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ABSTRACT

Van Kampen Diagrams and Small Cancellation Theory

Kelsey Lowrey

Given a presentation ⟨A | R⟩ of G, the word problem asks whether there exists an

algorithm to determine which words in the free group, F (A), represent the identity in

G. In this thesis, we study small cancellation theory, developed by Lyndon, Schupp,

and Greendlinger in the mid-1960s, which contributed to the resurgence of geometric

group theory. We investigate the connection between Van Kampen diagrams and the

small cancellation hypotheses. Groups that have a presentation satisfying the small

cancellation hypotheses C ′
(
1

6

)
, or C ′

(
1

4

)
and T (4) have a nice solution to the

word problem known as Dehn’s Algorithm.
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Chapter 1

GROUP THEORY PRELIMINARIES

1.1 Introduction

The study of algebraic structures and their properties in addition to the relation-

ships that exist between structures represents a central area of mathematics. One

of the main goals in studying algebraic structures is to extract information from ob-

jects or sets in a convenient and efficient manner. Group theory plays a crucial role

in mathematics. The origin of group theory is traced back to studying the follow-

ing three areas of mathematics: the theory of algebraic equations, number theory,

and geometry. Group theory involves studying sets that are associated with a sin-

gle binary operation that follow certain axioms – we refer to these sets as groups.

Groups occupy a fundamental position within branches of study such as geometry

and topology. Many concepts of group theory arose through the study of geometry,

but beginning in the 1920s the focus shifted to more abstract, combinatorial ways

of thinking about groups. The geometric approach to groups reemerged during the

1960’s when Greendlinger, Lyndon and Schupp began to study small cancellation

theory.

Combinatorial group theory focuses on studying groups through the lens of group

presentations. Geometric group theory contributes to the study of finitely generated

groups by investigating the relationship between algebraic, topological, and geometric

properties of spaces on which these groups act, utilizing diagrams as visual tools.

The concept of a Van Kampen diagram was introduced by Egbert van Kampen in

1933. It was not until the 1960s when small cancellation theory was established by
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Greendlinger, Lyndon, and Schupp [4] that Van Kampen diagrams became a standard

tool in group theory, becoming especially popular in geometric group theory. Small

cancellation theory involves group presentations, defining relations, and Van Kampen

diagrams. Small cancellation theory illuminates the connection between the geometry

of surfaces and certain group theoretical properties, particularly the word which we

will explore in this thesis. A primary question that arises from a group and its

presentation is the word problem which asks whether two words represent the same

group element.

1.2 Words

The following definitions will aid us in our understanding of the word problem.

Definition. An alphabet is a finite set A where its elements are denoted as

A = {a1, ..., an}.

The set of formal inverses of elements of A is A−1 = {a−1
1 , ..., a−1

n }.

From now on we let A = {a1, ..., an}.

Definition. A letter in A is any symbol element of A ∪ A−1.

Definition. A word in A is a finite string of letters from A ∪ A−1. We allow the

empty word ϵ as well.

Definition. If ω = a1 · · · an, then the length of ω, denoted |ω| is n, the number of

letters in ω.

2



The free monoid on A, denoted A∗, is the collection of all words in A ∪ A−1 under

the operation of concatenation. For example, if A = {x, y}, then typical elements of

A∗ include ϵ, x2y−1x, ..., y5x−1yx3, ....

Definition. A word ω is reduced if no subword of the form aia
−1
i or a−1

i ai occur.

Such subwords are referred to as cancelling pairs.

Definition. A reduced word ω = a1 · · · an is called cyclically reduced if an is not

the inverse of a1.

Definition. If u ∈ A∗, then the insertion or deletion of a cancelling pair is an ele-

mentary transformation of u.

We say that two words u and v are equivalent and write u ∼ v if there exists a finite

sequence ω1, ω2, ..., ωn where u = ω1, v = ωn and each ωi+1 is obtained from ωi by an

elementary transformation. This forms an equivalence relation on A∗.

1.3 Free Groups

Free groups are essential to the study of infinite groups. The word obtained by

concatenating ω1 and ω2 is denoted ω1 ·ω2. For example, if ω1 = ab and ω2 = ba, then

ω1 · ω2 = abba. Letting [ω] denote the equivalence class of ω under ∼, we define a

binary operation on A∗
⧸∼ by [ω1][ω2] = [ω1 · ω2]. It can be shown that this operation

is well-defined and associative. Our identity element is [ϵ] where ϵ is the empty word.

If ω = a1 · · · an is a word, then write ω−1 = a−1
n · · · a−1

1 (where (a−1
i )−1 = ai). The

inverse of [ω] is [ω−1]. It follows that A∗
⧸∼ is a group under this operation.

Definition. The group F (A) = A∗
⧸∼ is the free group with basis A.

3



Every element of F (A) has a unique reduced representative [5] (Theorem 1.2). This

allows us to suppress the "bracket" notation and view F (A) as the set of reduced

words of A.

1.4 Normal Closure

Definition. Given the free group F (A), let R ⊆ F (A). The normal closure of R

is the smallest normal subgroup of F (A) that contains R and is denoted ⟨⟨R⟩⟩. In

other words, it is the intersection of all normal subgroups of F (A) containing R:

⟨⟨R⟩⟩ =
⋂

N⊴F (A)

{N | R ⊆ N}.

Theorem 1.1. ⟨⟨R⟩⟩ = {
∏

wisiw
−1
i : wi ∈ F (A), si ∈ R ∪R−1, 1 ≤ i ≤ n}.

Proof. Let K = {
∏

wisiw
−1
i : wi ∈ F (A), si ∈ R ∪R−1, 1 ≤ i ≤ n}.

First, we show that ⟨⟨R⟩⟩ ⊆ K.

Let x, y ∈ K. We write

x = (w1s1w
−1
1 )(w2s2w

−1
2 ) · · · (wmsmw

−1
m )

and

y = (v1t1v
−1
1 )(v2t2v

−1
2 ) · · · (vptpv−1

p )

where wi, vi ∈ F (A) and si, ti ∈ R ∪R−1. Then,

xy = (w1s1w
−1
1 )(w2s2w

−1
2 )...(wmsmw

−1
m )(v1t1v

−1
1 )(v2t2v

−1
2 )...(vptpv

−1
p ) ∈ K

4



and

x−1 = (w−1
m smwm)...(w

−1
2 s2w2)(w

−1
1 s1w1) ∈ K.

Thus, K ≤ F (A).

Given u ∈ F (A), observe that

uxu−1 = u(w1s1w
−1
1 )(w2s2w

−1
2 ) · · · (wmsmw

−1
m )u−1

= (uw1s1w
−1
1 u−1)(uw2s2w

−1
2 u−1) · · · (uwmsmw

−1
m u−1) ∈ K.

Therefore, K ⊴ F (A). Since R ⊆ K and ⟨⟨R⟩⟩ is the smallest normal subgroup

containing R, we conclude that ⟨⟨R⟩⟩ ⊆ K.

Now, we show that K ⊆ ⟨⟨R⟩⟩.

Let s ∈ R ∪R−1. As ⟨⟨R⟩⟩ is normal in F (A), wsw−1 ∈ ⟨⟨R⟩⟩ for all w ∈ F (A).

If x ∈ K, then by the observation above,

x = (w1s1w
−1
1 )(w2s2w

−1
2 )...(wmsmw

−1
m ) ∈ ⟨⟨R⟩⟩.

Therefore, K ⊆ ⟨⟨R⟩⟩.

1.5 Presentations

For a proof of the following see [3].

Theorem 1.2 (Universal Mapping Property for Free Groups). Let F = F (A) be free

with basis A, and let G be any group. Given a function f : A → G, there exists a

unique homomorphism h : F (A) → G such that h|A = f .

5



As a consequence, we have:

Theorem 1.3. Every group G is isomorphic to a quotient of the free group.

Proof. Let A be a set of generators for G, and let f : A → G be the inclusion

mapping. By Theorem 1.2, there exists a unique homomorphism h : F (A) → G such

that h(a) = f(a) for all a ∈ A. We show that h is onto. Note that A ⊆ im(h). Let

g ∈ G. Then there exist a1, ..., ak ∈ A and m1, ...,mk such that g = am1
1 · · · amk

k . Let

xi ∈ F (A) be such that h(xi) = ai. Thus, we have that:

h
( k∏

i=1

xmi
i

)
=
( k∏

i=1

hi(xi)
mi

)
=
( k∏

i=1

ami
i

)
= g

As h is onto, we conclude that G ∼= F (A)⧸ker(h)

Definition. Let G be a group and let h : F (A) → G be the surjective map defined

in the proof of Theorem 1.3. A subset R ⊆ ker(h) is a set of defining relations if

⟨⟨R⟩⟩ = ker(h).

By Theorem 1.1, if R is a set of defining relations then every element in the kernel

can be expressed as a finite product of conjugates of elements of R ∪ R−1. In some

sense, elements of R are the building blocks of elements of F (A) that represent the

identity in G.

A concise method of defining a group is by utilizing generators and relations which

we refer to as the presentation of a group.

Definition. Let A be a set and R ⊆ F (A). Then ⟨A | R⟩ is a presentation for G if

G ≃ F (A)⧸⟨⟨R⟩⟩. Elements of A are generators and elements of R are relators.

6



Example 1. If R = {aba−1b−1} ⊆ F (a, b), then it can be shown that

F (a, b)⧸⟨⟨R⟩⟩ ∼= Z× Z.

Therefore, Z× Z has presentation ⟨a, b | aba−1b−1⟩.

Example 2. If R = {a2, b2, (ab)4} ⊆ F (a, b), then it can be shown that

F (a, b)⧸⟨⟨R⟩⟩ ∼= D4.

Therefore, D4 has presentation ⟨a, b | a2, b2, (ab)4⟩.

Example 3. If R = {a5} ⊆ F (a), then it can be shown that

F (A)⧸⟨a5⟩
∼= Z⧸5Z = Z5.

Therefore, Z5 has presentation ⟨a | a5⟩.

Example 3 illustrates a general result provided in Theorem 1.4.

Theorem 1.4. Let F (a) be the free group with basis a. Then F (a)⧸⟨⟨an⟩⟩ ≃ Zn and

so Zn has presentation ⟨a | an⟩.

Definition. A group G is said to be finitely generated if G has a presentation

⟨A | R⟩ where A is finite.

Definition. A group G is said to be finitely presented if there is a finite set of

defining relations, R, and a finite set of generators, A.

Note that every group has a presentation; however, the list of generators or relations

may not be finite.

7



If G has presentation ⟨A | R⟩ and G = F (A)⧸⟨⟨R⟩⟩, then the elements of G are the

cosets ω⟨⟨R⟩⟩ where ω ∈ F (A). Given w ∈ F (A), let w = w⟨⟨R⟩⟩. Therefore, while

working in ⟨A | R⟩ we write ω = v when ω−1v ∈ ⟨⟨R⟩⟩.

Example 4. There are often instances when the set of defining relations in a

presentation can be condensed. Consider the presentation

⟨x, y, z | x2y2, xz−1x, yz2x2⟩.

This set of defining relations conveys that

xz−1x = 1

z−1 = x−2

z = x2.

Thus, we can rewrite our presentation as

⟨x, y | x2y2, yx6⟩.

Additionally,

yx6 = 1

y = x−6.

Rewriting our presentation again yields

⟨x | x−10⟩.

By Theorem 1.4, this is a presentation for Z10.

8



In general, if G has presentation ⟨A | R⟩, it can be very difficult to determine the

structure of G. For example, if G has presentation ⟨a, b, c | a2b3, abc2⟩, it is difficult

to conclude anything about the structure of G.

1.6 Symmetrized Presentations

Let G = ⟨A | R⟩ be a group presentation where R ⊆ F (A) is a set of reduced and

cyclically reduced words in the free group F (A).

Definition. The symmetrization of R ⊆ F (A) is the set of all distinct cyclic

permutations of the defining relators r and of their inverses r−1. We will denote the

symmetrized set of R by R∗.

Example 1. Suppose a group G is given by the presentation

⟨a, b | a2b3⟩.

R∗ is {a2b3, ab3a, b3a2, b2a2b, ba2b2, b−3a−2, b−2a−2b−1, b−1a−2b−2, a−2b−3, a−1b−3a−1}.

1.7 Word Problem

Around 1912 mathematician Max Dehn studied and worked on three foundational de-

cision problems in combinatorial group theory [2]. The first is known as the word prob-

lem and was motivated by topological considerations. Given a presentation ⟨A | R⟩

for a group G, this problem asks whether there exists an algorithm to determine

which words in F (A) represent the identity in G. A variation of this problem is to

determine whether two elements ω1, ω2 ∈ F (A) are equal in G. If such an algorithm

9



exists, then we say that G has a solvable word problem. Our goal is to understand

the word problem in G which means that given w ∈ F (A) we want to decide if w = 1

in G. From the discussion above, w = 1 in G if and only if w ∈ ⟨⟨R⟩⟩ if and only if

w =
∏

wisiw
−1
i for some wi ∈ F (A), si ∈ R∗ where 1 ≤ i ≤ n.

Novikov [7] and Boone [1] independently proved that: there exist finitely presented

groups with unsolvable word problem.

1.8 Dehn’s Algorithm

In addition to Max Dehn posing the word problem for groups in general, he pro-

vided an algorithm which solved the word problem for fundamental groups of closed

orientable two-dimensional manifolds. We outline Dehn’s Algorithm below:

Begin with a symmetrized group presentation ⟨A | R⟩ for G. Given a reduced word

ω ∈ F (A), we construct a sequence of reduced words ω0, ω1, ω2, ..., ωn where ω = ω0

so that ωn = ϵ if and only if ω = 1 in G.

Start:

We are given ω0 = ω. Suppose ωj is constructed.

• If ωj is the empty word

then terminate the algorithm.

• Else check if wj contains a subword v that is a subword of a defining relator

r = uv ∈ R such that | v |> | r |
2

.

– Else if false

then terminate algorithm with output wj.

10



– Else if true

then replace v by u−1 in wj and reduce. Denote the resulting reduced

word by ωj+1. Continue to first bullet point of algorithm.

End

Note that we always have | ω0 | > | ω1 | > | ω2 | > ... implying that this process

must terminate in at most | ω | steps. Furthermore, all the words ωj represent the

same element of G as ω. Thus, if the process terminates with the empty word, then

ω represents the identity element of G.

For a symmetrized presentation ⟨A | R⟩, we say that Dehn’s algorithm solves the

word problem in G when the following is true: for any reduced word ω in F (A), we

have ω = 1 if and only if applying Dehn’s Algorithm to ω terminates in the empty

word.

Example 1. Consider the presentation of ⟨a, b | aba−1b−1⟩ for Z× Z.

Note that the corresponding symmetrized presentation is

⟨a, b | aba−1b−1, ba−1b−1a, a−1b−1ab, b−1aba−1, bab−1a−1, ab−1a−1b, b−1a−1ba, a−1bab−1⟩.

Let ω = ω0 = a2b−1a−1ba−1bab−1aba−1b−2a−1b.

Now, we can run Dehn’s Algorithm.

Note that ω0 contains the subword v = b−1a−1b where v is a subword of the defining

relator r = uv = b−1a−1ba. Thus we replace v with u−1 = a−1 in ω0 and reduce.

11



This yields:

ω1 = a2a−1a−1bab−1aba−1b−2a−1b

= bab−1aba−1b−2a−1b by reducing.

Returning to the first step of the algorithm, we see that ω1 is not the empty word so

we continue to the next step. Note that ω1 contains the subword v = bab−1 where

v is a subword of the defining relator r = uv = bab−1a−1. Thus we replace v with

u−1 = a in ω1 and reduce.

This yields:

ω2 = aaba−1b−2a−1b

= a2ba−1b−2a−1b by reducing.

Returning to the first step of the algorithm, we see that ω2 is not the empty word so

we continue to the next step. Note that ω2 contains the subword v = ba−1b−1 where

v is a subword of the defining relator r = uv = ba−1b−1a. Thus we replace v with

u−1 = a−1 in ω2 and reduce.

This yields:

ω3 = a2a−1b−1a−1b

= ab−1a−1b by reducing.

Returning to the first step of the algorithm, we see that ω3 is not the empty word so

we continue to the next step. Note that ω3 contains the subword v = b−1a−1b where

12



v is a subword of the defining relator r = uv = b−1a−1ba. Thus we replace v with

u−1 = a−1 in ω3 and reduce.

This yields:

ω4 = aa−1

= ϵ by reducing.

Returning to the beginning of the algorithm, we see that ω4 returned the empty word

and so we terminate the algorithm. Hence, we conclude that ω does indeed represent

the identity element in Z× Z.

Although Dehn’s Algorithm is quite efficient in general, there may be alternate al-

gorithms for solving the word problem for a given group. For example, observe that

since a = (1, 0) and b = (0, 1) generate Z×Z then the words built using {a, b, a−1, b−1}

that represent the identity are the words where the sum of the a-exponents and b-

exponents are both zero.

13



Chapter 2

VAN KAMPEN DIAGRAMS

2.1 Constructing Diagrams

Motivated by the work of Dehn, Lyndon, Schupp and Greendlinger developed tech-

niques of encoding algebraic information about elements of a group in a diagram. We

will see that these diagrams play a vital role in studying the word problem in a group.

We denote the Euclidean plane as E2. If S ⊆ E2, then ∂S denotes the boundary of

S; the topological closure of S is denoted S.

Definition. A vertex is a point of E2.

Definition. An edge is a bounded subset of E2 homeomorphic to the open unit

interval.

Definition. A region is a bounded set homeomorphic to the open unit disk.

Definition. A map M is a finite collection of vertices, edges, and regions which are

pairwise disjoint and satisfy:

1. If e is an edge of M , there are vertices a and b (not necessarily distinct) in M

such that e = e ∪ {a} ∪ {b}.

2. The boundary, ∂D, of each region D of M is connected and there is a set of

edges e1, ..., en in M such that ∂D = e1 ∪ ... ∪ en.

The boundary of M is denoted as ∂M . If e is an edge with e = e ∪ {a} ∪ {b}, the

vertices a and b are called the endpoints of e. We consider maps as oriented objects.

14



An edge can be traversed in either of two directions. If e is some oriented edge going

from endpoint v1 to endpoint v2, then we call vertex v1 the initial vertex and v2 the

terminal vertex of e. The oppositely oriented edge is the inverse of e, denoted e−1

and goes from v2 to v1.

Definition. A path is a sequence of oriented edges e1, ..., en such that the initial

vertex of ei+1 is the terminal vertex of ei where 1 ≤ i ≤ n− 1. We also allow for the

empty path.

We will often denote the path that traverses ∂M by P .

Definition. A path is reduced if it does not contain a successive pair of edges of

the form ee−1.

Definition. If D is a region of M with some orientation, then any cycle of minimal

length which includes all the oriented edges of ∂D is a boundary cycle of D.

Definition. A diagram over a group F (A) is an oriented map M and a function

ϕ assigning to each oriented edge e of M as a label an element ϕ(e) of F (A) such

that if e is an oriented edge of M and e−1 is the oppositely oriented edge, then

ϕ(e−1) = ϕ(e)−1.

If α is a path in M , α = e1 · · · ek, we define ϕ(α) = ϕ(e1) · · · ϕ(ek). If D is a region

of M , a label of D is an element ϕ(α) for α a boundary cycle of D.

Definition. A diagram M is said to be connected if there is a path in M between

every pair of vertices.

Definition. A diagram M is simply connected if any simple closed curve which

lies entirely in M can be contracted to a single point in M (a curve is called simple

if it has no self intersections).
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Suppose that G has presentation ⟨A | R⟩. Recall that given w ∈ F (A), then w = 1 in

G if and only if w ∈ ⟨⟨R⟩⟩ if and only if w =
∏

wisiw
−1
i for some wi ∈ F (A), si ∈ R∗

where 1 ≤ i ≤ n. For convenience sake, we use the following notation: ω = c1 · · · cn

where each ci = wisiw
−1
i .

Definition. Let F (A) be a free group with a given basis A. For each ω = c1 ···cn with

each ci as described above, we shall associate a Van Kampen diagram M which

will be an oriented map labeled by a function ϕ into F (A) satisfying the following

properties:

1. If e is an edge of M , ϕ(e) ̸= 1.

2. M is connected and simply connected, with a distinguished vertex O on ∂M .

There is a boundary cycle e1 · · · et of M beginning at O such that the product

ϕ(e1) · · · ϕ(et) is reduced and ϕ(e1) · · · ϕ(et) = c1 · · · cn.

3. If D is any region of M and e1···ej is any boundary cycle of D, then ϕ(e1)···ϕ(ej)

is reduced and is a cyclically reduced conjugate of some ci.

Suppose we have a diagram M where the boundary path P has label ω which is

unreduced as in Figure 1. We reduce the label by "sewing-up" subpaths of P that are

products of two consecutive oriented edges whose labels are inverses of each other.

These sewing-up operations can be iterated. At some stages of the process an oper-

ation may transform a region D with some boundary path pq into a 2-sphere. This

sphere is then discarded, along with the tail edge that connected the sphere to the

rest of the diagram. Note that the diagram in Figure 1 is what we shall refer to as

being a balloon diagram.
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s1

s2

s3

s4

s1

s2

s5

r1
r2

s1

s2

s3

s4

r1r2

s5

Figure 1: Left: Balloon diagram before reducing; Right: Balloon diagram after re-
ducing

Definition. Let D be a region of M . We remove all vertices v of degree 2 (meaning

the vertex has an an edge attached on both sides of it) on the boundary of D by

consolidating v and the two edges incident with v into a new edge. Iterate this

process as long as needed. If the boundaries of all regions are consolidated in this

manner, a new region T results which we call a tiling of the region D.

c

O

c

c

O

c

a

a

a

c−1

b

b−1

Figure 2: Right: Diagram M where the boundary of the regions are consolidated
resulting in a tiling T .
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2.2 Existence of a Van Kampen Diagram

We now show that the existence of a Van Kampen diagram for ω is equivalent to

ω = 1 in G. Our proof is along the lines of Lyndon’s Combinatorial Group Theory

proofs of Theorem 1.1 and Lemma 1.2 [4].

Theorem 2.1. A word ω ∈ F (A) is trivial in G if and only if there is a Van Kampen

diagram for ω.

Proof. Since w = 1 in G, there exist u1, ..., un ∈ F (A) and r1, ..., rn ∈ R∗ such that

w = (u1r2u
−1
1 ) · · · (unrnu

−1
n )

in F (A). For each 1 ≤ i ≤ n, write ci = uiriu
−1
i .

If n = 0, then M consists of a single vertex O. This satisfies properties (1)–(3) of the

definition of a Van Kampen diagram. If n = 1, then ω = uru−1. We have two cases

in this instance: u = 1 and u ̸= 1. If u = 1, then M consists of the vertex O and a

single edge labeled by r as indicated in Figure 3.

M

r

O = v1

Figure 3. Base case when u = 1 consisting of a single edge and vertex.

If u ̸= 1, then M consists of the balloon in Figure 4.
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M

r

v1

u

O

Figure 4. Base case when u ̸= 1 consisting of a balloon.

One checks that the properties of Van Kampen diagrams are satisfied in both cases.

For n > 1, for each 1 ≤ i ≤ n there is a corresponding balloon diagram Mi. We build

M ′ by arranging M1, ...,Mn in order around a common base vertex O.

. . .

u1

u2

un

r1

r2

rn

O

Figure 5. First stage of construction for n > 1.

Observe that M ′ satisfies properties (1) and (3) of Van Kampen diagrams. If the

product (u1r1u
−1
1 ) · · · (unrnu

−1
n ) is reduced, then M ′ satisfies properties (1)-(3) of Van

Kampen diagrams as desired. However, suppose that ϕ(e1) · · · ϕ(et) is not reduced.

Let α be the boundary cycle of M ′ which begins at our base vertex O. We have
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α = e1 · · · et and so it follows that

ϕ(α) = ϕ(e1) · · · ϕ(et) = c1 · · · cn

in A∗.

Since we have assumed that property (2) does not hold for M ′, we have that α has

two successive edges e and f such that ϕ(e) and ϕ(f) are inverses. Let e have initial

and terminal vertices v1 and v2, respectively. Let f have initial and terminal vertices

v2 and v3, respectively. Suppose at first that v1 ̸= v2 and v1 ̸= v3. We can fold the

edge of e over onto the edge of f (whether or not v2 = v3) seen in Figure 6. This

results in a diagram M ′′ with fewer edges.

M ′

v2

e

e3

v1

f

e4 v3

M ′′

v2

e = f

e3

e4

v1

Figure 6. Folding edge of e over onto the edge of f .

We see that the boundary of our resulting M ′′ has fewer edges than α. If we started

with v3 being distinct from v2 and v1 we would proceed similarly as above.

If instead we have v1 = v3, then the closed edges of e and f would form a loop δ at

the vertex v1. We form M ′′ by deleting δ − v1 and M ′ interior to δ as seen in Figure

7.
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v1 = v3

v2e

f

v1

Figure 7. Deleting δ − v1 and M ′ interior to δ.

It follows that the boundary of M ′′ contains fewer edges than α. Further iteration

of this process through the entire diagram would yield an M that satisfies all three

properties of the Van Kampen diagram.

We proceed by induction on m where m denotes the number of regions we have in

our Van Kampen diagram. If m = 0, there is nothing to prove as M is a tree with

no loops. Therefore, we have ϕ(α) = 1 as cancellation reduces the word to the empty

word.

O

x

y
z

Here we have that xyy−1zz−1x−1 = 1 and so w = 1.

Figure 8. M is a tree with no loops.
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If m = 1, then the boundary of M starting at O reads uru−1 where u ∈ F (A) and

r ∈ R∗ and so w = 1.

r

v1

u

O

Figure 9. One region where M is a balloon.

We now assume the result holds for a Van Kampen diagram with k regions and M

is a Van Kampen diagram with k + 1 regions. Note that there must be some region

D of M such that ∂D ∩ ∂M contains an edge. Form the Van Kampen diagram M ′

from M by deleting a single edge e in ∂D ∩ ∂M and the region D. Note that M ′ is

still connected and simply connected.

v0

M

η

e

γ

β

D

v0

M ′

η−1

γ

β

Figure 10. Deleting a single edge e in ∂D ∩ ∂M and the region D.
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We can write α = βeγ. Note that there is a boundary cycle eη of D which begins at

the edge e. In order to assign labels to our diagram let ϕ(β) = b, ϕ(e) = z, ϕ(γ) = c,

ϕ(η) = d. Therefore, ω = ϕ(α) = bzc. As the boundary cycle µ of M ′ beginning at

v0 is βη−1γ, we have ϕ(µ) = bd−1c. Since we now have k regions in M ′, we number

them D1, ..., Dk and write bd−1c = (u1r1u
−1
1 ) · · · (ukrku

−1
k ) where ri is the label of Di.

Observe that

ω = bzc = (bd−1c)(c−1dzc)

where dz is the label of D. Letting Dk+1 = D, dz = rk+1, and c−1 = uk+1 we have

ω = bzc = (u1r1u
−1
1 ) · · · (ukrku

−1
k )(uk+1rk+1u

−1
k+1)

and so ω ∈ ⟨⟨R⟩⟩. Hence ω = 1.

2.3 Examples of Van Kampen Diagrams

We will now provide examples of (1) constructing a Van Kampen diagram for a word

ω ∈ F (A) that is trivial in G and (2) showing that the existence of a Van Kampen

diagram for ω implies that ω is trivial in G. We follow the process outlined in Theorem

2.1. Example 1 below can be found in Lyndon’s text [4].

Example 1. We illustrate the construction of a Van Kampen diagram for

ω = (ca2bc−1)(cb−1c−1ac−1)(ca−1c2).

Note that ω is the identity in the group G with presentation ⟨a, b, c | ca−1c2, b−1c−1a, a2b⟩.
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c

O

a

a

a

a−1

c−1

c

c

c

b
b−1

c

O

c

a

a

a

a−1

c−1

c

c
c

b

b−1

c

O

a

a

a

a−1

c−1

c
c

c

b

O

a

a

a

a−1

c−1

c c
c

b

O

a

a

a

c−1

b

c

c

Figure 11: Region corresponding to (bc−1a) has no edges on the boundary of the final
diagram.

We now provide an example following the process outlined in the proof of Theorem

2.1 to show the existence of a Van Kampen diagram implies that ω is trivial in G.

We accomplish this by showing ω ∈ ⟨⟨R⟩⟩. This example can be found in Strebel’s

Appendix [8].
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Example 2. The binary dihedral group Γ has the following presentation:

⟨a, b, c | a2 = bm = c2 = abc⟩.

Let m = 6.

We can eliminate c in this presentation:

abc = c2 [ apply c−1 to the right of both sides ]

ab = c.

Therefore, we have that

c2 = (ab)2 [ plug in ab for c ]

(ab)2 = a2 [ from the presentation as c2 = a2 ]

abab = a2

bab = a [ apply a−1 on the left of both sides ]

ab = b−1a [ apply b−1 on the left of both sides ]

aba−1 = b−1 [ apply a−1 on the right of both sides ].

We now obtain the presentation:

π : ⟨a, b | aba−1b, b6a−2⟩.

For Γ, write r1 = aba−1b and r2 = b6a−2. We will show that b12 = 1 in Γ.
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r2

r2

r1

r1

r1 r1

r1

r1

aa

a

b

b

bb

b

b

b

b

b b

b

b

b

b
bb

b

b

Figure 12. Van Kampen diagram, M .

Consider the Van Kampen diagram M in Figure 12. Starting at any exterior vertex

we read b12 around the boundary path. Also note that the boundary labeled about

any region reads r1 or r2. Let M ′ be the new diagram after we cut M along the

portion of ∂D1, labeled a2 (see Figure 13).

D1

D1

D2

D3

D4

D5
D6

D7

D8

D2

D3

D4

D5 D6

D7

D8

Figure 13. Cutting M along the portion of ∂D1, labeled a2.
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• D1: Note that b12 = b6b6. We have that ∂D1 = a−2b6 which is r2. Therefore,

∂M ′ = b6a2. Thus, we have that

b12 = b6a2︸︷︷︸
∂M ′

[a−2b6].

• D2: Note that

b6a2 = b6aa

= b6a(b6a−1)ab−6a where ∂D2 = ab−6a = r2, ∂M ′ = b6ab6a−1.

Thus

b12 = (b6ab6a−1)︸ ︷︷ ︸
∂M ′

[ab−6a]︸ ︷︷ ︸
∂D2

[a−2b6].

• D3: Note that

b6ab6a−1 = (b5ab5a−1)︸ ︷︷ ︸
∂M ′

ab−5︸︷︷︸
path to get to D3

(a−1bab)︸ ︷︷ ︸
∂D3

b5a−1︸ ︷︷ ︸
path back

.

Note ∂D3 = r1. Thus,

b12 = (b5ab5a−1)(ab−5)[a−1bab](b5a−1)[ab−6a][a−2b6].

• D4: Note that

b5ab5a−1 = (b4ab4a−1)︸ ︷︷ ︸
∂M ′

ab−4 (a−1bab)︸ ︷︷ ︸
∂D4

b4a−1.

Note that ∂D4 = r1. Thus,

b12 = (b4ab4a−1)(ab−4)[a−1bab](b4a−1)(ab−5)[a−1bab](b5a−1)[ab−6a][a−2b6].
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• D5: Note that

b4ab4a−1 = [b3ab3a−1]︸ ︷︷ ︸
∂M ′

ab−3 (a−1bab)︸ ︷︷ ︸
∂D5

b3a−1.

Note ∂D5 = r1. Thus,

b12 =(b3ab3a−1)(ab−3)[a−1bab](b3a−1)(ab−4)[a−1bab](b4a−1)(ab−5)[a−1bab](b5a−1)

[ab−6a][a−2b6].

• D6: Note that

b3ab3a−1 = b2ab2a−1︸ ︷︷ ︸
∂M ′

ab−2 (a−1bab)︸ ︷︷ ︸
∂D6

b2a−1.

Note ∂D6 = r1. Thus,

b12 =[b2ab2a−1](ab−2)[a−1bab](b2a−1)(ab−3)[a−1bab](b3a−1)(ab−4)[a−1bab](b4a−1)

(ab−5)[a−1bab](b5a−1)[ab−6a][a−2b6].

• D7: Note that

b2ab2a−1 = baba−1︸ ︷︷ ︸
∂M ′

ab−1 a−1bab︸ ︷︷ ︸
∂D7

ba−1.

Note ∂D7 = r1. Thus,

b12 =[baba−1](ab−1)[a−1bab](ba−1)(ab−2)[a−1bab](b2a−1)(ab−3)[a−1bab]

(b3a−1)(ab−4)[a−1bab](b4a−1)(ab−5)[a−1bab](b5a−1)[ab−6a][a−2b6].

• Note that ∂M ′ = baba−1 = r1 = ∂D8.
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Overall, we obtain

b12 =[baba−1](ab−1)[a−1bab](ba−1)(ab−2)[a−1bab](b2a−1)(ab−3)[a−1bab]

(b3a−1)(ab−4)[a−1bab](b4a−1)(ab−5)[a−1bab](b5a−1)[ab−6a][a−2b6]

which is a product of conjugates; therefore, ω = b12 ∈ ⟨⟨R⟩⟩. Hence b12 = 1 in Γ with

m = 6. Note that this product is depicted in the balloon diagram of Figure 14.

D3

D5

D7

D8

D1

D2

D4

D6

Figure 14. Iteration of forming M ′ by making each region into a balloon.

Theorem 2.1 is very useful as we are able to avoid the calculations above since b12 can

be expressed as a Van Kampen diagram. We are then able to conclude that b12 = 1

in Γ.
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Chapter 3

SMALL CANCELLATION THEORY

3.1 Small Cancellation Hypotheses

The methods involved in Dehn’s Algorithm (Section 1.8) are geometric in nature.

The first applications of those results to larger classes of groups utilized cancellation

arguments of combinatorial group theory. These applications were separate from any

geometric examinations of these groups. However, as previously mentioned, the ge-

ometric nature of Dehn’s work resurfaced when Lyndon, Schupp, and Greendlinger

initiated the geometric approach to small cancellation theory. Small cancellation

theory studies groups with presentations satisfying some "small cancellation" condi-

tions or hypotheses. These hypotheses provide us with a method to solve the world

problem by looking at defining relations that have minimal overlap with each other.

Groups satisfying sufficiently strong small cancellation hypotheses have a word prob-

lem which is solvable by Dehn’s Algorithm. Throughout this section, let R ⊆ F (A);

and R∗ denotes the symmetrization of R. Let ⟨A | R⟩ be a finite presentation for

the group G, and let ω0 be a non-empty reduced word in F (A) such that ω = 1 in

G. We denote a Van Kampen diagram over ⟨A | R⟩ as (M,ϕ, P ) where M represents

the simply connected diagram, ϕ is the labeling function for our edges, and P is the

boundary path with label ω0.

Definition. A word u is a piece relative to R if u is a common prefix of two distinct

words of R∗ (i.e. R∗ contains two distinct elements of the form r1 = uv′ and r2 = uv′′).

Since we typically work with a single symmetrized set at a time, it is common to omit

the phrase "relative to R" and instead just call u a piece. Note, that u is canceled in
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the product r−1
1 r2. Since R is symmetrized, a piece is a subword of an element of R

which can be canceled by the multiplication of two non-inverse elements of R. The

hypotheses of small cancellation theory make use of the fact that pieces are relatively

small parts of elements of R.

Definition. Let λ be a positive real number. Then R satisfies condition C ′(λ) if

the inequality

|u| < λ · |r|

holds for every r ∈ R∗ and every prefix u of r that is a piece.

Definition. Let p ∈ N. Then R satisfies condition C(p) if no element of R∗ is a

product of fewer than p pieces.

Definition. Let q ∈ N such that 3 ≤ h < q. Suppose that r1, ..., rh are elements of

R∗ with no successive elements ri, ri+1 as an inverse pair. Then R is said to satisfy

condition T (q) if at least one of the products

r1r2, ..., rh−1rh, rhr1

is reduced.

Note that every R satisfies T (3). Typically used values of λ include
1

4
and

1

6
whose

importance shall become apparent in Section 3.2 when we analyze the equation
1

p
+

1

q
=

1

2
.

A group G is referred to as a fourth-group, sixth-group, or eigth-group if it has a

presentation ⟨A | R⟩ where R satisfies C ′
(
1

4

)
, C ′

(
1

6

)
, or C ′

(
1

8

)
, respectively.

Lemma 3.1. C ′
(
1

p

)
implies C(p+ 1).
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Proof. Suppose R satisfies C ′
(
1

p

)
where λ =

1

p
. We assume without loss of gen-

erality that r is built of pieces. If r ∈ R∗, then r = bc where b is a piece, and so

|b| < 1

p
|r|. If r = u1 · · · uk, assuming each ui is a piece, then

|r| = |u1|+ ...+ |uk| <
k

p
|r| .

Therefore, k > p as we need
k

p
> 1 in order to be strictly greater than |r|. Thus,

k ≥ p+1. It follows that no element of R∗ is a product of fewer than p+1 pieces.

The geometric aspect of small cancellation theory is more beneficial than the combi-

natorial approach as the cancellation conditions C(p) and T (q) have specific geometric

interpretations. In the geometric approach to small cancellation theory, the conse-

quence of the cancellation hypotheses are studied in the context of Van Kampen

diagrams. Let us look at some of the geometric outcomes of the small cancellation

hypotheses.

Definition. An extremal subdisc D of M is a subdisc connected to the rest of M

by an edge or by one vertex of D that is common to that of M .

Definition. A boundary vertex or boundary edge of M is a vertex or edge in

∂D.

Definition. A boundary face of M is a face B of M such that ∂B ∩ ∂M ̸= ∅.

Note that if B is a boundary face of M , then ∂B ∩ ∂M does not need to contain an

edge, as it may just include only one or more vertices. A boundary vertex, edge, or

face may also be referred to as an exterior vertex, edge, or face.

Definition. A vertex, edge, or region of M which is not a boundary vertex, edge, or

face is called interior.
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Let (T, ϕT ) be a labeled tiling of a subdisc of (M,ϕ, P ) that has more than one face

(see Definition 2.1). Each oriented interior edge of T corresponds to a particular

edgepath P12 of M which runs on a common part of the boundaries of two faces B1

and B2. Let P1 and P2 be the boundary paths of B1 and B2 that start with P12. If

the labels of P1 and P2 are distinct, then the label of P12 is a piece relative to R.

Subsequently, the label of each oriented interior edge of T is a piece relative to R,

given that (M,ϕ, P ) is reduced as defined below.

Definition. Let M be an arbitary diagram of F (A). A diagram (M,ϕ, P ) is reduced

if it does not contain two faces B1, B2 and an oriented edge e running on part of

∂B1 ∩ ∂B2 in such a way that the boundary paths P1 and P2 of B1 and B2 having e

as their first edge, carry the same label.

a a

b b

a a

D1 D2

P1 = eaba−1 and P2 = eaba−1.

Figure 15. An example of a diagram M which is not reduced.

The following theorem is important to the study of small cancellation groups. A proof

is found in Lyndon’s text [4], Lemma 2.1.

Theorem 3.2 (Existence of reduced diagrams for reduced words of a group presen-

tation). Assume ⟨A | R⟩ is a presentation and ω0 is a reduced word of ⟨A | R⟩. Then
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there exists a reduced diagram (M0, ϕ0, P0) over ⟨A | R⟩ having ω0 as the label of its

boundary path P0.

Note that ω0 is a product of reduced relators that is reduced. That is, ω0 is the

identity on the boundary path, but is not a relator itself; ω0 = 1 in G but ω0 ̸= 1 in

F (A).

Now we will cover some notational conventions that we will be using. Let T be the

tiling of a subdisc D, which we obtain by consolidating the edges of a reduced diagram

for G.

1. If v is a vertex of a map M then d(v), the degree of v, will denote the number

of oriented edges having v as an initial vertex. Note, that if an edge has both

of its endpoints at v we count this edge twice.

2. The degree of a face B, denoted as d(B), is the number of edges making up ∂B.

3. We denote the number of interior edges of ∂B as i(B). Note, we count an edge

twice if it appears twice in a boundary cycle of B.

4. We denote the number of exterior edges of ∂B as e(B).

5. We denote the number of edges making up ∂D as d(D).

Theorem 3.3. Let R∗ be a symmetrized set of elements of a free group F (A), and

let M be a reduced diagram.

1. If R satisfies C(k), then each face D of M such that ∂D∩∂M does not contain

an edge has d(D) ≥ k.

2. If R satisfies T (m), then each interior vertex v of M has d(v) ≥ m.
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A proof of this theorem is found in Lyndon’s work [4], Lemma 2.2.

Our geometric evaluation of small cancellation hypotheses leads us in the direction of

needing to study maps where the degrees of the vertices and regions satisfy certain

inequalities.

3.2 Small Cancellation Inequality

Let p and q be positive real numbers such that
1

p
+

1

q
=

1

2
. It is well-known that the

only positive integer solutions (p, q) to this equation are (3, 6), (4, 4), and (6, 3). This

equation is motivated by the three regular tessellations of the plane: by triangles,

squares, or hexagons. As the angle sum of a polygon with p sides is π(p − 2), this

means that each interior angle of a regular polygon measures
π(p− 2)

p
. The number

of polygons meeting at a point is q. The product is

π(p− 2)

p
q = 2π.

We have two types of maps we will want to consider.

Definition. If M is a non-empty map such that each interior vertex of M has degree

at least p and all regions of M have degree at least q, then M will be called a [p, q]

map.

Definition. If M is a non-empty map such that each interior vertex of M has degree

at least p and each interior region of M has degree at least q, then M will be called

a (p, q) map.

Some additional notational conventions we will be needing in the forthcoming proofs

are covered next. Let M be an arbitrary map.
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•
∑

: Summation signs denote summations over vertices or regions of M .

•
∑
v

d(v): is the sum of the degrees of all the vertices of M .

•
∑
B

d(B): is the sum of the degrees of all the faces of M .

•
∑•: summation restricted to boundary vertices or faces.

•
∑◦: summation over interior vertices or faces.

•
∑• d(v): sum of degrees of boundary vertices of M .

•
∑◦ d(B): sum of the degrees of the interior faces.

• V = number of vertices of M .

• E = number of unoriented edges of M .

• F = number of faces of M .

Now, we will derive a key inequality.

Consider a tiling T of a disc D. Recall Euler’s Formula for D is

1 = V − E + F. (1)

Here, the unbounded region is not considered.

Additionally, we need the following equations:

2E =
∑
v

d(v) (2)

2E =
∑
B

d(B) + d(D). (3)
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We get the first equation by observing that the sum of the degrees of the vertices

counts each edge twice. We get the second equation by double counting the interior

edges with d(B) and counting the boundary edges once. Adding d(D) to double count

boundary edges gives us 2E.

We want to take linear combinations of the above equations to eliminate E. Note

that the following equation holds for the pairs (6, 3) and (4, 4):

p = 2

(
p

q

)
+ 2. (4)

Multiplying (1) by p results in:

p = pV − pE + pF. (1′)

Multiplying (2) by −p

q
gives us:

−p

q
(2E) = −p

q

∑
v

d(v). (2′)

Multiplying (3) by −1 leads to:

−2E = −
∑
B

d(B)− d(D). (3′)

By adding the left and right-hand sides of (1′)+(2′)+(3′) we obtain:

p− p

q
(2E)− 2E = pV − pE + pF − p

q

∑
v

d(v)−
∑
B

d(B)− d(D)
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We now add pE to both sides of the equation above to get:

p− p

q
(2E)− 2E + pE = pV + pF − p

q

∑
v

d(v)−
∑
B

d(B)− d(D).

Now we substitute (4) for pE:

p− p

q
(2E)− 2E +

(
2

(
p

q

)
+ 2

)
E = pV + pF − p

q

∑
v

d(v)−
∑
B

d(B)− d(D).

Distributing E to get:

p− p

q
(2E)− 2E +

p

q
(2E) + 2E = pV + pF − p

q

∑
v

d(v)−
∑
B

d(B)− d(D).

Now by cancellation we have:

p =

(
pV − p

q

∑
v

d(v)

)
+

(
pF −

∑
B

d(B)− d(D)

)
. (5)

Note that as V is the number of vertices, we can pull the term pV into the summation∑
v

d(v). However, since this sum is multiplied by
p

q
, we need to compensate for this

term. Since
p

q
· q = p, this yields

p

q

∑
v

[
q − d(v)

]
.

Similarly, as F is the number of faces, we can pull the term pF into the summation∑
B

d(B). This yields ∑
B

[
p− d(B)

]
.
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We can rewrite Equation (5) as

p =
p

q

∑
v

[
q − d(v)

]
− d(D) +

∑
B

[
p− d(B)

]
. (6)

Now, we will decompose Equation (6) considering our 3 different (p, q) pairs.

• (p, q) = (6, 3) : Decompose the sum ranging over faces B in (6) according to the

value of e(B).

6 = 2
∑
v

[
3−d(v)

]
−d(D)+

∑
e(B)=0

[
6−d(B)

]
+
∑

e(B)=1

[
6−d(B)

]
+
∑

e(B)=k
k≥2

[
6−d(B)

]
.

Note that d(B) = e(B) + i(B). Therefore

6− d(B) = 6− (e(B) + i(B)).

So, we have

6 = 2
∑
v

[
3−d(v)

]
−d(D)+

∑
e(B)=0

[
6−i(B)

]
+
∑

e(B)=1

[
5−i(B)

]
+
∑

e(B)=k
k≥2

[
(6−k)−i(B)

]
.

Additionally, we have that d(D) =
∑
B

e(B). By considering the values of e(B),

this yields:

6 = 2
∑
v

[
3− d(v)

]
+
∑

e(B)=0

[
6− i(B)

]
+
∑

e(B)=1

[
4− i(B)

]
+
∑

e(B)=k
k≥2

[
(6− 2k)− i(B)

]
. (7)
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• (p, q) = (4, 4) : Decompose the sum ranging over faces B in (6) according to the

value of e(B).

4 =
∑
v

[
4−d(v)

]
−d(D)+

∑
e(B)=0

[
4−d(B)

]
+
∑

e(B)=1

[
4−d(B)

]
+
∑

e(B)=k
k≥2

[
4−d(B)

]
.

Note that d(B) = e(B) + i(B). Therefore

4− d(B) = 4− (e(B) + i(B)).

So, we have

4 =
∑
v

[
4− d(v)

]
− d(D)

+
∑

e(B)=0

[
4− i(B)

]
+
∑

e(B)=1

[
3− i(B)

]
+
∑

e(B)=k
k≥2

[
(4− k)− i(B)

]
.

We decompose the first sum from Equation (6) into a summation
∑• over the

exterior vertices and a summation
∑◦ over the interior vertices which results in

4 =
∑•

v

[
4− d(v)

]
+
∑◦

v

[
4− d(v)

]
− d(D)

+
∑

e(B)=0

[
4− i(B)

]
+
∑

e(B)=1

[
3− i(B)

]
+
∑

e(B)=k
k≥2

[
(4− k)− i(B)

]
.

Note that the number of boundary edges of D are in one-to-one correspondence

with the number of exterior vertices of D. Therefore, we use the summand

−d(D) to replace
∑•[

4− d(v)
]

by
∑•[

3− d(v)
]

which results in:
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4 =
∑•

v

[
3− d(v)

]
+
∑◦

v

[
4− d(v)

]
+
∑

e(B)=0

[
4− i(B)

]
+
∑

e(B)=1

[
3− i(B)

]
+
∑

e(B)=k
k≥2

[
(4− k)− i(B)

]
. (8)

• (p, q) = (3, 6) : Decompose the sum ranging over faces B in (6) according to the

value of e(B).

3 =
1

2

∑
v

[
6− d(v)

]
− d(D)

+
∑

e(B)=0

[
3− d(B)

]
+
∑

e(B)=1

[
3− d(B)

]
+
∑

e(B)=k
k≥2

[
3− d(B)

]
.

Note that d(B) = e(B) + i(B). Therefore

3− d(B) = 3− (e(B) + i(B)).

So, we have

3 =
1

2

∑
v

[
6− d(v)

]
− d(D)

+
∑

e(B)=0

[
3− i(B)

]
+
∑

e(B)=1

[
2− i(B)

]
+
∑

e(B)=k
k≥2

[
(3− k)− i(B)

]
.
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We decompose the first sum from Equation (6) into a summation
∑• over the

exterior vertices and a summation
∑◦ over the interior vertices.

3 =
1

2

∑•

v

[
6− d(v)

]
+

1

2

∑◦

v

[
6− d(v)

]
− d(D)

+
∑

e(B)=0

[
3− i(B)

]
+
∑

e(B)=1

[
2− i(B)

]
+
∑

e(B)=k
k≥2

[
(3− k)− i(B)

]
.

Additionally, we have that d(D) = −3

2
d(D) +

1

2
d(D). Similar to the previous

(4, 4) case, we use −3

2
d(D) to replace

∑•

v

[
6− d(v)

]
by
∑•

v

[
3− d(v)

]
. Then

we add
1

2
d(D) to the sums over various values of e(B). This yields:

3 =
1

2

∑•

v

[
3− d(v)

]
+

1

2

∑◦

v

[
6− d(v)

]
+
∑

e(B)=0

[
3− i(B)

]
+
∑

e(B)=1

[5
2
− i(B)

]
+
∑

e(B)=k
k≥2

[(
3− 1

2
k

)
− i(B)

]
. (9)

Assuming that d(v) ≥ 3 for every vertex v of T , we have that the summations over

vertices in equations (7), (8), and (9) are not positive. Additionally, i(B) ≥ e(B) for

every face T since T is a tiling and so the last sum in the equations above are not

positive. By adding restrictions on the degrees of the interior vertices and faces, we

obtain the following result.

Theorem 3.4 (Curvature Formula). Let (p, q) be one of the pairs (6, 3), (4, 4) or

(3, 6). Assume every vertex v of the tiling T of the region D has degree d(v) ≥ 3,

every interior vertex v has degree d(v) ≥ q and every interior face B of T has at least

p edges. Then the following inequality is true:

p ≤
∑

e(B)=1

[p
q
+ 2− i(B)

]
. (1)
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3.3 Applications of Small Cancellation Theory

The following result provides the vital link between Van Kampen diagrams and a

solution to the word problem using Dehn’s Algorithm.

Theorem 3.5. Assume G has the presentation ⟨A | R⟩ satisfying either C ′
(
1

6

)
, or

C ′
(
1

4

)
and T (4). If ω0 ∈ F (A) is non-empty, reduced such that ω0 = 1 in G, then

ω0 contains a subword u which is a prefix of some uv ∈ R∗ with |u| > |v|.

Proof. The hypothesis of Theorem 3.2 is satisfied and so there is a reduced Van

Kampen diagram (M0, ϕ0, P0) over ⟨A | R⟩ with ω0 as the label of P0. Note that,

since the diagram is reduced, interior edges correspond to pieces. Since M0 is simply

connected, we consider several cases. It may be the case that M0 is a disc with

basepoint v1 as seen below in Figure 16.

M0

r

v1

Figure 16. M0 is a disc with basepoint v1.

Otherwise, M0 has an extremal subdisc D. If D is a single face by itself, then the

subpath P1 of P that starts and ends at v1 has as its label a relator u ∈ R∗ as seen

in Figure 17.
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D

v1

P1

M0

Figure 17. M0 has an extremal subdisc D.

Otherwise, we remove the vertices of degree 2 in D by consolidating the edges to obtain

a tiling T of D. By Lemma 3.1, C ′
(
1

p

)
implies C(p + 1). It follows immediately

that C(p) is also satisfied.

We specialize to the cases where (p, q) = (6, 3) or (p, q) = (4, 4). Observe that:

• C ′
(
1

6

)
implies C(7) and C(6). Every diagram satisfies T (3).

Thus, (p, q) = (6, 3).

• C ′
(
1

4

)
implies C(5) and C(4). We were given T (4). Thus, (p, q) = (4, 4).

Therefore the tiling T satisfies inequality (1).

p ≤
∑

e(B)=1

[
p

q
+ 2− i(B)

]
.

Since
p

q
= 2 or

p

q
= 1 we have two cases to consider.

• For (6, 3), we have

p

q
+ 2− i(B) = 2 + 2 + i(B)

= 4− i(B).
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As every face of D has at least one interior edge, we have for all B that i(B) ≥ 1.

• For (4, 4), we have

p

q
+ 2− i(B) = 1 + 2 + i(B)

= 3− i(B).

As every face of D has at least one interior edge, we have as well for all B that

i(B) ≥ 1.

As no summand on the right is larger than
p

2
, a face B contributes no more than

p

2

to the sum. It follows that in order for our summation to be greater than or equal

to p, there must exist at least two faces, which we denote as B and B̂ such that

e(B) = 1 = e(B̂).

v1

P0

B̂

B

e1

P1

D

u

v

Figure 18. Existence of at least two faces B and B̂.

Note, v1 can be an inner point of a sequence of edges that have been consolidated into

a single edge e1 of T . Assume without loss of generality that the exterior edge of B

is distinct from e1. This means the path P0 (boundary path of M0) has a connected
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subpath P1 that traverses the exterior edge of B. The label u of the subpath P1 is

the prefix of the word uv ∈ R∗ that designates the boundary path of B starting with

P1. Consider the following two cases as we prepare to analyze v:

• (6,3):

6 ≤
∑

e(B)=1

(
6

3
+ 2− i(B)

)
≤
∑

e(B)=1

(4− i(B)).

For this inequality to hold, there must be at least two faces B and B̂ where

i(B) ≤ 3 and i(B̂) ≤ 3.

• (4,4):

4 ≤
∑

e(B)=1

(
4

4
+ 2− i(B)

)
≤
∑

e(B)=1

(3− i(B)).

For this inequality to hold, there must be at least two faces B and B̂ where

i(B) ≤ 2 and i(B̂) ≤ 2.

Note that i(B) corresponds to the interior edge of B which is v. Therefore, as

p

q
+ 1 =

6

3
+ 1 = 3

or
p

q
+ 1 =

4

4
+ 1 = 2,
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the suffix v is the product of at most
p

q
+ 1 pieces (where the pieces correspond to

the labels of the interior edges of B). Suppose b1, ..., bn are the pieces of v. Since R

satisfies C ′
(
1

p

)
, we know that for each piece bi it holds that |bi| <

1

p
|uv|.

Overall,

|v| =
n∑

i=1

|bi|

<

n∑
i=1

1

p
|uv|

≤
(
p

q
+ 1

)
· 1
p
|uv|

[
as there are

(
p

q
+ 1

)
pieces

]
=

1

2
|uv|

[
as

1

p
+

1

q
=

1

2

]
.

Thus by the triangle inequality for the metric on groups,

2 |v| < |uv| ≤ |u|+ |v| .

So, we have that |u| > |v| as desired.
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