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Abstract 

Amid increasing interest in the dual enhanced oil recovery (EOR) and carbon geological 

sequestration (CGS) programs, improved static reservoir models emerge as a requirement for 

well-guided decision-making pertaining to the design of injector-producer well-drilling patterns. 

To this end, this study utilizes unsupervised machine learning approach leveraged with seismic 

resolution data preconditioning and spectral analysis to evaluate seismic facies based on machine 

learning models of clustering in multi-attributes space of the Mississippian carbonates of Kansas. 

The study provides a benchmark for understanding seismic facies distribution and implications 

for reservoir aspects pertaining to Enhanced Oil Recovery (EOR) and/or Carbon Geological 

Sequestration (CGS) programs, especially when encountering sparse well-logs control. A 3D 

seismic reflection P-wave data and a suite of well-logs and drilling reports constitute the data 

used for seismic facies based on seismic attributes input to machine learning hierarchical 

analysis and K-means clustering models. The results of seismic facies, six facies clusters, are 

analyzed in integration with the target-interval estimated mineralogy (Calcite-Dolomite-Quartz) 

and a predicted reservoir porosity. The study unravels the nature of the seismic (litho)facies 

interplay with porosity, sheds light on interpreting unsupervised machine learning classification 

of Kansas Mississippian carbonates at multi-resolution levels, and paves the way for an 

improved static model to enable effective CO2-EOR and geosequestration decision making. 
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Chapter 1 - Introduction 

Fossil energy generated CO2 still constitute a significant percentage of the global 

anthropogenic CO2 released into the atmosphere (Bickle, 2009; O’Neill, 2020). Despite efforts 

to diversify the international energy mix by developing other energy sources such as wind, solar, 

and nuclear, fossil fuels offer relatively cheap and reliable energy to developed and developing 

economies worldwide. Owing to this, Carbon Capture and Storage (CCS) systems development 

has a pivotal role in ensuring fossil energy is optimally harnessed without significant emission of 

CO2 into the atmosphere (Baines & Worden, 2004; Buchanan & Carr, 2008). In addition, 

geological formations such as depleted hydrocarbon reservoirs or saline aquifers, deep oceans 

and sea beds, coal seams, and methane hydrates provide prospective sites for CO2 

geosequestration and enhanced oil recovery (EOR) (Shulakova et al., 2017; Siqueira et al., 

2017). 

Based on existing knowledge, Bickle (2009) ranks storage in depleted hydrocarbon 

reservoirs and saline aquifers as the best option, such as storing natural gas in reservoirs and 

using CO2-EOR to optimize producing fields. However, the limitations stem from scalability in 

terms of cost and storage timescale of the geological formations. Another challenge is the storage 

capacity of reservoirs arising from heterogeneities and sealing rock formation integrity (Bickle, 

2009; Tan et al., 2022). Carbonate reservoirs, though, form about 60% of hydrocarbon 

reservoirs; they exhibit complex heterogeneities making it challenging to characterize the 

petrophysical and lithological variations (Shulakova et al., 2017; Tan et al., 2022). 

Notwithstanding the challenges, the storage volume capacity for CO2-EOR and geosequestration 

underpins the need to incorporate more sophisticated techniques to characterize carbonate 

reservoirs (Masaferro et al., 2003). 
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Seismic data volumes and functional attributes available with time have increased in size 

such that conventional workflows used by human interpreters cannot exploit them for maximum 

inference of the subsurface heterogeneities. Chopra and Marfurt (2020) explain that the size of 

seismic surveys has increased to the tune of megamerger and larger gigamerge; hence, 

interpretation workflows likely require the integration of terabytes of data to delineate reservoir 

heterogeneities to the best of detail. Therefore, there is a need to incorporate machine learning 

techniques into conventional interpretation workflows to maximize the quality of subsurface 

geological information derived from seismic reflection datasets. 

This study utilizes unsupervised machine learning, resolution enhancement of 3D seismic 

reflection data, and petrophysical logs to build a representative seismic facies map for the 

Mississippian reservoir in the Wellington field and Anston-Bates area, Sumner County, 

Southcentral Kansas, as a potential site for CO2-EOR and GCS. 

 

 Problem Statement    

The Mississippian carbonate reservoir within the Wellington and Anston-Bates fields, 

Sumner County, is marked as a potential zone for commercial-scale CO2-EOR and 

geosequestration in Kansas by the US Department of Energy (DOE) and the Kansas Geological 

Survey (KGS) (Watney et al., 2011). The problem stems from the Mississippian carbonate 

reservoir exhibiting complex spatial heterogeneities owing to dolomitization, silicification, and 

other diagenetic processes. This study uses seismic data and suitable machine learning clustering 

techniques to characterize the reservoir facies heterogeneities of the Mississippian carbonate to a 

representative level. These facies models will provide a base to effectively model CO2 flow 

under supercritical conditions and plan optimal injection wells in the reservoir. 
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 Relevant Previous Seismic Reflection Studies 

Ohl and Raef (2014) characterized prominent geological structures within the Wellington 

field and their controls on the spatial distribution of petrophysical facies. Geophysical well logs 

and 3D seismic reflection data were used in the study to characterize the Mississippian reservoir 

and Arbuckle aquifer to understand CO2 flood and migration pathways within them. The 

geological structures were delineated by three seismic attributes: the most negative curvature, 

seismic amplitude, and coherency. In addition, petrophysical seismic facies modeling of the two 

horizons of interest was undertaken using an artificial neural network in a supervised 

classification setting. Three seismic amplitude attributes (energy, bandwidth, and peakedness) 

were extracted for each formation as inputs for the neural networks. On the other hand, three 

porosity classes obtained from neutron porosity well logs penetrating the horizons were used as 

targets for classification. 

The structural attributes extracted for both horizons highlighted three NNE-SSW trending 

faults in the northern portion of the survey area. Based on the trends, Ohl and Raef (2014) 

inferred that the faults are associated with the Nemaha Uplift events, which must have occurred 

post-Mississippian deposition. Moreover, on the southern portion of the survey area, a seismic 

amplitude anomaly coincided with another NNE-SSW trending fault delineated only on the 

structural attribute maps of the Mississippian horizon. Seismic sections taken across the anomaly 

showed amplitude-dimming features. This was attributed to porosity variations due to lithofacies 

reworking by a reactivated fault within the Mississippian formation. The study concluded that 

the lineaments delineated in the study area influenced the petrophysical facies variation in the 

formations of interest. They also recommended increasing the number of seismic waveform 

attributes and neural networks to highlight better the spatial variation of porosity within the 
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formation and undertaking fault seal analysis to successfully model CO2 plume migration and 

flood within these formations. 

Rijfkogel (2020) also utilized seismic attributes to characterize the spatial variability of 

facies(porosity) within the reservoirs of the Wellington field. He incorporated computed 

tomography scans on core samples from two wells to elucidate further vertical and lateral rock 

heterogeneities within the Mississippian reservoir's top, middle, and bottom intervals. For 

Wellington KGS 1-32 well, limestone, dolomite, and chert dominated the facies composition, 

with chert composition decreasing with depth in the reservoir. The porosities within the well 

vary from a combination of vuggy porosity and fracture-induced slit-shaped porosity at the top to 

only fracture-induced slit-shaped porosity at the bottom of the well. Conversely, the Wellington 

KGS 2-32 well contains autoclastic brecciated dolomite and limestone clast facies dominant at 

the top, with chert only encountered at the bottom. The porosities within the well vary from 

fracture-induced slit-shaped porosity at the top to a combination of slit-shaped porosity with few 

vuggy porosities at the bottom zone. He affirmed that the slit-shaped porosities result from fault 

reactivation related to the Nemaha uplift, whereas the vuggy porosities are attributed to the 

diagenesis of dolomite. 
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Chapter 2 - Geological Setting and Background 

 Tectonics 

During the Mississippian period, the combined effect of the Acadian, Antler, and proto-

Ouachita orogenies altered the paleogeography of North America, leaving tectonic remnants 

such as the Transcontinental Arch striking southwest-northeast and the east-southeast Burlington 

shelf (Gutschick & Sandberg, 1983; Lane & De Keyser, 1980; Wethington & Pranter, 2018; 

Wilson et al., 2019) (Fig. 2.1). Lane and De Keyser (1980) described the Transcontinental Arch 

as a Precambrian-aged ancient wrench fault system comparable to the San Andreas system of 

California.   The Mississippian carbonates of the central United States, including the study area, 

form part of the Burlington shelf, whose depositional strike parallels the low but subaerial, 

southwest-northeast trending Transcontinental Arch (Gutschick & Sandberg, 1983; Lane & De 

Keyser, 1980). Although the general depositional system of the Mississippian is highly 

debatable, Wilson et al. (2019) summarize the various positions held by previous researchers 

broadly into a carbonate shelf (Burlington shelf), a possible carbonate shelf with no discernable 

shelf edge, and a ramp to distally steepened ramp environment.  

The Mississippian reservoirs are partly sealed by the major unconformity separating 

deposits of Mississippian and Pennsylvanian ages, with the majority of ‘chat’ fields occurring in 

an arcuate fairway along the flanks of the south plunging Pratt anticline (Fig. 2.2) (Montgomery 

et al., 1998; Watney et al., 2001). The south plunging Pratt anticline is an extension of the 

Central Kansas uplift lineament, which separates the Sedgwick basin to the east and the Hugoton 

embayment to the west. During the early to middle Paleozoic, it formed part of the shelf region 

of the Anadarko Basin. The tectonic history associated with the Central Kansas uplift-Pratt 

anticline structure involves the Ouachita collision event, which resulted in fault-induced uplift 
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and tilting of strata followed by a prolonged period of erosion recorded as the regional 

unconformity separating the strata of Mississippian and Pennsylvanian age (Montgomery et al., 

1998; Wilson et al., 2019). Two main thoughts on the genesis of the chert in reservoirs within the 

Osagean strata of the Mississippian system are penecontemporaneous deposition of carbonate 

facies rich in biogenic silica or fluid-induced diagenesis relating to meteoric water, groundwater 

movement, or hydrothermal alteration (Mazzullo et al., 2019; Watney et al., 2001). The 

Mississippian system's early inner ramp lithofacies were partly to extensively dolomitized as the 

sediments were still porous and permeable. Evidence of a late phase of dolomitization also exists 

in the system (Wilson et al., 2019). The reservoir properties of the Mississippian were ultimately 

altered by the combined effects of silicification(chert) and dolomitization (Watney et al., 2001). 

 

 Stratigraphy 

The stratigraphy of the Mississippian system in Kansas is classified into four units; 

Kinderhookian (oldest), Osagean, Meramecian, and Chesterian (youngest)(Fig. 3). Mazzullo et 

al. (2019) describe the depositional geometry as aggradational for the lower Mississippian group, 

followed by progradational for the middle to the upper Mississippian group. The Osagean strata 

comprise the low resistivity, high porosity chert-rich formations(‘chat’), the most prolific 

hydrocarbon reservoirs in south-central Kansas (Watney et al., 2001). It is among the most 

complex carbonate reservoirs in the United States, owing to its depositional and diagenetic 

history (Montgomery et al., 1998; Watney et al., 2001). The Osagean stratal composition 

includes partly dolomitized cherty skeletal packstones, grainstones, argillaceous wackestones, 

and mudstones.  

Although the Osegean strata outcrop only in the extreme southeast portion of Kansas, it is 

highly correlatable over the subsurface with significant lithofacies shift from clean mixed 

carbonate deposits at the northern part to cherty limestone, dolomite facies at the southern extent 

of Kansas (Montgomery et al., 1998; Watney et al., 2001; Wilson et al., 2019). 
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Figure 2.1. Generalized static paleo-depositional model of the midcontinent showing principal 

tectonic elements during the Mississippian time after Wilson et al. (2019). The red star marks 

Sumner County, Southcentral, Kansas, where the study area is located. 
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Figure 2.2 Geological map showing the Mississippian strata and existing geological structures 

(the dotted lines marked A and B are significant basement lineaments) (Watney et al., 2001). 

 

  

Figure 2.3 Generalized Stratigraphy of the Mississippian System in Kansas (Wilson et al., 2019).   
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 Seismic Attributes and Seismic Resolution Enhancements 

Seismic attributes offer valuable insights into seismic data for reservoir characterization, 

especially in hydrocarbon exploration. Subtle geologic structures, stratigraphic features, thin 

beds, and spatial distributions of reservoir petrophysical properties have been delineated from a 

single attribute or a combination of seismic attributes. Brown (2001) describes seismic attributes 

as not unique information but simply different displays of the basic information such as time, 

frequency, amplitude, phase, and attenuation encoded in seismic data. Even with the abundance 

of seismic attributes available in various commercial geophysical software suites, most offer 

similar information leading to redundancy if not carefully selected. Therefore, these attributes' 

statistical and geological correlation should be tested to choose optimal arrays of seismic 

attributes for reservoir or subsurface characterization (Barnes, 2006; Brown, 2001; J. Liu et al., 

2018). 

Seismic resolution remains crucial for evaluating seismic data quality in delineating 

reservoir bed boundaries and amplitude signatures correlative to fluid effect and petrophysical 

properties. It is influenced by multiple factors such as sampling density, source energy spectrum, 

signal-to-noise ratio, and low-frequency bandwidth of source energy (Reilly et al., 2023).  The 

frequency bandwidth of seismic data can be enhanced with techniques such as spectral 

whitening, and spectral decomposition improves the resolution of thin beds (Chopra et al., 2006, 

2010). 

Zheng (2020) describes spectral whitening as the regional energy equalization of seismic 

signals to broaden the frequency bandwidth of the data. This is done in the time or frequency 

domain using the Fourier transform (Yilmaz, 2001). Spectral whitening enhances resolution and 
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attenuates low-frequency coherent noise (Manenti et al., 2018). However, the limitation of 

spectral whitening results in the amplification of high-frequency noise (Chopra et al., 2010).  

Spectral decomposition enables discrete frequency slices/volumes of the original seismic 

frequency bandwidth to be taken to visualize subtle geological features masked in the original 

amplitude spectrum due to tuned reflections (Chopra & Marfurt, 2008; Partyka et al., 1999). 

Partyka et al. (1999) introduced spectral decomposition mainly to delineate and quantify thin bed 

thickness below the original seismic resolution. Notwithstanding, it has proven helpful in vast 

aspects of seismic studies spanning from fault characterization, lateral and vertical variation of 

reservoir facies, and reservoir fluid effect to AVO studies (Burnett et al., 2003; Burns & Street, 

2005; Chen et al., 2008; Jung Yoon & Farfour, 2012). 

 

 Machine Learning in Reservoir Characterization 

Large corporations such as Google and Amazon have successfully employed computer 

pattern recognition and classification systems since 2015 and are increasingly gaining ground in 

geoscience (Zhao et al., 2015). Particularly in seismic facies characterization and interpretation, 

increasing 3D seismic data volumes and resolution have contributed to the application of various 

machine learning methods (Chopra & Marfurt, 2020; Wrona et al., 2018). Fundamentally, 

machine learning encompasses the ability of computers to make predictions and identify 

complex hidden patterns by learning from data using various computational methods or concepts 

(El Bouchefry & de Souza, 2020).  

Machine learning techniques are broadly grouped as supervised and unsupervised 

learning. Supervised learning involves exposing computer algorithms to training datasets that 

consist of inputs(features) and outputs(targets) to enable the algorithms to establish the best 
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mathematical relation that defines the targets using the features. For example, some supervised 

learning algorithms used in seismic facies classification include Artificial Neural Networks 

(ANN), Support Vector Machines (SVM), Random forest, K-nearest neighbor (KNN), and 

Gradient boosting (Wrona et al., 2018; Zhao et al., 2015). Seismic attributes are extracted as 

inputs for training, whereas well logs and production data are utilized to delineate facies classes 

as targets. 

On the other hand, unsupervised learning employs clustering algorithms to delineate 

hidden classes in datasets devoid of predefined targets. Some clustering algorithms include the 

simple Cross plotting method, K-means clustering, Hierarchical clustering, Self-organizing maps 

(SOM), Principal component analysis (PCA), and Generative Topographic Mapping (GTM) 

(Belyadi & Haghighat, 2021; Hartigan, 2015). Although clustering algorithms can delineate 

several facies classes in seismic facies classifications, the challenge lies in correlating such facies 

classes with existing geological formations (Chopra & Marfurt, 2020; Zhao et al., 2015). 

 

 Hierarchical Clustering 

This clustering method is unique because it produces a hierarchy or tree of clusters 

instead of a single set of clusters (Theodoridis & Koutroumbas, 2009). There are two main 

approaches to hierarchical clustering: the divisive (single large cluster to smaller finer clusters) 

and the agglomerative clustering(vice-versa) (Belyadi & Haghighat, 2021; El Bouchefry & de 

Souza, 2020; Hartigan, 2015).  

The agglomerative clustering algorithm has been used in some seismic facies 

classification projects, for example (Liu et al., 2020; Sabeti & Nadjar, 2011; Wang, 2012). The 

agglomerative clustering algorithm can be computed by graph theory or matrix theory concepts 



12 

(Theodoridis & Koutroumbas, 2009). In the matrix theory concept, for a feature set of size M X 

N, where M is the number of data points, and N is the number of feature vectors, a dissimilarity 

matrix of size M X M is obtainable using vector distance measurements such as Euclidean 

distance and M becomes the number of single clusters also known as singletons. Iteratively, the 

singletons are paired in hierarchy till a single large cluster is obtained using linkage algorithms. 

Some linkage algorithms are Single linkage, Complete linkage, Average linkage, and Ward’s 

linkage (de Amorim, 2015; Sabeti et al., 2011; Theodoridis & Koutroumbas, 2009). These 

linkages are computed as; 

𝑆𝑖𝑛𝑔𝑙𝑒 𝑙𝑖𝑛𝑘𝑎𝑔𝑒 = 𝑚𝑖𝑛𝑥,𝑦{𝑑(𝑥, 𝑦)|𝑥 ∈ 𝐶𝑎, 𝑦 ∈  𝐶𝑏}                             (1) 

𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑙𝑖𝑛𝑘𝑎𝑔𝑒 = 𝑚𝑎𝑥𝑥,𝑦{𝑑(𝑥, 𝑦)|𝑥 ∈ 𝐶𝑎, 𝑦 ∈  𝐶𝑏}                       (2) 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑙𝑖𝑛𝑘𝑎𝑔𝑒 =
1

𝑛𝐶𝑎𝑛𝐶𝑏

∑ ∑ 𝑑(𝑥, 𝑦)|𝑥 ∈ 𝐶𝑎, 𝑦 ∈  𝐶𝑏

𝑛𝐶𝑏

𝑗=1

𝑛𝐶𝑎

𝑖=1
           (3) 

𝑊𝑎𝑟𝑑′𝑠 𝑙𝑖𝑛𝑘𝑎𝑔𝑒 =
𝑛𝐶𝑎𝑛𝐶𝑏

𝑛𝐶𝑎+𝑛𝐶𝑏

‖𝑚𝐶𝑎
− 𝑚𝐶𝑏

‖
2
                                          (4) 

Where Ca and Cb are clusters, x, and y are data points(singletons) within cluster Ca and 

Cb respectively, d(x, y) is dissimilarity distance, nca and ncb are the total number of data points 

(singletons) in clusters Ca and Cb, and mca and mcb are the vector means(centroids) of clusters 

Ca and Cb. 

 

 K-means Clustering 

This method is one of the oldest and most widely used clustering algorithm due to its 

simple but powerful computation design (Belyadi & Haghighat, 2021). K-means clustering 

approach has been employed in some seismic facies characterization studies with plausible 

outcomes (Barnes & Laughlin, 2002; He et al., 2018; Song et al., 2018). The generic or base K-
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means as a partitioning algorithm performs better for datasets with isotropic clusters and vice 

versa with noisy datasets or datasets with outliers (Maimon & Rokach, 2010). However, a 

significant limitation of this algorithm is the predefinition of number clusters (K), which is the 

main criteria to determine whether the algorithm reaches a local or global minimum in terms of 

convergence (that is, the sum of in-cluster distances from centroids) (Ming & Chiang, 2010). 

This issue of randomized selection of k-clusters in the algorithm is highly improved by 

modifications such as the K-means++ algorithm, which only requires one random cluster 

centroid selection and the subsequent cluster centroids selected based on a probability equal to 

the squared distance of the data point from the existing cluster point (Arthur & Vassilvitskii, 

2006).           
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Chapter 3 - Data and Methods 

 Seismic Reflection Data 

 Data Acquisition and Description 

This study utilized a merged 3-D P-wave seismic reflection data volume covering the 

Wellington Field and Anson-Bates area (Fig. 3.1). The seismic data set was acquired for the US 

Department of Energy (DOE) project (DE-FE0002056) with emphasis on geological carbon 

sequestration in the Mississippian carbonate reservoir with combined EOR and in the saline 

aquifer of the Arbuckle Group.  The data consists of 288 inlines and 178 crosslines, with an 

acquisition geometry of bin size 82.5ft x 82.5ft. The data length is 2 seconds, and a sampling rate 

of 2ms was used in the acquisition. The data also had an original spectral bandwidth of 25 to 60 

Hz. 

 

 Synthetic Modeling and Horizon Mapping 

The Wellington-Anson-Bates 3D P-wave seismic reflection dataset and wells drilled in 

the study area were loaded into the IHS kingdom software. In addition, geophysical well logs 

and well top data of the Mississippian formation available for each well were also loaded into the 

software. First, a reflectivity coefficient was calculated for every depth point along the well from 

the density and sonic logs. Second, a zero-phase wavelet was extracted from a 7x7 seismic grid 

of inlines and crosslines around the Wellington KGS 1-32 well (Fig. 3.2). Finally, a 1D synthetic 

seismic trace was generated along the well by convolving the reflectivity coefficient calculated 

with the extracted zero-phase wavelet. The 1D synthetic seismic trace model built for the  

Wellington KGS 1-32 well provided an interval velocity model and established a suitable time-

depth relationship to extrapolate the Mississippian top from the well to the corresponding peak 
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seismic reflector (Fig. 3.3). Tracing the peak seismic reflector, the Mississippian reservoir 

horizon was mapped to generate a time structure map to visualize the spatial variation in relief of 

the Mississippian reservoir in the study area The zero-crossing horizons above (trough-to-peak 

transition) and below (peak-to-trough transition) the reservoir peak horizon were also mapped for 

interval rms seismic attribute extraction (Fig. 3.4). 

 

Figure 3.1 Seismic Survey map of the study area in Kansas after Ohl & Raef (2014). 
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Figure 3.2 Zero-phase wavelet extracted from seismic grid around Wellington KGS 1-32 well for 

synthetic modeling.  

 

 

Figure 3.3 (A) The seismic well tie shows the Mississippian peak reflector (blue arrow) and (B) 

Synthetic 1-D trace model with a correlation coefficient inscribed in red at the top.  
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Figure 3.4 Seismic section showing the Mississippian reservoir horizon (red) in the middle peak 

reflector, the trough-to-peak zero-crossing reflector (green) above, and the peak-to-trough zero-

crossing reflector (blue) below forming an interval window for which each seismic attribute was 

extracted. 

 

 

Seismic Resolution Enhancement 

Spectral whitening processes, such as applying bandpass filters to improve the amplitude 

spectrum of seismic reflection datasets, are commonly used resolution-improvement techniques. 

However, they can amplify significant noise (Dowdell et al., 2013; Karsli & Dondurur, 2013). 

To maximize the resolution of the seismic dataset, spectral whitening was undertaken to obtain 

amplitude spectrums having close to a flat peak. This intent broadened the original spectrum’s 

frequency bandwidth, increasing resolution. In total, three sets of bandwidth spectral whitening 
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were applied to the original data, guided by the spectral bandwidth of the original spectrum. The 

three whitened spectra were evaluated, and that which improved the original’s seismic response 

by reducing the interference effect of thin layer beds was selected for further analysis. 

 

 Spectral Decomposition and Seismic Attribute Extraction 

Subtle seismic details are often masked in the broad frequency bandwidth of conventional 

seismic data. The spectral decomposition of the frequency bandwidth into component frequency 

sub-bands ensures useful, informative frequency sub-bands are utilized to delineate poorly 

resolved seismic features, and noisy high-frequency sub-bands are discarded. For this study, the 

original and spectral whitened seismic volumes were decomposed into 20 Hz, 30 Hz, 40 Hz, and 

50 Hz sub-bands for post-stack seismic attribute extraction.  

Fifteen post-stack seismic attributes encompassing amplitude, waveform, and frequency 

information were extracted for seismic facies modeling. To eliminate redundancy while 

capturing maximum variance to delineate subtle variations in seismic facies of the Mississippian 

reservoir, the attributes were evaluated using a combination of cross-plotting and conventional 

visualization (see Appendix A). The attribute extraction procedure was a time interval RMS 

average calculated between the zero-crossing horizon below and above the Mississippian 

reservoir’s peak horizon. This ensured that each attribute calculated for the reservoir captured the 

entire main reflection lobe. In addition, each attribute was calculated from the original, spectral 

whitened seismic volumes and their corresponding decomposed sub-bands (Fig. 3.5). 

The selected attributes consist of RMS Amplitude, Instantaneous Frequency, Trace 

Envelope, Bandwidth, Thin Bed Indicator, Normalized Amplitude, Dominant Frequency, 

Envelope Modulated Phase, Envelope Second Derivative, Envelope Time Derivative, 
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Instantaneous Frequency Envelope Weighted, Instantaneous Phase, Relative Acoustic 

Impedance, Wavelet Bandwidth, and Wavelet Dominant Frequency. The attributes extracted 

were normalized and used as input features for seismic facies machine learning modeling. 

Software suites used in this study were the IHS Kingdom, Orange Data mining, and Python 

libraries, including Sci-kit Learn, Seaborn, Pandas, Matplotlib, and NumPy. 

 

  

Figure 3.5 Workflow for seismic resolution enhancement and attribute extraction (feature 

engineering).  
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  Well-log Data 

 Data 

The Gamma Ray log (GR), Neutron Porosity log (NPHI), Density Porosity log (DPHI), 

Bulk Density log (RHOB), and Photo Electric Factor log (PEF) of four wells penetrating the 

study area were used for this study. The wells include the Wellington KGS 1-32, 1-28, 2-32, and 

Bates Unit 4-5. In addition, core log data available for Wellington KGS 1-32 well was also 

utilized for the study. 

 

 Mineral Composition and Reservoir Quality Modeling 

With the limitation of core log data for most of the wells in the study area, the best 

approach to infer lithology variation within the Mississippian reservoir was to calculate 

Dolomite, Calcite, and Quartz mineral composition from NPHI, DPHI, RHOB, and PEF logs. 

First, total porosity is calculated by averaging the NPHI and DPHI logs. Next, using weighted 

equations having total porosity as weights, the apparent grain density (Rhomaa) and volumetric 

matrix photoelectric absorption (Umaa) were calculated respectively from RHOB and PEF logs. 

Finally, the composition profile of dolomite, calcite, and quartz (SiO2) was calculated from 

RHOmaa and Umaa to aid in interpreting seismic facies models. 

The study area's reservoir quality grid model was built using variograms and well logs 

available. The workflow started with establishing a stratigraphic and structural framework using 

data from 24 wells drilled within the modeling area. Next, the constructed horizons were utilized 

to generate a single-zone 3D geologic grid with 200`x 200` lateral spacing and 3ft vertical cell 

thickness. The total number of grid cells was 1,204,612 cells. 
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Next, facies and log porosity distribution were incorporated into the modeling grid. The 

facies modeling process involved extracting a facies log from clusters of DPHI and sonic (DT) 

logs. The resultant facies were upscaled to the grid structure to build a vertical proportion trend. 

The facies distribution was performed using Sequential Indicator Simulation (SIS) and was 

conditioned to the facies logs, the vertical proportion curve, and 2D average seismic facies as a 

lateral trend. 

 

 Seismic Facies Modeling 

This study utilized two unsupervised machine learning algorithms for seismic facies 

modeling. One is the agglomerative hierarchical clustering algorithm with Euclidean distance 

matrix and Ward’s linkage parameters. The other is the K-means clustering algorithm with K-

means++ centroid initialization and Euclidean distance measure for centroid selection as 

parameters. The sets of seismic attributes extracted for the Mississippian reservoir horizon were 

normalized and used as features/inputs for modeling. The workflow developed in this study was 

to enable some evaluations to be made; one was to establish cluster consistency between the two 

algorithms as ground truth to delineate inherent clusters in the data, and the other was to evaluate 

the effect of resolution enhancement (spectral whitening) in clustering (Fig. 3.6). To assess 

cluster consistency, hierarchical and K-means clusters were built using attributes extracted at 

total frequency bandwidth before and after resolution enhancement, individual sub-bands 20 to 

50 Hz before and after resolution enhancement, and composite 20-50 Hz sub-bands before and 

after resolution enhancement. In addition, k-means clusters for the attribute sets were used to 

evaluate resolution enhancement. 
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Finally, an interpreter’s seismic facies model was developed by integrating cluster facies 

models, petrophysical models from well logs, and domain knowledge of the geometry of 

carbonate depositional systems. 

  

 

Figure 3.6 Workflow for seismic facies clustering (machine learning modeling). 
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Chapter 4 - Results and Discussion 

 Spectral Whitening 

The original frequency bandwidth of the seismic data (spectrum 1) was 25 Hz to 60 Hz. 

The three enhanced amplitude spectrums obtained by spectral whitening had frequency 

bandwidths of 10 Hz to 80 Hz (spectrum 2), 30 Hz to 110 Hz (spectrum 3), and 20 Hz to 125 Hz 

(spectrum 4) (Fig. 4.1). All three enhanced spectrums had broad frequency bandwidths that fit 

within the amplitude spectrum of the original seismic data; however, spectrum 4 was selected as 

the enhanced amplitude spectrum upon seismic section evaluations proved it illuminated to a 

greater detail a pinch-out feature formed by peak reflectors at about 0.44s two-way time (TWT) 

(Fig. 4.2). Notwithstanding, the improved resolution, especially at low-frequency bandwidth 

which is essential for reducing the thin bed interference within the Mississippian carbonate 

reservoir located at about 0.64s TWT, caution against the amplification of high-frequency noise 

is taken by subsequently assessing frequency sub-bands to select optimum ones through spectral 

decomposition. 

  

Figure 4.1 Plot showing frequency bandwidths of the original amplitude spectrum 1(blue), 

spectral whitened amplitude spectrum 2(yellow), 3(orange), and 4(green).     
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Figure 4.2 Seismic sections for the respective amplitude spectrums. The blue circle highlights a 

pinch-out feature progressively resolved due to the reduction in interference of thin beds as 

frequency bandwidth increases from the original spectrum(A) to spectrum 4(D). 

 

 

 Mineral Composition and Reservoir Quality 

  Dolomite, Quartz, and Calcite mineral composition variability within the Mississippian 

reservoir were calculated from Wellington KGS 1-32, 2-32, 1-28 wells in the Wellington field 

and Bates Unit 4-5 well in the Anson-Bates field of the study area (Fig. 4.3). Reservoir quality 

variability with classes good, moderate, poor and tight/shale were modeled for the same reservoir 

from the same wells in the Wellington field of the study area along a profile line ‘A-A1’ (Fig. 

4.4). The Bates Unit 4-5 well (Fig 4.3a) shows averagely high calcite mineral, followed by 

dolomite and quartz indicative of low dolomitization and silicification diagenesis.  



25 

For the Wellington field wells, on average, the KGS 1-32 well (Fig. 4.3c) has the highest 

dolomite and quartz mineral content with the minor calcite mineral, followed by the KGS 1-28 

well (Fig. 4.3d), edging slightly over KGS 2-32 well (Fig. 4.3b) indicative of extensive 

dolomitization and silicification in this order. Correlating the mineral concentration of the wells 

penetrating the Mississippian carbonate reservoir in the Wellington field with the reservoir 

quality profile line ‘A-A1’ (Fig. 4.4) shows high average dolomite and quartz content result in 

good average reservoir quality. This reaffirms the assertion by Watney et al. (2001) that the 

petrophysical properties of the Mississippian ‘chat’ reservoirs are altered or controlled by 

dolomitization and silicification. The inferences drawn from the mineral composition and 

reservoir quality of the limited wells in the study area helped understand the seismic facies 

subsequently delineated through clustering. 

 

Figure 4.3 Dolomite, Quartz, and Calcite mineral proportions for selected wells within the 

Anson-Bates and Wellington field part of the study area. 
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Figure 4.4 Grid model showing the variability of reservoir quality within the Wellington field 

part of the study area across the cross-section line A-A1.  

 

 

 Seismic Facies Analysis  

Consistency of Seismic Facies with Clustering    

This study leveraged the consistency of clusters between the K-means and hierarchical 

clustering algorithms as a first-hand validation of inherent clusters (seismic facies) in the seismic 

data coupled with spatial continuity of clusters for each feature set to select the optimum number 

of clusters with geological plausibility. The K-means++ centroid initialization used in the K-

means algorithm with an iteration of 2 to 15 centroids and silhouette score calculated for each set 

of centroids in the loop eliminated the bias of randomly selecting the k-number of centroids. In 

contrast, Ward’s linkage used in the agglomerative hierarchical clustering algorithm ensured 

clusters formed at each node or hierarchy best reduced the intra-cluster variance, hence, the 

resulting total variance within the data set. For each spectrum and frequency sub-band, it was 
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observed that both algorithms produced the least noisy clusters with minimal variations for a 

specific number of clusters (Fig. 4.5 to 4.10).  

Comparatively, the K-means cluster distribution highlighted finer spatial or lateral 

partitions for the same feature set and cluster number. This justified some researchers’ 

recommendation of using hierarchical clustering to identify initial seed points or ‘k’ centroids in 

k-means clustering with random centroid initialization (Murtagh & Legendre, 2014; Wang, 

2012). As a result, the K-means algorithm was selected to evaluate the effect of resolution 

enhancement on seismic facies delineation. 
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Figure 4.5 Delineated seismic facies by hierarchical (H) and K-means (K) clustering for feature 

sets extracted from the original spectrum of the data.  
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Figure 4.6 Delineated seismic facies by hierarchical (H) and K-means (K) clustering for feature 

set extracted from the original spectrum at 20 Hz frequency sub-band of the data. 
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Figure 4.7 Delineated seismic facies by hierarchical (H) and K-means (K) clustering for feature 

set extracted from the original spectrum at 30 Hz frequency sub-band of the data. 

 



31 

 

Figure 4.8 Delineated seismic facies by hierarchical (H) and K-means (K) clustering for feature 

set extracted from the original spectrum at 40 Hz frequency sub-band of the data. 
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Figure 4.9 Delineated seismic facies by hierarchical (H) and K-means (K) clustering for feature 

set extracted from the original spectrum at 50 Hz frequency sub-band of the data.  
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Figure 4.10 Delineated seismic facies by hierarchical (H) and K-means (K) clustering for feature 

set extracted from the original spectrum at composite 20 Hz to 50 Hz frequency sub-band of the 

data. 

 

 Resolution Enhancement Techniques on Seismic Facies (Clusters)  

Evaluating the effect of resolution enhancement techniques applied to the original data, 

only seismic facies (clusters) with geological plausibility were considered. Acknowledging the 

fact that spectral whitening improves low-frequency resolution but amplifies high-frequency 

noise as seismic artifacts into the data, spectral decomposition was also employed to ensure 
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noisy high-frequency sub-bands are eliminated. Therefore, the final interpreter’s seismic facies 

model was evaluated based on spatial integrity and continuity of clusters and how they fit into 

the conceptual carbonate shelf/ramp depositional setting of the study area as well as how the 

cluster spatial distributions fit into the existing concepts of diagenesis and petrophysical models 

developed by earlier researchers (Ohl & Raef, 2014; Watney et al., 2001; Wilson et al., 2019).  

For features extracted from the entire frequency bandwidth, the delineated 

facies(clusters) increased from six for the original amplitude spectrum to seven for the 

resolution-enhanced spectrum (Fig. 4.11). For features extracted at 20 Hz frequency sub-band, 

ten facies were delineated for the original and resolution-enhanced amplitude spectrums with a 

difference in the spatial distribution of some delineated facies within the study area (Fig. 4.12). 

For features extracted at 30 Hz, 40 Hz, and 50 Hz sub-bands, a single difference in the number of 

facies delineated was observed between the original and resolution-enhanced spectrum (Fig. 4.13 

to 4.15). Further, using a composite feature set extracted for 20 Hz to 50 Hz frequency sub-bands 

also resulted in a single difference in the number of facies between the original and resolution-

enhanced spectrum (Fig. 4.16).  

Finally, deductions drawn from the resolution enhancement techniques were; (1) the 

frequency sub-bands 20 Hz to 50Hz contained optimum signal-to-noise data to characterize 

facies variability in the Mississippian reservoir at the study area, (2) fusing the feature set 

extracted at 20 Hz to 50Hz sub-bands as composite feature set produced a finer spatial 

distribution of seismic facies by masking out random noises dominant at each frequency sub-

band (Fig. 4.17b) and, (3) the composite 20 Hz to 50 Hz feature set extracted from the spectral 

whitened amplitude spectrum resolved thin/subtle facies masked in the original spectrum (Fig. 
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4.17c). Hence, the facies model built with the resolution-enhanced spectrum was selected as a 

base for the interpreter’s seismic facies model (Fig. 4.17c). 

 

 

Figure 4.11 Delineated seismic facies from original (O) and resolution-enhanced (S) spectrums 

at the entire frequency bandwidth of the data.  
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Figure 4.12 Delineated seismic facies from original (O) and resolution-enhanced (S) spectrums 

at 20 Hz frequency Sub-band of the data.  
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Figure 4.13 Delineated seismic facies from original (O) and resolution-enhanced (S) spectrums 

at 30 Hz frequency Sub-band of the data.  
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Figure 4.14 Delineated seismic facies from original (O) and resolution-enhanced (S) spectrums 

at 40 Hz frequency Sub-band of the data. 
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Figure 4.15 Delineated seismic facies from original (O) and resolution-enhanced (S) spectrums 

at 50 Hz frequency Sub-band of the data. 
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Figure 4.16 Delineated seismic facies from original (O) and resolution-enhanced (S) spectrums 

at composite 20 Hz to 50 Hz frequency Sub-band of the data. 
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Figure 4.17 Seismic facies maps at (A) total frequency bandwidth of original spectrum, (B) 

composite 20 Hz to 50 Hz frequency sub-bands of the original spectrum, and (C) composite 20 

Hz to 50 Hz of the spectral whitened spectrum. 

 

 Interpreter’s Seismic Facies Model  

Integrating the facies map (Fig. 4.17c), the mineral proportions for available wells in the 

study area (Fig. 4.3), the reservoir quality model for available wells (Fig. 4.4), the petrophysical 

(porosity) facies model built by Ohl & Raef (2014) (Fig. 4.18a), and the distance matrix for the 

centroids of seismic facies (Fig. 4.18c) brought to bear these details; 

• A discernable boundary (marked by a black dashed line in figure 4.18b) in the 

Wellington field of the study area resolved to be the shelf edge marking the transition from the 

carbonate (Burlington) shelf facies (region above the black line in figure 4.18b) to the shelf 
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margin facies (region below the black line in figure 4.18b). This inference is also affirmed by the 

location of the study area on the paleo-depositional model of the midcontinent portion of the 

Early Mississippian (Fig. 2.1) (Wilson et al., 2019). 

• From figure 4.3, well KGS 1-32 (c) has the highest combined dolomite and quartz 

average composition and penetrates facies F1 within the shelf region (Fig. 4.18b). KGS 1-28 

well (d) follows and penetrates facies F6 within the shelf margin region (Fig. 4.18b). KGS 2-32 

well (b) is next and penetrates facies F3 within the shelf margin region (Fig. 4.18b). Lastly, Bates 

Unit 4-5 (a) also penetrates facies F3 within the shelf region (Fig. 4.18b). Correlating these with 

the petrophysical facies model in figure 4.18a revealed facies F1 maps to high porosity facies 

(Class 1) with an average porosity greater than 12%. Facies F3 and F6 map to low porosity facies 

(Class 3) with an average porosity of less than 8%. However, assessing from the distance matrix 

in figure 4.18c, facies F3 and F6 are closer in comparison to the other facies coupled with the 

fact that the well penetrations in these two facies proved F6 has slightly higher reservoir quality 

than F3 (Fig. 4.4). Hence, the inference drawn was facies F6 formed after parts of F3 undergone 

diagenetic alteration to yield secondary porosity although not significant enough to cause higher 

porosity facies.  

• Facies F4 is abundantly distributed in the shelf margin zone of the Wellington field part 

of the study area (Fig. 4.18b). Most of it coincides with the medium porosity (class 2) facies with 

average porosity between 8% to 12%. These facies also align with the lineament ‘N’ delineated 

in figure 4.18a. In addition, the facies centroid Euclidean distance matrix shows facies F4 is 

closest to facies F3 (6 units) and F6 (6.2 units) (Fig. 4.18c). Hence, the inference that facies F4 is 

a secondary petrophysical(porosity) facies generated by the reworking of facies F3 and F6 

induced by the reactivation of the lineament ‘N.’ 
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• Facies F1 and F2 (Fig. 4.18b) coincide with high porosity (class 1) facies (Fig. 4.18a). 

Moreover, from the distance matrix in figure 4.18c, facies F1 and F2 are closest (4.9 units); 

hence, the inference of a possible lower member porosity sub-class within the high porosity 

(Class 1) facies. 

• Facies F5 is abundant in the Anson-Bates part of the shelf facies (Fig. 4.18b). It 

coincides with high porosity (Class 1) and low porosity facies (Class 3) in figure 4.18a. Its facies 

centroid distance is relatively far from the remaining facies (Fig. 4.18c). Hence, the inference of 

diagenetic facies with no petrophysical imprint within the reservoir.  

• Facies F7 is also distinctive within the F3 facies dominant in the Wellington field part 

of the shelf margin facies (Fig. 4.18b). It trends roughly perpendicular (NW-SE) to the prevailing 

trend of facies F3 (NE-SW) in which it is embedded. In addition, its facies’ centroid distances 

are farthest from all the facies delineated (Fig. 4.18c). Therefore, it could be an anomaly worth 

penetrating to uncover further details. 

Notwithstanding the existence of evaporites in the reservoir, the relative proportions to 

that of Dolomite, Calcite, and Quartz is minimal; hence, it has no imprint on the seismic facies 

classes responsive to the lateral distribution of mineralogy and petrophysics (porosity) within the 

Mississippian reservoir.   
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Figure 4.18 (A) Petrophysical(porosity) facies map with delineated lineaments(black dashed 

lines) by Ohl & Raef (2014), (B) Seismic facies map with delineated shelf edge(black dashed 

line) and wells containing mineral proportion and reservoir quality data, and (C) Euclidean 

distance matrix for the centroids of seismic facies in (B). 
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Chapter 5 - Conclusion and Recommendations 

This study has presented delineated seismic facies and unsupervised machine learning 

modeling workflow that can be utilized as a baseline to monitor CO2 injected into the 

Mississippian reservoir at the Wellington and Anson-Bates fields through 4D seismic data 

surveys.    

The seismic facies F1 and F2 cover highly porous zones in the study area. Judging from 

their relatively extensive lateral coverage with possible structural four-way closure traps existent 

from the time structure of the Mississippian reservoir at the coverage area, that zone is 

recommended as a potential zone within the Mississippian reservoir to be simulated for CO2 

plume migration during EOR. The seismic facies delineated in this study are controlled by a 

complex blend of petrophysical (porosity), depositional and diagenetic factors. However, the 

limitation of insufficient well core data for the wells made it challenging to determine the 

dominant factor on a particular seismic facies class. Further, utilizing two different distance-

based clustering algorithms provided the interpreter qualitative validation added to domain 

knowledge on carbonate depositional geometry to streamline multiple clusters to that 

representative of the underlying geological reservoir. Resolution enhancement and spectral 

decomposition of the data also improved the data quality, resulting in relatively finer facies 

boundaries and lateral distribution.  

Finally, to further understand the seismic facies control to a more precise level and its 

effects on carbon storage, more core log data and rock thin section analyses are recommended to 

be integrated into the study. This will leverage the lateral resolution strength of the seismic facies 

with the vertical resolution strength of core data analysis to produce a higher-resolution 

characterization of the reservoir.  
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Appendix A - Cross plots of Seismic Attributes 

 

Figure A.1  Cross plot of attribute Bandwidth with the other attributes for features selection. 
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Figure A.2 Cross plot of attribute Dominant Frequency with other attributes for features selection 

without repetition of plots existent in preceding cross plot. 
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Figure A.3 Cross plot of attribute Envelope Modulated Phase with other attributes for features 

selection without repetition of plots existent in preceding cross plot. 
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Figure A.4 Cross plot of attribute Envelope Second Derivative with other attributes for features 

selection without repetition of plots existent in preceding cross plot. 
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Figure A.5 Cross plot of attribute Envelope Time Derivative with other attributes for features 

selection without repetition of plots existent in preceding cross plot. 

 

 

Figure A.6 Cross plot of attribute Instantaneous Frequency with other attributes for features 

selection without repetition of plots existent in preceding cross plot. 
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Figure A.7 Cross plot of attribute Instantaneous Frequency Envelope Weighted with other 

attributes for features selection without repetition of plots existent in preceding cross plot. 

 

 

Figure A.8 Cross plot of attribute Instantaneous Phase with other attributes for features selection 

without repetition of plots existent in preceding cross plot. 

 



59 

 

Figure A.9 Cross plot of attribute Normalized Amplitude with other attributes for features 

selection without repetition of plots existent in preceding cross plot. 

 

 

Figure A.10 Cross plot of attribute Relative Acoustic Impedance with other attributes for features 

selection without repetition of plots existent in preceding cross plot. 

 

 

Figure A.11 Cross plot of attribute RMS Amplitude with other attributes for features selection 

without repetition of plots existent in preceding cross plot. 
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Figure A.12 Cross plot of attribute Thin Bed Indicator with other attributes for features selection 

without repetition of plots existent in preceding cross plot. 
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