
Page 1

Solving FJSSP With A Genetic Algorithm

California Polytechnic University, San Luis Obispo, CA

Fall Quarter 2022, Winter Quarter 2023

March 2023

Author: Michael John Srouji

Advisors: Ryan Matteson, Zachary Peterson

Page 2

Table of Contents

Abstract 3
Introduction 4
What Is JSSP 4
Benchmarking Instances 6
Implementation 6
The Benefits of Genetic Algorithms for FJSSP 8
The Problems of Genetic Algorithms for FJSSP 11
Future Work 12
Conclusion 13
References 15

Page 3

Abstract

 The Flexible Job Shop Scheduling Problem is an NP-Hard combinatorial
problem. This paper aims to find a solution to this problem using genetic
algorithms, and discuss the effectiveness of this. Initially, I did exploratory
work on whether neural networks would be effective or not, and found a lot
of trade offs between using neural networks and chromosome sequencing. In
the end, I decided to use chromosome sequencing over neural networks,
due to the scope of my problem being on a small scale rather than on a
large scale.

 Therefore, the genetic algorithm was implemented using chromosome
sequencing. My chromosomes were represented as binary strings with
reserved bits for the machine and job numbers. This allowed me to
experiment with different mutations such as random bit flip mutation and
machine job swap mutations.

 The biggest benefit of genetic algorithms over heuristic algorithms is
the potential for improvement. While greedy gives good results initially,
genetic beats out greedy quickly after a small number of epochs.
Furthermore, I suspect that genetic algorithms should be much faster than
other learning algorithms, but as this is an under-documented metric, I
decided to contribute my own results to help document this metric.

 For future work, it would be interesting to see how a neural network
model would have reacted, and how its time to find a solution would
compare to chromosome sequencing. Another interesting topic is a scheduler
that can adapt to any variation of the Job Shop Scheduling Problem, as this
would be very useful in the real world. One final interesting topic would be to
implement some kind of dynamic job loading for this genetic algorithm, as in
real world situations, new jobs and tasks get scheduled all the time. But, this
is a very complicated problem, thus it is best left to the future.

Page 4

Introduction

 Historically, there have been a large array of NP-Complete problems,
with difficult solutions to them. While in the past these problems have been
solved using heuristic methods, recently, with the advent of machine
learning, these problems have found new solutions. For example, there is
the traveling salesman problem, which has been solved using a genetic
algorithm recently [1].

 This paper then focuses on genetic algorithms, and seeks to find how
such an algorithm compares to other algorithms when solving NP-Complete
problems. An important consideration that was made is that genetic
algorithms have been theorized to be effective at solving combinatorial
problems [3]. For example, the traveling salesman problem is a
combinatorial problem, which was likely a large factor in why genetic
algorithms were so effective at solving it.

 Therefore, this paper will focus on solving the Job-Shop Scheduling
Problem using a genetic algorithm. It will also discuss whether using a
neural network model or chromosome sequencing is a better method, and
the benefits and shortcomings of both methods. Finally, this paper will
compare the make span of chromosome sequencing as compared to well
known heuristic methods, and as compared to the theoretically best make
span for the benchmarks used.

What is JSSP

 The “Job Shop Scheduling Problem” is an NP-hard problem that has
been around for decades, and is a very good example of a combinatorial
problem. The problem is thought to have originated during the early 1950s,
illustrating the issue of manufacturing optimization during this time period
[7]. Traditionally, this problem has been solved using heuristic methods, and
only recently has there been some research regarding using machine
learning algorithms to solve it.

Page 5

 There are many variations of the Job Shop Scheduling Problem, but
the base problem has these constraints:
1. There are n number of jobs, each with a set of operations.
2. The operations in each job must be completed in a specific order, require

a specific machine, and must run to completion once started.
3. There is a limited amount of resources, most often these resources are

denoted as m number of machines.
4. Machines can only process one operation at a time.
5. The goal is to minimize the amount of time it takes to complete all n

jobs.

 While this is the base problem, many variations exist, such as “Flow
Shop Scheduling,” and “Flexible Job Shop Scheduling.” This paper will focus
on one such variation, the “Flexible Job Shop Scheduling Problem.” In this
variation, the only difference is that operations can run on any machine,
rather than being constricted to a single machine. This is a more general
sense of the problem, as it abstracts away from the realm of manufacturing,
and is more applicable to the realm of computing.

 In 1976, in a research paper named “The Complexity of Flow Shop and
Job-Shop Scheduling,” Garey proved that the job shop scheduling problem is
NP-Complete when there are greater than two machines available. Thus, he
proved that no optimal solution for this problem could be found in
deterministic polynomial compute time when there are 3 machines or
greater. Therefore this paper will focus on instances of this problem that
have greater than 3 machines.

 The reason this problem is NP-Hard, is that there are n! possible
solutions for any given instance of this problem, where n is equal to the total
number of operations. For example, if there are 2 jobs, each with 2
operations, than in all there are 4! = 24 possible solutions to the problem.
Of course, for most applications, there will be many more operations than
just 4, at which point it would not be feasible to find the most optimal
solution by hand. This is why algorithms for this problem have been
researched since the 1950s.

Page 6

Benchmarking Instances

 Eventually, benchmarks were created for JSSP so that solutions could
be compared to a baseline. One said benchmark were the Taillard Instances,
created by Eric Taillard and documented in his paper “Benchmarks for Basic
Scheduling Problems.” [8]. In this paper, Taillard illustrates the permutation
flow shop, job shop, and open shop scheduling problems, as well as
benchmarks for each of them. Although not all of the benchmarks had
documented optimum make spans, the Taillard instances were a useful
starting point for testing the validity of my solution.

 But the Taillard instances did not have very computationally difficult
problems, with the most complex instance being 500 jobs and 20 machines.
Furthermore, Taillard’s instances are not statistically easy to use, as they are
a very old benchmark. Therefore, I opted to use benchmarks created by Eva
Vallada, Ruben Ruiz, and Jose Framinin outlined in their paper “New hard
benchmark for flow-shop scheduling problems minimizing make span” [9].
These benchmarks have instances that are much more computationally
difficult, and have more ease of use.

 My goal is to achieve a good (if not the optimum) makespan, with a
focus as well on time spent achieving this result. While genetic algorithms do
not often achieve the most optimum results, they are able to achieve good
results faster than most other algorithms, and are very competitive overall.
Another goal then, is to explore the advantages and disadvantages of
genetic algorithms, and contribute another benchmarking data point for
others to test against in the future.

Implementation

 My implementation was split between the genetic algorithm, the
heuristic algorithms, and the loader (which I will call simulator here). My
simulator had the functionality of loading the chosen instance file, fetching
all jobs and tasks, and configuring the machine state based on this instance.
It would then simulate this machine, and return metrics such as make span

Page 7

and utilization, which my genetic algorithm uses during mutation and
evolution.

 My genetic algorithm initially used neural networks in order to train a
model, but this had many shortcomings. The biggest issue was with test and
train data, as each benchmark instance is its own isolated problem, and
there were not correlating variables between the instances. The result was
that neural networks did not train or infer well, and achieved suboptimal
make span results, as it did not have good training in place. Given this, I
decided to pivot to using chromosome sequencing in my genetic algorithm,
rather than a neural network.

 Chromosome sequencing ended up being a much more optimal
solution for this type of problem, as it did not have this same issue with
training data. To explain how it works, the genetic algorithm first fetches an
initial chromosome from the simulator, then mutates it multiple times, then
verifies the new chromosomes through the simulator for every epoch. Said
chromosomes are binary strings of 0’s and 1’s, with a reserved number of
bits for the machine number and a reserved number for the job number.
Note that the binary does not need to contain task number, since only the
first available task in any job is valid to be scheduled. My simulator has
functions to verify that a chromosome/sequence is valid, to verify that the
mutation does not violate the rules of FJSSP.

 There is also the method of mutation. While random bit flip mutation
would have worked, I chose to implement a machine job flip mutation,
where I swapped the machine and job bits between separate sequences in
the chromosome. The reason that I chose to use this type of mutation over
random bit flip mutation, is because with random bit flip mutation, many of
the chromosomes generated would be invalid. This causes a lot of overhead
time with the algorithm attempting to generate valid chromosomes. On the
other hand, simply swapping the machine and job bits (or only changing the
machine bits) between different sequences ensures that the resulting
chromosome is almost always valid. This is because there should always be
the same number of jobs for any generated chromosome per instance.

Page 8

The Benefits of Genetic Algorithms for FJSSP

 When compared to heuristic algorithms, a big benefit of genetic
algorithms is the potential of improvement, whereas heuristic methods will
always yield the same make span. We can see that over more epochs, the
make span of the genetic algorithms’ solution will continually decrease.
Furthermore, the genetic algorithm will almost always find a better solution
than a heuristic algorithm, if given enough time. An important consideration
to be made then, is how long it takes to find a better solution.

Page 9

 At first, the genetic algorithm returns worse solutions than greedy
(and at around the same level as round robin), but it improves very quickly.
The genetic algorithm will beat greedy somewhat quickly, although how
quickly depends on the size of the instance. Interestingly enough, with
bigger instances, it takes more epochs for the genetic algorithm to beat
greedy. For example, for an instance with 60 jobs with 10 tasks each,
genetic beats greedy after about 20 epochs. But, for an instance with 100
jobs with 20 tasks each, it takes genetic 100 epochs before it beats greedy.
Note that about 80% of the improvement for these instances was achieved
within the first 40 epochs (20% of runtime) or so.

 These results are also interesting in the context of the optimal
stopping problem. As the graphs show, the brunt of makespan improvement
happens in the first 20% of runtime. After that, the rate of improvement
becomes drastically slower. In that case, it might actually be best to stop
after the 20% mark to minimize resources/time spent. In real world contexts
this could lead to a large amount of time/resources saved (about 80%), for
very similar (or good enough) results. Furthermore, the optimal stopping
rule being set at about 20% can be observed for both the smaller and larger
instances. The difference between the smaller and larger instances, is the
rate of improvement after this 20% mark. For the larger instances, we can
observe that the rate of decline in improvement is slower than for the small
instances. This is likely because larger instances are more complex, and
there are many more permutations of job/task/machine combinations in
order to find the most optimal result.

 The reason heuristic algorithms are faster than genetic algorithms, is
because heuristic algorithms return their solution after a single epoch,
whereas genetic algorithm will continue to do work to find better solutions.
Then, it would be more accurate to compare genetic algorithms to other
types of learning algorithms. Sadly, almost no other papers regarding this
subject and specific problem make note of the runtime or train time for their
algorithm, which makes such a comparison difficult to make. Therefore, this
paper will contribute its recorded runtimes for Vallada’s benchmarks, since it
is an under documented metric. Note that this implementation does not use
parallelization, and that a population size of 100 was used.

Page 10

 Interestingly enough, the number of tasks per job being increased had
a proportionally larger effect on the time per epoch as compared to

Instance Avg Time Per Epoch (Seconds) Makespan After 100 Epochs

VFR10_5_1 0.083 684

VFR10_10_1 0.15 956

VFR10_15_1 0.215 939

VFR10_20_1 0.272 1342

VFR20_10_1 0.286 1330

VFR20_20_1 0.572 1980

VFR30_10_1 0.427 1768

VFR30_20_1 0.829 2184

VFR40_10_1 0.539 2471

VFR40_20_1 1.085 2843

VFR50_10_1 0.679 3053

VFR50_20_1 1.406 3320

VFR60_10_1 0.747 3325

VFR60_20_1 1.5 3773

VFR100_20_1 2.574 5861

VFR100_60_1 9.468 7701

VFR200_20_1 5.504 11157

VFR200_60_1 21.607 13755

VFR400_20_1 13.916 21274

VFR400_60_1 66.446 23923

VFR600_20_1 22.287 31924

VFR600_60_1 125.054 34425

VFR800_20_1 36.836 41987

VFR800_60_1 189.636 44530

Page 11

increasing the total number of jobs. One reason for this may be that
increasing the number of tasks per job greatly increases the complexity of
the problem, since later tasks and constraints have a cascading effect on the
previous tasks and the optimal order in which to schedule. I believe it would
be interesting to observe how other learning algorithms deal with this
increase in complexity, as compared to my genetic algorithm.

The Problems of Genetic Algorithms for FJSSP

 Compared to heuristic algorithms, my genetic algorithm takes much
longer to find a good solution. Of course, this is because it continually
improves over some number of epochs whereas heuristic methods return
their final solution after the first epoch. Regardless, this behavior means that
a genetic algorithm such as this one is not a good fit for many situations. For
example, in situations where a very quick result is needed, genetic
algorithms are not the right choice. Although, I suspect that genetic
algorithms are still likely to be faster than other learning algorithms for this
problem.

 Furthermore, I do not believe a genetic algorithm such as mine would
be effective on a large scale. This was one of the trade offs of neural
networking over chromosome sequencing. With neural networks, most of the
time is spent on training, and after training is complete, a neural network
will be able to infer the solution in very little time. Therefore, a lot more
initial time is spent on training the solution than inferring the solution, and if
the neural network is used on similar data in the future, it will infer the
solution very quickly. This is in contrast to my approach, chromosome
sequencing, where the algorithm instead will begin immediately inferring the
solution, and spends no prep time on training. The effects of this are that
neural networks end up being better on a large scale (faster results later but
not now), whereas chromosome sequencing is better on a small scale (fast
results now but not later).

 There is also the issue of consistency. Some aspects of my genetic
algorithm are random, leading to variation that may sometimes be

Page 12

unwanted. While this enables my algorithm to improve, it also means that it
is not the right fit for many real world uses. Although, this does not just
apply to genetic algorithms, but to all learning algorithms.

Future Work

 I believe that it is definitely possible to implement a genetic algorithm
such as mine to work with neural networks, but a lot of work will need to be
dedicated to the training and testing process. I only did exploratory work on
using a neural network for my genetic algorithm, and while it was not
effective in the context of my research (since my scope was small), neural
networks would be very effective on a large scale and for the real world.

 One of the issues with my implementation is that it does not draw
correlations between different sets of data and improve between test sets. In
essence, my implementation works on a much smaller scale. Therefore, if a
proper neural network implementation was created, with large data sets that
had some types of correlations, then I believe that such an algorithm would
work even more efficiently and on a much larger scale.

 Another interesting topic for future work would be a dynamic genetic
scheduler, which would allow the user to add jobs and tasks to the current
dataset. Due to the constraint of the problem, this would be a very difficult
task to accomplish, but I believe that it would lead to interesting results. In
the real world, there is often the need for change.

 There are many examples of large scale schedulers in the real world,
where new jobs get queued onto the system constantly. Therefore, I believe
it would be very interesting to see how a genetic algorithm would react to
such a problem, and adapt to the newly added jobs and tasks. Whereas
heuristic algorithms are used due to this issue of a dynamic workplace with
constantly shifting workloads, a learning algorithm may offer some insight
on how to further improve the scheduling systems currently used in the real
world, if this hurdle was ever overcome.

Page 13

 One final interesting topic to explore for the future would be to adapt
this genetic algorithm to work with any variation of the JSSP problem. While
this implementation tackles the FJSSP variant, there are many more variants
of this problem, such as the permutation job shop, flow shop, and more. Just
like in the real world, there are often new or different constraints than the
ones outlined in the original job shop scheduling problem, thus a scheduler
with the ability to adapt to any number of constraints would be valuable.
Work has already been done in this field, but it is not a widely explored
topic, even though a reconfigurable scheduler is often what is demanded in
the real world [2].

Conclusion

 Solving the FJSSP problem with genetic algorithms was an interesting
challenge, and led me to explore many different aspects of learning
algorithms. There are a lot of tradeoffs between using either a neural
network or chromosome sequencing for the genetic algorithm, which bubble
down to the scope of scale for the issue. The conclusion I drew regarding
this was that chromosome sequencing should be used for small scopes, and
neural networks should be used for large scopes.

 What I found was that as compared to the greedy heuristic algorithm,
genetic would have a worse make span initially, but beat greedy after some
number of epochs depending on the size of the instance. For example, for a
60x10 instance, genetic beats greedy after 20 epochs. But for a 100x20
instance, genetic beats greedy after 100 epochs. This behavior continues to
scale for larger and larger instances.

 I suspect that genetic algorithms should find solutions to this problem
faster than other learning algorithms, but this is not a well explored metric.
Therefore, I decided to contribute my own datapoints for this metric, in the
case that others in the future find use and expand this metric further. The
rate of improvement of learning algorithms, and the time they take to find
good solutions, are both very important metrics to explore, as there are

Page 14

many situations in the real world where a better solution is needed, but time
is still an important factor.

 The genetic algorithm I presented does not work well on a large scale,
and is not consistent, but it successfully shows one method of how a genetic
algorithm might be used to solve the FJSSP problem. Furthermore, I believe
that in the future, it would be interesting to explore topics such as allowing
jobs and tasks to be dynamically added to the system.

Page 15

References

 [1] Kulenović, F., & Hošić, A. (n.d.). Application of genetic algorithm in
solving the travelling salesman problem. ResearchGate. Retrieved November
29, 2022, from https://www.researchgate.net/publication/
356946515_Application_of_genetic_algorithm_in_solving_the_travelling_Sal
esman_problem

 [2] Montana, D., Hussain, T., & Vidaver, G. (1970, January 1). A
genetic-algorithm-based reconfigurable scheduler. SpringerLink. Retrieved
November 14, 2022, from https://link.springer.com/chapter/
10.1007/978-3-540-48584-1_21

 [3] Noor, S., Nawaz, M. S., & Lali, M. I. (2015, August). Solving job
shop scheduling problem with genetic algorithm - researchgate.
ResearchGate. Retrieved November 14, 2022, from https://
www.researchgate.net/publication/
281545095_SOLVING_JOB_SHOP_SCHEDULING_PROBLEM_WITH_GENETIC
_ALGORITHM

 [4] Shylo, O. V., & Shams, H. (2018, August 31). Boosting binary
optimization via binary classification: A case study of job shop scheduling.
arXiv.org. Retrieved November 14, 2022, from https://arxiv.org/abs/
1808.10813

 [5] Such, F. P., Madhavan, V., Conti, E., Lehman, J., Stanley, K. O., &
Clune, J. (2018, April 20). Deep Neuroevolution: Genetic Algorithms are a
competitive alternative for training deep neural networks for reinforcement
learning. arXiv.org. Retrieved November 14, 2022, from https://arxiv.org/
abs/1712.06567

Page 16

 [6] Weckman, G. R., Ganduri, C. V., & Koonce, D. A. (2008, January
20). A neural network job-shop scheduler - Journal of Intelligent
Manufacturing. SpringerLink. Retrieved November 14, 2022, from https://
link.springer.com/article/10.1007/s10845-008-0073-9

 [7] Cozzolino, C., Christiansen, B., Vallejos, E., Sorce, M., & Visk, J.
(n.d.). Job shop scheduling. Job shop scheduling - Cornell University
Computational Optimization Open Textbook - Optimization Wiki. Retrieved
December 5, 2022, from https://optimization.cbe.cornell.edu/index.php?
title=Job_shop_scheduling

 [8] Taillard, E. (1993). Benchmarks for basic scheduling problems.
European Journal of Operational Research, 64(2), 278–285. https://doi.org/
10.1016/0377-2217(93)90182-m

 [9] Vallada, E., Ruiz, R., & Framinan, J. M. (2014, August 12). New
hard benchmark for flowshop scheduling problems minimising makespan.
European Journal of Operational Research. Retrieved February 6, 2023, from
https://www.sciencedirect.com/science/article/abs/pii/
S0377221714005992?via%3Dihub

	Table of Contents
	Abstract
	Introduction
	What is JSSP
	Benchmarking Instances
	Implementation
	The Benefits of Genetic Algorithms for FJSSP
	The Problems of Genetic Algorithms for FJSSP
	Future Work
	Conclusion
	References

