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Abstract

The power distribution grid is typically unobservable due to a lack of real-time measure-

ments. While deploying more sensors can alleviate this issue, it also presents new challenges

related to data aggregation and the underlying communication infrastructure. Limited real-

time measurements hinders the distribution system state estimation (DSSE). DSSE involves

estimation of the system states (i.e., voltage magnitude and voltage angle) based on avail-

able measurements and system model information. To cope with the unobservability issue,

sparsity-based DSSE approaches allow us to recover system state information from a small

number of measurements, provided the states of the distribution system exhibit sparsity.

However, these approaches perform poorly in the presence of outliers in measurements and

errors in system model information. In this dissertation, we first develop robust formulations

of sparsity-based DSSE to deal with uncertainties in the system model and measurement data

in a low-observable distribution grid. We also combine the advantages of two sparsity-based

DSSE approaches to estimate grid states with high fidelity in low observability regions.

In practical distribution systems, information from field sensors and meters are unevenly

sampled at different time scales and could be lost during the transmission process. It is

critical to effectively aggregate these information sources for DSSE as well as other tasks

related to situational awareness. To address this challenge, the second part of this dis-

sertation proposes a Bayesian framework for multi-timescale data aggregation and matrix

completion-based state estimation. Specifically, the multi-scale time-series data aggregated

from heterogeneous sources are reconciled using a multitask Gaussian process. The result-

ing consistent time-series alongwith the confidence bound on the imputations are fed into

a Bayesian matrix completion method augmented with linearized power-flow constraints for

accurate state estimation low-observable distribution system. We also develop a computa-

tionally efficient recursive Gaussian process approach that is capable of handling batch-wise



or real-time measurements while leveraging the network connectivity information of the grid.

To further enhance the scalability and accuracy, we develop neural network-based approaches

(latent neural ordinary differential equation approach and stochastic neural differential equa-

tion with recurrent neural network approach) to aggregate irregular time-series data in the

distribution grid. The stochastic neural differential equation and recurrent neural network

also allows us to quantify the uncertainty in a holistic manner. Simulation results on the

different IEEE unbalanced test systems illustrate the high fidelity of the Bayesian and neural

network-based methods in aggregating multi-timescale measurements.

Lastly, we develop phase, and outage awareness approaches for power distribution grid.

In this regard, we first design a graph signal processing approach that identifies the phase

labels in the presence of limited measurements and incorrect phase labeling. The second

approach proposes a novel outage detector for identifying all outages in a reconfigurable

distribution network. Simulation results on standard IEEE test systems reveal the potential

of these methods to improve situational awareness.
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Chapter 1

Introduction

Situational awareness in distribution systems refers to the ability to have a real-time under-

standing of the system’s current state, including the status of equipment, the flow of power,

and the system’s overall performance. This awareness allows operators and engineers to

make informed decisions about the operation of the distribution system and respond quickly

to any issues or disturbances that may arise. State estimation (SE) is an effective tool for

improving the situational awareness of the grid. Although SE is a well-studied and widely

used concept in the transmission system, its use is still a topic of active research in distribu-

tion systems. Fig. 1.1 depicts the different components necessary for performing distribution

grid state estimation (DSSE). The system states (voltage magnitude and voltage angle) are

estimated using the DSSE module by using available measurements and the system model

information. The system model comprises of network topology, phase labels, and network

parameters. This information is typically stored in the distribution management system

(DMS) database. In a distribution network, real-time measurements are limited, and net-

work observability is only achieved if historical data based pseudo-measurements are used.

To further aggravate the issue, the presence of outliers in measurements and errors in system

model information introduces new sources of uncertainty in DSSE. Since optimal control and

operation of the distribution grid is contingent upon the ability to estimate the system states

accurately, it is critical to investigate methods to estimate the states accurately with a small
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number of measurements even in the presence of uncertainties in both the measurement and

system model information. This is one of the fundamental problem we seek to study in the

context of three phase unbalanced distribution systems.

Figure 1.1: Operation of distribution system state estimation

Effective situational awareness relies on our ability to analyze and interpret the data pro-

vided by monitoring and control systems. In this regard, there has been an increase in the

proliferation of advanced metering devices in the smart distribution grid paradigm. Accord-

ing to Energy Information Administration (EIA) data [1], the advanced meter deployments

have increased in the United States by approximately 8.3 million meters, representing a 8.8%

annual increase in advanced meters from 2019 to 2020. The use of Supervisory control and

data acquisition units (SCADA), Phasor Measurement Units (PMUs), Intelligent electronic

devices (IEDs), automated feeder switches and voltage regulators, and smart inverters for

DERs have provided an opportunity to increase system observability. This increase in sens-

ing results in an increase in the information aggregated at centralized DMS. However, the

information aggregated from different sensors presents some important challenges. Firstly,

the data from multiple sources are sampled at different rates and are rarely synchronized.

The sources of information available at the distribution substations can be broadly classified

into two categories: (1) fast rate measurements from RTUs (remote terminal units) sampled

at every few seconds, and (2) slow rate measurements from smart meters updated every few
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minutes/hours. Secondly, some of the data may be missing or corrupted due to communi-

cation network impairments. It is critical to aggregate these heterogeneous measurement

sources in order to obtain complete network visibility. Hence, the second fundamental chal-

lenge we seek to study is to reconcile multi-timescale measurement time series with noisy,

heterogeneous, incomplete and unevenly sampled data that could aid in improving the dis-

tribution grid visibility.

Although several methodologies have been continuously developed for addressing the two

fundamental challenges (see Chapter 2 for more details), existing methods suffer from vari-

ous shortcomings, which are categorized into the following five types:

(1) High measurement redundancy requirements: Most of the conventional ap-

proaches for state estimation or phase identification approaches require sufficient measure-

ment redundancy to operate. For instance, the conventional weighted least squares estima-

tion approach requires the number of measurements to be higher than the number of states

in distribution grid. However, the number of existing telemetered devices that can provide

real-time measurements is quite limited, and it is far from being sufficient to provide observ-

ability.

(2) Inability to provide uncertainty bounds associated with the estimates: In dis-

tribution grids, there are often many sources of uncertainty that can affect the accuracy of

state estimates. For example, measurements from sensors can be noisy, and the distribution

grid can have complex topologies with varying load conditions. The existing approaches in

distribution grid are deterministic in nature, i.e., they do not provide any confidence interval

around the estimated values. For instance, multi time-scale imputation approaches in distri-

bution grid, involves simple linear interpolation and exponential moving average methods.

The conventional state-of-the-art state estimation approaches also provides point estimates.

Uncertainty quantification is an essential tool for improving the accuracy and reliability of

state estimation in distribution grids, which is critical for ensuring the safe and efficient

operation of the grid.

(3) Poor performance: In order to compensate for the insufficient real-time measure-

ment data, historical data based pseudo-measurements have been used. These pseudo-
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measurements obtained from historical load profiles and existing automated meter readings

(AMRs) devices have limited accuracy. Hence, the inaccuracy in the measurements results

in poor performance of tasks like state estimation, phase identification, etc.

(4) Post-processing methods: The existing DSSE methods deal with bad data and net-

work parameter errors only after the state estimation results are obtained. However, gross

errors may still be present after the post-processing stage. For instance, the Chi-squared

test is commonly used for detecting bad data in measurement. Unfortunately, this test is

not entirely reliable, that is, bad data existing in the measurement set could be missed in

certain cases. One reason for this is the approximations used to compute the bad data sus-

picion threshold, which is set based on an assumed chi-squared distribution for the objective

function.

(5) Computational complexity: Grid measurements are also used for outage detection.

Existing frameworks for detecting outages in the grid are computationally complex, which

hinders the ability to secure the grid as quickly as possible. For instance, the conventional

outage detector evaluates the likelihood of the measurements given a discrete set of of outage

hypotheses. This requires enumerating all possible set of hypothesis, which is computation-

ally expensive.

Based on these perspectives, we seek to address a few fundamental research questions

in this dissertation. These questions and the contributions of this dissertation that aim to

address them are discussed in the following sections.

1.1 Research Questions

To address the challenges in the distribution system, we ask the following questions:

Question 1: How can we design distribution system state estimators that are efficient,

robust, and practically beneficial for utility companies?

Question 2: For enhancing the situational awareness of the grid:

a: How can we identify phase labels when there are insufficient measurements and incorrect

phase labeling?
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b: How can we strategically place sensors to identify outages and develop a low-complexity

outage detector for a re-configurable distribution system that can detect all types of outages?

Question 3: What methods can be employed to aggregate multi time-scale, missing, and

corrupted measurements in a distribution system, to facilitate the state estimation process?

Question 4: How can we reliably impute the irregularly sampled measurements even in the

presence of aleatoric and epistemic uncertainties inherent in the generative models for the

data?

1.2 Contributions

To address research question 1, Chapter 4 of this dissertation proposes robust formulations

of sparsity-based DSSE. Then, we combine the advantages of the two sparsity-based DSSE

approach in a single optimization framework to estimate the system states efficiently. The

major contributions of these chapters are listed below.

• New robust formulations of different sparsity-based DSSE approaches to deal with bad

data and network parameter uncertainty are derived.

• This work proposes an efficient and unique state estimation formulation that combines

matrix completion and compressive sensing based approaches in a single powerflow

constrained optimization framework.

• The proposed approach exploits the low rank property and compactness of temporal

data in the wavelet transform domain. We validate that both these properties (low-

rank and DCT compactness) hold true for practical data.

• The proposed methods are validated against conventional approaches in the standard

IEEE 37 bus test system. The robust DSSE formulations offer high fidelity as compared

to the conventional approaches in the presence of bad data, parameter errors and

limited measurements.
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More details on the robust and efficient sparsity-based DSSE formulations can be found in

Chapters 4 and in the following published articles:

• S. Dahale, H. S. Karimi, K. Lai, and B. Natarajan, “Sparsity Based Approaches for

Distribution Grid State Estimation - A Comparative Study,” IEEE Access, vol. 8, pp.

198317–198327, 2020, doi: 10.1109/ACCESS.2020.3035378.

• S. Dahale and B. Natarajan, “Joint Matrix Completion and Compressed Sensing for

State Estimation in Low-observable Distribution System,” in 2021 IEEE PES Inno-

vative Smart Grid Technologies Conference - Latin America (ISGT Latin America),

2021, pp. 1–5. doi: 10.1109/ISGTLatinAmerica52371.2021.9543006.

Novel Bayesian and neural network-based approaches are proposed to address research

questions 3 and 4. Chapter 5 of this dissertation focuses on the multi-task Gaussian pro-

cess based framework to integrate the heterogeneous measurements of the distribution grid.

Chapter 6 further enhances the applicability of the Gaussian process to process streaming

data. In this chapter, a novel recursive Gaussian process framework to reconcile real-time

measurements is developed. The key contributions of these works are as follows:

• Multiple unevenly sampled time-series data is imputed using multitask Gaussian pro-

cess by exploiting the underlying spatio-temporal correlations. This approach effec-

tively imputes the time-series data in the presence of missing measurements.

• A hierarchical sparse Bayesian matrix completion approach is proposed for DSSE which

leverages the multi time-scale measurements along with its uncertainty. By augment-

ing the sparse Bayesian matrix completion with linearized power-flow constraints, the

proposed method can effectively estimate the states under low observability conditions

where standard weighted least squares approaches fail.

• A novel recursive Gaussian process based approach is proposed which is computation-

ally efficient and is flexible to allow for both batch-wise and real time processing of

measurements.
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• We leverage the graphical structure of the network in the recursive multi-task Gaussian

process approach. We prove that exploiting the graph structure of the distribution

system leads to a decrease in the variance of the imputed measurements.

• Simulations are carried out on three phase unbalanced IEEE 37, IEEE 123 and 11,000

bus test systems to verify the efficacy of the proposed Bayesian frameworks.

• The underlying computational complexities of all the proposed approaches are also

quantified.

More details related to the proposed multi-task GP and the recursive GP based approaches

can be found in Chapter 5 and Chapter 6, and in the following articles:

• S. Dahale and B. Natarajan, “Multi Time-scale Imputation aided State Estimation in

Distribution System,” in 2021 IEEE Power Energy Society General Meeting (PESGM),

2021, pp. 1–5. doi: 10.1109/PESGM46819.2021.9637824.

• S. Dahale and B. Natarajan, “Bayesian Framework for Multi-Timescale State Estima-

tion in Low-Observable Distribution Systems,” IEEE Trans. Power Syst., vol. 37, no.

6, pp. 4340–4351, Nov. 2022, doi: 10.1109/TPWRS.2022.3155151.

• S. Dahale and B. Natarajan, “Recursive Gaussian Process over graphs for Integrating

Multi-timescale Measurements in Low-Observable Distribution Systems,” IEEE Trans.

Power Syst., pp. 1–12, 2022, doi: 10.1109/TPWRS.2022.3204415

• B. Rout, S. Dahale, and B. Natarajan, “Dynamic Matrix Completion Based State

Estimation in Distribution Grids,” IEEE Trans. Ind. Inform., vol. 18, no. 11, pp.

7504–7511, Nov. 2022, doi: 10.1109/TII.2022.3162210.

• M. Abujubbeh, S. Dahale, and B. Natarajan, “Voltage Violation Prediction in Unob-

servable Distribution Systems,” in 2022 IEEE Power & Energy Society General Meeting

(PESGM), Jul. 2022, pp. 1–5. doi: 10.1109/PESGM48719.2022.9916805.
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To address research question 4 and further improve the scalability of the GP-based ap-

proaches, Chapter 7 develops two neural network-based approaches. These approaches are

based on the principles of neural differential equations. The first approach is a generative neu-

ral ordinary differential equation (ODE) model while the second approach is auto-regressive

in nature, termed as SDE-RNN model. The key contributions of these works are as follows:

• We propose a latent neural ordinary differential equations (LODE) approach to recon-

cile the multi time-scale measurements in a distribution grid. The proposed approach is

capable in performing both imputations and predictions, while being computationally

efficient.

• We formulate a novel SDE-RNN which combines the principle of Stochastic differential

equations and neural networks to model the irregularly sampled time series and provide

a confidence interval around them.

• Derive analytical expressions for quantifying total uncertainty due to aleatoric and

epistemic sources in a neural SDE-RNN model.

• Simulation results on the power distribution test system (IEEE 37 network) demon-

strate the effectiveness of the proposed approach compared to the state-of-the-art ap-

proaches.

More details related to the Latent ODE and SDE-RNN model can be found in Chapter

7 and in the following articles:

• S.Dahale, S. Munikoti, B. Natarajan, R. Yang, “Latent Neural ODE for Integrating

Multi-timescale measurements in Smart Distribution Grids,” in 2023 IEEE PES Inno-

vative Smart Grid Technologies Conference - North America (ISGT North America),

2023 (manuscript in press).

• S.Dahale, S. Munikoti, and B. Natarajan, “A General Framework for Uncertainty

Quantification in Neural SDE-RNN”, (manuscript to be submitted).
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To address research question 2a, we propose a phase identification approach where phases

are insufficiently labeled and measurements are limited. We use graph signal processing tech-

niques in the optimization formulation to recover the system topology. To address research

question 2b, we develop a convex meter placement strategy for outage identification in a

reconfigurable distribution network. The placement problem is complemented with a novel

outage detection framework that leverages the strategically deployed sensors’ measurements

at multiple time snapshots and the load estimates via advanced metering infrastructure

(AMI) or load forecasting mechanisms. The key contributions of Chapter 8 are as follows:

• The proposed phase identification approach utilizes the nodal voltage magnitude mea-

surements for clustering the graph representing the phase connectivity information.

It consists of an optimization formulation that infers the connectivity of the entire

multi-phase distribution network in a single shot.

• Simulations are performed on the unbalanced three-phase IEEE 37 and 123 bus test

system. Results demonstrate that the proposed approach is insensitive to incorrect

phase labels, missing measurements, and unknown phase labels. Results illustrate

that the novel approach is over 90% accurate in phase identification and outperforms

the state-of-the-art approach by over 70%.

• The novel outage detection approach provides a one-step solution, and it does not re-

quire enumerating over all discrete sets of hypotheses. The outage detection algorithm

is effective in identifying single and multi-edge outages within the network topology

configurations assumed for the meter placement problem.

More details related to the phase identification and meter placement approach can be

found in Chapter 8 and in the following patent disclosure and articles:

• S. Dahale, “Method for Determination of Phase Labels in a Three Phase Electric Power

Distribution Network”, US Patent 63/347,643, June 1, 2022.

• S. Dahale, A. Pahwa, and B. Natarajan, “Phase Identification in Unobservable Distri-

bution Systems,” IEEE Trans. Power Deliv., 2023 (In press).
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• S. Dahale, and B. Natarajan. “Sensor Placement and Outage Detection for Reconfig-

urable Distribution System.”, IEEE Trans. Power Syst., (under review).

1.3 Organization of the Dissertation

Figure 1.2 outlines the structure of this dissertation. The remainder of this dissertation is

organized as follows. Chapter 2 describes the related work and their limitations in address-

ing the challenges of a real distribution grid. Chapter 3 discusses the fundamental idea of

weighted least-squares and sparsity-based state estimation in three phase distribution grids.

In chapter 4, we exploit the different optimization formulations for implementing a robust

DSSE. Then, we develop joint formulations of the sparsity-based DSSE methods. In chap-

ter 5, we develop a Bayesian framework for integrating the multi time-scale measurements

in smart distribution grid. In chapter 6, we develop a novel recursive GP framework for

handling the streaming data. Then, chapter 7 provides two approaches which leverages the

principles of neural differential equations for reconciling the multi time-scale measurements

and quantifying the uncertainties. Chapter 8 provides phase identification, meter place-

ment and outage detection approaches. The summary of this dissertation and future ideas

constitute chapter 9.
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Figure 1.2: Outline of the dissertation
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Chapter 2

Literature review

2.1 Distribution system state estimation

Weighted Least Squares (WLS) has been the traditional approach for DSSE. In order to

guarantee full observability for the WLS-based state estimation, historical data based pseudo-

measurements have been used to artificially compensate for insufficient data [2]. However, the

WLS + pseudo-measurement state estimation paradigm suffers from huge data requirements

[2] and poor estimation performance [3].

Recently the challenges posed by unobservability and limited measurement availability

at the grid edge have been addressed by sparsity-based DSSE methods. All these meth-

ods exploit the underlying smoothness or sparsity of the raw or linearly transformed mea-

surements/system states. These methods exploit the network structure to perform state

estimation at current levels of data availability and observability. Thus, the requirement of

creating pseudo-measurements for ensuring observability is eliminated. Compressive Sensing

(CS) based DSSE was the first class of solutions proposed where the sparsity of measured

data in a linear transformation basis was exploited to compress measurements. The spatio-

temporal correlation between loads and distributed generation in a single-phase distribution

system is exploited in the estimation strategies proposed in [4]. A noiseless CS approach is

applied to reconstruct the real and reactive power measurements across the grid and estimate
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the voltage magnitude and angle. [5] extends this DSSE approach to three-phase distribu-

tion system. A dynamic compression scheme is employed in [6] on three publicly available

datasets for spatial and spatio-temporal compression. Recursive dynamic state estimation

is implemented in [7] by exploiting the sparsity in distribution grid data. An efficient dy-

namic solution for online smart grid topology identification using CS is presented in [8].

Recently, [9] and [10] introduced the idea of implementing DSSE based on matrix and tensor

completion algorithms, respectively. Both these methods utilize the sparsity or smoothness

of raw measurements. Sparsity in CS indicates the signal of interest is sparse in a specific

transform domain. However, in matrix/tensor completion, it indicates that the singular vec-

tor of the original matrix/tensor is sparse [11]. Matrix/tensor completion methods impute

missing elements in a matrix/tensor by obtaining a suitable low rank approximation of the

incomplete matrix/tensor. The matrix completion algorithm exploits the underlying spatial

correlation in the data. Recently in [9], matrix completion along with noise-resilient power

flow constraints was employed to estimate states in a distribution grid. A matrix completion

formulation that is robust to bad data is presented in [12]. An algorithm for dealing with

data loss in PMU-based power systems using matrix completion and compressive sensing is

proposed in [13] and [14] respectively. Apart from exploiting spatial correlation, the existence

of inherent spatio-temporal correlation in states and measurements can be leveraged using

tensor completion algorithms. Tensor completion based approaches for DSSE estimation is

proposed in [10] and is demonstrated to provide accurate state estimation in low-observable

systems. Using low-rank canonical polyadic decomposition, [15] presents a model-free state

estimation and energy forecasting framework for distribution systems.

Given that sparsity-based DSSE methods work with limited data, it is important to un-

derstand the impact of bad data within this limited set. Conventionally, statistical tests,

such as the χ2-test and the largest normalized residual test are employed for bad data detec-

tion and identification, respectively [16]. Both these tests are post-SE processing techniques

which rely on least-squares estimated residuals. Least absolute value (LAV) [17] [18], least

median of squares (LMS) and least trimmed squares (LTS) [19] estimators have also been

used to detect the bad measurements. However, these methods have huge computational
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cost and high measurement redundancy requirements, which limit their applications in dis-

tribution grids with low observability. Therefore, there is a need to integrate and understand

the effect of bad data in sparsity-based DSSE methods.

It is important to note that DSSE assumes perfect knowledge of the network parameters.

However, the underlying network parameters may be erroneous because of inaccurate man-

ufacturing data, human data entry error, unreported device upgrade or ambient/operating

condition variations [20]. Several approaches for parameter error identification have been

developed, which are mainly based on residual sensitivity analysis [21] and state vector aug-

mentation [22]. However, these methods are either post-processing methods or run into

the observability problem with the increasing scale of the system. The impact of network

parameter uncertainties on sparsity-based DSSE methods is currently unknown.

2.2 Integrating multi time-scale measurements

Weighted least squares (WLS) has been the traditional approach for distribution system state

estimation (DSSE). In order to guarantee full observability for the WLS-based state estima-

tion, historical data based pseudo-measurements have been used to artificially compensate for

insufficient data. These pseudo-measurements do not capture the real-time spatio-temporal

correlations underlying the stochastic environment (e.g., a distribution grid with rooftop

PV’s). In [23], the WLS estimation exploits simple linear interpolation and extrapolation

technique to reconcile time-series data collected at two different time-scales. However, this

interpolation approach does not exploit the spatio-temporal relationships across the network

to impute the time-series data. Secondly, the approach is simplistic and limited to two

time-scale data. Thirdly, the imputed time-series data is still limited only to specific spatial

locations in the network where measurements are collected. In practice, there may not be

adequate number of measurements to guarantee observability. Hence, the approach in [23] is

limited in its practical applicability to distribution systems. The issue of non-synchronized

measurements in DSSE is addressed in [24] based on the credibility of each available mea-

surement and appropriately adjusting the variance of measurements. The authors in [25]
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propose an extended Kalman filter based approach to deal with the irregular sensor sam-

pling and random communication delays. The problem of incorporating limited real-time

measurements as well as the delayed measurements from smart meters for DSSE was ad-

dressed in [26]. A Bayesian estimator proposed in [27] exploits the probabilistic dependencies

of the measurement variables on the system states. However, in this approach, it is difficult

to know the joint probability distribution apriori. Authors in [28] use PMU and SCADA

measurements for DSSE. This approach performs DSSE by incorporating a subset of these

measurements available at time t along with the predicted SCADA measurements obtained

using the information from the previous state estimates. It suffers from large measurement

redundancy requirements (around 1.7), which makes it impractical for low-observable distri-

bution systems. Furthermore, [28] does not consider any missing measurements scenario that

could occur while aggregating measurements over finite bandwidth communication networks.

A load evolution model for the slow-rate measurements is proposed in [29] for performing

day-ahead forecasting. This approach relies on recursive Kalman filter (KF) updates for dy-

namic DSSE. However, KF typically needs the Hessian inverse computations at every step,

which can be computationally burdensome. Also, the approach is not demonstrated for un-

balanced systems. A first-order prediction-correction approach using PMU and smart meter

data is performed in [30]. The main limitation of the approaches in [29] and [30] approaches

is that they assume smart meter measurements are available at all load bus (i.e., system is

fully observable). Neural network models are a popular technique for integrating irregularly

sampled measurements. Recurrent neural networks (RNN) form the first choice for model-

ing high dimensional, regularly sampled time series data. The success of RNNs is due to its

memory and cell state modules that can capture long range dependencies. A natural exten-

sion of RNNs to unevenly sampled time series data is to divide the timeline into equally-sized

intervals [31], [32], and impute or aggregate observations using averages. This pre-processing

stage maligns the information, particularly about the timing of measurements, as they con-

stitute a piece of important information about the data. Another approach uses a simple

exponential decay between observations, and updates the hidden states accordingly [32].

But the states of RNN-decay model approach zero if the time gaps between observations are
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high. However, Neural ODE, which is a novel framework combining deep learning principles

and differential equations has been found to be suitable for modeling irregularly sampled

time series [33]. Neural ODEs can systematically accommodate continuous time series data

using a technique that captures the continuous nature of hidden states. Recently, [34] com-

bines neural ODEs with RNN, leading to a method referred to as ODE-RNN. The hidden

states in these ODE-RNN models obey an ODE between consecutive observations and are

only updated at observed time instances. The ODE-RNN models are suitable for sparse

observations and thus very effective for imputation and one-step prediction. Authors in [35]

propose a Latent SDE with an adjoint method for continuous time series modeling. Neural

SDEs driven by stochastic processes with jumps is proposed in [36] to learn continuous and

discrete dynamic behavior. Generative models built from SDEs whose drift and diffusion

coefficients are samples from a Gaussian process are introduced in [37]. A neural Jump ODE

framework for modeling the conditional expectation of a stochastic process in an irregularly

observed time series is proposed in [38]. However, all neural ODE driven methodologies only

offer a point estimate and fail to quantify the uncertainty associated with the estimates.

UQ approaches in general neural networks are mainly categorized into two classes: Bayesian

and Ensemble methods. Bayesian approaches, such as Bayesian neural nets proposed in

[39] quantify the uncertainty by imposing probability distributions over model parameters.

Though, these approaches provide a principled way of uncertainty quantification, the exact

inference of the parameter posteriors is intractable. Also, specifying the priors for the pa-

rameters of deep neural networks becomes challenging when size of the network increases.

To deal with these challenges, approximation methods like variational inference [40], Laplace

approximation [41], Assumed density filtering [42] and stochastic gradient MCMC [43] are

used. Authors in [44] proposed to use Monte-Carlo Dropout (MC-dropout) during inference

to quantify the uncertainty in neural networks. However, MC dropout is computationally ex-

pensive for larger network and only capture epistemic uncertainty. Non-Bayesian approaches

have also been used for UQ but they also demand a large computational effort [45]. A differ-

ent route has been taken in [46] where SDEs are used to quantify both aleatoric and epistemic

uncertainty by training the SDE model based on out-of-distribution (OOD) training data.
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However, this approach fails to evaluate uncertainty in a principled manner.

2.3 Phase Identification

Existing phase identification algorithms presented in the literature fall under three cate-

gories: approaches that (1) employ additional hardware; (2) primarily use power measure-

ments, and (3) use voltage measurements. The hardware-based methods [47] - [48] employ

signal-injection methodology where distinct signals are injected in each phase of the cus-

tomers. These methods are expensive as it requires extensive work by field personnel. Power

measurement-based approaches leverage the fact that the sum of all the customer loads on a

particular phase is equal to the power measured at the substation transformer, less the losses

[49]. Authors in [50] propose a novel phase and topology identification based on the load

summing concept, principal component analysis, and graph theory. A tabu-search method

is used to assign lateral phases in [51] while [52] performs spectral saliency analysis on load

profiles. The disadvantage of the load summing approach is the need to model the techni-

cal losses, clock synchronization errors, and other losses in the smart meter readings. This

results in inaccurate phase identification in real distribution systems when the time-series

measurements per node are less than the number of total consumers in the network. The

power-based measurement approaches are accurate in a case where the measurements are

assumed noiseless. However, measurement errors due to synchronization issues, clock skew,

and line losses deteriorate the performance of these approaches. To overcome these limita-

tions, the availability of these noisy measurements needs to be increased to identify phase

labels. For acceptable performance, the measurement redundancy required grows to three

times the total number of customers. Thus, these approaches are not scalable with the size of

the network and the number of customers. Furthermore, these power-based approaches are

sensitive to unmetered loads. Another popular phase-identification method employs voltage-

based approaches [53]. These approaches leverage the voltage time-series measurements and

are based on the idea that customers on the same phase will have voltage times-series that

are more correlated than the customers on different phases. Supervised Machine learning
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techniques proposed in [54] use a subset of correct phase labels to train the model. Cross-

correlation between customer voltage profiles and known voltage profiles for each phase is

performed in [55]. A constrained multi-tree approach proposed in [56] incorporates known

topology information as constraints to the phase identification algorithm. Spectral clustering

using voltage time-series data to identify phase labels is employed in [57], [58]. However, this

approach requires extensive training data (about a one-year duration), which is impractical

as the results will not reflect the frequently occurring dynamic changes in the distribution

system.

The phase identification approaches discussed earlier uses historical-based voltage/power

time-series measurements ranging from months to a year. Such large data requirements

are impractical to meet as (1) the distribution grid is generally unobservable and data is

limited; and (2) ground-truth data amidst changes in grid topology may be unavailable.

Therefore, these approaches may prove to be inaccurate under dynamic grid changes. The

main challenge of the phase identification approaches is to provide high accuracy even with

the limited measurements available in the distribution grid.

2.4 Sensor placement and outage detection

Sensor placement in distribution systems is motivated by various applications such as theft

detection [59], communication infrastructure cost minimization [60], outage detection [61],

observability enhancement [62, 63] and state estimation [64, 65]. However, meter placement is

often challenging due to the conflicting nature of sensor placement objectives. Several sensor

placement approaches have been proposed to optimally place sensors to achieve one or more of

the following objectives: namely, minimizing the number of sensors installed, minimizing the

cost of sensors [64],[66], optimizing performance under a resource constraint [67], minimizing

state estimation errors [68], [69] and improving observability. A meter placement scheme

using heuristic rules to reduce the variance of voltage magnitude and angle estimates at

non-metered nodes is proposed in [70]. As meters are placed using a heuristic approach,

they may not guarantee an optimal solution. Authors in [71] minimize the number of meter
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locations and maximize the information from each meter location. A fisher information-

based measurement placement strategy is proposed in [72]. These approaches focus on the

meter placement problem to obtain low estimation errors.

Authors in [73] formulate a mixed-integer linear program for placing the PMUs to ensure

system observability with minimum load loss during a single branch outage. However, the

sensor placement approaches consider a limited set of outages. An optimal PMU strategy

for ensuring observability is proposed in [74], in which the authors also consider the sce-

nario of single-line outages and PMU outages. However, this approach assumes predefined

bus locations where outages are likely to occur. In [75] and [76], the authors proposed an

outage detection approach by combining the optimally deployed real-time sensors and load

estimates obtained via AMI sensors or a forecasting mechanism. They formulated outage

detection as a hypothesis testing problem, for which the maximum a-posteriori probability

(MAP) detector is applied, and maximum misdetection probability is used as the perfor-

mance metric for placing sensors at the optimal locations. An optimal meter placement

strategy for outage identification for a radial distribution network is presented in [77]. The

meter placement approaches proposed in [75, 76, 77] deal with a single distribution network

configuration. Furthermore, the outage detector in these approaches evaluates the likelihood

of the measurements given a discrete set of outage hypotheses and chooses the hypothesis

which provides the maximum likelihood. Thus, the outage detector requires enumerating a

possible set of outage hypotheses, which is computationally expensive and hinders the goal

of detecting all possible outages as quickly as possible.

Previous research that considers reconfigurable distribution networks primarily focusses

on meter placement to ensure observability and not on outage detection. Authors in [68]

propose a robust meter placement algorithm to optimize the worst-case estimation accuracy

among all possible system configurations. In [78], PMU placement via greedy search in

reconfigurable DN is considered. However, this approach places PMU at every node to avoid

losing observability in reconfiguring the DN. [79] investigates PMU placement in a multi-

configuration DN by increasing the node reliability. This approach places two PMUs at each

node to make it observable. In [80], an integer linear programming formulation is proposed
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for reconfigurable DN, which uses a union operator among different configurations as the

guide to final meter placement. However, meter placement for outage identification in a

reconfigurable DN is still not investigated. This paper addresses this limitation by developing

a convex meter placement approach for reconfigurable DN. Furthermore, a computationally

efficient outage detector is required, which avoids enumerating all possible sets of hypotheses

for detecting the most likely outage scenario.
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Chapter 3

Background

The power distribution system is typically unobservable due to insufficient real-time measure-

ments. While deploying more sensors can alleviate this issue, it also presents new challenges

related to data aggregation and the underlying communication infrastructure. Therefore,

developing state estimation methods that enhance situational awareness at the grid edge

with compressed measurements is critical. In this chapter, we focus on the different state

estimation approaches used in distribution grids.

3.1 State estimation techniques in distribution grid

Distribution system state estimation (DSSE) refers to the procedure of obtaining the correct

voltage phasors at all nodes based on real-time measurements and the power network model.

Consider a power distribution system with |P| three phase non-slack buses. The measure-

ments in a distribution system includes power injections at each bus, power flow, and current

over each distribution line, along with bus voltages which are related to the states (voltage

magnitude and voltage angle) by the non-linear equation (3.1),

z = h(x) + ϵ (3.1)
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where, z ∈ Cm represents the vector of measurements, x ∈ Cn denotes the vector of states,

and the function h(x) capture the relationship between states and measurements. ϵ repre-

sents the measurement noise vector. The state estimation task is to estimate x based on

z and knowledge of h(·). This non-linear function h(·) relating the voltage states x and

measurements z can be linearized around an operating point as in [81] resulting in,

x = Bz+w (3.2)

|x| = Cz+ |w|, (3.3)

where z = ((P )T , (Q)T )T represents the measurement vector of active and reactive power

injections, |x| represents the magnitudes at all the buses.

B =
(
Y−1

LLdiag(w̄)−1,−jY−1
LLdiag(w̄)−1

)
and,

C =
(
|diag(w̄)|−1ℜ(diag(w̄)M

)
,

w = −Y−1
LLYL0v0 is the zero-load voltage

where v0 denotes the complex vectors collecting the three-phase nodal voltage at the slack

bus. Here, YLL ∈ C|P|×|P| and YL0 ∈ C|P|×3 are the submatrices of the three-phase admit-

tance matrix,

Y =

Y00 Y0L

YL0 YLL

 ∈ C(|P|+3)×(|P|+3) (3.4)

Next, we will discuss the weighted least squares (WLS) approach conventionally used for

state estimation in the distribution grid.
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3.1.1 WLS method

In a traditional DSSE approach, the state vector is estimated from the measurement equation

in (3.1) using the weighted least squares method. In particular, the DSSE problem is solved

by finding

x̂ = min
x

[z− h(x)]⊺W−1[z− h(x)] (3.5)

where x̂ is the estimated state vector, ⊺ is the matrix transposition operation, and W

denotes the weight matrix that represents the user’s confidence in the measured data. The

weighting matrix W is commonly taken as diagonal elements related to background noise

covariance as W = diag{σ−2
1 , ..., σ−2

m }, where σ2
j represents the variance of the measurement

error corresponding to the jth element of z. This choice of the weight matrix is based on

two assumptions: 1) the error vector (ϵ) has a Gaussian distribution with zero mean, and

2) the measurement errors of different elements of the measurement vector are statistically

independent. Under these assumptions, the WLS problem is transformed to the maximum

likelihood problem.

The solution for x̂ is obtained in an iterative fashion by linearizing (3.1) around the

available estimate (at iteration k) and applying the Gauss-Newton algorithm to improve the

estimate, using the following equations:

G(j)∆x(j) = H⊺(j)W−1[z− h(x(j))] (3.6)

x̂(j + 1) = x̂(j) + ∆x(j) (3.7)

where G(j) = H⊺(j)W−1H(j) is the gain matrix at iteration j. The Jacobian matrix

H(j) needed at each iteration is the first-order derivative of h(x), with respect to x, evaluated

at x̂(j), i.e., H(j) = {∂h(x)
∂x
}x=x̂. The iterative procedure is terminated when the norm of

the residual falls below a predefined value, i.e., for some δ > 0, ∥z− h(x̂(j))∥2 ≤ δ.

According to the update equation in (3.6), an invertible Jacobian matrix is required to

implement WLS. However, this condition cannot be satisfied due to insufficient measure-
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ments at the grid edge. In other words, the low observability in distribution grids hinders

the applicability of the conventional WLS method for DSSE. To address the low observability

issue in DSSE, the correlations among states and measurements are exploited. Specifically, a

spatial correlation exists among DERs based on their geographical proximity [4]. Moreover,

power injection/consumption patterns of nodes may exhibit temporal correlation. The pres-

ence of spatial and/or temporal correlation results in the sparsity of states/measurements in

a linear transformation basis. Thus, very few measurements from network buses are required

for state estimation. The sparsity characteristics can be exploited by the following DSSE

methods.

3.1.2 Compressive Sensing

1-D Compressive Sensing

This technique exploits the sparsity of the signal of interest in a linear transformation basis.

It is used to efficiently reconstruct a signal by finding sparse solutions to an under-determined

linear system. Let x ∈ Rn be the original state, compressible in a linear transformation basis

such that,

x = Ψa (3.8)

where a has at most k ≪ n significant coefficients i.e., x is k-sparse in sparsifying basis Ψ.

If the sensing mechanism is such that,

y = Φx;y ∈ Rm,Φ ∈ Rm×n, (3.9)

where Φ is a random measurement/projection matrix (e.g., matrix elements distributed as

i.i.d. Gaussian random variable with mean 0 and variance 1/m or Bernoulli random vari-

ables), then the original state x can be reconstructed by solving the following l1 minimization

problem
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â = min
s
∥s∥1

subject to y = ΦΨs

(3.2), (3.3)

(3.10)

Here, (3.2) represents the linearized power-flow constraints. This formulation can be

modified to include noisy measurements as shown in [82]. The reconstructed state is

x̂ = Ψâ (3.11)

The result of the optimization problem in (5.2.1) provides an exact reconstruction with

overwhelming probability [82] if there exists a δ ∈ (0, 1) such that,

(1− δ)∥s∥22 ≤ ∥ΦΨs∥22 ≤ (1 + δ)∥s∥22, (3.12)

holds for all K-sparse signal s. This is called the Restricted Isometry property (RIP) of

order K. The ratioM/N is termed as Compressed Measurement Ratio (CMR). More details

regarding 1-D CS-based DSSE can be found in [4].

2-D Compressive Sensing

2-D CS aims at reconstructing the signal with insufficient data using the underlying sparsity

across both space and time. Let X ∈ RNspace×Ntime be the spatio-temporal state over Nspace

nodes and for Ntime number of observations. It has been shown thatX is sparse in sparsifying

basis ΨNspace and ΨNtime
such that [4],

X = ΨNspaceAΨT
Ntime

(3.13)

The spatio-temporal compressed sensing of X corresponds to,

Y = ΦspaceXΦT
time (3.14)
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where, Φspace ∈ Rmspace×Nspace and Φtime ∈ Rmtime×Ntime with entries that are i.i.d. Gaussian

random variables with zero mean and respective variance of 1/m2
space and 1/m2

time withmspace

≪ Nspace and mtime ≪ Ntime. The spatio-temporal data is recovered by solving the following

l1 minimization problem

â = min
s
∥s∥1

subject to vec(Y) = (Φspace ⊗Φtime)(ΨNspace ⊗ΨNtime
)s

(3.2), (3.3)

(3.15)

Here, vec(.) represents the vectorized version of a matrix and ⊗ represents the kronecker

product.The reconstructed state is therefore,

vec(X̂) = (ΨNspace ⊗ΨNtime
)â (3.16)

More details on 2-D CS based DSSE can be found in [4].

3.1.3 Matrix completion

To utilize the matrix completion approach for DSSE, a structured matrix X whose rows

correspond to measurement locations and columns correspond to measurement types (e.g.

power or voltage) is constructed for a given time. For example, each row represents a bus

and each column represents a measurement associated with the bus [9]. Therefore, for every

bus b ∈ P , the corresponding row in the matrix X ∈ Rn1×n2 contains:

[ℜ(vb),ℑ(vb), |vb|,ℜ(sb),ℑ(sb)] (3.17)

where n1 = |P| and n2 = 5 quantities per row. Since the distribution grid is unobservable,

X will be an incomplete matrix. The smoothness in the spatial variation of the physical

power system quantities (voltage, power, etc) translates into the low-rank property for this

matrix X. This low-rank property can be exploited to impute the unknown entries of X.
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Specifically, matrix completion aims to determine the unknown elements in the matrix by

minimizing the rank of the matrix. The convex relaxation for the rank of a matrix is the

nuclear norm. The sampling operator PΩ(X) represents the observation matrix as,

[PΩ(X)]ij =


Xij, (ij) ∈ Ω

0, otherwise

(3.18)

Therefore, the optimization formulation (3.19) recovers the complete low rank matrix, as

L̂ = min
L∈Rn1×n2

∥L∥∗

subject to ∥PΩ(X)− PΩ(L)∥22 ≤ ϵ

(3.2), (3.3)

(3.19)

where, (3.2) and (3.3) captures the linearized power-flow constraint relating voltage states

x to power measurements z. More information on matrix completion-based DSSE can be

found in [9].

3.1.4 Tensor completion

Similar to matrix completion, the starting point for tensor completion approach is the con-

struction of a tensor corresponding to system states and measurements. In essence, the

matrix corresponding to the state/measurement at one time instant can be extended to a

sequence of matrices each corresponding to one time instant. The resulting tensor T will be

of dimension RP×5×Nt with |P| buses, Nt time instants and 5 physical variables as stated in

(3.17). T is a 3-way tensor indexed by two spatial variables and one temporal variable.

The goal of tensor completion is to fill in the missing entries of T by exploiting the

sparsity in the data. Tensor completion utilizes tensor trace norm minimization formulations

with linearized power-flow constraints. The tensor trace norm can also be expressed as the

convex combination of trace norms of all matrices obtained by unfolding the tensor along

all its modes [83]. Additional matrices M1, M2,..., Mn are introduced to eliminate the
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interdependency in the elements across the different unfoldings. In [10], a simple low rank

tensor completion (SiLRTC) approach is considered that uses block coordinate descent to

obtain the n matrices Mi and tensor X . The suffix (i) denotes the unfolding operation

applied on the tensor along the mode i. The optimal Mi can be obtained by applying a

shrinkage operator DT (X(i)), where DT (X(i)) = UΣT V
T and ΣT = diag(max(σj − τ, 0)). X

is obtained by solving the optimization problem for certain positive values of βis,

min
X

n∑
i=1

βi
2
∥Mi −X(i)∥2F

subject to XΩ = TΩ

(3.2), (3.3)

(3.20)

TheM′
is and X are alternatively updated until X converges. More details on tensor com-

pletion based DSSE can be found in [10].
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Chapter 4

Robust and Efficient Sparsity-based

state estimators

All the sparsity-based approaches discussed in chapter 3 do not take into account the presence

of outlier measurements and network parameter uncertainty. The presence of bad measure-

ment data can degrade state estimation accuracy [84]. Furthermore, all the DSSE methods

discussed in chapter 3 assumes accurate knowledge of the power network. The network model

parameters include series resistances, reactances, tap values, and susceptance. Parameter

errors may create serious bias in the state estimate solutions that tend to last for a long

time [85]. Furthermore, efficient formulations of these DSSE approaches are not exploited.

Therefore, we aim to pursue this direction for the first time. To this end, we first develop

robust formulations of the DSSE approaches to deal with the presence of - 1) bad data and

2) network parameter uncertainty. We then develop joint formulations of the sparsity-based

estimators for enhancing the DSSE accuracy at highly unobservable conditions. To validate

the efficacy of the proposed approaches, we perform extensive simulations on IEEE 37 bus

test system.
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4.1 Robust DSSE approaches

4.1.1 Proposed Approach: Robustness to bad data

“Bad data” refers to the data measurements that significantly deviate from the underlying

actual behavior. They occur due to instrument failures, impulsive communication noises,

infrequent instrument calibration, or jammed sensors. In the smart grid context, bad data

can also refer to some form of malicious data injections [86], [87], [88], [89]. The sparsity of

bad data reflects the fact that cyber-attacks, impulsive noise, or faulty sensors are infrequent

as compared to the total number of measurements. In practice, prior research efforts [90],[91]

have also affirmed that at most 10% of total data ends up being bad. This section discusses

the robust formulations of sparsity-based approaches in the presence of bad data.

Robust CS

Considering bad data and measurement noise, the sensing matrix y in (3.9) can be defined

as,

y = Φx+ o+ e (4.1)

where, o ∈ Rm and e ∈ R⋗ represent outlier noise and measurement noise respectively. o

is an unknown vector with its entry o(i) being non-zero only if y(i) is a bad datum. The

joint reconstruction of both x and o essentially reveals the state and identifies the faulty

measurements. It is reasonable to assume that the presence of bad data in the measurement

dataset is sparse. Hence, by exploiting the sparsity of o, we can recover both the states and

bad data. The robust optimization formulation corresponds to,

min
a,o

∥a∥1 + λ1∥o∥1 + λ2∥y −ΦΨa− o∥2

subject to (3.2), (3.3)

(4.2)

where λ1 and λ2 are the tuning parameters. The reconstructed signal is x̂ = Ψâ. A similar

robust formulation is obtained for 2-D CS by incorporating the l1 minimization of bad data
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vector in (3.15).

Robust Matrix Completion

As mentioned earlier, the partially observed matrix X serves as the starting point for matrix

completion. However, entry-wise measurement noise and outlier noise could exist. This in

turn may degrade the performance of matrix completion-based state estimation. A robust

formulation is proposed to withstand these errors. The key idea behind the robust formula-

tion is to recover the low-rank matrix as well as the outlier matrix from the observed matrix

X at different levels of system observability. The partially observed matrix X is,

X = L+ S+ Z (4.3)

where L – low rank matrix, S – sparse bad data matrix and Z – measurement noise matrix

Accordingly, the optimization problem (3.19) is reformulated to incorporate bad data and

measurement noise as,

min
L,S

∥L∥∗ + λ1∥vec(S)∥1 + λ2∥X− L− S∥F

subject to (3.2), (3.3)

(4.4)

where λ1 and λ2 are the tuning parameters. By solving (4.4), the low rank matrix (L) and

corrupted matrix (S) is jointly recovered [92].

Robust Tensor Completion

In the tensor completion formulation (3.20), we need to remove outliers and recover the

low-rank tensor based on the global structure of the tensor [93]. Therefore, similar to the

matrix completion case, the robust tensor completion formulation of tensor L corresponds
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to,

(L̂, Ŝ) = min
L,S

N∑
i=1

∥L(i)∥∗ + λ∥vec(S)∥1

subject to X = L+ S

(3.2), (3.3)

(4.5)

where λ is the tuning parameter. L, S are low rank and bad data tensor respectively.

4.1.2 Proposed Approach: Robustness to network parameter un-

certainty

In all the DSSE methods discussed so far, the utilities assume the perfect knowledge of

the network parameters stored in the database. However, in reality, parameters may be

incorrectly documented or unknown. Furthermore, it is reasonable to assume that such

errors in network parameters do not exist universally. That is, only a subset of these values

may be erroneous i.e., these parameter errors occur sparsely [85]. Consider a general norm

minimization problem with objective ∥Ax− b∥ and variable x along with uncertainty for a

set of possible values of A ∈ A. The worst-case robust approximation formulation [94] can

be applied here. i.e., the goal is to minimize the worst-case error ewc,

minimize
x

ewc(x)

where ewc(x) = sup {∥Ax− b∥ | A ∈ A}.
(4.6)

(4.6) can be cast as a LP with variables x and t when A is the singleton A = {A},

minimize
x,t

t

subject to − t1 ⪯ Ax− b ⪯ t1

(4.7)

For DSSE, uncertainties in the network parameter values result in uncertainties in sub-

matrices of admittance matrix YLL ∈ C|P|×|P|. The robust formulation of the power-flow

32



constraints (3.2) with voltage x̃ as the optimization variable corresponds to,

minimize
x̃,t

t

subject to − t1 ⪯ ℜ{YLLx− (MYLz−YL0v0)} ⪯ t1

− t1 ⪯ ℑ{YLLx− (MYLz−YL0v0)} ⪯ t1

(4.8)

where

MYL :=
(
diag(w̄)−1,−jdiag(w̄)−1

)
Thus, by minimizing the maximum residual error of the powerflow constraint, we can get

robust solutions for x̃. The complete robust formulation of CS with network parameter

uncertainty corresponds to,

minimize
s,t

∥s∥1 + λt

subject to y = ΦΨs

− t1 ⪯ ℜ{YLL(Ψs)− (MYLz−YL0v0)} ⪯ t1

− t1 ⪯ ℑ{YLL(Ψs)− (MYLz−YL0v0)} ⪯ t1

(4.9)

where λ is the tuning parameter. A similar robust formulation can be derived for matrix

completion and tensor completion approaches. Due to space constraints, those formulations

have been omitted.

4.1.3 Simulation Results

In this section, the DSSE approaches introduced earlier are evaluated and compared on IEEE

37 test systems. This test system is a standard three-phase unbalanced distribution grids [95].

IEEE 37 test system is a highly unbalanced delta-connected system with an operating voltage

of 4.8 kV and spot loads. The CVX solver [96] is utilized to solve the involved optimization

formulations. For quantifying the performance of sparsity-based DSSE methods, MAPE

(Mean Absolute Percentage Error) and MIAE (Mean Integrated Absolute Error) metrics are
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used for voltage magnitude and voltage angle, respectively. They are defined as,

MAPE =
1

N

N∑
i=1

∣∣∣∣xi − x̂ixi

∣∣∣∣ (4.10)

MIAE =
N∑
i=1

|θi − θ̂i|
N

(4.11)

where xi and θi represent the true magnitude and angle at bus i respectively. x̂i and θ̂i are

the estimated magnitude and angle, respectively. Different case studies are presented for

evaluating the performance of these methods.

Case I - Robustness to bad data

The robustness of DSSE methods is evaluated on the IEEE 37 bus test system with power

and voltage measurement data. The percentage of bad data is increased from 0% to 10%

of the total measurements with a fixed CMR of 75%. For each percentage, 50 cases are

generated with different randomly generated bad data. We assume that the measurement

noise distribution has a mean zero and standard deviation of 1% of the actual parameter

value, and the standard deviation of bad measurements is 100% of the actual value. The

performance of WLS, robust 1-D CS, and matrix completion is illustrated in the presence

of bad data and measurement noise in Fig. 4.1 and Fig. 4.2. It can be inferred that WLS is

more sensitive to bad data than the sparse-aware approaches. For instance, with the presence

of 10% of bad data, the magnitude performance of the matrix completion approach is 94%

better compared to the WLS method.

Fig 4.3 and Fig 4.4 illustrate the performance of robust versions of tensor completion and

2-D CS-based DSSE. These methods deliver comparable performance in terms of voltage

magnitude estimation. However, 2-D CS-based method has improved accuracy in voltage

angle estimation, compared to tensor completion. This is because tensor completion focuses

more on voltage magnitude error reduction relative to voltage angle accuracy due to the

different scales of those constituent tensor elements.
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Figure 4.1: Case I: Voltage magnitude performance of spatial approaches for different bad
data
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Figure 4.2: Case I: Voltage angle performance of spatial approaches for different bad data

Case II - Robustness to network parameter uncertainty

The performance of the robust formulation in (4.9) is compared against WLS for different

CMRs in Fig. 4.5 and Fig. 4.6. The measurement set includes real power injections, reactive

power injections, and voltage phasors. The states to be estimated are voltage magnitude and
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Figure 4.3: Case I: Voltage magnitude performance of spatiotemporal approaches for dif-
ferent bad data
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Figure 4.4: Case I: Voltage angle performance of spatiotemporal approaches for different
bad data

voltage angle. Since implementing the WLS approach requires a full-rank jacobian matrix,

i.e., the number of measurements needs to be equal to the number of states, this approach

is not feasible with less than 66% measurements. Therefore, pseudo-measurements based
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Figure 4.5: Case II: Voltage magnitude performance of spatial approaches in presence of
network parameter uncertainty
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Figure 4.6: Case II: Voltage angle performance of spatial approaches in presence of network
parameter uncertainty

on historical data of the network are added to make the system observable for CMR less

than 66%. To simulate network parameter uncertainties, the resistance in the branch 2-3 for

phase A is intentionally made erroneous by 10 p.u. Also, the reactance in the branch 12-13
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for phase B is modified from 0.29 p.u to 4.65 p.u. The measurements are generated with

this perturbed model whereas the model known to the estimator remains unchanged. It can

be inferred that the states estimated using the WLS approach are not robust to parameter

uncertainty. However, the 1-D CS-based approach reconstructs the states with high fidelity

even at low CMR values. Also, the WLS estimates are poor as the pseudo-measurements

are inaccurate compared to the real-time measurements.

4.2 Efficient DSSE approaches

In order to accurately estimate the states with high probability using the sparsity-based

approaches, the requirement of a minimum number of measurements must be satisfied. In

compressive sensing, the reconstruction of length N states using M measurements where

M ≪ N is possible by exploiting the sparsity of states in a transformed basis. K-sparse

states are recovered accurately using M ≥ cKlog(N/K) i.i.d gaussian measurements [97].

In a matrix completion approach, the minimum number of measurements (m) required to

recover the matrix of size n1 × n2 with high probability is m ≥ Cn1.2rlogn where n =

max(n1, n2) and r is the rank of the matrix [98]. These requirements restrict the application

of sparsity-based approaches for highly unobservable distribution systems. Furthermore,

in the matrix completion approach, the minimization of the nuclear norm requires solving

a semi-definite program which becomes computationally inefficient for large matrices. An

efficient alternating minimization algorithm is proposed in [99] that reformulates the matrix

completion problem with time-series data.

This chapter proposes two unique approaches to estimating the system states when the

availability of spatio-temporal measurements at the local control center is very limited. We

consider a commonly occurring practical scenario where the sensors at specific spatial loca-

tions send data to the local center at a particular sampling rate. The first proposed approach

estimates the states by performing matrix completion across space and compressive sensing

across time using an alternating minimization approach. This formulation estimates the

states in a single shot by exploiting the low-rank property as well as temporal sparsity in
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the measurements while incorporating the power-flow constraints. In the second approach,

compressive sensing and matrix completion is performed in two stages. In the first stage, the

compressed measurements from a single sensor are recovered by exploiting the sparsity of the

states on a linear transformation basis. In the second stage, matrix completion across the

network is performed at individual time instants. In the following subsections, we describe

these two approaches, namely the joint MC-CS approach and CS-MC approach.

4.2.1 Proposed Joint MC-CS Approach

The framework of the joint MC-CS approach is shown in Fig.4.7. Consider a power dis-

tribution grid with |P| three-phase non-slack buses. Sensors are deployed throughout the

grid but due to communication and other constraints, only a fraction of data is aggregated

from these sensors and used for DSSE. Assume the sensors located at a subset of buses send

data to the local control center at time t = 1, 2, ..., T at a predefined sampling rate. Let Mt

denote the measurement matrix at time t whose structure for every bus b ∈ P is given as,

[ℜ(vi),ℑ(vi), |vi|,ℜ(si),ℑ(si)]⊺ (4.12)

A block matrix M is constructed as,

M = [M1;M2; ...,MT ] ∈ Rm×n (4.13)

Here, m = 5T and n = |P|. The linearized powerflow constraints from (3.2) and (3.3) at

time t = 1, .., T can be written as y ≈ Ap+ b.
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where,y = [ℜ(v1),ℑ(v1), |v1|, ...,ℜ(vT ),ℑ(vT ), |vT |]⊺,

A =



B1 B2 0 · · · 0 0

B3 B4 0 · · · 0 0

C1 C2 0 · · · 0 0

...
...

...
. . . 0 0

0 0 0 · · · B1 B2

0 0 0 · · · B3 B4

0 0 0 · · · C1 C2



,

p = [ℜ(s1)⊺ ℑ(s1)⊺... ℜ(sT )⊺ ℑ(sT )⊺]⊺

and b = [ℜ(w)⊺,ℑ(w)⊺, |w|⊺...ℜ(w)⊺,ℑ(w)⊺, |w|⊺]⊺

where, the term [B1 B2] = ℜ(B), [B3 B4] = ℑ(B) and [C1 C2] = C.

Figure 4.7: Framework of the Joint MC-CS approach

It is important to note that the rows/columns of the matrix M are observed to exhibit

low-rank feature and discrete cosine transform (DCT) compactness properties as discussed

next.
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Low rank property

The columns of the matrixM are dependent on each other as there exists a spatial correlation

between different locations in a power grid. Furthermore, the physics of power-flow relates to

the different measurements. Hence, M possess a low-rank property which can be evaluated

by calculating the SVD of the matrix as,

M = UΣVT (4.14)

where the matrix U ∈ Rm×m, V ∈ Rn×n and Σ ∈ Rm×n containing p = min(m,n) singular

values arranged in descending order (σ1 > σ2 > ... > σp). For our experiments involving

practical data from IEEE 37 bus test system, it can be inferred that the largest 5 singular val-

ues occupy about 99.9% of the energy confirming the low-rank property of the measurement

matrix. This property has also been confirmed by other prior efforts on matrix completion

[9].

DCT compactness analysis

In a distribution network, the loads are observed to be slowly changing over time. The

temporal data in the matrix M represented by xi is observed to exhibit sparsity in a linear

transformation basis [4]. Discrete cosine transform (DCT) enables to the representation of

the data in fewer coefficients. The DCT matrix D = ‘{d(k, n)}’ of dimension T × T as

defined in [100] can be split as,

D =

D1

D2


where D1 consists of first ′j′ rows of D and D2 consists of last ′T − j′ rows. To exhibit

temporal sparsity for the time-series data xi, only a few DCT coefficients will capture most

of the energy i.e.,

∥D1xi∥2
∥xi∥2

≈ 1,
∥D2xi∥2
∥xi∥2

≈ 0
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This property can be observed from the practical time-series data from the IEEE 37 bus

test system where 1-2 DCT coefficients occupy 99% of the energy, thus proving the temporal

data in matrix M is compact. However, due to limited system observability, only limited

entries of the matrix M are observed. In order to recover the complete matrix, the low-rank

feature property, DCT compactness, and the linearized power-flow constraints are exploited

in an integrated optimization formulation corresponding to,

min
X
∥X∥∗ + λ1∥PΩ(X)− PΩ(M)∥2F + ν∥y − (Ap+ b)∥22 + λ2∥s∥2

s.t. y = [a⊺1X a⊺2X ... a⊺3T−2X a⊺3T−1X a⊺3TX]⊺,

p = [c⊺1X c⊺2X ... c⊺2T−1X c⊺2TX]⊺,

s =



D2 (e⊺4 reshape(X(:, 1), [5, T ]))⊺

D2 (e⊺5 reshape(X(:, 1), [5, T ]))⊺

D2 (e⊺1 reshape(X(:, 1), [5, T ]))⊺

...

D2 (e⊺1 reshape(X(:, n), [5, T ]))⊺



(4.15)

where, m = 5T , n = |P|, X ∈ Rm×n, y ∈ R 3
5
mn, p ∈ R 2

5
mn

Here, a3(t−1)+i = e5(t−1)+i and c2(t−1)+i = e5(t−1)+3+i are the standard basis vectors in Rm, e1,

e4 and e5 are the standard basis vectors in R5. The parameters λ1 ≥ 0, ν ≥ 0, λ2 ≥ 0 are

the tuning parameters.

The matrix X can be factorized into two matrices U and V. The nuclear norm of X can be

expressed by the Frobenius norm of matrix U and V given as,

∥X∥∗ = min
U,V

∥U∥2F + ∥V∥2F

subject to X = UV

(4.16)
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Substituting (4.16) in (4.15), we obtain the following optimization problem,

min
U,V

∥U∥2F + ∥V∥2F + λ1∥PΩ(UV)− PΩ(M)∥2F+

ν∥f1(UV)− (Af2(UV) + b)∥22 + λ2∥f3(UV)∥2

s.t. f1(UV) = [a⊺1X a⊺2X ... a⊺3T−2X a⊺3T−1X a⊺3TX]⊺,

f2(UV) = [c⊺1X c⊺2X ... c⊺2T−1X c⊺2TX]⊺,

f3(UV) =



D2 (e⊺4 reshape(X(:, 1), [5, T ]))⊺

D2 (e⊺5 reshape(X(:, 1), [5, T ]))⊺

D2 (e⊺1 reshape(X(:, 1), [5, T ]))⊺

...

D2 (e⊺1 reshape(X(:, n), [5, T ]))⊺


X = UV

(4.17)

The matrix completion formulation in (4.17) is a non-convex problem. But using alternating

minimization algorithm [99], the problem becomes convex when either U or V is fixed. This

algorithm updates the variables U and V at each iteration k in an alternating fashion while

fixing the other factor. The update rules are given by the following update equations as,

minimize
U(k)

∥U∥2F + λ1∥PΩ(UV(k−1))− PΩ(M)∥2F + ν

∥f1(UV(k−1))− (Af2(UV(k−1)) + b)∥22

+ λ2∥f3(UV(k−1))∥2

(4.18)

minimize
V(k)

∥V∥2F + λ1∥PΩ(U
kV)− PΩ(M)∥2F + ν

∥f1(UkV)− (Af2(U
kV) + b)∥22

+ λ2∥f3(UkV)∥2

(4.19)

The alternating minimization approach for the proposed approach is given in Algorithm 1.
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4.2.2 Proposed CS-MC Approach

The joint MC-CS approach proposed in section 4.2.1 directly incorporates the raw infor-

mation from each of the sensors at a particular bus for state estimation. However, due to

the network bandwidth limitation, it may not be practical to collect all the temporal mea-

surements. Furthermore, as stated earlier, solving (4.13) involving large matrices can be

computationally inefficient. Therefore, we propose a state estimation approach that allevi-

ates these drawbacks.

The framework of the CS-MC approach is shown in Fig.4.8. Assume the measurements

collected from each buses is Φx where Φx ≪ x. The recovery of the states is performed

in two stages. Firstly, the incomplete temporal measurements are recovered by compressive

sensing using (3.10). It should be noted that no power-flow constraints are used at this

stage. Once the estimates of all the temporal measurements are obtained, the second stage

consists of recovering the spatial states by classic matrix completion based state estimation

using (3.19). The state estimation is performed separately at each time steps along-with the

power-flow constraints in (3.2) and (3.3).

Figure 4.8: Framework of the CS-MC approach
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Algorithm 1 Alternating minimization Algorithm for matrix completion across space and
compressive sensing across time

Input: Measurement matrix M, Set of known indices Ω, DCT matrix D, system model A,
b, number of iterations N .

initialization: Compute the SVD of the matrix M = UΣVT, set V(0) =
Σ0.5V
1: for k = 1, .., N do
2: Solve (4.18)
3: Solve (4.19)
4: end for
5: return X = U(N)V(N)

4.2.3 Computational Complexity

In this section, the computational complexity of the proposed approaches for a matrix

X ∈ R5T×|P| is discussed. In the joint MC-CS approach, in order to solve the power-

flow constraints, O(|P|3T 3) computations are required at each iteration. In a classic MC

approach, the matrix X ∈ R5×|P| is estimated separately for each time T . Denoting m and

n as the rows and columns of X, the main computation is involved in calculation of the

SVD of the matrix which is O(mn ·min(m,n)) along-with the power-flow constraints O(n3)

at each time. Hence, the overall worst case computational complexity is O(|P|3T ). The

CS-MC approach performs CS for each temporal state and classic matrix completion in the

next step. CS requires O(T · k ·min(T, k)) computations where T denotes the time and k as

constraints. The overall worst case complexity in both the steps is O(|P|3T ). This illustrates

that the proposed joint MC-CS approach is computationally expensive as compared to the

conventional matrix completion as well as the CS-MC approach.

4.2.4 Simulation Results

In this section, the efficacy of the proposed formulation is demonstrated on the IEEE 37

unbalanced three phase test system. We characterize the performance of power and voltage

magnitude recovery using the mean absolute percentage error (MAPE) metric and the volt-

age angle recovery using mean integrated absolute error (MIAE) metric [101]. For simulation,

we consider a matrix that includes 8 time steps and whose entries are randomly available
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representing different fractions of available data (FAD). The compression of the temporal

measurements in the CS-MC approach is indicated by CMR as defined earlier. Fig. 4.9

shows the recovery performance of power (active and reactive) using the two proposed ap-

proaches. Fig.4.10 -4.11 shows the comparative performance of the proposed formulation

with the classic MC in the recovery of voltage magnitude and voltage angle states respec-

tively. It can be inferred that the proposed joint MC-CS approach as well as the CS-MC

approach outperforms the classic matrix completion at all FADs. The performance is su-

perior especially in the low observability region. This is due to the fact that this approach

exploits both the spatial correlation as well as temporal correlation of the states. The joint

MC-CS approach, although computationally expensive, is superior than CS-MC approach.

This is due to the fact that raw measurements are used for estimating the states rather than

the compressed measurements. The recovery of states in CS-MC approach also depends on

the CMR of the temporal measurements. The error in the recovery performance increases

as the CMR is decreased. Fig. 4.9-4.11 shows the performance of CS-MC at 40% and 80%

CMR.

Figure 4.9: Power recovery at different FADs
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Figure 4.10: Voltage magnitude recovery at different FADs

Figure 4.11: Voltage angle recovery at different FADs

4.3 Summary

In this chapter, our goal was to develop new robust formulation for these approaches to

tackle the presence of bad data and network parameter uncertainties. Numerical studies

show the superior performance of compressive sensing-based approaches, compared to matrix
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completion and tensor completion-based methods. We also develop an efficient joint matrix

completion and compressive sensing approach to perform DSSE. The proposed approach

employs an alternating minimization approach to estimate an incomplete spatiotemporal

matrix. The efficacy of the proposed approach was demonstrated using the IEEE 37 bus test

system. The performance gains of these robust and efficient sparsity-based DSSE methods

are especially pronounced in low observability conditions. Furthermore, the proposed robust

optimization formulations of sparse-aware approaches are compared with conventional WLS-

based estimation methods and shown to offer significant performance improvements.

48



Chapter 5

Handling multi time-scale

measurements using Multi-task GP

approach

As discussed in chapter 4, the lack of unobservability at the grid edge hinders the notion

of real-time situational awareness. However, with the advent of the smart grid, there has

been a plethora of efforts to extract and exploit information at the distribution feeder level.

The increase in the deployment of smart meters and sensors have contributed to improved

monitoring of the distribution system. The sources of information available from a smart

distribution system include (1) Remote terminal unit (RTU) measurements aggregated by

the SCADA system that typically includes bus voltage and head line currents. These mea-

surements are sampled at rates ranging from a few seconds to minutes. (2) Smart meters

concentrators or advanced metering infrastructure (AMI) data comprising of active and re-

active power consumption details of customers. The sampling rate is usually around 15 min.

The AMI sensors located on the secondary side of the distribution systems collect consumer

data for billing purposes. The load composition of a primary feeder can be calculated accord-

ing to the energy consumption of all the customers served by the feeder. The measurements

at the primary feeder are averaged over 15 min intervals [102]. These aggregated measure-
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ments serve as pseudo-measurements for SE purpose and are critical for increasing the data

redundancy in the distribution system [23]. (3) Voltage phasor measurements collected by

PMUs (phasor measurement units) typically sampled at 120 samples/sec. The information

collected by these metering devices presents some challenges. Firstly, the measurements from

heterogeneous sources are sampled at different rates and are rarely synchronized. The sources

of information discussed above can be broadly classified as - (1) Fast rate measurements col-

lected by PMUs or SCADA systems that are typically sampled every few seconds, and (2)

Slow rate measurements at the primary feeder averaged over every 15 minutes or hours.

Fig.5.1 shows the sources of information available in a smart grid at different timescales

[102]. There are two options for real-time DSSE when confronted with multi time-scale mea-

surements [102], namely: (1) perform the DSSE at the resolution of the lowest measurement

frequency, or (2) perform the DSSE at a resolution higher than the lowest measurement

frequency using a method to reconcile the older and future measurements. For a reliable

DSSE, the first option may be unsuitable. In order to pursue the second option, all the

information sources should be properly combined as their inclusion may significantly affect

the estimation of the system state. Secondly, the information aggregated from these sources

can be intermittent and/or corrupted due to communication network impairments. Hence,

one of the key challenges in distribution system automation is to properly aggregate and

reconcile noisy, corrupted, heterogeneous, and incomplete time-series data. Secondly, under-

standing how to exploit these measurements for state estimation at any desired timescale

will be critical in developing optimal control mechanisms.

Figure 5.1: Relative frequency of data acquisition from different sources in distribution
systems
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5.1 System model

Assume we have S sensors at different spatial nodes in the distribution grid, each collecting

data at a different rate. The measurements collected by these sensors include bus voltages

and power injections at various nodes. The data-setM consists of {xs,ys}Ss=1 where the s
th

sensor data contains time xs ∈ Rns×1 and its corresponding measurement values ys ∈ Rns×1.

The number of observations for the sth sensor data is represented by ns which are different

as each sensor collects data at different temporal resolutions. The observations ys consists

of yAMI ,ySCADA or yPMU measurements. Here, the observations yAMI are the aggregated

AMI data of the sth sensor obtained at xAMI times (15-min interval data over 24-hr period).

ySCADA and yPMU are the voltage magnitude measurements of sth sensor obtained from

SCADA and PMU sensors, respectively. These measurements are obtained at time points

xSCADA (1-min interval) and xPMU (0.1 s interval). The sampling rates of the sensors (AMI,

SCADA, or PMUs) are different, hence the time instants xs for each of them would also be

different.

5.2 Proposed Bayesian Approach

Distribution systems have poor observability due to insufficient measurements. In order to

deal with this challenge, the data collected by multiple sensors at the grid edge could be

leveraged. Hence, before the DSSE operation, we reconcile the heterogeneous measurements

at a single time-scale. In order to perform this, the proposed Bayesian framework is divided

into two stages as illustrated in Fig.5.2. In stage 1, the temporal measurements at the buses

are considered for imputation. In stage 2, these imputed timeseries are leveraged at a single

snapshot of time along with their associated uncertainty for Bayesian Matrix completion

based DSSE. These stages are discussed briefly in the following sections.
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Figure 5.2: Proposed Bayesian framework

5.2.1 Stage 1 - Multi-task Gaussian Process

In this stage, a multi-task Gaussian process (GP) is used to impute data at any required

timescale based on unevenly sampled multiple time-series data aggregated from different

sensors in the distribution grid. A GP is a collection of random variables, any finite number

of which has a joint normal distribution [103]. GP defines a prior over functions given as,

f(x) ∼ GP(m(x), k(x,x
′
)) (5.1)

where, m(x) is the mean function and k(x,x
′
) is the covariance (kernel) function. The kernel

function k(·, ·) dictates the correlation among data points in the modelled function. There

are different kernel choices with one of the most popular being RBF (radial basis function)

kernel corresponding to:

k(x, x
′
) = σ2

sexp

(
−(x− x′

)2

2l2

)
(5.2)

where hyperparameters l and σ2
s are the length-scale and signal variance respectively. These

hyperparameters dictate the smoothness of the function. The training of the GP prior refers

to the estimation of the mean and kernel function hyper-parameters based on the dataset
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M.

In the process of imputation, we have target tasks consisting of time-series data D =

{x̃s, ỹs, x̃∗
s, ỹ

∗
s}Ss=1 where x̃s and ỹs are observed data points with their corresponding

values respectively. Multi-task GP predicts the target task {x̃∗
s, ỹ

∗
s} including the missing

measurements given the observed data and the prior parameters learned from the training

dataset.

This prediction is accomplished across multiple time-series simultaneously by capturing

the spatial and temporal correlation across them. In a distribution system, this is especially

relevant because voltage/power at one node is typically correlated with voltage/power values

at other connected nodes [23]. Temporal correlation is also a common characteristic of power

and voltages. The GP prior for multi-task GP is defined as,

f(·) = GP(mϕ(·), kθ(·, ·)), (5.3)

where, mϕ(·) is the mean function and kθ(·, ·) is the co-variance function parameterized by

the sets of parameters ϕ and θ respectively. The function mϕ(·) could be based on a deep

neural network (e.g. multilayer perceptron (MLP)) [104]. This function models the global

trend among the entire set of diverse time-series in a multi-task paradigm. The ϕ parameters

associated with the mean function are globally shared across all the time-series. kθ(·, ·) is the

kernel for the GP prior that captures the temporal correlation within each time-series. The

θ parameters refer to the hyperparameters of the kernel function. The effective encoding

of the prior knowledge into the GP model enables us to use only a few measurements for

achieving a high imputation performance [105].

The GP prior function can be perceived as,

fs(x̃1) = g(x̃1) + ls(x̃1) (5.4)

where g(·) models global trends among the diverse sensor signals and hence it is shared

across all the sensors. We consider the function g(·) as a mean function in GP prior (mϕ(·)).
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On the other hand, ls(·) models the sensor-specific signal (for sth sensor) using the kernel

function (Kθ(·, ·)). The GP prior function f can be written as,


f 1

...

fS

 ∼ GP


mϕ(x̃1)

...

mϕ(x̃S)

 ,

K x̃1x̃1
θ , . . . 0

...
. . .

...

0 . . . K x̃Sx̃S
θ




The GP prior learnable parameters ψ = {ϕ, θ} as defined in (5.3) are optimized by maxi-

mizing the log marginal likelihood (LML) given as,

ψ∗ = argmax
ψ

S∑
s=1

log p(ys|xs, ψ) (5.5)

where the log-likelihood is the sum of individual time-series data. An individual log-

likelihood can be computed in closed form as [103],

log p(ys|xs, ψ) =
−1
2
(ys −mϕ(xs))

T (Kxx
θ + σ2I)−1−

(ys −mϕ(xs))−
1

2
log|Kxx

θ + σ2I| − ns
2
log(2π) (5.6)

Here, σ2 represents the noise variance of the Gaussian process. The LML is computed using

the stochastic gradient descent method [104]. After the GP prior parameters are optimized

and effectively encoded, we predict the target tasks based on observed data. The posterior

distribution can be calculated using the Gaussian identities.

Let x and y be jointly Gaussian random vectors i.e.,

x
y

 ∼ N

µx

µy

 ,
 A C

C⊺ B


 .

The conditional distribution of x given y is,

p(x|y) = N (µx + CB−1(y − µy), A− CB−1C⊺) (5.7)
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Using (5.7), the predictive distribution of ỹ∗
s is,

p(ỹ∗
s |x̃∗

s, ỹs, x̃s) = N (µ∗,C∗) (5.8)

with

µ∗ = mϕ(x̃
∗
s) +K∗x

θ (Kxx
θ + σ2I)−1(ỹs −mϕ(x̃s)) (5.9)

C∗ = K∗∗
θ −K∗x

θ (Kxx
θ + σ2I)−1(Kx∗

θ ) (5.10)

where, (Kx∗
θ ) = (K∗x

θ )⊺ and (Kx∗
θ )st = kθ(x̃s, x̃

∗
t ) and (Kxx

θ )st = kθ(x̃s, x̃t)

The posterior mean and variance as defined in (5.9), (5.10) constitute the consistent time-

series that are computed at those time instances where measurements are unobserved. Here,

the consistent time series refers to reconciling all the multi time-scale measurements at a

common time scale. The proposed approach is capable of imputing the multi time-scale

measurements at any desired time-scale. In this work, as an example, the narrowest mea-

surement time resolution is chosen when the measurement types are equal to or larger than

two. A confidence or credible interval can be evaluated based on the predicted mean, vari-

ance, and desired confidence level.

5.2.2 Stage II - Bayesian matrix completion based DSSE

The consistent time-series obtained from GP is still limited to specific spatial locations in the

network where measurements are aggregated. Matrix completion (MC) approaches aim to

estimate the complete matrix from a limited set of observed entries. Specifically, matrix com-

pletion aims to find the complete matrix X from an incomplete and noisy observation matrix

by suitable low-rank approximation. The low dimensionality in the matrix X results due

to: (i) Spatial correlation between measurements at different locations; (ii) the correlation

between different types of measurements via linearized power-flow equations [106].

Assume that the measurements at the slack bus are known. Thus, we use the mea-

surements at the non-slack buses to construct the data matrix, whose structure is given in

(3.17) . The deterministic matrix completion formulation recovers the complete low-rank
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matrix, whose optimization formlation is shown in (3.19). The formulation in (3.19) can

be recast as a semidefinite program which is computationally inefficient for large matri-

ces. A prior knowledge on the rank of the matrix is generally required for this formulation

[107]. Furthermore, this formulation requires extensive parameter tuning as well as data and

application-dependent supervision. In order to overcome these shortcomings and effectively

incorporate the output from stage 1, a hierarchical sparse Bayesian matrix completion frame-

work [107] is proposed. In the hierarchical sparse Bayesian matrix completion framework,

the unknown low rank matrix is factorized into two matrices as

X = AB⊺ (5.11)

where A is an m× r matrix, and B is an n× r matrix such that rank(X) = r. The matrix

X is the sum of the outer-products of the columns of A and B such that,

X =
k∑
i=1

a.ib
⊺
.i (5.12)

where, k ≥ r, a.i and b.i denote the i
th column of matrix A and B respectively. The ith row

of matrix A and B is represented by ai. and bi. respectively. In order to obtain the low rank

matrix, most of the columns in A and B should be set to zero. To achieve this condition,

the columns of A and B are associated with Gaussian priors of precisions γi, that is

p(A|γ) =
k∏
i=1

N (a.i|0, γ−1
i Im) (5.13)

p(B|γ) =
k∏
i=1

N (b.i|0, γ−1
i In) (5.14)

During inference, most of the γ′is take large values, thus forcing the columns of A and B to

go to zero. The columns of A and B have the same sparsity profile enforced by the common

precisions γi. These sparsity priors on the factorized matrix encourages low-rank solutions.
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The precision γi are assumed to have a Gamma hyperprior given as,

p(γi) = Gamma(c,
1

d
) (5.15)

The parameters c and d are set to small values to obtain broad hyperpriors. The known

entries in matrix Z as described in (3.17) can also be written as,

Zij = Xij +Nij, (i, j) ∈ Ω (5.16)

where, Xij and Nij refers to the row entry i and column entry j in the matrix X and

N, respectively. Using the model (5.16) and factorized matrices A and B, the conditional

distribution of the observations are obtained as,

p(Z|A,B) =
∏

(i,j)∈Ω

N (Zij|Xij,β
−1
ij ) (5.17)

where β is the noise precision. The noise precisions (β) and observations (Z) are obtained

from the stage 1 output (consistent time-series output from the multitask Gaussian process

framework). The joint distribution is therefore given as,

p(Z,A,B,γ) = p(Z|A,B)p(A|γ)p(B|γ)p(γ) (5.18)

The evaluation of posterior distributions of the latent variables (A,B,γ) denoted as h given

the observed matrix Z requires the computation of p(z). However, this computation is in-

tractable as it involves marginalizing all latent variables. Mean field variational Bayes is a

method that computes the posterior distribution approximations [108]. Factorized distribu-

tions partition the latent variables into disjoint groups such that,

q(h) =
∏

q(hk) (5.19)

For all the distributions of the form in (5.19), the posterior approximation of each latent
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variable hk is found using

log q(hk) = ⟨logp(Z,h)⟩h\hk
+ const (5.20)

The posterior distribution of A and B decompose as independent distributions of their rows.

The approximate posterior distributions of the latent variables are updated as,

q(ai·) = N (ai·| ⟨ai·⟩ ,Σa
i ) (5.21)

where the mean and covariance is defined by calculating the mean iterated over all the

columns of ai· and accounting each measurement’s precision βij,

⟨ai·⟩⊺ = ⟨β⟩Σa
i ⟨Bi⟩⊺ z⊺i· (5.22)

Σa
i = (⟨β⟩ ⟨B⊺

iBi⟩+ Γ)−1 (5.23)

Here,

⟨B⊺
iBi⟩ =

∑
j:(i,j)∈Ω

(
⟨b⊺

j.⟩⟨bj.⟩+Σb
j

)
(5.24)

and

Γ = diag(γ)

Similarly, the posterior density of jth row of B is found as,

q(bj·) = N
(
bj·| ⟨bj·⟩ ,Σb

j

)
(5.25)

where the mean and covariance are defined as,

⟨bj·⟩⊺ = ⟨β⟩Σb
j ⟨Aj⟩⊺ z⊺·j (5.26)

Σb
j =

(
⟨β⟩

〈
A⊺
jAj

〉
+ Γ

)−1
(5.27)
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The posterior density of γi becomes a gamma distribution

q(γi) ∝ γ
(c−1+m+n

2 )
i exp

(
−γi

2d+ ⟨a⊺
·ia·i⟩+ ⟨b⊺

·ib·i⟩
2

)
(5.28)

with mean,

⟨γi⟩ =
2c+m+ n

2d+ ⟨a⊺
·ia·i⟩+ ⟨b⊺

·ib·i⟩
(5.29)

The required expectations are given by

⟨a⊺
·ia·i⟩ = ⟨a·i⟩⊺⟨a·i⟩+

∑
j

(
Σa
i

)
ii
, (5.30)

⟨b⊺
·ib·i⟩ = ⟨b·i⟩⊺⟨b·i⟩+

∑
j

(
Σb
i

)
ii

(5.31)

It is important to remember that the output of stage 1 provides the uncertainty in imputa-

tions which can be used as an estimate of the noise variances for the imputed measurements.

However, if a linear interpolation technique is used in stage 1, the noise precisions are not

available. Hence, β will be treated as a stochastic quantity whose approximate posterior

distribution is given as,

⟨β⟩ = (FAD)×m× n
⟨∥Z− PΩ(AB⊺)∥⟩2F

(5.32)

The proposed Bayesian matrix completion based DSSE approach is summarized in Al-

gorithm 2.

5.3 Computational complexity

The computational complexity of Stage 1 consisting of multitask GP framework is O(Sn3
s)

where ns is the total number of data points in Sth sensor and S is the total number of

sensors. This complexity is associated with the calculation of the predictive distributions of

the multi-task GP approach using (5.9) and (5.10).
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Figure 5.3: Flowchart of the proposed Bayesian framework in distribution systems

Algorithm 2 Bayesian matrix completion based DSSE

Input: Measurement matrix Z, Set of known indices Ω, System model (M, w, K), tolerance
limit (η), β, c, d

Initialization: Initialize the matrices A and B as A = UD
1
2 and B⊺ = D

1
2V⊺ where Z =

UDV⊺. Initialize γ. Set X̂0 = Z.

1: while ∥X̂iter−X̂iter−1∥F
∥X̂iter−1∥F

< η do

2: Calculate the mean and covariance matrix of A using (5.22) and (5.23).
3: Calculate the mean and covariance matrix of B using (5.26) and (5.27).
4: Calculate the posterior distribution of γ using (5.29) - (5.31).
5: Set X̂iter = AB⊺ alongwith additional linearized powerflow constraints (3.2), (3.3).
6: iter ← iter + 1
7: end while
8: return X̂.
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The complexity in stage 2 includes the complexity associated with the matrix completion

formulation. A deterministic matrix completion requires the computation of singular value

decomposition (SVD) of the matrix at each iteration. This involves semidefinite program-

ming that is solved by interior point methods. The computational complexity for calculating

the SVD of the matrix in a deterministic method is O(mn ·min(m,n)) where m and n are

the numbers of rows and columns respectively [109]. Furthermore, in order to solve the

linearized powerflow equations, the computation is O(m3). The overall complexity of the

sparse Bayesian matrix completion is O(m · min((FAD)3n3, k3) + n · min((FAD)3m3, k3))

[107]. However, this complexity is also dependent on the FAD and estimated rank at each

iteration (k). In a sparse Bayesian matrix completion, the effective rank is reduced in the

first few iterations and thus, the convergence is rapid. Hence, a Bayesian matrix completion

is more computationally efficient than deterministic matrix completion.

5.4 Simulation results

The efficacy of the proposed Bayesian framework is verified on the three phase unbalanced

IEEE 37 bus test system [110] as well as IEEE 123 test system [95]. Fig. 5.3 shows the

structure of the proposed Bayesian framework consisting of stages 1 and 2. The Bayesian

matrix completion based DSSE is represented by (5.21)-(5.31) alongwith the linearized pow-

erflow constraints (3.2), (3.3) . An aggregated load profile at the primary node is obtained

by combining individual residential loads connected on the secondary side of the feeder. The

24-hr active power consumption profile at a load bus is synthetically generated [23], [111].

Load reactive power can be defined in proportion to the real load connected to the same bus

with a power factor of 0.9 lagging. Other load profiles at the load buses of IEEE 37 and

IEEE 123 bus test systems are generated by adding an error pattern by using a sinusoidal

wave of random amplitude spanning the 24-hr period and random noise terms. With this

data, the voltage profile at all nodes is obtained by running the load flow. The aggregated

primary feeder measurements (active and reactive power injections) are averaged over 15

min intervals, SCADA measurements (voltage magnitudes) are sampled at 1 min intervals
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and the PMU measurements are sampled at 0.1s intervals. These are all real measurements

and not pseudo-measurements. The measurement errors are assumed to be 0 mean with a

standard deviation equal to 1% of the actual values for both power and voltage measure-

ments [9], [12]. The power injection measurements at a subset of load buses are monitored

using the AMI sensors. The first stage consists of reconciling the slow-rate and fast-rate

time series data. The time-series data is split into training and testing datasets.

5.4.1 IEEE 37 bus test system

The locations of the sensors used as training dataset are indicated in Fig.5.4. For our case

study, we have considered data from 10 aggregated AMI sensors, 9 SCADA sensors, and 3

PMU in the IEEE 37 bus test system whose locations are given as,

1. 10 time-series data from the aggregated AMI sensors are from the following load buses:

(a) Phase A - Bus 2, 6, 7, 8.

(b) Phase B - Bus 2, 7, 17.

(c) Phase C - Bus 2, 5, 7.

2. The 9 time-series data of SCADA sensors are obtained at the three-phase buses 3, 4,

and 9.

3. A PMU sensor is placed at bus 25, which measures the voltages at three phases at 0.1s

intervals.

The AMI time-series data aggregated at a single bus is sampled at 15-min intervals.

Thus, there are 96 measurements over the 24-hr duration for an individual aggregated AMI

location. For 10 such aggregated AMI locations, the total measurements are 10 × 96. This

is the base-case scenario of AMI data. Similarly, the SCADA measurements at a single bus

for one phase have 1440 data points obtained over a day. So, for 9 SCADA sensors, the

total measurements are 9× 1440. This is the base-case scenario of SCADA data. At bus 25,
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we have 3 PMU time-series measurements (as three-phase time-series voltages are obtained)

where each time-series data is sampled at 0.1s intervals. It is to be noted that training of the

GP prior function can be performed using alternate sets of time-series data, and this setup

was used just for demonstration. This is the base-case scenario of PMU data. This base-

case scenario of AMI, SCADA, and PMU data represents the training dataset. There are no

measurements that were considered to be missing in this training dataset. It is important

to note that even without missing measurements, the dataset represents an unobservable

condition to perform DSSE.

Figure 5.4: Training dataset for IEEE 37 bus test system

Using the training dataset, the prior GP function is learned. GP prior mean function

consists of a deep neural network with 2 hidden layers and ReLU activation functions. The

mean value at a time instant x corresponds to,

mϕ(x) = W3σ(W2σ(W1(x) + b1) + b2) + b3 (5.33)

where, the Wi’s are the weight matrices of the layers, the bi’s are the biases, and σ(·) is the
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ReLu activation function. The GP kernel function consists of a radial basis function. The

parameters of GP prior are optimized by maximizing the log marginal likelihood. Train-

ing of parameters was performed for 100 epochs using stochastic gradient descent (Adam

optimizer).

Table 5.1: Root mean square error of imputed time-series data - 1% Gaussian noise (LI:
Linear Interpolation approach, GP: multitask Gaussian process approach)

System Type
60%
missing

40%
missing

20%
missing

10%
missing

IEEE
37
system

LI GP LI GP LI GP LI GP
Active P 16.8% 4% 5.8% 1.8% 1.82% 0.99% 1.5% 0.7%
Reactive P 13.25% 2.6% 5.3% 1.4% 1.24% 1.07% 1.3% 0.8%

IEEE
123
system

Active P 22.5% 4.7% 11.39% 2.2% 2.3% 1.7% 1.47% 1.07%
Reactive P 14.668% 1.798% 7.9% 1.67% 4.76% 1.32% 2.46% 1.27%

The imputation is performed for the test data after the GP prior parameters are opti-

mized. The test data consists of slow-rate and fast-rate measurements with random missing

measurements over the 24-hr period. The sensors and the data available in the test dataset

are decided by the FAD. Fig.5.8 shows the meter locations for 20% FAD. We use the SCADA,

AMI, and PMU measurements from these meters as test data. The observed measurements

include the base case scenario (as discussed in the training dataset) minus the missing mea-

surements at the bus locations shown in Fig.5.8. The missing measurements occur for every

time-series data corresponding to each sensor. Consider a 60% temporal missing measure-

ment scenario. Each SCADA sensor will have only 576 (1440× 0.4) observed measurements

randomly placed over the 24-hr duration. Similarly, every PMU sensor will have 345600

(864000× 0.4) observed measurements over the 24-hr duration. Each AMI sensor in the test

dataset will have 38 observed measurements (96× 0.4) over the 24-hr duration.

We have demonstrated the imputation of the unobserved measurements for 1-min interval

as well as 0.1s interval [112]. We compare the effective performance of imputation using GP

based approach and the simple linear interpolation technique [23]. Both the fast and slow

rate measurements are imputed at the same time frame.

It can be inferred from Table 5.1 that the performance gain of GP based approach is highly
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pronounced when the percentage of missing measurements is high. The performance of GP

based approach and the linear interpolation approach reconciled at the 1-min intervals for

a single time-series of active and reactive power at 60% missing measurements is illustrated

in Fig.5.5 and Fig.5.6 respectively. Fig.5.5 and Fig.5.6 illustrates the time-series data of

aggregated active power at node 8 at phase A and aggregated reactive power injection profile

at node 28 of phase C, respectively. The error at 60% missing temporal measurements in GP

based approach is only 2.6% as compared to the 13.28% error with the linear interpolation

approach. The imputations are also performed at 0.1s intervals. For a 12-hour duration,

the corresponding error of GP based imputation at node 17 of phase B is 1.5% compared to

the linear interpolation error of 3.5%. The uncertainty bounds associated with the imputed

measurements provide a measure of confidence in the imputations. The confidence bounds

on the imputed measurements are indicated by a 95% confidence interval. The uncertainty

increases as we move away from the measurement. As shown in Fig.5.5, the sudden widening

of the confidence region as we move from hour 12 to hour 16 is because of the lack of actual

measurements during this time. The linear interpolation technique fails in providing such

confidence bounds. As seen from the figures, the GP-based imputation provides accurate as

well as smoother imputation as compared to the linear interpolation technique.

We have also simulated the proposed GP approach in the presence of 10% Gaussian noise

for power measurements in the IEEE 37 bus test system. Here, the AMI measurements in

both the training and test datasets consist of random 10% Gaussian noise. Fig.5.7 shows the

performance of GP based approach against the linear interpolation for noisy AMI time-series

data at node 2 of phase A where we have considered a 60% temporal missing measurement

scenario. We have simulated the performance of GP and linear interpolation using the noisy

time-series data for different missing measurements as tabulated in Table 5.3. It can be

inferred that the GP-based approach provides smoother and more accurate imputation even

when slow-rate measurements are corrupted by higher noise levels.

The predicted mean and the corresponding variances obtained from the consistent time-

series are further used in stage 2 for performing state estimation. At any given instant

of time, an incomplete observation matrix whose structure illustrated in (3.17) is what is
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Figure 5.5: Active power time-series imputation by multi-task GP framework

Figure 5.6: Reactive power time-series imputation by multi-task GP framework

available in a distribution system. A sparse Bayesian matrix completion approach discussed

in section 5.2.2 is used in stage 2 for state estimation. The observation matrix are sampled

randomly to reflect different FADs. While choosing the known elements in the matrix Z, the

zero injection measurements are also selected. Similar to the FAD, a global measurement

redundancy defined in [113] quantifies the ratio of available measurements to the number of

states. By performing the SVD of the observed matrix (Z), an initial factorized matrices (A

and B) are obtained given as,

Z = UDV⊺ (5.34)

66



Figure 5.7: Active power time-series imputation by multi-task GP framework - 10% Gaus-
sian Error

with A = UD
1
2 and B⊺ = D

1
2V⊺. The initial parameters c and d associated with the pre-

cisions γ are assumed to be 10−6. The approximate posterior distributions for each of the

latent variables are updated using the mean field variational Bayes approach discussed in

section 5.2.2. If the observation matrix is obtained from linearly interpolated time-series,

the β precisions are also updated. These computations are performed until the convergence

criteria ∥X̂iter−X̂iter−1∥F
∥X̂iter−1∥F

< 10−17 is satisfied.

In order to quantify the performance of the matrix completion based approaches, MAPE

(Mean Absolute Percentage Error) and MIAE (Mean Integrated Absolute Error) metrics are

used for voltage magnitude, power and voltage angle, respectively as defined in 4.10 and

4.11 respectively. We consider the IEEE 37 bus unbalanced test system where the FAD is

changed from 10% to 90%. We randomly vary the locations and number of measurements

for a given FAD.

1. The load buses for an IEEE 37 test system are,

(a) Phase A load buses - Bus 2, 6, 7, 8, 13, 18, 19, 24, 27, 30, 31.

(b) Phase B load buses - Bus 2, 7, 17, 21, 23, 24, 27, 30, 34, 36, 37.

(c) Phase C load buses - Bus 2, 5, 7, 9, 12, 14, 16, 22, 24, 26, 28, 36.

Column 1 and Column 2 of matrix Z consist of active and reactive power injection
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measurements of all the phases of the non-slack buses. A FAD of 100% represents the

availability of load measurements at each phase of the non-slack load buses.

2. Column 3 and Column 4 correspond to real and imaginary parts of voltages. For a

FAD of 100%, all these measurements are available.

3. All the voltage magnitude measurements in Column 5 of matrix Z are available for a

FAD of 100%.

Hence, the maximum number of possible entries in columns 1 and 2 of Z is 68. The

maximum possible entries of voltage magnitudes (Column 3) and voltage phasors (Columns

4 and 5) are 324. For a FAD of 20%, we have presented the position and type of measurements

on the IEEE 37 bus test system in Fig.5.8. Specifically, we have placed 6 SCADA sensors, and

2 PMU sensors to obtain 30 non-zero entries in columns 3-5. The rest of the measurements

in columns 1-2 are obtained via the aggregated smart meter measurements. Thus, for FAD

of 20%, we have a partially observed matrix Z with 78 total measurement entries. This case

represents a highly unobservable distribution system. In this scenario, the states are voltage

magnitude and voltage angles while the measurements are obtained from aggregated smart

meters, PMU and SCADA. The number of states at non-slack buses for the IEEE 37 test

system is 218. The total measurements are 78. Hence, the global measurement redundancy

is 78/218 = 0.357.

Fig. 5.9, 5.10 and 5.11 show the errors in the estimated spatial states obtained from mul-

titask GP output corresponding to 60% temporal missing measurements and measurement

noise level corresponding to 1% and 10%. We have considered measurements obtained from

the consistent time-series data at 5th hour. Fig. 5.9 shows the comparative performance of

power recovery using GP based and linearly interpolated time-series data followed by state

estimation using Bayesian matrix completion for IEEE 37 test system. It can be inferred

that estimates obtained from the GP outperform the linearly interpolated time-series at all

FADs. For example, in the 1% noise scenario, error reductions up to 10% are achieved in the

power recovery at 20% FAD. Fig. 5.10 and Fig. 5.11 show the superior performance of GP
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Table 5.2: Root mean square error of imputed time-series data - 10% Gaussian noise

System Type
60%
missing

40%
missing

20%
missing

10%
missing

IEEE 37
test
system

Linear
Int

GP
Linear
Int

GP
Linear
Int

GP
Linear
Int

GP

Active P 15.7% 5% 9.09% 4.85% 5.12% 4.35% 4.25% 4.12%
Reactive P 11.29% 6.9% 4.54% 3.27% 2.81% 2.79% 2.75% 2.66%

in the recovery of voltage magnitude as well as the angle at all the FADs, respectively. As

expected, the performance of state estimation degrades with 10% noise in measurements, as

seen from the results. However, the proposed Bayesian MC based DSSE approach ensures

that the MAPE and MIAE of voltage estimation are less than 2%.

Figure 5.8: Measurement configuration at 20% FAD for three phase unbalanced IEEE 37
bus test system.

5.4.2 IEEE 123 bus test system

The proposed Bayesian approach is also simulated on three phase unbalanced IEEE 123 test

system. In this system, the Bayesian approach has better performance than a simple linear
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Figure 5.9: Power recovery performance at different FADs for IEEE 37 test system corre-
sponding to 1% noise and 10% noise

Figure 5.10: Voltage magnitude recovery performance at different FADs for IEEE 37 test
system corresponding to 1% noise and 10% noise
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Figure 5.11: Voltage angle recovery performance at different FADs for IEEE 37 test system
corresponding to 1% noise and 10% noise

interpolation based technique. The recovery of power using the two methods is shown in Fig.

5.12. Comparative performance of voltage magnitude and voltage angle recovery between

the two approaches is illustrated in Fig. 5.13 and Fig. 5.14 respectively. The GP-based

approach estimates the states with high accuracy as compared to the linear interpolation-

based approach.

The mean and variance of computational times based on monte-carlo simulation and FAD

of 75% for the Bayesian matrix completion and deterministic matrix completion approach

is tabulated in Table.5.3. In accordance with the complexity analysis in section 5.3, the

time complexity of Bayesian MC is reduced at lower FADs. These time calculations are

carried out on Intel i9 core, 32 GB RAM with CVX Mosek package [114]. From Table.5.3,

it is evident that the proposed Bayesian MC is an order faster than the deterministic MC.

This is due to the fact that the computation of the SVD of the matrix at each iteration is

eliminated.
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Table 5.3: Average time requirement (FAD = 75%)
Test
system

Deterministic
MC

Bayesian
MC

IEEE 37
test system

Mean - 1.267s,
Variance - 0.42

Mean - 0.02s,
Variance - 3.037 ×10−5

IEEE 123
test system

Mean - 8.1s,
Variance - 1.32

Mean - 0.48s,
Variance - 1.4733 ×10−4

Figure 5.12: Power recovery performance at different FADs for IEEE 123 test system

5.5 Summary

This chapter proposes a Bayesian approach for effectively aggregating heterogeneous inter-

mittent time-series data and using it to accurately estimate the distribution system states

in low-observability conditions. The proposed approach leverages the spatio-temporal cor-

relations in multi- timescale measurements. Superior performance in the recovery of power,

as well as voltage states, are obtained in the proposed matrix completion approach. The

probabilistic formulation allows us to compute the uncertainty in both data imputation and

state estimation while being computationally efficient. In the presence of noisy measure-

ments, the uncertainty associated with the imputation can be quantified. Knowledge of the

variances obtained in the imputation stage provides different noise precision parameters (β),
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Figure 5.13: Voltage magnitude recovery performance at different FADs for IEEE 123 test
system

Figure 5.14: Voltage angle recovery performance at different FADs for IEEE 123 test system

which can then be used to guide the state estimation process. Test studies in IEEE 37, as

well as IEEE 123 bus system, reveal that the power and voltage states are recovered with

high fidelity.
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Chapter 6

Streaming multi time-scale data using

Recursive GP approach

The multi-task GP approach discussed in Chapter 5 performs imputations using all the

measurements at once. That is, the multi-task GP approach approach involves batch pro-

cessing and cannot be used to perform imputations in real-time as measurements arrive.

Furthermore, this approach does not exploit the graphical structure of the grid. To address

this limitations, this chapter proposes a recursive multi-task Gaussian process approach

that sequentially aggregates multi-time scale measurements while incorporating the network

connectivity information.

6.1 Background

Consider a distribution system which can be perceived as a graph G = (V , E) where V ∈ RM

are the nodes and E denotes the edges. The adjacency matrix A is defined as,

A(i, j) =


1, (i, j) ∈ E

0, otherwise

(6.1)
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In the distribution system, sensors are placed at a subset of M nodes. These sensors mea-

sure power injections or voltages at different locations in the network at different sampling

rates. Hence, the main goal is to first reconcile these multi time-series measurements at

the desired time scale and estimate the states. To do so, we sequentially process the mea-

surements using a recursive multi-task Gaussian process-aided state estimation approach.

This approach exploits the spatial and temporal correlations of the sequential measurements

located on the graph G. We propose to leverage the graphical structure of the grid for better

imputation of the unevenly sampled measurements. Here, we consider the topology of the

primary distribution system. Also, the imputation of the multi time-scale measurements is

performed at the primary feeder. Therefore, the proposed approach does not rely on the

model information of the secondary side of the network. Based on the available network

connectivity information, we propose two approaches, as shown in Fig.6.1. The inputs in

all these approaches are the unevenly sampled time-series measurements, and the output

is the coherent set of measurements along with their variance. Conventional full GP and

multitask Recursive GP (RGP) process the unevenly sampled measurements without utiliz-

ing any graph structure. Recursive processing of heterogeneous measurements using graph

information in real-time and batch mode is performed using RGP-G interpolation and RGP-

G prediction, respectively. We will review the relevant concepts of graph signal processing

before introducing the proposed approaches.

Background of Graph signal processing

The graph Laplacian matrix L for graph G is defined as L = D−A where D is the diagonal

degree matrix whose ith diagonal element is given by the sum of the elements in the ith

row of A. The observations y = [y(1), ..., y(M)] ∈ RM represents a signal on graph G. The

signal variation of y over graph G is measured as,

l(y) =
∑

(i,j)∈E,i ̸=j

A(i, j)((y(i)− y(j))2 = y⊺Ly
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Figure 6.1: Classification of the proposed approaches for processing streaming data

The Laplacian quadratic form y⊺Ly denotes the smoothness of the y. Suppose we want to

recover the smooth signal yd from noisy observation y = yd +w, over the graph G. In order

to recover this signal, an optimization problem is formulated as,

yd
∗ = min

yd∈RM
∥y − yd∥22 + αy⊺

dLyd (6.2)

where α ≥ 0. The global solution is,

yd
∗ = (IM + αL)−1y (6.3)

Here, IM is the identity matrix. The optimal solution y∗
d can be seen as the graph filtering

of y using the graph filter S = (IM + αL)−1 [115][116]. This graph filter will be used in the

proposed RGP-G approach for inducing the graph structure of the distribution system. In

the next section, we will review the conventional full GP approach.
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6.1.1 Full GP Approach

Consider a distribution system with M buses and d types of sensor tasks. Here, the sensor

tasks refer to different sensor measurements available, e.g., aggregated active and reactive

power injections or voltage magnitudes at the primary feeder. We consider the availability

of measurements for T time instances. Let the measurements corresponding to time instant

xt be yt ∈ RdM . The measurements yt are obtained by concatenating measurements from

different sensor locations i.e., yt = [y1
t , ...,y

d
t ]

⊺. Each ydt is drawn from a noisy process as,

ydt (xt) = N (fdt (xt), σ
2
ϵ IM) (6.4)

where, fdt ∈ RM and σ2
ϵ is the noise variance. The entries in ydt are zero at the locations

where there are no sensor measurements.

The GP prior function fdt associated with dth sensor task at time t has distribution given

as,

fdt = N (0,K(xt, x⊺t )IM) (6.5)

The function ft = [f1t , ..., f
d
t ]

⊺ is a Gaussian prior with distribution,

ft(xt) = N (0, Ic ⊗K(xt, x⊺t )IM) (6.6)

where ⊗ denotes the Kronecker product, Ic ∈ Rd×d is an identity matrix between different

sensor tasks in the distribution grid. For instance, a distribution grid may have active power

(P), reactive power injections (Q), and voltage (V) measurements at the primary feeder.

Thus, there are three sensors tasks, and Ic has a size of 3× 3. In some distribution systems,

there are only P and Q measurements available. The voltage measurements are available

only at the substation. Therefore, in this case, the size of Ic is 2 × 2. The kernel matrix

K represents the temporal covariance functions within this sensor task. There are different

kernel choices, with one of the most popular being RBF (radial basis function) kernel [103]
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corresponding to:

K(x1, x2) = σ2
sexp

−(x1 − x2)2

2l2
(6.7)

where hyperparameters l and σ2
s are the length-scale and signal variance respectively. The

lengthscale of the kernel function controls the smoothness of the GP function [103].

If all the measurements upto time T are represented as ỹ = vec(y1, ...,yT ), the distribu-

tion of ỹ using (6.4) and (6.6) is given as,

ỹ = N (0, ((Ic ⊗ I)⊗K) + σ2
ϵ I) (6.8)

where K is the kernel matrix defined for all time instances t = 1, ..., T . Here, the ith and jth

entry of K is given as Kij = K(xi, xj) and σ2
ϵ is the noise variance.

The main goal of the Gaussian process-based imputation process is to infer the unknown

test values y∗ corresponding to the time x∗ given the measurements ỹ at time x and the

modeled GP prior function f(·). The measurements ỹ and the test values y∗ are jointly

Gaussian whose distribution is given as,

 ỹ

y∗

 ∼ N

0,

A D

D⊺ F


 (6.9)

where, the matrices A, D and F corresponds to,

A = (Ic ⊗ I)⊗K+ σ2
ϵ I, (6.10)

D = (Ic ⊗ I)⊗K∗ + σ2
ϵ I, (6.11)

F = (Ic ⊗ I)⊗K∗∗ + σ2
ϵ I. (6.12)

Here, K∗ = K (x,x∗), K∗∗ = K (x∗,x∗) and x = [x1, ..., xT ]
⊺.

The conditional distribution of the test values y∗ given ỹ is a Gaussian distribution [103]
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with mean and covariance,

m∗ = D⊺A−1ỹ (6.13)

and

C∗ = F−D⊺A−1D (6.14)

Algorithm 3 summarizes the full-GP approach. (6.13) and (6.14) involves inverting the

matrix A for all the x time instances which is computationally expensive. The full GP

approach suffers from the following drawbacks:

• The GP prior function and the corresponding measurements ỹ as defined in (6.8) is

a simple multi-task Gaussian process with an independent kernel function among the

different measurements obtained at M nodes.

• This approach performs training using all the measurements in the batch, and thus

the training is performed off-line in a batch mode.

• The computational complexity is O((TdM)3) ,where T is the size of x, d is the total

number of sensor tasks, and M are the nodes. The inversion of the matrix A is the

key contributor to this complexity.

To overcome these challenges, we propose a recursive GP approach that sequentially processes

the measurements corresponding to each xt by using the knowledge of graphical structure

of the distribution grid. In the next section, we will formulate the RGP-G approach when

the network connectivity information is known. Then, we will develop the RGP-G method

when the graph information is unknown.

6.2 Proposed Recursive GP approach

This section presents the formulation for recursively imputing the multi time-scale measure-

ments with and without topology information.
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Algorithm 3 Full GP Approach

Input: Aggregated Active and Reactive power injection measurements at load bus yt cor-
responding to time xt, ỹ = vec(y1, ...,yT ), Kernel choice and hyper-parameters
associated to kernel function

1: Calculate the kernel matrix K that exploits the temporal correlation using any kernel
function (e.g., RBF kernel).

2: Calculate the matrix Ic ∈ Rd×d.
3: Calculate the matrix A, D and F by means of (6.10), (6.11) and (6.12) respectively.
4: Perform imputation at time x∗ by means of the mean m∗ and covariance matrix C∗ using

(6.13) and (6.14).
5: return m∗, C∗.

6.2.1 RGP-G Approach

One of the challenges in the full GP approach is the need to to use the complete vector

x ∈ RT . To overcome this challenge, we aim to use the basis vectors x = [x1, x2, ..., xn]
⊺

where n≪ T . We perform all the calculations on the basis vectors x ∈ Rn which are fixed in

number and locations. The function f = f(x) is the GP function corresponding to the basis

vectors x. When the network connectivity information is known, we can construct the graph

filter matrix S as defined in (6.3). In order to exploit the spatial correlation and induce the

graph information, the observations in the GP function (4) and (5) are modified as,

ydt (xt) = N (Sfdt (xt), σ
2
ϵ IM) (6.15)

where, fdt is defined in (6.5). Using (6.5) and (6.15), we obtain the distribution of ydt as,

ydt = N (0,SK(x, x⊺)S⊺ + σ2
ϵ IM) (6.16)

The distribution of yt obtained by concatenating ydt is given as,

yt(xt) = N (0, (Kc ⊗ S2)K(xt, x′t) + σ2
ϵ I) (6.17)

Here, the identity matrix Ic given in (6.6) is replaced by the kernel matrix Kc that represents

correlation among different sensor tasks.
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The main aim of this section is to recursively update the mean and covariance of the

multi-task prior function f as the measurements arrive at time t = 1, ..., T by incorporating

the graph structure of the grid. We assume that the hyperparameters of the kernel function

are known apriori using historical-based data. The proposed RGP-G approach has the

flexibility of performing both interpolation and prediction described as,

1. RGP-G Interpolation- This approach operates over a set time frame (24 hours as

an example). The GP function is updated recursively at those time instances where

the measurements are obtained. Once the GP function in that batch is updated, we

perform imputation at the finest time resolution. Here, the finest time resolution refers

to the narrowest time resolution between the different measurement sources.

2. RGP-G Prediction- This approach reconciles the multi-time scale measurements in

real-time. The imputation at the desired time resolution is performed by predicting

the GP function until the subsequent measurements is observed. Here, the prediction

is performed at the finest time resolution.

RGP-G Interpolation

We assume that the GP prior function f at time t = 0 has an initial distribution,

p0(f) = N (f ;µf
g,0,C

f
g,0) (6.18)

with mean µf
g,0 = 0 and covariance Cf

g,0 defined as,

Cf
g,0 = (Kc ⊗ S2)⊗K. (6.19)

Here, K = K(x,x). The initial covariance of the GP prior function exploits the spatial

correlation using graph structure and the temporal correlation between the time instances.

The measurements yt ∈ RdM arrive sequentially at time t = 1, .., T . The goal is to calculate
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the posterior distribution

p(f |y1:t) = N (f ;µf
g,t,C

f
g,t) (6.20)

at time t, where y1:t = (y1, ...,yt), by combining the new measurements yt with the distri-

bution,

pt−1(f |y1:t−1) = N (f ;µf
g,t−1,C

f
g,t−1) (6.21)

The desired posterior distribution is expanded according to [117],

p(f |y1:t) =

∫
ct · p(yt|f , ft) ·

p(f ,ft|y1:t−1) inference︷ ︸︸ ︷
p(ft|f) · p(f |y1:t−1)︸ ︷︷ ︸

p(f ,ft|y1:t) update

dft

where, ft is the GP function at time t and ct is the normalization constant.

Calculation of the posterior is performed in two steps:

a) Inference: In this step, we infer the joint prior p(f , ft|y1:t−1) using the measurements

received upto time t− 1. Here, the matrices Ag,Dg,Fg calculated at time xt be defined as,

Ag = (Kc ⊗ S2)⊗K+ σ2
ϵ I, (6.22)

Dg = (Kc ⊗ S2)⊗Kt + σ2
ϵ I, (6.23)

Fg = (Kc ⊗ S2)⊗Ktt + σ2
ϵ I (6.24)

Here, the subscript g refers to notations related to recursive GP with graphs approach.

The goal is to calculate the joint prior p(f , ft|y1:t−1) using the information from the prior

p(f |y1:t−1). This can be achieved using the chain rule as,

p(f , ft|y1:t−1) = p(ft|f) · p(f |y1:t−1) (6.25)

= N (ft;µ
p
g,t,Bg) · N (f ;µf

g,t−1,C
f
g,t−1) (6.26)

The first term p(ft|f) follows from the assumption that ft is conditionally independent of the
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past measurements y1:t−1 given f . As any finite representation of a GP is Gaussian, the joint

prior is also Gaussian. Hence, the conditional distribution p(ft|f) is Gaussian and calculated

by Gaussian identities given as,

µp
g,t = Jg,tµ

f
g,t−1 (6.27)

Bg = Fg − Jg,tDg (6.28)

Jg,t = D⊺
gA

−1
g (6.29)

Using Gaussian identities and Woodbury formula, the solution to (6.26) is a joint Gaus-

sian p(f , ft|y1:t−1) = N (q,Q) with mean and covariance defined as,

q =

µf
g,t

µp
g,t

 (6.30)

and,

Q =

 Cf
g,t Cf

g,t−1J
⊺
g,t

Jg,tC
f
g,t−1 Cp

g,t

 (6.31)

where,

Cp
g,t = Bg + Jg,tC

f
g,t−1J

⊺
g,t (6.32)

b) Update: This step updates the joint prior f with new measurements yt arriving at time

t. The function ft is updated by Kalman filter update step which yields,

p(ft|y1:t) = N (ft;µ
e
g,t,C

e
g,t) (6.33)

where,

µe
g,t = µp

g,t +Gt(yt − µp
g,t), (6.34)

Ce
g,t = Cp

g,t −Gt(C
p
g,t), (6.35)

Here, µp
g,t and Cp

g,t are obtained from (6.27) and (6.32), respectively. Here, Gt = Cp
g,t(C

p
g,t+
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σ2
ϵ I)

−1 is the Kalman gain. The update is performed at time t where measurements are

available. For instance, the aggregated smart meter at the load buses provides measurements

at intervals t = 1, 16, 31, ..., T . At t = 16, assume that few of the measurements yt are

missing due to communication bottleneck. Therefore, at those locations, we do not update

but use the predicted measurements µp
g,t. The posterior function f has Gaussian distribution

N (f ;µf
g,t,C

f
g,t) which is defined as,

µf
g,t = µf

g,t−1 + G̃t · (yt − µp
g,t), (6.36)

Cf
g,t = Cf

g,t−1 − G̃tJg,tC
f
g,t−1, (6.37)

G̃t = Cf
g,t−1J

⊺
g,t(C

p
g,t + σ2

ϵ I)
−1. (6.38)

The function f is sequentially updated with the observations yt until t = T . Once

updated, the imputation of y∗ at time x∗ is performed using the following steps,

m∗
g = D⊺

gA
−1
g µf

g,T (6.39)

and

C∗
g = Bg + Jg,t∗(C

f
g,T )J

⊺
g,t∗ (6.40)

where the matrices Dg, Ag and Bg are evaluated for time x∗. The complete RGP-G Inter-

polation approach is illustrated in Algorithm 4.

RGP-G Prediction Approach

The RGP-G interpolation approach operates over a set time frame. However, it is critical

to reconcile the measurements as and when they arrive. The RGP-G prediction approach

achieves the reconciliation in real-time by performing the step ahead prediction of the GP

function using the knowledge of the past measurements. These predictions are the imputed

values at the narrowest time resolution.

The complete algorithm of the proposed sequential prediction over graphs is summarized
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Algorithm 4 RGP-G Interpolation Approach

Input: Basis vector x, Distribution system graph laplacian L ∈ RM×M , total time instants
T , α, S, K, Kc, yt

1: Initialization: µf
g,0 = 0 and Cf

g,0 = (Kc ⊗ S2)⊗K.
2: for t = 1, ..., T do
3: Calculate the gain matrix Jg,t according to (6.29).
4: Calculate mean µp

g,t using (6.27) and covariance matrix Cp
g,t using (6.32).

5: Calculate the gain matrix G̃t according to (6.38).
6: Set yt = µp

g,t at locations where yt is missing. Calculate mean µf
g,t by means of (6.36)

and covariance matrix Cf
g,t by means of (6.37).

7: end for
8: Perform imputation at time x∗ by means of mean m∗

g (6.39) and covariance matrix C∗
g

(6.40).
9: return m∗

g, C
∗
g.

in Algorithm 5. Fig.6.2 shows the proposed RGP-G prediction approach. We demonstrate

this approach by illustrating an example. At time t = 0, we initialize the GP function as

given in (6.18). At time t = 1, we receive measurements y1. The GP function is updated

using these measurements y1 by means of (6.36) and (6.37). The updation of the mean

and covariance of the GP function f are denoted by µf
g,t and Cf

g,t. If any measurements

at time t = 1 are missing, they are predicted using (6.27) and (6.32). From time t = 2

onwards, we perform step-ahead prediction of the GP function using (6.41) and (6.42) until

the subsequent measurements are observed. We perform prediction for all x(t∗) satisfying

x(t∗) > x(t) using the knowledge of function f updated at the previous time instant. The

predicted mean m∗
g and their associated variances C∗

g are given as,

m∗
g = D⊺

gA
−1
g µf

g,t (6.41)

and

C∗
g = Bg + Jg,t∗(C

f
g,t)J

⊺
g,t∗ (6.42)
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Figure 6.2: RGP-G prediction approach

Algorithm 5 RGP-G prediction Approach

Input: Basis vector x, Distribution graph L ∈ RM×M , total time instants T , α, yt, S, K,
Kc

1: Set µf
g,0 = 0 and Cf

g,0 = (Kc ⊗ S2)⊗K.
2: Calculate the gain matrix Jg,t according to (6.29).
3: Calculate mean µp

g,t using (6.27) and covariance matrix Cp
g,t using (6.32).

4: Calculate the gain matrix Ĝ according to (6.38).
5: Set yt = µp

g,t at locations where yt is missing. Calculate mean µf
g,t by means of (6.36)

and covariance matrix Cf
t by means of (6.37).

6: Predict for all x∗ which satify x(t) < x(t∗) with mean m∗
g and variance C∗

g using (6.41)
and (6.42) respectively.

7: return m∗
g, C

∗
g.

6.2.2 RGP Approach

When the network topology is unknown, the graph structure information by means of the

graph filter matrix is not possible. In this case, we aim to use the recursive multi-task GP

without graphs approach (RGP). Here, we initialize the prior function f = f(X) at time

t = 0 as,

p0(f) = N (f ;µf
0,C

f
0) (6.43)

with mean µf
0 = 0 and covariance Cf

0 defined as,

Cf
0 = (Kc ⊗ I)⊗K+ σ2

ϵ I (6.44)
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We define the matrices A, D and F as,

A = (Kc ⊗ I)⊗K+ σ2
ϵ I, (6.45)

D = (Kc ⊗ I)⊗Kt + σ2
ϵ I, (6.46)

F = (Kc ⊗ I)⊗Ktt + σ2
ϵ I (6.47)

Instead of the matrices (6.22), (6.23) and (6.24) defined for RGP-G approach, we use

the matrices defined in (6.45), (6.46) and (6.47). The sequential inference and update step

remains the same for both approaches. In this approach, we can perform both the interpola-

tion and prediction similar to the RGP-G approach. In case of RGP Interpolation approach,

the predicted mean and covariance is denoted by m∗ and C∗ given as,

m∗ = D⊺A−1µf
T (6.48)

C∗ = B+ Jt∗(C
f
T )J

⊺
t∗ (6.49)

The RGP approach used for interpolation is summarized in Algorithm 6.

Algorithm 6 Multi-task RGP Approach

Input: Basis vector x, total time instants T , α, sequential measurements yt ∈ RdM , K, Kc

1: Initialization: µf
0 = 0 and Cf

0 = (Kc ⊗ I)⊗K.
2: for t = 1, ..., T do
3: Calculate the gain matrix Jt according to (6.29) using the matrix A and D from (6.45)

and (6.46) respectively .
4: Calculate mean µp

t using (6.27) and covariance matrix Cp
t using (6.32).

5: Calculate the gain matrix G̃t according to (6.38).
6: Set yt = µp

t at locations where yt is missing. Calculate mean µf
t by means of (6.36)

and covariance matrix Cf
t by means of (6.37).

7: end for
8: Perform imputation at time x∗ by means of mean m∗ (6.48) and covariance matrix C∗

(6.49) .
9: return m∗, C∗.
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6.3 Computational Complexity

The computational complexity associated with Algorithms 4, 5, and 6 for n basis vectors

and dM number of observations at step t is O(dMn2). This complexity is driven by the gain

matrix calculation in (6.29). Use of recursive GP significantly reduces the computational

complexity as compared to the full GP approach.

We next show the use of graph information in RGP-G approach reduces the uncertainty

of the posterior distribution when the measurements are recursively processed at time t =

1, ..., T .

Theorem 1. The variance of the estimator of f using the RGP-G (Algorithm 4 and 5) of

the distribution p(f) is less than the variance of the estimator of f using RGP at time t = 0

i.e.,

tr(Cf
0) > tr(Cf

g,0)

where Cf
0 is defined in (6.44) and Cf

g,0 is defined in (6.19).

Proof. In order to prove this theorem, we need to show that the trace of ∆C0 = Cf
0−Cf

g,0

is nonnegative. The initial covariance matrix Cf
g,0 at time t = 0 is defined with a graph filter

S given in (6.3). The Laplacian matrix L used in this graph filter has an eigen-decomposition

corresponding to,

L = VUGV
⊺ (6.50)

where, UG = diag(U(1), U(2), .., U(M)) and V denote the diagonal eigenvalue matrix and

the associated eigenvectors respectively. Every eigenvalue of the laplacian matrix L is non-

negative [118]. We need to prove,

tr(Cf
0 −Cf

g,0) ≥ 0 (6.51)

tr((Kc ⊗ I)⊗K− (Kc ⊗ S2)⊗K) ≥ 0,

The trace of the Kronecker product of three matrices is the product of the traces of the
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matrices. Hence, we get,

tr(Kc)tr(I)tr(K)− (tr(Kc)tr(S
2)tr(K)) ≥ 0,

The kernel matrix K and Kc is positive semidefinite by construction. Hence, we need to

prove,

tr(I− S2) > 0,

tr(I−V(I+ αUG)
−2V⊺) ≥ 0,

M∑
i=1

(
1− 1

(1 + αU(i))2

)
≥ 0.

Let U(s) denote the smallest non-zero eigenvalue of L, we then need to prove

(1 + αU(s))−2 ≤ 1,

(1 + αU(s)) ≥ 1

αU(s) ≥ 0.

For α > 0, the smallest non-zero eigenvalue of L i.e., U(s) > 0. Hence, tr(Cf
0 −Cf

g,0) > 0.

■

Theorem 2. The posterior covariance matrix of the estimator of function f for RGP-G

approach at time t i.e., C∗
g in (6.40) is smaller than the posterior covariance matrix for

the RGP based estimator of f given as C∗ in (6.49) evaluated without graph information

∀t = 1, ..., T .

Proof: We need to prove, tr(C∗
g) < tr(C∗) for all t = 1, ..., T , where

C∗ = B+ Jt∗(C
f
T )J

⊺
t∗

and C∗
g is defined in (6.40). From Theorem 1, we have proved that ∆C0 = tr(Cf

0−Cf
g,0) > 0.
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The matrix B for RGP approach can be defined as,

B = F−D⊺A−1D

Similarly, we have Bg for RGP-G approach as defined in (6.28). Thus, we have,

tr(B−Bg) = tr((F− Fg)− (D−Dg)
⊺(Cf

0 −Cf
g,0)

−1

(D−Dg))

(6.52)

As tr(Cf
0−Cf

g,0) > 0 and the Schur complement of a positive definite matrix is also positive

definite. Therefore, we have

tr(B−Bg) > 0

Similarly,

tr(Cp
t −Cp

g,t) = tr
(
(B−Bg) + (Jt − Jg,t)(C

f
g,t−1 −Cf

t−1)

×(Jt − Jg,t)
⊺
) (6.53)

At t = 1 we have Cf
0 −Cf

g,0 > 0 (proved in theorem 1) and tr(B−Bg) > 0. Hence,

tr(Cp
1 −Cp

g,1) > 0

Similarly, tr(Cf
t −Cf

g,t) > 0 ∀t = 1, ..., T . The posterior distribution of the imputations

tr(C∗ −C∗
g) > 0. ■

6.4 Simulation results

The efficacy of the proposed approach is verified on the three-phase unbalanced IEEE 37

[110], IEEE 123 [95], and 11,000 bus test systems. An aggregated 24-hr load profile at the
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primary nodes consists of a mixture of load profiles, i.e., industrial and commercial load pro-

files obtained from [111], and residential loads obtained from [119]. Reactive power profiles

are obtained by assuming a power factor of 0.9 lagging. Other profiles at different nodes

were obtained by adding a random noise term and a sinusoidal wave of random amplitude

spanning the 24-hr period. By utilizing this data, the voltage profile at all nodes is obtained

by running load flow. The aggregated smart meter data are averaged over 15-min intervals

while the voltage magnitude measurements are sampled at a 1-min interval. Thus, we have

considered two sensor types for the case study. We have assumed RBF kernel for all the

GP-based approaches. The imputation is performed for the aggregated smart meter data

at a 1-min interval. We compare the performance of the proposed RGP-G Interpolation

against the linear interpolation approach [23], RGP (Algorithm 6), and full GP (Algorithm

3) approach. The RGP-G prediction approach is compared with [120]. Algorithms 4, 5,

6 are initialized using their respective mean and co-variance functions associated with the

GP function at time t = 0. Here, the hyper-parameters associated with the GP function

can be obtained by either training the proposed approaches using historical data or using

cross-validation techniques. The hyper-parameters involved in the proposed approach are

θ = [l, σ2
s , σ

2
ϵ ], where l, σ

2
s , σ

2
ϵ , are defined in (6.7). We have used the grid search method

guided by a five-fold cross-validation technique to obtain the hyper-parameters for our prob-

lem. In the cross-fold validation technique, one fold of the measurement set is retained as a

validation set and the other folds as a training set. Each time a different set is chosen as the

validation set, and this procedure is repeated five times. We select a finite set of reasonable

hyper-parameter values to perform a grid search. The performance of each combination is

evaluated through cross-validation on the training set. This approach evaluates the MAPE

for each possible combination of hyperparameter values and chooses the set that minimizes

the error on the validation set. More details on the grid-search-based cross-fold valida-

tion technique for Gaussian process hyperparameter tuning can be found in [103]. Another

approach is to consider the historical data for hyperparameter tuning. The historical mea-

surements of multi time-scale measurements can be used to obtain the hyper-parameters by

maximizing the log marginal likelihood of the historical time-series data. The log-likelihood
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can be computed in closed form as given in [103]. It is important to note that the proposed

approach does not require any extra training set for imputation. The parameter α for the

RGP-G approach is set to 0.05.

6.4.1 IEEE 37 bus test system

There are three cases by which we illustrate the performance of the multi-task RGP-G

approach.

1. Case 1: In this case, we consider the measurement noise as mean 0 with standard

deviation equal to 1% of the actual values. Fig. 6.3 shows the performance of the

RGP-G interpolation approach at 0% missing measurement case for an IEEE 37 bus

test system. Here, the time-series is the active power injection at node 11 of phase A.

The RGP-G interpolation approach recursively updates the GP function in the 24-hr

batch and later performs imputation at 1-min interval. The 95% confidence interval

indicates the uncertainty bounds associated with the imputed measurements. The ideal

case, i.e., 0% missing measurements dataset, has no missing measurements, but the

dataset consists of a subset of the total measurements, representing an unobservable

condition. For instance, let us assume that the aggregated AMI measurements in this

dataset are available at 15-min intervals. Therefore, if we consider a 24-hr duration to

perform imputations every minute, we have only 96 measurements per AMI sensor out

of the total 1440-time instances.

2. Case 2: In this case, we perform the reconciliation and state estimation using the noisy

time-series measurements corrupted by 0 mean and 10% standard deviation for a total

of four hours duration. In this case, we fix the number of sensors and their locations

corresponding to a particular FAD. The meters are placed randomly in the network.

Fig.6.4 shows the meter deployment for IEEE 37 bus test system for 50% FAD. Thus,

there are no time-series measurements at the nodes where the sensors are absent. We

then perform imputation using these incomplete measurements. Fig.6.5 shows the

comparison of the RGP-G approach with linear interpolation. It can be seen that the

92



Figure 6.3: RGP-G Interpolation approach of active power injection timeseries at node 11,
Phase A

Table 6.1: Case 2: MAPE of active and reactive power imputed time-series data (IEEE 37
bus test system)

Scenario
Proposed
RGP-G I

RGP I Full GP Linear I

0%
missing

1.4% (P)
2.3% (Q)

1.8% (P)
2.6% (Q)

8.5% (P)
5.3% (Q)

3.18% (P)
6.5% (Q)

10%
missing

3.23% (P)
3.4% (Q)

4.2% (P)
5.35% (Q)

8.1% (P)
8.7% (Q)

3.37% (P)
7.72% (Q)

20%
missing

3.02% (P)
3.07% (Q)

4.2% (P)
9.89% (Q)

7.8% (P)
8.9% (Q)

3.6% (P)
8.1% (Q)

former approach provides smoother imputation than the latter one. We compare the

performance of all five approaches using the mean absolute percentage error (MAPE)

metric. Table 6.1 tabulate their performances for IEEE 37 bus test systems. It can

be inferred that the performance of the RGP-G interpolation is superior to the other

four approaches. In the linear interpolation approach, each time-series data is imputed

individually without exploiting any spatio-temporal property of the data. In contrast,

the full GP approach (Algorithm 3) exploits temporal relationships for imputation.

The GP function update is performed using all the measurements in batch mode at

once, which is computationally expensive.

The proposed recursive GP approaches assumes that the measurement data is cor-

rupted by Gaussian noise as seen from (6.15). Also, the optimization formulation in
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Figure 6.4: Meter deployment corresponding to 50% FAD for IEEE 37 bus test system

Figure 6.5: Comparison of RGP-G interpolation and linear interpolation approach of an
active power injection time-series at Node 2 of Phase A

(6.2) assumes Gaussian noise. These are common assumptions used in many prior

efforts [115, 116, 103]. The proposed approach in its current form can be applied to

non-Gaussian noise but will not be optimal. Table 6.2 shows the performance of the

RGP-G approach with Laplacian noise with 0 mean with standard deviation equal to
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5%, 10% of the actual power values. As seen from Table 6.2, it can be inferred that the

performance of the recursive GP approach under non-Gaussian noise scenarios is not

optimal. Alternately, under a non-Gaussian measurement noise scenario, a warped GP

approach [121] can be used. In this approach, the observations are transformed into

a latent space such that the transformed data has Gaussian noise and will be better

modeled by the GP. Developing a multi-task recursive GP framework using the warped

GP will be pursued as part of our future work.

Table 6.2: MAPE of proposed RGP-G approach for Laplacian and Gaussian noise with
standard deviation set as percentage of actual power values

Standard deviation of noise 5% 10%
Laplacian noise 4.14% 12.47%
Gaussian noise 2.6% 3.07%

The consistent time-series measurements are further used to estimate the states using

the matrix completion-based DSSE approach discussed in section 3.19. While per-

forming the matrix completion for a particular FAD, the corresponding entries in the

measurements matrix are zero, with no sensor measurements. Table 6.3 shows the

absolute errors and relative error reductions for RGP-G and linear interpolation meth-

ods. It can be deduced that RGP-G based technique significantly reduces error at all

FADs. For example, the error in estimating reactive power using GP-based imputed

time-series is reduced by 46% at 90% FAD compared to the linearly interpolated time-

series. The reduction in voltage state estimation error is more modest mainly due to the

robustness of matrix completion based DSSE that includes the topology information.

3. Case 3:

In this case, we compare the RGP-G prediction aided matrix completion with [120].

The method in [120] uses a data collation method to reconcile heterogeneous measure-

ments and a Kalman filter method to perform DSSE. The data collation consists of an

exponential moving average method to extrapolate the slow-rate measurements. Ta-

ble 6.4 shows the prediction errors for different percentages of missing temporal data.

Our proposed approach has several advantages over [120]. Firstly, the DSSE in [120]
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Table 6.3: Absolute errors and relative error reductions (%) compared to the actual mea-
surements (LI : Linear Interpolation approach, %: percentage reductions)

Scenario FAD = 50% FAD = 70% FAD = 90%
Measure-
ments

LI RGP-G % LI RGP-G % LI RGP-G %

Active
power (kW)

8.3 7.9 5.1% 8.35 7.5 11.33% 2.8 2.4 16.67%

Reactive
power
(kVAR)

3.87 3.46 11.8% 3.8 3.1 22.5% 1.57 1.07 46.7%

Voltage
magnitude
(p.u)

0.85 0.84 1.19% 0.85 0.83 2.41% 0.22 0.18 22.22%

Table 6.4: Case 3: MAPE of imputed time-series data of active and reactive power (IEEE
37 bus test system)

Scenario
Proposed
RGP-G
Prediction

Data Collation
method [120]

0%
missing

2.26% (P)
2.87% (Q)

6.44% (P)
6.75% (Q)

10%
missing

3.5% (P)
5.65% (Q)

7.75% (P)
7.16% (Q)

20%
missing

4.8% (P)
7.3% (Q)

8.13% (P)
8.86% (Q)

requires measurement redundancy (ratio of the number of measurements to the total

states) higher than two. Thus, unlike our proposed approach, the method in [120] fails

in low-observable conditions. Secondly, it can be observed that the imputation error

in [120] is higher than the proposed RGP-G prediction approach as seen from Table

6.4.

6.4.2 IEEE 123 bus test system

In this case, we perform the reconciliation and state estimation using the noisy time-series

measurements corrupted by 0 mean and 10% standard deviation for a total of four hours

duration. In this case, we fix the number of sensors and their locations corresponding to a
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Table 6.5: Case 2: MAPE of active and reactive power imputed time-series data (IEEE
123 bus test system)

Scenario
Proposed
RGP-G I

RGP I
Full
GP

Linear I

0%
missing

4.11% (P)
1.7% (Q)

4.38% (P)
1.72% (Q)

8.9% (P)
5.68% (Q)

6.67% (P)
2.5% (Q)

10%
missing

4.45% (P)
1.8% (Q)

5.1% (P)
2.5% (Q)

15.6% (P)
2.7% (Q)

6.75% (P)
10.3% (Q)

20%
missing

4.6% (P)
2.18% (Q)

5.41% (P)
2.9% (Q)

15.8% (P)
10.48% (Q)

17.87% (P)
12.28% (Q)

particular FAD. Thus, there are no time-series measurements at the nodes where the sensors

are absent. We then perform imputation using these incomplete measurements. Table 6.5

illustrates the performance of the proposed RGP-G and RGP Interpolation approach against

the linear interpolation and full GP approach. Similar to the results as seen for IEEE 37 bus

test systems on page 92, it can be inferred that the Recursive GP with graphs (RGPG-I)

provides accurate imputation than the other counterparts.

6.4.3 11,000 bus test system

As discussed in section 6.3, the computational complexity associated with Algorithms 4, 5,

6 for M node system with d different sensor data streams and n time instants will be of the

order of O(dMn2). Hence, while the approach can be used for M = 8500, the complexity

grows as M increases. To address the scalability issue, a distributed implementation of

the proposed multi-task recursive GP approach is possible. We perform the distributed

implementation on the 11,000-node feeder proposed in [122]. The 11,000-node test the

feeder is constructed by connecting an IEEE 8,500-node test feeder and an EPRI Ckt7 test

feeder at the substation. To perform the distributed recursive GP approach, we partition

the 11,000-node network into four areas. We assume that smart meter measurements are

available at 30% of nodes in each area. The load profiles assigned to each node consist of

industrial, residential, and commercial load profiles and are scaled according to their base

loads provided in [122]. Reactive power profiles are obtained by assuming a power factor
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randomly varying between 0.9 and 0.95 lagging. The smart meter measurements are averaged

over 15-minute intervals with measurement noise as mean 0 and standard deviation equal to

1% of the actual power values. We perform the multi-task RGP Interpolation approach in

each area for 4 hours. The MAPE for each area is tabulated in Table 6.6.

Table 6.6: MAPE of active and reactive power imputed time-series data (11,000 node feeder)
Area MAPE (%)
Area 1 1.66%
Area 2 1.5%
Area 3 1.59%
Area 4 2.26%

6.5 Summary

This chapter proposes a recursive Gaussian process with graphs for effectively aggregating

heterogeneous intermittent time-series data and using it to estimate the distribution system

states in low observability conditions. The proposed approach leverages the graphical struc-

ture of the network for accurately imputing the multi time-scale measurements. It has the

flexibility to perform imputations in batch mode or real-time mode. Superior imputation

performance of the active and reactive power time-series measurements are obtained with

the proposed approach. Further, state estimation in IEEE 37 and the IEEE 123 bus system

reveals that the power and voltage states are recovered with high fidelity.
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Chapter 7

Handling multi time-scale data using

neural network based approaches

The Gaussian process based approaches for integrating multi time-scale measurements dis-

cussed in Chapter 5 and 6 is computationally expensive as it requires an inversion operation

of the kernel matrix to impute or predict the slow-rate measurements. Therefore, in this

chapter, we propose a novel neural-network based approach that leverages spatio-temporal

dependencies in time-series data without involving matrix inverse operations. The proposed

approach uses neural ordinary differential equations (ODE) [33] that are ideal for imputing

and predicting time-series measurements collected at non-uniform intervals.

7.1 Background: Neural ODE

The measurements obtained from multiple grid sensors are obtained at different sampling

rates. The multivariate time-series sensor data with D variables and of N length can be

written as,

Xt = x1, x2, ..., x
D
T ∈ RN×D (7.1)

This data may contain missing values due to the sensor sampling rate or communication

impairments. A mask M ∈ RN×D identifies the missing measurements. The entries in M
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i.e., md
t is set to 1 if the corresponding measurement xdt is observed; else, they are set to 0.

The goal is to reconcile the unevenly sampled measurements at the finest time resolution.

Learning a generative model for the multivariate time-series will help accomplish this goal.

Generative models using a deep neural network is typically built on the concept of a fixed

number of layers. In the forward pass, each network consists of a stack of L transformations,

where L is the depth of the model. In order to update these models, a backpropagation

algorithm is run through the same L layers via chain rule. This process necessitates that we

store the intermediate values of the layers. Thus, training standard deep neural networks are

computationally challenging as the memory requirement for storing the intermediate quantity

increases as the model depth is increased. Furthermore, limited number of transformations

are performed due to the fixed number of layers.

Neural ODE is a recent novel framework that is effective for modeling irregularly-sampled

time series commonly encountered in various real-world application, including smart grid

and medical data. It combines deep neural network principles with ordinary differential

equations, and thus are more effective than conventional time series models. Particularly,

in this work, Neural ODE is used for learning generative models for multivariate time series

data from the distribution grid. Neural ODE offers a continuous time transformation of

variables from input state to final predictions unlike standard deep neural network which

only performs a limited number of transformations depending on the number of layers. The

transformed values (or intermediate values) are obtained via ODE solvers by providing initial

state and dynamics as inputs. The dynamics of the transformation function is determined

by a neural network as shown below:

dzt
dt

= f(zt, θ) (7.2)

where, f is a neural network parameterized by θ that defines the ODE dynamics. zt is the

hidden state of the Neural ODE. Thus, starting from an initial point z(t0), the transformed
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state at any time ti is given by integrating an ODE forward in time, given as,

zi = z0 +

∫ ti

t0

dzt
dt
dt

zi = ODESolve(f, z0, t0, ti, θ)

(7.3)

(7.3) can be solved numerically using any ODE Solver (e.g., Euler’s method). In order to

train the parameters of the ODE function f , an adjoint sensitivity approach is proposed

in [33]. This approach computes the derivatives of the loss function with respect to the

model parameters θ by solving a second augmented ODE backwards in time. Some of the

advantages of using Neural ODE solvers over other conventional approaches are: (1) Mem-

ory efficiency: The adjoint sensitivity approach allows us to train the model with constant

memory cost independent of the layers in the ODE function f ; (2) Adaptive computation:

In deep neural networks, the number of layers are fixed and therefore, they generally have a

fixed amount of function evaluations. However, the number of layers in a neural ODE is the

number of steps an adaptive ODE solver decides to take. This means that the neural ODE

can effectively adapt the number of layers on the fly for different datasets and take adap-

tive steps wherever necessary to determine the solution with desired accuracy; (3) Effective

formulation: In addition to above two advantages, the continuously defined dynamics can

naturally incorporate data which arrives at arbitrary times. Therefore, we propose to use

the Neural ODE for reconciling the unevenly sampled distribution grid data.

Based on the foundations of NeuODEs, ODE-RNN was developed. ODE-RNN is autore-

gressive in nature unlike the generative form of NeuODES [34]. It models the irregularly

sampled time series by applying ODE and RNN interchangeably through a time series. The

states evolve continuously using the ODE model, while they are updated using the RNN cell

at the instances where the measurements are available. The function f at time t is described

in a neural ODE with initial hidden state ht:

ḣ = f(ht, θ) (7.4)
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ot = c(ht, θc) (7.5)

where, h ∈ Rm is the hidden state of the data, ḣ = dh
dt

is the derivative of the hidden

state, o ∈ Rd is the output of the ODE-RNN. f : Rm → Rm and c : Rm → Rd are the

neural ODE operator and output function parameterized by neural network parameters θ

and θc, respectively. The hidden states are modeled using a Neural ODE, where they obey

the solution of an ODE as,

h
′

i = ODESolve(hi−1, (ti−1, ti), f) (7.6)

Lets represent the RNN cell function by v(·) with parameters θv. At each observation xi,

the hidden states are updated by an RNN as,

hi = v(h
′

i, xi, θv). (7.7)

We now discuss the approaches based on the principles of neural differential equations.

7.2 Proposed Generative model - Latent Neural ODE

The basic neural ODEs evaluate the hidden state values at any desired time instants. How-

ever, such models are hard to interpret, especially for multi-time scale power measurements,

due to the combined dynamics of power system and the ODE solver. Therefore, we propose

to use Latent ODE (LODE) approach for reconciling the multi-time scale power measure-

ments. The LODE approach is a continuous-time generative process for integrating multi-

time scale measurements. This approach uses Neural ODEs, and variational autoencoder

within a single framework [34]. LODE has two key advantages over neural ODE: First, it

explicitly decouples the dynamics of the power system, the likelihood of observations, and

the recognition model so that each component can be analyzed separately. Secondly, the

posterior distribution over an initial latent state provides a measure of uncertainty which

further increases the reliability of our predictions. The proposed framework (LODE) has
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three different modules, namely an encoder, a decoder, and the ODE solver. The architec-

ture of LODE for smart distribution grid is illustrated in Fig. 7.1. Each module of LODE

Figure 7.1: Architecture of proposed Latent ODE approach for smart distribution grid

is described in the forthcoming subsection.

7.2.1 Encoder: Recognition network

This module encodes the input measurements from data space and transforms it into a latent

space. Encoding is typically carried out via a recurrent neural network since it is effective

in capturing long term dependencies of time series data. Encoder takes {xi, ti}Ni=1 as an

input, where xi represents the observations and ti represents the corresponding observation

times. The data is processed backward in time from time tN to t0. An approximate pos-

terior over the initial state qϕ(z0|{xi, ti}Ni=1) is computed from the last hidden layer of the

encoder network. In our approach, the mean and standard deviation of the approximate

posterior qϕ(z0|{xi, ti}Ni=1) are the function of the final hidden state of an encoder network,

characterized by,

qϕ(z0|{xi, ti}Ni=1) = N (µz0 , σz0) (7.8)

where, µz0 , σz0 = g(RNNϕ({xi, ti}Ni=1)). Here, the function g represents a neural network

layer, translating the final hidden state of the encoder into the mean and variance of z0.
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7.2.2 ODE Solver

Once an approximate posterior distribution q(z0|{xi, ti}Ni=1) is obtained from the encoder, an

initial latent state (z0) for the ODE solver is sampled from the corresponding distribution.

The initial latent state serves as an input to the ODE solver together with a ODE dynamic

function f . Then, a ODE solver is used to obtain latent space observations for all the given

times,

z1, z2, ..., zN = ODESolve(f, z0, θ, {t0, t1, ..., tN}) (7.9)

Thus, given observation times t0, t1, ..., tN and an initial state z0, an ODE solver produces

z1, ..., zN , which describes the latent state at each observation. The ODE solver is capable of

imputing historical time points as well as forecasting future values by providing appropriate

latent states at desired time instants. As the function f is time-invariant, a unique latent

trajectory can be defined given the initial latent state.

7.2.3 Decoder

the decoder transforms the latent trajectory defined at various time instants back into the

data space using the neural network. Standard multi layer perceptron can be used in decoder

network since we only need to map two function spaces.

7.2.4 Training of LODE

The training of the proposed LODE framework is similar to that of a variational autoencoder,

and it is end-to-end. The encoder-decoder model is trained by maximizing the Evidence

Lower Bound (ELBO) given as,

ELBO(ϕ, θ) = E
qϕ(z0|{xi,ti}Ni=0)

[log(pθ(x0, ..., xN))]

−KL(qϕ(z0|{xi, ti}Ni=0)||p(z0))
(7.10)
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The first term in the ELBO represents the log probability of the decoder estimates. The

second term denotes the KL divergence or degree of “dissimilarilty” between the two distribu-

tions qϕ(z0|{xi, ti}Ni=0) and p(z0). Here, the prior over latent states p(z0) is chosen as N (0, 1).

The overall pipeline of the proposed Latent ODE approach summarized in Algorithm 7.

Algorithm 7 Latent ODE Approach

Input: Datapoints {xi}Ni=1 and the corresponding times {ti}Ni=1

1: z0 = RNN({xi}Ni=1)
2: µz0 , σz0 = g(z0)
3: z0 = N(µz0 , σz0) = qϕ(z0|{xi, ti}Ni=0)
4: z1, z2, ..., zN = ODESolve(f, θ, z0, (t0, ..., tN))
5: x̂i = OutputNN{zi}
6: return x̂i

7.3 Proposed Autoregressive model - SDE-RNN

The ODE-RNN approach proposed in [34] and discussed in 7.1 provides imputations but

fails to quantify the uncertainty associated with it. Therefore, we offer a novel SDE-RNN

framework, which, in addition to the predictions, is capable of quantifying the uncertainties

in a principled manner. In this section, we describe the key elements of the proposed SDE-

RNN approach. Our approach involves the modification of ODE-RNN to include a stochastic

differential equation (SDE-RNN) to capture the evolution of the hidden states (as opposed

to ODE). Stochastic differential equation that governs the dynamics of the hidden states

corresponds to,

dht = f(ht, t)dt+ g(ht, t)dBt (7.11)

where, f and g are the drift and diffusion functions, respectively. The transformations

f and g are carried through neural networks. Bt represents the Brownian motion with

the distribution dBt ∼ N (0,Q∆t) where Q is the diffusion matrix. g(ht, t) denotes the

variance of the Brownian motion and represents the epistemic uncertainty in the hidden

state dynamics. Both the drift and diffusion functions are nonlinear, thanks to the nonlinear

transformation of neural networks f and g. Therefore, the SDEs in (7.11) is a nonlinear
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SDE. The hidden states in the SDE-RNN model are the solution of the SDE in (7.11), i.e.,

h
′

i = SDESolve(hi−1, (ti−1, ti), f, g) (7.12)

Here, SDESolve represents the SDE Solver. It is important to note that states are updated

based on observations xi at time ti using the RNN model.Using this SDE-RNN approach, we

can quantify the uncertainty in the hidden and output states, as discussed in the following

subsection.

Figure 7.2: Propagation of uncertainty. xi: Input at irregular intervals

7.3.1 Uncertainty quantification

We propose a novel uncertainty propagation approach in the SDE-RNN model. The pro-

posed method quantifies the uncertainty in a holistic manner accounting for both aleatoric

and epistemic, without relying on prior specification of model parameters and complicated

Bayesian inference. The SDE-RNN approach propagates the uncertainty from the noisy in-

put observations to the final outputs using the CVRNN model and the SDE model. Here,

we refer to the CVRNN model as a modified form of RNN, that propagates the mean and

uncertainty arising from the previous hidden states and the inputs to the next hidden state.

Fig. 7.2 and Algorithm 8 illustrate the overall uncertainty propagation in the SDE-RNN

framework. We can initialize the mean and covariance matrix of the hidden states as zero

and then update them continuously. The CVRNN model updates the hidden states at the
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time when an observation is available along with its associated uncertainty. This approach

accounts for the uncertainty in both the input observation and the previous hidden states.

SDE model captures the epistemic uncertainty of the SDE-RNN approach. In the following

subsections, we elaborate the uncertainty propagation in both the CVRNN model and SDE

model.

1. CVRNN Model

The RNN cell in Eq. (7.7) updates the hidden states at time instants where measure-

ments are available. The dynamics of a general RNN cell are modeled by,

hi = v(hi−1, xi, θv), (7.13)

oi = c(hi, θc). (7.14)

Assume the input xi is corrupted with additive Gaussian noise given as

x̃i = xi + wi, (7.15)

where wi = N (0,Σi) with Σi representing the covariance matrix of the measurement.

These noisy observations are fed to the RNN model, where the hidden states and the

outputs become a random variable corresponding to,

h̃i = v(h̃i−1, x̃i, θv), (7.16)

õi = c(h̃i, θc). (7.17)

Let ĥi = E[h̃i] and P̂i denotes the estimate of the covariance matrix Pi = E{(h̃i −

ĥi)(h̃i − ĥi)
⊺}. Based on (7.16), the linearization around ĥi−1 implies that,
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h̃i = v(h̃i−1, x̃i)

= v(ĥi−1 + δhi−1, x̂i + wi)

= v(ĥi−1, x̂i) + ∆hvδhi−1 +∆xvwi + o(δh2
i−1, w

2
i )

(7.18)

where, ∆hv and ∆xv are calculated at operating points (ĥi−1, xi). According to the

transformation of uncertainty [123] given in Theorem 1, we can evaluate the expected

value and covariance of h̃i.

Theorem 3. Transformation of uncertainty: Consider a recurrent neural network

represented by v(·) with neural network parameters θv and hidden states given by h̃i =

v(h̃i−1, x̃i, θv). The input x̃i is corrupted with noise wi = N (0,Σi). The estimation

of the expected value and covariance matrix of the hidden state h̃i at time i can be

recursively calculated as,

ĥi = v(ĥi−1, xi) (7.19)

P̂i = (∆hv)P̂i−1(∆hv)
⊺ + (∆xv)Σi(∆xv)

⊺ (7.20)

where, the expected value of the previous hidden state E[h̃i−1] = ĥi−1 and its associated

covariance matrix is P̂i−1 are given.

Thus, the mean and covariance can be computed in a CVRNN framework with noisy

input measurement data at time i using (7.19) and (7.20). We discuss the SDE model

in the following subsection.

2. SDE Model

A neural SDE model aims to capture the epistemic uncertainty with Brownian motion

and propagate it to the next time step. It also aims to capture the uncertainties arising

from the previously obtained hidden states and their co-variances. A neural SDE can

be expressed using the dynamical equation in Eq. (7.11). As this SDE is nonlinear,
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its statistics can be computed by adopting certain approximations. Linearized approx-

imation of SDEs [124] is a technique which computes the statistics by linearizing the

drift and diffusion function around a certain point. Using the Taylor series, the drift

function f(h, t) around the mean m is linearized as,

f(h, t) ≈ f(m, t) + Fh(h, t)(h−m) (7.21)

The diffusion function is linearized as,

g(h, t) ≈ g(m, t) +Gh(h, t)(h−m) (7.22)

A linearized approximation to estimate the mean and covariance of an SDE (7.11)

can be obtained by integrating the following differential equations from the initial

conditions m(t0) = E[h(t0)] and P(t0) = Cov[h(t0)] to the target time t:

dm

dt
= f(m, t), (7.23)

dP

dt
= PF⊺

h(m, t) + Fh(m, t)P+Gh(m, t)QG⊺
h(m, t) (7.24)

Thus, (7.23) and (7.24) captures the evolution of both the mean and covariance of the

hidden states. After the hidden states are updated, they are transformed by another

neural network to get final predictions (see Fig.7.2). The estimation of the mean and

the covariance of the output is obtained according to the transformation of uncertainty

(Theorem 1) as,

ôi = c(ĥi) (7.25)

R̂i = (∆hc)P̂i(∆hc)
⊺ (7.26)

Algorithm 8 illustrates the working mechanism of the proposed SDE-RNN approach.

As discussed earlier, the hidden states hi are updated at times i where measurements
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are present. The availability of the measurements is indicated by the vector mask

∈ {0, 1}. The imputed measurements along-with the associated variances are indicated

by {oi}Ni=0 and {Ri}Ni=0 respectively.

Algorithm 8 SDE-RNN Approach

Input: Datapoints {xi}Ni=1 and the corresponding times {ti}Ni=1, drift function f , diffusion
function g

Initialization: h0, P0

1: for i = 1, .., N do
2: h

′
i,P

′
i = SDESolve(hi−1,Pi−1, (ti−1, ti), f, g)

3: hi,Pi = CV RNN(h
′
i,P

′
i, xi)

4: hi = mask × hi + (1-mask) × h
′
i

5: Pi = mask × Pi + (1-mask) × P
′
i

6: {oi, Ri}Ni=1 = c(hi,Pi)
7: end for
8: return {oi}Ni=0, {Ri}Ni=0

Uncertainty propagation for GRU

The CVRNN model discussed in the previous section can be any form of the recurrent neural

network; for example, it could be either RNN, Long Short Term Memory (LSTM), or Gated

Recurrent Unit (GRU) model whose hidden states are given as,

ht = v(ht−1, xt, θv), (7.27)

In this section, we will derive the uncertainty propagation for a GRU model by using the

transformation of uncertainty as discussed in Theorem 1. To begin with, we need to compute

the ∆hv and ∆xv. In a GRU model, the hidden states are given as,

ht = zt ◦ ht−1 + (1− zt) ◦ h
′

t (7.28)

h
′

t = tanh(Winxt + bin + rt(Whnht−1 + bhn)) (7.29)

zt = σ(Wizxt + biz +Whzht−1 + bhz) (7.30)
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rt = σ(Wirxt + bir +Whrht−1 + bhr) (7.31)

Here, xt, zt and rt are the inputs, update and reset gates of the GRU model, respectively.

tanh and σ are the Tanh and Sigmoid activation functions, respectively. ◦ represents the

Hadamard product.

The gradient of the hidden states (7.28) at time t computed at operating points (ĥt−1, xt)

are given as,

∆hv =
∂zt
∂ht−1

ht−1 + zt
∂ht−1

∂ht−1

+
∂(1− zt)
∂ht−1

h
′

t +
∂h

′
t

∂ht−1

(1− zt) (7.32)

The derivative of the sigmoid function is denoted as σ
′
(x) = σ(x)(1−σ(x)). Each gradient

in the (7.32) is given as,

∂zt
∂ht−1

= σ
′
(Wizxt + biz +Whzht−1 + bhz) ◦Whz (7.33)

∂rt
∂ht−1

= diag(rt(1− rt)) ◦Whr (7.34)

∂h
′
t

∂ht−1

= diag(1− h′2
t ) ◦ {

∂rt
∂ht−1

(Whnht−1 + bhn) +Whnrt} (7.35)

Similarly, ∆xv is given as,

∆xv =
∂zt
∂xt

ht−1 +
∂(1− zt)
∂xt

h
′

t +
∂h

′
t

∂xt
(1− zt) (7.36)

Each gradient in (7.36) is given as,

∂zt
∂xt

= diag(zt(1− zt)) ◦Wiz (7.37)

∂rt
∂xt

= diag(rt(1− rt)) ◦Wir (7.38)

∂h
′
t

∂xt
= diag((1− h′2

t ) ◦ (Win +
∂rt
∂xt

(Whnht−1 + bhn)) (7.39)
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Using Eq. (7.32) and (7.36), the covariance matrix of the hidden states Pt at time t is given

by (7.20).

7.4 Simulation results

This section evaluates the efficacy of the proposed framework for the imputation and pre-

dictions tasks related to smart distribution grid. Experiments are carried out in standard

IEEE 37 bus system.

7.4.1 Data processing

We consider measurements from smart meter and SCADA sensors. The smart meter mea-

surements consist of 24-hr active and reactive power injection time-series data aggregated

at the primary nodes. This 24-hr load profile consists of a mixture of load profiles, i.e.,

industrial/commercial load profiles [111], and residential loads [119]. Reactive power profiles

are obtained by assuming a power factor of 0.9 lagging. The SCADA measurements are

obtained by executing load flows on the test network. The SCADA measurements consists

of the voltage magnitude measurements at a subset of node locations. The aggregated smart

meter data are averaged over 15-min intervals while the SCADA measurements are sampled

at a 1-min interval. A Gaussian noise with 0 mean and standard deviation equal to 10% of

the actual power values is added in the smart meter data to mimic real-world patterns. The

smart meter and SCADA measurements constitute our training dataset.

Once the distribution grid’s measurements are obtained, we represent the dataset as a

list of records. Each record represents the information about the time-series data with the

format given as, record = [measurement type, values, times, mask]. Here, time-series data at

each node of the IEEE 37 bus network represents one record. The measurement type denotes

the sensor type, i.e., P,Q, or V . Values ∈ RN×1 represents the sensor measurements with

times ∈ RN as the corresponding time instants. Mask ∈ RN×1 represents the availability of

the corresponding measurements. The dataset is further normalized between [0,1] interval.
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We take the union of all time points across different nodes in the dataset that are irregularly

sampled. This is needed to perform batching during training.

We now discuss the model specifications and simulation results for LODE and SDE-RNN

approach.

7.4.2 LODE approach

Model Specifications

The encoder is a gated recurrent unit (GRU) [125]. We consider 40-dimensional hidden

states of encoder with tanh activation functions. The ODE function is a feedforward neural

network with three layers and 100 units on each layer. The ODE solver is a fifth-order

‘dopri5’ solver. The decoder consists of a feedforward neural network with a single layer.

Here, we consider an adaptive learning rate with an initial value of the learning rate set to

0.01. We consider batch size as 10, and report loss as mean squared error (MSE) and negative

ELBO. The model is trained using stochastic gradient descent through Adam optimizer for

200 iterations. All the experiments are conducted on the system with Intel i9 core processor,

32 GB RAM, 8 GB GPU. Python is explicitly used for coding the entire framework with the

support of PyTorch’s Torchdiffeq [33].

The results of our experiments using LODE approach are discussed in the following

subsections.

Imputation

In this task, the smart meter measurements are interpolated at a 1-min interval. The training

is performed using the observed 15-minute interval data. In order to perform interpolation,

the encoder runs backward in time to compute the approximate posterior distribution at the

initial time t0. Fig. 7.3 demonstrates the imputation performance using the proposed LODE

approach. Table. 7.1 shows the comparison of LODE approach with linear interpolation

approach [23] and recursive GP with graphs (RGP-G) approach [126]. As seen from Table.

7.1, the proposed approach is accurate with 0.2% MSE error in the test data. The trajectory
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Table 7.1: MSE performance of the proposed LODE, linear interpolation and recursive GP
approach

Approach MSE (%)
Latent ODE 0.2%
Linear
Interpolation

2%

Recursive Gaussian
process

0.7%

of MSE and negative ELBO on the test data are illustrated in Fig. 7.4 and Fig. 7.5,

respectively. The convergence of the losses demonstrate the effective training of the model.

Figure 7.3: Imputation at node 1 using Latent ODE approach

Prediction

In this task, we split the time series into two halves, t0 to tN/2 and tN/2 to tN . The model

is trained by conditioning the observations in the first 12 hrs of the time-series data and

reconstructing the other half, i.e., training loss is considered on the second half. Once the

model is trained, it can perform predictions for any desired time horizon. As seen from

Fig. 7.6, the model only observes the first 12 hours of measurement data (blue in color)

and extrapolates the next 12 hours (red in color). The predictions on the testing data are

accurate with an MSE of 0.72%.
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Figure 7.4: MSE on the test dataset using Latent ODE approach

Figure 7.5: Negative ELBO on the test dataset using Latent ODE approach

7.4.3 SDE-RNN approach

Model Specifications

In the case of SDE-RNN approach, we use the GRU cell with hidden size 5 to encode the

observations. The drift function of the SDE is a feedforward neural network with 1 layer and

100 units. The diffusion function is a feedforward neural network with 1 layer, 100 units,

and a sigmoid activation function. We consider Ito SDE with diagonal noise of Brownian
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Figure 7.6: Predictions at node 12 using Latent ODE approach

motion. Python is used for coding the entire framework with the support of PyTorch’s

torchsde package [35]. We consider the output neural network as a 1-layer feedforward

network with an input size of 5 and an output size of 1. We set the learning rate to 0.01,

batch size as 10 and report the loss as mean squared error (MSE). We compare the efficacy

of the proposed SDE-RNN with the classic GRU approach. The classic GRU approach

consists of a GRU model with 3 input features (observations, times, and mask) and 5 output

features. The predictions are obtained by transforming the output of the GRU cell via

another feedforward neural network with 2 layers. The first layer is a neural network with

output features 100 followed by the Tanh activation function. We then employ a dropout

rate of 0.3 after this activation function followed by another feedforward neural network of

input features 100 and output feature 1.

The uncertainty estimates provided by the SDE-RNN is compared with that of Monte-

Carlo dropout approach in classic RNN using the Expected normalized calibration error

(ENCE) metric [127]. Calibration error is typically used to evaluate uncertainty estimates

since they are not associated with any groundtruth values. In a well calibrated model,

average confidence score should match with the average model accuracy [128]. Thus, in a

classification setting, calibration implies that whenever a forecaster assigns a probability of

p to an event, that event should occur about p% of the time. On the other hand, in a

regression setting, calibration signifies that the prediction yt should fall in a c% (e.g., 90%)
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confidence interval approximately c% (e.g., 90%) of the time. The expected normalized

calibration error (ENCE) is based on the similar regression setting that for each value of

uncertainty, measured through the standard deviation σ, the expected mistake (measured in

MSE) matches the predicted error σ2, i.e.,

Ex,y[(µ(x)− y)2|σ(x)2 = σ2] = σ2 (7.40)

ENCE metric is evaluated using the binning approach, where we assume that the number

of bins N divides by the number of time points T . We divide the indices of the examples to

N bins, {Bj}Nj=1, such that Bj = {(j − 1) T
N
+ 1, ..., j T

N
}. Each bin represents an interval in

the standard deviation axis: [mint∈Bj
{σt},maxt∈Bj

{σt}]. Expected Normalized Calibration

Error (ENCE) is calculated as,

ENCE =

√√√√ 1

N

N∑
j=1

|mV AR(j)−RMSE(j)|
mV Ar(j)

(7.41)

where, the root of the mean variance (mV Ar(j)) at bin j is,

mV Ar(j) =

√
1

|Bj|
∑
t∈Bj

σ2
t , (7.42)

and root mean squared error (RMSE(j)) at bin j is,

RMSE(j) =

√
1

|Bj|
∑
t∈Bj

(yt − ŷt)2. (7.43)

It is expected that the mV ar will equal the RMSE for each bin, i.e., the plot of RMSE as a

function ofmV ar should be an identity function. However, in reality, the models are not well

calibrated and the plot is not an identity function. Thus, a model is said to provide better

uncertainty estimates if they have a lower ENCE. We compare the uncertainty estimation

of our SDE-RNN approach with the classic RNN in the following subsection.
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Figure 7.7: Uncertainty quantification in SDE-RNN approach- node 1

Figure 7.8: Uncertainty quantification in SDE-RNN approach- node 12
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Table 7.2: Imputation results for different percentages of missing data in test dataset
Metric MSE ENCE
Missing
data (%)

40% 60% 80% 40% 60% 80%

SDE-RNN 0.0005 0.0008 0.0013 57.45 49.11 54.35
Classic-GRU 0.0506 0.0978 0.1527 534.05 419.06 457.92

Imputation:

In the first experiment, the smart meter measurements are imputed at a 1-min interval using

the proposed SDE-RNN approach. The training and test dataset contains the available AMI

(15-minute) and SCADA (1-minute interval) measurements. In addition, in the test dataset,

we introduce missing data as a percentage of the total number of time instants (minutes)

in the 24-hr interval (i.e., 1440 time instants). The prediction and uncertainty estimates

provided by the SDE-RNN model are shown in Fig.7.7 and Fig. 7.8 for nodes 1 and 12,

respectively. Here, 5% of total interpolated points (i.e., 1440 data points) are observed. It

can be observed that the epistemic uncertainty increases as we move away from the observed

values. For instance in Fig. 7.7, the sparse region of 10th-12th hr depicts less confidence

compared to data-rich regions of 5th-9th hr. The aleatoric uncertainty due to the sensor

noise is well captured by the SDE-RNN model, reflected by the uncertainty estimates at the

observations. The uncertainty estimates at the observation times is nonzero and present due

to the noisy input data, which is the aleatoric uncertainty part.

In the second experiment, we compare the uncertainty estimates provided by the SDE-

RNN with the classic GRU + MC dropouts approach. We assume the number of bins is

5. Table 7.2 shows the performance of both these approaches for different percentages of

missing data in the test dataset. We provide the test dataset’s mean squared error (MSE)

and ENCE. It is evident from the Table that the SDE-RNN approach offers better accuracy

and uncertainty estimates than the classic GRU model for all the levels of missingness in the

test dataset.
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7.5 Summary

This chapter proposes two neural ODE-based approaches, namely an autoregressive SDE-

RNN model and a Latent ODE approach for integrating heterogeneous measurements in a

smart distribution grid. The proposed Latent ODE approach uses neural ODEs for learning

generative models, which can provide accurate imputations and predictions at any desired

time instant. The Neural SDE-RNN approach is capable of quantifying both the aleatoric and

epistemic uncertainty in the measurement data. Specifically, we derive analytical expressions

for quantifying and propagating the epistemic and aleatoric uncertainty across time instants.
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Chapter 8

Phase and outage awareness in

distribution network

State estimation approaches discussed in chapter 4 require sufficient measurements and sys-

tem model information to estimate the system states. The system model includes the system

topology, network parameters, and phase connectivity information. The network connectiv-

ity model is mostly accurate, but phasing errors are quite common [129]. Phase changes due

to restoration, reconfiguration, and maintenance activities frequently happen in the distribu-

tion networks and such changes are not always tracked continuously. Utilities have limited

or unreliable information to identify the connected loads’ phases (A, B, or C) [53]. Real-

time awareness of the operational topology is also necessary for performing state estimation,

demand response management, and distributed resource monitoring. However, line outages

change the network topology and lead to failures if not identified quickly. Line outages are

caused due to fault or any topology attacks, which causes the protective devices to isolate

the faulty areas quickly. Due to the operation of protective devices in response to faults,

the loads downstream of the protective devices will also experience an outage. Thus, the

network will be divided into different islands, some energized and others that might not be

energized. Hence, outage detection is an important task to return stability to the distribu-

tion network. However, the presence of limited real-time measurements in the distribution
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grid affects the real-time monitoring capabilities in distribution systems. The sheer size of

low-voltage distribution grids has made the cost of meter placement prohibitive. Hence, one

of the critical challenges is the optimal selection of the number of meters, type, and their

locations in the grid, for outage identifiability. Furthermore, any outage detection strategy

should detect outages in DN as quickly as possible.

Therefore, in this chapter, we develop frameworks to enhance the situational awareness

of the low-observable distribution system. To this end, we first develop a novel phase iden-

tification approach that accurately identifies the phase labels of the multiphase unbalanced

distribution system. In the second approach, we develop an outage detector and meter

placement approach for detecting outages with high probability. Both these approaches are

discussed in the following sections.

8.1 Phase Identification approach

A distribution system can be perceived as a graph with a tree structure consisting of sub-

stations, feeders, laterals, and customers (see Fig. 8.1). The paths from the substation to

each consumer are unique. Typically, the feeders are three-phase, whereas the lateral con-

nections are either single-phase, two-phase, or three-phase. Transformers connected to the

end of these laterals step down the voltages for energizing the customers. The phase labels

of these laterals are incorrectly documented or unknown to the utility. Therefore, all the

customers connected to a lateral may have unknown phase information. In order to esti-

mate the unknown phase labels, the proposed approach learns a new graph structure using

the aggregated voltage magnitude measurements of the customers connected to each lateral.

The estimated graph structure provides the phase connectivity information by solving an

optimization problem that clusters the measurement data into k clusters, where each cluster

represents a phase in the distribution network.
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lateral 4lateral 3
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C6C5 C7 C8C2C1 C3 C4

? ? ?

3-phase feeders 3-phase feeders

Figure 8.1: Tree representation of network topology with question mark ? representing the
unknown phase labels

8.1.1 System model

A distribution system as shown in Fig.8.1 can be perceived as a graph where nodes are

assigned to each of the bus phases. This graph is denoted by G = (V , E ,A), where V ∈ RM

denotes the vertices, E are the edges and A ∈ RM×M is the adjacency matrix. Here, M

represents set of phases at all buses in the graph G. The adjacency matrix for an undirected

graph is a symmetric matrix. The problem of phase identification can be mapped to the

problem of discovering the adjacency matrix A.

Consider a matrix of voltage magnitude measurements V ∈ RM×N , where N represents

the total time over which the samples are collected. The entries in the rows of the matrix

V are non-zero where sensors are placed in the grid. The matrix V = [Vp1
1 , ...,V

pK
K ]⊺ where

Vpi
i is the nodal voltages on bus i with phases pi. For instance, a three-phase bus will be

represented by Vpi
i = [Va

i ,V
b
i ,V

c
i ]. Here, V

ϕ
i is the line-to-ground voltage magnitude time-

series on phase ϕ and ⊺ is the transpose operator. Here, the voltage measurements refer to

the phase-to-neutral voltages [130].

The aim is to determine the ϕ labels with respect to the reference of substation phases.

Let si and tj specify the two terminals between bus i and bus j , si ∈ Rpi is the source
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Figure 8.2: Different possible configurations for a two-bus connection. (a) three phase end
(b) two-phase end (c) one-phase end

terminal and tj ∈ Rpj is the target terminal. For instance in Fig.8.2 , si = [si(1), si(2), si(3)]

and tj = [tj(1), tj(2), tj(3)]. The vectors s and t are the concatenated vectors of si and tj,

∀i, j ∈ M , respectively. The dimension of s and t will correspond to the phases pi and pj

on the buses i and j, respectively. There are different configurations in which terminals of

bus i and bus j are connected depending on whether they are three-phase, two-phase, or

single-phase connections. Two combinations for a three-phase end lateral are shown in Fig.

8.2(a).

8.1.2 Proposed phase identification approach

In this work, we exploit a key property that was validated in [131].

Theorem 4. In a multi-phase distribution grid, if two terminal buses of a branch are con-

nected on the same phase, their phase voltage correlation is the largest.

Proof: See [131] for the complete proof.
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Higher voltage correlation is equivalent to smooth signals over the graph structure [132].

This smoothness property can be quantified as,

l(v) =
∑
(i,j)

A(i, j)∥vi − vj∥2 = tr(V⊺LV) (8.1)

where A is the adjacency matrix and A(i, j) denotes the connection between the nodes i

and j. The derivation of (8.1) can be found in [133]. The Laplacian matrix L is a positive

semidefinite matrix defined as L = D−A, where D is the diagonal degree matrix (D =

diag(A1)). Here, 1 ∈ RM is a vector of all ones. The Laplacian quadratic form V⊺LV

measures the smoothness or voltage signal variance over the graph. Two nodes i and j are

said to be connected if they have small distance ∥vi − vj∥ or the term tr(V⊺LV) is small.

The quantity l(v) is small when v takes similar values across all connected nodes. Therefore,

the main aim of the phase-identification approach is to find the adjacency matrix A that

minimizes the term l(v) along with additional constraints. The graph is thus obtained by

solving the general optimization problem:

min
A

tr(V⊺LV) + ηs(A), subject to constraints (8.2)

where η > 0 is a regularization parameter and A is symmetric matrix. The Laplacian

L = (diag(A1) − A). Here, s(A) is a regularizer. The distribution system graph is not a

fully connected graph and is usually sparse. Hence, s(A) term includes the sparsity term

∥vec(A)∥1. Furthermore, there are few phase label entries (Aknown ∈ RM×M) which are

known to the utility. Hence, we impose constraints on the entries corresponding to the

known phase labels while estimating the adjacency matrix. Let Ω ⊆ {1, ...,M} × {1, ...,M}

describe the known entries in Aknown. The operator PΩ is defined as,

[PΩ(Aknown)]mn =


[Aknown]mn, if (m,n) ∈ Ω

0, otherwise

(8.3)
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The challenge is to form k clusters using the estimated adjacency matrix, such that each

cluster denotes a phase label. Thus, we need to estimate a graph G with A ∈ RM×M which

has k connected components (for e.g., k = 3 to form 3 clusters representing 3 different

phases). The entries of A are binary variables. In order to formulate an objective based on

this strategy, we start from the following theorem.

Theorem 5. The multiplicity k of the zero eigenvalue of the Laplacian matrix L is equal to

the number of connected components in the graph associated with A.

Proof: The proof of this classic result can be found in [134]. According to Theorem 5,

if the rank(L) = M − k, the graph is an ideal graph based on which the voltage time-series

data points are clustered into k clusters. For instance, to form 3 clusters, the number of

zero eigenvalues in the Laplacian matrix should be three or equivalently, rank(L) =M − 3.

Let σi(L) denote the i-th smallest eigenvalue of L. As L is positive semi-definite, σi(L) ≥ 0.

Hence, minimizing the ‘k’ smallest eigenvalue of L will form a graph with ‘k’ clusters.

By adding the sparsity term ∥vec(A)∥1, the information of the known phase labels, and

a term that minimizes the k smallest eigenvalues of the Laplacian matrix, the optimization

problem in (8.2) can be modified as,

min
A

tr(V⊺LV) + η∥vec(A)∥1 + λ1∥PΩ(A−Aknown)∥2F

+β
k∑
i=1

σi(L)

subject to A ∈ A

(8.4)

where, A represents the set of valid adjacency matrices given as, Aij = Aji,Aij ≥ 0.

However, (8.4) is non-convex due to the last term in the objective function. However,

according to Ky Fan’s Theorem [135], we can write it’s equivalent convex form as,

k∑
i=1

σi(L) = min
S∈RM×k,S⊺S=I

tr(S⊺LS) (8.5)
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Therefore, the problem in (8.4) is equivalent to the following problem:

min
A,S

tr(V⊺LV) + η∥vec(A)∥1 + βtr(S⊺LS)

+ λ1∥PΩ(A−Aknown)∥2F

subject to S⊺S = I

A ∈ A

(8.6)

In addition, we impose must-link constraints and cannot-link constraints in the optimization

problem. The must-link constraints specify that there should be only one connection among

the phases between any two connected buses. The topological information of the network is

either assumed to be known or estimated using [136]. Mathematically, we can formulate the

must-link constraints between two connected buses i and j as,

0.5 ≤
pj∑
m=1

A(si(l), tj(m)) ≤ 1,∀i,∀j, i ∼ j

0.5 ≤
pi∑
l=1

A(si(l), tj(m)) ≤ 1,∀i,∀j, i ∼ j (8.7)

Here, i ∼ j implies that bus i is a neighbor of bus j. Eq.(8.7) must be satisfied for at least

one l or one m. The cannot-link constraints specify that the different phases in the same

bus cannot be connected together i.e., the corresponding elements in the adjacency matrix

should be set to zero. They can be formulated as,

A(si(l), si(m)) ≤ 0,A(ti(l), ti(m)) ≤ 0, (8.8)

where, m, l = 1, ..., pi, i = 1, ..., K.

The must-link constraints (8.7) and cannot-link constraints (8.8) are added in the opti-

mization problem (8.6) to yield,

127



min
A,S

tr(V⊺LV) + η∥vec(A)∥1 + βtr(S⊺LS)

+λ1∥PΩ(A−Aknown)∥2F

subject to (8.7), (8.8)

A ∈ A

S⊺S = I

(8.9)

The optimization formulation in (8.9) is a non-convex problem due to the variables A and

S in the objective function. But using an alternating minimization approach where either

A or S is fixed, convex forms can be obtained. Specifically, the alternating minimization

algorithm updates the variables A and S at each iteration z in an alternating fashion while

fixing the other variable. As the iterations increase, the optimization problem (8.10) and

(8.11) using the alternating minimization algorithm converge to an optimal solution. The

convergence of the alternating minimization algorithm to an optimal solution is proved in

[137]. The number of iterations “iter” is chosen to be sufficiently large such that the alternat-

ing minimization algorithm (Algorithm 9) will converge. Alternatively, we can use criteria to

check that the difference between the variables obtained at the previous and current iteration

is less than a specified threshold. If the requirements are satisfied, the optimization problem

is solved. The update rules are given by the following update equations as,

A(z) = min
A(z)

tr(V⊺LV) + η∥vec(A)|1 + βtr(S(z−1)⊺LS(z−1))

+λ1∥PΩ(A−Aknown)∥2F

subject to (8.7), (8.8)

A ∈ A

(8.10)

S(z) = min
S(z)

tr(S⊺L(z)S)

subject to S⊺S = I

(8.11)

The estimated matrix S in (8.11) is formed by the k eigenvectors of L corresponding to the
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k smallest eigenvalues. Algorithm 9 summarizes the proposed phase identification approach.

Algorithm 9 Alternating minimization Algorithm for phase identification in distribution
system

Input: Voltage measurementsV, Set of known bus label indices Ω, s, t, number of iterations
iter, Aknown

initialization: Initialize S(0) = eigenvector(diag(Aknown1) −
Aknown)
1: for z = 1, .., iter do
2: Solve (8.10)
3: Update S, which is formed by the k eigenvectors of L(z) = D(z) −A(z) corresponding

to k smallest eigenvalues. D(z) = diag(A(z)1).
4: end for
5: return A

8.1.3 Joint Phase Identification and state estimation

In this section, we aim to estimate the system states and the phase labels in a single

framework. Estimation of spatio-temporal states in an unobservable distribution system

is achieved by tensor completion-based DSSE proposed in [138]. In this approach, a mea-

surement tensor T ∈ RM×5×N is constructed by creating an array of state measurement

matrices of the system. The matrices obtained at a single time instant t is T ∈ RM×5 and

structured as,

T = [Pt,Qt,ℜ(vt),ℑ(vt), |vt|], (8.12)

where, Pt and Qt represent the active power and reactive power injections at time t

respectively. The term ℜ(vt) and ℑ(vt) represent the real and imaginary parts of voltage

phasors at each phase of non-slack buses respectively. he measurement tensor T corre-

sponding to system states and measurements are partially filled due to various issues like

unobservability, sensor dropouts, and measurements sampled at different rates. The buses

with no power injection measurements will have entries zero in the measurement tensor. Let

the three unfoldings of the tensor T be denoted byM1,M2,M3 . Tensor completion fills the

missing elements in the measurement tensor by utilizing the sparsity in data with linearized

powerflow constraints[81] at every time instant.
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The linearized powerflow constraints require knowledge of the network admittance matrix.

The utility has the knowledge of the admittance matrix (Ys
LL) which is stored in the dis-

tribution management database. However, this system model information may be incor-

rectly documented if the phase labels are incorrect. The bus admittance matrix is updated

by using the estimated adjacency matrix from the phase identification method (Algorithm

9). When the nominal topology of the system is known, the estimated admittance matrix

(Y
(i,j)
LL ∈ R3×3) between two connected buses i and j is obtained by suitable permutation of

the stored admittance matrix (Ys(i,j)

LL ) as,

Y
(i,j)
LL = Ys(i,j)

LL π (8.13)

Here, the permutation matrix (π) is a matrix of 0 and 1. This permutation matrix obtained

from Algorithm 9 reflects the phase label information between bus i and bus j. Using the

updated admittance matrix information, the system model parameters D and K as defined

in [81] are given as,

D =
(
Y−1
LLdiag(w̄)−1,−jY−1

LLdiag(w̄)−1
)
, (8.14)

K =
(
|diag(w̄)|−1ℜ(diag(w̄)D

)
, (8.15)

and, w = −Y−1
LLYL0v0 is the zero-load voltage (8.16)

The tensor-completion optimization formulation [138] is given as,

X̂ = min
X

3∑
i=1

βi
2
∥Mi −X(i)∥2F + w2γ + w3α

s.t ∥vt −Dxt −w∥∞ ≤ γ

∥|vt| −Kxt − |w|∥∞ ≤ α

t ∈ 1, 2, ..., N

(8.17)

where vt is the bus voltage phasor vector at time t. xt is the vector of active and reactive

power injections of all buses at time t. The suffix (i) denotes the unfolding operation applied
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on the tensor along the mode i. More details about the tensor completion based DSSE can

be found in [101], [138].

The phase identification and state estimation are achieved jointly as shown in Algorithm 10.

In this algorithm, the input measurements are limited spatio-temporal voltage and power

measurements. At each iteration z, the following tasks are performed - First, the adjacency

matrix representing the phase label connectivity is estimated. Secondly, the system model is

updated using the knowledge of the estimated adjacency matrix. Thirdly, tensor completion-

based DSSE using the updated model provides a complete knowledge of the system states,

which further aids in performing phase label identification.

The proposed approach as discussed in Algorithm 10 assumes batch-wise measurements.

However, in a real control room, the measurements arrive sequentially at different times.

In addition, the different types of measurements (voltage and power) may come at different

rates as they may be measured by various sensors (for example, AMI, PMU, or SCADA).

Hence, to implement our approach in an actual control room, we propose two modifications

to our existing approach:

1. In a practical setting, we can use the measurements obtained for a specific duration of

time and stack them as tensors. The measurement tensor will have zero entries for those

instances where they are not available. Once the measurement tensor is formed, we can

perform the joint phase identification and tensor completion as discussed in Algorithm 10.

2. In a control room setting, the multi-timescale measurements can be either reconciled in

real-time or batch-wise using the approaches proposed in our prior work [139], [126]. The

measurements can be first imputed or predicted at a common timescale before using it for

joint phase identification and tensor completion approach (Algorithm 10).

8.1.4 Simulation results

In this section, the proposed approach is validated on two test systems, namely a three-phase

unbalanced IEEE 37 bus and IEEE 123 bus test system. The substation is selected as the

slack bus, whose phase labels are known. We consider a 1-day and 2-day load profile at the
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Algorithm 10 Alternating minimization Algorithm for phase identification and tensor com-
pletion in distribution system

Input: Limited voltage measurements V, Limited Power injection measurements X, Set of
known bus label indices Ω, s, t, number of iterations iter, Aknown, Y

s
LL

Initialization: Initialize S(0) = eigenvector(diag(Aknown1) −
Aknown)
1: for z = 1, .., iter do
2: Solve (8.10).
3: Update S, which is formed by the k eigenvectors of L(z) = D(z) −A(z) corresponding

to k smallest eigenvalues. D(z) = diag(A(z)1).
4: Perform DSSE (8.17) and estimate the tensor X̂ .
5: end for
6: return A, X̂

load bus for IEEE 37 bus and IEEE 123 bus respectively. This profile contains hourly smart

meter readings from Pacific Gas and Electric residential and commercial customers. Since

IEEE 37 bus is a primary distribution grid, the real power at each bus is an aggregation of

customers which are randomly considered in the range 75-100. We have considered a power

factor of 0.95 and calculated the corresponding reactive power for all the loads. It is impor-

tant to note that our proposed phase identification approach is general and can be applied to

other cases of reactive power loads as well. The reactive and active power measurements are

corrupted with measurement noise of mean 0 and standard deviation of 10% of the actual

power values. In order to generate the voltage time-series ground-truth data on an hourly

basis, power-flow analysis is run for one day. Errors are introduced in the voltage magnitude

measurements with mean 0 and standard deviation of 1% of the actual voltage values. The

loads attached to each phase are unequal. Hence, the system is unbalanced.

IEEE 37 bus test system

We have compared the proposed approach with the spectral clustering approach as proposed

in [58] for IEEE 37 bus system under different scenarios as,

• Limited temporal measurement data

• Unknown phase labels
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• Incorrect phase labels

• Limited spatial measurement data

1) Limited temporal measurement data - In this scenario, we introduce random missing

measurements in the voltage measurement matrix. The voltage entries in the matrix V are

set to 0 where the measurements are missing. We vary the percentage of available data from

10% to 90% and plot the results as shown in Fig.8.3. Here, the percentage of known phase

labels is set to 10%. It can be inferred that as the data availability increases, the proposed

approach accurately identifies the phase labels. At 90% of the available measurements, the

accuracy of the proposed approach is 90%. Across all fractions of available data, the proposed

approach consistently outperforms the spectral clustering approach in [58].

2) Unknown phase labels - In this case, the percentage of correctly known phase labels

is varied from 0% to 90%. In order to simulate this scenario, the entries in the sampling

operator matrix are 1 for a given percentage of the known phase labels. It can be seen

from Fig.8.4 that as the known phase labels are increased, the accuracy of phase detection

increases. At just 50% of the known phase labels, the accuracy achieved is higher than 90%.

Here, the available voltage measurements is set to 40% of the matrix V. When the phase

label information is entirely unknown (0% in the x-axis of Fig.8.4), the proposed approach

provides an accuracy of 40%. We have not compared this case with the spectral clustering

approach as it does not incorporate any information about the known phase labels in its

formulation.

3) Incorrect phase labels - In this scenario, we randomly switch the phases of the buses.

In some distribution grids, up to 10% of the phase labels are incorrect or unknown. Several

buses are randomly chosen to simulate the incorrect phase labels and switch their phase a

voltage measurements to phase b voltage or phase c voltage data. We have considered the

availability of known labels and the voltage measurements data at 50%. Fig.8.5 shows the

performance of the proposed approach for different percentages of the bus with incorrect

phase labels. It can be inferred that the proposed approach is insensitive to incorrect bus

phase labels and achieves high fidelity with an accuracy higher than 80%. Its performance
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is superior relative to the spectral clustering approach proposed in [58].

4) Limited spatial measurements - In this scenario, the voltage measurements are avail-

able at only a subset of nodes, representing an unobservable distribution system. As the

availability of measurements increases from 10% to 90% with the percentage of known phase

labels set to 60%, the accuracy of correctly estimating the phase labels increases as shown in

Fig.8.6. The accuracy of the spectral clustering approach is less than the proposed approach

for all the fraction of available data.

10 20 30 40 50 60 70 80 90

Fraction of available measurements(%)

50

60

70

80

90

100

110

A
c
c
u

ra
c
y

Spectral clustering approach

Proposed approach

Figure 8.3: Case I: Performance of phase identification approaches in the presence of
missing measurements - IEEE 37 bus test system
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Figure 8.4: Case II: Performance of the proposed phase identification approach in the
presence of unknown phase labels- IEEE 37 bus test system
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Figure 8.5: Case III: Performance of phase identification approaches in the presence of
incorrect phase labels
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Figure 8.6: Case IV: Performance of phase identification approaches in unobservable
conditions- IEEE 37 bus test system

C. Performance of State Estimation

The proposed approach can jointly estimate the phase labels and DSSE states as dis-

cussed in section 8.1.3. In this case, we infer the phase labels and system states jointly using

Algorithm 10. We compare the performance of Algorithm 10 with respect to the tensor

completion approach with incorrect model information. The incorrect model is obtained

by randomly perturbing the admittance matrix entries to different phases. The proposed

approach updates the correct model information by finding the correct phase label infor-

mation. The estimation error of voltage magnitude and voltage angle for different fractions
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of available measurements is shown in Fig. 8.7 and Fig. 8.8 respectively. It can be seen

from 8.7 and Fig. 8.8 that the voltage states recovery using the proposed approach has low

estimation errors at all FADs as compared to the recovery with incorrect model information.

For example, error reductions up to 60% are achieved in voltage magnitude recovery at 10%

FAD.
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Figure 8.7: Case V: Voltage magnitude recovery for IEEE 37 bus system
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Figure 8.8: Case V: Voltage angle recovery for IEEE 37 bus system

IEEE 123 bus test system

We simulate a scenario for the IEEE 123 bus test system where the voltage measurements are

available at only a subset of nodes. We vary the percentage of availability of measurements
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from 10% to 90% with the percentage of known phase labels set to 40%. The accuracy of

correctly estimating the phase labels is shown in Fig.8.9. As seen, the accuracy increases as

the level of observability increases. We also simulate varying the percentage of phase labels

known to the utility. As seen from Fig. 8.10, the accuracy improves as more phase label

information is available.
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Figure 8.9: Performance of the proposed phase identification approach under unobservable
conditions - IEEE 123 bus test system
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Figure 8.10: Performance of the proposed phase identification approach in the presence of
unknown phase labels - IEEE 123 bus test system
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8.2 Sensor placement and outage detection in recon-

figurable distribution grid

8.2.1 System model

Consider a distribution network with V re-configurable topologies. Such a network can be

perceived as a graph with M nodes and edges in each topology denoted by Ev, v = 1, ..., V .

Hence, the total possible edges are E =
⋃V
v=1 Ev. Let the zero injection buses in the network

be Z. The sensors placed in the distribution system can be briefly classified as node and line

sensors. A node sensor is installed at a distribution system node, which measures the voltage

and real power flow on every edge from that node. The number of powerflow measurement

channels in the node sensors may be limited or unlimited [77]. Examples of node sensors

are microPMUs, whose typical sampling rate is 512 samples/cycle at 60 Hz. Thus, there

are 30,720 samples/sec measurements provided by microPMUs [140]. A line sensor installed

on edge (i, j) provides power-flow measurements on the edge (i, j) and voltage magnitude

measurement at node j. An example of a line sensor is Sentient MM3 [141], whose waveform

capturing rate is 130 samples/cycle for a frequency of 60 Hz. Thus, it is capable of providing

7800 samples of measurements per sec. We plan to leverage the high-resolution measurements

provided by these sensors for outage detection. The load and measurement models for a radial

distribution system are discussed in the forthcoming subsections.

Load Model

Each node m ∈ M in the distribution network has a consumption load x(m). The forecast

of each load is x̂(m) with error ϵ(m) = x(m) − x̂(m). We assume that errors are mutually

independent random variables that follow ϵ(m) ∼ N(0, σ2(m)). Given load forecasts, the true

load is unknown and modeled as a random variable distributed as x(m) ∼ N(x̂(m), σ2(m)).

In the vector case,

x ∼ N(x̂,Σ) (8.18)
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Any load forecasting process can estimate the load forecast error covariance Σ [76]. The

proposed meter placement and outage detection strategy are agnostic to the specific load

forecast approach used. Only the mean and covariance of the forecasts have a bearing on

the proposed approach.

Measurement Model

Sensors placed at a subset of nodes provide measurements, including branch power flow,

voltage magnitude, and voltage angle. The measured power flow on edge ei provides infor-

mation about all the active downstream loads. The measured flow depends on the network

topology, outage situation, and actual loads. The vector of all power flow measurements is

y ∈ Rp. Here, p denotes the total powerflow measurements available from the node and line

sensors. The measured power consumption of the ith sensor measurement under a particular

outage scenario and topology is,

yi(H) =
∑
m∈Mi

xi(m) (8.19)

where Mi is the set of nodes to be summed over for a particular outage hypothesis H and

network topology. The set represents the loads that remain to be served via that line under

a particular outage scenario. Thus, yi represents the sum of the power in nodes Mi. The

nodes present inMi represent the set of all child nodes of the node i. In general, the observed

flows y ∈ Rp can be expressed as,

y = ΓHx (8.20)

where ΓH ∈ {0, 1}p×M depends on the outage scenario for particular network topology.

Correct estimation of ΓH provides the exact information about the location of the outage in

the network. The following section discusses estimating ΓH in a radial distribution system.
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8.2.2 Proposed sensor placement approach

As discussed earlier, the key challenge in outage detection is the estimation of ΓH . To cor-

rectly estimate ΓH , the proposed approach involves two tasks: outage identifiability and

outage detection. The first task deploys meters at strategic locations such that any outage

can be uniquely identified for a reconfigurable distribution network. The second task lever-

ages the measurements from the deployed meters to detect the exact location of the outages

in DN. Therefore, our approach is divided into two tasks, meter placement, and outage de-

tection. We propose an optimization approach for placing meters at different locations in

the network. Outage detection uses these measurements for detecting outages. However, the

proposed outage detection is general and can be performed independently with any other

sensor placement approach as well.

In this section, we map the meter placement problem to a convex optimization formula-

tion to ensure the outage identifiability at a minimal cost. Unlike the approach used in [77],

we develop a convex formulation that takes into account the possibility of different possible

switch configurations of the network. Let si be a binary variable that determines if the node

sensor is placed at node i ∈M , i.e., si = 1 if the meter is placed at node i otherwise si = 0.

Similarly, let the edge sensor placed at edge (i, j) be represented by the binary variable t(i,j).

Let ai and b(i,j) be the cost of placing node sensor and line sensors on the vertex i and edge

(i, j) respectively. a and b represent the vectors of ai and b(i,j). The goal of the meter

placement problem is to minimize the cost of installing node sensors (s) and line sensors

(t) for outage identifiability for different switch configurations. The degree of node k in

configuration v is dv,k. Cv,k represents the child nodes of kth node for the vth configuration.

The optimization problem proposed in [77] can be extended for re-configurable distribution

systems in (8.21). The objective function and constraints associated with the optimization

problem (8.21) are detailed below:
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Objective function (8.21a):

The objective is to minimize the cost of installing the node sensors s and line sensors t in

the network.

Constraint (8.21b):

This constraint indicates that the sensor locations are binary variables.

Constraint (8.21c):

Constraint (8.21c) ensures that the outages of child edges of root node for each configuration

are identifiable. The root node that provides power to all the loads downstream in the

network may differ for each configuration. The degree of the root node for configuration v

is dv,1. Placing a sensor at the root node or its child edges is essential to know if they are in

an outage or not. Constraint (8.21c) requires a combination of node sensor and line sensor

to monitor all dv,1 − 1 child edges of the root node.

min
s,t

∑
i∈V

aisi +
∑

(i,j)∈E

b(i,j)t(i,j) (8.21a)

subject to s, t ∈ {0, 1} (8.21b)

dv,1s1 +
∑
j∈Cv,1

sj +
∑

(1,j)∈Ev

t1,j ≥ dv,1 − 1, (8.21c)

dm,ksk +
∑
j∈Cv,k

sj +
∑

(k,j)∈Ev

tk,j ≥ dv,k − 2 ∀m ∈ V, ∀k ∈M \ {1}, dv,k ≥ 3

(8.21d)

sj + t(i,j) ≤ 1 ∀(i, j) ∈ Ev, ∀v ∈ V (8.21e)

sk + t(pk, k) = 1 ∀k ∈ Z (8.21f)
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Constraint (8.21d):

This constraint ensures that the outages of child edges of non-root nodes are identifiable

for each configuration. Here, the sensors are placed at the non-root nodes whose degree is

greater than or equal to 3. A non-root node k ∈ M for a configuration v ∈ V and degree

dv,k ≥ 3 has dv,k−1 child edges and one parent edge. According to constraint (P1d), at least

dv,k−2 child edges need to be monitored. The outage of the un-monitored child edge can be

identified using the powerflow measurements of the dv,k − 2 child edges and the powerflow

on the parent edge.

Constraint (8.21e):

In addition to constraint (8.21e), this constraint (P1e) ensures that we do not have both a

line sensor on line (i, j) and a node sensor at node j as this is redundant.

Constraint (8.21f):

This constraint ensures the outage identifiability of edges of zero injection nodes. Addi-

tional sensors are required if zero injection nodes are present in the network as described in

constraint (P1f). The zero injection nodes are identified as those with no loads connected.

Constraint (P1f) is independent of the load levels at non-zero nodes.

The optimization formulation of (8.21) is a binary integer problem that is not solvable in

polynomial time. Therefore, we transform (8.21) into a convex problem, where the binary
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variables s and t are relaxed to continuous variables. The convex formulation is given as,

min
s,t

a⊺s+ b⊺t (8.22a)

subject to Av

s
t

 ≤ cv,∀v ∈ V, (8.22b)

Gv

s
t

 ≤ 1,∀v ∈ V, (8.22c)

D

s
t

 = 1, (8.22d)

0 ≤ s ≤ 1, (8.22e)

0 ≤ t ≤ 1 (8.22f)

Here Av, cv concatenates the root-node constraints (8.21c) and non-root constraints (8.21d).

Gv forms the constraints (8.21e), whereas D forms the equality constraints (8.21f). cv for

the vth configuration is a vector whose elements are defined as,

cv =

−(dv,1 − 1)

−(dv,k − 2)

 (8.23)

The convex formulation resembles the relaxed linear programming form of (8.21). As

the problem is relaxed, the objective value f(8.22) is a lower bound to the objective value

f(8.21). The integrality gap is denoted by f(8.22)
f(8.21)

. However, the solution obtained in (8.22)

is continuous and not integral; hence we round them to binary values. The variables s and

t are rounded to 1 if their value is greater than 0.5 and 0 if they are less than 0.5. Such a

rounding technique increases the objective function value. However, rounding the solution

f(ALG) should be within a factor α > 1 to the optimum cost as, f(ALG) <= αf(8.22) <=

αf(8.21). Hence, the rounded solution is an α-approximation of the optimal solution [142].

As seen from the optimization problem (8.22), the constraints matrix (8.22b) is defined
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separately for each configuration. The constraint (8.22b) is modified by merging the elements

for all the configurations given as,

[A1;A2; ...AV ]

s
t

 ≤ [c1; c2; ..., cV ] (8.24)

However, several constraints are redundant in accumulating the constraints matrix (8.22b).

The elements in the matrices A2, A3, ..., AV are repetitive if the degree of the nodes with

respect to the reference configuration 1 is unchanged. This leads to many constraints, in-

creasing the dimension of the problem. In order to solve this issue, the constraint (8.24)

can be reduced by removing the redundant elements. To perform this, the nodes whose

degree is changed with respect to the reference configuration 1 are identified. These nodes

are extracted, and a vector Rk is formed. These nodes in Rk are involved in network recon-

figuration in any subsequent (k + 1)th configuration. Using the vector Rk, a reduced size

constraints matrix is derived, represented as,

[A1;Ar2; ...ArV ]

s
t

 ≤ [c1; cr2; ...crV ] (8.25)

Here, Ar2, ...., ArV are the reduced rows of the matrix A2, A3, ..., AV respectively. Using

(8.25), we develop a full dimension constraint matrix for the reference configuration, and a

reduced size matrix for the rest of the configurations [143].

The solution to the convex optimization problem (8.22) using the reduced size constraints

(8.25) provides the location of meters in a distribution grid. These meter locations ensure

outage identification for any outages in a re-configurable distribution system. The forth-

coming subsection proposes a novel outage detection algorithm that leverages the powerflow

measurements from the deployed meters.
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8.2.3 Proposed outage detector

The goal of outage detection is to identify the set of edges that are isolated from the network.

Given the vector of load forecasts x̂, forecast error covariance Σ and the real-time load flow

measurements y along a set of edges acquired forN snapshots of time, the aim is to determine

the correct number and location of the edges in an outage. This is equivalent to determining

the matrix ΓH as defined in (8.20) for each outage scenario H. As discussed in section 8.2.1,

the matrix ΓH is {0, 1}p×M . Using (8.18), we can write (8.20) as,

y = ΓH(x̂+ ϵ) = ΓH x̂+ e (8.26)

where, e = N(0,Q), Q = ΓHΣΓ⊺
H is an unknown covariance matrix.

Let {y1,x1, ...,yN ,xN}, N ≥ p +M denote the samples of available measurements and

loads. The N samples of xt are obtained from the multivariate distribution N(x̂,Σ). The

likelihood function is given as,

L = (2π)−
1
2
Np|Q∗|−

1
2
Nexp

(
− 1

2

N∑
t=1

(yt − Γ∗
Hxt)

⊺Q∗−1(yt − Γ∗
Hxt)

)
(8.27)

The maximum likelihood estimation involves determining the Γ∗
H andQ∗ given y1,x1, ...,yN ,xN

that maximize the likelihood function. The maximum likelihood estimates of Γ∗
H and Q∗ are

obtained using Theorem 6.

Theorem 6. If yt is a measurement from N(ΓH x̂,Q), t = 1, ..., N , with (x1, ...,xN) are the

samples with rank M from the distribution N(x̂,Σ), the maximum likelihood estimator of

ΓH is given as, Γ∗
H = CA−1, where C = 1

N

∑N
t=1 ytx

⊺
t and A = 1

N

∑N
t=1 xtx

⊺
t . The unknown

covariance matrix Q∗ is given as, Q∗ = 1
N

∑N
t=1(yt − Γ∗

Hxt)(yt − Γ∗
Hxt)

⊺.

Proof: The proof of this classic theorem can be found in [144].

In order to perform outage detection, we leverage the power flow measurements provided

by the meters using convex optimization formulation (8.22) at multiple snapshots of time.

The powerflow measurements are obtained in real-time, capturing the network’s actual op-
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erating state. Furthermore, load forecasts and associated variances are required at each load

bus of the DN. Using the load forecasts and their variances, we obtain random samples from

the multivariate distribution as given in (8.18). Using the powerflow measurements y as

well as the load samples x, the matrix Γ∗
H , as defined in Theorem 6, is estimated. As the

elements of the true ΓH matrix are binary i.e., {0, 1}, we first normalize the elements of the

estimated matrix Γ∗
H in the (0,1) interval. After normalization, we compare each matrix ele-

ment value with a threshold of 0.5. A threshold of 0.5 was chosen to get unbiased solutions.

The element value is set to 1 if its normalized value is greater than the threshold, else it is

set to 0. Algorithm 11 illustrates the proposed outage detection algorithm.

Algorithm 11 Outage detection Algorithm

Input: Meter placement sensors locations, N samples of powerflow measurements yt ∈ Rp,
x̂ ∈ RM , Σ ∈ RM×M

1: Obtain N samples of xt from the distribution N(x̂,Σ).
2: Obtain samples covariance between sensor measurements and load, as C = 1

N

∑N
t=1 ytx

⊺
t .

3: Obtain samples covariance between load as A = 1
N

∑N
t=1 xtx

⊺
t .

4: Obtain Γ∗
H = CA−1

5: Normalize Γ∗
H =

Γ∗
H−min(vec(Γ∗

H))

max(vec(Γ∗
H))−min(vec(Γ∗

H))
.

6: If the element value of the matrix Γ∗
H ≥ 0.5, the element value is set to 1 else it is set to

0.
7: return Γ∗

H

8.2.4 Simulation Results

We simulate the proposed approach in IEEE 33 bus and IEEE 119 bus test systems. Both

these test systems considered are reconfigurable distribution systems. To demonstrate the

capability of the proposed approach for a secondary distribution network, we have developed

a modified IEEE 33 bus system by adding secondary circuits. We discuss the results for these

three distribution systems in the following subsections. All the simulations are performed in

a MATLAB environment.
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IEEE 33 bus distribution system

IEEE 33 bus system is a standard 12.66 kV radial DN with 33 tie switches and five sectional

switches. We have considered two configurations as discussed in [145]. Using the convex

formulation of the meter placement approach as given in (8.22), we obtain the number,

type, and locations of meters in an IEEE 33 bus DN. We simulate different case scenarios

to evaluate the efficacy of the proposed approach for the IEEE 33 bus system.

1. Effect of sensor costs: In this scenario, we vary the costs of the placements of different

meters. Typically, the node sensors are 2-5 times more costly than line sensors [77]. Table 8.1

shows the IEEE 33 bus system’s meter placement solution for different line and node sensor

costs. It can be inferred that the node sensors are reduced as their relative cost to line sensors

increases. In all three cases shown in Table 8.1, it is found that the objective value using the

convex formulation is bounded by a factor of α = 1.6 to the integer programming solution.

Fig.8.11 and 8.12 show the meter location for two configurations of a 33-bus distribution

system. Here, we assume the cost of node sensors is five times that of the cost of line sensors

(i.e., a = 5b).As seen from Figs 8.11-8.12 , it can be inferred that all line sensors are placed

in a distribution system as they are less expensive than node sensors.

Table 8.1: Meter placement solution for IEEE 33 bus reconfigurable distribution system
Scenario |Vp| |Ep| meter locations
Case 1
a = 2b

5 1
t: 1-2
s: 2,3,6,12,21

Case 2
a = 3b

2 4
t: 1-2, 6-7, 12-13, 21-22
s: 2,3

Case 3
a = 5b

0 6 t: 1-2, 2-3, 3-4, 6-7, 12-13, 21-22

2. Effect of load forecast error: After the sensors are placed in the distribution system,

we perform outage detection using the approach proposed in section 8.2.3. We leverage the

power flow measurements from the node and line sensors in the distribution system. The

load covariance matrix is chosen to be Σ = diag(kx̂), where k is a constant [76]. The typical

values of k observed during load forecast are 0.1-0.3. We obtain sampled measurements from

the multivariate normal distribution as given in (8.26).
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Figure 8.11: Meter placement for IEEE 33 bus system - Configuration 1

Figure 8.12: Meter placement for IEEE 33 bus system - Configuration 2

We randomly introduce multiple edge outage scenarios and obtain the corresponding

noisy power flow measurements. Here, the power flow measurements also consider the dis-
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tribution network’s line losses. Using the powerflow measurements and load forecasts, we

perform outage detection using Algorithm 11. Fig. 8.13 illustrates the probability of cor-

rectly estimating the matrix for different values of load covariance factor k. It can be inferred

that, as k is increased, the probability of detection is reduced. The decrease in the accu-

racy is especially pronounced for fewer measurement samples (N < 200). However, as more

measurement samples are available, the probability of detection is 1 for any value of load

covariance factor k. Fig. 8.14 shows the results for two optimal network configurations of

IEEE 33 bus systems. The proposed approach can estimate the correct ΓH matrix for all

the configurations with probability one as the number of samples is increased.

Figure 8.13: Probability of outage detection for different load covariances of 33 bus test
system

The proposed meter placement approach for re-configurable DN is compared with [77] for

outage detection. Ref. [77] considers a single configuration and there are four line sensors

placed at edge (1, 2), (2, 3), (3, 23), (6, 7). Using these meter locations, we perform outage

detection as discussed in section 8.2.3. The probability of correctly detecting the outages is

tabulated in Table.8.2. Using the method in [77], the probability of detecting outages in the
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Figure 8.14: Probability of outage detection for different configurations of 33 bus test system

Table 8.2: Outage detection using different meter placement approaches

Approach
Probability of
detection

Proposed meter placement for reconfigurable DN 0.99
Meter placement considering a single configuration [77] 0.84

entire network is lower than our proposed approach because the meter placement approach

[77] is designed only for a single configuration.

3. Comparison of the proposed approach with ML detector [76]:

We compare the proposed outage detector approach with the maximum likelihood outage

detector proposed in [76]. Note that the sensor placement is the same for both approaches

with costs a = 5b. Here, we simulate single-edge outages. The ML single-edge outage

detector computes the likelihood for each of the hypotheses in H ∈ H and chooses the

maximum. That is,

Ĥ = max
H∈H

p(y|x, H) (8.28)

where x ∼ N(x̂,Σ). We generate 100 Monte Carlo simulations. We randomly generate

150



Table 8.3: Comparison of the proposed approach with state-of-the-art approaches

Approach
Probability of
detection (with
measurement noise)

Probability of
detection (without
measurement noise)

Proposed outage detector 0.9912 0.9995
ML detector 0.70 0.90

a single edge outage and corresponding noisy sensor measurements at each iteration. We

consider a particular hypothesis scenario H and compute the corresponding ΓH . We then

compare the likelihood of the measurements y given the load forecast, covariance matrix, and

ΓH . We compute the probability of successful detection of the hypothesis. Table 8.3 shows

the performance of the naive ML detector with the proposed outage detector for single-

edge outages in the DN. We have considered two scenarios where we consider the sensor

measurements with and without noise. The measurement errors are assumed to be 0 mean

with standard deviation equal to 1% of the actual values. For the case with no measurement

noise and only load forecast covariance Σ, the probability of successfully detecting single-

edge outages is 0.99 for the proposed approach compared to 0.9 using the naive ML detector.

With measurement noise, the probability detection of the ML detector is reduced to 0.7. The

performance of the ML detector is poor due to the reason that many of the hypothesis maps

to the same observed flows, making the detector output non-unique [76]. Furthermore, the

ML detector approach does not consider the effect of measurement noise statistics.

We have considered only single-edge outages to compare the two approaches. In reality,

however, multiple edge outage scenario takes place in DN. Therefore, as the outage size K

increases, enumerating the entire ML detector requires
∑K

k=1

( |E|
k

)
evaluations. Evaluating a

large set of hypotheses is computationally expensive, making the ML approach impractical.

IEEE 119 bus distribution system

IEEE 119 bus system is an 11 kV distribution system with 118 sectionalizing switches,

and 15 tie switches [146]. We have considered two re-configurable topologies described in

[146]. Simulations for IEEE 119 bus system are performed with similar case scenarios as
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seen for the IEEE 33 bus system in section 8.2.4. In the first case, the meter placement

varies with different placement costs. Meter locations for various costs of node and line

sensors are tabulated in Table 8.4. In the second case, we perform outage detection using

Algorithm 11, and meter placement cost a = 5b. Here, we have introduced an outage in

lines 6-7 and 40-41. Fig.8.15 shows the probability of correctly estimating the ΓH matrix

for load covariance factor k = 0.3. As seen from the results, both configurations achieve a

maximum detection probability of 0.995 with 1000 measurement samples. We have tested

our proposed approach for different possible outage scenarios. It can be inferred that for all

the possible combinations, the proposed approach is able to estimate the matrix correctly.

We can accurately estimate ΓH within a few seconds. For instance, it takes 12 ms for line

sensors to provide 1000 samples of measurements, while for node sensors, 1000 samples can

be captured in 3.25 ms. Hence, our proposed approach can detect the outage scenario quickly

and correctly.

Table 8.4: Meter placement solution for IEEE 119 bus re-configurable distribution system
Scenario |Vp| |Ep| meter locations
Case 1
a = 2b

15 0
s: 1,2,4,8, 11, 25, 29, 30, 64,65, 73
79, 91, 100, 110

Case 2
a = 3b

10 5
t: 8-9, 11-12, 25-26, 79-80, 110-111
s: 1, 2, 4, 29, 30, 64, 65, 73, 91, 100

Case 3
a = 5b

2 15

t: 1-2, 4-5, 8-9, 11-12, 25-26, 29-30 29-38,
30-31, 64-65, 65-66, 73-74, 79-80,
91-92, 100-101, 110-111
s:1, 2

Modified IEEE 33 bus system

Most of the outages occur in the lateral feeders of the distribution network. These laterals

feeders are connected to the step-down service transformers, which feed the power to the

consumers. We modify the IEEE 33 bus system to check the performance of the outage

detection in lateral feeders. The network is modified by adding lateral feeders to primary

nodes of the original IEEE 33 bus system. These lateral feeders are ten and have line

configuration 725. The admittance matrices for configuration type 725 are available in [95].

152



Figure 8.15: Probability of outage detection for different configurations of IEEE 119 bus
test system

Figure 8.16: Meter placement for modified IEEE 33 bus system

153



Loads connected at these lateral feeders represent the aggregated consumer loads connected

to their service transformers. Fig.8.16 shows the meter locations in the modified IEEE 33 bus

system for the case when node sensors are five times more costly than edge sensors (a = 5b).

After placing meters, we randomly generate outages at different edges and corresponding

noisy sensor measurements for 100 iterations. We consider total sensor measurements as 500

and load forecast covariance matrix is chosen as Σ = diag(0.3x̂), where x̂ represents the

load forecasts. The probability of detecting the outages was observed to be 0.997. Thus, the

proposed outage detection is also effective for detecting outages in feeder laterals.

8.3 Summary

This chapter presents a novel optimization formulation for inferring the phase connectivity of

the entire distribution network. The approach is robust to incorrect phase label errors with

minimum measurement data requirements. Simulation results for IEEE 37 bus system reveal

the accurate performance of phase label identification and state estimation with limited

measurement data. We also propose a novel outage detection approach for a re-configurable

distribution network. In this regard, we propose a convex formulation of the meter placement

approach for outage identifiability. We leverage the measurements from the deployed sensors

and formulate a maximum likelihood outage detection approach. Simulation results for IEEE

33 and IEEE 119 bus systems reveal that outages can be identified accurately and efficiently

within a few seconds.
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Chapter 9

Conclusion and future work

9.1 Conclusions

This chapter provides a summary of the dissertation’s contributions and outlines potential

avenues for future research. The dissertation focuses on improving situational awareness

in distribution grids and addresses fundamental questions. The proposed methods share

a common thread of utilizing sparsity, reducing complexity, and enhancing efficacy. To

achieve this objective, various data-driven and optimization formulations are developed,

incorporating the physics of the power grid. These approaches are useful for distribution

grid utility companies to improve the visibility of the grid. The accomplishments of this

dissertation can be summarized as follows:

Chapter 4 focuses on developing optimization formulations for robust and efficient state

estimation to tackle the uncertainties in the system model and measurement data. Specifi-

cally, it develops a robust sparsity-based DSSE and incorporates the sparsity of both the bad

data and measurements in a single optimization formulation. The optimization formulation

achieves robustness to network parameter uncertainty using a worst-case robust approxi-

mation. Additionally, this chapter develops a novel joint sparsity-based DSSE framework

effective in highly unobservable conditions. Results in the standard test networks demon-

strate that the error performance of the proposed approach relative to the conventional
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methods offers significant improvements.

Chapter 5 develops a framework to integrate the multi time-scale measurements with

sparsity based state estimators in a distribution network. This chapter focuses on imputing

the multiple unevenly sampled time-series data using Multi-task Gaussian process approach.

Once the consistent time-series along-with the confidence bounds in the imputations are

obtained, they are fed into a Bayesian matrix completion method augmented with linearized

powerflow constraints. Simulation results in the unbalanced IEEE test systems demonstrate

the approach effectively imputes the time-series data in the presence of missing measure-

ments. However, this approach is computationally expensive as it involves kernel matrix

inversion operation considering all measurements at once. To address this issue, Chapter

6 develop a recursive Gaussian process based approach which handles streaming data and

requires kernel matrix inversion only at the initial time step. In this approach, the network

connectivity information can also be accounted for aggregating the multi time-scale mea-

surements. Simulation results on different IEEE test systems reflects the capability of the

proposed approach in aggregating measurements batch-wise or real-time.

To further improve the scalability and accuracy, Chapter 7 develops a novel latent neural

ODE (LODE) approach and a neural SDE-RNN approach. These leverages spatio-temporal

dependencies in time-series data without involving matrix inverse operations. The proposed

LODE approach is flexible in performing both imputations and predictions while being

computationally efficient. The SDE-RNN approach allows us to quantify both aleatoric

and epistemic uncertainty in the imputed measurements. Analytical results capturing these

sources of uncertainty have been derived.

Finally, Chapter 8 enhances the situational awareness of the grid by leveraging the spatio-

temporal correlations in the measurement data to perform two tasks, namely phase identi-

fication and outage detection. The phase identification approach is accurate in identifying

the phase labels under varying availability of data, phase labels errors, and unknown phase

connectivity information. The outage detection approach detects multi-edge outages in a

re-configurable distribution grid using maximum likelihood principle and without enumer-

ating over any hypothesis set. We conduct various types of simulations and indicate that
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the outages can be identified with a high probability using the proposed approach within a

few seconds. We compare the proposed outage detection with the existing state-of-the-art

approaches, and it is observed that the approach performs well even at high percentages of

measurement errors, load forecast errors, and any reconfigurable topology.

9.2 Future directions

This section presents possible future directions in the areas related to distribution system

challenges and effective methodologies for addressing them. The following are the potential

extensions to the work presented in this dissertation:

• Chapter 4 provides robust formulations of DSSE to deal with bad data and network

parameter uncertainty. However, detecting the exact location of the measurements

or the lines where bad data or parameter errors exist is also critical. Developing

a framework for the localization of these errors cab be pursued as a part of future

research efforts.

• Chapter 4 discusses a joint matrix completion and compressed sensing framework for

performing state estimation in a distribution grid. Implementation of this approach is

challenging for large-scale distribution networks. Developing a distributed joint MC-CS

framework for DSSE can be pursued in the future.

• Chapters 5, 6, and 7 discusses various approaches to reconcile the heterogeneous mea-

surements in the distribution grid. The increase in the penetration of distributed

generation has enhanced the need for distribution grid monitoring. Distributed gener-

ation needs to be monitored at different time scales, ranging from day-ahead forecasting

to real-time data periodically submitted to the DMS. This information increases the

measurement redundancy in the system. As a possible extension of this work, we can

investigate aggregating this forecasted information for GP imputation.

• The multi-task GP approach proposed in Chapter 5 is sensitive to outliers in the mea-
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surement data. Hence, we can develop a robust Gaussian process framework against

outliers as a part of our future work.

• The Gaussian process-based approaches developed in Chapter 5 and 6 assumes that

measurement data is distributed as multivariate Gaussian. Developing a multi-task

recursive GP approach for non-Gaussian noise can be pursued as a part of our future

work.

• The proposed GP approach’s performance in Chapter 6 depends on the GP function’s

hyper-parameter values. Hence, future work will involve recursively learning the hy-

perparameters as the GP functions are updated.

• The visibility of utilities on the low-voltage side of the grid is limited, but various parties

have installed sensors in the low-voltage distribution grid. These sensors may provide

measurements that differ in accuracy from those used by utility companies. Therefore,

it is crucial to establish methods for incorporating and verifying these measurements

to enhance grid visibility.

• Chapter 7 presents the neural SDE-RNN approach for handling the irregularly sampled

time series data. It will be interesting to analyze the epistemic uncertainty obtained us-

ing the SDE model with the conventional uncertainty quantification for neural network

models, like Monte-Carlo dropouts, Deep Ensemble, etc. This could also be explored

as a potential future task.

• Chapter 8 proposes a joint state estimation and phase identification framework. How-

ever, this approach is challenging to implement in a large real-world distribution sys-

tem. To overcome this limitation, a distributed implementation of the proposed method

can be possible by dividing the large-scale network into multiple areas. Implementation

of a distributed method for state estimation and phase identification will be pursued

as a part of our future work.

• It will also be interesting to explore a joint phase identification and state estimation
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approach in Chapter 8 that works with multi-timescale measurements as a part of our

future research work.

• Formulating an outage detection and meter placement approach in Chapter 8 consid-

ering a mesh topology and the presence of distributed generation can be pursued as a

part of our future research efforts.
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in two time scales for smart distribution systems. IEEE Transactions on Smart Grid,

6(1):421–430, 2014.

[24] Arash Alimardani, Francis Therrien, Djordje Atanackovic, Juri Jatskevich, and

Ebrahim Vaahedi. Distribution system state estimation based on nonsynchronized

smart meters. IEEE Transactions on Smart Grid, 6(6):2919–2928, 2015.
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