T m M ,  b(T,z) w i l l  b e  accurate.
By making a judicious choice for b(T,z) instead of b(T,z) = 0
it would be possible to reduce the number of iterations requi»
red before the b(tpz) are accuratea

E .  Benefit Functions for Stochastic Demands_

I n  the previous developments the return functions q(r,t,x(r,t))
were deterministic in nature. We will now examine how the pro"
cedures can b e  altered to accommodate a form o f  stochastic re—
turn functions. For each time period t ,  let there be N possible
sets of return functions designated by qcr,t,x(r,t),k for
k = l ,  2 a . a , No For each k l e t  P(t,k) be the pro ability
o f  return function q ( r , t , x ( r , t ) , k ) ‘ t  thus P(t,k) 2 0 and kgl
P(t,k) = l. The assumption of periodic return functions is
retained; for some positive integer p assume q(r,t,f,k) = q(r,t +
p,f,k) for a l l  r,t,f,k and P(t,k) = P ( p  + t,k) for a l l  t,k. We
also retain the assumption that the return functions are con—
cave.

In solving a multireservoir problem it will be assumed
that when the time arrives to make decisions for a particular
month, the return functions for that month w i l l  be known, how—
ever those for succeeding months will be known only in stochas—
tic forma Thus, in finding a onemmonth policy that will be
part of an optimal policy for the future, the oneemonth optimi~
zation problem will be deterministic in nature, but will in—
volve a benefit function that takes into account the stochastic
knowledge o f  future return functions.

Define b(A,z,k) to be the amount of future cost that may
be saved in  months A + 1 through A + M by having initial stor—
ages 2 i n  month A + 1 instead o f  initial storages zero assuming
the following:

i. the return function in month A + l is qgr,A + l,
x(r,A + l),k)

i i .  the return functions for months A + 2 through A + M
are stochastic i n  nature a s  described earlier

iii. in future months we will have knowledge of the re—
turn functions for a month just prior to making the
decisions for that month.

N
We will then define b(A,z) by b(A,z) = k g l  P(A + l,k) b(A,z,k).
Thus b(A,z) is the expected cost savings in months A + 1
through A + M due to having initial storages Z (instead of zero)
i n  month A + 1 ,  subject to assumptions



i. the return functions for months A + 1 through A + M
are stochastic i n  nature

ii. in all months we will have knowledge of the return
functions for a month just prior to making the de-
cisions for that month.

Next we will develop a recursive algorithm for computing
the stochastic benefit function b(A,z). It will be very simi-
lar to the algorithm for finding the deterministic benefit
functions. The first step will be to show, as before, that
given a benefit function, the benefit function for the previous
month can be found by parametrically solving a one—month opti-
mization problem. Begin with a known stochastic benefit func-
tion b(A,z). Consider the one—month optimization problem

R
C(JHA — 1),k) = min 2 k(c) f(c,A) + g p(r,A) w(r,A)

c=l r=l

R_ g q(r,A,x(r,A),k) - b(A,2,(A))3
r=l

s . t .

w(r,A) + i(r,A) — x(r,A) + £(r,A - l) — £(r,A)

é f(c,A) - Z f(c,A) = o vr
c€T(r) C<F(r)

s £(r,A) s s(r) Vr
s f(c,A) s u(c) \7’c

S w(r,A) S m(r,A) Vr
< x(r,A) Vr00

00

In the same manner as was done for the deterministic case
c(O,k) — c(Osz) can be shown to be the cost savings realizable
over months A through A + M — 1 due to having initial storages
2 rather than initial storages subject to assumptions i ,  ii, and
iii on page . Hence b(A,z,k) = c(O,k) — c(0,z) for any 2 and
k. Thus knowing b(A,z) we can fully define b(A - l,z,k) for
k = l, 2, . . . , N. Then b(A - l,z) =kgl p(A,k) b(A — l,z,k).

As in the deterministic case we begin with an integer T
when T > M, and define b(T,z) = 0. Then we iteratively find
b(t,z) for t = T — l, T — 2, T — 3, . . . . Using the assump-
tion that maximum benefit can be obtained from stored water
within M months, we conclude that when t S T - M ,  b(t — p,z) =
b(t,z) for all 2. Hence, we can terminate the process with all
b(t,z) determined when t = T — M - p as before. As before the
periodicity assumption is not a necessity in using this method.
I t  just reduces the number o f  benefit functions to be found.
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Note that the one—month optimization problem c(z,k) mini—
mizes the sum of the cost incurred in month A minus b(A,£(A) ,
that i s ,  i t  minimizes the cost incurred i n  month A minus the
expected cost savings in months A + 1 through A + M due to
having initial storages £(A) in month A + 1 instead of initial
storages zero. Since the expected cost of operating the system
Optimally in months A + 1 through A + M starting with initial
storages zero in month A + l is a constant, it may be added to
the objective function c(z,k) without changing the optimal pole
icy. Once this is done the objective function is now the sum
of the cost incurred in month A plus the expected cost to be
incurred in months A + 1 through A + M .  This is obviously a
quantity i t  is desirable to minimize.



I V . A Revised Out-of—Kilter Algorithm

The multireservoir problem has been reduced to a large
number of one-period problems containing nonseparable benefit
functions. To handle problems of this sort, the out——of-
kilter algorithm must be revised.

Let

A .

W
W
W
S
D
’
Z

Optimality Conditions for the Network Formulation of
the Multireservoir Problem

be the number o f  nodes

be the number of arcs

be the index on nodes with range 1 S n S N
be an index on arcs with range 1 S k S A
be the set of all arcs directed from node n ,  for all n

be the set of all arcs directed into node n ,  for all n

k be directed from node ik to node j k ’  for all k

denote the lower bound on are k ,  for a l l  k

denote the upper bound on arc k ,  for all k

denote the flow on arc k ,  for a l l  k

{fk|for all k}
denote a flow o n  arc k ,  for all k ,  such that
F* = {f* Ifor all k} is an Optimal set of flows

C ( F )  denotek a convex function of F

11 ' : {finlfor a l l  n }  be a set of unrestricted Lagrange
multipliers, also referred to as node numbers.

{Sklfor all k} be a set of nonnegative Lagrange
multipliers

‘ { Y k o r  all k}be a set of nonnegative Lagrange
multipliers

w*, 6*, y *  are used to denote an optimal set of flows
and Lagrange multipliers

fi ' ,  6 ' ,  y '  are used to denote a fixed set of flows and
Lagrange multipliers

denote a vector of length A with its kth element equal
to A and all other elements zero.



The problem to be solved is as follows:

Find F to minimize C(F) subject to:
kn(F)  = 2 f — E f = 0 for all n

k kkeAn keBn

gk(F) = -fk + [ k  S O for all k

_ _ <mk(F) — fk uk _ 0 for all k

Since these constraints are linear, the constraint qualifica-
tion i s  satisfied [Zangwill, p .  56].

Theorem 1 .

A sufficient condition that a vector o f  flows F *  be
optimal for the stated problem is that F* satisfy the constraints
and that there exists a vector of node numbers w *  such that

*—nt + n? + 391E31 > o =>ffi = 2k for all k3 k  1 k  8f*k
*

and -w# + w: + éElEil < 0 =>f§ = uk for all k3 k  k af*k

Another theorem and several lemmas will be stated as prelimi—
naries to proving this theorem.

Theorem 2 .

A necessary and sufficient condition that F* be optimal
for the problem is that F* satisfy the constraints and that
there exist unrestricted Lagrange multipliers w* and nonnega-
tive Lagrange multipliers 6* and y* such that (F*,fl*,5*,Y*) is
a saddle point of the Lagrangian [Kungi and Krelle p. 63-70].

N
L(Fw,6,y) = C ( F )  + z w ( 2 f - 2 f )

' n=l n keA k k e B  k
n n

A

Since each fk appears twice in the conservation of flow con~
straints the Lagrangian may be rewritten as

A
L ( F , T T , 6 , Y )  = C ( F )  + k i l l f k h ' r i k ‘ fl ' j k )  + 6 k ( £ k - f k )  + Y k ( f k " u k ) ]



The conditions for a saddle point are that

L(F*,n*,6*,y*) S L(F,fl*,5*,Y*) for all feasible F

and L(F*,w*,6*,y*) Z L(F*,n,6,y) for all n, 620 ,  YZO

Prior to stating and proving three lemmas, some additional
notation needs to be developed. For all k define

5+(F) = 8C(F) and s'(F) = aC(F)

k 3f+ k 3f"
_ k k

and let ' 6 k  = max{0,-1rj +wi +sk(F)}
k k

and Y k  — max{0,1rjk fl i k  sk(F)}

Lemma 1: 6k>0  => Y k  = 0. Also yk>0 => 5 k  = 0

Proof: _
Suppose 6k>0 then -n. + “i + sk(F)>0

?k k
Due to the convexity of C(F), s;(F)Zs;(F) hence

+
-w. + n. + s (F > 03k lk k )

+
n. - n. - s (F) < 03k 1k k

hence Y k  = 0

A similar proof applies to the other part of Lemma 1.

Lemma 2: ‘6k¥+ Y k  Z n j k  - fl i k  - s;(F) and

-6k + Y k  S fl j k  — fl i k  - s;(F)

Proof:
Using Lemma]. -6k + Y k  = 0 if 6 k  = Y k  = 0

' -ak = njk—nik-s;(F) if 5k > o

Y k  = fljk-flik-s;(F) if Y k  < 0
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Case 1 6 k  = Y k  - 0
. _ _ _ + <

Since Y k  0 ,  w j k  n sk(F) _ 0

+

hence 6 - Y Z . - W - s (F)
k k 3 k  k k

Case 2 6 k  > 0

-6 + y = —6 = n. - n. — s'(F)
k k k 3 k  1k k

but s;(F) S s;(F) hence

-6 + Y Z W» — n. — s+(F)
k k j k  1 k  k

Case 3 Y k  > 0
' _ _ _ _ +

-6k + Y k  — Y k  — n. “i sk(F)3 k  k

A similar proof applies to the other part of Lemma 2.

Lemma 3: Let F '  be a set of feasible flows, n' be a set of

node numbers, 6' be defined by
I :  _ I  l '6k maxfo, w j k  + “ i k  + sk(F')} for all k and

y' be defined by vi = max{0,n! — n! - s+(F')} for3k 1k 1‘

all k .  Then for any set F of feasible flows

L(F',1T',6',Y') E L(F.1r'.6'.*r‘)

P r o o f :
Define S(F',F) to be a vector whose kth element is

sk(F,F') where

+ _. ' Isk(F,F') - sk(F') 1f fk > fk

_ _ '
S k ( F ' )  1f fk < fk

0 1f fk = fi

Due to the convexity of C(F)

C(F) 2 ens”) + ST(F,F')(F-F') = C(F') + 2 sk(F,F')(fk-f];).
k=1



Now L(F,n',6',y') = C(F)

A
+ 2 [f (w! - w !  ) + 6'(£ —f ) + y '  ( f  —u ) ]k=1 k 1 k  3 k  k k k k k k

A
> I I _ I_ C ( F  ) + kilsk(F,F )(fk fk)

A
+ 2 [f (v! -n! ) + 6 ' (£  -f ) + y'(f -u )]k=1 k 1 k  3 k  k k k k k k

> A
_ C(F') + 2 [f'(fl! -n! ) + 6'(£ —f') + Y'(f' -u )]k=1 k 1 k  3 k  k k k k k k

A
+ 2 (f ~f')(s (F,F') - fl! + w! - 6' + y')
k=1 k k k 3k 1k k k

L(FITT'I6'IY') 2- L(F I ITT I I 5 I IY I )

A
+ 2.(f —f')(s (F F') — w! + w! — 6' + y')
k=1 k k k ' 3 k  1k k k

Hence L(F,w',6',y') Z L(F',w',6',Y') provided
A
2 (f -f')(s (F,F') - n! + n! - 6‘ + y') i 0k=1 k k k 3 k  1 k  k k

This is satisfied if the following two conditions hold:
._ a ' ... ' _ >fk fi > 0 > sk(F,F ) njk + nik 6* + vi _ 0

_ a ' ._ ' ._ <and f k  fi < 0 > sk(F,F ) i + nik 6 i  + Y k k ‘  0

Due to the definition of sk(F,F') these conditions may be
restated as f

+ I _ I I _ I I >sk(F ) fl. + w. 5 + Y k  — 03k 1k k
' I _ I I _ I I <and sk(F ) fl j k  + fl i k  6k + Y k  _ 0

+

or -6' + y' 2 n! — n' — s (F')
k k 3 k  1 k  k

and -6' + y' S w! — n! — s-(F')
k k 3 k  1 k  k

These conditions were verified in Lemma 2.

Hence L(F',n',6',y') E L(F,w',6',y')



Proof o f  theorem 1 :

I t  will be shown that if F* is feasible, and F*, N* sat~
isfy the conditions

—n* + w? + s;(F*) > 0 m >  f* K for all k

H

3 k  1 k  k k

+_ 'k * * =2 * =and fl j k  + wik + sk(F ) < O > f k  uk for a l l  k

then L(F*,n,6,y) E L(F*,w*,6*,y*) E L(F,n*,6*,y*)
where 6 *  and y *  are defined in the previous manner.

Part 1 L(F*,w*,6*,y*) S L(F,w*,6*,y*) by lemma 3.
Part 2

Using the form of the Lagrangian

' *. N
L ( F , W r 5 , Y )  = C(F)  + ~Z W n (  Z fk ~ 2 fk)

n=l k s A  k e Bn n

A

L ( F * , 1 T * ' 6 * , Y * )  - L ( F * I T T I 6 I Y )

N
= z (n*—fl )( 2 f* — 2 f*
n=l n n kEAn k k€Bn k
A

+.kzl[(6;—6k)<£k-f;) + (Yfi-Yk)(f;—uk)]
Since the constraints are satisfied

2 ffi - 2 f i  = 0 for a l l  n .
k s A  k e B

n n

_ * S > _ _ * 2Also [k fk 0 and 6 k  _ 0 hence 6k(£k fk 0.
<

— > .. *. >Also ffi uk _ 0 and Y k  _ 0 hence Yk(fk u k )  _ 0 .

Hence for L(F*,W*,6*,Y*) — L(F*,w,6,y) 2 0 it is sufficient
that

3 " )  => * =6 k  0 fk 2k for a l l  k

'k = __and Y k  > 0 > f fi  — uk for a l l  k .



These conditions may be expressed as

. *  * " *  .. *__fl j k  + fl i k  + s](F ) > 0 > fk £1 for a l l  k

_ *  * | *  a: * =and fi j  + fli + sk(F ) < 0 > fk uk for all k .

These were the conditions given in the theorem, hence theorem
1 is proved.

B. The A Problem and a Revised Out—of-Kilter Algorithm

The A problem is the minimization problem where the flow
in each arc must be an integer multiple of some number A .
That is fk = Amk where mk is.an integer for all k. It is
tempting to modify the sufficient conditions for the continuous
problem by replacing

C(F*+A ) - C(F*)
aglgél with —-————E—K———————

. *afk

C(F*) - C(F*—A )and 3C(F : )  with A k
S f i

where Ak is the vector of dimension A with all elements zero
except for the kth element which is A. 'The difficulty here is
that a flow change of size A on arc k may greatly change

3 C(F)
3 f .

3

for j ¢ k .  Thus a flow change may be desirable (i.e. cost-
saving) even though the modified conditions are satisfied.
Similarly the modified conditions may indicate a flow change
is desirable When actually, due to changing partial derivatives,
it is undesirable. These difficulties dictate changes in the
out-of-kilter algorithm. Fortunately the multireservoir prob-
lem can be modelled by a very special form of network to which
algorithmic changes can be applied more easily than in the
general case.

Recall that in the formulation of the multireservoir prob-
lem the objective function C(F) consists of separable terms to
which a nonseparable benefit function is added. The only arcs
whose flows are involved in the benefit function are the arcs
representing final storage in the reservoirs. There is one such
arc for each reservoir and all these arcs terminate at the
source node. Arcs whose flows enter into the objective func-
tion in  a separable manner will be referred to as separable
arcs. Arcs whose flows represent final reservoir storage and
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thus are present in the objective function in a nonseparable
manner will be referred to as interactive arcs. In addition it
will be desirable at times to add to the network arcs whose
purpose is to transfer final storage from one reservoir to
another. These will be referred to as transfer arcs. This
algorithm is based on the revised out-of—kilter algorithm for
separable convex network problems [Jensen, l3 ].

I
I+

Let dk(F) C(F+Ak)  - C(F)  - N. + W .

3 k  1 k

dk(F) C(F) — C(F—Ak) - fl j k  + flik

for all F and all separable or interactive arcs.

The d;(F) and d;(F) will be called modified costs on are k.

The optimality conditions for problem will be

+ = * _dk(F*) < 0 > fk — uk

[ k  for all k .and ' d ; (F * )  > 0 => fi

However as mentioned previously even when these conditions are
satisfied a flow change may be desirable. An are k is said to
be "in-kilter" if Zk s f k  3 uk and both the above conditions
hold. An arc that is not in—kilter is said to be "out-of-
kilter." Also note that due to convexity d E ( F )  c d i ( F ) .  If an
arc is out-of—kilter since dfi(F% < 0 but fk < u k ,  the two pos-
sible remedies are to increase k or to change the node numbers
so that “ j k  _ "1k i s  decreased. If an arc i s  out-of-kilter
since dE(F) > 0 but f k  > Kk, the two possible remedies are to
decrease f k  or to change the node numbers so that i - "1k
is increased.

The transfer arcs are handled i n  a similar manner except
that d+(F) and d‘(F) are defined as follows. Suppose nodes
n1 and n2 represent reservoirs. Let 1 represent the final
storage are for reservoir n1 and 

k 2  represent the final storage
arc for reservoir n2. Define arc A+1 in the follow1ng manner

iA+1 = n 2

jA+1 = n 1

z = maX{-f , f - u }
A+1 k l  k 2  k 2

u = min{u - f f }
A+1 k l  k l ’  k 2

fA+1 = o



+
dA+1 C(F + A - A ) — C(F)  — n .  + n .k 1  k 2  JA+1 lA+1(F)

dg+l(F) = C(F)  — C(F - Ak + Ak ) - n. + n-
1 2 J A + 1  1A+1

If arc A+l is out—of-kilter since d X + 1 ( F )  < 0 but fA+1 < uA+1
the two possible remedies are to decrease s while increasing
k1 or to change the node numbers so that7HA+l 'fl1A+l is de-
creased. If arc A+l is out-of— kilter since dA+1(F) > 0 but
fA+1 > £A+l the two possible remedies are to decrease f k  while
increasing k2 or to change the node numbers so that T r j A + l  -
1Ti1A+l is increased.

I f  there are R reservoirs, there are

R _ R!(2) ‘ ZTYEZETT
possible transfer arcs. For convenience these should be num-
bered from one to (g) in an arbitrary manneré

Algorithm for the A Problem

1. Start with an arbitrary assignment of node numbers
and an arbitrary set Of flows. The flows need not
be feasible, but must satisfy conservation of flow at
each node. No transfer arcs have been added to the
network yet.

2. Calculate d k  (F) and dfi(F) for each arc. Set a = l.

3 .  Check whether arc a i s  i n  kilter. If i t  i s  and a = A ,
set a = l and go to step 7. If arc a is in kilter and
a < A increase a by one and repeat this step. I f  arc
a is out-of-kilter determine whether f a  should be in-
creased or decreased. If it is to be increased let s
be node 3 a  and,t be node i d .  If it is to be decreased,
let”s be node 1 a  and t be node j q .  If a is an inter—
active arc, recalculate the modified costs a s  follows.
Let Au represent a vector of length A with element
number a equal to A and all other elements zero.+ IfA
the flow on arc a is to be increased calculate d+ (F—A a)
and d" (F+Aa) If the flow on arc a is to be decreaSed
calcu ate dK(F- Au) and d (F-Aq). In the labeling al-
gorithm described later t e s e  w i l l  be referred to as
"the appropriate dk and dk". The argument F, F+Aa, or
F—Aa will be omitted for simplicity. Go on t'othe next
step.

4. Using the labeling algorithm search for a path from
s to t in which the flow may be increased. If such a
path is found go to step 5. If no such path is found
go to step 6 .



10.

The labeling algorithm has found a path from node 3 to
node t along which flow may be increased. This path
together with the out~of-kilter are forms a cycle.
Increase the flow by A in those arcs which appear in
the forward direction in the cycle. Decrease the flow
by A in those arcs which appear in the reverse direc-
tion in the cycle. Delete all node labels from the
labeling algorithm and return to step 2.

The labeling algorithm could not find a path from node
5 to node t. Call the set of labeled nodes X and the
set of unlabeled nodes i. Change the node numbers
with the node number change algorithm. Without dele-
ting the labels from the labeling algorithm, recalcu—
late the appropriate dfi and dfi for those arcs where
changes would occur. If arc d is now in kilter and
a < A increase a by one and go to step 3. If are a is
now in kilter and a = A ,  set a = l and go to step 7.
If arc a is still out—of—kilter go to step 4.

Form transfer arc a , thus giving the network A+l arcs.
I f  transfer arc a i s  i n  kilter and a = ( § ) r  s e t  a = l
and go to step 11. I f  transfer arc d i s  i n  kilter and
a < (5), delete transfer arc a ,  increase a by o n e, and
repeat this step. I f  transfer arc a i s  out—of—kilter
determine whether f A + 1  whould be increased or decreased.
If itIis to be increased let s be node lA+1 and t be
node 3 A + l ~  If‘it to be decreased let s be node 3 A + l

and t be node 1 A + l ~  No further recalculations of the
modified costs are needed at this point since inter—
active arcs other than arcs k 1  and k 2  will not be
allowed in the flow augmenting cycle.

Temporarily delete all interactive arcs from the net~
work. Using the labeling algorithm search for a path
from node 5 to node t in  which the flow may be increased.
If such a path is found go to step 9. If no such path
is found go to step 10.

The labeling algorithm has found a path from node 5 to
node t along which flow may be increased. This path
together with the transfer arc forms a cycle. Increase
the flow by A in those arcs which appear in the forward
direction in the cycle. Decrease the flew by A in
those arcs which appear in the reverse direction in
the cycle. Delete a l l  node labels from the labeling
algorithm. Restore in eractive arcs to the E e t w o r k .

If fA+1 -A  decrease k 1  by A and increase k 2  by A.
If fA+1  A increase f k l  by A and decrease f k g  by A.
S e t  fA+l = Q and return to step 7 .

The labeling algorithm could not find a path from node
5 to node t .  Call the s e t  o f  labeled nodes X and the



set of unlabeled nodes X. Attempt to change the node
numbers with the node number change algorithm. If
this is not possible delete the transfer arc, restore
the interactive arcs to the network, set a = l ,  and go
to step 2. If the node number change algorithm suc-
ceeds, change the node numbers. Without deleting the
labels from the labeling algorithm, recalculate the
appropriate dfi and d; for those arcs where changes
would occur. If transfer are a is now in  kilter and
a < ( ) increase a by one and go to step 7. If trans—
fer arc a is in kilter and d = ( ) go to step 11. If
transfer arc a is still out-of—kilter to to step 8.

11. If all arcs (separable, interactive, and transfer)
were in  kilter without aid of flow or node number
changes since step 2 was last encountered, go to step
12. If any flow changes have occurred since step 2
was last encountered, s e t  a = l and go to step 2. If
only node number changes have occurred since step 2
was last encountered, compare the present node numbers
with the node numbers the previous time step 2 was
encountered. If the two sets of node numbers are
equal go to step 1 2 ,  otherwise set a = l and go to
step 2 .

12. Terminate the algorithm. The present solution cannot
be improved by this algorithm.

Labeling Algorithm

This algorithm seeks to find a path from node s to node t
along which the flow can be increased by A. This is accom-
plished by increasing the flow by A. In the process no arcs in
the path that are in-kilter are allowed to become out-of-kilter.
Also no arcs in the path that are out—of-kilter are allowed to
become more out-of—kilter. That is, if an arc k has the appro—
priate di < 0 but f k  < uk, then i t  is not allowable to decrease

. Eimilarly if an arc k has the appropriate d; > 0 but
k > k ,  then it is not allowable to increase f k .  Recall that

the appropriate dfi and dfi refers to the fact that dE and di for
interactive arcs may have been updated in  anticipation of flow
changes in  other interactive arcs. In the course of the label—
ing algorithm, further updating of the modified costs for inter-
active arcs may be necessary.

In the algorithm a node will be labeled when a path has
been found from node 5 to that node along which flow can be
increased by A. Once a node has been labeled it can be scanned.
A labeled node is scanned once all branches which enter or
leave the labeled node have been investigated for possible ex—
tension of the path from s. The labeling algorithm will now
be described.



Label node 5 .

Find a labeled but unscanned node, say node i .  If
there are no such nodes, the algorithm terminates
without finding a path from s to t. This is called
nonbreakthrough.

For each arc k with i k  = i
a.r I f  node j k  i s  already labeled, go on to the next

arc. V

b. Node j k  is not labeled. Check the following
conditions

i. fk + A > uk
ii. fk 2 2k and a; > o.

If either condition holds, go on to the next arc. If
neither condition holds, then,the flow on arc k can be
increased by A. Assign node 3 k  the label i+. If are
k is not an interactive arc or if the modified costs
have already been updated due to another interactive
arc, go on to the next arc. Otherwise for each inter-
active are 8, redefine d+ and d' in the following
manner:

+ ‘  t —  —dB ~ C(F+AB+Ak) C(F+Ak) + fl j B  “ i s

d8 = C)F+Ak) - C(F—AB+Ak) + “ j g  - “ i s

Then go on to the next arc.

For each are k with j k  = i

a. If node i k  is already labeled, go on to the next
arc.

b. Node 1 k  is not labeled. Check the following con-
ditions. '
i 0  f k — A < £ k

ii. f k  5 uk and d; > 0.
If either condition holds, go on to the next arc. If
neither condition holds, then,the flow on arc k can be
decreased by A. Assign node 1 k  the label i". If are
k is not an interactive arc or if the modified costs
have already been updated due to another interactive
arc go on to the next arg. Otherwise for each inter-
active arc B, redefine d and d" in the following
manner: 8 B
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l

C(F+AB-Ak)  — C(F-Ak)  + W i s  - Wis

— C(F-Ak) - C(F-AB-Ak)  + s — Wis9
1 I

Then go on to the next arc.
When all arcs incident to node i have been examined,
node i is scanned. Go to step 3.

3. If node t has been labeled, breakthrough has occurred
and the algorithm terminates. I f  node t i s  not labeled,
go to step 2 .

Node Number Change Algorithm

A reference node should be defined for the network. I t s
Indenumber will always be zero. Let Y denote the out-of-kilter
arc; of course y = A+l if the out—of-kilter arc is a transfer
arc. Determine the following two sets of arcs:

, . . — +A1 = {arcs k]k#y, lkEX, j k s x ,  dk>0, and kuk~A}

A2 = {arcs k!k#y, ikei, jksx, d;<0, and fki£k+A}

Either Al or A2 may be empty

Define 6 = min{d+}1 A k
l

62 = m1n{—dk}
A2

If either of the sets A i  is empty define the corresponding 5 1

to b e  m .  Let

5 3  = —d: if arc y is out-of—kilter due to d: < 0 but

f E - AY uY

d; if arc y is out—of-kilter due to d; > 0 but

f _ > _ £ + A
Y Y

Let 6 = min{61,62,63}

I f  the reference node i s  in the s e t  2 subtract 6 from a l l  node
numbers i n  the s e t  X .  I f  the reference node i s  i n  the s e t  X ,
add 6 to all node numbers in the set X.



C. Comments on the Algorithm

The most important observation concerning the revised out-
of—kilter algorithm is that the algorithm may terminate without
finding the optimal solution. The algorithm takes into account
cost interactions between the flows on two arcs, but does not
directly concern itself with 3—way or higher interactions.
However, the algorithm w i l l  not make any flow changes that in-
crease or leave unchanged the cost of a feasible solution.
Once the algorithm terminates it is possible to continue search—
ing for a better solution. This can be done by forcing certain
flows on the interactive arcs. For instance if the algorithm
terminates with a flow of kA in one of the interactive arcs,
the bounds on that arc can be altered to force a flow of (k+l)A
(or (k -1 )A)  and a second attempt can be made with the algorithm.
This procedure can be repeated if it seems desirable.

Some explanation may be needed concerning various parts of
the algorithm. The necessity of the transfer arcs is a result
of the interactions in the cost function. For instance when
transfer arcs were omitted from the algorithm, termination
occurred with reservoir number 6 containing 100 units final
storage and reservoir number 7 containing 60 units final stor-
age. Let F be the vector of flows at termination. Let —
denote a decrease in reservoir 6 final storage by A (twenty?
units. Let A R  denote an increase in reservoir 7 final storage
by A. At termination we had the following costs (modified by
subtracting a constant

C(F) = o
C(F—ARG) = 5300
C(F+AR7) = -4625
C(F-AR7) = 5425
C(F+AR7-AR6) = o

The node numbers were as follows:

w(R6) = 5300

w(R7) = 5200

n(source node) = 0

Hence when examining reservoir 6 we have dR = 0 (d+ not given
since flow was equal to upper bound). Also 6 d +  = 5§g and
dR7 = —225. Hence both interactive arcs are 1 n  kilter. How—
ever, cost can be reduced by 100 units by moving A units of
flow from reservoir 6 to reservoir 7 .  If we form the transfer
arc from reservoir 6 to reservoir 7 ,  this arc has d+ = —100,
which shows that flow should be increased in this arc.



An aspect o f  step l l  requires some explanation. Note
that it is necessary for all arcs to be in kilter without flow
changes for the algorithm to be declared done. This is because
it is possible for one of the interactive arcs to be driven
out-of—kilter by flow changes in another (or two other) inter—
active arcs.

Another point to be made concerns the concavity of the
benefit function that results from solving a sequence of prob—
lems with parametric variation in the initial reservoir levels.
This function was shown to be concave in the continuous case.
If higher interactions cause inaccuracies in the solutions, the
resulting benefit function may not be concave. These inaccura-
cies may be partially corrected by linearizing the nonconcave
segments. Not only does this improve the solutions, but it may
be necessary to avoid cycling in the next stage.



V . Example Problem

This method is being tested on a five—reservoir problem.
The configuration of the reservoirs is as follows:

Each year is divided into six periods.
possible sets of net demands are specified.
to an average, wet, dry, or irregular period.

For each period, four
These correspond

Equal probabi—
lities are assigned to each possible demand set.
that this data applies in each year.
sets used are as follows

Period _
average 1 2 3 4 5 6

M “1—60 20 4o 40 20 -80
'3 , 2 -80 20 4o 20 20 --60
g 3 so 40 -60 —4o 20 4o~
g; 4 20 60 100 120 so 40
H “E 20 4o 80 120 so 20

'29

r
e
s
e
r
v
o
i
r

The actual net demand
I t  i s  assumed

Peri 6
-wet l 2 3 4 5 6
l - 6 0  20 4 0  20 - 4 0  -100

2 - 8 0  -20 20 20 - 2 0  - 6 0
3 6 0  20 -100  - 8 0  - 4 0  4O

4 ~20 4 0  8 0  100 6 0  2 0
.40 2 0  6 0  1 0 0  4 0  - 4 0



PeriodV’ T Period

dry ‘ 1 2 3 4 5 6 irregular *1 2 3 4 5 6
fltj 1 —20 40 60 40 20 ~49 H ~ 1  -—60 20 4o 60 20 —120

g 2 —60 20 60 60 20 —40 '3 2 -40 20 -40 6O 40 -20g ~~~~ M“. p cardiac _
g 3 100 80 ~40 -20 40 60 3 3 100 80 —40 -100 -20 60
a 4 20 80 120 140 100 40 8 4 4o 20 go 120 60 4o

* H
5 4 0  4 0  100 140 80 20 5 20 80 100 80, 30 4o

Imports are permitted at reservoir #1 according to the follow~
ing schedule:

Again it is assumed that this data applies in each year.

period 1 2 3 4 5 6

maximum import 300 120 60 60 120 300

per—unit cost 100 200 300 300 200 100

reservoir storage capacities are as follows:

Flows are permitted in step sizes of 20.

reservoir 1 431415;
storage capacitylZOOIlOOIlOO'lOO!lOO|

the benefit function is stored in an array of size 65.
iteratively computing the benefit functions, initial storages
i n  reservoirs 2,
Reservoir 1 has its initial storage varied in increments of 40,
in between values are found by interpolation.

In order to begin the iterative process an initial approxi-

3, 4,

I n

and 5 are varied i n  increments o f  20.

The

For each period,

mation for one o f  the benefit functions can b e  obtained as fol-
l o w s .
o f  net demands.
loop form, that is, final storage at the end of period 6 cor—
responds to initial storage at the beginning of period 1.
this way a steady—state solution can be obtained using the
linear separable out—of-kilter algorithm. For any period in

A six—period network is set up using the "average" set
However, the network is set up i n  a closed

I n

the network and any reservoir, the difference between the node
number of the node representing that reservoir is that period
and the node number of the source node gives an indication of
the marginal value.per unit of water.
used to form a linear separable benefit function for storage a t
the beginning of the period employed.
lowed to give the following initial approximation for the bene—
fit function for storage at the end of period 6.

These values c a n  then b e

This procedure was fol-



reservoir per—unit value o f  storage

100

320

345

380

375(
fi
s
h
-
W
N
W

Thus the iterative process could now begin with period 6.

For each period 65 = 7776 runs were made for each of the
four sets of net demands. The resulting benefit functions were
averaged to form the benefit function for the end of the pre-
vious period.

Several methods were used to speed up the computation.
The most important o f  these i s  that each computer run starts
from the optimal results o f  a previous run. I n  each case the
only difference between the two runs was an increase o f  the
initial storage in some reservoir by twenty units (forty units
if reservoir number 2). This necessitated the storing of four
sets of flows and node numbers. Another speed saving device is
to force the added initial storage directly into final storage
for that reservoir if this is feasible. This may give the opti—
mal solution immediately, or just give a feasible solution from
which to procede.

These methods helped reduce the average computation time
to between . 0 3  and .04 seconds per run on the CDC 6600  compu—
ter. The range o f  the times per run was from too small for the
computer clock to distinguish from Q up to about .065 seconds.
Usually about 300 seconds were required per  data s e t ,  thus
about 1200 seconds per period. The iterative process can b e
continued as long as is desirable condidering the tradeoff be—
tween increased computation time and gain in convergence. In
the example problem i t  appeared that 1 2  periods would be more
than sufficient and 9 would probably be acceptable. Once the
benefit functions have been found, and the program is being
used Operationally, the computation time required would be
insignificant.

The benefit functions were stored on permanent files,
either disk or magnetic tape. Benefits, node numbers, in—
crease costs, and decrease costs were stored as real variables
while flows, upper bounds, and lower bounds were integer vari-
bles. A listing of the computer code used may be found in
Driscoll [27]. Also more detailed computational results can be
found in the previous reference if desired.
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VI. Conclusion

The proposed algorithm gives a method for solving a multi—
reservoir problem of five or six reservoirs without using an
unreasonable amount of computation time. The solutions obtained
may not be optimal, but should be within a small tolerance of
optimality. This should be acceptable to the practitioner since
the parameters of the problem are not exact either. The model
employed i s  easily represented pictorially and should b e  readily
understandable to the user. Extensive knowledge of the algori-
thm is not required of the user, expecially once the opera—
tional stage is reached.

There is scope for further improvement of this method. A
more efficient computer code could be devised by those well—
versed i n  such work. Further research may lead to more exact
methods of coping with higher interactions. Short cuts in
iteratively finding the benefit functions may become apparent
once greater experience is obtained.
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APPENDIX

Theorem ;. The deterministic benefit function b(A,z) = K(2b,0)
- K(2b,z) i s  concave i n  2 .

Proof:
Since b(A,z) = K(2b,0) - K(2b,z) where K(2b,0) is a con—

stant, i t  is equivalent to show that K(2b,z) is convex. By
definition '

T C R
K(2b,z) = min .2 .2 K(c) f(c,t) + E. p(r,t) w(r,t)

t=A+l c = l  r=l

R

- i qr,t.X(r.t))
r=l

subject to:

w(r,t) + i(r,t) - x(r,t) + 2(r,t - 1 )  — £(r,t)

+ Z f(c,t) — 2. f(c,t) = 0 V r  and A + l s t s T
c$T(r) ciF(r)

z = £(A)
052(r,t) ss(r) V r a n d A + 1 s t 5 T
Osf(c,t)_<.u(c) V c a n d A + 1 s t s T
0 s w(r,t) s m(r,t) 1Vr and A + 1 5 t s T

0 s x(r,t) ‘Vr and A + l s t s T .

Suppose 2(1) and 2(2 )  are two possible values of z and
0 < e < 1. Let 2 (3 )  = 92(1 )  + (l - 9 )  2 (2 ) .  K(2b,z) is con-
vex if and only if K(2b,z(3)) s K(?b,z(l)) + (1-—e) K(2b,z(2)).

Let the values of the variables i(r,t), f(c,t), w(r,t) and
x(r,t) in K(2b,z(i)) be denoted x(r,t,i), f(c,t,i), w(r,t,i)
and x(r,t,i) respectively for all r and c and appropriate t and
for i = l or 2. Let

x(r,t,3) = 62(r,t,1) + (l - G) x(r,t,Z)

f(c,t,3) = ef(c,t,1) + (l -e) f(c,t,2)

w(r,t,3) = Ow(r,t,l) + (l — O )  w(r,t,Z)

x(r,t,3) = Gx(r,t,1) + ( l  - G )  x(r,t,2)

for a l l  r and c ,  and appropriately t .



Multiply each constraint in the problem finding KS2b,z(l)>
by O and each constraint in the problem finding K 2b,z 2)) by
l - G ,  then addition of like constraints yields

+ Z f(c,t,3) - é f(c,t,3) = o ‘Vr and A + 1  5 t s T.
c‘T(r) c¢F(r)

2 (3 )  = £(A,3) where £(A,3) is the vector whose rth element

i s  £(r,A,3) for all r .

s 2(r,t,3) s s ( r )  ‘Vr and A + l 5 t s T

.s f(c,t,3) S u(c) Vc and A + 1 s t s T
s w(r,t,3) S m(r,t) Vr and A + l S t s T

s x(r,t,3) VT and A + l s t s T.

00
00

Hence £(r,t,3), f(c,t,3), w(r,t,3), and x(r,t,3) are feasible
values for the variables £(r,t), f(c,t), w(r,t), and x(r,t)
respectively in the constraints of the problem finding K(2b,z(3)).
Hence

T c R
K(2b,z(3)) g 2 k(c) f(c,t,3) + g p(r,t) w(r,t,3)

t=A+1 c = l  r=1

R ( )E
- q r,t,x(r,t,3) .

rél

Since K‘Zb,z(3) is defined to be the value of the optimal solu—
tion for proble 3. Now

eK(2b,z(1)) + (1 - e) K(2b,z(2)) = E g k(c) e£(c,t,1)
t=A+1 c=l

24’s.; R
+ i p(r,t) ew(r,t,l) — Z Gq<r,t,x(r,t,l)5§

r= r=1p
.
.
-

T C R
+ 5 g k(c)(l - e) f(c,t,2) + Z p(r,t) (1 — e) w(r,t,2)
t=A+1 c=l r=1
R T c

- (1 - e) q(r,t,x(r,t,2)) = 2 Z k(c) f(c,t,3)
r=1 t=A+1 c=l

R R
+ Z p(r,t) w(r,t,3) - Z (éqér,t,x(r,t,l))

r = 1  r=1

+ (1 - e) q(r,t,x(r,t,2)))
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Since q(r,t,x) i s  concave in x ,

Gq(r,t,x(r,t,l)) + (l — O) q(r,t,x(r,t,2)> 5 q r,t,x(r,t,3)) .

Hence eK(2b,z(1)) + ( 1  — e) K<2b,z(2)) 2
T C R

Z k(c) f(c,t,3) + S p(r,t) w(r,t,3)
t=A+l c = l  r=1

R
— Z q r,t,x(r,t,3)> .

r=1

Combining with (4) yields

eK(2b,z(1)) + (1 - e) K<2b,z(2)) 2 K(2b,z(3)) .
Hence K(2b,z) is convex in z and b(A,z) is concave in 2.

Theorem 2. The stochastic benefit function b(A,z) =
N

g P(A + 1,k) b(A,f,k) is concave in z.
k=l

Proof: N
Since b(A,f) = kg]. P(A + 1,k) b(A,f,k) where P(A + 1,k) 2 0,

i t  is sufficient to show that each b(A,f,k) is concave. This
is due to the facts that a non-negative constant times a con-
cave function i s  a concave function and the sum o f  a finite
number of concave functions is a concave function. Since
b(A,f,k) = C(0,k) - C(f,k) it suffices to show that C(f,k) is
convex in f. This is because the negative of a convex function
i s  a concave function and the sum of a concave function and a
constant is a concave function. C(0,k) is, of course, a con-
stant for any k .

Suppose f(l) and f(2) are two possible values of f and
0 < 6 < 1. Let f ( 3 ) = ef(l) + ( l  - G )  f(Z). C(f,k) i s  convex
if and only if C(f(3),k) s ec(f(1),k) + (1 — e) c(f(2),k).

Let the values of the variables 2(r, A — l), £(r,A), f(c,A),
w(r,A), and x(r,A) i n  C f(c),k) be denoted by £(r,A — l,i),
£(r,A,i), f(c,A,i), w(r, ,i), and x(r,A,i) respectively for all
r and i = l or 2. Let

£(r,A - 1,3) = Ql(r,A - 1,1) + (l - G) £(r,A - 1,2)

£(r,A,3) = 92(r,A,l) + (l - e) l(r,A,2)

f(c,A,3) = ef(c,A,l) + (l — e) f(c,A,Z)

w(r,A,3) = Gw(r,A,l) + (l - e) w(r,A,2)

x(r,A,3) = ex(r,A,l) + (l — e) x(r,A,2)

for a l l  r and c .



Multiply each constraint in the roble C(f(l),k) by 6
and each constraint in the problem C f ( 2 ) , k  by (l n G), then
addition of like constraints yields

f ( 3 )  = £(A — 1 , 3 )  where 2(A - 1 ,3 )  i s  the vector whose rth
element i s  £(r,A - 1,3) for  all r

w(r,3) + i(r,A) ~ x(r,3) + £(r,A — 1,3) ~ £(r,A,3)

+ E f ( C , A , 3 )  _ Z f ( C , A , 3 )  = 0 V]?

c€T(r) c<F(r)
5 £(r,A,3) s s(r) Vr
s f(c,‘A,3) 5 u(c) Vc
s w(r,A,3) s m(r,A) \ V r

s x(r,A,3) \ J r .

0
0
0
0

Hence £(r,A - 1 , 3 ) ,  £(r,A,3), f(c,A,3), w(r,A,3), and x(r,A,3)
are feasible values for the variables £(r,A - l ) ,  £(r,A),
f(c,A), w(r,A), and x(r,A) respectively i n  the constraints o f
the problem C(f (3 ) ,k ) .  Hence

c R
1. c ( f ( 3 ) , k )  s g k(c) f(c,A,3) + g p(r,A) w(r,A,3)

c = l  r=l

- rgl q < r , A l X ( r I A I 3 ) I k )  — b ( A I ’ Q ’ ( A ' 3 ) > '

Now ec(f(1),k) + (1 - e) c(f(2),k)
C R

= k(c)ef(c,A,1) + g p ( r , A ) e w ( r , A , 1 )
(3:1 r = l

i > ( >- O r,A,x(r,A,l),k' — Ob A,£(A,l)v
r=l g <

C R
+ g k(c) (1 - e) f(c,A,2) + g p(r,A) (1 - e) w(r,A,2)

c=l r =l

R
— g (1 — e) q(r,A,x(r,A,2),k) _ (1 — e) b(A,£(A,2))

r=l

c R
= 2 k(c) f(c,A,3) + g p(r,A) w(r,A,3)

c = l  r=l

R
— 21 q r,A,x(r,A,l),k) + (1 - e) q<r,A,x(r,A,2),k>

r:

(Ob(A,52,(A,l)) + (1 - e) b(A,5L(A,2))} .



Since q(r,A,x,k) i s  concave i n  x

®q(;,A,x(r,A,l),k) + ( l  - O )  q(i,A,x(r,A,2),k)

5 q(r.A,x(r,A,3),k) for all r.

Similarly since b(A,z) is concave in z

eb(A,2(A,1)) + (1 — e) b(A,2(A,2)) s b(A,R.(A,3)) .
Incorporating these results into the above equation yields

C
ec(f(1),k) + (1 — e) c(f(2),k) 2 g k(c) f(c,A,3)

c=l

R R
+ Z p(r,A) w(r,A,3) — g q,A,x(r,A,3),k)

r=l r=l

— b(A,2(A,3))

Combining with 1. above yields

ec(f(1),k) + (1 - e) c(f(2),k) _>_ c(f(3),k)
Hence C(f,k) i s  convex i n  f and b(A,f) i s  concave i n  f .
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