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Abstract 

Social and ecological insights across landscape, community, and household scales:  

Forest health, governance, and livelihoods in central India 

Sarika Ann Khanwilkar 

 

Forests are embedded in diverse forest governance, resource use, and resource user 

settings which are linked as components of social-ecological systems. This dissertation 

examines forest health at a landscape scale, governance at a community scale, and 

livelihoods at a household scale within a social ecological system; I develop a measure of 

forest health, the Bare Ground Index, derived from satellite imagery and combine this with 

socioeconomic data to examine relationships between forest health and forest governance 

and livelihoods across central India. This body of work has identified livelihood and 

governance approaches that provide social benefits and maintain healthy forests in central India, 

a landscape with globally important biodiversity and socially and historically marginalized 

people. This context is reflected in additional human-dominated landscapes where identifying 

sustainable development solutions that provide social and environmental benefits is a priority.  

 As forests are lost, gained, and degraded around the world, satellite data has been a 

powerful tool in collecting estimates of forest cover change but less widely adopted to measure 

forest degradation, largely due to challenges in common interpretations of operational measures. 



 
 

In chapter 1, coauthors and I develop landscape-scale land cover and forest health datasets for 

central India. First, we identified land cover, including tree cover and bare ground, from Planet 

Labs Very High-Resolution satellite data using a Random Forest classifier, resulting in a 3-meter 

(m) thematic map with 83.00% overall accuracy. Second, we operationalize a measure of forest 

health and derived the Bare Ground Index (BGI), a normalized index that is a ratio of bare 

ground to tree cover at 90 m resolution. The BGI was mapped across forest (>10% tree cover). 

Although open areas occur naturally throughout the tropical dry forest of central India, results 

from field data indicated that the BGI served as a proxy for measuring the intensity of cattle 

presence in a landscape where grazing has changed forest composition. The BGI was developed 

as an indicator of forest health and now serves as a baseline to monitor future changes to a 

tropical dry forest landscape at an unprecedented spatial scale. 

In chapter 2, coauthors and I integrated the BGI with socioeconomic data from surveys to 

households and locally elected leaders to assess forest health and governance patterns across 238 

villages at the community-scale. We experimentally selected 80 total villages as treatment and 

control groups and used this dataset in various statistical analyses to assess the extent of exposed 

bare ground within forests around villages with and without local institutions involved in making 

decisions about the forest. Forest had less bare ground within forest where there was a local 

institution compared to villages without an institution at 3 and 5 kilometers (kms), distances that 

households traveled from the village to graze cattle or collect Non-Timber Forest Products, 

firewood, and fodder. Having a local forest institution was more strongly associated with bare 

ground within forest at 3 and 5 kms than measures of local forest use. In villages with 

institutions, the authority to modify rules about forest use was relatively more important than the 

length of time the institution had been established for bare ground within forest. Establishing 



 
 

formal institutions with authority over forest management is important to promote forest cover 

around forest-dependent communities but it is necessary to ensure that forest governance does 

not worsen existing socioeconomic disparities. Bare ground within forests near and far (1 and 10 

kms) villages was not different in places with and without formal local institutions and was most 

strongly associated with local forest uses. Both formal forest institutions and forest uses like 

collecting firewood for cooking or wood for construction material impact forests in central India. 

In my third and final chapter, coauthors and I examined firewood collection patterns and 

the adoption of Liquified Petroleum Gas (LPG) using surveys from 4,994 households in central 

India. Firewood collection is pervasive across central India’s rural communities and mainly used 

for cooking or heating. We adopted an energy justice approach, which emphasizes questions 

about who does and does not have access to alternative cooking fuels, because historically 

marginalized groups comprise a significant portion of central India’s total population. It was 

important to integrate social justice issues in a system where resource users experience multiple 

disparities, such as high levels of poverty. We found that despite overall growth in LPG use, 

disparities in access to clean cooking fuels remained and the probability of cooking with LPG 

was lowest for socially and historically marginalized households (i.e., Scheduled Tribe, 

Scheduled Caste, and Other Backward Caste). While 90% of LPG-using households continued to 

use firewood, households that have owned LPG for more years spent less time collecting 

firewood, indicating a waning reliance on firewood over time. This study found evidence that 

policies targeting communities with marginalized social groups living near forests can further 

accelerate LPG adoption and displace firewood use. 

My thesis examined components of a social ecological system at landscape, community, 

and household scales. I integrated insights from across social and ecological disciplines to 



 
 

identify strategies for sustainable development in central India. First, I developed an operational 

measure of forest health. Following chapters identified characteristics of governance and 

livelihood interventions that present potential pathways towards achieving benefits for 

conservation and people. Environmental and development goals should be harmonized so that 

the central Indian landscape can continue to support biodiversity and people. My approach can 

be replicated across additional social ecological systems by linking a landscape-scale resource 

condition to community governance and household socioeconomic patterns. 
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Introduction 

Forests are important for their roles in global biogeochemical processes, biodiversity 

conservation, and providing subsistence and income to millions of forest-dependent and 

impoverished people (Nerfa et al. 2019; Joos-Vandewalle et al. 2018). Within social ecological 

systems, forests are embedded in social contexts including diverse forest governance and 

resource use and user settings interacting at different scales (Liu et al.  2007; Ostrom, 2009; 

McGinnis, 2014). As forests are lost, degraded, or gained, through natural regeneration, 

afforestation, or restoration, around the world (Song et al. 2018; Vacutsem et al. 2021). Changes 

to forests present a challenge to understand and capture biophysical measures of resource 

condition and an opportunity to identify pathways towards sustainable development that provide 

multiple benefits to resources and people (DeFries et al. 2012). For example, whether resource 

users are involved in management or have autonomy to make and enforce rules about resource 

use influences resource sustainability (Dietz et al. 2003; Ostrom, 2009). International trade and 

overconsumption are significant drivers of deforestation along with local socioeconomic factors 

like forest governance and forest-dependent livelihoods (Hoang et al. 2021; DeFries et al. 2010; 

Lewis et al. 2015; Oldekop et al. 2020), although local demand and uses of forests do not 

necessarily threaten forests (Delabre et al. 2020). People in poverty inhabit the same forests that 

are valued for their biodiversity (Fisher et al. 2007) and local participation in forest governance 

has resulted in benefits to forests around the world (Slough et al. 2021; Min-Venditti et al. 2017; 

Oldekop et al. 2019). 

Here, I introduce satellite-based methods to measure forests at the landscape scale and 

then provide a background to community participation in forest governance and household forest 

uses including collecting firewood for cooking. My first chapter derived a landscape scale 



2 
 

measure of resource condition from satellite imagery and following chapters integrated these 

remote sensing products with in situ socioeconomic data at the household and community scales 

(Cavender-Bares et al. 2022). Sustainability has traditionally been approached through the 

perspective of natural resource condition (chapter 1); I integrate connections between forest 

health, communities, and social justice in my framing of sustainable development in subsequent 

chapters (Nagendra, 2018).  This dissertation examines forest health at a landscape scale, 

governance at a community scale, and livelihoods at a household scale within a social 

ecological system; I have produced a forest health indicator dataset (chapter 1) and 

integrated this and other satellite-derived measures of the forest with socioeconomic data to 

answer questions that aim to identify ways to achieve sustainable development goals for 

sustainable forest management (e.g. Sustainable Development Goal (SDG) 15) and access to 

clean energy (e.g. SDG 7) (chapters 2 and 3) in central India. The households and 

communities I examine in chapters 2 and 3 provide fine-scale insights across a landscape, and 

landscapes are an important scale for flora, fauna, and people that live in or depend on forests 

(Oldekop et al. 2020; Hobbs, 1997; Daskalova et al. 2020; Opdam et al. 2018; Arroyo-Rodriguez 

et al. 2020).   

Satellite imagery has provided insights into the presence and absence of forests at 

landscape and global scales (Song et al. 2018; Hansen et al. 2013). In contrast, there is no 

standard definition of forest degradation, a process with leads to reduced ecological functioning 

due to arrested succession (Ghazoul et al. 2015) and precursor to deforestation (Vancutsem et al. 

2021). Structural indicators of forest degradation can include decreased biomass (Goa et al. 

2020) and soil health and function (Veldkamp et al. 2020). Soil can be readily identified with 

satellite imagery.  For example, the Normalized Difference Fraction Index integrates bare ground 
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exposure in its measure of forest degradation using a spectral unmixing approach (Bullock et al. 

2018). Globally, the amount of exposed bare ground is increasing and from 2000 to 2012, an 

estimated 93,896 km2 of bare ground was gained; almost all of this conversion was human-

induced (Ying et al. 2017). Despite the lack of a common interpretation of forest degradation 

assessed with satellite imagery (Bustamante et al. 2016), various remote sensing methods have 

been developed (i.e. Vancutsem et al. 2021, Bullock et al. 2018, Hansen et al. 2019). These 

studies use Landsat imagery (medium resolution at 30 meters), which is available from 1972 to 

present-day openly and free and has provided scientific and economic benefits around the world 

(Zhu et al. 2019). More recently, the quality and quantity of Very High Resolution (VHR) 

satellite imagery has increased while continued computational advancements improve the 

feasibility to process and analyze the data. Although not consistently openly available and free, 

VHR data more accurately identifies small-scale features than medium-resolution imagery and 

has the potential to quantitively estimate and subsequently monitor forest degradation at an 

unprecedented scale.  

Central India was a hotspot of forest loss across India from 1985 to 2005 (Meiyappan et 

al. 2017), but deforestation captures shifts from forest to another land cover class and does not 

evaluate subtle changes within the single vegetation land cover class (e.g. forest). In chapter 1, 

coauthors and I develop a metric to measure exposed bare ground within forests and produce 

land cover and forest health datasets for the landscape. First, we identified five land covers from 

Planet Labs VHR (3 m) satellite imagery using a Random Forest classifier in Google Earth 

Engine, including tree cover, bare ground, built environment, water, and cropland. The Random 

Forest classifier was used because it classified land covers most accurately in an algorithm 

selection process where we evaluated several machine learning algorithms for discrete land cover 
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classification on a small portion of the landscape. Second, we derived the Bare Ground Index 

(BGI), a normalized index that is a ratio of bare ground to tree cover at 90 m resolution across 

forests (>10% tree cover). The BGI was assessed with ground observations of invasive species 

and signs of forest use by people and cattle and developed to provide a baseline operational 

measure of forest health across central India.  Then, I integrated the BGI with socioeconomic 

data on resource users and governance settings in chapter 2.  

Effective forest governance is critical to maintain or improve the biophysical state of a 

forest. Forests can be managed under a variety of strategies such as Protected Areas under state 

(government) ownership and management. Forest management shared between states and local 

communities can be more effective for people and forests than forests under state control alone 

(Oldekop et al. 2015). The extent of community participation in forest management varies 

widely but altogether efforts to decentralize governance have provided environmental benefits. A 

meta-analysis from experimental sites around the world found reduced forest use and resource 

degradation where communities monitored natural resources (Slough et al, 2021). Community 

managed forests in Mexico, Costa Rica, and Thailand have resulted in more forest benefits than 

government managed land (Min-Vendetti et al. 2017; Agarwal, 2022). While India’s forests are 

owned and managed by government Forest Departments, participatory management can be 

formalized at the village-level through institutions such as the village forest committee, van 

sanrakshan samiti in Hindi, or eco-development committee. Within sites across central India, 

local participation in forest governance resulted in significant positive forest outcomes (Agarwal 

et al. 2016; 2017). 

In chapter 2, coauthors and I assessed whether global and community scale patterns 

showing environment benefits of community participation in forest governance was reflected at 
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the landscape-level. We integrated the BGI developed in my first chapter as a measure of forest 

health with data from two surveys, one given to households across 500 villages in 2018 and 

another interviewing 238 local elected leaders of the same villages in 2022. The 2018 survey was 

used in chpaters 2 and 3. We examined patterns of forest governance across 238 villages along 

with household socioeconomics. To assess forest health in villages with and without local forest 

management institutions, we experimentally selected 80 total villages as treatment and control 

groups and used this dataset in a Wilcoxon rank sum test and conditional forest models. 

Conditional forest model results were used to estimate the relative importance of local 

institutions and forest uses, including collecting wood for home repairs, firewood, Non-Timber 

Forest Products (NTFP), and fodder and grazing cattle in the forest, on forest health. In places 

with local institutions, we also assessed the relative importance of the length of time a local 

institution had been established and whether the local institution had the authority to modify 

rules about forest use in forest health outcomes. Although chapter 2 focused on forest 

governance, resource users across central India are highly forest-dependent and results confirmed 

the importance of forest uses in shaping forest health across the landscape.  

People depend on forests to meet basic needs even if it is hazardous to human health. For 

example, 2.8 billion people around the world burn biomass to meet household energy needs 

(Bonjour et al. 2013). Households use multiple fuels, or stack fuels, to meet energy needs; 

despite access to alternatives such as Liquified Petroleum Gas (LPG), biogas, and solar, firewood 

persists as a cooking fuel partly because of its availability (Mani et al. 2020; Kyaw et al. 2020), 

which can be influenced by forest condition (Njenga et al. 2021). The deaths of almost half a 

million people across India in 2017 were attributable to household air pollution from cooking 

with biomass (Balakrishnan et al. 2019) and largely burden women and children who are tasked 



6 
 

with cooking (Cabiyo et al. 2021). In response, the Government of India has promoted the use of 

LPG in poor households through a Pradhan Mantri Ujjwala Yojana, a policy implemented in 

2016. 

In chapter 3, coauthors and I explore cooking fuel patterns in 4.994 households living 

across 500 villages in central India before and after a national-level alternative cooking fuel 

policy. We used an energy justice approach which emphasized questions about who does and 

does not have access to LPG. This approach was important because central India contains a 

relatively high number of historically and socially marginalized communities who face multiple 

disparities due to their class and community identities (Table 1).  We used survey data from 

households within 500 villages living in forested regions collected in 2018 and a satellite-derived 

measure of forest availability to investigate the household determinants of LPG adoption and the 

timing of this adoption (pre- or post-2016). In addition, we documented patterns of firewood 

collection and evaluated the extent to which households acquiring LPG changed these activities. 

Overall, this thesis provides a baseline measure of forest health, measuring exposed bare 

ground within forest, across central India and identified livelihood and governance solutions that 

provide social and environmental benefits. The central Indian landscape has globally important 

biodiversity and socially and historically marginalized people, a context reflected in additional 

human-dominated landscapes where identifying sustainable development solutions that have 

social and environmental benefits is a priority. 

 

1.1 Study area 

Central India is a landscape across 38 administrative units, known as districts, in the 

states of Madya Pradesh, Maharashtra, and Chhattisgarh. In addition to major urban centers – 
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Nagpur, Jabalpur, and Bhopal – there are numerous rural villages throughout the region where 

residents primarily engage in agriculture and livestock rearing as an occupation. Rural 

communities face higher levels of poverty, measured as a combination of health, education, and 

living standards, compared to the rest of India (Alkire et al. 2020). About 51 million people, 

living mainly in rural settings, of diverse identities live in the study area (Table 1). For example, 

there are more than 50 different constitutionally recognized Scheduled Tribe groups throughout 

central India, such as Gond or Baiga.  

 Forest-based economic and subsistence activities contribute substantially to households 

in central India (Gupta et al. 2017).  Over one third (37%) of villages within the study area live 

within 8 km of forest (DeFries et al. 2020). Seasonal harvest of commercial NTFPs is common, 

such as Tendu (Diospyros melanoxylon) leaves or ‘tendu patta,’ which contribute substantially to 

household incomes. Other materials might be collected as fodder for livestock or for 

construction, particularly where communities lack more permanent, or ‘pucca,’ houses.  

Forests across central India are tropical dry forests, which are highly threatened, contain 

unique biodiversity, and have close relationships with the people living in and near them (Janzen, 

1988; Power et al. 2018).  Many tree species are deciduous; forests can be highly heterogeneous 

or dominated by few species, notably Sal (Shorea robusta), Teak (Tectona Grandis), or 

Terminalia species (Agarwala, 2016). Central India a global priority tiger (Panthera tigris) 

conservation landscape (Sanderson et al. 2005). Although protected areas across the landscape 

form the foundation of biodiversity-focused management and central India has some of India’s 

largest remaining forest patches, they are highly fragmented and 88% of central India’s tree 

cover exists outside of formally designated protected areas (Nayak et al. 2020). Shifts in rural 

demographics and infrastructure development in central India are exemplary of global trends 
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shaping forest and forest-dependent livelihoods (Oldekop et al. 2020). This forest contributes to 

existing connections between protected areas for tigers and other wildlife (Thatte et al. 2019; 

Schoen et al. 2022). Livestock grazing and fire have altered tree species composition across 

central India (Agarwala, 2016). 

Table 1:  Summary statistics of the study area. There are 38 districts in the study area 
(central India), 32 of which were included in the 2018 survey (as indicated by *) and another 31 
included in both the 2018 and 2022 surveys (as indicated by **). The multidimensional poverty 

index ranges from 0 (low poverty) to 1 (high poverty) and is a combined measure of health, 
education, and living standards (Sharma et al. 2019). I also report the size of Scheduled Caste 
and Scheduled Tribe populations and percent of households (rural and total) using firewood 

and LPG as their primary cooking fuel by district (Registrar General and Census Commissioner 
of India, 2011). 

State District Multi-
dimensional 
poverty 
index 

Total 
population 

% of 
population 
Scheduled 
Caste  

% of 
population 
Scheduled 
Tribe 

% of rural 
households 
using 
firewood as 
a primary 
fuel for 
cooking 

% of rural 
households 
using LPG 
as a 
primary 
fuel for 
cooking 

% of total 
households 
using 
firewood as 
a primary 
fuel for 
cooking 

% of total 
households 
using LPG 
as a 
primary 
fuel for 
cooking 

Chhattisgarh Bilaspur** 0.12 2663629 20.76 18.72 91.21 1.45 80.52 12.62 

Chhattisgarh Janjgir - 
Champa** 

0.11 1619707 24.57 11.56 92.64 1.78 89.46 5.07 

Chhattisgarh Kabeerdham** 0.20 822526 14.56 20.31 89.96 0.66 87.54 3.61 

Chhattisgarh Korba** 0.17 1206640 10.33 40.90 93.49 2.23 71.35 15.65 

Chhattisgarh Rajnandgaon** 0.10 1537133 10.19 26.36 96.68 1.23 88.40 8.39 

Madhya 
Pradesh 

Anuppur** 0.21 749237 9.93 47.85 95.68 1.83 80.55 13.85 

Madhya 
Pradesh 

Balaghat** 0.20 1701698 7.37 22.51 96.27 1.54 90.55 6.92 

Madhya 
Pradesh 

Betul** 0.17 1575362 10.11 42.34 91.15 2.78 79.89 13.84 

Madhya 
Pradesh 

Bhopal 0.21 2371061 15.08 2.93 82.93 8.88 27.01 57.70 

Madhya 
Pradesh 

Chhatarpur 0.15 1762375 23.00 4.18 88.74 1.51 81.72 9.84 

Madhya 
Pradesh 

Chhindwara** 0.15 2090922 11.11 36.82 89.82 5.31 77.30 16.72 

Madhya 
Pradesh 

Damoh** 0.22 1264219 19.49 13.15 88.02 1.70 83.10 7.73 

Madhya 
Pradesh 

Dindori** 0.28 704524 5.65 64.69 96.84 1.01 94.84 2.71 

Madhya 
Pradesh 

East Nimar** 0.21 1310061 11.95 35.05 72.90 4.83 65.21 15.39 

Madhya 
Pradesh 

Harda 0.05 570465 16.28 27.99 86.09 8.61 74.92 19.98 

Madhya 
Pradesh 

Hoshangabad** 0.11 1241350 16.51 15.89 83.73 5.96 67.24 24.32 

Madhya 
Pradesh 

Jabalpur** 0.10 2463289 14.13 15.23 91.96 4.81 57.60 37.39 

Madhya 
Pradesh 

Katni** 0.19 1292042 12.05 24.59 95.29 2.71 84.17 13.18 
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Madhya 
Pradesh 

Mandla** 0.25 1054905 4.59 57.88 96.47 2.09 90.77 7.39 

Madhya 
Pradesh 

Narsimhapur** 0.13 1091854 16.87 13.36 86.93 3.38 79.38 11.49 

Madhya 
Pradesh 

Panna** 0.21 1016520 20.46 16.81 82.21 1.91 79.70 5.69 

Madhya 
Pradesh 

Raisen** 0.17 1331597 16.96 15.40 85.20 3.14 76.74 12.58 

Madhya 
Pradesh 

Rewa** 0.17 2365106 16.25 13.19 54.05 2.44 52.56 8.36 

Madhya 
Pradesh 

Sagar** 0.17 2378458 21.09 9.33 87.80 1.97 77.19 13.44 

Madhya 
Pradesh 

Satna** 0.17 2228935 17.88 14.36 78.08 2.80 71.82 11.53 

Madhya 
Pradesh 

Sehore 0.12 1311332 20.69 11.10 88.29 3.11 79.67 12.27 

Madhya 
Pradesh 

Seoni** 0.21 1379131 9.48 37.69 91.98 2.53 85.95 8.58 

Madhya 
Pradesh 

Shahdol** 0.22 1066063 8.42 44.65 95.19 1.68 85.12 9.75 

Madhya 
Pradesh 

Umaria** 0.22 644758 9.02 46.64 96.53 1.56 89.06 8.80 

Madhya 
Pradesh 

Vidisha** 0.21 1458875 20.03 4.63 63.48 2.41 57.65 13.99 

Maharashtra Akola 0.15 1813906 20.07 5.53 67.25 10.29 55.01 27.47 

Maharashtra Amravati* 0.07 2888445 17.53 13.99 71.84 10.94 58.23 27.60 

Maharashtra Bhandara** 0.05 1200334 16.69 7.41 87.39 9.16 75.98 20.29 

Maharashtra Chandrapur** 0.09 2204307 15.80 17.67 80.01 13.29 59.69 32.60 

Maharashtra Gadchiroli** 0.12 1072942 11.25 38.71 89.47 7.30 83.89 12.62 

Maharashtra Gondiya** 0.10 1322507 13.31 16.20 91.51 4.79 82.78 13.14 

Maharashtra Nagpur** 0.03 4653570 18.65 9.40 70.83 24.15 31.96 60.23 

Maharashtra Wardha 0.11 1300774 14.52 11.49 66.64 20.51 51.36 37.67 

Regional 
(central 
India) 

Regional 0.16 60,730,559 14.81 23.07 85.65 4.95 73.84 16.85 

National 
(India) 

National 0.12 1,028,610,328 16.20 8.20 62.60 11.40 49.00 28.50 
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Chapter 1: Land cover and forest health indicator datasets for 

central India using very-high resolution satellite data 

Progress: Under revisions for Scientific Data 

Authors: Sarika Khanwilkar, Chris Galletti, Pinki Mondal, Johannes Urpelainen, Harini 

Nagendra, Yadvendradev Jhala, Qamar Qureshi, Ruth DeFries 

2.1 Introduction 

Forest cover changes impact global biodiversity and bio-geochemical cycles (Alkama & 

Cescatti, 2016; Sala et al. 2000) and livelihoods of forest-dependent people. Deforestation, the 

complete conversion of tree cover to another land cover, has been well-documented and 

quantified at regional and global scales using satellite imagery (Hansen et al. 2013). 

Technological developments in remote sensing methods have improved the feasibility to detect 

more fine-scale changes to forests; for example, Very-High Resolution (VHR) satellite data has 

increased the spatial resolution and amount of data available to make useful interpretations of 

land cover. Despite advancements in remote sensing, the scientific literature lacks a standard 

definition and methods for detecting and quantifying subtle 'within class' changes, such as forest 

degradation.  

Generally, forest degradation is a change in the structure, function, or composition of a 

forest without complete loss of forest (GFOI, 2016). Soil health is included in different 

definitions of forest degradation because it is important for plant survival and growth. 

Additionally, lack of vegetation can lead to exposed soil (i.e. bare ground) within forests, which 

can alter soil moisture, water holding capacity, and nutrients (Formánek et al. 2014). The 

transition from tree cover to bare ground is caused by a complete loss of vegetation (Hansen et 

al. 2014), which may be due to resource extraction (Ying et al. 2017).  
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Central India is a heterogeneous mosaic of land covers that includes tree cover, exposed 

bare ground, water bodies, cropland, and villages and cities spanning a total geographic area of 

265,330,011 km2. While there was only a slight decrease (1.7%) in total forest cover from 2003 

to 2019 in central India, there is evidence of nuanced changes to forest health; areas of open 

forest (canopy cover between 10% and 40%) and moderately dense forest (canopy cover 

between 40% and 70%), which made up a combined 83.0% of total forest in 2019, decreased by 

4.9% and 7.5%, respectively, while very dense forest (canopy cover of 70% or more) increased 

by 30.5% (Appendix A) (Forest Survey of India, 2003 and 2019). 

Tropical Dry Forest (TDF) in central India directly supports a high number of forest-

dependent people (i.e. people living in and adjacent to forests and using the forest for livelihood 

needs and income generation), who largely belong to an officially recognized Scheduled Tribe or 

Scheduled Caste. Livestock rearing and agriculture are primary occupations. Livestock grazing 

and fire have altered tree species composition in central India, which demonstrates the important 

long-term impacts associated with human use of the forest (Agarwala et al. 2016). In addition, 

most forest-dependent households in central India collect firewood for cooking fuel (Khanwilkar 

et al. 2021). Another driver of forest degradation in central India is lantana (Lantana camara), an 

invasive species which most often invades forests in India where humans lop trees for wood or 

graze livestock (Mungi et al. 2020).  

In order to quantify and map forest health in central India we first produce a high spatial 

resolution (3 meter (m)) land cover dataset. Several machine learning algorithms exist to classify 

land covers. We compared four machine learning algorithms based on an accuracy assessment 

and used the random forests (RF) algorithm (Breiman, 2001) to classify five land covers for 

central India: tree cover, bare ground, water, cropland, and built environment. Based on the 
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classification, we develop an index (Bare Ground Index, BGI) to quantify exposed bare ground 

within forested regions at 90 m. We assess the BGI with ground observations of signs of 

degradation, which include the presence of an invasive species as well as signs of resource 

extraction and forest use. Land cover and BGI datasets of central India are freely available in the 

GeoTIFF and KML file formats, respectively; code used to classify land cover and the BGI in 

Google Earth Engine are also available at https://lcluc.umd.edu/metadatafiles/LCLUC-2017-PI-

Defries/. To our knowledge, this was the first VHR dataset of central India. 

The BGI is a metric to assess a structural indicator, exposed bare ground within forests, 

of forest health; it may be used as a baseline to monitor future changes to bare ground and tree 

cover in central India and contribute towards an operational definition of forest degradation as 

one of several forest health indicators (Vásquez-Grandón et al. 2018). Our approach (Figure 1) to 

mapping the BGI can be applied to additional forested landscapes. 

 

Figure 1: Flowchart depicting chapter 1. A flowchart outlining our approach to 
producing land cover and forest health indicator datasets in a Tropical Dry Forest using Very-

High Resolution imagery. 
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2.2 Methods 

Very-High Resolution (VHR) satellite data 

Planet’s PlanetScope top-of-atmosphere surface reflectance in 4 bands (Red, Green, Blue, 

and Near-infrared [NIR]) at 3 m resolution was used to classify land cover in central India. The 

four spectral bands correspond to the following wavelengths: Red (590 to 670 nm), Green (500 

to 590 nm), Blue (455 to 515 nm), and NIR (780 to 860 nm). We selected and downloaded 

images of the study area captured between February 28 and March 5 2018 using the Planet 

Explorer interface. Imagery during the winter season was selected to minimize cloud cover. 

Rainfall is highly seasonal and concentrated during the monsoon season (mid-June to 

September). Many tree species are deciduous and lose their leaves before the summer (March to 

mid-June). The coldest and driest season is from December to February. We aimed to capture 

bare ground exposed throughout the year because deciduous tree species maintain leaves in the 

winter. The images were mosaiced and clipped (i.e. pre-processed) into 233 tiles in ArcMap and 

then uploaded into Google Earth Engine (GEE), which was the first step to testing algorithms, 

classifying land cover, and calculating the BGI. 

Algorithm selection 

Four of the Planet imagery tiles, covering the fieldwork region were classified using RF, 

Support Vector Machine (Vapnik, 1979), Boosted Decision Tree with AdaBoost, adaptive 

boosting (Freund and Schapire, 1996), and Kohonen’s Self Organizing Map with k-means 

clustering (Kohonen, 1998; Li and Eastman, 2006).  

Random Forest is an ensemble classification algorithm based on a collection of decision 

trees; the starting node, or root of the tree, considers all training data. The first and subsequent 

splits separate the training data into subsets by using the input features (image bands). Support 
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Vector Machine is a non-parametric classifier that creates a linear decision boundary for a 

dataset based on support vectors, a subset of the training samples. AdaBoost, short for adaptive 

boosting, is an ensemble method that sequentially combines the results of weak estimators, such 

as individual decision trees, to obtain an optimal classification (Freund and Schapire, 1996). 

Finally, Kohonen’s Self Organizing Map with k-means clustering is an unsupervised neural 

network that uses competitive learning to optimize a vector of weights, or "synaptic 

coefficients," of a given set of neurons to minimize the distance between each input vector and 

its associated neuron (Kohonen, 1998; Li and Eastman, 2006).  

We assessed the performance of each ML algorithm based on the overall accuracy and 

the kappa index, and selected RF as the best performing algorithm (Table 2). A total of 18 

models were run which differed in the algorithm used and the number of samples in the training 

data (Appendix A) and algorithm parameters (Appendix A). The final accuracy of all models 

was assessed using validation data from a stratified random sample of pixels which were 

distributed across the four test tiles. The randomization was stratified by class and by geography. 

There were 5,332 total pixels assessed with a minimum of 150 pixels per class. For geographic 

stratification, a uniform grid was established across the corridor and pixels were randomly spread 

across the cells within the grid.  

Table 2: Algorithm selection results. Algorithm selection was accomplished by 
comparing the performance of four machine learning (ML) algorithms in the land cover 

classification of the fieldwork region of central India. Four Planet tiles that were also used to 
produce the final landscape classification were classified and the Random Forest ML algorithm 

resulted in the highest overall accuracy and kappa index (indicated by a *). 

Classification type Algorithm Highest overall 
accuracy 

Kappa 

 
Supervised   

Random Forest 0.70* 0.61* 
Support Vector Machine 0.44 0.32 

Boosted Decision Tree (AdaBoost) 0.69 0.60 
Unsupervised Kohonen’s Self Organizing Map  0.63 0.51 
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Training data for each land cover class was selected as polygons using Google Earth 

imagery from February 2018. Pixels within the polygons were extracted and assigned a land 

cover class. The same training data was used to train all three supervised algorithms. Likewise, 

the same validation was used to assess the accuracy of each algorithms’ classification output. 

Models were trained using the Scikit-Learn package within Python v2.7 and parameters varied. 

The ML models were then applied to the images on a Linux-based high-performance computing 

cluster that processed each image in just over an hour.  

 

Figure 2: Land cover dataset. Very-High Resolution (3 meter) land cover map of central 
India. The classification was completed in Google Earth Engine and visualized in QGIS3.16.  

Land cover classification 

Each Planet tile was classified into five discrete land covers: trees, bare ground, water, 

cropland, and built environment (Figure 2). We identified trees and bare ground in order to 
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derive the BGI and additional land cover types were chosen based on a field assessment 

completed within the fieldwork region in February 2018. Training data for each land cover class 

was selected as polygons using Google Earth imagery from February 2018, and additional 

training data was collected in the fieldwork region in February 2018 and June 2019. Pixels, 

1,048,575 in total, within the polygons were extracted and assigned a land cover class (Table 3). 

The pixels were used as training data using RandomForest with 10 decision trees in Google 

Earth Engine’s Classifier package and was applied to Planet imagery at 3 m scale in GEE.  

Table 3: Training data. The mean and standard deviation (SD) of reflectance values of 
all the training data according to land cover type.  

Band  Tree cover 
N=498,049 

Bare ground 
N=130,756 

Cropland 
N=95,864 

Water 
N=215,989 

Built environment 
N=107,917 

Red, Band 1 
Mean (SD) 

437.67  
(52.21) 

1077.70  
(215.90) 

476.97  
(75.17) 

552.80  
(70.18) 

824.59  
(130.24) 

Green, Band 2 
Mean (SD) 

544.14  
(62.57) 

1312.09  
(258.84) 

603.97  
(82.94) 

673.54  
(100.03) 

996.97  
(157.97) 

Blue, Band 3 
Mean (SD) 

580.90  
(85.51) 

1733.98  
(378.31) 

574.24  
(133.72) 

675.71  
(112.33) 

1236.04  
(225.10) 

Near-infrared, Band 4 
Mean (SD) 

1967.48  
(265.02) 

2828.61  
(438.59) 

3336.76  
(756.40) 

703.57  
(127.33) 

2171.17  
(368.07) 

 

Bare Ground Index (BGI) classification 

The BGI (Figure 3) was calculated and mapped using land cover data from the VHR land 

cover classification. First, we aggregated the land cover to 90 m resolution to identify forest, 

defined as >10% tree cover18, and non-forest (<10% tree cover). Then, we calculated the BGI 

within forest. 
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Figure 3: Visualization of the Bare Ground Index. The Bare Ground Index (BGI) was 
calculated and mapped in central India at 90 meter (m) resolution. The BGI was derived from 
the land cover classification. First, forest (>10% tree cover within a 90 m pixel) and non-forest 
was identified. Then, the BGI, a normalized index that ranges from -1 to +0.8, was identified 

within forest. White indicates pixels where the BGI equals 0. Pixels that are pink have more bare 
ground as compared to tree cover, whereas pixels that are green have more tree cover as 

compared to bare ground. 

The BGI is a normalized index that ranges from -1.0 (all forest) to +0.8 (all bare ground). 

The maximum BGI value for a pixel is +0.8 because the BGI was only calculated within pixels 

that had 10% or greater tree cover. The BGI was derived from the land cover classification and 

calculated using the following equation (Equation 1):  

(1) 
(𝐵𝑎𝑟𝑒𝐺𝑟𝑜𝑢𝑛𝑑! −	𝑇𝑟𝑒𝑒𝐶𝑜𝑣𝑒𝑟!)
(𝐵𝑎𝑟𝑒𝐺𝑟𝑜𝑢𝑛𝑑! +	𝑇𝑟𝑒𝑒𝐶𝑜𝑣𝑒𝑟!)

	= 𝐵𝑎𝑟𝑒	𝐺𝑟𝑜𝑢𝑛𝑑	𝐼𝑛𝑑𝑒𝑥	(𝐵𝐺𝐼)	 

 

where BGI is the Bare Ground Index (BGI) at 90 m resolution, and TreeCoveri and BareGroundi 

is the fraction of pixels within the 90 m pixel that were classified as “tree cover” and “bare 

ground,” respectively, in the land cover classification. The BGI classification was performed 
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using the GEE Code Editor (www.code.earthengine.google.com) and visualized in QGIS3.16. 

Figure 3 shows examples of the BGI. 

 

 

2.3 Results 

Data Records 

Data are available for download from the National Aeronautics and Space 

Administration’s (NASA) Land Cover Land Use Change program data repository 

(https://lcluc.umd.edu/metadatafiles/LCLUC-2017-PI-Defries/). The ‘Read_me’ text file 

describes the available land cover and BGI classification data files. The ‘StudyAreaZones’ map 

shows the location of 233 tiles that cover the landscape; the tile number corresponds to the 

location and file name of available land cover (‘Classified_[tile number]’) and BGI 

(‘classified_bgi_[tile number]’) data. 

Land cover classification accuracy 

In addition to assessing the accuracy of multiple ML algorithms during algorithm 

selection, we conducted an accuracy assessment of the final land cover dataset following an 

independent resampling approach (Table 4). Geographic randomization of reference data was 

achieved by generating ten random points per tile (2,330 points) in R version 3.6 to ensure an 

unbiased reference data selection and distribution across the study area. Reference data was 

selected through visual interpretation of imagery in Google Earth Pro. The accuracy of the land 

cover classification as compared to our reference data was calculated in R version 3.6 and 

resulted in a 83.00% overall accuracy. The user accuracy for tree and bare ground classes were 
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90.21% and 52.20%, respectively; the producer accuracy for tree and bare ground classes were 

88.53% and 92.08%, respectively (Table 4). 

Table 4: Land cover classification error matrix. The error matrix was used to assess the 
accuracy of the final land cover dataset. Reference data were 10 randomized points per tile; land 

cover was identified from historical Google Earth imagery.  The overall accuracy was 83.00%. 

  Independent samples     

Land cover 
classification 

Tree 
cover 

Bare 
ground 

Built 
environment Cropland Water Row total  

User's 
accuracy 
(%) 

Tree cover 27220 17 56 2625 256 30174 90.21 
Bare ground 1357 12252 156 4716 4995 23476 52.19 
Built 
environment 1 208 2623 2655 7870 13357 19.64 
Cropland 1111 827 569 39984 9274 51765 77.24 
Water  1059 2 7 47 102446 103561 98.92 
Column total  30748 13306 3411 50027 124841 222333  
Producer's 
accuracy (%) 88.53 92.08 76.90 79.92 82.06   

 

Ground validation of the BGI 

In February 2020, we visited 191 locations which varied from high to low BGI in the 

fieldwork region (Figure 4). The season of data collection during ground validation coincided 

with the season that Planet satellite images were acquired, which was of particular importance to 

accommodate the seasonality of the region. Signs of forest use, including trails, cattle dung, and 

lopping, and lantana were detected at each ground validation location. These signs were 

categorized as 0 (no signs), 1 (1 or 2 signs), or 2 (3 or greater signs). Then, we compared the BGI 

values of areas with minimal to maximal signs of forest use and lantana using a Wilcoxon rank 

sum test, which estimates the significance of the difference between non-normally distributed 

data. There were significantly higher amounts (p<0.05) of cattle dung in places with higher 
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values of BGI, or more bare ground than tree cover (Appendix A). There were no significant 

associations between the BGI and other signs of forest use.  

 

Figure 4: Ground validation map. Ground validation data was collected from the 
fieldwork region of the study area in February 2020 (a). Photos from ground validation 

locations (b) illustrate exposed bare ground within forests which we aimed to identify and map 
with the Bare Ground Index (BGI). Photos were taken with a Samsung Galaxy S10+. Tree cover 

comes from Hansen et al. 20132. 

2.4 Discussion 

There is no single remote sensing method that can measure forest health and degradation 

in all of its complexity. Where changes to the forest cannot be measured through changes in tree 

cover alone, the BGI serves as a geospatial tool to quantify and explore one characteristic of 
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forest health. The BGI can be a valuable metric to couple with other indicators of forest health to 

assess and understand forest degradation and contributes to a broader need to assess and estimate 

changes to forest health in TDFs around the world, forests which have been understudied as 

compared to tropical moist or wet forests (Powers et al. 2018). 

An increase in BGI is associated with increased presence of cattle dung, which we used 

as a proxy for intensity of cattle grazing. Stronger evidence that links the BGI directly to cattle 

grazing can be collected through further field research, such as direct observations of cattle 

grazing and a more thorough understanding of grazing patterns through social surveys. 

Throughout our ground surveys of the BGI, signs of forest use were prevalent across a range of 

values of the BGI. Such activities may continue to impact forest health below the canopy where 

optical data is unable to detect. We advocate for the development of additional forest heath 

indicators using LiDAR and SAR data, with a specific emphasis on identifying indicators of 

degraded forest structure and composition driven by lantana invasion, firewood collection, and 

human and livestock movement through the forest.  

Phenological and historical examinations of the BGI would provide further insight into 

structural changes to the forest. We carefully considered the dates of image acquisition and 

ground validation due to seasonality of vegetation (see Very-High Resolution (VHR) satellite 

data). Although exposed bare ground occurs naturally in some locations in the study area as well 

of other TDFs, we measured tree cover during a season when a majority of the deciduous tree 

species had leaves. Historical VHR data may be used to detect long term persistence of, or 

changes to, the BGI. For example, transitions from tree cover to bare ground which would be 

indicated by increased BGI values. Future users of the BGI data and/or methods must consider 
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inter and intra annual vegetation cycles before making interpretations and comparisons of the 

BGI.  

It is not possible to compare the BGI of a forest across large geographies where forest 

types and vegetation differ. The BGI we produced was derived from five land cover classes; the 

tree cover class could include other forms of vegetation such as shrubs or grasses. For instance, 

lantana may have been classified under the tree cover class because we found greater amounts of 

lantana in areas with low BGI values compared to high BGI values and this difference 

approached significance (p = 0.07) (Appendix A). Bare ground was commonly misclassified as 

cropland or water, and built environment was largely misclassified as water.  

We advocate that others adapt our methods to monitor the BGI in additional TDFs and 

derive the BGI from land cover classification with a larger number of vegetation classes. 

Deriving the BGI from a more distinctive tree cover class could help overcome potential issues 

of interpretation similar to the Normalized Difference Vegetation Index (NDVI), a measure of 

live vegetation cover, where the NDVI value is not limited to photosynthetic activity from trees 

alone (Agarwal et al. 2016). Finally, additional indicators of forest health in central India can be 

developed that incorporate locally grounded values, knowledges, and needs (Sterling et al. 2017). 

Code Availability 

The code classifying land cover from PlanetScope imagery and deriving the BGI was 

written in Google Earth Engine. The JavaScript language to classify land covers from 

Planetscope imagery and derive the BGI from the land cover is available as the ‘Code’ text file at 

https://lcluc.umd.edu/metadatafiles/LCLUC-2017-PI-Defries/.  
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Chapter 2: Impact of governance and local forest uses on bare 

ground within central India’s forests 

Progress: In preparation 

Coauthors: Sarika Khanwilkar, Johannes Urpelainen, Harini Nagendra, Ruth DeFries 

3.1 Introduction 

Evidence suggests that involvement of resource users in forest management and 

autonomy to make and enforce rules about resource use promotes forest cover and resource 

sustainability (Hajjar et al. 2021; Slough et al. 2021; Dietz et al. 2003; Elinor Ostrom, 2009). 

Community-based forest management in Mexico, Costa Rico, and Thailand was associated with 

positive impacts on forest cover, through decreased deforestation or increased forest area, in 

more instances than protected areas (Min-Venditti et al. 2017; Agarwal et al. 2022). Across 

Nepal, villages with community forest management experienced more social and environmental 

benefits through reduced poverty and deforestation than villages without community forest 

management (Oldekop et al. 2019).  

Sustainable Development Goal 15 aims to implement sustainable management of forests 

and ensure sustainable use of forest resources. Maintaining healthy forests, where biophysical 

conditions sustain ecological functioning, are directly critical for 2.7 billion people around the 

world who rely on forests for housing material, water, energy, or source of income (Fedele et 

al.,2021). Forest-dependency can be measured along different dimensions, including the spatial 

relationship to forests and frequency a household member collects forest resources (Newton et al. 

2016). Globally, 3.5 billion people use Non-Timber Forest Products (NTFPs) which contribute 

substantially to human well-being (Shackleton, et al. 2021). Forests also provide wood as 

construction material or food to livestock; people collect fodder or graze livestock directly in 
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forests. Around the world, 2.8 billion people collect biomass such as firewood or charcoal to 

meet energy needs for cooking or heating (Bonjour et al. 2013). Community inclusion in forest 

management ideally provides community benefits from sustained local use of forest resources by 

providing control over what forest resource is harvested, by who, and when. However, social 

outcomes of participatory forest governance are mixed. Lack of appropriately addressing 

diversity within communities has further marginalized women and people or decreased forest 

access and rights (Calfucura, 2018; Agarwal, 2010; Killian, 2020; Rout, 2018; Kumar, 2018; 

Hajjar et al. 2021) and there have been higher levels of elite capture where formal community 

rights were initiated from outside the community (Agarwala and Ginsberg, 2017). 

In postcolonial India, forests are largely controlled by state (government) forest 

departments. Restricted access to forests under state management has resulted in pressure shifts, 

where people continue to use forests for subsistence outside Protected Areas (PAs) where dense 

forest cover has decreased (Agarwal et al. 2016). Forest management can involve informal and 

formal or externally and internally directed institutions (Fleishman, 2016). Implementation or 

adoption of participatory forest governance policies or other development interventions related to 

forest management is variable across India (Bhattacharya et al. 2010). Formal decentralization of 

forest governance at the national level began with Joint Forest Management (JFM) in 1990, 

characterized by shared authority between local communities and government over government-

owned forests (Bose et al. 2012; FAO, 2016). Communities with JFM vary on rules regarding 

harvesting of forest resources, monitoring, and compliance (Ghate and Nagendra, 2005) and 

individual states implement JFM, resulting in different strategies and institution names 

(Bhattacharya et al. 2010). However, formal and informal decentralization began before JFM at 

state and local scales (Agrawal and Ostrom, 2001) and historically, communities managed 
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forests through de facto regimes. Communities gained de jure control over forest governance via 

the Forest Rights Act (FRA) (2006), which involves the creation of a formal community 

institution and recognition of rights and management to customary forest (FAO, 2016). Other 

formal local institutions involved in forests across India are Eco-Development Committees 

(EDCs), which are prioritized in the buffer zones of Protected Areas and characterized as 

integrated conservation and development projects (Mahanty, 2002).  

In this paper, we assess relationships between formal local institutions and forest health 

by analyzing forest health, community governance, and household forest uses across the central 

region of India. In central India, forests mostly exist outside of national designated and managed 

protected areas; the trajectory of 88% of central India’s forests will be shaped by alternative 

governance systems to PAs (Nayak et al. 2020). In addition, a large number of central India’s 

communities depend on forests, with over one third (37%) of villages in central India living 

within 8 kilometer (km) of forest (DeFries et al. 2020). We assessed the reported existence and 

authority of formal committees involved in forest management and forest health across 238 

villages. We then experimentally matched villages with (N=40) and without (N=40) local 

institutions to determine the influence of local institutions on the proportion of forest with 

exposed bare ground surrounding villages, quantified with a satellite-derived metric, the Bare 

Ground Index (BGI) (see Chapter 1). We expected to find healthier forests, or forests with less 

bare ground, around villages with local institutions as compared to villages without local 

institutions, and that the presence of a local institution was a more significant predictor of forest 

health than levels of forest dependency. Forest dependency was measured across five variables 

including percent of households grazing cattle in the forest or using wood from the forest for 

construction materials and average number of months per year households collect fodder, 
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firewood, or NTFP at least once per week. This study addressed the following objectives: 1) to 

compare the BGI in villages with and without local institutions for forest management, 2) to 

assess the relative importance of local forest management institutions and local forest uses on the 

BGI, and 3) in villages with local forest management institutions, to assess the relative 

importance of institutional characteristics: the number of years the institution has been 

established and whether the institution has the authority to modify rules about forest use on the 

BGI. 

3.2 Methods 

This study leveraged cross-sectional structured surveys administered in 2022 to the local 

elected leader of villages within 8 km of forests, surveys administered in 2018 to households in 

those villages, and a satellite-derived measure of forest health.  

Household and village sampling  

We selected 500 study villages in Madhya Pradesh, Maharashtra, and Chhattisgarh 

according to multi-stage criteria that resulted in a representative sample. The first criteria was 

selection of study villages that were not in PAs but were within eight kilometers of a forested 

region, as defined by Hansen et al. (2013). Next, we employed a stratified sampling scheme for 

village selection based on the distance of that village to a town and the distance of that village to 

a road. Towns were identified in the 2011 Census of India as a place with a municipality, a 

minimum population of 5,000, population density greater than 400 people per km2, and at least 

75% of the male population employed outside the agricultural sector. Village distance to a road 

was calculated using the Digital Chart of the World road maps (downloaded from 

http://www.diva-gis.org/gdata) (Danko, 1992).  
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Villages were split into two groups based on whether they were above or below the 

median distance to nearest town. These two village groups were each further split into two 

groups based on whether the distance to nearest road was above or below the median of that 

initial grouping. This process resulted in four village groups, each farthest and closest to a road 

and a town, from which 125 study villages were randomly selected from each group.    

Ten households in each of the 500 study villages were surveyed. Study villages consisted 

of multiple hamlets, or tolas. Tolas were identified by asking the village head the number of 

tolas and how many people and households were in each. Within each tola, households were 

randomly selected with the number of sampled households per tola matching the tola’s relative 

size in the village. Households were surveyed first by selecting a random start point and direction 

in a tola, and then sampling every four to five households.  

In 2018, surveys were administered to 5,000 households across 500 villages in Madhya 

Pradesh (N=3239), Maharashtra (N=946), and Chhattisgarh (N=809) (Table 5). Households in 

Madhya Pradesh represented 65% of survey households, as compared to households in 

Maharashtra and Chhattisgarh which were sampled at 19% and 16%, respectively, because 

Madhya Pradesh comprises the geographic majority of central India. In March 2022, we 

attempted to survey the 500 elected leaders, the sarpanch, of the same 500 villages via phone; not 

all were available to talk and 316 village leaders were surveyed in Madhya Pradesh (N=241), 

Maharashtra (N=40), and Chhattisgarh (N=35) (Table 5) between February 4th and April 16th, 

2022 after the survey was piloted twice in 2021. The 316 villages surveyed in 2022 were 

representative of the 500 villages surveyed in 2018 because socioeconomic and environmental 

characteristics did not differ between villages surveyed in 2018 and 2022 (Appendix B). 
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Survey instruments 

The 2018 survey instrument was primarily designed to assess the social structure and 

economic activities of households in forest-dependent communities across central India. The 

structured survey included questions related to household demographics, socio-economic status, 

natural resource use, household energy uses, and perceptions of forest status. The survey was 

piloted twice in 2017 within three districts of central India (Balaghat, Seoni, and Mandla).  

The 2022 survey was designed to identify the presence and features of community 

institutions involved in making decisions about the forest. Each sarpanch was contacted via 

phone at least once before the survey to introduce and schedule a time for the survey. Survey 

questions included “how many committees do you have that make decisions about the forest?” 

For each committee, we asked “does this committee have the authority to modify rules about 

forest use?” and “when was this committee established in your village?” 

A trained field team hired through MORSEL India, a social research company with 

experience in household questionnaires in rural India, implemented the household survey across 

the study area between February 2nd and March 28th, 2018. A trained team hired through 

MORSEL India also conducted the 2022 survey via phone. All surveys were conducted in the 

local language, Hindi. The 2018 household survey lasted approximately 45 minutes per 

household, and the 2022 survey to village leaders lasted approximately ten minutes.  

Table 5: Key characteristics of 2018 and 2022 study sampling. 

 Number of 
districts 

Number of 
villages 

Number of 
households 

Households with 
woman 
household head 

2018 survey 
Full sample 32 500 4994 1355 (27%) 
Madhya 
Pradesh 

21 (66%) 324 (65%) 3239 (65%) 1105 (82%) 

Maharashtra 6 (19%) 95 (19%) 946 (19%) 83 (6%) 
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Chhattisgarh 5 (16%) 81 (16%) 809 (16%) 167 (12%) 
2022 survey 

Full sample 31 316   
Madhya 
Pradesh 

21 (68%) 241 (76%)   

Maharashtra 5 (16%) 40 (13%)   
Chhattisgarh 5 (16%) 35 (11%)   

Satellite-derived measure of bare ground within forest 

This study evaluated forest health using a satellite-derived metric, the Bare Ground Index 

(BGI), that measured the amount of exposed bare ground within forest in 2018 as an outcome 

variable. The BGI is calculated at 90-meter resolution within forested areas (>10% tree cover) 

and is a value that ranges from -1.0 (all tree cover compared to bare ground) to +0.8 (all bare 

ground compared to tree cover) (see Chapter 1). We estimated the BGI within 1, 2, 3, 5, 8, and 

10 kms of study village boundary edges.  

Statistical models 

Of the 316 total surveyed villages, 78 were dropped because they lacked key details 

about the local forest management institution or the institution was formed in 2018 or after 

which is after the time forest health was measured. To identify treatment and control groups for 

models examining villages with (treatment) and without (control) local institutions, we matched 

40 control villages to 198 treatment villages using socioeconomic and environmental variables 

(Table 6) that influence forest health and forest livelihoods. Variables included distance to 

nearest town and road, the average number of cattle per household, and percent of households 

grazing their cattle in the forest in any season or owning Liquified Petroleum Gas. We also 

included direct forest uses, such as percent of households collecting wood from forest for home 

repair and the average number of months per year households report collecting fodder, firewood, 

or NTFP from the forest. Firewood, fodder, and NTFP collection was measured in months per 

year because forest uses varied seasonally (Khanwilker et al., 2021). We included environmental 
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variables related to forest health including percent tree cover, percent tree cover per household, 

and a binary variable for whether a village was inside the buffer area of one of 20 PAs, 

calculated in QGIS version 3.16; these variables were calculated separately for different buffer 

distances from village boundary. 

We ran matching separately for six different and corresponding buffer distances (1, 2, 3, 

5, 8, and 10 kms) for tree cover, tree cover per household, and whether the buffer was inside a 

PA, resulting in 6 different datasets. Villages were matched using the “matchit” function with 

optimal pair matching. Optimal full matching was also tested but imbalances in the amount of 

household NTFP collection between treatment and control groups remained. Before matching, 

population, collection of NTFP, firewood, and wood for home repairs, tree cover within 3 km, 

and BGI within 5 km was significantly higher in places with a local institution (Appendix B).  

Table 6: Variables and data sources for chapter 2. Description and data sources of 
variables used in matching to identify treatment and control groups. Select variables, including 
direct forest uses, population, tree cover, and distance to city and road, were used as predictor 

variables in statistical models where forest health was the outcome variable. 

Variable Description Source Included as 
predictor 
variable in 
statistical 
models? 

Population Number of people in 
village 

(Government of India, 
2011) 

Yes 

Number of cattle Average number of 
cattle owned by 
households 

2018 survey No 

Cattle feeding inside 
forest (%) 

Average number of 
households reporting 
grazing their cattle in 
forest in any season 

2018 survey Yes 

Fodder collection 
(months/year) 

Average number of 
months per year a 
household spends 
collecting fodder from 
the forest 

2018 survey Yes 
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Firewood collection 
(months/year) 

Average number of 
months per year a 
household spends 
collecting firewood 
from the forest 

2018 survey Yes 

Non-Timber Forest 
Products (NTFP) 
collection 
(months/year) 

Average number of 
months per year a 
household spends 
collecting NTFP from 
the forest 

2018 survey Yes 

Liquified Petroleum 
Gas (LPG) for cooking 
(%) 

Average number of 
households using LPG 
for cooking fuel 

2018 survey No 

Wood from forest home 
repair (%) 

Average number of 
households getting 
wood from the forest to 
repair their home 

2018 survey Yes 

Distance to road (km) Distance to nearest 
road  

2018 survey Yes 

Distance to city (km) Distance to nearest city   2018 survey, 
(Government of India, 
2011) 

Yes 

Tree cover (%) % of tree cover within 
1, 2, 3, 5, 8, and 10 km 
of the village boundary 

(Khanwilkar et al., in 
review) 

Yes 

Tree cover per 
household (%) 

% of tree cover within 
1, 2, 3, 5, 8, and 10 km 
of the village boundary 
per number of 
households in village 

(Khanwilkar et al., in 
review) 

No 

Inside a Protected Area 
(PA) 

1 = Buffer distance 
from the village 
boundary is inside a 
PA 
0 = Buffer distance 
from village boundary 
is outside a PA 

Overlay PA boundaries 
with village buffer 
distances (1, 2, 3, 5, 8, 
and 10 km) 

No 

 

After matching, there was no significant differences between the 40 treatment and 40 

control groups at any buffer distance (Appendix B). For each matched dataset, we assessed the 

difference in median values of BGI between treatment and control groups at corresponding 

buffer distances using a Wilcoxon rank sum test. Conditional forest models were used to assess 
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the relative associations between having a local forest management institution and local forest 

uses on forest health. We included a binary treatment variable where the baseline category was 

not having a local forest management institution, measures of direct forest use including percent 

of households collecting wood from the forest for home repair and average number of months 

per year households collect firewood, fodder, or NTFP, and other control variables including 

village population, tree cover (% within 1, 2, 3, 5, 8, and 10 kms), distance to nearest road and 

city (Table 6). The BGI at 1, 2, 3, 5, 8, and 10 kms was the outcome variable in all models 

(Appendix B); each model was run separately for each matched dataset. Appendix B – Figure S2 

shows correlations between outcome and predictor variables at all distances. We also created 

conditional forest models that only included villages with a local institution to assess the relative 

associations between institution characteristics and local forest uses on forest health. Instead of a 

binary treatment variable for having a local forest management institution, we included two 

variables: the length of time a local institution had been established and a binary variable where 

an institution had the authority to modify rules about forest use and the baseline category was a 

local institution without the authority to modify rules about forest use. We used the number of 

years that the oldest committee was established. If one or more committees had the authority to 

modify rules about forest use, then this covariate was coded as 1. 

We ran 10,000 conditional trees and assessed conditional forest models from the full 

sample of matched data and only among villages with a local forest management institution at 1, 

2, 3, 5, 8, and 10 kms using the “cforest” R function. The relative importance of variables was 

determined by permutation importance using the “vip” function in R. We report results from 

analyses at 3 and 5 kms because these buffer distances encompass the range of distances that 

households in study villages report to travel for grazing cattle and collecting firewood, NTFP, 
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and fodder (Table 7), results from additional buffer distances are in the supplementary 

information. 

Table 7: Distances reported for different forest uses in the 2018 household survey.  

Forest use Mean (SD) Median (IQR) 
NTPF collection 4.21 (2.44) 4.00 (3.00, 5.00) 
Firewood collection (all 
seasons) 

2.73 (2.02) 2.00 (1.75, 3.00) 

Fodder collection 2.52 (1.50) 2.00 (2.00, 3.00) 
Cattle grazing (all seasons) 2.92 (1.46) 2.50 (2.00, 3.75) 

 

We substantiated results from conditional forest models by assessing the association of 

local institutions with forest health using a causal forest model and a Generalized Linear Model 

(GLM).  Causal forest models are a supervised machine learning method designed to identify 

causal pathways (DeFries et al., 2021). We ran 10,000 causal trees to estimate the average 

treatment effect, or the difference in the mean BGI between treatment and control villages, at 

buffer distances using the “causal_forest” function in R. In the GLMs, we assessed the 

association between having a local forest management institution and forest health, controlling 

for forest uses and include District level Fixed Effects (FEs) using the “glm” R function. 

3.3 Results 

Local institutions  

Of the 238 total survey villages, 83.19% (N = 198) had at least one local forest 

management institution and 40 villages did not have a local forest management institution 

(Figure 5). Most villages with a local institution had one local institution (N = 177) and 21 

villages had two or more institutions and up to four. Villages with one, two, three, or four 

institutions did not differ significantly from one another on available socioeconomic or 

environmental variables except tree cover at 8 km and 13 villages with two or more institutions 
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named the institutions (Appendix B). Of the 198 total survey villages that had a local forest 

management institution, the respondent reported that the committee had the authority to modify 

rules about forest use in 39.90% (N = 79) of villages. We did not know the name of or year that 

all local forest management institutions were established. Of the institutions with a known name 

(N = 177), the most frequently named were van suraksha samiti (22.60%, N = 40) and van samiti 

(18.64%, N = 33) (Table 8). Other institutions that were named in more than four villages 

included van vikas samiti (9.60%, N = 17), van rakshak samiti (8.47%, N = 15), van prabandhan 

samiti (6.78%, N = 12), van sanrakshran samiti (5.65%, N = 10), and van haq samiti (3.95%, N = 

7). Most (76.27%, N =135) named institutions were created to execute JFM, including six EDCs. 

Eleven villages (6.21%) named forests rights committees which were created to execute the 

FRA. Not all named committees were directly linked to JFM or other known national 

participatory forest management policies. Of 125 total villages that had a local institution that 

was established before 2018, the oldest institution had been established 28 years ago and the 

average number of years an institution had been established was 7.75 years (Standard Deviation 

(SD): 5.32) (Appendix B).  

Of the 40 villages with local institutions included in the matched datasets, 11 (27.50%) 

and 16 (40.00%) institutions had the authority to modify rules about forest use in the 3 and 5 km 

datasets, respectively (Appendix B). In the 3 and 5 km datasets, the average number of years an 

institution had been established was 8.04 (SD: 6.32) and 7.77 (SD: 6.07), respectively. The 

oldest institution included in the 3 km dataset was established 28 years ago and the oldest 

institution included in the 5 km dataset was established 23 years ago. Of the 40 villages with 

local institutions included in the 3 and 5 km datasets, 36 and 30 institutions were named, 

respectively (Table 8). The most frequently named institution in the 3 km dataset was van 
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suraksha samiti (22.22%, N = 8), followed by van samiti (13.89%, N = 5), van rakshak samiti 

(13.89%, N = 5), and van sanrakshan samiti (11.11%, N = 4). The most frequently named 

institutions in the 5 km dataset were each named 5 times (16.67%) and included van suraksha 

samiti, van samiti, van vikas samiti, and van rakshak samiti. In the 3 km dataset, 28 institutions 

(77.78%) were created to execute JFM, including one EDC, and 4 institutions (11.11%) were 

created to execute the FRA. In the 5 km dataset, 25 institutions (83.33%) were created to execute 

JFM and 3 institutions (10.00%) were created to execute the FRA.  

Table 8: Name, frequency, and description of local institutions that were named.  

Institution 
name 

Frequency, 
full sample 
(N = 177) 

Frequency, 
3 km 
matched 
dataset (N = 
36) 

Frequency, 
5 km 
matched 
dataset (N = 
30) 

Description 

Van suraksha 
samiti 

40 8 5 Forest security committee aims to 
share responsibility of forest 

management between the state 
Forest Department and the 

community and originated from 
JFM   

Van samiti 33 5 5  Forest committee is involved in 
various aspects of forest 

management and originated from 
JFM   

Van vikas 
samiti 

17 1 5  Forest development committee is 
involved in various aspects of 

forest management and originated 
from JFM   

Van rakshak 
samiti 

15 5 5 Forest protection committee aims 
to share responsibility of forest 
management between the state 

Forest Department and the 
community and originated from 

JFM   
Van 
prabandhan 
samiti 

12 3 2 Forest management committee is 
involved in various aspects of 

forest management and originated 
from JFM   
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Van 
sanrakshan 
samiti 

10 4 2 Forest protection committee aims 
to share responsibility of forest 
management between the state 

Forest Department and the 
community and originated from 

JFM   
Van haq 
samiti  

7 3 2 Forest rights committee provides 
forest management authority to 

communities and originated from 
the FRA 

Van aadhikar 
samiti 

4 1 1  Forest rights committee provides 
forest management authority to 

communities and originated from 
the FRA 

Eco 
development 
van samiti 

3 1  Eco development forest committee 
is an integrated conservation and 

development initiative for villages 
in the buffer zones of Protected 
Areas and originated from JFM   

Van vibhag 
samiti 

3  1  Forest department committee 

Daksha 
samiti 

3 1  Skills committee 

Gram 
suraksha 
samiti 

3   Village security committee 

Gram sabha 
samiti 

3 1  General body of the community 
government 

Gram van 
sabha  

2   General body of the community 
government involved with forests 

Eco vikas 
samiti 

2   Eco development committee is an 
integrated conservation and 

development initiative for villages 
in the buffer zones of Protected 
Areas and originated from JFM   

Gram vikas 
samiti 

2 1 1 Village development committee 

Gram kosh 
samiti 

2   Village fund committee 

Rauna dhaf 1   Unknown 
Bindwasni 
van 

1   Unknown 

Manpur 
samiti 

1   Unknown 

Mahaveer 
chok samiti 

1 1  Unknown 
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Eco samiti 1   Eco development committee is an 
integrated conservation and 

development initiative for villages 
in the buffer zones of Protected 
Areas and originated from JFM   

Ikumiya 
samiti 

1   Unknown 

Van 
vanyashapan 
samiti 

1 1 1 Forest management committee is 
involved in various aspects of 

forest management and originated 
from JFM   

Tanta mukti 
samiti 

1   Dispute resolution committee 

Eco van 
vikas samiti 

1   Eco development forest committee 
is an integrated conservation and 

development initiative for villages 
in the buffer zones of Protected 
Areas and originated from JFM   

Niyantran 
samiti 

1   Control committee 

Van sewa 
niyantran 
samiti 

1   Forest service control committee 

Nasargik 
sansadhan 
samiti 

1   Nasargik resources committee 

Manushya 
varg 
sansadhan 
samiti 

1   Human resources committee 

Pesa samiti 1   Panchayats Extension to Scheduled 
Areas (PESA) committee created 
by the community government to 

manage forests  
Samudayik 
van samiti 

1   Community forest committee  

Jalgal van 
sadhan samiti 

1   Jalgal forest resource committee 

 

Forest uses and the Bare Ground Index  

Figure 5 illustrates the BGI within 3 km of village boundaries; the average BGI ranged 

from -0.68 to -0.74 and decreased with increasing distance from the village boundary (Appendix 
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B). On average, less exposed bare ground within forests was found at greater distances from 

villages. The boundaries of 38.46% (N = 93) of study villages overlapped with important areas 

for tiger connectivity (Appendix B). 

The average number of months per year a household spent at least one week collecting 

fodder or NTFP per year was less than one while households spent an average of almost 7 

months per year collecting firewood at least once per week. On average, 42.85% and 67.52% of 

households in the village grazed their cattle in the forest and collected wood from the forest for 

home repair, respectively (Appendix B).  
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Figure 5: Survey villages and local institutions. Map of 238 survey villages (A), cities with 
populations greater than 88,000 people, Protected Areas, the Bare Ground Index (BGI) within 3 
km of the village boundary (B), and 80 experimentally matched villages at 3 (C) and 5 km (D). 
There are three categories of survey villages (A, C, D), classified according to the presence of a 

local forest management institution and whether the institution has the authority to modify 
rules about forest use. Experimentally matched villages (C and D) resulted from matching 40 
control villages (without a local forest management institution) to 198 treatment villages (A) 
using socioeconomic and environmental variables (Table 6) that influence forest health and 

forest livelihoods. There are four categories of BGI (B), classified according to quantile. 

The Bare Ground Index in villages with and without local institutions 

After statistically matching treatment and control villages (Figure 5, C and D), we found 

that places with a local institution were surrounded by forests with less exposed bare ground, or 
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lower values of BGI, than control groups at all distances (Appendix B). The BGI was 

significantly lower by 0.08 to 0.11 units at 3 and 5 km around villages with a local institution 

compared to without a local institution (Figure 6). 

 

Figure 6: Forest health in places with and without local institutions. Comparing 
median and interquartile range values of the Bare Ground Index (BGI) at 3 and 4 km distances 
around villages with and without local forest management institutions. Significance values are 

results of Wilcoxon rank sum tests between treatment and control groups. Differences were 
significant (p < 0.05) at 3 and 5 km buffer distances.  

Associations between local institutions and the Bare Ground Index 

Having a local institution that makes decisions about the forest had the strongest 

associations with BGI at 3 and 5 km in permutation tests of conditional forest models (Figure 7). 

However, a local institution was not always more strongly associated with the BGI than local 

forest uses at other distances (Appendix B). Negative and significant values for average 

treatment effects from causal forest models at 3 and 5 kms indicate that there are significantly 

lower BGI values in villages with local forest management institutions (Appendix B). Appendix 

B - Figure S5 shows histograms for predicted average treatment effects at 3 and 5 kms. In 

generalized linear models with District level FEs, where BGI at buffer distances was the 

outcome variables, having a local forest management institution was significant at 5 km 

(Appendix B). At this distance, other covariates, including any forest uses or environmental 

variables, remained insignificant.  
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In conditional forest models that examined villages with local forest management 

institutions (N=40), the number of years that institution had been established or whether the 

institution had the authority to modify rules about forest use were included as predictor variables 

(Figure 8). A local institution with authority to modify rules about forest use had the strongest 

association with BGI within 5 km, and at all distances predicting the BGI within 8 km, the 

authority to modify rules was relatively more important than the number of years that institution 

had been established (Appendix B). 

 

Figure 7: Relative effects of variables on forest health. Relative importance of variables 
in conditional forest models predicting the Bare Ground Index within 3 (A) and 5 (B) kms from 

all study villages (N = 80). The relative importance was determined by permuting values for 
each variable. The treatment variables are colored purple and variables measuring forest uses 

are colored orange.  

 

Figure 8: Relative effects of institutional variables on forest health. Relative 
importance of variables in conditional forest models predicting the Bare Ground Index within 3 

(A) and 5 (B) kms from villages that had a local forest management institution (N = 40). The 
relative importance was determined by permuting values for each predictor variables. Variables 

that are characteristics of local institutions are colored purple and variables measuring forest 
uses are colored orange.  
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3.4 Discussion 

Results confirm the significance of formal local institutions in promoting forest health 

around communities at distances people are using the forest for a variety of income and 

subsistence activities in central India. We considered low amounts of exposed bare ground 

within forest (low BGI) to indicate a healthier forest as compared to forest with high amounts of 

exposed bare ground (high BGI). Local forest uses continued to influence forest health near and 

far villages, also strengthening evidence for the potential that development interventions aiming 

to reduce dependency on forests for firewood and wood for housing material in households is 

important to prevent exposed bare ground within forests. 

We found healthier forests between 1 and 8 km around villages with local institutions as 

compared to villages with comparable socioeconomics and amounts of local forest uses and 

without local institutions (Figure 6). In forest at 3 and 5 km around villages, having a local forest 

management institution was more significantly associated with forest health than local forest 

uses in conditional forest models that ranked the importance of variables (Figure 7). Our 

landscape-wide results substantiate evidence from previous work within central India that 

identified positive indicators of forest condition associated with people’s involvement in forest 

management (Agarwal, 2016 and 2017). Further, having a local institution was the only 

significant predictor in the generalized linear model predicting BGI at 5 km and local forest uses 

were not significant at any distance (Appendix B). In causal forests models predicting the BGI at 

3, 5, and 8 km, the treatment effect of having a local institution involved in forest management 

was significant and negative (Appendix B).  

In communities with a local institution, our results show that having the authority to 

modify rules about forest use was more strongly associated with forest health than the number of 
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years a local institution had been established (Figure 8). Local forest uses and forest monitoring 

within communities with JFM institutions can vary widely (Ghate and Nagendra, 2005) and JFM 

has been criticized for its ineffectiveness of implementation on the ground due to lack of 

monitoring (Singh et al. 2011) and variable forest outcomes (Behere, 2009). Not all local 

institutions we captured in the survey or that were included in the 3 and 5 km datasets were 

formed as JFM institutions (Table 8). A majority of local institutions included in statistical 

analyses were created to execute JFM; for example, 77.78% of institutions in the 3 km dataset 

83.33% of institutions in the 5 km dataset were JFM institutions. Despite the variability in formal 

institutions and the degree of community participation in formal institutions and on the ground 

implementation, which we did not measure, our results indicate that having a local institution 

with authority over forests is more important than an institution that exists but does not have 

authority, even if such an institution has existed for a long time.  

At 1 and 10 km, the number of households collecting wood from the forest for home 

repairs and the number of months per year households collect firewood were the most important 

variable in determining forest health, respectively (Appendix B). At these distances, forest health 

was not significantly different between villages with and without local institutions. Our work 

contributes evidence about the potential for reduced forest dependency to provide social 

(Khanwilkar et al. 2021) and environmental benefits (DeFries et al. 2021) in central India. 

Importantly, while local uses of forest resources are related to the function and health of forests, 

global, national, and regional trends like market demands, resource extraction, or infrastructure 

development also have substantial effects on forests and forest livelihoods (Lewis et al. 2015).  

This study had several limitations. First, our research was limited to examining the 

presence and decision-making authority of formal institutions as reported by the sarpanch. The 
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name of an institution alone provided limited information and we were not able to identify a 

connection between all institutions that a sarpanch named as being involved in forest 

management and known policies about participatory forest governance. Due to local variation in 

the names of institutions executed for JFM, we may have underestimated the number of 

institutions that originated from JFM (Table 8). In addition, sarpanch named institutions involved 

in other or additional governance matters, such as the gram sabha samiti or daksha samiti. We 

did not capture the extent of involvement that non-JFM institutions had in forest management. 

Greater attention is needed to characteristics of formal local institutions that lead to healthier 

forests, like a network analysis of participation in formal institutions (Friedman et al., 2020) or 

greater detail about the implementation of local institutions and the extent of their authority over 

decision-making. Further research can also focus on the forest officials who implement formal 

institutions and share authority with communities (Fleishmann, 2016). Both treatment and 

control groups in our study may have included villages with informal institutions involved in 

forest governance. We recommend similar studies on forest governance and health in central 

India that compare environmental outcomes across informal institutional settings. In central 

India, community-initiated management was more effective in monitoring forests and managing 

grazing than top-down institutions (Ghate and Nagendra, 2005). Based on the names of local 

institutions (Table 8), our study captured associations most related to government-directed forest 

governance policies like JFM rather than alternative management approaches that provide 

greater forests rights and ownership to local people through community forest rights; only 6.21% 

(N = 11) of institutions were forest rights committees. Of the 40 villages with local institutions 

included in the 3 and 5 km datasets, 3 and 4 institutions were forests rights committees, 

respectively. Second, we used multiple methodologies to identify pathways of causality based on 
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observational data and do not capture the impacts of forest health on forest management and 

forest uses. Before statistically matching treatment and control groups, villages with local 

institutions had higher amount of firewood, NTFP, and wood for housing collection as well as 

higher amounts of tree cover and healthier forests compared to villages without local institutions 

(Appendix B). Comparing the magnitude of forest health impacts from governance and 

livelihoods requires greater understanding into feedbacks between forest uses and governance. 

Second, there are increasing attempts to identify win-win governance systems that meet social 

and environmental goals (McKinnon et al. 2016). Our research found environmental benefits 

from formal local institutions but did not examine the extent of participation, dimensions of 

equitable participation in governance, or economic and human well-being outcomes. The 

socioeconomic implications of formal, participatory forest governance in central India are 

important to consider for communities and governments who implement such policies to ensure 

forest governance does not further marginalize and exclude socially and historically 

underrepresented groups. Third, Finally, our outcome variable was a single metric, the BGI, 

which measured exposed bare ground in forest. The BGI is a relevant indicator of forest 

condition in central India because exposed bare ground impacts vegetation and ecological 

functioning; however, our analyses excluded other measures of forest health such as forest 

structure and species diversity and abundance.  

Conclusion 

Previous work has shown the importance of livelihood and governance approaches to 

healthy forests in central India separately; durable housing materials and LPG ownership were 

significantly associated with healthy forests in villages across the landscape (DeFries et al. 2021) 

and at sites within the study area, Agarwal (2016, 2017) found environmental benefits to local 
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participation in forest governance. We examined the relative associations of formal institutions 

and local forest uses on exposed bare ground within forest surrounding villages at distances that 

people travel for forest products and found that institutions were more significant for forest 

health than forest uses. However, this result was not reflected for forest health at all distances, 

and local forest uses were more significantly associated with forest health near or far village 

boundaries. Both involving and giving authority to local people in formal institutions and 

displacing forest uses can promote healthy forests. Such interventions can be targeted in 

ecologically valuable localities within central India, such as in villages that overlap with tiger 

connectivity areas. 

Acknowledgements: This work was supported by the National Aeronautics and Space 

Administration grant number NNX17AI24G. IRB Protocol Number’s at Columbia University: 

IRB-AAAR5819 (2018 survey) and IRB-AAAT8515 (2022 survey). 

  



48 
 

Chapter 3: Firewood, forests, and fringe populations: Exploring the 

inequitable socioeconomic dimensions of Liquified Petroleum Gas 

(LPG) adoption in India 

Progress: Published in Energy Research and Social Science 

Coauthors: Sarika Khanwilkar, Carlos F. Gould, Ruth DeFries, Bilal Habib, Johannes Urpelainen 

4.1 Introduction 

Globally, 2.8 billion people, often the world’s poorest and most marginalized, burn 

biomass to meet their daily household energy needs (Boujour et al. 2013). Inefficiently burning 

traditional solid biomass – firewood, coal, agricultural residue, and dung –for cooking and 

heating has substantial negative impacts on public health and the environment. Exposure to 

household air pollution (HAP) from the incomplete combustion of biomass is one of the greatest 

global environmental health risks, estimated to account for 2.3 million premature deaths each 

year (Murray et al. 2020). The extraction of biomass can also hinder forests’ ability to provide a 

healthy ecosystem for people by contributing to forest degradation, deforestation, and climate 

change around the world (Bailis et al. 2015; 2017; Bond et al. 2004). In recent decades, clean 

cooking fuels such as Liquified Petroleum Gas (LPG) have been an important tool for programs 

and policies aiming to deliver its multiple benefits, including: improved air quality, climate 

change mitigation, and reduced biomass demand. For example, Sustainable Development Goal 7 

aims for affordable and sustainable energy availability, which includes accelerating the access to 

clean and safe cooking fuels. However, achieving sustainable development will require an 

understanding of who has access to clean cooking and how that access changes the use of 

traditional solid biomass. 
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Traditional biomass-based cooking is widespread across India. In 2011, about half of 

India’s households used firewood as their primary cooking fuel and 12% used it as a secondary 

fuel, totaling 150 million households (Office of the Registrar General & Census Commissioner, 

2013). However, the burden of biomass use in India is unequal across gender, social groups, and 

regions. Recognizing specific groups of stakeholders with unequal access to clean cooking fuel – 

a key tenet of energy justice (Jenkins et al. 2016) – is necessary to address the equity in 

promoting clean cooking and sustainable development. 

Attaining the multiple benefits of fuel transitions requires that clean cooking fuels 

significantly displace traditional biomass use. However, studies from around the world and in 

India show that households rarely cease to use their traditional cooking practices when they 

adopt cleaner cooking technologies (Cheng et al. 2014; Dickinson et al. 2019; Gupta et al. 2020; 

Masera et al. 2015; Shankar et al. 2020; Velho et al. 2019). There are multiple reasons 

households may continue to use biomass after acquiring a cleaner fuel, a practice termed fuel 

stacking, including: household economics, individual preferences, and specific energy end uses. 

Historically, high costs and low availability of clean cooking fuels have limited the penetration 

into regions with significant household reliance on biomass (Kumar et al. 2016; Puzzulo et al. 

2019; 2016; Quinn et al. 2018), largely excluding poor and marginalized households. In contrast, 

the availability of biomass as a monetary-cost-free alternative cooking fuel is often considered a 

driver of continued traditional cooking practices (Jagadish and Dwivedi, 2018).  

Quantitative and qualitative evidence suggests that biomass availability can affect fuel 

collection time and effort, thereby influencing household fuel choices, including the decision to 

adopt cleaner fuels (Bandyopadhyay et al. 2011; Behera et al. 2015; Cooke et al. 2008). In 

previous quantitative studies seeking to understand the association between biomass availability 
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and cooking fuel choice, biomass availability has been defined in several different ways, 

including: proxies for assessing geographic variabilities in fuel choice that might be due to 

biomass availability (Gregory and Stern, 2014; Rehfuess et al. 2010), distance to the nearest 

forest (Heltberg, 2005; Jumbe and Angelsen, 2011; Turker and Kaygusuz, 2001), time spent on 

fuel collection (Chen et al. 2006; Dendup annd Arimura et al 2019), forest area per person, 

perceived convenience and reliability of biomass fuel supply (Gupta and Kohlin, 2006), and 

satellite-derived measures of biomass availability or forest cover (Jagger and Kittner, 2017; 

Jagger and Shively, 2014). While not as well characterized as individual and household 

determinants of fuel choice, characterizing the supply-side determinants of fuel choice can 

inform the motivations for continued biomass use after clean cooking fuel adoption and use. 

Given that even limited traditional biomass-based cooking can lead to high health risks and 

continued environmental and climate impacts (Johnson and Chiang, 2015), displacing household 

biomass use with clean fuels can havae substantial implications for health, environmental, and 

climate burdens. Efforts to understand the extent to which LPG use and biomass availability 

modifies biomass collection patterns can help us achieve this goal by identifying strategies to 

curb continued household biomass combustion. 

Disparities in India’s cooking fuel 

India’s rural households (71% of the country) are more dependent on firewood and have 

limited access to LPG as compared to urban households (62% vs. 21% in 2011, respectively) 

(Office of the Registrar General & Census Commissioner, 2013). Among rural households, 

wealth and formal educational attainment are strongly positively associated with using LPG (Rao 

and Reddy, 2007; Gould and Urpelainen, 2020a; Meghwani et al. 2019; Lewis and Pattanayak, 

2012; Muller and Yan, 2018). Recent evidence also indicates that stable, salaried incomes as 
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compared to more seasonal agricultural or day labor are associated with LPG ownership (Mani et 

al. 2020). Furthermore, clean cooking adoption, much like cooking itself, is gendered. Women 

are primarily responsible for cooking and biomass collection, disproportionately facing the 

negative health and well-being burdens of biomass cooking. And yet, men often control finances. 

There is evidence that when women are involved in decision-making then a household is more 

likely to have LPG in rural India (Gould and Urpelainen, 2019).  

Further, tribe and caste status have been an important determinant of LPG access in 

communities. India’s Scheduled Tribe (ST) or Scheduled Caste (SC) communities, terms in the 

Indian Constitution that describe a diverse group of historically marginalized Indigenous and 

religious communities, are highly reliant on biomass and are socioeconomically disadvantaged. 

For example, the human development index and human poverty index, composite measures of 

life expectancy, education level, and standard of living, is lower in ST communities than the rest 

of India (Sarkar et al. 2006). ST and lower caste households have low rates of clean cooking fuel 

adoption (Pandey and Chaubal, 2011). An analysis of the National Sample Survey data (2011-

2012) found that ST and SC households were 9% less likely to own LPG as compared to non-ST 

or non-SC households (Saxena and Bhattacharya, 2018).  

There are a high number of ST and other non-general caste households in the forested 

regions of central India, the study area. In central India, households have traditionally met their 

subsistence and livelihood needs with forest resources. For example, in rural households in 

Madhya Pradesh located within a distance of two kilometers of the forest, more than half of 

households were ST or SC and they derived 49% of their income from forest products 

(Bahuguna, 2000).  
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Households in central India are heavily reliant on biomass for meeting their household 

energy needs. In 2011, 86% of rural households in central India used firewood as their primary 

cooking fuel, compared to 63% of all rural Indian households, while only 5% relied on LPG 

(Table 1). Households living near forests can collect firewood at no monetary cost, which may 

be a barrier to investing in an alternative, more costly cooking fuel (Heltberg et al. 2000; 

Malakar et al. 2018). Still, while not monetarily costly, these households devote effort and time 

to collect firewood.  

LPG expansion and fuel stacking 

India has pioneered several ambitious clean cooking fuel programs to address the high 

burden of biomass cooking in rural households in recent years. Notably, the Government of 

India, through Pradhan Mantri Ujjwala Yojana (PMUY), has provided about 80 million LPG 

connections to below poverty line households since 2016 (Ministry of Petroleum and Natural 

Gas, 2019c). PMUY beneficiaries – exclusively women – have their LPG cylinder deposit and 

regulator and installation charges covered by the program (1,600 Indian Rupees (INR) in total; 

23 United States Dollar (USD)1). Still, households are required to purchase a double-burner LPG 

stove (approximately 1,000 INR; 14 USD) and their first LPG refill (500 INR; 7 USD), with 

optional loan assistance.  

The Government of India now estimates that 95% of Indian households have access to 

LPG, thanks in large part to PMUY (Comptroller and Auditor General of India, 2019). An 

analysis of panel survey data collected in 2015 and then in 2018 (ACCESS) in six energy-poor 

north Indian states shows that access to LPG has increased for marginalized populations. The 

proportion of SC and ST households using LPG increased by 43% and 30%, respectively 

(Patnaik annd Jha, 2020). ACCESS data collected in Madhya Pradesh – located in central India – 
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shows that 59% of households acquiring LPG between 2015 and 2018 did so via PMUY (Mani 

et al. 2018). Although access to LPG increased for SC households, LPG adoption has lagged 

among ST households (Pelz et al. 2021).  

While PMUY has helped to overcome the initial hurdles of LPG stove and connection 

access and affordability, the program does not address LPG use after adoption. Recent evidence 

shows that PMUY beneficiaries use LPG less than general customers across multiple contexts 

(Mani et al 2020; Comptroller and Auditor General of India, 2019; Kar et al 2019; Gould et al 

2020b). LPG cylinder refill costs remain barriers to sustained LPG use and may be exacerbated 

by the seasonality of income, community or cultural norms, or biomass availability (Gould and 

Urpelainen, 2018; Mani et al. 2020). Still, there is some evidence to suggest the longer a 

household has LPG, the larger a role it has in the household (Mani et al. 2020; Sharma et al. 

2019).  

Study objectives 

This study combines household-level and remotely-sensed satellite data to understand 

socioeconomic and environmental drivers of cooking fuel choice and firewood collection in rural 

Indian households living near forests in central India. The region remains highly forested and 

there are a high number of ST, SC and OBC households that have long relied on forest resources 

for consumption and livelihoods. The diffusion of LPG after PMUY and patterns of fuel stacking 

in communities within forested regions remains unknown. This study population is of particular 

interest for jointly evaluating the socioeconomic and environmental drivers of fuel choices and 

firewood collection in traditionally disadvantaged populations, which is an important 

consideration to implement socially inclusive clean cooking fuel policy.  
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Our study contributes to understanding LPG adoption and clean cooking transitions by 

collecting and analyzing cooking fuel data from marginalized, forest-dependent populations 

where households cook with both LPG and firewood. The study addresses the following 

objectives: 1) to examine the socioeconomic and environmental drivers of the use of LPG for 

cooking before and after PMUY was implemented and 2) to assess the influence of LPG 

ownership over time on seasonal household firewood collection patterns. We address these 

objectives through analysis of household surveys from approximately 5,000 households living 

near forests in central India. 

4.2 Methods 

This study leveraged cross-sectional structured surveys administered to rural households 

living within 8 km of forests in central India from February to March 2018. Household sampling 

and survey instrument details are outlined in Section 3.2 Methods. We assessed the association 

between household characteristics, cooking fuel use, and firewood collection patterns. We also 

used published data on vegetation to incorporate availability of forest in our understanding of 

cooking fuel patterns.  

Household Sampling 

Of 5,000 households surveyed in 2018, six households missing variables used in analyses 

were dropped in the present study. These households did not differ significantly from households 

included in analysis on available socio-economic or household energy use variables. 

Satellite-Derived Measure of Forest Availability 

We used gridded forest cover data (percent tree cover at 30-meter resolution) from the 

Global 2010 Tree Cover product to estimate village-level forest availability (Hansen et al. 2013). 

We obtained boundaries identifying the borders of each study village from ML Infomap Pvt. Ltd. 
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(https://www.mlinfomap.com/Main/indiamaps.html). We estimated the percent tree cover within 

2.74 kilometers of study village boundary edges in addition to forest inside village boundaries. 

We excluded forest cover within PAs because of restricted access to this forest (see 

Understanding the perception that firewood collection has become more difficult). We specified 

a 2.74-kilometer buffer because this was the mean distance reported by households to travel on 

average to collect firewood across all seasons (summer, monsoon, post-monsoon, winter) 

(Appendix C). In doing so, we expect to capture the majority of trips commonly taken to collect 

firewood. We tested additional buffer distances (1 km, 2 km, 3 km, 5 km, 8 km, and 10 km), 

including the median reported distance traveled of 2.0 km, to evaluate for potential threshold 

distances at which forest cover does not affect collection patterns. However, 2.74 kilometers was 

selected because it explained the most variance in firewood collection across all seasons (along 

with 3 km). The 2.0 and 2.74 km buffer resulted in a lower Akaike Information Criterion than 3 

km in logistic regressions where LPG ownership was the outcome variable (Appendix C). 

Outcome Variables 

The present study evaluated three outcomes central to patterns of cooking fuel use and 

collection: 1) the use of LPG for cooking, 2) when LPG was acquired (before or after 2016), and 

3) the time spent collecting firewood. These outcomes were used to examine recent LPG 

adoptions and identify fuel stacking patterns in households that use LPG and firewood for 

cooking. 

 

Use of LPG for cooking. Households were asked “Does your household use LPG for cooking?” 

Responses were used as a binary outcome variable in a multilevel logistic regression to 

determine the household and ecological characteristics associated with the use of LPG for 
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cooking. Responses about firewood collection (see below) indicate that households are not 

exclusively using LPG. 

 

LPG ownership after 2016. Households who used LPG for cooking (N=2276) were asked, 

“When did you start using it?” These responses were categorized: 1) Before 2013, 2) 2013, 3) 

2014, 4) 2015, 5) 2016, and 6) 2017. Responses were further grouped based on LPG adoption 

before (pre-2016) or after (2016 or 2017) PMUY. In Madhya Pradesh, PMUY was launched on 

July 4th, 2016 (Ministry of Petroleum and Natural Gas, 2016a). PMUY was launched in 

Maharashtra on October 7th, 2016 (Ministry of Petroleum and Natural Gas, 2016b) and 

Chhattisgarh on August 13th, 2016 (Government of Chhattisgarh, 2016). This pre- or post-PMUY 

binary variable was used as an outcome in a multilevel logistic regression to assess variations in 

the determinants of LPG adoption before or after PMUY. In a sensitivity analysis, we re-specify 

the post-PMUY period to only include 2017. We observe no meaningful deviation in the 

associations between covariates and the outcome (Appendix C). We assume that households that 

adopted LPG after 2016 received LPG as a direct result of the policy, although LPG adoption 

could be influenced by other factors. 

 

Firewood Collection. Participants, including respondents who used LPG for cooking, were 

asked about their firewood collection patterns during each season of the year to assess the 

intensity of firewood collection and its variability in time. Seasons were defined as: summer 

(April – June), monsoon (July – September), post-monsoon (October – November), and winter 

(December – March). Specifically, participants were asked for each season: “In a typical week, 

how many days did you or a person in the household visit the forest to collect firewood?” 
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Participants reporting firewood collection trips were then asked, “On average, how many hours 

did you or a person in the household spend collecting firewood on one day?” These two variables 

were multiplied to compute the outcome variable hours of firewood collection per week. 

Seasonal patterns in firewood collection required stratified analysis for the monsoon season, 

when much less firewood collection was reported, to determine associations with LPG 

ownership (see Characteristics of firewood collection). 

Statistical Approach 

First, we assess the association between household characteristics, including income and 

socioeconomic status, education, and forest availability, and the use of LPG for cooking 

(Equation 2). Among LPG owners, we then aimed to understand the differences between 

households that adopted LPG before or after PMUY (Equation 3). In our third model (Equation 

4), we assess the association between year of LPG adoption and changes in time spent collecting 

firewood, controlling for other covariates. Equations are described below: 

 

(2) log	 %
𝑃'𝐿𝑃𝐺	𝑓𝑜𝑟	𝑐𝑜𝑜𝑘𝑖𝑛𝑔!"2

𝑃'1 − 𝐿𝑃𝐺	𝑓𝑜𝑟	𝑐𝑜𝑜𝑘𝑖𝑛𝑔!"2
5 = 𝛽# + 𝛽$ ∙ 𝑋! +	𝜀! 

(3) log	 %
𝑃'𝐿𝑃𝐺	𝑜𝑤𝑛𝑒𝑟𝑠ℎ𝑖𝑝	𝑖𝑛	2016	𝑜𝑟	2017!"2

𝑃'1 − 𝐿𝑃𝐺	𝑜𝑤𝑛𝑒𝑟𝑠ℎ𝑖𝑝	𝑖𝑛	2016	𝑜𝑟	2017!"2
5 = 𝛽# + 𝛽$ ∙ 𝑋! +	𝜀! 

(4) 𝐹𝑖𝑟𝑒𝑤𝑜𝑜𝑑	𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛	ℎ𝑟𝑠/𝑤𝑒𝑒𝑘!" = 𝛽# +	𝛽$ ∙ 𝐿𝑃𝐺%&'(! + 𝛽) ∙ 𝑌! +	𝜀!" 

 

where Xi is a matrix of covariates identified from reviews of the clean cooking fuel adoption and 

use literature (Puzzolo et al. 2016; Quinn et al. 2018; Lewis and Pattanayak, 2012; Muller and 

Yan, 2018), as well as evidence of correlations with both the outcome and explanatory variables 

of interest in the study data (Appendix C). Yi, the matrix of covariates used in Equation 4, only 
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includes Xi covariates that were statistically significantly (P < 0.05) associated with LPG 

ownership in Equation 2. The covariates are described in Table 9. We report models with 

district-level fixed effects3 (District FEs) to account for potential residual spatial confounding, as 

carried out elsewhere (Baland et al. 2010; Lobell et al. 2012). Models with District FEs 

additionally explained more variance in the outcome variables than those without District FEs 

(Appendix C). Additionally, we present results from the predicted probabilities of LPG 

ownership for continuous covariates modeled in Equations 1 and 2 (Appendix C). All analyses 

were carried out in R version 3.5.0 (R Core Team, 2018) using the MASS (Venables and Ripley, 

2002), lme4 (Bates et al. 2015), and margins (Leeper, 2018) packages. 

Table 9: Variables used in chapter 3. Description of covariates used in statistical 
models. 

Covariate Variable 
type 

Description 

Year of LPG 
ownership (2013 or 
earlier, 2014-2015, 
or 2016-2017)? 

Binary Responses to the question “When did you start using LPG?” were 
grouped into four categories based on similarities in household 
characteristics: 1) No LPG; 2) Acquired LPG in 2013 or earlier; 3) 
Acquired LPG in 2014-2015; and 4) Acquired LPG in 2016-2017 
(Table 10). No LPG used for cooking was a baseline category. This 
variable was included exclusively in Equation 4. 

Monthly 
expenditure (INR) 

Continuous  Wealth has been positively associated with cleaner cooking uptake 
around the world (Gupta and Kohlin, 2006; Baiyegunhi and Hassan, 
2014). However, consistent incomes are rare in many poor and rural 
communities in India and globally (Davis et al. 2010). Therefore, 
we utilized monthly household expenditures, which is a reliable 
predictor of wealth used in previous studies (Muller and Yan, 2018; 
Aklin et al. 2016). This covariate was log transformed and 
standardized in analyses (Mean = 0, Standard deviation (SD) = 1).  

Has money in a 
bank account? 

Binary In this study sample, having money in a bank account is an 
additional measure of wealth and capital. Baseline category was not 
having money in a bank account in the past year4. 

Has saved money? Binary Having money to save is another measure of wealth and capital. 
Baseline category was not having money to save in the past year. 

Woman as 
household head? 

Binary Because of the gendered nature of cooking and decision-making in 
rural Indian households, households headed by woman may be 
more likely to adopt cleaner cooking technologies (Behera et al. 
2015; Gupta and Kohlin, 2006; Gould and Urpelainen, 2019; 
Heltberg, 2004; Hou et al. 2018; Mottaleb et al. 2017). In addition, 
women are the primary collectors of firewood and the beneficiaries 
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targeted by PMUY. Baseline category is having a man as a 
household head5.  

Caste (ST, SC, or 
OBC)? 

Binary We use general (or forward) caste as the baseline category. Other 
categories include Scheduled Tribe, Scheduled Caste, and Other 
Backward Class. Caste has been associated with cooking fuel 
choice in other case studies in India (Gould and Urpelainen, 2019; 
Menghwani et al. 2019; Gould and Urpelainen, 2019; Saxena and 
Bhattacharya, 2018).  

Education of the 
survey respondent 
(primary/secondary, 
high school, or 
intermediate and 
above)? 

Binary Education of the household head has been strongly positively 
associated with clean cookstove ownership in India previously  
(Gould and Urpelainen, 2019; Gould and Urpelainen, 2019; 
Baiyegunnhi annd Hassan, 2014; Farsi et al. 2007). Baseline 
category is no formal education, with additional categories being 
completed (i) Primary/Secondary school, (ii) High School, and (iii) 
Intermediate and above. 

Increased 
difficulty in 
firewood 
collection? 

Binary We assessed changes in perceived difficulty of firewood collection. 
Participants were asked “Over the last five years, has it become 
easier or harder to collect firewood?” Responses were coded into 
five categories: 1) much easier, 2) somewhat easier, 3) stayed 
constant, 4) somewhat harder, and 5) much harder. A majority 
(88%) of respondents reported firewood collection as getting 
somewhat harder or much harder thus we recoded responses to be 
used as a binary variable where the baseline category was “stayed 
constant,” “somewhat easier,” or “much easier.” The correlation 
coefficient of a binary variable created from a collapsed Likert scale 
and the original scale is between 0.8 to 0.9, and such a variable 
transformation is appropriate where nuances of the response are not 
critical for interpretation (Jeong, 2016). 

Forest availability 
(% tree cover) 

Continuous  Percent tree cover within a buffer distance of each study village and 
outside a PA was log transformed and standardized to use as a 
covariate in analyses (see Satellite-derived measure of forest 
availability for more details). 

Distance to road 
(km) 

Continuous  Distance to nearest road (km) at the time of the survey was 
calculated at the village level using OpenStreetMap (OSM) road 
data. We consider distance to the nearest road as an indicator of 
access to LPG cylinder refills. To obtain historical road data from 
our study region, we used the Overpass API tool (Olbricht, 2018) 
using a bounding box of 17.7° to 26.4° N; 74.9° to 84.1° E to allow 
for a 1° buffer around the study region. Second, the Osmium tool 
(Topf, 2020) was used to extract historical OSM road layers last 
updated February 28th, 2018. This covariate was log transformed 
and standardized in analyses.  

 

Qualitative Data 

We provide context to firewood collection using responses from the open-ended question “Why 

do you think it has become easier/harder to collect firewood?” Responses were transcribed in the 
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local language by field staff at the time of data collection and then hand coded according to 

emergent themes. Quotes and themes were then translated to English by a bilingual member of 

the research team. 

4.3 Results 

Of the 500 study villages, there were 35 villages (7%) where no households used LPG for 

cooking and only four villages where all households used LPG for cooking. There was 

substantial variation in LPG use across study villages, as well as year of LPG uptake (Figure 9).  

Nearly half of households (46%) reported the use of LPG for cooking at the time of the 

survey in early 2018. Three-quarters of households with LPG reported to have acquired the stove 

and connection in 2016 or 2017. Households that reported acquiring LPG more recently were 

less wealthy, more likely to be ST, near more forest, and had lower levels of formal education 

than those that adopted LPG in 2013 or before (Table 10). Households that reported acquiring 

LPG between 2016-2017 were similar to households that reported to not cook with LPG. Of 

households that owned LPG, 90% also reported cooking with firewood and 68% collected 

firewood in at least one season through the year. More than half of study households (57%) were 

ST, over a quarter were OBC (27%), and 12% were SC; only 4% of households were general 

caste. 
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Figure 9. 2018 survey villages and Liquified Petroleum Gas ownership. Map of 500 
survey villages, indicated as colored circles, cities with populations greater than 88,000 people, 

protected areas, and tree cover in central India. Tree cover data is from Hansen et al. (2013). Fig. 
1A. The color of each village indicates the proportion of surveyed households which use 

Liquified Petroleum Gas (LPG) for cooking, where darker shades of blue represent a higher 
proportion. There are four categories of proportion of households cooking with LPG, classified 

according to quantile. Fig. 1B. The color of each village indicates the first year in which LPG was 
used for cooking by households within that village, where darker shades of red represent more 

recent years. Except in the 35 villages where LPG was not used by any household, LPG was 
available in all villages in 2017. 

Table 10: Summary statistics of households, by year of LPG adoption.  
 

Full 
sample 

2013 or 
before 

2014-2015 2016-2017 No LPG 

Sample Size, N (%) 4994 
(100%) 

270 (5%) 277 (6%) 1729 (35%) 2718 
(54%) 

Age of Respondent, Mean (SD)* 42.0 
(13.3) 

43.2 
(14.4) 

41.6 (13.4) 41.9 (13.1) 41.9 
(13.31 

Woman as household head, N (%)* 1355 
(27%) 

56 (21%) 46 (17%) 468 (27%) 785 (29%) 

Man Chief Wage Earner, N (%)* 4476 
(90%) 

250 
(93%) 

261 (94%) 1551 (90%) 1104 
(89%) 

Respondent education, N (%)*  
    

   High School 564 
(11%) 

41 (15%) 56 (20%) 212 (12%) 255 (9%) 

   Intermediate or Greater 534 
(11%) 

104 
(39%) 

54 (19%) 162 (9%) 214 (8%) 
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   No Formal Education 2021 
(40%) 

48 (18%) 59 (21%) 656 (38%) 1258 
(46%) 

   Primary/Secondary 1875 
(38%) 

77 (29%) 108 (39%) 699 (40%) 991 (36%) 

Household Caste, N (%)*  
    

   General 198 (4%) 42 (16%) 20 (7%) 59 (3%) 77 (3%) 

   Other Backward Caste 1338 
(27%) 

105 
(39%) 

109 (39%) 465 (27%) 659 (24%) 

   Schedule Caste 608 
(12%) 

43 (16%) 39 (14%) 219 (13%) 307 (11%) 

   Scheduled Tribe 2850 
(57%) 

80 (30%) 109 (39%) 986 (57%) 1675 
(62%) 

Monthly Expenditure (INR), Mean 
(SD)* 

3785 
(2846) 

6206 
(4417) 

4843 
(3511) 

3745 
(2317) 

3462 
(2736) 

Monthly Expenditure (USD), Mean 
(SD) 

54 (41) 89 (63) 69 (50) 54 (33) 49 (39) 

Tree cover (%), Mean (SD)* 5.64 
(7.21) 

3.48 
(4.93) 

4.10 (6.04) 5.42 (6.78) 6.28 (7.56) 

Distance to Road (km), Mean (SD) 1.69 
(2.35) 

1.28 
(2.03) 

1.58 (2.23) 1.72 (2.44) 1.73 (2.33) 

Has Saved Money?, N (%)* 1457 
(29%)  

131 
(49%) 

89 (32%) 522 (30%) 715 (26%) 

Has Money in a Bank Account?, N 
(%)* 

1822 
(36%) 

153 (3%) 107 (2%) 669 (13%) 893 (18%) 

* Indicates that there was a statistically significant difference between the households depending on year 
of LPG adoption at P < 0.05 in ANOVA. SD is standard deviation. 
 

Determinants of using LPG for cooking 

Households that used LPG were wealthier, better educated, and had higher odds of being 

general caste than those without LPG (Figure 10). Controlling for other covariates, the 

probability of cooking with LPG was higher by 15 percentage points (95% CI: 10 – 20 

percentage points), 12 percentage points (95% CI: 7.6 – 17 percentage points), and 6.2 

percentage points (95% CI: 3.1 – 9.3 percentage points) if the household head was educated at 

the intermediate or above, high school, or primary/secondary level, respectively, as compared to 
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a household headed by a person with no formal education. In addition, the probability of using 

LPG was significantly positively associated with higher monthly expenditure (Appendix C).  

Households belonging to the Scheduled Tribe (ST) caste, which comprised almost 60% 

of the study sample, had the lowest odds of having LPG at the time of the survey, as compared to 

the other castes (Scheduled Caste (SC), Other Backward Class (OBC), and general caste). 

Accounting for other household characteristics and covariates, the probability of using LPG was 

lower by 14 percentage points (95% CI: 6.5 – 21 percentage points) if a household was ST as 

compared to a household belonging to the general caste. Similarly, the probability of using LPG 

was 9.3 percentage points (95% CI: 2.0 – 17 percentage points) and 6.6 percentage points (95% 

CI: 1.3 – 15 percentage points) lower for OBC and SC households, respectively, as compared to 

belonging to the general caste. 

In addition to household characteristics, some contextual environmental variables were 

associated with using LPG. The probability of using LPG was significantly negatively associated 

with higher tree cover (Appendix C). For every additional percent of tree cover nearby a village, 

the probability of using LPG decreased by 4.1 percentage points (95% CI: 2.5 – 5.7 percentage 

points). Participants stating that firewood collection had increased in difficulty in the past five 

had a 4.4 percentage point (95% CI: 0.0 – 8.6 percentage point) lower probability of using LPG 

as compared to those that did not perceive firewood collection to have become more difficult.  
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Figure 10: Liquified Petroleum Gas ownership. Coefficient plot for logistic regression 
with District fixed effects assessing the household and ecological characteristics that are 
associated with LPG ownership. Points represent coefficients of average marginal effects 
(percentage point change in the probability of LPG ownership) and whiskers show 95% 

confidence intervals. 

Explaining the timing of LPG adoption 

Of all LPG users in the study sample, households that adopted LPG in 2016 or after were 

poorer, less educated, and had higher odds of being from a non-general caste than those that 

adopted LPG before PMUY (Figure 11). Controlling for other covariates, households that 

belonged to the Scheduled Tribe caste had an 18 percentage point (95% CI: 11 – 25 percentage 

point) higher probability of acquiring LPG after PMUY as compared to a household in the 
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general caste. Similarly, households belonging to the Scheduled Caste or Other Backward Class 

had higher probabilities of acquiring LPG after PMUY, though somewhat lower than those in the 

ST caste.  

The level of formal education of household members and monthly expenditures were 

both positively associated with having adopted LPG prior to 2016 (those that are considered 

general consumers as opposed to likely being PMUY beneficiaries). For example, a household 

headed by a person that had completed an education at the intermediate level or above had 15 

percentage points (95% CI: 10 – 20 percentage points) higher probability of acquiring LPG prior 

to PMUY as compared to a household headed by a person with no formal education. Similarly, 

the probability of LPG ownership prior to PMUY was significantly positively associated to 

monthly expenditure (Appendix C).  

Households acquiring LPG after the beginning of PMUY had greater village-level forest 

cover than those that acquired LPG before PMUY. The use of LPG for cooking after 2016 was 

greater for households with high forest availability, whereas we had observed a significant 

negative association between nearby tree cover and the use of LPG across all years (Appendix 

C). LPG ownership after 2016 was also higher in households that perceived increased difficulty 

in firewood collection over the last 5 years.  
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Figure 11: Recent adoptions of Liquified Petroleum Gas. Coefficient plot for logistic 
regression with District Fixed Effects assessing the household characteristics that are associated 

with adopting LPG in 2016 or 2017. Points represent coefficients of average marginal effects 
(percentage point change in the probability of adopting LPG in 2016 or 2017) and whiskers 

show 95% confidence intervals. 

Characteristics of firewood collection 

Almost all households (95%) in the study sample reported that they use firewood for 

cooking at some point during the year. Nearly 70% of households reported weekly firewood 

collection during the summer, post-monsoon, and winter seasons, but only 33% of households 

reported weekly firewood collection during the monsoon season (Table 10). Households 

reporting to collect firewood during the summer, post-monsoon, or winter generally collected 
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firewood during all three seasons. Almost all households (93%) reporting to collect firewood 

during the monsoon season collected firewood throughout the entire year.  

The average distance traveled for firewood was 2.74 km (Standard Deviation (SD): 2.02) 

and the median distance was 2 km (interquartile range: 1.75 – 3.00 km) (Appendix C). Distance 

traveled for firewood did not differ significantly across seasons of the year, suggesting that 

households might acquire wood from the same locations throughout the year.  

On average, households that collected firewood at some point during the year reported to 

spend 15 hours (SD: 11, Median = 12) per week collecting firewood during the summer, post-

monsoon, and winter seasons, with the greatest amount of firewood collection time during the 

winter and the least amount of time during the monsoon season (Table 11). Only a relatively 

small number of households (2.2% across all seasons and 3.0% in winter) reported to explicitly 

collect firewood for space heating purposes.  

Table 11: Summary of household firewood collection patterns by season.  

  Summer Post-monsoon Winter Monsoon 

Households reporting weekly 
firewood collection, N (%) 3465 (69%) 3442 (69%) 3384 (68%) 1661 (33%) 
Purpose of firewood 
collection, N (%)     

Cooking 3440 (99%) 3419 (99%) 3252 (96%) 1645 (99%) 
Selling 22 (1%) 18 (1%) 18 (1%) 13 (1%) 
Heating 3 (<1%) 5 (<1%) 112 (3%) 3 (<1%) 

Number of days per week     
Mean (SD) 3.52 (1.91) 3.22 (1.83) 3.73 (1.89) 2.50 (1.47) 
Median (IQR) 3 (2, 5) 3 (2, 4) 3 (2, 5) 2 (1, 3) 

Number of hours per day     
Mean (SD) 4.51 (1.76) 4.46 (1.83) 4.54 (1.82) 4.06 (1.79) 
Median (IQR) 4 (3, 5) 4 (3, 5) 4 (3, 5) 4 (3, 5) 

Number of hours per week     
Mean (SD) 16.48 (12.44) 14.78 (11.38) 17.82 (13.17) 10.20 (8.26) 
Median (IQR) 12 (8, 21) 12 (6, 20) 15 (8, 24) 8 (5, 12) 
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SD is standard deviation and IQR is interquartile range. 
 

Understanding the perception that firewood collection has become more difficult  

Qualitative results indicate that restricted access to firewood and a lack of forest were the 

top reasons for perceived increased difficulty in firewood collection. Yet, the average amount of 

forest outside of PAs within 2.74 km of villages where households reported increased difficulty 

in firewood collection over the last 5 years was significantly higher than for households who 

reported that firewood collection had gotten easier or not changed (Appendix C). To account for 

this non-intuitive relationship, we included both forest availability and increased difficulty 

collecting firewood as covariates as we believe both encompass important aspects of decision-

making related to cooking fuel use. The perceived change in difficulty to collect firewood 

variable captures perceived shifts in environmental conditions rather than a more objective 

measure of firewood availability. 

Although access to PAs varies spatially, 52% of survey respondents stated that restricted 

access to firewood was one of the top reasons for increased difficulty in firewood collection. 

Those who discussed restricted specifically mentioned the “forest department,” “forest guards,” 

“forest officer,” “government,” or “village committee” as enforcing these restrictions. For 

example, “forest department do not allow us to take the firewood from the forest,” “government 

started to protect forest areas,” and “village committee not allowing us to go into forest.” 

Therefore, we excluded forest cover within PAs in our measure of forest available for firewood 

collection. Only 4% of villages contained a PA within 2.74 km of their boundary. The lack of 

forest was also discussed in 28% of responses as a driver of the increased difficulty in collecting 

firewood. For example, “There is no firewood in the forest these days” and “much less firewood 

in the forest and we are not allowed to enter into the forest.” 
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Determinants of firewood collection patterns 

 
In response to the distinct seasonal pattern in firewood collection, we conducted analyses 

that considered firewood collection per week as the outcome for the monsoon season and the 

average time across summer, post-monsoon, and winter seasons separately. The use of LPG for 

cooking was significantly negatively associated with the number of hours per week spent 

collecting firewood, accounting for other covariates (Figure 12). In the summer, post-monsoon, 

and winter seasons, households without LPG spent 17 hours (SD: 11, Median = 14) per week 

collecting firewood compared to households with LPG that spent 13 hours (SD: 9.5, Median = 

9.8) per week (Table 12).  

The more years a household owned LPG, the stronger the negative association of LPG 

use was with reported time collecting firewood. For example, households that adopted LPG in 

2013 or before reported spending 53% fewer (95% CI: 47 – 59%) hours per week collecting 

firewood than households without LPG in the summer, post-monsoon, and winter seasons. 

Similarly, households adopting LPG in 2014 – 2015 and those in 2016 – 2017 spent 46% less 

(95% CI: 39 – 53%) and 14% less (95% CI: 8.6 – 19%) time collecting firewood than 

households without LPG, respectively. While the percent change in time spent collecting 

firewood was not meaningfully different between the “adopted LPG in 2013” and the “adopted 

LPG in 2014 – 2015” categories, both of these groups reported spending significantly less time 

collecting firewood than households adopting LPG in “2016 – 2017.” These households (2016 – 

2017 adopters), in turn, spent significantly less time collecting firewood than households that did 

not use LPG. We observe consistent results when carrying out analyses for time spent collecting 

firewood during the monsoon season, but with attenuated effect sizes, perhaps owing to 

comparatively less overall firewood collection during this season.  
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Monthly expenditure, level of formal education, and household tribe and caste status 

were associated with time spent collecting firewood. The reported time spent collecting firewood 

each week was shorter by 4.7% (95% CI: 1.9 – 7.4%) with every 1% increase in monthly 

expenditure. Compared to a household with no formal education, when the household head 

obtained a primary or secondary, high school, or intermediate and above education, the 

household spent 6.5% (95% CI: 0.1 – 12%), 13% (95% CI: 4.2 – 21%), and 33% (95% CI: 25 – 

39%) less time collecting firewood, respectively. Scheduled Tribe households spent 51% more 

(95% CI: 29 – 76%) hours collecting firewood than those in the general caste. In addition, SC 

and OBC households spent 41% (95% CI: 19 – 67) and 18% (95% CI: 1.5 – 38) more hours 

collecting firewood than those in the general caste, respectively. 

Village-level tree cover and the perception that firewood collection had gotten more 

difficult over the last five years were associated with time spent collecting firewood. Accounting 

for other covariates, 1% greater forest cover was associated with 26% (95% CI: 22 – 30%) more 

reported firewood collection time. Households reporting increased difficulty in firewood 

collection reported to spend 67% more (95% CI: 53 – 82%) time collecting firewood as 

compared to households that did not perceive increased difficulty.  
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Figure 12: Liquified Petroleum Gas effects firewood collection. Coefficient plots for 
OLS regressions with District Fixed Effects. Regressions assessed the association between LPG 
ownership and time spent collecting firewood averaged across three seasons (summer, post-
monsoon, and winter) and in monsoon. Points represent exponentiated coefficient estimates 

(percent change in time spent collecting firewood) and whiskers show 95% confidence intervals. 

Table 12: Hours spent collecting firewood per week by season and timing of LPG 
adoption. 

 2013 or before  2014-2015 2016-2017  No LPG  

N 270 277 1729 2718 
Summer, post-monsoon, and 
winter 

    

    Mean (SD) 12.79 (10.54) 10.75 (6.92) 15.74 (11.05) 16.50 (11.18) 
    Median (IQR) 8.17 

(6.00, 16.00) 
8.83 

(6.00, 13.92) 
12.33 

(7.75, 20.67) 
14.00 

(8.00, 21.50) 
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Monsoon     
    Mean (SD) 9.55 (7.51) 9.07 (6.63) 10.50 (8.03) 10.12 (8.50) 
    Median (IQR) 7.00  

(4.25, 12.00) 
8.00  

(4.00, 12.00) 
8.00  

(5.00, 14.00) 
8.00  

(5.00, 12.00) 
SD is standard deviation and IQR is interquartile range. 
 
4.4 Discussion 

This study examines LPG use and firewood collection in marginalized populations living 

in forested regions within central India. Education, monthly household expenditures, and tribe 

and caste status were strongly associated with the use of LPG. In particular, households 

belonging to the Scheduled Tribe designation had the lowest probability of using LPG, had 

adopted LPG most recently, and reported to spend the most time collecting firewood, even after 

controlling for other covariates. While almost all LPG users continue to collect and cook with 

firewood, more years cooking with LPG was associated with less firewood collection, suggesting 

a waning reliance on firewood for cooking. Finally, households near higher tree cover had lower 

odds of using LPG, adopted LPG more recently, and spent more time collecting firewood. 

While India’s energy policies have focused more on expanding clean cooking than 

equitable access, our study finds LPG ownership increased in marginalized, less-formally 

educated, and poor households after PMUY. Of all households that use LPG for cooking, a ST 

household was 18 percentage points more likely to have acquired LPG after PMUY as compared 

to a general caste household. Nonetheless, the probability of using LPG overall for cooking was 

7 – 14 percentage points lower among SC, OBC, and ST households as compared to general cate 

households. We contribute to growing evidence that, despite overall growth in LPG use owing to 

PMUY, disparities in access to cleaner cooking remain between social groups and across wealth 

gaps in India (Pelz et al. 2021; Kumar et al. 2020; Aklin et al. 2020).  
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Consistent with case studies around the world that show the persistent role of biomass for 

cooking after the introduction of a clean fuel (Shankar et al. 2020; Quinn et al. 2018), households 

in central India continue to rely on firewood for cooking despite the recent penetration of LPG. 

And yet, approaching the near-complete cessation of biomass use is a top priority to achieve 

cleaner indoor air (Johnson and Chiang et al. 2015; Pope et al, 2017). However, the associations 

we find between length of time a household owns clean cooking fuel and traditional firewood 

collection are encouraging for future clean energy adoption and use in India. Still, ST, SC, and 

OBC households spent 18% – 51% more time collecting firewood than general caste households 

in central India, even after controlling for years of LPG ownership and economic and 

demographic characteristics.  

This study reached a population that lives in villages within forested regions, where 

households generally rely strongly on nearby forest products. Our results suggest that in central 

India, biomass availability promotes firewood collection and hinders LPG use, and there should 

be further research on these associations. There is evidence from other regions of India that 

indicates that replacing firewood as a cooking fuel can generate positive environmental 

outcomes. For example, in South India, forest biomass was greater around communities where 

households cook with biogas (Agarwala et al. 2017). Including communities living near forest in 

LPG expansion policies can expand the use of LPG in households that traditionally rely on 

biomass and may otherwise be unlikely to fully substitute firewood with LPG. In central India, 

households near higher forest cover were more likely to own LPG after PMUY than other 

households with LPG. Expanding LPG ownership in households within forested regions should 

continue and be prioritized as a selection criterion for future LPG promotion policies.   
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Rural India is comprised of diverse communities where further attention on equity could 

help achieve energy justice. One potential strategy for increased LPG use would be targeted LPG 

subsidies or enhanced availability of LPG cylinder refills for specific groups and regions. For 

example, the amount of LPG subsidy might be linked to the highest education level attained by 

the household head, caste status, or monthly expenditures. While our study was restricted to 

largely ST and other lower caste communities in central India, our results have broader 

implications by motivating additional place-based analyses of barriers to clean cooking fuel 

adoption in recognition of the importance of household-level socioeconomic characteristics on 

cooking fuel choice.  

The ability to afford clean cooking fuel is affected by income, which for the 

marginalized, rural populations in central India has traditionally depended on the extraction of 

forest goods. Increasing employment opportunities for this population can increase their capacity 

to use LPG and alleviate the burden of collecting firewood, which requires substantial time and 

effort. Women and children, household members who are generally responsible for firewood 

collection, in particular could experience further benefits along with a decreased burden of 

biomass collection. As argued elsewhere (Mani et al. 2020), clean cooking policies should 

consider the role of broader rural economic development and efforts to enhance education and 

women’s empowerment. A multifaceted approach to increase the use of clean cooking fuels that 

includes generating employment and providing education opportunities will have widespread 

benefits beyond clean energy access such as human capital development and gender equality. In 

central India, the ST and other lower caste communities who face disparities in education and 

poverty would particularly benefit from a comprehensive rural development and clean cooking 

program.  
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Limitations and future areas of research 

This study has a few limitations worth noting. First, we do not have multiple measures of 

cooking fuel use or firewood collection patterns over time. The cross-sectional nature of our 

study is limiting in two main ways: (1) we are limited in assessing self-reported historical 

patterns so we cannot capture the changing trade-offs between LPG and firewood use in the 

years since LPG adoption (e.g., waning reliance on firewood) and (2) we do not capture the 

precise seasonal patterns of cooking fuel use (e.g., LPG used more in the rainy season) and the 

corresponding seasonal determinants of fuel use (e.g., variable fuel availability, time-varying 

incomes). Panel surveys that visit households more than once over the course of many years and 

studies employing high-frequency surveys across a full year can offer valuable insights into the 

trajectories of fuel consumption patterns and their determinants (Gould et al, 2020b; Mani et al. 

2020; Lam et al. 2017; Carter et al, 2020).  

While self-reported measures of cooking fuel use are at risk of survey bias because LPG 

is socially desirable across India, we do not use continuous measures of LPG use, such as 

cylinder refills per year, that may be at risk of over-reporting (Kar et al. 2020). It is unlikely that 

participants differentially reported firewood collection based on ownership of LPG particularly 

because we calculate time spent collecting firewood using two questions (number of days 

visiting the forest and hours per trip). Nonetheless, while our comparisons across groups are not 

likely to be systematically biased, estimates of firewood collection intensity may contain errors 

and should be interpreted with caution.   

Additionally, in our focus on forest-fringe communities, we specifically asked 

participants if they collected firewood from the forest at least weekly. However, about 20% of 
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households did not report to collect firewood from the forest on a weekly basis during any season 

of the year. While we do not know how these households acquired firewood for their energy 

needs, there are a few possibilities: (1) they collected firewood less frequently than once per 

week; (2) they did collect firewood but not from the forest; (3) they received firewood from 

friends or family free of cost; or (4) they purchased firewood. Reported collection of firewood 

from the forest for sale was very rare in our sample (~1%), however, it is possible that firewood 

collection for sale was underreported due to the illicit nature of that activity. Nonetheless, future 

studies should investigate the possibility of less frequent firewood collection, firewood collection 

from non-forest sources, and the potential for a rural firewood market.  

Additional limitations are that precise locations for firewood collection was not recorded 

and tree cover instead of biomass was used as a proxy for firewood availability. Greater 

specificity on firewood collection location and measures of biomass within those locations could 

enable even more precise estimates of the effects of biomass availability on household energy 

choices. We also find a mismatch between our satellite-derived measure of forest availability and 

perceptions of firewood availability. Households reporting increased difficulty in firewood 

collection in the last five years also lived near greater tree cover as compared to households who 

reported no change or increased ease in firewood collection. Change in perceptions of the ease of 

firewood collection does not directly represent the burden of firewood collection. Highly 

forested areas may be more likely to become less forested – and therefore firewood collection 

more difficult – than areas with already reduced forest availability. In addition, the ease of 

firewood collection may be determined by more factors than availability of forest, such as forest 

management systems that occur outside of PAs or interactions with neighboring communities. 

Finally, perceptions of environmental change, such difficulty in firewood collection, may be 
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constructed from socio-cultural practices or cognitive biases and influenced by survey questions 

(Grunblatt et al. 2017; Pyhala et al. 2016). 

Additional research on drivers of perceptions of firewood availability and how 

households make cooking fuel decisions based on these perceptions along with availability of 

biomass may provide clarity into strategies for reducing the use of biomass-based fuels in forest-

fringe communities that stack fuels. Furthermore, future studies could employ temporally-

resolved forest cover measures and multiple surveys to enable panel models capable of capturing 

assessing forest cover dynamics and within-household shifts in fuel choices, firewood collection 

patterns, and perceived changes in firewood availability. The continued collection and demand 

for firewood, socioeconomic drivers of LPG ownership, and differences between measured and 

perceived biomass availability indicate complexities in behavioral transitions and energy access 

that impact cooking fuel use and require further exploration. 

Our research contributes to a broader understanding of fuel stacking and incorporates 

tenets of energy justice into clean cooking fuel access within India. In households that use LPG 

and firewood to cook, the time spent to collect firewood was lowest among households that 

owned LPG the longest. Even households that adopted LPG most recently (2016 – 2017) spent 

significantly less time collecting firewood than households without LPG. While PMUY 

increased access to LPG in Indian households overall, and in our study sample, disparities in 

LPG access for ST and OBC populations remain. In addition to the disparities in LPG access that 

rural Indian households face by social group, we find that education level, income, and proximity 

to forest impact the use of LPG. Our findings suggest that incorporating an explicit motive to 

address inequitable access for marginalized stakeholders in PMUY may further expand LPG 

access, displace firewood use, and ultimately improve livelihoods in central India. Similar 
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approaches that examine barriers and inequalities in social groups can inform targeted clean 

cooking fuel expansion policies around the world. 
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Conclusion  

Tropical forests provide housing material, water, energy, or income opportunities to 2.7 

billion people (Fedele et al. 2021) in addition to supporting significant amounts of biodiversity 

(Giam, 2017). Tropical dry forests, characterized by lower rainfall and intense dry seasons, in 

particular are highly threatened, contain endemic flora and fauna, and have close relationships 

with the people living in and near them (Power et al. 2018).  This thesis examined the central 

Indian landscape at multiple scales through a social ecological framework; I developed a 

satellite-derived indicator of forest condition at the landscape level and combined remote sensing 

products with socioeconomic variables measured directly through surveys to households and 

elected leaders to assess relationships. My study area, central India, is a human-dominated 

landscape with tropical dry forest where socioeconomically marginalized communities use the 

same forests as species of global conservation concern (i.e. tigers). This context is reflected in 

additional landscapes where sustainable development must integrate land use needs of humans 

and biodiversity. Approaching forests and sustainable development at the landscape scale is 

useful to examine environmental, governance, and social patterns and interactions (Opdam et al. 

2018).  

This work contributes to developing our understanding of linkages between forests, forest 

governance, resource use, and resource user settings in social ecological systems. A forest health 

dataset, the Bare Ground Index, was developed to measure exposed bare ground within forests 

and results from chapter 2 and 3 identified social and environmental benefits from livelihood and 
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governance approaches in central India. Formal community institutions with authority to make 

decision about forests promoted healthier forests, measured as forests with less exposed bare 

ground, at moderate distances (3 to 8 km) from villages whereas household forest uses were the 

most important variables for forest health at 1 and 10 km distances. Socially marginalized 

households across central India have recently gained access to alternative cooking fuels and 

although firewood for cooking has not been replaced, Liquified Petroleum Gas (LPG) ownership 

significantly reduced firewood collection. Multiple sustainable development solutions can 

promote healthy forests across central India, including establishing formal community 

institutions with authority over forest management and improving forest-dependent livelihoods 

through access to LPG. Given our work from chapter 2 did not explore socioeconomic 

dimensions of participation and impacts of local forest management institutions, our work 

provides evidence to prioritize LPG access for environmental and social benefits.  

In chapter 1, coauthors and I produced a very high resolution (3 meter) 2018 land cover 

and 90 m resolution forest health dataset for the central Indian landscape. We used a discrete 

classification method on optical imagery to calculate bare ground and tree cover and derive the 

Bare Ground Index (BGI) in Google Earth Engine. The overall accuracy of the thematic land 

cover map was 83%. The Random Forest classifier was selected as the most accurate algorithm 

during a selection stage where we evaluated the classification performance of four machine 

learning algorithms (Random Forest, Support Vector Machine, Boosted Decision Tree with 

AdaBoost, adaptive boosting, and Kohonen’s Self Organizing Map with k-means clustering) on a 

small portion of the landscape. We also assessed the BGI through ground validation (February 

2020) and found significantly higher signs of cattle (cattle dung) in forests with higher values of 

BGI, or more bare ground than tree cover, as compared to healthier forests. Cattle dung served as 
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a proxy for measuring the intensity of cattle presence. Signs of forest use were prevalent across 

forests of high to low BGI and there is a lot of scope to expand our work to operationalize the 

monitoring of forest degradation. 

Access to data and analysis tools and technological developments will continue to 

improve the feasibility to measure and monitor structural forest degradation at large scales 

(Sasaki and Putz, 2009). LiDAR and other 3D imaging methods can also be harnessed to 

interpret forest health in central India and particularly helpful in other forest systems where uses 

like firewood collection mainly occur under the tree canopy. I used Planet Labs 3 m imagery at 4 

bands in a discrete classification in chapter 1 and imagery is now available in 8 bands. Such 

increased spectral resolution expands the suitability of very-high resolution satellite data for use 

in spectral unmixing approaches to calculate the BGI and other measures of forest health such as 

the Normalized Degradation Fraction Index (Bullock et al. 2018). The datasets produced in 

chapter 1 have been used in studies examining socioeconomic relationships with forests across 

central India (DeFries et al. 2020; Baquei et al. 2021) and will continue to serve in capacities to 

contribute to important tropical forest landscape scale research (Daskalova et al. 2020; Mitchard, 

2018) because the dataset is available free and open. For example biophysical changes to forests 

can span decades and the 2018 BGI dataset can be a baseline for future analyses. In addition, the 

code used to classify imagery and develop the BGI datasets using Google Earth Engine, a cloud-

based platform that has improved the capacity for geospatial analysis (Gorelick et al. 2017) is 

available open and free. Developing accessible methodologies was a step towards empowering 

non-traditional experts, like government resource managers and non-governmental organization 

employees, to engage in forest monitoring across central India.  
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In chapter 2, coauthors and I found evidence for formal community institutions to 

maintain healthy forests, through associations with decreased amount of exposed bare ground 

within forest. Of 238 total survey villages across central India, 83% (N = 198) had a local forest 

management institution and less than half (40%, N = 79) had the authority to modify rules about 

forest use. About half of households across all villages grazed their cattle in the forest or 

collected wood from the forest for home repairs; households collected firewood at least once per 

week across an average of seven months per year, which was relatively high compared to Non-

Timber Forest Product (NTFP) or fodder collection. After statistically matching villages (N = 

80), we found that forests were healthier, or had less exposed bare ground, at 3 and 3 km of 

village boundaries where there was a formal local forest management institution compared to 

villages without a local institution. These distances correspond to the distances that households 

report traveling for local forest uses. The importance of a local institution for forest health was 

further confirmed in conditional forest models, where a local institution was more important than 

direct forest uses in predicting forest health at 3 and 5 km. In conditional forest models that only 

included villages (N = 40) that were included in matched datasets and had an institution, we 

found that an institution’s authority to modify rules about forest use was relatively more 

important for forest health than the length of time the institution had been established. Results 

contribute a landscape-wide analysis to growing work from places within central India where 

positive indicators of forest condition have been associated with people’s involvement in forest 

management (Agarwal, 2016 and 2017). While multiple methods show that formal local 

institutions have significantly influenced forest health around communities in central India, 

forest uses are still important in shaping forest health because collecting wood for housing 

material and firewood were the most important variables for forest health at distances near 
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(within 1 km) and far (within 10 km) the village, respectively. Sustainable development 

approaches, such as participatory community governance, are not a single solution (Meyfroidt et 

al. 2022).  

Multiple methods were employed to identify significant links between governance and 

forest health but I was not able to account for feedbacks that encompass the ways forest health 

influences governance and livelihoods. In addition, further work should explore mechanisms 

behind our results that identified the importance of formal local institutions for forest health 

outcomes. This chapter was limited to collecting data on formal institutions although 

communities around central India have informal institutions and traditions that influence the 

forest. Although community forest management can benefit forests, evidence of the social 

benefits of community governance is mixed because it can worsen other pre-existing 

socioeconomic inequalities (Bhattacharya et al. 2010; Calfucura, 2018; Agarwal, 2010; Killian 

and Hyle, 2020). For example, where forest users had a role in forest management there were 

improved forest cover and household incomes but decreased forest access and resource rights 

(Hajjar et al. 2021). Participatory forest governance models across India have excluded women 

(Rout, 2018). Follow up work could examine the relationships between formal and informal 

governance and forest health, how formal institutions change household forest uses, and issues of 

social equity by identifying who is and is not participating in forest governance. We require more 

work on the socioeconomic implications of participatory governance across central India to 

ensure that formal community institutions and other methods of participation do not exacerbate 

existing gender and caste disparities.   

In chapter 3, coauthors and I identified an opportunity to decrease disparities in clean 

cooking fuel access across central India and promote potential environmental benefits from 
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decreased firewood dependency. By early 2018, LPG was used for cooking in half (46%) of the 

4,994 households living across 500 villages. Yet, fuel stacking remained the predominant 

cooking fuel strategy with 90% of LPG-owning households continuing to cooking firewood. 

Almost all (96%) of the study households identified as a marginalized social group, either 

Scheduled Tribe, Scheduled Caste, or Other Backward Caste; the probability of using LPG for 

cooking was 7 – 14 percentage points lower among these households and they spent 18% – 51% 

more time collecting firewood as compared to general caste households. However, after 2016, 

when India enacted Pradhan Mantri Ujjwala Yojana (PMUY), access to LPG increased for 

marginalized households. Specifically, Scheduled Tribe households had a 18 percentage point 

higher probability of acquiring LPG after 2016 as compared to a household in the general caste. 

We also found significant reductions in firewood collection in households that owned LPG and 

reductions corresponded to the numbers of years LPG was owned. Households that adopted LPG 

in 2013 or before, 2014 – 2015, or 2016 – 2017 spent 53%, 46%, and 14% fewer hours per week 

collecting firewood than households without LPG in the summer, post-monsoon, and winter 

seasons, respectively. Policies targeting communities with marginalized social groups living near 

forests can further accelerate LPG adoption and displace firewood use.  

Livelihood interventions such as clean cooking fuel policies that aim to reduce the human 

health impacts from cooking with firewood have the potential for combined social and 

environmental benefits. My work showed that marginalized households have benefitted from 

PMUY and decrease firewood collection with ownership, an important contribution to literature 

which has mostly focused on barrier to energy access (Jeuland et al. 2021). Across India, 

firewood collection has been associated with local degradation (DeFries et al. 2010) and in 

central India, LPG ownership was significantly associated with healthier forests (DeFries et al. 
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2021). More direct ways to measure the potential environmental payoffs from decreased 

firewood collection due to LPG ownership still need to be fully explored. For example, revisiting 

villages with older versus more recent LPG adoption trends and combine household survey data 

with vegetation plots along with the BGI. India imports most of its oil and the price and 

availability of LPG at the national level is under the influence of fluctuations in global oil supply 

and prices (Alam et al. 2019). Despite this reliance, LPG continues to be an important 

development and energy transition strategy towards a non-zero or decarbonized system 

(Rosenthal et al. 2018), a “transition fuel” (Safari et al. 2019), because of its widespread 

adoption across India compared to other fuels. Similar research examining disparities in energy 

development policies in social and ecological systems can help to promote just energy transitions 

around the world.  

Results of this thesis are limited in identifying mechanisms to explain significant 

associations. When it becomes possible to measure the change in BGI over a significant time 

period, such as 5 to 10 years, corresponding longitudinal surveys to households and village 

leaders will make additional causal analyses on forest health and socioeconomic and governance 

factors feasible. Changing rural demographics will continue to alter forests and forest livelihoods 

in central India and in social ecological systems around the world (Oldekop et al. 2020). Panel 

data as well as accounting for different types of values placed on forests, including biocultural 

and commercial, will help understand social ecological systems in transition (Rasmussen et al. 

2017).  In chapters 2 and 3, I use measures of forest and forest health at buffer distances around 

forests because the precise spatial extent of forest areas in central India used by local people for 

specific purposes or governed in some extent by communities was and remains unknown. 

Extensive efforts to map boundaries of locally important forests areas around communities in 
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central India would aid our efforts of evaluating interactions with community governance and 

livelihood changes. Forest management boundaries alone do not indicate where people travel and 

use the forest and are not always available; people’s movements in central India’s forests are 

influenced by wildlife (Read et al. 2021). Therefore, such mapping should be participatory and 

involve forest users. In combination with the fine-scale measures of the amount of time 

households spend using forests from the 2018 survey, spatial data on locally important forests 

could deepen our knowledge of forest-dependency across central India. In addition, employing 

ethnographic methods to record and incorporate landscape histories and documenting local 

values (Ekblom et al. 2019) will advance our understanding of forest health and social ecological 

relationships in central India. There remains a need to approach the social and ecological 

relationships within central India in a multidimensional systems framework rather than as 

separate but related links (chapters 2 and 3). Finally, focusing on local drivers of changes to 

forest health such as governance and local livelihoods can detract from relatively more important 

large-scale drivers of degradation and may be counterproductive to forest conservation (Delabre 

et al. 2020).  

Overall, this thesis produced open and available land cover and forest health datasets 

across a tropical human-dominated landscape along with fine-scale (village and community 

level) evidence to strengthen our understanding of a social ecological system in the central India 

context.  High-resolution datasets produced from chapter 1 will continue to serve as a resource to 

understand land use and forest health and contributes to a broader set of literature that 

operationalizes measures of forest structure with optical data. Together, chapters 2 and 3 

identified governance and livelihood interventions as effective strategies to achieve benefits for 

people and forests. Formal community institutions involved in forest management significantly 
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benefitted forests and combined evidence from chapter 2 and 3 suggest environmental and social 

benefits from reduced firewood collection achieved through LPG adoption. The same livelihood 

and governance approaches identified and discussed here will not produce similar outcomes in 

other systems. Rather, this thesis presents a useful approach to linking a relevant landscape-scale 

resource condition to key community and household socioeconomic patterns to identify potential 

sustainable development synergies in social and ecological systems.   
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Appendix A: Supplementary information for chapter 1 

Supplementary Table 1. There were 38 districts in the study area. We report on total 
forest cover, open forest (land with tree cover of canopy density between 10% and 40%), 

moderately dense forest (land with tree cover of canopy density between 40% and 70%), and 
very dense forest (land with tree cover of canopy density above 70%) in 2003 and 2019 for 37 
districts in central India. Madhya Pradesh’s Annapur district had no data in 2003 so we do 

not include forest cover data from this district. Source: Forest Survey of India, 2003 and 2019. 

State District 

Total  
Forest  
Cover  
2003 

Open 
Forest 
2003 

Moderately 
Dense 
Forest 
2003 

Very 
Dense 
Forest 
2003 

Total 
Forest 
Cover 
2019 

Open 
Forest  
2019 

Moderately 
Dense 
Forest 
2019 

Very 
Dense 
Forest 
2019 

Madhya Pradesh Chhatarpur 1706 862 803 41 1758.55 756.97 817.52 184.06 

Madhya Pradesh Panna 2728 1069 1595 64 2742.71 1181.44 1478.26 83.01 

Madhya Pradesh Sagar 2922 1198 1722 2 2794.54 1651.97 1141.57 1 

Madhya Pradesh Damoh 2678 1769 903 6 2587.18 1739.39 845.79 2 

Madhya Pradesh Satna 1678 717 942 19 1752.9 831.2 909.7 12 

Madhya Pradesh Rewa 708 474 224 10 781.15 333.57 386.58 61 

Madhya Pradesh Umaria 1872 528 1108 236 2022.58 548.05 1096.22 378.31 

Madhya Pradesh Vidisha 902 375 495 32 777.46 431.55 344.91 1 

Madhya Pradesh Bhopal 312 215 97 0 328.67 207.75 120.92 0 

Madhya Pradesh Sehore 1464 724 740 0 1357.9 719.15 614.85 23.9 

Madhya Pradesh Raisen 2732 1084 1569 79 2676.26 1346.75 1306.51 23 

Madhya Pradesh Betul 3537 1551 1844 142 3663.7 1495.22 1938.14 230.34 

Madhya Pradesh Harda 1045 446 598 1 956.26 409.57 527.69 19 

Madhya Pradesh Hoshangabad 2402 849 1292 262 2422.65 780.44 1370.32 271.89 

Madhya Pradesh Katni 1191 625 477 89 1361.3 658.82 608.58 93.9 

Madhya Pradesh Jabalpur 1078 620 408 50 1113.93 570.43 502.5 41 

Madhya Pradesh Narsimhapur 1374 783 517 74 1342.76 624.42 657.34 61 

Madhya Pradesh Dindori 2643 592 1478 573 3031.96 663.85 1281.17 1086.94 

Madhya Pradesh Mandla 2732 980 1309 443 2577.51 795.15 1091.05 691.31 

Madhya Pradesh Chhindwara 4409 1838 2368 203 4588.01 1938.98 2027.09 576.94 

Madhya Pradesh Seoni 3038 1387 1412 239 3069.59 1041.37 1791.14 237.08 

Madhya Pradesh Balaghat 4859 1682 2547 630 4932.06 883.84 2638.97 1409.25 

Madhya Pradesh Shahdol 2483 893 1491 99 1970.71 1028.17 820.54 122 
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Madhya Pradesh East Nimar 3580 1479 2058 43 2089.12 784.52 1156.8 147.8 

STATE TOTAL  54073 22740 27997 3337 52699.46 21422.57 25474.16 5757.73 

Maharashtra Akola 321 195 111 15 340.37 220.93 108.44 11 

Maharashtra Amravati 3069 997 1395 677 3167.77 1087.35 1461.53 618.89 

Maharashtra Wardha 824 386 438 0 861.95 441.95 410.03 9.97 

Maharashtra Nagpur 1984 664 961 359 2000.38 696.76 902.56 401.06 

Maharashtra Bhandara 886 223 526 137 998.92 264.93 563.13 170.86 

Maharashtra Gondiya 2160 461 887 812 1938.59 317.75 732.23 888.61 

Maharashtra Gadchiroli 10069 2143 3725 4201 9916.94 1909.92 3307.73 4699.29 

Maharashtra Chandrapur 3940 1039 1639 1262 4054.46 1171.99 1559.44 1323.03 

STATE TOTAL  23253 6108 9682 7463 23279.38 6111.58 9045.09 8122.71 

Chhattisgarh Korba 3358 1023 2186 149 3393.7 877.08 2313.62 203 

Chhattisgarh 
Janfgir-
Champa 157 102 51 4 149.89 125.76 22.13 2 

Chhattisgarh Bilaspur 2504 600 1682 222 2456.89 522.7 1539.19 395 

Chhattisgarh Kabeerdham 1621 375 1246 0 1548.72 385.79 1083.84 79.09 

Chhattisgarh Rajnandgaon 2548 818 1727 3 2535.18 754.67 1749.51 31 

STATE TOTAL  10188 2918 6892 378 10084.38 2666 6708.29 710.09 
STUDY AREA 
TOTAL  87514 31766 44571 11178 86063.22 30200.15 41227.54 14590.53 
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Supplementary Table 2. Overall accuracy and kappa index for a total of 18 models 
which were run using Random Forest, Support Vector Machine, Boosted Decision Tree 

(AdaBoost), or Kohonen’s Self Organizing Map with k-means clustering. Models differed in 
the algorithm used, the number of samples in the training data, and algorithm parameters. 

Algorithm parameters are specific in Appendix A - Table S3. For each algorithm, the highest 
overall accuracy and kappa index is in bold, these four models are reported in Table 2. * 

denotes the model with highest overall accuracy and kappa index, run using the Random 
Forest algorithm.  

Algorithm # of samples in 
training data Model Overall 

Accuracy Kappa 

Random Forest 

6,000 pixels 
1 0.694 0.606 
2 0.692 0.606 
3 0.693 0.605 

18,000 pixels 
4 0.697* 0.610* 
5 0.695 0.608 
6 0.696 0.609 

Polygons 
7 0.693 0.602 
8 0.690 0.598 
9 0.696 0.606 

Support Vector Machine 
6,000 pixels 

10 0.378 0.267 
11 0.427 0.315 

18,000 pixels 
12 0.388 0.279 
13 0.435 0.324 

Boosted Decision Tree 
(AdaBoost) 

6,000 pixels 14 0.687 0.597 
18,000 pixels 15 0.680 0.588 

Kohonen’s Self 
Organizing Map - 

16 0.622 0.507 
17 0.631 0.514 
18 0.556 0.416 
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Supplementary Table 3. The name of model parameters that were varied. Specific 
model parameters are listed in Appendix A - Table S4, S5, and S6. 

Classification 
Type 

Model Name Algorithm Parameters 

Supervised 
Classifications 

1 

Random Forest Number of trees 
(n_estimators) 

2 
3 
4 
5 
6 
7 
8 
9 
10 

Support Vector Machine 
RBF kernel: C, error rate 11 

12 Polynomial kernel: C, 
degree 13 

14 Boosted Decision Tree 
(Adaboost) n_estimators, learning rate 15 

Unsupervised 
Classifications 

16 Kohonen's Self 
Organizing Map with k-

means clustering 
Number of output neurons 17 

18 
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Supplementary Table 4. Model parameters for models 1 to 0 (run using Random 
Forest algorithm). 

Model Number of trees 
1, 4, and 7 50 
2, 5, and 8 100 
3, 6, and 9 200 
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Supplementary Table 5. Model parameters for models 10 to 13 (run using the Support 
Vector Machine algorithm).  

Model C gamma Degree 
10 and 12 800 0.90 - 
11 and 13 1000 - 1 
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Supplementary Table 6. Model parameters and quantization error for models 16, 17, 
and 18 (run using the Kohonen’s Self Organizing Map algorithm). 

Parameters 
Model # 

16 17 18 
Output layer neurons: 100 225 400 
Min learning rate: 0.5 
Max learning rate: 1 
k-means clustering: yes 
Max no. of output clusters: 32 
Quantization error: 0.0197 0.017 0.015 
Iterations: 12,715,912 
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Supplementary Figure 1. The average values of the Bare Ground Index (BGI) in 
ground validation locations according to the level (0, 1 or 2) of signs of forest use. Validation 

locations were identified at the center of any given 90 meter pixel and signs of forest use 
within a 15 m radius of the point were recorded. Signs of forest use included lantana (a), 

trails (b), cattle dung (c), and tree lopping (d) and were categorized as 0 (no signs), 1 (1 or 2 
signs), or 2 (3 or greater signs) for the same use type. Plots show the mean and the 

interquartile range (in gray) of the BGI. We compared the average BGI values of areas with 
different levels of forest use using a Wilcoxon rank sum test. * denotes a p < 0.05. There was a 

significant positive association between the presence of cattle dung and BGI. 
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Appendix B: Supplementary information for chapter 2 

Table S1. Key characteristics of villages surveyed in 2018 (N = 500) and 2022 (N = 238). 
* indicates significant differences at p < 0.05 between places surveyed in 2022 and 2018, there 

were no significant differences. 

 2022 sarpanch survey (N=238) 2018 household survey (N=500) 
Number of districts, full 
sample 

31 32 

Districts in Madhya 
Pradesh (% of full sample) 

21 (68%) 21 (66%) 

Districts in Maharashtra (% 
of full sample) 

5 (16%) 6 (19%) 

Districts in Chhattisgarh (% 
of full sample) 

5 (16%) 5 (16%) 

Number of villages, full 
sample 

316 500 

Villages in Madhya Pradesh 
(% of full sample) 

241 (76%) 324 (65%) 

Villages in Maharashtra (% 
of full sample) 

40 (13%) 95 (19%) 

Villages in Chhattisgarh (% 
of full sample) 

35 (11%) 81 (16%) 

Population   
   Mean (SD) 905.55 (784.71) 885.01 (1055.60) 
   Median (IQR) 650.00 (385.50, 1200.00) 600.00 (350.00, 1100.00) 
Cattle feeding inside forest 
(% of households) 

  

   Mean (SD) 42.82 (25.95) 45.90 (24.97) 
   Median (IQR) 40.00 (20.00, 60.00) 50.00 (30.00, 70.00) 
Fodder collection 
(months/year) 
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   Mean (SD) 0.69 (0.87) 0.71 (0.90) 
   Median (IQR) 0.30 (0.00, 1.10) 0.40 (0.00, 1.10) 
Firewood collection 
(months/year) 

  

   Mean (SD) 6.89 (2.91) 7.17 (2.72) 
   Median (IQR) 7.70 (5.00, 9.07) 7.80 (5.77, 9.20) 
Liquified Petroleum Gas 
used for cooking (% of 
households) 

  

   Mean (SD) 46.51 (24.27) 45.58 (24.91) 
   Median (IQR) 50.00 (30.00, 60.00) 50.00 (30.00, 60.00) 
Non-Timber Forest 
Products (NTFP) collection 
(months/year) 

  

   Mean (SD) 0.65 (0.56) 0.71 (0.54) 
   Median (IQR) 0.60 (0.20, 1.00) 0.70 (0.27, 1.00) 
Wood from forest home 
repair (% of households) 

  

   Mean (SD) 67.48 (27.30) 70.72 (26.38) 
   Median (IQR) 70.00 (50.00, 90.00) 80.00 (50.00, 90.00) 
Distance to road (km)   
   Mean (SD) 10.32 (7.68) 10.09 (8.12) 
   Median (IQR) 8.38 (3.82, 15.44) 8.08 (3.14, 15.48) 
Distance to city (km)   
   Mean (SD) 92.52 (30.68) 91.08 (30.30) 
   Median (IQR) 97.04 (72.81, 116.93) 94.05 (71.37, 114.26) 
Tree cover at 1 km (%)   
   Mean (SD) 33.94 (24.40) 35.45 (26.15) 
   Median (IQR) 29.33 (14.67, 50.38) 30.09 (13.86, 54.65) 
Tree cover at 2 km (%)   
   Mean (SD) 34.94 (23.19) 36.47 (24.88) 
   Median (IQR) 31.32 (17.61, 48.04) 33.08 (16.77, 52.43) 
Tree cover at 3 km (%)   
   Mean (SD) 35.98 (22.06) 37.39 (23.72) 
   Median (IQR) 33.15 (20.01, 48.58) 34.69 (18.73, 52.21) 
Tree cover at 5 km (%)   
   Mean (SD) 37.85 (20.32) 38.89 (21.78) 
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   Median (IQR) 35.69 (23.14, 48.47) 36.20 (21.97, 53.06) 
Tree cover at 8 km (%)   
   Mean (SD) 39.40 (17.93) 40.27 (19.69) 
   Median (IQR) 37.14 (27.38, 49.96) 38.25 (26.26, 53.02) 
Tree cover at 10 km (%)   
   Mean (SD) 39.09 (15.22) 39.83 (16.75) 
   Median (IQR) 37.98 (27.88, 48.05) 38.51 (27.99, 50.12) 
BGI at 1 km   
   Mean (SD) -0.68 (0.21) -0.68 (0.23) 
   Median (IQR) -0.70 (-0.83, -0.58) -0.72 (-0.85, -0.58) 
BGI at 2 km   
   Mean (SD) -0.69 (0.19) -0.69 (0.21) 
   Median (IQR) -0.71 (-0.83, -0.57) -0.73 (-0.85, -0.59) 
BGI at 3 km   
   Mean (SD) -0.70 (0.17) -0.70 (0.19) 
   Median (IQR) -0.72 (-0.83, -0.60) -0.73 (-0.84, -0.60) 
BGI at 5 km   
   Mean (SD) -0.71 (0.16) -0.72 (0.16) 
   Median (IQR) -0.74 (-0.82, -0.62) -0.74 (-0.84, -0.62) 
BGI at 8 km   
   Mean (SD) -0.73 (0.13) -0.73 (0.14) 
   Median (IQR) -0.75 (-0.83, -0.65) -0.76 (-0.84, -0.65) 
BGI at 10 km   
   Mean (SD) -0.74 (0.11) -0.75 (0.11) 
   Median (IQR) -0.75 (-0.82, -0.66) -0.76 (-0.83, -0.67) 
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Table S2. Key characteristics of the full sample (N = 238) of surveyed villages. * 
indicates significant differences at p < 0.05 between places with and without local forest 

management institutions.  

 No local forest 
management institution 

(N=40) 

Local forest 
management institution 

(N=198) 

Full sample (N=238) 

Population*    
   Mean (SD) 1267.62 (1208.38) 832.40 (647.87) 905.55 (784.71) 

   Median (IQR) 700.00 (500.00, 
1700.00) 

650.00 (350.00, 
1100.00) 

650.00 (385.50, 
1200.00) 

Cattle feeding inside 
forest (%) 

   

   Mean (SD) 42.25 (31.01) 42.97 (24.97) 42.85 (26.01) 
   Median (IQR) 35.00 (10.00, 70.00) 40.00 (20.00, 60.00) 40.00 (20.00, 60.00) 
Fodder collection 
(months/year) 

   

   Mean (SD) 0.75 (0.81) 0.67 (0.88) 0.69 (0.87) 
   Median (IQR) 0.55 (0.08, 1.10) 0.30 (0.00, 1.10) 0.30 (0.00, 1.10) 
Liquified Petroleum 
Gas used for 
cooking (% of 
households) 

   

Mean (SD) 44.75 (23.31) 46.89 (24.50) 46.53 (24.27) 
Median (IQR) 50.00 (30.00, 60.00) 50.00 (30.00, 60.00) 50.00 (30.00, 60.00) 

Firewood collection 
(months/year)* 

   

   Mean (SD) 5.78 (3.07) 7.12 (2.83) 6.89 (2.91) 
   Median (IQR) 5.95 (3.30, 8.45) 7.85 (5.40, 9.20) 7.70 (5.00, 9.07) 
Non-Timber Forest 
Products (NTFP) 
collection 
(months/year)* 

   

   Mean (SD) 0.36 (0.40) 0.71 (0.56) 0.65 (0.56) 
   Median (IQR) 0.20 (0.00, 0.53) 0.70 (0.20, 1.00) 0.60 (0.20, 1.00) 
Wood from forest 
home repair (% of 
households)* 

   

   Mean (SD) 59.00 (31.03) 69.24 (26.29) 67.52 (27.35) 
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   Median (IQR) 70.00 (30.00, 90.00) 75.00 (50.00, 90.00) 70.00 (50.00, 90.00) 
Distance to road 
(km) 

   

   Mean (SD) 9.77 (7.77) 10.43 (7.68) 10.32 (7.68) 
   Median (IQR) 7.34 (3.77, 13.45) 8.50 (3.88, 15.52) 8.38 (3.82, 15.44) 
Distance to city 
(km) 

   

   Mean (SD) 94.62 (27.68) 92.09 (31.30) 92.52 (30.68) 
   Median (IQR) 98.46 (80.86, 113.73) 95.95 (70.82, 116.93) 97.04 (72.81, 116.93) 
Tree cover at 1 km 
(%)* 

   

   Mean (SD) 26.51 (20.86) 35.44 (24.83) 33.94 (24.40) 
   Median (IQR) 20.33 (12.78, 38.26) 30.84 (16.00, 52.10) 29.33 (14.67, 50.38) 
Tree cover at 2 km 
(%)* 

   

   Mean (SD) 27.08 (18.97) 36.53 (23.68) 34.94 (23.19) 
   Median (IQR) 23.39 (14.14, 36.35) 33.55 (17.73, 50.46) 31.32 (17.61, 48.04) 
Tree cover at 3 km 
(%)* 

   

   Mean (SD) 28.85 (18.04) 37.42 (22.56) 35.98 (22.06) 
   Median (IQR) 26.67 (16.05, 36.63) 34.37 (20.49, 49.24) 33.15 (20.01, 48.58) 
Tree cover at 5 km 
(%) 

   

   Mean (SD) 33.12 (17.21) 38.81 (20.80) 37.85 (20.32) 
   Median (IQR) 31.86 (20.28, 42.39) 35.91 (24.17, 50.27) 35.69 (23.14, 48.47) 
Tree cover at 8 km 
(%) 

   

   Mean (SD) 36.58 (15.53) 39.97 (18.35) 39.40 (17.93) 
   Median (IQR) 32.78 (25.82, 44.56) 37.75 (27.69, 50.20) 37.14 (27.38, 49.96) 
Tree cover at 10 km 
(%) 

   

   Mean (SD) 37.86 (13.79) 39.34 (15.51) 39.09 (15.22) 
   Median (IQR) 36.45 (28.53, 46.19) 38.78 (27.70, 49.60) 37.98 (27.88, 48.05) 
BGI at 1 km*    

   Mean (SD) -0.61 (0.25) -0.69 (0.20) -0.68 (0.21) 
   Median (IQR) -0.61 (-0.81, -0.45) -0.70 (-0.83, -0.60) -0.70 (-0.83, -0.58) 
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BGI at 2 km*    

   Mean (SD) -0.61 (0.24) -0.70 (0.17) -0.69 (0.19) 
   Median (IQR) -0.60 (-0.79, -0.46) -0.72 (-0.84, -0.60) -0.71 (-0.83, -0.57) 
BGI at 3 km*    

   Mean (SD) -0.63 (0.21) -0.71 (0.16) -0.70 (0.17) 
   Median (IQR) -0.63 (-0.78, -0.49) -0.73 (-0.84, -0.61) -0.72 (-0.83, -0.60) 
BGI at 5 km*    

   Mean (SD) -0.66 (0.18) -0.72 (0.15) -0.71 (0.16) 
   Median (IQR) -0.67 (-0.77, -0.57) -0.74 (-0.82, -0.64) -0.74 (-0.82, -0.62) 
BGI at 8 km    

   Mean (SD) -0.70 (0.14) -0.73 (0.13) -0.73 (0.13) 
   Median (IQR) -0.70 (-0.78, -0.63) -0.76 (-0.83, -0.65) -0.75 (-0.83, -0.65) 
BGI at 10 km    

   Mean (SD) -0.72 (0.11) -0.74 (0.11) -0.74 (0.11) 
   Median (IQR) -0.73 (-0.80, -0.64) -0.75 (-0.82, -0.67) -0.75 (-0.82, -0.66) 
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Table S3. Key characteristics of villages in matched dataset at 1 km. There were no 
differences between treatment and control groups in these key characteristics. 

 No local forest 
management 

institution (N=40) 

Local forest 
management 

institution (N=40) 

Full sample (N=80) 

Population    
   Mean (SD) 1248.85 (1218.24) 1110.72 (759.02) 1178.91 (1007.93) 

   Median (IQR) 700.00 (500.00, 
1650.00) 

1025.00 (450.00, 
1503.50) 

700.00 (475.00, 1557.00) 

Cattle feeding inside 
forest (%) 

   

   Mean (SD) 43.08 (30.96) 49.25 (26.15) 46.20 (28.61) 
   Median (IQR) 40.00 (10.00, 70.00) 55.00 (30.00, 70.00) 50.00 (20.00, 70.00) 

Fodder collection 
(months/year) 

   

   Mean (SD) 0.77 (0.82) 0.88 (1.12) 0.83 (0.98) 
   Median (IQR) 0.60 (0.15, 1.10) 0.35 (0.10, 1.27) 0.50 (0.10, 1.20) 

Firewood collection 
(months/year) 

   

   Mean (SD) 5.78 (3.11) 6.55 (3.02) 6.17 (3.07) 
   Median (IQR) 6.00 (3.30, 8.50) 7.35 (4.18, 8.75) 6.90 (3.65, 8.65) 

Non-Timber Forest 
Products (NTFP) 
collection 
(months/year) 

   

   Mean (SD) 0.37 (0.41) 0.39 (0.37) 0.38 (0.39) 
   Median (IQR) 0.20 (0.00, 0.55) 0.30 (0.08, 0.62) 0.30 (0.00, 0.60) 

Wood from forest 
home repair (%) 

   

   Mean (SD) 45.64 (22.92) 43.50 (23.38) 44.56 (23.03) 
   Median (IQR) 50.00 (30.00, 60.00) 50.00 (27.50, 60.00) 50.00 (30.00, 60.00) 

Distance to road (km)    
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   Mean (SD) 58.72 (31.39) 62.25 (25.97) 60.51 (28.64) 
   Median (IQR) 70.00 (30.00, 90.00) 60.00 (50.00, 80.00) 60.00 (40.00, 80.00) 

Distance to city (km)    
   Mean (SD) 9.26 (7.15) 9.01 (5.98) 9.13 (6.54) 
   Median (IQR) 7.34 (3.74, 12.99) 7.69 (4.04, 14.06) 7.34 (3.74, 13.55) 

Population    
   Mean (SD) 94.58 (28.04) 92.79 (31.93) 93.67 (29.89) 
   Median (IQR) 98.87 (80.54, 115.01) 98.33 (78.91, 116.31) 98.87 (79.83, 116.58) 

Tree cover at 1 km (%)    
   Mean (SD) 27.19 (20.68) 26.86 (21.58) 27.02 (21.01) 
   Median (IQR) 21.37 (13.39, 39.59) 23.61 (11.73, 38.09) 23.14 (12.45, 39.59) 
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Table S4. Key characteristics of villages in matched dataset at 2 km. There were no 
differences between treatment and control groups in these key characteristics. 

 No local forest 
management 

institution (N=40) 

Local forest 
management 

institution (N=40) 

Full sample (N=80) 

Population    
   Mean (SD) 1267.62 (1208.38) 1212.92 (797.40) 1240.28 (1017.60) 

   Median (IQR) 700.00 (500.00, 
1700.00) 

1200.00 (537.50, 
1600.00) 

825.00 (500.00, 
1625.00) 

Cattle feeding inside forest 
(%) 

   

   Mean (SD) 42.25 (31.01) 45.50 (25.31) 43.88 (28.17) 

   Median (IQR) 35.00 (10.00, 70.00) 45.00 (27.50, 60.00) 40.00 (20.00, 
70.00) 

Fodder collection 
(months/year) 

   

   Mean (SD) 0.75 (0.81) 1.01 (0.99) 0.88 (0.91) 
   Median (IQR) 0.55 (0.08, 1.10) 0.90 (0.00, 1.72) 0.60 (0.00, 1.25) 

Firewood collection 
(months/year) 

   

   Mean (SD) 5.78 (3.07) 6.04 (3.15) 5.91 (3.09) 
   Median (IQR) 5.95 (3.30, 8.45) 6.55 (3.90, 8.53) 6.20 (3.38, 8.45) 

Non-Timber Forest 
Products (NTFP) collection 
(months/year) 

   

   Mean (SD) 0.36 (0.40) 0.43 (0.37) 0.39 (0.39) 
   Median (IQR) 0.20 (0.00, 0.53) 0.40 (0.00, 0.80) 0.30 (0.00, 0.72) 

Wood from forest home 
repair (%) 

   

   Mean (SD) 44.75 (23.31) 45.75 (26.40) 45.25 (24.75) 

   Median (IQR) 50.00 (30.00, 60.00) 50.00 (27.50, 60.00) 50.00 (30.00, 
60.00) 



119 
 

Distance to road (km)    
   Mean (SD) 59.00 (31.03) 61.75 (24.27) 60.38 (27.72) 

   Median (IQR) 70.00 (30.00, 90.00) 60.00 (47.50, 80.00) 65.00 (40.00, 
82.50) 

Distance to city (km)    
   Mean (SD) 9.77 (7.77) 9.63 (7.99) 9.70 (7.83) 
   Median (IQR) 7.34 (3.77, 13.45) 6.96 (3.20, 14.25) 7.08 (3.48, 14.10) 

Population    
   Mean (SD) 94.62 (27.68) 91.13 (29.65) 92.88 (28.56) 

   Median (IQR) 98.46 (80.86, 113.73) 96.59 (66.75, 114.43) 97.74 (73.23, 
114.43) 

Tree cover at 2 km (%)    
   Mean (SD) 27.08 (18.97) 28.44 (17.96) 27.76 (18.36) 

   Median (IQR) 23.39 (14.14, 36.35) 29.15 (16.78, 37.13) 25.94 (15.26, 
37.11) 
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Table S5. Key characteristics of villages in matched dataset at 3 km. There were no 
differences between treatment and control groups in these key characteristics. 

 No local forest 
management 

institution (N=40) 

Local forest 
management 

institution (N=40) 

Full sample 
(N=80) 

Population    
   Mean (SD) 1267.62 (1208.38) 1033.30 (725.59) 1150.46 (997.32) 

   Median (IQR) 700.00 (500.00, 
1700.00) 

1025.00 (425.00, 
1500.00) 

700.00 (450.00, 
1525.00) 

Cattle feeding inside forest 
(%) 

   

   Mean (SD) 42.25 (31.01) 39.25 (26.83) 40.75 (28.85) 

   Median (IQR) 35.00 (10.00, 70.00) 40.00 (20.00, 60.00) 40.00 (17.50, 
70.00) 

Fodder collection 
(months/year) 

   

   Mean (SD) 0.75 (0.81) 0.73 (0.85) 0.74 (0.83) 
   Median (IQR) 0.55 (0.08, 1.10) 0.35 (0.00, 1.20) 0.45 (0.00, 1.20) 

Firewood collection 
(months/year) 

   

   Mean (SD) 5.78 (3.07) 5.87 (3.32) 5.83 (3.18) 
   Median (IQR) 5.95 (3.30, 8.45) 6.15 (2.77, 8.45) 5.95 (3.30, 8.45) 

Non-Timber Forest Products 
(NTFP) collection 
(months/year) 

   

   Mean (SD) 0.36 (0.40) 0.32 (0.33) 0.34 (0.37) 
   Median (IQR) 0.20 (0.00, 0.53) 0.30 (0.00, 0.53) 0.25 (0.00, 0.53) 

Wood from forest home 
repair (%) 

   

   Mean (SD) 44.75 (23.31) 43.50 (24.55) 44.12 (23.80) 
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   Median (IQR) 50.00 (30.00, 60.00) 50.00 (30.00, 60.00) 50.00 (30.00, 
60.00) 

Distance to road (km)    
   Mean (SD) 59.00 (31.03) 53.75 (26.28) 56.38 (28.69) 

   Median (IQR) 70.00 (30.00, 90.00) 50.00 (40.00, 72.50) 50.00 (37.50, 
80.00) 

Distance to city (km)    
   Mean (SD) 9.77 (7.77) 10.53 (7.96) 10.15 (7.82) 
   Median (IQR) 7.34 (3.77, 13.45) 7.82 (4.44, 14.92) 7.34 (4.13, 14.10) 

Population    
   Mean (SD) 94.62 (27.68) 93.08 (30.52) 93.85 (28.96) 

   Median (IQR) 98.46 (80.86, 113.73) 100.72 (67.28, 
119.10) 

99.05 (75.84, 
117.79) 

Tree cover at 3 km (%)    
   Mean (SD) 28.85 (18.04) 31.82 (24.11) 30.34 (21.21) 

   Median (IQR) 26.67 (16.05, 36.63) 25.95 (9.48, 47.18) 26.26 (12.74, 
40.29) 
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Table S6. Key characteristics of villages in matched dataset at 5 km. There were no 
differences between treatment and control groups in these key characteristics. 

 No local forest 
management 

institution (N=40) 

Local forest 
management 

institution (N=40) 

Full sample (N=80) 

Population    
   Mean (SD) 1267.62 (1208.38) 1170.88 (756.22) 1219.25 (1002.76) 

   Median (IQR) 700.00 (500.00, 
1700.00) 

1050.00 (637.50, 
1625.00) 

810.00 (500.00, 
1700.00) 

Cattle feeding inside forest 
(%) 

   

   Mean (SD) 42.25 (31.01) 47.00 (27.38) 44.62 (29.16) 

   Median (IQR) 35.00 (10.00, 70.00) 50.00 (30.00, 60.00) 45.00 (20.00, 70.00) 

Fodder collection 
(months/year) 

   

   Mean (SD) 0.75 (0.81) 0.87 (0.96) 0.81 (0.89) 
   Median (IQR) 0.55 (0.08, 1.10) 0.50 (0.10, 1.20) 0.50 (0.10, 1.20) 

Firewood collection 
(months/year) 

   

   Mean (SD) 5.78 (3.07) 6.41 (3.07) 6.10 (3.07) 
   Median (IQR) 5.95 (3.30, 8.45) 6.50 (4.25, 9.38) 6.20 (3.48, 8.62) 

Non-Timber Forest 
Products (NTFP) collection 
(months/year) 

   

   Mean (SD) 0.36 (0.40) 0.43 (0.43) 0.40 (0.42) 
   Median (IQR) 0.20 (0.00, 0.53) 0.30 (0.00, 0.72) 0.30 (0.00, 0.70) 

Wood from forest home 
repair (%) 

   

   Mean (SD) 44.75 (23.31) 40.75 (26.45) 42.75 (24.85) 

   Median (IQR) 50.00 (30.00, 60.00) 40.00 (20.00, 60.00) 40.00 (30.00, 60.00) 
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Distance to road (km)    
   Mean (SD) 59.00 (31.03) 60.75 (29.21) 59.88 (29.96) 

   Median (IQR) 70.00 (30.00, 90.00) 65.00 (47.50, 80.00) 70.00 (40.00, 82.50) 

Distance to city (km)    
   Mean (SD) 9.77 (7.77) 11.30 (8.70) 10.53 (8.23) 
   Median (IQR) 7.34 (3.77, 13.45) 10.06 (4.34, 15.95) 8.69 (3.79, 14.16) 

Population    
   Mean (SD) 94.62 (27.68) 97.57 (28.16) 96.10 (27.78) 

   Median (IQR) 98.46 (80.86, 113.73) 105.19 (86.46, 
121.16) 

99.10 (85.65, 117.80) 

Tree cover at 5 km (%)    
   Mean (SD) 33.12 (17.21) 36.78 (21.09) 34.95 (19.21) 

   Median (IQR) 31.86 (20.28, 42.39) 31.22 (22.86, 43.15) 31.25 (21.51, 43.15) 
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Table S7. Key characteristics of villages in matched dataset at 8 km. There were no 
differences between treatment and control groups in these key characteristics. 

 No local forest 
management 

institution (N=40) 

Local forest 
management 

institution (N=40) 

Full sample 
(N=80) 

Population    
   Mean (SD) 1267.62 (1208.38) 1175.17 (746.10) 1221.40 (998.91) 

   Median (IQR) 700.00 (500.00, 
1700.00) 

1000.00 (592.50, 
1625.00) 

900.00 (500.00, 
1700.00) 

Cattle feeding inside forest 
(%) 

   

   Mean (SD) 42.25 (31.01) 44.22 (27.95) 43.24 (29.35) 

   Median (IQR) 35.00 (10.00, 70.00) 40.00 (20.00, 70.00) 40.00 (20.00, 
70.00) 

Fodder collection 
(months/year) 

   

   Mean (SD) 0.75 (0.81) 0.67 (0.91) 0.71 (0.86) 
   Median (IQR) 0.55 (0.08, 1.10) 0.30 (0.00, 1.00) 0.40 (0.00, 1.02) 

Firewood collection 
(months/year) 

   

   Mean (SD) 5.78 (3.07) 6.20 (3.02) 5.99 (3.03) 
   Median (IQR) 5.95 (3.30, 8.45) 7.00 (3.25, 8.72) 6.40 (3.30, 8.62) 

Non-Timber Forest Products 
(NTFP) collection 
(months/year) 

   

   Mean (SD) 0.36 (0.40) 0.38 (0.41) 0.37 (0.41) 
   Median (IQR) 0.20 (0.00, 0.53) 0.30 (0.00, 0.62) 0.25 (0.00, 0.60) 

Wood from forest home 
repair (%) 

   

   Mean (SD) 44.75 (23.31) 41.61 (25.17) 43.18 (24.16) 
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   Median (IQR) 50.00 (30.00, 60.00) 40.00 (20.00, 60.00) 40.00 (30.00, 
60.00) 

Distance to road (km)    
   Mean (SD) 59.00 (31.03) 61.75 (27.26) 60.38 (29.05) 

   Median (IQR) 70.00 (30.00, 90.00) 65.00 (40.00, 80.00) 70.00 (40.00, 
82.50) 

Distance to city (km)    
   Mean (SD) 9.77 (7.77) 9.64 (7.57) 9.71 (7.62) 
   Median (IQR) 7.34 (3.77, 13.45) 7.41 (3.28, 14.48) 7.34 (3.53, 13.84) 

Population    
   Mean (SD) 94.62 (27.68) 91.41 (30.73) 93.02 (29.10) 

   Median (IQR) 98.46 (80.86, 113.73) 94.62 (76.29, 112.98) 97.43 (77.91, 
113.23) 

Tree cover at 8 km (%)    
   Mean (SD) 36.58 (15.53) 38.13 (20.60) 37.35 (18.14) 

   Median (IQR) 32.78 (25.82, 44.56) 33.77 (24.86, 48.69) 33.48 (25.40, 
47.03) 
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Table S8. Key characteristics of villages in matched dataset at 10 km. There were no 
differences between treatment and control groups in these key characteristics. 

 No local forest 
management 

institution (N=40) 

Local forest 
management 

institution (N=40) 

Full sample (N=80) 

Population    
   Mean (SD) 1267.62 (1208.38) 1227.12 (947.67) 1247.38 (1079.18) 

   Median (IQR) 700.00 (500.00, 
1700.00) 

1100.00 (450.00, 
1725.00) 

950.00 (487.50, 
1700.00) 

Cattle feeding inside forest 
(%) 

   

   Mean (SD) 42.25 (31.01) 39.50 (29.26) 40.88 (29.99) 

   Median (IQR) 35.00 (10.00, 70.00) 30.00 (20.00, 60.00) 30.00 (17.50, 
70.00) 

Fodder collection 
(months/year) 

   

   Mean (SD) 0.75 (0.81) 0.86 (0.81) 0.80 (0.81) 
   Median (IQR) 0.55 (0.08, 1.10) 0.60 (0.10, 1.42) 0.60 (0.10, 1.20) 

Firewood collection 
(months/year) 

   

   Mean (SD) 5.78 (3.07) 5.46 (3.27) 5.62 (3.16) 
   Median (IQR) 5.95 (3.30, 8.45) 5.10 (2.77, 8.40) 5.55 (3.08, 8.45) 

Non-Timber Forest 
Products (NTFP) collection 
(months/year) 

   

   Mean (SD) 0.36 (0.40) 0.35 (0.42) 0.36 (0.41) 
   Median (IQR) 0.20 (0.00, 0.53) 0.15 (0.00, 0.55) 0.20 (0.00, 0.53) 

Wood from forest home 
repair (%) 

   

   Mean (SD) 44.75 (23.31) 49.75 (25.57) 47.25 (24.44) 

   Median (IQR) 50.00 (30.00, 60.00) 50.00 (37.50, 70.00) 50.00 (30.00, 
60.00) 
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Distance to road (km)    
   Mean (SD) 59.00 (31.03) 56.75 (28.95) 57.88 (29.84) 

   Median (IQR) 70.00 (30.00, 90.00) 50.00 (40.00, 80.00) 50.00 (30.00, 
82.50) 

Distance to city (km)    
   Mean (SD) 9.77 (7.77) 10.61 (7.69) 10.19 (7.69) 
   Median (IQR) 7.34 (3.77, 13.45) 8.25 (3.41, 17.93) 7.88 (3.65, 15.48) 

Population    
   Mean (SD) 94.62 (27.68) 91.56 (32.43) 93.09 (30.00) 

   Median (IQR) 98.46 (80.86, 113.73) 95.75 (66.62, 116.21) 97.23 (74.09, 
116.21) 

Tree cover at 10 km (%)    
   Mean (SD) 37.86 (13.79) 38.22 (14.61) 38.04 (14.12) 

   Median (IQR) 36.45 (28.53, 46.19) 36.41 (27.13, 45.70) 36.45 (27.82, 
45.92) 
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Table S9. Summary statistics of BGI at buffer distances from matched datasets (N = 
80). 

Buffer 
distances 

1 km  2 km  3 km 5 km  8 km  10 km 

Mean (SD) -0.64 
(0.22) 

-0.66 
(0.21) 

-0.68 
(0.19) 

-0.70 
(0.16) 

-0.73 
(0.13) 

-0.74 
(0.11) 

Median (IQR) -0.65  
(-0.83, -
0.51) 

-0.69  
(-0.83, -
0.52) 

-0.69  
(-0.84, -
0.60) 

-0.71  
(-0.81, -
0.61) 

-0.75  
(-0.80, -
0.65) 

-0.75  
(-0.82, -
0.66) 

 

  



129 
 

Table S10. Key characteristics of surveyed villages with one or more formal local 
institution involved in forest management * indicates a significant difference between places 

with 1, 2, 3, or 4 local institutions.  

 1 local 
institution 
(N=177) 

2 local 
institutions 

(N=15) 

3 local 
institutions 

(N=4) 

4 local 
institutions 

(N=2) 

Full 
sample 

(N=238) 
Population      
   Mean (SD) 843.98 

(663.75) 
786.67 

(460.38) 
700.00 

(739.37) 
415.00 

(261.63) 
832.40 

(647.87) 
   Median (IQR) 650.00 

(350.00, 
1100.00) 

650.00 
(475.00, 
1100.00) 

400.00 
(350.00, 
750.00) 

415.00 
(322.50, 
507.50) 

650.00 
(350.00, 
1100.00) 

Cattle feeding inside 
forest (%) 

     

   Mean (SD) 42.82 
(24.99) 

42.00 
(24.84) 

52.50 
(35.94) 

45.00 (7.07) 42.97 
(24.97) 

   Median (IQR) 40.00 
(20.00, 
60.00) 

50.00 
(30.00, 
60.00) 

65.00 
(45.00, 
72.50) 

45.00 
(42.50, 
47.50) 

40.00 
(20.00, 
60.00) 

Fodder collection 
(months/year) 

     

   Mean (SD) 0.70 (0.87) 0.63 (1.11) 0.15 (0.24) 0.00 (0.00) 0.67 (0.88) 

   Median (IQR) 0.30 (0.00, 
1.20) 

0.10 (0.00, 
0.40) 

0.05 (0.00, 
0.20) 

0.00 (0.00, 
0.00) 

0.30 (0.00, 
1.10) 

Liquified Petroleum 
Gas used for 
cooking (% of 
households) 

     

Mean (SD) 7.10 (2.87) 7.33 (2.47) 6.45 (3.75) 8.15 (0.35) 7.12 (2.83) 

Median (IQR) 7.80 (5.40, 
9.20) 

7.70 (5.85, 
8.75) 

8.05 (5.78, 
8.72) 

8.15 (8.03, 
8.28) 

7.85 (5.40, 
9.20) 

Firewood collection 
(months/year) 

     

   Mean (SD) 46.69 
(24.46) 

46.00 
(25.01) 

42.50 
(25.00) 

80.00 (0.00) 46.89 
(24.50) 
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   Median (IQR) 50.00 
(30.00, 
60.00) 

50.00 
(25.00, 
70.00) 

45.00 
(32.50, 
55.00) 

80.00 
(80.00, 
80.00) 

50.00 
(30.00, 
60.00) 

Non-Timber Forest 
Products (NTFP) 
collection 
(months/year) 

     

   Mean (SD) 0.69 (0.53) 0.79 (0.85) 0.95 (0.75) 1.40 (0.00) 0.71 (0.56) 

   Median (IQR) 0.60 (0.20, 
1.00) 

0.50 (0.15, 
1.10) 

1.10 (0.52, 
1.52) 

1.40 (1.40, 
1.40) 

0.70 (0.20, 
1.00) 

Wood from forest 
home repair (% of 
households) 

     

   Mean (SD) 68.59 
(26.94) 

76.67 
(17.59) 

62.50 
(26.30) 

85.00 
(21.21) 

69.24 
(26.29) 

   Median (IQR) 70.00 
(50.00, 
90.00) 

80.00 
(65.00, 
90.00) 

60.00 
(40.00, 
82.50) 

85.00 
(77.50, 
92.50) 

75.00 
(50.00, 
90.00) 

Distance to road 
(km) 

     

   Mean (SD) 10.45 (7.77) 9.03 (6.25) 13.05 (7.25) 14.58 
(13.29) 

10.43 
(7.68) 

   Median (IQR) 8.37 (3.68, 
15.53) 

8.65 (3.99, 
11.54) 

12.01 (7.81, 
17.25) 

14.58 (9.88, 
19.28) 

8.50 (3.88, 
15.52) 

Distance to city 
(km) 

     

   Mean (SD) 92.85 
(30.88) 

85.39 
(37.52) 

82.46 
(36.70) 

94.77 
(14.65) 

92.09 
(31.30) 

   Median (IQR) 97.09 
(70.42, 
117.02) 

92.08 
(61.67, 
115.72) 

93.28 
(77.14, 
98.59) 

94.77 
(89.59, 
99.95) 

95.95 
(70.82, 
116.93) 

Tree cover at 1 km 
(%) 

     

   Mean (SD) 35.33 
(24.71) 

29.61 
(19.11) 

57.42 
(43.92) 

45.15 
(21.15) 

35.44 
(24.83) 

   Median (IQR) 31.13 
(15.89, 
52.25) 

26.25 
(16.54, 
35.22) 

67.25 
(33.58, 
91.09) 

45.15 
(37.67, 
52.62) 

30.84 
(16.00, 
52.10) 
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Tree cover at 2 km 
(%) 

     

   Mean (SD) 36.57 
(23.55) 

28.71 
(17.06) 

56.00 
(42.84) 

52.84 
(17.13) 

36.53 
(23.68) 

   Median (IQR) 33.78 
(17.91, 
51.16) 

27.91 
(15.83, 
36.63) 

65.92 
(31.99, 
89.93) 

52.84 
(46.78, 
58.89) 

33.55 
(17.73, 
50.46) 

Tree cover at 3 km 
(%) 

     

   Mean (SD) 37.42 
(22.32) 

29.68 
(16.73) 

55.47 
(41.97) 

59.22 
(14.78) 

37.42 
(22.56) 

   Median (IQR) 34.74 
(20.84, 
49.27) 

30.69 
(16.71, 
34.45) 

65.48 
(32.89, 
88.06) 

59.22 
(54.00, 
64.45) 

34.37 
(20.49, 
49.24) 

Tree cover at 5 km 
(%) 

     

   Mean (SD) 38.62 
(20.31) 

32.71 
(17.46) 

57.08 
(40.94) 

64.69 
(10.72) 

38.81 
(20.80) 

   Median (IQR) 35.79 
(24.26, 
50.20) 

32.15 
(20.67, 
40.80) 

67.79 
(38.78, 
86.09) 

64.69 
(60.90, 
68.48) 

35.91 
(24.17, 
50.27) 

Tree cover at 8 km 
(%)* 

     

   Mean (SD) 39.78 
(17.82) 

34.58 
(16.42) 

57.52 
(36.72) 

62.34 (2.10) 39.97 
(18.35) 

   Median (IQR) 38.02 
(27.82, 
50.15) 

29.86 
(25.59, 
41.60) 

65.40 
(44.52, 
78.40) 

62.34 
(61.59, 
63.08) 

37.75 
(27.69, 
50.20) 

Tree cover at 10 km 
(%) 

     

   Mean (SD) 39.25 
(15.06) 

35.32 
(16.31) 

50.87 
(28.89) 

54.65 (5.01) 39.34 
(15.51) 

   Median (IQR) 38.97 
(27.98, 
48.07) 

32.09 
(25.19, 
41.41) 

56.08 
(44.71, 
62.24) 

54.65 
(52.88, 
56.42) 

38.78 
(27.70, 
49.60) 

BGI at 1 km      
   Mean (SD) -0.69 (0.20) -0.65 (0.16) -0.77 (0.16) -0.56 (0.04) -0.69 

(0.20) 
   Median (IQR) -0.72 (-

0.85, -0.61) 
-0.67 (-0.77, 

-0.59) 
-0.74 (-0.87, 

-0.65) 
-0.56 (-0.58, 

-0.55) 
-0.70 (-
0.83, -
0.60) 
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BGI at 2 km      
   Mean (SD) -0.70 (0.18) -0.67 (0.14) -0.75 (0.18) -0.68 (0.06) -0.70 

(0.17) 
   Median (IQR) -0.74 (-

0.84, -0.61) 
-0.68 (-0.78, 

-0.59) 
-0.75 (-0.87, 

-0.63) 
-0.68 (-0.70, 

-0.66) 
-0.72 (-
0.84, -
0.60) 

BGI at 3 km      
   Mean (SD) -0.71 (0.17) -0.69 (0.13) -0.78 (0.14) -0.69 (0.10) -0.71 

(0.16) 
   Median (IQR) -0.74 (-

0.84, -0.61) 
-0.70 (-0.77, 

-0.60) 
-0.78 (-0.87, 

-0.68) 
-0.69 (-0.73, 

-0.66) 
-0.73 (-
0.84, -
0.61) 

BGI at 5 km      
   Mean (SD) -0.72 (0.15) -0.71 (0.11) -0.84 (0.08) -0.71 (0.11) -0.72 

(0.15) 
   Median (IQR) -0.74 (-

0.82, -0.63) 
-0.71 (-0.77, 

-0.66) 
-0.83 (-0.89, 

-0.78) 
-0.71 (-0.75, 

-0.67) 
-0.74 (-
0.82, -
0.64) 

BGI at 8 km      
   Mean (SD) -0.73 (0.13) -0.72 (0.12) -0.87 (0.05) -0.71 (0.13) -0.73 

(0.13) 
   Median (IQR) -0.76 (-

0.83, -0.65) 
-0.72 (-0.79, 

-0.64) 
-0.86 (-0.90, 

-0.83) 
-0.71 (-0.76, 

-0.67) 
-0.76 (-
0.83, -
0.65) 

BGI at 10 km      
   Mean (SD) -0.74 (0.11) -0.73 (0.13) -0.85 (0.06) -0.74 (0.10) -0.74 

(0.11) 
   Median (IQR) -0.75 (-

0.82, -0.66) 
-0.71 (-0.80, 

-0.67) 
-0.86 (-0.89, 

-0.82) 
-0.74 (-0.78, 

-0.71) 
-0.75 (-
0.82, -
0.67) 
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Table S11. Committees from 13 villages where there was two or more committees 
identified and named as involved in making decisions about the forest.  

Places with more than 1 committees:  
Van haq samiti, gram sabha samiti, daksha samiti 
Van prabandhan samiti, Gram surakshi samiti 
Gram van suraksha samiti, Gram van sabha 
Gram van suraksha samiti, Gram van samiti 
Van adhikar samiti, van suraksha samiti 
Eco samiti, van samiti 
Gram koch samiti, Van sewa niyantran samiti, Nasargik sansadhan samiti, Manusha varg 
sansadhan samiti 
Pesa samiti, Samudayik van samiti, Taluka van samiti 
Van haq samiti, daksha samiti 
Gram suraksha samiti, Gram van samiti 
Gram vikas samiti, van samiti 
Van samiti, Jalgal van sadhan samiti 
Van haq samiti, Gram sabha, Niyanntran samiti, Daksha samiti 
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Table S12. Characteristics of local forest management institutions, from matched 
datasets at buffer distances and from select villages that answered the questions about 

committees from the 236 full sample villages (pre-matching). 

Buffer 
distances 

1 km  
(N = 26) 

2 km  
(N = 22)  

3 km 
(N = 25) 

5 km  
(N = 25) 

8 km  
(N = 26) 

10 km 
(N = 25) 

Full 
sample 
(N = 
125) 

Local institution 
with authority? 
%, N 

44.44%, 
8  

36.36%, 
8 

24.00%, 
6 

44.00%, 
11 

38.46%, 
10 

48.00%, 
12 

36.00%,  
45 

Number of years a local forest management institution has been established 
Mean (SD) 6.31 

(4.38) 
7.86 
(6.70) 

8.04 
(6.32) 

7.77 
(6.07) 

7.92 
(4.69) 

7.2 
(4.29) 

7.75 
(5.32) 

Median (IQR) 6.5  
(0.6, 
12.5) 

6.5  
(-1.75, 
14.75) 

7  
(-2, 16) 

7  
(-3, 17) 

7  
(-0.75, 
14.75) 

7  
(2, 12) 

7 (-1, 15) 
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Table S13. Median and interquartile ranges of the Bare Ground Index (BGI) at buffer 
distances around villages with and without local forest management institutions. 

Significance values are results of Wilcoxon rank sum tests between treatment and control 
groups. Differences were significant (* = p < 0.10, ** = p < 0.05) at 2, 3, 5, and 8 km buffer 

distances. 

Buffer 

distances 

1 km  2 km  3 km 5 km  8 km  10 km 

With a local 
forest 
management 
institution 

-0.70  
(-0.46,  
-0.94) 

-0.72** 
(-0.47,  
-0.97) 

-0.72*  
(-0.48,  
-0.96) 

-0.74*  
(-0.54,  
-0.94) 

-0.76*  
(-0.57,  
-0.95) 

-0.74  
(-0.58,  
-0.90) 

Without a 
forest 
management 
institution 

-0.62  
(-0.25,  
-0.99) 

-0.60**  
(-0.28,  
-0.92) 

-0.64*  
(-0.35,  
-0.93) 

-0.67*  
(-0.48,  
-0.86 

-0.70*  
(-0.55,  
-0.85) 

-0.72  
(-0.55,  
-0.89) 
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Figure S1. Histograms showing the distribution of the Bare Ground Index (BGI) at 1, 
2, 3, 5, 8, and 10 kms from village boundaries in matched datasets (N = 80). The BGI at buffer 
distances was the measure of forest health and used as the outcome variable in causal forest 

models, Generalized Linear Models (GLMs), and conditional forest models. 
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Figure S2. Correlation matrix of outcome and predictor variables at buffer distances of 
1 (A), 2 (B), 3 (C), 5 (D), 8 (E), and 10 (F) kms. 
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Figure S3. Map of 238 survey villages, cities with populations greater than 88,000 
people, Protected Areas, and Conservation Connectivity Areas for tigers from Schoen et al. 

(2022). 



139 
 

 

Figure S4. Between 1 and 8 km of the village boundary, there was significantly lower 
median BGI around villages with local forest management institutions as compared to 

villages without local institutions (Figure 6). Between 1 and 8 km, the BGI was significantly 
lower by 0.06 to 0.12 units around villages with a local institution. 



140 
 

 

Figure S5. Mean average treatment effect values from causal forest models at all 
buffer distances; green indicates where the treatment effect was significant at 3, 5, and 8 kms. 

Error bars are 95% confidence intervals. 
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Figure S6. Histograms for the predicted average treatment effect in causal forest 
models at buffer distances where treatment was significant (3, 5, and 8 km).  
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Figure S7. Coefficient plots for generalized linear regression models with District-
level fixed effects assessing the associations of variables with forest health at all buffer 
distances. Points represent coefficients and whiskers show 95% confidence intervals.  
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Figure S8. Relative importance of variables in conditional forest models predicting 
forest health at buffer distances of 1 (A), 2 (B), 3 (C), 5 (D), 8 (E), and 10 (F) kms from all study 

villages (N=80). The relative importance was determined by permuting values for each 
variable. The treatment variable is colored purple and variables measuring forest uses are 

colored orange.  
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Figure S9. Relative importance of variables in conditional forest models predicting 
forest health at buffer distances of 1 (A), 2 (B), 3 (C), 5 (D), 8 (E), and 10 (F) kms only from 

villages that had a local forest management institution (N=40). The relative importance was 
determined by permuting values for each predictor variable.  Variables that are 

characteristics of local forest management institutions are colored purple and variables 
measuring forest uses are colored orange.  
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Appendix C: Supplementary information for chapter 3 

Table S1. Summary of distance traveled for firewood collection by season and all 
seasons combined. Only households reporting a distance traveled for firewood collection 

greater than 0 kilometers were retained for these statistics. The percent is calculated from the 
number of households reporting a travel distance of greater than 0 kilometers for a given 

season out of the total number of households (4994) included in our study.  

  Summer 
Post-

monsoon Winter Monsoon All seasons 
Households reporting 
distance greater than 0,  
N (%) 4987 (99.9) 4985 (99.8) 4990 (99.9) 4982 (99.8) 4982 (99.8) 
Distance traveled (km)      

Mean (SD) 3.03 (2.14) 2.97 (2.26) 3.06 (2.19) 2.73 (2.09) 2.74 (2.02) 
Median (IQR) 3.0 (2.0, 4.0) 2.0 (2.0, 4.0) 3.0 (2.0, 4.0) 2.0 (2.0, 3.0) 2.0 (1.8, 3.0) 

SD is standard deviation and IQR is interquartile range. 
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Table S2. Model results comparing the Akaike Information Criterion (AIC) and 
Multiple R-squared (R2) value of models using tree cover (%) at distance of 1, 2, 2.74, 3, 5, 8, 

and 10 km. 

 Equation 1 AIC Equation 2 AIC Equation 3, R2 
(average of 3 
seasons, %) 

Equation 3, R2 
(monsoon, %)  

1 km  6536.12 2149.53 33.75 10.12 
2 km 6536.97 2149.04 34.14 10.11 
2.74 km  6540.34 2150.86 34.32 10.17 
3 km 6541.90 2151.14 34.36 10.19 
5 km 6545.69 2152.09 34.41 10.10 
8 km 6552.95 2156.66 33.43 9.80 
10 km  6558.39 2163.69 32.24 9.52 
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Figure S1. Coefficient plot for logistic regression with District Fixed Effects assessing 
the household characteristics that are associated with adopting LPG in 2017. Points represent 

coefficients of average marginal effects (percentage point change in the probability of 
adopting LPG in 2017) and whiskers show 95% confidence intervals. Compared to the final 

model (Figure 3), where we predicted LPG ownership in 2016 and 2017, monthly expenditure 
loses its significance in predicting LPG ownership in 2017. However, the relationships 

between the covariates and the outcome are the same when predicting LPG ownership in 
2016 and 2017 versus 2017. 
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Figure S2. Correlation matrix of outcome and predictor variables. 
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Figure S3. Conditional predicted probabilities of LPG ownership with 95% 
confidence intervals (dashed black lines) by monthly expenditure, tree cover, and distance to 
road for all households (A) and households that owned LPG (B). Monthly expenditure, tree 
cover, and distance to road are presented in their log and standardized form. Tick marks on 

the x-axis indicate all individual data points. Monthly expenditure and tree cover were 
significantly associated with LPG ownership in Equations 1 and 2. 
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Table S3. Models results comparing the Akaike information criterion (AIC) and 
Multiple R-squared (R2) value of models with and without District Fixed Effects (FEs). 

 

 

 

 

 

 

 

 

 

 

 

 

  

  With District FEs Without District FEs 
Equation 1   
     AIC 6540.34 6677.35 
Equation 2   
     AIC 2150.86 2219.00 
Equation 3   
Post-monsoon, summer, 
and winter    
     R2 34.32% 23.21% 
Monsoon   
     R2 10.17% 3.71% 
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Table S4. Models results comparing the Akaike information criterion (AIC) and 
Multiple R-squared (R2) value of models with and without the covariate “Has money in a 

bank account?” 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

With “Has money in 
a bank account” 

Without “Has money in a 
bank account” 

Equation 1   
     AIC 6540.34 6548.21 
Equation 2   
     AIC 2150.86 2149.72 
Equation 3   
Rabi, summer, and winter    
     R2 34.41% 34.32% 
Monsoon   
     R2 10.18% 10.08% 
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Table S5. Percent tree cover within 2.74 km of a village boundary according to 
whether or not a household perceived increased difficulty in firewood collection over the last 

5 years. 

* Indicates a statistically significant difference between the households depending on whether or not they 
perceived an increase in difficulty of firewood collection at P < 0.05 in ANOVA. SD is standard deviation 
and IQR is interquartile range. 
 

 

 

 

 

  Increased difficulty Increase ease or no change 
Sample size, N (%) 4391 (88) 603 (12) 
Tree cover (%) within 2.74 km of village*   
     Mean (SD) 5.72 (7.20) 5.03 (7.21) 
     Median (IQR) 3.28 (0.85, 7.51) 1.77 (0.19, 6.91) 


