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ABSTRACT

FOURTH ORDER DISPERSION IN NONLINEAR MEDIA

FEBRUARY 2023

Georgios A. Tsolias

B.S., NATIONAL AND KAPODISTRIAN

UNIVERSITY OF ATHENS

M.S., NATIONAL AND KAPODISTRIAN

UNIVERSITY OF ATHENS

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Panayotis Kevrekidis

In recent years, there has been an explosion of interest in media bearing quartic

dispersion. After the experimental realization of so-called pure-quartic solitons, a

significant number of studies followed both for bright and for dark solitonic struc-

tures exploring the properties of not only quartic, but also setic, octic, decic etc.

dispersion, but also examining the competition between, e.g., quadratic and quartic

dispersion among others.

In the first chapter of this Thesis, we consider the interaction of solitary waves in

a model involving the well-known ϕ4 Klein-Gordon theory, bearing both Laplacian
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and biharmonic terms with different prefactors. As a result of the competition of

the respective linear operators, we obtain three distinct cases as we vary the model

parameters. In the first the biharmonic effect dominates, yielding an oscillatory

inter-wave interaction; in the third the harmonic effect prevails yielding exponen-

tial interactions, while we find an intriguing linearly modulated exponential effect

in the critical second case, separating the above two regimes. For each case, we

calculate the force between the kink and antikink when initially separated with suf-

ficient distance. Being able to write the acceleration as a function of the separation

distance, and its corresponding ordinary differential equation, we test the corre-

sponding predictions, finding very good agreement, where appropriate, with the

corresponding partial differential equation results. Where the two findings differ,

we explain the source of disparities. Finally, we offer a first glimpse of the interplay

of harmonic and biharmonic effects on the results of kink-antikink collisions and

the corresponding single- and multi-bounce windows.

In the next two Chapters, we explore the competition of quadratic and quar-

tic dispersion in producing kink-like solitary waves in a model of the nonlinear

Schrödinger type bearing cubic nonlinearity. We present 6 families of multikink so-

lutions and explore their bifurcations as a prototypical parameter is varied, namely

the strength of the quadratic dispersion. We reveal a rich bifurcation structure for

the system, connecting two-kink states with ones involving 4-, as well as 6-kinks.

The stability of all of these states is explored. For each family, we discuss a “lower

branch” adhering to the energy landscape of the 2-kink states (also discussed in

the previous Chapter). We also, however, study in detail the “upper branches”

bearing higher numbers of kinks. In addition to computing the stationary states

and analyzing their stability at the PDE level, we develop an effective particle the-

ory that is shown to be surprisingly efficient in capturing the kink equilibria and
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normal (as well as unstable) modes. Finally, the results of the bifurcation analysis

are corroborated with direct numerical simulations involving the excitation of the

states in a targeted way in order to explore their instability-induced dynamics.

While the previous two studies were focused on the one-dimensional problem,

in the fourth and final chapter, we explore a two-dimensional realm. More specif-

ically, we provide a characterization of the ground states of a higher-dimensional

quadratic-quartic model of the nonlinear Schrödinger class with a combination of a

focusing biharmonic operator with either an isotropic or an anisotropic defocusing

Laplacian operator (at the linear level) and power-law nonlinearity. Examining

principally the prototypical example of dimension d = 2, we find that instability

arises beyond a certain threshold coefficient of the Laplacian between the cubic and

quintic cases, while all solutions are stable for powers below the cubic. Above the

quintic, and up to a critical nonlinearity exponent p, there exists a progressively

narrowing range of stable frequencies. Finally, above the critical p all solutions

are unstable. The picture is rather similar in the anisotropic case, with the dif-

ference that even before the cubic case, the numerical computations suggest an

interval of unstable frequencies. Our analysis generalizes the relevant observations

for arbitrary combinations of Laplacian prefactor b and nonlinearity power p.

We conclude the thesis with a summary of its main findings, as well as with an

outlook towards interesting future problems.
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INTRODUCTION

In this thesis we study forth order dispersion in nonlinear media. In ϕ4 Klein-

Gordon models, we explore the existence problem of a single kink, the interaction

of two such kinks, and collision simulations. In the nonlinear Schrödinger variant

of the problem, we examine the existence problem of a single kink and of multi-

kink states, and offer a systematic exploration of families of multi-kink states and

their bifurcation diagrams, stability and effective theory. In higher dimensions, we

investigate the dependence of the stability of the solutions on the interplay between

the dimensionality and the nonlinearity of this model.

The study of nonlinear Klein-Gordon models is a topic that has a rich history.

Many of the early developments on the subject have focused on the mathematically

appealing theory of the inverse scattering transform and integrable systems [1, 2,

3], such as the famous sine-Gordon equation [4, 5]. However, more recently, the

intriguing features stemming from non-integrable dynamics have been at the center

of numerous studies centered around, e.g., the ϕ4 model [6]. The latter has often

been considered to be a prototypical system for phase transitions, ferroelectrics, and

high-energy physics among other themes [4, 6]. Moreover, it has been a central point

of both analytical and numerical explorations, involving kink interactions, collective

coordinates, resonant dynamics (including with impurities) starting from the 1970’s

and extending over nearly 5 decades [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18] and

even reaching to this day [19, 20, 21]; see also the recent recap of [22].
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On the other hand, more recently, a diverse set of variants of the so-called non-

linear beam (or biharmonic) wave equation have been considered also; a collection

of relevant examples includes, e.g., [23, 24, 25, 26]. The corresponding models

also span a diverse array of contexts, including, e.g., suspension bridges and the

propagation of traveling waves therein. In nonlinear optics the engineering and

realization of the so-called “pure-quartic solitons” (see more in the next section)

in the lab has also substantially promoted the relevance of biharmonic models or,

more generally, models that involve both regular quadratic and quartic dispersion.

While in the realm of nonlinear optics the most canonical setting to consider is a

generalized nonlinear Schrödinger (NLS), in the present work we opt to consider the

slightly simpler, yet highly informative, setting of a corresponding Klein-Gordon

model. The rationale behind the latter choice involves the fact that the two models

share the same existence properties, at least in one spatial dimension, yet the na-

ture of the real field-theory renders the analytical calculations somewhat simpler,

especially as regards the stability and dynamical implications of the inter-wave

interactions. Given the strong connection between the two models, including via

multiple scale expansions [33] (and the customary emergence in nonlinear optics

of the NLS model as a paraxial approximation of the Klein-Gordon one [33]), the

analysis of the simpler and prototypical nonlinear Klein-Gordon model can be in-

sightful towards the existence, asymptotic and interaction properties of the solitary

waves of the generalized NLS setting.

In the present work we formulate the existence problem of a single kink in a

model incorporating quadratic and quartic dispersion in the presence of a ϕ4 poten-

tial (this part will be entirely analogous to the corresponding generalized NLS case).

Subsequently, we explore the interaction of two such waves and identify their pair-

wise interaction force and how it depends on the model parameters. Subsequently,
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conclusions of the analytical theory are tested against full numerical computations

of the interaction dynamics. Lastly, collisions between two coherent structures are

simulated, and the possible scenarios thereof are considered. Our aim is to reveal

the possibility that either the biharmonic effect may dominate (yielding oscillatory

tails and forces, equilibrium steady states of alternating stability etc.) or the har-

monic effect will prevail (featuring exponential interactions and forces). The critical

case between the two and its own intriguing behavior is revealed as well. In our

study of collisions and, in particular, in the case kinks and antikinks interact and

eventually separate, we create velocity-out versus velocity-in curves. These curves

show windows of velocity-in values for which we see different numbers of bounces

before the coherent structures separate. We compare this behavior to both the

“pure ϕ4” case and the “pure biharmonic” special-case limits of the present model

interpolating between them.

In the study of nonlinear dispersive waves, arguably one of the most well-

established models with a wide range of possible applications is the nonlinear

Schrödinger equation [40, 41, 42]. Its relevance has extended from mean-field lim-

its of atomic gases [44, 43, 45], to the propagation of the envelope of the electric

field in optical fibers [46, 33] and from water waves [42] to plasmas [47, 77] and

beyond. Nevertheless, recent studies have recognized the experimental relevance

and theoretical interest in exploring realms beyond those of purely quadratic dis-

persion, as accompanying the prototypical cubic nonlinearity (stemming from the

Kerr effect [33] or the s-wave scattering of bosons [44, 43]).

More concretely, over the past few years, a new direction within nonlinear op-

tics has stemmed from the ability to engineer dispersion in optical systems in the

laboratory, potentially completely eliminating quadratic dispersion and enabling

quartic dispersion to be dominant [27]. This has led to the experimental obser-
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vation of the briefly mentioned previously pure-quartic solitons (PQS) [27] and

subsequently the realization of the pure-quartic soliton laser [28]. Apart from the

study of the stationary and dynamical properties of those solitons, numerous other

possibilities have emerged from this research thread, including, but not limited to

the ability to program dispersion of higher order in fiber lasers [48], the possibility

to explore the competing interaction of quadratic and quartic dispersion for bright

solitary waves [32, 49] [50, 51], to examine the self-similar propagation of pulses in

the presence of gain [52], their nature in the absence of Galilean invariance [53] or

the possibility of multi-pulse solitary waves [63]. It is noteworthy that a number

of studies have explored the existence and stability of solutions in related models

bearing 4th order dispersion (or competing dispersions), as well as their potential

for collapse [29, 31].

These recent developments in the area of higher-order dispersion solitons have

so far focused in the study of bright soliton solutions, the possibility of which, in the

presence of fourth order dispersion, has been known since the 1990s [60, 61, 54, 55].

Dark solitons, on the other hand, supported by higher-order dispersion remain

largely unstudied.

Dark/kink-like solitary waves appear as dark intensity dips on a continuous

wave (CW) background [64, 65]. Associated with the intensity minimum is a phase

change of π, and this “kink” in the phase provides the dark soliton with added

(topological) robustness against noise [66]. The possibility of dark solitons in the

presence of fourth-order dispersion was alluded to in [54], and examples of dark

solitons in the presence of both higher-order dispersion and quintic nonlinearity

were found in [67]. In this work, we explore dark soliton under second- and forth-

order dispersion an a pure Kerr (i.e., third-order) nonlinearity.

The experimental investigation of dark solitons in the presence of higher-order
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dispersion is a significant challenge. Recently, methods using self-induced modula-

tional instability with normal dispersion have allowed the generation of dark soliton

trains in optical fiber cavities [68], with evidence that dark solitons are ubiquitous

in these conditions [69]. Fiber laser cavities with conveniently programmable dis-

persion have proven to be ideal for the generation of higher-order dispersion bright

solitons [28], and similar results have been found numerically in Kerr nonlinear mi-

croresonators [70, 71]. Encouragingly, dark solitons have also been found in normal

dispersion Kerr nonlinear microresonators [72, 73] suggesting a cavity configuration

is an ideal path for dark soliton experiments using higher-order normal dispersion.

To disentangle the role of higher-order dispersion in dark soliton dynamics, the nat-

ural starting place is the conservative case (i.e., in the absence of cavity gain and

loss). As such, in this work we consider a cavity-like configuration, with periodic

boundary conditions, but constant energy.

The first steps towards a theory of higher-order dispersion dark solitons were

taken using the ϕ4 Klein-Gordon model, in both the pure quartic form [38, 30] and

in the presence of both quadratic and quartic terms, as presented in more detail

in Chapter 1 in the present work. The so-called kink/antikink solutions in these

real fields point to intricate dark soliton interactions in the optical case considered

here.

Based on these results, here, we consider the fourth-order normal dispersion

regime, in the presence of both normal and anomalous second-order dispersion and

cubic Kerr nonlinearity. In the pure quadratic case there is a single dark soliton

family of stationary kink solutions, with multiple dark solitons repelling one an-

other. We find many more possibilities in the mixed quartic-quadratic dispersion

case, opening up new directions for possible dark soliton experiments. We identify

families of (multi-)dark solitons, examine their stability and instability numeri-
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cally and dynamically, and conclude with a demonstration of possible dark soliton

generation.

We systematically expand upon the branches of kink-like solutions (dark soli-

tons [57]) and examine the bifurcation of these solutions in detail. Indeed, we

examine the first 6 families of states, classified on the basis of the separation be-

tween the kink and the antikink. Our emphasis is not on the simpler single branch

of kink solutions, but rather on the considerably more elaborate feature of the

quadratic-quartic model, namely the possibility of existence of multi-kink bound

states. We start from the simpler 2-kink states, which form the so-called “lower

branches” of our bifurcation diagrams and continue the solutions in one of the key

parameters of the system, namely the strength of the quadratic dispersion. For all

of the relevant families (except for the “exceptional” 0th family which seems to em-

anate from the small amplitude limit), the branches feature a characteristic turning

point which leads to an “upper branch” of states. The latter nucleates either one

or two pairs of additional kinks, leading to states involving 4-kink and 6-kink so-

lutions. We identify all of these states systematically and present a comprehensive

overview of their stability properties. Equally importantly, in the limit of large β2

(the quadratic dispersion parameter), we develop a theoretical formulation of the

interacting kinks as “effective particles” (see, e.g., also our earlier considerations

in [51]). This, in turn, allows us to identify the equilibrium configurations (and

their kink locations) in the resulting interacting particle system, and examine the

linear properties of these particles around the equilibria. We find that this parti-

cle picture is remarkably accurate at capturing the unstable and stable modes of

the multi-kink states. Whenever relevant, we also complement the existence and

stability studies with dynamical computations exploring the fate of the unstable

states.
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In the last part of the present work we revisit the topic of competing Laplacian

and biharmonic dispersion terms, especially with a view to higher-dimensional con-

siderations and the interplay of the power (exponent) p of the nonlinearity and the

dimensionality d of the linear operator. More precisely, we consider the following

mathematical models:

iut +∆2u+ b∆u− |u|p−1u = 0, x ∈ Rd (1)

iut +∆2u+ b∂2x1u− |u|p−1u = 0, x ∈ Rd (2)

Our work here focuses on the study of solitary waves of such models and their

stability properties. In fact, we consider standing waves in the form u = e−iωtΦ,

which results in the elliptic profile equations:

∆2Φ + b∆Φ+ ωΦ− |Φ|p−1Φ = 0, x ∈ Rd (3)

∆2Φ + b∂2x1Φ + ωΦ− |Φ|p−1Φ = 0, x ∈ Rd (4)

We will refer to the model (1) as the isotropic case, while the model (2) as the

anisotropic case (due to its different dispersion along the direction x1).

Next, we set up the linear stability framework for these models. Namely, taking

u = e−iωt(Φ+v), plugging this in (1) (or (2) respectively) and ignoring the higher or-

der terms (i.e. super-linear ones of the form O(v2)), we obtain for v⃗ = (Re v, Im v),

v⃗t = JLv⃗,J =

 0 −1

1 0

 ,L =

 L+ 0

0 L−

 (5)

L+ = ∆2 + b∆+ ω − p|Φ|p−1, (6)

L− = ∆2 + b∆+ ω − |Φ|p−1. (7)

Similarly, the eigenvalue problem for the anisotropic model (2) is also in the form
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(5), with L± given by  L+ = ∆2 + b∂2x1 + ω − p|ϕ|p−1,

L− = ∆2 + b∂2x1 + ω − |ϕ|p−1

We now give a formal definition of spectral stability, which, in the context of

the standing waves of the model of interest, is the central focus of the present work.

Definition 0.1 We say that the corresponding standing wave solution e−iωtΦ is

spectrally stable, provided the eigenvalue problem JLv = µv does not have non-

trivial solution (v, µ) : v ∈ H4(Rd), µ : Reµ > 0.

The closest in spirit work to the present one is that of [55]. In it, however, the

author considers a different model, namely

iut + γ∆2u+∆u+ |u|p−1u = 0, x ∈ Rd. (8)

The authors obtains a number of useful (and mostly rigorous) results for the stand-

ing waves for these models, especially in the regime1 γ < 0, |γ| ≪ 1. Note however

that this case, after some rescaling is equivalent to the case b < 0 in (1), whereas

our main interest is in the case b > 0. The latter involves a competition (rather

than a cooperation) of the linear contributions and, hence, represents a case of

particular interest.

In the present setting, we examine systematically the isotropic case, but also

compare it with the anisotropic one whereby the Laplacian operator is replaced by

a second partial derivative along only a single spatial direction. We present theo-

retical results in both cases for the ground states of the system and their stability

as a function of the nonlinearity power p and the coefficient of the Laplacian (or

1Note that the case γ > 0 in (8) is not as relevant physically as it does not support (bright)
localized waves. It basically corresponds to the de-focusing case in the standard NLS framework.
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of the one-dimensional second partial derivative) b. Our principal theorems are,

accordingly, stated in the next section.

We corroborate our theoretical analysis with detailed numerical computations

that illustrate systematically both the isotropic and the anisotropic case with d = 2,

as a function of b and also as a function of p. Starting with the isotropic case, we

find that up to the cubic case of p = 3, the relevant ground states are generically

stable, irrespectively of the value of b. Beyond p = 3 and for 3 < p < 5, a critical

threshold of b exists such that below the relevant threshold, the wave is spectrally

stable, while above, it destabilizes. Further, above p = 5 and below a critical p,

the waves will only be spectrally stable for an interval of b’s, while upon crossing

this critical threshold, a saddle-center bifurcation leads to the disappearance of all

stable solutions of the isotropic setting. Interestingly, the anisotropic example bears

numerous similarities with the above described isotropic case. The most notable

difference that is worth highlighting is that even below p = 3, the anisotropic case

may bear instabilities for a narrow interval of b-values; more details are shown in

our numerical computations that follow.
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C H A P T E R 1

KINK-ANTIKINK INTERACTION FORCES AND

BOUND STATES IN A ϕ4 MODEL WITH QUADRATIC

AND QUATRIC DISPERSION

In this chapter1, we consider the interaction of solitary waves in a model in-

volving the well-known ϕ4 Klein-Gordon theory, but now bearing both Laplacian

and biharmonic terms with different prefactors. As a result of the competition of

the respective linear operators, we obtain three distinct cases as we vary the model

parameters. In the first the biharmonic effect dominates, yielding an oscillatory

inter-wave interaction; in the third the harmonic effect prevails yielding exponen-

tial interactions, while we find an intriguing linearly modulated exponential effect

in the critical second case, separating the above two regimes. For each case, we

calculate the force between the kink and antikink when initially separated with suf-

ficient distance. Being able to write the acceleration as a function of the separation

distance, and its corresponding ordinary differential equation, we test the corre-

sponding predictions, finding very good agreement, where appropriate, with the

corresponding partial differential equation results. Where the two findings differ,

1The contents of this chapter are published in Journal of Physics A: Mathematical and Theo-
retical [51] and appear here with permission.
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we explain the source of disparities. Finally, we offer a first glimpse of the interplay

of harmonic and biharmonic effects on the results of kink-antikink collisions and

the corresponding single- and multi-bounce windows.

1.1 Model Setup & Kink-Antikink Tail Behavior

The standard ϕ4 Klein-Gordon theory yields the field equation

utt = uxx − V ′(u) (1.1)

where V (u) = 1
2
(u2−1)2. In [30, 38], a variant of this equation was explored where

the harmonic spatial derivative term was replaced by a biharmonic term of the

form:

utt = −uxxxx − V ′(u). (1.2)

Here, as indicated in the above section, motivated by the corresponding generalized

NLS of [32], we explore a model incorporating the competition of the features of

the two models:

utt = αuxx − βuxxxx − V ′(u) (1.3)

where α and β are assumed positive (to ensure the competition referred to above)

and the potential function V (u) is taken as before. When we pick α = 1 and β = 0,

we get Eq. (1.1) and when we pick α = 0 and β = 1, we get Eq. (1.2). Notice

that while one of the coefficients could be scaled out via a rescaling of space, we

maintain both coefficients, in order to maintain the tractability of the special case

limits of (0, 1) and (1, 0), i.e., biharmonic and harmonic respectively.

A central consideration of the present work is to explore both the features of a

single solitary wave, but also to examine the interaction between two such waves, a
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kink and an antikink. We will use a method developed by Manton (as in [38, 39]) to

find the force between a separated kink and antikink as a function of the separation

distance. To do this we must first determine the tail behavior for a single kink or

antikink. Once the force is determined, we can use the corresponding acceleration to

generate an ODE, whose behavior can then be compared to the soliton trajectories

of Eq. (1.3), i.e., the corresponding partial differential equation (PDE). As long

as the separation distance between kink and antikink remains sufficiently large,

the agreement between ODE and PDE should be quite good. However, in cases

where the kink and antikink approach each other at distances comparable to their

respective widths, then it is no longer obvious that the ODE model should be

an adequate description of the full PDE dynamics and the exchanges of energy

between the different modes present in the latter [6]. We will explore both the

former agreement (at large distances) and the latter deviations (at short ones) in

the numerical results below.

In order to determine the tail behavior of a single kink we proceed as follows.

Substituting ϕ(x) = u(t, x) into Eq. (1.3) we get the steady-state equation

αϕ′′ − βϕ′′′′ − V ′(ϕ) = 0 (1.4)

where ′ denotes derivative with respect to the argument. To examine the relevant

asymptotics, we substitute ϕ = 1− εeλx into Eq. (1.4). Neglecting terms of ε2 and

higher (i.e., linearizing), for the above mentioned ϕ4 potential, we get

−αλ2 + βλ4 + 4 = 0 (1.5)

It is easy to show that the roots of this equation are real for α ≥ 4
√
β and complex

for α < 4
√
β. In particular, for α < 4

√
β:

λ1 =
1

2

√
4
√
β + α

β
+ i

1

2

√
4
√
β − α

β
, λ2 =

1

2

√
4
√
β + α

β
− i

1

2

√
4
√
β − α

β
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λ3 = −1

2

√
4
√
β + α

β
+ i

1

2

√
4
√
β − α

β
, λ4 = −1

2

√
4
√
β + α

β
− i

1

2

√
4
√
β − α

β

for α = 4
√
β (critical case), the degenerate roots are:

λ1,2 =

√
α

2β
, λ3,4 = −

√
α

2β

and for α > 4
√
β:

λ1 =

√
α−

√
α2 − 16β

2β
, λ2 =

√
α +

√
α2 − 16β

2β

λ3 = −
√
α−

√
α2 − 16β

2β
, λ3 = −

√
α +

√
α2 − 16β

2β

For real λ, similarly to the pure ϕ4 case, our model for the tail behavior is

be−ax + de−cx, (1.6)

for the critical case with the double roots the model is

be−ax(x− d) (1.7)

(accounting for the relevant generalized eigenvector) and for the complex λ case

(similarly to the pure biharmonic one), the model is

be−ax cos(c(x− d)). (1.8)

We also know that in the real case a = λ1 =

√
α−

√
α2−16β

2β
and c = λ2 =

√
α+

√
α2−16β

2β

and in the complex case a = Re(λ) = 1
2

√
4
√
β+α
β

and c = Im(λ) = 1
2

√
4
√
β−α
β

, while

in the critical case a =
√

α
2β
. We use curve fitting to get the other parameters b

and d. The results are in Table 1.1 for a sequence of prototypical case examples

that we have considered.

In Fig. 1.1 we show the tail-behavior of a single kink, ϕK(x), for the cases

α = 1, α = 4, α = 5 with β = 1 (respectively, left to right). We graph the right
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α β λ Tail behavior
0 1 1-1i 0.9700e−x cos(x− 0.4083)
1 1 1.1180-0.8660i 1.205e−1.118x cos(0.8660(x− 0.9909))
2 1 1.2247-0.7071i 1.793e−1.225x cos(0.7071(x− 1.824))
3 1 1.3229-0.5000i 3.614e−1.323x cos(0.5(x− 3.299))
3.5 1 1.3693-0.3536i 6.662e−1.369x cos(0.3536(x− 4.942))
4 1 1.4142 3.363e−1.414x(x− 0.9786)
4.5 1 1.1042, 1.8113 4.451e−1.104x − 12.92e−1.811x

5 1 1, 2 3.354e−x − 25.64e−2x

6 1 0.8740, 2.2882 2.679e−0.8740x − 157.4e−2.288x

1 0 2 2e−2x

Table 1.1. Single Kink Tail Behavior for different model parameter (α, β) in
columns 1 and 2. Column 3 yields the corresponding (spatial)
eigenvalues and column 4 the functional form providing the opti-
mal fit to the tail behavior. One can read off the values of a, b, c,
d in column 4 by referring to Equations (1.6), (1.7), (1.8)..

tail of 1−ϕK(x) multiplied by ekx as well as a model fitted to the tail of 1−ϕK(x),

also multiplied by ekx (appropriate for x sufficiently large). The value of k is equal

to the real part Re(λ) in the complex case, λ in the critical case, and the smaller

(in absolute value) λ in the real case (corresponding to the slow decay). We can

observe an excellent agreement in the oscillatory case (especially factoring in that

we have multiplied the expression by an exponential, hence any deviation in the

exponent would lead to an exponential growth). Similarly, also a remarkable fit can

be discerned even in the critical case, revealing the underlying linear dependence

modulating the exponential decay of the generalized eigenvector in this setting. The

exponential case (originally doubly exponential turned into a single exponential

upon multiplication by ekx) is found to be less accurate. In the latter case of two

real λ an improved fit can be obtained to the model be−ax + de−cx if c is left as a

free parameter in the curve-fitting process (rather than using the value specified

above which results from Eq. (1.5)). It is an interesting question for future work,

whether a weakly nonlinear theory can capture more accurately the correction to
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the leading exponential dependence; however, for our present purposes, the current

prediction capturing adequately the leading order exponential tail behavior will

suffice.
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Figure 1.1. The panels show the behavior of the right-side tails of the single
kink, ϕK(x), for the cases α = 1, α = 4, α = 5 and β = 1
(respectively, left to right) by graphing 1 − ϕK(x) multiplied be
ekx, where k (positive) is Re(λ) in the complex case, λ in the
critical case, and the smaller (in absolute value) λ in the real
case. Superimposed are the fitted curves, also multiplied by ekx.
In all cases the red solid curve is ekx(1 − ϕK). The blue dash-
dot curve is the fitted equation multiplied by ekx; the specific
equations for each case are y = 1.205 cos(0.8660(x − 0.9890)),
y = 3.274(x − 0.8606) and y = 3.308 − 14.9e−x (right to left
respectively).

We now numerically calculate and illustrate several steady-state solutions, and

investigate the corresponding spectra, for a single kink and different combinations

of α and β values. See Fig. 1.2, upper left panel, for the single-kink shapes corre-

sponding to β = 1 combined with several values of α. We numerically calculate the

spectrum for the single-kink case (which would also apply to the single antikink).

As occurs for the standard ϕ4 model, an isolated point spectrum mode appears for

each case considered, suggesting the possibility of internal vibrations (that, in turn,

are well-known to play a role the outcome of kink-antikink collisions [6]). In the

upper right panel of Fig. 1.2 we see that the spectrum for these cases consists of

completely imaginary values, indicating stability. The bottom two panels of Fig.
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1.2 illustrate the eigenvalues of the isolated internal mode. The cases shown are

for varying α when β = 1 (left panel; notice how the ϕ4 internal mode frequency

limit of
√
3 is asymptotically approached as α becomes large) and for varying β

when α = 1 (right panel). When we investigate steady states for kink-antikink

combinations (below) we will also find similar modes.

1.2 The force between kink and antikink

In order to find the force or acceleration between kink and antikink, we use the

approach of Manton as in [38, 39]; see also [38] for details of the calculation in the

case where α = 0 and β = 1. We now briefly review some of the details of this force

calculation. Consider the momentum P = −
∫ x2
x1
utuxdx on the interval [x1, x2] (P

is conserved when the integral is over the entire real line). Differentiating under

the integral and using Eq. (1.3) we find that the force is given by

dP

dt
= F =

[
−1

2
u2t − α

1

2
u2x + βuxuxxx − β

1

2
u2xx + V (u)

]x2
x1

. (1.9)

For a field configuration that is static or almost so, we can ignore the first term

in the right–hand side bracket of Eq. (1.9). We consider a configuration

u(t, x) = ϕ(x) = ϕK(x+X(t)) + ϕAK(x−X(t))− 1, (1.10)

where −X(t) is the position of the kink and X(t) is the position of the antikink,

which represents a kink-antikink pair approaching each other (as t gets larger). The

kink and antikink positions are defined as the x-value of the intersection of each

with the horizontal axis. Then, set η = 1 − ϕ, ηK = 1 − ϕK and ηAK = 1 − ϕAK

(where ϕAK is an antikink solution to Eq. (1.4)). Evaluating Eq. (1.9) from x1 = x

16



-10 -5 0 5 10

-1

-0.5

0

0.5

1

-2 0 2

10
-3

-3

-2

-1

0

1

2

3

-2 0 2

10
-3

-3

-2

-1

0

1

2

3

-2 0 2

10
-3

-3

-2

-1

0

1

2

3

-2 0 2

10
-3

-3

-2

-1

0

1

2

3

-2 0 2

10
-4

1.7

1.75

1.8

1.85

0 5 10 15 20
1.72

1.74

1.76

1.78

1.8

1.82

1.84

1.86

0 5 10 15 20
1.72

1.74

1.76

1.78

1.8

1.82

1.84

Figure 1.2. Top left panel shows the steady kink solutions and top right panel
shows the spectral plane (λr, λi) of eigenvalues λ = λr+iλi of the
linearized operator about the corresponding steady kink solution
for fixed β = 1 and α = 0.5 (blue circles), α = 1 (red x’s), α = 5
(green diamonds), α = 10 (magenta stars). The most right of the
top right panel is the zoomed in version that shows the internal
modes for all cases. The bottom left panel shows the internal
mode ω0 versus α for fixed β = 1. The bottom right panel shows
the internal mode ω0 versus β for fixed α = 1.

to x2 → ∞ results in

F = α(ηK)x(ηAK)x−β(ηK)x(ηAK)xxx−β(ηK)xxx(ηAK)x+β(ηK)xx(ηAK)xx−4(ηK)(ηAK),

(1.11)
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where we assume that the kink–antikink separation 2X is large. We have also

assumed that |x| << X and have used the approximation V (ϕ) = V (1− η) ≈ 2η2.

Note that only the cross terms are left at this point.

For the complex case the model for the tail behavior is ηK = be−ax cos(c(x−d),

appropriate for x sufficiently large.

Carrying out the derivatives in Eq. (1.11) and using a = Re(λ) = 1
2

√
4
√
β+α
β

and c = Im(λ) = 1
2

√
4
√
β−α
β

we get the following expression for the force:

F = −2

√
16β − α2

β
b2e−X

√
4
√
β+α
β cos

√4
√
β − α

β
(X − d) + θ

 . (1.12)

Here, we have that θ ∈ [0, π
2
] such that tan θ = α√

16β−α2
.

For the critical case the model for the tail behavior is be−ax(x−d). This, upon

substituting a =
√

α
2β

and α = 4
√
β results in the force formula:

F = −8b2
√
2αe−2aX

(
X −

√
2α

4
− d

)
, (1.13)

once again featuring a functional form reminiscent of that of the kink tail.

For the real case the tail behavior is be−ax + de−cx and the force becomes

F = −b2e−2Xa
(
a2α− 3a4β + 4

)
− d2e−2Xc

(
c2α− 3c4β + 4

)
,

where:

a =

√
α−

√
α2 − 16β

2β
and c =

√
α +

√
α2 − 16β

2β
. (1.14)

Using these values the force formula can be written as

F =
α2 − 16β − α

√
α2 − 16β

β
b2e−2Xa +

α2 − 16β + α
√
α2 − 16β

β
d2e−2Xc. (1.15)

Notice that the coefficient of the slow term is always negative while the coefficient

of the fast term is always positive.
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α β Mass Acceleration
0 1 1.1852 6.351e−2.0000x cos(2.0000x− 0.8166)
1 1 0.9540 11.79e−2.2360x cos(1.7320x− 1.4640)
2 1 0.8052 27.66e−2.4494x cos(1.4142x− 2.0559)
3 1 0.7031 98.30e−2.6458x cos(1.0000x− 2.4510)
3.5 1 0.6633 259.1e−2.7386x cos(0.7072x− 2.429)
4 1 0.6290 407.0e−2.828x(x− 1.686)
4.5 1 0.5991 166.2e−2.208x − 3769e−3.623x

5 1 0.5728 117.8e−2.000x − 27545e−4.000x

6 1 0.5287 92.75e−1.748x − 2194577e−4.576x

1 0 4/3 24e−4x

Table 1.2. Mass and acceleration as a function of the half-separation distance
x of the kink and antikink.

Dividing the above formulae for the force by the mass gives the results in the

acceleration column of Table 1.2. The values for b and d are determined by curve

fitting the tail of a single kink, and are shown in Table 1.1.

Next, we integrate the expressions for the force on a kink to get the potential

energy for each case, and also find all fixed points and their stability type. For the

potential function in the complex case we have

U = −b2
√

16β − α2

2
√
β

e−X
√

4
√
β+α
β cos

√4
√
β − α

β
(X − d) + ϑ

 (1.16)

for ϑ ∈ [0, π
2
] such that tanϑ =

√
4
√
β+α√

4
√
β−α

. For saddle points we have

X∗(k) = d+
(π
2
+ 2kπ − θ

)√ β

4
√
β − α

,

and for centers we get

X∗(k) = d+
(π
2
+ (2k + 1)π − θ

)√ β

4
√
β − α

.

For the critical case (repeated λ) the potential function is

U = −2b2αe
−4

√
2√

α
X

(
X − d−

√
2α

8

)
(1.17)
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and the center is given by

X∗ = d+

√
2α

4
.

For the real case we have the potential function

U = −b2a
√
α2 − 16βe−2aX + d2c

√
α2 − 16βe−2cX , (1.18)

and the center:

1

2(c− a)

(
log

c2d2

a2b2

)
,

with a and c as given in Eq. (1.14).

1.3 Comparison of ODE and PDE models

Using the expressions for the force we can now write an ODE for the time

evolution of the kink and antikink position for any given (α, β) combination. In

Table 1.2 we have divided the force by the numerically calculated mass and used the

curve-fitted values for b and d to get an acceleration expression for specific values

of α and β. The corresponding ODE is then Ẍ = −dU/dX, where the acceleration

of the right–hand side is provided in Table 1.2. This ODE for the position of the

one coherent structure (while the other one is symmetrically located) is amenable

to a phase portrait analysis, as shown in Fig. 1.3 and a comparison with the

corresponding PDE results of Eq. (1.3) can be obtained both at that level and at

the spatio-temporal evolution one as shown in Fig. 1.4.

In Fig. 1.3 we show trajectories for the case α = 1 and β = 1 (complex case)

that illustrate behavior near the steady states of the PDE (the fixed points of the

ODE). For these cases, there is clearly excellent agreement between the ODE and

PDE phase planes, which validates our force calculations. The calculated force laws
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Figure 1.3. α = 1, β = 1, Phase portrait of the ODE Equation (ODE)
in comparison with Eq. (1.3) (PDE). The blue solid curve cor-
responds to X(0) = 8, Ẋ(0) = −0.02. The red dash-dotted
curve: X(0) = 8, Ẋ(0) = −0.00555. The light blue closed orbit:
X(0) = 3.3, Ẋ(0) = 0. The green curve corresponds to X(0) = 8,
Ẋ(0) = −0.00356. The pink solid closed orbit: X(0) = 7.4,
Ẋ(0) = −0.0002.

work well as long as the separation between kink and antikink is sufficiently large.

In the case of the PDE, we identify the motion of the coherent structure by using

the intersection of the kink or antikink with the horizontal axis as the position,

and also find the corresponding speed, and thus extract an effective phase portrait

to be compared with the ODE results. In Fig. 1.4 we show two of the trajectories

from Fig. 1.3 as contour plots of the PDE with the ODE trajectory superimposed

on top (in blue). The left one among them is a robust oscillation around a stable

fixed point in the form of a center (the light blue curve in Fig. 1.4). The other

is a trajectory that is scattered from the innermost potential energy barrier due

to the presence of the innermost saddle point, corresponding to a maximum of

the effective energy landscape and is thus reflected. In this case, we see that the

kinks do not make it to a collision but are rather reflected due to their interaction
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landscape before the collision.

Figure 1.4. α = 1, β = 1. Comparisons of the PDE contour plot of the
displacement field u(x; t) and the ODE trajectory. (blue solid
curve). Left: x0 = 3.3, vin = 0. This corresponds to the closed
orbit (light blue) in Fig. 1.3. Right: x0 = 8, vin = −0.02. This
corresponds to blue solid curve in Fig. 1.3.

For another perspective on the quantification of the agreement between PDE

and ODE results, see Fig. 1.5. In the left panel of this figure, we show the potential

energy plot of the ODE, again for α = 1, β = 1, in blue (using Eq. 1.16). The data

points represent the potential energies of the steady states of the PDE calculated

using the PDE energy E =
∫

1
2
αu2x +

1
2
βu2xx +

1
2
(u2 − 1)2dx of the associated steady

state configurations. The corresponding steady-states themselves are shown in the

same figure, right panel. Note that since the calculated potential energy curve of the

ODE approaches zero as the separation distance increases, the potential energies of

the steady states of the PDE must also be normalized (i.e., calibrated) so that the

limiting value is zero (by subtracting the potential energy of a steady state with very

large separation). Again, clearly, the local maximum and minimum values of the

ODE energy landscape coincide with the potential energies of the corresponding

steady states of the PDE. The local minima correspond to stable steady states
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of the PDE (centers of the ODE) and the local maxima correspond to unstable

steady states of the PDE (saddle points of the ODE). Importantly, aside from

the center-most potential energy maximum where the kink structures are so close

that we cannot identify them as independent entities (and thus we do not expect

the collective coordinate characterization to be as accurate), we observe that the

agreement is very good. We remind the reader that the presence of this oscillatory

energy landscape, its associated minima (centers) and maxima (saddles), and the

respective stationary PDE configurations are distinctive features of the prevalence

of the biharmonic term and are genuinely absent in the harmonic case (and more

generally for α > 4
√
β, when the harmonic contribution is dominant).

For the PDE, Eq. (1.3), we expect that the equilibrium solutions shown in

Fig. 1.5 with x0 = 1.825, x0 = 5.38 and x0 = 9.01 will be locally unstable and

the ones with x0 = 3.56 and x0 = 7.19 will be locally stable. This is consistent

with Fig. 1.6, where the spectral plots (λr, λi) are shown for the eigenvalues λ =

λr + iλi of the linearized field equation, for α = 1 and β = 1. Using the expansion

u(x, t) = u0(x) + ϵeλtw(x) around an equilibrium solution u0(x), we solve for the

eigenvalues λ. For x0 = 3.56 and x0 = 7.19, we see that all the eigenvalues lie on

the imaginary axis, so we conclude that the equilibrium for those cases are stable.

However, for x0 = 1.825, x0 = 5.38 and x0 = 9.01, we get one eigenvalue pair on

the real (resulting in exponential instability) axis in addition to the ones on the

imaginary. The eigenvalue that is the lowest imaginary one in the stable cases, as

well as the single nonvanishing real pair in the unstable case are associated with

the relative kink–antikink center motion. The nature of the mode is associated

with stable oscillations in the former case and with unstable sliding in the latter

setting. There also exists a vanishing pair of eigenvalues whose eigendirection

leads to an energy-neutral rigid translation of the kink–antikink pair. The other
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Figure 1.5. The left panel shows the energy vs x0 for α = 1, β = 1. Blue
curve is twice the potential function of the ODE for the com-
plex case (given in Eq. (1.16)). The data points are the (nor-
malized) potential energies of the steady states of the PDE at
x0 = 1.825, 3.56, 5.38, 7.19, 9.01 which are shown in the right
panel. The need to multiply the potential function of the ODE
by two when comparing ODE and PDE stems from the fact that
the energy calculation using a steady state of the PDE involves
two solitons - kink and antikink. The right panel presents the
static, equilibrium solutions corresponding to x0 ≈ 1.825 (orange
dashed-dot curve), x0 ≈ 3.56 (blue solid curve), x0 = 5.38 (red
dashed curve), x0 ≈ 7.19 (green dashed-dot curve) and x0 ≈ 9.01
(purple dotted curve). Note that the steady state for the PDE oc-
curs at x0 ≈ 1.825 but the fixed point of the ODE is at x0 ≈ 1.75.

nontrivial point spectrum pairs of 2 near-identical modes are analogous to the

internal mode that was discussed earlier in the text for the single kink/antikink

(for several combinations of α and β).

While in Fig. 1.3 we showed example phase portraits that resulted in very

proximal correspondence between PDE and ODE (for the complex case), in Fig.

1.7 we show phase trajectories for both the real and complex cases that illustrate

at what point the PDE and ODE solution curves may depart from each other

(recall that the dash-dotted green line represents the position X(t) of the antikink

as measured by its intersection with the horizontal axis). In these cases, the kink
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Figure 1.6. The spectral plane (λr, λi) of eigenvalues λ = λr + iλi of oscilla-
tions around the equilibria at x0 = 1.825 (1st row left), x0 = 3.56
(1st row right), x0 = 5.38 (2nd row left), x0 = 7.19 (2nd row
right), x0 = 9.01 (bottom), for α = 1 and β = 1.

and antikink get too close for the force law to remain valid. One can see that in

the real case of the left panel this occurs at about X = 3, while in the complex
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case of the right panel at about X = 2. Note also that the green curve indicates

the formation of a bound state which is losing energy (in a way somewhat akin

to a stable spiral but keeping in mind that in a bound state there are no longer

an identifiable kink and antikink). Here, the important differences of the PDE

dynamics from the conservative ODE of 1 degree-of-freedom (dof) become evident.

The latter being energy conserving can only lead to reflection (or transmission) in

such an example, while the former can transfer energy from the kink translational

motion to other degrees of freedom (internal ones or radiation ones [6]), thus leading

to the effective translational energy dispersion and thus the apparent trapping of

the kinks into a so-called bion state. Successive ‘breathings’ of this bion state at the

PDE level are mirrored in the progressively inward green curves (carrying less and

less energy). At the ODE level, we make two more minor (in terms of the bigger

picture of our story), yet technically relevant observations. Given the absence of

ODE–PDE correspondence in the right panel we stop the ODE evolution once the

kink–antikink pair directly collides (i.e., at X = 0). On the other hand, the left

panel has another intriguing but non-physical trait: the double exponential force

(of opposite signs between the two exponentials) results in a landscape with a local

minimum very close to X = 0. We have found this feature to be an artifact of

the theory and its lack of accuracy in the immediate vicinity of X = 0. Let us

reiterate, also in light of the above remarks, that the ODE models are based only

on the behavior of the tails of the kinks and antikinks. When a kink and antikink

are involved in an interaction, the model makes sense only when the structures are

well-separated. Therefore the ODE model should not be expected to reflect the

actual behavior of the system beyond the point where the waves are at a distance

comparable to or smaller than their width, at which time they essentially forego

their individual character.
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Figure 1.7. The left panel shows phase plots for the real λ case of α = 5 and
β = 1 using initial conditions X(0) = 8 and Ẋ(0) = −0.003593.
The right panel illustrates phase plots for the complex λ case of
α = 1 and β = 1 using initial conditions X(0) = 8 and Ẋ(0) =
−0.35. In both cases, the ODE is shown by the blue solid curve
and the PDE by the green dash-dotted curve. Insets show at
what points the ODE model diverges from the PDE model. The
ODE trajectory in the right panel is stopped at the point when
X = 0 because it becomes physically unrealistic beyond that
point.

In Fig. 1.8 we show contour plots for the same values of α and β and the same

initial conditions as in Fig. 1.7, again with the ODE solution curves superimposed.

I.e., these panels represent the spatio-temporal contour plot representation of the

failure of the ODE theory to capture the PDE dynamics, as explained in the above

discussion. As in Fig. 1.7 we can see that the ODE tracks the PDE simulation

until around the time that the collision occurs. As a result of the latter, at the

PDE level, a bound state emerges, while in the case of the ODE, the conservative

nature of the 1 dof system does not allow any scenario other than reflection.
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Figure 1.8. Contour plots of the PDE corresponding to the same parameter
values and initial conditions as in the corresponding panels of
Fig. 1.7. The ODE trajectory is superimposed in blue.

1.4 Velocity in versus velocity out curves and soliton colli-

sions

We now investigate kink–antikink collisions in the context of escape velocity

(vout) and multi-bounce windows as a function of incoming velocity (vin), in line

with the extensive literature on the subject discussed in the Introduction (for a

relatively recent summary in the ϕ4 case, see, e.g., [6]). Summarizing the kink–

antikink collision dynamics in the ϕ4 model, we note the following. In this model,

it has been shown that there exists a critical vin value, which we label vcrit, such that

for vin > vcrit, the kink and antikink interact once and then separate forever. For

vin < vcrit the kink and antikink can form a bound state, or can interact (bounce)

any number of times, depending on vin, before separating forever. Furthermore, it

is well-established since the work of [14] for the ϕ4 model, that the bounce windows

corresponding to different numbers of bounces are nested in a fractal pattern. For

example, three bounce windows occur at the edges of two-bounce windows, four

bounce windows occur at the edges of three-bounce windows, and so on. Also, the

28



vin − vout graph for a given window has the appearance of an inverted parabola,

with the vout values going to zero at the edges of the window.

For a model with only a biharmonic term (α = 0 in this paper) it was shown in

[30] that two critical vin values exist, with v1,crit < v2,crit. v2,crit is similar to vcrit for

the ϕ4 model in that for vin > v2,crit the kink and antikink interact once and then

separate. For vin < v1,crit the kink and antikink repel elastically before interacting.

For v1,crit < vin < v2,crit the kink and antikink form a bound state. Near both

critical values, we see oscillations in the vin−vout graph, where the frequency of the

oscillations rapidly increases as the critical values are approached. It is important

to highlight how dramatically different this behavior is from the above behavior

of the regular ϕ4 model, since essentially multi-bounce windows are fully absent in

the biharmonic case, while the oscillations near the critical velocities are absent in

the standard ϕ4 case.

Coming now to the case of the model considered herein, we note that it involves

a mixture of the two cases just described. More specifically, we find that by fixing

β at β = 1 and letting α increase from 0 to 6, we see a transition from one case

to the other. As α is increased (departing from the biharmonic case), more and

more bounce windows begin to populate the region between v1,crit and v2,crit. At

first, these new bounce windows display oscillations in the vin − vout graphs near

the edges of the windows, similar to what is seen in the bound-state region of

the pure biharmonic case. With increasing α the oscillations diminish and the

vout values at the edges of each window begin to approach zero as in the pure

ϕ4 case. We will showcase these features qualitatively in the results that follow.

Nevertheless, the delicate nature of the associated computations renders especially

difficult the identification of effective ‘critical points’ where the behavior changes

from the one reminiscent of the pure biharmonic problem to that reminiscent of the
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pure harmonic one. In the case of the critical velocities, by rescaling we are able

to relate the solutions to Eq. (1.3) for general α and β = 1 to other combinations

of α and β, as is now shown.

Let u1,β be a solution to

utt = uxx − βuxxxx + 2u− 2u3.

and consider the coordinate transformation

x 7→ ξ =
x

a
.

In the new coordinate system the solution can be rewritten as u1,β(x, t) = ũ(ξ, t).

Of course, u1,βtt = ũtt and u
1,β
x = 1

a
ũξ, therefore ũ obeys the equation

ũtt =
1

a2
ũξξ −

β

a4
ũξξξξ + 2ũ− 2ũ3.

For a4 = β we get

ũtt =
1√
β
ũξξ − ũξξξξ + 2ũ− 2ũ3

so, ũ(ξ, t) ≡ uα,1(ξ, t) or,

u1,β(x, t) = uα,1
(

x

β1/4

)
for α = 1√

β
.

Therefore we can obtain solutions to the model for the parameters α = 1 and

β, using the solution for parameters α and β = 1. Then, using this coordinate

transformation, we find that the critical velocity v1,β1,crit of the solution u1,β can be

expressed in terms of the corresponding critical velocity vα,11,crit of the u
α,1 solution

as

v1,β1,crit =
dx

dt
= a

dξ

dt
= β1/4vα,11,crit, (1.19)
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where α = 1√
β
.

Notice that when β becomes large enough, we get vα,11,crit ≈ v0,11,crit, so

v1,β1,crit ∼ β1/4v0,11,crit.

Similarly

vα,11,crit ∼
√
αv1,01,crit.

Furthermore, the above equations hold when vα,11,crit is replaced by vα,12,crit.

In Fig. 1.9 we show graphs of v1,crit versus α for β = 1 (left panel) and v1,crit

versus β for α = 1 (right panel). Fig. 1.10 is similar, but for v2,crit. The blue circles

on all panels are obtained by the numerical simulation of Eq. (1.3) where the left

panels represent v1,crit vs α when β = 1 and the right panels represent v1,crit vs β

when α = 1. In the panels of both figures, the red curves are obtained from the

transformation given by Eq. (1.19) (plotted without markers for the transformed

points and with connecting lines in order to make the graph more readable). The

red curves are included to demonstrate the validity of Eq. (1.19) in comparison

with direct PDE simulations.

Having identified the critical point scaling relations, we now turn to a direct

examination of the collision features and associated multi-bounce windows. In Fig.

1.11 we show vin − vout curves for α = 1 and β = 1. For fixed β = 1 we know

that the force law changes from the complex λ case to the real λ case at α = 4, so

we expect the case α = 1 to be somewhat similar to the pure biharmonic case of

α = 0. In the upper left panel of Fig. 1.11 we see that the elastic collision region

corresponds to 0 < vin < v1,crit ≈ 0.30805 and the one-bounce region corresponds

to v2,crit ≈ 0.5902 < vin < 1. Note that we have chosen not to include vin values

greater than one. The region v1,crit < vin < v2,crit, which corresponds to a bound

state when α = 0, is beginning to be populated by two and three bounce windows,
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Figure 1.9. The blue circles on both panels are obtained by the numerical
simulation of Eq. (1.3) where left panel represents v1,crit vs α
when β = 1 and the right panel represents v1,crit vs β when
α = 1. The red solid curve on the left panel is obtained by
applying the formula vα,11,crit =

√
αv1,β1,crit where β = 1

α2 to the
numerically obtained data (blue circles) on the right. The red
solid curve on the right panel is obtained by applying the formula
v1,β1,crit = β1/4vα,11,crit to the numerically obtained data (blue circles)
on the left.
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Figure 1.10. The left panel shows v2,crit vs α when β = 1 and the right panel
shows v2,crit vs β when α = 1. The blue circles and the red solid
curves were obtained as described in Fig. 1.9.
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Figure 1.11. The top left panel shows vout vs vin when α = 1 and β = 1 with
v2,crit ≈ 0.5902. The top right panel is the zoom-in about the
first two-bounce curve. The bottom left panel is the zoom-in
about the two three-bounce windows right before the critical
velocity v2,crit. The bottom right panel is the zoom in about
the leftmost three-bounce window on the bottom left panel. In
both top right and bottom panels, the tails and their oscillatory
behaviors are shown. One-bounce windows in the figures are in
solid black. Two-bounce windows are in blue and three bounce
windows are in green. The gray solid line on the top left panel
is when the kink-antikink repel each other elastically.

a byproduct of the inclusion of the quadratic dispersion. The top right panel shows

the first two-bounce window. The bottom left panel shows the next two-bounce

window, with three-bounce windows appearing just to the left. The bottom right

panel shows the first three-bounce window in more detail. All windows display the

33



characteristic oscillations at the edges. Notice the important features of this case:

on the one hand, the multi-bounce windows (which did not appear in the pure

biharmonic case) are now present. On the other hand, they do not terminate as,

e.g., in the case of the standard ϕ4 model [6, 22], but rather have the oscillatory

terminations (with progressively shorter periodicity) encountered previously in [30]

for the pure biharmonic case. Moreover, we have encountered a feature also absent

in the standard (pure) ϕ4 case, namely higher-bounce windows appear only on one

side (to the left) of the two bounce windows, while it is well-known [14] that they

appear on both sides in the pure harmonic ϕ4 problem.

0.6 0.65 0.7
0

0.1

0.2

0.3

0.4

0.5

Figure 1.12. vout vs vin when α = 5 and β = 1 with vc ≈ 0.7295. The one-
bounce window is in solid black. Two-bounce windows are in
blue and three-bounce windows are in green.

In Fig. 1.12 we show vin − vout curves for α = 5 and β = 1. For this case,

since α > 4 we have λ real, and expect some similarity with the case of the pure

ϕ4 model (β = 0). Indeed, the structure is similar to the fractal pattern we see in

the ϕ4 case, with three-bounce windows at the edges of the two-bounce windows.

However, we were not able to find three-bounce windows to the right of the two-

bounce windows. These should, presumably, emerge as α gets larger, or as β gets
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smaller. However, it is an open question requiring further systematic investigation

how the self-similar (on both sides) picture of the pure ϕ4 model arises.
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Figure 1.13. Transition from dominant quartic progressively closer to domi-
nant harmonic behavior, by changing α from 2 (left) to 3 (mid-
dle) and finally the critical case of α = 4 (right panel).

We can begin to see how the system transitions from the α = 0, β = 1 (pure

quartic dispersion) case to the α = 5, β = 1 (harmonic term dominant) case

through some additional (less detailed) vin-vout graphs; see, e.g., Fig. 1.13. The

first two-bounce window for α = 2 (left panel, main figure, and see also Fig. 1.11

top left panel for α = 1) demonstrates a curious behavior. It appears (out of

nowhere) at about α = 0.711, persisting to about α = 2.8 where it disappears.

This is why it arises in the left panel, but not the middle one. Similarly, notice how

the transition shrinks progressively the size of the gray line interval of ‘no collision’

for 0 < vin < v1,crit. It can be seen that this interval eventually disappears for

α = 4 in the right panel of the figure, again showcasing how the transition between

the two regimes (biharmonic vs. harmonic) emerges.

While in the discussion above, we have focused on features that transition the

phenomenology between the two limits, it is important to realize that the wealth of

the model considered here transcends that of solely the limit cases. For instance,

Fig. 1.14 illustrates a phenomenon not seen in either the pure biharmonic or the
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Figure 1.14. Contour plots when α = 2.05 and β = 1 with vc ≈ 0.6222 for
X(0) = 10. Left panel is when vin = 0.622 and right panel is
when vin = 0.621.

pure harmonic ϕ4 case, with α = 2.05 and β = 1. What we see here is an initial

interaction between kink and antikink, followed by separation of the solitons for a

period of time, and then another approach of the pair. At this point one or more

elastic collisions can occur, resulting in the appearance of multiple bounces. In

the first panel of Fig. 1.14 we see a ‘pseudo’ two-bounce result, and in the second

panel a pseudo three-bounce result. This can occur when the speed at which the

kink and antikink approach each other for the second (or third) time is very small

and therefore when we find ourselves in the small-speed reflection window of the

complex eigenvalue case. In short, this is an unprecedented type of two-bounce

since two-bounces cannot happen in the pure biharmonic case (where there is only

bion formation and single bounce events [30]), but it can also not happen for pure

harmonic ϕ4 where the small speed reflection scenario is absent. This is yet another

manifestation of the rich phenomenology of the model combining harmonic and

biharmonic dispersion.
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C H A P T E R 2

DARK SOLITONS UNDER HIGHER ORDER

DISPERSION

In this chapter1, we show theoretically that stable dark solitons can exist in the

presence of pure quartic dispersion, and also in the presence of both quadratic and

quartic dispersive effects, displaying a much greater variety of possible solutions and

dynamics than for pure quadratic dispersion. The interplay of the two dispersion

orders may lead to oscillatory non-vanishing tails, which enables the possibility

of bound, potentially stable, multi-soliton states. Dark soliton-like states which

connect to low amplitude oscillations are also shown to be possible. Dynamical

evolution results corroborate the stability picture obtained, and possible avenues

for dark soliton generation are explored.

2.1 Model & Theoretical Background.

We use the generalized nonlinear Schrödinger equation for the electric field

envelope Ψ̃ with quadratic and quartic dispersion and a Kerr nonlinearity:

i
∂Ψ̃

∂ξ
+
β̃4
24

∂4Ψ̃

∂τ 4
− β̃2

2

∂2Ψ̃

∂τ 2
+ γ|Ψ̃|2Ψ̃ = 0 (2.1)

1The contents of this chapter are published in Optics Letters [50] and appear here with
permission.

37



where ξ is the propagation distance, τ is the retarded time in the frame of the pulse

and γ is the nonlinear coefficient, which we shall take to be positive. The parameters

β̃2 = dv−1
g /dω and β̃4 = d3v−1

g /dω3, where vg is the group velocity and ω is the

pulse carrier frequency, characterize the quadratic and quartic dispersion strengths

respectively. We normalize the retarded time in units of t0 = 1 ps, t = τ/t0, and

similarly the propagation length in terms of a characteristic propagation length

z0 = 1 mm, z = ξ/z0. Finally, we rescale Ψ =
√
z0γΨ̃. We restrict ourselves

to positive (normal) quartic dispersion, and consequently fix β̃4 = 1 ps4 mm−1,

consistent with experiment [27], leading to β4 = +1. The resulting normalized

model takes the form:

i
∂Ψ

∂z
+

1

24

∂4Ψ

∂t4
− β2

2

∂2Ψ

∂t2
+ |Ψ|2Ψ = 0, (2.2)

where the normalized quadratic dispersion parameter is given by β2 = β̃2/(z0t
2
0).

Typical experimental values for associated optical settings would involve a nonlin-

earity coefficient of γ = 4.07W−1 mm−1 [27], temporal units of 1 ps and propagation

units of 1 mm. For the CW and numerical investigations considered below, this

would correspond to a power of 1.2 W, a pulse length of 40 ps, and a propagation

distance of 1000mm.

In the conservative case, we can look for stationary solutions Ψ(t, z) = ψ(t) exp(iµz),

where µ is a nonlinearity-induced phase shift characterizing the stationary solution,

leading to the following equation for the real amplitude ψ(t):

−µψ +
1

24

d4ψ

dt4
− β2

2

d2ψ

dt2
+ ψ3 = 0. (2.3)

We investigate dark soliton solutions to Eq. (2.3), connecting to the continuous

wave background ψcw ≡ ±√
µ (which implies: µ > 0). In the four dimensional

phase space characterizing solutions to Eq. (2.3) these dark soliton solutions may
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either connect the positive CW solution back to itself (homoclinic solutions, for

even numbers of solitons), or connect CW solutions of different signs (heteroclinic

solutions, for odd numbers of solitons). We apply periodic boundary conditions so

we only find homoclinic solutions. We characterize these using the complementary

power, which for a cavity of length 2L is Qc =
∫ L
−L(ψ

2
cw − ψ2)dt.

As a starting point, we analyze the nature of the CW, on top of which the

dark solitons are built. We consider purely real perturbations in the form ψ =

[ψ0 + ϵ exp(λt)], and upon substitution of this perturbation into Eq. (2.3) and

keeping only linear terms in ϵ we obtain the following equation for λ:

1

24
λ4 − β2

2
λ2 − µ+ 3ψ2

0 = 0. (2.4)

Setting ψ0 = ψcw and solving for λ we find that if µ ≤ 3β2
2/4 we have four imaginary

values for λ if β2 < 0, or four real values if β2 > 0. The former implies that the CW

is a center, so it is not possible to approach the CW and therefore no dark solitons

connecting to the CW can exist. Conversely, when λ is purely real, the CW is a sad-

dle point and we have the more familiar dark soliton regime. If instead µ > 3β2
2/4

the λ form a complex quartet, so the CW is a saddle-spiral: any approach to the

CW is accompanied by oscillations. This behaviour is analogous to that observed

for the bright soliton (where instead β4 < 0). The dependence of the CW solution

on the 2D parameter plane is shown in Fig. 2.1(a); the quadratic dependence of µ

on β2 (solid curve), is as expected from the model’s scaling properties.

As we shall see, the nature of the zero solution can also play a role in the form

of the stationary states. Substituting ψ0 = 0 into Eq. (2.4) the eigenvalues λ are an

imaginary pair and a real pair, which makes the zero solution a saddle-center, and

therefore enables connections to oscillations about zero. This behaviour is distinct

from the case of β4 < 0 [62, 32, 49] where the zero solution is either approached
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asymptotically, or not at all.

While the analysis of the eigenvalues (2.4) indicates where we can expect ho-

moclinic (multi-)dark soliton solutions, a necessary condition for stability of these

solutions is that the CW is modulationally stable. To this end, we examine the

growth of linear waves by more generally perturbing the CW background:

Ψ(t, z) =
[
ψcw + ϵ1 exp(ikt) exp(iΩz) (2.5)

+ ϵ∗2 exp(−ikt) exp(−iΩz)
]
exp(iµz),

where the ϵi denote small perturbations. Substitution of (2.5) into Eq. (2.2) and

solving for linear ϵi shows how the perturbation eigenvalue Ω is related to the

perturbation wavenumber k:

Ω2 =

(
−µ+

β2
2
k2 +

1

24
k4 + 2ψ2

cw

)2

− ψ4
cw. (2.6)

If Ω2 < 0 then the perturbation undergoes exponential growth, with the boundary

of modulational stability/instability occurring when Ω2 = 0. We see that we always

have a low frequency (“acoustic”) branch of modulational instability if β2 < 0 (see

Fig. 2.1(b)). Instability in this region proceeds with characteristic modulation of the

background (Fig. 2.1(c)) and exponential growth of the most unstable wavenumber

km in the spectrum, ψ̃, of ψ. Note the almost perfect agreement between the growth

rate predicted by Eq. (2.6) and the numerically observed value (Fig. 2.1(d)). The

CW is modulationally stable if β2 ≥ 0 and µ > 0, which is necessary for the stability

of CW-based dark solitons.

2.2 Numerical Findings.

All propagation results (including the CW dynamics in Fig. 2.1) are obtained

using a fourth-order split-step numerical scheme [74] applied to Eq. (2.2) with
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Figure 2.1. (a) Classification of CW solution with β2 and µ; (b) modulational
instability spectrum of CW for β2 = −0.2, with most unstable
wavenumber km = 1.1 corresponding to Ω = 0.77i (dot); (c)
instability dynamics of CW for β2 = −0.2; and (d) dependence of
spectral intensity |ψ̃|2 on the evolution variable z at wavenumber
km for results in panel (c), with slope (dashed line) giving Ω =
0.77i, agreeing very well with the prediction.
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Figure 2.2. Pure quartic dark soliton stationary solutions (β2 = 0, µ = 5):
(a) a well separated pair of dark solitons; (b) a mixed solution
connecting dark solitons to an oscillation about 0.
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∆t = 9.8×10−3 and ∆z = 7.6×10−6. The robustness of the scheme is monitored by

evaluating the Hamiltonian H =
∫
(1/24)|d2ψ/dt2|2 + (β2/2)|dψ/dt|2 + (1/2)|ψ|4dt

and verifying that this quantity is conserved during propagation. Stationary so-

lutions are found by numerically solving Eq. (2.3) using a conjugate gradient

method [74].

The linear analysis points to new possible features in dark soliton solutions.

Figure 2.2 shows two extremes of possible pure-quartic solutions. Well separated

dark solitons can be found (Fig. 2.2(a)), similar to those observed in the quadratic

case, but with characteristic damped oscillations approaching the CW, consistent

with earlier results for the real case [30]. Fig. 2.2(b) shows a new possibility enabled

by the quartic dispersion, a connection between the CW and the saddle-centre at

the origin. Such connections are impossible in the quadratic conservative case, but

similar behavior has been observed in the presence of gain and loss [72].

Examining the possible solutions more systematically as a function of a system

parameter, e.g. β2 in Fig. 2.3(a), we find that many possible families exist, each with

a characteristic spacing between the dark soliton pairs. The most closely spaced

dark soliton pairs, which we call ‘family 0’ (Figs. 2.3(b) and (c)), connect the CW

to the origin, and bifurcate from the CW solution at just less than β2 = −2.5.

In contrast, all other families of increasingly widely spaced dark soliton pairs (e.g.

‘family 1’ and ‘family 2’ in Figs. 2.3(e) and (i) respectively), develop additional

undulations as they proceed to negative β2 (Figs. 2.3(d) and (h)), where they

collide (in a saddle-center bifurcation) with an upper branch associated with large

side oscillations (Fig. 2.3(f) and (j)). These upper branch solutions have additional

dark soliton pairs on either side of the main pair, i.e., they are a triple pair family,

which becomes increasingly evident as β2 increases (Fig. 2.3(g) and (k)). These

results are in line with the earlier real-field case analysis [38, 30], with the oscillatory
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Figure 2.3. (a) Bifurcation diagram for the lowest-order dark soliton families
with the labels corresponding to solutions shown in the lower pan-
els. (b) and (c) Solutions corresponding to family 0, ultimately
connecting to a plane wave as β2 decreases; (d)-(g) solutions from
family 1; (h)-(k) solutions from family 2. Left and right panels
correspond to β2 = −1, β2 = 1, respectively. Unstable/stable
solutions shown with dashed/solid lines respectively. In all cases
µ = 5.
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Figure 2.4. Numerical propagation of dark soliton solutions from different
families at β2 = 0: (a) family 1 is unstable to fission; (b) fam-
ily 2 is stable for β2 > 0; (c) family 2 upper branch, all upper
branch composite solutions are unstable; (d) solution shown in
Fig. 2.2(b), it has a very weak oscillatory instability.

tails enabling isolated distances at which dark solitons become stationary.

We examine the stability of the solutions shown in Fig. 2.3 by perturbing the

stationary solution and numerically computing the linearization eigenvalues [74].

A full presentation of the linear stability analysis is beyond the scope of this work;

however, we find results consistent with the real case [30]. We find that family 0

and family 2 are stable for β2 ≥ 0 (Fig. 2.3(c)), so stability alternates with spacing.

This is topologically justified from the underlying alternating minima and maxima

in the relevant effective landscape (c.f., e.g., Fig. 5 of [51] in the real-field case).

All solutions are unstable for β2 < 0 due to the modulational instability of the CW

background. The continuous spectrum, as is typical for NLS dark solitons, spans

the entire imaginary axis [45]. Stable and unstable families of solutions are shown

respectively as solid and dashed lines in Fig. 2.3.

Examples of possible dynamics are shown in Fig. 2.4 for β2 = 0. Figures 2.4(a)
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and 2.4(b) confirm respectively the instability of family 1 and the stability of family

2. While all upper branch solutions are unstable, the instability dynamics show

long-lived non-stationary soliton dynamics which, as we shall see, appear to play a

significant role in dark soliton generation processes. The instability dynamics shown

in Fig. 2.4(c) are one example, with closely bound outer pairs appearing robust until

disturbed by the instability products of the inner pair. The generalisation of family

0 to multiple oscillations about the zero solution, corresponding to Fig. 2.2(d),

appears robust, as seen in Fig. 2.4(d), but linear stability analysis reveals a weak

oscillatory instability.

We consider now the emergence of dark solitons from more general initial con-

ditions. In our conservative system, the prototypical case is arguably a CW state

with intensity notches, either of Gaussian or hyperbolic tangent form (domain-wall

like).We note that such initial conditions are challenging to achieve in a cavity

configuration; however, the dynamics is still instructive, and directly relevant to

systems with appropriately engineered dispersion, including photonic crystal waveg-

uides [27], Bose-Einstein condensates [57], and water waves [75].

With a Gaussian initial condition, we consider the dynamics in three differ-

ent regimes: the pure quartic case (β2 = 0, Fig. 2.5(a)), positive β2 (β2 = 0.5,

Fig. 2.5(b)), and negative β2 (β2 = −0.2, Fig. 2.5(c)). In the pure-quartic case, a

dark soliton pair appears, and exhibits a periodic cycle of collisions and separations,

before escaping the local potential induced through the oscillatory tails, whereas for

positive β2, the dark solitons repel each other (which is the only possible dynamics

in the pure positive quadratic dispersion case). For the negative β2 case, the dark

soliton pair is more tightly bound, but sits on a modulationally unstable CW back-

ground. A domain wall-like initial condition produces multiple dark soliton pairs,

and even what appears to be a travelling complex of dark solitons (Fig. 2.5(d)),
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Figure 2.5. Dark soliton generation from intensity notches in a CW back-
ground: (a) pure quartic dark soliton bound state with β2 = 0;
(b) repulsive dark soliton pair (β2 = 0.5); (c) dark soliton
pair in the presence of modulational instability (β2 = −0.2);
(d) dark soliton complex at β2 = 0. (a)-(c) Initial condition
ψ(t, 0) =

√
µ(1 − exp(−t2/2)); (d) initial condition ψ(t, 0) =√

µ(1 + (tanh(t− 5)− tanh(t+ 5))/2), all with µ = 5.

similar to the instability dynamics observed earlier. We see that in the presence of

instability (soliton or CW), solitons emerge, although they may be moving solitons.

The nature of these moving solitons is an interesting direction for further research,

particularly given the non-Galilean invariance of solitons in the presence of quartic

dispersion [53].
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C H A P T E R 3

KINK-ANTIKINK INTERACTION FORCES AND

BOUND STATES IN A NONLINEAR SCHRÖDINGER

MODEL WITH QUADRATIC AND QUATRIC

DISPERSION

In this chapter1, we explore the competition of quadratic and quartic dispersion

in producing kink-like solitary waves in a model of the nonlinear Schrödinger type

bearing cubic nonlinearity. We present the first 6 families of multikink solutions and

explore their bifurcations as the strength of the quadratic dispersion is varied. We

reveal a rich bifurcation structure for the system, connecting two-kink states with

states involving 4-, as well as 6-kinks. The stability of all these states is explored.

For each family, we discuss a “lower branch” adhering to the energy landscape of

the 2-kink states. We also, however, study in detail the “upper branches” bear-

ing higher numbers of kinks. In addition to computing the stationary states and

analyzing their stability within the partial differential equation model, we develop

an effective particle ordinary differential equation theory that is shown to be sur-

prisingly efficient in capturing the kink equilibria and normal (as well as unstable)

1The contents of this chapter have been submitted for publication in Communications in
Nonlinear Science and Numerical Simulation.
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modes. Finally, the results of the bifurcation analysis are corroborated by means

of direct numerical simulations involving the excitation of the states in a targeted

way in order to explore their instability-induced dynamics.

3.1 Model Setup and Analysis

The generalized variant of the nonlinear Schrödinger (GNLS) equation that we

study in the present work is [50]:

iut +
β4
4!
uxxxx −

β2
2
uxx + γ|u|2u = 0, (3.1)

where in an optical context β4 characterizes the strength of the fourth-order disper-

sion, β2 the strength of the second-order dispersion and γ the strength of the cubic

nonlinearity. We focus on the so-called quartic normal dispersion regime, where

stable dark solitons have been found [50] in the presence of attractive nonlinearity,

and so take β4 > 0 and γ > 0. Later we will restrict to β4 = 1 and γ = 1.

3.1.1 Stationary States and Spectral Stability

Eq. 3.1 is a Hamiltonian system, with conserved energy E given by

E(u) = 1

2

∫ ∞

−∞

(
β4
4!
|uxx|2 +

β2
2
|ux|2 +

γ

2
|u|4
)
dx. (3.2)

Separating real and imaginary parts by taking u = uR+ iuI , Eq. 3.1 can be written

in standard Hamiltonian form as

∂u

∂t
= JE ′(u(t)), (3.3)
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where u = (uR, uI)
T , E ′(u(t)) is the functional derivative of E(u) evaluated at u(t)

and J is the standard symplectic matrix

J =

 0 1

−1 0

 . (3.4)

Eq. 3.3 then becomes the pair of real-valued equations

(uR)t = −β4
24

(uI)xxxx +
β2
2
(uI)xx − (uR

2 + uI
2)uI (3.5)

(uI)t =
β4
24

(uR)xxxx −
β2
2
(uR)xx + (uR

2 + uI
2)uR. (3.6)

In what follows, we are interested in stationary (time-independent amplitude)

solutions of the form: u(x, t) = eiµtϕ(x). Substituting this ansatz into 3.1, we get

the steady state model for the amplitude ϕ

β4
4!
ϕ′′′′ − β2

2
ϕ′′ − µϕ+ γϕ3 = 0. (3.7)

In addition to the solution ϕ = 0, Eq. (3.7 has continuous wave (CW) solutions

ϕ = ±
√
µ/γ.

To facilitate our understanding of the nature of these fixed points, we rewrite 3.7

as a system of four first-order ordinary differential equations, using U = (u1, u2, u3, u4) =

(ϕ, ϕ′, ϕ′′, β4
24
ϕ′′′). Eq. 3.7 then becomes the first order system in R4

U ′ = F (U) =



u2

u3

24
β4
u4

β2
2
u3 + µu1 − γu31


. (3.8)

For β4 > 0, µ > 0, and all β2, the linearization about ϕ = 0 has a pair of real

eigenvalues ±α and a pair of imaginary eigenvalues ±βi, thus the corresponding
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equilibrium of 3.8 has a two-dimensional center subspace, and ϕ = 0 is a saddle-

center fixed point. The eigenvalues of the linearization about the CW states ϕ =

±
√
µ/γ are instead

λ = ±
√

6β2 ± 2
√
9β2

2 − 12β4µ

β4
.

For fixed β4 > 0 and µ > 0, corresponding equilibria S± = (±
√
µ/γ, 0, 0, 0) are

saddle points of 3.8 when β2 > −β∗
2 , where

β∗
2 = 2

√
β4µ

3
. (3.9)

The stable and unstable manifolds of S± are both two-dimensional. When |β2| <

β∗
2 , the spatial eigenvalues are a complex quartet ±a±bi, topologically correspond-

ing to a saddle-spiral, and when |β2| > β∗
2 , they are two pairs of real eigenvalues

±b1 and ±b2, leading to a saddle point in the four dimensional space.

In our computations that will follow, the conditions −β∗
2 < β2 < β∗

2 will play a

pivotal role providing a set of bounds for β2 under which the kink-antikink states of

interest will exist. Later we will restrict our attention to the specific case of µ = 5.

A kink ϕk is a solution to 3.7 connecting the CW state at −
√
µ/γ (S−) to the

one at
√
µ/γ (S+). From a spatial dynamics perspective, this is a heteroclinic

orbit connecting the saddle points S− and S+. If ϕ is a solution to Eq. (3.7), so is

−ϕ, thus for every kink solution ϕk there is a corresponding anti-kink −ϕk. When

β4 = 0 and β2 > 0, the exact formula for the stationary kink is given by

ϕk(x) =

√
µ

γ
tanh

(√
µ

β2
x

)
. (3.10)

We take the existence of a primary kink solution to Eq. (3.7) as a hypothesis in

what follows.

To study the stability of these solutions, we consider the linearization around

u(x, t) = eiµtϕ(x), where ϕ(x) is a solution to Eq. (3.7). Adding the perturbation
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as follows u(x, t) = eiµt[ϕ(x)+ v(x, t)], where v(x, t) = vR+ ivI , substituting it into

Eq. (3.1), we obtain two equations:

(vR)t = −β4
4!
v′′′′I +

β2
2
v′′I + µvI − γϕ2vI

(vI)t =
β4
4!
v′′′′R − β2

2
v′′R − µvR + 3γϕ2vR

which can be written as

∂

∂t

 vR

vI

 =

 0 −L−(ϕ)

L+(ϕ) 0


 vR

vI

 = −JL(ϕ)

 vR

vI

 , (3.11)

where

L+(ϕ) =
β4
4!
D4 − β2

2
D2 − µ+ 3γϕ2

L−(ϕ) =
β4
4!
D4 − β2

2
D2 − µ+ γϕ2

L(ϕ) =

 L+(ϕ) 0

0 L−(ϕ)

 .
In what follows we find the lowest six families (as defined in Section 3.2) of station-

ary kink-antikink solutions numerically and examine their stability using Eq. (3.11).

3.1.2 Effective Particle Model

Using a method due to N. Manton [39] we now derive an ODE model of kink -

antikink interaction. For our model the Lagrangian is

L =

∫ ∞

−∞
Ldx =

∫ ∞

−∞

(
i

2
(u∗tu− u∗ut)−

β2
2
u∗xux −

β4
4!
u∗xxuxx −

1

2
γ|u|4

)
dx (3.12)

Invariance under translations gives rise to the conserved quantity

P =

∫ ∞

−∞

i

2
(u∗xu− u∗ux) dx (3.13)
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which is the total momentum P of the field u. In order to calculate the force F

between a kink and an antikink, we consider the momentum included in a finite

interval [x1, x2] and we differentiate with respect to time t.

F =
dP

dt
=

∫ x2

x1

i

2
(u∗xtu+ u∗xut − u∗tux − u∗uxt) dx

=

∫ x2

x1

i (u∗xut − u∗tux) dx+
i

2
[u∗tu− u∗ut]

x2
x1

=

[
β2
2
u∗xux −

β4
4!
(u∗xuxxx − u∗xxuxx + u∗xxxux)−

γ

2
|u|4 + i

2
(u∗tu− u∗ut)

]x2
x1

(3.14)

For u(t, x) = eiµtϕ(x), where ϕ(x) is a real static field this expression simplifies to

F =

[
β2
2
ϕ′2 +

β4
4!

(
ϕ′′2 − 2ϕ′ϕ′′′

)
− γ

2
ϕ4 + µϕ2

]x2
x1

= Fx2 − Fx1 (3.15)

which is zero, as expected for a static solution (the quantity inside the brackets is

constant if ϕ satisfies Eq. (3.7).

Now, suppose we have a superposition of a kink centered at x = −X and an

antikink centered at x = X. Then the force on the antikink due to the kink is given

by Eq. (3.15) for x1 = 0 and x2 → ∞, i.e., integrating across the antikink to find

the force exerted on it due to the change of its momentum.

For x2 → ∞, let ϕ→ −
√
µ/γ. Then,

Fx2 =
µ2

2γ
(3.16)

For x in the region between the two kinks, let ϕ(x) =
√
µ/γ − η(x), for η small.

Then keeping up to second order terms we get

Fx1 ≈
[
β2
2
η′

2
+
β4
4!

(
η′′

2 − 2η′η′′′
)
+
µ2

2γ
− 2µη2

]
x=0

(3.17)

Therefore the force acting on the antikink is given in terms of η(x) by the following

expression:

F ≈
[
−β2

2
η′

2 − β4
4!
η′′

2
+
β4
4!
2η′η′′′ + 2µη2

]
x=0

(3.18)
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If X is large enough, so that the two kinks are well separated, then η(x) can be

very well approximated by the superposition of their tails. In particular, for large

positive x, a single kink can be written as ϕK(x) =
√

µ
γ
− χ(x) (and similarly, for

large negative x a single antikink can be written as ϕAK(x) =
√

µ
γ
−χ(−x)), where

the tail χ(x) satisfies the linearized problem

2µχ− β2
2
χ′′ +

β4
4!
χ′′′′ = 0 (3.19)

For β2 < 2
√

β4µ
3

the linearized equation has vanishing solutions of the form

χ(x) = e−rx(A cos(kx) +B cos(kx)) (3.20)

where

r =

√
2
√
3β4µ+ 3β2
β4

and k =

√
2
√
3β4µ− 3β2
β4

. (3.21)

Then, the superposition of the tails gives√
µ

γ
− η(x)= ϕ(x) ≈ ϕK(x+X) + ϕAK(x−X)−

√
µ

γ
, (3.22)

from which we obtain

η(x)≈χ(x+X) + χ(−x+X) (3.23)

Substituting this into Eq. (3.18) and using Eq. (3.20), we finally get

F ≈
(
2(A2 −B2)

r2k2β4
3

+ 4ABrkβ2

)
e−2rX cos(2kX)+ (3.24)

+

(
4AB

r2k2β4
3

− 2(A2 −B2)rkβ2

)
e−2rX sin(2kX)

For an effective ODE description we need to find the inertial mass of the kinks.

For c small enough, our numerical computations of traveling kinks suggest that the

field u configuration can be written as u(x, t) = eiµt (ϕK(x− ct)− c2v(x− ct) + ic w(x− ct)).
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This corresponds to the profile of a kink ϕK moving to the right with constant speed

c, since |u|2 = ϕ2
K(x− ct) +O(c2), while w denotes to the leading order imaginary

(linear in c) and v the leading order real (quadratic in c) correction.

Now, from Eq. (3.1) we get

i(u∗tu+ u∗ut) = −β2
2
(u∗xxu− u∗uxx) +

β4
4!
(u∗xxxxu− u∗uxxxx) (3.25)

and since |u|2 is a function of x − ct, the time derivative can be expressed as a

spatial derivative multiplied by −c.

i(u∗tu+ u∗ut) = i
(
|u|2
)
t
= −ic

(
|u|2
)
x

(3.26)

Integrating over x gives

−ic|u|2 = −β2
2
(u∗xu− u∗ux) +

β4
4!
(u∗xxxu− u∗xxux + u∗xuxx − u∗uxxx)− icK (3.27)

where K is an integrating real constant. Of course, for this equation to hold as

x → ∞, we need K = µ
γ
. Integrating one more time over the whole x-axis and

rearranging the terms, we get:∫ ∞

−∞

β2
2
(u∗xu− u∗ux)dx =− ic

∫ ∞

−∞

(
µ

γ
− |u|2

)
dxdx (3.28)

+
β4
4!

∫ ∞

−∞
(u∗xxxu− u∗xxux + u∗xuxx − u∗uxxx)dx

Then the total momentum of the traveling kink is given by

P =
c

β2

∫ ∞

−∞

(
µ

γ
− |u|2

)
dx+

β4c

12β2

∫ ∞

−∞
(ϕKw

′′′ − ϕK
′w′′ + ϕK

′′w′ − ϕK
′′′w) dx+O(c2)

(3.29)

and using the definition P =Mc for the inertial mass we find

M =
1

β2

∫ ∞

−∞

(
µ

γ
− ϕ2

K

)
dx+

β4
12β2

∫ ∞

−∞
(ϕKw

′′′ − ϕK
′w′′ + ϕK

′′w′ − ϕK
′′′w) dx

(3.30)
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where w must satisfy

−µw − β2
2
w′′ +

β4
4!
w′′′′ + γϕ2

Kw = ϕK
′ (3.31)

In what follows, we will consider the mass that solely stems from the first term of

Eq. (3.30), i.e., the standard renormalized mass of the defocusing NLS problem

(that has also been used, e.g., towards the proof of the stability of the dark solitons

thereof in, e.g., [76]. This will be justified a posteriori via the comparison of our

results with the detailed numerical computations. A rigorous justification of this

choice from first principles is an interesting topic for future study.

3.2 Numerical Results and Comparison

We now restrict our attention to numerical solutions of Eq. (3.7) with µ = 5,

γ = 1, and β4 = 1. Letting β2 vary, we get families of solutions to Eq. (3.7),

where the members of each family are connected by numerical continuation with

respect to β2. We start by finding kink-antikink solutions at β2 = 0 corresponding

to larger and larger separation of the kink and antikink, as in [50]. We then use

numerical continuation to create families of solutions which we refer to as family

0 (continuation of the smallest possible separation of kink-antikink at β2 = 0),

family 1 (continuation of the second smallest possible separation of kink-antikink

at β2 = 0), and so on for families 2, 3, 4, and 5. Additional families have been

identified in our numerical computations, however to keep the presentation more

succinct, we do not discuss them here.

An overarching summary of our results is shown in Fig. 3.1. Here we see that

each family of solutions has both an upper and lower branch, which are connected

by numerical continuation, with the exception of family 0, where the upper branch
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was not created as a numerical continuation of the lower branch. Before we delve

into the details of individual branches, we identify the main features encompass-

ing all the branches on the figure. Throughout our analysis we make use of the

complementary power Q to characterize the families of solutions,

Q =

∫ L

−L

(
µ

γ
− ϕ2

)
dx, (3.32)

where L is the half-width of the stationary solution domain. This is effectively the

same quantity as the one defined by M in the previous section, however to more

clearly distinguish between the two (bearing in mind that in the latter there is, in

principle, also a contribution ∝ β4, we use a different symbolism here.

We can see on the right side of Fig. 3.1, as β2 → 1, that the branches form 3

groups, with each group distinguished by the number of kinks present (2, 4 and 6

in increasing complementary power). The lowermost group involves what we will

hereafter term “lower branches” for all the families considered below. This concerns

the states involving 2 kinks that are well-separated in this large and positive β2

limit. The next group, encompassing solely family 0 (black upper branch) and

family 3 (green upper branch), involves solutions consisting of 4 kinks. Finally,

after a similar “jump” in complementary power, we encounter all remaining upper

branches (e.g., the red of family 1, the blue of family 2, the purple of family 4 and

the gray of family 5), which are all solutions with 6 kinks. These results relate

to the large and positive β2 limit, but in the case where β2 becomes negative, we

encounter a similar partition between the branches. Namely, the black and green

branches are somewhat “special”. The former tends to a limit of progressively

smaller complementary power, i.e., tending to a small-amplitude steady oscillation

about the CW solution itself, while the latter has a turning point βcr2 which is

distinct from that of all other branches. However the 4 remaining branches (1, 2, 4
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(a)

Figure 3.1. Bifurcation diagrams of six families of solutions: family 0 (black),
family 1 (red), family 2 (blue), family 3 (green), family 4 (purple),
family 5 (gray). In all cases µ = 5, γ = 1, and β4 = 1.

and 5) seem quite similar at the level of this complementary power diagnostic. For

these 4 branches all solutions starting on a lower branch feature a turning point for

a negative value of β2 (near −2) and subsequently continue along an upper branch

towards the 6-kink configuration discussed above. A final observation that we make

based on earlier analysis [50] is that the CW is modulationally stable whenever

β2 ≥ 0, but when β2 < 0 there is a continuous band of modulationally unstable

wavenumbers with bounds k = ±
√
−12β2/β4. Indeed, the relevant branch(es) can

never be stable for β2 < 0. We now turn to details of each of the relevant families.
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Figure 3.2. (a) Bifurcation diagram (Q vs β2), the corresponding steady state
solutions and spectra for Family 0, presented for a sequence of
values of the quadratic dispersion parameter β2. (b) the same
bifurcation diagram as (a) but zoomed in about the intersection
of the upper and the lower curves.

3.2.1 Family 0

We start by describing the family 0 presented in the bifurcation diagram of

Fig. 3.2 and the dynamics plots of Fig. 3.3. Fig. 3.2(a) illustrates the profiles and

spectral planes of the stability analysis associated with this branch for different val-

ues of β2. If we look at the zoomed in bifurcation diagram on the right, Fig. 3.2(b),

we see that the states appear to bifurcate from the CW background as localized

wavepackets (with increasing β2), for both the lower and upper branches. These

branches tend to a small oscillation about the fixed point
√
µ/γ (for decreasing β2),

of approximately 0.04, as β2 tends to β∗
2 ≈ −2.58. This limiting amplitude gets

smaller as the simulated x-domain gets larger (for double the size of the x-domain

this amplitude is approximately 0.02) and so it is reasonable to assume that the

limiting steady state flattens out as the size of the x-domain approaches infinity.

Following the lower branch to increasing β2 (lower panels of Fig. 3.2(a)) we see
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(a)

-0.5778

0.5778

-2.3620

-1.2063

1.2063

2.3620

(b)

Figure 3.3. PDE and ODE initial conditions and dynamics for family 0 (up-
per branch only for PDE). The upper figure of (a) shows the plots
of ∥u∥2 (black), ∥u+v1∥2 (red), and ∥u−v1∥2 (blue) for β2 = 0.5,
where v1 is the eigenfunction corresponding to the only real PDE
eigenvalue of 0.2231. The lower left panel of (a) is the contour
plot that results from using ∥u+0.01v1∥2 as the initial condition,
and the lower right panel of (a) is the contour plot that results
from using ∥u − 0.01v1∥2 as the initial condition. (b) gives the
ODE values for the soliton positions (left of vertical line is the
lower branch, right of the vertical line is the upper branch) and
the ODE eigenvalues along the top (again lower branch left and
upper branch right). Arrows on the points indicate the initial
directions of the solitons (all directions would be reversed if v1 is
replaced by −v1.)
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that the state can be described as a kink-anti-kink pair with an increasing separa-

tion distance. Indeed, the analysis of [51] which is generalized in Sec. 3.1.2, shows

that the quartic dispersion induces an oscillatory tail in the kinks which (compet-

ing with the quadratic dispersion), in turn, enables the possibility of bound states

between two kink-like structures. This landscape consists of an alternation of local

energy minima (such as the present one), forming center points in the landscape

of the soliton center dynamics, and local energy maxima, which, naturally, cor-

respond to saddle points in the relevant landscape. For the centers like the one

corresponding to the lower bifurcation branch, we expect stability, at least as far

as the motion of the kink centers is concerned, and indeed we see in the bottom

right of Fig. 3.2(a) that there are no instability eigenvalues (when β2 > 0).

Turning our attention now to the upper branch in Fig. 3.2 we see that this

corresponds to a state consisting of four kinks (i.e., four zeros in the amplitude at

large β2), but it also bifurcates from the nearly flat state at β∗
2 ≈ −2.58. Indeed, it

appears (see the bottom insets of Fig. 3.2(b)) that the two and 4 kink states merge,

in the sense of the complementary power Q, in the small amplitude limit (about

the CW). In contrast to the lower branch however, the upper branch appears to

always be unstable. Recall that for this family, the upper branch is not a numerical

continuation of the lower branch (as is the case for the other families) but rather

is calculated the same way that the lower branch is calculated, using a numerical

continuation from a carefully chosen initial steady state at β2 = 0.

While an oscillatory eigenvalue quartet seems to exist, we will not discuss such

instabilities at length, as they appear in our computations to be strongly dependent

on the computational domain size. Indeed, similarly to other such examples in the

realm of dark solitons (starting with the work of [58]), the presence of so-called

anomalous modes, pertaining to the motion of the solitary waves, inside the con-
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tinuous spectrum gives rise to such resonances which are domain-size dependent as

the latter determines the (finite-domain-induced) “quantization” of the continuous

spectrum. On the other hand, we observe that the 4 kinks have 3 internal modes

in their dynamics (in addition to their translational motion which is neutral and

pertains to a so-called Nambu-Goldstone mode associated with the corresponding

invariance). Indeed, for the 2 kinks, there is only one motion, in addition to their

neutral translation, namely the out-of-phase relative motion thereof, while gen-

erally for N kinks, we should expect N − 1 such internal modes associated with

the kink relative motions. In the case of the upper branch of family 0, Fig. 3.3

elucidates the situation. In particular, its right panel uses the approach pioneered

by Manton [39] and analyzed above in Sec. 3.1.2 to identify the equilibrium kink

configuration and performs a linearization analysis around it, in the form of a 4×4

system to obtain the effective particle normal modes Two of these are oscillatory

(featuring one pair moving towards each other and one away from each other),

while the third is an unstable real mode with the kinks moving in opposite outward

directions. The kinks centered in the positive half-line move in unison and so do

the ones in the negative half-line, but these two pairs move in opposite directions

between them. This instability can lead to a splitting of the 4-kink bound state into

two 2-kink bound states as shown in Fig. 3.3(a), but it can also lead all 4 to collide

at the center, featuring a long-lived breathing state before eventually separating.

Notice that, as explained in the inset, in each of these dynamical evolution cases,

we will present the case example where we have added the unstable eigenvector to

the configuration, and also the one where we have subtracted it. These two possi-

bilities have been used in order to seed the instability in two opposite directions,

as seen in panel (a) of the figure and, similarly, in other examples of such seeding

presented below.
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Figure 3.4. Bifurcation diagram and the corresponding steady state solutions
and spectrums for a) family 1, b) family 3, c) family 5.

3.2.2 Families 1, 3, 5

These families are grouped together as they concern unstable saddle configu-

rations in their respective lower branches, as is clearly manifested in each of the

bottom right insets in panels (a)-(c) in Fig. 3.4. Indeed, in each case the two-kink

configurations pertain to the first, the second and the third local maxima of the

energy landscape associated with the two 2-kink states which means that their out-

of-phase motion should give rise to a dynamical instability. Consequently the two

bottom right insets in each branch feature the associated real pair with a corre-

sponding eigenmode that should dynamically destabilize the relevant state. As we

move towards negative β2, once again the modulational instability discussed previ-

ously takes place and all relevant configurations are unstable due to the continuous

spectrum portion lying along the real axis.

Each of the relevant families features a turning point beyond which we move to

the upper portion of the corresponding branches. These branches feature 6 kinks

for the families 1 and 5 and 4 kinks for the family 3. As discussed previously, family

3, along with family 0 are special in this regard, while all other families feature 6

kink states in their upper portions.
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To better understand this we need to turn our focus to the single kink bifurca-

tion diagram. As we move to the left along the lower branch (and β2 decreases),

undulations on the oscillating tails on both sides of the kink increase in size. When

the largest undulation (of which there are two, one on each side, due to symmetry)

reaches a critical size, we reach the turning point. Then as we move on to the

upper branch, (and now β2 increases), the undulations decrease in size, except for

the two largest ones. These continue to grow and eventually give rise to the two

new kink pairs, one on each side of the kink.

Two-kink solutions behave in a similar manner, but the number and the location

of the new kink pairs depend on the distance between the two original kinks. That

distance can only be such that the oscillating tails between the two kinks interfere

either constructively (odd families) or destructively (even families). In the latter

case, the two largest undulations will be the ones outside of the kink pair and

these will give rise to the two new kink pairs. In the former case, the two largest

undulations will be the ones inside the kink pair, if there is enough space to do so,

as in families 5, 7, 9... , where two new pairs appear in the region inside the two

kinks. In the case of family 3, there is space for only one new pair to appear, while

in the case of family 1 there is no space for any such pair at all, so the new pairs

can appear from the undulations outside the two original kinks.

The interference between the oscillating tails of the two kinks can also explain

the differences between the value of βcr2 of each family. In the constructive case,

the largest undulations reach their critical size earlier, as we move to the left. So

we reach the turning point for larger β2, compared to the single kink case. In

the destructive case, on the other hand, undulations are smaller so we need to

move further to the left for them to reach their critical size. So the turning point

corresponds to β2 smaller than the one in the single kink case (with the notable
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Figure 3.5. (a) Phase potraits for family 0 (dashed line) and family 1 (solid
line) in the plane of u-ux. Panel (a) shows a larger scale, while
panels (b) and (c) manifest zooms near the right fixed point. One
can see the resulting loops that are associated with the exponen-
tially decaying in amplitude oscillatory tails connected with the
saddle-spiral fixed point.

exception of family 1).

It should be added here that for the families 0 and 1, we have also depicted the

phase portrait of the plane (u, ux) of Fig. 3.5. The aim of the figure is to showcase

how for family 0, the kink-antikink profile only loops around 0, but does not make

it to loop around the (spatial) fixed point of −
√
µ/γ, while in the case of family 1,

that looping does (as the first such example among the families) take place. The

effectively self-similar pattern of the spatial configuration as it loops around the

saddle-spiral fixed point at u =
√
µ/γ is further illustrated in the zooms of panels
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(b) and (c).

Turning now to the upper branch of family 1, the analysis of the relevant state

is conveyed in Fig. 3.6. Panel (d) summarizes our theoretical predictions. More

concretely, the 6-kink state features 2 oscillatory modes and 3 real ones, in addition

to the neutral translational one. The one with the largest growth rate (≈ 0.391)

features an out-of-phase motion of the two innermost kinks, while the other 4 re-

main essentially immobile. This instability is showcased in the dynamical evolution

of panel (a) where we see that these inner kinks may either move outward colliding

with the other two pairs (and forming breathing pairwise bound states, while the

outermost kink is expelled) or they may move inward, collide and then move out-

ward again, leading to the same fate as the previous example. We have also excited

the two other unstable modes in panel (b) (for growth rate ≈ 0.267) and panel (c)

(with growth rate ≈ 0.12), respectively. In the former case, the two inner kinks

move in one direction, while the four outer ones move in the opposite direction. In

both shown examples of panel (b), this leads to collisions and pairwise formations

of one kink with a bound state pair. In each example where this happens, there

is a “change of allegiance”. The pair member closest to the single kink now forms

a bound state with the formerly single kink, while the pair member furthest from

the single kink is now “freed” and moves in the direction that the single kink used

to move. In the case of the eigenmode excited in panel (c) the outer kinks move

outward or inward, while the centermost pair stays put. However, what ends up

being observed is more akin to the dynamics of panel (a), which appears to be

the dominant instability, since the associated eigenmode growth rate is a factor of

(nearly) 4 times larger than the eigenmode initially excited in panel (c). See also

the discussion surrounding the case example shown later in Fig. 3.13(e).

In the case of family 3, the corresponding dynamical picture is provided in
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Figure 3.6. PDE and ODE initial conditions and dynamics for family 1 (up-
per branch only for PDE). The upper figures of (a), (b), (c) show
the plots of ∥u∥2 (black), ∥u + vj∥2 (red), and ∥u − vj∥2 (blue)
for β2 = 0.5. vj is the eigenfunction corresponding to the PDE
real eigenvalue λj, with (a) λ1: 0.3808 (b) λ2: 0.2638 and (c) λ3:
0.1263. For each of (a), (b), (c), the lower left figure is the contour
plot that results from using ∥u+0.01v1∥2 as the initial condition,
and the lower right figure is the contour plot that results from
using ∥u − 0.01v1∥2 as the initial condition. (d) gives the ODE
values for the soliton positions (left of the vertical line is the
lower branch, right of the vertical line is the upper branch) and
the ODE eigenvalues along the top (again lower branch shown
left, and upper branch shown right). Arrows on the points indi-
cate the initial directions of the solitons (all directions would be
reversed if v1 is replaced by −v1.)
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Figure 3.7. PDE and ODE initial conditions and dynamics for Family 3 (up-
per branch only for PDE). Similar to Figure 3.6, except for Family
3 instead of Family 1, with β2 = 0.5 and PDE eigenvalues (a) λ1:
0.3083 and (b) λ2: 0.2104.
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Fig. 3.7. The lower branch situation is again simple (with the out-of-phase motion

of the two kinks predicted in panel (c) being responsible for the instability of this

saddle-point configuration at a larger distance of ≈ 2.46 at equilibrium. However,

as indicated above, this is an example whereby the upper branch involves only

4 kinks. In this setting, our effective particle theory predicts the existence of 2

unstable modes with growth rates ≈ 0.305 and ≈ 0.22. The largest growth rate

involves the inner kinks moving in one direction and the outer ones in the opposite,

as shown in panel (a) of the figure. This leads, in line with what we saw before, to

the collision of the inner pair with one of the outer kinks, and once again the same

phenomenon of “change of allegiance” as discussed above. The less rapid growth is

associated with a mode whereby the inner kinks stay put while the outer ones move

either outward or inward (depending on the sign of the perturbation), as shown in

panel (b). Among these cases, the outward motion is more “benign” as the outer

kinks depart to (in principle) infinity, while the inner kinks remarkably are sitting

at the equilibrium distance of the lower branch of family 0 and, hence, will stay at

that distance indefinitely given the stability of the latter configuration. A far more

elaborate scenario takes place when the outer kinks first move inward. In this case

they collide with the central kinks leading to an expulsive event where, pairwise,

two sets of kinks (the upper and lower ones, so to speak) are expelled outward in

a breathing, propagating state. While this seems like a nearly bound state, the

distance between the kinks appears to be increasing as they move suggesting that

it does not pertain to a stable configuration. Nevertheless, an exploration of such

breathing, propagating states could be an interesting topic for future study, as it

is outside the scope of the present work.

We now turn to family 5, which again like most families has 6 kinks in its upper

portion (in addition to 2 substantially separated kinks at distance of ≈ 3.72 in its
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Figure 3.8. PDE and ODE initial conditions and dynamics for Family 5 (up-
per branch only for PDE). Similar to Figure 3.6, except for Family
5 instead of Family 1, with β2 = 0.5 and PDE eigenvalues (a) λ1:
0.3105, (b) λ2: 0.2640, and (c) λ3: 0.1509.
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saddle-configuration lower portion). Here again, we encounter a situation involving

3 unstable modes of the upper branch, along with 2 oscillatory ones which have also

been included for completeness in Fig. 3.8, in addition to the neutral translational

mode. The unstable modes have growth rates of ≈ 0.304, 0.267 and 0.155 as

indicated in panel (d) of the figure. The most unstable among these modes involves

the out-of-phase motion of the two inner kink pairs of this configuration and the

opposite to them, also out-of-phase motion of the outer kink pair. This can lead,

as shown in panel (a) of the figure, e.g., to a collision of the kink pairs with the

outer kinks, leading to a change of allegiance and then complex dynamics since the

split innermost kinks collide between them and then again with the breathing pairs

(leading to further change of allegiance etc.). In the case of the two pairs moving

inward they collide with each other, while the outer kinks move outward. In this

case, the complex dynamics of the 4-kink collision near the center eventually leads,

upon breathing, to two outer moving and breathing pairs, once again reminiscent of

the ones we saw in family 3. Again, such dynamics as well as similar pair breathing

and propagating, for instance, in panel (b) of the figure are motivating towards

further study of such states. The case of panel (b) involves a weak in-phase motion

of the 4 inner kinks and a stronger opposite direction motion of the 2 outer ones.

This leads to a collision of one of the outer kinks with one of the inner pairs, and

then a resulting cascade of two changes of allegiance as observed in both instances

of panel (b) resulting eventually in two breathing pairs moving in one direction and

two isolated kinks in the opposite direction. Finally, the weakest unstable mode of

panel (c) involves all kinks for x > 0 moving in the same direction and similarly

all those for x < 0 moving in the opposite direction. In the first example of panel

(c) this leads to no collisions with the kinks continuing to move in their original

direction. In the second example, all kinks move towards the center and the two

70



(a) (b) (c)

Figure 3.9. PDE initial conditions and dynamics for lower branches of Fam-
ilies 1, 3, 5. Similar to Figure 3.6, except for lower branches
instead of upper branches with (a) Family 1, λ1= 0.3012, (b)
Family 3, λ1= 0.0066, (c) Family 5, λ1= 0.00014. The only ex-
ception is the bottom right panel of (c). For the corresponding
ODE initial conditions and dynamics see the bottom panels (left
of the vertical line) in each of Figures 3.6, 3.7, and 3.8.

pairs collide there, leading to a breathing long-lived excitation, while the outer

kinks initially moving inward are eventually led, through interaction (and perhaps

the dominance of the most unstable mode of the highest growth rate) to move in

the opposite direction, diverging away from the center.

We now turn to a description of the lower branches and their dynamics for

these families for reasons of completeness. This is shown in Fig. 3.9. Panel (a) in

the figure shows the 2 kink dynamics in family 1. The relevant unstable (saddle)

configuration either destabilizes with the kinks moving outward, or does so with

them moving inward (toward the center) colliding at x = 0 and then subsequently

moving outward. Similar examples are shown in panel (b) for the case of family 3.

The only difference in this case is that when the kinks move inward, they encounter

a higher barrier (that imposed by the solution of family 1) and hence get trapped

in the well between family 3 and family 1. This is the well involving the stable

solution of the family 2 around which the dynamics ends up orbiting in the bottom
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right panel (b). Finally, a similar phenomenology is present in the case of panel (c).

Interestingly, in this case, the oscillation is between family 5 and family 3 unstable

saddle configurations, which means that the dynamics is orbiting around the center

(stable) configuration of family 4.

3.2.3 Families 2 and 4

Lastly, we briefly refer to families 2 and 4, showcased in Fig. 3.10. Here, as

explained at the level of the theoretical analysis of the energy landscape, but also

corroborated by related numerics of the unstable families, the lower branches con-

cern solutions that are stable. Indeed these are center configurations (around which

the dynamics may orbit, as a result of the instability of the saddles above). This is

reflected in the stable nature of the two bottom right subplots in panels (a) and (b)

within Fig. 3.10. As before, crossing through negative β2 in both families leads to

modulationally unstable backgrounds with continuous spectrum crossing through

to the real line. Past the turning point, we revert to the upper branches for each

configuration which look fairly similar and essentially differ in the location of the

resulting 6 kinks. Interestingly the inner kinks remain at the same distance as for

the stable lower branch (for each of the families 2 and 4) and two outer pairs of

kinks are added to the configuration at larger distances.

As regards the upper branches of each of these families, panels (c) and (d) of

Fig. 3.10 reflect the theoretical predictions for their stability. In each case there are

two unstable modes (rather than 3) which, in fact, have very proximal eigenvalues.

It is for that reason that these two pairs of real modes cannot be distinguished

in the two upper right insets of panels (a) and (b). Recall that the oscillatory

instabilities are not systematically considered here given their size dependence.

The other 3 pairs of nonzero modes of the 6-kink system are imaginary and are
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Figure 3.10. Bifurcation diagrams and the corresponding steady state solu-
tions and spectra for (a) Family 2 (b) Family 4. The former
are presented in the format shown previously of Q vs. β2. The
latter indicate the eigenvalues and prescribe the motion of the
solitary waves, in line with the desired eigenmode.
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also given in panels (c) and (d). In either case, the destabilizing eigenmodes are

similar and involve either an in-phase motion of the inner 2 kinks while the outer

4 ones are moving in the opposite direction or an out-of-phase motion of the inner

kinks which on each “side” (i.e., for x > 0 or x < 0) is opposite to the motion of

the outer kinks. For brevity, we do not present the dynamical implementation of

these cases, although a similarly good agreement with the predictions of the theory

has been found in this case.

Indeed, we elaborate a bit further on the quantitative aspects of the comparison

of the theory with our numerical computations now. This comparison can be seen

as summarized in the two extensive tables 3.1 and 3.2. The former of these tables

offers the comparison of the equilibrium configurations in the context of the ODE

theoretical approach of section 3.1.2 and the full PDE results. In the latter, the zero

crossings of configurations with 2 (all lower branches), 4 (upper branches of families

0 and 3) and 6 kinks (remaining upper branches) have been identified and listed.

One can observe a very good agreement between the two. This only deteriorates

a little in the cases of outermost kinks but is still qualitatively excellent and even

quantitatively satisfactory.

An even more stringent test of the theory (in comparison to equilibrium posi-

tions of ODE vs. PDE) consisted of the examination of the relevant internal modes

of vibration presented in Table 3.2. Here, we have included for completeness the

motion induced by the mode (e.g., as we have already discussed, all lower branch

non-vanishing modes should be out-of-phase), as well as the spatial parity of the

mode. The former motion is useful towards understanding the unstable dynamics

induced by the mode (this was also explained in the discussion of the different fam-

ilies above). The latter is in line with the expectations of Sturm-Liouville theory,

wherever appropriate (given the 1d nature of our system). Remarkably, we see that
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Family Branch Soliton Position
ODE PDE

0 lower 0.5778 0.6084
upper 1.2063 1.2229

2.3620 2.4389

1 lower 1.2063 1.20534
upper 1.2063 1.20493

3.6190 3.63302
4.7747 4.84924

2 lower 1.8349 1.83539
upper 1.8349 1.83495

4.2476 4.26350
5.4032 5.47906

3 lower 2.4634 2.46336
upper 0.5778 0.60799

2.9905 3.03715

4 lower 3.0919 3.09138
upper 3.0919 3.27728

5.5046 5.70647
6.6602 6.92233

5 lower 3.7204 3.72945
upper 1.2063 1.22286

2.3620 2.43858
4.7747 4.86794

Table 3.1. Soliton positions, ODE versus PDE, for β2 = 0.5
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Family Branch Eigenvalues Soliton Initial PDE Eigenvector
ODE PDE Directions Symmetry

0 lower 2.0337 i 2.0263 i ↓↑ even
upper 0.2139 0.2231 ↓↓↑↑ even

2.0337 i 2.2072 i * ↑↓↓↑ odd
2.0227 i 2.2481 i * ↓↑↓↑ even

1 lower 0.30996 0.30119 ↓↑ even
upper 0.39091 0.38075 ↓↓↑↓↑↑ even

0.26654 0.26383 ↑↑↓↓↑↑ odd
0.11958 0.12634 ↓↓↓↑↑↑ even
2.0284 i 2.0334 i ↑↓↓↓↓↑ odd
2.0284 i 2.2871 i * ↓↑↑↓↓↑ even

2 lower 0.04585 i 0.04460 i ↓↑ even
upper 0.26654 0.26401 ↑↑↓↓↑↑ odd

0.26387 0.26168 ↓↓↑↓↑↑ even
0.02620 i 0.02721 i ↓↓↓↑↑↑ even
2.0283 i 2.0418 i ↓↑↑↓↓↑ even
2.0283 i 2.2842 i * ↑↓↓↓↓↑ odd

3 lower 0.006781 0.00660 ↓↑ even
upper 0.30542 0.30825 ↑↓↓↑ odd

0.22037 0.21038 ↓↑↓↑ even
2.0227 i 2.2318 i * ↓↓↑↑ even

4 lower 0.001003 i 0.000976 i ↓↑ even
upper 0.26653 0.26407 ↓↓↑↓↑↑ even

0.26654 0.26402 ↑↑↓↓↑↑ odd
0.00057 i 0.00021 ↓↓↓↑↑↑ even
2.0283 i 2.0367 i ↓↑↑↓↓↑ odd
2.0283 i 2.2784 i * ↑↓↓↓↓↑ even

5 lower 0.00014 0.00014 ↓↑ even
upper 0.30393 0.31054 ↓↑↑↓↓↑ even

0.26654 0.26397 ↑↓↓↓↓↑ odd
0.15465 0.15087 ↓↓↓↑↑↑ even
2.0283 i 2.2992 i * ↑↑↓↓↑↑ odd
2.0171 i 2.0213 i ↓↓↑↓↑↑ even

Table 3.2. ODE versus PDE eigenvalues and PDE eigenvector symmetry for
β2 = 0.5. The PDE eigenvalues listed are those that were identi-
fied using an inverse participation ratio (IPR) plot; * represents
eigenvalues that were not apparent from the IPR plot, but were
the closest PDE eigenvalues to the corresponding ODE eigenvalues
that also had the same initial direction signature.
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in this case as well, the effective particle method of Section 3.1.2 is fairly accurate

in its prediction of both the oscillatory and the growing modes of the system. As

the table shows, this turns out to be the case for both lower and upper branches,

and for all the different families considered from 0 to 5. It is important to note

here that for the real modes, such a comparison is relatively straightforward as the

modes are separated from the rest of the spectrum. However, such a comparison is

far more involved when we are, in principle, seeking localized modes involving rela-

tive kink motions “buried” within the continuous spectrum. Nevertheless, we have

developed a technique based on the inverse participation ratio (IPR) [59] which

enables us to identify modes with high IPR, even when embedded in the continu-

ous spectrum, and to compare them favorably in many cases with the theoretical

predictions. We now briefly discuss the associated details.

The Inverse Participation Ratio can be defined for a function u(x) as

IPR =

∫
|u|4dx

(
∫
|u|2dx)2 . (3.33)

When u is an eigenvector (eigenfunction), this quantity can be used to find eigen-

vectors that are the most localized, even when there is a continuous background

present. We create an IPR plot, which gives the IPR value for each eigenvector,

listed in order of the corresponding eigenvalue (using Matlab’s default method of

ordering complex eigenvalues). An example, corresponding to Family 1, upper

branch, is given in Figure 3.11. Since the eigenvalues come in pairs (± pairs for

the real eigenvalues and complex conjugate pairs —in fact, quartets ±λr ± iλi—

for the complex valued ones), only the first of each pair that “stands out” from

the others is marked with an asterisk and labeled with its eigenvalue. From this

plot we infer that three real and one purely imaginary eigenvalue correspond to the

most localized eigenvectors. Note that the slightly elevated parts of the graph near
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eigenvalue order number 1130 correspond to eigenvalues that have both non-zero

real and imaginary parts (which are not considered) and the elevated part near 1200

corresponds to a zero eigenvalue (representing translational invariance). Thus, the

four eigenvalues identified in the figure are the ones listed in Table 3.2. Also note

that the eigenvalue 2.2871 i listed in Table 3.2 has an asterisk, indicating that it

does not correspond to an elevated IPR value.

1130 1140 1150 1160 1170 1180 1190 1200

index of eigenvalue

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

IP
R

0.3808

2.0334 i

0.2638
0.1263

Figure 3.11. Inverse Participation Ratio plot for Family 1, upper branch.
Numerical values shown are eigenvalues corresponding to the
eigenvector whose IPR is calculated and plotted. Eigenvectors
with index values smaller than shown do not contribute signifi-
cant IPR values.

Figure 3.12 shows the dynamics for several embedded (purely imaginary) eigen-

values. The plots in the first (left) column verify that for typical lower branch

cases, pure oscillations occur for long periods of time, with the frequency given

by the corresponding eigenvalue (the top left plot is also, in fact, unchanged up

to t = 300). The plots in the second column show that for typical upper branch
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plots, the expected oscillations (with frequencies corresponding to the —imaginary

part of the— respective eigenvalues) occur for short periods of time, after which

nonlinearity takes over as the solitary wave paths start to interact. The blue curves

track the centers of the kinks, and are needed as the contour plots do not have fine

enough resolution to show the oscillations. The oscillations manifested in these

graphs (and their localized nature around the kink equilibria) confirm that the

modes selected by the high IPR are embedded ones within the continuous spec-

trum associated with the effective normal modes of the kink-antikink interacting

particle system.

Lastly, we should mention that in addition to exploring the growth rate of

unstable configurations via spectral stability analysis, we have also resorted to an

alternative method to corroborate our numerical stability results through direct

numerical simulations. Indeed, we have considered a method of perturbing the

unstable eigenvectors and subsequently monitoring the instability growth rates.

Typical case examples of the corresponding results are shown in Fig. 3.13. Here,

we compare the findings of the linear stability computations (via red solid lines)

with the PDE simulations (via blue lines). In each case the blue lines represent

the projections arising from subtracting from u(x, t) the equilibrium solution u0

and then projecting the difference to the instability eigenvector. With the dotted

blue lines, we represent the dynamical outcome of positive perturbations, while

with the dash-dot blue lines the case of a negative perturbation. The the red lines

represent a least-squares straight line fit to the linear part of the blue curves in

these semilog plots. In this way, we can corroborate the growth rate observed in

the spectral analysis via the instability dynamics observed in the full PDE model.

In essentially all the cases considered the agreement is found to be very good with

respect to our theoretical expectations.
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(a) (b)

Figure 3.12. Dynamics corresponding to imaginary eigenvalues that are em-
bedded in the continuous spectrum. In each case a small amount
of an eigenvector with imaginary eigenvalue is added to the
steady state, inducing an out-of-phase oscillation for a pair of
solitons. The two panels in (a) represent out-of-phase oscilla-
tions for Families 0 (top figure, eigenvalue 2.0263) and 2 (bot-
tom figure, eigenvalue 0.0446), both for the bottom branch. We
show only the curve that represents the center of the soliton
that appears on the positive side of the x-axis (and hence on
top in the contour plots). All figures in (b) represent Family
1, top branch, with eigenvalue 2.0334. The three blue curves
on the bottom again represent the motion of the center of each
of the three solitons that appear on the positive side of the
x-axis (corresponding to the top three solitons in the contour
plot shown). These blue curves also appear superimposed on
the contour plot, where due to scaling, the oscillations are not
apparent.
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Figure 3.13. Projection plots for β2 = 0.5. In the top two rows, for a
few selected solutions u(x, t), we plot the scalar projection of
u(x, t)− u0(x) in the direction of an eigenvector (as a function
of time) using a semilog scale. For these solutions, the initial
steady state u0(x) was slightly perturbed in the direction of
said eigenvector. In each case the blue lines represent the pro-
jections, with the dotted blue lines representing positive per-
turbations, the dash-dot blue lines representing a negative per-
turbation; the red lines represent a least-squares straight line
fit to the linear part of the blue curves. We observe a linear
portion near the beginning of each plot, whose slope matches
very closely with what is predicted by the corresponding eigen-
value. In all cases the slope of the projection curve matches the
eigenvalue to two (for the smallest eigenvalues) or three decimal
places. The cases are as follows. First row - steady state 3 (left)
and steady state 1 (right), both lower branch (note the different
time scales). Second row - steady state 4, largest real eigenvalue
(left - even eigenvector) and steady state 4, second largest real
eigenvalue (right - odd eigenvector - projections coincide). The
figure in the third row shows how an initial (small) growth rate
can transition to a larger growth rate (projection in blue). This
figure corresponds to family 1, upper branch where the initial
growth rate of 0.124 (fitted line in red) transitions to a growth
rate of 0.381 (fitted line in black). Here u0(x) was perturbed
in the direction of the eigenvector with eigenvalue 0.12634 and
then projected onto the eigenvector with eigenvalue 0.38075.
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C H A P T E R 4

MIXED DISPERSION NONLINEAR SCHRÖDINGER

EQUATION IN HIGHER DIMENSIONS: THEORETICAL

ANALYSIS AND NUMERICAL COMPUTATIONS

In this chapter1, we provide a characterization of the ground states of a higher-

dimensional quadratic-quartic model of the nonlinear Schrödinger class with a com-

bination of a focusing biharmonic operator with either an isotropic or an anisotropic

defocusing Laplacian operator (at the linear level) and power-law nonlinearity. Ex-

amining principally the prototypical example of dimension d = 2, we find that

instability arises beyond a certain threshold coefficient of the Laplacian between

the cubic and quintic cases, while all solutions are stable for powers below the cu-

bic. Above the quintic, and up to a critical nonlinearity exponent p, there exists

a progressively narrowing range of stable frequencies. Finally, above the critical

p all solutions are unstable. The picture is rather similar in the anisotropic case,

with the difference that even before the cubic case, the numerical computations

suggest an interval of unstable frequencies. Our analysis generalizes the relevant

observations for arbitrary combinations of Laplacian prefactor b and nonlinearity

1The contents of this chapter are published in Journal of Physics A: Mathematical and Theo-
retical [56] and appear here with permission.
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power p.

4.1 Mathematical Setup and main results

We start by noting that the problem of interest possesses continuous spectrum,

which effectively, per Weyl’s theorem [78], amounts to the spectrum of the homo-

geneous background state: σ(L±) = σ(∆2 + b∆) = Range[ξ → |ξ|4 − b|ξ|2 + ω] =

[ω− b2

4
,+∞). If we do not expect embedded eigenvalues in the essential spectrum2,

and since by a direct inspection L−[Φ] = 0, so 0 ∈ σp.p.(L−) (where σp.p. denotes

the pure point spectrum), then we can clearly conclude ω ≥ b2

4
, which corresponds

to the range of frequencies of the standing wave that we will be considering in what

follows.

Our principal theme of study will consist of the standing wave solutions of (1)

and (2) (that is, the solutions of (3) and (4)). Main interest is in the (spectral) sta-

bility of these waves. For future reference, we introduce the associated Hamiltonian

functionals,

I(u) =

{
1

2

∫
Rd

|∆u|2 − b

2

∫
Rd

|∇u|2 − 1

p+ 1

∫
Rd

|u|p+1

}
,

J(u) =

{
1

2

∫
Rd

|∆u|2 − b

2

∫
Rd

|ux1|2 −
1

p+ 1

∫
Rd

|u|p+1

}
2However, there are fourth order differential operators with fast decaying potentials, which have

embedded eigenvalues in their continuous spectrum. This is in sharp contrast with the second
order operators, which may possess eigenvalues only at the edges of the continuous spectrum.
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and the associated constrained minimization problems I(u) → min∫
Rd |u(x)|2dx = λ.

, (4.1)

 J(u) → min∫
Rd |u(x)|2dx = λ.

(4.2)

The solutions of these problems, if they exist, are referred to as normalized waves

for the corresponding variational problems.

For the rest of the paper, we consider the case b > 0 only. We have the following

result.

Theorem 4.1 (The isotropic case) Let d ≥ 2 and b > 0. Then, there exists a

unique p∗(d) ∈ (1 + 4
d
, 1 + 8

d+1
), so that

• For 1 < p < p∗(d), the constrained minimization problem (4.1) has a solution

for every λ > 0. Moreover, such solutions satisfy the Euler-Lagrange equation

∆2Φ + b∆Φ+ ωΦ− |Φ|p−1Φ = 0, x ∈ Rd, (4.3)

for some ω = ω(λ) > 0. In addition, all the functions e−iω(λ)tΦ are spectrally

stable in the context of the isotropic NLS (1).

• For 1 + 8
d
> p > p∗(d), there exists λ∗(p, d, b) > 0, so that the problem (4.1)

has solutions for all λ > λ∗(p, d). These solutions are spectrally stable.

Our numerical results suggest that 3.2 < p∗(2) < 3.4, with the relevant value being

in the vicinity of p∗(2) ≈ 3.3, yet the subtle nature of the numerical considerations

near the limit only affords us an approximate result in this context.

Next, we have the following result regarding the anisotropic case.

Theorem 4.2 (The anisotropic case) Let d ≥ 2 and b > 0. Then,
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• For 1 < p < 1+ 4
d
, the constrained minimization problem (4.2) has a solution

for every λ > 0. Moreover, all of these solutions are spectrally stable.

• For 1 + 8
d
> p > 1 + 4

d
, there exists λ∗(p, d, b) > 0, so that the problem (4.1)

has solutions for all λ > λ∗(p, d). These solutions are spectrally stable.

Remark: The statement of the Theorem 4.2 does not imply that all waves are

spectrally stable, but rather only that the minimizers of the constrained minimiza-

tion problem (4.2) are guaranteed to be spectrally stable. In fact, in later sections,

we numerically explore waves (i.e. functions satisfying (4)), which are not necessar-

ily spectrally stable. Interestingly they happen to co-exist with stable constrained

minimizers in that for a range of p, there exist multiple solutions corresponding to

different frequencies with some (2) of them being stable and one unstable. We now

turn to the systematic construction of the waves of interest.

4.2 Construction of the waves: Preliminaries

We begin our considerations with an analysis of when the constrained minimiza-

tion problem (4.1) is well-posed. That is, whether the quantity I[u] is bounded from

below.

4.2.1 Well-posedness of the constrained minimization problems

To this end, introduce the following functions

m(λ) = inf
∥u∥2

L2=λ

{
1

2

∫
Rd

|∆u|2 − b

2

∫
Rd

|∇u|2 − 1

p+ 1

∫
Rd

|u|p+1

}
n(λ) = inf

∥u∥2
L2=λ

{
1

2

∫
Rd

|∆u|2 − b

2

∫
Rd

|ux1|2 −
1

p+ 1

∫
Rd

|u|p+1

}
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It is not a priori clear that m(λ), n(λ) are finite. We have the following result

detailing that.

Lemma 4.3 Let d ≥ 1. Then, for every λ > 0 and 1 < p < 1 + 8
d
, we have that

−∞ < m(λ) < 0.

For p > 1 + 8
d
, m(λ) = −∞.

Proof. Assume that 1 < p < 1 + 8
d
. By the Gagliardo-Nirenberg-Sobolev’s in-

equalities

∥u∥Lp+1(Rd) ≤ C∥u∥
Ḣ

d( 12− 1
p+1 ) ≤ Cd,p∥∆u∥

d
2
( 1
2
− 1

p+1
)

L2 ∥u∥1−
d
2
( 1
2
− 1

p+1
)

L2 .

Thus, for a function u : ∥u∥2 = λ, we have

∥u∥p+1
Lp+1(Rd)

≤ λ
1
2(p+1− d

4
(p−1))∥∆u∥

d(p−1)
4

L2 =: Cλ∥∆u∥
d(p−1)

4

L2 .

Since d(p−1)
4

< 2, we conclude by Young’s inequality that for every δ > 0,

∥u∥p+1
Lp+1(Rd)

≤
(

Cλ

δ
d(p−1)

8

) 8
8−d(p−1)

+ δ∥∆u∥2L2 ≤ Dλ,δ,p + δ∥∆u∥2L2 .

Trivially, ∥∇u∥2 ≤ Cd∥∆u∥∥u∥ ≤ δ∥∆u∥2 + C2
dλ

δ
, so by setting δ = δλ,p,b appropri-

ately small, we obtain that for a function u : ∥u∥2 = λ,

I[u] ≥ 1

4
∥∆u∥2L2 − Cλ,p,b. (4.4)

whence the function m is bounded from below.

Let ϕ be a test function, ∥ϕ∥2L2 = λ. We take the scaling transformation ϕa =

ad/2ϕ(ax), so ∥ϕa∥2L2 = λ. We have

I[ϕϵ] = a4
∥∆ϕ∥2

2
− ba2

∥∇ϕ∥2
2

− a
d(p+1)

2
−d

p+ 1
∥ϕ∥p+1

Lp+1 .

Clearly, if b > 0 and 0 < a≪ 1, the dominant term is−ba2 ∥∇ϕ∥2
2

−a
d(p+1)

2 −d

p+1
∥ϕ∥p+1

Lp+1 <

0, whence m(λ) < 0 for these values.
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On the other hand, if p > 1+ 8
d
, we have d(p+1)

2
−d > 4, so that lima→+∞ I[ϕa] =

−∞. ⋄

The next lemmata are technical statements, which will however impact the re-

strictions one must impose on p (and other parameters), in order to be able to

construct the waves in Theorem 4.1. In fact, we shall need specific Gagliardo-

Nirenberg-Sobolev type inequalities in order to resolve the existence requirements

in Theorems 4.1 and 4.2.

4.2.2 The Gagliardo-Nirenberg-Sobolev inequalities with mixed disper-

sion

We start with the isotropic case.

Proposition 4.4 Let b > 0. For every d ≥ 2, there exists p∗(d), so that: for all

1 < p ≤ p∗(d), the following estimate

∥ϕ∥p+1
Lp+1(Rd)

≤ C∥ϕ∥p−1
L2

(∫
Rd

[|∆ϕ|2 − b|∇ϕ|2 + b2

4
ϕ2]dx

)
(4.5)

cannot hold for a given constant C and all test functions ϕ. In addition, p∗(d)

obeys the following

1 +
4

d
≤ p∗(d) ≤ 1 +

8

d+ 1
. (4.6)

On the other hand, for 1+ 8
d
> p > p∗(d), there exists a constant C = Cp,d,b, so

that

∥ϕ∥p+1
Lp+1(Rd)

≤ Cp,d,b∥ϕ∥p−1
L2

(∫
Rd

[|∆ϕ|2 − b|∇ϕ|2 + b2

4
ϕ2]dx

)
(4.7)

Remark: The value of p∗(1) = 5 was computed in [31]. Finding the exact value

of p∗(d), d ≥ 2 appears to be a hard problem in Fourier analysis, closely related to

the restriction conjecture. Even in our proof of the upper bound in (4.6), we use

the full strength of the Stein-Tomas restriction theorem in two spatial dimensions
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(see for example p. 784, [79]) which does not appear to be enough to determine

p∗(d). Proposition 4.4 allows us to prove Theorem 4.1; see Section 4.3 below.

Next, we present the relevant GNS results (or lack thereof) in the anisotropic

case. The result is much more definite than its counterpart Proposition 4.4.

Proposition 4.5 Let b > 0. For every d ≥ 2, and for all 1 < p ≤ 1 + 4
d
, the

following estimate

∥ϕ∥p+1
Lp+1(Rd)

≤ C∥ϕ∥p−1
L2

(∫
Rd

[|∆ϕ|2 − b|∂x1ϕ|2 +
b2

4
ϕ2]dx

)
(4.8)

cannot hold for a given constant C and all test functions ϕ.

On the other hand, for 1+ 8
d
> p > 1+ 4

d
, there exists a constant C = Cp,d,b, so

that

∥ϕ∥p+1
Lp+1(Rd)

≤ Cp,d∥ϕ∥p−1
L2

(∫
Rd

[|∆ϕ|2 − b|∂x1ϕ|2 +
b2

4
ϕ2]dx

)
(4.9)

In the remainder of this section, we present some preparatory material for the

proofs of Propositions 4.4 and 4.5. To this end, we use the formula for the Fourier

transform and its inverse as follows

f̂(ξ) = (2π)−d/2
∫
Rd

f(x)e−ix·ξdx, f(x) = (2π)−d/2
∫
Rd

f̂(ξ)eix·ξdξ

The Plancherel’s theorem states that ∥f∥L2 = ∥f̂∥L2 . We will also make frequent

use of the Bernstein inequality: for every 1 ≤ p ≤ q ≤ ∞ and every finite volume

set A ⊂ Rd, there exists C = Cd, so that

∥PAf∥Lq ≤ C|A| 1p− 1
q ∥f∥Lp .

where P̂Af(ξ) = χA(ξ)f̂(ξ).

We are now ready to proceed to the specifics of the isotropic case.
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4.2.3 Proof of Proposition 4.4

In consideration of the estimates (4.7), one can straightforwardly rescale to

the case b = 2, which we will henceforth use in our considerations for simplicity

(although when completing the proof of our theorems in section IV below, we

will present them for arbitrary b). Using Fourier transformation and Plancherel’s

theorem, we can rewrite∫
Rd

[|∆ϕ|2 − 2|∇ϕ|2 + ϕ2]dx =

∫
Rd

|f̂(ξ)|2(|ξ|2 − 1)2dξ.

Further, one can use smooth decompositions near |ξ| = 1 to study (4.7). More

concretely, introduce a function ψ ∈ C∞
0 (R), so that ψ(z) = 1, |z| < 1 and

ψ(z) = 0, |z| > 2. Then, let χ(z) = ψ(z) − ψ(2z), so that suppχ ⊂ (1
2
, 2) and∑∞

j=−∞ χ(2jz) = 1, z ̸= 0. Now, introduce two multipliers

Q̂jf(ξ) := χ(2−j(|ξ|2 − 1))f̂(ξ), P̂mf(ξ) := χ(2m(|ξ|2 − 1))f̂(ξ),

and the corresponding versions Q>j :=
∑

l>j Ql, Q∼j = Qj−1 + Qj + Qj+1 and so

on. Based on the relevant decomposition,

Id =
∞∑
j=0

Qj +
∑
m>0

Pm,

and Qj, j ≥ 3 Fourier restricts to a region |ξ| ∼ 2j/2. We henceforth adopt the

notation, A ∼ B, for two positive quantities that satisfy if 1
4
A ≤ B ≤ 4A.

It is actually not hard to come up with necessary and sufficient conditions on p

so that (4.7) holds, where f is replaced by Q>3f .

Estimates away from |ξ| = 1

We can estimate by Sobolev embedding (or rather Bernstein inequality)

∥Qjf∥p+1
Lp+1(Rd)

≤ C2j
(p−1)d

4 ∥Qjf∥p+1
L2(Rd)

. (4.10)
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Computing the right-hand side of (4.7) (with b = 2), on the other hand, yields

22j∥Qjf∥p+1
L2(Rd)

. One can now show (4.7) for Q>3f , when 1 < p < 1 + 8
d
. Indeed,

by the triangle inequality, (4.10)

∥Q>3f∥Lp+1(Rd) ≤ C
∑
j>3

2j
(p−1)d
4(p+1) ∥Qjf∥L2(Rd)

≤ C∥f∥
p−1
p+1

(∑
j>3

∥Qjf∥2L22j
(p−1)d

4

) 1
p+1

≤ C∥f∥
p−1
p+1

(∑
j>3

∥Qjf∥2L222j

) 1
p+1

≤ C∥f∥
p−1
p+1

(∫
Rd

[|∆f |2 − 2|∇f |2 + f 2]dx

) 1
p+1

.

where we have used (p−1)d
4

< 2 and ||ξ|2 − 1| ∼ 2j on the support of the multiplier

Qj.

The situation is much more delicate for frequencies close to the sphere |ξ| = 1,

that is for the multipliers Pm,m≫ 1.

Estimates near |ξ| = 1

Clearly, one has, by Bernstein inequalities, the estimates ∥Pmf∥Lp+1 ≤ Cm∥f∥L2 ,

so the issue is the control of P>m for a fixed m. We claim that the central issue

here is the exact bound in the estimate ∥Pmf∥Lp+1(Rd) ≤ C∥f∥L2 . More precisely,

define

α(p, d) = sup{α : lim sup
m→∞

sup
∥f∥L2=1

2αm∥Pmf∥Lp+1(Rd) <∞}. (4.11)

Note that by the uniform boundedness principle and the definition of α(p, d), for

every β > α(p, d), there is a fβ : ∥fβ∥L2 = 1, so that

lim sup
m→∞

2βm∥Pmf∥Lp+1(Rd) = ∞. (4.12)
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For convenience, we drop the dependence on the dimension d in α(p, d). Note that

by the Bernstein’s inequality α(p) > 0, in fact ∥Pmf∥Lp+1 ≤ C2−m( 1
2
− 1

p+1
)∥f∥L2 ,

whence α(p, d) ≥ (1
2
− 1

p+1
). For the same reasons, it is clear that p → α(p) is an

increasing function. In addition p→ α(p) is a continuous function and α(1) = 0.

A convenient characterization of α(p, d) is the following: for every ϵ > 0, there

is Cϵ, so that

∥Pmf∥Lp+1(Rd) ≤ Cϵ2
(−α(p,d)+ϵ)m∥f∥L2(Rd). (4.13)

We claim that α(p, d) determines the value of p∗(d) in Proposition 4.4.

In fact, we claim that p∗(d) is the unique solution of the equation α(p, d) = 2
p+1

.

We now prove this claim. First, we show that this equation has a unique solution.

To start with, the continuous function h(p) := α(p)− 2
p+1

is increasing, with h(1) =

−1 < 0, while h(p) ≥ 1
2
− 3

p+1
> 0 for p ≥ 5, so there will be a solution p ∈ (1, 5). In

fact, below we show better bounds on α(p, d), which imply existence of solutions in

the interval of interest, namely (1, 1 + 8
d
), but the existence of solutions anywhere

in (1,∞) will suffice for now.

Next, we show that for p < p∗(d), (4.5) holds. This means that α(p)− 2
p+1

< 0.

Introduce β > α(p), so that β < 2
p+1

. According to the remarks made earlier, this

allows us to find a function fβ : ∥fβ∥L2 = 1, so that (4.12) holds true. Assume

then, for a contradiction, that (4.5) holds for some constant C. This means that

for all ϕ ̸= 0,

∥ϕ∥Lp+1

∥ϕ∥
p−1
p+1

L2

(∫
[|∆ϕ|2 − 2|∇ϕ|2 + ϕ2]dx

) 1
p+1

≤ C. (4.14)

In particular, taking into account the properties of Pm and our earlier calculations

with regards to the quantity in the denominator of (4.14), we can take ϕm = Pmfβ,

sup
m

∥Pmfβ∥Lp+1

∥Pmfβ∥L22−
2m
p+1

≤ C. (4.15)
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Now, since ∥Pmfβ∥L2 ≤ ∥fβ∥L2 = 1, it follows that supm ∥Pmfβ∥Lp+12
2m
p+1 ≤ C. But

this is a contradiction with (4.12), since

∥Pmfβ∥Lp+12βm2m( 2
p+1

−β) = ∥Pmfβ∥Lp+12
2m
p+1 ≤ C,

whereas on the left hand side lim supm ∥Pmfβ∥Lp+12βm = ∞, and limm 2m( 2
p+1

−β) =

∞.

Assume now p > p∗(d), so α(p) >
2
p+1

. So, we can find β : α(p) > β > 2
p+1

.

Then, we have the estimate, (see (4.13), but applied to P 2
mf)

∥Pmf∥Lp+1(Rd) ≤ Cϵ2
−βm∥Pmf∥L2(Rd). (4.16)

We will show that (4.7) holds. In view of the estimates away from |ξ| = 1, which

establish (4.7) for Q>3f , it suffices to consider P>m0f for m0 sufficiently large only.

We take m0 = 10 for concreteness. By (4.16), we have

∥P>10f∥Lp+1 ≤
∑
m>10

∥Pmf∥Lp+1 ≤ C
∑
m>10

2−βm∥Pmf∥L2

≤ C∥f∥
p−1
p+1

L2

(∑
m>10

∥Pmf∥2L22−2m

) 1
p+1

≤ C∥f∥
p−1
p+1

L2

(∫
[|∆f |2 − 2|∇f |2 + f 2]dx

) 1
p+1

.

This establishes (4.7) and so the estimates (or lack thereof) in Proposition 4.4 are

established in full.

We now focus our attention on appropriate estimates on p∗(d).

Estimates on the value of p∗(d)

As we saw above, the value p∗(d) is intimately related to the precise estimates

of Pm : L2(Rd) → Lp+1(Rd). Recall that there was the trivial bound based on

the Bernstein’s inequality, α(p, d) ≥ (1
2
− 1

p+1
), but we now aim for a much more
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sophisticated one. Before we proceed, we need to introduce some quantities that

will be helpful in our considerations. The surface measure on Sd−1 is defined via

dσ(x) = δ(|x|2 − 1) and its Fourier transform is (see [79], Appendix B.4)

d̂σ(ξ) = (2π)−d/2
∫
Sd−1

e−iξ·θdθ = cd
J d−2

2
(|ξ|)

|ξ| d−2
2

=: S(ξ).

where cd is a constant and Jn are the standard Bessel functions. Furthermore, see

Appendix B.5, [79], for any radial function f(x) = f0(|x|), one can compute its

Fourier transform as follows

f̂(ξ) = Cd|ξ|−
d−2
2

∫ ∞

0

f0(r)J d−2
2
(r|ξ|)r d

2dr.

In this way, when we take the multipliers associated to Pm, namely f0(r) =

χ(2m(r2 − 1)), we see that its kernel Km (i.e., Pmf = f ∗Km) can be expressed in

terms of an averaging operator involving the kernel S = d̂σ as follows

Km(x) = Cd

∫ ∞

0

χ(2m(r2−1))
J d−2

2
(r|x|)

|x| d−2
2

r
d
2dr = Cd

∫ ∞

0

χ(2m(r2−1))rd−1S(r|x|)dr.

Let us now fix q > 2. We wish to establish an estimate for the operator norm

Pm : L2 → Lq. Note that Pm is trivially bounded, but the issue is to determine

precise bounds on the norm, as a function of m. Due to the fact that χ is real-

valued, Pm : Lq
′ → L2, so in order to compute ∥Pm∥B(L2→Lq), we might instead

consider P 2
m : Lq

′ → Lq and in addition

∥Pm∥B(L2→Lq) =
√

∥P 2
m∥B(Lq′→Lq).

Now, P 2
mf = K̃m ∗ f , K̃m = Cd

∫∞
0
χ2(2m(r2 − 1))rd−1S(r|x|)dr. The advantage in

this formulation is that the mapping properties of the operator f → f ∗ d̂σ = f ∗S

are well-understood. In fact, this is the content of the celebrated Stein-Tomas

theorem. To summarize, (see (10.4.7), p. 784, [79]), there is the estimate

∥f ∗ S∥Lq(Rd) ≤ C∥f∥Lq′ (Rd), qd =
2(d+ 1)

d− 1
(4.17)
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With this value of qd, we then conclude that since f ∗ K̃m = Cd
∫∞
0
χ2(2m(r2 −

1))rd−1[S(r| · |) ∗ f ]dr, we have the estimate, based on the Stein-Tomas bound

(4.17),

∥P 2
mf∥Lq = ∥f ∗ K̃m∥Lq ≤ C2−m∥f∥Lq′ .

Note here that the factor 2−m is gained through the integration in r, while the

estimate for the term ∥[S(r| · |) ∗ f ]∥Lq comes from (4.17). Accordingly, this gives

the estimate

∥Pmf∥Lqd ≤ C2−m/2∥f∥L2 , qd =
2(d+ 1)

d− 1
. (4.18)

Interpolating this estimate with the trivial one ∥Pmf∥L2 ≤ C∥f∥L2 , we conclude

that for every 2 ≤ q ≤ 2(d+1)
d−1

, there is

∥Pmf∥Lq ≤ C2−m
d+1
2 ( 1

2
− 1

q )∥f∥L2 . (4.19)

It follows that

α(p, d) ≥ d+ 1

2

(
1

2
− 1

p+ 1

)
. (4.20)

In particular, it is clear that α(p, d) − 2
p+1

> 0, if p > 1 + 8
d+1

, which means that

we have established the upper bound p∗(d) < 1 + 8
d+1

.

In order to establish the lower bound for p∗(d), we test the ratio
∥Pmf∥Lr(Rd)

∥f∥
L2(Rd)

for

r > 2, with f = Km, defined above. For the correct asymptotics, we need to recall

(see Appendix B.6, [79]) that for every r ≫ 1,

Jk(r) = c
cos(r − πk

2
− π

4
)√

r
+O(r−3/2).

Now,

K̃m(x) = Cd

∫ ∞

0

χ2(2m(r2 − 1))rd−1S(r|x|)dr =

= const.|x|− d−1
2

∫ ∞

0

χ2(2m(r2 − 1))rd−1 cos(r|x| −
π(d−2)

4
− π

4
)

r
d−1
2

dr + 2−mO(|x|− d+1
2 ).
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It is then easy to see that for 2−m ≪ δ ≪ 1 and |x| ∼ δ2m, m≫ 1, in the integral

above there is the approximate formula

cos

(
r|x| − π(d− 2)

4
− π

4

)
= cos

(
|x| − π(d− 2)

4
− π

4

)
+O(δ).

This implies that for a fixed portion of the set |x| ∼ δ2m, cos(r|x| − π(d−2)
4

− π
4
) ≥

1
2
, whence we have that K̃m obeys, on this fixed portion of the set, the bound

|K̃m(x)| ≳ 2−m
d+1
2 . Thus,

∥Pmf∥Lr(Rd) ≥ c2−
m
2 2−md(

1
2
− 1

r )

while by Plancherel’s theorem

∥f∥L2 = ∥Km∥L2 = (

∫
Rd

|χ(2m(|ξ|2 − 1))|2dξ) 1
2 ∼ 2−

m
2 .

Thus,

∥Pmf∥Lr(Rd)

∥f∥L2(Rd)

≥ c2−md(
1
2
− 1

r ).

It follows that one has the inequality complementary to (4.20),

α(p, d) ≤ d

(
1

2
− 1

p+ 1

)
. (4.21)

We can now derive an estimate for p∗(d). Indeed,

α(p, d)− 2

p+ 1
≤ d

(
1

2
− 1

p+ 1

)
− 2

p+ 1
< 0,

if p < 1 + 4
d
. Thus, we conclude that p∗(d) > 1 + 4

d
. This finishes the proof of

Proposition 4.4.

Our next goal is to analyze the relevant GNS inequalities in the non-isotropic

case.

95



4.2.4 The anisotropic case: Proof of Proposition 4.5

Again, a simple rescaling argument reduces matters to the case b = 2, as in

the proof of Proposition 4.4. The arguments for the anisotropic case are pretty

similar, once we realize the important differences in the dispersion relations. More

specifically, using Plancherel’s theorem in this case:∫
Rd

[|∆ϕ|2 − 2|∂x1ϕ|2 + |ϕ|2]dx =

∫
Rd

|ϕ̂(ξ)|2[(ξ21 − 1)2 + |ξ′|4 + 2ξ21 |ξ′|2]dξ,

where ξ′ = (ξ2, . . . , ξd). For future reference, introduce the dispersion related func-

tion h(ξ) := (ξ21−1)2+ |ξ′|4+2ξ21 |ξ′|2. Based on this formula, we discuss the validity

of (4.8).

We start our analysis by considering some easy regions. One such region, is

when ξ1 is away from ±1. Quantitatively, |ξ21 − 1| ≥ 1
100

and say f0 := P|ξ21−1|≥ 1
100
f .

In this case, we clearly have h(ξ) ∼ 1 + ξ41 + |ξ′|4 ∼ ⟨ξ⟩4. In such a scenario, it is

easy to analyze ∥f0∥Lp+1(Rd), in particular what it takes for (4.9) to hold (and (4.8)

to fail respectively).

More specifically, assuming 1 < p < 1 + 8
d
, we have by Bernstein’s inequality

and Plancherel’s equality

∥f0∥p+1
Lp+1(Rd)

≤ C

(
∥f0∥L2 +

∞∑
k=0

2kd(
1
2
− 1

p+1
)∥Pkf0∥L2

)p+1

≤ C∥f0∥p−1
L2

∞∑
k=0

24k
∫
|ξ|∼2k

|f̂0(ξ)|2dξ

≤ C∥f∥p−1
L2

∫
Rd

|f̂0(ξ)|2h(ξ)dξ

≤ C∥f∥p−1
L2

∫
Rd

[|∆f |2 − 2|∂x1f |2 + |f |2]dx.

This shows that 1 < p < 1+ 8
d
is a sufficient condition for the validity of (4.9), in the

case, where ξ1 is away from ±1. On the other hand, testing (4.9) with a function
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of the type f̂(ξ) = φ(2−kξ) for k ≫ 1, shows that 1 < p < 1 + 8
d
is necessary as

well.

We now turn our attention to the more interesting cases, namely |ξ21−1| ∼ 2−m,

m≫ 1. In this case,

h(ξ) ∼ 2−2m + |ξ′|4 + |ξ′|2.

The case |ξ′| ≥ 1
100

reduces to h(ξ) ∼ ⟨ξ⟩4, which was just analyzed. So, it remains

to consider the cases |ξ′| < 1
100

. So, the dispersion relation will be exactly h(ξ) ∼

2−2m + |ξ′|2. Further, by changing the Fourier variables ξ1 → ξ1 ± 1 (which on the

physical side means replacing f with f → e∓ix1f , a harmless operation in terms of

all ∥ · ∥Lq norms), we are reduced to studying the question: for which values of p

can the inequality hold

∥f∥p+1
Lp+1 ≤ C∥f∥p−1

L2

∫
Rd

|f̂(ξ)|2|ξ|2dξ, (4.22)

where f is a function suppf̂ ⊂ {ξ : |ξ| ≪ 1}.

We will now show that p ≥ 1+ 4
d
is a necessary and sufficient condition for (4.22)

to hold. We have already established that 1 + 8
d
> p is necessary and sufficient for

the region away from ξ1 = ±1, which will of course need to be intersected with the

necessary and sufficient condition for (4.22) to hold.

To this end, assume that p ≥ 1 + 4
d
. Consider f =

∑∞
k=0 P−kf (recall suppf̂ ⊂

{ξ : |ξ| ≪ 1}), so by standard properties of the Littlewood-Paley decompositions

and the Bernstein’s inequality

∥f∥2Lp+1(Rd) ≤ C
∞∑
k=0

∥P−kf∥2Lp+1(Rd) ≤ C
∞∑
k=0

2−2kd( 1
2
− 1

p+1
)∥P−kf∥2L2(Rd).
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Further applying Cauchy-Schwartz

∥f∥2Lp+1(Rd) ≤ C

(
∞∑
k=0

∥P−kf∥2L2

) p−1
p+1
(∑

k

2−2kd( 1
2
− 1

p+1
) p+1

2 ∥P−kf∥2L2(Rd)

) 2
p+1

≤ C∥f∥
p−1
p+1

L2

(∑
k

2−kd
p−1
2 ∥P−kf∥2L2(Rd)

) 2
p+1

.

It follows that whenever p ≥ 1 + 4
d
, we have

∥f∥p+1
Lp+1 ≤ C∥f∥p−1

L2

∞∑
k=0

2−2k∥P−kf∥2L2(Rd) ≤ C∥f∥p−1
L2

∫
Rd

|f̂(ξ)|2|ξ|2dξ.

This establishes (4.22) under the assumption p ≥ 1+ 4
d
. Conversely, assuming that

(4.7) holds, we test it with a function f : f̂(ξ) = χ(2k(ξ1 − 1), 2kξ′), k ≫ 1. This

yields the inequality p ≥ 1+ 4
d
. Thus, we have finally established that the necessary

and sufficient condition for (4.9) to hold is exactly 1 + 8
d
> p ≥ 1 + 4

d
.

4.3 Completion of the proofs of Theorems 4.1 and 4.2

We start our presentation with the proof for the existence of the waves. Along

the way, we establish a few necessary spectral properties of the corresponding lin-

earized operators, which will be instrumental in the spectral stability considera-

tions.

4.3.1 Existence of the waves - isotropic case

In this section, we present the proofs for the existence (or at least a very detailed

scheme of the proof) for the isotropic case. We start with a few words about

strategy, even though our approach, in principle, is a quite natural one. It was

established in Lemma 4.3 that the constrained minimization problem (4.1) is well-

posed, and in fact−∞ < m(λ) < 0. We would like to show that there is a minimizer
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for this problem, which subsequently will be shown to satisfy the Euler-Lagrange

equation (4.3). To this end, consider a minimizing sequence, say ϕk ∈ H2(Rd).

Ultimately, we would like to show that a strongly convergent subsequence of ϕk

will converge to a solution Φ. The central issue that we need to address is the non-

triviality of such a minimizing sequence. This is the subject of the next technical

lemma.

Lemma 4.6 Let b > 0, d ≥ 2 and 1 < p < 1 + 8
d
. Let also

• 1 < p ≤ p∗(d) and λ > 0

• p∗(d) < p < 1 + 8
d
and λ > λb,p,d.

Then, there exists a subsequence of ϕk so that for some L1 > 0, L2 > 0, L3 > 0,∫
Rd

|∆ϕk|2dx→ L1;

∫
Rd

|∇ϕk|2dx→ L2;

∫
Rd

|ϕk|p+1dx→ L3. (4.23)

Informally, the claim is that for 1 < p ≤ p∗(d), λ > 0 and for p∗(d) < p < 1 + 8
d
,

λ > λb,p,d (where λb,p,d is some threshold depending on the parameters b, p, d), one

has non-trivial minimizing sequences. Note that this does not yet show the existence

of a limit, for which we bring the full weight of the compensated compactness theory

to bear. At the same time this rules out some of the main obstacles toward the

strong convergence of, a subsequence of a translate of ϕk, to a minimizer. Proof.

By the estimate (4.4), it is clear that {
∫
Rd |∆ϕk|2dx}k is a bounded sequence. Since

∥ϕk∥2 = λ is fixed, by Sobolev embedding it follows that
∫
Rd |∇ϕk|2dx,

∫
Rd |ϕk|p+1dx

are bounded as well. We can take subsequences to ensure that the convergences in

(4.23) hold true.

Now, it remains to establish the non-trivial claim, namely that all L1, L2, L3

are non-zero. Assume for a contradiction that L3 = 0. Introduce

Ĩ[u] :=

{
1

2

∫
Rd

|∆u|2 − b

2

∫
Rd

|∇u|2
}
.
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Clearly, Ĩ[u] ≥ I[u], whereas limk Ĩ[ϕk] = limk I[ϕk] = inf∥u∥2=λ I[u] ≤ inf∥u∥2=λ Ĩ[u].

It follows that ϕk is a minimizing sequence for the problem inf∥u∥2=λ Ĩ[u] and the

minima coincide. On the other hand, by Plancherel’s theorem∫
Rd

|∆u|2 − b

∫
Rd

|∇u|2 + b2

4
∥u∥2 =

∫
Rd

|û(ξ)|2
(
|ξ|2 − b

2

)2

dξ ≥ 0, (4.24)

whence inf∥u∥2=λ Ĩ[u] ≥ − b2

8
λ. In fact, there is equality, i.e., inf∥u∥2=λ Ĩ[u] = − b2

8
λ

as the inequality in (4.24) may be saturated by choosing a function u, so that û is

supported arbitrarily close to |ξ| =
√
b
2
.

All in all, it follows that inf∥u∥2=λ I[u] = − b2

8
λ. Applying this to arbitrary f ̸= 0,

and then u =
√
λ f

∥f∥ , so that ∥u∥2 = λ, we have

2λ
p−1
2

p+ 1

∫
Rd

|f |p+1 ≤ ∥f∥p−1

{∫
Rd

|∆f |2 − b|∇f |2 + b2

4
|f |2
}
.

This last inequality is in contradiction with (4.5) for 1 < p ≤ p∗(d), and with

(4.6) for all large enough λ. This completes the proof for L3 > 0 under these

assumptions.

Assuming that either L1 = 0 or L2 = 0 implies, by the standard Gagliardo-

Nirenberg inequality, the fact that L3 = 0, which we have just shown to be impos-

sible. ⋄

The rest of the proof for existence of a minimizer proceeds identically to the

one presented in Section 3.2, [31]. Namely, first one establishes that the function

λ→ m(λ) is strictly sub-additive for 1 < p < 1 + 8
d
. That is, for all α ∈ (0, λ),

m(λ) < m(α) +m(λ− α). (4.25)

This is standard, and proceeds via the property that λ → m(λ)
λ

is a non-increasing

function, which can be obtained via elementary scaling arguments and the crucial

property limk

∫
Rd |ϕk|p+1 = L3 > 0, which was established in (4.23).
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Next, taking a minimizing subsequence ϕk, with the property (4.23), one applies

the compensated compactness lemma to it. More specifically, by the P.L. Lions

concentration compactness lemma (see Lemma 1.1, [80]), applied to ρk := |ϕk|2 ∈

L1(Rd), ∥ρk∥L1 = λ there is a subsequence (denoted again by ρk), so that at least

one of the following is satisfied:

1. Tightness. There exists yk ∈ R such that for any ε > 0 there exists R(ε) such

that for all k ∫
B(yk,R(ε))

ρkdx ≥
∫
R

ρkdx− ε.

2. Vanishing. For every R > 0

lim
k→∞

sup
y∈R

∫
B(y,R)

ρkdx = 0.

3. Dichotomy. There exists α ∈ (0, λ), such that for any ε > 0 there exist

R,Rk → ∞, yk ∈ Rd, such that

∣∣∣∣∣ ∫
B(yk,R)

ρkdx− α

∣∣∣∣∣ < ε,

∣∣∣∣∣ ∫
R<|x−yk|<Rk

ρkdx

∣∣∣∣∣ < ε,∣∣∣∣∣ ∫
Rk<|x−yk|

ρkdx− (λ− α)

∣∣∣∣∣ < ε.

(4.26)

Then, one shows that the dichotomy cannot occur. The proof proceeds via an

argument that shows that dichotomy leads to a inequality of the form m(λ) ≥

m(α) + m(λ − α), with α as in the dichotomy alternative. This of course con-

tradicts the strict sub-additivity (4.25). Next, vanishing leads, via the standard

Gagliardo-Nirenberg’s, to limk

∫
Rd |ϕk|p+1 = 0, in a contradiction with (4.23),

namely limk

∫
Rd |ϕk|p+1 = L3 > 0.

Hence, one concludes tightness. But tightness means that for some sequence

yk ∈ Rd, there is strong L2 convergence for {ϕk(x−yk)}. Denote Φ(·) := limk ϕk(·−
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yk). By the lower semi-continuity of the L2 norm with respect to weak convergence,

we also conclude that limk ∥Φ(·) − ϕk(· − yk)∥H2 = 0, whence Φ is a constrained

minimizer of (4.1), all under the assumptions of Lemma 4.6.

Now, we take on the question for the Euler-Lagrange equation (4.3). To this

end, fix a test function h and consider the scalar function

g(ϵ) := I

(√
λ

Φ + δh

∥Φ + δh∥

)
.

Since g is differentiable in a neighborhood of the origin, and achieves its minimum

there, we have that g′(0) = 0. Since this is true for all test functions h, the resulting

expression is that Φ is a distributional solution of (4.3). It is standard result in

elliptic theory to conclude that such a solution Φ ∈ H4(Rd). In addition, one can

establish asymptotics for such functions, but we will not do so herein.

Next, we consider the second derivative necessary condition for a minimum

at zero, which states that g′′(0) ≥ 0. Assuming that the test function h ⊥ Φ,

we conclude ⟨L+h, h⟩ ≥ 0, which is exactly L+|{Φ}⊥ ≥ 0. In fact, this is sharp,

because by a direct inspection 3 L+[∇Φ] = 0. Also, since ⟨L+Φ,Φ⟩ = −(p −

1)
∫
|Φ|p+1dx < 0, we conclude that L+ indeed has a negative eigenvalue. This

coupled with L+|{Φ}⊥ ≥ 0 confirms that L+ has exactly one negative eigenvalue.

Finally, we show that L− ≥ 0. Assume not. Then, there is ψ ⊥ Φ, ∥ψ∥ = 1,

L−ψ = −σ2ψ. Note however that L− > L+, whence

0 ≤ ⟨L+ψ, ψ⟩ < ⟨L−ψ, ψ⟩ = −σ2,

which is a contradiction. Looking closely, this also shows that 0 is a simple eigen-

value for L−, because then, we take ψ ⊥ Φ : Lψ = 0, and this still leads to a

contradiction as above. Thus, we have shown the following proposition.

3Note however that ∇Φ ⊥ Φ
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Proposition 4.7 Let b > 0, d ≥ 2, 1 < p < 1 + 8
d
and one of the two assumptions

below is verified

• 1 < p ≤ p∗(d) and λ > 0

• p∗(d) < p < 1 + 8
d
and λ > λb,p,d.

Then, there exists Φ = Φλ, a constrained minimizer of (4.1) and ω = ωλ >

0. In addition, Φ satisfies the Euler-Lagrange equation (4.3), and the linearized

Schrödinger operators L± satisfy

1. L−[Φ] = 0, 0 ∈ σp.p.(L−) is a simple eigenvalue, and L−|{Φ}⊥ ≥ δ > 0, for

some δ > 0

2. L+|{Φ}⊥ ≥ 0. Moreover, n(L+) = 1

This completes the existence part of Theorem 4.1.

4.3.2 Existence of the waves - anisotropic case

Following identical steps as in Section 4.3.1, we establish the following analog

of Lemma 4.6.

Lemma 4.8 Let b > 0, d ≥ 2 and 1 < p < 1 + 8
d
. Let also

• 1 < p ≤ 1 + 4
d
and λ > 0

• 1 + 4
d
< p < 1 + 8

d
and λ > λb,p,d.

Then, there exists a subsequence of ϕk so that for some L1 > 0, L2 > 0, L3 > 0,∫
Rd

|∆ϕk|2dx→ L1;

∫
Rd

|∇ϕk|2dx→ L2;

∫
Rd

|ϕk|p+1dx→ L3. (4.27)
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The proof of Lemma 4.8 proceeds in an identical manner to the proof of Lemma 4.6

in Section 4.3.1, with the suitable replacement of isotropic Proposition 4.4 with its

anisotropic analog Proposition 4.5. Once this step is completed, one establishes the

strong sub-linearity of the cost function n(λ), similar to the sub-linearity of m(λ).

The next step, again identical to the corresponding step for the isotropic case, is

to show that once we take a minimizing sequence ϕk, the method of compensated

compactness goes through for the functions ρk := ϕ2
k. This establishes the existence

of the minimizer Φ. Similarly, it satisfies the Euler-Lagrange equation and the

spectral properties hold true. We collect the results in the next Proposition.

Proposition 4.9 Let b > 0, d ≥ 2, 1 < p < 1 + 8
d
and one of the two assumptions

below are verified

• 1 < p ≤ 1 + 4
d
and λ > 0

• 1 + 4
d
< p < 1 + 8

d
and λ > λb,p,d.

Then, there exists Φ = Φλ, ω = ωλ > 0, a constrained minimizer of (4.2). In

addition, Φ satisfies the Euler-Lagrange equation (4) and the linearized operators

L± obey

1. L− ≥ 0. More specifically, L−[Φ] = 0, 0 ∈ σp.p.(L−) is a simple eigenvalue,

and L−|{Φ}⊥ ≥ δ > 0, for some δ > 0

2. L+|{Φ}⊥ ≥ 0. Moreover, n(L+) = 1.

4.3.3 Spectral stability of the normalized waves

In this section, we show the spectral stability of the waves constructed as con-

strained minimizers as (4.1), (4.2) respectively. Starting with the eigenvalue prob-
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lem (5), we have that instability is equivalent to the solvability of the system L−g = −µf

L+f = µg
(4.28)

for some µ : Reµ > 0. So, applying L− to the second equation, we see that (4.28)

reduces to the solvability of

L−L+f = −µ2f. (4.29)

Conversely, if (4.29) has a non-trivial solution µ, f , then g := µ−1L+f has a non-

trivial solution µ, f, g. So, (4.28) and (4.29) are equivalent and we concentrate on

the eigenvalue problem L−L+f = −µ2f henceforth.

It follows immediately that f ⊥ Φ. Thus, as L−|{Φ}⊥ ≥ δ > 0, it follows

that there exists unique η ∈ {Φ}⊥, so that f =
√L−η. Writing the relation

L−L+f = −µ2f in terms of η yields

√
L−(

√
L−L+

√
L−η + µ2η) = 0.

As
√L−L+

√L−η + µ2η ∈ {Φ}⊥ = Ker(L−)
⊥, we conclude that

√L−L+

√L−η +

µ2η = 0. Thus, √
L−L+

√
L−η = −µ2η (4.30)

Note however that the operator
√L−L+

√L− is symmetric now, whence −µ2 ∈

σp.p.(
√L−L+

√L−), so −µ2 ∈ R. We have already shown that there could not be

oscillatory instabilities. Furthermore, testing (4.30) with η ∈ {Φ}⊥, we obtain

−µ2∥η∥2 = ⟨L+

√
L−η,

√
L−η⟩ = ⟨L+f, f⟩.

Since f ∈ {Φ}⊥ and L+|{Φ}⊥ ≥ 0, it follows that ⟨L+f, f⟩ ≥ 0, whence −µ2 ≥ 0.

This implies that all spectrum is stable, hence the spectral stability of Φ follows.
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4.4 Numerical Computations

In the present section, we show a number of numerical computations for d = 2

which corroborate and complement our analytical results on the existence and

stability of solitons for both the isotropic and anisotropic models with competing

Laplacian and biharmonic operators.
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Figure 4.1. Two-parameter plane of the nonlinearity exponent parameter p
vs. the Laplacian prefactor b (varying between 0 and 2); recall
that the frequency ω is fixed to unity, while our computations are
for dimension d = 2. The figure shows the bifurcation loci sepa-
rating spectrally stable solitons (under the curve) from unstable
ones (above the curve). The right panel shows a blowup of the
left one close to the edge point of p = 3 and b = 2.

We start with the isotropic case. A summary of our results can be firstly

found in Fig. 4.1 which contains a two-parameter (p vs b) diagram. Here, the

depicted curve separates the regime of spectrally stable waves (under the curve)

from spectrally and dynamically unstable ones (over the curve) for fixed frequency

ω = 1. It is important to recall here that any pair (b, ω̃ = 1) for a given b and

fixed ω̃ can be converted upon rescaling to a pair (b̃ = 1, ω = 1/b2), i.e., results

pertaining to b variation for fixed ω̃ are tantamount to ones with fixed b̃ and variable

ω. By using the latter representation, it is possible to connect to the well-known
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Vakhitov-Kolokolov criterion for the spectral stability, based on the monotonicity

of the P (ω) dependence [81]. Increasing dependence of P (ω) (or, analogously,

decreasing dependence of P (b)) is necessary for spectral stability, while a decreasing

dependence (or increasing dependence of P (b)) leads to spectral (and dynamical)

instability for the single-humped states considered herein. Furthermore, it should

be noted that the limit of b = 0 is tantamount to ω → ∞, while b→ 2 corresponds

to ω → 1/4 within the above scaling (the linear limit), setting the scales of variation

of the respective parameters.

Representations of the dependence of P with respect to ω for different values

of p can be found in Fig. 4.2. It can be clearly seen that in the case of p = 3,

similarly to what happens for all values with 1 < p < 3, P increases monotonically

with ω, pertaining to a regime of spectral stability. Our numerical results seem to

suggest the presence of a p∗ ≈ 3.3 (see once again the right end of the curves in the

panels of Fig. 4.1). For 1 < p < p∗, in line with Theorem 1, we find ground state

minimizers for all values of P ≡ λ. By P here, we denote the squared L2 norm

due to its being tantamount to the optical power in the corresponding physical

problem. For values of the exponent p that lie within p∗ < p < 5, the power

P features an interval of monotonic decrease with ω close to the linear limit (of

dispersing waveforms). Indeed, the corresponding solutions near the linear limit

are unstable, while for sufficiently large frequencies the solutions become spectrally

stable, as seen in the top right panel which corresponds to p = 5. This finding

also corroborates the results of Theorem 1, since in the latter interval, it is not

possible to reach powers P (λ) below the minimum of the corresponding curve.

For p > 5 and below a critical, dimension-dependent threshold (which for our two-

dimensional case is pcr = 6.565), instabilities arise both for sufficiently small (near

the linear limit) and sufficiently large (instabilities due to collapse) values of ω,
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as it is shown in the bottom left panel for p = 6; in this case, the only stable

frequencies are the intermediate ones, corresponding to the interval of growing P .

Finally, when going above the relevant critical value of p (see bottom right panel,

corresponding to p = 7), the soliton is spectrally and dynamically unstable for all

the frequencies, given the monotonically decreasing dependence of P with respect

to ω. Notice that these findings for p > 5 ≡ 1 + 8
d
complement in a natural way

the rigorous results of Theorem 1.
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Figure 4.2. Dependence of the squared L2 norm, denoted by P , i.e., P =∫
R2 |u|2 for our computations, with respect to the frequency ω for
different values of the nonlinearity exponent p, in the isotropic
case for dimension d = 2. These plots showcase the different
stability regimes that can be found herein (see text for more de-
tails). The insets show the same graph over an expanded interval
of frequencies, using a semi-logarithmic scale for the latter.
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Figure 4.3. Several examples of the waveform of the solitary waves with p = 3
in the isotropic case for different frequencies. We can observe how
the solution profile changes from high ω to the linear limit of
ω → 0.25. Notice the logarithmic scale of the colormap, and the
(clear within that scale) zero-crossings of the solution. Figures
for other values of p are qualitatively similar.

Figure 4.3 showcases the relevant isotropic (radially symmetric) waveforms and

a variety of different frequencies, starting from the highly nonlinear limit of large

ω (where the width of the solution shrinks, while its amplitude grows), to progres-

sively lower frequencies, eventually approaching the linear limit of small amplitude

as ω → 1/4. It is important to note the logarithmic scale of the relevant colorbar,
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associated to continuously decreasing amplitudes as ω decreases. Noticeable also

within this scale are the nodal lines of the solution, given the oscillatory nature of

the linear tail as a result of the competition between the harmonic and biharmonic

terms. Although this figure corresponds to p = 3, it is qualitatively similar to the

outcome for other values of p.
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Figure 4.4. Same as Fig. 4.1 but for the anisotropic case.

We have made a similar analysis for the anisotropic case. The two-parameter

diagram of p versus b is displayed in Fig. 4.4. Indeed, the phenomenology is quite

similar to the isotropic case, although with some notable differences that can be

observed not only near the right edge of the curve of Fig. 4.4 but also in the P (ω)

plots for different values of p in Fig. 4.5. For low enough p (as, e.g., for p = 2), the

soliton is stable for every frequency, and a solution exists for all values of P ≡ λ,

in line with Theorem 2. However, contrary to the isotropic case, this monotonic

dependence of P on ω does not persist up to p = 3. Indeed, there exists an interval

of b’s (or, equivalently, of frequencies) for p roughly between 2.481 and 3 in our

two-dimensional setting, whereby P (ω) presents a maximum and a minimum and,

as a consequence, the soliton becomes unstable in that interval (as shown, e.g., in
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the plot for p = 2.8); this suggests that the linear limit is not approached in the

same way as in the isotropic case near the critical point of p = 3. Incidentally, it is

especially relevant to note that the linear limit itself bears nontrivial differences as

now the second partial derivative only occurs along x direction. This leads, near

the linear limit, to an oscillatory pattern solely along the x direction, while the

solution becomes separable in the form X(x)× Y (y). This can be clearly observed

in the relevant solution panels in Fig. 4.6.

It is also relevant to note here that our numerical results do not contradict

Theorem 2, although in the very vicinity of the linear limit and for values of p

between 2.5 and 3, we cannot fully confirm the relevant theory. In particular, a

careful observation of Fig. 4.4, e.g., for p = 2.8 (top right panel) suggests a non-

monotonic dependence of P on ω but as the linear limit is approached, we are

unable to resolve the question of whether all values of P are accessible, as one

approaches closer and closer to ω = 1/4, in line with the expectations of Theorem

2. While the Theorem prompts us to expect that to be the case (and the numerics

are also suggestive in this vein), the highly computationally expensive, anisotropic

2D computations needed have not allowed us to fully confirm this limit, which

remains an interesting, open computational question for future studies.

When p is increased from p = 3, we observe a similar phenomenology as in the

isotropic case, i.e. the curve P (ω) is monotonically decreasing near the linear limit

and becomes monotonically increasing (spectrally stable) after a local minimum

(see the plot for p = 5 in Fig. 4.5). This phenomenology changes again (resembling

the isotropic case) for p > 5, as shown in the plot for p = 5.2; here, an interval of

stability for intermediate frequencies can be seen to arise. Finally, for sufficiently

large values of p, again similarly to the isotropic limit, the waves become gener-

ically unstable for all frequencies, as illustrated by the monotonically decreasing
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Figure 4.5. Same as Fig. 4.2 but for the anisotropic case and for different
values of p. Again, a semi-logarithmic scale has been used for the
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dependence of P (ω) in the plot for p = 6. It is interesting to point out, however,

that the relevant threshold is considerably lower in the anisotropic case where it

is around p = 5.407 for d = 2, while in the isotropic one the threshold is around

p = 6.565 for d = 2.
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Figure 4.6. Same as Fig. 4.3 but for the anisotropic case with b = 1. Con-
trary to the isotropic case, the anisotropy reflects in the solution
as it acquires, when approaching the linear limit ω → 0.25 a sep-
arable form in the x and y dependence with the nodal lines being
uniform along direction y.
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C H A P T E R 5

CONCLUSIONS

In the first part of this work we have explored a model featuring the competition

of a harmonic and biharmonic linear operator in a quadratic-quartic ϕ4 model. We

have argued that this model is of intrinsic mathematical interest due to the distinct

implications of the different linear operators and also the unique features created

by their interplay that neither of the ‘pure’ (quadratic or quartic dispersion) models

possesses. The harmonic part creates a saddle point in the spatial dynamics and

hence leads to exponentially decaying waveforms. On the other hand, the bihar-

monic operator leads to complex eigenvalues and a spiral point in the corresponding

spatial dynamics. Here, we have seen the interplay of these two possibilities cre-

ating an effective competition between the two tendencies. We have observed that

this competition leads to a critical point (with an intriguing behavior in its own

right, i.e., a linearly modulated exponential) and on the two sides of this criticality

either the biharmonic oscillatory effect or the harmonic exponential decay effect

prevail respectively. This crucially affects the interactions between the kinks which

we have also explicitly identified and corroborated by means of detailed compari-

son of both the single wave tails and of the two-coherent-structure interactions. We

have also elucidated the extent to which this collective coordinate approach can be

reliably used and illustrated its failure when the kinks get too close to each other.
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Additionally, we have examined the collisions, bounce and multi-bounce windows

stemming from the kink interactions and have shown how the critical velocities and

corresponding windows are modified as a function of the quadratic-quartic model

parameters.

These findings had a significant bearing on the corresponding quadratic-quartic

NLS model the study of which was the natural continuation of our work. In partic-

ular, we revisited the topic of media with competing quadratic and quartic disper-

sions in the context of nonlinear structures commonly considered in self-defocusing

media, namely kink-like states in the form of dark solitary waves. We have focused

our attention on the setting of multiple such structures and have proposed a sys-

tematic understanding of pairs of such kinks on the basis of an energetic landscape

emanating from the kink-antikink interaction. In a similar manner to the ϕ4 model,

the competition of the different dispersions, and indeed crucially the presence of

the quartic effects enable the presence of oscillatory tails and of potential bound

states for multi-kink states. We have analyzed the first few center- and saddle-

configurations of this type, indeed 3 center states (families 0, 2, 4) and 3 saddle

ones (families 1, 3, and 5). In addition to presenting a systematic continuation

of the states in one of the most natural parametric variations of the system (the

coefficient of the quadratic dispersion), we have followed the solutions past their

(typical, aside from family 0) turning points, identifying their respective upper

branches, unveiling, in turn, solutions associated with 4, as well as with 6 kinks.

We have provided a systematic particle picture that offers the possibility of a

systematic classification of the obtained states, irrespective of the number of kinks

based on their interactions, provided that the kinks are sufficiently well separated,

i.e., for large enough positive quadratic dispersion β2 in our system. This analysis

was used to accurately capture the equilibrium distance of the kinks, as well as their
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internal excitation modes. In a wide range of corresponding families and examples,

stable and unstable, lower and upper branch ones, the method was found to provide

systematic insights regarding the kink dynamics and their stability.

Our considerations offer a systematic view of the possible stationary multi-

soliton solution families and can be naturally extended to either higher-order fam-

ilies or heteroclinic ones involving an odd number of kinks. Both directions have

been successfully attempted, although they are not detailed herein.

Finally, in an additional dimension of considerations, we turned our focus to

the study of the competition between a focusing quartic and a defocusing quadratic

dispersion term in an NLS model, with a numerical emphasis on the mor cmpu-

tationally tractable case of d = 2. In particular, we have considered a setting in

which there is a competition between a focusing quartic and a defocusing quadratic

dispersion term. Our Theorems 1 and 2 have offered a rigorous perspective on the

relevant phenomenology, providing bounds on the nonlinearity exponent (as a func-

tion of dimension) for which minimizers of the (squared) L2 norm exist for all values

of that quantity, as well as ones for which such minimizers do not exist for all pow-

ers. This has been done both for the isotropic case involving radial solutions, as

well as for the anisotropic one where the second derivative term was only active

along a particular direction. We have complemented these findings with detailed

numerical results and corresponding multi-parameter diagrams detailing the sta-

bility of the single-humped states of the system. In both isotropic and anisotropic

cases, we found that the when exponent p of the nonlinear term is sufficiently small,

the dependence of the power on the frequency is monotonic, while above a certain

threshold more complex non-monotonic dependencies arise. Our numerical results

for the case of d = 2 go beyond the accessible limits to our Theorems, identifying

possible stable solutions even beyond the exponent bound of p = 1 + 8/d (where
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d is the dimension), as well as identifying exponents beyond which no spectrally

stable solutions arise.

Outlook

While we believe that these results offer numerous insights into systems with

competing quadratic and quartic dispersions, there are also numerous open ques-

tions to consider. Following the analysis of the ϕ4 model, a natural next step (albeit

a rather nontrivial one, given the complications that have recently arisen even in

the standard ϕ4 case [6]) is to attempt to explore the role of the kink/antikink in-

ternal modes in their collisions and the interplay between the kinetic energy stored

in the kink translational modes, the vibrational energy of the internal modes and

the dispersive radiation of the extended modes.

A more demanding consideration suggested by our results on the NLS model

involves the setting of traveling excitations. In addition to the loss of Galilean

invariance (in the presence of quartic dispersion) [53] rendering interesting the

existence and stability analysis of single kinks, we have found that bound, breathing

states of two kinks are quite common and would be worth seeking as potentially

exact solutions and to understand their stability.

As concerns the the higher-dimensional setting, an important question concerns

the close proximity of the linear limit for the anisotropic case when p is in the

vicinity of p = 3 ≡ 1 + 4/d (for our case of d = 2). More generally, for the case

considered herein, it would be interesting to also examine if higher-excited states,

including multi-soliton ones, as well as vortical ones are feasible and potentially

also spectrally stable (and under what conditions). Additionally, numerical studies

of the more computationally demanding case of d = 3 would also be worthwhile in
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connection to the Theorems presented herein. Last but not least, exploring similar

questions with the recently accessible experimentally, even orders of dispersion [48]

would also be of particular interest.
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