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Abstract

The Harris–Venkatesh conjecture for derived Hecke operators

Robin Zhang

The Harris–Venkatesh conjecture posits a relationship between the action of derived Hecke

operators on weight-one modular forms and Stark units. We prove the full Harris–Venkatesh con-

jecture for all CM weight-one modular forms. This reproves results of Darmon–Harris–Rotger–

Venkatesh, extends their work to the adelic setting, and removes all assumptions on primality and

ramification from the imaginary dihedral case of the Harris–Venkatesh conjecture. This is done by

introducing the Harris–Venkatesh period on cuspidal one-forms on modular curves, introducing

two-variable optimal modular forms, evaluating GL(2)×GL(2) Rankin–Selberg convolutions on

optimal forms and newforms, and proving a modulo-`t comparison theorem between the Harris–

Venkatesh and Rankin–Selberg periods. Furthermore, these methods explicitly describe local fac-

tors appearing in the constant of proportionality prescribed by the Harris–Venkatesh conjecture.

We also look at the application of our methods to non-dihedral forms.
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Introduction

We study the conjecture of Harris–Venkatesh [HV19], which frames the general conjectures

of Prasanna and Venkatesh [PV21, Ven19, GV18] on derived Hecke algebras and motivic co-

homology groups in the coherent cohomology of the Hodge bundle on the modular curve (cf.

[Ata22, Hor22, Oh22] for higher-dimensional coherent contexts). In this setting, Harris–Venkatesh

gives a modular analogue of the Stark conjecture by relating Stark units to the predicted action of

derived Hecke operators on weight-1 modular forms.

Let f be a modular form of weight 1 and level Γ1(N). Let ρ : Gal(Q/Q)−→GL(M) be its

associated Artin representation realized on a free module M of rank 2 over Z[χρ] by Deligne–

Serre, where χρ is the character of ρ. Then ρ is realized on the Galois group Gal(E/Q) of a finite

Galois extension E of Q.

If we fix an embedding E ↪→ C, then the Stark conjecture for the adjoint representation Ad(ρ)

predicts the existence of a unit ε ∈ O×E and a positive integerW such that,

L ′(Ad(ρ), 0) =
1

W

∑
σ∈Gal(E/Q)

χAd(ρ)(σ) log|εσ|.

This formula is furthermore compatible with Galois conjugation of Ad(ρ) and conjugations of

f under Aut(C), so it can be considered as being valued in R ⊗ Z[χAd(ρ)]. The right-hand side

comes from the Stark regulator map evaluated on an element of the dual unit group U(Ad(ρ)) :=

HomGal(E/Q)(Ad(ρ),O×E ). With the convention that Frobw is complex conjugation for real places

w, there is a distinguished element xw := 2ρ(Frobw)−Tr(ρ(Frobw)) ∈ Ad(ρ) for each archimedean

place w. Evaluation at xw defines an injective map U(Ad(ρ)) ↪→ O×E ⊗ Z
[
χAd(ρ)

]
with image
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eAd(ρ)O×E , where,

eAd(ρ) =
1

|Gal(E/Q)|
∑
σ

χAd(ρ)(σ)σ
−1.

Composition with the usual logarithm of the absolute value on E ↪→ C defines the Stark regulator

map,

RegR : U
(
Ad(ρ)

)
−→R⊗ Z

[
χAd(ρ)

]
.

The Stark conjecture then predicts that there exists a unique element uStark ∈ U(Ad(ρ)) such that,

L ′
(
Ad(ρ), 0

)
= RegR(uStark),

and again compatibly with Galois conjugation of Ad(ρ). These two formulations are related by

the identity,

uStark(xw) =
1

W

∑
σ∈Gal(E/Q)

χAd(ρ)(σ)ε
σ.

Up to a constant in Q(χAd(ρ)), the derivative L ′(Ad(ρ), 0) can be replaced by the Petersson inner

product ||f||2 :=
∫
Γ1(N)\H|f|

2ydxdy
πy2

, so the Stark conjecture for Ad(ρ) can be reformulated as an

identity for some c ∈ Q(χAd(ρ))
×:

c · ||f||2 = RegR(uStark).

The Harris–Venkatesh conjecture is an analogue of the above identity, with R replaced by F×p for

each prime p.

For the Harris–Venkatesh conjecture, the analogue of the Petersson inner product is the action

of the Shimura class Sp as described by Harris–Venkatesh [HV19, Section 3.1] and Darmon–

Harris–Rotger–Venkatesh [DHRV22, Section 1.1]. Let p be a prime not dividing 6N. There is an

étale Galois covering X1(p)−→X0(p) with group F×p . This defines the element,

Sp ∈ H1ét

(
X0(p),F×p

)
= H1ét(X0(p),Z/(p− 1)Z)⊗Z F×p .
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Now consider the base change of the modular curve X0(p)⊗Z/(p− 1)Z; the push-forward of the

étale sheaf Z/(p− 1)Z−→OX0(p)⊗Z/(p−1)Z gives the Shimura class,

Sp ∈ H1ét(X0(p)⊗ Z/(p− 1)Z,Ga)⊗ F×p ,

which can also be viewed as an element of Zariski cohomologyH1(X0(p)⊗ Z/(p− 1)Z,O)⊗F×p .

By Serre duality, Sp is also an element of Hom
(
H0
(
X0(p),Ω

1
)
,F×p

)
, i.e. as a map from weight

2 modular forms to F×p . By adding ∪Sp to the usual Hecke operator defined by the pull-back and

push-forward of π1, π2 : XΓ1(N)∩Γ0(p) → XΓ1(N), this defines a derived Hecke operator Tp,N on the

space of cusp forms of weight 1 and level N coprime to p,

H0
(
XΓ1(N),Z/(p−1)Z,ω(Cusp)

)
H1
(
XΓ1(N),Z/(p−1)Z,ω(Cusp)

)
⊗ F×p

H0
(
XΓ1(N)∩Γ0(p),Z/(p−1)Z,ω(Cusp)

)
H1
(
XΓ1(N)∩Γ0(p),Z/(p−1)Z,ω(Cusp)

)
⊗ F×p .

π∗1

Tp,N

∪Sp

π2∗

The F×p -analogue of the Stark regulator RegR is given by the following distinguished element

for each place w of E over p,

xw := 2ρ(Frobw) − Tr(ρ(Frobw)) ∈ Ad(ρ).

Evaluation at xw defines an embedding into a space of units,

U
(
Ad(ρ)

)
−→ (O×E )Frobw ⊗ Z

[
χAd(ρ)

]
,

whose image in O×Fw ⊗ Z[χAd(ρ)] is in Z×p ⊗ Z[χAd(ρ)]. Thus, reduction modulo the ideal corre-

sponding to w defines a regulator map (called “reduction of a Stark unit” in [HV19, DHRV22]),

RegF×p : U
(
Ad(ρ)

)
−→F×p ⊗ Z

[
χAd(ρ)

]
.
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With the Shimura class and the F×p regulator map, we present the conjecture of Harris–Venkatesh

[HV19, Conjecture 3.1] away from primes 2 and 3. Let ` ≥ 5 be a prime that divides p− 1 and is

coprime to N, and let t be the largest exponent of ` such that `t divides p − 1. We fix a discrete

logarithm, which is a surjective homomorphism,

log` : F×p � Z/`tZ,

Conjecture 1 (Harris–Venkatesh conjecture). Let f be a Hecke new cusp form of weight 1 and

level N. There is an element uf ∈ U(Ad(ρ)) and a positive integer m such that for any primes

p, ` ≥ 5 coprime to N,

m · log`Sp

(
TrNpp (f(z)f∗(pz))

)
= log`RegF×p (uf),

where f∗ is the dual newform of f.

Remark 2. Assuming the Stark conjecture for Ad(ρ), we can take uf = c · uStark with some

nonzero c ∈ Z[χAd(ρ)]. We can also replace Sp with the Harris–Venkatesh period PHV, which we

define later and which has the property,

Sp

(
TrNpp (f(z)f∗(pz))

)
= [SL2(Z) : Γ0(N)] · PHV(f⊗ f∗).

For a modular form of weight 1, its associated 3-dimensional adjoint representation Ad(ρ)

factors through GL2(C)/C× = PGL2(C) = SO3(C) and has finite image; this image is therefore

a finite subgroup of SO3(C), which must either be cyclic,D2n, A4, S4, or A5. Eisenstein series are

the forms with cyclic image, dihedral forms are those with imageD2n, and the remaining forms are

called “exotic”. The Stark conjecture is known in the Eisenstein and dihedral cases, but remains

open in general for the three exotic cases.

The evaluation of Sp at Eisenstein series was considered by Mazur [Maz77, p. 103] and

computed by Merel [Mer96] (cf. the discussion in [HV19, Section 5.2]). The first theoretical steps
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toward the Harris–Venkatesh conjecture in the dihedral setting were done by Darmon–Harris–

Rotger–Venkatesh [DHRV22], under primality and ramification assumptions. Dihedral forms are

classified by finite characters of GK := Gal(K/K) with K/Q quadratic: given a dihedral form f,

there is a quadratic number field K and finite character χ ofGK such that ρ = Ind
GQ
GK

(χ); conversely,

given a character χ of GK, there is a new form fχ ∈ S1(Γ1(N),Z[χ]) with q-expansion fχ(z) =∑∞
n=1 anq

n such that
∑

n ann
−s = L(s, χ).

Theorem 3 (Darmon–Harris–Rotger–Venkatesh [DHRV22, Theorem 1.2]). Let K be a quadratic

number field of discriminant DK and different DK, and let χ be a finite character of Gal(K/K).

• If K is imaginary, assume that DK is an odd prime and that χ is unramified;

• if K is real, assume that DK is odd and that χ has conductor dividing DK.

Then the Harris–Venkatesh conjecture is true for f = fχ.

Remark 4. Darmon–Harris–Rotger–Venkatesh [DHRV22, Section 1.3] also check that both sides

of Conjecture 1 vanish when K is imaginary quadratic and p splits in K, so the Harris–Venkatesh

conjecture holds in this trivial case. Consequently, we will assume that p is inert in K unless

otherwise mentioned.

The methods of Darmon–Harris–Rotger–Venkatesh [DHRV22] cannot be directly generalized

to ramified characters. A subsequent paper by Lecouturier [Lec22] uses the central L-value for-

mulas of Ichino [Ich08] and Waldspurger [Wal85] to bypass part of the theta lifting arguments

of [DHRV22] to prove new cases of a weaker unsigned Harris–Venkatesh conjecture: by requir-

ing that t = 1 and ignoring the sign of the integer m, its argument assumes that the “antinorm”

ξ := χ1−Frob∞ is unramified instead of assuming that χ is unramified, and furthermore allows DK

to be composite when K is imaginary.

The purpose of this thesis is to translate the methods of Darmon–Harris–Rotger–Venkatesh

[DHRV22] to the adelic language and then use the theory of theta lifts to treat composite discrimi-

nants and ramified characters in the imaginary case with full generality.
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Main results

Our main result is the proof of Conjecture 1 for all dihedral weight-one forms in the imaginary

case.

Theorem 5. Let K be an imaginary quadratic number field and let χ be a finite character of

Gal(K/K). Then the Harris–Venkatesh conjecture is true for f = fχ.

Remark 6. We expect the methods outlined here to be applicable to the real case of Conjecture 1 as

well. This is part of an forthcoming work [Zha23c] with additional calculations that are necessary

for indefinite theta series (cf. the additional constructions in [DHRV22, Section 3]).

In the imaginary dihedral case, Ad(ρ) decomposes as η ⊕ IndGKGQ
(ξ), where η is the quadratic

character of Gal(Q/Q) for the imaginary quadratic extension K/Q and the “antinorm” ξ :=

χ1−Frob∞ is a ring class character of Gal(K/K). In particular, ξ factors through Gal(Hc/K) where

c = c(ξ) is the conductor of ξ and Hc is the associated ring class field. Importantly in the dihedral

case, the Stark conjecture is known for Ad(ρ); the unit uf is an explicit elliptic unit in the imagi-

nary case and an explicit fundamental unit in the real case. When χ is unramified and disc(K) is

an odd prime, Darmon–Harris–Rotger–Venkatesh [DHRV22] proves Theorem 3 by computing the

left-hand side and relating it to an elliptic unit uλ,ξ ∈ Uξ depending on an auxiliary prime λ with a

splitting λ = l · l in OK such that ξ(l) generates Im(ξ). We extend this and define uξ =
m(ξ)

1−ξ(l)
uλ,ξ,

where,

m(ξ) =


v if |Im(ξ)| is a power of a prime v,

1 otherwise.

We show that uξ is a unit independent of the choice of λ in Proposition 3.1. Furthermore, the Stark

conjecture is known in this case and we show that uStark is the unique element of U(Ad(ρ)) such

that,

uStark(x∞) =
hK

6m(ξ)wK
uξ,

where hK = [H1 : K] is the class number of K (with H1 the Hilbert class field of K) and where wK

6



is the number of roots of unity in K (see Proposition 3.2).

For the dihedral form f = fχ, we prove Theorem 5 by introducing and constructing a two-

variable optimal modular form fopt(z1, z2) on X(N) × X(N) generated by f(z1)f∗(z2) under the

action of Hecke operators, with its automorphic avatar given by the Equation 1.7. They are defined

explicitly so that we are able to prove a refinement of the Harris–Venkatesh conjecture for the form

fopt with specified ratio and specified unit (uf is proportional to uξ and uStark).

Theorem 7. Let f be an imaginary dihedral modular form of weight 1 and level N, and let

fopt(z1, z2) be the optimal form associated to f. For all primes p, ` ≥ 5 coprime to N,

log`Sp

(
fopt(z, pz)

)
= −

[Hc : H1]wK
2

log`RegF×p (uStark).

One of the main steps in the proof of Theorem 7 is to show that fopt realizes the theta lifting

(cf. Equation 2.21, Emerton [Eme02], Gross [Gro87, Proposition 5.6], Darmon–Harris–Rotger–

Venkatesh [DHRV22, Sections 1.4 and 2.2]),

fopt(z, pz) = Θp(1⊗ ξ).

In fact, it is the unique solution that satisfies this equation for all primes p. In the unramified setting,

all newforms in the unramified setting are actually optimal forms. The optimal form realizes the

theta lifting Θp(1 ⊗ ξ); this is their key property for the proof of Theorem 5. After this step, we

can essentially follow the strategy of Darmon–Harris–Rotger–Venkatesh [DHRV22], reproducing

and extending their chain of equalities with an explicit higher Eisenstein element Θ∗p(Sp) (i.e. an

7



element of a Hecke module annihilated by powers of the Eisenstein ideal, cf. Lecouturier [Lec21]),

log`Sp

(
fopt(z, pz)

)
= log`

〈
fopt(z, pz),Sp

〉
= log`〈Θp(1⊗ ξ),Sp〉

= log`
〈
1⊗ ξ,Θ∗p(Sp)

〉
= −

[Hc : K]

12m(ξ)
log`RegF×p (uξ)

= −
[Hc : H1]wK

2
log`RegF×p (uStark)

The construction of the optimal form fopt allows us to furthermore obtain the following precise

description of the constant of proportionality, which together with Theorem 7 implies Theorem 5.

Theorem 8. Let Q(ξ+ ξ−1) be the subring of C generated over Q by the values of ξ(σ) + ξ−1(σ)

for all σ ∈ Gal(Hc/K). There exists an element βχ ∈ Q(ξ+ξ−1)× such that for almost all primes

p, ` ≥ 5 coprime to N,

log`Sp

(
TrNpp

(
fχ(z)fχ−1(pz)

))
= βχ log`Sp

(
fopt(z, pz)

)
.

More precisely, there is a decomposition

βχ =
∏
q|N

βχq ,

where βχq depends only on χq. Moreover, for odd primes q that are not ramified in both K and χ,

we have the following explicit formula for βχq:

1. If q is ramified in K, then

βχq = 4.
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2. If q is inert in K, then

βχq =



(q−1)2

q2
if ξ is unramified,

ξ(−1)(q+1)2

q2
if ξ is ramified and ξ2 is unramified,

ξ(−1)(q+1)
q2

if ξ2 is ramified.

3. If q is split in K (so Kq = Qq ⊕ Qq is split with uniformizers $1,$2 and χq = (χ1, χ2)),

then

βχq =



(q−1)(q−ξ($1))(q−ξ($2))
(q+1)q2

if χ is ramified and ξ is unramified,

χ(−1)(q−1)2q2o(ξ)−1

q2o(ξ)+1−q2o(ξ)+2
if ξ is ramified, if ξ2 is unramified,

and exactly one of the χi is ramified,

χ(−1)(q−1)3q2o(ξ)−2

q2o(ξ)+1−q2o(ξ)+2
if ξ2 is unramified

and both χi are ramified,

χ(−1)(q−1)2q2o(ξ)+1

(q+1)(q2o(ξ)+1−q2o(ξ)+2)
if ξ2 is ramified

and exactly one of the χi is ramified,

χ(−1)(q−1)3q2o(ξ)−2

(q+1)(q2o(ξ)+1−q2o(ξ)+2)
if ξ2, χ1, and χ2 are all ramified.

Remark 9. Almost all of the localβ-factors from Theorem 8 are rational numbers, with the possible

exception at a prime q that splits in K at which χ is ramified and ξ = χ1−ε is unramified. Even

then, the βχq factor is in a real subfield of the cyclotomic field generated by the values of ξ.

Remark 10. Combining Theorems 7 and 8, we obtain a rational version of the Harris–Venkatesh

conjecture:

log`Sp

(
TrNpp

(
fχ(z)fχ−1(pz)

))
= αχ log` RegF×p (uStark), (1)

where the ratio is

αχ := −
[Hc : H1]wK

2
βχ.
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If we write αχ = aχ
bχ

as a reduced fraction with aχ ∈ Z(ξ) and bχ ∈ N, then bχ divides

2(denominator of βχ); therefore the integer m from Theorem 5 does as well. Furthermore, bχ

depends only on the set S of primes ramified in χ and the number of roots of unity in K. In a future

work, we consider integral refinements of our results. Two questions of Harris motivate our results

in this direction: in particular, we can realize αχ as Hecke values, in terms of Hecke algebras;

furthermore we can study the congruences of the units uξ1 and uξ1 , given congruences between χ1

and χ2.

To prove Theorem 8, we introduce two ingredients. The first is the Harris–Venkatesh period.

Let Σ be the set of primes dividing N and consider the projective system XΣ = lim←−m X(Nm) of

modular curves unramified outside of Σ. Let R be a Z[1/N]-algebra. Then the Harris–Venkatesh

period is given on two copies of the space of weight-1 cusp forms unramified outside of Σ:

PHV : H0(XΣ,R,ω(−CΣ))⊗H0(XΣ,R,ω(−CΣ)) −→ R.

Moreover, this pairing is invariant under the action of
∏

q|N GL2(Qq). In this terminology,

Sp

(
TrNpp

(
fχ(z)fχ−1(pz)

))
= [Γ(1) : Γ0(N)] · PHV

(
fχ ⊗ fχ−1

)
,

Sp

(
TrNpp (fopt(z, pz))

)
= PHV(f

opt).

The second ingredient is a modulo-`t multiplicity-one argument, which compares the Harris–

Venkatesh periodPHV of modular forms with a Rankin–Selberg periodPRS for Whittaker functions

at places at Σ. In particular, it gives an identity of two ratios,

[
PHV(f

opt) : PHV
(
fχ ⊗ fχ−1

)]
≡ [PRS(W

opt) : PRS(W
new)] (mod `t),

with the left-hand side obtainable from the right-hand side by reduction modulo-`t. This then

reduces the calculation of βχ to a calculation of local Rankin–Selberg periods on GL2 × GL2 (see

Theorems 8.1 and 8.2).
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Finally, we consider generalizations of the above results for non-dihedral forms. Let f be a

newform of weight 1 and levelN associated to a Galois representation ρ : Gal(Q/Q)−→GL2(C).

We assume that f is locally dihedral, i.e. for every prime q dividing N, the restriction ρq on the

decomposition group Gal(Qq/Qq) is induced from a character χq of a quadratic extension Kq/Qq,

ρq = IndQq
Kq
(χq).

This local assumption is automatically satisfied for q > 2, and furthermore is satisfied for q = 2

when ρ2 is reducible. (so if ρ2 is reducible then f is locally dihedral). We can also define an

optimal form fopt(z1, z2) for locally dihedral forms in the same way that we did for dihedral forms,

proving the same relation as the one in Theorem 8 (see Proposition 12.1). What is missing for

locally dihedral forms is the analogue of Theorem 7, for which we make the following conjecture.

For each q, let cq be the conductor of the antinorm ξq = χ
1−Frob∞
q . For each q, define,

hq :=
∣∣(Ok,q/cq)×/(Zq/cq)×∣∣.

Conjecture 11. Let f be a locally dihedral modular form of weight 1 and levelN, and let fopt(z1, z2)

be the optimal form associated to f. For all primes p, ` ≥ 5 coprime to N,

log`Sp(f
opt(z, pz)) = −

∏
q

hq log` RegF×p (uStark),

Remark 12. Conjecture 11 is compatible with Theorem 7 and implies the locally dihedral case of

the Harris–Venkatesh conjecture. In the dihedral case, the constant in Theorem 7 is just the product

of these local factors,
[Hc : H1]wK

2
=
∏
q

hq.

In the dihedral case, there is a global character ξ of conductor c and [Hc : H1] is the cardinality of
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the group,

Gal(Hc/H1)
∼−−→ Ô×K /O×K · (Ẑ+ cÔK

)
×.

Thus, [Hc : H1] = 2
wK

∏
q hq.

Outline

This thesis has been divided into two articles, [Zha23a] and [Zha23b]. The contents are the-

matically divided into three parts.

Part I covers the global theory, in particular developing the theory of the Harris–Venkatesh

period. Section 1 includes various theta series calculations and a definition of optimal forms φopt

in adelic automorphic language. Section 2 covers modular curves, including the definitions of

optimal forms fopt and the Harris–Venkatesh period PHV. Section 3 defines the elliptic unit uξ

while giving its precise relation to both Stark units and a higher Eisenstein element. Section 4

proves Theorem 7.

Part II covers the local theory, in particular applying the Rankin–Selberg method to this set-

ting. Section 5 covers the theory of Whittaker and Kirillov models, in particular including the

Rankin–Selberg method for GL2 × GL2 following Jacquet [Jac72], and the definition of local op-

timal functions Wopt. Section 6 contains the calculations of the Rankin–Selberg inner product

PRS(W
opt) for optimal forms, broken into cases based on whether the extension E/F is unramified,

inert, or split. Section 7 contains the calculations of the Rankin–Selberg period PRS(W
new) for

newforms, broken into similar cases. Section 8 then combines these calculations to determine the

ratio [PRS(W
opt) : PRS(W

new)] of Rankin–Selberg inner products of optimal forms and new forms.

Part III establishes a comparison between the Harris–Venkatesh periods and Rankin–Selberg

periods. Section 9 gives a multiplicity-one argument comparing the Harris–Venkatesh period PHV

and the Rankin–Selberg period PRS. Section 10 proves Theorem 8 and Section 11 proves Theo-

rem 5. Section 12 considers extensions of the main results to non-dihedral forms.
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Part I. Global theory: Harris–Venkatesh periods

We start Part I with necessary background material: for automorphic forms, we largely follow

[JL70, Jac72, Bum97, Zha01]; for modular forms and modular curves, we use [Shi94, DR73,

KM85]. Three key ingredients that we introduce here are the definition of a unit uξ independent of

λ, the definition of optimal forms, and the general definition of the Harris–Venkatesh period. At

the end of Part I, we prove Theorem 7, applying the general method of Darmon–Harris–Rotger–

Venkatesh [DHRV22] to uξ and optimal forms.

1 Automorphic forms

1.1 Background for GL2

We start with some notation:

Ẑ := lim←−
n

Z/nZ =
∏
p

Zp, Q̂ := Q⊗Z Ẑ.

Let A := Q̂ × R denote the ring of adèles of Q. For any abelian group M, let M̂ := M ⊗Z Ẑ.

For any Q-vector space V , let VA := V ⊗Q A. We use superscripts to remove specified places and

subscripts to restrict to specified places. For example, A∞ = Q̂ and A∞ = Q∞ = R.

Let ψ : Q\A−→Q be the standard additive measure:

ψ(x) =
∏
p≤∞ψp(xp) = e

2πix∞e−2πi(x∞ mod Ẑ),

where we have used the identity Q/Z ∼−−→ Q̂/Ẑ by the Chinese remainder theorem.

For an algebraic group G over Q, we denote its center by ZG, denote the quotient ZG\G by
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PG, and denote the set G(Q)\G(A) by [G]. For example, [PGL2] = Z(A)\GL2(Q)\GL2(A).

For a reductive group G over Q, let A([G]) denote its space of automorphic functions. These

are smooth functions with some growth conditions on G(Q)\G(A). Let A0([G]) denote the sub-

space of cusp forms: the space of automorphic functions that vanish at cusps.

We will mainly focus on GL2, soA0([GL2]) denotes the space of smooth functionsϕ : GL2(A)−→C

invariant under left translation by GL2(Q) that vanish at cusps:

∫
[N]

ϕ(ng)dn = 0,

where dn is a Haar measure on N(A) such that the volume of N(Q)\N(A) is 1. For such a

function, we can define its Whittaker function:

Wϕ(g) :=

∫
[N]

ϕ(ng)ψ−1
N (n)dn,

where ψN is the character on N(A) via the canonical isomorphism

n : Q ∼−−→ N

x 7−→
1 x

0 1

 .
Then we have the Fourier expansion

ϕ(g) =
∑
a∈Q×

Wϕ


a

1

g
.

Therefore the Fourier transform induces an embedding of representations of GL2(A):

W : A0([GL2])−→W(ψ) := IndGL2(A)
N(A) (ψN).
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By a cuspidal automorphic representation, we mean a subrepresentation π ⊂ A0([GL2]). We

can embed π intoW(ψ),

π ↪−→ W(ψ).

If π is irreducible, then π is the restricted tensor product
⊗

p πp. More precisely, there is a unique

embedding of π into W(ψ) with image denoted its Whittaker model W(π,ψ), which has a de-

composition

W(π,ψ) =
⊗
p

W(πp, ψp).

Each element inW(π,ψ) can be written as a finite linear combination of pure tensors
⊗
Wp such

that for all but finitely many p, Wp ∈ W(πp, ψp) is the normalized spherical element in the sense

thatWp is invariant under GL2(Zp) andWp(e) = 1.

Let ω be the central character of π. Then define the Kirillov representation K(ω,ψ) of B(A)

on C∞(A×) by the formula,

a b

0 d

 f(x) = ω(d)ψ

(
bx

d

)
f
(ax
d

)
.

Following Jacquet–Langlands [JL70], the restriction

W(π,ψ)−→K(ω,ψ),
W 7−→ κW(x) :=W(a(x)),

is injective. Let K(π,ψ) denote the image of this map.

New forms

Each irreducible cuspidal representation π has associated data (weight, level, central character,

and new forms), defined as follows (cf. [Zha01, Section 2.3]).

1. The weightw of π is the minimal non-negative integer such that there exist a non-zero vector
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v ∈ π∞ and a θ ∈ R with,

 cos θ sin θ

− sin θ cos θ

 v = eiwθv.
It is well-known that if w is the weight of the discrete series π∞, then all other eigenvalues

of SO2(R) are given by ±(w + 2k) for k ∈ Z≥0 (cf. [Bum97, Theorem 2.5.4(ii)] for the

language of K-types).

2. The level N of π is the minimal positive integer such that πU1(N) is non-zero, where

U1(N) :=


a b

c d

 ∈ GL2(Ẑ)

∣∣∣∣∣∣∣ (c, d) ≡ (0, 1) (mod NẐ)

.
In that case, πU1(N) is one-dimensional and is called the space of new forms.

3. the central character ω of π is the character of [Z] ∼−−→ Q×\A× acting on π.

4. The new vector ϕnew is a function in π whose Fourier transform Wnew =Wϕnew is a product

of Wnew
p (defined as before for p < ∞, and with Wnew∞ required to take value 1 at the unit

element e and have weight w under the action of SO2).

Here we give two examples of new vectors in Whittaker models. The first one is the weight-k

Whittaker function Wk for a positive integer k on GL2(R). By the Iwasawa decomposition, we

need only specify its value on a(y) =
(
y 0
0 1

)
with y ∈ R×,

Wk

(
a(y)

)
=


yk/2 if y > 0

0 if y < 0.

The second is the one for the unramified principal series π(χ1, χ2). Again we need only con-
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sider its value at a(pn) =
(
pn 0
0 1

)
:

W(a(pn)) = p
−n
2
αn+11 − αn+12

α1 − α2
,

where α1 = χ1(p) and α2 = χ2(p).

1.2 Weil representations

Let (V,Q) be an orthogonal quadratic space over Q of even dimensionm with bilinear form.

〈x, y〉 = Q(x+ y) −Q(x) −Q(y).

Let GO(V) denote the group of similitudes on V with norm map ν : GO(V)−→Gm. Let G =

GL2 ×Gm GO(V) be the fiber product of ν and det : GL2−→Gm. Then we may consider SL2

and O(V) as subgroups of G. Let S(VA) be the space of Schwartz functions on VA and let ψ :

A/Q−→C be the standard character. Then we have a Weil representation r of G(A) on S(VA)

by the following rules (cf. [Wal85, Section I], [HK92, Section 5], [HK04, Section 3], [YZZ13,

Section 2.1]). To define this representation, we need the following special elements in GL2:

d(a) :=

1
a

 ,
m(a) :=

a
a−1

 ,
n(b) :=

1 b

1

 ,
w :=

 1

−1

 .
Then G is generated by elements (d(ν(h)), h) for h ∈ GO(V),m(a), n(b), and w.
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1. For any h ∈ GO(VA), Φ ∈ S(VA),

r
(
d(ν(h)), h

)
·Φ(x) = |ν(h)|

−m
4 Φ

(
h−1x

)
.

2. For any a ∈ A×,

r
(
m(a)

)
·Φ(x) = ηV(a)|a|m/2Φ(ax),

where ηV(a) =
(
a, (−1)m/2 det(V)

)
, or in other words,

ηV = η
Q
(√

(−1)
m
2 det(V)

)(a).

3. For any b ∈ A,

r
(
n(b)

)
·Φ(x) = ψ

(
bQ(x)

)
Φ(x).

4. For w as above,

r(w) ·Φ(x) = γ · Φ̂(x),

where γ is an 8-th root of unity and Φ̂ is the Fourier transform,

Φ̂(x) =

∫
VA

Φ(y)ψ(〈x, y〉)dy.

From the definition, we see that r(z, z) acts on S(VA) by the character ηV . Indeed,

r(z, z)Φ(x) = r
(
d(z2)m(z), z

)
Φ(x) = |z|−m/2r(m(z))Φ(z−1x = ηV(z)Φ(x).

1.3 Theta series

Let GL2(A)+ denote the subgroup of GL2(A) of elements with determinants in ν(GO(VA)).

For any Φ ∈ S(VA), define the theta series (or theta kernel) automorphic form (cf. [YZZ13,
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Section 2.1]),

θ(g, h,Φ) :=
∑
x∈V

r(g, h)Φ(x) ∈ A
(
G(A)

)
.

LetA(G(A))∗ be the dual space on the space of automorphic forms, which we call the space of

automorphic distributions. Then for any distribution ϕ on GO(V)\GO(VA), we can define a form

on GL+
2 (Q)\GL+

2 (A) by integration,

θ(g,ϕ,Φ) :=

∫
[O(V)]

θ(g, hh0, Φ)ϕ(hh0)dh, (1.1)

where h0 ∈ GO(V) is an element with norm detg to ensure that hh0 ∈ GO(V). Now we extend

θ(g,ϕ,Φ) to a function on GL2(A) by two rules:

1. θ(g,ϕ,Φ) is invariant under the left action by GL2(Q);

2. θ(g,ϕ,Φ) is supported on GL2(Q) · GL+
2 (A).

Now suppose that there is a characterω of Q×\A× such that for z ∈ A×, h ∈ GO(VA),

ϕ(zh) = ω(z)ϕ(h).

Then we have,

θ(zg,ϕ,Φ) =

∫
[O(VA)]

θ(zg, zhh0)ϕ(zhh0)dh0

= ηV(z)ω(z)

∫
[O(VA)]

θ(g, hh0)ϕ(hh0)dh0

= ηV(z)ω(z)θ(g,ϕ,Φ).
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Whittaker functions

In the following, we compute the Whittaker function of θ(g,ϕ,Φ) when ϕ is an automorphic

function on [GSO(V)]:

W(g,ϕ,Φ) :=

∫
Q\A

θ(n(b)g,ϕ,Φ)ψ(−b)db.

Proposition 1.1. The functionW(g,ϕ,Φ) is supported on

GL2(A)Q(VA) := {g ∈ GL2(A) | detg ∈ Q(VA)}.

Moreover for g ∈ GL2(A)Q(VA) with decomposition g = d(Q(v)−1)g1, where v ∈ VA and g1 ∈

SL2(A), we have the following expression:

W(g,ϕ,Φ) = |detg|−
m
4

∫
O(VA)/O(Vv,A)

r(g1)Φ(hv)

∫
[O(V0)]

ϕ
(
uh−1

0 h
−1
)
dudh,

where

1. Vv,A is the orthogonal complement of v in VA;

2. h0 ∈ GO(VA) such that v0 := h−1
0 v ∈ V , which induces an isomorphism

O(VA)/O(Vv,A)
∼−−→ O(VA)/O(V0,A)

h 7−→ h0hh
−1
0 ,

where V0 is the orthogonal complement of v0 in V;

3. dh is a measure induced by the above isomorphism and the quotient measure of the measure

on O(VA) by the measure on O(V0,A) so that the volume of [O(V0)] is 1.

Proof. It is clear that the function W(g,ϕ,Φ) is also supported on GL2(Q) · GL+
2 (A). For g ∈

GL2(Q) · GL+
2 (A), we may write g = d(aν(h0))g1 for some a ∈ Q×, h0 ∈ GO(VA), and
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g1 ∈ SL2(A). Then we have

W(g,ϕ,Φ) =

∫
Q\A

θ
(
n(b)d

(
aν(h0)

)
g1, ϕ,Φ

)
ψ(−b)db

=

∫
Q\A

θ
(
n(ab)d

(
ν(h0)

)
g1, ϕ,Φ

)
ψ(−b)db

=

∫
Q\A

θ
(
n(b)d

(
ν(h0)

)
g1, ϕ,Φ

)
ψ(−a−1b)db

=

∫
[O(V)]

ϕ(hh0)

∫
Q\A

θ
(
n(b)d

(
ν(h0))g1, hh0, Φ

)
ψ(−a−1b)dbdh.

The second integral can be computed directly (for general g ′ and h ′):

∫
Q\A

θ(n(b)g ′, h ′, Φ)ψ(−a−1b)db =

∫
Q\A

∑
x∈V

ψ
((
q(x) − a−1

)
b
)
r(g ′, h ′)Φ(x)db

=
∑
x∈Va

r(g ′, h ′)Φ(x),

where Va denote the subset of elements x ∈ V with norm q(x) = a−1. Define

θa(g
′, h ′, Φ) :=

∑
x∈Va

r(g ′, h ′)Φ(x).

Using g ′ = d
(
ν(h0)

)
g1 and h ′ = hh0, we have shown that

W(g,ϕ,Φ) =

∫
[O(V)]

θa(d(ν(h0))g1, hh0, Φ)ϕ(hh0)dh.

This shows that W(g,ϕ,Φ) is actually supported on q(V×)GL+
2 (A), where V× is the subset of

elements in V with non-zero norm. This proves the first part of Proposition 1.1.

For the second part of the Proposition 1.1, we use the fact that the Va is an orbit of some

v0 ∈ Va. Let V0 be the orthogonal complement of v0 in V . Then we have

θa(d(ν(h0)g1, hh0, Φ) =
∑

γ∈O(V0)\O(V)

|detg|−
m
4 r(g1)Φ

(
h−1
0 h

−1γ−1v0
)
.
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It follows that,

W(g,ϕ,Φ) = |detg|−
m
4

∫
O(V0)\O(VA)

r(g1)Φ
(
h−1
0 h

−1v0
)
ϕ(hh0)dh

= |detg|−
m
4

∫
O(V0,A)\O(VA)

r(g1)Φ
(
h−1
0 h

−1v0
) ∫

[O(V0)]

ϕ(uhh0)dudh.

A change of variables h 7→ h0h
−1h−1

0 yields

W(g,ϕ,Φ) = |detg|−
m
4

∫
O(VA)/h0O(V0,A)h

−1
0

r(g1)Φ
(
hh−1

0 v0
) ∫

[O(V0)]

ϕ
(
uh0h

−1
)
dudh.

Set v = h−1
0 v0. Then Q(v) = ν(h0)

−1a−1. Finally, change h0 to h−1
0 .

It is quite useful to consider the Kirillov model, i.e the restriction of Whittaker functions at

elements g = a(x) = ( x 00 1 ) with x = Q(v). Assume that ϕ has a central character ω. Writing

g = Q(v)d(Q(v)−1) obtains the following.

Corollary 1.2. Assume that ϕ has the central character ω. Then the Kirillov function κ(x,ϕ,Φ)

for the theta series θ(g,ϕ,Φ) is supported on Q(VA) with the following formula

κ(x,ϕ,Φ) = ηVω(x)|x|
m
4

∫
O(VA)/O(Vv,A)

Φ(hv)

∫
[O(V0)]

ϕ
(
uh−1

0 h
−1
)
dudh,

where v ∈ VA and h0 ∈ GO(VA) such that Q(v) = x, v0 = h−1
0 v ∈ V , and V0 is the orthogonal

complement ofv0.

1.4 Theta series for one character

Let K be a quadratic field and χ : K×\K×A −→C× be a finite character. Assume the following

conditions.

1. χ is not of the form µ ◦ NK/Q, where NK/Q is the norm of K over Q.
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2. If K is real, then the two components at the archimedean places have different signs.

Then we have an irreducible cuspidal representation π(χ) of GL2 of weight 1. In the following,

we want to construct new forms in π(χ) and optimal forms in π(χ)⊗ π(χ−1) using theta liftings.

We start with the general quadratic space V = (Ke,Q) under the action of K. Then GO(V) =

〈K×, ι〉, where ι is an involution. In this case, ν is the usual norm N = NK/Q of K over Q. For each

Φ ∈ S(K×A), we obtain a theta series θ(g, χc, Φ) ∈ A(GL2(Q)\GL2(A)). Its Whittaker function

is supported by the subgroup GL2(A)+ of matrices with determinant in N(K×A). By Proposition

1.1, we write g = d(Q(h0e)
−1)g1 with h0 ∈ K×A and g1 ∈ SL2(A) to obtain

W(g, χ,Φ) = |detg|−
1
2

∫
K1A

r(g1)Φ(hh0e)χ
c
(
h−1
0 h

−1
)
dh, (1.2)

where K1 is the subgroup of K× of elements with norm 1. By Corollary 1.2, we have for x =

Q(h0e),

κ(x, χ,Φ) = |x|
1
2

∫
K1A

Φ(h0he)χ(hh0)dh. (1.3)

Note that we used χc instead of χ for a neater zeta integral. More precisely,

Z(s, θ(g, χc, Φ)) : =

∫
Q×\A×

θ(a(x), χc, Φ)|x|s−
1
2dx

=

∫
A×
κ(a(x), χc, Φ)|s|s−

1
2dx

=

∫
A×
Φ(xe)χ(x)|x|sdx

=: Z(s, χ,Φ)

The subrepresentation ofA([GL2]) generated by θ(g, χ,Φ) is an irreducible representation de-

noted by π(χ). More precisely, this representation has a decomposition (cf. [Shi72, Equation 5.1]),

π(χ) =
⊗
p≤∞π(χp),
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and π(χp) has Whittaker and Kirillov models generated respectively by the functions (cf. [Shi72,

Equation 5.2])

W(g, χp, Φp) = |detg|−
1
2

∫
K1p

r(g1)Φ(hh0e)χ
c
p

(
h−1
0 h

−1
)
dh, (1.4)

κ(x, χp, Φp) = |x|
1
2

∫
K1p

Φ(h0he)χ(hh0)dh, (1.5)

again with x = Q(h0e).

New forms

Now assume V = (K,N), where N = NK/Q is the norm of K over Q. We construct a new form

ϕnew ∈ π(χ) by picking a standard

Φχ =
⊗
v

Φχv ∈ S(AK)

where the tensor product is over places of K. We pickΦχv as follows (cf. [Zha01, Section 2.1]):

1. If v is complex, Kv
∼−−→ C, and χv is trivial, take

Φχv(x+ yi) = e
−2π(x2+y2).

2. If v is real, Kv = R, and χv(x) = sgn(x)m withm = 0, 1, take

Φχv(x) = x
me−πx

2

.

3. If v is finite and χv is unramified, take

Φχv = 1|OKv
.
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4. If v is finite and χv is ramified, take

Φχv = χ
−1
v

∣∣
O×Kv
.

For each place p of Q, let

Φχp =
⊗
v | p

Φχv ∈ S(Kp).

In the real case, to avoid the need to remember signs, we use the following function instead:

Φ∞(x, y) =
1

2
(x+ y)e−π(x

2+y2).

Then we have the following description of the Whittaker function W(g, χcp, Φχp) (cf. [Zha01,

Section 2.3]).

1. If p =∞, thenW(g, χcp, Φχp) is the weight 1 formW(g) in the following sense that,

W

z
y x

0 1


 cos θ sin θ

− sin θ cos θ


 = sgn(z)m · y

1
2

∣∣∣
R×+
· eiθ,

wherem = 0 if K is imaginary, andm = 1 if K is real.

2. If p is not ramified in K, thenW(g, χcp, Φχp) is the new formWnew
χ in π(χp) in the sense that

it is invariant under U1(πc(π(χp))) and takes value 1 at e.

3. If p is ramified inK, thenW(g, χcp, Φχp) is the restriction of the new formWnew
χ on GL2(Qp)

+.

One can also recover a new form by,

Wnew
χ (g) :=W

(
g, χp, Φχp

)
+W

(
ga(εp), χp, Φχp

)
,

where εp ∈ Z×p − N(O×Kp).
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UsingΦχ, we get the theta series θ(g, χc, Φχ). The new form is given by,

ϕnew
χ (g) =

∑
ε∈Ẑ×/N(ÔK)

θ(ga(ε), χc, Φχ). (1.6)

The sum in the right-hand side has 2n many non-zero terms, where n is the number of primes

ramified in K.

Optimal forms

Now we consider the tensor product representation, π(χ)⊗Q(χ) π(χ
−1). We already know that

it has one distinguished element called the new form,

ϕnew = ϕnew
χ ⊗ϕnew

χ−1.

In the following, we construct another element called the optimal form ϕopt in this tensor

product space that depends only on the “antinorm” ξ := χ1−ε. Note that ξ is a ring class character.

More precisely, let c := c(ξ) be the conductor of ξ, i.e. the minimal integer such that ξ is trivial

on (1+ c(ξ)ÔK)×. Then define the associated order of K as,

Oc(ξ) = Z+ c(ξ)OK.

ξ is in fact trivial on Ô×c(ξ). We can therefore view ξ as a character on

K×\K×A/K
+∞Ô×c(ξ) = K×+\K̂×/Ô×c(ξ) =: Pic+

(
Oc(ξ)

)
,

where K+ means K in the complex case and means a positive element in K in the real case.

Definition 1.3. Let D be the different ideal, i.e. the ideal generated by elements x − x. Let δ be a

generator of D̂ in Ôc(ξ). Now for each α ∈ Oc(ξ)/D, define the function Φopt
α = Φopt

α,∞ ⊗Φopt,∞
α ∈

S(KA) as follows.
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1. Φopt
α,∞ is the new function for the character χ∞, i.e. e−2π|z|2 in the complex case, and 1

2
(x +

y)e−π(x
2+y2) in the real case.

2. Φopt,∞
α is the characteristic function of

Ôc +
α

δ
.

Using the theta series θ(g, χ,Φα), define the two-variable optimal form ϕopt as follows.

ϕopt(g1, g2) :=
∑

α∈Oc/D

θ
(
g1, χ,Φ

opt
α

)
θ
(
g2ε

∞, χ−1, Φopt
−α

)
, (1.7)

where ε∞ is the element
(
−1 0
0 1

)
∈ GL2(Q̂).

Remark 1.4. We chose the name “optimal form” here due to the relation to optimal embeddings.

If B is the definite quaternion algebra with discriminant q and q is inert in K, then there is an

embedding K ↪−→ B and a maximal order OB such that Oc(ξ) = OB ∩ K. In particular, Oc(ξ) is an

optimal order in OB and Oc(ξ) ↪−→ OB is an optimal embedding (cf. [Eic55, Section 3], [Gro87,

Sections 1 & 3], and [Voi21, Section 30.3]). See [Voi21, Remark 30.3.17] for the history of the

“optimal” terminology.

We can write down the optimal form’s Kirillov functions. First, define

κ(x, χ,Φα) = |x|
1
2

∫
K1A

Φα(hh0)χ(hh0)dh,

where x = N(h0). The Kirillov function for ϕopt is given by

κopt(x1, x2) =
∑

α∈Oc/D

κ(x1, χ,Φ
opt
α )κ

(
x2(−1)

∞, χ−1, Φopt
−α

)
. (1.8)
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Comparison of models

Now we study the general quadratic space V = (Ke,Q) under the action of K, so GSO(V) =

K×. Then π(χ,ψ) can also be constructed by S(V(A)). More precisely by Equation 1.3, for each

Φ ∈ S(V(A)), the Kirillov function associated with the theta series θ(g, χc, Φ) is given by

κ(x, χc, Φ) = |x|
1
2

∫
K1A

Φ(tt0e)χ
(
t−10 t

−1
)
dt,

where x = Q(t0e).

Let V ′ = (Ke ′, Q ′) be another quadratic space and ι : V ′A
∼−−→ VA be an isomorphism of

KA-modules. Then we have a isomorphism,

ι∗ : S(VA)
∼−−→ S(V ′A)

Φ 7−→ Φ ◦ ι.

The Kirillov function’s integral can be converted to an integral for ι∗Φ as follows:

κ(x, χc, Φ) = |x|
1
2

∫
K1A

ι∗Φ
(
tt0ι

−1(e)
)
χ
(
t−10 t

−1
)
dt,

= |x|
1
2

∣∣tt0ι−1(e)∣∣− 12κ(Q(t0ι−1(e)), χc, ι∗Φ).
Write Q(ι) = Q(e)/Q(ι−1e) ∈ K×A . Then Q(ι) does not depend on the choice of e and is called

the norm of the map ι. Then the above formula gives:

κ(x, χc, Φ) = |Q(ι)|
1
2κ
(
xQ(ι)−1, χc, ι∗Φ

)
.

Since its Kirillov functions determine automorphic forms, we have proved the following.

Proposition 1.5. Let V and V ′ be two quadratic spaces of dimension two with action by K. Let

ι : V ′A−→VA be an isomorphism of KA spaces with normQ(ι). Then for any functionΦ ∈ S(VA),
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we have

θ(g, χc, Φ) = |Q(ι)|
1
2θ
(
ga
(
Q(ι)−1

)
, χc, ι∗Φ

)
.

For example, if we compare the theta functions defined by two opposite spaces V± := (V,±Q),

then for each Φ ∈ S(K), we get two theta series: θ±(g, χc, Φ). We use the identity map ι :

VA−→VA for the quadratic space, so Q(ι) = −1. Then we have:

θ−(g, χ
c, Φ) = θ+(gε, χ

c, Φ),

where ε =
(
−1 0
0 1

)
.

In the case that V± = (K,±N) andΦ = Φχ, we see from the above identity that the Whittaker

functionW−(g, χc, Φχ) of θ−(g, χc, Φχ) is still new at the finite part, but has weight −1 at∞ with

value

W−(a(y)) = |y|
1
2


−y if y < 0

0 otherwise.

Thus we also have,

θ−(g, χ
c, Φ) = θ+(gε∞, χc, Φ).

1.5 Theta series for two characters

Theta series for automorphic forms

Now we consider the theta lifting for V = (B,N), with B a quaternion algebra over Q and with

norm N given by the reduced norm on B. Then

GO(V) =
〈
GSO(V) = B× × B×/∆Q×, ι

〉
,

where (b1, b2) ∈ B× × B× brings x ∈ V to b1xb−12 , and ι(x) = x. Let G denote the group over Q

defined by

G := GL2 ×Gm GSO(V).
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Then we have a Weil representation of G(A) on S(V(A)). For each Φ ∈ S(V(A)), we have a

theta series

θ(g, h,Φ) =
∑
x∈V

r(g, h)Φ(x).

Also for each automorphic form (or even each distribution)ϕ on GO(V), we get a form on GL(A)+

by

θ(g,ϕ,Φ) =

∫
[O(V)]

θ(g, hh0, Φ)ϕ(hh0)dh.

We want to interpret the theta liftings as Hecke operators. For any g ∈ B×, we define an operator

ρ(g) on A([B×]) as usual:

ρ(g)ϕ(x) = ϕ(xg).

Now for any x ∈ N(A×) and Φ ∈ S(BA), we define the Hecke operator:

TΦ(x) =
∫
B1A

Φ(b0b)ρ(b0b)db (1.9)

T∗Φ(x) =
∫
B1A

Φ
(
b−1b−10

)
ρ(b0b)db, (1.10)

where b0 ∈ B×A such that N(b0) = x.

Proposition 1.6. Let ϕ = ϕ1 ⊗ ϕ2 with ϕi automorphic forms on [B×] with central characters

ω and ω−1. Then the Kirillov function κ(x,ϕ,Φ) is supported on N(B×A) with values given as

follows:

κ(x,ϕ,Φ) = ω(x)|x|〈ϕ1,TΦ(x)ϕ2〉 = ω(x)|x|〈T∗Φ(x)ϕ1, ϕ2〉,

where the pairing [−,−] is the bilinear form defined by

〈ϕ1, ϕ2〉 =
∫
[B×/Q×]

ϕ1(u)ϕ2(u)du.
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Proof. By Corollary 1.2, if we take x = Q(b0) for some b0 ∈ B×A , h0 = (1, b−10 ), and v0 = e, then

κ(x,ϕ,Φ) = ω(x)|x|
∫

O(VA)/O(Vb0,A)

Φ(hb0)

∫
[O(V0)]

ϕ
(
u · (1, b0) · h−1

)
dudh.

Here, O(V) = B× ×Q× B
×/∆Q×, and O(Vb0,A) consists of elements of the form (b0bb

−1
0 , b) for

all b ∈ B×A . So we can use elements (1, b−1) for b ∈ B1A to represent quotient elements. Then the

above integral becomes:

κ(x,ϕ,Φ) = ω(x)|x|
∫
B1A

Φ(b0b)

∫
[B×/Q×]

ϕ(u, ub0b)dudb

= ω(x)|x|
∫
B1A

Φ(b0b)

∫
[B×/Q×]

ϕ1(u)ϕ2(ub0b)dudb

= ω(x)|x|
∫
B1A

Φ(b0b)〈ϕ1, ρ(b0b)ϕ2〉db

= ω(x)|x|
∫
B1A

Φ(b0b)
〈
ρ
(
b−1b−10

)
ϕ1, ϕ2

〉
db

The proposition follows from the last two identities.

Theta series for two characters

Now let K be a quadratic field embedded into B. Then we have a decomposition B = K +

Kj, which gives an orthogonal decomposition V = V1 + V2 for V = (B,N). Then we have an

embedding

GO(V1)×Gm GO(V2) ⊂ GO(V).

The restriction to the connected component can be described as:

T := K× ×Q× K
×/∆(Q×) K× × K×/∆(Q×) B× × B×/∆(Q×).∼
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The first map is given by, (
t1/t2, t1t2

)←−[ (t1, t2).

Then we have two ways to describe an automorphic character for T in terms of two characters

of [K×]: either as two automorphic characters ξ1, ξ2 of A×K with the same restriction to A×, or as

the restriction to [K× ×Q× K
×] of a character χ1 ⊗ χ2 on [K× × K×]. Recalling that ε ∈ GQ −GK

and χε := χ ◦ ad(ε), the two descriptions are related in the following way,

χ1(t1/t2)χ2
(
t1/t2

)
= ξ1(t1)ξ2(t2),

ξ1 = χ1χ2,

ξ2 = χ
−1
1 χ

−ε
2 .

For an automorphic character ξ = ξ1 ⊗ ξ2 and a function Φ ∈ S(BA), we define the theta

lifting by,

θ(g, ξ,Φ) =

∫
[T ]

θ(g, t0t,Φ)ξ(t0t)dt, (1.11)

where t0 ∈ T(A) such that N(t0) = det(g). This integration can be considered as the theta lifting

for the distribution ξ(t)dt on [GSO(V)] defined by Equation 1.1.

Assume that Φ = Φ1 ⊗Φ2 ∈ S(VA) = S(V1,A)⊗ S(V2,A) is a decomposable function. Then

for h = (h1, h2) ∈ GO(V1)×Gm GO(V2), we have,

θ(g, h,Φ) = θ(g, h1, Φ1) · θ(g, h2, Φ2).

Thus if ξ1 × ξ2 is the restriction of χ1 ⊗ χ2, then we have,

θ(g, ξ1 ⊗ ξ2, Φ) = θ(g, χ1, Φ1) · θ(g, χ2, Φ2). (1.12)

In the following, we assume that B is definite and K is imaginary.

Definition 1.7. Let O be an Eichler order of B, i.e. the intersection of two maximal orders in B.
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Define the “standard” Schwartz functionΦO = Φ∞ ⊗Φ∞ as follows:

1. Φ∞(x) = e−2π|x|
2 .

2. Φ∞ is the characteristic function of Ô.

We assume that ξ1 and ξ2 are finite characters with opposite restrictions on A×. In this case,

ξ1 ⊗ ξ2 is the restriction of a finite character χ1 ⊗ χ2. Under this assumption, the right-hand side

Equation 1.12 shows that θ(g, ξ1 × ξ2, Φ) is a holomorphic form of weight 2. We can then apply

Proposition 1.6 to obtain the following.

Proposition 1.8. IfΦ = ΦO is standard as in Definition 1.7 with respect to an Eichler order O of

B, then θ(g, ξ1⊗ξ2, Φ) a holomorphic form of weight 2, levelU1(disc(O)), and central character

ω.

LetM = disc(O). Since θ(g, ξ,Φ) is invariant under U1(M) and by the decomposition,

GL2(A) = GL2(Q)GL2(R)+U1(M),

the value of θ(g, ξ,Φ) is determined by its restriction on GL2(R)+. Now we use the Whittaker

decomposition:

θ(g∞, ξ,Φ) =
∑
λ∈Q×

W(a(λ)g∞, ξ,Φ).

Since W(g∞) has weight 2, θ(g, ξ,Φ) is determined by the Kirillov function at the finite adèles.

We would like to use Proposition 1.6 to write such a function, but there is a problem in defining the

pairing and the Hecke action since the ξ1, ξ2 are distributions rather than automorphic functions.

1.6 Hecke operators

Following [DHRV22, Section 2.2] in the complex case, we define a projection map [·] from

characters to automorphic forms. LetA(ω±) be the space of automorphic forms f on [B] invariant

underU1(M) and with the central characterω± on B×∞. ThenA(ω±) is a finite-dimensional space
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with the decomposition,

A
(
ω±
)
= A∞ ⊗A∞(ω±),

where A∞ is the space of constant functions on B×∞. Analogously, define Ξ(ω±) to be the space

of characters on [K×] invariant underUK := U0(M)∩ K̂× and with restrictionω± on A×. We only

care about automorphic forms ϕ1, ϕ2 so that θ(g,ϕ1 ⊗ ϕ2, Φ) of [B×] is a holomorphic form of

weight 2 for [GL2]. By Jacquet–Langlands [JL70], ϕ1, ϕ2 must be in the space of automorphic

representations A(ω±) of [B]. We want to define a projection map,

[·] : Ξ
(
ω±
)
−→A(ω±),

such that,

θ(g, ξ1 × ξ2, ΦO) = θ(g, [ξ1]⊗ [ξ2], ΦO). (1.13)

Since we are dealing with the complex case, A(ω+) and A(ω−) are finite-dimensional and

dual to each other. For any character ξ± ∈ Ξ(ω±), we can define a linear functional on A(ω∓):

A(ω∓)−→C (1.14)

ϕ 7−→ ∫
[K×/Q×]

ϕ(t)ξ±(t)dt.

SinceA(ω±) is finite-dimensional and dual toA(ω∓), the assignment of ξ to this functional gives

the projection we want:

[−] : Ξ(ω±)−→A(ω±). (1.15)

In particular, it satisfies Equation 1.13 since for all ϕ ∈ A(ω∓),

∫
[B×/Q×]

ϕ(x)[ξ](x)dx =

∫
[K×/Q×]

ϕ(t)ξ(t).

Then by Propositions 1.6 and 1.8, we have the following.

Proposition 1.9. Assume that K is imaginary. Let Φ = ΦO be a standard function as in Defini-
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tion 1.7 with respect to an Eichler order and let ω be a finite automorphic character of Q×\A×.

Then for ϕ1 ∈ A(ω+) and ϕ2 ∈ A(ω−1), θ(g,ϕ1 ⊗ ϕ2, Φ) is holomorphic of weight 2, level

U1(disc(O)), and central characterω. Moreover, its Kirillov function is given by

κ(x,ϕ1 ⊗ϕ2, ΦO) = ω(x)|x|
〈
ϕ1,Tx∞,Φ∞

O
(ϕ2)

〉
.

In particular for ξ1 ∈ Ξ+(ω) and ξ2 ∈ Ξ−(ω), we have

κ(x, ξ1 ⊗ ξ2, ΦO) = ω(x)|x|
〈
[ξ1],Tx∞,Φ∞

O
([ξ2])

〉
.

1.7 A theta identity for the automorphic avatar of optimal forms

We again assume that K is imaginary and that B is definite. Then we get two characters ξ1 = 1

and ξ2 = ξ := χ1−c. In this case, ξ is a ring class character. Let c(ξ) ∈ N be the conductor of ξ,

i.e. the minimal positive integer such that ξ is trivial over (1+c(ξ)ÔK)×. LetOc(ξ) = Z+c(ξ)OK

be the corresponding order. Then the discriminant d(ξ) of Oc(ξ) is c(ξ)2 disc(K). Assume that

c(ξ) is coprime to disc(B).

Definition 1.10. An Eichler order O of B is ξ-optimal if the following conditions hold:

1. Oc(ξ) = K ∩ O;

2. for each q - d(ξ), Oq = OK,q + OK,qjq where jq ∈ B×q such that jqx = xjq and j2q =

disc(Oq).

We have the following description of optimal forms in terms of theta series on quaternion

algebras.

Proposition 1.11. Let O be a ξ-optimal Eichler order of B with discriminant M coprime to the

discriminant of K. Then

θ(g, 1⊗ ξ,ΦO) =M− 1
2ϕopt(g, ga(M∞)−1

)
.
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Moreover, these are holomorphic with weight 2 and have their Kirillov function given by

κ(x, 1⊗ ξ,ΦO) = ω(x)|x|
〈
1,Tx∞,ΦÔ(ξ)

〉
.

Proof. First, we decompose ΦO into a tensor product of functions in S(Vi). We need only do this

locally.

If q =∞, then there is a decomposition,Φ∞ = Φ1,∞ ⊗Φ2,∞ with both

Φi,∞(x, y) = e−π(x
2+y2).

If q is finite and does not divide d(ξ), then we also have a decomposition Φq = Φ1,q ⊗Φ2,q,

with Φ1,q the characteristic function of OK,q and with Φ2,q the characteristic function of OK,qjq.

If q is finite and divides d(ξ), then Φq is the characteristic function of the optimal lattice

End(Oc(ξ)q). Then
⊗

q|d(ξ)Φq is a sum ,

∑
α∈Oc/δOc

Φ1,α,d(ξ) ⊗Φ2,α,d(ξ),

where δ is a generator of the different ideal of Oc as before (e.g. if we write Oc = Z + Zt with

t ∈ OK, then we can take δ = t− t).

Combining all of the above, we obtain that,

Φ =
∑

α∈Oc/δOc

Φ1,α ⊗Φ2,a,

such that Φ1,α is the same as Φopt
α (from Definition 1.3) and Φ2,α is the same as Φopt

α except at

places not dividing d(ξ). We then have

θ(g, 1⊗ ξ,Φ) =
∑

α∈Oc/δ

θ(g, χ,Φ1α)θ
(
g, χ−1, Φ2α

)
.
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More precisely, we consider V1 := (K,N) and V2 = (Kj,−j2N). We define an isomorphism

ι : V1,A−→V2,A
as follows.

1. If q =∞, then ι∞ is the identity map. In particular, ι is an isometry and ι∗∞(Φ2,∞) = Φ1,∞.

2. If q - d(ξ), then ιq(x) = xjq (with jq as in Definition 1.10). Then Q(ιq) = −j2q and

ι∗q(Φ2,q) = Φ1,q.

3. If q | d(ξ), then ιq(x) = xjq with j2q = 1. Then Q(ιq) = −j2q = −1 and ι∗qΦ2,α,q = Φ1,−α,q.

This shows that with the adéle (−1)∞ = (1,−1,−1, . . .),

Q(ι) = (−1)∞ ∏
q-d(ξ)

j2q,

and ι∗Φ2,a = Φ
opt
−a. Then the isomorphism ι has normM = disc(O) and so by Proposition 1.5, we

have

θ
(
g, χ−1, Φ2,α

)
= |M|

1
2θ
(
ga(M)−1ε∞, χ−1, Φopt

−α

)
.

In comparison with Equation 1.7, we get

θ(g, 1⊗ ξ,Φ) = |M|
1
2ϕopt(g, ga(M)−1

)
.

2 Modular forms

2.1 Modular forms in finite level

We start with some background on the theory of modular forms in finite level, much of which

can be found in the classical text of Shimura [Shi94, Chapter 6], Deligne–Rapoport [DR73, Chap-
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ters IV, VII], and Katz–Mazur [KM85, Chapters 3-4] (also cf. [DI95, Sections 7-9] and [Kat73,

Section 1]).

For each positive integer n, we have a modular curve Y(n) over Z[1/n] parametrizing iso-

morphism pairs (E,φ : (Z/nZ)2−→E[n]). This curve is not geometrically connected. Over the

complex numbers, we have a uniformization,

Y(n)(C) = SL2(Z)\H× GL2(Z/nZ),

so that a pair (z, ( a bc d )) in the right-hand side gives a pair (E,φ) in the left-hand side,

E = C/(Zτ+ Z),

φ(m1,m2) =

(
am1τ+ bm2

n
,
cm1τ+ dm2

n

)
.

The set of connected components is isomorphic to (Z/nZ)×, and the decomposition is given by

Y(n)(C) = Γ(n)\H×


a 0

0 1


∣∣∣∣∣∣∣a ∈ (Z/nZ)×

.
In fact, each of these connected components is defined over Z[1/n, ζn], where ζn is a primitive

n-th root of unity, and the corresponding component for each a ∈ (Z/nZ)× parametrizes pairs

(E,φ) such that the Weil pairing 〈φ(1, 0), φ(0, 1)〉 is equal to ζan.

When n ≥ 3, we have a universal elliptic curve E(n) on Y(n) which can be constructed as

follows,

E(n) :=
(
Z2 o SL2(Z)

)
\H× C× GL2(Z/nZ).

Here (m1,m2, γ) ∈ Z2 o GL2 acts on the right-hand side via,

(z, u, g) 7−→ (
γz, j(γ, z)−1(u+mz+ n), γg

)
,

38



where for γ = ( a bc d ) ∈ GL2(R),

j(γ, z) := |detγ|−
1
2 (cz+ d).

Let ω denote the sheaf of relative invariant differentials on E(n). Then for any integer k, we

have the space H0(Y(n),ωk) of weakly holomorphic modular forms of weight k.

Over the complex numbers, every such form can be written as a function f(z, g)duk on H ×

GL2(Z/nZ) that is holomorphic in z and invariant under the action by every γ ∈ GL2(Z):

f(γz, γg)d(γu)k = f(z, g)duk.

Notice that for γ = ( a bc d ),

d(γu) = j(γ, z)−1du,

so then for all γ ∈ SL2(Z),

f(γz, γg) = f(z, g)j(γ, z)k.

The modular curve Y(n) (resp. universal family E(n) ) can be extended into a projective curve

X(n) (resp. a generalized elliptic curve over X(n)) by adding cusps C(n) (resp. Gm). We can

extend the sheaf ω to X(n), and call H0(X(n),ωk) (resp. H0(X(n),ωk(−C(n))) the space of

modular forms. (resp. cusp forms).

Over the complex numbers, we have

X(n)(C) = GL2(Z)+\Ĥ × GL2(Z/nZ),

where Ĥ is the extended upper half-planeH ∪ P1(Q). The cuspidal divisor is described as

C(n) = SL2(Z)\P1(Q)× GL2(Z/nZ).

At each cusp c, there is a well-defined holomorphic coordinate qγ on X(N). If c is represented by
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(a, g) ∈ P1(Q)×GL2(Z/nZ) with stabilizerNa,g in SL2(Z), then qc is represented by a generator

of holomorphic functions invariant under Na,g. For example if c is represented by ∞ × e ∈
P1×GL2(Z/nZ), which has stabilizerN(nZ), then we take qc = e

2πiz
n . A modular form f(z)duk,

or rather f(z), is then a weakly modular form with Taylor expansion at each cusp,

f(z) =
∑
i≥0

ac,iq
i
c.

Such a form is a cusp form if it vanishes at cusps, i.e. ac,0 = 0.

For a Z[1/n]-algebra R, we respectively define the space of modular forms and the space of

cusp forms,

Mk

(
U(n), R

)
= H0

(
X(n)R,ω

k
)
,

Sk
(
U(n), R

)
= H0

(
X(n)R,ω

k
(
− C(n)

))
.

These modular forms have Taylor expansions at each cusp with R[ζn]-coefficients. Now we have

the following q-expansion principle (cf. [Kat73, Section 1.6]).

Proposition 2.1 (q-expansion principle). Let f be a modular form and c a cusp of X(n). Assume

that the q-series of f at c vanishes, then f vanishes on the connected component of X(n) containing

c.

In practice, we only consider the cusp cu = (i∞, a(u)) for u ∈ (Z/nZ)× and write af( in , u)

for ai,cu . Then we have a q-expansion at cu by

f(z) =
∑
i≥0

af

(
i

n
, u

)
q
i
n . (2.1)

The advantage of this expression is the invariance under pull-back by X(n ′)−→X(n) for any

multiple n ′ of n.
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2.2 Modular forms in infinite level

Consider the projective limit of modular curves and cusp forms,

Y : = lim←−
n

Y(n)Q,

X : = lim←−
n

X(n)Q,

Sk : = lim−→
n

Sk
(
U(n),Q

)
.

Over the complex numbers, we have

Y(C) = SL2(Z)\H× GL2(Ẑ),

X(C) = SL2(Z)\Ĥ × GL2(Ẑ).

The set of connected components is given by

GL2(Q)+\GL2(Q̂)
∼−−→ Q×+\Q̂× ' Ẑ×. (2.2)

Using the identity,

GL2(Q̂) = GL2(Q)+GL2(Ẑ),

we can write the above as

Y(C) = GL2(Q)\H± × GL2(Q̂),

X(C) = GL2(Q)\Ĥ± × GL2(Q̂).

In this terminology, a cusp form f ∈ Sk(C) is a function f onH± × GL2(Q̂) such that,

1. f is invariant under right translation of some open subgroup U of GL2(Q̂);

2. f is holomorphic in z;
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3. for any γ ∈ GL2(Q),

f(γz, γg) = j(γ, z)kf(z, g);

4. f vanishes at each cusp.

q-expansions

Notice that the set of cusps in level U is given by

CU(C) = GL2(Q)+\P1(Q)× GL2(Q̂)/U
∼−−→ {i∞}× B(Q)+\GL2(Q̂)/U.

Notice that N(Q) is dense in N(Q̂). So taking a limit gives,

C(C) ∼−−→ {i∞}×N(Q̂)M(Q)+\GL2(Q̂),

where M(Q)+ denotes the group of diagonal matrices in Q with positive determinant. Then for

the last condition, we need only consider the cusp represented by i∞× GL2(Q̂)/U. Assume that

c is represented by (i∞, gU), then we have the stabilizer,

Nc := N(Q) ∩ gUg−1 = N(mZ)

for somem ∈ N. Then we have the q-expansion

f(z, g) =
∑
n≥1

Af

( n
m
, g
)
q
n
m .

So we defined a function Af : Q×+ × GL2(Q̂)−→C., which does not depend on the choice of U.

Relation to automorphic forms

Now we describe how to consider modular forms as automorphic forms (cf. [Cas73, Section 3],

[Bum97, Section 3.6]). For a modular form f of weight k, we first define a function on GL2(R)+×
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GL2(Q̂),

ϕ(g) := f(g∞(i), g∞)j(g∞, i)−k, (2.3)

where g = (g∞, g∞). For γ ∈ GL2(Q)+, we then have,

ϕ(γg) = f(γg∞(i), γg∞)j(γg∞, i)−k
= f(γg∞(i), γg∞)j(γ, g∞(i))−kj(g∞, i)−k
= f(g∞(i), g∞)j(g∞, i)−k
= ϕ(g).

From the construction, it is clear that ϕ is invariant under R+ and has weight k under SO2, as

j


 cos θ sin θ

− sin θ cos θ

 , i
 = −(sin θ)i+ cos θ = e−iθ.

So ϕ is invariant under GL2(Q)+ on both factors. We then uniquely extend this function

to a function on GL2(A) that is invariant under left translation by defining ϕ(g) := ϕ(hg) for

h ∈ GL2(Q)− and g ∈ GL2(A) − (GL2(R)+ × GL2(Q̂)). With z = x+ yi, we also can recover f

from ϕ by,

f(z, g∞) = y−k/2ϕ


y x

0 1

 , g∞
. (2.4)

Now we compare the Fourier expansion of both sides to get,

∑
r∈Q×

Af(r, g
∞)e2πirz = y−k/2

∑
r∈Q×

Wϕ


r 0

0 1


y x

0 1

 , g∞
,

whereW(g) is the Whittaker function for ϕ,

Wϕ(g) :=

∫
[N]

ϕ(ng)ψ−1(n)dn.
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Observe that r 0

0 1



y x

0 1

 , g∞
 =


ry rx

0 1

 ,
r∞ 0

0 1

g∞
.

Therefore,

∑
r∈Q×+

Af(r, g
∞)e2πirz = y−k/2

∑
r∈Q×

Wϕ


ry 0

0 1

 ,
r∞ rx

0 1

g∞
.

= y−k/2
∑
r∈Q×

e2πirxWϕ


ry 0

0 1

 ,
r∞ 0

0 1

g∞
.

Comparing the coefficients of e2πirx, we obtain:

Wϕ


ry 0

0 1


r∞ 0

0 1

g∞
 =


Af(r, g

∞)yk/2e−2πry if r > 0

0 if r < 0

For any positive integer k, we define a Whittaker function Wk on GL2(R) that is supported on

GL2(R)+ with weight k and is invariant under R× such that

Wk

y x

0 1

 := yk/2e2πiz. (2.5)

We have shown the following.

Proposition 2.2. The Whittaker functionWϕ of ϕ has the form:

Wϕ(g) =Wk(g∞)Wϕ(g
∞)

Moreover, the Equations 2.3 and 2.4 give a one-to-one correspondence between holomorphic forms

of weight k and automorphic forms of weight k with the following compatibility of Fourier coeffi-
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cients for any r ∈ Q×+:

Af(r, g
∞) = rk/2Wϕ


r∞ 0

0 1

g∞
,

In the correspondence of Proposition 2.2, we call f the modular avatar of ϕ, and ϕ the auto-

morphic avatar of f.

2.3 Galois action and q-expansion principle

Let Sk(C) = Sk ⊗Q C denote the space of weight-k cusp forms defined over C and let

A0,k([GL2]) denote the space of cuspidal automorphic forms ϕ of weight k. Both have an ac-

tion by GL2(Q̂). Equations 2.3 and 2.4 define an isomorphism between these representations of

GL2(Q̂):

Sk(C)
∼−−→ A0,k([GL2]).

Galois action

It is clear that Aut(C/Q) acts on Sk(C); we can recover Sk as its invariants. This induces an

action on the A0,k([GL2]). In the following, we want to write down the corresponding formula for

the Galois action on A0,k([GL2]). First, we need to describe the Galois action on cusp forms in

terms of q-expansions.

Notice that the set of cusps is defined over Qab, the maximal abelian extension of Q. The

action of Gal(Qab/Q) on this set is given by the left action by an element aσ :=
(
λσ 0
0 1

)
where λ :

Gal(Qab/Q)
∼−−→ Ẑ× is the isomorphism induced from action on roots of unity and σ ∈ Aut(C).

From the action of Aut(C) on the space of modular forms (via its action on cusps and coefficients),

fσ(z, g) has Fourier coefficients given by

Afσ(r, g) = Af
(
r, a−1

σ g
)
σ.
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By Proposition 2.2,

Wϕ(g
∞) = Af(1, g

∞).

Thus an action of Aut(C) can be defined on the space W(ψ∞) of the Whittaker function on

GL2(Af) by

W−→Wσ (2.6)

g∞ 7−→W
(
a−1
σ g

∞)σ.
q-expansion principle

By the q-expansion principle in finite level of Proposition 2.1, we have a q-expansion principle

in infinite level as well: a modular form f vanishes on X if and only if its q-expansion vanishes on

at least one cusp for each connected component of X.

By Equation 2.2, the set of connected components of X is given by Xu for u ∈ Ẑ×, the con-

nected component of X containing the image of (z, a(u)) ∈ Ĥ × GL2(Af). We can define the

standard cusp on Xu by cu = (i∞, a(u)). Then by the q-expansion principle, f is determined by

its q-expansion at the cusp cu. More precisely (note the abuse of notation), we denote for each

u ∈ Ẑ×,

f(z, u) = f
(
z, a(u)

)
,

af(r, u) : = Af
(
r, a(u)

)
.

Thus the q-expansion of f at c(u) is given by

f(q, u) =
∑
r∈Q×+

af(r, u)q
r.
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The Galois action of Aut(C) on q-expansions can then be written for each u ∈ Ẑ× as,

fσ(q, u) =
∑
r∈Q×+

af
(
r, λ−1σ u

)
σqr. (2.7)

Recall that on the automorphic side, we have the Kirillov model for a cuspidal automorphic

form ϕ ∈ A0,k([GL2]):

κϕ(x) =Wϕ

(
a(x)

)
.

By Proposition 2.2, we have the following relation:

af(r, u) = r
1
2κϕ(ru). (2.8)

Due to the decomposition A∞,× = Q×+ × Ẑ×, Equation 2.8 allows one to recover af and κϕ from

each other.

2.4 Newforms

Decompositions

We study the decomposition of Sk into the direct sum of irreducible representations of GL2(Q̂).

We may do this by first working on C and then studying the action by Aut(C) later. Over the

complex numbers, via Equations 2.4 and 2.3, there is an isomorphism:

Sk(C)
∼−−→ A0,k([GL2]). (2.9)

We know that the right hand is a subspaceA0([GL2]) of cusp forms which can be decomposed into

irreducible representations:

A0([GL2]) =
⊕
π

π,
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where π range over all irreducible cuspidal representations of GL2(A). Notice that by their Whit-

taker functions, each π has a further decomposition into irreducible representation GL2(Qp):

π =
⊗
p≤∞πp.

We defineWk ⊂ W(ψ∞) to be the representation of GL2(R) generated by weight-k holomor-

phic Whittaker functionWk (defined in Equation 2.5). Then we have

A0,k([GL2]) =
⊕
π∞=πk

Wk ⊗W(π∞, ψ∞)
∼−−→ ⊕

π∞=πk

W(π∞, ψ∞).

Combining this with the isomorphism from Equation 2.9, we obtain a decomposition of Sk(C)

into the direct sum of irreducible representations:

Sk(C)
∼−−→ ⊕

π∞=πk

W(π∞, ψ∞). (2.10)

Definition of newforms

For each irreducible representation π =W(π,ψ) on the right-hand side of Equation 2.10, there

is a notion of level N and newform ϕnew. For each positive integer N, define

U1(N) :=

u ∈ GL2(Ẑ)

∣∣∣∣∣∣∣u ≡
∗ ∗
0 1

 (mod N)

.
Then there is a minimalN called the level of π such that πU1(N) 6= 0. For suchN, dimπU1(N) = 1.

In the Whittaker model, we can normalize a formWnew ∈ πU1(N) such thatWnew(e) = 1. Thus we

get a newform in π ⊂ A0,k([GL2]) by

ϕnew(g) :=
∑
a∈Q×

Wnew


a 0

0 1

g
.
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Let ω be the central character of π. Then ϕnew has character ω under the action by the larger

group:

U0(N) :=

u ∈ GL2(Ẑ)

∣∣∣∣∣∣∣u ≡
∗ ∗
0 ∗

 (mod N)

 = Ẑ× ·U1(N).

The isomorphism in Equation 2.10 gives a corresponding weight-k cusp form fnew ∈ Sk(C).

We show that fnew is the classical newform for Γ1(N) with nebentypusω∞, so we may equivalently

consider the corresponding π and ϕnew to be “newforms” (cf. [Cas73, Section 3]).

Proposition 2.3. There are natural one-to-one correspondences between the following objects:

1. irreducible subrepresentations π of A0,k([GL2]) under GL2(A);

2. newforms ϕnew in A0,k([GL2]);

3. newforms fnew in Sk(C);

4. irreducible subrepresentations π∞ of Sk(C) under GL2(Q̂).

Sketch of proof. First, since fnew is invariant under U1(N), we see that fnew is a modular form on

the modular curve

XU1(N),C := GL2(Q)+\H× GL2(Q̂)/U1(N).

Use the decomposition GL2(Q̂) = GL2(Q)+ ·U1(N) to see that this modular curve is actually the

classical modular curve

X1(N) = Γ1(N)\H,

where

Γ1(N) :=

γ ∈ SL2(Z)

∣∣∣∣∣∣∣γ ≡
∗ ∗
0 1

 (mod N)

 = U1(N) ∩ GL2(Q)+.

Therefore, fnew is a classical modular form for Γ1(N).
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Second, since ϕnew has characterω under U0(N), fnew has characterω under

Γ0(N) :=

γ ∈ SL2(Z)

∣∣∣∣∣∣∣γ ≡
∗ ∗
0 ∗

 (mod N)

 = U0(N) ∩ GL2(Q)+,

as follows:

ω


a b

0 d


 = ω∞(d).

Therefore fnew has nebentypusω∞, i.e.

fnew ∈ Sk(Γ1(N),ω∞).

Third, ϕnew is in the one-dimensional space πU1(N), which is an eigenspace for the Hecke

algebra

T1(N) := C
[
U1(N)\GL2(Q̂)/U1(N)

]
.

Thus fnew is an eigenform under the Hecke algebra

C[Γ1(N)\GL2(Q)/Γ1(N)]
∼−−→ C

[
U1(N)\GL2(Q̂)/U1(N)

]
= T1(N).

This shows that fnew is an eigenform in Sk(Γ1(N),ω∞).

Fourth, since U1(N) is the minimal level of ϕnew, N is the minimal level fnew. This shows that

fnew is a newform with level N.

Finally, since ( 1 Z
0 1 ) ⊂ Γ1(N), fnew(z) has a q-expansion:

fnew =
∑
n≥1

anq
n.

By Equation 2.8,

an =
√
n · κ(n∞).
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This shows that a1 = 1 (recall that Wnew(e) = 1). Combined with the previous steps, fnew is a

normalized newform in Sk(Γ1(N),ω∞). Furthermore, fnew generates the irreducible subrepresen-

tation π(fnew) of Sk(C) of GL2(Q̂) corresponding to π∞ generated by ϕnew (via the isomorphism

in Equation 2.10).

Conversely, starting with a new form fnew, we can reverse the above procedure to construct a

newform ϕnew ∈ A0,k([GL2]) in the sense that ϕnew is an eigenform under T1(N), with minimal

level U1(N) and normalized so that κ(1) = 1. It is well-known that such an automorphic form

generates an irreducible subrepresentation π(ϕnew) of A0,k[GL2].

Rationality and integrality

The correspondences in Proposition 2.3 are Aut(C)-equivariant, with the action on the auto-

morphic side given by Equation 2.6. Then the objects in Proposition 2.3 also have the same field

of definition. Such a field is largely easy to describe in terms of newforms (as modular forms):

if f is a newform with q-expansion
∑

n anq
n, then for any σ ∈ Aut(C), the form fσ will have

q-expansion
∑

n a
σ
nq

n. In fact, if the q-expansion of fσ is
∑

n bnq
n, then

an = af(n, 1),

bn = afσ(n, 1).

By Equation 2.7,

bn = afσ(n, 1) = af
(
n, λ−1σ

)
σ = af(n, 1)

σ = aσn

where in the last step, we use the fact that f on H× GL2(Q̂) is invariant under U1(N). Therefore

the field of definition of f is the subfield Q(f) of C/Q generated by {an}.

Another advantage of using f for this description is that the coefficients an are always algebraic

integers. They all come from Galois representations.

Theorem 2.4 (Eichler–Shimura [Eic57, Shi94] for k = 2, Deligne [Del71] for k > 2, Deligne–Serre [DS74]

for k = 1). Let f be a newform with q-expansion
∑

n anq
n. Then there is a system of `-adic Galois
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representations

ρ` : Gal
(
Q/Q

)
−→GL2(Q`),

such that for all p - `N,

ap = Tr(ρ`(Frobp)).

Then we can define the ring O(f) as the ring of integers of Q(f). Then all of the objects in

Proposition 2.3 have an integral model defined over O(f).

2.5 The Harris–Venkatesh period

In the following, we extend the work of Harris–Venkatesh [HV19] and Darmon–Harris–Rotger–

Venkatesh [DHRV22] about the Shimura class to the adelic setting.

Modular curves

Recall that for any positive integerN, there is a modular curveX(N) defined over Q. This curve

is not geometrically defined over Q. In fact,O(X(N)) is the ring of integers of the cyclotomic field

Q(ζN). This curve has a smooth model over Z[1/N], which we still denote by X(N). If N ≥ 3,

then there is a bundle ω of weight-one forms on X(N) and a bundle Ω = ΩX(N)/Z[1/N] of relative

differentials with the Kodaira–Spencer map,

KS : ω⊗ω ∼−−→ Ω(C(N)),

where C(N) is the cuspidal divisor on X(N). The Kodaira–Spencer map induces a pairing

H0(X(N),ω(−C(N)))⊗Z[1/N] H
0(X(N),ω(−C(N))) −→ H0(X(N),Ω(−C(N))). (2.11)
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This is the product map from the space of cuspidal one-forms to differential one-forms on X(N).

Serre duality defines another pairing,

H0
(
X(N),ΩX(N)

)
⊗Z[1/N] H

1
(
X(N),OX(N)

)
−→ H1(X(N),Ω)

∼−−→ Z[1/N, ζN], (2.12)

where the last isomorphism is the trace map in Serre duality. Both of these pairings are compatible

with pull-back maps and the action by GL2(Z/NZ).

Now fix a finite set Σ of primes and consider the projective system of smooth curves over

Z[1/Σ] indexed by positive integers N, with prime factors in Σ:

XΣ(N) := X(N)⊗Z[1/N] Z[1/Σ].

Let XΣ denote the limit of this projective system. Then XΣ has an action by GL2(QΣ), where QΣ is

the product of Qp with p ∈ Σ. Taking limits, we obtain the following two pairings.

H0(XΣ,ω(−CΣ))⊗Z[1/Σ] H
0(XΣ,ω(−CΣ)) −→ H0(XΣ,Ω(−CΣ)). (2.13)

H0(XΣ,ΩXΣ)⊗Z[1/Σ] H
1(XΣ,OXΣ) −→ H1(XΣ,Ω)

∼−−→ Z[1/Σ, µΣ], (2.14)

where µΣ is the group of roots of unity whose order is divisible only by primes in Σ and where the

last isomorphism is deduced from the inductive system of modified trace maps,

H1(X(N,Ω))
∼−−→ Z[1/N, ζN]

x 7→
∣∣∣SL2

(
Z/
(∏

q∈Σ q
)
Z
)∣∣∣

|SL2(Z/NZ)|
· Tr(x).

These pairings are compatible with the action by GL2(QΣ). Notice that the action of GL2(QΣ) on

Z[1/Σ, µΣ] is given by

GL2(QΣ)
det−→ Q×Σ −→ Z×Σ = Aut(µΣ),
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where the second step is taking the standard projection for each factor Q×p ,

Q×p = pZ × Z×p −→ Z×p .

Define a GL2(QΣ)-invariant map

τ : Z[1/Σ, µΣ] −→ Z[1/Σ] (2.15)

using the trace map TrQ(µN)/Q : Q(µN)→ Q:

τ(x) =

∏
p∈Σ(1− p)

φ(N)
TrQ(µN)/Q(x).

Concretely, we can compute the image of τ for any root of unity ζ ∈ µN of order N =
∏

p∈Σ p
αp ,

τ(ζ) =


∏

αp=0
(1− p) all αp ≤ 1

0 otherwise
.

Then we get a new pairing,

H0(XΣ,ΩXΣ)⊗Z[1/Σ] H
1(XΣ,OXΣ) −→ Z[1/Σ], (2.16)

compatible with the action by GL2(QΣ).

The Harris–Venkatesh period in finite level

Fix a pair of primes p, ` ≥ 5 and let `t be the highest power of ` dividing p−1. Fix a surjection

log : F×p −→ R := Z/`tZ.
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For any positive integer N, we have a curve X0(p,N) defined by the open subset U0(p,N) :=

U0(p)∩U(N). In this setting, Harris–Venkatesh [HV19, Section 3.1] describes the Shimura class

Sp(N) ∈ H1(X0(p,N)R,O) satisfying the properties,

1. Sp(N) is invariant under GL2(Z/NZ);

2. for any projection π : X0(p,N2) → X0(p,N1) with N1 | N2, we have that π∗Sp(N1) =

Sp(N2).

Notice that U = U0(p) has two embeddings into the maximal subgroup U(1): the trivial embed-

ding i1 and the embedding i2 obtained via conjugation by ( p 1 ). This induces two projections,

π1, π2 : X0(p,N) −→ X(N).

The pull-back onω yields a pairing

H0
(
X(N)R,ω

(
− C(N)

))
⊗H0

(
X(N)R,ω

(
− C(N)

))
−→H0(X(N)R,Ω

(
− C(N)

))
α⊗ β 7−→ π∗1α · π∗2β.

Composition with the pairing 〈−,Sp〉 then gives a GL2(Z/NZ)-equivariant pairing on cuspidal

one-forms with coefficients in R,

PHV : H0
(
X(N)R,ω

(
− C(N)

))
⊗H0

(
X(N)R,ω

(
− C(N)

))
−→R[ζN].

α⊗ β 7−→ Sp(π
∗
1α · π∗2β).

We call PHV the Harris–Venkatesh period (or Harris–Venkatesh pairing) in levelN. It is compati-

ble with pull-backs.
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The Harris–Venkatesh period in infinite level

Fix a finite set Σ of primes not containing p and `, and consider the projective system of curves

X0(p,N) with all of the N contained in Σ. Let X0,Σ(p) denote its limit, which has a natural action

by GL2(QΣ). Then the Harris–Venkatesh period in level N induces a pairing at infinite level:

H0(XΣ,R,ω(−CΣ))⊗H0(XΣ,R,ω(−CΣ)) −→ R[µΣ]. (2.17)

Composition of the pairing of Equation 2.17 with the map τ defined in Equation 2.15 yields the

Harris–Venkatesh period in infinite level,

PHV : H0(XΣ,R,ω(−CΣ))⊗H0(XΣ,R,ω(−CΣ)) −→ R. (2.18)

Note that the left-hand side of Equation 2.18 consists of the spaces of cuspidal modular forms of

weight 1 unramified outside of Σ.

The period in the setting of Harris–Venkatesh

The period PHV(α ⊗ β) is related to the setting of Harris–Venkatesh [HV19] in the following

way. Let f be a cuspidal newform of weight 1 and level Γ1(N) with coefficients generating a

subfield Q(f) ⊂ C with ring of integers O(f). Assume that N is prime to p`. Then we may

consider f and its dual f∗ as elements of H0(X1(N)R,ω(−C(N))). Then there is a form

G = TrΓ0(N)/Γ0(Np)(f(z)f
∗(pz)) ∈ H0

(
X0(p)O(f),Ω

)
.

Pairing with the Shimura operator Sp on X0(p) over R yields a value,

Sp(G) ∈ O(f)/`t.
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This value is related to the Harris–Venkatesh period via

Sp(G) =
∑

γ∈U0(p)/U0(Np)

PHV(γf⊗ γf∗)

= [U(1) : U0(N)] · PHV(f⊗ f∗).

Since [U(1) : U0(N)] is not necessarily invertible in R (its order at ` is
∑

q|N ord`(q+1)), the value

PHV(f⊗ f∗) is more primitive than 〈G,Sp〉.

We finish this section with the following observation, which will not be used elsewhere in this

article. See Vignéras [Vig89] for the definitions and details on the modular Steinberg representation

Stp and the induced representation i(µ) = IndGB(µ).

Lemma 2.5. Let GL2(Qp,`) denote the group of finite adèles of GL2 with trivial component at p

and `. For any integer m coprime to `, let X
`

denote the profinite modular curve lim←−(m,`)=1
X(m)

over Spec (k) = Spec (Z/`tZ). Let S ∈ H1(X`,O)〈1〉 denote the Shimura class and consider the

representation π(S) of GL2(Qp,`) on the subspace of H1(X
`
,O)〈1〉 generated by S. Then there is

an isomorphism of abstract representations

π(S)
∼−−→ Stp ⊗

 ⊗
(q,p`)=1

trivq

,
where trivq is the trivial representation of GL2(Qq) and Stp is the modular Steinberg representation

of GL2(Qp).

Proof. The characterization for primes q 6= p follows from the fact that the Shimura covering at

levelm ′ pulls back to the Shimura covering at levelm wheneverm ′ | m. To characterize the local

component at p, it suffices to take t = 1. The representation of GL2(Qp) over Z/`Z generated by

S is a subquotient of the induced representation i(µ). Since N ≡ 1 (mod `), it follows from a

result of Vignéras [Vig89, Theorem 3(c)] that i(µ) is semisimple and dim i(µ)K0(p) = 2. On the

other hand, Sp is not invariant under GL2(Zp) but is invariant under its Iwahori subgroup K0(p);
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thus it must generate a representation isomorphic to Stp.

2.6 A theta identity for the modular avatar of optimal forms

Let K/Q be a quadratic extension and χ a character of Gal(K/K). Then there is a newform fχ

corresponding to the induced Galois representation ρ = IndQ
K(χ). More precisely, the q-expansion

fχ =
∑

n aχ(n)q
n is determined by the equality of L-functions:

∑
aχ(n)n

−s = L(f, s) = L(ρ, s) = L(χ, s) =
∏
℘-c(χ)

(1− χ(℘)N(℘)−s)−1,

where c(χ) ⊂ OK is the conductor ideal of χ. Let ϕχ be the automorphic avatar of fχ. Then ϕχ

can also be defined as a theta lifting as in Equation 1.6.

More generally, for any function locally constant functionΦ∞ : K̂−→C with compact support

we have a modular form fχ,Φ∞(z, u) whose automorphic avatar is θ(g, χc, Φ), where Φ = Φ∞ ⊗
Φ∞ ∈ S(KA) withΦ∞ the standard function (cf. Definition 1.7). By Equations 1.3 and 2.8, fχ,Φ∞
has the q-expansion, for u ∈ Ẑ×,

fχ,Φ∞(q, u) =
∑
r∈Q+

aχ,Φ(r, u)q
r,

with coefficient aχ,Φ(r, u) nonzero only if ru = N(t0) for some t0 ∈ K̂×. In this case, it is given

by,

aχ,Φ(r, u) =

∫
K̂1
Φ∞(tt0)χ(tt0)dt, (2.19)

where K̂1 is the subgroup of K̂× of norm 1 and the measure is taken so that the volume of its

maximal compact subgroup K̂1 ∩ Ô×K is 1. For example, for fχ, we take Φ∞ =
⊗

v-∞Φχv defined

in Section 1.4.

Let π∞(χ) be the irreducible representation of GL2(Q̂) of modular forms generated by fχ. We

58



will consider the tensor product of modular forms in two variables generated by fξ and fχ−1:

π∞(χ)⊗ π∞(χ−1).

Notice that since χ is unitary, fχ−1 can be obtained from fχ by complex conjugation on the coef-

ficients in its q-expansion. In this space, we have an optimal form fopt whose automorphic avatar

ϕopt is given by Equation 1.7. For the q-expansion, we take Φopt,∞
α ’s as in Definition 1.3: let

c = c(ξ) denote the conductor of ξ = χ1−ε and write Oc = Z+ cOK = Z+ Zt for some t ∈ Oc;

let δ = t− t, a generator of the different ideal δ of Oc; then for each α ∈ Oc/δOc, we take Φα to

be the characteristic function of

Ôc +
α

δ
.

Then by Equations 1.8, 2.8, and 5.5,

fopt(q1, q2, u1, u2) =
∑

r1,r2∈Q+

aopt(r1, r2, u1, u2)q
r1
1 q

r2
2 , (2.20)

aopt(r1, r2, u1, u2) :=
∑

α∈Oc/δ

aχ,Φopt,∞
α

(r1, u1)aχ−1,Φopt,∞
−α

(−r2, u2),

where u ∈ Ẑ× and the right-hand side is defined as in 2.19.

Notice that Equation 2.19 shows that aχ,Φopt,∞
α

(r, u) is nonzero only if ru = N(h0) for some

h0 ∈
⋃
α

(
Oc +

α

δ

)
=
1

δ
Oc.

It follows that aχ,Φopt,∞
α

(r, u) is nonzero only if r ∈ M−1Z, where M = −δ2 is the discriminant

of Oc. Thus, fopt is a modular form on X(M) × X(M), with M the discriminant of Oc, whose

q-expansion in Equation 2.1 is given by Equation 2.20.

We embed imaginary K into a definite quaternion algebra B and fix an Eichler order O with

discriminant M and a finite character of [Q×]. As in Section 1.6, we define two spaces A± =

A(ω±) of automorphic forms on [B×] with central character ω±1, invariant under U1(M), and
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invariant under the action by the maximal compact subgroup U∞ of B×∞. As in Section 1.6, we

define the analogous space Ξ± := Ξ(ω±) of Hecke characters of [K×] and the projection from

Equation 1.15:

[−] : Ξ±−→A±
We have a theta lift operator (cf. [DHRV22, Sections 1.4 and 2.2], [Eme02], [Gro87, Proposi-

tion 5.6]),

ΘM : A+ ⊗A−−→M2(Γ0(M)) (2.21)

ϕ1 ⊗ϕ2 7−→∑
n≥0

〈ϕ1,Tnϕn〉qn,

where the left hand side is the modular avatar of θ(g,ϕ1⊗ϕ2, ΦO) in Proposition 1.9. This applies

in particular to ξ± ∈ Ξ±:

ΘM([ξ1]⊗ [ξ2]) =
∑
n≥0

〈[ξ1],Tn[ξ2]〉qn,

IfO is ξ-optimal as in Definition 1.10, then apply the above identity to pushforwardsϕ1 := [1]

and ϕ2 := [ξ]. By Proposition 1.11 withM = p,

fopt(z, pz) = Θp([1]× [ξ]). (2.22)

In fact, a comparison of Fourier coefficients shows that the optimal form is uniquely determined

as a two-variable modular form by its realization of the theta lifting Θp([1]× [ξ]).

Proposition 2.6. The optimal form fopt(z1, z2) is uniquely determined by satisfying Equation 2.22

for all primes p ≥ 5.

Proof. Suppose that g(z1, z2) is a two-variable modular form such that for all primes p ≥ 5,

g(z, pz) = Θp([1]× [ξ]).
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Let am,n, bm,n, and cp,k be the Fourier coefficients of fopt(z1, z2), g(z1, z2), and Θp([1] × [ξ])

respectively; write q1 = e2πiz1 , q2 = e2πiz2 , and q = e2πiz so that,

fopt(z1, z2) =
∑
m,n≥0

am,nq
m
1 q

n
2 ,

g(z1, z2) =
∑
m,n≥0

bm,nq
m
1 q

n
2 ,

Θp([1]× [ξ]) =
∑
k≥0

cp,kq
k.

Note that by Equation 2.22 and the assumption that g(z, pz) = Θp([1]× [ξ]),

fopt(z, pz) =Θp([1]× [ξ]) = g(z, pz),∑
m,n≥0

am,nq
m+pn =

∑
k≥0

cp,kq
k =

∑
m,n≥0

bm,nq
m+pn.

Comparing Fourier coefficients gives,

∑
m+pn=k

am,n = cp,k =
∑

m+pn=k

bm,n,

for all k ≥ 0 and for all primes p ≥ 5. In particular for all k ≥ 0, taking any prime p > k gives,

ak,0 = cp,k = bk,0.

We now show that am,n = bm,n for all m,n ≥ 0 by induction on n. Suppose that am,n = bm,n

for all m ≥ 0 and 0 ≤ n ≤ n0. Fix any m0 ≥ 0 and any prime p ≥ max(5,m0). Taking

k = m0+p(n0+ 1), the only solutions (m,n) ∈ Z≥0×Z≥0 tom+pn = k have n ≤ n0+ 1, so

n0+1∑
n=0

ak−pn,n = cp,k =

n0+1∑
n=0

bk−pn,n.

But am,n = bm,n for eachm ≥ 0 and n ∈ {1, . . . , n0}, so am0,n0+1 = bm0,n0+1.
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3 Elliptic units

In this setting with K/Q an imaginary quadratic number field, the space UAd(ρ) of units and the

reduction map have simple descriptions. First, Ad(ρ) depends only on the “antinorm” ξ := χ1−ε

with,

Ad(ρ) = η⊕ IndGQ
GK

(ξ),

where η is a quadratic character of Gal(Q/Q) associated to K/Q. We may realize Ad(ρ) on the

following Z[ξ]-module,

M := Z[ξ]e0 + Z[ξ]e1 + Z[ξ]e2,

where g ∈ Gal(K/K) and ε respectively act as the matrices,


1

ξ(g)

ξ(g)−1

 ,

−1

1

1

 .

Let c = c(ξ) be the conductor of ξ and let Hc be the associated ring class field. Then ξ factors

through Gal(Hc/K). We define the Z[ξ]-module of units,

UAd(ρ) := HomGQ

(
M,O×Hc

) ∼−−→ O1K ⊗ Z[ξ]⊕
(
O×Hc ⊗ Z[ξ]

)
GK ,

where O1K is the kernel of the norm O×K −→Z×. We will mainly work on,

Uξ :=
(
O×Hc ⊗ Z[ξ]

)
GK ,

which is the submodule of O×Hc ⊗ Z[ξ] of elements u such that,

uσ = ξ(σ)−1u,
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for all σ ∈ Gal(Hc/K).

Consider the distinguished element at the archimedean place corresponding to the unique com-

plex conjugation of Hc, x∞ := 2ρ(Frob∞) − Tr(ρ(Frob∞)) ∈ Ad(ρ). Evaluation at x∞ defines a

map,
UAd(ρ) Uξ

u u(x∞)

Choose a prime p of OHc over p. Then we have the reduction map,

redp : O×Hc −→ (OHc/p)× = F×p
N−→ F×p .

This induces the regulator map RegF×p and the element log` RegF×p ∈ Hom(Uξ,Z/`tZ⊗ Z[ξ]).

This map is equivalent to the reduction map in Darmon–Harris–Rotger–Venkatesh [DHRV22] by

the same argument as the proof of [DHRV22, Lemma 5.6] (and its generalization by Lecouturier

[Lec22, Theorem 2.5]).

Now we recall the elliptic units constructed by Darmon–Harris–Rotger–Venkatesh [DHRV22,

Section 5.1] with an auxiliary prime λ = ll split in K and coprime to c. Consider the modular unit

uλ on Y0(λ) (denoted ∆N on Y0(N) in [DHRV22, Section 4.4]),

uλ(z) :=
∆(z)

∆(λz)
∈ O(Y0(λ))×,

where ∆(z) = q
∏

n≥1(1−q
n)24 is the usual Ramanujan ∆ function (or modular discrimant) with

q = e2πiz. Recall that Y0(λ) is the modular curve parametrizing isogenies E1−→E2 of elliptic

curves of degree λ. For i ∈ {1, 2}, let πi be the projection,

πi : Y0(λ) Y0(1)

(E1−→E2) [Ei].

Let Z(1) ⊂ X(1) be the set of isomorphism classes of elliptic curves E with End(E) = Oc and

let Z0(λ) ⊂ X0(λ) be the subset consisting of points φ : E1−→E2 with both End(Ei) = Oc. Then
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all points of Z(1) and Z0(λ) are defined over Hc. In particular, up(x) ∈ H×c for all x ∈ Z0(λ). We

fix one point xc = C/Oc ∈ Z(1).

Notice that the projections πi from Y0(λ)−→ Y0(1) induce projections πi : Z0(λ)−→Z(1).
Fixing a splitting λ = l · l gives a lifting:

ηλ : Z(1) Z0(λ)

E (E−→E/E[l]).
We define elliptic units following Darmon–Harris–Rotger–Venkatesh [DHRV22, Definition 5.1],

uξ,λ :=
∑

σ∈Gal(Hc/K)

uλ(ηλ(xc))
σ ⊗ ξ(σ) ∈ H×c ⊗ Z[ξ]. (3.1)

Assume that ξ(l) generates the group Im(ξ). Let m(ξ) = N(1 − ξ(l)), which is equal to v if

|Im(ξ)| is a power of a prime v, and is equal to 1 otherwise. Then define,

uξ :=
m(ξ)

1− ξ
(
l
)uξ,λ. (3.2)

Proposition 3.1. uξ is a unit independent of the choice of the auxiliary prime λ.

Proof. uξ is clearly a unit since uξ,λ is a unit, so we only need to show that uξ is independent of

the choice of λ. By the definition of uξ, we need to show that for any two primes λ1 6= λ2 split in

K, (
1− ξ

(
l2
))
uξ,λ1 =

(
1− ξ

(
l1
))
uξ,λ2

where li is an invertible ideal in Oc and λiOc = li · li.

Consider the commutative diagram of isogenous elliptic curves,

C/Oc C/l−11

C/l−12 C/(l1l2)−1.

x1

x2 x4

x3
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By construction, the diagonal isogeny has square-free degree λ1λ2 and thus has a cyclic kernel

isomorphic to (Z/λ1Z)× (Z/λ2Z). Then this diagonal isogeny defines a point x on X0(λ1λ2) and

is represented by a point z ∈ H in the sense that x is represented by the λ1λ2-multiplication map,

x : C/(Z+ Zz)−→C/(Z+ Zλ1λ2z).

The two isogenies x1 and x2 are given by modular subgroups of ker(x) of order λ1 and λ2 respec-

tively. This implies the representations,

x1 : C/(Z+ Zz)−→C/(Z+ Zλ1z),

x2 : C/(Z+ Zz)−→C/(Z+ Zλ2z),

x3 : C/(Z+ Zλ2z)−→C/(Z+ Zλ1λ2z),

x4 : C/(Z+ Zλ1z)−→C/(Z+ Zλ1λ2z).

Then we have points x1, x3 ∈ X0(λ1) and x2, x4 ∈ X0(λ2) with representatives inH: z1 = z2 =

z, z3 = λ2z1, and z4 = λ1z2. By the definition of uλ1 and uλ2 , we have the relation,

uλ1(x1)uλ2(x4) =
∆(z1)

∆(λ1z1)

∆(z4)

∆(λ2z4)
=

∆(z)

∆(λ1λ2z)
=

∆(z2)

∆(λ2z2)

∆(z3)

∆(λ1z3)
= uλ2(x2)uλ1(x3).

Moreover, by the theory of complex multiplication, all of these points are defined overHc with the

relations,

x3 = x
Frob(l2)
1 ,

x4 = x
Frob(l1)
2 .

Therefore we have

uλ1(x1)
1−Frob(l2) = uλ2(x2)

1−Frob(l1).
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Now we take the ξ-sum (as in Equation 3.2) to obtain,

∑
σ∈Gal(Hc/K)

uλ1(x1)
(1−Frob(l2))σ ⊗ ξ(σ) =

∑
σ∈Gal(Hc/K)

uλ2(x2)
(1−Frob(l1))σ ⊗ ξ(σ).

Unfolding these sums, we obtain,

(
1− ξ

(
l2
))
uξ,λ1 =

(
1− ξ

(
l1
))
uξ,λ2 .

3.1 Relation to the Stark unit

In this dihedral setting, the Stark conjecture is known due to the original work of Stark [Sta80].

Ad(ρ) = η⊕ IndGQ
GK

(ξ) has rank 1 where the rank,

r(Ad(ρ)) :=
∑
v|∞ dim

(
Ad(ρ)Frobv

)
,

is also the order of vanishing of the Artin L-function L(Ad(ρ), s). We now give the explicit relation

between the unit uξ and uStark.

Proposition 3.2. Let hK be the class number of K and andWK be the number of roots of unity in K.

The Stark element uStark is the unique element of U(Ad(ρ)) such that at the distinguished element

of the unique archimedean place of Hc,

uStark(x∞) =
hK

6m(ξ)wK
uξ.

Remark 3.3. Proposition 3.2 answers a question of Gross about the relation between the Stark units

from the Stark conjecture and the Stark units from the Harris–Venkatesh conjecture. It also implies

[DHRV22, Lemma 5.6].

Remark 3.4. The conjugacy class of Frobw does not change ifw =∞ is replaced by a finite place
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of Hc over a λ inert in K. If λ is inert in K with a unique prime l, then l is completely split in H.

Thus we have xw = x∞ and thus,

uStark(xw) =
hk

6m(ξ)wk
⊗ uξ.

If λ is split in K, then by an observation of Darmon–Harris–Rotger–Venkatesh [DHRV22, Section

1.3], both sides of the identity in Conjecture 1 vanish.

First, we recall an original result of Stark [Sta80] proving a weaker explicit version of his

conjecture for CM characters using Kronecker’s second limit formula. Let c be the conductor of

ξ, i.e. the maximal ideal of OK such that ξ is trivial on (1+ ĉ)× ⊂ Ôk
×

as a character on K̂×. Let

E = K(c) be the corresponding ray class field with Galois group G(c). Thus by class field theory,

the Frobenius map induces an isomorphism

K×\K̂×/(1+ ĉ)×
∼−−→ G(c).

Let c be the minimal positive integer divisible by c and let w(c) be the number of roots of unity in

k which are congruent to 1 (mod c).

Theorem 3.5 (Stark [Sta80, Lemma 7]). Let K be an imaginary quadratic number field. If ξ is a

non-trivial ramified character of Gal(K/K), then there is an explicit element ε(c) ∈ K(c)× such

that,

L ′(ξ, 0) = −
1

6cw(c)

∑
σ∈G(c)

ξ(σ) log|ε(c)σ|.

Remark 3.6. Our notation here deviates from [Sta80]: our c, c, σ are respectively f, f, and c in

Stark’s paper.

Stark proves Theorem 3.5 using the second Kronecker limit formula. For u, v ∈ R, z ∈ H,

q := e2πiz, and ζ := e2πi(uz+v), we have the Siegel function,

g(u, v, z) := −iq
1
12

(
ζ
1
2 − ζ−

1
2

) ∞∏
m=1

(1− qmζ)
(
1− qmζ−1

)
.
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Again with Hc the corresponding ring class field to the conductor of ξ, fix a decomposition of

OK(c) = Z + zZ and c = c(Z + zZ) with z ∈ H ∩ K(c). Then by [Sta80, Equations (9), (10), and

(45)],

ε(c) = g

(
0,
1

c
, z

)
12c.

Stark described the Galois conjugates of ε(c) as follows. For any σ ∈ G represented by ideal

a prime to c, let b be an ideal such that ab = (α(σ)) and write cb = c(σ)(Z + z(σ)Z). Then

α(σ)/c(σ) = u(σ)z(σ) + v(σ) for some rational numbers u(σ) and v(σ), and,

ε(c)σ = g(u(σ), v(σ), z(σ))12c.

We can give a precise version of Stark’s theorem which is not stated by Stark nor Tate but

which we deduce directly from Theorem 3.5. Define ε(c) := NK(c)/Hc(ε(c)).

Corollary 3.7. Assume that χ is the ring class character of conductor c > 1. Then,

L ′(χ, 0) = −
1

6c

∑
σ∈G(c)

χ(σ) log|ε(c)σ|,

with,

ε(c) =
∏
d|c

∆
(
qd
)
cµ( cd) ∈ H×c .

Proof. By Theorem 3.5, we only need to compute the norm ε(c) of ε(c). Let Oc = Z + cOK(c).

Then c = cOK(c) and we have,

Gal(K(c)/Hc)
∼−−→ k×(Ẑ+ cÔK)×/k×(1+ ĉ)×

∼−−→ (Ẑ+ cÔK)×/(1+ ĉ)×
∼−−→ (Z/cZ)×.

Thus every element in σ ∈ Gal(K(c)/Hc) is represented by an ideal a(σ) = nOK with n

coprime to c. We take b(σ) = mOK with α(σ) = mn. Write OK = Z + zZ. Then c(σ) = cm,
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u(σ) = 0, and v(σ) = n/c. It follows that,

NK(c)/Hc(ε(c)) =
∏

n∈(Z/cZ)×
g
(
0,
n

c
, z
)
12c.

Let ζc = e2πi/c. Then NK(c)/Hc(ε(c)) is a product of,

qcφ(c) · N(1− ζc)
12c
∏
m

∏
n∈(Z/cZ)×

(1− qmζnc )
24c,

where φ is the Euler totient function.

The term m(c) := N(1 − ζc) is equal to 1 unless c is a prime, in which case it is equal to c.

The other terms can be computed by Möbius inversion, φ(c) =
∑

d|c dµ(c/d),

∏
n∈(Z/cZ)×

(1− ζnc T) =
∏
d|c

(
1− Td

)
µ( cd).

Thus we obtain

NK(c)/Hc

(
ε(c)

)
= m(c)12cqcφ(c)

∏
d|c

∞∏
m=1

(
1− qdm

)
24cµ( cd) = m(c)12c

∏
d|c

∆
(
qd
)
cµ( cd).

We now prove a variation of Stark’s theorem using our unit uξ from Equation 3.2.

Proposition 3.8. Assume that ξ is a ring class character of conductor c > 1. Then,

L ′(ξ, 0) = −
1

6m(ξ)
log(uξ).

Proof. Let τ = Frobl ∈ Gal(Hc/K). For any d | c, let Ed denote the elliptic curve C/Od which

is defined over Hc. Then we have the isogenies Ed−→Eσd with kernel E[l]. Then we have (an
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additive operation) for ε(c) (defined in Corollary 3.7),

ε(c) − ε(c)τ = c
∑
d|c

µ
( c
d

)
η(d).

Take χ-sums to obtain,

∑
σ∈Gal(Hc/K)

(
χ(σ) − χ(στ)

)
ε(c) = c

∑
d|c

χ(σ)η(d)σ.

It follows that,

∑
σ∈Gal(Hc/K)

χ(σ)ε(c) =
c

1− χ(τ)

∑
d|c

µ
( c
d

) ∑
σ∈Gal(Hc/K)

χ(σ)η(d)σ.

Since η(d) ∈ Hd, the last sum has a factor
∑

σ∈Gal(Hc/Hd)
χ(σ) which is zero if d 6= c (as c is the

conductor of χ). Thus we have shown that,

∑
σ∈Gal(Hc/K)

χ(σ)ε(c) =
c

m(χ)
uχ.

The desired identity follows from Corollary 3.7.

Proof of Proposition 3.2. We have,

L(Ad(ρ), s) = L(η, s) · L(ξ, s).

Applying Theorem 3.8, we see that ρ has rank 1 and,

L ′(Ad(ρ), 0) = L(η, 0) · L ′(ξ, 0) = hK

6m(ξ)wK
· log(uξ),

where the log is with respect to a fixed embedding Hc ↪→ C. Also, since Hc is a CM field, there is

a unique complex conjugation at∞. Thus there is a single distinguished element x∞ ∈M.
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Thus uStark ∈ U(Adρ) is the unique element so that,

uStark(x∞) =
hK

6m(ξ)wK
⊗ uξ.

3.2 Relation to a higher Eisenstein element

We can slightly modify the unramified argument of Darmon–Harris–Rotger–Venkatesh [DHRV22,

Proposition 5.2] to relate the unit uξ to the higher Eisenstein element Σ1,

(
1− ξ

(
l
))
· (Σ1, [ξ]) = −

1

6
log(uξ,λ),

where Σ1 ∈ R[Pic(OB)] is a higher Eisenstein element (cf. [Lec21], [DHRV22, Definition 4.6])

satisfying the equation,

(Tv − (`+ 1))Σ1 = (v− 1) log(v)Σ0,

for any prime v. Since ξ(l) 6= 1, we have

〈Σ1, [ξ]〉 = −
1

6m(ξ)
log(uξ). (3.3)

4 Proof of Theorem 7

In this section, we give a proof of Theorem 7 in the CM case (i.e. imaginary K). The method

here largely follows the method of Darmon–Harris–Rotger–Venkatesh [DHRV22]. Throughout

this proof, we let c = c(ξ) be the conductor of ξ and consider the order,

Oc = Z+ cOK.
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Let Hc denote the ring class field corresponding to Oc via class field theory,

Gal(Hc/K) K×\K̂×/Ô×c Pic(Oc).∼ ∼

4.1 Theta liftings for a definite quaternion algebra

Let B be the definite quaternion algebra with discriminant p. Since p inert in K, we have an

embedding K ↪−→ B. We can then pick a maximal order OB, which is optimal for the order Oc

because Oc = K ∩ OB. Then the embedding K ↪−→ B induces a map,

Pic(Oc) := K×\K̂×/Ô×c Pic(B) := B×\B̂×/Ô×B .
ι

Darmon–Harris–Rotger–Venkatesh [DHRV22, Section 2.1] defines Pic(B) to be the set of

equivalence classes of oriented maximal orders, where an oriented maximal order (M, σ) of B

is a maximal order M ⊂ B with a homomorphism σ : M −→ Fp2 . This is in bijection with

the set of isomorphism classes of supersingular elliptic curves over Fp by a result of Deuring

[Deu41] (cf. [Voi21, Corollary 42.3.7]). We briefly show that this agrees with our definition of

Pic(B) := B×\B̂×/Ô×B .

Lemma 4.1. There is a bijection

f : B×\B̂×/(Q̂× · Ô×B ) {equivalence classes of oriented maximal orders of B}

[g] (Ad(g)M, σ)

where Ad(g)M := gMg−1.

To see that the map f is a bijection, we look at the local picture due to the following correspon-
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dence.
B/Q B̂/Q̂

Z-lattices Ẑ-lattices

oriented maximal orders of B oriented maximal orders of B̂

Locally, the map f is an isomorphism due to the following fact.

Lemma 4.2. Let q be any prime. For a quaternion algebra Bq/Qq, all oriented maximal orders

are B×q -conjugates and the stabilizer of each oriented maximal order is Q×q · O×Bq .

Proof. Suppose B is split. Let M be an oriented maximal order in B. Then M = End(Λ) where Λ

is the lattice

Λ :=
{∑

aivi | ai ∈M, vi ∈ Z2q
}
,

since MΛ ⊂ Λ implies that M ⊂ End(Λ) but M is maximal. In this situation, we have the

following diagram.
M2(Zq) M2(Qq) M

End
(
Z2q
)

End
(
Q2
q

)
End(Λ)

∼

Since Λ ⊂ Q2
q is a lattice, there is a g ∈ GL2(Qq) such that Λ = gZ2q.

For γ ∈M, γΛ ⊂ Λ. Consequently, one can deduce the chain of equivalent statements:

γgZ2q ⊂ gZ2q,

g−1γgZ2q ⊂ Z2q,

g−1γg ∈M2(Zq),

γ ∈ gM2(Zq)g−1.

Therefore, M ⊂ gM2(Zq)g−1. Since M is maximal, M = Ad(g)M2(Zq).

Nonsplit: this case is trivial because there is only one order with two possible orientations. Just
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check the index-2 subgroup, which are the elements of even valuation.

Proof of Lemma 4.1. Surjectivity of f follows immediately from the definition of f and the fact

that all local oriented maximal orders are conjugates by Lemma 4.2.

Injectivity of f follows from the fact that stabilizer of each local oriented maximal order is

Q×q · O×Bq by Lemma 4.2. If f([g1]) = f([g2]), then [g1] and [g2] give the same equivalence class of

oriented maximal orders and there is a γ ∈ B× such that

g1M̂g
−1
1 γg2M̂g

−1
2 γ

−1

M̂ M̂

Fq2 Fq2

Ad(g−11 ) Ad(g−12 γ−1)

σ σ

Then Ad(h) fixes M̂, where h := g−11 γg2. By the second part of the lemma, h is in Q×q · O×Bq .

Since g1 = γg2h−1, we have equality of [g1] = [g2] in B×\B×q /(Q×q · O×Bq).

Remark 4.3. The Q̂× in B×\B̂×/(Q̂× · Ô×B ) is unnecessary, i.e. B×\B̂×/(Ô×B ). Q̂× = Q× ∗ Ẑ×

since the class number is 1; Q× is in B×; and Ẑ× is in ÔB
×

.

Let Z[Pic(B)] denote the space of Z-valued functions on Pic(B) (denoted as Div(E) in Darmon–

Harris–Rotger–Venkatesh [DHRV22, Section 2.2]). It can also be viewed as a subspace of A+ =

A− with trivial central characterω. It is equipped with an action by Hecke algebra T and a pairing

(the correspondence and height pairing respectively of [Gro87, Section 4]),

〈−,−〉 : Z[Pic(B)]⊗ Z[Pic(B)]−→Z.

Let Σ0 be the function corresponding to the measure. Then Σ0 generates the Eisenstein subspace

(cf. [DHRV22, Equation 88]),

T`Σ0 = (`+ 1)Σ0.
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We have a theta lifting from 2.21,

Θp : Z[Pic(B)]⊗T Z[Pic(B)]−→M2(Γ0(p))

ϕ1 ⊗ϕ2 7−→ 1

2
〈ϕ1, Σ0〉〈ϕ2, Σ0〉+

∑
n≥1

〈Tnϕ1, ϕ2〉qn,

where the constant term calculation is from Emerton [Eme02] and Gross [Gro87, Proposition 5.6]

(cf. [DHRV22, Equation 16]).

By 2.22, we have

fopt(z, pz) = Θp(1⊗ ξ). (4.1)

4.2 Proof of Theorem 7 for definite theta series

By Equation 4.1,

log`Sp(f
opt(z, pz)) = log`(〈fopt(z, pz),Sp〉) = log`(〈Θp(1⊗ ξ),Sp〉) = log`

(〈
1⊗ ξ,Θ∗p(Sp)

〉)
,

where Θ∗p is the adjoint operator of Θp,

Θ∗p :M0(p)
∗
R−→ (R[Pic(B)]⊗T R[Pic(B)])∗.

Darmon–Harris–Rotger–Venkatesh [DHRV22, Theorem 5.4] showed that,

Θ∗p(Sp) =
1

2
(Σ1 ⊗ Σ0 + Σ0 ⊗ Σ1) (mod Σ0 ⊗ Σ0).

Now we pair both sides with 1⊗ξ. Notice that 〈Σ0, ξ〉 = 0 and 〈Σ0,1〉 = h(Oc), the class number

of Oc. Therefore, we have,

log`Sp(f
opt(z, pz)) =

1

2
h(Oc) log`(〈Σ1, ξ〉).
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Apply Equation 3.3 to obtain the equality,

log`Sp(f
opt(z, pz)) = −

h(Oc)
12m(ξ)

log` RegF×p (uξ).

Finally, we can use Proposition 3.2 to obtain (using hk = [H1 : K] for the Hilbert class field

H1),

log`Sp(f
opt(z, pz)) = −

[Hc : H1]wK
2

log` RegF×p (uStark).
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Part II. Local theory: Rankin–Selberg periods

Let p be any prime, F be a p-adic field, E/F be a semisimple F-algebra of dimension 2 with

trace map Tr : E−→ F and norm map N : E×−→ F×. We have three cases:

1. E is split: E = F⊕ F;

2. E/F is an inert quadratic extension;

3. E/F is a ramified quadratic extension.

Let χ be a character of E×. Using the Weil representation, we obtain an irreducible representa-

tion π(χ) of GL2(F) with central character ω = η · χ|F× , where η is a quadratic character on

F× with kernel N(E×). All irreducible representations π of GL2(F) can be obtained in this way,

except for some supercuspidal representations π when p = 2 ([Kut84, Corollary 4.3]). The dual

representation of π(χ) is equal to π(χ−1). So we have a one-dimensional invariant quotient:

P : π(χ)⊗ π(χ−1)−→ (π(χ)⊗ π(χ−1))GL2(F).

In Section 5, we construct two canonical elements: the new vectorWnew and the optimal vector

Wopt in π(χ) ⊗ π(χ−1). To do so, we first recall some of the local GL2 and GL2 × GL2 the-

ory of Whittaker models, Kirillov models, and Rankin–Selberg convolutions following Jacquet–

Langlands [JL70] and Jacquet [Jac72]. In our quadratic setting, we use local theta liftings and

explicitly realize the pairing P as the Rankin–Selberg period PRS in terms of Rankin–Selberg zeta

integrals Z(s,W) at s = 1 to study the ratio

[PRS(W
new) : PRS(W

opt)] ∈ C ∪ {∞}.
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In Section 6, we calculate Rankin–Selberg zeta integrals evaluated at the optimal form Wopt. In

Section 7, we calculate Rankin–Selberg zeta integrals evaluated at the newformWnew, define some

models of π(χ) over a natural ring Z[π(φ)], and show that

[PRS(W
new) : PRS(W

opt)] = [A : B],

for some A,B ∈ Z[π(χ)]. In Section 8, the main results of Part II are collected in Theorem 8.1,

demonstrating the rationality of this ratio, and Theorem 8.2, which explicitly calculates this ratio

in several cases.

5 Whittaker functions

5.1 Whittaker and Kirillov models for GL2

Let ψ be a non-trivial additive character of F and letW(ψ) denote the induced representation

W(ψ) := IndGL2(F)
N(F) (ψ). W(ψ) is the space of functionsW on GL2(F) such that,

W


1 x

1

g
 = ψ(x)W(g),

with action by GL2(F) via translation.

Let π be an irreducible infinite-dimensional representation of GL2(F). We can embed π into

W(ψ):

π ↪−→ W(ψ).

This embedding is unique up to scaling (due to [GK75, JL70], cf. [Bum97, Theorem 4.1.2],

[Zha21, Section 5]). Therefore, we have a well-defined subspace W(π,ψ) ⊂ W(ψ) called the

Whittaker model of π. If we change ψ to another character ψa(x) = ψ(ax), then we have an
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isomorphism,
W(ψ) W(ψa)

W(g) W


a

1

g
.

Thus, without loss of generality, we can assume that ψ has order 0 in the sense that OF is the

maximal fractional ideal of F over which ψ is trivial.

Define the map,

a : F×−→GL2(F)

x 7−→
x 0

0 1

 .
According to Jacquet–Langlands [JL70, Section 2] (cf. [Bum97, Section 4.4]), the following re-

striction map is injective,

W(g) 7−→ κ(x) :=W
(
a(x)

)
.

Let K(π,ψ) be the image of this map with the induced action by GL2(F). This is called the

Kirillov model. The action of the Borel subgroup of GL2(F) on K(π,ψ) is as follows (cf. [Jac72,

Section 14], [Bum97, Equation 4.25]),

a b

0 d

 κ(x) = ω(d)ψ

(
bx

d

)
κ
(ax
d

)
.

The action of w :=

 0 1

−1 0

 is not easy to write down (cf. [Bum97, Section 4.7]).

If π is changed to π⊗ µ for a character µ of F× via det : GL2(F)−→ F×, thenW(π⊗ µ,ψ) =

W(π,ψ)⊗ µ.

Let $ be the uniformizer of F. For any non-negative integer i, define U0($i) and U1($i) as
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the following subgroups of GL2(OF) (cf. [Zha01, Section 2.3]),

U0($
i) : =


a b

c d


∣∣∣∣∣∣∣ c ≡ 0 (mod $i)

,
U1($

i) : =


a b

c d


∣∣∣∣∣∣∣ (c, d) ≡ (0, 1) (mod $i)

.
Then for any irreducible representation π of GL2(F), we define the level o = o(π) of π to be

the minimal non-negative integer i such that π(χ)U1(πi) 6= 0. At the level of π, there is a unique

elementWnew ∈ W(π)U1(π
o) such thatWnew(e) = 1.

If ψ is changed to ψa for some a ∈ O×F , then Wnew(g) is changed to W


a

1

g
.

However, if π is changed to π⊗ µ, there is no simple formula to write down the change toWnew.

Following Jacquet–Langlands [JL70, Theorem 2.18] (cf. [Jac72, Section 14], [Bum97, Propo-

sition 4.7.5]), we have the zeta integral,

Z(s,W) :=

∫
F×
W


a

1


|a|s− 12da,

where da is a Haar measure on F× normalized such that vol(O×F ) = 1. These integrals are abso-

lutely convergent when <(s)� 0. The values of these integrals define a fractional ideal of C[q±s]

with a generator L(s, π),

L(s, π) = Z(s,Wnew).

Then we can define the normalized zeta integral,

Ψ(s,W) =
Z(s,W)

L(s, π)
∈ C

[
q±s
]
.

For example, if π = π(χ1, χ2) is a principal series with χ1, χ2 unramified and αi = χi($) (cf.
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[JL70, Section 3]), the above identity is equivalent to,

1

(1− α1q−s)(1− α2q−s)
=

∞∑
n=0

Wnew


$n 0

0 1


q−n(s− 12).

It follows thatWnew is the unique element inW(ψ) which is invariant under GL2(OF) with central

character χ1χ2 and takes values,

Wnew


$n 0

0 1


 = q

−n
2
αn+11 − αn+12

α1 − α2
.

5.2 Rankin–Selberg periods for GL2 × GL2

Let π be an irreducible infinite-dimensional representation of GL2(F) with contragredient rep-

resentation π̃. Then we have a canonical GL2(F)-invariant pairing:

P : π⊗ π̃−→C.

We realize the representations π and π̃ with respective Whittaker modelsW(π,ψ) andW(π̃, ψ).

We want to explicitly construct a GL2(F)-invariant pairing,

PRS,ψ :W(π,ψ)⊗W(π̃, ψ)−→C,

using the Rankin–Selberg method. This pairing will induce a unique isomorphism with a compat-

ible linear form:

π⊗ π̃ ∼−−→ W(π,ψ)⊗W(π̃, ψ).

First, consider the right-hand side as a space of functions on GL2(F)×GL2(F). Then we restrict
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this space to the diagonal:

∆∗ :W(π,ψ)⊗W(π̃, ψ)−→ IndGL2(F)
N(F)Z(F)(1),

W1(g1)⊗W2(g2) 7−→W1(g)W2(ε
′g),

where ε ′ :=
(
1 0
0 −1

)
. We use the Iwasawa decomposition

GL2(F) = B(F)GL2(OF)

to define a function f(g, s) on N(F)Z(F)\GL2(F)× C by

f


a x

b

k, s
 =

∣∣∣a
b

∣∣∣s,
for k ∈ GL2(OF).

Following Jacquet [Jac72, Section 14], we consider the zeta integral

Z(s,W1,W2) :=

∫
N(F)Z(F)\GL2(F)

W1(g)W2(ε
′g)f(g, s)dg. (5.1)

Here dg is the quotient measure on N(F)Z(F)\GL2(F) constructed from the Haar measures on

GL2(F) and its various subgroups. Write

g =

1 x

1


z

z


a

1

k,
with a, x, z ∈ F and k ∈ GL2(OF). Then

dg = dxdz
da

|a|
dk,

where dx is a measure on F so that vol(OF) = 1, dz and da are measures on F× so that vol(O×F ) =
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1, and dk is a measure on GL2(OF) with vol(GL2(OF)) = 1.

Remark 5.1. Note that we use ε ′ :=
(
1 0
0 −1

)
instead of ε :=

(
−1 0
0 1

)
(ε is called η by Jacquet [Jac72,

p.11]) in order to notationally avoid the repeated appearance of χ(−1) in our calculations.

The above zeta integral is absolutely convergent when <(s) ≥ 0, and has values forming a

fractional ideal of C[q±s] with generator,

(1+ q−s)L
(
s,Ad(π)

)
.

We can then define the normalized zeta integral (cf. [Jac72, Theorem 14.7]):

Ψ(s,W1,W2) =
Z(s,W1,W2)

(1+ q−s)L
(
s,Ad(π)

) ∈ C
[
q±s
]
. (5.2)

We define the invariant form PRS,ψ by

PRS,ψ(W1 ⊗W2) := Z(1,W1,W2).

Note that up to an ε-factor of Ad(π), we may replace Ψ(1,W1,W2) by Ψ(0,W1,W2), which is a

regularization for the usual divergent integral,

∫
N(F)Z(F)\GL2(F)

W1(g)W2(ε
′g)dg.

Note that if we change ψ to ψa, then the above pairings are compatible with the isomorphism

W(π,ψ)⊗W(π̃, ψ)
∼−−→ W(π,ψa)⊗W(π̃, ψa).

So we may drop the ψ subscript from PRS,ψ. Also, we note that the formWnew⊗ W̃new is invariant

under the canonical isomorphisms with respect to different ψ’s.
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If π is unitary, then there is a positive definite GL2(F)-invariant Hermitian pairing,

〈−,−〉0 :W(π,ψ)⊗W(π,ψ)−→C,

such that 〈Wnew,Wnew〉0 = 1. We can write such a pairing in terms of PRS. For anyW ∈ W(π,ψ),

defineWε ∈ W(π,ψ),

Wε(g) :=W(εg). (5.3)

Then we have a non-degenerate GL2(F)-invariant Hermitian pairing:

〈−,−〉1 :W(π,ψ)⊗W(π,ψ)−→C

(W1,W2) 7−→ PRS
(
W1,W2

)
.

Thus it is a real multiple of 〈−,−〉0. This gives the following fact.

Proposition 5.2. If π is unitary andW 6= 0, then PRS(W ⊗Wε) 6= 0 and is real.

For example, we can compute the pairing for new forms in the case π = π(χ1, χ2) with χ1, χ2

unramified. Write αi = χi($) and βi = χ̃i($). Then the newforms Wnew and W̃new for π and π̃

take the values,

Wnew


$n 0

0 1


 =

αn+11 − αn+12

α1 − α2
q

−n
2 ,

W̃new


$n 0

0 1


 =

βn+11 − βn+12

β1 − β2
q

−n
2 .
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Bringing this into the formula for Z(s,Wnew, W̃new) (Equation 5.1) yields,

Z(s,Wnew, W̃new) =

∫
ZN\GL2(F)

Wnew(g)W̃new(ε ′g)f(g, s)dg

=
∑
n

qnWnew

$n 0

0 1

 W̃new

$n 0

0 1

q−ns

=

∞∑
n=0

αn+11 − αn+12

α1 − α2

βn+11 − βn+12

β1 − β2
q−ns

=
1

(α1 − α2)(β1 − β2)
·(

α1β1q
−s

1− α1β1q−s
−

α1β2q
−s

1− α1β2q−s
−

α2β1q
−s

1− α2β1q−s
+

α2β2q
−s

1− α2β2q−s

)
=

1− α1α2β1β2q
−2s

(1− α1β1q−s)(1− α1β2q−s)(1− α2β1q−s)(1− α2β2q−s)

=
1+ q−s

(1− q−s)
(
1− α1

α2
q−s
)(
1− α2

α1
q−s
)

=(1+ q−s)L(s,Ad(π)).

Therefore, Ψ(s,Wnew, W̃new) = 1 by Equation 5.2.

5.3 Theta liftings

Let (V,Q) be an orthogonal quadratic space over F of even dimensionmwith the bilinear form,

〈x, y〉 = Q(x+ y) −Q(x) −Q(y).

Let GO(V) be the group of similitudes on V with norm map ν : GO(V)−→Gm. Let G =

GL2 ×Gm GO(V) be the fiber product of ν and det : GL2−→Gm. Then we may consider SL2 and

O(V) to be normal subgroups of G with respective quotients isomorphic to GO(V) and GL2(F)+,

the subgroup of elements g ∈ GL2(F) such that detg ∈ ν(GO(V)).

Let S(V) be the space of Schwartz functions on V . Then we have a Weil representation r

of G(F) on S(V) with respect to the character ψ : F−→C× (cf. [Wal85, Section 1], [YZZ13,
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Section 2.1]). To describe this representation, we need the following special elements in GL2:

d(λ) :=

1
λ

 , a(λ) :=

λ
1

 ,
m(λ) :=

λ
λ−1

 , n(b) :=

1 b

1

 ,
w :=

 1

−1

 .
Then G is generated by the elements m(λ), n(b), w, and (d(ν(h)), h) for h ∈ GO(V). We

describe r by the following.

1. For any h ∈ GO(V),Φ ∈ S(V),

r
(
d(ν(h), h

)
·Φ(x) = |ν(h)|

−m
4 Φ

(
h−1x

)
.

2. For any λ ∈ F×,

r
(
m(λ)

)
·Φ(x) = ηV(λ)|λ|

m
2 Φ(λx),

where ηV(λ) = (λ, (−1)m/2 det(V)).

3. For any b ∈ F,

r
(
n(b)

)
·Φ(x) = ψ

(
bQ(x)

)
Φ(x).

4. For w as above,

r(w) ·Φ(x) = γ · Φ̂(x),

where γ is an 8-th root of unity and Φ̂ is the Fourier transform,

Φ̂(x) =

∫
V

Φ(y)ψ(〈x, y〉)dy.
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Remark 5.3. We follow the convention of using d(ν(h)) (e.g. Harris–Kudla [HK91, Section 3.2],

[HK04, Equation 1.1], Yuan–Zhang–Zhang [YZZ13, Section 2.1.3]) instead of a(ν(h)) (e.g.

Jacquet–Langlands [JL70, Chapter 1]). Similar to Remark 5.1, this is a notational decision that

affects the appearance of χ(−1) in later calculations. We will also omit the r where the context is

clear, for example simply writing wΦ for r(w) ·Φ and n(b)Φ for r(n(b)) ·Φ.

Remark 5.4. The 8-th root of unity γ in the action of r(w) on a Schwartz function Φ is called the

Weil index. It is dependent on (V,Q), but is equal to −1 for nonsplit quaternion algebras and 1 for

split quaternion algebras (cf. [Wei64, Chapter II]) so it can be omitted for most of our purposes.

From the definition, we see that r(z, z) acts on S(V) by character ηV . In particular,

r(z, z) ·Φ(x) = r
(
d
(
z2
)
m(z), z

)
·Φ(x)

= |z|−m/2r(m(z)) ·Φ
(
z−1x

)
= ηV(z)Φ(x).

5.4 Quadratic cases

We start with the general quadratic space V = (Ee,Q) with an action of E, where E is a

semisimple algebra over F and Q is a multiple of the norm N = NE/F of E over F. Then GO(V) =

〈E×, ι〉 where ι is an involution. In this case, ν is the usual norm N of E over F.

Let χ : E×−→C× be a character. For each Φ ∈ S(E), we obtain a Whittaker function

supported by the subgroup GL2(F)+ of matrices with determinant in N(E×). Thus GL2(F)+ =

GL2(F) if E = F ⊕ F; otherwise, GL2(F)+ is an index-2 subgroup of GL2(F). More precisely, for

g ∈ GL2(F)+, we write g = d(Q(t0e)
−1)g1 with h0 ∈ E× and g1 ∈ SL2(F), and we have

W(g, χ,Φ) = |detg|−
1
2

∫
E1
r(g1)Φ(tt0e)χ

c
(
t−10 t

−1
)
dt, (5.4)

where E1 is the subgroup of E× with norm 1, χc = χ ◦ c with c ∈ Aut(E/F) the non-trivial

involution, and dt is a Haar measure on E1 such that vol(O1E) = 1. The corresponding Kirillov
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functions are given by

κ(x, χ,Φ) = |x|
1
2

∫
E1
Φ(t0te)χ(tt0)dt, (5.5)

where x = Q(t0e).

Remark 5.5. Note that the above construction is compatible with the construction in the global

situation (Equations 1.2 and 1.3) by Equations 1.4 and 1.5.

The subrepresentation of GL2(F) generated by W(g, χ,Φ) is an irreducible representation de-

noted by π(χ). The set of such functions is an explicit local theta lifting θ(χ,ψc). We may consider

the functional

Φ 7−→W(g, χ,Φ)

as an element of,

HomE××GmGL2(F)(S(V)⊗ χ, θ(χ,ψc)),

where χ and θ(χ,ψc) are considered as representations via projections to E× and GL2(F)+ ⊂

GL2(F) respectively.

The subspace θ(χ,ψc) is stable under the right translation by GL2(F)+. We consider θ(χ,ψc)

as a subspace of functions on GL2(F) supported on GL2(F)+ and defineW(χ,ψc) to be the space

of Whittaker functions on GL2(F) induced by such functions. More precisely, if E = F ⊕ F, then

W(g, χ) = θ(g, χ,ψc); otherwise, let h ∈ GL2(F) −GL2(F)+, thenW(g, χ) consists of functions

W(g) =W1(g) +W2(gh),

forW1,W2 ∈ θ(g, χ,ψc).

The spaceW(χ) forms an irreducible representation of GL2(F) denoted by π(χ). This space

has the following properties.

1. The central character of π(χ) isω := η · χ|F×;

2. If E = F⊕ F and χ = (χ1, χ2) then π(χ) = π(χ1, χ2) is a principal series;
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3. If χ = ω ◦ N, then χ = (ω,ω · η) is a principal series;

4. If E is not split and χ does not factor through N, then π(χ) is supercuspidal.

New forms

We assume that V = (E,N) with E a semisimple algebra over F. For the induced representation

π(χ), the level c and the newformWnew
χ can be constructed explicitly from the Whittaker function

W(g, χ,Φχ) by the following two steps.

1. DefineΦχ according to Tate’s thesis [Tat67].

(a) If E is a field extension, and χ is unramified, then define Φχ to be the characteristic

function of OE;

(b) If E is a field extension and χ is ramified, then defineΦχ to be the restriction of χ−1 on

O×E ;

(c) If E = F⊕ F, χ = (χ1, χ2), then defineΦχ = Φχ1 ⊗Φχ2 , where for each i,

Φχi =


1|OF if χi is unramified,

χ−1i
∣∣
O×F

otherwise.

ThenW(g, χ,Φχ) is already a newformWnew
χ (g) when E/F is not ramified.

2. If E/F is ramified, then the new form in π(χ) has the form,

Wnew
χ (g) =W(g, χ,Φχ) +W(ga(ε), χ,Φχ),

where ε ∈ O×F − N(O×E ).

This shows, in particular, the following formula:
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Proposition 5.6. The inert product of newforms can be computed from theta forms as follows,

PRS

(
Wnew
χ ⊗Wnew

χ−1

)
= eE/FPRS

(
W
(
g, χ−1, Φχ−1

)
⊗W(g, χ,Φχ)

)
,

where

eE/F :=


1 if E/F is unramified,

2 if E/F is ramified.

Optimal forms

Now we want to construct an optimal element inW(χ,ψ)⊗W(χ−1, ψ). Let ξ = χ1−c be the

“antinorm” character on E× that sends x 7→ χ(x/x). We may also consider ξ as the restriction of

χ−1 on E1. Then ξ is a ring class character; it is trivial on (OF +$oOE)× for some non-negative

integer o, where $ is the uniformizer of E. The minimal such number is called the order o(ξ) of

ξ, and c = c(ξ) := $o(ξ) is called the conductor of ξ (note the abuse of notation with the Galois

conjugation c in the definition of ξ). We write

Oc = OF + cOE,

for the associated order of E.

Let δ ∈ Oc be a generator of the different ideal D of Oc, namely the ideal generated by x − x

for all x ∈ Oc. Then for each a ∈ Oc/δ, we define the function Φopt
a to be the characteristic

function of

Oc +
a

δ
⊂ E.

Letting ε :=
(
−1 0
0 1

)
, the optimal form is defined as follows.

Definition 5.7. We define the one-variable optimal function Wopt
a on GL2(F), for a ∈ Oc/δ, and
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the two-variable optimal functionWopt on GL2(F)× GL2(F) as follows,

Wopt
a (g) :=W(g, χ,Φopt

a ),

Wopt(g1, g2) :=
∑

a∈Oc/δ

Wopt
a (g1)⊗Wopt

−a(g2ε).

One of our main objectives is to study the period PRS(W
opt). First, we prove a non-vanishing

result.

Proposition 5.8. If χ is unitary, then

Wopt(g1, g2) = χ(−1)
∑

a∈Oc/δ

Wopt
a (g1)⊗Wopt,ε

a (g2).

Furthermore,Wopt
1 6= 0 and PRS(W

opt) ∈ R×.

Proof. First, let us write the Kirillov functions forWopt:

κopt(x1, x2) :=
∑

a∈Oc/δ

κ(x1, χ,Φ
opt
a ) · κ

(
−x2, χ

−1, Φ
opt
−a

)
.

Since Φ−a(x) = Φa(−x), we can use Equation 5.5 with a change of variables t 7→ −t to get,

κopt(x1, x2) := χ(−1)
∑

a∈Oc/δ

κ(x1, χ,Φ
opt
a ) · κ

(
−x2, χ

−1, Φopt
a

)
.

Since χ is unitary,

κ
(
−x2, χ

−1, Φopt
a

)
= κ

(
−x2, χ,Φ

opt
a

)
= κε(x2, χ,Φa),

where κε(x, χ2, Φa) is the Kirillov function associated to Wε(g, χ,Φa) defined in Equation 5.3.

Thus,

κopt(x1, x2) := χ(−1)
∑

a∈Oc/δ

κ(x1, χ,Φ
opt
a ) · κε(x2, χ,Φopt

a ).
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It follows that,

PRS(W
opt) = χ(−1)

∑
a∈Oc/δ

PRS(W
opt
a ⊗Wopt,ε

a ).

For the non-vanishing ofWopt
1 , take x = N(δ−1) in Equation 5.5 to obtain

κ
opt
1 (x) = χ(δ)−1|δ|−

1
2

∫
(1+δOc)1

ξ(t) = χ(δ)−1|δ|−
1
2vol

(
(1+ δOc)1

)
6= 0.

The last part of the proposition follows from the previous two parts and Proposition 5.2.

Comparison of models

We study the general quadratic space V = (Ee,Q) as a linear space over E so that GSO(V) =

E×. ThenW(χ,ψ) can also be constructed by S(V). More precisely, by Equation 5.5, the Kirillov

function associated with the theta series θ(g, χc, Φ) for each Φ ∈ S(V(A)) is given by

κ(x, χc, Φ) = ηV(x)|x|
1
2

∫
E1
Φ(tt0e)χ(t0t)dt,

where x = Q(t0e).

Let V ′ = (Ee ′, Q ′) be another quadratic space and let ι : V ′ ∼−−→ V be the isomorphism such

that ι(e ′) = e. Define ι∗Φ := Φ ◦ ι ∈ S(V ′). Then we have

κ(x, χc, Φ) = |x|
1
2

∫
E1
ι∗Φ
(
tt0ι

−1(e)
)
χ
(
t−10 t

−1
)
dt,

= |x|
1
2

∣∣tt0ι−1(e)∣∣− 12κ(Q ′(t0ι−1(e)), χc, ι∗Φ).
Write Q(ι) := Q(e)/Q ′(ι−1e) ∈ F×. Then the above formula gives:

κ(x, χc, Φ) = |Q(ι)|
1
2κ
(
xQ(ι)−1, χc, ι∗Φ

)
. (5.6)

For example, if we compare the Whittaker functions defined by two opposite spaces V± :=

(E,±N), we get two Whittaker functions W±(g, χc, Φ) for Φ ∈ S(E). We use the identity map
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ι : V+−→V− for the quadratic space, so Q(ι) = −1. Then

W−(g, χ
c, Φ) =W+(gε, χ

c, Φ),

where ε =

−1 0

0 1

.

Then from Definition 5.7, we can instead write

Wopt(g1, g2) =
∑

a∈Oc/δ

W+(g1, χ,Φ
opt
a ) ·W−

(
g2, χ

−1, Φ
opt
−a

)
. (5.7)

As in Section 1.4, we callWopt an optimal form due to the connection with optimal orders and

optimal embeddings (cf. Remark 1.4). We identify B = EndF(E) as usual and define an optimal

order Oopt
B = EndOF(Oc). Let Φopt be the characteristic function of Oopt

B .

Lemma 5.9. We have the following identity in S(B) = S(V+)⊗ S(V−),

Φopt =
∑
a

Φopt
a ⊗Φ

opt
−a.

Proof. First, let us describe Oopt
B precisely. An element x+ yj ∈ B is in OB if and only if

(x+ yj)(1) = x+ y ∈ Oc,

(x+ yj)($) = x$+ y$ ∈ Oc.

These conditions mean that x+ y ∈ Oc and x, y ∈ Oc/($−$). So we have that

Oopt
B = Oc +Oc

1− j

$−$
.

Let δ = $ −$ be a generator of the different ideal of Oc. Concretely, if E/F is a field extension,

then δ is a generator of the different ideal multiplied by$o(ξ). If E = F⊕ F, then δ equals (1,−1)

multiplied by$o(ξ).
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From the above description, it is clear that Oopt
B , as a subset of B, is the disjoint union of the

product,

(Oc + a/δ)× (Oc − a/δ)j.

The lemma then follows.

6 Rankin–Selberg periods of optimal forms

6.1 A formula for the Rankin–Selberg zeta integral

Let E/F be a semisimple algebra of degree 2 and χ be a character of E×. We have constructed

Whittaker models W(χ±) for GL2(F)+ via theta liftings on quadratic spaces V1 = (E,N) and

V2 = (E,−N). More precisely for functionsΦi ∈ S(Vi), we obtained functions (cf. Equation 5.4),

W1(g) =W(g, χ1, v1, Φ1)

= |detg|−
1
2

∫
E1
r(g1)Φ1

(
t−10 t

−1
1

)
χc(t0t1)dt1,

W2(ε
′g) =W(ε ′g, χ2, v2, Φ2)

= |detg|−
1
2

∫
E1
r(g1)Φ2

(
t−10 t

−1
2

)
χ−c(t0t2)dt2,

where t0 ∈ E×, g1 ∈ SL2(F) such that g = d(N(t0))g1, and ε ′g = d(−N(t0))g1.

With the above, we compute the zeta integral from Equation 5.1 to obtain,

Z(s,W1,W2) =

∫
N(F)Z(F)\GL2(F)+

W1(g)W2(ε
′g)f(g, s)dg

=

∫
N(F)Z(F)\GL2(F)+

|detg|−1f(g, s)dg

·
∫
E1×E1

r(g1)Φ
(
t−10
(
t−11 + t−12 j

))
χc
(
t1

t2

)
dt1dt2.
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To simplify this integral, we set

Φ̃(x) =

∫
SL2(OF)

r(k)Φ(x)dk,

where the volume form is taken to be one. Then the integral expression of Z(s,W1,W2) becomes,

∫
N(F)Z(F)\GL2(F)+/SL2(OF)

|detg|−1f(g, s)dg
∫
E1×E1

r(g1)Φ̃
(
t−10
(
t−11 + t−12 j

))
χc
(
t1

t2

)
dt1dt2.

Using the Iwasawa decomposition,

GL2(F)+ = N(F)Z(F)d
(
N
(
E×
))

SL2(OF),

the first integral becomes,
∫

N(E×)
|h|−1|h|−s|h|dh. Noting that T = E× ×F× E× ⊂ GO(V) and

setting σ(t) = σ(t1, t2) = χc(t2/t1), we may rewrite the expression for Z(s,W1,W2) as

∫
T

|ν(t)|sΦ̃(t(1+ j))σ(t)dt.

For the purposes of calculation, we can take a model of T ,

E× × E1 ∼−−→ T,

(t1, t2) 7−→ (t1, t1t2).

In summary, we have demonstrated the following expression for our Rankin–Selberg zeta integral.

Recall that ξ = χ1−c can be viewed as the restriction χ−1
∣∣
E1

.

Proposition 6.1. LetW ∈ W(χ,ψ)⊗W(χ−1, ψ) and letΦ ∈ S(B). Then

Z(s,W) = Z(s,Φ) :=

∫
E×
|t1|s
∫
E1
Φ̃(t1(1+ t2j))ξ(t2)dt2dt1.
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Corollary 6.2. Let Q(ξ, Φ̃) be the subfield of C generated by the values of ξ and Φ̃. Then,

PRS(W) ∈ Q
(
ξ, Φ̃

)
.

The remainder of Section 6 is a calculation of the zeta integral Z(s,Wopt) for the optimal form

Wopt defined by Equation 5.7. This is eventually used to prove Theorem 8. By Lemma 5.9, Wopt

is defined by an optimal functionΦopt with respect to ξ which is the characteristic function of,

Oopt
B = Oc +Oc

1− j

$−$
,

where$ is the uniformizer of E. Note that Φ̃opt = Φopt, and that t1 + t2j ∈ OB if and only if

t1 ∈ δ−1Oc,

t2 ∈ −1+ t−11 Oc.

Thus we have the following expression.

Proposition 6.3.

Z(s,Wopt) = Z(s,Φopt) = χ(−1)

∫
δ−1Oc

|t1|sdt1
∫
(1+t−11 Oc)1

ξ(t2)dt2.

Combining Propositions 6.3 and 5.8, we obtain the following rationality statement.

Corollary 6.4. Let Q(ξ+ ξ−1) denote the ring generated by values of ξ+ ξ−1. Then,

PRS(W
opt) ∈ Q

(
ξ+ ξ−1

)
.

Furthermore, if ξ is unitary, then,

PRS(W
opt) ∈ Q

(
ξ+ ξ−1

)×.
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We divide our remaining calculations of Z(s,Wopt) and PRS(W
opt) into three cases, when ξ is:

unramified; ramified and E/F is inert; ramified and E/F is split.

6.2 Unramified calculation

In this subsection, we calculate PRS(W
opt) when ξ is unramified (i.e. as a character from E× to

C×, ξ can be factored as ω ◦ N). Recall that π = π(χ). Denote the uniformizers of OF and OE by

$F and$E respectively.

Proposition 6.5. Assume that F/Qp is unramified if p = 2. If ξ is unramified, then,

Z(s,Wopt) =


(1+ q−s)L

(
s,Ad(π)

)
if E/F is not ramified,

qs(1+q−s)
2(1−q−s)

if E/F is ramified and p 6= 2,

q2s(1+q−s)
2(1−q−s)

if E/F is ramified and p = 2.

In particular,

PRS(W
opt) = Z(1,Wopt) =



(
1+ q−1

)
L
(
1,Ad(π)

)
if E/F is not ramified,

q(1+q−1)
2(1−q−1)

if E/F is ramified and p 6= 2,

q2(1+q−1)
2(1−q−1)

if E/F is ramified and p = 2.

Proof. First, consider the case that E/F is inert. Then ξ = 1 and δ is invertible. Let η be the

quadratic character associated to E/F. The integral reduces to

Z(s,Φopt) =

∫
|t1|≤1
|t1|sdt1 = ζE(s) = ζ(s)L(s, η).

Then L(s,Ad(π)) = L(s, η)2ζ(s), and

Ψ(s,Φopt) = 1,
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(recall the definition of the normalized zeta integral in Equation 5.2).

Second, we assume that E/F is split: E = F⊕F. Use coordinates (u1, u2) for t1 and (v, v−1) for

t2. After composition with a character ω ◦ N, we may assume that χ = (µ, 1) with µ unramified.

In this case, δ is still invertible. Thus we have,

Z(s,Φopt) =

∫
|u1|≤1
|u2|≤1

|u1u2|s
∫
|u2|≤|v|≤|u1|−1

µ(v)dvdu1du2

=
∑
m,n≥0

q−s(m+n)
∑

−m≤`≤n

µ
(
$`
F

)
=

1

1− µ($F)

∑
m,n≥0

q−s(m+n)
(
µ($F)

−m − µ($F)
n+1
)

=
1(

1− µ($F)
)
(1− q−s)

(
1

1− µ($F)−1q−s
−

µ($F)

1− µ($F)q−s

)
=

1+ q−s

(1− q−s)(1− µ($F)q−s)(1− µ($F)−1q−s)

= (1+ q−s)ζ(s)L(s, µ)L(s, µ−1)

With our definition, L(s,Ad(π)) = ζ(s)L(s, µ)L(s, µ−1), so,

Ψ(s,Φopt) = 1.

Finally, consider the case when E/F is ramified. Again, ξ = χ|E1 = 1. Then we have that

Z(s,Φopt) =
∑

n≥−ord(δ)

q−nsvol
(
(1+$−n

E OE)1
)
.

We can compute the volume case-by-case. First, if n ≥ 0, then vol((1 + $−n
E OE)1) = 1.

Second, if n = −1, then E1 is the union of ±(1+$EOE)1. In this case,

vol
((
1+$1

EOE
)
1
)
=


1
2

if p 6= 2,

1 if p = 2.

98



Finally, we treat the case n < −1. If p = 2 (and F is unramified over Q2 by assumption), then

ord(δ) = 2. In this case, E1 (mod $E) is generated by 1 and 1 +$E. Thus vol((1 +$2
EOE)1) =

1/2.

Collecting the terms for all n, we have the following formula for Z(s,Φopt) when E/F is

ramified. If p 6= 2, then,

Z(s,Φopt) =
1

2
qs +

∑
n≥0

q−ns

=
qs(1+ q−s)

2(1− q−s)
.

If p = 2, then,

Z(s,Φopt) =
1

2
q2s + qs +

∑
n≥0

q−ns

=
q2s(1+ q−s)

2(1− q−s)
.

6.3 Ramified calculation: E/F inert

In this subsection, we calculate PRS(W
opt) when ξ is ramified and E/F is inert.

Proposition 6.6. If ξ is ramified and E/F is inert with p 6= 2, then,

Z(s,Φopt) = χ(−1)
(
1+ q−1

)
−2q2o(ξ)(s−1).

In particular,

PRS(W
opt) = Z(1,Φopt) = χ(−1)

(
1+ q−1

)
−2.
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Proof. Recall that we have,

Z(s,Φopt) = χ(−1)

∫
δ−1Oc

|t1|s
∫
(1+t−11 Oc)1

ξ(t2)dt2dt1.

Here, c = c(ξ) = $o(ξ) is the conductor of ξ with associated order Oc = Oo(ξ), where $ is the

uniformizer of E and,

Ok := OF +$kOFε.

We can write OE = OF +OFε with ε2 ∈ O×F . Then δ = 2$o(ξ)ε, so,

δ−1Oc = O−c := O−o(ξ).

Consider the t1 ∈ OE. Then the double integral in the expression for Z(s,Φopt) becomes,

∑
n≥0

q−2ns

∫
O×E

∫
(1+$−nuOc)1

ξ(t2)dt2du =
∑
n≥0

q−2nsvol
(
O×c
) ∑
u∈O×E /O

×
c

∫
(1+$−nuOc)1

ξ(t2)dt2

= vol
(
O×c
)∑
n≥0

q−2ns

∫
(1+$−nO×E Oc)1

ξ(t2)dt2

Notice thatO×EOc = OE. Thus 1+$−n
E O

×
EOc = 1+$−n

E OE ⊃ E1, and the last integral vanishes.

So there is no contribution to Z(s,Φopt) from t ∈ OE.

Now consider the remaining contribution to Z(s,Wopt) from t1 /∈ OE. Then we can write

t1 = $
−iεu with u ∈ O×k for 1 ≤ k ≤ o(ξ). The remaining double integrals become

Z(s,Φopt) = χ(−1)

o(ξ)∑
k=1

q2ks
∫
u∈O×k

du

∫
(1+$kεuOc)1

ξ(t2)dt2 (6.1)

= χ(−1)vol
(
O×c
) o(ξ)∑
k=1

q2ks
∫
(1+$kεO×k Oc)1

ξ(t2)dt2.
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To further compute the remaining integral, we use the decomposition

Oc = OF +$o(ξ)OE = $o(ξ)OE ∪
o(ξ)⋃
i=1

$o(ξ)−iO×i .

Then,

O×k Oc = $
o(ξ)OE ∪

k⋃
i=1

$o(ξ)−iO×i ∪
o(ξ)⋃
j=k+1

$o(ξ)−jO×k

= $o(ξ)−kOk ∪
o(ξ)−k−1⋃
i=0

(
$iOk −$i+1Ok−1

)
.

For a set X, let 1X denote its characteristic function. We have,

1(1+$kεO×k Oc)1
= 1(1+$o(ξ)εOk)1 +

o(ξ)−k−1∑
i=0

1(1+$k+iεOk)1 +

o(ξ)−k−1∑
j=0

1(1+$k+j+1εOk−1)1

=

o(ξ)∑
i=k

1(1+$iεOk)1 +

o(ξ)∑
j=k+1

1(1+$jεOk−1)1

In particular, the integral becomes,

∫
(1+$kεO×k Oc)1

ξ(t2)dt2 =

o(ξ)∑
i=k

∫
(1+$iεOk)1

ξ(t2)dt2 −

o(ξ)∑
j=k+1

∫
(1+$jεOk−1)1

ξ(t2)dt2.

Next, we apply the following lemma.

Lemma 6.7. For any integer i ≥ 0,

(
1+$iOE

)
1 =

(
1+$iεOi

)
1.

Proof of Lemma 6.7. This is trivial when i = 0. Assume that i > 0 and let x ∈ (1+$iOE)1. Then

we can write for α,β ∈ OF,

x = 1+$iα+$iβε.
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Factor out 1+$iα to obtain for γ ∈ OF,

x =
(
1+$iα

)1+$iα+$iβε

1+$iα
=
(
1+$iα

)(
1+$iγε

)
,

for some γ ∈ OF. Now we take the norm NE/F of both sides, noting that 1 + $iα ∈ F and the

conjugate of 1+$iγε is 1−$iγε,

1 =
(
1+ 2$iα+$2iα2

)(
1−$2iγ2ε2

)
.

Since 2 is invertible in OF, α ∈ $iOF. This shows that x ∈ 1+$iεOi.

By Lemma 6.7, we may replace (1 +$iεOk)1 and (1 +$jεOk−1)1 in the integrals by (1 +

$iOE)1 and (1+$jOE)1. Since o(ξ) is the order of ξ, we need only consider k ≥ o(ξ) (the k < c

integral terms vanish) in the sum,

o(ξ)∑
k=1

q2ks
∫
(1+$kεO×k Oc)1

ξ(t2)dt2.

For k = o(ξ), the integral is given by vol(1+$o(ξ)OE)1. Consequently,

Z(s,Φ) = χ(−1)vol
(
O×c
)
q2o(ξ)svol

((
1+$o(ξ)OE

)
1
)
.

To compute the volume of O×E /O×c , we observe that O×E and O×c both contain 1+$o(ξ)OE, factor

both the top and bottom, and then find the cardinality,

vol
(
O×E /O

×
c

)
= vol

((
OE/$o(ξ)

)×/(OF/$o(ξ)
)×)

=

(
q2 − 1

)
q2o(ξ)−2

(q− 1)qo(ξ)−1

=
(
1+ q−1

)
qo(ξ).

102



We find the volume of O1E/
(
1+$o(ξ)OE

)
1 in a similar manner.

vol
(
O1E/

(
1+$o(ξ)OE

)
1
)
= vol

((
OE/$o(ξ)

)
1
)

= vol
((
OE/$o(ξ)

)×/(OF/$o(ξ)
)×)

=
(
1+ q−1

)
qo(ξ).

With our normalization such that vol(O×E ) = 1 and vol(O1E) = 1, we have that,

Z(s,Φ) = χ(−1)
(
1+ q−1

)
−2q2o(ξ)(s−1).

6.4 Ramified calculation: E/F split

In this subsection, we calculate PRS(W
opt) when ξ is ramified and E/F is split.

Proposition 6.8. If ξ is ramified and E/F is split with p 6= 2, then,

Z(s,Φopt) = χ(−1)
(
1− q−1

)
−2

(
2q−2o(ξ)−s

1− q−s
+ q2o(ξ)(s−1)

)
.

In particular,

PRS(W
opt) = Z(1,Wopt) = ξ(−1)

(
1− q−1

)
−3
(
1− q−1 + 2q−2o(ξ)−1

)
.

Proof. Recall that we have,

Z(s,Φopt) = χ(−1)

∫
δ−1Oc

|t1|s
∫
(1+t−11 Oc)1

ξ(t2)dt2dt1.

We have Oc = OF +$o(ξ)OFε, δ = $o(ξ)ε, and,

δ−1Oc = O−c = OF +$−o(ξ)εOF.
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Let us first consider the contribution to Z(s,Φopt) from the integral over t1 ∈ OE,

χ(−1)vol
(
O×c
) ∑
m,n≥0

q−(m+n)s

∫
(1+($−m,$−n)O×E Oc)1

ξ(t2)dt2.

We can decompose Oc as

Oc = OF +$o(ξ)OE = $o(ξ)OE ∪
o(ξ)−1⋃
k=0

$kO×o(ξ)−k.

For a set X, let 1X denote its characteristic function. Then

1O×E Oc
= 1$o(ξ)OE +

o(ξ)−1∑
k=0

1$kO×E

= 1$o(ξ)OE +

o(ξ)−1∑
k=0

(
1$kOE − 1($i+1,$k)OE − 1($k,$k+1)OE + 1($k+1,$k+1)OE

)
= 1OE + 2

o(ξ)∑
i=1

1$iOE −

o(ξ)−1∑
j=0

(
1($j+1,$j)OE + 1($j,$j+1)OE

)
.

In particular, the integral becomes,

∫
(1+($−m,$−n)O×E Oc)1

ξ(t2)dt2 =

∫
($−m,$−n)OE

ξ(t2)dt2 + 2

o(ξ)∑
i=1

∫
($i−m,$i−n)OE

ξ(t2)dt2 (6.2)

−

o(ξ)−1∑
j=0

(∫
($j+1−m,$j−n)OE

ξ(t2)dt2 +

∫
($j−m,$j+1−n)OE

ξ(t2)dt2

)
.

So we need to compute, for integers a and b,

∫
(1+($a,$b)OE)1

ξ(t)dt.
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Lemma 6.9.

∫
(1+($a,$b)OE)1

ξ(t)dt =


q−max(a,b)

(
1− q−1

)
−1 if max(a, b) ≥ o(ξ),

0 otherwise.

Proof of Lemma 6.9. Using the coordinates (t, t−1), the integral is then over t such that,

t = 1+$ax,

t−1 = 1+$by,

for x, y ∈ OF.

If max(a, b) ≤ 0, then these conditions become,

|$|−b ≤ |t| ≤ |$|a.

Hence the set of such t is stable under multiplication by O×F . The integral vanishes in this case

since χ is ramified.

If max(a, b) > 0, then the integral is given by,

∫
(1+$max(a,b)OE)1

ξ(t)dt =


vol
(
1+$max(a,b)OF

)
if max(a, b) ≥ o(ξ),

0 if 0 < max(a, b) ≤ 0.

Evaluating the volume finishes the lemma.

By Lemma 6.9, the terms of Equation 6.2 either individually vanish or cancel completely with

each other, unless eitherm = 0 and n > 0 orm > 0 and n = 0. In particular,

∫
(1+($−m,$−n)O×E Oc)1

ξ(t2)dt2 =


q−o(ξ)

(
1− q−1

)
−1 ifmn = 0 andm+ n > 0,

0 otherwise.
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Then the sum over all such m and n is twice the geometric series in q−s from fixing m or n to be

zero, ∑
m,n≥0

q−(m+n)s

∫
(1+($−m,$−n)O×E Oc)1

ξ(t2)dt2 = 2
q−s

1− q−s
q−o(ξ)

(
1− q−1

)
−1.

The remaining calculation in the t1 ∈ OE case is vol(O×c ), which was done in the inert case (cf.

proof of Proposition 6.6),

vol
(
O×E /O

×
c

)
= vol

((
OE/$o(ξ)

)×/(OF/$o(ξ)
)×)

=

(
q2 − 1

)
q2o(ξ)−2

(q− 1)qo(ξ)−1

=
(
1+ q−1

)
qo(ξ).

Therefore the contribution from t1 ∈ OE to Z(s,Wopt) is,

χ(−1)vol
(
O×o(ξ)

) ∑
m,n≥0

q−(m+n)s

∫
(1+($−m,$−n)O×E Oc)1

ξ(t2)dt2

= 2χ(−1)
(
1− q−1

)
−2q

−2o(ξ)−s

1− q−s
.

Now we consider the remaining contribution to Z(s,Wopt) from t1 /∈ OE. We use,

Oc = $o(ξ)OE ∪
o(ξ)⋃
k=1

$o(ξ)−kO×k ,

to get,

δ−1Oc −OE =
o(ξ)⋃
k=1

$−kεO×k .

Then we have that the t1 /∈ OE contribution to Z(s,Wopt) is,

χ(−1)

∫
δ−1Oc−OE

|t1|s
∫
(1+t−11 Oc)1

ξ(t2)dt2dt1 = χ(−1)

o(ξ)∑
k=1

q2ksvol
(
O×c
) ∫

(1+$kεO×k Oc)1
ξ(t2)dt2.
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This is the same expression from Equation 6.1 that we calculated in the proof of Proposition 6.6,

χ(−1)

o(ξ)∑
k=1

q2ksvol
(
O×c
) ∫

(1+$kεO×k Oc)1
ξ(t2)dt2 = χ(−1)

(
1− q−1

)
−2q2o(ξ)(s−1)

Combining the contributions from t1 ∈ OE and t1 ∈ δ−1Oc −OE, we have shown that,

Z(s,Φopt) = χ(−1)
(
1− q−1

)
−2

(
2q−2o(ξ)−s

1− q−s
+ q2o(ξ)(s−1)

)
.

7 Rankin–Selberg periods of newforms

In the following, we calculate the zeta integral and Rankin–Selberg period for newforms, and

in particular compare them with the zeta integrals and Rankin–Selberg period for optimal forms

from Section 6.

Note that in this section, q denotes the cardinality of the residue field Fq of the p-adic field F,

rather than the prime in the previous sections. LetΦ = Φ1⊗Φ2 withΦ1 andΦ2 standard functions

for the characters χ and χ−1 respectively (cf. Section 5.4). We again view the “antinorm” ξ = χ1−c

as the restriction of χ−1 on E1. Recall from Proposition 6.1 that,

Z(s,Φ) =

∫
E×
|t1|s
∫
E1
Φ̃(t1(1+ t2j))ξ(t2)dt2dt1,

where,

Φ̃ =

∫
SL2(OF)

r(k)Φdk.

7.1 Unramified calculation

First, we assume that χ is unramified. For the precise calculation, we do not treat the E/F

ramified case when p = 2.
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Proposition 7.1. If χ is unramified, then PRS(W
new) ∈ Q(ξ+ ξ−1)×. Furthermore,

Z(s,Wnew) =


Z(s,Wopt) if E/F is not ramified,

4(q+ 1)−1Z(s,Wopt) if E/F is ramified and p 6= 2.

In particular,

PRS(W
new) =


PRS(W

opt) if E/F is not ramified,

4(q+ 1)−1PRS(W
opt) if E/F is ramified and p 6= 2.

Proof. With Φi as the characteristic function of OE (cf. Section 5.4), Φ is the characteristic func-

tion of Onew
B := OE +OEj in the definite quaternion algebra B = E+ Ej.

If E/F is unramified, thenΦ = Φopt and the result follows from Proposition 6.5.

We assume that E/F is ramified. We start by computing Φ̃. Let dEOF be the discriminant ideal

of E/F. We claim thatΦ is invariant under the subgroup

U0(dE) =


 a b

dEc d

 ∈ SL2(OF)

.
Section 5, U0 is in SL2 instead of Notice that U0(dE) is generated by B(OF) and wB(dE)w (recall

that w :=
(

1
−1

)
). Thus it suffices to show that Φ is invariant under B(OF) and wΦ is invariant

under N(dEOF) (where N is the subgroup of upper triangular matrices with 1’s on the diagonal).

The B(OF)-invariance is clear, since Φ is the characteristic function of the OE-module Onew
B =

OE+OEj. For the second invariance, notice thatwΦ = Φ̂ = Φ̂1⊗ Φ̂2. Then we need to calculate

the Fourier transform for the characteristic functionΦi of OE with the character ψE = ψ ◦ TrE/F,

Φ̂i(x) =

∫
OE
ψE(xy)dy.

For a fixed x, this is an integration of the character on E over a lattice. So Φ̂ is the characteristic
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function of the dual lattice (Onew
B )∨ of Onew

B , multiplied by vol(Onew
B ). Let δE/F be the different

ideal of OE, then we have that (Onew
B )∨ = δ−1E/FOnew

B ). To compute the volume, we use the general

formula for a lattice Λ in B,

1 = vol(Λ)vol
(
Λ∨
)
= vol(Λ)vol(Λ)

[
Λ∨ : Λ

]
.

Therefore,

vol(Onew
B ) =

[
(Onew

B )∨ : Onew
B

]
− 1
2 =

∣∣δE/F∣∣E = |dE|F.
Thus we have shown that,

Φ̂ = |dE|δ−1
E/F
OB .

It follows that Φ̂ is invariant under N(dEOF). HenceΦ is invariant under U0(dE).

Using the Bruhat decomposition with$ the uniformizer of E,

SL2(OF) = wN($OF/dE)wU0(dE) ∪ N(OF/dE)wU0(dE),

we compute,

Φ̃ =

∫
SL2(OF)

r(k)Φ̂dk

=
(
|dE/$|−1 + |dE|−1

)
−1

w ∑
b∈$OF/dE

n(b)Φ̂+
∑

b∈OF/dE

n(b)Φ̂

.
From this description of Φ̂, we see that

∑
b∈OF/dE n(b)Φ̂ is supported on δ−1E (OE + OEj) with

value

|dE|
∑

b∈OF/dE

ψ
(
b
(
NE/F(x) − NE/F(y)

))
,

for x+yj ∈ δ−1E (OE+OEj). This integral defines the characteristic function of NE/F(x)−NE/F(y) ∈
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OF. Thus Φ̃ is the characteristic function of a subset of B of elements with the form

δ−1E (x+ yj),

for x, y ∈ OE with NE/F(x)−NE/F(y) ∈ dEOF. By Corollary 6.2, we have thatPRS(W
new) ∈ Q(ξ).

To see that it does not vanish, use projection to the space of newforms by integration overU1($o
E),

where o is the order of π(χ).

For the precise calculation of Φ̃ with E/F ramified, we have p 6= 2 by assumption. Then dE is

a prime inOF. For x, y ∈ OE with NE/F(x)−NE/F(y) ∈ dEOF, we have x = ±y (mod $E). Then

we have that
∑

b∈OF/$E n(b)Φ̂ is the characteristic function of the union of the two sets,

O±B := OE +OEj+
(1± j)
$E

OE.

These are two maximal orders of B with intersection Onew
B = OE + OEj. Let Φ± denote the

characteristic function of O±B . Recall thatΦ is the characteristic function of Onew
B . Then,

∑
b∈OF/$E

n(b)Φ̂ = Φ+ +Φ− −Φ.

This shows that,

Φ̃ = (q+ 1)−1(Φ+ +Φ−).

Now the result follows from Proposition 6.5 for the two optimal functionsΦ±, with the factors

of 2 arising from Proposition 5.6

7.2 Ramified calculation: E/F inert

Next, we assume that χ is ramified and E/F is inert.
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Proposition 7.2. If χ is ramified and E/F is inert, then,

PRS(W
new) = Z(1,Φ) =


1 if ξ2 is unramified

1
q+1

if ξ2 is ramified.

Proof. Let o(χ) be the order of χ, namely, the minimal integer such that χ is non-trivial on 1 +

$o(χ)OE. Let c(χ) := $o(χ) be the conductor of χ. Again, the strategy to evaluate Z(1,Φ) is to

use Proposition 6.1 and a description of Φ̃ (also using a description of Φ̂).

Since E/F is inert, theΦi are the restrictions of χ−1 and χ onO×E respectively (cf. Section 5.4).

Then Φ is invariant under B(OF). Thus it is invariant under some U0($k) for some k, which we

call the level ofΦ. To determine such k, let us compute Φ̂ = Φ̂1 ⊗ Φ̂2.

Φ̂1(x) =

∫
O×E

χ−1(u)ψE(xu)du,

Φ̂2(y) =

∫
O×E

χ(v)ψE(−yv)dv,

where the measure is additive so that vol(OE) = 1 and ψE = ψ ◦ TrE/F. These are Gaussian

integrals, and their values are essentially given by ε-factors defined as follows,

ε(χ,ψ) :=

∫
O×E

χ
(
$−o(χ)u

)
ψE
(
$−o(χ)u

)
du. (7.1)

Lemma 7.3. Let χ : E×−→C× be a multiplicative character of order o(χ) > 0, and let ψE :

E−→C× be an additive character of order 0. Then we have the following two identities,

1. ∫
O×E

χ(u)ψE(xu)du = χ−1(x)ε(χ,ψ)
∣∣
$−o(χ)O×E

2.

ε(χ,ψ)ε(χ−1, ψ−1) =
∣∣∣$o(χ)

E

∣∣∣E.
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Proof of Lemma 7.3. It is easy to see that χ(u) does not change if we replace u by u + v with

v ∈ c(χ)OE. Thus it has a factor, ∫
c(χ)OE

ψ(vx)dv.

It follows that the integral
∫
O×E
χ(u)ψE(xu)du 6= 0 only if x ∈ $−o(χ)

E OE. Furthermore if x ∈

$1−o(χ)OE, then ψ(xu) does not change if we replace u by u(1 +$o(χ)−1
E OF) Thus, the integral

has a factor ∫
1+$

o(χ)−1
E OF

χ(v)dv = 0.

It follows that the the function
∫
O×E
χ(u)ψE(xu)du is supported on$−o(χ)

E O×E , with value χ−1(x)ε(χ,ψ).

This proves the first identity.

For the second identity, we need to calculate the product of ε(χ,ψ) and ε(χ−1, ψ−1),

ε(χ,ψ)ε(χ−1, ψ−1) =

∫
(O×E )2

χ
(u
v

)
ψ
(
$

−o(χ)
E (u− v)

)
dudv

=

∫
(O×E )2

χ(w)ψ
(
$

−o(χ)
E (w− 1)v

)
dvdw,

where we wrote u = vw with w ∈ O×E in the last step. The integration over v is given by,

∫
O×E

ψ
(
$

−o(χ)
E (w− 1)v

)
dv =

∫
OE
ψ
(
$

−o(χ)
E (w− 1)v

)
dv−

∫
$EOE

ψ
(
$

−o(χ)
E (w− 1)v

)
dv,

with,

∫
OE
ψ
(
$

−o(χ)
E (w− 1)v

)
dv =


1 if w− 1 ∈ $o(χ)

E OE,

0 otherwise,

∫
$EOE

ψ
(
$

−o(χ)
E (w− 1)v

)
dv =


−|$E| if w− 1 ∈ $o(χ)−1

E OE,

0 otherwise,
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Then the full double integral is,

ε(χ,ψ)ε(χ−1, ψ−1) =

∫
1+$

o(χ)
E OE

χ(w)dw+

∫
1+$

o(χ)−1
E OE

χ(w)dw

= vol
(
1+$

o(χ)
E OE

)
+ 0

=
∣∣∣$o(χ)

E

∣∣∣Evol(OE)

=
∣∣∣$o(χ)

E

∣∣∣E,
where we used that dw is the additive measure on E.

By Lemma 7.3, we have the following,

wΦ = Φ̂

= ε(χ,ψ)ε(χ−1, ψ−1)
(
χ⊗ χ−1

)∣∣
$−o(χ)(O×E +O×E j)

= q−2o(χ)
(
χ⊗ χ−1

)∣∣
$−o(χ)(O×E +O×E j)

.

It follows thatΦ is invariant under U0($2o(χ)). So we can take k = 2o(χ).

Now we calculate Φ̃ using the Bruhat decomposition,

SL2(OF) = wN
(
OF/$k

)
wU0

(
$k
)
∪ N

(
$OF/$k

)
wU0

(
$k
)
,

so,

Φ̃(x) =
(
qk + qk−1

)
−1

w ∑
b∈$OF/$k

r(b)wΦ(x) +
∑

b∈OF/$k
r(b)wΦ(x)

.
The two sums are respectively equal to,

∑
b∈OF/$k

r(b)Φ̂(x+ yj) =
∑

b∈OF/$k
ψ
(
b(N(x) − N(y))

)
Φ̂(x+ yj).

∑
b∈$OF/$k

r(b)Φ̂(x+ yj) =
∑

b∈$OF/$k
ψ
(
b(N(x) − N(y))

)
Φ̂(x+ yj).
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These sums are non-zero only if N(x)−N(y) ∈ OF and N(x)−N(y) ∈ $−1OF, respectively. Write

x = $−k/2u and y = $−k/2vwith u, v ∈ O×E . Then these conditions are that N(uv−1) ∈ 1+$kOF

and N(uv−1) ∈ 1+$k−1OF, respectively. So,

Φ̃ = q−k(q+ 1)−1
(
w
(
χ⊗ χ−1

)∣∣
Ω1

+ q
(
χ⊗ χ−1

∣∣
Ω0

))
,

where for integers i ∈ {0, 1},

Ωi :=
{
(u, v) ∈ $−k

2

(
O×E ×O

×
E

) ∣∣∣N(u
v

)
∈ 1+$k−iOF

}
.

To further describe Φ̃, we need to calculate w(χ⊗ χ−1)
∣∣
Ω1

.

Lemma 7.4. Define the functionΦn supported on$−n(O×E ×O
×
E ),

Φn(x, y) := q
k−2nχ

(y
x

)
fn

(
N
(y
x

))
,

where fn is a function on O×F defined by,

fn(x) :=
∣∣(OF/($k−1

))×∣∣−1 ∑
ω: (OF/($k−1))×→C×

o(χω)=k
2
+n

ω(x).

Then,

w
(
χ⊗ χ−1

)∣∣
Ω1

=
∑
n

Φn.

Proof of Lemma 7.4. If we change variables (u, v) 7→ ($−k/2u,$−k/2v), then Ω1 is replaced by

the following subgroup of (O×E )2,

G := Ker


(
O×E
)
2−→ (OF/$k−1

)×
(u, v) 7−→ N

( v
u

)
.
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With the aforementioned change of variables for (u, v) ∈ Ω1 to G,

w
(
χ⊗ χ−1

)∣∣
Ω1
(x, y) =

∫
Ω1

χ
(u
v

)
ψE(xu− yv)dudv

= q2k
∫
G

χ
(u
v

)
ψ
(
$−k

2xu−$−k
2yv
)
dudv.

Notice that the characteristic function of G in (O×E )2 is given by

∣∣(OF/($k−1)
)×∣∣−1 ∑

ω: (OF/($k−1))×→C×
ω
(

N
( v
u

))
.

Then we obtain,

w
(
χ⊗ χ−1

)∣∣
Ω1
(x, y) =q2c

∣∣(OF/($k−1
))×∣∣−1

·
∑

ω: (OF/($k−1))×→C×

∫
(O×E )2

χω
(u
v

)
ψ
(
$−k

2xu−$−k
2yv
)
dudv.

The last integral is the product of two integrals over χω and (χω)−1. It is non-vanishing only if

ord(x) = ord(y) = k/2− o(χω), in which case, it is given by,

(χω)−1
(
$−k

2x
)
· ε(χω,ψ) · χω

(
$−k

2y
)
· ε
(
(χω)−1, ψ−1

)
= q−2o(χω)χω

(y
x

)
.

So w
(
χ⊗ χ−1

)∣∣
Ω1
(x, y) 6= 0 only if ord(x) = ord(y) = −n ′ for some n ′. In this case, it is given

by,

w
(
χ⊗ χ−1

)∣∣
Ω1
(x, y) = q2k

∣∣(OF/($k−1
))×∣∣−1 ∑

ω: (OF/($k−1))×→C×

o(χω)=k
2
+n ′

q−2o(χω)χω
(y
x

)

= qk−2nχ
(y
x

)
fn ′
(

N
(y
x

))
= Φn ′(x, y).

We can conclude the lemma claim for general (x, y) by the vanishing ofΦn in the other cases.
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By Lemma 7.4

Φ̃ = q−k(q+ 1)−1

(∑
n

Φn + q
(
χ⊗ χ−1

∣∣
Ω0

))
.

We apply this to the equality from Proposition 6.1,

Z(s,Φ) =

∫
E×
|t1|sdt1

∫
E1
Φ̃(t1(1+ t2j))ξ(t2)dt2.

By Lemma 7.4, we only need to look atΦn and (χ⊗ χ−1)
∣∣
Ω0

,

Z(s,Φn) = q
k−2n

∫
$−nO×E

|t1|sdt1
∫
E1
χ

(
t1t2

t1

)
χ−1(t2)fn(1)dt2

= fn(1)q
2n(s−1)+c

Z
(
s, χ⊗ χ−1

∣∣
Ω0

)
=

∫
$

−k
2O×E

|t1|sdt1
∫
E1
χ

(
t1

t1t2

)
χ−1(t2)dt2

=


qks if ξ2 = 1,

0 otherwise.
.

In summary, we have shown that,

(q+ 1)Z(s,Φ) =


∑

n fn(1)q
2n(s−1) + q1+k(s−1) if ξ2 = 1,∑

n fn(1)q
2n(s−1) otherwise.

Since
∑

n fn(1) = 1, set s = 1 to obtain,

Z(1,Φ) =


1 if ξ2 = 1,

1
q+1

if ξ2 6= 1.
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7.3 Fully ramified calculation: E/F split

Next, we assume that χ is ramified and E/F = F ⊕ F is split. In particular, we can write

χ = (χ1, χ2). There are two cases: either both χ1 and χ2 are ramified, or exactly one of them is

ramified. Here, we consider the “fully ramified” case that both χi are ramified.

Proposition 7.5. If χ = (χ1, χ2) with χ1 and χ2 ramified and E = F⊕ F, then,

PRS(W
new) = Z(1,Φ) =


1 if ξ2 is unramified,

1
q+1

if ξ2 is ramified.

Proof. Let o1, o2 be the orders of χ1 and χ2 respectively. Take Φχ to be χ−1 restricted to O×E , and

Φ = Φχ ⊗Φχ−1 . ThenΦ is supported on

O×F ×O
×
F +

(
O×F ×O

×
F

)
j,

with value

Φ((x1, x2) + (y1, y2)j) = χ1

(
y1

x1

)
χ2

(
y2

x2

)
.

Again, this is invariant under B(OF). To find its level, we compute the Fourier transform ofΦ:

Φ̂(x1, x2, y1, y2) =

∫
(O×F )4

χ1

(
v1

u1

)
χ2

(
v2

u2

)
ψ(u1x1 + u2x2 − v1y1 − v2y2)du1du2dv1dv2.

This is the product of four Gaussian integrals. So we apply Lemma 7.3. Φ̂ is supported on

Ω := $−o1O×F ×$
−o2O×F +

(
$−o1O×F ×$

−o2O×F
)
j,

with value

Φ̂((x1, x2) + (y1, y2)j) = χ1

(
x1

y1

)
χ2

(
x2

y2

)
q−o1−o2 .

This description shows that Φ̂ is invariant under N($kOF) for k = o1 + o2. Thus we have shown
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thatΦ is invariant under U0($k).

Next, we calculate Φ̃ =
∫

SL2(OF)
r(k)Φ. We again use the Bruhat decomposition,

SL2(OF) = wN
(
$OF/$k

)
wU0

(
$k
)
∪ N

(
OF/$k

)
wU0

(
$k
)
.

It follows that,

Φ̃ =
(
qk−1 + qk

)
−1

w ∑
b∈$OF/$k

r
(
n(b)

)
Φ̂+

∑
b∈OF/$k

r
(
n(b)

)
Φ̂

.
As before, the two sums can be rewritten so that

Φ̃ = q−k(q+ 1)−1
(
w
(
χ⊗ χ−1

)∣∣
Ω1

+ q
(
χ⊗ χ−1

)∣∣
Ω0

)
,

where for integers i ∈ {0, 1},

Ωi :=

{
(u1, v1) + (u2, v2)j ∈ Ω

∣∣∣∣ u1v1u2v2
∈ 1+$k−iOF

}
.

To further describe Φ̃, we need to calculate w(χ1 ⊗ χ−11 )Ω1 .

Lemma 7.6. Define the functionΦm,n supported on ($−mO×F ×$−nO×F )2 by,

Φm,n(x, y) := q
k−m−nχ1

(
y1

x1

)
χ2

(
y2

x2

)
fm,n

(
y1y2

x1x2

)
,

where fm,n is a function on O×F defined by

fm,n(x) :=
∣∣(OF/$k−1

)×∣∣−1 ∑
ω: (OF/$k−1)×→C×

ord(χ1ω)=m+o1
ord(χ2ω)=n+o2

ω(x).
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Then,

w(χ⊗ χ−1)
∣∣
Ω1

=
∑
m,n

Φm,n.

Proof of Lemma 7.6. From the definition, w(χ⊗ χ−1)
∣∣
Ω1

is given by,

w
(
χ⊗ χ−1

)∣∣
Ω1
(x, y) =

∫
Ω1

χ1

(
u1

v1

)
χ2

(
u2

v2

)
ψ(u1x1 + u2x2 − v1y1 − v2y2)du1du2dv1dv2.

If we change variables,

(u1, u2, v1, v2) 7−→ ($−o1u1,$
−o2u2,$

−o1v1,$
−o2v2),

thenΩ1 is replaced by the following subgroup of O×F ,

G := Ker


(
O×E
)
4−→ (OF/$k−1

)×
(u1, u2, v1, v2) 7−→ u1u2

v1v2

.
With the aforementioned change of variables for (u1, u2, v1, v2) ∈ Ω1 to G,

w
(
χ⊗ χ−1

)∣∣
Ω1
(x, y) = q2k

∫
G

χ1

(
u1

v1

)
χ2

(
u2

v2

)
ψ(α)du1du2dv1dv2,

where,

α := $−o1u1x1 +$
−o2u2x2 −$

−o1v1y1 −$
−o2v2y2.

Notice that the characteristic function of G for (u1, u2, v1, v2 ∈ (O×E )4 is given by,

∣∣(OF/$k−1
)×∣∣−1 ∑

ω: (OF/$k−1)×→C×
ω

(
u1u2

v1v2

)
.
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Thus,

w(χ⊗ χ−1)
∣∣
Ω1
(x, y) =q2k

∣∣(OF/$k−1
)×∣∣−1

·
∑

ω: (OF/$k−1)×→C×

∫
(O×F )4

ωχ1

(
u1

v1

)
ωχ2

(
u2

v2

)
ψ(α)du1du2dv1dv2.

Now we apply Lemma 7.3 to obtain that the integral is non-vanishing only if

ord(x1) = ord(y1) = o1 − o(χ1ω),

ord(x2) = ord(y2) = o2 − o(χ2ω),

in which case, it is given by (cf. Equation 7.1 for the ε-factor),

ωχ1

(
y1

x1

)
ωχ2

(
y2

x2

)
ε(ωχ1, ψ)ε(ωχ2, ψ)ε((ωχ1)

−1, ψ−1)ε((ωχ2)
−1, ψ−1)

=χ1

(
y1

x1

)
χ2

(
y2

x2

)
ω

(
y1y2

x1x2

)
q−o(χ1ω)−o(χ2ω).

Thus w(χ⊗ χ−1)
∣∣
Ω1
(x, y) 6= 0 only if there is some (m ′, n ′) such that

ord(x1) = ord(y1) = −m ′,

ord(y1) = ord(y2) = −n ′,
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in which case, it is given by,

w
(
χ⊗ χ−1

)∣∣
Ω1
(x, y) =q2k

∣∣(OF/$k−1
)×∣∣−1

·
∑

ω: (OF/$k−1)×→C×

ord(χ1ω)=m ′+o1
ord(χ2ω)=n ′+o2

χ−12

(
x1

y1

)
χ−11

(
x2

y2

)
ω

(
x1x2

y1y2

)
q−k−m ′−n ′

=qk−m
′−n ′χ1

(
y1

x1

)
χ2

(
y2

x2

)
fm ′,n ′

(
y1y2

x1x2

)
=Φm ′,n ′(x, y).

We can conclude the lemma claim for general (x, y) by the vanishing of Φm,n in the other cases.

By Lemma 7.6,

Φ̃ = q−k(q+ 1)−1

(∑
m,n

Φm,n + q
(
χ⊗ χ−1

)∣∣
Ω0

)

We apply this to the equality from Proposition 6.1,

Z(s,Φ) =

∫
E×
|t1|s
∫
E1
Φ̃(t1(1+ t2j))ξ(t2)dt2dt1.

By Lemma 7.4, we only need to look atΦm,n and (χ⊗ χ−1)
∣∣
Ω0

,

Z(s,Φm,n) = q
k−m−n

∫
$−mO×F ×$−nO×F

|t1|s
∫
O1E

ξ

(
t1

t1t2

)
ξ(t2)fn(1)dt2dt1

= fm,n(1)q
(m+n)(s−1)+k,

Z
(
s,
(
χ⊗ χ−1

)∣∣
Ω0

)
=

∫
$−o1O×F ×$

−o2O×F

|t1|s
∫
O1E

ξ−1
(
t1

t1t2

)
ξ(t2)dt2dt1

=


qks if ξ|O1E

2 = 1,

0 otherwise.
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In summary, we have shown that,

(q+ 1)Z(s,Φ) =


∑

m,n fm,n(1)q
(m+n)(s−1) + q1+k(s−1) if ξ2

∣∣
O×E

= 1,∑
m,n fm,n(1)q

(m+n)(s−1) if ξ2
∣∣
O×E
6= 1.

Since
∑

m,n fm,n(1) = 1, set s = 1 to obtain,

Z(1,Φ) =


1 if ξ2 is ramified,

1
q+1

if ξ2 is unramified.

7.4 Semi-ramified calculation: E/F split

We finish Section 7 with the last remaining case. Assume again that χ = (χ1, χ2) is ramified,

E/F = F ⊕ F is split. In particular, consider the “semi-ramified” case wherein exactly one of χ1

and χ2 is ramified. Without loss of generality, we assume that χ1 is ramified and χ2 is unramified.

Proposition 7.7. If χ = (χ1, χ2) with χ1 ramified and χ2 unramified and E = F⊕ F, then,

PRS(W
new) = Z(1,Φ) =


q
q−1

if ξ2 is unramified,

q3

q2−1
if ξ2 is ramified.

Proof. We take Φχ to be the restriction of χ−11 ⊗ 1 on O×F ×OF and take,

Φ = Φχ ⊗Φχ−1 .

It is clear thatΦ is invariant under B(OF). To get the level k ofΦ, we need to calculate the Fourier

transform of Φ, which is given by Φ̂χ ⊗ Φ̂χ−1 . A standard calculation using Lemma 7.3 shows
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that,

Φ̂ = q−o(χ)
(
χ1|$−o(χ1)O×F

× 1OF × χ−11
∣∣
$−o(χ1)O×F

× 1OF

)
.

This shows thatΦ has level k = o(χ1).

We again use the Bruhat decomposition,

SL(OF) = wN
(
$OF/$k

)
wU0

(
$k
)
∪ N

(
OF/$k

)
wU0

(
$k
)
.

It follows that,

Φ̃ =
(
qk + qk−1

)
−1

w ∑
b∈$OF/$k

n(b)wΦ+
∑

b∈OF/$k
n(b)wΦ

.
As before,

Φ̃ = q−k(1+ q)−1
(
wχ1 ⊗ χ−11

∣∣
Ω1

+ qχ1 ⊗ χ−11
∣∣
Ω0

)
,

where for integers i ∈ {0, 1},

Ωi :=
{
(u1, v1, u2, v2) ∈ ($−kO×F ×OF)

2
∣∣u1u2 − v1v2 ∈ $−iOF

}
,

Note that,

χ1 ⊗ χ−11 (u1, u2, v1, v2) := χ1

(
x1

y1

)
.

To further describe Φ̃, we need to calculate w(χ1 ⊗ χ−11 )Ω1 .

Lemma 7.8. Define the functionΦi supported on (O×F ×$−nO×F )2,

Φm,n(x, y) := χ1

(
y1

x1

)
qk−m−nfm,n

(
y1y2

x1x2

)
,
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where fm,n is a function on O×F defined by,

fm,n(x) :=
∣∣(OF/$k−1−m

)×∣∣−1 ∑
ω:(OF/$k−1−m)×→C×

o(ω)=−m+n

ω(x).

Then,

w
(
χ1 ⊗ χ−11

)∣∣
Ω1

=

k−1∑
m=0

k−1∑
n=m

Φm,n.

Proof of Lemma 7.8. From the definition, w(χ1 ⊗ χ−11 )Ω1 is given by,

w
(
χ1 ⊗ χ−11

)∣∣
Ω1
(x, y) =

∫
Ω1

χ1

(
u1

v1

)
ψ(u1x1 + u2x2 − v1y1 − v2y2)du1du2dv1dv2.

We substitute variables:

(u1, u2, v1, v2) 7−→ ( u1
$k
, u2,

v1

$k
, v2

)
.

ThenΩ1 changes to a subset D of (O×F ×OF)2,

D :=
{
(u1, v1, u2, v2) ∈ (O×F ×OF)

2
∣∣u1u2 − v1v2 ∈ $k−1OF

}
.

Then,

w
(
χ1 ⊗ χ−11

)∣∣
Ω1
(x1, x2, y1, y2) = q

2k

∫
D

χ1

(
u1

v1

)
ψ(α0)du1du2dv1dv2,

where

αj := $
−ku1x1 +$

ju2x2 −$
−kv1y1 −$

jv2y2.

We further decompose D into a disjoint union of Dm for m ∈ {0, . . . , k− 1}, with Dk−1

defined by the condition (u2, v2) ∈ $k−1OF ×$k−1OF, and Dm with m ∈ [0, k − 2] defined by

the condition (u2, v2) ∈ $m(O×F ×O
×
F ).

For the region Dk−1, the variables u1, v1 are completely free in O×F :

Dk−1 = O×F ×$
k−1OF ×O×F ×$

k−1OF.
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The integral in theDk−1-componentΦk−1(x, y) ofw
(
χ1 ⊗ χ−11

)∣∣
Ω1

is therefore the product of four

integrals, two of them Gaussian and two of them simple integrals of ψ’s,

∫
Dk−1

χ1(u1)ψ
(
$−ku1x1

)
du1,∫

Dk−1

ψ(u2x2)du2,∫
Dk−1

χ1

(
1

v1

)
ψ

(
1

$−kv1y1

)
dv1,∫

Dk−1

ψ

(
1

v2y2

)
dv2.

Apply Lemma 7.3 to obtain that the integral over Dk−1 is non-vanishing only if

(x1, x2, y1, y2) ∈ O×F ×$
1−kOF ×O×F ×$

1−kOF,

in which case the four integral values are respectively given by (cf. Equation 7.1 for the ε-factor),

ε(χ1, ψ)χ
−1
1

(
$−kx1

)
,

q1−k,

ε(χ−11 , ψ
−1)χ1

(
$−ky1

)
,

q1−k.

Thus the full integral in them = k− 1 case is given by,

Φk−1(x, y) := q
2k

∫
Dk−1

χ1

(
u1

v1

)
ψ(α0)du1du2dv1dv2 = q

2−kχ1

(
y1

x1

)
.
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Consequently,

Φk−1(x, y) =


q2−kχ1

(
y1
x1

)
if (x1, x2, y1, y2) ∈

(
O×F ×$1−kOF

)
2,

0 otherwise.

Now we consider the Dm-component Φm(x, y) with m ∈ {0, . . . , k− 2}. With the change of

variables,

(u1, u2, v1, v2) 7−→ (u1, u2$
m, v1, v2$

m),

Dm is changed to the following subgroup of (O×F )4,

Gm :=

{
(u1, u2, v1, v2) ∈ (O×F )

4

∣∣∣∣ u1u2v1v2
∈ 1+$k−1−mOF

}
.

Then,

Φm(x, y) :=q
2k

∫
Dm

χ1

(
u1

v1

)
ψ(α0)du1du2dv1dv2

=q2k−2m
∫
Gm

χ1

(
u1

v1

)
ψ(αm)du1du2dv1dv2.

Again, notice that the characteristic function of Gi is given by,

∣∣(OF/$k−1−m
)×∣∣ ∑

ω: (OF/$k−1−m)×→C×
ω

(
u1u2

v1v2

)
.

Then we obtain,

Φm(x, y) =q
2k−2m

∣∣(OF/$k−1−m
)×∣∣

·
∑

ω: (OF/$k−1−m)×→C×

∫
(O×F )4

ωχ1

(
u1

v1

)
ω

(
u2

v2

)
ψ(αm)du1du2dv1dv2.

The above integral is the product of four Gaussian integrals. Applying Lemma 7.3, we have that it
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is non-zero only when,

ord(x1) = ord(y1) = 0

ord(x2) = ord(y2) = −m− o(ω),

in which case, their respective values are,

ε(ωχ1, ψ) · (ωχ1)−1
(
$−kx1

)
,

ε(ω,ψ) ·ω−1($−mx2),

ε((ωχ1)
−1, ψ−1) · (ωχ1)

(
$−ky1

)
,

ε(ω−1, ψ−1) ·ω($−my2).

Their product is given by,

q−k−o(ω)χ1

(
y1

x1

)
ω

(
y1y2

x1x2

)
.

Thus, q2k
∫
Dm
6= 0 only if (x, y) ∈ (O×F × $−nO×F )2 for some n ′ ∈ {m, . . . , k− 1}, in which

case, it is given by,

χ−12

(
x1

y1

)
q2k−2n

′∣∣(OF/$k−1−m
)×∣∣−1 ∑

ω: (OF/$k−1−m)×→C×

o(ω)=n ′−m

q−k+m−n ′ω

(
x1x2

y1y2

)

= χ1

(
x1

y1

)
qk−m−n ′fm,n

(
y1y2

x1x2

)
= Φm,n ′ .

By the non-vanishing ofΦm,n for n 6= n ′, we have that,

Φm =

k−1∑
n=m

Φm,n.
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In particular,

w
(
χ1 ⊗ χ−11

)∣∣
Ω1

=
∑
m=0

Φm =

k−1∑
m=0

k−1∑
n=m

Φm,n.

By Lemma 7.8,

Φ̃ = q−k(q+ 1)−1

(
k−1∑
m=0

k−1∑
n=m

Φm,n + q
(
χ−11 ⊗ χ1

)∣∣
Ω0

)
.

We apply this to the equality from Proposition 6.1,

Z(s,Φ) =

∫
E×
|t1|s
∫
E1
Φ̃(t1, t1t2)ξ(t2)dt2dt1.

By Lemma 7.8, we only need to look at Φm,n and q(χ−11 ⊗ χ1)
∣∣
Ω0

For m ∈ {1, . . . , k− 1}

(using the special calculation form = k− 1), theΦm,n terms are as follows,

Z(s,Φm,n) = q
nsqk−m−nfm,n(1)

= qk−m+n(s−1)fm,n(1),

Z(s,Φk−1,k−1) = q
2−k
∑
n≥1−k

q−ns

=
q2−k+(k−1)s

1− q−s
.

To calculate Z(s, q(χ−11 ⊗ χ1)
∣∣
Ω0
), notice that (t1, t1t2) ∈ Ω0 for t1 ∈ E× and t2 ∈ E1 if and only

if t1 ∈ $−kO×F ×OF and t2 ∈ O1E. Then we can write,

Z
(
s, q
(
χ−11 ⊗ χ1

)∣∣
Ω0

)
= q

∫
$−kO×F ×OF

|t1|s
∫
O1E

ξ(t2)
2dt2dt1.

The first integral equals qks(1 − q−s)−1. The second integral equals
∫
O×F
χ−21 (t)dt, which is non-
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vanishing only if χ21 is unramified, in which case its value is 1. Thus we have,

Z
(
s, q
(
χ−11 ⊗ χ1

)∣∣
Ω0

)
=

q1+ks

1− q−s


1 if χ21

∣∣
O×F

= 1,

0 otherwise.

In summary, we have shown that,

(q+ 1)Z(s,Φ) =


q(k−1)(s−2)

1−q−s
+
∑k−2

m=0 q
−m
∑k−1

n=m q
n(s−1)fm,n(1) +

q1+k(s−1)

1−q−s
if χ21

∣∣
O×F

= 1,

q(k−1)(s−2)

1−q−s
+
∑k−2

m=0 q
−m
∑k−1

n=m q
n(s−1)fm,n(1) if χ21

∣∣
O×F
6= 1.

Since
∑

n fm,n(1) = 1, set s = 1 to obtain,

(q+ 1)Z(1,Φ) =


q1−k

1−q−1
+
∑k−2

m=0 q
−m + q

1−q−1
if χ21

∣∣
O×F

= 1,

q1−k

1−q−1
+
∑k−2

m=0 q
−m if χ21

∣∣
O×F
6= 1.

Z(1,Φ) =


(1− q−1)−1 if χ21 is unramified,

q−1
(
1− q−2

)
−1 if χ21 is ramified,

=


q
q−1

if ξ2 is unramified

q3

q2−1
if ξ2 is ramified.

Remark 7.9. The proof of Proposition 7.7, uses the fact that the sum of fm,n(1) is 1. A more exact

formula for each fm,n(1) can be computed as follows,

fm,n(1) =
∣∣(OF/$k−1−m

)×∣∣−1(∣∣∣∣(OF/$n−m
)×∣∣∣∣− ∣∣(OF/$n−m−1

)×∣∣)
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By direct evaluation,

∣∣(OF/$j
)×∣∣ =


qj−1(q− 1) if j > 0,

1 if j = 0,

0 if j < 0,

so it follows that form ∈ {1, . . . , k− 2} and n ≥ m,

fm,n(1) =


qn−k(q− 1) if n > m+ 1,

q−2
q−1
q−k+n+1 if n = m+ 1,

1
(q−1)

q−k+n+2 if n = m.

8 Comparison of Rankin–Selberg periods of optimal forms and newforms

We obtain the main results of Part II by combining Corollary 6.4 and Propositions 6.5, 6.6, 6.8,

7.1, 7.2, 7.5, 7.7.

Note that in this section, q denotes the cardinality of the residue field Fq of the p-adic field F,

rather than the prime in the previous sections. Recall that ξ := χ1−c can be viewed as the restriction

of χ−1 on E1. In general, $ refers to the uniformizer $E of OE. In the split case E = F ⊕ F, $1

and $2 refers to the uniformizers of each component. Our first result is the following rationality

statement.

Theorem 8.1. Let F be a p-adic field, E/F be a quadratic semisimple algebra, χ be a character

of E×, and ξ be the “antinorm” χ1−c. Let Q(ξ + ξ−1) be the subfield of C generated by values of

ξ+ ξ−1. Then,

1. PRS(W
new) ∈ Q(ξ+ ξ−1)× and PRS(W

opt) ∈ Q(ξ+ ξ−1);

2. if ξ is unitary, then PRS(W
opt) ∈ Q(ξ+ ξ−1)×.

For the following theorem , we also need to expand the factor from Proposition 6.5 when ξ is
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unramified,

PRS(W
opt) =

(
1+ q−1

)
L(1,Ad(π))

=
q+ 1

q− 1
L(1, ξ).

In particular, if E/F is inert, then

PRS(W
opt) =

q2(q+ 1)

(q− 1)(q− ξ($))(q− ξ($))

=
q2

(q− 1)2
.

Theorem 8.2. Let F be a p-adic field with residue field Fq, E/F be a quadratic semisimple algebra,

χ be a character of E×, and ξ be the “antinorm” χ1−c. Assume the following conditions,

(a) if p = 2, then both E/F and χ are unramified,

(b) if E/F is ramified, then χ is unramified.

Then the ratio [PRS(W
new) : PRS(W

opt)] is given as follows.

1. If E/F is ramified, then,

[PRS(W
new) : PRS(W

opt)] =
4

q+ 1
.

2. If E/F is inert, then,

[PRS(W
new) : PRS(W

opt)] =



1 if χ is unramified,

(q−1)2

q2
if χ is ramified and ξ is unramified,

ξ(−1)(q+1)2

q2
if ξ is ramified and ξ2 is unramified,

ξ(−1)(q+1)
q2

if ξ2 is ramified.
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3. If E = F⊕ F is split, then for χ = (χ1, χ2),

[PRS(W
new) : PRS(W

opt)] =



1 if χ is unramified,

(q−1)(q−ξ($1))(q−ξ($2))
(q+1)q2

if χ is ramified and ξ is unramified,

χ(−1)(q−1)2q2o(ξ)−1

q2o(ξ)+1−q2o(ξ)+2
if ξ is ramified, if ξ2 is unramified

and exactly one of the χi is ramified,

χ(−1)(q−1)3q2o(ξ)−2

q2o(ξ)+1−q2o(ξ)+2
if ξ2 is unramified,

and both χi are ramified,

χ(−1)(q−1)2q2o(ξ)+1

(q+1)(q2o(ξ)+1−q2o(ξ)+2)
if ξ2 is ramified

and exactly one of the χi is ramified,

χ(−1)(q−1)3q2o(ξ)−2

(q+1)(q2o(ξ)+1−q2o(ξ)+2)
if ξ2, χ1, and χ2 are all ramified.
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Part III. Arithmetic theory: Harris–Venkatesh vs. Rankin–Selberg

In Part III, we compare the Harris–Venkatesh period PHV and the Rankin–Selberg period PRS.

In particular, we prove a multiplicity-one theorem after reduction modulo `t in order to compare

the ratios,

[PHV(cf
opt) : PHV(f

new)], [PRS(cf
opt) : PRS(f

new)],

of periods from the Harris–Venkatesh and Rankin–Selberg periods.

We then deduce Theorems 5 and 8. At the end of Part III, we look at how generalizations of

these results apply to locally dihedral forms.

9 Liftings of pairings

Let F be a p-adic field, q be the cardinality of the residue field of F, A ⊂ C be a principal

ideal domain such that p is invertible, G = GL2(F), and π be an infinite dimensional irreducible

representation of G over C.

We say that π has an A-model πA ⊂ π if πA is an A-module such that πA ⊗A C ∼−−→ π, πA is

G-stable, and πHA is free of finite type for every compact open subgroup H ≤ G (cf. [Vig89]).

Recall that π has a subspace πnew of new forms of dimension 1 over C, defined as the subset of

vectors fixed by the subgroup

U1
(
$k
)
=

γ ∈ GL2(OF)

∣∣∣∣∣∣∣γ ≡
∗ ∗
0 1

 (mod $k)

.
If πA is anA-model of π, then πnew

A := πA∩πnew is anA-module of finite type such that πnew
A ⊗AC =

πnew. Thus it is free of rank 1. In this section, we study the pairings of A-models and their

reductions when these models are generated by new vectors. First, we construct some pairings.
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Proposition 9.1. Let π1, π2 be two infinite-dimensional irreducible representations of GL2(F) that

are dual to each other in the sense that

HomC[GL2(F)](π1 ⊗ π2,C) 6= 0.

Let π1,A, π2,A be A-models of π1, π2 respectively such that both πi,A are generated by newforms

vnew
1,A , v

new
2,A . There is a unique element P0 ∈ HomA[GL2(F)](π1,A⊗π2,A, A) such that P0(vnew

1,A , v
new
2,A) =

q− 1.

The main tool that we use to prove this proposition is the Haar measure on U0($o), where o is

the order of χi (recall that they are dual to each other)

Lemma 9.2. There is a Haar measure dh onU0($o) with values in Z[1/q] and total volume q−1.

Proof. Let H be the maximal pro-p subgroup of U0($o). Then H has the form

H =

γ ∈ U0($o)

∣∣∣∣∣∣∣γ ≡
1 ∗
0 1

 (mod $)

.
Thus there is Haar measure valued in Z[1/q] such that for any open sugroup I of H, vol(I) =

|H/I|−1. Then the total mass of G is |G/H| = q− 1.

Proof of Proposition 9.1. As π1, π2 are dual to each other, there is a non-trivial pairing P ∈

HomC[GL2](π1 ⊗ π2,C). We want to study the value of this pairing on πA. It suffices to con-

sider the value P(g1vnew
1 , g2v

new
2 ) 6= 0 for each pair g1, g2 ∈ GL2(F). By invariance under GL2(F),

we have that

P(g1vnew
1 , g2v

new
2 ) = P

(
vnew
1 , g−11 g2v

new
2

)
.
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Integrating over U0($k) and using Lemma 9.2,

(q− 1)P
(
vnew
1,A , g

−1
1 g2v

new
2,A

)
=

∫
U0($o)

P
(
hvnew

1 , hg−11 g2v
new
2

)
dh

= P
(
vnew
1 ,

∫
U0($o)

hg−11 g2v
new
2 dh

)
.

The last integral defines an element in πnew
A , so it can be written as λvnew

2 for some λ ∈ A. Thus,

(q− 1)P(g1vnew
1,A , g2v

new
2,A) = λP(vnew

1 , vnew
2 ).

It follows that P(vnew
1 , vnew

2 ) 6= 0. Then define P0 by

P0 :=
q− 1

P(vnew
1 , vnew

2 )
P,

so

P0(g1vnew
1,A , g2v

new
2,A) = λ ∈ A.

Uniqueness comes from the definition of P0.

The main result of this section is the following multiplicity-one type statement.

Proposition 9.3. Let π1, π2 be two infinite-dimensional irreducible representations of GL2(F) that

are dual to each other in the sense that

HomC[GL2(F)](π1 ⊗ π2,C) 6= 0.

Let π1,A, π2,A be A-models of π1, π2 respectively such that πi,A are respectively generated by new-

forms vnew
1 , vnew

2 , let A � B be a surjective homomorphism of rings, and denote πi,B := πi ⊗A B,
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vnew
i,B := vnew

i ⊗ 1. Then the cokernel of the homomorphism,

HomA[GL2(F)](π1,A ⊗ π2,A, A)−→HomB[GL2(F)](π1,B ⊗ π2,B, B),

P 7−→ P ⊗ B
is annihilated by (q− 1)2. More precisely, for any PB ∈ HomB[GL2(F)](π1,B ⊗ π2,B, B), we have

(q− 1)2 · PB = (q− 1) · PB(vnew
1,B , v

new
2,B ) · P0 ⊗ B,

where P0 is defined in Proposition 9.1.

We first need the following vanishing lemma.

Lemma 9.4. Let P ∈ HomB[GL2(F)](π1,B ⊗ π2,B, B) such that

P(vnew
1,B , v

new
2,B ) = 0.

Then (q− 1)P = 0.

Proof of Lemma 9.4. By the same argument as in the proof of Lemma 9.2, we have for any g1, g2 ∈

GL2(F),

(q− 1)P
(
vnew
1,B , g

−1
1 g2v

new
2,B

)
= P

(
vnew
1,B ,

∫
U1($k)

hg−11 g2v
new
2,Bdh

)
.

The last integral is the image of
∫
U1($k)

hg−11 g2v
new
2 dh = λvnew

2 . Thus,

(q− 1)P
(
vnew
1,B , g

−1
1 g2v

new
2,B

)
= λP(vnew

1,B , v
new
2,B ) = 0.

Proof of Proposition 9.3. Let a ∈ A be a lift of b := PB(vnew
1,B , v

new
2,B ) ∈ B. Then

Q := (q− 1)PB − aP0 ⊗ B ∈ HomB[GL2(F)](π1,B ⊗ π2,B, B),
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vanishes at (vnew
1,B ⊗ vnew

2,B ). By Lemma 9.4, (q− 1)Q = 0.

10 Proof of Theorem 8

We need to compare the values of the two pairs:

Sp(f
opt(z, pz)), Sp

(
TrN
(
fχ(z)fχ−1(pz)

))
.

We may write both sides in terms of the Harris–Venkatesh period from Equation 2.18 on the space

of cusp forms of weight 1:

PHV : H0(XΣ,R,ω(−CΣ))⊗H0(XΣ,R,ω(−CΣ)) −→ R,

where Σ is the set of primes dividing N, the level of the form fχ. Thus we need to compare the

following periods:

PHV(cf
opt), PHV(f

new)

where c is a constant such that cfopt has an integral q-expansion, and fnew = fχ ⊗ fχ−1 .

Let π(χ)Σ denote the subspace ofH0(XΣ,ω(−CΣ)) generated by fχ over Z[1/N, χ]. Then have

a decomposition of π(χ)Σ into representations of GL2(QΣ) =
∏

q|N GL2(Qq):

π(χ)Σ =
⊗
q|N

π(χq)Z[1/N,χ].

Then over C, taking Whittaker functions, we have

π(χ)Σ,C
∼−−→⊗

q|N

W(χq, ψq).

By Proposition 9.1, there is a pairing

P0 : π(χ)Σ ⊗ π(χ−1)Σ−→Z
[
1

N
, χ

]
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such that

P0
(
fχ ⊗ fχ−1

)
=
∏
q|N

(q− 1).

By the multiplicity of the pairings, we have

P0 =
∏

q|N(q− 1)

PRS
(
fχ ⊗ fχ−1

)PRS

By Proposition 9.3, PRS and PHV are related as follows. We have the following relation between

PRS and PHV:

∏
q|N

(q− 1)2 · PHV =
∏
q|N

(q− 1)PHV
(
fχ ⊗ fχ−1

)
· P0

=
∏
q|N

(q− 1)PHV
(
fχ ⊗ fχ−1

)( ∏q|N(q− 1)

PRS
(
fχ ⊗ fχ−1

) · PRS

)
(mod `t).

In particular, this implies the equality of ratios,

[PHV(cf
opt) : PHV(f

new)] = [PRS(cf
opt) : PRS(f

new)].

By Theorem 8.1, [PRS(f
opt) : PRS(f

new)] is actually in Q(ξ + ξ−1)×, the field generated by the

values of ξ+ ξ−1. This together with Theorem 8.2 gives Theorem 8.

11 Proof of Theorem 5

Take the denominator in 8 after applying the multiplicity-one argument of Section 9. [PHV(cf
opt) :

PHV(f
new)] is a rational number a

b
and the conjecture is about new forms; to getm, take b

a
and mul-

tiply both sides by a to get an algebraic integer while a on the right-hand side is absorbed into the

unit u.
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12 Generalizations to locally dihedral forms

In this section, we consider the extension of some of our results to non-dihedral forms. Let f be

a newform of weight 1 and levelN associated to a Galois representation ρ : Gal(Q/Q)−→GL2(C).

Our basic assumption is that f is locally dihedral: for every prime q dividing N, the restriction ρq

on the decomposition group Gal(Qq/Qq) is induced from a character χq of a quadratic extension

Kq/Qq:

ρq = IndQq
Kq
(χq).

This assumption is automatically satisfied when q 6= 2 or ρ2 is reducible. For f, KN :=
∏

q|N Kq is

a quadratic extension of QN :=
∏

q|NQq and χN :=
∏

q|N χq is a quadratic character.

12.1 Optimal modular forms

Under the above assumption, we can define a two-variable modular form fopt(z1, z2) in the

space of f(z1)f∗(z2) generated by GL2(QN) analogously to Equation 1.7 but using Whittaker func-

tions where f∗ is the dual form to f. More precisely, let ϕ and ϕ∗ be the automorphic avatars of f

and f∗, and letW(g) andW∗(g) be their Whittaker coefficients:

ϕ(g) =
∑
a∈Q×

W


a

1

g
,

ϕ∗(g) =
∑
a∈Q×

W∗


a

1

g
.

Then we have decompositions into products of local newforms:

W(g) =
∏
q≤∞Wq(gq),

W∗(g) =
∏
q≤∞W

∗
q(gq).
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To construct fopt(z1, z2), it suffices to construct the Whittaker coefficients Wopt(g1, g2) of its

automorphic avatar ϕopt(g1, g2):

ϕopt(g1, g2) =
∑

a,b∈Q×
Wopt


a

1

g1,
b

1

g2
.

We will construct the local Whittaker functionsWopt
p and then put them together:

Wopt(g1, g2) =
∏
q≤∞W

opt
q (g1,q, g2,q).

For q - N, we take

Wopt
q (g1, g2) =Wq(g1)W

∗
q(g2).

For q | N, we want to construct an optimal element in W(χq, ψq) ⊗W(χ−1q , ψq). Let ξq =

χcq · χ−1q be the character on K×q which brings x 7→ χ(x/x). We may also consider ξq as the

restriction of χq on K1q. Then ξq is a ring class character: it is trivial on (Zq +$o(ξq)OK,q)× for

some non- minimal number o(ξ) called the order of ξ. We write

Oo(ξ) = Zq +$o(ξ)OK,q,

for the associated order.

Let δq ∈ Oc,q be a generator of the different ideal Dq of Oc,q, namely the ideal generated

by x − x for all x ∈ Oc,q. Then for each a ∈ Oc,q/δq, we define the function Φopt
a,q to be the

characteristic function of,

Oc,q +
a

δq
⊂ Kq.

We define the one-variable optimal function Wopt
a,q for a ∈ Oc,q/δq and the two-variable optimal
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functionWopt
q (cf. Definition 5.7),

Wopt
a,q(g) :=W(g, χ,Φa,q)

Wopt
p (g1, g2) :=

∑
a∈Oc,q/δq

Wopt
a,q(g1)⊗W

opt
−a,q(g2ε).

12.2 Comparison of Harris–Venkatesh periods

For any primes p, ` ≥ 5 coprime to N, we want to compare Harris–Venkatesh periods:

[Γ(1) : Γ0(N)] · [PHV(f
new) : PHV(f

opt)].

By the multiplicity one argument of Section 9, it is equal to the ratio of Rankin–Selberg periods

[PRS(f
opt) : PRS(f

new)].

By Theorem 8.1 and 8.2, this ratio is in Q(ξN + ξ−1N )× and has a precise formula.

Proposition 12.1. If f is a locally dihedral newform of weight 1 and level N with associated

quadratic character χN, then there exists an element βχN ∈ Q(ξ + ξ−1)× such that for almost all

primes p, ` ≥ 5 coprime to N,

log`Sp

(
TrNpq (f(z)f∗(pz))

)
= βχN log`Sp(f

opt(z, pz)).

Furthermore, there is a decomposition,

βχN =
∏
q|N

βχq ,

where βχq depends only χq. Moreover, for odd primes q that are not simultaneously ramified in

both K and χ, we have the following explicit formula for βχq:
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1. If q is ramified in K, then

βχq = 4.

2. If q is inert in K, then

βχq =



(q−1)2

q2
if ξ is unramified,

ξ(−1)(q+1)2

q2
if ξ is ramified and ξ2 is unramified,

ξ(−1)(q+1)
q2

if ξ2 is ramified.

3. If q is split in K (so Kq = Qq ⊕ Qq is split with uniformizers $1,$2 and χq = (χ1, χ2)),

then

βχq =



(q−1)(q−ξ($1))(q−ξ($2))
(q+1)q2

if χ is ramified and ξ is unramified,

χ(−1)(q−1)2q2o(ξ)−1

q2o(ξ)+1−q2o(ξ)+2
if ξ is ramified, if ξ2 is unramified

and exactly one of the χi is ramified,

χ(−1)(q−1)3q2o(ξ)−2

q2o(ξ)+1−q2o(ξ)+2
if ξ2 is unramified,

and both χi are ramified,

χ(−1)(q−1)2q2o(ξ)+1

(q+1)(q2o(ξ)+1−q2o(ξ)+2)
if ξ2 is ramified

and exactly one of the χi is ramified,

χ(−1)(q−1)3q2o(ξ)−2

(q+1)(q2o(ξ)+1−q2o(ξ)+2)
if ξ2, χ1, and χ2 are all ramified.
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