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ABSTRACT

Testing and Verification for the Open Source Release of the Horizon Simulation

Framework

William Jackson Balfour

Modeling and simulation tools are exceptionally useful for designing aerospace sys-

tems because they allow engineers to test and iterate designs before committing the

massive resources required for system realization. The Horizon Simulation Framework

(HSF) is a time-driven modeling and simulation tool which attempts to optimize how

a modeled system could perform a mission profile. After 15 years of development, the

HSF team aims to achieve a wider user and developer base by releasing the software

open source. To ensure a successful release, the software required extensive testing,

and the main scheduling algorithm required protections against new code breaking

old functionality. The goal of the work presented in this thesis is to satisfy these

requirements and officially release the software open source. The software was tested

with > 80% coverage and a continuous integration pipeline which runs build and

unit/integration tests on every new commit was set up. Finally, supporting doc-

umentation and user resources were created and organized to promote community

adoption of the software, making Horizon ready for an open source release.
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Chapter 1

INTRODUCTION OF MODEL-BASED SYSTEMS ENGINEERING AND AN

OPEN SOURCE HORIZON

This chapter will discuss the general foundations of Horizon by giving a background

on space mission design, systems engineering (SE), model-based systems engineering

(MBSE), and model-driven development (MDD). The Horizon Simulation Framework

and its use must be understood in this context when considering the requirements for

pursuing an open source release of the software. The goal is to maintain the security

and effectiveness of the tool while improving it with contributions from the greater

developer communities.

1.1 Mission Design and Systems Engineering

Aerospace projects are unique in their scope and singular application. Most aerospace

projects involve large teams of engineers, development cycles on the order of years,

and massive financial backing. Therefore, analysis tools are commonly used in early

stages of development to inform key driving decisions prior to pouring excessive time

and capital into a concept. Some analysis tools may continue to be useful for many

stages of development, from mission design to component design and finally system

verification. This thesis discusses testing and usage of Horizon, one such design

analysis tool.
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1.1.1 Space Mission Design

The process of designing a space mission typically begins with identifying constraints

and objectives. These define the qualities of the space system which are achievable

within the time, budget, or other constraints. So that time and finance is spent effi-

ciently, system characteristics are defined by only what the system needs to perform

the objectives. At this stage of development, objectives, constraints, principal players,

timescale and estimating high level quantitative parameters should be defined as fully

as possible. These combine to form the requirements which will shall be the guide

for every following design decision. Program designers must then define alternative

mission designs as candidates for the final mission concept within these requirements.

Sufficiently defined candidate mission architectures must then be thoroughly evalu-

ated for performance and mission utility. This is where a program decides what the

system is and what it does, which involves defining budgets like SWaP, ground/space

support needs, etc. Then, the candidate is assessed for its ability to perform the

broad objectives of the mission and fulfill the needs of the end user. At last, the mis-

sion designers must involve the customers, who are shown how well the alternative

candidates satisfy the original objective vs cost.

Once a candidate is chosen, a baseline system design is constructed. From here,

many individual parameters can be adjusted relative to the baseline simultaneously

rather than assessing every combination of altitude, power, mass, etc. The baseline

updates as parameters which perform better replace old baseline numbers. As it

matures, the baseline becomes more rigid and eventually becomes the system design.

System requirements should then be revised to reflect the original objective and the

tools, systems and techniques available. At this stage, the alternatives should again

be explored and iterated to see if any parts of discarded designs can be useful, if

the objectives are rigid or if they can be altered to decrease cost or risk, or if an

2



alternative satisfies the objectives better. The mission design process finishes with the

finalization of the Concept of Operations (CONOPS) which describes the processes

that each asset in the system performs.

From testing and integration to end of life procedures, the CONOPS describes the

how each system performs during all modes of operation. The CONOPS bridges the

understanding between customer and the designers or similarly relates the request for

proposal (RFP) to the formal requirements. Once the mission design is settled upon,

the work of mission designer concludes, and the job as a system engineer begins.

A system engineer must flow down requirements to the components level where the

numerical requirements are satisfied by a product or group of products that will

be delivered to the customer. Modeling and simulating the system prior to giving

system requirements to the systems engineer provides a multitude of benefits which

ultimately lead to lower program cost and quicker development.

1.1.2 Modeling and Simulation for Mission Design

Space mission engineering benefits greatly from rapid modeling and simulation. Low

fidelity models are easy to construct and appropriate during early stages of develop-

ment because the understanding of the details of the system is similarly low. Sim-

ulating low fidelity models provides a more detailed and accurate prediction of the

behavior and performance of an unknown system than a back of the envelope calcu-

lation or an opinion of a single expert. With the objectives and constraints identified,

engineers can model alternate candidate missions to quickly sift out ideas which don’t

satisfy objectives within the constraints. This technique can help a team converge

on a general design or a few ideas, which they can immediately begin trade stud-

ies on, eliminating unnecessary work needed to investigate the non-feasible system

or mission configuration. The team can then quickly move forward with a concept,

3



because they can be confident that a system exists which can perform the customers

objective, without the need to build or test the system. A good model and simulation

pair should be able to perform the following: quickly verify if a new requirement or

objective can be met by the same system, describe the performance when fine tuning

a parameter, or identify parameters which disproportionately hinder the performance

of the system.

The Horizon Simulation Framework (HSF) is a modeling and simulation tool which is

well suited for space mission design [1]. A mission designer can quickly model several

alternative candidates and simulate them performing the mission. Horizon returns

possible schedules for the candidate to perform the mission. If a candidate results

in only one empty schedule, then the exhaustive algorithm could not find a solution

for the candidate to satisfy the mission objectives. This candidate must be either

removed from consideration or modified until a valid schedule is returned. Candidates

which produce valid schedules can be directly compared using their schedule value,

a sum of the frequency and weight of performed tasks. Horizon provides mission

designers an idea of which mission concepts show promise and which proposals to

discard or modify. For a more detailed look at Horizon’s history, architecture design,

and capabilities, see Appendix A.

1.1.3 Model-based Systems Engineering

Model-based systems engineering is the use of model-based engineering principles

and best practices to applications of systems engineering [2]. INCOSE, a leading

organization for systems engineering, defines MBSE as “an approach to engineering

that uses models as an integral part of the technical baseline that includes the re-

quirements, analysis, design, implementation, and verification of a capability, system,

and/or product throughout the acquisition life cycle [3].” The purpose of systems
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engineering is to approach extremely complex systems, often systems of systems,

in a systematic manner to reduce the complexity. Therefore, MBSE must simplify

complex systems through construction of models, and ultimately lead to successful

systems which satisfy a range of customer needs [4].

In MBSE, the role of models is central to the engineering design process. The models

become the authority in defining the specification, design, integration, validation and

operation of the system [5]. After an RFP or other text-based specification sheet has

been translated into objective, exactifiable metrics in the form of requirements, these

measures are used to create models. These objective models replace the subjective

text-based specification as the authority for requirements [5]. The requirements for

a mission become embedded in the models of the system, providing consistency and

efficiency through each stage of development.

Consistency is a feature throughout the MBSE process. Most broadly, MBSE uses

consistent systemic approaches to complex problems, regardless of specifics or domain.

There are three common iterative design approaches, the waterfall, the spiral, and

the ‘Vee’ method. While everything regarding MBSE mentioned in this paper can be

mapped to a stage on each design approach, the ‘Vee’ method, Fig. 1.1, is the assumed

method for this report. MBSE promises a consistent language to describe the problem

and solution, as well as consistent documentation produced at every step in between.

When baselines are updated or a new phase of design is entered, the model remains

largely the same, minimizing human error. Overall, MBSE reduces the complexity of

complicated system of systems problems which reduces errors, increases efficiency and

allows engineers to perform higher level analysis and design than previously possible.

Horizon is a modeling and simulation tool which supports systems engineering objec-

tives. In initial design stages, it is used to quickly stand up alternative designs and

5



Figure 1.1: V or “Vee” model of the systems engineering process [6]

rank performance. After key characteristics of a mission are settled upon, Horizon

can quickly simulate performance differences between similar missions with slightly

different parameters or initial conditions. These models can be reused in later subsys-

tem trade studies and design verification. The model may be continuously updated

with baselines to confirm the system’s ability to complete the mission. In Appendix

A.1.5, Horizon’s function as a model-based systems engineering tool is discussed in

greater detail.

1.1.4 Model-driven Development

Model-driven development describes software development which focuses on devel-

oping abstract models of a system and then systematically transitions them into

implementations of the system [7]. MDD is a key feature of the Horizon Simulation

Framework. A defining characteristic of MDD is a primary focus on models rather

than computer programs. Models are built with a greater focus on the real system

in question, can be written and understood by domain experts rather than computer

scientists, and are less sensitive to the computing technology and its evolution than
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specifically written programs [5]. Domain experts are generally the best equipped

to describe their system, so it follows that they should be most directly involved in

modeling and simulating. Models are often much easier for experts to understand,

interact with, configure and modify than software [5]. When domain experts are able

to create the models themselves, the software developer, who can act as a barrier

between ideas and realizations, can be mostly or entirely eliminated. This eliminates

many obstacles like the possibility of mistranslation of high-level ideas, unintelligible

software for the experts to adjust or otherwise use, and the software engineer be-

ing unavailable to answer questions or update software. Additionally, models, unlike

traditional software, are much likelier to be written hardware independent. These

features align well with HSF purpose, to assist in the development of long term, high

complexity projects.

MDD becomes especially useful for long and complex design processes. Once a model

is created to develop the CONOPS during Phase A, the model can be continuously

updated and re-used in Phase B where baselines are optimized without redundant

work remodeling the subsystems. If a team must make new models for the baseline,

this adds extra unnecessary work and an unnecessary opportunity for human error.

MDD adds tremendous efficiency when, after system fabrication, the models used to

simulate and test the system are seamlessly transitioned onto flight hardware as the

software [7]. Many modeling software products such as MATLAB’s Simulink allow

for the automatic creation of C programs from models, greatly reducing time, effort,

and opportunities for mistakes. The output of the modeled system can be relayed to

actual systems in the form of a set of sequential instructions or compiled, executable

software for product hardware.

7



1.2 Open Source Communities and Advantages to Being Open Source

Open source software (OSS) describes software which can be freely used, modified,

and shared. This gives the public permission to use source code or product design and

promotes universal access to software. This opens the door for a symbiotic relationship

between the user and developer community and the software. The software benefits

from an open source community providing free feedback and development for the

software. In exchange, users can have the software for free and modify it for custom

purposes or build a new product on top of the open sourcesoftware. While the benefits

to the software are a driving factor for choosing to go OS or not, the benefits to the

user must be seriously considered during roll-out for the software to actually attract

users and realize these benefits for the software. Below is the discussion about the

benefits to the software and core development team. Benefits for the user is discussed

at length in Chapter 3.

1.2.1 Overview of open sourceSoftware

The open source movement was started in response to the limitation of proprietary

software, and spread quickly with among software enthusiasts. Communities of open

source developers grew rapidly after the adoption of the open source concept by large

projects like Linux and Netscape. The software is well suited to the audience it

attracts and vice versa. The experimental and decentralized nature of open source-

software cultivates a user base which is generally interested in tinkering, testing, and

improving. And the software improves by attracting these users which are likely to

introduce improvements and features or find and fix bugs. Because these users will

always tinker, these software often innovate at a much higher rate than traditionally

developed software. To this day, many innovations in the most widely used software
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(e.g., browsers, word processors, IDEs, DAWs, image processing, etc.) originate from

open sourceprojects prior to being adopted by the traditional industry leaders. Fi-

nally, users which participate in open source development are more likely to stick

with the software that they’ve played a part in improving, which creates a loyal user

base. When this feedback loop gains a critical mass of developer-users, cutting-edge,

long-lasting, and stable products emerge like Linux, Git and MySQL.

1.2.2 Advantages to Being Open Source

For the software, there are many potential benefits of going open source. The largest

potential benefit for a developer considering releasing their software open source is

saving time. Especially for small teams or startups, time is the most valuable resource.

Users become testers, providing quality assurance (QA), finding bugs, suggesting

improvements, and determining fitness for the intended market. The free, ceaseless

QA of an open source audience is the second major advantage. The founder of Linux,

Linus Torvalds, famously said “Given enough eyeballs, all bugs are shallow.” Going

open source may lead to many genuinely interested eyeballs scrutinizing each line,

which results in shallower bugs and better code. Conversely, code developed by a

small, closed team might only have the original author and one disinterested QA,

who’s job necessarily delays deployment to catch bugs, contradicting the motive of

for-profit companies, which is to release as soon as possible to maximize profits.

The third benefit is transparency. When a code base is open source, anyone using or

considering using the software may check the source code for errors and vulnerabilities,

increasing the trustworthiness of software. Finally, a major reason to go open source

is to share the work with the world. Many programs are made as passion projects

and developers want to make a positive impact by offering free use of their software.

These advantages must be considered against the drawbacks of open source software,
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like vulnerabilities or bugs being introduced by malicious or ignorant developers,

discussed in subsequent chapters, and loss of revenue by offering software for free.

Combining the MBSE with open source software development is of great interest for

this paper. While there are many software packages which accomplish some sort of

system modeling and analysis, they are also some combination of proprietary, closed

development, confusing, and or limited in scope. Creating an MBSE tool which has

its development driven by an interested user and developer community would be a

useful and novel addition to the MBSE field. Horizon could fill this gap in MBSE,

providing its time based simulation algorithm as a test-bed for developers and users

to experiment with all types of models and applications.

1.3 The Future of Horizon as an Open Source Model-based Systems En-

gineering Tool

Horizon is a modeling and simulation tool which employs dynamic programming to

assist in model-based systems engineering and mission design, analysis and verifica-

tion. HSF has seen varying degrees of development for more than 15 years and its

creators believe that its architecture is sufficiently mature to be released as an open

source project. It is the hope of the creators that the open source communities will

provide the benefits discussed in the preceding section. Specifically, the Horizon team

would like to see a rapid expansion of the modeling library for new potential missions

from the increase in general users, and an increase in development of new features

and bug fixes from the increase in development inclined users. The goals of this thesis

project focus on the final steps to prepare Horizon for an open source release.
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1.4 Thesis Structure

Ahead, I will discuss the context of Horizon, providing background information on

model-based systems engineering and model-based development and how Horizon

compares to the current available tools in this field. Chapter two finishes with the mo-

tivation, barriers, and primary goals of this project. Chapter three discusses concerns

of going open source and how continuous integration (CI) addresses these concerns as

well as how to implement continuous integration effectively. Chapter four focuses the

specifics of how I implemented Horizon’s testing and continuous integration scheme.

The fifth chapter discusses the results of this project, and what this project enables

for the future of Horizon. The final chapter lists suggestions of projects for future

students looking to develop for Horizon and what lessons I learned while performing

my project for HSF. In Appendix A, Horizon’s architecture is described along with a

brief history of the Horizon project up to its current state.
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Chapter 2

BACKGROUND ON MBSE AND OPEN SOURCE AEROSPACE SOFTWARE

An open source modeling and simulation and systems engineering tool must be cre-

ated with a purpose. To understand the purpose of Horizon, it is necessary to gain

an understanding of both Horizon and other projects with which Horizon co-exists.

Surveying the landscape of open source projects in the aerospace field and their rela-

tive success is also important when deciding whether and how to join by going open

source.

2.1 Barriers for adopting MBSE

To achieve the goals of adoption and community building, it is important to study

how users view other MBSE tools. An online survey of systems engineers by Ob-

ject Management Group (OMG), creators of SysML, probed the following questions:

What are barriers to adopting an SE tool? What are the most and least used aspects

of the tool? Does training increase the value of the tool? What is the hardest part

of learning a systems engineering tool [8]? The answers to this survey provide insight

into the most important elements of a successful MBSE project. For best adoption,

an MBSE tool must be easy to learn, and understand, meaning the core concepts

of MBSE (tool, methodology, language) must be separated and clearly explained. It

must have well organized, clear, and efficient code. It must be as useful as possible,

providing even the earliest adopters with tools and templates to assist in speedy de-

velopment of models. These are both consistent realms of improvement for Horizon

but not the focus of this work. The survey found that it also must make an effort
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to attract new users and developers. Finally, it must make an effort to maintain the

community, a similar observation I made when researching activity levels of different

open source projects in Section 2.3. Most relevant takeaways to this project are that

a project can reap benefits of community adoption and development by providing a

forum for community building and troubleshooting development, by being respon-

sive to questions and concerns from the community, and maintaining proper coding,

MBSE, and community interaction standards as the community grows.

2.2 Active Model-based System Engineering Projects

To understand Horizon, it is first helpful to gain an understanding the broader field

of MBSE. This section is a survey of tools currently used by system engineers and the

aerospace community. By discovering common functions and uses, as well as what

differentiates the tools, it becomes possible to assess how HSF fits into the field of

SE, and future improvements to increase HSF competitiveness and usefulness.

2.2.1 SysML

System Modeling Language (SysML) is a general purpose architecture modeling tool

which has become the de facto standard for MBSE. It is an extension of a subset

of the Unified Modeling Language, and it was adopted by OMG in 2006, which has

continued development since then [2]. The core of SysML is based on block diagrams,

which specify system requirements, behavior, structure and parametric diagrams [9].

System structure is used to organize a model and shows relationships of the internal

structure in terms of ports, connections, parts, etc. A SysML parametric diagram

is designed to describe mathematical equations and are used with constraints which

define a basic equation. Parametric diagrams enable engineering models and analysis
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to be performed on the model. A requirements diagram depicts how requirements are

derived, flow down, and generally relate to one another. Finally behavioral diagrams

contain use cases, activity flows and sequencing diagrams as well as a state machine

diagram which describe in high level terms the functionality of a system. When

combined, these four can serve as a powerful tool to assist in not only visualizing a

complex system, but also modeling and providing system analysis.

The creators of SysML have identified four main uses of SysML according to the

increasing levels of completeness of model diagrams and system description [2]. The

least rigorous and most common use of SysML is referred to as SysML-as-pretty-

pictures. This describes when SysML notation is used to build diagrams instead of

other common visualization tools like Visio or PowerPoint. This is the least useful

for engineering purposes because it rarely is able to produce a simulation or specify

system architecture. As stated in the name, it is not used as an engineering tool as

much as a picture/ visual diagram producer. According to the creators of the software

and website, this is a misuse of SysML [2].

The second is called SysML-as-Model-Simulation. This type of modeling uses both

parametric and behavioral diagrams to simulate the dynamics of a system. This

type of use is advantageous to engineers as it produces useful data about a system’s

evolving behavior but often misses important interactions with other dynamic states

of a system [2].

A third use case is dubbed ‘SysML-as-System-Architecture-Blueprint’. This is an

improvement compared to the former use because it includes precise and complete

specification of a System Architecture Model (SAM) [2]. A SAM describes multiple

views of a system, for example, electrical, mechanical, structural, and how behaviors

in each subsystem interact with one another. While this usage describes the system

completely, it is not the most rigorous nor the most useful to an engineering project.
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The most rigorous and useful application of SysML is ‘SysML-as-Executable-System-

Architecture’, what the creators call a ’quantum improvement’ upon the preceding

use. This case describes a system where a majority of the behavioral and parametric

models are simulatable and potentially executable. This is the highest form of SysML

and is the most effective way to implement MBSE best practices with SysML. If a

model is executable, it refers to the capability of partially or completely automatically

generating system interface and test code.

Of the endless applications and extensions of SysML, notable for this project is an

application of an exhaustive search function through the entire state space for a

system modeled in SysML. Mehrpouyan et al. used a machine learning algorithm to

simplify complex problems into problems which can feasibly be exhaustively searched

[10]. The assume-guarantee technique is used to simplify system verification, but

required a tremendous amount of work to implement and test this algorithm within

a modeled system.

By comparison, the solution space search is the built in analysis tool of HSF, meaning

that the verification analysis could be performed quicker, but perhaps less efficiently.

Horizon’s capabilities fall in between the second and third use cases of SysML. Horizon

is a modeling and simulation software so it can easily handle the second use case.

While Horizon allows for interactions between subsystems, the modeling capabilities

are underdeveloped to use as a complete system architecture model.

SysML has always been built and improved by community development. The com-

munity development is different than smaller community developed projects, because

the effort was more coordinated by industry leading organizations and experts rather

than organic development by passionate developers [2]. As a result, their website

contains no encouragement or instructions for new and curious developers to join the

effort. Additionally, there is very little public engagement with feature requests and
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issues. The current development of the open source project, SysML v2, has sepa-

rate repositories for its development and release versions. While the release is always

initiated by the project steward, the development branch has more than a dozen

contributors with considered active and frequent contributors [11]. However, SysML

benefits from widespread industry adoption to recruit experienced developers to the

project, rather than traditional outreach to users and GitHub community members.

This is how SysML has been able to sustain their growth and maintenance for almost

20 years.

2.2.2 AADL/OSATE

OSATE (Open Source AADL Tool Environment) is an open source tool environ-

ment used in conjunction with the modeling and simulation language Architecture

Analysis & Design Language (AADL). Like SysML and HSF, this software is do-

main nonspecific, with its intended fields of application ranging from “automotive

systems, avionics and space applications, medical devices, and industrial equipment

[12].” The capabilities include hazard/fault analysis, system safety/stability/security,

performance and flow latency, scheduling, and resource budgeting. Each of these

analysis methods produce consistent reports in multiple formats to ease in further

analysis. “Models are grouped into separate AADL projects that you can import

into your workspace to test and experiment with [12].” Organized libraries of exam-

ple models assist new users in quickly getting started with modeling, which eases

intimidation when adopting a new MBSE framework and tool.

Like HSF and SysML, OSATE is also well suited to MBSE and MDD. The software,

which is governed by the AADL models, is meant to be used at each step of the design

process for both simulation and communication of system architecture. Producing

graphic communications from the models enforces an additional layer of consistency,
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which prevents mistakes in describing system architecture and behavior [12]. Addi-

tionally, the graphic display can also act as an interface in which users can edit their

models. This lowers the barrier of entry for users less comfortable in a coding environ-

ment. A key MDD feature of OSATE is its capability to generate code after models

are created and verified. Additional tools such as a syntax aware text editor and live

updating graphical interface, MATLAB translation, assume/guarantee reasoning and

other high-level tools make OSATE/AADL a powerful modeling and simulation tool

[12].

OSATE is built on community development too. It provides documentation and

instructions on participating in development. However, it doesn’t provide an ap-

proachable list of first issues or projects to jump into, nor a publicly viewable forum

to discuss the state of development [12]. Despite this, OSATE has a handful of core

architecture contributors, each with hundreds or thousands of commits and a dozen

of supporting volunteers with double digits commits [13]. Because of the high level

of involvement of the project architects, release control is done with a manual re-

view process. Therefore, while testing is included in the OSATE repository, it is not

automatically executed on each push and does not automatically reject pull requests.

2.2.3 STK

The Systems Tool Kit (STK), formerly Satellite Tool Kit due to its origins as an

orbit propagation and visualization tool, is a proprietary physics-based software from

Analytical Graphics, Inc. (AGI), now owned by Ansys. The suite of tools allows

analysis of ground, sea, air and space systems all contained within the same envi-

ronment [14]. The backbone of the software remains its geometric modeling and

analysis of special relationships. STK supports multi asset scenarios and can model

complex interactions over time, as well as optimize a schedule, much like HSF. While
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not required, scenarios are capable of comprehensive modeling of every perspective of

an asset (electrical, mechanical, structural, communications etc.) similar to general

MBSE tools. However, it is more common to perform mostly specialized parametric

studies, rather than comprehensively modeling the entire system architecture.

While add-on packages and scripting into the software is possible, STK has been

developed as a Commercial off the shelf (COTS) tool, with its native features and

functions packed into a polished GUI as a main selling point. These include models of

COTS components, 3D animation (useful for presenting concepts to investors), earth

terrain modeling, compressible flow analysis, and advanced earth environment models

[14]. This saves an organization time, resources, and prevents errors from remodeling

these functions, allowing it to instead focus on creating and analyzing their mission.

For organizations who can afford the software, which, depending on the license, costs

between $200,000 and $10s of millions of dollars, it has been shown to quickly return

on investments, improve time to market, and overall increase efficiency for companies

[15].

While the capabilities of STK cannot be overstated, they come with significant draw-

backs like cost, training, complexity, and rigidity. First, the program can be pro-

hibitively expensive for some organizations with the most stripped back nonacademic

license costing an estimated $200,000 [15]. That price tag is enough to deter most

CubeSat teams (unless through a university which has licenses), individuals, and

small teams or startups. Then, due to the massive expense, combined with the com-

plexity provided by hundreds of functions and applications, a company implementing

AGI’s solution will often hire a dedicated AGI representative to assist in training,

identifying where it can be used, and providing company specific feedback to AGI.

This can incur more significant and recurring costs to an organization. It also in-

troduces a limited resource, a single person’s time, to a number of teams which may
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receive unequal support and training. A final downside to the tool kit is its closed

source nature, providing a more limited capacity for customizing native functions,

connecting with 3rd-party or legacy software, and general non-transparency. While

the mature tool kit comes packed with capabilities, it comes at the cost of ease to

learn and implement, a sometimes prohibitive price tag, and a lack of source control

over the software.

2.2.4 Horizon Simulation Framework

The Horizon Simulation Framework is freely available modeling and simulation tool

developed by students and faculty of Cal Poly San Luis Obispo. It contains a modeling

section to describe the characteristics and behavior of subsystems and how data are

shared between these subsystems. The simulation portion uses an exhaustive search

algorithm to create possible schedules for the modeled system to perform desired

tasks. The models are completely independent to the simulation portion. This means

that, while the template libraries only exist for aerospace applications, the simulation

algorithm can simulate any modeled system in any domain. The output is a list of

optimized schedules which the modeled system can perform to achieve target goals.

Additionally, the state of each modeled subsystem is returned, which can be given as a

set of instructions to a real system to execute the optimized schedule and achieve the

system’s goals. Horizon is useful at many stages of development, from determining a

mission feasibility studies, to component selection, to requirements verification and

final scheduling. Further discussion of its capabilities is found in appendix A.1.5.
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2.3 Survey of Open Source Aerospace Projects

While the open source movement has been around for decades, the aerospace commu-

nity has been slower to adopt these processes. This may be due to security concerns,

the precedent of expensive and secretive software or simply due to the aerospace en-

gineers not always keeping up with innovations in computer science techniques. Re-

cently, however, there has been greater adoption of open source in existing aerospace

projects as well as an increase in the creation of free open source tools by academics

and enthusiasts. These provide useful comparisons for the open source release ap-

proach of Horizon. Below is a brief survey of open source aerospace projects which

have achieved varying levels of success with respect to the cultivation of active com-

munity development, a primary goal for most projects going open source.

2.3.1 Open Source, Closed Community Development Projects

Two projects which take a similar open source, yet limited community development

approach to aerospace software are JSBSim and MAST. JSBSim is an open source

flight dynamics model which, like Horizon, can be run with simple script inputs and

has no native graphics. It is primarily a platform which companion programs leverage

(e.g., flight simulators, software in the loop autopilot testing, machine learning air-

craft control). The source code includes unit testing and regression testing as well as

code coverage, which are all run automatically in their CI workflow. The CI workflow

remains a focus of their development, as can be seen in the dedicated CI improve-

ment GitHub project. While JSBSim has verified and maintained their software and

solidified it as the go to open source flight dynamics modeler, this software is reliant

on the significant effort of a handful of dedicated individuals. They do rightfully

acknowledge the importance of the symbiotic user-developer relationship for the soft-
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ware’s ”continuing, synergistic improvement” in their 2004 overview paper. Clearly,

however, there are improvements that could be made in recruiting developers and

better including users in the development process [16].

MAST is another multiphysics engine which specializes in sensitivity enabled finite

element analysis. MAST is unit tested but their CI is limited to only a build test on

different OS’s [17]. The core contributors know to test their code prior to pushing,

but they likely do not have the resources to build on multiple OS’s. This points to the

fundamental difference between JSBSim and MAST’s open source philosophy and the

community driven development that Horizon strives for, which others have achieved.

While JSBSim and MAST are open source and do have community learning spaces

and involvement through feature requests and issue flags, they do not encourage com-

munity code contribution to the extent of Horizon, or SU-2 and FlightGear, discussed

in the subsequent section. These software operate in a closed development environ-

ment, so their resources do not include instructions to fork new feature branches,

projects for new developers, nor ways to become involved with the development team.

From the lack of community development resources, to the resulting lack of commu-

nity participation in the software’s progress, this barrier between users and developers

is clear and undesirable.

2.3.2 Open Source, Open Community Development Projects

FlightGear is an open source flight simulator built on other open source blocks, one

relevant block being JSBSim. Flight simulators have many use cases: research, train-

ing, commercial, and recreational. This means FlightGear has a large and diverse

potential audience, including academics, aviation professionals, and hobbyists. Ad-

ditionally, the major flight simulators are expensive and closed source, which means
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FlightGear fills the gap of an affordable, professional flight simulator. Finally, Flight-

Gear benefits from an enthusiastic flying and flight simulator community. These rep-

resent the necessary ingredients for a successful community supported open source

project, as discussed in Section 3.1.2. Also discussed in that section is that a project

must have both the necessary characteristics and the necessary resources and com-

munity encouragement to succeed as a community sustained open source project.

FlightGear is a great example of software with community contribution at its core.

There is an extensive developer hub on their wiki with expected pages like in progress

and planned projects (of which there are 129 in the ‘core development’ alone), first

issues, and a forum to ask questions [18]. However, FlightGear’s wiki goes much

further to provide detailed guides for creating new subsystems, render optimization,

code cleanup, extending scripting capabilities, and many more. Additionally, there

is comprehensive support for non-core developers, those who’d like to add a scene

or their favorite airplane. These developers can find step by step guides on every

aspect of generating, modifying and troubleshooting aircrafts, animations, scenery,

and scripts. They also build their community by interviewing contributors to include

in their newsletter, participating in Hackathon events, and a guides to demonstrate

FlightGear at expositions [18].

SU-2 is an open source multiphysics framework which was built on a foundation of

community driven development. In contrast to JSBSim, SU-2 explicitly states their

goal of an open source software engineering strategy. They do this by designing their

software as a testbed for numerical methods and CFD experimentation, using high

level abstractions for reusability and rapid implementation, and including libraries to

reduce user’s initial time investment. This also means that, like Horizon, significant

features and models can be added without affecting the framework. They also en-
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courage global adoption by valuing portability and efficiency: SU-2 is intended to be

run on any machine with a C++ compiler and its algorithms are scalable.

Additionally supporting this philosophy is SU-2’s extensive developer support. In

their manifesting paper, community involvement is mentioned as the first pillar of

their philosophy [19]. The project certainly follows through on this philosophy. SU-2

has lively issues and projects tabs for experienced contributors to jump into as well as

the same code covenant and a similar standard open source license as Horizon. There

is also a wealth of resources on their website like tutorials to make changes to the

repository, running containers, code style and review guides, and writing unit tests.

It also uses a GitFlow branching model, which is a CD/CI pipeline to merge daily

work branches together prior to larger, coordinated releases [19]. While unit tests and

regression tests exist, regression prevention is done manually, rather than automated

into the version control architecture. Developers are asked to run the regression test

suite on their own machine prior to pushing, but eventually the suite is run manually

by the reviewing moderator [20]. While this is not as rigorous as preventing push

on a failed regression test, the tests are available for anyone to run, which increases

transparency and aligns with standard validation and verification practices.

As a result, SU-2 has cultivated an active community of contributors and users which

keep the software improving and reaching new users. Additionally, their developer

friendly practices have resulted in 92 contributors during its time on GitHub, which

represents only half of the software’s life. Of these 92 contributors, 16 have over

100 commits and 51 have more than ten [20]. Similarly, FlightGear sees multiple

thousands of downloads per week, 23 years after its first release. The number of

issue/project tickets tell the story of their active developer base which supports these

users. There are a little over a dozen active developers as of April 2022, adding,

commenting, and closing tickets [20]. Hundreds of open tickets, thousands of closed
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tickets, tens of thousands of comments across these tickets, and dozens more opened

each month make it clear the community supported development can work extremely

well for this open source project.

Contrast this with similar statistics of JSBSim and MAST, both of which are open

source but do not encourage community contribution like SU-2 and FlightGear. JSB-

Sim has a single contributor with a majority of commits (90% of total commits) and

lines added or subtracted (80%). After that, only two of 30 contributors have more

than ten commits to the project. Clearly, this project is driven by an individual with

a few occasionally supporting contributors. With MAST, the contrast is stronger.

There are only 4 developers with commits, of whom the main architect designer is

responsible for 76% commits and 74% lines of code added or deleted. One unfortu-

nate product of this is that, as of writing this in April 2022, the MAST architecture

has not seen any commits in nearly two years, and the latest release is from January

2020.

This information is useful in directing how Horizon should grow. As previously men-

tioned, Horizon would benefit from more development from both dedicated developers

who can add new features and expand the architecture and users who can add to the

program by adding subsystem instances to libraries, suggest features and point out

bugs. To get developers, Horizon can rely on recruitment of master’s students or can

reach out to the developer community for support. Clearly, the latter method has

worked for SU-2 and FlightGear to maintain consistent development over very long

periods. Therefore, Horizon will pursue their method of community driven develop-

ment, building resources and a community slowly over time.

24



2.4 Thesis Statement and Motivation

The development team of Horizon have decided that the next logical step in the

software’s progression is to go from closed development, free-to-use, as-is software to

a collaborative open source project. The primary goals of this paper are achieved by

addressing the lack of testing and validation, integration pipeline, and other necessary

supporting documents expected for a prosperous, collaborative project.

2.4.1 Motivation

Horizon has been freely available online since 2015. The code is presented as an ’as-is’

software, meaning the user is given no guarantee of the software’s accuracy, usability

or state of completion. For Horizon, this has meant that there is no development

version separate from release version of the software, so a user may download the

software with a half-finished feature or even with broken core functionality during

adjustments to the architecture. The work presented in this thesis aims to move

Horizon away from a perpetually in-development phase to a functional product with

certain guaranteed functionality, even during continuous development. The Horizon

team would also like to see an acceleration in development for Horizon, including more

simulation features, modeling features, templates, and external interfaces. Releasing

Horizon as an open-source modeling and simulation platform, with an emphasis on

community driven development is the proposed solution. However, the software was

deemed unfit for release because Horizon lacked the testing to verify its functionality,

and it lacked a system to maintain the integrity of the code after its release to the

community. Additionally, the software has disorganized or missing developer support

resources.
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2.4.2 Current Barriers

A primary barrier to a formal release was that no one had ever verified Horizon. The

individual methods had not been tested, nor the larger program modules. Therefore,

the output of the program has never been systematically compared to expected results

calculated outside the Horizon program, and no conclusions should be drawn from

its output exclusively. But it is the hope of this development team that in the future

this software is used by more than just this team. However, it is absurd to expect an

organization to choose an untested software for two reasons. First, as stated above,

it is inadvisable to draw a conclusion from a code base which has never been verified.

Secondly, the fact that the developers did not take the time to test and provide users

with proof that it works, reflects poorly on the quality of the software. The result

is a software, intended to be used by the public, being neglected by the public. To

convince users that the software is high quality, they need assurance that the product

works as intended and remains working as intended. This is a central challenge my

thesis works addresses.

Another barrier is the small dedicated moderation team, often consisting of a single

person to deal with an entire open source project. In the desired event of medium

to large scale adoption and active contribution from a community, it would be im-

possible to manually address each commit, run tests, and maintain the code quality.

Without a test suite to compare versions of code to, the maintenance is impossible

to perform quickly and effectively. The result would be either a backlog of commits

to be manually checked for bugs, or a buggy architecture.

The final barrier is the lack of organized documentation that developers expect when

considering joining a community project. When a new user arrives at the GitHub

repository, there is little direction as to where users should go for more information.
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Users looking for a first project to contribute, more information about HSF, or how

to download and get started are all met with the same generic landing page. There

is also no open source license, contribution guidelines, nor code of conduct. This

might steer new users away from the disorganized repository and result in a lack of

community development.

2.4.3 Automation for Maintenance

The solution to the problem of unverified code is to simply verify it. For a static piece

of software, a single verification is enough. However, Horizon is dynamic with new

features always in the pipeline or wish list. So, because code and new features from

unknown community contributors is encouraged, verification of the core architecture

must happen every time the code is changed. This can be done by manually testing

then accepting or denying pull requests or it can be automated to run each time a

push or pull request is initiated. Automatic testing is well suited for projects with few

or no developers dedicated to maintenance. Any user curious about the current state

of the repository can easily glance at the test results of the latest CI run and gain

confidence that the main scheduling algorithm is verified and properly functioning.

The second barrier of quality and speed of handling pull requests is also addressed

by the CI Pipeline. As previously discussed, the owner and long-time sole maintainer

of the Horizon project, Dr. Eric Mehiel, has little time or interest sifting through

change-logs and testing the new code himself. Instead with the CI pipeline, if a pull

request fails a test in the pipeline, Dr. Mehiel or other moderators can easily see

what tests are broken and give feedback and/or reject the request. This way, the

moderation team can more quickly and effectively approve or reject pull requests

based on the test report generated with each commit.
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2.4.4 Thesis Statement

A continuous integration pipeline with automated testing was identified as the solu-

tion to the open source barrier of lacking testing and maintenance. First, to verify

Horizon, unit and integration testing is needed for each referenced method and class

in the scheduling segment. These tests enable the implementation of a continuous

integration pipeline, which executes the tests suite for each commit to the repository.

To address the final issue of an unwelcome homepage with missing documentation,

the repository must be cleaned and organized. The file tree must be organized,

a README.md should direct new users from the landing page, the previous OSS

documentation should be assembled, desired features and new library ideas should

populate the projects tab, and all Horizon resources must be found in the wiki.
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Chapter 3

AN OPEN SOURCE HORIZON SIMULATION FRAMEWORK

This chapter focuses on Horizon and its open source future. Open source software is

explained as well as the reasons to release and contribute to this type software. The

main goal of an open source software is to be used by a wider audience and receive

improvements through community participation. To attract community development

a project must satisfy certain needs for the developer community, maintain logical

organization and a respectable appearance, and contain adequate resources for all

types of community members who may stumble upon the project. To identify what

is needed for Horizon to succeed as an open source project, this chapter pulls heavily

from experts on open source and GitHub, the largest host of open source software.

3.1 Communities of OSS

Open source software (OSS) is broadly defined as software where the user can use,

modify, and redistribute the software without permission or compensation of the au-

thor [21]. Practically, when a software chooses to go open source, they invite the

public to scrutinize the source code and improve the software in collaboration with

the original team. Specific requirements for OSS have been defined by watchdog orga-

nizations such as the Open Source Initiative (OSI) and the Free Software Foundation

(FSF). According to GitHub [22], there are three main reasons to open software to

the public: collaboration, tweaking/remixing, and transparency. While transparency

is not currently of concern to the HSF team, collaboration and essentially outsourcing

the creation of new models, libraries, and add-on features, is.
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3.1.1 Doubts about Open Source Software

Many computer science scholars have doubts about the promises of OSS however,

especially when considering applications with “stringent requirements for certain at-

tributes such as security, reliability, fault tolerance, human safety, and survivability,

all in the face of a wide range of realistic adversities-including hardware malfunctions,

software glitches, inadvertent human actions, massive coordinated attacks, and acts

of God [21].” This application accurately describes the challenge of writing aerospace

software which claims to be able to design, test, verify, and control systems which can

have costs reaching in the billions of dollars. The question posed by Peter Neumann,

a leading academic on the intersection of society, policy, security and software, is,

“is open source software better than closed source, proprietary software? [21]” His

answer is that it is not intrinsically better, but it has the potential to be.

“The potential benefits of nonproprietary nonclosed-source software also

include the ability to more easily carry out open peer reviews, add new

functionality either locally or to the mainline products, identify flaws, and

fix them rapidly-for example, through collaborative efforts involving peo-

ple irrespective of their geographical locations and corporate allegiances.”

-Neumann [21]

According to Neumann, the main disadvantage of for a company choosing to use open

source software compared to a closed system mentioned in the analysis is “increased

opportunities for evil-doers to discover flaws that can be exploited and to insert trap

doors and Trojan horses into the code [21].” However, for a low profile software like

Horizon, it is unlikely that anyone would be motivated enough to carry out this

attack. A much more likely disadvantage with allowing community development is

poorly written or buggy code introduced which breaks core functionality. Therefore,
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security concerns are left to the community and developers must passively or actively

patrol the code for malicious code. Additionally, security is also partially deferred to

the judgment of the user, through allowing scrutiny of the open source code prior to

adopting the software.

What is not considered in this analysis by Neumann, but more specifically relevant

to HSF, is OSS’s particularly well suited benefits to software projects with a lack of

developers in the software’s managing organization. The majority of HSF has been

developed by graduate students at Cal Poly with sometimes years between students

working on the project, as was the case from 2012-2016 when the software had no

development. Therefore, an significant disadvantage of this framework remaining

closed source is the slow, sometimes halted development of new features, models, and

implementations. While general advantages of OSS have been discussed in section

1.2.2, the current primary goal for Horizon’s team, developing new functionality and

instances of simulations without the need to recruit new graduate students, is satis-

fied with OS development, while the issue of security and safety intrusions are not

considered a likely outcome, and the issue of bad code introduced into the framework

is addressable.

3.1.2 What makes software a good candidate for Open Source

The success of an open source release can often be predicted by looking at the inter-

section of the project and it’s developer community. A project must scratch an itch

for people who code; a large potential user base is not enough for an OSS project

to succeed [21]. Similarly, the project must attract a large or dedicated developer

community to remain actively in development. Another key component in many suc-

cessful open source products like Linux is that the product serves as an alternative

to expensive corporate software [21]. A software which fits these criteria may show
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potential to intrigue an open source community, but it must have desirable technical

characteristics to back it up.

Success also lies in the characteristics of the software which can also be broken down

into design and tools. A poorly designed architecture or a massive monolith can make

development too daunting for potential coders. Development tools (revision control,

bug reporting databases, etc.) are important components for an open source project

to have a reasonable chance of success [21]. Much care was taken during the recode

of HSF to make the architecture more logical and organized. Horizon also uses tools

like GitHub for version and regression control and takes advantage of the expansive

developer toolkit included in Visual Studio Community Edition. Finally, success for

a closed source project is often ultimately determined by the team who chooses to

cancel or continue development. However, it is common for an open source project

to appear failed at first to later find popularity and become a success.

An open source Horizon Simulation Framework will be successful if it has an estab-

lished user base, creating and sharing models, comparing simulations, and helping

others learn. Equally important is that a portion of these users become developers,

who create, maintain, and debug new features, templates, and add-ons. Unlike most

software, a majority of users will interact with HSF through code, so the lines be-

tween developers and users is blurred. Users cannot simply open the program and

begin building models without a basic understanding of scripting and the framework.

Similarly, it is unlikely there will be developers who are not using the software to

run their own simulation. This addresses the ‘people’ problem for successful open

source software projects, because all interested users result in likely developers of the

project.

Horizon also addresses a need for a free alternative system modeling and simula-

tion tool, with powerful design and verification capabilities. HSF can be considered
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an open source alternative to STK, FreeFlyer, and MATLAB. It should also attract

aerospace engineers who code and are looking to perform rapid mission analysis with-

out the massive learning curve associated with other MBSE solutions like SysML and

OSATE. A key advantage to HSF as an open source MBSE tool is that it avoids be-

ing too abstract and thus unappealing to prospective developers, while being broad

enough to appeal to a wide multidisciplinary pool of users. The team also considers

the project highly modular. Because the framework consists of the algorithm and

supporting libraries and features, further development of the software is achieved

with the addition of relatively simple functions and subsystem models, a task easily

achievable for an individual. It is clear that Horizon’s concept and architecture are

well suited for a future in open source, but there is more to open source success than

a well suited project.

3.2 Necessary steps prior to releasing open source software

Most of the aforementioned criteria for a successful open source software candidate

relate to properties about the core concepts of a project. There are, however, still

critical steps that a team with an already realized, well suited OSS candidate must

take to prepare for an open source release. A crucial step for sharing any code base,

open or closed source, is providing proper documentation. Documentation shows what

it’s for, how to use, and other organizational, legal and miscellaneous information the

developers need to share with anyone downloading it.

3.2.1 Minimum Required Documents

GitHub identifies four documents that should be included in every OSS: open source

license, README, contributing guidelines, and a code of conduct [22]. First, the
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open source license can be drafted by a legal team or lawyer, but most small teams

use a standard template from either OSI or FSF. A README is the first thing a user

should encounter when discovering or open after downloading the software, which

details what the project does, why it is useful, how to get started, and where to

get help if needed. Contributing guidelines tell potential developers how they can

participate and the expectations of participation. For a young project, this may also

be a good place to suggest ‘first issues’ or ‘first library functions’ which can draw

in new developers with simple yet important development ideas. Finally, a code of

conduct describes the expectations for all interactions between users, developers and

maintainers, and is also commonly adapted from templates from OSI and FSF. Often,

the code of conduct and the contribution guidelines are the same document.

3.2.2 Organization and Appearance

In addition to the standard documentation included in most OSS releases, there are

other actions a team may take to increase their chances of success. While clear,

commented, and well organized base code and supporting documentation may sound

obvious for a software team whose goal is to attract unfamiliar users and developers,

GitHub’s 2017 Open Source Survey showed that incomplete or confusing documen-

tation is the biggest issue for open source project users [22]. Thus, it is key to fill in

documentation gaps, and strictly enforce guidelines when reviewing a project prior

to release.

3.2.3 Community Growth and Retention

Another logical step is to actively advertise and increase awareness of the tool after its

release. This can be achieved with online outreach in places with lots of engineers and
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developers such as Reddit, StackExchange and similar coding communities, LinkedIn,

Facebook and direct to small teams who may benefit from the software [22]. Addi-

tionally, offline outreach can be powerful in growing a community as well. For HSF

this could include submitting conference papers about HSF, partnering with Cal Poly

clubs and teams, or reaching out to local companies and alumni.

GitHub recommends that OSS communities have a specific place for public congre-

gations where users, developers, and maintainers can all interact, ask questions, and

generally foster a community (e.g., Twitter/Facebook page, dedicated software web-

site with a forum, Git forum) [22]. A public congregation can also help by enabling

community members to answer questions before a core member is able to respond,

and for maintainers to avoid answering redundant questions. A third function of a

public online congregation is to show off interest and active engagement, which in-

creases visibility on the web and will make potential developers and users more likely

to try it out.

3.2.4 Continuous Integration

Continuous integration (CI) is a great practice for any project, but provides especially

useful benefits for OS projects. Because anyone can contribute but few maintain

OS projects, they are particularly vulnerable to poor quality code and poor and/or

laborious quality control. CI is effective at addressing these two issues.

Continuous integration is often attributed to Martin Fowler, an expert in software

development specializing in the process of software design. His succinct definition is:

Continuous Integration is a software development practice where members

of a team integrate their work frequently, usually each person integrates
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at least daily - leading to multiple integrations per day. Each integration

is verified by an automated build (including test) to detect integration

errors as quickly as possible. Many teams find that this approach leads to

significantly reduced integration problems and allows a team to develop

cohesive software more rapidly [23]. - Martin Fowler

Fowler states that the difference between projects which experience integration as an

arduous and unpredictable process and those when treat integration as a non-event

which can be done in minutes, is not due to expensive or complex tools. Rather, the

result is due to the simple practice of the whole team integrating frequently. Contin-

uous integration with source control software follows these steps. First the mainline

source code is forked to a development machine where it is changed (e.g., new feature,

bug fix, etc.) Then tests are made for this new change. CI relies on comprehensive

testing of the units and functions which are automated into the software, often with

assistance of a test framework. A recommended but not automated or enforced step

is that the developer then runs the test suite on the local copy to work out any ob-

vious bugs. The code is then merged with the mainline code, a step which is only

necessary when the mainline code is modified while this copy of the code is checked

out and changed. Merging is commonly required for active projects with CI because

the point of CI is that forked copies are frequently integrated and thus it is likely that

someone else has committed changes during any given feature development. Once the

code is properly synchronized with the mainline of code, the new merged copy can be

committed to the mainline. The commit triggers a series of automated actions. The

automated actions often include a build of the software as well as running some test

suite. Once the code successfully builds and passes automated tests, the code is either

automatically accepted as the new main or is ready for one last manual acceptance,

completing the integration process.
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While this practice can be implemented by a change in behavior of a team (simply

requiring everyone to integrate more frequently), it is always useful to use a CI server.

A CI server is used to build the program, run tests, store version history, and deploy

software and can be automated to run different workflows based on desired triggers.

Examples of CI operations include running tests for any commit made to the repos-

itory, and incrementing the version number with each release on the software’s web

page. When implemented well with good CI practices, the resulting software should

always be of quality, have few bugs, be up to date, be stable, and function according

to the design.

For open source projects, CI provides a valuable service in automatically testing

source code. Since Horizon’s maintainers have limited time to dedicate to combing

new commits for bugs, its automated testing can significantly speed up the code

review, and thus the integration and acceptance process. This is both beneficial to

the developer who receives immediate feedback from the automated build and test

on whether the code is likely to be accepted, but also to the reviewer who does not

have to manually run tests and can approve code with a cursory review of the edited

files.

3.3 Making CI Effective

The success of implementation of CI is dependent on many key practices. While the

concept is relatively simple, there is much more to setting up a smooth CI pipeline

than adding software to the pipeline. Fowler lays out 11 common sense practices that

he’s seen help create effective CI pipelines. These practices will be used to inform the

approach for setting up Horizon’s CI pipeline.
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3.3.1 Best Practices

First is that a single repository is maintained. Source code management tools are

integral to keeping track of the many files and versions. Second is automating the

build, which means that “anyone should be able to bring in a virgin machine, check

the sources out of the repository, issue a single command, and have a running system

on their machine [23].” Third, the build should self-test. This is most often with

the help of a testing framework which works with CI servers to execute different

combinations of tests. Automated testing is critical to CI’s effectiveness in finding

bugs. Fourth is that commits are made frequently. Fowler advocates for committing

every day, which encourages developers to break code into small chunks, facilitates

communication between developers, minimizes the number of lines of code which

must be checked if a test is failed, and minimizes serious conflicts by forcing any issue

to be addressed immediately. Fifth, every commit should build the mainline on an

integration machine, best done on the CI server. Fowler advocates that no-one should

leave until receiving a notification that the build has succeeded because it enables the

next best practice. Sixth, fix broken builds immediately. A significant benefit of

CI is that it facilitates the quick identification of bugs. However, identifying a bug

quickly is only useful insofar that it is quickly removed. This is good practice because,

somewhat obviously, bugs are bad to exist in the mainline code, but also because code

is developed in such small chunks, the possible location of this bug is narrow if it is

addressed as soon as it’s found. Seventh is that the build is fast so the pipeline is

not bogged down by overlapping commits. Fowler generally recommends keeping the

pipeline run-time under 10 minutes. Eighth is testing in a clone (or as close a mimic

as possible) of the production requirement to reduce risk associated with testing the

software in a different environment than its intended use. Ninth and tenth is that it

is easy for anyone to get the latest executable and that everyone can see the history of
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changes and test results. Finally, the last practice to ensure an effective CI pipeline is

extending it to automatically deploy to users. If scripts are already written to deploy

the software in different environments (to build on the CI server), it should be easy

to create a similar script which deploys the software to production. These guidelines

are sufficient for most projects setting up a CI pipeline.

3.3.2 Additional CI Efficiency

There are studies on advanced implementations of CI that address problems which

arise with scaling up software projects. These include innovations like selection and

prioritization techniques used at Google, which led to cost effectiveness improvements

[24], and a technique which applies fault-based and risk-based test selection optimized

for low run-time, which achieved improvement on time-efficiency with respect to in-

dustry practice [25]. However, this thesis focuses only on the basic guidelines for

implementing effective CI, described by Fowler. This is because time and cost effec-

tiveness are not primary drivers for this open source, volunteer and student supported

project and have not hampered implementation of CI. Low cadence of commits for

Horizon means that CI builds rarely, if ever, overlap and lead to conflicts. Similarly,

Horizon has a small enough code base and simple enough tests that a pipeline can

run within the guideline of 10 minutes without any optimization.

3.3.3 Results from a CI Implementation Survey

An analysis on the quality and productivity outcomes relating to continuous inte-

gration in GitHub by Vasilescu and Yu et al. found that projects who can integrate

more outside contributions see an increase in productivity without an observable di-

minishing of code quality [26]. The analysis considered projects with a significant
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number of pull requests (< 200), to focus on projects which should benefit the most

from CI. They analyzed projects which had a significant portion (< 25%) of pull

requests prior to implementing CI so they could analyze the quality and productivity

before and after for each project. They found that CI use had a significant positive

effect on the number of merged pull requests and negative effect on rejected pull

requests from core developers. The analysis found no increase in accepted requests

from external contributors, but it did find a decrease in rejected requests, suggesting

that CI provides immediate feedback which lets these contributors quickly fix failing

tests. Additionally, the authors found an increase in pull requests handled after CI

adoption, meaning core members are able to more efficiently handle pull requests. Im-

portantly, this increase in productivity comes at no cost of user experienced quality.

User reported bug reports did not increase significantly alongside the increase in vol-

ume of code managed. However, bug reports from core developers increased by nearly

50%, meaning that team members are better at identifying and fixing bugs. Other

interesting findings of the study were that the older and more popular a project is,

the fewer bug reports and pull requests are submitted by core developers, suggesting

that maturity correlates with quality. It may also suggest that older, more popular

projects rely more heavily on user bug reports. Overall, they concluded that adopting

CI has clear benefits: more pull requests processed, more code being accepted and

merged and at no cost to code quality [26].
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Chapter 4

METHODOLOGY

To improve Horizon to a tested and open released state, the type of testing, framework

to test with, and the scope of testing must be defined. Testing takes several forms with

each serving a specific purpose in the software development cycle. Contrast Horizon’s

release and audience with the roll-out of a new iOS application and it is clear that

testing and release protocol differs greatly between software types. This chapter

focuses on defining the specific testing and documents needed to ready Horizon for

its open source release.

4.1 Testing

Testing is an important step prior to releasing software because it helps eliminate

bugs before they have a chance to taint the reputation or provide users with harmful

information. Testing mostly falls into four categories: unit testing, integration testing,

system or functional testing, and acceptance or user testing. Unit and integration

testing are primarily performed alongside development, whereas system testing and

acceptance testing focus on the users experience with the finished software. My

work focused on unit and integration testing and some system testing. The user

experience side of Horizon is underdeveloped, thus requiring more development before

user testing is useful. Regression testing, the final relevant tests for Horizon, is

performed by executing some or all of the previously mentioned tests with each update

of the software. These tests ensure that existing functionality is not broken with new

changes.
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4.1.1 Validating Units

Testing software involves comparing data that the program or unit produces to the

expected result. There must be great care in determining the correct solution to give

the test to compare to the output. If a bad value is given to the test, then the test is

useless because it tells the programmer nothing about the correctness of the subject

of the test. The expected result should always be independently validated, when

possible, by computing the answer using something outside the program. Solutions

may be obvious, requiring no effort except a glancing thought, they may require

manual calculation, or they may be complex enough to be best solved by another

previously verified program. I will elaborate these three methods using examples of

functions I verified for this project.

The Accepts() function in the SingleConstraint class returns a true or false based

on whether the passed in value is compatible with the constraint. For example, a

constraint could be the angular acceleration provided by the reaction wheels can

never be greater than 1. To write a test for this case, it is easy to identify the

desired output based on any input. Negative numbers and numbers between 0 and 1

should return true, 1 and any greater number should return false. Another example

is the integrate() function in the utilities project. Simple results can be verified

by hand or done with numerical programs like MATLAB. Finally, are the complex

functions of Horizon like the 3-D vector geometry problems. Functions like has line

of sight (hasLOS()), which returns whether an asset has an unobstructed view of a

point, and castShadow() which returns whether or not an asset is in shadow (or

is in the penumbra). These functions are not built into numerical programs like

MATLAB or Wolfram, and thus must have more complicated verification. However,

these problems have been solved for decades and have publicly available solutions. For

these functions, I found an implemented solution from a trustworthy source. Both of
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these functions I verified with Howard Curtis’s freely available MATLAB code, who

literally wrote the book on orbital mechanics. These methods provided the integration

and unit tests with the hard coded ’true’ values to compare the actual output of the

functions.

4.1.2 Unit Testing

Software is developed in parts or units and each unit is expected to function in a

defined manner. A unit may be a method, module, or object. The purpose of a

unit test is to ensure that the unit satisfies this function and that its implementation

is consistent with the intended design architecture [27]. In Fig. 4.1, a unit test is

annotated to show the anatomy of the test. The best practices are discussed later in

this chapter, but from a broad lens a unit test should be as simple as possible to test

all reasonable uses of a single unit of code. Unit tests are great for systematically

testing a bit of code which provides a quick check to make sure each part of the

program is doing its job correctly.

Figure 4.1: Annotated unit test
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4.1.3 Integration Testing

Integration testing logically combines units into groups to test higher functionality.

This testing can be done with a big bang approach, where all units are integrated

in a single test, or in incremental tests where modules are integrated one at a time

until all modules are integrated and tested [28]. In Horizon’s architecture, there are

many higher function modules which call multiple lower dependent functions and are

dependent on possibly dozens of objects. When writing unit tests for these, it is very

difficult to completely isolate the module to perform a textbook unit test. For a high

level method to be completely isolated, writing numerous mock methods using an

add-on like Mockito, in addition to dozens of mock objects are required. This may

further separate the test behavior from the real use behavior. Instead, I opted for a

bottom up integration/unit test hybrid, shown in Fig. 4.2. Bottom up integration

testing is where the lowest units are integrated first and the program builds from this

until the highest functions are tested with the fully integrated suite below it. One

benefit of this approach is that when a test fails it is easier to find the root cause,

because the simplest, most isolated tests run first. For these integration/unit test

hybrids, I use as many mock objects and as few functions as possible during setup,

but I allow the function to call use the real dependent functions. In some cases, when

arranging the necessary objects during the setup stage, I opt to call methods which

create objects with inaccessible constructors or which involve a cascade of dependent

methods to create, simplifying testing significantly. This is consistent with a testing

philosophy that says tests should mimic how the code actually runs as closely as

possible.

In the test shown in Fig. 4.3 the subsystems objects and relationships are first

arranged by the LoadSubsystems(). There is a try-catch which alerts the user if

LoadSubsystems() is the reason for the test failing. A primary disadvantage of using
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dependent functions which detracts from a test’s usefulness is not knowing which

element of the test caused the failure. Then the method which is being tested can

be called, in this case the AccessSub constructor. That constructor uses another

external method, getSubNameFromXML(). While this function happens to be tested

prior to the AccessSub constructor, as would be best practice, this is not always the

case. During a CI run, a nonfunctional getSubNameFromXML() would fail its own unit

test prior to executing the AccessSub test and, therefore, eliminates confusion as to

which function is not functioning. The tests are generally run in a bottom up (unit to

full program) order for this reason, but this guideline is broken regularly because of

the complexity and inter-dependency of the code. Therefore, it is a very useful step

for developers to run the test suite on their machine because all the tests are run,

regardless of any tests failing.

The need for hybrid unit/integration tests is primarily the result of highly complex,

coupled code. Most units require many objects and relationships and also call func-

tions of one or more other units of code. For methods like these, a refactoring to

decouple methods is a better long term solution. If refactored properly, the depen-

dent methods (methods called by method being tested) would instead, be called first

and the objects they create are passed into the subject method. So, when testing,

mock objects could be constructed and the method could be tested directly. This

is one reason it is a best practice to write tests in parallel with the program code.

Writing tests early provides immediate feedback: if a bit of code is annoying or com-

plicated to test, it is much easier to change course while writing the code. Coupling

is occasionally unavoidable so it is not necessarily a bad practice. However uncoupled

code is easier to unit test then integrate, rather than Horizon’s case where coupled

code forces certain functions to integrate lower units.
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Figure 4.2: Integration testing flowchart

Figure 4.3: Annotated integration test

Writing tests from the start is good practice for many more reasons. For one, the

developers who wrote the original code will have the best understanding of the unit

and the function it provides to its group of related modules. This saves a quality

assurance team or a new developer significant time spent understanding the unit and

its purpose. It also saves time and money by catching mistakes and bugs earlier in the
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design process. This practice was unfortunately not adopted during the re-code and

subsequent development of Horizon, and it is the focus of my thesis project instead.

Horizon was written and is maintained by aerospace engineers with a passion for cod-

ing, not by computer scientists. From the start the goal has been to create software

that is highly adaptable without changing the core architecture, and which follows

coding principles like consistent naming, a logical and consistently applied design

architecture, and abstraction. However, the authors are trained more in MBSE and

that is reflected in its consistent adherence to MBSE guiding principles, often over

coding principles. This priority has resulted in code which is not necessarily opti-

mal from a computer science perspective, specifically to this paper, code which is

occasionally difficult to distinctly write both unit and integration tests. This testing

campaign is the first step to introducing better coding practices like testing driven

development, which improves the efficiency of writing tests and effectiveness of the

tests for catching bugs.

4.1.4 Regression Testing

Regression happens to a program when a feature is broken as a result of a software

update. Regression testing seeks to prevent this by re-running core functional tests

after any change to ensure proper function throughout the software. This can be

done in three ways: testing all, selective testing, or prioritization testing. Regression

testing where all tests are re-run can be expensive and time consuming when dealing

with a large program. However, when a test suite takes a matter of seconds or

minutes to execute, running all tests becomes a simple, comprehensive, and feasible

solution for preventing regression. Selective testing limits the scope to tests which are

most relevant to the affected code or testing the functionality that is most sensitive

to code changes. By eliminating many test cases, time and resources are saved.
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The prioritization technique aims to reduce the time the test suite takes to detect a

fault. Priority can be assigned in several ways such as statement coverage, function

coverage, fault-exposing-potential, or most syntactic differences. Prioritization can

be combined with selective testing for a hybrid scheme which prioritizes the subset of

selected tests. Because an estimated half of software costs go towards maintenance, it

is crucial to use and optimize techniques like regression testing [29]. Horizon’s entire

test suite can execute in under a minute. Therefore, it was decided that all tests

should be run for each change to the repository to prevent regression.

4.2 Testing Environment

The testing environment is composed of the integrated development environment

(IDE) which is used to organize, view, write and track testing, and the testing frame-

work, a which provides a logical framework to support writing and executing the tests.

Below is a brief comparison of testing frameworks and discussion of some helpful tools

included in the Visual Studio IDE.

4.2.1 Test Framework

To test a program, a developer could write user code which test various units of the

code with assertions, exception handling and other feedback mechanisms to signal

failure. Naturally, to better diagnose which tests failed, an output display might be

added. Finally, to run selected tests, see summary reports, and generally improve

the testing and debugging experience, a GUI can be added to interact with the test

suite. Most developers forgo this labor, instead choosing to use the numerous available

testing frameworks, which include all of these features. Testing Frameworks eliminate

barriers for developers to adopt unit testing.
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4.2.2 Survey of Frameworks

The three frameworks that are used most commonly are MSTest, XUnit, and NUnit.

They all perform the exact same task of testing with slightly different flavors. MSTest

and NUnit are built similarly and most of their attributes and asserts are analogous.

Users have reported memory leak problems with MSTest in addition to the issue

Horizon faced which was with tests being run in random orders combined with vari-

ables which weren’t deleted after a test completed. This caused tests to fail because

they were run out of order rather than for legitimate errors in the code. One final

difference is that MSTest is controlled and developed by Microsoft, whereas XUnit

and NUnit are both open source. While I’ve discussed some downsides of using open

source software, they can be ignored in this case because both open source frameworks

enjoy regular updates and support, and they have enjoyed widespread adoption for

commercial use.

XUnit is leaner compared to NUnit and MSTest, meaning it has fewer asserts and

attributes than the alternatives. The lean nature of XUnit testing effectively enforces

the design philosophy of the authors; so rather than providing multiple ways to design

a test (for example using one or many asserts per test), XUnit informs the design

according to the XUnit philosophy (only allowing a test method to have a single

assert).

NUnit is the oldest and one of the most popular testing frameworks for .NET. Other

than giving a certain sense of security in the continuation of the project, it also

means that there are a lot of third-party resources, guides, and tutorials available

for NUnit. Overall, the differences between the frameworks are quite subtle, and the

only consensus in online communities is that they will all work.
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4.2.3 Switch from MSTest to NUnit

Because the testing was in nascent stages at the start of this project, it was a great

opportunity to re-assess the testing framework that Horizon uses. Initially, the team

decided to stick with MSTest because there were already a few tests, and there is

no significant difference between frameworks. However, when implementing CD/CI

through GitHub’s Actions, the test files were either not found in the file tree, or

not executed by Git’s servers. Additionally there was the previously stated issue

where variables would not clear between tests and it was difficult to discern why tests

were failing in the pipeline. Limited documented instances of GitHub Actions with

MSTest, in contrast with NUnit, and the ease of switching between the frameworks

influenced the decision to try NUnit as the testing framework. Additionally, NUnit

enjoys slightly wider adoption, and has more community activity with its users and

the original developers. Because MSTest and NUnit are so similar, “Find and replace”

was used to switch attribute keywords, and nearly every assert statement worked in

both frameworks. The only other required work was to add the NUnit NuGet packages

to each project and fix a single bug related to relative file paths. Using the NUnit

test framework, the tests ran flawlessly on GitHub’s remote servers, meaning the CI

pipeline was complete.

4.2.4 Visual Studio IDE

Visual Studio is a powerful IDE built by Microsoft. C# is well integrated into Visual

Studio, a driving factor in the decision to switch Horizon to C#. Visual Studio has

features like IntelliSense, an autocompletion feature, which shows users suggestions

of accessible variables, objects, methods, classes, and interfaces. This is extremely

helpful to those without a coding background and developers who are unfamiliar with
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C# or the particular software architecture. Another helpful feature of Visual Studio

is the built-in test matrix GUI, shown in Fig. 4.4. Any method with the [Test]

attribute will be collected by the matrix and organized in its respective assemblies.

When a test is run, the test matrix updates the outcome of the test. Passing, failing,

and inconclusive tests are marked with a green check, red ’X’, and a blue ’ !’ respec-

tively. Methods which are called during any tests also feature this marker below the

method header indicating whether all tests which call that method have passed. The

user can hover over to see all the tests and their outcomes and jump straight to a

failing test to investigate the failure. Visual Studio’s test matrix and other integrated

testing functions are compatible with their own MSTest framework and 3rd party

frameworks.

Figure 4.4: Built in test matrix in Visual Studio Community 2019

The matrix is not only useful for quantifying the number of tests, but also as a way to

keep track of testing progress. Empty tests with an assert.Inconclusive() can be

used to populate a test matrix, giving the developer an idea of the number of tests and
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therefore work ahead of them. A quick glance at the test matrix shows which tests

are to be written, marked with the blue exclamation mark. As testing continues, the

number of inconclusive tests acts as a countdown until all planned tests are written,

and no inconclusive tests remain. The test matrix’s integration with Visual Studio

removes many barriers to implement testing, and it is an incredibly helpful visual

interface for developers.

4.3 Best Practices

Unit testing aims to encourage better code design and reduce development timelines

by reducing time spent functional testing, fixing regression defects, debugging, and

rolling out. However, poorly designed tests can seriously hinder development. Best

practices should be followed to avoid common mistakes which lead to ineffective test-

ing.

4.3.1 Fast

Larger projects may have thousands of unit tests. In the best-case scenarios, slow

tests can be an annoyance to developers who must wait during long test runs. In

worst case scenarios, it can clog a CD/CI pipeline which can’t complete test runs in

between pull requests. Therefore, it is expected that each unit test takes as little time

as possible to run, on the order of milliseconds.

4.3.2 Self-checking and Repeatable

Unit tests should be able to automatically detect if it has passed or failed, that is,

without human interaction [27]. The assert function is included in all test frameworks
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for this purpose. Test runs should also provide consistent results between runs if

nothing is changed. In unit testing, the use of objects or methods which may change

their outputs over time should be avoided (e.g., Current time, random generators,

non-local databases).

4.3.3 Uncoupling Code

Unit testing alongside development encourages less coupled code. Because highly

coupled code is, by its definition, hard to isolate, testing involves constructing many

objects and methods which are not the subject of the test. This is bad practice

because it makes locating the root cause of failure more difficult, and it makes tests

run longer than necessary. In the arrangement of a test for a new method, a developer

may notice that there are many objects and method calls which don’t provide relevant

information to the function or object being tested. This feedback naturally decouples

code because it would be more difficult to test otherwise, resulting in simpler, more

easily understood, and more easily tested code [27].

4.3.4 Naming

Organization is instrumental in delivering the benefits of testing. Tests are only useful

if they are easily understood and assist in rooting out bugs. Test naming is an often

overlooked but instrumental organizational tool. Tests should have specific names

which indicate which method or object is used and the specific aspect being tested.

So rather than Object Test1(), a developer should use a more specific name like

Object function ErrorExpected() or Object Ctor typeOverload(). Good names

describe the behavior of each test, eliminating the need to dissect the code itself in

the case of a failing test [27].
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4.3.5 Arrangement

Consistent code arrangement is an effective organizational tool which increases read-

ability of test code. Tests are commonly conducted in three steps: arrange, act, and

assert. The ‘arrange’ step gathers the necessary structures and objects to perform the

action. The ‘act’ step is the call to the method or constructor that is being tested.

After the action, the ‘assert’ step compares the resulting objects to expected values

or objects, using assert statements. Separating these sections with comment headers

helps communicate the purpose and structure of a test at a glance, and prevents

mixing actions with assertions, which hinders readability [27].

4.3.6 Avoid Logic

Logical statements increase the likelihood of an error and make code less readable.

Logic statements like if, while, for, foreach, switch, etc. should be avoided. If tests

are complicated to understand or were difficult to write a passing test because of

tricky logic, a developer is less likely to trust the tests. Developers should take test

results seriously and have confidence that a failed test is the result of faulty code.

Tests which aren’t trusted are useless to developers [27].

4.3.7 Test Private Methods by Calling Public Methods

Private methods represent a challenge for developers writing unit tests. How should

one invoke the method in the ‘act’ part of a unit test? The answer is simple: call them

the way the program uses them, through a public method. Private methods never

exist in isolation. It is always best to default to testing the unit in an environment

and in a way that is as close to the program as possible. A private method will
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always be accessible through a public method. Because the program will always call

the private method this way, it is useful to consider the private method as a part of

the same unit as the public method [27].

4.4 Scope of Testing

As previously covered, The Horizon Simulation Framework consists of a modeling and

a simulation or scheduler section. These two sections are independent; the scheduler

needs no information about the model, and vice versa. The models are constructed

by users for their individual use case and can involve many types of systems in many

domains. Several models across different domains have been constructed by previous

students. Some of these models rely completely on the templates included in Horizon,

while others used python to construct custom dynamic models. Because there are

endless possibilities for constructing a model, it was decided that users shall bear

responsibility for the correctness and compatibility of their model and Horizon shall

be responsible for a reliable scheduler. This defines the scope of the tests written for

Horizon. Subsystem templates, like ADCS and Power, environments, like Standard-

Atmosphere and World Magnetic Model, and select methods in utilities were omitted

from testing and code coverage. This omits approximately 3,000 total lines of code

from the 11,000 total lines, or about 1,500 of 5,500 coverable lines and excluded 20

classes out of 142. While testing these sections was deemed not strictly necessary for

Horizon’s open source release, they should still be verified in the future.

4.5 Quantifying Test Suite Thoroughness

All test suites are not made equal, nor do they provide the equal utility. While

some testing is better than none, the more thoroughly a software is tested, the more
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useful it is to a developer for maintaining code integrity. So, to ensure that code is

sufficiently tested, its thoroughness must be quantified and analyzed. There are many

ways to analyze the thoroughness of a test suite. The most obvious method would be

to count the methods tested and aim to test them all. This method, however, doesn’t

capture how thoroughly each method is tested. Most methods have multiple possible

outcomes, logical paths through the method, and edge cases, all of which should be

tested. While there is no way to completely and exactly define the thoroughness of

the test coverage, there are many useful metrics that a code coverage tool provides

which make it a superior method to counting tests or tracking methods tested.

4.5.1 Code Coverage

Code coverage tools show developers the degree to which a program is tested. It

finds the areas which have not been covered by test cases. This can be quantified

by statement, decision, loop, branch, condition, or finite state machine coverage [28].

A high percentage of code coverage results in a low likelihood of discovering bugs

later in development. While it seems that developers would always aim for 100%

coverage, this may lead to increased cost, development time and complexity, which

outweigh the benefits. Instead, a goal of 80% coverage is more generally recommended

[29]. Coverage goals can be a distraction developers, especially in the early stages of

testing, because it might encourage covering each line rather than focusing on each

use case or requirement of the software. Therefore, a goal like 80% is good to aim

to avoid obsessively covering each line at the expense of development time or testing

suite size. Additionally, reaching a coverage goal does not guarantee that all use cases

are tested. It is highly recommended to examine uncovered lines if the coverage tool

has the capability.
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4.5.2 Fine Code Coverage

Fine Code Coverage, an open-source code coverage tool, was used to analyze Hori-

zon. It displays statement coverage as a percent of lines executed during tests to total

‘coverable lines’, and branch coverage as branches explored to total branches for each

class and assembly. ‘Coverable lines’ are a subset of all lines of code in a project, only

including statements which can be executed. As previously mentioned, classes which

are primarily for constructing models were excluded from coverage. This includes

much of the HSFUniverse, which contains equations of motion and environmental

models (magnetic, wind, atmosphere), and most of HSFSystem, which contains the

subsystem templates. Additionally, the unit testing code itself is excluded from cover-

age analysis because that data does not give information about the amount of source

code covered by the test data. Rather, it dilutes the coverage percentage with irrele-

vant data. With the ability to exclude certain classes, intuitive results display, both

as a report and integrated in Visual Studio, and its responsive development team,

Fine Code Coverage is a great open source tool to analyze testing thoroughness.

4.6 Continuous Integration Implementation

As discussed previously, an important feature when inviting community development

with limited active moderation from core designers, as is the case with Horizon, is

implementation of a continuous integration pipeline. The CI is run when users want

to incorporate their changes to the main code that they forked a copy from. To

implement CI alongside my testing, I set up a CI server. When deciding on the

server, great importance was placed on the ease of implementation and maintenance

because it will be maintained by countless others. The greatest utility is provided

by a working CI system rather than a more capable but complex CI system which
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is poorly maintained. Therefore, I chose a CI tool integrated with HSF source code

manager, GitHub Actions. While some have noted that GitHub Actions lack some

functionality of the industry standard tools, there is an obvious benefit to the tool

which is integrated into the version control.

Enabling CI in GitHub requires enabling GitHub Actions, tweaking the default work-

flow to the desired CI workflow, linking any tests or external IO, and pushing to main.

When set up correctly, an event, such as a push, pull request or external trigger, will

trigger the workflow. With relatively simple commands in the workflow file, the CI

server downloads necessary packages, builds the program on any of the most common

operating systems, and interact with the program using provided input files. The

required files include the YAML workflow file, like Horizon’s in Fig. 4.5, and the test

files. Once set up, the process to change the code will follow the flowchart in Fig. 4.6.

In Horizon’s implementation, the workflow is set up to simply arrange the necessary

files, build the program, and then run the entire unit and integration test suite. If

any of these steps fail, for example, a bug prevents the program from compiling, or

a new feature breaks old functionality, the test results show a failure and the pull

request is likely to be rejected by a moderator.

4.7 Summary of the methodology

To implement the ultimate goal of continuous integration a software must be thor-

oughly tested and a CI pipeline must be arranged. A series of widely accepted best

practices were used as guidelines for writing these tests. Visual Studio, NUnit testing

framework, and Fine Code Coverage were useful tools in facilitate writing, tracking,

analyzing tests. By using these tools and methods, more time could be spent writing

effective tests rather than creating the infrastructure. The unit/integration test suite
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Figure 4.5: Horizon’s YAML file with annotations
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Figure 4.6: Flowchart of steps required to commit new code after CI
implementation
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enabled implementation of CI. Using a GitHub Actions for Horizon’s CI server, a

workflow was setup to automatically build the code and execute the test suite on

any commit to the repository. The next chapter will discuss the results of this effort,

including analysis of the test suite and CI speeds and test suite thoroughness, as well

as documentation and repository improvements.
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Chapter 5

RESULTS

In anticipation for its open source release, tests were written to thoroughly cover the

scheduling segment of the Horizon Simulation Framework. Metrics about the tests

are discussed in this chapter. The metrics analyzed are the time to run the test suite

and the amount of Horizon the tests cover. The updated GitHub page and resources

are also briefly discussed at the end of this chapter.

5.1 Test Speed Performance

As discussed in section 4.3.1, tests should run quickly. To achieve this speed, I

used about 40 custom input files. This saved time loading unnecessarily complicated

models. It also allowed the simulation duration to be customized for the needs of

each test. As a result, the 126 tests were successfully run in 5.7 seconds, seen at the

bottom of Fig. 4.4. This speed is specific to my local PC, which runs Visual Studio

2019 Community Edition on Windows 10 with an 8 core processor and 16 GB of

RAM. On GitHub’s servers, the test suite completes, on average, in 27 seconds.

5.2 Coverage Results

As discussed earlier, a coverage report gives quantitative feedback on the testing

thoroughness. While no assemblies received 100% coverage, this was not the goal,

and the section of the code which corresponds to the scheduling algorithm was nearly

completely tested.
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5.2.1 Summary Results

The test suite covers 80.9% of the coverable lines and 70.6% of branches. For con-

text, the Aeolus test mission uses 58.1% of Horizon’s source code. The uncovered

portion undoubtedly contains valuable code; however, most referenced methods were

addressed. I estimate that of the 19.1% remaining lines, only a tiny fraction is within

the scope of this project and contain a reference elsewhere in the code. The remaining

uncovered code is comprised of parts of code which are never referenced by any other

part of the code and are not used by the Aeolus test mission. For example, there are

some overloaded methods with less common data types, as well as extra unreferenced

constructors. These methods were the lowest priority in my scope, and some remain

untested.

Figure 5.1: Code Coverage Summary after executing test suite
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5.2.2 Assembly Level Results

It is important that the coverage is evenly distributed through the program. If the

scheduler is fully tested but no testing exists for the objects it uses in the system and

mission elements, then the coverage is misleading. The covered lines as a percent of

total coverable lines are shown in both figures 5.2 and 5.3. The goal of 80% coverage

is displayed as the dotted line in Fig. 5.3. The three assemblies which fall just short

of the goal, HSFSystem, HSFUniverse, and Utilities are associated with the modeling

section, rather than the scheduling section. In contrast, the most covered assemblies,

HSFScheduler, HorizonMain, and MissionElements, are the core constituents to the

scheduling portion of Horizon. The number of implemented tests per assembly is

shown in Fig. 5.4.

Figure 5.2: Fine Code Coverage breakdown of each assembly

55% of the remaining uncovered code exists in the Utilities assembly. This is seen

clearly in Fig. 5.5, where the uncovered portion of Utilities is larger than entire assem-

blies. The Utilities assembly contains functionality from many previous simulation

scenarios, which are unused by Aeolus. A small future project will involve deciding

which unused utilities may assist future users, and which can be removed to simplify

the architecture and reduce program size.

64



Figure 5.3: Percent coverage for individual assemblies

Figure 5.4: Number of tests in each assembly
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Figure 5.5: Line coverage for individual assemblies

5.3 Continuous Integration

Horizon’s CI pipeline incorporates many best practices previously described by Fowler.

The software remains on a single repository and now uses automated build and test-

ing with GitHub Actions and the NUnit testing framework. For each commit, the CI

workflow is automatically triggered on the CI server. This allows developers to fix

commits with a broken build before it is able to be rejected. The build is relatively

fast, due to the relatively small source code base and non-exhaustive test suite. For

its size and development activity, the build and test execution time is sufficiently

quick. Users also can find the executable and the entire history of integration and

build history on the homepage/source-code manager, GitHub. This satisfies all the

best practices for setting up a CI pipeline. There are other practices that relate

more to behavior of developers which is beyond the control of these systems and
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will rely on knowledge transfer and direct encouragement of new contributors. These

are practices like committing frequently and adding tests associated with each code

change. In certain cases where standards are not be followed, tests aren’t written for

a large new feature, or bad malicious code is discovered (e.g., removing/modifying

tests which should prevent a commit) a moderator may choose to manually reject pull

requests or revert to previous versions. This can be addressed by adding advanced

CI features, but for a project like Horizon, the cadence of commits doesn’t warrant

the extra work to set this up. Overall, the elements of an effective pipeline for the

Horizon Simulation Framework have been arranged.

The CI pipeline, as expected, takes slightly longer than a build and test run on my

local machine. Committing a change triggers the CI workflow, which takes between

105-130 seconds, much longer than the approximately 10 second local build and test.

There is only one CI path, which is triggered manually or by a push/pull request.

These steps are shown in Fig. 5.6, where a failure of single test for the utilities class

ended workflow and displays as a failed job.

This path includes a build on a Windows server (currently the only OS which HSF

supports) and then execution of the entire test suite, which takes about as long as the

local test execution. Reading the instructional file, restoring dependencies, updating

NuGet packages, and post job tear-down accounts for the extra minute and a half. It

is noteworthy that almost half of this added time (one third of total execution time)

is spent updating dependencies and NuGet packages. Performance may be improved

by caching NuGet dependencies, which nearly eliminates this step [30]. Additionally,

test prioritization and optimization, as previously stated, can improve integration

speed. However, this is an unnecessary complication because the speed of the current

pipeline presents no current issues.
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Figure 5.6: Steps taken for each commit by the CI server
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5.4 Horizon’s Homepage

The GitHub homepage for HSF’s repository is the de facto homepage for the software.

All available resources must be accessible from this page. The tools provided by

GitHub, like the wiki, README, and projects pages, are sufficient to house and

organize nearly all relevant information. It is also a convenient community forum

to discuss issues and receive help from other users of Horizon. These resources are

helpful to all users of Horizon: prospective masters students, current students, new

and returning users, and developers. The appearance has also been cleaned up to

make the repository more inviting and professional. This involved fixing the flat file

structure and removing and categorizing out of place files.

5.4.1 Wiki

Wikis, deriving from the Hawaiian word for quick, generally organize summaries for

quick reference. Wikis rely on users, typically a handful of dedicated experts, to write

and organize these summaries. The Horizon wiki contains a reference page with links

to graduate theses which chronicles most of Horizon’s development until its open

source release. It also contains a link to the user guide, written alongside the recode

by Yost. Guides to help identify users’ and developers’ first project are also present

in their own wiki tab. A critical part of the wiki are guides to standing up a user’s

first simulation, how to add a dependency and how to add a constraint. As Horizon’s

community and functionality grows, the maintenance team must continue updating

the wiki and encourage community contribution.

69



5.4.2 README

The README.md is a file displayed on the home page of a repository. As opposed

to the wealth of information hidden behind the tabs of the wiki, a README should

contain short sections with only highly relevant information. A good README will

tell new users what the program is, why it exists, and how to use it. Users will now

find a brief introduction to Horizon, the intended use of Horizon, the installation

instructions, and where to find more information. Additionally, it contains short

sections such as developer and maintainer credits, licensing info, a code of conduct,

and contribution guidelines.

5.4.3 Projects and Issues tabs

When a potential user or developer is ready to begin working with Horizon, they are

directed to the projects or issues tabs. The projects tab contains a list of desired

projects. These can be ideas for additional model libraries, feature requests, and

mission concepts. This list of useful projects is designed for users without a clear

idea of how they’d like to participate in Horizon’s development. Similarly, issues

such as bugs, poorly implemented code, or incomplete features should be reported

in the issues tab. This tab is useful for tracking Horizon’s development towards a

more stable product. It also is a great resource for a developer looking to improve

Horizon’s core architecture.

5.4.4 Summary of Horizon’s Resources

With these resources, visitors to Horizon’s homepage should be able to find any infor-

mation relating to Horizon. Users can learn more about Horizon and its capabilities
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to decide whether it fits their application needs. They can also read guides to creating

new models and simulations. Prospective master’s students will find a comprehensive

list of previous papers and ideas for future projects. Finally, developers will find a list

of issues and feature requests that can inspire their own contribution to the Horizon

Simulation Framework.

5.4.5 What This Work Enables

There are several students beginning their thesis with Horizon, who will all simul-

taneously develop new features for Horizon. With multiple students developing new

functions, squashing old bugs, and reintroducing legacy features, risk of regression

is high. The CI implemented in this paper will assist these students in mitigating

regression, providing a quick check as to whether their push breaks some core func-

tionality. If this is not controlled, a regressed version of Horizon might be pushed to

the repository, leading to delays in all contributors’ development.

Maintaining software can be a massive cost on an organization. Because the develop-

ers of Horizon are not paid employees but rather graduate students, this cost takes

the form of time spent fixing old code, time that could have been spent on valuable

features or research. Regression might require someone to pour through past changes

to the repository and even download multiple versions to test against each other for

output consistency. This person tasked with this might not have written the code

causing the bug, wasting more time understanding the code prior to debugging it.

By facilitating student development, CI accelerates the internal development of the

program. Additionally, Horizon has finally received the testing it needed to confirm

its stated functionality. This was the primary goal of this thesis.
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An important secondary goal, especially for attracting an open source user/developer

community, was to make the HSF’s homepage a more welcoming space. By adding

the necessary documents which all open source projects should have, Horizon appears

more professional and worthy of a prospective developer’s time. When a user looks

deeper, they will no longer find a sea of nearly empty pages, but rather a wealth of

organized information. With these achievements, Horizon is ready for an official open

source release.
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Chapter 6

CONCLUSIONS AND FUTURE WORKS

6.1 Conclusion

The goal of this project was to improve the Horizon Simulation Framework by vali-

dating the scheduling segment and releasing the software as an open source project

to increase the user and developer base. To achieve this goal, I worked to verify,

organize, and maintain Horizon.

To verify, I tested each relevant method using the best practices for top down in-

tegration testing and unit testing. This process led to the discovery and fixing of

minor bugs and minor improvements for some functions’ readability and simplicity.

Unit testing also increases the perceived legitimacy and reliability of the software,

imperative for any aerospace software.

To ensure the software remains verified without active moderation, I created a CI

pipeline. The pipeline uses GitHub Actions to automate these tests to give a test

report for each new commit to Horizon’s repository. This has shown to reduce the

time a commit spends in review and helps the limited moderation team effectively

assess each new addition [26].

Finally, I organized the repository and added missing documentation, which made

the project look incomplete and less reliable to potential users and contributors.

The organization effort included adding documentation like an open source license,

README.md, contribution guidelines, and a wiki. The added documentation and

the pipeline will attract users by providing assurance that Horizon is a functional and
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professional software. The software is now better verified, organized, has a system to

maintain its integrity, all critical qualities when trying to attract new users to a new

open source release.

6.2 Lessons Learned

This project gave me a deep appreciation for the work that goes into the stable

software. Stable software is not achieved by a single comb through for bugs, but

rather the creation of systems and workflows that maintain the integrity of the core

architecture. In my future endeavors, I will use my knowledge of the importance of

testing early and often and have the foresight to write tests with best practices which

work well in a CI pipeline.

I learned to interact with a large code architecture by testing one function at a time.

Each time I wrote a test which failed, I learned more about the flow of information

and objects through the program. This is an excellent way to become intimately

familiar with design of a software’s architecture. Writing user or high-level functional

tests, which only consider the in and out flow of data from a user’s perspective,

exposes the tester to only a fraction of the code architecture. Low-level unit testing

provides a more complete understanding of every function and object. If I come

across an untested piece of software that I must learn, I will write unit tests for the

architecture, both learning from hands on development and improving the code.

Visual Studio is an excellent tool to learn C# with. Autocompletion and suggestions

through Visual Studio’s Intellisense helps new users asses their options for what data

and methods are accessible. A user can tell if an object is inaccessible simply from

its omission in the live recommendations. Another embedded tool in Visual Studio is
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the compile time feedback. This feature points out hard to catch syntax and spelling

mistakes as users type, rather than in an error log after a build is attempted.

Another helpful tool is GitHub Actions and workflows. This is incredibly powerful

for quickly automating processes into a version control tool like GitHub. Actions

can be used for more than just running tests upon each push or pull request. A

workflow can be created to call a script which scrapes online sources to update a

model library, or to send a change report to select contributors. There are countless

ways to implement automation with the simple workflow file. Workflow files are easy

to create by modifying templates, and, because it is built into GitHub, implementation

is seamless.

Fine Code Coverage tool is very useful for testing more than a few units of code. FCC

shows exactly which lines are uncovered by tests, so they can be addressed. It is also

useful to quantify one’s progress when testing. Code coverage statistics may then be

accessed by other programs to produce additional reports or enforce minimum test

coverage. It may even be accessed by a workflow file to prevent untested classes from

being added to the repository.

6.3 Future Works

There are several features which have received countless hundreds of hours of work

from previous students, only to be forgotten and fall out of compatibility with the

framework. Some of these features regressed during the re-code by Yost, due to

the immense scope of work covered by her project, and some come from partially

completed projects or other circumstances. For adding utility, these features are low

hanging fruit, meaning they add high functionality for relatively little effort. Because
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of this, they are highlighted in the GitHub projects tab as great beginner projects to

get familiar with contributing to Horizon.

6.3.1 GUI

The GUI is one of the most important feature additions for making the framework

more accessible to those without development experience. Recall, an attractive fea-

ture of using a systems engineering modeling and simulation tool like HSF, instead of

a custom-built compiled program, is that domain experts are able to define a model

and run simulations without the need of a software expert. By obscuring the inner

workings of the program, a GUI enables designers to focus more on model and sim-

ulation definitions. A GUI was created using Picasso by Butler in 2007, however, it

was not updated to include scripting or to interact with the new C# framework.

6.3.2 More Modeling Templates

New model templates are a highly useful addition to Horizon. A primary goal for

Horizon, at this stage of development, is to get the program in the hands of users.

Therefore, the Horizon team welcomes any addition which lowers a barrier of entry.

Making a model from a template or modifying an existing one is much quicker and

easier than writing custom classes for a model. While requiring the user to first build

custom functions may be inevitable for projects with a high degree of specialization,

some aspects of modeling can be nearly exhausted with only a few additional models.

For example, atmospheric, space, and oceanic or aquatic environmental models are

sufficient to describe a majority of physical scenarios.

For most cases, defining subsystems is the most laborious aspect of modeling a system

of systems with Horizon. A system has likely one domain, one set of governing
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equations, and maybe a few utility classes to support these. However, a system

of systems by definition has multiple subsystems, with the typical space mission

containing 5-15 subsystems. Another tool to reduce the barrier of entry for new users

would be a bank of presets for subsystem templates. Python scripts can be written

to scrape web pages for COTS subsystem specifications. Users would then have the

choice to define their own subsystem or choose from a list of existing products to

construct their model.

6.3.3 Testing Modeling Segment

The correctness of the models relies on the accuracy of its parameters, the class struc-

tures and their underlying state machine functions. The accuracy of parameters is

mostly unreasonable to test, outside of specific cases like catching physically impossi-

ble values. However, the class structure and functionality of subsystems and domain

templates can and should be unit tested. For example, the power subsystem template

can be tested for its ability to assign parameters from an input file, that the current

charge changes when power is drawn, and that it returns that it can’t perform a task

which drains the battery more than the max depth of discharge. Many new users

will opt to build a model with the given templates due to its relative ease when com-

pared to writing a suite of new classes. Horizon should therefore test as many model

template files as possible and clearly label those files which are not tested or verified.

6.3.4 Testing Guidelines and Enforcement

The CI pipeline gives users an objective measure as to whether the current state of

the program works according to the original intended function. While protecting the

existing core scheduling algorithm is a great start, the team expects new features

77



to be added to both the scheduler and the modeling section. When this happens,

the scheduler no longer carries the guaranteed performance that this project aimed

to provide. Developers are strongly encouraged to include unit tests with any new

modules. Guidelines for where and how to do this is present in Horizon’s wiki. In

the future, enforcement may be implemented to reject any module without a certain

percentage of test coverage. This might be performed by using a workflow which

checks a coverage report that any new classes meet a minimum coverage of their

tests, or that overall coverage has not fallen below a minimum value.

Furthermore, the existing tests and CI testing framework should be protected from

edits from anyone who isn’t a core framework developer. Currently, there is nothing

stopping a user from altering a test to pass or completely removing a test which

is broken by a commit. While the repository is still actively managed, meaning

Dr. Mehiel must approve pull requests from outside contributors, there still exists a

possibility that a small change to a unit test goes unnoticed or a unit test is incorrectly

changed by a trusted contributor. Protection against this can be added with GitHub

secrets, which restricts the editing of certain files (e.g., workflow file, unit tests) to

those with the secret code.

78



Bibliography

[1] GitHub - emehiel/Horizon: Morgan’s Thesis. url: https://github.com/emehiel/

Horizon.

[2] SysML Open Source Project - What is SysML? Who created it? url: https:

//sysml.org/.

[3] Final Report of the Model Based Engineering (MBE) Subcommittee.

[4] Zane Scott and David Long. A Primer for Model-Based Systems Engineering.

Vitech, Oct. 2011.

[5] B. Selic. “The pragmatics of model-driven development”. In: IEEE Software

20.5 (2003), pp. 19–25. doi: 10.1109/MS.2003.1231146.

[6] Clarus Concept of Operations, ITS Report. url: https://web.archive.org/web/

20090705102900/http:/www.itsdocs.fhwa.dot.gov/jpodocs/repts te/14158.

htm.

[7] Robert France and Bernhard Rumpe. “Model-driven Development of Complex

Software: A Research Roadmap”. In: Future of Software Engineering (FOSE

’07). 2007, pp. 37–54. doi: 10.1109/FOSE.2007.14.

[8] “The Current State of Model Based Systems Engineering: Results from the

OMG™ SysML Request for Information 2009”. In: (2010).

[9] Matthew Hause. “An Overview of the OMG Systems Modeling Language”. In:

Embedded Computing Design (Aug. 2007).

[10] H Mehrpouyan et al. “Formal verification of complex systems based on SysML

functional requirements”. In: Proceedings of the Annual Conference of the Prog-

nostics and Health Management Society 2014. 2014, pp. 176–187.

79

https://github.com/emehiel/Horizon
https://github.com/emehiel/Horizon
https://sysml.org/
https://sysml.org/
https://doi.org/10.1109/MS.2003.1231146
https://web.archive.org/web/20090705102900/http:/www.itsdocs.fhwa.dot.gov/jpodocs/repts_te/14158.htm
https://web.archive.org/web/20090705102900/http:/www.itsdocs.fhwa.dot.gov/jpodocs/repts_te/14158.htm
https://web.archive.org/web/20090705102900/http:/www.itsdocs.fhwa.dot.gov/jpodocs/repts_te/14158.htm
https://doi.org/10.1109/FOSE.2007.14


[11] GitHub - Systems-Modeling/SysML-v2-Pilot-Implementation: Proof-of-concept

pilot implementation of the SysML v2 textual notation and visualization. url:

https://github.com/Systems-Modeling/SysML-v2-Pilot-Implementation.

[12] About OSATE- OSATE 2.9.0 documentation. url: https://osate.org/about-

osate.html#osate-modeling-capabilities.

[13] GitHub - osate/osate2: Open Source AADL2 Tool Environment. url: https :

//github.com/osate/osate2.

[14] Systems Tool Kit. url: https://www.agi.com/products/stk.

[15] David Fishering. An Assessment of the Benefits Associated with Software By

Analytical Graphics Inc. url: http : //p . widencdn .net /gehfgb/Frost - and -

Sullivan-ROI-AGI-Software.

[16] “JSBSim: An Open Source Flight Dynamics Model in C++”. In: AIAA Mod-

eling and Simulation Technology Conference and Exhibit (Aug. 2004).

[17] GitHub - MASTmultiphysics/mast-multiphysics: Multidisciplinary-design Adap-

tation and Sensitivity Toolkit (MAST) - Sensitivity-enabled multiphysics FEA

for design. url: https://github.com/MASTmultiphysics/mast-multiphysics.

[18] FlightGear - Flight Simulator. url: https://sourceforge.net/projects/flightgea

r/.

[19] “SU2: An Open-Source Suite for Multiphysics Simulation and Design”. In:

AIAA Journal (Mar. 2016).

[20] GitHub - su2code/SU2: SU2: An Open-Source Suite for Multiphysics Simulation

and Design. url: https://github.com/su2code/SU2.

[21] Joseph Feller et al. Perspectives on Free and Open Source Software. The MIT

Press, 2007.

80

https://github.com/Systems-Modeling/SysML-v2-Pilot-Implementation
https://osate.org/about-osate.html#osate-modeling-capabilities
https://osate.org/about-osate.html#osate-modeling-capabilities
https://github.com/osate/osate2
https://github.com/osate/osate2
https://www.agi.com/products/stk
http://p.widencdn.net/gehfgb/Frost-and-Sullivan-ROI-AGI-Software
http://p.widencdn.net/gehfgb/Frost-and-Sullivan-ROI-AGI-Software
https://github.com/MASTmultiphysics/mast-multiphysics
https://sourceforge.net/projects/flightgear/
https://sourceforge.net/projects/flightgear/
https://github.com/su2code/SU2


[22] Starting an Open Source Project. url: https://opensource.guide/starting-a-

project/.

[23] Martin Fowler. Continuous Integration. May 2006. url: https://martinfowler.

com/articles/continuousIntegration.html.

[24] Sebastian Elbaum, Gregg Rothermel, and John Penix. “Techniques for Improv-

ing Regression Testing in Continuous Integration Development Environments”.

In: New York, NY, USA: Association for Computing Machinery, 2014. isbn:

9781450330565. doi: 10.1145/2635868.2635910.
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APPENDICES

Appendix A

BACKGROUND ON THE HORIZON SIMULATION FRAMEWORK

This appendix provides a more detailed explanation of Horizon’s architecture design,

its history, and its capabilities and feature extensions. For further reading, see the

papers cited in this section or Horizon’s wiki [1] found on the GitHub.

A.1 Horizon’s Latest Version

The latest version of Horizon is stable and will likely be the final form of the archi-

tecture. While there are active projects to tweak certain relationships and commu-

nications between modules, the design, which is detailed in this section, will likely

remain as it was after the re-architecture by Yost.

A.1.1 Horizon Introduction

The Horizon Simulation Framework (HSF) is a modeling and simulation tool which

takes models, targets, and constraints and outputs schedules for the system to cap-

ture targets within constraints. The latest version, HSF 3.0, is written in C# and

IronPython, an implementation of Python which leverages the capabilities of .Net

Framework. The primary application of Horizon has been for aerospace system mod-

eling and simulation, as discussed in section A.2.2. Horizon requires three inputs,

a target deck, models, and simulation parameters. Models are comprised of subsys-
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tem templates written in C# or python and an XML input file which gives Horizon

the subsystems and their parameters required to build a system model. From these

inputs, Horizon returns schedules, or lists of successfully completed tasks with start

and end times. Because Horizon is split into two independent components, modeling

tools and a time driven scheduling algorithm, the algorithm can simulate any model

in any domain, without increases in complexity. It is useful to discuss the functions

of each component prior to describing how they interact

A.1.2 Modeling Segment

Prior to simulating, Horizon must first construct the model. The model input file

contains the information necessary for Horizon to construct the model. HSF provides

the basic elements for modeling like environments, governing equations, assets, sub-

systems, dependencies, initial conditions, and constraints. Some templates exist for

specific implementations of environments, equations, and subsystems, but if a spe-

cific application requires any of these without a template, users must create their own.

Users must specify parameters for subsystems and environments with the xml file. In

the xml file, users can also instruct the program to use a python scripted template,

instead of one of the provided C# template subsystems or environments. Within each

subsystem’s node, its characteristics, initial values, constraints, and dependencies are

specified. The dependencies for each subsystem are collected while the model is stood

up. These dependencies dictate which subsystems depend on another subsystem to

update its own state. For example, Horizon’s default communications (COMMS)

subsystem is dependant on the data rate of the solid state data recorder (SSDR), and

power is dependent on the state of both subsystems. This means that the state of

SSDR must be evaluated first, then it passes the value through the dependency link

to COMMS to determine its value, then finally both are passed to Power to set the
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state. This process must always begin with a subsystem with no dependencies. This

prevents circular dependencies, which are not allowed by Horizon. Dependencies are

the only way subsystems may pass data to each other, and they are imperative to the

correct evaluation of each subsystems state.

A core principal of the modeling segment is the state machine inside each subsystem.

The state machine records the state of its subsystem as tasks are performed. Horizon

ensures that the state of each subsystem is evaluated in the order specified by the

dependency flow. At the heart of each subsystem is the canPerform() and canExtend()

methods, which evaluate whether that subsystem can perform or extend the task.

Horizon compares a subsystem’s state data to its constraints, which are set by users

in the model input file. If the new state breaks a constraint, the model segment

returns a false to the scheduling segment, and this task-schedule pair is not added to

the list of possible schedules. If no constraints are broken, all of the subsystem states

are saved for that schedule, and the model returns true.

A.1.3 Scheduling Segment

The scheduling algorithm uses the model to create schedules. The scheduling algo-

rithm passes a task to a model which the model executes, checking its canPerform if

any constraints are broken by the task. If all subsystems return true when their can-

Perform() function is called, then the scheduler creates a copy of the current schedule

and adds the performed task to create a unique schedule. Schedules are assigned a

value which attempts to score a schedules usefulness in achieving mission goals. The

value of a schedule is dictated by the number of targets tasked and the value of each

target. The weight assigned to each target has substantial impact on the simulation

results. For each time step, all tasks are given to the modeler to evaluate each sub-

system’s canPerform() or canExtend(). This quickly leads to a massive number of
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computations per step, if unchecked. However, due to the branch and bound scheme,

discussed in section ??, a user can easily prevent this by specifying a bound. When

the number of schedules exceeds the maxSchedule bound, the lowest scoring sched-

ules are eliminated from memory. When the program finishes evaluating the given

simulation time frame, all remaining schedules are written to a text output file, and

commands given to subsystems to perform the highest scoring schedule are printed

into separate csv files.

A.1.4 Aeolus

The mission which was constructed alongside and used to test the final compiled pro-

gram is called Aeolus. It emulates the type of low fidelity modeling that might be

used during the initial stages of the mission design of a space system. The objectives

of the mission are to image targets around the earth and downlink data to ground

stations. Aeolus achieves these objectives with 2 identical satellites containing the

following subsystems: power, solid state data recorder, earth observing sensor, atti-

tude determination and control system, and communication. Due to the relatively

few inputs required to define the system, Aeolus demonstrates the ease with which a

model can be stood up and quickly adjusted. A quick glance at the output of Aeolus

shows that the configuration can sufficiently perform the desired objective.

A.1.5 Why is Horizon Useful?

HSF can perform three high-level Mission Design/System Engineering functions for

users: Bottleneck and Leverage point analysis, functional and utility requirements

verification and validation, and generating sufficient schedules to carry out a mis-
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sion. This generally corresponds with three stages of system development: design,

verification, validation and testing (VV&T), and implementation.

The creators of the framework were primarily concerned with the framework being

both reusable and providing a high amount of utility to the user [32]. This was

achieved with three concepts, modularity, flexibility, and utility, which are used at

every level of the architecture design.

Modularity decreases the complexity of designing a system because discrete parts of

the architecture can be more easily understood and modified. Modularity also drove

the decision to separate the scheduling algorithm from the system models, allowing

either to be changed without requiring adjustments to the other [32]. This is also seen

in the rigid separation between subsystem models, allowing ‘plug and play’ of existing

subsystem models. Lastly, the modularity allows the flexibility for users to simulate

any domain because of the framework’s ability to interchange different environmental

models and governing equations modules. This flexibility is another key feature of

Horizon.

Flexibility is seen in the range of model fidelity and the possible applications of the

framework. The fidelity of a simulation is solely dependent on the complexity of

the model. Thus the system can be modeled roughly during early design stages, and

modeled at a higher fidelity during VV&T [32], a key component of MDD and MBSE.

Secondly, the independence of models and scheduling algorithms allows a vast array

of applications outside the original intent of space systems.

Finally providing utility is the ultimate goal of the HSF. “Libraries of integration

methods, coordinate frame transformations, matrix and quaternion classes, and pro-

file storage containers were created to separate the user from the overhead of using

the. . . programming language [32].” Additionally, as the usage of HSF grows, so does
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its libraries and thus grows its utility. HSF enhances the standard project develop-

ment with MBSE best practices, starting with requirements. Once requirements are

made exactifiable and objective, they can be translated into models which should com-

pletely describe the full state of the system (dynamic and otherwise). This satisfies a

key pillar of MBSE which is to model requirements for traceability and consistency.

Then a preliminary design can be analyzed for failures, bottlenecks, leverage points.

These undesired emergent behaviors are removed with each iteration prior to con-

verging upon a baseline design. Analyzing these failures can be even more valuable

to an engineer than the successful results [33].

As the design process continues ‘down the V’, Fig. 1.1, to the component level, trade

analysis can be performed using the existing models. HSF helps identify leverage

points during this stage, which describe parameters which, when changed slightly,

produce wildly different outputs. In practice, an analyst can try slightly different

components or configurations which affect minimal cost on the system to find poten-

tially large benefits to the system capabilities.

Then as the system design is locked in, validation and verification of the original

requirements is performed (up the V, Fig. 1.1) updating the original models with the

exact specifications of each component. Each time the design is updated, likely by

many separate teams, the system can be re-evaluated to ensure that the functional

requirements and the utility requirements are always both satisfied.

Finally, once baselines are locked in, and bottlenecks, leverage points, and emergent

behavior have been identified and exploited, analysis for a final mission schedule can

be performed with the built-in scheduler. Users can specify the time step and initial

conditions as well as the bound for number of schedules kept. The team may program

their system to execute a schedule from the list. However, for a dynamic mission,
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a team might use Horizon to constantly find optimal schedules while an asset is in

orbit, as parameters and program needs change.

A.2 Brief History of Horizon Simulation Framework

A.2.1 Beginnings with O’Connor

The current framework has kept all the core functionality (subsystem modeling, de-

pendency, task scheduling) from the initial version. Horizon V1 was created in 2006

by students and faculty of the Cal Poly Space Technologies and Applied Research

laboratory (CPSTAR) to fill the gap between generalized modeling tools and more

specific visualization tools like STK. Cory O’Connor developed Horizon Simulation

Framework v1.2 alongside the first test mission, Aeolus. The HSF was updated to

v2.1, also by O’Connor [34], to include multi-asset modeling, essentially enabling an-

other layer of complexity to the missions run by Horizon. HSF v2.1 also introduced a

recursive algorithm for dependencies which prevented users entering circular depen-

dencies, and ensures that dependencies are always executed in the proper order to

ensure state data are available to all subsystems [34].

A.2.2 Minor Improvements and Implementations

After multi asset support was added in 2008, several implementations and improve-

ments validated the framework design and the general concept as useful and robust.

Systems which were modeled and simulated during this period include UAV thermal

soaring (Li 2010), integrating an existing SysML CubeSat model with the framework

(Luther 2016), a sounding rocket stabilization system (MacLean 2017), an amateur

astronomy network using a constellation of CubeSats (Johnson 2018), and a UAV

89



swarm with cooperative control using digital pheromones (Frye 2018). Various fea-

ture upgrades include a hybrid genetic algorithm as an alternative to the branch and

bound scheduler algorithm (Seibel 2009) increased orbital propagators (Farahmand

2009), a GUI (Kirkpatrick 2010), dynamic model creation and scripting support (But-

ler 2012), system failure analysis (Lunsford 2016), and a SysML output interface and

system-level requirement analyzer (Patel 2018). These constituted minor progress to

the framework compared to more comprehensive projects tackled by Butler and Yost.

A.2.3 Scripting Addition

The first of the major upgrades by Brian Butler was the addition of Lua scripting

in version 2.1. This was seen as significant improvement for usability because of the

simplicity of using Lua scripting to construct models compared to C++. Scripting

is believed to decrease time required to stand up a model with little impact on the

performance of the simulation [35]. In support of this, dynamic model creation was

also added, preventing the need to recompile the framework for minor changes in the

models [35]. Finally, multi-threading was added to take advantage of modern multi-

core processing. These modifications ultimately change how users interact with HSF

by moving the user further away from the detailed compiled code.

A.2.4 Yost’s Re-code/Re-architecture

One of the most transformative projects for the framework was the work from Morgan

Yost who translated the framework from C++ with Lua scripting to C# with Python

scripting. Benefits of this change include general improvements from a comb-through

of the old code which led to an improved, uniform coding style, a simplification and

organization of the architecture framework so that future versions will not require
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major restructuring, and adoption of Python, a scripting language with more users

and resources than Lua [33]. Additionally HSF is now able to leverage additional

functionality provided by the .NET framework, including inheriting C# objects into

scripts, cross language integration, and exception handling [wagner]. The only de-

preciated feature in the update to 3.0 was multi-threading capability. This overhaul

represents most of the current version of HSF and was instrumental in its evolution.

Since then, a minor update by Alex Johnson made it clearer how state information

is stored and shared.

A.2.5 State of Horizon

HSF has been in closed development by Cal Poly masters students since its inception

in 2006. It’s collection of utilities, modeling templates, algorithms, and external

plugins have grown slowly over the years. Some years, multiple students develop

several new features for Horizon. Sometimes, years pass with no student development

on Horizon. This has led to unsteady development and a lack of a consistent vision

for Horizon’s direction. Another undesired result of this, features are sometimes

forgotten and never used again after the thesis. This long period wait between thesis

students means that Eric Mehiel, the Horizon advisor, must be the sole keeper of

practical knowledge and awareness of the current state of Horizon. Many more minor

features, fixes and nice-to-have’s have been low priority for development because most

graduate students want work on a significant feature addition. This has led to many

features being underdeveloped or regressed (utilities, modeling library, subsystem

modeling/cots, documentation).
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