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Abstract

Agricultural wholesale products, including different cereal grains, are regularly tested for

contaminants such as salmonella. To test for contaminants, individual samples are regu-

larly drawn from the product and these samples are homogeneously mixed to form a single

composite sample. A small amount of this composite sample is then selected and tested for

the contaminant. Detailed procedures for testing samples for contamination are outlined

and regulated by the FDA among other services. Ideally, failure to detect contamination

would yield a statistically rigorous limit on the true amount of contamination present in the

product.

In this study, we use ideas from risk-limiting auditing and without-replacement sampling

to derive a novel test for detecting contamination. We identify a set of conservative, worst-

case assumptions that allow us to derive a closed-form probability for failing to detect a

contaminant given a pre-specified proportion of contamination present in the product. We

then use this probability to develop a risk-limiting statistical test for the null hypothesis

that the amount of contamination present is beyond acceptable levels—if no contamination

is found, this null is rejected, and our statistical test concludes that the amount of contamina-

tion is within a tolerable range. Furthermore, we compute the minimum sample size needed

to ensure that, for a pre-specified significance level α, the test rejects the null hypothesis

if no contamination is detected. We show that our approach is significantly more powerful

than current methods for concluding that an agricultural product is not contaminated. The

improvement of our method is especially large for when the amount of agricultural product

being tested is small with respect to the size of the individual samples.
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Chapter 1

Introduction

Agriculture facilities supply millions of grams of wholesale product, such as cereal grains,

to consumers. To ensure that the product is safe for consumption, the product is tested for

microbial contaminants like salmonella. The testing process for an agricultural product is as

follows. First, samples of the product are repeatedly drawn. Then, these samples are com-

bined into a single composite sample. Finally, this composite sample is then homogeneously

mixed, and a small portion of this composite sample is tested for the contaminant. If any of

the individual samples contain a detectable amount of contaminant, the composite sample

will also test positive—or in other words, a composite sample will only test negative if all

individual samples are free from contamination.

Ideally, if no contaminated samples are selected, this should indicate strong evidence that

the product is free of contamination. However, if contamination is present in the product,

it may be allocated within in the product in such a way to avoid detection by this testing

method. That is, the only way to be 100% certain that no contamination is present within

the product is to sample the entire product. Hence, there is a need for methods that obtain

statistical guarantees and estimates on the amount of contamination present in the product.

We consider a specific instance of this problem where we are testing whether a single

container of agricultural product is free of contamination. Using ideas from financial and
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election auditing (Aslam et al., 2008; Stark, 2008), we develop a conservative, risk-limiting

hypothesis test for detecting contamination in this container in this container. This test

provides statistical assurance that, if no contaminated samples are selected, the amount of

contamination within the container is within acceptable levels (Fienberg et al., 1977). We

then demonstrate how to find the requisite sample sizes for this test at any given level of

significance α (Wendell and Schmee, 1996).

We show that our approach is more powerful than the approach in Jarvis (2007)—which

is currently the best-performing method for this particular application. The gain in power is

driven by viewing the sampling procedure as being performed “without replacement” rather

than “with replacement,” and is largest when container sizes are small (with respect to the

size of the sample) (Fienberg et al., 1977).

Note, sampling preparation and testing must follow strict requirements by the FDA

and outlined in the bacteriological analytical manual (BAM) (Andrews et al., 2018). Some

procedures are discussed as needed; for more details, refer to BAM on how to prepare

samples of different classifications of food categories. This study analyzes quality control

for the wholesale product and not the actual testing procedures that are performed by lab

professionals.

1.1 Background

Agricultural industries undergo required testing for contamination of their wholesale prod-

uct. To comply with legislative requirements—for example, European Regulation (EC)

No 2073/2005 (Commission, 2005)—a “sufficient” number of samples must be drawn from

the agricultural product and each sample must be deemed free from contamination before

the product is considered safe for consumption. Sample sizes and testing procedures are

determined by food category, and are outlined in the Bacteriological Analytical Manual

(BAM) (Andrews et al., 2018). Of note, the sampling procedure is required to produce a
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“representative” sample of the product. Refer to and Chapters 1 and 5 of Andrews et al.

(2018) for more details.

In practice, the sampling procedure is as follows. Facilities mill dehydrated forage prod-

ucts into bulk bags containing kale, alfalfa and other cereal grass that are prepared for

wholesale. While product is being milled, an automated sampler repeatedly draws samples

of the product. These samples are drawn throughout the entire milling process. Then, these

samples are combined and homogeneously mixed, forming a single composite sample. A por-

tion of the composite sample is then tested for the contaminant. Compositing the batches

and mixing homogeneously is used to provide an accurate representation of the finished

product. This sampling process is called composite sampling.

Composite sampling is common when preparing samples for testing. This method will

often lead to a sample that is representative the population while being more cost effective

than testing individual batches (Jarvis, 2007; Patil, 2002). If any individual sample used to

form the composite sample is positive for contamination, and the test for the contaminant

is “sufficiently sensitive,” then the portion tested from the composite sample test positive.

Or in other words, the test from the composite sample will only be deemed contamination

free if all individual samples are contamination free. Therefore, testing for contaminants

from the composite sample will allow for conclusions about the contamination of the entire

wholesale product. The major drawback of the compositing sampling method arises from

the sensitivity of the salmonella test. If there is a lack of accuracy to detect a small amount

of contamination in large quantity of product, then composite sampling might not be the

correct approach.

Another drawback of the current methodology is that it does not provide a method for

estimating the percent of contamination upon a positive test result (Jarvis, 2007). The

level of contamination is instead treated as an unknown parameter and various levels of

contamination are hypothesized to determine requisite sample sizes for testing. A variety of

assumed contamination levels are analyzed. The more contamination there is, the easier it
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should be to detect contamination.

Jarvis (2007) uses the binomial distribution for computation of sample sizes. Because

of the binomial outcome being a positive or negative instance, it is important to recognize

and understand that even if negative tests of high batch size is the result, it should never be

concluded or assumed that the product is ”contamination free” (Jarvis, 2007). The statistical

probability of accepting the product is largely based on the prevalence of contamination.

1.2 Literature Review/Previous work

The problem of testing for a contaminant is closely related to problems often studied in

financial and election auditing. We are repeatedly drawing samples from a population. We

conclude that the population does not contain “significant contamination” only if all samples

are free from contamination. If any “contaminated” samples are drawn, strong action is

taken—for example, for an agricultural product, the product is destroyed if it tests positive

for the contaminant.

In financial auditing, financial records are sampled and inspected to detect “material

overstatement”. (Fienberg et al., 1977; Miratrix and Stark, 2009) Each sampled record is

inspected and the book value of each record is determined. If the reported value of any

sampled record is significantly larger than its book value—or, in the context of testing for

contamination, if the financial record is “contaminated with overstatement”—a full audit of

all financial records is performed (Fienberg et al., 1977). If the overstatement of all sampled

records are within a given level of tolerance, the audit concludes, and the auditor concludes

there is no material overstatement.

In election auditing, an election result is legally defined as the result obtained after a full

hand count of ballots. (Miratrix and Stark, 2009; Stark, 2008) However, to reduce the time

and manpower required to complete an election, ballots are often counted by machines (Hig-

gins et al., 2011). Discrepancies between machine counts hand counts may occur—in many
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elections, small, inconsequential differences between these counts are common (Aslam et al.,

2008; Stark, 2008). Causes of these discrepancies may include human error in filling out a

ballot (e.g. using a check mark instead of filling in a bubble to denote a preference), soft-

ware bugs, and malicious attacks (Stark, 2008). An audit may be performed to ensure that

the machine-count outcome does not differ from the result a full hand count would show.

A set of precincts is sampled, and ballots within these precincts are hand counted (Aslam

et al., 2008). If a large discrepancy between the hand count and machine count within a

precinct is observed—that is, if a precinct is “contaminated” with a discrepancy between the

machine count and the hand count—a full hand count may be triggered (Stark, 2008). The

thoroughness of this auditing procedure depends on the margin of victory—more precincts

need to be sampled to verify the election result if the margin of victory is small (Aslam

et al., 2008; Lindeman and Stark, 2012; Miratrix and Stark, 2009; Stark, 2008). In large

elections, a margin of victory of only a few hundred votes will often trigger a full hand count

automatically.

If units are uniform and sampled with replacement, testing for the presence or absence

of a characteristic triggers a binomial solution. The work by Jarvis (2007) mentioned above

examines this methodology combined with composite sampling. ”Any result that can be

classified on the basis of a presence or absence is governed by the binomial distribution.

Typically, the binomial considers n number of independent trials with replacement. This is

similar to a Poisson distribution that can provide a probability of a number of independent

events occurring in a time interval, volume, area and distance. Comparing the two prob-

abilistic solutions using composite sampling, Jarvis showed “that when testing [for single

salmonella] is 100% effective, the probability of detection just depends on the total quan-

tity of sample tested, not the number of individual tests” (Jarvis, 2007). He concluded the

method requires sufficient sensitivity to detect salmonella in large quantities. If the sensitiv-

ity is not reliable, than certainty does not exist and test results could indicate false-negatives.

When units differ in size, the sampling scheme and/or methods used to analyze the sam-
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ple may be altered to reduce the cost of a full audit (Aslam et al., 2008). For example, when

the maximum discrepancy (error) for a unit can be bounded prior to sampling, the sampling

scheme can be altered to increase the likelihood of selecting units with a large potential for

error—for example, sampling with probability proportional to the size of this error bound

(PPEBWR sampling) Aslam et al. (2008). Additionally, the method for analyzing the sample

may use information about the magnitude of the discrepancy found within each sampled unit

to obtain a more precise estimate on the total discrepancy. The trinomial bound audit (Mi-

ratrix and Stark, 2009) provides an extension to the binomial approach—units are sampled

using PPEBWR sampling, and discrepancies are classified to be either 0, small, or large.

Similarly, Fienberg et al. (1977) use PPEBWR sampling and the multinomial distribution

to estimate the total amount of misstatement, though this method may be computationally

infeasible when many small, but non-zero, discrepancies are found.

A fundamental component to this application is the concept of a risk limiting audit (Aslam

et al., 2008; Higgins et al., 2011; Lindeman and Stark, 2012; Stark, 2008), which is a common

approach especially in election auditing. In short, a risk limiting audit method inverts the

typical hypotheses for a test for detecting discrepancies. In the context of election auditing,

the null hypothesis is that there is sufficient misstatement in an election to overturn the

result and the alternative hypothesis is that the amount of misstatement will not overturn

the election (Fienberg et al., 1977; Higgins et al., 2011; Lindeman and Stark, 2012). Hence,

if we reject the null hypothesis, we have a statistical (not absolute) confirmation that initial

election result is correct. If the null hypothesis is not rejected, further action can be taken

to obtain the correct result—for example, performing a full hand count.

Risk-limiting audits may be performed as a set of sequential tests as well (Lindeman

and Stark, 2012; Stark, 2008). An initial audit of sampled units is performed, and if not

enough evidence is present to reject the null hypothesis, further units may be sampled and

audited. This process can then be repeated until either sufficient evidence against the null

hypothesis is obtained or a full audit is performed. In the latter case, we are guaranteed
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to either confirm or reject the null hypothesis with complete certainty. In the context of

election auditing, this risk limiting procedure suggests an “intelligent incremental recount

that stops when the audit provides sufficiently strong evidence that a full hand count would

confirm the outcome” Lindeman and Stark (2012).

1.3 Outline

The rest of the report is organized as follows. In Chapter 2, our method for quality control

is described in detail. In Section 2.1 we describe the notation and framework of our risk-

limiting hypothesis test. We outline conservative assumptions that allow us to use the

hypergeometric distribution to compute p-values for this test. We then describe how to

find the requisite sample sizes necessary to reject the null hypothesis for any significance

level α if no contaminated samples are selected. We apply our methodology under various

scenarios in Section 2.2, and make comparisons against the method in Jarvis (2007), which is

derived assuming with-replacement sampling. We discuss results from this simulation study

in Section 2.3. Chapter 3 concludes.
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Chapter 2

A Risk-Limiting Test For Detecting

Contaminants

A bulk container of agricultural product is required to be tested for contamination. A

sampler will draw samples of constant sizes without replacement from this container and

homogeneously mix the batches into one composite sample. A small selection from that

composite sample is then tested for contamination. If any individual sample is contaminated,

then the selection from the composite sample will test positive for the contaminant. The

question is how to determine the number of batches that need to be collected and how

accurate is the test result.

2.1 Notation and Preliminaries

Suppose that the container contains S grams of product, and each sample contains s grams

of product. Let N denote the total number of samples that can be drawn from the container;

that is, N = ⌈S/s⌉. Let n denote the true number of samples drawn from the wholesale

product. Once n samples are drawn, a composite sample comprised of ns grams is created

and homogeneously mixed, and a small selection from this composite sample is tested for

salmonella.
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If the selection tests positive, then the container is considered contaminated. If it tests

negative, the container is considered not contaminated. However, since the entire container

is not sampled, there may still be some contamination present in the container; the entire

container will need to be sampled and tested in order to guarantee that it is completely free of

the contaminant. Instead, we aim to construct a procedure such that, given a pre-specified

acceptable contamination percentage γ, we can determine the sample size n necessary to

ensure that a contamination level greater than γ is guaranteed to be detected with a given

confidence level 1− α.

2.1.1 Statistical testing of contamination

Detecting contamination can be posited as a “risk-limiting” hypothesis test. Typically, when

testing for the presence of a contaminant, the hypothesis test is constructed such that the

null hypothesis (H0) is that the contaminant is not present and the alternative hypothesis

(Ha) is that the contaminant is actually present. However, failing to reject H0 is not the

same as concluding H0 is correct. For example, when testing for salmonella, failing to accept

an alternative hypothesis that there is not a statistically significant amount of salmonella

contamination is not the same as a statement that the amount of salmonella is statistically

likely to be below some pre-specified threshold.

Instead, risk-limiting hypotheses tests switch these hypotheses—that is, H0 is that there

is a material presence of the contaminant and Ha is that there is not a material presence.

That is, the risk-limiting hypothesis testing paradigm is the appropriate approach for testing

for the absence of the contaminant.

Under the risk-limiting approach, the null and alternative hypotheses are constructed as

H0 : p ≥ γ (contaminated),

Ha : p < γ (not contaminated),
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where p is the true proportion of contamination in the container. For this approach, we

will reject the null for the alternative (that is, conclude no contamination) if no samples are

contaminated. If any sample is contaminated, we will conclude that the entire container is

contaminated and unsafe for consumption.

We can ensure certain confidence for our test by pre-specifying the Type I Error. However,

computing a p-value—in this case, the probability of not detecting contamination when at

least γ is present—can be challenging. This will be a function of the number of samples N

contained in a contained, the sample size n, and the amount of contamination under the null

hypothesis γ. Additionally, this will depend on the true distribution of the contamination

within the container; there are innumerable ways that γ contamination could exist within

the container.

To make the quality control problem tractable, we make some simplifying assumptions.

These assumptions are designed to control the probability of falsely concluding a container

to be free of the contaminant even if the allocation of the contaminant is “as hard to detect

as possible.”

2.1.2 Sampling framework

Let us assume that the product is divided into uniform, pre-defined, separated batches of, at

most, s grams. Each batch is either contaminated or not contaminated (a partially contam-

inated batch is considered to be contaminated). For a given acceptable contamination level

γ, we first determine the minimum number of batches that can contain this contamination.

As we will see, the probability of detecting contamination is smallest when contamination

is isolated to as few batches as possible. This occurs when Nγ batches are completely

contaminated and the remaining batches are free from contamination.

We then assume that we draw a simple random sample of n batches from the finite number

of batches N . In practice, a sample drawn in practice could be comprised of multiple of our

pre-defined batches that comprise the product. However, in this case, the detection becomes
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easier (i.e. we may be able to sample from multiple batches with one draw) than if we were

limited to the pre-defined batches as assumed. Determining n to ensure accurate detection

of the contamination is a primary goal of this study.

We note that the sampling of the product is often done systematically rather than at ran-

dom. If contamination only occurs at regular intervals within the container, the assumption

of simple random sampling will be unreasonable.

2.1.3 Testing using the Hypergeometric Distribution

Suppose we have a set of N units, with K of these units having some characteristic of

interest. Suppose further that n units are sampled from the N units at random without

replacement. Then, the number of units X in the sample that have the characteristic follows

a hypergeometric distribution:

P (X = k) =

(
K
k

)(
N−K
n−k

)(
N
n

) . (2.1)

We will use this distribution to compute p-values for our risk-limiting hypothesis test. This

test will be more powerful test than those that rely on the binomial distribution, which

inherently assumes that samples are drawn with replacement.

We apply this distribution to our problem of detecting contamination (contamination is

a success). Recall that N is total number of batches in the container and γ is the hypothe-

sized proportion of contaminated batches. That is, γ contamination can be contained in no

fewer than K = ⌈Nγ⌉ batches. We only conclude that a product is safe for consumption

(i.e. has less than γ contamination) if we do not sample any contaminated batches: k = 0.

Thus, the probability of concluding that a product is safe for consumption when at least γ

contamination is present is no larger than

P (X = 0) =

(
N−⌈Nγ⌉

n

)(
N
n

) . (2.2)
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Since we only reject the null hypothesis H0 : p ≥ γ if no contaminated samples are selected,

this becomes our p-value for our risk-limiting hypothesis test. If this p-value is less than the

significance level α, we conclude that the product is safe for consumption.

Theoretically, it is possible to generalize this test to allow for leniency in the number

of contaminated samples—that is, to allow the test to reject the null hypothesis even if

one or more batches drawn are contaminated. In this case, the test statistic would be the

number of positive samples k and the p-value would be the probability of drawing k or fewer

positive samples. However, in practice, this is not feasible. Samples are homogeneously

mixed together to form a single composite sample, and a selection from the single composite

sample is tested for contamination. If this test comes back positive, it is impossible to

determine how many contaminated individual samples contributed to this positive test.

2.1.4 Choosing the sample size

It is critical to ensure that the sample size n is large enough to ensure that the p-value is

below the α threshold when no contaminated samples are selected; otherwise, under this

framework, it would be impossible to conclude that a product is safe for consumption.

However, larger sample sizes also lead to increased costs and less usable product after testing

for contamination. Thus, for a given significant level α, we want to select the smallest sample

size possible such that the p-value is less than α if no samples are contaminated.

To find this sample size n, we compute the probability (2.2) across all possible values of

the sample size n. We are then able to identify the smallest n that obtains a probability less

than α.

2.2 Simulation and Results

We now determine the requisite sample sizes n under a variety of scenarios. We specify for

each scenario the number of batches N within a product, the significance level α, and the
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contamination level γ. We then find the smallest value of n such that the probability (2.2)

is less than α. For this study, we consider the number of batches N = [30, 50, 100, 1500], hy-

pothesized contamination levels γ = [2.5%, 5%, 7.5%, 10%, 15%, 20%], and significance levels

α = [0.1, 0.05, 0.01], and note that this approach can be used for any other choice of parame-

ters. Results are found in Tables 2.1–2.5. Figures 2.1–2.4 compare our results to those using

the method in Jarvis (2007) which assumes with-replacement sampling.

To demonstrate how a practitioner would use this method, suppose a wholesale container

contains a total of S = 5500g, and an automated sampler consistently draws 55g per

extraction. Thus, N = [S/s] = 5500g/55g = 100. Suppose further that regulations require

that the testing procedure identifies a container with a γ = 10% contamination percentage

with at least 90% accuracy (hence, α = 0.1). From Table 2.4, this will require the practitioner

to draw 20 samples of product.

Figure 2.1: Comparing our approach to the binomial approach when N = 30. This
graph gives the minimum number of samples n required to conclude that a container is
contamination-free if all samples are clean. Sample sizes are computed for varying thresholds
of the contamination level γ

13



Table 2.1: Hypergeometric required n for each γ when N=30.
γ Contamination 2.5% 5% 7.5% 10% 15% 20%

90% Confidence 27 21 21 16 13 9
95% Confidence 29 23 23 19 15 11
99% Confidence 30 27 27 23 20 15

Table 2.2: Minimum samples n to conclude contamination-free using a binomial approach.
γ Contamination 2.5% 5% 7.5% 10% 15% 20%

90% Confidence 91 45 30 22 15 11
95% Confidence 119 55 39 29 19 14
99% Confidence 182 90 60 44 19 21

2.3 Discussion

Note that the binomial probability is not affected by the number of batches N contained in

the container of product; the probability of detecting no contaminated batches if γ contam-

ination is present is

(1− γ)n.

Thus, the requisite sample size n for the different simulations will remain constant across

differing number of batchesN (see Table 2.2). Additionally, recall that the binomial approach

examines independent samples with replacement which accounts for the possibility of drawing

the same sample multiple times. This can lead to inefficient samples and increase the required

n. Therefore when examining the results, we see sample sizes needed that exceed that N .

When N = 30, (see Figure 2.1) our hypergeometric approach leads a dramatic difference

in the number samples that need to be drawn, most noticeably when γ is small. When larger

amounts of contamination are present, detection becomes easier and thus results in smaller

n for the hyper geometric and about 4.5 times smaller n for the binomial results. With 5%

contamination, our method shows n = 21, 23, 27 for confidence 90%, 95%, 99% respectively.

If we compare that to the binomial results of n = 45, 59, 90 with the same confidence, at

our worst, the samples needed is cut in half and can result in up to more than 3 times
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Figure 2.2: Comparing our approach to the binomial approach when N = 50. This
graph gives the minimum number of samples n required to conclude that a container is
contamination-free if all samples are clean. Sample sizes are computed for varying thresholds
of the contamination level γ.

Table 2.3: Results for required n for each γ when N=50.
γ Contamination 2.5% 5% 7.5% 10% 15% 20%

90% Confidence 46 34 22 18 12 10
95% Confidence 48 39 26 22 15 12
99% Confidence 50 45 34 29 21 17

more efficient. The hypergeometric approach becomes even more efficient when considering

γ = 2.5%.

Again, consider γ = 5% and compare Tables 2.3, 2.4, 2.5 (N = 50, N = 100, and

N = 1500). The results show a relatively small increase in the number of samples required

when doubling the batch size. Even more so when increasing N by 30 times.

As N increases, we see that the required n for the binomial and hypergeometric approach

get closer. This is expected—in general, simple random sampling can be approximated by

sampling with replacement when population sizes are large (Lohr, 2021)—and this trend is
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Figure 2.3: Comparing our approach to the binomial approach when N = 100. This
graph gives the minimum number of samples n required to conclude that a container is
contamination-free if all samples are clean. Sample sizes are computed for varying thresholds
of the contamination level γ.

Table 2.4: Results for required n for each γ when N=100.
γ Contamination 2.5% 5% 7.5% 10% 15% 20%

90% Confidence 69 37 25 20 14 10
95% Confidence 78 45 31 25 17 13
99% Confidence 90 59 43 36 25 19

shown through Figures 2.1, 2.2, 2.3, and 2.4. With low contamination and a high desired

confidence level, it becomes necessary to sample almost, if not all, the entire product. In

reality, 99% confidence is not obtainable for a wholesale company since you’d need to examine

the entire product. Therefore the pre-determined confidence levels should be carefully chosen

based on how much product needed for wholesale and if it is affordable to sample large

amounts.
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Figure 2.4: Comparing our approach to the binomial approach when N = 1500. This
graph gives the minimum number of samples n required to conclude that a container is
contamination-free if all samples are clean. Sample sizes are computed for varying thresholds
of the contamination level γ.

Table 2.5: Results for required n for each γ when N=1500.
γ Contamination 2.5% 5% 7.5% 10% 15% 20%

90% Confidence 88 45 30 22 15 11
95% Confidence 113 58 39 29 19 13
99% Confidence 170 88 59 44 29 21
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Chapter 3

Conclusion

Accurate detection of contamination in an agricultural wholesale product is essential. To

detect contamination, samples of the product are repeatedly drawn, and these samples are

combined into a single composite sample. This composite sample is then homogeneously

mixed, and a portion of this composite sample is tested for the contaminant. If any individual

sample is contaminated, the portion from the composite sample will test positive for the

contaminant. Sampling procedures must follow strict guidelines outlined by the FDA, and

are outlined in the bacteriological analytical manual (Andrews et al., 2018).

We borrow ideas from risk-limiting auditing to devise a statistical test for detecting

contamination (Aslam et al., 2008; Fienberg et al., 1977; Lindeman and Stark, 2012; Stark,

2008). The null hypothesis for our test assumes unsafe levels of contamination in the product,

and by rejecting this null, we conclude that the amount of contamination is low enough that

the product is safe for consumption (Higgins et al., 2011; Stark, 2008). This approach

requires some simplifying assumptions. Conceptually, we assume the sample is separated

into batches where we sample without replacement. The prevalent contamination level is

pre-determined and impacts the difficulty of detecting an contamination in these batches.

We then can use the hypergeometric distribution to compute the probability of not sampling

a contaminated batch—a p-value for this test. Note, this probability assumes that the
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allocation of contamination (γ) throughout these batches makes detection of contamination

as hard to detect as possible. Therefore, if our test concludes that the product is free from

contamination at a significance level α, the true significance level at which we would reject

the null hypothesis is, in practice, much less than α.

We perform a simulation study to assess the efficacy of our method compared to previ-

ous methods that rely on with-replacement sampling theory (Jarvis, 2007). We show that

our approach provides a significant improvement to current methods. This improvement is

largest when the number of batches within the product is small.

3.1 Future Work

For future work, we may consider methods for better estimating and assessing how contami-

nation is allocated within a product. Our method used simplifying assumptions that consider

the most difficult allocation of contamination. Less conservative assumptions, such as limit-

ing the amount of contamination allowed in a sampled batch, may dramatically increase the

power of our method, and may be reasonable to make in some instances. Additionally, our

hypothesis test may be inverted to devise a (very conservative) upper confidence bound on

the amount of contamination present in a product.

Statistical modeling may also help improve in detecting contamination. Most of the time,

testing for contamination yields a ‘true’ or ‘false’ result and not an actual measurement. A

potential method that would combat this nuisance may involve using Bayesian techniques

to model the prevalence of contamination (Meeden, 2003). The contamination level is then

represented as a distribution and we could consider more realistic values based on a small

amount data.
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Appendix A

R Code

#preliminary initializing

#N = c(17000) # total batches

#contlevel = c(2.5,5,10,12.5) # levels of prevalent contamination

#alpha = .1

# N = Total number of batches (scalar or vector)

# contlevel = level of assumed contamination as a

# percent number (ie 1% contamination, contlevel = 1) (scalar or vector)

# alpha = sig level for hypothesis test

Batch = function(N,contlevel,alpha){

#storage for cont batches for each N

contbatforN = matrix(c(0),nrow = length(N), ncol = length(contlevel))

#storage for viable batches for each N

vbatch = matrix(c(0),nrow = length(N), ncol = length(contlevel))

for(i in 1:length(N)){

contbatforN[i,] = N[i]*(contlevel/100) # contaminated batches

vbatch[i,] = N[i] - contbatforN[i,]
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# vaible batches

}

# create master list to store p-values of each N for all contamination levels

master = vector(length = length(N),mode = ’list’)

#store each probablilty matrix withing the associated Batch size

for(k in 1:length(N)){

samplesize = seq(1:N[k])

probmat = matrix(c(0),nrow = length(samplesize), ncol = length(contlevel))

for (s in 1:length(samplesize)){

probmat[s,] = phyper(0,contbatforN[k,],vbatch[k,],samplesize[s])

master[[k]] = probmat

}

}

master[[1]]

#################

# find the number of batches toe reach the confidence level #

#################

# for each element in master list,

#we want the first instance of <alpha for each cont level

#nmatrix is n batch storage for all total batch N

nmatrix = matrix(c(0),nrow=length(N), ncol = length(contlevel))

#nb is batch is row for a specifice Total batch N

#columns are contamination levels

nb = c(0)

for( j in 1:length(master)){
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for( i in 1:length(contlevel)){

nb[i] = min(which(master[[j]][,i]<alpha))

}

nmatrix[j,] = nb

}

colnames(nmatrix) = paste(contlevel,’% Contaminated’, sep = ’’)

rownames(nmatrix) = paste(N,’Total Batches’, sep = ’ ’)

nmatrix

}

# N = Total number of batches (scalar or vector)

# contlevel = level of assumed contamination (scalar or vector)

#alpha = sig level for hypothesis test.

contlevel = c(2.5,5,7.5,10,15,20)

N = c(30,50,100)

##### checking ####

N = 500

contamlevel = c(2.5,5,10,20)

cbat = N*(contamlevel/100)

vbat = N - cbat

vbat

samplesize = seq(1,1000,1)

mat = matrix(c(0),nrow = length(samplesize),ncol = length(contamlevel))

for(i in 1: length(samplesize)){

mat[i,] = phyper(0,cbat,floor(vbat),samplesize[i])
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}

mat

n = c(0)

for(i in 1:ncol(mat)){

n[i] = min(which(mat[,i]<.1))

}

n

#####################

# comparing with Jarvis #

#####################

# binomial => (1-p)^n when k = 0

# where p is assumed contamination

bin = seq(1,182,1)

ndraw = matrix(c(0), nrow = length(bin), ncol = length(contlevel))

p = .05

for(i in 1:length(bin)){

ndraw[i,] = (1-(contlevel/100))^bin[i]

}

colnames(ndraw) = paste(contlevel,’% contamination’)

rownames(ndraw) = bin

#90 conf

n90 = c(0)

for(i in 1:length(contlevel)){

n90[i] = min(which(ndraw[,i]<.1))

}
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#95 conf

n95 = c(0)

for(i in 1:length(contlevel)){

n95[i] = min(which(ndraw[,i]<.05))

}

#99 conf

n99 = c(0)

for(i in 1:length(contlevel)){

n99[i] = min(which(ndraw[,i]<.01))

}

binomsolution = rbind(n90,n95,n99)

colnames(binomsolution) = paste(contlevel,’% contamination’)

rownames(binomsolution) = paste(c(90,95,99),’CL (BIN)’)

##### PLOT COMPARING HYPER AND BINOM

###### DIFFERENT BATCH SIZES

##### NOTE BINOMIAL SOLUTION Is NOT AFFECTS BY N

#par(mfrow = c(1,1))

#N = 30

#90cl

H90 = Batch(N = 30,contlevel = contlevel, alpha = .1)

#95cl

H95 = Batch(N = 30,contlevel = contlevel, alpha = .05)

#99cl

H99 = Batch(N = 30,contlevel = contlevel, alpha = .01)

hypersol30 = rbind(H90,H95,H99)
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rownames(hypersol30) = paste(c(90,95,99),’CL (HYP)’)

#N = 30 batches graph

#hyper

plot(contlevel,hypersol30[1,], ylim = c(10,200),main = ’N = 30’,

xlab = ’Assumed Contamination’, cex.lab = 1.5,

ylab = ’Number of Samples Required’,pch = 1,

xaxt = ’n’,yaxt = ’n’,col = ’darkorchid3’,lwd = 2)#90clhyp

lines(contlevel,hypersol30[1,], lty = 1, col =’darkorchid3’,lwd = 2) # 90clhyp

points(contlevel,hypersol30[2,], pch = 2,col = ’darkorchid3’,lwd = 2)#95clhyp

lines(contlevel,hypersol30[2,],lty = 2,col=’darkorchid3’,lwd=2)#95clhyp

points(contlevel,hypersol30[3,],pch = 3,col = ’darkorchid3’,lwd = 2)#99clhyp

lines(contlevel,hypersol30[3,], lty = 3, col =’darkorchid3’,lwd=2)#99lhyp

#Binomial

lines(contlevel,binomsolution[1,], lty=1, col = ’black’,lwd=2)

points(contlevel,binomsolution[1,], pch=1, col = ’black’,lwd = 2)

lines(contlevel,binomsolution[2,], lty=2, col = ’black’,lwd=2)

points(contlevel,binomsolution[2,], pch=2, col = ’black’,lwd = 2)

lines(contlevel,binomsolution[3,], lty=3, col = ’black’,lwd=2)

points(contlevel,binomsolution[3,], pch=3, col = ’black’,lwd = 2)

axis(1,at = contlevel, labels = paste0( contlevel,’%’),cex.axis = 1)

axis(2,at = seq(20,200,10),las = 1, cex.axis = 1)

legend(12,180, legend = c(’90%’,’95%’,’99%’),

cex = 1.25,lty =c(1,2,3),lwd = 2 ,

pch = c(1,2,3),title = ’Confidence Levels’)

legend(12,120, legend = c(’Binomial (Jarvis, 2007)’,

(’Hypergeometric’)),cex = 1.25,
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fill =c(’black’,’darkorchid3’),

title = ’Method’)

#N = 50

#90cl

H90 = Batch(N = 50,contlevel = contlevel, alpha = .1)

#95cl

H95 = Batch(N = 50,contlevel = contlevel, alpha = .05)

#99cl

H99 = Batch(N = 50,contlevel = contlevel, alpha = .01)

hypersol50 = rbind(H90,H95,H99)

rownames(hypersol50) = paste(c(90,95,99),’CL (HYP)’)

#N = 50 batches graph

#hyper

plot(contlevel,hypersol50[1,], ylim = c(10,200),main = ’N = 50’,

xlab = ’Assumed Contamination’,cex.lab = 1.5,

ylab = ’Number of Samples Required’,pch = 1,

xaxt = ’n’ ,yaxt = ’n’,col = ’darkorchid3’,lwd = 2)#90clhyp

lines(contlevel,hypersol50[1,], lty = 1, col =’darkorchid3’,lwd = 2) # 90clhyp

points(contlevel,hypersol50[2,], pch = 2,col = ’darkorchid3’,lwd = 2)#95clhyp

lines(contlevel,hypersol50[2,],lty = 2,col=’darkorchid3’,lwd = 2)#95clhyp

points(contlevel,hypersol50[3,],pch = 3,col = ’darkorchid3’,lwd = 2)#99clhyp

lines(contlevel,hypersol50[3,], lty = 3, col =’darkorchid3’,lwd = 2)#99lhyp

#Binomial

lines(contlevel,binomsolution[1,], lty=1, col = ’black’,lwd = 2)

points(contlevel,binomsolution[1,], pch=1, col = ’black’,lwd = 2)
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lines(contlevel,binomsolution[2,], lty=2, col = ’black’,lwd = 2)

points(contlevel,binomsolution[2,], pch=2, col = ’black’,lwd = 2)

lines(contlevel,binomsolution[3,], lty=3, col = ’black’,lwd = 2)

points(contlevel,binomsolution[3,], pch=3, col = ’black’,lwd = 2)

axis(1,at = contlevel, labels = paste0( contlevel,’%’),cex.axis = 1)

axis(2,at = seq(20,200,10),las = 1, cex.axis = 1)

legend(12,180, legend = c(’90%’,’95%’,’99%’),cex = 1.25,

lty =c(1,2,3),lwd = 2 ,

pch = c(1,2,3),title = ’Confidence Levels’)

legend(12,120, legend = c(’Binomial (Jarvis, 2007)’,

(’Hypergeometric’)),cex = 1.25,

fill =c(’black’,’darkorchid3’),

title = ’Method’)

#N = 100

#90cl

H90 = Batch(N = 100,contlevel = contlevel, alpha = .1)

#95cl

H95 = Batch(N = 100,contlevel = contlevel, alpha = .05)

#99cl

H99 = Batch(N = 100,contlevel = contlevel, alpha = .01)

hypersol100 = rbind(H90,H95,H99)

rownames(hypersol100) = paste(c(90,95,99),’CL (HYP)’)

#N = 100 batches graph
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#hyper

plot(contlevel,hypersol100[1,], ylim = c(10,200),main =’N = 100’,

xlab = ’Assumed Contamination’,cex.lab = 1.5,

ylab = ’Number of Samples Required’,pch = 1,

xaxt = ’n’ ,yaxt = ’n’,lwd = 2,col = ’darkorchid3’)#90clhyp

lines(contlevel,hypersol100[1,], lty = 1, col =’darkorchid3’,lwd = 2) # 90clhyp

points(contlevel,hypersol100[2,], pch = 2,col = ’darkorchid3’,lwd = 2)#95clhyp

lines(contlevel,hypersol100[2,],lty = 2,col=’darkorchid3’,lwd = 2)#95clhyp

points(contlevel,hypersol100[3,],pch = 3,col = ’darkorchid3’,lwd = 2)#99clhyp

lines(contlevel,hypersol100[3,], lty = 3, col =’darkorchid3’,lwd = 2)#99lhyp

#Binomial

lines(contlevel,binomsolution[1,], lty=1, col = ’black’,lwd = 2)

points(contlevel,binomsolution[1,], pch=1, col = ’black’,lwd = 2)

lines(contlevel,binomsolution[2,], lty=2, col = ’black’,lwd = 2)

points(contlevel,binomsolution[2,], pch=2, col = ’black’,lwd = 2)

lines(contlevel,binomsolution[3,], lty=3, col = ’black’,lwd = 2)

points(contlevel,binomsolution[3,], pch=3, col = ’black’,lwd = 2)

axis(1,at = contlevel, labels = paste0( contlevel,’%’),cex.axis = 1)

axis(2,at = seq(20,200,10),las = 1, cex.axis = 1)

legend(12,180, legend = c(’90%’,’95%’,’99%’),cex = 1.25,

lty =c(1,2,3),lwd = 2 ,

pch = c(1,2,3),title = ’Confidence Levels’)

legend(12,120, legend = c(’Binomial (Jarvis, 2007)’,

(’Hypergeometric’)),cex = 1.25,

fill =c(’black’,’darkorchid3’),

title = ’Method’)
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####### 1500 = N

#90cl

H90 = Batch(N = 1500,contlevel = contlevel, alpha = .1)

#95cl

H95 = Batch(N = 1500,contlevel = contlevel, alpha = .05)

#99cl

H99 = Batch(N = 1500,contlevel = contlevel, alpha = .01)

hypersol1500 = rbind(H90,H95,H99)

rownames(hypersol1500) = paste(c(90,95,99),’CL (HYP)’)

#N = 1500 batches graph

#hyper

plot(contlevel,hypersol1500[1,], ylim = c(10,200),main = ’N = 1500’,

xlab = ’Assumed Contamination’,cex.lab = 1.5,

ylab = ’Number of Samples Required’,pch = 1,xaxt = ’n’ ,

yaxt = ’n’,lwd = 2,col = ’darkorchid3’)#90clhyp

lines(contlevel,hypersol1500[1,], lty = 1, col =’darkorchid3’,

lwd = 2) # 90clhyp

points(contlevel,hypersol1500[2,], pch = 2,col = ’darkorchid3’,

lwd = 2)#95clhyp

lines(contlevel,hypersol1500[2,],lty = 2,col=’darkorchid3’,

lwd = 2)#95clhyp

points(contlevel,hypersol1500[3,],pch = 3,col = ’darkorchid3’,

lwd = 2)#99clhyp

lines(contlevel,hypersol1500[3,], lty = 3, col =’darkorchid3’,

lwd = 2)#99lhyp
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#Binomial

lines(contlevel,binomsolution[1,], lty=1, col = ’black’,lwd = 2)

points(contlevel,binomsolution[1,], pch=1, col = ’black’,lwd = 2)

lines(contlevel,binomsolution[2,], lty=2, col = ’black’,lwd = 2)

points(contlevel,binomsolution[2,], pch=2, col = ’black’,lwd = 2)

lines(contlevel,binomsolution[3,], lty=3, col = ’black’,lwd = 2)

points(contlevel,binomsolution[3,], pch=3, col = ’black’,lwd = 2)

axis(1,at = contlevel, labels = paste0( contlevel,’%’),cex.axis = 1)

axis(2,at = seq(20,200,10),las = 1, cex.axis = 1)

legend(12,180, legend = c(’90%’,’95%’,’99%’),cex = 1.25,

lty =c(1,2,3),lwd = 2 ,

pch = c(1,2,3),title = ’Confidence Levels’)

legend(12,120, legend = c(’Binomial (Jarvis, 2007)’,

(’Hypergeometric’)),cex = 1.25,

fill =c(’black’,’darkorchid3’),

title = ’Method’)

#### tables for the report option

## for excel

rownames(hypersol30) = paste(c(90,95,99),’% Confidence’,sep=’’)

rownames(hypersol50) = paste(c(90,95,99),’% Confidence’,sep=’’)

rownames(hypersol100) = paste(c(90,95,99),’% Confidence’,sep=’’)

rownames(hypersol1500) = paste(c(90,95,99),’% Confidence’,sep=’’)

hypersol30 = as.data.frame(hypersol30,
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cbind(c(paste(c(90,95,99),’% Confidence’,sep=’’))))

hypersol50= as.data.frame(hypersol50)

hypersol100= as.data.frame(hypersol100)

hypersol1500= as.data.frame(hypersol1500)
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