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ABSTRACT

Modeling Daily Fantasy Basketball

Martin Jiang

Daily fantasy basketball presents interesting problems to researchers due to the ex-

tensive amounts of data that needs to be explored when trying to predict player

performance. A large amount of this data can be noisy due to the variance within the

sport of basketball. Because of this, a high degree of skill is required to consistently

win in daily fantasy basketball contests. On any given day, users are challenged to pre-

dict how players will perform and create a lineup of the eight best players under fixed

salary and positional requirements. In this thesis, we present a tool to assist daily

fantasy basketball players with these tasks. We explore the use of several machine

learning techniques to predict player performance and develop multiple approaches

to approximate optimal lineups. We then compare each different heuristic and lineup

creation combination, and show that our best combinations perform much better

than random lineups. Although creating provably optimal lineups is computationally

infeasible, by focusing on players in the Pareto front between performance and cost

we can reduce the search space and compute near optimal lineups. Additionally, our

greedy and evolutionary lineup search methods offer similar performance at a much

smaller computational cost. Our analysis indicates that due to how player salaries are

structured, it is generally preferred to construct a lineup consisting of a few stars and

filling out the rest of the roster with average to mediocre players than to construct

a lineup where all players are expected to perform about the same. Through these

findings we hope that our research can serve as a future baseline towards developing

an automated or semi-automated tool to optimize daily fantasy basketball.
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Chapter 1

INTRODUCTION

With an estimated $1.8 billion dollars spent on sports betting advertising in 2022 [1],

it’s difficult to watch any sporting event without seeing ads for DraftKings or FanDuel.

Through these two companies, sports betting has quickly taken over Europe and

America. Millions of users place wagers on a wide variety of sports every day, and

while many hobbyists have tried developing their own models to gain an advantage

over other participants, daily fantasy sports still remains a relatively new topic in

academia. Briefly stated, daily fantasy sports presents users with the challenge of

both predicting how players will perform on any given day, and using these predictions

to create a lineup within some fixed constraints.

In this paper, we present a tool to assist users with this challenge, specifically in

the context of daily fantasy basketball. We first go over the relevant background

information; introducing the NBA, daily fantasy basketball, and the scoring rules our

paper is focused on. We then present some of the existing research surrounding the

topic, along with introducing a few algorithms that our methods were inspired by. The

remaining bulk of the paper is spent describing how we developed the methods used to

predict player performances and create lineups. These methods were then evaluated

by combining each heuristic with each lineup creation method, and comparing them

to see which methods stood out above the others. Lastly, we conclude the paper by

summarizing our findings and discussing various avenues of future work.
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1.1 Ethical Considerations

Critics in the past have argued that daily fantasy sports should be classified as a

form of online gambling, which is illegal in the United States due to the Federal

Wire Act of 1961 [2]. This law prohibits the use of wire communications to place

sports wagers across state lines. However, interpretations of this law, its implications,

and its applications have fluctuated over time. Originally proposed and designed to

suppress organized crime in the mid 60s, the rise of internet-based gambling, daily

fantasy sports, and continual changes in political power changed how this law was

applied several times over the last few decades. In 2006, the debate of whether or not

daily fantasy sports should classify as online gambling was largely settled because of

the Unlawful Internet Gambling Enforcement Act [3], which exempted daily fantasy

sports due to the general agreement that they require a degree of skill that separates

it strictly from gambling [4]. As of 2022, individual states have jurisdiction over

whether or not daily fantasy sports are illegal, and they are currently legal in 43 out

of 50 states.

There is also discussion surrounding the ethics of using software tools to assist indi-

viduals in daily fantasy sports. Some view the use of outside tools as providing an

unfair advantage that others may not have access to, however DraftKings itself does

not prohibit individuals from using outside tools or information when participating

in daily fantasy sports, and the vast majority of regular participants in daily fantasy

sports do use some form of outside information when creating lineups. Many forms

of external information designed to assist daily fantasy sports players can be found

online through forums, podcasts, projections, or other paid online tools. Although

there is inherent luck involved in sports, a high degree of knowledge and expression

of skill is needed to consistently perform well in daily fantasy sports.
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Chapter 2

BACKGROUND

This chapter begins with a brief explanation of the NBA and fantasy sports. We first

highlight the origin, growth, and structure of both the NBA and fantasy sports. Af-

terwards, we introduce daily fantasy sports and the popular platforms they’re hosted

on, along with the classic mode tournament format structure and scoring rules.

2.1 The Origin and Growth of the NBA

The National Basketball Association (NBA) was originally founded in 1946 as the

Basketball Association of America and rebranded as the NBA after merging with

the National Basketball League in 1949. As of 2022, the NBA consists of 30 teams

split into a Western Conference and an Eastern Conference. Each team can have a

maximum of 15 players and plays 82 games over the course of the regular season,

which typically lasts from October through April. After the regular season, the top

8 teams from both conferences proceed to compete in the playoffs, which consist of

of three rounds and are followed by the NBA finals. Each of these series is played

in a best-of-seven format, where the loser is eliminated and the winner advances and

plays against the winner from another series until one team remains.

Basketball is a team sport that is typically played 5-on-5, where the goal is to score

more points than the opposing team by shooting a basketball through a net and

preventing them from scoring. However, because this paper is centered more on daily

fantasy basketball than the sport itself, the rules and intricacies of the game will not
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be discussed further. For a more in-depth explanation of the game of basketball and

its rules, please refer to the NBA Rule Book [5] or Donald (2023) [6].

The popularity of basketball has grown steadily since the sport’s invention in the late

19th century and is currently at an all time high, largely due to television contract

deals and notable players such as Michael Jordan, LeBron James, and Stephen Curry.

Currently, basketball is America’s second most popular sport in terms of viewership,

trailing only behind football. In addition to this, according to NBA commissioner

Adam Silver, during the 2021-2022 season the NBA surpassed $10 billion in revenue

for the first time, bouncing back from a rough year after COVID-19 [7], and nearly

tripling over the last decade from $3.7 billion in 2012 [8].

2.2 Traditional Fantasy Basketball

Although the complete origins of fantasy basketball are unknown, it is believed to have

originated in the mid-60s from an adaptation of the rules used in fantasy baseball

and football. Participants in a fantasy basketball league would meet prior to the

beginning of the NBA season, and draft players to form their fantasy team. Every

week, these players would be scored based on how they played, and for each team,

these scores would be summed together. The participant whose team scored the most

points that week would be considered the winner, and the participant who won the

most weeks throughout the season won the fantasy league.

Traditional fantasy sports have grown in popularity throughout the 21st century,

largely due to their ability to be played over the internet on platforms like ESPN and

Yahoo. Most traditional fantasy basketball leagues are played using a head-to-head

or rotisserie format, where teams are drafted in a snake or auction style. In a head-to-

head league, fantasy teams compete one-on-one, and players are scored based on their
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real-life performance in the following box score categories: points, rebounds, assists,

steals, blocks, threes, field-goal percentage, free-throw percentage, and turnovers. At

the end of the week, the individual whose fantasy team scored more points wins,

and at the end of the season the individual who won the most weeks is declared the

winner of the league. In a rotisserie league (often abbreviated to roto league), an

individual competes against all other players each week. Instead of assigning point

values to player performances, the scoring categories are counted separately, and the

individual whose fantasy team accumulates the most in one box score category wins

that category for the week. The individual who wins the most categories overall

throughout the entire course of the season wins the fantasy league.

However, because teams can only be altered through trading with another player or

free agency, traditional fantasy basketball teams largely remain unchanged through-

out the NBA season. This slow pace and somewhat long-term time investment also

makes it difficult to come back when players have significant injuries. These shortcom-

ings in the inflexibility of changing players on a roster and the slow pace eventually

led to the development and growth of daily fantasy sports.

2.3 Daily Fantasy Sports

Daily fantasy sports are somewhat similar to traditional fantasy sports, but a few

structure adjustments are introduced to address the weaknesses of traditional fantasy

sports stated above. The overall goal of selecting players to maximize fantasy points

scored remains the same, but in daily fantasy sports, players are assigned salaries and

lineups are constructed by “purchasing” players using imaginary currency with the

constraint of a hard salary cap along with a strict roster size and position requirement.

Tournaments typically last no longer than a week, and individuals are often encour-
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aged to enter multiple lineups, allowing them to construct different lineups according

to different strategies, matchups, and formats. Having a quick turnaround also allows

players to restart regularly with a blank slate on a regular basis, rather than having

to recoup losses throughout an NBA season like one would when participating in tra-

ditional fantasy sports. What used to be a somewhat long-term commitment became

fast and convenient through mobile applications. Through companies like DraftKings

and FanDuel, players can play from their phones, win, and cash out all within the

same day.

Daily fantasy sports have also grown significantly over the last decade. Exact numbers

are hard to pinpoint, but current estimates of the of daily fantasy sports market value

sit at around $20 billion [9], and this number is expected to grow significantly over

the coming years. The two companies that hold the largest shares of this market are

DraftKings and FanDuel. Both of these companies have risen above their competitors

through their aggressive advertising campaigns, accessibility through mobile applica-

tions, and sponsorships from various major sports leagues. As of 2022, the NBA

recognizes both DraftKings and FanDuel as their official sports betting partners [10].

2.4 Daily Fantasy Tournaments Formats and Scoring Rules

The remainder of this paper will be focused on the context of DraftKings, and trying

to develop a tool to assist individuals in creating lineups for daily fantasy basketball.

DraftKings hosts a wide variety of competitions that slightly vary in rules and scoring.

For this paper, we focused specifically on the classic mode game type. In classic

mode, individuals are tasked with selecting a lineup of eight players to fill out the

following positions: Point Guard (PG), Shooting Guard (SG), Small Forward (SF),

Power Forward (PF), Center (C), Guard (G), Forward (F), and Utility (UTIL). In
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addition to the position requirement, individuals must also stay below the $50,000

salary cap. Once lineups are finalized, they are submitted and scored according to

their real-life performance. At the end of the day, lineups are scored, and the players

whose lineup(s) performed the best receive a cash prize. The scoring breakdown for

DraftKings classic mode can be seen in Table 2.1.

Box Score Statistic Fantasy Point Value
Points +1 Pt
Made 3pt Shot +0.5 Pts
Rebound +1.25 Pts
Assist +1.5 Pts
Steal +2 Pts
Block +2 Pts
Turnover -0.5 Pts
Double-double 1,2 +1.5 Pts
Triple-double +3 Pts

Table 2.1: DraftKings Classic Mode Scoring Rules

Winning techniques and strategies can change depending on the structure of the

tournament. On DraftKings, payout amounts and number of entries vary greatly,

ranging from a few dollars to a few hundred thousand dollars to top performers,

and from one entry to an unlimited number of entries. There are also different

payout structures, such as double-or-nothing, where the participant either doubles

their investment or loses it all, or tiered-payout structures, where the majority of

the winnings are handed out to a certain top percentage of the players. All of these

factors would alter how a player would approach the problem of creating a lineup. For

example, in a high stakes low entry lobby, one would want to select players who have

proven to be very consistent or are facing a weaker team. But in a lobby that allows

1A “double” refers to a player recording double digits (i.e. at least 10 units) in a box score
statistic. In classic mode, the box score statistics that count towards a double-double and triple
double are points, rebounds, assists, blocks, and steals.

2A player can only earn a maximum of one double-double and one-triple double. For example,
a player that recorded 10 points, 10 rebounds, 10 steals, and 10 blocks would receive 1.5 Pts for a
double-double and 3 Pts for a triple double, in total earning himself 4.5 Pts. He would not receive
multiple double-double or triple-rewards.
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a higher number of entries, one may want to create several lineups where four of eight

players remain the same, but introduce variance for the rest of the roster by selecting

riskier players that might outperform players that are expected to be consistent. For

the purpose of the paper, we will be focusing on predicting player performances and

generating a single lineup for the purpose of maximizing expected fantasy points per

game, and not creating multiple lineups with varying strategies or consideration of

risk.
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Chapter 3

RELATED WORKS

Although the topic of daily fantasy basketball in academia is still relatively new,

researchers and hobbyists have applied a wide array of techniques in an attempt to

optimize daily fantasy basketball. In this chapter, we highlight the previous work oth-

ers have done in attempting to optimize daily fantasy basketball, briefly highlighting

their techniques used and summarizing their results. Furthermore, we also introduce

a few algorithms from which some of our methods were inspired by.

3.1 Attempts at Optimizing Daily Fantasy Basketball

In 2016, Christopher Barry, Nicholas Canova, and Kevin Capiz [11] used ridge regres-

sion to estimate the daily fantasy performance for individual players. Using season

rolling averages as a baseline predictor, they developed a ridge regression model from

these averages and incrementally added features to see how the root mean-squared

error and mean absolute error were affected. Their model was fit using player sea-

son averages and fantasy point production up to the current game. Features added

thereafter included the opposing team’s defensive statistics, the opposing team’s de-

fensive statistics by position, a players’ number of rest days, increasing the weight of

recent performances, and home court advantage. Of these features, it was found that

considering rest, home court advantage, and weighting recent performance decreased

error by a reasonable margin, but including opponent defensive statistics did not,

highlighting the challenges in trying to reduce prediction errors after a certain value.
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Our work extends this by further evaluating similar models by creating lineups from

their predictions.

Eric Hermann and Adebia Ntoso [12] also attempted to optimize daily fantasy basket-

ball by separating the problem into predicting player performance and constructing

lineups using these predictions. They theorized that if they were able to predict player

performance better than DraftKings projections, they would be able to identify un-

dervalued players (players who scored more fantasy points compared to their peers

with similar salaries) and select those players when constructing lineups. Using the

2014-2015 NBA Season as their training and test set, they compared linear regression

using players last five games and a naive Bayes model to predict player performance,

and found that while the naive Bayes model was able to perform about as well as

DraftKings projections, the linear regression model had significant advantages when

making predictions for players that scored more fantasy points. For players that

scored at least 20 fantasy points, the model outperformed DraftKing projections by

about 7.5%. Constraint satisfaction was used to create lineups, but due to the over-

whelming number of players to consider, beam search was used to limit the search

space only up to the top 32 candidate lineups. Their work also highlighted the chal-

lenges in trying to accurately predict player performance, along with trying to create

lineups from these predictions, as they were only able to keep track of the top 32

lineups at any given point during creation.

To account for the inherent randomness in basketball, Charles South, Ryan Elmore,

Andrew Clarage, Rob Sickorez, and Jing Cao [13] used a Bayesian model to predict

player performance. Their data was sourced from the 2013-2014 season, but they

chose to only include the second half to ensure that player performances were rela-

tively stable. Features for their Bayesian model were selected by using the lasso [14] to

fit models for each day and retaining the features that recurred the most often. These
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features included average fantasy points scored over the last 10 games, whether the

player started, average turnovers over the last 10 games, average defensive rebounds

over the last 10 games, average field goals over the last 10 games, and opponent

strength. To construct lineups after predicting player performance, two approaches

were used. The first was a permutation-based approach that generated the vast

majority of competitive lineups while removing invalid lineups based on salary, and

retaining only the most promising ones. The second was a classification-based ap-

proach that incorporated sports betting information such as the line and over/under

to help identify successful lineups (a lineup that scored more than 260 fantasy points

was considered successful). This system was tested by conducting a hypothetical ex-

periment, simulating 100 daily competitions over the course of the 2015-2016 NBA

season. This experiment was repeated 500 times, and they found that with an initial

investment of $500, the average total profit was $9,008 with the permutation-based

lineup construction and $6,453 with the classification based lineup construction. How-

ever, though these results seem promising, they should be taken with a grain of salt,

as it is impossible to gauge how informed daily fantasy players are on a regular basis.

It is also worth noting that since their model relies on the second half of the NBA

season for stability purposes, it’s unknown how reliable their methods would be at

the beginning of the season.

3.2 Multi-Objective Optimization

As will be seen in section 4.3.1, it is computationally expensive or infeasible to gen-

erate all possible line-ups for a given day in order to find the optimal one. For this

reason, we turned to the fields of multi-objective optimization and evolutionary com-

putation. Multi-objective optimization refers to techniques (often evolutionary in

nature) that attempt to optimize two or more objectives at once. For our use case,
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we will be attempting to maximize expected fantasy points while minimizing cost.

Evolutionary computation takes inspiration from survival of the fittest, and consists

of algorithms and techniques used to gradually drive a population towards optimiza-

tion by repeatedly removing less desirable individuals and introducing small random

changes.

In 2002, Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan [15]

developed NSGA-II, a genetic algorithm to solve multiobjective optimization prob-

lems. We wanted to highlight NSGA-II because some of the methods we developed

were inspired by how NSGA-II handles multi-objective optimization. Specifically,

the multi-level Pareto front and the genetic algorithms discussed in Chapter 4 were

inspired in part by the non-dominated sorting used in NSGA-II.

NSGA-II improves upon its predecessor, NSGA, by improving computational com-

plexity, introducing elitism, and removing the need for including a sharing parameter,

which sets the extent of how different any two solutions must be. NSGA-II differs from

other genetic algorithms as it begins the selection process with non-dominated sort-

ing, or finding the set of solutions that are non-dominated to each other but strictly

superior to the rest of the solutions. A solution S is considered non-dominated if no

other solution outperforms S in all objectives, and the set of non-dominated solutions

is also called a Pareto front. To find the solutions on the first non-dominated front,

each solution is compared with every other solution. To find the solutions on the

second non-dominated front, these solutions are temporarily removed from consider-

ation and the previous step is repeated. This can be repeated until solutions on all

Pareto fronts are found.

When the size of the final front in addition to the currently selected individuals ex-

ceeds the population size, tie-breaking occurs by using a crowd-comparison approach.

Instead of using a sharing parameter, diversity is preserved by first estimating the
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density of solutions surrounding a particular solution and then prioritizing solutions

that occupy low-density regions.

After selecting the elites, variations of these elites are introduced as new candidates

in the population, and the above steps are repeated. NSGA-II was evaluated via

simulation on several test problems, and it was found that NSGA-II found a much

wider spread of solutions while being able to converge on the Pareto-optimal solutions

faster than other multi-objective evolutionary algorithms.

3.3 Knapsack Problem

In this section, we introduce the knapsack problem, provide its formal definition, and

describe the challenge of trying to solve it. In addition, we also highlight a few existing

algorithms to solve it. We chose to highlight the knapsack problem because the overall

problem structure shares similarities with creating fantasy basketball lineups. These

similarities are further discussed in section 4.3.5.

The knapsack problem is a combinatorial optimization problem where, given a set

of items, each with an assigned weight and value, the goal is to select a collection

from these items with the maximum value while ensuring that the total weight of the

collection is less than or equal to a certain threshold. The most common form of the

knapsack problem is the 0-1 knapsack problem, where each item can be chosen only

once or not at all.

Defined formally, given a set of n items numbered 1 through n, each with weight wi

and value vi, and a maximum weight W , the goal for the 0-1 knapsack problem is to
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maximize

n∑
i=1

vixi

subject to

n∑
i=1

wixi ≤ W

where xi ∈ {0, 1} denotes how many times item i is selected.

(3.1)

There are many variations of the knapsack problem, but the two most common vari-

ations are the bounded knapsack problem and the unbounded knapsack problem.

The bounded knapsack problem introduces an upper limit to the number of times an

item can be selected for the knapsack, and the unbounded version removes this limit,

allowing for any item to be selected any number of times. The knapsack problem

and its variations generally appear in resource management when trying to optimize

value and minimize waste. A few real world examples of the knapsack problem in-

clude trying to select companies for an investment portfolio, fitting the maximum

number of packages onto a cargo container, or finding the least wasteful way to cut

raw materials.

It should be noted that although the decision version of the knapsack problem (deter-

mining if a value V can be achieved without exceeding a weight W ) is NP-complete,

the optimization version of this problem is NP-hard, and thus there is no known

algorithm that can find an optimal solution in polynomial time. The knapsack prob-

lem has been studied for over a century, and many researchers have attempted to

develop algorithms to solve it efficiently. The most well-known algorithm to solve

the knapsack problem uses dynamic programming [16], which has pseudo-polynomial
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complexity. Other popular avenues of research involving the knapsack problem in-

clude developing approximation algorithms to efficiently find solutions that are close

to optimal. A greedy approach can be taken by calculating the value-to-weight ratio

for all items, and sorting them in descending order. After sorting the items, add the

item with the highest ratio to the knapsack, and continually add the items with the

highest ratios until no more items can be added. The pseudocode for this greedy

approach can be found in Algorithm 1. While this approach may not always be opti-

mal, it allows for an approximate solution to be found with much less computational

complexity.

Algorithm 1 KnapsackGreedyAlg(I = {i1, i2, . . . , in})
Input: A list of items I, each with weight wi and value vi, and knapsack capacity W
Output: A list K containing the items in the knapsack

K ← ∅
for item i in I do

i.ratio← i.value/i.weight ▷ Calculate the value to weight ratio
end
Sort items in I by value to weight ratio
totalWeight← 0
for item i in I do

if totalWeight+ i.weight < W then
totalWeight← totalWeight+ i.weight
Add i to K

end

end
Return K
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Chapter 4

METHODS

Now that we’ve introduced daily fantasy basketball and some of the relevant work

surrounding it, in this chapter we describe the methods we developed to optimize

daily fantasy basketball. We first explain how we created the dataset used in our

experiments. Afterwards, we describe the different techniques employed to model

daily fantasy basketball, which were broken down into two parts: predicting player

performances and generating lineups. For any given day, a player’s performance

would be predicted using a heuristic, and using these predicted scores, lineups were

assembled and compared to both a naive baseline and a near optimal solution. By

combining the different heuristics with different lineup creation techniques, a wide

range of combinations were tested and evaluated.

4.1 Creating the Dataset

The dataset used in our experiments was sourced from public data and collected using

BeautifulSoup1, a Python web scraping library. It consists of two parts: basketball

statistics and fantasy sports information. The basketball statistics were collected from

Basketball Reference2, a database containing historical information on NBA teams,

players, and games dating all the way back to the inception of the NBA. We used

box scores from the 2019-2020 and 2020-2021 NBA seasons, though the web scraping

script could easily be adjusted to gather information from other seasons as well. The

box scores contain information on a single game about each player’s performance. A
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breakdown of the box score features collected can be found in the appendix in Table

A.1.

The fantasy sports information was sourced from RotoGuru3, a blog that aggregates

daily fantasy sports information across different sports and platforms to assist indi-

viduals in creating daily fantasy lineups. The information consists mainly of player

salaries and fantasy point production. RotoGuru contains daily fantasy sport infor-

mation across many sports and platforms, but for our purposes we chose to use the

salary and fantasy point information from DraftKings. Players’ salaries are assigned

by DraftKings, and are usually proportional to the number of fantasy points they are

projected to score. Within our dataset, costs range from a minimum of $3000 to a

maximum of $13100. A breakdown of the fantasy sports information collected from

RotoGuru can be seen in Table 4.1.

Table 4.1: Daily Fantasy Basketball Features
Abbreviation Definition
Date The date that this game occured
Team The team this player plays for
Name The name of this player
Starter Whether or not this player was a part of the starting lineup for

this game
Position The position(s) this player is eligible for
Salary The cost assigned by DraftKings to roster this player
FPTS Fantasy Points - The total number of fantasy points scored by

this player during this game

After collecting the data, it was cleaned by fixing naming discrepancies (matching

punctuation within names, inconsistent spelling, special characters), and then com-

bined. Overall, the dataset contains information on about 2,100 games, 600 players,

and 43,000 total observations with 27 features.

1https://beautiful-soup-4.readthedocs.io/en/latest

2https://www.basketball-reference.com

3http://rotoguru.net
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4.2 Predicting Player Performance

In this section, we conduct some exploratory data analysis and explain how we de-

veloped the heuristics used to predict player performance. These heuristics were

then evaluated by using them to make predictions over the 2020-21 NBA season, and

comparing these predictions to players actual fantasy point production.

4.2.1 Predictions based off Salary

Because one of the main constraints when constructing a fantasy basketball lineup

is salary, we wanted to establish how accurately and fairly players were priced. The

exact criteria by which DraftKings determines player salaries are unknown, but when

looking at player salaries versus fantasy point production across the entire dataset in

Figure 4.1, a general trend is observed. A player’s salary and the amount of fantasy

points they produce on any given day tend to follow a linear relationship.

Figure 4.1: Salary vs. FPTS Across the Entire Dataset
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Knowing this we then wanted to see how consistently players performed compared

to their salaries, and how reliably salary alone could be used as a predictor for the

future. To do so, we developed a heuristic as follows: To predict how many fantasy

points a player would produce on any given day, we would consider all the players

who played the same position in the days prior, and perform linear regression using all

prior players’ salary and fantasy point production. After calculating the coefficients

representing the linear equation relating salary and fantasy points, we then projected

the current player’s salary onto this equation to predict how they’d perform.

This heuristic is somewhat naive, as it assumes that two players with the same salary

who play the same position will perform exactly the same, but we found this step

to be a necessary starting point in determining how accurately players were priced.

Through repeating this process on all players across the entire dataset, we found that

players tended to outperform their predicted performance according to salary 53%

of the time, meaning that on average, players performed according to their salary.

About half the time they would perform better than history would suggest based on

salary, and the other half they performed worse than expected. This indicated that

although players on DraftKings were priced somewhat fairly, salary alone was not

enough information to determine how a player would perform.

4.2.2 Predictions Using Rolling Averages

Another question we had while developing a heuristic that could accurately predict

player performance was how much past information should be considered when trying

to predict the future, i.e., how many of a player’s previous games should be considered

when trying to predict their future performance. We explored this idea by creating

a simple heuristic that used a player’s rolling averages to predict their performance.

For each of the features considered when calculating a player’s fantasy point score,
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we assume that the player will produce the average of that feature over the last n

games. For example, if n = 3 and player A recorded 5, 10, and 8 rebounds over his

last three games, this heuristic would predict that player A will record 7.67 rebounds

in his next game.

Referring back to Table 2.1, if Si,j refers to the ith statistic of the j th game (e.g., S1,3

refers to points scored in the third game of the season, S2,4 refers to the number of

three point field goals made by a player in the 4th game of the season etc.) and Wi

denotes the ith weight (e.g. W1 = 1, W2 = 0.5 etc), then a player’s predicted fantasy

points scored for their Kth game of the season based off their last n games would be:

F̂PTSK,n =
1

n

K−1∑
j=K−n

9∑
i=1

WiSi,j

To evaluate how many games should be considered when trying to predict a player’s

future fantasy point performance, this heuristic was used over the 2019-20 and 2020-

21 NBA seasons to predict player performances using their average over the last

n = 3, 5, 7, 10, and all previous games. These predictions were then compared to

their actual performances, and the root mean square error and mean absolute errors

can be seen in Table 4.2.

Number of Games MAE RMSE
3 8.10 10.48
5 7.85 10.14
7 7.81 10.05
10 7.76 9.97
n 7.74 9.94

Table 4.2: Error Rates for Rolling Averages

From these values, we see that when trying to predict future performances, considering

a greater amount of previous games allows for more accurate predictions to be made,

but the return in accuracy decreases as more games are included. Using a player’s
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rolling averages to predict their performance is also extra unreliable towards the

beginning of the season, as information is sparse and variance in performance is high

as teams and players are still experimenting with game plans and strategies.

4.2.3 Predictions Using Ridge Regression

Building off of this, we wanted to develop a heuristic that took a less naive approach

and incorporated machine learning into predicting how a player would perform, which

ideally would perform better than strictly using rolling averages. Similar to Barry

(2016)[11], we decided to use ridge regression to predict player performance. Ridge

regression is an extension of linear regression that reduces overfitting by introducing

a penalizing term to the standard least squares cost function used in linear regres-

sion. It is especially useful in situations where multicollinearity exists in a dataset.

Multicollinearity exists in a dataset when one or several independent variables can be

linearly predicted from other variables with a reasonable degree of accuracy. In our

use case, several features can be loosely predicted from the other features within our

dataset. For example, players that typically shoot many field goals and free throws

and play a significant number of minutes will also typically log a few turnovers, as

a good portion of a team’s offense is run through them and mistakes are bound to

happen over the course of a game.

Specifically, the goal of ridge regression is to select β to minimize

N∑
i=1

(yi − β0 −
M∑
j=1

βjxij)
2 + α

M∑
j=1

βj
2

where N is the number of observations, M is the number of features, β is the vector

representing the weights, and α is the penalty factor. Our model was fitted using the

2019-20 NBA season rolling averages and fantasy points scored, and 10-fold cross-
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validation was used to find the best alpha value. For a more in-depth explanation of

ridge regression and its applications, please refer to McDonald (2009) [17].

After fitting the model, we then used it to make predictions on the 2020-21 NBA sea-

son. Instead of using DraftKings’ scoring criteria as the coefficients for our predictor,

we used the weights from the fitted ridge regression model. The heuristic developed

using ridge regressions to predict a player’s fantasy point production for their nth

game is as follows:

F̂PTSn = β0 +
1

(n− 1)

9∑
i=1

n−1∑
j=1

βiSij

where Si,j again refers to the ith statistic of the j th game, and β represents the

intercept and coefficients of the nine features used.

4.3 Creating Lineups

In this section, we discuss the different attempts made and techniques used to create

competitive daily fantasy basketball lineups. Although the true player performances

and fantasy points are known within the dataset, creating the best lineup for any given

day is a non-trivial task. Brute force approaches can be applied to find the optimal

lineups, but doing so can take several hours, if not days, in the worst case scenarios.

Recall that to create a lineup, one must select 8 players that fit the positional and

salary constraints. For any position, there can be dozens of available players to choose

from, leading to billions of possible combinations that need to be checked. For our

worst case, the day within our dataset containing the most players, there were a total

of 289 available players, and 69 quadrillion total lineup combinations between those

players. With our computing resources, we were able to create, validate, and score

about 500,000-600,000 lineups per second, but even then it was impossible to conduct
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a complete search on days with many players. As a compromise, in this section, we

discuss the different approaches taken to approximate optimal solutions.

4.3.1 Depth First Search

The first brute force approach attempted involved using a depth-first search to con-

struct a lineup, and checking the constraints once all the players had been selected.

We found this approach to be too unreliable, as it would spend significant amounts

of time exploring branches in the tree that failed to satisfy the position or salary

constraint. For example, if players 1-4 used up enough of the salary cap such that

there wasn’t enough remaining salary to complete the roster, then a valid lineup could

never be created in this branch of the tree. Attempts to improve this search were

made by first sorting the players in each position from most to least expensive, and

checking the salary and duplicate player constraint mid search, ending the search and

returning to the root node if any of these constraints were not satisfied. Through

these improvements, the depth-first search was able to terminate on certain days, but

still struggled for the majority of the days in our dataset, finishing on only 66 out

of the 350 total days. Despite the early search termination, not enough lineups were

excluded to make brute force attempts feasible.

4.3.2 Pareto Front

Through the challenges faced in our initial depth-first search brute force attempt,

we learned that the search space was too large to brute force the optimal lineup

within a reasonable amount of time. We also noticed that on any given day in the

dataset, there were often many redundant players that would never be considered

in an optimal lineup. A player who was expected to score 15 fantasy points and

23



cost $4,000 would be dominated by another player in the same position who was

expected to score 30 fantasy points and cost $3,000, assuming that the heuristic used

to estimate its performance is accurate.

Generally, a player B dominates player A with respect to a heuristic H if player B

plays in the same position as player A, is ranked higher by H than player A, and

has a lower salary than player A. In the field of multi-objective optimization, the set

of non-dominated solutions is also known as the Pareto front. By reducing the set

of players to only include those who had the highest heuristic value relative to their

salary, we were able to reduce the search to the point where a brute force approach

would be feasible, while still creating lineups that would be near optimal given the

heuristic. Within our dataset, there were also a few exceptionally busy days where the

Pareto front still contained too many players for a solution to be found in a reasonable

amount of time. On these days, the player pool for that position is further reduced

by randomly selecting a maximum 14 players from the Pareto front for each position.

We found 14 to be the sweet spot in terms of the number of players to consider, as it

allowed for wide coverage of the Pareto front while still allowing for a close to optimal

solution to be found in a reasonable time frame.

The pseudocode for our Pareto front algorithm can be seen in Algorithm 2. To

find the Pareto front within a set of players who play the same position, they first

must be sorted in ascending order by salary and decreasing order by heuristic value.

Afterwards, iterate through the sorted players, keeping track of the highest score thus

far. If a player scores more than the current best score, they are added to the Pareto

front, and the best score is updated. After iterating through the players, return the

players that were on the Pareto front.
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Algorithm 2 ParetoFilter(L = {p1, p2, . . . , pn})
Input: A list L containing players {p1, p2, . . . , pn}, sorted in ascending order by salary
and descending order by heuristic value H
Output: A list F containing the players on the Pareto front of L
F ← ∅
currentBestScore← 0
for player pi in L do

if pi[H] > currentBestScore then
currentBestScore← pi[H]
F ← F

⋃
pi

end

end
Return F

4.3.3 Multi-level Pareto Front

Through this process we realized that there were edge cases on certain days where,

although the total number of players for a given position included dozens of players,

due to how players performed, the Pareto front would only contain a few players.

Since players can play multiple positions (e.g., a PG can also play as a G or as a

Util), if a player X in a Pareto front was selected as, say a PG, players in G that

were dominated by X should not be excluded from consideration. This makes the

previous algorithm disconsider some potentially optimal lineups while also making it

impossible to generate lineups for certain days if too few players were in a Pareto

front.

To increase the coverage of the player pool while ensuring that new players added were

also somewhat efficient themselves, we also developed an algorithm that extended our

original Pareto front algorithm. The pseudocode for this algorithm can be seen in

Algorithm 3. Inspired by NSGA-II [15], it works similarly to Algorithm 2, but after

each pass through the players, will calculate a new level of the Pareto front without

regard for players who were already included in higher Pareto front levels, repeating

this process a given number of times or until a satisfactory number of players are
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found. If the final level contains too many players, players on the last Pareto front are

randomly selected. Considering players on multiple Pareto fronts provided increased

flexibility when creating lineups, especially on less busy days or in cases where the

number of players on the initial Pareto front was significantly smaller than the total

number of available players.

Algorithm 3 MultiLevelParetoFilter(L = {p1, p2, . . . , pn}, n levels,
n players)

Input: A list L containing players {p1, p2, . . . , pn}, sorted in ascending order by salary
and descending order by fantasy points, an integer n players, and an integer n levels
Output: A list F containing up to n players on the first n levels Pareto fronts of L
F ← ∅
level← 0
while |F | < n players and level < n levels do

ParetoFront← ParetoFilter(L)
if |ParetoFront|+ |F | > n players then

tie breaking, randomly select players from ParetoFront to complete F

end
F ← F

⋃
ParetoFront

level← level + 1
end
Return F

An example of this can be seen in Table 4.3, where the first level is highlighted in

blue, the second level in yellow, and the third in red. This can also be observed

visually in Figure 4.2, where to be considered on the first Pareto front level, there

must be no other players who were both cheaper in salary and scored higher with

respect to a heuristic (i.e., to the left of and above a point on the graph). On days

where extreme performance outliers occurred, a single Pareto front would typically

reduce the player pool far too drastically, limiting the number of players for a given

position and reducing flexibility when trying to form a complete lineup. As seen by

this example, the vast majority of efficient players can be found by considering only

a few levels of the Pareto front.
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Name Salary FPTS
Sterling Brown 3000 41.25
Devin Vassell 3000 23.75
Malik Monk 3000 19.75
Mason Jones 3000 10.25
Max Strus 3100 24.25
Cody Martin 3100 1.25
David Nwaba 3200 18.25
Caleb Martin 3300 23
Gabe Vincent 4200 35
Norman Powell 4900 20.25
Justin Holiday 4900 19.25
Shake Milton 5200 51
Patty Mills 5200 14
Duncan Robinson 5500 26.5
Danny Green 5700 27.5
Will Barton 5800 32
Terry Rozier 6200 39.75
Tyler Herro 7300 30
Fred VanVleet 8200 30.75
CJ McCollum 8400 35.25

Table 4.3: Multi Level Pareto Front Example

After experimenting with parameters, we settled on using a maximum of 3 levels

and 14 players per position. This amounts to a total of about 1.5 billion lineup

combinations, which on average takes around 33 minutes to brute force. In Figures

4.3 and 4.4 are histograms for the utility position over the 2020-21 NBA season,

which show the average number of players per level on the Pareto front, and the total

number of days where it took n Pareto front levels to reach 14 players. For the vast

majority of days, it only requires going 2 to 3 levels deep to find the fourteen most

efficient players.
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Figure 4.2: Multi Level Pareto Front, Visualized

4.3.4 Genetic Algorithms

To navigate around the computational complexity required to brute force a solution,

we also used genetic algorithms to create fantasy basketball lineups. Genetic algo-

rithms are inspired by survival of the fittest, and generally include four main steps:

initialization, selection, mutation, and crossover. Genetic algorithms begin by first

initializing a random population. The size of this population can change depending

on the nature of the problem, but it should ideally cover a wide area of the search

space. After initialization, the population is sorted by fitness, and the best individ-

uals are selected to breed the next generation. The remainder of the population is

comprised of new individuals who have gone through genetic operators from the se-

lected elites. There are many genetic operators, but the two main ones are mutation

and crossover. Mutation involves randomly altering small portions of an individual,

whereas crossover involves creating a new individual from a combination of two parent

individuals. By repeating these steps over many iterations, the populations overall

fitness improves as weaker members are replaced with variations of stronger ones.
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Figure 4.3: Number of Levels Needed for 14 Players Per Position

The genetic algorithm we developed works as follows: For each day of the dataset,

the genetic algorithm used a population of fifty random valid lineups. This initial

population was then sorted by fitness (fantasy points scored) in descending order

and separated into two groups. The bottom twenty five lineups were replaced with

mutations or crossovers of a randomly selected top twenty five lineup, making sure to

check that these lineups fit the constraints. If during the mutation or crossover process

a newly created lineup breaks the constraints, the changes made to that individual

are reverted and the mutations or crossover process is attempted again, up to ten

times. If after ten attempts a valid lineup is still unable to be created, that individual

is discarded, and new parents are chosen to mutate or crossover from. This process

was repeated a given number of times until competitive lineups were formed. After

conducting this experiment over varying parameters, the parameters that seemed to

have the most success were a population size of 50 lineups, a mutation rate of 0.25,

a crossover rate of 0.5, run for 50 generations. Using this genetic algorithm to create

lineups for all the days led to an average score of 360.22 fantasy points.
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Figure 4.4: Average Number of Players Per Pareto Front Level

Repeating this experiment did not always lead to the same lineups due to the inherent

randomness in genetic algorithms, but the final lineups were comparable in score to

the Pareto-front brute force approach for nearly all the days. When comparing the

Pareto front solution to the genetic algorithm solution, we noticed that the genetic

algorithm would sometimes outperform the Pareto front approach. This raised some

concern, as theoretically the brute force solution should have been our near optimal

solution. To double check our approach, the players in the genetic algorithm solution

that were not a part of the Pareto front brute force approach were artificially inserted

into the Pareto front. We reconducted the experiment, and were able to confirm

that the brute force approach is able to outperform or match the genetic algorithm

solution when the exclusive players were artificially inserted. It’s possible due to

unforeseen edge cases or randomness when selecting players from the Pareto front

on busier days that the genetic algorithm was able to outperform our Pareto front

approach. Nevertheless, using genetic algorithms provided similar performance to the

Pareto front brute force approaches while also being less computationally expensive,

performing only 16 points worse on average.
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Algorithm 4 Genetic Algorithm(µ, λ,G,m, c)

Input: The number of elites µ, the number of offspring λ, the number of generations
G, the mutation rate m, and the crossover rate c
Output: The population P after G generations
P ←new population with µ+ λ random valid lineups
for G generations do

G← Evaluate(P ) ▷ Calculates and sorts lineups by fantasy points scored
G′ ← ∅
newLineups← ∅
for i = 1 to µ do

Add Gi to G′

end
for i = 1 to λ do

newLineup← A randomly selected lineup from G′

newLineup← Mutate(newLineup,m)
if random < c then

parent2← a randomly selected lineup from G′

newLineup← Crossover(newLineup, parent2)

end
newLineups← newLineups

⋃
newLineup

end
P ← G′ ⋃newLineups

end
Return P

4.3.5 Greedy Algorithm

After establishing our naive random baseline and high-end baselines, we also wanted

to develop a greedy algorithm to see how a simpler approach would compare to the

genetic algorithm and brute force approaches. Recall that in Chapter 2, we introduced

the knapsack problem and presented a greedy algorithm to solve it. By sorting the

items by their ratio of value to weight, a solution can be found by greedily selecting

items until the knapsack is full. Similarly, a greedy approach for lineup creation can

be taken after observing that the problem of creating fantasy basketball lineups can

be viewed as an extension of the knapsack problem, with a few extra conditions.
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Firstly, the knapsack is separated into eight bins, where each bin represents a position

in a fantasy basketball lineup. Each individual item can only be placed in specific

bins, and each bin must be filled with exactly one item. All the bins must be filled

without repeat items, and their total weight (cost) must be less than or equal to

a certain threshold. By reframing our problem through the lens of the knapsack

problem, we also developed a greedy algorithm to create lineups.

Our algorithm works by creating two separate lists. The first list contains the players

sorted by their heuristic value in descending order, and the second list contains the

same players sorted by salary in ascending order. Lineups are formed by iterating

through the best performing players and assigning them to the most specific position

available, but only if adding this player still allows for a valid lineup to be created.

Position specificity is tiered. The top tier includes the starting five positions: PG, SG,

SF, PF, C. In the next tier are the combined positions, G which consists of PGs and

SGs, and F which consists of SFs and PFs. Lastly, the final tier is the UTIL position

which includes all players. Potential lineups are then validated by iterating through

the cheapest players, and assigning them to the most specific remaining position when

possible, filling out the rest of the lineup. If no lineup can be created this way, then

the current candidate player does not fit, and these steps are repeated with the next

candidate player. This greedy approach with slight look-ahead ensures that at least

one valid lineup can be formed with the currently proposed players. The pseudocode

for this algorithm can be seen in Algorithm 5.
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Algorithm 5 LineupGreedyAlg(P,C, b)

Input: P , a list of candidate players, C, a list of the cheapest players, and budget b
Output: G, A valid greedy lineup
G← ∅
vacancies← {PG, SG, SF, PF,C,G, F, UTIL}
for player p in C do

if length(vacancies) == 0 then
return G

end
potentialLineup← G
assign p to the most specific position in vacancies
add p to potentialLineup
if checkViability(potentialLineup, vacancies, C, b) then

add p to G
remove p.position from vacancies
budget← budget− player.salary

end

end
return G
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Chapter 5

RESULTS & DISCUSSION

To test and evaluate the methods discussed in Chapter 3, each heuristic (Season

Averages, Salary Linear Regression, Ridge Regression) was used in combination with

each different lineup search method (Greedy, Pareto Front, Multi-level Pareto Front,

Genetic Algorithm), leading to a total of 12 combinations. In this section we discuss

and analyze the results from these experiments, starting with heuristic evaluation,

and then examining which combinations of heuristics and search methods produced

the best performing lineups. Lastly, we discuss why we believe the salary linear

regression heuristic along with the greedy lineup search method outperformed the

other combinations.

5.1 Heuristics

Each heuristic was evaluated by making predictions over the 2020-21 NBA season.

These predictions were then compared to players’ actual fantasy point production

using mean absolute error and root mean-squared error. These two metrics were

chosen because we felt that their combination provided a good way of measuring

prediction accuracy. Whereas mean absolute error measures the average magnitude

of the prediction errors and gives the same weight to each prediction, root mean

squared error measures the average prediction error squared and penalizes outliers

more harshly. The equations for the mean absolute error and root mean-square error

can be seen below.
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MAE =
1

N

N∑
i=1

|F̂PTSi − FPTSi|

RMSE =

√√√√ 1

N

N∑
i=1

(F̂PTSi − FPTSi)2

The error rates for each heuristic can be seen in Table 5.1. Based off these values,

we can see that no single heuristic consistently outperformed the others in both

metrics, with the maximum and minimum values for each metric differing by only

about 0.1 fantasy points. We believe that one of the reasons why the performance

of the heuristics did not improve significantly despite including more features is that

generally it is difficult to develop a heuristic that both generalizes well and is also

capable of handling outliers.

This can also be seen in Figure 5.1, which shows the ridge regression error rates

measured against the minimum fantasy point performance to be included in the error

calculations. As the minimum fantasy points required increased, the error rate with

this heuristic also increased, further showing the challenges in trying to develop a

heuristic that both generalizes well for the average player while also being able to

predict outlier performances.

It’s worth noting that although ideally more time would have been spent further

developing and refining these heuristics, due to the inherent luck involved in bas-

ketball, it would be impossible to perfectly predict player fantasy performance, and

increasingly challenging to improve these heuristics beyond a certain level of error.

For reference, Barry (2016)[11] was unable to push beyond a mean absolute error of

6.6 and a root mean-squared error of 9, even after adding additional features to their

ridge regression model.
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Heuristic MAE RMSE
Season Rolling Averages 7.70 9.94
Linear Regression using Salary 7.76 9.83
Ridge Regression 7.73 9.87

Table 5.1: Heuristic MAE and RMSE

Figure 5.1: Ridge Regression Error Rate

5.2 Lineup Creation

To evaluate the performance of the heuristic and lineup creation combinations, for

each day a heuristic was used to predict player performance, and using these predic-

tions, lineups were created using the greedy algorithm, the genetic algorithm, single

level Pareto front, and multi-level Pareto front brute force approaches. These line-

ups were then scored and compared to both a naive baseline and an oracle solution.

The naive baseline was created for each day by taking the average score of 1,000

randomly generated valid lineups, and serves as a low-level baseline when comparing

models. For the high-end baseline, oracle solutions were created by using the single

level Pareto front, multi-level Pareto front, and genetic algorithm with players’ true

fantasy points scored. Because complete brute force approaches were infeasible, the
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oracle solution is not provably optimal, but we felt that it was close enough to optimal

when trying to compare models. For reference, South(2019)[13] considered 260 points

competitive enough to be above average compared to other players, and the oracle

solutions average scores are well above that threshold.

Lineup Search Approach1,2 Avg. Prediction Avg. FP
Naive n/a 167.6
Oracle Greedy n/a 344.27
Oracle Single Level PF n/a 372.59
Oracle Multi Level PF n/a 377.43
Oracle Genetic Algorithm n/a 359.79
Salary Linear Regression Greedy 235.23 255.76
Salary Linear Regression Single Level PF 237.05 242.59
Salary Linear Regression Multi Level PF 237.11 249.17
Salary Linear Regression GA 234.04 229.32
Season Rolling Averages Greedy 252.39 237.12
Season Rolling Averages Single Level PF 274.08 243.38
Season Rolling Averages Multi Level PF 274.26 243.43
Season Rolling Averages GA 262.98 241.22
Ridge Regression Greedy 251.95 236.59
Ridge Regression Single Level PF 270.63 245.6
Ridge Regression Multi Level PF 270.74 246.0
Ridge Regression GA 260.27 246.85

Table 5.2: Lineup Creation Results

Looking at the average fantasy points scored across the 2020-21 NBA season in Table

5.2, a few promising combinations can be seen. For all heuristics besides salary

linear regression, the Pareto front and genetic algorithm approaches outperformed

the greedy algorithm. The most accurate combination in terms of predicted score

versus actual score was the salary linear regression and genetic algorithm model,

which overestimated by 4.72 points on average. In addition, all heuristics besides

salary linear regression tended to overestimate performance.

1PF - Pareto Front

2GA - Genetic Algorithm
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Interestingly, for most cases the added benefit of including multiple Pareto front levels

in the brute force search was marginal, and only increased the average predictions

by fractions of a point. Though allowing for subsequent Pareto front levels did not

yield significant improvements to the average prediction, it’s possible that including

more Pareto front levels and players per position (which requires more computational

power) could improve this.

The combination that yielded the highest average score was the salary linear regres-

sion combined with the greedy algorithm. Upon first glance, this seemed somewhat

unexpected, but with further analysis we can understand why this happened. Recall

that DraftKings assigns salaries to players based on how they are expected to perform.

Looking at Table 5.3, which displays the average expected fantasy point production 3

of a player for a given position, the most expensive players provide much more value

per $1,000 of salary than the both the cheapest and average player. Similarly, recall

that the linear regression heuristic is based solely on salary, and that given player A

and player B play the same position, it will always predict that the more expensive

player will perform better. This idea is further emphasized by the greedy algorithm,

which will select the player with the highest heuristic value, given that a valid lineup

can be created. Because the greedy lineup approach selects the players with the high-

est heuristic value, which in this case was tied to player salary, it selected a few stars

and filled out the rest of the lineup with average to cheaper players. This suggests

that when selecting a lineup, it’s better to rely on a few star players while balancing

out the rest of the roster, than selecting a lineup filled with players that are expected

to have average performances.

Because none of these models were able to consistently surpass 260 fantasy points,

they probably wouldn’t fare well as a standalone solution for daily fantasy basketball,

4Expected Fantasy Points - Fantasy Points / Salary × 1,000
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Position All Players Bottom 20% Top 20%
PG 4.31 2.98 4.92
SG 4.13 2.68 4.79
SF 4.12 2.61 4.70
PF 4.07 2.60 4.74
C 4.32 3.01 4.84
G 4.20 2.69 4.91
F 4.09 2.59 4.75
UTIL 4.17 2.64 4.86

Table 5.3: Expected Fantasy Points per $1k Salary, Cheapest vs. Most
Expensive Players

although they could be used to assist players when trying to predict player perfor-

mance and create lineups. It’s also worth noting that when evaluating lineups, while

drafting the best players generally results in a good team, an outstanding team is

needed to consistently perform well in a tiered payout system. In these competitions,

about half of the total prize money is given to the top-10 players, and while these

lineups generally will include some consistent star players, they also more likely than

not will include some high-risk players that happened to perform well on that night.

For our purposes, we did not incorporate risk when creating lineups, but rather tried

to minimize the error between our predicted and actual fantasy point production. In

addition, the more other players in the same lobby select the same players as our

model does for their lineup, then the general advantage one would have over others

using these methods would be diminished.
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Chapter 6

FUTURE WORK & CONCLUSION

Optimizing daily fantasy basketball remains largely unexplored in academia, and is

a challenging problem due to the inherent variance and luck involved in professional

sports. In this thesis, we designed and developed a system to assist individuals

participating in daily fantasy basketball.

Our contributions include:

• Creating a pipeline that generates datasets by extracting basketball box score

and daily fantasy sports information

• Developing several heuristics (Season Average, Salary Linear Regession, Ridge

Regression) to predict player performance

• Developing several lineup creation methods (Greedy, Pareto Front, Multi-level

Pareto Front, Genetic Algorithm)

Through the optimizations made to our lineup creation methods, we were able to

create near-optimal lineups by reducing the search space to only contain players on the

Pareto front between salary and heuristic value. We were also able to create lineups

with comparable performance in a much shorter amount of time through evolutionary

algorithms. Of the twelve heuristic and lineup creation combinations, the one that

showed the most promise was the salary linear regression heuristic paired with the

greedy algorithm lineup creation, which scored 255.76 fantasy points on average.

Although this didn’t surpass the 260 point threshold to be considered competitive,
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we believe that our findings serve as a good baseline as a tool that can be used to

assist users in making these decisions.

There are still several open areas one could explore if they wished to expand upon

the research done in this paper. In regards to predicting player performance, more

time could be spent developing more robust and accurate heuristics. This could be

done by incorporating more features such as the number of days a player has rested

before the current game, if the current game is being played at home versus away,

the defensive metrics of the opposing team, or other advanced statistical metrics.

Also, additional exploratory data analysis could be conducted to determine which

of these features are more important than others when predicting player fantasy

point production. Another possibility could include incorporating some other machine

learning techniques to predict player performances, or developing different heuristics

for each position, as certain methods may be more effective for certain positions rather

others.

For lineup creation, next steps of future research could include creating multiple

lineups with varying risk levels, and evaluating them either through simulations or real

world competitions. Unfortunately, due to the timing during which our research took

place, we did not have the chance to test our methods in these contexts. Another way

to increase the variance of the lineups generated would be to consider the percentage

of other users who also own a candidate player, as the general advantage one user has

over others is diminished if this candidate player is rostered unanimously. Another

area of interest could be seeing how effective these methods of creating lineups would

be in other sports, such as football, baseball, or hockey, just to name a few.
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Appendix A

DATASET
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Table A.1: Basketball Reference Box Score Features
Abbreviation Definition
Date The date that this game occured
Team The team this player plays for
Name The name of this player
MP Minutes Played - The number of minutes played by a player
FG Field Goals - The Number of field goals a player has made,

includes both 2 pointers and 3 pointers
FGA Field Goal Attempts - The number of field goals a player has

attempted, includes both 2 pointers and 3 pointers
FG% Field Goal Percentage - The percentage of field goal attempts

that a player makes (FG/FGA)
3P 3 Point Field Goals Made - The number of 3 point field goals a

player has made
3PA 3 Point Field Goals Attempted - The number of 3 point field

goals that a player attempted
3P% 3 Point Field Goal Percentage - The percentage of 3 point field

goal attempts that a player makes (3P/3PA)
FT Free Throws - The number of free throws that a player has made
FTA Free Throws Attempted - The number of free throws that a

player has attempted
FT% Free Throw Percentage - The percentage of free throw attempts

that a player makes (FT/FTA)
ORB Offensive Rebounds - The number of rebounds a player has col-

lected while they were on offense
DRB Defensive Rebounds - The number of rebounds a player has

collected while they were on defense
TRB Rebounds - Occurs when a player recovers the ball after a missed

shot. The number of total rebounds a player has collected (ORB
+ TRB)

AST Assists - Occurs when a pass leads directly to a made basket.
The number of assists by a player

STL Steals - Occurs when a defensive player takes the ball from a
player on offense, causing a turnover. The number of steals by
a player

BLK Blocks - Occurs when a defensive player tips the ball when an
offensive player attempts a shot. The number of blocks by a
player

TOV Turnovers - Occurs when an offensive player loses the ball. The
number of turnovers a player commits

PF Personal Fouls - The number of personal fouls a player has com-
mitted

PTS Points - The number of points a player has scored
+/- Plus Minus - The point differential when a player is on the floor
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Appendix B

SALARY VS FANTASY POINT TRENDLINES

Figure B.1: Salary vs. FPTS, by Position
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Appendix C

HEURISTIC AND LINEUP CREATION BOX PLOTS

Figure C.1: Heuristic + Lineup Creation Box Plots
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