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Abstract

In the past two decades, autonomous digital sky surveys have enabled significant ad-

vances in astronomy by collecting massive databases of imagery and other information. The

quantity of data, coupled with the variety of scientific questions that require its analysis,

makes manual analysis of these data impractical. To address this challenge, machine learning

algorithms have been widely adopted for data analysis and product generation in astronomy.

In this dissertation I examine the efficacy of machine learning algorithms such as deep convo-

lutional neural networks, support vector machines, and vision transformers for the purpose

of astronomical data analysis, with emphasize on extra-galactic objects. These include algo-

rithms that can annotate large datasets of galaxy images, and their application to premier

digital sky surveys such as Pan-STARRS. Specifically, I address the following research ques-

tion: How effective are machine learning algorithms for annotating astronomical data, and

what are the downsides of using these algorithms for this purpose? Namely, biases that are

typical to machine learning systems can influence the annotations, which may consequently

lead to false conclusions when applying statistical analysis to data annotated using such

systems. These biases are often difficult to identify. Overall, this research highlights the im-

portance of careful consideration of machine learning algorithms and their potential biases

when applying them to astronomical data analysis. Our findings have broad implications for

the use of machine learning in astronomy and other scientific domains, as they demonstrate

the importance of addressing potential biases in machine learning systems to avoid erroneous

scientific conclusions.
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Chapter 1

A Catalog of Broad Morphology of

Pan-STARRS Galaxies Based on

Deep Learning

This chapter was published in Goddard, H., Shamir, L., A catalog of broad morphology

of Pan-STARRS galaxies based on deep learning, Astrophysical Journal Supplement Series,

251(2), 28. IOP, 2020

1.1 Introduction

With their ability to generate very large databases, autonomous digital sky surveys have

been enabling research tasks that were not possible in the pre-information era, and have

been becoming increasingly pivotal in astronomy. The ability of digital sky surveys to image

large parts of the sky, combined with the concept of virtual observatories that make these

data publicly accessible1, has been introducing a new form of astronomy research, and that

trend is bound to continue2;3.

The Panoramic Survey Telescope and Rapid Response System (Pan-STARRS)4;5 is a

comprehensive digital sky survey covering ∼ 103 degree2 per night using an array of two
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1.8m telescopes. Among other celestial objects, Pan-STARRS images a very large number

of galaxies. Due to the complexity of galaxy morphology, the ability of current photometric

pipelines to analyze these galaxy images is limited, and substantial information that is visible

to the humans eye is practically unavailable to users of digital sky surveys data.

To automate the analysis of galaxy images, several methods have been proposed, includ-

ing GALFIT6, GIM2D7, CAS8, the Gini coefficient of the light distribution9, Ganalyzer10,

and SpArcFiRe11. However, the ability of these methods to analyze a large number of real-

world galaxy images and produce clean data products is limited, and catalogs of galaxy

morphology were prepared manually by professional astronomers12;13.

Due to the high volumes of data, the available pool of professional astronomers is not able

to provide the sufficient labor to analyze databases generated by modern digital sky surveys,

leading to the use of crowdsourcing for that task14–16. The main crowdsourcing campaign

for analysis of galaxy morphology was Galaxy Zoo15, providing annotations of the broad

morphology of galaxies imaged by Sloan Digital Sky Survey (SDSS), as well as other surveys

such as the Cosmic Assembly Near-infrared Deep Extragalactic Legacy (CANDELS). How-

ever, analyzing the broad morphology of SDSS galaxies required ∼3 years of work performed

by over 105 volunteers, and led to ∼ 7 ·104 galaxies considered “superclean”. Given the huge

databases of current and future sky surveys, it is clear that even when using crowdsourcing,

the throughout of manual classification might not be sufficient for an exhaustive analysis of

such databases.

The use of machine learning provided more effective methods for the purpose of galaxy

image classification17–26, and the use of such methods also provided computer-generated

catalogs of galaxy morphology27–35. Automatic annotation methods were also tested on

Pan-STARRS data by using the photometric features of colors and moments, classified by a

Random Forest classifier36.

Here we use automatic image analysis to prepare a catalog of the broad morphology

of ∼ 1.7 · 106 Pan-STARRS DR1 galaxies. The catalog was generated by using a data

analysis process that involves several steps and two convolutional neural networks (CNN)

that automated the annotation process to handle the high volume of data.
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1.2 Data

The galaxy image data is sourced from the first data release (DR1) of Pan-STARRS5;37;38.

First, all objects with Kron r magnitude of less than than 19 and identified by Pan-STARRS

photometric pipeline as extended in all bands were selected.

To filter objects that are too small to identify morphology, objects that have Petrosian

radius smaller than 5.5” were removed. To remove stars, objects that their PSF i magnitude

subtracted by their Kron i magnitude was greater than 0.05 were also removed. That led

to a dataset of 2,394,452 objects33. Objects that were flagged by Pan-STARRS photometric

pipeline as artifacts, had a brighter neighbor, defect, double PSF, or a blend in any of the

bands were excluded from the dataset. That led to a dataset of 2,131,371 objects assumed

to be sufficiently large and clean to allow morphological analysis. Figure 1.1 shows the

distribution of the r Kron magnitude of the galaxies in the dataset.
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Figure 1.1: Distribution of the r Kron magnitude of the galaxies in the dataset.

The galaxy images were then downloaded using Pan-STARRS cutout service. The images

are in the JPG format and have a dimensionality of 120×120 pixels. Pan-STARRS cutout

provides JPG images for each of the bands. Here we use the images of the g band, as the

color images using the y, i, and g bands are in many cases noisy, and do not allow effective
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analysis of the morphology. The process of downloading the data was completed in 62 days.

The initial scale of the cutout was set to 0.25” per pixel. For each image that was

downloaded, all bright pixels (grayscale value higher than 125) located on the edge of the

frame were counted. If more than 25% of the pixels on the edge of the frame were bright,

it is an indication that the object does not fully fit inside the frame. In that case, the scale

was increased by 0.05”, and the image was downloaded again. That was repeated until the

number of bright pixels on the edge was less than 25% of the total edge pixels, meaning

that the object is inside the frame. The JPG images are far smaller than the FITS images.

A 120×120 JPG image retrieved through Pan-STARRS cutout service is normally of size of

∼3KB, while an image of the same size in the FITS format will be ∼76KB. Although the

FITS files provide more information, downloading the files in FITS format requires more

time, and does not fit the very large number of files used for the purpose of providing a

catalog. The JPG images do not allow photometry, but they are smaller than the FITS files

and provide information about the shape of the galaxy, which is the information required for

the morphological classification of the galaxies. As explained in Section 1.3.1, the training

of the neural network was done with images retrieved from Pan-STARRS, with the exact

same size and format as the images that were annotated.

1.3 Image analysis method

The filtering of the data described in Section 1.2 aims at removing objects that are not clean

galaxy images. That allows to reduce the number of images downloaded and classified in the

next step with the deep neural network. The removal of objects that are not galaxy images

also makes the neural network more accurate due to the higher consistency of the data it is

trained with.

To remove saturated images and images that have too few features to allow morphological

classification, two additional filters are used. The first filter finds the ratio of fully saturated

pixels (a grayscale value of 255 in the JPG image) to the total number of pixels and discards

the image if this ratio is higher than 15:1000. Since a high number of saturated pixels is not

4



expected in a clean galaxy image, the simple threshold of 1.5% is sufficient to identify and

reject saturated images that are not galaxy images. This step rejected 30,220 objects that

were identified as saturated.

The second filter uses the Otsu global threshold method39 to separate the image into

foreground and background pixels. If the number of foreground pixels is less than 1.8%

of the total image, the image is marked as having too few distinguishable features. This

filter rejected 375,107 galaxies that were identified as having too little foreground to allow

identification. Together, these filters removed 405,327 images (∼19%) from the data set. The

thresholds were determined experimentally by observing galaxy image samples. Table 1.1

shows examples of several objects that were filtered based on too few foreground pixels or

too many saturated pixels.

Table 1.1: Examples of images filtered for having too many saturated pixels or having too
few foreground pixels.

Image Saturated pixels (%) Foreground pixels (%)

6.1 10.7

13.5 21.7

30.9 34.9

0.06 1.4

0.16 1.1
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1.3.1 Primary classification

The classifier used for the purpose of annotating the galaxy images is a deep convolutional

neural network (DCNN) based on the LeNet-5 architecture40. To adjust the model for input

images of size 120×120 instead of 32×32, the kernel in the first convolutional layer was

changed from 5×5 with stride 1 to 10×10 with stride 2, and the filter in the first pooling

layer was similarly changed from 2×2 with stride 2 to 4×4 with stride 4. Each of the following

layers has identical hyperparameters except for the output layer, where the number of classes

is reduced from 10 to 2. The SoftMax output layer of the model provides a degree of certainty

for the annotations that allows controlling the size/accuracy trade-off of the catalog, as will

be discussed in Section 1.4.

Training samples were obtained using the debiased “superclean” Galaxy Zoo annotations.

“Superclean” objects are objects on which 95% or more of the annotators agreed on their

morphology with correction for the redshift bias15. That selection leads to a subset of very

consistent annotations15, but it also filters the vast majority of Galaxy Zoo objects that do

not satisfy these requirements. The Galaxy Zoo crowdsourcing campaign annotated SDSS

galaxies, which are imaged with a different instrument and image processing pipeline. Since

consistency between the training and test data is important in machine learning systems,

galaxies imaged by the SDSS cannot be safely used to train an artificial neural network

that classifies galaxies imaged by Pan-STARRS. To be able to classify Pan-STARRS images

effectively, the neural network needs to be trained with galaxies imaged by Pan-STARRS,

and processed through the same image processing pipeline. Although it has been shown

that neural networks trained with data from one telescope can be used to classify data from

other telescopes41, it has also been shown that the accuracy of such networks is inferior to

the accuracy of neural network trained and tested with data from the same instrument41.

In order to train the neural network with images from the same dataset it is expected

to annotate, the images of the galaxies annotated by Galaxy Zoo were retrieved from Pan-

STARRS. Pan-STARRS has a different footprint than the SDSS, so not all galaxies annotated

by Galaxy Zoo are also imaged by Pan-STARRS. However, 22,456 Galaxy Zoo galaxies with

6



“superclean” annotations were matched with galaxies in Pan-STARRS DR1 based on their

right ascension and declination (within difference of 0.0001 degrees). These images were

fetched from Pan-STARRS and were used for training the neural network.

Galaxy Zoo manual annotations have been shown in the past to be sensitive to the spin

direction of the galaxies42. To eliminate the possible effect of spin patterns, the training

set was augmented such that all galaxies were mirrored (i.e. reflected across the vertical

axis), and both the original and mirrored image of each galaxy were used in the training

set. That resulted in a training set of 31,564 spiral images and 13,348 elliptical images.

Mirroring the spiral galaxies ensures a symmetric dataset that is not biased by certain

preferences of the human volunteers who annotated the galaxies. That is, while mirroring the

images in the training set is often used when training deep neural networks for augmenting

the data and increasing the number of training samples, in this case it was also used to

produce a symmetric unbiased dataset. Mirroring of the elliptical galaxies was done to

ensure consistency in how the training data are handled, and avoid a situation in which

different classes are handled differently.

The classifier is implemented in Python 3 using TensorFlow and Keras. The model

was trained for 250 epochs on a 70% training subset and ended with 96% accuracy when

evaluated against the remaining 30% testing subset. Loss was computed using categorical

cross entropy, and stochastic gradient descent (SGD) was used as the optimizer. Various

activation functions including ReLU were tested with preliminary data and gave comparable

classification accuracy, but the tanh activation used by LeNet-5 had the highest and therefore

was used for the model. Classification on the total data set (excluding those removed by

the filtering step) labeled 904,550 images as elliptical galaxies and 757,640 images as spiral

galaxies.

1.3.2 Secondary Classification

Following the classification described in Section 1.3.1, the set of images predicted as spiral

was shown to contain a significant number of “ghosts”, or unclean images. The CNN classifier
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interpreted the unclean images as patterns of spiral features, leaving the elliptical predictions

relatively clean.

To remove these ghosts, we constructed a second deep CNN to separate them from the

true spirals. The architecture of this model is simpler than the first, using three convolutional

layers with filter sizes of 7×7×8, 5×5×32, and 3×3×64, ReLU activations, and a single

SoftMax output layer. Between the convolutional layers are max pooling layers that each

reduce the input dimensions by half. The model uses the Adam optimizer and categorical

cross entropy for loss.

For training, several hundred ghost images were initially selected from the set of galaxy

images that were mistakenly predicted as spirals, and an equal number of spiral galaxy images

were randomly selected from the original spiral training set. These images were divided into

70% training and 30% testing subsets as before. The model converged during training, and

the images originally labeled as spirals were further classified into true spirals and ghosts.

This process was repeated several times by selecting additional training images from those

labeled as “ghosts” until the size of the training set reached 4,000 images. The final iteration

of this classifier identified a total of 63,854 images as “ghosts” (∼ 7.8%), removing them from

the set of spiral galaxies.

1.4 Results

The application of the methods described in Section 1.3 to the Pan-STARRS images de-

scribed in Section 1.2 provided a catalog of 1,662,190 galaxies. The catalog is accessible

through a simple CSV file that can be downloaded at https://figshare.com/articles/

PanSTARRS_DR1_Broad_Morphology_Catalog/12081144. Each row in the catalog is a galaxy

and includes the Pan-STARRS object ID of the galaxy, its right ascension, declination, and

the probability of the galaxy to be spiral or elliptical as estimated by the SoftMax layer of

the CNN as described in Section 1.3. Figure 1.2 shows the number of galaxies available after

applying a threshold to the output of the SoftMax layer of the model.

The catalog includes 904,550 galaxies identified as elliptical and 757,640 identified as
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Figure 1.2: Number of spiral and elliptical galaxies remaining when keeping only those at or
above a certain model confidence.

spiral. It should be noted that the annotation of a galaxy as an elliptical galaxy means

that no spiral features were identified. However, the ability of an algorithm or a person to

identify spiral features largely depends on the ability of the optics to provide a detailed image.

Therefore, the identification of a galaxy as elliptical does not necessarily guarantee that the

galaxy does not have spiral features, but that the optics cannot identify such features43.

For instance, Table 1.2 shows examples of galaxies images by Pan-STARRS and the same

galaxies imaged by Hubble Space Telescope (HST). These galaxies do not have visible spiral

arms in Pan-STARRS, while the arms are clearly seen in the HST images.

1.4.1 Comparison to existing SDSS catalog

In the absence of a large manually annotated galaxy morphology catalog of Pan-STARRS

galaxies, the evaluation of the consistency of the annotations was done using annotations

of SDSS galaxies that were also imaged by Pan-STARRS. The largest catalog of broad

morphology of SDSS galaxies is Kuminski and Shamir (2016)30, with annotation of ∼ 3 · 106

galaxies. We will henceforth refer to this catalog as KS16. Although SDSS is a different sky
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Table 1.2: Galaxies imaged by both Pan-STARRS and HST. While the Pan-STARRS images
do not show clear spiral arms of the galaxies, HST shows that these galaxies are clearly spiral,
and the arms can be identified.

Coordinates Pan-STARRS HST

(150.165o, 1.588o)

(150.329o, 1.603o)

(149.951o, 1.966o)

survey, the footprint of SDSS overlaps with the footprint of Pan-STARRS. Since the KS16

catalog is large, it is expected that some galaxies in it will also be included in the catalog of

Pan-STARRS galaxies described in this paper.

To evaluate the catalog, the annotations were compared to the annotations of SDSS

galaxies in KS16 with a high degree of model confidence. Since the images of KS16 are

collected and processed by the SDSS pipeline, their object identifiers naturally do not match

the identifiers of Pan-STARRS objects. Therefore, the objects were matched by their coor-

dinates, with tolerance of 0.0001o to account for subtle differences in measurements between

the two telescopes. This produced 13,186 total matches with 1,961 having 90% or higher

confidence in the KS16 catalog. Figure 1.3 shows the degree of agreement between the an-

notations of the galaxies in our catalog and the annotations of the galaxies in KS16 with

high confidence level.

When comparing the accuracy of our catalog to the accuracy of KS16, their model was
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Figure 1.3: The proportion of predicted labels that, when restricted to a minimum confidence
threshold, agree with the annotations in KS16. For example, restricting our catalog to labels
with 90% confidence or higher results in approximately 98% agreement between the catalogs.

more accurate in identifying spiral galaxies, while the model used in our catalog was more

accurate in the identification of elliptical galaxies. The algorithm used in KS16 is a “shallow

learning” algorithm44, which is a different paradigm of machine learning compared to the

deep convolutional neural network used here. Shallow learning features such as textures and

fractals might better reflect spiral arms, and therefore increase the ability of the algorithm

to detect spiral galaxies. Elliptical galaxies are more consistent in shape than spiral galaxies,

which can increase the performance of deep convolutional neural networks as their accuracy

depends on the consistency of the images.

1.5 Conclusions

While digital sky surveys are capable of collecting and generating extremely large databases,

one of the obstacles in fully utilizing these data is the difficulty of automatic analysis. Image

data, and in particular images of extended objects, are more challenging to analyze due
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Table 1.3: Examples of images that were misclassified by the model.

Misclassified as Spiral Confidence Misclassified as Elliptical Confidence

0.518151 0.601767

0.561493 0.609336

0.594011 0.645543

0.767787 0.749332

0.911469 0.764789
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Table 1.4: Examples of images that were classified correctly by the model.

Classified as Spiral Confidence Classified as Elliptical Confidence

0.999981 0.999997

0.998815 0.879958

0.971841 0.756897

0.744608 0.678047

0.516342 0.563774
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to the complex nature of the object’s size and shape. Here we created a catalog of Pan-

STARRS galaxies classified by their broad morphology into elliptical and spiral galaxies.

The confidence in the predicted label provided by the SoftMax layer allows researchers to

select a subset of the catalog with higher quality annotations. The catalog is available

in the form of a CSV file at https://figshare.com/articles/PanSTARRS_DR1_Broad_

Morphology_Catalog/12081144.

As space-based missions such as Euclid and ground-based missions such as the Rubin

Observatory are expected to generate high volumes of astronomical image data, computa-

tional methods that can label and organize real-world astronomical images are expected to

become increasingly pivotal in astronomy research. Such methods can provide usable data

products at a rate far beyond traditional methods. While convolutional neural networks

have demonstrated their ability to classify galaxies by their morphology, a practical solu-

tion needs to handle noise, bad data, and inconsistencies that are typical to large real-world

datasets. As shown in this paper, the deep neural network alone may not be sufficient to

provide useful data products. Instead, a combination of several algorithms that complete a

full data analysis pipeline was needed. With the increasing robustness of such systems, it is

also expected that protocols that combine multiple neural networks and filtering algorithms

will be used to provide detailed morphological information.

The processing was done by first downloading the galaxy images to another server, and

the analysis of the data was done on that server. The reason for using that practice is because

the data analysis is based on solutions designed specifically for the task of galaxy annotation,

and not on “standard” tasks provided by common services such as CasJobs45. Although the

smaller JPG images were used, downloading all images still required a substantial amount

of time. Using the more informative FITS images would have increased the required time to

download the data by an order of magnitude, and analyzing data of much larger digital sky

surveys such as the Rubin observatory will become impractical using this practice. Therefore,

future surveys might provide users not merely with certain specific pre-designed tasks, but

might also allow processing time for user-designed programs to access the raw data without

the need to download it to a third-party server.
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Chapter 2

SVMnet: Non-parametric Image

Classification Based on Convolutional

Ensembles of Support Vector

Machines for Small Training Sets

This chapter was published in Goddard, H., Shamir, L., SVMnet: Non-parametric image

classification based on convolutional ensembles of support vector machines for small training

sets, IEEE Access, 10, 24029-24038. IEEE, 2022

2.1 Introduction

Deep convolutional neural networks (DCNNs) are powerful tools for multiple tasks of auto-

matic image analysis, demonstrating paramount success and consequently gaining substantial

popularity over the past decade. By analyzing the pixels directly, CNNs can be applied to

various types of image content without the need to develop task-specific algorithms, and can

easily be applied to a broad range of domains with excellent performance46.

One of the major weaknesses of modern DCNNs is their dependence on a large set
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of examples for training. Cutting-edge DCNNs can have hundreds of layers, each with

thousands of trainable parameters. For instance, the common ResNet-5047 contains over

2·106 artificial neurons. Therefore, to achieve meaningful performance and avoid overfitting,

DCNNs normally rely on relatively large training sets.

Training DCNNs normally requires large datasets of labeled ground truth images. Com-

monly used datasets include benchmarks such as ImageNet or the Modified National Institute

of Standards and Technology (MNIST) dataset of handwritten characters. These benchmark

datasets provide tens of thousands of images with high-quality annotations for training deep

CNNs, and are commonly used for testing their performance. However, in many cases of

real-world image classification problems, large datasets of clean, labeled ground truth are

not available.

For instance, in the biomedical domain machine learning is often used for the purpose

of image-based diagnostics48. However, the acquisition and annotation of each image can

require the use of costly medical instrumentation, technicians, and medical staff who can

annotate each sample manually49;50. Acquiring a single MRI image can take 30 minutes

or more of using the instrument, excluding the time required to prepare the subject. The

cost involved in the acquisition of such image is non-negligible. Even when using a quicker

and less expensive imaging such as x-rays, the annotation of the data normally requires two

or more trained experts, and the time they invest in the annotation is both expensive and

time-demanding. That bottleneck has substantial impact on the ability of researchers in the

medical domain to acquire large datasets.

Additionally, in the biomedical domain, human protection procedures and protocols are

required for the acquisition of each sample, making the preparation of large datasets less

practical. Therefore, biomedical image datasets are normally far smaller than the modern

datasets commonly used to train DCNNs such as MNIST or ImageNet. In some cases the

acquisition of images can involve substantial pre-processing, preparation of slides, staining,

and imaging of each slide51. That is often the case when performing histological analysis for

the purpose of diagnostics using machine learning52–54.

Rare cases can also make it difficult to acquire a suitable training set55. For instance,
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to prepare an image-based diagnostics system that can automatically detect a rare clinical

condition, a sufficiently large number of images of that rare case is required. In many cases,

even when the resources are not limited by neither time nor cost, a sufficiently large number

of cases is difficult to find.

Clearly, situations in which the dataset is small are not limited to the biomedical domain.

Scientific experiments that require annotated data are very often limited by the resources

required to annotate them. One of the solutions that the scientific community proposed is

the use of crowdsourcing56–58. By crowdsourcing, non-expert volunteers can help annotating

images or other data. With a large number of volunteers, the annotation of large datasets

becomes feasible, and the resulting annotated datasets can be used to train machine learning

systems. However, such crowdsourcing campaigns can take several years to complete59, and

are subjected to human error and human perceptional bias60. In many cases the annotation

requires an expert, and the task cannot therefore be performed by anonymous untrained

volunteers. In practice, experimentalists are often limited in their ability to utilize crowd-

sourcing for annotating a specific dataset.

The need for a large number of training samples is a practical downside of DCNNs, making

them difficult to use optimally in many real-world cases. A common solution to increasing

the size of the training set is data augmentation, in which different modifications of the

images in the original dataset can create more training samples. However, that strategy can

also lead to biases by overusing the same examples. In some cases transfer learning can be

used to fine-tune neural networks using pre-trained models. Transfer learning is a proven

tool to reduce the required training set size, but for domains with very small datasets for

fine-tuning, the pre-trained models may remain too sensitive to their original task.

The problem of small training sets has been addressed in the past by using previous

knowledge for few-shot training55 and even one-shot training61–65. These methods reduce

the number of required samples dramatically to as low as just one, but also require prior

knowledge that is not necessarily available in all cases. Other related solutions include 3-D

octave convolution with the spatial-spectral attention network66 or deep attention graphs67

for the problem of hyperspectral image classification.
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This paper explores a new form of non-parametric image classification in cases when the

number of samples is limited. Based on an ensemble composition of support vector machines

(SVMs), the method can work with no prior knowledge, in a similar manner to “standard”

supervised machine learning. Inspired by CNN architecture, SVMnet utilizes a large number

of small SVMs to quickly analyze image patches, structured in layers that allow for stacking

or custom ensemble techniques. An SVM68 is less sensitive to high-dimensionality feature

spaces69–71, and can learn from a relatively small number of training samples72–75 compared

to other supervised machine learning approaches.

The primary advantage of the proposed method is that it outperforms the common

DCNN architectures in cases when the number of labeled training images is small. As

discussed above, such cases are not uncommon in real-world settings. Another advantage of

the method is its much shorter training time compared to the time required to train deep

neural networks.

2.2 Architecture of SVMnet

The proposed SVMnet architecture is designed as a stacked ensemble of numerous simple

SVM classifiers organized into one or more layers. Each layer is an array of SVMs which

functions similarly to a convolutional layer in a CNN. Each SVM in a layer is independent and

all are assigned an equal-sized patch of the layer’s input, referred to as a window. Variable

stride length and padding, as described in Chapter 2 of76, are specified as hyperparameters.

Each input to the following layer is the output of one SVM.

When a layer is evaluated, each SVM in the layer is trained on ground truth labels. The

input to the SVM is the flattened portion of each input image that is within the SVM’s

window. Each pixel channel within the window is essentially treated as one input feature.

For instance, a 5 × 5 window would create a 25-feature SVM for grayscale input and a 75-

feature SVM for 3-channel RGB input. During this step, the SVMs may be given weights

based on the accuracy of the fit, used for ensemble classification. Each SVM then predicts

a class label or a vector of class probabilities for its window of each input, creating an input
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tensor for the next layer.

Fig. 2.1 shows a simple layer in SVMnet. Each node in the layer is one SVM, trained

using the ground truth labels for the input samples. The weights are determined based on

the classification accuracy of the SVM compared to the ground truth of the training set.

The weight function is configurable and will be described later in this Section.

Figure 2.1: Example of a simple weighted layer of SVMnet. Each node in the layer is an
SVM, trained with a subset of the inputs (pixels). Weight outputs are optional for a given
layer.

To produce one class label for each input, SVMnet may perform a weighted vote after

the final layer. This vote combines the results of the final layer by treating each value as a

vote for that class label. If the final layer is weighted, these are used to weigh the votes in

favor of SVMs with higher accuracy.

Sc = Σiη(Ai)[Pi = c] (2.1)

The total voting score Sc of each class c is calculated by (2.1), where Ai is the accuracy

score of SVM i in the final layer, η is the weight function, and Pi is the class label predicted

by SVM i. That is, if the predicted label Pi of SVM i is class c, the weighted score η(Ai) is

added to the vote for that class. The weight function emphasizes the predictions of the SVMs

with higher accuracy during training. The class that has the highest score Sc is chosen as

the predicted label by the model for the given sample. The weight function η is configurable
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and in our experiments is defined as η(x) = x2, where x is the classification accuracy of the

SVM determined during training.

While the layers support arbitrary estimators, here we use only support vector machines

(SVM), hence the name SVMnet. The SVMs are trained with a Radial Basis Function (RBF)

kernel77 and scaling gamma value, and they continue to iterate until convergence with a 0.001

tolerance. The ability to choose different estimators in each layer can be compared to the

ability to use different activation functions in the layers of neural networks.

Fig. 2.2 illustrates one possible two-layer SVMnet architecture. Each SVM in the first

layer analyzes a specific patch of each image and is fitted independently against ground truth

labels. These SVMs then produce a vector of class probabilities for the same pixel region

which forms the input matrix for the following layer. The SVMs in the second layer are fitted

on a region of these probabilities and predict a class label for the image. These labels are

then tallied in a final vote to produce one label for the input. The motivation for multiple

layers is that layers after the first can in essence learn which of the SVMs in their window

are more accurate or ”trustworthy”, as their predictions are being compared to ground truth

labels in each layer.

Figure 2.2: Example SVMnet architecture containing two SVM layers (in green) and a class
label vote. Each SVM is trained on a patch of the layer’s input. An n × m SVM layer
produces n×m× d output (d ≥ 1).
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2.2.1 Dropout

Not every patch is expected to produce a well-informed SVM. Some regions of the images,

particularly towards the edge, often lack the details necessary to distinguish samples from

each other. This can cause the outputs of these SVMs to act as noise in a vote tally. Even

with the expected low accuracy score of the SVM depressing the weight of its vote, if the

low-information regions are large then enough inaccurate votes may overwhelm the more

accurate votes. To help prevent this, a dropout system is implemented for the vote tally.

When using dropout, which SVMs to drop are calculated when fitting SVMnet. First,

the SVMs are ordered from the highest weight to the lowest. Votes are then cumulatively

tallied one SVM at a time with the accuracy of the votes measured between each tally.

SVMnet then finds the global maximum accuracy of the cumulative tally. This marks the

point where including the votes of the less-accurate SVMs lowers the overall accuracy of the

tally, so those SVMs are marked for dropout and are not included in the final vote. When

the model is used to make predictions, the vote will only include the outputs of the SVMs

that contributed to the most accurate tally.

In most cases during testing, automatic dropout resulted in equal or better performance

than without dropout, as the least informative regions of the image were ignored. However,

as with all hyperparameters, performance sometimes decreased and required fine-tuning. In

each of the experiments described in Section 2.3, the SVMnet model presented is the one

with the highest-performing hyperparameters among the combinations tested.

2.2.2 Formal definition of SVMnet

SVMnet can be defined formally as a 4-tuple as shown by Equation 2.2:

SVMnet = (T,C, S0,Φ), (2.2)

where T is the topology of the network, C is the initial constants, So is the initial state of

the network, and Φ is the set of SVM classifiers. The components that make the SVMnet
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are defined by Equation 2.3.

T = (V,E)

C = {W,Θ}

S0 = {ψi}

Φ = {(Ξi, γi, Ci)}

(2.3)

The topology T = (V,E) reflects the structure of the network, where V is the nodes and

E is a set of connections Ei,j between the nodes Vi → Vj, where Vi and Vj are two connected

nodes. A pair of nodes Vi, Vj ∈ V can have one or zero connections between them. Like in

artificial neural networks, the topology T = (V,E) determines the number of layers, number

of nodes per layer, and the kernel size.

The constants C include the thresholds W , which are the threshold values used for

ignoring the output of an SVM classifier as explained in Section 2.2.1. Each connection Ei,j

between two nodes is assigned with a threshold Wi,j, which determines whether the output

of the SVM node i is used as an input to SVM node j. Unlike neural networks, in SVMnet

these threshold values are constants, as they are not changed during training. Whether

these threshold values impact the analysis depends on the consistency of the input, such

that an inconsistent SVM node is ignored if its consistency observed using the ground truth

training data does not meet the threshold. The use of these thresholds is explained in detail

in Section 2.2.1. Another constant is Θ, which is the number of classes.

The initial status of the network S0 is a collection of SVM hyperplanes ψ, such that the

hyperplane ψi is the initial hyperplane of the SVM in node i. The hyperplanes are changed

during the training of the SVMnet, as the SVMs learn from the data.

The set of SVM classifiers Φ is defined by {(Ξi, γi, Ci)}, such that each SVM classifier

Φi is defined by its kernel Ξi, its gamma parameter γi, and its C parameter Ci. In the

implementation shown in this paper all SVMs are defined by the same parameters, but other

implementations are also possible in which different SVMs have different kernels or other

parameters.
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2.3 Experimental Results

To test the efficacy of SVMnet compared to a “conventional” CNN, several experiments

were performed using common, relatively small datasets. The purpose of SVMnet is not to

outperform CNNs in the general case, but to achieve higher accuracy when the number of

labeled training images is limited. Therefore, the experiments were made with different sizes

of training sets to compare the classification accuracy as the training set increases.

The performance of the SVMnet was compared to the performance of residual network,

or ResNet, models with 18, 34, and 50 layers47. ResNet is a powerful architecture that

was designed to reduce the number of required training samples for deep learning tasks

and has demonstrated excellent efficacy in image classification. Each ResNet model was

compared when trained from scratch and when fine-tuned using pretrained ImageNet weights.

Following the practice in47, the final convolutional layer is followed by a global average

pooling layer, then by a single fully-connected layer with softmax activation and as many

units as class labels in the respective task. Models were trained using stochastic gradient

descent (SGD) optimization with a linearly decaying learning rate (given by 0.999(1−s/2)+

0.001 where s is the training step) and Nesterov momentum of 0.9. The models were trained

for a maximum of 200 epochs but were stopped early if the loss on the validation dataset

did not improve by at least 0.01 over 20 epochs. The number of epochs is limited in order to

keep the ResNet training times comparable to SVMnet. The resulting accuracy and training

time for each model was averaged over 5 repetitions of each experiment.

While the height and width of inputs can be adjusted for ResNet, the architecture always

expects 3-channel RGB color images. Grayscale images were modified for use by ResNet by

duplicating the pixel values into three equal channels. This approach was used in Sec-

tion 2.3.3 and Section 2.3.4. Before training and classification by ResNet, images were also

passed through a preprocessing filter provided by the Keras library to prepare the data

for ResNet models. All inputs were normalized by dividing by the mean and subtracting

the variance before being used to train SVMnet. For RGB color inputs, the images were

normalized per-channel.
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All experiments and analysis presented in this section used the same hardware environ-

ment. SVMnet was parallelized across 16 cores of Intel Xeon Gold 6130 CPUs, and ResNet

models were trained on an nVidia GeForce GTX 2080 GPU.

2.3.1 COIL-100 Object Recognition

Columbia Object Image Library (COIL-100) is a common dataset used for basic object

recognition78. It contains RGB color images of 100 different objects, each photographed

72 times at 5◦ increments about the vertical axis. Background details were removed in all

images and the objects are centered and enlarged to fill the frame. Some objects contained

in this dataset include coffee mugs, small toy cars, and various fruits and vegetables.

The SVMnet in this experiment used one layer with a 25× 25 window (giving each SVM

1875 input features) and a stride length of 7, followed by a weighted vote with dropout. The

SVMnet and ResNet models were fitted with 100-500 training images in increments of 100,

each controlled to have an equal number of samples for each object. A separate subset of

200 images was used as validation data for ResNet models.

Fig. 2.3 shows the results of this experiment. When fitted on the smallest training set,

containing only one example per object, SVMnet correctly predicted labels for over 60% of the

remaining images. With the same training set, ResNet-50 showed about the same accuracy

and only pretrained ResNet-34 exceeded SVMnet; however, SVMnet was significantly faster

to train in all cases.

2.3.2 Imagenette

Imagenette is a fairly small, 10-class subset of the ImageNet dataset79. Several versions of

this dataset exist; here we use version 2 of the 160 px dataset with noiseless labels. Many of

these images are rectangular with their shortest side scaled to 160 px. In this experiment, we

symmetrically zero-pad each image along its shorter axis to make it square, then downscale

the images to have the same dimensions of 160 × 160 px.

The SVMnet used here contains one layer with a window size of 22 and stride length
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Figure 2.3: Test-set accuracy (left) and training time (right) of SVMnet and ResNet on
COIL-100 images when fitted with different training set sizes.

7, followed by a weighted vote with no dropout. Imagenette is pre-divided into training

and testing subsets containing 9,469 and 3,925 images, respectively. Models were trained

using 20, 40, 80, 160, and 320 images from the provided training set and evaluated using

the provided testing set. An additional 100 images were selected from the training set as

validation data for the ResNet models.

Fig. 2.4 shows the results of this experiment. SVMnet achieved higher accuracy than all

ResNet models for all training sets except the largest, where the ResNet-50 model pretrained

with ImageNet weights improved drastically. The generally low accuracy of these models

could be explained by the method used to conform each image to the same dimensions, which

introduces a significant amount of empty space in many images. However, even under these

conditions, SVMnet attained the highest accuracy in the least time for the smaller training

sets.

2.3.3 COVID-19 Radiography

During the COVID-19 pandemic, machine learning techniques have been applied to various

kinds of data to assist the medical community in making accurate diagnoses80–82. During

the early stages of a disease outbreak, diagnostic data is expected to be limited or sparse,

making it difficult to train most kinds of machine learning models. A type of model capable
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Figure 2.4: Test-set accuracy (left) and training time (right) of SVMnet and ResNet on
Imagenette when fitted with different training set sizes.

of learning from a small number of samples would be the most effective in this time frame.

Here we apply SVMnet to a database of chest x-ray images from healthy patients and

patients diagnosed with COVID-1983;84. In this experiment, only the images labeled as

”Normal” and ”COVID” are used. Images were downscaled to 128 × 128 pixels (approx.

43% of the original size). An equal number of images were selected from each class, totaling

7232 samples. Models were fitted with 10, 20, 50, 100, and 200 training samples, with 50

separate images used as validation data for the ResNet models. The SVMnet uses two layers:

the first with window size 19, stride 7, and class probability outputs; the second with window

size 5 and stride 5, followed by an unweighted vote. During the architecture experiments

described in Section 2.3.7, the 2-layer SVMnet was shown to outperform the 1-layer models

for this dataset.

Fig. 2.5 shows the results of this experiment. SVMnet was able to correctly label between

64% and 78% of unseen x-rays depending on the number of training samples, but most ResNet

models failed to make significantly accurate predictions. Only the 18- and 34-layer ResNet

models trained from scratch approached the accuracy of SVMnet. Additionally, SVMnet

was several times faster to train.
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Figure 2.5: Test-set accuracy (left) and training time (left) of SVMnet and ResNet on
COVID-19 chest x-ray images when fitted with different training set sizes. The accuracy of
the ResNet models displays considerable overlap.

2.3.4 Astronomical image data

To test the performance of SVMnet on a current real-world image classification problem, a

dataset of galaxy images from the Panoramic Survey Telescope and Rapid Response System

(Pan-STARRS) was used. The dataset is made of galaxies separated into elliptical and

spiral morphology. The galaxy images were taken from the catalog of Pan-STARRS galaxies

classified by their morphological type85.

An equal number of images were selected of each morphological type, totaling 26,732

samples. Each image is grayscale and has a dimension of 120×120 px. SVMnet and ResNet

models were fitted with 10, 20, 40, 80, 160, and 320 training samples, with 200 separate

images used as validation data for the ResNet models. The SVMnet uses one layer with a

window size of 22 and stride 5, followed by a weighted vote with dropout.

Fig. 2.6 shows the results of this experiment. As the graph shows, SVMnet outperformed

almost every ResNet model when trained with a relatively small dataset. The models gen-

erally improve as the training set grows, with several ResNets slightly overtaking SVMnet

with the largest training set. In all cases, SVMnet finished training many times faster than

all ResNet models.
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Figure 2.6: Test-set accuracy (left) and training time (right) of SVMnet and ResNet on
Pan-STARRS galaxy images when fitted with different training set sizes.

2.3.5 WND-CHARM

To test a ”traditional” approach of using an SVM after extracting image features, we used

the WND-CHARM open source feature set44 combined with an SVM with linear kernel im-

plemented through SVMLib. Table 2.1 compares the test set accuracy of WND-CHARM and

SVMnet using the experimental datasets described earlier in this Section. WND-CHARM

was trained on equal sized training subsets and consistently showed lower classification ac-

curacy than SVMnet under the same conditions.

2.3.6 Computational complexity

The complexity of fitting an SVM is asymptotic and polynomial. For a training set con-

taining n samples, the algorithm is dominated by either an n2 term or an n3 term based

on the formulation of the problem86. Therefore, training a large number of SVMs can be

a computationally demanding task, and can lead to substantial computational complexity

during training.

The number of SVMs N in a layer receiving rectangular input with width Ix and height Iy

is given by (2.4). The window size W (equivalent to the kernel size in other CNN literature),

stride length S, and padding amount P in their respective dimensions follow from standard

28



Table 2.1: Comparison of the classification accuracy of WND-CHARM and SVMnet when
trained on a small number of samples from four datasets.

COIL-100
WND-CHARM SVMnet

100 54% 62%
200 59% 70%
300 61% 75%
400 64% 78%

Imagenette
WND-CHARM SVMnet

20 11% 16%
40 13% 19%
80 16% 24%
160 18% 26%
320 21% 31%

COVID-19
WND-CHARM SVMnet

10 53% 64%
20 55% 69%
50 60% 71%
100 64% 77%
200 66% 78%

Pan-STARRS
WND-CHARM SVMnet

10 52% 71%
20 56% 79%
40 61% 77%
80 63% 90%
160 72% 91%
320 88% 91%

convolutional arithmetic. When using a square window on square input, the formula can be

simplified to (2.5).

N =

(
Ix + 2Px −Wx

Sx

+ 1

)
·
(
Iy + 2Py −Wy

Sy

+ 1

)
(2.4)

N =

(
I + 2P −W

S
+ 1

)2

(2.5)

Fitting a layer in SVMnet requires fitting N SVMs - a polynomial time operation. If

the layer includes weights, then the SVMs must predict a class label for each input during

the fit step, which scales linearly with the number of samples n. When using dropout as

described in Section 2.2.1, SVMnet performs an additional step during training that scales

linearly with n. Thus, fitting SVMnet is dominated by the polynomial fit time of the SVMs.

This relationship can be observed experimentally in Fig. 2.8.

CNNs can theoretically be trained infinitely, but there is a definitive point at which the

SVMs within SVMnet converge. This places a soft upper bound on the training time of
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SVMnet based on the tolerance parameter of the SVMs. Additionally, a firm upper bound

may be placed on the number of iterations of the SVM algorithm, allowing for a shortened

training time at the expense of some accuracy.

SVMnet trains multiple SVMs simultaneously using process-based parallelism and shared

memory, greatly increasing its speed on typical multicore computers with minimal overhead.

While this allows SVMnet to run quite easily on relatively inexpensive systems, the potential

performance gain from extra hardware is minimal compared to the extreme optimization of

CNNs for GPU devices.

While the training of SVMnet is slower than CNNs when the size of the training set

becomes relatively large, SVMnet is designed for situations in which the size of the training

set is small. Therefore, the computational complexity of the training is not expected to

introduce a major obstacle in many real-world cases where the size of the training set is

limited, and the time required for training does not necessarily explode to an unmanageable

response time in the situations where SVMnet is most effective.

Inference time of image classification

Predicting a single class label of an image using SVMnet typically requires a large number

of individual SVMs to predict a label followed by a vote tally. Despite its affinity for paral-

lelization, this process is expected to take longer than the highly optimized matrix operations

of a CNN. Table 2.2 compares the inference time of SVMnet and ResNet on images in the

COIL-100 dataset.

Table 2.2: Comparison of the response time (in seconds) of SVMnet and ResNet to predict
class labels for 1, 10, 100, and 1000 samples of the COIL-100 dataset.

1 10 100 1000
SVMnet 2.36 2.66 3.81 24.2
ResNet-18 0.054 0.056 0.082 0.296
ResNet-34 0.060 0.060 0.098 0.410
ResNet-50 0.061 0.064 0.106 0.515

The comparison shows that SVMnet is significantly slower than ResNet for classifying

samples, but the speed of classification is still practical for many real-world systems. The
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parallelization of SVMnet greatly reduces the time needed to make predictions, but the

overhead of shared memory operations is significant in the case of few samples.

2.3.7 Architecture Comparison

As with CNNs, SVMnet can be configured into a variety of architectures which are expected

to differ in performance depending on the classification task. Due to the high number of

possible models, determining which is the most effective for a single task is non-trivial. In

this section we show how a variety of SVMnet configurations were tested on the COIL-100

dataset to inform the choice of model used in Section 2.3.1. Similar methods were used to

select the models for other datasets. SVMnet models with multiple layers were tested in the

same manner.

Figure 2.7: Prediction accuracy of one-layer SVMnet architectures fitted to COIL-100. Each
group of three box plots represents the same window size with stride length 3, 5, and 7,
respectively. Each box plot shows the distribution in model accuracy when using five training
sets of 200-1000 examples.

Fig. 2.7 shows how the performance of a one-layer SVMnet changes with the window

size, stride length, voting method, and number of training samples when fitted to COIL-100.

Prediction accuracy improves in all cases as the window size increases but with diminishing

returns. Increasing the stride length tends to lower accuracy when the window is small but

incurs little to no penalty when the window is large. When the vote of an SVM is weighted,

model accuracy improves in all cases compared to an unweighted vote; performance increases
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further when using dropout as described in Section 2.2.1. This effect is more significant when

the window size is small.

Fig. 2.8 shows how the time required to fit SVMnet on COIL-100 changes with the

number of SVMs (see Equation 2.5) and the number of features for each SVM (in this case

equal to 3W 2). Since increasing the stride length significantly reduces the number of SVMs

in the model, an SVMnet with large windows can still be trained quickly with only a minor

increase in stride without sacrificing accuracy. Each SVMnet in this experiment was trained

in parallel using 16 CPUs.

Figure 2.8: Training times for one-layer SVMnet architectures fitted to COIL-100.

2.4 Conclusions

Deep convolutional neural networks provide excellent performance in automatic classification

of image data while eliminating the need to develop and tailor algorithms for specific image

classification problems. With the availability of open source libraries, DCNNs have become

the de facto first solution to image classification.

Here we explore one of the primary weaknesses of DCNNs, which is the need of a relatively

high number of labeled “ground truth” samples for effective training of the network. While

in computer science literature DCNNs are often tested on relatively large datasets such as

MNIST or ImageNet, in many real-world problems a very large number of clean labeled
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samples that can be used for training is not available.

Medical datasets such as those prepared for the purpose of image-based diagnostics are

difficult to prepare due to the long time required to assign a sample with a correct label50,

consequently leading to a high cost. Additionally, acquiring a radiograph can also require

substantial resources, as medical image acquisition systems such as Magnetic Resonance

Imaging (MRI) require expensive instrumentation and staff. Furthermore, the consent of

the patient is required for the preparation of each sample. These limitations make large

datasets of biomedical images substantially more expensive and difficult to prepare.

In many other cases labeled training samples are not available. For instance, when

analyzing archaeological artifacts, the number of training samples is limited by the number

of available artifacts, which is often a hard limit that cannot be easily changed. A typical size

of such datasets is normally several hundred samples87. Using computer vision to analyze

art88 is limited by the number of paintings each artists created, which can be a firm limit,

especially when the painter is no longer alive. These are obviously just a few examples out

of many possible real-world situations in which the number of labeled samples is inherently

small.

SVMnet aims at providing an effective solution for the numerous real-world situations in

which the number of labeled image samples that can be used for training is limited. SVMnet

utilizes the ability of an SVM to learn from a smaller number of samples compared to other

machine learning approaches. The flexible structure of SVMnet allows it to learn directly

from the pixel values, and to utilize different layers that correspond to the convolutional and

fully connected layers in “conventional” deep neural networks.

Like DCNNs, SVMnet does not require the design of specific algorithms for a particular

image classification problem. Therefore, SVMnet can be used for a variety of image data,

as also demonstrated in Section 2.3. The proposed approach is structured as a network to

take advantage of the stronger signal from neighboring pixels, similar to the core idea in the

basis of CNNs. SVMs are known for their ability to learn quickly from relatively few training

samples. By training many SVMs on small pixel regions across an image, this quick learning

can be leveraged to extract much information from small sets of images in less time than it
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would take to fully train a deep neural network.

Complexity analysis shows that the training time for SVMnet scales more quickly with

the number of input samples than DCNNs, suggesting that SVMnet might take substantial

computational resources when trained using large datasets. However, SVMnet is designed for

situations in which the labeled training set is relatively small. As shown in our experiments,

the training time might not be a practical obstacle in many real-world situations in which

SVMnet can be used. While computing is an available resource, and training SVMnet with

a few hundred training samples scales with reasonable efficiency, clean annotations or rare

training samples might in many cases be much more difficult to obtain.

The underlying structure used to create SVMnet is very flexible, providing several avenues

for future work. For example, other kinds of machine learning algorithms can be used as sub-

classifiers rather than solely SVMs. Constructing the layers with classifiers such as random

forests or logistic regression may result in better performance for some datasets. These layers

can be mixed in the same model as well, i.e. using one layer of SVMs followed by a layer of

random forests, or using some combination of sub-classifiers in the same layer. Furthermore,

there is much room for improvement in hyperparameter optimization. There is nothing

constraining the sub-classifiers in a single layer to the same hyperparameter initialization,

meaning that the optimization space for tuning the hyperparameters is much larger than

in other kinds of machine learning models. Different methods for determining a class label

from the output of a layer should also be considered, such as combining SVMnet with the

proven efficacy of neural networks by using a multi-layer perceptron as a classification head.

SVMnet is not designed to become a general solution that can outperform deep convolu-

tional neural networks such as ResNet-50. However, experimental results show that it is an

effective solution for cases in which the number of labeled training samples is small. Since

such cases are not rare, SVMnet can complement conventional machine learning methods

by providing image classification in the cases where not many labeled training samples are

available.
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Chapter 3

Machine Learning and Neural

Network Bias in Analysis of

Photometric Data

This chapter was published in Goddard, H., Shamir, L., Neural network bias in analysis

of galaxy photometry data, 18th IEEE International Conference on eScience. IEEE, pp.

407-408, 2022. and Goddard, H., Shamir, L., Machine learning bias and the annotation of

large databases of astronomical objects, XXXII Astronomical Data Analysis Software and

Systems (ADASS), 2022

3.1 Introduction

The information era has made a revolutionary impact on astronomy research. For in-

stance, autonomous digital sky surveys have enabled the collection of very large astro-

nomical databases, enabling unprecedented discovery power1;89, and that trend is bound

to continue2;3;90.

Perhaps the primary data collected by autonomous digital sky surveys are the images

of astronomical objects and their photometric information. For instance, the Panoramic
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Survey Telescope and Rapid Response System4;5 collected images and photometry data for

over 1 billion astronomical objects. The Sloan Digital Sky Survey91 has collected image and

photometry information about an equivalent number of astronomical objects, and provided

data that enabled more than 105 scientific papers1. While the Sloan Digital Sky Survey

(SDSS) is a powerful sky survey, the Vera Rubin Observatory will collect an equivalent

amount of data collected to date by SDSS once every three days. That is added to high-

throughput space missions such as Euclid, also generating vast pipelines of data.

One of the primary outcomes of the data collected by digital sky surveys is the pho-

tometry data. Photometry data for each astronomical object includes its location, and

measurements such as its color, brightness, shape, size, and more, based on the design of

each specific photometric pipeline. Many photometric pipelines also add certain analysis of

the data to provide useful information to the user. An example of such analysis is whether an

astronomical object is a point source (e.g., a star) or an extended source (e.g., a galaxy) by

applying a star/galaxy separation algorithm92–95, normally to the photometry data. While

that separation is not necessarily fully accurate in all cases, it provides useful information

that can assist in obtaining better analysis without requiring the users of the data to apply

the algorithms themselves.

Due to the very large amounts of data collected by modern autonomous digital sky sur-

veys, manual analysis of these data becomes impractical, and automatic analysis is required.

Given the complexity and high-dimensionality of the data, one of the common ways to ap-

proach the analysis of astronomical data is machine learning. By using existing supervised

machine learning algorithms, researchers can annotate merely a small part of the data, and

apply the algorithms to analyze large datasets by allowing the machine learning algorithm

to extract complex rules driven by the data it was trained with.

One of the common uses of machine learning in astronomy is the photometric redshift,

and numerous methods for photometric redshift have been proposed and used96–99. By using

photometry information, the redshift of a certain extra-galactic object can be approximated

to a certain degree of accuracy. That allows to determine the approximate distance of a

1https://www.sdss.org/science/
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large number of objects without the need to analyze their spectra. While the photometric

redshift is far faster than measuring the spectra, and can therefore scale to large astronomical

databases, photometric redshift is not accurate, and it has been proposed that it can be

biased100–104.

Another common use of machine learning in the context of autonomous digital sky surveys

is the automatic annotation of astronomical images. As autonomous telescopes can image

millions or even billions of astronomical objects, machine learning algorithms can be used

to annotate these objects automatically and determine their morphology or astronomical

nature23;105–114. While these machine learning methods are becoming increasingly more

common, deep neural networks have been shown to be subjected to biases112;113;115–117, and

certain bias has also been reported for astronomical images118. The purpose of this study is

to test the existence of possible biases when using machine learning analysis of photometry

data.

Data products generated using machine learning, and particularly deep learning, are

common in astronomy119. These catalogs are often used by cosmologists, for example, to

analyze the large-scale structure of the Universe. However, these researchers may be using

these catalogs without being fully aware of the biases that can be present in the machine

learning models used to produce them, which may be due to the perception that computers

are more objective or trustworthy than human analysis. Machine learning models may

carry forward biases present in their training data or learn improper patterns from noise

in measurements120. The methods used to train a model may also introduce biases as a

result of trade-offs between desirable properties and the target heuristic used to measure

performance121. We hope to raise awareness of these issues and demonstrate the subtlety

and unintuitive nature of machine learning bias.

3.2 Data

In this study, photometric data from two major digital sky surveys were used: the Sloan

Digital Sky Survey (SDSS) and the Panoramic Survey Telescope and Rapid Response System
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(Pan-STARRS). The data includes photometric information for objects that were identified

as galaxies, and separated into spiral and elliptical classes. The morphological labels were

taken from previous catalogs, including Kuminski and Shamir (2016)122 for SDSS annotations

and Goddard and Shamir (2020)85 for Pan-STARRS annotations.

Both catalogs provide a level of certainty for the correctness of each label. To ensure

that the data includes just clear annotations, SDSS galaxies were retrieved from data release

17 and limited to those whose morphology annotations had a confidence of at least 90%,

while Pan-STARRS galaxies were retrieved from data release 1 with a minimum annotation

confidence of 95%. These thresholds provide datasets with agreement of more than 98%

compared to manual analysis122.

The SDSS records photometric measurements for the u, g, r, i, and z bands, while Pan-

STARRS uses the g, r, i, z, and y bands. Color features can be obtained by taking the

difference of values in adjacent bands (subtracting the longer wavelength from the shorter

one), such as g − r and r − i. We compute these color features for the exponential, de Vau-

couleurs, and Petrosian profiles in both datasets to use as inputs for our neural networks. In

addition, we include the r-band magnitude and radius for each profile, as well as the radii

containing 50% and 90% of the Petrosian flux. The resulting 20 features are summarized in

Table 3.1.

Table 3.1: Feature vector summary for SDSS and Pan-STARRS datasets.

Profile SDSS Pan-STARRS
u− g color
g − r color g − r color

Exponential r − i color r − i color
de Vaucouleurs i− z color i− z color

Petrosian z − y color
r-band magnitude r-band magnitude
r-band radius r-band radius

Petrosian
r-band radius containing 50% flux
r-band radius containing 90% flux

Our SDSS data correspond to entries in the Galaxy view of DR17 with the clean pho-

tometry flag set and no missing/placeholder values (i.e. −9999) for fields used in our feature
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vector. After applying the 90% annotation confidence threshold, we are left with 247,427

galaxies, of which 126,110 are labeled as elliptical and 121,317 as spiral. Figure 3.1 shows

the magnitude distribution of our SDSS dataset. Our Pan-STARRS dataset was collected

in a similar manner from DR1 with the primaryDetection flag set. After filtering rows with

missing values or annotation confidence below 95%, the dataset contains 991,518 galaxies

with 549,292 labeled as elliptical and 442,226 as spiral. The magnitude distribution for our

Pan-STARRS dataset is shown in Figure 3.2.

Figure 3.1: Histogram of SDSS galaxy magnitudes by morphological class.

3.3 Methodology

The application of neural networks to real-world problems relies on the ability of the trained

network to properly generalize to unseen data. One of the ways this can fail is if the data used

to train the model contains an underlying bias that distinguishes it in some way from other

samples. The high complexity of neural networks enables them to recognize subtle features

and patterns that are effectively invisible to human analysis, allowing biases to “sneak in”

to even professionally curated training datasets116;123.

In each experiment, we begin by programmatically determining a neural network archi-

tecture. Networks are assembled with one to four layers with each layer having either 16,
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Figure 3.2: Histogram of Pan-STARRS galaxy magnitudes by morphological class.

32, 48, or 64 artificial neurons, creating 340 different architectures with varying width and

depth. Each layer uses the rectified linear unit (ReLU) activation function and is strongly

regularized with dropout124 at a rate of 20% in the first layer and 50% in subsequent hidden

layers. At the end of every model is a 2-neuron softmax output layer, corresponding to the

two morphological classes in our datasets.

A random selection of 4 · 104 galaxies, divided into 3 · 104 for training and 1 · 104 for

testing, is used to evaluate each candidate architecture. Spiral and elliptical morphological

classes are represented equally in both the training set and the test set. The neural networks

are trained for 100 epochs with 20% of the training set reserved for validation, a batch size

of 100, and Adam optimization125. The architecture of the trained model that achieves the

highest accuracy on the test set is used in all later stages of each experiment.

After selecting a network architecture, we analyze how the choice of training set affects

the accuracy and distribution of predicted class labels. The dataset is divided into distinct

sources from which training and testing data are sampled. Several neural networks are

trained with different combinations of these sources (e.g. spiral galaxies from source A and

elliptical galaxies from source B) and evaluated using a disjoint test set from each source.

When a neural network is trained using data all from one source, we use that model’s

predictions for the test set from the same source as a baseline to compare the other models
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to. We refer to these predictions as homogeneous annotations, and they are assumed to be

the least affected by biases caused by the choice of training set.

In Section 3.4, the predictions of the trained models are compared using the binomial

test with the null hypothesis that the change in training set should not significantly alter the

distribution of the model’s annotations. That assumption is based on the fact that the data

are taken from the same survey and that the annotations are taken from the same catalog.

For each set of homogeneous annotations and morphological class, the expected probability

of a correct annotation is the number of true labels for that class divided by the size of the

test set. Then, for each model with a different training set, the number of true labels for that

class predicted by that model is used as the observed number of successes for the binomial

test. This method allows to take into account both the accuracy and class distribution of the

generated annotations. We report the two-tailed p-value for each of these tests. A numerical

example of this process is given in Section 3.4.1.

3.4 Generalizing to Different Areas of the Sky

Assuming that the Universe is homogeneous and isotropic, the distribution of spiral and

elliptical galaxies as observed from Earth is expected to be the same regardless of the di-

rection of observation. Here we test whether the part of the sky from which the training

set is acquired can lead to unexpected differences in the distribution of elliptical and spiral

galaxies in a catalog prepared by annotating the galaxies with an artificial neural network.

We select galaxies for this experiment from regions of the sky based on three large constel-

lations - Virgo, Hercules, and Cetus. The size and general position of these constellations126

are described in Table 3.2. These constellations were chosen due to being approximately

the same size, for containing a significant number of galaxies in both datasets, and for their

positions relative to each other. Virgo and Hercules are located close together, being in

quadrant 3 (12h ≤ α < 18h) to the south and north of the celestial equator, respectively,

while Cetus is located almost exactly opposite Virgo in quadrant 1 (0h ≤ α < 6h).

The size of these regions limits the number of galaxies available to train and test our
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machine learning models. The number of galaxies of each morphological type within the se-

lected constellation areas is described in Table 3.3. To avoid over-representing any particular

region, we select an equal number of galaxies of each type within each constellation - 6,000

of each from the SDSS and 18,000 of each from Pan-STARRS, totaling 36,000 and 108,000

samples used in the experiment, respectively.

Table 3.2: The size and position of the constellations selected for analysis. Right ascension
(RA) and declination (Dec) are given as midpoints of the constellation boundaries.

Constellation
Sky Area Position

deg2 Percentage RA (h m) Dec (◦ m) Quadrant
Virgo 1294 3.14% +13 24.39 -04 09.51 SQ3

Hercules 1225 2.97% +17 23.16 +27 29.93 NQ3
Cetus 1231 2.99% +01 40.10 -07 10.76 SQ1

Table 3.3: The number of samples for each type of galaxy within each sky region available
in either dataset.

Virgo Hercules Cetus

SDSS
Elliptical 8,527 7,463 6,759

Spiral 8,295 6,675 7,016
Total 16,822 14,138 13,775

Pan-STARRS
Elliptical 43,217 21,602 38,227

Spiral 34,094 18,360 29,237
Total 77,311 39,962 67,464

To compare the generalization capability of the neural network when trained on galaxies

from different areas of the sky, we must reserve a large number of samples for evaluation.

After deciding on a neural network architecture, we search for a small but substantial training

set size by training the network from scratch with an increasingly large subset of the data.

A test set of 2 · 104 galaxies is reserved for evaluation, and the neural network is trained

five times per trial with a random selection of galaxies (disjoint with the test set) each time.

The average accuracy for each trial is recorded and we choose a training set size past the

“knee” of the curve, i.e. a point where expanding the training set only marginally improves

the accuracy.
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3.4.1 Annotation of the SDSS with training sets from different

sky regions

Table 3.4: Confusion matrices of Hercules galaxy morphology predictions from two mod-
els with training data from different regions. Rows represent true labels and columns the
predicted labels.

Elliptical Spiral
Elliptical 4929 71
Spiral 147 4853

(a) Homogeneous annotations for the Hercules
test set.

Elliptical Spiral
Elliptical 4798 202
Spiral 48 4952

(b) Annotations for the same test set but with
elliptical galaxies from Virgo used during training.

Performing the network architecture selection process described in Section 3.3 on the

SDSS dataset resulted in a four-layer model with 64, 48, 32, and 32 artificial neurons,

respectively. This neural network contains a total of 7, 154 trainable parameters. Figure 3.3

displays the loss while training the model, showing that 100 epochs is adequate for the

training to converge without overfitting. Figure 3.4 shows how the accuracy of this model

increases with the size of the training set. We chose to use 2,000 samples (1,000 of each

morphological class) for training, allowing us to reserve a total of 10,000 samples per region

for SDSS evaluation and comparison.

To determine if the area of the sky that the training data are selected from induces bias in

this model, we train neural networks with the same architecture from scratch using different

combinations of training data from each constellation. For example, one model is trained

with data taken only from the area of Virgo, while another is trained with elliptical galaxies

from Virgo and spiral galaxies from Cetus, and so on. The resulting nine models are then

evaluated by predicting class labels for the reserved test set from each region. Table 3.5

shows the accuracy of these models’ predictions.

Small variations in model accuracy are expected due to input differences and random-

ness in the optimization step. We investigate if these variations are significant by applying

the binomial test as described in Section 3.3. In this experiment, we have three sets of

homogeneous annotations - one for each constellation. Table 3.4 compares the homogeneous
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Figure 3.3: Training and validation loss of the neural network architecture with the best
performance for the SDSS.

Figure 3.4: Average test-set accuracy of the SDSS model with different training set sizes.
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Table 3.5: Prediction accuracy of SDSS models by training set region and test set region.

Training Region Evaluation Region
Ellipticals Spirals Virgo Hercules Cetus

Virgo Virgo 0.968 0.976 0.979
Virgo Hercules 0.970 0.975 0.980
Virgo Cetus 0.966 0.976 0.977
Hercules Virgo 0.972 0.978 0.981
Hercules Hercules 0.966 0.978 0.975
Hercules Cetus 0.961 0.971 0.972
Cetus Virgo 0.971 0.975 0.980
Cetus Hercules 0.968 0.971 0.977
Cetus Cetus 0.973 0.972 0.981

annotations for Hercules to the annotations predicted by the model trained with elliptical

galaxies from Virgo and spiral galaxies from Hercules. The expected probability of a correct

elliptical label is 0.493, derived from the number of true elliptical labels in Table 3.4a and

the size of the test set (10, 000). According to the binomial distribution, the probability

that the second model correctly labels 4, 798 elliptical galaxies or less in the same test set

(see Table 3.4b) is 8.79 · 10−3, and therefore statistically significant. This suggests that the

null hypothesis - that the area of the sky the training data are selected from should not

significantly change the distribution of the predicted classes - is unlikely to be true.

Table 3.6 lists the two-tailed p-values from applying the binomial test to each pair of ho-

mogeneous annotations and non-homogeneous annotations for the same test set. Statistically

significant values (p < 0.05) are highlighted in bold. Although most of these values suggest

an insignificant variance, an unlucky researcher may “discover” a non-existent anisotropy

in galaxy distribution, especially since each of these models achieved a satisfyingly high

classification accuracy.

3.4.2 Pan-STARRS by Sky Region

In this Section we repeat the experiment performed in Section 3.4.1 using the Pan-STARRS

dataset. In this case, the most successful neural network architecture consisted of two layers

with 64 and 32 artificial neurons, respectively, and contains 3, 490 trainable parameters.
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Table 3.6: SDSS binomial test p-values. Statistical significance (p < 0.05) is indicated in
bold.

Evaluation Region
Training Region Virgo Hercules Cetus
Ellipticals Spirals Elliptical Spiral Elliptical Spiral Elliptical Spiral

Virgo Virgo — — 9.1 · 10−2 1.93 · 10−1 5.75 · 10−1 3.03 · 10−1

Virgo Hercules 7.11 · 10−1 4.96 · 10−1 8.79·10−3 4.87·10−2 9.52 · 10−1 6.97 · 10−1

Virgo Cetus 4.01 · 10−1 2.42 · 10−1 4.29 · 10−1 6.89 · 10−1 1.87 · 10−1 2.78·10−2

Hercules Virgo 6.89 · 10−1 7.34 · 10−1 2.5 · 10−1 2.38 · 10−1 3.9 · 10−1 3.95 · 10−1

Hercules Hercules 1.8 · 10−1 8.18 · 10−2 — — 1.19 · 10−1 3.73·10−3

Hercules Cetus 2.71 · 10−1 1.04·10−2 6.53 · 10−1 3.32 · 10−1 2.0 · 10−1 1.37·10−3

Cetus Virgo 7.79 · 10−1 7.19 · 10−1 3.94·10−2 1.8 · 10−1 5.22 · 10−1 3.42 · 10−1

Cetus Hercules 4.18 · 10−1 4.71 · 10−1 7.24·10−4 6.14 · 10−2 8.49 · 10−1 4.9 · 10−1

Cetus Cetus 6.67 · 10−1 1.56 · 10−1 5.81·10−4 2.99·10−2 — —

This network’s training loss is shown in Figure 3.5, and a similar pattern of convergence is

observed as compared with the SDSS model. Figure 3.6 shows how the model’s accuracy

increases with the number of training samples. We choose to use 6, 000 galaxies in our

training set, leaving 30, 000 galaxies for each region’s test set. Both of these subsets contain

an equal number of spiral and elliptical galaxies.

Figure 3.5: Training and validation loss of the winning neural network architecture for Pan-
STARRS.

As with the SDSS, we train nine neural networks with the same architecture with train-

ing data from each combination of constellation areas. The accuracy of these models is

evaluated on the reserved test set from each constellation, and these results are shown in
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Figure 3.6: Average test-set accuracy of the Pan-STARRS model with different training set
sizes.

Table 3.7. Despite being trained with three times as many samples as the SDSS models,

these models achieve consistently lower accuracy overall. This may be expected, however,

as the magnitude distribution of these galaxies (discussed in Section 3.2) suggests a much

more difficult classification task. Regardless, the level of accuracy reached by these models

may be acceptable in some real-world analyses.

Table 3.7: Prediction accuracy of Pan-STARRS models by training set region and test set
region.

Training Region Evaluation Region
Ellipticals Spirals Virgo Hercules Cetus

Virgo Virgo 0.861 0.841 0.865
Virgo Hercules 0.841 0.841 0.841
Virgo Cetus 0.849 0.821 0.859
Hercules Virgo 0.836 0.805 0.851
Hercules Hercules 0.845 0.824 0.840
Hercules Cetus 0.826 0.789 0.845
Cetus Virgo 0.859 0.848 0.866
Cetus Hercules 0.850 0.838 0.843
Cetus Cetus 0.847 0.825 0.861

The binomial test comparison process described in Section 3.3 is repeated for the Pan-

STARRS models, and the p-values are listed in Table 3.8. Compared to the SDSS results,

the Pan-STARRS models show a much larger degree of variance in how morphological labels
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are assigned. While some of this variance can be explained by the relatively lower accuracy

of the models, one may expect the error to remain roughly proportionate with respect to

class distribution.

Table 3.8: Pan-STARRS binomial test p-values. Statistical significance (p < 0.05) is indi-
cated in bold.

Evaluation Region
Training Region Virgo Hercules Cetus
Ellipticals Spirals Elliptical Spiral Elliptical Spiral Elliptical Spiral

Virgo Virgo — — 6.4·10−34 1.4·10−76 2.2 · 10−1 8.0 · 10−1

Virgo Hercules 1.7·10−16 1.8·10−54 4.6·10−25 5.4·10−64 2.5·10−13 3.4·10−48

Virgo Cetus 1.2·10−13 1.5·10−32 1.7·10−5 5.5·10−4 1.1·10−6 2.8·10−8

Hercules Virgo 2.2·10−3 2.0·10−8 1.5 · 10−1 5.0·10−8 2.9 · 10−1 5.9·10−6

Hercules Hercules 1.0·10−19 4.6·10−50 — — 2.9·10−23 2.4·10−69

Hercules Cetus 6.2·10−5 1.1·10−16 1.3 · 10−1 2.2·10−28 3.0·10−2 1.0·10−3

Cetus Virgo 5.0·10−3 3.1·10−2 4.6·10−23 8.4·10−79 1.8·10−2 5.2 · 10−1

Cetus Hercules 4.9·10−6 2.6·10−17 7.1·10−43 8.7·10−83 2.3·10−12 3.3·10−41

Cetus Cetus 3.7·10−3 3.9·10−2 4.6·10−23 5.6·10−26 — —

Consider from this experiment the model PCH , trained with elliptical galaxies from Cetus

and spiral galaxies from Hercules, and the homogeneous annotations for Hercules, produced

by model PHH (trained only with galaxies from Hercules). The predicted class labels for

the Hercules test set by PCH have very similar accuracy to the homogeneous annotations,

differing by only 1.4 percentage points. However, the morphological distribution predicted

by these models is extremely different, which is reflected by the values in Table 3.8 (7.1·10−43

and 8.7 · 10−83). From the “perspective” of model PHH , about 37% of the galaxies in the

Hercules test set are spiral. The only methodological difference in model PCH is that the

elliptical galaxies used to train it are sampled from Cetus rather than Hercules, yet it sees

the same test set as being 46% spiral.

3.5 Generalizing to Different Sky Surveys

On the surface, training a machine learning model on a mature sky survey seems like a

straightforward way to begin rapid analysis of large datasets produced by more modern

telescopes. However, differences in technology, survey methodology, or the location of the
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Table 3.9: Unsupervised clustering using a 2-component Gaussian mixture model.

Cluster 1 Cluster 2
Elliptical 567,180 108,221
Spiral 222,830 340,713

(a) Cluster assignment compared to morpholog-
ical class.

Cluster 1 Cluster 2
Pan-STARRS 729,461 262,057
SDSS 60,549 186,877

(b) Cluster assignment compared to source sur-
vey.

telescope can make it very difficult to apply one model to multiple surveys. Deep neural

networks are sensitive to changes in how data are collected, processed, or formatted, often

leading to generalization failure if those same conditions are not met for new observations

or the model is not adjusted to compensate. One simple example of this is a difference in

the resolution of imagery.

The photometric filters used by telescopes determine the wavelengths of light the tele-

scope is able to detect. Astronomical objects can have drastically different appearances

when observed at different wavelengths for many reasons, including light emission/reflection

properties, redshift, or being obscured by cosmic dust. Machine learning models are very

unlikely to be able to generalize to other sky surveys that do not share photometric filters

(e.g. a visible light telescope and a mid-infrared telescope), even if they are observing the

same objects.

In this experiment, we investigate the ability of a deep neural network to predict galaxy

morphology from photometric observations from both the SDSS and Pan-STARRS. We limit

our feature vector to only the shared fields in Table 3.1 (i.e. we ignore the u band in the

SDSS and the y band in Pan-STARRS). This results in a vector of 17 inputs for the machine

learning models. The combined dataset contains 1, 238, 944 samples; however, due to the

overlap in the areas surveyed, this is not necessarily the number of unique objects.

Before constructing the neural network, we investigate the similarity of the samples in the

combined dataset with unsupervised clustering. We apply a 2-component Gaussian mixture

model to the whole dataset and compare the composition of the two resulting clusters.

Table 3.9 shows how the data are assigned to each cluster with respect to morphological

class and the source survey. The quality of the cluster assignments can be compared using
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the Matthews correlation coefficient (MCC), which ranges from −1 (inverse prediction) to

1 (perfect prediction) and handles imbalanced classes well. These clusters have an MCC of

0.46 when evaluated with morphological class and an MCC of 0.41 when evaluated with the

source survey. In other words, the separability of these samples by morphology or by which

survey they belong to is close to the same.

3.5.1 Annotating the SDSS and Pan-STARRS

The neural network architecture for this experiment is determined with the same process

as in Section 3.4 and is trained with an approximately even mixture of samples from both

surveys. The network with the highest test-set accuracy used three layers with 64, 64,

and 48 artificial neurons, respectively, and contains 8, 350 trainable parameters. Figure 3.7

shows the training loss of this model, which displays slightly more volatility relative to the

single-survey models but still approaches convergence fairly well.

Figure 3.7: Training and validation loss of the neural network architecture with the best
performance when trained with a mixture of data from the SDSS and Pan-STARRS.

We select 1 · 105 galaxies of each morphological class from both surveys, divided pro-

portionally into 80% for training and 20% for testing. Spiral galaxies from one survey and

elliptical galaxies from another, totalling 1.6 · 104 samples, are used to train four neural

networks with the same architecture. Table 3.10 lists the classification accuracy for the test
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sets from each survey, which contain 4 · 104 galaxies each. As expected, the homogeneous

annotations (i.e. when the test set comes from the same survey as all training samples) have

comparable accuracy to the single-survey neural networks in Sections 3.4.1 and 3.4.2.

Table 3.10: Test-set classification accuracy by models trained on different combinations of
data from the SDSS and Pan-STARRS (PS1).

Training Source Evaluation Survey
Ellipticals Spirals SDSS Pan-STARRS

SDSS SDSS 0.990 0.559
SDSS PS1 0.525 0.506
PS1 SDSS 0.869 0.576
PS1 PS1 0.840 0.868

The model trained only on SDSS samples fails to generalize to the Pan-STARRS test

set, classifying 94% of those galaxies as elliptical. On the other hand, the model trained

only with Pan-STARRS samples achieves fairly high accuracy on the SDSS test set, albeit

significantly lower than the SDSS-trained model. When trained with elliptical galaxies from

the SDSS and spirals from Pan-STARRS, the model annotates 97% of the SDSS test set as

elliptical and 99% of the Pan-STARRS test set as spiral, indicating that this model learned to

distinguish samples based on which survey they originated from rather than by morphology.

These results strongly suggest survey-level differences in the data, such as the distribution

of magnitudes or the sensitivity of each telescope’s photometric filters. Neural networks are

able to learn to distinguish samples based on these “features” in addition to (or sometimes

instead of) the aspects of the data one would like to teach the model. In some tasks these

differences are too subtle or obscure for a human to notice and correct for. Additionally,

when differences are noticed, adapting the data or the machine learning model to correct for

it may be non-trivial.

3.6 Conclusions

The information era has changed astronomy research by enabling data-driven research with

the use of very large astronomical databases. Instruments generating vast pipelines of as-
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tronomical data reinforce the need for automatic methods that can annotate the data in a

manner that makes it suitable for analysis. Due to the size of the data, discoveries cannot

be made practically by manual analysis alone, and therefore automating the annotation of

the data is required.

One of the immediate solutions to the automatic annotation of data is the use of machine

learning. Machine learning can handle the annotation of complex data with high accuracy,

yet without the need to design a specific model-driven solution to each annotation task.

While machine learning does not require a labor-intensive step of defining a model, it provides

annotation accuracy that very often exceeds the accuracy of a manually-crafted, knowledge-

driven solution. The ability to annotate complex data with high accuracy makes machine

learning an effective solution to the problem of annotating very large astronomical databases,

and it has been used for multiple tasks in this field.

While machine learning provides many advantages, it should also be analyzed for its

potential downsides. Here we analyze the potential bias driven by the source of the training

samples. Experimental results show that despite using a training set from the same astro-

nomical survey, the distribution of the locations of the samples used for training affects the

annotations. That is, the exact same set of galaxies is annotated in a different way based on

where in the sky the training data are sampled from.

To notice that difference, the user of the data products needs to be familiar with the

details of how the training samples are collected and distributed. Therefore, a user of an

astronomical data product created using machine learning may not be aware of such bias,

and might therefore reach conclusions that are influenced by the machine learning bias rather

than by the real distribution of astronomical objects in the sky. Without fully understanding

all details of the construction of the training set, it is difficult to know whether the statistical

distribution of the annotations indeed reflects the real sky.

Biases in data collected by digital sky surveys, including noise in measurements, are a

known characteristic of these powerful instruments. For instance, different parts of the sky

might have slight but statistically significant differences in the limiting magnitude. By using

machine learning the bias becomes more complex and less intuitive. As an example, it can
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be assumed that parts of the sky that provide better limiting magnitude can also provide

better imaging, and therefore it can be expected that a higher number of galaxies will be

annotated as spiral due to the increased visibility of spiral arms. With the bias driven by

machine learning, if the training set that was used to annotate the data had a higher number

of galaxies from the part of the sky with lower limiting magnitude, the annotation might

lead to a catalog in which more spiral galaxies are identified in the parts of the sky with

lower limiting magnitude, which might seem puzzling to an unsuspecting observer.

We also demonstrate the challenges of using a machine learning model trained with

samples from one survey to generate annotations for another, even when using the same

photometric features. Many aspects of a sky survey can create subtle patterns in the data

that are practically invisible to humans. Differences in the sensitivity of photometric filters,

atmospheric conditions at telescope sites, data processing pipelines, and the type of objects

the survey intends to observe can create biases in machine learning models. These biases

may be insignificant when use of the model is limited to the same survey, but may have large

effects if the model is applied to other datasets.

While machine learning provides a useful solution to the annotation of very large astro-

nomical databases, it also has several downsides. Many researchers without a background

in deep learning may not be aware of these downsides, unknowingly introducing biases into

their own analyses when using data products created with machine learning. Since biases

are difficult to identify and profile in annotations made by machine learning systems, data

products prepared with such methods should be used with caution.
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Chapter 4

Experiments with Vision

Transformers for Fine-Grained

Galaxy Morphology Classification

4.1 Introduction

The study of astronomical objects generates a vast amount of data, which requires sophisti-

cated data analysis techniques to extract meaningful information. Over the past few decades,

astronomers have employed a range of data-driven approaches, from early statistical meth-

ods to more recent deep learning techniques, to analyze and classify astronomical data.

With the increasing availability of large datasets, machine learning techniques have become

increasingly important in astronomy19;23;31;85;105;127–131.

In recent years, transformer-based models have emerged as a powerful tool in natural

language processing (NLP). Transformers were first introduced in the seminal paper by

Vaswani et al.132, which introduced the concept of self-attention as a mechanism for pro-

cessing sequences of variable length. Since then, transformers have achieved state-of-the-art

results in various NLP tasks, such as language modeling, question answering, and machine

translation133–137.
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The success of transformers in NLP has led researchers to explore their potential in other

domains, including computer vision. Vision transformers (ViTs) were introduced by Doso-

vitskiy et al.138 as a novel architecture for image classification, which has shown promising

results in various computer vision tasks139–141.

The classification of galaxy morphology is a fundamental task in astronomy, which aims

to categorize galaxies based on their structural properties, such as shape, spiral arms, and the

presence of bars or rings. Galaxy morphology classification has been traditionally performed

using hand-crafted features and traditional machine learning algorithms, such as support

vector machines (SVMs) and random forests18;32;36;108. However, with the availability of

large-scale datasets, deep learning approaches have also been applied to this task, with

CNNs being the most commonly used architecture85;106;142;143.

In this paper, we investigate the effectiveness of ViTs for the task of fine-grained galaxy

morphology classification. Although our experiments do not show a significant improvement

over recent CNN-based models, we believe that our results provide valuable insights into the

challenges and opportunities in applying transformers to image analysis tasks in astronomy.

4.2 Galaxy Zoo

The Galaxy Zoo project is a citizen science project that invites members of the public to

classify images of galaxies taken from various sky surveys. The goal of the project is to

improve our understanding of the properties and evolution of galaxies by collecting a large

and diverse dataset of galaxy classifications. The project was launched in 2007 and has

since grown to include multiple surveys and classification tasks. Our experiment uses four

different Galaxy Zoo projects, described in this section.

Galaxy Zoo 2 (GZ2)144;145 includes images from the Sloan Digital Sky Survey (SDSS), a

large-scale survey that has imaged and spectroscopically measured several million galaxies.

The images in GZ2 are from the SDSS DR7 and cover a sky area of approximately 8,000

square degrees. The dataset includes labels for morphological classifications for a subset

of the SDSS (approximately 243,000 galaxies). Users were asked to classify each galaxy
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according to its shape, such as whether it has a smooth or clumpy appearance, whether it

has a central bulge, and whether it has spiral arms.

Galaxy Zoo Hubble (GZH)146 includes images from the Hubble Space Telescope (HST),

a space-based telescope that observes in the ultraviolet, visible, and near-infrared regions

of the electromagnetic spectrum. The images in GZH come from the Advanced Camera for

Surveys (ACS) instrument aboard the telescope. The dataset includes labels for multiple

tasks related to galaxy morphology, including classifications of disk structure, bar presence,

and spiral arm winding. GZH includes every task present in GZ2 but added tasks related to

”clumps”, such as the number, arrangement, and symmetry if any are present.

Galaxy Zoo CANDELS (GZC)147 includes images from the Cosmic Assembly Near-

infrared Deep Extragalactic Legacy Survey (CANDELS), a multi-wavelength survey that

uses HST to observe galaxies in the distant universe. CANDELS images were taken with

both the ACS and Wide Field Camera 3 (WFC3) instruments on the Hubble Space Tele-

scope, focusing on rest-frame optical wavelengths of galaxies at redshifts of 1 < z < 3. The

tasks for GZC are almost the same as those for GZH, but replaces a broad question about

”odd” features with a more specific task to identify galactic mergers and tidal debris.

Galaxy Zoo DECaLS (GZD)142 includes images from the Dark Energy Camera Legacy

Survey (DECaLS). This survey uses the Dark Energy Camera (DECam) on the Blanco

4m telescope, located at the Cerro Tololo Inter-American Observatory in Chile, to observe

galaxies in the optical and near-infrared wavelengths. Our work uses the tasks and user

responses from the GZD-5 campaign, which has questions similar to GZ2 but is designed to

more accurately detect mergers and galaxies with weak bars.

Table 4.1: The number of labeled images used from each Galaxy Zoo project.

Project GZ2 GZH GZC GZD Total
Number of Images 243,434 100,788 49,552 249,581 643,355

Percentage of Dataset 37.8% 15.7% 7.7% 38.8% 100%

In our experiments, we only use entries from the Galaxy Zoo datasets with at least 3

volunteer classifications. Table 4.1 shows the size of our combined dataset and the number

of images from each Galaxy Zoo project. A summary of the tasks and responses in each of

56



the projects is shown in Tables 4.2 and 4.3. Example images from each project are included

in Table 4.4.

4.3 Experiment Design

Our experiment is based on prior work in automated morphological classification of galaxies

using deep learning, namely Zoobot148, released alongside Galaxy Zoo DECaLS142. Zoobot

is a Bayesian deep learning model implemented using the EfficientNet-B0149 convolutional

neural network architecture. It is designed to predict the posterior probabilities of each

answer to all tasks in GZD, as well as producing a representation vector that can be used to

search for galaxies based on their similarity to a candidate galaxy.

The creators of Zoobot leverage the information shared between tasks to predict the

responses to all GZD tasks with one model - in their words, ”intuitively, knowing how to

recognize spiral arms can also help you count them.” We attempt to extend this intuition

to the shared information between similar or identical tasks in each Galaxy Zoo project to

train one model that can classify galaxies from different sky surveys.

Tables 4.2 and 4.3 show the considerable overlap in the information available in the labels

for each dataset, as well as several tasks present in some projects but not others. Ideally,

training one model on all four Galaxy Zoo projects should both reinforce the learning of

shared tasks and teach the model how to answer tasks for galaxies whose projects did not

contain those tasks (e.g. detecting details about clumps in GZ2 and GZD images). The abil-

ity to make predictions in multiple-classification problems where labels are incomplete150;151

or even completely unobserved152;153 is an important but under-explored topic in machine

learning. We believe that this combination of partially-overlapping datasets provides for a

unique and challenging approach to this problem.

One of our goals is to address the generalization challenges described in Section 3.5. The

Galaxy Zoo projects we use contain imagery collected in a variety of wavelengths with a

mixture of ground- and space-based telescopes. By training our model on this mixture of

image domains with a unified set of labels, we hypothesize that the model will be encouraged
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Table 4.2: A list of tasks and responses in the four Galaxy Zoo projects used in the experi-
ment. In practice, each task included example diagrams to assist the user in choosing their
response.

Task Response GZ2 GZH GZC GZD

Smooth or Featured?
Smooth ✓ ✓ ✓ ✓

Features or Disk ✓ ✓ ✓ ✓
Star or Artifact ✓ ✓ ✓ ✓

How Rounded is the Galaxy?
Completely ✓ ✓ ✓ ✓
In Between ✓ ✓ ✓ ✓

Cigar Shaped ✓ ✓ ✓ ✓

Disk Viewed Edge-On?
Yes ✓ ✓ ✓ ✓
No ✓ ✓ ✓ ✓

Does the Galaxy Have a Bar?

Yes ✓ ✓ ✓
Strong ✓
Weak ✓

No ✓ ✓ ✓ ✓

Does the Galaxy Have Spiral Arms?
Yes ✓ ✓ ✓ ✓
No ✓ ✓ ✓ ✓

How Tightly Wound are the Arms?
Tight ✓ ✓ ✓ ✓

Medium ✓ ✓ ✓ ✓
Loose ✓ ✓ ✓ ✓

How Many Arms?

1 ✓ ✓ ✓ ✓
2 ✓ ✓ ✓ ✓
3 ✓ ✓ ✓ ✓
4 ✓ ✓ ✓ ✓

More Than 4 ✓ ✓ ✓ ✓
Can’t Tell ✓ ✓ ✓ ✓

Bulge in Center (Edge-on)?
Yes ✓
No ✓

How is the Bulge Shaped (Edge-on)?
Rounded ✓ ✓ ✓

Boxy ✓ ✓ ✓
No Bulge ✓ ✓ ✓

How Prominent is the Bulge?

No Bulge ✓ ✓ ✓ ✓
Just Noticeable ✓ ✓ ✓

Moderate ✓
Obvious ✓ ✓ ✓ ✓

Dominant ✓ ✓ ✓ ✓
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Table 4.3: A list of tasks and responses in the four Galaxy Zoo projects used in the experiment
(continued).

Task Response GZ2 GZH GZC GZD

Is the Galaxy Clumpy?
Yes ✓ ✓
No ✓ ✓

Is One Clump Brightest?
Yes ✓ ✓
No ✓ ✓

Is the Brightest Clump Central?
Yes ✓ ✓
No ✓ ✓

How are the Clumps Arranged?

Line ✓ ✓
Chain ✓ ✓

Cluster ✓ ✓
Spiral ✓ ✓

How Many Clumps?

1 ✓ ✓
2 ✓ ✓
3 ✓ ✓
4 ✓ ✓

More Than 4 ✓ ✓
Can’t Tell ✓ ✓

Is the Galaxy Symmetrical?
Yes ✓ ✓
No ✓ ✓

Clumps Embedded in Larger Object?
Yes ✓ ✓
No ✓ ✓

Is There Anything Odd?
Yes ✓ ✓
No ✓ ✓

What is the Odd Feature?

Ring ✓ ✓
Lens or Arc ✓ ✓
Disturbance ✓ ✓

Irregular ✓ ✓
Other ✓ ✓
Merger ✓ ✓

Dust Lane ✓ ✓

Merger or Tidal Debris?

Merging ✓
Tidal Debris ✓

Both ✓
Neither ✓

Merger or Disturbance?

None ✓
Minor Disturbance ✓
Major Disturbance ✓

Merger ✓
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to focus primarily on the visual aspects in each image while putting less emphasis on the

details of how the data were collected. Furthermore, some objects are imaged in more than

one of the Galaxy Zoo projects, giving the model a different view of the object (perhaps with

additional labeled information) beyond what is accomplished with augmentations during

training.

4.3.1 Vision Transformer

The Vision Transformer (ViT) is a type of neural network architecture that has gained con-

siderable attention for its ability to achieve state-of-the-art performance on various computer

vision tasks, including image classification and object detection. ViT is based on the trans-

former architecture, which was originally developed for natural language processing (NLP)

tasks132. The architecture is based on the idea of self-attention, where the input sequence

is transformed using a series of attention mechanisms. This enables the model to focus on

different parts of the input during processing and to learn which input tokens are more or

less relevant to each other token.

The basic architecture of the ViT model consists of two main components: a patch

embedding module and a transformer encoder. The patch embedding module is responsible

for dividing the input image into a sequence of non-overlapping fixed-size patches, which

are then flattened and embedded into a sequence of feature vectors138. The projection is

learned during training using a linear layer. This process loses the two-dimensional spacial

relationship between image patches, so a ”position embedding” vector is calculated based

on the input dimensions and added to the embedded input sequence. Finally, one extra

token (typically called the CLS token) is prepended to the feature vectors, acting as a sort of

internal memory for the transformer encoder network. The resulting sequence of embedded

vectors is then passed to the transformer encoder for further processing. The length of these

vectors is referred to as the model dimension. Our ViT model contains four separate patch

embedding modules - one for each Galaxy Zoo dataset - so that it may more easily translate

images from different sources into a coherent set of feature vectors for the encoder.
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The transformer encoder consists of a series of N identical transformer blocks, each of

which consists of a self-attention layer and a feedforward layer. The self-attention layer

computes the attention scores between each pair of feature vectors in the input sequence,

allowing the model to learn the relationship between patches in different locations of the input

image. Self-attention is implemented using multiple attention ”heads” that each observe a

separate portion of the feature vectors, encouraging the model to compartmentalize different

details of each input. The feedforward layer is a fully connected multi-layer perceptron

(MLP) with one hidden layer, providing a nonlinear transformation of the input feature

vectors. Each encoder block includes a skip connection after the self-attention layer and the

feedforward layer, and each MLP in the encoder uses dropout124 at a rate of 20%.

While transformer models usually include layer normalization steps in each encoder block,

ours omits these by implementing the T-Fixup154 method for weight initialization and gra-

dient scaling during the training process. This method also removes the need for learning

rate warmup, which is often used to avoid unstable gradients in the early stages of train-

ing transformer models. In addition, our ViT model implements sparse mixture-of-experts

(MoE)155;156 with expert choice routing157 in the feedforward layer. Sparse MoE trades

increased training time (via more model parameters) for significantly faster inference time

by selectively activating different portions of the network during the forward pass. This is

desirable for use with the large, autonomously-collected imagery datasets that have become

the status quo in astronomy research.

The output of the transformer encoder is a sequence of transformed feature vectors in-

cluding the CLS token. Only the CLS token is used as input for the classification head,

which typically consists of one fully connected layer and a softmax activation function for

predicting class probabilities. Our ViT model contains one classification head that combines

the tasks from each of the four Galaxy Zoo projects described in Section 4.2, and each output

neuron represents one of the responses for a task. The classification head contains 66 outputs

after combining some of the redundant answers present in different tasks. For example, in

Table 4.3, the responses identifying a merger in the final two tasks (GZC and GZD) are

assigned to the same neuron for the merger response of the GZ2/GZH task for identifying
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odd features.

In Bayesian classification, it is common to model the uncertainty in the predictions by

using a probability distribution over the class labels. We follow the practice of Walmsley et

al.142 and use the Dirichlet-multinomial distribution, a multivariate extension of the binomial

and beta distributions that can be readily applied to problems with more than two classes.

For each task, our model predicts the concentration parameter α⃗ of the Dirichlet distribution

with one value per response, which can then be used to sample from the distribution to obtain

the predicted answer to the task. This approach enables the model to express the uncertainty

in the predictions and to provide a more informative output than a point estimate. The

model’s loss is computed as the negative log likelihood between the sampled distribution

and the votes for each task response from Galaxy Zoo volunteers.

4.3.2 Training Procedure

All images in the dataset are originally 424 px square. Prior to augmentation in the training

step, a 360 px square crop is taken from the center of the image which removes mostly

empty space and extragalactic objects, and the resulting crop is resized to 192 px square.

This version of each image is given directly to the model during the validation and test

steps. In the training step, images are augmented using the following process: first, the

image is rotated by a random angle between −180◦ and 180◦. The image is then cropped

to between 65% and 95% of its current size at a random off-center point and resized to

96 px square. Third, there is an 80% chance to apply color jitter, randomly changing the

brightness, contrast, and saturation by up to 40% and the hue by up to 20%. After this

a small amount of Gaussian blur is applied with a 50% probability, and last the image is

converted to grayscale with a 30% probability. Table 4.4 shows examples of original images

and some possible results of this augmentation process.

The patch embedding modules divide each augmented image into 64 12x12 px patches

with 3 color channels and embeds these into a 1024-dimensional feature vector. The trans-

former encoder has a depth of N = 8 blocks. The self-attention layers use 8 attention heads
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Table 4.4: Example images from each Galaxy Zoo project with the validation crop and
examples of possible augmentations during the training step.

Project Original Validation Example Augmentations

GZ2

GZH

GZC

GZD
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that each process a 128-dimensional slice of the input vectors. Each feedforward layer uses 8

experts which, with expert-choice routing, select up to 25% of the input vectors to process.

Each expert’s MLP uses a hidden dimension of 1024, matching the model dimension. In

total, the model contains approximately 169 million trainable parameters.

The model is trained using a batch size of 256. Images in the batch are grouped based

on which Galaxy Zoo project they are from and routed through the appropriate patch em-

bedding module. The entire batch of embedded vectors is passed through the encoder and

classification head at once, after which they are again separated into groups to calculate

loss. A specific subset of the output neurons are selected corresponding to the group’s tasks,

determined by a Galaxy Zoo task schema provided to the model at initialization. The total

loss for the batch is the sum of the partial loss from each group. Our model is optimized

using AdamW158 (Adam125 plus weight decay) with AMSGrad159. We use an initial learning

rate of 10−5 and an adaptive learning rate scheduler that reduces the rate by a factor of 0.2

if the validation loss does not improve after three consecutive training epochs.

4.4 Experimental Results

Figure 4.1 shows the loss of our ViT model during training. Several combinations of hy-

perparameters were tested and all showed similar behavior - loss decreased sharply in the

first few epochs of training then plateaued with little to no further improvement. Loss on

the validation set remained close to the same value as on the training set, suggesting that

the model was able to learn enough to recognize some morphological features in the larger,

non-augmented validation images.

In order to observe the effect of training the model with multiple Galaxy Zoo projects

simultaneously, we also trained the same model with each of the four datasets individually.

The only difference in these experiments is the ViT classification head, which is set to exactly

match the task schema of the respective project. Due to the significant difference in the size

of each dataset, the models were trained until they had seen 5,000 training batches (all

containing 256 images) rather than for a set number of epochs.

64



Figure 4.1: Training and validation loss of our ViT on the combined Galaxy Zoo dataset.

Figure 4.2: Training and validation loss of the ViT when trained on each Galaxy Zoo dataset
individually.
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Figure 4.2 shows the loss throughout training for each of the four single-dataset models.

These display behavior very similar to the combined model, in that the loss quickly levels

out an fails to improve significantly. The effect of learning rate decay is apparent here,

particularly in the early improvement of the GZC model. Unlike the combined model, the

GZ2 model shows obvious signs of overfitting in the validation loss curve. This may indicate

that the use of multiple datasets with similar labels acts as a sort of regularization to prevent

overfitting; however, more experiments are needed before this can be confirmed.

We evaluate the accuracy of the model as the number of tasks answered correctly out of

all tasks in the schema (for each dataset individually), averaged over the test set. Table 4.5

compares the accuracy of the combined model to each of the single-dataset models. It is

important to note that the test sets are not identical in each column, as the combined dataset

was split into training and testing sets after the combination. However, it can be seen that

the combined model performed significantly better on the GZ2 and GZD projects than the

models trained on those datasets individually. These two projects have fewer tasks then the

others but are the largest datasets in the experiment, containing over 3/4 of the total images

in the combined dataset. The smallest dataset, GZC, may have seen its accuracy reduced in

the combined model due to its imbalanced representation.

Table 4.5: The accuracy of the combined model on each project’s subset of the combined
test set, and the accuracy of each individually-trained model on its respective test set.

GZ2 GZH GZC GZD
Accuracy (combined model) 53.5% 50.0% 48.5% 44.4%
Accuracy (individual model) 43.8% 49.3% 50.4% 41.6%

The accuracy of these models in isolation is currently too low for practical use, but

the results indicate that the ViT was able to learn morphological details far beyond the

level of random guessing. Furthermore, the results strongly suggest that the combination

of multiple Galaxy Zoo datasets along with the overlapping morphological labels helped

improve the overall performance of the model.
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4.5 Conclusions

In this paper, we investigated the potential of vision transformers for the task of fine-

grained galaxy morphology classification, using several Galaxy Zoo datasets. Our exper-

iments showed that ViTs did not perform as well as mature CNNs for this task; however,

our study provides valuable insights into the challenges and opportunities in applying trans-

formers to morphological classification tasks in astronomy.

Our tentatively optimistic results highlight the importance of careful evaluation and

benchmarking when introducing new techniques and models to a field, especially when the

existing approaches have already achieved high performance. Nonetheless, we believe that

ViTs still have great potential for image analysis in astronomy, and our study provides a

starting point for future research exploring the effectiveness of the many existing different

ViT architectures for galaxy morphology classification, as well as their applications to other

astronomical image analysis tasks.

Several other promising avenues for future work exist that can continue from the results

presented in this study. Our technique for learning from different Galaxy Zoo datasets with

one model could be applied to neural networks such as Zoobot142, which have already shown

success in morphology classification for individual Galaxy Zoo projects (DECaLS in this

case). Furthermore, other work in self-supervised learning for ViTs140 has shown that the

self-attention layers can be used to generate segmentation maps without training the model

specifically to do so. Hypothetically, a ViT that was able to correctly answer certain tasks for

spiral galaxies (such as the number of arms and how tightly they are wound) could be used

to identify the location of the spiral arms in the galaxy images. Another promising idea is

to incorporate multimodality160 into the model. Astronomical images often have significant

additional data, such as photometry and redshift measurements, associated with them in

public databases. Incorporating this extra information into the patch embedding modules

of the ViT would likely improve the performance of the model.

Our work contributes to the ongoing efforts to apply state-of-the-art machine learning

techniques to astronomical data analysis, and we hope that our results will encourage further
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exploration and innovation in this field. Ultimately, the development of more advanced and

effective machine learning algorithms will enable astronomers to analyze and interpret the

ever-increasing amount of data generated by astronomical surveys, leading to new discoveries

and insights into the nature of the universe.
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G Barro, M Bernardi, S Mei, F Shankar, P Dimauro, et al. A catalog of visual-like mor-

phologies in the 5 candels fields using deep-learning. arXiv preprint arXiv:1509.05429,

2015.
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et al. Optimizing automatic morphological classification of galaxies with machine

learning and deep learning using dark energy survey imaging. Monthly Notices of the

Royal Astronomical Society, 493(3):4209–4228, 2020.

[106] H Domı́nguez Sánchez, M Huertas-Company, M Bernardi, D Tuccillo, and JL Fischer.

Improving galaxy morphologies for sdss with deep learning. Monthly Notices of the

Royal Astronomical Society, 476(3):3661–3676, 2018.

81



[107] Asad Khan, EA Huerta, Sibo Wang, Robert Gruendl, Elise Jennings, and Huihuo

Zheng. Deep learning at scale for the construction of galaxy catalogs in the dark

energy survey. Physics Letters B, 795:248–258, 2019.

[108] Lior Shamir. Automatic morphological classification of galaxy images. Monthly Notices

of the Royal Astronomical Society, 399(3):1367–1372, 2009.
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