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Abstract 

Phosphorous (P) loss from non-point agricultural sources is an important factor that 

affects the deterioration of surface water quality. Excessive P inputs can exacerbate 

eutrophication and toxic algal blooms, thus leading to greater water treatment costs and reduced 

recreational value of water bodies. To reduce non-point source P loss, we need to go back to the 

source and help farmers and ranchers make better land management decisions. One tool that can 

help is the P index. The P Index rating can provide information on major P loss pathways and 

help producers adjust land management decisions to minimize P loss from a specific field. 

Currently, the Kansas P index does not meet USDA-NRCS standards as listed in Title 190, 

which was updated in 2017. Among other items, updating the P index will require estimates of 

long-term annual runoff for soils and cropping systems across Kansas. Additional research is 

needed to identify a method of estimating runoff volume and to update the P index to current 

standards.  

Soil erosion presents one of the greatest concerns to most P mitigation programs 

worldwide because the majority of P loss occurs with eroded sediments. Ephemeral gully erosion 

is a type of erosion that can remove large quantities of sediment and is particularly difficult to 

control in no-till agriculture. Ephemeral gullies can develop in areas of concentrated flow within 

cultivated crop fields. Additional research is needed to identify best management practices that 

can reduce ephemeral gully erosion in no-till systems. 

The objectives of this research are to i) develop and evaluate a new approach to estimate 

long-term average annual runoff from agricultural fields, ii) develop a revised P index, and iii) 

investigate the effect of cover crops on ephemeral gully erosion. 



  

Two methods were evaluated to estimate long-term average annual runoff: use of the 

standard curve number (CN) approach with a daily time-step on long-term historical datasets 

(method 1) or a modified CN approach that uses long-term average annual rainfall and assumes 

an exponential distribution of rainfall (method 2). Both methods were calibrated and evaluated 

with edge-of-field monitoring data. The calibrated method 2 results revealed an R2 = 0.88, NSE 

= 0.56 and when validating this method R2 = 0.66, NSE = 0.54 indicating that this model had 

good model performance and that no further calibration was needed.  

The proposed P index is structured as a component P-index. Inputs were updated to 

include estimated average annual runoff calculated with the previously described modified CN 

approach. The coefficients for the P index components were developed through multiple linear 

regression with SAS proc mixed using a database of P loss estimates for 1360 cropping 

scenarios. Validation of the revised P index was conducted by relating the P index values to 

measured P loss data using both annual and summarized data from edge-of-field runoff 

experiments located in Riley, Crawford, Franklin, and Geary County. Coefficients to the revised 

P index were all significant at p<0.0001. Results showed that the proposed P index improved the 

relationship between the P index and P loss from R2= 0.41 to R2= 0.82 and validation of revised 

P index to the current index improved relationship between the P index and P loss from R2= 0.09 

to R2= 0.71 using annual data and from R2= 0.73 to R2= 0.85 using average annual P loss data. 

The revised P index had improved model performance and would be a sufficient model to use for 

the Kansas P index. 

The final portion of this research was conducted in the summers of 2021 and 2022 at the 

Kansas Agricultural Watershed (KAW) field laboratory located near Manhattan, KS, USA. 

Ephemeral gully length, depth and width were measured and used to determine the volume of 



  

sediment lost through ephemeral gully erosion. Elevation data from an unmanned aerial vehicle 

(UAV) was collected in fall of 2016, 2020, and 2022 to determine ephemeral gully formations 

using ArcGIS Pro to compare elevation data. Results did not identify a significant effect of cover 

crops on ephemeral gully erosion. This could be due to insufficient ephemeral gully erosion in 

the watersheds at the KAW field lab. Furthermore, Elevation data collected by aerial imagery did 

not prove useful in quantifying the soil loss from ephemeral gullies. 

Results from this research will help producers and land managers more accurately 

evaluate effects of agricultural management systems on the risk of P loss to surface water using a 

revised P-index. The revised P index will also help producers identify the mechanisms 

responsible for P loss from their fields and thereby select conservation practice systems that can 

most effectively reduce those P losses.  
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Chapter 1 - Literature Review on Landscapes Processes and 

Management Practices Affecting P Loss from Agriculture. 

 Introduction 

Phosphorus (P), an important nutrient for crop and livestock production, may be 

transported off agricultural fields and increase the eutrophication of fresh water, which is 

currently one of the most serious water quality issues in the United States (Sharpley et al., 2003). 

For example, in August 2014 Toledo's drinking water supply was shut down for many days due 

to hazardous algal blooms in Lake Erie, highlighting the relationship between nutrient 

enrichment (especially P) and water quality impairment (Stow et al., 2015). Nutrients can occur 

naturally in water, but elevated concentrations are usually due to human activities, such as land 

use and associated fertilizer applications, as well as animal manure in upstream watersheds, all of 

which can contribute to increased P concentrations in runoff from agricultural settings 

(Dubrovsky, N.M., &Hamilton, P.A., 2010). Several management approaches at the source and 

during transport into downstream water resources are necessary to decrease agricultural nutrient 

input to surface waterways (Osmond et al., 2017). Many states have developed guidelines for P 

application and watershed management in response to rising water quality issues based on tools 

that rate the potential for P loss in agriculture runoff (Sharpley et al., 2003). These tools are 

known as P Indices and many states have invested significant resources to identify the 

components influencing P loss in order to reliably estimate the relative risk of P loss and 

incentivize conservation management (Sharpley et al., 2012). Certain inputs to the Kansas P-

Index are categorical and do not zero out potential affect the overall P Risk loss value.  Revising 

the Kansas P index would improve our ability to identify fields at high risk for P loss.  
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One challenging P transport process that has been difficult to correctly estimate and 

manage is erosion associated with ephemeral gullies in no-till crop fields. Identifying additional 

best management practices to control ephemeral gully erosion in no-till fields will help producers 

decrease P loss through erosion. Cover crops have the potential to help decrease gullies from 

forming, thereby reducing sediment and P loss from crop fields. Producers will benefit from 

improved tools and methods to help identify water quality problems and identify the best 

management practices to reduce these risks and issues.  

 Background 

P Index History  

The USDA–NRCS revised the Nutrient Management Conservation Practice Standard 

(590 standard) in 2011, in part to address the major disparities in P Index ratings and 

recommendations across state lines, as well as the concern that soil-test P concentrations and 

runoff P losses had remained unchanged (Bolster et al., 2012; Osmond et al., 2017; Sharpley et 

al., 2003). There are three different structures for P indices: additive, multiplicative, and 

component (Osmond et al., 2017). For additive P indices, the weighted transport and source 

factors are summed together (Osmond et al., 2017). The Multiplicative P indices sum source and 

transport components separately then multiply the sum of source components with the sum of 

transport components to get the final P Index value (Osmond et al., 2017). Finally, component 

indices are constructed as a series of P loss components, where each component is computed as 

the product of transport and source factors. Components are multiplied by weighting coefficients 

and summed to produce the final P-Index rating. (Osmond et al., 2017).  

Currently, the Kansas P index is multiplicative, but there is interest in developing a 

component index for Kansas (Nelson & Shober, 2012). The general multiplicative P index 
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equation is written, where the P-index is the product of P source factors (S) and P transport 

factors (T) (Eq. [1.1]), with n source factors and m transport factors, βi is the weighting factor for 

the ith source factor (S), and χj is the weighting factor for the jth transport factor (T) (Nelson & 

Shober, 2012). 

Equation 1.1: Multiplicative Phosphorus Index   

 ......................................................................................[Eq. 1.1] 

The multiplicative index used in Kansas has source characteristics of soil test P, annual 

average fertilizer P application rate, P fertilizer application method, annual average organic P 

application rate organic P source application method. The transport characteristics include soil 

erosion, soil runoff classification, proximity of fields to perennial streams (perennial surface 

water bodies or intermittent streams), furrow irrigation erosion, and sprinkler system 

erosion/runoff. The inputs for fertilizer P application rate (lb P2O5 ac-1), organic P application 

rate (lb P2O5 ac-1), and erosion (ton ac-1) are continuous variables with coefficients of 0.1, 0.1, 

and 2 respectively.  All other inputs are categorical variables with coefficients of 1.  

The P-Index is used in two primary situations in Kansas. One example is farm programs 

like NRCS conservation practice 590 standards where farmers are required to submit a P-Index 

risk assessment yearly to prove they are maintaining their nutrient requirements allowing them to 

stay within that cost share program. Another example more impacted by the P-Index are 

concentrated animal feeding operations (CAFOs). CAFO’s need to create and implement an 

authorized nutrient management plan (NMP) as a requirement for National Pollutant Discharge 

Elimination System (NPDES) Permit coverage and to comply with the Environmental Protection 
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Agency’s (EPA’s) 2008 Final Rule for CAFOs (USDA & NRCS, 2009). Both of these programs 

use the P-Index to help mitigate P loss in these systems.  

The P index used in different agricultural sectors as talked about prior, also has 

implementation impacts that can cause cost and operation implications of many farms and 

CAFO’s in the state of Kansas. For example, with crop operations, best management practices 

with proper use of the 4 R nutrient management and university soil fertility recommendation are 

compatible with establishing nutrient balance within a field (Pease, 2023). Cost can be saved on 

fertilizer input if P fertilizer application and crop absorption are balanced  (Pease, 2023). On top 

of this if a farmer chooses not to participate in the farm programs and follow 590 standards then 

that farmer simply just does not have to join that program. Another example is animal operation 

which can cost a lot of extra money to maintain and implementing practices to lower the risk of P 

loss (Pease, 2023). CAFO’s do not get a choice like farmers as if they chose not to comply with 

the EPA by following a NMP they will not receive a permit and will have to stop their 

operations. Therefore, alternative strategies will be necessary to maintain a phosphorus balance 

for animal activities (Pease, 2023). Examples of strategies include moving manure off the farm, 

securing more land for manure applications or reducing animal density on the farm (Pease, 

2023). To reduce P loss risk at both farm and animal operations proper implementation of best 

management practices and nutrient management of manure will be required .    

 Deficiencies in the KS P Index 

There are a few deficiencies in the current Kansas P-Index. The original authors of the P-

index recognized that the weighting factors (stated above) were arbitrarily selected, and indicated 

that caution should be taken when developing ratings for these values (J. L. Lemunyon & R. G. 

Gilbert, 1993). Secondly, the Kansas P index uses soil runoff classes (very low, low, medium, 
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high, very high) corresponding to categorical inputs (0, 2, 4, 8, and 16 respectively) to estimate 

the risk of P transport by runoff rather than using a quantitative estimate of runoff. Third, Soil 

Test P components are not continuous. Risk categories are assigned based on Bray P1 or Mehlich 

III Soil P Test (< 25 mg kg-1, 26 – 50 mg kg-1, 51 – 75 p mg kg-1pm, 76 – 200 mg kg-1and >200 

mg kg-1) or Olsen Soil P Test (< 16 mg kg-1, 17 – 31 mg kg-1, 32 – 47 mg kg-1, 48 – 62 mg kg-

1and > 62 mg kg-1) that correspond to categorical inputs of 1, 2, 4, 8, and 10 respectively. 

Because values are not continuous, increasing soil test P above 200 ppm Mehlich III or Bray I 

(or > 62 ppm Olsen) does not affect the P index result. This can be problematic because soils 

with dramatically increased soil test P (e.g., 2000 ppm), which may have increased 

environmental risk, have the same index rating as soils with 201 ppm soil test P.  

 New NRCS Standards 

 In 2017 The National Instruction for Nutrient Management Policy Implementation (Title 

190) was amended to include minimum criteria for P indices, known as section D (Minimum 

Criteria for State P-Index Tools), which has six different criteria (NRCS & USDA, 2017). The 

current Kansas P index meets criteria (i), (ii) (V) if it was employed correctly by the staff. It is 

debatable whether the Kansas P-Index meets criteria (iii), which reads: 

 

(iii) “A P index tool must demonstrate that risk increases with increasing runoff, erosion, 

STP, application rate, and also depends on method of application (surface application 

versus injection/incorporation), and leaching (when leaching is applicable) factors” 

(NRCS & USDA, 2017). 
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Increased runoff would not be directly reflected in the P index because runoff is not a direct 

factor. However, a runoff rating is used to indicate runoff, and increasing the runoff 

classification does raise the risk. Soil Test Phosphorous (STP) is also listed as a category 

variable. As a result, raising STP increases the P index up to the highest category (200 ppm), 

but after 200 ppm, increasing STP has no effect on the P index. We are unsure if the current 

Kansas P index meets criteria (iv), which reads: 

 

(iv) “A P index tool must include the following risk categories:  

a. Low risk.—P can be applied at rates greater than crop removal not to exceed the 

nitrogen requirement for the succeeding crop. 

b. Moderate risk.—P can be applied not to exceed the crop removal rate. 

c. High risk.— P can be applied not to exceed the crop removal rate if the following 

requirements are met: A soil P drawdown strategy has been implemented; A site 

assessment for nutrients and soil loss has been conducted to determine if 

mitigation practices are required to protect water quality”(NRCS & USDA, 

2017). 

 

According to the Kansas index’s description of the categories and the soil test interpretation 

table, P-based manure treatments are allowed for “high risk” sites without the need for a P 

removal strategy. However, we are unsure of how this is implemented in practice by the NRCS. 

The current Kansas P index does not meet criteria (vi), which reads:  
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(vi) “The P-Index must “zero-out” at some point (environmental threshold). There is a point 

above which the risk of P loss from a field is too great to warrant the application of P in 

any form. States must establish an upper limit of STP above which manure must not be 

applied regardless of the P-Index results”(NRCS & USDA, 2017). 

 

Since there is no regulation stopping farmers and ranchers from adding more P to the soil, as 

long as a producer can manage a field with a medium risk of P loss, they can continue to apply P 

regardless of the soil test, even if the soil test P continues to rise. Although producers would 

apply at crop P removal, due to variability in manure analysis and application equipment, the soil 

test P could increase if the yield goal were not met or if the application rate were higher than 

planned.  

 Kansas P Index Transition 

Because of these deficiencies, the Kansas P index needs to be updated and this update is 

an opportunity to consider converting to a component index. The component index equation (PIc) 

is a modification of the multiplicative index, each one of the components represents a specific 

combination of P sources and interconnected transport processes (Eq. [2]) (Bolster et al., 2012). 

This equation ultimately demonstrates the concept that P transport pathways may have different 

interactions with the P sources, where there are n source factors and m transport factors with βij 

as the weighting factor for the interaction of the ith source factor (S) and jth transport factor (T) 

(Nelson & Shober, 2012). Ultimately, our goal is to find a method that calculates a value for each 

input for each component for both our source (S) and transport (T) factors. Once we have these 

values, we will need to compare our P risk value with our P loss value to produce a coefficient 

value (βij ) that will go along with each of our components (S) and (T).  
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Equation 1.2: Component Phosphorus Index 

............................................................................................ [Eq. 1.2] 

 Benefits of a Component P-Index 

The main benefit of a Component P-Index would be that the components are independent 

of each source and interconnecting transport value. If we take a simple example using two source 

inputs (phosphorous rate (Prate) and soil test phosphorous (STP)) and two transport sources 

(runoff (R) and sediment loss (Sed.)), the Kansas phosphorus index would look like Equation 1.3. 

Equation 1.3: Example of the Multiplicative Phosphorus Index 

𝑃𝑙𝑜𝑠𝑠 = 𝛽1 × [𝛽2(𝑃𝑟𝑎𝑡𝑒) + 𝛽3(𝑆𝑇𝑃)] × [𝛽4(𝑅) + 𝛽5(𝑆𝑒𝑑. )]     ………………[Eq. 1.3] 

Equation 1.3 can be expanded to look much like a component P-Index by multiplying the source 

and transport factors (Equation 1.4). 

Equation 1.4: Example of the Multiplicative Phosphorus Index Expanded 

𝑃𝑙𝑜𝑠𝑠 = 𝛽1 × 𝛽2𝛽4(𝑃𝑟𝑎𝑡𝑒 × 𝑅) + 𝛽2𝛽5(𝑃𝑟𝑎𝑡𝑒 × 𝑆𝑒𝑑 . ) + 𝛽3𝛽4 (𝑆𝑇𝑃 × 𝑅) +

𝛽3𝛽5(𝑆𝑇𝑃 × 𝑆𝑒𝑑. )     ……………………………………………………………….……[Eq. 1.4] 

There are two main problems with Equation 1.4. One, (Prate) would not be multiplied by (Sed.) 

because the source of (Prate) is not affected by the transport source of (Sed.). (Prate) affects the 

amount of phosphorus being applied to the field. Phosphorus fertilizer is directly available for 

plant uptake, therefore it is not affected by sediment loss and would not affect overall P-loss in 

one’s field. The second problem is that the coefficients are not independent. Therefore, by 

making one coefficient zero (example, β5), it would effectively get rid of all the source by 

transport interactions that are affected by that specific coefficient. This is a problem as one set of 

source by transport interaction may need to be removed (like Prate X Sed.) but another may be 

needed in the equation (like STP X Sed.). This is the main difference between the Kansas p-index 
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and the component p-index as all the coefficients in the component P-Index are independent only 

affecting one set of source by transport interaction like in Equation 1.5. 

Equation 1.5: Example of the Component Phosphorus Index  

𝑃𝑙𝑜𝑠𝑠 = 𝛽1 + 𝛽2(𝑃𝑟𝑎𝑡𝑒 × 𝑅) + 𝛽3(𝑃𝑟𝑎𝑡𝑒 × 𝑆𝑒𝑑. ) + 𝛽4(𝑆𝑇𝑃 × 𝑅) + 𝛽5(𝑆𝑇𝑃 × 𝑆𝑒𝑑. )[Eq. 1.5] 

Recent Research on Component P Indices in Other States 

 States that currently use component indices include Georgia, Kentucky and North 

Carolina (Osmond et al., 2017). Each state has their own equation that they use to estimate P 

loss. Kentucky, uses the (APLE) Annual P Loss Estimator model (Bolster et al., 2014). While, 

North Carolina uses the (PLAT) Phosphorus Loss Assessment Tool (Johnson et al., 2005). With 

each different model each state has their own way of estimating inputs to each component as 

well as the coefficients to go along with the components. However, there is lack of information 

on how states calculated their components and coefficient values, thus more research needs to be 

conducted.  

 Comparing Runoff Inputs within the Component P Indices of Other States  

A literature review was done to determine how the above-mentioned states calculated a 

runoff value for their P-index inputs. Georgia’s P index currently uses the curve number (CN) 

method to obtain estimation of the risk of runoff form a certain field (USDA & University of 

Georgia, 2013). In Kentucky, the Soil Conservation Service (SCS) CN method is also used in the 

revised Kentucky P index to estimate the average annual runoff from a particular field (Bolster et 

al., 2014). For North Carolina, estimates of surface runoff and subsurface drainage volumes are 

calculated differently based on the condition of drainage on a particular site (Johnson et al., 

2005). On well-drained soils that do not require enhanced drainage, surface runoff is determined 

using a modification of the (SCS) CN method and long-term rainfall data from each county 

(Johnson et al., 2005). To estimate subsurface drainage volume on naturally drained soils a mass 
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balance approach is used where the average subsurface drainage is the volume of water after 

accounting for precipitation, runoff and evapotranspiration (Johnson et al., 2005). Because of the 

heavy integration of sub-surface drainage into runoff estimation, we will not use North Carolina 

index when comparing component P indices.  

 Sediment Control and Erosion Associated with P-loss 

Soil erosion presents one of the greatest concern to most P mitigation programs 

worldwide (Kleinman et al., 2011). The concentration of P attached to soil particles is typically 

greater than dissolved P concentrations in runoff. Furthermore erosional processes readily 

remove the finest soil particles, resulting in sediment P concentrations up to five times higher 

than those found in the bulk soil from which the sediment erodes (Kleinman et al., 2011). Other 

things that can affect soil detachment and sediment transport, including field hydrologic 

conditions, crop type, root structure, vegetation density, and antecedent soil moisture content 

(Tao et al., 2011). Agricultural management practices that influence these factors will influence 

the overall amount and bioavailability of P loss to surface waterways (Wallbrink et al., 2003). 

Greater rainfall intensities can result in an increase of erosive power in surface runoff, which 

increases the potential for gully erosion and ultimately P loss in agricultural fields (Karimov & 

Sheshukov, 2017; Wallbrink et al., 2003). One of the essential problems that limits agricultural 

productivity relates to soil degradation due to loss of topsoil and soil erosion processes (Foster, 

G.R, 1986; Karimov & Sheshukov, 2017). Soil erosion can be divided into three general types: 

sheet and rill erosion, ephemeral and classical gully erosion, and stream bank and bed erosion 

(Foster, G.R, 1986; Karimov & Sheshukov, 2017). Ephemeral gullies are usually present on 

cultivated crop fields and studies indicated that in the areas of significant agricultural production, 
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contribution of ephemeral gully erosion could be substantial, close to or exceeding estimates of 

sheet and rill erosion (Sheshukov et al., 2018). 

 Ephemeral Gullies 

An ephemeral gully (EG) is defined as small channels that can be eroded by concentrated 

flow within an agricultural field that can be easily filled by conventional tillage but can reappear 

in the same location by additional runoff events (Soil Science Society of America, 2008). An 

ephemeral gully can also be a small channel with an average cross-sectional area larger than 0.1 

m2 (or about 1 ft2 ) that is shaped by concentrated surface runoff along certain drainage pathways 

on a hillslope or in the lower part of a cultivated field (Foster, G.R, 1986). Gully erosion is 

frequently triggered or accelerated by land use change or extreme climatic events, it can also 

result from a long preceding history of erosion patterns (Valentin et al., 2005). Gully erosion 

results not only from surface flow but also from subsurface flow (USDA, NRCS, ARS, 2007). 

Ephemeral gullies eventually grow into classical gullies if left untreated over long periods of 

time (Karimov & Sheshukov, 2017). Ephemeral gully development is affected by several factors 

include rainfall characteristics, soil properties, topographic features, and land use and 

management (Karimov & Sheshukov, 2017). Gullies can be the root cause of a lot of agricultural 

issues worldwide. One of the biggest concerns with gully erosion is extreme sediment and 

nutrient loss in agricultural fields (Foster, G.R, 1986; Karimov & Sheshukov, 2017). Another 

major issue is how to control EGs in crop fields.   

 Methods of Controlling Ephemeral Gullies 

Ephemeral gully prevention and control is extremely important when talking about 

sediment control and erosion and many techniques have been proven to be effective depending 

on the severity of the case (Valentin et al., 2005). Ways to prevent EGs include vegetation cover, 
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zero or reduced tillage, and terracing (Valentin et al., 2005). Conservation tillage can adequately 

control ephemeral erosion in less severe cases (Foster, G.R, 1986). In other situations, permanent 

channels like grassed waterways, terraces, and designed surface water disposal systems are 

needed to control EGs (Foster, G.R, 1986). In the severest cases, additional permanent structures, 

such as concrete, rock or stone bunds, enclosers, check dams and corrugated metal structures that 

“drop” water to a lower elevation without triggering erosion, may be needed to prevent an 

ephemeral gully from becoming a classic gully (Foster, G.R, 1986; Valentin et al., 2005). 

However, because their implementation is rarely connected with a rapid advantage for the 

farmers in terms of an improvement in land or labor productivity, these approaches are rarely 

adopted by farmers in the long run and at a larger spatial scale (Valentin et al., 2005). 

Other ways to help control EG’s in agriculture fields is through best management 

practices through cover crops, although it is important to point out that little research has been 

done to quantitatively prove if cover crops are an effective method for controlling or preventing 

EG formations in agricultural fields. Cover crops usually refers to plants cultivated in cropping 

systems to cover the soil when it is fallow (Reeves, 1994). One research article by (Knapen & 

Poesen, 2010) found that the use of cover crops will reduce soil erodibility. They also state that 

soil erodibility controls the cross-sectional dimensions of the concentrated flow paths in gullies 

proving that there is a direct relationship between cover crops and gully formations. On top of 

being utilized to decrease soil erosion in agricultural fields, the usage of cover crops has 

also been demonstrated to be a successful alternative that can directly build up soil surface 

residues (Kaye & Quemada, 2017).  
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 Methods of Quantifying Sediment Loss and Erosion from EGs  

 Many different methods can be used to quantify the amount of soil and sediment lost 

from gullies in crop fields. One of the easiest methods of measuring a gully cross-sectional area 

and length is with a pole and tape measure to determine the soil volume lost within the gully 

(Karimov & Sheshukov, 2017). More complex approaches require remote sensing and 

photogrammetry techniques (Karimov & Sheshukov, 2017). Another approach that can combine 

the accuracy of complex methods while allowing to still collect data with mature crop canopy is 

the use of micro-topographic profiler or a pin-frame (Karimov & Sheshukov, 2017). The pin-

frame device was made so that rods were allowed to freely fall when the pin-frame was placed 

above the ground(Karimov & Sheshukov, 2017). When the rods touch the ground, their top ends 

formed a profile which is used to represent a gully cross-section, after this the rods can then be 

photographed from 2 meters away with a high-resolution digital camera aimed perpendicular to 

the face of the frame (Karimov & Sheshukov, 2017). The digital images can then be used to 

calculate sediment loss (Karimov & Sheshukov, 2017). This method will not be used in this 

research but is another method used to quantify sediment loss from EG’s. 

One of the more complex approaches is the Topographic index (TI) model which uses a 

topographic threshold concept to identify EG locations in agricultural fields (Sheshukov et al., 

2018). A TI is calculated at each point in the field by using a list of site-specific characteristics, 

derived from topographic information like slope, contributing area, curvature, and flow length 

(Montgomery R. David and Dietrich E. William, 1992; Sheshukov et al., 2018; Torri et al., 

2013). A geographical information system (GIS) is often used to calculate a TI, but the accuracy 

depends on the quality of input datasets (Sheshukov et al., 2018). A commonly used GIS system 

is GIS-based grid order (GORD) analysis of surface flow networks which may simplify the 
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process for determining EG occurrence (Wang et al., 2021). Grid order can be defined as the 

ordered level of flow at each pixel generated by using Tau Digital Elevation Model (DEM) 

toolsets in ArcGIS based on LiDAR DEM raster using Strahler’s stream order theory (Wang et 

al., 2021). The GORD approach is based on the hydrologic flow increase that occurs when flow 

paths join (Wang et al., 2021). 

 Objectives and Hypotheses 

1. Develop and evaluate a new approach to the P-index. Hypothesis: A component P 

index will improve the correlation between the Kansas P-index and estimated P loss. 

a. Identify a method to estimate average annual runoff from agricultural fields. 

Hypothesis: estimated runoff will be correlated to measured runoff 

b. Determine coefficients to the components of the revised P index. Hypothesis: 

Including each component with a non-zero coefficient will improve the 

correlation between the P-index and estimated P loss. 

2. The objective is to determine the effect of cover crops on ephemeral gully erosion. 

Hypothesis: Cover crops decrease ephemeral gully erosion in crop fields. 

a. Quantify ephemeral gully erosion in crop fields with and without cover crops. 

Hypothesis: There will be an increase in ephemeral gully erosion in non- 

cover crop fields.  

b. Measure and determine how crop residue will affect ephemeral gully erosion. 

Hypothesis: Increased crop residue will decrease ephemeral gully erosion. 
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Chapter 2 - Estimation of Average Annual Runoff for Large Regions 

with Diverse Agricultural Systems and Climates Using Limited 

Data. 

 Introduction 

Runoff can affect many things, including sediment loss, nutrient loss, downstream 

flooding, and downstream water quality. Therefore, it is desirable to estimate how land 

management would affect runoff. Many process-based models estimate runoff for individual 

runoff events or days, which can be complex. Some applications may only need general 

estimates of annual runoff. For example, annual runoff is an input to many P indices throughout 

the nation. Estimates of how annual runoff would be influenced by climate, crops, and soils 

could be helpful for estimating cropping system effects on downstream flood risk. There are 

many different uses for a method that estimates long term average annual runoff which can be 

used not only by farmers and ranchers but by government employees, private contractors, or 

even for university research.  

Finding ways to estimate runoff can prove to be challenging due to the many model-

based approaches out there today (Bariamis & Baltas, 2021).  In a paper by (Ratzlaff, 1994) there 

is an Isoline map of mean annual runoff for the state of Kansas, 1971-1990. While this does give 

a runoff estimate for a specific location in Kansas, there are a few reasons we would not be able 

to use this directly for land management decisions. For one, a method that would include both 

management and soil type would be ideal, and this map does not use either. For this map 

regardless of what field you are in within a specific county and no matter what management the 

producer uses you would estimate the same runoff depending on your isolines. This meant that  in 
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Cherokee county, a CRP field in native grass would have the same runoff value as a 

conventional tilled field planting up and down the slopes. While this map produces mean annual 

runoff, due to the fact that this map does not incorporate soil, management, or effects of cover, it 

would not meet the site-specific needs of a land manager.  

Considering recent research specific to methods used to estimate runoff, many processed 

based models would not work well to predict long-term average annual runoff across the state of 

Kansas. The existing models take a fair amount of learning to use the program, taking hours to 

days and can be overly complicated. One example is the Soil and Water Assessment Tool 

(SWAT) developed by the USDA Agriculture research service as a large (thousands of acers) 

river basin scale model to assist in assessing the impact of management on water supplies and 

nonpoint source pollution in watersheds (Arnold et al., 1998; Bariamis & Baltas, 2021). In 

addition to the fact that there are many diverse inputs, users can often get overwhelmed by the 

application process leading to missed steps. This along with subjective inputs can impact the 

ability to obtain consistent results. A second example is the Agricultural Policy Environmental 

eXtender (APEX), which is a small scale water quality-based model used to predict surface 

runoff, erosion, sediment deposition and degradation, nutrient and pesticide transport, and 

subsurface flow (Osmond et al., 2017; Williams et al., 2012). Much like the previous model, 

important steps must be taken in model set up, sensitive analysis, and calibration / validation for 

the model to work properly (Bhandari, 2016). While both models are used to estimate runoff, due 

to the many shortcomings they would not work well to estimate long-term average annual runoff 

within Kansas. A model that is user friendly and incorporates different cropping scenarios, soils 

and climates should be researched.  
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The curve number (CN) method is used by the four models listed above and was 

developed to estimate the direct runoff that results from an individual rainfall event as a function 

of land-cover and soil characteristics (Guswa et al., 2018). The CN method is often used because 

it represents multiple variables such as land use, hydrologic cover conditions, soils, and 

antecedent runoff conditions (Guswa et al., 2018; USDA & NRCS, 2004). While this method is a 

simple approach, it has one downfall for our application in that the approach is for an individual 

storm event. One could overcome this by using actual precipitation data for every day of the year 

and estimate runoff for every single event over a 30-year period and then produce some average 

runoff for every year. While this is doable, one drawback to this is that it requires a lot of data 

and is time consuming. Another drawback of this approach is it requires some estimate of 

antecedent moisture. One of the major factors in determining CN that was mentioned  prior, is the 

antecedent runoff condition (ARC) (USDA et al., 1986). One downside to ARC is that it would 

require knowledge of soil moisture and soil cover, which can be difficult to obtain or estimate for 

long periods of time. Contributions to CN variability include temperature, growth stage, cover 

density, total rainfall, rainfall intensity and duration, and soil moisture conditions (NEDS et al., 

1989; USDA & NRCS, 2004). The ARC refers to all these factors of variability (USDA & 

NRCS, 2004). The ARC is split into three categories: CNII for average conditions, CNI for dry 

conditions, and CNIII for wetter conditions (USDA & NRCS, 2004).  

Due to the shortcoming of using the CN method, it may not be the best approach to 

estimate long term average annual runoff for the state of Kansas, therefore further research 

should be conducted to evaluate other approaches to estimating runoff over multiple storm 

events. Guswa et al. (2018) presented a modified CN approach for estimating total precipitation 

for time periods of aa month to 6 months. In brief, this change substituted the average 
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precipitation for an event in place of daily precipitation in the CN equation and assumed an 

exponential distribution of rainfall depths over the course of the year to estimate the average 

runoff per event. The output to this new method could allow the calculation of average long-term 

annual runoff based on the CN, average annual precipitation, and average number of rainfall 

events in a year runoff. This new method would give some advantages as it would be able to be 

applied to different weather gradients, something that could be applied over large geographic 

areas. Because one could use average annual precipitation, there is less time collecting data, 

therefore, this new approach would be simple to use, and a very broad spectrum of people could 

use this approach without having to go through excessive learning.  

Further research needs to be done to determine the overall effectiveness of the modified 

CN method. This research is needed to gain a broad application for long term average annual 

runoff across the state of Kansas and how it is affected by general land management decisions. 

This study has three objectives: 1) Identify methods to overcome the gaps in data availability 

through calibration, 2) Compare the estimates of long-term average annual runoff with field data 

for both the CN method and modified CN method), and 3) Develop a database of runoff event 

for the state of Kansas.  

 Materials and Methods 

Annual runoff estimates from two methods were compared to measured edge-of-field 

runoff to assess the most accurate method of estimating annual runoff. Method 1 used the curve 

number (CN) method from the NRCS Engineering Handbook to estimate daily runoff from daily 

precipitation and then summed it over the entire year to estimate annual runoff (USDA & NRCS, 

2004). Method 2 used a modification of the CN method where daily precipitation was replaced 



22 

with the average event precipitation and assumed an exponential distribution of precipitation 

amounts for the year (Guswa et al., 2018).  

Method 1 

Annual runoff was estimated by summing estimates of daily runoff for an entire year, 

where daily runoff was estimated with the curve number (CN) method as described in the NRCS 

Engineering Handbook (USDA & NRCS, 2004) using daily precipitation (Equation 2.1). The 

uncalibrated estimates were developed with a static CN representing hydrologic condition II 

(CNII) that was determined based on NRCS guidelines for the given cropping system and soil 

hydrologic group. Static inputs included CNII, daily precipitation.  

Equation 2.1: Curve Number Method 

𝑄 =  
(𝑃−𝐼𝑎)2

(𝑃+𝐼𝑎 )+𝑆
  𝑃 >  𝐼𝑎    (𝑄 = 0; 𝑃 ≤  𝐼𝑎)    ........………...……………………….[Eq. 2.1]                                                            

Where Q equals the runoff depth (mm), P is rainfall (mm), S serves as the maximum potential 

retention (mm) and Ia functions as initial abstraction (mm) (USDA & NRCS, 2004). Where for 

Method 1 using this equation, the empirical relationship between Ia and S is expressed as Ia = 

0.2S because Ia is assumed a function of the maximum potential retention, S, as calculated by 

Equation 2.2 (USDA & NRCS, 2004). 

Equation 2.2: Maximum Potential Retention (S) 

𝑆 =
25,400

𝐶𝑁
− 254 (𝑆 𝑖𝑛 𝑚𝑖𝑙𝑙𝑖𝑚𝑒𝑡𝑒𝑟𝑠)    ………………………………………….[Eq. 2.2] 

Where CN is the curve number for a given soil and management practice as given in Table 9-1 of 

the NRCS National Engineering Handbook (USDA-NRCS, 2004). 

The CN for a given field can change throughout the year due to crop or residue cover 

density and soil moisture conditions and these changes are generally characterized by the 

Antecedent Runoff Condition (ARC) (USDA & NRCS, 2004). The ARC is split into three 
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categories: CNII for average conditions, CNI for dry conditions, and CNNIII for wetter 

conditions. Following standard practice, we selected the CNII based on the Hydrologic Soil 

Group and the cropping system as listed in Table 9-1 of the NRCS Engineering Handbook 

(USDA & NRCS, 2004). The CN for moisture conditions I or III were selected from Table 10-1 

in the NRCS Engineering Handbook based on the CNII (USDA & NRCS, 2004). 

Calibration of Method 1 

Antecedent precipitation amounts have been used to estimate the appropriate Antecedent 

moisture condition (AMC); however, very little guidance is provided for this process (USDA & 

NRCS, 2004). Therefore, we developed the following process for selecting CNI or CNIII based 

on antecedent precipitation. We used CNI to compute daily runoff when API < PI, where PI is 

the precipitation threshold for ARC I and API is calculated with Equation 2.3: 

Equation 2.3: Daily Runoff Computation using Antecedent Precipitation and CNI 

𝐴𝑃𝐼 = ∑ 𝑃𝑖
𝑛𝐼
𝑖=1     ………………………….………………………………………..[Eq. 2.3]                                                                              

Where nI is the number of days to sum precipitation when calculating API and PI is the 

precipitation for day i. The CNIII was used to compute daily runoff when APIII < PIII., where PIII 

is the precipitation minimum for ARC III and APIII is calculate with Equation 2.4: 

Equation 2.4: Daily Runoff Computation using Antecedent Precipitation and CNIII 

𝐴𝑃𝐼𝐼𝐼 = ∑ 𝑃𝑖
𝑛𝐼𝐼𝐼
𝑖=1     ……………………………………………………………….[Eq. 2.4]                                                              

Where nIII is the number of days to sum precipitation when calculating APIII and Pi is the 

precipitation for day i. The Nash-Sutcliffe Model Efficiency (NSE) was maximized through 

heads-up calibration by systematically adjusting values for nI , PI, nIII and PIII as listed in (Table 

2.2). The NSE is a normalized statistic that estimates the relative size of the residual variance 

compared to the measured data variance (Nash & Sutcliffe, 1970) 
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Equation 2.5: Nash-Sutcliffe Model Efficiency  

𝑁𝑆𝐸 = 1 − [
∑ (𝑌𝑖

𝑜𝑏𝑠 −𝑌𝑖
𝑠𝑖𝑚)

2
𝑛
𝑖=1

∑ (𝑌𝑖
𝑜𝑏𝑠−𝑌𝑚𝑒𝑎𝑛 )

2𝑛
𝑖=1

]    ………………………………………………...[Eq. 2.5] 

Where n is the number of observations, Y_i^obs is the i-th observation, Y_i^sim is the i-th 

simulated value, and Y^mean is the average of observed values (Nash & Sutcliffe, 1970). The 

closer the NSE is to 1 indicates a better fit model although anything above NSE = 0.5 is 

considered accepted (Nash & Sutcliffe, 1970). The CNII was selected based on the Hydrologic 

Soil Group and the cropping system with CN for moisture conditions I and III selected from 

tables in the NRCS Engineering Handbook (USDA & NRCS, 2004). 

 Method 2 

Daily runoff was estimated with the modified CN method as described by Guswa et al. 

(2018). In brief, this modification used annual precipitation in place of daily precipitation and 

then assumed an exponential distribution of rainfall depths throughout the year (Equation 2.6). 

Equation 2.6: Modified Curve Number Method 

𝑄 = (𝛼 − 𝑆)𝑒𝑥𝑝 (−
𝜆𝑆

𝛼
) +

𝑆2

𝛼
𝑒𝑥𝑝 (

(1−𝜆) 𝑆

𝛼
) 𝐸1 (

𝑆

𝛼
)    ……………….…………….[Eq. 2.6] 

Where Q is the average runoff per event, α is the average precipitation per event (calculated as 

PA/nP, where PA is annual precipitation and nP is the number of precipitation events in a year), 

S is the maximum potential retention computes as (1000/CN)-10, λS is the initial abstraction, and 

E1(x) is the exponential integral (Equation 2.7).  

Equation 2.7: Exponential Integral 

𝐸1(𝑥) =  ∫
exp (−𝑢)

𝑢

∞

𝑥
𝑑𝑢    ………………………………………………………...[Eq. 2.7] 

 Calibration of Method 2 

Annual runoff is computed as Q ̅•nP. Although nP would appear as a simple parameter to 

determine from historical records of daily precipitation, its estimation is complicated by several 
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issues. First, the application of Equation 2.1 is only applicable to non-frozen precipitation events. 

Second, precipitation events that over-lap two days (i.e., start at 10 PM and end at 2 AM) would 

be counted as two events instead of one. Third, climates with many very small precipitation 

events, which are incapable of producing runoff (i.e., Pi<Ia) may skew the dataset.  Because of 

these reasons, estimating nP as the number of days with non-zero precipitation will almost 

always over-estimate the true value of nP. We estimated nP as the number of days were Pi>Px, 

where Px was used to calibrate Method 2 with measured data. The Nash-Sutcliffe Model 

Efficiency was maximized through heads-up calibration by systematically adjusting Px to 0, 

0.25, 1.27, 2.54, 3.81, 5.08, 6.35, and 12.7 mm.  

The CN values in the NRCS Engineering Handbook were developed with λ=0.2 (USDA  

& NRCS, 2004). However, as recommended by Guswa et al. (2018), λ was set equal to 0.05 for 

the application of Method 2. Therefore, the CN values from the NRCS Engineering Handbook 

were adjusted with Equation 8 when used in Method 2 (Guswa et al., 2018). 

Equation 2.8: Modified Curve Number Adjustment where λ = 0.05 

𝐶𝑁0.05 = 0.0054 ∙ (𝐶𝑁0.2)2 + 0.46 ∙ 𝐶𝑁0.2    …………………………………….[Eq. 2.8] 

The uncalibrated estimates of runoff with Method 2 were computed with Equation 6 where nP = 

number of days during the year with Pi > 0.25 mm. By applying the selected method to the state 

of Kansas, which is a very large geography, users will be able to estimate the effects of 

agriculture managements based on long term average runoff.  

 Calibration and Validation Data 

Measured runoff used for calibration and validation datasets was obtained from edge-of-

field runoff studies conducted in four locations in eastern Kansas, USA (Table 2.1). Calibration 

data are from the Kansas Agricultural Watershed (KAW) field laboratory from 2015 through 

2021 (Carver et al., 2021). Data are average runoff from no-till corn-soybean cropping systems 
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either with cover crops (CC) or without cover crops (NC) (2 treatments total). There are 3 levels 

of fertilizer management, no fertilizer control (CN), fall broadcast P fertilizer (FB) and spring 

injected P fertilizer (SI). Total we have 6 different treatments for a total of 18 watersheds. For 

the data in Table 2.1 the KAW data was split between CC and NC and used average annual 

values from each of the 9 watersheds for each of the 7 years totaling for 14 data points. The 

reason the KAW was not split up into more data points was because while the fertilizer 

management differed this did not directly affect runoff and the P fertilizer rate did not change 

therefore values were averaged together.  

Validation data were collected in Crawford County, Franklin County, and Geary County, 

Kansas. Crawford data includes average runoff from 5 cropping systems in no-till or 

conventional till grain sorghum production from 2005 through 2008 with various fertility 

management (Sweeney et al., 2012). Two of the 5 cropping systems for the year 2007 were left 

out due to discrepancies in the data. Crawford data was split because each cropping system used 

a different rate of manure. Franklin data includes average runoff from 3 cropping systems in no-

till or conventional till grain sorghum-soybean production from 2001 to 2004 with various 

fertility management (Zeimen et al., 2006). Geary data includes average runoff from 2 cropping 

systems in no-till corn-soybean production either with or without winter cover crops from 2018 

through 2021 (N.O. Nelson, unpublished data). 

 Development of Regional Inputs for Method 2 

Application of Method 2 for the entire state requires estimates of long-term average 

annual precipitation and the number of precipitation events for each county in the state. 

Estimates of long-term average annual precipitation are available from the Kansas Weather Data 
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Library (https://climate.k-state.edu/). Estimates of the average number of precipitation events in 

a year were determined for each county through geographic interpolation as described below. 

The average annual number of precipitation events, defined as every day with 

precipitation greater than 2.5 mm, was determined by collecting 30 years of past weather data 

from Applied Climate Information System (ACIS) using National Oceanic and Atmospheric 

Administration during 1990 to 2020 in fourteen different counties throughout Kansas (Cowley, 

Crawford, Franklin, Hamilton, lyon, McPherson, Morton, Nemaha, Ness, Phillips, Republic, 

Riley, Scott, Stafford, and Sumner). Data was then used in ArcGIS Pro to create a Radial Basis 

function interpolation map to estimate the 30-year average annual number of precipitation events 

throughout the state of Kansas. This map was then validated by selecting 10 validation counties 

throughout Kansas (Chase, Cheyenne, Comanche, Ellis, Ellsworth, Gray, Jefferson, Labette, 

Stafford, Thomas). The average annual number of precipitation events determined from the 

historical weather of the validation counties were then compared to the number of precipitation 

events estimated from the interpolated map. The accuracy of the geographic model was 

evaluated based on the regression coefficient (R2), root mean square error (RMSE), and Nash-

Sutcliffe model efficiency (NSE). 

 Results and Discussion 

 Method 1   

Estimated runoff with the uncalibrated Method 1 (i.e., no adjustment for antecedent 

moisture) had a good relationship with the measured runoff for the 14 total data points from the 

KAW field lab (calibration dataset; Figure 2.1a). Although the regression coefficient indicated a 

good relationship (R2=0.82), the slope was much less than 1 (0.23) and the method greatly 

underestimated runoff for years with large volumes of runoff (i.e., estimated runoff for years 

https://climate.k-state.edu/
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with measured runoff of 90 mm were nearly perfect, however the method only estimated 140 

mm of runoff when the measured runoff was over 300 mm). This resulted in poor model 

efficiency (NSE=-0.21). Results were similar when comparing the measured and estimated 

runoff data from the other three locations (validation dataset; Figure 2.1b).  

Method 1 was calibrated by adjusting the CN for ARC by altering the parameters nⅠ, nⅢ, 

PⅠ, and PⅢ as described in Equations 3 and 4.  The optimal fit between estimated runoff and 

measured runoff for the calibration dataset was obtained with parameter nⅠ=10 days, nⅢ=3 days 

and parameter PⅠ=5.08 (mm), PⅢ=10.16 (mm). Calibration of method 1 greatly improved the 

estimated runoff for the KAW field Lab (calibration data set) with R2 = 0.9 and NSE = 0.71 

(Figure 2.2a). While the R2 value and model efficiency are both very good, the slope of the 

regression line is just under 0.5. This results in slight over estimation of runoff below 150 mm of 

measured runoff and under estimation of runoff at values greater than 200 mm. Although not 

ideal, it is a vast improvement over the estimates from the uncalibrated method 1 (Figure 2.1). 

However, the calibrated version of Method 1 resulted in very poor estimates of annual runoff for 

the Franklin, Crawford, and Geary County locations (validation data set) with R2 = 0.18 and an 

NSE = -1.16 (Figure 2.2b). A poor fit to the validation data set might be attributed to differing 

soil hydrologic conditions at validation locations compared to the calibration location. The use of 

antecedent precipitation as a method to select the antecedent moisture condition for CN may be 

very site specific (e.g., dependent on cropping system, soil hydrologic group, or weather 

patterns). Therefore, using the antecedent precipitation to calibrate Method I resulted in an over-

parameterized model that had a good fit for the specific conditions in the calibration dataset but a 

poor fit for the conditions in the validation set. Therefore, this calibration would not be suitable 

for wide-scale applications. 
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 Method 2 

Estimated runoff with the uncalibrated Method 2 using the modified curve number 

approach had a good relationship with the measured runoff for the 14 total data points from the 

KAW field lab (calibration dataset; Figure 2.3a). Although the regression coefficient indicated a 

good relationship (R2=0.81), the slope of the regression line was 0.41 and the method greatly 

underestimated runoff for years with large volumes of runoff (i.e., estimated runoff for years 

with measured runoff of 80 mm were nearly perfect, however the method only estimated 100 

mm of runoff when the measured runoff was over 300 mm). This resulted in poor model 

efficiency (NSE=-0.49). Results were similar when comparing the measured and estimated 

runoff data from the other three locations (validation dataset; Figure 2.3b), which further proved 

the need for Method 2 to be calibrated. 

Method 2 was calibrated by adjusting the threshold (Px) used to determine the number of 

precipitation events (nP) in each year, where a precipitation event was defined as a day with 

precipitation (Pi) greater than Px. The optimal fit between estimated runoff and measured runoff 

for the calibration dataset was obtained with Px=2.5 mm, in other words, the number of 

precipitation events was determined as the number of days with greater than 2.5 mm of 

precipitation. Calibration of Method 2 greatly improved the estimated runoff for the KAW field 

Lab (calibration data set) with R2 = 0.88, NSE = 0.56 and the slope of the regression line at 0.56 

(Figure 2.4a). While the slope value is slightly above 0.5, this results in slight over estimation of 

runoff below 100 mm of measured runoff and under estimation of runoff at values greater than 

300 mm. Although not ideal, it is a vast improvement over the estimates from the uncalibrated 

Method 2 (Figure 2.3). The calibrated version Method 2 resulted in similar results of annual 

runoff for the Franklin, Crawford, and Geary County locations (validation data set) with R2 = 
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0.66 and an NSE = 0.54 (Figure 2.4b). While the R2 value and model efficiency are both 

acceptable, the slope of the regression line was under 0.5 at 0.38. This resulted in over estimation 

of runoff at 100 mm below 50 mm of measured runoff and under estimation of runoff at 260 mm 

greater than 400 mm of measured runoff. Although not ideal and a slight decrease in our slope 

value, the end result was an improvement over the estimates from the uncalibrated Method 2 

(Figure 2.3).  

Calibration was also attempted by systematically adjusting the CN, however this did not 

improve the overall calibration. Increasing the CN increased the slope, achieving a slope near 1 

by increasing the CN by 12. Although this greatly improved the slope, the model over-predicted 

runoff as a whole and had a very poor model fit (NSE << 0). Therefore, we did not use this 

approach. 

Guswa et al., 2018, concluded that while their new approach, much like our Method 2, 

required an estimate of the number or rain events within a given period of time, it was almost as 

good as methods that used actual runoff events. Therefore, they concluded that this new 

approach is acceptable to determine the amount of direct runoff from monthly precipitation. 

Given two big differences that Guswa’s new approach is for estimating runoff within a shorter 

amount of time (monthly) as well as being applied to a watershed. It has similar results to our 

findings of estimating long-term average annual runoff at field scale.  

 Application 

Runoff estimates using the calibrated Method 2 had a much better relationship and model 

fit with the validation dataset than the uncalibrated methods (Method 1 or Method 2) or the 

calibrated version of Method 1. Furthermore, the R2 and NSE for the validation of Method 2 

were both in the acceptable range (Alexander et al., 2015; Ritter & Muñoz-Carpena, 2013); 
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Therefore, Method 2 was selected for estimating runoff across the state of Kansas. The number 

of precipitation events were determined as the number of days in a year where precipitation 

exceeded 2.5 mm. It’s important to point out that this decision to use Method 2 was made despite 

the deficiencies (slope much less than 1) because calibration could not be improved anymore.  

Method 2 was used to develop a county-level database of estimated long-term average 

annual runoff for the state of Kansas, which would allow a user to attain an estimate of runoff 

based on the county and curve number for their field . The required inputs to develop the database 

included long-term average annual precipitation and the average annual number of precipitation 

events for every county in the state of Kansas. Average annual precipitation can be obtained 

from the Kansas Weather Data Library (NOAA Regional Climate Centers, 2014). However, the 

daily precipitation data required to compute the long-term average annual number of 

precipitation events is not readily available from every county. Therefore, daily precipitation data 

were selected from 24 of the 105 counties across the state of Kansas. Fourteen counties were 

used to create an interpolation map in ArcGIS Pro to estimate the average number of events in a 

year for counties without data (Figure 2.5). Next, estimates of the average annual number of 

precipitation events from the geospatial interpolation map were validated through comparison 

with 10 counties that were not used for development of the map. When validating this method 

with 10 selected validation counties across the state of Kansas we had a R2=0.99 and an 

NSE=0.85 (Figure 2.6), indicating that the geospatial model provides a good estimate of the 

average annual number of precipitation events for areas of the state without data.  

These data were used to develop the aforementioned database of 30-year average-annual 

runoff estimates for given CN values and counties throughout Kansas (Appendix B). An example 

of how this database could be used is within the Kansas Phosphorus index. One of the problems 
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with the P index is that it did not have a quantitative method of estimating runoff. Also, the 

method used by the P index was based solely on soil properties like soil runoff class and did not 

account for climatic variation across the state. Finally, using the soil runoff class did not account 

for how land management factors would influence runoff. Use of the runoff database developed 

by employing Method 2 to estimate average annual runoff solves all three issues. The database 

provides a quantitative estimate of runoff. The runoff is estimated as a function of climate 

(precipitation amount) and land management (reflected in the curve number). Although the use 

of this method will be used in the Kansas P index it is important to note that it can be used as a 

basic runoff estimation tool to produce long-term average annual runoff at field scale.  

 Conclusion 

The calibrated modified CN method (Method 2) had the best estimations of annual runoff 

for both calibration and validation datasets. While runoff estimates from the calibrated Method 1 

had a good fit to the calibration dataset, the runoff estimates did not have a good fit to the 

validation dataset. It can be difficult to accommodate for all known hydrologic soil conditions 

which can affect runoff amounts. For method one calibration, adjusting the antecedent soil 

condition based on antecedent precipitation did result in a good runoff estimates when adjusting 

to a single specific site but the method seemed to over and underestimate runoff when applied to 

soils with different hydrologic conditions. The Method 2 calibrated model had better model 

performance and adjusting the minimum precipitation amount used to count the number of 

runoff events in a year appeared to be an appropriate method of calibration. The validation model 

using the calibrated Method 2 approach had good overall model performance. Knowing that 

Method 2 calibrations could not further improve the model, a database was developed of 

estimated long term average runoff values for the state of Kansas. This method can be used by 
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anyone in the state of Kansas that will be interested in determining their long-term average 

annual runoff at field scale for their specific location. While this will be mostly used by 

government and state agency personnel, farmers and ranchers will be able to use this as it is easy 

to use and takes little to no time to operate. Business and school-related individuals will also 

have access thus making this method accessible and overall easy to use. 
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 Tables 

Table 2.1: Table showing validation data used from Franklin, Crawford and Geary and calibration data used from the KAW. Managements, number of watersheds, 
years, and number of data points on graph has been included. The references from where the data was obtained, and a description explaining the data are also included 

in the table. 

Location Mgmt. 
# of 

Watersheds 
Years 

# of data points 

on graph* 
Reference Description 

Franklin 

No-Till: Grain Sorghum / Soybean rotation. 4 

different P fertilizer rates were used and 2 of 

the rates were either injected or 2 were surface 

broadcasted (not incorporated). 

4 2001 – 2004 4 Zeimen et al., 2006 

Used average annual value of 4 

watersheds for each year to 

come up with the 4 points. 

Franklin 

Conventional-Till: Grain Sorghum / Soybean 

rotation. 2 different P fertilizer rates were 

incorporated. 

2 2001 - 2004 4 Zeimen et al., 2006 

Used average annual value of 2 

watersheds for each year to 

come up with 4 points. 

Crawford 
No-Till: Grain Sorghum. Control, No turkey 

litter or fertilizer 
2 

2005, 2006, 
2008** 

4 Sweeney et al., 2012 

Used average annual value of 2 

watersheds for each year to 
come up with 4 points. 

Crawford 
No-Till: Gain Sorghum. Fert, N and P 

fertilizer only 
2 2005 – 2008 4 Sweeney et al., 2012 

Used average annual value of 2 

watersheds for each year to 

come up with 4 points. 

Crawford 
No-Till: Grain Sorghum. TLN, Turkey litter 

only applied based on N rate for the crop (over 

applies P). 

2 2005 – 2008 4 Sweeney et al., 2012 
Used average annual value of 2 

watersheds for each year to 

come up with 4 points. 

Crawford 

No-Till: Grain Sorghum. TLP, Turkey litter 

applied based on P rate plus N fertilizer to 

supply the remaining N rate for the crop. 

2 2005 – 2008 4 Sweeney et al., 2012 

Used average annual value of 2 

watersheds for each year to 

come up with 4 points. 

Crawford 

Chisel, disk: Grain Sorghum. TLPC, Turkey 

litter applied based on P rate plus N fertilizer 

to supply the remaining N rate for the crop. 

2 
2005, 2006, 

2008** 
4 Sweeney et al., 2012 

Used average annual value of 2 

watersheds for each year to 

come up with 4 points. 

Geary Cover Crop: Corn / Soybean rotation. 2 2018 – 2021 4 Unpublished 

Used average annual value of 2 

watersheds for each year to 
come up with 4 points. 

Geary No Cover Crop: Corn / Soybean rotation. 2 2018 – 2021 4 Unpublished 

Used average annual value of 2 

watersheds for each year to 

come up with 4 points. 

Kaw 
Cover Crop: Corn / Soybean rotation. 

 
9*** 2015 – 2021 7 Carver et al., 2022 

Used average annual value of 9 

watersheds for each year to 

come up with 7 points. 

Kaw No Cover Crop: Corn / Soybean rotation. 9*** 2015 – 2021 7 Carver et al., 2022 

Used average annual value of 9 

watersheds for each year to 
come up with 7 points. 

* For the number of data points, there is one point for each year with a specific management.  
** Crawford was split up due to different rates in manure management. Control and TLPC 2007 data were not included due to dis crepancies within the data.  
*** The Kaw field was not spit up because the only difference was the fertilizer management. 3 Different fertilizer management were used within the watersheds, but they all used the same P fertilizer 

rates. Fertilizer management was not a factor directly affecting runoff thus averages were used. 
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Table 2.2: Variables and values used for calibration of Method 1 to determine average 

annual runoff. Calibration adjusted the precipitation threshold to designate antecedent 

runoff condition I (ARC I) or antecedent runoff condition III (ARC III) required for 

selection of the adjusted CN for Equation 2.2.  

Variable Description Values tested Units 

nⅠ  number of days to sum precipitation 

when calculating API (Eq. 3) 

1, 2, 5, 6, 7, 10 Days 

PⅠ  precipitation threshold for ARC I 2.54, 5.08, 7.62, 10.16, 12.7 mm 

nⅢ  number of days to sum precipitation 

when calculating APIII (Eq. 4) 

1, 2, 3, 4, 5 Days 

PⅢ  precipitation threshold for ARC III 10.16, 12.7, 15.24, 17.78, 20.32, 22.86, 25.4 mm 
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Figure 2.1: Comparison of estimated annual runoff with 

Method 1 (one without calibration) to measured runoff for 

the calibration data set (a) and the validation data set (b). 
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Figure 2.2: Comparison of estimated annual runoff with 

Method 1 (with calibration) to measured runoff for the 

calibration data set (a) and the validation data set (b). 
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Figure 2.3: Comparison of estimated annual runoff with 

Method 2 (without calibration) to measured runoff for the 

calibration data set (a) and the validation data set (b). : The 

number of precipitation events in a year was determined by 

counting every day with measurable precipitation (> 0.25 

mm) as an event. 
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Figure 2.4: Comparison of estimated annual runoff with 

Method 2 (with calibration) to measured runoff for the 

calibration data set (a) and the validation data set (b).  The 

number of precipitation events in a year was determined by 

counting every day with precipitation > 2.5 mm as an event. 
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Figure 2.5: Map of long-term average annual number of precipitation events for the state 

of Kansas. A required input for Equation 6 is the average precipitation per event, 

calculated as annual precipitation divided by the number of precipitation events in a 

year. The 14 purple points were used to build a geospatial model. The 10 red points were 

used to validate the estimates from the geospatial model. 
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Figure 2.6: Comparison of the estimated number of precipitation events in a year using the 

geospatial model in Figure 2.5 with the average annual number of precipitation events 

determined by historic weather data.
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Chapter 3 - Development of Revised P-index. 

 Introduction 

The purpose of this study was to develop a new phosphorus index for the state of Kansas. 

The Kansas multiplicative phosphorus index (MPI) currently does not meet USDA/NRCS 

standards outlined in the title 190 and there are some discrepancies with a few of the inputs to the 

current Kansas index. Phosphorus indices help farmers and ranchers calculate a P loss risk 

assessment for a specific field, cropping system, and other important land factors. Regarding P 

indices, every state has its own version of a P index that operates slightly differently and is 

geared directly to that specific state and the management systems and practices that are used 

there.  

 Phosphorus loss can be a problem due to multiple land management factors, in the United 

States. Phosphorus loss from non-point agricultural is a known contributor to the degradation of 

surface-water quality (Carpenter et al., 1998; Carver, 2022); Phosphorus is the primary cause of 

eutrophication in surface water, which can lead to a rise in aquatic vegetation and algae 

development, which leads to decreased dissolved oxygen concentration and increased costs for 

water treatment (Carpenter et al., 1998; Sharpley et al., 1994). In the United States, the most 

prevalent degradation of surface waterways is eutrophication, which is brought on by excessive 

inputs of phosphorus (P) and nitrogen (N) (Carpenter et al., 1998). These excessive inputs are 

usually a direct result of land management decision pertaining to cropping systems and fertilizer 

management. Ways to help combat water quality issues are to go back to the source and help 

farmers and ranchers make better land management decisions. One tool that can help is the 

phosphorous index. This gives an overall risk assessment rating to potential P loss of a given 
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field using a specific land management scenario. Knowing one’s P loss rating can allow that 

person to adjust land management decisions to help minimize P loss form a specific field.  

 Nonpoint source pollution is challenging to quantify and control because it comes from 

dispersed sources and varies depending on the environment (Bennett et al., 2001). Some 

locations may need special management attention due to their higher likelihood of increased 

sediment delivery rates and severity of eutrophication (Bennett et al., 2001). According to 

estimates, non-point agricultural sources can account for up to 70% of all the P inputs into 

surface water specifically (Havlin et al.,2005).  Therefore, more energy and devotion may be 

needed to decrease sediment supply, drawing down soil P, and balancing the P budgets of nearby 

agricultural areas. Phosphorus runoff to aquatic ecosystems and eutrophication have typically 

been addressed by policies and regulations as issues specific to the lake, river reach, or estuary in 

question rather than as a part of a larger pattern, but controlling non-point P pollution is not just a 

local issue (Bennett et al., 2001). The application of phosphorus-based fertilizers in agricultural 

soils is to blame for the over 75% increase in global net P storage for both aquatic and terrestrial 

ecosystems compared to pre-industrial levels (Bennett et al., 2001; Zhou et al., 2017). 

Balancing P inputs and outputs at the farm, watershed, or regional sizes is the first step in 

stopping P losses (McDowell, 2012). Consequently, to achieve a level of P loss suitable for the 

environment and agriculture, mitigating measures are also needed in addition to a negative P 

balance (McDowell, 2012). Confined animal feeding operations (CAFOs), may be responsible 

for substantial amounts of P-loss, especially when there is not enough space to properly utilize 

the manure, which results in soil P enrichment (McDowell, 2012).  Many of the mitigation 

techniques used on farms that raise crops and farms that confine animals can help reduce P loss 

over time (McDowell, 2012). Knowing that a lot of P loss can come from agricultural land due to 
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farming and CAFO’s it is important to recognize the important role fertilizers and manures play 

in contributing to P loss. The application of fertilizers and manure are essential inputs to the 

Kansas P index directly affecting one’s overall P risk assessment.  

 Phosphorus Indices 

Because of water quality issues, many states have developed guidelines for P application 

and watershed management based on tools that rate the potential for P loss in agriculture runoff. 

The P index concept was first proposed in 1992/93 (J. L. Lemunyon & R. G. Gilbert, 1993) and 

after a historic agreement between the USEPA and USDA to address concerns about nutrient 

runoff from livestock feeding operations, various versions of the P Index were developed and 

used in the US in the early 2000s (USDA & USEPA, 1999). The structure and content of P 

indices have undergone significant alterations since the first P index was developed by 

researchers (Nelson & Shober, 2012). For instance, the computational design of many P indices 

was altered from additive (being the first generation) to multiplicative or component index in the 

second or third generations (Nelson & Shober, 2012). 

The original index or first generation index was the additive index where it was computed 

as the sum of P loss factors multiplied by respective weighting factors (J. L. Lemunyon & R. G. 

Gilbert, 1993). The initial index is known as an additive index because the impact of each P loss 

component is added to obtain the final index rating (Nelson & Shober, 2012). For example, a 

field site could be ranked with a very high-risk assessment based on site management factors 

alone, even though no surface runoff or erosion occurred (Sharpley et al., 2003). Also, a field site 

with a high potential for surface runoff or erosion but with low soil phosphorus is not  at risk for a 

high P loss and would get a low risk assessment rating unless fertilizer or manure was applied  

(Sharpley et al., 2003). 
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The second generation is the MPI which was first proposed by Gburek et al. (2000) 

(Nelson & Shober, 2012) and subsequently revised by others (Sharpley et al., 2003). A MPI is 

therefore the result of P source factors (S) and P transit factors (T) (Nelson & Shober, 2012). 

Although separating the source and transport factors is contradictory with how process-based P 

loss models depict P loss (Bolster et al., 2012), a multiplicative formulation more accurately 

captures the processes controlling P loss than the original additive PI formulation of Lemunyon 

& Gilbert (1993).  

The third generation or component index is an improvement over the multiplicative index 

and better represents how different combinations of P sources and related transport processes are 

represented by each component (Bolster et al., 2012). This index is more in line with how P loss 

manifests itself in the real world and how process-based P loss models mimic P loss (Bolster et 

al., 2012). Each state was encouraged to develop their own P index and major differences exist 

among P indices across the United States (Sharpley et al., 2003). Because of this a component 

index will have to have State specific factors that influence the development of the index 

(Sharpley et al., 2003).   

 Kansas Phosphorus Index 

The state of Kansas uses an MPI and is applied as a planning tool and qualitative risk 

assessment. The MPI (PIm) is calculated as follows: 

Equation 3.1: Kansas Phosphorus Index 

 𝑃𝐼𝑚 = (𝑃𝑐 + 0.1(𝑃𝑓𝑟) + 𝑃𝑓𝑚 + 0.1(𝑃𝑜𝑟) + 𝑃𝑜𝑚 ) ∗ (2(𝐸) + 𝑅𝑐 + 𝐷𝑐 +

𝐼𝑓𝑐 + 𝐼𝑠𝑐)    ………………………………………………………………………………[Eq. 3.1] 

Where, Pc is the soil test P category risk, Pfr is the annual average fertilizer P application 

rate (lbs P2O5/ac), Pfm is the P fertilizer application method risk factor, Por is the annual average 

organic P application rate (lbs P2O5/ac), Pom is the organic P source application method risk 
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factor, E is the soil erosion by water (tons/acre/year) (RUSLE), Rc is the soil run-off 

classification category risk factor, Dc is a categorical factor related to the proximity of field to 

perennial streams, perennial surface water bodies, or intermittent streams, Ifc is the furrow 

irrigation erosion risk category, and Isc is the sprinkler system erosion/run-off risk category.  

Equation 3.1 can be simplified by combining some similar factors (such as Pfr and Por) 

and written as followed in Equation 3.2: 

Equation 3.2: Simplified Version of the Kansas Phosphorus Index 

 

 Issues with The Kansas P Index 

  In order to meet new standards made by the USDA title 190, certain inputs would have to 

be revised (NRCS & USDA, 2017), including soil test P (STP), runoff, and application method 

and timing. Figure 3.1 shows the effect of STP on the MPI. As STP increases, the MPI increases 

in a step like fashion until 200 ppm is reached then the MPI rating does not change even though 

your STP value continues to increase. Figure 3.2 shows how the rating for the runoff input within 

the MPI would remain the same for different locations no matter the soil type or precipitation 

amount. Even when picking locations throughout Kansas with different precipitation gradients, 

the MPI shows that they would all have the same P index risk assessment rating. So, to make the 

revisions necessary from the title 190, the Kansas index will be updated from a MPI to a 

component phosphorus index (CPI). While these revisions could be made directly in the MPI, the 

main reason this was not done was because certain inputs from the source factors had a direct 

effect with inputs from the transport factors. The MPI is not set up this way therefore, the only 

   (2) Erosion (+)  
 Soil Test P                  (+)  Soil Runoff Class (+)  
(0.1) P Application rate (+)  Distance to water body (+)  
 Application Method/Timing   Irrigation Erosion   

 P Source Factors X  Transport Factors  = Risk 
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way to make this revision is to move to a component P index where each one of the source and 

interconnected transport factors is multiplied to obtain a final P risk assessment rating. Such 

component P indices are used in several states, including Wisconsin, Iowa, Missouri, North 

Carolina, and Georgia (Bolster et al., 2012). Although component indices are developed for these 

other states, they cannot be directly applied to Kansas because each state’s index is based on 

specific needs of that state and customized to such things as cropping systems, climate, and soils. 

On top of this, published literature does not adequately explain inputs to these indices, how they 

were formulated, and how they may be adapted to Kansas conditions.  

Another solution to improving the MPI would be to revise it. While this is an option, this 

revision would not address the USDA/NRCS concerns with the new standards made from the 

title 190 document. For example, having certain input (STP) zero out (have an environmental 

threshold). On top of this the revision would still not address the relationship certain source 

factors had with interconnecting transports factors like a component index does. The MPI keeps 

both source and transport factors separated until the sum of both factors where then multiplied to 

get an overall P risk assessment rating. This study has four objectives: 1 Optimize coefficients to 

the components of the revised Kansas multiplicative P index). 2a. Develop a component P index. 

2b Revise inputs such as soil test phosphorus and application method and timing so they are in 

line with the new NRCS/USDA standards. 3. Determine the relationship between measured P 

loss and the P indices (current, revised, and component).  

Methods 

A (CPI) for Kanas was developed following similar methodology that was used to 

develop a CPI for Kentucky (Bolster et al., 2014). A new method for accounting for application 

timing and method had to be developed that would fit into the concepts of a CPI. The 
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coefficients of the component model were empirically determined through multiple linear 

regression with estimated P loss data from the APEX model. The MPI was similarly revised with 

empirically determined coefficients. The CPI, revised multiplicative index (rMPI), and (MPI) 

were evaluated by comparison with measured P loss data to determine if the CPI was an 

improvement over the current MPI.  

 Application Method and Timing Methodology 

 Timing of Fertilizer Application 

For timing, National Oceanic and Atmospheric Administration (NOAA) Regional 

Climate Center 30-year daily precipitation data was queried from the Applied Climate 

Information System (ACIS) data base for 25 counties across Kansas (Crawford, Cheyenne, 

Comanche, Cowley, Elk, Ellis, Ellsworth, Franklin, Gray, Hamilton, McPherson, Morton, 

Nemaha, Ness, Republic, Riley, Scott, Sumner, Thomas, Lyon, Stafford, Phillips, Chase, 

Labette, Jefferson). While collecting data, 5 counties (Comanche, Ellsworth, Stafford, Labette, 

and Jefferson) did not have complete 30-year daily precipitation data and therefore were left out 

of this data set leaving 19 counties in total (Figure3.3). Overall, to find the percent of annual 

runoff the first calculation included the average monthly precipitation, second is the average 

monthly number of precipitation events (n), third is the average precipitation for an event in the 

given month (α), fourth finding runoff by having a given curve number (in this case modified 

0.05), S (0.05) and λ = 0.05. The values used included CN(0.05) = 69 which was calculated by 

(0.0054*78^2+0.46*78), S(0.05) which was calculated by (1000/69)-10 = 4.5.  

That Data set used in calibrating are from Crawford, Franklin4 and Franklin8 county data 

from the APEX simulation data (Table 3.1). APEX is used as a simulation tool to estimate runoff 

erosion and crop growth, all of which are minimum requirements for the model to also calculate 



51 

P loss (Gassman et al., 2010). Apex can simulate a wide range of management practices such as 

tillage, terraces, buffer strips, and land application of manure or poultry etc. (Gassman et al., 

2010). The data used for this research came from Bhandari's, 2016 dissertation which used 

weather, watershed characteristics and management practices which were required inputs 

required to drive the APEX simulation model to obtain this data (Bhandari, 2016).  

The data started with 2,890 data points with 4 months (January 15th, April 1st, October 

15th, and November 15th) being used for three cropping systems (CC) Continuous Corn, (CS) 

Corn-Soybean, (CWS) Corn-Winter Wheat-Soybean while 5 months (January 15th, April 1st 

,June 1st October 15th, and November 15th) were used for a single cropping system (GS) Grain 

Sorghum-Soybean. The data used in this research ended with 1360 data points.  

 Method of Fertilizer Application 

When updating the application method, research focused on determining if there are 

qualitative differences between surface application, subsurface application and incorporated . 

This was done to check that our modeled data followed the general trends that we would expect 

from literature. The next step involved determining ratings for each category injected, 

incorporated and surface application for different respected times of the year.  

To do this journal articles with published data were found to get a qualitative assessment 

of the differences between surface broadcast, incorporation and injection to determine the 

percentage of P loss due to phosphorus fertilizer (Table 3.2). Articles that had both a control and 

one of the three fertilizer methods were found. An example would be, taking a control (0 

fertilizer) with 1 lbs./ac. P loss, surface broadcast (35 lbs of P2O5/ac.) with 5 lbs./ac. P loss and 

injected (35 lbs of P2O5/ac.) with 2 lbs./ac. P loss and calculating the difference between P loss 
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due to fertilizer (injected) and P loss due to fertilizer (surface broadcast). This can be seen in 

Equation 3.3 below. 

Equation 3.3: Calculation for Method Application Factor 

(𝐼𝑛𝑗𝑒𝑐𝑡𝑡𝑒𝑑) −(𝐶𝑜𝑛𝑡𝑟𝑜𝑙 )

(𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝐵𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡) −(𝐶𝑜𝑛𝑡𝑟𝑜𝑙 )
    ………………………………...…………………..[Eq. 3.3] 

To calculate fertilizer P loss due to runoff in lbs. P2O5 for injected and surface broadcast, one 

would use Equation 3.3. Injected; (2 lbs./ac P loss – 1 lb./ac P loss) = 1. Surface broadcast (5 

lbs./ac P loss – 1 lb./ac P loss) = 4. Next, injected is divided from surface broadcast (1/4 = 0.25). 

Therefore, the coefficient for injected would be 0.25 and surface applied would be 1 because we 

are assuming that surface broadcast has the most fertilizer P loss due to runoff.  

 Kansas Component P Index Methodology 

The component index equation focused specifically on what Kansas agriculture needed 

and its relation to other P indices in the United States. The final equation was run through SAS 

(Statistical Analysis System) using Proc Mix to ensure all inputs were significant data used to do 

this came from Table 3.1. The Kansas component index is below in Equation 3.4: 

Equation 3.4: Kansas Component Phosphorus Index 

Ploss = β1 + β2(𝑆𝑛1 × Q) + β3(𝑆𝑛1 ×  𝑇𝑚) + β4(𝑆𝑛2 × 𝐴𝐹 × 𝑄)    …………….[Eq. 3.4] 

(S𝑛1) = Soil test phosphorus, (S𝑛2) Phosphorus rate, (T𝑚) RUSLE 2 sediment loss, (AF) 

Application method and timing, (Q) Long-term average annual runoff estimated by modified 

curve number equation. The simplified version of Equation 3.4 is below in Equation 3.5. 

Equation 3.5: Simplified Version of Kansas Component Phosphorus Index 

 

 

𝛽1      (+) 
𝛽2 (Soil Test P (x) Runoff: Long-term average annual)   (+) 

𝛽3 (Soil Test P (x) Erosion: RUSLE 2 sediment loss)   (+) 

𝛽4 (P Application Rate (x) Runoff: Long-term average annual (x) Application Method and Timing) (+) 

 P Source Factors (x) Transport Factor (x) Source Factor = Risk 
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Coefficients or beta values to the component P-index were produced by using SAS (Statistical 

Analysis System) Proc mixed with Equation 3.4. The beta values were produced to help calibrate 

the CPI model. The code can be found in Appendix C.  

 Revision of the Kansas Multiplicative P Index Methodology 

To see if improvement could be made to the current P index in the state of Kansas, it was 

revised and updated with coefficients. The index was calibrated with data collected from both 

Crawford and Franklin counties (Table 3.1). The new revised index uses Equation 3.6 seen 

below: 

Equation 3.6: Revised Kansas Phosphorus Index 

Revised Ploss = β0 + (𝛽1 ×   𝑆𝑛1 + 𝛽2 × 𝑆𝑛2 +  𝛽3 ×  AF rating) ×  (𝛽4 × (𝑇𝑚 ×

0.44617) + Soil Runoff rating)    ………………………………………………………..[Eq. 3.6] 

(S𝑛1) Soil test phosphorus, (𝑆𝑛2) Phosphorus rate in lbs of P2O5 per acre, (T𝑚) RUSLE 2 

sediment loss, (AF) Application method and timing rating (category risk) given by the original P 

index, and soil runoff rating (category risk) given by the original P index.  

Comparing Equation 3.6 to Equation 3.1, (Pc) Soil Test P was not used as this was the 

rating category risk therefore, we used the actual Soil Test P value (𝑆𝑛1). (Pfr) and (Por) were 

used separately in Equation 3.1, instead they were treated as one value in Equation 3.6 (𝑆𝑛2). 

(Pfm) and (Pom) were used separately in Equation 3.1, instead they were treated as one value in 

Equation 3.6 (AF). In Equation 3.1 (E) RUSLE is the same as (Tm) in Equation 3.6. The Soil 

Runoff rating in Equation 3.6 is the same as (Rc) in Equation 3.1. Inputs not included in 

Equation 3.6 but were in Equation 3.1 include: (Dc) Proximity of field to perennial streams, 

perennial surface water bodies, or intermittent streams, (Ifc) Furrow Irrigation Erosion category 

risk, (Isc) Sprinkler System Erosion/Run-off category risk. These inputs were left out because 
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they were either not part of our P loss dataset (eg., irrigation erosion and runoff) or they are not 

uniquely associated with a specific cropping system (eg., proximity to surface water). 

Coefficients or beta values to the revised multiplicative P-index were produced by using SAS 

(Statistical Analysis System) Proc mixed with Equation 3.6. The beta values were produced to 

help calibrate the CPI model. The code can be found in Appendix C. 

Validation of the Kansas Component Phosphorus Index Methodology 

 Once Equation 3.4 of the CPI was complete, the new method would now need to be 

validated. Data for this came from existing counties including Riley, Crawford, Franklin, and 

Geary County and can be seen in Table 3.4. Validation was conducted by relating the P index 

values to measured P loss data from edge-of-field runoff experiments. The P-index values were 

calculated with two different techniques. First, we used measured annual erosion and runoff as 

inputs to the P-indices and then compared the resulting index to measured annual P loss, similar 

to the way other studies have evaluated P indices against measured data (Osmond et al., 2017; 

Bolster et al., 2014; Bolster et al., 2012). Second, we computed the P index for each location and 

management using the RUSLE2 erosion and estimated annual average runoff from a modified 

curve number approach (Chapter 2) which was then summarized as inputs. This was then related 

to the average annual P loss over the period of record for the location and management. The 

annual data included 74 total data points: 42 points from Riley County, 20 for Crawford County, 

12 from Franklin County, and 4 from Geary County (Table 3.4). The summarized data included 

20 points: 12 points from Riley County, 5 for Crawford County, 3 from Franklin County, and 2 

from Geary County (Table 3.4).  



55 

 Results and Discussion 

 Application Timing and Method 

Fertilizer application timing can have a direct effect on the amount of P lost from an 

agricultural system. This direct effect can happen when runoff occurs because of increased 

precipitation during certain months of the year. For example, when surface applying fertilizer, 

the granules usually end up remaining on the soil surface which makes it susceptible to runoff 

especially if applied in months that have more runoff potential. Due to this interaction timing 

will only be applied to surface application of fertilizer for the CPI. Timing ratings for surface 

application were obtained from Figure 3.3. In this figure, the percentage of annual runoff 

throughout a year averaged over 31 years for 19 different counties was obtained. With this 

figure, three main grouping of months stood out (low percent of annual runoff, moderate percent 

of annual runoff and high percent of annual runoff. The figure showed that months (January – 

March, November and December) had the lowest percent of annual runoff, months (April, 

September and October) had a moderate percent of annual runoff and months (May-August) had 

the highest percent of annual runoff. Professional judgment guided by monthly rainfall 

throughout the state helped in determining the timing ratings for Table 3.3. 

Fertilizer application methods include surface application of fertilizer, incorporation of 

surface applied fertilizer and injection of fertilizer below the soil surface. Surface applied is 

when fertilizer (inorganic or organic forms) is applied directly to the soil surface. Incorporation 

of fertilizer is when fertilizer is applied directly to the soil surface then tilled into the soil. 

Fertilizer applications that are injected are placed underneath the soil surface, usually with or 

alongside the seed that is being planted. Fertilizer application method can directly affect P loss in 

agricultural fields. Surface application of fertilizer affects P loss the most as granules on the 
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surface can be lost due to runoff. Injection of fertilizer affects P loss the least as it is applied 

beneath the soil surface being directly available for plant uptake and not being affected by 

runoff. Incorporation of fertilizer affects P loss more than injected but less then surface 

application as fertilizer is tilled up into the soil leaving small amounts of fertilizer left on the soil 

surface which can potentially be lost due to runoff. While this may be using professional 

judgement, journal articles were also found to support differences in fertilizer application method 

(Table 3.2). 

Articles form Table 3.2 were found that tested both a control site and a fertilizer 

application method (Carver et al., 2022; Kimmell et al., 2001; Tarkalson & Mikkelson, 2004). 

Carver et al., 2001 and Kimmel et al, 2001 articles were used to determine the difference 

between surface application and injection to calculate the percent loss due to P fertilizer. 

Tarkalson & Mikkelson et al., 2004 was used to determine the difference between surface 

application and incorporation to calculate percent loss due to P fertilizer. Table 3.3 further 

proved that there is a difference between injected and incorporation. Other sources including 

(Daverede et al., 2004; Jokela et al., 2016; Kleinman et al., 2009) also found differences in Total 

P loss between incorporated and surface applied in their studies. This further suggests that these 

application methods should hold different weighting factors when used to determine P loss.  

The timing and placement of phosphorus fertilizers or manure have a significant impact 

on the amount of phosphorus lost in surface runoff, which can outweigh the impacts of other 

inputs like soil test P (Hart et al., 2004; Kleinman et al., 2002). Application of fertilizers or 

manures is specifically important as losses in P may happen from subsurface flow or surface 

runoff (viz. subsurface runoff) (McDowell, 2012). When averaged over several years and 

studies, adding P fertilizer below the soil's surface can reduce dissolved and total P losses by 50 
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and 40 percent, respectively (Carver et al., 2022; Kimmell et al., 2001; M B Zeimen et al, 2006). 

When P fertilizer is applied in the fall, the likelihood of runoff may increase in some climates 

where the soil is typically wet and rainfall is frequent (Richards et al., 2010), but it may decrease 

in other climates where the soil is dry and winter precipitation is sparse(Carver et al., 2022). In 

general, as more time passes for P to bind to soil surfaces, the chance of P loss diminishes since 

there is more time between P application and runoff-producing rains (Vadas et al., 2008). In no-

till settings, it has also been discovered that subsurface application of P-based fertilizer reduces 

bioavailable P losses by over 70% as compared to broadcast application (Kimmell et al., 2001). 

In a paper by (Schwab et al., 2006) comparing surface P placement to subsurface placement, 

certain studies demonstrated that there was a yield advantage with subsurface P placement when 

soil test P is average to below average. Other studies showed no difference between subsurface P 

fertilizer placement and broadcast (Bordoli & Mallarino, 1998; Fernández & White, 2012). 

For manure, application should be limited to times of year when runoff is uncommon 

since the availability of manure-P reduces significantly with time after application (including 

snowmelt) (McDowell, 2012). Utilizing application techniques that provide manure to the soil as 

a slurry also reduces P loss by enhancing contact and sorption with the soil matrix (Daverede et 

al., 2003). In contrast, adding P to the plough layer right after application can reduce P losses if 

erosion is kept to a minimum (McDowell, 2012). 

Finally, due to our findings with application timing and method we based our new ratings 

(Table 3.3) off the Pennsylvania index, these values ranged from 0.2 to 1. This approach is 

different than the application method and timing ratings of the current Kansas MPI, where this 

approach uses factors less than 1 to reduce P loss when the best management practices are used. 

The current index uses larger numbers as seen in appendix A that range from 0 to 8. The larger 
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factors are used for poor practices to increase the index rating. Original creators to the current 

index have stated that ratings were arbitrarily selected, and caution should be taken when 

developing new ratings for these inputs (J. L. Lemunyon & R. G. Gilbert, 1993).  

Other inputs to the Kansas P index brought up in the issues with the Kansas 

multiplicative P index section that were not touched on much include, the Soil test phosphorus 

(STP) and the runoff input. STP and runoff were both updated strictly from categorical to a 

qualitative assessment. For STP, this update was simple where the categorical values were 

replaced with exact STP values in ppm taken from the field. Thus, this gives an environmental 

threshold for which STP can relate to P loss. Figure 3.4 shows this relationship, and as STP 

increases, we get an increase in the CPI index. The runoff component was explained more in 

chapter two but by looking at (Figure 3.5), it shows that with an increase in runoff in (m) there is 

an increase in our component index rating. With the previous runoff input in the MPI we would 

see all the listed locations in Figure 3.5 be given the same runoff rating value which would not 

correlate with the precipitation gradient in which each specific location lies. 

The revised soil test phosphorus and application method and timing factors would work 

within the updated P index as it meets the new NRCS standards stated in 2017 The National 

Instruction for Nutrient Management Policy Implementation (Title 190) which was amended to 

include minimum criteria for P indices, known as section D (Minimum Criteria for State P-Index 

Tools), which has six different criteria (NRCS & USDA, 2017). By using the revised STP and 

application method and timing, the Kansas P-Index will meet criteria (iii) and criteria (vi). 

Criteria (iii) which states “A P index tool must demonstrate that risk increases with increasing 

STP and also depends on method of application (surface application versus 
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injection/incorporation) …”(NRCS & USDA, 2017). Criteria (vi) which states  “The P-Index 

must “zero-out” at some point (environmental threshold)...”(NRCS & USDA, 2017). 

 Component P Index 

 When calibrating the (CPI) with the Beta values we see that every one of the beta values 

within the equation (Where, β1, β2, β3, and β4 are fitting parameters 0.4251, 0.04128, 0.002990, 

and 0.1220 respectively) are all significant at p<0.0001. (Figure 3.8) shows what the component 

P index looks like using existing data from Crawford and Franklin counties. When comparing 

(Figures 3.6 and 3.8) the relationship shows improved model performance of an R squared of 

0.41 from the MPI to an R squared of 0.82 with the CPI. We also see an improved model 

performance from the rMPI with R squared of 0.62 to an R squared of 0.82 with CPI. This 

revision addresses all specific concerns and updates regarding the Kansas Phosphorus Index title 

190 stated from USDA/NRCS. Therefore, the CPI would be a sufficient model to use in the 

Kansas P Index.  

Finally, when validating all the models using annual data Figure 3.3.9 shows an increase 

in model performance between the CPI and the MPI and rMPI. An increase in model 

performance can be seen when looking at graph (b) the rMPI R2 = 0.07, to graph (a) the MPI R2 

= 0.09, and again to graph (c) the CPI R2 = 0.71. Overall, with the annual data the MPI would 

have a poor model performance along with the rMPI and would not be a sufficient model to use 

for the Kansas P index. However, the CPI does have an improved model performance and would 

be a sufficient model to use for the Kansas P index. When validating again with summarized data 

Figure 3.10 shows an increase in model performance with graph (b) rMPI R2 = 0.68, graph (a) 

MPI R2 = 0.73, and graph (c) CPI R2 = 0.85. Overall, in the annual data the CPI would be a 

sufficient model to use for the Kansas P index. However, with the summarized data all models 
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show good model performance although the CPI would be the favored model to use with a 

higher R squared over the MPI and rMPI.  

When comparing our findings to (Osmond et al., 2017) findings show that both the 

multiplicative and component P indices has similar USDA / NRCS loss rating correspondence to 

60 and 64 percent respectively. When comparing that to what we found while the summarized 

data may have decent R squared values there is a 15 percent difference between our MPI and 

CPI indexes thus telling us that there is a difference between an MPI and a CPI. The 

improvement in the component index is a result of changing the inputs and structure of the index 

and not a result of the process of improved fitting parameter. This improvement to the fitting 

parameters was also conducted on the rMPI and if this were a main reason for the improvement 

of the CPI, similar results would have been expected in the rMPI and those results were not seen.  

Revised Multiplicative P Index 

 When calibrating the MPI to obtain the rMPI there were some overall improvements. 

When calibrating rMPI with the Beta values we see that every one of the beta values within the s 

(where, the β0, β1, β2, β3, and β4 are fitting parameters -0.4822, 0.0329, 0.00101, 0.0113, and 

4.1852 respectively) (Figure 3.7) shows what the revised multiplicative index looks like using 

existing data from Crawford and Franklin counties. When comparing (Figure 3.6 and 3.7) the 

relationship shows improved model performance of an R squared of 0.41 to an R squared of 

0.62. This revision does not address specific concerns and updates regarding the Kansas 

Phosphorus Index title 190 stated by USDA/NRCS. The revised multiplicative index would not 

be a sufficient model to use because by calibrating the rMPI with beta values this did not seem to 

improve the index thus changes to the inputs and the structure of the index would be needed .  
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Finally, when validating all the models with annual data Figure 3.9 shows a decrease in 

model performance between the MPI and the rMPI. Graph (a) MPI R2 = 0.09 has a better R 

squared values than graph (b) rMPI R2 = 0.07. Using summarized data Figure 3.10 also shows a 

decrease in model performance with graph (a) MPI R2 = 0.73 to graph (b) rMPI R2 = 0.68. 

Overall, in the annual data both the MPI and rMPI have poor model performance and would not 

be sufficient models to use for the Kansas P index. However, with the summarized data both 

models show good model performance although the MPI would be the favored model to use with 

a higher R squared over the rMPI although the MPI is not an adequate model as it does not meet 

USDA/NRCS standard form Title 190.  

 Conclusion 

P Index assessments or research could result in improvements such as better weighting 

factors, the creation and use of regional P indices, and a better P Index framework (i.e., additive, 

multiplicative, or component) (Nelson & Shober, 2012). The best strategies for updating the P 

Index framework and improving the weighting elements for the P Index should be determined 

through further study (Nelson & Shober, 2012). This chapter goes over the updated inputs 

needed in a component index for the state of Kansas and the need for it to meet Title 190 

requirements set forth but the USDA/NRCS. Overall, the component P index has a much better 

relationship with the estimated P loss (𝑅2 = 0.82) indicating that it may be an improvement over 

the current multiplicative P index for estimating the relative risk of P loss from agricultural 

fields. For Validation, there seems to be an improvement from MPI to CPI in correlation to P 

loss with an improved (𝑅2 = 0.85). However, Further research will need to be done to Evaluate 

effects of the component P index on producers across Kansas. Throughout the review and 

development process, the eventual index interpretation and implementation should be taken into 
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account(Nelson & Shober, 2012). A crucial factor to remember is that despite producing 

continuous (or semicontinuous) numerical output, P indices interpret the overall output as a 

qualitative risk rather than a numerical value (Nelson & Shober, 2012). 
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 Tables 

Table 3.1: Apex simulation data. Represents the locations. Cropping systems and managements used as well as the total number of data points used 

represented on graphs. 

Location Tillage Management Cropping System 

Number of P 

Application 

Times * 

Number of P 

Application 

Rates ** 

Number of 

initial STP 

values*** 

# of data 

points on 

graph. **** 
Crawford No-Till Surface Broadcast Continuous Corn (4) 2 5 5 50 

Crawford No-Till Surface Broadcast Corn / Soybean (4) 2 5 5 50 
Crawford No-Till Surface Broadcast Corn / Wheat / Soybean (4) 2 5 5 50 

Crawford No-Till Surface Broadcast Grain Sorghum / Soybean (5) 2 5 5 50 

Crawford Conventional Till Incorporated Continuous Corn (4) 2 5 5 50 

Crawford Conventional Till Incorporated Corn / Soybean (4) 2 5 5 50 

Crawford Conventional Till Incorporated Corn / Wheat / Soybean (4) 2 5 5 50 
Crawford Conventional Till Incorporated Grain Sorghum / Soybean (5) 2 5 5 50 

Franklin 4  No-Till Surface Broadcast Continuous Corn (4) 2 4 5 40 

Franklin 4  No-Till Surface Broadcast Corn / Soybean (4) 2 4 5 40 

Franklin 4  No-Till Surface Broadcast Corn / Wheat / Soybean (4) 2 4 5 40 

Franklin 4  No-Till Surface Broadcast Grain Sorghum / Soybean (5) 2 4 5 40 
Franklin 4  No-Till Sub-surface Application Continuous Corn (4) 2 4 5 40 

Franklin 4  No-Till Sub-surface Application Corn / Soybean (4) 2 4 5 40 

Franklin 4  No-Till Sub-surface Application Corn / Wheat / Soybean (4) 2 4 5 40 

Franklin 4  No-Till Sub-surface Application Grain Sorghum / Soybean (5) 2 4 5 40 

Franklin 4  Conventional Till Incorporated Continuous Corn (4) 2 4 5 40 
Franklin 4  Conventional Till Incorporated Corn / Soybean (4) 2 4 5 40 

Franklin 4  Conventional Till Incorporated Corn / Wheat / Soybean (4) 2 4 5 40 

Franklin 4  Conventional Till Incorporated Grain Sorghum / Soybean (5) 2 4 5 40 

Franklin 8 No-Till Surface Broadcast Continuous Corn (4) 2 4 5 40 

Franklin 8 No-Till Surface Broadcast Corn / Soybean (4) 2 4 5 40 
Franklin 8 No-Till Surface Broadcast Corn / Wheat / Soybean (4) 2 4 5 40 

Franklin 8 No-Till Surface Broadcast Grain Sorghum / Soybean (5) 2 4 5 40 

Franklin 8 No-Till Sub-surface Application Continuous Corn (4) 2 4 5 40 

Franklin 8 No-Till Sub-surface Application Corn / Soybean (4) 2 4 5 40 

Franklin 8 No-Till Sub-surface Application Corn / Wheat / Soybean (4) 2 4 5 40 
Franklin 8 No-Till Sub-surface Application Grain Sorghum / Soybean (5) 2 4 5 40 

Franklin 8 Conventional Till Incorporated Continuous Corn (4) 2 4 5 40 

Franklin 8 Conventional Till Incorporated Corn / Soybean (4) 2 4 5 40 

Franklin 8 Conventional Till Incorporated Corn / Wheat / Soybean (4) 2 4 5 40 

Franklin 8 Conventional Till Incorporated Grain Sorghum / Soybean (5) 2 4 5 40 

* (4) 15- Jan, 1- Apr, 15- Oct and 15- Nov. / (5) 15- Jan, 1- Apr, 5- Jun, 15- Oct and 15- Nov. Only the data for application times of 1-Apr and 15-Nov. were used for this study.  

** Continuous corn application rates were 0, 51.1, 102.2, 204.4, 408.8. All other cropping systems’ application rates were 0, 25.55, 51.1, 102.2, 204.4.  
*** For all STP rates the 5 used are as indicated: 25, 50, 100, 200, 400.  

****Represents number of data points on Figures 3.#, 3.# and 3.#.
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Table 3.2: Journal articles with published data used to assess the differences between 

surface application and incorporated or injected to determine the percent loss due to 

phosphorus fertilizer. The table includes references and management information from 

articles.  

Reference Location P source 
Application 

method 
Method factor(s) in 

Kg/ha 

 
Notes 

Carver et al., 

2022 

Manhattan, 

Kansas 
Fertilizer Injected 0.14, 0.5, 1, 0.79 

Field study; plot size (0.5 

ha) with 3 P rates 

Tarkalson & 

Mikkelsen, 2004 

Raleigh North 

Carolina 
Fertilizer incorporation 0.45, 0.02, 0.10 

Rain simulator; plot size 

(2x2) with4 P rates 

Tarkalson & 
Mikkelsen, 2004 

Raleigh North 
Carolina 

litter incorporation 0.10, 0.08, 0.03, 0.09 
Rain simulator; plot size 

(2x2) with4 P rates 

Kimmell et al., 

2001 

Ottowa, 

Kansas 
Fertilizer Injected 2.5, -0.9, 0.2, 1 

Field Study with chisel 

and No Till systems 
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Table 3.3: Application Method and Timing input ratings: This table shows the rating value 

given to each application method and timing scenario for the Kansas component index. 

Updated based on seasonal runoff estimates in published data. The values are based on 

values ranging from 0.2 to 1 from the Pennsylvania index. Used fraction of runoff 

occurring in each month to develop monthly grouping in application timing. 

Application method Application Timing Value 

Injected   0.2 

Incorporated   0.4 

Surface Application (November – March) 0.6 

Surface Application (April, July, August – October) 0.8 

Surface Application (May and June) 1 
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Table 3.4: Annual and Summarized data used in validation the CPI. Shows site and cropping system and management used in 

what years. Also shows the number of data points used represented on graphs.  

Site Tillage Fertilizer Management ** Cropping System Cover * Years 

# of data 

points on 
graph Annual 

Range of 

STP (ppm) 
**** 

Range of 

Runoff 

(mm) 
**** 

Range of 

erosion 

(Kg/ha) 
**** 

# of data points 

on graph 

Summarized*** 

KAW No-Till CN: Control, No P fertilizer Corn / Soybean 2 2016 - 2019 8 7.3 – 32 55 - 307 22 - 6012 2 

KAW No-Till 
FB: fall surface broadcast P 

fertilizer 
Corn / Soybean 2 2016 - 2019 8 7.3 – 32 55 - 307 22 - 6012 2 

KAW No-Till 
SI: Spring Injected P 

fertilizer 
Corn / Soybean 2 2016 - 2019 8 7.3 – 32 55 - 307 22 - 6012 2 

KAW No-Till 
BM: Spring Injected P 

fertilizer 
Corn / Soybean 2 2020 - 2022 6 2.7 – 30 76 - 243 52 - 2095 2 

KAW No-Till CN: Control, No P fertilizer Corn / Soybean 2 2020 - 2022 6 2.7 – 30 76 - 243 52 - 2095 2 

KAW No-Till 
SF: Spring Injected P 

fertilizer 
Corn / Soybean 2 2020 - 2022 6 2.7 - 30 76 - 243 52 - 2095 2 

Crawford No-Till 
Control, No turkey litter or 

fertilizer 
Grain Sorghum. - 2005 - 2008 4 8.5 – 52.5 21 - 424 7 - 574 1 

Crawford No-Till Fert, N and P fertilizer only Grain Sorghum. - 2005 - 2008 4 8.5 – 52.5 21 - 424 7 - 574 1 

Crawford No-Till 

TLN, Turkey litter only 

applied based on N rate for 
the crop (over applies P) 

Grain Sorghum. - 2005 - 2008 4 8.5 – 52.5 21 - 424 7 - 574 1 

Crawford No-Till 

TLP, Turkey litter applied 

based on P rate plus N 

fertilizer to supply the 

remaining N rate for the crop 

Grain Sorghum. - 2005 - 2008 4 8.5 – 52.5 21 - 424 7 - 574 1 

Crawford Chisel, disk 

TLPC, Turkey litter applied 

based on P rate plus N 

fertilizer to supply the 

remaining N rate for the crop 

Grain Sorghum. - 2005 - 2008 4 8.5 – 52.5 21 - 424 7 - 574 1 

Franklin Chisel, disk 
CTBC: P fertilizer 

incorporated 
Grain Sorghum. - 2001 - 2004 4 6 - 27 38 - 275 78 - 2659 1 

Franklin No-Till 
NTDB: surface broadcast P 

fertilizer 
Grain Sorghum. - 2001 - 2004 4 6 - 27 38 - 275 78 - 2659 1 

Franklin No-Till NTSA: Injected P fertilizer Grain Sorghum. - 2001 - 2004 4 6 - 27 38 - 275 78 - 2659 1 
Geary No-Till - Corn / Soybean 2 2018 – 2021 4 11.2 – 20.3 39 - 251 195- 5331 1 
Geary No-Till - Corn / Soybean 2 2018 - 2021 4 11.2 – 20.3 39 - 251 195- 5331 1 

*When cover has a (2), there are two option; (CC) cover crop and (NC) no cover crop. When (-) is present, indicates cover not defined in data. 
** When (-) is present, indicates no specific management was defined in data. 

*** (Description) Used average annual values of (Years) with either the (Cover – like in KAW and Geary) or (Fertilizer Management – Crawford and Franklin) to produce 

summarized data points for graph.  

**** Use in Annual data set.
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Figures 

 
Figure 3.1: Multiplicative P Index Soil Test P: This figure shows how soil test P correlates 

with the multiplicative index. As STP increases, the MPI increases in a step like fashion 

until 200 ppm is reached then your MPI rating does not change even though your STP 

value continues to increase. 

 

Figure 3.2: Map of Kansas counties and soil series: Map of the Wakeen (Purple), Crete 

(Yellow), Clime (Blue), and Dennis (Red) soil series, which all have a “high” runoff 

classification based on the hydraulic conductivity of the soils. The runoff factor used in the 

Kansas P-index is the same for each series even though the annual rainfall varies from 26 

inches (for Smith) up to over 50 inches (for Cherokee). Therefore, even if you are using the 

same cropping management practices within any one of the four-soil series, you will get the 

same P-loss risk factor. 
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Figure 3.3: Percent of annual runoff throughout a year averaged over 31 years: Represents 19 different counties across the 

state of Kansas with different yearly precipitation values. Shows which months receive more or less percent of annnul runoff 

throught a year. 
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Figure 3.4: Component Phosphorus Index Soil Test Phosphorus: This figure shows how the 

component index increases linearly with soil test P. As STP increases, the CPI also 

increases. The CPI rating increases as your STP value continues to increase. This allows 

there to be an environmental threshold once one is in place then we can distinguish from 

what constitutes and a low, medium, and high STP values affecting your overall P loss 

value. 

 

Figure 3.5: Component Phosphorus Index Runoff: This figure shows that with the new 

runoff input in the component index, that with an increase in runoff in (m) there is an 

increase in our component index rating. With location selected throughout Kansas, as our 

precipitation gradient increases from Smith County (northwest) to Cherokee county 

(southeast) there is an increase in runoff (m) and thus an increase in the CPI rating. 
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Figure 3.6: Multiplicative Phosphorus Index: This figure shows the correlation between the 

multiplicative index (unitless) and the average Phosphorus loss in (Kg/ha) from 2 field sites, 

one in Crawford County and one in Franklin County.  
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Figure 3.7: Revised Multiplicative Phosphorus Index: This figure shows the correlation 

between the revised multiplicative index (unitless) and average phosphorus loss in (Kg/ha) 

from 2 field sites, one in Crawford County and one in Franklin County.  
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Figure 3.8: Component Phosphorus Index: This figure shows the correlation between the 

proposed component index (unitless) and average phosphorus loss in (Kg/ha) from 2 field 

sites, one in Crawford County and one in Franklin County. 
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Figure 3.9: Validation of annual data comparing (a) the multiplicative P index (MPI), 

(b) the revised multiplicative P index(rMPI), and (c) the component index (CPI): all 

figures show the index (unitless) in correlation to P loss in (Kg/ha). 
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Figure 3.10: Validation of summarized data comparing (a) the multiplicative P index 

(MPI), (b) the revised multiplicative P index(rMPI), and (c) the component index 

(CPI): all figures show the index (unitless) in correlation to P loss in (Kg/ha). 
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Chapter 4 - Effects of Cover Crops on Ephemeral Gully Erosion. 

 Introduction 

The purpose of this study is to quantify sediment loss from ephemeral gullies (EG’s) in 

crop fields with cover crops and without cover crops. This is being conducted to see if cover 

crops have the potential to decrease EG erosion in crop fields. While there is currently little 

information out there on the effects of cover crops on EG formation. There are many techniques 

used to collect data including hand measurements as well as using aerial imagery which can be 

used to determine elevation differences in crop fields. 

A cover crop is any living ground cover that is sown after, during, or before a main cash 

crop but is eliminated before planting the following cash crop, according to Hartwig & Ammon, 

2002. Cover crops can contribute to environmental quality and soil health in many ways. In 

particular, it has been established that cover crops can reduce soil erosion, enhance soil aggregate 

stability, lessen weed pressure, limit surface runoff, increase soil water storage, and lessen 

nutrient leaching and runoff (Dabney et al., 2001; Loss et al., 2015). In a review of thirteen 

studies on sediment loss, Blanco-Canqui, 2018 discovered that cover crops can reduce sediment 

losses by up to 100% when compared to areas without them. Nevertheless, for one field site 

under consideration, cover crops had no effect on sediment losses (Blanco-Canqui, 2018). 

In a cover cropping system, a "permanent" layer of plant residue covers the soil surface (Carver, 

2022). Surface vegetation is widely known for preventing soil erosion by reducing the effect of 

rainfall, obstructing the flow of surface runoff, and stabilizing the soil through plant root growth 

(Gyssels et al., 2005; Morgan, 2009; Perret et al., 1996). Cover crop residue is also known to 

help reduce weed problems and help limit use of chemical fertilizers (Kruidhof et al., 2009).  
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Cover crops also have been known to reduce both interrill and splash erosion, and guard 

against soil aggregate degradation, surface sealing, and topsoil compaction (Kaspar et al., 2001; 

Morgan, 2009; Ryder & Fares, 2008). In temperate climates, they cover the soil's surface during 

the winter to shield it from physical degradation and splash erosion (e.g. aggregate destruction, 

topsoil compaction and surface sealing) (De Baets et al., 2011). At the start of winter, many of 

the covered crop’s freeze. As a result, the soil's above-ground biomass is less effective at 

preventing water erosion (De Baets et al., 2011). In conjunction with the advantages of above-

ground biomass in protecting the soil against raindrop impacts and reducing flow velocities by 

the retarding effects of their stems and leaves, Plant roots also play a significant role in 

improving soil strength and enhancing the resistance of topsoil’s against concentrated flow 

erosion (De Baets et al., 2007; Gyssels et al., 2005; Knapen et al., 2007).  

However, the impact of cover crop roots on concentrated flow erosion has received little 

attention (De Baets et al., 2011). Although, one study by De Baets et al., 2011 showed that at the 

top 30 cm of the soil, the roots of the cover crop are firmly established. As a result, they have a 

great potential to improve soil cohesiveness (De Baets et al., 2011). In situations where the 

above-ground biomass has vanished (such as after a frost), roots can be crucial in preventing 

concentrated runoff from eroding the topsoil (De Baets et al., 2011). The study found that the 

highest topsoil root density values are seen in species with fibrous root systems, including 

Lolium perenne (ryegrass), Avena sativa (oat) and Secale cereale (rye). Researchers found that 

the cover crops under study are not all equally successful at reducing g soil loss by concentrated 

flow erosion at the end of the growing season through laboratory flume tests examining the 

resistivity of topsoil’s penetrated with various types of cover crop roots (December–January)(De 

Baets et al., 2011). The study also found Sinapis alba (white mustard) and Raphanus sativus 
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subsp. oleiferus (fodder radish) are less efficient than ryegrass and rye cover crops which have 

fine-branched roots in mitigating soil losses from concentrated flow erosion. Hence, in order to 

choose the best cover crops for a particular field, we must take into account both above-ground 

and below-ground plant properties (De Baets et al., 2011). The effectiveness of cover crops relies 

on the issues that need to be solved, the erosion process that is of interest, or the goal of 

environmental protection (De Baets et al., 2011). In the literature, the effects of cover crops on 

sediment losses in crop fields are widely documented (Blanco-Canqui, 2018; Kaspar et al., 2001; 

Morgan, 2009).  

Unlike sheet and rill erosion, which is caused by raindrops and water flowing on the soil 

surface, EG erosion is caused by concentrated flow of surface runoff along a defined channel, as 

well as subsurface flow through seepage and preferred paths (USDA, NRCS, ARS, 2007). 

Therefore, many incidents of runoff from agricultural land causing harm to watercourses and 

properties (both sediment and chemical) are related to (ephemeral) gullying (Poesen et al., 2003). 

Because the surface topography of the field does not vary significantly in some areas, EG’s 

frequently return at or near the same position on an annual basis (S. J. Bennett et al., 2000).  As a 

result, gully erosion monitoring, experimental, and modeling investigations are needed to 

forecast the impacts of environmental change (climate and land use changes) on gully erosion 

rates (Poesen et al., 2003). Despite the importance of EG erosion, limited information on soil 

loss rates and the physical properties of actively eroding gullies exists (S. J. Bennett et al., 2000). 

On top of this the USDA, NRCS and ARS face a major challenge in accounting for EG erosion. 

While EG erosion may be addressed in conservation schemes by using grassed waterways, 

terraces, and vegetative barriers, cover crops have not been seriously studied as a way to help 

mitigate gully erosion in crop fields (USDA et al., 2007). The quantity of soil conserved because 
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of using conservation techniques to limit EG erosion is not assessed because the agency lacks a 

mechanism to anticipate and quantify EG erosion, including the potential for nonstructural 

interventions to reduce it (USDA et al., 2007). Therefore, this study has three objectives: 1) 

determine if cover crops or P fertilizer treatments influence cover crop residue amounts left on 

the fields surface; 2) determine the effect of cover crops on EG erosion; and 3) Determine 

whether digital elevation models (DEM’s) collected by drone arial imagery through multiple 

years can help determine the contribution of EG erosion to annual sediment loss. 

 Materials and Methods 

For this project, the research was conducted from summer 2021 through summer 2023 at 

the Kansas Agricultural Watershed (KAW) field laboratory located near Manhattan, Kansas. The 

KAW field lab is comprised of eighteen, small-scale watersheds averaging approximately 0.5 ha 

in size with treatments that are structured in a 3 x 2 complete factorial arranged in a randomized 

complete block design (blocked by landscape position) and replicated three times (Figure 4.1). 

There are three P fertilizer management systems including: no P fertilizer control (CN), build and 

maintain (BM) which used a build and maintain method where there has been an annual 

application during the build for 5 years then after it is maintain, and sufficiency fertilizer (SF) 

which also used a build and maintain method where there has been an annual application during 

the build for 5 years then there was no application after the first 5 years. Each P fertilizer 

management practice was combined with one of the 2 levels of cover crop, no 

cover crop (NC) or a winter cover crop (CC) for a total of six treatments imposed in a no-till corn-

soybean rotation. Cereal rye (Secale cereale L.) was planted at 74 kg ha-1 on 13 October 2020 

and terminated on 13 April 2021. Corn (Zea mays L.) was planted at 63,000 seeds ha-1 on 29 

April 2021 and harvested on 17 September 2021. Cereal rye was planted at 74 kg ha-1 on 24 
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September 2021 and terminated on 20 May 2022 followed by soybean (Glycine max (L.) Merr.) 

planted at 346,000 seed ha-1 on 15 June 2022 and harvested on 20 October 2022. Details about 

prior management can be found in Nelson et al. (2023).  

For Objective 1, the line transect method was used to estimate crop residue cover within 

the KAW fields following NRCS guidelines (USDA & NRCS, 2001). The line transect method 

has been proven effective in estimating the percent of the ground surface covered by plant 

residue at any time during the year (USDA & NRCS, 2001). For this method a 100-foot field 

measuring tape was used, it was laid out perpendicular (east to west) within each of the 18 plots. 

Three different measurements were taken in different locations in each plot going from South to 

North. Once the measuring tape was laid out, each person measured a 25-foot section. Each 

person also walked along the line in 25-foot sections, stopping at each 1-foot mark. To obtain the 

results each person’s eyes were positioned directly over a 1-foot mark. If that 1-foot mark was 

directly over a piece of residue, then a yes (Y) was written down. If there was no residue, no (N) 

was written down. Percent residue was calculated as the number of times residue intersected the 

1-ft marks in the 100 ft transect. Residue transects were collected on 14 June 2021 (in soybean 

residue) and 29 June 2022 (in corn residue).  

For Objective 2, EGs were quantified in each field plot at the KAW field lab. The hand 

measuring method was used, where a measuring tape and a pole were used to measure the cross-

section (depth, width of top and bottom) of gully. Gully length was determined with a measuring 

wheel. The volume of sediment removed from each gully was determined with the volume 

equation (Length x Width x Depth). Geographic coordinates of each gully were determined to 

the nearest 1.67 cm with an RTK GPS receiver (REACH RS2+; L1/L2/L5 RTK GNSS 

Receiver).  
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Objective 3 was conducted using high-resolution elevation data from UAV to determine the 

ephemeral gully formations in fall 2016, 2020, and 2022. Data was imported into ArcGIS Pro to 

compare elevation changes between the 2016-2022, 2016-2020, and 2020-2022 digital elevation 

models (DEMs) to get 6-, 4- and 2-year differences, respectively. Next, calculation was 

conducted using “compute change raster” in ArcGIS Pro to estimate the amount of sediment loss 

between the years by collecting the topographical differences. This was used to determine the 

contribution of EG erosion to annual sediment loss. 

 Statistical Analysis 

Analysis of variance (ANOVA) was used to determine treatment effects on EG length, EG 

number, EG soil loss, and the percent residue cover using SAS proc glimmix with cover crop, P 

fertilizer management, and their interaction as fixed effects and replication as a random effect. 

Denominator degrees of freedom were computed with the Satterthwaite method . The protected 

least significant difference method was used for pairwise comparisons of treatment means with 

α=0.05. Independent analyses were conducted for each year of data collection. 

 Results and Discussion 

 Residue Data 

The effect of cover crop on the amount of residue remaining on the surface is significant 

for both 2021 with P-value = 0.0004 (Figure 4.2a) and 2022 with P-value = <.0001 (Figure 4.2b). 

Cover crop significantly increased the amount of residue remaining on the surface for both years 

2021 and 2022. An article by Kaye & Quemada, 2017 found similar results, saying that the use 

of cover crops has been successful at building up soil surface residue. Next, testing the effect that 

Fertilizer treatments (BM: build and maintain, CN: no P fertilizer control, and SF: sufficiency 

fertilizer) had on percent residue remaining on the surface, there was a significant main effect on 
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fertilizer management. The amount of residue remaining was significantly higher in the BM and 

the SF treatments than that in the CN. Fertilizer treatments did seem to have a positive effect on 

the amount of residue left on the crop field. Literature found also came to similar conclusions 

that fertilizer treatments increase the potential for residue remaining on the field suggesting it 

may have something to do with increased C/N ratios (Balkcom et al., 2018; Reiter et al., 2008; 

Tewolde et al., 2015). The CN had less of an amount of residue remaining on the surface in both 

2021 with P-value = <.0001 (Figure 4.3a) and 2022 with P-value = <.0001 (Figure 4.3b).  

  Gully Data 

 Ephemeral gullies were identified in 7 of the 18 plots at the KAW field lab (Figure 4.4). 

Because the field was tilled at the beginning of the study (November 2014), all these EGs formed 

within the respective cover crop and P fertilizer management treatments formed after the 

transition to no till in 2015. Six of the 7 plots with EGs were in no-cover crop plots and only one 

of the cover crop plots had EGs. Therefore, 67% of the no-cover crop plots had EGs and only 11 

% of the cover crop plots had EGs. An article by Knapen & Poesen, 2010 found a direct 

relationship with cover crops and their ability to reduce soil erodibility. They were able to find 

that soil erodibility has a direct relationship to gully cross-sectional dimensions of concentrated 

flow paths in fields, suggesting that cover crops can help mitigate the formation of gullies in crop 

fields.  

Although the average length of EGs, number of EGs, and volume of sediment lost from 

EG erosion were all numerically greater for the NC treatment compared to the CC treatment, 

none of these differences were statistically significant based on the standard ANOVA (Figure 

4.5). This could be a result of the number of zero values included in the dataset which may make 
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it difficult to fit the standard parametric statistical model to the data. It is possible that a binary 

data analysis may be more appropriate for this dataset. 

With regards to P fertilizer management, two plots that were CN, two plots that were SF, 

and three plots that were BM had EGs (Figure 4.4), indicating approximately equal likelihood of 

EG erosion in plots based on P fertilizer management, probabilities of 1/3, 1/3, and 1/2 for CN, 

SF, and BM respectively. The main effect of the ANOVA indicated no significant effect of P 

fertilizer management on EG length, number or volume of sediment removed from EG erosion 

(Figure 4.6).  

 Elevation Data 

 The elevation difference between the years 2016 and 2022 indicates the amount of topsoil 

removed by erosion for a six-year period in meters (Figure 4.7). Where erosion removed topsoil 

is indicated by a negative value (east and west sides of the Kaw field) and a positive value 

(central parts of the Kaw field) indicate topsoil was accumulated. This figure does a good job 

indicating where the watershed outlets are, however, it does a poor job at detecting where EG’s 

are present in the field. The elevation differences between year 2016 and 2020 indicate the 

amount of topsoil removed by erosion for a four-year period (Figure 4.8). A good portion of the 

Kaw field lost topsoil due to erosion with the main amount lost mostly found in the southern 

fields of the KAW. Similar to Figure 4.7, 4.8 does a good job indicating where watershed outlets 

are but does a poor job at detecting the presence of EG’s in the KAW field. The elevation 

differences between the years 2020 and 2022 indicate similar findings to Figure 4.8 overall not 

detecting EG’s present in the KAW field. DEM resolution of 0.03 (m) was used and elevation 

between years was subtracted to obtain the amount of topsoil lost between years in each figure. 

While each figure was able to show a gradient of soil loss, the figures failed to show ephemeral 



86 

gullies in the field. One reason for this might be because of DEM resolutions. DEM resolution 

can play a part in the accuracy of certain topographic indexes (TI models) or models used in GIS 

(Daggupat et al., 2013; Momm et al., 2013). Keeping in mind most DEM’s are used when trying 

to calculate TI models, this final step in calculating a TI model was not completed in this 

research paper. Momm et al. (2013) found that high resolution DEMs (e.g., 2 m) were more 

beneficial for simulating EG formation in fields than low resolution DEMs (10 to 30 m). 

Sheshukov et al., (2018) used a DEM resolution of 3 meters was used when processing their data 

for calculation TI models. EG’s were not able to be identified in any of the Figures 4.7, 4.8 or 

4.9. GPS data points of the EG’s taken by hand out in the KAW field in 2021 were overlayed on 

all the maps. (Figure 4.10) shows the relation of GPS point taken in 2021 to the amount of 

topsoil loss between 6 (4.10a), 4 (4.10b) and 2 (4.10c) years, respectively. While the figures do 

show the topsoil loss gradient in meters, the figures do not indicate the presence of EG’s. Closely 

following the points on each one of the figures (a, b, and c) multiple colors can be seen 

indicating both the addition and subtraction of soil. Points on Figure 4.10 represent Knickpoints, 

head cuts and foot points. With the DEM’s used to help calculate topsoil loss between a certain 

number of years, it is shown that this may not be the best method used to help determine where 

EG’s develop in agricultural fields. The estimates of EG erosion from elevation data are not 

similar to the EG data that was collected by hand, this could be because this DEM data is not the 

exact elevation of the ground and includes canopy cover. Other methods that could be used to 

calculate the total volume of soil lost due to erosion include possible DEM resolution change 

with a TI index, the hand method listed earlier or possibly the pin frame method (Karimov & 

Sheshukov, 2017). Overall, there are many different methods to estimate topsoil loss from 
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agricultural fields as well as methods that show EG’s in fields, but more research needs to be 

done to determine which methods work best.  

 Conclusion 

 In this study, the overall conclusion indicates that cover crops do not play a significant 

role in decreasing ephemeral gully formations in crop fields. Even when comparing cover crops 

and treatments, no significant effects were found. However, when looking at percent residue on 

the field there were indications that cover crops do in fact increase residue. Same goes for 

different fertilizer treatments, while there is an increase in residue with spring injected treatments 

vs no fertilizer control treatments we cannot say for sure if this will always be the case as further 

research will need to be conducted specifically looking at how percent residue cover remaining 

in crop fields changes with fertilizer treatments across crop fields as a long-term study. Elevation 

data collected by aerial imagery did not give the best results in defining EG’s in agricultural 

fields. While it did give an array of topsoil loss through a field. This method would not be best 

for identifying EGs in agricultural fields.
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 Figures 

  

 
Figure 4.1: Plot maps and treatments for phase 1 (A; 2015 through 2019) and phase 2 (B; 

2019 through 2024) for the Kansas Agricultural Watershed Field Laboratory at Ashland 

Bottoms near Manhattan, KS.  
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Figure 4.2: 2021 results (A) and 2022 results (B) 

comparing cover (CC: cover crop, NC: No cover crop) to 

percent residue remaining on the surface. 
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Figure 4.3: 2021 results (A) and 2022 results (B) 

comparing (Fert) Fertilizer treatments (BM: build 

and maintain, CN: no P fertilizer control, and SF: 

sufficiency fertilizer) to percent residue remaining on 

the surface. 
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Figure 4.4: Kaw field with locations of Gullies. This figure shows the Knickpoints (the 

start)  of each gully. The dark purple rings represent 2021 data and the red rings represent 

2022 data. The black outline is the KAW field boundary lines. 
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Figure 4.5: Ephemeral gully length (A and D), number (B and E), 

and volume of sediment removed (C and F) as measured in 2021 

(A, B, and C) and 2022 (D, E, and F) at the Kansas Agricultural 

Watershed Field Laboratory averaged by year and cover crop 

treatment.  Within each frame, bars with the same letter are not 

significantly different at α=0.05). 
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Figure 4.6: Ephemeral gully length (A and D), number (B and E), and volume of 

sediment removed (C and F) as measured in 2021 (A, B, and C) and 2022 (D, E, 

and F) at the Kansas Agricultural Watershed Field Laboratory averaged by 

year and (Fert) Fertilizer treatments. (BM: build and maintain, CN: no P 

fertilizer control, and SF: sufficiency fertilizer). Within each frame, bars with 

the same letter are not significantly different at α=0.05). 
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Figure 4.7: 2016 – 2022 Elevation difference in meters at KAW field site: Showing the 

amount of topsoil removed by erosion for a six-year period in meters using a 0.03 m DEM 

resolution. 
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Figure 4.8: 2016 – 2020 Elevation difference in meters at KAW field site: Showing the 

amount of topsoil removed by erosion for a four-year period in meters using a 0.03 m DEM 

resolution. 
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Figure 4.9: 2020 – 2022 Elevation difference in meters at KAW field site: Showing the 

amount of topsoil removed by erosion for a two-year period in meters using a 0.03 m DEM 

resolution. 
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Figure 4.10: Maps showing 2021 ephemeral gully points zoomed in section of Plot 

304 in the southeast section KAW field. Showing the amount of topsoil removed 

by erosion for a certain time period in meters using a 0.03 m DEM resolution. (a) 

represents zoomed in section from 2016 – 2022 elevation map. (b) represents 

zoomed in section from 2016 – 2020 elevation map and (c) represents zoomed in 

section from 2020 – 2022. All black dots represent parts of an ephemeral gully 

(either the head, knickpoint or foot of a gully). 
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Appendix A - Kansas Phosphorous Index 

Appendix A Figure A.1: Kansas Phosphorous Index 
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Appendix B - Table of Average Annual Long-Term Runoff Estimates 

in (mm) for the State of Kansas 

Please see added supplemental file for the table of runoff estimates in (mm) for the state 

of Kansas. An example section of the table and a description is below.  

 

Appendix B Table B.1: Example table of average annual long-term runoff (mm) for seven 

counties in Kansas 

 

This table has seven counties in the state of Kansas and curve numbers 80 through 85. By 

selecting your county and curve number you can obtain the average annual long-term runoff 

value in (mm) for your specific area and cropping system. An example: Say you live in Riley 

County, Kansas, and for your cropping system you find that you have a curve number of 81. By 

looking up this information on the table below, you would have an average annual long-tern 

runoff value of 139.11 mm for your specific area and cropping system.  

 

  85 84 83 82 81 80 

Crawford 272.63 254.84 238.42 223.20 209.08 195.93 

Ellis 126.96 117.99 109.76 102.17 95.17 88.69 

Franklin 236.16 220.50 206.07 192.71 180.32 168.80 

Geary 194.60 181.48 169.39 158.22 147.88 138.27 

Pratt 155.46 144.82 135.03 125.99 117.63 109.87 

Riley 184.01 171.38 159.76 149.03 139.11 129.90 

Sherman 97.69 90.70 84.29 78.39 72.96 67.93 
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Appendix C - SAS Data and Code for Chapter 3 (Revising the 

Kansas Phosphorus Index) 

 Data 

/*--------------------------------------------------------------------
----------------------\  
|  Dataset name and description                                                  
|    
|  Variables  
|  loc Location: Crawford, Franklin_8 = Franklin plot #8, 
Franklin_4=Franklin plot #4  
|  crop CC=corn-corn, CS=corn-soybean, CWS=corn-wheat-soybean, 
GS=grain sorghum-soybean  
|  till Tillage: NT=no-till, CT=conventional till  
|  app_method: Application method SB=surface Broadcast, 
INC=incorporated, SSA=Subsurface Band  
|  App_daate: day-month of application day  
|  STP: soil test P (ppm)  
|  Prate: P application rate (kg P2O5/ha)  
|  Ploss: APEX estimated P loss (kg P/ha) - average of 100 simulations  
|  PlossMax: Maximum annual P loss estimated by APEX (kg P/ha)  
|  AQ: apex estimated runoff (mm)  
|  AS: apex estimated sediment loss (Mg/ha)  
|  RQ: RUSLE2 estimated runoff (mm)  
|  RS: RUSLE2 estimated sediment loss (Mg/ha)  
|  MR: method-timing factor used in the 2008 multiplicative KS P-index  
|  AppTime1: first trial at an independent application timing factor  
|  AppTime2: second trial at an independent application timing factor  
|  Appmeth1: first trial at an independent method of application 
factor  
|  MCNQ: runoff estimated by the modified curve number approach (mm)  
|  
 ---------------------------------------------------------------------
---------*/  
proc print;  
data CPI; input loc$ Crop$ till$ App_method$ App_date$ STP Prate Ploss 
PlossMax AQ AS RQ RS MR AppTime1 AppTime2 AppMeth1 MCNQ;  
cards;  
 

 (Sample of Data): 

Crawford CC NT SB 15-Jan 25 0 1.45 3.21 140 0.01
 254 0.43 2 0 1 4 272.63  
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Crawford CC NT SB 15-Jan 25 51 2.76 6.13 142 0.02
 254 0.43 2 0 1 4 272.63  
Crawford CC NT SB 15-Jan 25 102 4.13 9.20 143 0.02
 254 0.43 2 0 1 4 272.63  
Crawford CC NT SB 15-Jan 25 204 7.07 15.83 144 0.02
 254 0.43 2 0 1 4 272.63  
Crawford CC NT SB 15-Jan 25 409 13.66 30.94 145 0.03
 254 0.43 2 0 1 4 272.63  
Crawford CC NT SB 1-Apr 25 0 1.98 4.58 143 0.03 254
 0.43 4 1 2 4 272.63  
Crawford CC NT SB 1-Apr 25 51 2.29 5.38 137 0.01 254
 0.43 4 1 2 4 272.63  
Crawford CC NT SB 1-Apr 25 102 3.22 7.65 137 0.01 254
 0.43 4 1 2 4 272.63  
Crawford CC NT SB 1-Apr 25 204 5.31 13.91 138 0.01 254
 0.43 4 1 2 4 272.63  
Crawford CC NT SB 1-Apr 25 409 10.36 30.67 139 0.02 254
 0.43 4 1 2 4 272.63  
Crawford CC NT SB 15-Oct 25 0 1.39 3.06 143 0.01
 254 0.43 4 1 2 4 272.63  
Crawford CC NT SB 15-Oct 25 51 2.22 5.00 150 0.04
 254 0.43 4 1 2 4 272.63  
Crawford CC NT SB 15-Oct 25 102 3.07 7.05 151 0.05
 254 0.43 4 1 2 4 272.63  
Crawford CC NT SB 15-Oct 25 204 4.89 11.44 153 0.07
 254 0.43 4 1 2 4 272.63  
Crawford CC NT SB 15-Oct 25 409 8.70 20.75 155 0.10
 254 0.43 4 1 2 4 272.63  
Crawford CC NT SB 15-Nov 25 0 1.36 3.03 141 0.01
 254 0.43 2 0 1 4 272.63  
Crawford CC NT SB 15-Nov 25 51 2.19 5.03 145 0.02
 254 0.43 2 0 1 4 272.63  
Crawford CC NT SB 15-Nov 25 102 3.05 7.15 146 0.03
 254 0.43 2 0 1 4 272.63  
Crawford CC NT SB 15-Nov 25 204 4.91 11.68 148 0.04
 254 0.43 2 0 1 4 272.63  
Crawford CC NT SB 15-Nov 25 409 9.05 22.00 151 0.06
 254 0.43 2 0 1 4 272.63  
 

 

 

 Code 

*/* Select only data from April and November ;  
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Data CPIr; set CPI; where App_date in ('1-Apr', '15-Nov');  
proc print data=CPIr;  
 
* set the application factors;   
Data CPIr; set CPIr;   
 if App_method='SSA' then AF=0.2;  
 if App_method='INC' then AF=0.4;  
 if App_method='SB' and App_date='15-Nov' then AF=0.6;  
 if App_method='SB' and App_date='1-Apr' then AF=0.8;  
 MCNQ=MCNQ/1000; *convert runoff from mm to m;  
  
proc print data=CPIr;  
run;  
   
proc mixed data = CPIr;  
  model Ploss = STP*MCNQ STP*RS Prate*AF*MCNQ / solution;  
  Title 'New Kansas Component PI 01';  
run;  
  
b1= 0.04128;  
b2= 0.002990;   
b3= 0.1220;  
  
CPI=b0 + b1*STP*MCNQ + b2*STP*RS + b3*MCNQ*Prate*AF;  
keep loc crop till App_method App_date STP MCNQ RS Prate AF Ploss b0 
b1 b2 b3 CPI;  
  
proc print data=graph;  
run;  
  
proc reg data=graph;  
   model CPI=Ploss;  
run;  
  
  
*/* Code to compute optimal coefficents for the Kansas P index;  
  
* Add STP category and soil runoff classification catagory;  
  
Data KPI; set CPIr;   
 if STP<=25 then STPc=1;  
 if STP>25 and STP<=50 then STPc=2;  
 if STP>50 and STP<=75 then STPc=4;  
 if STP>75 and STP<=200 then STPc=8;  
 if STP>200 then STPc=10;  



107 

 if loc='Crawford' then SRc=16; else SRc=8;  
 KPI =(STPc+(Prate/1.12)*0.1+MR)*((RS*0.44617)*2+SRc+16); *NOTE: 
converts Prate to lb/ac and RUSLE2 erosion to ton/ac;  
 *Ploss=Ploss*1000; *convert Ploss from kg/ha to g/ha;  
proc print data=KPI;  
run;  
*compute coefficents for the multiplicitive KS PI;  
proc nlin data= KPI;  
parms b0=100 b1=100 b2=10 b3=10 b4=100;* b5=100;   
  
model Ploss =b0 + (b1*stpc + b2*(Prate/1.12) + b3*MR)*(b4*(RS*0.44617) 
+ SRc);  
run;  
  
*/*calculate revised multiplicitive KS PI;  
  
b4= 4.1852;   
 rKPI = b0 + (b1*STPc + b2*(Prate/1.12) + b3*MR)*(b4*(RS*0.44617) 
+ SRc);  
 keep loc crop till App_method App_date STP STPc RS Prate MR Src 
Ploss KPI b0 b1 b2 b3 b4 rKPI;  
run;  
  
proc print data=rMKPI;  
run;  
  
proc reg data=rMKPI;  
   model KPI=Ploss;  
run;  
  
proc reg data=rMKPI;  
   model rKPI=Ploss;  
run;  
  
 
*/*;  
proc export data = WORK.graph DBMS=XLSX  
   outfile = "C:\Users\nonelson\Documents\My SAS 
Files\9.4\test.XLSX" replace;   
   sheet=CPI_test;  
proc export data = WORK.rMKPI DBMS=XLSX  
   outfile = "C:\Users\nonelson\Documents\My SAS 
Files\9.4\test.XLSX" replace;   
   sheet=rMKPI;  
run;  
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This code was developed to test if we would get a better fit by using 
a  
P source coefficent (PSC) of 0.8 for poultry litter as recommended by 
the   
Pennsylvania PI.  In the end, it did not improve the r2 at all.;  
  
Data CPIr2; set CPIr;   
 if loc='Crawford' then PSC=0.8; else PSC=1;  
 if loc='Crawford' then MPrate=Prate; else MPrate=0;  
    if loc='Crawford' then Prate=0; else Prate=Prate;  
  
proc print data=CPIr2;  
  
proc mixed data = CPIr2;  
  model Ploss = STP*MCNQ STP*RS Prate*AF*MCNQ MPrate*PSC*AF*MCNQ / 
solution;  
  Title 'New Kansas Component PI 02';  
run;  
  
data graph2; set CPIr2;  
CPI=0.1633+STP*MCNQ*0.04388+STP*RS*0.002869+MCNQ*Prate*AF*0.2268+MCNQ*
AF*MPrate*PSC*0.1515 ;  
keep loc crop till App_method App_date STP MCNQ RS Prate AF PSC MPrate 
Ploss CPI;  
run;  
/*;  
proc export data = WORK.graph2 DBMS=XLSX  
   outfile = "C:\Users\nonelson\Documents\My SAS 
Files\9.4\test.XLSX" replace;   
   sheet=CPI2_test;  
*/********************************************************************
****;  
run;  
quit;  
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Appendix D - SAS Data and Code for Chapter 4 (Ephemeral 

Gullies) 

 

 Data 

*  
This file contains the ephemeral gully data from the KAW for summer 
2021  
  
plot - plot number  
rep - replicate or block  
fert$ - fertilizer trt CN = 0 kg P2O5/ha  
      SF = sufficiency   
      BM = build and maintain  
cover$ - cover crop treatment (NC = no cover crop; CC = cover crop)  
residue - percent residue cover measured by line transect  
EG_l - ephemeral gully length in meters  
EG_n - number of ephemeral gullies per plot  
EG_v - total volume of sediment eroded from ephemeral gullies in cubic 
meters  
  
*/  
 
(2021 Data) 
data aaa; input plot rep fert$ cover$ residue EG_l EG_n EG_v;  
cards;  
101 1 CN CC 63.3 0 0 0  
102 1 CN NC 48.3 0 0 0  
103 1 SF CC 79.3 0 0 0  
104 1 BM NC 57.3 61 3 3.40  
105 1 BM CC 82.0 0 0 0  
106 1 SF NC 57.7 6 1 0.22  
201 2 BM CC 88.7 0 0 0  
202 2 CN CC 76.7 0 0 0  
203 2 BM NC 59.0 0 0 0  
204 2 SF NC 62.7 16 1 0.89  
205 2 CN NC 58.0 7 1 0.20  
206 2 SF CC 84.0 0 0 0  
301 3 SF CC 86.7 0 0 0  
302 3 SF NC 61.3 0 0 0  
303 3 BM NC 60.7 18 1 0.59  
304 3 CN NC 47.7 99 9 7.37  
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305 3 BM CC 85.3 14 1 0.24  
306 3 CN CC 73.7 0 0 0  
;  

 

(2022 Data) 

data aaa; input plot rep fert$ cover$ residue EG_l EG_n EG_v;  
cards;  
101 1 CN CC 66 0 0 0   
102 1 CN NC 54.7 0 0 0   
103 1 SF CC 75.3 0 0 0  
104 1 BM NC 60.3 48 1 1.9  
105 1 BM CC 69.7 0 0 0   
106 1 SF NC 64 11 1 0.14  
201 2 BM CC 75.3 0 0 0  
202 2 CN CC 70 0 0 0  
203 2 BM NC 63.3 0 0 0  
204 2 SF NC 60.3 23 2 0.65  
205 2 CN NC 63.3 22 3 0.31  
206 2 SF CC 70.3 0 0 0   
301 3 SF CC 77 0 0 0   
302 3 SF NC 56.7 0 0 0   
303 3 BM NC 59.3 24 1 0.34  
304 3 CN NC 48 167 9 7.17  
305 3 BM CC 74.3 34 2 0.34  
306 3 CN CC 65.7 0 0 0   
; 

 

 Code 

* Transpose dataset to make it easy to get results from multiple 
variables;  
proc sort data=aaa; by plot cover fert rep;  
proc transpose data=aaa  
     out=bbb(rename=(_Name_=var) rename=(col1=XXX));  
   var residue EG_l EG_n EG_v ;*bmoist N K Ca Mg S Cu Fe Mn Zn ;  
   by plot cover fert rep;  
  
*/* ANOVA on individual point samples with a repeated measures 
analysis (accounts for missing data);  
  
proc sort data=bbb; by var;  
proc glimmix data = bbb noitprint; by var;  
class rep cover fert ;  
model XXX = cover|fert/ddfm = satterth;  
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random rep rep*cover*fert;  
lsmeans cover|fert/lines alpha=0.05 pdiff;  
ods output LSmeans=Means Tests3=ANOVA LSMlines=lines;  
  
*/* process result datasets and make graphs and p-value table;  
  
data lines; set lines (where=(effect is not missing)); keep var effect 
fert cover estimate line: ;  
data lines; set lines; array dx line:; call sortc(of line:); x = 
catt(of line:); *This sorts the letters alphabetically and stores them 
as a single variable.;  
      
data lines; set lines;  
 length barlabel $ 5; *sets the label as 5 characters;  
 barlabel = x;    
 barlabel2=cat(barlabel,'(',round(estimate,0.1),')'); *makes a 
label with letters and value;      
 if cover='NC' then csort=1;  
 if cover='CC' then csort=2;  
 if fert='CN' then fsort=1;  
 if fert='SF' then fsort=2;  
 if fert='BM' then fsort=3;  
proc sort data=lines; by var effect csort fsort;  
  
data means; set means;   
 if cover='NC' then csort=1;  
 if cover='CC' then csort=2;  
 if fert='CN' then fsort=1;  
 if fert='SF' then fsort=2;  
 if fert='BM' then fsort=3;  
proc sort data=means; by var effect csort fsort;  
  
*/* make graphs and tables;  
* plot means of cover by fert interaction with letters atop bars;  
proc sgplot data=lines; by var;  
 vbarparm category=cover response=estimate/group=fert 
GROUPDISPLAY=CLUSTER datalabel=barlabel2 DATALABELPOS=data 
barwidth=0.9;   
 label estimate='estimate';  
 styleattrs datacolors=(CXA5A5A5 CXED7D31 CX5B9BD5) 
datacontrastcolors=(CXA5A5A5 CXED7D31 CX5B9BD5);   
 where effect='cover*fert';  
* plot fert means with letters and means atop bars;  
proc sgplot data=lines; by var;  
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 vbarparm category=fert response=estimate/group=fert 
GROUPDISPLAY=CLUSTER datalabel=barlabel2 DATALABELPOS=data 
barwidth=0.9;  
 label estimate='estimate';  
 styleattrs datacolors=(CXA5A5A5 CXED7D31 CX5B9BD5) 
datacontrastcolors=(CXA5A5A5 CXED7D31 CX5B9BD5);   
 where effect='fert';  
* plot cover means with letters and means atop bars;  
proc sgplot data=lines; by var;  
 vbarparm category=cover response=estimate/group=cover 
GROUPDISPLAY=CLUSTER datalabel=barlabel2 DATALABELPOS=data 
barwidth=0.9;  
 label estimate='estimate';  
 styleattrs datacolors=(CX7F6000 CX007800) 
datacontrastcolors=(CX7F6000 CX007800);   
 where effect='cover';  
  
*make a table of p-values;  
proc sort data=anova; by effect var;  
proc transpose data=ANOVA out=p_values;  
  by effect;  
  id var;  
  var ProbF;  
data p_values; set p_values; drop _Name_ _label_;  
 if effect='cover' then id=1;  
 if effect='fert' then id=2;  
 if effect='cover*fert' then id=3;  
data p_values; retain id effect; set p_values; *places id as the first 
column, followed by effect (other variable follow in order as is);  
proc sort data=p_values; by id;  
proc print data=p_values;  
  
  
proc reg data=aaa;  
model EG_l EG_n EG_v = residue;  
run;  
quit; 
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Appendix E - Ephemeral Gully Data: Supplemental Material 

Appendix E Table E.1: Table of each ephemeral gullies knickpoint (start) on Kaw field site   

Table of each ephemeral gullies knickpoint (start) on Kaw field site. Shows ephemeral gully 

knickpoint location with latitude and longitude coordinates. Also represented on the table 

is the plot number, gully ID and length in meters and soil loss in cubic meters of each gully. 

 

(Table on Next Page) 
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Year Knickpoint (np) (Long.) 
Knickpoint (np) 

(Lat.) 
Plot # Gully ID 

Length 
(m) 

Soil Loss 
(m^3) 

2021 -96.647 39.12764 104 1041-np 37 2.46 

2021 -96.6473 39.12727 104 1042-np 9 0.26 

2021 -96.6475 39.12721 104 1043-np 15 0.68 

2021 -96.6471 39.1309 106 106-1 np 6 0.22 

2021 -96.6466 39.12716 204 2041-np 16 0.89 

2021 -96.6461 39.12916 205 2051-np 7 0.20 

2021 -96.6458 39.13098 303 3031-np 18 0.59 

2021 -96.6455 39.12756 304 3041-np 16 0.68 

2021 -96.6453 39.12774 304 3042-np 22 3.49 

2021 -96.6453 39.12774 304 3043-np 7 0.62 

2021 -96.6453 39.12786 304 3044-np 7 0.43 

2021 -96.6452 39.12809 304 3045-np 4 0.14 

2021 -96.6452 39.12808 304 3046-np 19 1.51 

2021 -96.6452 39.12815 304 3047-np 4 0.10 

2021 -96.6452 39.12821 304 3048-np 7 0.17 

2021 -96.6452 39.12853 304 3049-np 13 0.22 

2021 -96.6452 39.1293 305 3051-np 14 0.24 

2022 -96.647 39.1277 104 104-np12 48 1.9 

2022 -96.6471 39.1309 106 106-np2 11 0.14 

2022 -96.6466 39.12717 204 204-np12 17 0.52 

2022 -96.6466 39.12716 204 204-np22 6 0.13 

2022 -96.6461 39.12917 205 205-np12 7 0.11 

2022 -96.6462 39.12886 205 205-np22 7 0.08 

2022 -96.6462 39.12878 205 205-np32 8 0.12 

2022 -96.6459 39.13097 303 303-np12 24 0.34 

2022 -96.6456 39.12751 304 304-np12 40 0.95 

2022 -96.6453 39.12776 304 304-np22 31 2.88 

2022 -96.6454 39.12777 304 304-np-32 12 0.60 

2022 -96.6453 39.12786 304 304-np42 9 0.29 

2022 -96.6452 39.12808 304 304-np52 24 1.31 

2022 -96.6452 39.12821 304 304-np62 11 0.27 

2022 -96.6452 39.12848 304 304-np72 8 0.19 

2022 -96.6452 39.12854 304 304-np82 20 0.47 

2022 -96.6453 39.12858 304 304-np92 12 0.21 

2022 -96.6452 39.1293 305 305-np12 20 0.22 

2022 -96.6452 39.12892 305 305-np22 14 0.12 

2021 Total length (m)   221  

2022     329  

2021 Total volume (m^3)    12.91 

2022      10.84 

 


