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Abstract

The power system is undergoing numerous changes due to the rapid increase in energy

demand, rising concerns of climate change, and increased engagement of consumers in the

energy market. Consumers are now motivated to invest in distributed energy resources

(DERs), e.g., rooftop photovoltaic systems, due to their environmental advantages. The

number of electric vehicles (EVs) is also increasing due to their reliability and low carbon

footprint. Despite their numerous benefits, the rapid onset of DERs and EVs introduces new

technical challenges to distribution systems including (1) complex system operation due to

reverse power flows, (2) voltage instability issues; and (3) increased power losses due to poor

DER and EV planning as well as their temporal uncertainty. Existing methods to improve

the planning and operation of distribution systems in the presence of these technologies

use available data from measurement devices in the grid together with traditional load flow

analysis. However, some of the major limitations of existing impact-analysis techniques

include (1) inability to capture uncertainty, (2) high computational burden; and (3) lack

of foresight. This dissertation addresses these research gaps by proposing computationally

efficient, yet accurate, sensitivity frameworks that help simplify planning and operation of

modern distribution systems.

First, a novel probabilistic sensitivity framework is developed to quantify the impact

of grid-edge technologies, e.g., DERs and EVs, on line losses for balanced and unbalanced

distribution systems. Results show that the developed approaches offer high approximation

accuracy and four-orders faster execution time when compared to classical approaches. Sec-

ondly, this dissertation develops a novel preemptive voltage monitoring approach based on

low-complexity probabilistic voltage sensitivity analysis that predicts the probability distri-

bution of node voltage magnitudes, which is then used to identify nodes that may violate the

nominal operational limits with high probability. The proposed approach offers over 95%



accuracy in predicting voltage violations. To address the complexity-accuracy trade-off with

existing planning methods, this dissertation develops a novel spatio-temporal sensitivity ap-

proach to analyze both spatial and temporal uncertainties associated with DER injections.

The spatio-temporal framework is used to quantify voltage violations for various PV penetra-

tion levels and subsequently determine the hosting capacity of the system without the need

to examine a large number of scenarios. This framework is further extended for EV charging

station allocation to ensure minimum active power losses and voltage deviations. Thirdly,

this dissertation develops a new system voltage influencer (SVI) paradigm that identifies

strategic locations in the system that have the highest influence on node voltages. The SVI

nodes are ranked and used within a stochastic control setup to eliminate voltage violations.

The development of SVI paradigm is essential given the increased number of behind-the-

meter and utility-controlled DERs, where it is becoming difficult to select optimal control

points and counter the impact of the introduced uncertainties. The developed approaches

in this dissertation help system operators quickly reveal impending voltage and loss issues

resulting from power changes at the grid edge.
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footprint. Despite their numerous benefits, the rapid onset of DERs and EVs introduces new
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reverse power flows, (2) voltage instability issues; and (3) increased power losses due to poor

DER and EV planning as well as their temporal uncertainty. Existing methods to improve

the planning and operation of distribution systems in the presence of these technologies

use available data from measurement devices in the grid together with traditional load flow

analysis. However, some of the major limitations of existing impact-analysis techniques

include (1) inability to capture uncertainty, (2) high computational burden; and (3) lack

of foresight. This dissertation addresses these research gaps by proposing computationally

efficient, yet accurate, sensitivity frameworks that help simplify planning and operation of

modern distribution systems.

First, a novel probabilistic sensitivity framework is developed to quantify the impact

of grid-edge technologies, e.g., DERs and EVs, on line losses for balanced and unbalanced

distribution systems. Results show that the developed approaches offer high approximation

accuracy and four-orders faster execution time when compared to classical approaches. Sec-

ondly, this dissertation develops a novel preemptive voltage monitoring approach based on

low-complexity probabilistic voltage sensitivity analysis that predicts the probability distri-

bution of node voltage magnitudes, which is then used to identify nodes that may violate the

nominal operational limits with high probability. The proposed approach offers over 95%



accuracy in predicting voltage violations. To address the complexity-accuracy trade-off with

existing planning methods, this dissertation develops a novel spatio-temporal sensitivity ap-

proach to analyze both spatial and temporal uncertainties associated with DER injections.

The spatio-temporal framework is used to quantify voltage violations for various PV penetra-

tion levels and subsequently determine the hosting capacity of the system without the need

to examine a large number of scenarios. This framework is further extended for EV charging

station allocation to ensure minimum active power losses and voltage deviations. Thirdly,

this dissertation develops a new system voltage influencer (SVI) paradigm that identifies

strategic locations in the system that have the highest influence on node voltages. The SVI

nodes are ranked and used within a stochastic control setup to eliminate voltage violations.

The development of SVI paradigm is essential given the increased number of behind-the-

meter and utility-controlled DERs, where it is becoming difficult to select optimal control

points and counter the impact of the introduced uncertainties. The developed approaches

in this dissertation help system operators quickly reveal impending voltage and loss issues

resulting from power changes at the grid edge.
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Chapter 1

Introduction

Power systems are the backbone of modern life. These energy infrastructure enables multi-

ple other infrastructures that societies use to function and prosper. However, power systems

across the globe are witnessing various structural changes as a response to the exponential

growth in energy demand, increased impacts of climate change and aging system infras-

tructure. For instance, there is growing investment in green distributed energy resources

(DERs), e.g., rooftop solar photovoltaic (PV) systems, for the numerous environmental,

technical and economic advantages they provide [1]. The number of Electric Vehicles (EVs)

is also increasing due to their reliability and low carbon footprint [2]. This motivated the in-

clusion of sensory devices to obtain measurements of voltage states, current flows, and energy

consumption patterns at the grid-edge [3]. Fig. 1.1 shows a simple illustration of a modern

power distribution system that accommodates DERs, EVs, and sensors for different entities

such as residential and industrial consumers. Consumers in modern distribution systems are

no longer perceived as static entities. In the modern framework, consumers are able to ac-

tively participate in the energy market through local energy management, home automation,

energy storage and usage, EV charging and many other ancillary services [4]. In addition,

consumers will be able to schedule their loads based on dynamic prices of electricity [5]. The

motives for consumers to engage in such activities can be: (1) reducing carbon footprint; (2)

economic profitability, or (3) raising living standards through seeking comfort [6]. However,
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the increased engagement of consumers in such activities may impose new challenges to the

operation of the system. For example, the rapid onset of DER and EV integration may

cause abrupt power changes that introduce technical challenges to system operation such as

(1) reverse power flow [7], (2) voltage instability issues [8]; and (3) increased power losses

[9]. Therefore, system operators are motivated to plan, monitor, control the integration of

grid-edge resources and consumer activities to improve overall system efficiency.
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Figure 1.1: Illustration of a modern distribution system.

In this regard, sensitivity analysis (also known as impact-analysis study [10]) has gar-

nered a huge attention due to three main reasons: (1) abrupt power changes can lead to

unanticipated voltage issues that are difficult to handle with classical approaches [11], (2)

large contribution to economic losses and degradation of system efficiency [12]; and (3)

strict compliance requirements of emerging distribution system regulatory standards (e.g.,

the IEEE Std 1547-2018 indicates that inverter-based DERs shall be equipped with reac-

tive power demand and injection functionality up to 44% of their power ratings for voltage

support [13]). Specifically, sensitivity analysis exploits topological information and available

system states (via sensory devices or state estimation) to study the relationship between

power changes induced by grid-edge technologies and the resulting change in system pa-

rameters such as voltage profiles and line current flow or losses [14]. The first step toward
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successful implementation of sensitivity analysis in modern systems involves capturing the

dependencies between grid-edge technologies, which in turn serves as a tool to quantifying

their impact on system performance. For instance, a positive increase in power at the grid-

edge could represent an increase in local load or a decrease in PV power injection. Similarly,

a negative power change could represent a decrease in EV power demand or an increase

in PV generation. Given the interconnected structure of power distribution systems, when

these changes occur at any node, voltage fluctuates at other nodes, which increases the

possibility of voltage magnitudes exceeding safe operational limits - a detrimental scenario

that causes power disruptions. In addition to voltage fluctuations, line current flow can

increase/decrease depending on the change in power, which leads to excessive power losses.

Furthermore, sensitivity analysis involves analyzing the impact of system imbalance due to

heavy concentration of consumers on any of system phases, resulting in a holistic framework

that incorporates practical scenarios.

Several works have used sensitivity analysis to enable various downstream applications.

Essentially, system operators use this sensitivity information to monitor power losses and

voltage states [10], implement hosting capacity analysis, enable optimal DER [15, 16] and

capacitor placement and sizing [17], feeder reconstruction and network configuration [18]

or optimal allocation of EV charging stations [2]. Additionally, sensitivity analysis can be

used to implement efficient volt-var control algorithms to bring voltage states within the

permissible limits by adjusting the active and reactive power setpoints of DERs at the grid

edge [19]. Therefore, the development of simple and accurate techniques to quantify the

impact of power changes on the system is an essential need for the successful adaptation of

reliable and efficient power systems. Although there have been various methods developed

under each downstream application, the shortcomings of these sensitivity methods make

them inadequate to address the requirements of modern power distribution systems. The

shortcomings of existing methods are summarized below.

� Inability to capture uncertainty: Power changes caused by the integration of

grid-edge technologies are random due to variable load changes, variable EV charging
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patterns, and weather-related fluctuation of DER power output. The major drawback

of existing sensitivity methods that compute the impact of grid-edge technologies on

voltage change and power losses, is that they are deterministic and do not incorporate

this random behavior. The inability to model the random behavior of power changes

heavily impacts the accuracy of results obtained with such methods and causes them

to miss important details that otherwise may hinder system reliability.

� High computational burden: Existing approaches on computing the sensitivity are

computationally complex, which make intractable for large practical systems. This is

because such methods require recomputing system states whenever a change occurs at

the grid-edge. For example, the Jacobian matrix provides a deterministic sensitivity

metric between different nodes in the system. This matrix is not valid when a change

in the system state occurs, e.g., a new PV or EV charging station is integrated, which

increases the computational requirement of existing methods. Additionally, to capture

the uncertainty of power changes, classical approaches require simulating a large num-

ber of Monte-Carlo scenarios. For example, to approximate the distribution of voltage

magnitude, multiple load-flow scenarios must be simulated with existing approaches,

making them intractable for preemptive voltage monitoring.

� Lack of foresight: Conventional impact-analysis studies, e.g., voltage sensitivity

for control applications via traditional capacitor banks and tap changers, represent

reactionary approaches and do not exploit any knowledge of voltage state based on

anticipated power fluctuations. One reason for resorting to such reactive approaches is

the difficulty in estimating the states of a distribution system due to lack of foresight

on system states. That is, the efficacy of classical methods is dependent on the ability

to accurately predict voltage violations in the system so that operational setpoints

of the PV inverters can be appropriately set in advance. The development of quick

voltage violation prediction techniques provides more insights to system operators and

removes the reliance on reactionary control approaches.
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� Modeling inefficiencies: While traditional methods can provide basic topological

sensitivity metrics (usually static metrics valid for a given system state), they do not

provide any additional information on strategic locations for efficient system planning

or control applications. For example, in the case of PV/EV hosting capacity analy-

sis, existing methods rely on large number of scenarios to capture both spatial (e.g.,

location of PV/EV charging station installation) and temporal uncertainties. Since

these methods are simulation-based, their accuracy is heavily impacted by the num-

ber of scenarios created, i.e., a higher accuracy requires a higher number of simulated

scenarios. This creates a trade-off between accuracy and computational efficiency,

making such methods inadequate for system planning. Additionally, the continuous

growth in field controllers (i.e., inverter-based DERs) makes it difficult to implement

real-time control due to limited communication bandwidth and lack of interoperabil-

ity standards (see section II-B of the recent tutorial [12]). Unfortunately, classical

control approaches cannot identify a subset of strategic locations to provide voltage

support via inverter-based DERs, which otherwise could help reduce control cost and

communication requirements.

Based on these shortcomings in literature, this dissertation aims to address a few fundamen-

tal research questions. The research questions of this dissertation as well as the resulting

scientific contributions are discussed below in sections 1.1 and 1.2, respectively. The organi-

zation of chapters is explained in 1.3.

1.1 Research questions

Question 1: Analytical approximation of change in line losses: Can we remove the reliance

on multiple load-flow simulations to capture uncertainties caused by grid-edge technologies?

Is there a way to bound the approximation error resulting from the analytical sensitivity

approach?

Question 2: Can the developed analytical approximation hold promise for unbalanced dis-

tribution systems? For example, can we compute the probability distribution of line losses
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for any phase in the system?

Question 3: Preemptive voltage monitoring:

(a) Is it possible to predict voltage violations based on anticipated power fluctuations?

(b) How robust is the voltage violation prediction rule against missing/erroneous measure-

ments?

Question 4: Efficient system planning:

(a) Can we exploit topology information to simplify the accuracy-complexity trade-off with

existing hosting capacity analysis methods?

(b) How does analytical sensitivity-based metrics help in EV charging station planning?

Can we find a strategic location that minimizes losses and voltage deviations?

Question 5: Inverter-based DER control:

(a) Distribution systems typically lack measurements, rendering them unobservable. Can

we maintain adequate control performance even when the system is unobservable?

(b) Can we identify strategic locations in the system to implement voltage control pro-

grams?

(c) Can we dynamically identify a set of strategic locations that can be used in dynamic

control applications?

1.2 Contributions

To address research question 1, Chapter 4 of this dissertation proposes a novel analytical ap-

proximation of line loss sensitivity analysis. The proposed framework models power changes

due to grid-edge technologies as a stochastic process and computes the resulting probability

distribution of line losses, which removes the need to run multiple load flow scenarios to cap-

ture power uncertainties. The developed probabilistic sensitivity approach is then used in 7
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for probabilistic EV charging station planning. The major contributions of these chapters

are listed below.

� This work derives, for the first time, an analytical expression that approximates the

changes in line current flows due to deterministic complex power variations at any node

in the system (Theorem 1).

� This work further develops analytical expressions to study the aggregate impact of

multiple active consumers changing their complex power simultaneously on power losses

in the system (Corollary 2).

� The derived analytical expressions of line current and power loss changes are extended

to account for variability associated with DER power injections at active consumer

sites in the system resulting in a unique probabilistic sensitivity result.

� The approximation error of the deterministic approximation is shown to be upper

bounded as shown in Corollary 3. In addition, the Jensen-Shannon distance between

the proposed and simulated loss probability distributions is in the order of 10−2, which

demonstrates the high accuracy of the proposed method.

� The computational complexity of the proposed method is significantly lower than ex-

isting load flow-based methods, i.e., four-orders faster execution time.

More details on the probabilistic loss sensitivity analysis can be found in Chapters 3 and 4,

and in the following articles:

� M. Abujubbeh, S. Munikoti, A. Pahwa, and B. Natarajan, ”Probabilistic loss sensitivity

analysis in power distribution systems,” in IEEE Transactions on Power Systems, 2022

[20].

� M. Abujubbeh and B. Natarajan, ”Overview of loss sensitivity analysis in modern

distribution systems,” in IEEE Access, vol. 10, pp. 16037-16051, 2022 [21].
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� M. Abujubbeh, S. Munikoti, and B. Natarajan, ”Analytical power loss sensitivity anal-

ysis in distribution systems,” in 2021 IEEE Power & Energy Society General Meeting

(PESGM), pp. 1-5, IEEE, 2021[22].

An analytical sensitivity framework is derived in Chapter 5 to address research question

2. Specifically, Chapter 5 of this dissertation extends the probabilistic sensitivity to the

generic case, i.e., three-phase unbalanced distribution systems. This extension accounts

for the effect of mutual coupling impedance across different phases, which further increases

the generalizibility of the proposed approach. The generalizibility of this framework allows

accurate modeling of grid-edge technologies with the presence of system imbalance due to

higher concentration of consumer activities on any of the three phases [23, 24]. The key

contributions of this work can be listed as follows.

� Proposes a new analytical approximation of the change in line flow due complex power

changes at a single and multiple node(s) in three-phase unbalanced distribution systems

as shown in Theorem 2 and Eq. (5.8), respectively.

� Derives an analytical expression for the change in line losses due to consumer activities

at multiple locations in three-phase unbalanced distribution systems as shown in Eq.

(5.13).

� Extends the probabilistic sensitivity framework to derive the probability distribution

of change in current flow and change in line losses. The resulting unique probabil-

ity distributions can be used to simplify planning applications in unbalanced power

distribution systems as shown in Chapter 7.

� Estimates the deterministic and stochastic changes in line current flows as well as losses

with a high accuracy when compared to classical load-flow based method. It has been

shown that the deterministic approximation offers over 98% accuracy via the mean

absolute percentage error (MAPE) and the probability distributions can be estimated

with very low Jensen-Shannon distances.
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� The proposed method is validated against conventional approaches in the standard

IEEE 37-node and IEEE 123-node test systems.

More details on the probabilistic framework for three phase-unbalanced distribution systems

can be found in Chapters 5 and in the following article:

� M. Abujubbeh and B. Natarajan, ”A novel stochastic framework to quantify losses

in unbalanced distribution systems,” in IEEE Transactions on Power Systems, Under

Review, 2023. [25].

To address research question 3-a, a voltage violation prediction (VVP) framework is

developed with a focus on identifying nodes with high probability of violating voltage limits at

different time instances. Leveraging existing knowledge of voltage states along with uncertain

forecasts of power generation/demand, probabilistic voltage sensitivity analysis is used to

reveal impending voltage issues at any node in the system. Unlike existing probabilistic

sensitivity methods, the proposed approach focuses on computing the probability distribution

of voltage magnitude rather than the distribution of magnitude of voltage change. Research

question 3-b focuses on studying the robustness of the proposed preemptive monitoring

tool in cases where voltage measurements are missing. Therefore, to address this research

question, we incorporate Bayesian matrix completion (BMC)-based state estimation within

the probabilistic voltage sensitivity framework. The key contributions of these methods are

summarized as follows.

� A probabilistic voltage sensitivity analysis based approach that predicts the probability

of future voltage violations due to change in complex power injection is proposed. The

approach is used to predict the number of violations in the system at any time instant

(based on forecasted PV generation).

� The complexity of the proposed analytical approach is significantly lower than tradi-

tional load flow-based methods.

� The efficacy of the proposed VVP approach is generic to low-observable unbalanced

distribution systems.
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� The proposed approach that integrates state estimation and forecast-based probabilis-

tic voltage sensitivity to account for distribution system unobservability and measure-

ment errors.

� The proposed approach provides 90% VVP accuracy with 50% fraction of available

data, which makes it a suitable tool for predictive voltage control applications in mod-

ern distribution systems.

More details on the probabilistic voltage violation prediction can be found in Chapter 6 and

in the following articles:

� M. Abujubbeh, S. Dahale, and B. Natarajan, ”Voltage violation prediction in unob-

servable distribution systems,” in 2022 IEEE Power & Energy Society General Meeting

(PESGM), pp. 1-5, IEEE, 2022 [26].

� M. Abujubbeh, S. Munikoti, and B. Natarajan, ”Probabilistic voltage sensitivity based

preemptive voltage monitoring in unbalanced distribution networks,” in 2020 52nd

North American Power Symposium (NAPS), pp. 1-6, IEEE, 2021 [27].

In Chapter 7, a generic spatio-temporal framework is proposed to address the accuracy-

complexity trade-off with existing distribution system planning methods, e.g., for PV hosting

capacity analysis (question 4-a) or EV charging station allocation (question 4-b). In addition

to temporal uncertainty in power changes, the spatio-temporal framework exploits topology

information to derive an analytical relationship between power changes and nodal voltage

changes and line current losses. The development of the spatio-temporal framework helps

improve the efficiency of existing grid planning initiatives. For example, using the proposed

spatio-temporal sensitivity, it is possible to evaluate PV hosting capacity in the system with-

out the need to evaluate every possible spatial allocation scenario of PV systems. Similarly,

one can use the spatio-temporal framework to find the most suitable location of EV charging

station that minimizes losses or voltage deviations. The key contributions of this work are

listed below.
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� For the first time, the probability distribution of voltage change due to random change

in complex power (temporal) across random locations (spatial) of a three phase unbal-

anced distribution system is derived analytically.

� The proposed approach method is used to (1) analyze the aggregate effect of spatial

random distribution of PVs on the feeder voltage, and (2) determine the probability

of node voltages exceeding allowable limits.

� This method involves a substantial change in the formulation compared to [26] since

incorporating both spatial and temporal randomness in a three phase setting requires

extensive mathematical and statistical analysis for obtaining the probability distribu-

tion of voltage change.

� The proposed approach is employed to efficiently and accurately determine PV hosting

capacity in a significantly faster way. For e.g., three orders faster in IEEE 123-node

system relative to the existing load flow-based approach.

� The proposed approach also accounts for spatio-temporal uncertainties of EV load

and computes the distribution of total changes in power losses and voltage deviation

as shown in Eq. (7.33) and (7.34), which is then used to strategic locations of EV

charging station placement.

� Analytical results are validated using simulation on the IEEE 37-node and 123-node

test systems.

More details on the spatio-temporal sensitivity frameworks can be found in Chapter 7 and

in the following articles:

� M. Abujubbeh and B. Natarajan, ”A new probabilistic framework for ev charging

station planning in distribution systems considering spatio-temporal uncertainties,” in

IEEE Kansas Power and Energy Conference (KPEC), Under Review, 2023 [28].

� S. Munikoti, M. Abujubbeh, K. Jhala, and B. Natarajan, ”A novel framework for host-

ing capacity analysis with spatio-temporal probabilistic voltage sensitivity analysis,”
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in International Journal of Electrical Power & Energy Systems, vol. 134, p. 107426,

2022 [14].

To address question 5-a, Chapter 8 proposes a model predictive control (MPC)-based

method for optimal voltage control in unobservable distribution systems with the presence

of PV injections. Unlike existing approaches, this method uses only 50% fraction of available

data to estimate missing states using matrix completion approach. As for question 5-b, a

new system voltage influencers (SVI) paradigm is developed based on dominant influencer

of voltage fluctuations (DIVF) paradigm to identify the most dominant nodes that signifi-

cantly impact system voltages. Using these nodes within the control program helps improve

the efficiency of existing control algorithms in terms of computational effort and control

cost. There could be scenarios where power changes due to grid-edge technologies are high,

which might impact the rank of nodes within the SVI set. Therefore, we compute the SVI

set dynamically using analytically derived probabilistic voltage sensitivity approach, which

addresses question 5-c. The contributions of this work can be summarized as follows.

� Unlike existing methods, this work does not assume full availability of state measure-

ments at all nodes and uses matrix completion based approach to estimate the states

of nodes where measurements are missing.

� This work remove the reliance on scenario based analysis and Jacobian sensitivity

matrix calculations where it uses an analytical voltage sensitivity framework to update

voltage states.

� A new analytical approach is proposed to compute the SVI set of inverter-based DERs

to participate in distribution system voltage control applications as shown in Eq.

(8.36). The set contains the most dominant nodes that impact voltage services across

the system.

� The proposed approach utilizes a stochastic control framework to account for uncer-

tainty related to DER variability and changeable load patterns. The results demon-
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strate that using the stochastic framework, it is possible to minimize voltage violations

caused by DER uncertainty.

� This work outperforms existing methods in terms of computational efficiency with at

least an order faster execution time (Proposition 1).

� This work accounts for controller constraints and provides effective voltage support

with significantly lower control cost compared to traditional methods (Proposition 2).

More details on the developed inverter-based DER control can be found in Chapter 8 and

in the following articles:

� M. Abujubbeh, M. Sai, K. Jhala, and B. Natarajan, ”A new analytical voltage in-

fluencer paradigm for voltage control in power distribution systems,” in International

Journal of Electrical Power & Energy Systems, Under Review, 2023 [29].

� M. Abujubbeh and B. Natarajan, ”A novel dynamic voltage influencing metric for

cost-effective voltage control in unbalanced distribution systems,” in 2023 IEEE PES

GTD, Accepted, 2023 [30].

� M. Abujubbeh, R. K. James, A. Pahwa, B. Natarajan, ”Optimal voltage control in low-

observable unbalanced distribution systems,” in 2022 IEEE Power & Energy Society

Innovative Smart Grid Technologies Conference (ISGT), pp. 1-5, IEEE, 2022 [31].

� S. Munikoti, M. Abujubbeh, K. Jhala, and B. Natarajan, ”An information theoretic

approach to identify dominant voltage influencers for unbalanced distribution systems,”

in IEEE Transactions on Power Systems, 2022 [32].

1.3 Organization of this dissertation

The structure of this dissertation is outlined in figure 1.2. Chapter 2 discusses the related

literature work. Chapter 3 provides a comparative analysis of existing methods on loss sen-

sitivity analysis and discusses the research gaps and future research directions. Chapter
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Figure 1.2: Outline of the dissertation.

4 develops a novel probabilistic loss sensitivity analysis framework for single-phase power

distribution systems. By leveraging the fundamental work of Chapter 3, a generic proba-

bilistic sensitivity framework is developed for three-phase unbalanced distribution systems in
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Chapter 5. Chapter 6 proposes an analytical framework for preemptive voltage monitoring

applications. In this chapter the voltage violation prediction rule is updated using Bayesian

matrix completion for maintaining adequate prediction accuracy in unobservable systems.

Chapter 7 proposes a novel spatio-temporal sensitivity approach to simplify complexity-

accuracy trade-off with existing approaches. The developed spatio-temporal approach is

then used for downstream planning applications such as PV hosting capacity analysis and

EV charging station allocation. Chapter 8 discusses the proposed state-estimation based

voltage control approach and develops static and dynamic SVI paradigm for efficient voltage

control applications. Finally, Chapter 9 concludes this dissertation and suggests possible

future research directions.
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Chapter 2

Literature review

This chapter provides details on the research gaps of existing works and provides a review

of the literature of the topics discussed in this dissertation.

2.1 Loss sensitivity analysis

Prior work on loss sensitivity analysis in distribution systems can be broadly grouped into

two main categories: (1) analytical methods, and (2) classical load flow-based methods. As

far as analytical methods are concerned, the most widely used method in the literature is

based on computing nodal sensitivity factors [33, 34]. In this analytical method, the sen-

sitivity of system losses is related to complex nodal changes through partial derivatives of

line losses with respect to active or reactive power injection [35, 36]. The nodal sensitivity

factor list helps reduce the search space when applying heuristic optimization algorithms

for finding the best location or size of the DER [36]. For instance, in [16, 37] an analytical

method is presented to find the optimal bus for installing DG in a power distribution system

based on bus admittance matrix, generation information and load distribution of the system.

Similarly, authors in [38, 39] propose a loss sensitivity-based method for placement of DERs

in distribution systems. Here, loss sensitivity is used to examine the impact of DER injection

on active power losses, which helps to determine optimal locations for DERs in the system
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[40]. Similar to nodal sensitivity factors, there are few analytical methods that focus on nodal

allocation factors. The main idea of nodal allocation factors is to study the contribution of

nodal complex power changes to system losses. Under this category, three popular types

are typically used in literature: (1) incremental allocation method [41]; (2) Z-bus allocation

[42] method, and (3) proportional sharing method [43]. In [41], nodal allocation factors are

based on generator domains (the set of nodes that are supplied by each generator) and the

set of commons (the set of nodes supplied by the same generator). The set of domains and

commons are computed to determine the contribution of each generator to line flows, and

thereby determine the contribution to line losses. Similarly, the z-bus allocation method is

based on Z-bus matrix of the system (inverse of admittance matrix Y-bus). Authors in [42]

use the Z-bus allocation method to determine incentive or penalties to nodal load increments

considering system losses. However, such methods do not scale very-well with regard to com-

putational complexity when the analysis is extended to large systems. When the size of the

test system is small (e.g., 6 nodes [42]), it is difficult to generalize any method to real-world

practical systems that are characterized by a large number of nodes. This is especially prob-

lematic when the method involves running multiple loops such as in (1) classical load flow

analysis to capture DER variability [44], or (2) in the Z-bus allocation method to compute

the set of domains and commons in the system. In addition, the incremental sharing method

requires an algorithmic extension to be applicable for systems larger than 4 nodes [41]. Al-

though nodal sensitivity factors help guide optimal DER planning strategies [45], results

obtained from such methods are valid for a given scenario of power change. In this case, the

nodal sensitivity factor list may differ across time considering dynamic load analysis, which

unfortunately cannot be captured by traditional analytical loss sensitivity methods. Other

approaches in the literature use polynomial chaos theory to compute voltage sensitivity in

distribution systems [46]. Here, the approach involves finding basis polynomial functions to

approximate the voltage change as a way to replace brute-force Monte Carlo simulations.

However, the accuracy of this method depends greatly on the number of basis polynomials

used to compute the voltage sensitivity. For example, for a 2 node distribution system with

4 loads, 15 polynomials are required to compute voltage sensitivity [46]. Additionally, the

17



computational complexity of this method directly varies with the number of polynomials,

resulting in an accuracy-complexity trade-off [46, 47]. Power loss sensitivity can also be

determined using the classical load flow-based approach [48]. Here, the loss sensitivity is

computed based on the voltage change due to complex power changes at different locations.

In this regard, the change in voltage can be determined based on the Jacobian matrix of the

system [49], i.e., partial derivatives of power flow equations with respect to nodal voltage

magnitude and angles [44]. This can be used to determine the change in line current flows,

which enables computing the changes in line power losses.

Most of the prior work on loss sensitivity considers computationally complex traditional

methods of sensitivity analysis or traditional power flow equations. Such methods may not

be adequate to address the needs of modern distribution systems for the following reasons.

First, results obtained from such methods are scenario-specific and the inclusion of dynamic

behavior of active consumers impacts their consistency. This hinders their applicability in

real-time applications like finding the optimal location for EV charging or power loss moni-

toring [50]. Second, traditional sensitivity methods are computationally complex and require

simulating a large number of scenarios to obtain the sensitivity of each scenario. It is impor-

tant to note that the computational complexity of these methods increases with the increase

in system size. Finally, in distribution systems, complex power changes at active consumer

sites can be random due to variability in PV power outputs or dynamic load behaviors. This

is unfortunately not considered in traditional analytical and load flow-based sensitivity meth-

ods. It should be noted that uncertainties of PV units (or DERs in general) can be captured

by simulating a large number of scenarios, where the sensitivity can be computed. However,

scenario-based analyses do not scale very well with increasing dimensions of variability. As

we witness an increase in DER penetration, the number of scenarios needed for valid sta-

tistical inference grows exponentially. Alternatively, the proposed probabilistic approach in

this dissertation is accurate, simple to implement, and scalable to large systems. This is

because computing the parameters of well-established probability distributions is relatively

(and consistently) faster.
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2.2 Preemptive voltage monitoring

The integration of smart grid technologies such as electric vehicles, energy storage facilities,

and distributed generation, introduces advantages as well as system operational challenges

[3]. Renewable energy sources are characterized by variable power outputs that increase sys-

tem vulnerability to operational inefficiencies [51]. In particular, distribution grids become

highly vulnerable to random voltage fluctuations especially when there is a high penetration

of distributed solar PV generation [52] [53]. Conventional voltage regulation methods such

as capacitor banks [54] and tap changers [55] represent reactionary approaches and do not

exploit any knowledge of voltage state based on anticipated power fluctuations. One rea-

son for resorting to such reactive approaches is the difficulty in estimating the states of a

distribution network due to lack of observability. However, recent efforts on sparsity-based

estimation strategies (see [56, 57, 58]) have opened up new possibilities for more proactive

methods for voltage regulation [52]. Additionally, the classic voltage regulation methods are

not designed for bi-directional current flow and typically provide reactive support after an

event is detected [59]. Many recent research efforts have explored the possibility of using

reactive power capabilities of PV generators through smart inverters in either a centralized

[60], [61] or decentralized [62] scheme. The efficacy of these methods is dependent on the

ability to accurately predict voltage violations in the system so that operational setpoints of

the PV inverters can be appropriately set in advance. Load flow based look-ahead prediction

approaches are cumbersome, computationally complex and not scalable. Therefore, the de-

velopment of a computationally efficient, yet accurate voltage-violation prediction approach

that predicts future violations as well as their uncertainty bounds is critically important for

control and management of distribution grids.

Early work on voltage monitoring involves learning from historical data, through which

optimal system operation is implemented [63][64]. More recent approaches in literature use

traditional load flow based voltage sensitivity to derive a look-ahead prediction of nodal

voltage states for predictive control purposes [65, 66, 67, 68]. However, these methods do

not account for uncertainty related to DER injections or load variability and their reliance
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on classical load flow based sensitivity makes them (1) computationally complex; and (2)

non-scalable. Alternatively, authors in [69, 70] use Monte-Carlo based approaches to account

for different DER sizes and derive the probability of nodal voltage violation. For example,

[69] creates a large number of scenarios with different electric vehicle deployment capaci-

ties considering random spatial distribution. Similarly, [70] analyzes multiple scenarios to

select the best load model for voltage regulation and loss minimization applications. It is

important to note that such methods still do not consider temporal uncertainty of DERs or

changeable load patterns but rather focus on analyzing the impact of multiple scenarios of

DER capacities on voltage states, making them suitable only for planning applications. Few

other methods focus on deep learning based prediction models for voltage violations such as

deep neural network [71]. However, the hidden layers of such models makes it difficult to

provide guarantee of performance against known or unknown errors in voltage states. Newer

approaches introduce the paradigm of probabilistic voltage sensitivity analysis (PVSA) that

is accurate and more computationally efficient when compared to classical load flow sensitiv-

ity [72][10][52]. However, these studies do not consider distribution system unobservability.

Specifically, [10][52] assume full knowledge of temporal voltage states (e.g., voltage current

updates) to derive the probability distribution of predicted voltage states. However, this is

not a realistic assumption since distribution systems are characterized with low-observability

[73].

2.3 Hosting capacity analysis

Authors in [74] and [75] have reviewed the literature related to HC and fundamentally classi-

fied the efforts into four major categories (deterministic, stochastic ([76], [77]), optimization-

based ([78]), and streamlined ([79])) based on the available data and the type of study to be

performed. Most of these approaches for HC depend on numerical load flow-based methods

[80, 81, 82, 83], and involve the analysis of multiple PV deployment scenarios. For instance,

a rigorous framework is developed in [76], where authors have incorporated both aleatoric

(base voltages, solar PV production, local consumption) and epistemic uncertainty (installed
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capacity per customer, number of customers with solar PV, phase to which single-phase units

are connected) of active distribution network individually. Similarly, in [81], a scenario is

generated by randomly allocating PVs in the network, and then load flow is executed for each

penetration level until a voltage violation is encountered. To cover all possible locations, the

complete process is repeated for multiple scenarios, thereby presenting a huge computational

burden. [82] assigns each feeder a minimum and maximum HC, corresponding to the most

conservative and most optimistic HC value. However, the overvoltage risk within the range

of two HC endpoint values is not quantified. Furthermore, authors in [79], propose a quasi-

static-time-series (QSTS) based dynamic PV HC methodology. Here, power flow analysis

is conducted on the load and PV data over one year, where the time duration of violation

is also monitored along with the total violations count. For a real distribution model with

thousands of nodes and one-second resolution data, an annual simulation could take a few

days [79]. Furthermore, the PV and load uncertainties have significant influences upon HC

values. As a result, probabilistic HC methods have gained attention [84, 85, 86]. The authors

in [85] determine HC by incorporating uncertainties associated with PV, Wind turbines, and

loads while. However, the approach does not consider the stochastic random distribution of

DGs along the target feeder. Though the probabilistic approaches can effectively describe

the uncertainty in fluctuations of PVs and loads, most of these approaches are simulation-

based and thus are computationally inefficient. More importantly, the performance of these

approaches relies heavily on the availability of data.

In addition to HC, numerical VSA methods have also been used to guide various grid

applications such as voltage regulation, DER allocations, etc. [87, 88]. For instance, authors

in [87] propose a method for analyzing voltage variations due to PV generation fluctua-

tions, considering a variety of factors. However, its dependency on the inefficient simulation

method limits its applications to large scale distribution networks. Similarly, authors in

[88] develop an optimization model for the electric vehicle charging schedule based on VSA

approaches. Still, the requirements of iterative executions of power flow calculations and op-

timization models hinder its application in real-world scenarios. Thus, traditional methods

suffer from high computational complexity and do not provide analytical insight into the un-
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derlying physics of the system. Therefore, to overcome the drawbacks of numerical methods,

there are some limited analytical approaches for VSA that have been proposed. Authors in

[89, 90], develop an algorithm based on VSA which optimally manages active and reactive

power of DGs to keep the system voltages inside the limits. Here, instead of repeating load

flow calculations to solve the optimization problem, a sensitivity matrix is used to conduct

load flow computation in a non-iterative manner, reducing the computational burden sig-

nificantly. However, the algorithms proposed are not properly validated with standard test

systems. Authors in [91], have taken a probabilistic approach where smart meter data is

used along with sensitivity analysis to define boundary values of various operation indices.

This approach does not account for unbalanced load conditions. The authors in [57], develop

a new probabilistic voltage sensitivity approach to quantify voltage change in a computa-

tionally efficient way and accounts for the temporal uncertainties associated with random

power change at fixed locations of the grid. However, the assumption of a fixed location is

not generic enough to account for unknown locations of PV installations. Therefore, in [53],

authors provide a quick and efficient tool for estimating the distribution of voltage change

in a distribution system with spatial randomness in PV installations. However, the pro-

posed framework is valid only for single phase balanced systems and does not hold true for

an unbalanced distribution systems. Therefore, in this dissertation, a generic computation-

ally efficient framework for probabilistic voltage sensitivity is developed for an unbalanced

distribution system that systematically accounts for both spatial and temporal uncertainty

associated with PV generation.

2.4 EV charging station planning

The integration of electric vehicles (EVs) in modern distribution systems has rapidly in-

creased due to their low carbon footprint, long term reliability, and grid support functional-

ities [92]. For example, the integration of EVs helps smoothing load curves by participating

in peak shaving programs, which in turn, enhance the reliability of the system [93, 94]. It

has also been shown that coordinated EV charging may counteract the intermittency in-
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troduced by distributed energy resources (DERs) [95]. However, without proper planning,

EV charging stations can create additional challenges that limit efficient operation of power

distributions systems. This includes excessive power losses and increased voltage deviations,

which may contribute to large economic losses [96]. For example, the charging peak of most

commercial EV stations occurs during load-peak hours, which is a detrimental scenario that

has been shown to cause voltage violations [21]. In addition to these challenges, EV charging

pattern is random due to varying consumer needs, variety in charger types (e.g., residential

or commercial chargers), and uncertainties of EV arrival/departure times. To mitigate these

challenges, EV charging station planning has garnered a huge interest from researchers and

EV industry practitioners.

EV charging station planning involves identifying the optimum location and size of charg-

ing stations to meet EV charging needs while keeping system constraints within acceptable

limits. Existing EV charging station planning approaches can be broadly categorized into two

main categories: (1) model-based planning approaches; and (2) approximate meta-heuristic

optimization approaches. The first category uses topology information to quantify the im-

pact of installing a charging station on the system. Load flow solution is the most popular

model-based impact-analysis technique where system performance indicators, e.g., power loss

and voltage profiles, are evaluated before and after the integration of charging stations [97].

For example, in [98] a multi-objective optimization framework is formulated to minimize

annualized social cost of EV charging while keeping distribution system parameters within

safe operational limits. Here, classical load-flow equations are used to analyze the impact

of EV integration on system parameters. Similarly, [2] uses forward/backward sweep-based

load flow equations within the EV planning framework. Alternatively, [99] uses load flow

solution within an iterative search method to evaluate the impact of EV integration on the

system. Other model-based planning approaches include sensitivity factors where the change

in system parameters is computed as the partial derivative with respect to incremental power

change at any node in the system. For example, [45, 100, 101] use sensitivity factors to com-

pute the change in voltage and losses due to EV charging stations. In this framework, nodes

are ranked based on their sensitivities and the least sensitive nodes are chosen as candidate
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nodes for charging station placement. While existing model-based approaches may provide

a fast evaluation of topology-related impacts on the placement, these methods typically do

not consider the spatio-temporal uncertainties introduced by EV load, which may lead to

inaccurate EV planning results. In addition, whenever system state changes (e.g., there

is integration of a new DER or a change in topology information), the solution has to be

reevaluated because these indicators depend on current system states. To overcome these

issues, there has been a large focus on meta-heuristic optimization algorithms [102]. These

algorithms include genetic [103], particle-swarm [104], whale [105], or grasshopper [106] opti-

mization algorithms. While meta-heuristics can provide accurate approximations if a global

optimum is found, their main drawback is the lack of performance guarantees, especially

when the algorithm is exposed to practical assumptions such as system reconfiguration, the

addition of DERs, and change in topology structure, e.g., radial/meshed topology. Addition-

ally, these approaches tend to be very complex compared model-based analysis, which limits

their integration into existing planning frameworks. Therefore, the aim of this research is to

solve these challenges by proposing a new model-based probabilistic framework for planning

EV charging stations in modern distribution systems. The proposed approach builds off of

our prior work on probabilistic sensitivity analysis [20, 72] to compute the probability distri-

bution of change in power losses and voltage deviation, which then can be used to identify

the best location for charging station placement. Next, a quadratic optimization problem is

formulated to determine the size of charging stations to meet EV demand while satisfying

system constraints.

2.5 Voltage control via inverter-based DERs

Numerous studies view the voltage control problem through inverter-based DERs as an opti-

mal power flow (OPF) problem where, instead of the operational cost, the voltage deviation

as well as power losses are minimized [107]. This approach assumes the full availability of

system information and allocates optimal reactive power set points to satisfy the OPF con-

straints. For example, [108] proposes new sparsity-based regularization technique to ensure
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convexity of optimal PV dispatch as an OPF problem for voltage support whereas [109]

uses convex relaxation techniques for improved accuracy. While these methods can provide

voltage support, their computational complexity is a barrier and the increased number of

control points in the system adds further operational burden, making them intractable for

practical implementation [12]. Additionally, since these methods depend on communication

infrastructure, communication delays can be an obstacle to solving voltage issues caused

by abrupt DER complex power changes. Multiple distributed control algorithms have been

introduced to overcome the aforementioned challenges. To guarantee optimality and fast con-

vergence, the PV-curtailment approach proposed in [110] relies on dual ascent. In [111] the

consensus-based information sharing via model predictive control (MPC) has been advocated

whereas [112] proposes a robust policy-based day-ahead implementation that considers PV-

battery inverters. Alternatively, in [113, 114] the alternating-direction method-of-multipliers

(ADMM) has been used and shown in [113] to outperform the dual ascent in terms of con-

vergence. The voltage control problem has also been extensively solved with the traditional

droop-based control. In this approach the reactive power control signals are determined

based on a linearized droop curve using instantaneous nodal voltages [115]. For example, in

[116], an adaptive droop-based control scheme is proposed to update the droop coefficient

and synchronize current measurements. For nodal voltages, an observer model is considered

to estimate voltage states of neighbor nodes. Furthermore, in [117] the droop-based control

has been implemented for overvoltage mitigation and tested on different droop schemes, e.g.,

active power control and coordinated active and reactive power control. Recently, in [118],

a droop-based control framework has been proposed for medium voltage distribution sys-

tems. Here, the control framework switches seamlessly between a master-slave control and

droop-control modes to achieve the required voltage support. However, it has been shown

in [119] that, with droop-based controllers, it is important to maintain a small droop slope

to guarantee system stability. This is a condition that severely penalizes the reactive power

output of controllers [120]. Therefore, this approach may not completely eliminate voltage

violations, especially in cases where voltage violations are significant due to large variability

in complex power changes. The convergence and stability has been analyzed in [121] and
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[122]. However, the models do not consider reactive power constraints at control nodes,

which is not a realistic scenario.

Therefore, it is evident that most of the prior work either suffers high computational

burden, lacks attention to control cost and reactive power constraints, or inadequate to

provide effective voltage support in the presence of DER uncertainties. Thus, the aim of this

dissertation is to address these research gaps by providing a general framework that utilizes

the control participation factors (CPFs) of nodes integrated with inverter-based DERs to

identify the optimal set of nodes that participate in the control program, which we refer to

in this dissertation as the system voltage influencer set (SVI). In our prior work on dominant

influencer of voltage fluctuations (DIVF) [32], we have shown that it is possible to compute

and rank the set of dominant nodes that influences voltage variations at any given node in the

system. Inspired by the DIVF approach, the SVI set in this dissertation contains the most

dominant nodes that influence voltage fluctuations across the entire system. We show in this

dissertation that, using the SVI set for voltage control applications via inverter-based DERs

provides, (1) faster execution time than using all DERs for control, (2) significantly lower

control cost compared to the same number of non-SVI controllers; and (3) high robustness

against uncertainty of complex power changes, which can be due to loads or DER injections.

It is important to note that the proposed approach in this dissertation is generic and can be

applied with any existing voltage control architecture.
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Chapter 3

Overview of sensitivity analysis in

power distribution systems

Modern distribution systems (MDSs) are facing major challenges due to the rapid growth in

energy demand and the engagement of consumers in energy markets. Consumers can par-

ticipate in the energy market through local energy management, home automation, energy

storage and usage, electric vehicle (EV) charging, distributed energy resources (DER) inte-

gration, and many other ancillary services [4]. Through this participation, consumers can

also schedule their loads based on dynamic electricity prices [5]. The motives for consumers

to engage in such activities include: (1) reducing carbon footprint, (2) economic profitabil-

ity; and/or (3) raising living standards through seeking comfort [6]. However, the increased

engagement of consumers in such activities may impose new challenges to the operation of

the system. If such consumer activities are not properly accounted for, technical challenges

like increased power losses [9], nodal under-voltages [8], and reverse power flow [7] will arise.

High levels of power losses in the distribution system results in economic losses and degra-

dation of overall system efficiency. It is estimated that the average power loss across the

globe is approximately 8% of the total produced electricity [123], which is a non-negligible

amount of economic loss that utilities strive to minimize. Therefore, real-time loss monitor-

ing through loss sensitivity analysis (LSA) will become a necessary tool to determine the
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impact of these technologies on system losses [124]. LSA studies the change in line losses due

to complex power changes at any location in the distribution system. This chapter presents

a comprehensive review of existing methods and helps direct the focus of future research

efforts in this important domain.

3.1 Existing LSA methods

Power in distribution systems is transferred either via overhead lines or underground ca-

bles. In both types, the system is susceptible to power losses due to the increased heat in

conductors [125]. Power loss can be categorized into either technical (TL) or non-technical

losses (NTL) [126]. The first category includes losses due to resistance of system lines and

the relative amount of current flow, leakage and transformer losses and corona losses [127].

NTLs in the system can be caused by several factors such as inaccurate meter readings,

device malfunctioning, and billing cycle errors. In other words, NTLs occur when energy is

efficiently delivered but not accurately measured at the consumer end due to device errors

[128]. TLs contribute the highest to total system losses as they are related to system mode

of operation. Therefore, this section thoroughly explains existing methods for technical LSA

in distribution systems.

3.1.1 Exact loss formula (ELF)

The ELF is based on system topology and the change in system states such as nodal voltages,

line impedance, and the change in complex power [129]. According to the ELF, the total

real power loss in the system can be computed as [1],

Ls =
∑
m∈N

∑
n∈N

[αmn(PmPn +QmQn)

+ βmn(QmPn − PmQn)],

(3.1)
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where αmn = Rmn

VmVn
cos(δm − δn), βmn = Xmn

VmVn
sin(δm − δn). Here, Vm and Vn are the voltage

magnitudes whereas δm and δn are the voltage angles of nodes m and n, respectively. When

complex power at node m changes from Sm = Pm + jQm to S
′
m = P

′
m + jQ

′
m with ∆Sm =

S
′
m − Sm = ∆Pm + j∆Qm, the ELF can be rewritten as,

Ls =
∑
m∈N

∑
n∈N

[αmn(∆PmPn + ∆QmQn)

+ βmn(∆QmPn −∆PmQn)].

(3.2)

3.1.2 Nodal sensitivity factors (NSFs)

NSFs relate the sensitivity of system losses to individual nodes given a particular static

complex power change profile. This method is used as a way of reducing the search space

when selecting candidate nodes for DER placement algorithms (with lower complexity and

execution time) [131]. For instance, nodes with high NSFs are selected as candidate nodes for

optimal placement of DERs and SCs [132, 133]. NSFs are computed using partial derivatives

Table 3.1: A summary of NSF-based methods.

Ref.
Control variable Test system Load model
P Q V θ Hyb. SC LS Static Dynamic

[130] 7 3 7 7 7 3 3 3 7

[131] 7 3 7 7 7 3 3 3 7

[132] 7 3 7 7 7 3 7 3 7

[133] 7 3 7 7 7 3 3 3 7

[134] 7 3 7 7 7 3 7 3 7

[135] 3 7 7 7 7 7 3 7 3

[136] 3 7 7 7 7 3 7 3 7

[137] 3 7 7 7 7 7 3 7 3

[138] 3 7 7 7 7 3 7 3 7

[139] 3 3 7 7 3 3 3 3 7

[140] 7 7 3 3 3 3 7 3 7

[141] 3 3 7 7 3 3 7 3 7

[142] 3 3 7 7 3 7 3 3 7

[143] 3 3 7 7 3 3 7 3 3
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of system line losses. Consider again nodes m and n that are shown in Fig. ?? connected

by line impedance Zmn. The active and reactive power losses on this line can be written as

[130] [134] [131],

Lmn,p =
(P 2

n +Q2
n)Rmn

(Vn)2
(3.3)

Lmn,q =
(P 2

n +Q2
n)Xmn

(Vn)2
. (3.4)

Using (3.3) and (3.4), one can compute NSFs based on partial derivatives [130, 132] of system

losses with respect to reactive power demand at the destination n node as follows,

NSFP =
∂Lmn,p
∂Qn

=
2QnRmn

(Vn)2
(3.5)

NSFq =
∂Lmn,q
∂Qn

=
2QnXmn

(Vn)2
. (3.6)

Other NSF approaches are used in literature [135, 136, 137] where the partial derivatives are

taken with respect to the active power at node n. In this way, the active power NSF can be

formulated as,

NSFP =
∂Lmn,P
∂Pn

=
2PnRmn

(Vn)2
. (3.7)

Further studies propose the concept of combined-NSFs [139, 140, 141], which takes into

account both real and reactive power losses into the sensitivity criteria, which results in the

following loss sensitivity matrix (LSM),

LSM =

 ∂Lmn,p

∂Pn

∂Lmn,q

∂Pn

∂Lmn,p

∂Qn

∂Lmn,q

∂Qn

 . (3.8)

The control variables in this case are both active and reactive power change. In [139, 140,

141, 142], NSFs are computed considering peak demand at a particular node. This can also

be extended to accommodate time-series analysis with a given consumption profile [143].

Finally, NSFs can be computed in the presence of DERs where the analysis is based on

the change in system loss before and after DER integration. In this case, NSF is the ratio
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of power loss change to the change in active power injection at that particular node [138].

Accordingly, NSFP can be formulated as,

NSFP =
∆Ls
∆Pn

(3.9)

where ∆Ls is the change in system active power losses after DER placement and ∆Pn is the

increase in DER capacity at node n.

NSFs provide useful insights on critical locations in the system and therefore help enhance

its performance. NSFs depend on power flow solution to obtain the base nodal voltages.

Therefore, these factors are generally used in planning applications as prior information

for various control purposes. It can also be noticed that, NSFs do not account for any

uncertainty associated with the knowledge of system states or DER power outputs, which is

why these factors are typically used at the planning stage. The literature on NSFs is briefly

summarized in Table 3.1 based on the control variable, test system used, and load model.

3.1.3 Nodal allocation factors (NAFs)

Along with NSFs, there have been few studies that propose the concept of NAFs to study

the impact of nodal power changes on losses in the system including incremental allocation

method, proportional sharing method and Z-bus allocation. This subsection briefly describes

each of these methods.

Incremental allocation method

The main goal of this method is to identify the contribution of node power changes to total

system losses. First appearing in [41], this method is based on determining three components

given a certain scenario of power change:

� Generator domain: for a generating node k ∈ N , the domain is the set of nodes

that are supplied by power injections at k.

� Commons: represents the set of nodes supplied by the same generating node.

31



� State graph: Line flows are determined to form a directed state graph.

Using the domains and commons in a given state graph, it is possible to determine the

contribution of each generator to line flows, which helps to determine its contribution to line

losses. Some nodes may contribute low power to loads but high contribution in line losses

[41]. This method has been shown to be effective in determining the contribution of nodes

(either negative or positive) to system losses. Yet, computing the domains and commons is

complex for large systems. Moreover, MDSs typically experience stochastic complex power

changes at different locations as well as variable system configurations, which may lead to

topology changes of the state graph.

Z-bus allocation method

This method is based on the Z-bus matrix of the system, which is the inverse of the Y-bus

(admittance matrix). The main idea of the Z-bus method is to determine whether a node

receives incentives or penalties for load increments based on loss contribution to the system.

The active power loss in the system can be expressed as,

Ls =
∑
k∈n

Lk, (3.10)

where Lk stands for the loss contribution due to current injections at node k. This can be

expressed in terms of Y and V or Z and I through,

Ls =
∑
k∈N

Vk
∑
j∈N

YkjV
∗
j (3.11)

Ls =
∑
k∈N

I∗k
∑
j∈N

ZkjIj, (3.12)

where, Ykj and Zkj correspond to the kjth element of the Y-bus and Z-bus matrices, re-

spectively. This method uses the Newton-Raphson power flow solution to determine current

flows. The Z-bus allocation method can provide insights on node contributions to system

losses similar to IA method. For instance, in [42], the method is used to determine the
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Figure 3.1: Proportional sharing method illustration.

loss sensitivity using the IEEE 14 node and the IEEE 118 node transmission test systems.

For the first system, only one scenario is considered where a 100 MW generator is added,

and the loss is monitored. Another alternative to this method is discussed in the following

subsection where the proportion of nodal power injections with respect to neighboring lines

is considered.

Proportional sharing method

Unlike the previous NAFs, this proportional sharing method is based on determining the

proportion of node generation to line flows [43]. This can be computed using the proportional

sharing matrix that helps determine contribution of nodes to line losses. To demonstrate the

underlying principle, consider the nodal illustration in Fig. 3.1. The proportional method

says that the 70 MW on i −m = 40
100

70 + 60
100

70, which means, 28 MW from line j − i and

42 MW from k − i. Similarly, the 30 MW on i− l = 40
100

30 + 60
100

30. In other words, 12 MW

from line j− i and 18 MW from k− i. In [43], the method is implemented on an arbitrary 4

node test system to demonstrate its effectiveness. Nevertheless, this method requires details

derivation for systems greater than 4 nodes, which increases the complexity of this method.

It is important to mention that this method works very well with transmission systems due

to the existence of multiple generating nodes.
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3.2 Applications of loss sensitivity analysis

One of the goals of modern distribution systems is to integrate consumer level activities with

core distribution planning and optimal operation tools [3]. This integration results in vari-

ous advantages, one of which is consumer flexibility. In the modern framework, consumers

are more engaged in the energy market by exchanging information over the communication

infrastructure [4]. Other benefits include improving system situational awareness and pro-

viding accurate measures regarding the impact of consumer activities on system operation

[10]. Fig. 3.2 illustrates an MDS architecture, where utilities leverage the capabilities of the

communication infrastructure to transfer information from consumer level to a sensor data

management system (SDMS) [144]. The main goal of SDMS is to filter incoming data from

consumer resources [3]. This information can then be transferred to distribution system state

estimation (DSSE). DSSE provides the asset management center with the required informa-

tion about nodal voltages, power measurements and line current flows [145][146][147]. Such

information can be used as the input to outage management systems (OMS)[148]. Func-

tionalities of OMS include managing planned/unplanned outages, outage call reports, field

maintenance crews and reliability index analysis [149][150][151]. Additionally, secondary-

level DSSE information enable home energy management systems (HEMS) [152], which can

include applications like demand side management [153] and load shifting [154][155]. Home

automation features can also be embedded into HEMS, in which consumers can remotely

control household appliances [156]. Finally, customer-level information can be fed to the

advanced distribution management system (ADMS). ADMS include the distribution system

optimal planning, operational applications, and sensitivity analysis that optimize system op-

eration and study system dynamics in the presence of consumer-level resources [157][158] [72].

In the light of LSA, ADMS accommodates different types of applications such as optimal

system reconfiguration, DER planning, SC allocation and EV charging station management

[159][160]. The following subsections summarize state of the art and provides a glimpse at

future pathways. Table 3.2.3 includes a summary of LSA applications on IEEE standard

test systems (STS).
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3.2.1 System reconfiguration

System reconfiguration - also known as optimal topology identification (OTI) - can be de-

fined as the process of changing the status (open or close) of system switches in order to

find the optimal topology that keeps power losses minimum and voltage profiles within

permissible limits [161]. Many research efforts in literature have proposed algorithms to

solve this reconfiguration problem based on different sensitivity metrics [162]. One of the

early attempts appeared in [163] where authors focused on loss minimization by searching

for the optimal spanning tree configuration. Later on, different optimization techniques

have been developed based on leveraging various loss sensitivity techniques. For example,

[164, 165, 166, 167, 168, 169] use CLF-based sensitivity analysis (??) to find the optimal con-

figuration of the system. [18, 161, 170, 171, 172] use NSF-based sensitivity analysis (3.1.2).

Most of LSA-based system reconfiguration studies rely on base load analysis [18, 166, 171].

In the last decade, however, researchers have started incorporating the impact of system

assets on optimal reconfiguration. [161, 167], for example, consider the impact of DERs on

system losses and propose new heuristic optimization algorithms to solve the reconfigura-

tion problem. In addition to DERs, [170] takes int account the impact of SCs on system

reconfiguration. Except [170], most of the prior work on LSA-based system reconfiguration

studies are based on static load models. However, it is desired to address the reconfiguration

problem from an operational point of view because static analysis may not fully capture

actual MDS dynamics.

3.2.2 DER management

DER integration into distribution systems is complex and requires in-depth assessment and

efficient operational and planning tools. This is mainly because DERs are not dispatchable

by distribution system operators and can have a large impact on losses, power flow, voltage

stability and power quality [34, 173]. Numerous algorithms have been employed for DER

optimal allocation, resulting in the best location and size of DERs considering loss reduction

[174]. These algorithms are broadly based on analytical techniques, optimization algorithms,
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or heuristics [1, 175]. Additionally, the existing work on DER allocation considers either sin-

gle [176] or multiple allocation [177, 178]. For computing loss sensitivity, the vast majority of

existing work uses PQ-based NSFs where the factors are computed based on active and reac-

tive power injections (or withdrawal) by the DER unit [179] [180] [181] [182] [183] [184][185]

[35]. Few works [178][176][186] use the ELF whereas others determine the loss sensitivity

using CLF method [187][173][188] [189] [190]. Despite the efficacy of existing methods for

DER planning based on loss sensitivity, MDSs require system performance analysis with dif-

ferent penetration levels of DERs. In this regard, DER hosting capacity (HC) attracts the

attention of MDS practitioners. HC can be defined as the maximum amount of DERs (such

as PV or wind) that MDS can accommodate without the need for infrastructure upgrades

while keeping system performance indicators within safe limits [81]. A comprehensive HC

analysis framework must incorporate different system performance indicators such as power

losses, line thermal loading or nodal voltage stability [75]. The adoption of different DER

resources, ESSs and EVs motivates hybrid HC analysis due to the differential impact of these

technologies [174]. For example, while rooftop PV systems inject power, EVs form additional

loading at different locations in the system. This introduces spatio-temporal randomness in

power injections (or withdrawals) that classical sensitivity methods failed to address.
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3.2.3 Shunt capacitor allocation

SC placement in distribution systems can significantly help reduce system losses and sta-

bilize voltage by improving the power factor of the system[191]. SCs can be connected to

primary or lateral feeders and/or secondary level loads depending on system topology. The

installation of SC at secondary feeder indeed provides enhanced system efficiency in terms of

voltage support and loss minimization. However, in some cases, the resources can be limited

and the installation of additional SCs can be an expensive alternative to minimize losses (or

provide voltage support) [133]. Therefore, it is possible in such scenarios to integrate SCs at

the primary feeder. In this scheme, losses at the secondary level can be minimized through

controllable DER assets. This scheme may also have adverse impacts on different locations in

the system since some nodes can be very sensitive to complex power changes at other nodes

[132]. For this reason, several research efforts in literature propose optimal SC placement

and sizing algorithms for loss minimization [192] [193][194]. To determine the loss sensitiv-

ity, ELF [17], PQ-based NSF [180][182][170] [195][196], or CLF method [191][197][198] can

be used. Few studies focus on loss minimization by optimal placement and sizing of SCs

with the presence of DERs [180][182][191] or system optimal reconfiguration [197]. The ef-

fectiveness of SCs (as well as other regulatory devices such as tap changers [55] and static

var compensators[54]) is limited by their maximum allowable limits in the system. In addi-

tion, the installation of such devices might be very expensive, especially for large systems.

Recent research utilizes PQ-based DERs instead of complete reliance on the deployment

of regulatory devices [19]. Utilities can adjust the PQ setpoints of inverters in order to

maintain system indicators within safe operational limits. In cases where DERs operate at

maximum power point tracking (MPPT) mode, i.e., PQ setpoints are not controllable by

utilities, assistive SCs can be installed with DERs and operated as needed.

Table 3.2: Application summary.
†: system reconfiguration, ‡: DER management, �: SC allocation, ⊗: EV coordination, *:
applicable to transmission system.

Category Reference LSA

Test system
Load model

Hybrid
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Type
Scale

Small Large Static Dynamic

†

[161] NSF IEEE STS 3 3 3 7 ‡

[170] NSF IEEE STS* 7 3 3 3 ‡ �

[164] CLF IEEE STS 3 3 3 7 7

[165] CLF IEEE STS* 3 7 3 7 7

[171] NSF IEEE STS 7 3 3 7 7

[166] CLF IEEE STS 3 7 3 7 7

[167] CLF IEEE STS 7 3 3 7 ‡

[168] CLF Non IEEE 3 3 3 7 ‡

[18] NSF IEEE STS 7 3 3 7 7

[172] NSF IEEE STS* 3 3 3 3 ‡

[169] CLF IEEE STS 3 3 3 7 7

‡

[179] NSF IEEE STS 3 7 3 7 �

[180] NSF IEEE STS 3 7 3 7 �

[181] NSF IEEE STS* 3 3 3 7 7

[182] NSF IEEE STS* 3 3 3 7 �

[187] CLF IEEE STS 3 3 3 7 †

[199] NSF IEEE STS 3 7 3 7 †

[173] CLF IEEE STS 3 7 3 7 7

[188] CLF IEEE STS 3 7 3 7 7

[185] NSF IEEE STS 7 3 3 7 7

[178] ELF IEEE STS 3 3 3 7 7

[183] NSF IEEE STS 3 3 3 7 7

[184] NSF IEEE STS 3 7 3 7 �

[189] CLF IEEE STS 3 3 3 7 7

[190] CLF IEEE STS 3 7 3 7 7
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[176] ELF IEEE STS 3 7 3 7 7

[35] NSF IEEE STS 3 7 3 7 †

[186] ELF IEEE STS 7 3 3 3 7

�

[180] NSF IEEE STS 3 7 3 7 ‡

[17] ELF IEEE STS 3 3 3 7 7

[182] NSF IEEE STS* 3 3 3 7 ‡

[191] CLF IEEE STS 3 7 3 7 ‡

[197] CLF IEEE STS 3 7 3 7 †

[198] CLF IEEE STS 3 7 3 7 ⊗

[170] NSF IEEE STS* 3 3 3 7 † ‡

[195] NSF IEEE STS 3 3 3 7 †

[196] NSF IEEE STS* 3 3 3 7 7

⊗

[2] NSF IEEE STS 3 7 3 7 ‡

[198] CLF IEEE STS 3 7 3 7 �

[200] CLF IEEE STS 3 7 3 7 7

[98] CLF IEEE STS 3 7 3 7 7

[94] CLF IEEE STS 3 3 3 3 7

[99] CLF IEEE STS 3 3 3 7 7

[201] NSF IEEE STS 3 7 3 3 7

[202] CLF IEEE STS 3 7 3 7 7

[203] CLF IEEE STS 3 7 3 3 ‡

[204] CLF IEEE STS 7 3 3 7 7

[205] NSF IEEE STS 3 7 3 3 7

[206] NSF IEEE STS 3 7 3 3 7

[207] CLF IEEE STS 3 7 3 3 7

[208] CLF Non IEEE 3 7 3 3 †

[209] NSF IEEE STS 7 7 3 3 ‡
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3.2.4 EV coordination

The decay in natural fuel reserves, increase in gasoline prices and the stringent governmental

regulations on adopting greener technologies have spanned the growth of EVs [210]. Com-

pared to classical fuel-based vehicles, EVs are fuel efficient and environmental friendly [211].

Yet, the integration of EVs into distribution systems brings new challenges to utilities in

order to maintain system efficiency. A typical, yet detrimental scenario of EV operation

occurs when consumers charge their EVs during peak-load hours such as early morning and

after work hours. Such uncontrolled grid-to-vehicle (G2V) charging patterns increase the

stress on nodal power demand and has been linked to voltage violations [212], active power

losses [213] and increased likelihood of blackouts due to system overloading [214]. EVs can

also be operated in vehicle-to-grid (V2G) mode in which the EV is regarded as a controllable

resource that provides ancillary services to system operation such as active loss reduction

[215, 216], voltage control [217], peak shaving [208, 218] or demand response programs [219].

With the technological advancements in communication infrastructures and computa-

tional resources, efficient G2V or V2G coordination algorithms are currently being developed

to limit EV impacts on distribution systems. Many EV coordination studies consider active

loss reduction in distribution systems. For instance, [94, 98, 99, 201, 202] propose optimal

planning strategies of G2V-based EV planning for improving system indicators including

loss reduction. The planning problem can be formulated as optimal placement and sizing

of charging stations across the system [203, 220]. For loss sensitivity calculations in G2V

planning, few studies use linear approximation of annual losses [94, 204, 208] whereas oth-

ers use CLF analysis [99, 202] or NSFs [201]. In addition to planning, the system optimal

operation is widely studied in the literature. Typically, the interaction between EVs and

system is modeled with a temporal profile of complex power dynamics. For example, [206]

shows that system losses can be minimized by integrating ESSs with different levels of EV

penetration. The study uses NSFs for computing the sensitivity. Similarly, [205] shows that

optimal control of EV charging locations can significantly reduce system losses using classical

load flow loss sensitivity. In addition to G2V scheme, research has shown with LSA that
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it is possible to reduce power losses in V2G scheme [221] [222] [223]. For example, authors

in [207] propose a new placement and sizing approach of V2G facilities using CLF-based

LSA. Similarly, [208] studies V2G coordination via optimal placement and sizing but with

integrated DERs across the system. In [209], system optimal reconfiguration is considered

with V2G coordination, where the objective is to minimize losses and ensure system relia-

bility. The last block of Table 3.2.3 summarizes the EV management studies based on loss

sensitivity.

3.3 Research gaps and future trends

This section discusses the major shortcomings of existing loss sensitivity methods from the

perspective of MDSs and provides future recommendations to direct the focus of new research

efforts in this domain.

3.3.1 Enabling real-time monitoring

Classical loss sensitivity methods have shown value at system planning stage for various

applications such as DER and SC placement. For example, it can be seen from Tables 3.1

and 3.2.3 that the most commonly used load model is the static model. This implies the that

loss sensitivity has been widely used in distribution system planning. The diverse structure of

MDS in terms of end-user technologies motivates the need for real-time monitoring tools that

are able to quantify the impact of consumer level activities on system losses. This is mainly

due to the difference in the impact that different technologies may have on the system. For

instance, PV units supply active power to local loads and thereby, reduce system losses since

less power is withdrawn from the source. EVs, on the other hand, increase local loading and

therefore, may lead to excess losses during existing peak demand hours. Therefore, real-time

monitoring of loss is important to ensure system efficiency.
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3.3.2 Incorporating uncertainty

The variable nature of DER power outputs and load profiles in MDSs can cause adverse

impacts on system operation and reliability. This uncertainty can result from changing

weather conditions, partial shading over PV panels, or sudden peak in local loads. All of the

aforementioned factors can contribute to excessive amounts of power losses. This obligates

the inclusion of uncertainty analysis to loss sensitivity methods. Uncertainty analysis with

real-time monitoring enables system operators to apply optimal consumer asset management,

e.g., G2V charging scheduling or real-time allocation, to maintain minimum losses during

peak hours. Unfortunately, based on the review in this section, uncertainty analysis is still

a knowledge gap that must be addressed by exploring new methods of loss sensitivity or by

innovating existing frameworks in a accurate and a computationally efficient manner.

3.3.3 Alleviating computational burden

MDS optimal operation with minimum losses entails a wide range of time-sensitive and

data-intensive tools for sensitivity analysis. Based on the review in this section, there are

two major areas where computational complexity requires further attention: (1) the require-

ment for algorithmic extensions, and (2) complexity of scenario based sensitivity analysis

for realistic systems, especially at system operation stage. For instance, the set of domains

and commons in 3.1.3 requires significant algorithmic extensions for systems larger than

4 nodes. In addition, although a majority of the reviewed methods consider large IEEE

STSs in the analysis, the results must be validated against realistic unbalanced distribution

systems along with the secondary feeder level to efficiently capture the impacts of active con-

sumers on losses. This inevitably increases the computational complexity, especially when

uncertainty is incorporated in the analysis because it requires running multiple scenarios to

obtain the desired accuracy for CLF-based sensitivity.
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3.3.4 State estimation and measurement devices

System states are obtained via measurement devices at the main feeder side such as the

SCADA system that provide nodal active/reactive power and real/imaginary voltage read-

ings, through which loss sensitivity can be computed. Yet, distribution systems are mostly

constrained with few measurement devices at select locations, rendering the system unob-

servable. One solution to this can be the installation of additional measurement devices at

every location in the system. However, this approach is not cost-effective. In this regard,

state estimation of low observable distribution systems is an attractive alternative. Based

on the literature analysis, the majority of works consider full availability of system states

for computing the sensitivity. Breaking the barriers between state estimation and sensitiv-

ity analysis is a key element in MDSs that can result in efficient planning, monitoring and

optimal asset control.

3.3.5 Other research pathways

Legacy distribution systems were designed in a top-down structure with limited coordination

between management systems. Such coordination is important for impact assessment of con-

sumer resources on both device and system level. Therefore, the dynamic nature of MDSs

calls for advanced frameworks to collaboratively foresee the evolving needs of the system. In

this regard, loss sensitivity can be integrated with other frameworks (e.g., voltage sensitiv-

ity analysis) to predict system response and guide optimal management strategies. As far

as asset management is concerned, fairness to consumers participating in the management

program is another aspect that will draw the attention of system operators. Finally, cyberse-

curity and data privacy will also be relevant areas with sensitivity analysis, especially during

the process of communicating control commands from system operators to the consumer

level.
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3.4 Summary

This chapter proposes a comprehensive analysis on existing literature work on LSA and re-

views the state of the art to identify future research directions. Theoretical formulations of

LSA are initially summarized. Then, the applications of LSA are thoroughly discussed and

categorized based on the LSA framework used. After extensive analysis on literature, this

chapter discusses existing research gaps and provides a vision for future research directions.

It is found that the development of computationally efficient sensitivity frameworks is es-

sential to achieve real-time monitoring and enable efficient planning applications in modern

distribution systems. Moreover, DER uncertainty and lack of measurement devices are two

important aspects that can help provide realistic results for system planning and operation

using LSA. Next chapter proposes an analytical LSA framework that accounts for power

uncertainties.
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Chapter 4

Analytical approaches for Loss

Sensitivity Analysis

It is evident from Chapters 2 and 3 that prior work on loss sensitivity analysis (LSA) consid-

ers computationally complex traditional methods of sensitivity analysis or traditional power

flow equations. Such methods may not be adequate to address the needs of modern distribu-

tion systems for the following three reasons. First, results obtained from such methods are

scenario-specific and the inclusion of dynamic behavior of active consumers impacts their con-

sistency. Second, traditional sensitivity methods are computationally complex and require

simulating a large number of scenarios to obtain the sensitivity of each scenario. Finally, in

distribution systems, complex power changes at active consumer sites can be random due to

variability in PV power outputs or dynamic load behaviors. This is unfortunately not con-

sidered in traditional analytical and load flow-based sensitivity methods. While it is possible

to capture uncertainties with classical methods by simulating a large number of scenarios,

such methods do not scale very well with increasing dimensions of variability. As we witness

an increase in DER penetration, the number of scenarios needed for valid statistical inference

grows exponentially. Therefore, this Chapter derives an analytical approximation of LSA

that quantifies the impact of grid-edge technologies on change in line losses. The proposed

approach accounts for uncertainties associated with power changes and derives the distribu-
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tion of change in power losses in balanced distribution systems. The proposed framework

will be used in Chapter 5 to derive the distribution of change in line losses for the general

case, i.e., unbalanced three-phase distribution systems.

4.1 Analytical framework for loss sensitivity

Consider a power distribution system with N nodes and L lines as illustrated in Fig. 4.1.

The change in complex power at any node in the system causes changes in current flow in all

lines, and thereby, causes changes in line power losses. Nodes where complex power varies

are called actor nodes and lines where the change in current flow or power loss is monitored

are called monitored lines. This section presents an analytical approximation for the change

in line currents and losses at any monitored line (M) due to change in complex power at

actor nodes (A) in the system. When power at actor node A changes from SA to SA + ∆SA,

the current at the monitored line changes from IM to IM +∆IMA, where ∆IMA is the change

in current flow on the monitored line M due to complex power changes at actor node A.

The reference node throughout this chapter is assumed to operate at a unity voltage, i.e.,

16 0◦ p.u. Considering a single actor node, the change in current flow at the monitored line

M can be approximated using Theorem 1.

Theorem 1. For a single-phase distribution system, the change in current flow at a moni-

tored line (M) due to change in complex power at an actor node (A) is approximated by,

∆IMA ≈
∆S∗AΨMA

V ∗A
, (4.1)

where, ∆S∗A is the complex conjugate of complex power change at actor node A, V ∗A is the

complex conjugate of base voltage at the actor node A and ΨMA represents the influence

indicator between node A and the origin node of line M . For nodes impacting the current

flow on M , ΨMA can be set to 1 and 0 otherwise.

Proof. Consider a single-phase radial distribution system with N nodes and L lines with

lm−n representing the line connecting nodes m and n as shown in Fig. 4.1. Let e be the line
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Figure 4.1: An illustration of a distribution system.

connecting the set of nodes Ne with the source node G. The downstream current flowing

through e can be written in terms of complex conjugate of power injections and nodal voltages

as,

Ie =
∑
k∈Ne

Ik =
∑
k∈Ne

S∗k
V ∗k

. (4.2)

When complex power changes at active consumer locations (k ∈ Ne) from Sk to Sk + ∆Sk,

the voltage also changes from Vk to Vk + ∆Vk. Therefore, the current flowing through e

changes from Ie to I
′
e and can be rewritten as,

I
′

e =
∑
k∈Ne

I
′

k =
∑
k∈Ne

S∗k + ∆S∗k
V ∗k + ∆V ∗k

. (4.3)

The change in line flow ( ∆Ie = I
′
e − Ie ) at line e can be written as follows,

∆Ie =
∑
k∈Ne

S∗k + ∆S∗k
V ∗k + ∆V ∗k

−
∑
k∈Ne

S∗k
V ∗k

=
∑
k∈Ne

V ∗k (S∗k + ∆S∗k)− S∗k(V ∗k + ∆V ∗k )

V ∗k (V ∗k + ∆V ∗k )

Using assumption 2, we can rewrite ∆Ie as,

∆Ie ≈
∑
k∈Ne

∆S∗k
V ∗k + ∆V ∗k

(4.4)
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Now assume that only one node (say node A ∈ Ne) is changing its complex power. The

corresponding change in line current can be written as,

∆Ie ≈
∆S∗A

V ∗A + ∆V ∗A
(4.5)

The change in line flow can be written in terms of real and imaginary parts as follows,

∆Ie ≈
∆PAV

r
A(1 +

∆V r
A

V r
A

) + ∆QAV
i
A(1 +

∆V i
A

V i
A

)

(V r
A(1 +

∆V r
A

V r
A

))2 + (V i
A(1 +

∆V i
A

V i
A

))2

+ j
∆PAV

i
A(1 +

∆V i
A

V i
A

)−∆QAV
r
A(1 +

∆V r
A

V r
A

)

(V r
A(1 +

∆V r
A

V r
A

))2 + (V i
A(1 +

∆V i
A

V i
A

))2
,

(4.6)

where, V r
A and V i

A are the real and imaginary parts of actor node voltage, respectively.

∆PA and ∆QA are the real and reactive power changes at actor node A. Now, using as-

sumption 2, the change in real and imaginary parts of line current flow can be written as,

∆Ie ≈
∆PAV

r
A + ∆QAV

i
A

(V r
A)2 + (V i

A)2
+ j

∆PAV
i
A −∆QAV

r
A

(V r
A)2 + (V i

A)2
=

∆S∗A
V ∗A

(4.7)

For any monitored line M ∈ e, the change in current flow will only occur due to complex

power changes at A ∈ Ne as shown in Fig. 4.1. Therefore, for any actor node A /∈ Ne, the

influence factor ΨMA can be set to zero. That is,

∆IMA ≈
∆S∗AΨMA

V ∗A
, (4.8)

which completes the proof of Theorem 1. Below is a summary of the assumptions used

throughout the proof of Theorem 1.

Assumption 1. The reference node operates at unity voltage, i.e., 16 0◦ p.u.

Assumption 2. In distribution systems, the change in nodal voltage relative to the actual

nodal voltage is small.
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Assuming multiple actor nodes in the system change their complex power, the change in

current flow through the monitored line M can be written as the sum effect of all individual

changes as given in Corollary 1.

Corollary 1. For a single-phase distribution system, the aggregate impact of complex power

change at multiple actor nodes (A ∈ A) on the change in current flow at a monitored line

(M) is approximated by,

∆IM ≈
∑
A∈A

∆S∗AΨMA

V ∗A
, (4.9)

The current sensitivity due to multiple actor nodes is used to derive the loss sensitivity

due to complex power change at active consumer sites.
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Figure 4.2: Sensitivity due to a single actor node: (a) change in line flow ∆IMA. (b) change
in active power losses ∆LMA.
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Corollary 2. For a single-phase distribution system, the aggregate impact of complex power

change at multiple actor nodes (A ∈ A) on the change in power loss at a monitored line (M)

is approximated by,

∆LM ≈

[∣∣∣∑
A∈A

∆S∗AΨMA

V ∗A

∣∣∣2
+ 2<

(
I∗M
∑
A∈A

∆S∗AΨMA

V ∗A

)]
ZM . (4.10)

where, ZM = RM + jXM is the impedance of the monitored line M and I∗M is the complex

conjugate of base current flow at line M .

-1

0

1

2

3

 I
Mr

 (
k
A

m
p
s)

10
-3

0 10 20 30 40 50 60 70

Line

Simulation

Theory

(a)

-0.02

0

0.02

0.04

0.06

0.08

 L
Mr

 (
k
W

)

0 10 20 30 40 50 60 70

Line

Simulation

Theory

(b)

Figure 4.3: Sensitivity due to multiple actor nodes: (a) change in line flow ∆IM . (b)
change in active power losses ∆LM .
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Proof. Consider again the system shown in Fig. 4.1. Power loss at a monitored line M can

be written as [224],

LM = |IM |2ZM (4.11)

= LM,P + jLM,Q (4.12)

= |IM |2RM + j|IM |2XM , (4.13)

where LM,P and LM,Q are the active and reactive power losses at monitored line M , respec-

tively. When the current flow at a monitored line M changes by ∆IM , power loss at that

line changes by ∆LM and can be written as,

∆LM =
[
|IM + ∆IM |2−|IM |2

]
ZM (4.14)

=
[
|∆IM |2+2<(I∗M∆IM)

]
ZM . (4.15)

The change in current flow on that line (∆IM) can be computed using the analytical ex-

pression derived in Eq. (4.9). Therefore, the change in power loss at a monitored line M

becomes,

∆LM ≈

[∣∣∣∑
A∈A

∆S∗AΨMA

V ∗A

∣∣∣2
+ 2<

(
I∗M
∑
A∈A

∆S∗AΨMA

V ∗A

)]
ZM . (4.16)

4.1.1 Validation of analytical approximation

In this section, the proposed analytical approximation of the change in power losses is vali-

dated on the IEEE 69 node test system [225]. The base voltage of this test system is 12.66

kV and standard base loads are used for the analysis. Classical load flow method is used as
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Table 4.1: Complex power change at multiple actor nodes.

Node ∆S (kVA) Base loading (kVA)
14 -5+j3 8+j5.5
24 10+j7 28+j20
34 15-j5 19.5+j14
44 20+j20 0
55 2+j2 24+j17.2
68 -9-j4 28+j20

a benchmark to evaluate the accuracy of the proposed analytical approach. Two scenarios

are created to show the accuracy of approximating the change in line current flow as well as

losses. For the first scenario, node 15 is chosen randomly to change its complex power and

the current and loss changes are monitored at line 5 − 6, i.e., ∆Ir5,15 and ∆Lr5,15, where the

superscript r represents the real part. Negative power change could represent increased DER

injections (such as PV) or decreased load power. Similarly, positive power change can result

from increased consumption or decrease in DER injection. Fig. 4.2 shows the changes in real

line current and active losses where theory represents the proposed analytical expression and

simulation is the result obtained via classical load flow-based method. It can be seen that

the proposed analytical approach is accurate in approximating the change in line current and

active power losses. The second scenario presents a case where power changes at randomly

selected actor nodes. Table 4.1 reports the actor nodes and the respective values of complex

power change as well as the base kVA loading. The change in real part of current flow and

active losses for this scenario are illustrated in Fig. 4.3. As can be seen from the figure,

the proposed method can approximate not only positive changes but also negative changes

due to increased PV injection. This demonstrates the accuracy of the proposed method in

approximating the change in line current flow and power loss. The proposed approach is

generic and can also be applied in the presence of various binary equipment such as switches,

tap changers, and switched capacitors. Such equipment are control action enablers that en-

sure optimal system operation, whereas the proposed sensitivity approach could be used as

a precursor to such control actions. Specifically, the proposed analytical approach does not

change due to the presence of switches, tap changers, or switching capacitors. However,
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thanks to the analytical nature of the proposed approach, it is a trivial task to account for

such cases. Specifically, we only need to run the load flow once (or use recently proposed

sparsity based distribution system state estimation approaches [145]) to get the base values

of voltage, and thereafter the proposed analytical method can be applied to compute loss

change at any monitored line of the system due to change in PV generation or load pattern.

The complexity of the proposed method in terms of execution time is pretty much constant

regardless of system size. This is one of the key strengths of the proposed approach. The

following section derives an upper bound on the approximation error to ensure consistency

of results obtained by the proposed analytical method.

4.1.2 Approximation error bound

This section further investigates the accuracy of the proposed approximation. First, the

approximation error is computed and analytically upper-bounded. Thereafter, the bound on

approximation error is verified using simulation scenarios tested on the IEEE 69 node test

system.

Corollary 3. For a single-phase distribution system, errors in approximating the changes

in real and imaginary parts of line current flows (Er
MA and Ei

MA, respectively) using (4.9)

are upper bounded by,

Er ≤
∑
A∈A

∆PAΨMA

V r
A(1 + Φ1)

+
∆QAΨMA

V i
A(1 + Φ2)

, (4.17)

Ei ≤
∑
A∈A

∆PAΨMA

V i
A(1 + Φ2)

+
∆QAΨMA

V r
A(1 + Φ1)

, (4.18)

where, Φ1 =
(
V i
A

V r
A

)2

and Φ2 = Φ−1
1 .

Proof. From Eq. (4.1), it can be seen that the voltage change compared to actual nodal

voltage is small as in Eq. (4.6) and thus can be ignored, which yields the approximation
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in Eq. (4.7). The error resulting from the assumption that (
∆V r

A

V r
A

and
∆V i

A

V i
A
≈ 0) is upper

bounded by Corollary 3. We can compute the approximation error (for real part of change

in current) as follows,

Er = ∆Ire −∆Îre , (4.19)

where ∆Ire is the actual change in real part of current flow and ∆Îre is the approximated

change in real part of current flow. Therefore,

Er =

[
∆PA(V r

A + ∆V r
A)

(V r
A + ∆V r

A)2 + (V i
A + ∆V i

A)2
− ∆PAV

r
A

(V r
A)2 + (V i

A)2

]

+

[
∆QA(V i

A + ∆V i
A)

(V r
A + ∆V r

A)2 + (V i
A + ∆V i

A)2
− ∆QAV

i
A

(V r
A)2 + (V i

A)2

]

= Er
1 + Er

2

Er
1 can be rewritten as,

Er
1 =

∆PA(1 +
∆V r

A

V r
A

)

V r
A(1 +

∆V r
A

V r
A

)2
[
1 +

(V i
A)2

(V r
A)2

(1+
∆V i

A
V i
A

)2

(1+
∆V r

A
V r
A

)2

] − ∆PA

V r
A

[
1 +

(V i
A)2

(V r
A)2

]

Typically in distribution systems the change in nodal voltage compared to actual voltage is

small, i.e.,
∆V r

A

V r
A
≈ 0 and

∆V i
A

V i
A
≈ 0. Therefore, the previous equation can be rewritten as,

Er
1 =

∆PA
V r
A(1 + Φ1)

[
1

T r
− 1

]

where, T r = 1 + Kr, T i = 1 + Ki, Kr =
∆V r

A

V r
A

, Ki =
∆V i

A

V i
A

and Φ1 =
(V i

A)2

(V r
A)2 . Considering the

ratio of change in voltage to actual nodal voltage is small, the quantity
∆V r

A

V r
A

will always be

less than or equal to 1− ∆V r
A

V r
A

, i.e.,

Kr ≤ 1−Kr ⇒ Kr

1−Kr
≤ 1⇒ 1

T r
− 1 ≤ 1
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∆PA
V r
A(1 + Φ1)

[
1

T r
− 1

]
≤ ∆PA
V r
A(1 + Φ1)

⇒ Er
1 ≤

∆PA
V r
A(1 + Φ1)

Similarly, Er
2 ≤

∆QA

V i
A(1 + Φ2)

.

(4.20)

Finally, by combining Er
1 and Er

2 , the error in approximating the real part of current change

is upper bounded by,

Er = Er
1 + Er

2 ≤
∆PA

V r
A(1 + Φ1)

+
∆QA

V i
A(1 + Φ2)

. (4.21)

Considering multiple actor nodes changing their complex power and repeating the same for

imaginary part of current change yields,

Er ≤
∑
A∈A

∆PAΨMA

V r
A(1 + Φ1)

+
∆QAΨMA

V i
A(1 + Φ2)

, (4.22)

Ei ≤
∑
A∈A

∆PAΨMA

V i
A(1 + Φ2)

+
∆QAΨMA

V r
A(1 + Φ1)

, (4.23)

which completes the proof of Corollary 3.

The tightness of the upper bounds in Corollary 3 are validated via simulation on the

IEEE 69 node test system. A simulation scenario is created where complex power varies at

nodes 18 and 30 by ∆P = ∆Q ∈ [−50, ..., 50] kW (and kVAr) and the change in current

flow is monitored on line 5. The actual error is computed based on Eq. (4.19), i.e., the

difference between numerical results using classical load flow and the proposed analytical

approach. The error bound is computed based on the results provided by Corollary 3.

Line 5 is randomly chosen to monitor line flow and compute the actual and approximation
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Figure 4.4: Approximation error bound using Corollary 3.

errors. However, the method is generic for any pair of actor nodes and monitored lines.

Fig. 4.4 illustrates the actual error vs. the error bound for the aforementioned simulation

scenario. The figure shows the errors in approximating real, imaginary and magnitude of

current change. It can be seen from the figure that (4.17) and (4.18) present a tight upper

bound for the actual error especially within the interval [−20, ..., 20] kW (kVAr), which is

consistent with real world power change scenarios. Therefore, the error bounds developed

in Corollary 3 ensure the consistency and accuracy of the proposed analytical approach in

approximating the change in line current. Next, this analytical framework is extended to

account for variability associated with complex power injection (or withdrawal) at multiple

active consumer sites in the system.
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4.2 Probabilistic loss sensitivity analysis

Complex power at active consumer sites could vary randomly due to the variability associated

with DER injections (such as rooftop PV units and wind turbines) or due to dynamic load

patterns. These stochastic processes inevitably impact system losses, which in turn leads to

economic losses. Therefore, modern distribution system operators require an accurate, yet

computationally efficient, loss monitoring tool that accounts for power uncertainties. This

helps to guide optimal asset management strategies to keep losses minimal in a real-time

fashion during electric vehicle planning or DER control. In this section, Corollaries 1 and 2

are used as the starting point to compute the probability distributions of change in current

and power losses at a particular monitored line, respectively. Specifically, Eq. (4.8) can be

rewritten as follows,

∆IMA = ∆IrMA + j∆I iMA,

where,

∆IrMA ≈
ΨMA(∆PA cos(θA)−∆QA sin(θA))

|VA|

∆I iMA ≈
ΨMA(−∆PA sin(θA)−∆QA cos(θA))

|VA|
.

(4.24)

Here, θA is the voltage angle of actor node A. Since multiple actor nodes impact the current

flow at line M , using Corollaries 1 and 2, we conclude that

∆IM =
∑
A∈A

∆IrMA + j
∑
A∈A

∆I iMA, (4.25)

∆LM =

[∣∣∣∑
A∈A

∆IMA

∣∣∣2 + 2<
(
I∗M
∑
A∈A

∆IMA

)]
RM

+ j

[∣∣∣∑
A∈A

∆IMA

∣∣∣2 + 2<
(
I∗M
∑
A∈A

∆IMA

)]
XM . (4.26)
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DER injection or dynamic load patterns can be modeled as a probability distribution to

account for the variability. In particular, complex power changes (withdrawal or injection) at

active consumer sites can be modeled as a random vector ∆s = [∆P1, ...,∆PN ,∆Q1, ...,∆QN ]T

with mean µ = 0 and a covariance structure captured by the covariance matrix Σ∆s. The

following subsections highlight the steps followed to derive the probability distribution of

the squared magnitude of the change in current flow that is used in Eq. (4.26) to compute

line losses.

4.2.1 Construct Σ∆s and compute kr and ki

Σ∆s contains information about the variance of complex power change at active consumer

locations that represents, for instance, the size of PV unit or the load pattern, etc. Off-

diagonal elements of the covariance matrix capture the spatial correlation of complex power

changes at different actor nodes. The spatial correlation is a byproduct of the geographical

proximity of renewable energy sources. The covariance matrix depends on the size of the

system and the number of active consumers changing their complex power as shown in Eq.

(5.27) below. pi and qi are the active and reactive power injection or consumption at the

ith active consumer site, respectively, whereas n , N is the system size. The exact Σ∆s of

a particular system can be estimated based on historical data as discussed in [226], and is

out of the scope of this work. If a node does not have DER units, the variance of complex

power of that node can be set to zero and the standard kVA loading of that node will be

used for the analysis. Additionally, the constant terms in (4.24) are arranged in kr and ki

vectors. These vectors are functions of the magnitude of nodal base voltages and the nodal-

line sensitivity relationships based system topology (defined by ΨMA ). For each system,

these vectors are fixed and can be readily computed using Eq. (4.27). It is important to

note that the proposed analytical methodology to compute loss change is generic and is valid

for any type of distribution system. However, steps to compute the intermediate values of

the final loss expression could vary with the system topology. For instance, the procedure to

determine ΨMN values of the weight vectors in (4.27) could vary with the system topology.
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Σ∆S =



σ2
p1

. . . cov(pn, p1) cov(q1, p1) . . . cov(qn, p1)
...

. . .
...

...
. . .

...
cov(p1, pn) . . . σ2

pn cov(q1, pn) . . . cov(qn, qn)
cov(p1, q1) . . . cov(pn, q1) σ2

q1
. . . cov(qn, p1)

...
. . .

...
...

. . .
...

cov(p1, qn) . . . cov(pn, qn) cov(q1, qn) . . . σ2
qn


2N×2N

(4.28)

The theoretical derivation of exact expressions for other system topology will be pursued as

part of future work.

kr =



ΨM1 cos θ1
|V1|

ΨM2 cos θ1
|V2|
...

ΨMN cos θN
|VN |

−ΨM1 sin θ1
|V1|

−ΨM2 sin θ1
|V2|
...

−ΨMN sin θN
|VN |


2N×1

ki =



−ΨM1 sin θ1
|V1|

−ΨM2 sin θ1
|V2|
...

−ΨMN sin θN
|VN |

−ΨM1 cos θ1
|V1|

−ΨM2 cos θ1
|V2|
...

−ΨMN cos θN
|VN |


2N×1

(4.27)

Here, θ = [θ1, ..., θN ]T represents the base voltage angles.

4.2.2 Probabilistic modeling of line current changes

It can be seen from Eq. (4.9) that the change in line current flows at a monitored line can

be expressed as the aggregate changes in current flows caused by every actor node in the

system. Now, consider random changes in complex power at actor nodes as given by the

covariance matrix in Eq. (5.27). Using the Lindeberg-Feller central limit theorem, each

of the probability distributions of ∆IrM and ∆I iM can be shown to converge to a Gaussian

59



distribution as,

∆IrM =
∑
A∈A

∆IrMA ≈ kTr ∆s
D→ N (0,kTr Σ∆skr), (4.29)

∆I iM =
∑
A∈A

∆I iMA ≈ kTi ∆s
D→ N (0,kTi Σ∆ski). (4.30)

Here, A is the set of actor nodes resulting in the change of current flow at line M . The terms

kTr Σ∆skr , σ2
r and kTi Σ∆ski , σ2

i represent the variances of ∆IrM and ∆I iM , respectively.

4.2.3 Compute the distribution of |∆IM |2

The squared magnitude of current change at a monitored line M can be written as,

|∆IM |2= (∆IrM)2 + (∆I iM)2. (4.31)

Since the probability distributions of ∆IrM and ∆IrM converge to Gaussian distributions, the

square of a Gaussian distribution, i.e., (∆IrM)2 and (∆I iM)2, follows a Gamma distribution

with 0.5 as the shape parameter and scale parameter twice the variance of the Gaussian

distribution [227]. That is,

(∆IrM)2 ∼ Γ(0.5, 2σ2
r) (4.32)

(∆I iM)2 ∼ Γ(0.5, 2σ2
i ) (4.33)

Typically, in distribution systems the change in real and imaginary parts of current flow are

correlated. In the proposed analytical method, this correlation is captured by Eq. (5.27)

and (4.27). That is, the Gamma distributions in Eq. (4.32) and (4.33) are correlated by

K , kTr Σ∆ski. The sum of correlated Gamma distributions Γ(0.5, 2σ2
r) and Γ(0.5, 2σ2

i ) also

follows a Gamma distribution [228],

|∆IM |2= (∆IrM)2 + (∆I iM)2 ∼ Γ(k, θ), (4.34)
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with scale and shape parameters k =
(σ2

r+σ2
i )

θ
and θ =

2(σ4
r+σ4

i +2K2)

σ2
r+σ2

i
, respectively.

4.2.4 Compute the distribution of ∆Lr
M and ∆Li

M

This subsection derives the probability distribution of ∆LrM and ∆LiM based on the approx-

imation in Corollary 2. The change in power loss at a monitored line M can be written in

terms of real and imaginary parts as,

∆LM = ∆LrM + j∆LiM

=
[
|∆IM |2+2<(I∗M∆IM)

]
RM

+ j
[
|∆IM |2+2<(I∗M∆IM)

]
XM

From (4.34), |∆IM |2∼ Γ(k, θ). Therefore,

∆LrM =
[
Γ(k, θ) + 2<(I∗M∆IM)

]
RM and,

∆LiM =
[
Γ(k, θ) + 2<(I∗M∆IM)

]
XM .

If X ∼ Γ(k, θ), then, ∀a > 0, aX ∼ Γ(k, aθ). Thus,

∆LrM = Γ(k,RMθ) + 2RM<(I∗M∆IM), (4.35)

∆LiM = Γ(k,XMθ) + 2XM<(I∗M∆IM). (4.36)

Fig. 6.6 shows a brief flowchart explaining the steps behind computing the probability

distribution of change in active power losses using the proposed analytical approach.

4.2.5 Validation via simulation

This section validates the theoretical expressions derived earlier to compute the probability

distributions of current and loss changes. For simplicity of demonstration, only the real

61



parts of both current and loss sensitivity analysis is shown. However, the proposed analytical

approach is generic and can be applied to the imaginary parts as well. The proposed PLSA

method is verified on the same IEEE 69 node test system. A scenario is created where

complex power varies at a randomly selected set of actor nodes A ∈ [5, 7, ..., 25] and the

change in current and power losses are monitored on line 10− 11. It is assumed that actor

nodes are integrated with PV units. To account for the variability in PV power outputs,

complex power change (∆s) among actor nodes is assumed to be random following a zero-

mean Gaussian distribution with the covariance structure shown in Eq. (5.27). Although

we assume a Gaussian distribution for power changes, the proposed method is generic to

any choice of probability distribution. Additionally, PV power injection among actor nodes

is correlated due to geographical proximity. Therefore, Σ∆s captures those relationships by

the off-diagonal covariance terms. For this particular case study, Σ∆s is defined as follows.

Active power variance on the diagonal is set to be 15 kW for nodes integrated with PV units.

The reactive power variance for those nodes is set to 10 kVAr. For off-diagonal elements

relating the change in active power among actor nodes, i.e., cov(∆Pi,∆Pk) = 0.7 where

i, j ∈ A and i 6= j. Furthermore, the covariance of change in reactive power cov(∆Qi,∆Qk)

Figure 4.5: A flowchart of the proposed analytical PLSA approach.
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is set to 0.6. Finally, the covariance between active and reactive power change cov(∆Pi,∆Qk)

is set to 0.3. Variance and covariance of PV units in this scenario are kept the same for all

actor nodes. However, the proposed approach is generic to accommodate various types of

Σ∆s structures.

The proposed analytical approach is compared to the benchmark results obtain by classical

load flow-based sensitivity method. For the proposed analytical approach, firstly, the kr and

ki are computed using Eq. (4.27), respectively. Then, the variance and covariance terms of

change in real and imaginary parts of current are computed as,

Σ∆IM =

kTr Σ∆skr kTi Σ∆skr

kTi Σ∆skr kTi Σ∆ski


=

 0.8351 −0.0354

−0.0354 0.0787

× 10−3.

(4.37)

Thereafter, the distribution of change in real part of current is computed by sampling ran-

dom variables using Eq. (4.29). For the benchmark results, load flow scenarios are created

using the covariance matrix defined in (5.27). To illustrate the efficacy of the proposed ap-

proach, five different cases (namely case a, b, c, d, and e) are created by varying the number

of load flow scenarios (as well as the number of random variables sampled with the proposed

analytical approach). Specifically, we choose 100 simulations vs. 100 random variables, 1k

simulations vs. 1k random variables, 10k simulations vs. 10k random variables, 100k simu-

lations vs. 100k random variables, and 1m simulations vs. 1m random variables, for cases,

a, b, c, d, and e, respectively. Fig. 4.6 shows the distribution of real part of current change

on line 10-11 for all cases using the proposed analytical approach (red) compared to the

simulation based method (blue). It can be inferred from the figure that the probability dis-

tributions shown in cases a, b, c, and d are less accurate than the distributions in case e. This

is because the accuracy of the probability distribution improves with the increased number

of scenarios (or number of random variables in the case of the proposed probabilistic ap-

proach). In order to make these comparisons objective, we use the Jensen-Shannon distance
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Figure 4.6: Probability distribution of change in real part of current flow ∆IrM for cases
a, b, c, d and e.

(JSD), an information-theoretic similarity measure, to validate the accuracy of the proposed

probabilistic approximation (compared to simulation-based classical load flow method) of

both distributions of change in current flow as well as active power losses. The similarity (or
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JSD) between simulations based and theoretical distributions can be computed as [229],

JSD(P ||Q) =
1

2
DKL(P ||M) +

1

2
DKL(Q||M), (4.38)

where, M = 1
2
(P +Q) and DKL is the Kullback-Leibler (KL) divergence metric as a measure

of the information lost when Q is used to approximate P evaluated at the support x ∈ X

and can be written as,

DKL(P ||Q) =
∑
x∈X

P (x) log
(P (x)

Q(x)

)
(4.39)

The JSD distance is used for validation instead of the KL divergence because the JSD is

always symmetric, well defined, and bounded [230]. JSD can vary between 0 (meaning the

two distributions are identical) and 1 (meaning the distributions are completely different).

The JSD between actual simulation-based and theoretical distributions of change in current

flow is in the order of 10−2, which implies that the probabilistic approximation is accurate

when compared to existing simulation-based method.

Subsequently, the shape and scale parameters of the Gamma distribution in Eq. (4.34)

are computed as k = 0.5913 and θ = 0.0015 to obtain the probability distribution of the

change in active power loss on line 10 − 11 using Eq. (4.35). The distribution of change

in active power losses is computed for case e and illustrated in Fig. 4.7. The JSD between

actual simulation-based and theoretical distribution of change in active power loss is found

to be in the order of 10−2. These results imply that it is possible to accurately evaluate the

probability of line current flow or active power losses exceeding a certain threshold (γ). For

instance, Table 4.2 shows the probability of real part of current change exceeding γc = 0.002

kAmps and active losses exceeding γl = 0.5 kW using classical method and the proposed

analytical approach.

Table 4.2: Probability of exceeding the threshold γ.

Probability Simulation Theory
P(|∆IrM |> γc) 0.8630 0.8561
P(|∆LrM |> γl) 0.9404 0.9396
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Figure 4.7: Probability distribution of change in active power losses ∆LrM .

Table 4.3: Execution time (s).

Case Simulation Theory
case a 0.2897 0.0472
case b 2.1852 0.0482
case c 19.1739 0.0694
case d 190.4614 0.0934
case e 1871.84421 0.2373

Finally, the computational complexity of the proposed method is compared via the exe-

cution time taken to compute the probability distributions of change in current and power

loss for a given monitored line M , in this case, line 10 − 11. The analysis is implemented

with intel i-9 processor for all cases illustrated in Fig. 4.6 and the corresponding execution

time taken by both approaches is reported in Table 4.3. The proposed analytical approach

outperforms the classical simulation based method regardless of the number of simulations

(or random variables in the case of the proposed approach) used to obtain the probability

density curves. This is because sampling random variables from well-established probability

distributions is faster compared the classical scenario-based analysis, which require simu-

lating large number of scenarios to achieve the required accuracy. This implies that the

proposed analytical framework accurately approximates the distribution of change in cur-

rent flow and in line losses with significantly lower computational effort. It is important to

note that the computational efficiency of the proposed approach is consistent regardless of
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system size or choice of monitored lines. Therefore, with the proposed approach, it is pos-

sible to significantly simplify the process of loss monitoring in modern distribution systems,

which enables various downstream applications such as EV and DER planning.

4.3 Summary

This chapter proposes a new probabilistic loss sensitivity analysis framework that builds off

an analytical approximation of the change in power losses at a given line due to complex

power changes at other nodes in the system. First, an analytical expression is derived to

compute the change in line losses for deterministic power changes at one actor node. Then,

the effect of random power changes at multiple active consumer sites is examined using the

proposed approach. It is shown that the probability distribution of change in line power

losses is well approximated by a Gamma distribution. The proposed analytical expressions

are validated via simulations on the IEEE 69 node test system. Simulation results show that

approximating the change in power loss at any line in the system is highly accurate with a

JSD in the order of 10−2. In addition, the proposed approach is computationally efficient

when compared to traditional load flow-based sensitivity methods. In the next chapter,

this probabilistic loss sensitivity framework is derived for 3-phase unbalanced distribution

systems.
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Chapter 5

Loss sensitivity analysis for

three-phase unbalanced distribution

systems

Despite their numerous benefits, the rapid onset of DERs and EVs introduces new technical

challenges to distribution systems including (1) complex system operation due to reverse

power flows [231], (2) voltage instability issues [232], (3) system imbalance due to high con-

centration of consumer activities on the three phases [24]; and (4) increased power losses

due to poor DER and EV planning as well as their temporal uncertainty, caused by abrupt

power changes [233]. Therefore, based on our preliminary results in Chapter 4, this chapter

proposes a new stochastic framework that derives loss sensitivity for the general case, i.e.,

three-phase unbalanced distribution systems. As will be shown in this chapter, the extension

to three phase unbalanced case is not trivial and is crucial for modern distribution system

planning and operation given the variability in consumer activities on different phases of the

system. The accuracy of the proposed approach is validated using the unbalanced IEEE 37

and IEEE 123-node test systems. It has been shown that the deterministic approximation

offers over 98% accuracy via the mean absolute percentage error (MAPE) and the probabil-

ity distributions can be estimated with very low Jensen-Shannon distances. The proposed
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framework is used in Chapter 7 for EV charging station allocation in three-phase distribution

systems.

5.1 Loss sensitivity for unbalanced systems

The proposed approach uses a three-phase unbalanced distribution system model with N

nodes connected by L distribution lines as shown in Fig. 5.1. Active and reactive power

setpoints can change at any phase of any node in the system due to various consumer

activities such as PV integration, EV charging, or load variability. This change induces

variability in current flow at certain distribution lines, causing power losses to change. For

example, an increase in local load at phase a of node N e increases the current flow at

line ea, which in turn increases losses. To distinguish nodes where complex power changes

and lines where current flow is monitored, two terminologies are used: (1) Actor node (A)

refers to the node where complex power changes happen; and (2) Monitored line (M) is the

distribution line where current flow or power loss is monitored. Let ∆ShA = ∆P h
A + j∆Qh

A be

the change in active and reactive power at actor node A where h ∈H , {a, b, c} represents

the phase sequence. Then, the current flow at the monitored line M changes from IhM to

Ih
′

M , IhM + ∆IhMA, where ∆IhMA is change in current flow at phase h of line M due to

complex power change ∆ShA at phase h of actor node A. Theorem 2 provides an analytical

approximation of ∆IhMA for unbalanced distribution systems.

Theorem 2. For a three-phase unbalanced distribution system, the change in current flow

at monitored line M (i.e., ∆IhMA , [∆IaMA,∆I
b
MA,∆I

c
MA]T ) due to complex power changes

at the actor node A can be approximated as,

∆IhMA u
[

∆Sa∗
A Ψa

MA

V a∗
A

,
∆Sb∗

A Ψb
MA

V b∗
A

,
∆Sc∗

A Ψc
MA

V c∗
A

]T
, (5.1)

where, Sh∗A ∀h ∈H is the complex conjugate of power change at actor node A, V h∗
A ∀h ∈H is

the complex conjugate of actor node base voltage, and Ψh
MA∀h ∈H is the influence indicator

between the actor node and monitored line as derived in the proof below.
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Proof. Consider the hypothetical three-phase unbalanced distribution system shown in Fig.

5.1. The three-phase current flow through line eh , [ea, eb, ec]
T∀h ∈ H can be written in

terms of the nodal current flows (i.e., Ihe , [Iae , I
b
e , I

c
e ]
T ) as,

Ihe =
∑
k∈Ne

[
Iak , I

b
k, I

c
k

]T
=
∑
k∈Ne

[
Sa∗k
V a∗
k

,
Sb∗k
V b∗
k

,
Sc∗k
V c∗
k

]T
, (5.2)

where, k ∈ Ne ∈ N , and Sa∗k and V a∗
k represent the complex conjugate of power and base

voltage of actor node k, respectively. It is important to note that the following assumption

is used throughout this chapter,

Assumption 3. The source node operates at a unity voltage magnitude, i.e., 1 0◦, 1 120◦,

and 1 −120◦ for phases a, b, and c, respectively.

When complex power changes at any of the phases of actor node k ∈ Ne by ∆She ,[
∆Sak ,∆S

b
k,∆S

c
k

]T
, the current flow through line eh changes to,

Ih
′

e =
∑
k∈Ne

[
Ia
′

k , I
b′

k , I
c′

k

]T
(5.3)

=
∑
k∈Ne

[
Sa∗k + ∆Sak
V a∗
k + ∆V a∗

k

,
Sb∗k + ∆Sbk
V b∗
k + ∆V b∗

k

,
Sc∗k + ∆Sck
V c∗
k + ∆V c∗

k

]T
.

 

 

 

  

 

1

5
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6

3 4

  

  Actor node

Figure 5.1: Illustration of a hypothetical three-phase unbalanced distribution system.
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Here, ∆V he ,
[
∆V a∗

k ,∆V b∗
k ,∆V c∗

k

]T
represents the complex conjugate of voltage (e.g.,

∆V a∗
k = ∆V a,r

k − j∆V a,i
k ) at node k due to nodal complex power changes ∆She . Using

equations (5.2) and (5.3), it is possible to compute the change in complex current flow

(∆Ihe , Ih
′

e − Ihe ) due to complex power changes as,

∆Ihe =
∑
k∈Ne

[
Sa∗k + ∆Sak
V a∗
k + ∆V a∗

k

,
Sb∗k + ∆Sbk
V b∗
k + ∆V b∗

k

,
Sc∗k + ∆Sck
V c∗
k + ∆V c∗

k

]T
−
∑
k∈Ne

[
Sa∗k
V a∗
k

,
Sb∗k
V b∗
k

,
Sc∗k
V c∗
k

]T
=
∑
k∈Ne

[
V a∗
k (Sa∗k + ∆Sa∗k )− Sa∗k (V a∗

k + ∆V a∗
k )

V a∗
k (V a∗

k + ∆V a∗
k )

,

V b∗
k (Sb∗k + ∆Sb∗k )− Sb∗k (V b∗

k + ∆V b∗
k )

V b∗
k (V b∗

k + ∆V b∗
k )

,

V c∗
k (Sc∗k + ∆Sc∗k )− Sc∗k (V c∗

k + ∆V c∗
k )

V c∗
k (V c∗

k + ∆V c∗
k )

]T
(5.4)

Eq. (5.4) can be simplified further by considering the following assumption on voltage change

[20],

Assumption 4. The change in voltage compared to actual voltage states is small.

Therefore, Eq. (5.4) reduces to,

∆Ihe u
∑
k∈Ne

[
∆Sa∗k

V a∗
k + ∆V a∗

k

,
∆Sb∗k

V b∗
k + ∆V b∗

k

,
∆Sc∗k

V c∗
k + ∆V c∗

k

]T
. (5.5)

Now assume that there is only on actor node (k = A ∈ N e) where complex power varies,

it is possible to write the change in current flow in terms of real and imaginary parts for

different phases as,

∆Ihe u
[
∆Ia,re + j∆Ia,ie ,∆Ib,re + j∆Ib,ie ,∆I

c,r
e + j∆Ic,ie

]T
where, for phase a, ∆Ia,re and ∆Ia,re can be written (without loss of generality) according to

Lemma 1.
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Lemma 1. The current flow can be decomposed into terms of real and imaginary parts as

follows,

∆Ia,re + j∆Ia,ie ,
∆P a

AV
a,r
A + ∆Qa

AV
a,i
A

(V a,r
A )2 + (V a,i

A )2

+ j
∆PAV

a,i
A −∆QAV

a,r
A

(V a,r
A )2 + (V a,i

A )2
=

∆Sa∗A
V a∗
A

(5.6)

The complete proof of Lemma 1 is shown in Appendix A for phase a and similarly, ∆Ihe

can be decomposed into real and imaginary parts for phases b and c. This concept can

be generalized for cases where A /∈ N e as shown in Fig. 5.1. Thus, for any line segment

(M ∈ eh), if A /∈N e, the influence indicator (ΨMA) between the actor node A and line M

can be set to zero. This is because complex power changes at these nodes do not impact

current flow at M ∈ eh. Otherwise (i.e., if A ∈N e), it can be set to 1. Therefore,

∆IhMA u
[

∆Sa∗
A Ψa

MA

V a∗
A

,
∆Sb∗

A Ψb
MA

V b∗
A

,
∆Sc∗

A Ψc
MA

V c∗
A

]T
, (5.7)

Hence, proved.

Theorem 2 computes the change in current flow at M due to a single actor node A.

However, there could be scenarios where multiple actor nodes (e.g., A) impact the current

flow at M . This is because complex power may vary at different locations simultaneously.

Hence, it is possible to extend Eq. (5.7) to the case of multiple actor nodes. Since there is

a direct relation between every pair of actor-observation nodes, the change in current flow

∆IhM can be written as the aggregate sum of individual changes induced by the different

actor nodes, i.e.,

∆IhM u
∑
A∈A

[
∆Sa∗

A Ψa
MA

V a∗
A

,
∆Sb∗

A Ψb
MA

V b∗
A

,
∆Sc∗

A Ψc
MA

V c∗
A

]T
. (5.8)

Note that the subscript A in ∆IhM has been dropped to note the impact of multiple actor

nodes instead of one actor node. Using Eq. (5.8), it is possible to compute the change in

power losses at line M due to the aggregate impact of multiple actor nodes as shown in

72



Theorem 3.

Theorem 3. For a three-phase unbalanced distribution system, the change in power loss

at any monitored line M due to the aggregate impact of complex power changes at multiple

actor nodes A can be computed as,

(5.9 )∆Lh
M ∼

∣∣∣∣∣∑
A∈A

∆Sa∗A Ψa
MA

V a∗
A

∣∣∣∣∣
2

+ εa,

∣∣∣∣∣∑
A∈A

∆Sb∗A Ψb
MA

V b∗
A

∣∣∣∣∣
2

+ εb,

∣∣∣∣∣∑
A∈A

∆Sc∗A Ψc
MA

V c∗
A

∣∣∣∣∣
2

+ εc

Zh
M,

where εh = 2<
(
Ih∗M
∑

A∈A
∆Sh∗

A Ψh
MA

V h∗
A

)
∀h ∈ [a, b, c] and Zh

M is the impedance of line M .

Proof. According to [224], power losses at any line M can be computed as,

Lh
M =

[
|IaM |2, |IbM |2, |IcM |2

]
Zh

M (5.10)

where Zh
M is the impedance matrix of line M and can be written in terms of the three phases

a, b, and c as,

Zh
M =


Zaa
M , Z

ab
M , Z

ac
M

Zba
M , Z

bb
M , Z

bc
M

Zca
M , Z

cb
M , Z

cc
M

 (5.11)

when the current flow at line M changes from IhM to IhM + ∆IhM∀h ∈ [a, b, c], power loss

changes from Lh
M to Lh

M + ∆Lh
M, i.e.,

∆Lh
M = [|IaM + ∆IaM |2−|IaM |2, |IbM + ∆IbM |2−|IbM |2, |IcM + ∆IcM |2−|IcM |2]Zh

M. (5.12)

Note that the terms |IhM + ∆IhM |2−|IhM |2 can be rewritten as |∆IhM |2+2<
(
Ih∗M ∆IhM

)
. There-

fore, using Eq. (5.8), ∆Lh
M can be written as,

(5.13)∆Lh
M ∼

∣∣∣∣∣∑
A∈A

∆Sa∗A Ψa
MA

V a∗
A

∣∣∣∣∣
2

+ εa,

∣∣∣∣∣∑
A∈A

∆Sb∗A Ψb
MA

V b∗
A

∣∣∣∣∣
2

+ εb,

∣∣∣∣∣∑
A∈A

∆Sc∗A Ψc
MA

V c∗
A

∣∣∣∣∣
2

+ εc

Zh
M.

Hence, proved.

The main analytical expressions derived in Eq. (5.8) and (5.13) are used in the next

section to derive the stochastic sensitivity framework.
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5.2 Analytical stochastic sensitivity framework

The increased integration of DERs and EVs as well as variable load patterns introduce high

level of uncertainty that can impact system reliability. Fortunately, it is possible to character-

ize these uncertainties probabilistically and propagate the uncertainties to loss computations.

Specifically, Fig. 5.2 shows the overall stochastic framework for loss sensitivity. Each of these

steps are detailed below.

5.2.1 Derive the probability distribution of line flow

Given random variations of complex power changes, the parameters of the distribution of

change in current flow is analytically derived Theorem 4.

Theorem 4. For a three-phase unbalanced distribution system, the distribution of current

change at any phase h ∈H , {a, b, c} of any monitored line M due to the aggregate impact

of random complex power changes at multiple actor nodes A converges to a multivariate

Gaussian, ∆IhM,r

∆IhM,i

 Dist.−−−→N

µri ,
µr
µi

 ,Σri ,

(σhr )2 (σhri)
2

(σhri)
2 (σhi )2


 (5.14)

Deriving the probability distribution of line flowUnbalanced distribution system

 power vector Fix covariance 
Compute parameters of Multivariate Gaussian: 

, ,
 

Derive the distribution of  using Chi-
square  Gamma

parameters of the Gamma distribution: 
 

Compute the parameters of  distributionLoad flow analysis 

Topology  

vectors

Simulation

Theory

Figure 5.2: Flow chart of the proposed stochastic approach.
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where, ∆IhM,r and ∆IhM,i are the changes in real and imaginary parts of current at phase h

of node M .

Proof. Eq. (5.1) can be rewritten as,

(5.15)∆IhMA ≈ Ψa
MA

[
∆P a

A cos θaA −∆Qa
A sin θaA

|V a
A |

+ j
−∆P a

A sin θaA −∆Qa
A cos θaA

|V a
A |

]
.

Here, θaA represents the voltage angle of A ∈ A. Note that the same expression can be

written for phases b and c but omitted for brevity. Based on this expression, the terms ΨMA

sin(.), cos(.), and |VA| can be aggregated in kar and kai for the active and reactive power

changes, respectively as shown in Eq. (5.16) and (5.17).

(5.16)
kar =

[
Ψa
M1 cos θa1
|V a

1 |
,
Ψa
M2 cos θa1
|V a

2 |
, . . . ,

Ψa
MN cos θaN
|V a
N |

,

−Ψa
M1 sin θa1
|V a

1 |
,−Ψa

M2 sin θa1
|V a

2 |
, . . . ,−ΨMNa sin θaN

|V a
N |

]T

(5.17)
kai =

[
−Ψa

M1 sin θa1
|V a

1 |
,−Ψa

M2 sin θa1
|V a

2 |
, . . . ,−Ψa

MN sin θaN
|V a
N |

,

−Ψa
M1 cos θa1
|V a

1 |
,−Ψa

M2 cos θa1
|V a

2 |
, . . . ,−ΨMNa cos θaN

|V a
N |

]T
The complete definition of kr and ki vectors for phases b and c is listed in Appendix B.

Note that complex power in Eq. (5.15) can vary randomly due to uncertainty associated

with consumer activities. If ∆s , [∆P1, ...,∆PN ,∆Q1, ...,∆QN ]T represents the vector of

complex power change for any phase, it is possible to model the random behavior of consumer

activities with mean µ = 0 and a covariance structure Σ∆s. Since power change can have

correlation due to geographical proximity, this covariance matrix captures the variance (on

the main diagonal) of power changes as well as the cross-correlation of power change on

the off-diagonal terms. This matrix could be constructed using historical data or using

sparsity-based state estimation techniques [145]. Having constructed the covariance matrix,

it is possible to compute the probability distribution of real and imaginary parts of current

change due to the impact of all actor nodes. Specifically, by invoking Lindeberg-Feller
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Central Limit theorem, the terms ka,Tr ∆s and ka,Ti ∆s converge to a zero-mean Gaussian

distribution, i.e.,

∆IaM,r

∆IaM,i

 ≈
ka,Tr ∆s

ka,Ti ∆s

 Dist.−−−→

N (0,ka,Tr Σ∆sk
a
r ),

N (0,ka,Ti Σ∆sk
a
i )

 (5.18)

Therefore, the distribution of real and imaginary parts of current flow for any phase can be

computed as,

∆IhM,r =


N (0, (σar )

2 , ka,Tr Σ∆sk
a
r )

N (0, (σbr)
2 , kb,Tr Σ∆sk

b
r)

N (0, (σcr)
2 , kc,Tr Σ∆sk

c
r)

 , (5.19)

∆IhM,i =


N (0, (σai )

2 , ka,Ti Σ∆sk
a
i )

N (0, (σbi )
2 , kb,Ti Σ∆sk

b
i )

N (0, (σci )
2 , kc,Ti Σ∆sk

c
i )

 (5.20)

In practical scenarios, there exists a correlation between the real and imaginary parts of

current change. This relation is captured by the term (σari)
2 , ka,Tr Σ∆sk

a
i . Therefore,

the distribution of real and imaginary parts of current change converges to a multivariate

Gaussian, i.e.,

∆IaM,r

∆IaM,i

 Dist.−−−→N

µri ,
µr
µi

 ,Σri ,

(σar )
2 (σari)

2

(σari)
2 (σai )

2


 (5.21)

For power changes about some base load value, it is reasonable to set the term µri to

zero. Note that the bold notation N is used for multivariate representation. Similarly, the

procedure can be followed for phases b and c. Hence, Theorem 4 is proved.

Next, the distribution of current flow is used to derive the probability distribution of

losses at any monitored line M .
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5.2.2 Derive the distribution of |∆IhM |2

It can be seen from Eq. (5.9) that the distribution of losses at any line M is related to the

change in current flow. Using distribution of change in current flow derived in Theorem 4,

it is possible to compute the distribution of squared magnitude of current for any phase as

|∆IhM |2=
(
∆IhM,r

)2
+
(
∆IhM,i

)2 ∀h ∈H. The distribution of a squared Gaussian follows a Chi-

square distribution and the sum of squared Gaussian distributions converges to a Gamma

distribution [20, 227] with the following shape and scale parameters,

(∆IhM,r

)2(
∆IhM,i

)2

 Dist.−−−→

Γ
(
0.5, 2(σhr )2

)
Γ
(
0.5, 2(σhi )2

)
 . (5.22)

The sum of Gamma random variables in Eq. (5.22) also follows a Gamma random variable

with shape and scale parameters κh and θh, respectively [228],

|∆IhM |2
Dist.−−−→ Γ (κh, θh) , (5.23)

where, κh ,
((σh

r )2+(σh
i )2)

θh
and θh ,

2((σh
r )4+(σh

i )4+2K2)
(σh

r )2+(σh
i )2 . Note that the correlation of the

multivariate random variables in Eq. (5.14) is reflected in the Gamma distribution by the

correlation parameter K.

5.2.3 Parameters of ∆Lh
M considering three phase mutual coupling

To derive the distribution of losses at line M , the effect of the base current must be con-

sidered. Specifically, the equivalent of the term εh in Eq. (5.9) can be computed by taking

the mean of the term 2<
(
Ih,∗M ∆IhM

)
, which results in a shifted Gamma distribution by the

constant ch. Therefore, the probability distribution of losses ∆Lh
M follows a shifted Gamma

distribution with shape and scale parameters κh and θh, respectively, denoted by Γ̂. Finally,

by considering the effect of the mutual impedance across different phases in Eq. (5.11), the
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distribution of ∆Lh
M can be computed as,

∆Lh
M

Dist.−−−→
[
Γ̂ (κa, θa) , Γ̂ (κb, θb) , Γ̂ (κc, θc)

]
Zh

M (5.24)

where, Zh
M is defined according to Eq. (5.11). Eq. (5.24) can be simplified further in cases

where complex power varies simultaneously at the three phases, which results in equal scale

parameters across the three phases, i.e., θa = θb = θc = θ [234]. That is,

∆Lh
M

Dist.−−−→


Γ̂ (κa + κb + κc, θ)

(
Zaa + Zab + Zac , Z

′
a

)
Γ̂ (κa + κb + κc, θ)

(
Zba + Zbb + Zbc , Z

′

b

)
Γ̂ (κa + κb + κc, θ)

(
Zca + Zcb + Zcc , Z

′
c

)
 (5.25)

Eq. (5.25) can be used to compute the distribution change in real losses by considering the

real part of the line impedance [Z
′
a, Z

′

b, Z
′
c]. Finally, for any Gamma distributed random

variable, y ∼ Γ(κ, θ)→ ay ∼ Γ(κ, aθ)∀a > 0. Therefore,

∆Lh
M

Dist.−−−→


Γ̂
(
κ
′
, Z
′
aθ
)

Γ̂
(
κ
′
, Z
′

bθ
)

Γ̂
(
κ
′
, Z
′
cθ
)
 (5.26)

where, κ
′

= κa + κb + κc. Next section validates the effectiveness of the proposed approach

for three-phase unbalanced distribution systems.

5.3 Verification via simulation

The efficacy of the proposed approach is verified via simulations on the IEEE 37 and IEEE

123-node test systems [235]. For brevity of demonstration, only the real part of change in

current flow and losses are reported and the method is generic and can be used to compute the

change in imaginary parts as well. First, a scenario is simulated where complex power changes

deterministically across randomly selected actor nodes. Table 5.1 shows these actor nodes,

78



phases, and the power change values. The choice of power change trends at different phases

is different and that is to reflect practical scenarios as there could be different consumer

activities impacting losses simultaneously. For example, negative power change can result

from increased PV injection whereas a positive power change could mean an increase in EV

charging load. It is important to note that the power profile for nodes with no complex

power change is kept according to the standard specifications of the system [235]. Next, we

use the proposed approach to compute the change in current flow as well as the change in

losses across the three phases. To validate the proposed approach, we use the actual changes

computed via simulation-based load flow method. Fig. 5.3 and 5.4 show the change in real

part of current flow at all three phases of the monitored lines for the IEEE 37 and IEEE

123-node test systems due to the complex power changes tabulated in Table 5.1. Theory

refers to the proposed approach whereas simulation is the classical load flow based method.

It can be seen from the figures that the proposed approach approximates the change in

current with high accuracy compared to the actual load flow method. Note that lines closer

to the source node, e.g., node 2,3,...,etc., experience higher changes compared to other lines,

which is expected due to the radial structure of these systems. In addition, note that for

the IEEE 123-phase c, no change in current flow is experienced for lines 20,...,50. This is

because the destination nodes of these lines are not among the actor node list in Table 5.1.

Having computed the change in line current flow, it is now possible to compute the change

in line losses. Therefore, the aggregate change in line losses due to multiple actor nodes is

computed via the proposed approach (Eq. 5.9) and shown in Fig. 5.5. It is clear from the

figure that, for all cases, the proposed approach approximates actual changes in power losses

with high accuracy.

To show the advantage of the proposed approach in terms of accounting for uncertainties

associated with consumer activities, we simulate a scenario where power changes randomly

at different nodes. In particular, we model the stochastic nature of consumer activities as

a trend component along with a zero mean multivariate Gaussian with covariance structure

Σ∆s as shown in Eq. (5.27). The diagonal terms represent the variance in active and

reactive power change. In this particular case, we assume 25 kW and 4 kVAr for simplicity.
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Table 5.1: Complex power changes (in kVA) for randomly selected actor nodes.

System details Phase a Phase b Phase c

IEEE 37
Node

[2,5,10,20,
28,30]

[7,11,17,25,
27,29,31,35]

[4,6,8,10,
...,36]

∆S 60-j15 40+j5 30+j0

IEEE 123
Node

[2,4,6,
8,10..,30]

[20,22,24,
26,28,...,65]

[70,72,74,
...,110]

∆S 20-j15 40+j5 -30-j3
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Figure 5.5: Change in ∆LhM,r due to aggregate impact of multiple actor nodes.

However, the approach can be applied with different active and reactive power variance. It

is important to note that, the change in active and reactive power at different actor nodes

can be correlated due to geographical proximity. This is reflected in the covariance structure

by the off-diagonal terms of Σ∆s. The covariance matrix in Eq. (5.27) is defined for the

IEEE 37-node test system as,
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(5.27)

where actor nodes are chosen randomly for the three phases according to Eq. (5.28),

Aa , [2, 3, 4, ..., 36] Ab , [2, 4, 6, ..., 36]

Ac , [2, 7, 12, ..., 36]. (5.28)

It is important to note that the proposed approach and the theoretical derivations will also

work for other distribution models for power change. With this covariance structure, the

parameters of the multivariate Gaussian in Eq. (5.21) can be computed for any phase given

any monitored line. In this scenario, we compute the parameters of the distribution for

monitored line number 2 as shown in Eq. (5.29),
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(σar )
2 (σari)

2

(σari)
2 (σai )

2

 =

 0.7671 −0.0058

−0.0058 0.6542

 . (5.29)

The resulting distribution of change in current flow for the three phases of this monitored line

are illustrated in Fig. 5.6. The proposed approach (in red) uses the multivariate Gaussian

in Eq. (5.21) whereas the simulation method (blue) samples random variables by running

multiple load flow-based scenarios. For fair comparison, the number random variables sam-

pled with the proposed approach and the number of scenarios for load flow-based method

are kept the same, i.e., 1 million. This is also done to ensure high statistical-inference ac-

curacy where the probability density function of change in current flow stabilizes. As can

be seen from the figure, the proposed stochastic approach estimates the actual distribution

with high accuracy. Note that the highest change in current flow is exhibited at phase a of

the monitored line and that is because a larger number of actor nodes change their complex

power (Eq. (5.28)) at phase a relative to phases b and c. This allows computing shape

and scale parameters of the Gamma distribution to determine the change in power losses at

the monitored line (Eq. (5.24)). For this case, the shape and scale parameters turn out to

be [0.99, 0.97, 0.91] and [13.00, 2.01, 0.18] for phases a, b, and c, respectively. The resulting

Gamma distributions are depicted in Fig. (5.7), where consumer activities at phase a result

in higher losses. The same procedure is repeated for the IEEE 123-node test system but with

different active and reactive power variance (i.e., 25kW and 12kVAr) at [50, 25, 26] randomly

selected actor nodes for phases a, b, and c, respectively. For brevity of demonstration, only

the resulting distribution of change in losses is reported as illustrated in Fig. 5.8.

Next, the accuracy of the proposed approach compared to actual results (obtained via clas-

sical load flow-based method) is evaluated. First, we use the mean absolute percentage error

Table 5.2: Accuracy evaluation of the proposed approach.

System
Deterministic measure (%) Stochastic measure
Mean Min Max 0 ≤ JSD ≤ 1

IEEE 37 0.7526 0.0004 3.4133 0.0030
IEEE 123 1.1669 0.0032 3.5655 0.0048
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(MAPE) to test the accuracy of the deterministic approximation of change in line losses.

Specifically, we run multiple Monte-Carlo simulations using the spatial distribution of actor

nodes (Table 5.1) while changing their active power with in the range [−∆Sb,+∆Sb] with

a step of 1 kW. In this case, ∆Sb is chosen to be the maximum base load (across the three

phases) to test the approach under scenarios of abrupt power changes. Finally, the MAPE

is recorded for every scenario for both IEEE 37 and IEEE 123-node test systems and is sum-

marized in the deterministic part of Table 5.2. The table shows that the proposed approach

offers over ∼ 96% approximation accuracy (i.e., ∼ 4% maximum MAPE) for very large power

changes while the approximation accuracy is well over 98% when considering mean MAPE.

Note that these values include errors obtained for all phases in both systems. In addition, to

evaluate the accuracy of approximating the probability distribution of change in line losses,

we use Jensen–Shannon distance (JSD), a standard statistical-distance measure that is used

to quantify the similarity between two probability distributions. JSD ranges between 0 and
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Figure 5.8: Distribution of ∆LhM,r for IEEE 123-node test system.
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Table 5.3: Computational complexity analysis.

Method IEEE 37 IEEE 123
Proposed (s) 0.6361 0.6762

Simulation-based (s) 1490 7630

1 with 0 representing identical distributions and 1 representing completely different distri-

butions. We evaluate the JSD measures for the probability distributions shown in Fig. 5.7

and 5.8 and report the average JSDs (over the three phases) in Table 5.2. It can be seen

from the table that the JSD is in the order of 10−3, which implies that the probability dis-

tribution computed with the proposed approach estimates the actual distribution (obtained

via classical load flow approach) with high accuracy.

Finally, the computational efficiency of the proposed approach is analyzed by compar-

ing the execution time taken by the proposed approach and simulation-based method to

compute the distribution of change in current flow and line losses. It is important to note

that all cases have been analyzed with an Intel i-9 based processor running at 3.60GHz.

The proposed approach computes the parameters of standard probability distributions while

the classical simulation-based method uses multiple Monte-Carlo simulations to account for

the randomness introduced by power changes. In this case, 1 million random variables are

sampled with the proposed approach and 1 million Monte-Carlo simulations are performed

with the classical simulation-based method. The execution time (in seconds) taken by both

approaches is reported in Table 5.3. It is found that the proposed approach computes the

distribution of change in line losses for the IEEE 37-node test system within a second, com-

pared to 1490 seconds in the classical simulation-based method. In addition, the proposed

approach computes the distribution of line losses within a second for the IEEE 123-node

test system whereas it takes the simulation-based approach 7630 seconds to compute the

same distribution. It can also be seen how the gap in computational complexity increases

for larger systems with the classical simulation-based approach whereas the computational

efficiency is constant (i.e., within 1 second) with the proposed approach.
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5.4 Summary

This chapter proposes a new generic framework that analytically derives probabilistic ex-

pressions that quantify the impact of consumer technologies on line losses in three-phase

unbalanced distribution systems. First, the proposed approach starts with a deterministic

approximation of change in line current flow and losses due to the effect of power change

at multiple consumer sites. Then, these approximations are used to derive the probabil-

ity distribution of losses. One of the strengths of the proposed approach is the ability to

systematically incorporate the randomness that results from abrupt power changes at any

phase due to grid-edge technologies. The performance of the proposed approach is validated

via simulations on the IEEE 37 and IEEE 123-node test systems. It has been found that

the proposed approach offers a consistent computational efficiency, i.e., an execution time

within a second, regardless of the test system used. However, with the classical load flow-

based approach, the computational complexity has significantly increased as the size of the

test system increased. In addition to this computational efficiency, the proposed approach

offers high approximation accuracy. For example, it has been found that the average MAPE

errors are < 2% with a JSD in the order of 10−3 for the probability distribution of change

in power losses. In Chapter 7, the proposed approach will be used for EV charging station

allocation.
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Chapter 6

Sensitivity-based voltage monitoring

Many recent research efforts have explored the possibility of using reactive power capabilities

of PV generators through smart inverters in either a centralized [60], [61] or decentralized

[62] scheme. The efficacy of these control methods is dependent on the ability to accurately

predict voltage violations in the system so that operational setpoints of the PV inverters

can be appropriately set in advance. Load flow based look-ahead prediction approaches are

cumbersome, computationally complex and not scalable. Therefore, the development of a

computationally efficient, yet accurate voltage-violation prediction approach that predicts

future violations as well as their uncertainty bounds is critically important for control and

management of distribution systems. After developing a tool for monitoring losses in un-

balanced distribution systems in Chapter 5, this chapter aims at developing and testing a

computationally efficient voltage violation prediction scheme while considering different pen-

etration levels of PV generation. In contrast with probabilistic voltage sensitivity analysis

(PVSA) [56, 236], the present research focuses on identifying nodes with high probability of

violating voltage limits at different time instances. Leveraging existing knowledge of voltage

states along with uncertain forecasts of power generation/consumption, probabilistic voltage

sensitivity analysis is used to reveal impending voltage issues at any location in the system.

The development of voltage violation prediction rule is crucial as it enables applying hosting

capacity analysis (7) and efficient voltage control algorithms 8.
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6.1 Preemptive voltage monitoring

6.1.1 Background: Voltage Sensitivity Analysis

For a given three-phase distribution system, analytical voltage sensitivity analysis estimates

the complex voltage change at a particular node (observation node O) as a result of com-

plex power change at another node (actor node A) in the system [236]. The usefulness of

this approach is seen in the reduced computational complexity in comparison with Newton-

Raphson based power flow methods. The change of power consumption at an actor node A

from SA to SA+ ∆SA results in voltage change at observation node O from VO to VO + ∆VO.

The voltage sensitivity for a given observation node O can be calculated using Theorem 5

[236].

Theorem 5. For a given three phase distribution network, the change in voltage at an

observation node (∆VO) due to change in power consumption at an actor node (∆SA) is

approximated by:

∆VO ≈ −


∆Sa

AZ
aa
OA

V a∗
A

+
∆Sb

AZ
ab
OA

V b∗
A

+
∆Sc

AZ
ac
OA

V c∗
A

∆Sb
AZ

ba
OA

V a∗
A

+
∆Sb

AZ
bb
OA

V b∗
A

+
∆Sc

AZ
bc
OA

V c∗
A

∆Sa
AZ

ca
OA

V a∗
A

+
∆Sb

AZ
cb
OA

V b∗
A

+
∆Sc

AZ
cc
OA

V c∗
A

 (6.1)

where ∆VO is a vector consisting of the voltage change in phases a, b, and c at an observation

node O given by ∆V a
O , ∆V b

O and ∆V c
O. V ∗A and ∆SA represent the complex conjugate of

voltage and complex power change at actor node A, respectively. The superscripts a, b, and c

represent different phases and Z corresponds to the self and mutual impedance of the shared

line between the actor and observation node.

The voltage change due to multiple actor nodes A ∈ A can be formulated as the cu-

mulative effect of all actor nodes on a particular observation node as given in corollary 4

[57].

Corollary 4. For a given three phase distribution network, the cumulative change in complex

voltage at an observation node O due to the change in complex power at multiple actor nodes
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can be formulated as:

∆VO ≈ −
∑
A∈A


∆Sa

AZ
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OA

V a∗
A

+
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V b∗
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+
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AZ
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OA
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 (6.2)

where, A represents the set of all actor nodes resulting in the complex voltage change at node

O.

The analytical method presented in corollary 4 gives us a computationally efficient

method for computing the probability of voltage change at any given observation node O

due to change in complex power at multiple actor nodes A ∈ A. Further, the execution

time of the method to calculate the voltage sensitivity for a single observation node is an

order faster (e.g., with an intel i7 processor based PC, it is 0.00871s, compared to 0.0537s

in classical load flow method for the modified IEEE 37 bus system). This clearly shows

that the proposed approach has an edge over traditional methods in terms of computational

efficiency and the difference further increases with the size of the network. The analysis in

this chapter is based on the probabilistic extension of corollary 1.

6.1.2 Voltage violation prediction rule

The voltage sensitivity analysis derived in section II is extended to predict the probability

distribution of voltage at an observation node due to complex power change at multiple

actor nodes. The analytical approach in this work assumes that based on measurements of

complex power and voltages at a subset of locations, it is possible to estimate voltage states

across the entire network, similar to the approaches presented in [56] [52]. The variability in

complex power injection or consumption at actor nodes results in random voltage fluctuations

at observation nodes. In this case, actor nodes represent active consumers integrated with

distributed PV generation. Subsequently, if V p
O is the present three phase voltage at an

observation node O that is obtained from system measurements, then V f
O represents the

future predicted complex voltage vector at that particular observation node. V f
O is expected
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to be random due to the uncertainty introduced by the distributed PV generation and

corresponds to,

V f
O = V p

O + ∆VO. (6.3)

Here, ∆VO represents the change in voltage at an observation node due to random complex

power changes at actor nodes. Considering a single phase for simplicity, the voltage change

at an observation node O due to single actor node A can be expressed in terms of real and

imaginary part of voltage change as follows:

∆V a
OA = ∆V a,r

OA + j∆V a,i
OA (6.4)

where,

∆V a,r
OA = − 1

|V a
A |

(∆P a
A(Ru

OA cos θA −Xu
OA sin θA)−∆Qa

A(Ru
OA sin θA +Xu

OA cos θA))

∆V a,i
OA = − 1

|V a
A |

(∆Qa
A(Ru

OA cos θA −Xu
OA sin θA) + ∆P a

A(Ru
OA sin θA +Xu

OA cos θA)) (6.5)

where, u represents different phase sequences, i.e., aa, ab, ac in phase a. ∆P a
A and ∆Qa

A

represent the active and reactive power changes at phase a of actor node A, Ru
OA and Xu

OA

are the real and imaginary parts of the impedance of the shared line between the observation

O and actor node A, and θA is the phase angle of the voltage at the actor node A.

Similar to corollary 1, (6.4) can be extended to accommodate the impact of multiple actor

nodes. Therefore, the cumulative voltage change at a single phase in an observation node O

due to multiple actor nodes A ∈ A can be written as:

∆VO =
∑
A∈A

∆V a
OA =

∑
A∈A

∆V a,r
OA + j

∑
A∈A

∆V a,i
OA (6.6)

At each time instant, the active and reactive power injections in the system can be modeled

as random variables based on the variability of distributed PV generation at active consumer

sites. Therefore, it is natural to model ∆VO as a random variable as well. The derivation of
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the distribution of |∆VO| is the focus of the next subsection.

6.1.3 Probability distribution of predicted voltage

Theorem 2 provides the probability distribution of the magnitude of predicted voltage at an

observation node O due to complex power change at multiple actor nodes A ∈ A for a single

phase.

Theorem 2. For a given unbalanced distribution network, the predicted voltage magnitude

(|V f
O |) at an observation node O due to complex power changes at multiple actor nodes

A ∈ A follows a Rician distribution, i.e.,

|V f
O |∼ Rician(κ, σ) (6.7)

where, κ =
√
w and σ =

√
λ with,

λ =
σ4
r(1 + 2µ2

r) + σ4
i (1 + 2µ2

i )

σ2
r(1 + 2µ2

r) + σ2
i (1 + 2µ2

i )
(6.8)

and,

w =
(σ2

rµ
2
r + σ2

i µ
2
i )(σ

2
r + σ2

i + 2σ2
rµ

2
r + 2σ2

i µ
2
i )

σ4
r + σ4

i + 2σ4
rµ

2
r + 2σ4

rµ
2
i

(6.9)

here, σ2
r = cr

TΣ∆Scr, σ
2
i = cTi Σ∆Sci, µr = V r,p

O + cTr µ∆S, and µi = V i,p
O + cTi µ∆S. In

this context, V r,p
O and V i,p

O are the present estimated values of real and imaginary parts of

voltage. cr and ci are based on system topology and µ∆S and Σ∆S are related to variability

in power change as will be discussed in the proof.

Proof. The variability of PV generation randomizes the associated power output. In this

case, the forecast of power change is modeled as a non-zero mean random vector with mean

µ∆S and covariance Σ∆S. This model captures a nominal forecast (µ∆S) and the associ-

ated error in forecast characterized by Σ∆S. The real and reactive power represent the net

nodal load changes given the presence of distributed PV generation at active consumer sites.

Accordingly, ∆S can be represented as shown in (8.16) with n representing the number of
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nodes in the system.

∆S = [∆P a
1 , ...,∆P

a
n ,∆Q

a
1, ...,∆Q

a
n] (6.10)

The following steps detail the steps involved in the derivation of the distribution of |V f
O |.

Computation of covariance matrix Σ∆S

The covariance matrix Σ∆S captures the relationship between complex power changes at

multiple actor nodes and can be determined based on historical measurements. For a given

system, the diagonal elements of the covariance matrix (i.e., variance) depend on the size

of distributed PV generation and the uncertainty in the forecast. The off diagonal elements

of the covariance matrix are based on the future net-load forecasts given a particular spa-

tial PV generation and load profile. If a particular node in the network is not integrated

with distributed PV generation, then the mean and variance term of the respective node is

equivalent to their typical load variability. Accordingly, the covariance matrix Σ∆S can be

formulated as shown in Appendix D. In this matrix, n represents the number of nodes in the

desired network and pi and qi are the active and reactive power injection or demand at the

ith active consumer site, respectively. σ2
pi

and σ2
qi

capture the variance of active and reactive

power generation across different actor nodes, respectively, and the off diagonal elements

capture the correlation between various generators due to geographical proximity.

Computation of cr and ci vectors

The present work assumes prior knowledge of the system parameters. To begin with, define

cr and ci as follows:

cr = [caar , cabr , c
ac
r ]T , ci = [caai , cabi , c

ac
i ]T (6.11)

For simplicity, the vectors are shown for single phase, i.e., phase a, where each vector is

composed of three sub-vectors corresponding to self and mutual phases. crand ci for a
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single phase can be computed as,

caar =



−(Raa
O1 cos(θ1)−Xaa

O1 sin(θ1))

|V a
1 |
...

−(Raa
On cos(θn)−Xaa

On sin(θn))

|V a
n |

(Raa
O1 sin(θ1)+Xaa

O1 cos(θ1))

|V a
1 |
...

(Raa
On sin(θn)+Xaa

On cos(θn))

|V a
n |


(6.12)

caai =



−(Raa
O1 sin(θ1)+Xaa

O1 cos(θ1))

|V a
1 |
...

−(Raa
On sin(θn)+Xaa

On cos(θn))

|V a
n |

−(Raa
O1 cos(θ1)−Xaa

O1 sin(θ1))

|V a
1 |
...

−(Raa
On cos(θn)−Xaa

On sin(θn))

|V a
n |


(6.13)

The aforementioned vectors are constant for a given system with a particular set of active

consumer (actor) nodes integrated with distributed PV generation. The elements of cr and

ci vectors consist of the ratio of the impedance of shared path (between the observation and

actor node) to the rated voltage of the associated phase, (e.g., in this case, it would be phase

a). When the system topology changes, the cr and ci vectors are expected to change as well.

Probability distribution of ∆V r
o and ∆V i

o

This subsection provides an expression for the real and imaginary parts of voltage change at

an observation node due to complex power change at multiple actor nodes. The change in

voltage at an observation node is expressed as the sum of voltage changes induced by each

actor node as shown by corollary 1 in section II. Thus, the probability distribution of real
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and imaginary part of voltage change are formulated as follows:

∆V a,r
O =

∑
A∈A

∆V r
OA = cTr ∆S

D→ N (cTr µ∆S, c
T
r Σ∆Scr) (6.14)

∆V a,i
O =

∑
A∈A

∆V i
OA = cTi ∆S

D→ N (cTi µ∆S, c
T
i Σ∆Sci) (6.15)

where A represents the set of actor nodes resulting in voltage change at the observation node

O. Using Lindeberg-Feller CLT, (6.14) and (6.15) indicate that ∆V a,r
O and ∆V a,i

O converge

in distribution to a Gaussian random variable.

The covariance between real ∆V r
O and imaginary ∆V i

O parts of voltage change corresponds

to cov(∆V r
O,∆V

i
O) = cTr Σ∆Sci. Thus, the real and imaginary parts of voltage change at an

observation node can be rewritten as a multi-variate normal vector corresponding to,

∆VO ,

∆V r
O

∆V i
O

 ∼ N (µ1,Σ1) (6.16)

where,

µ1 =

cTr µ∆S

cTi µ∆S

 (6.17)

Σ1 =

cTr Σ∆Scr cTr Σ∆Sci

cTr Σ∆Sci cTi Σ∆Sci

 (6.18)

Recall the expression of V f
O and V p

O from section II. The real and imaginary parts of predicted

voltage can be written as:

V f
O ,

V r,f
O

V i,f
O

 =

V r,p
O

V i,p
O

+

∆V r
O

∆V i
O

 (6.19)
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V f
O ∼ N (

V r,p
O + cTr µ∆S

V i,p
O + cTi µ∆S

 ,Σ1) (6.20)

|V f
O |

2= (V r,f
O )2 + (V i,f

O )2 (6.21)

The distribution of the squared magnitude of V f
O is a sum of dependent non-central chi-

square distributions. Each real and imaginary part of the predicted voltage follows non

zero mean Gaussian distribution and thus their squares will have a non central chi square

distribution [234],

|V f
O |

2∼ σ2
rχ

2
1(µ2

r) + σ2
i χ

2
1(µ2

i ) (6.22)

where, σ and µ are the weight and non centrality parameter of non central chi square

distribution with one degree of freedom, respectively. The sum of weighted non-central chi-

square distributions can then be approximated with a scaled non-central chi-square with

weight λ, non-centrality parameter w, and v degrees of freedom as[234]:

|V f
O |

2∼ λχ2
v(w) (6.23)

where,

λ =
σ4
r(1 + 2µ2

r) + σ4
i (1 + 2µ2

i )

σ2
r(1 + 2µ2

r) + σ2
i (1 + 2µ2

i )
(6.24)

w =
(σ2

rµ
2
r + σ2

i µ
2
i )(σ

2
r + σ2

i + 2σ2
rµ

2
r + 2σ2

i µ
2
i )

σ4
r + σ4

i + 2σ4
rµ

2
r + 2σ4

rµ
2
i

(6.25)

v =
(σ2

r + σ2
i )(σ

2
r + σ2

i + 2σ2
rµ

2
r + 2σ2

i µ
2
i )

σ2
r + σ2

i + 2(σ4
rµ

2
r) + 2(σ4

i µ
2
i )

(6.26)

Since the square root of a non-central chi-square random variables follows a Rician distribu-

tion [234], the magnitude of predicted voltage change will follow a Rician distribution:

|V f
O |∼ Rician(κ, σ) (6.27)

where, κ =
√
w and σ =

√
λ, which is consistent with (6.66). This expression is first validated
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Figure 6.1: Predicted voltage using (6.27) vs. load flow.

on the modified IEEE 37 bus system. Figure 6.1 shows the predicted voltage at observation

node 22 using the expression derived in (6.27) vs. the values calculated using the load flow

method. For the current setup, four arbitrary actor nodes are chosen for the validation

test, namely, 2, 11, 20, and 29. The Jensen-Shannon distance between the theoretical and

simulated distribution is in the order of 10−2. Jensen-Shannon distance ranges from 0 to 1

indicating exact distribution match and mismatch, respectively. Thus, the proposed method

is highly accurate in predicting the distribution of voltage at a particular observation node.

6.1.4 Assessment of node vulnerability to voltage violation

The aim of this work is to identify nodes with high probability of voltage violation. The

expression derived in (6.27) shows that the predicted voltage magnitude |V f
O | follows a Ri-

cian distribution. Pv(t), the probability of node voltage violation at a given time instant

corresponds to

Pv(t) = 1− P (0.95 < |V f
O |< 1.05). (6.28)
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(6.28) can be used to identify vulnerable nodes by comparing Pv(t) with a particular thresh-

old. The threshold used in this chapter is 0.5, i.e., nodes with voltage-violation probabilities

higher than 0.5 are considered vulnerable. The method is generic and can be implemented

on all observation nodes in the network. This assessment provides an insight into the voltage

status of the network at a future time instant. The assessment criterion is computationally

efficient and the outcome can be used as an input for voltage control.

6.1.5 Verification via simulation

This section summarizes the simulation results and findings related to PVSA based pre-

emptive voltage monitoring strategy. First, the violation prediction method is tested on the

IEEE 37 node test system. Next, a catastrophic scenario is presented where the system

experiences a complete loss of generation at a particular actor node and the efficacy of the

proposed voltage violation prediction is evaluated. Actual voltage violations in the system

are extracted using power flow solutions for the purpose of validating the proposed approach.

Among the 37 system nodes, a subset of nodes is considered to be active consumers with inte-

grated distributed PV generation and voltage status is monitored on all system (observation)

nodes. For the first case, A hypothetical solar PV generation scenario is considered from

noon to 18:00 with power and voltage measurement availability every 15 minutes. The solar

PV generation in this work is modeled as a random process with a component of uncertainty

to illustrate a profile that follows real world scenarios as follows:

GPV (t) = S(t) +Rs(t). (6.29)

Here, S(t) is the mean forecast trend of the solar PV generation and Rs(t) represents a zero

mean uncorrelated Gaussian random process illustrating the uncertainty in PV generation.

Figure 6.2 shows the solar PV generation model used (S(t)) as well as the net-power curve

used for simulation in this chapter. Time instances where the net-power is negative indicates

reversed power flow in the grid due to surplus solar PV generation. Although this particular
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Figure 6.2: Solar PV generation profile for each unit.

scenario is considered, the proposed method is generic and applicable to different scenarios.

Initially, net-power injections, system data such as node locations and line impedances are

used to compute the cumulative effect of actor nodes on all observation nodes in the network.

The analytical expressions presented in section 6.1.1 are the basis for estimating the mean

and variance of voltage at all nodes as discussed in section 6.1.2. The covariance matrix Σ∆S

is computed relying on estimates of historical data. The network topology is used to compute

vectors cr and ci as formulated in (6.11). Finally, node voltage state estimates as well as

the analytical voltage change probability distribution are utilized to compute the probability

of node voltage violation according to the threshold given in section 6.1.4. In the first case

study, a hypothetical 30% Penetration Level (PL) of distributed PV generation is randomly

allocated among 14 actor nodes and voltage state is monitored across all observation nodes

in the network. Figure 6.3 shows the number of violations in the system using the proposed

method in (6.27) vs. load flow method. From figure 6.3, it can be inferred that the proposed

method accurately predicts voltage violations in the system compared to actual violations

calculated using load flow method.

In the next case study, a scenario with complete loss of PV generation at a certain time

instant is investigated. In this case, actor nodes are assigned to three different 24 hour

PV generation profiles contributing to a 70 % PL for demonstrating the generality of the
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Figure 6.3: Voltage violation prediction using (6.27) vs. load flow.

proposed method. The system in this case consists of 20 arbitrary active consumer nodes

integrated with distributed PV generation. Similar to the first case study, voltage state is

monitored across all nodes in the network. Figure 6.4 shows the number of voltage violations

in the system using the proposed analytical method in (6.27) vs. load flow method with a

PV generation loss scenario occurring at time 16:32 of the day. It can be inferred that

the proposed method effectively predicts voltage violations not only under normal operation

conditions but also under generation loss scenarios. Finally, the accuracy of the proposed

method is quantified via multiple Monte-Carlo simulations. Two cases are considered for

investigating the accuracy of the proposed method, namely, 30% and 70% PLs. For both

cases, 20 arbitrary actor nodes are integrated with distributed PV generation and voltage

state is monitored across all nodes in the network. Both scenarios are simulated for 100

Monte-Carlo simulations and the mean prediction error is obtained. Table 6.1 shows the

prediction error for both cases, which demonstrates that the effectiveness of the proposed

method in predicting voltage violations in the system is higher than 95%. Therefore, the

proposed method can provide effective foresight on voltage violations to system operators,

which can then be utilized to implement an appropriate optimal voltage control strategy.
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Table 6.1: Theoretical vs. actual voltage violations.

PL Prediction
error (%)

30% 4.31
70% 4.43

6.2 PVSA with uncertainty in state estimates

If we assume uncertainty in the voltage state estimates, then, the present voltage V p
O in Eq.

(6.20) can be rewritten as,

V p
O ,

V r,p
O

V i,p
O

 ∼ N (µ2,Σ2) (6.30)

Where,

µ2 =

V r,p
O

V i,p
O

 (6.31)

Σ2 =

 σ2
r,p cov(V r,p

O , V i,p
O )

cov(V i,p
O , V r,p

O ) σ2
i,p

 (6.32)
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The expression of V f
O is based on the present voltage. Thus, the real and imaginary parts of

predicted voltage can be rewritten as,

V f
O ,

V r,f
O

V i,f
O

 =

V r,p
O

V i,p
O

+

∆V r
O

∆V i
O

 , (6.33)

V f
O ∼ N

(V r,p
O

V i,p
O

 ,
 σ2

r,p cov(V r,p
O , V i,p

O )

cov(V i,p
O , V r,p

O ) σ2
i,p

)

+N

(CT
r µ∆S

CT
i µ∆S

 ,
CT

r ΣCr CT
r ΣCi

CT
r ΣCi CT

i ΣCi

) (6.34)

The sum of two independent Gaussian distributions is also Gaussian. Therefore,

V f
O ∼ N (µ3,Σ3) (6.35)

Where,

µ3 =

V r,p
O + CT

r µ∆S

V i,p
O + CT

i µ∆S

 (6.36)

µ3 =

 σ2
r,p + CT

r ΣCr cov(V r,p
O , V i,p

O ) + CT
r ΣCi

cov(V i,p
O , V r,p

O ) + CT
r ΣCi σ2

i,p + CT
i ΣCi

 . (6.37)

The magnitude of predicted voltage can be written as,

|V f
O |

2= (V r,f
O )2 + (V i,f

O )2 (6.38)

The distribution of the squared magnitude of V f
O is a sum of dependent non-central chi-

square distributions. Each real and imaginary part of the predicted voltage follows non zero
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Gaussian distribution and thus their squares show non central chi square distribution,

|V f
O |

2∼ σ2
rχ

2
1(µ2

r) + σ2
i χ

2
1(µ2

i ) (6.39)

where, σ and µ are the weight and non centrality parameters of non central chi square

distribution with one degree of freedom, respectively. The sum of weighted non-central chi-

square distributions can then be approximated with a scaled non-central chi-square with

weight α, non-centrality parameter β, and ρ degrees of freedom as,

|V f
O |

2∼ αχ2
ρ(β) (6.40)

where,

α =
σ4
r(1 + 2µ2

r) + σ4
i (1 + 2µ2

i )

σ2
r(1 + 2µ2

r) + σ2
i (1 + 2µ2

i )
(6.41)

β =
(σ2

rµ
2
r + σ2

i µ
2
i )(σ

2
r + σ2

i + 2σ2
rµ

2
r + 2σ2

i µ
2
i )

σ4
r + σ4

i + 2σ4
rµ

2
r + 2σ4

rµ
2
i

(6.42)

ρ =
(σ2

r + σ2
i )(σ

2
r + σ2

i + 2σ2
rµ

2
r + 2σ2

i µ
2
i )

σ2
r + σ2

i + 2(σ4
rµ

2
r) + 2(σ4

i µ
2
i )

(6.43)

Since the square root of a non-central chi-square random variables follows a Rician distribu-

tion, the magnitude of predicted voltage change will follow a Rician distribution,

|V f
O |∼ Rician(κ, σ) (6.44)

where, κ =
√
β and σ =

√
α. To test the performance of the modified PVSA rule, a

scenario is simulated using the setup presented in section 6.1.5 and the voltage violation

prediction error is recorded for the regular and the modified PVSA rules.This slide provides

a simulation scenario to show the performance of the updated PVSA rule. Fig. 6.5 shows

the prediction error against variance in voltage magnitude. It can be seen that the regular

PVSA rule results in higher prediction error and that is because it assumes that present

voltage measurements are correct, while in reality they are erroneous. The modified PVSA
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rule on the other hand captures measurement errors, which is why the performance of the

modified PVSA rule is consistently better compared to the regular one.

6.3 Voltage violation prediction with Bayesian Matrix

Completion

The proposed VVP technique is summarized in Fig. 6.6 and the functional blocks are

detailed in this section. It is assumed that measurements come from SCADA system carrying

information about active and reactive power as well as real and imaginary parts of nodal

voltages. SCADA measurements are collected through sensor data aggregation system and

sent for DSSE. It is important to mention that SCADA measurements are available only at

a subset of nodes as highlighted by the bold circles in Fig. 6.6. To estimate the states at

all nodes, BMC based DSSE is used and the corresponding estimation variance is derived.

Finally, state estimates, their variance, and available measurements are used within the

PVSA framework to derive the probability distribution of future nodal voltage states (Vf
O)

in real-time. This allows for the computation of probability of voltage violation induced by

complex power fluctuations at any location in the system. It is assumed that complex power
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Figure 6.5: Prediction error using: (a) PVSA-Eq. (6.27); and (b) Modified PVSA-Eq. (6.44).
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changes occur due to time-varying PV injections and variable load patterns.

6.3.1 BMC-based system observability

DSSE task is difficult due to the lack of sufficient measurements making the system unob-

servable [237]. Consider an unbalanced distribution system with N nodes. Let X denote a

matrix that contains information on nodal complex power values, real and imaginary parts

of voltage, and voltage magnitudes for all nodes N in the system. In practice, due to limited

number of measurements in the distribution system, only some elements of the matrix X

are known (i.e., X is incomplete). BMC aims to complete this matrix X by estimating the

unobserved states based on a suitable low rank approximation [238]. The low rank property

in the matrix X results due to: (1) spatial correlation between measurements at different

locations; and (2) the correlation between different types of measurements via power-flow

equations. If we assume that the measurements at the slack bus are known, it is possible to

use the measurements at the non-slack buses to construct the data matrix.

Let m ∈ N denote the set of phases at all the non-slack buses. The measurement matrix

Z is constructed such that each row represents a phase and each column represents the

measurement associated with the phase of each bus. For each b ∈ m, each row of the matrix

Distribution system monitoring and
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Figure 6.6: VVP flowchart.
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Z ∈ Rm×n with n = 5 is structured as,

[Pb,Qb,<(vb),=(vb), |vb|], (6.45)

where, Pb and Qb represent the active power and reactive power injections at each phase of

non-slack bus b respectively. The terms <(vb) and =(vb) represent the real and imaginary

parts of voltage phasors at each phase of non-slack buses, respectively. Let Ω ⊆ {1, ...,m}×

{1, ..., n} describe the known entries in Z. The known entries can also be written as,

Zlj = Xlj + Nlj, (l, j) ∈ Ω (6.46)

where, Xlj and Nlj refers to the row entry l and column entry j in the matrix X and N,

respectively. The unknown low rank matrix X is factorized into two matrices as X = ABᵀ.

Here, A is an m × r matrix and B is an n × r matrix such that rank(X) = r. The matrix

X is the sum of the outer-products of the columns of A and B such that,

X =
k∑
l=1

a.lb
ᵀ
.l (6.47)

where, k ≥ r, a.l and b.l denote the lth column of matrix A and B respectively. The lth

row of matrix A and B is represented by al. and bl. respectively. The low rank matrix is

obtained by setting most of the columns in A and B to zero. To achieve this condition, the

columns of A and B are associated with Gaussian priors of precisions γl, that is

p(A|γ) =
k∏
l=1

N (a.l|0, γ−1
l Im) (6.48)

p(B|γ) =
k∏
l=1

N (b.l|0, γ−1
l In) (6.49)

During inference, most of the γl’s take large values, thus forcing the columns of A and B to

go to zero. The columns of A and B have the same sparsity profile enforced by the common
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precisions γl. These sparsity priors on the factorized matrix encourages low-rank solutions.

The precision γl are assumed to have a Gamma hyperprior given as,

p(γl) = Gamma(c,
1

d
) (6.50)

The parameters c and d are set to small values to obtain broad hyperpriors. Using the model

(6.46) and factorized matrices A and B, the conditional distribution of the observations are

obtained as,

p(Z|A,B) =
∏

(l,j)∈Ω

N (Zlj|Xlj, β
−1) (6.51)

where β is the noise precision of each measurement. The joint distribution is therefore given

as,

p(Z,A,B,γ) = p(Z|A,B)p(A|γ)p(B|γ)p(γ) (6.52)

The evaluation of posterior distributions is obtained by mean field variational Bayes [238].

The posterior distribution of A and B decompose as independent distributions of their rows.

The approximate posterior distributions of the latent variables are updated as,

q(al·) = N (al·|〈al·〉 ,Σa
l ) (6.53)

where the mean and covariance are defined as,

〈al·〉ᵀ = 〈β〉Σa
l 〈Bl〉ᵀ zᵀ

l· (6.54)

Σa
l = (〈β〉 〈Bᵀ

l Bl〉+ Γ)−1 (6.55)

Here,

〈Bᵀ
l Bl〉 =

∑
j:(l,j)∈Ω

(
〈bᵀ

j.〉〈bj.〉+ Σb
j

)
(6.56)
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and Γ = diag(γ). Similarly, the posterior density of jth row of B is found as,

q(bj·) = N
(
bj·|〈bj·〉 ,Σb

j

)
(6.57)

where the mean and covariance are defined as,

〈bj·〉ᵀ = 〈β〉Σb
j 〈Aj〉ᵀ zᵀ

·j (6.58)

Σb
j =

(
〈β〉
〈
Aᵀ
jAj

〉
+ Γ

)−1
(6.59)

The posterior density of γl becomes a gamma distribution

q(γl) ∝ γ
(c−1+m+n

2 )
l exp

(
−γl

2d+ 〈aᵀ
·la·l〉+ 〈bᵀ

·lb·l〉
2

)
(6.60)

with mean,

〈γl〉 =
2c+m+ n

2d+ 〈aᵀ
·la·l〉+ 〈bᵀ

·lb·l〉
(6.61)

The required expectations are given by

〈aᵀ
·la·l〉 = 〈a·l〉ᵀ〈a·l〉+

∑
j

(
Σa
l

)
ll
, (6.62)

〈bᵀ
·lb·l〉 = 〈b·l〉ᵀ〈b·l〉+

∑
j

(
Σb
l

)
ll

(6.63)

The approximate posterior distribution of β is given as,

〈β〉 =
(FAD)×m× n
〈‖Z− PΩ(ABᵀ)‖〉2F

(6.64)

The variance of estimated elements in the complete matrix X is given as,

Ψl,j = tr(bj.Σ
a
l b

ᵀ
j.) + tr(al.Σ

b
ja

ᵀ
l.) + tr(Σb

jΣ
a
l ) (6.65)
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where, tr(·) is the trace. The next subsection describes VVP in low-observable distribution

systems. Specifically, the estimated complete matrix X as well as the variance of estimates

computed in Ψ will be used in a probabilistic sensitivity analysis framework for VVP.

6.3.2 Sensitivity based violation prediction

Voltage can fluctuate at any node (observation node O) in the system due to complex power

changes at another node (actor node A). Nodal voltages may exceed safe operational limits

(i.e., 0.95 < |V |< 1.05 p.u) due to abrupt complex power changes at actor nodes, which

is undesired for distribution system operation. Recent research [10] has shown that it is

possible to predict such nodal voltage violations using PVSA. That is, if complex power at a

particular actor node A changes from SA to SA+∆SA, the voltage changes at any observation

node O from VO to VO +∆VO. In this process, the change in voltage ∆VO can be linearly ap-

proximated with a tight upper bound that guarantees accuracy [72]. This approximation can

then used to systematically incorporate uncertainty associated with complex power changes

at actor nodes, which results in a unique probability distribution of the predicted voltage

magnitude at observation nodes [10]. However, in actual distribution systems, voltage state

measurements are not available at every node. Therefore, Theorem 6 provides the prob-

ability distribution of predicted voltage magnitude at observation nodes in low-observable

distribution systems.

Theorem 6. For a given unbalanced distribution system, the predicted voltage magnitude

(|V f
O |) at an observation node O due to complex power changes at multiple actor nodes A ∈ A

in low-observable distribution systems follows a Rician distribution, i.e.,

|V f
O |∼ Rician(υ, η) (6.66)

where, υ =
√
τ and η =

√
ξ with,

ξ =
σ4
r(1 + 2µ2

r) + σ4
i (1 + 2µ2

i )

σ2
r(1 + 2µ2

r) + σ2
i (1 + 2µ2

i )
(6.67)
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Figure 6.7: PV generation and load profile.

and,

τ =
(σ2

rµ
2
r + σ2

i µ
2
i )(σ

2
r + σ2

i + 2σ2
rµ

2
r + 2σ2

i µ
2
i )

σ4
r + σ4

i + 2σ4
rµ

2
r + 2σ4

rµ
2
i

. (6.68)

Here, σ2
r = ΨO,3 + cr

ᵀΣ∆Scr, σ2
i = ΨO,4 + cᵀ

i Σ∆Sci, µr = XO,3 + cT
r µ∆S, and µi =

XO,4 + cT
i µ∆S. ΨO,3 and ΨO,4 represent the variance of real and imaginary parts of voltage

estimates according to (6.65) whereas XO,3 and XO,4 are the present estimates of real and

imaginary parts of voltage (6.47), respectively. cr and ci are based on system topology.

µ∆S is the mean of change in voltage states with ∆S = [∆P a
1 , ...,∆P

a
n ,∆Q

a
1, ...,∆Q

a
n]ᵀ is

the vector of complex power changes and Σ∆S is a the covariance matrix that contains the

variance and cross-covariance terms of complex power change across different actor nodes

as shown in Eq. (12) of [10].

Proof. Let V̂p
O be the present voltage state at observation node O. It is possible to write the

predicted future voltage state Vf
O in terms of the voltage change introduced by the DERs

at actor nodes, i.e.,

Vf
O = V̂p

O + ∆VO, (6.69)

where ∆VO is the change in voltage states at observation nodes that is caused by complex

power changes at DERs. More details on how to compute this voltage change can be found

in [72]. To account for system unobservability, we use the real and imaginary parts of voltage

estimates XO,3 and XO,4 as well as their estimation variance, i.e., ΨO,3 and ΨO,4, respectively.
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Therefore, the present voltage estimates V̂p
O can be written as,

V̂p
O = [V̂ r,p

O , V̂ i,p
O ]ᵀ , [XO,3,XO,4]ᵀ. (6.70)

Follows from (6.64), the distribution of present voltage states follows a Gaussian distribution,

V̂p
O ∼ N (µp,Σp), with µp = [XO,3,XO,4]ᵀ (6.71)

and

Σp =

 ΨO,3 cov(XO,3,XO,4)

cov(XO,4,XO,3) ΨO,4

∀O ∈ m (6.72)

The distribution of Vf
O is based on the present voltage. Thus, the real and imaginary parts

of Vf
O , [V r,f

O , V i,f
O ]ᵀ can be rewritten as Vf

O = [XO,3, XO,4]ᵀ + [∆V r
O, ∆V i

O]ᵀ. Thus,

Vf
O ∼ N

(XO,3

XO,4

+

cᵀ
rµ∆S

cᵀ
iµ∆S

 ,
λr δf

δf λi

) (6.73)

where, λr = ΨO,3 + cᵀ
rΣ∆Scr, λi = ΨO,4 + cᵀ

iΣ∆Sci, δf = cov(XO,3,XO,4) + cᵀ
rΣ∆Sci.

The terms cᵀµ∆S and cᵀΣ∆Sc are the mean and variance of real and imaginary voltage

change caused by complex power changes at all actor nodes denoted by the subscripts r

or i, respectively. The distribution of |V f
O |2= (V r,f

O )2 + (V r,f
O )2 follows a scaled non-central

chi-square with weight ξ, non-centrality parameter τ and ρ = 1 degrees of freedom as [10],

|V f
O |

2∼ ξχ2
ρ(τ) (6.74)

where, ξ and τ are given in (6.67) and (6.68), respectively. σ2
r = ΨO,3 + cᵀ

rΣ∆Scr, σ
2
i =

ΨO,4 + cᵀ
iΣ∆Sci, µr = XO,3 + cᵀ

rµ∆S and µr = XO,4 + cᵀ
iµ∆S. Since the square root of non-

central chi-square random variables follows a Rician distribution, the magnitude of predicted
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Figure 6.8: Predicted vs. actual voltage violations.

0 5 10 15 20 25 30 35 40

Node

0.97

0.98

0.99

1

1.01

V
r  e

s
ti
m

a
te

Figure 6.9: Mean and variance of V̂r,p
O at phase a.

voltage change will follow a Rician distribution,

|V f
O |∼ Rician(υ, η) (6.75)

where, υ =
√
τ and η =

√
ξ.

6.3.3 Verification via simulation

This section validates the proposed VVP rule in low observable distribution systems. The

method is verified on the unbalanced 37 node test system [235]. It is assumed that the

system is unobservable with 50% as a fraction of available data as highlighted by the dark
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Figure 6.11: Prediction accuracy with erroneous voltage states.

circles in Fig. 6.6. 14 actor nodes (A = [5, ..., 18]) are randomly selected and integrated

with PV units at phase a. PV active power injection is modeled as a random process with

uncertainty component as,

∆Ppv = S(t) + r(t) (6.76)

where, S(t) is the mean forecast trend of PV active power injection and r(t) ∼ N (0, σ2
pv) is a

zero mean Gaussian that incorporates injection variability with variance σ2
pv. It is important

to note that PVSA approach is also applicable where r(t) is non-Gaussian [72]. Fig. 8.7 shows

S(t) as well as the load pattern of one actor node. The VVP is computed based on Theorem 6

over the entire time period and Vp
O for all nodes where state measurements are unavailable is
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estimated using BMC. Two scenarios are analyzed to show the effectiveness of the proposed

method. For the first scenario, it is assumed that the state estimates ([XO,3,XO,4]ᵀ) are

perfect, i.e., no process noise is injected in (6.71). The resulting violation prediction for this

scenario is plotted in Fig. 6.8. This figure shows VVP using Theorem 6 compared to actual

violation count computed by classical load flow method (simulation). It can be seen that

using state estimates of the BMC, the prediction rule is accurate in preemptively identifying

nodal voltage violations. Next, we assume that the knowledge of present voltage states at

observation nodes (Vp
O) is erroneous with covariance structure (6.72) based on the matrix Ψ

in (6.65). Figures 6.9 and 6.10 show the mean and variance of real and imaginary parts of

present voltage estimates. It can be seen that the variance of nodes where measurements are

unavailable is higher than that of nodes where measurements are available. This variance

is used together with errors in state measurements to validate the accuracy of the proposed

approach. For validation, the simulation setup is repeated for 50 Monte Carlo simulations

over different values of measurement errors and the prediction error is computed based on the

different between the proposed approach and classical load flow method. It can be seen from

Fig. 6.11 that it is possible to obtain low prediction errors as measurement error increases.

For typical real world values of measurement errors (e.g., at most 5-6% of actual values),

the prediction accuracy is over 90%. This demonstrates the effectiveness of the proposed

method against errors in the knowledge of present voltage states, which makes it suitable

for proactive control applications.

6.4 Summary

This chapter proposes a new preemptive voltage monitoring method that provides useful

foresight on violations in the system. The proposed approach is based on probabilistic

voltage sensitivity analysis where the probability of voltage violation is computed for all

system nodes given changes in power injections at different system nodes. Simulation results

demonstrate that the proposed voltage violation prediction method is extremely accurate

with a low prediction error of approximately 4 %. In addition, the voltage violation prediction
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rule is updated to account for increased errors in voltage magnitude measurement, resulting

in additional accuracy gains compare to the regular rule. In cases where present voltage

measurements are missing, the developed approach is integrated with BMC-based state

estimation approach. It has been shown through simulation that the proposed approach is

accurate in predicting voltage violations when compared to actual load flow solution with as

low as 50% fraction of available voltage state measurements. In addition, the prediction error

is found be consistently below 10% for different ranges of variance in measurement errors.

The proposed approach helps simplify hosting capacity analysis (Chapter 7) and develop

proactive voltage control strategies in power distribution systems as shown in Chapter 8.
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Chapter 7

System planning with high

penetration levels of DERs and EVs

The developed probabilistic sensitivity approaches in Chapters 5 and 6 consider only tem-

poral uncertainties of power changes at the grid-edge. For example, the probabilistic loss

sensitivity analysis in Chapter 5 considers the impact of temporal uncertainty of power

changes on line losses. Similarly, the performance of the voltage violation prediction rule in

Chapter 6 is tested with a hypothetical PV and load profile over six hour-period. However,

there could also be spatial uncertainty in the distribution of consumers with PV genera-

tion across the system. Given the accuracy-complexity trade-offs with existing planning

approaches, deriving an analytical relationship that also accounts for the spatial randomness

helps improve the efficacy of existing distribution system planning frameworks. Therefore,

this chapter proposes an analytical derivation for Spatio-temporal probabilistic voltage sen-

sitivity analysis (ST-PVSA) to account for random distribution of PVs. The ST-PVSA

approach is validated against actual load-flow results for computing PV hosting capacity

using the IEEE 37 and IEEE 123-node test systems. Additionally, this chapter derives the

probability distribution of total system losses as well as total voltage changes for efficient

EV charging station allocation applications. Results show that it is possible to find locations

that minimize total losses and voltage deviations with EV charging station placement.
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7.1 Spatio-temporal sensitivity framework

7.1.1 Hosting capacity analysis with simulation-based approach

This section describes a typical load flow-based approach of determining the HC of the sys-

tem. Here, the net power injection is increased in steps by allocating power to PVs located

at random locations of the network. Then, load flow is executed for each penetration levels

to track the number of node voltage violations throughout the network. This process is

repeated for increasing penetration levels until the number of violations exceeds the thresh-

old. The corresponding power (penetration level) is the HC for a particular PV deployment

scenario. Thereafter, the complete process is repeated multiple times to cover all possible

spatial distribution of the PV installations and the minimum capacity across all such scenar-

ios is the final HC of the network. The scenario based analysis presents a huge computational

burden due to the requirement of multiple load flow runs. Fig. 7.1 depicts the flow chart

of the existing load flow-based approach of computing HC [81]. Alternatively, this chapter

attempts to develop a probabilistic VSA approach that determines the HC in a computa-

tionally efficient manner. As mentioned in [80], a comprehensive analysis of PV distribution

needs to monitor voltage, protection, power quality and control limits. However, voltage is

the primary concern for many utilities [81, 239]. So, similar to [79, 81], this work only con-

siders voltage limits to determine the PV HC. The first step towards the probabilistic VSA

approach for HC is to derive an analytical expression of voltage sensitivity due to random

power change at random locations in the network, as presented in the next section.

7.1.2 ST-PVSA for random distribution of PVs

This section details the steps involved in the derivation of the probability distribution of

voltage change at network nodes due to random power changes at random locations of the

network. Throughout this chapter, observation nodes are referred to those nodes where

voltage change is observed and actor nodes are those where power changes. The change in

complex voltage at any phase (say phase a) of observation node O due to change in complex
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Figure 7.1: Flowchart of Load flow based HC method

power at any phase of a single actor node A is given by [57],

∆V a
OA ≈ −

[
∆Sa?A Z

aa
OA

V a?
A

+
∆Sb?A Z

ab
OA

V b?
A

+
∆Sc?A Z

ac
OA

V c?
A

]
, (7.1)

where, superscript a, b and c represent the three phases; this notation is used throughout

the chapter. V a?
A and ∆SaA represent complex conjugate of voltage at phase a and complex

power change at actor node A, respectively; ZOA denotes the impedance matrix including

self and mutual line impedance of the shared path between observation node and actor node

from the source node. The subscript A represents the actor node where power is varying. In

[57], the authors use the eqn. (7.1) to derive the distribution of voltage change. However,

the distribution only incorporates the temporal uncertainty associated with power change,

thereby prevents its uses in hosting capacity analysis. Therefore, here, we leverage eqn. (7.1)

to derive a generic probability distribution of voltage change, considering both temporal and

spatial randomness in a three phase unbalanced network. In this regard, the complex voltage

change in (7.1) is decomposed into real and imaginary parts as,

∆V a
OA = ∆V a,r

OA + j∆V a,i
OA. (7.2)
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For simplicity, the voltage change expression throughout the derivation is shown for a single

phase (phase a). However, similar form and approach is applicable to other phases as well.

On expanding power change (∆Sa?A = ∆P − j∆Q) and impedance (ZOA = R+ jX) compo-

nents in (7.1), the real (∆V a,r
OA) and imaginary parts (∆V a,i

OA) of voltage change at phase a of

the observation node O can be written as,

∆V a,r
OA =

∑
h,u

−1

|V h
A |

[∆P h
A(Ru

OAcos(ωA)−Xu
OAsin(ωA)) + ∆Qh

A(Ru
OAsin(ωA) +Xu

OAcos(ωA))]

∆V a,i
OA =

∑
h,u

−1

|V h
A |

[∆P h
A(Ru

OAsin(ωA) +Xu
OAcos(ωA)) + ∆Qh

A(Xu
OAsin(ωA)−Ru

OAcos(ωA))]

(7.3)

where h ε H̃ and u ε Ũ . The set H̃ = {a, b, c} denotes different phases and the set Ũ =

{aa, ab, ac} represents phase sequence for the corresponding phase. ∆P h
A and ∆Qh

A are

the active and reactive power changes, respectively. Rh
OA and Xh

OA are the resistance and

reactance of shared path between the observation node O and actor node A from the source

node. V h
A denotes the complex rated voltage of actor node A. The magnitude and angle of

voltage at a particular phase, say phase a, of node A are given by |V a
A | and θaA, respectively

with reference to the slack bus. ωA denotes the rated voltage angle of the actor node A. The

detailed steps to obtain equation (7.3) from equation (7.2) are described in Appendix C. Line

voltage of the network is always kept within permissible limits, and thus it is reasonable to

assume the phase difference of 120◦ between the voltage angles of different phases with the

same angle for all the node voltages of each phase. Based on this assumption, ∆V a,r
OA ,∆V

a,i
OA

can be rewritten as,

∆V a,r
OA =

−∆P a
AR

aa
OA

|V a
A |

+
∆P b

A

|V b
A|

(
Rab
OA

2
−
√

3Xab
OA

2

)
+

∆P c
A

|V c
A|

(
Rac
OA

2
+

√
3Xac

OA

2

)
− ∆Qa

AX
aa
OA

|V a
A |

+

∆Qb
A

|V b
A|

(√
3Rab

OA

2
+
Xab
OA

2

)
+

∆Qc
A

|V c
A|

(
−
√

3Rac
OA

2
+
Xac
OA

2

)
(7.4)
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∆V a,i
OA =

−∆P a
AX

aa
OA

|V a
A |

+
∆P b

A

|V b
A|

(√
3Rab

OA

2
+
Xab
OA

2

)
+

∆P c
A

|V c
A|

(
−
√

3Rac
OA

2
+
Xac
OA

2

)
+

∆Qa
AR

aa
OA

|V a
A |

+

∆Qb
A

|V b
A|

(
−R

ab
OA

2
+

√
3Xab

OA

2

)
+

∆Qc
A

|V c
A|

(
−R

ac
OA

2
−
√

3Xac
OA

2

)
(7.5)

The real (7.4) and imaginary (7.5) parts of the voltage change can further be represented in

a simplified form as,

∆V a,r
OA = (Za,r)T∆S, ∆V a,i

OA = (Za,i)T∆S (7.6)

Za,r =



−Raa
OA

Rab
OA

2 −
√

3Xab
OA

2

Rac
OA

2 +
√

3Xac
OA

2

−Xaa
OA

[1pt]
√

3Rab
OA

2 +
Xab

OA

2

−
√

3Rac
OA

2 +
Xac

OA

2


, Za,i =



−Xaa
OA

√
3Rab

OA

2 +
Xab

OA

2

−
√

3Rac
OA

2 +
Xac

OA

2

Raa
OA

−Rab
OA

2 +
√

3Xab
OA

2

−Rac
OA

2 −
√

3Xac
OA

2


, ∆S =



∆Pa
A

|V a
A |

∆P b
A

|V b
A|

∆P c
A

|V c
A|

∆Qa
A

|V a
A |

∆Qb
A

|V b
A|

∆Qc
A

|V c
A|


where Za,r and Za,i are the vectors incorporating shared path impedance terms corresponding

to real and imaginary parts of voltage change, respectively. To represent the random variation

of PV generation, the real and reactive power change is modeled as a random variable.

Consistent with the prior efforts in modeling PV generation as a time series with a trend

component and Gaussian noise [52, 240], the power variation is assumed to be Gaussian.

It is important to note that the framework is quite general to account for any arbitrary

random variable with finite mean and variance. Therefore, the vector ∆S, which incorporate

the terms corresponding to the ratio of power change and constant base voltages, can be

expressed as Gaussian random vector ∆S∼N (µ∆S,
∑

∆S) with µ∆S being mean vector, and
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covariance matrix
∑

∆S as,


σ2

Pa

|V a
A
|

. . . cov(∆P a
A/|V a

A |,∆Qc
A/|V c

A|)
...

. . .
...

cov(∆P a
A/|V a

A |,∆Qc
A/|V c

A|) . . . σ2
Qc

|V c
A
|

 (7.7)

Here, the diagonal and off-diagonal elements indicate variance and covariance among the

terms that are ratio of power changes and base voltages across different phases of actor

nodes, respectively. The impedance of the shared line between a given observation node

(O) and a random actor node can be modeled as a correlated random variable. The mean,

variance and covariance of resistance ROA and reactance XOA corresponding to a given

observation node O can be estimated based on actual line impedance data. In addition, let

µZr and µZi represent the mean of real (Za, r) and imaginary (Za, i) parts of impedance

vector, respectively. The average is taken over all the nodes of the network with respect

to the observation node. Similarly,
∑

Zr and
∑

Zi denote the covariance matrices of Za, r

and Za, i, respectively. The correlation coefficient between the shared path impedances for

various actor nodes is computed based on network parameters. Particularly, the objective

of this work is to derive the probability distribution of the magnitude of voltage change at

an observation node due to random power variation of PVs located at random nodes, which

will further be used to estimate the system HC. The probability distribution of real ∆V a,r
OA

and imaginary components ∆V a,i
OA of the voltage change due to random spatial distribution

of multiple PV units can be derived using the following steps:

Step 1: Compute mean and variance of ∆V a,r
OA and ∆V a,i

OA due to a single actor node: Using

(7.6), the mean of the voltage change can be expressed as the expectation of product of two

terms, i.e., the shared path impedance vector (Za, r for real and Za, i for imaginary part)

and power change vector ∆S. As the terms in the product are mutually independent, the

expectation of their product can be applied to individual terms separately yielding the mean
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of real (µr) and imaginary (µi) parts as,

µr = E[Z(a,r)T

o ∆S] = µZa,r
o
µ∆S

µi = E[Z(a,i)T ∆S] = µZa,i
o
µ∆S

(7.8)

Furthermore, the variance of real and imaginary parts of the voltage change can be computed

as shown below,

Var(∆V a,r
OA) = E[(Z(a,r)T ∆S)2]− E[(Z(a,r)T ∆S)]2

Var(∆V a,i
OA) = E[(Z(a,i)T ∆S)2]− E[(Z(a,i)T ∆S)]2.

(7.9)

Since ZT
r and ∆S are independent, the expectation of their product can be written in terms

of product of their individual expectation as,

E[Z(a,r)T ∆S∆STZa,r]− (E[Z(a,r)T ]E[∆S])2. (7.10)

For simplicity, the equation for variance is shown for the real part of voltage change and

a similar form exists for imaginary part. Now, using the properties of matrix trace, the

variance of the real part can be rewritten as,

E[Tr(ZrZ
T
r ∆S∆ST )]− (µZrµ∆S)2 = Tr(E[ZrZ

T
r ]E[∆S∆ST ])− (µZrµ∆S)2

= Tr[(µZrµTZr +
∑

Zr)(µ∆Sµ
T
∆S +

∑
∆S)]− (µZrµ∆S)2

= Tr(µZrµTZrµ∆Sµ
T
∆S) + Tr(µZrµTZr

∑
∆S) + Tr(

∑
Zr µ∆Sµ

T
∆S) + Tr(

∑
Zr

∑
∆S)− (µTZrµ∆S)2

(7.11)

Now, the term Tr(µZrµTZrµ∆Sµ
T
∆S) is rearranged to (µZrµ∆S)2, that cancels the last term of

(7.11). After applying trace operator, the variance of real part can be expressed as,

µTZrΣ∆SµZr + µT∆SΣZrµ∆S + Tr(ΣZrΣ∆S) (7.12)
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Following the same steps from equations (7.10- 7.12), the variance of imaginary part of

voltage change can be written as,

µTZiΣ∆SµZi + µT∆SΣZiµ∆S + Tr(ΣZiΣ∆S) (7.13)

Step 2: Compute covariance between real ∆V a,r
OA and imaginary ∆V a,i

OA parts of voltage

change:

The covariance between the real and imaginary parts of voltage change can be expressed as:

Cov(∆V a,r
OA ,∆V

a,i
OA) = E(∆V a,r

OA∆V a,i
OA)− E(∆V a,r

OA)E(∆V a,i
OA)

= E[Z
(a,r)T

A ∆SAZ
(a,i)T

A ∆SA] (7.14)

Z(a, r)T∆S andZ(a, i)T∆S are expanded using eqn. (7.4) and (7.5) to express covariance

as the expectation of following term,

E[A×B]

where,

A =
∆P a

A

|V a
A |

(−Raa
OA) +

∆P b
A

|V b
A|

(
Rab
OA

2
−
√

3Xab
OA

2

)
+

∆P c
A

|V c
A|

(
Rac
OA

2
+

√
3Xac

OA

2

)

−∆Qa
A

|V a
A |
Xaa
OA +

∆Qb
A

|V b
A|

(√
3Rab

OA

2
+
Xab
OA

2

)
+

∆Qc
A

|V c
A|

(
−
√

3Rac
O1

2
+
Xac
O1

2

)

and,

B =
∆P a

A

|V a
A |

(−Xaa
OA) +

∆P b
A

|V b
A|

(√
3Rab

OA

2
+
Xab
OA

2

)
+

∆P c
A

|V c
A|

(
−
√

3Rac
OA

2
+
Xac
OA

2

)

+
∆Qa

A

|V a
A |
Raa
OA +

∆Qb
A

|V b
A|

(
−R

ab
OA

2
+

√
3Xab

OA

2

)
+

∆Qc
A

|V c
A|

(
−R

ac
OA

2
−
√

3Xac
OA

2

)
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Terms inside the expectation operator are cross multiplied as,

ρpaσ
2
pa

|V a
A |2

µRaaµXaa − ρqa

|V a
A |2

σ2
qaµRaaµXaa+

ρpb

|V b
A|2

σ2
pb

(
0.43µ2

Rab − 0.5µRabµXab − 0.43µ2
Xab

)
+

ρpc

|V c
A|2

σ2
pc

(
−0.43µ2

Rac − 0.5µRacµXac + 0.43µ2
Xac

)
+

ρqb

|V b
A|2

σ2
qb

(
−0.43µ2

Rab + 0.5µRabµXab + 0.43µ2
Xab

)
+

ρqc

|V c
A|2

σ2
qc

(
0.43µ2

Rac + 0.5µRacµXac − 0.43µ2
Xac

)
+

ρpaqa

|VA|2
σpaσqa

(
−µ2

Raa + µ2
Xaa

)
+

ρpbqb

|V b
A|2

σpbσqb
(

0.5µ2
Rab +

√
3µRabµXab − 0.5µ2

Xab

)
+

ρpcqc

|V a
c |2

σpcσqc
(

0.5µ2
Rac −

√
3µRacµXac − 0.5µ2

Xac

)

(7.15)

where, ρph and ρqh denote the correlation coefficients of active power and reactive power

change among the same phase of different actor nodes with h representing the corresponding

phase term (h = {a, b, c}), respectively. ρphqh denotes the correlation coefficient between the

active and reactive power within the same phase. Similarly, σ2
ph

and σ2
qh

depict the variance

of active power and reactive power change, respectively. For random impedance part, µRk

and µXk denote the mean of shared path resistance and reactance between all the nodes and

a certain observation node, respectively, with k representing the corresponding self/mutual

impedance terms (k = aa, ab, ac, ba, bb, bc, ca, cb, cc). It is important to note that all the

defined parameters with respect to power change are user defined and usually set based on

historical data, whereas, the parameters corresponding to shared path impedance are com-

puted based on the network specifications.

Step 3: Compute covariance between ∆V
a,(r,i)
OA1 and ∆V

a,(r,i)
OA2 :

The covariance between the real component of complex voltage change caused by two differ-
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ent PVs located at actor nodes A1 and A2 can be calculated as:

Cov(∆V a,r
OA1,∆V a,r

OA2) = E(∆V a,r
OA1∆V a,r

OA2)− E(∆V a,r
OA1)E(∆V a,r

OA2)

= E[Z
(a, r)T

A1 ∆SA1Z
(a, r)T

A2 ∆SA2]

(7.16)

Using equation (7.4), Z(a, r)T∆S can be expanded for both the actor nodes in the following

way,

[
∆Pa

1

|V a
1 |

(−R
aa
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1
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1 |
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|V b
2 |

(
Rab

O2

2
−
√

3Xab
O2

2

)
+

∆Pc
2

|V c
2 |

(
Rac

O2

2
+

√
3Xac

O2

2

)
−

∆Qa
2

|V a
2 |

X
aa
O2 +

∆Qb
2

|V b
2 |

(√
3Rab

O2

2
+

Xab
O2

2

)
+

∆Qc
2

|V c
2 |

(
−
√

3Rac
O2

2
+

Xac
O2

2

)]

For simplicity, actor nodes A1 and A2 are denoted by subscript 1 and 2, respectively. Like

(7.15), the terms inside the expectation operator is cross multiplied to express covariance,

ρpa

|V a
A |2

σ2
paµ

2
Raa +

ρqa

|V a
A |2

σ2
qaµ

2
Xaa+

ρpb

|V b
A|2

σ2
pb

(
0.25µ2

Rab − 0.86µRabµXab + 0.75µ2
Xab

)
+

ρpc

|V c
A|2

σ2
pc

(
0.25µ2

Rac + 0.86µRacµXac + 0.75µ2
Xac

)
+

ρqb

|V b
A|2

σ2
qb

(
0.75µ2

Rab + 0.86µRabµXab + 0.25µ2
Xab

)
+

ρqc

|V c
A|2

σ2
qc

(
0.75µ2

Rac − 0.86µRacµXac + 0.25µ2
Xac

)
−

ρpaqa

|V a
A |
σpaσqa (2µRaaµXaa)−

ρpbqb

|V b
A|2

σpbσqb
(
0.86µ2

Rab − µRabµXab − 0.86µ2
Xab

)
+

ρpcqc

|V c
c |2

σpcσqc
(
−0.86µ2

Rac − µRacµXac + 0.86µ2
Xac

)

(7.17)

The correlation coefficients and variances are same as defined in equation (7.15). Now, fol-

lowing the same steps from (7.16) to (7.17), yields corresponding covariance for the imaginary

part of voltage change.

Step 4: Compute mean and variance of ∆V a,r
OA and ∆V a,i

OA due to randomly distributed mul-

tiple actor nodes :
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The mean value of real and imaginary parts of voltage change due to randomly distributed

multiple actor nodes are :

E[∆V a,r
O ] = µr = E

N∑
A=1

∆V a,r
OA = NµZr

o
µ∆S

E[∆V a,i
O ] = µi = E

N∑
A=1

∆V a,i
OA = NµZi

o
µ∆S

(7.18)

Further, the variance of real and imaginary parts of the net voltage change can be expressed

as,

Var[∆V a,r
O ] = σ2

r = V ar
N∑
A=1

(Z
(a,r)T

A ∆S) = NV ar(Z(a, r)T∆S) + 2
∑
I<J

Cov(∆V a,r
OI ,∆V

a,r
OJ )

Var[∆V a,i
O ] = σ2

i = V ar
N∑
A=1

(Z
(a,i)T

A ∆S) = NV ar(Z(a, i)T∆S) + 2
∑
I<J

Cov(∆V a,i
OI ,∆V

a,i
OJ )

(7.19)

Now, by invoking Lindeberg-Feller central limit theorem, it can be shown that the real and

imaginary parts of voltage change follow non zero mean Gaussian distribution with mean

and variance as stated in equations (7.18) and (7.19), respectively. As the square of non zero

mean Gaussian variable follows non-central chi-square distribution [234], the distribution of

the squared magnitude of ∆V a
O is the sum of dependent non-central chi-square variables.

|∆V a
O |2∼ σ2

rχ
2
1(µ2

r) + σ2
i χ

2
1(µ2

i ) (7.20)

where σ2 and µ2 are the weight and non centrality parameters of non central chi square

distribution with one degree of freedom corresponding to both real and imaginary parts of

the voltage change. The sum of weighted non-central chi-square distributions can then be

approximated with a scaled non-central chi-square with weight λ, non-centrality parameter
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w, and v degrees of freedom as shown below [234]:

|∆V a
O |

2 ∼ λχ2
v(w), (7.21)

λ =
σ4
r (1 + 2µ2

r) + σ4
i (1 + 2µ2

i )

σ2
r (1 + 2µ2

r) + σ2
i (1 + 2µ2

i )

w =
(σ2

rµ
2
r + σ2

i µ
2
i ) (σ2

r + σ2
i + 2σ2

rµ
2
r + 2σ2

i µ
2
i )

σ4
r + σ4

i + 2σ4
rµ

2
r + 2σ4

rµ
2
i

v =
(σ2

r + σ2
i ) (σ2

r + σ2
i + 2σ2

rµ
2
r + 2σ2

i µ
2
i )

σ2
r + σ2

i + 2 (σ4
rµ

2
r) + 2 (σ4

i µ
2
i )

(7.22)

Since the square root of a non-central chi-square random variables follows a Rician distribu-

tion [234], the magnitude of voltage change will follow a Rician distribution:

|∆V a
O |∼ Rician(k, σ) (7.23)

where k =
√
w and σ =

√
λ. The magnitudes of voltage changes for other phases follow

a similar expression with the respective phase values. If the power variation is assumed

to follow a zero-mean Gaussian distribution, which is a typical assumption used in many

prior works [52, 240], µ∆S vanishes from the mean (eqn. 7.8) and variance (eqn. 7.12-7.13)

equations of voltage change. This eventually leads to zero value for µr and µi. Again, by

invoking Lindeberg-Feller central limit theorem, one can show that the real and imaginary

parts of the voltage change follow zero-mean normal distributions as,

∆V a,r
O

D∼ N (0, σ2
r), ∆V a,i

O

D∼ N (0, σ2
i ) (7.24)

The square of the magnitude of voltage change follows a gamma distribution [228], and

subsequently, the magnitude of voltage change follows a Nakagami distribution [241],

|∆V a
O |∼ Nakagami(m,ω), (7.25)
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where parameter θ = 2(σ4
r + σ4

i + 2c2)/(σ2
r + σ2

i ), shape parameter m = (σ2
r + σ2

i )/θ, scale

parameter ω =
√
mθ, and c being the covariance between the real and imaginary parts of

voltage change. In the next sections, the proposed ST-PVSA method is first validated using

simulations, and then it is employed to estimate PV HC in a efficient manner.

7.1.3 Validation of ST-PVSA

The proposed probability distribution of the voltage change is validated on the modified

IEEE 37-node test system. The nominal voltage of the test system is 4.8 kV. The actual

distribution of the magnitude of the voltage change is obtained using Newton-Raphson based

sensitivity analysis method, and the theoretical distribution is obtained using the proposed

method of ST-PVSA. A scenario is considered for simulation where 9 PV units are located

at random locations in the distribution system. The power at the actor nodes, i.e., the nodes

injected with PVs, varies randomly due to fluctuations in PV generation. For illustration, 9

actor nodes are chosen where change in PV generation at a particular time instant is modeled

as a zero mean Gaussian random variable. However, ST-PVSA is valid for any number of

actor nodes with any arbitrary distribution of power variation. Typically, unbalance in the

distribution system is caused by single phase loads. Therefore, unbalance in our experiments

is achieved by employing single-phase and two-phase loads in the standard three-phase test

networks. The base loads are the same as provided in the distribution system analysis sub-

committee report [242]. Unbalance can also be induced by unequal power change across

different phases of the system. However, the magnitude of power change needs to be strong

enough which also depend on the base loads. The covariance matrix
∑

∆S captures the

spatial correlation of PV generation, which exists because of geographical proximity as PVs

in the same region typically exhibit same generation profile. The diagonal elements of the

covariance matrix contain variances that depend on the size of PV units and the off-diagonal

elements capture the effect of geographical proximity of these PV units. In our simulation,

the variance of change in real power (∆P ) is set to 5 kW and the variance of change in

reactive power (∆Q) is set to 0.5 kVar. The values of the correlation coefficients ρph , ρqh and
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Figure 7.2: Distribution of voltage change at node 9

ρphqh are set to 0.2, 0.2, and -0.5, respectively for all the phases. Variance can be set to zero

for nodes with no PVs. Now, for random impedance part, the mean and variance of resistance

and reactance between random actor node and observation node 9 is calculated from data of

the IEEE 37-node test system. The value of correlation coefficient between resistance and

reactance is 0.99. Fig. 7.2 compares the actual distribution of the magnitude of voltage

change with the proposed ST-PVSA case. The actual distribution of ∆V9 is obtained by

randomly varying powers of all actor nodes at phase-a and subsequently, voltage change

at node 9 is computed by using Newton-Raphson based method. Further, Monte-Carlo

simulations (MCS) are incorporated to capture the uncertainties associated with the power

changes. Here, voltage changes are computed for one million MCS. The scaled histogram

of |∆V9| is depicted through the orange curve in the Fig. 7.2. The theoretical distribution

computed with equations (7.18) and (7.19) is shown by blue curve in Fig. 7.2. It can

be observed that the probability distribution computed using the proposed method is very

close to the actual simulated distribution with 0.18 as Jensen-Shannon distance. Further,

the execution time of our method to calculate the voltage change distribution in both the

37-node and 123-node networks are within 1 min, whereas the time exceeds 120 min in

the classical load flow based method. Thus, ST-PVSA is order 2 faster compared to the

conventional approach. This experiment demonstrates the effectiveness of the proposed ST-

PVSA approach.
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7.1.4 ST-PVSA for PV hosting capacity

This section presents the methodology for computing HC with the proposed ST-PVSA ap-

proach. As ST-PVSA provides the probability distribution of voltage change at a node due

to random power changes at random locations of the network, it suffices to identify voltage

violations for different PV penetration levels. The procedure to determine HC begins with

fixing the number of penetration levels say from 1% to 100% level at an increment of 1%.

Then, the number of PV units (Nk) that need to be integrated for each penetration level

is computed using eqn. (7.26). Nk is determined statistically based on the distribution of

real PV sizes. The size of actual PV installations in the state of California, USA is collected

from the California dataset [243]. Figure 7.3 depicts the scaled histogram of PV sizes which

approximately follows a gamma distribution. The penetration level is divided into various

bands based on the percentage of total demand. For instance, k varies from 1 to 5 for 5

bands, i.e., (0 − 20%), (21 − 40%) ... (81 − 100%). A unique Nk is defined for each band

such that the same number of PV units is used for all penetration levels in that particular

band. In each band k, the power injection increases with the increasing penetration levels

at Nk random locations. This is logical in a sense that it is not necessary to increase the

number of PV units for simulating increasing penetration level rather it can be achieved by

increasing the power injection in the existing PVs. However, the power injections cannot be

increased beyond a certain limit due to the restriction of PV size. Therefore, Nk increases as

we move to the higher penetration band. Nk for a particular penetration band k is computed

as following:

Nk =
Mean penetration level for band k

Max PV size
(7.26)

where “Max PV size” comes from the PV size distribution and the mean penetration

level is the average power injection for band k. In the third step, Nk is used to obtain the

mean (µl∆S) of power change vector ∆S (eqn. 7.4) for each penetration level l, such that

µl∆SN
l ≈ Pl. Here, Pl and N l are the net power injection and PV units for penetration

level l, respectively. The complex voltage change due to power injection is added to the base

voltage to get the future voltage. Following the same arguments as mentioned in Theorem
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Figure 7.3: Distribution of PV sizes from california dataset

2 of [10], the distribution of future voltage is shown to follow Rician with the parameters as

defined in equation (7.22). The mean of real (µr) and imaginary (µi) parts of voltage change

(7.18) are added to the corresponding parts of base voltage to get the mean value of the

future voltage. The mean future voltage is then plugged in the derived eqn. (7.23) to find

the distribution of future voltage at all nodes of the network. Nodes that have a probability

of voltage violation greater than the threshold are classified as highly vulnerable nodes,

and violations are reported. For illustration, a violation is recorded when the probability

of voltage violations is more than 0.5. 0.5 is unbiased and gives equal preference to both

detection and non-detection of violations. The complete process is repeated for increasing

penetration levels until the algorithm encounters the first violation. The corresponding

penetration level is the HC of the system. “First voltage violation” refers to the situation

when we observe voltage violations in the system for the very first time while increasing the

PV penetration level. In this work, the minimum penetration level for which the violation

is observed for the first time is considered as the hosting capacity. Algorithm 1 provides the

pseudo-code of ST-PVSA approach to compute HC.

To evaluate the performance of ST-PVSA in determining the HC, load flow based HC

is used as a benchmark. Similar to the ST-PVSA approach, the PV penetration level is

fixed from 1% to 100% level at 1% increment. For each penetration level, Monte Carlo
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Algorithm 1 Proposed ST-PVSA method to compute Hosting capacity

1: Fix number of penetration levels (1, 2, ...100%)
2: Calculate number of PVs for a particular penetration level using equation (7.26).
3: Compute mean and variance of power change vector corresponding to a particular pen-

etration level.
4: Use ST-PVSA to compute node voltages and track total number of voltage violations.
5: Repeat steps 2 to 4 for different penetration levels.
6: The penetration level that causes first voltage violations is the hosting capacity.

simulations are repeated 10k times thereby creating one million different PV deployment

scenarios. For illustration purposes, the loads on the test network are chosen as reported

in the IEEE PES distribution system analysis subcommittee report [242] . However, the

proposed method is generic enough to accommodate other loading scenarios such as daytime

(10 am-2 pm) maximum load and daytime minimum. Finally, for each penetration level, Nk

locations are selected randomly to allocate PV units and load flow is executed to track the

voltage violations. For IEEE 37-node network, the number of PV units for each of the five

penetration level bands are 5, 10, 20, 25 and 30. The power is increased from 10 kW (1%

penetration level) to 1100 kW (100% level) in steps of 11 kW. Fig. 7.4 depicts the variation

of violations count with increasing penetration levels. It can be observed that the proposed

STPVSA approach is 100% accurate in estimating HC of IEEE 37-node test network. In

other words, the penetration level predicted by ST-PVSA aligns well with those computed

from the load flow based approach (i.e., lies within the range of load flow based HC values).

Further, to demonstrate the scalability of the proposed method, the HC analysis is also

validated on the IEEE 123-node system.

Table 7.1 presents the HC values computed with the proposed ST-PVSA based approach

and existing load flow-based method for a various number of scenarios. It is worth noting that

for each PV penetration level, ST-PVSA needs to be run once (independent of scenarios),

whereas multiple simulations are required for convergence in the load flow-based approach.

For the IEEE-37 node network, ST-PVSA yields a HC of 33% which lies in the range of values

computed with load flow based approach. Similarly, for the IEEE-123 test network, the

ST-PVSA based HC value is 39%, which again intersects with that of load flow’s approach.
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Furthermore, the proposed approach is also evaluated for a balanced load case in the IEEE 37-

node test system. The estimated value of HC turns out to be 41%, whereas 42% is obtained

with 30k simulations in the conventional approach. This demonstrates the generalizability

of our method. Additionally, HC seems to decrease for an unbalanced case compared to

a balanced one although all the factors (power change and network parameters) remain

unchanged. This is because of non-uniformity in voltages across the buses which increases

the probability of extreme voltages leading to violations in a relatively earlier stage compared

to a balanced load scenario.

Along with the high estimation accuracy, ST-PVSA offers a significant advantage in terms

of computational complexity. Table 7.2 represents the execution time of scenarios simulated

in 7.1 for the two test networks. All experiments are conducted in a machine with an Intel-i7

processor and 16 Gb RAM. It can be inferred from Table 7.2 that in IEEE 123-node test

network, the ST-PVSA is three orders faster than the load flow-based approach, and the gap

will further increase as the network size grows.
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Figure 7.4: Variation of violations count with Penetration levels

The above-discussed experiments demonstrate the efficacy of ST-PVSA for a typical

snapshot type HC. Further, it will be more effective for a dynamic HC, which is relatively a

new way of analyzing HC of distribution systems. Dynamic HC is not based on worst-case

snapshot power flows. It requires probabilistic screens that consider the uncertainty around

the time-series input variables, like hourly PV productions and building loads. Power flow
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Table 7.1: Hosting capacity with Load flow and ST-PVSA

Test Network Scenarios∗ 1k ( %) 10k (%) 30k (%) 40k % 50k % 60k%

IEEE 37
Load Flow 33 32 31 31 31 31
ST-PVSA 33

IEEE 123
Load Flow 44 43 42 41 40 40
ST-PVSA 39

Table 7.2: Execution time with Load flow and ST-PVSA

Test Network Scenarios∗ 1k (min) 10k (min) 30k (min)

IEEE 37
LF 1.93 18.8 55.7

ST-PVSA 1.13

IEEE 123
LF 43.93 400.2 1195.6

ST-PVSA 3.91

analysis is conducted on large time-series data of load and PV on an hourly basis. For a real

distribution model with thousands of nodes and one-second resolution data, simulations could

take a few days [79]. Furthermore, the PV and load uncertainties have significant influences

on hosting capacity values. Under this type of dynamic analysis, the proposed approach could

work very efficiently by accurately capturing voltage violations in an acceptable amount of

time. The performance of ST-PVSA in dynamic HC will be investigated as part of our future

work.

7.2 Probabilistic EV charging station planning

The proposed EV charging station planning technique is summarized in this section. First,

the system model is described then the theoretical formulation of the probabilistic allocation

(considering power losses and voltage deviation) is presented. A flowchart of the proposed

approach is shown in Fig. 7.6. As can be seem from the figure, it is assumed that topol-

ogy information, e.g., voltage profiles, nodal complex power changes, and line parameters,

is available, which is then used within the probabilistic allocation framework. Though, if

measurements are not available, one can use sparsity-based state estimation techniques to

approximate system states. Additionally, it is assumed that charging stations can be inte-

grated at any node in the system with equal probability. Based on the allocation results,
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EV charging station size is optimized via a quadratic optimization framework to ensure all

EV demand is met.

7.2.1 System model

Consider a hypothetical three-phase unbalanced distribution system with N nodes and L

lines as shown in Fig. 7.5. The increase in active power demand due to EV charging station

placement at any node in the system causes increase in current flow and drop in voltage

magnitude. To quantify this impact, one can use analytical sensitivity approximations given

their computational efficiency and high accuracy compared to classical sensitivity methods

[20, 26]. Specifically, a change in complex power at any node A ∈ N from SA to SA + ∆SA

results in voltage and current flow changes, i.e., ∆VO and ∆IM . Here, O ∈ N and M ∈ L

are nodes and lines where the change in voltage and loss are monitored, respectively. For

example, integrating a charging station at node 2 with a rating of ∆P2 leads to a positive

increase in the current flow to the destination by ∆I3−2 as highlighted in green color in Fig.

7.5, which causes an increase in line losses (∆L0−2). Additionally, voltage at the destination

node changes by ∆V2. Note that due to the radial structure of the system, current flow at

other lines, e.g., ∆I0−3, and ∆I3−2, change due to ∆P2 at node 2 and similarly the voltage

changes at other nodes, e.g., ∆V3, ∆V4 as highlighted by the red lines in Fig. 7.5. Power

change due to EV activity is uncertain, which can lead to abrupt fluctuations in voltage

profiles and power losses. Therefore, to account for this random behavior, we adopt a

probabilistic framework to capture the change in losses and voltage profiles.

7.2.2 Allocation via probabilistic sensitivity analysis

Based on the proposed system model, the main objective in this section is to find EV

charging station location that results in the least active power losses and voltage deviations.

Specifically, let ∆Lrt be the change in system active losses and |∆Vt| the magnitude of

aggregate voltage change across all nodes, then the γ is the location that minimizes ∆Lrt
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and |∆Vt|, i.e.,

γ , argmin
n

(∆Lnt , |∆V n
t |) ∀n ∈ N (7.27)

s.t. ∆Pn ∼ Unif [Pmin, PmaxkW] (7.27a)
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For every possible location n ∈ N , EV charging station is integrated and the resulting

probability distributions of change in voltage and active power losses are evaluated. Pmin

and Pmax represent the minimum and maximum kW rating of the desired charger, e.g., 1-5

kW for level-1 charger or 5-20 kW for a level-2 charger. This probabilistic framework models

EV load as a random variable and derives the resulting probability distribution of change

in line losses as well as the magnitude of voltage change. Specifically, for any unbalanced

distribution system, the vector of change in active and reactive power at all nodes, i.e.,

∆S , [∆P1,∆P2, ...,∆PN ,∆Q1,∆Q2, ...,∆QN ]T , can be modeled as a random vector with

zero mean and a covariance structure Σ∆S. The elements of Σ∆S contain variance and cross

covaraince of active and reactive power changes at different nodes in the system. Elements

where nodes are not integrated with a charging station can be set to zero. This covariance

matrix can be computed based on historical data or using hypothetical measurements [20].

Given this random power change, the probability distribution of voltage deviation at any

node (O) in the system follows a Nakagami distribution [72],

|∆VO|∼ Nakagami(k, ω) (7.28)

with shape and spread parameters k , (σ2
r + σ2

i )/θ and ω ,
√
kθ, respectively. Here,

θ , 2(σ4
r +σ4

i +2c2)/(σ2
r +σ2

i ). Note that the terms σ2
r , σ

2
i , and c are related to the covariance

matrix Σ∆S and topology information vectors Cr and Ci, e.g., σ2
r , Cr

TΣ∆SCr, σ
2
i ,

Ci
TΣ∆SCi, and c2 , Cr

TΣ∆SCi. Further details on proof and on topology information

vectors can be found in [72]. Similarly, given the covariance structure Σ∆S, it is possible to

compute the distribution of change in active power losses (∆LrM) at line M , which is shown

to follow a Gamma distribution in [20],

∆LM ∼ Γ(k,RMθ) + 2RM(I∗M∆IM). (7.29)

With shape and scale parameters k and θ, respectively. Rm represents the resistance of line

M , I∗M is the complex conjugate of current flow through line M , and ∆IM is the change in

135



current passing through line M . Note that the topology information vectors used to derive

Eq. (7.29) are different from Eq. (7.28) as shown in [20]-Eq. (27). Since IM is a deterministic

quantity whereas ∆IM is random. Therefore, by taking the mean of th term 2RM(I∗M∆IM),

Eq. (7.29) can be rewritten as,

∆LM ∼ Γ
′
(k,RMθ) (7.30)

where, Γ
′

is the shifted Gamma distribution. However, Eq. (7.30) provides the distribution

of change in losses for a particular line M . To quantify the impact of EVCS placement on

total system losses, the aggregate distribution of change in losses caused by all line segments

(L) must be added. This can be computed by deriving the distribution of total change in

current flow through the system. Thus, considering all line segments l ∈ L, the aggregate

variance of change in real and imaginary parts of current flow (σ2
r,t, σ

2
i,t) as well as their

correlation (ct) can be computed as the sum of variances of individual line segments, i.e.,

σ2
r,t =

∑
l∈L

σ2
r,l, σ

2
i,t =

∑
l∈L

σ2
i,l, and, ct =

∑
l∈L

cl. (7.31)

By invoking Lindeberg-Feller central limit theorem, the distribution of total change in real

and imaginary parts of current flow converges to a multivariate Gaussian,

∆Ir,t

∆Ir,i

 ∼ N
0,

σ2
r,t ct

ct σ2
i,t


 (7.32)

By computing the distribution of squared magnitude of change in current |∆It|2, ∆I2
r,t +

∆I2
i,t, the distribution of change in system loss converges to a Gamma distribution,

∆Lt ∼ Γ
′
(kt, Rtθt). (7.33)
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Here, kt , (σ2
r,t +σ2

i,t)/θt and θt , 2(σ4
r,t +σ4

i,t + 2c2
t )/(σ

2
r,t +σ2

i,t). Similarly, one can compute

the distribution of total change in voltage for all nodes as,

|∆Vt|∼ Nakagami(kt, ωt) (7.34)

where, ωt ,
√
ktθt. Notice that the support set of both Gamma and Nakagami distributions

is x > 0. The allocation results obtained via Eq. (7.27) are used in the next section to

optimize the size of charging stations.

7.2.3 Size optimization of charging stations

The EV load in this section is based on a probabilistic EV arrival and departure model over

a time period of 24 hours as shown in Fig. 7.7. First, the EV penetration level and number

of EVs are specified. In this section, the type of EV charger is chosen as a 240-volt standard

level-2 charger with a power output rating of 5-20 kW. Then, the number of present EVs

at every hour is estimated based on their arrival and departure probabilities. It is assumed

that EVs are plugged-in over the entire time period between arrival and departure times,

which approximates the vector of EV loads at every time step, dev. Based on this setup, it

is possible to construct a quadratic formulation that computes the optimal sizes of charging
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stations while satisfying system constraints,

min
∆p
||∆p− dev||2 (7.35)

s.t. vmin ≤ v0 + B∆p ≤ vmax (7.35a)

P + ∆pmin ≤∆p ≤ P + ∆pmax (7.35b)

|C∆p|≤ Imax (7.35c)

Here, v0 is the vector of initial voltage magnitude of all nodes and vmin and vmax are the

vectors of upper and lower bounds on voltage, respectively. B is the voltage sensitivity matrix

with respect to active power changes and ∆pmin and ∆pmax are the limits on nodal active

power changes. This constraint is kept to prevent abrupt power changes while taking into

account the base active power demand vector P. Constraint 7.35c prevents line overloading

where C is the current flow sensitivity matrix with respective to active power changes and

Imax is the vector of maximum current flow.

7.2.4 Simulation results

This section validates the proposed probabilistic approach for EV charging station planning.

The effectiveness of the probabilistic method is verified via simulation on the unbalanced

IEEE 123-node test system. The test system is divided into multiple service regions according

to the Thiessen polygons theorem [94]. This theorem divides the network into multiple

regions where EVs are within a reachable distance to the charging station in every region as

shown in Fig. 7.8. Next, we use Eq. (7.27) to determine nodes with least contribution to

Table 7.3: Distribution parameters for select nodes.

Node
Nakagami parameters Gamma parameters
Shape Spread Shape Scale

35 0.9781 5.0485e-6 0.7187 0.1675
36 0.9008 8.1120e-6 0.7187 0.1955
37 0.9659 9.1895e-6 0.7187 0.2236
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Figure 7.8: Modified IEEE 123-node test system indicating service regions.
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Figure 7.9: Cumulative density function
for voltage change due to different nodes.

Figure 7.10: Cumulative density function
for loss change due to different nodes.

total system losses and voltage deviations. For this, the parameters of Nakagami and Gamma

distributions are computed for every candidate location of EV charging station for all regions.

For example, Table 7.3 shows the parameters of the Nakagami and Gamma distributions for

3 different nodes in region C. Note that the shape parameters of the Gamma distribution

are same for the three nodes and that is because the size of EV charging, i.e., 10 kW, is set

to be equal for all the analyzed nodes within every service region, which is done to ensure
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fair comparative analysis. Since the impact of each node is analyzed individually using these

parameters, the shape parameters will be equal for all nodes. On the other hand, the scale

parameters are different for all nodes as can be seen from Table 7.3, which determines the

influence of each node on total system losses. This trend is different with the distribution of

voltage deviation, i.e., the shape parameter of Nakagami distribution in Table 7.3. It can be

seen that the shape parameters are different, which is due to the difference in mutual path

impedance of the analyzed nodes despite having equal size of EV charging station. More

information on these topology parameters can be found in [20] and [72]. It is possible to

evaluate the CDF for every individual node and examine its impacts on the change in losses

and voltage deviation. To evaluate the CDF for different nodes, we choose a support set of
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Figure 7.13: Voltage profiles with optimized EV charging station sizes.
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[0 0.1] p.u with 0.001 steps for the distribution of voltage deviation whereas a support set of

[0 1.5] kW has been used for the distribution of change in losses. Figures 7.9 and 7.10 show

the CDF plots of the change in losses and voltage deviation for all nodes in service region

C. It turns out that node 35 (whose CDF is shown in blue color for both cases) is the node

that contributes the least to power loss and voltage deviation. This result is consistent with

the radial structure of the distribution system where the closer the node to the substation,

the less impact it will have on voltage deviation, hence resulting in less losses. While this

can be trivial for small systems, the analysis can be complex for practical systems with

a very large number of nodes, especially when there is a high penetration levels of DERs

such as PV that counteract the effect of increased EV load. The procedure is repeated

for all service regions and the optimal locations are found to be [1, 21, 35, 68, 55]. Next,

we compare the performance of the proposed approach in terms of reducing the impacts

on system parameters. Specifically, we compare the distribution of power loss and voltage

deviation resulting from the proposed approach compared to the case when EV charging

stations are placed in the center of service regions, i.e., [2, 31, 39, 107, 87]. Figures 7.11 and

7.12 show a comparison of the resulting probability distributions. It can be seen that using

the proposed approach results in lower losses as well as voltage deviations.

Finally, the size of the charging stations is optimized using the quadratic formulation

in Eq. (7.35). It is assumed that there are [500, 200, 600, 500, 300] EVs at each service

region, respectively. The arrival and departure times of EVs are modeled according to the

generalized extreme value distribution with parameters, ζ = 0.0629, σ = 0.5492, µ = 8.9068

and ζ = −0.2821, σ = 1.1106, µ = 16.4070, respectively [99]. The upper and lower voltage

limits in Eq. (7.35) are kept as [0.95 1.05] p.u whereas Imax and ∆pmin,max kept as 10 Amps

and [0 5000] kW, respectively. After solving the quadratic formulation in Eq.(7.35), the

corresponding sizes of EV charging stations turns out to be [2377.0 950.8 2775.8 2085.7 830.7]

kW. It is important to note that line current flows and nodal voltages are kept within the

specified operational limits. For example, Fig. 7.13 shows the voltage magnitude of all

system nodes after the charging stating sizing procedure. It can be seen that the voltage

magnitudes are all above 0.95 p.u, which ensures safe operation of the system. Therefore,
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the proposed approach can be used for efficient planning of EV charging stations without

sacrificing system reliability.

7.3 Summary

This chapter presents an analytical approach to compute the probability distribution of

voltage change at a particular node due to Spatio-temporal uncertainties. The proposed

approach is validated with a conventional load flow based approach in two different test

systems namely the IEEE 37 and IEEE 123. The estimated probability distribution matches

with the baseline to a high degree of accuracy (as demonstrated with a low Jensen-Shannon

distance of 0.18). Our method is fairly accurate in identifying the hosting capacity and offers

huge advantage in terms of computational efficiency. In the IEEE 123-node test system, the

proposed method is two orders faster compared to conventional load flow based approach and

this gap will further increase as the network size grows. In addition, this chapter analyses the

impact of Spatio-temporal uncertainties of EV charging station placement on total system

losses and voltage deviations. The proposed approach approximates the change in total

system losses due to charging station placement as a Gamma distribution, with well defined

shape and scale parameters, and the distribution of total voltage deviation as a Nakagami

distribution. With this information, the IEEE 123-node test system is divided into multiple

service area whose impact on system’s performance can be analyzed separately. Next, the

arrival and departure times of EVs for each area is modeled using the generalized extreme

value distribution, which allows computing the expected EV demand. Finally, the size of

charging stations is computed based on a quadratic optimization framework that ensures

safe operational limits of system constraints. Results show that the proposed approach

helps significantly reduce power losses and voltage deviations compared to the case when

charging stations are randomly placed in the service areas. The developed Spatio-temporal

analysis in this chapter serves as a key enabler of identifying the maximum allowable limit

of DERs/EV integration at which the system requires control algorithms to mitigate voltage

violations as discussed in Chapter 8.
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Chapter 8

Inverter-based DER control for

improved voltage stability margin

The variability in DER injection (e.g., fluctuations in PV power outputs due to climate

conditions) and the randomness associated with EV user charging patterns may cause voltage

violations that are difficult to eliminate using classical voltage control devices such as tap

changers and capacitor banks [120]. Given predicted voltage violations using the probabilistic

framework in Chapter 6, it is possible to prevent these violations by adjusting the setpoints

of inverter-based DERs in the system. For example, several research efforts attempt to

address the possibility of real-time voltage control with the via inverter-based DERs within

a model predictive control (MPC) setup [111, 244, 245]. However, these MPC based methods

assume full availablility of system measurements, which may not hold promise in practical

setups due to the lack of measurements. This issue can be solved by installing measurement

devices at all nodes in the system. Nevertheless, this solution creates additional stress on

the communication infrastructure and will also require huge installation costs, especially

for large systems [145]. Therefore, the aim of the first part of this chapter is to address

these limitations by proposing a new MPC based method for optimal voltage control in low-

observable distribution systems with the presence of PV injections. Unlike existing literature,

this work does not assume full availability of state measurements at all nodes and uses matrix
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completion (MC)-based approach to estimate missing states. Another challenge that faces

system operators is that the rapid growth in DER integration makes it difficult to identify the

most suitable locations to include in their voltage control programs. This is because using

a large number of control points is not practical [246]. Additionally, using large number

of DERs for control increases the communication requirements between utility and field

controllers, which in turn can increase their vulnerability to cyber intrusions [12]. Therefore,

to fully harness the potential of inverter-based DERs in voltage control programs, there is a

need for new frameworks that identifies strategic control locations while ensuring safe voltage

margins. Thus, the aim of the second part of this chapter is to address these research gaps by

providing a general framework that utilizes the control participation factors (CPFs) of nodes

integrated with inverter-based DERs to identify the optimal set of nodes that participate in

the control program, which we refer to in this dissertation as the system voltage influencer

set (SVI). Inspired by the DIVF approach [32], the SVI set in this paper contains the most

dominant nodes that influence voltage fluctuations across the entire system. We show in

this paper that, using the SVI set for voltage control applications via inverter-based DERs

provides, (1) faster execution time than using all DERs for control, (2) significantly lower

control cost compared to the same number of non-SVI controllers; and (3) high robustness

against uncertainty of complex power changes, which can be due to loads or DER injections.

8.1 Voltage control in low-observable systems

The proposed control technique is summarized in Fig. 8.1 whose functional blocks are

detailed in this section. This section is organised as follows: First, the formulation for MC

based state estimation (SE) is presented. In the second subsection, it is shown how the

estimated states are utilised in the MPC for voltage regulation across the network. The

final part of this section details the voltage sensitivity analysis (VSA) which is utilised in

the control algorithm for the prediction process. For developing the proposed technique, it

is assumed that measurements of the distribution system are available at a small subset of

nodes with the help of supervisory control and data acquisition (SCADA) system, PV units
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with available active power injection forecasts (pf ) and a set of Var compensators at PV

locations. Additionally, PV inverters are assumed to operate at a maximum power point

tracking mode.

8.1.1 Matrix completion based state estimation

Consider an N -node three phase unbalanced distribution system where the measurements

are only available at the nodes given by set ψ. It is considered that with the measurements

taken at the nodes ψ, the system is not observable. In the measured nodes, the three phase

values of voltage magnitudes, active and reactive power values are measured. Hence in

total, 9 measurements are taken in each measurement node. To illustrate the MC technique,

X ∈ R(N−1)×15 is considered as the complete matrix to be computed for the nodes other than

slack bus. For this complete matrix X, its elements corresponding to row j is defined as

Xj =

[
eabcj fabcj |v|abc

2

j cabcj dabcj

]
(8.1)

The superscript abc indicate the defined variables are accounted for all the three phases

of the network. The variables ej, fj and |v|j denote the real, imaginary and the absolute

SCADA
measurements

PV inverters 
(MPPT) Var Compensator

MC based SE

PV forcecast

MPC

Distribution System 

, 

Noise

VSA

Figure 8.1: Flowchart of the proposed method.
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value of the voltage phasor corresponding to node index j; cj and dj indicate the real and

imaginary parts of current injections at node index j which can be obtained from the linear

formulation (8.2) that employs the measured values of real power injection pj and reactive

power injection qj, i.e.,

cj + idj ≈
pj − iqj
|v|j

(8.2)

This linear structure is obtained under the assumption that that the voltage angle differences

between the incident nodes are typically closer to zero in distribution systems. With this

definition, the elements of the partial matrix M ∈ R(N−1)×15 with respect to row j is filled

as

Mj =



[
0 0 |v|abc

2

j cabcj dabcj

]
if j ∈ ψ

[
0 0 0 0 0

]
if j /∈ ψ

(8.3)

It is easy to notice that the available measurements enter the partial matrix at its respec-

tive positions. On the other hand, the unavailable values are filled with zeros. To obtain the

completed matrix, X, its low rank property is exploited by using its nuclear norm as a part

of cost function in the MC problem [145]. Such a formulation for the MC problem should

account for the system constraints, which can be written as

 eabcj − eabcs

fabcj − fabcs

 =
N−1∑
k=1

 Rabc
jk −Xabc

jk

Xabc
jk Rabc

jk


 cabck

dabck

 (8.4)

where, eabcj and fabcj are the real and imaginary parts of voltage for the three phases at

node j and Rabc
jk and Xabc

jk are the real and imaginary parts of the three phase bus impedance
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matrix element corresponding to node indices j and k. Here, the subscript s denotes the

index of slack bus. Similarly the constraints for voltage magnitude measurements can be

written in linear form as,

e0
j · eabcj + f0

j · fabcj ≈ vabc
2

j (8.5)

where e0
j and f0

j are the real and imaginary parts of voltage phasor estimated at the previous

batch of measurements at all the phases in relation to node j. Due to the presence of noise

in the measurements, these system constrains are enforced in a relaxed approach so that the

problem is feasible. Such a formulation for MC problem is given as [247],

arg min
X,ε,ζ
‖X‖∗ + wT

1 ε+ wT
2 ζ (8.6a)

such that

‖Xψ −Mψ‖F ≤ δ (8.6b)[
eabcj fabcj |v|abc

2

j cabcj dabcj

]
= Xj, ∀j ∈ Ω (8.6c)

∣∣∣∣∣∣∣
N−1∑
k=1

 Rabc
jk −Xabc

jk

Xabc
jk Rabc

jk


 cabck

dabck

 −
 eabcj − eabcs

fabcj − fabcs


∣∣∣∣∣∣∣ ≤ εj, ∀j ∈ Ω (8.6d)

∣∣∣∣∣∣∣
[

e0
j f0

j

] eabcj

fabcj

− vabc
2

j

∣∣∣∣∣∣∣ ≤ ζj, ∀j ∈ Ω (8.6e)

 εj
ζj

 ≥ 0, ∀j ∈ Ω (8.6f)

for some tolerance values δ, εj, and ζj. Here, Ω is the set of all node indices in the given

distribution system except the slack bus. The formulation given in (8.6) is different from the
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technique given in [247] as the values of power injection measurements are transformed into

equivalent current phasors which are used in the MC process. In this manner, the values of

voltage phasors at the nodes without measurement devices can be imputed used in MPC for

voltage control. In our implementation, the weights, wT
1 and wT

2 are set to 1 so that each of

the governing equation defined in the constraints (8.6d) and (8.6e) are equally important in

relative to each other. δ is set to the value of noise variance of the available measurements

as suggested in [247].

8.1.2 Non-linear model predictive control

The control objective in this section is to maintain nodal voltage magnitudes within the

predefined limits 0.95 < |v|< 1.05 p.u. In cases where any of the nodal voltages fall outside

the safe operational limits, the proposed controller will apply the minimum control policies to

regulate these voltages. To find the optimal control policies, a finite-horizon ([l,Nc−1]) MPC

is used. The MPC controller uses the latest available forecast of DER power output to predict

voltage states during the prediction horizon Np and find a cost-minimizing control policy.

However, only the control policy corresponding to the first voltage state is implemented.

Then, the voltage states are predicted again and the procedure is repeated from the current

new voltage states, resulting in a new control policy [248]. In this section, it is assumed that

Np < Nc − 1. This prediction horizon is shifted forward until step Nc − 1, which results in
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the following quadratic program,

min
u

Nc−1∑
l=1

uTt+l|tRut+l|t (8.7a)

s.t. xt+l|t = Axt+l−1|t + But+l−1|t + Dwt+l−1|t, ∀l ∈ [1,Nc − 1] (8.7b)

ct+l|t = ct+l−1|t + ut+l−1|t, ∀l ∈ [1,Nc − 1] (8.7c)

v2
min ≤ Gxxt+l|t ≤ v2

max, ∀l ∈ [1,Nc − 1] (8.7d)

cmin ≤ ct+l|t ≤ cmax, ∀l ∈ [1,Nc − 1] (8.7e)

umin ≤ ut+l|t ≤ umax, ∀l ∈ [1,Nc − 1] (8.7f)

Here, ut+l|t represents the optimal control policies, i.e., optimal changes in complex power

at different nodes that regulate nodal voltages. ct+l|t is the total change in nodal complex

power where ct+l−1|t is the change in base loadings at time instant l − 1. The constraint

(8.7d) brings voltage states within safe operational limits in the control horizon. The matrix

R , RT � 0 is a weight matrix that penalizes control actions. A dynamical prediction

model has to be specified to predict the trajectories to be controlled over the horizon Nc−1,

i.e., nodal voltage states. For unbalanced distribution systems, the voltage dynamical model

can be written as [249]

xt+l|t = Axt+l−1|t + ∆xt+l−1|t. (8.8)

Here, xt+l|t , [et+l|t, ft+l|t]
T ∈ R2N×1 is a vector containing the real (e) and imaginary (f)

parts of voltage states at step l and A is an identity matrix of size 2N × 2N . ∆xt+l−1|t ,

But+l−1|t + Dvt+l−1|t represents nodal voltage changes due to PV power injections at actor

nodes, where ut+l−1|t and wt+l−1|t are vectors containing the change in reactive and active

power at actor nodes, respectively. Gx is a linear approximation matrix that relates the real

valued state vector xt+l|t which contains the real and imaginary parts of voltage phasor to the

squared voltage magnitude value. The linear approximation is same as the approximation

made in (8.6e). B and D are sensitivity matrices that relate the nodal complex power

changes to the change in real and imaginary parts of voltage and can be computed based
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on the analytical voltage sensitivity framework introduced in our previous work [10] and

summarized below. It can be noticed that the voltage magnitude limits in (8.7d) are enforced

as hard constraints and hence this formulation can be applied when the VAr compensators

have necessary capacity to carry out voltage regulation under the prescribed load condition

and PV forecast values.

8.1.3 Analytical voltage sensitivity

When complex power changes at an actor node A from sA to sA + ∆sA the voltage state at

an observation node O changes from vO to vO + ∆vO. vO, ∆vO, sA and ∆sA are vectors

that contain voltage states, the change in voltage, complex power states and the change in

complex power at observation node O and actor node A for phases, a, b and c, respectively.

Using analytical voltage sensitivity, the voltage change for any observation node O can be

approximated for multiple actor nodes as,

Theorem 7. For a given three phase distribution system, the cumulative change in complex

voltage at an observation node O due to the change in complex power at multiple actor nodes

can be formulated as,

∆vO ≈ −
∑
A∈†


∆saAZ

aa
OA

va∗A
+

∆sbAZ
ab
OA

vb∗A
+

∆scAZ
ac
OA

vc∗A

∆sbAZ
ba
OA

va∗A
+

∆sbAZ
bb
OA

vb∗A
+

∆scAZ
bc
OA

vc∗A

∆saAZ
ca
OA

va∗A
+

∆sbAZ
cb
OA

vb∗A
+

∆scAZ
cc
OA

vc∗A

 (8.9)

v∗A and ∆sA represent the complex conjugate of voltage and complex power change at

actor node A, respectively. The superscripts a, b, and c represent different phases and

Z corresponds to the self and mutual impedance of the shared line between the actor and

observation node. Here, † represents the set of all actor nodes resulting in the complex

voltage change at node O. Proof can be found in [10].

The analytical method presented in Theorem 1 can be extended to compute the voltage
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Table 8.1: Performance of voltage estimation.

Mean Min Max σ
MAPE (%) 0.1677 0.0958 0.2767 0.0382
MAE (◦) 0.0950 0.0557 0.1604 0.0239

sensitivity at all observation nodes, i.e., (8.9) can be written as,

∆v = −(ZVb)∆s∗ (8.10)

where Vb = diag(v∗b)
−1 and vb is a vector containing the nodal base voltages assuming no

complex power changes. Here, Z is the bus impedance matrix and ∆s∗ = [∆p + i∆q] is

vector of the complex conjugate of change in apparent power at all nodes of the system.

Note that ∆v is the vector of complex voltage change at all nodes and can be written in

terms of real and imaginary parts as,

∆xt+l−1|t , [∆et+l−1|t∆ft+l|t−1]T (8.11)

= [<(ZVb)∆qt+l|t−1,=(ZVb)∆qt+l−1|t]
T

−[<(ZVb)∆pt+l−1|t,=(ZVb)∆pt+l−1|t]
T

. (8.12)

Here, ∆pt+l−1|t , wt+l−1|t is based on available PV forecasts and ∆qt+l−1|t , ut+l−1|t is the

control variable. ∆p for nodes that do not change complex power (e.g., does not have PV

units) can be set to zero. The main advantage of analytical voltage sensitivity framework is

the computational efficiency [10] when compared to classical sensitivity methods.

8.1.4 Simulation results

This section validates the proposed voltage control approach. The method is verified on the

unbalanced 37 node test system. A scenario is created where SCADA measurements are

available at 50% of system nodes. These nodes are highlighted in blue circles whereas nodes

with no available measurements are highlighted in red circles in Fig. 8.2. 5 PV units are
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Figure 8.2: Modified IEEE 37-node unbalanced distribution system.

installed at phases a, b and c of nodes 4, 10, 15, 20 and 35. The maximum PV penetration

by the PV units is set to supply 30% of total demand according to the daily PV profile shown

in Fig. 8.3. SCADA measurements and PV forecasts are assumed to be available every half
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Figure 8.3: PV profile.
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Figure 8.4: 3− φ Aggregate optimal control actions at VCs.
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Figure 8.5: Voltage profile at all observation nodes.
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Figure 8.6: Voltage profile at phase a of node 19.

an hour starting from 07:30:00 until 19:30:00, which results in Nc = 25 control steps. First,

voltage states are estimated based on the available SCADA measurements using MC. The

performance of SE over the control horizon is examined using mean absolute percentage

error (MAPE) for voltage magnitudes and mean absolute error (MAE) for voltage angles.

Table 8.1 shows the mean, minimum, maximum and standard deviation (σ) of MAPE and

MAE of voltage estimates. The table indicates that the estimation errors are very low with

50% observable nodes, which shows the accuracy of voltage estimates. Thereafter, voltage

estimates are passed together with PV forecasts to the MPC plant. It is important to note

that (8.7d) considers the squared magnitude of lower and upper limits of voltage profiles

to ensure convexity of the inequality constraint. The penalty matrix R is chosen to be

identity matrix, i.e., control actions at all VCs are equally penalized. The proposed method,

however, is generic to any choice of penalty matrix. In cases where VCs have different

penalties, control actions will be higher on nodes with lower penalties. Finally, the MPC

is implemented to obtain optimal control actions, which are shown in Fig. 8.4 as the 3−φ
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aggregate ∆q at actor nodes. It can be seen from the figure that the control action at node 35

is higher than that of node 4 and that is due to the inequality constraints imposed on nodal

reactive power injections as in Eq. (8.7e). Fig. 8.5 shows an error bar plot of voltage profiles

of at phase a of all nodes with and without control actions. The Figure shows the mean

value of each nodal voltage as well as its relative standard deviation over the entire control

horizon Nc. It can be seen that nodes 18, 19, 20, 21, and 22 violate the safe operational

limits without implementing control. This is because these nodes lie within the farthest

region from the slack bus. After applying the proposed control method, all violations are

eliminated. In addition, the variance of the lowest violation, i.e., node 19, does not exceed

the violation limit after applying control. Fig. 8.6 illustrates the worst case scenario that

occurs at node 19. It can be seen that voltage profile at node 19 is maintained within safe

operational limits across the entire control horizon. This demonstrates the effectiveness of

the proposed method in controlling voltage violations in low-observable distribution systems

with the presence of DER injections.

8.2 Dominant influencer-based voltage control

8.2.1 System model

Consider a three-phase unbalanced power distribution system with n nodes connected by

distribution lines. It is assumed that m inverter-based DER units are integrated in the

system to supply local loads. It is also assumed that the source node operates at 16 0◦ p.u

[27]. In this section, the set of actor nodes (A) refers to nodes where complex power varies

due to either PV power injection or local load consumption. The set of observation nodes (O)

is the set of nodes where voltage state is monitored. Voltage at observation nodes changes

due to complex power changes at actor nodes. Let ∆eO and ∆fO represent the change in

real and imaginary parts of voltage at observation node O, respectively, and let the complex

power change at any phase of actor node A ∈ A be ∆SA = ∆pA + j∆qA. Then, the vector

(∆xO , [∆eO ∆fO]ᵀ) of change in real and imaginary parts of voltage at any phase of
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observation node O ∈ O can be analytically computed using [72],

∆xO =

<(ZOAV)

=(ZOAV)

∆pA +

 =(ZOAV)

−<(ZOAV)

∆qA (8.13)

where, ZOA is the mutual path impedance between nodes A and O from the substation node

and V = (V ∗A)−1. Here, V ∗A is the complex conjugate of initial voltage at node A. Equation

(8.13) can be written in a vectorial form for all observation nodes O as,

∆x = D∆p + B∆q (8.14)

where ∆x , [∆e(1), ...,∆e(n),∆f(1), ...,∆f(n)]T ∈ R2n×1 is a column vector that consists

of the change in real (∆e) and imaginary (∆f) parts of voltage at all observation nodes.

Note that the set of observation nodes contains all n nodes, i.e., the change in voltage is

monitored across all system nodes. ∆p ∈ Rm and ∆q ∈ Rm×1 are vectors that capture the

change in active and reactive power at all actor nodes A, respectively. Matrices D ∈ R2n×m

and B ∈ R2n×m are sensitivity matrices that relate the change in real and imaginary parts

of voltage at all observation nodes with respect to the change in active and reactive power

at actor nodes, respectively. This analytical approximation can be used to quickly compute

the change in real and imaginary parts of voltage due to complex power changes. It has

been shown that this analytical framework is computationally efficient and highly accurate

when validated against classical load flow method. The approximation error introduced by

this approximation is very small (e.g., in the order of 10−4) and tightly upper bounded [72],

which guarantees the performance while computing the change in voltage states [27]. Let

t = 0 be the time step when system state is measured using sensors, it is possible to use

the analytical approach to compute the vector of real and imaginary parts of nodal voltage

states x , [e f ]T at all observation nodes as,

x = Ax0 + ∆x0 (8.15)
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where x0 , [e0 f0]ᵀ is the vector of the real and imaginary parts of initial voltage states,

A ∈ R2n×2n is an identity matrix and ∆x0 is the vector of change in voltage as computed

using (8.14). Using this system model, next section details the proposed analytical approach

for computing SVI nodes.

8.2.2 System voltage influencer paradigm

The set of DIVF nodes DO ∈ A ⊂ n of a particular observation node O ∈ O ⊂ n are

the nodes with the highest impact on nodal voltage fluctuations at that observation node

[32]. The use of DIVF nodes allows us to identify the most effective actor nodes to control

distribution system voltage, thus reducing the dimension of the control problem and mini-

mizing the computational time with minimal to no impact on optimality [32]. Two factors

impact the rank of actor nodes within the DIVF set: (1) the spatial distribution and phase of

actor nodes within the distribution system; and (2) the variance of complex power changes

at that actor node. Thus, it is possible to use well-known probability distributions with

information-theoretical distance measures to compute these dominant nodes.

Information-theoretical approach

The information-theoretical approach is based on novel probabilistic voltage sensitivity anal-

ysis [32] that computes the change in real and imaginary parts of voltage based on random

complex power changes at actor nodes A ∈ n. Let the power change vector ∆s be defined

as,

∆s ,[∆pa1,∆q
a
1 ,∆p

b
1,∆q

b
1,∆p

c
1,∆q

c
1, ...,

∆paA,∆q
a
A,∆p

b
A,∆q

b
A,∆p

c
A,∆q

c
A]ᵀ∀A ∈ A (8.16)

where the super scripts a, b, and c represent different phases. Then, the complex power

changes at actor nodes can be modeled as a random vector ∆s with mean µ∆s and covariance

matrix Σ∆s. The covariance matrix captures the correlation of complex power changes due
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to geographical proximity. For completeness, we list the exact definition of the covariance

matrix Σ∆s in Appendix D. Consider phase a for simplicity and let ∆xaO.1 and ∆xaO.2 be

the real and imaginary parts of voltage change at node O due to complex power change at

multiple actor nodes within the set A, respectively. Note that the numbers in the subscripts

O.1 and O.2 denote the real and imaginary parts, respectively. By invoking the Lindeberg-

Feller central limit theorem, it is possible to show that the distribution of change in real and

imaginary parts of voltage in (8.14) due to multiple actor nodes A converge to Gaussian

distributions, i.e.,

∆xaO.1
D→ N (µO.1 , ca

ᵀ

O.1µ∆s, σ
2
O.1 , ca

ᵀ

O.1Σ∆sc
a
O.1) (8.17)

∆xaO.2
D→ N (µO.2 , ca

ᵀ

O.2µ∆s, σ
2
O.2 , ca

ᵀ

O.2Σ∆sc
a
O.2) (8.18)

where vectors caO.1 and caO.1 are constant vectors that can be computed based on system

topology (see [32] for proof and more details). Note that the correlation between real and

imaginary parts of change in voltage at node O can be captured by c , ca
ᵀ

O.1Σ∆sc
a
O.2. Fol-

lowing the procedure in [32], it is possible to show that the distribution of change in voltage

magnitude ∆xaO.M , |∆xaO.1 + j∆xaO.2| follows a Nakagami distribution with well-defined

shape and scale parameters where O.M denotes the magnitude of voltage change. The next

step is to compute the distribution of voltage change due to a single actor node A ∈ A using,

∆xa,AO.1
D→ N (µO.1 , ca

ᵀ

O.1µ
A
∆s, σ

2
O.1 , ca

ᵀ

O.1Σ
A
∆sc

a
O.1) (8.19)

∆xa,AO.2
D→ N (µO.2 , ca

ᵀ

O.2µ
A
∆s, σ

2
O.2 , ca

ᵀ

O.2Σ
A
∆sc

a
O.2).

Here, µA∆s and ΣA
∆s can be computed by setting all entries to zeros except for that of

actor node A. The resulting change in voltage magnitude can be computed as ∆xa,AO.M ,

|∆xa,AO.1 + j∆xa,AO.2|. After computing the distribution of change in voltage magnitude due to

all actor nodes (∆xaO.m) and due to actor node A only (∆xa,AO.m), one can use the Kullback-
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Liebler (KL) divergence to compute the influence scores of each actor node, i.e.,

DKL(∆xaO.M||∆x
a,A
O.M) =

1

2

[
Tr
(
Σ−1

∆xaO.M
Σ∆xa,AO.M

)
+(µ∆xaO.M

− µ∆xa,AO.M
)ᵀΣ−1

∆xaO.M
(µ∆xaO.M

− µ∆xa,AO.M
)

−2 + ln
‖Σ−1

∆xaO.M
‖

‖Σ−1

∆xa,AO.M

‖

]
. (8.20)

The distance DKL(∆xaO.m||∆x
a,i
O.m)∀i ∈ A can be computed for all actor nodes, which results

in a unique ranking of actor nodes based on their influence on the magnitude of voltage

change at observation node O. The divergence metric in (8.20) can also be computed us-

ing other measures such as Bhattacharyya or Jensen-Shannon distances. For simplicity of

demonstration, we only use the KL divergence since Bhattacharyya and Jensen-Shannon dis-

tances provide identical ranking of nodes that is very accurate when compared to classical

load flow-based method. Notice that (8.20) ranks actor nodes based on their influence on

each individual observation node. In distribution systems, there might be multiple nodes

that experience voltage violations [27]. In addition, there can be scenarios where certain

nodes are high in rank for some observation nodes but low in rank for others. Therefore, it

is important to use a set whose nodes are dominant for all observation nodes. Next section

explains in details the steps behind computing the SVI set of dominant nodes ( D∗O) for

voltage control applications.

SVI for voltage control applications

Let Ǒ , [O1, O2, ..., Oň]ᵀ be the set of observation nodes for any ň ⊂ n. Then for each

observation node Oi∀i ∈ Ǒ, the DIVF set (DOi
) for each observation node can be computed

and sorted using (8.20), i.e.,
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DO1 = {d1
O1
, d2

O1
, ..., dm−1

O1
, dmO1
}∀m ∈ n

...
...

DOň = {d1
Oň
, d2

Oň
, ..., dm−1

Oň
, dmOň
}∀m ∈ n (8.21)

where, djOi
is the jth most dominant node of voltage fluctuations for observation node Oi. In

other words, the lower the superscript the higher the impact of the respective actor node on

the change in voltage of that observation node will be. Notice that a natural way to find the

SVI set of nodes would be the union of DIVF sets of individual observation nodes in (8.21),

i.e.,

DǑ =
ň⋃
i=1

DOi
= DO1 ∪DO2 ∪ .... ∪DOň

= {d1
O1
, d2

O1
, ..., dmO1

} ∪ {d1
O2
, d2

O2
, ..., dmO2

} ∪ ...

∪ {d1
Oň
, d2

Oň
, ..., dm−1

Oň
, dmOň
}

= {d1
Ǒ, d

2
Ǒ, ..., d

m−1
Ǒ , dmǑ}. (8.22)

According to (8.20) and (8.21), it can be seen that there can be nodes with minimal impact

on voltage services at any observation node. Therefore, in the final step of selecting the SVI

set, the control participation factor (CPF) is used to rank the actor nodes within the set.

For any node i ∈DǑ the CPF can be computed as,

CPFi = |xᵀ
O1

xO1 − 1|||B(xO1 , d
i
Ǒ)||

+|xᵀ
O2

xO2 − 1|||B(xO2 , d
i
Ǒ)||+...

+ |xᵀ
Oň

xOň − 1|||B(xOň , d
i
Ǒ)||. (8.23)
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Here, the term |xᵀ
Oj

xOj
− 1| is the absolute deviation of squared magnitude of voltage at

node j from 1 p.u whereas B(xOj
, diǑ) is a vector that contains the sensitivity of the change

in real and imaginary parts of voltage at node j with respect to reactive power injections at

dominant node diǑ ∈DǑ. Finally, the nodes can be ranked in a descending order depending

on their CPFs as,

Rank 1 , arg max
diǑ

CPFi

Rank m , arg min
diǑ

CPFi. (8.24)

Note that the minimum rank that can be obtained is m since there are m actor nodes in

(8.21). The rank of all other actor nodes falls between 1 and m, depending on their CPFs.

This framework is generic and allows distribution system operators to choose any arbitrary

number (m̌) of dominant nodes to participate in the voltage control framework, which yields

the optimal SVI set,

D∗Ǒ = {d1∗
Ǒ , d

2∗
Ǒ , ..., d

(m̌−1)∗
Ǒ , dm̌∗Ǒ }. (8.25)

Two key properties of the SVI set and its application to Problem 1 are highlighted in the

following propositions.

Proposition 1. Let m̌ be the cardinality of SVI set whose nodes participate in the voltage

control program with ň critical locations that experience voltage violations. Then, it is possible

to reduce the computational complexity of Problem 1 (below) by at least a factor of (m− m̌)

for any SVI set with 1 < m̌ ≤ m.

Proposition 2. Assume that Problem 1 is feasible for any k ∈ [0, N − 1] ∈ Z>1. Let

D∗Ǒ , {d1∗
Ǒ , d

2∗
Ǒ , ..., d

(m̌−1)∗
Ǒ , dm̌∗Ǒ } be the SVI set. Then, for any D̂

∗
Ǒ , DǑ\{D∗Ǒ} with

cardinality |D̂∗Ǒ|= m− m̌,

(V (x0,∆q∗k) |∆q∗k ∈D∗Ǒ)

<(V (x0,∆q∗k) |∆q∗k ∈ D̂
∗
Ǒ) ∀k (8.26)
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where ∆q∗k is the optimal control sequence.

The complete proof of Proposition 1 and 2 can be found in Appendix E and F, re-

spectively. Next section discusses voltage control via inverter-based DERs as the potential

application of SVI nodes.

Use case: Efficient voltage control

Based on the proposed system model in Eq. (8.15), it is possible to formulate a quadratic

program to control voltage profiles by adjusting the reactive power outputs of inverter-based

DER resources. This framework is illustrated in Problem 1. To implement SVI-based voltage

control, it is possible to use the approximation of change in voltage shown in Eq. (8.14) in

a predictive control setup where voltage violations can be predicted [27]. This is done by

computing the future voltage state vector based on the latest available measurements of

change in PV injections or local load patterns [250]. For this, we develop a finite-horizon

model predictive control approach that finds an optimal control sequence ∆q whenever

a voltage violation is predicted over a given prediction horizon Np. At every prediction

window, only the control sequence that corresponds to the first prediction of voltage states

is implemented [248]. The prediction window is shifted again by Np steps, resulting in a new

optimal control sequence for every time instance in the control horizon [0, ..., Nc − 1]. This

dynamical setup in terms of the control horizon is shown in Problem 1,

Problem 1. For a fixed N ∈ Z>1, let ∆xk ∈ [∆x0, ...,∆xNc−1] be the vector of change in

real and imaginary parts of voltages over the control horizon and let xk ∈ [x1, ...,xNc ] be

the voltage state vector computed using (8.15) with initial voltage vector x0. Then, find an

optimal control sequence ∆qk ∈ [∆q0, ...,∆qNc−1] that minimizes the cost function V ,

V (∆qk|x0) = min
∆qk

Nc−1∑
k=0

L(∆qk) (8.27)

s.t. xk+1 = Axk + D∆pk + B∆qk∀l ∈ [0, Nc − 1] (8.27a)

Hxk + G∆qk ≤ hk∀l ∈ [0, Nc − 1] (8.27b)
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where hk = [−∆q,∆q,−v,v]ᵀ is a vector that represents the lower and upper bounds on

control sequence and voltage magnitudes, respectively. G , CxΓ with Cx ∈ R(2m+2n)×n

and H ∈ R(2m+2n)×2m are rotation matrices of appropriate dimension to maintain consistent

constraints. Note that the matrix Γ ∈ Rn×2n is used to transform the vector of real and

imaginary parts of nodal voltage states into a of vector voltage magnitudes form [31],

Γ ,


<(t(1)) ... 0 −=(t(1)) ... 0

...
. . .

...
...

. . .
...

0 ... <(t(n)) 0 ... −=(t(n))

 (8.28)

Here, t is a vector that contains the nominal voltage of all nodes t ∈ Rn (i.e., 16 0◦, 16 120◦

and 16 −120◦) for phases a, b, and c, respectively.

The function L(.) is used to penalize control actions, which prevents abrupt changes in

system dynamics and minimize interference with the existing voltage regulation devices in

the system[120]. Throughout this section, it is assumed that L(∆q) , ∆qᵀR∆q where

R � 0 ∈ Rm×m is a positive-definite matrix. The available reactive power support in the

system varies depending on individual constraints of control nodes as well as system overall

capabilities. This variability occurs due to the reactive power injected by the PV inverter

or the existing load reactive power demand. Therefore, the vectors of lower and upper

bounds in inequality constraint (8.27b) can be defined dynamically across the entire control

horizon to represent changes the available reactive power support by each controller. To

solve Problem 1, we use the interior point method [251, 252] as it has been shown in [253]

that this method is highly accurate with significant computational efficiency compared to

other approaches such as active set method. Though what we propose in this chapter is

mainly based on the SVI paradigm, and thus our goal is not to compete with other models

for solving Problem 1. For completeness, we include the details on this implementation in

Appendix G. The voltage state vector (x) can vary randomly due to uncertainty of DER

power outputs, variability in load patterns, or inaccurate state estimates (or measurements).

These stochastic processes can heavily impact the accuracy of voltage control algorithms
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[31]. Specifically, nodal voltage magnitudes under uncertainty scenarios can still violate the

permissible stability margins even when the control algorithm is active [254]. Therefore,

utilities and distribution system operators require robust control algorithms that guarantee

voltage stability under such scenarios. In this section, equation (8.27a) in Problem 1 is used

to derive a stochastic control approach. Specifically, (8.27a) can be rewritten as,

xk+1 = Axk + D∆pk + B∆qk + wk∀l ∈ [0, Nc − 1] (8.29)

where, wk ∼ N (µw,Σw) is a Gaussian uncertainty with a mean vector µw and a covariance

structure Σw. The diagonal elements of Σw represent the variance of voltage change due

to random power changes or inaccurate state measurements. This covariance matrix can be

constructed based on historical data [254] or using sparsity-based Bayesian state estimation

techniques [255]. Assuming that we use (8.29) to solve Problem 1, the algorithm will not

capture the uncertainty introduced by Σw and the deterministic inequality constraint (8.27a)

might be violated. Therefore, the equivalent stochastic formulation in Problem 2 is used to

capture this uncertainty.

Problem 2. For a fixed N ∈ Z>1, let ∆xk ∈ [∆x0, ...,∆xNc−1] be the vector of change

in real and imaginary parts of voltages over the control horizon and let xk ∈ [x1, ...,xNc ]

be the voltage state vector with uncertainty component as given in (8.29). Then, find an

optimal control sequence ∆qk ∈ [∆q0, ...,∆qNc−1] that minimizes the expected value of the

cost function V ,

V (x0,∆qk) = min
∆qk

E

(
N−1∑
k=0

∆qᵀ
kR∆qk

)
(8.30)

s.t. xk+1 = Axk + D∆pk + B∆qk + wk∀k ∈ [0, Nc − 1] (8.30a)

P(Hxk + G∆qk ≤ hk) ≥ α∀k ∈ [0, Nc − 1] (8.30b)

where, {0 ≤ α ≤ 1} is a vector whose elements are predefined tightening (or risk) pa-

rameters. A higher risk parameter reduces the risk of violating the inequality constraint in
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(8.30b).

Note that the stochastic formulation in Problem 2 can be efficiently solved by computing

the stage-wise error matrix caused by the uncertainty vector wk and converting the chance

constraint eq. (8.30b) to its deterministic equivalent [256].

8.2.3 Simulation results

This section validates the efficacy of the proposed voltage control approach using the IEEE

37 and IEEE 123-node test systems. First, the approach is validated via simulations on the

unbalanced IEEE 37 node test system. The nominal voltage of this test system is 4.8 kV. A

scenario is created where inverter-based PV units are integrated at 15 randomly selected actor

nodes. These actor nodes are [7, 8, 9, 12, 14, 17, 18, 22, 26, 27, 28, 30, 31, 34, 36]. To determine

the set of SVI nodes for observation nodes, we use the probabilistic approach in Eq. (8.20). In

particular, we model complex power changes at the 15 actor nodes as a zero-mean Gaussian

vector Eq. (8.16) with a covariance structure that captures the geographical proximity

between different actor nodes. Although it is assumed that complex power variations follow

a Gaussian distribution, the proposed approach is generic to other probability distributions.

The mean and variance of the complex power change at actor nodes is chosen as follows, The

Table 8.2: Ranked DIVF set of observation nodes.

Observation Node R 1 R 2 R 3 R 4 R 5
5 7 9 12 14 22
11 12 14 22 9 7
21 17 22 18 14 12
31 31 30 8 18 36

Table 8.3: CPF of different actor nodes.

Node CPF Node CPF Node CPF
7 0.0078↓ 17 0.0187↑ 28 0.0049↓
8 0.0107↓ 18 0.0194↑ 30 0.0049↓
9 0.0117↑ 22 0.0117↓ 31 0.0049↓
12 0.0148↑ 26 0.0049↓ 34 0.0049↓
14 0.0181↑ 27 0.0049↓ 36 0.0049↓
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variance of active and reactive power change at actor nodes according to the exact phase

sequence is chosen as follows [32],

∆SA ∼ N

(0

0

 ,
1.5 − 0.05

−0.05 0.25

),
A ε {7c, 8a, 12c, 27b, 28c}

∆SA ∼ N

(0

0

 ,
 3 − 0.1

−0.1 0.5

),
A ε {7b, 18a, 22c, 34b, 36b}

∆SA ∼ N

(0

0

 ,
4.5 − 0.2

−0.2 0.75

),
A ε {9c, 14c, 26c, 30a, 31a}

(8.31)

where superscript over actor nodes, i.e., {a, b, c} represent respective phases of actor nodes

at which power is varying. Table 8.2 shows the ranked top 5 DIVF nodes for randomly

selected observation nodes at phase ’a’ computed using eq. (8.20). For example, it can be

seen that node 7 is the most dominant node that impacts voltage fluctuations at node 5.

The is because the KL divergence of node 7 is higher than that of other actor nodes when

node 5 is the observation node. Notice that when an observation node is an actor node,

this observation node will have the highest impact on its own voltage profile (e.g., node 31),

which is expected since the voltage profile is impacted more significantly by its local VAR

signal compared to that of other nodes [120]. However, there can be scenarios where some

nodes are highly dominant (in terms of voltage fluctuations) for some observation nodes but

less dominant for others. For example, although node 12 is the most dominant actor node

for observation node 11, it is ranked as the 5th most dominant node for observation node

21. Therefore, we use the CPF score in eq. (8.35) to compute the impact of complex power

changes at each actor node on the voltage profiles of all observation nodes. Table 8.3 shows

the CPF score for all actor nodes in the system. It can be seen from the table that the most
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Figure 8.7: Variable PV and load profile.
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Figure 8.8: Uncontrolled voltage magnitudes of all nodes.

dominant node that impacts voltage fluctuations at all observation nodes is node 18 followed

by nodes 17, 14, etc. Now it is possible to compute the SVI set of dominant nodes (D∗Ǒ)

that participate in the voltage control program. We use the top five dominant nodes (shown

by upward arrows in Table 8.3) in the SVI set for this scenario. However, the proposed

approach is generic for any choice of nodes and this case is chosen merely to demonstrate

the efficacy of the proposed approach. In this case, the SVI set of dominant nodes turns out

to be D∗Ǒ = {18, 17, 14, 12, 9}

To test the effectiveness of the SVI set, it is assumed that actor nodes are integrated with

PV units. PV active power injection is modeled as a random process with an uncertainty

component as, ∆Ppv = S(t) + r(t) where, S(t) is the mean forecast trend of the active power

injection at actor nodes and r(t) ∼ N (0, σ2
pv) is a zero mean Gaussian that captures PV

uncertainty with variance of σ2
pv. In addition to variable PV injections, we assume that the
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Figure 8.9: Controlled voltage magnitudes of all nodes.
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Figure 8.10: Voltage magnitude of node with most significant violation (IEEE 37).

local load is also variable. Fig. 8.7 shows the mean forecast trend of PV injection as well

as the variable load pattern, which are based on actual data obtained via eGauge home

energy monitoring system [257]. This data is available for one day every minute starting

from 20:43:00 until 20:43:00 as shown in the figure.
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Figure 8.11: Voltage magnitude of node with most significant violation (IEEE 123).
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Figure 8.12: Modified IEEE 123-node test system.

Effectiveness of mitigating voltage violations

First, we test the effectiveness of the proposed approach in eliminating all voltage violations

given this time horizon. The voltage safe operational limits are set according to the ANSI

C84.1 standard, i.e., 0.95 ≤ Γx ≤ 1.05 p.u. Fig. 8.8 shows the voltage magnitudes of all

nodes as a result of the complex power changes at actor nodes. It can be seen that the
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system experiences multiple under-voltage violations at three different time intervals. The

most significant violation is experienced at node 21 phase ’a’ as shown in the figure between

the interval [590 − 640]. The proposed predictive control approach is implemented using

the SVI set D∗Ǒ to obtain the optimal control sequence, i.e., kVAr adjustments. Fig. 8.9

shows the controlled voltage magnitudes. It can be seen that the proposed approach is able

to eliminate all voltage violations across the entire control horizon, which demonstrates the

effectiveness of the proposed approach in eliminating all voltage violations. In addition, Fig.

8.10 shows the uncontrolled and controlled voltage magnitude of node 21 over the time period

570-630 (most significant violation) using (1) the proposed approach; and (2) the case when

all nodes are chosen to participate in the control program. It can be seen that the proposed

approach offers voltage control efficiency (within the 0.95 p.u threshold) similar to the case

where all nodes are chosen, which further guarantees the efficiency of the proposed approach.

To test the effectiveness of the proposed approach on large systems, a scenario is created

with the IEEE 123-node test system where 22 nodes are integrated with inverter-based PV

units as shown in Fig. 8.12 with the SVI nodes highlighted in red circles. For simplicity of

illustration, the same PV profile has been used from the previous scenario as shown in Fig.

8.7 with time interval of [0, 40]. Fig. 8.11 shows the voltage magnitude of the node with the

most significant violation as well as the controlled voltage state using the proposed approach

and the case where all actor nodes are used in the control program. It can be seen that

the proposed approach offers an identical voltage control performance compared to the case

when all nodes participate in the control program, which also guarantees the performance

of the proposed approach for large systems.

Capturing uncertainty

Next, the effectiveness of the proposed approach is tested against noise in the knowledge of

voltage state vector. It is assumed that the voltage state vector varies randomly due to the

uncertainty vector wk in (8.29). The mean of model uncertainty vector wk is chosen to be

0.001 p.u and the variance is set to 10−5. Although the same parameters of the distribution
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Figure 8.13: Control performance without accounting for uncertainty.

500 520 540 560 580 600 620 640

Time step

0.93

0.94

0.95

0.96

|V
| 
(p

.u
)

Proposed - deterministic

Proposed - stochastic

Without control

Figure 8.14: Control performance with the proposed stochastic framework.
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Figure 8.15: Cumulative cost comparison (IEEE 37).

are used to reflect uncertainty at all nodes, the proposed approach is generic and can be

applied to the case of different uncertainty parameters for different nodes. Fig. 8.13 shows

the voltage profile of node 21 over the time step 500− 640 where the most significant viola-

tion is experienced. The dark dotted line shows the uncontrolled voltage state. The red line

represents the controlled voltage sate with the proposed approach assuming no uncertainty
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Figure 8.16: Cumulative cost comparison (IEEE 123).

whereas the blue error bar illustrates the impact of injected uncertainty (wk) on the perfor-

mance of the control algorithm, i.e., controlled voltage states with uncertainty. To obtain

reasonable accuracy, the impact of uncertainty shown in the figure is computed by running

100 simulations. It can be seen from the figure that the introduced uncertainty causes the

voltage states to fall outside the safe operational limits even when the control algorithm

is active. This is because the controllers assume that the estimated voltage state vector is

accurate while in reality it is noisy. Therefore, the controllers’ output is less compared to

the case when the voltage state vector is deterministic, causing unanticipated violations. To

eliminate the unanticipated violations caused by uncertainty, the stochastic control frame-

work in Problem 2 is used. The tightening vector α is set to 0.97
−→
1 where

−→
1 is a vector

of ones. This tightening parameter is chosen to ensure the chance constraint in (8.30b)

is satisfied with high probability. Fig. 8.14 shows the controlled voltage states using the

stochastic approach to account for state uncertainty. Specifically, the blue error bar shows

the performance of the proposed approach when the state uncertainty is captured by the

chance constraint. It can be seen from the figure that the proposed stochastic approach,

compared to the case shown in Fig. 8.13, eliminates all unanticipated violations over the

entire control window 500− 640, which illustrates the robustness of the proposed approach

against practical uncertainty scenarios.
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Comparative analysis of cumulative cost

Along with the effectiveness in eliminating voltage violations, the proposed approach pro-

vides lower control cost compared to cases where the control set is not optimally chosen.

For this, we compare the absolute cumulative cost incurred by using the proposed SVI set

(D∗Ǒ) against the case when a random set (D̂
∗
Ǒ) of the same size is chosen to participate

in the control program. The cumulative cost for the random set is computed by averaging

the cumulative stage-wise cost over 100 Monte-Carlo realizations to obtain a reasonable ac-

curacy. Fig. 8.15 illustrates the cumulative cost of the these cases over the entire control

horizon, i.e., k ∈ [0, Nc − 1]. It can be seen from the figure that the cumulative cost of

both cases increases around the time of the day when voltage violations are experienced

in the system, which is expected as the controllers adjust their output to overcome these

violations. However, the cumulative cost incurred by the proposed approach (shown in dark

dotted line) is significantly lower than the random case (shown in red color), which highlights

the efficiency of the proposed approach. Similarly, the proposed approach offers a significant

efficiency improvement in terms of control cost for large systems as shown in Fig. 8.16 for

the IEEE123-node test system. It is important to note that this efficiency is necessary for

modern distribution system control applications given the limited control resources across

different nodes [120].

Computational complexity analysis

To further test the efficacy of the proposed approach, we compare the execution time taken

by the control algorithm when the proposed SVI set (D∗Ǒ) is used against the case where all

controllable resources (A) are utilized. The analysis for all cases is implemented using an

inter i-9 processor and the corresponding execution time taken by both approaches is reported

in Table 8.4. It is important to note that, for both control cases, the convergence is achieved

and all voltage states are maintained within safe operational limits. It can be seen from the

table that the time taken to successfully control voltage violations is at least an order faster

compared to the standard case when all nodes are used in the control algorithm for both
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Table 8.4: Comparison of the computational complexity in terms of execution time.

Method IEEE 37 IEEE 123
Proposed 0.0136 0.4304
Existing 0.1578 7.4735

test systems (i.e., the IEEE 37 and IEEE 123). Note that with the inclusion of time taken

to compute the SVI set, the proposed approach is significantly faster (i.e., multiple orders

faster) compared to classical load-flow based approach. Thus, the proposed approach offers

a significant improvement in the computational time in terms of computing the dominant

nodes and providing voltage support. With this computational advantage, it is possible to

leverage the proposed approach to simplify voltage control processes in modern distribution

systems considering high levels of consumer edge technologies.

8.3 Dynamic system voltage influencer paradigm

The SVI for any power distribution system is the set of nodes that has the highest impact on

all voltage states in the system. Determining the SVI nodes depends on two major factors:

(1) the location of node in the system; and (2) the amount of complex power change at

this location [32]. Leveraging the strategic location and the power variability of the SVI

nodes can potentially improve the efficiency of voltage support programs in terms of reactive

power utilization cost [246]. Fig. 8.17 shows an illustration of the dynamic SVI concept

across the control horizon k ∈ [0, ..., Nc − 1]. At every time step, complex power changes,

base voltages, and topology information are used in the control center, e.g., DSO, to find

the SVI nodes that will be used for reactive power support. It can be seen from the figure

that the control points (highlighted in red circles) change over time, which improves the

efficiency of the voltage control program in terms of reactive power utilization cost. The

following subsections discuss the exact steps behind determining the SVI nodes dynamically.
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Figure 8.17: Illustration of the dynamic SVI paradigm.

8.3.1 Compute the distribution of voltage magnitude

Uncertainty in complex power changes at actor node causes random changes in voltage mag-

nitudes of observation nodes [250]. The distribution of voltage magnitude at any observation

node due to complex power changes at all actor nodes in the system has been shown to follow

a Rician distribution with noncentrality and scale parameters κ and σ, respectively [27],

|V f
O |∼ Rician(κ, σ), (8.32)

where, κ =
√
w and σ =

√
λ are based on system topology and complex power changes at

actor nodes. See [27] for proof of eq. (8.32) and more details. Next, the distribution of

voltage magnitude can be used to determine the dominant influencers for each observation

node, which can then be used to obtain the SVI nodes.

8.3.2 Obtain and rank nodal dominant influencers

To determine the ranked set of dominant influencers for each observation node, two proba-

bility distributions must be computed at every time step k ∈ [0, ..., Nc − 1],
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Figure 8.18: Summary of the proposed dynamic SVI paradigm.

� The distribution of voltage magnitude due to the effect of all actor nodes: |V f
O |k.

� The distribution of voltage magnitude due to the effect of a single actor node (A):

|V f,A
O |k.

For a given observation node O, the most domiant influencer node is the node that minimizes

the statistical distance between the two distributions. To quantify the statistical distance

between the probability distributions, we use the Kullback–Leibler (KL) divergence as it is

multiple orders faster in terms of execution time [32] compared to classical load-flow based

approaches. This process can be repeated for every pair of actor and observation nodes,

which can then be used to rank the actor nodes in terms of there influence on the voltage

profile of each observation node. As shown in our prior work [32], this computation is very

efficient as it relies on analytical approximations. Thus, for every observation node j ∈ n at

every time step k ∈ [0, ..., Nc − 1] there is a unique set of DIVF nodes (DOj,k
) that impact

its voltage profile, i.e.,

DOj,k
= {d1

Oj,k
, d2

Oj,k
, ..., dmOj,k

}, (8.33)

where, d1
Oj,k

and dmOj,k
are the most and least dominant nodes, respectively.
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8.3.3 Compute the system voltage influencer set

A natural way to compute the SVI nodes is to dynamically (∀k ∈ [0, ..., Nc − 1]) compute

the union of DIVF sets considering all observation nodes as follows,

DǑ,k =
n⋃
j=1

DOj,k
= DO1,k

∪DO2,k
∪ .... ∪DOn,k

= {d1
Ǒ,k, d

2
Ǒ,k, ..., d

m
Ǒ,k}. (8.34)

However, there might be cases where some actor nodes are high in rank for certain observation

nodes but low in rank for others. To prevent such cases, a control participation factor (CPF)

is developed to assign weights to the nodes within the union set in eq. (8.34). For any actor

node i ∈DǑ,k at any time step k, CPFik can be computed as,

CPFik = |xTO1,k
xO1,k

− 1|||B(xO1,k
, diǑ,k)||+...

+|xᵀ
On,k

xOn,k
− 1|||B(xOn,k

, diǑ,k)||. (8.35)

Here, the term |xTO1,k
xO1,k

− 1| contains the voltage deviation from the nominal value (i.e.,

1 p.u) and ||B(xO1,k
, diǑ,k)|| represents the sensitivity between actor and observation nodes

obtained using eq. (??). Finally, the actor nodes can be ranked in a descending order to

obtain the SVI set (D∗Ǒ) that have the maximum influence on system voltage profiles where

the utility can choose the top m̌ ∈ m nodes to provide reactive power support,

D∗Ǒ = {d1∗
Ǒ,k, d

2∗
Ǒ,k, ..., d

(m̌−1)∗
Ǒ,k , dm̌∗Ǒ,k}. (8.36)

Fig. 8.18 shows a summary of the proposed approach. Note that the DIVF sets of individual

nodes at the initial step are computed sequentially for each node, which then can be used

to compute the SVI nodes.

176



10 20 30 40 50 60 70 80 90

Time step

0

0.02

0.04

0.06

0.08

P
o

w
e

r 
(p

.u
)

P1 P2 W1 W2 H1 H2

Figure 8.19: EV charging behavior for different charger types.

8.3.4 Simulation results

The proposed dynamic SVI approach is verified via simulations on the unbalanced IEEE 37

node test system with base voltage of 4.8 kV. 15 nodes are randomly chosen to be integrated

with PV assets. To account for PV power output variability, it is assumed that the PV profile

varies randomly according to a mean forecast trend (S(t)) with an uncertainty component

Figure 8.20: Modified IEEE 37 node test system.
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Figure 8.21: Voltage control performance for all nodes.

(r(t)), i.e., ∆PPV (t) = S(t) + r(t). The PV data is obtained via eGauge monitoring system

for one day at 15 minute intervals [257]. In addition to the PV profile, we assume that

6 different EV charging stations are also integrated into the system at 6 randomly selected

locations. The EV profiles include public, work, and home charging stations with two charger

types, i.e., level 1 and level 2 chargers. The daily EV charging station profiles with 15

minute intervals (shown in Fig. 8.19) are obtained through EVI-Pro tool that contains

EV charging load estimates, which is developed by National Renewable Energy Laboratory

and the California Energy Commission [? ]. The spatial distribution of PV assets and

EV charging stations is illustrated in Fig. 8.20. Using this scenario, the DIVF nodes are

computed for all nodes in the system at all time steps using eq. (8.33). For example, the top

dominant influencer node for node 5 is found to be 7 for time steps 1 and 15 whereas it is 8
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for time step 30. This is due to the difference in PV injection, load, and EV consumption at

these nodes for the different time steps. It is important to note that these ranks can differ

for observation nodes and time steps. Therefore, the accuracy of the proposed approach is

evaluated against actual load flow-based method by averaging the identification error over

all possible observation nodes (36 nodes excluding the source node) and time steps (96 steps

for a 24-hour profile with 15 minutes intervals). It is found that the accuracy of identifying

top dominant node and top-5 dominant nodes is 97.29% and 95.10%, respectively. Note

that the proposed approach is multiple orders faster compared to classical load flow-based

method since sampling random variables from standard probability distributions, e.g., eq.

(8.32), removes the need to simulate large number of scenarios [20].

Next, the top five DIVF nodes are used to compute SVI nodes for all time steps according

to eq. 8.36. The resulting dynamic SVI nodes are computed and ranked in a descending

order (R1 to R5) as shown for selected time steps in Table 8.5. The SVI nodes are then used

to implement reactive power support at any time voltage violation is predicted at any node

in the system. The voltage control performance using the SVI nodes is shown in Fig. 8.21.

It can be seen from Fig. 8.21-(a) that multiple voltage violations are experienced at different

time instances due to increased load or EV consumption. To prevent such violations, the SVI

nodes are used within the voltage control problem in eq. (8.27). The corresponding reactive

power setpoints for different SVI nodes are shown in Fig. 8.21-(b) and the controlled voltage

states are illustrated in Fig. 8.21-(c). It can be seen from the figure that it is possible to

eliminate all voltage violations using the dynamic SVI paradigm. Moreover, the proposed

SVI approach helps to reduce the cumulative control cost compared to the cases when the

SVI set is static or is randomly chosen. Fig. 8.22 shows the cost-effectiveness of the proposed

approach compared to the other cases. The static SVI approach uses the initial SVI nodes

(i.e., at time step 0) for the entire control horizon whereas the dynamic random case chooses

any random set of control nodes without incorporating their influence on system voltage

profiles. The cost of the lateral case is computed by averaging the cumulative cost of 100

random scenarios where nodes are randomly chosen. It can be seen that the proposed

dynamic SVI approach offers a significant cost reduction compared to other cases and that
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Table 8.5: Dynamic SVI nodes for voltage control applications.

Node SVI-1 SVI-14 SVI-16 SVI-30 SVI-60 SVI-90
R1 18 18 18 18 18 18
R2 17 17 17 17 17 17
R3 12 12 14 14 12 12
R4 22 22 12 12 22 22
R5 8 9 22 22 8 8
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Figure 8.22: Cumulative control cost.

is because the influence of actor nodes on system voltage profiles is incorporated at every

time step of the control horizon. Therefore, identifying dynamic SVI nodes helps utilities to

implement cost-effective voltage control programs especially in cases where reactive power

supply is limited in the system.

8.4 Summary

This chapter proposes a new SE based voltage control framework that helps to efficiently

eliminate voltage violations in distribution systems via inverter-based DERs. First, voltage

states are estimated using MC based method and then voltage estimates with PV forecasts

are utilized by a finite-horizon MPC to regulate nodal voltages while satisfying system con-

straints. Additionally, the proposed framework uses an analytical voltage sensitivity frame-

work to predict voltage states for a given PV injection profile. Simulation results demonstrate

that the proposed framework works well for applications where voltage measurements are
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not available across all nodes in the system. Additionally, this chapter identifies strategic

locations to implement inverter-based DER control. In this regard, the CPF factor is used

to rank nodes with DERs based on their voltage influence, which then can be used to iden-

tify the SVI set that can be used in the control program. Results show that the proposed

approach offers at least an order faster execution time and reduces the overall control cost

when compared to existing methods while taking into account uncertainty related to com-

plex power changes of DERs or load variability. The advantages of the proposed approach

make it a suitable tool for real-time voltage control applications in modern distribution sys-

tems. Additionally, the proposed approach is generic and can be applied with any control

architecture, which can scale up these advantages.
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Chapter 9

Conclusions and future work

This chapter concludes the dissertation by summarizing the major contributions and high-

lighting future research directions.

9.1 Conclusion

In the light of increased integrated of grid-edge technologies, e.g., DERs and EVs, in modern

power distribution systems, impact analysis studies have garnered a huge attention. This

dissertation addresses fundamental research questions related to efficient modern distribution

system planning, operation, and control with the presence on high penetration levels of these

technologies. Specifically, this dissertation develops simple, yet accurate, analytical impact-

assessment frameworks that can be utilized for various downstream applications. First, a

foundational sensitivity analysis framework is developed to quantify the impact of grid-edge

technologies on line losses and voltage magnitudes. Then, by leveraging existing knowledge

of state measurements along with uncertain forecasts of power generation/demand, a proba-

bilistic sensitivity framework is used to reveal impending voltage issues and excessive power

losses at any node/line in the system at different time instances. The main goals across all

of the proposed frameworks in this dissertation center around: (1) capturing uncertainties of

power changes, (2) alleviating the computational burden of existing methods, (3) providing
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foresight to reduce the reliance on reactionary approaches; and (4) mitigating modeling in-

efficiencies to remove accuracy-complexity trade-offs. The development of these frameworks

helps system operators quickly quantify detrimental impacts of grid-edge technologies, plan

their integration, and identify strategic locations to participate in voltage control programs,

which is a key achievement that improves system efficiency and ensures its reliability. The

major contributions of this dissertation are summarized below:

Over the past few decades, power loss minimization in distribution systems has gained

popularity and the need for LSA frameworks has become a necessity for its successful imple-

mentation. Existing work on LSA mostly focuses on system planning aspects through DER

optimal placement and sizing. However, enabling LSA-based system operational applications

is a vital step toward the successful transition to modern distribution systems. In Chapter

3, a comprehensive overview analysis of LSA applications in modern distribution systems

is presented. First, the theoretical formulations of existing LSA methods are summarized.

Then, based on the analysis of literature, open research gaps and future research pathways

are discussed.

Chapter 4 develops a computationally efficient probabilistic loss sensitivity framework

for approximating the impact of random power changes on power losses. First, an analytical

expression is derived to approximate the change in line losses for any given deterministic

power changes. Then, the analytical expression is extended to a probabilistic framework

that accommodates variability related to power changes. The proposed approach is validated

via simulation against the traditional load flow-based sensitivity method using the IEEE 69

node test system. Simulation results demonstrate that the proposed approach is accurate

and computationally efficient. The proposed framework is useful for real-time loss monitoring

and EV charging station allocation studies as shown in Chapter 7. Chapter 5 generalizes the

concept developed in Chapter 4 and proposes a novel sensitivity framework that quantifies

the impact of grid-edge technologies on line losses for three-phase unbalanced distribution

systems. The effectiveness of the proposed approach is illustrated via simulations using the

IEEE 37 and IEEE 123-node test systems. Results show that the proposed approach offers

over∼ 98% approximation accuracy with four-orders faster execution time when compared to
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classical approaches, resulting in a unique tool that enables efficient planning in unbalanced

distribution systems, where the amount of power changes may differ at different phases.

Chapter 6 proposes a novel voltage monitoring approach based on low-complexity, analyt-

ical probabilistic voltage sensitivity analysis. Using system data and forecasts, the proposed

approach predicts the probability distribution of node voltage magnitudes, which is then

used to identify nodes that may violate the nominal operational limits, e.g., 0.95 < |v|< 1.05

p.u with high probability. The method is tested on the unbalanced IEEE 37-node test sys-

tem considering integrated distributed solar energy sources. The method is validated against

the classic load flow-based method and offers over 95% accuracy in predicting voltage viola-

tions. The usefulness of this work is not only in predicting voltage violations in unbalanced

distribution grids, but also in opening up the door for optimal voltage control applications.

The developed prediction rule is also updated to account for voltage measurement error

or missing values. The usefulness of this approach is not only in predicting voltage viola-

tions in unbalanced systems, but also in opening up the door for proactive voltage control

applications.

In Chapter 7, a new Spatio-temporal sensitivity approach is based on probabilistic voltage

sensitivity analysis that exploits both spatial and temporal uncertainties associated with PV

injections. The derived distribution is used to quantify voltage violations for various PV

penetration levels and subsequently determine the hosting capacity of the system without

the need to examine a large number of load-flow scenarios. Similarly, the Spatio-temporal

uncertainties are evaluated tp identify nodes with least contribution to losses and voltage

deviations used as candidate nodes for charging station placement. The proposed frameworks

are validated via conventional load flow-based simulation approach on the IEEE 37 and IEEE

123 node test systems. Results show that using the proposed Spatio-temporal sensitivity

analysis helps remove the accuracy-complexity trade-off associated with classical load flow-

based methods.

Finally, Chapter 8 proposes sensitivity-based voltage control frameworks by leveraging

the capabilities of inverter-based DERs. Specifically, a new system voltage influencer (SVI)

paradigm is derived based on analytical voltage sensitivity analysis to identify the most
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suitable inverter-based DER assets that must be engaged in the voltage control program. SVI

nodes are based on existing system topology and temporal changes in local load, DER, or EV

patterns. Therefore, the proposed approach ranks the SVI nodes and uses the most influential

nodes for voltage control applications. The proposed approach is verified via simulations on

the IEEE 37 and IEEE 123-node test systems. In cases where voltage measurements are not

available, a matrix completion-based state estimation approach is used to estimate missing

voltage states. In addition to eliminating voltage violations, results show that the proposed

approach helps reduce the cumulative control cost.

9.2 Future work

This section presents possible future research directions in the areas of impact assessment,

and sensitivity-based planning and operation of modern power distribution systems. The

following lists possible extensions to the work presented in this dissertation:

� The proposed probabilistic loss sensitivity analysis framework in Chapters 4 and 5

uses existing topology information to guide the approximation. However, there could

be scenarios where this information is variable due to system reconfiguration, or is

inaccessible to system operators, especially at the secondary level. Therefore, extending

the proposed frameworks to different system topologies can be pursued in the future.

� The voltage violation prediction rule in Chapter 6 uses present voltage states to predict

voltage violations based on anticipated power changes. It would be useful to investigate

the performance of data-driven approaches in this regard. By leveraging historical

power data within a machine learning approach, it is possible to estimate voltage

sensitivity coefficients without the need to rely on present voltage states, especially in

low-observable systems.

� One of the major strengths of the proposed hosting capacity analysis framework in

Chapter 7 is the computational efficiency. One could leverage this advantage to develop

a dynamic hosting capacity evaluation that involves continuous time series data of
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power demand, PV injection, and EV load. Additionally, it is possible to develop a

generic hosting capacity analysis framework that analyzes not only voltage violations

but also current flow limits and power losses. In the presence of high EV penetration

levels, a dynamic evaluation of individual feeders/nodes’ hosting capacity becomes

crucial in order to avoid network congestion and improve consumer experience.

� The EV charging station planning presented in Chapter 7 analyses the performance

solely from a distribution system operator perspective. In addition to distribution

system indicators, it would be useful to generalize the analysis to include traffic network

constraints such as EV flows and congested areas. Moreover, customer-oriented metrics

such as distance to charging stations and dynamic pricing can be analyzed as part of

future work.

� The proposed SVI paradigm in Chapter 8, although tested with a centralized control

architecture, it is generic and can be applied with any existing control architecture.

Therefore, future research can focus on testing the developed approach with a decen-

tralized control architecture for additional computational benefits, especially for large

systems. In addition, it is possible to use reinforcement learning to guide the control

architecture to simplify the iterations of interior point method. Moreover, the proposed

model can be extended to include adjusting active power setpoints with incentivized

customer participation in the voltage control program.

� The analytical sensitivity metrics developed in Chapters 4 to 8 are validated on dis-

tribution systems. Given the generalizibility of these metrics, it would be useful to

develop similar analytical approaches for transmission system. This extension enables

system operators to study the impact of power/voltage changes in both domains, i.e.,

distribution and transmission systems, on each other, resulting in a holistic impact-

analysis tool that reveals impending issues in both entities.
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Appendix A

Proof of Lemma 1

This proof derives the procedure for ∆Ihe decomposition.

Proof. The change in current flow for three phases (in Eq. (5.5)) due to one actor node can

be written as,

∆Ihe u
[

∆Sa∗A
V a∗
A + ∆V a∗

A

,
∆Sb∗A

V b∗
A + ∆V b∗

A

,
∆Sc∗A

V c∗
A + ∆V c∗

A

]T
. (A.1)

According to Eq. A.1, the change in current flow (∆Iae ) for phase a can be written in terms

of the complex quantities of power change, nodal voltage, and voltage change as,

∆Iae u
∆P a

A − j∆Qa
A

V a,r
A − jV a,i

A + ∆V a,r
A − j∆V a,i

A

(A.2)

which can be rewritten as follows,

∆Iae u
(∆P a

A − j∆Qa
A)χ

[(V a,r
A + ∆V a,r

A )− j (V a,r
A + ∆V a,r

A )]χ
(A.3)

where, χ , [(V a,r
A + ∆V a,r

A ) + j (V a,r
A + ∆V a,r

A )]. Note that the quantity χ helps to separate

real and imaginary parts as shown in Eq. (A.3). Further simplification on Eq. (A.3) yields
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Eq. (A.4).

∆Iae u
∆P a

A

(
V a,r
A + ∆V a,r

A

)
+ ∆Qa

A

(
V a,i
A + ∆V a,i

A

)
+ j[G](

V a,r
A + ∆V a,r

A

)2

+
(
V a,i
A + ∆V a,i

A

)2

u
∆P a

AV
a,r
A

(
1 +

∆V a,r
A

V a,r
A

)
+ ∆Qa

AV
a,i
A

(
1 +

∆V a,i
A

V a,i
A

)
+ j[G ′ ](

V a,r
A

(
1 +

∆V a,r
A

V a,r
A

))2

+
(
V a,i
A

(
1 +

∆V a,i
A

V a,i
A

))2

(A.4)

where, G , ∆P a
A

(
V a,i
A + ∆V a,i

A

)
− ∆Qa

A

(
V a,r
A + ∆V a,r

A

)
and G ′ , ∆P a

AV
a,i
A

(
1 +

∆V a,i
A

V a,i
A

)
−

∆Qa
AV

a,r
A

(
1 +

∆V a,r
A

V a,r
A

)
. Using Assumption 4, Eq. (A.4) reduces to,

∆Ia,re + j∆Ia,ie ,
∆P a

AV
a,r
A + ∆Qa

AV
a,i
A

(V a,r
A )2 + (V a,i

A )2

+ j
∆PAV

a,i
A −∆QAV

a,r
A

(V a,r
A )2 + (V a,i

A )2
=

∆Sa∗A
V a∗
A

(A.5)

Hence, proved. This result is used to derive the expression for multiple actor nodes (Eq.

(5.8)). Note that the expression in Eq. (A.4) can be similarly derived for phases b and c.
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Appendix B

Topology information vectors

The topology information vectors consist of the relationship between active and reactive

power change, and real and imaginary parts of current change. Note that the elements of

the topology information vector can be easily computed for every actor node in the system.

Nodes where there is no power change, the influence indicator will be zero. Hence, will

not contribute to the change in current flow. Eq. (B.1) and (B.2) contain the topology

information vectors for phase b.

(B.1)
kbr =

[
Ψb
M1 cos θb1
|V b

1 |
,
Ψb
M2 cos θb1
|V b

2 |
, . . . ,

Ψb
MN cos θbN
|V b
N |

,

−Ψb
M1 sin θa1
|V b

1 |
,−Ψb

M2 sin θa1
|V b

2 |
, . . . ,−ΨMN b sin θbN

|V b
N |

]T

(B.2)
kbi =

[
−Ψb

M1 sin θb1
|V b

1 |
,−Ψb

M2 sin θb1
|V b

2 |
, . . . ,−Ψb

MN sin θbN
|V b
N |

,

−Ψb
M1 cos θb1
|V b

1 |
,−Ψb

M2 cos θb1
|V b

2 |
, . . . ,−ΨMN b cos θbN

|V b
N |

]T
Similarly, the topology information vectors can be computed for phase c as shown in Eq.

(B.3) and (B.4),

(B.3)
kcr =

[
Ψc
M1 cos θc1
|V c

1 |
,
Ψc
M2 cos θc1
|V c

2 |
, . . . ,

Ψc
MN cos θcN
|V c
N |

,

−Ψc
M1 sin θc1
|V c

1 |
,−Ψc

M2 sin θc1
|V c

2 |
, . . . ,−ΨMN c sin θcN

|V c
N |

]T
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(B.4)
kci =

[
−Ψc

M1 sin θc1
|V c

1 |
,−Ψc

M2 sin θc1
|V c

2 |
, . . . ,−Ψc

MN sin θcN
|V c
N |

,

−Ψc
M1 cos θc1
|V c

1 |
,−Ψc

M2 cos θc1
|V c

2 |
, . . . ,−ΨMN c cos θcN

|V c
N |

]T
.
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Appendix C

ST-PVSA derivation

The change in complex voltage at any phase (say phase a) of observation node O due to

change in complex power at any phase of a single actor node A is given as [57],

∆V a
OA ≈ −

[
∆Sa?A Z

aa
OA

V a?
A

+
∆Sb?A Z

ab
OA

V b?
A

+
∆Sc?A Z

ac
OA

V c?
A

]
, (C.1)

On expanding the complex power and shared path impedance terms, we get the following

equation,

∆V a
OA ≈ −

[
(∆P a

A − j∆Qa
A)(Raa

OA + jXaa
OA)

V a?
A

+ ...

]
,

≈ −

[
(∆P a

AR
aa
OA +Qa

AX
aa
OA) + j(∆P a

AX
aa
OA −Raa

OA∆Qa
A)

(V a,r
A − jV a,i

A ) + (∆V a,r
A −∆V a,i

A )
+ ...

]
,

(C.2)

On normalizing the numerator and denominator, (C.2) reduces to

∆V a
OA ≈ −

(∆P a
AR

aa
OA + ∆Qa

AX
aa
OA) + j(∆P a

AX
aa
OA −Raa

OA∆Qa
A)

(V a,r
A + ∆V a,r

A )− j(V a,i
A + ∆V a,i

A )
(C.3)

×(V a,r
A + ∆V a,r

A ) + j(V a,i
A + ∆V a,i

A )

(V a,r
A + ∆V a,r

A ) + j(V a,i
A + ∆V a,i

A )
+ ..., (C.4)
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Normalization segregates (C.3) into real and imaginary parts as shown below,

∆V a
OA ≈ −

[
(∆P a

AR
aa
OA + ∆Qa

AX
aa
OA)(V̂ a,r

A )− (∆P a
AX

aa
OA −Raa

OA∆Qa
A)(V̂ a,i

A )

(V̂ a,r
A )2 + (V̂ a,i

A )2
− . . .

+j
(∆P a

AR
aa
OA + ∆Qa

AX
aa
OA)(V̂ a,i

A ) + (∆P a
AX

aa
OA −Raa

OA∆Qa
A)(V̂ a,r

A )

(V̂ a,r
A )2 + (V̂ a,i

A )2
− . . .

]
.

(C.5)

Where, V̂ a,r
A , V a,r

A + ∆V a,r
A and V̂ a,i

A , V a,i
A + ∆V a,i

A . The real part of the voltage change

can be expressed as,

∆V a,r
OA ≈ −

[
(∆P a

AR
aa
OA + ∆Qa

AX
aa
OA)V a,r

A V̄ a,r
A

(V a,r
A )2(V̄ a,r

A )2 + (V a,i
A )2(V̄ a,i

A )2
− (∆P a

AX
aa
OA −∆Qa

AR
aa
OA)V a,i

A V̄ a,i
A

(V a,r
A )2(V̄ a,r

A )2 + (V a,i
A )2(V̄ a,i

A )2
− . . .

]
,

(C.6)

where, V̄ a,r
A , 1 +

∆V a,r
A

V a,r
A

and V̄ a,i
A , 1 +

∆V a,i
A

V a,i
A

. Using the same assumptions as in [57], Eq.

(C.6) can further be simplified as,

∆V a,r
OA ≈ −

[
(∆P a

AR
aa
OA + ∆Qa

AX
aa
OA)(V a,r

A )

(V a,r
A )2 + (V a,i

A )2
− (∆P a

AX
aa
OA −∆Qa

AR
aa
OA)(V a,i

A )

(V a,r
A )2 + (V a,i

A )2
− . . .

]
. (C.7)

Similarly, the imaginary part of the voltage change can be written as,

∆V a,i
OA ≈ −

[
(∆P a

AX
aa
OA −∆Qa

AR
aa
OA)(V a,r

A )

(V a,r
A )2 + (V a,i

A )2
+

(∆P a
AR

aa
OA + ∆Qa

AX
aa
OA)(V a,i

A )

(V a,r
A )2 + (V a,i

A )2
− . . .

]
, (C.8)

Equations (C.7) and (C.8) are rearranged by taking the common factor with power terms as

shown below,

∆V a,r
OA ≈ −

[
∆P a

A(Raa
OAV

a,r
A −Xaa

OAV
a,i
A )

(V a,r
A )2 + (V a,i

A )2
+

∆Qa
A(Xaa

OAV
a,r
A +Raa

OAV
a,i
A )

(V a,r
A )2 + (V a,i

A )2
− . . .

]

∆V a,i
OA ≈ −

[
∆P a

A(Raa
OAV

a,i
A +Xaa

OAV
a,r
A )

(V a,r
A )2 + (V a,i

A )2
+

∆Qa
A(Xaa

OAV
a,i
A −Raa

OAV
a,r
A )

(V a,r
A )2 + (V a,i

A )2
− . . .

] (C.9)

Finally, the real and imaginary part of base voltages are expressed in polar magnitude form
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(i.e., V a,r
A = |V a

A |cos(ωA) V a,i
A = |V a

A |sin(ωA) ) which reduces (C.9) to,

∆V a,r
OA ≈ −

[
∆P a

A(Raa
OAcos(ωA)−Xaa

OAsin(ωA))

|V a
A |

+
∆Qa

A(Xaa
OAcos(ωA) +Raa

OAsin(ωA))

|V a
A |

− . . .

]

∆V a,i
OA ≈ −

[
∆P a

A(Raa
OAsin(ωA) +Xaa

OAcos(ωA))

|V a
A |

+
∆Qa

A(Xaa
OAsin(ωA)−Raa

OAcos(ωA))

|V a
A |

− . . .

]
.

(C.10)
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Appendix D

Covariance matrix

The complete covariance matrix can be defined to capture the variance and covariance of

complex power change at actor nodes as follows,

Σ∆S =



σ2
p1

. . . cov(pn, p1) cov(q1, p1) . . . cov(qn, p1)

...
. . .

...
...

. . .
...

cov(p1, pn) . . . σ2
pn cov(q1, pn) . . . cov(qn, qn)

cov(p1, q1) . . . cov(pn, q1) σ2
q1

. . . cov(qn, p1)

...
. . .

...
...

. . .
...

cov(p1, qn) . . . cov(pn, qn) cov(q1, qn) . . . σ2
qn


(D.1)

the diagonal terms represent the variance of active or reactive power change at actor nodes

whereas the off-diagonal elements are the covariance between them due to geographical

proximity.
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Appendix E

Proof of Proposition 1

Proof. Solving Problem 2 with m control nodes, n voltage states and N time steps requires

O(N(n + m)3) flops [251]. Since 1 < m̌ ≤ m, Problem 2 can be solved with O(N(n +

m̌)3) flops, which yields a reduction in the computational complexity by a factor of m −

m̌. Considering ň ⊂ n critical nodes to be monitored further reduces the computational

complexity to O(N(ň + m̌)3), i.e., a reduction factor of (n − ň) + (m − m̌). Based on

system topology and the amount of complex power changes at actor nodes A, controlling

the most dominant nodes in the system guarantees voltage stability margin [32]. Therefore,

it is possible to reduce the computational complexity of Problem 1 by at least a factor of

(m− m̌) for any SVI set of nodes with 1 < m̌ ≤ m.
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Appendix F

Proof of Proposition 2

Proof. Consider one observation node O ∈ O and one actor node A ∈ A. Let ∆xa,AO.1 and

∆xa,AO.2 be the real and imaginary parts of voltage change at phase a of observation node O

due to reactive power change at A, respectively. According to (8.13), it is possible to induce

small changes (∆xa,AO.1 and ∆xa,AO.2) such that the voltage state vector in (8.15) satisfies safe

operational limits, i.e., 0.95 < Γx < 1.05 p.u. Pick two actor nodes d1
O and dmO (according

to 8.21) such that they have ranks 1 and m based on their influence on voltage of node O,

respectively. The DIVF paradigm states that [32],

DKL(∆xaO.M||∆x
a,d1

O
O.M) > DKL(∆xaO.M||∆x

a,dmO
O.M). (F.1)

From (8.14), The change in real and imaginary parts of voltage change can be written in terms

of the reactive power change at A as ∆xa,AO.1 = B(∆xa,AO.1, A)∆qA, ∆xa,AO.2 = B(∆xa,AO.2, A)∆qA,

respectively. Therefore,

∆x
d1
O
O.1 = B(∆x

d1
O
O.1, d

1
O)∆qd1

O

> ∆x
dmO
O.1 = B(∆x

dmO
O.1, d

m
O )∆qdmO

∆x
d1
O
O.2 = B(∆x

d1
O
O.2, d

1
O)∆qd1

O

> ∆x
dmO
O.2 = B(∆x

dmO
O.2, d

m
O )∆qdmO . (F.2)
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Note that in (F.2), B(., .) are scalar quantities since they relate the sensitivity of voltage

change at one observation node due to one actor node. This means that the same change

in real and imaginary parts of voltage ∆x
d1
O
O.1 = ∆x

dmO
O.1 and ∆x

d1
O
O.2 = ∆x

dmO
O.2 can be achieved

but with a smaller control signal when using the dominant node d1
O instead of dmO , i.e.,

∆qd1
O
< ∆qdmO . Now that the proof is shown for one observation node O ∈ O, it is possible to

generalize the concept to all observation nodes with voltage violations Ǒ ⊂ O and any SVI

set with cardinality m̌ as in (8.36). Let ∆xǑ.1 and ∆xǑ.2 be the vectors of the change in

real and imaginary parts of voltage at nodes Ǒ, respectively. Then, similarly, it is possible

to induce small changes to each element ∆xi.1 ∈∆xǑ.1 and ∆xi.2 ∈∆xǑ.2 ∀i ∈ Ǒ such that

voltage magnitude at these location is brought within safe operational limits. Define {D∗Ǒ}

according to 8.36 and let D̂
∗
Ǒ , DǑ\{D∗Ǒ}. Then, it is evident from the CPF in (8.35) that,

∥∥∥∆x
D∗Ǒ
Ǒ.1

∥∥∥
2
>
∥∥∥∆x

D̂
∗
Ǒ

Ǒ.1

∥∥∥
2
,
∥∥∥∆x

D∗Ǒ
Ǒ.2

∥∥∥
2
>
∥∥∥∆x

D̂
∗
Ǒ

Ǒ.2

∥∥∥
2

(F.3)

where, ∆xiǑ.1 and ∆xiǑ.2 represent vectors of the change in real and imaginary parts of

voltage of nodes Ǒ due to the change in reactive power at actor nodes within the sets

i ∈ {D∗Ǒ, D̂
∗
Ǒ}. In other words, it is possible to achieve equality between the norms in (F.3)

with smaller reactive power changes (or cost of control) at any time k, i.e.,

(V (x0,∆q∗k) |∆q∗k ∈D∗Ǒ)

<(V (x0,∆q∗k) |∆q∗k ∈ D̂
∗
Ǒ) ∀k. (F.4)

Therefore, using the optimal DIVF set D∗Ǒ helps reduce the cost of voltage control in Problem

1 compared to the non-optimal set D̂
∗
Ǒ.
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Appendix G

Interior-point method

It is possible to rewrite voltage state and reactive power support vectors for the horizon

k ∈ [0, Nc−1] as x̄ , [x1, ...,xNc ]
ᵀ and ∆q̄ , [∆q0, ...,∆qNc−1]ᵀ, respectively. The resulting

model constraints 8.27a and 8.27b can be rewritten as,

x̄ = Āx0 + D̄∆p̄ + B̄∆q̄ (G.1)

H̄x̄ + Ḡ∆q̄ ≤ h̄ (G.2)

with the following cost function V (x0,∆q̄) , ∆q̄ᵀR̄∆q̄ where, Ā, D̄,∆p̄, B̄, Ḡ, H̄, h̄ and

R̄ are defined as shown below. Substituting (G.1) into (G.2) yields, H̄Āx0 + H̄D̄∆p̄ +

H̄B̄∆q̄ + Ḡ∆q̄ ≤ h̄ and therefore, Problem 1 reduces to,

V (x0,∆q̄) = min
∆q̄

∆q̄ᵀR̄∆q̄ (G.3)

s.t. [H̄B̄ + Ḡ]∆q̄ ≤ h̄− H̄Āx0 − H̄D̄∆p̄ (G.3a)
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This quadratic program can be solved efficiently using the interior point or active set method

[252].

x̄ ,



x0

x1

...

xN


,ū ,



∆q0

∆q1

...

∆qN−1


, h̄ ,



h

h

...

h

h


,Ā ,



A

A2

...

...

AN


(G.4)

B̄ ,



B 0 0 . . . 0

AB B 0 . . . 0

A2B AB B . . . 0

...
...

...
. . .

...

AN − 1B AN − 2B AN − 3B . . . B


(G.5)

R̄ ,



R

R

. . .

R


,Ḡ ,



G

G

. . .

G

0 0 0 0


,

D̄ ,



D

D

. . .

D


,H̄ ,



H

H

. . .

H

H


.
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Appendix H

Reuse permissions
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