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PREFACE

This research is part of a continuing effort at The University of
Texas to develop methods for a numerical simulation of watersheds which
will be both operational from the standpoint of engineering usage and
realistic from the standpoint of simulating physical processes occurring
in the watershed, It is felt that the simulation processes must be
closely related to real physical processes if the method is to be use-
ful in predicting the effect of changes that may occur in a particular
watershed. It is hoped that in the future efforts can be made to cor-
relate parameters used in the numerical simulation with physical
observations made in specific watersheds, and to establish the corre-
spondence between the physical processes occurring in the watershed and
the numerical simulation of these processes.

The Stanford Watershed Model was studied as the first generalized
watershed model that appeared to be generally available., It soon
became apparent that it was difficult to obtain a clear understanding
of the inner workings of the model., However, in making a detailed
translation of the model into Fortran IV compiler language, a rather
complete understanding of the model was achieved and is presented as
a part of this report. As the study progressed, it became apparent
that the model represented a tremendous breakthrough in hydrologic
research. But as with most scientific breakthroughs, its greatest
value was the demonstration of what could be done with continuous

accounting modeling of a portion of the hydrologic cycle.
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Two somewhat conflicting goals emerge as one builds a watershed
model. First, the model must give engineering answers to the problem
of hydrograph synthesis., The practicing engineer or hydrologist wants
a design hydrograph whose accuracy is commensurate with the accuracy
of the other variables in the problem. But the research hydrologist
wants a model which as closely resembles natural processes as possible.
Only with close modeling will he have a tool which will help to
understand and explain the complex processes that occur in the natural
watershed.

In this study emphasis was continually given to utilizing meaning-
ful parameters for each process, and an attempt was made to model the
various physical processes as closely as possible., Hence, evaporation
occurs only during daylight hours, transpiration only from the root
zone, soil moisture movement in the unsaturated zone is based on the
unsaturated form of Darcy's law, etc.

Chapter 1 discusses the general runoff process, identifying the
important physical processes. Standard methods of estimating the
storm runoff and the hydrograph are reviewed in Chapter 2. An
evaluation of the Stanford Watershed Model IV is given in Chapter 3.
Chapter 4 contains a discussion of flow through unsaturated porous
media, an area unfamiliar to most engineers. A modified watershed
model is presented in Chapter 5 with applications reported in
Chapter 6. Suggestions for areas of future research are given in

Chapter 7.
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ABSTRACT

The Stanford Watershed Model has been reviewed and used as a
pattern for developing a new watershed simulation model. The new
model incorporates considerable flexibility of input data and model
time steps which were not available in the Stanford Model. New
parameters describing the infiltration, evaporation, and soil water
movement processes have been defined and related to physical proper-
ties of the watershed where possible. Application to two experi-

mental watersheds are reporxted.
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Chapter 1

THE RUNOFF PHENOMENON

The runoff portion of the hydrologic cycle embraces those processes
by which precipitation, after reaching the watershed with both time and
areal distribution, is converted into streamflow at the basin outlet.
Observation has led to satisfactory identification of these processes;
however, mathematical models of the various processes are not well
developed although much effort is currently being expended in this field.
The interaction of the various processes is not well understood. In
this chapter, each of the processes which affect the conversion of
precipitation into streamflow will be examined in a qualitative way.

Figure 1.1 identifies these various processes.

Interception Storage

Some of the water falling to the ground is intercepted by vegetation
and by man made structures. This water is said to be in interception
storage. Interception storage is characterized by fixed maximum volume
(with regard to the time scale of one precipitation event, although it
varies seasonally). This water never reaches the earth surface, but
subsequently evaporates., The storage is filled by the earliest part of
the precipitation. Some storage capacity is regained during periods of
no rainfall within the storm. The volume of interception storage avail-
able is a function of the exposed surface area of intercepting surfaces,

This area will change with the growing season, as well as with change in



TIDAD DIODOTO¥WIAH HFHI T°T1 H4NOId

doosg
1o
Sut1dg ueaaQ
33
weo13S «« &%« A
uoTleal(Tyur
uotieaodeay

asjempunoasn jo doj

Z//// 281013y

uotssaxdaq

193BMPUNOIL)

o8rdoag Fyounyg

9oBIaANg

uotrjeyrdrosag

bttty

-3
bt

)

uoijezodeay Ve )

7

uorjeirdsueijodeay



land use.

Surface Depression Storage

This storage consists of cracks, crevices, depressions, and
indentations in the earth's surface. If the watershed contains soils
which exhibit shrinkage cracks upon drying, the volume of depression
storage will decrease as the storm progresses. Water entering
depression storage is removed by both the infiltration process and
the evaporation process. The volume of surface depression storage
available in a particular watershed depends on the nature of the
watershed surface. Urban watersheds, in general, have much less
depression storage volume than do agricultural lands, particularly
agricultural lands where contour plowing and/or farm ponds are present,
In agricultural watersheds, the condition of the land throughout the
growing season will vary, causing a variation in the total depression

storage volume.

Overland Flow and Overland Flow Storage

Overland flow, or sheet flow, is the flow of water at a small depth
over the eafth's surface, Overland flow provides the conveyance from
the point where the water falls to the smallest ''channel.” It is
essentially a two dimensional flow problem; the flow may be either
laminar or turbulent. This process has been studied in detail both in
theory and experimentally. Overland flow storage is water in transit
in the overland flow process, It is a function of the length of the

overland flow reach and the flow rate. Overland flow rate is a function



of the length, slope, and roughness of the reach.

Evaporation

The process of conversion from liquid or solid state to vapor state
occurs continuously at all water-air interfaces. Evaporation is
responsible for removal of water from interception storage, from surface
depression storage, from both overland flow storage and stream storage,
and from the water contained in the soil structure. Water is also
removed from plants by transpiration, a form of evaporation.

Evaporation is inversely related to the partial pressure (or
humidity) and directly to available energy. Wind may prevent the air
adjacent to an air-water interface from becoming saturated, and hence
may increase evaporation, In general evaporation increases with
increased temperature and wind.

Evapotranspiration varies widely with the plant species, as well

as with the temperature.

Infiltration

Infiltration is the entry of water into the pore spaces of the
soil, 1In géneral, water will infiltrate more rapidly into a dry soil
than a wet one, and more rapidly into a sand than a silt. Infiltration
rates tend to decrease as the volume of water infiltrated increases.
Many empirical formula have been proposed for describing either the
instantaneous infiltration rate, or the average infiltration rate,
Infiltration occurs continuously from depression storage and overland

flow storage, provided water is available for infiltration.



Soil Water Storage and Flow

Water stored in the soil is either in the saturated zone or the
unsaturated zone, Storage in and flow through the saturated zone is
probably the best understood portion of the hydrologic cycle. Flow
is proportional to the driving force and inversely proportional to a
resistance factor. Storage consists of the pore space of the soil
matrix, Storage in the upper part of the unsaturated zone, commonly
called the root zone, has always been of concern to agriculturists,
In addition to saturation, these people define two other terms to
describe the amount of water in storage in the root zone. Field
capacity refers to that volume of water held by capillary forces in
the pore spaces against the force of gravity. Wilting point is that
volume of water present in the soil when permanent wilting of plants
takes place, Water available for plant use is that between field
capacity and wilting point. Depth of the root zone may vary; twenty-
four to thirty inches is often cited as the range.

Flow through the unsaturated zone has only recently received
attention from investigators. Since this process is also the topic
of this invéstigation, discussion of the factors involved will be

delayed until Chapter 4.

Stream Flow and Stream Storage

Stream flow is differentiated from overland flow by the presence
of a width of stream, i.e., the flow is three dimensional in the stream.

The hydraulics of open channel flow are well understood for streams of



regular cross section. When inflow becomes a function of length, even
these solutions are difficult., With the additional complexity of a
natural channel, most investigators have turned to approximations.
Best known of these is the unit hydrograph, which assumes a linear
flow system. Another commonly used method is channel routing, where
the continuity equation is combined with a channel equation. The
channel equation describes the relation between the rate of inflow
to a reach of the stream, the outflow from this reach, and the storage
within the reach. Adequate channel equations do not exist, and
approximations must be used.

Each of the processes sketched briefly here has been the subject
of investigators in many different fields. An extensive list of

references will be found in Chow (1964),



Chapter 2

METHODS OF ESTIMATING STORM RUNOFF

Many engineering design problems require an estimate of the response
of a watershed to a "design storm. Some of the more widely known

methods are reviewed briefly in this chapter.

Methods of Estimating Runoff Volume

Soil Conservation Service Method: This method, developed by the
Soil Conservation Service as a guide for their field personnel, is
probably the most complete, comprehensive method available. It is
based on observations made in many parts of the United States. The
factors considered are soil type, land use, and land treatment. These
are combined to give an index number, which is used in an equation
together with rainfall to predict runoff volume, A table is provided
for shifting the index to either a dry antecedent moisture condition
(Condition I) or near saturated antecedent moisture condition
(Condition ITII). The runoff equation is

“ ® - 0.2 5)°

Q= (2.1)
P+0.8S

where Q is the direct runoff, in inches
P is storm rainfall, in inches, and
S is the maximum potential difference between P and Q
in inches at time of storm's beginning.

The value of S can be estimated by the relation



1000
Index Number = —— (2.2)
10 + 8§

Coaxial Correlation: This method, proposed by Kohler and Linsley
(1951), provides a graphical means of determining rvunoff from rainfall.
The parameters used are antecedent precipitation index (API), the date
of the storm, the amount of rainfall, and the duration of the storm.
The API is an index to soil moisture, and hence, to infiltration. The
time of year as reflected by the date is included to reflect the condi-
tion of the cover on the watershed, the likelihood of snow, and the
condition of the soil surface. Duration provides a measure of average
rainfall intensity. Recorded values of rainfall and concurrent storm
runoff are required to derive the coaxial plot--in addition to a great
deal of patience. The plot thus derived is applicable only to that
particular basin., They have been applied, however, with good results
to similar basins in the immediate vicinity. This method makes no

attempt to model the rainfall runoff process, but rather represents a

statistical approach,

Methods of Hydrograph Estimation, The Unit Hydrograph

The most popular method in use today is probably the unit hydro-
graph proposed by Sherman in 1932, The basic assumption made by Sherman
was that the shape of the hydrograph was completely determined, except
for a vertical scale factor, by the basin characteristics. Thus, a
"characteristic'" hydrograph of rainfall excess could be derived for any

basin. By changing the ordinates of this graph, the area under the



9
curve, corresponding to runoff, could be made equal to one inch of excess
rainfall over the basin. Hence the name, '"unit hydrograph.'" The hydro-
graph for any other storm of similar duration and areal distribution can
be found by adjusting the scale of the ordinate until the runoff volume
is correct. It has been pointed out by many investigators that Sherman's
assumption/is equivalent to assuming a linear response by the basin.
However, the natural channel is a nonlinear device., 1In spite of this
departure from basic assumption, the unit hydrograph continues to be

used with seemingly satisfactory results by most engineers.

Methods of Estimating Peak Flow

Chow (1962) has described many methods which have been used to
estimate peak flow rates for use in determining required waterway openings.
Only two methods will be described here, the Rational Method, and a method
due to the Soil Conservation Service.

Rational Method: The origin of this widely used method is not known.
Chow (1964) traces it to Kuichling in 1889 in American literature and to
Lloyd-Davis in English writings. This method assumes that, for a constant
rainfall of.sufficient duration, called the time of concentration, the
runoff rate becomes a fixed fraction of the rainfall rate, or

Q=CT1IA (2.3)
where Q is the runoff rate in ¢, £. s.,
I is the rainfall rate in inches/hour,
A is the area in acres, and
C is a runoff factor, varying from zero (no runoff) to one

(impervious area).
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When used for design work, it is necessary to choose the proper value of
both the coefficient C and the Intensity, I. The intensity is normally
determined by assuming the peak flow will occur when runoff is produced
on all the area. Thus, the "time of concentration' (the time necessary
for water from the most hydraulically remote part of the watershed to
reach the outlet) determines the rainfall duration., This in turn, is
used in an intensity~duration relation to determine the wvalue of I. It
is sometimes possible to obtain higher rates of runoff by using only a
portion of the basin when estimating time of concentration., The shorter
time of concentration will yield a higher intensity, which may more than
compensate for the loss of area.

Soil Conservation Service: This method is not described because
of special merit, but rather as typical of current developments. As
described by Kent (1968), the method utilizes the excess runoff deter-
mined by the Soil Conservation Service method described earlier in this
chapter. It is somewhat similar to the Rational Method, in that a
basin lag time is determined from a time of concentration. A chart is
provided so that lag time can be estimated from the index number used
in the determination of excess rainfall. Thus, the retardedness of the
land surface is reflected in the wvalue of the lag time. Other factors
involved in the lag time are basin area and average basin slope. Two
standard time distributions of rainfall are used, one for the west
coast of the United States, the Hawaiian Islands and Alaska; and the
other for the remainder of the United States, Puerto Rico, and the

Virgin Islands. Both distributions produce a low intensity rainfall



during the first ten hours of a twenty-four hour period followed by a
period of a very heavy rainfall, and finally another period of low
intensity rainfall, The rainfall corresponds approximately to the
twenty-five year frequency as shown in the Rainfall Atlases of the
United States Weather Bureau. A triangular shaped hydrograph is
assumed, with the peak runoff occurring at a time equal to the basin
lag time plus one-half the storm duration. Peak discharge may be

computed

(2.4)

where Qp is the estimated peak rate of discharge
A is the area
Q is the storm runoff
K is a conversion factor, and
Tp is time to peak.
Equation 2.4 is for a uniform rain. 1In order to adapt this to the

nonuniform standard rainfall, the equation was modified to

484 A AQ
A = ———— (2.5)
Pom

2

where A is the area, in square miles,
AQ is incremental runoff volume, inches
AD is an incremental time, in hours
L is lag, in hours, and
qu is the incremental peak discharge, in c. f. s., i.e. the peak

of a triangular hydrograph containing Q volume of runoff.

11
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These incremental hydrographs are combined linearly to produce the
design hydrograph. The whole process has been programmed for a digital
computer, and charts are included which allow reading of the peak runoff
rate directly as a function of drainage area, slope, and basin index

number.



Chapter 3

THE STANFORD WATERSHED MODEL IV

The processes discussed in Chaﬁter 1 are interrelated, and to some
degree simultaneous in action. Adding to this complexity is the fact
that observations are not generally available from controlled experiments,
but rather, from random events in nature. This lack of controlled
experiments is one of the major obstacles to hydrologic research. The
result has been a great many empirical runoff relations. A few of these
were discussed in the last chapter.

With the advent of the high speed digital computer, it has become
feasible to construct a mathematical model of the entire runoff process.
At least three such models have been reported in the literature.
Apparently the first embryonic attempt began in 1957 when Professor Ray
K. Linsley of Stanford University attempted a very simple rainfall-
runoff study with one of his graduate classes in hydrology. From this
beginning and with the aid of many other people, notably Dr. Norman H.
Crawford, the model to be discussed in this chapter has evolved. This
model is not static; Model VI is being tested at Stanford.

A second model, reported by Rockwood (1958), and developed by the
Corps of Engineers, and the Portland River Forecast Center for use on
the Columbia River Basin, is also undergoing evolution, Kuehl (1967),
Schermerhorn and Kuehl (1968), Rockwood (1968). This model lacks

detailed simulation of the natural processes; it is in fact, essentially

13
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a flood routing model,

A third model has been reported by Boughton (1966) in Australia,
This model was constructed with the Stanford model as a guide, and has
as its distinguishing feature the use of daily rainfall data, rather
than data from a continuous recorder. This, of course, has necessitated
a longer scale of time for the model, with the resultant loss of detail.
Other models have been reported by Holtan and Lopez (1969), by Dawdy
(1969), and by Ayers and Balek (1968).

In addition to the work currently underway at Hydrocomp, Palo
Alto, California, on the Stanford Model, and the work reported herein,
Dr. L. Douglas James, of the University of Kentucky, has used a
translation of the Stanford Watershed Model II, with some modifications
from Model IV included. The computer programs written at Stanford
were all in SUBALGOL, an extinct version of Burrough's early compiler.
This compiler language barrier has, no doubt, limited the availability
of the Stanford models to other researchers. Model IV, with the
exception of the snowmelt subroutine, has been translated into Fortran
IV by the author. |

Some terms pecular to the model need to be defined before proceed-
ing to a discussion of the model and of the computer program. A
parameter is a constant value associated with a particular basin, e.g.,
the recession constant for groundwater flow. A variable is the physical
quantity determined by the model, e.g., the total evaporation. A
flowpoint is the point on a stream where the hydrograph is to be

computed by the model, A basin may contain more than one flowpoint. A
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segment is the working unit of area for application of the runoff
processes, A basin may consist of more than one segment.

The Stanford model is a continuous accounting model in the sense
that the location of the water within the system is continuously known.
The model, in fact, operates on a 15 minute cycle, i.e., adjustments in
the location of water in the system are made each 15 minutes.,

Figure 3.1 is a diagram of the watershed model as interpreted at
the University of Texas. The model consists of storage units with flow
between the units prescribed by relationships which approximate the
physical phenomenon. Water entering the system in the form of precipi-
tation is subjected, first of all, to the demands of interception
storage. The total volume of interception storage is specified by the
parameter EPXM. All available interception storage (SCEP) is filled,
and the remainder of the precipitation (P3 in the program) proceeds to
the surface. Interception storage is decreased each hour from 9:00 a.m.
through 8:00 p.m. by the withdrawal of a volume sufficient to satisfy
the hourly evapotranspiration potential (EPHRLI), which is calculated
as 1/12 of the daily evapotranspiration potential, EP.

The soil is divided into four storage areas. The Upper Zone Storage
area includes the depression storage and a shallow depth of the top soil.
No physical limitation is given to this zone; however, it is intended to
have small storage volume and a fast reaction time. The Lower Zone
Storage area is much larger in volume, and apparently embraces the
remainder of the unsaturated soil zone. Groundwater Storage is that

storage active in causing base flow, while Deep Percolation is that
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storage lost to the system. Both Upper Zone Storage (UZS) and Lower
Zone Storage (LZS) have associated nominal storage values, UZSN and
LZSN, respectively. Recommended values for LZSN are:

For Seasonal Rainfall. . . . . . . . 4 -+ .25 (MAR)

For Reasonably Uniform Rainfall. . . 4 + .125 (MAR)
where MAR is mean annual rainfall. UZSN will vary from 0.06 LZSN for
steep slopes to 0.14 LZSN for mild slopes.

In addition to the nominal storage parameters, the model requires
the use of an infiltration index, CB, and an interflow index CC. CB
is related to the soil type; however, this relationship has not been
established. A range of 0.3 to 1.2 is suggested. The interflow index
does nét seem to have a physical meaning.

Water reaching the surface is divided between direct infiltration
and surface phenomena. The portion going to each varies during a
storm, and is a function of the amount to be divided and the volume of
water in Lower Zone Storage. As shown in Figure 3.2, the lower zone
storage rating (D4F/CB) is relatively constant when the Lower Zone
Storage volume is high, and increases rapidly as the storage becomes
less than the nominal. Figure 3.3 shows the manner in which the
division between surface water and infiltration is made as a function
of the amount of water available and the lower zone storage rating.,
Thus, early in a storm, Lower Zone Storage will be low, and the Lower
Zone Storage rating will be high (Figure 3.2). Whether the intensity
of the rainfall is high or low, a relatively large amount of infil-

tration will occur, with a somewhat smaller amount being associated
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with the larger intensity storm. The curve in Figure 3.2 has the

following mathematical representation:

-(2 + Z)

Lower Zone Storage Rating = 2 (3.1)

where Z = 4 LZS/LZSN for 0 < LZS/LZSN < 1
or Z = 2(1 4+ LZS/LZSN) for 1 < LZS/LZSN < 2
or Z =6 for 2 £ 1LZS/LZSN

7 is called LNRATHM in the watershed model, while the ration LZS/LZSN
is called LNRAT. The equation for Figure 3.3 is

Infiltration Percent =[ 1 - (Available Water/Lower Zone Storage

Rating)/(2-CB) ] - 100 (3.3)
for Available Water < CB-Lower Zone Storage Rating and

Infiltration Percent = [ CB- (Lower Zone Storage Rating/Available

Water)/27 « 100 (3.4)
for Available Water > CB:Lower Zone Storage Rating.

Surface water is next subjected to division between Overland Flow
Storage, Interflow Storage, and Upper Zone Storage. The division
between the first two and the latter is controlled by the existing
Upper Zone Storage, as shown in Figure 3.4.

This curve is represented mathematically by

Percent to UZS = [1 - 1/2 (UZS/UZSN) - (1/(1 + vzD)'2%J100  (3.5)
for 0 £ UZS/UZSN < 2, and with
UZI =2 }1/2 (UZS/UZSN - 1| + 1 (3.6)
UzZ1
or by Percent to UZS =[ (1/(1 + UZI)) ~]100 (3.7)

for UZS/UZSN > 2, and with UZI = 2 ‘UZS/UZSN -2 + 1. (3.8)



20

100 0
Percent Percent
Surface 80 20 Surface
Water Water
Released Released
from Surface 60 40 to Upper
Water Zone
Storage
40 -1 60
20 80
0! 100
UzZs
UZSN
FIGURE 3.4 DIVISION OF WATER BETWEEN UPPER ZONE STORAGE, AND
OVERLAND FLOW STORAGE AND INTERFLOW STORAGE
100 0
Parameter is ratio of
surface water to Lower
80 zone storage rating 420
Percent Percent
Water 60 4 40 Water
from Surface from Surface
Water Water
to 40 5 460 to
Overland Interflow
Flow Storage
Storage 20 3 80
O | i 1 1 100
0 2 3
LZS
LZSN

FIGURE 3.5 DIVISION OF WATER BETWEEN OVERLAND FLOW STORAGE AND INTERFLOW

STORAGE




21

The water designated for Overland Flow Storage and for Interflow
Storage is divided as shown in Figure 3.5 where both CB and CC equal 1.
Decreasing CB causes the curves to drop more rapidly, while decreasing
CC has the opposite effect.

Water which infiltrates is also divided three ways. An amount
dependent on the volume in Lower Zone Storage 1s diverted to Lower Zone
Storage. This relation is shown in Figure 3.6, where the curve has the
mathematical form:

percent to 125 = [(1/(1 + 1z1)) 19100 (3.9)

for LZS/LZSN = 1, or,

Percent to 12§ = [1 - (1/(1 + 1z1)) %Y (1zs/125%) 1100 (3.10)

for LZS/LZSN < 1,

where, in either case, LZI = 1.5 |LZS/LZSN - 1} + 1. (3.11)

A portion of the water diverted to Overland Flow Storage is
released as surface runoff to the stream. The amount of overland flow
is based on the empirical relation

v = D(1 + 0,6(D/De)3)/L (3.12)
for the rising side of the overland flow hydrograph, and

y = 1.6 D/L (3.13)
for the recession side, where

v is the depth of flow at the outfall, in ft.,

D is the volume of storage in ft.3/ft,,

L is the length of overland flow, and

De is the volume of storage at the equilibrium condition corre-

sponding to the current inflow rate 1.
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For two dimensional flow, Manning's equation may be written as

q = 1.486/n y5/3 . Sl/2

(3.14)
where

q is the flow in cfs per foot of width,

n is Manning's roughness factor, and

S is the slope of the energy gradeline, assumed equal to the bed

slope.

When an equilibrium condition is obtained on the slope,

g = ML (3.15)
and

q(x) = 1 x. (3.16)
The volume of water in Overland Flow Storage at Equilibrium may be
found by integrating the expression

D_ = Tty ax (3.17)
Solving Equation (3.13) for y, with the value of q(x) from (3.15) used,
this reduces to
1/2

D
e

(nn/ (1.486 S (3.18)

))3/5 OfL X3/5 dx
8/5

l/2)) 5/8 L7,

(an/ (1.486 S
With the current inflow rate known, this equation can be solved for De’
wvhich may be substituted into (3.12) to yield a value of the depth of
flow, y, at the outfall. This value of y may then be used in (3.13) to
calculate the runoff rate, q.

There is some problem in the model' concerning what to use for the
inflow rate, 7. It is not the total rainfall, since a portion of this

is removed by interception, and another portion by infiltration. Still
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more is used to replenish Upper Zone Storage, and a part is allocated
to Interflow Storage. In the watershed, infiltration occurs from
Overland Flow Storage, and the "dead'" Upper Zone Storage. Consequently,
the ''dead'" Upper Zone Storage must be replenished from overland flow.
This difference is illustrated in Figure 3.7, where a part of Upper
Zone Storage is shown as '"dead" surface storage. No physical counter-
part has been discovered for that portion assigned to Interflow Storage.
From Figure 3.1, it may be noted that the water subject to the division
between Surface Water and Infiltration consis@s of the precipitation for
the quarter hour period, less that trapped by interception and increased
by the amount in Overland Flow Storage at the beginning of the time
period (RES). Assuming that none of this volume is assigned to
Infiltration, Upper Zone Storage, or to Interflow Storage, the portion
of the precipitation occurring during this period which reaches Overland
Flow Storage will be

71 = RX - RES (3.19)
where RX is the volume assigned to Overland Flow Storage at the end of
the time period.

The model does not keep the initial volume in Overland Flow Storage
separate; however, the foregoing reasoning seems to make plausible the
use of (3.19) for defining 1) so long as RX > RES, i.e., the rising side
of the overland flow hydrograph.

Water is released from Upper Zone Storage to the lower zones
(Lower Zone Storage, Groundwater Storage, and Deep Percolation) only

when the Upper Zone Storage is relatively fuller than the Lower Zone
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Storage, i.e., when
(UZS/UZSN)/ (LZS/LZSN) > 1 . | (3.20)
These releases are made on an hourly basis. The percent of Upper Zone
Storage releases as a function of the two ratios UZS/UZSN and LZS/LZSN
is shown in Figure 3.8, Mathematically, the relation is
Percent UZS released = [0.003 - CB(UZS/UZSN)Pl(UZS/UZSN - (3.21)
LZS/LZSN)3]100
The water thus released from the Upper Zone Storage is divided
between Lower Zone Storage and lower zones (Groundwater Storage and
Deep Percolation) as shown in Figure 3.6.
The volume of water (INTF) released each fifteen minutes from
Interflow Storage to become a part of the streamflow is determined by
INTF = LIRC4 - SRGX (3.22)
where LIRC4 is a quarter hourly interflow recession constant
calculated from a daily interflow recession parameter (IRC).
In a similar manner, the contribution from groundwater (GWF) is
calculated from
GWF = IKK4 ° (1 + KV-GWS)-SGW (3.23)
in which
1KK4 is a quarter hourly groundwater recession constant calculated
from a daily groundwater recession parameter (KK24),
KV is a parameter for the variable component of groundwater
recession,
GWS is a groundwater slope index, and

SGW is the current groundwater storage.
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As mentioned earlier, water is removed hourly (9:00 a.m. through
8:00 p.m.) from Interception Storage to satisfy the hourly evapotrans-
piration potential. When the volume available from Interception
Storage is less than the hourly evapotranspiration potential, the
balance of the potential is removed from Upper Zone Storage. If the
hourly evapotranspiration potential is not yet satisfied, the balance
is accumulated as the variable REP. At 9:00 p.m. an amount LOS is
removed from Groundwater Storage determined by
LOS = REP-PA-SGW-K24EL (3.24)
where PA is the fraction of the total area which is pervious; hence,
REP-PA is the volume of the day'sevapotranspiration potential
which is unsatisfied,

and K24EL is the fraction of the total area from which evapotranspiration
takes place directly, i.e., that part of the watershed where the
root zone extends into the groundwater table.

Also at 9:00 p.m., water is removed from Lower Zone Storage
according to whether the accumulated unsatisfied evapotranspiration (REP)
is greater than or less than K3-LZS/LZSN. K3 is an input parameter
determining the value of LZS/LZSN at which the evapotranspiration from
Lower Zone Storage becomes limited by the unsatisfied evapotranspiration
potential. The relation is shown in Figure 3.9, and has the mathematical
description

AETR = REP(1 - 1/2-REP(K3°LZS/LZSN)"1) (3.25)
for REP < K3-LZS/LZSN, and

AETR = 1/2-K3°LZS/LZSN (3.26)
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for REP> K3-LZS/LZSN, where
AETR is the volume of water removed from Lower Zone Storage in
order to satisfy the daily evapotranspiration potential,
The computed runoff is based on a unit area whose composition
is the same as that of the total segment, i.e., the same fraction of

impervious area. The total runoff (R) is obtained by multiplying by

o~
Ue

from Lower Zone Storar

Daily evapotranspiration

| 178
LZSN

K3

FIGURE 3.9 EVAPORATION FROM LOWER ZONE STORAGE

the total area. The time distribution of the runoff is accomplished
by distributing the water forward in time according to a distribution
graph determined by three of the input parameters shown in Table 3,1.
The method of deriving these values is similar to that used for
determining an instantaneous unit hydrograph. The channels within

the segment are divided into reaches, Figure 3.10. The time of travel

through each reach is estimated, and cumulative times to each point
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FIGURE 3,10 DERIVATION OF THE ROUTING PARAMETERS
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noted, i.e., the time of travel from the point to the outlet. Finally

a contributing area is assigned each reach. A histogram is determined

by plotting the contributory area against the travel time, as shown in
Figure 3.10, (b). The histogram is the response of the watershed to an
instantaneous rainfall event., To account for finite duration of rain-
fall, the response from each reach is assumed to vary in a linear

manner from zero at the beginning of response (the travel time for the
downstream end of the reach) to a maximum at the time when all of the
reach is contributing (the travel time for the upstream end of the

reach) and decreases linearly to zero in an equal amount of time. Figure
3.10 (c) shows each of the rectangles of Figure 3.10 (b) replaced by an
isosceles triangle. These triangles are then combined to give the heavy
line shown. A suitable time increment is chosen--in this case, four
minutes, and the channel delay histogram determined as shown in the table
in Figure 3.10.

Channel storage and attenuation is accomplished after the outflow
hydrograph has been computed. An hourly "stream channel storage reces-
sion parameter" is used for this purpose,

The user of the model is required to furnish numerical values for
the 16 parameters shown in Table 3.1, in addition to the initial
conditions in the watershed. Part of these parameters are, at present,
poorly defined., It is usually necessary to make several trials, using
different values of the parameters, in order to determine the best set
of parameter values. The model computes two sets of statistical data,
based on the simulated flow and the actual flow. The first set of data

consists of a frequency table based on the recorded flows. The
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TABLE 3.1

HYDROLOGICAL PARAMETERS REQUIRED BY STANFORD WATERSHED MODEL IV

Variable Explanation

CB Infiltration Index

CcC Interflow Index

EPXM Maximum Value of Interception Storage

ETL Evaporation from Stream Surfaces

IRC Interflow Runoff Recession

KK24 Basic Groundwater Recession Rate

KS1 Stream Channel Storage Recession Parameter

Kv Variable Component of Groundwater Recession

K24EL Evapotranspiration from Groundwater

K24L Portion of Groundwater Recharge Assigned to
Deep Percolation

K3 Actual Evaporation Loss Index

L Overland Flow Length

LZSN Nominal Lower Zone Storage

NN Manning's n for Overland Flow

SS Overland Flow Slope

UZSN Nominal Upper Zone Storage
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difference between the simulated mean daily flow and the recorded mean
daily flow is called the error (ERR) and for each frequency class the

standard deviation of the error is found from

B 5 - 5 1/2
% ERRT, - (X ERRi) /nj
s, = 4=l ] L=1 (3.31)
nj4- 1

. s .th .
where SQj is the standard deviation for the j class and nj is the
. .th
number of events in the j class.
The model also computes the daily correlation coefficient between

the simulated and recorded mean daily flows,

N N
—_ 2 —_—2
CORCO = 5 g 1 (FLO:.L - FLO) (DRi - DR)/(i __Z_: 1 (FLOi - FLO) (3.32)

1/2

N 2
L2, Oy - DY)

i 1

where
CORCO is the daily correlation coefficient
FLO:.L is the recorded mean daily flow on the ith day
FLO is the average recorded mean daily flow
DRi is the simulated mean daily flow on the ith day

DR is the average simulated mean daily flow

N is the number of days in the year

The daily correlation coefficient gives a good overall measure of the
performance of the model. However, in areas where the number of runoff
events is few, the coefficient may be deceptively high, since it is
strongly influenced by a large number of near zero events. In all cases,

the standard deviation by classes indicates the degree to which the model
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is capable of reproducing the recorded flows in the different ranges of
flow.

Precipitation input is divided into two groups; that data from
recording gauges (Pl), and that from non-recording gauges (PREC). Only
one recording gauge may be used for each segment. The time distribution
of the recording gauge is applied to the non-recording gauges to approx-
imate the time distribution of the storm over all the watershed., Each
gauge is assigned a weighting factor on the basis of the fraction of the
area it is assumed to represent. These factors may be determined by a
Theissen network technique, or in any other manner desired by the user,
The sum of the weights must equal one.

A single figure is calculated from the recording gauge record and
the non-recording gauge records, which is the weighted precipitation for
the segment. This data is stored on magnetic tape, and it is not
necessary to repeat the calculation for subsequent runs.

The normal run uses hourly precipitation data from the recording
gauge. However, an option is provided (DCS(ll)) so that the data may
be on a 15 minute basis. To exercise this option, four fifteen minute
rates are written in the form

WWWXXXYYYZZZ
where WWW is the first quarter hour rate in hundredths of an inch with
the decimal omitted, XXX represents the second quarter hour, etc. The
program will unpack this data, calculate a 15 minute rainfall rate for
the basin, using the non-recording gauges, and re-pack the data before

storing on tape.



Chapter 4

UNSATURATED FLOW

When water falls to the ground it becomes subject to the processes
of evaporation, infiltration, and runoff, as discussed in Chapter 1., The
two processes, surface runoff and infiltration, are interrelated, each
being parts of a continuity equation which could be written at the
surface, In this chapter, surface runoff will be ignored, and a
mathematical model formulated to describe the distribution of water in

one dimensional space and time within a column of soil.

Physics of Unsaturated Flow

Water exists as solid, liquid, and gas within the soil. While
movement is limited to the latter two states, the presence of ice has
a profound effect on the movement of water vapor, The actual mechanics
of the flow are discussed at length by Remson (1962). Only the necessary
salient features of that discussion will be summarized here,

Motion occurs because of unbalanced forces, and hence, it seems
natural to examine the forces acting on water within tﬁe soil. These
forces are: (1) gravitational force in the vertical direction, and the
following forces which may act in any direction, (2) so-called capil-
larity forces, (3) chemical and osmotic forces, and (4) forces due to
partial pressure gradients acting on the water vapor. Chemical and
osmotic forces cause relatively slow motion in most soils and will not

be included. The volume of water moved in the vapor state is small in

34
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comparison to that moved in the liquid state so long as the liquid state
is continuous.

Severagl investigators, beginning with Richards (1931) have shown
that Darcy's equation for flow in a saturated porous media,

V=-K _a_;: .(4‘l>

where V is the bulk velocity in the vy direction, (i.e., the flow rate
through a unit area, ignoring the area of the soil particles),

K 1is the permeability of the soil in L/T units,

h is the hydraulic head, usually consisting of a pressure term

and a gravitational term, i.e., p/Y + v,

y 1s the direction of the flow,
may be used in unsaturated flow. Indeed, Remson (1962) suggests using
the equation for flow in both the vapor and liquid state. When h is
viewed as the total potential causing motion, Remson's suggestion seems
appropriate.

In unsaturated flow, the pressure term is negative due to the
"capillary forces'"--actually surface tension effects., It is customary
to speak of soil moisture tension rather than pressure, and frequently
the negative sign is omitted. Considering only the flow in the liquid
state, the total head, h, may be defined as

h= {+vy (4.2)
where { is the soil moisture tension potential, or capillary potential
with uﬁits of length, and

vy is the vertical distance from an arbitrary reference plane,

positive upward.
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The capillary potential is negative by this definition.

Fquation for Unsaturated Flow

Figure 4.1 shows a parallelopiped of the soil matrix. Flow is
assumed to occur through only the top and bottom surfaces, which have

unit area. Applying the continuity principle to the element

oy SHS
pv_p(v_)___. 637) =_a£p___ll

dy dt
oV s 28
T dy oy =0y dt
v _ a8
T3y at (4.3)

where S is the volume of soilwater per unit soil volume. Substituting

4.2 into 4.1 yields the unsaturated flow form of Darcy's equation

(¢ +
ve.-gty)

3y (4.4)
When this expression of velocity is used in the continuity equation,

there results the basic partial differential equation for flow through

partially saturated porous media due to capillary and gravitation

potentials
S + v)°
2% 3 230 y>.]
ot ay ay
or
38 d dy
5T < 5y [K%y+l)] (4.5)

The soil moisture, S, the permeability, K, and the capillary poten-
tial are related, and the relationship is a soil property which does not
change as long as the geometry of the soil matrix does not change.

Typical curves of these relations are shown in Figure 4.2. Unfortunately,
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there is a hystersis effect in both the soil moisture-permeability relation
and the soil moisture-capillary potential relation. Recently, the sugges-
tion of Poulovassilis (1962) was implemented by Ibrahim and Brutsert (1968).
Poulovassilis had shown a method he called the "independent domain concept™
to be applicable to the hystersis problem. Essentially, this method
reduces both the soil moisture-permeability and the soil moisture-capillary
potential functions to single valued functions. Consequently, the analysis
will be based on the assumption of a single valued, laboratory determined
relationship for both permeability and capillary potential as a function
of soill moisture.

If these two relationships could be expressed in a mathematical form,
the next step would be to choose one variable as the dependent variable
and express the other two variables as a function of this variable.

Rubin (1966) has recognized solutions using both the soil moisture and
the capillary potential as the dependent variable, He has suggested

the use of a combination of these properties, While any of the three
variablescould be chosen, there is an advantage in choosing the capillary
potential as the basic variable. The advantage consists of being able to
express both permeability and soil moisture as uniquely defined functions
of capillary potential. There are certain soils for which the soil mois-
ture and the permeability do not change over some range of values of the
capillary potential function, See Figure 4.3, Such soils have an air
entry value different from zero, i.e., these soils will sustain some

tension before the soil moisture is decreased below saturation.
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Then

K

K(}), and

S = s({}).

Using the chain rule, 4.5 may be rewritten

35 3b = B,
5y [KGy + D]

3y At ) (4.6)
ay _ 4y 9K ¥ ° Y
ot s lay G5+ TKR5yz) (4.7)
2y _ 4¥ K3y 2 2°
5t "l Ty %y'+1)*'KS§§] (4.8)

Equation 4.8 is a quasi-linear second order parabolic partial differential

equation, Boundary conditions are of the form

for t =0, §(v,0) =4 (¥)

G, (t)

for t > 0, { (0,t)
b (L,E) = G, (E)
where Y is the thickness of the soil column. Phillip (1957) has obtained
a series solution for the special case of  (y), Gl(t), and Gz(t) all
constant, Other investigators have resorted to a finite difference
representation of the partial differential equation.

In general these investigators have been interested in some special
aspect of the unsaturated flow phenomina. Gardner and Fireman (1958) and
Liakopoulos (1966) investigated evaporation from the soil surface.

Gardner and Fireman included a saturated zone (a water table). Gardner
(1959), Nielsen, et al. (1961) and Biswas, et al. (1966) all considered

the redistribution of water within the soil column. Youngs (1957)
considered the soil water profile with the surface maintained at saturation.

Rubin.(1966) studied infiltration into initially air dry Rehovat sand. He
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recognized three types of infiltration:
(a) Infiltration controlled by the rate of rainfall; occurs only
when rainfall rate is less than saturated permeability of soil.
(b) Preponding which occurs immediately when rainfall rate exceeds
saturated permeability and lasts until ponding occurs,
(¢) Surface ponding when a saturated zone occurs at the soil
surface,
For a given soil, the time to incipient ponding (i.e., the time of
preponding) decreases as the rainfall intensity increases and increases
with increasing initial dryness of the soil. Figure 4.4 shows the
infiltration rate as a function of time for a hypothetical soil,
The finite difference solutions have used various representations

of the derivatives. A common approximation of the first derivative

EVRNIR VIEY B!

-§1

oy T Ay (4.9)
is sometimes used. Here Ay is the distance between the points 1 and 2.
The approximation possesses various degrees of error depending on the
position of the point within the interval where the derivative is to
be evaluated, Thus, if the derivative is to be evaluated at the midpoint
of the interval, the error has order (Ay)z, However, use of 4.9 to
evaluate the derivative at either end of the interval may introduce
errors of the order of magnitude of Ay. Since in finite difference
schemes, the Ay value is normally less than unity, evaluation at the
midpoint is usually more accurate, The difficulty of using 4.4 in finite

difference form to evalute the infiltration rate may now be examined.
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o

Substituting 4.9 into 4.4 with the evaluation occurring at the surface.

11 -Yo
[V]y=0 = -[K]y=O(T

where the subscripts O and 1 on the {§ term indicate the value of § at

+ 1) (4.10)

the surface and at a distance Ay below the surface respectively. When
4,10 is used to describe the infiltration rate, the error is of the
order Ay. Since Ay is necessarily finite, it is impossible to predict
precisely the infiltration rate from finite difference analysis.

However, the use of a very small value for Ay gives a good approximation.
More serious objections to the use of 4.4 to describe infiltration rates
are based on the inadequacy of that equation itself. 1In particular, two
phenomena which may strongly influence the infiltration rate are the
rainfall impact effect and the flow of air out of the soil as it is being
replaced by the water. The effect of the displaced air is probably very
small except for extreme rainfall rates. Extreme rainfall rates may
produce almost instantaneous flooding of the surface, trapping large
quantities of air within the soil horizon. The effects of this air on
the infiltration rate has not been studied.

The energy of the raindrop at impact causes some penetration of the
water into the soil matrix, a phenomenon which might be termed "forced
infiltration." This phenomenon has been observed, primarily by those
interested in the erosion effects of such impacts.

The inclusion of either of these phenomenon in a mathematical model
may be extremely difficult until more theoretical work has been accom-
plished. The movement of air and water simultaneously within the soil

matrix will involve the concepts of two phase flow systems. Some
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restructuring of the soil matrix occurs due to the impact of the raindrop;
the problem of describing this mathematically seems insurmountable,

Movement of water beneath the soil surface may be described by 4.10
—
V1, oy = - Ky o, él.—A‘f.Tl- + 1) (4.11)
where the point y equal o is between the nodes i and i-1. The velocity V
may be viewed as the velocity of the water leaving the area of node i-1

and entering the area of node i. This equation will be used in Chapter 5

to describe the movement of water after infiltration has occurred.

Related Investigations

Some time was spent during this investigation studying the behavior
of a finite difference model of a soil column. The model was obtained by
substituting 4.11 in the continuity equation, 4.3. The resulting
equation related the values of the capillary potential at three node
points at one time step to the values at the same three nodes at the
previous time step. The resulting system of nonlinear algebraic equations
were solved by an iterative technique which assured the use of the proper
values of permeability and soil moisture when the solution was reached.
Boundary coﬁditions at the surface consisted of a period of no flow at
the surface, a period of rainfall, followed by a period of evaporation.
An impervious layer was assumed to exist at the bottom, with the water
removed from any saturated zone formed at the bottom at a rate propor-
tional to the thickness of the saturated zone. As may be seen from 4.8,
and as noted by Rubin (1966), the finite difference equations are

inadequate for saturated flow because of the presence of the dy/dS term
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which is undefined in the saturated zone. Consequently the location of
the interface between a saturated zone and an unsaturated zone must be
obtained as part of the solution, with the proper form of Darcy's law
applied in each zone, Finite difference solutions provide values of the
dependent variable only at the node points. When the interface occurred
between noées, some interpolation scheme had to be used to locate the
interface. Both linear and quadratic interpolation were tried. However,
the soil moisture appears to approach the saturated value in an asymp-
totic manner, producing large errors in the interpolation process. The
result of these difficulties within the computer model was instability
of the location of the interface. This led to abandoment of this line
of inquiry. Some method which does not require differing forms of
Darcy's law for the saturated and unsaturated zones will avoid these
difficulties. Rubin (1966) asserts his combination of permeability,
soil moisture and capillary potential accomplishes this feat. Almost
certainly such a model can be used to ascertain an infiltration model
somewhat better than the one presented in Chapter 5. However, such a

study was considered outside the scope of the present investigation,



Chapter 5

A MODIFIED WATERSHED MODEL

The Stanford Watershed Model, as described in Chapter 3, has not
received widespread use to date. This is due, in part, to the computer
language used. A second cause is the inability to associate the
computer program directly with the steps in the physical process. A
third restriction on the use of the Stanford Model is the inability to
deal with time units shorter than one hour*, On small watersheds this
is a serious limitation. 1In this chapter a modified watershed model is
presented which attempts to deal with these last two problems. Extensive
use has been made of the processes of the Stanford Model, particularly
relating to overland flow and stream routing. The material reviewed in
Chapter 4 has been used as a guide to the unsaturated flow process. A
schematic of the watershed model is shown in Figure 5.1; each phase will
be discussed in detail.

The computer program which has been written to implement the modi-
fied watershed model is given in Appendix 1. It has been written to
accommodate rainfall measured at irregular intervals in either accumulated
form as from a weighing gauge or as a rate from a tipping bucket gauge.
Either of these records is converted to a record with the average rate

for the specified time period. This period may be as short as one minute,

“Although the model operates on a 15 minute cycle, the routing period
must be in units of whole hours, and this effectively removed the quarter-
hour variations.
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or as long as one day. A similar record is prepared from the measured
streamflow when this is gvailable. The maximum length of the basic
accounting cycle is set at fifteen minutes. A full discussion of the

input variables and the output available is found in Appendix 1,

Interception Storage

All precipitation falling on the pervious area is routed through
interception storage. The volume of water in interception storage in
inches at any time is limited by an input parameter, VINSTM, which may
vary mpnthly° This parameter may be estimated as a function of the
type and density of material above ground. 1In agricultural areas, the
maximum interception storage may be very small early in the year,
increasing to a maximum as the crops mature in the fall, and then drop
sharply as the fields are prepared for the winter. On the other hand,
in forest or urban areas, the maximum volume may be relatively constant

over the annual cycle,

Surface Storage

Watér passing through interception storage arrives at the ground
surface. Ifkmay fall into one of two types of storage: depression
storage or overland flow storage. Depression storage, or dead storage,
is that volume of storage within depressions of all sizes in the
watershed. A depression is defined as a hole or low area with no
outlet. Within the pervious area of the watershed, three types of areas
are delinenated as shown in Figure 5.2. These areas are characterized as

(A) areas from which overland flow proceeds directly to the stream: (B)




FIGURE 5.2 THREE TYPES OF AREAS WITHIN WATERSHED
A) OVERLAND FLOW DIRECTLY TO STREAM
B) OVERLAND FLOW TO DEPRESSION STORAGE
C) DEPRESSION STORAGE

Current Depression Storage Area
Maximum Depression Storage Area

I
L

Current Depression Storage Volume
Maximum Depression Storage Volume

FIGURE 5.3 ASSUMED RELATION BETWEEN SURFACE AREA BND VOLUME OF
DEPRESSION STORAGE
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areas from which overland flow proceeds into a depression:; and (C) areas
of depression storage. The areas of depression storage vary from the hole
caused by a woman's shoe to farm ponds and other flow retarding structures.
The surface area of the water in depression storage at any time is
aséumed to vary linearly with the volume of depression storage, Figure
5.3. Rainfall reaching the land surface is divided between overland flow
storage (OLS) and depression storage (DS) on the basis of the surface area
of each type of storage., Overland flow storage is further divided
between that flow going directly to the stream and the flow going into
depression storage. Infiltration and evaporation, also surface pheno-
mena, are based on the surface area of each type of storage.

The overland flow model used is taken from the Stanford Model. It

is a quasi-turbulent form of Izzard's overland flow equations

0.5 5/3 3 5/3

_ 64200 s D Ds
OLF = ————— () (1 + 0.6 (Dé) )

5.1)
where OLF is the rvate of runoff in inches per hour per unit area,

n is the Manning roughness factor for overland flow (ROUGH),

L is the length of the overland flow reach in feet (VLENGH),

S is'the slope of the overland flow surface (SLOPE),

D is the storage in ft°3/ft° and is defined as the average of
the storage at the beginning of the time period and the
storage at the end of the time period (OFSAVG),

D is the storage in ft,3/ftc for an equilibrium condition

(OFSEQU), and is defined by

0.000818 10°6 50-6 (1:6
0.3

OFSEQU =
(5.2)
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where i1 1s the precipitation rate, in inches per hour (XI). This
model is based on the following empirical relationship between outflow

depth and storage

y = % [1+0.6 (%6)3] (5.3)

where y 1is the depth, in feet, at the lower edge of the flow plane.

These equations were developed by Linsley and Crawford (1966),
and plots showing quite good agreement with a finite difference solution
of the partial differential equation of varied flow were presented.

Overland flow generated on that portion of the watershed classified
as contributing directly to streamflow is added to the variable RO.
That part of overland flow originating on the area contributing to
depression storage is added to depression storage. Some of the smaller
depression storage areas will fill rapidly and surface runoff from areas
originally designated as depression areas will commence when these areas
are filled. For small indentions of the soil this will occur early in
the storm, while for larger storage areas the runoff will not occur until
much later. A typical relationship between area producing runoff
through depression storage and the volume in depression storage 1s shown
in Figure 5.4, The curve is assumed to be a parabolic with vertex at
the origin and may be written as

_ /1 _Dps 0.5
X, = € Daax’ (5.4)

where Xa is the fraction of the pervious area which originally was
designated as depression storage, or an area contributing flow

to depression storage, but is now producing runoff,
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DS is the actual depression storage volume, in inches of depth,
DSMAX is the maximum depression storage volume in inches of
depth, and

C 1is a constant, normally with a value of 1.
The actual shape of this relation will vary from one basin to the next.
However, it is felt that the parabola is adequate for most basins, based
on the following preliminary investigation. The depression storage of a
basin is the sum of the storage of many different depressions. Figure
5.5 shows several normalized volume-area distribution curves which might
characterize different basins. The area under any curve i1s one, 1i.e.,
all of the depression storage within the basin, Th; basins labeled a
and b have a significant proportion of their depression storage in
shallow depressions. Basinbj has a uniform distribution--equal volume
in shallow, intermediate, and deep basins; %hile both ¢ and d possess
considerable amounts of storage in deep depressions. If one assumes
that the area producing runoff into a depression is approximately
linearly related to the area of the depression storage (that is, the
surface area’of the depression when full), the relation between fraction
of depression storage volume (DS/DSMAX) and the fraction of area which
was originally classified as depression storage oriented but is now
producing runoff to the stream may be derived., This relation is shown
in Figure 5.6. The relation of equation 5.4 is also shown. The fit
is reasonably good, except for that portion of the curve generated by
deep ponds, i.e., basins with the characteristics of ¢ or d. However,

type d basins can be fitted with equation 5.4 provided C is chosen so
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as to cause the curve to pass through the point defined by subtracting the
pond storage from the total basin depression storage, and sﬁbtracting the
pond area (and associated drainage area) from the total area. It is
doubtful if natural basins of type c exist, although this might be the
distribution for a basin after several "stock pond" type improvements
have been made., 1In such a case, equation 5.4 should probably be replaced
by an expotential curve of the form

- DS z
X, = ¢ Gamx’ (5.5)

where C and z are parameters needed to obtain adequate fit.

Infiltration

The infiltration rate was given in Chapter 4 as being dependent on
(a) the available water, i.e., the rainfall rate; or (b) the ability of
the soil to conduct the water through the soil in its unsaturated
condition, i.e., Rubin's preponding condition, or (c¢) the ponded depth,
the thickness of the saturated zone, and the saturated permeability.
Ponding of water occurs only for the third condition. The first is
characterized by a rainfall rate less than the saturated permeability of
the soil, and the second by a rainfall rate greater than the saturated
permeability, Equation 4.4 may be rewritten as

23S

> + 1] (5.6)

d
Vo= @y [ &

y=0
where Vo is the infiltration rate. This equation is applicable to both
conditions (a) and (b) and 3S/dy should be viewed as the dependent

variable,
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Referring to Figure 5.7, the infiltration rate of ponded rainfall
is given by
POND -V ae

Vo = Kool Samomn * LY (5.7)

where POND and SATDPH have the meanings shown in the figure, and
wae is the value of soil tension at air entry.
Holtan (1961) proposed an infiltration equation

f=aF +f (5.8)
P C

where £ 1is the infiltration rate when supply is not the limiting factor,
fC is the constant infiltration rate, the saturated permeability of
the soil,
F is the total volume which can be infiltrated before a constant
rate of infiltration is reached,
a and n are constants.
Holtan recommends a be taken as 0.62 and n as 1.387. Fp is a measure of
the voids remaining in the soil column at any time, and hence is also a

measure of the water in storage in the column. Since Holtan's equation

is for the period when rainfall excess exists, i.e., ponding,

_[K]Y=0 N "Ksat T fc (5.9)
where the minus sign is a matter of convention. Then to the extent that
K [w] = ga Fn
sat SATDPH P (5.10)

Holtan's equation approximates equation 5.7. Holtan found from
experimental data that F_ could be expressed as

L 1o =Ks, (5.11)

where the zero subscript indicates evaluation at time zero,
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K is a vegetative factor given in Table 5.1, and S is the available pore

space in the 0-21 inch depth.

TABLE 5.1

HOLTAN'S VEGETATIVE FACTOR

Cover Value of Vegetative Factor K
Bluegrass 1.00
Crabgrass and Alfalfa .70
Lespedeza and Timothy 45
Alfalfa .35
Weeds .30

Holtan's equation is particularly suited to a continuous accounting type
watershed model, since the independent variable is the unsaturated pore
space within the top layer of soil. Defining this layer to be the Upper
Zone, equation 5.8 may be written

£

a(UZST - UZS)" + SATPRM

¢l (uzsT - Uzs)C? + SATPRM (5.12)

where UZST is the total pore space in the Upper Zone, porosity times
thickness in inches3/inch2.
UZS 1is the current volume of water in the Upper Zone in inchesS/
inchz.
SATPRM is the saturated permeability of the Upper Zone, in inches
per hour.
Cl and C2 are input constants, corresponding to Holtan's a - K

and n.
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No allowance was made by Holtan for water leaving the Upper Zone, i.e.,
the volume of the pore space remaining at any time t after the storm
began was computed as the pore space available at to less the volume of
water infiltrated from tO to time t. The watershed model will reflect
more accurately the actual volume of water in storage within the Upper
Zone., Consequently, the Upper Zone can be thinner than Holtan's
twenty-one inches. 1In agricultural lands, the depth to which culti-
vation takes place seems a reasonable thickness, while in uncultivated
areas, the thickness may vary from one-half inch for very tight soils to
several inches for sandy soils. The presence of any less permeable zone
should terminate the Upper Zone. Equation 5.12 gives the infiltration
rate for the period when supply is not the limiting féctor, i.e., the
potential infiltration., When the rainfall rate is less than this
potential infiltration, all of the rainfall is infiltrated. This
decreases the pore space available, and consequently decreases the
infiltration potential for the next time period. Rubin (1966) pointed
out that for a uniform supply less than the potential infiltration rate,
the soil column eventually reaches an equilibrium state in its upper
reaches where the gradient QLK&é%i;Xll is just adequate to transfer
the supply. This may also occur in the model, as the flow into the
Upper Zone may be exactly equal to the flow out of the Upper Zone,
Holtan's equation, while not exact, does seem to offer a good approxi-
mation to the infiltration process, both in the situation of infiltration

limited by supply, and infiltration limited by the soil condition.
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Flow Through The Unsaturated Zone

Ideally, one would describe flow through the unsaturated zone using
some form of equation 4.4. However, in a watershed model this will have
to be approximated. 1In the continuous accounting model, the volume of
water within each interval of depth can be obtained. However, as the
number of these intervals increases, the time to perform the calculations
also increases, and soon reaches an economic limit. The number of such
zones must be limited, The independent variables in equation 4.4 may be
written as functions of the soil moisture, S.

L

K

£(8) (5.13a)

g(S) (5.13b)
Solution of equation 4.4 must yield

V = h(S) (5.14)
Several forms of the functions f£(S) and g(S) have been proposed.
Ibrahim and Brutsaert (1968) proposed
s - s”

n
- Svc)
sat (5.15)

K (

g(5) sat 'S

where n varies from 2 to 5 and depends on the pore size distribution,
assﬁﬁing the smaller value for pore size distributions with
small variances,
S" is the soil moisture at which the permeability is "negligibly
small," and
Ksat is the saturated permeability.

An attempt was made to fit the data for the soil described by Watson (1967),

for Geary Silt Loam, and for Sarpy Loam by a least squares technique. In
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w*
each case, the value of S needed to minimize the square of the error, E,

using the model

o
«

Si -8 n
8(8) =Ky =K ¢ (Ssat g% tE; (5.16)

became greater than the smallest value of S, This required raising a
negative number to a power. The definition of S* seems arbitrary; a
strict interpretation of the definition would require S* to be zero for
each soil,

Gardner (1958) proposed

g(8) = K = —>—
§T + b
which was subsequently modified to

S) = K = ‘sat
8 (5) '(%')T. Yy (5.17)

by King (1965) to obtain dimensional homogeneity. The constant b is
approximately 1 for soils with an air entry capillary potential of zero.
An estimate of ¢ may be obtained by evaluating %%%%gjﬁ% as { approaches
- ® . King shows good agreement for four soils, ranging from a sand
through a clay. King also gives

coshl (gh)P + o] - v

cosh[(ﬁ‘e)B + aj + v

£(8) = e( (5.18)

where e 1is the porosity of the soil, and
¢N, Bs v and ¢ are “parameters depending on the liquid, the soil,

and the capillary pressure history."

The following restrictions on the parameters exist:

wv‘e > 0

B < O
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o = 0
0 < v < cosh ¢
The complexity of equation 5,17 and 5.18 makes curve fitting a prohibitive
task,
A somewhat simpler set of functions has been used in the model

K

A (8 + Bl)cl +D (5.19)

1
and

¢ = A, (584 BZ)CZ + D, (5.20)
Values of the coefficients for the various soils tested are shown in
Table 5.2 (a and b), which may be used as a guide in assigning the coeffi-
cients. The program moves moisture from one zone to another using
equation 4.4 rewritten as

V=K (gl}g- + 1) (5.21)

The value of permeability is the weighted average of the permeability in

each zone as determined by equation 5.19., The value of g% is found from

.t - ¥
¢« Oy ¥ =Y, (5.22)

where subscripts 1 and 2 refer to the two zones. The value of § is
found using“equation 5.20. The value of S for each zone is found by

dividing the total moisture in the zone by the zone thickness.

Interflow

The phenomenon of interflow, while frequently observed in nature
has not been studied in detail. A simplified interflow model is shown
in Figure 5.8, The occurrence of water at the seepage face is dependent

on the slope of the less permeable zone, S, the permeability of this
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zone in relation to the permeability of the zone above it, the depth to
the less permeable zone, and the area contributing water to the interflow
process, i.e., the length L in Figure 5.8. These variables and perhaps
others combine to change a portion of the infiltration hydrograph into
the interflow hydrograph. The simplest mathematical formulation of the
process would seem to be one which determines the volume of the inter-
flow and produces the interflow hydrograph by lagging this volume. This
method is used in the watershed model. The volume of interflow from the
top level of the Intermediate Zone is determined by

VINFLO = C16 (T1Zs - C - VINST) At (5.23)

10

where VINFLO 1is the volume of water added to the interflow process
during the time period At,
TIZS is the volume of water stored in the top half of the
Intermediate Zone,
VINST is the total volume of the Intermediate Zone, and

C C g are the input parameters which must reflect the

10° 71

difference in permeability between the two zones.
When the quantity

TIZS - C10 - VIST =< O,

VINFLO is set to zero. ClO is seen to be a parameter which sets a

lower limit on the volume of water which must be present before inter-
flow can occur. The interflow hydrograph shape is determined by a lag

function

X = * DELINF + C ) At (5.24)

(4

where X is the volume of water discharged to the stream from
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interflow storage in time At,
DELINF 1is the volume of water in interflow storage, and 014,
015 are input parameters.

No rationale can be given for Equation 5.24, Probably the parameter C15
can be taken as zero. By analogy to routing equations for stream, the

outflow should be related to the volume in storage.

Groundwater Flow

Much of what was said about the difficulties of mathematically
modeling the interflow process also applies to the flow of groundwater.
The watershed model makes provision for groundwater flow to occur into
the stream and also to flow out of the basin. The latter is termed
"underflow," and is determined as a function of the water stored in the
saturated portion of the soil profile

Y = C13 + GWS - At (5.25)
where Y is the volume of water leaving the basin as underflow in the
period At,
GWS 1s the volume of water in groundwater storage, and
013 is an input parameter,

The flow into the stream is determined in a similar manner

X = (GWS - ) . Cpy * AT (5.26)

C
11
where X is the volume of water flowing from the groundwater system
into the stream during time At,
C is the volume of water in groundwater storage below which no

11

flow into the stream occurs. (A slightmodification here
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would allow influent streams to be modeled.)

C12 is an input parameter.

For the base flow period of the stream hydrograph, equation 5.26 is
analogous to the commonly used decay equation
q; = k - 45 .1 = k™ - 49 (5.27)

where 9 is the flow for the ithtime period,

is the flow for the (i - l)St time period,

941
Eh is the flow at the beginning of the first time period, and
k is the recession constant.

For equation 5.26,

_ s
k’Y3H~qu+cn
12 -7 GWS - C11 (5.28)

It i1s seen that k is not constant, but approaches zero as the groundwater
;

storage approaches the input parameter Cll. The result of the variable

recession constant is a steeper and shorter recession than given by

equation 5.27. This is further accentuated by the removal of a volume

of water from groundwater storage for underflow,

Evaporation -and Evapotranspiration

The evaporation process is highly dependent on the energy received
in the form of sunlight. The amount of energy received is reflected in
both the total evaporation and in the time distribution of the evaporation.
Other important climatic factors in the evaporation process are wind and
humidity. The average effect of all three factoré will be reflected in
the amount of evaporation from an evaporation pan. Accordingly, the

model makes use of monthly pan evaporation to establish potential monthly
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evaporation for the basin. An average daily potential is determined from
the monthly potential, using a second order interpolating equation, and
finally an instantaneous potential evaporation rate is determined.
Potential evaporation is assumed to occur from thirty minutes past sur-
rise until one hour after sunset, and to reach a peak when three-fourths
of this time has elapsed. A skewed sine curve fitted to these three
points is used for estimating the instantaneous potential evaporation
rate, The time distribution of the evaporation potential agrees well
with data reported by van Bavel (1966) as shown in Figure 5.9.

Evaporation occurs first from Interception Storage. If there is
insufficient water stored in Interception Storage to satisfy the
potential evaporation for this period, additional water is removed, in
order, from Overland Flow Storage, Depression Storage, and Upper Zone
Storage, Evaporation is assumed to occur at the potential rate from
Overland Flow Storage and from Depression Storage. It will also occur
at the potential rate from the Upper Zone Storage when the Upper Zone is
saturated. However, as the water content of the Upper Zone decreases,
the evaporation also decreases because of the difficulty of the soil to

deliver the necessary moisture to the surface. This is approximated in

the model by using

_ . UZS - UZMIN |«
E = EVAPOT * (g oz UZMIN) (5.29)
where E is the actual evaporation rate from the soil surface,
EVAPOT 1is the potential evaporation,
UzZs is the current volume of water stored in the Upper Zone,

UZMIN is the minimum volume allowed in the Upper Zone (evaporation



inches)
hr

(

Evaporation

inches)
hr

(

Evaporation

| T ¥ ¥ 1 ’ I T ) i 1 l | L t ] T ’ ¥ ) ¥ T L
1ok Open Water
Measured
- / Evaporation -1
| Sine Curve -
Approximation
Sk pprbEIna ™ i

0600 1200 1800
Time of Day
1 1 I ¥ 1 ' I 1 J ¥ ! , 1 1 ] ] A [ i | I 1 T

1.0 Wet Soil
B Measured -

'// Evaporation
Sine Curve 1
- Approximation -

0600 1200 1800

Time of Day

FIGURE 5.9 SINE CURVE APPROXIMATION OF van Bavel's (1966)
EVAPORAT ION MEASUREMENTS

70



71
will not remove the chemically bonded water from the soil
particles),

UZST is the total volume allowed in the Upper Zone, and

o is a parameter describing the soil's ability to deliver

water to the surface.
The ratio, E/EVAPOT is shown plotted against the moisture values for
various levels of the parameter @ in Figure 5.10,

Transpiration of water from the soil by plant life seems to be
independent of the soil moisture content when the content is above the
wilting point. Consequently, during the months when transpiration is a
factor, water is removed from the root zone (RTZONE) in addition to the
evaporation. This removal is limited by the wilting point moisture
content, assumed equal to the minimum volume for each zone. The root
zone thickness does not necessarily c oincide with the Upper Zone--for
deep rooted trees and such crops as alfalfa it should be larger. The
monthly evaporation as measured by the pan evaporation is augmented by

the monthly consumptive use (TRANPO).

Stream Flow Routing

The runoff for any time period as calculated by the model thus far
described must be routed through the basin in order to produce the hydro-
graph of stream flow, As in the Stanford Model, a distribution graph
technique is used. (Figure 3.10) The flow generated during this period

is distributed according to input parameters into future runoff intervals,
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i.e., the flow reaching the stream during the present time interval will

appear at the gauging point distributed in time.

Watersheds with Multiple Segments

The program will simulate a watershed composed of several sub-
watershedsor segments, The order in which the segments are simulated
must be from upstream to downstream, and the precipitation tape must be
prepared in this same sequence. The program processes the segments

sequentially; segment numbering must conform to the above usage.

Program Options

The program written to implement this model provides several options
which the user may exercise to obtain output which meets his needs. The
program will provide detailed storm analysis, printing the stream flow
for each time period, or plotting this data on the printer. Options
are also available for statistical analyses of several types when mea-
sured stream flow is supplied. The correlation coefficient for each storm
is provided with the detailed storm analysis. The correlation coeffi-

cient is defined as

X, Y, - (zxi 2Y.)/n
CORRE = —= ; 5 = 5 5 5% (5.30)
X" - (X)) (@y,” - (Y)"/m)]™"

The correlation coefficient, defined in the same way, is also provided

for the total yearly period. However, this coefficient can be extremely
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deceiving since each of the time intervals is counted. If the flow rate
is zero for a large portion of the time, the correlation coefficient will
be unrealistically high. A second measure of the goodness of fit is
provided by classifying the flows into several flow ranges, and analyzing
each range individually. The ranges are the same as used by the Stanford
Model; the logarithm of the interval size is constant. Twenty-five ranges
are provided; for each class the total number of cases in that class, the
average error of these events, the average absolute error, and, when
possible, the standard deviation of the errors is presented. This table
allows the user to judge whether the‘model is doing an equally good job
on all magnitude of flows. A third statistic which is provided is the

coefficient of weighted absolute errors defined by

ZAilXi
COREF = TR fax (5.31)
J 1] :
where Ai is the weighting factor, defined by
Y; + ¥y

A= In () + 1

Yl and Y2 are the two end points of the flow interval as described
above which contain the ith flow rate
X is the error, i.e., the difference between the simulated
,th | .
and the recorded flow for the i =~ time period
, . ,th
fj ~ is the number of events in the j class
b4 is the average flow for the time interval.
This coefficient eliminates the time intervals of no flow and provides a

logarithmic weighting factor. In general, the smaller it becomes, the

better the overall fit.
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The adequacy of each part of the proposed model must be tested on
existing basins., Two such tests have been performed and are reported
in Chapter 6.

With further testing and with more analytical work performed, some
aspects of the model are sure to change. For example, a two dimensional
finite-difference analysis of the phenomenon of interflow will surely
result in a better mathematical model to use in the simulation process.
However, the model, as presented in this chapter, contains the basic
framework to support improved mathematical statements of the various
components of water transfer without destroying the model., This feature,
it is believed, will make the basic model structure extremely usable and

durable,



Chapter 6

APPLICATIONS OF THE WATERSHED MODEL

The algorithms used to describe the various components of the hydro-
logical cycle within the watershed model have been described in Chapter 5.

The use of the model on two small watersheds is described in this chapter.

The Edwardsville, Illinois Watershed

Holtan and Minshall (1968) have presented comprehensive precipation
and streamflow data for watersheds WI and WIL at the Soil Conservation
Service experimential area near Edwardsville, Illinois, for the period
July, 1941, through June, 1943. The description of the watershed is
complete enough to allow estimation of most of the parameters needed for
the model. Watershed WI was chosen because it is the smaller (27.22
acres) and appears to be the more homogeneous. Figure 6.1 shows the
contour map of the watershed, together with some land use data as fur-
nished by the Agricultural Research Service. The precipitation records
are from weighting type recorders; the watershed contains four recorders.
There was little or no variation in the four records--so little, in fact,
that only one recorder record is given by Holtan and Minshall for many
of the storms. Consequently, a composite precipitation record was
constructed relying heavily on recorders R9 and R11, Figure 6.2. Runoff
was measured by a triangular weir; runoff rate was reported.

Several small plot infiltration studies were conducted within the

experimential watershed. Rather complete descriptions of these are given,
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together with soil types and depths. As a result of these experiments,
Holtan and Minshall divided the watershed into four areas, based on the
average permeability in a three-hour test as shown in Table 6.1.

Pan evaporation rates were secured from the United States Weather
Bureau records. Monthly values are shown on Figure 6.3. As shown on
Figure 6.1, crops for 1942 consisted of corn, alfalfa, wheat and sweet
clover, in addition to a small amount of permanent pasture. The consump-
tive use of these crops was estimated by the Blaney-Criddle method (Chow,
1964). These monthly values are plotted on Figure 6.3. Also shown on

Figure 6.3 is the monthly transpiration potential used by the model.

TABLE 6.1

DISTRIBUTION OF EQUILIBRIUM INFILTRATION RATES FOR WATERSHED WI

Percent of Total Area Infiltration Rate (inch/hour)
12,06 0 - 0.53
20.99 0.53 - 0.67
19.63 0.67 - 0.83
47,32 over 0,83

Holtan and Minshall indicate no groundwater contribution to stream-
flow from WI. There was some, however, from WII, of which WI is a part.
It seems logical then to suppose that some amount of "underflow' was

occurring.

Selecting the Parameters

'Dne goal of the watershed model is to have physically meaningful

and physically determined parameters. The parameters and the basis of the
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selected value will be discussed.

Impervious Area: Figure 6.1 shows no impervious area, assume a value of
Zero,

Division of Pervious Area: No benching or contouring is evident from
Figure 6,1. Consequently 0.8 of the total area was used as producing
runoff directly to the stream, 0,15 as producing runoff directly to
depression storage, and 0.05 as depression storage, except for the
months of October and May. Values for October were 0.4, 0.5, and
0.1 while 0.3, 0.55, and 0.15 were used for May. These changes were
necessary to account for the land preparation prior to planting
winter wheat on 4,61 acres in October and corn on 7.42 acres in May.

Infiltration Parameters: From equation 5.12, three parameters are needed
in the infiltration equation: Cl, C2, and SATPRM. Cl was found
using Holtan's recommended value of 0.62 times a vegetative factor of
0.35 from Table 5.1, €2 is also Holtan's recommended value. The
saturated permeability was originally taken as 0,15 inches/hour.
However, after studying the storms of October 30-31, 1941, when the
soll was saturated, this value was revised to 0.05,

Unsaturated Permeability and Capillary Potential Parameters: At the
present stage of development, these parameters are difficult to
assign, Holtan and Minshall give soil horizon descriptions at four
sites within WI., Bogota silt loam is the predominate soll type, which
they describe as '"highly permeable.' Chow (1964), quoting from the
United States Soil Conservation Service, classifies the Bogota series

as group C--slow infiltration rates generally with impeding layer.
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The soils listed in Table 5.2, for which the parameters have been
found by a curve fitting technique, are not well described in the
literature from which the data were taken. In fact, all are
lgboratory results from reconstituted soils. The values of Geary
Silt Loam were used initially. However, the value of saturated
permeability as computed by equation 5.19 did not agree with the
value used in the infiltration equation. Reference to the table in
Chow (1964) showed that this soil is in group B, a group with some-
what more permeability than group C. Consequently, the parameters
were changed to describe a less permeable soil. Final values are
given in Table 6,2,

Routing Parameters: A basic time interval of 10 minutes was chosen as
corresponding reasonably well with the size of the watershed without
causing the program to consume an excess amount of time for execution.

The contour map, Figure 6.1, was examined, and the following velocities

assigned:
areas below el. 530 1.63 ft/sec
areas between el. 530 and 535 1.13 ft/sec
areas agbove el. 535 0.67 ft/sec

Travel times and areas were estimated as shown in Figure 6.4 in which
the travel times in minutes are underlined and the contributing areas,
in acres, are indicated along the stream reach. The time distribution
of runoff corresponding to an instantaneous rainfall is shown in
Figure 6.5. The resulting routing elements were

0.12 0.42 0.40 0,06,
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TABLE 6.2 PARAMETER VALUES

Parameter Values

XLAT 38.8

XLONG 90.0

CORTZ 0

Monthly Pan Evaporation 0.84 1.28 2.72 4,54 6.64 7.80
8.70 7.16 5.10 3.32 1.63 0.84

TRANPO 0.0 0.0 0.52 1.03 6.28 7.33
5.91 4.97 3.66 0.31 0.0 0.0

NEWVAL 0 0 0O 01 1.0 0O 0O 1 1 O

KSEGMT 1

JRINT 10

ISEGL 0

ISEG2 0

NRELEM 4

LAG 0

C 0.12 0.42 0.40 0.06

PANFAC 0.8

ALPHA 3.5

RTZONE 15,

ATOTAL 27.22

APERVS ) 1.0

AQLFSF Oct: 0.4, Nov-Apr: 0.8, May: 0.55, Jun-Sep: 0.8

AOLFDS Oct: 0.5, Nov-Apr: 0.15, May: 0.25, Jun-Sep: 0.15

DSMAX 0.25

VINSTM 0.005

DEPTHI 12,

DEPTHU 0.75

CHANLG 0.55

cl 0.20

c2 1,387
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TABLE 6.2 (continued)
Parameter Values
c3 186.
C4 -0,114
c5 7.745
c6 0.2026-107°
Cc7 -10.
C8 0.2
c9 -3.0
c10 0.9
cl1 0
cl12 0
Cc13 0.001
Ccl4 0.995
Ccl15 0
ROUGH 0.065
SLOPE 0.0175
VLENGH 75,
SATPRM 0.05
UZST 4. 14
VIZST 67.44
c16 0.001
SMMIN 0.15




84

1,2 min pN

AN
% et g
! LY
Ké))‘ al
wa t t
QO § i
{
W 3 h
s ]
e %
\ §
19.9 19,6

FIGURE 6.4 TRAVEL TIMES AND CONTRIBUTING AREAS FOR WATERSHED WI

16 12 14

8
T

Bl =

Contributing Area {areas)

[ i i 5
0 10 20 30 40

Time (minutes)

FIGURE 6.5 CONTRIBUTING AREAS OF WATERSHED WI TO AN INSTANTANEOUS INPUT



85

Upper Zone: A depth of nine inches was chosen for the Upper Zone Storage.
This figure was selected as the probable depth of cultivation during
the 1940 era. A maximum moisture content of 0.46 (by volume) was
used because of the silt loam classification. A wilting point of
0.15 was used.

Intermediate Zone: No data is available on the soil below about 60
inches, An Intermediate Zone depth of 12 feet was selected as being
adequate to prevent any groundwater flow being significant in the
model. The same soil moisture limits were used in this zone as in
the Upper Zone.

Interflow: The soil descriptions given by Holtan and Minshall indicate
a restrictive clay layer at the 18 inch level on the portion of the
watershed above elevation 530. Quite probably interflow does occur
due to this clay layer. Transfer to interflow from the top portion
of the Intermediate Zone is allowed when thiﬁ zone is 0.9 full., The
amount transferred is 0,001 of that volume above 0.9. The volumetric

recession constant for the interflow storage is 0.99.

Results of Computer Run

The results of this choice of parameters is presented in Tables 6.3
and 6.4 and in the hydrographs of Figure 6.6 through 6.9. The hydro-
graphs presented where chosen before the computer run as typical of the
various conditions encountered by the model,

The model has not been as successful as was expected using the
parameters assigned on the basis of available data. The most seriocus

discrepancy is in generating the proper volume of runoff for each storm.
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TABLE 6.3 SUMMARY OF MONTHLY SIMULATED AND MEASURED VALUES
Rainfall Measured Simulated Simulated
Month (inches) 3unoff 3unoff Eva?oration
(inches) (inches) (inches)
Oct 8.10 1.01 1.04 0.10
Nov 2,87 0.77 0.24 0
Dec 1.59 T 0 0
Jan 1.23 0.01 0 0
Feb 2.59 0.90 0.03 0
Mar 2.01 0.10 0.01 0.43
Apr 2.22 0.34 0.03 0.83
May 5.25 0.10 0.57 5.09
Jun 7.56 1.31 2.16 6.00
Jul 8.20 3.46 3.57 4.75
Aug 3.49 0.46 0.94 3.9
Sep 1.43 T 0.01 2,91
Annual 46,54 8.58 8.59 24,04
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TABLE 6.4 COMPARISON OF SIMULATED AND MEASURED VALUES FOR EACH STORM

Date Rainfall Runoff (inches) Correlation
(inches) Measured Simulated Coefficient

10- 2-41 0.30
10~ 4-41 0.20
10- 5-41 0.36 0.0084 0.0404 0.9484
10- 7-41 0,24 0.0007 0
10- 9-41 0.86 0.0025 0.199 0.7560
10-14-41 0.42 0.0103 0.0490 0.9453
10-17=41 1.44 0.1729 0.2302 0.8557
10-20-41
10-22-41 1.89 0.3322 0.3866 0.8020
10-26-41 0.37 0.0031 0 0
10-30-41
10-31-41 2.02 0.3898 0.0941 0.8701
11" 5"41 ] . €
11- 6-bl 2,04 0.7495 0.2308 0,8747
11-10-41 0.01
11~-17-41 0.01
11-19-41
11-20-41 0.29
11-22-41 0.35 0.0031
11-23-41 0.05
11-24-41 0.12 0.0255
12-12-41 0.30
12-22-41 0.28
12-23-41 0.44 0.0007
12-25-41 0.28 0.0050
12-26-41 ) 0.29

1- 1-42 0.28

1-18-42 0.05

1-30-42

13142 0.90 0.0102

2~ 342

e G-li2 1,40 0.5999 0.0271 0.7963
2- 9-42 0.21

2-15-42

91642 0,55 0.0851

2-23-42 0.35

2-26-42 . 0.05

2-27-42 0.0157

2-28-42 0.0082




TABLE 6.4

(continued)
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Dat Rainfall Runoff (inches) Correlation
ate

(inches) Measured Simulated Coefficient
3- 442
3. 549 0.03
3~ 7=42
3. 8-42 0.71 0.1365
3-12-42
3-13-42 0.65 0.0874 0.0073 0.4577
3-20-42 0.07
3-25=42
3-26-42 0.25
3=27=42 0.23
3-30~42 0.07
he 6-42
lm 74, 1.16 0.0199 0.0215 0.9712
Lo 8=42
L1042 1.17 0.3211 0.0019 0.5257
L2442 0.02
5- 242 0.17
5- 3-42 1.05 0.0107 0.1629 0.3763
5= 5-42
5. 6ol 1.11 0.0465 0.2928 0.8658
5-11-42 0.03
5-13-42 0.60 0.0047 0.0792 0.6288
5=15-42 0.96 0.0288 0.1080 0.9270
5-17-42 0.10
51842 0.59 0.0098
5-23=42 0.16
5-26~42 0.07
5«31=-42 0.41 0.0002 0
6- 1=42 0.59 0.0058 0.1051 0.7161
6 6-42 0.12
6- 9-42 0.31
6-10-42 0.07
6-11-42 0.18
6-13-42 1.35 0.1442 0.5503 0.9823
6-15-42 0,31
6-18<42 0.52 0.0033 0.0322 0.0768
6-19-42 0.10
6-20-42 0.03
6-21-42 1.69 0.0275 0.6521 0.9685
6-25-42 0.50
6-26-42 1.79 0.8281 0.8110 0.9064
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TABLE 6.4 (continued)

Rainfall Runoff (inches) Correlation
(inches) Measured Simulated Coefficient
6.97 3.2982 3.3998 0.9164
0.45 0.0703 0.1111 0.9463
0.51 0.0598 0.0274 0.5551

0.09

0.63 0.0174 0.0662 0.9378
0.31

0.18

0.20

2.21 0.2157 0.5390 0.9014
0.90 0.0024

0.82 0.0020 0.0027 0.1332
0.46

0.15
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Part of this failure is attributable to the lack of a frozen soil facility
within the model. Holtan and Minshall state that infiltrometer tests were
discontinued during the winter because the soil was saturated., Figure 6.10
shows the daily maximum and minimum temperatures recorded at Greenville,
Illinois, for the period November, 1941, through March, 1942. Greenville
is about 30 miles east of Edwardsville, C(learly the ground was frozen
throughout much of February. Fluker (1958) found soil temperature extremes
to lag air temperature extremes by one month. Quite possibly the period of
frozen ground extended well into March., If the ground is frozen and near
saturation, virtually no infiltration, soil moisture movement, or evapora-
tion will occur. The complexity of including the affects of temperature in
the model are much greater than simply the problem of securing the daily
temperatures (although this is a data preparation chore not to be over-
looked). Rather the problem is in modeling the head flow process. The
thermal characteristics of soils vary with the soil type and with moisture
content. Also, the soil moisture freezes from the surface down; there may
be no infiltration or evaporation at the surface becausé it is frozen while
moisture transfer occurs a few inches beneath the surface below the frost
line. Almost certainly some simple model such as 'mo evaporation, infil-
tration, or soil moisture movement while the air temperature is below 30°
F." would improve the performance of the model, particularly during

February.

Application to Mukewater Creek Watershed

Coskun and Moore (1969) reported the results of application of the

Stanford Model to the Mukewater Creek watershed in central Texas. Using
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the rainfall data from their study, a similar application has been made
with the proposed moael.

Mukewater Creek is one of numerous small watersheds which have been
studied in detail by the United States Geological Survey in co-operation
with the Texas Water Development Board, and the United States Soil Con-
servation Service. Sauer (1965) has given the physiographic features as
well as a summary of the hydrologic data for the period 1952-1960,
Figure 6.11 shows the location of the watershed as well as the location
of the rain gauges. The watershed contains 70.4 square miles above the
stream gauging station at Trickham, Texas. About one half the water-
shed area is devoted to farming and the other half to ranching. Sauer
reported the existence of 211 stock ponds by March, 1962. These
controlled 20 percent of the drainage area. Six flood retarding struc-
tures were built between 1960-1965. These control almost 40 percent of
the drainage area. Sauer concluded that areal distribution of the rain
was insignificant when correlating rainfall and runoff. Coskun and
Moore utilized the rainfall records from four recording rain gauges to
produce a single hourly rainfall record for use in their application of
the Stanford Model,

While some attempt was made to assign parameter values from avail-
able information, the emphasis in this application has been on determining
the "best" set of parameters. Those parameters which are common to both
the Stanford Model and to this model were assigned the values used by
Coskun and Moore. Other values were assigned on the basis of the
experience with the Edwardsville watershed. Only mean daily flow values

are avallable for comparison to simulated values, except for hydrographs
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of the storms of May 11-13, 17-18, 1957 and February 22-23, 1958, which
were reported by Coskun and Moore,

Results of the simulation are shown in Figures 6.12 through 6.19.
Figures 6.12, 6.13, and 6,14 show the measured and simulated hydrographs
for the three storms cited above. Figures 6.15 through 6.19 show a com-
parison of mean daily flow values for five of the more active months,

A direct comparison to the Stanford Model is difficult to make
except on a statistical basis. Table 6.5 shows a comparison of the
monthly runoff values as simulated by Coskun and Moore, those as simulated
by this study, and the measured values. Also shown is the correlation
coefficient for mean daily flows. As in the Edwardsville application, the
mean daily flow series contains numerous zero values which enhance the °
correlation coefficient. Were it possible to choose some single measure
of goodness of fit by which to judge a set of parameters, a computer pro-
gram could be utilized to choose an optimum set of parameter values.
However, the insensitivity of the correlation coefficient, even when the
zero flow days have been eliminated, render it nearly useless for this
purpose, Perhaps the most useful such measure is simply the sum of the
absolute value of the errors. Such a sum has the serious drawback that
all errors are weighted equally, i.e., a 10 second foot day error carries
the same significance whether made on a day when the mean daily flow was
100 cfs or 1000 cfs, 1In the latter case, the error is of the same order
of magnitude as the stream flow measurement inaccuracies, and obviously
should not be considered significant. If a relative error is used instead,
defined as the ratio of the error to the measured flow, an awkward

situation prevails when the measured flow is zero and the simulated flow
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is nonzero. Both the annual correlation coefficient and the sum of the
absolute value of the errors were used in arriving at the "optimal" set
of parameters for Mukewater Creek.

Among those pafameters which cannot be readily assigned numerical
values from field data, the length of overland flow, the constants in the
infiltration equation (Cl, C2, and saturated permeability), and the thick-
ness of the upper zone seem to be rather important. Some guidance can be
obtained from the existing runoff data, and from current computer runs.
Figure 6,20 shows the results of one such computer run. Consider a storm
in which a considerable amount of rainfall fell in a short period. If no
runoff was produced, essentially all the water infiltrated. The infil-
tration rate throughout the storm must be equal to or greater than the
rainfall rate. 1In Figure 6.20, several of the isolated one hour storms
which produced no runoff are shown by horizontal line segments. The left
end of the line is plotted at the value of Upper Zone Storage which
existed at the beginning of the storm. The line terminates at that value
of Upper Zone Storage which would obtain if all of the rainfall were
infiltrated: The infiltration curve (equation 5.12) must be an upper
envelope for these line eegments., Obviously, to obtain values of the
Upper Zone Storage at the beginning of the storm requires the simulation
of the entire period. However, unless large changes are made in the para-
meters from run to rumn, the values of Upper Zone Storage do not seem to
vary over a very large range, When applied to the Mukewater Creek data,
the envelope lacked the proper shape for small values of Upper Zone

thickness.
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After the parameters seem to be of the proper magnitude, further
corrections can be determined from plots similar to Figure 6.21. The

current values of C Upper Zone thickness, and saturated permeability

12 ©oo
are used to plot the infiltration rate as a function of Upper Zone Storage.,
Each storm is then examined to determine whether a larger or smaller in-
filtration rate is required to obtain agreement between simulated and
recorded values. In Figure 6.21, the results are indicated by an arrow
showing the required direction of change for that storm. The results of
such a plot may be that some segment of the infiltration curve must be
shifted., Figure 6.22 shows the result of varying C,; Figure 6.23 shows
changes due to various values of CZ; while Figure 6.24 indicates the
affects of depth of the Upper Zone when infiltration is not limited by
rainfall. Such curves aid in choosing a new parameter value,

As stated earlier, Sauer reported no significant increase in cor-
relation of runoff and rainfall when areal distribution of rainfall was
considered, This conclusion was based on a comparison of recorded run-
off and predicted runoff. To determine the predicted runoff, Sauer
constructed a coaxial correlation graph using the weighted rainfall. To
test the effects of areal distribution of rainfall, he utilized this
coaxial correlation graph on each of the 19 segments and added the
resulting runoff values. However, he did not compute API (antecedent
precipitation index) values for each segment; instead he assumed a
uniform value throughout the watershed, Possibly quite different results
might be obtained if API were allowed to vary throughout the watershed.
An examination of those storms for which this model gave poor results
suggests some correlation with those storms which exhibited quite notic-
able areal distribution. Quite likely, Mukewater Creek is too large to

be treated as a homogeneous unit by the model,
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Chapter 7

CONCLUSIONS AND AREAS OF FUTURE RESEARCH

The validity of the various concepts incorporated into the model can-
not be thoroughly tested by application to two watersheds. While the
results of the application to the Edwardsville watershed were not as good
as expected, those from the Mukewater Creek watershed are considerably
more encouraging. Each of the 42 input parameters either has exact physi-
cal meaning or is an index of a physical quantity. The parameters in the
latter category have been held to a minimum. There remain, however, many
unsolved problems when modeling a watershed., Foremost of these problems
is the spatial variation in most of the parameters, The Stanford Water-
shed Model attempted to solve this by assuming a linear distribution
across the watershed. However, this is equivalent to assuming some
average value of the parameter, such as has been done in the proposed
model. The work reported by Holtan and Lopez (1969) uses three zones of
differing characteristics to account for the spatial variation. Quite
possible, as digital computers become larger, the watershed can be
modeled in smaller segments, thereby achieving a greater degree of
homogeniety in each subarea.

The simulation of the infiltration process'needs further improve-
ment, While Holtan's approximation is more closely related to the
physical phenomenon than other empirical equations, research using
finite difference methods to model the flow in both the saturated and

the unsaturated zones should yield even better approximations.
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The Mukewater Creek application indicates a serious deficiency in
the manner in which the interflow is handled. The classical, but empiri-
cal recession constant has not been utilized because it lacks physical
significance, The Stanford Model does use this method, and the results
are quite apparent in the correlation coefficients for 1957-1958
(Table 6.5). This water year contained twice as many (109) days of
recession type flow as did any other year. Were these portions of the
hydrograph closely modeled, the correlation coefficeint would improve
considerably, Future research needs to be directed toward defining a

physically meaningful interflow model.
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MAJOR STEPS IN COMPUTER PROGRAM

PREPARE INPUT DATA TAPE

PREPARE ARRAYS FOR RUN, OBTAIN
VARIOUS INVARIENT DATA

B /‘l\ <

\\_T//ﬁ

READ PHYSICAL PARAMETERS
FOR SEGMENT FOR MONTH

CARRY FORWARD STREAMFLOW FROM LAST MONTH
FOR THIS SEGMENT AND FLOW FROM OTHER
SEGMENTS ABOVE THIS ONE FOR THIS MONTH

|
INITIALIZE STORAGE VALUES

SIMULATE ONE DAY FOR THIS SEGMENT

{}

PRESERVE END OF MONTH STORAGE
VALUES FOR NEXT MONTH'S USE

END OF MONTH REPORTS
PLOT OF HYDROGRAPH

4

Q

END OF YEAR REPORTS

J
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DETAILED FLOW CHART

CONVERT RATE OF RAINFALL TO
VOLUME IN INCHES OF DEPTH

ADD VOLUME OF RAINFALL FALLING ON
IMPERVIOUS AREA TO RUNOFF; SUBTRACT
FROM VOLUME AVAILABLE FOR DISTRIBUTION

SATISFY AVAILABLE DEPRESSION
STORAGE IF VOLUME AVAILABLE

DIVIDE REMAINING VOLUME BETWEEN
OVERLAND FLOW STORAGE AND DEPRESSION
STORAGE, THE LATTER BEING ONLY THE WATER
FALLING ON AREAS OF DEPRESSION STORAGE

DOES OVERLAND STORAGE OR

no

DEPRESSION STORAGE EXIST?

w

]

B

CALCULATE INFILTRATION VOLUME
PER UNIT PERVIOUS AREA

[ INFILTRATE FROM OVERLAND STORAGE |

INFILTRATE FROM AREA COVERED
BY DEPRESSION STORAGE

CALCULATE VOLUME OF OUTFLOW
FROM OVERLAND FLOW STORAGE

ADD TO RUNOFF THE VOLUME FROM
OVERLAND FLOW STORAGE FROM THE AREA
DISCHARGING DIRECTLY INTO A STREAM

ADD TO DEPRESSION STORAGE THE VOLUME
FROM OVERLAND FLOW STORAGE FROM THE
AREA DISCHARGING TO DEPRESSION STORAGE
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ADD TO RUNOFF THE VOLUME FROM THE
PORTION OF DEPRESSION STORAGE NOW FULL

MOVE VOLUME FROM UPPER ZONE TO
TOP HALF OF INTERMEDIATE ZONE

MOVE VOLUME FROM TOP HAL¥ OF
INTERMEDIATE ZONE TO INTERFLOW STORAGE

MOVE VOLUME FROM TOP HALF OF
INTERMEDIATE ZONE TO BOTTOM
HALF OF INTERMEDIATE ZONE

MOVE VOLUME FROM BOTTOM HALF OF
INTERMEDIATE ZONE TO GROUNDWATER STORAGE

MOVE VOLUME FROM GROUNDWATER STORAGE
TO UNDERFLOW AND HENCE OUT OF SYSTEM

[ MOVE VOLUME FROM INTERFLOW STORAGE TO RUNOFF 1

IS TIME BETWEEN 30 MINUTES PAST
nO — SUNRISE AND 1 HOUR PAST SUNSET?

0]
]
>

CALCULATE POTENTIAL EVAPORATION VOLUME

EVAPORATE FROM INTERCEPTION STORAGEj

[EVAPORATE FROM OVERLAND FLOW STORAGE ]

EVAPORATE FROM DEPRESSION STORAGE

EVAPORATE FROM UPPER ZONE STORAGE

D
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EVAPORATE FROM ROOT ZONE
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29
38
31
32
33
34
385

37
38
39
40
41
42
43
44
45
46
47
48
49
58

51
52
53
54
55
56
57
58
59
60

Led=14
Do 68 M=J,K e e e
SUMSSUM+RECORD (M)

60 CONTINUE

, ne 70 M=q,L

SUMzSUM+TRS (M)

70 CONTINUE
IF (SUM=,08001% $10,146,86- - - .. . e e =

80 SUME (SUM«FLOAT(IPREC) /60)
Xz (SCRAP(I)/SUM=1.)1oUFSEs1,
DO 90 M=J,K
RECORD(MISRECORD(M) #X

90 CONT INUE

1) HOQ K"Muf . e e e e e e e PP e .
TRS(MI=TRE (M) «X

100 CONTINUE

110  IRsl~t . \ |
WRITE (1) MONTH, IR, JYR,KSEGMT, IPREC,K, (RECORDETAY, 1A=1,1440)
DO 120 MeJj,k
RFCORD(Ma 48 )2 TRS (M)

120 CONTINUE

130  CONTINUE .

TWM
TWM
TWM
TWM
TWM
TWM
TWM
THM
TWM
TWM
TWM
TWM
TWM

- TWM

TWM
TWM
TWM
TWM
TWM
TWM
TWM
TWM

m»»wt»»*»*»st*&4»»1*1*#ﬁﬁ»wtaﬁé»s»&*»a»&»&tttﬁ»&»»»@&#t@f&»i&&&»»t»tw»»#422

C MERGE RECORD FROM OBSERVATION TIME ON LAST DAY TO MIDNIGHMT ON

¢ LAST DAY,

TWM
TWM

R et R Y T R R T e A NS R S e R S SR C L RSP S F R B YE LB R A E A T LB RGP PR R RO e o R e TWM

SUM=0,
Do 140 I=4,K
SUM=SUM+RECORD( T

1440 CONTINUE
TF (SUM-,0001) 170,170,150

150 SUM={SUMF NATEIRREC) 460 i
X=(SCRAP(IDAYS) /SIIM=1 ,)sWFSGed,
DO 160 I=J,L
RECORD(II=RECORDET Y2 Y

160 CONTINUE

TWM
TWM
TWM
TWM
TWM
TWHM
TWM
TWM
TWM
TWH

1139
1140
1141
1142
1143
1144
1145
1446
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160

1161
1162
1163
1164
1165
1166
1167
1168
1169
1176

961
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INPUT CARDS

Ngiigr Variables Format Cogzg:t
1 ISEGMT, ITAPE, IYR, LRY, MASS 514
2A, 2B..... JPREC(L, 2,...ISEGMT) 2014
3A, 3B,.... IRECOD(l, 2,...ISEGMT) 201z a
4 ISTGAG, KSEGMT, WFSG 214, F4.3 a
5 N, UNIT, MAT(l, 2,...16) T4, F6.0, 1644 a, b

6A, 6B,.... IYEAR, IMONTH, IDAY, THOUR(1),
SCRAP(1), THOUR(2), SCRAP(2)  MAT a, b
... THOUR(N), SCRAP(N), MDF

7 blank card to terminate Card 6 series a, b
8 LOOK, MAT(1l, 2,...16) T4, 16A4 a, ¢
9A, 9B,.... SCRAP(l, 2,...IDAYS) MAT a, ¢
10 JRINT 14 a, d
11 N, UNIT, MAT(1l, 2,...16) T4, F6.0, 16A4 a, b, d

12A, 12B... IYEAR, IMONTH, IDAY, IHOUR(1),
SCRAP(1), IHOUR(2), SCRAP(2)  MAT a, b, d
...THOUR(N), SCRAP(N), MDF

13 blank card to terminate Card 12 series a, b, d
14 IRUN | 14

15 XLAT, XLONG, CORTZ 3F10.0

16 SCRAP(2, 3,...13) 12F6.0 e

17 © TRANPO(1, 2,...12) 12F6.0 e
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Card ; Comment
Number Variables Format Code
18 NEWVAL(1, 2,...12) 1214 k
19 KSEGMT, KRINT, ISEGl, ISEG2, 12, 14, 2(12,
NRELEM, TAG, C(1, 2,... 4%y, 12,% 1,
NRELEM) 14F4 .0
20 PANFAC, ALPHA, RTZONE 3F10.0 f
21 I0PT1, IOPT2, IOPT3, IOPT4 514 f
22 BASE F10.0 f, g
23 IFIIM 14 f, h
24 LTR, NAMSEG(l, 2,...19) 12, 2X, 19A4 £, i
25A ATOTAL, APERVS, AOLFSF,
AOLFDS, DSMAX, VINSTM, 8F10.0 f
DEPTHI, DEPTHU
258 CHANLG, Cl, C2, C3, C4,
c5, C6, C7 8F10.0 £
25C c8, €9, €10, Ccli, ci2,
c13, cl4, c15 8F10.0 f
25D ROUGH,SLOPE, VLENGH,
SATPRM, UZST, VIzZST, Cl6, 8F10.0 £
SMMIN
26 © TIZS1, BIZS1l, OLS1, DS1,
UZS1, GWS1, DELIN1, VINST1 8F10.0 £, j
Comments:

a. This card(s) should be omitted if ITAPE = 0
b. This card(s) read by subroutine DATAIN and is repeated for each month

c. This card(s) read by subroutine DATAMG and should be omited when
ISTGAG =2 0

d. This card(s) should be omitted for IRECOD(KSEGMT) = O
e. This card contains the monthly pan evaporation

f. Omit for NEWVAL(MONTH) = O except for October of the first water year



Comments continued:

g.
h.

Omit oo I077. )

Omit for IOPT3 # 1

Omit when both IOPT1 and IOPT4 # 1
Initial values for each segment

NEWVAL must not be zero when more than one segment is involved
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PREPARATION OF RAINFALL DATA

Rainfall data may be supplied in either an accumulated amount for

the day (as read from a weighing type rain gauge) or in intensity.
The paramete: MASS, read on card 1 signifies which type record is to
be processed:

MASS = 1 for accumulated record

MASS # 1 for intensity type record.
The Parameter UNIT, read on card 5 is the constant needed to converf
the rainfall record to units of inches per hour. When an accumulated
type record is supplied with volume in inches and time in hours and
minutes (military time), the value of UNIT is one.

The month, day, and year occupy the first three fields of the
precipitation card., The time of the beginning of the precipitation
followed by a zero are next, Time of observation and amount of
observation alternate until the end of the card is reached. The ;ggg
column of thé card must be read, and must not contain a $ symboll )
except for cards containing mean daily values (see section on Prepara-
tion of Streamflow Data). When a storm cannot be punched on one card,
the following card must contain the month, day, and year information.
The observation time and amount alternate across the card as for the
first card.

When a storm extends past midnight, a value must be supplied at
2400 hours. The following day's amounts should start at zero for
weighing type gauges.

A blank card terminates each month's data.
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PREPARATION OF STREAMFLOW DATA

Subroutine DATAIN reads both precipitation and streamflow; conse-

quently, the material in the preceeding section is also true for

streamflow data. The parameter UNIT is the number needed to convert

the input data into units of cubic feet per second.

Mean daily flows may be read in by means

$ symbol, in the last field of the card. The

of a special symbol, the

first three fields must

contain the month, the day corresponding to the first mean daily flow

on this card, and the year. The remainder of
field may be filled with the day in the field
the time and the day's mean daily flow values
the string of days for which mean daily flows

a single card, the next card must contain the

the card to the last
normally occupied by
in the amount field. If
are to be entered exceeds

same type information as

the first. Cards containing mean daily flow and detailed streamflow

may be mixed as desired. The special symbol differentiates between

the two.
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AD( )

ALPHA

AQLFDS

AQLFSF

APERVS

ATOTAL

AVABER
AVGERR
AVINFL
B

BASE

BIZS

BIZS1

cC)

CARRYO( , )

CHANLG

GLOSSARY OF MAIN PROGRAM VARIABLES

An array containing the apparent declination of the sun

The input variable determining the ability of the soil
to deliver moisture to the surface for evaporation

Area producing overland flow to Depression Storage as a
fraction of the total pervious area in the watershed

Area producing overland flow to stream as a fraction of
the total pervious area of the watershed

Pervious area as a fraction of the total area in the
watershed

Total area in the watershed, negative if in square miles,
positive if in acres

Average absolute error

Average error

Average interval flow in inches per time interval
A symbol used in the on line plot operation

The value of stream flow, in c.f.s., below which
everything is considered to be base flow; no storm
analysis or plots are given for these low flows

Bottom Intermediate Zone Storage, in inches

The value of Bottom Intermediate Zone Storage at the
beginning of the month

A symbol used in the on line plot operation

An array containing the elements of the time delay
histogram

An array containing the flow generated in one month but
which occurs as stream flow during the next month

Channel lag, the ratio of this routing interval's flow
to the last routing interval's flow



CHNLG( )

COEFF

CORRCO

CORREC

CORTZ

COSH

Cl, c2

C3, C4, C5

c7, €8, €9

Cc10

cll, cl2

C13

cl4, Cl15

c16

DAILYF( )
DELINF

DELINL( )
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An array containing the flow lagged in the channel lagging
operation during the last time increment of the day

The coefficient of weighted absolute errors

The correlation coefficient for flow on a routing
interval time base

A correction for the rising and setting of the sun due to
the location of the watershed with respect to the
principal meridan

A correction for time zone when the basin is in the wrong
time zone with respect to the actual location of the time
zone boundaries

The cosine of the angle H in an equation for the rising
and setting of the sun taken from page 403, Explanatory
Supplement to the Ephemeris

Constants in the infiltration equation

Constants in the equation for determining the unsaturated
permeability

Constants in the equation for defining the capillary
potential

The fraction of the Top Intermediate Zone which must be
filled before transfer to Interflow Storage

Constants in the equation for flow from groundwater to
the stream

Constant in the equation for flow from groundwater to
underflow

Constants in the equation used to lag flow through
Interflow Storage

Constant in the equation for transfer of water from Top
Intermediate Zone to Interflow Storage

Simulated mean daily flow
The volume of water stored in Interflow Storage

The volume of water in Interflow Storage at the beginning
of the month



DELT

DELTA

DEPTHI
DEPTHU

DS

DSMAX

DS1( )
EOMGW( , )
EOMINC( , )
EOMINF( , )
EOMINT( , )

EOMSUR( , )

EOMUZ( , )

ERR

ET

EVAPOT

EVAPL( )

EVAP2( )

EVAP3( )

El, E2, E3,
E4, E5

FLOINT ( )

216

The time, in hours, of the basic operation cycle

Angle of declination of the sun used in computing the
time of sunrise and sunset, and is computed from AD( )

Thickness of Intermediate Zone, in feet

Thickness of Upper Zone, in feet

Depression Storage, in inches

Maximum Depression Storage, in inches

The Depression Storage at the beginning of the month
End of month Groundwater Storage

End of month Interception Storage

End of month Interflow Storage

End of month Intermediate Zone Storage

End of month Surface Storage, the sum of Overland Flow
Storage and Depression Storage

End of month Upper Zone Storage

The difference between simulated flow and recorded flow
for the time interval

The time of the day when the sun is directly overhead;
used in computing sunrise and sunset

Evaporation potential for period, in inches

A constant in a parabolic interpolation equation for
evaporation from monthly data

See EVAPI( )

See EVAPL( )

Constants in evaporation rate equation from van Bavel's
data

Flow interval used in statistical analysis, based on
logarithmic increments
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FLOMAX The maximum flow to be plotted

GWS Groundwater Storage

GWS1( ) The Groundwater Storage at the beginning of the month
H One half of the daylight hours, used in computing

sunrise and sunset

HOUR The hour of the day, used in computing the evaporation
potential rate

I An index
IA An index
TAT Dummy variable used in place of the day of the month

when reading data from tape or disks

IB An index

ICASE( , ) The number of cases of flow within each class for each
segment

IDAY - An index corresponding to days of the month

IDAYS The number of days in the month being processed

IFILM A flag used to signal use of f£ilm for plotting (IFIIM = 1)

IFIRST A flag used to indicate if the current month is October

of the first year (IFIRST = 1)

IFLAG A flag which is set to 1 if flow above BASE is
encountered during the month in the simulated flow

THOUR( ) An array used to store on a temporary basis the time of
occurrence of rainfall and runoff events being read
from cards

IHOURS The time of beginning of runoff from a storm
II An index
IK An index

IMIN The minutes portion of the time



IND

INEW, IOLD

IOPT1

10PT2
I0PT3
I0PT4
IOPT5

IPREC( )

IR

TRECOD( )

IRINT

IRINT1

IRUN

IS

ISCRTH
ISEGMT
ISEGL
ISEG2

ISIZE

An index used to classify the flow into the proper
interval for statistical analysis
Tape or disk numbers, alternates between units 2 and 4

If 1, print out simulated flow on a time base of JRINT
for all flows above a base flow, BASE

If 1, print statistical data

If 1, plot storm hydrographs on Calcomp plotter
If 1, plot monthly stream flow

If 1, recorded streamflow available on tape 3

The time base, in minutes, to be used in preparing the
precipitation tape

Variable denoting position of the recorded flow in the
on line plot routine

A flag indicating whether there is recorded streamflow

to read (+, 0, no streamflow data) and whether the

rainfall data for this segment has already been read

( IRECOD (KSEGMT) = KSEGMT, data not yet read in;
IRECOD (KSEGMT) +# KSEGMT, data for KSEGMT was read

for segment IRECOD(KSEGMT) and is on tape 4)

A dummy variable used in place of JRINT when reading
tape or disk

The routing interval, in minutes, of the segment just
upstream of the segment being processed

A flag to indicate 1f a run is to be made (IRUN = 1)

218

Variable denoting position of the simulated flow in the

on line plot routine

The scratch tape number, specified as unit 1

The number of segments to be processed each month
Segment number of upstream segment

Segment number of upstream segment

The number of IPREC time units in the month



ISTGAG
IT
ITAPE
IYR

J

JAD
JDPM( )
JDPY
JDTD

JFIRST

JJ

JPLOT( )

JPREC( )

JRINT

JRINT1

JSEGMT

JSIZE

JYR

JYR1

219
The number of storage gauges in the segment
The time period, in minutes, of the basic cycle
If ITAPE is 1, the precipitation tape is to be prepared
The first year of the first water year to be processed
An index
An index
An array containing the days of the months
Days per year
Days to Date

A dummy variable used to protect the value of KFIRST
during the printing of the individual storms

The number of values of simulated flow to be printed on
one line

The array used to store the symbols for printing the on
line plot

The time base, in minutes, to be used in preparing the
precipitation tape

The time period, in minutes, to be used in simulating the
streamflow, hence the routing interval

A dummy variable used in place of JRINT when reading tape
or disc

The counter for the number of segments which have been
processed

A dummy variable used in place of ISIZE when reading
tape or disks

The year being processed

A dummy variable used in place of JYR when reading tape
or disks

An index



KFIRST

KSECND

KSEGMT

LAG

LINE

LOOP

LTR

LYR

MASS

MAT( )
MONTH

MONTH1

NAMSEG( )

NEWVAL( )

NRELEM
OFSAVG
OFSEQU
OLF

OLS
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The location in the SIMFLO array of the first element
of a string of elements characterized by magnitudes
greater than BASE

The location of the last element in the string described
under KFIRST

The number of the segment being processed

The time of flow through the segment in units of JRINT
minutes

The counter of the number of lines printed in the on
line plot

The number of basic cycles in a day

The number of letters to be plotted as the name of the
segment

The second year of the last water year to be processed

Equal 1 if precipitation data is from weighing gauge and
hence is in form of sum of rain to date

A variable format used to read in data
The month being processed, January equal 1

A dummy variable used in place of MONTH when reading
tape or disks

The array containing the name of the segment to be plotted
under the plot of stream flow

An array used to control the reading of new data. When
NEWVAL is zero for a particular month, the physical
parameters from the last month will be used. Can be
used only when one segment is being modeled

The number of routing elements, C

Average Overland Flow Storage for the period
Equilibrium Overland Flow Storage

Overland Flow, in inches

Overland Flow Storage, in inches
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OLSI Overland Flow Storage at beginning of current period,
in inches

OLS1( ) Ovérland Flow Storage at the beginning of the month

PANFAC A coefficient to be multiplied by the monthly pan
evaporation to obtain monthly evaporation potential

POTEVP The potential evaporation for a day

PREC( ) The array containing the precipitation data, sometimes

used for scratch storage

PSI1, PSI2 The capillary potential in the various soil zones

R The symbol used for recorded flow in the on line plot
routine

RAIN The volume of water falling in the time period, in
inches

RECFLO( ) The recorded stream flow, may be any units, convert

with UNIT, of the subroutine DATAIN

RO The volume of runoff generated in the segment during
the current time period

ROUGH Manning's roughness factor for overland flow

RTZONE The thickness of the root zone in inches

S The symbol used for simulated flow in the on line plot
routine

SABSER( , ) The sum of the absolute wvalue of the error for the

segment for the flow interval

SATPRM The saturated permeability of the soil, in inches per
hour

SCRAP( ) An array used for temporary storage when reading data
cards

SDAYFL The volume of runoff for one day, in inches

SEEP The infiltration volume for the time period in inches

SERRSQ( , ) The sum of the square of the errors for the segment for

the flow interval



SEVAP( , )

SGWF( , )

SIF( , )

SIMFLO( )

SLOPE

SMMIN

SOLF( , )

SRAIN( , )

SSEVAP

SSF( )

SSGWF

SSIF

SSOLF

SSRAIN

SSSF

SSUF

STDERR
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The sum of the evaporation for the segment for the month,
in inches

The sum of the groundwater flow for the segment for the
month, in inches

The sum of infiltration for the month, in inches

The volume of stream flow in acre-inches for the time
period

The slope of overland flow

. . . AN 3
The minimum soil moisture for all zones, in inches™ per
inch3

The sum of overland flow for the segment for the month,
in inches

The sum of precipitation for the segment for the month,
in inches

A dummy variable used to accumulate the monthly sum of
evaporation, and again to accumulate the annual sum of
evaporation

Monthly sum of streamflow for the segment, initially in
inches, converted to second-feet days, and then to acre-

feet

Dummy variable used to accumulate groundwater flow for
month and later for year

Dummy variable used to accumulate monthly sum and then
annual sum of interflow

Dummy variable used to accumulate monthly sum and then
annual sum of overland flow

Dummy variable used to accumulate monthly sum and then
annual sum of precititation

Dummy variable used to accumulate monthly sum and then
annual sum of stream flow

Dummy variable used to accumulate monthly sum and then
annual sum of underflow

Standard error of estimate of the simulated flow




SUF( , )

SUMERR( , )

SUMX ( )

SUMY ( )

SWEIFL( )

T8
TE
™
TIZS

TIZS1( )

TRANPO( )

TRS( )

UNDFLO
UZMIN
uzb
UzSsT

Uzs1( )

VINFLO

VINSTG

VINSTM

The monthly sum of underflow for the segment

The sum of the error for the segment for the flow
interval

The sum of the simulated flow for the segment for the
year

The sum of the recorded flow for the segment for the
year

Sum of the weighted absolute error for the segment for
the year

The time of beginning of evaporation, in hours
The time of ending of evaporation, in hours
The time of maximum evaporation, in hours

Top Intermediate Zone Storage, in inches

The Top Intermediate Zone Storage at the beginning of
the month, in inches

The difference between pan evaporation and consumptive
use for each month

A scratch array used at various parts of the program to
hold precipitation or streamflow data temporarily

Accumulator for water assigned to underflow
Minimum moisture in Upper Zone Storage, in inches
Upper Zone Storage, in inches

The total Upper Zone Storage available, in inches

The Upper Zone Storage at the beginning of the month,
in inches

The volume of water transferred from Intermediate Zone
Storage to Interflow Storage in any time period, in
inches

Interception Storage, in inches

Maximum Interception Storage, in inches



VINSTL( )

VIZMIN

VIZST
VLENGH

WEIGH( )

WESG

XK

XLAT
XLONG

XTCKS

Xp
XX( )

XY( )

X1

X11
X12
X2

X4
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Interception storage at the beginning of the month, in
inches

Minimum Moisture in either half of Intermediate Zone, in
inches

Maximum intermediate Zone Storage, in inches

The length of overland flow, in feet

The weighting factors assigned to each flow interval in
the statistical analysis. Defined as the logarithm of
the midpoint of the interval plus one

Weighting factor for the storage gauge

A dummy floating point variable

The unsaturated permeability in the various soil zones,
in inches per hour

The latitude of the basin, in degrees
The longnitude of the basin, in degrees

The spacing of tick marks on the time axis of the plot
(Calcomp plot routine)

One of the scale values printed on the on line plot
The sum of the square of the simulated stream flow

The sum of the product of the simulated stream flow and
the measured flow

The volume of rain reaching the two areas producing
overland flow; the accumulator for individual storm
simulated flow

The accumulator for the monthly simulated flow

The accumulator for the monthly recorded flow

The accumulator for the individual storm recorded flow

A dummy floating point wvariable

A dummy floating point variable



YESDAY

YP
()

Y1

ZP
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The value of the lagged portion of the streamflow
generated during the last time increment of the
previous day

One of the scale values printed on the on line plot

The sum of the square of the measured stream flow

A factor used in converting inches per time period to
c.f.s.

One of the scale values printed on the one line plot
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