
University of the Pacific University of the Pacific 

Scholarly Commons Scholarly Commons 

All Faculty Articles - School of Engineering and 
Computer Science All Faculty Scholarship 

Spring 1-1-2019 

Uncertain Knowledge Reasoning Based on the Fuzzy Multi-Entity Uncertain Knowledge Reasoning Based on the Fuzzy Multi-Entity 

Bayesian Network Bayesian Network 

Jinzhu Gao 
University of the Pacific, jgao@pacific.edu 

Dun Li 
Zhengzhou University 

Hong Wu 
Zhengzhou University 

Zhuoyun Liu 
Zhengzhou University 

Lun Li 
Zhengzhou University 

See next page for additional authors 

Follow this and additional works at: https://scholarlycommons.pacific.edu/soecs-facarticles 

 Part of the Engineering Commons 

Recommended Citation Recommended Citation 
Gao, J., Li, D., Wu, H., Liu, Z., Li, L., & Zheng, Z. (2019). Uncertain Knowledge Reasoning Based on the Fuzzy 
Multi-Entity Bayesian Network. Computers, Materials & Continua, 61(1), 301–321. DOI: 10.32604/
cmc.2019.05953 
https://scholarlycommons.pacific.edu/soecs-facarticles/139 

This Article is brought to you for free and open access by the All Faculty Scholarship at Scholarly Commons. It has 
been accepted for inclusion in All Faculty Articles - School of Engineering and Computer Science by an authorized 
administrator of Scholarly Commons. For more information, please contact mgibney@pacific.edu. 

https://scholarlycommons.pacific.edu/
https://scholarlycommons.pacific.edu/soecs-facarticles
https://scholarlycommons.pacific.edu/soecs-facarticles
https://scholarlycommons.pacific.edu/soecs-all
https://scholarlycommons.pacific.edu/soecs-facarticles?utm_source=scholarlycommons.pacific.edu%2Fsoecs-facarticles%2F139&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/217?utm_source=scholarlycommons.pacific.edu%2Fsoecs-facarticles%2F139&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.32604/cmc.2019.05953
http://dx.doi.org/10.32604/cmc.2019.05953
https://scholarlycommons.pacific.edu/soecs-facarticles/139?utm_source=scholarlycommons.pacific.edu%2Fsoecs-facarticles%2F139&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mgibney@pacific.edu


Authors Authors 
Jinzhu Gao, Dun Li, Hong Wu, Zhuoyun Liu, Lun Li, and Zhiyun Zheng 

This article is available at Scholarly Commons: https://scholarlycommons.pacific.edu/soecs-facarticles/139 

https://scholarlycommons.pacific.edu/soecs-facarticles/139


 
 
 
Computers, Materials & Continua                  CMC, vol.61, no.1, pp.301-321, 2019 

CMC. doi:10.32604/cmc.2019.05953                                             www.techscience.com/cmc 

 
 

Uncertain Knowledge Reasoning Based on the Fuzzy Multi Entity 
Bayesian Networks 

 
Dun Li1, Hong Wu1, Jinzhu Gao2, Zhuoyun Liu1, Lun Li1 and Zhiyun Zheng1, * 

 
 

Abstract: With the rapid development of the semantic web and the ever-growing size of 
uncertain data, representing and reasoning uncertain information has become a great 
challenge for the semantic web application developers. In this paper, we present a novel 
reasoning framework based on the representation of fuzzy PR-OWL. Firstly, the paper 
gives an overview of the previous research work on uncertainty knowledge representation 
and reasoning, incorporates Ontology into the fuzzy Multi Entity Bayesian Networks 
theory, and introduces fuzzy PR-OWL, an Ontology language based on OWL2. Fuzzy PR-
OWL describes fuzzy semantics and uncertain relations and gives grammatical definition 
and semantic interpretation. Secondly, the paper explains the integration of the Fuzzy 
Probability theory and the Belief Propagation algorithm. The influencing factors of fuzzy 
rules are added to the belief that is propagated between the nodes to create a reasoning 
framework based on fuzzy PR-OWL. After that, the reasoning process, including the 
SSFBN structure algorithm, data fuzzification, reasoning of fuzzy rules, and fuzzy belief 
propagation, is scheduled. Finally, compared with the classical algorithm from the aspect 
of accuracy and time complexity, our uncertain data representation and reasoning method 
has higher accuracy without significantly increasing time complexity, which proves the 
feasibility and validity of our solution to represent and reason uncertain information. 

 

Keywords: Ontology language, uncertainty representation, uncertainty reasoning, fuzzy 
multi entity Bayesian networks, belief propagation algorithm, fuzzy PR-OWL. 

1 Introduction 
Data acquisition technology, storage technology and computer performance have gained 
rapid development in the information era, and the global data size is doubled every 20 
months. Moreover, data not only are big in volume, but also involve increasingly 
diversified types as well as complicated and changeable data relations. In order to make 
the computer automatically process and integrate valuable data in network, the semantic 
web is proposed. 
The increasing popularity of semantic web services makes it a challenging task to represent 
and reason uncertain data. However, the existing theory and practices do not provide 
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enough feasible solutions to deal with the uncertainty of semantic web. To some extent, 
semantic markup languages, such as OWL (Ontology Web Language) or RDF (Resource 
Described Frame), can be used to signify the quality and quantity information of 
uncertainty, but they still have limitations. Previously proposed solutions include 
Probabilistic and Dempster-Shafer Models and Fuzzy and Possibilistic Models. BN and 
MEBN are two representative models based on probability and the corresponding ontology 
languages are OntoBayes based on BN [Yang (2007); Yang and Calmet (2006)], 
BayesOWL [Ding, Peng and Pan (2006)], and PR-OWL2 based on MEBN [Costa Laskey 
and Laskey (2008); Carvalho, Laskey and Costa (2013)], major ontology languages based 
on fuzzy model such as Fuzzy OWL [Calegari and Ciucci (2007)], etc. The existing 
uncertainty ontology languages cannot represent and reason probability and fuzzy 
information at the same time.  
Fuzzy Multi Entity Bayesian Networks (MEBN) [Golestan, Karray and Kamel (2013, 2014)] 
was proposed to represent the fuzzy semantic and uncertainty relation between knowledge 
entities. This paper aims to extend the expression and reasoning ability of ontology for fuzzy 
probability knowledge and propose a method to denote and reason uncertainty.  
Based on the ontology language, Fuzzy PR-OWL of Multi Entity Bayesian Networks, in 
this paper, we propose a novel reasoning method of fuzzy probability according to Fuzzy 
MEBN. Our main contributions are as follows:  
(1) The fuzzy probability ontology of Fuzzy PR-OWL is created;  
(2) Through integrating the fuzzy probability theory and Bayesian network, the reasoning 

framework of Fuzzy PR-OWL is created and the reasoning method of fuzzy Belief 
Propagation are proposed;  

(3) Experimental results prove the feasibility and validity of our proposed reasoning method.  

2 Relevant theories 
2.1 Fuzzy set and fuzzy probability system 
Fuzzy set is a kind of description about fuzzy concept, which originates from the 
uncertainty and inaccuracy essence of abstract thought and concept, rather than the 
randomness of set elements. The logical value of fuzzy logic can be expressed with a real 
value in [0, 1], which is the multivalued logic of fuzzy set. The fuzzy set theory transfers 
logical reasoning from two-valued logic into multivalued logic for predictive reasoning. 
Zadeh [Zadeh (1968)] defined the probability of fuzzy event by extending the classical 
theory of probability. Suppose that x is the random variable in the sample space X and A is 
the subset that defines discrete events in X. The non-conditional probability of A can be 
calculated by Eq. (1): 

dxxfxXdxxfAP AAx
)()()()( ∫∫ ∞−∈

==                                      (1) 

where XA(x) is the binary characteristic function, that is, AxxX A ∈↔=1)(  and 
AxxX A ∉↔=0)( . 

In fuzzy events, the characteristic function is the membership degree function. By replacing 
XA(x) in Eq. (3) with the membership degree function μA(x): x∈[0,1], we can calculate the 
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probability of fuzzy events. Berg et al. [Berg, Kaymak and Rui (2013)] calculated the 
probability of fuzzy event A using Eq. (2): 

∫
+∞

∞−
= dxxfAP A )()( µ                   (2) 

And the probability of fuzzy discrete event A can be calculated by Eq. (3): 

∑= n
)()()( xxpAP Aµ  (3) 

where f(x) is the probability density function of variable x and μ(x) is its membership 
degree function. Eq. (3) assumes that the conditional probability density function is 
correlated with μ(x). 
Suppose that Ac(c=1, …, C) is an event in sample space X, and each discrete sample 
belongs to one or zero event. If a sample x has a group of membership degrees μA1, μA2, …, 
μAc, x is considered a fuzzy sample. To ensure the validity of probability theory, a good 
sample space is expected to meet the following condition: 

1)(: =∀ ∑
c

c
A

A xx µ  

2.2 BN and MEBN 
Bayesian Networks (BN) [Heckerman (1997)] can deal with uncertain and probabilistic 
events according to the causal relationship of events or other relationships, and has the 
ability to process incomplete datasets, but BN has limitations when representing entity 
relationships. Fig. 1(a) shows relevant knowledge of tracheitis represented by BN. 
Tracheitis can be triggered by either smoking or getting cold can in turn be triggered by 
weather factors. The causal relationship can be clearly seen in the Fig. 1, but BN cannot 
show the influence of harmful gases produced by others’ smoking behavior on the patients. 
Multi Entity Bayesian Networks (MEBN) [Chantas, Kitsikidis and Nikolopoulos (2014)] 
adopts the idea of “processing by division” by representing knowledge blocks with multi-
entity fragments and then using multi-entity rules to link these fragments together. Fig. 
1(b) shows relevant information of tracheitis represented by MEBN. Inherent nodes, input 
nodes, and context nodes are indicated by ovals, trapezoids, and pentagons, respectively. 
other and person are both examples of Person type. other=peopleAround (person) means 
that other is the neighbor to person. In this way, MEBN can show the relationship between 
the entities as well as the influence of others’ smoking on the patient’s bronchitis by adding 
the node Smoke (other). 
However, human experience or knowledge is fuzzy by nature and therefore cannot be 
handled by MEBN. As shown in the above example, severeness of cold may affect the 
probability of suffering tracheitis. But MEBN can only use 0 or 1 to represent the 
possibility of suffering cold. In addition, when an inherent node has a nominal value, 
MEBN would assign equal probability to all nominal scales. For example, suppose that the 
weather today has two possible nominal scales, clear or cloudy, MEBN would assign the 
probability value 0.5 to both scales. It fails when the weather is partially cloudy. 
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a. BN representation                 b. MEBN representation 

Figure 1: BN and MEBN Representation graph of bronchitis etiology 

2.3 Fuzzy MEBN and fuzzy PR-OWL 
2.3.1 Fuzzy MEBN 
Fuzzy Multi Entity Bayesian Networks (Fuzzy MEBN) redefines the grammar 
specification by combining the first-order logic and the fuzzy MEBN theory, allowing the 
context constraints of MEBN to express the fuzziness of incomplete semantic information 
[Zheng, Liu and Li (2016)]. Hence, the expression and reasoning ability of inexact 
knowledge is improved. Therefore, fuzzy MEBN can represent fuzzy information that 
cannot be expressed with MEBN in Subsection 1.2, such as Mild Cold {true0.3 1, false0.7 
0}, in which subscripts denote severeness of cold. Partially cloud can then be represented 
by {clear0.6 0.5, cloudy0.4 0.5}, in which subscripts denote the membership degree. 
Fuzzy MEBN conducts modeling for specific domain ontology with the predefined 
attribute entity, semantics and their relationships. The attribute entity is represented by 
constant elements of a specific domain, and the variables are associated. The entities and 
relationships between entities are represented by logical and random variables of specific 
domain. As for the biggest difference between fuzzy MEBN and MEBN in entity and 
random variable symbol, the membership degree of a real number between 0 and 1 is added 
to the constant element symbol and entity identifier as subscript, such as Vehicle0.85 and !V 
4280.75. The logic or value taking of random variable is the logical value in logical value 
chain L=<l1, l2, l3, ..., ln> predefined by the language or within the scope of [0, 1], rather 
than simple T or F. 
The basic model of fuzzy MEBN is similar to that of MEBN. In fuzzy MEBN theory, the 
probability distribution is denoted by Fuzzy MEBN Fragments (FMFrag). The inherent 
random variable or input random variable value is set as the condition, and one FMFrag 
will define one probability distribution or several fuzzy rules for inherent random variable. 
The formalized definition of Fuzzy MFrag (FMFrag) is  F = (C,I,R,G,D,S), where C is 
the infinite set of context random variables, I represents the infinite set of input random 
variables, R indicates the infinite set of inherent random variables, G represents the directed 
loop-free fragment graph, comprised of variable nodes in I ∪  R, D means the local 
distribution of every inherent random variable in R, and S denotes the set of fuzzy if-then 
rule used by fuzzy reasoning system. Context variables contain the semantic structure of 
knowledge that adopts fuzzy first-order logic. As the bridge with other inherent variables 
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getTrachitis

getCold

getTrachitis_MFrag

getTrachitis(person)

Smoke(person)

isA(person,Person)

Smoke(other)

isA(other,Person)

other=peopleAround(person) peopleAround_MFrag

peopleAround(person)weather ...

getCold(person)



 
 
 
Uncertain Knowledge Reasoning Based on the Fuzzy                          305 

of FMFlags, input variables will send relevant information to the current FMFrag. Inherent 
variables is random variables that set the values of context and input variables as 
conditions. The sets C, I and R have no intersection, and the random variable in I is the root 
node of fragment graph G. The context assignment item in C is used to strengthen the 
constraint of local distribution. 
In FMFrags, the context constraint is endowed with a true value, representing the degree 
of satisfying constraint. The consistency constraint degree of FMFrags is determined by 
the fuzzy explanation of the item defined by FMFrag and built-in FMFrags. When a 
common random variable is associated with an internal node, the aggregation function and 
the merging rule would be used. 

2.3.2 Fuzzy PR-OWL 
Fuzzy PR-OWL ontology adopted OWL2 DL language to define ontology class and 
attribute. In other words, OWL2 language is used to describe elements like classes and sub-
classes obtained from fuzzy MEBN concept abstraction. For instance, declaration node 
class (Node) can be expressed as function Declaration (Class (:Node)), and it represents 
the entity and random variable of fuzzy MEBN. Fig. 2 shows Fuzzy PR-OWL ontology 
language (relation between classes and sub-classes) created with Protégé. Fuzzy PR-OWL 
ontology is based on fuzzy MEBN, and relevant classes and attributes of concepts like 
fuzzy random variable, fuzzy state, membership degree, and fuzzy rule are added based on 
PR-OWL2, to enhance the expressive force of uncertainty information. 
 

 
Figure 2: Fuzzy PR-OWL ontology elements 

1.FMTheory

3.Ordinary
Variable

3.FExemplar

4.Membership 

4.conditioning state

2.Finding
FMFrag

1.FMFrag

2.Domain
FMFrag

 1.Probability
Distribution

2.Declarative
Distribution

2.FPR-OWL
table

1.Fuzzy 
MExpression

2.Simple 
FMExpression

2.TrueValue
FMExpression

1. Main Classes/elements

SubClasses

Built-in Elements

Reified Relationships

2.

3.

4.

1.FRandom Variable

3.Quantifier

3.Fuzzy LogicalOperator

2.TrueValue
Random Variable

4.FArgument

2.FExemplar
Argument

2.FConstant
Argument

2.FMExpression
Argument

2.FMapping
Argument

2.OVArgument

1.Node
2.Context

2.Input
2.Resident

2.Finding
Input

2.Generative
Input

2.Domain
Resident

2.Finding
Resident

1.FRS

2.If-Then Rules

2.If-Part

2.Then-Part

4.Probability
Assignment

2.State Assignment



 
 
 
306                                                 CMC, vol.61, no.1, pp.301-321, 2019 

The basic model of Fuzzy PR-OWL is presented in Fig. 3, in which each piece of 
probability ontology has at least one FMTheory type, namely a label. It connects one group 
of FMFrags to form an effective FMTheory. In Fuzzy PR-OWL grammar, the object 
attribute hasFMFrag is used to represent the connection. FMFrag is composed of multiple 
nodes, and each node type is a random variable. The biggest difference between Fuzzy PR-
OWL and PR-OWL2 is, when the fuzzy state of random variable node is defined, the set 
of fuzzy rule reflecting the state of domain expert is used to define the membership degree 
of fuzzy state, and the object attribute hasFRS connects each node to one or several fuzzy 
rule sets. The non-conditional or conditional probability distribution is represented with 
the class ProbabilityDistribution, and is connected to their own nodes through the object 
attribute hasProbDist. The object attribute hasFMExpression connects every node to a 
logic expression or simple expression based on fuzzy first-order logic. 
 

 
Figure 3: Basic model of Fuzzy PR-OWL 

3 Reasoning based on fuzzy PR-OWL ontology 
3.1 Reasoning framework 
This section presents the fuzzy probability reasoning method based on Fuzzy PR-OWL 
ontology of fuzzy MEBN. Data fuzzification is first conducted and Situation-Specific 
Fuzzy Bayesian Network (SSFBN) of fuzzy MEBN is constructed. Then, fuzzy belief 
propagation based on fuzzy rule reasoning is conducted on the constructed network. The 
reasoning framework of Fuzzy PR-OWL ontology is mainly composed of four basic 
modules (as shown in Fig. 4), including ontology analysis and memory module, data 
manipulation module, reasoning module, and representation module. 
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DistributionFMExpression
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Figure 4: Reasoning framework diagram of Fuzzy PR-OWL 

(1) Ontology analysis and TDB memory module 
Ontology analysis and TDB memory module is realized based on Jena API. It reads, 
analyzes the ontology constructed by Protégé, and stores it in the RDF database of Jena 
[Noy, Fergerson and Musen (2000)]. The program first realizes the mapping between 
ontology URI and the corresponding ontology module file system address through URI 
address mapping file, and then reads various ontology module files via Java program 
or configuration files of Jena. In addition, data persistence is conducted in the RDF 
dataset. A built-in storage mode TDB officially recommended by Jena is used by 
memory module [Owens, Seaborne and Gibbins (2008)]. Characterized by fast reading 
speed and simple operation, this module can store billions of records at most, and 
support hundreds of parallel queries. Hence, it is quite suitable for the demand of 
ontology reasoning. 

(2) Data manipulation module 
Data manipulation module implements the adding, deletion, modification and querying 
operations by utilizing the query operation interface of TDB. The module maps the 
loaded TDB model to corresponding Java ontology or examples. Moreover, by 
integrating adding, deletion, modification and querying operations through the 
ontology statement of the TDB dataset, Java ontology implements RDF database 
operations through TDB operation interface. 

(3) Reasoning module 
Reasoning module contains an implementation of the Belief Propagation reasoning 
algorithm [Shafer and Shenoy (1990)] based on fuzzy probability. Both FuzzyOWL 
reasoning engine and API of UnBbayes [Carvalho, Laskey and Costa (2010)] 
framework is used, and reasoning and querying can be conducted on specific nodes. 

Ontology 
establishment

OWL file
 URI address 
mapping file Ontology analysis

TDB
Data manipulation 
(ontology model)

Add,delete,modify 
and query

Inference moduleRepresentation module
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Specifically speaking, it can handle knowledge base loading, fuzzy processing of data, 
SSFBN construction, and fuzzy probability reasoning functions. 

(4) Representation module 
Representation module handles GUI. It can manipulate the database through the 
graphical user interface, and display data variation in the database and reasoning results 
produced by the reasoning module. 

3.2 Belief propagation algorithm based on fuzzy probability 
In order to construct a Situation-Specific Bayesian Network (SSBN) based on knowledge 
and produce the minimum Bayesian network responding to query, common MEBN first 
sets prior distribution of target random variable and evidence random variable (also known 
as discovery random variable) as the condition. Then, posteriori distribution of target 
variable is reasoned through running the classic Bayesian network algorithm.  

3.2.1 Data fuzzification 
The algorithm proposed in this paper requires preprocessing the fuzzy concept or natural 
language variable gained from expert knowledge before establishing SSBN, so as to obtain 
the membership degree of fuzzy state of the variable. Some symbols and connotations 
involved in the algorithm need to be defined first. 
Definition 1: the set of entity identifiers. In FMFrag F, the local node (or random variable) 
𝜓𝜓(𝜃𝜃) has a set 𝑁𝑁𝜓𝜓 composed of �𝑁𝑁𝜓𝜓� fuzzy states, and the corresponding fuzzy set is A. 
Then: 
(1)  f(𝜇𝜇𝐴𝐴,𝛼𝛼) = (𝜇𝜇𝐴𝐴)𝛼𝛼, in which 𝜇𝜇𝐴𝐴 is the membership degree function of set A, that is 
𝜇𝜇𝐴𝐴:𝑈𝑈 → [0,1]; α∈[0,1] is the fuzzy factor. The function f is a general form of the fuzzy 
theory. 
(2) The fuzzy state of 𝜓𝜓 can be denoted by 𝛾𝛾𝑖𝑖𝛼𝛼𝑖𝑖: 𝑖𝑖 = 1, … , �𝑁𝑁𝜓𝜓�, in which 𝛾𝛾𝑖𝑖𝛼𝛼𝑖𝑖 ∈ 𝑁𝑁𝜓𝜓, 𝛾𝛾𝑖𝑖 ∈
𝜀𝜀 , and 𝛼𝛼𝑖𝑖  represents the membership degree of state 𝛾𝛾𝑖𝑖 ; 𝐴̃𝐴 = 〈𝛼𝛼1,𝛼𝛼2, … ,𝛼𝛼�𝑁𝑁𝜓𝜓�〉 is the 
membership degree vector of 𝜓𝜓. 
(3) The probability distribution vector corresponding to CPT of 𝜓𝜓 is denoted by 𝜋𝜋𝜓𝜓 =
〈𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝�𝑁𝑁𝜓𝜓�〉. 

In FMFrag F, the local node 𝜓𝜓 has multiple fuzzy states. For instance, if “height” is set as 
a random variable, there are three states (“short, medium, high”). “The person is relatively 
high” can be denoted by the fuzzy state <short0, medium0.2, high0.8>. 
Random variables are discrete variables, and the membership degree of fuzzy state of these 
random variables should be obtained through fuzzification and discretization. The method 
to calculate the membership degree of fuzzy state of random variables mainly depends on 
the type of expert data (as shown in Fig. 5): 
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Figure 5: Schematic diagram of data fuzzification 

(1) Discrete value input 
As the specific data 𝑥𝑥 ∈ 𝑈𝑈  is known, the membership degree can be calculated 
through the membership degree function 𝜇𝜇𝐴𝐴𝑖𝑖(𝑥𝑥) (retain one digit after the decimal 
place). For instance, the height 1.8 can be substituted into membership degree function 
μshort(x), μmedium(x), μhigh(x) defined in the domain of discourse [1.0, 3.0], to determine 
the membership degree. 

(2) Language value input 
As the language’s descriptor is known, the membership degree interval of 
corresponding extent description language variable can be determined using Tab. 1. 
Created from researches on degree adverbs of modern Chinese language and the 
division of Vasilios et al. for degree in English [Carvalho, Laskey and Costa (2010); 
Moura and Roisenberg (2015)], Tab. 1 gives the corresponding relation between 
language variable and membership degree suitable for Chinese context. In order to 
reduce the complexity, the average value was taken and the middle value in the interval 
was selected. Except the extreme case where 0 and 1 are taken in extremely low and 
high situations, the membership degree 𝛼𝛼𝐴𝐴𝑗𝑗:𝑗𝑗≠𝑖𝑖 of other states 𝜓𝜓(𝜃𝜃) can be obtained 
using one of the following methods: 
1) If 𝐴𝐴𝑗𝑗:𝑗𝑗≠𝑖𝑖 has language description only and no membership degree function, 𝛼𝛼𝐴𝐴𝑗𝑗  
can be obtained through the corresponding relation between language variable and 
membership degree; 
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2) If 𝐴𝐴𝑗𝑗:𝑗𝑗≠𝑖𝑖 has membership degree function 𝜇𝜇𝐴𝐴𝑗𝑗, 𝑥𝑥 can be calculated through inverse 
function 𝑥𝑥 = 𝜇𝜇𝐴𝐴𝑖𝑖

−1(𝛼𝛼𝐴𝐴𝑖𝑖) , and the membership degree 𝛼𝛼𝐴𝐴𝑗𝑗  can be obtained by 
substituting x into 𝜇𝜇𝐴𝐴𝑗𝑗(𝑥𝑥) and retaining one digit after the decimal place. 

Table 1: Corresponding table of extent description language and fuzzy membership degree 

Language tag Similar expression 
Corresponding 
membership 
degree 

Value 

Extremely low 
(weak) 

The degree is extremely weak (hardly 
exits), incredibly low, and extremely low 0.0~0.1 0.0 

Very low (weak) The degree is very weak, awfully low, and 
especially low 0~0.2 0.1 

Quite low 
(weak) 

The degree is comparatively low, quite 
low, and not too low 0.1~0.3 0.2 

Low (weak) The degree is low 0.2~0.4 0.3 
Slightly low 
(weak) 

The degree is slightly low, a little low, and 
somewhat low 0.3~0.5 0.4 

Medium The degree is medium 0.4~0.6 0.5 
Slightly high 
(strong) 

The degree is slightly high, a little high, 
and somewhat high 0.5~0.7 0.6 

High (strong) The degree is high 0.6~0.8 0.7 
Quite high 
(strong) 

The degree is comparatively high and 
quite high 0.7~0.9 0.8 

Very high 
(strong) 

The degree is very high, awfully high, 
especially high, and not too high 0.8~1 0.9 

Extremely high 
(strong) 

The degree is incredibly high and 
extremely high 0.9~1 1 

 
To further explain 2), two examples are given in the following. Suppose the random 
variable “weather” has two states {sunny, cloudy}, and the current description is 
comparatively cloudy. According to Tab. 1, the membership degree should be (0.2, 0.8). If 
the sum of membership degrees of states is not equal to 1, standardization should be done 
to make the sum equal to 1. By taking “height” as an example, if we just know that someone 
is “very high”, the fuzzy membership degree of state “high” can be 0.9, and the rough 
height value 𝑥𝑥 can be calculated through the inverse function. The membership degrees of 
“short” and “medium” can then be calculated through μshort(𝑥𝑥) and μmedium(𝑥𝑥),  that is, if 
𝛼𝛼𝐴𝐴ℎ𝑖𝑖𝑖𝑖ℎ = 0.9, then 𝛼𝛼𝐴𝐴𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜=0, 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =0.1.  
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3.2.2 Fuzzy IF-THEN rule 
In formal knowledge representation of reasoning system, IF-THEN rule is one of the basic 
approaches to represent the knowledge. This section will further expound the reasoning 
process of IF-THEN rule with the fuzzification. 
The general format of fuzzy IF-THEN rule is “IF x is Ai, THEN y is Bj”, which decides the 
causal relationship of language variable [Zadeh (1968)]. In this rule, x is the input variable, 
y indicates the output variable, and Ai and Bj represent the natural language values 
corresponding to the variables. They are represented with the fuzzy set determined by the 
model input. 
In IF-THEN rule of fuzzy MEBN, y and x represent the random variable ψ(𝜃𝜃) and the 
language variable of its parent node 𝜋𝜋𝜊𝜊(𝜓𝜓(𝜃𝜃)) respectively. Suppose that 𝐴𝐴𝜊𝜊

(𝜄𝜄) and 𝐵𝐵𝜊𝜊 
are the natural language values of variables; 𝐴𝐴𝜊𝜊

(𝜄𝜄)�  and 𝐵𝐵𝜊𝜊�  represent the domain of 
discourse 𝑋𝑋𝜊𝜊

(𝜄𝜄) of rule 𝜊𝜊 and the fuzzy set in 𝑌𝑌𝜊𝜊 respectively. The IF-THEN rule can be 
simply represented by the following if-then rule statements: 

IF 𝑥𝑥1 is 𝐴𝐴1
(1) AND …AND 𝑥𝑥𝑁𝑁 is 𝐴𝐴1

(𝑁𝑁) THEN y is 𝐵𝐵1  … 

IF 𝑥𝑥1 is 𝐴𝐴𝜊𝜊
(1) AND …AND 𝑥𝑥𝑁𝑁 is 𝐴𝐴𝜊𝜊

(𝑁𝑁) THEN y is 𝐵𝐵𝜊𝜊  … 

IF 𝑥𝑥1 is 𝐴𝐴𝛰𝛰
(1) AND …AND 𝑥𝑥𝑁𝑁 is 𝐴𝐴𝛰𝛰

(𝑁𝑁) THEN y is 𝐵𝐵𝛰𝛰…                       (4) 

where 𝛰𝛰 is the number of rules; 𝑁𝑁 is the number of input variables; 𝐴𝐴𝜊𝜊
(1), … ,𝐴𝐴𝜊𝜊

(𝑁𝑁) and 𝐵𝐵𝜊𝜊 
indicate the language values of input random variables 𝑥𝑥1, … , 𝑥𝑥𝑁𝑁  and output random 
variable y of IF-THEN rule 𝜊𝜊; the fuzzy sets can be obtained through the method of the 
previous section, and denoted by 𝐴𝐴𝜊𝜊

(𝜄𝜄)� = {𝛼𝛼𝑖𝑖
(𝜄𝜄)|𝑖𝑖 = 1, … , �𝑁𝑁𝜋𝜋𝜄𝜄(𝜓𝜓)�}  and 𝐵𝐵𝜊𝜊� = {𝛽𝛽𝑗𝑗|𝑗𝑗 =

1, … , �𝑁𝑁𝜓𝜓�} respectively, in which 𝛼𝛼𝑖𝑖
(𝜄𝜄) and 𝛽𝛽𝑗𝑗 are the membership degrees of fuzzy states 

in fuzzy sets 𝐴𝐴𝜊𝜊
(𝜄𝜄)�  and 𝐵𝐵𝜊𝜊� separately, �𝑁𝑁𝜋𝜋𝜄𝜄(𝜓𝜓)� is the number of states of input variable 𝑥𝑥𝜄𝜄, 

and �𝑁𝑁𝜓𝜓� is the number of states of output variable y.  

Table 2: IF-THEN reasoning 

Major premise (rule): IF 𝑥𝑥1 is 𝐴𝐴1
(1) AND …AND 𝑥𝑥𝑁𝑁 is 𝐴𝐴1

(𝑁𝑁) THEN y is 
𝐵𝐵1  … 

IF 𝑥𝑥1 is 𝐴𝐴𝛰𝛰
(1) AND …AND 𝑥𝑥𝑁𝑁 is 𝐴𝐴𝛰𝛰

(𝑁𝑁) THEN y is 𝐵𝐵𝛰𝛰  … 
Minor premise (fact): 𝑥𝑥1 is 𝐴𝐴(1)∗ and AND …AND 𝑥𝑥𝑁𝑁 is 𝐴𝐴(𝑁𝑁)∗ 
Consequent (conclusion): y is 𝐵𝐵∗ 

As shown in Tab. 2, under the condition that 𝐴𝐴𝜊𝜊
(𝜄𝜄)∗�  is given, according to Eq. (2), 

conclusion 𝐵𝐵∗� can be calculated by Eq. (5): 
𝜇𝜇𝐵𝐵∗�(𝑦𝑦) 

= ⋁ �[⋀ 𝜇𝜇
𝐴𝐴𝜊𝜊

(𝜄𝜄)∗� (𝑥𝑥𝑖𝑖)]⋀�⋁ 𝜇𝜇𝑅𝑅𝜊𝜊� (𝑥𝑥1, … , 𝑥𝑥𝑁𝑁 ,𝑦𝑦)𝛰𝛰 � 𝑁𝑁 �𝑥𝑥𝜄𝜄∈𝑋𝑋𝜄𝜄,𝑦𝑦∈𝑌𝑌  ⋁ �⋁ �⋀ 𝜇𝜇
𝐴𝐴𝜊𝜊

(𝜄𝜄)∗� (𝑥𝑥𝑖𝑖)⋀  𝜇𝜇𝑅𝑅𝜊𝜊� (𝑥𝑥1, … , 𝑥𝑥𝑁𝑁 ,𝑦𝑦)𝑁𝑁 �𝑥𝑥𝜄𝜄∈𝑋𝑋𝜄𝜄,𝑦𝑦∈𝑌𝑌 �     =

𝜇𝜇𝐵𝐵1∗� (𝑦𝑦)⋁…⋁𝜇𝜇𝐵𝐵𝛰𝛰∗� (𝑦𝑦)                                                       (5) 
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where 𝜇𝜇𝑅𝑅𝜊𝜊� (𝑥𝑥1, … , 𝑥𝑥𝑁𝑁,𝑦𝑦) = (⋀ 𝜇𝜇
𝐴𝐴𝜊𝜊

(𝜄𝜄)� (𝑥𝑥)𝑁𝑁 ) ∨ 𝜇𝜇𝐵𝐵𝜊𝜊� (𝑦𝑦)  is the membership of 𝑅𝑅𝜊𝜊� , the 

minimization of Cartesian product of membership degrees of major premises and 
conclusions in the fuzzy rule 𝜊𝜊. 
Each fuzzy MEBN node contains fuzzy and probabilistic information at the same time. 
Besides the IF-THEN rule, the Fuzzy PR-OWL ontology can also show the conditional 
probability distribution. When the conditional probability distribution is given, the fuzzy 
probability can be calculated through the following reasoning. 
The joint probability of 𝐴𝐴(1), … ,𝐴𝐴(𝑁𝑁) is the probability of fuzzy event 𝐴𝐴 = 𝐴𝐴(1) × … ×
𝐴𝐴(𝑁𝑁), and can be calculated by Eq. (6): 

𝑃𝑃(𝑋𝑋 𝑖𝑖𝑖𝑖 𝐴𝐴) = 𝑃𝑃(�𝑥𝑥1 = 𝐴𝐴(1) ∩ …∩ �𝑥𝑥𝑁𝑁 = 𝐴𝐴(𝑁𝑁)�� ,   𝑋𝑋 = [𝑥𝑥1, … , 𝑥𝑥𝑁𝑁]                (6) 

The probability of fuzzy event 𝐴𝐴𝜊𝜊 can be calculated by Eq. (7): 

𝑃𝑃(𝐴𝐴𝜊𝜊) = ∑ 𝑝𝑝(𝑥𝑥1, … , 𝑥𝑥𝜄𝜄, … ,𝑥𝑥𝑁𝑁) ∙ ⋃ �𝑇𝑇 �𝐴𝐴𝜊𝜊
(1)� × … × 𝐴𝐴𝜊𝜊

(𝑁𝑁)� ��𝜊𝜊𝑥𝑥1,…,𝑥𝑥𝑁𝑁∈𝑋𝑋1×𝑋𝑋2×…×𝑋𝑋𝑁𝑁              (7) 

where 𝑇𝑇  is the t-norm operator of weak conjunction calculated by the minimization 
process, × is the Cartesian product, and ∪ is the maximization operator. 

When the fact value 𝐴𝐴∗ = 𝐴𝐴𝜊𝜊
(1)∗, … ,𝐴𝐴(𝑁𝑁)∗ of fuzzy event 𝐴𝐴 = 𝐴𝐴(1) × … × 𝐴𝐴(𝑁𝑁) and the 

prior probability are given, the marginal probability of child node 𝐵𝐵 can be calculated by 
Eq. (8): 

𝑃𝑃(𝐵𝐵) = �� …� 𝑝𝑝(𝑥𝑥1, … , 𝑥𝑥𝑁𝑁 ,𝑦𝑦)
𝑥𝑥𝑁𝑁∈𝑋𝑋𝑁𝑁𝑥𝑥1∈𝑋𝑋1

� ⋅ 𝐵𝐵∗�(𝑦𝑦) 

  = �∑ …∑ [∏ 𝑝𝑝(𝑥𝑥𝑖𝑖)𝑁𝑁 𝑝𝑝(𝑦𝑦|𝑥𝑥𝑖𝑖)]𝑥𝑥𝑁𝑁∈𝑋𝑋𝑁𝑁𝑥𝑥1∈𝑋𝑋1 � ⋅ 𝜇𝜇𝐵𝐵∗�(𝑦𝑦)                (8) 

3.2.3 Fuzzy belief propagation algorithm 
In the BN reasoning algorithm, if Bayesian Network is small, simple marginal summation 
can meet the requirement, but the practical problem often involves a large scale. The overall 
operation complexity and data will show exponential growth. If the Belief Propagation 
algorithm is used to solve such a network problem, the operation complexity will only have 
a linear correlation with the number of nodes. Therefore, the Belief Propagation algorithm 
plays an increasingly important role when dealing with large-scale Bayesian network 
reasoning problems. 
The Clique Tree algorithm, also known as the Junction Tree algorithm, was proposed by 
Lauritzen et al. [Lauritzen and Spiegelhalter (1988)]. The Clique Tree algorithm is the 
fastest Bayesian reasoning algorithm at present. The algorithm first converts the Bayesian 
network into a clique tree, and then performs calculation through message passing. The 
message will be broadcasted to every node of the clique tree to ensure consistency. 
In the Clique Tree Belief Propagation algorithm, every clique tree is set as a node to send 
message to neighbor nodes. Let clique tree T be composed of clique 𝐶𝐶1,𝐶𝐶2, … ,𝐶𝐶𝑘𝑘. Each 𝜙𝜙 ∈
Φ is assigned to clique 𝛼𝛼(𝜙𝜙), and the initial potential energy of 𝐶𝐶𝑗𝑗 is defined by Eq. (9): 

𝜓𝜓𝑗𝑗�𝐶𝐶𝑗𝑗� = ∏ 𝜙𝜙𝜙𝜙:𝛼𝛼(𝜙𝜙)=𝑗𝑗                  (9) 
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In the equation, local evidence is corresponding to the prior probability or conditional 
probability of every node, i.e., 𝑃𝑃�𝑥𝑥𝑖𝑖|𝜋𝜋(𝑥𝑥𝑖𝑖)� = 𝜙𝜙𝑥𝑥𝑖𝑖�𝑥𝑥𝑖𝑖,𝜋𝜋(𝑥𝑥𝑖𝑖)� . For instance, 𝑃𝑃(𝑎𝑎) =
𝜙𝜙𝑎𝑎(𝑎𝑎),𝑃𝑃(𝑑𝑑|𝑏𝑏) = 𝜙𝜙𝑑𝑑(𝑑𝑑, 𝑏𝑏),𝑃𝑃(𝑐𝑐|𝑎𝑎, 𝑏𝑏) = 𝜙𝜙𝑐𝑐(𝑐𝑐,𝑎𝑎, 𝑏𝑏). 
For clique 𝐶𝐶𝑖𝑖, 𝛽𝛽𝑖𝑖 is initialized as 𝜓𝜓𝑖𝑖 according to Eqs. (9) and (3): 

𝜓𝜓𝚥𝚥��𝐶𝐶𝑗𝑗� = ∏ 𝜙𝜙 ⋅ ⋃ [𝑇𝑇(𝛤𝛤𝜇𝜇
∗ × 𝑅𝑅𝜇𝜇�)𝜇𝜇:𝛼𝛼(𝜇𝜇)=𝑗𝑗𝜙𝜙:𝛼𝛼(𝜙𝜙)=𝑗𝑗 ] (10) 

where 𝛤𝛤𝜇𝜇∗ = ⋃ �𝑇𝑇�𝜇𝜇𝑥𝑥1
∗� × … × 𝜇𝜇𝑥𝑥𝑁𝑁

∗� ��𝑥𝑥𝑖𝑖∈𝑋𝑋𝑖𝑖 ,𝑅𝑅𝜒𝜒� = 𝑈𝑈�𝑇𝑇�𝜇𝜇𝑥𝑥1� × … × 𝜇𝜇𝑥𝑥𝑁𝑁� �, 𝜇𝜇𝑦𝑦��. 
Clique 𝐶𝐶𝑖𝑖  multiplies all other neighbor messages with the initial clique potential energy, 
adds up all variables except variables in the cut set of 𝐶𝐶𝑖𝑖 and 𝐶𝐶𝑗𝑗, and sends the result to 𝐶𝐶𝑖𝑖. 
Clique 𝐶𝐶𝑖𝑖 node transmits the updated messages to other nodes after receiving messages of 
its neighbor nodes. The ultimate potential energy of 𝐶𝐶𝑖𝑖  can be obtained by Eq. (11): 

β�𝑖𝑖 = 𝜓𝜓𝚤𝚤� ∙ ∏ 𝑚𝑚�𝑘𝑘𝑘𝑘𝑘𝑘∈𝑁𝑁𝑁𝑁𝑖𝑖  (11) 
The messages of 𝐶𝐶𝑖𝑖 and 𝐶𝐶𝑗𝑗 are calculated by Eq. (12): 

𝑚𝑚�𝑖𝑖𝑖𝑖 =
∑ 𝛽𝛽�𝑖𝑖𝐶𝐶𝑖𝑖−𝑆𝑆𝑖𝑖,𝑗𝑗

𝑚𝑚�𝑗𝑗𝑗𝑗
 (12) 

This equation requires 𝑚𝑚�𝑖𝑖𝑖𝑖 to be nonzero. Otherwise, the result will be meaningless. As 
for the similar situation, when there is a “0” in the message 𝑚𝑚�𝑘𝑘𝑘𝑘 sent by neighbor nodes 
of 𝐶𝐶𝑖𝑖 , the ultimate potential energy has to be zero. Park and Darwiche proposed an 
algorithm to resolve this problem by introducing a pair of figures (z, b) to indicate whether 
zero exists [Park and Darwiche (2003)]: 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑧𝑧, 𝑏𝑏) = �𝑧𝑧   𝑏𝑏 = 𝑓𝑓
0   𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒

                                         (13) 

where (1) b is Boolean number, indicating whether “0” exists in all 𝑚𝑚�𝑘𝑘𝑘𝑘. If “0” exists, b=t 
(true); otherwise, b=f (false); (2) z is the product of all messages whose value is not zero, 
i.e., ∏ 𝑚𝑚�𝑘𝑘𝑘𝑘𝑚𝑚𝑘𝑘𝑘𝑘≠0 . 
In addition, the zero-perception table can also identify zero, and maps variable example 
into data that can detect zero. Suppose that 𝛹𝛹 is the table with zero detection and 𝛷𝛷 is the 
standard table without zero detection, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝛹𝛹) is the standard table containing results 
obtained via real(z,b) in table 𝛹𝛹. 
Using Eq. (12), the message 𝑚𝑚𝚤𝚤𝚤𝚤�  from 𝐶𝐶𝑖𝑖  to another clique 𝐶𝐶𝑗𝑗  and ultimate potential 
energy 𝛽𝛽𝚤𝚤�  of 𝐶𝐶𝑖𝑖 can be calculated. Message 𝑚𝑚�  is transmitted between the leaf node and 
the root node. Every node will multiply its belief with newly received fuzzy message and 
divide the result by fuzzy message received from the same nodes last time. 𝛹𝛹�  is defined 
as the table with zero detection of 𝜓𝜓�𝑖𝑖, and 𝛷𝛷� is the standard table of 𝑚𝑚�𝑖𝑖𝑖𝑖. The message 
sent from 𝐶𝐶𝑖𝑖 to 𝐶𝐶𝑗𝑗 is calculated by Eq. (14): 

𝛹𝛹�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ← ∑ 𝛹𝛹�𝑖𝑖𝐶𝐶𝑖𝑖\𝑆𝑆𝑖𝑖𝑖𝑖   

𝛹𝛹�𝑗𝑗 ← 𝛹𝛹�𝑗𝑗 �
𝛹𝛹�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝛷𝛷�𝑖𝑖𝑖𝑖
�                                                (14) 
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𝛷𝛷�𝑖𝑖𝑖𝑖 ← 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟�𝛹𝛹�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�  
The specific steps of Belief Propagation algorithm based on fuzzy probability are as follows: 
(1) Initialization 

The fuzzy set of (input or output) variable is obtained through fuzzification according 
to the language value of variable, and the generated SSFBN is divided. For every clique 
𝐶𝐶𝑖𝑖 , 𝛽𝛽𝚤𝚤�  is calculated to initialize 𝜓𝜓𝚤𝚤� using Eq. (10). The parameter of 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑧𝑧, 𝑏𝑏) is 
initialized to (1, f ). 

(2) Information transfer 
The message is transferred from the leaf node to the root node, and then transferred 
from the root node to the leaf node. In all directions, every cut set 𝑆𝑆𝑖𝑖,𝑗𝑗 will consider 
𝛷𝛷𝑖𝑖,𝑗𝑗 as the previous message transmitted along the edge (i-j). This message can prevent 
repeated calculation, and every node will immediately update its belief after receiving 
messages from other nodes. It will multiply its belief with newly received message and 
divide the result by the message received from the same nodes last time. Here real 
function is used to avoid meaningless message. 

 
The algorithm of Fuzzy-Probability Belief Propagation (FPBP) 
Procedure JTree- FPBP (Φ,T)//Φ: set of factors, T: clique tree in Φ 
1:  Initialize-JTree(T) 
2:  When a clique without information exists in T 
3:  Choose (𝑖𝑖 − 𝑗𝑗) ∈ εT 
4:  MessagePropagation(i, j)//Message passing 
5:  Return to {Ψ�i} 
 
Procedure Initialize-JTree(T)//Initialize the clique method 
1: For each clique Ci 
2: Ψı� = ∏ ϕ ⋅ ⋃ [T(Γμ

∗ × Rμ�)μ:α(μ)=iϕ:α(ϕ)=i ]    
3: For each edge (i − j) ∈ εT 
4:      Φ�ij ⟵ 1 
5: The parameter of real(z, b) is initialized to (1, f) 
 
Procedure MessagePropagation(i, j)//Message passing method: i sending clique, j 
receiving clique 
1:  Ψ�temp ← ∑ Ψ�iCi\Sij   

2:  Ψ�j ← Ψ�j(Ψ�temp/Φ�ij) 
3:  Φ�ij ← real(Ψ�temp) 
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3.3 Establishment and reasoning of Situation-Specific Fuzzy Bayesian Network (SSFBN) 
The premise of MEBN reasoning is the generation of Situation-Specific Bayesian Network, 
i.e., SSBN. The minimum BN that satisfies the query request is first obtained through 
MTheories of domain-specific knowledge and a group of observed results, and then the 
reasoning algorithm of Bayesian network is used to calculate the posterior probability of 
searching for the set of target random variables gathered from observation evidence. 
The algorithm of Fuzzy MEBN is a simple bottom-up algorithm and starts from the finite 
set containing target random variables and finite set of random variables gathered from 
observation evidence. The two sets are combined to build an approximate SSFBN. In the 
approximate SSFBN, if one node is the parent of another node or the context variable of 
its superior FMFrag, an edge between the two nodes is added. In each step, the algorithm 
builds a new approximate SSFBN by adding evidence nodes and instantiates superior 
FMFrags of random variables in the query sets and their ancestor nodes. The result random 
variables are added to the query set, any node irrelevant to query is removed, and the result 
sets of random variables are combined to create a new approximate SSFBN. The above 
process repeats until the approximate SSFBN remains unchanged or the stopping condition 
is met. If the algorithm has no stopping condition, the result of the algorithm is either an 
accurate response or a warning that the evidence information is inconsistent when the 
construction of SSFBN is done. If the algorithm does not stop, it produces many 
approximate SSFBNs that can generate correct query responses. Generally speaking, there 
is no evidence of finite length consistent with the query fragment, but inconsistent query 
fragments can be detected when SSFBN is constructed. 
To minimize the final SSFBN and improve the reasoning efficiency, while constructing 
SSFBN, evidence node, target node and internal node are retained while redundant node, 
barren node and d-separated node irrelevant to the ultimate result or with a small influence 
are removed. 
Suppose that E is the set of observed evidences, Q is the set of queries, B is Bayesian 
network, and V is the set of nodes. The construction process of SSFBN is consists of the 
following steps: 
(1) Initialization 

The set of queries Q is set to be the union set of random variables of target nodes and 
evidence nodes; the random variable example R0 is set to be Q and the set of evidences 
E is set to be null; the maximum number N0 of states of every random variable is a 
positive integer user specified. 

(2) SSFBN Construction 
Suppose that the current SSFBN Bi includes nodes in Ri, and all edges are defined in 
influential configurations. Remove any isolated nodes from Bi, and conduct d-
separation from target nodes to evidence nodes, without updating the marginal 
distribution of nuisance nodes. 
Whenever a new evidence is added to E, a new SSFBN is constructed and any 
unnecessary node, such as barren node BNode(v) or worthless node NNode(v), 
including d-separated node connected to target node and marginal distribution node, is 
removed. Later, the FPBP algorithm in Section 3.2.3 can be used to calculate local 
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distribution. Finally, the FBN algorithm is run according to Fuzzy Belief Propagation 
on the manicured network B according to Q and E. The goal of this algorithm is to 
construct the Bayesian network of context that meets the consistency condition. 
In the SSFBN construction algorithm, the situation-specific random variable node is 
generated based on query variable Q and evidence set E. The context node of every 
random variable has passed satisfiability test. If the condition is met, this node and its 
parent node will be created.  
 

SSFBN construction algorithm 
Procedure Generate-SSFBN(Q,E)  
1: V ← Q∪E //Set of all query and evidence nodes 
2: G ← ∅ 
3: while V != ∅ do 
4:      v ← V − {v} 
5:      if Is-Satisfied(v) then //Whether the consistency condition is met 
6:           G ← Create-Node (v) 
7:           Π← Get-Parents(v) 
8:      for all π ∈ Π do 
9:           G ← Create-Node (v) 
10:           V ← V − π 
11: return G 
 
FBN reasoning algorithm 
Procedure FBN-Reasoning (B, Q, E) 
1: Construct clique tree T in B and gain the set of factors Φ 
2: Ri←JTree- FPBP (Φ, T) //Belief propagation 
3: if all ((e∈E) ∧ (P(e)==0)) then 
4:     Report inconsistency of evidence random variables 
5: else 
6:     return Ri   
 
(3) Local distribution construction 

We set local distribution in Bi, modify the local distribution and restrict random 
variables to Ni possible values, and estimate the influence of random variables not 
listed. Besides, the calculation should not exceed Ki steps. 

(4) Reasoning 
Given evidence random variables, we calculate the local distribution of target random 
variables via the FPBP algorithm in Section 3.2.3. We run the Fuzzy Belief 
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Propagation algorithm on the manicured network B according to Q and E, and calculate 
the conditional probability distribution of non-query nodes. Inconsistency of evidences 
is reported if the evidence random variable has probability 0, and if the query contents 
are consistent, the random variable of query set of the current SSFBN, Ri, is outputted. 

(5) Example enumeration and approximate parameter updating 
If the stopping condition is met, output Ri. Otherwise, the parent nodes of other random 
variables of Ri is added. As the distribution might be changed when extra parent nodes 
are added, Ni and Ki are added before going to Step 2. 

4 Experiment and analysis 
We used the tenfold cross validation method to evaluate the veracity of the FPBP algorithm 
by comparing it with the classic Belief Propagation algorithm (BP). Our test dataset is Iris, 
which consists of 50 samples from each of three species of Iris (Iris virginica, Iris setosa, 
and Iris versicolor) and each sample has 4 attributes: sepal length: 4.3 cm~7.9 cm; sepal 
width: 2.0 cm~4.4 cm; petal length: 1 cm~6.9 cm; petal width: 0.1 cm~2.5 cm.  
The goal of our experiment was to predict the specie of an Iris flower from four attribute 
values including sepal length, sepal width, petal length, and petal width, as shown in Fig. 6. 

 
Figure 6: Species fragment of Iris 

In the experiment, random variables, such as sepal length getSepalLength (flower), are 
classified into three categories: short, medium and long. For the training data, the values in 
the sepal length column are first sorted in ascending order and the resulting sequence is 
𝑏𝑏𝑖𝑖,1,𝑏𝑏𝑖𝑖,2, …𝑏𝑏𝑖𝑖,𝑛𝑛  where the first subscript i is the column index number, the second subscript 
represents the index in the sequence, and n is the size of training set. Then the sequence is 
equally divided into three parts and the boundaries of three categories can be determined, 

getIrisSpecies_MFrag

getIrisSpecies(flower)

getSepalLength(flower)

getSepalLength(flower)

isA(flower,Flower)

getSepalWidth(flower)

getSepalLength(flower)
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i.e., short (< 𝑏𝑏1,𝑛𝑛 3⁄ ), medium (𝑏𝑏1,𝑛𝑛 3⁄ ,𝑏𝑏1,2𝑛𝑛 3⁄ ) and long (> 𝑏𝑏1,2𝑛𝑛 3⁄ ). Similar method can 
also be used to classify other random variables, as shown in Tab. 3. 

Table 3: Category table of random variables of Iris 
Random variable Category 1 Category 2 Category 3  
getSepalLength(flower) Short(<b1,n/3) Medium(b1,n/3 ~b1,2n/3) Long(>b1,2n/3) 
getSepalWidth(flower) Short(<b2,n/3) Medium(b2,n/3 ~b2,2n/3) Long(>b2,2n/3) 
getPetalLength(flower) Short(<b3,n/3) Medium(b3,n/3 ~b3,2n/3) Long(>b3,2n/3) 
getPetalWith(flower) Short(<b4,n/3) Medium(b4,n/3 ~b4,2n/3) Long(>b4,2n/3) 
getIrisSpecies(flower) Iris virginica Iris setosa Iris versicolor 

By aiming at the characteristics of Iris dataset, the triangle membership degree function was 
used to calculate the membership degree from the values of random variables like petal 
length. Fig. 7 shows the membership degree function of the Iris dataset, in which a is 
equivalent to the minimum value of random variable, b is the median 𝑏𝑏𝑖𝑖,𝑛𝑛 2⁄  of the attribute 
sequence, and c is the maximum value of this attribute. For instance, a, the membership 
degree of petal length random variable, has the minimum value (1 cm), b is the median 
(𝑏𝑏3,𝑛𝑛 2⁄ ) of the petal length sequence 𝑏𝑏3,1, … , 𝑏𝑏3,𝑛𝑛 2⁄ , … , 𝑏𝑏3,𝑛𝑛, and c is the maximum value 
(6.9 cm). Suppose that the petal length of a specific line of data in training set is x. The 
membership degree vector can be calculated by using the membership degree function. 

0

1

a (a+b)/2 b (b+c)/2 c

μ(x)
long

Medium

short

 
Figure 7: Membership degree function of Iris 

We chose the tenfold cross validation method, which is the veracity test method of the 
common algorithm, to evaluate our proposed solution. We first create 10 sample data sets 
from the Iris dataset. 9 of them were set as the training data in turn and 1 was used as the 
test data. The average classification accuracy (or error rate) of 10 runs was used to measure 
the performance of the algorithm.  
Tab. 4 shows the tenfold cross validation results of the proposed FPBP algorithm (retain 
two digits after the decimal point). Meanwhile, we applied the same validation process to 
the BP algorithm using the same 10 sample data sets and compared the performance of two 
algorithms. As shown in Tab. 5, the average classification accuracy of FPBP is 89.2%, 
which is nearly 34% higher than the average accuracy of BP (66.7%). Obviously, FPBP, 
the fuzzy probability algorithm that adds fuzzy membership degree calculation, has higher 
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accuracy than the BP algorithm that simply calculates the probability, which demonstrates 
the veracity and validity of our algorithm. 

Table 4: Experimental results of tenfold cross validation of FPBP 
 1 2 3 4 5 6 7 8 9 10 
Sampling 1 86.67% 100% 93.33% 100% 100% 80% 80% 73.33% 93.33% 86.67% 
Sampling 2 86.67% 93.33% 80% 86.67% 86.67% 93.33% 80% 93.33% 93.33% 93.33% 
Sampling 3 93.33% 100% 80% 80% 86.67% 86.67% 100% 93.33% 80% 93.33% 
Sampling 4 93.33% 93.33% 86.67% 80% 86.67% 86.67% 93.33% 100% 73.33% 93.33% 
Sampling 5 93.33% 93.33% 86.67% 93.33% 73.33% 86.67% 93.33% 100% 93.33% 86.67% 

 

Table 5: Comparison of average classification accuracy between FPBP and BP 
 Sampling 1 Sampling 2 Sampling 3 Sampling 4 Sampling 5 average 

FPBP 89.33% 88.67% 89.33% 88.67% 90% 89.2% 
BP 66.7% 66.7% 66.7% 66.7% 66.7% 66.7% 

The time complexity of the BP algorithm on the Iris dataset is 𝑇𝑇(𝑛𝑛, 𝑠𝑠,𝑝𝑝) = 𝑇𝑇1(𝑛𝑛) ∗
𝑇𝑇3(𝑝𝑝) ∗ 𝑇𝑇2(𝑠𝑠) = 𝑂𝑂�𝑓𝑓(𝑛𝑛) ∗ 𝜙𝜙(𝑝𝑝) ∗ 𝑔𝑔(𝑠𝑠)�, in which n is the size of dataset, p represents the 
number of random variables like petal length, and s is the number of variable states. By 
adding matrix multiplication related to number of categories, the time complexity of FPBP 
is as following: 
𝑇𝑇(𝑛𝑛, 𝑠𝑠, 𝑝𝑝) = 𝑇𝑇1(𝑛𝑛) ∗ (𝑇𝑇2(𝑠𝑠) ∗ 𝑇𝑇3(𝑝𝑝) + 𝑇𝑇2(𝑠𝑠) ∗ 𝑇𝑇2(𝑠𝑠)) = 𝑂𝑂(𝑓𝑓(𝑛𝑛) ∗ 𝑔𝑔(𝑠𝑠) ∗ 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑔𝑔(𝑠𝑠),𝜙𝜙(𝑝𝑝)))        (15) 
In practice, the size of data is often greater than the number of attributes and the number of 
categories, and the number of attributes is greater than the number of categories. Therefore, 
compared with the BP algorithm, the increase in time complexity of the FPBP algorithm is 
still within a reasonable range.  

5 Conclusions and future work 
In this paper, by integrating the Belief Propagation algorithm of Bayesian network with the 
fuzzy probability theory, a fuzzy belief propagation algorithm is proposed and applied to the 
representation and reasoning framework of Fuzzy PR-OWL ontology. Besides, the framework 
from ontology analysis to reasoning model was created for representation and reasoning of 
fuzzy probability knowledge. According to the tenfold cross validation experiment results and 
the time complexity analysis, the FPBP algorithm has much higher classification accuracy 
than the BP algorithm without increasing the time complexity too much.  
Although this paper has made some progress in reasoning study about fuzzy probability 
ontology, due to increasing complication and expansion of ontology, researchers in the 
field of uncertainty reasoning of ontology are still faced with many challenges. For 
example, the veracity of our algorithms highly depends on the selection of the membership 
degree function, and how to select appropriate membership degree function can be further 
explored. In addition, although our algorithm can handle most fuzzy probability reasoning 
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problems of various scales, the efficiency can be further improved when the node number 
reaches a certain scale. 
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