
EXAMINING INTRODUCTORY COMPUTER SCIENCE STUDENT

COGNITION WHEN TESTING SOFTWARE UNDER DIFFERENT

TEST ADEQUACY CRITERIA

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Austin Shin

August 2022

© 2022

Austin Shin

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: Examining Introductory Computer Sci-
ence Student Cognition When Testing
Software Under Different Test Adequacy
Criteria

AUTHOR: Austin Shin

DATE SUBMITTED: August 2022

COMMITTEE CHAIR: Ayaan Kazerouni, Ph.D.
Assistant Professor of Computer Science

COMMITTEE MEMBER: Bruno da Silva, Ph.D.
Assistant Professor of Computer Science

COMMITTEE MEMBER: John Clements, Ph.D.
Professor of Computer Science

iii

ABSTRACT

Examining Introductory Computer Science Student Cognition When Testing

Software Under Different Test Adequacy Criteria

Austin Shin

The ability to test software is invaluable in all areas of computer science, but it

is often neglected in computer science curricula. Test adequacy criteria (TAC),

tools that measure the effectiveness of a test suite, have been used as aids to im-

prove software testing teaching practices, but little is known about how students

respond to them. Studies have examined the cognitive processes of students pro-

gramming and professional developers writing tests, but none have investigated

how student testers test with TAC. If we are to improve how they are used in

the classroom, we must start by understanding the different ways that they affect

students’ thought processes as they write tests.

In this thesis, we take a grounded theory approach to reveal the underlying cog-

nitive processes that students utilize as they test under no feedback, condition

coverage, and mutation analysis. We recorded 12 students as they thought aloud

while creating test suites under these feedback mechanisms, and then we ana-

lyzed these recordings to identify the thought processes they used. We present

our findings in the form of the phenomena we identified, which can be further

investigated to shed more light on how different TAC affect students as they write

tests.

iv

ACKNOWLEDGMENTS

I would like to begin by thanking my advisor, Dr. Ayaan Kazerouni, for his

endless guidance and the patience that he had for me throughout my first research

experience. From taking his Teaching Computing class to running the Tutoring

Center to writing this thesis, he has been my biggest academic inspiration, and

I hope to one day be able to give my students as much wisdom and advice as he

gave me. Your constant support and all of your answers to my questions got me

through this process, and I am truly thankful for everything.

To my committee members Dr. John Clements and Dr. Bruno da Silva, I would

like to thank you both for your time and your willingness to attend my defense

over Zoom. It was nice flipping the tables and lecturing to both of you for

an hour, and the edits and comments you gave me were extremely helpful in

ensuring my thesis was as well-rounded and polished as it could be. John, teaching

231 with you was an absolute pleasure and I had so much fun. Teaching was

always something I wanted to do and you were the best guide I could have asked

for throughout the whole process. Bruno, your edits and feedback during our

meetings were invaluable and your perspectives kept me and Ayaan from getting

too tunnel-visioned.

To my family, without you all, I would not have been able to get to where I am

today. The love you all showed me throughout my life is more than any one

person could ever hope for, and as we say, it’s probably the reason I’m tall. With

the last of the kids going off to college it’s been harder to get everyone in the

same place at the same time but I’m always thinking of all of you and I can’t

wait for our next gathering.

v

When I entered my fifth year at Cal Poly I was worried that I wouldn’t have any

friends left, but my friends new and old who were there with me for my super-

senior year were the best support system I could have asked for. You all kept me

on task(s) and kept me from staying in my house all the time, which are both

things that I struggle with. The memories I made with you all this past year are

the ones that I will cherish for the rest of my life and I love you all.

To my students and WOWies, you were the ones who helped me mature and learn

more about myself than I ever could in any class. My time with each and every one

of you was precious and I enjoyed every second that we spent together, whether

it was kayaking in Morro Bay or learning about NumPy in that ventillationless

classroom. Thank you all for providing me with the opportunities to teach and

to guide you, I will always refer to you all as my kids.

This work was supported by the Warren J. Baker and Robert D. Koob Endow-

ments.

vi

LIST OF TABLES . x

LIST OF FIGURES . xi

CHAPTER

1. INTRODUCTION . 1

2. BACKGROUND AND RELATED WORK 3

2.1 Test Adequacy Criteria . 3

2.1.1 Condition Coverage . 3

2.1.2 Mutation Analysis . 4

2.2 Related Work . 6

3. MUTTLE: DATA COLLECTION TOOL 10

3.1 Features . 10

3.2 My Contributions . 13

3.3 Future Work . 14

4. METHODOLOGY . 16

4.1 Data Collection . 17

4.1.1 Interviews . 17

4.1.2 Problem Selection . 19

4.1.3 Think-Aloud Testing . 21

4.2 Data Analysis . 25

vii

5. RESULTS . 28

5.1 Problem Comprehension . 28

5.2 Testing With No Feedback . 29

5.2.1 Student Testing Strategies 30

5.2.2 Internal TAC . 31

5.3 Testing Under CC . 32

5.4 Testing Under MA . 33

5.5 Other Testing Patterns . 34

6. CONCLUSION AND FUTURE WORK 36

6.1 Conclusion . 36

6.2 Future Work . 36

BIBLIOGRAPHY . 40

APPENDICES

A. INTERVIEW CONSENT FORM 47

B. INTERVIEW CODING PROBLEMS 50

B.1 Multiply . 50

B.2 Larger . 50

B.3 Triangle . 50

B.4 Selection Sort . 51

viii

B.5 Rainfall . 52

B.6 Centered Average . 53

ix

LIST OF TABLES

Table Page

4.1 Summary demographic survey data from study participants. . . . 18

x

LIST OF FIGURES

Figure Page

2.1 Proposed cyclical model by Enoiu et. al. (2020). The cyclical
representation of software testing when viewed from a problem-
solving perspective. 7

2.2 Proposed testing framework by Aniche et. al. (2021). The frame-
work of strategies that describe how developers think about testing. 8

3.1 Muttle Testing User Interface. Shows a sample exercise and an
input and output for a test case that has not been run yet. The
test case deletion and addition buttons, the launch test button,
and the three TAC toggle buttons are shown. 11

3.2 Muttle Pass and Fail Indicators. Results for one successful and
one unsuccessful test case are shown. 12

3.3 Muttle Code Coverage Gutter. The gutter showing all three levels
of coverage is shown next to a sample exercise. 12

3.4 Muttle Mutation Analysis Feedback. Red bug badges indicating
surviving mutants as well as an example of original and mutated
code side-by-side are shown. 13

3.5 Multi-line Mutant. An example of a properly displayed multi-line
mutant. 14

xi

Chapter 1

INTRODUCTION

Software testing is a vitally important skill that is relevant in all domains in

computer science. In industry, establishing code quality can guarantee patient

care, safeguard customer data, and keep airplanes in the sky, and in academia,

it can ensure that research findings are accurate and unbiased. To measure the

efficacy of test suites, test adequacy criteria (TAC) are used, which are standards

for judging a software test suite that defines what conditions need to be met for

the set of tests to be deemed “adequate” [1].

Quality software testing instruction rarely finds its way into introductory com-

puter science curricula [2, 3, 4] despite its importance to the field, leading to

students forming bad habits and not developing the skills that they need [5, 6].

However, as indicated by an upward trend of paper publication and pedagogi-

cal approach, course-ware, and tooling development [7], improvements are being

made. For instance, TAC are being used as an educational tool for providing

students feedback on their test suites.

To further advance this teaching method, the first step that must be taken is

understanding student thought processes as they test under various TAC. There

have been studies into the cognitive processes of professional software engineers as

they write tests [8, 9] and into student thinking as they write code [10], but there

has not been any work done targeted specifically toward student testing thought

processes. Furthermore, no studies regarding tester cognition under different

TAC exist.

1

The aim of this study is to fill that void, providing insight into students’ cognitive

processes when testing while being guided by different TAC. Chapter 2 provides

background information on the specific TAC that were used in this study as well

as relevant findings from the aforementioned studies. Chapter 3 describes the

implementation of the data collection tool and related components and Chapter 4

details the data collection and analysis methodology. Finally, Chapter 5 outlines

our findings and Chapter 6 concludes this study and presents possible future

work.

2

Chapter 2

BACKGROUND AND RELATED WORK

2.1 Test Adequacy Criteria

The effectiveness of different TAC in all fields of computer science has been stud-

ied for decades, but the two main ones related to this thesis are code coverage

and mutation analysis (MA). Code coverage is a type of structural testing crite-

rion that evaluates how many lines and/or branches of source code are executed

by a given test suite [11] and it is widely used due to its cheap generation cost

and easily understandable feedback. On the other hand, MA is a type of fault-

based testing criterion that involves artificially inserting bugs into a program and

measuring how well a test suite can discover them, but it has limited practical

applications due to its high computational cost.

2.1.1 Condition Coverage

The type of code coverage used in this study is condition coverage (CC). CC

examines the statements of a program and considers each one “fully covered” if all

of its branches are executed (e.g., the conditional for an if statement evaluates

to both True and False), “partially covered” if only some of its branches are

executed (e.g., the conditional for an if statement only evaluates to True), and

“uncovered” if none of its branches are executed (e.g., the statement is never

reached). A coverage score, represented as a percentage of statements that are

covered, is commonly used to measure a test suite in terms of code coverage.

3

Despite how common it is, the shortcomings of code coverage in test suite evalu-

ation in education have been widely acknowledged. Code coverage is not a good

indicator of the true fault-finding capabilities of a set of tests [12, 13, 14] and

does not strongly correlate to software reliability [15, 16, 17].

2.1.2 Mutation Analysis

In MA, the artificially-created bugs that are created are called “mutations”, and

the defective copies of the program that result are called “mutants.” Generally,

mutations are small syntactic changes (e.g., changing a 0 to a 1 or changing > to

>=) that are categorized into different types called “mutation operators.” While

there are infinitely many possible mutation operators, they have been designed

to emulate commonly-made errors made by programmers [18].

Similar to CC, a mutation score, commonly represented as a percentage of “killed”

to total mutants, is used to evaluate the thoroughness of a test suite. A mutant

is considered “killed” if at least one test case in a suite fails upon encountering

that mutant, and is considered to have “survived” otherwise [18]. However, some

mutations result in a mutant that functions identically to the original program,

making it impossible to kill and thus skewing the mutation score. Detecting

these mutants, known as equivalent mutants, is an important problem in MA,

but is undecidable as it is essentially the program equivalence problem. In this

study, any equivalent mutants were manually identified by researchers and were

not counted in the number of total mutants.

Empirical studies have found that there is a correlation between the mutant-

finding capabilities and real fault-finding capabilities of both developer- and

automatically-created software test suites [19, 20]. Additionally, developers have

4

been shown to write more and better tests over time while testing under MA [20].

As for students testing with MA as a TAC, correlations have been found between

mutation scores and manual instructor-created fault detection rates as well as

between mutation scores and all-pairs grading scores (a student’s program and

test suite are run against their peers’, combining the percentage of test suites for

which their code passed and the percentage of flawed programs that did not fail

their test suite [21]) [22].

Studies directly comparing code coverage and MA as educational tools have sug-

gested MA as the cure for the shortcomings that using only code coverage can

bring. One study compared their usefulness as automated test assessment tools

and found that MA evaluates the strength of students’ test suites, measures the

correctness of their source code, and can identify students who try to fool auto-

mated coverage systems with meaningless tests [12]. Another study found that,

while student tests achieved an average of 95.4 percent code coverage, they only

detected 13.6 percent of faults across the entire population of student source code

[13]. MA has also been proven to subsume CC, meaning a test set with a 100

percent mutation score will have a 100 percent code coverage score [23].

MA is the most powerful TAC that exists [24] and it has been proven to be an

effective educational tool, but it is not without its drawbacks. Certain mutation

operators may not be representative of probable faults in some languages [25] and

MA feedback can be hard for students to interpret [12]. But perhaps its most

glaring deficiencies are its computational expense and long runtime, as test suites

must be run against potentially hundreds or thousands of copies of a potentially

complex program.

5

2.2 Related Work

The related works to this thesis primarily deal with programmer and tester

thought processes. The approach of treating software testing as a problem-solving

task was only first explored recently, so not many studies exist yet.

One of the inspirations for this thesis was the study by Castro and Fisler in

which they examined how novice programmers shifted between thinking at the

task level (focusing on task decomposition) and at the code level (focusing on the

source code) while coding [10]. They noticed that the way they moved between

the two levels of thinking corresponded to their success on a problem, with those

alternating between task-level and code-level thinking faring the best, and those

starting at the task level and then staying at the code level or solely focusing

on code being the farthest from a correct solution. These findings motivated

our original research topic of trying to find similar patterns in students while

they tested under different TAC, and while we deviated from this path, in our

analysis we considered which level(s) of thought students were using throughout

the testing process.

The first framework describing the cognitive processes of software testers (see

Figure 2.1) was created by Enoiu et. al. [9]. Their model lays out the task of

testing as a cyclical problem-solving model, with testers repeatedly identifying

and understanding test goals, planning a testing strategy, writing and executing

tests, and evaluating test results. TAC are examples of test goals, so one idea

we considered was observing how students would move between the stages of

the framework differently when writing tests under different ones. While we did

not follow this path for this study, we kept this framework in mind during our

analysis to better categorize student actions.

6

Figure 2.1: Proposed cyclical model by Enoiu et. al. (2020). The cyclical repre-
sentation of software testing when viewed from a problem-solving perspective.

7

Enoiu and Feldt followed up this study by proposing the Human-based Auto-

mated Test generation framework, creating an all-encompassing architecture that

can be used to examine how the human mind writes test cases [26]. The authors

mention that identifying cognitive processes just from written tests can be diffi-

cult, so they recommend the use of verbal protocol analysis (having participants

think aloud) to better identify explanations for behaviors. This technique aligned

with our data collection methods (see Section 4.1) and we emphasized it through-

out the study. They also discuss how other influences like motivation, creativity,

psychological factors, and social factors all affect the test-writing process. By

keeping this idea in mind while analyzing our data, we were able to keep a broad

perspective while determining the reasons behind student testing decisions and

we picked up on cues that we would otherwise have missed.

Figure 2.2: Proposed testing framework by Aniche et. al. (2021). The framework
of strategies that describe how developers think about testing.

Building upon the framework proposed by Enoiu et. al., Aniche et. al. created

their own model of software tester cognition (see Figure 2.2) [8]. By observing

developers think aloud as they wrote tests, they identified six main concepts and

8

the relationships between them that the testers would use as they worked. As

with the other framework, we considered studying student movements through

the model while testing under different TAC, but we used it more as a reference

to guide our analysis instead. In particular, we focused on how students built up

their mental models of a program differently for each TAC.

While work has been done towards developer cognition while writing and testing

code, no research has gone into observing how their thought processes change un-

der different TAC. Additionally, the majority of these studies focus on profession-

als working in industry, while this thesis centers around introductory computer

science students.

9

Chapter 3

MUTTLE: DATA COLLECTION TOOL

Muttle is a web application that allows users to write unit tests for a given Python

exercise, run them, and then instantly receive test adequacy feedback. Muttle’s

current features and an overview of its architecture are described in this section

in order to provide context into the data collection process, but it already existed

in a functional state before my use of and contributions to it. More information

about my work on Muttle is shown in Section 3.2.

At the core of Muttle are a MySQL Server database, an Express/Node.JS back-

end, and a React frontend. All of the code was written in TypeScript. While

most of Muttle’s functionality is built from scratch, some of the notable third-

party tools that it uses include CodeMirror [27] for the in-browser code editor,

TypeORM [28] for database-backend connections, and MutPy [29] for generating

CC and MA feedback.

3.1 Features

The majority of the content that Muttle users interact with are known as “exer-

cises.” Exercises are the combination of a title, problem description, and function

source code that come together to form a standalone testing activity. Users can

freely create their own exercises or write tests for existing ones.

Test cases in Muttle consist of one or more comma-separated input values (cor-

responding to the exercise’s function’s parameter(s)) and one expected output

value. Native Python expressions are used as input and output, and users can

10

freely add and remove any number of test cases. Figure 3.1 shows all of these

features in a sample Muttle exercise. The user can also run their test suite at any

time, at which point test adequacy feedback will be generated and displayed.

Figure 3.1: Muttle Testing User Interface. Shows a sample exercise and an input
and output for a test case that has not been run yet. The test case deletion and
addition buttons, the launch test button, and the three TAC toggle buttons are
shown.

Currently, Muttle supports no feedback (NF), CC, and MA as its possible modes

of test adequacy feedback. At the lowest level of detail, the NF option simply

states if each test case passes or fails when run, as seen in Figure 3.2. Before

any additional feedback can be displayed, Muttle expects all tests to first pass,

so this indication of test success or failure is always shown.

The next most detailed feedback mechanism is the CC of the test suite, repre-

sented by the colored gutter that runs vertically next to the exercise’s source

code which can be seen in Figure 3.3. After running the test suite, either red,

11

Figure 3.2: Muttle Pass and Fail Indicators. Results for one successful and one
unsuccessful test case are shown.

yellow, or green can appear in the gutter next to each line, indicating that line’s

coverage status.

Figure 3.3: Muttle Code Coverage Gutter. The gutter showing all three levels of
coverage is shown next to a sample exercise.

Red indicates no coverage, meaning that a line of code was never run. Yellow

indicates partial coverage, meaning that a line of code is a branching statement

and that only some of its branches were run. Some examples of partial coverage

include the conditional in an if statement only being evaluated to True but

never False, or a for loop not running to completion. Finally, green indicates

full coverage, meaning a non-branching line of code was run, or all branches of a

branching line of code were run.

MA is the most comprehensive feedback mechanism that Muttle offers, repre-

sented by the bug badges that appear above lines of code. The presence of a bug

12

badge indicates that the line below it contains a surviving mutant, and clicking

on it displays the original and mutated lines of code next to each other with

the original line being struck through. Figure 3.4 demonstrates Muttle’s MA

feedback mechanism.

Figure 3.4: Muttle Mutation Analysis Feedback. Red bug badges indicating
surviving mutants as well as an example of original and mutated code side-by-
side are shown.

A red badge indicates a surviving mutant, a yellow badge indicates a timed-out

mutant, and a grey badge indicates an incompetent mutant. As MA subsumes

CC [23] by default the colored gutter representing coverage is shown alongside

the bug icons, but it can be toggled on and off.

3.2 My Contributions

Before the interviews for this study could be completed, several changes had to

be made to Muttle so it was ready for the data collection we had in mind. The

majority of its core functionality was completed by Jon Lai and Ayaan Kazerouni

before I joined this project, and they have been working on it since January 2021.

My first contribution to this project was adding the ability to display mutations

that affect multiple lines of code. At the time, the code for displaying mutations

13

was bugged and assumed that they were all one-line changes, so any multi-line

mutations only showed the first line of original code as being struck-through.

Some work had already been done towards adding this feature, so I continued

what the previous author was doing and got Muttle to properly display all mu-

tations (see Figure 3.5).

Figure 3.5: Multi-line Mutant. An example of a properly displayed multi-line
mutant.

Next, I focused on getting Muttle to a state where it could be used for this study.

Again, the main functionality was all in place, but some of the key features were

on separate branches or were missing. After merging my multi-line mutation

changes into the main Muttle branch, I merged the finished user login and sign-

up system that Jon had written into it as well. After resolving the merge conflicts

and bugs that arose, I added a set of buttons that toggled which type(s) of TAC

were active for the current exercise, which can be seen at the top of Figure 3.1.

3.3 Future Work

The next steps for Muttle should focus on accessibility and bug fixing improve-

ments so that it can be used as a teaching tool. For instance, symbols inside of

the CC gutter and in the different MA bug badges would allow colorblind users

to differentiate between the different coverage levels and mutant classifications.

14

Additionally, there are some bugs that we were aware of and could ignore during

the study that users unfamiliar with the system would trip over.

After these quality of life changes are rolled out, work to create exercise offerings,

or wrappers around exercises, should be done. This feature will, for example,

allow teachers to create testing assignments and distribute them to students in

a highly-customizable manner. Creating an exercise offering would consist of

selecting an exercise and then choosing TAC, and if MA is selected, choosing

which mutation operator(s) to generate. Following this change, Muttle can then

be deployed to be widely available for in-classroom use. While it was perfect

for data collection in this study, its impact can be far wider-reaching if it was

adopted by educators as a tool for teaching and practicing good software testing

habits.

15

Chapter 4

METHODOLOGY

For this study, we used an approach based on the grounded theory (GT) method.

A series of students were recorded as they thought aloud while writing unit tests

for different Python functions, and these interviews were then transcribed and an-

alyzed. This study design was approved by our university’s Institutional Review

Board (IRB).

GT is a qualitative analysis technique that refers to constructing hypotheses and

theories through the collection and analysis of data. It is useful when “little is

known about the phenomenon; the aim being to produce or construct an explana-

tory theory that uncovers a process inherent to the substantive area of inquiry”

[30]. The name “grounded theory” comes from the fact that the theories resulting

from these types of studies are “grounded” in the data, i.e., based on and arising

from the data.

Anselm Strauss and Barney Glaser created one of the core principles of GT while

working on their book, Awareness of Dying [31], as the traditional scientific

method did not fit their topic of study [30]. This principle, constant compara-

tive analysis, refers to the practice of performing data collection and analysis in

parallel, with the data collection process changing as new findings appear. The

combination of constant comparative analysis and the data analysis technique

known as coding (see Section 4.2) are what define GT studies.

16

4.1 Data Collection

Efforts were made to collect and store data solely on university-provided Microsoft

services when possible to maximize participant privacy and data safety. Interview

and screen capture were done using a university Zoom account using Zoom’s

cloud recording feature and only researchers were given access to these recordings.

Interview audio was transcribed and analyzed using the GT methodology, and the

screen captures were used to fill in any transcription ambiguities (e.g. “this right

here”). A third-party tool created by a former student, Azure Zoom Recording

Transcription (AZRT) [32], was used to generate transcriptions as Zoom’s native

transcription feature was lacking. No participant data was ever stored on Azure,

it was only used to process the recordings into text transcripts.

4.1.1 Interviews

Interviews were completed in person as Muttle (see Chapter 3) had to be hosted

locally on the laptop that participants used. Each interview took 30-45 minutes

and began with a short demographic survey (see Table 4.1) followed by a se-

ries of testing exercises. The participants were required to sign a consent form

(Appendix A) and had the session audio and computer screen recorded.

To advertise this study, emails and presenters were sent out to several sections of

the classes that are typically taken after our university’s data structures course.

These classes were chosen because students at this level have some experience

with both reading and testing programs, but are still considered introductory

programmers. Students were offered $25 Amazon gift cards as compensation for

their time.

17

Table 4.1: Summary demographic survey data from study participants.
Student Demographic Data

Ethnicity n = 12
Asian 4
Hispanic/Latinx 1
Two or More 3
White 4

Gender
Man 7
Woman 5

Academic Standing
Freshman 9
Sophomore 2
Junior 1

Major
Computer Science 6
Computer Engineering 3
Statistics 2
Liberal Arts and Engineering Studies 1

18

To begin the interview, we asked students to review and sign the aforementioned

consent form as an indication of their agreement to participate in the study. The

form explains the purpose of the study, potential risks, protections, resources, and

relevant contact information. This step was necessary as a part of compliance

with IRB protocols.

Following the demographic survey, we introduced Muttle to the student and

presented them with a warm-up function to test. The goal of the warm-up phase

was to familiarize the student with the Muttle user interface as well as the different

types of test adequacy feedback. Next, the student was tasked with thinking

aloud as they wrote tests for three or four other functions, each with a different

combination of TAC. See Section 4.1.2 for more information on the functions

selected for this study and see Section 4.1.3 for more information on the think-

aloud testing process.

12 students were selected for this study because, with three Python functions

and three TAC that each had to be used once in each interview, six sets of

function/feedback pairs exist. This number of participants allowed for each set

to be used for two students, reducing any potential bias that the specific pairings

of function and feedback would have.

4.1.2 Problem Selection

Functions used in the interview process were chosen based on their type (the

primary programming concept used in the code e.g., loops, control statements,

sorting, etc.) and the amount of test adequacy feedback generated. Varying the

types of programs was done to reduce any cognitive bias that could arise from

using only one, and most of the functions were tested in a pilot study to examine

19

the feedback it produced.

Initially, four testing functions plus one warm-up function were used as the prob-

lem bank for interviews: SELECTION SORT, TRIANGLE, RAINFALL, CEN-

TERED AVERAGE, and MULTIPLY (warm-up), which can all be seen in Ap-

pendix B. The SELECTION SORT problem was chosen to fill in a problem type

but it did not provide adequate test adequacy feedback and was removed from

the set of functions (see Section 4.1.3 for more detail on why this choice was

made).

The second function was the triangle classification problem, referred to as TRI-

ANGLE. This problem was chosen as it is documented in mutation testing liter-

ature [33] and has been used in testing and mutation-related studies [34, 35, 36].

Given three side lengths representing a triangle, TRIANGLE returns a different

number indicating whether the triangle is invalid (the sum of any two sides is

less than or equal to the third side), scalene (valid and all sides are different

lengths), isosceles (valid and only two sides are of equal length), or equilateral

(valid and all sides are the same length). This problem fills the role of the control

structure-centric function, with its heavy use of if statements, and it also gave

great feedback for both CC and MA in test studies.

RAINFALL was chosen as the third problem in the problem bank. Given a

list of numbers representing daily rainfall readings, it calculates the average daily

rainfall for rainy days with valid (non-negative) readings for days before a sentinel

number (99999) or before the end of the list. This function is a mixture of

types, with a for loop presenting as its main feature alongside several conditional

and control statements. RAINFALL is a classic problem in computer science

education and has been used in prior studies [37], including the one done by

20

Castro and Fisler [10] that partially inspired this thesis. It also gives quality CC

and MA feedback.

The fourth function used was CENTERED AVERAGE. Given a list of at least

three numbers, CENTERED AVERAGE calculates the average of the list exclud-

ing one instance each of the highest and lowest numbers. Similar to RAINFALL,

this program is a combination of types, featuring a loop as well as conditionals.

It gives decent CC feedback and while several equivalent mutants were generated,

the killable mutants provide a sufficient challenge for testers. This problem was

initially added as a bonus question to be used if there was still time remain-

ing after the other problems were tested, but it was eventually used to replace

SELECTION SORT.

MULTIPLY was the first warm-up problem used in the first set of interviews but

it was replaced with LARGER (see Appendix B due to its poor test adequacy

feedback and a change in interview procedure (see Section 4.1.3 for more infor-

mation about the think-aloud testing process). Given two numbers, MULTIPLY

returns the result of multiplying them together, and as the code was only one

line long, the code is always fully covered under CC.

On the other hand, Large contains an if statement, so it gives some CC feed-

back and also generates simple mutants. Given two numbers, LARGER returns

the greater of the two. While it is still short, it generated more feedback than

MULTIPLY and thus provided a better introduction to Muttle and to each TAC.

21

4.1.3 Think-Aloud Testing

The bulk of the data for this study were generated by recording participants

thinking aloud while writing unit tests under different TAC. Students were in-

structed to voice any thoughts they had while reading code and writing tests,

and we would ask follow-up questions to extract more information about their

thought processes behind different actions.

For the first two interviews, students were given MULTIPLY as a warm-up exer-

cise and were instructed to write a simple test for it. The first student was then

presented with TRIANGLE with NF and instructed to test it to their satisfac-

tion. The student was told that the code was fully functional and that they were

to test to the best of their abilities, and a hidden 20-minute time limit was set.

While this time limit was used for each problem for each participant in the study,

it was never reached.

Next, that student was introduced to CC and tasked with testing SELECTION

SORT to full CC. After running only a single test 100 percent CC was reached,

so to try to gather some data we manually entered a test that resulted in partial

coverage. We instructed the student to finish testing the problem to 100 percent

CC, but not much data was gathered due to the ease of which the problem could

be fully covered.

The student was then familiarized with MA and presented with RAINFALL with

the goal of reaching a full mutation score. While there was some initial confusion

about MA, after writing some simple tests to generate feedback and asking ques-

tions, the student was able to able to figure out how to kill all of the surviving

mutants.

22

Next, the student was presented with CENTERED AVERAGE with NF and

again instructed to test it to their satisfaction. After they had finished, we then

enabled CC feedback and had the student continue to write tests until 100 percent

coverage was reached. Finally, we enabled MA feedback and had the student test

until no mutants remained. This stacking of feedback mechanisms was done to

gain insight into how the student’s cognition changed directly because of a TAC,

but this practice was abandoned in later studies due to a lack of problems to use.

The second interview was performed directly after the first, with the same warm-

up and first problem and the same TAC used for each problem. This student was

supposed to be given MA as the feedback mechanism for SELECTION SORT,

but after one test was run only equivalent mutants were generated. To salvage

some data from the session, we switched to CC and used the same manual test

trick to force a gap in coverage and then had the student test the problem to full

coverage. The TAC and procedures used for the third and extra problems were

the same ones used for the first student.

After these two sessions were completed, the interview notes and recordings were

analyzed to see how we could improve our methods to increase the richness of

the data we gathered. The most glaring flaw was the uselessness of SELECTION

SORT in terms of test adequacy feedback, so it was replaced with CENTERED

AVERAGE. In the interest of time, no extra problem was found as a replacement,

so the practice of layering TAC onto each other was abandoned. It was also

determined that MULTIPLY was too simple and did not give enough feedback

to act as a sufficient warm-up, and was replaced with LARGER.

While our interviewing techniques started rough, they improved over time with

practice and the knowledge of when getting a student to vocalize their thoughts

23

would reveal useful information. When students were quiet or not thinking aloud,

we asked clarifying questions to encourage them to speak. We also asked more

probing questions about students’ actions to gather more detailed information,

and we started asking the student directly to reflect on how different TAC affected

their approach to testing.

After implementing these changes better data was generated, but we soon found

that using the same ordering of functions for every student irrespective of feed-

back mechanism could be biasing their cognitive processes. The third student

interviewed was given CC then NF then MA, and when asked about their ap-

proach to testing for the NF problem, mentioned that they were thinking in terms

of CC even when told that no TAC would be given. The fourth student was given

CC then MA then NF, and when similarly questioned for their NF problem, asked

if they should think in terms of CC or MA.

As the goal of having problems with NF was to provide a baseline cognitive model

of each student’s testing process, we decided to present the problems in this order:

warm-up with NF, NF problem, warm-up with CC, CC problem, warm-up with

MA, and MA problem. With the functions being presented in order of increasing

TAC complexity, the effect of each feedback mechanism on the next was lessened.

Additionally, providing the same warm-up function for each TAC helped students

ease into each new feedback type.

Basing the order of functions tested on the feedback was a great improvement,

but there were still more changes that needed to be made to eliminate bias and

to improve the quality of our data:

• Bias: Students were told that the programs were correct.

Solution: We no longer mentioned this fact, and we gave non-committal

24

answers if asked about it.

• Bias: Students mentioned trying harder to write tests because they were

taking part in a study.

Solution: We told students to treat writing these tests as a lab exercise or

homework assignment.

• Bias: Students turned to the interviewer or the code less for RAINFALL

because of its longer description.

Solution: More detail and clarifications were added to the descriptions for

TRIANGLE and CENTERED AVERAGE.

• Problem: We struggled to find a beginner-friendly way of explaining MA

to students.

Solution: We came up with the phrase, “if this bug existed in your code,

none of your tests would have caught it and failed.”

• Data: Students were asked about how and when they learned how to test

in order to form a background about their NF testing habits.

By the end of this study, the data collection process was fairly streamlined and we

were able to extract much more information from students. However, it should

be noted that, due to the fact that SELECTION SORT was only given with

CC feedback and eventually replaced, CENTERED AVERAGE only had three

students testing under MA and three testing under CC, and RAINFALL had five

students testing under MA and three testing under CC. Each problem should

have had four students testing under each TAC.

25

4.2 Data Analysis

For the first six interviews, initial coding was used to break participant interviews

down into individual, coded incidents. Initial coding is the most concrete type

of coding, where actions and behaviors, as well as their underlying psychological

processes, are identified and labeled as a snippet-code pair. For example, one

student mentioned that they were writing a very simple-to-understand test to

start with, and this snippet was tagged with the code, “writing a ‘basic’, easy-to-

reason-about test.” Another student mentioned that, due to a previous class, they

think in terms of code coverage when writing tests on their own. This incident

was tagged with the code, “prior experience with CC leads students to think in

terms of CC on their own.”

Two researchers separately coded the first half of the interviews and then met

to combine these initial codes into a codebook. Any matching or closely related

codes created by both of the researchers were discussed and added to the code-

book, while codes found by only one person required further examination. The

goal of this divided approach was to ensure that our findings were truly grounded

in the data and not haphazard guesses, as we believed that if two people inde-

pendently identified a cognitive pattern then it was likely to exist. However, if a

researcher strongly believed in a code that the other did not identify, they could

present the behaviors and quotes that they thought were indicative of it to try

to convince them of its validity. After the codebook was formed, it was used as

a guide to gather more snippets from the remaining six interviews.

Our initial codes were then further analyzed in a process known as intermediate

coding. Intermediate coding typically follows initial coding, and the goal of this

step is to take the very concrete initial codes and abstract them into higher-level

26

categories. Connections between codes were examined and then a code was either

abstracted into an entire category, or a new concept was created to act as one.

For example, the initial codes from the example above could both be grouped

under the category of “writing tests to get started.”

Only one researcher performed the intermediate coding step, but both researchers

discussed the proposed categories at length before any final conclusions were

made. After grouping the initial codes by factors such as TAC, stage of the

test writing process, concepts in cognitive models (Figure 2.1 and Figure 2.2

in Section 2.2), and level of thought (the study done by Castro and Fisler [10]

detailed in Section 2.2), the resulting categories and their validity were reviewed.

Our discoveries from our analysis through both coding steps are discussed in the

next chapter (see Chapter 5).

27

Chapter 5

RESULTS

The first section of this chapter describes our findings related to how students

understand programs when first encountering them with the intention of testing

them. The next three sections are based on the TAC that were used in this

study (NF, CC, and MA), and for each their associated patterns of cognition

with corresponding actions and interview snippets are presented. Finally, the

last section details miscellaneous findings that are not tied to a specific TAC.

The results of this study are presented as compelling phenomena that can be

further investigated to better understand student thought processes while testing.

5.1 Problem Comprehension

This section was derived from the categories and codes related to how students

formed and developed their mental model of programs, with “mental model”

referring to the mental model portion of the framework created by Aniche et.

al. (see Figure 2.2 and Section 2.2). Our findings here relate to both the initial

formation and updating of said models.

When presented with a new problem, students would start by either reading the

problem statement or by reading the code line-by-line. Aniche et. al. “[observed]

developers using the documentation as a way to build an initial mental model

of the program under test, which [was] then leveraged as the main source of

inspiration for testing during the rest of task” [8], and all students exhibited this

behavior at least once. Additionally, apart from one student (Stu5), participants

28

would often follow reading the description by reading at least part of the code

before testing.

The students who started by reading the code (Stu2, Stu3, Stu6, Stu10, Stu11)

would completely ignore the problem description and would only refer to it when

further clarification was required. However, students could have been influenced

by the length of the problem statements, as RAINFALL had the longest descrip-

tion by far. Even when adding more detail to the other problems to match, the

additional requirements and relative complexity of RAINFALL meant its descrip-

tion was still the longest.

When it came to updating their mental models when struggling to understand a

program, students employed a variety of strategies. The most common practice

(Stu1, Stu2, Stu3, Stu5, Stu6, Stu8, Stu9, Stu11, Stu12) was reading the problem

description, but some students (Stu1, Stu3, Stu4, Stu5, Stu6, Stu10) sometimes

opted to read the code directly. Some participants (Stu1, Stu2, Stu9, Stu11)

used their knowledge of variable roles (e.g. index holders or temporary minimum

and maximum variables) [38] to fill in the gaps in their understanding, and one

student (Stu3) actually wrote an experimental test to see what the expected

behavior of the program was, hearkening back to work that uses test cases as

meta-cognitive scaffolding to ensure understanding of problem prompts [39, 40].

5.2 Testing With No Feedback

Our findings in this section have to do with how students wrote tests when they

were told to test to their own understanding of the specification, given no TAC.

For the most part, students exhibited the same overall pattern of behavior, but

29

there were some varying strategies (some of which wildly deviated from the norm)

and even “internal TAC” that influenced testing methods.

5.2.1 Student Testing Strategies

We found that every student’s (Stu1-Stu12) testing efforts were at least partially

based on their own intuitions about edge cases, and when asked about where

this habit formed, they pointed out the prerequisite data structures class and its

automatic grading system. Grading for lab and project assignments in this class

is based on a percentage of tests passed from the instructor’s test suite, which is

full of cases designed to see if programs can handle inputs with integers/decimals,

negative/positive numbers, zeroes, list of varying lengths, etc., which mirrored

the boundary values that students were trying to test.

While students were most heavily influenced by their own testing intuition, some

used a mentally-approximated form of CC even when not explicitly told to. One

participant (Stu4) mentioned that they usually trace their code to see if it is fully

covered by their test suite, two others (Stu11, Stu12) used coverage to guide only

a part of their testing efforts, and another (Stu3) was biased to thinking about

coverage because they tested under CC for the problem prior to their NF one.

Other students in the first several interviews whose NF problem followed their

CC or MA problem asked if they should think in terms of these TAC but were

told to use their own methods instead.

Some participants tested the code directly while reading it, either going over

the whole function or just part of it, formulating tests based on edge cases or

typical inputs as they went. Of the students who tested the code line-by-line in

its entirety, two (Stu2, Stu3) jumped straight into it without reading the function

30

description at all, while another two (Stu1, Stu6) read the description first. Four

students (Stu8, Stu9, Stu10, Stu11) partially read and tested their code after

reading the description, with one of them (Stu11) stating that they wanted to

first trigger every return statement.

Our sample size of participants is small but there were some interesting quantita-

tive trends that we observed. On the whole, student approaches to testing scored

well in terms of CC and MA (averages of 98 percent and 92 percent, respectively)

but had some deficiencies in catching conditional statement-related bugs. Half

of the surviving mutants were Relational Operator Replacement bugs, which re-

placed operators like > with >=. Additionally, Logical Connector Replacement

(LCR), Conditional Operator Insertion (COI), and One Iteration Loop (OIL)

mutants survived in student test suites written under NF but not in student test

suites written under CC.

5.2.2 Internal TAC

We also identified several “internal” or self-imposed TAC that students would use

while writing their test suites. For example, students in earlier interviews (Stu2,

Stu3) mentioned that they were putting in more effort when testing since they

were participating in a study, and even when later students were explicitly told to

treat testing as an assignment for class, there is still a possibility that they were

unconsciously being more thorough. Some students (Stu1, Stu3, Stu5, Stu11)

also mentioned wanting to “put the code through to most paces” in some cases,

and this sentiment took on different meanings in different contexts. Sometimes

it was meant in terms of coverage (reaching the most lines) and other times it

was meant in terms of complexity (trying out a wide variety of inputs).

31

Some students exhibited the tendency to write tests to target a specific feature in

the code or description that caught their attention. The if days == 0: statement

in RAINFALL and the final standalone return 3 in TRIANGLE are examples of

code that stood out enough that students (Stu4, Stu9, Stu10, Stu11, Stu12) were

drawn to writing a test for them, with some (Stu1, Stu2, Stu6, Stu10) going a step

farther and writing multiple tests in order to reach full CC. The sentinel number

(99999) requirement in RAINFALL is a prime example of a part of a description

that students (Stu1, Stu3, Stu5, Stu7, Stu8, Stu11, Stu12) were drawn to testing.

Even after the given TAC was met, some students felt the need to add more

tests to cover edge cases. For both CC (Stu1, Stu2, Stu7, Stu9) and MA (Stu1,

Stu7), participants added more test cases to check for decimal, negative, zero,

etc. inputs, but it is unclear whether this was done due to the external pressure

of participating in a study or due to a lack of trust in TAC.

5.3 Testing Under CC

On the whole, of the students who had any significant CC feedback to respond

to (Stu1, Stu2, Stu4, Stu7, Stu9, Stu12), only one (Stu4) relied on any task-

level thinking. The rest (Stu1, Stu2, Stu7, Stu9, Stu12) focused on mentally

tracing their test cases through the code. They would use the coverage gutter

to direct them to uncovered or partially covered statements and then run these

lines and any surrounding relevant ones (i.e., in the same block of code or directly

connecting to the line in question) in their head in order to see what coverage

gaps existed in their test suite. This phenomenon of code tracing occurring in

isolated blocks was not unique to the students testing under CC (Stu2, Stu3,

Stu7, Stu9, Stu12), as it also surfaced when students were comprehending MA

32

feedback (see Section 5.4).

Besides just tracing code to understand why a coverage gap existed, students

(Stu1, Stu2, Stu3, Stu4, Stu6) employed a strategy similar to the one mentioned

above in Section 5.1 of using variable roles. For example in SELECTION SORT,

one student (Stu1) had partial coverage for if input_list[j] < input_list[min_idx]:

when they said that they were using their knowledge of the function of current

and minimum index variables to deduce that they needed to add a test where a

new minimum index was never found.

Some participants (Stu2, Stu3, Stu9) chose to ignore CC feedback in favor of

testing edge cases. Reasons included being unsure of how to reach full coverage

for a statement and saying they would come back to it once they had written

more tests, wanting to check boundary values, and just an overall desire to test

only using the problem description and not the code (Stu7, Stu12).

5.4 Testing Under MA

As with CC, only one student (Stu1) demonstrated any significant problem-space

thinking when understanding and responding to MA feedback. Methods for com-

prehending bugs mainly focused on understanding the differences between the

original and mutated programs (Stu3, Stu4, Stu6, Stu7, Stu8, Stu11, Stu12) by

tracing the mutant code (Stu2, Stu5, Stu8, Stu11, Stu12), which occurred in

isolated blocks (Stu2, Stu11, Stu12).

We noticed that, for each mutant, it appeared that students would develop a

parallel mental model of the program that included the mutated line(s), which

they would compare to their mental model of the unmutated program. This feat

33

requires a high cognitive load, which we believe is why some students (Stu2, Stu3,

Stu4, Stu6, Stu8) had difficulty understanding Muttle’s MA feedback. While un-

familiarity with mutation testing methods is partly to blame, even after students

understood the concept and were able to successfully kill a different mutant, they

were still unable to kill others.

Even when students did not completely understand the effects of a mutant, they

would sometimes have a vague idea of how to kill it that would often succeed. This

phenomenon was common for mutants that changed the outcome of conditional

statements and operators, with students mentioning that they had the feeling

that testing all branches of a mutated conditional would kill a bug (Stu2, Stu3,

Stu4, Stu6, Stu7, Stu8, Stu9, Stu10, Stu11). Another example is when the if

rain_day > 0: statement in RAINFALL is mutated to if rain_day > 1:, one

student (Stu3) could not verbalize what this bug actually changed in terms of

the problem and its requirements but correctly deduced that writing a test case

with a list that included a 1 would kill it.

Some participants used the presence of mutations to guide their intuition-based

testing efforts (Stu5, Stu7) almost like a form of code coverage, and others took

this dismissal of MA to the next level and just ignored it completely until their

testing methods did not kill any more mutants (Stu9).

5.5 Other Testing Patterns

Apart from the cognitive processes we identified that were specific to each TAC,

we also noticed some more general trends that were not exclusive to any single

one. For example, every student wrote at least one basic, easy-to-reason-about

34

test. While some of these tests were written to fulfill TAC goals or to better

understand the program, often these test cases were “happy path” tests that only

simulated typical program inputs. It was also common for students (Stu1, Stu2,

Stu3, Stu5, Stu6, Stu7, Stu8, Stu9, Stu10, Stu11) to copy and edit an existing

test instead of coming up with an entirely new one.

Since Muttle does not generate any test adequacy feedback until all of the tests

in a suite pass (i.e. for every test case the actual output matches the expected

output), some students (Stu1, Stu2, Stu6, Stu7, Stu9) would start by generating

test adequacy feedback by writing smaller, simpler tests rather than a full set of

tests based on their testing intuition. After receiving initial feedback, students

would proceed to focus on achieving a complete test adequacy score and would

not rely on their own test-writing habits until afterward (Stu1, Stu2, Stu7, Stu9).

While some students (Stu2, Stu6) mentioned that they preferred to test based on

the problem description rather than source code, others actually put this habit

into practice (Stu5, Stu7, Stu12) when writing their test suites under NF, with

one student (Stu5) not referring to the code at all. That same student ignored

the CC gutter and just wrote tests to catch edge cases, using the partial coverage

indicators to point out if statements to think of more edge cases for. This was

the student who used MA feedback as a form of code coverage (see Section 5.4).

35

Chapter 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

To find possible improvements to the way software testing is taught, we recorded

and interviewed introductory computer science students as they wrote unit test

suites under different test adequacy criteria. Through our analysis, we uncovered

some of the different behaviors and cognitive processes students took when testing

on their own with no test adequacy feedback, with a CC gutter as feedback, and

mutant bug badges as MA feedback.

6.2 Future Work

The results portion of this paper (see Section 5) explains our findings from our

analyses, but we did not dive deeply into any of the phenomena we discovered.

This section will highlight some of these ideas in the form of research questions

that can be explored in future studies.

Which mutation operators commonly survive student test suites when

they are written with no test adequacy feedback? Which are commonly

killed? These two questions have to do with the findings of our quantitative

analysis on student test cases written under NF, where we found that half of

the surviving mutants for student test suites written under NF were ROR bugs.

Understanding which operators slip through student test cases would reduce the

cost of using MA in a classroom setting if the ones that are commonly killed

36

are excluded from generation. Additionally, knowing which operators survive

would help educators direct students’ testing efforts in order to better eliminate

these kinds of faults. Our sample size of 12 students is too small for us to make

any definitive conclusions, but a quantitative study done with more data (once

Muttle is fully deployed, with existing student test cases from a class, etc.) can

be carried out to discover statistically valid findings.

How do students form software testing habits? Are these habits help-

ful? Are they harmful? Software testing is not widely covered in computer

science curricula, with students forming good and bad habits on their own in

different ways. Participants in this study mostly tried to test edge cases that

focused on data types (integers/decimals, negative/positive/zero numbers, etc.)

rather than any problem-specific factors, and some of these tests may have been

redundant and may not have added any value to the test suite. They pointed out

a prerequisite data structures course and its automatic lab and project grader

as the reason for this thought process, and findings about how students develop

their personal testing strategies can show us how to stop bad habits before they

form. And if these strategies are shown to be helpful, they can be encouraged.

Can teaching using code comprehension for testing strategies also im-

prove testing practices? This question arises from the fact that students used

variable roles as both a way to better understand a problem for testing and a

way to fill in gaps in CC. Investigating this habit as well as finding other such

parallels can help us find new ways to teach software testing.

Do patterns of code-level and task-level thinking correlate to software

testing success? While not directly related to any of our findings, the fact

that students spent much more time at the code-level, as referred to by Castro

37

and Fisler [10], when responding to CC feedback inspired this question. As with

their study, the uses of these two levels can be examined and correlated with

how well students write test suites, but another interesting approach would be to

use the actions that Aniche et. al. [8] identified instead. They identified several

strategies revolving around the uses of documentation, source code, and testers’

mental models, and these three factors could be used in place of code-level and

task-level thinking.

How do students form different mental models of mutated programs

when testing under mutation analysis? We observed that student efforts

when testing under MA feedback centered around comparing the original pro-

gram to the mutated copy. Students seemed to form parallel mental models of

each version, which led to a high cognitive load and difficulty in understanding a

mutant. A more detailed understanding of how students think about this feed-

back mechanism will improve how we help students reason about possible defects

in code while they test it.

Do certain mutation operators require a higher cognitive load to pro-

cess than others? A better understanding of the mental processing power

required to comprehend different mutation operators will help us find an order

in which to present them to students that would provide a gradual introduction

to MA. It could also reveal that certain ones are too hard to understand, making

them more detrimental than useful as teaching tools.

How do some students kill mutants without fully understanding them?

In several instances, a student was not able to fully understand the effects of a

mutant on a program but was able to kill it with a test. When asked about their

thought processes, students mentioned that they had a “feeling” that a certain

38

input would kill a mutant (fully covering all the branches of a conditional or using

an input containing a number that was mutated). Uncovering how and why this

intuition is formed will also help understand how to better guide student thought

processes revolving around potential faults while they test software.

Does the presentation of mutants matter when it comes to understand-

ing them? Muttle presents mutants as inline bug badges that, when clicked,

show the original struck-through line(s) of code next to the mutated line(s). It

is not known if this is the best, or even a useful representation of a mutant, so

experimentation with different presentations would be very insightful. The full

program with the mutant side-by-side with a diff and replacing the line(s) in

question when the badge is clicked are two possibilities.

Does the way problem specifications are laid out affect software testing

strategies? RAINFALL had a much longer problem description than any of the

other functions, which may have drawn students to use it more. While it is

unclear if this is true based on the findings of this study, investigating how much

the format and content of program specifications affect how students use the

documentation versus their mental model or the source code to write test cases

could reveal interesting patterns.

39

BIBLIOGRAPHY

[1] J. B. Goodenough and S. L. Gerhart, “Toward a theory of test data selection,”

IEEE Transactions on Software Engineering, vol. SE-1, no. 2, pp. 156–173,

1975.

[2] T. Astigarraga, E. M. Dow, C. Lara, R. Prewitt, and M. R. Ward, “The

emerging role of software testing in curricula,” in 2010 IEEE Transforming

Engineering Education: Creating Interdisciplinary Skills for Complex Global

Environments, pp. 1–26, 2010.

[3] V. Garousi and A. Mathur, “Current state of the software testing education

in north american academia and some recommendations for the new edu-

cators,” in 2010 23rd IEEE Conference on Software Engineering Education

and Training, pp. 89–96, 2010.

[4] D. Hörnmark and P. Hamfelt, “Shortcomings of developers early in their

careers in regards to software testing,” bachelor thesis, Blekinge Institute of

Technology, Valhallavägen 1, 371 41 Karlskrona, Sweden, August 2020.

[5] A. Radermacher and G. Walia, “Gaps between industry expectations and

the abilities of graduates,” in Proceeding of the 44th ACM Technical Sympo-

sium on Computer Science Education, SIGCSE ’13, (New York, NY, USA),

p. 525–530, Association for Computing Machinery, 2013.

[6] S. Valstar, “Closing the academia-industry gap in undergraduate cs,” in Pro-

ceedings of the 2019 ACM Conference on International Computing Educa-

tion Research, ICER ’19, (New York, NY, USA), p. 357–358, Association for

Computing Machinery, 2019.

40

[7] V. Garousi, A. Rainer, P. Lauvås, and A. Arcuri, “Software-testing educa-

tion: A systematic literature mapping,” Journal of Systems and Software,

vol. 165, p. 110570, 2020.

[8] M. Aniche, C. Treude, and A. Zaidman, “How developers engineer test cases:

An observational study,” IEEE Transactions on Software Engineering, 2021.

[9] E. Enoiu, G. Tukseferi, and R. Feldt, “Towards a model of testers’ cognitive

processes: Software testing as a problem solving approach,” in 2020 IEEE

20th International Conference on Software Quality, Reliability and Security

Companion (QRS-C), pp. 272–279, 2020.

[10] F. E. V. Castro and K. Fisler, “Qualitative analyses of movements between

task-level and code-level thinking of novice programmers,” in Proceedings of

the 51st ACM Technical Symposium on Computer Science Education, (New

York, NY, USA), p. 487–493, Association for Computing Machinery, Febru-

ary 2020.

[11] G. J. Myers, C. Sandler, and T. Badgett, The art of software testing. Hobo-

ken and N.J: John Wiley & Sons, 3rd ed ed., 2012.

[12] K. Aaltonen, P. Ihantola, and O. Seppälä, “Mutation analysis vs. code cov-

erage in automated assessment of students’ testing skills,” in Proceedings of

the ACM International Conference Companion on Object Oriented Program-

ming Systems Languages and Applications Companion, OOPSLA ’10, (New

York, NY, USA), p. 153–160, Association for Computing Machinery, 2010.

41

[13] S. H. Edwards and Z. Shams, “Do student programmers all tend to write the

same software tests?,” in Proceedings of the 2014 Conference on Innovation

& Technology in Computer Science Education, ITiCSE ’14, (New York, NY,

USA), p. 171–176, Association for Computing Machinery, 2014.

[14] D. Tengeri, L. Vidács, A. Beszédes, J. Jász, G. Balogh, B. Vancsics, and

T. Gyimóthy, “Relating code coverage, mutation score and test suite re-

ducibility to defect density,” in 2016 IEEE Ninth International Confer-

ence on Software Testing, Verification and Validation Workshops (ICSTW),

pp. 174–179, 2016.

[15] H. Hemmati, “How effective are code coverage criteria?,” in 2015 IEEE Inter-

national Conference on Software Quality, Reliability and Security, pp. 151–

156, 2015.

[16] J. W. Hollén and P. S. Zacarias, Exploring Code Coverage in Software Testing

and its Correlation with Software Quality; A Systematic Literature Review.

Bachelor’s thesis, University of Gothenburg, 405 30 Gothenburg, Sweden,

August 2013.

[17] P. S. Kochhar, F. Thung, and D. Lo, “Code coverage and test suite effective-

ness: Empirical study with real bugs in large systems,” in 2015 IEEE 22nd

International Conference on Software Analysis, Evolution, and Reengineer-

ing (SANER), pp. 560–564, 2015.

[18] K. King and A. J. Offutt, “A fortran language system for mutation-based

software testing,” Journal of Software: Practice and Experience, vol. 21,

no. 7, pp. 685–718, 1991.

42

[19] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser,

“Are mutants a valid substitute for real faults in software testing?,” in Pro-

ceedings of the 22nd ACM SIGSOFT International Symposium on Founda-

tions of Software Engineering, FSE 2014, (New York, NY, USA), p. 654–665,

Association for Computing Machinery, 2014.

[20] G. Petrović, M. Ivanković, G. Fraser, and R. Just, “Does mutation testing

improve testing practices?,” in 2021 IEEE/ACM 43rd International Confer-

ence on Software Engineering (ICSE), pp. 910–921, 2021.

[21] M. H. Goldwasser, “A gimmick to integrate software testing throughout the

curriculum,” SIGCSE Bull., vol. 34, p. 271–275, feb 2002.

[22] S. H. Edwards and Z. Shams, “Comparing test quality measures for assessing

student-written tests,” in Companion Proceedings of the 36th International

Conference on Software Engineering, ICSE Companion 2014, (New York,

NY, USA), p. 354–363, Association for Computing Machinery, 2014.

[23] A. J. Offutt and J. M. Voas, “Subsumption of condition coverage techniques

by mutation testing,” 1996.

[24] A. M. Kazerouni, Measuring the Software Development Process to Enable

Formative Feedback. PhD thesis, Virginia Tech, March 2020.

[25] R. Gopinath, C. Jensen, and A. Groce, “Mutations: How close are they

to real faults?,” in 2014 IEEE 25th International Symposium on Software

Reliability Engineering, pp. 189–200, 2014.

43

[26] E. Enoiu and R. Feldt, “Towards human-like automated test generation:

Perspectives from cognition and problem solving,” in 2021 IEEE/ACM 13th

International Workshop on Cooperative and Human Aspects of Software En-

gineering (CHASE), pp. 123–124, 2021.

[27] M. Haverbeke, “Codemirror.” https://codemirror.net/, 2018.

[28] Yakdu, “Typeorm.” https://typeorm.io/, 2022.

[29] A. Derezińska and K. Hałas, “Analysis of mutation operators for the python

language,” in Proceedings of the Ninth International Conference on Depend-

ability and Complex Systems DepCoS-RELCOMEX. June 30 – July 4, 2014,

Brunów, Poland (W. Zamojski, J. Mazurkiewicz, J. Sugier, T. Walkowiak,

and J. Kacprzyk, eds.), (Cham), pp. 155–164, Springer International Pub-

lishing, 2014.

[30] Y. Chun Tie, M. Birks, and K. Francis, “Grounded theory research: A

design framework for novice researchers,” SAGE Open Medicine, vol. 7,

p. 2050312118822927, 2019. PMID: 30637106.

[31] B. G. Glaser and A. L. Strauss, The Discovery of Grounded Theory: Strate-

gies for Qualitative Research. Aldine, 1967.

[32] A. Doebling, “Azure zoom recording transcription.” https://github.com/

AugieDoebling/azure_zoom_recording_transcription, 2021.

[33] P. Ammann and J. Offutt, Introduction to Software Testing. Cambridge

University Press, 2008.

[34] A. Arcuri, “Full theoretical runtime analysis of alternating variable method

on the triangle classification problem,” in 2009 1st International Symposium

on Search Based Software Engineering, pp. 113–121, 2009.

44

https://codemirror.net/
https://typeorm.io/
https://github.com/AugieDoebling/azure_zoom_recording_transcription
https://github.com/AugieDoebling/azure_zoom_recording_transcription

[35] A. Arcuri, P. K. Lehre, and X. Yao, “Theoretical runtime analyses of search

algorithms on the test data generation for the triangle classification prob-

lem,” in 2008 IEEE International Conference on Software Testing Verifica-

tion and Validation Workshop, pp. 161–169, 2008.

[36] M. Kintis, M. Papadakis, A. Papadopoulos, E. Valvis, and N. Malevris,

“Analysing and comparing the effectiveness of mutation testing tools: A

manual study,” in 2016 IEEE 16th International Working Conference on

Source Code Analysis and Manipulation (SCAM), pp. 147–156, 2016.

[37] M. McCracken, V. Almstrum, D. Diaz, M. Guzdial, D. Hagan, Y. B.-D.

Kolikant, C. Laxer, L. Thomas, I. Utting, and T. Wilusz, “A multi-national,

multi-institutional study of assessment of programming skills of first-year

cs students,” in Working Group Reports from ITiCSE on Innovation and

Technology in Computer Science Education, ITiCSE-WGR ’01, (New York,

NY, USA), p. 125–180, Association for Computing Machinery, 2001.

[38] J. Sajaniemi, “An empirical analysis of roles of variables in novice-level pro-

cedural programs,” in Proceedings IEEE 2002 Symposia on Human Centric

Computing Languages and Environments, pp. 37–39, 2002.

[39] J. Prather, R. Pettit, B. A. Becker, P. Denny, D. Loksa, A. Peters, Z. Al-

brecht, and K. Masci, “First things first: Providing metacognitive scaffolding

for interpreting problem prompts,” in Proceedings of the 50th ACM Techni-

cal Symposium on Computer Science Education, SIGCSE ’19, (New York,

NY, USA), p. 531–537, Association for Computing Machinery, 2019.

45

[40] J. Wrenn and S. Krishnamurthi, “Executable examples for programming

problem comprehension,” in Proceedings of the 2019 ACM Conference on

International Computing Education Research, ICER ’19, (New York, NY,

USA), p. 131–139, Association for Computing Machinery, 2019.

46

Appendix A

INTERVIEW CONSENT FORM

47

INFORMED CONSENT TO PARTICIPATE IN A RESEARCH PROJECT:

“Software Testing Interview”

INTRODUCTION

This form asks for your agreement to participate in a research project about the cognitive processes

underlying software testing. Your participation involves taking part in a software testing interview,

allowing the use of your answers for research and analysis. It is expected that your participation will

take approximately 1-1.5 hours. There are some minimal risks anticipated with your participation.

You may personally benefit from this study and others may benefit from your participation. If you are

interested in participating, please review the following information. Upon completion of your

interview, you will be given a $25 Amazon gift card as compensation for your time.

PURPOSE OF THE STUDY AND PROPOSED BENEFITS

• The purpose of the study is to explore the cognitive processes employed while software

developers engineer software test suites.
• Potential benefits associated with the study include a better understanding of how developers

compose software tests and improved software testing education based on these insights.

YOUR PARTICIPATION

• If you agree to participate, you will be asked to take part in a short survey about your

demographic background.

• Following the survey, you will be asked a set of 3–4 software testing problems. This

interview will be conducted in person, but audio and the computer screen will be recorded on

Zoom.

• Your participation will take approximately 1-1.5 hours.

PROTECTIONS AND POTENTIAL RISKS

• Please be aware that you are not required to participate in this research, refusal to participate

will not involve any penalty or loss of benefits to which you are otherwise entitled, and you

may discontinue your participation at any time. You may choose to stop participating in this

interview at any point during the interview.
• There is a minimal risk to your reputation or status should your data be disclosed along with

your identity. There also is a minimal possibility of emotional distress should any of the

questions trigger unpleasant thoughts or feelings.

• Your responses will never be shared with outside researchers to protect your privacy.

However, your responses can only be protected to the extent allowed by Microsoft Forms

which is not a secure survey platform. Data will be stored in Cal Poly OneDrive storage and

deleted after a period of 3 years or at your request.

• Interview recordings will be stored on the Zoom cloud, accessible only to the researchers.

Zoom’s transcription service will be used, so no additional party will gain access to the data.

Data will be deleted after a period of 3 years or at the participant’s request.

RESOURCES AND CONTACT INFORMATION

• If you should experience any negative outcomes from this research, please be aware that you

may contact Campus Psychological Services at 805.756.2511, for assistance.
• This research is being conducted by Ayaan M. Kazerouni, PhD, and Bruno C. da Silva, PhD

(both Assistant Professors) and Austin Shin (MS student) in the Department of Computer

Science and Software Engineering at Cal Poly, San Luis Obispo. If you have questions

regarding this study or would like to be informed of the results when the study is completed,

please contact the researcher(s) at Ayaan M. Kazerouni at ayaank@calpoly.edu or Bruno C.
da Silva at bcdasilv@calpoly.edu.

• If you have any concerns about the conduct of the research project or your rights as a research

participant, you may contact Dr. Michael Black, Chair of the Cal Poly Institutional Review

Board, at (805) 756-2894, mblack@calpoly.edu, or Ms. Trish Brock, Director of Research

Compliance, at (805) 756-1450 or pbrock@calpoly.edu.

AGREEMENT TO PARTICIPATE

If you are 18 years of age or older and agree to voluntarily participate in this research project as

described, please indicate your agreement by signing below. Please retain a copy of this form for your

reference. Thank you for your participation in this research.

Participant name: Participant signature:

_______________________ ________________________

Appendix B

INTERVIEW CODING PROBLEMS

B.A Multiply

A function that multiplies two provided numbers.

def mult ip ly (a , b) :

return a ∗ b

B.B Larger

Given two numbers, return the larger of the two. Otherwise return the first

number.

def l a r g e r (f i r s t , second) :

i f f i r s t == second :

return f i r s t

return max(f i r s t , second)

50

B.C Triangle

Given 3 numbers representing side lengths, determine whether the sides form a

valid triangle, and if so, what kind of triangle it forms. Return 0 if they form an

invalid triangle (the sum of any two sides is less than or equal to the third side),

1 if they form an equilateral triangle (all sides are the same length), 2 if they

form an isosceles triangle (two sides are the same length), and 3 if they form a

scalene triangle (all sides are different lengths).

def i s_ t r i a n g l e (s ide1 , s ide2 , s i d e3) :

i f s i d e1 >= s ide2 + s ide3 or \

s i d e2 >= s ide1 + s ide3 or \

s i d e3 >= s ide1 + s ide2 :

return 0 # t h i s i s not a v a l i d t r i a n g l e

i f s i d e1 == s ide2 and s i d e2 == s ide3 :

return 1

i f s i d e1 == s ide2 or s i d e1 == s ide3 or s i d e2 == s ide3 :

return 2

return 3

B.D Selection Sort

Sort the given list of numbers using the Selection Sort algorithm.

51

def s e l e c t i o n_so r t (i npu t_ l i s t) :

for i in range (len (i npu t_ l i s t) − 1) :

min_idx = i

for j in range (min_idx , len (i npu t_ l i s t)) :

i f i npu t_ l i s t [j] < inpu t_ l i s t [min_idx] :

min_idx = j

temp = inpu t_ l i s t [i]

i npu t_ l i s t [i] = inpu t_ l i s t [min_idx]

i npu t_ l i s t [min_idx] = temp

return i npu t_ l i s t

B.E Rainfall

Let’s imagine that you have a list that contains amounts of rainfall for each day,

collected by a meteorologist. Her rain gathering equipment occasionally makes

a mistake and reports a negative amount for that day. We have to ignore those.

We need to write a program to (a) calculate the total rainfall by adding up all

the positive numbers (and only the positive numbers) and (b) return the average

rainfall at the end. Additionally, there is a “sentinel” number of 99999—when

this number is encountered, stop counting and return the average so far.

def r a i n f a l l (measurements) :

r a in_tota l = 0

days = 0

52

for idx in range (len (measurements)) :

rain_day = measurements [idx]

i f rain_day == 99999:

break

e l i f rain_day > 0 :

ra in_tota l += rain_day

days += 1

i f days == 0 :

return 0

return ra in_tota l / days

B.F Centered Average

Return the average of the given list without the highest and lowest values. You

may assume there are at least three items in the list and that every item in the

list is a number. If there are multiple highest or lowest numbers, only exclude

one instance of each.

def centered_average (nums) :

min_idx = 0

max_idx = 0

for idx in range (len (nums)) :

53

i f nums [idx] <= nums [min_idx] :

min_idx = idx

e l i f nums [idx] >= nums [max_idx] :

max_idx = idx

nums [min_idx] = 0

nums [max_idx] = 0

sum = 0

for num in nums :

sum += num

return sum / (len (nums) − 2)

54

	List of Tables
	List of Figures
	CHAPTER
	Introduction
	Background and Related Work
	Test Adequacy Criteria
	Condition Coverage
	Mutation Analysis

	Related Work

	Muttle: Data Collection Tool
	Features
	My Contributions
	Future Work

	Methodology
	Data Collection
	Interviews
	Problem Selection
	Think-Aloud Testing

	Data Analysis

	Results
	Problem Comprehension
	Testing With No Feedback
	Student Testing Strategies
	Internal TAC

	Testing Under CC
	Testing Under MA
	Other Testing Patterns

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	APPENDICES
	Interview Consent Form
	Interview Coding Problems
	Multiply
	Larger
	Triangle
	Selection Sort
	Rainfall
	Centered Average

