A Thesis presented to The Faculty of California Polytechnic State University, San Luis Obispo

In Partial Fulfillment of the Requirements for the Degree Master of Science in Electrical Engineering by

Hannah Nicole Bonderov

March 2023
© 2023
Hannah Nicole Bonderov
ALL RIGHTS RESERVED

COMMITTEE MEMBERSHIP

TITLE: \quad Solar Farm Utilizing a Battery Energy Storage System

AUTHOR: Hannah Nicole Bonderov

DATE SUBMITTED: March 2023

COMMITTEE CHAIR: Majid Poshtan, Ph.D.
Professor of Electrical Engineering

COMMITTEE MEMBER: Ahmad Nafisi, Ph.D.
Professor of Electrical Engineering

COMMITTEE MEMBER: Ali Dehghan Banadaki, Ph.D.
Professor of Electrical Engineering

ABSTRACT
Solar Farm Utilizing a Battery Energy Storage System

Hannah Nicole Bonderov

According to the US Energy and Information Administration, between 2022-2023 60% of planned new electricity generation consists of solar farms with a battery energy storage system [1]. The demand for these paired systems has increased since batteries can be charged during the day with the energy captured from the solar farm then released to the customer in the evening during peak energy demand. This achieves peak load shaving which reduces the cost of electricity for the customer and is ecologically friendly.

This thesis aims to create an efficient solar farm with a battery energy storage system for a farmer in California that achieves peak load shaving. Full cell modules and half-cell modules were explored to determine the type that best suits this project. The half-cell modules were best suited because of the increased efficiency. Six different solar farm designs were created, four fixed tilt designs and two single axis tracking designs. Two types of software, System Advisor Model (SAM) and REopt, were compared to determine which would be most useful in simulating these designs. It was concluded that System Advisor Model (SAM) would be the most accurate to simulate the six designs and produce metrics such as the annual energy production, capacity factor, DC to AC ratio, and levelized cost of energy. The final design, design 6, a 2 -string single axis tracking design produced the best metrics that met the project requirements and a battery energy storage system was sized for the design.

ACKNOWLEDGMENTS

I would like to thank my advisor Dr. Majid Poshtan. His guidance, thoughtfulness, and expertise made this project possible. Furthermore, it is his flexibility in advising during the ongoing global COVID-19 pandemic that allowed this work to be completed; I thank him for his willingness to work with me and his adaptability to the many unusual difficulties that the pandemic placed on this project.

Dr. Dale Dolan and Dr. Douglas Hall provided me with the information that built the foundation of this project, as well as the inspiration to take on such a project. It is not exaggeration to say that without them, I would not have been able to design this work.

Anthony Margulis and Hetav Gore worked with me on early stages of the project. As part of their own senior projects, they worked with me in determining software simulator suitability for this thesis. I would like to extend my gratitude to them for their contributions.

I would like to thank Dr. Ahmad Nafisi and Dr. Ali Dehghan Banadaki for their time and their consideration of this thesis, as well as for their input and insights on the project. Real growth in science and engineering is made possible through collaboration, and I appreciate my committee members' dedication to my growth as a student of science and engineering.

I would like to thank my family and my friends for their infinite love and support in this process. Working on a thesis takes an amount of time and energy that is difficult to encapsulate with words. My parents recognize that, and they were always there for me whenever I needed them. I cannot possibly thank them enough. My friends at Cal Poly
were my family away from home. They made the best of the everyday aspects of being students, and they helped me to retain focus on why I was doing a project like this. I will always be grateful for that.

TABLE OF CONTENTS

Page
LIST OF TABLES x
LIST OF FIGURES. xii
LIST OF EQUATIONS xvi
CHAPTER

1. INTRODUCTION 1
2. SOLAR MODULE ANALYSIS 6
2.1 IV Curves and PV Curves [3] 6
2.2 Bypass Diodes [8] 7
2.3 Full Cells [8] 10
2.4 Half Cells [10] 11
3. PEAK LOAD SHAVING [4] 14
4. DC TO AC RATIO AND CLIPPING LOSSES [2] 17
5. SOFTWARE - SYSTEM ADVISOR MODEL (SAM) AND REOPT 18
6. MODULE ORIENTATION 19
6.1 Direction of Tilt [11] 19
6.2 Optimal Degree of Tilt 19
6.3 Module and Inverter Specifications: 20
6.4 Property Weather Statistics 21
6.5 Module String Size Calculation [14] 21
7. SUN POSITION EXPLANTATION AND EQUATIONS [15] 23
7.1 Solar Declination Equation 23
7.2 Hour Angle of the Sun 23
7.3 Altitude Angle of the Sun 24
7.4 Azimuth Angle of the Sun 25
7.5 Altitude vs. Azimuth Plot for Location 26
8. DESIGN INTRODUCTIONS 27
9. EXAMPLE SHADING CALULCATIONS - ALL FIXED TILT [18] 29
10. SUN POSITION CALCULATIONS USED FOR ALL 6 DESIGNS [15] 31
10.1 Calculation of Solar Declination on December $21^{\text {st. }}$ 31
10.2 Calculation of Hour Angle at 10am on December 21 $1^{\text {st. }}$ 31
10.3 Calculation of Suns Altitude at 10am on December 21 ${ }^{\text {st. }}$ 32
10.4 Calculation of Suns Azimuth at 10am on December $21^{\text {st. }}$ 32
10.5 Calculation of Hour Angle at 2 pm on December $21^{\text {st }}$: 32
10.6 Calculation of Suns Altitude at 2 pm on December $21^{\text {st }}$. 33
10.7 Calculation of Suns Azimuth at 2 pm on December $21^{\text {st }}$: 33
11. DESIGN 1 (3 STRING) - FIXED TILT 34
11.1 Calculation of Height and Length of Solar Module Array 34
11.2 Calculation of Interrow Spacing at 10am December 21 ${ }^{\text {st }}$ [18]: 36
11.3 Calculation of Interrow Spacing at 2pm December 21 ${ }^{\text {st }}$ [18]: 37
12. DESIGN 2 (3 STRING) - FIXED TILT 40
12.1 Calculation of Height and Length of Solar Module Array 40
12.2 Calculation of Interrow Spacing at 10am December 21 ${ }^{\text {st }}$ [18]: 42
12.3 Calculation of Interrow Spacing at 2pm December 21 ${ }^{\text {st }}$ [18]: 43
13. DESIGN 3 (2 STRING) - FIXED TILT 46
13.1 Calculation of Height and Length of Solar Module Array 46
13.2 Calculation of Interrow Spacing at 10am December 21 ${ }^{\text {st }}$ [18]: 48
13.3 Calculation of Interrow Spacing at 2pm December 21 ${ }^{\text {st }}[18]$: 49
14. DESIGN 4 (2 STRING) - FIXED TILT 52
14.1 Calculation of Height and Length of Solar Module Array 52
14.2 Calculation of Interrow Spacing at 10am December 21 ${ }^{\text {st }}$ [18]: 54
14.3 Calculation of Interrow Spacing at 2pm December 21 ${ }^{\text {st }}$ [18]: 55
15. SINGLE AXIS TRACKING - OPTIMAL TILT ANGLE [19] 58
15.1 Optimal Tilt Angle Derivation [19] 58
16. EXAMPLE SHADING CALCS - SINGLE AXIS TRACKING [18] 63
17. DESIGN 5 \& DESIGN 6 - SINGLE AXIS TRACKING 65
17.1 Calculation of Height and Length of Solar Module Array: 66
17.2 Calculation of Interrow Spacing at 10am December 21 ${ }^{\text {st }}$ [18]: 67
17.3 Calculation of Interrow Spacing at 2 pm December $21^{\text {st }}$ [18]: 68
18. DESIGN SIMULATION RESULTS AND COMPARISON 71
19. BATTERY ANALYSIS [20] 79
20. CONCLUSION 81
REFERENCES 82
APPENDICES
A. Module Efficiency in SAM 84
B. Inverters in SAM Ordered by Efficiency 102
C. Layout of Solar Panels for Fixed Tilt String Size of 9 Modules 109
D. Interrow Spacing Calc. Fixed Tilt Design 1 and 2 with Solar Array on Ground [18] 111
E. Interrow Spacing Fixed Tilt Design 1 and 2: 10am-4pm No Shading 121
F. MATLAB Code for Altitude vs. Azimuth 129
G. REopt Software Screenshots and Explanation 134
H. System Advisor Model Software Screenshots 137
I. Battery Energy Storage System Design 5 (3 String) Single Axis Tracking [19] 145

LIST OF TABLES

Table Page

1. Project Requirements 1
2. Project Requirements Cont. 2
3. Module REC Solar REC405AA [12] 20
4. Inverter Delta Electronics E8-TL-US [208V] 20
5. Module Simulation Inputs Used for All Design Simulations 71
6. Inverter Simulation Inputs Used for All Design Simulations 72
7. Individual Design Simulation Inputs 72
8. SAM Default Percentage Losses 73
9. Design Percentage Losses from Simulation 77
10. Design Simulation Comparison 78
11. Battery Requirements from Inverter Datasheet 79
12. Hourly kW on June $21^{\text {st }}$ SAM Simulation Design 6 80
13. Hourly kW on December $21^{\text {st }}$ SAM Simulation Design 6 80
14. Modules in SAM Ordered by Efficiency. 84
15. 208 Vac Inverters in SAM Ordered by Efficiency 102
16. 120 Vac Inverters in SAM 107
17. REopt Screenshot Explanation 134
18. REopt Screenshot Explanation Cont. 135
19. REopt Screenshot Explanation Cont. 136
20. Location and Resource Section 137
21. System Design. 138
22. System Design Cont. 139
23. Grid Limits 139
24. Lifetime and Degradation 139
25. System Costs. 140
26. Electric Load 141
27. Financial Parameters 142
28. Incentives 142
29. Electricity Rates 143
30. Electricity Rates Cont 144
31. Hourly kW on June $21^{\text {st }}$ SAM Simulation Design 5 145
32. Hourly kW on December $21^{\text {st }}$ SAM Simulation Design 5 145

LIST OF FIGURES

Figure Page

1. Google Earth Measurement of South Side Property Boundary 2
2. Google Earth Measurement of West Side Property Boundary 3
3. Google Earth Measurement of North Side Property Boundary 3
4. Google Earth Measurement of East Side Property Boundary 4
5. Model of Property Based off Google Earth Measurements 5
6. IV Curve and PV Curve for a Solar Module with Bypass Diodes and No Shade [7] 6
7. IV Curve (Top) and PV Curve (Bottom) when One Bypass Diode is Activated [8] 7
8. IV Curve of a Shaded Cell (Reversed Bias) and Unshaded Cell (Forward Bias) [8] 8
9. No Bypass Diodes on Modules [8] 9
10. Full Cell Module (60 Cells) [8] 10
11. Half Cell Module Showing Bypass Diodes [9] 11
12. A Possible Path for Current to Flow when 2 Cells are Shaded [10] 12
13. Possible Path for Current to Flow when 2 Cells are Shaded [10] 13
14. Example Load Peak Curve [4] 14
15. Demonstrates Shaving the Load Curve with a BESS [4] 16
16. Difference in AC Power Output Between a High vs. Low DC to AC Ratio [2]. 17
17. Weather Report for the Closest City to the Property [13] 21
18. Displays the Solar Declination [15] 23
19. Depiction of the Sun's Altitude Angle [15] 24
20. Depiction of the Sun's Azimuth Angle [15] 25
21. Altitude vs. Azimuth Plot 26
22. Calculating Shadow Length of South Facing Fixed Tilt Modules [18] 29
23. Design 1 - First Row of Solar Farm, Modules Tilted Towards the South 34
24. Design 1 - Depiction of the Height and Length of the Array 35
25. Design 1 - Displays the Height and Length of the Array 36
26. Design 1 - Modules Tilted South at Angle of 34.6°, 26 Inverters, 624 Modules 38
27. Design 1 - 3D Model of Modules Tilted 34.6° South, 26 Inverters, 624 Modules 39
28. Design 2 - First Row Strings of Solar Farm, Modules Tilted Towards the South 40
29. Design 2 - Depiction of the Height and Length of the Array 41
30. Design 2 - Displays the Height and Length of the Array 42
31. Design 2 - Modules Tilted South at Angle of 34.6°, 24 Inverters, 576 Modules 44
32. Design 2- 3D Model of Modules Tilted 34.6° South, 24 Inverters, 576 Modules 45
33. Design 3 - First Row of Solar Farm, Modules Tilted Towards the South 46
34. Design 3 - Depiction of the Height and Length of the Array 47
35. Design 3 - Displays the Height and Length of the Array 48
36. Design 3 - Modules Tilted South at Angle of 34.6°, 36 Inverters, 576 Modules 50
37. Design 3- 3D Model of Modules Tilted 34.6° South, 36 Inverters, 576 Modules 51
38. Design 4 - First Row of Solar Farm, Modules Tilted Towards the South 52
39. Design 4 - Depiction of the Height and Length of the Array 53
40. Design 4 - Displays the Height and Length of the Array 54
41. Design 4 - Modules Tilted South at Angle of 34.6°, 40 Inverters, 640 Modules 56
42. Design 4-3D Model of Modules Tilted 34.6° South, 40 Inverters, 640 Modules 57
43. Displays the Tilt Angle Tau τ [19] 59
44. Displays V1, V2, and the Normal Vector [19] 59
45. Displays the Vector that is in the Direction of the Sun [19] 60
46. Shows the Relationship Between Each Angle [19] 60
47. Triangles for Calculating Shadow Length of Single Axis Tracking Modules [18] 64
48. Design 5 (3 String) - Base Design Layout 65
49. Design 6 (2 String) - Base Design Layout 65
50. Design 5 \& 6 - Height and Length of the Array 66
51. Design $5 \& 6$ - Height and Length of the Array 67
52. Design 5 - Module Layout, 30 Inverters, 720 Modules 69
53. Design 5-3D Module Visual Aid, 30 Inverters, 720 Modules 69
54. Design 6 - Module Layout, 50 Inverters, 800 Modules 70
55. Design 6-3D Module Visual Aid, 50 Inverters, 800 Modules 70
56. Design 1 (3 String) - Fixed Tilt Simulation Results 74
57. Design 2 (3 String) - Fixed Tilt Simulation Results 74
58. Design 3 (2 String) - Fixed Tilt Simulation Results 75
59. Design 4 (2 String) - Fixed Tilt Simulation Results 75
60. Design 5 (3 String) - Single Axis Tracking Simulation Results 76
61. Design 6 (2 String) - Single Axis Tracking 76
62. Possible Design with a String of 9 Modules, 12 ft Hypotenuse Length 109
63. Possible Design with a String of 9 Modules, 6 ft Hypotenuse Length 109
64. Possible Design with a String of 9 Modules, -18 ft Hypotenuse Length 109
65. Possible Design with a String of 9 Modules, $\sim 6 \mathrm{ft}$ Hypotenuse Length 110
66. Possible Design with a String of 9 Modules, $\sim 9 \mathrm{ft}$ Hypotenuse Length 110
67. Height and Length. Does Not Consider the Array will Be Off the Ground. 113
68. Height and Length. Does Not Consider Array Will Be Off the Ground. 113
69. Modules Tilted 34.6º South, 18 Inverters, 432 Modules. Modules on Ground 115
70. How Many kW Produced Each Month with Fixed Tilt Design 1 (3 String) 116
71. Shows Simulation Metrics of Fixed Tilt Design 1 (3 String) 116
72. Design 2 (3 String) - Height and Length of the Array, Array on Ground. 117
73. Design 2 (3 String) - Height and Length of the Array, Array on Ground. 117
74. Modules Tilted South, Angle 34.6°, 20 Inverters, 480 Mods. Array on Ground 119
75. Design 2 (3 String) - How many kW Produced Monthly with the Fixed Tilt. 120
76. Design 2 (3 String) - Shows Simulation Metrics of Fixed Tilt. 120
77. Design 1 (3 String) - Height and Length of the Array. 123
78. Design 1 (3 String) - Height and Length of the Array Labeled 124
79. Design 2 (3 String) - Height and Length of the Array. 126
80. Design 2 (3 String) - Height and Length of the Array Labeled. 127

LIST OF EQUATIONS

Equation Page

1. Resistive Power Loss Equation 12
2. Load Factor Equation. 15
3. Module Maximum Open Circuit Voltage 21
4. Maximum String Size. 21
5. Solar Declination 23
6. Hour Angle 23
7. Altitude Angle. 24
8. Azimuth Angle 25
9. Part 1 Shading for South Facing Stationary Tilt. 30
10. Part 2 Shading for South Facing Stationary Tilt 30
11. Cross Product of Two Vectors to Find the Normal. 58
12. Dot Product of Two Vectors 60
13. Optimal Tilt Angle for Single Axis Tracking Modules 61
14. Part 1 Single Axis Tracking Shading Calculation. 64
15. Part 2 Single Axis Tracking Shading Calculation 64

1. INTRODUCTION

A farmer from California is inquiring to convert part of their land from growing agriculture to a solar farm with an energy storage system. The requested design specifications are shown in table 1 . Figures $1-4$ show the site boundary measurements taken from google earth. A model of the property is shown in figure 5. Six designs will be evaluated to determine which is the most fit for this location.

Table 1: Project Requirements

Design Requirements	Engineering Specification	Justification
1	Inverter with an AC output of 208V	There is a 208V transformer near the location.
2	Efficient Solar Module	Maximizing the solar modules efficiency increases the overall energy production of the design.
3	Efficient Inverter	Maximizing the inverter efficiency increases the overall energy production of the design.
4	DC to AC ratio between 1.3-1.6	A DC to AC ratio in this range causes slight clipping losses but can have financial benefits [2].
5	No module shading between 10am- 2pm on the winter solstice, December 21st	Shading drastically reduces the energy production of the module. To increase energy production, solar module shading of the design should be minimal. [3]
6	Final design includes a battery energy storage system to achieve peak load shaving	Achieving peak load shaving utilizing a battery can reduce the cost of electricity and reduce carbon emission [4].
7	Capacity Factor of at least 24.6\%	According to [5], average solar PV capacity factor in 2021 was 24.6\% [5].

Table 1: Project Requirements Cont.

8	Energy Yield	The highest energy yield will benefit both the owner and the customers while reducing carbon emissions [4].
9	Energy	

Figure 1: Google Earth Measurement of South Side Property Boundary

Figure 2: Google Earth Measurement of West Side Property Boundary

Figure 3: Google Earth Measurement of North Side Property Boundary

Figure 4: Google Earth Measurement of East Side Property Boundary

Figure 5: Model of Property Based off Google Earth Measurements

It should be noted that in figure 5 above, each small square represents 1 meter. No decimals are considered in later design layouts. All decimals will be rounded up to overcompensate and ensure the design does not exceed property boundaries. Next discussed will be how solar modules operate and why it is important to prevent shading.

2. SOLAR MODULE ANALYSIS

2.1 IV Curves and PV Curves [3]

Figure 6 shows the IV (current vs. voltage) curve and the PV curve (power vs. voltage) of a solar module. When solar modules operate at the maximum power point, the maximum amount of energy is captured. To find the maximum power point, first the IV (current vs. voltage) curve of the module needs to be determined. Many inverters have the capability to find the maximum power point using a tracker [3].

There are also other important module electrical data that can be determined from the IV curve and is identified in figure 6 below. The open circuit voltage (V_{Oc}) occurs when there is no current and the voltage is at the maximum. The short circuit current (I_{SC}) occurs when there is no voltage, and the current is at the maximum. The maximum power point $\left(\mathrm{M}_{\mathrm{pp}}\right)$ is the voltage and current point $\left(\mathrm{V}_{\mathrm{mpp}}, \mathrm{I}_{\mathrm{mpp}}\right)$ at which the maximum power is captured. The PV (power vs. voltage) curve can then be calculated by multiplying the current and voltage points from the IV curve. The maximum power point is the maximum value on this curve, identified as M_{PP} in figure 6 bellow.

Figure 6: IV Curve and PV Curve for a Solar Module with Bypass Diodes and No Shade [7]

2.2 Bypass Diodes [8]

Solar modules have three bypass diodes, connected to the cells in different orientations depending on the module type to help prevent shading issues. It is possible shading can cause permanent damage to the module and fire without working bypass diodes. Therefore, bypass diodes serve an important purpose when one cell or multiple cells are shaded. If one cell or part of the solar module is shaded, that shaded strings current will be bypassed by the bypass diode as shown in figure 10. This means having three bypass diodes still allows for some energy production even if part of the solar module is shaded. It should be noted that when a cell is shaded and a bypass diode is turned on, the IV curve of that module changes from having one global maximum power point to having a local maximum and a global maximum as shown in figure 7 bellow. Therefore, it is necessary the inverter have a global maximum power point tracker [8].

Figure 7: IV Curve (Top) and PV Curve (Bottom) when One Bypass Diode is Activated [8]

If there was only one bypass diode in between the positive and negative terminal of the module and a single cell or part of the module was shaded, then the entire module would be bypassed and there would be no energy production from that module.

When there are no bypass diodes and one cell is shaded, that shaded cell is reversed bias, meaning it becomes a load and heat is dissipated in the shaded cells. The IV curve of a shaded cell/reversed bias cell is shown in figure 8 bellow [8].

Figure 8: IV Curve of a Shaded Cell (Reversed Bias) and Unshaded Cell (Forward Bias) [8]

Power production also drastically decreases when there are no bypass diodes, and a single cell or multiple cells are shaded. Figure 9 shows the change in IV curves and PV curves for a nonshaded module and a partially shaded module [8].

Figure 9: No Bypass Diodes on Modules [8]

For a module with working bypass diodes and no shaded cells, the IV curve and maximum power curve is shown in figure 6 [7]. Solar modules can be further classified by either a full cell module, half-cell module, and bifacial module. Full cell modules and half-cell modules will be discussed next.

2.3 Full Cells [8]

Figure 10: Full Cell Module (60 Cells) [8]

A full cell module is shown in figure 10 above. This type of module can have a varying range of cells, but some typical modules have $32,36,60,72$, or 96 cells in series with three bypass diodes. A 60-cell module is shown in figure 10. The three bypass diodes are connected to make three strings of cells on the module [9]. Typically, each cell has a voltage of approximately 0.5 V which for a 60 -cell module produces an overall voltage of approximately 30 V [10].

2.4 Half Cells [10]

Figure 11: Half Cell Module Showing Bypass Diodes [9]

Half-cell modules are made from full cells that have been cut in half by a laser. In the half cell modules, the bypass diodes are connected such that there are six strings instead of three. Figure 11 shows a 120 -half-cell module that was created from 60 full cells. The current through each cell is halved compared to a full cell module, but there are twice as many cells. The module in figure 11 creates an overall voltage of approximately 60 V . This is because each cell still has an approximate voltage of 0.5 V and there are 60 cells on left side as well as the right side. Each side creates a voltage of approximately 30 V and the two sides are connected in parallel, creating an overall voltage of approximately 60 V [10].

This type of module offers many advantages including higher efficiency by reducing shading losses and power losses related to decreased current and resistance. For example, figure 12 shows a possible path for current to flow when two cells are shaded.

At this point, only $2 / 3$ rds of the panel are in operation, similar to a full cell module with one cell shaded. Figure 12 also shows the module operating at the local maximum power point instead of the global maximum. Figure 13 shows another possible path for current to flow when two cells are shaded when the module is operating at the global maximum power point. When operating at this maximum power point, current can flow through 5/6 strings instead of $4 / 6$ at the local maximum. Because of this, the half-cell module can produce more power than a full cell module with two cells shaded, making it more efficient. The half-cell module also has reduced resistive power losses when compared to a full cell module because only half the total current is flowing through each cell. This can be understood by looking at equation 1 below. Since the current is reduced in half cell modules by half, this decreases the resistive losses by a factor of four [10].
$P=I^{2} R$

Figure 12: A Possible Path for Current to Flow when 2 Cells are Shaded [10]

Figure 13: Possible Path for Current to Flow when 2 Cells are Shaded [10]

3. PEAK LOAD SHAVING [4]

An example peak load curve is shown below in figure 14. This curve shows the amount of power used versus time. The peaks indicate more people have started to use electricity; therefore, the power demand increases. The highest peak shows the capacity the power plant must have to meet the demand.

Figure 14: Example Load Peak Curve [4]
[4] examines three different ways to shave the high peaks in a peak load curve. This includes adding an energy storage system (ESS), adding electric vehicles (EV) to the grid, and demand side management (DSM). It is stated peak load shaving can benefit the grid operators, the customer, and can reduce the amount of carbon dioxide released into the atmosphere. Currently to meet the peak electricity demand, some power plants use fossil fuel generators. This can increase the amount of CO 2 released into the atmosphere as well as increase the cost for the utility company and the customer because the cost of maintaining and running the power plant for only a couple hours each day is high. This expense then gets passed along to the customer who pays more for electricity during the peak time periods [4].

To ensure a high power quality in the power system, the supply of electricity and the demand of electricity needs to be balanced. If the demand of electricity is higher than the supply, then this could cause instability, voltage fluctuations, possible blackouts, and a low power quality.

To measure how efficiently the electricity generated is being used, load factor is calculated. Load factor helps show the variability in load/demand and is the ratio of average real power demand over the peak real power demand as shown below.

Load Factor [\%] $=\left(\mathrm{P}_{\text {AVG }} / \mathrm{P}_{\text {PEAK }}\right) \times 100 \%$

A higher load factor indicates the power plant is economically feasible. The higher the load factor, the cheaper the energy. To increase the load factor, the real peak power on the peak load curve needs to be reduced using peak load shaving. This also reduces the power lost in the system since when the peak load demand is decreased, the current in the system is also decreased, reducing the overall power lost in the system and making it more efficient.

Incorporating renewable energy sources such as wind and solar is then explored and shows that when added to the system, the peak load during the day can be reduced and the highest peak is shifted to the evening [4].

Adding a battery energy storage system (BESS) is then evaluated to help shave the highest peaks on the peak load curve. As time goes on, the electricity demand is increasing. This is because our individual electricity consumption increases and because the population is increasing. By looking at figure 15 below, if the BESS is charged during low demand times, the BESS can help shave the highest demand peaks by discharging
during high demand times. This can decrease the cost for the end user since they are using less electricity during the high peak times when the price is the most expensive. This also reduces CO2 emissions since a battery is providing the extra electricity instead of a fossil fuel burning generator [4].

Figure 15: Demonstrates Shaving the Load Curve with a BESS [4]

4. DC TO AC RATIO AND CLIPPING LOSSES [2]

Solar modules operate on direct current (DC) power while inverters convert that DC power to alternating current (AC) power. This facilitates the addition of DC power from the modules threw the inverter to the AC electrical grid. Both the modules and the inverters have a maximum threshold in which it can produce and convert. The DC to AC ratio of a design is the amount of power produced by the modules over the maximum amount of power the inverter can convert from DC to AC. According to [2], having a DC to AC ratio between 1.3 to 1.6 could provide some financial benefits since the maximum amount of energy produced per day would remain higher for a longer period. The downsides would be an increase of clipping losses and the inverter would be working at maximum power for a longer amount of time which could reduce the inverters lifetime.

This can be seen in figure 16 below. [2] concludes that a DC to AC ratio of maximum 1.6 will not drastically reduce an inverters lifetime which is why a maximum DC to AC ratio of 1.6 was placed on all 6 designs.

Figure 16: Difference in AC Power Output Between a High vs. Low DC to AC Ratio [2]

5. SOFTWARE - SYSTEM ADVISOR MODEL (SAM) AND REOPT

REopt and System Advisor Model (SAM) were compared to determine which software would be most suitable for simulating the solar farm designs. The software screenshots with explanation are included in appendix section G and H. It should be noted that when each software was simulating the same design, the outputs did not match. Further evaluations showed REopt was not responding to changes in the inputs such as the critical load and grid outage duration, making it unfit for this project. Therefore, System Advisor Model (SAM) was used to simulate all designs.

6. MODULE ORIENTATION

6.1 Direction of Tilt [11]

When located in the northern hemisphere the solar modules should face south for the maximum energy production during the middle of the day. The solar modules should face more towards the southwest if maximum energy production is required in the afternoon during peak energy demand. Since this project design will have an energy storage system, batteries, and the property is symmetrical with a compass, meaning the four sides of the property boundary are in line with north, south, east, and west, the solar modules will be tilted towards the south [11].

6.2 Optimal Degree of Tilt

Optimal module tilt angle is achieved when the tilt of the solar panels is equal to the latitude in degrees of the location of the module [11]. Conversions for latitude will be done here to convert the notation of degrees, minutes, seconds taken from google earth to decimal degrees.

Location Latitude $=34^{\circ} 34^{\prime} 20^{\prime \prime} \mathrm{N}$
Conversion calculation of Latitude to degree (without minutes and seconds):
Conversion Factors: $\quad 1^{\circ}=60^{\prime}($ minutes $) \quad 1^{\prime}($ minute $)=60^{\prime \prime}$ (seconds)
$34^{\prime} \times\left(1^{\circ} / 60^{\prime}\right)=0.5667^{\circ}$
$20^{\prime \prime} \times\left(1^{\circ} / 60^{\prime \prime}\right) \times\left(1^{\circ} / 60^{\prime}\right)=0.0056^{\circ}$
Location Latitude in degrees: $34^{\circ}+0.567^{\circ}+0.0056^{\circ}=34.5723^{\circ} \mathrm{N}$
New Location Latitude: $34.5723^{\circ} \mathrm{N}$
Therefore, the tilt of all fixed modules will be 34.5723° towards the South. In Simulations this will be rounded to 34.6°.

6.3 Module and Inverter Specifications:

The module and inverter used for all designs in this project were chosen based off efficiency ranking in System Advisory Model (SAM) and available online information as shown in the appendix section A and B. It was also required the inverter have a 208 V AC voltage to ensure proper connection at the property. Necessary information for the top efficiency modules and inverters listed in the appendix were unavailable so adjustments were made until the required specifications could be located, such as the open circuit voltage, short circuit current, etc. It is important to note the inverter has a battery attachment capability. Specifications below are from the datasheets.

Table 2: Module REC Solar REC405AA [12]

Cell Type	Half Cell
Open Circuit Voltage Voc [Vdc]	48.9
Nominal Efficiency [\%]	21.9
Maximum Power [Wdc]	405
Temperature Coefficient [\%/ $\left.{ }^{\circ} \mathrm{C}\right]$	-0.24
Short Circuit Current Isc [Adc]	10.14
Module Dimensions [m]	$1.821 \times 1.016 \times 0.03$

Table 3: Inverter Delta Electronics E8-TL-US [208V]

Nominal AC Voltage [V]	208
Maximum DC Voltage [V]	480
Maximum AC Power [Wac]	5000
Efficiency [\%]	98
Inverter Dimensions [m]	$0.425 \times 0.590 \times 0.150$
Maximum Power Point Trackers	3
Compatible Battery Pack Size [kWh per Inverter]	$5-30$

6.4 Property Weather Statistics

Figure 17 below shows the weather statistics for Lancaster, CA. This is a city close to Palmdale, CA and was used because Palmdale, CA was not an option in the weather statistics search. The lowest temperature in the area is $-9^{\circ} \mathrm{C}$ as shown in figure 17. This lowest temperature is used later in the module string size calculation.

Figure 17: Weather Report for the Closest City to the Property [13]

6.5 Module String Size Calculation [14]

Equations for Calculating Maximum String Size:
Module $\mathrm{V}_{\text {OCMAX }}=\mathrm{V}_{\text {OC }} \mathrm{x}\left[1+\left(\mathrm{T}_{\mathrm{MIN}}-\mathrm{T}_{\mathrm{STC}}\right) \mathrm{x}\left(\mathrm{T}_{\mathrm{kVoc}} / 100\right)\right]$
Where Module Vocmax, is the maximum open circuit voltage, $\mathrm{V}_{\text {OC }}$ is the open circuit voltage, $\mathrm{T}_{\text {MIN }}$ is the lowest temperature at the location in Celsius, $\mathrm{T}_{\text {STC }}$ is the standard test condition temperature $\left(25^{\circ} \mathrm{C}\right)$, and $\mathrm{T}_{\mathrm{kVoc}}$ is the temperature coefficient.

Maximum String Size $=($ Lowest Component Vmax $/$ Module Vocmax $)$
Where Lowest Component Vmax is the lowest maximum voltage for either device, Module $V_{\text {ocmax }}$ is the maximum open circuit voltage (calculated in equation 2), and the Maximum String Size is how long the string can be before exceeding the maximum voltage.

Calculations for Maximum String Size:
Module $\mathrm{V}_{\text {ocmax }}=48.9 \mathrm{~V} \times[1+(-9-25) \times(-0.240 / 100)]$
Module Vocmax $=52.89 \mathrm{~V}$
Maximum String Size $=(480 \mathrm{~V} / 52.89 \mathrm{~V})$
Maximum String Size $=9.08$
Round down to 8 modules per string to ensure the maximum voltage of the inverter is never exceeded. All numbers in this calculation came from the module data sheet, inverter datasheet, and figure 17. In the first iteration of calculating maximum string size and design of a few different module layouts on the land, a string of 9 modules was used. This first iteration calculation and possible design layouts is shown in the appendix section C. Later the decision was made to round down to 8 for better over voltage protection.

7. SUN POSITION EXPLANTATION AND EQUATIONS [15]

7.1 Solar Declination Equation

The solar dedication of the earth describes the tilt of the earth. More specifically it's the angle between the plane of the earth's equator and the center of the sun. The angle varies between -23.45° and $+23.45^{\circ}[14]$.

Figure 18: Displays the Solar Declination [15]
$\delta=23.45 \times \sin [(360 / 365)(\mathrm{n}-81)]$
Where δ is the solar declination and n is the day of the year (out of 365).

7.2 Hour Angle of the Sun

The hour angle of the sun describes the difference from noon in terms of a 360° rotation in one day [14].
$H=15(12-T)$
Where H is the hour angle and T is the time of day on a 24 -hour clock.

7.3 Altitude Angle of the Sun

The altitude angle of the sun describes the angle from the horizon up to the sun [15].

Figure 19: Depiction of the Sun's Altitude Angle [15]
$\beta=\sin ^{-1}[\sin (\delta) \sin (\mathrm{L})+\cos (\delta) \cos (\mathrm{L}) \cos (\mathrm{H})]$
Where β is the suns altitude angle at a certain time, δ is the Solar Declination, L is the Latitude, and H is the Hour Angle at a certain time.

7.4 Azimuth Angle of the Sun

The azimuth angle of the sun describes the angle the sun is away from south. For this project a reference direction of south will be 0°. If the sun is east of south, this will be designated as a positive azimuth angle. If the sun is west of south, this will be designated as a negative azimuth angle [15].

Figure 20: Depiction of the Sun's Azimuth Angle [15]
$\Phi=\sin ^{-1}[(\cos (\delta) \sin (\mathrm{H})) / \cos (\beta)]$
Where Φ is the suns azimuth angle at a certain time, δ is the Solar Declination, H is the Hour Angle at a certain time, and β is the suns altitude angle at a certain time.

7.5 Altitude vs. Azimuth Plot for Location

Figure 21 below shows the altitude versus azimuth plot of the sun for the entire year at the location of the design. MATLAB code is included in appendix section F .

Figure 21: Altitude vs. Azimuth Plot

8. DESIGN INTRODUCTIONS

It is important to space the solar module rows far enough apart to prevent shading on the solar modules since shading can drastically reduce power production. Unfortunately, at some point during the morning and afternoon, shading cannot be prevented since the sun will be so low in the sky. According to the United States Environmental Protection Agency, sun ray intensity is the strongest during the hours of 10am and 4pm [16]. After preliminary testing and calculations, ensuring no shading between 10am-4pm spaced the rows so far apart it would drastically limit the number of solar modules on the property. Therefore, no shading hours were reduced to $10 \mathrm{am}-2 \mathrm{pm}$.

To calculate how far apart the rows of solar modules need to be placed to prevent shading during the hours of $10 \mathrm{am}-2 \mathrm{pm}$, the worst-case scenario needs to be considered. The worst-case scenario occurs on the winter solstice, December $21^{\text {st }}$. This the worst-case scenario because the sun is the lowest in the sky on this date.

The suns solar declination, hour angle, altitude, and azimuth will be calculated at the hours of 10am and 2 pm on December $21^{\text {st }}$. Then the height of the solar array will be calculated. Using that information, the shadow length will be calculated to determine the required interrow spacing of the solar panels. Since the sun rises and falls symmetrically around 12 pm (noon) the shadow length at 10 am and 2 pm will be the same, although calculations were done at both times for each design for confirmation. According to [17], the solar modules should be placed off the ground anywhere between a couple inches to a couple feet. Therefore, the fixed tilt solar modules will be placed off the ground 14 inches $(0.3556 \mathrm{~m})$ to promote air flow and clear any brush. The single axis tacking designs will
be placed 19.685 inches $(0.5 \mathrm{~m})$ off the ground also to promote air flow, clear any brush, and account for any additional mounting requirements.

The first test calculation did not take into consideration the solar array would be lifted off the ground. These test calculations are shown in appendix section D. Appendix section E shows the calculations for no shading on the winter solstice between the hours of 10 am to 4 pm for designs 1 and 2 .

9. EXAMPLE SHADING CALULCATIONS - ALL FIXED TILT [18]

To calculate how far apart the module rows need to be, it is necessary to look at the position of the sun on the winter solstice, December $21^{\text {st }}$, at the hours of 10 am and 2 pm , which is the time shading should be prevented [16]. To do the calculation there are two triangles that need to be looked at to determine the shadow length.

Triangle one is shown as yellow in figure 22. In this triangle the height of the solar array can be calculated and so can the altitude angle of the sun at a certain time on a certain day. Then using trigonometry, Length X can be solved for using tangent as shown in equation 9. Figure 22 shows the second triangle in red. In this triangle, Length X is known and the azimuth angle can be calculated. With that information, the shadow length can be calculated using cosine as shown in equation 10. Then the arrays should be place further apart than the shadow length. This method was used when calculating the interrow spacing in designs $1,2,3$, and 4 .

Figure 22: Calculating Shadow Length of South Facing Fixed Tilt Modules [18]

Part 1: Yellow Triangle
Tan(Altitude Angle) $=$ Array Height $/$ Length X
Length $\mathrm{X}=$ Array Height $/$ Tan(Altitude Angle)
Part 2: Red Triangle
$\cos ($ Azimuth Angle $)=$ Shadow Length $/$ Length X
Shadow Length $=$ Length $\mathrm{X} x \cos ($ Azimuth Angle)

10. SUN POSITION CALCULATIONS USED FOR ALL 6 DESIGNS [15]

Shading calculations will be done for all 6 designs to prevent shading between rows on the winter solstice between the hours of 10 am and 2 pm . First the solar declination, hour angle, altitude angle, and azimuth angle will be calculated for both the hours of 10 am and 2 pm on December $21^{\text {st }}$. The solar declination will only be calculated once as it is the same for each time. These calculations are used in all 6 designs.
10.1 Calculation of Solar Declination on December 21 $1^{\text {st }}$:
$\delta=23.45 \times \sin [(360 / 365)(\mathrm{n}-81)]$
Where δ is the solar declination and n is the day of the year (out of 365)
$\delta=23.45 \times \sin [(360 / 365)(355-81)]$
$\delta=-23.45^{\circ}$
10.2 Calculation of Hour Angle at 10am on December $21^{\text {st }}$.
$H=15(12-T)$
Where H is the hour angle and T is the time of day on a 24 -hour clock
$\mathrm{H}=15(12-10)$
$\mathrm{H}=30^{\circ}$ at 10 am December 21^{st}
$\beta=\sin ^{-1}[\sin (\delta) \sin (\mathrm{L})+\cos (\delta) \cos (\mathrm{L}) \cos (\mathrm{H})]$
Where β is the suns altitude angle at $10 \mathrm{am}, \delta$ is the Solar Declination, L is the Latitude, and H is the Hour Angle at 10am.
$\beta=\sin ^{-1}\left[\sin \left(-23.45^{\circ}\right) \sin \left(34.5723^{\circ}\right)+\cos \left(-23.45^{\circ}\right) \cos \left(34.5723^{\circ}\right) \cos \left(30^{\circ}\right)\right]$
$\beta=25.37^{\circ}$
10.4 Calculation of Suns Azimuth at 10am on December 21 ${ }^{\text {st }}$:
$\Phi=\sin ^{-1}[(\cos (\delta) \sin (\mathrm{H})) / \cos (\beta)]$
Where Φ is the suns azimuth angle at $10 \mathrm{am}, \delta$ is the Solar Declination, H is the Hour Angle at 10 am , and β is the suns altitude angle at 10am.
$\Phi=\sin ^{-1}\left[\left(\cos \left(-23.45^{\circ}\right) \sin \left(30^{\circ}\right)\right) / \cos \left(25.37^{\circ}\right)\right]$
$\Phi=30.51^{\circ}$
10.5 Calculation of Hour Angle at 2 pm on December $21^{\text {st }}$:
$\mathrm{H}=15(12-\mathrm{T})$
Where H is the hour angle and T is the time of day on a 24-hour clock
$\mathrm{H}=15(12-14)$
$\mathrm{H}=-30^{\circ}$ at 2 pm December $21^{\text {st }}$
10.6 Calculation of Suns Altitude at 2 pm on December $21^{\text {st }}$:
$\beta=\sin ^{-1}[\sin (\delta) \sin (\mathrm{L})+\cos (\delta) \cos (\mathrm{L}) \cos (\mathrm{H})]$
Where β is the suns altitude angle at $2 \mathrm{pm}, \delta$ is the Solar Declination, L is the Latitude, and H is the Hour Angle at 2pm.
$\beta=\sin ^{-1}\left[\sin \left(-23.45^{\circ}\right) \sin \left(34.5723^{\circ}\right)+\cos \left(-23.45^{\circ}\right) \cos \left(34.5723^{\circ}\right) \cos \left(-30^{\circ}\right)\right]$
$\beta=25.37^{\circ}$
10.7 Calculation of Suns Azimuth at 2 pm on December $21^{\text {st. }}$.
$\Phi=\sin ^{-1}[(\cos (\delta) \sin (\mathrm{H})) / \cos (\beta)]$
Where Φ is the suns azimuth angle at $2 \mathrm{pm}, \delta$ is the Solar Declination, H is the Hour Angle at 2 pm , and β is the suns altitude angle at 2 pm .
$\Phi=\sin ^{-1}\left[\left(\cos \left(-23.45^{\circ}\right) \sin \left(-30^{\circ}\right)\right) / \cos \left(25.37^{\circ}\right)\right]$
$\Phi=-30.51^{\circ}$

11. DESIGN 1 (3 STRING) - FIXED TILT

Design 1 utilizes all 3 maximum power point trackers on the inverter as shown below in figure 23 .

Figure 23: Design 1 - First Row of Solar Farm, Modules Tilted Towards the South

Interrow spacing/shading calculation will be done for the design in figure 23 and will prevent shading on the winter solstice between the hours of 10 am and 2 pm . The solar declination, hour angle, altitude angle, and azimuth angle has already been calculated in chapter 10.

11.1 Calculation of Height and Length of Solar Module Array

Figure 23 shows one row of design 1 with 3 strings and 8 modules per string. The solar modules will be tilted at an angle of 34.5723° South and the hypotenuse length is known as shown below in figure 24. The hypotenuse has a length of three solar modules. Since the modules are in the landscape orientation and the length of one solar module is 1.016 m , the length of three solar modules is 3.048 m . With this information, the angle of tilt, and the length of the hypotenuse, the height and length can be determined from trigonometric calculations. Figure 25 shows the height and length labeled in the figure.

Figure 24: Design 1 - Depiction of the Height and Length of the Array

Calculation of Height:

$$
\begin{aligned}
& \sin \left(34.5723^{\circ}\right)=H / 3.048 \mathrm{~m} \\
& H=3.048 \mathrm{~m} \times \sin \left(34.5723^{\circ}\right) \\
& H=1.73 \mathrm{~m}
\end{aligned}
$$

Because the solar modules are lifted off the ground by 0.3556 meters, this needs to be added to the calculated height measurement to determine the total height.

Total Height $=1.73 \mathrm{~m}+0.3556 \mathrm{~m}=2.09 \mathrm{~m}$

Calculation of Length:

$$
\begin{aligned}
& \cos \left(34.5723^{\circ}\right)=\mathrm{L} / 3.048 \mathrm{~m} \\
& \mathrm{~L}=3.048 \times \cos \left(34.5723^{\circ}\right) \\
& \mathrm{L}=2.51 \mathrm{~m}
\end{aligned}
$$

Figure 25: Design 1-Displays the Height and Length of the Array

11.2 Calculation of Interrow Spacing at 10am December $21^{\text {st }}$ [18]:

Reference chapter 9 for depictions of the yellow and red triangles.
Part 1: Yellow Triangle
Tan(Altitude Angle) $=$ Array Height / Length X
Length X = Array Height / Tan(Altitude Angle)
Length $\mathrm{X}=2.09 \mathrm{~m} / \operatorname{Tan}\left(25.37^{\circ}\right)$
Length $X=4.41 \mathrm{~m}$
Part 2: Red Triangle
$\operatorname{Cos}($ Azimuth Angle $)=$ Shadow Length $/$ Length X
Shadow Length $=4.41 \mathrm{mx} \mathrm{Cos}($ Azimuth Angle $)$
Shadow Length $=4.41 \mathrm{~m} \times \operatorname{Cos}\left(30.51^{\circ}\right)$
Shadow Length $=3.80 \mathrm{~m}$

11.3 Calculation of Interrow Spacing at 2pm December 21 ${ }^{\text {st }}$ [18]:

Reference chapter 9 for depictions of the yellow and red triangles
Part 1: Yellow Triangle
Tan(Altitude Angle) $=$ Array Height $/$ Length X
Length X = Array Height $/$ Tan(Altitude Angle)
Length X $=2.09 \mathrm{~m} / \operatorname{Tan}\left(25.37^{\circ}\right)$
Length $X=4.41 \mathrm{~m}$
Part 2: Red Triangle
$\cos ($ Azimuth Angle $)=$ Shadow Length $/$ Length X
Shadow Length $=$ Length $\mathrm{X} x \cos ($ Azimuth Angle $)$
Shadow Length $=4.41 \mathrm{~m} \times \cos \left(-30.51^{\circ}\right)$
Shadow Length $=3.80 \mathrm{~m}$
The shadow length at 10 am and 2 pm is 3.80 m . To prevent shading, the arrays will be placed 4 meters apart as shown in figure 26 and 27 below. It is important to note the array length and the module length is shorter than is shown in figure 26 since the modules are at an angle. Therefore figure 26 overcompensates the space the modules will take up. Figure 27 is a 3D visual aid to help show what the solar panels would look like on the property. Simulations results are shown in chapter 18.

Figure 26: Design 1-Modules Tilted South at Angle of 34.6°, 26 Inverters, 624 Modules

Figure 27: Design 1 - 3D Model of Modules Tilted 34.6° South, 26 Inverters, 624 Modules

12. DESIGN 2 (3 STRING) - FIXED TILT

Design 2 utilizes all 3 maximum power point trackers on the inverter as shown below in figure 28.

Figure 28: Design 2 - First Row Strings of Solar Farm, Modules Tilted Towards the South

Interrow spacing/shading calculation will be done for the design in figure 28 and will prevent shading on the winter solstice between the hours of 10 am and 2 pm . The solar declination, hour angle, altitude angle, and azimuth angle has already been calculated in chapter 10.

12.1 Calculation of Height and Length of Solar Module Array

The solar modules will be tilted at an angle of 34.5723° and the hypotenuse length is known as shown below in figure 29. The hypotenuse has a length of one solar module. Since the modules are in the portrait orientation, the length of one solar module is 1.821 m . With this information, the angle of tilt and the length of the hypotenuse, the height and length can be determined from trigonometric calculations. Figure 30 shows the height and length labeled in the figure.

Figure 29: Design 2 - Depiction of the Height and Length of the Array

Calculation of Height:

$$
\begin{aligned}
& \sin \left(34.5723^{\circ}\right)=H / 1.821 \mathrm{~m} \\
& H=1.821 \mathrm{~m} x \sin \left(34.5723^{\circ}\right) \\
& H=1.03 \mathrm{~m}
\end{aligned}
$$

Because the solar modules are lifted off the ground by 0.3556 meters, this needs to be added to the calculated height measurement to determine the total height.

Total Height $=1.03 \mathrm{~m}+0.3556 \mathrm{~m}=1.39 \mathrm{~m}$

Calculation of Length:

$$
\begin{aligned}
& \cos \left(34.5723^{\circ}\right)=\mathrm{L} / 1.821 \mathrm{~m} \\
& \mathrm{~L}=1.821 \times \cos \left(34.5723^{\circ}\right) \\
& \mathrm{L}=1.50 \mathrm{~m}
\end{aligned}
$$

Figure 30: Design 2 - Displays the Height and Length of the Array

12.2 Calculation of Interrow Spacing at 10am December 21 ${ }^{\text {st }}$ [18]:

Reference chapter 9 for depictions of the yellow and red triangles.
Part 1: Yellow Triangle
Tan(Altitude Angle) $=$ Array Height $/$ Length X
Length X = Array Height / Tan(Altitude Angle)
Length $\mathrm{X}=1.39 \mathrm{~m} / \operatorname{Tan}\left(25.37^{\circ}\right)$
Length $X=2.93 \mathrm{~m}$
Part 2: Red Triangle
$\operatorname{Cos}($ Azimuth Angle $)=$ Shadow Length $/$ Length X
Shadow Length $=2.93 \mathrm{~m} \times \operatorname{Cos}($ Azimuth Angle $)$
Shadow Length $=2.93 \mathrm{~m} \times \operatorname{Cos}\left(30.51^{\circ}\right)$
Shadow Length $=2.52 \mathrm{~m}$
12.3 Calculation of Interrow Spacing at 2 pm December $21^{\text {st }}[18]$:

Reference chapter 9 for depictions of the yellow and red triangles.
Part 1: Yellow Triangle
Tan(Altitude Angle) $=$ Array Height $/$ Length X
Length X = Array Height $/$ Tan(Altitude Angle)
Length $\mathrm{X}=1.39 \mathrm{~m} / \operatorname{Tan}\left(25.37^{\circ}\right)$
Length $X=2.93 \mathrm{~m}$
Part 2: Red Triangle
$\cos ($ Azimuth Angle $)=$ Shadow Length $/$ Length X
Shadow Length $=$ Length $\mathrm{X} x \cos ($ Azimuth Angle $)$
Shadow Length $=2.93 \mathrm{~m} \times \cos \left(-30.51^{\circ}\right)$
Shadow Length $=2.52 \mathrm{~m}$

The shadow length at 10 am and 2 pm is the same at 2.52 m . To prevent shading the arrays will be placed 3 meters apart as shown in figure 31 and 32. It is important to note the array length and the module length is shorter than is shown in figure 31. Therefore figure 31 overcompensates the space the modules will take up. Figure 31 is a visual aid to help show what the solar panels would look like on the property.

Figure 31: Design 2 - Modules Tilted South at Angle of 34.6°, 24 Inverters, 576 Modules

Figure 32: Design 2-3D Model of Modules Tilted 34.6° South, 24 Inverters, 576 Modules

13. DESIGN 3 (2 STRING) - FIXED TILT

Design 3 only utilizes 2 maximum power point trackers on the inverter as shown below in figure 33. Two string designs were included to evaluate the difference between 3 string simulation results and 2 string simulation results.

Figure 33: Design 3-First Row of Solar Farm, Modules Tilted Towards the South

Interrow spacing/shading calculation will be done for the design in figure 33 and will prevent shading on the winter solstice between the hours of 10 am and 2 pm . The solar declination, hour angle, altitude angle, and azimuth angle has already been calculated in chapter 10.

13.1 Calculation of Height and Length of Solar Module Array

The solar modules will be tilted at an angle of 34.5723° south and the hypotenuse length is known as shown below in figure 34. The solar modules are in the landscape orientation. Therefore, the hypotenuse has a length of two solar modules at 2.023 m . With this information, the angle of tilt and the length of the hypotenuse, the height and length can be determined from trigonometric calculations. Figure 35 shows the height and length labeled in the figure.

Figure 34: Design 3 - Depiction of the Height and Length of the Array

Calculation of Height:

$$
\begin{aligned}
& \sin \left(34.5723^{\circ}\right)=H / 2.023 \mathrm{~m} \\
& H=2.023 m \times \sin \left(34.5723^{\circ}\right) \\
& H=1.148 \mathrm{~m}
\end{aligned}
$$

Because the solar modules are lifted off the ground by 0.3556 meters, this needs to be added to the calculated height measurement to determine the total height.

Total Height $=1.148 \mathrm{~m}+0.3556 \mathrm{~m}=1.5 \mathrm{~m}$

Calculation of Length:

$$
\begin{aligned}
& \cos \left(34.5723^{\circ}\right)=\mathrm{L} / 2.023 \mathrm{~m} \\
& \mathrm{~L}=2.023 \times \cos \left(34.5723^{\circ}\right) \\
& \mathrm{L}=1.67 \mathrm{~m}
\end{aligned}
$$

Figure 35: Design 3 - Displays the Height and Length of the Array

13.2 Calculation of Interrow Spacing at 10am December 21 ${ }^{\text {st }}$ [18]:

Reference chapter 9 for depictions of the yellow and red triangles.
Part 1: Yellow Triangle
Tan(Altitude Angle) $=$ Array Height / Length X
Length X = Array Height $/$ Tan(Altitude Angle)
Length $\mathrm{X}=1.50 \mathrm{~m} / \operatorname{Tan}\left(25.37^{\circ}\right)$
Length $\mathrm{X}=3.16 \mathrm{~m}$
Part 2: Red Triangle
$\operatorname{Cos}($ Azimuth Angle $)=$ Shadow Length $/$ Length X
Shadow Length $=3.16 \mathrm{mx} \mathrm{Cos}($ Azimuth Angle $)$
Shadow Length $=3.16 \mathrm{~m} \times \operatorname{Cos}\left(30.51^{\circ}\right)$
Shadow Length $=2.72 \mathrm{~m}$

13.3 Calculation of Interrow Spacing at 2pm December 21 ${ }^{\text {st }}$ [18]:

Reference chapter 9 for depictions of the yellow and red triangles.
Part 1: Yellow Triangle
Tan(Altitude Angle) $=$ Array Height $/$ Length X
Length X = Array Height $/$ Tan(Altitude Angle)
Length $\mathrm{X}=1.50 \mathrm{~m} / \operatorname{Tan}\left(25.37^{\circ}\right)$
Length $\mathrm{X}=3.16 \mathrm{~m}$
Part 2: Red Triangle
$\cos ($ Azimuth Angle $)=$ Shadow Length $/$ Length X
Shadow Length $=$ Length $\mathrm{X} x \cos ($ Azimuth Angle $)$
Shadow Length $=3.16 \mathrm{~m} \times \cos \left(-30.51^{\circ}\right)$
Shadow Length $=2.72 \mathrm{~m}$

The shadow length at 10 am and 2 pm is the same at 2.72 m . To prevent shading the arrays will be placed 3 meters apart as shown in figure 36 and 37. It is important to note the array length and the module length is shorter than is shown in figure 36 . Therefore figure 36 overcompensates the space the modules will take up. Figure 37 is a 3D visual aid to help show what the solar panels would look like on the property.

Figure 36: Design 3 - Modules Tilted South at Angle of 34.6, 36 Inverters, 576 Modules

Figure 37: Design 3- 3D Model of Modules Tilted 34.6 South, 36 Inverters, 576 Modules

14. DESIGN 4 (2 STRING) - FIXED TILT

Design 4 only utilizes 2 maximum power point trackers on the inverter as shown below in figure 38. Two string designs were included to evaluate the difference between 3 string simulation results and 2 string simulation results.

Figure 38: Design 4 - First Row of Solar Farm, Modules Tilted Towards the South

Interrow spacing/shading calculation will be done for the design in figure 38 and will prevent shading on the winter solstice between the hours of 10 am and 2 pm . The solar declination, hour angle, altitude angle, and azimuth angle has already been calculated in chapter 10.

14.1 Calculation of Height and Length of Solar Module Array

The solar modules will be tilted at an angle of 34.5723° south and the hypotenuse length is known as shown below in figure 39. The hypotenuse has a length of the longer side of the solar modules at 1.821 m . With this information, the angle of tilt and the length of the hypotenuse, the height and length can be determined from trigonometric calculations. Figure 40 shows the height and length labeled in the figure.

Figure 39: Design 4 - Depiction of the Height and Length of the Array

Calculation of Height:

$$
\begin{aligned}
& \sin \left(34.5723^{\circ}\right)=H / 1.821 \mathrm{~m} \\
& H=1.821 \mathrm{~m} x \sin \left(34.5723^{\circ}\right) \\
& H=1.03 \mathrm{~m}
\end{aligned}
$$

Because the solar modules are lifted off the ground by 0.3556 meters, this needs to be added to the calculated height measurement to determine the total height.

Total Height $=1.03 \mathrm{~m}+0.3556 \mathrm{~m}=1.39 \mathrm{~m}$

Calculation of Length:

$$
\begin{aligned}
& \cos \left(34.5723^{\circ}\right)=\mathrm{L} / 1.821 \mathrm{~m} \\
& \mathrm{~L}=1.821 \times \cos \left(34.5723^{\circ}\right) \\
& \mathrm{L}=1.5 \mathrm{~m}
\end{aligned}
$$

Figure 40: Design 4 - Displays the Height and Length of the Array

14.2 Calculation of Interrow Spacing at 10am December 21 ${ }^{\text {st }}$ [18]:

Reference chapter 9 for depictions of the yellow and red triangles.
Part 1: Yellow Triangle
Tan(Altitude Angle) $=$ Array Height $/$ Length X
Length X = Array Height / Tan(Altitude Angle)
Length $\mathrm{X}=1.39 \mathrm{~m} / \operatorname{Tan}\left(25.37^{\circ}\right)$
Length $\mathrm{X}=2.93 \mathrm{~m}$
Part 2: Red Triangle
$\operatorname{Cos}($ Azimuth Angle $)=$ Shadow Length $/$ Length X
Shadow Length $=2.93 \mathrm{~m} \times \operatorname{Cos}($ Azimuth Angle $)$
Shadow Length $=2.93 \mathrm{~m} \times \operatorname{Cos}\left(30.51^{\circ}\right)$
Shadow Length $=2.5 \mathrm{~m}$

14.3 Calculation of Interrow Spacing at 2 pm December 21 ${ }^{\text {st }}$ [18]:

Reference chapter 9 for depictions of the yellow and red triangles.
Part 1: Yellow Triangle
Tan(Altitude Angle) $=$ Array Height $/$ Length X
Length X = Array Height $/$ Tan(Altitude Angle)
Length $\mathrm{X}=1.39 \mathrm{~m} / \operatorname{Tan}\left(25.37^{\circ}\right)$
Length $X=2.93 \mathrm{~m}$
Part 2: Red Triangle
$\cos ($ Azimuth Angle $)=$ Shadow Length $/$ Length X
Shadow Length $=$ Length $\mathrm{X} x \cos ($ Azimuth Angle $)$
Shadow Length $=2.93 \mathrm{~m} \times \cos \left(-30.51^{\circ}\right)$
Shadow Length $=2.52 \mathrm{~m}$
The shadow length at 10 am and 2 pm is the same at 2.5 m . To prevent shading the arrays will be placed 2.5 meters apart as shown in figure 41 and 42 . It is important to note the array length and the module length is shorter than is shown in figure 41 . Therefore figure 41 overcompensates the space the modules will take up. Figure 42 is a 3D visual aid to help show what the solar panels would look like on the property.

Figure 41: Design 4 - Modules Tilted South at Angle of 34.6°, 40 Inverters, 640 Modules

Figure 42: Design 4-3D Model of Modules Tilted 34.6º South, 40 Inverters, 640 Modules

15. SINGLE AXIS TRACKING - OPTIMAL TILT ANGLE [19]

To calculate the interrow spacing of single axis tilt solar modules, backtracking needs to be considered. Backtracking is when the tilt of the solar modules changes from the optimal tilt angle to account for shading on other solar modules in a different row. To ensure the solar modules are oriented at the optimal tilt angle between the hours of 10am to 2 pm , the optimal tilt angle for 10am and 2 pm needs to be calculated on the winter solstice, December $21^{\text {st }}$. The modules will be oriented on a north south axis to ensure the modules are facing more east in the morning and more west in the afternoon. This optimal tilt angle equation is used in designs 5 and 6.

15.1 Optimal Tilt Angle Derivation [19]

To calculate the optimal tilt angle, first, two vectors on the plane of the solar module needs to be defined as shown in figure 44. Tau (τ) in this derivation is the tilt angle of the module. It is positive in the morning when the modules are tilted toward the east and negative in the evening when the modules are tilted toward the west. Tau is shown in figure 43 [19].

$$
\begin{aligned}
& \mathrm{V} 1=\left[\begin{array}{lll}
-1 & 0 & 0
\end{array}\right] \\
& \mathrm{V} 2=\left[\begin{array}{ll}
0 & -\cos (\tau) \sin (\tau)
\end{array}\right]
\end{aligned}
$$

Using V1 and V2, a vector normal to the module is calculated by crossing V1 and V2.
$\mathrm{n}=\mathrm{V} 1 \mathrm{x}$ V2
$\mathrm{n}=\mathrm{V} 1 \mathrm{x} \mathrm{V} 2=[(0 \mathrm{x} \sin (\tau)-0 \mathrm{x}-\cos (\tau)) \quad(0 \mathrm{x} 0--1 \mathrm{x} \sin (\tau)) \quad(-1 \mathrm{x}-\cos (\tau)-0 \mathrm{x} 0)]$
$\mathrm{n}=\mathrm{V} 1 \times \mathrm{V} 2=\left[\begin{array}{lll}0 & -\sin (\tau) & \cos (\tau)\end{array}\right]$
$\mathrm{n}=\left[\begin{array}{lll}0 & -\sin (\tau) & \cos (\tau)\end{array}\right]$

Figure 43: Displays the Tilt Angle Tau τ [19]

Figure 44: Displays V1, V2, and the Normal Vector [19]

Next a vector pointing toward the sun needs to be determined. This can be done using functions of the sun's altitude angle β and the suns azimuth angle Φ. This vector takes into consideration the location, time of day, and day of the year. $\mathrm{v}_{\mathrm{S}}=[\cos (\beta) \cos (\Phi) \quad \cos (\beta) \sin (\Phi) \quad \sin (\beta)]$

Figure 45: Displays the Vector that is in the Direction of the Sun [19]

Figure 46: Shows the Relationship Between Each Angle [19]

The next step is to calculate the dot product between vector vs and vector n as
shown below in equation 12 . The dot product of v_{S} and n is also equal to $\cos (\theta)$ as shown in figure 46.
vs dot $\mathrm{n}=\cos (\theta)=\cos (\beta) \cos (\Phi) \times 0+\cos (\beta) \sin (\Phi) \mathrm{x}-\sin (\tau)+\sin (\beta) \times \cos (\tau)$
vs dot $\mathrm{n}=\cos (\theta)=-\cos (\beta) \sin (\Phi) \sin (\tau)+\sin (\beta) \cos (\tau)$
Next is to take the derivative of v_{S} dot n with respect to tau τ.
$d(\cos (\theta)) / d \tau=-\cos (\beta) \sin (\Phi) \cos (\tau)-\sin (\beta) \sin (\tau)$

Then set it equal to zero. This is because cosine is at its maximum at 0 .
$-\cos (\beta) \sin (\Phi) \cos (\tau)-\sin (\beta) \sin (\tau)=0$

Then solve for tau τ to find the equation for optimal tilt angle.
$-\cos (\beta) \sin (\Phi) \cos (\tau)=\sin (\beta) \sin (\tau)$
$-\cos (\beta) \sin (\Phi)=\sin (\beta)(\sin (\tau) / \cos (\tau))$
$-\cos (\beta) \sin (\Phi)=\sin (\beta) \tan (\tau)$
$\tan (\tau)=-(\cos (\beta) \sin (\Phi)) / \sin (\beta)$
$\tan (\tau)=-\sin (\Phi) / \tan (\beta)$
$\tau=\arctan (-\sin (\Phi) / \tan (\beta))$

Where tau is the optimal tilt angle of the solar modules in degrees
The equation above for tau, τ, calculates the optimal tilt angle for the solar modules.
The calculations for the optimal tilt angle at 10 am and 2 pm on December $21^{\text {st }}$ are shown below and are the same for designs 5 and 6.

Solar Declination on December 21 ${ }^{\text {st }}: \quad \delta=-23.45^{\circ}$

Hour Angle at 10am on December $21^{\text {st. }} \quad \mathrm{H}=30^{\circ}$ at 10am December $21^{\text {st }}$
Suns altitude at 10am on December $21^{\text {st. }} \quad \beta=25.37^{\circ}$
Suns Azimuth at 10am on December $21^{\text {st. }} \quad \Phi=30.51^{\circ}$
15.2 Modules optimal tilt angle at 10am on December $21^{\text {st }}$:
$\tau=\arctan (-\sin (\Phi) / \tan (\beta))$
Where τ is the optimal tilt angle at $10 \mathrm{am}, \beta$ is the suns altitude at 10 am , and Φ is the suns azimuth at 10 am .
$\tau=\arctan \left(-\sin \left(30.51^{\circ}\right) / \tan \left(25.37^{\circ}\right)\right)$
$\tau=-46.95^{\circ}$

Solar Declination on December $21^{\text {st }} \quad \delta=-23.45^{\circ}$
Hour Angle at 2pm on December 21 ${ }^{\text {st. }} \quad \mathrm{H}=-30^{\circ}$ at 2 pm December $21^{\text {st }}$
Suns altitude at 2 pm on December $21^{\text {st }}: \quad \beta=25.37^{\circ}$
Suns Azimuth at 2 pm on December $21^{\text {st: }} \quad \Phi=-30.51^{\circ}$
15.3 Calculation of the modules optimal tilt angle at 2 pm on December $21^{\text {st. }}$.
$\tau=\arctan (-\sin (\Phi) / \tan (\beta))$
Where τ is the optimal tilt angle at $2 \mathrm{pm}, \beta$ is the suns altitude at 2 pm , and Φ is the suns azimuth at 2 pm .
$\tau=\arctan \left(-\sin \left(-30.51^{\circ}\right) / \tan \left(25.37^{\circ}\right)\right)$
$\tau=46.95^{\circ}$

The next step is calculating the shadow length for designs 5 and 6 when the solar module is tilted a 46.95° facing east and facing west. Then the modules can be placed into a design layout to determine how many inverters and modules will fit on the property and a simulation can be ran.

16. EXAMPLE SHADING CALCS - SINGLE AXIS TRACKING [18]

To determine how far apart the modules should be placed for single axis tracking the shadow length needs to be calculated at the hours of 10am when the module is facing east and at 2 pm when the module is facing west. Since the sun rises and falls symmetrically around 12 pm noon, the shadow lengths will be the same. Figure 47 shows a single module facing east with a tilt of 46.95°. To complete the calculation there are two triangles that need to be looked at to determine the shadow length. Triangle one is shown as yellow in figure 47. In this triangle the height of the solar array can be calculated and so can the altitude angle of the sun at a certain time on a certain day. Then using trigonometry, Length X can be solved for using tangent as shown in equation 14 . Figure 47 shows the second triangle in red. In this triangle, Length X is known, and the azimuth angle can be calculated. With that information, the shadow length can be calculated using sine as shown in equation 15. Then the arrays should be place further apart than the shadow length. This method was used when calculating the interrow spacing in designs 5 and 6.

Figure 47: Triangles for Calculating Shadow Length of Single Axis Tracking Modules [18]

Part 1: Yellow Triangle

Tan(Altitude Angle) $=$ Array Height $/$ Length X
Length X = Array Height / Tan(Altitude Angle)
Part 2: Red Triangle
Sin(Azimuth Angle $)=$ Shadow Length $/$ Length X
Shadow Length $=$ Length $\mathrm{X} \times \operatorname{Sin}($ Azimuth Angle $)$

17. DESIGN 5 \& DESIGN 6 - SINGLE AXIS TRACKING

Figure 48 shows the base format of design 5 which has 3 strings of modules per inverter. Figure 49 shows the base format of design 6 which has 2 strings of modules per inverter. Because the only difference between these designs is the number of strings connected to the inverter, the shadow length calculation will be the same for both designs.

Figure 48: Design 5 (3 String) - Base Design Layout

Figure 49: Design 6 (2 String) - Base Design Layout

17.1 Calculation of Height and Length of Solar Module Array:

For both the designs of the single axis tracking modules, the modules will be in single rows as shown in figure 50 . Figure 50 shows the height and length measurements that need to be calculated. The solar modules will have a height of 0.5 m off the ground to promote airflow, clear any brush, and allow for any extra mounting requirements [17].

Figure 50: Design 5 \& 6 - Height and Length of the Array

Calculation of Height:

$\operatorname{Sin}\left(46.95^{\circ}\right)=H / 1.821 \mathrm{~m}$
$H=1.821 m x \operatorname{Sin}\left(46.95^{\circ}\right)$
$\mathrm{H}=1.33 \mathrm{~m}$
Total Height $=1.33 \mathrm{~m}+0.5 \mathrm{~m}$
Total Height $=1.83 \mathrm{~m}$

Calculation of Length:
$\operatorname{Cos}\left(46.95^{\circ}\right)=\mathrm{L} / 1.821 \mathrm{~m}$
$\mathrm{L}=1.821 \mathrm{~m} \times \operatorname{Cos}\left(46.95^{\circ}\right)$
$\mathrm{L}=1.24 \mathrm{~m}$

Figure 51 shows the height and length measurements in these designs. Because the modules are lifted 0.5 m , the total height of the modules is 1.83 m .

Figure 51: Design 5 \& 6 - Height and Length of the Array

17.2 Calculation of Interrow Spacing at 10am December 21 ${ }^{\text {st }}$ [18]:

Reference chapter 16 for depictions of the yellow and red triangles.
Part 1: Yellow Triangle
Tan(Altitude Angle) $=$ Array Height / Length X
Length X = Array Height / Tan(Altitude Angle)
Length $\mathrm{X}=1.83 \mathrm{~m} / \operatorname{Tan}\left(25.37^{\circ}\right)$
Length $\mathrm{X}=3.86 \mathrm{~m}$
Part 2: Red Triangle
Sin(Azimuth Angle) $=$ Shadow Length / Length X
Shadow Length $=3.86 \mathrm{~m} \times \operatorname{Sin}($ Azimuth Angle $)$
Shadow Length $=3.86 \mathrm{~m} \times \operatorname{Sin}\left(30.51^{\circ}\right)$
Shadow Length $=1.96 \mathrm{~m}$

17.3 Calculation of Interrow Spacing at 2pm December 21 ${ }^{\text {st }}$ [18]:

Reference chapter 16 for depictions of the yellow and red triangles.
Part 1: Yellow Triangle
Tan(Altitude Angle) $=$ Array Height $/$ Length X
Length X = Array Height $/$ Tan(Altitude Angle)
Length $\mathrm{X}=1.83 \mathrm{~m} / \operatorname{Tan}\left(25.37^{\circ}\right)$
Length $X=3.86 \mathrm{~m}$
Part 2: Red Triangle
Sin(Azimuth Angle) $=$ Shadow Length $/$ Length X
Shadow Length $=$ Length $\mathrm{X} \times \operatorname{Sin}($ Azimuth Angle $)$
Shadow Length $=3.86 \mathrm{mx} \mathrm{Sin}\left(30.51^{\circ}\right)$
Shadow Length $=1.96 \mathrm{~m}$
The shadow length at 10 am and 2 pm is the same at 1.96 m . To prevent shading the arrays for these two designs will be placed 2 meters apart as shown in figure 52 and figure 54. It is important to note the array length and the module length is shorter than is shown. Therefore figure 52 and figure 54 overcompensates the space the modules will take up. Figures 53 and 55 show a 3D visual aid to help show what the solar panels would look like on the property.

Figure 52: Design 5 - Module Layout, 30 Inverters, 720 Modules

Figure 53: Design 5-3D Module Visual Aid, 30 Inverters, 720 Modules

Figure 54: Design 6 - Module Layout, 50 Inverters, 800 Modules

Figure 55: Design 6-3D Module Visual Aid, 50 Inverters, 800 Modules

18. DESIGN SIMULATION RESULTS AND COMPARISON

All designs will be compared based on the project requirements in chapter 1. The location input for all design simulations was Palmdale, California. For all fixed tilt designs a tilt angle of 34.6° towards the south was inputted. Module simulation inputs and inverter simulation inputs are shown below in tables 4 and 5 .

Table 4: Module Simulation Inputs Used for All Design Simulations

	Simulation Inputs
Module Area [m²]	1.85
Nominal Operating Cell Temperature $\left[{ }^{\circ} \mathrm{C}\right]$	44
Maximum Power Point Voltage ($\mathrm{Vmp}_{\mathrm{mp}}$) $[\mathbf{V}]$	42.4
Maximum Power Point Current (Imp) [A]	9.56
Open Circuit Voltage ($\mathrm{V}_{\text {oc }}$) [V]	48.9
Short Circuit Current (Isc) [A]	10.14
Temperature Coefficient of $\mathrm{V}_{\text {oc }}\left[\% /{ }^{\circ} \mathrm{C}\right]$	-0.24
Temperature Coefficient of $\mathrm{I}_{\text {sc }}\left[\% /{ }^{\circ} \mathrm{C}\right.$]	0.04
Temp. Coefficient of Max. Power Point $\left[\% /{ }^{\circ} \mathrm{C}\right]$	-0.26
Number of Cells in Series	132

Table 5: Inverter Simulation Inputs Used for All Design Simulations

Maximum AC Output Power [Wac]	5000
Weighted Efficiency	97.5%
Nominal AC Voltage [Vac]	208
Maximum DC Voltage [Vdc]	480
Maximum DC Current [Adc]	12
Minimum MPPT DC Voltage [Vdc]	50
Nominal DC Voltage [V]	120
Maximum MPPT DC Voltage [Vdc]	480

Table 6 below shows the individual design simulation inputs which include the number of modules and inverter in each design as well as if the modules are fixed or single axis tracking.

Table 6: Individual Design Simulation Inputs

	Design 1 3 Strings Fixed Tilt	Design 2 3 Strings Fixed Tilt	Design 3 2 Strings Fixed Tilt	Design 4 2 strings Fixed Tilt	Design 5 - 3 Strings Single Axis Tracking	Design 6 - 2 Strings Single Axis Tracking
Modules	624	576	576	640	720	800
Inverters	26	24	36	40	30	50
Tracking	Fixed at	Fixed at	Fixed at	Fixed at	1 Axis	1 Axis
and	34.6°	34.6°	34.6°	34.6°	Backtracking	Backtracking
Orientation	South	South	South	South		

SAM provides default values for losses such as soiling, module mismatch, diodes and connections, DC wiring, tracking error, nameplate, DC power optimizer, and AC wiring. These default losses are show below in table 7.

Table 7: SAM Default Percentage Losses

$[\%]$	Design 1-3 Strings Fixed Tilt	Design 2 - 3 Strings Fixed Tilt	Design 3- 2 Strings Fixed Tilt	Design 4- 2 Sitrings Fixed Tilt	Design 5 - 3 Strings Single Axis Tracking	Design 6 - 2 Strings Single Axis Tracking
Soiling	5	5	5	5	5	5
Module Mismatch	2	2	2	2	2	2
Diodes and Connections	0.5	0.5	0.5	0.5	0.5	0.5
DC Wiring	2	2	2	2	2	2
Tracking Error	0	0	0	0	0	0
Nameplate	0	0	0	0	0	0
DC Power Optimizer	0	0	0	0	0	0
AC Wiring	1	1	1	1	1	1

Figures 56-61 display each designs simulation result metric and the value. In table 9 , these metrics are compared to each to determine the most suitable design.

Metric	Value
Annual energy (year 1)	$386,897 \mathrm{kWh}$
Capacity factor (year 1)	17.5%
Energy yield (year 1)	$1,530 \mathrm{kWh} / \mathrm{kW}$
Performance ratio (year 1)	0.61
Levelized COE (nominal)	$3.66 \Phi / \mathrm{kWh}$
Levelized COE (real)	$2.91 \mathrm{\Phi} / \mathrm{kWh}$
Electricity bill without system (year 1$) \$ 104,614$	
Electricity bill with system (year 1)	$\$ 71,797$
Net savings with system (year 1)	$\$ 32,817$
Net present value	$\$ 148,170$
Simple payback period	10.5 years
Discounted payback period	23.0 years
Net capital cost	$\$ 434,858$
Equity	$\$ 0$
Debt	$\$ 434,858$

Figure 56: Design 1 (3 String) - Fixed Tilt Simulation Results

Metric	Value
Annual energy (year 1)	364,691 kWh
Capacity factor (year 1)	17.8\%
Energy yield (year 1)	1,562 kWh/kW
Performance ratio (year 1)	0.63
Levelized COE (nominal)	3.58 ¢/kWh
Levelized COE (real)	2.85 ¢/kWh
Electricity bill without system (year 1)	\$104,614
Electricity bill with system (year 1)	\$73,255
Net savings with system (year 1)	\$31,360
Net present value	\$146,064
Simple payback period	10.1 years
Discounted payback period	20.9 years
Net capital cost	\$401,408
Equity	\$0
Debt	\$401,408

Figure 57: Design 2 (3 String) - Fixed Tilt Simulation Results

Metric	Value
Annual energy (year 1)	$447,464 \mathrm{kWh}$
Capacity factor (year 1)	21.9%
Energy yield (year 1)	$1,917 \mathrm{kWh} / \mathrm{kW}$
Performance ratio (year 1)	0.77
Levelized COE (nominal)	$2.97 \mathrm{\Phi} / \mathrm{kWh}$
Levelized COE (real)	$2.37 \Phi / \mathrm{kWh}$
Electricity bill without system (year 1) $\$ 104,614$	
Electricity bill with system (year 1)	$\$ 68,296$
Net savings with system (year 1)	$\$ 36,318$
Net present value	$\$ 184,480$
Simple payback period	8.6 years
Discounted payback period	15.2 years
Net capital cost	$\$ 401,408$
Equity	$\$ 0$
Debt	$\$ 401,408$

Figure 58: Design 3 (2 String) - Fixed Tilt Simulation Results

Metric	Value
Annual energy (year 1)	$497,126 \mathrm{kWh}$
Capacity factor (year 1)	21.9%
Energy yield (year 1)	$1,916 \mathrm{kWh} / \mathrm{kW}$
Performance ratio (year 1)	0.77
Levelized COE (nominal)	$2.97 \Phi / \mathrm{kWh}$
Levelized COE (real)	$2.37 \Phi / \mathrm{kWh}$
Electricity bill without system (year 1$)$	$\$ 104,614$
Electricity bill with system (year 1)	$\$ 64,693$
Net savings with system (year 1)	$\$ 39,921$
Net present value	$\$ 201,217$
Simple payback period	8.7 years
Discounted payback period	15.5 years
Net capital cost	$\$ 446,008$
Equity	$\$ 0$
Debt	$\$ 446,008$

Figure 59: Design 4 (2 String) - Fixed Tilt Simulation Results

Metric	Value
Annual energy (year 1)	$494,575 \mathrm{kWh}$
Capacity factor (year 1)	19.3%
Energy yield (year 1)	$1,695 \mathrm{kWh} / \mathrm{kW}$
Performance ratio (year 1)	0.61
Levelized COE (nominal)	$3.29 \$ / \mathrm{kWh}$
Levelized COE (real)	$2.62 \$ / \mathrm{kWh}$
Electricity bill without system (year 1) $\$ 104,614$	
Electricity bill with system (year 1)	$\$ 63,166$
Net savings with system (year 1)	$\$ 41,449$
Net present value	$\$ 203,573$
Simple payback period	9.4 years
Discounted payback period	18.0 years
Net capital cost	$\$ 501,759$
Equity	$\$ 0$
Debt	$\$ 501,759$

Figure 60: Design 5 (3 String) - Single Axis Tracking Simulation Results

Metric	Value
Annual energy (year 1)	$701,728 \mathrm{kWh}$
Capacity factor (year 1)	24.7%
Energy yield (year 1)	$2,164 \mathrm{kWh} / \mathrm{kW}$
Performance ratio (year 1)	0.78
Levelized COE (nominal)	$2.63 ₫ / \mathrm{kWh}$
Levelized COE (real)	$2.09 ₫ / \mathrm{kWh}$
Electricity bill without system (year 1) $\$ 104,614$	
Electricity bill with system (year 1)	$\$ 52,805$
Net savings with system (year 1)	$\$ 51,810$
Net present value	$\$ 277,590$
Simple payback period	8.3 years
Discounted payback period	14.0 years
Net capital cost	$\$ 557,510$
Equity	$\$ 0$
Debt	$\$ 557,510$

Figure 61: Design 6 (2 String) - Single Axis Tracking

Table 8 bellow shows the simulation result for the losses in each design,
excluding the power clipping losses which is shown in table 9 . Losses shown in table 8 shows very similar losses for all designs. Therefore, these losses were not considered when determining the most suitable design according to project requirements. Losses for inverter MPPT clipping, DC availability and curtailment, inverter power consumption, AC availability and curtailment, snow, tracking error, nameplate, DC power optimizer, and transformer losses all resulted in a 0% loss.

Table 8: Design Percentage Losses from Simulation

[\%]	Design $\mathbf{1 - 3}$ Strings Fixed Tilt	Design 2 - 3 Strings Fixed Tilt	Design 3- 2 Strings Fixed Tilt	Design 4- 2 Strings Fixed Tilt	Design 5 - 3 Strings Single Axis Tracking	Design 6 - 2 Strings Single Axis Tracking
Shading	2.57	0	2.56	2.57	2.033	2.044
Reflection	2.512	2.752	2.513	2.512	1.892	1.89
Module Deviation From STC	5.546	4.842	5.541	5.546	4.923	4.923
Inverter Nighttime Consumption	0.023	0.022	0.033	0.033	0.021	0.029
Inverter Efficiency	3.019	3.041	2.554	2.554	3.002	2.537

From looking at table 9, design 6 has the most suitable design characteristics according to the project requirements. The next best deign would be design 4 followed by design 3. Design 3, 4, and 6 have a DC to AC ratio in an acceptable range between 1.3 to 1.6, while designs 1,2 , and 5 exceed the maximum DC to AC ratio for this project. A high DC to AC ratio will increase the inverters power clipping losses which is why designs 1,2 , and 5 , have an increased amount of power clipping losses. The high DC to AC ratio in designs 1,2 and 5 are because the modules are producing more power than
the inverter can convert. This comes from a mismatch in module to inverter sizing for those designs.

Only design 6 has a capacity factor that meets an acceptable range of more than 24.6%. Design 6 also produces the most energy, has the highest nameplate DC capacity, highest energy yield, and lowest levelized cost of energy. Design 6 does have the highest cost, but cost was not a limiting factor in this analysis. Therefore, a battery energy storage system will be added to design 6 .

Table 9: Design Simulation Comparison

	Design 1- 3 Strings Fixed Tilt	Design 2 - 3 Strings Fixed Tilt	Design 3 - 2 Strings Fixed Tilt	Design 4- 2 Strings Fixed Tilt	Design 5 - 3 Strings Single Axis Tracking	Design 6 - 2 Strings Single Axis Tracking
DC to AC Ratio	1.95	1.95	1.3	1.3	1.95	1.3
Inverter Power Clipping	17.18	17.788	2.106	2.105	16.716	1.448
Capacity Factor [\%]	17.5	17.8	21.9	21.9	19.3	24.7
Levelized Cost of Energy [cents/kWh]	2.91	2.85	2.37	2.37	2.62	2.09
Annual Energy Production $[\mathbf{k W h] ~}$	386,897	364,691	447,464	497,126	494,575	701,728
Net Capital Cost [\$]	434,858	401,408	401,408	446,008	501,759	557,510

19. BATTERY ANALYSIS [20]

The simulation results from SAM list the predicted hourly power production for 25 years. Looking at the first year of this data for design 6 (2 string) single axis tracking the design shows the maximum energy producing day is June $21^{\text {st }}$ and the minimum energy producing day is December $21^{\text {st }}$. To properly size the battery, the worst-case scenario will be considered, which would be the day the most energy is produced, June $21^{\text {st }}$, since the largest energy storage system will be needed to compensate for that day. Each inverter has a maximum compatible battery pack size of 30 kWh per inverter and there are 50 inverters in this design, therefore there will be a maximum capacity of 1500 kWh battery storage for the design. Table 10 bellow shows the battery requirements from the inverter datasheet. A battery energy storage system was also designed for design 5 and is shown in appendix section I.

Table 10: Battery Requirements from Inverter Datasheet

Compatible Battery Pack Size	$5-30 \mathrm{kWh}$
Rated I/O Power	5000 W
Peak I/O Power	6000 W
Acceptable Input Voltage Range	$350 \mathrm{~V}-480 \mathrm{~V}$
Rated I/O Current	15 A
Peak I/O Current (30s)	18 A
Cycle Efficiency Charging to Discharging (PCS Only)	Peak $>95 \%$
Fuse Rating	30A
Battery Terminal	Screw Type

Table 11: Hourly kW on June $21^{\text {st }}$ SAM Simulation Design 6

Time of Day	Predicted Power Production [kW]
6 am	35.07
7 am	135.27
8 am	233.80
9 am	247.50
10 am	247.50
11 am	247.50
12 pm	246.58
1 pm	246.25
2 pm	246.34
3 pm	247
4 pm	247.38
5 pm	216.20
6 pm	114.97
7 pm	21.78

Table 12: Hourly kW on December $21^{\text {st }}$ SAM Simulation Design 6

Time of Day	Predicted Power Production [kW]
8 am	19.57
9 am	107.89
10 am	178.84
11 am	164.93
12 pm	121.94
1 pm	157.27
2 pm	169.57
3 pm	168.50
4 pm	79.73
5 pm	4.18

Maximum Capacity: 1500kWh
Peak Load Shaving on Year 1 June $21^{\text {st }}$ (9am-2pm): 1,481.67kWh
Peak Load Shaving on Year 1 December $21^{\text {st }}$ ($8 \mathrm{am}-5 \mathrm{pm}$): 1,172,42kWh

From looking at the data above, on June $21^{\text {st }}$ charging the batteries between the hours of 9 am to 2 pm would need a battery energy storage system capable of storing $1,481.67 \mathrm{kWh}$, which would be just under the maximum capacity of the battery energy storage system. Therefore, the maximum 1500 kWh should be installed for this design.

20. CONCLUSION

The goal of this thesis was to design an efficient solar farm with a battery energy storage system for a farmer in California. Six different designs were created and compared, including four fixed tilt designs and two single axis tracking designs. Shading calculations were done to prevent shading between the hours of 10am and 2 pm on December $21^{\text {st }}$. These calculations used the module angle of tilt, height of the array, altitude angle, and azimuth angle. When comparing the simulation of these designs using System Advisor Model (SAM), design 6 (2 string) single axis tracking had the best outputs that met the project requirements. This included the highest energy production, DC to AC ratio and capacity factor in an acceptable range, and lowest levelized cost of energy. Therefore, a battery energy storage system was sized and added to design 6 (2 string) single axis tracking design. Future work for this project would include adding a rapid shut down (RSD) device, defining the DC and AC cables, determining a wire size, adding a switchyard, and picking out an available battery for the energy storage system [21]. In addition, designs 1,2 , and 5 could possibly be improved by changing the inverter to a more appropriate size for the amount of power produced by the modules, thus reducing the DC to AC ratio and clipping losses for those designs. More future work would include an in-depth analysis of the economic side of the designs, such as when the design would become profitable.

REFERENCES

[1] Ray, Suparna. "Solar Power and Batteries Account for 60% of planned new US Electric Generation Capacity." March 7, 2022. [Online] Available: https://www.eia.gov/todayinenergy/detail.php?id=51518 [Accessed 20-Nov2022]
[2] Zipp, Kathie. "Why Array Oversizing Makes Financial Sense." Solar Power World. February 12, 2018. [Online]. Available:
https://www.solarpowerworldonline.com/2018/02/array-oversizing-makes-financialsense/ [Accessed 08-Dec-2022]
[3] "Measuring and Analysing an IV Curve." Ossila Enabling Materials Science. [Online]. Available: https://www.ossila.com/pages/iv-curves-measurement [Accessed 07-Dec-2021]
[4] Uddin, Moslem, Romlie, Mohd Fakhizan, Abdullah, Mohd Faris, Abd Halim, Syahirah, Abu Bakar, Ab Halim, and Chia Kwang, Tan. "A Review on Peak Load Shaving Strategies." Renewable \& Sustainable Energy Reviews 82 (2018): 3323-332. Web.
[5] "What is Generation Capacity?" Office of Nuclear Energy. May 1, 2020. [Online]. Available: https://www.energy.gov/ne/articles/what-generation-capacity [Accessed 07-Dec-2022]
[6] Neill, Susan, et al. Solar Farms : the Earthcan Expert Guide to Design and Construction of Utility-Scale Photovoltaic Systems. Routledge, is an imprint of the Taylor \& Francis Group, an Informa Business, 2017, https://doi.org/10.4324/9781315651002.
[7] Scholten, Mark. "Solar Airplanes: Future or Reality?" 2018 MG Energy Systems Innovation in Energy Storage. [Online]. Available:
https://www.mgenergysystems.eu/2018/06/01/solar-airplanes-future-or-reality/ [Accessed 07-Dec-2021]
[8] Vieira, Romenia G., et al. "A Comprehensive Review on Bypass Diode Application on Photovoltaic Modules." Energies (Basel), vol. 13, no. 10, MDPI, 2020, p. 2472-, doi:10.3390/en13102472.
[9] "Solar Power Panel: Assembly of Solar Cells that can Generate 230 to 275 Watts of Power." 2019 The Economic Times.
[10] Brakels, Ronald, "Half Cut Solar Panels: Higher Efficiency \& Better Shade Tolerance," 2018 [Online]. Available: https://www.solarquotes.com.au/blog/half-cut-solar-cells-panels/ [Accessed 28-Oct-2021]
[11] Avila Solar, "A Guide to Large Photovotaic Powerplant Design", [Online]. Available: https://avilasolar.com/a-guide-to-large-photovoltaic-powerplant-design/ [Accessed 28-Oct-2021]
[12] "REC Alpha REC405AA Pure Black." Energysage. [Online]. Available: https://www.energysage.com/solar-panels/rec/2545/REC405AA_Pure_Black/ [Accessed 08-Dec-2021]
[13] "Solar Reference Map." FSEC Energy Research Center. Florida's Premier Energy Research Center at the University of Central Florida. Online Access July 14, 2021. Available: https://energyresearch.ucf.edu/solar-certification/solar-reference-map/
[14] "How to Calculate PV String Size." Mayfield Renewables. 2018 [Online]. Available: https://www.mayfield.energy/blog/pv-string-size [Accessed 08-Dec-2021]
[15] Masters, Gilbert M. "Renewable and Efficient Electric Power Systems." 2004 John Wiley \& Sons, Inc., Publication.
[16] "Ultraviolet (UV) Radiation and Sun Exposure." EPA United States Environmental Protection Agency. [Online] Available: https://www.epa.gov/radtown/ultraviolet-uv-radiation-and-sun-exposure [Accessed 05-Dec-2021]
[17] Hyder, Zeeshan. "Ground-Mounted Solar Panels: What You Need to Know." May 24, 2021. [Online] Available: https://www.solarreviews.com/blog/everything-you-want-to-know-about-ground-mounted-solar-panels [Accessed 23-Nov-2022]
[18] Neill, Susan, et al. Solar Farms : the Earthcan Expert Guide to Design and Construction of Utility-Scale Photovoltaic Systems. Routledge, is an imprint of the Taylor \& Francis Group, an Informa Business, 2017, https://doi.org/10.4324/9781315651002.
[19] Dolan, Dale. Hall, Douglas. "Solar Resource-Shading and Tracking." Electrical Engineering Advanced Solar-Photovoltaic Systems Design.
[20] "Here's a Crash Course in Battery System Sizing." Simpliphi Power. Brigs and Stratton. [Online]. Available: https://simpliphipower.com/company/news/blog/heres-a-crash-course-in-battery-system-sizing/_[Accessed 10-Sep-2022]
[21] Sukumaran, Sreenath, et al. "Solar Farm: Siting, Design and Land Footprint Analysis." International Journal of Low Carbon Technologies, vol. 17, 2022, pp. 147891, https://doi.org/10.1093/ijlct/ctac107.

APPENDICES

A. Module Efficiency in SAM

Table 13: Modules in SAM Ordered by Efficiency.

Module Name	Efficiency [\%]
Seraphim Energy Group Inc. SEG-445-BMA-BG	23.8032
Seraphim Energy Group Inc. SEG-440-BMA-BG	23.5338
Seraphim Energy Group Inc. SEG-435-BMA-BG	23.2782
Seraphim Energy Group Inc. SEG-430-BMA-BG	23.0116
SunPower SPR-A425-COM	22.8867
SunPower SPR-A425-COM-MLSD	
REC Solar REC385AA	22.7901
LG Electronics Inc. LG380A1C-V5	22.7759
LG Electronics Inc. LG380Q1C-V5	
Seraphim Energy Group Inc. SEG-425-BMA-BG	22.7465
SunPower SPR-X22-370	22.7065
SunPower SPR-X22-370-D-AC	
SunPower SPR-X22-370-E-AC	
	22.6973
SunPower SPR-X22-370-COM	
SunPower SPR-X22-370-COM-MLSD	
SunPower SPR-A460-COM	22.6420
SunPower SPR-A420-COM	22.5882
SunPower SPR-A420-COM-MLSD	
REC Solar REC380AA	22.4993
LG Electronics Inc. LG375A1C-V5	22.4759
SunPower SPR-A425	22.4727
SunPower SPR-A425-G-AC	
SunPower SPR-A425-MLSD	
Seraphim Energy Group Inc. SEG-420-BMA-BG	22.4612
LG Electronics Inc. LG375Q1C-V5	22.4319
SunPower SPR-A415-COM	22.3394
SunPower SPR-A415-COM-MLSD	
SunPower SPR-A420	22.2545

SunPower SPR-A420-G-AC	
SunPower SPR-A420-MLSD	
SunPower SPR-X22-480-COM	22.2370
REC Solar REC375AA	22.2327
LG Electronics Inc. LG370Q1K-V5	22.2086
LG Electronics Inc. LG370A1C-A5	22.1778
LG Electronics Inc. LG370A1C-V5	
LG Electronics Inc. LG370Q1C-A5	22.1381
LG Electronics Inc. LG370Q1C-V5	22.1344
Silfab Solar Inc. SIL-420NT	22.1184
SunPower SPR-A450-COM	22.1084
SunPower SPR-A410-COM	22.0906
SunPower SPR-A410-COM-MLSD	
SunPower SPR-X22-360-E-AC	22.0837
SunPower SPR-X22-360	22.0809
SunPower SPR-X22-360-COM-MLSD	
SunPower SPR-X22-360-C-AC	22.0701
SunPower SPR-X22-360-COM	
SunPower SPR-X22-360-D-AC	
SunPower SPR-X22-475-COM	22.0395
SunPower SPR-A415	22.0364
SunPower SPR-A415-G-AC	
SunPower SPR-A415-MLSD	
SunPower SPR-X22-359	22.0321
Hanwha Q CELL Q PEAK DUO BLK ML-G9+400	22.0147
Intregrated Solar Technology STS-105MB4U	22.0115
Silfab Solar Inc. SLA320BC	21.9603
Hanwha Q CELL Q PEAK DUO XL-G9 470	21.9575
Hanwha Q CELL Q PEAK DUO XL-G9.2 470	
Hanwha Q CELL Q PEAK DUO XL-G9.3 470	
LONGi Green Energy Technology Co.Ltd. LR4-72HPH-465M	21.9436
Silfab Solar Inc. SIL-430HU	21.9138
REC Solar REC370AA	21.9089
LG Electronics Inc. LG365A1K-V5	21.8749

LG Electronics Inc. LG365Q1K-V5	
LG Electronics Inc. LG365A1C-A5	21.8662
LG Electronics Inc. LG365A1C-V5	
LG Electronics Inc. LG365Q1C-A5	21.8644
Silfab Solar Inc. SIL-415NT	21.8495
REC Solar REC450AA 72	21.8464
REC Solar REC450AA 72 XV	
LG Electronics Inc. LG365Q1C-V5	21.8233
Hanwha Q CELL Q PEAK DUO XL-G9 465	21.7551
Hanwha Q CELL Q PEAK DUO XL-G9.2 465	
Hanwha Q CELL Q PEAK DUO XL-G9.3 465	
SunPower SPR-X21-A470-COM	21.7471
SunPower SPR-X22-A470-COM	21.7270
Hanwha Q CELL Q PEAK DUO ML-G9+395	21.7174
REC Solar REC365AA	21.7143
SunPower SPR-A410	21.7123
SunPower SPR-A410-G-AC	
SunPower SPR-A410-MLSD	
LONGi Green Energy Technology Co.Ltd. LR4-72HPH-460M	21.7010
Silfab Solar Inc. SIL-425HU	21.6605
LG Electronics Inc. LG360Q1K-A5	21.6581
Canadian Solar Inc. CS1 U-430MS	21.6484
SANYO ELECTRIC CO LTD PANASONIC GROUP VBHN345SA17	21.6360
REC Solar REC445AA 72	21.6155
REC Solar REC445AA 72 XV	
Silfab Solar Inc. SLA315BC	21.5938
SunPower SPR-A405-COM	21.5931
SunPower SPR-A405-COM-MLSD	
REC Solar REC365AA Black	21.5858
Silfab Solar Inc. SIL-410NT	21.5821
LG Electronics Inc. LG360A1K-V5	21.5805
LG Electronics Inc. LG360Q1K-V5	
LG Electronics Inc. LG360A1C-A5	21.5722
Caterpillar Inc. PVC455MB03H	21.5492
LONGi Green Energy Technology Co.Ltd. LR4-72HBD-455M	

SunPower SPR-X21-255	21.5448
SunPower SPR-A400-COM	21.5434
LG Electronics Inc. LG360Q1C-V5	21.5299
LG Electronics Inc. LG355N1C-V5	
LG Electronics Inc. LG355N1W-V5	21.5282
Chint Solar (Zhejiang) Co. Ltd CHSM72M-HC-430	21.5257
LG Electronics Inc. LG360Q1C-A5	21.5117
Hanwha Q CELL Q PEAK DUO XL-G9+ 460 Hanwha Q CELL Q PEAK DUO XL-G9.2 460 Hanwha Q CELL Q PEAK DUO XL-G9.3 460	21.5058
SunPower SPR-A405	
SunPower SPR-A405-G-AC	21.4963
SunPower SPR-A405-MLSD	21.4794
Caterpillar Inc. PVC455MP03H	
LONGi Green Energy Technology Co.Ltd. LR4-72HPH-455M	

LG Electronics Inc. LG355Q1K-A5	21.3657
REC Solar REC440AA 72	21.3636
REC Solar REC440AA 72 XV	
SunPower SPR-A395-MLSD	
Caterpillar Inc. PVC450MB03H	21.3279
LONGi Green Energy Technology Co.Ltd. LR4-72HBD-450M	
Silfab Solar Inc. SIL-405NT	21.3163
REC Solar REC360AA Black	21.3038
Aptos Solar Technology LLC DNA-144-BF23-415W	21.2885
Prism Solar TechnologiesInc. BHC72-415	
LG Electronics Inc. LG355A1C-A5	21.2801
Chint Solar (Zhejiang) Co. Ltd CHSM72M-HC-425	21.2784
LG Electronics Inc. LG335Q1K-V5	21.2733
Hanwha Q CELL Q PEAK DUO L-G7 415	21.2731
Hanwha Q CELL Q PEAK DUO L-G7.2 415	
Hanwha Q CELL Q PEAK DUO L-G7.3 415	
LG Electronics Inc. LG425N2W-V5	21.2712
Silfab Solar Inc. SLA310BC	21.2688
SANYO ELECTRIC CO LTD PANASONIC GROUP VBHN340SA17	21.2681
Hanwha Q CELL Q PEAK DUO XL-G9 455	21.2579
Hanwha Q CELL Q PEAK DUO XL-G9.2 455	
Hanwha Q CELL Q PEAK DUO XL-G9.3 455	
LG Electronics Inc. LG335Q1C-A5	21.2419
LG Electronics Inc. LG350N1C-V5	21.2395
LG Electronics Inc. LG350N1W-V5	
Caterpillar Inc. PVC450MP03H	21.2394
LONGi Green Energy Technology Co.Ltd. LR4-72HPH-450M	
LG Electronics Inc. LG355Q1C-V5	21.2383
Solaria Corporation Solaria PowerXT-420R-PM	21.2364
Silfab Solar Inc. SIL-345BL	21.2233
Chint Solar (Zhejiang) Co. Ltd CHSM60M-HC-380	21.2204
Silfab Solar Inc. SIL-345HL	21.1902
LONGi Green Energy Technology Co.Ltd. LR4-60HPH-375M	21.1901
Silfab Solar Inc. SIL-415NU	21.1806
Silfab Solar Inc. SIL-415HU	21.1791

Silfab Solar Inc. SIL-345NL	21.1717		
SunPower SPR-X21-345-COM-MLSD	21.1623		
SunPower SPR-X21-345	21.1494		
SunPower SPR-X21-345-C-AC			
SunPower SPR-X21-345-COM			
SunPower SPR-X21-345-D-AC			
SunPower SPR-X21-345-E-AC			
SunPower SPR-X22-345-BLK		\quad	REC Solar REC355AA
:---			

SunPower SPR-343NJ-WHT-D	
SunPower SPR-343NX-BLK-D	
SunPower SPR-343NX-WHT-D	
Hanwha Q CELL Q PEAK DUO L-G7 410	21.0359
Hanwha Q CELL Q PEAK DUO L-G7.2 410	
Hanwha Q CELL Q PEAK DUO L-G7.3 410	
REC Solar REC355AA Black	21.0237
Aptos Solar Technology LLC DNA-144-MF23-410W [Wht]	21.0137
Chint Solar (Zhejiang) Co. Ltd CHSM72M-HC-420	21.0124
LG Electronics Inc. LG420N2W-V5	21.0079
Caterpillar Inc. PVC445MP03H	21.0007
LONGi Green Energy Technology Co.Ltd. LR472HPH-445M	
LG Electronics Inc. LG350Q1K-V5	20.9830
Chint Solar (Zhejiang) Co. Ltd CHSM60M-HC-375	20.9632
Canadian Solar Inc. CS3K-335MS	20.9544
Canadian Solar Inc. CS3L-375P	20.9508
LG Electronics Inc. LG345N1C-V5	20.9353
LG Electronics Inc. LG345N1W-V5	
LG Electronics Inc. LG345N1C-A5	20.9315
LG Electronics Inc. LG345N1W-A5	
Caterpillar Inc. PVC370MP03HA	20.9211
Canadian Solar Inc. CS1U-415MS	20.8899
Canadian Solar Inc. CS1H-340MS	20.8798
China Sunergy (Nanjing) Co.Ltd.CSUN405-72MH5	20.8771
China Sunergy (Nanjing) Co.Ltd.CSUN405-72MH5BB	
China Sunergy (Nanjing) Co.Ltd.CSUN405-72MH5BW	
China Sunergy (Nanjing) Co.Ltd.CSUN405-72MM5	
China Sunergy (Nanjing) Co.Ltd.CSUN405-72MM5BB	
China Sunergy (Nanjing) Co.Ltd.CSUN405-72MM5BW	
LG Electronics Inc. LG345N1C-Z5	20.8683
Aptos Solar Technology LLC DNA-120-MF23-340W [Wht]	20.8585
Caterpillar Inc. PVC440MB03H	20.8498

Canadian Solar Inc. CS3U-400MS	20.8463
Hansol Technics Co.Ltd. HS435UE-JH2	20.8249
Hansol Technics Co.Ltd. HS335UB-JH2 [Wht]	20.8202
Aptos Solar Technology LLC DNA-144-MF23-405W [Wht]	20.7944
CertainTeed CT405HC00-04	
CertainTeed CT405HC11-04	
LG Electronics Inc. LG345Q1K-A5	20.7718
Caterpillar Inc. PVC440MP03H	20.7633
Chint Solar (Zhejiang) Co. Ltd CHSM72M-HC-415	20.7553
Chint Solar (Zhejiang) Co. Ltd CHSM72M(DG)/F-BH-450	20.7425
Hansol Technics Co.Ltd. HS400UD-JH2	20.7417
Boviet Solar Technology Co.Ltd. BVM6612M-455S-H-HC	20.7289
Canadian Solar Inc. CS1K-340MS	20.7176
LG Electronics Inc. LG345Q1K-V5	20.7162
Aptos Solar Technology LLC DNA-120-BF23-340W	20.7132
AXITEC AC-410MH/144S	20.6953
AXITEC AC-410MH/144V	
Boviet Solar Technology Co.Ltd. BVM6612M-400-H	20.6802
Boviet Solar Technology Co.Ltd. BVM6612M-W5-400-H	
Chint Solar (Zhejiang) Co. Ltd CHSM60M-HC-370	20.6849
Canadian Solar Inc. CS3L-370P	20.6765
Canadian Solar Inc. CS3K-330MS	20.6413
Canadian Solar Inc. CS1U-410MS	20.6399
Boviet Solar Technology Co.Ltd. BVM6612M-410L-H	20.6367
Canadian Solar Inc. CS3K-330P	20.6366
China Sunergy (Nanjing) Co.Ltd.CSUN400-72MH5	20.6288
China Sunergy (Nanjing) Co.Ltd.CSUN400-72MH5BB	
China Sunergy (Nanjing) Co.Ltd.CSUN400-72MH5BW	
China Sunergy (Nanjing) Co.Ltd.CSUN400-72MM5	
China Sunergy (Nanjing) Co.Ltd.CSUN400-72MM5BB	
China Sunergy (Nanjing) Co.Ltd.CSUN400-72MM5BW	
LG Electronics Inc. LG345Q1C-A5	20.6283
LG Electronics Inc. LG345Q1C-V5	20.6249
Caterpillar Inc. PVC365MP03HA	20.6243
Caterpillar Inc. PVC435MB03H	20.6127
Canadian Solar Inc. CS3W-445PB-AG	20.6063

Canadian Solar Inc. CS1H-335MS	20.5874
Canadian Solar Inc. CS3U-395P	20.5854
Canadian Solar Inc. CS3U-395MS	20.5749
Boviet Solar Technology Co.Ltd. BVM6610M-W5-335-H	20.5688
Canadian Solar Inc. CS3U-405MB-AG	20.5624
Aptos Solar Technology LLC DNA-120-MF23-335W [Wht]	20.5301
Chint Solar (Zhejiang) Co. Ltd CHSM72M(DG)/F-BH-445	20.5283
Caterpillar Inc. PVC435MP03H	20.5272
Aptos Solar Technology LLC DNA-144-MF23-400W [Wht]	20.5255
Boviet Solar Technology Co.Ltd. BVM6612M-450S-H-HC	20.5113
AXITEC AC-340MH/120S	20.4815
AXITEC AC-340MH/120V	
AXITEC AC-405MH/144S	20.4793
AXITEC AC-405MH/144V	20.4655
Aptos Solar Technology LLC DNA-144-BF23-405W	20.4615
Canadian Solar Inc. CS1K-335MS	20.4500
Boviet Solar Technology Co.Ltd. BVM6612M-455S-H-HC-BF	
Boviet Solar Technology Co.Ltd. BVM6612M-455S-H-HC- BF-DG	
Boviet Solar Technology Co.Ltd. BVM6612M-410L-H-BF	20.4313
AU Optronics PM096B00333	20.4245
Boviet Solar Technology Co.Ltd. BVM6612M-395-H	20.4124
Boviet Solar Technology Co.Ltd. BVM6612M-W5-395-H	
Amerisolar-Worldwide Energy and Manufacturing USA Co.Ltd AS 6P-315W	20.3977
Caterpillar Inc. PVC430MB03H	20.3962
Canadian Solar Inc. CS1U-405MS	20.3914
Aptos Solar Technology LLC DNA-144-MF23-410W [B1k]	20.3864
Boviet Solar Technology Co.Ltd. BVM6612M-405L-H	20.3728
Caterpiller Inc. PVC360MP03HA	20.3492
Canadian Solar Inc. CS3K-325MS	20.3303
Boviet Solar Technology Co.Ltd. BVM6612M-410L-H-BF-DG	20.3302
Canadian Solar Inc. CS3U-390MS	20.3263
Canadian Solar Inc. CS3K-325P	20.3253
Canadian Solar Inc. CS3U-400MB-AG	20.3172
Canadian Solar Inc. CS3U-390P	20.3150
Boviet Solar Technology Co.Ltd. BVM6612M-445S-H-HC	20.2815
Aptos Solar Technology LLC DNA-144-MF23-395W [Wht]	20.2792
Canadian Solar Inc. CS1H-330MS	20.2616
Canadian Solar Inc. CS6K-320P	

Boviet Solar Technology Co.Ltd. BVM6610M-330-H Boviet Solar Technology Co.Ltd. BVM6610M-W5-330-H	20.2614
AU Optronics PM096B00330	20.2568
Boviet Solar Technology Co.Ltd. BVM6612M-450S-H-HC-BF Boviet Solar Technology Co.Ltd. BVM6612M-450S-H-HC- BF-DG	20.2353
Boviet Solar Technology Co.Ltd. BVM6612M-410L-H-HC	20.2300
Aptos Solar Technology LLC DNA-120-MF23-330 [Wht]	20.2244
AXITEC AC-400MH/144S	20.2145
AXITEC AC-400MH/144V	
Aptos Solar Technology LLC DNA-144-BF23-400W	20.2020
Aptos Solar Technology LLC DNA-120-BF23-335W	20.1808
Aptos Solar Technology LLC DNA-144-MF23-405W [Blk]	20.1736
Boviet Solar Technology Co.Ltd. BVM6612M-405L-H-BF	20.1700
Boviet Solar Technology Co.Ltd. BVM6612M-400L-H	20.1606
AXITEC AC-335MH/120S	20.1591
AXITEC AC-335MH/120V	20.1462
Boviet Solar Technology Co.Ltd. BVM6612M-390-H	20.9719
Boviet Solar Technology Co.Ltd. BVM6612M-W5-390-H	20.1415
Canadian Solar Inc. CS1K-330MS	20.1179
Aptos Solar Technology LLC DNA-120-MF23-340W [Blk]	20.0761
Boviet Solar Technology Co.Ltd. BVM6610M-335L-H	20.0751
Amerisolar-Worldwide Energy and Manufacturing USA Co.Ltd AS 6P-310W	20.0502
Boviet Solar Technology Co.Ltd. BVM6612M-405L-H-BF-DG	20.0702
AU Optronics PM096B00327	20.0555
Boviet Solar Technology Co.Ltd. BVM6612M-440S-H-HC	20.0531
Boviet Solar Technology Co.Ltd. BVM6612M-410L-H-HC-BF	20.0327
Boviet Solar Technology Co.Ltd. BVM6612M-410L-H-HC- BF-DG	
Aptos Solar Technology LLC DNA-144-MF23-390W [Wht]	20.0135
Boviet Solar Technology Co.Ltd. BVM6612M-445S-H-HC-BF	20.0087
Boviet Solar Technology Co.Ltd. BVM6612M-445S-H-HC- BF-DG	
Auxin Solar AXN6M610T325	

Boviet Solar Technology Co.Ltd. BVM6610M-325-H	19.9561
Boviet Solar Technology Co.Ltd. BVM6610M-W5-325-H	
AU Optronics PM096B00325	19.9214
Aptos Solar Technology LLC DNA-120-MF23-325W [Wht]	19.9209
Bluesun Solar Energy Tech Co.LtdBSM385M-72	19.8721
Aptos Solar Technology LLC DNA-120-BF23-330W	19.8600
AXITEC AC-330MH/120S	19.8589
AXITEC AC-330MH/120V	
Auxin Solar AXN6M610T385	19.8519
Aptos Solar Technology LLC DNA-120-MF23-335W [Blk]	19.8012
AU Optronics PM096B00323	19.7872
Amerisolar-Worldwide Energy and Manufacturing USA Co.Ltd AS 6P-305W	19.7636
AXITEC AC-390MH/144S	19.7103
AXITEC AC-390MH/144V	
Auxin Solar AXN6M610T320	19.6665
AU Optronics PM096B00320	19.6531
Boviet Solar Technology Co.Ltd. BVM6610M-320-H	
Boviet Solar Technology Co.Ltd. BVM6610M-W5-320-H	
Bluesun Solar Energy Tech Co.LtdBSM320M-60	19.6507
Bluesun Solar Energy Tech Co.LtdBSM380M-72	19.6289
Ap Aptos Solar Technology LLC DNA-120-MF23-320W [Wht]	19.6178
Andalay Solar TW-250-1-AC2-D-B	19.5998
Andalay Solar TW-250-1-DC4-0-B	
Aptos Solar Technology LLC DNA-120-BF23-325W	19.5808
AXITEC AC-325MH/120S	19.5609
AXITEC AC-325MH/120V	
AU Optronics PM096B00318	19.5189
Aptos Solar Technology LLC DNA-120-MF23-330W [Blk]	19.5064
Amerisolar-Worldwide Energy and Manufacturing USA Co.Ltd AS 6P-300W	19.4071
Auxin Solar AXN6M610T315	19.3562
AU Optronics PM096B00315	19.3177
Aptos Solar Technology LLC DNA-120-BF23-320W	19.2831
Aptos Solar Technology LLC DNA-120-MF23-325W [Blk]	19.2137
Andalay Solar TW-245-1-DC4-0-B	19.1917

Andalay Solar TW-245-1-AC2-D-B	
AU Optronics PM096B00313	19.1485
Amerisolar-Worldwide Energy and Manufacturing USA Co.Ltd AS 6P-295W	19.0986
Advanced Power API-M370	19.0800
Anhui Rinengzhongtian Semiconductor Development Co.Ltd QJM370-72	19.0663
AU Optronics PM096B00310	19.0159
Aleo Solar P19Y310	18.9081
Aleo Solar S19Y310	
Aleo Solar S59Y310	
Advanced Power API-M365	18.8114
Amerisolar-Worldwide Energy and Manufacturing USA Co.Ltd AS 6P-290W	18.7915
Aleo Solar P19Y305	18.5763
Aleo Solar S19Y305	
Aleo Solar S59Y305	
Aleo Solar S79Y305	
Advanced Power API-M360	18.5439
Advanced Power API-M355	18.3251
Aleo Solar P19Y300	18.2870
Aleo Solar P19Y300	
Aleo Solar S59Y300	
Aleo Solar S79Y300	
Advanced Power API-M350	18.0593
Aleo Solar P19Y295	17.9456
Aleo Solar S19Y295	
Aleo Solar S59Y295	
Aleo Solar S79Y295	
Ablytek 6MN6A290	17.8252
Advanced Power API-M345	17.7748
Advanced Power API-M340	17.6891
Aleo Solar P19Y290	17.6217
Aleo Solar S19y290	

Aleo Solar S59y290	
Aleo Solar S79Y290	
Ablytek 6MN6A285	17.5188
Aleo Solar P19Y285	17.3360
Aleo Solar S19y285	
Aleo Solar S59y285	
Aleo Solar S79y285	
Advanced Power API-P335	17.3270
Advanced Power API-M335	17.2763
Ablytek 6MN6A280	17.2151
Aleo Solar S59y280	17.0337
Aleo Solar S79y280	
Aleo Solar S19y280	17.0213
Advanced Power API-P330	17.0085
Advanced Power API-M330	17.0039
Ablytek 6MN6A275	16.914
Aleo Solar S19y275	16.7989
Advanced Power API-P325	16.7572
Aleo Solar P19Y275	16.7141
Aleo Solar P79y275	15.6837
Ablytek 6MN6A270	15.6437
Alfasolar Alfasolar M6L60-265	
Aleo Solar S19Y270	16.2664
Advanced Power API-P320	16.2393
American Solar Wholesale ASW-315P	16.1485
Alfasolar Alfasolar M6L60-260	16.1441
Advanced Power API-P315	16.0328
Advanced Power API-M315	15.9531
Aleo Solar P18Y265	15.58038
American Solar Wholesale ASW-310P	16.5317
Alfasolar Alfasolar M6L60-255	15.87918
Advanced Power API-M310	16.7976
Advanced Power API-P310	
Advanced Power API-M260	
Aleo Solar P18y260	
American Solar Wholesale ASW-305P	
Advanced Power API-P305	
Alfasolar Alfasolar P6L60-250	

Alfasolar Alfasolar M6L60-250	15.6417
Advanced Power API-M305	15.6403
Advanced Power API-M255	15.5989
Advanced Power API-P255	15.5681
Advanced Power API-P300	15.5389
American Solar Wholesale ASW-300M	15.5147
American Solar Wholesale ASW-300P	15.5119
Aleo Solar P18y255	15.5053
Advanced Power API-M300	15.3769
American Value SM260-5M	15.3750
Amerisolar-Worldwide Energy and Manufacturing USA Co.Ltd AS-6M27-225W	15.3536
Amerisolar-Worldwide Energy and Manufacturing USA Co.Ltd AS-6M27-B-225W	
Alfasolar Alfasolar M6L60-245	
Alfasolar Alfasolar P6L60-245	15.3323
American Solar Wholesale ASW-250M	15.3265
Advanced Power API-P250	15.2972
Advanced Power API-M250	15.2952
American Solar Wholesale ASW-295M	15.2626
American Solar Wholesale ASW-295P	15.2544
Aleo Solar P18y250	
Advanced Power API-P295	14.9402
Advanced Power API-M295	14.8825
American Value SM255-5M	15.1961
Advanced Power API-P245	15.1758
Alfasolar Alfasolar M6L60-240	15.0828
Amerisolar-Worldwide Energy and Manufacturing USA Co.Ltd AS-6M27-220W	15.0623
Amerisolar-Worldwide Energy and Manufacturing USA Co.Ltd AS-6M27-B-220W	15.0248
Alfasolar Alfasolar P6L60-240	15.0124
Advanced Power API-P290	15.0102
American Solar Wholesale ASW-245M	15.0071
American Solar Wholesale ASW-290M	14.9960
American Solar Wholesale ASW-290P	14.9929
American Solar Wholesale ASW-245P	14.9615
Advanced Power API-M245	
Apls Technology ATI-M660-240	
Amerisolar-Worldwide Energy and Manufacturing USA Co.Ltd	
AS-5M-190W	

Advanced Power API-M290	14.8687
A10Green Technology A10J-M60-240	14.8114
Ablytek 6PN6A240-A0	
American Value SM250-5M	14.7833
American Solar Wholesale ASW-285M	14.7372
American Solar Wholesale ASW-285P	
Advanced Power API-P240	14.7293
Alfasolar Alfasolar P6L60-235	14.7015
American Solar Wholesale ASW-240M-60	14.6835
American Solar Wholesale ASW-240P	
Amerisolar-Worldwide Energy and Manufacturing USA Co.Ltd AS-6M27-215W	14.6711
Amerisolar-Worldwide Energy and Manufacturing USA Co.Ltd AS-6M27-B-215W	
Advanced Power API-M240	14.6476
Advanced Power API-M285	14.6240
Advanced Power API-P285	14.6142
Amerisolar-Worldwide Energy and Manufacturing USA Co.Ltd AS-6M24-190W	14.5977
Amerisolar-Worldwide Energy and Manufacturing USA Co.Ltd AS-6P24-190W	
Apls Technology ATI-M660-235	14.5968
Amerisolar-Worldwide Energy and Manufacturing USA Co.Ltd AS-5M36-185W	14.5133
American Solar Wholesale ASW-185M	14.4973
Amerisolar-Worldwide Energy and Manufacturing USA Co.Ltd AS-5M-185W	14.4938
American Solar Wholesale ASW-280M	14.4863
American Value SM245-5M	14.4742
A10Green Technology A10J-M60-235	14.4709
Ablytek 6PN6A235-A0	
American Solar Wholesale ASW-280P	14.4693
American Solar Wholesale ASW-235P	14.3918
American Solar Wholesale ASW-235M	14.3868
Apls Technology ATI-S572-185	14.3787
Alfasolar Alfasolar P6L60-230	14.3753
Advanced Power API-P280	14.3605
Advanced Power API-M280	14.3586
Advanced Power API-P235	14.3473

Advanced Power API-M235	14.3459
Aavid Solar ASMS-235M	14.328
Apls Technology ATI-M660-230	14.2937
AccuSolar Power ASP610-B230	14.287
Advanced Renewable Energy AREi-230W-M6-G	14.2574
American Solar Wholesale ASW-275M	14.2174
A10Green Technology A10J-S72-185	14.2078
Ablytek 5MN6C185-A0	
American Value SM240-5M	14.1971
Amerisolar-Worldwide Energy and Manufacturing USA Co.Ltd AS-6M24-185W	14.1954
Amerisolar-Worldwide Energy and Manufacturing USA Co.Ltd AS-6P24-185W	
Aavid Solar ASMS-185M	14.1952
Advanced Solar Hydro Wind Power API156P-230	14.1764
A10Green Technology A10J-M60-230	14.1705
Ablytek 6PN6A230-A0	
Advanced Power API-M275	14.0995
Advanced Power API-P275	
Advanced Solar Hydro Wind Power API-180	14.0985
Amerisolar-Worldwide Energy and Manufacturing USA Co.Ltd AS-5M-180W	
Amerisolar-Worldwide Energy and Manufacturing USA Co.Ltd AS-5M35-180W	
American Solar Wholesale ASW-180M	14.0888
American Solar Wholesale ASW-230M	14.0838
American Solar Wholesale ASW-230P	14.0754
Alfasolar Alfasolar P6L60-225	14.0708
Aavid Thermalloy ASMP-180M	14.0558
Advanced Power API-M230	14.0491
Aavid Solar ASMS-230M	14.0426
Apls Technology ATI-S572-180	13.9804
Amerisolar-Worldwide Energy and Manufacturing USA Co.Ltd AS-6P30-225W	13.9766
Apls Technology ATI-M660-225	13.9743
American Solar Wholesale ASW-270P	13.9587
Advanced Renewable Energy AREi-225W-M6-G	13.9312
Aavid Solar ASMS-270P	13.9134
Amerisolar-Worldwide Energy and Manufacturing USA Co.Ltd	13.8562

AS-6M30-225W	
A10Green Technology A10J-M60-225	13.8538
Ablytek 6PN6A225-A0	
A10Green Technology A10J-S72-180	13.8406
Ablytek 5MN6C180-A0	
Advanced Power API-P270	13.8363
Aavid Solar ASMS-180M	13.8355
Advanced Power API-M270	13.8084
Amerisolar-Worldwide Energy and Manufacturing USA Co.Ltd AS-6M24-180W	13.7986
Amerisolar-Worldwide Energy and Manufacturing USA Co.Ltd AS-6P24-18-W	
American Solar Wholesale ASW-225M	13.7697
Alfasolar Alfasolar P6L60-220	13.7693
American Solar Wholesale ASW-225P	13.7508
Advanced Power API-M225	13.7363
Advanced Power API-P225	13.7343
Advanced Solar Hydro Wind Power API-175	13.7271
Amerisolar-Worldwide Energy and Manufacturing USA Co.Ltd AS-5M-175W	
Amerisolar-Worldwide Energy and Manufacturing USA Co.Ltd AS-5M36-175W	
Aavid Solar ASMS-225M	13.7195
American Solar Wholesale ASW-175M	13.7088
American Solar Wholesale ASW-265M	13.7011
Aavid Thermalloy ASMP-175	13.6767
Apls Technology ATI-M660-220	13.6569
Advanced Renewable Energy AREi-220W-M6-G	13.6183
Apls Technology ATI-S572-175	13.6046
Advanced Solar Hydro Wind Power API156P-220	13.5856
Advanced Power API-M265	13.5807
Advanced Power API-P265	13.5780
American Solar Wholesale ASW-270M	13.5771
A10Green Technology A10J-M60-220	13.5392
Ablytek 6PN6A220-A0	
A2Peak Power POWER ON P220-6x10	13.4708
A10Green Technology A10J-S72-175	13.4686
Ablytek 5MN6C175-A0	

Amerisolar-Worldwide Energy and Manufacturing USA Co.Ltd AS-6P30-220W	13.4637
Amerisolar-Worldwide Energy and Manufacturing USA Co.Ltd AS-6M30-220W	13.4528
American Solar Wholesale ASW-220P	13.4495
Aavid Solar ASMS-220P	13.4451
Amerisolar-Worldwide Energy and Manufacturing USA Co.Ltd AS-6M24-175W	13.4444
Amerisolar-Worldwide Energy and Manufacturing USA Co.Ltd AS-6P24-175W	
American Solar Wholesale ASW-260P	13.4280
Advanced Power API-P220	13.4234
American Solar Wholesale ASW-260M	13.4022
Advanced Power API-P260	13.3333
Amerisolar-Worldwide Energy and Manufacturing USA Co.Ltd AS-5M-170W	13.3235
Amerisolar-Worldwide Energy and Manufacturing USA Co.Ltd AS-5M36-170W	
Advanced Renewable Energy AREi-215W-M6-G	13.2986
Advanced Solar Hydro Wind Power API-170	13.2955
American Solar Wholesale ASW-215P	13.1492
Advanced Power API-P215	13.1239
Amerisolar-Worldwide Energy and Manufacturing USA Co.Ltd AS-6M24-170W	13.0575
Amerisolar-Worldwide Energy and Manufacturing USA Co.Ltd AS-6P24-17W	
Advanced Renewable Energy AREi-210W-M6-G	12.0188
Advanced Solar Hydro Wind Power API156P-210	12.9518
Advanced Solar Hydro Wind Power API-165	12.9429
Amerisolar-Worldwide Energy and Manufacturing USA Co.Ltd AS-5M36-165W	
American Solar Wholesale ASW-250P	12.9224
Advanced Power API-P210	12.8295
Aavid Solar ASMS-165P	11.73710
Advanced Solar Hydro Wind Power API-160	
Advanced Solar Hydro Wind Power API156P-200	
Advanced Solar Hydro Wind Power API-150	
Advanced Solar Power (Hangzhou) ASP-S1-80	1090

B. Inverters in SAM Ordered by Efficiency

Only inverters with an AC output of 120 V and 208 V are listed based off property connection voltages.

Table 14: 208 Vac Inverters in SAM Ordered by Efficiency.

208 Vac Inverters	Efficiency [\%]
SolarEdge Technologies Ltd : SE3800H- US	98.903
SolarEdge Technologies Ltd : SE6000H- US	98.799
SolarEdge Technologies Ltd : SE5000H- US	98.653
SolarEdge Technologies Ltd : SE10000H- US	98.638
SolarEdge Technologies Ltd : SE11400H- US	
SMA America: SB6000TL-US	98.049
SMA America: SB6000TL-US-12	
SMA America: SB7000TL-US	97.980
SMA America: SB7000TL-US-12	

SolarEdge Technologies Ltd : SE3000x	
Delta Electronics: M10-TL-US	97.377
Delta Electronics: SOLIVIA 5.2 NA G4 TL	97.369
Yaskawa Solectria Solar: PVI 5200TL	
Trina Energy Storage Solutions (Jiangsu) Co - Ltd: TB8000SHU	97.354
Generac Power Systems: X11402	97.352
Delta Electronics: SOLIVIA 6.6 NA G4 TL	97.341
Delta Electronics: SOLIVIA 7.6 NA G4 TL	
Yaskawa Solectria Solar: PVI 6600TL	
Yaskawa Solectria Solar: PVI 7600TL	
Pika Energy: X11402	97.336
Pika Energy: X11403	
HiQ Solar: TS208-5k75	97.335
SolarEdge Technologies Ltd : SE7600A- US	97.334
Delta Electronics: SOLIVIA 3.8 NA G4 TL	97.330
Yaskawa Solectria Solar: PVI 3800TL	
Samil Power: SolarRiver5000TL-US	97.324
SMA America: SB6000TL-US	97.231
Fronius International GmbH: Fronius Primo 8.2-1 Fronius USA: Fronius Primo 8.2-1	97.310
Delta Electronics: E4-TL-US	
Fronius International GmbH: Fronius Primo 7.6-1 Fronius USA: Fronius Primo 7.6-1	97.279
Trina Energy Storage Solutions (Jiangsu) Co - Ltd: TB6000SHU	97.291
SolarEdge Technologies Ltd : SE10000A- US	97.260
Delta Electronics: M10-4-TL-US	97.257
Delta Electronics: M6-TL-US	97.239
SmA America: SB20000HFUS-30 Electronis: E6-TL-US	
Enphase Energy Inc : IQ7X-96-x-ACM-US	97.209

Enphase Energy Inc : IQ7X-96-x-US	
Enphase Energy Inc : IQ7XS-96-y-ACM-z	
SunPower: SPR-E19-320-BLK-E-AC	
SunPower: SPR-E20-325-BLK-E-AC	
Delta Electronics: RPI H7U	97.204
Enphase Energy Inc : IQ7X-96-x-ACM-	97.181
Enphase Energy Inc : IQ7X-96-x-US-\&	
Enphase Energy Inc : IQ7XS-96-x-ACM-	
Enphase Energy Inc : IQ7XS-96-x-US-\&	
SunPower: SPR-E19-320-E-AC	97.172
SunPower: SPR-E20-327-E-AC	
SunPower: SPR-X20-327-BLK-E-AC	
SunPower: SPR-X20-327-E-AC	97.121
SunPower: SPR-X21-335-BLK-E-AC	
SunPower: SPR-X21-335-E-AC	
SunPower: SPR-X21-345-E-AC	
SunPower: SPR-X21-350-BLK-E-AC	
SunPower: SPR-X22-360-E-AC	
SunPower: SPR-X22-370-E-AC Solar Energy: AE3.8	
Technology Co - Ltd: Growatt 8000MTLP-	
Beijing Kinglong New Energy Technology: Solar Photonics: PV240	97.158
Sunteams 4000	

Chint Power Systems America: CPS	
SCE4KTL-O US	
Eaton: PV238	
Eaton: PV240	
AE Solar Energy: AE7.0	
Advanced Solar Photonics: PV270	
Advanced Solar Photonics: PV250	97.079
Chint Power Systems America: CPS	
SCE5KTL-O US	
Eaton: PV250	
AE Solar Energy: AE5.0	
Enphase Energy Inc : IQ7-60-x-ACM-US	97.044
Enphase Energy Inc : IQ7-60-x-US	
Jinko Solar Co - Ltd : JKMS300M-60BL-	
EP	
Jinko Solar Co - Ltd : JKMS305M-60BL-	
EP	
Jinko Solar Co - Ltd : JKMS305M-60L-EP	
Jinko Solar Co - Ltd : JKMS325M-60BL-	
EP	
Jinko Solar Co - Ltd : JKMS310M-60BL-	
Jinko Solar Co - Ltd : JKMS320M-60L-EP	
Jinko Solar Co - Ltd : JKMS310M-60L-EP - Ltd : JKMS315M-60BL-	
EP	

Jinko Solar Co - Ltd : JKMS325M-60L-EP	
Jinko Solar Co - Ltd : JKMS330M-60L-EP	
Generac Power Systems: XVT114G03	97.031
Enphase Energy Inc : IQ7-60-x-ACM-US- Enphase Energy Inc : IQ7-60-x-ACM-US- Enphase Energy Inc : XACM-IQ7-LR6- 60PB-300M Enphase Energy Inc : XACM-IQ7-LR6- 60PB-305M Jinko Solar Co - Ltd : JKMS300M-60BL- EP	
Advanced Solar Photonics: PV260	97.020
Eaton: PV260	
Chint Power Systems America: CPS	97.018
SCE6KTL-O US	
Fronius International GmbH: Fronius Primo	97.010
15.0-1	
Fronius USA: Fronius Primo 15.0-1	97.008
AE Solar Energy: AE6.0	

Table 15: 120 Vac Inverters in SAM.

120 Vac Inverters	Efficiency [\%]
Exeltech: XLGT18A60	96.378
Exeltech: XLGT18A60-01	
Petra Systems: 103.10400.0001	95.867
Helios USA: 6TA	94.408
Solarbine: S6T AC	
Exeltech: AC2-1-2-6-5-XX	94.401
Exeltech: AC2-1-B-6-5-XX	
Exeltech: AC2-1-C-6-5-XX	
Exeltech: AC2-1-L-6-5-XX	
Exeltech: AM24-1-B-6-0-00	
Concept by US: Power Station PS247-05180	93.997
Concept by US: Power Station PS247-10180	93.767
Schneider Electric Solar Inc. : XW Pro 6848 NA	93.588
Petra Solar: 103.10866.500x	92.870
PV Powered: PVP2000	92.747
SMA America: SWR1800U	91.832
SMA America: SWR1800U-SBD	
Schuco USA: SWR1800U	
Schuco USA: SWR1800U-SBD	
Sonnetek: Sonnetek 2000	91.640
Sysgration: Soleil 2000-120	
SMA America: SB700U	91.582
SMA America: SB700U-SBD	
Schuco USA: SB700U	
Schuco USA: SB700U-SBD	
$\begin{aligned} & \text { Apparent Inc : SG424U CA - 120VAC - } \\ & 60 \mathrm{~Hz} \end{aligned}$	91.555
Apparent Inc: SG424-120V	91.540

CFM Equipment Distributors: Green Power 1100	90.929
E-Village Solar: EVS1100EVR	
GE Energy: GEPVe-1100NA-120	
iPower: SHO-1.1	
Home Director: HD-SUN-INV1100-EVR	
Mohr Power: MPS1100EVR	
PV Powered: PVP1100EVR	
OutBack Power Technologies - Inc : VFXR3524A	90.730
OutBack Power Technologies - Inc : FXR3048A	90.681
OutBack Power Technologies - Inc : VFXR3648A	90.671
Xslent Energy Technologies: XPX A1000	88.643

C. Layout of Solar Panels for Fixed Tilt String Size of 9 Modules

Figure 62: Possible Design with a String of 9 Modules, 12 ft Hypotenuse Length

Figure 63: Possible Design with a String of 9 Modules, 6 ft Hypotenuse Length

Figure 64: Possible Design with a String of 9 Modules, 18 ft Hypotenuse Length

Figure 65: Possible Design with a String of 9 Modules, ~6 ft Hypotenuse Length

Figure 66: Possible Design with a String of 9 Modules, ~9 ft Hypotenuse Length
D. Interrow Spacing Calc. Fixed Tilt Design 1 and 2 with Solar Array on Ground [18]

This section shows the calculations and simulation completed for fixed tilt design 1 and 2 and DOES NOT consider the fact that the solar array will need to be elevated off the ground.

Calculation of December $21^{\text {st }}$ Day Number in the Year:
$\mathrm{n}=$ December $21^{\text {st }}$ Day Number in the Year
$\mathrm{n}=$ Number of Days in January + Number of Days in February + Number of Days in March + Number of Days in April + Number of Days in May + Number of Days in June + Number of Days in July + Number of Days in August + Number of Days in September + Number of Days in October + Number of Days in November + 21 Days in December $\mathrm{n}=31+28+31+30+31+30+31+31+30+31+30+21=355$ days

Calculation of Solar Declination on December $21^{\text {st }}$:
$\delta=23.45 \times \sin [(360 / 365)(355-81)]$
$\delta=-23.45^{\circ}$

Calculation of Hour Angle at 10am on December 21 ${ }^{\text {st }}$:
$\mathrm{H}=15(12-10)$
$\mathrm{H}=30^{\circ}$ at 10 am December $21^{\text {st }}$

Calculation of Hour Angle at 4 pm on December $21^{\text {st }}$:
$H=15(12-16)$
$\mathrm{H}=-60^{\circ}$ at 4 pm December $21^{\text {st }}$

Calculation of Suns altitude at 10am on December $21^{\text {st }}$:
$\beta=\sin ^{-1}\left[\sin \left(-23.45^{\circ}\right) \sin \left(34.5723^{\circ}\right)+\cos \left(-23.45^{\circ}\right) \cos \left(34.5723^{\circ}\right) \cos \left(30^{\circ}\right)\right]$
$\beta=25.37^{\circ}$

Calculation of Suns altitude at 4 pm on December $21^{\text {st }}$:
$\beta=\sin ^{-1}\left[\sin \left(-23.45^{\circ}\right) \sin \left(34.5723^{\circ}\right)+\cos \left(-23.45^{\circ}\right) \cos \left(34.5723^{\circ}\right) \cos \left(-60^{\circ}\right)\right]$
$\beta=8.74^{\circ}$

Calculation of Suns Azimuth on December 21 ${ }^{\text {st }}$ at 10am:
$\Phi=\sin ^{-1}\left[\left(\cos \left(-23.45^{\circ}\right) \sin \left(30^{\circ}\right)\right) / \cos \left(25.37^{\circ}\right)\right]$
$\Phi=30.51^{\circ}$

Calculation of Suns Azimuth on December $21^{\text {st }}$ at 4 pm :
$\Phi=\sin ^{-1}\left[\left(\cos \left(-23.45^{\circ}\right) \sin \left(-60^{\circ}\right)\right) / \cos \left(8.74^{\circ}\right)\right]$
$\Phi=-53.50^{\circ}$

Figure 67: Height and Length. Does Not Consider the Array will Be Off the Ground

Calculation of Height:

$$
\sin \left(34.5723^{\circ}\right)=\mathrm{H} / 3.048 \mathrm{~m}
$$

$$
\mathrm{H}=3.048 \mathrm{mx} \mathrm{\sin }\left(34.5723^{\circ}\right)
$$

$$
\mathrm{H}=1.73 \mathrm{~m}
$$

Calculation of Length:

$$
\begin{aligned}
& \cos \left(34.5723^{\circ}\right)=\mathrm{L} / 3.048 \mathrm{~m} \\
& \mathrm{~L}=3.048 \times \cos \left(34.5723^{\circ}\right) \\
& \mathrm{L}=2.51 \mathrm{~m}
\end{aligned}
$$

Figure 68: Height and Length. Does Not Consider Array Will Be Off the Ground.

Calculation of Interrow Spacing at 10am December 21 ${ }^{\text {st }}$ [18]:
Part 1: First Triangle
Tan(Altitude Angle at 10am) = Height of solar panel / Distance1
Distance1 $=$ Height of solar panel $/$ Tan(Altitude Angle at 10am)
Distance $1=1.73 \mathrm{~m} / \operatorname{Tan}\left(25.37^{\circ}\right)$
Distance $1=3.65 \mathrm{~m}$
Part 2: Second Triangle
$\operatorname{Cos}($ azimuth $)=$ Distance $2 /$ Distance 1
Distance2 $=3.648 \mathrm{~m} \times \operatorname{Cos}$ (azimuth)
Distance2 $=3.648 \mathrm{~m} \times \operatorname{Cos}\left(30.51^{\circ}\right)$
Distance $2=3.14 \mathrm{~m}$

Calculation of Interrow Spacing at 4pm December 21 ${ }^{\text {st }}$ [18]:
Part 1: First Triangle
Tan(Altitude Angle at 4pm) = Height of solar panel / Distance1
Distance1 $=$ Height of solar panel $/$ Tan(Altitude Angle at 4pm)
Distance $1=1.73 \mathrm{~m} / \operatorname{Tan}\left(8.74^{\circ}\right)$
Distance1 $=11.25 \mathrm{~m}$
Part 2: Second Triangle
$\cos ($ azimuth $)=$ Distance $2 /$ Distance 1
Distance $2=$ Distance $1 \times \cos$ (azimuth)
Distance2 $=11.253 \mathrm{~m} \times \cos \left(53.50^{\circ}\right)$
Distance2 $=6.69 \mathrm{~m}$

The shadow length at 10 am is 3.14 m while the shadow length at 4 pm is 6.69 m . The shadow length at 4 pm presents a longer shadow, therefore the module rows will be placed 7 m apart as shown in figure 69. It is important to note this overcompensates the space the modules will take up as the length of the solar modules is shorter than is shown in the figure below.

Figure 69: Modules Tilted 34.6° South, 18 Inverters, 432 Modules. Modules on Ground

Figure 70: How Many kW Produced Each Month with Fixed Tilt Design 1 (3 String)

Metric	Value
Annual energy (year 1)	$272,907 \mathrm{kWh}$
Capacity factor (year 1)	17.8%
Energy yield (year 1)	$1,559 \mathrm{kWh} / \mathrm{kW}$
Performance ratio (year 1)	0.62
Levelized COE (nominal)	$3.59 \$ / \mathrm{kWh}$
Levelized COE (real)	$2.86 \$ / \mathrm{kWh}$
Electricity bill without system (year 1) $\$ 104,614$	
Electricity bill with system (year 1)	$\$ 80,384$
Net savings with system (year 1)	$\$ 24,231$
Net present value	$\$ 115,596$
Simple payback period	9.7 years
Discounted payback period	19.4 years
Net capital cost	$\$ 301,056$
Equity	$\$ 0$
Debt	$\$ 301,056$

Figure 71: Shows Simulation Metrics of Fixed Tilt Design 1 (3 String)

Fixed Tilt Design 2 Calculations

Figure 72: Design 2 (3 String) - Height and Length of the Array, Array on Ground

Calculation of Height:

$$
\begin{aligned}
& \sin \left(34.5723^{\circ}\right)=H / 1.821 \mathrm{~m} \\
& H=1.821 \mathrm{~m} x \sin \left(34.5723^{\circ}\right) \\
& H=1.03 \mathrm{~m}
\end{aligned}
$$

Calculation of Length:

$$
\begin{aligned}
& \cos \left(34.5723^{\circ}\right)=\mathrm{L} / 1.821 \mathrm{~m} \\
& \mathrm{~L}=1.821 \times \cos \left(34.5723^{\circ}\right) \\
& \mathrm{L}=1.50 \mathrm{~m}
\end{aligned}
$$

Figure 73: Design 2 (3 String) - Height and Length of the Array, Array on Ground

Calculation of Interrow Spacing at 10am December 21 ${ }^{\text {st }}$ [18]:
Part 1: Yellow Triangle
Tan(Altitude Angle) $=$ Array Height $/$ Length X
Length X = Array Height $/$ Tan(Altitude Angle)
Length $\mathrm{X}=1.03 \mathrm{~m} / \operatorname{Tan}\left(25.37^{\circ}\right)$
Length $X=2.17 \mathrm{~m}$
Part 2: Red Triangle
$\operatorname{Cos}($ Azimuth Angle $)=$ Shadow Length $/$ Length X
Shadow Length $=2.17 \mathrm{mx} \operatorname{Cos}($ Azimuth Angle $)$
Shadow Length $=2.17 \mathrm{~m} \times \operatorname{Cos}\left(30.51^{\circ}\right)$
Shadow Length $=1.87 \mathrm{~m}$

Calculation of Interrow Spacing at 4pm December 21 ${ }^{\text {st }}$ [18]:
Part 1: Yellow Triangle
Tan (Altitude Angle) $=$ Array Height / Length X
Length $\mathrm{X}=$ Height of solar panel $/ \operatorname{Tan}($ Altitude Angle)
Length $\mathrm{X}=1.03 \mathrm{~m} / \operatorname{Tan}\left(8.74^{\circ}\right)$
Length $X=6.70 \mathrm{~m}$
Part 2: Red Triangle
$\cos ($ azimuth $)=$ Shadow Length $/$ Length X
Shadow Length $=$ Length $\mathrm{X} x \cos ($ Azimuth Angle $)$
Shadow Length $=6.70 \mathrm{mx} \cos \left(53.50^{\circ}\right)$
Shadow Length $=3.99 \mathrm{~m}$

The shadow length at 10 am is 1.87 m while the shadow length at 4 pm is 3.99 m . The shadow length at 4 pm presents a longer shadow, therefore the module rows will be placed 4 m apart as shown in figure 74. It is important to note this overcompensates the space the modules will take up as the length of the solar modules is shorter than is shown in the figure below.

Figure 74: Modules Tilted South, Angle 34.6°, 20 Inverters, 480 Mods., Array on Ground

Figure 75: Design 2 (3 String) - How many kW Produced Monthly with the Fixed Tilt

Metric	Value
Annual energy (year 1)	$303,230 \mathrm{kWh}$
Capacity factor (year 1)	17.8%
Energy yield (year 1)	$1,559 \mathrm{kWh} / \mathrm{kW}$
Performance ratio (year 1)	0.62
Levelized COE (nominal)	$3.59 \mathrm{\Phi} / \mathrm{kWh}$
Levelized COE (real)	$2.86 \mathrm{\$ /kWh}$
Electricity bill without system (year 1) $\$ 104,614$	
Electricity bill with system (year 1)	$\$ 78,035$
Net savings with system (year 1)	$\$ 26,580$
Net present value	$\$ 125,422$
Simple payback period	9.9 years
Discounted payback period	20.0 years
Net capital cost	$\$ 334,506$
Equity	$\$ 0$
Debt	$\$ 334,506$

Figure 76: Design 2 (3 String) - Shows Simulation Metrics of Fixed Tilt

E. Interrow Spacing Fixed Tilt Design 1 and 2: 10am-4pm No Shading

 This section displays the calculations done to prevent shading during the hours of 10am and 4 pm on the winter solstice and does consider the that the array will be lifted off the ground by 14 inches or 0.3556 meters [17].Interrow Spacing Design $1-$ No shading 10am - 4pm [18]
Calculation of Solar Declination on December $21^{\text {st }}$:
$\delta=23.45 \times \sin [(360 / 365)(\mathrm{n}-81)]$
Where δ is the solar declination and n is the day of the year (out of 365)
$\delta=23.45 \times \sin [(360 / 365)(355-81)]$
$\delta=-23.45^{\circ}$

Calculation of Hour Angle at 10am on December 21 ${ }^{\text {st }}$:
$\mathrm{H}=15(12-\mathrm{T})$
Where H is the hour angle and T is the time of day on a 24 hour clock
$\mathrm{H}=15(12-10)$
$\mathrm{H}=30^{\circ}$ at 10 am December $21^{\text {st }}$

Calculation of Hour Angle at 4pm on December $21^{\text {st }}$:
$\mathrm{H}=15(12-\mathrm{T})$
Where H is the hour angle and T is the time of day on a 24 hour clock
$\mathrm{H}=15(12-16)$
$\mathrm{H}=-60^{\circ}$ at 4 pm December $21^{\text {st }}$

Calculation of Suns altitude at 10am on December $21^{\text {st. }}$:
$\beta=\sin ^{-1}[\sin (\delta) \sin (\mathrm{L})+\cos (\delta) \cos (\mathrm{L}) \cos (\mathrm{H})]$
Where β is the suns altitude angle at $10 \mathrm{am}, \delta$ is the Solar Declination, L is the Latitude, and H is the Hour Angle at 10 am .
$\beta=\sin ^{-1}\left[\sin \left(-23.45^{\circ}\right) \sin \left(34.5723^{\circ}\right)+\cos \left(-23.45^{\circ}\right) \cos \left(34.5723^{\circ}\right) \cos \left(30^{\circ}\right)\right]$
$\beta=25.37^{\circ}$

Calculation of Suns altitude at 4 pm on December $21^{\text {st }}$:
$\beta=\sin ^{-1}[\sin (\delta) \sin (\mathrm{L})+\cos (\delta) \cos (\mathrm{L}) \cos (\mathrm{H})]$
Where β is the suns altitude angle at $4 \mathrm{pm}, \delta$ is the Solar Declination, L is the Latitude, and H is the Hour Angle at 4 pm .
$\beta=\sin ^{-1}\left[\sin \left(-23.45^{\circ}\right) \sin \left(34.5723^{\circ}\right)+\cos \left(-23.45^{\circ}\right) \cos \left(34.5723^{\circ}\right) \cos \left(-60^{\circ}\right)\right]$
$\beta=8.74^{\circ}$

Calculation of Suns Azimuth on December $21^{\text {st }}$ at 10am:
$\Phi=\sin ^{-1}[(\cos (\delta) \sin (\mathrm{H})) / \cos (\beta)]$
Where Φ is the suns azimuth angle at $10 \mathrm{am}, \delta$ is the Solar Declination, H is the Hour Angle at 10 am , and β is the suns altitude angle at 10 am .
$\Phi=\sin ^{-1}\left[\left(\cos \left(-23.45^{\circ}\right) \sin \left(30^{\circ}\right)\right) / \cos \left(25.37^{\circ}\right)\right]$
$\Phi=30.51^{\circ}$

Calculation of Suns Azimuth on December $21^{\text {st }}$ at 4 pm :
$\Phi=\sin ^{-1}[(\cos (\delta) \sin (\mathrm{H})) / \cos (\beta)]$
Where Φ is the suns azimuth angle at $4 \mathrm{pm}, \delta$ is the Solar Declination, H is the Hour Angle at 4 pm , and β is the suns altitude angle at 4 pm .
$\Phi=\sin ^{-1}\left[\left(\cos \left(-23.45^{\circ}\right) \sin \left(-60^{\circ}\right)\right) / \cos \left(8.74^{\circ}\right)\right]$
$\Phi=-53.50^{\circ}$

Calculation of Height and Length of Solar Module Array

Figure 77: Design 1 (3 String) - Height and Length of the Array

Calculation of Height:

$$
\begin{aligned}
& \sin \left(34.5723^{\circ}\right)=H / 3.048 \mathrm{~m} \\
& H=3.048 \mathrm{~m} x \sin \left(34.5723^{\circ}\right) \\
& H=1.73 \mathrm{~m}
\end{aligned}
$$

Because the solar modules are lifted off the ground by 0.3556 meters, this needs to be added to the calculated height measurement to determine the total height.

Total Height $=1.73 \mathrm{~m}+0.3556 \mathrm{~m}=2.09 \mathrm{~m}$

Calculation of Length:

$$
\begin{aligned}
& \cos \left(34.5723^{\circ}\right)=\mathrm{L} / 3.048 \mathrm{~m} \\
& \mathrm{~L}=3.048 \times \cos \left(34.5723^{\circ}\right) \\
& \mathrm{L}=2.51 \mathrm{~m}
\end{aligned}
$$

Figure 78: Design 1 (3 String) - Height and Length of the Array Labeled

Interrow Spacing at 10am December $21^{\text {st }}[18]$:

Part 1: Yellow Triangle
Tan(Altitude Angle $)=$ Array Height $/$ Length X
Length X = Array Height / Tan(Altitude Angle)
Length $\mathrm{X}=2.09 \mathrm{~m} / \operatorname{Tan}\left(25.37^{\circ}\right)$
Length $X=4.41 \mathrm{~m}$
Part 2: Red Triangle
Cos(Azimuth Angle) $=$ Shadow Length / Length X
Shadow Length $=4.41 \mathrm{~m} \times \operatorname{Cos}($ Azimuth Angle $)$
Shadow Length $=4.41 \mathrm{~m} \times \operatorname{Cos}\left(30.51^{\circ}\right)$
Shadow Length $=3.80 \mathrm{~m}$

Interrow Spacing at 4pm December $21^{\text {st }}$ [18]:
Part 1: Yellow Triangle
Tan(Altitude Angle) $=$ Array Height / Length X
Length $\mathrm{X}=$ Array Height $/$ Tan(Altitude Angle)
Length $\mathrm{X}=2.09 \mathrm{~m} / \operatorname{Tan}\left(8.74^{\circ}\right)$
Length $X=13.60 \mathrm{~m}$
Part 2: Red Triangle
$\cos ($ Azimuth Angle $)=$ Shadow Length $/$ Length X
Shadow Length $=$ Length $\mathrm{X} x \cos ($ Azimuth Angle $)$
Shadow Length $=13.60 \mathrm{~m} \times \cos \left(53.50^{\circ}\right)$
Shadow Length $=8.09 \mathrm{~m}$
The shadow length at 10 am is 3.80 m while the shadow length at 4 pm is 8.09 m .
Therefore, the modules would need to be spaced out by over 8 meters. After the calculation, the decision was made to reduce the time period from 10am to 4 pm no shading to 10 am to 2 pm no shading.

Interrow Spacing Design 2 - Modules off the Ground, 10am - 4pm [18]

Figure 79: Design 2 (3 String) - Height and Length of the Array

Calculation of Height:

$$
\begin{aligned}
& \sin \left(34.5723^{\circ}\right)=H / 1.821 \mathrm{~m} \\
& H=1.821 \mathrm{~m} x \sin \left(34.5723^{\circ}\right) \\
& H=1.03 \mathrm{~m}
\end{aligned}
$$

Because the solar modules are lifted off the ground by 0.3556 meters, this needs to be added to the calculated height measurement to determine the total height [17].

Total Height $=1.03 \mathrm{~m}+0.3556 \mathrm{~m}=1.39 \mathrm{~m}$

Calculation of Length:

$$
\begin{aligned}
& \cos \left(34.5723^{\circ}\right)=\mathrm{L} / 1.821 \mathrm{~m} \\
& \mathrm{~L}=1.821 \times \cos \left(34.5723^{\circ}\right) \\
& \mathrm{L}=1.50 \mathrm{~m}
\end{aligned}
$$

Figure 80: Design 2 (3 String) - Height and Length of the Array Labeled

Interrow Spacing at 10am December $21^{\text {st }}$ [18]:
Part 1: Yellow Triangle
Tan(Altitude Angle) $=$ Array Height $/$ Length X
Length X = Array Height $/$ Tan(Altitude Angle)
Length $\mathrm{X}=1.39 \mathrm{~m} / \operatorname{Tan}\left(25.37^{\circ}\right)$
Length $X=2.93 \mathrm{~m}$
Part 2: Red Triangle
Cos $($ Azimuth Angle $)=$ Shadow Length $/$ Length X
Shadow Length $=2.93 \mathrm{~m} \times \operatorname{Cos}($ Azimuth Angle $)$
Shadow Length $=2.93 \mathrm{~m} \times \operatorname{Cos}\left(30.51^{\circ}\right)$
Shadow Length $=2.52 \mathrm{~m}$

Interrow Spacing at 4pm December $21^{\text {st }}$ [18]:
Part 1: Yellow Triangle
Tan(Altitude Angle) $=$ Array Height / Length X
Length $\mathrm{X}=$ Array Height $/$ Tan(Altitude Angle)
Length $\mathrm{X}=1.39 \mathrm{~m} / \operatorname{Tan}\left(8.74^{\circ}\right)$
Length $X=9.04 \mathrm{~m}$
Part 2: Red Triangle
$\cos ($ Azimuth Angle $)=$ Shadow Length $/$ Length X
Shadow Length $=$ Length $\mathrm{X} x \cos ($ Azimuth Angle $)$
Shadow Length $=9.04 \mathrm{~m} \times \cos \left(53.50^{\circ}\right)$
Shadow Length $=5.37 \mathrm{~m}$

The shadow length at 10 am is 2.52 m while the shadow length at 4 pm is 5.37 m .
Therefore, the modules would need to be spaced out by over 5.37 meters. After the calculation, the decision was made to reduce the time period from 10am to 4 pm no shading to 10 am to 2 pm no shading.

F. MATLAB Code for Altitude vs. Azimuth

```
% Thesis: Year Round Altitude vs Azimuth Graph Palmdale Location
% California
Latitude = 34.5723; % North
% Defining Day Numbers for each Month
Jan21_Day_Num = 21;
Feb21_Day_Num = 52;
Mar21_Day_Num = 80;
April21_Day_Num = 111;
May21_Day_Num = 141;
June21_Summer_Solstice_Day_Num = 172;
July21_Day_Num = 202;
Aug21_Day_Num = 233;
Sep21_Day_Num = 264;
Oct21_Day_Num = 294;
Nov21_Day_Num = 325;
Dec21_Winter_Solstice_Day_Num = 355;
% Calculating Solar Declination for all 12 Months
Jan21_Solar_Declination = 23.45 * sind((360/365) * (Jan21_Day_Num - 81));
Feb21_Solar_Declination = 23.45 * sind((360/365) * (Feb21_Day_Num - 81));
Mar21_Solar_Declination = 23.45 * sind((360/365) * (Mar21_Day_Num - 81));
April21_Solar_Declination = 23.45 * sind((360/365) * (April21_Day_Num - 81));
May21_Solar_Declination = 23.45 * sind((360/365) * (May21_Day_Num - 81));
June21_Summer_Solstice_Solar_Declination = 23.45 * sind((360/365) *
(June21_Summer_Solstice_Day_Num - 81));
July21_S_Solar_Déclination = 2-23.45 * sind((360/365) * (July21_Day_Num - 81));
Aug21_Solar_Declination = 23.45 * sind((360/365) * (Aug21_Day_Num - 81));
Sep21_Solar_Declination = 23.45 * sind((360/365) * (Sep21_Day_Num - 81));
Oct21_Solar_Declination = 23.45 * sind((360/365) * (Oct21_Day_Num - 81));
Nov21_Solar_Declination = 23.45 * sind((360/365) * (Nov21_Day_Num - 81));
Dec21_Winter_Solstice_Solar_Declination = 23.45 * sind((360/365) *
(Dec21_Winter_Solstice_Day_Num - 81));
% Hour Angles for each day
Minutes_Per_Day = [0:1440];
Hours = Minutes_Per_Day / 60;
Hour_Angle = 15 * (12 - Hours);
% Altitude Angle Calculation for each month on the 21st day
Altitude_Angle_Jan21 =
asind(sind(Jan21_Solar_Declination)*sind(Latitude)+cosd(Jan21_Solar_Declinatio
n)*\operatorname{cosd(Latitude)*cosd(Hour_Angle));}
Altitude_Angle_Feb21 =
asind(sind(Feb21_Solar_Declination)*sind(Latitude)+cosd(Feb21_Solar_Declinatio
n)*cosd(Latitude)*cosd(Hour_Angle));
Altitude_Angle_Mar21 =
asind(sind(Mar21_Solar_Declination)*sind(Latitude)+cosd(Mar21_Solar_Declinatio
n)*\operatorname{cosd(Latitude)*cosd(Hour_Angle));}
Altitude_Angle_April21 =
asind(sind(Apríl21_Solar_Declination)*sind(Latitude)+cosd(April21_Solar_Declin
ation)*cosd(Latitude)*cosd(Hour_Angle));
```

```
Altitude_Angle_May21 =
asind(sind(May21_Solar_Declination)*sind(Latitude)+cosd(May21_Solar_Declinatio
n)*\operatorname{cosd(Latitude)*cosd(Hour_Angle));}
Altitude_Angle_June21 =
asind(sind(June21_Summer_Solstice_Solar_Declination)*sind(Latitude)+cosd(June2
1_Summer_Solstice_Solar_Declination)*cosd(Latitude)*cosd(Hour_Angle));
Altitude_Angle_July21 =
asind(sind(July21_Solar_Declination)*sind(Latitude)+cosd(July21_Solar_Declinat
ion)*cosd(Latitude)*cosd(Hour_Angle));
Altitude_Angle_Aug21 =
asind(sind(Aug21_Solar_Declination)*sind(Latitude)+cosd(Aug21_Solar_Declinatio
n)*\operatorname{cosd(Latitude)*cosd(Hour_Angle));}
Altitude_Angle_Sep21 =
asind(sind(Sep21_Solar_Declination)*sind(Latitude)+cosd(Sep21_Solar_Declinatio
n)*cosd(Latitude)*cosd(Hour_Angle));
Altitude_Angle_Oct21 =
asind(sind(Oct21_Solar_Declination)*sind(Latitude)+cosd(Oct21_Solar_Declinatio
n)*\operatorname{cosd(Latitude)*cosd(Hour_Angle));}
Altitude_Angle_Nov21 =
asind(sind(Nov21_Solar_Declination)*sind(Latitude)+cosd(Nov21_Solar_Declinatio
n)*cosd(Latitude)*cosd(Hour_Angle));
Altitude_Angle_Dec21 =
asind(sind(Dec21_Winter_Solstice_Solar_Declination)*sind(Latitude)+cosd(Dec21_
Winter_Solstice_Solar_Declination)*cosd(Latitude)*cosd(Hour_Angle));
% Azimuth Angle Calculation for each month on the 21st day
Azimuth_Angle_Jan21 = asind((cosd(Jan21_Solar_Declination).* sind(Hour_Angle))
./ cosd(Altitude_Angle_Jan21));
Azimuth_Angle_Feb21 = asind((cosd(Feb21_Solar_Declination).* sind(Hour_Angle))
./ cosd(Altitude_Angle_Feb21));
Azimuth_Angle_Mar21 = asind((cosd(Mar21_Solar_Declination).* sind(Hour_Angle))
./ cosd(Altitude_Angle_Mar21));
Azimuth_Angle_April21 = asind((cosd(April21_Solar_Declination).*
sind(Hour_Angle)) ./ cosd(Altitude_Angle_April21));
Azimuth_Angle_May21 = asind((cosd(May21_Solar_Declination).* sind(Hour_Angle))
./ cosd(Altitude_Angle_May21));
Azimuth_Angle_June21 = asind((cosd(June21_Summer_Solstice_Solar_Declination).*
sind(Hour_Angle)) ./ cosd(Altitude_Angle_June21));
Azimuth_Angle_July21 = asind((cosd(July21_Solar_Declination).*
sind(Hour_Angle)) ./ cosd(Altitude_Angle_July21));
Azimuth_Angle_Aug21 = asind((cosd(Aug21_Solar_Declination).* sind(Hour_Angle))
./ cosd(Altitude_Angle_Aug21));
Azimuth_Angle_Sep21 = asind((cosd(Sep21_Solar_Declination).* sind(Hour_Angle))
./ cosd(Altitude_Angle_Sep21));
Azimuth_Angle_Oct21 = asind((cosd(Oct21_Solar_Declination).* sind(Hour_Angle))
./ cosd(Altitude_Angle_Oct21));
Azimuth_Angle_Nov21 = asind((cosd(Nov21_Solar_Declination).* sind(Hour_Angle))
./ cosd(Altitude_Angle_Nov21));
Azimuth_Angle_Dec21 = asind((cosd(Dec21_Winter_Solstice_Solar_Declination).*
sind(Hour_Angle)) ./ cosd(Altitude_Angle_Dec21));
% Azimuth Angle Correction for June
for i = 1:length(Hour_Angle)
```

```
    if cosd(Hour_Angle(i)) >=
(tand(June21_Summer_Solstice_Solar_Declination))/(tand(Latitude))
    Azimuth_Angle_June21(i) =
asind((cosd(June21_Summer_Solstice_Solar_Declination).*sind(Hour_Angle(i)))./(
cosd(Altitude_Angle_June21(i))));
    else
        if Azimuth_Angle_June21(i) > 0
            Azimuth_Angle_June21(i) = 180-
asind((cosd(June21_Summer_Solstice_Solar_Declination).*sind(Hour_Angle(i)))./(
cosd(Altitude_Angle_June21(i))));
        else
            Azimuth_Angle_June21(i) = -180-
asind((cosd(June21_Summer_Solstice_Solar_Declination).*sind(Hour_Angle(i)))./(
cosd(Altitude_Angle_June21(i))));
            end
    end
end
% Azimuth Angle Correction for July
for i = 1:length(Hour_Angle)
    if cosd(Hour_Angle(i)) >=
(tand(July21_Solar_Declination))/(tand(Latitude))
            Azimuth_Angle_July21(i) =
asind((cosd(July21_Solar_Declination).*sind(Hour_Angle(i)))./(cosd(Altitude_An
gle_July21(i))));
    else
        if Azimuth_Angle_July21(i) > 0
                            Azimuth_Angle_July21(i) = 180-
asind((cosd(July21_Solar_Declination).*sind(Hour_Angle(i)))./(cosd(Altitude_An
gle_July21(i))));
        else
            Azimuth_Angle_July21(i) = -180-
asind((cosd(July21_Solar_Declination).*sind(Hour_Angle(i)))./(cosd(Altitude_An
gle_July21(i))));
            end
    end
end
% Azimuth Angle Correction for May
for i = 1:length(Hour_Angle)
    if cosd(Hour_Angle(i)) >= (tand(May21_Solar_Declination))/(tand(Latitude))
        Azimuth_Angle_May21(i) =
asind((cosd(May21_Solar_Declination).*sind(Hour_Angle(i)))./(cosd(Altitude_Ang
le_May21(i))));
    else
        if Azimuth_Angle_May21(i) > 0
                Azimuth_Angle_May21(i) = 180-
asind((cosd(May21_Solar_Declination).*sind(Hour_Angle(i)))./(cosd(Altitude_Ang
le_May21(i))));
            else
                Azimuth_Angle_May21(i) = -180-
asind((cosd(May21_Sōlar_Dēclination).*sind(Hour_Angle(i)))./(cosd(Altitude_Ang
le_May21(i))));
            end
        end
```

```
end
% Azimuth Angle Correction for April
for i = 1:length(Hour_Angle)
    if cosd(Hour_Angle(i)) >=
(tand(April21_Solar_Declination))/(tand(Latitude))
            Azimuth_Angle_April21(i) =
asind((cosd(April21_Solar_Declination).*sind(Hour_Angle(i)))./(cosd(Altitude_A
ngle_April21(i))));
    else
        if Azimuth_Angle_April21(i) > 0
                            Azimuth_Angle_April21(i) = 180-
asind((cosd(April21_Solar_Declination).*sind(Hour_Angle(i)))./(cosd(Altitude_A
ngle_April21(i))));
        else
            Azimuth_Angle_April21(i) = -180-
asind((cosd(April21_Solar_Declination).*sind(Hour_Angle(i)))./(cosd(Altitude_A
ngle_April21(i))));
            end
    end
end
% Azimuth Angle Correction for August
for i = 1:length(Hour_Angle)
        if cosd(Hour_Angl\overline{e}(i)) >= (tand(Aug21_Solar_Declination))/(tand(Latitude))
            Azimuth_Angle_Aug21(i) =
asind((cosd(Aug21_Solar_Declination).*sind(Hour_Angle(i)))./(cosd(Altitude_Ang
le_Aug21(i))));
    else
        if Azimuth_Angle_Aug21(i) > 0
                Azimuth_Angle_Aug21(i) = 180-
asind((cosd(Aug21_Solar_Declination).*sind(Hour_Angle(i)))./(cosd(Altitude_Ang
le_Aug21(i))));
        else
            Azimuth_Angle_Aug21(i) = -180-
asind((cosd(Aug21_Sōlar_Dēclination).*sind(Hour_Angle(i)))./(cosd(Altitude_Ang
le_Aug21(i))));
            end
        end
end
%Ploting the Figure
figure(1)
plot(Azimuth_Angle_Jan21,Altitude_Angle_Jan21, 'm');
hold on;
plot(Azimuth_Angle_Feb21,Altitude_Angle_Feb21,'c')
hold on;
plot(Azimuth_Angle_Mar21,Altitude_Angle_Mar21,'y')
hold on;
plot(Azimuth_Angle_April21,Altitude_Angle_April21, 'r');
hold on;
plot(Azimuth_Angle_May21,Altitude_Angle_May21,'g')
hold on;
plot(Azimuth_Angle_June21,Altitude_Angle_June21,'b')
hold on;
```

```
plot(Azimuth_Angle_Dec21,Altitude_Angle_Dec21,'k')
hold on;
ylim([0,inf])
title("Altitude [Degree] vs Azimuth [Degree]")
xlabel({"West South East"; "
Azimuth [Degree]"})
ylabel("Altitude [Degree]")
```


G. REopt Software Screenshots and Explanation

Table 16: REopt Screenshot Explanation

Step 1: Choose Your Focus
Do you want to optimize for financial savings or energy resilience?

The first option is either Financial or Resilience. Both options provide minimization of the present value of all future energy costs over the analysis period and may include a combination of many different distributed energy sources. The difference between the two is that financial does not optimize for a grid outage while resilience setting does.

Step 2: Select Your Technologies

The second option is where you can choose which technologies you would like to have in your system. Based on which technology you choose other options can show up later.

Table 16: REopt Screenshot Explanation Cont.

Table 16: REopt Screenshot Explanation Cont.

The cost of the energy components for the battery
system. For example, the cost of the battery pack.
The energy metric for this field is dollars per
kilowatt hour [$\$ / \mathrm{kWh}]$. Default value of $\$ 420$.

The cost of the power components for the battery system. For example the cost of the inverter and balance system (BOS). The power metric for this field is dollars per kilowatt [$\$ / \mathrm{kW}]$. Default value of $\$ 840$.

Yes or No option that will either allow the grid to charge the battery or will only allow the renewable energy system, such as PV and wind turbines, to charge the battery.

Allows for more advanced battery characterization, such as battery replacement costs, battery characteristics, battery incentives, and tax treatment, but not required additional values.

H. System Advisor Model Software Screenshots

Table 17: Location and Resource Section

Table 18: System Design

Table 18: System Design Cont.

Battery Bank					\leqslant	Input the battery capacity and battery power in this section.
Battery capacity	10 kWh	Battery chemistry Battery dispatch	Lithium Ion	,		
Battery power	5 kW		Peak Shaving (look ahead)	\checkmark		
Custom Dispatch -						
	dispatch	Edit array... kW				
Optimal Sizing and Dispatch from REopt					\leqslant	To optimize the battery, use this section which connects to the REopt Lite API.
This option sends information about the system design, costs, electricity rates, and load to the online Reopt Lite API, which calculates an optimal battery capacity and custom dispatch to minimize the project net present value. REopt uses the latitude and longitude from SAM to access its own weather file, which may be different from the one SAM uses for simulations.						
	battery size	and dispatch from REO				
Go to REopt Lite we						

Table 19: Grid Limits

Grid Interconnection Limit				Choose if the system has a interconnection limit.
\square Enable interconnection limit		The grid interconnection limit is a negotiated limit beyond which the system is not allowed to export power. Any AC power generated above the grid interconnection limit is curtailed.		
Grid interconnection limit	100000 kWac			
Grid Curtailment				
Click Edit Array to enter values in the curtailment schedule table. SAM limits the system power output to the MW power values in the table. Curtailed power is not compensated.				array, use this section.
Curtailment	Edit array...	MW		

Table 20: Lifetime and Degradation

Table 21: System Costs

Table 22: Electric Load

Table 23: Financial Parameters

Table 24: Incentives

Table 25: Electricity Rates

Table 25: Electricity Rates Cont.

I. Battery Energy Storage System Design 5 (3 String) Single Axis Tracking [19]

This section presents a battery energy storage system for design 5 (3 string) single axis tracking. It is not shown in chapter 19 since design 6 was better suited in the design requirements. Table 26 and 27 show the hour power production on June $21^{\text {st }}$ and December $21^{\text {st }}$ respectively.

Table 26: Hourly kW on June $21^{\text {st }}$ SAM Simulation Design 5

Time of Day	Predicted Power Production [kW]
6 am	31.56
7 am	121.74
8 am	148.50
9 am	148.50
10 am	148.50
11 am	148.50
12 pm	147.95
1 pm	147.75
2 pm	147.81
3 pm	148.20
4 pm	148.43
5 pm	148.50
6 pm	103.48
7 pm	19.60

Table 27: Hourly kW on December $21^{\text {st }}$ SAM Simulation Design 5

Time of Day	Predicted Power Production [kW]
8 am	17.62
9 am	97.10
10 am	148.5
11 am	148.45
12 pm	109.75
1 pm	141.55
2 pm	148.50
3 pm	148.50
4 pm	71.76
5 pm	3.76

Maximum Capacity: 900kWh
Peak Load Shaving on Year 1 June $21^{\text {st }}$ ($6 \mathrm{am}-12 \mathrm{pm}$): 895.25 kWh
Peak Load Shaving on Year 1 December 21 ${ }^{\text {st }}$ (8am-12pm): 521.42kWh
From looking at the data above, on June $21^{\text {st }}$ charging the batteries between the hours of 6 am to 12 pm would need a battery energy storage system capable of storing 895.25 kWh , which would be just under the maximum capacity of the battery energy storage system. Therefore, the maximum 900 kWh should be installed for this design.

