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ABSTRACT

The operating policy for a multireservoir distribution
system is determined by many factors, including benefits and
priorities for the current use of water, size and use limita-
tions of the facilities of the system, costs and delays in
transmitting water through the system and the current and
future weather. Some of these factors have been modelled using
a network flow model which allows determination of optimum
policies for complex systems. This report describes three ex-
tensions to the current modelling capabilities. The first part
discusses the water losses which occur in the system and pro-
poses a computerized algorithm which can solve networks with
losses. The second part treats the same problem but derives a
much more efficient algorithm. The third part considers the
uncertainty inherent in estimates of future water supplies and
demands and provides a representation for this uncertainty for
the network model. The general approach is to calculate a mathe-
matical expression which determines the value of water stored
for the future. This work expands the generality of the network
flow models as related to water systems and also makes contri-
butions to the general theory of network flow analysis.
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INTRODUCTION

Within the last decade many mathematical models have been
proposed to represent multireservoir distribution systems.
Comprehensive reviews of this work are presented later in this
report. Models have been formulated for the design of the sys-
tem in terms of locating, sizing and timing of the various
facilities, for the determination of the optimum use of limited
gquantities of water in a reservoir, and for planning the operat-
ing policies which best balance the present and future uses of
water.

Any model is an abstraction of the real world situation.
The least abstract models bear a close resemblance to the real
world and hence would generally be expected to have the great-~
est accuracy in detail and the most useful outputs. Alterna-
tively these models would require the most input data, involve
the greatest effort in model preparation and probably they
require the greatest computational effort for solution. The
most abstract of models would bear little detailed similarity
to the real world situation. However to be useful at all an
abstract model must bear some resemblance to some important
aspect of the situation modelled. Although such a model is
inaccurate in many details it is hopefully accurate in the
aspect for which it is designed and its output would be expected
to be useful for the control of that aspect. Such a model will
generally be easier for model preparation and require minimal
computational effort for solution. The analyst faced with
these tradeoffs when constructing a model will usually find the
model with the least abstraction possible within his data and
computational limitations.

For some applications computational effort is an important
consideration in the choice of the model form. This is true
for capacity expansion studies which require the determination
of the location, time of construction and size of each of a
number of facdilities in a complex water system. Planning hori-
zons on the order of fifty years are usual for such problems.
In order to evaluate a particular plan it is necessary to deter-
mine the operating cost for the system over the time horizon.
This has been done by the Texas Water Development Board using
a mathematical model of the system for discrete time steps of
one month. For a fifty year horizon such a model requires 600
monthly models. Operating costs are determined by applying an
optimization algorithm to this model. Even if the model is
linear the computational effort and cost required to solve such
a large problem is significant. If a large number of expansion
alternatives are to be considered computational cost is the
limiting factor to the analysis.



For the long range planning function it is not necessary
that the model used to estimate operating cost be completely
accurate with regard to detailed water movements within the
system. It is only important that the model provide a reason-
able estimate of operating cost. For example it is not unrea-
sonable to impose historical rain fall data on a model of a
proposed system to evaluate its operating cost and effective-
ness. Historical data has the important characteristic of
periods of drought and flood which a new system will also ex-
perience. The difficulty with this approach is that mathe-
matical optimization algorithms have the capacity to look
ahead and operate the system to anticipate periods of drought
or flood. Thus flows in the system model are directed in ways
that do not reflect the operation of a real system in which
foreknowledge of the weather is not entirely possible. Esti-
mates of operating costs obtained in this way are considered
to be reasonable. Optimization with deterministic inflows is
used in the analysis because the consideration of uncertainty
in inflows is computationally difficult.

Water distribution systems can conveniently be represented
by a network flow model. Thus the arrangements of canals, res-
ervoirs and river reaches can be represented by an abstraction
of nodes and arcs which form a network. The network represen-
tation allows flow of water in both time and space. Time flows
represent storage in reservoirs and space flows represent trans-
fer of water from one part of the system to another. When in-
flows and outflows to the system are given, algorithms exist to
determine the optimum flow in the network. These algorithms
are generally very efficient computationally and hence are use-
ful for the solution of very large models. The network flow
models and algorithms have been used extensively by the Texas
Water Development Board for planning studies.

The primary disadvantage of the network flow models is the
limited set of constraints that can be represented. The only
constraints that are explicitly represented are conservation of
flow at each node and upper and lower bounds on flow for each
arc., This report attempts to expand the modeling capabilities
of network flow models in two ways; first by allowing flow to
be lost or gained as it traverses an arc and second to allow
the consideration of uncertainty in inflows and demands for the
system.

The report is divided into three main sections. The first
section discusses the network model for water systems with

losses such as evaporation or seepage. The model with this ex-
tension is called the networks with gains model. Here a gain

on an arc may be any positive quantity and loss is represented
by a fractional gain. This section presents some theoretical
results concerning the optimization of the flows for such a
model and describes a rudimentary algorithm for optimization.



The second section of the report presents an advanced optimiza-
tion algorithm for the network with gains model. This algori-
thm is superior to the algorithm presented in the first section
in respect to computational speed and memory requirements. It
is of course also more complex. The third section of the
report describes an attempt to represent uncertainty of inflows
and demands for a water system. This is accomplished by deter-
mining a value function for water stored for the future. The
value of stored water function is used to determine operating
policies at each period. The approach suggested in this sec-
tion should be useful for both planning studies and for actual
determination of operating policies on a real time basis.






OPTIMUM OPERATING POLICIES OF A
WATER DISTRIBUTION SYSTEM
WITH LOSSES

by
Gora Bhaumik

and
Paul A. Jensen

I. Flow in a Water Distribution System with Losses

I.1 Introduction

In the last few years the Texas Water Development Board
(TWDB) has been engaged in a number of studies to determine the
policies for optimally managing the water resources of the State
of Texas [43, 44, 45]. In analyzing the problem they have de-
termined the total water resources available in the state and
have developed projections of water requirements for the next
fifty years. To meet the differences between the supply and
demand of water in the different regions, the TWDB proposed in
1968 the Texas Water Plan [45]. It consists of a system of
reservoirs, rivers, canals, and pumping stations to distribute
the water from the surplus areas of East Texas and imported
water from Louisiana to the needy parts of the West and South-
west. This is shown schematically in Figure 1 and Figure 2.

The storage and conveyance facilities of the Texas Water
System can be conveniently modeled by a network. This network
model has been used extensively in a number of TWDB simulation
studies [43, 44]. They have analyzed the economic effects of
different sizes and locations of reservoirs and canals to meet
the demand schedule at the lowest reasonable cost. This is done
by determining the optimal storage and shipping policies for a
set of reservoirs and canals and iteratively improving the con-
figuration until a solution is reached which minimizes the
present worth of construction costs, operating costs, and main-
tenance costs.

An important assumption of this model is that of conserva-
tion of flow at all points within the network. This precludes
losses from the system such as spillage, evaporation and seep~
age. Although, there is provision for forcing a known loss
from every reservoir, this loss must be prespecified before the
flows can be determined. Therefore, the losses which are a
function of the flows in the network are not properly reflected
in the present model of the system. It is necessary to incor-
porate this loss function of the system components in the net-
work model. The economic distribution policy depends not only

2-1
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on the cost of transportation and storage of water but also
upon the loss characteristics of the canals and reservoirs.
Hence, evaporation and seepage may play a decisive role in
determining the optimal operating policies of a water distri-
bution system with losses.

To generalize the proposed model, the term 'gain' will be
used instead of losses. Losses may be defined to be fractiocnal
gains. The goal of this study is to develop an algorithm to
determine the optimal flows in a network with gains. It should
be comparable in speed and efficiency to the algorithms for
pure networks or networks without gains. The model for net-
works with gains should include all the characteristics of the
pure network model in addition to the gain parameter. In par-
ticular, this model should adequately describe a water distri-
bution system by including the losses associated with storing
and transporting water.

The proposed model is similar to models in other fields
such as in electrical power transmissions. In power transmis-
sion grids part of the power is lost due to electrical resis-
tance of the transmission lines [16}. Still, there are other
examples cited by Jewell [26] which can be modeled by a network
with gains. These include the machine loading problem [40],
warehousing with ‘breeding' and 'evaporation' [28], financial
budgeting problem [ 8], aircraft routing problem [11], and the
catering problem [39]. In general, these problems can be re-
presented with the help of a network which includes a gain fac-
tor with each arc in addition to the other cost and bound para-
meters. The gain can be any non-negative quantity. If the
gain on an arc is less than unity it signifies that part of the
flow along that arc is lost and if it is greater than one it
indicates that the flow is amplified (as in the machine load-
ing problem [40]) on passing through that arc.

The Network Model with Gains [26] is also known as Gener-
alized Networks [ 9] or Lossy Networks [ig]. These are a class
of network problems for which there is a strong need for a fast
and simple algorithm. Hence, the proposed algorithm is not
only applicable to water distribution systems with losses but
also to a large number of similar models which include a gain
with each arc.

I.2 The Network Model

The physical facilities comprising The Texas Water System
are the canals, storage and regulatory reservoirs, river basins
and pumping stations. In the TWDB studies [43, 44, 45] the
water distribution system has been represented by a directed
network. The canals and river reaches which distribute the
water form the arcs and the storage reservoirs and pumping sta-
tions are represented by nodes. Figure 3 shows part of this
reservoir~river-canal system.



There are three important parameters associated with each
of the arcs, the upper and lower bounds on the flow and the
cost per unit of flow along the arc. The upper bound on the
flows are determined by the capacities of the canals and rivers.
The unit cost is given by the cost of transporting one unit of
water across the corresponding canal. The operating policies
are determined on a monthly basis over a fifty year time span.
To represent these six hundred time periods, a similar network
is considered for each month. Storage of water is represented
by joining the corresponding nodes which represent the same
reservoir with an arc. A simplified example of such a system
is shown in Figure 4a. This example consists of six nodes
(four reservoirs and two link junctions) and eight arcs (seven
canal links and one river reach). This node-arc representation
is expanded spacially to include four time periods as shown in
Figure 4b. The networks for each of the time periods are con-
nected by the storage arcs. Thus, the time-space representa-
tion of the problem can be envisioned as a layered network,
each layer representing a time period with reservoir storage
contents connecting the layers [44]. These carry over storage
arcs are also called inventory arcs. Water stored from one
month to the next appears as a flow along these arcs. The
upper bound on these arcs are the limiting storage capacities
of the reservoirs and the unit cost is the cost of storing
water over one time period.

This expanded network still does not represent the problem.
The system must have some initial reservoir storage contents;
inputs to and demands from the system must be made; imports
must be allowed to enter the system; and after the last time
period, provisions must be made for the final reservoir storage
contents. All these are accommodated by adding additional arcs
and nodes with the corresponding bounds and costs. The problem,
now, is to determine the flows which minimize the cost. A num-
ber of algorithms, such as the Out-of-Kilter algorithm of Ford
and Fulkerson [12, 14, 17], exist which can solve this problem
very efficiently.

To include the evaporation and seepage characteristics of
the canals and reservoirs an additional parameter, the gain
factor, may be introduced for each of the arcs. The gain fac-
tor, or simply gain, is defined to be the fraction of flow that
is transmitted through an arc. If the gains for all the arcs
are equal to one then the problem is the same as the pure net-
work problem. The pure network algorithms can not solve net-
work problems with gains. A number of algorithms have been
proposed for this generalized network problem by Jewell [26],
Johnson [27], Charnes and Raike [9 ], Fujisawa [16], Glover,
Klingman and Napier [21] and Maurras [34]. Most of these are
either not applicable to the water distribution problem or are
too complex to be easily implemented. The algorithm presented
in this report is simple enough for hand computations and fast
enough on the digital computer to be viable for large network
problems with gains.



Figure 4a

A Typical Node-Link
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I.3 Evaporation and Seepage

In a water storage and distribution system, such as the
Texas water system, evaporation and seepage losses play a major
role in determining the optimal operating policies of the sys-
tem [41, 421. Anticipated evaporation can be a crucial element
in the design of reservoirs in arid regions such as West Texas.
Evaporation losses in this area are known to be as high as one-
third the annual inflow. Likewise, seepage of water into the
soil from unlined canals or from reservoirs located in areas
where the ground water level is low can play a decisive role in
determining their location and utilization. Therefore, the es-
timation and accounting for these factors are a very important
function of the planning and operation stages of a water dis-
tribution system.

On a free water surface there is a continuous exchange of
water molecules between the water and atmosphere. This rate of
exchange is governed by the temperature and vapor pressure at
the surface of the water. 1If the temperature increases or the
vapor pressure decreases, the rate of transfer of water mole-
cules from the water to the atmosphere increases. The evapora-
tion from the surface of a large reservoir is highly dependent
upon these two factors. The increase of temperature of a body
of water is usually governed by solar radiation. Therefore,
evaporation is usually higher during the summer months as com-
pared to the winter months. The vapor pressure of the over-
lying air is dependent upon the relative humidity and the wind
over the surface of the water. Dry air increases evaporation
due to lower vapor pressure. On the water surface a layer of
vapor is built up due to evaporation. When wind blows over
this surface, this partially saturated layer of vapor is blown
away, thereby increasing the rate of evaporation. The evapora-
tion rate is greater at the leading edge of the wind because of
a wedge of vapor that is formed down-wind. An increase in wind
speed increases evaporation. At the Aswan reservoir in Egypt,
wind has been credited with significantly increasing the eva-
poration rate.

The relative effects of controlling meterological factors
ig difficult to evaluate. However, it can be stated that the
rate of evaporation is influenced by solar radiation, air
temperature, vapor pressure, wind and possibly atmospheric
pressure. Solar radiation is an important factor; evaporation
varies with latitude, season, time of day, and sky conditions.
Direct measurement of evaporation under field conditions is not
feasible, at least not in the sense that one is able to measure
river stage, discharge and so on. As a consequence a variety
of techniques have been developed for determining or estimating
vapor transport from water surface. Reference [31] describes
several indirect procedures for estimating the evaporation rate
per unit area. The total evaporation rate for a body of water
is the product of the evaporation rate and surface area. The
gain factor k (fraction of flow transmitted) can be estimated
from:
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. _ S°BE
k =1 7 (1)

where E is the evaporation rate in volume per unit area and V
and S are the volume and surface area of the water respec-
tively.

The surface area of a canal or reservoir is determined by
its shape and the quantity of water in it. Some simplified
lateral cross sections are presented in Fig. 5. The surface
areas per unit volume for a unit length of these cross sections
can be easily computed from the geometry. For example, the
surface area for the Vvertical sided canal or reservoir is con-
stant and is independent of the volume of water. The surface
area of the triangular cross section with respect to the vol-
ume is linear and is given by 2/tanc. Where o is the slope of
the sides. Similarly, relationships between the volume and
surface areas of the other cross sections can also be deter-
mined. These calculations are gquite accurate for canals which
have regular geometric shapes such as those shown in Fig. 5.
However, it is not always a simple matter to estimate the sur-
face areas of reservoirs from the volume of water stored in it.
Reservoirs are usually highly irregular in shape and do not
have uniform cross sections along their length. Moreover, re-
servoirs formed upstream of a dam slope down river as shown in
Fig. 6. Therefore, it becomes very difficult to estimate the

Figure 6 A Reservolr Formed Upstream of a Dam

relationship between the volume and surface area of a reservoir
from geometric considerations.

Although, rough estimates may be obtained for preliminary
analysis by considering uniform lateral cross sections of sim-
ple geometric shapes, a more accurate measurement of the sur-
face area with respect to the volume can be obtained from the

2~-10



contour maps of the reservoir terrain. Charts showing the sur-
face area vs. depth, depth vs. volume and volume vs. surface
area are usually prepared by the hydrologic designers before
the construction of a reservoir. An example of such a chart
for a typical reservoir is presented in Fig. 7.

R

operating range Lo

Surface Area

== yoOlume

Figure 7 Operating Curve for a Reservoir

It can be seen from the curve, and is usually true, that the
relationship between the volume and surface area is linear in
the operating range of the reservoir. This linear relationship
is important if the gain factor, k, is to remain constant for
all flows. Non-linearities in this relationship are discussed
in Chapter II.

Once the surface area, S, with respect to the volume and
the evaporation rate, E, are known it is a simple matter to
estimate the gain factor from equation 1. If the ratio of the
surface area and volume are not constant, curves for the gain



factor vs. volume can be prepared for the analysis of the prob-
lem. In the previous discussion it was assumed that seepage
does not play a significant role in water distribution. If,
however, this is not true then seepage vs. volume curves have

to be prepared. No general statements can be made about this
seepage curve because seepage characteristics are very diffi-
cult to predict. The composite seepage and evaporation gain
factor can now be introduced as an additional parameter in the
network model. The operation of the water distribution system
can now be optimized by considering the losses together with the
cost considerations in determining the optimal flows through the
network.,

1.4 Overview

In this chapter The Texas Water Plan has been introduced
and the important role of losses in the water distribution sys-
tem has been discussed. Based upon the water requirements of
the State of Texas the plan provides for reservoirs, canals and
pumping stations for transporting the water to the locations
where it is needed. The cost of operating this system depends
upon the transportation costs and the loss characteristics of the
system. For example, to meet the water demands in West Texas,
where evaporation rate is high, it would be econcmical to store
surplus water in East Texas, where the evaporation rate is low,
and ship it to West Texas as the demand arises. This policy
would not be apparent if the evaporative nature of water stor~
age in West Texas is not reflected in the model.

In the following chapters an algorithm which can determine
the optimum water distribution policy in the presence of losses
is derived and illustrated. This algorithm has the capability
to deal with any network flow with gains problem in which gains
are positive, flows are bounded from above and below and costs
per unit flow are constant for each arc.



II. Problem Statement and Mathematical Formulation

IT.1 Graphs and Networks

Geometrically, a graph may be considered to be a collec-
tion of nodes (verticies, points, junction points) in space
connected by a system of arcs (edges, lines, links, branches,
curves). Or, abstractly, a graph

G = [N,A]

may be defined to consist of a nonempty set N, a set A (possi-
bly empty).

SEN&N
and a mapping ¢ of A into the unordered product N&N, that is
$: A-N&N
The elements of N and A are called the nodes and arcs of the
graph respectively and ¢ is called the incidence mapping asso-
ciated with the graph. Figure 8 shows the geometric represen-
tation of a graph which can be described by:
N = {nl,nz,n3,n4,n5,n6}
A= {al,az,aB,a4,a5,a6}
P = {al+(n3&n6),a2+(n2&n3),a3+(n2&n3),

a4+(nl&nl),a5+(nl&n4),a6+(n2&n6)}

nij

Figure 8 Geometric Representation of a Graph
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The term network is frequently used instead of graph,
especially when quantitative characteristics are imparted to
the verticies and edges, in addition to the purely structural
relationship that are the defining characteristics of a graph
[6]. In networks it is customary to associate a number of
parameters with each arc or node of the graph. These represent
the natural limitations and capabilities of the system being
modeled. The important characteristics of the system are in-
corporated into the model as numbers, or weights, on the arcs
and nodes of the network. For the water distribution problem,
discussed in Chapter I, the arcs represent the canals and river
reaches of the Texas Water Distribution System. The nodes re-
present the reservoirs, pumping stations and canal intersections.
Since storage of water and other associated properties of the
nodes are represented spacially by the inventory arcs, all the
characteristics of the system can be described completely by
parameters on the arcs. These are; the capacities of the res-
ervoirs and canals, unit cost of storage and transportation,
and leakage and evaporation coefficients. In addition, the
arcs may be constrained to transmit flow in one direction only.

Mathematically, a directed network,
D = [N,A]

can be defined to consist of a finite set N of elements (usu~-
ally numbers from the natural number system) together with a
subset, A, of the ordered pairs of elements taken from the or-
dered product N®N. That is,

AE=NON
and a mapping y of A into the ordered product N8N, given by

Y: A7NON
The elements of N are called nodes and the elements of A are
commonly known as arcs. To represent the parameters associated
with each of the arcs, a € A, of the network it is convenient

to define a vector wvalued function which we shall call the flow
parameter function, as

¥(a) = (1,,u,,c,)
where la - lower bound on flow along the arc, a.
u, - upper bound on flow along the arc, a.
c, - unit cost of flow along the arc, a.

A network can be represented graphically by selecting a
point corresponding to each node xfN and directing an arrow
from x to y if the ordered pair (x,y)EA. For example, the
network shown in Figure 9 consists of four nodes and six arcs.



N [1,2,3,4]

A

[(1,2),(1,3),(2,3),(2,4),(3,2),(3,4)]

The flow parameter function YV is shown directly on the
network.

Figure 9 A Directed Network

A'few commonly used terms in Network Flow Theory can now
be deflngd for the network D = [N,Al. If x.,x,,---,X_ are a
set of distinct nodes from N such that (x,,x ) is afl arc from

the set A for each 1 = 1,2,~--,n~1. Thenlthé+%equence of nodes

and arcs:
}flr (Xllxz) ;xzr (X2:X3) rx3r""""'r (xn-l'xn) yxn

is called a simple chain leading from X1 to Xpn. If X1 = X,

then this sequence is called a cycle. Often the term "chain"

is used loosely to denote both directed chain or directed cycle.
If (¥;,%Xi+1) or (¥Xi4+1,¥i) is an arc from the set A for i = 1,2,
--=-,n-1, then the resulting sequence of nodes and arcs given by
the equation is called a path from X; to Xp. And, if X3 = Xp

the sequence is called a Ioop. A path and a loop differs from

a directed chain or cycle by allowing an arc to be traversed in a
direction opposite to that of its orientation.

II.2 The Pure Network Problem

The pure network problem, as defined to distinguish it
from the network with gains or generalized network problem, is
one where the flow in each arc is constant over the length of



the arc. That is, there is no gain or loss of flow during
transmission. Also, there is conservation of flow at each
node. The total guantity of flow into each node is equal to
the total flow out of the node. Also, the total input into

the network is equal to the total output from the network.

The set of nodes of the network, N, will be dencted by i = 1,2,
--=-n and the arcs, A, will be denoted by (i,j) if node i is
joined to node j by an arc. Similarly, iy, uij and cq4 will
represent the lower and upper bounds and costs respectively for
each of the arcs. For the moment, the arc (i,j) will be consi-
dered to be unique. That is, there is only one arc joining any
two nodes i and j. For multiple arcs this restriction can be
met by introducing an additional node in the middle of some of
these arcs.

If fi- is the flow in arc (i,j)QA, then, the conservation
of flow constraints for a pure network can be written as:

;fij - ;fji = b, for all i Q N (2)
3 .

;bi = 0 (3)
1

The bi's are equal to zero at all nodes except where flows
are introduced into the system (source nodes) or taken out of
the system(sink nodes). Since the flow into the system equals
the flow out, the sum of the Pj's is equal to zero as denoted
by Equation 3. For networks with a single source node, s, and
a single sink node, t, (e.g. Figure 9) Equation 2 can be writ-
ten as:

v, i=s
Ty - Ny = 0, ifs,t
J J

-y, i=t

for all i N

The assumption of single source and sink is really not
very restrictive, as multiple sources and sinks can be joined
to a super-source or super~-sink by appropriate arcs to convert
the problem to one of single source and single sink (see [14]).

In a pure network problem, since the total flow into the
system equals the total flow out of the system, it is possible
to connect the outflow with the inflow and create a circulation
problem as shown in Figure 10. The arc parameters of the cir-
culation arc are determined by the objective of the problem.
The conservation of flow Equation 2 can now be generalized over
the entire network

Zfij - iji = 0 for all l{iN
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Figure 10 The Circulation Problem

The objective of the pure network problem is to find the
arc flows which minimize the total cost of flow:

Minimize: X c..f.. (5)
(i’j)eA 1] 13
Subject to:

;fij - ;fji = 0 for all 16 N, (6)

J J
i 7
and - lij < fij < U for all (1,3)€:A (7)
fij > 0 for all (i,j)eA (8)

This problem fits the Linear Programming Model and can be
solved by the simplex algorithm. However, there are several
more efficient algorithms which take advantage of the special
structure of the problem. These are described in Chapter III.

II.3 The Network with Gains

There are many flow problems for which the conventional
pure network model described in the previous section is inade-
quate. In some practical network problems flow suffers loss
during transmission due to leakage and damage while in others



flow may be amplified due to conversion or inflows into the
system. For such systems an additional parameter, the gain
factor, may be introduced into the flow parameter function.

The gain factor, kji-4, is the amplification or gain in the flow
as it passes through the arc (i,j). It denotes the fraction of
the flow that is transmitted from nhode i to node j while pass-
ing through the arc (i,3).

If £4i is the flow leaving node j by arc (j,i) then,
kyif4i is”the amount of flow that arrives node i through the
same arc. If this new flow property is imposed upon the pure
network model of Section II.2, the minimum cost flow problem can
be stated as:

Minimize I c..f.. (9)
(i,50¢a 3 4
Subject to: If,. - Ik..f.. = 0 igs,t (10)
1 1T
J J
LEie 7 Fy
J
and fij < uij for (1,3)€_A (11)
f.. 2 0 for (i,3)€A (12)

13

The introduction of the k34 factor in Eguation 10 signi-
fies that any flow to node i from node j along arc (i,j) is
amplified by a factor of k4i after it leaves node j and before
it arrives at node i. Figure 11 illustrates the notation used
for the network with gains model.

Figure 11 The Network with Gains Model
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Notice that the problem as stated here is to obtain a
given quantity, Fio of flow at the sink at minimum cost. This
particular form is chosen because most flow problems involve
meeting some specified output requirements at minimum cost.
Other authors (16,24,25,37) consider alternative formulations
for network with gains problems.

The introduction of the gain factors on the arcs of the
network with gains introduces some special features in the net-
work. These were first identified by Jewell [25]. PFirst, flow
may be destroyed by passing around a directed cycle whose total
gain is less than unity as shown in Figure 12. The arrows and
the numbers above them denote the flow. The numbers below the
arc are the gains. The cycle shown absorbs any amount of flow
determined by the upper bounds of the arcs (1,2) and (3,2) and
half the upper bound of arc (2,3). Second, flow may be created
in an amount limited only by the branch capacities in a cycle
whose total gain is greater than one, as shown in Figure 13.

|

Figure 12 A Flow Absorbing Cycle

Figure 13 A Flow Generating Cycle
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Most network algorithms, including the one presented here,
assume lower bounds of zero. In many situations such as dis~
charge along rivers etc. the flow along an arc may be con-
strained by a positive lower bound. Zero lower bounds on all
arcs in a network can be assumed without any loss of generality,
because all positive lower bounds can easily be transformed
into zero lower bounds by the following transformation of the
flow variable.

For any arc (i,]j) with a positive lower bound 1l;s the
following substitution can be made for the flow variagle fiq:

£f.. = fl. + 1..
ij ij ij
The corresponding upper bound, Uij, should be reduced to

- 1...
1]

u; 5 |

Physically this transformation is illustrated by Figure 14.
The lower bound on the arc (i,]j) can be reduced to zero by
forcing a flow of lj4 from the node i to the sink t, and a flow
of 1i4 from the source s to the node j and reducing the upper
bound”of the arc (i,j) to ujy - l... This is achieved by add-
ing two arcs (i,t) and (s,j) with upper bounds of lij and a
very large negative cost -M, as shown in Figure 14b. The large
negative costs attempt to induce a flow through these arcs. If
a flow can be found which saturates the arcs (i,t) and (s,3j) it
can be transformed to a feasible solution for the original prob-
lem. Arcs with non-unity gain can be transformed in the same
manner but with a gain of 1 on arc (i,t) and a gain of kij on
arcs (i,3j) and (s,3).

a. Original arc b. Transformed arc

Figure 14 Transformation of Lower Bounds



The algoritnm developed in Chapter IV and many other net-
work algorithms assume a single source and a single sink. Mul-
tiple socurces and sinks like those of Figure 15a can easily be
changed into a single source and sink by introducing a super
source and a super sink and appropriate arcs joining these to
the original sources and sinks as shown in Figure 15b. A large
negative cost of ~M can be put on the arcs joining the original
sinks to the super sink so as to force the required flow out of
the network. Hence, it is seen that a single source and a sin-
gle sink can be assumed for any network without any loss of
generality.

Finally, an important requirement of most network algori-
thms is that there be no negative cycles in the network. A
negative cycle is defined to be a directed cycle such that the
weighted sum of the costs around it is negative. A negative
cycle gives rise to an interesting situation where it is pos-
sible to realize revenue or minimize cost by sending flow
around the cycle without having any input to or output from the
network. Most practical networks are usually free from nega-
tive cycles, therefore, this is usually not a major problem.

Sources

fi<a | Jh<:> (:}- fi=c
(:}

Sinks

fa<b :j | <§>_' fs=e

a. Original Network

0,

F,<a+b

Super
Source

;;;;y/~ Super

Sink

@ QP

b. Transformed Network

Figure 15 Transformation of Multiple

Sources and Sinks into a Single Source and Sink
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While estimating the leakage characteristics of the res-
ervoirs and canals, it was seen in Chapter I that the gain
factor ki- may not always be linear with respect to the flow
through anh arc. Whereas, an important assumption of the dis~
cussion in Section II.3 has been that the loss is proportional
to the flow through an arc. If this property is violated then
the mathematical properties discussed in this chapter and in
Chapter IV are no longer valid. However, if the curve for the
relationship between the flow transmitted and originating flow
is concave as shown in Figure 16 it is possible to meet the
restriction of linearity for the gain factor by a piecewise
linear approximation as shown in Figure 17. (Note: Gain fac-
tor is equal to flow transmitted per unit of originating flow).
The curve shown in Figure 16 has been approximated by three
linear segments AB, BC and CD. If kj, k5 and k3 are the slopes
respectively of these three segments and U3, Uz and u3 are the
flows corresponding to points B, C and D and if the unit cost
of flow is the same over the entire flow range then the flow can
be represented by the three arcs shown in Figure 17. It is
seen that when flow is to be transmitted between node 1 and 2,
arcy will be chosen first as it transmits a greater percentage
of its flow at the same unit cost as compared to the other arc.
After arcy is saturated, flow will be sent through arcp and so
on. This corresponds to the desired flow pattern. However, if
the relationship between the originating and transmitted flow
was convex, similar piecewise linear approximation could not be
used because arcjz would be chosen first to transmit flow between
node 1 and 2 as it would have had the highest gain and would
have therefore been unrealistic. Similar piecewise linear ap-
proximation can be used to represent flow which has a convex
cost function, or a concave revenue function, with respect to
the flow (see [14]). 1If both unit cost and gain vary with flow,
it can be shown by similar reasoning that piecewise linear ap-
proximation is possible as long as the curve for cost/gain vs.
flow is convex. But, if the cost/gain curve is not convex, the
procedure developed in this study are not applicable.

Now, considering the various cross sections of Figure 5
and assuming that evaporation is the predominant loss and that
it is linearly dependent upon the surface area, the losses from
the canals and reservoirs with respect to the flow volume can
be represented by the arcs shown in Figure 18, where node n is
a sink node. Gains are shown below the arcs.

a) The rectangular cross section gives a uniform loss
independent of the volume. It can be represented by a constant
leakage arc (2,n),lon = u2n, is the constant leakage.

b) The triangular cross section gives a linear loss with
respect to volume and is represented by a constant gain factor

klZ-

c) The circular cross section is responsible for a con-
vex gain parameter with respect to volume and cannot be rep-
resented by piecewise linear approximation.
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d) The trapezoidal cross section gives rise to a loss
function which is a combination of a and b, above. It is
represented by an arc with a constant gain paramater k12 and a
constant leakage arc (2,n).

Flow in a reservoir arc represents volume of water stored
in a reservoir. The evaporation of water over a storage period
is represented by a gain factor on the corresponding reservoir
arc. These arcs are treated like any other arc in the network.

a) <E:>_ (]123U;29012) ? (72

N,y
71,0)

b) (E:) <}12,Ei§,C12) ”{Z{)

c) Cannot be represented.

d) <3:>L (1125U1245C12) 5
k1o {7

Figure 18 Network Representation of the Cross Section of

Figure 5



ITII. Literature Survey

The minimum cost flow pure network problem formulated in
Section II.2 fits the linear programming model and can be
solved by any existing linear programming algorithm. However,
a number of procedures have been developed which take advantage
of the special structure of this problem. Notable among these
are the algorithms of Busacher and Gowen [5], Klein [29] and the
Out-of-Kilter algorithm of Ford and Fulkerson [14]. The method
of Busacher and Gowen starts with all flows equal to zero in
the network and incrementally increases the flow at the lowest
possible cost until the desired flow is reached. Although the
solution of the problem takes place entirely in the primal
space, it has been called a dual algorithm by Hu [23], because
the primal problem is not feasible until the last iteration.
Klein's method starts with a feasible flow through the network
and then improves upon the solution iteratively by recirculat-
ing the flow through the network to decrease the cost. This
method may be classified as a primal method because the prob-
lem is always feasible in the primal space from the first to
the last step. Ford and Fulkerson's algorithm can be classi-
fied as a primal-dual method because the problem starts with
any flow through the network and iteratively changes the flow
until the primal-dual properties at optimality are satisfied.

Of these solution procedures, the Out-of-Kilter algorithm
is the only method that considers lower bounds explicitly and
allows multiple sources and sinks. The only requirement is
that of circulation of flow as described in Section II.2. 1In
almost all other solution procedures the lower bound on the
flows along arcs are assumed to be zero, and only single
sources and sinks are permitted. This can always be assumed
without any loss of generality because all networks can be
transformed to an equivalent network with zero lower bounds
having a single source and a single sink as described in Sec-
tion II.4.

Recently studies have been undertaken by Glover, Karney,
Klingman and Napier [18] to compare the computational effective-
ness of primal simplex type procedures against the methods men-
tioned above for transportation problems. The'results indicate
that the primal simplex type of algorithm is faster than exist-
ing linear programming or Out-of-Kilter codes. Klingman, et.
al. are trying to develop a similar simplex type of procedure
for network problems. Since, not enough information is avail-
able at this time about this procedure, it has been omitted
from this discussion.

The network problem with gains was first introduced by
William S. Jewell [25,26]. His work provides the most com-
plete treatment of flow with gains. In his paper, Jewell des-
cribes a generalization of network flow problems to 'process
flow networks'. The flow in any branch of the network may be



multiplied by an arbitrary constant, called the branch gain,
before leaving the branch and flowing into the remainder of the
network. This generalization permits the description of net~
works in which different kinds of flow may be converted one to
another without constant returns to scale. Jewell claims that
his method is a natural extension of the Ford and Fulkerson
technique. Jewell considers any gain factor, positive or nega-
tive. Since flow into a network with gains does not have to
equal the flow out, some additional arcs are created to account
for the constraints on the boundary conditions and to create
circulation. These boundary conditions may be either inequali-
ties or equality constraints on the amount of input and output
flow.

A closely related problem to the network with gains is the
transportation problem with gains or the generalized transpor-
tation problem. The generalized transportation problem is the
same as the classical (pure) transportation problem except that
the flow in an arc (i,]j) from origin i to destination j is sub-
ject to amplification or attenuation by the factor kji4. It has
been shown by Lourie [32], Balas [2], and Eisemann [1%] that
this generalization of the classical transportation problem has
a drastic effect upon the basic structure of such problems. So
that, even finding an initial primal feasible basic solution
becomes a difficult task. As a consequence of this altered to-
pology existing procedures for solving the transportation pro-
blem fail. Several approaches have been suggested for solving
this problem by Balas [1], Balas and Ivanescu [2], Eisemann
[13], Glover, Klingman and Napier [21] and Louire [32]. Some
of these [21] are start procedures which provide an initial
feasible solution. They can be used together with Lemke's [30]
dual method or the method of Glover, Klingman and Napier [20]
to solve certain generalized transportation problems.

It has been shown by Glover, Klingman and Napier [22] that
any generalized network can be transformed into a generalized
transportation problem. One possible solution technique for
networks with gains may be to transform it into a generalized
transportation problem and solve it by one of the methods men-
tioned above. A number of special purpose algorithms have been
presented in recent years which have tried to solve a restricted
class of the network with gains problem. Two such algorithms
are due to Charnes and Raike [9]. Both of these procedures are
"one pass" shortest path algorithms. They also point out the
possibilities of obtaining a dual feasible solution to the gen-
eralized network problem by their method. Glover, Klingman and
Napier [21] have characterized the properties of a special class
of generalized network problems that permit a dual feasible
basic solution to be determined in "one pass" through the net~
work. They suggest using Lemke's [30] dual method or Charnes and
Cooper's [7] poly-w technique to solve the problem from there.
Glover and Klingman [19] also propose a method of transforming
certain special generalized networks into pure networks by a
method of scaling. They have proved that any generalized net-
work incidence matrix that does not have full row rank can be
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transformed by this procedure. Charnes and Raike [9] have
pointed out and proved that the pure network problem is of rank
m~-1 while the generalized network problem is of rank either m
or m~-1. Where m is the number of rows in the incidence matrix.
Therefore, it is possible to transform some specially struc-
tured network problems into pure network problems by the trans-
formation algorithm of Glover and Klingman [19]. Johnson [27]
is concerned with solving the problem directly on the network
with the help of the simplex procedure. He presents a triple
labeling technique to keep the solution basic for pure network
problems and suggests an extension of his procedure to the net-
work with gains. Maurras [34] has extended Johnson's idea and
developed an algorithm that solves networks with gains problems
with the help of the simplex procedure directly on the network
structure.

Jarvis and Jezior [24] have recently presented an algori-
thm for determining the maximal flow through a directed (acy-
clic) network with positive gains. The proposed method is a
primal-dual algorithm comparable to Ford and Fulkerson's [15]
max-flow algorithm. Minieka [36] has recently suggested a me-
thod for extending Jewell's [25] algorithm to include multiple
sinks and negative costs on the arcs. The problem of maximiz-
ing flow through a "lossy" network has also been considered by
a number of persons in the field of communication. The most
comprehensive graph theoretic treatment is due to Onaga [37,38],
who introduced the concept of optimal flows in communication
networks. Fujisawa [16] has presented topological solution
procedures for the maximum flow through a lossy communication
net. Mayeda and Van Valkenburg [35] have proved the max-flow
min-cut theorem for this problem.

One of the obvious solution procedures for the network
with gains problem is with the help of the classical simplex
linear programming algorithm. From the mathematical statement
of the problem in Chapter II is is seen that the problem can be
modeled as a linear programming problem where the objective is
to minimize the linear sum of the products of the costs and
flows in each of the arcs subject to the conservation of flow
and bound constraints, which are also linear. Although this
method is quite feasible for small problems, the simplex matrix
grows geometrically with the dimension of the network. There-
fore, the storage requirement even for a moderate sized problem
can be prohibitive., The time required to solve the problem can
be very high and degeneracy which is inherent in most networks
adds to the complexity and computation time. The network based
simplex procedure of Maurras [34] overcomes most of these dif-
ficulties. The computation times presented by Maurras look
impressive. However, it seems that the problem solved by him
is un-capacitated. This is not a serious problem as Dantzig's
[10] upper bounding technique could be extended to cover this
problem. Details of the algorithm are not yet available and it
is too early to tell how useful this algorithm will be to solve
typical network with gains problems.



Jewell's work [26] provides the most complete treatment of
network with gains. The class of problems that he analyzes 1is
very general. However his solution technique is too complex to
make it a useful tool for the solution of large scale real
world problems. His absorbing network detection, transfer fac-
tor determination and dual variable calculation are all very
long and complicated. No computational results are available
even for small problems.

The max~flow algorithms of Jarvis and Jezoir [24], Fuji-
sawa [16], Onaga [37,38] and Mayeda and Van Valkenburg [35] are
inappropriate for determining the minimum cost flow through a
network with gains. The shortest path algorithm of Charnes and
Raike [9] is also inapplicable to the problem under considera-
tion. They solve a very restricted minimum cost flow problem,
and the network is assumed to be uncapacitated. Capacitated
networks are those that have a specified upper bound on flows
along the arcs. The transformation algorithm of -Glover and
Klingman [19] is apparently a very powerful technique if the
problem in question is of rank m~1. However, it is not yet
known what special structure of a network problem causes it to
have one less than row rank. Since it is good only for a re-
stricted class of problems, its general applicability for net-
works with gains is of limited value.
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IV. The Networks with Gains Minimum Cost Flow Algorithm

The algorithm to be described determines the distribution
of flow in a network with gains which provides a given amount
of flow to the sink at minimum cost. An example network is
shown in Figure 19. Each arc has three associated parameters
which are upper bound to flow, cost per unit flow and gain.
These are shown on each arc with a triplet (v;, ¢4, ki) for
arc i. A lower bound to flow is not included in the parameter
list as it is assumed to be zero. Let the reguired flow at the
sink be ¥iy. An unbounded quantity of flow is available at the
source. Let the network D = [N,A}l for which the problem is
defined be called the original network to distinguish it from
the marginal network which will be defined later.

Sink

w2

O

y £

| B

Q

[
(6,1,1/2)

Figure 19 Example Network. The Parameters on each
arc are (Upper Bound, Cost, Gain).

The algorithm is based on the Busacher and Gowen algorithm

for pure networks [5]. The principal steps of the algorithm are
as follows:

step 0 -~ Start with zero flow on all arcs.

step 1 - Define a marginal cost network with respect to the
original network and the current flow through it.

step 2 - Find the mimimum cost flow augmenting chain in the
marginal network that can deliver flow at the sink.
If there are none, stop~-the maximum flow through
the network has been found.

I

step 3 If such a chain is found, route as much flow as

possible through it.



step 4 - Augment the flow in the original network with the
flow found for the marginal network. If the desired
output flow is reached, stop. The current flow is
the minimum cost flow. Otherwise return to step 1.

The flows obtained at each iteration of the algorithm are
optimal for the amount of flow obtained at the sink. This is
true because the initial flow is optimal (all arc flows are
zero for zero flow at the sink) and flow is augmented at each
step through the minimum cost chain. The solution is infeasi-
ble with respect to the desired output f£low until the final
step when the flow is both feasible and optimal.

IV.l1 The Marginal Network

The marginal network is to reflect the costs of changing
flows in the original network. Parameters of this network
depend on the flow in the original network. Let F be the flow
for the original network. F defines the flow f;s for each arc
(i,3) ¢ A. F is feasible in that flow is conserved at each node
and arc upper bounds are satisfied.

Call the marginal network D* = [N*,A*]. The set of nodes
in the marginal network is the same as in the original network,
thus N* = N. The arcs in D* will be of two types called re-
spectively forward and mirror arcs. Forward arcs correspond
directly to the arcs in the original network. Thus if &% is
the set of forward arcs in D¥*:

(i,j)EAl* if L,3)€A

The parameters on the forward arcs are determined from the
parameters of the arcs in the original network and the current
values of flow in the original network. In the following defi-
nitions the starred parameters are for the marginal network and
unstarred are from the original network. Thus for each arc
(i,j)éﬁAl* define:

u,.¥ = u,. - £,
1] 1] 1]
c..*¥ = ¢,
1] 1]
k.. .* = k..
1] 13

Thus the forward arcs in the marginal network are the same
as the arcs in the original network except the capacities are
reduced by the flows in the original network. If an arc in the
original network is saturated (flow equal to capacity) the cor-
responding arc has zero capacity in the marginal network.

The mirror arcs in the marginal network are the reverse of
the arcs in the original network. Let Az* be the set of mirror
arcs. Then



(i,3)€ Az* if (3,1)€ A

The parameters of the mirror arcs reflect the effect of
removing flow from the arcs in the original network. Thus for
each arc (i,j)G_Az* define:

* = -

uij = fji kji
* e

cij cji/kji
* =

kij l/kji

In step 4 of the algorithm stated above it is required that

flows in the original network be augmented with flows found

for the marginal network. This process is now defined. As-
sume a feasible flow F is defined for the original network.

This flow defines a marginal network as above.

The arcs of the marginal network are the collection of
forward and mirror arcs. Thus: A* = A;*UJA,*, Assume a
feasible flow F* has been determined for the marginal network
Let K* be the total cost for flow in the marginal network.
Thus

K* = )} ci.* £f..*%
(i,3) € A* J 1]

Let the total cost for flow in the original network be K
where

K = z ci"fi'
(i,5)€a 3 HJ

Let a new flow F' defined for the following augmentation
rule

' = + 8 -'*-— Il* . a
£ fi5 + £ £ /klj

for all (i,j)€A

K', the cost of the new flow in the original network is:

K! = ci.fi.'
(i,5)€¢ a 3 I

* - *
c..[f.. + £,. £i5%/k; 4]

(i,5)€a 13837 713 i3
= I Cyyfi ¥ 5 ST
i,ea M G, near

- b cij
1 1 *
(]rl)é A2 . fji*
ij



Neting that Cj4* = Cj5 for (i,j) €21* and cji* = “Cij/kij
it can be observed that:

K' = K + K*
Thus the cost of the augmented flow in the original net-
work can be obtained by summing the cost of the old flow and

the cost of the flow in the marginal network.

It can also be shown that the augmented flow is feasible
for the original network.

L k- * .
fij fij + fij fji /kij
f..' <« £.., + f£..%
1] 1] 1]
Since f£..* < u,. - f,.
13 17 i3
S .
fij S ulj
' - *

Since f..,* g f..-k..
Ji 13 13

iv
(o]

£..
1]
These results are important to show:

Theorem 1

Let the flow (F) be optimum in the original network
for a quantity of flow X delivered at sink. Let the
marginal network D* be defined for this flow. Let the
flow (F*) in the marginal network be determined which
will deliver Y units of flow to the sink of the marginal
network at minimum cost. The new flow F' determined by

[ J— * % >
fij fij + fij fji /kij for (i,3j) €A
is optimum in the original network for the flow X+Y
delivered to the sink.

roof: For a proof by contradiction assume that the flow F'
is not optimum for the flow X+Y at the sink. Then there
exists some feasible flow F'' whose cost K'' is lower than
the cost, K', of the flows F',

Define the flow F** for marginal network:

T L nd f.. %% = 0
If fij") fij let fi3 f:LJ i3 a 3i



il

If £..''" < £.. let f.i**

(f.. -
ij 1] i

F. 1)k, *ko
i3 i3 ) kl and fij 0

j

H

If £,.'" = £,, let £,.** = 0 and £.,**=0
ij ij ij Jji
It can easily be shown that F** is fcasible for the
marginal network and that it delivers Y units of flow to
the sink. The cost K'' can be determined as

K'' = K + K¥¥

where K** is the cost of the flow F** in the marginal net-
work.

Since K''<K', K**<K*, But this contradicts the pro-
position that F* is the minimum cost flow in D* which
delivers Y units of flow to the sink. Thus the theorem
is proved. '

Theorem 1 provides the basis for the algorithm. In step
2 the directed chain is found in the marginal network which
can deliver flow to the sink at minimum cost. This is either
a simple chain from the source to the sink or on a simple chain
that originates at node in a flow generating cycle. In either
case the chain will be called the minimum cost flow augmenting
chain.

IV.2 TFinding the Minimal Cost Flow Augmenting Chain

The minimum cost flow augmenting chain in the marginal
network is found using a slightly modified version of the dy-
namic programming shortest path algorithm of Bellman [4] with
adjustments to account for the possibility of cycles.

Before explaining the algorithm it will be helpful to
determine several costs associated with flows in the marginal
network. Consider a simple chain from the source to the sink:

Cc = {i;,by,i,byees dip y,b 1,1}

where the 17, i,...%1 are node indices and by, by,.. b _4
are arcs. Note thatmbg = {1p 1p41} and 1, is the source and
ix is the sink. Let the parameters of arc by be {ug,cgykg}.

Assign flows on the arcs of the chain to obtain one unit
of flow at the sink. Let the flow on arc P, be £,. For
simplicity the asterisk has been dropped from the flow variable.
Recall however that all flows in this section are in the mar-
ginal network. To obtain one unit of flow at the sink requires
the following arc flows:



-
i
|l
™~
o

“m=1 m-1
fm—2 = l/(km 1 km-2)
m-1
f2 = l/.ﬂ ki
i=2
m—-1
fl =1/ 7 k
i=1
The cost of this flow is:
c - m;l CE
C Z. m-1 (13)
£=1
kg
i=2

Let V; be the cost of obtaining one unit of flow at node
i. Then it will be noted that: Vil = V4 = 0 and that:
V. = V. 4+ C k R
lz-f-l ( lg Z)/ /@
It can be shown that a necessary and sufficient condition
for C to be the minimum cost flow augmenting chain is:

vj = (i’?;%;A* {[vi + cij)/kij}

for each node j on the chain.

This suggests an algorithm for finding the minimum cost
flow augmenting chain. The variable P; is a pointer which will
be used to recover the chain at termination.

1. Let Vg=0. Let V;=M for i€N, i¥s. (Here M is a
large number) Let Pj=0 for all i€N.

2. For each arc (i,j) € A* such that uij>0:

If Vj < (Vi o+ cij)/kij' take no action.
If Vj > (Vi + cij)/kij' let Vj = (Vi + cij)/kij
Let pj = i,

3. If some V: has been changed in step 2, repeat step 2.
If all ar%s are inspected without changing any node
cost, V., then terminate. V¢ (t is the sink) is the
cost of " the minimum cost flow augmenting chain. The
chain itself can be recovered from the pointers Pj.

If at termination Pt = 0 there is no chain to the
sink in the marginal network.



Figure 20 illustrates the algorithm applied to the example
problem. Since the initial flows are zero, the marginal net-
work is the same as the original network. Note that arcs with
zero upper bound are not shown. The labels on the nodes indi-
cate (Pi/V4i). The labels have been crossed out as they are
changed. The small circled numbers indicate the order in which
the arcs are inspected in step 2. Observe that the flow augment-~
ing chain in the example is found by tracing the pointers back-
wards from node 4. The chain is:

c = {1,(1,2),2,(2,3),3,(3,4),4}

(6,1,1/2)

7 S 3/64)

Figure 20 Initial Marginal Network with Minimum
Cost Flow Augmenting Chain Algorithm Labels

The algorithm finds the flow augmenting chain to each node
in the marginal network. The arcs indicated by the pointers
define what is called the flow augmenting tree. One complica-
tion that has not been discussed is that flow can be generated
from either the sgource or from a flow generating cycle. If the
flow augmenting tree consists of no flow generating cycles the
algorithm above terminates in a finite number of steps. If
flow generating cycles are in the tree the algorithm will not
terminate but values of Vi will converge in the limit to the

proper values. The algorithm must be modified to provide £fi-
nite termination.



Consider a flow augmenting chain which includes a flow
generating cycle. The chain is:

c={i;, b byeeeby gs dgs boaiby . t}

1 i2, 50
| i, - 1 b b

nere 71 g hence the branches 71 through “g-1 form a cycle.
The branches by to bmml form a simple chain from 15 to the
sink. Notice that 4 would be the sink if the sink were on the
cycle. To calculate the cost of obtaining one unit of flow at
the sink through this chain it is first necessary to calculate
the cost of generating one unit of flow at node 1g- Flow can
be generated at 14 only the gain of cycle

is greater than one. If this is true, in order to obtain fg=l
then it is necessary that:

fg = fq~l°kg—l - fl
g—2
but £ = f. . 1k,
g-1 1 j=1 *

then fg= fl[B—l]

_ _ 1
when fg = 1 then fl = B=T

Thus to obtain one unit of flow in arc bg the following flows
are required: fl = 1/8-1, £y = ky/p-1, f3.= kl-kz/Bml, etc.
The cost of obtaining one unit of flow at 1g is therefore

g-1 L~1
g = i=1
- g-1

= I (c,/ mk)(B/8-1) (14)
£=1 i=L

Equation (14) provides a means for calculating node costs for
nodes on a cycle. If equation (14) calculates the node cost
for Vij = Viy then equation (15) can be used to calculate other

node costs on the chain

V. = (v, + c,)/k, for £21 (15)
1e41 i, THTE

The algorithm can now be rewritten incorporating equation
(14). The only change will be in step 3. The new step 3 is
written



3. If some V4 has been changed in step 2, use the pointers
to determine if a cycle has been formed. If so use
equation (14) to calculate the node cost for one node
on the cycle. Use equation (15) to calculate the node
costs for other nodes on the cycle. Then return to
step 2.

If no cycles are found simply return to step 2.

If all arcs are inspected without changing any node
cost, Vi, then terminate. Vi (t is the sink) is the
cost of the minimum cost flow augmenting chain. The
chain itself can be recovered from the pointers Pj.
If at termination P = 0 there is no chain to the
sink in the marginal network.

The modified algorithm will terminate in a finite number
of steps even if cycles are part of the flow augmenting tree.
Figure 21 illustrates a marginal network in which the minimum
cost flow augmenting chain to the sink does include a cycle.

The sink lies on the cycle. The labels are shown in the figure.
Notice that the cycle can be detected after node 3 is assigned
the label (4/11) through arc 5. The final labels on the cycle
are calculated using equation 14 and 15.

(0/M)
(1/9)
(3/8)
(3/7)

Q@

(0/M)

(1/12)
(4/11)
(4/10)

Figure 21 A flow augmenting chain with a cycle



A flow generating cycle can only occur if the cycle gain
is greater than one. Thus if all arc gains are less than one
(for arcs with capacity greater than zero) the modified algori-
thm need not be used. Even if the original network has all arc
gains less than one, however, the marginal network will have
gains greater than one on its mirror arcs. The modified mini-
mum cost flow augmenting chain algorithm is therefore a criti-
cal part of the network with gains algorithm.

Iv.3 Augmenting the Flow

Once the minimum cost flow augmenting chain is found, it
is necessary to increase the flow in the arcs of the chain in
order to increase the flow into the sink by as much as possi-
ble. We will calculate the flow change in the original network
by calculating the maximum flows that can pass through the flow
augmenting chain in the marginal network. The amount of the

flow change depends on the upper bounds on the arcs of the mar-
ginal network.

Let C = {il, b i,, byeeob i, b _s.i T

1’ g-1' “g g-"""m

Consider first the case in which the flow augmenting chain
is a simple path from source to sink. Let the flow increase at
the sink be AF{. For arc by in the chain the flow is:

m-1
*
£p AFt/.E ke (16)
i=L
(the asterisk is to denote flow in the marginal network)

The amount the flow can increase is limited by the upper
bound on the flow in the marginal network. Thus

% < *
fﬁ ~ U,
m-~1
- <
or AFt/.ﬂ ki < uz*
i=4L
m-1
or AFt < uz*-ﬂ ki
i-£

To obtain the maximum flow change

m-=1
AF, =  Min {u,* nw k.} (17)
o o<e<mer Fogep t

Once AFy is known equation (16) is used to calculate the
flow change for each arc in the marginal network.



. If the flow augmenting chain includes a cycle such that
11 = 145 a slightly different approach must be taken for the
arcs in the cycle. The flow increase in arc bg is from (16)

m-1
£f * = AF / m ki (18)
g t i=g i
To generate this amount of flow requires that in arc Pj:

*
£

* /0
fg /B-1 (19)

and in arc Py in the cycle (£ £ g-1):

£-1
£f,* £f.* 1 k,
£ 1,41
g-1
*
fl B/.Wzki
J_.:

g-1
£ *8/(B-1)( =
g i=g

ki)

Inserting the value for fg* from equation (18):

' m—-1
£,% = aAF . 8/(8-1) ( m k;) for 15£ig-1 (20)
i=p *
Thus since fp* < yp*
g m-1 <
AF B/B~1)*( 7 k,) S uy
£ LT
for 1 £ £ = g—l
= _l
B=Ly
i=L

for 1 £ £ £ g-1

Arcs on the chain connecting the cycle to the sink follow the
relationships previously given for the chain from source to
sink. Thus the maximum flow increase at the sink for a chain
including a cycle is:



. B~=1, % g ey
AF, = Min { ' Min [(==)u}; (w k.)1,
TR T agsg-r B Gmpt
a m-1
Min _[uZ T k 1} (21)
gSlsm-1 Ti={

The flow changes in the arcs of the chain are calculated

by equatlon (16) for arcs not in cycle and ‘equation (20). for .
arcs in the cycle.

Given the maximum flows in the arcs of the marginal net-
work, the flow changes in the orlglnal network are. determlned
by . ( ,

DE,, = £, % - £,.%/k, .. (22)

Notice that although flows in the marginal network are
always positive the flow change in the original network is posi-
tive or negative depending on whether the flow is in the for-
ward or mirror arc.

IV.4 Example Problem

Figure 22 shows the sequence of marginal networks as the
algorithm progresses through the example problem. Notice that
the first marginal network 'is the same as the original network
because the initial flows are zero. The flow augmenting chain
algorithm yields a simple chain {1,(1,2),2,(2,3),3,(3,4),4}.
The minimum per unit cost of flow at the sink is 64. The maxi-
mum flow that can be obtained at the sink through in chain is
1/2. With this flow both arcs (1,2) and (3,4) become saturated.
The flows in the marginal network are used to adjust the flows
according to equation (22) in the original network. The new
flows appear in 22b.

These flows are used to construct the marginal network in
22b. The minimum cost flow augmenting chain in this network
is a cycle and is {4, (4,3),3,(3,2),2,(2,4),4}. The cost per
unit of flow obtained through this chain is 80 and the maximum
flow that can be obtained at the sink is 1/2. With this flow
arcs (3,2), (4,3) and (2,4) become saturated in the marginal
network. The flows in the marglnal network are used .to adjust
the flows in the original network whlch now, appear in 22c. ]
The total flow at the sink is now 1. Notice that saturation
of arc (3,2) and (4,3) in the marginal network corresponds to
complete removal of the flows in arcs (2,3) and (3,4) respec-
tively in the original network.
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p .

Figure 22 The original and marginal networks
for an example problem.
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The flows in the original network in 22c are used to cons-
truct the marginal network of 22c. The flow augmenting chain
yields a cost of 168 per unit of flow at the sink and maximum
increase of 1/2. The modified flows in the original network
appear in 22d. The marginal network for these flows shown in
22d has no flow augmenting chain to the sink (both arcs (2,4)
and (3,4) are saturated in the original network). Thus the
maximum flow at the sink has been obtained for the example
problem. The flows on the original network of 22d are the
minimum cost flows for the sink flow of 3/2. The flows shown
on the original networks of 22c¢ and 22b are the minimum cost
flows for 1 unit and 1/2 unit of output flow respectively.



V. Example Water Distribution Problem

As an example of the application of these procedures to a
water distribution problem consider a hypothetical system for
the State of Texas. The system consists of four reservoirs;

A, B, C and E and a junction point D, interconnected by a set

of five canals and a river as shown in Figure 23. Reservoirs

A and B are assumed to be in East and Northeast Texas respec-
tively. Reservoir C is in North-Central Texas and E in West
Texas. Demands for water can be made at each of the four res-
ervoirs. The inflows into the system are the rainfall at res-
ervoirs A, B and C and the availability of import water at
reservoir A. The monthly capacities of the reservoirs and canals
and the maximum import water availability are shown on the arcs
and nodes of Figure 23 in thousands of acre-feet. The unit

cost of transporting water over the canals and the cost of im-
ported water is also shown in $/1000 acre-feet. The demands and
rainfall for a twelve month period are shown in Tables 1 and 2
respectively. '

The leakage coefficients or gain factors were computed
from the following equations:

kij = 1 for supply and demand arcs

kij = f.m, otherwise

where £ is the location factor. For canal flow,

2 = .985 in West Texas (E)
.99 for Central Texas (C,D)
.995 for East Texas (A,B)

For reservoir storage,

£ = .98 in West Texas (E)
2 = .985 in Central Texas (C,D)
2 = .99 in East Texas (A,B)

and m is the seasonal factor.

m = .995 in Winter from November to February

m= ,99 in Spring and Fall. September to
October or March to April

m = .985 in Summer from May to August

To determine the optimal operating policies of this water
distribution system a similar network was considered for each
of twelve months. The storage of water was depicted by joining
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"RESERVOIR

MONTH A B | C

JANUARY 1 ‘° k42l
FEBRUARY 2 61.
MARCH 3 212,
APRIL 4 | 229,
MAY 5 375.
JUNE 6 122,
JULY 7 12.00  834.
AUGUST 8 5.00 16.00 26.00  1098.
SEPTEMBER 9 1.00 7.00 425,
0CTOBER 10 | 2.00 20,
NOVEMBER 11 19.
DECEMBER 12 | 22,

Table 1 Demands for Water for the Example

Water Distribution Problem



RESERVOIR

MONTH A B C
JANUARY 1 29.00 200.00 - 37.00
FEBRUARY 2 32.00 196.00 . 44,00
'MARCH 3 33.00 211.00 45,00
APRIL 4 33.00 301.00 52.00
MAY 5 41.00 284.00 64.00
JUNE 6 11.00 173.00 20.00
JuLY 7 | 1.00 20.00

AUGUST 8

.SEPTEMBER 9 L | 7.00

OCTOBER 10 3.00 35.00 -
'NOVEMBER 11 ~12.00 66.00 ., 22.00
DECEMBER 12 23.00 100.00 » '33.00

Table 2 Rainfall and Inflows for Example

Water Distribution Prpb]em



the nodes representing the same reservoir across the adjacent
months. The storage arcs from the month of December were con-
nected back to the respective nodes in the month of January as
carry over arcs from the previous year. This in fact simulates
the continuous operation of the system from year to year with a
deterministic supply and demand pattern. Part of the resulting
network is shown in Figure 24,

The optimal solution for this network was determined with
computerized implementation of this algorithm. The solution is
interpreted in terms of the problem in Tables 3 through 5.
Table 3 shows the import water requirements for the six months
when import water is available. Table 4 shows the shipping
policies along the five canals for the twelve month period and
Table 5 provides the guidelines for reservoir storage for the
year. From these tables it is seen that the canal A-B of Fig-
ure 23 is completely unused and that canal D-E is used to capa-
city for nine months out of the year. Reservoirs B and E are
grossly oversized and reservoir E which has the highest rate of
evaporation is used to store water almost over the entire year.
This is due to the limited size of the canal D-E, which cannot
transmit all the required water to reservoir E during the peri-
ods of highest demand in July and August. Therefore, water has
to be shipped to West Texas beginning from the month of Decem-
ber and stored in the West Texas reservoir to meet the high
summer demands there. Hence, if the canals and reservoirs of
this model represent a proposed system it would be beneficial
to analyze the effect of increasing the size of canal D-E and
eliminating canal A-B and reducing the sizes of reservoirs B
and E.

This problem has also been solved as a pure network prob~
lem. That is, by ignoring the losses and setting the gain fac-
tors, kis, for all the arcs equal to one. The optimum solution
without ieakages (76 ,308,250) was found to be over 10% less
than the optimum solution with leakages (85,039,136). This
shows that even with the conservative leakages that were con-
sidered (maximum 3% per month) the cost difference is significant.



January

-

February

e

etc.

December

=

Figure 24 Twelve Month Representation of the

Example Water Distribution Problem
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IMPORT

MONTH . ~ REQUIREMENT
JANUARY 1 : 122.76
FEBRUARY 2 116.70
MARCH 3 102.91
APRIL 4 o 31.19
. MAY 5 398.68

JUNE 6 | 1202.68

Table 3 Import Requirements for the

Example Water Distribution Problem



CANAL

.93

.00

00

00

.00

.00

.00

.00

.00

00

51

39

43 -

A-B A-D B-C C-D D-E
CAPACITY,. 1000 ,
ACRE-FEET/MONTH 452 392 422 392 380
$/1000 ACRE-FEET 584 484 309 346 200
MONTH
JANUARY 1 0.00 151.76 200.00 234.01 380
FEBRUARY 2 0.00 148.70 196.00 237.07 380.
MARCH 3 0.00 135.91 211.00 251.80 380.
APRIL 4 0.00 64.19 277.04 323.53 380
MAY 5 0.00 389.68  0.00  0.00 380
JUNE 6 0.00 389.68  0.00  0.00 380
JuLY 7 0.00 348.83  0.00 40.85 380
AUGUST 8 0.00 389.68  0.00  0.00 380
SEPTEMBER 9 . 0.00. 47.70 - 354,07  34.02 380.
OCTOBER 10 0.00 3.00 20.33 17.93  20.
NOVEMBER 11 0.00 0.00  0.00 19.68 19,
DECEMBER 12 0.00  0.00 271.44 302.66 332.
Table 4 Canal Shipping Policy for the

Example Water Distribution Problem



DECEMBER 12

Table 5

A
CAPACITY IN
1000 ACRE-FEET 824
MONTH
JANUARY 1 0.00
FEBRUARY 2 0.00
" MARCH 3 0.00
APRIL 4 0.00
MAY 5 0.00
JUNE 6 824.00
JuLy 7 455,69
AUGUST 8 49.68
SEPTEMBER 9 0.00
OCTOBER 10 0.00
NOVEMBER 11 12.00
0.00

Example Water Distribution Problem

RESERVOIR

2430

23.

307.

472.

480.

453

96.

109.

174.

2-51

.00

.00

.00

96

36

73

98

.03

96

69

05

.00

64.

82.

26.

946

00

09

80

.00

.00

.00

.32

.00

3100

626

922.
1053,
1163.
7
1324,

813.

56.

.67

50

56

73

.03

95

66

12

.00

.00

0.00

303.

Reservoir Storage Policy for the

81



VI. Conclusions

The algorithm developed in this study to solve network prob-
lems with gains has proved to be very successful in solving a
large number of different types of network problems with various
gain parameters. The gain parameter associated with each of the
arcs in the network can be ‘any nonzerc gquantity. The unit costs
can be any positive or negative quantity and any directed net-
work cyclic or acycllc can be considered as long as the éqst to
traverse .any cycle is not negative. Multiple arcs between two
nodes are permissible. The solution technique is simple in con-
cept and very easy to implement either for hand calculations” or
on a digital computer. All optimal intermediate solutions are
available. Also, the algorlthm can be used to find the maximal
flow. through the network. ' This maximal flow is at the minimal
cost.

. _With respect to the distribution of water, the- proﬁosed
algorlthm adds a new dimension to the cost considerations that
determine the optimal operating policies of the system. The
simulation studies of water distributioh plans can now bé per-
formed to a greater depth of analysis than before by con51der1ng
the evaporation and seepage characteristics of the reservoirs
and, canals. The selection of-the canal-reservoir system: and‘ the
optimal policy for managing these can now be achieved with a
greater degree of understandlng of the system than has been pos—
51ble before. ; . Loue
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A Computationally Efficient Algorithm

for the Network with Gains Froblam

by P, A. Jensen
and Gora Bhaumik

I. Introduction

The networks with gains model is a useful extension of the
pure network ﬁodel. Appliéations have been suggested in water
rescurces planning (2), electrical power planning (6), and
others (9). $Several authors have suggested solution approaches
(4,7,8,9,10,12). This paper suggests an approach which is
simple in concept and very efficient computationally. The ap-
proach is based on (3) with the addition of several modifications.
Large problems have been solved in times comparable to those
required for the most efficient pure network codes.

The network with gains problem treated here is structured

on a network with m vertices denoted v, ,v

1 reen sV and n directed

2

branches denoted bl’b2’°°"bn' When necessary, a branch will

be identified by its end points using the notation bk(i,j) or
simply (i,3j) where the initial vertex of the branch is v, and
the terminal vertex is vj. Associated with each branch bk will

be a flow £ , a capacity for flow, c

X a cost per unit flow, h

k' k

and a positive gain, a The branch flows are the decision vari-

ko

ables of the problem while the branch costs, capacities and gains



are parameters. Flows are bounded from below by zero. A single
source vertex is defined and called Ve and a single sink vertex

is defined and called vt.

The structure of the problem is described by the network
G=(v,I') where V is the set of vertices and T is the set of bran-
ches. A useful definition related to structure is that the set

Ak is the set of branches whose initial vertex is Vk' and Bk

is the set of branches whose terminal vertex is vk.

A path in the network is a sequence of alternating vertices
and branches written as:

V...b

il PR 1b. seoe sV

§1°Vi2’ 792 i (k-1) P35 (x-1) " Vik

).

where bjz = (lz,lz+l

Here i_,1i

1 2,...,3‘.k represent indices of vertices, while jl'j2'°""

jk—l represent indices of branches. The branches of a path will
be distinct but the vertices of a path may be repeated. A path
with distinct vertices is called a simple path. Note that a
path as defined here is directed. A circuit is a path‘whose
vertices are all distinct except the end points. Thus Vi1 Vik
for a circuit.

The problem to be solved is to find an assignment of flows

to branches such that a given amount of flow is obtained at the

sink at a minimum total cost. 1In addition, the flow must not

3-2



exceed the capacity for any branch, and flow must be conserved
at each vertex except the source and sink. Flow will not be
conserved in branches as a flow of'fk which enters a branch
bk(i,j) at vy will arrive at vj with a value of akfk' A gain

is allowed to be any positive number.

This is a linear programming problem and can be written

in the usual format:

n o
Min ¥ h, £ (1)
g KK
subject to:
T akfk - by fk = 0; i=1,...,m: i # s,t (2)
keB kel :
i i
kZB akfk = Fs,t (3)
““t
Here FS & is a given amount of output flow that is to be

obtained. The omission of a conservation of flow constraint at
v implies tﬂat aﬂ unlimited quantity of flow is available at
the source. Most network with gains problems with positive
gains can be put into this format with a suitable construction
of the network. |

An assignment of flows to the branches that satisfies (2)
will be called F. An F that satisfies (1) for some value of

flow at the sink less than Fs will be called an intermediate

.t



optimum. The flow F which satisfies (1), (2) and (3) is called
the optimum.

The general approach taken to obtain a solution will be
similar to that of Busacher and Gowen (3) for the pure network
problem. The procedure begins with an intermediate optimal Fb
for some value of output flow at Vt' All flows equal to zero
are acceptable starting solutions when there are no directed
circuits in the network with negative cost. Next an augmenting
network is constructed Gg which determines for each vertex the
minimum cost per unit of additional flow to the vertex and the
path over which that flow may be obtained.

For a pure network this network would take a tree struc-
ture, but for the network with gains, the network may consist
of one or more components. Each component contains either a
flow generating circuit or the source . The output flow
is increased in Gg along the minimum cost path defined for the
sink until one or more branches in Gg become saturated. This
to obtain the flow F.. The flow F. thus ob-

0 1 1

tained is an intermediate optimum. A new augmenting network

flow augments F

1
is constructed, GA' and the output flow is again augmented to

obtain Fz. This process continues iteratively until the desired

output flow or the maximum flow is obtained. At every step Fk



is an intermediate optimum; hence at termination the flow pattern
must be the optimum or the maximum flow through the network if
Fsﬁt is greater than the maximum flow.

The approach can be made computationally efficient by using
a simplex operation to go from one augmenting network to the
next. Compuﬁerized versions of the algorithm have been tested
on large problems (up to 2400 branches) and take only about twice

as much time as the most efficient pure network algorithms on

problems with the same structure but no gain.



II. Flow Generating Circuits

Flow can be augmented into a vertex from one of two sources.
Either the flow can originate at vs, at which an unlimited amount
of flow is available, or it can originate at a flow generating
circuit. A flow generating circuit is a set of branches which
form a circuit such that the circuit gain (the product of the

branch gains) is greater than one. Figure 1 illustrates the

concept. In the figure the triplets show (hk'ck'ak)' Flows are
shown by the arrows above the afcs.
Va
)

Figure 1l: Flow generating circuit

Note that the flow £(1,2) = 1 produces a flow £(2,3) = .7;
furthermore, this produces the flow £(3,1) = 1.4. At vl conser -~

vation of flow requires that £(1,4) = .4. Thus the flow in the
circuit with circuit gain greater than 1 has generated flow in
b(l,4).

In general, the circuit is defined by a sequence of vertices



and branches which can be written as:

b b n.o»b, N
Vi1tT51vi2"52 kil

where bjﬂ = b(lz,lz+l) for £ = 1,2,...,k-1
and bjk = b(lk,ll).
. k
The gain of the circuit is B where 8 = I ajﬂ. For a flow
4=1

generating circuit 8 > 1. Flow can be generated out of the cir-

cuit at any vertex of the circuit. Let Ty be the flow generated

1

by the circuit and removed at vertex Vg Let fjl and fjk be the

flows in the first and last branches.

By conservation of flow at Vi

fjl + Til = akfjk

k-1
But £, = Ta,, - £,
ko, 34 i1

£0 F Ty = BEy

Tl T fjl(B-l) (4)

Thus B8-~1 units of flow can be generated at v,l for every
i

unit of flow routed around the circuit.

Let 7., be the flow entering v.,, from b., in the circuit,
ik il ik

thus 7.. = a f£f... Also 7, = 8f.,.,. Thus the flow out of circuit
jk k ik ik Jji ,

can be represented as:

Tll = Tjk(l-l/e). (5)



ITI. The Augmenting Network

For any intermediate optimal flow,F, the augmenting network
GA = (V,TA) is constructed from the original network G = (V,I)
for the purpose of finding the minimum cost path over which flow
can be augmented into the sink.

The vertices of GA are the same as those of G. The branches
of GA depend on the flow F on the branches of G. The branches
of GA are chosen from the set of admissible branches. Define
the set of admissible branches TD as follows:

bk(i,j)e r. if bk(igj)e T and fk < Cp

. . if b . . >
bk+n(j’l)e FD k(l,j)e T and fk 0

D

If the branch bk appears in GA, its parameters are derived from

the corresponding branch in G. The capacity of bk will be ck-fk,

its cost will be hk and its gain will be aka The branch bk+n(j'i)

is called the mirror branch of bk(i,j)° Its parameters are
Chrun = T ° B h = mhk/ak and I l/ak, Branch bk is also

called the mirror branch of b .
k+n
An augmenting network is a collection of admissible branches
which define one and only one augmenting path for each vertex.
Augmenting paths are of two types, those that originate at the

source and those that originate at a flow generating circuit.

An augmenting path originating at the source is a simple path



whose initial vertex is the source. An augmenting path origina-
ting at a circuit consists of the circuit and possibly a simple
path originating at some vertex in the circuit. Figure 2 shows
an augmenting network with one and only one augmenting path de-

fined for each vertex. Note the paths for two vertices are not

necessarily branch disjoint.

Figure 2: A Flow Augmenting Network



Note that a component of GA without a circuit, is a tree with
k vertices and k-1 branches, while a component of GA with a cir-
cuit connects k vertices with k branchés, There is at least one
component which is a tree rooted at the source (it may be vS
alone). Thus the augmenting network has m vertices and m-1 bran-
ches.

The problem now is to choose PA from the set of admissible
branches to form GA such that for each v, there exists one and
only one augmenting path into via Furthermore, the path thus
defined must be the path which can provide flow into 2 at the
minimum cost per unit. To calculate the per unit cost, it is
necessary to consider the branch gains ak as well as branch
costs hkg as one unit flow at v, may require more or less than
one unit of flow in each of the branches of the augmenting path.

Define for each vertex, vi, a potential § (1) that is the
cost of obtaining one unit of flow at vi using only the branches
in TAe For a tree rooted at the source, the values of 6 (i) are
easily assigned by setting 6 (s) = 0 and applying recursively
the relation 6 (§) = (8 (i) + hk)/ak where bk(i,j)e]f‘Ao This
relationship follows from:

Theorem 1l: TIf & (i) is the cost of obtaining one unit of flow

at Vi then the cost of obtaining one unit of flow at vertex

3=10



j through the branch bk(i,j) is:

6(3) = (6 (1) + hk)/ék- (6)
Proof: To obtain one unit of flow at vj requires that l/ak
units of flow be transmitted through vio The cost of bringing
this flow to A is 6(i)/ak. The cost of transmitting it through
bk is hk/ak, Thus 8 (3) = (6 (i) + hk)/ak.

For components of GA with a circuit the potentials for the

vertices on the circuit must first be obtained.

h 2: i i i o o ? . . # o0 o 4 . ’ o 7 .
Theorem Given the circuit vll,bJl V12’b32 vlh bjh vll
the potential at Vi1 is:

h y h
§(i.) = B/B-1) £ h. /1 a,, . (7)
1 k=1 % g=x 3%

Proof: First find the cost of routing one unit of flow around

the circuit starting at vil'
The flow in b.. is 1 with cost h,
jl jl

The flow in bj2 is ajl with cost ajlhjZ

The flow' in bj3 is a jlaj2 with cost ajlathj3
. h-1 h-1

The flow in b.., is I a.. with cost I a. h., .
g 3t g=1 4 Im

Thus the total cost to route one unit of flow around the circuit

starting at vil is:
h k-1
h + 2 (1 a.

X Yh,
31y 4=1

jk°



One unit of flow out of circuit at vy requires 1/(8-1)

units in branch b...

jl
Thus the cost per unit of flow at vil is:
h k-1
h,.. +% (1 a,, )h,
i) = k2 1= I7
1 B=1

Multiplying and dividing this expression by g yields:

h

/1 a,

_ h
5 (i) = (B/B-1) T h, 51

k=1 3% =k

This proves theorem 2.

Given 6(11), potentials can be determined for all other
vertices in the flow component using Equation 6.

An optimal augmenting network is GX such that for any other
allowable augmenting network GA

5* (1) < 8§(i) for all Vi'

where §* (i) are calculated according to the rules above for the
graph GX and § (i) are calculated for GA.
Theorem 3: A necessary and sufficient condition that G* = (V,TX)

A

is an optimal augmenting network is that:
5*(3) < (6*(1) + W) /a
for all bk(l,j)eY‘D°

Proof: To prove necessity, assume that there does exist an ad-

missible branch bk(i,j) not in Gg such that:

3-12



% (1 * (1
6% (3) > (6*(i) + hk)/ak.

Since the branch is admissible, flow can be increased from vi to
vj. The cost of obtaining a unit of flow at vj from vi is
(6% (i) + hk)/ak. Since this cost is less than §*(j), Gg cannot
be optimum. Therefore, we have a contradiction.

To show sufficiency assume that GA is not optimum but that:
5 (3) < (6(i)+hk)/ak for all admissible branches. Since GA is

not optimum there must be some v, such that § (k) > §*(k). Then

k

there must be some augmenting path to Vi in GX which is different

from that in G_. Let the path in Gi be (vil,b

A ).

A

1 lzloonpvik

Consider the vertices in this path in GA and let viz be the first

vertex (in the order they appear in the path) such that 6(iz) >

6*(i£). Thus & (i Yy = §* (1 ). By the rules for determining

4-1 To-1

vertex potentials

5% (i,) = (6%(i, ;) +h, )/a .

iz—l
Thus G(iz) >‘(6(iz_l) + hz_l)/az for the admissible branch bz—l
and a contradiction has been found. Thus theorem 3 has been
proved,

Theorem 3 suggests an algorithm that can be used to construct
an optimal augmenting network. This algorithm was used in (2)

to find every GA. In the procedures of this paper, it is used

to find only the initial one. 1In the algorithm Pi is a pointer



for v, which indicates the branch of FD which terminates at Vi
i

in G_.
A

Algorithm to find an Optimal Flow Augmenting Network

19

Let 6 (i) =M for all viev except VS, where M is a large
numberx .
Let 6 (s) = O,
Let P, = 0 for v,eV
i i
For each branch bk(i,j)eT
. S .
if fk < c, and 6 (3) (5 (1) + hk)/ak'
set 5 (j) = (8 (i) + hk)/ak
set P, =k
J
. s o
if fk > 0 and § (i) (6 (3) hk/ak)/(l/ak)'
set 8 (i) = (8 (3) ~ hk/ak)/(l/ak)
set P, = k+n
i
if neither condition occurs, make no change.
If none of the Pi changed in step 2, stop with the GK
defined by the pointers. If one or more of the Pi
changed, use the Pi to find any flow generating circuits
that may have been formed. If so, use equations 6 and

7 to set the potentials for the vertices in the circuit.

Repeat step 2.



IV. The Maximum Flow in the Augmenting Network

The augmenting network is used to determine the change in
the branch flows of the original network which will augment the
flow into the sink at the minimum cost per unit. This is accom~
plished in two steps. First the maximum flow to the sink of GA
is determined. This flow is then used to modify the flow of G.
In this section branch designationg, flows and parameters refer
entirely to the graph GA' Et will be the flow out of the sink
in GA.

The flow augmenting path for v, may be rooted at vs or at

t
a circuit. First consider the case when the path is rooted at

the source. This is a simple path which can be written:

Ib- I . I."lb- 14 0
Vil jl Vi2 jk V1(k+l)
where

vil = vS and vi(k+l) = Vt'

Define for each vertex Vea on the path a gain parameter g(ia)
which is the product of the gain on each branch between vy and
vt. Thus

X
¥ = Tag, a=1l..k

This is a useful parameter because it indicates the change in

£ for a unit change in fja' Thus for a unit change in fja'



ft increases to g(ia)a Alternatively for a unit increase in f_,

the flow fja must change by 1/g(ia).

Theorem 5: When the augmenting path is rooted at the source,

the maximum value of ft ig:
il

A = Mj:n Sy D EEW (8)

where iﬂ is the index of the 4th vertex in the path and jz is

the index of the 4th branch.
Proof: A value of A for £, results in a flow of A/g(iz) in

branch 4. For feasibility this must be less than cj2 or:

sz = A/K(iz) < 44
A<, c§G)
and theorem 5 is proved,
When the augmenting path is rooted at a circuit, the path
consists of two parts, the circuit and a simple path to the sink
from some vertex in the circuit. The branches b.. through b,

jl jh

form the circuit and the branches bj(h+l) through bjk form the

simple path. It is possible that the sink is a vertex on the
circuit in which case the augmenting path consists only of the
circuit.

It follows from theorem 5 that for the portion of the path

not in the circuit, the maximum flow increase at vt ise

A = Min c., “X(iz) (9)
P ops1<gsk 7



Theorem 6: For the branches in the flow generating circuit, the

maximum flow increase in ft is:
Frad

A = (1-1/8) Min[Min, {c. - K(i;)},c. 8. ¥ (i g (10)
c % <i<h 34 £ 11 lh+1,
Proof: It has been established that

= fjl(e—l) or £,. = Til/(ﬁ-l)

il il

where 8 is the circuit gain and T is the quantity of flow genera-

1

ted out of the circuit at vil' It can be shown that the flow on

the £th branch of the circuit is

s = fy1 7 B °g(ih+1)/g(iz) or

g0 = Ta1 8 8 G/ -] 2seen

must increase by A/5(1h+l

f

1

£

).

To obtain an increase of A at Vt’ Til

Thus
S VAL IENRRRCIS ) I

bs ey ) (6D
and from the“expression for ij:
NY2 {EHU) IRERS {CHINRVZ | CTRRICES B ERC
Simplifying
a< [e-1/8 ) ey, ¥ (i) 2sesh

Combining these results:

A< 1-1/8 Min{Mi AR SET0) I TS (¢
< /8 1n{2:1;;$h{c]z (115)1 CJlBK(1h+l)}



which proves theorem 6.
Considering all the branches on the flow augmenting path,
the maximum increment is:

A = Min {AP,AC} (11)

Equations 8 through 11 determine the maximum value of St
that can be obtained by increasing flows on branches of the aug-
menting path. That value is A. A in turn determines the flows
in the branches. Thus for branches not on a circuit

£, = ;
" A/g(lz) h+l < 4 < k.,

For the branches on a flow generating circuit

i

£, =bo[p/e-1}¥(i,) 224 =n

IA

and £

!

= ol - 6]
With these flows imposed on the augmenting network, at least one

branch becomes saturated (flow equals capacity).



V. Augmenting the Flow in the Original Network

The flow on the augmenting network is now used to augment
the flow in the original network to find a new intermediate op~
timum. Let FK be the flow on G used to define the admissible
branches (which in turn determine GA). Let f?(i,j) be the flow

on branch bz(i,j) determined by FK. Let FK+l be the augmented

+ . .
flow on G and fﬁ l(i,j) be the branch flow, Let fz(l,j) and

fz+n(j,i) be flows from GA as defined in the last section. The

augmented flows are determined as follows:
K

+1 . ., _ K. . - .
£, (1,3) = £,(i,3) + fz(lrj) fz+n(3'l)/az

for all bzeF.

It can easily be shown that the flow FK+1 is feasible. The flow

at sink for FK+1 has been increased by the quantity A over its

value for FK. FK+l is an intermediate optimum because FK was

an intermediate optimum, and the augmenting flows provide in-

creased flow at the sink at the minimum cost per unit,



VI. Optimization of the Augmenting Network

Wwith the augmentation of the sink flow, one or more of the
branches on the augmenting path becomes saturated and hence
inadmissible. The problem now is to find an optimum augmenting
network for the new flow. This task is pursued in an iterative

manner with each augmenting network derived from the previous

. . K K .
one. Therefore identify GA = (V,PA) as the augmenting

network at the Kth iteration, and address the problem of finding

G§+l= (V,F§+l) after the flow has been changed.

Consider first the case in which only one branch becomes
saturated. This branch is called the leaving branch, bL. De-

K
leting the leaving branch from GA forms two graphs G (X,FAl)

AL

and G = (X,T

A2 ). The latter graph includes the sink and all

A2

other vertices disconnected from the source or a flow generating
circuit by the removal of the leaving branch. It can be shown

that GA2 is a directed tree rooted at the terminal vertex of the

leaving branch. GAl consists of the remaining vertices and bran-

ches of GA. GAl includes the source and all flow generating cir-

cuits of GA' It follows that:



In addition to the branch leaving the admissible set, it is
also possible that some branches will enter the admissible set
due to the flow change at iteration K. Let M be the set of
branches which enter the admissible set at this iteration. It
is apparent that MD must consist only of mirror branches on the
éugmenting path, because flow has been increased only on these
branches.

It is convenient to define the network G!,_ = (i,Piz). The

A2

plus the mirror branches of T_.. There

7 .
t t £
se PAZ consists o FAZ 5

exists in GA a unigque path between every pair of vertices of X.

2
The quantity X(i) is defined for viei as the product of the branch

gains on the path from vi to v, in G/ B%i) can be interpreted

t a2’
as the gain in flow which occurs along this path. Alternatively,
l/K(i) is the amount of flow required at vi to obtain one unit
of flow at Ve The quantity X(i) is called the vertex gain of

V. e
i
There are now two quantities associated with the vertices
of the graph, the vertex potentials & (i) determined for each ver-
tex by the structure of Gi and the vertex gains §(i) assigned
only for the vertices in X. These two quantities are used ex-

tensively in the development to follow and are the key to the

efficiency of the algorithm. Two important relationships can be



written in terms of vertex potentials and gains. The proofs of
these relations are straight forward.
Let vy and Vi be two vertices in X. The gain of the unique

path in G!

A2 from v, to v, is XQaL/Xﬂﬂ. The gain of the path is

the product of the branch gains on the path. Thus one unit of
flow at vy through this path requires X(b)/X{a) units at va.
The cost to obtain one unit of flow at vb through the path

from va ige

5 ()-8 (a) * ¥ (b)/¥(a)

This quantity might be termed the cost of the path. These re-
lationships are important because characteristics of a path can
be calculated using only values associated with the ends of the
path.

The new augmenting network will be constructed by one of two
approaches. It will later be shown that one of these approaches
yields an optimal G§+l. For the following discussion, define

the following subsets of admissible branches:

]
i

{b(i,3) | b(i,3)ely, v, eX, vjex}

o = (P(1,3) [ b(i,3)eT s v, ex, v eX)

o
i

o
il

{b(i,3) | b(l.J)ePD, v, eX, vjex}

{b(i,J) | b(l,j)eFD: VieX, vjeX}

o
It

3=22



The first approach constructs G§+l by adding some branch

g{(i,j) which is a member of D

2 1

which forms a directed tree rooted at v.. Thus

to the graph GA and the sub-

graph of GA2

the sink and the other vertices of X are connected to the source

or a flow generating circuit of G through the branch b, . This

Al k

approach is shown in Figure 3a.
K+1 ]
The second approach constructs GA by adding some branch

Together with branches of G'

H{(i,j) which is a member of D A2

4.
this branch forms a circuit. If the gain of the circuit is greater

than one, it is a flow generating circuit. This circuit is

source of flow for the vertices of X. G§+l is formed by GAl'
the circuit formed by bk' plus selected branches of GAz which

form a directed tree rooted at the circuit. This approach is
shown in Figure 3b.

Both constructions form an augmenting network when all the
branches of Giz are admissible. We assume for the present that
this is true and will discuss later the implications when it is
not. Note that adding branches from the sets Dl or D3 do not
yield an augmenting network.

Let & (i)"be the vertex potential for v, in G§+l. For the

optimum augmenting network & (t)' will be at a minimum. Let

A =08(t)'=-8(t), or the increase in the sink potential obtained



a)

30

b)

Figure 3 Two Constructions for the augmenting network



for optimum flow augmenting network., Consider the first con-
struction approcach.

Theorem 2

A < Minimum [ (1) +h)/a -6 (3)] /83 (12)

bk(l,j)eD2

Proof: The addition of bk(i,j) to form an augmenting network,
would result in an augmenting path to the sink consisting of threc
parts: A, the path from vj to Ve which consists of branches from
A27 B, the branch bk; and C, the path from the source (or from
a flow generating circuit) to vy which lies entirely in GAl'
Consider the flows in these three parts required to obtain
one unit of flow at Vi One unit of flow at Vi requires 1/%(3)
units at vj and l/}S(j)-ak at Vi' The cost of these flows are
computed as follows:
For part A the cost is:
T8 (1) -8 (3)/¥(3)
For part B the flow through the branch results in a cost of:
h /8 (3) 2, .
For part‘c, the cost to obtain one unit of flow at v, is
§(i). To obtain the required flow the cost is:
G(i)/é(j)'ak-

Adding the three costs yields:



s ()" =8(t) + [(6(1) +n)/a~5(]/F(3):

Thus for any bkeD2

A < [(5(1) + h)/a = 6(3)]/8(3)
and theorem 9 is proved.
Now consider the second construction approach.

Theorem 10

The addition of bk(i,j)eD4 to GA forms a directed circuit

2
with gain:
B = X(j)-ak/ﬁ(i) (13)

Proof:

b. eD, implies that v.eX and v_ei. Thus b, does form a
k 4 i 3 k

directed circuit with branches of GAZ. The gain of the path
from vj to v in GAZ is 6(j)/5(i). Thus the circuit formed by
adding bk has gain B(j)'ak/K(i).

Theorem 11

A < min[(s (1) +h)/a, - s3] /F@H-a-1/8] 19
S
where

s = {b | b (i,3)eD,, a; - ¥ (3)/Y(E) > 1}.
Proof: When the addition of the branch bk(i,j) forms a circuit

with gain greater than one, the augmenting path to vt consists

of four parts: A, a simple path from some vertex vz on the cir-

cuit to the sink; B, a path from v  to v,
J

circuit; C, the branch bk(i,j); and D, the path from v

which forms part of

P to vi



which completes the circuit. Note that except for bk' the path

. £ . v
lies entirely in GA2

In order to calculate the potential at v, for the augmenting

t

path produced by b, , consider first the flows required in the

k
four parts to_obtain one unit of flow at Vi Of course, the
flow at Ve is to be 1. The flow out of v, must then be 1/§(4).

The flow into 4 from the circuit must be, according to previous
arguments, 1/(1-1/8)-§(4).
The flow out of node vj is to be:

1 3 1

(L-1/8) ¥ (%) ¥(3) — (1-1/8) * ¥(3)

The flow out of node vi (through bk) is then:
1/[(1-1/8) - ¥ (3) - akl
Now to calculate the cost of this flow in four parts. The cost

in part A to obtain one unit of flow at Ve from v, is:

8(t) -3 (8)/8()

The cost to obtain one unit of flow at vz from v. is:

5(2) = 5(3) * B (4)/¥(3)
Thus to obtain the required flow the cost in part B is:
Lo 0r-s () - %) /¥ 1 [ 1717830 ]
= [/ a-1/m))pb ) /%) -8 /55)]
The cost of the required flow in branch b, (part C) is:

k
li/a-180[n /5) -, ]



The cost to obtain one unit of flow at Vi from VZ is:
5 (i) - 8(L) = J(1)/¥L)
Thus the cost in part A is:
b -6 5@ /1e]l va-1/6-4G)-a ]
Adding the costs of flow in the four parts and reordering terms,
the modified potential at v _ is &(t)':
8 (L)' =06 (t)= 5 (L)/8(2)
o (0 [1/a-1/e) 1L 1780 -81) /0) - ¥(3) -2, ]

+ [17a-1/0) - 53] [ -6 (3) +n, /a5 (1) /2, |

i

4

Recognizing that K(i)/ﬁ(j)‘a = 1/8, the terms involving § (£)

k

drop out and the change in potential at Ve caused by adding bk

is:

5(8)" -5 (t) = [(6(1)+n)/a 1/ [(1-1/8) ¥ (] .
This difference must be at least as great as minimum difference
A. Thus theorem 11 is proved.

The branch which will enter the augmenting network to form

G§+l will be the member of D2 or D4 which causes the smallest

increase in § (t) as measured by the equations 12 and 1l4. Let

this be branch bE. The potentials for the vertices in GK+l are

A
determined by the following. First:

8 ()" =6 (t) + A.



Each vie§ will be connected to Ve through a path chosen

from G' Thus the following relationship is true:

A2°
5(t) = 6 (L)Y (L) =8 (L)' = &6 (i)' /¥(i)
Rearranging
(1) - 8(1) = ¥ [s(8) -5 ()]
or §(i)* = 6 (i) + §(i)A for viei (15)
For v,eX:
1
5§ (i)' = 8 (i) (16)

Thus when the entering branch is determined, the vertex poten-
. R+1 . .
tials for GA are easily determined.

Theorem 12

The augmenting network formed by adding the branch from D2

or D4 which yields the minimum increase in § (t) is optimal.

Proof: According to theorem 3 a necessary and sufficient con-
dition for an optimum augmenting network is that the network
defines a unique augmenting path for each vertex and that

6 (3) s (6(4) +h)/a

for all bk(i,j)eTD
AR . . K+1 :
where 6 (i) is the vertex potential determined for G . The

theorem will be proved for all branches in the sets Dl’Dz’D3

and D,. First for b, (i,j)eD, the condition above must be true

4 k 1



because vieX and vjeX, §(4)' = 8 (L) for vzeX, and Gi is optimal.

For bk(i,j)eD the condition is satisfied because vieX and

2

vje§, 5(i)' = 8(i) and 8(3)' = 6(3) + 8(3)A. From the condition

for choosing bE

[(6() +n)/a,

5 (3))/¥(3) = a;

or

v

(6 (1) + h)/a = 5(3) + 5 G)a

ox
(5 (1) + hk)/ak z2 5 (3"

For bk(i,j)eD

3’ viei and v,eX, (i)' = 8 (i) + A¥(i) and §(3)'= 5 (3).

Since (6(1) +h)/a_ 2 6(5)
COTRAINIY (s (i) + aB() +h) /a2 6(3)
or

(6 (1) +h)/a = 6(3)".
For b, (i,3)eD,, viei, vjei,

5(1) " = 6 (1) + A¥(1), 8(3)' =8(3) + Ab ().
From theorem 11,

(6 (1) + hy)/a = 5(3)
¥(3) (1-1/8)

A<

where

8 = 8(3) - a /(i)
Substituting for 8 and manipulating yields:

pE(3) (1-3(1)/8(3) "a,) < (8 (1) +h)/a - 8(3)
ox 5(3) + A¥(3) < (s(i) + a¥(4) +h)/a

or 5(3)"' = (8 (i)' + hk)/ak



This completes the proof.
Theoreﬁs 9, 10, and 1l provide a simple basis for choosing
the variable to enter the augmenting network. One must search

through each branch in D, and calculate the potential change

2

noted in Theorem 9, then for each branch in D one calculates

4’
the circuit gain of Theorem 10 and the potential change noted

in Theorem 1ll1. The branch to enter is that one which gives the
smallest change in § (t). Note that all the calculations for each
branch reguire gquantities only associated with two terminals of
the branch.

The two approaches considered for constructing the new aug-

menting network both require the selection of branches of GAZ to

form a directed tree (or perhaps a directed circuit) in G§+l.

One difficulty that may arise is that not all the branches of
GAZ need be admissible. This is the case when a branch of GAZ
has zero flow in the original network. 1In this case the mirror
branch is not admissible. Another way this can occur is when
more than one branch becomes saturated at a particular iteration.
In this case the practice is to choose the branch nearest the
source (or flow generating circuit) as the leaving branch. Thus

a branch of GA2 is not admissible. No provision is made to pre-

vent these occurrances in the algorithm, and indeed inadmissible




branches do on occasion enter the augmenting network. This causes
the amount of flow to the sink to be augmented by zero for some
iterations. This corresponds to degeneracy in a linear programming
algorithm. The inefficiencies caused by degeneracy are more

than compensated by the efficiencies introduced in the process

of generating augmenting networks.



VII. Triple Label Representation of the Augmenting Network

The flow augmenting network GA = V,TA can be described
completely using a triple labeling scheme suggested in (10).
For this representation each vertex is provided three labels,
éach indicating a branch of the graph (a member of FA). These
labels for vilare called the back pointer PB(i), the forward
pointer PF(i) and the right pointer PR(i). The back pointer
of v, is that branch of the GA which terminates at v The
forward pointer of v, is a branch of GA which originates at v, .
The right pointer of v, is a branch of GA which originates at
Vi where Vi is the initial vertex of the branch indicated by

the back pointer of v, Figure 4 illustrates the use of the

pointers.

PB(i) = bl
PF(l) = b2
PR(l) = b3

Figure 4: An example of the triple label representation

It is characteristic of GA that each vertex is the terminal

vertex of at most one branch. However, each vertex may/initiate

more than one branch. Thus, for a given GA’ the assignment



of back pointers is unique, but the assignment of forward and
right pointers may not be unique. Figure 5 shows a directed

tree and its representation with vertex pointers. An equiva-

lent representation would replace PF(S) = bz, PR(2) = bl, PR(l) =
0 with all other pointers remaining unchanged.

PB(S) =0 PB(Z) = b2

PF(s) = bl PF(2) = b3

PR(s) =0 PR(2) = 0

PB(l) = bl PB(t) = b3

pF(l) =0 PF(t) =0

PR(l) = b2 PR(t) = 0

Figure 5: The representation of a tree
Figure 6 shows a component which includes a circuit and
its pointer representation. Again this representation is not

unigque because of the two branches leaving v

1°
PB(l) = bl PB(3) = b3
PF(l) = b2 PF(3) = bl
PR(l) =0 PR(3) =0
PB(Z) = b2 PB(t) =‘b4
PF(2) = b3 PF(t) =0
PR(Z) = b4 PR(t)_= 0

Figure 6: The representation of a circuit



It may be noted that every vertex in the graph will have a
back pointer, except perhaps the source. The source will have
a nonzero back pointer only if it is in a directed circuit of
the graph. A vertex may or may not have nonzero forward and
right pointers. The triple labeling répresentation is used ex-
tensively in the algorithm to calculate vertex potentials and

gains and for constructing a new flow augmenting network.



VIII.

The Algorithm

The theorems described in the subseqguent sections lead to

an efficient algorithm to solve the network with gains problem.

The algorithm is presented here with references to the theorems

which justify the various steps.

l.

20

Set all branch flows in G equal to zero.

Use the algorithm described in section III to find
0

the initial augmenting network GA' Let K = 0.

Augment the flow into v, by adjusting flows on the

t
branches of G defined by the augmenting path for v

. K . .
in GA' The maximum flow change which causes one of

t

the branches on the path to become inadmissible is de-
fined by Theorems 5 and 6. If the maximum flow change
would cause the sink flow to exceed the required flow,
increase the flow only to the required amount and ter-
minate the algorithm. Otherwise the branch which be-
comes inadmissible is bL. If more than one branch be-
comes inadmissible, choose the one which appears
closest to the source of the augmenting path.

Delete bL from the augmenting nétwdfk. Use theorems 9,
10, and 11 to determine bE,‘the branch which enters the

augmenting network and causes the minimum increase in



7a.

the sink potential. If there are no admissible branches
which can enter, the maximum flow has been found. Stop.

Otherwise, go to step 5.

. . R+1
5. Introduce bE into the augmenting network and form GA

using GA bE, and a suitable selection of the branches

l’

in GAZ to obtain an augmenting network.

6. Increase K by one and go to step 3.

For an example of the algorithm consider the network of Figure

This figure shows the branch parameters and vertex indices

associated with the network. These are eliminated from subse-

quent copies for clarity. The required flow at the sink is 10

for this example. Initially the flows are taken to be zero.

Figure 7b. shows Gg determined for the initial flows using the

algorithm of section III. The numbers in parentheses indicate

vertex potentials. The arrows indicate the augmenting path to

the sink and the maximum flow that can pass through it. This

f low causes branch (3,6) to become saturated; hence, it is re-

moved from the graph. The flows found in 7b. are impressed on

the network to obtain the flows in 7c¢. Figure 7d. shows the GA

1

found using the results of section VI. Note the entering branch

is (2,7). This graph yields a degenerate iteration because the



flow augmentation is zero. This occurs because branches (7,5),
(5,8) and (8,6) are inadmissible. They entered the augmenti ng
network as a result of the selection of branches in GAZ to obtain
a directed tree rooted at vertex 7 when (2,7) entered. The

next iteration causes (7,5) to leave and the flow increase is non-
zero. Subsequent augmenting networks are shown in Figures 7 £f.,
h., j., 1., and n. and the corresponding flows in the original
network are shown in Fugures 7 e., g., i., k., and m. Figure

70. shows the optimum flows. Note in these figures the poten-
tial of the sink steadily increases as the algorithm progresses.
An interesting augmenting network appears in 71. This was

formed from 7j. by the removal of (1,4) and the addition of (6,3).

The resultant network includes a flow generating circuit.



Figure 7: Example Problem
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IX. Computational Efficiency

To determine the computational efficiency of this approach,
four large network problems were solved with: an efficient
linear program which operated entirely within the core of the
computer (SP6600), an implementation of the algorithm of Bhaumik
(2).for the networks with gains problem (LEAKY), and an imple-
mentation of the algorithm of this paper (GAIN).Z The problems
solved were large transshipment problems generated by Klingman
(11), to test pure network algorithms. The problems were modi-
fied by assigning a randomly selected gain factor to each branch
from the range .5 to 1.5. The problems were run for various
values of output flow up to the maximum flow at the sink. They
were run on a CDC 6600 computer using the RUN compile{! The
results shown in Table 1 indicate the current algorithm is ap-
proximately twenty times faster than the linear program and
approximately ten times faster than the Bhaumik algorithm.

The problems shown in Table 1 are in fact pure network prob-
lems drawn from the reference (ll), modified to incorporate
branch gains. Problems 1,2,3, and 4 are respectively problems
16,17,18 and 24 from the reference. The total output flow for

each pure problem was 400,000 as compared to the maximum flows
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Table 1

Computational Times for Solving Wetwork with Gains Problems
Using Linear Programming and Two
Network with Gains Algorithms

Problem 1
400 vertices, 1306 branches, 8 sources, 60 sinks

Output Flow

114,609 362,198 384,868%
LP6600 181 (623) 178 (586) ——
LEAKY 20.5(14) 150.2(71) ——
GAIN 1.75(14) 8.52(103) 9.15(113)
Problem 2

400 vertices, 2443 branches, 8 sources, 60 sinks

Output Flow

73,894 394,806 438,559%
LEAKY 21.5(10) 183 (64) ' ——
GAIN 2.1(10) 12.4 (107) 15.4(135)
Problem 3

400 vertices, 1306 branches, 8 sources, 60 sinks

Output Flow

152,041 398,380 404,865%
LEAKY .20.5(11) 181.2(67) ——
GAIN 2.09(14) 7.48(91) 7.93(98)

Problem 4
400 vertices, 1382 branches, 4 sources, 12 sinks

Output Flow

191,942 364,614%*
LP6600 217.2(732) 178.4 (623)
LEAKY 20.3(9) 86.3(34)
GAIN 4.17(39) 7.85(91)
* Maximum flow in network. Entries in table are time in
seconds and the number of iterations are shown in paren-

thesis.
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for the problems with gains that appear in the last column of
Table 1. Computation times for the pure problems solved on the
CDC 6600 with the RUN compiler as obtained from the reference
are reproduced in Table 2. The codes shown are PNET, a special
purpose simplex network code written by Glover, Harney and King-
man, SUPERK(l), an efficient out-of-kilter algorithm and SHARE
(5,13) a generally available out-of-kilter algorithm. Although
the computation time for these codes cannot strictly be compared
to that of GAIN since the network with gains problem is more com-
plex than the pure network problem, it is apparent from Table 2
that the time for GAIN is of the same order of magnitude as for
pure network codes.

Table 2

Comparison of Computational Times (seconds) For
Pure Networks and for Networks with Gains

Problem Pure Network Solution Solution with Gains
PNET SUPERK SHARE GAIN
1 2.02 5.22 21.51 9.15
2 3.23 8.47 32,40 15.4
3 2.38 4.77 20.06 7.93
4 2.68 5.51 23.46 7.85

The computerized algorithm in its present form requires ap-
proximately 8m+8n words of core memory where m is the number of

vertices and n is the number of branches in the original network.



X. Problem Set Up

The algorithm described here finds the minimum cost flow
for a specified required output flow. This may appear to be a
restricted class of problems; however, there are several problem
set-up techniques that can be used to put other kinds of problems
into this form.

Consider the problem of providing some specified quantity
of flow at each of a number of sinks from limited amounts of
flow at each of a number of sources. This problem is modeied
by creating a super sink with a branch from each sink to the
super sink with capacity equal to the desired flow. Likewise a
supér source is created with branches from the super source to
each of the sources with capacity equal to the amount of flow
available at each source. The super source and super sink are
used as the source and sink of the algorithm with the required
output flow set equal to the sum of the required output flows
at the original sinks.

For some problems it may be necessary to impose lower bounds
on the flow in some branches. Thus a particular branch bk(i,j)
might have an additional parameter ﬂk which is the lower bound
on flow, Such a situation would be represented for this algorithm

by two parallel branches from i to j. The parameters on one
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branch will be (£ -M, ak) where £, 1is upper bound on flow for

k'’ k

this branch, -M is large negative cost for the branch and ak is
original branch gain. The second branch has the parameters

(¢, ~ & h

. i , th
X K’ Dy ak) Because of the large negative cost e

algorithm will saturate the first branch if possible. This con-
struction is possible only if the negative costs used do not
result in a circuit with a negative cost.

Some problems include both positive and negative branch
costs (negative costs model revenues). No specific output flow
is specified but the goal of the problem is to find the output
flow which minimizes total cost. This is equivalent to the flow
which maximizes profit. For this situation an additional branch
is constructed from the source to the sink with parameters
(M, 0, 1) where M is a large number. Thus this branch transmits
any amount at zero cost with gain one. The required output flow
is set to some large number greater than the optimum flow for
the original problem. With this construction the algorithm will
increase flow to the sink only if the sink potential is negative,
When the flow reaches the point where the minimum cost flow aug-
menting path in the original network has a positive cost, the
added branch becomes the augmenting path. Thus the flow in the

original network is the profit maximizing flow.

3-46



XI. Conclusion

This paper has described and provided the theoretical foun-
dation for an algorithm for the network with gains problem. The
algorithm is similar in spirit to that of Busacker and Gowen for
pure networks; however, the incorporation of gains makes for a
considerably more complex situation. The algorithm has been
coded for computer implementation and has been found to be very
efficient. Large problems have been solved with the algorithm
in approximately one twentieth of the time required for an ef-

ficient linear programming algorithm.
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Appendix

The Network with Gains Computer Program

This program solves the generalized network minimum cost
flow problem. The user must specify the arcs of the network to
be solved and four parameters for each arc. The parameters are
cost per unit flow, lower bound on flow, upper bound on flow,
and the gain for flow passing through the arc. The user must
also specify an input node which is assumed to be an infinite
source of flow and the output node which is to be the sink for
flow. The user will specify a desired output flow. A require-
ment on the network for this program is that zero flows on all
arcs must be otpimum for zero output flow. The program will
determine the flows in the arcs of the network which will pro-
vide the desried output flow at minimum cost. These flows are
printed by the program.

Input Data:

Card 1 TITLE

FORMAT {80Al1)

The title is an arbitrary alpha-numeric identifier of the run.
Card 2 SOURCE, SINK, NODES, NPRINT, IPRINT

Format 5110

SOURCE is the node number of the infinite source of flow.
SINK is the node number of the sink of flow.
NODES is the number of nodes in the network.

NPRINT determines the number of arcs for which input and output
data will be printed. The input data for the first NPRINT arcs
are printed and output results are printed for the first and
last NPRINT arcs. This option is useful for large problems.

IPRINT controls the intermediate printout. IPRINT = 0 results
in only input and output printout. IPRINT = 1 shows in addition
the output flow, cost, entering arc, leaving arc and change
in output node potential at each iteration. IPRINT = 2 shows

in addition the triple label representation of the tree, all
node potentials and all node gains at each iteration.

card 3 OUTFLO
Format +10.2

OUTFLO is the desired amount of flow that is to be delivered to
the SINK at minimum cost.

Cards 4 and following IARC(I), JARC(I), LOWER(I), UPPER(I),
COST(I), AMP(I)

Format (2110, 4Fr10.2)

Read one card for each arc of the network. Place a blank card
after the set of arc cards.



TARC(I) is the node which originates arc I.
JARC(I) is the node which terminates arc I.
LOWER(I) is the lower bound on the flow entering arc I.

UPPER(I) is the upper bound on the flow entering arc I. (Note:
because of the gain factor a different amount of flow leaves
an arc than enters it. This should be a positive quantity.)

COST (I) is the cost per unit of flow entering arc I. This cost
may be positive or negative.

AMP (I) is the gain factor for arc I. The flow leaving arc I is
equal to the flow entering the arc multiplied by the guantity
AMP (I). This should be a positive quantity greater than zero.
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Program Listing of Network with
Gains Algorithm

PROGRAM GAIN(INPUT,QUTPUT)

PROGRAM TO SOLVE THFE NETWORK WITH GAINS PROBLEM FOR A GIVEN QUANTI
TY OF QUTPUT FLOW.

PROGRAM BY FPeo JENSEN AND GORA BHAUMIKs UNIVERSITY OF TEXASe 1973
READ DATA AS FOLLOWSwe=

CARD 1} TITLE FORMAT(80AY)

CARD 2 SOURCE MNODEoSINK NODEsNUMBER OF NODESNUMBER OF ARCS TO
BE LISTED IN PRINTOUT, PRINT OPTION (0 FOR SHORT PRINTs 1 FOR LONG
PRINTs 2 FOR EXTRA LLONG PRINT)

FORMAT (5110)
CARD 3 DESIRED OUTRUT FLOW.
FORMAT (Fl0e2)

CARD 4 AND FOLLOWING FOR EACH ARC IN THE NETWORK.

ORIGIN NODE OF ARCy TERMINAL NODE OF ARC, LOWER BOUND ON FLOW,
UPPER BOUND ON FLOWs COST PER UNIT FLOWe GAIN FACTOR FOR ARCe
FORMAT (2110e4F10.2)

THE LIST OF ARCS Is TERMINATED WITH A BLANK CARD,

COMMON /1/ TARC(5000)/2/JARC(5000)/3/C0ST(2500)/4/AMP(2500)/5/

i FLOW(2500) /76 /UPPER(2500)/7/LOWER (2500}
COMMON /87 VI{500)/9/BARC(S00)/10/RARCI(500)/11/FARC(500)/12/
1 DISSET(500)/713/6GAN(500)/14/1CHK(500)/15/LIST(500)

COMMON Z16/ TITLE(84)
COMMON /VY/ SOURCE sSINKoNARC,OUTFLOsFLONEToCSTNOWsTOTCSToNODES9IF S
1 JIROOTIEPSsBIGsNDEGeNLOP s SICHo ITERGNPRIToTIMAR s TIME s IPRINT
INTEGER SOURCE ¢SINK,BARCoFARCoRARCDISSET
REAL LOWER
EXTERNAL FLMACsAMPF oCOSTF
NDEG=D
NLOP=0
ITER=0
FLONET=0.0
TOTCST=000
IFS=9
NPRIT=40
EPS=} ,E=6
BIG=].E6
READ 70e (TITLE(I)eI=1e80)
NARC=106000
PRINY 80 ¢(TITLE(I}I=1:80)
READ 909 SOURCESTNKeNODESeNPRINTeIPRINT
PRINT 100 SOURCEsSINK
READ 110, QUTFLO
PRINT 1205 OUTFLO
PRINT 130
PRINT 140
PRINT 150
I=9
CONT INUE
I=l+}
READ 1609 ITARC(I) o JARC(T) sLOWER(TI) sUPPER(I)9COST(T) sAMP(I)
IF (IARC(I}«EQe0)Y GO TO 20
IF ((IeGTeNPRIT) ANDe(Tol. To (NARC=NPRIT))) GO TO 10
PRINT 1700 I9IARC{TISJARCI(IV oLOWER(T) ¢UPPER(I)¢COST(TI)oAMP(T)
G0 70 10
CONTINUE
NARC®BI =)
CREATE A DUMMY ARC 70 PROVIDE FEASIBLE OUTPUT FLOW IN CASE THE
DESIRED OQUTPUT 15 NOT FEASIRLE.

3-52
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80
90
100
110
120
130
140

150
160
170
189
190

NARC=NARCs }

TARC {NARC)=S0URCE

JARC {(NARC) =S [NK
LOWER(NARC) =0
UPPER{NARC)=8B1G
COST(NARC)Y=H1G/10

AMP (NARC)} =1,

INITIALIZE FLOWS aAND CREATE MIRROR ARCS,
D0 30 I=1eNARC

NN=NARC+1

FLOW(I)=0,0

IARC (NN)=JARC (1)

JARC (NN)=TARC({T)

CONTINUE

NARCS=NARCH#?

CONTINUE

CALL SHORT (IENTERGILEAV)

IF

(JENTER,EQe0) GO TO 6n

CALL MAXFLO

TOTCST=TOTCST+CSTNOW
TOTCSP=TOTCST=COST (NARC) #FLOW (NARC)
FLONEP=FLONET=F| OW(NARC)
ITER=ITER»1

IF

(IPRINT.EQes0) GO TO 50

PRINT 1809 ITERSFLONEP,TOTCSP
PRINT 190y ILEAVoIENTER,SICH
CONTINUE

IF

(ABS (FLONET=0UTFLO) «LE«0e000001) GO TO 690

GO T0 40
CONTINUE
CaLlL PROUT

FORMAT
FORMAT
FORMAY
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
1 COSTY
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
END

(80A1)

(1H19///80A1//7)

(5110)

(# SOURCE NODE=#,15,5Xs#SINK NODE =#4154///)

(F1002)

(% OUTPUT FLOW REQUIREMENT®sF10e29///)

(21H ##was [NPUT DATARGR##,//)

(# ARC START END LOWER UPPER
AMPLIFICATION®)

(# NQ o NODE NODE BROUND BOUND#®s//)

(€11094F1002)

(311056F11.2)

(¢ TTERATION #,1S5e5Xs® FLOW #9F]10e295Xe# COST #9F2002)

(# REMOVE®#]G,SX#ENTER#ISSX#DELTA#F2045)
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SURROUTINE SHORY (IENTEReILEAV)

SUBROUTINE TO FIND THE INITIAL AND SUBSEQUENT FLOW AUGMENTING TREE

COMMON /1/ IARC{1)/2/JARC(1)/3/COST{LI/Z76/AMP (1) /5/FLOW(L)/6/
UPPER(1)/T7/LOWER(1)/8/V(1)/9/BARC(1)/10/RARCL1)/11/
FARC(1)/12/DISSET(1)Y/13/GAN(1)/14/1ICHK(1)/15/LIST(})

COMMON /V/ SOURCEsSINK¢NARC,OUTFLOFLONEToCSTNOWoTOTCSToNODESsIF S
IROOTEPSoBIGoNDEGeNLOPsSICHo ITERyNPRIToTIMAX o TIME ¢ IPRINT

INTEGER SOQURCE+SINKBARCsFARCeRARCeDISSET
REAL LOWER
EXTERNAL FLMACoAMPF ,COSTF
}F {IFSeNEeN}) GO TO 180
SET UP POINTERS TO FIND INITIAL TREEe
DO 10 I=].NODES
BARC(1)=0
FARC(I)=0
RARC(I)=0
DISSET(I)=}
GAN(I)=1
V{I)=999999,
CONTINUE
V{SOURCE)=0
ICHANGE=0
IENTER=]
1TF=0
IFs=1
SET UP SHORTEST PATH TREE FOR FIRST ITERATION,
CONT INUE
DO 70 K=1e¢NARC
IF ((UPPER(K)=FLOW(K))aGT=EPS) GO TO 30
IF ((FLOW{K)=LOWER(K) )} oLT-EPS) GO TO 70
I1=JARC (K)
JJETARC (K)
POT=V{IT)#AaMP (K)=COST (K}
I=Kk¢NARC
GO TO 80
CONTINUE
=K
JJsJARC (D)
I11=1ARC(])
IF ((LOWER(I)=FLOW(I))eGTeEPS) GO TO 40
POT=(V{II)eCOST{I))/7aMP(])
GO0 70 s8¢0
CONTINUE
POT=(VI{II)=BIG)/AMP(I)
CONTINUE
IF ((V({JUI=POT)eLTe0e001) GO TO 7o
V{JJ}sPOT
BARC(JJ) =1
IF (ITFEQaD) GO TO 60
CALL LOOP (IoJdJ)
CONTINUE
1CHANGE=}
CONT INUE
IF (ICHANGEEQep)y GO TO 8O
ICHANGE=0
ITF=}
GO TO 20
CONT INUE



S0

100
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120
130

140

150

160

170

180

CaLCULATE FORWARD POINTERS FOR FIRST ITERATION,
DO 120 I=1¢NODES
IF (DISSET(I).EQs0}) GO TO 120
KK=BARC(I)
IF (KKeEQe0) GO TO 120
LLETARC (KK)
IF (FARCILLYeNEe0O) GO TO 90
FARC{LL)=KK
GO 70 120
CONTINUE
MMaF ARC (LL)
CONTINUE
MN=JARC (MM)
IF (RARC(MN) ¢NEsg) GO TO 110
RARC (MN) KK
GO YO 120
CONTINUE
MMRARC (MN)
GO 70 100
CONTINUE
CONT INUE
IF (IPRINT«LTe2) GO TO 140
PRINT 3209 (BARC(1)s1I=1sNODES)
PRINT 330¢ (FARC(I),1I=]1oNODES)
PRINT 340y (RARC(I)oI=1sNODES)
PRINT 300s (DISSET(1)sI=1eNODES)
PRINT 290¢ (V(I)eI=1+NODES)
PRINT 310¢ (GAN(I}sI=1eNODES)
CONTINUE
RETURN
FIND NEW FLOW AUGMENTING TREE AFTER THE FIRSY ITERATION.
CONTINUE
DO 16 I=1eNODES
DISSET(I)=0
CONT INUE
DELETE BRANCH FROM BASIS AFTER THE FIRST ITERATION.
I11=IR0OOT
[=BARC(II)
ILEAV=Y
IA=1ARC(])
CaLL DESUB (Ie1A)
RARC{(11)=0
BARC({I1)=0
SET NEW NODE GAINS ON DISCONNECTED NOEDS.
CONTINUE
IsFARC(IL)
IF (I.EQ.0) GO TO 180
JJSJARCHLD)
IF (T+GTeNARC) GAN(JUN) =GAN(TII)*AMP (I=NARC)
IF (I.LEeNARC) GAN(JJ)ISGAN{(TII)/ZaMP(])
I1i=JJ
IF (I1.EQeIROOT) GO TO 180
GO 7O 170
CONTINUE
J=RARCI(II)
DISSET(IIY=1
IF (J,EQ.0) GO 70 190
IT1=JARC(J)



ReBARC(ID)

JJ=TARC (K}

IF (KoGToNARC) GAN(IT)=GAN(JJ) ®AMP (K=NARC)
IF (Kel.E«NARC) GAN(TI)=GAN(JJ)/7AMP (K}

GO T0 170
190 CONTINUE
K=2BARC(II)
IF (11.EQ,IROOT)Y GO TO 200
IT=IARC(K)
GO TO 180

200 CONTINUE
DETERMINE THE NEW BRANCH TO ENTER THE BASIS.
SICH=]1.E*10
IENTER=(
DO 250 K=19NARC N
IF ((UPPER(K)=FLOW(K))sGT«EPS) GO TO 210
LOOKING AT A BACKWARD BRANCH
IF ((FLOW(K)=LOWFER(K))sLTeEPS) GO TO 250
JUsTARC (K)
IF (DISSET(JJ) «EQe0) GO TO 250
11=JARC (K)
I=K+*NARC
1F (DISSET(II)=E0e0) GO TO 240
NEW BRANCH FORMS A LOOP
GO YO 220
210 CONTINUE
1=K
JUBJARC (1)
IF (DISSET(JJ)eFQe0) GO TO 250
II1=1ARC(Y)
IF (DISSET(II)eEQ.0) GO TO 240
NEW BRANCH FORMS A LOOP,
220 CONTINUE
GALPIV=GAN(II)/ {GAN(JJ)#AMPF (1))
IF (GALPIV.GE+0999999) GO T0O 250
POTCH=(((VIII)*COSTF(I)I/aMPF (1)) =V (JJ))/ ({1=GALPIV)#GAN(JJ))
230 CONTINUE
IF (POTCHeGELSICH) GO TO 25¢
SICH=POTCH
IENTER=1]
GO TO 2%0
NEW HBRANCH DOES NOT FORM A LOOP.
240 CONTINUE
POTCH={ {(V{LII)eCOSTF(I)I/ZAMPF (1) )=V (JJ) ) /GAN(JJ)
GO TO 230
250 CONTINUE
IF (IENTERGEQ.0) GO TO 270
CHANGE NODE LABELS AND POINTERS TO REFLECT ENTERING BRANCHe
CHANGE POINTERS,
Cal.L. TRECHG (IENTER,ILEAV)
CHANGE NODE POTENTIALSe
DO 260 I1I=1+NODES
IF (DISSET(II)eEQe0) GO TO 260
V(II)=SICH®GAN(IT) sy (IT)
260 CONTINUE
GO TO 130
270 CONTINUE
PRINT 280s FLONET



280
290
300
310
320
330
340

IT=TARC(ILEAV)
(ILEAVSI D)
JUsJARC(ILEAV)
BARC(JJ)=TLEAV
GO TO 130
MAXIMUM F| OW FOUND %#eF20e10)

CALL ADSUB

FORMAY
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
END

{ &
{
{&
(%
(&
(&
(¢

L.AB
DISSET
GAIN
BARC
FARC
RARC

%9 (21F5.2))
# (2119))
#9(21F5:3))
#4(2115))
#e (2115))
#e(2115))
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SUBRROUTINE TRECHG (TENTERGILEAVY)

SURROUTINE TO FORM THE FLOW AUGMENTING TREE BY DELETING ONE aARC

FROM THE TREE AND INSETING A NEW ARC INTO THE TREE.

COMMON /1/ TARC(1)/2/JARCLIY/3/COST Y)Y /Z74/7AMP (1) /5/FLOK YY) /6/
1 UPPER(1)/7/LOMERQIY/78/V (1) /9/BARC (L)Y /10/RARC(I) /1YY
2 FARC(L)Z12/DISSET(1)/713/GAN(1)Z714/ICHK(L}Z18/LIST (1)

COMMON /V/ SOURCE«SINKeNARCeOUTFLOFLONEToCSTNOWoTOTCSToNODESeIFS
1 IROOTIEPSsBIGoNDEGeNLOPsSICHe ITERsNPRIToTIMAXe TIME o IPRINT

INTEGER SOURCE SINK¢BARCeFARCeRARCsDISSET

REAL LOWER

EXTERNAL FLMXCAMPF 4COSTF

PRINT 100IENTERGILFEAY

IROOT=JARC(ILEAV)

NLIS=0

JJ2JARCUIENTER)

DELETE PATH FROM JARC(IENTER)Y 70O IRQOT

CONTINUE

JB=8ARC (JJ)

IF (JJeEQeIROOTY GO TO 20
NLIS=NLIS*»]
I1=1ARC (UB)
CabLl DESUB (JBsIT)
IF {UBLESNARC) I1=JReNARC
IF (UB.GTNARC) I=JR=NARC
ICHK{NLIS)=]
BARC(JJ) =0
RARC (JJ)=0
NNES @1
GO TO 10

CONTINYE

ADD IN THE REVERSE oF THE PATH JUST DELETED
IF (NLIS«EQe0) GO TO 30

I=ICHKINLIS)

NLISENLIS=]

I1=sIARC(]D)

JJIBRJARC LT

CALL ADSUB (Je¢11)

BARC(JJ) =1

GO 70 20

CONTINUE

ITi=1ARCUIENTER)

CALL ADSUB (IENTFReI D)

JJ=JARC(IENTER)Y

BARC (JJ)=IENTER

RARC(JJ4) =0

RETURN

END
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SUBROUTINE LGOP (I.JJ)

SUBROQUTINE TO DETERMINE IF THE FLOW AUGMENTING TREE INCLUDES A
FLLOW GENERATING CYCLE, IF SO NODE POTENTIALS ARE ADJUSTED
ACCORDINGLY. USED ONLY IN THE FIRST ITERATION,

COMMON /17 TARC(1)/2/JARC(13/3/COST(1)/64/7AMP (1) /S/FLOW(1)/6/
1 UPPER(1)/7/LOWER(1)/8/V(1)/9/BARC(1)/10/RARC(1)/11/
2 FARC(1)/12/DISSET(1)/13/GAN(1)/14/ICHT(1)/15/LIST (1)

COMMON /V/ SOURCE ¢SINKeNARCOUTFLOsFLONETsCSTNOWs TOTCSTsNODESsIFS,
1 TROOT¢EPSIBIGoNDEGeNLOPsSICHe ITERoNPRIToTIMAXe TIME 9 IPRINT

INTEGER SOURCE+SINKeBARCsFARCeRARCsDISSET

REAL LOWER

EXTERNAL FLMXCoAMPF (COSTF

DIMENSION ICHK(100)

DETERMINE IF POINTERS INDICATE A LOOP,

DO 10 K=)]¢NODES

ICHK(K)=0

CONTINUE

ICHR {(JJ) =1

1J=sJJ

CONT INUE

IJK=BARC(IJ)

IF (IJKeEQe0) RETURN

Ia=JARC(IJK)

_ IF (1AeEQeJd) GO TO 30
“IF (ICHK(IA) OEQQI) RETURN

ICHK (IA} =]

1y=IA

GO YO 20

CONTINUE

TEMP=¢

GN=}

IJsJJ

CALCULATE THE COST TO OBTAIN ONE UNIT OF FLOW INTO JJ

CONTINUE

IJK=BARC(IJ)

GN=GN#AMPF (1 JK)

TEMP=TEMP+COSTF (IJK) /GN

1A=z1ARC(IJK)

IF (1AEQeJd) GO TO %O

IJ=1a

GO TO 490

CONTINUE

CALCULATE COST TO OgTaIN ONE UNIT OF FLOW OUT OF OOP AT JJ

VIJJ)2TEMP/ (1=1/GN)

CONTINUE

Id=1A

IUK=BARC(IJ)

IAsTARC(IUK)

IF (1A.EQeJJ) RETURN

VIIAY sV TV #AMPF (T UK)Y=COSTF (T JK)

GO 70 60

END
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SUBROUTINE ™MAXFLO _

SUBROUTINE 7O CALCULATE THE MAXIMUM FLOW INCREASE INTO THE SINKe

ARC 70O LEAVE THE TREF 1S ALSO DETERMINED, THE FLOW IS CHANGED IN

THE AUGMENTING PATH,

COMMON /17 IARC(1)/2/JARC(1)/3/COST(1)/64/AMP (1) /5/FLOW(1)Y/6/
UPPER (1) /7/LOWER(1)/8/V (1) /9/BARC(1)/10/RARC(1)/11/
FARC(L)/12/DISSET(1)/13/GAN(L) /14/ICHK (1) /Z1S/LIST (1)

COMMON /V/ SOURCEsSINKeNARCyOUTFLOsFLONETsCSTNOW,TOTCSToNODESsIFS,
TROOTIEPSsBIGoNDEGeNLOPsSICHo ITERoNPRIToTIMAX9TIME o IPRINT

INTEGER SOURCE¢SINK(BARCyFARCsRARC¢DISSET

REAL LOWER

EXTERNAL FLMXCsAMPF ,COSTF

FIND OUT IF THERE 1S A LOOP, IF SO JJ IS THE JUNCTION OF THE LOOP.

DO 10 I=1,NODES ’

ICHK (1) =0

CONTINUE

JJ=SOURCE

1=SINK

CONTINUE

ICHK () =1

IF (1.EQ.SOURCE) GO TO 40
11=BARC(I)
IF (IT1.EQe0) GO TO 130

I=1ARC(ID)

IF (ICHK(1).EQ,1) GO TO 30
GO TO0 290

CONTINUE

JJ=1 |

NLOPsNLOPe¢}

FIND MAXIMUM FLOW CHANGE POSSIBLE.

CONT INUE

FLMX=999999,

GN=1

I=SINK

GAN(I)=1,

CONTINUE

IF (I1.FQeJdJ} GO TO 69

KK=BARC (1)

GN=GN# AMPF (KK)

FLMXT2FLMYXC(KKele) #GN

I=TARC (KK}

GAN(1)=GN

IF (FLMXTeGTaFLMX) GO TO 50

FLMX=FLMXT

IROOT=JARC (KK)

GO TO S0
CONTINUE

IF (JJeEQaSOURCE) GO TO 70
CALL FLOP (JJoFLMAX,GLOOPIROOTL)
FLMXT2FLMAX#GN

IF (FLMXT,GT.FLMY) GO 70 70

FLMX=FLMXY

IRO0OT=TROOTL

CONTINUE

INCREASE TOTAL FLOW BY THE MAXIMUM FLOW CHANGE,

FLOSOUTFLO=FLONET

IF (FLOeGToFLMX) FLOSFLMX

IF (FLO@LT@l»Emé) NDEG=NDEG+ ]



CSTNOW=0,0
FLONET=FLONETeFLO
IF (FLOLT.EPS) GO TO 120
CALCULATE FLOW CHANGE ON FACH ARC»
I=SINK
80 CONTINUE
IF (1.EQeJdJ) GO TO 90

I1=BARC(])
IF (I1.EQe0) GO TO 130
I=zITARC(II)

FLONOW=FLO/GAN(T)
CALL FLCHG (I1+FLONOW)
GO YO 80
90  CONTINUE
IF (JJ.EQG+SOURCE) GO TO 120
FLOOP=FLO/ (GAN(I)#(1=(1/GLOOP)))
124
FLGA=FLOOP#GAN (JJ)
100 CONTINUE
IT=BARC(])
I=1ARCIIT)
FLONOW=FLGA/GAN(]I}
IF (I.NEeJJ) GO TO 110
J=JARC (11)
FLONOW=FLGA/ (GAN (J) #AMPF (11} )
110 CONTINUE
CALL FLCHG (I1sFLONOW)
IF (1.EQeJJd) GO TO 120
GO TO 100
120 CONTINUE
RE TURN
130 CONTINUE
PRINT 140, FLONET,TOTCST
CALL EXIT
140 FORMAT (///+% PROBLEM IS INFEASIBLEs THE MAXIMUM FLOW IS #3F10e2s

1# AT A TOTAL COST OF #9F1002)
END
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SUBROUTINE FLOP (JJeFLMAX,GNe IROOTL)
SUBROUTINE TO DETERMINE THE GAINg MARIMUM FLOW CHANGE, AND ROOT OF
A FLOW GENERATING CYCLE IN THE FLOW AUGMENTING TREE.
COMMON /1/ IARC(IY/2/JARCIIV/3/7COST(LIY/Z74/7AMP (Y)Y /75/FLOW(1)/6/
1 UPPER(1)/7/LOWER(IY /8/V (1) /9/BARC(1)/10/RARCI(1)/11/
e FARC{LIZ12/DISSETIIY/Z13/GANLL)Y 714 /7TCHK LY Z18/7LTISTHLY)
COMMON /V/ SOURCE oSINKoNARC,OUTFLOGFLONETeCSTNOWg TOTCSToNODESeIF Sy
i IROOTEPSoBIGoNDEGoNLOPoSICHe ITERINPRIToTIMARoTIME s IPRINT
INTEGER SOURCEeSINK BARCFARCoRARCSDISSET
HEAL LOWER
EATERNAL FLMAC:AMPF COSTF
FILMAX=99GG9GG9999, (0
GN=1
IIE-NN|
CONTINUE
TJR=BARC(TJ)
GN=GN®AMPF (TJK)
FLMAT=2FLMACI{IJKs ]l o) 8GN
IF {(FLMET.GT-FLMAXY GO T0O 20
FIMAX=FLMXT
IRCOTL=JARC(IJK)
CONTINUE
IF (IARCLIJK) «EGQGJJY GO TO 390
I1JsTARCITIUK)
GANC(I Y =26AaN(JI) #GN
GO 7O 10
CONTINUE
FLMAXNSFLMAX®(]=] /GNY
RETURN
END

SUBROUTINE FLCHG {T1FLONOW)

SUBROUTINE T0 INCREASE THE FLOW IN AN ARC BY A GIVEN AMOUNT.
COMMON /17 TARC(1)/2/7JARC{1Y/Z3/COST L) /6/7AMP (1) /5/FLOW(LYZ6/
1 UPPER(1)/7/LOWER(1)/B/V (1)1 /9/BARC(1)/10/RARC(1I/11/
2 FARC(1)/Z12/DISSET(II/Z13/GANCLI/Z14/ICHR(IY Z1S/7LIST ()
COMMON /¥/ SOURCEsSINKeNARCeOUTFLOoFLONETsCSTNOWsTOTCSToNODESeIFS,
1 TROOTsEPSsBIGoNDEGeNLOPsSICHoITERINPRIToTIMAXo TIME o IPRINT
INTEGER SOURCESINK BARC FARC,RARC,DISSETY

REAL LOWER

EXTERNAL FLMAC: AMPF COSTF

IF (I11GT.NARC) GO TO 10

CHANGE FLOW IN A FORWARD ARC.

FLOWLTII)=FLOW(I]) eFLONOY

CETNOW=CSTNOW+FLONOW®COST (1T

GO TO 20

CHANGE FLOW IN A MIRROR ARC,

CONTINUE

KKs] T=NARC

FLONOWsFLONOW/AMP {KK)

FLOWIKK) sFLOW(KK) =F L ONOW

CSTNOUW=CSTNOW=F | LONOW#COST (KK)

CONTINUE

HETURN

END
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SUBROUTINE ADSUB (1110
SUBROUTINE TO ADD AN ARC TO THE TRIPLE LABEL REPRESENTATION OF THE
FLOW AUGMENTING TREE.
COMMON /1/ L1ARCULY/2/7JARC(1I/Z3/COST(I)/6/AMP (1) /5/FLOW(1)/6/
i UPFER (1) /7/LOWER (1) /8/V(1)/9/BARC(1)/10/RARC(1)/11/
2 FARC(1)/712/D1ISSET(1)/713/GAN(1}/714/1CHK (1) Z715/LIST (1)
COMMON /V/ SOURCE¢SINKeNARCOUTFLOsFLONETeCSTNOMs TOTCSToNODESIFSy
1 IRO0OTEPSeBIGNDEGoNLOPsSICHs ITERNPRIToTIMAXSTIME ¢ IPRINT
INTEGER SOURCESINK BARCsFARCIRARC,DISSET
REAL LOWER
EXTERNAL FLMXCsAMPF ¢COSTF
ADDS ARC I TO THE LIST OF SUBSEQUENT ARCS TO NODE Il
PRINT S50¢Is1IoFARC(IT)
IF (FARC(II1YeNE-B)Y GO 7O 10
FARC(II)=1
GO TO 40
CONTINUE
MM=FARC(II)
CONTINUE
MN=JARC (MM)
IF (RARC(MN) oNEeg) GO TO 30
RARC(MN) =]
GO TO 40
CONT INUE
MM=RARC (MN)
GO T0 2¢0
CONTINUE
HRETURN
END

SUBROUTINE DESUB (I,1ID)
SUBROUTINE TO DELETE AN ARC FROM THE TRIPLE LABREL REPRESENTATION
CF THE FLOW AUGMENTING TREE.
COMMON /1/ TARC(1)/2/JARC(13/3/COST(1)/46/AMP(1)/5S/FLOW(1)/6/
1 UPPER(1)/7/LOWER(1)/8/V(1)/9/BARC(1)/10/RARC(1)/11/
2 FARC(L)/12/D1SSET(1)/13/GAN(1)/14/1CHK(1)Z18/LIST(1)
COMMON /V/ SOURCE+SINKeNARCOUTFLOFLONETosCSTNOWSTOTCSTsNODESeIFS,
1 IROOTEPSsBIGyNDEG¢NLOP¢SICHy ITERsNPRITSTIMAX g TIME 3 IPRINT
INTEGER SOURCE+SINK BARCsFARCoRARCDISSET
REAL LOWER
EXTERNAL FLMXCoAMPF ,COSTF
ODELETES ARC I FROM THE LIST OF SUBSEQUENT ARCS TO NODE 11,
PRINT B0sI¢I1sFARCI(YI)
JJEJARC (T
IF (FARC(II)NE,I} GO TO 10
FARC(II)=RARC(JN
RETURN
CONTINUE
MMFARC(ID)
CONT INUE
MN=JARC (MM)
IF (RARC({MN) ¢NE-T) GO TO 30
RARC (MN) =RARC (JJ)
RKETURN
CONTINUE
MM=RARC (MN)
GO TO 20
END



c

10

20

30
40
50

60
70

SUBROUTINE PROUT

SUBROUTINE TO PRINY OUT THE OPTIMAL SOLUTION,

COMMON /1/ TARC(1)/2/JARCI1Y/3/COSTI1)/6/7AMP (1) /5/FLOW(])/6/
1 UPPER(I)/7/LOWER{1Y/8/V (1) /9/BARCI1)/10/RARC(L)/11/
e FARC(1)/12/DISSET(1)/13/GAN(1)/14/TICHK(1)/15/LIST()
COMMON /167 TITLE({80n)

COMMON /V/ SOURCE ¢sSINKeNARCOUTFLOSFLONETsCSTNOWSTOTCSToNODES» IFSs
1 TROOTIEPSIBIGeNDEGeNLOP o SICHoITERNPRIT o TIMAX o TIME 9 IPRINT
INTEGFR SOURCE¢SINK,BARCsFARCoRARC,DISSET

REAL LOWER

EXTERNAL FLMXCeAMPF ¢COSTF

CONTINUE

PRINT 30s (TITLE(I)sI=1480)

PRINT 40

DO 20 I=1,NARC

IF ({I1oGToeNPRIT) cANDs(Tel.Te (NARC=NPRIT))) GO TO 20

ACOST=COSTII)®FLOW(T)

PRINT 509 I¢IARC(I)JARC(I) LOWER(I) oUPPER(I) «COST(I)9sAMP (1)

i FLOW(I)ACOST

CONT INUE

TOTCSP=TOTCST=FLOW(NARC) #COST (NARC)

PRINT 60, TOTCSP

PRINT 700 ITERsNDEG.NLOP

RETURN

FORMAT (1H1//10X980A1//3 1 Heuene0PTIMAL FLOW PATTERN®##uR#,///)

1 FLOWSo//)

FORMAT (# ARC START END LOWER URPPER COST GAIN
1 FLOW ARC COST#)

FORMAT (1592X92159 SF10e20F1562)

FORMAT (///7921H #e4aeTOTAL COSTeanree,F20.4)

FORMAT (# NUMBER OF IVERATIONS #,110/% NUMBER OF DEGENERATE ITERAT
1IONS #4110/% NUMBER OF LOOP ITERATIONS #,110/)

END



FUNCTION FLMAC (1¢%)
FUNCTION TO DETERMINE MAXIMUM FLOW CHANGE IN AN ARC
COMMON /1/ 1ARC(1)/2/JARC(1)/3/COST(1}/4/7AMP (1) /5/FLOW(1)/6/
1 UPPER (1) /7/LOWER (1) /8/V (1) /9/BARC(1)/10/RARC(Y1)/11/
2 FARC(1)/12/DISSET(1)/13/GAN(1)/14/71CHK (1) /16/7L1IST(1)
COMMON /V/ SOURCE+SINKeNARCoOUTFLOsFLONETsCSTNOWsTOTCSTeNODESIFSy
1 IROOTSEPSoBIGeNDEGsNLOPoSICHes ITERoNPRITo TIMAXo TIME ¢ IPRINT
INTEGER SQURCEsSINK BARCsFARCIRARCsDISSET
REAL LOWER
EXTERNAL COSTF