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The active acoustic sensing system emits modulated acoustic waves and

analyzes reflection signals. It is dominant in acoustic spatial sensing. On the

other side, the passive acoustic sensing system receives and investigates na-

ture sounds directly. It is good at semantic tasks but has weak performance

on spatial sensing. In this dissertation, we manage to bridge three gaps in

existing systems. They are the gap between the assumption of signal process-

ing algorithms and the real acoustic environment, the gap between powerful

active spatial sensing and limited passive spatial sensing, and the gap between

the semantic features and spatial information. We evolve the acoustic sensing

system design and extend the functionalities by three novel systems.

First, we develop a fully active spatial sensing system DeepRange which

can adapt to the real environment easily. We develop an effective mechanism

to generate synthetic training data that captures noise, speaker/mic distortion,
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and interference in the signals. It removes the need of collecting a large volume

of data. We then design a deep range neural network (DRNet) to estimate the

distance from raw acoustic signals. It is inspired by signal processing that an

ultra-long convolution kernel size helps to combat noise and interference. The

model is fully trained over synthetic data, but it can achieve sub-centimeter

error robustly in real data despite various environments, background noise,

interference, and mobile phone models.

Second, we develop a fused active and passive spatial sensing system for

speech separation noted as Spatial Aware Multi-task learning-based Separa-

tion (SAMS). We leverage both active sensing and passive sensing to improve

AoA estimation and jointly optimize the semantic task and the spatial task.

SAMS estimates the spatial location and extracts speech for the target user

during teleconferencing simultaneously. We first generate fine-grained spatial

embeddings from the user’s voice and inaudible tracking sound, which contains

the user’s position and rich multipath information. Furthermore, we develop a

deep neural network with multi-task learning to jointly optimize source sepa-

ration and location. We significantly speed up inference to provide a real-time

guarantee.

Finally, we deeply fuse the semantic features and spatial cues to com-

bat the interference and noise in the real environment as well as enable depth

sensing in a fully passive setup. Inspired by the ”flash-to-bang” phenomenon

(i.e.hearing the thunder after seeing the lightning), we propose FBDepth to

measure the depth of the sound source. We formulate the problem as an audio-
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visual event localization task for collision events. Specifically, FBDepth first

aligns correspondence between the video track and audio track to locate the

target object and target sound in a coarse granularity. Based on the obser-

vation of moving objects’ trajectories, it proposes to estimate the intersection

of optical flow before and after the collision to locate video events in time.

It feeds the estimated timestamp of the video event and the other modalities

for the final depth estimation. We use a mobile phone to collect the 3.6K+

video clips involving 24 different objects at up to 60m. FBDepth shows supe-

rior performance especially at a long range compared to monocular and stereo

methods.
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Chapter 1

Introduction

There are two types of acoustic sensing systems. The active sensing sys-

tem emits modulated acoustic waves and analyzes reflection signals. It studies

acoustic wave propagation in space and detects the correlation between the

reflection signal and reference signal. It has timestamps for transmitting and

receiving signals. Therefore, it can be used for spatial applications such as

acoustic tracking and acoustic imaging. On the other side, the passive sensing

system receives and investigates nature sounds directly. It needs to deal with

arbitrary sounds generated by specific objects and motions. It is commonly

used for semantic tasks such as sound event classification and speech recog-

nition. The lack of reference signals and transmitting timestamps makes it

challenging to invest spatial location in the passive sensing setup. The tradi-

tional design of the acoustic sensing system can only leverage either spatial

cues or semantic information, which restricts applicable scenarios.

In this dissertation, we evolve the design of acoustic sensing systems to

boost the performance of typical applications with acoustic spatial cues and

well-designed neural networks.
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1.1 Motivation

Sensing is the key to interacting with the environment and understand-

ing the world. It applies various mediums such as electromagnetic waves, me-

chanical waves, and smells to transmit information about the unknown object.

Sensing can be classified as active sensing and passive sensing.

Active sensing emits self-generated energy and observes the reflection

from the environment. An example of human perception is to tough the object

to feed the hardness. Active sensing is dominant in the wireless system. It

enables significant wireless applications such as Global Positioning System

(GPS) by radar and points cloud generation by lidar. Modulated signals are

transmitted to sense the spatial information that is further used for diverse

spatial applications.

Acoustic active sensing has been attractive to researchers from the wire-

less community in recent years. They explore the physical properties of sound

waves and focus on the characteristics of propagation in space to enable spa-

tial sensing. Wireless researchers adjust signal processing methods for radio

frequency technology to fit the new scenarios under the assumptions of sound

waves. Many breakthrough results have been achieved in acoustic ranging,

acoustic localization, acoustic tracking, and acoustic imaging with only acous-

tic signals. However, these methods are still vulnerable in a comprehensive

environment with background noise, multipath interference, and hardware dis-

tortion.
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Compared to other wireless mediums, the most attractive feature of

acoustic is the low cost of deployment and power consumption. A set of a

speaker and a microphone is widely equipped on various smart devices, such

as mobile phones, smart speakers, unmanned aerial vehicles, smart furniture,

smart glasses, and CCTV cameras. Besides, the velocity of acoustic is slow

so the wavelength is quite small at the inaudible band(i.e.more than 18khz).

A small wavelength is critical to an accurate estimation. Furthermore, the

microphone array has been a trend to be equipped on advanced devices to

enable spatial functionalities. Table 1.1 lists emerging novel devices equipped

with microphone arrays in recent years. Developers are pushing more effort

to enable spatial computing with novel microphone arrays and algorithms.

This trend enables more interest to fully take advantage of the rich spatial

information from acoustic waves.

Device Category Microphone
Channels Array Shape

Amazon Echo Studio Smart Speaker 7 Circular
Apple MacBook Pro 16 Laptop 3 Triangular
Huawei MateBook 14s Laptop 4 Linear
Azure Kinect DK[182] Smart Sensor 7 Circular

Meta VR Glass[34] Smart Glass 6 Head-mounted

Table 1.1: Novel devices equip diverse microphone arrays for spatial comput-
ing, far-field speech capture, speech separation, etc.

Passive sensing collects the received information from the environment

directly. Human vision is a typical example to sense the world passively. Pas-
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sive sensing is often applied to understand semantic representation, such as

object detection and segmentation by visible light and temperature measure-

ment from infrared light. It can also be used for sensing spatial information

such as depth estimation on monocular images or stereo images, though the

performance is worse than active sensing.

Acoustic passive sensing has been well studied by the speech commu-

nity. They pay attention to semantic features of the sound generated in nature,

such as human voice, impact sounds, urban sound, and music. They have de-

veloped excellent models and systems for automatic speech recognition, speech

separation, audio classification, etc. Acoustic passive spatial sensing is investi-

gated in two fashions as well. First researchers apply the microphone array to

analyze the phase difference across multiple channels and derive a fair Angle

of Arrival(AoA) of the sound source. Besides, they investigate room impulse

response and direct-to-reverberant ratio to estimate the room size and the po-

sition of the sound source[21]. However, both cannot propose a fundamental

formulation to map the distance to the acoustic features directly. Hence, the

performance of acoustic passive spatial sensing is low and applicable scenarios

are limited.

In all, there are several gaps in current acoustic sensing systems. The

first gap is between the assumptions of signal processing methods and unex-

pected interference and noise, which degrades the performance in all metrics.

The second gap is the different capabilities of spatial sensing between active

methods and passive methods. The third gap comes from the individual re-
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search on semantic features or spatial cues of the sound. There are few works

to leverage both characteristics of the sound. In this dissertation, we manage

to bridge these gaps progressively to enable novel acoustic sensing systems

with superior performance and robustness.

1.2 Challenges

Several fundamental challenges lie in acoustic spatial sensing and ap-

plications. First, although many acoustic sensing algorithms have been de-

veloped, the performance degrades significantly under strong noise, interfer-

ence, and hardware limitations. Many existing approaches exploit various

signal processing techniques, but their assumptions can be broken up un-

der low signal-to-noise ratio(SNR) and multipath propagation. For example,

Frequency-modulated continuous wave(FMCW) based acoustic ranging algo-

rithm can estimate the distance accurately in an ideal environment. However,

low SNR can submerge the target estimation with many noisy estimations.

Multipath interference causes a shift of the estimation to the nearby objects.

The complexity of real environments makes it challenging to design a robust

acoustic sensing system.

Second, passive sensing naturally lacks access to the reference of clean

sound and the reference emitting timestamp, which are critical to active sens-

ing. For example, active sensing can emit a reference FMCW and record the

local clock. Then it compares reflection FMCW with the reference FMCW

and records the receiving clock, which enables to estimate ToF and AoA. But

5



passive sensing always receives the target sound together with interference

and noise. Meanwhile, it has no idea of when the sound is produced. It is

more challenging to analyze the spatial location from the noisy mixture sound

without the reference signal and the reference timestamp.

Third, the larger wavelength of natural sound in passive sensing results

in lower resolution compared to high-frequency signals used in active sensing

approaches. For example, the frequency of voice is less than 4kHz commonly.

The wavelength is more than 8 cm. Active sensing uses signals whose fre-

quencies are higher than 18 kHz. The wavelength is less than 2 cm. Larger

wavelength results in less phase difference among channels in the same micro-

phone array. It is challenging to leverage phase information to estimate AoA

accurately.

1.3 Proposed Techniques and Applications
1.3.1 Fully Active Sensing for Acoustic Ranging

Motivation: We revisit the fundamental building block of spatial sensing in

the active sensing setup, ranging. We manage to figure out the insight on the

outstanding performance of acoustic active sensing. Ranging is the technique

to estimate the distance from a signal source to a target object. It is fundamen-

tal for localization, motion tracking, gesture, and activity recognition, which

have a wide variety of applications. For example, it enables gesture-based in-

terfaces to remotely control smart appliances, virtual reality (VR), augmented

reality (AR), and gaming. It offers an effective way of sensing environments
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for wireless optimization (e.g., beamforming, AP selection), habitat monitor-

ing, disaster recovery, user tracking, health monitoring, and context-aware

applications.

We consider emitting the inaudible signal actively and ranging with the

reflected signals. As shown in Figure 1.1, the source sends and receives signals

to measure the round trip propagation delay from the target (e.g., a user’s

hand) and compute the distance.

Signal propagation

Hand (target)

Mobile (source)

Speaker Microphone

(a) Motion tracking or gesture recogni-
tion

Signal propagation

Wall (target)
VR headset (source)

Speaker Microphone

(b) Indoor mapping or obstacle detection

Figure 1.1: Applications for passive acoustic ranging.

Active ranging is useful for many applications, such as gesture recogni-

tion, indoor mapping, virtual reality (VR), and augmented reality (AR). For

example, we can use ranging techniques to create a map for indoor environ-

ments by measuring the distance to walls and furniture. We can also estimate

the distance to nearby obstacles for safety applications.

A number of ranging approaches have been developed, based on differ-

ent signals, such as sound [176, 85, 153, 94, 177, 134, 148], radio frequency

(RF) [58, 145, 123, 166, 62, 111, 83, 81], and infrared lights [54]. Compared to

other signals, acoustic ranging has the following advantages. First, the slow
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propagation speed of acoustic signals is beneficial to achieve high accuracy in

distance estimation. Second, most devices are already equipped with speakers

and microphones, and we do not need to deploy extra hardware (e.g., RFID

readers and tags, millimeter wave antennas, and depth cameras) for ranging.

Third, the sampling rate of acoustic signals is low so that the processing can be

done in software. This makes acoustic ranging easily available on commodity

devices (e.g., smartphones and VR/AR headsets).

Existing ranging algorithms are designed by domain experts. In this pa-

per, we explore the following interesting questions: Can a deep neural network

automatically learn the features in the received acoustic signals to estimate the

distance? Can it outperform traditional signal processing algorithms designed

by domain experts?

This direction is interesting for several significant reasons. Scientifi-

cally, it is interesting to understand the feasibility of the machine learning

approach in automatically learning features. This learning task seems chal-

lenging since unlike images or videos, where humans can easily determine the

correct answers (e.g., image label), human is not good at estimating the dis-

tance from acoustic signals. Practically, if successful, the resulting approach

can improve the accuracy of ranging and benefit a wide range of applications.

Moreover, it can also shed light on the limitations and potential of signal pro-

cessing versus machine learning approaches. Such insights will help us design

new algorithms that achieve the best of both worlds.

Approach: Our work is inspired by the tremendous success of deep neural
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network (DNN) and its advantage in nonlinear problems. Motivated by its

success in vision and speech recognition communities, we have seen applica-

tions of neural networks to ranging and tracking. For example, RF-Echo [29]

applies a neural network with a single hidden layer to estimate the propagation

delay of RF signals based on the correlation profile. RF-Pose [186, 187] de-

velops a convolutional neural network (CNN) to estimate a user’s pose based

on the heatmap generated by applying FMCW to RF signals. Different from

these works, which use the features designed by domain experts as the neural

network input, we aim to automatically learn the features from raw acous-

tic signals. Moreover, unlike the existing works, which require training data

from real testbeds and can be time-consuming and labor intensive, we aim to

automatically generate the training data.

In order to apply DNN to the received signals, we need to address

two major challenges. First, DNN requires a large volume of training data to

work well, and it is important to have an efficient way of generating lots of

training data. Second, we need to design a DNN that works well for distance

estimation.

To address the first challenge, we develop a simulator that models how

acoustic signals propagate through the environment. Through extensive tri-

als, we find that not only noise and multipath (i.e., reflections from objects

other than the target) affect the learner performance, but also self interfer-

ence (i.e., the signal directly going from the transmitter to the receiver) and

speaker/microphone distortion have a significant impact. Therefore, our simu-
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lator captures all these factors. To derive a general model, we add randomness

when generating signals to prevent the network from overfitting specific values

or patterns. For example, not only the noise in our synthetic signals is a ran-

dom Gaussian variable, but its standard deviation is also randomly chosen.

Similarly, we randomly synthesize a piece-wise polynomial function to cap-

ture the frequency responses of speakers and microphones. In this way, our

simulator achieves simplicity, generality, and realism. We only use the data

generated from our simulator to train DNNs for ranging and show that they

work well for real signals using 11 different smartphones, 10 users, different

targets, and 4 different locations.

To address the second challenge, we start with a generic multi-layer

fully connected neural network. Interestingly, we find the weights connected

to each neuron in the first layer have a high correlation with the transmission

signals at different shifts. This insight motivates us to develop a CNN. We

first try the traditional CNNs, such as AlexNet [65] and VGG [126], but find

they do not work well because their filters have too short kernel size (e.g., 3×3

or 11×11) and fail to detect local patterns under noise and interference. To

robustly capture signal patterns, we develop a CNN with filter sizes comparable

to the length of transmission signals.

Moreover, we find the network weights converge to different values dur-

ing different runs. Intuitively, these weights correspond to different ways of

feature extraction for ranging. Therefore, instead of training a single network,

we train a set of networks and combine them using an ensemble model. To

10



maximize the effectiveness of ensemble learning, we add randomness during

training by using random initialization, applying dropout, and using different

sets of training data.

We evaluate our approach by training DRNet using synthetic data

generated from our simulator and testing on the acoustic signals collected from

11 phones with different brands, 10 users, different targets, and 4 environments

including a lab, a conference room, a corridor, and a cubic area. The evaluation

results show that our network generalizes well to different scenarios. Compared

to three baseline approaches that use FMCW, correlation, and phases, our

learning-based approach achieves up to 5 times improvement on the ranging

accuracy when the SNR is low and the interference is severe.

1.3.2 Fused Active and Passive Sensing for Speech Separation

Motivation: In this project, we further explore how to use active methods

to improve the AoA estimation of passive sensing and how to leverage the se-

mantic features and spatial cues together to improve semantic task and spatial

sensing simultaneously. We choose the indispensable online meetings as the

applicable scenarios. During Covid-19, the online meeting is the only means

to connect with many people. Kids depend on it for education, adults rely

on it for work, and friends count on it for socialization. Moreover, its impor-

tance will likely go well beyond Covid-19 as many companies will continue to

allow work-from-home, and online classes will likely be the future trend due

to convenience and broad reach.
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Over 70% US households have two or more people [129] and the aver-

age household size across the world is 4 [110]. While one is participating in an

online meeting or taking an online class, other house members may generate

sound. Unlike videos, voice signals can travel across rooms and result in sig-

nificant interference unintentionally. After all, not everyone has enough room

at home to create a separate home office space. This both degrades the audio

quality and raises serious privacy issues.

There has been significant work on signal source separation. Earlier

works use signal processing, such as PCA and ICA. More recent works use

machine learning (ML) to further improve separation accuracy. Videos can also

be used to improve source separation [118, 36] since the camera captures mouth

position and movement. However, video requires good lighting conditions,

has a limited field of view, and raises significant privacy concerns. [2] also

reports turning off a camera during teleconferencing reduces the environmental

footprint of a meeting by 96%.

Despite considerable work, existing works primarily focus on using raw

audio samples for source separation. User location can have a significant im-

pact on source separation but has not been explicitly considered until recently.

Some recent works use the ground truth location for source separation and

report significant benefits (e.g., [24, 183, 189]). But they rely on external

modality to provide the location. The speech itself contains the spatial cues

to extract by signal processing. Besides, the specific multipath profile provides

more unique spatial information.
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There is a strong inter-dependency between the source separation and

the AoA estimation. Considering the traditional beamforming algorithm, the

accurate AoA can yield source separation of high quality spatially. On the

other side, the reference signal can be applied to optimize the search of AoA

from the mixed signals. In the blind speech separation task, both AoAs and

target speech are unknown. Therefore, we propose to learn the speech sepa-

ration and AoA estimation jointly from the received acoustic signals.

Approach: To preserve privacy and achieve efficiency, we seek an audio-only

solution to explicitly estimate the user’s spatial information including position

and multipath profiles for source separation. Since the spatial information

contains non-negligible errors, we need to explicitly consider the localization

error in source separation.

Consider a user uses a computer to join an online meeting while other

people are talking in the background. Since the user is close to the computer

during the meeting, a small movement can result in a large difference in the

Angle of Arrival (AoA). Our measurements in Figure 1.2 show that there is a

frequent head movement that yields over a 20-degree change in the AoA and

a 20 cm change in the distance when a user speaks spontaneously. Therefore

it is useful to track the user’s location and use it for source separation.

As shown in Figure 1.3, we develop a system that automatically removes

the interference by explicitly estimating the user location and multipath, and

using the estimated spatial embeddings to enhance source separation accuracy.
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Figure 1.2: Speaker movement during spontaneous speech. We use a depth
camera to collect the movements.

While there has been existing work on localizing a user using inaudible

signals (e.g., [85, 93]) or audible signals (e.g., [124, 152]), our work is the first

that leverages both audible and inaudible signals to achieve high localization

accuracy. More specifically, we extract masks in the Time-Frequency (TF)

domain from audible signals and use the mask to select TF bins dominated

by the target user’s voice to improve the localization accuracy of the voice

signal under interference. Meanwhile, we let the computer generate inaudible

acoustic chirps to track user position. We feed location profiles from both

audible and inaudible signals to the 3D convolutional layer to generate spatial

embeddings, which will serve as the input to source separation. These spa-

tial embeddings contain not only the user’s location but also rich multipath

information and play an important role in source separation.

We then leverage the user’s location to improve the source separation

by developing a novel multi-task learning framework to jointly learn the source

separation and location. Instead of treating the estimated position as an input
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Figure 1.3: SAMS automatically removes acoustic interference and ambient
noise for online meetings.

feature to the separator, we explicitly take into account of the position esti-

mation error in the multi-task loss function and guide the network to jointly

learn the separation and localization by establishing the consistency between

the target user speech and position.

In order to achieve real-time processing during an online meeting, we

make the following enhancements: (i) leveraging casual convolution (i.e., us-

ing only past samples) and non-casual convolution (i.e., using future samples)

with a small look-ahead window to reduce response time, (ii) cache previous

intermediate results in the neural network and reuse whenever possible, and

(iii) further optimize the computation graph with Microsoft Onnxruntime [9].

According to [115], 150 ms is a recommended one-way latency. SAMS pro-

cesses audio every 90 ms within 42 ms on a laptop without GPU. So the total

latency is 132 ms, well below 150 ms. We implement our approach on a laptop

with dual speakers and a microphone array. We evaluate different users’ per-

formance in different environments with various SNR and interference sources.

Our results show that SAMS achieves 10.71 - 13.61 dB Scale-invariant Signal-

to-Noise Ratio (SiSNR) under a varying number of interfering users. This
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is a 3.4-5.0 dB improvement over Conv-TasNet [80], and a 1.4-9.58 dB im-

provement over PHASEN [174]. The multi-task learning with novel spatial

embedding fusion also helps SAMS to achieve a 1.2-3.18 dB improvement over

other multichannel separation strategies based on MVDR pre-filtering or AoA-

based pre-mask.

1.3.3 Fully Passive Sensing for Sound Source Depth Estimation

Motivation: We manage to find the explicit fundamental formulation to

map the depth to explicit physical variables in a pair of fully passive sensing

sensors(i.e.one camera and one microphone).

Depth estimation has been a popular topic owing to many important

applications. It is the fundamental functionality to enable 3D perception

and manipulation. Although there have been significant efforts on develop-

ing depth estimation methods with various sensors. current depth estimation

schemes fail to achieve a good balance on multiple basic metrics including

accuracy, range, angular resolution, cost, and power consumption.

Active depth sensing methods actively emit signals, such as LiDAR [18],

structured-light [182], mmWave [12], ultrasound [85], WiFi [146]. They com-

pare the reflected signal with the reference signal to derive time-of-flight (ToF),

phase change, or Doppler shift to estimate the depth. Active methods can

achieve high accuracy because the modulated sensing signal is well designed.

Lidar is the most attractive active senor due to its large sensing range and

dense point cloud. However, the density is not sufficient enough to enable a
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small angular resolution. Therefore, the points are too sparse to be recognized

at a long distance. Besides, the prohibitive cost and power consumption limit

the availability of Lidar on general sensing devices.

Passive depth sensing takes signals from the environment for sensing

directly. It commonly uses RGB monocular camera [15, 66], stereo cam-

era [130, 25], thermal camera [76], or multi-view cameras [72]. These sen-

sors can achieve pixel-wise angular resolution and consume pretty less energy

due to omitting the signal emitting. Among them, stereo matching can ef-

fectively estimate the disparity and infer a dense depth map. The baseline of

the stereo camera determines the effective range and accuracy. Therefore, the

dimension of the stereo camera is placed as the critical trade-off with sensing

metrics. Thanks to the advance in deep learning, the cheap monocular depth

estimation keeps on improving performance with new network structures and

high-quality datasets. However, the accuracy is still not satisfactory especially

at a long range because it can only regress depth based on the implicitly visual

cues. Besides, it is highly fitting to the training dataset so it is pretty chal-

lenging to adapt the out-of-domain scenarios and calibrate the unseen camera

intrinsics [68].

Approach: We propose to add only one microphone to enable explicit phys-

ical depth measurement and boost the performance of a single RGB camera.

It does not rely on the camera’s intrinsic and implicit visual cues. We de-

velop a novel passive depth estimation scheme, called Flash-to-Bang Depth

(FBDepth). It is inspired by a well-known phenomenon – ’Flash-to-Bang’,
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which is used to estimate the distance to the lightning strike according to the

difference between the arrival time of a lightning flash and a thunder crack.

This works because light travels a million times faster than sound. When the

sound source is several miles away, the delay is large enough to be perceptible.

Applying it to our context, FBDepth can estimate the depth of a collision

that triggers audio-visual events. The collision event has been explored for

navigation and physical search in [39], but our work is the first that uses the

collision for depth estimation. Collisions are common and can arise when a

ball bounces on the ground, a person takes a step, or a musician hits a drum.

We identify and exploit several unique properties related to various collisions

in the wild. First, the duration of a collision is short and collision events are

sparse. Thus, there are few overlapped collisions. Second, though the motion

of objects changes dramatically after the collision, they are almost static at

the collision moment. Third, the impact sound is loud enough to propagate

to a long range.

(a) frame before a collision (b) frame after a collision

Figure 1.4: Consecutive frames in the 240 FPS video. It does not capture the
moment to start to touch the surface without the deformation.
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(a) Impact sound of a wooden brick

(b) Impact sound of a tennis ball

Figure 1.5: Two different impact sounds. It is impossible to distinguish which
sample is the start sample of the impact sound.

While the Flash-to-Bang phenomenon is intuitive, using it for accurate

depth estimation poses several significant challenges: (i) It is challenging to

get the ground truth collision time from both video and audio. Video only

offers up to 240 frames per second, and may not capture the exact instance

when the collision occurs as shown in Figure 1.4. Audio has a higher sampling

rate but it is hard to detect the start of a collision solely based on the collision

sound due to different sound patterns arising from collisions as well as ambient

noise. In Figure 1.5, we can estimate a coarse duration of impact sounds but

we have no idea which sample is the first impact sample even though the noise

is low. (ii) We need highly accurate collision time. 1 ms error can result in

a depth error of 34 cm. (iii) Noise present in both audio and video further

exacerbate the problem.

To realize our idea, we formulate the sound source depth estimation as

the audio-visual localization task. Whereas existing work [164, 165] still fo-
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cuses on 1-second-segment level localization. FBdepth performs event-level lo-

calization by aligning correspondence between the audio and the video. Apart

from audio-visual semantic features as input in existing work [141, 20], we

incorporate optical flow to exclude static objects with similar visual appear-

ances. Furthermore, FBDepth applies the impulse change of optical flow to

locate collision moments at the frame level. Finally, we formulate the ms-level

estimation as an optimization problem of video interpolations. FBDepth suc-

ceeds to interpolate the best collision moment by maximizing the intersection

between extrapolations of before-collision and after-collision flows.

With the estimated timestamp of visual collision, we regress the sound

source depth with the audio clip and visual features. FBdepth avoids the re-

quirement to know the timestamp of audio collision. Besides, different objects

have subtle differences in audio-visual temporal alignment. For example, a

rigid body generates the sound peak once it touches another body. But an

elastic body produces little sound during the initial collision and takes several

ms to produce the peak with the maximum deformation. We feed semantic

features to enable the network aware of the material, size, etc.

1.4 Summary of Contributions

The major contributions of this dissertation are summarized as follows:

• We design a novel deep learning framework to enhance the robustness

and performance of the active acoustic ranging task. It includes a spe-
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cial DRNet that takes the raw received acoustic signals without feature

extraction as the input. The framework also includes a sensing data

simulator that captures noise, speaker/mic distortion, and interference

as well as generates diverse enough training data. The DRNet trained

by the simulation data can significantly outperform the existing signal

processing algorithms designed by domain experts on the real sensing

data collected from a variety of scenarios. Furthermore, We analyze

the DRNet structure and identify several important findings that can

potentially help improve existing signal processing methods.

• We propose a first multi-task learning framework to fuse active acoustic

sensing and passive acoustic sensing in the speech separation task. We

show the inherent relationship between source location and separation.

Thus, SAMS actively emits the inaudible signal to sense human motion.

With a novel pre-mask learning network, SAMS can jointly learn source

separation and location by leveraging the spatial embeddings from both

audible speech and inaudible reflections. We implement our approach

and significantly speed up the inference time to provide real-time guar-

antees. We demonstrate its significant performance benefits over existing

approaches.

• We develop the first passive audio-visual depth estimation with one cam-

era and one microphone. We bring the physical propagation property

to audio-visual learning as well as fuse the semantic features and spatial
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cues deeply. To formulate our novel depth estimation task, we intro-

duce the ms-level audio-visual localization task. We propose a novel

coarse-grained to fine-grained method to improve temporal localization

resolution by leveraging the unique properties of collisions. We incorpo-

rate multiple modalities including RGB image, optical flow, and audio

clip to predict the depth. Our evaluation using 3.6K+ audio-visual sam-

ples across 24 different objects in the wild shows that FBDepth achieves

0.64m absolute error (AbsErr) and 2.98% absolute relative error (Ab-

sRel) across a wide range of scenarios from 2 m to 60 m. The benefit of

FBDepth is especially high in long-range scenarios.

1.5 Dissertation Outline

We discuss related work in Chapter 2. We describe the active acous-

tic ranging system in Chapter 3; spatial aware based speech separation in

Chapter 4; visual assisted sound source depth estimation system in Chapter 5
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Chapter 2

Related Work

2.1 Motion Tracking
2.1.1 Acoustic Motion Tracking

A number of systems have been developed for motion tracking using

acoustic signals. BeepBeep [108] measures the distance between two mobiles

by correlating the pseudo-random sequence. Based on BeepBeep, Sword-

Fight [181] further improves the efficiency and supports the interaction for

mobile motion games. ApneaApp [93] uses FMCW to measure the chest and

abdomen movements for apnea detection. AAMouse [176] relies on Doppler

shifts of the signals to capture the distance changes over time. CAT [85] devel-

ops a distributed FMCW to estimate the distance between separated speakers

and microphones. LLAP [153] leverages the phase changes of raw acoustic

signals to determine the distance changes, while Strata [177] and VSkin [134]

use the phases of channel taps. FingerIO [94] estimates the distance based

on correlation and uses the properties of OFDM symbols to refine the estima-

tion. DroneTrack [88] develops an approach to estimate the distance between

a drone and a user based on MUSIC algorithm. MilliSonic [148] combines

FMCW and phase measurements to estimate the distance. It achieves impres-

sive estimation accuracy at high SNR, but does not work well under low SNR
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because it relies on the assumption that the estimation error is always less

than the wavelength (e.g., about 2 cm for 17 KHz acoustic signals) to avoid

phase ambiguity. These algorithms are developed by human experts. Deep-

Range complements the existing work by exploring the possibility of applying

DNN to raw acoustic signals for distance estimation. The insights gained from

DRNet can potentially help improve the existing signal processing methods.

2.1.2 RF Based Motion Tracking

Many motion tracking systems use radio frequency signals, such as

WiFi, RFID, and millimeter-wave transceivers. ArrayTrack [167] estimates

AoAs to different access points based on an array of antennas. RF-IDraw [150]

uses the phase difference between a pair of RFID tags to estimate the incoming

angles of the signals. Tagoram [173] estimates the locations of RFID tags by

generating holograms with an array of RFID readers. TurboTrack [81] exploits

the physical properties of RFID tags to emulate large bandwidth for accurate

motion tracking. MTrack [158] measures the phases of 60 GHz waves for mo-

tion tracking with highly directional and steerable antennas. WiTrack [4, 5]

leverages FMCW sweeping from 5.5 GHz to 7.2 GHz to estimate the positions

of multiple people in the room. The above approaches require access to raw

signals. When raw signals are not available, channel state information (CSI)

is used to infer the position of a target. CUPID [123] and Splicer [166] derive

the power delay profiles for the paths from the transmitter to the receiver by

applying IFFT on CSI measurements. Widar [111] constructs the model be-
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tween CSI and target motion and uses it for tracking. SpotFi [62] applies 2D

MUSIC to jointly estimate the distance and the AoA of a target based on CSI

measurements. Chronos [145] combines the CSI measurements at different

bands to improve the tracking accuracy. WiDeo [58] determines the propaga-

tion delays of all paths by finding the best match between the CSI calculated

according to these paths and measured values. WiDraw [135] uses CSI to es-

timate the AoAs of a target and relies on multiple WiFi APs for localization.

The CSI-based approaches work on commodity devices (e.g., WiFi APs and

smartphones) and do not require any special hardware (e.g., RFID tags and

steerable antennas). However, these approaches only achieve decimeter-level

tracking accuracy, which is insufficient for fine-grained tracking applications.

2.1.3 Neural Network Based Tracking

RF-Echo [29] applies a neural network with a single hidden layer to

estimate the propagation delay of RF signals based on the correlation profile.

RF-Pose [186] develops a convolutional neural network to estimate a user’s

poses based on heat maps generated by RF signals. RF-Pose3D [187] further

extends above approaches to 3D pose estimation. Other works [77, 19] apply

the recurrent neural network to determine a user’s indoor location using the

received signal strength of RF signals. RF-Finger [149] identifies the multi-

touch gestures by applying CNN.

WordRecorder [35] extracts the spectrogram feature from acoustic sig-

nals and combines it with CNN for handwriting classification. A multi-LSTM
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neural network is designed in [67] to fingerprint mobile device sensors, instead

of using handcrafted features. RTrack [86] develops an RNN to automatically

learn the mapping between the 2D profile and target position to exploit the

temporal locality. All these works need features extracted from the received

signals before applying neural networks, while our network directly takes the

received signals as the input. Using the raw signals is beneficial to achieve

better performance as demonstrated by our experiments. In addition, these

approaches require collecting lots of data to train the networks, which can be

time-consuming and labor-intensive.

Recently, there have been many CNN-based object detectors improving

the accuracy of detecting sonar images. [161] first implements CNN over syn-

thetic aperture sonar image and argument data by mirroring mugshots. [60]

makes use of the efficient YOLO model on forward-looking sonar images for

real-time detection. [190] extracts target features by AlexNet and classifies

objects by applying SVM to side-scan sonar images. [154] further proposes an

adaptive weights CNN to fuse the generated weights of the deep belief network

and normalize the adaptive weights by local response normalization. They di-

rectly apply detectors for optical images to sonar images and ignore the inher-

ent differentiation. [82] designs a Noise Adversarial Network as the sideway

network to introduce perturbation with specific noise to sonar images during

training to generalize the object detector in sonar images. These works apply

deep learning to features extracted from acoustic signals by signal processing.

In comparison, DeepRange directly feeds raw acoustic signals to DNN. This
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is more challenging but can achieve higher gains since post-processing using

existing signal processing methods may already reduce accuracy, which can be

hard to recover at a later stage. Besides, DRNet does not require real data to

train. It is trained only with well-designed synthetic data and generalizes well

on diverse real data.

2.2 Speech Separation
2.2.1 Single-Channel Speech Separation

When the received signal only has one channel, researchers usually ex-

ploit the inherent vocal features and speech content to extract the independent

components from mixture signals. Most approaches (e.g., [116, 103, 139, 74,

170]) use the TF representation of the speech signal, computed by the short-

time Fourier transform (STFT), also noted as a spectrogram. Then a mask

matrix can be estimated for the target source and then multiplied with the

mixture spectrogram to recover the clean spectrogram.

Early approaches tried to estimate the clean spectrogram by training

a nonlinear model [74, 170] directly. Then embeddings [48, 23] are used to

encode TF bins to higher dimensions for clustering. PHASEN [174] develops a

two-branch learning framework to improve phase estimation. Meanwhile, new

structures use encoder and decoder structures to perform the speech separation

in the time domain [80, 104, 79, 22]. They also use LSTM or Temporal Con-

volution Network (TCN) to learn the context in the time domain. Dual-Path

RNN (DPRNN) [79] further exploits extremely long sequences by splitting the
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input sequence into multiple chunks that are processed with different RNNs by

the local path and the global path. DPTNet [22] integrates a transformer into

DPRNN. SepFormer [131] further integrates multi-head self-attention. These

approaches have shown good performance on the WSJ0MIX synthetic dataset.

However, the single-channel input is limited to exploiting crucial spatial infor-

mation.

2.2.2 Multiple-Channel Speech Separation

Animals have developed multiple ears through millions of years of evo-

lution. Similarly, more receiver channels can significantly improve source sep-

aration performance in theory and practice. Independent component anal-

ysis (ICA) [121] separates the mixture into additive subcomponents. How-

ever, it requires the source signals to be non-Gaussian and the number of

sources to be smaller than the number of channels. Beamforming algorithms

[107, 128, 49, 38] can leverage spatial information to strengthen the signal

in the target directions and null the interference from unwanted directions.

[24] proposes to iteratively run classic beamforming and separation for sev-

eral rounds to guide the network focus on the appropriate direction. Recent

work (e.g., [44, 171]) uses a neural beamformer, which fuses the single channel

spectrogram and internal phase difference to directly learn the target speech.

[183, 172] develop end-to-end learning of complex covariance matrix to predict

spatial complex filter. These works require the source position as another input

for speech separation explicitly. The user position contains important infor-
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mation for interference cancellation. It can be used for beamforming toward

the target user. [32, 84] iterate localization and source separation using ex-

pectation maximization (EM). [57] formulates the separation and localization

problem as the Bayesian inference problem. D-ASR [132] trains the localiza-

tion network together with Automatic Speech Recognition (ASR) network to

explicitly recognize the speech content of each speaker for source separation.

CoS [56] integrates a binary search of the azimuth direction with separation.

SAMS jointly learn the separation and location with a deep spatial fusion.

2.2.3 Multi-Modal Speech Separation

There has been a research interest to involve another coupled modality

to help separate the source speech from the mixture. The modality is highly

relevant to the source so that it can perform as a side channel to help recover

the source speech. Ultrasound is proposed to use for source separation in [11].

It applies an ultrasound transceiver pair to capture frequency shifts caused by

a talker’s mouth movements and uses the semi-supervised nonnegative matrix

factorization (NMF) for speech separation. UltraSE [133] implements this idea

on mobile phones. It focuses on inaudible sound to the mouth to measure the

Doppler shift of lip movement and applies contrastive learning to pair the

ultrasound features and source speech features to enhance separation quality.

In order to track lip movement using reflected inaudible sound, it requires the

mouth-to-mic distance to be within 20 cm and a good facing angle towards the

mic. [168, 71] use mmWave radar to sense vocal vibration which distorts the
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skin-reflected mmWave signal. They build up the correlation model between

source speech and mmWave reflection and design fusion network to perform

speech separation and recognization. But mmWave deployment is less widely

applicable than speakers and microphones.

Some recent works exploit audio and visual information together to en-

hance audio quality[37, 6, 40, 185]. Visual appearance can capture the impor-

tant features of the speaker, such as gender, age, nationality, and body weight,

which can impact the tones, pitch, and timbre of the voice signals. Moreover,

it can track dynamic features of speech such as lip movement. [37] introduces

a new audio-visual speech dataset AVSpeech and a multi-stream architecture

to fuse visual features and audio features for separation. [185, 184] uses the

natural synchronization of the visual and audio modalities. They can locate

regions of interest in images that produce sounds and separate sound mixture

into a set of components of each pixel from unlabeled videos. VisualVoice [40]

explicitly leverages lip movements and the speaker’s facial appearance simul-

taneously to isolate the corresponding speech. It jointly learns audio-visual

speech separation and cross-modal speaker embeddings from unlabeled video.

2.3 Multi-Modality Depth Estimation

Recent work on depth estimation has shown the benefits of fusing cam-

eras and other active sensors. [112, 53] recover dense depth maps from sparse

Lidar point clouds and a single image. [73] associate pixels with pretty sparse

radar points to achieve superior accuracy. The effective range can be increased
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as well by Lidar-camera [180] or Radar-camera [178]. However, these methods

are still expensive in cost and power consumption.

[41, 105] emit audio chirps and learn the depth map implicitly with

audio reflections and a single image. However, these methods require many

nearby acoustic reflectors to produce effective echos so the setup is limited in

rooms. Besides, they are evaluated in an audio-visual simulator. FBDepth

only uses one extra microphone to perceive natural sounds directly. It keeps

the passive design of the audio but applies the physical measurement explicitly.

The one-path sound propagation has a longer effective range than echoes.

2.4 Sound Source Localization

Previous systems localize sound sources with microphone arrays [144,

114] or one microphone with a camera [47]. They intend to estimate the

direction of arrival(DOA) or the distance. The DOA is inferred by the subtle

difference in arrival time from the sound source to each microphone[87, 136]

or by semantic matching with the visual appearance if given images[141, 8].

The distance can be estimated by triangulation methods with multiple DOAs

and room structures[151, 124]. It can be fully learning-based to predict depth

with room acoustic features [21].
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2.5 Audio-Visual Event Localization

It aims to detect and localize events in videos. [141] first propose the

task that detects events that are both audible and visible. They build up the

audio-visual event (AVE) dataset and apply an audio-guided visual attention

mechanism to learn visual regions with the related sounding object or motions.

Recent works develop plenty of fusion strategies to leverage the global features

on this task, such as dual-modality sequence-sequence framework [70] and dual

attention matching mechanism [164]. However, the temporal event boundary

is second-level in AVE dataset so it is split as 1s-long segments. We study the

instant collision event and come across the coarse boundary problem as well.

Thanks to the unique properties of collisions and the coarse-to-fine strategy, we

can achieve ms-level temporal resolution without the ground truth timestamp.

[39] uses an embodied robot agent to localize a dropped object in 3D

virtual rooms. They integrate asynchronous vision and audition and navigate

to the object with imitation learning, reinforcement learning, and modular

planning. Asynchronism comes from the invisibility of the object. Even though

their simulator has been pretty vivid enough for semantic tasks, it has a gap

in real-world collision for the ms-level formulation. Falling objects dataset[63],

TbD dataset[64] and TbD-3D dataset[120] explores falling motions and fast

movings but they do not have audio and depth information.
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2.6 Video Frame Interpolation

It aims to synthesize intermediate frames between existing ones of a

video. Most state-of-the-art approaches explicitly or implicitly assume a sim-

plistic linear motion. Warping-based methods [10, 106] apply optical flow and

forward warping to shift pixels to intermediate frames linearly. Phase-based

methods [90, 89] combine the phase information across different scales but

the phase is modeled as a linear function of time. Recent methods are devel-

oped to approximate non-linear motion, such as kernel-based methods [97, 96],

quadratic interpolation [169], cubic motion modeling [26], etc. However, they

still fail to complex non-linear motions because precise motion dynamics can-

not be captured in the blind time between keyframes. Unfortunately, collisions

are super non-linear and instant. Given two keyframes before and after the

collision, it is ambiguous to decide whether there is a collision. Hence, these

methods are not applicable.
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Chapter 3

DeepRange: Acoustic Ranging via Deep
Learning

3.1 Background of Acoustic Ranging

1 There are a number of acoustic ranging algorithms, such as frequency-

modulated continuous-wave (FMCW) [176, 85], correlation with known se-

quence [108, 181, 94], and monitoring phase changes [153, 177, 148]. Accord-

ing to our experiments, FMCW and correlation-based methods outperform the

phase-based method under low SNR and/or strong multipath. In this section,

we briefly describe how FMCW works and use it to illustrate why existing

approaches do not work well under strong noise and multipath.

To estimate the distance propagated by the signals, we let the speaker

periodically send chirps whose frequency linearly increases over time as shown

in Figure 3.1. Upon receiving the chirp reflected by the target, we perform

a mixing operation (i.e., multiply the received chirp with the transmission

signal) and apply a low-pass filter. It can be shown that the mixed signal

1The work in this chapter was supervised by Prof. Lili Qiu. I was the co-primary author
and made contributions to designing research, performing research, analyzing data, and
writing the paper. It was originally published in: Mao, Wenguang, Wei Sun, Mei Wang,
and Lili Qiu. DeepRange: Acoustic ranging via deep learning. Proceedings of the ACM on
Interactive, Mobile, Wearable and Ubiquitous Technologies 4, no. 4 (2020): 1-23.
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Figure 3.1: FMCW processing stages.

is a sinusoid with the frequency proportional to the signal propagation delay

[4, 85]. To determine the delay, we estimate the frequency of the mixed signal

by applying Fast Fourier Transform (FFT) on the mixed signal and finding

the peak frequency in the spectrum. Figure 3.2(a) shows an example for the

spectrum derived by FMCW, where the ground truth frequency is labeled by

a red circle.

With other ranging techniques, the performance of FMCW degrades

significantly when the SNR is low. In this case, the spectrum derived above

becomes very noisy as shown in Figure 3.2(b), and it is difficult to locate the

target because the target location does not correspond to the highest peak in

the spectrum. The performance of FMCW also degrades under severe mul-

tipath. For example, when we place another object next to the target, the

microphone will receive reflections from both the target and the nearby ob-

ject. The peaks corresponding to both the target and object may interfere and

merge, which makes it difficult to locate the target as shown in Figure 3.2(c).

However, while it is challenging to design a hand-crafted heuristic to select

a peak corresponding to the target, it may be possible for deep learning to
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Figure 3.2: The spectrum derived by FMCW under ideal, low SNR, and severe
interference scenarios.

automatically learn the pattern by mining a large amount of data. For exam-

ple, the shape of a real peak may be quite different from the noise. Similarly,

by analyzing the shape of a merged peak, it seems possible to locate the first

peak if the target can be assumed to be the closest object after interference

cancellation.

We also evaluate the impact of speaker and microphone frequency

response and find it does not have a significant impact on FMCW perfor-

mance. However, learning-based approaches require training traces with re-

alistic speaker/microphone frequency response; otherwise, there is significant

performance degradation as shown in Section 4.4.

In summary, the existing ranging algorithms are developed based on
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a solid theoretical foundation. However, they face challenges arising from

low SNR, multipath interference, and speaker/microphone frequency response.

Deep neural network (DNN) has the potential to address these challenging

scenarios by automating feature extraction. In fact, our DNN can accurately

estimate the distance to the targets in the examples shown in Figure 3.2 by

automatically learning from labeled data.

3.2 Approach

In this section, we develop a DNN to estimate the distance based on

received signals. To minimize the overhead of collecting training data, we

develop a simulator to synthetically generate training data that captures noise

(e.g., ambient sounds or random acoustic noise), interference (e.g., the signals

propagated from the direct path and reflections from non-target objects), and

speaker/mic distortion (e.g., uneven frequency response of the speakers and

microphones). We further develop a convolutional neural network (CNN) with

long kernel sizes to achieve high accuracy and outperform both classic CNN

and fully connected neural networks. We also propose an ensemble method to

further enhance the performance.

3.2.1 Signal Generation

Basic model: We use x(t) to denote the transmission signal over time t,

which is a chirp as discussed in Section 3.1, where 0 ≤ t ≤ T , and T is the

transmission period. We use y(t) to represent the received signal and it is what
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Figure 3.3: The median errors with fixed and variable noise strength.

we need to generate. Ideally, the received signal is the transmission signal after

certain attenuation and delay. Therefore, one can generate received signals as

follows:

y(t) = a0x(t− t0) (3.1)

where a0 is the attenuation coefficient and t0 is the delay. We train a neural

network based on signals generated in this way, and test it using real data

(refer Section 3.3 for details about our neural network and testing data). It

achieves a 1.9 cm median distance estimation error, which is much higher than

0.75 cm achieved by FMCW.

To achieve better performance, we should generate training data that

is more similar to real data and captures various factors in real environments.

Noise: First, we add a noise term n(t) to our received signal as

y(t) = a0x(t− t0) + n(t) (3.2)

We generate n(t) following Gaussian distributions with a zero mean and stan-

dard deviation σ. σ has a significant impact on learning performance. If σ
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is too small, the learner cannot gain knowledge about how to deal with low

SNR. If σ is too large, the signals are too noisy to learn features from them.

Moreover, we cannot use a single value for σ, since the learner may overfit the

particular noise level and does not generalize well to other situations. This is

shown in Figure 3.3: when we use the synthetic data with a fixed σ to train

a neural network, it does not work well even for the test cases with less noise.

Note that the testing data in this experiment is generated using our simulator

so that we can control the noise level. For all other experiments in this sec-

tion, we use the testing data collected from real environments as described in

Section 3.3.

Therefore, our approach uses σ from a range [0, 4]. As a reference, the

magnitude of signals reflected by the target at 0.3 m is set to 1. The upper

bound of the range is tuned based on the experiments to give the best perfor-

mance. It covers low SNR scenarios but prevents signals from getting too noisy

to provide information. For each transmission period, we randomly choose a

value from that range and generate noise following a Gaussian distribution.

After taking into account the noise, the distance estimation error of our neural

network reduces to 1.1 cm, but is still much higher than FMCW.

Multipath: Multipath is a common phenomenon in wireless signal propa-

gation [143], where the signal generated from the transmitter takes multiple

paths to reach the receiver. The signal along each path is a delayed and at-

tenuated version of the transmission signal. The final received signal is the

superposition of signals along all the paths. To capture this effect, our gener-
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ation model becomes

y(t) =
L∑
i=0

aix(t− ti) + n(t), (3.3)

where ti is the propagation delay sorted in ascending order. The parameter

we need to decide is how many reflection paths (i.e., L) should be added

into signals. While there could be many reflection paths in practice, most of

them are static (e.g., reflection paths from furniture and walls) and can be

removed using interference cancellation [92, 27]. The main idea is to record

the reflection from these objects in advance when the target is absent and then

remove them when collecting the signals to estimate the distance to the target.

After interference cancellation, only a few reflection paths remain. In our

approach, we generate data to emulate signals after interference cancellation

and use them as the neural network input. This not only reduces the number

of reflection paths, but also removes the environmental dependency because

most reflections from the environment are removed. Based on our experiments,

we only need to generate 0–4 reflections (excluding the one coming from the

target) with random propagation delay in the training signals and our neural

network generalizes well to the cases with more reflections. Further increasing

the number of reflection paths leads to little additional improvement.

For the attenuation coefficient ai, we first set its value inversely pro-

portional to the propagation delay of the i-th path so that the signal energy

on that path follows the inverse-square law [143]. Then we multiply the above

value with a random number in the range [1/2, 2] to take into account the other
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factors that affect the reflection strength, such as object materials and sizes.

The multiplier larger than 1 indicates a stronger reflector with a larger reflec-

tion area or less absorption. Note that choosing another range (e.g., [1/3, 3])

may achieve similar performance. The key point here is to add randomness

to prevent the neural network from relying on only the signal strength. After

incorporating multipath in the training data, our neural network outperforms

FMCW and achieves a 0.58 cm median distance estimation error.

Self interference: In addition to the target reflection, the transmission sig-

nals also propagate directly from the speaker to the microphone, which we

call self interference. Since the relative position between the speaker and

microphone on mobile is fixed, the signals through the direct path can be

removed by self interference cancellation. However, the transmission signals

sent at different times are slightly different in practice due to variation in de-

vice temperature, power supply, and self interference channel. Therefore self

interference cancellation is not perfect. Since self interference is orders of mag-

nitude higher than the target reflection due to a small separation between the

speaker and microphone, the residual self interference can still be relatively

large compared with the target reflection and should be taken it into account

in our signal generation.

To model the residual self interference, we use [1+ϵ(t)]x(t) to represent

the transmission signal, where ϵ(t) captures the variation. Without loss of

generality, we generate ϵ(t) using random splines whose magnitude is within

ϵmax. According to our observations, the transmission signal variations are
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usually on the order of 10−3. Therefore, we set the upper bound ϵmax as 0.01.

By applying interference cancellation, the residual self interference be-

comes

asϵ(t− ts)x(t− ts), (3.4)

where as and ts are the attenuation coefficient and propagation delay of the

self interference. Since the signal on the direct path always has the shortest

propagation delay, it corresponds to the first term in Equation 3.3. Based on

the above discussion, our signal generation model becomes

y(t) = a0ϵ(t− t0)x(t− t0) +
L∑
i=1

aix(t− ti) + n(t). (3.5)

By incorporating the self interference, the median ranging error of our neural

network reduces to 0.51 cm.

Transceiver frequency response: Another important factor needed to be

taken into account is the frequency response[109] of the speaker and micro-

phone. Ideally, they should have the same gain across the entire frequency.

However, real speakers and microphones have different gains across different

frequencies, especially for those above 18 KHz (used by our transmission sig-

nals), as they are hardly audible and not optimized. To emulate this effect,

we let our synthetic signals pass through a digital filter with uneven frequency

gains. For each transmission period, we use different filters to cover various

possibilities. The frequency responses of these filters are generated using ran-
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dom splines. Thus, our signal generation model becomes

y(t) = a0ϵ(t− t0)x̃(t− t0) +
L∑
i=1

aix̃(t− ti) + n(t), (3.6)

where x̃ stands for the signals distorted by uneven frequency response. After

incorporating this effect, the median distance estimation error of our neural

network reduces to 0.42 cm.

As we will show, our synthetic data generated in this way are both

realistic and diverse by capturing the important real-world effects, such as

multipath, noise, and speaker/microphone distortions. So we transform the

target distance x to the received signal y as y = f(x). However, it is chal-

lenging to infer x based on y since f() is non-linear, unknown in advance,

and varies over time and across environments and speakers/microphones. The

neural network is an effective way to model a non-linear and complex rela-

tionship between the input (i.e., the received signals) and output (i.e., the

target distance). In the following sections, we develop a DNN to estimate the

distance based on the raw acoustic signals.

3.2.2 Deep Neural Network for Ranging

A neural network includes three elements: input, output, and network

structure. The output of our neural network is the distance between the

transceiver and target. Since there could be a few objects whose reflections

are not removed by interference cancellation [92], we assume that our target

is the one closest to the transceiver to avoid ambiguity. In our signal model in
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Figure 3.4: The median errors using signals at various stages.

Equation 3.6, the target reflection corresponds to a1x̃(t − t1). Note that any

passive-ranging technique needs certain assumptions to distinguish the target

reflection from others. We assume the target is the first reflection after static

background cancellation since it holds more often than alternative assumptions

(e.g., the target is the largest reflection). For example, when a user puts his

hand toward mobile for tracking, the hand is closer to the phone than the arm

and body, but the body reflection may be stronger due to the larger reflection

area.

There is an interesting trade-off regarding which input to use for train-

ing. Using the signals at later stages as the input means relying more on

feature extraction and less on machine learning. Since feature extraction can

reduce the input dimension and make the relationship between the input and

output more clear, training becomes easier. On the other side, since feature

extraction may also remove some useful information, using the signals at ear-

lier stages might potentially achieve better performance. Figure 3.4 shows

the performance of the DNNs trained with signals at different stages. Re-

fer to Section 3.3 for the details about the neural network and testing data.
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Figure 3.5: The median errors with different network structures.

We see that using received signals after pre-processing (i.e., band-pass filter-

ing and interference cancellation) provides the best performance. Since the

pre-processing only removes unwanted artifacts from signals (e.g., out-of-band

noise and background reflections), it is beneficial to apply pre-processing to

get a cleaner version of received signals. Therefore, we choose them as our

network input.

For the network structure, we start with a multi-layer fully-connected

neural network (FNN), which is the most general structure. Using 6 hidden

layers, 50 neurons in each layer, a 1920-element vector as the input (represent-

ing the received signal duration each period), and 200 K synthetic training

samples, FNN can achieve much lower distance estimation error than FMCW,

as shown in Figure 3.5. The median errors of FMCW and FNN are 0.75 cm

and 0.49 cm, respectively.

To further improve the network structure, we examine the weights in

our FNN. Interestingly, the weights for the first layer have high correlation

with the delayed versions of the transmission signal. To illustrate that, we
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Figure 3.6: The correlation between shifted transmission signals and the
weights in the first layer of our FNN.

take one neuron from the first layer and use w to denote the weights connected

to it. Let x represent the discretized transmission signal. We calculate the

cross-correlation between c, w and x as

c[i] =
< w,xi >

|w| · |xi|
(3.7)

where < ·, · > represents the inner product, | · | stands for the L2 norm, and xi

denotes x delayed by i elements. If c[i] is close to one, w has high similarity

to xi. Figure 3.6 plots c for all neurons in the first layer. We see that the

neuron weights have a high correlation with the transmission signal shifted

by different amounts. This reminds us CNN, where the same set of weights

are shifted by different amounts and applied to different portions of the input.

Based on the above observation, we next develop a CNN for ranging.

We first investigate if traditional CNNs can be used for ranging. We

train AlexNet and VGG networks customized to fit our application. The num-

ber of layers and the structure of these networks remain the same. The filters
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are changed to one-dimensional kernel (e.g., a 3×3 filter becomes a 3×1 filter)

because our inputs are one-dimensional. The number of filters in convolutional

layers and the neurons in FC layers are tuned to have the same amount of pa-

rameters as our final model in Section 3.3. Further increasing the model size

requires more training data and longer training time with only marginal im-

provement. As shown in Figure 3.5, both networks perform significantly worse

than FMCW. In fact, traditional CNNs rely on convolutional filters with small

kernel sizes (e.g., from 3×3 to 11×11) to capture local patterns. Based on the

local patterns, CNNs gradually construct a global view of the input at upper

network layers. This does not work well in our case since a short convolution is

very sensitive to noise and interference, which are common in acoustic signals.

If the low-level pattern detection is erroneous, it is challenging for upper layers

to mitigate these errors.

To tolerate noise and interference, we develop a CNN using convolu-

tional filters with long kernel sizes. Intuitively, a convolutional filter is used

to detect a specific pattern in the signals. When the pattern is longer, it is

less likely for noise or interference to resemble the specific pattern. Therefore

long kernel sizes up to the transmission signals are more robust for detect-

ing patterns. However, patterns longer than the transmission signal does not

help improve the performance. Therefore, we use convolutional filters in the

first layer to have similar length to that of the transmission signal. Figure 3.7

shows the performance of neural networks with one convolution layer and 5

fully connected layers but using different filter sizes. We see that the distance

47



61 121 321 721 1121 1521
Kernel size

0.5

1

1.5

D
is

ta
nc

e 
er

ro
r 

(c
m

)

Figure 3.7: The performance of CNNs with various kernel sizes.

estimation errors first reduce, and then taper off as the filter size gets close

to the length of our transmission signal (i.e., 1440). Note that we use a grid

search to determine the hyper-parameters in DRNet . To illustrate how a

particular parameter affects the performance, we show figures by varying one

parameter while keeping the other parameters the same.

The final design for DRNet is described in Section 3.3. Although it

has a slightly smaller number of weights than our FNN, it achieves 20% lower

distance estimation error as shown in Figure 3.5. As discussed, both the first

layers in our FNN and CNN are used to detect certain patterns with different

shifts, but the convolutional layer is more effective in capturing the pattern

and achieves better accuracy.

3.2.3 Ensemble

A major advantage of using synthetic data is that it is easy to generate

an arbitrary amount of training data. One way to leverage this benefit is to

train larger networks with more data to improve the performance. Figure 3.8

shows the performance of CNNs with different sizes, measured by numbers
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Figure 3.8: The performance of CNNs with various network sizes.
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Figure 3.9: The gain with various no. of CNNs for ensemble.

of weights used by them. We change the network size by scaling the number

of neurons in each layer of our default CNN and adjust the training data

proportionally. We see the performance improvement tapers off when the

number of weights in the network is larger than 100 K, which is the size for

our FNN and CNN. As shown in Figure 3.17, further increasing the network

depth does not help.

Another way to exploit a large amount of data is to train multiple CNNs

and apply the ensemble method. [100] shows that a bagging ensemble nearly

always outperforms a single classifier. The key observation is that our net-
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work converges to different local minimums in different runs, and these local

minimums lead to comparable distance estimation errors when applied to real

signals. Intuitively, different converging points indicate that the networks cap-

ture different features from the signals for distance estimation. These features

respond differently to the noise and interference in the signals. By combining

these networks (e.g., using the median of outputs from all networks), we can

average out the impact of noise and interference and potentially improve the

ranging accuracy. A similar idea is explained in [45]. Figure 3.9 shows the

performance gain of ensemble learning. For our application, it is interesting

to see that using an ensemble of multiple CNNs is more effective than using a

larger CNN.

To maximize the effectiveness of ensemble learning, we try to increase

the diversity across the networks by using 1) random initialization, 2) a differ-

ent set of synthetic data to train each network, and 3) random dropout with

the probability equal to 0.95 at the input layers. The last strategy not only

helps increase the randomness during training but also improves the general-

ization of networks.

3.2.4 Observations from CNN

In this section, we use visualizations to better understand DRNet .

Instead of figuring out exactly how the neural network works, which remains

an open challenge, we would like to gain insights about why CNN performs

well and what we can learn from CNN to improve ranging algorithms.
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Figure 3.10: The spectrograms of CNN filters.

Observation 1: Three convolution filters are chirps with different

energy distributions across frequencies. Figure 3.10 shows the spec-

trograms of filter coefficients for four channels in the convolutional layers of

DRNet . In this figure, the x-axis represents the index of filter coefficients in

each channel, and the y-axis stands for the frequency. The color indicates the

strength of a specific frequency at a certain portion of the coefficient sequence.

As we can see, the spectrograms of the first three filters show the pattern of

chirps from 18 KHz to 20 KHz. However, different from a standard linear

chirp used by FMCW, these filter coefficients have different energy distribu-

tions across frequencies. For example, the filter in the first channel has more

energy at the end of the filter sequence since we see a spot there, while the

second filter has more energy at the beginning. The third filter has relatively

uniform energy across the whole band. This structure may be helpful to han-

dle uneven frequency response caused by speaker/mic distortion. Based on

this observation, interesting future work is to explore chirps with non-uniform

energy distribution across frequencies for FMCW.

Observation 2: Combining multiple FMCW with transmission chirps

shifted by different amounts is helpful to improve the performance.
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Figure 3.11: Performance of different methods.

The first three filters in DRNet have similar patterns to the chirps, and

received signals are multiplied by these filters multiple times with different

shifts. In contrast, traditional FMCW only multiplies received signals with

the transmitted chirp once with no additional shift.

Inspired by CNN, we explore whether it is beneficial to mix the received

signals with the transmission signals with different shifts. More specifically, we

shift the transmitted chirps by different numbers of samples so that each one

corresponds to a new propagation delay. For each shifted transmitted chirp, we

multiply it with the received signals and apply FMCW techniques to estimate

the propagation delay. It has an offset from the true propagation delay due

to the additional shift introduced to the transmitted chirp. We compensate

for the offset and then average the estimation after compensation. As shown

in Figure 3.11, this approach (denoted by ”shifting FMCW”) significantly

outperforms traditional FMCW, though its ranging errors are still larger than

DRNet . The improvement can be because using different shifts smooths out

the errors arising from noise, speaker/mic distortion and multipath.
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Figure 3.12: Performance of removing one channel information.

We also observe from Figure 3.11 that DRNet outperforms correlation

based approach that selects the offset with the maximal correlation coefficient.

This is likely because correlation only takes the peak but DRNet uses different

filters to remove outliers and improve estimation.

Observation 3: One convolution filter is not a chirp but has a strong

impact on the performance. The fourth filter has a very different pattern

from the others but has the most significant impact on the performance. Figure

3.12 shows the performance of removing one convolutional channel by setting

the corresponding channel outputs as zeros. It shows that removing the fourth

channel degrades performance more than removing any other channels.

To better understand the role of the fourth filter, we find that it has

more energy near the head and tail of the filters. We expect it to leverage the

knowledge of noise, speaker/mic distortion and interference hidden in the non-

chirp component of received signals. More specifically, the transmission signal

is composed of two parts, a chirp and trailing zeros. Traditional FMCW only

processes the chirp part of the receiving signal to compute the beat frequency.
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The part with zeros can provide information about noise and interference. The

fourth filter leverages this part to improve the ranging performance. To verify

that, we replace the received signals in this part with zeros, and the error

increases by 41%, as indicated by Figure 3.11 (denoted by ”CNN No Gap”).

3.3 Implementation
3.3.1 Acoustic Signals

To test our deep learning based acoustic ranging, we use the built-in

speaker a smartphone to send chirp signals. The chirp frequency sweeps from

18 KHz to 20 KHz. According to [137], the absolute threshold of hearing

(ATH) increases rapidly beyond 10 KHz. For example, human can hear the

sound of 1 KHz at 0 dB sound pressure level (SPL), but over 75 dB SPL for

sound beyond 17 KHz (10,000x). Our sound level at 18 KHz is 35 dB at 0.5 m

from the speaker, well below ATH.

The chirp duration is 30 ms and the transmission period is 40 ms. We

use the microphone on the same smartphone to receive the signals reflected

from the target. The sampling rate of acoustic signals is 48 KHz so that the

number of samples in a transmission period is 1920. We use the samples in

one period as the input to our network for estimating the distance between

the smartphone and target.
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3.3.2 Training

For training, we generate synthetic data based on the signal parameters

mentioned above and the model parameters discussed in Section 4.2. We

generate ground truth distance and signals for 200 K transmission periods to

train each CNN.

To tune the hyper parameters for DRNet , we generate synthetic testing

signals for 100 K transmission periods. By applying the grid search, the final

design is described as follows. DRNet has one convolutional layer with 4 filters.

The kernel length for each filter is 1521. The convolution layer is followed by

a max pooling layer with the stride and window size equal to 4. Then there

are 5 fully connected layers with 200, 100, 50, 50, 50 neurons, respectively.

We train our network in PyTorch [3] using Adam [61] optimization algorithm.

The loss function is the mean square error. The batch size is 200. The initial

learning rate is 0.001, which decays by a factor of 0.2 every 50 epochs. In

total, we train 25 CNNs for ensemble learning.

3.3.3 Ground Truth

To evaluate the CNNs trained by synthetic data, we use them to esti-

mate the distance between the mobile and target as shown in Figure 4.7 based

on the signals recorded by the mobile. In the user study, the target is a user’s

hand. In other evaluations, the target is a 10 cm×10 cm white cardboard.

The distance between the mobile and target varies from 0.2 m to 1.2 m in all

experiments except the long range one (i.e., Figure 3.19), where the testing
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Figure 3.13: Top down view of our experiment setup.

range is extended to 5 m.

To get the ground truth distance, we use the Intel RealSense D415

camera system [54]. Its accuracy is 1mm when the distance is between 0.3 m

and 1.5 m based on our calibration. It comes with an RGB camera and a depth

camera. We use the RGB image to find our target and read the depth from

corresponding pixels in the depth image. Since the depth camera does not

work when the distance is less than 0.3 m, we put it 0.3 m behind the phone

as shown in Figure 4.7 so that the minimum distance between the camera and

the target is larger than 0.3 m. The accuracy of our depth camera significantly

degrades when the distance is larger than 1.5 m. For long range experiments,

we manually calibrate the distance between the phone and target.

3.3.4 Testing

As Figure 4.7 shows, we collect testing traces in the following steps: 1)

place the camera and smartphone as described above; 2) send the chirp signals

with the smartphone speaker; 3) let the microphone record the signals for one

second when the target is not present to capture the background reflection,
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which is used for interference cancellation [92]; 4) place the target and move it

in front of the phone for one minute; 5) use the depth camera to get the ground

truth distance; 6) use the microphone to receive the signals; 7) perform pre-

processing on received signals, including band-pass filtering and interference

cancellation [92]. Note that Step 5 is only used to quantify the accuracy but

not required by our approach.

To demonstrate that our approach generalizes well, we use 11 smart-

phones with different brands and models to collect data, including Samsung

S9 plus, Samsung S7 Active, Samsung S7 international version, Samsung S7

US version, iPhone X, iPhone 6, iPhone 5S, Huawei Mate 9, Huawei Honor 8,

Xiaomi 8, and Google Pixel. The speakers and microphones on these phones

have very different acoustic characteristics (e.g., frequency responses) as shown

in Figure 3.14. In this figure, the y-axis represents the normalized speaker and

microphone amplification on signals at a specific frequency. We use the ap-

proach developed in [42] to measure the frequency response for a mobile. The

testing traces are collected from 4 real environments, including a lab, a cor-

ridor, a meeting room, and a cube area. There are furniture and walls in

all these locations. Besides static objects, there is also dynamic inference in

our testing environments. For example, there are other people walking by

our experiment setup. Moreover, the user’s body and arm also exhibit some

movements and introduce non-static interference.

We collected 119 testing traces. Each trace has 1375 transmission pe-

riods. In each period, we take the received signals as the input and the cor-
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Figure 3.14: Combined frequency response of speakers and mics for different
phones at 18–20 KHz.

responding ground truth distance as the output label. The traces are divided

into four groups, where all groups except the last one track a board. (i) 33

traces in ideal scenarios where the SNR is around 10 dB and there is no object

near the target; (ii) 38 traces where SNR falls into -15–5 dB due to low speaker

volume or large separation between the mobile and target, (iii) 28 traces with

SNR around 10 dB and an object (a 10 cm×10 cm cardboard) behind the

target (0–15 cm) to introduce severe interference. (iv) 20 traces for tracking

different users’ hands.

3.4 Evaluation

In this section, we evaluate the performance of our ranging approach.

We use the median and cumulative distribution functions (CDF) of distance

estimation errors as our performance metrics. Except for the results shown in

Figure 3.16, all evaluation uses the testing data collected from real environ-

ments as described in Section 3.3.

58



-N -M -S -F All
0

0.5

1

1.5

D
is

ta
nc

e 
er

ro
r 

(c
m

) High SNR
Low SNR
Interference

Figure 3.15: The impact of signal generation.

3.4.1 Micro Benchmark

We first evaluate various aspects of our approach, including signal gen-

eration, network generalization, network depth, and inference time. We report

the ranging performance using a single CNN, and compare it with FMCW.

Signal generation: We evaluate the impact of key components in our sig-

nal generation. For this purpose, we generate training signals without noise

(denoted by -N), without multipath (-M), without self interference (-S), or

without frequency response (-F), respectively, and evaluate the performance

of the CNN trained using signals without certain component. Figure 3.15

shows the testing performance on different testing data. We see that without

adding noise, the group with low SNR has the largest median ranging errors,

i.e., 5.3 cm. Without adding multipath, the CNN does not work well for

the group with strong multipath interference. Neglecting self interference and

frequency response also degrades the performance. DRNet is trained using

signals with all these components to achieve good performance across a wide
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Figure 3.16: Generalization of our CNN.

range of scenarios.

Network generalization: We evaluate the performance of our network for

the cases not covered by the training data. As mentioned in Section 4.2, σ

(i.e., standard deviation of noise) varies from 0 to 4 in our training data, and

the number of multipath (excluding the target reflection) is randomly chosen

from 0 to 4. To test if DRNet works when the noise and multipath go beyond

these ranges, we generate two sets of synthetic data with 1) σ varying from 3

to 6 and zero multipath and 2) the number of multipath varying from 3 to 8

and σ equal to 1.

We use synthetic testing data in this experiment because we need to

control the noise and multipath level. The testing performance on the two data

sets is shown in Figure 3.16(a) and 3.16(b), respectively. We observe that the

estimation errors of DRNet increase only marginally when the noise and mul-

tipath are outside the ranges covered by the training data, DRNet degrades

slower than FMCW since it is more robust to noise and multipath. These
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Figure 3.17: The impact of numbers of layers.

results demonstrate our model generalizes well to the uncovered scenarios.

Network depth: We evaluate the impact of the number of fully connected

layers in our neural network. The deepest CNN we evaluate has 7 fully con-

nected layers with 200, 100, 50, 50, 50, 50, 50 neurons, respectively. Each

time we remove the last layer before the output and create a shallower CNN,

until there is only one fully connected layer. As in Figure 3.17. the estimation

error first reduces significantly and then tapers off. The result shows 5 fully

connected layers are sufficient for our application.

Inference time: We run DRNet on a desktop with Ubuntu 16.04, Nvidia

GTX 980 [98], and 6 GB VRAM. We also run it on Android 9, Snapdragon

845, and 6 GB RAM [113]. For the phone, we implement DRNet with Android

NDK and uses Eigen [55] as matrix calculation library. The inference time for

a single CNN is 0.36 ms on the desktop and 1.98 ms on the phone. The total

time for 25-CNN ensemble learning is 7.1 ms on the desktop and 36.5 ms on

the phone. Since the transmission period is 40 ms, our approach can support
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Figure 3.18: The median ranging errors at various SNR.

real time ranging even on the phone. In comparison, the running time for

FMCW is 0.55 ms on the desktop and 4.7 ms on the phone.

3.4.2 Overall Performance

In this part, we evaluate the overall performance of our approach using

an ensemble of 25 CNNs. We compare our method with FMCW, FingerIO [94],

and LLAP [153]. FingIO uses correlation and LLAP uses phase to estimate

the distance. We use 18-20KHz OFDM signals in FingerIO, and send five

sinusoids at 18, 18.5, 19, 19.5, and 20 KHz in LLAP. All approaches use the

same experimental setup.

Impact of SNR: We evaluate the performance of our learning based ranging

under different SNRs. For this purpose, we measure the SNR of our testing

data and show the ranging performance for the data for given SNR values

(allowing ±3 dB variance). As shown in Figure 3.18, when the SNR is around

10 dB, the phase-based approach (i.e., LLAP) achieves the best performance –

its median ranging error is 1.3 mm. It is followed by our approach with 1.7 mm

median error, while FMCW and FingerIO have errors larger than 2 mm. As
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the SNR reduces, the performance advantage of our learning based approach

becomes more significant. At SNR of -14 dB, our approach reduces the median

ranging error by a factor of 3 over FMCW and FingerIO. LLAP has the worst

ranging accuracy in this case, indicating that phase-based approaches are most

sensitive to noise.

Impact of range: We evaluate our approach under long distances. In this

case, the propagation delay of reflected signals can be large (e.g., 29 ms for a

target at 5 m away). If we use the signals aligning with our transmission pe-

riod for distance estimation, the target reflection is only present in the last few

milliseconds of the signals. This has a negative impact on estimation accuracy.

Instead, we choose a 40 ms window roughly aligning with the target reflection,

and use the signals in this window for distance estimation. The delay esti-

mated this way starts from the beginning of a selected window. We get the

propagation delay by adding the offset between the starts of the transmission

period and the selected window. Note that the rough knowledge about propa-

gation delay of the target reflection is obtained by correlating with transmitted

signals and detecting the second peak since the first peak is the direct trans-

mission from speaker to microphone). We use the same correlation approach

in all schemes for fair comparison.

The results are shown in Figure 3.19. As we can see, the distance

estimation error of our approach is still within 1 cm at 4 m, while FMCW

has the error close to 4 cm in this case. This experiment indicates that our

approach has a larger working range.
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Figure 3.19: The median ranging errors at various ranges.
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Figure 3.20: The ranging errors for target objects with different sizes

Target size: We evaluate the ranging errors for targets with different sizes: a

2 cm×2 cm cardboard (denoted by S), a 10 cm×10 cm one (denoted by M),

and a 40 cm×40 cm one (denoted by L). We perform experiments under both

high SNR and low SNR, where signals reflected by the 2 cm cardboard ranges

between 0 and 10 dB SNR. A large cardboard tends to reflect more signals

and yields a higher SNR. However, as the cardboard gets even larger, its gain

becomes marginal since the regions far away from the perpendicular reflection

point reflect little energy back to the microphone. We find the signals reflected

64



Target

Interference

Angle

Figure 3.21: The interference at different angle.

0 20 40 60 80

Degree

0

0.2

0.4

0.6

0.8

1

D
is

ta
n

c
e

 e
rr

o
r 

(c
m

) FMCW

CNN

Figure 3.22: The interfering object at different angles.

by 10 cm cardboard are 6–7 dB stronger than those for 2 cm one. However,

the SNRs for 10 cm cardboard and 40 cm one are similar. When the SNR is

sufficiently high, the accuracy is comparable across all reflectors as shown in

Figure 3.20(a). When the SNR is low, larger targets have higher SNR than

smaller targets and experience smaller estimation errors as shown in Figure

3.20(b).

Impact of interference angle: We evaluate the impact when an interfering

object (a cardboard with the same size as the target) is placed at different

angles, as shown in Figure 3.21. The interfering object is 10 cm farther away

from the mobile than the target so that the target is always the first reflector.
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Figure 3.23: The median ranging errors with interference at various distance.

The results are illustrated in Figure 3.22. For comparison, we show the ranging

performance without interfering objects (denoted by ∞). As we can see, when

the angle is zero, the interfering object has no impact on ranging because its

reflection has been occluded by the target. When the interfering object is

placed at other angles, the impact of interference varies significantly because

the speaker radiates different portions of energy across different directions,

which can be characterized by the speaker’s radiation pattern. For our speaker,

the interference is maximized at 20 degrees while minimized at 80 degrees.

Therefore, we use 20 degrees as the default angle for interference experiments

in this paper.

Interference distance: We evaluate the ranging performance under interfer-

ence at different distances. For this purpose, we place the interfering object at

a 20-degree angle from the target and 2.5-12 cm farther away from the mobile.

Figure 3.23 shows the distance estimation errors with various separation be-

tween the target and interference reflection, where ∞ indicates no interference.

Our approach achieves the best performance under multipath. It reduces the
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ranging errors by a factor of 4.4 when the interference is 7.5 cm away, which

is the most challenging cases. LLAP has the largest estimation errors under

interference. We see that the errors first increase and then decrease, and reach

the maximum when the interference reflection is 5–7 cm away from the target.

This is because if two reflections have a similar distance, the interfering object

does not affect the distance estimation. If the interference reflection is well

separated from the target, they can be easily differentiated.

3.4.3 User Study

We use our ranging approach to track the distance between the user’s

hand and a smartphone, as shown in Figure 1.1(a). This is a key building block

in the motion tracking. We conduct the experiment with 10 users including 4

women and 6 men. Their ages are between 20s and 50s. We let each user stand

1.2 meters in front of the phone, raise the hand to roughly the same height as

the phone, and move the hand back and forth in an arbitrary pattern. The

details of trace collection are described in Section 3.3.

Tracking samples: To provide intuition about how our approach performs

for hand tracking, we show the raw traces with different performance. For

this purpose, we sort all the traces based on the median ranging errors and

plot the traces ranked at 20%, 50%, and 80%, as shown in Figure 3.24. The

traces for our approach are directly generated from CNN outputs without any

additional filtering. The median ranging errors of selected traces are 0.3 cm,

0.7 cm, and 1.2 cm, respectively.
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Figure 3.24: The sample user traces with different performance.
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Figure 3.25: The median ranging performance for different users.

Performance for different users: Figure 3.25 and 3.26 show the median

ranging errors and CDF across different users, respectively. We rank the users

according to their median errors. For comparison, we also show the perfor-

mance using FMCW. We see that our approach out-performs FMCW for all

users, and the median errors are reduced by a factor of 1.6x - 5.6x. More-

over, we observe that there is a large performance variation across different
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Figure 3.27: The side view of the user’s hand.

users. User 1 achieves 0.255 cm median error and 0.5 cm 80-percent error,

while User 10 has 1.39 cm median error and 3.4 cm 80-percent error. The

performance variation mainly comes from different hand inclination and body

posture. When the user’s hand is not perpendicular to the signal propaga-

tion path, (e.g., the inclination angle α in Figure 3.27 is less than 90 degrees),

most of the reflection propagates downward, instead of returning to the phone,

as shown in the figure. Different users use different inclination angles. The

smaller inclination angle reduces SNR. In addition, the body posture affects

the interference. When the separation between the body and hand is small

and/or the area of the body facing the phone is larger, there is stronger inter-

ference. Since our approach is more robust to low SNR and strong interference,

its performance benefit is higher in these traces.
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Performance under practical situations: Furthermore, we evaluate our

approach under the following practical situations:

• There is another person near the target user. We consider two cases. In

the first case, the second person stands around the position A as shown

in Figure 3.28 and performs semi-static activities like playing games on

a mobile phone. In the second case, the second person walks roughly

along the trajectory B shown in Figure 3.28.

• The user is allowed to walk back and forth towards the mobile. In this

case, the tracked motion is the net effect of the user walking and the

hand movement with respect to the user body.

• There are ambient sounds during the experiments. We consider two

common types of sounds: music and voice. We set the music to the

same volume as that of inaudible tracking signals, while the loudness

of voice is the same as in normal conversion (i.e., around 60 dB). The

sound source is at 1.5 m away from the mobile.
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Figure 3.29: The ranging performance under various practical situations.

Figure 3.29(a) compares the tracking accuracy with and without the

second person, where the latter is denoted as ”Baseline”. We observe that

the second person with semi-static activities has little impact on the tracking

performance, while the one with dynamic activities (e.g., walking around)

affects the ranging performance and the median error increases from 0.7 cm

to 1.0 cm. This is expected since dynamic interference is harder to remove.

Moreover, the second person may be temporarily closer than the user’s hand.

Under such challenging situations, our approach can still provide reasonable

tracking performance with 1 cm median errors.

Figure 3.29(b) compares the performance with a semi-static and moving

second user. As we can observe, our approach is fairly robust under the moving
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user. The median ranging error is 0.8 cm.

Figure 3.29(c) compares the performance with and without ambient

sounds, where the latter is denoted as Baseline. The ambient sounds, such as

music and voice, has little impact on the accuracy since our tracking signals

are at 18–20 KHz band while common ambient sounds like music and voice

have little energy in such high frequency band.
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Chapter 4

Spatial Aware Multi-Task Learning Based
Speech Separation

4.1 Background
4.1.1 Multi-Task Learning

1 Multi-task learning is a training paradigm to train ML models with

data from multiple tasks at the same time. These tasks share similar semantic

features. Thus, learning shared representations can increase data efficiency and

potentially lead to faster learning speed for related tasks. Multi-task learning

can improve multiple performance metrics by learning them jointly. It exploits

commonalities and differences across tasks. Multi-task learning learns the

shared representations at the early stage and then solves multiple downstream

tasks at the same time in the later stage. It captures the natural learning

process of human beings. For example, when a newborn baby starts to learn

speech, it will recognize the sentence as well as understand the emotion from

the speech simultaneously. The baby learns two tasks, i.e. speech recognition

and emotion classification together.

1The work in this chapter was supervised by Prof. Lili Qiu. I was the first author and
made contributions to designing research, performing research, analyzing data and writing
the paper. It was originally published in: Sun, Wei, Mei Wang, and Lili Qiu. Spatial Aware
Multi-Task Learning Based Speech Separation. arXiv preprint arXiv:2207.10229 (2022).
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4.1.2 AoA Estimation

A number of algorithms have been developed for AoA estimation with

a multi-channel receiver, including phase [16], beamforming [14], and MU-

SIC [122, 157]. The fundamental of AoA estimation is to figure out the subtle

phase difference across multiple channels because of the spatial uniqueness of

each channel. We introduce several typical AoA algorithms and conclude the

insight of these methods.

MUSIC: MUSIC holds a high accuracy in theory. The key idea of MUSIC

is that the steering vector of the unknown AoA a(θ0, ϕ0) is highly correlated

with the eigenspace of the auto-correlation matrix

R = xHx (4.1)

where x is the received signal and xH is the conjugate transpose of x. θ and ϕ

denote the azimuth and elevation angles, respectively. We then perform eigen-

value decomposition on R, and sort the eigenvectors in decreasing order of the

corresponding eigenvalues. The signal space consists of the first M eigenvec-

tors. The noise space, denoted as RN , consists of the remaining eigenvectors.

We derive the pseudo-spectrum of the mixed signals based on R as

P (θ, ϕ) =
1

a(θ, ϕ)HRNRH
Na(θ, ϕ)

(4.2)

where

RH
N · a(θ0, ϕ0) = 0 (4.3)
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In the free space, the AoA can be estimated by searching for a peak in the

pseudo-spectrum. MUSIC can deal with M different AoAs of uncorrelated

signals. However, Multipath reflections break this assumption and fuse the

steer vectors of different AoA, which makes AoA estimation more challenging.

Ambient noise and interference can further complicate the issues by adding

false peaks. Therefore, it is hard to get a reliable AoA estimate in the real

environment.

2D MUSIC jointly estimates the distance and AoA to increase the spatial

resolution. The key idea of 2D MUSIC is to transform signals into a special

2D sinusoid with frequencies proportional to the distance and the distance

and the AoA. It requires actively emitting modulated period signals and op-

erating the reflection signals. Otherwise, it cannot sense the distance at all.

We let a speaker on a computer transmit periodic FMCW chirps, whose fre-

quency increases linearly from fmin to fmax during each period T . This yields

a transmission chirp signal

ut(t) = cos(2πfmint
′ +

πBt′2

T
), (4.4)

where t′ = t−nT After going through the channel with the propagation delay

td and attenuation α, the received signal becomes

ur(t) = αcos(2πfmin(t
′ − td) +

πB(t′ − td)
2

T
) (4.5)

Based on this formulation, we apply the MUSIC algorithm to the re-

ceived signal to derive the pseudo spectrum. td is decided by the distance and
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the AoA, so is the steering vector. We can generate a 2D profile P (d, θ), where

d and θ denote the distance and azimuth angle, respectively.

GCC-PHAT: Generalized Cross Correlation with Phase Transform [16] is

another popular AoA estimation algorithms. It is regarded as a basic phase

transformation for many deep learning methods in recent works. We focus on

the signal processing techniques and dig the more insight from its formulations.

GCC-PHAT computes the cross-correlation between the received signal and

the reference signal and estimates the arrival delay for all microphones. Then

the delay can be applied to search for the best AoA. The correlation of GCC-

PHAT is given as below:

GCCPHATm(f) =
Ym(f)Yref (f)

∗

|Ym(f)Yref (f)∗|
(4.6)

where Ym(f) is the noisy speech of the channel m in the frequency domain,

Yref (f) is the reference target speech in the frequency domain, ∗ denotes the

complex conjugate. The AoA profile can be represented as

P (θ, ϕ) =
1∑

m ||2πfτm(θ, ϕ)−GCCPHATm(f)||2
(4.7)

where τm(θ, ϕ) is the delay from the source at the azimuth θ and elevation ϕ to

channel m. A clear reference signal can benefit estimating an effective phase

difference a lot and searching for the AoA by more accurate delays.

4.1.3 Beamforming

Beamforming is the central technique used in sensor arrays for direc-

tional signal transmission or reception. It targets to find an optimal spa-
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tial filter to combine signals in a multi-channel array to strengthen signals at

particular directions and null signals in other directions. Minimum Variance

Distortionless Response(MVDR) is one of the most classic beamforming al-

gorithms. It takes advantage of the spatial position of the source signal and

estimates the optimal weights to increase the signal energy from the given

AoA. MVDR is an adaptive beamformer s to minimize the variance of the

beamformer output and mitigates the effect of the noise. Assuming no corre-

lation between the target speech and interference, the weights of MVDR are

given as follows:

w(f, AoA) =
Φ−1

Y (f)v(f, AoA)

vH(f, AoA)Φ−1
Y (f)v(f, AoA)

(4.8)

where Φ−1
Y is the covariance matrix of sub-band noisy speech and v(f, AoA)

is the steering vector of the target speech at the frequency band f with the

given AoA. It shows that AoA plays an important role to construct the filter

weights.

4.2 Approach

We consider a common scenario in teleconferencing. The user is using

a computer equipped with either an internal or external microphone array

and speaker to participate in an online meeting. We target to separate out

the target speech from the noisy audio. The multi-channel audio alone can

perform speech separation. We make two important observations about the

user during the speech. First, the user will move dynamically in front of
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Figure 4.1: It shows the following components: (i) generating masks from the
TF bins in audible signals and using the mask to generate MUSIC profiles from
speech, (ii) generating spatial embeddings from inaudible tracking sound, and
(iii) multi-task learning to jointly separate source and estimate AoA based on
the spatial embedding
the devices. Second, the separation task and AoA estimation task are highly

correlated. Thus, we propose to jointly learn the target speech and the AoA.

Besides, the device emits an inaudible sound to detect human motion as the

side channel to improve the AoA estimation.

Figure 4.1 shows the overall processing. It takes the acoustic signals

from a microphone array with a sampling rate of 44.1 kHz and performs a

low pass filter (i.e., 0-8kHz) and a high pass filter (i.e., 18-20 kHz). The

outputs from the low-pass and high-pass filters contain audible speech signals

and inaudible tracking signals, respectively. We use both signals to generate

location embeddings, which will be used together with the audible speech

signals under interference and ambient noise to extract clean target signals.
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Our approach consists of four major steps: (i) generating location em-

beddings from audible signals, (ii) improving the location embeddings using

inaudible signals, (iii) using multi-task learning for joint source separation

and AoA estimation, and (iv) speeding up inference. Below we describe each

of the steps.

4.2.1 Localization using Audible Signals

We first describe how to localize the user using audible signals. We

take the audio signals recorded by a microphone array, and feed them to a

low-pass filter (0-8kHz) since human speech is usually below 8 kHz. Then we

downsample the audio signals to a 16 kHz sampling rate and apply STFT of

512 points to compute the complex spectrogram for different TF bins. We use a

hop length of 10 ms in STFT and a Hamming window of length 32 ms. We then

try to estimate the AoA for each bin using the MUSIC algorithm. However,

some TF bins are dominated by interference and noise. They contribute a

significant bias to the target AoA if we apply the MUSIC straightforwardly.

We apply a novel masked-based AoA estimation to extract spatial features.

Mask Based TF bin selection: We improve the MUSIC accuracy by care-

fully selecting the frequency bins in the audible signals for aggregation to

minimize the impact of noise and interference. Specifically, since MUSIC as-

sumes narrowband signals, we apply STFT to the audible signals to generate

TF bins, where each bin occupies 31.25 Hz and 10 ms. We then perform

MUSIC on each TF bin and aggregate the MUSIC profiles across TF bins.
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A natural approach to aggregate the MUSIC spectrum across different

frequency bins is, to sum up the MUSIC profiles from all TF bins and select

the angle corresponding to the highest peak. However, not all TF bins contain

the target user’s speech due to the sparsity of human speech over the frequency

band [162]. Therefore, it is important to select the TF bins that contain strong

Signal to Noise Ratios (SNR) from the target user. It is challenging to select

the TF bins by just analyzing the power and phase because unlike tracking

signals, human speech is out of our control and hard to predict. Moreover,

some TF bins may contain significant ambient noise and interference, so we

cannot simply select the TF bins solely based on the overall magnitude, but

should select the TF bins with high SNR from the target user.

Mask generation: A number of approaches have been proposed to generate

TF masks for speech enhancement. A few works estimate the amplitudes

of the audio spectrogram (e.g., real-valued ideal binary mask (IBM) [50, 51]

and ideal ratio mask (IRM) [156]). [162, 174] develop DNN-based approaches

to generate amplitude and phase masks. Most of these methods focus on

combating noise.

We use IBM to select appropriate TF bins for the target user from the

mixed noisy complex spectrogram. IBM is a method for speech separation

based on deep neural network [51]. Even though IBM is not the best method

for source separation, it is a good fit for selecting the TF bins dominated by

the target speaker. Other mask-based methods apply linear translation to

the original TF bins, which introduces phase distortion and degrades mask
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generation.

IBM is based on the sparsity of human speech (i.e., the number of non-

silent TF bins from a speaker tends to be small). It determines a binary mask

for each TF bin, where 1 means the target signal dominates interference and

0 otherwise. It takes a downsampled audio signal and decomposes it into 2D

TF bins. Then it extracts several features, such as the autocorrelation of a

filter response, the autocorrelation of an envelope of filter response, and cross-

channel correlation. Next, it performs clustering based on these extracted

features (e.g., cluster into a target stream and an interference stream), and

tags each TF bin with either target dominant (”1”) or interference dominant

(”0”) based on similarity with the clean target signal (spoken at a different

time), which is also an input. We use the clean target signal, which is location

independent and can be collected only once during user account creation. Since

an online meeting requires a user to sign in, it is reasonable to assume the

target user is known.

We train the IBM mask estimator using Deep Cluster [48], which is

a general and robust method to estimate the mask. It takes a log power

spectrogram (LPS) (i.e., the log power of received signal across 256 positive

frequency bins) as the input to estimate an initial binary mask of the target

user. We get the pre-trained model using the LibriMix [31] data along with

our own testbed traces described in Section 4.4.1. The binary mask is a coarse

estimate of effective TF bins, but it maintains phase information and is useful

for selecting the TF bins for further analysis. We estimate binary masks for
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all microphones. To minimize interference, we select the TF bins for AoA

estimation only when the masks from all microphone channels are 1s. In this

way, we effectively remove the TF bins with large interference and noise.

Applying a mask to MUSIC: We apply the MUSIC algorithm to the TF

bins with masks. Then we concatenate the MUSIC spectrum from all frequen-

cies together. The output profile is represented as a 2D matrix of size MfNa

across different frequencies, where Mf denotes the number of frequency bins

and Na denotes the number of angles. Mf is set to 103 frequency bins (equally

spaced from 800Hz to 4KHz for human speech), and Na is set to 181 (span-

ning 0 degrees to 180 degrees with 1 degree apart) in our evaluation. This

will be further combined with the output from inaudible signals for generating

location embeddings.

4.2.2 Leveraging Inaudible Sensing

Apart from the audible band, we leverage the inaudible acoustic signal

to improve the robustness of spatial representation.

Motivation for using inaudible signals Estimating multipath profile solely

based on speech has several limitations because of the audible band. First,

audible signals may contain significant interference and ambient noise, which

results in significant AoA errors. Figure 4.2 shows the AoA estimation from the

audible target speech is fairly accurate without interference. However, when

the interference is introduced to the audible band, the estimation deviates

from the ground truth a lot. The deviation can be large and irregular due
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Figure 4.2: AoAs estimated from the audible band and inaudible band. GT
refers to the ground truth AoA. Aud Clean refers to the AoA estimated by
only target speech. Aud w/ Int refers to the AoA estimated by a mix of target
speech and audible interference. Inaud estimates AoA with only inaudible
reflections.

Figure 4.3: AoA error under different SINR
to unexpected speech from an unknown direction. To quantify the impact of

interference, we apply MUSIC to the audible signals under different signal-to-

interference and noise ratios (SINR) by scaling the magnitude of interference

and mixing it up with target speech. As shown in Figure 4.5(b), adding

interference increases the AoA error significantly. For example, the AoA error

increases by 10.45◦ over no interference when SINR = -6 dB; the error increases

by 13.53◦ when SINR = -12 dB. While using masks removes a significant

amount of interference, the removal alone is insufficient to support accurate
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Figure 4.4: 2D MUSIC profiles to capture multiple reflections from the human
body every 0.2s. Each peak corresponds to one reflection point. They have
similar moving trends.

AoA estimation.

Besides, most energy in speech concentrates in low-frequency bands

(e.g., below 2 kHz), which have large wavelengths and lead to low AoA res-

olution [152]. Furthermore, typically a relatively large time window (e.g.,

hundreds of ms) is used to analyze audible signals in order to ensure there is

enough energy from the target speaker. This limits the update rate of multi-

path profile estimation. The temporal resolution of TF bins is 10 ms, but the

AoA update rate cannot keep up with the TF bin update rate. We need more

frequent multipath profiles encoded by the AoA estimation.

In comparison, inaudible signals are not affected by the interference and

noise in the audible band. It can work as a side channel to detect and track

the target speech. Meanwhile, inaudible signals have shorter wavelengths so

that they can achieve higher AoA resolution. Finally, inaudible signals are

modulated at the transmitter end. It can be designed as a small duration
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to improve the estimation rate. Hence, inaudible signals enable tracking at a

much higher frequency (e.g., tens of ms), which is important to adapt more

quickly to the changing user position.

However, in the typical usage scenarios where the speaker and micro-

phones are on the desk, inaudible signals are mostly reflected by the user’s

body instead of the mouth. Therefore, inaudible signals mainly track body

movement instead of lip movement. Besides, there are multiple reflections from

the human body. It is challenging to distinguish which parts of the human

body reflect the inaudible signal. Fortunately, body movement is highly cor-

related with mouth movement. As shown in Figure 4.2, the AoAs estimated

using inaudible signals follow a similar moving trend to the ground truth even

though its absolute AoA differs from the ground truth. Moreover, even though

we may see reflections from different body parts, they tend to have a similar

trend as the entire body moves together. Figure 4.4 shows multiple reflec-

tions from the human body over time. As we can see, these reflections share

a similar moving pattern over time. Thus inaudible signals can capture the

motion and help correct inaccurate AoA estimation from the noisy audible

bands. There may be multiple AoA candidates from inaudible reflection (e.g.,

due to reflection from multiple body parts), but they have similar movement

trends, which are useful for tracking and source separation. We develop a neu-

ral network to automatically exploit the features extracted from both audible

and inaudible signals.

Feature extraction with 2D MUSIC
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We apply 2D MUSIC to the inaudible reflections to extract the dynamic

motion of humans because of the high resolution of 2D MUSIC. In the free

space, the peak in the 2D MUSIC profile indicates the target AoA and distance.

In practice, signals traverse over multipath, which may introduce multiple

peaks. If the two paths are too close, their resulting peaks can get merged

and the highest point in the peak may not correspond to the target location.

Noise and Doppler shifts resulting from movement complicates the 2D MUSIC

profiles by adding false peaks and distorting the real peak.

Therefore, instead of selecting a single peak for AoA and distance es-

timation, which may introduce an error to propagate to further stages, we

feed the complete 2D MUSIC profile from inaudible tracking along with the

MUSIC profile from voice signals to generate location embeddings. The two

profiles operate on different frequency bands. They do not affect each other.

While the audible profile captures the voice source in a lower resolution due

to the smaller operating frequency, the inaudible profile encodes the overall

human motion in a higher resolution. Hence, both profiles can compensate for

each other and benefit the final AoA estimation.

Generating Spatial Embeddings Each MUSIC profile can be considered

as an image, and a sequence of MUSIC profiles can thus be treated as a video

sequence Therefore, we can take advantage of state-of-the-art video analytics.

We apply 3D convolution [142] with a 5 × 7 × 7 kernel and ResNet-18 [46]

to MUSIC profiles generated from audible and inaudible signals to effectively

learn spatio-temporal features. The small temporal window of 3D kernels
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helps filter out noisy patterns based on neighbor frames. It is followed by

batch normalization and ReLu activation. Then output features are fed to

ResNet18 to encode profile embeddings with 512 dimensions. The concate-

nated embeddings from audible and inaudible profiles will be directed to the

source separation.

A sequence of embeddings is extracted from the MUSIC profile se-

quence. We feed them into both LSTM and source separation networks.

LSTM takes these embeddings to estimate AoAs because they include im-

portant spatial information from audible and inaudible signals over the recent

time window. The 3D convolutional layers use temporal information in small

time windows at an early stage, while the LSTM can leverage a much longer

sequence. Moreover, audible embedding and inaudible embedding comple-

ment each other due to the correlation between mouth movement and body

movement. The memory unit in LSTM helps track long-term movement. Our

objective is to minimize the L1 loss between the estimated AoA ( ˆAoA) and

ground truth AoA (AoA), denoted as

LAoA = ||AoA− ˆAoA||1 (4.9)

We use LSTM to estimate the AoA based on the audible and inaudible location

embeddings. Each LSTM cell is a fully connected network with 128 input

nodes and 1 output node, which is the estimated AoA. There is 1 hidden layer

with 64 ReLU nodes.
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(a) The reduced AoA error improves the
performance of MVDR beamformer

(b) The increased SNR of reference
speech decreases the AoA error in GCC-
PHAT

Figure 4.5: AoA and separation benefit each other in a signal processing view

4.2.3 Multi-task Learning for Source Separation

So far, we have focused on localizing the target user. Next, we consider

how to leverage the location information for source separation. Due to the

strong inter-dependency between tracking and source separation, we apply a

multi-task learning framework to jointly estimate the location and separate

the source.

A signal processing perspective on AoA estimation and speech sep-

aration We revisit two typical signal processing algorithms to show how the

separation and the AoA can benefit each other.

Beamforming is a pure source separation method with spatial infor-

mation. The goal of source separation is to minimize the difference between

beamformed speech s̃ and target speech s. In the formula 4.8, AoA is one

of the key factors to decide the beamforming weights. Figure 4.5(a) shows
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that a more accurate AoA estimation yields better beamforming and source

separation.

On the other side, separation can benefit the AoA estimation as well.

As the formulation 4.6 shows, a clean reference signal can estimate a more

reasonable cross-correlation, which results in a better delay estimation and

infer a more accurate AoA. Figure 4.5(a) shows that an improved reference

speech from the source separation reduces AoA estimation error in the end.

In the blind speech separation task, both AoAs and target speech are

unknown. Therefore, we propose to learn the speech separation and AoA

estimation jointly from the received acoustic signals. Our goal is to optimize

both objectives to improve overall performance.

Learnable Pre-mask Previous works [24] develop a pre-mask to take into

account of AoA θ. It first forms a steering vector eθ(f) based on the AoA,

and computes the cosine distance between the steering vector and the complex

values in each TF bin as follows:

A(t, f) =
M∑
k=2

eθ,k
Yk(t,f)
Y1(t,f)

|eθ,k
Yk(t,f)
Y1(t,f)

|
(4.10)

where Y is the complex spectrogram, M is the number of microphone channels,

and k is the microphone index starting from the second microphone as the

steering vector is normalized to the first microphone. A(t, f) represents the

pre-mask value to a TF bin. The pre-mask indicates the probability of a TF

bin dominated by the source coming from the given AoA. Intuitively, the pre-

mask lets the network beamform towards a given direction. Pre-mask improves
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over traditional linear beamformers (e.g., MVDR [14] and LCMV [91]) by

using a DNN-based non-linear filter, so it has better spatial discrimination

and interference cancellation.

The pre-mask assumes the input AoA is accurate. In our context,

the AoA estimation can be erroneous due to interference, ambient noise, and

multipath propagation. Moreover, not only the direct path but also reflected

paths are important for source separation because the overall received phase is

the result of all multipath. A single AoA estimate does not provide complete

spatial information of the target speaker. Therefore, we propose to fuse our

spatial embeddings with the mixed phase from the complex spectrogram to

learn a better spatial pre-mask.

For each microphone and TF bin, there is a 512-long embedding from

audible profiles and another 512-long embedding from inaudible profiles. These

embeddings are concatenated and processed by a 1x1 convolutional layer fol-

lowed by a layer normalization and PReLU. The output of each TF contains a

spatial feature map. It is concatenated with LPS and fed into Temporal Con-

volution Network (TCN) [80]. TCN outputs a mask, which can be applied

to the mixture complex spectrogram to generate the target complex spectro-

gram. Then we perform an inverse short-term Fourier Transform to estimate

the target signals.

Multi-task learning objective A common learning objective in the exist-

ing separation network is to maximize Scale-invariant Signal-To-Noise Ratio
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(SiSNR) [80]. Let x̂ denote the estimated signal and x denote the clean refer-

ence signal. We compute SiSNR as follow:

SiSNR = 10log10
||xtarget||2

||enoise||2
(4.11)

where

xtarget =
< x̂, x > x

||x||2
(4.12)

enoise = x̂− xtarget (4.13)

By normalizing x and x̂ to zero mean, we ensure scale invariant. The loss

function is defined as LSiSNR = −SiSNR. Following the existing work (e.g.,

[133]), the target and interference signals are measured separately and added

up to simulate interference. Therefore, SiSNR can be computed based on their

values.

Unlike the existing works that optimize only SiSNR, we develop a novel

multi-task learning framework to jointly learn speech separation and AoA.

Multi-task learning trains ML models for multiple tasks simultaneously using

a shared structure. The idea of multi-task learning is that internal repre-

sentations learned for one task can be helpful for the other tasks, and vice

versa.

Our key observation is that spatial embeddings can benefit both speech

separation and AoA estimation. An accurate embedding enables LSTM to

accurately estimate the AoA. It also provides good hints for TF bins, which

will be fused with spatial knowledge and target speaker direction.
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Figure 4.6: Stack causal and non causal convolution layers.

Another important insight is that jointly learning the separation and

the AoA can reinforce the network to learn the AoA instead of treating the

AoA as the fixed input, which prevents the gradient from propagating back

and contributing to the training task. In comparison, when the AoA is set

to be learnable together with separation, the mixed phase can contribute to

the learning objective. By fusing the phase and embedding, the learned phase

is more consistent with the separated source. The phase is represented as a

2D tensor, which represents the phase over different microphones and frequen-

cies. We use more convolutional layers to learn the phase using the following

objective for training:

L = LSiSNR + λLAoA

where λ is a relative weighting factor and is set to 0.5 in our evaluation.
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4.3 Implementation

Real-Time Model Design While several source separation schemes claim to

achieve real-time inference because their processing time is shorter than the

audio duration (e.g., 1.71s processing time for 4s audio in Conv-TasNet[80]),

this is insufficient to ensure real-time. Another requirement is that the output

should be generated without much delay. This has significant implications

for the neural network structure. In particular, existing works use non-casual

convolutional layers, which do not distinguish between past and future input

samples and require many future samples (e.g., 1.28 seconds in Conv-TasNet).

In order to support real-time processing, we only use a small look-ahead

window (e.g., 90 ms in our implementation). We show that even a small

look-ahead is sufficient to yield good performance. Moreover, we pay special

attention to causal vs. non-casual convolution. The top 2 layers are causal

convolution in Figure 4.6. They only require previous samples. The bottom

two layers are non-causal convolution which is common in most network ar-

chitecture. They need future samples to perform convolution operation. The

stack of non-causal layers increases the perception field of future samples ex-

ponentially. In order to achieve high accuracy while limiting the latency, we

configure the first 2 convolutional layers of each TCN block as non-causal

with a small look-ahead and the other layers as causal. Figure 4.6 shows an

example: at timestamp 6, the first two non-casual layers use samples up to

timestamp 9 and the next two casual layers only use samples up to the current

timestamp 6.
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Model Implementation We implement the SAMS model in Pytorch [3]. We

use the Adam optimizer with an initial learning rate of 0.0001. We apply a

multi-step scheduler to drop the learning rate by 50% at epochs 40 and 75.

The maximum training epoch is 150 but it will stop early if there is no more

improvement for 10 epochs. SAMS has 20.2M parameters in total.

To provide a real-time guarantee, we cannot wait to accumulate a few

seconds of audio before processing, but the process more frequently (e.g., at

least once every 150 ms). But the processing time does not reduce propor-

tionally with the reduced input size due to the lack of batching opportunities.

Hence how to achieve real-time ML-based source separation remained open.

To speed up processing, our system processes audio every 90 ms. We

introduce a cache tensor for each block to cache the previously computed

intermediate result in the neural network and reuse it in the next round.

Moreover, we use Microsoft Onnxruntime [99] to significantly speed up the

inference. Since certain operations are not supported in Onnxruntime, we re-

place these operations with similar but supported operations. Together, the

resulting system achieves real-time processing – it processes 90 ms audio within

42 ms, which yields the total latency of 90 + 42 = 132 ms (within the 150 ms

real-time requirement).

Setup: As shown in Figure 4.7, we connect a laptop with a Bela platform [13]

attached with a pair of speakers and four microphones. The microphones form

a linear array spanning 8 cm with non-uniform space between them. Their
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Figure 4.7: Platform setup

positions are [0, 3 cm, 5 cm, 8 cm]. A similar setup is used in [87]. Note that

certain mobile devices have a similar setup.

For example, Apple Macbook Pro[7] places three mics on the right up of

the keyboard. Huawei Matebook 14s[52] places a front-facing quad-mic array

to improve voice quality. Thus, our prototype does not bring extra complexity

to the hardware design. The processing pipeline is done on the laptop using

Pytorch. We train the model on NVIDIA GTX 2080ti GPU. We run inference

on both the desktop and Macbook.

Data collection: There are no open-source multi-channel recordings for our

evaluation. Therefore, we collect the data on our own. We will release the

data to the public. Our data include multi-channel inaudible and audible

audio signals. We let dual speakers both transmit periodic FMCW chirps

from 18-20 kHz with a period of 40 ms and a sampling rate of 44.1 kHz. To

avoid interference, the two speakers transmit the same chirp with a 20 ms

difference in the starting time. The volume of the speakers is set to a little
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less than the maximum to avoid signal distortion. We set another headset

microphone to record the reference clean speech.

We collect 20 users’ speeches using our setup. Among them, there are

8 females and 12 males. There are two kids: 8 and 13 years old, and the rest

are adults between 22 – 59 years old. Each user speaks for 10 minutes - 1

hour. We let the users present slides or read books or papers to mimic online

conferences. This is an easy way for users to generate continuous speech. The

target user is 0.2–0.7 m away from the microphone. The users move naturally

during the trace collection. For example, they sometimes lean towards or away

from the computer, move side to side, or turn their heads. We collect the data

from different environments (e.g., lab, living room, study room, cubicle, and

conference room). The environments have different multipath, which affects

both AoA estimation and source separation.

We also separately record interference by letting an external speaker

play a random subset of speech (e.g., around 5 hours) from Librispeech [102],

which contains more than 1K speakers and 26K English sentences lasting 1000

hours. We place the interfering speaker inside or outside the room where the

target user is located. When the interfering speaker is inside the room, (s)he is

a couple of meters away. We augment the real traces by scaling the SNR of the

target signals from -6 dB to 6 dB. Moreover, we use gpuRIR [33] to simulate

realistic interference and noise in multi-channel scenarios by estimating and

applying Room Impulse Responses (RIR) to clean speech from Librispeech and

noise from WHAM! [159]. WHAM! collects ambient noise in non-stationary
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environments, such as coffee shops, restaurants, and bars. These sounds are

generated by humans, musical instruments, and vehicles. Adding such noise

to the background interference makes it even more difficult to extract clean

signals.

Dataset Preparation: We mix the audio segments containing the target

speaker’s speech and inaudible FMCW reflection with different types of inter-

ference and background noise. We add different interference and noise to each

target user’s speech. We vary the amount of interference and background noise

according to the required SNR. The number of interfering users is uniformly

distributed between 0 and 3, and the SNR is uniformly distributed between

[−6, 6] dB. In total, the training data is generated from 16 users’ speech. It

contains 30K segments of mixed audio signals, where each segment lasts for

4 seconds and the total training data lasts for 31 hours. The testing data

contains 6K segments generated from 4 users. Following the common prac-

tice, we vary the user in the testing dataset and use the remaining user for

training. Both training and testing have real recording samples from all en-

vironments. Interference and noise are from the training split and test split

of LibriSpeech and WHAM! respectively. In addition, we also evaluate how

our model generalizes to a new environment that is not present in the training

traces.
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4.4 Evaluation

In this section, we first present our evaluation methodology and then

describe our performance results.

4.4.1 Evaluation Methodology

Performance metrics: Following the existing works (e.g., [133]), we use

several metrics to quantify the performance of source separation: (i) SiSNR

prevents unfair impact of the rescaled signals [78]; (ii) Short-time objective

intelligibility measure (STOI) quantifies intelligibility of speech [138]; (iii)

Perceptual Evaluation of Speech Quality (PESQ) [1] is designed to

quantify the quality of processed speech, and its score ranges from 1 to 5.

Higher values in the above metrics indicate better speech quality.

In addition, we also report AoA estimation errors. We measure the

ground truth AoA using the Intel RealSense L515 [59]. To ensure the RealSense

gets accurate AoA, we place it in line with the microphone array and provide

good lighting conditions.

Baselines: We compare SAMS with the following state-of-the-art approaches:

(i) Conv-TasNet [80]: It is one of the best speech separation approaches using

single-channel speech. It is also one of the most widely used baselines due

to its open-source. (ii) PHASEN [174]: It is a denoising network using two

streams to improve phase estimation. UltraSE [133] shows that [80] and [174]

are the best baselines that only use speech for source separation. All schemes
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Figure 4.8: AoA Error of Different Variants .

are trained using the same data as our approach.

We did not compare with UltraSE [133], which targets phone users. We

target computer users for online meetings, which is complementary to UltraSE

and also more common than smartphone users (e.g., [147] reports the majority

of users use computers for online meetings). Moreover, UltraSE requires the

phone’s speaker/mic to face the user’s mouth and be within 20 cm, which is

even less common as most speakers/mics on the phone face bottom instead

of the user. Meanwhile, our measurement shows that the headset Sennheiser

DK-2750 improves SiSNR by 8.91 dB over the internal microphones of the

laptop under interference. In comparison, our software-only solution provides

higher SNR and hence is more attractive.

4.4.2 Results

We first present micro benchmarks, where we compare different variants

of our own algorithm. In the micro-benchmark, we use one interfering user and

background noise setup. Unless otherwise specified, we use the data collected

from all environments, 20 users, and SNR range of -6dB to 6dB as the default
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settings.

Impact of AoA estimation algorithms: We first compare different variants

of our AoA estimation. Figure 4.8 plots the average AoA estimation error. The

basic method is to apply standard wideband MUSIC to estimate the AoA (i.e.,

applying MUSIC to each frequency band and summing up the results across

all bands). We then augment the method with various enhancements. As it

shows, each of our enhancements, namely mask, LSTM, inaudible tracking,

and multi-task learning, helps improve the AoA error. Using a mask reduces

the AoA error by 0.5◦−4.2◦ across different cases by removing the noisiest TF

bins to prevent generating incorrect MUSIC spectrum. Using LSTM brings

an additional 1.9◦ improvement over using the MUSIC profile in a single pe-

riod since it leverages the inherent temporal locality in the movement. Using

inaudible tracking further reduces the AoA error by 1.2◦ by overcoming audi-

ble noise and interference and updating the location more frequently. Finally,

multi-task learning improves the AoA by another 0.7◦ through jointly optimiz-

ing the source separation and AoA estimation. Putting everything together,

we achieve 3.8◦ AoA estimation error.

Impact of different separation algorithm: Next we compare the following

source separation algorithms using the same set of data: (i) LPS [75]: It uses

only a single channel LPS of raw mixed audio signals for source separation.

(ii) MVDR [14]: We estimate the AoA by applying MUSIC to audible signals,

and use MVDR to beamform towards the AoA. (iii) Est AoA: We estimate

the AoA using both audible and inaudible AoA and use our source separation
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Figure 4.9: Different model structure

DNN to extract the target signals. It differs from our final algorithm in two

aspects: (i) it uses AoA for source separation instead of location embeddings,

and (ii) it disables multi-task learning. (iv) GT AoA: It applies our source

separation network to the ground truth AoA. Like the above estimated AoA,

it disables multi-task learning and uses AoA instead of location embeddings in

source separation. (v) Embed: It uses spatial embeddings but disables multi-

task learning in our final approach. (vi) MT: This is the final approach that

uses both location embeddings and multi-task learning.

As shown in Figure 4.9, on average, LPS yields 10.26 dB SiSNR by

leveraging the magnitude information to learn the acoustic model of speech.

MVDR beamforming achieves 10.43 dB SiSNR by leveraging the AoA estimate

from audible signals. The improvement is limited due to the limited accuracy

of AoA estimation. By leveraging LSTM and inaudible signals, the estimated

AoA yields 11.33 dB SiSNR. Using the ground truth AoA achieves 11.52 dB

SiSNR. Using location embeddings improves SiSNR to 12.74 dB, which is

1.22 dB higher than using the ground truth AoA. This is because the ground

truth AoA only provides information about the direct path, but multipath

information is also useful for beamforming. Further incorporating multi-task
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learning increases the SiSNR to 13.61 dB by jointly optimizing AoA and source

separation. These results demonstrate each component in our system is useful

and leveraging them all provides the best performance.

Impact of sensing using inaudible signals: Figure 4.8 shows that using

inaudible signals together with audible signals decreases the AoA error by

1.8◦ and 1.2◦ over audible signal based sensing without mask and with mask,

respectively. The reduced AoA error also translates into improved separation

performance. Table 4.1 shows that SiSNR decreases 0.6dB, 0.83dB and 0.54db

without inaudible information for three different noise and interference setups.

While inaudible signal based sensing is useful, it alone (denoted as SAMS (w/o

audible)) performs less well. These results confirm that combining audible and

inaudible signals for sensing yields the best performance.

We compare the overall performance of SAMS with several existing

source separation methods by varying the background interference, users, SNR,

and environments.

Vary interference: Following UltraSE [133], we compare our algorithm with

Conv-TasNet and PHASEN under different numbers of interfering speakers

and noise. All schemes are trained using the same data. Note that SAMS and

PHASEN only require the target signal for training, whereas Conv-TasNet

requires both the target signal and interference for training. To support mul-

tiple interferers, it takes the total interference from all interferers as the ground

truth output for training. Table 4.1 summarizes the performance in terms of
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Figure 4.10: Different gender combinations

SiSNR, PESQ and STOI. As it shows, our algorithm improves over Conv-

TasNet and PHASENby 5.00 dB, and 1.39 dB, respectively, under only ambi-

ent noise. The corresponding numbers become 3.39 dB, and 9.58 dB respec-

tively, under 1 interfering speaker with ambient noise; and become 5.01 dB,

and 8.10 dB, respectively, under 2 or more interfering speakers and ambient

noise. The larger improvement over the existing approaches under interference

is owing to the spatial embeddings learned from both audible and inaudible

signals and multi-task learning. Conv-TasNet cannot perform well with only

noise or more interference. PHASEN can deal with phase distortion caused

by ambient noise, but cannot handle interference well. SAMS can outperform

all of them even in their target scenarios. SAMS also achieves better PESQ

and STOI as it reduces the phase distortion.

Vary gender pairs: Next, we consider the impact of different sets of users

speaking at the same time. Conceptually, female and male voices are different

and have distinct resonant frequencies, so they are easier to separate out. How-

ever, humans with the same gender can have a lot of similarities on the voice

and accent. This is confirmed in our evaluation. As shown in Figure 4.10, the

SiSNR of separating from the female-male(F-M) pair is 14.21 dB. The SiSNR
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Environment Model SiSNR PESQ STOI

noise

SAMS 10.71 2.21 0.76
SAMS(w/ GT AoA) 9.51 2.09 0.71

SAMS(w/o inaudible) 10.11 2.15 0.74
SAMS(w/o audible) 6.32 1.83 0.74

Conv-TasNet 5.71 1.76 0.60
PHASEN 9.32 2.09 0.70

1
interferer
+ noise

SAMS 13.61 2.68 0.84
SAMS(w/ GT AoA) 11.52 2.49 0.79

SAMS(w/o inaudible) 12.78 2.54 0.81
SAMS(w/o audible) 9.93 2.14 0.77

Conv-TasNet 10.22 2.19 0.76
PHASEN 4.03 1.60 0.53

2 or 3 in-
terferers
+ noise

SAMS 12.21 2.44 0.78
SAMS(w/ GT AoA) 10.33 2.38 0.75

SAMS(w/o inaudible) 11.67 2.41 0.77
SAMS(w/o audible) 7.01 1.92 0.62

Conv-TasNet 7.20 1.96 0.65
PHASEN 4.11 1.69 0.53

Table 4.1: Performance across various interference and noise scenarios

of separating from the female-female(F-F) and male-male(M-M) is lower, but

still quite high: 13.37 dB and 12.67 dB, respectively. These results show that

even when the interference is similar to the target signals, SAMS can still

separate out the signals by taking advantage of location embeddings.

Vary SNR: Then we vary the SNR of the target user from -6dB to 6dB

by scaling the target signal. Each subset of a specific SNR includes all linear

combinations of interference speech and noise. As shown in Figure 4.11, SAMS

outperforms Conv-TasNet and PHASEN in all SNR scenarios by about 3dB

and 5dB, respectively. Even for the low SNR case, SAMS can separate the

weaker target speech and improve SISNR to 7.09dB, which is sufficient for
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Figure 4.11: Different SNR

Figure 4.12: Different Environments

good audio quality in an online meeting.

Vary environments: The target user speeches are collected from 5 different

environments: living room, study room, cubicle, conference room, and cor-

ridor. Different environments have different room structures and furniture,

which results in various room impulse responses. It can affect the perfor-

mance of both AoA estimation and source separation. We train our DNN

using the data collected from all environments except the one used for testing.

Figure 4.12 plots the source separation performance for the new environment

that is not in the training. As it shows, SAMS generalizes well to the new en-
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vironment and its performance is fairly stable across different environments.

Because we incorporate the audible profile and the inaudible profile to combat

the change in the environment, SAMS can be more robust than the audio-alone

method.

Computation cost: We run inference on three platforms to quantify the

computation cost: a desktop GPU (NVIDIA GTX 2080 Ti), a desktop CPU

(Intel Core I7-8700K), and a laptop CPU (Intel Core I5-5257U). These plat-

forms represent common devices for online meetings. Processing 4-second au-

dio takes 61ms on the desktop with GPU, 0.41s on the desktop with CPU,

and 1.31s on the laptop with CPU using Pytorch without any optimization.

With optimization through caching intermediate results and Onnxruntime[99],

our system can process 90-ms audio within 42 ms on the laptop with only a

CPU. The total latency is 132ms, which is smaller than 150 ms (i.e., the target

latency requirement for VoIP), hence achieving real-time processing.
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Chapter 5

Visual Timing For Sound Source Depth
Estimation

5.1 Background of Depth Sensors

1 We investigate a variety of depth sensors and put FBDepth into per-

spective by comparing them with the other approaches using several basic

criteria. Due to a large number of depth sensors and methods, we only select

the typical methods of each category of sensors and describe the fundamental

strength and weaknesses.

We classify the existing approaches broadly into two main categories:

active sensors in Table 5.1 and passive sensors in Table 5.2. The active

sensor can actively emit modulated signals, such as LiDAR, structured light,

radar, ultrasound, WiFi, RFID, or mmWave. They use time-of-flight (ToF),

amplitude, phase, or Doppler shift to estimate the range because these physical

measurements are directly determined by the target depth. Passive sensing

uses signals from the environment for sensing. It commonly uses a monocular

1The work in this chapter was supervised by Prof. Lili Qiu. I was the first author and
made contributions to designing research, performing research, analyzing data and writing
the paper. It was originally published in: Sun, Wei, and Lili Qiu. Visual-Assisted Sound
Source Depth Estimation in the Wild. arXiv preprint arXiv:2207.03074 (2022).
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camera [15] or a stereo camera [130] by leveraging the implicit monocular or

binocular depth clues from images. They commonly apply an indirect strategy

to regress the depth.

Accuracy: Active sensing can achieve centimeter-level accuracy based method

because their fundamental is based on the physical measurement and the wave-

length of sensing signals is centimeter-level or even smaller. WiFi is an excep-

tion as its wavelength is decimeter-level.

Many passive sensing schemes use deep learning to achieve SOTA of

depth estimation. However, the accuracy is not comparable to active sensing.

Monocular camera based depth estimation [175, 69] can achieve 5.2% AbsRel

in the Kitti dataset[43] and within 10% in NYU-Depth V2 [95]. However,

its absolute error (AbsErr) increases linearly with the distance. The AbsErr

can be several meters when objects are tens of meters away. Moreover, it

relies on high-quality datasets and cannot handle arbitrary scenes and fields

of view, which may not contain enough clues for depth estimation. Stereo

depth performs superior to monocular depth because it transforms the spatial

depth into pixel difference between left and right images. This triangulation

transformation causes the accuracy to depend on the baseline between two

cameras [25]. A larger baseline results in more pixel differences to the same

depth. The triangulation makes the AbsRel increase with further depth.

Range: LiDAR and radar for autonomous driving can achieve up to hundreds

of meters which depends on the signal design and frequency band. Other in-
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Sensor Device/Method Accuracy Range Angular
Resolution Power Cost

LiDAR Velodyne
HDL-32E [12] 2cm 100m 1.33°(V)

0.1°-0.4°(H) 10W >$5K

structured
light

Realsense
D455 2% 6m pixel-level 3.5W $400

ToF
camera

Azure
Kinect [182] < 1cm 6m pixel-level 5.9 W $600

mmWave Navtech
CTS350-X [12] 4.38cm 163m 1.8° 20w >$500

inaudible
sound Rtrack [87] 2cm 5m object-level 0.5W <$10

WiFi Chronos [146] 65–98 cm < 50m object-level <10W < $50

Table 5.1: Active sensors or signals. Among these metrics, it is better for
accuracy, range, and resolution to be high while it is promising for power and
cost to be low.

door estimation methods can achieve an effective range of about 6m. Monoc-

ular depth estimation is fully dependent on the depth range of the dataset.

It works well indoors when it is trained by NYU-Depth V2 [95] and performs

outdoors when trained by Kitti dataset[43]. Monocular depth achieves 1000

meters [117] with specific depth labeling. The baseline of the stereo camera

determines the max depth as well because the view difference becomes tiny

when the object is too far. FBDepth can support 60 m. Its large range comes

from two major factors. First, it uses directly received audio signals instead

of reflected signals. Besides, it uses audible frequencies, which have a slower

decay and stronger frequency response than inaudible audio frequencies.

Angular Resolution: The resolution refers to the granularity that each

depth measurement point corresponds to the 3D space. RGB-based methods,
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Sensor Device/Method Accuracy Range Angular
Resolution Power Cost

camera NeWCRFs[175] NYUv2[125]: 9.52%
KITTI[43]: 5.20%

10m
80m pixel-level <1W <$30

stereo
camera ZED 2i[130] < 2% up to 10m;

< 7% up to 30m 40m pixel-level 2W $450

camera
+ mic FBDepth overall 2.98%;

> 30m: 2.41% 60m obj-level <1W <$30

Table 5.2: Passive sensors or signals

ToF cameras, and structured light can achieve pixel-level estimation. It can

be transformed to a numerical resolution by dividing the field of view by

the image resolution. RF-based and acoustic-based solutions can only detect

sparse reflection points. The LiDAR with multiple beams can generate a dense

point cloud, the density of its point cloud decreases quadratically with the

distance [163] and its point cloud becomes pretty sparse at a large distance.

As a result, autonomous driving datasets commonly annotate point clouds up

to 80m [18, 43]. Further points are difficult for humans to distinguish and

label.

Power: Active sensing methods need to emit modulated signals, which tend

to consume more power in order to get a reasonable SNR from the reflected

signal over a large detection range. When they are applied to mobile phones,

their performance is constrained by power. For example, iPhone Pro has a

Lidar on the back of the phone with a max range of 5m and a ToF camera

on the front with a max range of 50cm. In comparison, passive sensing does

not require active transmission and consumes less power, which is desirable
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for mobile devices.

Cost: Cameras and microphones are widely available. In comparison, LiDAR

is much more expensive and not available on most mobile devices. mmWave

also has limited deployment. While WiFi is popular, in order to achieve high

accuracy, we need more spectrum and PHY layer information, both of which

limit its availability on mobile devices. FBDepth only requires a camera and

a microphone, which makes it possible for wide deployment.

Summary: There are many depth estimation technologies. Our FBDepth

complements the existing solutions by adding a low-cost, easy-to-deploy, accu-

rate, and long-range solution. It has higher accuracy than existing monocular

solutions and a longer range than existing stereo solutions.

5.2 Approach
5.2.1 Audio-Visual Correlation

We identify the audio-visual correlation as the key component to build-

ing up the depth estimation framework. Audio-visual perception is important

for humans to learn from and interact with the real world. Existing work

shows more interest to incorporate audio and visual to boost enhanced se-

mantic representation learning. Apart from existing audio-visual correlations,

We identify novel audio-visual correlations to enable depth measurement in

the wild.

Audio-visual Semantic Correlation Audio-visual learning has become a
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Figure 5.1: Audio-visual semantic correlation: Each object has the unique
visual appearance and sound

popular trend in computer vision, speech, and robotics. The fundamental idea

is to advantage of the coexistence of audio cues and video appearance of a spe-

cific event. In Figure 5.1, each object can generate the unique sound. Humans

can quickly pair the image and sound by observing both modalities. This learn-

ing scheme has several attractive benefits. First, the coupled audio features

and visual features can be paired and enriched to learn a more general and

robust feature embedding compared to using either modality. Besides, it can

combat the noise and interference from both modalities. Hence, audio-visual

learning is applied to enhance the performance of analytic tasks and enable

novel applications. by focusing on the semantic correlation between the two

modalities and associating visual representations and audio representations.

In the audio-visual depth estimation, we are interested in a specific
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Figure 5.2: Audio-visual semantic correlation: Different motions yield various
sound for same object

set of audio-visual events where the impact sound is triggered by a collision.

These events are common in nature. For example, an object is freely falling

or bounced by a racket or wall, or a person is stepping on the floor. Collisions

follow a significant semantic correlation between audio modality and visual

modality in two folds. The basic correlation is that each object can produce

a unique sound by collision based on its size, material, shape, etc. The visual

appearance can even be applied to synthesize the sound with one image[101].

Besides, we introduce a new type of audio-visual semantic correlation.

The motion of an object is another key factor to generate the audio. The

velocity of the object determines the magnitude of the sound. We also find

that different motions result in various collision positions, which brings various

sounds as shown in Figure 5.2. By observing the consecutive frames, we
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Figure 5.3: Audio-visual spatial correlation: different environments result in
various impulse response. [127]

can capture the motion dynamics and predict a reasonable impact sound.

Therefore, we leverage both the visual appearance and the motion from the

video to correlate with sound for depth estimation.

Audio-visual Spatial Correlation: [41, 105, 21] introduces a sort of indirect

spatial correlation. In Figure 5.3, they claim that impulse response(IR) varies

a lot in different room structures and placement of furniture results. They

try to infer the IR with the visual semantic context of the room, such as the

structure, dimension, room types, materials, scatter reflectors, etc. However,

it involves too many uncertain variables in the environment such as absorp-
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Figure 5.4: Audio-visual spatial correlation: significant propagation delay be-
tween light and sound

tion coefficients of materials, and the poses of reflectors. The formulation of

this spatial correlation cannot be easily quantified. As a result, the indirect

correlation is too weak to be learned with the controlled simulation data. The

improvement of depth estimation is pretty limited.

We introduce a novel straightforward audio-visual spatial correlation

in Figure 5.4. In a synchronized audio-visual recording, the collision is always

observed earlier in the video than in the audio. It can be formulated by the

physical laws easily as shown in Equation 5.1. We sense the delay between the

audio event and the video event based on the difference between the propaga-

tion speeds of light and sound. The delay is perceptible if the event happens

far away, such as a lightning strike, a flying plane, and a boom. However, it

is hard for humans to estimate the range if the audio-visual event is close by.
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Thanks to the advance in sensors, many mobile devices can support

video recording with 240 FPS and even up to 960 FPS and audio recording

with a 48 kHz sampling rate and up to 96 kHz. The high audio and video

sampling rates make it possible to accurately measure the delay. We may

figure out the approximate video frame and the potential audio sample where

the collision starts to happen. The innovative sensing scheme can leverage

audio-visual events to enable passive depth estimation. Further, it reveals

the spatial uniqueness of sound and light, which enable further 3D perception

more than with visual regression alone.

We observe that the duration of a collision is very short around 10

ms. Such a short collision makes it highly unlikely to have multiple collisions

overlap in time. We analyze the video recording of the basketball court. Only

two frames have double collisions among all 1208 frames and a total of 203

collisions when 7 basketballs are played during a 40-s duration. In this paper,

we do not explicitly handle the rare overlapping collisions, but our evaluation

does include cases involving overlapping collision sound and shows our scheme

is fairly robust as long as the overlap is small. The most severe overlapping

scenario is when two identical objects collide on the surface at the same time.

FBDepth will overlook such scenarios and not estimate the doubtful depth.

Meanwhile, our system allows multiple objects that generate collisions

to appear in the same video. This is achieved by audio-visual event localization

to find all collisions in the video and then applying the further stages to each

object for depth estimation.
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5.2.2 Problem Formulation

We formulate the depth estimation by the physical law of wave propa-

gation. We have:

d

v
− d

c
= T (5.1)

where the depth of the sound source is d and the difference between the ToF

of sound and light is T . c and v denote the propagation speeds of light and

sound, respectively. We can estimate d based on d = cvT
c−v

≈ vT since c ≫ v.

We observe T = Taudio−Tvideo+Thardware, where Taudio and Tvideo denote

the event time in the audio and video recordings, respectively, and Thardware

denotes the start time difference in the audio and video recordings. It can be

small as well as have a small variance with a well-designed media system such

as the Apple AVFoundation framework. We regard it as a constant unknown

bias to learn.

It is impossible to label the precise Tvideo and Taudio manually. Tvideo

can be tagged at most frame-level. Even though many commercial cameras

can support up to 240 FPS, it results in a 4-ms segment and 1.43m depth

variation. Moreover, it is tough to determine the exact frame that is nearest

to the collision in high FPS mode by a human being due to the constrained view

of the camera. Taudio is challenging to recognize in the wild as well. Although

the audio sampling rate is high enough, we can recognize the significant early

peaks instead of the first sample triggered by the collision. The best effort of
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Figure 5.5: Model architecture. Our audio-visual depth estimation uses the
video, audio, and optical flow to perform the event-level localization to retrieve
the collision event. It analyzes the collision flow and estimates the collision
timestamp in the video. It uses multiple modalities including RGB, flow, audio
and the timestamp to estimate the depth.

segmentation is 10-ms level based on real data.

Hence, We cannot learn the timestamp with supervision. As figure

5.5 shows, we propose a 2-stage estimation framework. In the first stage, we

target to localize the collision event in the video with the help of the audio and

estimate the numerical Tvideo. We localize the audio-visual event in the stream

and then take advantage of the unique optical flow of the collision to estimate

Tvideo at ms-level. In the second stage, we regard the Tvideo as an anchor into

the audio clip and direct regress the depth with extra visual appearance and

optical flow under depth supervision. We make the network optimize Taudio

automatically with knowledge of the Tvideo, the audio waveform and visual

features.

We demonstrate a novel coarse-to-fine pipeline to localize the collision
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with a super temporal resolution in the video. This method does not require

annotations on ms-level, which is at least two orders of magnitude finer than

previous approaches. They rely on the supervision of segment annotations,

such as AVE dataset with 1-second segments [141], Lip Reading Sentences

2 dataset with word-level segments [28], BOBSL with sentence-level align-

ments [17].

5.2.3 Audio-Visual Coarse-to-Fine Localization

Primer on optical flow. The optical flow captures the movement of the

brightness pattern, which is used to approximate the motion field. More specif-

ically, for each pixel (x, y) in a video frame, the optical flow, denoted as u(x, y)

and v(x, y), specifies the point’s projection of motion in 2D. By assuming the

brightness intensity constancy, we have

I(x+∆x, y +∆y, t+∆t) ≈ I(x, y, t) (5.2)

Meanwhile, by applying a Taylor series expansion, we get

I(x+∆x, y +∆y, t+∆t) = I(x, y, t) +
δI

δx
∆x+

δI

δy
∆y +

δI

δt
∆t. (5.3)

Hence we arrive at

∆Iv + It = 0 (5.4)

where v = (∆x,∆y) is the optical flow and ∆I = (Ix, Iy) is the spatial gradient,

and It is the temporal gradient. By deriving ∆I and It from a pair of video

frames, we can obtain the optical flow v.
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Lucas-Kanade method is the most famous algorithm for computing

the optical flow. It derives multiple constraints from the pixel along with its

neighbors and uses the least square to estimate v. More recently, many deep

learning algorithms have been developed to improve optical flow estimation.

We choose to use the RAFT [140], which is one of the latest algorithms with

excellent performance. It computes the optical flow in a multi-scale manner,

where at each scale it uses a ConvGRU module to iteratively estimate the

optical flow and move the pixel according to the derived flow.

5.2.3.1 Event-Level Localization

Audio-visual modeling for collisions. In this step, our goal is to localize

the audio-visual event for the region and the period of interest. It is similar

to [141], but the unique properties of collisions bring new opportunities to

learning strategy to enable a high granularity localization.

Collisions have a significant motion than other sound sources. We can

use the optical flow to inform the network of moving pixels. Besides, the

impact sound is highly correlated to the rich information of objects [39], such

as shape, materials, size, mass, etc. It makes audio-visual cross-matching

easier than general audio-visual events so that we do not need to apply a

complex scheme to learn. Another fact is that collisions are pretty sparse

temporally in the wild because the duration of collisions is extremely short. It

is rare to come across overlapped collisions based on our empirical study on

the basketball court. Only two frames have double collisions among all 1208

120



Figure 5.6: MVANet for audio-visual localization.

frames and a total of 203 collisions when 7 basketballs are played during a 40-s

duration.

We propose a motion-guided audio-visual correspondence network (MAVNet).

Figure 5.6 demonstrates the structure of MAVNet. Similar to [141, 164],

MAVNet performs the cross-matching for the audio features and the RGB-

F channels. Besides, it predicts the audio-visual segmentation to capture the

whole pixels of the target object. It can achieve fine-grained audio-visual scene

understanding [188]. We use the segmentation mask to filter flows of interest

and perform high-resolution estimation in the next steps. MAVNet has two

backbones to deal with RGB-F channels and audio clips respectively. A U-

Net [119] style encoder is applied to extract the frame features conditioned by

optical flows. It uses a series of convolution layers to extract visual features.

Another branch is the audio encoder which takes in the time-domain signal. It

has a 1D convolution layer to learn an STFT-like representation and a stack

of 2D convolution layers with batch normalization to learn the semantic audio
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features. We replicate the audio feature, tile them to match the visual feature

dimension, and concatenate the audio and visual feature maps. MAVNet has

two output heads as well. the U-Net decoder applies a series of up-convolutions

and skip-connections from the RGB-F encoder to fused feature maps to learn

the binary segmentation mask M . Meanwhile, the fused feature map is fed

into a binary classification head consisting of convolution layers and linear

layers to predict the audio-visual event relevance y ∈ {0, 1}.

Training We use the weighted sum Binary Cross Entropy (BCE) loss as the

training objective for both segmentation and the cross-matching, We train all

components to jointly optimize the location predictions and energy reconstruc-

tion. We minimize the total loss

Ltotal = BCE(M, M̂) + λ ∗BCE(y, ŷ) (5.5)

where λ is the hypermeter to set.

Inference We demonstrate the inference on the video stream and audio

stream in Algorithm 1. We only use low FPS to perform MAVNet to avoid

dense inference at this stage. Moreover, we do not need to activate the segmen-

tation head until the audio clip and the frame are highly matched. Finally,

MAVNet uses this audio clip to retrieve a sequence of frames including the full

collision procedure.
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Algorithm 1: Audio-visual localization pseudo-code
1 V,A = V ideoStream(), AudioStream()
2 while V,A is available do
3 I0, I1, t = V.prevFrame, V.curFrame, V.curT ime
4 f = RAFT (I0, I1)
5 a = A(t)
6 cls,mask = MVANet(I1, f, a)
7 if cls is valid then
8 track the object forward and backward a
9 perform video event detection and depth estimation

10 end
11 end

5.2.3.2 Frame-level Localization

Given a sequence of video frames, our goal is to split them into two

sets: the frames before the collision V0 and the frames after the collision V1.

This essentially requires us to determine the last frame Ie in V0 before the

collision and the first frame Is in V1 after the collision. Thus, we locate the

collision between the frame Ie and Is.

Based on the analysis of the physical motion, we make an important

observation that can help determine Ie and Is. The collision results in a

significant acceleration change due to the strong impulse force. Let at =

vt − vt−1 and δat = at − at−1 denote the acceleration and acceleration change

of frame It, respectively. δa between Ie and Is is large, while δa between

adjacent frames before or after the collision is small. If the object stops moving

immediately after the collision, we take the static frame Ie+1 as Is. Finally,

we select the frames before Ie to generate V0, and select the frames after Is
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to generate V1.

We use the retrieved mask in the last stage to determine the object po-

sitions in the frames and calculate the velocity, acceleration, and acceleration

change. We find the Ie and Is at the low FPS and then replicate the procedure

for frames between Ie and Is at high FPS. Finally, we locate Ie and Is in the

high FPS mode efficiently.

5.2.3.3 Ms-level Localization

To further locate the exact moment of the collision, we try to interpolate

frames between Ie and Is to recover the skipped frame. Unfortunately, the

common assumption of frame-based interpolation is fully broken down.

Motion consistency is fundamental for spatio-temporal video processing.

If the motion of the object is temporally stable across several frames (e.g.,

due to a constant force), the position and pose can be predicted in the future

frames as well as be interpolated between two frames. We denote it as motion

first consistency. However, the impact sound is caused by an impulse force,

which results in a rapid change in the motion status. It breaks the motion

continuity and consistency. When we observe Ie and Is, we cannot determine

whether a collision happens or the object just flies in the air.

Luckily, the collision moment retains a new form of motion consistency.

We denote it as motion second consistency. It reveals that the motions before

and after the collision share the same intersection position. Besides, they keep

the motion first consistency separately. Therefore, we can extrapolate the
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motions based on the motion first consistency and search for the most similar

motion extrapolations by leveraging motion second consistency. Note that our

final goal is to find the timestamp of the collision instead of the motion status

at the shared position. [64, 120] try to recover the sub-frame motions and

trajectories as well but they require the high FPS ground truth to guide the

training. In our context, we care more about when the collision happens than

what it looks like.

Figure 5.7: Interpolate trajectories before and after the collision to compute
the intersection for collision detection.

Optical flow extrapolation Optical flow is widely used for frame predic-

tion [155, 179] and interpolation [89, 97, 169] by warping the frame with the

estimated optical flow. Because it can capture all motions of pixels and get

a finer understanding of the object dynamics. The optical flow sequence is

usually generated by adjacent video frames. However, it is not efficient for ex-

trapolation. The drift of pixels in the flow requires extra iterative wrappings

to align the corresponding pixels, which results in accumulation errors.

We can extrapolate the trajectories of V0 and V1 to locate the same
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collision moment. A simple solution is to use the center of the ball to fit the 2D

moving trajectory and use the intersection of two trajectories as the collision

point. However, this method is not accurate for real experiments. The center

point simplifies the shape and color of the object. It loses rich information

of thousands of pixels from the object. For the example in Figure 5.7, the

center point cannot model the pose or rotation of the object. Thus, it does

not take advantage of all visual constraints. Moreover, the deviation of each

center’s position can lead to a considerable error because the data points are

not sufficient.

We apply optical flow to enable a fine-grained robust video event es-

timation. Optical flow can provide pixel-to-pixel motion in the 2D frame

projected from the 3D space. We can use all pixels to search for the opti-

mal collision time. The optical flow sequence is usually generated by adjacent

video frames. Considering a set of frames {I0, I1, ...In}, we can estimate a flow

sequence {f0→1, f1→2, ...fn−1→n}. For a pixel p0(x, y) of the target object in the

frame I0, we can infer the new position of the pixel in the frame I1, denoted

as p0(x+∆x1, y+∆y1), where (∆x1,∆y1) = f0→1(x, y). Based on the optical

flow sequence, we can estimate the coordinate of this pixel in the next few

frames as

{(x, y), (x+∆x1, y +∆y1), ..., (x+
n∑

i=1

∆xi, y +
n∑

i=1

∆yi)}

.

However, this method will result in error accumulation from the optical
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flow and mismatch the pixels across the frames.

Therefore, we compute the optical flows from an anchor frame Ia to the

frame sequence V as

{I0, I1, ...In}

We can estimate the flow sequence Fa→V as

{fa→0, fa→1, ...fa→n}

As fa→n(x, y) represents the movement of the pixel Ia(x, y) to In, Fa→V(x, y)

describes how the pixel in Ia(x, y) moves across the frame sequence V. Hence,

Fa→V tracks the global motion of each pixel without iterative warpings. With

the historical positions of Ia(x, y) from frame I0 to In, we can regress the

motion of this pixel and extrapolate the flow to fa→n+δt, which is the relative

pixel position to In+δt with an arbitrary δt.

In our context, We pick k consecutive frames before the collision Vpre

as

{Ie−k+1, Ie−k+2, ..., Ie}

and after the collision Vpost as {Is+k−1, Is+k−2, ..., Is}. We select the frame Ie

as the anchor frame. It is near the collision moment, so its motion to other

frames is not dramatic and easy to be estimated. Hence, we can estimate the

optical flow sequences Fe→Vpre and Fe→Vpost Meanwhile, we apply the predicted

segmentation mask of Ie to filter the pixels of the target object. In the last

step, we build up regressors R for each pixel’s motion individually and predict

future locations in any sub-frame.
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Figure 5.8: Structure of the depth predictor. It incorporates both RGB-F
channels and visual timed waveform to regress the target depth

Optical flow interpolation We have construct pixel level regressors for

Fe→Vpre and corresponding Fe→Vpost . They can extrapolate the flow fe→e+δt0

and fa→s+δt1 , respectively. δt0, δt1 are extrapolation steps. The optimization

goal is to

min
e−s≤δt1≤0≤δt0≤s−e

||fe→e+δt0 , fa→s+δt1 ||2, s.t. e+ δt0 < s+ δt1

The collision duration is s + δt1 − (e + δt0), which is always more than 0.

e + δt0 is the target ms-level localization T̂video. We can apply this interpola-

tion methodology to search the intersection of the object’s center trajectory

or maximize the Intersection over the Union (IoU) of the object’s bounding

box. However, both only use several key points so they cannot achieve a fine

granularity since the optical flow takes advantage of thousands of pixels.

5.2.4 Depth Regression

Based on the estimation T̂video, we directly regress the depth to fit

the Taudio and the bias THardware with the supervision of ground truth depth.

We observe that the sound generation procedure varies a lot across different
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objects, materials, shapes, and motions. On one hand, the diverse waveforms

make it impractical to measure the exact Taudio manually. On the other hand,

each specific waveform has significant implications on what is the best Taudio

corresponding to T̂video. To combat the background noise from other sources,

we also feed the RGB-F crop of the target object from frame Ie to the depth

predictor. It includes the semantic features of the object as well as the motion

status just before the collision. These cues can guide the predictor to find the

waveform pattern easily. The structure of the depth predictor is demonstrated

in Figure 5.8.

We select a sequence of audio samples starting from Ie and label some

anchor samples as 1 at T̂video. It informed the audio sequence about the times-

tamp of the visual collision directly. We feed the enriched sequence into the 1D

convolution layer to extract a 2D representation. It is followed by two residual

blocks to learn high-dimension features. Meanwhile, we use ResNet-18 [46] to

extract the RGB-F features of the target object. We tile and concatenate the

RGB-F features to the audio features along the channel dimension and append

another two residual blocks to fuse the features. Finally, it is followed by a

pooling layer and a fully connected layer to predict the depth. The output

maps to depth by the 2D projection. We use Mean Square Error (MSE)

Ldepth = ||d, d̂||2 (5.6)

as the learning objective where d and d̂ are the target depth and the predicted

depth.
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Figure 5.9: Data collection platform with multiple sensors

5.3 Implementation
5.3.1 Setup

Dataset platform and collection As Figure 5.9 shows, we build up a

multi-sensor data collection platform to collect the depth data. We use an

iPhone XR with a 240-fps slow-motion mode to collect the video with audio.

The audio sampling rate is 48Khz. Thardware is small as 1 ms and has a small

variance within 1 ms on the iPhone. Moreover, its frame rate is stable and does

not have a frame rate drifting. Thus, we can transform the frame number to the

timestamp accurately. The calibration of the audio-visual media framework is

out of the scope of this work.

To capture the remote scene clearly, the telephoto lens has become in-

dispensable in recent smartphones. Samsung Ultra 22 can support 10x optical

zoom and 100x hybrid zoom, and Pixel 6 pro has 20x zoom in all. The iPhone

XR is not equipped with a telephoto lens, so we mount an ARPBEST monocu-

lar telescope to enlarge the scene at a large distance. As shown in Figure 5.10,
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(a) iPhone XR + tele-
scope

(b) Pixel Pro 6

Figure 5.10: Compare the image quality captured by our telescope setup and
the commercial telephoto lens on smartphones

the image quality of our setup is a bit worse than the one captured by Pixel 6

Pro’s telephoto lens. Thus, our setup does not provide superior image quality

compared to existing commercial camera modules on smartphones. The image

taken by Pixel Pro 6 is sharp but noisy while the one taken by iPhone XR

with the telescope is a bit blurred. We do not take advantage of the telescope

from this perspective. We also try to use Pixel Pro 6 or other Android phones

to perform the experiment. However, the A/V median framework of Android

is not as robust as the IOS. The delay of audio-video recording is not only

huge but also has a significant variance. Besides, the frame duration is not

constant. It drifts by period, which introduces huge errors for timestamp es-

timation. Overall, our setup resembles the hardware available on commercial

mobile phones.

We set a ZED 2 stereo camera with a 12 cm baseline and a Livox
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Figure 5.11: A set of objects are used for experiments. They cover most
common items and materials in daily life

Mid-70 lidar together with the iPhone. Due to the significant sparsity of the

point cloud, it is almost inaccessible to measure the depth of a small object

with the lidar, especially when it is far and moving. Thus, we use the lidar

to measure the depth of an anchor position and throw objects to the anchor

position precisely.

In Figure 5.11, We use 24 objects including various masses, sizes,

shapes, and six common materials: wood, metal, foam, rubber, plastic, and

paper. They keep the falling motion or hand-driven motion to produce the

impact sound. We collect the collision from 2 meters to 60 meters in different

environments. After data cleaning and annotation, we get 3.6K+ raw audio-

visual sequences., including 280K+ frames. Each sequence has about 40 to

120 frames and a corresponding audio clip corresponding. We use the stereo

camera to capture static images and use the lidar to capture static depth maps.

AVD Dataset We augment the raw audio-visual sequences to be a large
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audio-visual depth(AVD) dataset. We generate the sequence with multi-

collisions by cropping one moving object from a raw video sequence and aug-

menting it to another raw sequence with a random temporal location. Mean-

while, we add up the audio sequence with the same time shift as the video.

We have 10K audio-visual sequences. For the event-level localization stage,

we segment an audio clip of 66.7ms including the impact sound and sample 20

frames including visible objects from each sequence and pair them as positive

pairs. Negative samples pair the frame with the audio clip without impact

sounds or with irrelevant impact sounds. Finally, we generate around 400K

audio-visual pairs. Besides, we augment the raw depth with a maximum 3%

random change to diversify the depth and shift audio samples accordingly to

the video timestamp. It can solve the problem of discrete anchor depths. The

change cannot be significant because the impulse response of sound is also

related to depth. It requires more transformation than just shifting audio

samples. We also augment images with low light, flip and rotation, and audio

with diverse background noise from WHAM![160].

5.3.2 Model Implementation

We use the pre-trained model from RAFT [140] to compute the optical

flow. This model is pre-trained on a mix of synthetic data and real data [30].

It performs well on our current dataset. We pre-train a ResNet-18 [46] audio

classifier on our own dataset. This model without the final layer will work as

the audio feature extractor in the MVANet. It will output the audio feature
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embedding with a size of 256. The weights are also updated using MVANet.

The U-Net in MVANet has 5 down-convolution blocks to increase the number

of channels to 16, 32, 64, 128, 256 and 5 up-convolution blocks to decrease

the number of channels to 256, 128, 64, 32, 1. The single channel output

is fed to the sigmoid layer to generate the segmentation mask. Meanwhile,

the fused feature map is also input to 6 convolution layers, followed by a fully

connected layer to classify the event relevance. The depth predictor first uses a

1D convolutional layer with a kernel of 32 and outputs 256 channels to encode

the 1D signal into a 2D presentation. It is followed by a Resnet-like module to

extract the audio embedding with a dimension of 1024. Meanwhile, it applies

another Resnet-like extractor to the RGB-F input with 5 channels and outputs

the embedding with a dimension of 1024. The embeddings are concatenated

and fed into several full connected layer to regress the depth.

MAVNet and depth regression network are all implemented with Python

and PyTorch. They are trained on the platform with an Intel(R) Xeon(R) Gold

6230 CPU @ 2.10GHz CPU and an NVIDIA Quadro RTX 6000 GPU. The

learning rate and batch size are set as 0.001 and 32 respectively.

5.4 Evaluation

Baselines We include three types of baseline for comparison. We compare

to a monocular depth estimation method NeWCRFs [175], a state-of-the-

art(SOTA) on multiple benchmarks. We also compare to stereo matching

methods including the ZED built-in ultra depth estimation SDK and a SOTA
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method LEAStereo [25]. We use dense depth maps collected by the lidar to

finetune NeWCRFs. Stereo methods do not need finetune. Despite optical

flow-based interpolation, we compare to interpolation using key points such

as the trajectories of center or bounding boxes.

Metrics We use the mean absolute depth errors as

AbsErr =
1

n

n∑
i=1

|d− d̂| (5.7)

, root mean square absolute relative errors

RMSE =

√√√√ 1

n

n∑
i=1

(d− d̂)2 (5.8)

, and absolute relative error

AbsRel =
1

n

n∑
i=1

|d− d̂|
d

(5.9)

as the end-to-end performance metrics.

FBDepth is a sparse depth estimation, which estimates the colliding

objects. Meanwhile, monocular and stereo baselines have dense depth estima-

tions for all pixels of the object. To be fair, we sample the median estimation

depth from the estimated dense depth map. We compare it with the median

depth from the ground-truth dense depth map collected by lidar. We provide

the results over different distance ranges as close(≤ 10m), mid(10m-30m) and

far(≥ 30m). Intuitively, there is an upper bound for the temporal resolution

due to various constraints such as hardware timestamp variance, limited FPS,

etc. Hence, AbsErr also has a corresponding lower bound of measurement.
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Method Input FPS AbsErr(m) AbsRel(%) RMSE(m)
NeWCRFs V - 1.68 9.48 3.49
ZED SDK S - 2.03 7.28 3.69
LEAStereo S - 0.88 4.09 2.95
FBDepth A+V 30 0.95 4.26 1.51
FBDepth A+V 60 0.72 3.34 1.27
FBDepth A+V 120 0.67 3.11 1.09
FBDepth A+V 240 0.64 2.98 1.03

Table 5.3: The comparison for different depth estimation approaches. V, S,
A represent visual, stereo, audio respectively. We input video with different
frame rates as well.

It results in a large AbsRel at close depths. However, the negative effect will

relieve as the distance increases. We target to figure out the most suitable

range for FBDepth.

5.4.1 Results

Table 5.3 shows the overall results on the depth estimation. Table 5.4

presents the performance over different distance. In all, FBDepth can achieve

better performance on all metrics than baselines across different FPS. Several

important trends can be observed. Stereo matching methods perform extraor-

dinarily on close objects, where more clear view differences can be captured.

The AbsErr and RMSE increase dramatically as the targets become further

because the limited baseline cannot resolve the view difference easily. On the

other side, the AbsErr and RMSE of FBDepth grow slowly with the increas-

ing distance while the AbsRel decreases gradually. Intuitively, there is an

upper bound for the temporal resolution due to the limited FPS, the lack of
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Method Input FPS AbsErr(m)
close/mid/far

AbsRel(%)
close/mid/far

RMSE(m)
close/mid/far

NeWCRFs V - 0.553/1.09/3.27 11.1/6.74/8.64 0.895/1.51/5.82
ZED SDK S - 0.083/0.96/5.10 1.78/6.05/12.7 0.108/1.07/6.30
LEAStereo S - 0.067/0.66/2.47 1.48/4.24/5.98 0.083/0.76/5.08
FBDepth A+V 30 0.485/0.83/1.33 10.9/5.20/3.32 0.731/1.01/2.29
FBDepth A+V 60 0.418/0.70/1.11 8.94/4.33/2.79 0.597/0.83/1.86
FBDepth A+V 120 0.392/0.61/0.98 8.42/3.79/2.49 0.534/0.75/1.68
FBDepth A+V 240 0.337/0.58/0.95 7.25/3.55/2.41 0.476/0.69/1.61

Table 5.4: A detailed comparison of how different depth estimation approaches
perform at various distances

an accurate timestamp, and the small disturbance of audio-video software.

Thus FBDepth may not achieve the centimeter level easily. A Further depth

can break the assumption of stereo-matching methods as well as monocular

methods which has a fixed depth range of training data, but FBDepth still

holds the physical propagation law in this condition.

FBdepth also shows the advantages on NeWCRFs. The monocular

methods rely on the training set, which includes various scenarios and depths.

Although we apply camera remapping with intrinsic matrix and finetuning,

NeWCRFs still cannot achieve the best performance as the one in the pre-

trained dataset. The implicit depth regression has difficulty in domain adap-

tion. In the contrast, stereo methods can be directly applied to the new sce-

nario and achieve awesome estimation because its fundamental is the explicit

spatial view difference on stereo images. FBDepth applies explicit spatial de-

lay and does not rely on the camera and scenarios heavily. It requires several

learning models but these models can be applied to common cameras and
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microphones. FBDepth can be more general with a more diverse dataset.

5.4.2 Ablation

In the ablation study, we show how each stage contributes to the final

results.

Event-level localization We invest in how the optical flow can help detect

the collision event as well as contour the object mask in Table 5.5. We define

recall and precision as the percentage of correct recognized audio-visual events

in all audio-visual events and all recognized events with an IoU of more than

0.5, respectively. With the flow, both recall and precision improve as the flow

can work as a pre-mask to guide the network. The main failures in recall

come from weak collision sounds or rare simultaneous collisions. The incorrect

recognition is mainly due to similar objects in the frame. The optical flow

can work as a great pre-mask to guide the region of interest. Thus, It enables

robust audio-visual segmentation. Besides, if the event is either too weak to

detect or ambiguous to recognize, FBDepth will ignore the event detection and

not try to estimate the depth.

Frame-level localization Frame rate is most related to frame-level stage. We

observe that increasing the frame rate reduces the numerical error of FBDepth

in Table 5.3. Especially, increasing 30 FPS to 60 FPS yields the largest

improvement, and the benefit gradually tapers off with a further increase in the

frame rate. We observe that 30 FPS is too slow to capture sudden movements

and fast dynamics while 60 FPS is around the borderline. It is consistent with
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Method AbsErr(m) AbsRel(%) RMSE(m) Recall Precision
event loc w/o flow - - - 87.3 93.7

FBDepth w/o interp 1.95 9.16 4.07 - -
FBDepth w/ center 1.39 6.57 2.31 - -
FBDepth w/ bbox 1.23 5.65 2.06 - -

FBDepth w/o RGB-F 0.92 4.25 1.42 - -
FBDepth 0.64 2.98 1.03 94.5 98.7

Table 5.5: Ablation study for FBDepth using different setups at each stage.
The input is 240 FPS.

(a) Temporal error of the estimation of
low FPS compared to 240 FPS

(b) Improvement ratio of temporal reso-
lution

Figure 5.12: Effectiveness of the video event detection in the second stage

the trend to set 60 FPS as the default video recording and playing. The motion

in 120FPS and 240 FPS is even slower so it is more difficult to distinguish the

frame Ie. The frame error is no more than the one in the low FPS mode.

Thus, 120 FPS and 240 FPS bring less improvement.

Ms-level localization We investigate our special interpolation from two per-

spectives. First, we need to verify whether this method works. However, there

is no ground truth timestamp so we cannot directly quantify the accuracy.

We set the estimation of 240 FPS as a baseline and compare the estimation of

lower FPS with this baseline. Intuitively, high FPS can predict the collision
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in the small frame duration and yield less error to the real collision times-

tamp. Hence, We compare the interpolation of low FPS to the high FPS to

demonstrate how much temporal improvement. If it can get similar numerical

results from independent input, which means the algorithm is reliable. In Fig-

ure 5.12, the median temporal error for 30, 60, and 120 FPS is 2.3ms, 0.65ms,

and 0.5ms respectively. Considering the frame resolution, we can define the

improvement ratio as

improvement =
frame_duration

temporal_error
(5.10)

The 60 FPS has the largest 25x improvement over the frame duration. This

is strong evidence that our ms-level localization is reasonable and robust.

Second, we compare the performance of depth estimation with different

interpolation strategies in Table 5.5. We demonstrate how the optical flow

based interpolation works better to estimate a more accurate timestamp. We

use the result from frame localization to predict the depth when there is no in-

terpolation. The error is large since this timestamp is ambiguous for the depth

prediction. Interpolation with the traces of centers or bounding boxes does

not work well. Both only use a few key points to track the overall motions,

but they cannot capture dynamics in fine granularity. Center-based interpo-

lation only tracks the geometry center of the object but the center can change

dramatically as the object moves in 3D space. The bounding box enriches the

representation of the object’s motion but it still cannot describe the subtle

motion of rotation. In fact, both methods can only fit the translation in the

2D plane and approximate the 3D motion.
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Figure 5.13: Depth estimation error across different materials

Depth regression Without the RGB-F channel of the target object in depth

regression, the estimation will be less robust due to the ambient sound and

the background noise as shown in Table 5.5

Impact of object materials We use the 24 diverse objects to perform the

collision experiment. These objects have many common characteristics and

unique features. Among them, we observe that materials can be one of the

important features to decide the collision procedure and associate the visual

features and audio features. On the video side, the material is highly correlated

with the visual appearance and results in the motion after the collision. On

the audio side, the material determines the elastic force directly and results

in different frequencies and magnitudes. Our dataset includes six common

materials. Figure 5.13 shows the performance of depth estimation on each

material.

Among them, wood has the best performance. Its median AbsErr is

0.47m. We realize that wood always produces a loud sound and does not spin

fast. The collision procedure of wood is smooth. Foam has the largest median
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AbsErr of 0.81m. The impact sound is weak and the object is not rigid enough.

the other materials have similar performance. Metal has a strong impact sound

but it may spin fast. Rubber takes a lot of time to bounce but the sound is

weak without a large velocity. In all, FBDepth can handle all these materials

well.
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Chapter 6

Conclusion

In this dissertation, we evolve the acoustic sensing system from a tra-

ditional active setup to a novel passive design. We introduce new modalities

to acoustic sensing and identify the high correlation between them. With the

novel components and effective design, we build up new applications based on

the acoustic sensing system and demonstrate significant advantages over the

existing approaches.

In Chapter 3, we introduce a novel deep learning module to the tradi-

tional active acoustic ranging system. To eliminate the need of collecting large

volumes of training data, we generate synthetic signals by incorporating impor-

tant factors in real environments, such as noise, multipath, self-interference,

and transceiver frequency response. We develop a DNN that uses filters with

long kernel sizes to detect signal patterns and applies the ensemble method to

enhance the estimation accuracy. We evaluate DRNet on real data collected

using 11 phones across 4 locations and show it achieves significant performance

gain over FMCW.

In Chapter 4, we design a hybrid active and passive acoustic sensing

system. we develop a novel system to combat acoustic interference for online
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meetings. It advances state-of-the-art in acoustic-based tracking by leverag-

ing both audible and inaudible signals. Moreover, it uses multi-task learning

to jointly estimate the AoA and separate the source. Our evaluation shows

that our system significantly improves over the state-of-the-art. We believe

our work is an important step towards enabling online meetings and classes

under interference and noise, which have already been playing a major role in

our daily lives. Moving forward, we are interested in exploring other context

information to further improve the performance of online meetings.

In Chapter 4, we propose a fully passive acoustic depth estimation

system with the help of visual modality. Our novel method is based on the

”flash-to-bang” phenomenon. We apply a coarse-to-fine estimation framework

to achieve millisecond-level audio-visual event localization. We incorporate

multiple modalities to estimate the depth in the wild without calibration or

prior knowledge about the environment or target. Our extensive evaluation

shows that our approach yields smaller errors across varying distances. In com-

parison, the errors of several existing methods increase rapidly with distance.

Therefore, our method is particularly attractive for large distances. As part

of our future work, we are interested in further enhancing the accuracy of our

method, generalizing to more contexts, and using the estimated depth of the

collided object to estimate the depth of other objects in the scene.
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