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ABSTRACT

THE ECONOMICS OF
INFORMATION AND COMMUNICATION TECHNOLOGIES

IN OUR SOCIETY

DECEMBER 2022

AUGUSTO ESPIN

B.Sc., ESCUELA POLITÉCNICA DEL EJÉRCITO, ECUADOR

M.Sc., OKLAHOMA STATE UNIVERSITY

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Christian Rojas

Information and Communication Technologies (ICTs) play a fundamental role in today’s

society. As ICTs they become more mature and widely adopted, societies become more

dependent on their use to operationalize daily activities. However, there are multiple societal

impacts of ICTs that are not yet well understood. In this dissertation, I explore three di↵erent

aspects of ICTs that have been widely discussed by media and industry during recent years.

I analyze these topics from an economic perspective, contributing to the debate with rigorous

modeling and the ensuing discussion of its implications. First, I study the impact that the

COVID-19 pandemic had on remote meeting technologies’ usage. Second, I empirically tackle

the long debated question of whether internet users perceive internet providers’ Network

Neutrality practices. Finally, I analyze the most recent and ambitious public policy in the
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U.S. to improve households’ broadband internet connectivity - the so-called policy of bridging

of the “digital divide”.

In Chapter 1, I evaluate the impact of the COVID-19 pandemic on the volume and

quality of firms’ daily usage of remote (video) meeting technologies. While per-firm daily

meeting volume (minutes, number of meetings, and total participants) increase significantly

(between 15% and 48%), the average meeting is more crowded (+15%), shorter (-30%, or

10 minutes), and of significantly poorer (video/audio) quality (-59%). Firms in the service

sector experience the most notable increases in volume usage, while e↵ects on the duration,

size, and quality of meetings is experienced by firms in all industries.

Network neutrality mandates have been deemed either as necessary to ensure a level

playing field in online markets or, alternatively, as overly restrictive regulation preventing

innovation and investment. However, there is little empirical research on the consequences

of data throttling (deliberate and selective reduction of internet speeds by internet service

providers), a practice that is entirely legal in the absence of network neutrality regulations.

In Chapter 2, I combine throughput levels measured for mobile ISPs in the United States

with usage data to explore how sensitive users are to such practices. We find no evidence

that users change their behavior when faced with throttled data rates.

The internet plays a vital role in everyday life across the world. The US, however,

has seen a slowdown in household broadband adoption since 2010, creating a gap between

connected and unconnected households usually referred to as the “digital divide.” While

prior studies have documented how the digital divide is related to income, demographics, and

geographic location, I take a di↵erent approach in Chapter 3 and focus on the mechanisms

that could help bridge this gap. To this end, I use a two-stage approach. First, I construct

a comprehensive and detailed dataset on household internet usage and prices to estimate

broadband demand. Second, I employ the estimated income-dependent demand elasticities

to assess multiple counterfactuals aimed at evaluating a number of public policy initiatives,

including those recently approved in the Biden Infrastructure Act. I contrast the e↵ectiveness

vii



of the policies on three metrics: a) policy costs, b) reduction of the digital divide, and

c)consumer surplus increase. I find that a↵ordability policies (i.e., subsidies) can have a larger

impact on decreasing the gap and on increasing consumer surplus vis-à-vis infrastructure

deployment policies (i.e., increased coverage or bandwidth).
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INTRODUCTION

Information and Communications Technologies (ICTs) is a term that has been coined

to denote the convergence of traditional communication and computer networks. The term

refers to all sorts of analog and digital communications, such as traditional mass media (ra-

dio, television, newspapers) and telecommunications networks (telephony, cell phones and

the internet) as well as computers and other interconnected devices. The advance of tech-

nology has allowed these, previously separated networks, to converge and combine content

allowing people to become content producers with ease. All these technological developments

have changed the ways in which people interact, learn and exchange ideas, information, and

knowledge. The concept is very broad and has been studied from many di↵erent perspectives

by scholars. In this dissertation, I focus on three specific topics, all of which have the concept

of ICTs as the overarching issue. First, I study the impact of the COVID-19 pandemic in

remote meeting technologies’ usage. Second, I study how subscribers react to throughput

slowdowns by their mobile connectivity providers (a long debated topic under the “network

neutrality”1 concept). Finally, I develop an empirical approach designed to evaluate the

e↵ectiveness of policies designed to bridge the “digital divide”2 in fixed broadband internet

networks. All three studies are based on rigorous econometric models and unique data which

allow me to generate novel findings and conclusions on the societal impacts of ICT usage and

access.

Chapter 1 discusses the impact of the COVID-19 pandemic in the use of remote meeting

technologies. In 2019, the world got struck by a pandemic. After few months of its appear-

1See https://obamawhitehouse.archives.gov/net-neutrality

2See https://sgp.fas.org/crs/misc/R46613.pdf
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ance, the virus swiftly spread across nations bringing with it chaos and despair. The reaction

of governments was to declare lock-downs to avoid a major collapse of the health systems.

This chapter focuses on the impact of the subsequent reaction of companies in the U.S. to

use remote meeting technologies as a means to keep their business operations running. This

rapid change provides a setup for a natural experiment to evaluate how remote meeting tech-

nologies’ usage during the pandemic was a↵ected in firms that were technologically prepared

to face the emergency. I find that while per-firm daily meeting volume (minutes, number of

meetings, and total participants) increased significantly (between 15% and 48%), the average

meeting was more crowded (+15%), shorter (-30%, or 10 minutes), and of significantly poorer

(video/audio) quality (-59%). At the same time, firms in the service sector experienced the

most notable increases in volume usage, while e↵ects on the duration, size, and quality of

meetings was common to firms in all industries.

Chapter 2 discusses how subscribers react to throughput slowdown practices of their mo-

bile connectivity providers. Such kind of practices has seen long debates under the “network

neutrality” concept. There is little empirical research on the consequences of data throt-

tling, which is legal without network neutrality regulations. We combined throughput levels

measured for mobile ISPs in the United States with usage data to explore how sensitive

subscribers are to those practices. We find no evidence on subscriber’s behavior when faced

with throttled data rates.

Connecting all households to a telecommunication network has been a long dated policy

that started with telephony networks under the concept of “universal service”.3 As the

internet has become more important in our society, governments have shifted those policies

toward connecting households to broadband internet. The gap of unconnected households is

usually know as the “digital divide”, due to the fact that those without connectivity cannot

enjoy all the benefits of the “digital economy”.4 In Chapter 3, the focus is on the mechanisms

3See https://www.fcc.gov/general/universal-service

4See https://www.oecd.org/innovation/digital-economy-innovation-and-competition.htm
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that could help bridge such gap. A two-stage approach is used. First, a comprehensive and

detailed dataset on household internet usage and prices to estimate broadband demand is

constructed. Second, the income-dependent demand elasticities are estimated and used to

assess multiple counterfactuals aimed at evaluating a number of public policy initiatives,

including those recently approved in the Biden Infrastructure Act of 2021. The e↵ectiveness of

the policies are contrasted on three metrics: a) policy costs, b) reduction of the digital divide,

and c)consumer surplus increase. It was found that a↵ordability policies (i.e., subsidies)

can have a larger impact on decreasing the “digital divide” and on increasing consumer

surplus compared to infrastructure deployment policies (i.e., increased coverage or minimum

bandwidth provided).

Although, ICTs are a very broad discussion topic, this dissertation provides insights into

three varied but highly debated aspects. Well-known econometric methods, unique data,

and innovative machine learning algorithms are used to provide quantitative answers and

contribute with empirical evidence to the debate. Yet, despite the unique aspect of the data

that I compile and construct, several caveats and data limitations remain. Each of those

limitations are discussed throughout this dissertation. Finally, as I discuss in each chapter,

the research has produced a number of results than can help guide and motivate future

research.
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CHAPTER 1

THE IMPACT OF THE COVID-19 PANDEMIC
ON THE USE OF REMOTE MEETING TECHNOLOGIES1

1.1 Introduction

COVID-19 expanded quickly. The U.S. declared a public health emergency on February

3rd and a national emergency on March 13. In tandem, many states issued stay-at-home

orders as well as additional restrictions such as schools and non-essential business closures.2

As a result, most people faced the unprecedented situation of not being able to leave home.

Unlike prior pandemics, however, workers’ inability to physically go to work might have been

mitigated by technology. Many workers were able to continue their routines aided by remote

(video) meeting technologies provided by their employer.

While there seems to be an agreement that remote communication technologies have been

key in keeping the economy moving during the locked down phase (and afterwards), precise

quantifications of their impact are only starting to emerge. Before one can answer such type

of question, it is important to understand whether and how the pandemic a↵ected the usage

of such technologies. In this paper, we seek to measure how firms’ usage patterns of remote

(video) meeting technologies were impacted by the pandemic in the U.S. Importantly, our

data allows us to speak about the impact on the overall usage volume as well as on other more

specific aspects of usage such as meeting duration, size of meetings (number of participants)

and (video/audio) quality.

1With Christian Rojas

2See https://www.ajmc.com/view/a-timeline-of-covid19-developments-in-2020 and https://

www.nga.org/state-COVID-19-emergency-orders/
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Further, we study how such impacts vary by industry. While remote communication

technologies are generally regarded as beneficial for the operation of businesses, in the event

of a mandatory transition to remote work its impact will depend on how adaptable firms are

to the technology. Specifically, the substitutability between remote and on-site operations

depends on the type of business; for example construction cannot be done remotely but many

services (consulting, banking) can. Further, an e↵ective transition to remote work depends

on firms’ current operations structure: some firms may have had the technology and the

logistics in place for a rapid transition while others may have had a much more di�cult time

to adjust.

In terms of volume usage, we find that the total number of daily meetings per firm

increased by approximately 33% in the 12-week period after the stay-at-home orders were

enacted. Similarly, the number of total daily meeting participants per firm increased by 48%,

while total daily meeting minutes per firm saw a 19% increase. Since the number of total

daily meeting minutes increased by less than the total number of daily meetings, the average

meeting length (duration) experienced a decrease (30%). Meeting size (average number of

participants per meeting) grew by 15%, a result of a stronger growth in the number of daily

participants than in the number of daily meetings. Meeting quality, measured by the ratio

of meeting minutes with good (video/audio) connection over meeting minutes with poor

connection, experienced the greatest of all e↵ects: a reduction of 59%.

The e↵ects vary by industry (sector). We divide firms in eight SIC sectors: Finance,

Government, Manufacturing, Mining & Oil, Retail, Services, Utilities and Wholesale Trade.3

Only firms in the Service sector experience a substantial and statistically significant increase

in usage (meetings, meeting minutes and number of participants). Consequently, firms in

the Service sector are the primary driver of the overall volume usage e↵ect described in the

prior paragraph. Conversely, in terms of meeting duration, size and quality, the e↵ects are

3We follow the the Standard Industry Classification (SIC)
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sizable and significant across all but the Retail sector.4 In terms of timing, we observe that

the e↵ects, when they occur, take place gradually but quickly: e↵ects grow substantially

for the initial 3-5 weeks and stabilize thereafter until the end of our data (12 weeks after

stay-at-home orders).

Our study focuses on usage of remote meeting technologies licensed to and used by com-

panies. These technologies are part of a broader business-solution often known as unified

communications (UC). In a nutshell, UC are applications that run on top of high-speed net-

works, providing the means for firms’ employees to interact in a much more e↵ective way

than with traditional voice-only communications. These systems have been used for several

years by many companies as a means to reduce costs and enhance the interaction between

teams.5 The use and development of UC had been growing steadily prior to the pandemic.

It is important to di↵erentiate UC from videoconferencing software (e.g. Zoom). UC is a

more general concept that includes a variety of tools to communicate (for example multiple

videoconferencing softwares, or interaction tools, integrated over a single platform).6

UCs are often integrated and managed by software platforms. The main purpose of these

platforms is to monitor and perform analyses of UC environments. These platforms are

capable of measuring the quality and intensity of use of the communications transmitted over

UC applications.7 Our data provider, Vyopta, is one of the leading providers of performance

and analytic platforms for UC usage. Our data consists of de-identified records that display

4Another exception is the average number of participants per meeting in the Government sector, for which
there is a positive but statistically insignificant e↵ect.

5While UC providers have diversified business models, they often provide their customers (companies)
with solutions (features) that are customized to their clients’ needs. Examples of UC providers include
Microsoft, Cisco, Google, among others.

6With UC many communications tools as instant messaging, presence information, voice, video conferenc-
ing, data sharing, and call control are integrated to provide a consistent unified interface for user experience
across multiple devices and media types. Essentially, UC could encompass all forms of communications that
are exchanged via IP networks.

7The resulting metrics are used to help businesses focus resources based on the quality and the actual
level of usage of the technology.
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the behavior (usage intensity and quality) of each client’s UC platform across all remote

(video) communications. The resulting dataset includes a daily panel of firms (our data

provider’s clients) spanning the first half of 2019 and the first half of 2020.8 While firms

remain anonymous, they carry a unique identification code that allows us to track them over

time and categorize them by industry sector.

Our work contributes to the rapidly growing literature on the economic e↵ects of the

pandemic. While this body of work is by now quite large, there has, to our knowledge,

been only one other attempt to measure the e↵ect of COVID-19 on the usage of remote

communications. DeFilippis et al. (2020) study employees’ digital communication patterns for

16 large metropolitan areas in North America, Europe and the Middle East. The authors use

data from one provider of information technology services (aggregated up to the metropolitan

area) and apply an event study methodology of eight weeks around the start of the lock-down

phase. DeFilippis et al. (2020) find that the number of daily meetings per person as well as

the average number of attendees per meeting increased during the lock-down period (both

by about 13%). On the other hand, meetings became 20% shorter. An interesting finding is

that employees reduced the total number of time in meetings by 11.5%, or 18.6 minutes per

person per day.9

Our results are consistent with the findings reported by DeFilippis et al. (2020), although

the magnitudes we quantify are larger. Our paper complements and extends these earlier

findings in two ways. First, we provide a measure of (connection) quality; this is an important

dimension given that remote communications are now occurring over employees’ residential

connections rather than through the more robust enterprise networks. Second, the disag-

gregate nature of our data allows to study how the e↵ect varied by industry sector; this

dimension is also important as certain types of activities may not find remote connectivity

8In Section 1.4 we discuss the potential drawbacks and upsides of our sample and our focus on the video
conferencing aspect of remote working.

9The authors also find that internal emails increased by 5.2% per person per day.
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to be a viable substitute for on-site operations (e.g. retail operations that can only be done

in person).

Our work is also related to the literature on the economics of firms’ internal organization,

in particular as it pertains to the measurement of internal communication as new technologies

emerge (e.g.Polzer et al. (2018), Impink et al. (2020)), as well as the e↵ects of remote working

on firms’ performance (e.g.Bloom and Van Reenen (2010), Bloom et al. (2015)) and other

factors such as traveling/commuting (Bento et al. (2005)) and land prices Rossi-Hansberg

et al. (2009).

We divide the remainder of the paper in a Data, Identification and Model section, a

Results section and a Discussion section.

1.2 Data, Identification and Model

1.2.1 Data

As stated earlier, our focus is on the usage of UC by companies (and its employees) rather

than on the intensity of usage of a particular software platform by individual users (e.g.

personal Zoom or Skype accounts). Thus, the structure of our data is a daily panel of firms

(Vyopta’s clients). For a given firm, the data have detailed daily records of video conference

usage covering the first semester of 2019 and the first semester of 2020.10 For each firm-day

record, the data contains information on the total number of meetings (T#M), the total

number of meeting minutes across all meetings (T#m), the total number of participants

across all meetings (T#P ), and a measure of the video and audio quality of the meeting

connection (Q).11. The variable Q is defined by the ratio of meeting minutes deemed to have a

good quality connection over the meeting minutes deemed to have a bad quality connection.12

10The available data spans 180 days in 2019 and 172 days in 2020. For consistency in the analysis, we
discard observations beyond day 172 in 2019.

11We removed outliers (using an interquantile range, IQR, method), as well as inconsistent (i.e. negative
usage) data points; the resulting dataset comprises 98% of the original data.

12The parameters that determine a good vs a bad connection are set by the data provider
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Using these variables we compute average meeting duration (Length = T#m/T#M) and

average number of meeting participants (Participants = T#P/T#M).

The means of the variables, reported separately for each of the two years, are shown in

Table 1.1. The number of observations across years is similar (37,196 in 2019 and 34,865 in

2020) as is the number of firms (224 in 2019 and 225 in 2020).13 One limitation is that the

quality variable (Q) is only available for approximately 40% of the data (15,274 observations

in 2019 and 13,938 in 2020).14 The reason for this is that quality measurements depend on

the availability of software (and in some cases hardware) used by the customer.

While Table 1.1 does not adequately segment the data in the before and after periods,

the e↵ects of the pandemic that we measure more precisely later in the paper are already

evident: means for the total number of meetings, meeting minutes, total participants and

participants per meeting are larger in 2020 than they are in 2019. Similarly, the means for

quality and meeting duration are lower in 2020 with respect to 2019.

2019 2020

Total Number of Meetings, T#M 246 (526) 297 (590)
[2; 798] [2; 898]

Total Number of Meeting minutes, T#m 12055 (25580) 14844 (29178)
[62; 37830] [66; 48778]

Total Number of Participants, T#P 919 (2091) 1310 (2731)
[6; 3004] [6; 3910]

Quality (Good/Bad), Q 27.44 (43.35) 27.13 (51.24)
[2.50; 65.34] [2.33; 67.21]

Average Meeting Duration (in minutes), Length 28.20 (174) 29.49 (786)
[4.51; 38.63] [4.01; 36.57]

Average Number of Participants Per Meeting, Participants 3.50 (4.54) 4.16 (4.29)
[1.67; 5.07] [1.72; 6.41]

Table 1.1: Means (Standard Deviation) [10th pctile; 90th pctile] of Dependent Variables

13Further, the identity of firms remains largely stable across years.

14There are 155 observations for which the quality variable is equal to zero (0.34% of all quality observations.
Regressions below exclude these instances from the estimation. We have carried out regressions in which we
use these observations by shifting the dependent variable by +1 and results remain essentially unchanged.
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Figure 1.1 shows the distribution of firms per sector and year in our data. Most of Vyopta’s

customers are concentrated in the Services, Finance and Manufacturing sectors. The number

of firms remains relatively stable across years, a desirable feature from an identification

standpoint.

Figure 1.1: Firms per industry

1.2.2 Identification and Model

We employ a di↵erence-in-di↵erence (DID) approach. The before data consists of the days

leading up to the day prior to States declaring an emergency and the after data encompasses

the period afterwards up until the end of June.15 Our control group is the January-June 2019

period. Using the total number of daily participants as an example, Figure 1.2 provides visual

support for key identification assumption required by the DID approach: parallel trends in

15Since di↵erent States declared an emergency in di↵erent (but nearby) days, we use the average day,
March 8th
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the before period (up to March 8th).16 As it can be seen, 2019 and 2020 series move in a

similar fashion up to March 8th; after this date, the 2020 series clearly picks up.17.

Figure 1.2: Comparison of Total Number of Participants across Years

Formally, our modeling approach allows for a flexible DID specification that captures the

weekly e↵ect of the pandemic. Further, we decompose both the before and after periods into

weeks which allows for a more precise identification of the week in which the e↵ect takes

place (this also serves as a formal test for the parallel trends assumption). Our baseline

specification is:

log(Yigt) = ↵ · yearg +
12X

t=�8

�t · It · yearg + �S + �DW + �DY + ✏igt (1.1)

The subscript i denotes a firm, g represents the group (i.e. 2019 or 2020) and t indexes

time (in weeks). For the dependent variable Yigt, we consider the six variables listed in

Table 1.1; using the logarithm of the variable allows us to interpret the DID coe�cient as a

(reasonable approximation of the) percentage change. yearg is a variable that takes a value of

one in 2020 and It is a weekly indicator variable (equal to one for the corresponding subscript

16The figures are produced by aggregating firm data up to the daily level. Similar support can be seen in
figures (available upon request) that plot other measures of usage

17The stay-at-home order line is March 27th, the average date across all States
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t). �S, �DW and �DY are industry sector, day of the week and day of the year fixed e↵ects;

✏git is the usual idiosyncratic error term.18 To capture the e↵ect by industry, we also consider

a version of (1.1) in which the term It · yearg is interacted with industry sector fixed e↵ects.

We estimate both the baseline model and the industry-specific variant with OLS and cluster

standard errors at the industry sector level.19

1.2.3 Sample Discussion

Table 1.2 reports a comparison of the distribution of the number of firms per industry

in our sample with that reported by the Census. Based on these figures, Vyopta’s sample

provides a reasonable representation of some industries (Government, Wholesale Trade and

to a lesser degree Mining and Oil), over represents others (Finance, Manufacturing, Utilities

and to a lesser extent Services) and under represents Construction and Retail. This relative

mismatch is not surprising given Vyopta’s focus on clients for who decided to adopt video

conferencing and remote teamwork technologies prior to the pandemic.

Our data is likely most informative for the Services sector as a largest fraction of firms in

our data (and in the economy) belong to this sector. The industry regression results that we

discuss below highlight this element. One final note is in place. Not having a representative

sample for all industries in the economy can be a limitation. However, as we argue in the 1.4

section, our study has methodological advantages that render it useful.

1.3 Results

We run a separate regression for each of the variables in Table 1.1. Figure 1.3 reports the

coe�cients of interest (�t in Equation 1.1) and the corresponding 95% confidence intervals

18For robustness, we also considered a specification with firm fixed e↵ects (in lieu of industry firm e↵ects).
Results (available upon request) and conclusions remain consistent.

19The duration of a meeting can depend on the type of meeting (e.g. weekly ”check in” meeting v. ”new
project” meeting). We cannot account for this aspect in the estimation as our data does not contain meeting
specific information.

12



Industry Vyopta (%) Census (%)

Construction 0.36% 8.66%
Finance 19.20% 4.47%
Manufacturing 20.29% 3.66%
Mining & Oil 1.45% 0.18%
Government 2.54% 1.45%
Retail 5.07% 10.35%
Services 36.23% 27.63%
Utilities 9.78% 0.27%
Wholesale Trade 5.07% 3.98%

Source: https://www.naics.com/business-lists/counts-by-naics-code/

Table 1.2: Distribution of Firms by Industry Vyopta v. Census

(CI) for the baseline specification. After close inspection (and as it can be seen in the Figure),

we determined that the most sensible baseline week is February 26 to March 3 (one week

prior to the average date in which States declared an emergency, March 8).

E↵ects are significant both economically and statistically. The largest average weekly

increase is seen in the overall number of daily participants (T#P , 48%), followed by daily

meetings (T#M , 33%), total number of minutes (T#m; 19%), and participants per meeting

(Participants; 15%, or about half an attendee). On the other hand, the average meeting

duration (Length) is shorter by a weekly average of 30% (about 10 minutes) and meeting

quality (Q) decreases by a weekly average of 60%. 20 E↵ects were quick to fully materialize,

in all cases stabilizing around week 5 (Length only took 2 weeks to reach its full e↵ect).

Results that break down the DID e↵ect by industry sector are reported in the next three

Figures. The results indicate that the only sector with a significant increase in the three

main measures of overall usage (T#M , T#m, and T#P ) is Services, with other industries

having either a weakly significant increase (Government and, to a lesser extent, Finance),

no detectable e↵ect (Manufacturing, Mining & Oil, Utilities and Wholesale Trade) and in

20These values, not reported in the figures, are obtained from a specification that pools all post-baseline
weeks into a ”post” period and all other weeks into a ”pre” period. All estimates are statistically significant at
the 95% level. As a robustness check, we carried out this pooled DID estimation using firm fixed e↵ects in lieu
of industry fixed e↵ects; results remain almost identical: T#P , 50%; T#M , 36%; T#m, 20%; Participants,
15%; Length, -30%; Q, -66%
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(a) Panel A

(b) Panel B

Figure 1.3: DID Results in Baseline Specification, by Week
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one case (Retail) a (weakly significant) decrease. Conversely, the e↵ects on meeting quality

(Q), duration (Length) and size (Participants) are significant in (and consistent across) all

sectors with the exception of Retail (and Government for the Participants variable).

1.4 Discussion

Our analysis finds, unsurprisingly, that the pandemic significantly increased the overall

usage of remote meetings, a sign that the negative e↵ects of not being to go to work were

mitigated by this technology.21 However, this e↵ect seems to have only been important in one

Sector (Services), which suggests that remote working is a viable substitute for on-site work

only for a limited set of firms in the economy. For instance, firms in the Retail sector seem to

have decreased their usage of video meetings, which suggests that many of these firms reduced

their operations significantly as on-site operations were the only viable alternative. These

results are consistent with analysis provided by Nicola et al. (2020) who show that industries

like construction or retail were particularly impacted by the pandemic as the nature of their

activity prevented them to shift to a remote mode.

Another way in which the mitigating e↵ect of technology might have been less than

ubiquitous is a degradation in quality. Millions of users working from home produced stress

over the residential network infrastructure which is not designed for this volume of tra�c.

Further, UC service providers seem to have had less than adequate processing and network

capacity to support the level of UC video and voice demand that the pandemic generated.22

These two factors significantly a↵ected video and audio quality of meetings. The pandemic

also generated more crowded meetings, which are arguably of lesser quality as attendees’

attention and participation decay with meeting size. The reduction in meeting quality during

21We acknowledge the possibility that a portion of the volume increase that we measure could have been
propelled by coordination issues generated by the pandemic rather than by a substitution from on-site
meetings to online meetings. Our data does not allow us to disentangle this e↵ect.

22We thank Vyopta for providing this insight. Some of these limitations, however, were relaxed with the
ability that firms had to transition their UC services on-site to a cloud-based format.
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the pandemic may reduce the productivity gains from remote working that have been reported

in non-pandemic settings (e.g. Bloom et al. (2015)).

An open question for future research is whether (and to what extent) the massive exoge-

nous shock generated by the pandemic will create a permanent shift towards remote working.

Our results suggests that, to the extent that this permanent shift occurs, it will likely mani-

fest itself primarily in the Service sector. This conclusion is consistent with the observation

that some industries substitution of daily activities to a remote version is unfeasible or im-

practical (e.g. preparation of meals by restaurants and the construction of buildings can only

be done onsite).

Our work has limitations. First, we have data from a sample of firms in the U.S. that is

not representative of the entire U.S. (see subsection 2.3). Second, our work can shed light

on one aspect of remote working (video conferencing), which makes up a portion of a typical

day in remote working. As we explain below, however, these two aspects do not negate the

usefulness of our results.

The main issue with sample selection has to do with the fact that we use a sample of

firms that were more technologically prepared to transition to remote working. This selection,

however, has two advantages.23 First, since unprepared firms (not captured by our data) are

likely to have struggled more in their transition to remote work, the e↵ects we measure

(on prepared firms) are likely a lower bound for the e↵ects in the entire economy. Second,

focusing on technologically prepared firms results in a methodological advantage as we are

able to have a control group (the same set of firms over time) that di↵ers from the treatment

on one dimension only (the pandemic).

Regarding our focus on video conferencing, we note that While meetings only make up

a fraction of a day’s work, video conferencing has arguably been the central technological

23Another possible source of sample selection is the fact that we are studying data from a single data
provider in the UC software industry. The possibility of selection issue on this dimension is less likely
as Vyopta is a leader in the UC software market (market share of approximately 35%). Further, Vyopta
executives assert that the profile of their client base is similar to that of the entire UC software market.
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(a) Panel A

(b) Panel B

Figure 1.4: DID by Industry, T#M and T#m
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(a) Panel A

(b) Panel B

Figure 1.5: DID by Industry, T#P and Q
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element of the sudden transition to remote work caused by the pandemic. Virtual meetings

now permeate all aspects of life, inside and outside the o�ce. It is not surprising that much

of the recent research on remote working has video conferencing as its primary focus (e.g.

Bloom et al. (2020); Fauville et al. (2021)).
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(a) Panel A

(b) Panel B

Figure 1.6: DID by Industry, Length and Participants
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CHAPTER 2

DO SUBSCRIBERS OF MOBILE NETWORKS CARE
ABOUT NETWORK NEUTRALITY?1

2.1 Introduction

Network neutrality or net neutrality is a concept that was first coined by Wu (2003)

and that has become one of the most discussed regulatory issues in the telecommunications

industry. In Wu (2003)’s thinking, all packets traversing the internet network should be

treated equally, without any blocking or prioritization regardless of the origin or content.2

In economic terms, the case for net neutrality is that without it, internet service providers

(ISPs) can contract with content providers to prioritize certain tra�c, thus introducing inef-

ficiencies by skewing competition at the content provider level. On the flipside, opponents of

network neutrality rules have argued that allowing ISPs to accept payments for faster data

transmission would provide them with additional funds for necessary investments. In addi-

tion, some applications are more sensitive to time delay than others. For instance, e-mail

or browsing the web are not as time-sensitive as video or audio streams. Hence, e�cient

network management would entail prioritizing time-sensitive data over those less dependent

on fast transmission.

In this paper, we combine information on data throughput by mobile ISPs with data on

ISP market shares and content provider usage rates to empirically test consumers’ reactions

to data throttling, i.e., the intentional reduction of data transmission rates. While providers

1With Christoph Bauner

2There is no single, universally accepted definition accepted for net neutrality. See Krämer et al. (2013)
for definitions.
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of fixed internet service in the U.S. have long been subject to network neutrality rules,

mobile ISPs have been free to throttle data access, thus providing a natural laboratory for

this question.

Regressing app usage on various measures of throttling, we find no significant e↵ect of

data throughput on app usage. This seemingly weakens the above-mentioned argument in

favor of net neutrality rules. The most likely explanation, in our view, for this lack of a

response is that mobile ISPs are mindful of potential consumer reactions and wary of loss of

market share if they slow popular apps too much.

This is in contrast to a common interpretation of the notorious dispute between Netflix

and Comcast in which Netflix demanded stronger net neutrality rules, accusing Comcast of in

e↵ect blackmaling Netflix into paying for fast throughput (Gustin, 2014). However, the facts

of that case actually revolve around a piece of internet architecture called content delivery

networks and does not relate to net neutrality. Traditionally, content delivery networks made

deals swapping roughly equal amounts of tra�c without involving any payments by either

side. Netflix, due to its size, was responsible for a huge amount of tra�c so that the swapping

of equal amounts of data was not possible. Comcast asked for compensation accounting for

the discrepancy. In other words, Netflix’ deal with Comcast is not an example of a successful

company gaining an advantage by paying o↵ an ISP. Instead, the payment became only

necessary precisely because of how large Netflix had become (Rogowsky, 2014).

However, it is important to be aware of some caveats of our study. First, and most

obviously, lack of evidence of an e↵ect is not, by itself, evidence of no e↵ect. Second, our

data is at the state level. Possibly, an e↵ect would be visible with richer data. Third, as we

are discussing firm and consumer behavior, there are important endogeneity concerns. We use

an instrumental variable calculated from each ISP’s coverage to deal with this problem, but

it is possible that endogeneity persists, particularly in ISP behavior. Finally, the available

data forces us to focus our analysis on mobile ISPs and large content providers and it is
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possible that the e↵ect of throttling smaller content providers or of throttling by fixed ISPs

would di↵er.

Due to the lack of easily accessible data, most of the economic literature on network

neutrality is theoretical in nature, describing the impact of network neutrality regulations

on market outcomes in two-sided market models using game theoretical analyses. The pro-

posed models are analyzed with and without network neutrality rules, which are typically

conceptualized as rules forbidding the ISPs to charge the content providers for prioritizing

their content to the detriment of other CPs. Some authors, such as Choi et al. (2015) and

Peitz and Schuett (2016), introduce, as an additional consideration, network congestion, and

allow the ISP to engage in second-degree price discrimination based on quality.

The findings of this literature are ambiguous, depending on the exact model analyzed

and often on parameter values. For instance, Economides and Hermalin (2012) find that

network neutrality rules are welfare maximizing while in the models of Economides and T̊ag

(2012) and Jullien and Sand-Zantman (2014) the welfare consequences of net neutrality rules

depend on the chosen parameters and may be negative.

Peitz and Schuett (2016) find that under network neutrality there is an ine�ciently large

tra�c volume. In Ma et al. (2017)’s model, abandoning net neutrality rules could solve this

problem as it would provide ISPs with additional incentives to increase bandwidth. However,

according to Choi and Kim (2010), enforcing net neutrality may increase ISPs’ incentives

for infrastructure investment and Gans (2015) finds that the existence of net neutrality rules

may stimulate investments by content providers. Relatedly, ISPs ability to pay for additional

investments may not increase when they are allowed to charge side payments as Boussion

et al. (2012) argue side payments may not increase their revenues if they face competition.

Schuett (2010) and Greenstein et al. (2016) provide a more comprehensive discussion of

theoretical models.

The few empirical contributions to the understanding of net neutrality are mainly oriented

on understanding the impact of network neutrality regulations on investments by ISPs. For
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instance, Hazlett and Wright (2017) evaluate the impact of the FCC’s network neutrality

rules of 2010 using capital investment at industry level. They find no evidence of changes

in investment following the passing of these rules. Ford (2018) provides a good survey of

empirical evaluations of the FCC’s 2015 Open Internet Order3 on investments in the industry,

including a critique of the studies presented by the FCC. Briglauer et al. (2021) investigate the

e↵ect of net neutrality regulation on OECD countries, using industry panel data spanning 15

years and 32 countries. They find negative e↵ects of regulation on investments. Lee and Kim

(2014) use survey data of Korean internet users and computational experiments to evaluate

the e↵ect of changes in quality of service on application usage and willingness to pay of users.

They find that ISPs have incentives to lower the quality of service of some content providers.

We build on research by Li et al. (2019) showing that ISPs limit the tra�c speed for

subscribers when accessing certain content.4 Our aim is to understand whether subscribers

are sensitive to such practice. Li et al. (2019) collect ISP-level throttling data using a crowd-

sourcing scheme. We combine these data with market share estimates of the largest mobile

ISPs5 in the US and usage rates of three major applications6, both provided by Simmon-

sLOCAL. We analyze the e↵ect of throttling on usage rates making use of the variation in

ISP market shares to estimate the extent to which subscribers are exposed to throttling.

We employ instrumental variables based on each ISP’s coverage to work around endogeneity

concerns. Our findings – no significant e↵ect of throttling on app usage – suggest that mobile

ISPs may be hesitant to throttle rates too drastically.

3FCC (2015). In the Matter of Protecting and Promoting the Open Internet, Report and Order on
Remand, Declaratory Ruling, and Order, Federal Communications Commission, FCC-15-24(March 12, 2015).
30 FCC Rcd 5601 (7)

4This practice is commonly referred as throttling in the industry.

5AT&T, Verizon, T-Mobile, and Sprint

6YouTube, Netflix, and Skype
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2.2 The Mobile Broadband Industry in the US

Since the deployment of mobile broadband in the US and the massive introduction of

smartphones around 2008, there has been a steady growth in the number of mobile connec-

tions. In 10 years, the number of connections grew tenfold, from around 30 million to 300

million. The introduction of higher speed technologies, in particular 4G LTE, allowed an

important increase of available network throughput, while maintaining global compatibility.

Since then, 4G LTE has increasingly been seen as standard in the U.S. and many other mar-

kets and the rollout of 5G technology is underway, promising a further increase in available

throughput to consumers.

According to the FCC7, approximately 99.8% of the American population live in areas

with LTE coverage, available at a minimum speed of 5/1 Mbps.8 According to such report,

the coverage of LTE at 5/1 Mbps increased from 90% in 2013 to 99% in 2017 (table 2.1).

At the same time, the availability of fixed terrestrial service at 25/3 Mbps reached 85.8%

of the US population. However, rural area coverage is lagging behind urban centers, with

fixed broadband access in the former reaching only 56.2% of the population, and mobile

broadband reaching 69.3% of the population with a median speed of 10/3 Mbps and 99.1%

with a median speed of 5/1 Mbps.

There are two types of operators in the U.S. market for mobile networks: Mobile Network

Operators (MNOs) which own all necessary telecommunication infrastructure for managing

mobile communication of their subscribers; and Mobile Virtual Network Operators (MVNOs)

which resell wireless capacity of an MNO. In 2019, the US had 442.46MMmobile subscriptions

reported,9 of which approximately 62MM use MVNOs.10 Around 86% of subscriptions were

72019 Broadband Deployment Report. Bureau of Wireline Competition. Federal Communication Com-
mission (FCC). FCC-19-44. 34 FCC Rcd 3857 (5)

85/1 Mbps means an asymmetric link with a downstream speed of 5 Mbps and an upstream speed of 1
Mbps.

9Source: Statista. https://www.statista.com

10Source: Bestmvno.com. https://bestmvno.com/mvnos
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LTE at 5/1 Mbps LTE at 10/3 Mbps
2014 2017 2014 2017

United States 97.8% 99.8% 80.1% 89.0%
Rural Areas 90.2% 99.1% 70.3% 69.3%
Urban Areas 99.6% 100.0% 81.9% 92.6%
Pop. Evaluated (MM) 317.954 325.716 296.204 302.940

Data for 5/1 Mbps from Form 477.
Data for 10/3 Mbps from Ookla data.

2019 Broadband Deployment Report. 34 FCC Rcd 3857 (5)

Table 2.1: Population Coverage with LTE

with one of the four largest MNOs, i.e., AT&T Wireless, Sprint Corporation, T-Mobile and

Verizon Wireless.11

The Mobile Market has a very heterogeneous o↵ering, especially from MVNOs, which

have very defined market niches, and very heterogeneous plans, including pre-paid service.

However, the o↵erings of the four largest providers have evolved similarly and nowadays their

mainstream product is what they call “unlimited plans,” which are marketed as subscriptions

that allow users to do unlimited texting and calls within the US as well as unlimited access

to the internet. This may be a natural move since the capacity in mobile access networks has

increased substantially with the deployment of LTE, and new innovative services over the

internet now allow users to do calls, texting and video calls over the internet at no charge.12

The move to unlimited plans started to be rolled out at a↵ordable prices around 2016,

with the main advantage of simplicity for subscribers. In table 2.2, we show the plans that

were o↵ered in 2018 under the unlimited plans. As we can see, there are limitations in the

o↵ering related mainly to video tra�c, which accounts for the largest share of tra�c by far.13

11Following the merger of Sprint and T-Mobile in 2020, only three large MNOs remain in the U.S. at this
time.

12The business models developed by these application providers do not rely on direct payment from users.

13Source: US Telecom Industry Metrics & Trends, 2020
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Provider Plan Name Cost/line (USD) Limitations in streaming
1 2 3 4

Verizon Unlimited 75 130 150 160 480p
Unlimited (Beyond) 85 160 180 200 720p up to 15 GB/mo
Unlimited (Above) 95 180 210 240 720p up to 20 GB/mo

AT&T Unlimited 70 125 145 160 480p
Unlimited & More 80 150 170 190 720p up to 15 GB/mo

T-Mobile One 70 120 141 160 480p (in 3G)
One plus 80 140 171 200 1080p up to 10GB (LTE)

Sprint Unlimited basic 60 100 120 140 480p (LTE up to 500MB)
Unlimited plus 70 120 150 180 1080p (LTE up to 15GB)

Verizon: Additional $10 for streaming @1080p only available in Above and Beyond plans.

AT&T: Slow-downs are possible due to congestion. In Unlimited & More plans slow-downs start at 22GB of usage.

T-Mobile: Slow-downs start at 50GB of usage.

Sprint: Restrictions for games and streaming.

theverge.com: Unlimited data plans are a mess: here’s how to pick the best one (July 12, 2018)

Table 2.2: Unlimited Plans of MNOs in 2018

In all cases, there are limitations that are imposed by providers both in download speed

and monthly capacity. However, there are slight di↵erences in the plans that may allow

savvy users to choose the more convenient plan to their requirements. Importantly, we could

not find evidence that providers specify technical parameters under which they limit their

o↵ering. The information provided is somewhat qualitative and confusing and limitations

are vague in all cases. Measuring those parameters provides information on how much the

tra�c is slowed down and under which circumstances, if any.

2.3 Data

Our data comprises two main components: throttling rates and usage data. The former

comes from Li et al. (2019) who conduct a one-year study to find if content-based tra�c

di↵erentiation policies were deployed by ISPs. They employ a crowd-sourced methodology,

where people could download an application and run a test designed to find if their ISP

is slowing down tra�c for some of the most popular applications, accumulating around 1

million measurements conducted by more than 126 thousand users across the globe. Our
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interest focuses on ISPs located in the United States in 2018, where around 215 thousand

tests were performed. Some of the applications tested include YouTube, Netflix, Amazon

Prime Video, NBC Sports, Vimeo, Spotify and Skype. These applications were selected

since they usually imply higher tra�c usage and therefore are more likely targets for tra�c

di↵erentiation practices.

Li et al. (2019)’s tests are performed by transmitting data packets twice: once using

the original data and once using obscured data that cannot be detected by the ISP’s Deep

Packet Inspectors (DPI) systems and thus evade tra�c controls in the provider’s network.

Comparing the throughput between the original and the obscured data then provides an

estimate of the degree of data throttling. The data collected in Li et al. (2019) are available

online as raw data that can be reprocessed, but additionally, the aggregated processed results

are available in their website14, where we scraped the data. The results of these tests show

that consistent di↵erentiation is being applied to subscribers of mobile networks in the US,

while there is no evidence of such behavior in fixed providers.

One of the most interesting findings in Li et al. (2019) is that the most common type

of di↵erentiation observed are fixed-rate bandwidth limits, known as throttling. In figure

2.1, we show a summary of the throttling rates found for the US ISPs on a set of common

applications. All mobile ISPs in the dataset are exerting some level of throttling. However,

the throttling rates di↵er significantly both across ISPs and across applications. In particular,

data throughput for the same app frequently varies by more than a factor of two between

the fastest throttled and the slowest throttled speeds, and for all apps providers exist that

do not throttle at all.

Our second dataset contains usage levels for mobile ISPs and applications in the US at

the state level from Simmons LOCAL. Simmons LOCAL is based on survey data and uses

demographic data to make predictions even at the census tract level. However, we use actual

14
https://wehe.meddle.mobi/
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Figure 2.1: Average Throttling by Provider and Application in the US

Figure represents throttling rates in Mbps. The throttling rate measures the data throughput for throttled
tra�c. An empty cell means that no throttling was detected.
Source: https://wehe.meddle.mobi/USStats.html

survey responses available via the crosstab feature. For these data, su�cient numbers of

observations are only available at the state level. Our data obtained from Simmons LOCAL

includes demographics, usage levels for applications, and usage of mobile ISPs at the state

level. We will refer to the usage rate of ISPs as the market share of this ISP to simplify

language. We drop states for which we observe fewer than 60 survey responses.

In our analysis, we focus on three apps for which we observe both throttling rates from

Wehe and usage rates in Simmons LOCAL: Netflix, YouTube, and Skype. Figure 2.2 shows

application usage rates across states for these apps. We see large di↵erences across apps and,

more importantly for our purposes, significant variation across states.

Figure 2.3 provides an overview of ISP market share by states for the four largest mobile

networks in the U.S.: AT&T Wireless, Verizon Wireless, T-Mobile and Sprint, accounting

for 71% of the mobile market on average according to the survey data. We focus on these

providers both because some smaller providers are not represented in the Wehe data and

because we are concerned about the reliability of our market share data for small providers,
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Figure 2.2: Application usage per State

States with fewer than 60 survey responses and with missing data are omitted.
Source: SimmonsLOCAL

30



in particular for states where we only observe small samples. Our average market share data

is roughly in line with expectations based on national numbers. For each provider, there

is substantial variation in market shares across states, a requirement for our identification

strategy.

Figure 2.3: Mobile Provider’s Market Share per State

States with fewer than 60 survey responses and with missing data are omitted.
Source: SimmonsLOCAL
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Our last dataset comes from the mobile deployment FCC’s form 477, and it contains cov-

erage by ISP computed at US Census Bureau’s block level using FCC’s actual area method-

ology.15

The dataset contains computed coverage at each block for each technology available at

any given year. Since our interest is in broadband, we focus on 4G technologies. All ISP’s net-

works had di↵erent deployment schedules, because they started from non-compatible 3G tech-

nologies. Because AT&T Wireless and T-Mobile use GSM technology, they deployed HSPA+

before deploying LTE, whereas Sprint and Verizon use CDMA technology and jumped di-

rectly to LTE. We account for such deployment strategies in our analysis by considering

HSPA+ as part of the 4G network for ATT Wireless and T-Mobile. Thus, to determine 4G

coverage we apply the best coverage available among HSPA+ and LTE. One could argue

that LTE provides better bandwidth, but given the usual deployment schedule in mobile

networks, where the best technology is rolled out first in high demand sites, while areas with

less demand are left for later deployment, the available bandwidth per subscriber ends up

being relatively similar. In figure 2.4, we show the geographic coverage at the state level for

the year 2018. Substantial variation is evident both among providers and geographically.

In table 2.3, we show the summary statistics of geographical coverage for the year 2015.

All ISPs have 100% coverage as the maximum, which corresponds to Washington, DC. Oth-

erwise there is variation across all providers. For all providers, there are states with less than

50% coverage. In particular, for Sprint and T-Mobile there exist large regions in some states

for which no coverage is provided. In our analyses, we use coverage to instrument for market

share, making substantial variation of coverage crucial.

15FCC released data on mobile broadband deployment as of December 31, 2015 collected through FCC
form 477. DA 16-1107. Sep 30, 2016
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Figure 2.4: Mobile Provider’s Coverage by State in 2015

4G Coverage shown in States where market share data exists. Source: https://www.fcc.gov/

mobile-deployment-form-477-data

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

ATT Wireless 51 91.9 12.3 41.0 91.7 99.0 100.0
Verizon 51 89.2 13.1 23.3 85.0 97.2 100.0
Sprint 49 60.7 26.0 0.1 43.8 80.0 100.0
T-Mobile 50 74.3 24.5 7.6 63.7 89.3 100.0

Note: Table shows for each provider the number of observations (N), mean, standard
deviation, minimum, 25th percentile, 75th percentile, and maximum of geographic
coverage calculated by state (including Washington, DC).

Source: Computed from https://www.fcc.gov/mobile-deployment-form-477-data

Table 2.3: 4G Geographical Coverage by ISP in year 2015
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2.4 Analysis

To determine the e↵ect of throttling on user behavior, we regress app usage rates on

various measures of network speed. This regression su↵ers from an obvious endogeneity

problem as users interested in a specific app may select their network based on the access

speed of that app. For instance, a user interested in watching movies on Netflix is less

likely to select a network providing only slow download speeds from Netflix’s servers. To

address this issue, we employ the instrumental variable approach using network coverage

as our instrument for network usage. Coverage turns out to be highly predictive of our

instrumented variable and is plausible exogenous. While it is theoretically possible that

network providers alter coverage based on the apps their subscribers use, this seems unlikely

to be a major factor given the significant financial investments and set-up time required to

make large-scale changes to the network.

Our first regression equation is:

Aai = �a + �1SlowPropai + �2Xi + ✏ai (2.1)

where Aai is the usage share of app a in state i, SlowPropai is the percentage of users for

whom app a’s tra�c is throttled to slow levels, and Xi is a matrix of control variables. �a

denotes a fixed e↵ect for app a and ✏ai the i.i.d. error term. The coe�cient of interest is �1.

We use various specifications for Xi. The covariates considered are the average household

income, the percentage of residents with college degree, and the percentage of residents born

abroad. The last variable deserves some explanation: we hypothesize that a�liation with a

foreign country may a↵ect the degree to which residents make use of video calling apps such

as Skype and possibly of video streaming, if they are unable to find content in their native

languages or about their native countries in regular TV services.

Table 2.4 shows the results. The coe�cient associated with our variable of interest, the

share of customers with slow data throughput, is near zero in all our specifications, indicating

an increase of app usage between 0.21 and 0.34 percentage points if the share of users with

34



slow access increases by 10 percentage points. Overall, these coe�cients are economically

and statistically insignificant in all specifications.16

Since it is possible that e↵ect varies by app, we repeat the regressions separately for each

app in our data, including only household income as a control because of the reduced number

of observations.17 Thus, the equation for our separate regressions is:

Ai = �0 + �1SlowPropi + �2hh inc+ ✏i (2.2)

where �0 is the constant and hh inc is household income in $10,000. We suppress the app

identifier since each regression now contains data for only a single app. We report the results

in table 2.5. Our estimated coe�cients of interest are now larger in absolute value, indicating

for a 10 percentage point increase of users with slow access a 1.04 percentage point decrease

in usage of Netflix and increases of 1.09 or 2.81 percentage points, respectively, for YouTube

and Skype. However, each of these coe�cients is similar in magnitude to the estimated

standard error and therefore insignificant.

16Our results are qualitatively comparable if we drop the most extreme values.

17Including all covariates leaves our results qualitatively comparable.
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(1) (2) (3)

SlowProp 0.021 0.028 0.034
(0.072) (0.072) (0.074)

Netflix 0.220⇤⇤⇤ 0.159⇤⇤⇤ 0.140⇤⇤⇤

(0.033) (0.043) (0.053)

Skype 0.394⇤⇤⇤ 0.333⇤⇤⇤ 0.315⇤⇤⇤

(0.034) (0.043) (0.052)

YouTube 0.054⇤⇤⇤ -0.006 -0.020
(0.008) (0.021) (0.030)

HH income 0.009⇤⇤⇤ -0.008
(0.003) (0.006)

College 0.388
(0.174)

Foreign 0.175
(0.064)

Observations 122 122 122
1st Stage F Stat 43.10 44.67 43.21

HH income: Avg. household income in $10,000s. Col-

lege: Percentage of residents with college degree. Foreign:
Percentage of foreign-born residents.
Standard errors in parentheses. ⇤, ⇤⇤ and, ⇤⇤⇤ indicate
significance at the 90%, 95%, and 99% levels, respectively.

Table 2.4: Results of Pooled Regression

36



Netflix YouTube Skype

SlowProp -0.104 0.109 0.281
(0.091) (0.113) (0.237)

HH income 0.005 0.011⇤⇤ 0.007⇤⇤

(0.006) (0.005) (0.003)

Contant 0.243⇤⇤⇤ 0.278⇤⇤⇤ -0.016
(0.073) (0.071) (0.028)

Observations 41 41 40
1st Stage F Stat 23.84 23.84 9.41

Table 2.5: Results of Separate Regressions
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If consumers reacted strongly to the levels of throttling prevalent in the market, we

would expect to see significantly negative coe�cients on SlowProp. We fail to find evidence

of such an e↵ect. However, it is important to be aware of potential endogeneity issues.

Our instrumental variable controls for endogeneity in consumer behavior. Another potential

source of endogeneity is ISP behavior. ISPs may strategically throttle widely used apps to

preserve bandwidth for other apps. Unfortunately, we have no way of controlling for this

kind of endogeneity. However, we find it unlikely that this e↵ect is strong. Most consumers

have access to at least two mobile ISPs. Hence, throttling apps based on their popularity

would provide an incentive for consumers to switch providers, hence leading to a reduction

in market share.

The explanatory variable used so far is somewhat coarse as it uses a cuto↵ to distinguish

fast from slow access speeds. It is possible that a more flexibly defined variable will be more

able to capture e↵ects of data throttling on app usage. To investigate this we define wgt speed

as the market-share-weighted average download speed:

wgt speedai =
X

j

MaxSpeedaijsij (2.3)

where wgt speedai is the weighted average speed for app a in state i,

MaxSpeedaij is the observed maximally available download speed for app a’s data with

provider j in state i, and sij is provider j’s market share in state i.

Using wgt speedai directly in our regression would make our results liable to the same

endogeneity concerns that before we were able to sidestep by the application of the 2SLS

procedure. However, we cannot use a standard 2SLS approach with this independent variable

because we have an instrument only for sij, not for wgt speedai. To circumvent this problem,

we run the two steps of 2SLS separately by first regressing sij on network coverage and

the relevant exogenous variables. Then, based on the results of this regression, we use the

predicted market shares ŝij to calculate predicted weighted download speeds following the

definition in (2.3):
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dwgt speedai =
X

j

MaxSpeedaij ŝij (2.4)

Now we can run the second stage by using dwgt speedai in the following regression which,

except for the adjusted variable of interest, is akin to (2.1):

Aai = �a + �1
dwgt speedai + �2Xi + ✏ai (2.5)

A complicating factor with this procedure is the significant di�culty of finding an analyt-

ical solution for the standard error. We employ clustered bootstrapping with 1,000 iterations

to estimate standard errors.18

Tables 2.6 and 2.7 show the results for pooled and separate regressions, respectively.

The coe�cients of interest in those regressions indicate that an increase of the weighted

average download speed by 1 Mbit/s is associated with a decrease of app usage between

0.1 and 3.2 percentage points. However, they are largely insignificant and the exceptions

become insignificant if we use sharpened q-values (Anderson, 2008) to account for multiple

regressions.

18Tests with di↵erent numbers of iterations produce similar estimates, indicating that our results are not
sensitive to this choice.
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(1) (2) (3)

wgt speed -0.008 -0.032⇤⇤ -0.028⇤

(0.017) (0.016) (0.016)

Netflix 23.278⇤⇤⇤ 18.323⇤⇤⇤ 16.826⇤⇤⇤

(1.055) (2.211) (2.342)

Skype 6.721⇤⇤⇤ 4.110 2.404
(2.358) (2.839) (3.199)

YouTube 40.665⇤⇤⇤ 35.563⇤⇤⇤ 34.095⇤⇤⇤

(0.970) (2.162) (2.272)

HH income 0.888⇤⇤⇤ -0.853
(0.264) (0.662)

College 39.306⇤⇤

(18.107)

Foreign 19.057⇤⇤

(6.531)

Observations 122 122 122
1st Stage F Stat 54.72 28.34 14.94

HH income: Avg. household income in $10,000s. College:
Percentage of residents with college degree. Foreign: Percent-
age of foreign-born residents.
Bootstrapped standard errors in parentheses. ⇤, ⇤⇤ and, ⇤⇤⇤

indicate significance at the 90%, 95%, and 99% levels, respec-
tively. When using sharpened q-values to adjust for multiple
regressions, coe�cient on wgt speed is insignificant for all mod-
els.

Table 2.6: Results of Pooled Regression on Average Speed
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Netflix YouTube Skype

wgt speed -0.020 -0.023 -0.001
(0.054) (0.051) (0.005)

HH income 0.782⇤ 0.680⇤⇤ 0.775⇤⇤⇤

(0.388) (0.323) (0.249)

Constant 19.990⇤⇤⇤ 38.893⇤⇤⇤ 1.053
(7.172) (6.292) (2.946)

1st Stage Observations 156 156 156
2nd Stage Observations 39 39 39
1st Stage F Stat 14.42 14.42 14.42

HH income: Avg. household income in $10,000s.
Bootstrapped standard errors in parentheses. ⇤, ⇤⇤ and, ⇤⇤⇤ indicate
significance at the 90%, 95%, and 99% levels, respectively.

Table 2.7: Results of Separate Regressions on Average Speed
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Overall, our results when using user-weighted average speeds as our explanatory variable

are similar to those when using the share of users with slow data access: Our data provide

no evidence that a connection between download speeds and app usage exists.

It seems likely that this is because mobile ISPs are cautious in their approach to throttling

and do not slow data throughput to a degree that would severely a↵ect user experience. In

other words, market forces may be putting su�cient constraints on ISPs to limit the e↵ect

of the presence or absence of network neutrality rules. It is entirely possible that our results

would be quite di↵erent, if we were to observe throttling in a monopoly setting.

2.5 Conclusion

A major worry of proponents of network neutrality rules, backed by some theoretical

literature, is that abandoning such rules can lead to discriminatory behavior and skew com-

petition among content providers toward the most solvent and powerful companies. However,

to date there is scant empirical evidence for such e↵ects.

We combine measured throughput rates with usage surveys to analyze how users react

to discriminatory throttling by mobile ISPs. In multiple specifications we find no e↵ect of

throttling on app usage rates.

We employ an instrumental variable approach to control for the obvious endogeneity

problem that consumers can switch to a provider o↵ering fast access to data they care about.

Another source of endogeneity is that ISPs could reduce data throughput for the most popular

apps in their networks. We have no direct way of controlling for this behavior. However,

ultimately we do not believe this e↵ect to be too important. With consumers in most local

markets being able to choose among multiple ISPs, any provider throttling popular content

too drastically would risk losing market share. In other words, we interpret the lack of

significant e↵ects as attributable to ISPs showing restraint. ISPs could, but choose not to,

a↵ect relative data transmission rates too much.
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While, to our knowledge, our study represents the first e↵ort of testing the e↵ect of net

neutrality rules on consumers and content providers empirically, it su↵ers from having limited

data which varies only at the state level. As such, it is only a starting point and future studies

should try to find richer data to get a more detailed picture of consumer behavior in the light

of throttling.
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CHAPTER 3

BRIDGING THE DIGITAL DIVIDE IN THE U.S.

3.1 Introduction

The internet has become a vital part of everyday life. Americans rely on this network

for accessing a variety of products, services, and government benefits. The key societal role

of high-speed (also known as “broadband”) internet was most recently evidenced during the

COVID-19 pandemic, when it allowed the country to keep its economy running and helped

support many daily activities. As a result of its pivotal role in society, governments around

the world are constantly pursuing and adopting policies aimed at enabling universal access

to broadband internet.

Although broadband internet access via mobile technology is technically feasible, broad-

band access policy has focused on fixed broadband, which o↵ers users larger capacity and

more a↵ordable access. Fixed technologies can not only accommodate faster speeds but also

allow more users (e.g., all household members) to access content more economically. That

is, unlimited internet access at a single flat rate is commonly o↵ered by fixed broadband

companies but not by mobile operators. Thus, as in policy discussions, the analysis in this

paper focuses on broadband internet service provided via fixed technologies.

Since 2010, the rate of household broadband adoption has slowed (see Figure 3.1). While

this slowdown is to be expected as product adoption gets closer to full coverage, the sizable

fraction of unconnected households has received attention from governments and interna-

tional organizations around the world. The term “digital divide” reflects the fact that the

unconnected are at a disadvantage in not being able to access the ever-growing universe of

information and services (and consequent opportunities).
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Multiple studies report factors that may prevent households from adopting broadband

internet; unsurprisingly, these factors include income, educational attainment, race, and

location. In this paper, we o↵er a significant advance in the analysis and explore mechanisms

and policies that can help bridge the digital divide. Specifically, we first estimate a model for

household broadband demand and then use the estimated structural parameters to simulate

the outcomes of various recently proposed policies directed at bridging the digital divide.

We evaluate a) policy costs, b) reduction of the digital divide, and c) increases in consumer

surplus.

To estimate demand, we use publicly available data to assemble a novel dataset that con-

tains detailed information on coverage, prices, internet speed, and usage at a very granular

level: 63,900 tracts covering almost 90% of the US population.1 One hurdle in the construc-

tion of the dataset is that publicly available operators’ prices are only available for a subset

of tracts. To circumvent this issue, we rely on machine learning algorithms that assign prices

to tracts based on similarities in demographics and technology (e.g., fiber) in nearby tracts

where prices are available.2 Finally, we enrich the dataset with demographic information

from the US Census Bureau.

Our demand model follows the discrete choice literature. Given the nature of our data (see

Section 3.3), households face three choices: high-speed internet, low-speed internet, and no

internet (outside option). A key outcome of our demand estimation is price sensitivity, which

is modeled as a function of income. The overarching idea of our counterfactuals is to simulate

how consumers would react if market conditions were altered by two types of policies: a)

government subsidies targeted to lower income households (i.e., a targeted price drop) and

b) government-incentivized network deployment (i.e., greater infrastructure coverage).

1Census tracts are small, relatively permanent statistical subdivisions of a county. More detail is available
in https://www2.census.gov/geo/pdfs/education/CensusTracts.pdf.

2See Section 3.3.6 and Appendix A.1 for details.
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The Biden Infrastructure Act (BIA) budgeted $14.2 billion (22% of the total $65 billion

BIA budget) for direct subsidies and $42.25 billion (65% of $65 billion) in infrastructure

deployment. Our results show that direct subsidies could increase household connectivity

by 4 percentage points and increase consumer surplus by $260 million.3 Conversely, policies

intended to increase coverage through infrastructure deployment could result in an increase

of less than 1% connected households and almost negligible impacts on connectivity and

consumer surplus.

We carry out additional counterfactuals to better understand the costs and benefits of

closing the digital divide. One scenario estimates the required price drop in each tract with

an average income of less than $75,000 so that all households in that tract would enroll in a

high-speed broadband plan; we then compute the costs and benefits of this price drop. While

we find that this strategy could boost fixed broadband connectivity by 13% and consumer

surplus by $1.3 billion, it would require a budget 2.7 times larger than that allocated for

income-targeted subsidies in the BIA.

Another counterfactual is aimed at quantifying the consumer surplus that would be gained

if the (minimum) speed of broadband plans increased from the 10 megabits per second (Mbps)

download threshold to a more stringent 25 Mbps (the current FCC threshold for high-speed

internet). While we cannot quantify the policy cost of this counterfactual, we find that

consumer surplus would increase by $201 million (or $2.6 per household/year).

The paper is organized as follows: In Section 3.2, we provide important concepts and

background descriptive information regarding the digital divide. Section 3.3 describes the

datasets used and the required transformations to compute the demand estimation as well as

summary statistics. Section 3.4 describes the demand model and identification. Section 3.5

presents the results of the demand estimation, including interaction with income. Section

3As we later explain, these estimations are done with data that precedes the BIA Act and are, hence, an
approximation.
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3.6 presents the counterfactuals performed, which include the evaluation of the BIA policy

and a more aggressive proposal to close the digital divide. Finally, Section 3.7 concludes.

3.2 The Digital Divide

In this section, we first explain the notion of the digital divide as it pertains to the US

and its importance for policy. We then describe the divide and some of the factors associated

with it. The stylized facts that are presented provide the background and motivation for our

modeling and counterfactual choices.

The term “digital divide” was introduced in the mid-1990s to name the gap separating

people with and without access to information and telecommunication technologies. One of

the most important indicators used to understand this divide has been internet access. De-

mand for telecommunication systems has been extensively studied in economics; a takeaway

from this literature is the distinction between demand for access4 and demand for use (i.e.,

conditional on access).5

As is usual in the use of new technologies, adoption follows an S-shaped curve, with an

initial period of slow growth until a critical mass is reached, followed by a period of rapid

growth that eventually levels o↵. Figure 3.1 shows the adoption curve of fixed broadband

internet from 2005 to 2020. The deployment of fixed broadband technologies started around

2000. By 2005, 40% of US households had already adopted broadband services; 10 years

later, 60% of households had subscribed. However, in the last decade we notice a slowdown

in adoption, with an increase of less than 20%. While this flattening is not unexpected, it is

significantly more pronounced than that observed in Europe: Although both Europe and the

4What the Federal Communication Commission (FCC) refers to as availability. See https://us-fcc.

app.box.com/v/bdc-availability-spec.

5Some examples include Rohlfs (1974), who developed demand modeling that simultaneously allowed for
access and usage components. Empirical studies, such as Train et al. (1987), analyze users’ preferences for
usage charges as well as substitutability across di↵erent types of services.
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US exhibited similar broadband adoption rates in 2005, by 2020 Europe has pulled ahead of

the US by approximately 10%.

Source: Pew Research Center and International Telecommunications Union (ITU).
(https://www.pewresearch.org/internet/fact-sheet/internet-broadband/)
(https://www.itu.int/en/ITU-D/Statistics/Pages/stat/default.aspx)

Figure 3.1: Household broadband connections in the US and Europe

Most countries have adopted policies aimed at expanding telecommunication access to

all households. This policy can be traced back to the concept of universal service used by

Bell System to transform the industry to a regulated monopoly (see Mueller, 1997). As a

consequence, many governments have established some form of digital agenda for closing

the digital divide. Feijóo et al. (2018) explore the high-speed broadband situation in the

European Union and estimate that the Digital Agenda for Europe (DAE) would require an

investment of €137.5 billion to resolve the digital divide.

In the US, several programs at both the federal and state level address the digital divide.6

For example, the FCC’s Connect America Fund provides funding for broadband operators to

6More generally, the Department of Commerce is responsible for achieving “digital equity” and “digital
inclusion” and building capacity for broadband adoption among US residents. Digital equity is defined as a
condition in which individuals and communities have the information technology capacity that is needed for
full participation in the society and economy of the United States; the term digital inclusion encompasses
the activities that are necessary to ensure that all individuals in the United States have access to, and the
use of, a↵ordable information and communication technologies
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defray the cost of operating in high-cost areas across the US and supports smaller cooperatives

and independent companies.

More recently, the Emergency Broadband Benefit was established during the COVID-19

pandemic to help low-income households connect to the internet. According to the FCC, 9

million people have benefited from this program.7 Finally, in 2022, the Biden Infrastructure

Act of 2021 (BIA) included an entire chapter on broadband infrastructure, which gave rise

to the Digital Adoption Act.8

The BIA includes $65 billion to improve US broadband access. The Department of

Commerce supervises the allotment of $42.25 billion for infrastructure development (ID)

in unserved and underserved areas, while the FCC established the A↵ordable Connectivity

Program (ACP) with an assigned budget of $14.2 billion. An additional $8.35 billion was

assigned to other programs, including digital readiness, rural deployment in tribal lands,

telehealth, and distance learning. The two main objectives of the BIA are thus to a) improve

network availability (through the ID initiative) and tackle a↵ordability problems (through

the ACP). As we explain in Section 3.6, our policy evaluation scenarios are motivated by the

government interventions contemplated in the BIA.

Clearly, one important enabler in the use of fixed broadband internet is the availability of

the service to possible subscribers. According to the FCC (2020), between 2016 and 2018 the

number of Americans without a terrestrial broadband (defined by a 25/3 Mbps threshold)9

service provider in their area has declined by 30%. By 2018, 97.4% of the US population

could subscribe to a provider o↵ering speeds of least 10/1 Mbps. Infrastructure deployment

7Source: https://docs.fcc.gov/public/attachments/DOC-378908A1.pdf

8H.R.3684 - Infrastructure Investment and Jobs Act.
https://www.congress.gov/bill/117th-congress/house-bill/3684/text

9This notation represents a link with download speeds of 25 Mbps and upload speeds of 3 Mbps. In
general, most internet connections o↵ered to households are asymmetric due to the fact that households
consume services from the internet, requiring much slower upload speeds than download speeds to keep the
connections working properly, as explained in Andreica and Tapus (2010). One important aspect to consider,
as discussed by Mangla et al. (2022), is that the FCC coverage datasets are constructed with data reported
by providers and may be inconsistent with reality, especially in rural areas.
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appears to have kept a steady pace: $80 billion were invested in network infrastructure in

2018 alone. These figures suggest that the digital divide observed in Figure 3.1 is not driven

by lack of infrastructure (i.e., availability) but by lack of adoption.

A central aspect of an internet connection is its speed (download/upload). Since policy,

as well as our work, considers “fast” (i.e., broadband) internet to be the focus of bridging

the digital divide, it is important to determine an appropriate threshold at which a con-

nection should be deemed to be broadband. The FCC uses a threshold of 25/3 Mbps to

separate broadband and non-broadband links.10 However, this definition does not appear to

be universally accepted. To determine eligibility for the Connect America Fund (CAF),11 a

program designed to subsidize broadband service to high-cost and rural areas, the FCC set

a threshold of 10/1 Mbps. In our analysis below, we use the 10/1 Mbps standard as the

threshold for determining whether a plan o↵ers broadband; to understand the importance

of this discrepancy in definition, some of our counterfactuals study policy scenarios in which

broadband definition is raised to the more stringent 25/3 Mbps standard.

Fixed (terrestrial) broadband uses several technologies; the most commonly used in the

US are cable modem, fiber optic, digital subscriber lines (DSL), and fixed wireless access

(FWA). In general, fiber optic technology provides the highest possible bandwidth in both

directions. Nevertheless, cable modem with the DOCSIS 3.1 standard, although asymmet-

ric, can provide download bandwidths similar to those available using current fiber optic

technology. Cable modem is the most popular technology in the US and cable operators re-

spond to fiber providers adjusting their investment strategy (improving their infrastructure

to support fiber-like speeds to respond to competition only where they feel threatened) to

successfully compete with fiber optic operators (Skiti, 2020). Many authors, such as Car-

10Federal Communication Commission. Inquiry Concerning the Deployment of Advanced Telecommunica-
tions Capability to All Americans in a Reasonable and Timely Fashion, and Possible Steps to Accelerate Such
Deployment Pursuant to Section 706 of the Telecommunications Act of 1996, as Amended by the Broadband
Data Improvement Act. GN Docket No. 14-126

11Petition of USTelecom for Forbearance Pursuant to 47 U.S.C. § 160(c) from Obsolete ILEC Regulatory
Obligations that Inhibit Deployment of Next-Generation Networks. WC Docket No. 14-192
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dona et al. (2007) and Dutz et al. (2009), estimate fixed broadband demand at the technology

level (e.g., whether consumers choose cable modem vs. DSL); however, we believe that when

choosing a broadband provider, subscribers are more likely to be concerned with the speed

and quality of their connections than with the underlying technology (Bauer, Steven et al.,

2010). Further, there is a general perception that faster broadband speed is more beneficial

for the population because it allows subscribers to access richer content on the internet. The

demand modeling that we adopt in this paper is consistent with these observations: We esti-

mate a discrete choice model in which consumers decide to subscribe to either a high-speed

(i.e., broadband) or a low-speed (i.e., non-broadband) connection.

Year Unserved (%) Underserved (%)

2016 1.77 8.94
2017 1.54 8.58
2018 1.36 8.11

Table 3.1: Household broadband internet availability

To better understand the extent to which fixed broadband internet is available in the US,

we use our constructed dataset (see Section 3.3) to compute two availability measures. First,

we compute the percentage of the population that is not able to connect to any fixed internet

provider; the FCC refers to this population as unserved. The second measure corresponds to

the percentage of the population for whom the only choice is to subscribe to a low-speed (less

than 10/1 Mbps) internet provider; the FCC refers to this population as underserved. Table

3.1 reports these figures for the three years of data available in our study; although small,

the evolution of these two measures indicates an improvement in availability over time.12

Figure 3.2 breaks down the two availability measures by state. There is a wide variation

between states; in the worst cases, almost 30% of households are underserved. As before,

availability has increased over time. Positive and significant correlation between the two

12These figures are similar to those reported in FCC (2020).
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measures (0.668 for 2016, 0.629 for 2017, and 0.585 for 2018) suggests that, unsurprisingly,

they move in tandem.

Figure 3.2: Availability of internet services by state

Another important aspect for understanding the availability issue is its relationship with

income. Table 3.2 reports the percentage of unserved and underserved households, broken

into four income brackets, for the years 2016 and 2018.13 For the lowest incomes, we observe

that the percentage of both unserved and underserved households is higher and has higher

dispersion than for higher incomes. At the same time, we see an increase in availability from

2016 to 2018 in all cases. These patterns are consistent with Goldfarb and Prince (2008),

who find a correlation of usage with income, education, and the opportunity cost of leisure

time.14

13As we explain in Section 3.3, our data is at the tract level. Thus, the figures in Table 3.2 report the
average (and SD) of the availability measure (e.g., percentage unserved) across tracts.

14Prieger (2003), however, using observations at zip code level, conclude that there is little evidence of
unequal availability across income levels or areas of varying ethnicity concentration.
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y<501 50<y<1001 100<y<1501 y>1501

2016
Unserved (%) 5.08 (11.87) 3.86 (9.25) 1.30 (4.39) 0.86 (3.12)
Underserved (%) 16.29 (24.20) 16.13 (23.21) 8.27 (17.65) 8.50 (19.83)
2018
Unserved (%) 3.29 (8.18) 2.85 (6.85) 1.24 (3.87) 0.81 (2.49)
Underserved (%) 13.29 (20.76) 14.92 (21.63) 6.27 (14.18) 4.67 (12.97)
1 Income (y) in thousands of dollars per year. Mean (SD)

Table 3.2: Household internet availability by income

Another dimension of the digital divide is the di↵erence in availability between urban

and rural areas.15 Table 3.3 reports the percentage of unserved and underserved households

separately for urban and rural locations (and separately for 2016 and 2018). Three patterns

emerge. First, as before, availability is improving over time, with the urban-rural di↵erence

in the unserved measure declining from 5.1% to 3.3%. Second, the availability problem is

substantially larger in rural areas than in urban areas (95% confidence intervals of t-test in

means in parentheses); in particular, rural areas register 19 more percentage points in the

underserved measure; more importantly, this gap has not changed over time. Third, the

figures suggest that the infrastructure impediment to broadband access is not the complete

lack of infrastructure (i.e., unserved percentages are relatively low) but the lack of su�ciently

fast infrastructure (i.e., the “underserved” percentages are of an order of magnitude higher).16

The stark di↵erence in urban and rural availability is not surprising given the substantially

larger cost of network deployment in rural areas; the main reason for this di↵erence is that

the sparseness of household locations demands more infrastructure on a per-subscriber basis.

To illustrate this cost di↵erential, Vergara et al. (2010) develop a cost model for network

roll-out in di↵erent settings and show that, for the same take-up rate, deploying network in

15The US Census Bureau’s classification of rural comprises all territory, population, and housing units
located outside of urban areas and urban clusters (i.e., blocks with a population density of at least 1,000
people per square mile). See https://www2.census.gov/geo/pdfs/reference/GARM/Ch12GARM.pdf

16While the availability issue is, on average, less pronounced in urban areas, the issue can arise in certain
urban locations. For instance, Reddick et al. (2020) study the digital divide in the San Antonio, Texas, area
and found an important (un)availability issue in intra-city locations, especially in low-income areas.
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Rural1 Urban1 Di↵erence2 95% CI2,3

2016
Underserved (%) 23.84 (25.97) 5.34 (13.70) 19 (18.9, 19.3)
Unserved (%) 6.16 (12.10) 1.04 (3.41) 5.1 (4.9, 5.3)
2018
Underserved (%) 22.11 (23.85) 3.56 (9.88) 19 (18.9, 19.2)
Unserved (%) 4.21 (8.61) 0.92 (2.78) 3.3 (3.2, 3.4)
1 Mean (SD)

2 Welch Two Sample t-test

3 CI = Confidence Interval

Table 3.3: Availability of internet connections in rural and urban households

rural settings can be 6 to 8 times more expensive than in urban areas. To economize on the

cost of deploying in rural settings, many operators have opted to use wireless technologies,

which are more cost e↵ective but often have bandwidth limitations. In cases of very isolated

populations, wireless access networks could be the only economically feasible solution. For

instance, Chiha et al. (2020) propose the use of satellite technology and 4G networks to close

the digital divide in Europe.

As we have seen so far, broadband availability has increased; in 2018, almost 92% of

households had the option of at least one provider o↵ering fixed broadband internet. However,

only 73% of Americans subscribed to a fixed broadband provider in 2018 (FCC, 2020).

The substantial gap between availability and adoption raises questions about what prevents

households from subscribing to fixed broadband. Prior research provides some answers.

Unsurprisingly, a↵ordability appears to be a consistent factor. Higher income households

are, conditional on availability, more likely to adopt fixed broadband (e.g., Goldfarb and

Prince, 2008; Silva et al., 2018). In addition, adoption is greater among households with

higher educational attainment (e.g., Goldfarb and Prince, 2008; Silva et al., 2018). Further,

there is some evidence that ethnicity may play a role, with Hispanics and Black households

registering lower adoption rates even after controlling for income and education (Prieger and

Hu, 2008). Competition, which induces lower prices, can also increase adoption (Prieger and
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Hu, 2008; Wilson, 2016).17 It is worth noting, however, that at the rural level availability

ends up being the most important factor in increasing adoption rates (Silva et al., 2018).

Year Unconnected (%) No high-speed (%)

2016 13.2 39.3
2017 12.5 35.6
2018 11.0 31.8

Table 3.4: Households without internet connection

Table 3.4 reports adoption rates from the data used in this paper, including (separately

for each year) the percentage of households that have not adopted internet or broadband

services. The number of unconnected households (i.e., households that have broadband

service available in their area and choose to not subscribe) is around 4 times the number of

unserved (reported in Table 3.1). More strikingly, the percentage of households with no high-

speed connections (although the technology is available to them) is around 12 times larger

than that of unserved households and more than 4 times larger than underserved households

(reported in Table 3.1).18 These patterns further confirm that adoption is a significantly

more important issue than availability.

We explore heterogeneity in adoption across states in Figure 3.3 and across income in

Table 3.5. As with availability, adoption varies widely across states.19 As expected, the num-

ber of unconnected households is higher than that of unserved and underserved households

for all states. Results in Table 3.5 are in line with much of the literature, which finds that

17Other literature has also explored behavioral factors, such as motivation, as drivers of adoption (e.g.,
Drouard, 2011).

18The correlation between unconnected and unserved households is still positive but much lower than that
between unserved and underserved, with 0.360 for 2016, 0.336 for 2017 and 0.287 for 2018.

19There is a high correlation across the two adoption variables (0.747 for 2016, 0.765 for 2017, and 0.768
for 2018).
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Figure 3.3: Households without internet connection

adoption is strongly income-related. This can be attributed to an a↵ordability issue, but, as

is well-known, income is positively correlated with other demographics (e.g., education).20

y <501 50< y <1001 100< y <1501 y >1501

2016
Unconnected (%) 28.26 (16.42) 11.88 (14.88) 1.53 (6.15) 0.73 (4.44)
No high-speed (%) 53.92 (19.71) 39.53 (23.86) 19.32 (15.74) 14.75 (11.28)
2018
Unconnected (%) 25.84 (15.23) 11.51 (14.45) 1.74 (7.06) 0.75 (4.51)
No high-speed (%) 45.68 (18.75) 33.21 (21.78) 17.00 (15.17) 13.27 (10.55)
1 Income (y) in thousands. Mean (SD)

Table 3.5: Internet adoption by income

3.3 Data

The main purpose of this paper is to estimate a discrete choice demand model for fixed

broadband. Because regulations for fixed internet provision are very flexible, there are many

20We would expect adoption in rural areas to be lower than in urban areas because availability is more
restricted.
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fixed internet providers across the US (in many cases, local governments participate in the

market). As a result, there is wide variation across the country in terms of the number

of providers available in any given area; further, most providers are not present in broad

regional areas but provide service locally (e.g., county, state).

Further, because of the fixed nature of the service, consumers are constrained to choose

from providers available in their local area. Thus, a sensible approach (for demand estima-

tion purposes) is to use very narrow market definitions. For a given household, this approach

would result in a choice set that is more realistic than if one were to use broad market def-

initions (i.e., the choice set would reflect those broadband providers that are truly available

in their neighborhood/county). Thus, the approach in this paper is to model demand at the

narrowest possible geographical level, the tract level. This approach, however, presents sev-

eral hurdles as the comprehensive data necessary to estimate demand for broadband internet

at this level of granularity are not readily available.

The two main components required for demand estimation are number of subscribers (or

market shares) at the market (in our case, tract) level and prices. While market share data is

available at the tract level, the price data is only available at the state level (via a large and

representative survey of providers’ internet plans). To deal with this mismatch and reliably

assign prices at the tract level, we rely on a) detailed coverage data from the FCC and b)

machine learning methods. We next provide a road map of the procedure, some details of

each dataset, and data assembly details.

3.3.1 Data Road Map

The first step in the procedure is ensure that each internet provider (and data plan) in

our database has a price assigned to it. To increase reliability, we carry out this matching

procedure at the narrowest geographic unit possible, which in our case is a block.21 For this,

21Census blocks are the smallest geographic area for which the Bureau of the Census collects and tabu-
lates decennial census data. More information at https://www2.census.gov/geo/pdfs/reference/GARM/
Ch11GARM.pdf.
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we rely on the FCC’s detailed block-level coverage information. This information contains the

identity of providers available to households in a given block as well as maximum advertised

download and upload bandwidths and the technology used. This data, unfortunately, does

not provide plans or pricing information.22 We note that blocks are much narrower geographic

units than tracts (our level of analysis for demand estimation); we explain in Section 3.3.6.2

how we deal with this mismatch.

To assign prices to each provider in a block, we use a national survey of prices at the

provider-plan level carried out by the FCC. Because plans (and their corresponding pricing

information) comes from a representative state-level sample, it is not always feasible to match

a price from the survey to a provider (and plan) in each of the 11.16 million blocks in the

FCC’s coverage dataset. To circumvent this hurdle, we rely on machine learning techniques.

The idea, which we describe in detail in Appendix A.1, is to assign prices to a provider in

the coverage dataset by searching for the most similar provider and plan in the same (or

its hierarchical geographic area) in the survey data.23 To maximize reliability, we probe our

matching procedure by carrying out an out-of-sample prediction exercise (see Appendix A.1).

Further, we report sensitivity results that restrict demand (and counterfactual) estimation

to the subsample of data for which price assignment is direct (i.e., the sample of providers

and plans that can be directly matched to survey price data).

The assembled block-provider-plan price dataset is then matched to usage (i.e., market

share) data. Usage data, also available from the FCC, is recorded at the tract level and

details the percentage of households in a given tract that subscribe to each internet provider.

An important limitation of the usage data is that it is not available at provider level but

at internet-speed level. Specifically, the database reports the percentage of households that

have a) subscribed to a high-speed internet provider, b) subscribed to a low-speed internet

22Nor does it provide the number of households subscribed to each provider. We deal with assigning usage
(market share) information in the last step of the data construction, explained in Section 3.3.6.2.

23Providers’ characteristics (e.g., technology used and the maximum advertised download and upload
bandwidths) are part of the detailed coverage dataset; see A.1.
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provider, and c) have not subscribed to either. Our demand model is thus based on these

three discrete choices. Since the three mutually exclusive sets are defined as a function of

internet speed, one can think of our demand model as one of vertical di↵erentiation.

The last step involves matching the assembled price dataset with the usage data. Since

the price dataset was assembled at the block level, it needs to be aggregated so that it can

be matched to the usage dataset. The aggregation is done in two dimensions: a) up to the

tract level and b) up to the speed (instead of provider/plan) level. Section 3.3.6 describes

this aggregation.

Finally, we complement the dataset by matching it with tract-level demographics from

the US Census Bureau (see Section 3.3.5). The resulting panel dataset contains approxi-

mately 64,000 tracts per year. To our knowledge, the assembled dataset provides the most

comprehensive information for broadband demand. Note that we are not able to capture

approximately 15% of tracts. There are several reasons for these missing geographic units,

including incomplete information, unreliable/unfeasible price assignment, and issues derived

from privacy concerns that limit what could be published. However, the tracts that we are

able to include in our data cover 87% of US households.

3.3.2 Coverage Data

The FCC provides highly detailed coverage datasets on an annual basis.24 In this paper,

we limit our analysis to 2016 to 2018 because the usage dataset (explained below) is not

available beyond 2018. The dataset records the characteristics of each provider’s internet

o↵er in a given block. A record includes information of a provider’s technology o↵ered,25 as

well as their maximum advertised download and upload speeds.26 The dataset also includes

the provider’s name and its parent company (if any). Our period of study includes up

24Data available at https://broadbandmap.fcc.gov/#/data-download. The FCC o↵ers a tool to visu-
alize the latest available broadband coverage at https://broadbandmap.fcc.gov/#/.

25xDSL, cable, fiber, fixed wireless access (FWA), power line, or satellite.

26We exclude satellite providers due to our interest in the terrestrial broadband internet market.
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to (approximately) 75 million records per year, 7,802 internet providers, and 2,227 parent

companies.

3.3.3 Usage Data

Usage data are obtained from the FCC’s Form 477 Census Tract Data on Internet Access

Services datasets.27 This form provides information on the number of households (out of

1,000) using a fixed internet connection. The data reports connections for two speed levels:

slow (over 200 Kbps in at least one direction) and fast (at least 10/1 Mbps). At the time of

analysis, data was available only up to 2018.28 The data does not provide an exact number of

connected households but instead reports the fraction of households belonging to one of six

mutually exclusive (and ascending) bins, as shown in Table 3.6. Our discrete choice model

uses the midpoint of each bin as the dependent variable. For example, an entry (tract) with

a code 2 for high-speed connections would be assigned a market share of 0.3. We also carry

out sensitivity analyses for alternative assignments for the dependent variable (e.g., assigning

a 0.2 or a 0.4 for code 2. See Appendix A.3).

Code Connections

0 0
1 0 < x  200
2 200 < x  400
3 400 < x  600
4 600 < x  800
5 800 < x  1000

Table 3.6: Codes used in the FCC internet access dataset

27Available at https://www.fcc.gov/form-477-census-tract-data-internet-access-services.

28The FCC o↵ers maps with data for each year. 2018 data is available at https://www.fcc.gov/

reports-research/maps/tract-level-residential-fixed-connections-dec-2018/.
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3.3.4 Price Data

The FCC publishes price data through the Urban Rate Survey Data & Resources, which

is produced through a representative collection (survey) of prices o↵ered by fixed broadband

providers in urban tracts. The purpose of this survey is to produce a reasonable broadband

benchmark for every service tier to “help ensure that universal service support recipients

o↵ering [fixed voice and] broadband services do so at reasonably comparable rates to those in

urban areas.”29 Given its intended purpose, we posit that this data can be used to generate

a good proxy for rural providers, especially for lower tier connections.30 In 2018, the survey

used around 500 sampling units to produce a representative state-level sample.31 Each record

includes the name of the provider, the state where the sample was taken, the technology used,

the o↵ered download and upload speeds, the number of gigabytes allowed in the plan, whether

a data cap is included, and its price.32 Survey weights reflect how widely available each entry

(plan) in the dataset is in a particular state.

3.3.5 Other Datasets

We also use several tract-level datasets from the US Census Bureau,33 including basic

demographics, housing estimates, and ACS estimates on internet subscription and computer

ownership.34 These variables were used either directly in the model (e.g., income), to create

relevant variables (e.g., population density to identify rural and urban tracts) or to check the

consistency of the internet usage derived from the FCC.

29Connect America Fund, WC Docket No. 10-90, Order, 28 FCC Rcd 4242 (WCB/WTB 2013).

30Lower tier connections are those o↵ered at the cheapest rate in the area, usually the lowest quality link
that can be purchased from a provider.

31Detailed information on this survey can be found at https://www.fcc.gov/file/22209/download.

32Most fixed internet access plans o↵er unlimited download data (or at least a very high limit), but many
providers limit the amount of data that a user can access through her connection. These kinds of plans are
used when there are technical limitations on the available bandwidth, as is the case for technologies that use
a shared bandwidth such as satellite or FWA.

33Data accessed at https://data.census.gov/cedsci/.

34American Community Survey (ACS), https://www.census.gov/programs-surveys/acs.
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3.3.6 Data Assembly Details

As stated previously, our datasets are not all at the same geographical level, nor can they

be directly linked. Our discrete choice model requires us to construct shares for each of the

three choices (high-speed, low-speed, and no internet) in each market (i.e., tract) as well as

a set of product characteristics, including price. We used the following steps to assemble the

dataset for the estimation:

3.3.6.1 Price Assignment

This step includes two procedures: direct assignment and indirect assignment. Direct

assignment occurs when the pricing dataset contains plan information for a provider in the

coverage dataset. Indirect assignment occurs when a provider in the coverage dataset includes

no information in the pricing dataset.

Direct assignment is not always automatic as the pricing dataset often registers multiple

plans (i.e., speed-price combinations) for a provider, while the coverage dataset registers the

provider’s available technology (e.g., fiber) and maximum advertised speeds in a block. The

first step in direct assignment is to filter the plans in the pricing data so that they fall within

the maximum advertised speed parameters in the coverage data. Once this set is identified for

a provider in a block, price assignment is carried out by selecting the cheapest plan (and its

corresponding characteristics, such as speed) in the identified set. The logic behind choosing

the cheapest plan is that it provides the most a↵ordable connectivity at any location and is

usually correlated with the minimum bandwidths that a subscriber o↵ers. Direct assignment

allows us to match approximately 17% of cases in the coverage dataset.

For indirect assignment, we rely on a machine learning algorithm.35 The logic behind the

algorithm is to produce a “predicted” price (as well as plan characteristics) for a provider

in the coverage dataset. The overarching idea of the algorithm is to use the pricing data to

35See Appendix A.1 for details on the algorithm used.
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create a cluster of pricing plans (for each available technology) in each US division.36 The

features used to clear these clusters are a) survey weights (provided in the FCC’s pricing

sample) and b) prices.

An ensemble classifier learns parameters from the data obtained through direct assignment

and predicts the most likely weight (which measures how widely is the plan available) in the

survey. The weight is used to find the most likely cluster, given the technology and division,

from which to choose the plan. Then, a plan is randomly sampled from such cluster and

its parameters (price and speed) are assigned to the provider. The clusters are constructed

with the cheapest plans available in the division. The root mean square error computed with

the matched data for high-speed plans is $8, which shows that our current assigned prices

deviate on average by ±$4 from the matched prices. For low-speed plans, this measure is $4

and the total computed error is on the order of 10% compared with matched prices.

3.3.6.2 Data Aggregation

We then aggregate the assembled pricing dataset to match the usage dataset. First, we

group block-level data at the tract level. This is straightforward: We identify all blocks that

belong to a tract and then group all observations (providers and corresponding price-speed

information) registered in that tract. Note that there could be multiple entries for a given

provider in a tract because a given provider in the coverage dataset could provide slightly

di↵erent types of services (e.g., di↵erent technologies or speeds) across blocks in the same

tract.

The assembled coverage and price data was then aggregated up to the speed level (i.e.,

speeds above 10/1Mbps as high-speed connections and everything else as low-speed connec-

tions). That is, we aggregate all high-speed (and low-speed) plans (across providers) within

36US Census Bureau aggregates states in divisions and then in regions. See https://www2.census.gov/

geo/pdfs/maps-data/maps/reference/us_regdiv.pdf.
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a tract to generate one weighted average price (and weighted average speed). We use the

proportion of households in the tract to whom a plan was available as the weight.

3.3.7 Summary Statistics

The dataset used for estimation has an entry for each option (high or low speed) in each

geographic market (i.e., tract). As is common with discrete choice datasets, in some cases

(1% of the markets) only one of the two options is available. There are 405,665 observations

for the three years of data (2016 to 2018). The dataset comprises over 63,000 tracts, which

represent more than 85% of all tracts in the US.37 Further, these tracts encompass 90% of

the US population. Table 3.7 summarizes the available observations and the corresponding

number of tracts per year.

In addition to market shares, the dataset includes download and upload bandwidths

(Mbps) and price for each of the two options as well as information on the number of internet

providers in the tract, percentage of served households (i.e., households that could subscribe

to at least one provider), percentage of connected households, and the take-out rate (ratio of

connected households to served households).

Year Observations Tracts

2016 125,960 63,905
2017 124,504 63,095
2018 126,520 63,935

Table 3.7: Observations and tracts considered per year

Table 3.8 reports the summary statistics for these variables as they pertain to low-speed

connections. As can be seen, download and upload speeds remain very similar over the

period, while the average price per month increased from $36.34 to $40.64. The average

number of providers remains around five, and there is a slight increase in the number of served

37The number of tracts per year in the dataset depends on whether the price assignment procedure was
feasible for a tract as well as the availability of coverage or income data.
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households. However, the percentage of connected households and the take-out decrease over

time.

2016 2017 2018
(N = 63,872) (N = 63,062) (N = 63,909)

Download (Mbps)
Mean (SD) 2.26 (1.12) 1.84 (1.12) 2.38 (1.32)
(IQR) (1.50, 3.00) (1.00, 2.33) (1.40, 3.00)
Range 0.25 - 8.00 0.38 - 7.00 0.50 - 8.00

Upload (Mbps)
Mean (SD) 0.52 (0.25) 0.57 (0.28) 0.65 (0.23)
(IQR) (0.28, 0.75) (0.37, 0.77) (0.48, 0.77)
Range 0.13 - 3.00 0.06 - 5.00 0.25 - 5.00

Price (USD)
Mean (SD) 36.34 (10.64) 38.29 (9.84) 40.64 (9.34)
(IQR) (31.46, 46.33) (33.34, 46.08) (35.42, 48.27)
Range 14.99 - 82.84 19.70 - 222.96 14.99 - 79.99

Number of providers
Mean (SD) 5.87 (3.46) 4.85 (3.28) 5.12 (3.85)
(IQR) (3.00, 8.00) (3.00, 6.00) (2.00, 7.00)
Range 1.00 - 77.00 1.00 - 42.00 1.00 - 40.00

Served households (%)
Mean (SD) 48.16 (32.94) 49.53 (32.35) 50.14 (33.01)
(IQR) (18.02, 78.01) (20.38, 78.84) (19.68, 80.95)
Range 0.00 - 100.00 0.00 - 100.00 0.00 - 100.00

Connected households (%)
Mean (SD) 18.29 (13.02) 16.67 (11.77) 14.57 (10.20)
(IQR) (10.00, 30.00) (10.00, 30.00) (10.00, 18.39)
Range 0.00 - 90.00 0.00 - 90.00 0.00 - 90.00

Take-out (%)
Mean (SD) 55.41 (33.71) 50.55 (34.04) 47.01 (34.34)
(IQR) (27.59, 100.00) (19.37, 95.72) (15.74, 84.64)
Range 10.00 - 100.00 10.00 - 100.00 10.00 - 100.00

Table 3.8: Low-speed connection summary statistics

Table 3.9 reports summary statistics for high-speed connections. In this case, average

download speeds increase from 20 Mbps in 2016 to 24.6 Mbps in 2018, while upload speed

remains fairly constant. The average price decreases from $56.7 in 2016 to $53.3 in 2018.

It is interesting to mention that in some tracts, high-speed service is o↵ered at relatively

high prices. The average number of providers increases over time; a similar trend is observed
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for the percentage of households served and the percentage of connected households. The

take-out is significantly higher than that registered by low-speed connections and registers

a substantial increase over the period, from 68.2% to 75.7%. These patterns suggest that

low-speed connections are being substituted by high-speed connections.

2016 2017 2018
(N = 62,088) (N = 61,442) (N = 62,611)

Download (Mbps)
Mean (SD) 20.0 (41.3) 22.6 (44.1) 24.6 (33.2)
(IQR) (11.3, 16.0) (11.0, 18.3) (12.9, 24.0)
Range 10.0 - 1,000.0 10.0 - 1,000.0 10.0 - 1,000.0

Upload (Mbps)
Mean (SD) 8.3 (41.4) 10.3 (44.2) 8.4 (28.8)
(IQR) (1.0, 2.7) (1.5, 4.4) (1.7, 5.4)
Range 1.0 - 1,000.0 1.0 - 1,000.0 1.0 - 1,000.0

Price (USD)
Mean (SD) 56.7 (15.5) 55.7 (13.6) 53.3 (14.0)
(IQR) (49.3, 59.5) (46.2, 62.4) (45.0, 59.3)
Range 30.0 - 484.5 15.0 - 199.9 15.0 - 259.0

Number of providers
Mean (SD) 6.5 (4.0) 7.0 (4.3) 7.5 (4.9)
(IQR) (4.0, 8.0) (4.0, 8.0) (4.0, 9.0)
Range 1.0 - 108.0 1.0 - 77.0 1.0 - 61.0

Served households (%)
Mean (SD) 90.1 (21.3) 90.6 (20.0) 91.2 (18.9)
(IQR) (94.4, 100.0) (94.3, 100.0) (95.0, 100.0)
Range 0.0 - 100.0 0.0 - 100.0 0.0 - 100.0

Connected households (%)
Mean (SD) 61.0 (24.4) 64.6 (23.4) 68.6 (22.0)
(IQR) (50.0, 87.1) (50.0, 90.0) (50.0, 90.0)
Range 0.0 - 90.0 0.0 - 90.0 0.0 - 90.0

Take-out (%)
Mean (SD) 68.2 (22.2) 71.6 (20.9) 75.7 (19.0)
(IQR) (50.1, 90.0) (55.0, 90.0) (70.0, 90.1)
Range 10.0 - 100.0 10.0 - 100.0 10.0 - 100.0

Table 3.9: High-speed connection summary statistics

Table 3.10 reports the most relevant demographics at the tract level. Here, the average

number of households per tract is around 1,700, while the mean population per tract is around

4,500. The urban/rural distribution (location) remains stable in the period, with around 37%
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of households in rural areas and 63 % in urban areas. The average income per tract increased

from $75,900 in 2016 to $82,100 in 2018. As explained later, we use location (rural vs. urban,

computed using population data and density) and income (to model heterogeneity of price

sensitivity) in the demand model.

Table 3.10 also includes four variables that measure tract-level intensity of computer

and internet usage. These variables, obtained from the US Census Bureau (and collected

via survey instruments), are not used in the estimation but are reported here for reference

purposes. We can see that the percentage of households owning a computer decreases from

75.9% in 2016 to 73.6% in 2018, while smartphone ownership increases from 68.6% to 76.5%.

Broadband connections and no internet per household are relatively consistent with the

statistics previously shown; the consistency in broadband connections between the US Census

Bureau survey data and those generated using providers’ data from the FCC (See Table 3.9

“connected households,” compared to Table 3.10 “has broadband”) serve as one validity

check for the data we employ in our estimation purposes.38

Finally, we report mean prices of each of the two types of connections (low and high

speed) by state. Figure 3.4 shows a high variation of prices across states for both types of

connections; Oregon and Alaska show the highest prices, while Vermont, Connecticut and

Hawaii register the lowest prices. Low-speed prices have remained stable of the period (and

in some case have increased). On the other hand, the price of high-speed connections appears

to have decreased in most states. As a result, the average price of high-speed connections in

2018 is much closer to that of low-speed links than what is observed in 2016.

Before proceeding to our model, we summarize some patterns regarding the digital divide

in the US that emerge from the data presented thus far. First, the lack of service availability

does not a↵ect a large number of households: Approximately 92% of the population can

38One drawback of survey data is that respondents may not know or understand what is defined as a
broadband connection. In this sense, FCC data (which we use for our estimation) is more precise as is
defined in terms of specific download/upload bandwidths, as it is reported directly by broadband providers.
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2016 2017 2018
(N = 63,905) (N = 63,095) (N = 63,935)

Households
Mean (SD) 1,684.2 (754.3) 1,695.5 (754.7) 1,714.0 (773.1)
(IQR) (1,158.0, 2,100.0) (1,166.0, 2,115.0) (1,175.0, 2,139.0)
Range 6.0 - 17,829.0 0.0 - 15,141.0 2.0 - 18,506.0

Location
rural 24,012 (37.6%) 23,624 (37.4%) 23,535 (36.8%)
urban 39,893 (62.4%) 39,471 (62.6%) 40,400 (63.2%)

Population
Mean (SD) 4,454.2 (2,156.4) 4,465.4 (2,202.1) 4,482.0 (2,268.2)
(IQR) (2,983.0, 5,540.0) (2,975.5, 5,555.0) (2,963.0, 5,569.0)
Range 24.0 - 61,133.0 19.0 - 65,528.0 17.0 - 70,271.0

Mean income (1000s)
Mean (SD) 75.9 (39.0) 78.8 (40.2) 82.1 (42.2)
(IQR) (51.1, 89.4) (53.3, 93.1) (55.3, 96.9)
Range 6.6 - 506.7 6.0 - 539.7 7.4 - 589.8

Owns a computer (%)
Mean (SD) 74.9 (15.4) 74.1 (15.9) 73.6 (16.1)
(IQR) (65.4, 86.4) (64.2, 85.9) (63.6, 85.5)
Range 0.0 - 100.0 0.0 - 100.0 0.0 - 100.0

Owns a smartphone (%)
Mean (SD) 68.6 (13.5) 72.8 (13.2) 76.5 (12.8)
(IQR) (59.8, 77.8) (64.3, 81.7) (68.6, 85.0)
Range 0.0 - 100.0 0.0 - 100.0 0.0 - 100.0

Has broadband (%)
Mean (SD) 63.6 (18.6) 64.0 (18.6) 64.9 (18.5)
(IQR) (51.0, 77.7) (51.5, 78.1) (52.7, 78.6)
Range 0.0 - 100.0 0.0 - 100.0 0.0 - 100.0

No internet (%)
Mean (SD) 22.5 (12.8) 20.1 (12.0) 18.0 (11.2)
(IQR) (12.6, 30.2) (11.1, 27.0) (9.6, 24.1)
Range 0.0 - 100.0 0.0 - 100.0 0.0 - 100.0

Table 3.10: Demographic summary statistics
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Figure 3.4: Internet prices by state

feasibly subscribe to a high-speed provider. Conversely, the main factor that appears to be

driving the divide is the lack of adoption, which, in turn, is highly correlated with income.

While we cannot draw conclusions about the role that prices might have played, it is interest-

ing to note that average prices for high-speed connections have not changed significantly over

the period (and they have even increased for low-speed connections). Despite the absence of

substantial price decreases over time, the average percentage of households connected using

high-speed links has increased by more than 7%.

3.4 Model and Identification

Our demand model follows the discrete choice modeling framework introduced by Berry

(1994). The indirect utility is defined as

Uijt = x0
jt� � ↵ · log(yt � pjt) + ⇠jt + ✏ijt (3.1)
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where i denotes a household and j the available choices: high-speed internet, low-speed

internet, or the no-purchase (outside) option.39 The subscript t denotes a market, which is

defined as a tract-year pair. Price is denoted pjt and income income yt. We note that, given

the nature or our data, income only varies by market (i.e., we use the average household

income reported by ACS in that tract). Our specification allows for household’s demand

(price sensitivity) to depend on income. This is not only a realistic assumption but also a key

aspect of our model results and counterfactuals. The term ⇠jt captures the product-market

unobservables that can potentially be correlated with price (we later discuss endogeneity

issues), and ✏ijt is the usual idiosyncratic Type I extreme-value-distributed term.

We define �jt in equation 3.2 to obtain choice-market specific probabilities sjt(x, �,↵, ⇠),

as shown in equation 3.3 (Train, 2009).

�jt = x0
jt� � ↵ · log(yt � pjt) + ⇠jt (3.2)

sjt(x, �,↵, ⇠) =
exp(�jt)PJ
j=1 exp(�jt)

(3.3)

Following Berry (1994), we assume that, for aggregated data, sjt(x, �,↵, ⇠) = Sjt, where

Sjt is the observed market share of a given type of service in each market. The outside option

of any household is not connecting to the internet. Therefore, considering that this option

does not provide utility, we can obtain equation 3.4, which can be estimated using standard

linear methods.

log(Sjt)� log(S0t) = x0
jt� � ↵ · log(yt � pjt) + ⇠jt (3.4)

We deal with the endogeneity of prices in two ways. First, we add a rich set of fixed

e↵ects; specifically, we control for market unobservables by adding tract-specific fixed e↵ects.

Second, and more directly, we address price endogeneity by using a variety of instruments,

which we explain in Subsection 3.4.1.

39As stated before, a connection is defined as high speed if it registers a speed of at least 10/1 Mbps. All
other connections are cataloged as low speed.
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For product characteristics, x0
jt, we include an indicator variable for the type of connection

(high or low speed) and the (weighted average of) download speed.40 Specifically, we add

an indicator variable for low-speed connections; this variable serves as a control for quality

(as measured by speed) and its coe�cient, which is expected to be negative, quantifies the

average (dis)utility from a low-speed connection (relative to high-speed connections).

Besides price, download speed is the most important characteristic for an internet connec-

tion. To account for the fact that utility from a speedier connection may exhibit decreasing

marginal utility (i.e., after a certain bandwidth, households may not perceive a meaningful

di↵erence in the quality of the service received), we include a quadratic term for download

bandwidth.41

Finally, we add an urban location indicator, which picks up the di↵erence in utility that

urban households receive from having an internet connection compared to that received by

rural households.

Own-elasticities are computed using equation 3.5, while cross-elasticities are computed

using equation 3.6. While the usual limitation of the logit model is the independence from

irrelevant alternatives, this is not an issue in our case given that we only model two alterna-

tives:

"ii = � ↵

yt � pjt
· pjt · (1� sjt) (3.5)

"ii = � ↵

yt � pjt
· pjt · sjt (3.6)

Finally, we are interested in computing the consumer surplus at an aggregated level.

Following Train (2009), we can compute the expected consumer surplus tract for a typical

40As explained in Section 3.3.6, a provider o↵er is weighted by the number of households that have such
bandwidth available.

41Our data include other characteristics such as upload bandwidth or usage caps (applied by some
providers). However, we do not include these variables in our chosen specification because they do not
produce economically meaningful results. This is not surprising given that these technical parameters are
usually not usually well understood by a household (nor do they necessarily harm the quality of service).
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household under the same alternatives of internet service. Therefore, multiplying this ex-

pected surplus by the number of households served in the tract, hhst, we can estimate the

tract-level aggregated consumer surplus, CSt, as shown in equation 3.7.

CSt =


yt � pjt

↵

�
· log

 
JX

j=1

ex
0
jt��↵·log(yt�pjt)

!
· hhst (3.7)

3.4.1 Instrumental variables

We construct three instrumental variables (IV) using principles from both BLP and Haus-

man instruments (see Berry and Haile, 2015, for details). First, we construct a Hausman-type

instrument by computing the average price in neighboring tracts. To reduce the possibility

that common demand shocks exist across the instrumented area and the areas used for in-

struments, we exclude immediately adjacent neighbors and use second-order neighbors for

the calculation.42

Our other two instruments are also computed using information from tracts other than

the one being instrumented. The di↵erence with our first IV is that instead of price we use

a) a product characteristic (as in BLP) and b) the number of providers (for high speed as

well as for low speed).43 The product characteristic that we use is the advertised maximum

speed.44 As with price, we compute the IVs using the average across neighboring tracts.

The logic behind all instruments is that since providers typically serve larger areas than

a single tract, they will face supply conditions (e.g., infrastructure deployment, advertising

costs, etc.) that are common across multiple tracts. These IVs would then be correlated

with price but likely uncorrelated with demand conditions that are specific to the tract being

instrumented. The inclusion of tract fixed e↵ects and the exclusion of adjacent tracts in the

calculation of IVs increases the validity of our instruments. Fixed e↵ects control for time-

42This is a procedure similar to that used by Wilson (2016).

43Our instrument based on number of providers in neighboring tracts is similar to that used by Wilson
(2016).

44As opposed to BLP instruments, however, we do not use rival characteristics but own characteristics.
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invariant tract unobservables, whereas excluding adjacent neighbors reduces the possibility

of common shocks between instrumented market and markets used to construct instruments.

3.5 Results

Table 3.11 reports the results of OLS and 2SLS estimation. All coe�cients are estimated

to be significant at conventional levels (all p-values are below 0.1%) and have the expected

sign. Results and diagnostic tests from first-stage regression results confirm the strength

and validity of the instruments (see Appendix A.2). Perhaps more importantly, we note the

dramatic increase in the estimated price coe�cient when instruments are used, a change that

is theoretically predicted to occur when endogeneity bias exists and proper instruments are

being employed.

Table 3.12 reports demand price elasticities for each year. As expected, own-price elastici-

ties are negative and di↵er between low- and high-speed connections. Demand for high-speed

internet becomes more price inelastic over time, while the opposite occurs for low-speed in-

ternet. In addition, demand for high-speed connections is less price elastic than that for

low-speed internet.

Our results are largely consistent with those reported in earlier work (Dutz et al., 2009;

Cardona et al., 2007).45 Substitution across speeds is asymmetrical: For a given price de-

crease, consumers are more likely to switch away from low-speed service than from high-speed

service (a result that is also consistent with previous literature reporting on internet demand).

Table 3.12 also reports the corresponding consumer surplus for each year; in line with other

research, there is an increasing value as more subscribers connect to the internet. For refer-

ence purposes, the annual consumer surplus from broadband internet in the US is of similar

45Although this earlier literature estimated elasticities for di↵erent technologies (i.e., dial-up vs. cable mo-
dem), we can make some comparisons. Slower technologies (such as dial-up) would be somewhat comparable
to our low-speed category, whereas faster technologies (cable modem) would be similar to our high-speed
definition. Our low-speed (high-speed) price elasticities are consistent with dial-up (cable modem) price
elasticities reported in earlier work.
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Dependent variable:

log(Sjt/S0t)
OLS 2SLS

Type:low-speed �1.591⇤⇤⇤ �1.662⇤⇤⇤

(0.006) (0.020)

Loc:urban �0.335⇤⇤⇤ �0.935⇤⇤⇤

(0.069) (0.214)

Download bw 8.645e�4⇤⇤⇤ 2.861e�3⇤⇤⇤

(2.105e�4 ) (6.526e�4)

Download bw2 �1.295e� 6⇤⇤⇤ 4.518e�3⇤⇤⇤

(3.903e�7) (1.204e�6)

log(income - price) 0.626⇤⇤⇤

(0.064)

log(income - price) 101.679⇤⇤⇤

(6.832)

Observations 376,984 376,954
R2 0.857 �0.314
Adjusted R2 0.825 �0.610
Residual Std. Error 1.768 (df = 307574) 5.362 (df = 307544)

Note 1: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01

Note 2 : Regressions include tract and year fixed e↵ects

Table 3.11: Demand model estimation
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order of magnitude as the funds that the Biden Infrastructure Plan has set aside for internet

infrastructure (see Section 3.2).

2016 2017 2018

Elasticities

high-speed own -0.372 -0.337 -0.262
low-speed own -0.463 -0.556 -0.588

high-speed cross 0.108 0.117 0.105
low-speed cross 0.407 0.445 0.407

Consumer surplus (billion USD)

Internet access 41.88 43.83 49.85

Table 3.12: Elasticities and consumer surplus by year

Our model allows price sensitivity to vary by income; further, since income varies across

regions, we can compute location-specific elasticities. Figure 3.5 depicts a box plot of elas-

ticities for high-speed connections (cross-price elasticities from low- to high-speed links).46

Lower income tracts show greater price sensitivity for both own and cross-price elastici-

ties. Cross-price elasticities imply a similar inference: As high-speed links decrease price,

low-income households are more willing to switch to high-speed connections (vis-à-vis high-

income households).

At the same time, we can observe the variation from 2016 to 2018: Own-elasticity for

high-speed links decreases (in absolute value) over the period while cross-elasticity (from

low to high speeds) increases. Figure 3.6 depicts a box plot of elasticities for the di↵erent

divisions of the country. In 2016, East-South-Central had the highest median own-price

elasticity for high-speed connections, while the Pacific division had the lowest median own-

price elasticity. On the other hand, if we look at cross-price elasticities in 2016, households

in East-South-Central are more willing to switch to high-speed connections if their high-

46The lower and upper edges of the box represent the first and third quartiles of the distribution, and the
median is marked with the middle line inside the box. The end point of the horizontal lines represent the
location of Q1 and Q3 multiplied by 1.5; dots are outliers. For readability, the box plot for certain income
levels is cut short.
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speed links drop their prices. For 2018, we see generally lower own-price elasticities for all

divisions in the country. New England shows the lowest value and West-South-Central the

highest value. In the case of cross-price elasticities, New England again shows the lowest

value; therefore, households in that area using low-speed links are less willing to switch to

high-speed connections than those in any other area in the country.

Figure 3.5: Elasticity variation by income

3.6 Counterfactuals

In this section, we use the estimated demand parameters to understand the impact of

a number of policies to close the digital divide in the US. The policies can be grouped in

two categories: a↵ordability and availability. A↵ordability scenarios evaluate the impact

of price reductions (e.g., a direct subsidy), whereas availability scenarios focus on how the

digital divide would decrease if broader and better (speedier) infrastructure were to be made

available.
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Figure 3.6: Elasticity variation by geography

Before providing more details on the policies we consider, it is important to note some

important simplifications and assumptions that we make. First, the evaluations do not

consider the bureaucratic and operational costs that fielding a policy usually has nor the

time required for it (i.e., we assume that take-up increases immediately after the policy).

Despite this limitation, the exercise is still useful for contrasting the upper-bound gains (i.e.,

reduction in digital divide and gains in consumer surplus) that may be feasible for each policy.

Second, we assume that competition remains unaltered after the intervention. The reason

for this assumption is that the nature of our data (available only at the speed level but not

at the firm level) does not allow us to model the supply side. This assumption can have

important implications for our results. While we cannot predict policies’ supply-side e↵ects, a

sensible prediction is that government intervention may produce supply reactions that further

boost consumer well-being. For example, firms may react to the policies by modifying o↵ering

plans that are appealing to lower income population. Alternatively, consumer subsidies
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e↵ectively expand the market size which, in turn, would accommodate more firms (Bresnahan

and Reiss, 1991). To the extent that this conjecture is true, our results might be conservative

relative to an evaluation that considered supply-side reactions.

In a first group of counterfactuals, we analyze a↵ordability and availability scenarios that

resemble those stipulated in the broadband section of the Biden Infrastructure Act (BIA) of

2021. The BIA provides two main types of support to close the digital divide: a direct subsidy

to low-income families and support (e.g., grants) for infrastructure upgrade and deployment

in underserved and unserved areas.

The a↵ordability section of the BIA provides support (in the form of a subsidy provided

to specific low-income households) through a bill for the A↵ordability Connectivity Program

(ACP) run by the FCC. The counterfactual simulates the demand reaction that subsidized

internet would have on tracts that meet the low-income criterion. The simulated increased

demand is then used to compute the resulting decrease in the digital divide as well as gains

in consumer welfare. The availability section of the BIA provides substantial resources (e.g.,

grants, loans) for network deployment and upgrades to underserved areas. Our counterfactual

computes the additional consumers in low-income areas (as stipulated in the ACP) who would

take up broadband internet if it were rolled out in areas with no current coverage. As with

a↵ordability, we then use the estimates to calculate the decrease in the digital divide and

the consumer surplus gains. To include the portion of the BIA stimulus aimed at network

upgrade, we consider an additional availability counterfactual that increases the internet

speed.

In a second group of counterfactuals, we consider more ambitious policies that aim to

close (or eliminate) the digital divide in a broader set of tracts (those with average income

below $75,000, which is a less stringent threshold than that stipulated in the ACP). The

availability scenario in this set of counterfactuals simulates the price drop that would be

required in each tract (with average household income below $75,000) to ensure 100% take-

up (of the existing infrastructure). The availability counterfactuals are similar to those in
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the BIA counterfactuals, with the di↵erence that deployment is considered using the broader

income criterion just described.

3.6.1 Counterfactual 1: The Biden Infrastructure Act

As mentioned previously, the broadband division of the BIA comprises $65 billion to

improve broadband access, of which $14.2 billion are to be invested in the A↵ordable Con-

nectivity Program (ACP) and $42.25 billion in broadband deployment programs. We first

focus on the ACP (i.e., a↵ordability) and, using our computed elasticities, assess the potential

for that program to close the digital divide.

The second set of counterfactuals, motivated by broadband deployment programs stip-

ulated in the BIA, quantifies the impact of deploying additional broadband infrastructure

(both to provide more coverage and to increase download speeds). We explain the mechanics

of these exercises next.

3.6.1.1 BIA: Subsidy (a↵ordability)

The ACP considers a subsidy of $30 per month to all eligible households in the US.

Eligibility is given by the formula a+(n� 1)b, where n is the number of household members

and a and b are the parameters shown in Table 3.13. Thus, households in the continental US

have slightly di↵erent conditions than those in Hawaii and Alaska, although the eligibility

structure is kept consistent for all cases. The program considers additional criteria (e.g.,

participating in other government assistance programs or living in tribal lands).47 An eligible

household needs to submit an application online or by mail and then contact the appropriate

participating provider before the discount is applied to their bill.

To implement this counterfactual, we start by finding eligible households using the pre-

viously explained criteria and assuming that all of those eligible simultaneously receive the

allocated subsidy at no transactional cost. We assume that since most of other government

47Detailed conditions can be found at https://www.fcc.gov/acp. We do not (cannot) account for these
additional criteria in our counterfactuals given the lack of data.

79

https://www.fcc.gov/acp


Region Base income (b) Additional member (a)
(USD) (USD)

48 states 27180 9440
Alaska 33980 11800
Hawaii 31260 10860

Table 3.13: A↵ordable Connectivity Program eligibility parameters

assistance programs follow similar low-income eligibility process, we will capture a great ma-

jority of eligible households. We note, however, that we compute eligibility not per household

but per tract; therefore all households in a tract are assumed to be eligible. Then, using the

demand parameters, we compute additional households in that tract that would take up

broadband internet as dictated by our demand estimates.

Table 3.14 reports the e↵ects after applying the ACP policy as if it were applied entirely

in the given year over its current status (i.e., the baseline for each calculation is the status

quo in that year). The results show a 6.44 percentage points (ppt) increase in high-speed

internet adoption for 2016, a 5.16 ppt increase for 2017, and a 3.96 ppt increase for 2018.Due

to substitution e↵ects, low-speed connection adoption exhibits a 2.71 ppt decrease in 2016,

a 5.16 ppt decrease in 2017, and a 3.96 ppt decrease in 2018.

To calculate the cost of the policy, we assume that all households that are eligible—even

those that are already connected—will receive the benefit. As a result, the cost of additional

connections is much larger than $360/year/household: $2,256 in 2016, reaching $2,680 in

2018. The overall cost of the policy shows that because fewer households are connected to

high-speed internet in earlier years, the cost is higher in 2016 ($9.2 billion) than in later

years ($6.79 billion in 2018). Therefore, the BIA provides for around two years of subsidy

(assuming instant take-up and no transactional costs). Finally, we compute the change in

consumer surplus if this policy were applied; the maximum value is reached in 2016, with an

additional $330 billion, decreasing to $260 billion in 2018. Although the additional consumer

surplus resulting from greater internet adoption is well below the amount required to support
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the ACP policy, we note that we are not quantifying other benefits that result from greater

adoption (e.g., online services, remote working, or accessing telemedicine services).

2016 2017 2018

High-speed adoption

Baseline (%) 61.57 64.99 69.15
With ACP (%) 68.02 70.15 73.11

Low-speed adoption

Baseline (%) 17.86 16.38 14.28
With ACP (%) 15.14 14.20 12.63

Cost of policy

ACP subsidy (billion USD) 9.06 7.82 6.79
Per connection (1000 USD) 2.26 2.45 2.68

Consumer surplus

Baseline (billion USD) 41.88 43.83 49.85
With ACP (billion USD) 42.21 44.13 50.11
Additional surplus (MUSD) 329.63 301.03 260.26

Table 3.14: E↵ects of the A↵ordable Connectivity Program

Figure 3.7 presents the changes in high-speed broadband adoption (measured by percent-

age of connected households) with respect to the baseline for each state for 2016 and 2018.

At both, the start and the end of our period of study, the states that benefit most from this

policy are New Mexico, Mississippi, and Arkansas. Since availability increases with time,

we can see that the overall e↵ect of the policy on adoption is smaller later in the sample.

Regardless, the policy helps bring greater adoption in lower income states, thereby providing

less unequal adoption across states.

3.6.1.2 BIA: Infrastructure Deployment (availability)

We look at two possible improvements in availability. First, we improve coverage in tracts

that are eligible for the ACP policy; second, we improve the minimum bandwidth available

in ACP-eligible tracts. For bandwidth improvement, we increase the speed of high-speed

connections that are below 10 Mbps used for demand estimation to the more stringent 25
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Figure 3.7: Adoption per state with the A↵ordable Connectivity Program

Mbps. In both cases, we report the incremental e↵ects of the policy that result after the

a↵ordability piece of the policy (i.e., subsidy) is implemented.

Both cases are directly related to network rollout policies, similar to the broadband de-

ployment portion of the BIA. To estimate the e↵ects of increasing availability in eligible sites

where it is less than 100%, we simulate the demand reaction (take-up) that would result in

those ACP tracts if they were instantly covered with high-speed networks.

As before, we are not considering technical issues related to network deployment nor con-

struction time. However, we do estimate network deployment CAPEX for the first scenario

(increase in coverage).48

48CAPEX means capital expenditure. It is the required investment to deploy additional network.
We use an average of two methodologies proposed by Cartesian. The lower end is based on auction-
based data and the higher end based on estimates to build FTTH. See https://www.cartesian.com/

addressing-gaps-in-broadband-infrastructure-availability-and-service-adoption/.
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Increasing availability through greater coverage decreases the digital divide by increasing

the number of households that can access the choice set for that tract; at the same time,

increasing availability results in an increase in consumer surplus.

Increasing bandwidth, however, only a↵ects consumer surplus. As a consequence, for this

second availability counterfactual, we only report increases in CS. For the second case, we

cannot estimate additional CAPEX requirements as we do not possess information on the

associated costs. However, we can evaluate the consumer surplus e↵ect of increasing the

minimum download bandwidth to the current 25 Mbps minimum considered by the FCC.

2016 2017 2018

High-speed adoption

Baseline (%) 61.57 64.99 69.15
Additional coverage only (%) 61.91 65.29 69.41
ACP (%) 68.02 70.15 73.11
Additional coverage with ACP (%) 69.31 71.16 73.87

Cost of policy

ACP with additional coverage (billion USD) 9.62 8.25 7.12
Per connection (1000 USD) 1.78 1.93 2.11

Consumer surplus

Baseline (billion USD) 41.88 43.83 49.85
Additional coverage only (billion USD) 41.89 43.83 49.85
ACP (billion USD) 42.21 44.13 50.11
Additional coverage and ACP (billion USD) 42.25 44.15 50.11
Surplus from additional coverage and ACP (MUSD) 40.64 17.58 0

Estimated CAPEX for additional coverage

Total (billion USD) 3.49 2.66 1.89
CAPEX/connection (1000 USD) 2.24 2.23 2.08

Table 3.15: Additional coverage e↵ects on the BIA A↵ordable Connectivity Program (ACP)

The e↵ects of improving availability in tracts eligible for the ACP improves adoption

slightly: by around 1.29% in 2016, 1.01% in 2017, and 0.76% in 2018 (see Table 3.15). The

cost of the policy increases slightly as well by around $560 million in 2016 and $330 million

in 2018; the increase in consumer surplus is also almost negligible. However, estimated
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CAPEX ranges from $3.49 billion in 2016 to $1.89 billion in 2018, with an average CAPEX

per connection of $2,200, which is within the range of known values.

2016 2017 2018

Consumer surplus

ACP (billion USD) 42.21 44.13 50.11
Additional bandwidth (billion USD) 42.42 44.32 50.31
Surplus from additional bandwidth (MUSD) 218.90 199.51 201.39

Table 3.16: Increased minimum bandwidth e↵ects on the BIA A↵ordable Connectivity Pro-
gram (ACP)

Finally, in Table 3.16 we show the e↵ects in consumer surplus of increasing the minimum

bandwidth available to 25 Mbps in all tracts that are eligible for the ACP. As can be seen,

the e↵ects in surplus are greater than those resulting from greater coverage and of a similar

order of magnitude as those obtained from the a↵ordability scenario (Table 3.14).

3.6.2 Counterfactual 2: Broader Policies to Close the Digital Divide

To better understand the costs and benefits of closing the digital divide, in this section we

examine similar but more ambitious counterfactuals than those in the BIA-type scenarios.

3.6.2.1 Subsidy (a↵ordability)

We find the price that would allow all households with an income of less than $75,000 to

a↵ord a high-speed internet subscription. Then, we compute the total cost for the industry

that such price drop will imply and the number of households that will switch from low-

speed links due to the substitution e↵ect. Additionally, we compute the consumer surplus

generated from the policy.

In Figure 3.8, we show the average price drop required per division to connect households

with an annual income below $75,000 for 2016 and 2018. East-South-Central states require

the highest price drop, around $12 for 2018, while New England the lowest, around $3 for

2018. The average required price drop is $9.69 for 2016, $9.59 for 2017, and $8.4 for 2018.
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Figure 3.8: Price drop required to close the digital divide

2016 2017 2018

High-speed adoption

Baseline (%) 61.57 64.99 69.15
With subsidy policy (%) 79.64 80.83 82.33

Low-speed adoption

Baseline (%) 17.86 16.38 14.28
With subsidy policy (%) 7.74 7.41 6.91

Cost of policy

Total (billion USD) 20.58 20.55 18.29
Per connection (1000 USD) 1.06 1.21 1.27

Consumer surplus

With subsidy policy (billion USD) 43.40 45.36 51.23
Additional surplus (MUSD) 1519.24 1536.04 1378.65

Table 3.17: E↵ects of the policy of subsidy for closing the digital divide
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Table 3.17 reports the results of applying this policy. The baseline is the actual situation

for a given year and the parameters shown are the results of applying the policy at a given

year. Thus, if the policy were applied in 2018, where we already computed that 69.15% of

households are using high-speed internet connections, the proposed policy would increase the

percentage of connected households to 82.33%. Since we assume that low-speed providers

will not change prices, many actual low-speed subscribers will move to high-speed internet,

bringing the number of low-speed subscribers from 14.28% to 6.91% in 2018. The cost of

the policy for 2018 will be $18.29 billion, where an additional subscriber connected will cost

$1,266 to the industry. This policy can increase consumer surplus by $1.47 billion on average

with respect to the baseline.

2016 2017 2018

High-speed adoption

Baseline (%) 61.57 64.99 69.15
Additional coverage only (%) 63.41 66.86 71.07
Subsidy policy only (%) 79.64 80.83 82.33
Additional coverage with subsidy (%) 85.74 86.36 87.22

Cost of policy

Subsidy with additional coverage (billion USD) 23.94 23.60 20.97
Per connection (1000 USD) 0.92 1.03 1.06

Consumer surplus

Baseline (billion USD) 41.88 43.83 49.85
Additional coverage only (%) 42.39 44.21 50.17
Subsidy policy only (billion USD) 43.40 45.36 51.23
Additional coverage with subsidy (billion USD) 44.09 45.92 51.71
Surplus from additional coverage and subsidy (MUSD) 694.58 559.49 478.30

Estimated CAPEX for additional coverage

Total (billion USD) 19.55 17.47 15.56
CAPEX/connection (1000 USD) 2.66 2.68 2.65

Table 3.18: Additional coverage e↵ects on the subsidy policy for closing the digital divide
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3.6.2.2 Infrastructure Deployment (availability)

Table 3.18 reports the results of a simulated increase in availability in all tracts under

the $75,000 level. We obtain an important increase of around 5.5% in adoption for all years.

However, the cost of the subsidy increases by around $3 billion on average, while the surplus

generated by additional connected households increases by only $577 million on average.

2016 2017 2018

Consumer surplus

With policy (billion USD) 43.40 45.36 51.23
Additional bandwidth (billion USD) 43.62 45.56 51.43
Surplus from additional bandwidth (MUSD) 224.36 204.56 205.40

Table 3.19: Minimum bandwidth of 25 Mbps on the policy for closing the digital divide

Finally, in Table 3.19, we assume that the minimum bandwidth o↵ered to high-speed

subscribers will be increased to a minimum of 25 Mbps and compute the change in consumer

surplus. The results are similar to those obtained previously, with an average increase in

consumer surplus of $211.44 million.

3.6.3 Infrastructure Deployment: Additional Considerations

To understand the impact of developing infrastructure, we carry out two di↵erent coun-

terfactuals. In the first exercise, network is deployed to cover all areas (not only ACP areas)

where it is not yet available. The second counterfactual increases the minimum bandwidth

across all households (not only ACP areas) connected to the high-speed broadband service.

Figure 3.9 displays the e↵ects of increasing coverage to 100% of households. The baseline is

the current coverage in each year; incremental changes in coverage are plotted for each year.

As we can see, results do not vary much across years. The change in consumer surplus is not

linear and slightly upward growing on coverage. For instance, an additional 0.5% increase in

availability would generate an increase in consumer surplus of approximately $200 million; a

1% coverage increase could boost consumer surplus by about $524 million. However, given
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that the current coverage is already close to 100%, there is not much room to increase surplus;

the estimated CAPEX required for the additional 1% would be around $11 billion.

Figure 3.9: Change in consumer surplus due to additional availability

Figure 3.10 shows the e↵ects of increasing the minimum bandwidth available across all

households that currently have high-speed connections. Since our estimation requires the

assumption that households are connected with the lowest tier connection available in the

area,49 the calculation provides an upper bound for possible gain in consumer surplus. After

the minimum bandwidth o↵ered exceeds 200 Mbps, the gain in consumer surplus flattens

quickly. In the more linear area of the curve, below 200 Mbps, a 10 Mbps increase in the

minimum o↵ered bandwidth is associated with a $100 million increase in surplus. Intuitively,

this result is consistent with the fact that a subscriber’s benefit decreases over a determined

download bandwidth since no real gain in usability can be perceived.

49The lowest priced plan o↵ered in the area, which almost always provides the lowest download bandwidth
for the o↵ered technology (e.g., cable, DSL, fiber optic ).
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Figure 3.10: Change in consumer surplus due to increase in minimum bandwidth o↵ered

3.7 Conclusions

Many studies have identified factors associated with broadband adoption (e.g., income,

educational attainment, age, race, geographic location). At the same time, many government

e↵orts have focused on developing infrastructure and increasing the number of broadband

providers as strategies for closing the digital divide. Recently, the BIA allocated around 65%

($42.2 billion) of its $65 billion budget to deploy broadband infrastructure; only around 22%

($14.2 billion) was assigned to overcome a↵ordability issues. However, as we show in this

study, for 2018, only 8.11% of US households were not covered by (at least) one broadband

provider, while 32% of households were not connected to high-speed internet.

We use granular (tract-level) data from multiple public data sources to estimate broad-

band demand across most of the US. We find that price elasticity is highly correlated with

income. An implication of this finding is that any policy aimed at lowering prices in lower

income areas (where adoption is particularly deficient) will result in significant increases in
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adoption. For instance, we show that a price drop in 2018 of around $8.4 in entry level

broadband plans in tracts with a mean income of less than $75,000 per year could close the

digital divide by around 12 percentage points.

We use our estimated parameters to evaluate possible e↵ects of the BIA. Our findings show

that if the ACP had been applied in 2018, broadband adoption could have increased by around

4% at an estimated cost of $6.79 billion in subsidies, generating an additional $260 million

in consumer surplus. We also simulate an increase in network availability in areas eligible for

the ACP and find a marginal increase in adoption of 0.76% at an estimated additional cost

of $7.12 billion, with negligible increase in consumer surplus. The main takeaway from this

evaluation is that a↵ordability e↵orts generate more impact in both adoption and consumer

surplus. This contrasts with the current BIA budget allocation, which assigns almost 65%

of the total to solve infrastructure rather than a↵ordability issues.

In addition to BIA policies, we evaluate more aggressive consumer subsidy and infrastruc-

ture deployment policies. As with our BIA policy evaluation, results indicate that addressing

a↵ordability via subsidies will do more to close the digital divide and will provide higher con-

sumer surplus than just developing infrastructure. For example, increasing coverage by 1%

could potentially generate around $524 million of additional surplus but have a very limited

e↵ect on adoption. Similar results are found if the minimum available download bandwidth

is increased: Each 10 Mbps increase in minimum download speed nationwide could generate

around $100 million in consumer surplus, an e↵ect that becomes negligible beyond a speed of

200 Mbps. In these more aggressive scenarios, a↵ordability policies could reduce the digital

divide by 13.1 percentage points (ppt) at a cost of $18.3 billion in annual subsidy ($1.38

billion/ppt), whereas infrastructure-only policies (which do not solve the a↵ordability issue)

would close the digital divide by only 1.92 ppt at a cost of $15.56 billion ($8.1 billion/ppt).

Although one could argue that the infrastructure cost is a multiyear investment, main-

tenance and operating costs are required yearly to maintain infrastructure, and the limited

impact in closing the digital divide still holds. An alternative to direct subsidies to consumers
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could be subsidizing providers’ operational costs in low-income areas, which could also re-

duce prices and improve a↵ordability relative to a policy that focuses solely on infrastructure

deployment.

Finally, network availability and adoption rates vary greatly by state. In our study,

we quantify the importance of income as one driver in these disparities. An implication

of this heterogeneity is that e↵ective policies should consider these di↵erences. Aside from

allocating greater resources to lower income areas, infrastructure deployment policies in rural

areas should consider that—in many cases—it can be too costly to find terrestrial solutions;

in such cases, recent innovative satellite services could provide a solution to the availability

problem while avoiding unnecessary infrastructure roll-out costs.
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APPENDIX

SUPPLEMENTARY APPENDIX FOR CHAPTER

A.1 Machine learning algorithm for price assignment

As explained in Section 2, we aggregated detailed, block-level datasets to the tract level,

preserving their structure; therefore, we have detailed information for each provider operating

in each tract, including the number of households where service is available, the advertised

download and upload speeds, and the technology used. On the other hand, the price dataset

has a large sample of data plans o↵ered by providers that can be matched with providers at

the state level. Many plans could be o↵ered by a provider under the maximum advertised

download and upload speeds. Under the assumption that the lowest priced plan for each

provider in each tract furnishes the maximum number of subscribers in that tract, we can

reduce the number of possible plans that needs to be matched. Using this approach, it is

possible to find plans by matching providers by state between the survey and detailed dataset

that use the same technology and provide download and upload speeds under the provider’s

maximum advertised parameters. Using this procedure, we can match 17% of the providers

in the detailed coverage dataset with an entry level plan.

To perform the price assignment for the remaining providers in the detailed coverage

dataset, we develop a machine learning algorithm that creates clusters from the survey data

using two features: price and weight (this parameter in the survey dataset quantifies the

number of subscribers to whom a plan is being o↵ered while considering the size of the

sample and other technical factors).1 We computed clusters for each division in the US and

each access technology available (e.g. DSL, cable, fiber optic).

1
https://www.fcc.gov/file/22209/download.
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We use a higher hierarchical geographical level because most national providers operate

subsidiaries at that level. Therefore, similar plans will be deployed in all states and regions

within the subsidiary because a consistent o↵er of plans in a similar market is a common

industry practice.2 For instance, if we look to a national provider (e.g., Verizon), a subsidiary

company (Verizon New England) operates in most regions of New England (some areas may

be excluded due to the lack of availability) with a consistent market o↵er. It is reasonable

to assume that smaller local providers need to o↵er competitive plans in the same areas.

Therefore, by building clusters for each geographic division and available technology, we

have a larger basket of plans likely to be o↵ered in the area.

On the other hand, we use the technical parameters (e.g., advertised download and upload

speed and access technology) and demographic parameters (e.g., households served, total

number of households, plan weight) from the portion of successfully matched providers with

entry level plans to determine the most likely weight (we know the weight of matched plans)

for a given cluster (which is already segregated by geography and technology). Then, once

the algorithm is trained, we can use that predictor to find, within the clusters segregated

by geography and technology, the most likely weight. With that parameter, we can find

the closest cluster and sample one of the available plans to assign it to that provider. The

algorithm used to predict the weight from matched data is the histogram gradient boosting

classifier,3 an ensemble of decision trees that are added sequentially to correct prediction

errors.

Figure A.1 depicts the whole process. Initially, plans are matched to coverage using an

SQL query, while the K-means algorithm is used to produce clusters for each division and

2There is a trend in the industry to o↵er consistent plans over large geographical areas. See https:

//www.cnet.com/home/internet/best-no-contract-internet-plans/.

3For an explanation of the algorithm, see https://www.analyticsvidhya.com/blog/2022/01/

histogram-boosting-gradient-classifier/.
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Figure A.1: Machine learning algorithm for price assignment

technology.4 The histogram gradient booster classifier (from the sklearn implementation) is

trained with the matched plan data. There may be cases in which there are no plans in

the division for a given technology or in which the plan download and upload bandwidths

lie outside the advertised limits, in which case no match is found. Finally, the algorithm

produces a dataset with matched and predicted prices and other technical parameters at the

tract level but with block-level detail. This data is later aggregated at the tract level to

create the estimation dataset.

Table A.1 evaluates the performance of the algorithm by comparing the matched price

with the predicted price for the available subset of data. We use standard machine learning

procedures, leaving 20% of the matched data for testing and the remaining 80% for training

in order to search for the hyper-parameters of the classifier. We evaluated the parameters

using the testing portion of the data. The evaluation shown in Table A.1 reflects an overall

evaluation of predictions over matched and aggregated data at the tract level, similar to

the one used in the demand estimation. The prices shown in Table A.1 are mean values for

predicted and matched prices; both are quite similar. As we can see, overall errors, computed

using all the matched data, vary by year and are in the 6% to 15% range. The consistency

4See https://www.analyticsvidhya.com/blog/2021/11/understanding-k-means-clustering-in-machine-
learningwith-examples/ for an explanation of this algorithm.
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Predicted price1 Matched price1 Overall Error
(USD) (USD) (%)

2016

High-speed 60.18 60.60 13.65
Low-speed 40.71 43.63 11.03

2017

High-speed 60.85 61.95 11.55
Low-speed 40.22 40.25 6.37

2018

High-speed 52.33 53.54 15.17
Low-speed 43.34 45.83 11.80
1 Mean value

Table A.1: Overall performance

in errors give us confidence in the inference estimation that we later perform using this data.

For this estimation, we used matched data, where available, and predicted otherwise.
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A.2 First-stage regression

As can be seen from Table A.2, most regressors in the first stage have p-values well

below 5% level. (The only exception is Download bw^2, which has a p-value close to 5%).

Importantly, the F -statistic for excluded instruments is highly significant. The instruments

used are as follows: instr1 is computed using the advertised download bandwidth, instr4 is

computed using the number of providers, and instr5 is the price. For a detailed discussion

on how these instruments are calculated, see Section 3.4.1. Other instruments that were

computed but did not provide significant results were advertised upload bandwidth and

usage allowance (cap defined in plans).

Price
Estimate Std. Error t value Pr(>|t|)

Type: low-speed 0.002562 0.0003374 7.6 3.162e-14
Loc: urban 0.005899 0.001966 3 0.002702
Download bw -1.362e-05 6.007e-06 -2.3 0.02342
Download bw^2 2.132e-08 1.11e-08 1.9 0.05479
instr1 6.872e-06 7.774e-07 8.8 9.588e-19
instr4 -0.0001184 4.425e-05 -2.7 0.00745
instr5 -6.766e-05 7.884e-06 -8.6 9.385e-18

Multiple R2(full model): 0.9897. Adjusted R-squared: 0.9873
Multiple R2(proj model): 0.0009709. Adjusted R-squared: -0.2245
F-statistic(full model): 424.5 on 69411 and 307542 DF, p-value: < 2.2e-16
F-statistic(proj model): 42.7 on 7 and 307542 DF, p-value: < 2.2e-16
F-statistic(excl instr.): 81.89 on 3 and 307542 DF, p-value: < 2.2e-16

Table A.2: First-stage regression

Table A.3 reports weak instrument diagnostic tests and confirms that the chosen in-

struments are reliable. The first two tests confirm that the instruments are correlated and

exogenous, while the last test shows that we do not have an over-identification problem.
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Test df1 df2 statistic p-value
Weak instruments 3 376944 2537.28 <2e-16 ***
Wu-Hausman 1 376945 2893.64 <2e-16 ***
Sargan 2 NA 24.72 4.28e-06 ***
Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table A.3: Weak instruments tests

A.3 Robustness check

Dependent variable:

log(Sjt/S0t)
Matched Lower limit Upper limit

(1) (2) (3)

Type:low-speed �1.861⇤⇤⇤ �1.072⇤⇤⇤ �2.440⇤⇤⇤

(0.023) (0.006) (0.007)

Loc:urban �0.325 �0.343⇤⇤⇤ �0.309⇤⇤⇤

(0.296) (0.070) (0.076)

Download bw 1.872e�3⇤⇤ 7.890e�4⇤⇤⇤ 1.301e�3⇤⇤⇤

(8.760e�4) (2.119e�4) (2.314e�4)

Download bw2 �5.539e�6⇤⇤⇤ �1.141e�6⇤⇤⇤ �2.097e�6⇤⇤⇤

(1.232e�6) (3.929e�7) (4.292e�7)

log(income - price) 0.739⇤⇤⇤ 0.617⇤⇤⇤ 0.705⇤⇤⇤

(0.254) (0.064) (0.070)

Observations 81,534 376,982 376,984
R2 0.890 0.858 0.831
Adjusted R2 0.809 0.826 0.793
Residual Std. Error 1.990 (df = 46958) 1.741 (df = 307572) 1.926 (df = 307574)

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01

Table A.4: Robustness check using OLS

Here, we provide estimations in 3 di↵erent settings. First we only use the data that was

possible to match directly from price surveys with coverage data, which accounts for 17% of

the providers in the dataset. We apply the same estimation method to such data and the
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result is shown in the column “Matched”. The other 2 settings are using the borders of the

bins defined in the usage datasets, which could be seen as lower and upper bounds for the

estimated parameters. Two tables are produced, Table A.4 that shows results using OLS,

and Table A.5, which shows the results using instruments and 2SLS. In general, results have

the expected signs and their magnitudes are in-line with the origin of the underlying data.

Dependent variable:

log(Sjt/S0t)
Matched Lower limit Upper limit

(1) (2) (3)

Type:low-speed �2.038⇤⇤⇤ �1.142⇤⇤⇤ �2.739⇤⇤⇤

(0.066) (0.019) (0.032)

Loc:urban �2.909⇤⇤⇤ �0.929⇤⇤⇤ �1.488⇤⇤⇤

(0.860) (0.210) (0.406)

Download bw 7.216e�3⇤⇤ 2.743e�3⇤⇤⇤ 5.231e�3⇤⇤⇤

(2.433e�3) (6.406e�4) (1.235e�3)

Download bw2 �1.015e�5⇤⇤ �4.295e�6⇤⇤⇤ �8.440e�6⇤⇤⇤

(3.325e�6) (1.182e�6) (2.279e�6)

log(income - price) 135.621⇤⇤⇤ 99.498⇤⇤⇤ 199.556⇤⇤⇤

(18.369) (6.706) (12.931)

Observations 81,491 376,952 376,954
R2 0.226 �0.245 �3.595
Adjusted R2 -0.344 �0.526 �4.632
Residual Std. Error 5.273 (df = 46917) 5.263 (df = 307542) 10.149 (df = 307544)

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01

Table A.5: Robustness check using 2SLS (instruments)

... ...
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