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ABSTRACT 

ASSESSING POTENTIAL COGNITIVE PRECURSORS TO MATH ANXIETY: 

NON-SYMBOLIC OPERATIONS AND SYMBOLIC ORDINALITY IN ADULTS 

 

February 2023 

 

ELI ZALEZNIK, B.A., OBERLIN COLLEGE 

 

M.S., TEACHERS COLLEGE COLUMBIA UNIVERSITY 

 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

 

Directed by: Professor Joonkoo Park 

 

 Math anxiety, or a sense of dread related to performing mathematics, affects a 

wide population of students and adults, but we do not fully understand how math anxiety 

comes into being. One possibility is the Reduced Capacities Theory, which suggests that 

natural variations in numeric/spatial capacities are a causal factor in math anxiety. To 

understand how these numeric capacities relate to math anxiety in adults, this work 

focuses on three areas that remain underexplored. 

Chapter 2 focuses on performing operations on nonsymbolic quantities, which has 

not yet been tested in relation to math anxiety. We tested the hypothesis that performing 

addition and subtraction with dots using the Approximate Number System would relate to 

math anxiety. We asked participants to complete a math anxiety survey, two measures of 

working memory, a timed symbolic arithmetic test, and a non-symbolic “approximate 

arithmetic” task, in which participants performed addition and subtraction on dot arrays. 

Using Bayesian analysis and multiple regression, we found evidence for there being no 

relation between approximate arithmetic performance and math anxiety, suggesting that 
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difficulties performing operations does not constitute a basic number ability linked to 

math anxiety. 

In chapter 3, we measured the relation between number and letter ordinal 

processing and math anxiety. In separate blocks, we asked participants to determine if 

triads of numbers and letters were in order (e.g., 4 5 6) or out of order (e.g., C E A) to 

measure response time and accuracy. Participants also completed a timed arithmetic test 

to understand the relation between ordinality, arithmetic, and math anxiety. Several 

hypotheses were assessed including the specificity of math anxiety to numbers 

(comparing number ordinal trials to letter trials. We found that there was no relation 

between math anxiety on any measure except that high math anxiety related to slower 

responses to number ordinal judgement, and that math anxiety mediated the relation 

between ordinal judgement performance and arithmetic. Together, these data suggest that 

ordinal processes are unlikely to be a causal factor for math anxiety, despite being critical 

for early mathematics learning. 

In chapter 4, we assessed responses to counting sequences and inhibitory control 

in relation to math anxiety. We developed a modified Go/No-Go task in which we 

manipulated trial length, whether they responded to completed vs “violated” (e.g., 21 22 

23 vs 21 22 24, respectively) sequences, and distance (violated being +1 or +4, between 

subjects). Participants also completed a math anxiety survey. We assessed response time, 

and accuracy to understand counting sequence representation’s relation to MA, and false 

alarm rates to understand inhibition’s relation to MA. We found that the high MA group 

was significantly slower to respond when number to respond to was not consecutive. 

There were no relations between MA and any other measure. 
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When viewed together, these data suggest that the Reduced Capacities theory may 

not be a viable framework for understanding the origin of math anxiety, as all results can 

be more easily explained by the effects of anxiety on performance. However, because 

these data were all collected with adults, it remains plausible that children who go on to 

develop MA may struggle with these capacities during early schooling and see equal 

gains as their low MA peers. We end by suggesting several potential avenues of research 

related to MA, focusing on students’ and adults’ emotional interpretation of their math 

experiences. 
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CHAPTER 1 

 

LITERATURE REVIEW 

1.1 Introduction 

 Mathematics is a uniquely human construct that permeates our lives—from 

making change at the store to underlying the technologies that drive and sustain 

civilization. Although numeric abilities are shared across nature, the formal symbolic 

mathematical structures that humans have created can range from simple and intuitive to 

mind-bogglingly complex (Dehaene, 2011). Therefore, it should be no surprise that some 

people approach mathematics with feelings of dread, which we call math anxiety (MA; 

Ashcraft, 2002). Math anxiety is a complex construct in part because it forms a cycle of 

negative affect begetting poor performance and vice-versa. As such, multiple etiologies 

or “entry points” into this cycle have been posited and are worthy of study. Affective 

factors that lead to anxiety (self-concept, motivation, etc.) are being widely studied, as 

well as the cognitive factors underlying online performance deficits (executive function, 

working memory, etc.). Comparatively less attention has been given to individual 

differences in cognitive precursors to mathematical ability, such as core number system 

ability. The purpose of this dissertation is to consider theories of how math anxiety 

affects performance and how it comes into being. In doing so, I examine facets of early 

numeric capacities in order to assess viable targets for future interventions. 

1.2 Measurement, prevalence, and effects of math anxiety
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Math anxiety is widespread in adults and older school-age children and can have 

far-reaching consequences in a person’s life. A large, pre-registered survey (n = 1000) by 

Hart and Ganley (2019) showed that MA exists across the population of U.S. adults with 

half experiencing moderate to severe levels of MA. Students had higher levels of math 

anxiety than non-students, and female respondents were more math anxious than males. 

There were, however, no differences in MA levels between people of different racial and 

ethnic backgrounds. (Hart & Ganley, 2019). The students in their sample showing higher 

levels of MA than the general adult population matches international data where 33% of 

students report feeling tense while doing math homework and 59% worry about difficulty 

of math courses (Organization for Economic Co-operation and Development, 2015) and 

further suggests the concern of MA surveys that emphasize math schooling. 

However, it is difficult to ascribe a true prevalence to math anxiety for two 

reasons: the scales used to measure it, and the lack of a standard diagnostic criteria. Math 

anxiety is measured primarily through self-report questionnaires. These surveys ask 

questions both about feelings towards mathematics in the classroom as well as more 

natural scenarios. The first among these questionnaires to be created was a 98-item Math 

Anxiety Rating Scale (Richardson & Suinn, 1972), which was subsequently reduced to a 

30-item scale (Suinn & Winston, 2003). These and similar measures ask participants to 

answer how much anxiety they feel in certain math situations on a 1-5 Likert scale, such 

as: “studying for a math exam” or “taking the math section of a college entrance exam” 

(Suinn & Winston, 2003). Although these surveys are reliable, the questions tend towards 

school-related situations and ask fewer questions about daily usage of mathematics. This 
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could lead to less accurate measurements of adults who have differing amounts of time 

since they last studied for their math exam. 

Unique scales have been developed for the measurement of math anxiety in young 

children. Researchers largely shifted to pictoral scales for this populations (choose which 

face matches how you feel), substituting the direction to rate their anxiety with other 

emotions. This includes how nervous (Wu et al., 2012) or happy/sad (Jameson, 2013) the 

student reported feeling in each situation. The exception to the pictoral scale that 

maintains high reliability is a cognitive interview using a simple 4-point Likert scale (yes, 

kind of, not really, no) in response to questions like: “I get nervous about making a 

mistake in math class” (Ganley & McGraw, 2016; Harari et al., 2013). The cognitive 

interviews are intended for students as young as 6 or 7 years old and were developed 

using a typically developing, racially, and socioeconomically-diverse sample (Ganley & 

McGraw, 2016; Harari et al., 2013). 

These scales are consistent and reliable but lack standardization. Math anxiety is 

not recognized in the Diagnostic and Statistical Manual of Mental Disorders – 5 (DSM-5; 

American Psychiatric Association, 2013), although an argument could be made in it 

falling under the category of specific phobia (Faust, 1994, as cited by Ashcraft & Ridley, 

2005). In research studies, scores on these surveys are rarely described as continuous 

measures (e.g. Sokolowski et al., 2019; Wang et al., 2015), and most often are used as the 

basis to form high and low MA groups. Participants may be pulled from the extreme 

quartiles of a larger sample (e.g. Colomé, 2019; Suárez-Pellicioni et al., 2013) or formed 

into multiple groups based on percentiles of an entire sample (e.g. Ashcraft & Faust, 

1994; Ashcraft & Kirk, 2001) These studies are effective—in that they show group 
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differences based off MA status. However, the inconsistency in definition and tendency 

to group makes it difficult to determine how MA relates to individual performance. 

Probably the most widely studied aspect of math anxiety is its effect on math 

performance. Higher MA relates to worse performance on multiple levels of mathematics 

processing, including strategy choice (Ashkenazi & Najjar, 2018), arithmetic (Barroso et 

al., 2020; X. Ma, 1999) enumeration (Maloney, Risko, Ansari, et al., 2010), and number 

comparison (Maloney et al., 2011). However, like other types of stressors, moderate 

levels of MA can potentially improve math performance. Having low levels of math 

anxiety was related to worse performance than having moderate levels of math anxiety, 

while high MA participants performed the worst (Mendl, 1999; Z. Wang et al., 2015). 

The negative effects of math anxiety on performance are specific to math and do not 

extend to other academic fields, such as solving analogies (Pizzie, Raman, et al., 2020), 

or verifying whether words presented backwards are valid (Lyons & Beilock, 2012b). 

MA is also distinguishable from being universally “bad” at math: high and low MA 

groups perform equally on single-digit arithmetic tests and start to differ when presented 

with more complex problems (Ashcraft & Faust, 1994; Lee & Cho, 2018). Nor is poor 

math performance a function of general, spatial, or test anxiety, above and beyond effects 

of math anxiety: Hembree (1990) places the mean correlation between MA and general 

anxiety at r = .35 across 7 studies, and test anxiety at r = .52, but Dew and colleagues 

(1984) found that test anxiety only shared up to 31% of variance with MA. Dew and 

Galassi (1983) further note that the large correlation may be due to common MA and test 

anxiety measures sharing an author (i.e., Suinn, 1969; Suinn & Winston, 2003) and 

therefore having similar construction.  Thus, MA is correlated with other types of 
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anxiety, but each anxiety is measurably distinct and unique. There is clear evidence that 

math anxiety has negative effects specific to math performance. 

Despite the emphasis placed on active math performance in the literature, perhaps 

the most pernicious aspect of math anxiety is that it has wide-ranging effects beyond 

math performance. Math anxiety is widely conceptualized as a vicious cycle of poor 

performance and avoidance of math activities (E. Carey et al., 2016). Ashcraft and Faust 

(1994) described a “global avoidance” specifically for math in those that have high math 

anxiety, working across multiple levels. Those with high MA will avoid working on 

difficult math problems when offered alternatives (Choe et al., 2019; Dew et al., 1984), 

students with high MA avoid math courses (Hembree, 1990) and adults in STEM fields 

show lower levels of MA than those in other career paths (Ahmed, 2018; Hart & Ganley, 

2019), suggesting that some with high MA are self-selecting out of STEM work. The 

tendency to avoid can theoretically lead to fewer opportunities to practice math, begetting 

poor performance, in turn leading to more anxiety and avoidance. These components link 

together logically, and all exist individually in empirical literature, however more 

longitudinal data is necessary to explicitly measure whether this cycle acts a whole, and if 

so, where the cycle begins. 
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1.3 Origins of math anxiety 

As mentioned above, math anxiety is not listed in the DSM-V (American Psychiatric 

Association, 2013), and is therefore not “diagnosed,” and inconsistencies exist in what is 

considered to be high in math anxiety. That said, math anxiety appears to be present in 

early elementary school, as young as kindergarten (Ganley & McGraw, 2016; Harari et 

al., 2013). More research exists in older student populations, where longitudinal studies 

suggest that MA has diverse trajectories across schooling. Ahmed (2018) analyzed 

longitudinal data from a representative sample starting in 7th grade. Responses were 

successfully categorized into four classes: consistently low (35% of respondents), 

consistently high (20%), increasing (22%), and decreasing (24%). Although previous 

literature had suggested that MA increased over school-age (Dowker et al., 2016), that 

may have been due to lack of developmentally appropriate measurements. Such 

multifaceted trajectories for math anxiety over schooling intimate the diversity of reasons 

why one might develop math anxiety. This section will cover three theories relating 

development of MA to lowered math performance. 

1.3.1 Disruption account 

The disruption account is an overarching term for multiple theories that have evolved out 

understanding cognitive impacts of math anxiety on performance. Briefly, these ideas all 

pertain to aspects of cognitive function being disrupted by anxiety. Initially, MA was 

characterized as ruminations that consumed working memory (WM) resources (Ashcraft 

& Kirk, 2001a), in line with the Processing Efficiency Theory (PET; Eysenck & Calvo, 

1992). Devised by Eysenck and Calvo (1992), PET is a theory of how general anxiety 
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can affect performance on a given task that draws a distinction between effectiveness, 

how well something is completed, and efficiency—the manner through which the task is 

completed. For example, when working with math problems, effectiveness can refer to 

the number of correct answers, while efficiency would be a measurement of how long it 

took to complete the problem(s). Primarily, effectiveness can be maintained by increasing 

effort, so anxiety interferes efficiency, primarily (Eysenck & Calvo, 1992).  

Although this theory remained popular for some time within MA research, 

evidence of ruminations is scant. Implicit in the idea of ruminations is that they are 

active. To my knowledge, no study has measured the presence or strength of intrusive, 

worrying thoughts while performing math tasks. Furthermore, such ruminations should 

especially interfere with tasks that retain WM processes in the articulatory loop, the 

component of working memory that holds verbal and auditory information (Baddeley, 

1992; Eysenck & Calvo, 1992). Those with high math anxiety do struggle to hold verbal, 

mathematical objects in mind, including digit span (Ashcraft & Kirk, 2001a; Witt, 2012) 

and n-back (Klados et al., 2015). However, MA also affects spatial working memory, 

which depends on the visuospatial sketchpad (Baddeley, 1992; Ferguson et al., 2015; 

Núñez-Peña et al., 2019; Sokolowski et al., 2019). PET does not strongly hypothesize the 

effects on spatial working memory as much as on verbal, nor should ruminations affect 

non-verbal WM in equal capacity (Eysenck & Calvo, 1992). Furthermore, how anxiety 

affects the central executive in PET is underspecified (Eysenck et al., 2007) 

 In response to PET’s shortcomings, Eysenck et al., (2007) developed the 

Attentional Control Theory (ACT) for general anxiety. ACT maintained the distinction 

between efficiency and effectiveness from PET, but rather than place focus on 
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ruminations interfering with working memory, ACT emphasizes attentional processes 

within the central executive. Disruption of three major central executive functions 

identified in ACT bear out in high math anxiety performance. Inhibition is the act of 

intentionally directing attention away from threat-related stimuli, and those with high MA 

show an attentional bias—difficulty inhibiting responses/attention to task-irrelevant 

mathematical stimuli (Fox et al., 2002; Rubinsten et al., 2015; Suárez-Pellicioni et al., 

2015). Shifting is the ability to adapt while moving between tasks, and those with high 

MA show worse performance and greater right intraparietal sulcus activity (a brain region 

highly associated with mathematical processing) while switching between math and 

analogy tasks (Pizzie, Raman, et al., 2020). Lastly, updating relates to actively 

manipulating representations held within working memory. Evidence shows that high 

MA is associated with worse performance on the updating n-back task (Klados et al., 

2015). Thus, ACT is successful at predicting many relationships between performance 

and MA, despite being a theory about general anxiety. 

 What ACT does not cover, however, is the origin of anxiety, although some MA 

focused researchers use performance deficits under ACT as causal or bidirectional factors 

in increasing math anxiety (e.g., Carey et al., 2016). Because it is a theory about how 

anxiety affects performance, cognitive disruptions by anxiety cannot precede the anxiety 

itself. (Although, to my knowledge, no studies have measured whether general anxiety 

can cause math anxiety—in genetic studies, some variance in MA can be explained by 

general anxiety [Malanchini et al., 2020; Wang et al., 2015].) Within the cycle of 

performance, avoidance, and increasing math anxiety, it is plausible that these executive 

function (EF) disruptions causing worse performance can cause further increases in MA. 
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There is certainly ample evidence that high math anxiety causes performance deficits, 

including how many predictions about efficiency and effectiveness are borne out from 

ACT. For example, people with high MA perform worse on timed math tests than 

untimed, which lines up with an ACT hypothesis that effectiveness is more impaired as 

task demands increased (Faust, 1996). Furthermore, Park et al. (2014) intervened on MA 

to find both reductions in MA and increases in performance in those with high MA. The 

idea that math anxiety affects math performance is near-indisputable. However, 

researchers should be careful to not conflate anxiety-based disruptions increasing MA 

with the same disruptions causing MA. Altogether, the disruptions model remains a 

compelling explanation for how math anxiety affects online math performance, but not 

how it originates. 

1.3.2 Interpretation account 

Ramirez, Shaw, and colleagues (2018) proposed the interpretation account, which posits 

that an individual’s math anxiety comes from their interpretations of their negative math 

experiences and outcomes. This theory was developed in response to a lack of well-

defined theory about the affective factors of math anxiety. Specifically, the other models 

failed to properly explain why only some people develop math anxiety. Thus, it weaves 

together evidence regarding self-concept, self-efficacy, and emotion regulation together 

to explain the origins of MA. 

 Interpretation comes from appraisal theory, which is the idea that emotions are 

generated from the evaluation of events and circumstance (for a review, see Roseman & 

Kirby, 2001). Such events can be physiological, such as increasing heart rate indicating 

threat, or cognitive, such as verbally evaluating one’s thoughts and response to a difficult 
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arithmetic problem (Tomaka et al., 1997). Ramirez, Shaw, and colleagues (2018) 

reasoned that this theory can help to explain why many young students may experience 

challenges or failure in mathematics, but only some will become math anxious—in other 

words, come to appraise and attribute their failure in such a way that is or becomes math 

anxiety.  

 The interpretation theory ties together many pieces of evidence from the social 

and affective domains. Ahmed et al. (2012) used longitudinal data to show reciprocal 

connections between math anxiety and math self-concept—high MA first predicts lower 

self-concept in mathematics in the next year, but also the converse. Low self-concept is a 

strong predictor of later math anxiety (Ahmed et al., 2012). Lyons and Beilock (2012a) 

used fMRI to show that those with high MA may be able to activate cognitive control 

mechanisms (increased activity in the prefrontal cortex) prior to doing a math task to 

mitigate performance deficits. The authors interpreted this activity as a possible appraisal 

function (Lyons & Beilock, 2012a).  

 Individuals interpreting negative math experiences can also explain social 

transmission. Maloney et al. (2015) ran a large (n = 438) study of first- and second-grade 

students and their parents to measure the relationship between student MA, student 

performance, and parental MA. They found that children of parents with high MA 

learned less over the course of the school year and ended the year with greater MA than 

their peers with low MA parents. In a deeper analysis, this occurred particularly when a 

high MA parent spent time helping their child with homework, suggesting that 

(unintentional) intergenerational transmission of MA occurred (Maloney et al., 2015). 

The child in this case is interpreting and internalizing their parent’s frustration or fear of 
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helping with math homework and applying it to their own thought patterns. There are a 

multitude of similar factors that are thought to create math anxiety, such as teacher math 

anxiety (Beilock et al., 2010; Ramirez, Hooper, et al., 2018), stereotype threat (Beilock et 

al., 2010; Maloney et al., 2013) and fixed-mindset education—educating under the belief 

that abilities or intelligence is unchangeable (Ramirez, Hooper, et al., 2018). 

 Although the interpretation account is compelling and can explain the origin of 

math anxiety, there are drawbacks to framing the entirety of math anxiety around 

student’s interpretations. First, it does not fully address the precipitating events that lead 

to the interpretation. If a student performs poorly in math class, they may or may not 

develop math anxiety under the interpretations account. However, if that student has an 

underlying lack of knowledge or ability that causes that poor performance, then training a 

student to appraise positively is not an appropriate response and could lead to repeat 

worse performances, increasing opportunities for the development of MA. Second, in 

developing the interpretation account, Ramirez, Shaw, and colleagues (2018) base part of 

their evidence in growth mindset research: holding onto the idea that one’s abilities can 

change and improve with time and practice (Dweck, 2000). Large-scale studies replicate 

a significant effect of student’s growth mindset on academic achievement, but at small (r 

= .09) correlations, and interventions on mindset show little effect in improving academic 

outcomes (Sisk et al., 2018). Math anxiety may develop from a fixed mindset, but this 

research suggests that proactively intervening on mindset may not show the desired 

results. To date, no studies have attempted a proactive mindset intervention with young 

children, although studies with older students show promise in using growth-mindset and 

mindfulness interventions to reduce MA (Samuel & Warner, 2019), and having a growth-
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mindset is negatively correlated (r = -.22) with psychological distress (Burnette et al., 

2020). Reactively reducing math anxiety has value. However, MA catalyzes a cycle that 

can cause students to fall behind on math knowledge, and so preventing MA has 

incredible potential value. 

1.3.3 Reduced competency account 

The last model of math anxiety is the reduced competency model. According to this 

model, math anxiety is a product of lower math performance, individual’s predispositions 

to anxiety, and sensitivity to negative social cues surrounding math. The critical factor, 

however, is that numerical and spatial difficulties are treated as causal factors to reduced 

math performance (Maloney, 2016). The model posits that individual differences in basic 

numerical ability can cause some to perform poorly in math class, leading to math 

anxiety. Thus, the reduced competency model provides a specific, testable etiology that 

has not been fully explored. 

 Before considering the evidence surrounding the reduced competency model, it is 

critical to note that these three models are not mutually exclusive. In fact, they 

complement each other in important ways. All three of these models touch on different 

aspects of the causes, development, and effects of MA. ACT emphasizes the online 

performance of mathematics and addresses the mechanisms through which MA disrupts 

performance. Interpretation considers the affective side of MA and can help explain why 

young girls (whose female teachers have math anxiety) more readily endorse negative 

stereotypes about who is good at mathematics (Beilock et al., 2010). We must understand 

both cognitive and affective factors in order to understand the whole experience of math 

anxiety. 
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 That said, there are two reasons why the reduced competency model deserves 

further consideration. First, as mentioned above, it provides a credible, testable etiology. 

It is simple to measure numerical skills of both children and adults with high math 

anxiety and perform longitudinal studies that can speak to whether individual differences 

in numeric capacities do lead to math anxiety. Second, targeting numerical difficulties 

provides a straightforward way to test if causal effects can be blocked to prevent math 

anxiety before it begins to interfere with performance or cause math avoidance. Again, 

this is not to say that the Interpretation Account should be disregarded. On the contrary, 

much evidence suggests that interpretation is a pathway to math anxiety (Ramirez, Shaw, 

et al., 2018). However, at the moment, there is insufficient evidence regarding numerical 

and spatial difficulties in those with high MA to assess whether this model can truly 

explain the origin with math anxiety. The following section will review and consider said 

evidence. 

1.4 (Potential) Numerical and spatial precursors to math anxiety 

What does it mean for an ability to be a precursor to math anxiety? The answer is 

presently underdefined. Multiple researchers (e.g., Beilock & Maloney, 2015; Dowker et 

al., 2016; Lindskog et al., 2017; Maloney, 2016; Maloney et al., 2011) use the term 

“basic number abilities” as a catch-all for many types of skills, both learned and innate. 

Some numerical and spatial abilities, for example, fall under core systems theory, 

which posits that all humans are equipped with evolutionarily engrained cognitive 

systems to represent objects, actions, number, and space (Spelke & Kinzler, 2007). 

Feigenson and colleagues (2004) initially described two systems of understanding 

number that are shared across the animal kingdom, including humans of all ages. The two 
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systems are subitizing, a visual attention system to rapidly identify small quantities, and 

an approximate number system (ANS) that can provide rough estimates of larger 

quantities, all without the usage of symbols to represent the specific quantity (non-

symbolic). All evidence suggests that these systems are evolutionarily engrained and 

present at birth, but become refined with experience, possibly serving as the foundation 

to later mathematics (Dehaene, 2005; Feigenson et al., 2004). Similarly, a core system for 

understanding space and geometric relations appears to exist at birth and can help to 

account for complicated navigation skills (Dehaene et al., 2006; Spelke & Kinzler, 2007). 

Core systems are present across all typical people, but certainly are subject to individual 

differences. For example, ANS acuity can be quantified with the Weber fraction, a ratio 

of discriminability between close-numerosity sets. In a preschool-aged population, the 

Weber fraction significantly predicts math achievement at the end of the year (Van Marle 

et al., 2014), and meta-analyses on the relation between non-symbolic measures and 

mathematic competence show consistent, albeit weak, correlations (r = .20; Chen & Li, 

2014),. Ergo, individual differences in ANS acuity can be considered a “basic skill” that 

could be a precursor to MA. The following section will review evidence attempting to 

relate MA to core number and spatial systems. 

1.4.1 Core number systems as precursors to math anxiety 

A logical first step to understanding if ANS functions are precursors to MA is to 

look at magnitude representations, because they are one of the simplest measures of the 

ANS. Our understanding of the ANS is that magnitude may be represented by multiple 

overlapping representations for any given numerosity. As the numerosity increases, the 

representation overlaps its neighbors more. This leads to the distance effect: when 
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comparing two sets of numerosities, it becomes more difficult to distinguish which has 

more as the ratio increases (Moyer & Landauer, 1967). If a person has a more precise 

representation, then it means there is less overlap between a representation and its 

neighbors. Thus, people with high MA should show larger (i.e. slower) distance effects 

than their low MA peers, lower accuracy overall, and a lower (less precise) Weber 

fraction. 

 Evidence regarding the relationship between ANS magnitude representations and 

MA, however, have been mixed. Lindskog and colleagues (2017) found that MA and 

ANS accuracy were significantly negative correlated, and that MA fully mediated the 

relationship between ANS and math performance. Maldonado Moscoso and colleagues 

(2020) found correlations between MA and Weber fraction. On the other hand, Lee and 

Cho (2018) found larger distance effects in those with high MA, but not relationships 

between MA and accuracy or Weber fraction. Hart and colleagues (2016, 2017) and 

Wang and colleagues (2015) found no relationship between MA and Weber fractions or 

ANS. Some studies found no relationship between ANS and MA on any of the three 

measures (Colomé, 2019; Dietrich et al., 2015). Furthermore, Malanchini et al. (2020) 

found that genetic factors were not shared in the relationship between math affect 

measures (including MA) and non-symbolic magnitude processing. Lastly, a meta-

analysis examined these mixed results and found overall no meaningful effect size 

relating the two, possibly as low as r = 0 (Barroso et al., 2020). It is therefore unlikely 

that low ANS acuity may serve as a causal factor to MA. In fact, Braham and Libertus 

(2018) suggest that MA moderates the relationship between ANS acuity and math 
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performance: those with high MA and high ANS performed equally on the math test to 

their low MA peers, while high MA/low ANS performed worse. 

All the above studies were performed on adults and are cross-sectional and cannot 

truly manipulate ANS ability. Because of this, they cannot tell us about whether ANS 

skills cause MA. To make that type of determination, one would have to perform a 

longitudinal study with younger age groups, such as at the beginning of schooling. 

Barring this, adult studies can point us to where time-consuming and costly longitudinal 

studies may have value. According to Maloney’s (2016) logic, if MA is caused by 

discrepancies in these “basic” functions, then they should still be apparent in adults. 

However, much of the research attempting to link ANS abilities and MA fails to show 

apparent discrepancies. These inconsistencies are sufficient to conclude that non-

symbolic magnitude representations are not strong causal factors in the development of 

MA. 

 There is also the other core system that “subitizes,” or immediately recognizes 

small quantities (Feigenson et al., 2004; Trick & Pylyshyn, 1993). This function is 

apparently unaffected by math anxiety. Participants were equally fast to recognize 

quantities of one, two, three, and four when displayed on a computer screen, regardless of 

their MA status (Maloney, Risko, Ansari, et al., 2010). Core number systems show no 

consistent evidence of being compromised in adults with high math anxiety. 

1.4.2 Core spatial systems 

Although there is little evidence to suggest that core number systems act as 

precursors to MA, the possibility remains that core spatial system abilities may precede 

MA. Spelke and colleagues (2010) posited two core systems for understanding space and 
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spatial relations. One system concerns itself with navigation of 3D environments, 

representing concepts such as distance and direction. For example, newborn chicks 

presumably use this system to orient to the geometry of an environment they have never 

seen to find a specific food container in a specific corner of a rectangle (Chiandetti & 

Vallortigara, 2008; Spelke et al., 2010). The second system focuses on small-scale, 2D 

visual forms, specifically length and angles (Spelke et al., 2010). A tribe in the Amazon 

that has had no formal schooling in geometry is able to accurately pick “the odd-one-out” 

in an array of six abstract objects that, in different trials, varied in angle, size, geometry, 

symmetry, and many other orientations (Dehaene et al., 2006). Much like the core 

number systems may serve as the basis for later mathematical structures, so too may 

these spatial systems underlie formal Euclidean geometry (Spelke et al., 2010). Hence, 

spatial systems are as worthy of attention as number systems when considering 

mathematics achievement and math anxiety.  

 Spatial skills are a strong candidate for being precursors to math anxiety because 

individual differences in spatial ability are predictive of mathematics achievement. For 

example, the ability to recreate a 2D or 3D model from a photograph (Rittle-Johnson et 

al., 2019; Verdine et al., 2014) and visuospatial working memory ability (Rittle-Johnson 

et al., 2019) both predict math scores in primary school children. 

How do spatial abilities relate specifically to math anxiety? Perhaps the largest 

scale study on the topic was performed by Ferguson and colleagues (2015). In a large-

scale spatial ability task, participants saw a dotted line weaving around buildings in a top-

down view of an abstract town or city. At each turn, participants had to label whether the 

turn would be to the left or right—essentially taking the perspective of the navigating 



 

 18 

individual. In a small-scale spatial task, participants determined whether a test object 

matched a target object shown in a different orientation (mental rotation). When 

accounting for general and spatial anxiety (again, distinct from, but related to, MA), there 

was no relationship between the navigation task and MA, but there was for the rotation 

task. Other studies have found evidence for a relationship between mental rotation and 

MA (Núñez-Peña et al., 2019; Sokolowski et al., 2019), however Douglas and LeFevre 

(2018) did not. The other primary methods of measuring spatial processing in MA is 

through working memory tasks, specifically looking at the visuospatial sketchpad 

(Baddeley, 1992). The Corsi block test requires participants to repeat a visual sequence of 

squares lighting up on a screen among an array by pressing them in the proper order, and 

those with high MA perform worse on this task (Ashkenazi & Danan, 2017; Soltanlou et 

al., 2019). 

However, these relations cannot be taken as direct evidence of low spatial abilities 

causing MA. After all, they are cross-sectional studies performed on adults. They do 

indicate the possibility of a causal connection; there is a somewhat consistent effect in 

mental rotation and working memory, given the limited evidence. However, I would like 

to draw a potential distinction between core knowledge of space and the mechanisms 

through which that knowledge is utilized. Researchers within the realm of MA have not 

touched on the relationship between the spatial skills they are measuring and the core 

systems of knowledge. Are those with high MA worse at mental rotation because the 

underlying system is weaker, or because anxiety is overloading working memory, as in 

ACT? Present evidence would suggest the latter (e.g., Douglas & LeFevre, 2018; Núñez-

Peña et al., 2019), but there is not enough task variety to truly assess the former.  
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1.4.3 Basic symbolic skills as precursors to math anxiety 

 The second group of skills that are cited to be “basic skills” related to math 

anxiety are basic symbolic processes. These are not core system process; they are learned 

over the course of childhood. In particular, two skills have been shown in those with high 

MA: slower enumeration, and larger distance effects, and I describe the evidence in the 

following sections. Overall, they do not necessarily show the causal links to support the 

reduced competency model. 

1.4.4 Enumeration 

 Maloney, Risko and colleagues (2010) ran, to my knowledge, the only study on 

counting in those with MA. Participants were shown a display of squares, ranging from 1 

to 9, and were asked to report how many squares shown. Participants in the high MA 

group were significantly slower to respond when the quantity was in the counting range 

(5-9) compared to their low MA counterparts. The fact that the task does not involve 

complex thinking or computations was taken to mean that basic numeric abilities are 

compromised in those with MA, although they left open the possibility that disrupted 

working memory processes were responsible for the slower responses (Maloney, Risko, 

Ansari, et al., 2010). 

Despite this study using quantities that are not represented by symbols, the task 

itself is symbolic in nature. Under the triple code model (Dehaene, 1992), a number is 

represented in three forms: magnitude, with an Arabic symbol, and with a verbal token. 

Counting requires activating the verbal token to track specific, discrete magnitudes, 

which are outside the boundaries of the non-symbolic approximate number system. The 
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verbal token (“four”) is symbolic in nature, even if the items counted within the study are 

not. 

1.4.5 Symbolic Magnitude Comparison 

 Similarly to the way we can compare quantities to determine which has more, we 

can compare numeric symbols based on their magnitude. Similar effects, such as the 

distance and size effects described above apply to symbolic magnitude comparison as 

well (Maloney, Risko, Preston, et al., 2010). When tested on the distance effect, Maloney 

and colleagues (2011) found that those with high MA showed larger distance effects 

(slower to respond when magnitudes are close), and suggested that MA was characterized 

by less precise magnitude representations. This effect was replicated by Georges and 

colleagues (2016) but not by Douglas and LeFevre (2018)—although the latter used a 

gross measure of completion time in a paper task rather than a computer-timed response. 

Núñez-Peña and Suárez-Pellicioni (2014) also found only marginal significance on 

distance effects between the two groups but did find differentiated ERPs for high and low 

MA groups based on distance effects. Altogether, it is likely that people with high MA 

are truly slower to respond to close magnitudes. However, Maloney, Risko, Preston, and 

colleagues (2010) have found only low correlations between different tasks apparently 

assessing the distance effect. Therefore, it is still unclear whether this represents a true 

reduction in numeric competency. 

1.5 Performed and potential interventions 

A small number of studies have attempted interventions on math anxiety, but they 

have largely focused on the emotional aspects of MA. Park and colleagues (2014) had 
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participants in the treatment group sit and silently write about their feelings about an 

upcoming math task, while the control group did not perform any task. Results of the 

subsequent math test showed smaller differences in performance between the treatment 

high and low MA groups compared to the control groups. Furthermore, when these 

students specifically wrote about their anxiety, their performance increased. Overall, 

writing about feelings appears to, at least transiently, reduce the effects of MA on 

performance (D. Park et al., 2014). In another study, Pizzie and colleagues (2020) tested 

the effects of cognitive appraisal on the relationships between MA and arithmetic. 

Cognitive reappraisal is a technique to change feelings towards a specific event by 

reframing, such as viewing difficult event as a challenge to overcome (Buhle et al., 2014; 

Pizzie, Raman, et al., 2020). When participants with high MA reappraised math 

problems, they had higher accuracy and self-rated lower negative affect. The authors 

concluded that cognitive reappraisal can effectively reduce the negative effects on math 

performance associated with math anxiety (Pizzie, Raman, et al., 2020). To my 

knowledge, no study has measured the distal effects of reducing negative emotions 

related to math anxiety on either math performance or math avoidance behaviors.  

However, these studies focus on the effect of reducing negative emotions in adults who 

have established math anxiety. There is no question about the value of these studies and 

the reduction of MA in adults. At the same time, the cyclical nature of increasing math 

anxiety reducing performance and increasing avoidance means that it is valuable to treat 

or prevent math anxiety in its earliest stages. Because mathematical education builds 

upon itself over the course of schooling, students would be best served through early 

prevention rather than later treatment. That way, there is no need for a “catch-up” period 
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once avoidance finishes. Furthermore, part of the interpretations model is that societal 

and cultural beliefs can be interpreted into individual math anxiety. Such widespread 

beliefs are difficult to base an intervention on, and a meta-analysis showed that 

interventions into general growth/fixed mindset have been of minimal effect (Burnette et 

al., 2020). The only MA specific mindset intervention was performed by Samuel and 

Warner (2019), who combined a mindfulness and growth mindset training for community 

college students. They had students begin each statistics class with a 1-minute breathing 

exercise, followed by repeating five affirmations (e.g., “I am capable of understanding 

math”). The authors found that the group that received the intervention had lower math 

anxiety scores in the subsequent year, with no change in the control group. However, the 

sample size was small (n = 20 per group) and all participants were members of a course 

taught by the first author, which may have influenced the results. Overall, a MA-specific 

mindset treatment may produce better results than a general mindset intervention, but 

more evidence is needed. Even so, an early, effective, and easy to implement intervention 

is ideal. 

 I propose that understanding better of cognitive precursors to math anxiety may 

provide a solution. Supekar and colleagues (2015) performed one such intervention: 3rd 

graders completed an 8-week tutoring series on addition and subtraction with strategies 

and manipulatives. They found that MA significantly decreased from pre- to post-test in 

the high MA group, and arithmetic performance increased for both groups. fMRI scans 

showed that while doing arithmetic, the high MA group, compared to low MA, showed 

strong differences in areas related to emotion and arithmetic in pre-tutoring, which 

equalized in the post-tutoring scan. This intervention can only be considered preliminary, 
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as its sample was relatively small (n = 28), and the MA groups were split at the median 

score rather than an extreme percentile (thus, inconsistent with other MA experiments). 

In addition, there was no active control group: both the high and low MA groups went 

through the same training and improved on their arithmetic performance, suggesting that 

more exposure was helpful. One critical note, however, is that the high and low MA 

groups did not differ at pre-test on accuracy or response time, which means the sample 

does not strongly resemble the previous literature (Supekar et al., 2015). It is possible that 

a difference in performance was hidden by the median split, but this study provides 

evidence for the possibility for an early intervention before the cycle begins. 

 There are other potential interventions that may support the early reduced 

competency model, but they have not yet been applied to math anxiety. Namely, spatial 

processing may be a targetable candidate for an intervention. Gilligan and colleagues 

(2020) randomly assigned 250 8-year olds to a mental rotation training, a spatial scaling 

training, or a control training. The spatial scaling task asked the participant if a larger 

image was identical in proportion to the smaller, target image, and the control task asked 

the participant to identify the target animal among a set. They found that the two spatial 

trainings had significant effects on geometric tasks (identifying the number of faces on a 

2D shape), a number line task, and finding the missing operand in an arithmetic problem, 

despite the latter two being (apparently) indirectly and unrelated to spatial processing 

(Gilligan et al., 2020). If reduced abilities in spatial processing are truly related to the 

development of MA, then spatial ability trainings would be a valuable potential 

intervention. However, as discussed in the previous section, we do not yet have secure 

evidence to suggest that spatial abilities are compromised in those with math anxiety. 
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1.6 Open questions on cognitive capacities in math anxiety 

  Together, the evidence does not widely suggest that numeric and spatial 

difficulties are causal factors to MA. However, the evidence is largely limited, and the 

body of work has not yet assessed the full breadth of potential pre-schooling number 

skills that may be compromised, leading to MA. In other words, there is still insufficient 

evidence to rule out the causal aspect of the reduced competency model. In this 

dissertation, I propose multiple paths of investigation to clarify whether the reduced 

competency model may hold and measure a cognitive capacity under ACT that has not 

yet been assessed in MA. 

1.6.1 Chapter 2: Cognitive primitives relating to arithmetic 

 Although the core systems of number are apparently unrelated to math anxiety, 

several basic symbolic number abilities did relate to MA. Chapter 2 considers the 

connections between non-symbolic number systems and complex arithmetic. Studies in 

children show meaningful associations between non-symbolic magnitude abilities and 

symbolic magnitude representation (Chen & Li, 2014; Fazio et al., 2014), although 

whether these are causal relationships is a matter of debate (Merkley et al., 2017). 

Regardless of the specifics of the debate, it is an open question as to whether those with 

high MA are impaired in the ability to manipulate non-symbolic quantities, as such a 

capacity could help explain their difficulty in symbolic arithmetic. In chapter 2, I test the 

hypothesis that if these manipulation abilities are impaired, then those with high MA will 

struggle to perform rudimentary addition and subtraction with dots. On the other hand, 

high MA performance deficits may be limited to symbolic number capacities. In this 

case, only symbolic arithmetic will relate to MA. 
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1.6.2 Chapter 3: Ordinality 

 A yet unexplored numerical capacity that may relate to MA is ordinality. Number 

can be defined as a magnitude or a cardinal amount that says “how much” the amount is. 

There are also relationships between numbers: symbolic numbers exist in an ordered 

system (i.e., “2” comes before “3”, but after “1”). Ordinality is an interesting concept to 

study within math anxiety for a few reasons. First, attention to ordinal relationships is not 

present at birth; it takes time to develop (Brannon, 2002). Thus, ordinality provides an 

early, but not core, number ability that could be impaired in MA. Second, all of the above 

ANS studies focused on cardinality, or magnitude comparison, but ordinality is a unique 

construct from cardinality, both in behavioral and neural measures (Goffin & Ansari, 

2016; Matejko et al., 2018; Turconi & Seron, 2002). Unique behavioral measures, such as 

the reverse distance effect (faster responses for judging the ordinality of close numbers) 

are not predicted to have differences according to the attentional control theory but have 

not been characterized in those with MA (Turconi & Seron, 2002). Third, performance on 

ordinal measures has been robustly predictive of arithmetic ability in children and adults 

(Lyons & Ansari, 2015b; Sasanguie et al., 2017; Vogel et al., 2017, 2019). To date, only 

one study (Colomé & Núñez-Peña, 2021) has evaluated ordinal performance in those 

with high MA, but the researchers performed a limited analysis with a small sample (n = 

40 equally split in two groups) to find very few differences in performance between the 

two groups. These effects have not yet been replicated, nor viewed in terms of the 

relation between MA, ordinality, and arithmetic. In chapter 3, I test ordinal processing at 

various levels of math anxiety. In doing so, I seek to characterize their basic performance, 
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their reverse distance effect, and the relationship between math anxiety, ordinal 

processing, and arithmetic. 

1.6.3 Chapter 4: Counting sequences 

 Lastly, a fairly surprising finding relating basic numerical competencies and math 

anxiety was discussed in section 1.4.4. Maloney and colleagues (2010) found that those 

with high MA were slower to count a small number of squares presented on a computer 

screen. To my knowledge, this finding has not been pursued further. I attribute this above 

to counting as a symbolic process, even when enumerating non-symbolic stimuli. 

However, it could be that counting sequence representations could be impaired in those 

with high MA. Counting is fundamental to learning the complex number system on 

which much future mathematical development (Fuson, 1988; Gelman & Gallistel, 1986) 

and is therefore worthy of investigation. In chapter 4, I use a novel design to test counting 

sequence representation through response times, accuracy and inhibition processes. 
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CHAPTER 2 

 

ARITHMETIC OPERATIONS WITHOUT SYMBOLS ARE UNIMPAIRED IN 

ADULTS WITH MATH ANXIETY 

2.1 Introduction 

Humankind has made incredible advances due to the development of formal 

mathematical structures. However, on an individual level, many view engaging with math 

as a monumental struggle, and we do not have a clear understanding of how those 

negative feelings come into being. Math anxiety (MA) is defined as feelings of tension or 

dread when confronted with the need to perform mathematics (Ashcraft & Faust, 1994; 

Richardson & Suinn, 1972). It is a widespread phenomenon that impacts the individual in 

myriad ways. Hart and Ganley (2019) found that about half of U.S. adults score at 

moderate to high levels of MA with women reporting meaningfully higher levels than 

men. They found no such differences between different racial and ethnic groups (Hart & 

Ganley, 2019). In the long term, MA impacts career prospects: those whose MA levels 

increase or are high during schooling are less likely to choose STEM careers (Ahmed, 

2018), and those in STEM careers report lower levels of MA (Hart & Ganley, 2019; 

Hembree, 1990).  

One model to explain math anxiety places difficulties in basic number skills—

such as counting or number comparison—that relate to downstream mathematic abilities 

as the primary precursor to developing MA (Beilock & Maloney, 2015; Maloney, 2016). 

Under this “reduced capacities” model, some individuals have reduced cognitive 

competencies that lead to lower math performance and the development of MA. Lending 

credence to this model are studies showing that people with high MA perform poorly on 
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simple numerical tasks, such as enumeration and number comparison (Maloney et al., 

2011; Maloney, Risko, Ansari, et al., 2010). This model is compelling, as the causal 

mechanism is straightforward and intuitive. These skills are fundamental, so a weaker 

foundation may naturally lead to less stable future development.  

Despite the emphasis placed on its position in the model, “basic number skills” 

remains underdefined. Theories of numerical cognition assert that one of the most basic 

skills for representing number is based on the evolutionarily ancient system that we share 

with many animals (Dehaene, 2011). The so-called approximate number system (ANS) is 

thought to enable the representation of numerosities, or the number of items in a set, and 

is posited to serve as a foundation for mathematical competence (Odic & Starr, 2018). 

Whether these perceptually based, approximate, non-symbolic, magnitude representations 

directly drive the acquisition of precise, symbolic mathematics has been hotly debated 

(Bugden et al., 2016, 2021; Merkley et al., 2017; Szkudlarek & Brannon, 2017; J. Wang 

et al., 2017). Regardless of that debate, however, empirical studies especially in children 

do show a meaningful association between one’s performance in tasks involving non-

symbolic magnitude representations and tasks involving symbolic magnitude 

representations (Chen & Li, 2014; Fazio et al., 2014; Schneider et al., 2017). Thus, 

understanding to what extent non-symbolic magnitude processing relates to MA could 

uncover the cognitive mechanisms underlying MA.  

Hence, the approximate number system has received much attention in the math 

anxiety literature; however, the results so far are mixed (Colomé, 2019; Dietrich et al., 

2015; Hart et al., 2017; Lee & Cho, 2018; Lindskog et al., 2017; Maldonado Moscoso et 

al., 2020; Núñez-Peña & Suárez-Pellicioni, 2014). For example, Dietrich and colleagues 
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(2015) found no relation in an adult population between MA and performance on a non-

symbolic dot comparison task (judge which set of dots has a larger numerosity), as 

measured by error rate and response time (RT), nor did they find relations between MA 

and the Weber fraction, a calculated measure of ANS acuity. Likewise, Colomé (2019) 

replicated and extended this effect by finding no group difference (low vs high MA) on 

the dot comparison task when the size of the dots could facilitate (i.e., the larger 

numerosity set has large dots) or hinder (i.e., the larger numerosity set has small dots) 

choosing the larger numerosity. Notably, there is a lack of research on the relation 

between numerosity processing and MA in early schooling, but to our knowledge the 

youngest age group tested (ages 9-15) showed no correlation between MA and 

numerosity discrimination (Z. Wang et al., 2015). In contrast, Lindskog and colleagues 

(2017) found that, in adults, MA was significantly negatively correlated with accuracy on 

the dot comparison task, and that MA fully mediated the relationship between dot 

comparison accuracy and math performance.  

The literature, thus, is inconclusive, as adults with high MA do not show 

consistent differences compared to those with low MA on this purported “building block” 

of numerical thinking. One explanation is that those with high MA start with low ANS 

acuity but make gains to end up on par with their low-MA counterparts over the course of 

development, although this is unlikely given the relative stability of ANS acuity (Elliott 

et al., 2019; Purpura & Simms, 2018) and would not be entirely consistent with the 

findings of Maloney (2010), where adults with MA were slower to enumerate objects. A 

more plausible explanation is that using ANS to solve a given magnitude-related task 

does not qualify as “basic number skills” despite claims that ANS-based abilities underly 
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future math performance (e.g., J. Wang et al., 2017). That said, performing dot 

comparison utilizes limited aspects (i.e., estimation and comparison) of primitive skills 

recruiting non-symbolic magnitude representations. Indeed, research in the past decade or 

so has identified that the approximate number system enables not only estimation and 

comparison of numerosities but also operations (akin to arithmetic operations) of 

numerosities (Barth et al., 2006; McCrink & Wynn, 2004; J. Park & Brannon, 2013, 

2014). Non-symbolic estimation and comparison tasks widely tested in previous studies 

lack the operational component that may more closely relate to the impaired abilities of 

those with MA. Although ANS acuity may be similar between those with high and low 

MA, it is yet unknown if any impairment extends to ANS functions beyond simple 

magnitude processing, such as performing operations with non-symbolic quantities. 

On the other hand, math anxiety consistently relates to performance on tasks and 

processes requiring precise representations of numerical symbols. The most widely 

studied of these is symbolic arithmetic, in which those with high MA perform 

consistently worse than their low-MA counterparts (Barroso et al., 2020; Hembree, 1990; 

X. Ma, 1999). However, prior literature suggests both context and content of numerical 

symbols influence MA-related performance, beyond the clear relation to classroom math 

performance. For example, those with high MA struggle with representing numerical 

symbols even when not performing number processing, as evidenced by lower 

performance in digit (but not letter) span (Witt, 2012). Furthermore, previous work has 

indicated that adults with high MA demonstrate an attentional bias to numerical symbols 

and math-related words, as evidenced by performance in the dot probe task (Rubinsten et 

al., 2015) and numerical Stroop task (Suárez-Pellicioni et al., 2015). Taken together, 
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these data indicate that MA disrupts far more than performance in math as is traditionally 

taught in school. Instead, MA seemingly relates to a wide array of processes involving 

the precise representation information that is numerical in nature, even if not used as such 

in context. 

To date, many studies that show differences between high and low MA groups 

contain two confounded constructs that may contribute to said differences. First is the 

usage of operations. Arithmetic operations are widely studied, and impaired ability to 

perform operations could, in theory, be a precursor that leads a student to perform worse 

in early math courses and develop MA. Second is the usage of symbols or precise 

representations. We operationalize symbols and precise representations in contrast to the 

approximate nature of the approximate number system. For example, enumerating a 

series of objects (as in Maloney et al., 2010) may not use Arabic numerals, but requires a 

precise representation of the magnitude in the form of a verbal numeral, and thus is 

symbolic. In contrast, an ANS-based comparison task is based on a non-precise, noisy 

representation of numerical value and is dependent on ratio (Feigenson et al., 2004), and 

thus is not symbolic. The idea that precise representations relate to MA connects 

evidence on attentional bias and other tasks that show MA differences in the absence of 

math. Research on symbols without mathematical operations have been fruitful, 

especially those studies involving math words as distractors (e.g., Hopko et al., 1998), but 

the question remains whether performing operations without symbols leads to differences 

among those with high and low math anxiety. 

The aim of our study is to tease apart the relationship between MA and its 

deleterious effects on performance at the operation and stimulus level. To do so, we 
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modified an established non-symbolic arithmetic test (similar to Park & Brannon, 2014) 

to include a production component. The purpose of this modification was to bring this 

task more in line with the symbolic arithmetic test and make them both production tasks. 

In some trials of this modified task, participants watched as two quantities of dots 

appeared and moved behind an opaque occluder simulating addition. In other trials, one 

set of dots entered the occluder, and a second set exited, simulating subtraction. 

Participants then had to manipulate a dot array to match their representation of the total 

numerosity of dots behind the occluder. Thus, this task involved approximate arithmetic. 

All participants also completed a symbolic arithmetic test. 

We hypothesized that if operations involving numeric quantities is a primitive 

skill disrupted in MA, both approximate arithmetic and symbolic arithmetic performance 

should relate to MA status. However, if MA deficits are related specifically to symbolic 

processing, then only symbolic arithmetic should relate to MA status. Symbolic 

arithmetic is known to be strongly related to both of spatial and verbal working memory 

capacities (Caviola et al., 2020; Szűcs et al., 2014). In addition, approximate arithmetic is 

also thought to involve spatial, but not verbal, working memory in the form of 

manipulation of visual items (Park and Brannon, 2014). Thus, we included both a spatial 

2-back task (i.e., maintain and update the location of a dot’s position in an array across 

multiple trials) and a verbal 2-back task (i.e., maintain and update the identity of a letter 

across multiple trials) to account for individual differences in working memory as 

nuisance variables in our regression analyses. That is, these measures were used as 

covariates in a regression analysis in order to remove any effect of these more domain-

general capacities in assessing the relationship between MA and arithmetic performance.  
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2.2 Methods 

2.2.1 Participants 

92 undergraduates (female = 72; ages 18–24) from the University of 

Massachusetts Amherst were recruited for participation. 83 undergraduates (female = 71, 

ages 18–24) were included in the final analysis. The largest racial group were White 

participants (n = 50), followed by Asian participants (n = 26), and Black participants (n = 

8). Furthermore, six participants described themselves as mixed race, and two declined to 

answer. Lastly, six participants described themselves as Hispanic/Latino. A total of nine 

participants were excluded due to poor performance on tasks (n = 7; see section 2.7), 

improper completion of the math anxiety assessment (n = 1), or computer error during the 

task invalidating results (n = 1). Participants were recruited through the departmental 

participant pool system and were compensated with course credit for their participation. 

All procedures were approved by the University of Massachusetts Amherst Institutional 

Review Board (IRB). 

2.2.2 Materials and procedure 

Math anxiety, symbolic arithmetic, approximate arithmetic, verbal and spatial 

working memory ability were measured with the tasks described below. Participants 

completed the two arithmetical tasks first, were given a five-minute break to prevent 

carryover effects, and then completed the two working memory tasks. The order of the 

tasks was counterbalanced within the arithmetic section and within the working memory 

section. Participants completed the mathematics anxiety assessment at the end of the 

study. A study visit lasted approximately 60 minutes. All the analyses were completed 
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using Jamovi (The jamovi project, 2021) after completing data re-organization in R (R 

Core Team, 2018; Wickham et al., 2018). 

2.2.3 The Mathematics Anxiety Rating Scale: Brief Version (MARS-30 item) 

To assess mathematics anxiety, the brief version of the Math Anxiety Rating 

Scale was administered (Suinn & Winston, 2003). This version is a 30-item scale adapted 

from the original 98-item scale. The items on the scale pertain to feelings of anxiety in 

academic and non-academic mathematical situations. It is a valid and reliable measure of 

mathematics anxiety. Some representative items include being given a pop quiz in a math 

class, figuring out your monthly budget, and receiving your final mathematics grade in 

the mail. Participants respond using a 5-point Likert scale; a response of 1 indicates low 

anxiety while a response of 5 indicates high anxiety. Participants’ math anxiety score was 

calculated by determining the sum of their responses. One participant left five questions 

blank, so their answers were reweighted according to their total responses. 

2.2.4 Approximate arithmetic task 

For the approximate arithmetic task, participants were instructed to estimate a 

quantity of dots after watching manipulations be performed (see Figure 2.1a). All dot 

arrays were set to have a numerosity ranging from 9-36. For all trials, an array of dots 

appeared on the computer screen to the right or left of an opaque occluder (square), and 

participants watched as the dot array moved behind the square. On half of the trials, 

another dot array appeared on the other side and also moved behind the square 

(simulating addition). On the remaining half of the trials, participants watched as some 

dots exited the square to the opposing side from where the first set entered (simulating 
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subtraction). Participants were then presented with a third array below the square that 

they could use to input their response. The starting numerosity for this third array was 

randomly generated within a range of ±2.5 times the true answer. They were instructed to 

adjust the quantity of dots in that array using keyboard keys (P to increase, L to decrease) 

to match as closely as possible their estimation of the number of dots behind the square. 

The quantity for this third array could never leave the boundary of ±2.5 times the true 

answer. Participants had no time limit to input their answer. Participants were told to 

complete the problems as quickly and accurately as possible for two blocks with 45 trials 

each. They were also told by the experimenter that there was no “correct” answer because 

of how quickly the stimuli move, but they should do their best to match their answer as 

closely as possible. Note that while this is empirically inaccurate, we told this to 

participants in order to reduce feelings of frustration or anxiety related to evaluation and 

performance rather than the underlying representations. Practice problems were given 

prior to beginning the first block, and self-paced breaks occurred between blocks. To 

measure participant’s performance on this task, we took the absolute value of the 

difference between the participant’s answer and the true number of dots behind the 

square in each trial. Because each participant’s distribution of differences was skewed, 

the following analyses are performed with the median distance for each participant. One 

may wonder if participants verbalize the numerosities to transcode into a symbolic 

system to solve the task. Although we did not control for it in this experiment, Park and 

Brannon (2014) addressed this question by asking participants to solve approximate and 

symbolic arithmetic problems while engaging in articulatory suppression (continuously 

repeating a verbal syllable while solving the arithmetic problems). They found that 
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articulatory suppression resulted in a decrement of performance only during symbolic 

arithmetic but not during approximate arithmetic, demonstrating that verbal transcoding 

in the approximate arithmetic task highly unlikely (Park & Brannon, 2014). 

2.2.5 Symbolic arithmetic task 

In the symbolic arithmetic task, participants were presented with 2- and 3-digit 

addition and subtraction problems in one 7-minute block. The problems were displayed 

one at a time on a computer screen using Arabic numerals and arranged in the vertical 

format (see Figure 2.1b). These problems were randomly pulled from a set of pre-

generated problems that contained equal numbers of addition and subtraction (200 each) 

problems and equal amounts of carrying/borrowing per set. Participants responded using 

the number pad and were told to solve the problems as quickly and accurately as possible. 

Before the 7-minute block began, participants were given practice problems to familiarize 

them with the use of the number pad and the requirements of the task. The total number 

of correct answers was calculated for each participant. 

2.2.6 Verbal 2-back working memory task 

For the verbal 2-back task, participants were presented with a stream of letters on 

the screen one at a time. The letters included “b,” “f”, “h”, “m”, “q”, and “r” because they 

are phonologically distinct. Each letter could be presented in capitalized or lowercase 

form, which were considered to be the same letter for the purposes of answering. After 

each letter appeared, participants responded via a button press to indicate whether the 

letter matched the one displayed two trials prior (see Figure 2.1c). Each letter was 

presented for 0.5 s with an inter-trial interval of 2 s. Because there were no correct 
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answers possible for the first two trials, they were discarded. After practice with 

feedback, participants completed four blocks of this task with 48 trials per block and self-

paced breaks between blocks. 

2.2.7 Spatial 2-back working memory task 

For the spatial 2-back task, participants were presented with a series of white 

circles that appeared on the screen one at a time in any of six locations. These six 

locations were equidistant from a fixation cross in the center of the screen. Participants 

responded with a button press after each circle appeared to indicate whether the location 

matched the location of the circle presented two trials prior (see Figure 2.1d) All 

parameters and procedures for this task were the same as those listed above for the verbal 

working memory tasks. For both working memory tasks, we calculated the participant’s 

d’, a measure of sensitivity. Participants (n = 6) who had a negative d’ on either task were 

excluded from the relevant subsequent analyses. One participant had a 100% hit rate in 

the spatial working memory task (d’ = Inf). Their hit rate was substituted (hit rate = .999) 

to produce a sufficiently large d’ value that could be used in subsequent analyses.  

2.3 Results 

2.3.1 Descriptives and correlations 

 Table 2.1 shows the descriptive statistics for all tasks (note that the approximate 

arithmetic measures are aggregates of participant's medians). Figure 2.2 shows zero-order 

correlations and scatterplots across all variables. Math anxiety was significantly 

negatively correlated with performance both on the symbolic arithmetic (r = -.38) and 

spatial 2-back (r = -.25) tasks. As expected, both 2-back tasks were positively correlated 
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with each other (r = .67), and symbolic arithmetic performance was correlated with 

performance on both the spatial (r = .26) and verbal (r = .31). 

2.3.2 Approximate arithmetic analysis 

Performance on AA was measured for each participant by finding the median of 

the distribution of absolute value distances between each given answer and the trial’s true 

numerosity. If the hypothesis that those with high MA perform operations poorly is true, 

then we would expect those with high MA to have larger distances than those with low 

MA, on average. We ran two multiple regression models to predict MA scores from 

approximate arithmetic performance. First, we ran a model with only approximate 

arithmetic entered as a predictor, which was not significant (R2
Adjusted = .002, beta = 

0.304, t(82) =  0.354, p = .724). The second model included approximate arithmetic and 

both working memory measures as covariates (see table 2.2). Although the working 

memory measures are highly collinear, they are included because they are not our 

regressors of interest and only serve to provide a clearer picture of the relationship 

between MA and performance. We failed to find evidence to support the above 

hypothesis, as there was no relationship between performance on approximate arithmetic 

and MA (beta = 0.218, t(82) =  0.259, p = .796).  

 

2.3.3 Symbolic arithmetic analysis 

 For the symbolic arithmetic analysis, we followed the same procedure as above 

using symbolic arithmetic performance as the independent measure of interest instead of 

approximate arithmetic performance. As shown in table 3.3, the relationship between 
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symbolic arithmetic and math anxiety was significant, even when accounting for each 

working memory difference (beta = -0.294, t(82) =  -3.141, p = .002). When entered as a 

hierarchical regression, including both working memory measures leads to a non-

significant model (R2 = .0679, F(2,80) = 2.91, p = .06), with spatial WM (beta = -3.94, 

t(82) = -1.365, p = .176) and verbal WM (beta = -2.16, t(82) = -.575, p = .567) failing to 

significantly predict math anxiety. Adding symbolic arithmetic in a second model 

significantly improves the change in R2 (ΔR2 = 0.104, F(1,79) = 9.87, p = .002), 

suggesting that performance on symbolic arithmetic relates to MA above and beyond the 

effects of WM. 

2.3.4 Post-hoc Bayesian Analysis 

 To measure the strength of evidence in favor of the null hypothesis, we ran a 

Bayesian correlation between approximate arithmetic performance and math anxiety. We 

did not include WM performance in this analysis because accounting for individual 

differences in WM did not appear to change the (lack of) relationship between 

approximate arithmetic performance and math anxiety (see table 2.2). We used the 

default settings on jsq package—the Jamovi adaptation of JASP (JASP Team, 2020)—to 

calculate Bayes Factors based on Pearson’s rho (Ly et al., 2016, 2018). The resulting 

correlation showed moderate evidence for the null hypothesis (r = .0393, BF01 = 6.86). 

2.3.5 Analysis of categorical math anxiety. 

 Although we treated math anxiety as a continuous variable, it is more common to 

form groups from extreme scores and treat math anxiety as a categorical variable (e.g., 

Colomé & Núñez-Peña, 2021; Suárez-Pellicioni et al., 2014). To keep consistent with the 
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literature, we divided all participants into tertiles based on their MA score to run a one-

way ANOVA for approximate arithmetic performance. The low MA group had MA 

scores ranging from 35-72 (mean = 59.8). The medium MA group scored between 72-86 

(mean = 79.2) and the high MA group scored higher than 86 (mean = 96.2). The ANOVA 

revealed no difference across any of the groups (F = 0.441, p = .645, η2 = .011). No 

follow-up contrasts were run. Our results from the regression and ANOVA analyses 

suggest that the use of MA as a continuous variable produces results consistent with the 

creation of categorical MA groups. 

2.4. Discussion 

We hypothesized that if math anxiety compromises performance specifically related 

to precise, symbolic processing, then only symbolic arithmetic, and not approximate 

arithmetic, would predict MA status. On the other hand, if performing operations 

involving numeric quantities is a cognitive primitive that is disrupted or less developed 

among people with math anxiety, performance in both our approximate arithmetic and 

symbolic arithmetic tasks would predict MA status. We found support for the former 

hypothesis in that symbolic arithmetic, but not approximate arithmetic, was related to 

MA. This held true even after accounting for the two different types of working memory. 

When entered into a regression alone, the working memory tasks together accounted for 

6.8% of the variance in MA. 

The lack of a relationship between approximate arithmetic performance and MA 

suggests that MA deficits are related specifically to symbolic processing and not to using 

perceptually based operations to manipulate numerosities. We found a relationship 

between symbolic arithmetic and MA that is consistent and comparable with previous 
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literature on the topic (Barroso et al., 2020; Hembree, 1990; Ma, 1999). However, the 

novel aspect of our study, which disentangles performing operations without the use of 

symbolic stimuli indicates that primitive operational processes are unimpaired in people 

with high MA. Previous work suggests that nonverbal quantity manipulation as in 

approximate arithmetic may be an important factor that links primitive quantitative 

abilities to symbolic arithmetic, although there is counterevidence (Hyde et al., 2014; 

Khanum et al., 2016; J. Park & Brannon, 2013, 2014; J. Wang et al., 2016, 2017, 2021); 

however, see also: Bugden et al., 2021; Sasanguie et al., 2014; Szkudlarek et al., 2021; 

Szkudlarek & Brannon, 2017). Furthermore, our study involved the production of a 

computed answer, rather than a binary decision between correct and incorrect options. 

Because of this, we expected similar patterns in performance by those with high and low 

MA in both symbolic and non-symbolic tasks. If operational processes without symbolic 

stimuli were found to be impaired in those with MA, then there would be potential for 

targeted interventions in childhood that could reduce early negative math experiences that 

lead to increased MA (Maloney, 2016). However, much like the work showing that ANS 

acuity is not impaired in those with MA (Colomé, 2019; Dietrich et al., 2015; Hart et al., 

2016, 2017; Lee & Cho, 2018; Z. Wang et al., 2015), we found these operational 

processes were similarly unimpaired in those with MA. 

Our results largely align with the hypothesis that precise or symbolic representation is 

necessary to elicit performance deficits in those with MA. The relationship between MA 

and symbolic arithmetic holds while accounting for verbal and spatial working memory, 

despite approximate arithmetic failing to relate to MA entirely, which strengthens this 

hypothesis. 
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Our other finding relating spatial—and to a lesser extent, verbal—working memory to 

MA is consistent with early explanations of math anxiety disrupting working memory 

resources (Ashcraft & Faust, 1994; Hopko et al., 1998). Furthermore, spatial working 

memory has continued to be a topic of interest in math anxiety and could still constitute a 

reduced capacity under the causal model. 

Previous work has shown connections between spatial processing and math anxiety. 

Namely, people with high math anxiety often have difficulty with mental rotation tasks, 

such as matching 3D objects or determining whether two objects are mirrored (Ferguson 

et al., 2015; Núñez-Peña et al., 2019; Sokolowski et al., 2019). Measures of visuospatial 

working memory also correlate with MA (Ashkenazi & Danan, 2017; Soltanlou et al., 

2019). Our results showing a significant correlation between MA and spatial 2-back 

working memory performance are consistent with these previous findings.  

That said, the approximate arithmetic task requires the maintenance of information in 

spatial working memory. In order to solve the task, the participant must represent the 

array on the visuospatial sketchpad (Baddeley, 1992) and either update by integrating a 

new array or removing a separate array. Therefore, if people with high MA do have 

impaired spatial working memory, then it is not immediately clear why they did not 

perform worse on the approximate arithmetic task based on that factor alone. 

The inconsistency between findings on spatial working memory and approximate 

arithmetic can be explained by cognitive demands in each task.  

One possible reason concerns the spatial working memory task demands. The dots to 

be held in memory in the 2-back task were only shown for 0.5 s, with an inter-trial 

interval of 2 s. This meant that participants had to make a response within two seconds, 
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which could have been challenging for those with spatial processing difficulties to sustain 

across all 48 trials. In contrast, responses in the approximate arithmetic task were entirely 

self-paced. Thus, it may be that the challenges of the spatial 2-back underly the 

relationship between spatial working memory and math anxiety, rather than general 

spatial processing skills. 

Another possibility is that the type of cognitive demands in a 2-back spatial task is 

qualitatively different from the demands in the approximate arithmetic task. In the 2-back 

task, items in memory slots need to be constantly updated in order to perform well. In the 

approximate arithmetic task, however, a constant update is not necessary and a 

manipulation in the visuo-spatial sketch pad is sufficient to perform the task well. 

Therefore, the 2-back task may not have been the best task that taps into critical spatial 

processes needed in approximate arithmetic.  

In addition, our results could also be explained by fear of evaluation rather than 

cognitive factors. In a study of pre-service elementary school teachers, a majority 

expressed that the emphasis on correct answers in math courses caused their math anxiety 

(Harper & Daane, 1998). It is possible that those teachers do not have a full 

understanding what caused their first experiences math anxiety. However, because our 

participants were also adults, they may have responded differently to approximate 

arithmetic because of the evaluation component. It is clear that symbolic arithmetic has a 

correct answer, and people asked to solve arithmetic problems need no clarification on 

the instructions. The approximate arithmetic task, however, used numerosities that moved 

far too quickly for precise enumeration to occur. Thus, it is near impossible for 

participants to consistently produce the exact quantity of hidden dots. Furthermore, 
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participants were instructed to produce the quantity “as close as possible” to the hidden 

dots, further de-emphasizing that they could find the correct answer. We may have shown 

different results had we directly instructed the participant to find the correct answer, if 

this evaluation hypothesis is true. 

Taken all together, our results highlight a potential avenue for further study regarding 

spatial processing in math anxiety and provide further evidence that basic ANS functions 

are unimpaired in adults with math anxiety. Those with high math anxiety did not 

perform worse on an approximate arithmetic task using dot arrays, despite performing 

poorly on a symbolic arithmetic task. This suggests that the ability to perform basic 

numerical operations is not hindered or reduced in adults with math anxiety, but that 

abilities related to manipulating symbolic quantities is affected. Our results, alongside the 

many mixed findings relating ANS function to MA in adults and children, suggest that 

the reduced cognitive capacities model’s causal factor of “basic number skills” should not 

include numerosity processing. However, we suggest that there may be an exception for 

incongruence between numerosity and other spatial magnitudes in non-symbolic arrays. 

Further work may also focus on spatial abilities that may be impaired and further 

elucidating the mechanism by which precise, symbolic representation interferes with 

performance in those with math anxiety. 
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CHAPTER 3 

 

DOMAIN-SPECIFIC AND DOMAIN-GENERAL ORDINAL COGNITION IN 

ADULTS WITH MATH ANXIETY 

3.1 Introduction 

Math anxiety (MA), or feelings of dread related to mathematics, affects many people 

across their lifetime (Ashcraft, 2002; Hart & Ganley, 2019). However, our understanding 

of the origins of MA is still limited. One theory places “basic number skills” at the root of 

MA. In this “reduced capacities” theory, individual differences in ability to manipulate or 

understand numbers and space cause some to fall behind in early math courses and 

develop math anxiety (Maloney, 2016). This theory is attractive because it proposes a 

straightforward, logical mechanism that can be intervened on to prevent math anxiety 

from coming into being. To date, the largest body of work has focused on testing the 

ability to understand magnitudes or quantities but has shown no strong pattern (Colomé, 

2019; Dietrich et al., 2015; Hart et al., 2016, 2017; Lee & Cho, 2018). What has received 

less attention is ordinality, the ordering of numbers and connection between numbers. It 

is largely unknown how MA relates to ordinality, despite ordinality’s critical relation to 

mathematical development (Lyons et al., 2016). The purpose of this study is to 

characterize the relationship between ordinality and MA in order to see whether 

difficulties processing ordinality could be a potential cause of math anxiety. 

3.1.1 Ordinality and ordinal judgement 

 Both inside and outside the body of math anxiety research, ordinality has received 

less attention than cardinality. This is reasonable, considering the salience of cardinality: 
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numbers are most often used to track magnitudes or quantities. Ordinality focuses on the 

embedding of numbers within an ordered system and the connections between numbers. 

Math anxiety’s relation to ordinality is an interesting question for several reasons. First, 

ordinality is an increasingly strong predictor of mathematics throughout early schooling 

(Lyons et al., 2014; Sasanguie & Vos, 2018), signaling a potential mechanism for the 

reduced capacities theory. Second, ordinality can be measured using numerical and non-

numerical stimuli, which can provide a way to test whether math anxiety is truly domain-

specific or if underlying domain-general cognitive mechanisms also relate to MA in the 

absence of numbers. This introduction will begin with an overview of behavioral effects 

related to ordinality and discuss each effect in relation to math anxiety, in turn. 

Ordinality is largely tested with the ordinal judgement (OJ) paradigm. In this task, 

participants are presented with a triad of numbers and are asked to judge whether the 

numbers are in order (Lyons & Beilock, 2009; Turconi et al., 2006). These triads are 

typically manipulated in distance between numbers, such as having consecutive sets (e.g., 

4 5 6), small distance sets (e.g., 1 3 4), and large distance sets (e.g., 1 4 7). The major 

findings from ordinality studies are that 1) ordinal processing is a strong predictor of 

arithmetic (Goffin & Ansari, 2016; Sasanguie et al., 2017; Sasanguie & Vos, 2018; Vogel 

et al., 2019; Vos et al., 2017), 2) ordinality is neurally (Lyons & Beilock, 2013) and 

behaviorally distinct from cardinality, with a notable, unique response time effect 

(Turconi et al., 2006; Vogel et al., 2019, 2021). 

3.1.2 Ordinality and arithmetic 

 Likely the reason that ordinality has garnered much attention over the past decade 

is because of its relation with arithmetic. A few theories have been put forward as to why 
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ordinality relates to arithmetic, but there does not appear to be a strong consensus. One 

common theory is that something in domain-general ordinality, rather than number-

specific ordinal judgment, shares processes with arithmetic. In several studies with adults 

and children, models explaining arithmetic performance using alphabetic ordinal 

judgement (e.g., C D E) and month ordinal judgment (e.g., March April May) did not 

gain significant explanatory power after adding numerical OJ (Morsanyi et al., 2017; 

O’Connor et al., 2018; Vos et al., 2017). This, however, was contradicted by Vogel and 

colleagues (2017), who found that numerical OJ was a significant explanatory factor 

above and beyond the non-numerical ordinal performance. Sasanguie and colleagues 

(2017) posited that these relations reflect not ordinality, per se, but the ease of access to 

concepts stored in long-term memory (LTM). Sequences like “1 2 3” are highly 

overlearned compared to unordered numbers. On the other hand, Morsanyi and 

colleagues (2017) suggested that inhibition plays a (partial) role in the relationship 

between ordinal processing and arithmetic. To my knowledge, the only study exploring 

the relationship between ordinality and inhibition was conducted by Goffin and Ansari 

(2016), who found that performance on a color-word Stroop task shared variance with 

response times on OJ in predicting math achievement, suggesting some overlap between 

inhibitory processes and ordinal thinking. 

 If ordinality’s relation to arithmetic is a function of access to long-term memory, 

then it may not relate to MA. MA is not typically characterized by difficulties with long-

term memory. However, MA’s effect on long-term memory has largely been tested in 

one way: simple arithmetic. Adults with high MA show no or minimal differences 

compared to low MA when performing and verifying single-digit arithmetic problems 
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(Ashcraft & Faust, 1994; Ashcraft & Kirk, 2001b; Faust, 1996). Thus, if long-term 

memory alone underlies the relation between ordinality and arithmetic, then we would 

not predict relations between the two and MA. On the other hand, difficulties with 

inhibition is a hallmark of math anxiety (Eysenck et al., 2007; Rubinsten et al., 2015; 

Suárez-Pellicioni et al., 2015). As such, if inhibition is a mechanism by which ordinality 

relates to arithmetic, then we should see relations between ordinality, arithmetic, and 

math anxiety. 

3.1.3 Reverse distance effects 

 The major distinction between cardinal and ordinal processing appears in the 

response times to each task. When asked to judge which of a pair of numbers is larger, 

participants demonstrate a distance effect. It takes longer to judge the cardinality of close 

numbers (e.g., 4 5) compared to far numbers (e.g., 3 9; Moyer & Landauer, 1967; 

Turconi et al., 2006; Vogel et al., 2021). The mechanism underlying this is thought to be 

related to the activation of overlapping magnitudes, where it takes longer to distinguish 

between the overlap to form a judgement and is called a canonical distance effect (CDE; 

Maloney et al., 2010; Piazza et al., 2004). On the other hand, when asked to judge the 

order of a set of numbers, the fastest responses are to close numbers (e.g., 3 4 5) 

compared to far numbers (e.g., 1 3 7; Lyons & Ansari, 2015; Turconi et al., 2006; Vogel 

et al., 2019). This has been named the reverse distance effect (RDE) and has been called 

the hallmark of ordinal processing (Lyons et al., 2016). 

There is not yet consensus on what mechanism underlies RDEs. One initial 

characterization is that the RDE reflects movement along the number line (Franklin & 

Jonides, 2009; Turconi et al., 2006). This can be considered an analogue movement, 
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where the time taken to respond directly reflects the distance between numbers. 

Consecutive sets make fewer steps then large-distance sets, resulting in the RDE. A 

second mechanism that has been receiving mounting evidence is that the RDE represents 

retrieval from long term memory (Sasanguie & Vos, 2018; Sella et al., 2020; Vos et al., 

2017). Nearly all people are trained extensively with the counting sequence (“one, two 

three”). Therefore, judging the order of a consecutive triad is as simple as matching the 

pattern of an overlearned sequence, resulting in a much faster recognition of order than a 

non-overlearned (large-distance) set. The latter hypothesis has become the preferred 

explanation because people are faster to respond to more familiar sequences over less 

familiar (1 2 3 vs 5 6 7; 5 10 15 vs 1 4 7; LeFevre & Bisanz, 1986; Sella et al., 2020), and 

because responses to small-distance unordered triads tend to show distance effects 

instead of RDE (Vos et al., 2021). 

 In relation to math anxiety, the reverse distance effect raises some interesting 

questions. Chief among them is how individual differences in MA correspond to 

individual differences in RDE. Vogel and colleagues (2021) used Bayesian modeling to 

estimate each individual’s RDE in a large (n = 397 sample), for the first time. The model 

revealed that the majority of the sample (52%) showed no strong evidence for a direction 

in their distance effect, while 42% showed evidence of an RDE. The remainder of the 

sample (5%) showed a canonical distance effect. They attribute this qualitative difference 

to the possibility that participants may use different strategies to solve OJ (Vogel et al., 

2021). It has been established that those with high MA are more likely to choose less 

effective strategies when performing arithmetic (Ashkenazi & Najjar, 2018). Thus, the 

inconsistent presence of RDE may systematically relate to MA within the sample. If this 



 

 50 

is the case, then we might see the RDE increasing (i.e., faster responses in these 

particular trials) as math anxiety decreases.  

 On the other hand, as mentioned above, MA is not typically associated with 

difficulties in LTM. If the RDE is the result of access to LTM (as opposed to strategy 

choice), then we might not expect any relation between RDE and MA, which would 

appear as similar patterns of classification as in the results of Vogel and colleagues 

(2021). 

3.1.4 Ordinal processing and math anxiety 

To date, only one study has systematically compared ordinal processing on different 

levels of math anxiety. Colomé and Núñez-Peña (2021) created groups from extreme MA 

scores and had them complete an ordinal judgement task. They found no effect of MA in 

overall response time for ordered trials, nor did they find differences in RDEs measured 

by response time between the high and low MA groups (i.e., no main effect or 

interactions for MA). It should, however, be noted that they calculated RDEs by 

subtracting response times of balanced sets (e.g., 3 5 7) from consecutive sets (e.g., 4 5 

6). Lyons and Beilock (2009) found that those with high working memory also showed 

an RDE when comparing balanced sets (e.g., 3 5 7; where the distance between each 

number is the same) to unbalanced sets (e.g., 1 3 8). Therefore, Colomé and Núñez-

Peña’s (2021) RDE calculation (3 5 7 vs 1 2 3, or balanced vs consecutive) may have 

found no RDE because they were not comparing to response times in unbalanced sets. 

Where accuracy is concerned, Colomé and Núñez-Peña (2021) showed that the high MA 

group was significantly less accurate at accepting ordered consecutive triads, and that 

they were significantly less accurate at rejecting unordered sequences where the violation 
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occurred in the middle position (e.g., 3 1 7) compared to the right position (e.g., 4 5 3). 

The authors interpreted their results as math anxiety having only mild effects on ordinal 

processing, mostly being the result of difficulties with cognitive flexibility (failure to 

switch or inhibit strategy choices), rather than impaired ordinal processing (Colomé & 

Núñez-Peña, 2021). It is strange, however, that they found no effect on RT among 

ordered sets, as the attentional control theory suggests that efficiency would be impaired 

in MA (Eysenck et al., 2007). One explanation is that the effect of MA on ordinal 

processing efficiency is too small to be detected in Colomé and Núñez-Peña’s (2021) 

sample (n = 20 for each group). 

3.1.5 The present study 

Although Colomé and Núñez-Peña (2021) provided initial characterization of 

math anxiety’s relation to ordinality, the present study aims to expand on it in several 

directions. We ran an online, unmoderated version of ordinal judgement. Our study adds 

two major components: a letter ordinal judgement task and a timed arithmetic test. 

Letter ordinal judgement will help us understand the relations between ordinality 

and math anxiety by addressing the confound of numerical ordinality and symbolic 

number process. By definition, math anxiety is an anxiety specific to mathematics. Often, 

when comparing math anxiety’s effect on performance, researchers contrast language 

tasks to demonstrate that specificity (e.g., analogies: Pizzie et al., 2020). These studies 

often show unimpaired performance in the language tasks with impaired performance in 

the math tasks. Ordinality, however, offers a more like comparison, as we are capable of 

judging the order of many types of stimuli (e.g., numbers, letters: A B C, months: May 
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June July). We take advantage of this facet to test the hypothesis of math anxiety’s 

specificity to math in light of domain-general ordinal processing. 

H1: If the underlying ordinal representations are impaired in those with high MA, 

then performance on OJ with letters will resemble performance on OJ with 

numbers. 

H2: If math anxiety affects performance of symbolic number manipulation (i.e., as 

an anxiety specific to mathematics, as explained by Eysenck and colleague’s 

(2004) attentional control theory), then we will see performance deficits (e.g., 

slower RT, lower accuracy) on only OJ with numbers. 

 It is unlikely that we will see no effects of MA in ordinal judgement, in any case, 

so we expect one of the above hypotheses to hold through the remainder of the analyses. 

Then, there is the question of how math anxiety affects overall ordinal performance: 

H3: Based on Eysenck and colleague's (2007) attentional control theory and 

Colomé and Núñez-Peña (2021), we hypothesize small, but significant relations 

between MA, accuracy, and response time across trials. 

 Colomé and Núñez-Peña (2021) found that the high MA group was significantly 

slower to reject triads that were unordered based off the middle position (D2) compared 

to the right position (D3). They attributed this finding to cognitive control: those with 

high MA needed to process the entire triad each time, while those with low MA could 

cease and provide an answer upon reviewing the second number. There is no reason to 

believe that this effect would fail to replicate, as there are several studies demonstrating 

those with high MA choosing ineffective strategies for mathematical problems 



 

 53 

(Ashkenazi & Najjar, 2018), and difficulties with cognitive control (Suárez-Pellicioni et 

al., 2013). 

H4: If math anxiety relates to a failure to effectively choose a cognitive strategy, 

then they will perform slower and/or less accurately on D2 compared to D3 

problems. 

On the question of the reverse distance effect, we aim to follow the procedures of 

Vogel, Faulkenberry, and Grabner (2021) in modelling individual differences in RDE and 

extend these findings to the realm of math anxiety and ordinal judgement with letters. 

Although Colomé and Núñez-Peña (2021) found no relation between MA and RDE, we 

collect a larger sample and employ more sensitive techniques that may shed light on 

whether any such relations exist. 

H5A: If the inconsistencies in individual differences in RDE reflect differing 

strategy choices (Vogel et al., 2021), then we may see systematic relations 

between MA and RDE. 

H5B: However, if the RDE is a function of recognizing information stored in long-

term memory, then we would not expect to see relations between MA and RDE. 

Lastly, there is the matter of relations between ordinal performance, math anxiety, 

and arithmetic. There is no prior literature characterizing these relations, but there is 

plenty of evidence relating ordinality to arithmetic (Lyons et al., 2014, 2016; Lyons & 

Ansari, 2015b; Sasanguie et al., 2017; Sasanguie & Vos, 2018; Vogel et al., 2017; Vos et 

al., 2017), as well as math anxiety to arithmetic (Barroso et al., 2020; Hembree, 1990; X. 

Ma & Xu, 2004). Thus, we can test mediation models to tease apart the mechanisms by 

which the three variables may relate. 
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H6A: If ordinality relates to arithmetic via inhibition, then MA will partially or 

fully mediate the relation between ordinality and arithmetic. 

H6B: If ordinality relates to arithmetic via long-term memory, then MA will not 

mediate the relation between ordinality and arithmetic. 

 We predict that ordinality will partially mediate the relation between MA and 

arithmetic, but it is more difficult to tease apart what may be the mechanism underlying 

that relation using a simple mediation model, but we might find relations using varying 

measures of ordinality.  

H9: If MA relates to arithmetic via attentional mechanisms specific to working 

with numbers (e.g., ACT; Eysenck et al., 2007), then performance on number OJ, 

but not letter OJ, will mediate the relation between MA and arithmetic 

H10: If MA relates to arithmetic via strategy choice, then individual performance 

differences between D2 and D3 trials will mediate the relation between MA and 

arithmetic. 

H11: If MA relates to arithmetic performance via impaired underlying cognitive 

representations, then both letter and number OJ performance will mediate the 

relation between MA and arithmetic. 

By using a mixture of analytical tools and methods, we aim to provide a deep 

understanding of math anxiety’s relation to ordinality. 
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3.2 Methods 

3.2.1 Participants 

Participants (n = 284) were recruited from UMass Amherst using the SONA 

recruitment system. They received course credit for their participation. The participant 

group ranged in age (range = 18–26) and race (Asian = 50, Black or African American = 

20, Native Hawaiian or Pacific Islander = 1, White = 146). Some declined to provide 

their racial identification (n = 2), some identified as multiracial (n = 12) and 19 identified 

as Hispanic or Latino. For the gender breakdown, 51 participants identified as male, 224 

identified as female, 2 identified as non-binary or third gender, and 6 declined to identify 

a gender. Because this was an online, unmoderated study, we made conservative decision 

about standards for the final sample. Participants were dropped because they had 

accuracy below 60% (n = 27) or had response times less than 250 ms in over 10% of 

trials (n = 17). The final sample included 255 participants (some participants met multiple 

exclusionary criteria). 

3.2.2 Procedure 

 Participants completed all three tasks in one experimental session that lasted 

approximately 30 minutes but was self-paced. They were instructed to complete the study 

in a quiet environment and free from distractions. Stimuli were generated with the 

PsychoPy program (Peirce et al., 2019) and the experiment was hosted on Pavlovia 

webservers. Consent and demographic information were collected through Qualtrics prior 

to beginning the experiment. Participants were randomly assigned to counterbalanced 

order of conditions. One half was assigned to complete numerical OJ first, the other half 
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completed letter OJ first. The first ordinal judgement was followed by the arithmetic 

block. After the arithmetic task, participants completed the version of OJ that they had 

not seen in the first block. A practice block preceded each block of OJ using stimulus 

combinations not shown in the real trials. Participants received feedback on their answers 

in the practice. All procedures were approved by the University of Massachusetts 

Institutional Review Board (IRB). 

3.2.3 Abbreviated Math Anxiety Scale 

 Prior to starting the experiment, participants completed the 9-item Abbreviated 

Math Anxiety Scale (Hopko et al., 2003). This scale presents participants with various 

math situations (e.g., “being given a pop quiz in math class”) and asks them to judge their 

anxiety in these situations from 1 (low anxiety) to 5 (high anxiety). This survey has high 

internal consistency (cronbach’s alpha = .90) and test-retest reliability (r = .85). Each 

response was summed to provide an individual’s total score. Participants (n = 2) who left 

questions blank had their scores reweighted based on the number of questions left blank. 

3.2.4 Depression-Anxiety-Stress Scale (Anxiety subscale) 

 After completing the AMAS, participants were presented with Depression-

Anxiety-Stress Scale (DASS; Parkitny & McAuley, 2010). Only the seven items related 

to the anxiety subscale were used. Participants were instructed to indicate on a scale of 1 

(“did not apply to me at all”) to 4 (“applied to me very much, or most of the time”) how 

much the statement applied to them over the past week. An example situation is “I 

experienced trembling (e.g., in the hands).” The anxiety subscale survey is consistent 

(Cronbach’s alpha = .84-.92) and reliable (Brown et al., 1997) 
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3.2.5 Number ordinal judgement 

 In each trial, participants were presented with a fixation cross in the center of the 

screen for 1.5 s. The fixation cross disappeared and was replaced with three numbers 

presented in the center of the screen with equal distance between each number. Each 

number was presented in Arial font, and the size was scaled to not exceed a maximum 

height of 5% of the screen. They remained on screen for 3.5 s or until a response was 

given. The participants responded with a key press “q” or “p” to answer the yes/no 

question: “are the three number presented in ascending order from left to right?” The 

keys to indicate answers were counterbalanced across participant.  

 The stimuli consisted of the numbers 1-9, and trials were randomly pulled in 

equal amounts from pre-determined lists. Triads were formed within a 2x3 design. They 

could either be ordered (e.g., 3 4 5) or unordered (e.g., 4 5 3). There were three levels of 

distance. Triads could be consecutive (e.g., 3 4 5), have a small distance between them 

equal to max − min = 3 (e.g., 2 4 5), or have a large distance between them equal to 

max − min = 7 (e.g., 1 3 8). All possible configurations of stimuli were used, with equal 

appearance of each condition in a block. (Note that ordered/long distance triads repeated 

specific stimuli more often due to the lower number of configurations, however, this is 

unlikely to affect results, as participants were not given feedback on their answers.) 

Response time and accuracy were recorded. 

3.2.6 Letter ordinal judgement 

 The letter OJ block matched the number OJ block in all ways except for the 

specific stimuli. The letters A-I replaced the numbers based on their corresponding 

placement in the letter sequence (i.e., 1 became A, 2 became B, etc.). 
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3.2.7 Arithmetic 

 Between blocks of OJ, participants completed a timed arithmetic test. They were 

presented with two- and three-digit addition and subtraction problems. Problems were 

randomly pulled from a pre-generated list and presented continuously for 240 s. They 

were presented in a vertical format in the center of the screen. Participants inputted 

answers into a text box and pressed the return key to confirm. They were instructed to 

answer as quickly and as accurately as possible. The total number of correct answers was 

measured. 

3.3 Results 

Due to the high sample size and large number of analyses proposed in this study, 

our threshold for statistical significance will be set at a Bonferroni-corrected level of p < 

.005. 

A histogram of MA scores is presented in figure 3.1. MA data was collected as an 

ordinal scale. However, prior studies (e.g., Colomé & Núñez-Peña, 2021) treat math 

anxiety as a categorical variable. Thus, to keep consistent with the previous literature 

while running an unmonitored study, we grouped data into MA tertiles for most of the 

following analyses. Tertile boundaries are marked as vertical lines in figure 3.1. Note that 

tertiles were created based off the entire sample and are therefore variable in sample size 

due to uneven exclusion. Descriptive statistics for the task outcomes are presented in 

table 3.1, including both by tertile as well as overall statistics. 
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3.3.1 Numerical ordinal judgement 

 To assess the relationship between MA and performance on numerical ordinal 

judgement, we ran two 2×3×3 ANOVAs with order (levels: ordered vs unordered) and 

distance (levels: consecutive vs short vs long) as within-subject factors and MA status 

(levels: bottom vs middle vs top tertile) as a between-subjects factor. The dependent 

variables for these ANOVAs are response time and accuracy. The interactions between 

MA and the within-subjects variables are the primary measure of interest. All following 

ANOVAs were tested for violations of the assumption of sphericity and normality, and 

Greenhouse-Geisser values are reported, where relevant. 

3.3.2 Numerical ordinal judgment: Response time 

First, the results for the analysis on response times can be found in table 3.2. The 

analyses showed a main effect of MA tertile, largely driven by the low MA group being 

faster than the medium MA group (t = -3.84, pTukey < .001) and marginally driven by the 

relationship between low and high MA (t = -2.59, pTukey = .027). The relationship 

between medium and high MA was non-significant (t = 1.39, pTukey = .348). Those with 

low MA responded significantly faster compared to those with medium MA. The 

difference in RT between those with low MA and high MA did not meet our standards 

for significance (see figure 3.2). The interaction between distance and tertile also did not 

meet our standards for significant (p = .024, ηp
2 = .022), and there were no other 

significant interactions between MA and other conditions in response time. Of note, the 

interaction between tertile, distance, and order (i.e., demonstrating a reverse distance 

effect) was not significant (see figure 3.3). 
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3.3.3 Numerical ordinal judgment: Accuracy 

 Next, the ANOVA on numerical ordinal judgement accuracy did not show 

significant main effects or interactions for MA. The assumption of sphericity was not met 

for the distance (W = .865, p < .001) and order (W = .853, p < .001) factors, so 

Greenhouse-Geisser corrected values were used. Regardless, the distance × order × math 

anxiety status interaction did not meet our criterion for significance (p = .017, ηp
2 = .025) 

and the remainder of MA analyses were non-significant (see table 3.3). 

3.3.4 Letter ordinal judgement: Response times and accuracy 

 To test the specificity of ordinal cognition in MA to numerical stimuli, we ran the 

same analyses using the letter ordinal judgement responses. First, the test of response 

times to letter ordinal judgement showed no significant main effects or interactions 

related to MA (see table 3.4). The ANOVA testing accuracy also showed no significant 

main effects or interactions related to response time (see table 3.5) 

3.3.5 Violation location analyses 

 Colomé and Núñez-Peña (2021) demonstrated that those with higher math anxiety 

were worse at determining that triads were unordered when the violation occurred in the 

middle (D2) position (e.g., 5 2 3, as one can determine the answer after seeing “2”). MA 

did not have an effect on accuracy for D3 trials (e.g., 5 6 3). To replicate and extend this 

effect, we ran four 3 × 3 ANOVAs with violation location (3 levels: no violation, D2, 

D3) and math anxiety using both response time and accuracy as dependent variables in 

both numerical and letter ordinal judgement tasks. 
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3.3.6 Violation location: Numerical OJ accuracy 

 First, we tested the hypothesis that those with high MA would be less accurate in 

rejecting trials when the violation occurs on D2 trials. The analysis of interest is the 

interaction between MA and violation location, which was found to be not significant 

(see table 3.6). Most participants appear to be performing at ceiling on D2 trials across all 

values of math anxiety (see figure 3.4). 

3.3.7 Violation location: Numerical OJ response time 

 Next, we investigated the relation between MA and violation location on response 

time for numerical OJ. Here, we found a main effect for tertile, but not an interaction (see 

table 3.7). Note that this main effect is identical to the one reported above (see Numerical 

ordinal judgement: Response times) because all trials were entered into both analyses. 

Therefore, the follow-up contrasts are also identical (see figure 3.2). 

3.3.8 Violation location: Letter OJ response times and accuracy 

 We also ran ANOVAs assessing accuracy and response time differences due to 

violation location in letter OJ to test whether MA would relate to domain-general ordinal 

thinking or only numerical-specific ordinal thinking. Both analyses had non-significant 

interactions between MA and violation location (see table 3.8 for accuracy and table 3.9 

for response time). 

3.3.9 Bayesian estimation of reverse distance effect 

 Our analysis of response times by MA status did not show a significant Distance 

× Order × Tertile interaction (See Figure 3.3). In other words, there was no significant 
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difference apparent between low, medium, and high MA groups in in reverse distance 

effect, in line with Colomé and Núñez-Peña (2021). However, as we mentioned in the 

introduction, Colomé and Núñez-Peña (2021) may not have shown an RDE in their 

sample because of the calculation used. In addition, although we formed post-hoc MA 

groups in order to keep in line with the previous work, we collected continuous MA 

scores in order to provide a more fine-grained analysis where necessary. To this end, we 

ran Bayesian parameter estimation on our data to better understand individual differences 

in RDE in relation to MA, following the analyses of Vogel and colleagues (2021). The 

model is unconstrained, meaning that the estimation of an individual’s distance effect can 

vary across all possible values (i.e., be positive or negative): 

𝑀𝑢 ∶  𝜃𝑖  ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜈, 𝜂2) 

 This takes the observed data to estimate ν (mean) and η2 (variance) of the 

distribution of individual distance effects (θi). To estimate the distance effects 

themselves, all unordered trial data are excluded, and each ordered trial is categorized as 

being far (large or small) or close (consecutive) and produces an estimate for an 

individual’s RDE following the formula: 

𝑅𝐷𝐸 = 𝑅𝑇̅̅ ̅̅
𝐹𝑎𝑟 − 𝑅𝑇̅̅ ̅̅

𝐶𝑙𝑜𝑠𝑒 

 In addition to modelling the estimate of an individual’s RDE, an individual’s 

response is also categorized in one of three ways: positive (i.e., demonstrating a reverse 

distance effect in 75% of posterior samples), negative (i.e., demonstrating a canonical 

distance effect in 75% of posterior samples), or undecided (i.e., meeting neither 

threshold; Schnuerch et al., 2021; Vogel et al., 2021). 
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The same model was run twice: first with numerical OJ data, and then with letter 

OJ data. We followed this with crosstabs of the posterior sample calculation (i.e., counts 

of individuals categorized as positive, negative, or undecided) to provide a broad, 

qualitative view of the data, before following up with Bayesian Pearson correlations 

(which allows calculation for the strength of evidence towards the null hypothesis) 

between distance effects and math anxiety as a scale (rather than categorical) variable. 

3.3.10 Results of Bayesian RDE model: 

 The crosstabs of individuals whose data was categorized as a canonical distance 

effect (CDE), a reverse distance effect (RDE), or as insufficient evidence either way 

(undecided) for both numerical and letter OJ are shown in table 3.10. For a quantitative 

approach, we calculated Bayes Factors for Pearson correlations between math anxiety 

and effect estimates from the model. There was strong evidence for there being no 

relation between RDE effect size and MA in both numerical (r = .02, BF01 = 11.9) and 

letter (r = -.02, BF01 = 12.3) ordinal judgement. 

3.3.11 Mediation modelling of arithmetic performance 

 The last question we sought to answer was how ordinality, math anxiety and 

arithmetic might relate. Two of our more specific hypotheses were found to be 

unsupported (H10, H11), as we found no relation between math anxiety and letter ordinal 

judgement, and no relation between math anxiety and performance on trials where the 

violation occurred in the middle or right position. Thus, there is insufficient justification 

to run mediation models with those measures. The remaining question is whether MA 

mediates the relation between numerical ordinal response times and arithmetic 
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performance and whether response times mediate the relation between MA and 

arithmetic performances. To this end, we ran 2 mediation models, each with 1000 sample 

bootstrap to estimate standard errors. First, we tested the relationship between ordinal 

judgement RTs and arithmetic performance, as mediated by math anxiety. We found that 

the mediation was not significant (see table 3.11). Next, when testing to find whether 

ordinal judgment RTs mediated the relation between MA and arithmetic, we found that 

RTs did not meet our threshold for significance (see table 3.12). 

3.4 Discussion 

 We recruited a sample with a natural distribution of self-reported math anxiety to 

complete an ordinal judgement (“are these stimuli in order, from left to right?”) task with 

both numerical and letter stimuli and assessed their accuracy and response times. We also 

asked them to complete a timed arithmetic test and used these data together to assess 

MA’s relationship to domain-general ordinal processing, number-specific ordinal 

processing, and the reverse distance effect. Ultimately, we found that math anxiety status 

only related to a main effect in response time to numerical ordinal judgement (i.e., slower 

response times for medium MA compared to low MA). Some analyses did not meet our 

threshold for significance but would have met the conventional threshold, including 1) 

that those with high MA trended towards being slower to respond to numerical OJ 

compared to the low MA group (p = .027), 2) the 3-way interaction between MA × order 

× distance when analyzing accuracy of numerical ordinal judgement (p = .017), and 3) 

the trend towards ordinal judgement RTs mediating the relationship between math 

anxiety and arithmetic (p = .016). 
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 The data support some of our hypotheses. First, we found that MA related to RT 

only on the numerical OJ task, not with letters (H2; see tables 3.2 and 3.4). By definition, 

math anxiety is specific to math or processing numerical stimuli (Ashcraft, 2002; 

Rubinsten et al., 2015). However, this has often been tested by comparing performance 

on a math task (e.g., arithmetic) to a language task (e.g., analogies: Pizzie, McDermott, et 

al., 2020; Pizzie, Raman, et al., 2020; Pizzie & Kraemer, 2018, spelling: Choe et al., 

2019). These studies comparing math to language tasks show differences in performance, 

but the ordinal judgement paradigm afforded us the opportunity to test whether 

underlying cognitive processes (i.e., domain-general ordinality) was compromised in 

adults with math anxiety, following the reduced competency theory (Maloney, 2016). We 

found evidence for the hypothesis that math anxiety and ordinality are linked through 

numerical processes, as only numerical, and not letter, ordinal judgement related to MA.  

We see two possible explanations for this. The more likely explanation is that 

reviewing and contrasting numbers, a stimulus associated with anxiety in those with MA, 

was interfering with those with medium MA’s ability to complete the task. This evidence 

somewhat contradicts the reduced competency theory’s predictions. This is further 

supported by the fact that letter ordinality (i.e., domain-general ordinality) was entirely 

spared, indicating that domain-general ordinal representations are not a reduced 

competency in adults. A second explanation comes from work positing that numerical 

ordinality works of different cognitive substrates from letter ordinal judgement, as fronto-

parietal activity when performing OJ is strong for letter OJ but not for numerical OJ 

(Attout et al., 2021). It may be that numerical ordinality draws from strong connections 

between numbers (that are not present in the purely serial alphabetical list), which makes 
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numerical OJ easier, or it may be that attempting to discern the order within said serial 

list is more cognitively demanding (thus, resulting in greater neural activity) than 

drawing from the overlearned number sequence. Our data supports the possibility that 

connections between numbers are less developed in those with high MA, leading to 

slower responses, partially in line with the reduced competency theory. 

However, we believe this second explanation to be less likely than the association 

of anxiety and numerical stimuli because of the lack of relation between MA and reverse 

distance effects within numerical ordinal judgement. There were no qualitative 

differences among MA status and whether our Bayesian model estimated in each 

individual the presence of an RDE, a reversal of the RDE, or insufficient evidence to 

determine the presence of an RDE (see table 3.10). No MA tertile stood out in having a 

systematic difference from the other worthy of further investigation, and the quantitative 

relationship between RDE effect size estimation also showed strong evidence of there 

being no relation between RDE and MA. The existence of the RDE in the general 

population suggests that connections between numbers facilitates the retrieval of 

consecutive triads from long-term memory (Sasanguie & Vos, 2018; Sella et al., 2020; 

Vos et al., 2017). If this is true, then there are no differences between MA groups in 

connections between numbers (H5). Instead, we suggest that the lack of RDE may be due 

to those with MA not having a compromised long-term memory for numerical 

information (H6). This conclusion is furthered by the lack of effect for trials where the 

violation to order was located in the middle (D2) or right (D3) position (H4). We did not 

replicate the effect of Colomé and Núñez-Peña (2021), who suggested that those with 

high MA showed cognitive inflexibility, leading to worse accuracy on D2 trials. We have 
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no evidence that strategy differences between different levels of MA played a role in 

participants’ responses, and instead conclude that, under Eysenck and colleagues (2007), 

seeing numbers interfered with those with MA’s ability to efficiently deploy attentional 

resources when solving numerical ordinal judgement. 

 Next, we assessed the relation between ordinality, math anxiety, and arithmetic. 

Two of our proposed hypotheses surrounding mediation models were not supported 

because we found no differences between different levels of MA and strategy choice (D2 

and D3; H10) and letter OJ was not related to math anxiety (H11) and therefore had no 

grounds to test mediation. Thus, we have three hypotheses to test in mediation models: 

whether ordinality relates to arithmetic through inhibitory factors (MA as a partial/full 

mediator; H7), whether ordinality relates to arithmetic through long-term memory (MA 

does not mediate; H8), and a non-contested hypothesis that MA relates to arithmetic via 

attentional mechanisms specific to processing numbers (number OJ RT mediates relation 

between MA and arithmetic, but not letter OJ RT; H9). 

We found that one mediation model (ordinal judgement mediating MA) met the 

conventional threshold of p < .05, but it did not meet our stricter threshold of p < .005, 

while the other (MA mediating ordinal judgement) did was non-significant. At the very 

least, we find no evidence that MA mediates the relationship between numerical ordinal 

judgement and arithmetic. This is somewhat surprising, given that both ordinal 

judgement and arithmetic involve processing numbers, which is known to be affected in 

MA. However, because MA is not found to be a mediator, the relation between ordinality 

and arithmetic appears more dependent on cognitive processing that is unaffected by MA. 

These results suggest that ordinality relates to arithmetic by means of access to long-term 
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memory, as posited by Sasanguie and colleagues (2017). Long-term memory does not 

appear diminished in those with high MA when testing retrieval of simple arithmetic 

(Ashcraft & Faust, 1994; Faust, 1996) and is not posited as an effect in major theories 

such as ACT (Eysenck et al., 2007). Our evidence suggests that arithmetic and ordinal 

processing are linked through retrieval from long-term memory rather than an inhibition 

process. 

 On the other hand, ordinal judgement response times were a stronger mediator of 

the relation between MA and arithmetic. Although it did not meet our threshold for 

significance, all else is equal across the two mediation models. We did not find evidence 

that cognitive processes relate to math anxiety are a mechanism through which ordinality 

relates to arithmetic, but we have more evidence to suggest that ordinal processing 

contains mechanisms explaining the relationship between MA and arithmetic (H9). 

Moreover, this is in line with our conclusion above, that the best explanation for the 

slower responses in those with higher MA is that processing numbers interferes with the 

ability for people with MA to complete numerical tasks (in this case, numerical ordinal 

judgement and arithmetic). 

 Perhaps the most surprising finding, however, is the relationship between MA 

groups and performance. We formed post hoc groups based on sample characteristics, 

whereas many studies (e.g., Colomé & Núñez-Peña, 2021; Klados et al., 2017; Pizzie, 

Raman, et al., 2020; Suárez-Pellicioni et al., 2013) recruit high and low MA groups using 

extreme scores from larger samples. We made this decision because we ran a remote, 

unmoderated study, which afforded us the opportunity to collect a large sample across all 

levels of MA. Ultimately, our main finding that those with higher MA are slower to 
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respond in ordinal judgement was driven by the difference between low and medium 

MA, rather than between low and high MA. The low/high comparison did not meet our 

more stringent significance threshold, whereas the low/medium comparison did. This is 

counterintuitive, not just because medium levels of MA should have less of an effect than 

high levels of MA, but also because the relation between anxiety and performance is 

often an inverted u-shape, where having some anxiety relates to better performance than 

low anxiety (Martens & Landers, 1970; Yerkes & Dodson, 1908). Our results suggest 

that MA’s relation to cognition may resemble a logarithmic/exponential curve, where 

people with mild MA still experience the negative effects of anxiety. This is notable 

because MA is normally distributed in the adult population (Hart & Ganley, 2019), and 

the effects of mild MA are relatively unstudied due to the recruitment of individuals on 

the extreme ends of the distribution. 

 Altogether, these results align largely with previous literature and paint a picture 

where underlying ordinal processing is uncompromised in those with medium and high 

math anxiety. They suggest that processing numerical stimuli is more difficult for people 

with high MA, in line with literature where those with high MA were exposed to task-

irrelevant numerical stimuli (Hopko et al., 1998; Rubinsten et al., 2015). This is 

important because ordinality increasingly relates to math performance over the course of 

early schooling, which makes it a prime candidate for the reduced capacities theory. 

However, in contrast to that theory, our results suggest that ordinality likely does not 

constitute a reduced capacity, nor does it appear that adults with medium and high MA 

take different strategies to solve ordinal problems compared to those with low math 

anxiety. 
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CHAPTER 4 

 

ASSESSING COUNTING SEQUENCE REPRESENTATIONS AND PREPOTENT 

RESPONSES IN ADULTS WITH MATH ANXIETY 

4.1 Introduction 

Between prior literature and chapters 2 and 3, a wider picture is emerging about the 

relationship between underlying systems that support numerical processing and math 

anxiety. Altogether, we find little evidence to suggest that basic number skills relate to 

MA. Instead, performance-related deficits in adults seem to appear when they are 

presented with culturally identifiable “math,” as evidenced by chapter 2, where MA was 

unrelated to approximate arithmetic, and chapter 3, where MA was unrelated to domain-

general ordinality. That said, a key aspect of numerical development has not yet been 

fully explored: counting. Counting serves as the first step in developing the complex 

number system that adults intuitively use (Fuson, 1988; Gelman & Gallistel, 1986). To 

our knowledge, the relation between counting and MA has not been characterized beyond 

the finding that adults were slow to enumerate—a finding that was used to generate the 

reduced capacities theory (Maloney, 2016; Maloney et al., 2010). Furthermore, if the 

reduced capacities theory is not sufficient to explain differences in the relation between 

numerical task performance and MA in adults, then we should turn our attention to the 

ways that MA relates to more domain-general cognitive processing, as domain general 

processes such as attention and working memory have been consistently implicated in 

MA-related performance deficits (e.g., Pizzie et al., 2020). The aim of this chapter is to 

use a novel paradigm to explore two yet-unstudied aspects of math anxiety: counting 

processes and the inhibition of prepotent responses. 
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4.1.1 Counting processes 

 Chapter 2 introduced the ordinal judgement paradigm for understanding 

ordinality. However, there are some notable issues with using this task that require 

innovation to fully understand the nature of ordinal processing, especially related to math 

anxiety. Several math anxiety hypotheses in chapter 2 hinge on strategy choice. We 

believe that the discrepancies in response time between high and low MA groups are due 

to number processing, as the high MA group was the slowest to respond and the low MA 

group was the fastest to respond to numerical OJ trials. However, the idea that strategy 

choice plays a role is still plausible. This is because OJ is an opaque task. Researchers 

have made guesses as to how trials are being solved, such as fast-responders being 

effective at solving triads that are out of order after the middle number (e.g., 5 2 3). 

Colomé & Núñez-Peña (2021) found that those with high MA are worse at executing this 

effective strategy, but our data in chapter 2 did not replicate this effect. Furthermore, 

Vogel and colleagues (2021) suggest a strong effect of individual differences in solving 

consecutive ordinal judgement problems, and Vos and colleagues (2021) found strong 

effects of the composition of stimulus triads on responses. Taken together, this suggests 

that OJ contains multiple subtypes of problems. It is plausible, therefore, that this 

heterogeneity within the task, due to unconscious strategy and due to the stimuli 

themselves, may make it difficult to tease apart effects due to MA, especially if those 

effects are small. Because of this, we propose an alternative task that is based on the 

ordinal process of counting but does not require strategic thinking. 

 Counting is a fundamentally ordinal process. we argued in Zaleznik and Park 

(2021) that counting is ordinal, but not all ordinality is counting. Ordinal judgement 
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triads can be characterized as “in-order” or “out-of-order” consistently, even when they 

do not match a counting sequence (i.e., 4 5 8 is “in-order” but would be considered as an 

error while counting). Further evidence of this comes from the existence of the reverse 

distance effect (RDE) where triads that match the count sequence are responded to more 

quickly (Lyons & Ansari, 2015b, 2015a; Sasanguie & Vos, 2018; Vogel et al., 2021). It 

was initially proposed that ordinal judgement triads were solved through mentally 

representing an analogue number line (Turconi et al., 2006) such that RDEs represented 

less movement. However, more recent evidence suggests that direct recognition of these 

counting sequences underlies the fast responses in ordinal judgement tasks (Vos et al., 

2021). 

 In relation to math anxiety, counting is relatively unstudied. To our knowledge, 

the only study measuring responses to counting sequences in high MA individuals was 

performed by Maloney and colleagues (2010). The authors asked participants to 

enumerate squares that appeared on a computer screen and found that the high MA group 

responded more slowly than the low MA group as the quantities to enumerate grew larger 

(MA group × magnitude interaction.) This effect did not represent a speed-accuracy 

trade-off, and it was not present when accounting for working memory. The authors 

suggested that MA affects enumeration by means of the depletion of working memory 

resources. However, they stressed that this latter finding did not fully align with the 

literature, as the WM capacities should be equivalent across low and high MA groups 

when performing this basic task (Maloney, Risko, Ansari, et al., 2010). These finding 

were taken as evidence that numerical capacities could be compromised at a very early 

age and lead to the development of math anxiety (Maloney, 2016; Maloney, Risko, 
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Ansari, et al., 2010). Indeed, counting is fundamental to mathematical development, as 

learning to say the words “one, two, three,” associate them with respective magnitudes, 

and state them in a stable order is the first step to understanding the base-10 number 

system that most adults can access with little difficulty (S. Carey, 2004; Fuson, 1988; 

Gelman & Gallistel, 1986). Maloney (2016) connects difficulty with counting to later 

math anxiety through arithmetic strategies, such as counting up with fingers (Baroody, 

1987). 

However, to my knowledge, no study has directly followed up on the findings of 

Maloney and colleagues (2010) to better understand why the high MA group was slower 

to enumerate. There are two possibilities. First, that differences are explained entirely by 

working memory capacity, as discussed above. Second, adults with high MA could have 

differences in their mental representations of counting sequences compared to their low 

MA counterparts. Understanding how count sequence representation may be affected in 

those with MA is worthy of further study for this reason, and no study has followed up on 

math anxious adults’ count sequence representations. 

4.1.2 Inhibition 

Similarly to counting sequences, inhibition is an aspect of math anxiety that has been 

measured in only a few different ways. Eysenck and colleagues (2007) hypothesized in 

Attentional Control Theory (ACT) that inhibition is a cognitive function that is affected 

by anxiety, and that difficulties inhibiting is a primary reason for lower efficiency (e.g., 

slower response times) in performance. Nigg (2000) developed a taxonomy for 

inhibition, which had previously not been well operationalized. The author grouped 

effortful inhibition into four categories: interference control, cognitive inhibition, 
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behavioral inhibition, and oculomotor inhibition. Relevant to the present project are 

interference control—the ability to prevent competing resources, stimuli, or processes 

from interfering with performance—and behavioral control, which is the ability to 

suppress a prepotent response (Nigg, 2000). 

Interference control has been established as being affected in math anxiety. By and 

large, inhibition under ACT has been measured as the effect of distracting stimuli, and 

how the presence of such stimuli interferes with performance in those with high anxiety. 

For example, people with high math anxiety struggle in a numerical Stroop task, which 

requires diverting attention from distracting factors (i.e., the physical size of a printed 

Arabic numeral) to complete the task (i.e., choose the larger magnitude; Suárez-Pellicioni 

et al., 2014). In addition, an early study of inhibition showed that those with high math 

anxiety tend to dwell on irrelevant mathematical phrases embedded in a passage, slowing 

down reading time (Hopko et al., 1998). 

However, behavioral control (suppressing a prepotent response) has not yet been 

adequately measured. Some studies (Juanchich et al., 2019; Maloney & Retanal, 2020; 

Morsanyi et al., 2014) have measured the effect of math anxiety related to performance 

on Cognitive Reflections Test (CRT). The CRT is a series of arithmetic problems where 

the reader must inhibit an easy answer in order to correctly answer the problem (e.g., “A 

ball and a bat cost $1.10. The bat costs $1 more than the ball. How much does the ball 

cost?”) It could very well be that those with high MA perform poorly on this task because 

they choose the intuitive, incorrect answer ($0.10 in the above example) instead of the 

unintuitive, correct answer ($0.05 in the above example). However, we argue that this 

task is a poor measure of prepotent responses in those with high MA. The relationship 
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between MA and arithmetic is well established (Hembree, 1990; X. Ma, 1999). 

Furthermore, Juanchich and colleagues (2019) found that women perform worse on this 

task because of computational errors, not a lack of reflection, and their performance is 

partially explained by MA status. It is difficult to disentangle poor performance on this 

task as being due to failure to inhibit the easy response or being due to miscalculating 

arithmetic problems in a high MA population.  

Understanding the relations between prepotent responses and math anxiety is critical 

for math anxiety because inhibiting an incorrect, but easily accessed response is 

necessary to perform correctly. For example. Ashkenazi and Najjar (2018) demonstrated 

that people with high MA tend to choose inefficient arithmetic strategy choices to solve 

math problems. That inefficient strategy choice could be, in part, due to it being their 

first, uninhibited response. Overall, the relation between prepotent responses and MA has 

yet to be fully explored, and understanding mechanisms related to early stages of 

decision-making can help further understanding of math anxiety. 

4.1.3 The present study 

To better assess the relation between math anxiety, count sequence representation, 

and the inhibition of prepotent responses, we have developed a new counting verification 

task that involves no arithmetic calculation or strategy. The task resembles a Go/No-Go 

paradigm, requiring a button press response on viewing one type of stimulus, and 

withholding response when seeing a different type of stimulus. Typically, Go/No-Go 

tasks present a single stimulus in each trial. However, to test ordinal representations, we 

include counting sequences prior to the test stimulus. we systematically vary the 

preceding stimuli such that there can be one, two, or three numbers appearing prior to the 
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test stimulus (trial length). The test stimulus varied in distance and was always either a) 

the next number in the counting sequence (all participants), b) one greater than the next 

number in the sequence (50% of participants), or c) four greater than the next number 

(50% of participants). The between-subjects factor of distance was counterbalanced 

between participants. During a single session, each participant completed blocks in two 

conditions, a “go on consecutive” block, and a “go on non-consecutive” block, which 

were counterbalanced for order. Each block had an equal number of consecutive and non-

consecutive trials (see figure 4.1). In addition, participants completed a timed arithmetic 

task and a simple response time task that were not relevant to the present study. 

From the Go/No-go, we have analyzed response time and accuracy. We propose that 

both counting sequence representations and inhibition are primary drivers of behavior in 

this design. Because of the framing of the instructions, trials that match the counting 

sequence (“Go on Consecutive”) and trials that do not match the counting sequence (“Go 

on Non-consecutive”) differ in the amount of conscious count sequence processing 

required to answer. When the target matches the prediction (e.g., “11, 12, 13”), 

participants are likely to engage in “unconscious counting” because the counting 

sequence aligns with highly trained sequences that show a stronger automatic component. 

When the target does not match the prediction (e.g., “11, 12, 16”), they engage more 

conscious processes to “Go” when prompted, as evidenced by neural responses to a non-

consecutive sequence (see Zaleznik & Park, 2021). 

Therefore, we hypothesize that if MA relates to weak counting representations 

broadly, then worse performance (lower accuracy and slower RT) on both conditions will 

relate to higher MA. On the other hand, if MA relates to unconscious or conscious count 
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sequence processing, only the “Go on Consecutive” or” Go on Non-consecutive” trials, 

respectively, will be related to MA. 

The second driver of behavior is inhibition. Inhibition clearly plays a role at any point 

where the prediction does not match the target. As mentioned above, it is not established 

how math anxiety relates to inhibition of prepotent responses, and so this constitutes an 

exploratory analysis. Perhaps the closest analogue is that a small number of studies have 

proposed that anxiety reduces errors of commission and increases errors of omission in a 

Sustained Attention to Response Task (SART), and that anxiety relates to slightly 

(sometimes non-significantly) slower response times (Aylward et al., 2017; Grillon et al., 

2017; Robinson et al., 2013; Wilson et al., 2015). However, it should be noted that some 

of these studies induced state anxiety with electrical shock (e.g., Aylward et al., 2017; 

Grillon et al., 2017; Robinson et al., 2013), whereas the anxiety-inducing stimuli are 

inherent to this design. Therefore, inducing anxiety from task-relevant means could lead 

to the opposite effect. One possibility is that MA relates to a willingness to accept the 

prepotent response (either through difficulty inhibiting or avoidance in processing 

numerical stimuli). In this case, higher MA would relate to reduced accuracy (both higher 

omission and commission errors) and faster RT. The other possibility is that MA, like 

anxiety in prior literature, relates to an improvement in ability to withhold responses. 

Here, higher MA will relate to fewer errors of commission and slower RT. 

Secondary to these hypotheses about counting sequence representations and 

inhibition is the question about distance effects in this design. Because the design is new, 

it is not yet known whether results will show canonical or reverse distance effects. 

Reverse distance effects appear in OJ experiments likely because participants directly 
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recognize simultaneously presented numbers as matching the counting sequence. 

However, the RDE inconsistently appears in ordered trials with a small distance, possibly 

due to the makeup of the trial list (Vos et al., 2021). That is to say, sometimes small 

distance triads (e.g., 1 3 4) relate to quick responses, as in an RDE. Other times, small 

distance triads relate to slow responses, like a canonical distance effect. Vos and 

colleagues (2021) found that these relate to using ordinal and cardinal strategies, 

respectively, and that the strategy used depends on context. Given this, one possibility is 

that math anxiety might affect the type of distance effect seen in “Go on Non-

consecutive” trials, depending on distance. For example, the high MA group may be 

more likely to use a cardinal strategy instead of relying on counting sequence 

representation (if it is impaired). In this case, we may see canonical distance effects in the 

high MA group and reverse distance effects in the low MA group. However, there is no 

firm reason to expect differences and the inclusion of this variable in the design is for a 

more exploratory analysis.  

4.3 Methods 

4.3.1 Participants 

Participants included 103 UMass Amherst students, recruited through the SONA 

recruitment system in exchange for course credit. Their ages ranged from 18–29 years 

old, and 74 identified as Female, 25 identified as Male, and 1 identified as Non-binary. 

For racial identity, 24 identified as Asian, 6 identified as Black or African American, 7 

identified as Hispanic/Latino, and 63 identified as White or Caucasian. The remainder 

identified as mixed-race, including 4 selecting both White/Asian, 1 selecting 
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Black/White/Pacific Islander, and the last (n = 1) did not specify beyond “mixed-race”. 

The final sample included 101 participants (matching the data above,) as two participants 

demographic data was lost, including their math anxiety data. 

4.3.2 Procedure 

All participants completed the following experimental procedure in a single, 60-minute 

session. First, consent and demographic information was collected either through 

Qualtrics surveys, prior to entering the lab, or paper versions of the same forms were 

completed. Next, participants completed one block of Go/No-go, followed by a simple 

response time task, a timed arithmetic task (which was not part of this analysis), and the 

second block of Go/No-go. After completing all tasks, participants were given a math 

anxiety survey to complete before being debriefed. Participants were counterbalanced 

such that they were assigned to first perform either the “Go on Consecutive” block of 

Go/No-go, or the “Go on Nonconsecutive” block first. A practice block preceded each 

task, and participants received feedback on their responses for the practice. All 

procedures were approved by the University of Massachusetts Amherst Institutional 

Review Board (IRB). 

4.3.3 Go/No-go Task 

All participants completed the Go/No-go task, which included two conditions, each with 

one practice block with feedback and six test blocks. Each block contained 48 trials, 

divided into 24 “consecutive” trials and 24 “non-consecutive" trials. The two conditions 

were to respond to the correct type of trial by pressing the spacebar, and refrain from 

pressing the spacebar when the trial did not match the condition (i.e., “Go on 
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Consecutive” block instructed participants to press the spacebar when the trials were 

consecutive). Each set of 24 trials was evenly divided into 3 sets, which varied the length 

of the trial before the test stimulus. In the shortest of these, a single 2-digit number was 

presented in white text, followed by a green number. The green number indicated that 

this was the appropriate time to make a response. The other trial lengths included two 2-

digit numbers and three 2-digit numbers preceding the test stimulus (green number). If 

the green number was consecutive to the previously presented white number, the trial was 

a “consecutive” trial. If it was not, it was considered a “non-consecutive" trial. 

 Participants were divided into groups and counterbalanced in two ways. Half of 

participants saw non-consecutive numbers that were equal to the would-be consecutive 

number plus 1 (e.g., a trial could be “31 32 33 35” with 35 being the test stimulus). The 

other half saw non-consecutive numbers that were equal to the consecutive plus 4 (e.g., 

“31 32 33 38”). We chose “+4” because it was a large difference between the consecutive 

number and the non-consecutive number that also allowed for variability in the quantity 

of possible trials (see below). We also counterbalanced within each of these groups such 

that half completed the “Go on Consecutive” condition first, while the other half 

completed the “Go on Non-consecutive" condition first. 

 The stimuli were generated to include all possible sets of numbers that matched 

the following criteria. First, all numbers were 2-digit numbers between 10 and 40, to 

minimize potential size effects of large 2-digit numbers and to increase variability in the 

presented numbers (compared to using only single-digit numbers). Second, a trial could 

pass a threshold boundary while presenting the preceding stimuli, but a test stimulus 

always had the same decade as the last preceding stimulus (e.g., “38 39 40” is not a valid 
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trial if 40 is the test stimulus). This was to avoid potential heterogeneity in decision-

making when trials did or did not cross the decade boundary. 

 Trials were presented in a continuous stream (i.e., no fixation cross appeared 

between trials). Each stimulus was presented for 1 s, and it briefly (.05 s inter-stimulus 

interval) disappeared before the next number was displayed. A trial ended either 

immediately after the spacebar was pressed after the test stimulus appeared, or 1 second 

after the stimulus was displayed if the spacebar was not pressed. If the spacebar was 

pressed during the preceding stimuli, nothing happened and no button press was recorded 

(i.e., if the participant pressed the spacebar after the trial ended, then the previous trial 

was recorded as no button pressed). All numbers were presented in size 72 Arial font on a 

grey background. 

4.3.4 Abbreviated Math Anxiety Scale 

 After completing the tasks, participants completed the 9-item Abbreviated Math 

Anxiety Scale (Hopko et al., 2003), in which participants self-report their feelings of 

anxiety in various math situations (e.g., “listening to a lecture in math class”). 

Participants respond using a 1 (low anxiety) to 5 (high anxiety) scale. The scale has a 

Cronbach’s alpha = .90 and test-retest reliability measure of r = .85. Responses are 

summed to a single score. 

4.4 Results 

4.4.1 Descriptive statistics and correlations 

 Performance on the task is described in table 4.1. Descriptive statistics are 

provided as math anxiety tertile groupings, as well as for overall performance on the task. 
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Correlations between MA as a continuous numeric variable and other measures are 

provided in table 4.2. We saw significant relationships between math anxiety and 

performance in the “Go on non-consecutive” task, in both RT as a positive relationship, 

or slower RT for higher MA (r = .253, p = .011), and accuracy as a negative relationship, 

or lower accuracy for higher MA (r = -.247, p = .014). Math anxiety did not significantly 

correlate to RT (r = .1, p = .325) or accuracy (r = -.154, p = .127) in the “Go on 

Consecutive” condition. 

4.4.2 Analysis of response time measures 

 To assess the relationship between RT and math anxiety across the different 

variables, we ran a 3×3×2×2 repeated-measures ANOVA. This included the within-

subjects measures trial length (3 levels: short, medium, and long trials), condition (2 

levels: “Go on Consecutive” and “Go on Non-consecutive”). Also included in this model 

are the two between-subject measures: distance (2 levels: near distance/+1 and far 

distance/+4), and math anxiety tertile (3 levels: low, medium, and high). Of particular 

interest was in the main effect of and interactions with math anxiety.  

The ANOVA for RT in the Go/Nogo task is reported in table 4.3. Overall, we 

found an interaction between math anxiety and condition (F(2,93) = 4.323, p = .016). 

There was not a significant main effect of MA tertile, nor other interactions. Plots of 

response times by tertile suggest that this significant interaction is driven by the presence 

of a linear effect in the “Go on Non-consecutive” condition, where higher MA relates to 

slower responses in this condition (figure 4.2). There appears to be no such effect in the 

“Go on Consecutive” condition. This significant linear relationship was confirmed by a 

post-hoc regression, where we regressed math anxiety (as an ordinal, not categorical 
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variable) on response time in the “Go on non-consecutive” condition. This model (R2 = 

.0641) shows that MA alone significantly explains performance in the “Go on Non-

consecutive” condition (beta = 30.79, SE = 11.95, 95% CI = [7.08, 54.5], t(98) = 2.58, p 

= .011). Math anxiety positively relates to RT in this condition (figure 4.3). 

4.4.3 Analysis of accuracy measures 

 To assess the relationship between math anxiety and accuracy in different 

variables within the task, we ran an identical ANOVA using accuracy as the dependent 

measure (see table 4.4). It should be noted that accuracy was high across all participants 

(mean > 90% in all cases), and so this may not be a sensitive measure for testing 

individual differences. 

There was a significant main effect of MA tertile in accuracy (F(2,93) = 3.158, p 

= .047) but no significant interactions with MA. A post-hoc test (see table 4.5) reveals 

that this main effect is driven by a significant difference between the top and bottom 

tertile (t(61) = 2.409, pTukey = .047). There was no significant difference between low and 

medium MA (t(64) = .0674, pTukey = .779) or medium and high MA (t(67) = 1.828, pTukey 

= .166). Furthermore, the correlations between MA and accuracy in both conditions 

suggests that this effect is closer to an interaction effect (condition × MA tertile) that does 

not survive the ANOVA, as accuracy in the “Go on Consecutive” task is not correlated 

with MA (r = -.154, p = .127) but accuracy on the “Go on Non-consecutive” task is 

significantly correlated (r = -.247, p = .014). All together, we see significant relationships 

between MA and performance only when responding to numbers outside of the counting 

sequence. 
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4.4.5 Post-hoc analysis for inhibition: False alarm rates 

 Since the data so far show that participants are slower and less accurate when 

responding to the “Go on Non-consecutive,” there is only weak support for the 

hypothesis that those with high MA have difficulty inhibiting prepotent responses. 

However, error rates include both the miss rate (no response on Go trials) and false alarm 

rate (FA; incorrect response to a No-go trial). Thus, it is unclear whether the significantly 

worse performance is driven by miss rate or false alarm rate, the latter of which is a better 

index of failed inhibition. Therefore, a post-hoc hypothesis and prediction is that if those 

with high MA have difficulty inhibiting responses, then they should have a higher FA 

rate compared to their low MA peers. Secondary to this, it is possible that those with high 

MA would be more ready to respond, due to impaired inhibition processes, and would 

therefore be faster on trials where they falsely responded. To assess this, we ran two 3×2 

repeated measures ANOVAs. Both included MA tertile as a between-subjects variable, 

and one contained FA rate (proportion of false alarms across all trials), and the other 

contained response times on FA trials. Both FA variables had each condition as a 

separate level. Of interest here are the interactions between FA rate/RT and MA. 

 In each model, neither the main effect of MA nor the interaction explained 

significant variance. Instead, only a main effect of condition was significant in the 

ANOVA for RT on false alarm trials (table 4.6) and the ANOVA for overall FA rate (see 

table 4.7). Together, there is insufficient evidence to suggest that adults with high MA 

make more errors of commission in the Go/No-go task compared to their lower MA 

peers. 
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4.4.5 Analysis of task performance unrelated to math anxiety 

 Because this is an exploratory analysis of a new task, it is worth describing 

performance without regard to math anxiety. Starting with the analysis of response time 

(table 4.3), we saw a significant main effect of condition (F(1,93) = 225.729, p < .001) 

and trial length (F(2,186) = 328.457, p < .001), and an interaction between condition and 

trial length (F(2,186) = 71.096, p < .001). The RT decreased as trial length increased (i.e., 

more preceding white stimuli before the green response stimulus appears; see Figure 4.5). 

However, the interaction effect shows that this effect was much stronger in the “Go on 

Consecutive” condition compared to the “Go on Non-consecutive” condition. 

 In analyzing accuracy (table 4.4), there was a main effect of trial length (F(2,186) 

= 42.018, p < .001), and interaction between condition and trial length (F(2,186) = 4.422, 

p = .013). As the trial length increased, accuracy increased, and the gains are higher in the 

“Go on Consecutive” condition (Figure 4.6). 

4.5 Discussion 

To assess counting sequence representations and inhibition of prepotent responses in 

those with varying levels of math anxiety, we asked participants to complete a Go/No-go-

type task where they responded or withheld a response to consecutive and non-

consecutive number sequences. We hypothesized that if MA relates to weak counting 

representations broadly, then worse performance will relate to higher MA in both 

conditions. However, if MA is related to conscious or unconscious count sequence 

processing specifically, then only performance in “Go on Non-consecutive” or “Go on 

consecutive” trials, respectively, will relate to performance. In all cases, MA relating to 

performance is defined as accuracy decreasing and RT increasing (getting slower) as MA 
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increases. We found that MA is related only to performance in “Go on Non-consecutive” 

trials, such that accuracy is lower, and responses are slower in the higher MA group, 

suggesting difficulty with conscious counting  

 Participants responded similarly to counting sequences, regardless of MA status. 

This aligns with the findings in chapter 2 and is partially out of line with Maloney and 

colleagues (2010), Much like the presence of the RDE to consecutive triads in RDE, 

those with high MA showed no significant difference in the “Go on Consecutive” trials in 

RT or accuracy. It appears that WM was a critical factor that affected enumeration speed 

in Maloney and colleagues (2010), as hypothesized by the authors. Together, this 

suggests that WM is not burdened in this Go/No-Go task and fails to support the 

hypothesis that automatic counting processing is related to MA. 

 On the other hand, those with high MA were worse at “Go on Non-consecutive 

trials”, with lower accuracy and slower responses in this condition. This suggests that 

aspects of conscious processing of counting sequences relate to math anxiety. This effect 

is explored further below. 

 Related to inhibition, we predicted that MA may be related to a willingness to 

accept the prepotent response (either through difficulty inhibiting or because of a 

tendency to avoid processing numerical stimuli). If so, those with higher MA would be 

less accurate and respond more quickly in “Go on Non-consecutive trials. Alternatively, 

broader anxiety literature suggests that anxiety relates to more inhibition, where those 

with high anxiety have fewer errors of commission (false alarms) and slower response 

time. Overall, we found little evidence that those with high MA differ in inhibition 

processes on this task. They were significantly worse and slower in the “Go on Non-
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consecutive” condition, but they had equal FA rates across both conditions, and were 

equal in average RT speed in those FA trials.  

 These data together suggest that an aspect of conscious counting relates to MA, 

but not unconscious counting. Furthermore, there is no evidence that those with high MA 

are worse at inhibiting prepotent responses in this task, as there was no significant 

difference between high MA and low MA on false alarm rate. Overall, we see two 

possible reasons for the finding that those with high MA are significantly worse than 

those with low MA at the “Go on Non-consecutive” condition: interference control and 

task demands. 

The results align closely with other inhibition factors proposed under Attentional 

Control Theory (Eysenck et al., 2007). The suppressing of prepotent responses falls under 

behavioral control, which had not been thoroughly characterized in MA literature. 

However, it has been established that those with high MA have difficulty with 

interference control or inhibition of distracting stimuli (Hopko et al., 1998; Rubinsten et 

al., 2015; Suárez-Pellicioni et al., 2015). A plausible explanation for performance on this 

task is that the participants were “primed” with the preceding stimuli in the trial that 

activated mental representations of the counting sequence. Evidence for this is that both 

the main effect of trial length and the interaction between trial length and condition was 

significant in both RT and accuracy models. Because the participants were presented with 

a counting sequence, they had to suppress it in order to answer, and that interference led 

to those with high MA responding more slowly to the “Go on Non-consecutive” 

condition. However, against that point, there was no significant interaction between trial 

length, condition, and MA, which would have showed that more clearly. In addition, the 
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“Go on Non-consecutive” task is framed in the negative (“Press the space bar if the 

numbers are not consecutive”) whereas the “Go on Consecutive” task is framed in the 

positive (“Press the space bar if the numbers are consecutive”). This framing could have 

led to interference through the need to suppress the “positive” (i.e., representation of 

counting sequence elicited by the instructions) to answer in the “negative” (i.e., the 

stimuli do not match the represented pattern). 

A second explanation is that, less than the effect of “conscious” or “unconscious” 

counting, the “Go on Consecutive” condition was easier, and the increased difficulty in 

the “Go on Non-consecutive” condition differentially affected those with higher MA. The 

“Go on Consecutive” condition relies on access to highly trained stimuli that is 

apparently unaffected in MA. It is not surprising that the “Go on Non-consecutive” 

condition is responded to more slowly and less accurately, given that most people are not 

trained to expect non-counting numbers in this way. Regardless of interference from 

other mental representations, those with high MA may have been slower and less 

accurate simply because these trials were more difficult. 

A separate, interesting finding is the presence of linear effects in performance 

detriments related to MA status. Primarily, as mentioned in previous chapters, MA is 

often studied as a binary. Prior studies (e.g., Ashcraft & Faust, 1994; Suárez-Pellicioni et 

al., 2014) recruit the top and bottom percentiles and run group comparisons. This, in 

tandem with the finding that MA is normally distributed through the adult population, has 

led to recent calls to study the true prevalence of MA, rather than rely on arbitrary 

statistical cut-offs (Cipora et al., 2022). My findings suggest MA has effects throughout 
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the distribution of ratings, even when performing numerical tasks that do not burden 

working memory as arithmetic does. 

4.5.1 Conclusion 

 This study sought to evaluate representations of counting sequences and inhibition 

of prepotent responses in math anxiety. What we found is insufficient evidence to say 

that those with high MA have reduced capacities in either area, as those with high MA 

did not perform worse when asked to respond to counting sequences, nor did they show 

meaningful differences in making false alarm errors when asked to respond to numbers 

that were not in the counting sequence. Altogether, my work suggests that counting, a 

fundamental numerical skill, is unaffected in adults with math anxiety. This stands 

somewhat in contrast to a prior finding that adults with higher MA were slow to 

enumerate objects, despite also being a “basic” task (Maloney et al., 2010) which became 

one part of the reasoning underlying the reduced capacities theory (Maloney, 2016). This 

work suggests that, instead, performance detriments in responding to consecutive/non-

consecutive numbers are related to the difficulty of the task rather than failure to inhibit 

prepotent responses or to the access or manipulation of counting sequence 

representations. 
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CHAPTER 5 

 

GENERAL DISCUSSION 

The purpose of this dissertation was to provide novel and replicative measures of pre-

schooling number skills that may be compromised in those with math anxiety in order to 

assess the reduced capacities theory. In the second chapter, I recruited participants 

without regards to MA status and asked them to complete a novel production version of 

an established approximate arithmetic task (e.g., Park & Brannon, 2014), along with a 

math anxiety questionnaire and a timed symbolic arithmetic test. In this chapter, I showed 

moderate evidence for the (null) hypothesis that individual differences in MA is unrelated 

to performance on the approximate arithmetic task. 

In chapter 3, I asked participants to complete an online, unmonitored version of the 

ordinal judgement task (e.g., Lyons & Beilock, 2013) with both numbers and letters as 

the stimuli to be ordered. Those with medium MA were the slowest to respond to number 

ordinality, with no difference between high and low MA. There were no significant 

effects of MA on accuracy, nor were there any relations between MA and alphabet 

ordinal judgement. A Bayesian model that estimated individual’s reverse distance effect 

showed strong evidence for there being no relation between RDE effect size in number or 

letter OJ. 

In chapter 4, participants completed a novel counting Go/Nogo, where they 

responded to sequences of presented Arabic numerals by pressing or not pressing a 

button, depending on the test stimulus. The test stimulus was either consecutive or not 

consecutive with the last number in the presented sequence. There was a linear effect of 

MA on RT, but only when the participant was supposed to press the button for non-
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consecutive numbers, and no relation to pressing the button for consecutive numbers. 

Those with high MA were also less accurate on these tasks, but there was no significant 

difference in false alarm rates, suggesting that neither counting sequence representations 

nor inhibiting prepared responses were compromised in people with high MA while 

performing this task. 

Overall, very little evidence to support the idea that adults with high MA show 

differences in their ability to either manipulate their numerical representations or engage 

in simple numerical tasks that may be building blocks of early numerical learning. 

Instead, the results are largely consistent with Attentional Control Theory (i.e., the 

disruption model: see 1.3.1). The differences we see across different levels or scores of 

MA can be largely characterized as slower responses (i.e., worse efficiency) in the more 

difficult numerical tasks (e.g., ordinal judgement, “Go on Non-consecutive” condition), 

but often no differences related to effectiveness (i.e., accuracy).  

Thus, these results suggest that interventions on basic numerical skills may be 

ineffective, whether they are based on core systems of number (chapter 2) or early 

schooling numeracy (chapter 3/4). The data presented here take into account multiple 

avenues of studying ordinal thinking, and I extend findings that are already replicated, 

albeit inconsistently, showing that non-symbolic number representation is unrelated to 

MA by asking adults to manipulate non-symbolic quantities.  

There are two major caveats to this conclusion. First, this work was based entirely on 

adult populations, much like the original studies that informed the reduced capacities 

theory. As such, they do not provide strong evidence on the etiology of MA. It is entirely 

plausible that those with higher MA showed few differences because they have had 
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sufficient practice with these skills that they now match the performance of their lower 

MA peers. The work was completed under the assumption that these skills would be 

stable from childhood to adulthood, and that assumption can be supported with empirical, 

cross-sectional literature showing that those with MA avoid math situations and 

opportunities to improve (Choe et al., 2019). However, there is still a need for 

longitudinal research in the early stages of MA to better understand how cognitive factors 

might come into play. 

The second caveat is surrounding spatial cognition. The reduced capacities theory 

also proposes that difficulties with spatial processing can also lead to MA. The relations 

between spatial processing and mathematics have been the subject of increased scrutiny 

in recent years, with increasing calls for study and introduction into curricula (Gilligan-

Lee et al., 2022). For instance, Verdine and colleagues (2017) performed a 3-year 

longitudinal study of children before and after entering school to measure factors related 

to spatial processing and performance in mathematics. They found that spatial skills can 

be measured reliably in early childhood, that spatial skills at early time points predict 

spatial skills at later timepoints, and that their best fit model suggests a causal link 

between spatial and mathematical skills (Verdine et al., 2017). Furthermore, among the 

data presented in this dissertation, some of the strongest links between MA and measured 

factors were those related to spatial working memory (chapter 2: r = -.253). Spatial skills 

may still fit the reduced capacities model and should be further studied in relation to math 

anxiety. 

Altogether, this work sheds light on how adults with math anxiety manipulate 

cardinal non-symbolic representations and respond to ordinal symbolic representations. I 
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show that there is little difference those with higher and lower MA in responding to any 

of these cardinal and ordinal tasks, providing some evidence against the reduced 

capacities theory of the origins of math anxiety. MA is uncorrelated with approximate 

arithmetic performance, and related mostly to slower performance on ordinal judgement 

and the novel counting Go/Nogo task, in line with Attentional Control Theory (Eysenck 

et al., 2007). Those with higher MA show no evidence of having compromised cardinal 

or ordinal representations, but the presence of symbolic, numeric/mathematical stimuli, 

and increases in task difficulty, relate to slower, and sometimes less accurate, 

performance on simple tasks. 

From a developmental standpoint, there are several veins of research relating 

social-emotional aspects of math anxiety to schooling. For example, teachers (Beilock et 

al., 2010) and parents (M. Ma et al., 2021; Maloney et al., 2015) with math anxiety have 

been shown to have an effect on student/child MA as they engage with math (e.g., 

teaching math concepts, assisting with homework) around their students/children. These 

longitudinal studies suggest that adults’ anxiety negatively influences some children’s 

attitudes towards mathematics, and thus are a potential target for interventions at early 

phases of math anxiety. Understanding the cognitive effects of MA on performance is 

critical for alleviating performance deficits and reducing avoidance. However, 

understanding how young students interpret early math experiences (see 1.3.2: 

Interpretation account; Ramirez et al., 2018) may be key to understanding how MA 

comes into being. 

One clear way to understand the interpretation of math experiences to explore 

more fully is the qualitative experience of math anxiety. There are many open questions 
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about the individual’s perception of their own anxiety, especially in the middle range of 

the spectrum. For instance, those with high MA respond slower in laboratory tasks, but to 

what extent does math anxiety affect an individual’s day-to-day life? Is there validity in 

assessing the extreme ends of the spectrum to create a binary, rather than treating MA as 

a spectrum, as defined by the effects MA has on the individual’s life? How does an 

individual perceive their MA as affecting their career decisions? Furthermore, patterns 

across people’s perceptions of the origins of math anxiety could provide valuable clues 

on where MA comes from, even if they do not have a truly reliable insight on where their 

anxiety came from. 

For instance, this work and others (e.g., Hopko et al., 1998, Rubinsten et al., 

2015) suggests math anxiety relates specifically to culturally identifiable as math, as 

opposed to processes (e.g., ordinality, operations) that are closely related to mathematics. 

The presence of number/math symbols consistently relates to deficient attentional control 

under ACT (Eysenck et al., 2007). Qualitative work can help us to understand why this is 

the case, and what associations these symbols have. Perhaps if math anxiety is spread 

through these cultural connections, then raising awareness of MA can help to reduce its 

prevalence over time. 

Qualitative work can be complemented with quantitative work to understand what 

the contextual limits are of the effect of seeing math symbols on MA. For example, do 

people with high math anxiety have difficulty inhibiting attention to numbered exits 

while driving on the highway? Laboratory tests of MA would suggest that they would, 

but no real-life work exists on these contextual limits. 
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Overall, although this dissertation did not provide evidence supporting a specific origin 

point of math anxiety, it should be interpreted as positive news. The combination of 

Bayesian and Frequentist analysis provides some support for the hypothesis that those 

with high MA do not have something “endogenous” about their fundamental numerical 

capacities. Rather, those with high MA appear to be on roughly the same level of 

performance and understanding of basic numerical concepts as those with low MA, but 

performance is disrupted by “exogenous” anxiety. 
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Table 2.1: Descriptive statistics for all task measures in chapter 2  

  
Math Anxiety 

Score 

Approx. 

Arithmetic 

Symbolic 

Arithmetic 

Verbal WM 

d' 

Spatial WM 

d' 

N  83  83  83  83  83  

Missing  0  0  0  0  0  

Mean  79.3  9.02  50.8  1.60  1.77  

Median  79  8.50  47  1.55  1.66  

Standard deviation  17.4  2.24  20.0  0.670  0.872  

Minimum  41  4.50  14  0.157  0.0883  

Maximum  132  15.8  123  3.83  4.13  
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Table 2.2: Regression analysis for approximate arithmetic predicting math anxiety score 

  

 95% Confidence Interval  

Predictor Estimate SE Lower Upper t p 

Intercept  87.737  9.247  69.33  106.14  9.489  < .001  

Approx. Arithmetic  0.218  0.842  -1.46  1.89  0.259  0.796  

Verbal WM d'  -2.148  3.774  -9.66  5.36  -0.569  0.571  

Spatial WM d'  -3.917  2.901  -9.69  1.86  -1.350  0.181  

Note: Adjusted R2 = .0687 
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Table 2.3: Regression analysis for symbolic arithmetic predicting math anxiety score  

 95% Confidence Interval  

Predictor Estimate SE Lower Upper T p 

Intercept  100.1048  5.7495  88.661  111.549  17.4110  < .001  

Symbolic Arithmetic  -0.2940  0.0936  -0.480  -0.108  -3.1414  0.002  

Verbal WM d'  0.0436  3.6283  -7.178  7.265  0.0120  0.990  

Spatial WM d'  -3.3226  2.7421  -8.781  2.135  -1.2117  0.229  

Note: Adjusted R2 = .171 
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Table 3.1: Descriptive statistics for all measures in chapter 3 

 

            

Tertile  Low Medium High Overall 

N  90  80  85  255  

Median RT for Numerical 

OJ (ms) 
 872 

(168) 
 994 

(231) 
 971 

(200) 
 944 

(54) 
 

Mean accuracy for 

Numerical OJ (%) 
 94.0 

(5.1) 
 92.6 

(7.7) 
 92.9 

(6.1) 
 93.2 

(.06) 
 

Median RT for Letter OJ 

(ms) 
 1460 

(262) 
 1540 

(294) 
 1540 

(286) 
 1520 

(58) 
 

Mean accuracy for Letter OJ 

(%) 
 86.1 

(7.4) 
 84.0 

(8.5) 
 85.4 

(8.2) 
 84.1 

(3.7) 
 

Arithmetic score (mean 

number of problems solved) 
 

37.7 
(14.3) 

 
30.0 

(12.2) 
 

29.8 
(13.0) 

 32.7  

DASS Anxiety Subscale 

Range 
 7–22  7–20  7–24  7–24  

Math Anxiety Range  10–20  21–28  29–42  10–42  

Note: Standard deviations in parentheses; RTs show median for valid trials only 
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Table 3.2: ANOVA for response time performance on Numerical OJ 

 

Within Subjects Effects 

  Sum of Squares df Mean Square F p 

Distance  2.2176  2  1.10879  123.966  < .001  

Distance ✻ tertile  0.1019  4  0.02547  2.848  0.024  

Residual  4.5079  504  0.00894        

Order  0.4366  1  0.43659  22.395  < .001  

Order ✻ tertile  0.0463  2  0.02315  1.187  0.307  

Residual  4.9127  252  0.01949        

Distance ✻ Order  2.8347  2  1.41736  183.314  < .001  

Distance ✻ Order ✻ tertile  0.0110  4  0.00274  0.354  0.841  

Residual  3.8969  504  0.00773        

Note. Type 3 Sums of Squares; Dependent = Response time 

 

Between Subjects Effects 

  Sum of Squares df Mean Square F p 

tertile  3.71  2  1.853  7.64  < .001  

Residual  61.07  252  0.242        

Note. Type 3 Sums of Squares; Dependent = Response time 
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Table 3.3: ANOVA for performance on Numerical OJ (Accuracy) 

 

Within Subjects Effects 

  
Sphericity 

Correction 

Sum of 

Squares 
df 

Mean 

Square 
F p 

Distance  Greenhouse-

Geisser 
 0.1192  1.76  0.06766  16.40  < .001  

Distance ✻ tertile  Greenhouse-

Geisser 
 0.0296  3.52  0.00841  2.04  0.097  

Residual  Greenhouse-

Geisser 
 1.8324  444.09  0.00413        

Order  Greenhouse-

Geisser 
 0.1331  1.00  0.13307  13.18  < .001  

Order ✻ tertile  Greenhouse-

Geisser 
 0.0346  2.00  0.01731  1.71  0.182  

Residual  Greenhouse-

Geisser 
 2.5445  252.00  0.01010        

Distance ✻ Order  Greenhouse-

Geisser 
 0.6991  1.74  0.40081  83.85  < .001  

Distance ✻ Order ✻ 

tertile 
 Greenhouse-

Geisser 
 0.0537  3.49  0.01539  3.22  0.017  

Residual  Greenhouse-

Geisser 
 2.1012  439.56  0.00478        

Note. Type 3 Sums of Squares 

  

Between Subjects Effects 

  Sum of Squares df Mean Square F p 

tertile  0.0579  2  0.0290  1.35  0.261  

Residual  5.4117  252  0.0215        

Note. Type 3 Sums of Squares 
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Table 3.4: ANOVA for performance on Letter OJ (response time) 

 

Within Subjects Effects 

  Sum of Squares df Mean Square F p 

Distance  4.9159  2  2.45793  65.4725  < .001  

Distance ✻ tertile  0.3320  4  0.08300  2.2110  0.067  

Residual  18.9209  504  0.03754        

Order  1.5402  1  1.54020  27.5660  < .001  

Order ✻ tertile  0.0991  2  0.04956  0.8870  0.413  

Residual  14.0801  252  0.05587        

Distance ✻ Order  16.3884  2  8.19418  234.1823  < .001  

Distance ✻ Order ✻ tertile  0.0136  4  0.00340  0.0973  0.983  

Residual  17.6353  504  0.03499        

Note. Type 3 Sums of Squares 

  

Between Subjects Effects 

  Sum of Squares df Mean Square F p 

tertile  1.97  2  0.986  2.08  0.127  

Residual  119.38  252  0.474        

Note. Type 3 Sums of Squares 
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Table 3.5: ANOVA for performance on Letter OJ (accuracy) 

Within Subjects Effects 

  Sum of Squares df Mean Square F p 

Distance  0.71691  2  0.35846  49.318  < .001  

Distance ✻ tertile  0.02097  4  0.00524  0.721  0.578  

Residual  3.66316  504  0.00727        

Order  0.09511  1  0.09511  6.253  0.013  

Order ✻ tertile  0.03525  2  0.01763  1.159  0.316  

Residual  3.83323  252  0.01521        

Distance ✻ Order  2.29164  2  1.14582  160.497  < .001  

Distance ✻ Order ✻ tertile  0.00316  4  7.91e-4  0.111  0.979  

Residual  3.59816  504  0.00714        

Note. Type 3 Sums of Squares 

  

Between Subjects Effects 

  Sum of Squares df Mean Square F p 

tertile  0.203  2  0.1014  2.59  0.077  

Residual  9.883  252  0.0392        

Note. Type 3 Sums of Squares 
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Table 3.6: ANOVA for relationship between violation location, math anxiety status, and accuracy 

Within Subjects Effects 

  Sum of Squares df Mean Square F p 

Violation Location  0.3413  2  0.17063  36.593  < .001  

Violation Location ✻ tertile  0.0175  4  0.00437  0.936  0.442  

Residual  2.3501  504  0.00466        

Note. Type 3 Sums of Squares 

 

Between Subjects Effects 

  Sum of Squares df Mean Square F p 

tertile  0.0258  2  0.0129  1.09  0.336  

Residual  2.9743  252  0.0118        

Note. Type 3 Sums of Squares 
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Table 3.7: ANOVA for relationship between violation location, math anxiety status, and response time 

Within Subjects Effects 

  Sum of Squares df Mean Square F p 

Violation Location  2.0686  2  1.03428  146.60  < .001  

Violation Location ✻ tertile  0.0429  4  0.01072  1.52  0.195  

Residual  3.5558  504  0.00706        

Note. Type 3 Sums of Squares 

  

Between Subjects Effects 

  Sum of Squares df Mean Square F p 

tertile  1.76  2  0.878  7.17  < .001  

Residual  30.88  252  0.123        

Note. Type 3 Sums of Squares 
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Table 3.8: ANOVA for relationship between violation location, math anxiety status, and accuracy in Letter 

OJ 

 

Within Subjects Effects 

  
Sphericity 

Correction 

Sum of 

Squares 
df 

Mean 

Square 
F p 

Violation Location  Greenhouse-

Geisser 
 1.2879  1.83  0.70542  114.00  < .001  

Violation Location ✻ 

tertile 
 Greenhouse-

Geisser 
 0.0349  3.65  0.00956  1.55  0.193  

Residual  Greenhouse-

Geisser 
 2.8468  460.07  0.00619        

Note. Type 3 Sums of Squares 

  

Between Subjects Effects 

  Sum of Squares df Mean Square F p 

tertile  0.104  2  0.0520  2.48  0.086  

Residual  5.286  252  0.0210        

Note. Type 3 Sums of Squares 
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Table 3.9: ANOVA for relationship between violation location, math anxiety status, and response time in 

Letter OJ 

Within Subjects Effects 
              

  Sphericity Correction 
Sum of 

Squares 
df 

Mean 

Square 
F p 

Violation 

Location 
 Greenhouse-

Geisser 
 5.574  1.90  2.9309  129.40  < .001  

Violation 

Location ✻ 

tertile 

 Greenhouse-

Geisser 
 0.177  3.80  0.0465  2.05  0.089  

Residual  Greenhouse-

Geisser 
 10.854  479.23  0.0226        

Note. Type 3 Sums of Squares 
 

Between Subjects Effects 

  
Sum of 

Squares 
df 

Mean 

Square 
F p 

tertile  0.923  2  0.462  1.87  0.157  

Residual  62.283  252  0.247        

Note. Type 3 Sums of Squares 
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Table 3.10: Crosstabs of posterior classification for Number and Letter OJ 

 Tertile  Tertile 

Number 1 2 3 Letter 1 2 3 

CDE 0 0 1  2 0 1 

RDE 69 71 66  80 61 72 

Undecided 21 9 18  8 19 12 
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Table 3.11: Mediation model for response time in MA mediating relation between Number OJ performance 

and arithmetic 

 95% Confidence Interval  

Effect Estimate SE Lower Upper Z p 

Indirect  -0.0585  0.0322  -0.133  -0.00754  -1.82  0.069  

Direct  -0.7749  0.1206  -1.018  -0.54442  -6.42  < .001  

Total  -0.8334  0.1233  -1.085  -0.58975  -6.76  < .001  
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Table 3.12: Mediation model for response time in number OJ mediating relation between MA and 

arithmetic 

 95% Confidence Interval  

Effect Estimate SE Lower Upper Z p 

Indirect  -0.00337  0.00139  -0.00614  -8.44e−4  -2.42  0.016  

Direct  -0.01089  0.00377  -0.01792  -0.00301  -2.89  0.004  

Total  -0.01426  0.00405  -0.02213  -0.00625  -3.52  < .001  
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Table 4.1: Descriptive statistics for all measures in chapter 4 

 

            

Tertile  Low Medium High Overall 

N  30  36  33  99  

Mean RT for “Go on 

Consecutive (ms) 
 494 

(61) 
 493 

(51) 
 506 

(51) 
 498 

(54) 
 

Mean accuracy for “Go on 

Consecutive” (%) 
 95.3 

(3.2) 
 95.1 

(4.4) 
 93.3 

(4.4) 
 94.6 

(4.1) 
 

Mean RT for “Go on Non-

consecutive” (ms) 
 536 

(65) 
 559 

(42) 
 572 

(62) 
 556 

(58) 
 

Mean accuracy for “Go on 

Non-consecutive” (%) 
 95.1 

(3) 
 94.1 

(3.1) 
 92.6 

(4.6) 
 93.9 

(3.7) 
 

Math Anxiety Range  10-20  21-28  29-42  10-42  

Note: Standard deviations in parentheses 
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Table 4.2: Correlation matrix for all measures in chapter 4 

  
Mean RT "Go 

on Consecutive" 

Mean Acc "Go 

on Consecutive" 

Mean RT "Go 

on Non-

consecutive" 

Mean Acc "Go 

on Non-

consecutive" 

Math 

Anxiety 

Mean RT "Go on 

Consecutive" 
 —              

Mean Acc "Go 

on Consecutive" 
 -0.586*** 

(<.001) 
 —           

Mean RT "Go on 

Non-

consecutive" 

 0.753*** 
(<.001) 

 -0.424*** 
(<.001) 

 —        

Mean Acc "Go 

on Non-

consecutive" 

 -0.618*** 
(<.001) 

 0.696*** 
(<.001) 

 -0.578*** 
(<.001) 

 —     

Math Anxiety  0.100 
(.325) 

 -0.154 
(.127) 

 0.253* 
(.011) 

 -0.247* 
(.014) 

 —  

Notes: ***: p < .001, **: p < .01, *: p < .05; p values in parentheses. 

 

  



 

 113 

Table 4.3: ANOVA of response time for Go/No-go 

Within Subjects Effects 

  
Sum of 

Squares 
df Mean Square F p η²p 

Condition  0.49983  1  0.49983  225.729  < .001***  0.708  

Condition ✻ 

MA Tertile 
 0.01914  2  0.00957  4.323  0.016*  0.085  

Condition ✻ 

distance 
 0.00140  1  0.00140  0.633  0.428  0.007  

Condition ✻ 

MA Tertile ✻ 

distance 

 0.00491  2  0.00245  1.109  0.334  0.023  

Residual  0.20593  93  0.00221           

Trial length  0.45912  2  0.22956  328.457  < .001***  0.779  

Trial length ✻ 

MA Tertile 
 0.00253  4  6.32e-4  0.905  0.462  0.019  

Trial length ✻ 

distance 
 0.00156  2  7.79e-4  1.114  0.330  0.012  

Trial length ✻ 

MA Tertile ✻ 

distance 

 0.00254  4  6.34e-4  0.907  0.461  0.019  

Residual  0.13000  186  6.99e-4           

Condition ✻ 

Trial length 
 0.04926  2  0.02463  71.096  < .001***  0.433  

Condition ✻ 

Trial length ✻ 

MA Tertile 

 0.00242  4  6.04e-4  1.743  0.142  0.036  

Condition ✻ 

Trial length ✻ 

distance 

 6.11e-4  2  3.06e-4  0.883  0.415  0.009  

Condition ✻ 

Trial length ✻ 

MA Tertile ✻ 

distance 

 3.32e-4  4  8.30e-5  0.240  0.916  0.005  

Residual  0.06444  186  3.46e-4           

Note. Type 3 Sums of Squares 

 Between Subjects Effects 

  
Sum of 

Squares 
df 

Mean 

Square 
F p η²p 

MA Tertile  0.0580  2  0.0290  1.801  0.171  0.037  

distance  0.0289  1  0.0289  1.795  0.184  0.019  

MA Tertile 

✻ distance 
 0.0271  2  0.0136  0.842  0.434  0.018  
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Within Subjects Effects 

  
Sum of 

Squares 
df Mean Square F p η²p 

Residual  1.4978  93  0.0161           

Note. Type 3 Sums of Squares 
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Table 4.5: ANOVA of accuracy for Go/No-go 

Within Subjects Effects 

  
Sum of 

Squares 
df 

Mean 

Square 
F p 

Condition  0.00497  1  0.00497  3.470  0.066  

Condition ✻ distance  0.00348  1  0.00348  2.433  0.122  

Condition ✻ MA Tertile  0.00132  2  6.59e-4  0.460  0.633  

Condition ✻ distance ✻ MA 

Tertile 
 0.00146  2  7.29e-4  0.509  0.603  

Residual  0.13318  93  0.00143        

Trial Length  0.12326  2  0.06163  42.018  < .001  

Trial Length ✻ distance  6.43e-4  2  3.21e-4  0.219  0.803  

Trial Length ✻ MA Tertile  0.00510  4  0.00127  0.869  0.484  

Trial Length ✻ distance ✻ MA 

Tertile 
 0.00262  4  6.54e-4  0.446  0.775  

Residual  0.27282  186  0.00147        

Condition ✻ Trial Length  0.00859  2  0.00430  4.422  0.013  

Condition ✻ Trial Length ✻ 

distance 
 0.00233  2  0.00116  1.197  0.304  

Condition ✻ Trial Length ✻ MA 

Tertile 
 0.00756  4  0.00189  1.944  0.105  

Condition ✻ Trial Length ✻ 

distance ✻ MA Tertile 
 0.00621  4  0.00155  1.598  0.177  

Residual  0.18075  186  9.72e-4        

Note. Type 3 Sums of Squares 

 

 

 

  

Between Subjects Effects 

  
Sum of 

Squares 
df Mean Square F p 

distance  3.24e-4  1  3.24e-4  0.0435  0.835  

MA Tertile  0.0470  2  0.02349  3.1580  0.047  

distance ✻ 

MA Tertile 
 0.0250  2  0.01248  1.6776  0.192  

Residual  0.6919  93  0.00744        

Note. Type 3 Sums of Squares 
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Table 4.5: Post-hoc comparisons for math anxiety tertile main effect of accuracy 

Comparison  

MA Tertile   MA Tertile Mean Difference SE df t ptukey 

1  -  2  0.00589  0.00874  93.0  0.674  0.779  

   -  3  0.02155  0.00894  93.0  2.409  0.047  

2  -  3  0.01565  0.00856  93.0  1.828  0.166  
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Table 4.6: ANOVA on false alarm response time for Go/No-go 

Within Subjects Effects 

  Sum of Squares df Mean Square F p 

condition  0.0559  1  0.05594  13.0706  < .001  

condition ✻ MA 

Tertile 
 7.87e-4  2  3.94e-4  0.0919  0.912  

Residual  0.3895  91  0.00428        

Note. Type 3 Sums of Squares 

Between Subjects Effects 

  Sum of Squares df 
Mean 

Square 
F p 

MA Tertile  0.00866  2  0.00433  0.449  0.639  

Residual  0.87698  91  0.00964        

Note. Type 3 Sums of Squares 
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Table 4.7: ANOVA of false alarm rate for Go/No-go 

 

Within Subjects Effects 

  Sum of Squares df Mean Square F p 

condition  0.0152  1  0.0152  49.73  < .001  

condition ✻ MA Tertile  8.76e-4  2  4.38e-4  1.43  0.245  

Residual  0.0279  91  3.06e-4        

Note. Type 3 Sums of Squares 

Between Subjects Effects 

  Sum of Squares df Mean Square F p 

MA Tertile  4.89e-4  2  2.44e-4  0.383  0.683  

Residual  0.0580  91  6.38e-4        

Note. Type 3 Sums of Squares 
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Figure 2.1: Diagram of methods used in chapter 2 

 
Note. In 1a, the dotted arrow represents the movement of the dots into the occluder. This pictured trial 

simulates addition, but half the trials were subtraction trials where the dots left the occluder. In 1b, a single 

example symbolic arithmetic problem is presented. In 1c and 1d, the verbal and spatial 2-backs, 

respectively, are presented. These require a button press on each trial, with a .5 s presentation and a 2 s ISI. 

The dotted line circles in 1d represent the 6 possible locations (equidistant to the fixation cross in the 

center). 
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Figure 2.2: Correlation matrix and scatterplots for all analyzed variables 

 
Note. For the correlations, p values are presented in parentheses below the Pearson correlation value. For 

the scatterplots, the X axis is represented by the column variable, and the Y axis is represented by the row 

variable. 

***p < .001. **p < .01. *p < .05. †p < .1 
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Figure 3.1: Histogram of math anxiety scores 
Note: Black lines represent cutoffs between tertiles
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Figure 3.2: Relationship between math anxiety group and response time 
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Figure 3.3: Interaction between distance, order, and MA group 
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Figure 3.4: Scatterplot of accuracy on middle-position violation trials by math anxiety 
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Figure 4.1: Schematic of trials, showing two levels of trial length (three-stimulus/one-stimulus 

trials), distance (+4) and condition (“Go on Consecutive”) 
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Figure 4.2: Interaction of response time between condition and math anxiety tertile 
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Figure 4.3: Math anxiety regressed on the mean response time for “Go on Non-consecutive” trials 
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Figure 4.4: Marginal means and SEM for main effect of math anxiety tertile 
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Figure 4.5: Response time means in each condition by trial length 
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Figure 4.6: Accuracy means in each condition by trial length 
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