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Abstract

Monopoles and Dehn twists on contact 3-manifolds

Juan Álvaro Muñoz Echániz

In this dissertation, we study the isotopy problem for a certain three-dimensional

contactomorphism which is supported in a neighbourhood of an embedded 2-sphere with

standard characteristic foliation. The diffeomorphism which underlies it is the Dehn twist on the

sphere, and therefore its square becomes smoothly isotopic to the identity. The main result of this

dissertation gives conditions under which any iterate of the Dehn twist along a non-trivial sphere

is not contact isotopic to the identity. This provides the first examples of exotic

contactomorphisms with infinite order in the contact mapping class group, as well as the first

examples of exotic contactomorphisms of 3-manifolds with 𝑏1 = 0. The proof crucially relies on

the construction of an invariant for families of contact structures in monopole Floer homology

which generalises the Kronheimer–Mrowka–Ozsváth–Szabó contact invariant, together with the

nice interaction between this families invariant and the𝑈 map in Floer homology. This is based

on material that appeared in [63, 24].
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Chapter 1: Introduction

Throughout this dissertation, all the 3-manifolds we consider are assumed closed, connected

and oriented unless otherwise stated. A (positive, co-oriented) contact structure on a 3-manifold

𝑌 is a co-oriented 2-plane field on 𝑌 which is maximally non-integrable in the following sense: for

any 1-form 𝛼 with b = ker𝛼 we have that 𝛼 ∧ 𝑑𝛼 is a positive volume form on 𝑌 . A 1-form 𝛼 such

that b = ker𝛼 as a co-oriented distribution is a called a contact form for b.

1.1 Main results

1.1.1 Dehn twists on contact 3-manifolds

A fundamental problem in contact topology is to understand the isotopy classes of contact

diffeomorphisms (usually called contactomorphisms) of a contact manifold. The following is a

longstanding open question in all dimensions:

Question 1.1. Do there exist exotic contactomorphisms with infinite order as elements in the con-

tact mapping class group?

In this dissertation we answer this question in the affirmative in dimension three. We also

provide the first known examples of exotic contactomorphisms of 3-manifolds with 𝑏1 = 0.

We consider a contact 3-manifold given by the connected sum of two contact 3-manifolds

(𝑌#, b#) := (𝑌−, b−)#(𝑌+, b+). Recall that the connected sum is built by removing Darboux balls

𝐵± ⊂ 𝑌± and gluing the complements 𝑌 \ 𝐵± by an orientation-reversing diffeomorphism of their

boundary spheres which preserves their characteristic foliations. Reparametrisation of one of the

spheres provides a U(1) worth of choices for gluing, and thus (𝑌#, b#) naturally belongs in a family
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of contact 3-manifolds

(𝑌#, b#) → Y# → U(1).

The monodromy of this family is realised by a contactomorphism of (𝑌#, b#), well-defined up to

contact isotopy. This contactomorphism is a local symmetry, as it is supported in arbitrarily small

neighbourhoods of the separating sphere 𝑆# on the "neck" of the connected sum, and its underlying

diffeomorphism is the usual Dehn twist on 𝑆#. We denote this contactomorphism 𝜏𝑆# and call it the

contact Dehn twist on 𝑆#. Because 𝜋1SO(3) = Z/2 we have that the 2-fold iterate 𝜏2
𝑆#

is smoothly

isotopic to the identity, but it remains the

Question 1.2. Is 𝜏2
𝑆#

contact isotopic to the identity?

Associated to the contact structures b± we have their Kronheimer–Mrowka contact invariants

c(b±) ∈ }𝐻𝑀∗(−𝑌±) [47][46]. These are canonical elements (defined up to sign) in the "to" flavor

of the monopole Floer homology of −𝑌±. Below we provide some background on this. Our main

result is:

Theorem 1.1. Let (𝑌±, b±) be irreducible contact 3-manifolds. Suppose that the Kronheimer–

Mrowka contact invariants c(b±;Q) (taken with coefficients in Q) do not lie in the image of the

𝑈-map

𝑈 : }𝐻𝑀∗(−𝑌±;Q) → }𝐻𝑀∗(−𝑌±;Q).

Then

(A) The contact Dehn twist 𝜏2
𝑆#

is not contact isotopic to the identity and neither are its 𝑘-fold

iterates 𝜏𝑘
𝑆#

for any 𝑘 ≠ 0.

(B) If the Euler classes of b± vanish, then 𝜏2
𝑆#

is formally contact isotopic to the identity.

In other words, Theorem 1.1(A) asserts that 𝜏2
𝑆#

generates an infinite cyclic subgroup≈ Z of

Ker
(
𝜋0Cont(𝑌, b) → 𝜋0Diff (𝑌 )

)
. (1.1)
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In turn, part (B) asserts that this contactomorphism is exotic (this is stronger than the statement

that it is smoothly isotopic to the identity, see §2.1.3).

Remark 1.1. In fact, we establish a stronger result: the contactomorphism 𝜏2
𝑆#

has infinite order as

an element in the abelianisation of the group (1.1).

Remark 1.2. For comparison with Theorem 1.1, whenever either of (𝑌±, b±) is the tight 𝑆1 × 𝑆2 or

a quotient of tight (𝑆3, b) (e.g. the lens spaces 𝐿 (𝑝, 𝑞) or the Poincaré sphere Σ(2, 3, 5)) then the

squared contact Dehn twist 𝜏2
𝑆#

of (𝑌#, b#) is contact isotopic to the identity, see Lemmas 3.10-3.11.

Remark 1.3. We also note that the conclusion of item (B) of Theorem 1.1 does not use the as-

sumptions that 𝑌± are irreducible or the condition c(b) ∉ Im𝑈.

A crucial step towards Theorem 1.1 is the following relative version of it. We consider a

Darboux ball 𝐵 of a contact manifold (𝑌, bst)). That means that 𝐵 is the image of a contact

embedding (B3, b = ker(𝑑𝑧 − 𝑦𝑑𝑥) ↩→ (𝑌, b) of the standard unit contact 3-ball. Let (𝑌, b) be

the compact manifold with boundary obtained from 𝑌 by removing 𝐵. Then (𝑌, b) is a contact

manifold with convex sphere boundary. There is a contact Dehn twist along a sphere parallel to

the boundary of 𝑌 which we denote 𝜏𝜕𝐵 ∈ 𝜋0Cont(𝑌, b), where Cont(𝑌, b) stands for the group of

contactomorphisms of 𝑌 which restrict to the identity on the boundary. We have the following

Theorem 1.2. Suppose (𝑌, b) is an irreducible contact 3-manifold and that c(b;Q) ∉ Im𝑈. Then

(A) The contact Dehn twist 𝜏2
𝜕𝐵

is not contact isotopic to the identity rel. 𝜕𝑌 and neither are its

𝑘-fold iterates 𝜏𝑘
𝜕𝐵

for any 𝑘 ≠ 0.

(B) If the Euler class of b vanishes (over the closed manifold 𝑌 ), then 𝜏2
𝜕𝐵

is formally contact

isotopic to the identity rel. 𝜕𝑌 .

Going beyond irreducible 3-manifolds or sums of two irreducible 3-manifolds we have the

following result. Let (𝑌, b) be a tight 3-manifold. By a classical result of Colin [10] (see also [42,

13]) we have a unique connected sum decomposition

(𝑌, b) � (𝑌0, b)# · · · #(𝑌𝑁 , b𝑁 )
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into tight contact 3-manifolds (𝑌 𝑗 , b 𝑗 ), where each piece 𝑌 𝑗 is a prime 3-manifold. Let 𝑛 + 1 ≤ 𝑁

be the number of prime summands (𝑌 𝑗 , b 𝑗 ) such that c(b 𝑗 ;Q) ∉ Im𝑈 and the Euler class of b 𝑗

vanishes. Let C(𝑌, b) (resp. Ξ(𝑌, b)) be the space of contact structures (resp. co-oriented 2-plane

fields) on 𝑌 in the path-component of b.

Theorem 1.3. With (𝑌, b) as above, when 𝑛 ≥ 1 there is a Z𝑛 subgroup in the kernel of

𝜋1C(𝑌, b) → 𝜋1Ξ(𝑌, b)

which induces a Z𝑛 summand in the first singular homology 𝐻1
(
C(𝑌, b);Z

)
.

In particular, we can give examples (see §1.2 below) where the exotic summand Z𝑛 exhibited

in Theorem 1.3 is arbitrarily large.

We also note that the 𝑛 homologically independent loops of contact structures that we detect in

Theorem 1.3 yield under the natural map

𝜋1C(𝑌, b) → 𝜋0Cont(𝑌, b)

the contact Dehn twists on each of the 𝑛 spheres which separate the 𝑛+1 prime summands (𝑌 𝑗 , b 𝑗 ).

However, we are unable to establish that the corresponding (squared) Dehn twists are non-trivial

when 𝑛 ≥ 2. See Remark 3.5.

1.1.2 Monopole invariants for families of contact structures

The technical core of the dissertation is the construction of an invariant for families of contact

structures on a 3-manifold using the monopole Floer homology groups.

1.1.2.1 Monopole Floer homology and the contact invariant

We provide some basic background for the results in this section. For a quick introduction to

Kronheimer and Mrowka’s monopole Floer homology groups we recommend [51, 46] and for a

detailed treatment the monograph [49]. Here we just comment briefly on a few formal aspects.
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Consider a pair (𝑌, 𝔰) consisting of a 3-manifold 𝑌 together with spin-c structure 𝔰 (in this

dissertation the only spin-c structure that will be relevant is that induced by a contact structure

b, denoted 𝔰b). Associated to (𝑌, 𝔰) there are various monopole Floer homology groups, which

are modules over a chosen commutative unital ring 𝑅 (which we may hide from the notation

when not essential). The ones relevant to us are the "to" and "tilde" flavors: }𝐻𝑀∗(𝑌, 𝔰) and

𝐻𝑀∗(𝑌, 𝔰). The former arises "formally" as the 𝑆1-equivariant Morse homology of the Chern–

Simons–Dirac functional. An algebraic manifestation of this equivariant nature is that }𝐻𝑀∗(𝑌, 𝔰)

carries a module structure over the polynomial algebra 𝑅[𝑈] (i.e. the 𝑆1-equivariant cohomology

of a point, 𝐻∗
𝑆1 (point) = 𝑅[𝑈]) and𝑈 decreases grading by two. In turn, the "tilde" flavor should be

regarded as the (non-equivariant) Morse homology, and thus is an 𝐻∗(𝑆1) = 𝑅[𝜒]/(𝜒2)-module,

with 𝜒 raising degree by one. A standard Gysin exact triangle relates the two groups:

· · · }𝐻𝑀∗(𝑌, 𝔰) }𝐻𝑀∗−2(−𝑌, 𝔰) 𝐻𝑀∗−1(−𝑌, 𝔰) · · ·𝑝 𝑈 𝑗 𝑝

and the map 𝜒 is recovered from this by 𝜒 = 𝑗 𝑝. A common feature of all flavors of the monopole

groups of (𝑌, 𝔰) is a canonical grading by the set of homotopy classes of co-oriented plane fields

b inducing the spin-c structure 𝔰, which we denote 𝜋0Ξ(𝑌, 𝔰) and which carries a natural Z-action.

When 𝑐1(𝔰) is torsion, then there is a natural Z-equivariant map 𝜋0Ξ(𝑌, 𝔰) → Q which leads to an

absolute Q-grading on the monopole Floer groups of (𝑌, 𝔰).

More generally, extending the 𝑅[𝑈]-module structure we have that }𝐻𝑀∗(−𝑌, 𝔰) is a module

over the graded 𝑅-algebra

A(𝑅) = 𝑅[𝑈] ⊗Z Λ∗
(
𝐻1(𝑌 ;Z)/torsion

)
(1.2)

where 𝐻1(𝑌 ;Z)/torsion lowers degree by 1.

The contact invariant c(b) is an element of }𝐻𝑀 [b] (−𝑌, 𝔰b) which is well-defined up to a sign,

and is canonically attached to a contact structure b on 𝑌 . It was defined by Kronheimer, Mrowka,

Ozsváth and Szabó in [46], but its definition goes back essentially to the earlier paper [47]. Ozsváth
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and Szabó gave a definition of c(b) in Heegaard-Floer homology [66]. Under the isomorphism

between the monopole and Heegaard-Floer groups [50, 11] the contact invariants are shown to

agree. The invariant c(b) enjoys several nice properties, a few of which are:

• c(b) = 0 if (𝑌, b) is overtwisted [62, 66]

• c(b; 𝑅) ≠ 0 for 𝑅 = Q and Z/2 if (𝑌, b) admits a strong symplectic filling [67, 17]

• c(b,Z/2) is natural under symplectic cobordisms [17] (see also [62, 55]): if (𝑊,𝜔) is a

symplectic cobordism (𝑌1, b1) ⇝ (𝑌2, b2) (here the convex end is (𝑌2, b2)) then

}𝐻𝑀 (−𝑊, 𝔰𝜔;Z/2)c(b2;Z/2) = c(b1;Z/2)

• 𝑈 · c(b) = 0 (this is clear from the Heegaard-Floer point of view [66]; in the monopole case

this follows as a particular case of our Theorem 1.5 below).

1.1.2.2 Motivating question

We discuss first the motivation for our construction. Let (𝑌, b) be a contact 3-manifold and

𝑝 ∈ 𝑌 be a chosen point. Consider the evaluation map

𝑒𝑣 : C(𝑌, b) → 𝑆2 (1.3)

which sends a contact structure b′ to its plane b′(𝑝) at the point 𝑝, with 𝑆2 regarded as the space

of co-oriented 2-planes in 𝑇𝑝𝑌 ≈ R3. The map 𝑒𝑣 is a fibration. If 𝐵 ⊂ (𝑌, b) is a Darboux

ball centered at 𝑝, the fibre of 𝑒𝑣 is homotopy equivalent to the subspace C(𝑌, b, 𝐵) ⊂ C(𝑌, b)

consisting of contact structures which agree with b over 𝐵 (i.e. those contact structures which look

like the standard one 𝑑𝑧 − 𝑦𝑑𝑥 over the ball 𝐵). We ask the following

Question 1.3. When does the evaluation map 𝑒𝑣 : C(𝑌, b) → 𝑆2 admit a homotopy section ? i.e.

a map 𝑠 : 𝑆2 → C(𝑌, b) such that 𝑒𝑣 ◦ 𝑠 is homotopic to the identity.
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We will see that this lifting problem is closely tied with the isotopy problem for the contact

Dehn twist considered above. As an application of our invariant for families of contact structures

we can obstruct the existence of a section of the evaluation map:

Theorem 1.4. If 𝑒𝑣 : C(𝑌, b) → 𝑆2 admits a homotopy section, then c(b;Q) ∈ Im𝑈.

1.1.2.3 The families contact invariant

We now describe the formal properties of our invariant for families of contact structures.

Throughout we fix a coefficient ring 𝑅 which we assume is commutative and unital. The most

basic version of our families invariant is a map of 𝑅-modules

Fc : 𝐻∗(C(𝑌, b);Λ𝑅) → }𝐻𝑀∗(−𝑌, 𝔰b ; 𝑅)

where 𝐻∗(C(𝑌, b);Λ𝑅) is the singular homology group of C(𝑌, b) with coefficients in a certain

local system Λ𝑅 of free 𝑅-modules of rank 1 over the space C(𝑌, b). We have Λ𝑅 = ΛZ ⊗Z 𝑅

where ΛZ is the local system of Z-modules associated to the determinant line bundle of certain

family of Fredholm operators parametrised by C(𝑌, b) (see Definition 4.15). In particular, if the

characteristic of 𝑅 is two, then the local system Λ𝑅 is trivial.

If we choose one of the two generators of the Z-module ΛZ(b) given by the fiber of ΛZ over

the point b, then this fixes the sign of the usual contact invariant c(b; 𝑅) ∈ }𝐻𝑀∗(−𝑌, 𝔰b ; 𝑅). In

addition, it also picks out a preferred generator, denoted by 1𝑅, for the 𝑅-module 𝐻0(C(𝑌, b);Λ𝑅).

The element 1Z is either non-torsion or has order two, according as to whether the local system ΛZ

is trivial over C(𝑌, b) or not, respectively.

In analogy with the monopole Floer homology groups, we will see that 𝐻∗(C(𝑌, b);Λ𝑅) can

also be endowed with a natural module structure over the graded algebra A(𝑅) given in (1.2). In

particular, the action of 𝑈 on 𝐻∗(C(𝑌, b);Λ𝑅) is defined in terms of the evaluation map (1.3) and
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the usual cap product

𝑈 : 𝐻∗(C(𝑌, b);Λ𝑅) → 𝐻∗−2(C(𝑌, b);Λ𝑅) 𝑇 ↦→ 𝑇 ∩ 𝑒𝑣∗( [𝑆2]∨).

We refer to Definition 5.5 for the full action of A(𝑅) on 𝐻∗(C(𝑌, b); 𝑅).

Remark 1.4. It follows that 𝑈2 = 0 on 𝐻∗(C(𝑌, b);Λ𝑅), so the latter is really a module over the

graded 𝑅-algebra

𝑅[𝑈]/(𝑈2) ⊗Z Λ∗
(
𝐻1(𝑌 ;Z)/torsion

)
.

The main technical tool that we develop in this dissertation is the following

Theorem 1.5. There exists a "families contact invariant" given by a collection of 𝑅-module maps

Fc : 𝐻 𝑗 (C(𝑌, b);Λ𝑅) → }𝐻𝑀 [b]+ 𝑗 (−𝑌, 𝔰b ; 𝑅) , 𝑗 ≥ 0 (1.4)

which are natural with respect to orientation preserving diffeomorphisms and satisfy the following

properties:

(A) The 𝑗 = 0 map recovers the usual contact invariant: Fc(1𝑅) = c(b; 𝑅).

(B) Fc is a map of graded A(𝑅)-modules: Fc(𝑎 · 𝑇) = 𝑎 · Fc(𝑇) for 𝑎 ∈ A(𝑅) and 𝑇 ∈

𝐻∗(C(𝑌, b);Λ𝑅).

Remark 1.5. Naturality. The above assertion on naturality has the following meaning. Let 𝑓

be an orientation-preserving diffeomorphism of 𝑌 , and let b1 be the contact structure obtained by

pulling back another one b0, 𝑓 ∗b0 = b1. By pulling back we have a homeomorphism 𝐹 = 𝑓 ∗ :

C(𝑌, b0)
�−→ C(𝑌, b1). The assertion is that then there is a canonical isomorphism of local systems

[ : ΛZ
�−→ 𝐹∗ΛZ such that the following diagram (where the vertical arrows are isomorphisms)

commutes
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𝐻∗(C(𝑌, b0);Λ𝑅) }𝐻𝑀∗(−𝑌, 𝔰b0; 𝑅)

𝐻∗(C(𝑌, b1);Λ𝑅) }𝐻𝑀∗(−𝑌, 𝔰b1; 𝑅).

(𝐹,[)∗

Fc0

𝑓∗

Fc1

Remark 1.6. Criterion for triviality of Λ𝑅. It is unclear to the author whether Λ𝑅 can be non-

trivial. However, a simple criterion is available:

Corollary 1.6. Suppose the contact invariant c(b;Z) ∈ }𝐻𝑀 (−𝑌, 𝔰b ;Z) is not 2-torsion, i.e.

2c(b;Z) ≠ 0. Then ΛZ is trivial.

Proof. By Theorem 1.5(A) it follows that Fc(1Z) is not 2-torsion, and hence that 𝐻0(C(𝑌, b);ΛZ)

is isomorphic to Z rather than Z/2Z. Hence ΛZ is trivial. □

This criterion applies in many cases of interest. For instance, whenever the contact structure

admits a strong symplectic filling, in which case one has c(b;Q) ≠ 0 already [67].

Remark 1.7. Sign-ambiguity. Even if the local system ΛZ over C(𝑌, b) is trivial, there is no

canonical choice of generator of the Z-module ΛZ(b) for a given contact structure b. In fact,

Lin–Ruberman–Saveliev [53] show that there is no way of fixing the sign so that the usual con-

tact invariant c(b) becomes natural with respect to orientation-preserving diffeomorphisms of 𝑌 .

Indeed, they show that the unique tight contact structure on 𝑌 = −Σ(2, 3, 7) admits a contactomor-

phism 𝑓 which reverses the sign of c(b;Z) (i.e. 𝑓∗c(b;Z) = −c(b;Z)). We also note that the local

system ΛZ is trivial in this example, because this contact structure has a strong symplectic filling.

1.1.2.4 The𝑈-map and families of contact structures

We now describe a refinement of Theorem 1.5 in the case of the action of 𝑈 ∈ A(𝑅). For the

remainder of §1.1.2 we assume that the local system ΛZ over C(𝑌, b) is trivial (recall once more

the criterion which ensures this, Corollary 1.6) and fix a trivialization (i.e. a choice of generator of

the Z-module ΛZ(b) ) so that the families invariant gives a map

Fc : 𝐻∗(C(𝑌, b)) → }𝐻𝑀∗(−𝑌, 𝔰b).
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Going back to our motivating Question 1.3, observe that the existence of a homotopy section

of 𝑒𝑣 is equivalent to the surjectivity of the degree map deg := 𝑒𝑣∗ : 𝜋2C(𝑌, b) → 𝜋2𝑆
2 = Z. The

latter is defined also at the level of homology and Theorem 1.5(B) gives us the following

Formula 1.1. If 𝑇 ∈ 𝐻2(C(𝑌, b)), then𝑈 · Fc(𝑇) = deg(𝑇) · c(b).

Proof of Theorem 1.3. If c(b;Q) = 0 the statement becomes trivial. If c(b;Q) ≠ 0 then ΛZ is trivial

by Corollary 1.6. A homotopy section 𝑠 : 𝑆2 → C(𝑌, b) of 𝑒𝑣 would yield a family 𝑇 := 𝑠∗ [𝑆2] ∈

𝐻2(C(𝑌, b);Q) with deg(𝑇) = 1. Then by Formula 1.1 we have c(b;Q) = 𝑈 · Fc(𝑇) ∈ Im𝑈. □

Going beyond Question 1.3, one could ask how the homotopy type of the space C(𝑌, b) differs

from that of C(𝑌, b, 𝐵). Often the latter has "simpler" topology. For example, for the tight contact

structure b on 𝑆3 one has C(𝑆3, b) ≃ U(2) whereas C(𝑆3, b, 𝐵) ≃ {∗} [22]. At the homological

level, the passage from C(𝑌, b, 𝐵) to C(𝑌, b) amounts to understanding how cycles in the total

space of the fibration 𝑒𝑣 intersect with the fibres, and this is encoded into the Wang exact triangle

for the fibration (1.3) (easily assembled from the Serre spectral sequence)

· · · 𝐻∗(C(𝑌, b)) 𝐻∗−2(C(𝑌, b, 𝐵)) 𝐻∗−1(C(𝑌, b, 𝐵)) · · ·𝑈𝐵 𝜒 ]∗

In geometric terms, the map 𝑈𝐵 acts on a generic cycle in C(𝑌, b) by taking its intersection with

the fibre of (1.3), and ]∗ is the inclusion of the fibre. The map 𝜒 is the differential in the 𝐸2 page of

the spectral sequence. The map 𝐻∗(C(𝑌, b))
𝑈−→ 𝐻∗−2(C(𝑌, b)) defined earlier can be recovered

from the diagram above as the composition𝑈 = ]∗ ◦𝑈𝑝.

On the Seiberg–Witten gauge-theory side one can find a structure analogous to the evaluation

map 𝑒𝑣 : C(𝑌, b) → 𝑆2. The space of irreducible configurations modulo gauge transformations

B∗(𝑌, 𝔰b) also carries a partially-defined evaluation map

B∗(𝑌, 𝔰b) 99K P(𝑆𝑝) � C𝑃1 = 𝑆2 (1.5)

which assigns to the class of a configuration (𝐵,Ψ) the complex line in the spinor bundle fibre

𝑆𝑝 ≈ C2 spanned by Ψ at the point 𝑝. The relevance of this evaluation map is its close relation
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with 𝑈-action on the Floer theory. Indeed, the action of 𝑈 on the Floer homology is defined as a

sort of cap product with the first Chern class of a canonical complex line bundleU → B∗(𝑌, 𝔰b),

with (1.5) arising as the map to C𝑃1 determined by a certain “pencil” of hyperplanes in the class of

the line bundleU. Thus, resembling the contact case, this operation corresponds geometrically to

taking intersections of moduli of Floer trajectories with the fibres of (1.5). Similarly to the Wang

long exact sequence, we on the Floer theory we have the Gysin exact triangle (see §1.1.2.1). The

connection between the two evaluation maps (1.3) and (1.5) is seen by a certain map which assigns

canonical irreducible configurations to contact structures

𝑓 : C(𝑌, b) B∗(𝑌, 𝔰b).

Under the familiar identification 𝑆2 = C𝑃1 coming from spin geometry, the map 𝑓 intertwines our

two evaluation maps (1.3) and (1.5). On a heuristic level, one should regard the families contact

invariant Fc as the "map induced by 𝑓 in homology", with Floer homology interpreted as the

middle dimensional homology of B∗(𝑌, 𝔰b) (one should be able to formalise this by working at

the level of spectra, but we don’t pursue this direction in this dissertation). At this point, Theorem

1.5(B) and the following refinement should be regarded as algebraic manifestations of the basic

phenomenon just described:

Theorem 1.7. Associated to any closed contact 3-manifold (𝑌, b) with trivial local system ΛZ

there is a natural diagram which is commutative (up to signs)

}𝐻𝑀∗(−𝑌, 𝔰b) }𝐻𝑀∗−2(−𝑌, 𝔰b) 𝐻𝑀∗−1(−𝑌, 𝔰b)

𝐻∗(C(𝑌, b)) 𝐻∗−2(C(𝑌, b, 𝐵)) 𝐻∗−1(C(𝑌, b, 𝐵))

𝑝 𝑈 𝑗 𝑝

]∗ 𝑈𝐵

Fc
𝜒

Fc·]∗
]∗

F̃c

where the top row is the Gysin exact triangle, the bottom row is the Wang exact triangle of the

fibration (1.3) and F̃c is another "families contact invariant" that we construct in §5.3.

Some observations are in order:
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• As a particular case, Theorem 1.7 recovers a property about the contact invariant c(b) which

is well-known from the Heegaard–Floer point of view: that 𝑈 · c(b) = 0 and we have a

canonical element c̃(b) := F̃c(1) ∈ 𝐻𝑀 [b] (−𝑌, 𝔰b) such that 𝑝c̃(b) = c(b). Conjecturally,

the invariant c̃(b) corresponds to the Heegaard–Floer contact invariant that takes values in

𝐻𝐹 (−𝑌, 𝔰b) defined in [66].

• Recall that 𝐻𝑀∗(−𝑌, 𝔰b) is an 𝑅[𝜒]/(𝜒2) module, and so it 𝐻∗(C(𝑌, b, 𝐵)). It follows from

Theorem 1.7 that the invariant F̃c is a map of 𝑅[𝜒]/(𝜒2) modules:

F̃c · 𝜒 = 𝜒 · F̃c.

In particular, we deduce from this and the diagram that

c(b) ∈ Im𝑈 if and only if 𝜒c̃(b) = 0.

1.2 Examples

1.2.1 Elementary examples

We first discuss some simple examples where c(b) ∈ Im𝑈.

Example 1.1. ADE singularities. Consider the flat hyperkähler structure (𝑔, 𝐼1, 𝐼2, 𝐼3) on R4. The

radial vector field 𝑣 = 𝑥𝜕𝑥 + 𝑦𝜕𝑦 + 𝑧𝜕𝑧 + 𝑤𝜕𝑤 in R4 is Liouville for all symplectic structures in

the family 𝜔𝑡 =
∑3
𝑖=1 𝑡𝑖𝑔(𝐼𝑖 ·, ·) parametrised by 𝑡 ∈ 𝑆2 (i.e. L𝑣𝜔𝑡 = 𝜔𝑡) and 𝑣 is transverse to

𝑆3 ⊂ R4. Thus there is a family of contact forms 𝛼𝑡 on 𝑆3 given by 𝛼𝑡 = ]𝑣𝜔𝑡 which provides

a section of 𝑒𝑣 on tight 𝑆3. Since this family of contact structures is SU(2)-invariant, we have

also constructed a section of 𝑒𝑣 on the quotients of tight 𝑆3 by a finite subgroup Γ ⊂ SU(2). The

contact manifolds 𝑆3/Γ are precisely the the links of the ADE singularities (which include e.g.

the lens spaces 𝐿 (𝑝, 𝑝 − 1) or the Poincaré sphere Σ(2, 3, 5) ). Let b be any contact structure in
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the 𝑆2-family b𝑡 = ker𝛼𝑡 . We have1
}𝐻𝑀∗(−𝑆3/Γ, 𝔰b ;Z) � Z[𝑈,𝑈−1]/𝑈Z[𝑈] and c(b) = 1. If

𝑇 denotes the 𝑆2-family of contact structures given by the b𝑡 then from Theorem 1.5(B) we have

Fc(𝑇) = 𝑈−1, and𝑈 · Fc(𝑇) = c(b).

Example 1.2. Tight 𝑆1 × 𝑆2. Let btight be a tight contact structure on 𝑆1 × 𝑆2. We consider two

families of contact structures in C(𝑌, btight). First, consider the family 𝑇2 ∈ 𝐻2(C(𝑆1 × 𝑆2, bxi) of

contact structures b𝑡 parametrised by 𝑡 ∈ 𝑆2 given by the kernels of 𝛼𝑡 =
∑3
𝑖=1 𝑡𝑖𝛼𝑖 where

𝛼1 = 𝑧𝑑\ + 𝑥𝑑𝑦 − 𝑦𝑑𝑥 , 𝛼2 = 𝑥𝑑\ + 𝑦𝑑𝑧 − 𝑧𝑑𝑦 , 𝛼3 = 𝑦𝑑\ + 𝑧𝑑𝑥 − 𝑥𝑑𝑧.

It is a simple exercise to check that this family provides a section for the evaluation map. Secondly,

consider the family 𝑇1 ∈ 𝐻1(C(𝑆1 × 𝑆2, btight) given by the following loop b𝑠 of contact structures.

Let 𝑅\ be the three-dimensional rotation in the 𝑥𝑦 plane by \ angles. The loop \ ∈ 𝑆1 ↦→ 𝑅2\

represents the trivial element in 𝜋1SO(3) = Z/2 and there is (up to homotopy) a unique homotopy

ℎ : 𝑆1 × [0, 1] → SO(3) from the constant loop to it. For 𝑠 ∈ [0, 1] let 𝑟𝑠 ∈ Diff (𝑆1 × 𝑆2) be given

by 𝑟𝑠 (\, 𝑥, 𝑦, 𝑧) = (\, ℎ(\, 𝑠) (𝑥, 𝑦, 𝑧)). If we set b𝑠 = (𝑟𝑠)∗b1 then this defines a loop since 𝜏 := 𝑟1

is a contactomorphism of b1 (the squared contact Dehn twist on {0} × 𝑆2 ⊂ (𝑆1 × 𝑆2, b1)).

As a Z[𝑈] module we have

}𝐻𝑀∗(−𝑆1 × 𝑆2, 𝔰btight) � Z[𝑈,𝑈−1]/𝑈Z[𝑈] ⊗Z 𝐻∗(𝑆1;Z)

where we denote by 𝑣 the generator of 𝐻1(𝑆1;Z). We have c(btight) = 1. The action of [𝑆1] ∈

𝐻1(𝑆1 × 𝑆2;Z)/torsion = Z on Floer homology is given by 𝑎 ⊗ 𝑣2 𝑗+1 ↦→ 𝑎 ⊗ 𝑣2 𝑗 for 𝑗 ≥ 0 and zero

otherwise. We then have Fc(𝑇2) = 𝑈−1 and𝑈 ·Fc(𝑇) = c(btight). In turn, for the family 𝑇1 one can

calculate using Definition 5.5 that [𝑆1] ·𝑇1 = 2 ∈ Z = 𝐻0(C(𝑆1× 𝑆2, btight)), from which it follows

1The absolute Q-gradings in Floer homology for the examples in this section are taken shifted so that the contact
invariant c(b) is in degree 0. Also, all identities involving contact invariants are understood to hold up to signs.

13



by Theorem 1.5(B) that Fc(𝑇1) = 2𝑣. We also have

𝐻𝑀∗(−𝑆1 × 𝑆2) � Z(0) ⊕ Z(1) .

Because of the surjectivity of the degree map, we have 𝐻1(C(𝑆1 × 𝑆2, btight, 𝐵)) � 𝐻1(C(𝑆1 ×

𝑆2, btight)). Then c̃(btight) generates the summand Z(0) and F̃c(𝑇1) generates 2 · Z(1) ⊂ Z(1) .

Example 1.3. (Evaluation of 2-plane fields) We can compare Question 1.3 with the corresponding

one at the level of co-oriented plane fields. In this case, the natural evaluation map Ξ(𝑌, b) → 𝑆2 on

co-oriented 2-plane fields (also a fibration) admits a section as long as the Euler class of b vanishes.

Indeed, in this case we may identify Ξ(𝑌, b) with the space Map0(𝑌, 𝑆2) of null-homotopic smooth

maps 𝑌 → 𝑆2. The evaluation mapping becomes identified with the obvious evaluation mapping

on this latter space; and clearly this fibration admits a section given by the constant maps 𝑌 → 𝑆2.

This is the reason why we have the formal triviality property in Theorem 1.1(B) and Theorem

1.2(B).

The homotopy type of Ξ(𝑌, b) is often well-understood. For instance, whenever𝑌 is an integral

homology 𝑆3 then Ξ(𝑌, b) ≃ Map0(𝑆3, 𝑆2) [37].

1.2.2 Examples with c(b) ∉ Im𝑈

We now give examples of irreducible contact 3-manifolds (𝑌, b) such that c(b) ∉ Im𝑈, many

of which also have vanishing Euler class.

Example 1.4. (Links of singularities) The simplest example is the Brieskorn sphere

Σ(𝑝, 𝑞, 𝑟) =
{
(𝑥, 𝑦, 𝑧) ∈ C3 | 𝑥𝑝 + 𝑦𝑞 + 𝑧𝑟 = 0 and |𝑥 |2 + |𝑦 |2 + |𝑧 |2 = 𝜖

}
where 𝜖 ∈ R>0 is small and 𝑝, 𝑞, 𝑟 ≥ 1 are integers with 1/𝑝 + 1/𝑞 + 1/𝑟 < 1, equipped with the

contact structure bsing induced from the Brieskorn singularity. More generally, we could take any

isolated normal surface singularity germ (𝑋, 𝑜) and let (𝑌, bsing) be the contact manifold arising
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as the link of the singularity. Neumann [65] proved that the 3-manifold 𝑌 is irreducible. Provided

that 𝑌 is also a rational homology sphere, then the following are equivalent statements, as proved

by Bodnár–Plamenevskaya [4] and Némethi [64]:

(a) c(bsing) ∉ Im𝑈

(b) 𝑌 is not an 𝐿-space

(c) (𝑋, 𝑜) is not a rational singularity.

For instance, all Seifert fibered integral homology spheres excluding 𝑆3 or the Poincaré sphere

Σ(2, 3, 5) carry a contact structure bsing of this sort. Indeed the Seifert fibered integral homology

spheres are given by the manifolds Σ(𝑝1, 𝑝2, . . . , 𝑝𝑛), where 𝑝𝑖 ≥ 2 are pairwise coprime integers

and 𝑛 ≥ 3. The manifold Σ(𝑝1, 𝑝2, . . . , 𝑝𝑛) is the link of the weighted-homogeneous isolated

singularity 𝑓1 = . . . = 𝑓𝑛−2 = 0 with 𝑓 𝑗 =
∑
𝑎𝑖 𝑗𝑥

𝑝𝑖
𝑖

for sufficiently general coefficients 𝑎𝑖 𝑗 ∈ C. By

[54, 61] none of these are 𝐿-spaces, except the Poincaré sphere Σ(2, 3, 5).

To spell out one concrete example, for the Brieskorn sphere Σ(2, 3, 7) we have

}𝐻𝑀∗(−Σ(2, 3, 7), 𝔰bsing) � Z ⊕ Z[𝑈,𝑈−1]/𝑈Z[𝑈]

and the 𝑈 action is trivial on the Z summand. In this case one has c(b) = 1 ∈ Z and hence

c(b) ∉ Im𝑈. As a Z[𝜒]/(𝜒2) module we have

𝐻𝑀∗(−Σ(2, 3, 7), 𝔰bsing) � Z[𝜒]/(𝜒2)

with c̃(bsing) = 1 and F̃c(Obsing) = 𝜒, where Obsing := 𝜒 · [bsing] ∈ 𝐻1(C(Σ(2, 3, 7), bsing, 𝐵)).

Example 1.5. Several surgeries on the Figure Eight knot are hyperbolic (hence irreducible) and

support contact structures with c(b) ∉ Im𝑈. Contact structures on these manifolds have been

classified by Conway and Min [12].
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Example 1.6. All but one of the 𝑛(𝑛−1)
2 tight contact structures supported on −Σ(2, 3, 6𝑛− 1) up to

isotopy, classified by Ghiggini and Van Horn-Morris [28].

1.2.3 Exotic overtwisted phenomena in 1-parametric families

Let (𝑌, b) be such that c(b) ∉ Im𝑈 and b has vanishing Euler class. Let 𝐵 ⊂ (𝑌, b) be a

Darboux ball. From this, one can produce overtwisted contact manifolds by modifying (𝑌, b) by a

Lutz Twist inside 𝐵, or by taking the connected sum (using 𝐵) with an overtwisted contact manifold

(𝑀, bot). In either case, the squared contact Dehn twist on the boundary of 𝐵 becomes isotopic

to the identity in this new overtwisted manifold, by an application of Eliashberg’s h-principle for

overtwisted contact structures [19]. However, this has surprising implications (see §3.3 for the

precise statement)

Proposition 1.8. (A) There exist overtwisted contact 3-manifolds that have an exotic loop of

Lutz Twist embeddings.

(B) There exist overtwisted contact 3-manifolds that have an exotic loop of standard sphere

embeddings.

In other words, (A) says that the h-principle for codimension 0 isocontact embeddings of 𝑆1-

embedded families of overtwisted disks fails in 1-parametric families, see [36, 20]. To the best

of our knowledge this is the first example of this nature. On the other hand, (B) says that the

h-principle for standard spheres [23] in tight contact 3-manifolds fails in the overtwisted case.

The first known exotic phenomena regarding overtwisted disks in overtwisted contact 3-manifolds

are due to Vogel [79]. He has proved that the space of overtwisted disks in certain overtwisted 3-

sphere is disconnected and used this to construct an exotic loop of overtwisted contact structures.
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1.3 Context

1.3.1 H-principles

As with symplectic topology, an ubiquitous theme of contact topology is the contrast between

two types of behaviours: flexible (similar to differential topology) and rigid (similar to algebraic

geometry). Beyond the tight-overtwisted dichotomy, 3-dimensional contact topology would seem

to be dominated by flexibility, due to the following ℎ-principle of Eliashberg and Mishachev:

Theorem 1.9 ([22]). Let (B3, bst = Ker(𝑑𝑧 − 𝑦𝑑𝑥)) be the standard contact unit 3-ball. Then the

inclusion Cont(B3, bst) → Diff (B3) is a homotopy equivalence.

Here Cont(B3, b) is the group of contactomorphisms of 𝑌 fixing a neighbourhood of 𝜕B3,

and likewise for the group of diffeomorphisms Diff (B3). To give some context, the analogous

statement that Diff (B3) → Homeo(B3) is a homotopy equivalence is equivalent to the Smale

conjecture in dimension 3, a deep result proved by Hatcher [41]. Then an argument due to Cerf [9]

shows that the Smale conjecture implies that Diff (𝑌 ) → Homeo(𝑌 ) is a homotopy equivalence for

all 3-manifolds. Thus, at the 𝜋0-level, Theorem 1.5 is in sharp contrast with the above.

Remark 1.8. We also note in passing that in four-dimensional symplectic topology the statement

analogous to the ℎ-principle of Eliashberg and Mishachev is false: for the standard symplectic

(R4, 𝜔 = 𝑑𝑥 ∧ 𝑑𝑦 + 𝑑𝑧 ∧ 𝑑𝑤) the inclusion

Symp𝑐 (R4, 𝜔) → Diff𝑐 (R4)

is not a homotopy equivalence. This follows from Gromov’s result on the contractibility of Symp𝑐 (R4, 𝜔)

[35] combined with Watanabe’s recent disproof of the 4-dimensional Smale Conjecture [80].

1.3.2 Gompf’s contact Dehn twist

We will see (§3.1) that the contact Dehn twist is well-defined on a (co-oriented) sphere 𝑆 ⊂

(𝑌, b) with a tight neighbourhood. To the author’s knowledge, this contactomorphism was first
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considered by Gompf on the non-trivial sphere in the tight 𝑆1 × 𝑆2. Gompf observed that 𝜏𝑆 and

its iterates are not contact isotopic to the identity. Ding and Geiges [14] later established that 𝜏2
𝑆

generates all smoothly trivial contact mapping classes (see also [60]). Gironella [29] has recently

studied higher dimensional analogues of Gompf’s contactomorphism. However, all iterates of

Gompf’s 𝜏𝑆 and Gironella’s generalisations happen to be formally non-trivial already, and hence

not exotic.

1.3.3 Finite order exotic contactomorphisms

The previously known exotic three-dimensional contactomorphisms have finite order and the

underlying 3-manifolds have 𝑏1 ≥ 3. These were detected on torus bundles by Geiges and Gonzalo

[26], who used an essentially elementary argument to reduce the problem to the Giroux–Kanda

classification of tight contact structures on 𝑇3. This was reproved using contact homology by

Bourgeois [6], who also found more exotic contactomorphisms in Legendrian circle bundles over

surfaces of positive genus. In the latter case, those contactomorphisms have been shown to generate

the group (1.1) by Geiges, Klukas [27], Giroux and Massot [33]. Unlike the squared Dehn twists,

these exotic contactomorphisms are all given by global symmetries. The paradigmatic example is

the following:

Example 1.7 ([26, 6]). Consider the 3-torus𝑇3 with the fillable contact structure b1 = Ker
(
cos \𝑑𝑥−

sin \𝑑𝑦
)
. By passing to 𝑛-fold covers 𝑇3 → 𝑇3, (\, 𝑥, 𝑦) ↦→ (𝑛\, 𝑥, 𝑦) we obtain contact structures

b𝑛 on 𝑇3. By a classical result of Giroux and Kanda [32, 45] the contact structures b𝑛 (𝑛 ≥ 1)

are pairwise not contactomorphic and give all the tight contact structures on 𝑇3. When 𝑛 ≥ 2 the

deck transformations of the 𝑛-fold cover 𝑇3 → 𝑇3 generate all the exotic contactomorphisms of

(𝑇3, b𝑛).

1.3.4 Other Exotic Dehn twists

Dehn twists have been a common source of exotic phenomena in topology:
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(a) Let 𝑌# = 𝑌−#𝑌+ be the sum of two aspherical 3-manifolds 𝑌±. By a result of McCullough

[57] (see also [40]) it follows that the kernel of 𝜋0Diff (𝑌#) → Out(𝜋1𝑌#) is � Z2, generated

by the smooth Dehn twist on the separating sphere.

(b) Seidel [73] used Lagrangian Floer homology to detect exotic four-dimensional symplecto-

morphisms with infinite order in the symplectic mapping class group, given by squared Dehn

twists on Lagrangian spheres. He later generalised these results to higher dimensions [72,

71]. See also the recent work of Smirnov [75, 76] using Seiberg–Witten gauge theory.

(c) Kronheimer and Mrowka [48] have proved that the smooth Dehn twist on the separating

sphere in the connected sum of two copies of the smooth 4-manifold underlying a 𝐾3 surface

is not smoothly isotopic to the identity, even if it is topologically. For this they employ the

Bauer-Furuta homotopical refinement of the Seiberg–Witten invariants of 4-manifolds. See

also [52].

1.4 Outline of the proofs

1.4.1 Theorem 1.1(A)

The proof of Theorem 1.1(A) combines rigid obstructions arising from monopole Floer ho-

mology together with flexibility results. We outline here a proof which is simpler than the one

we present in detail later during the dissertation. In particular, the proof here does not yield the

stronger conclusion that the class of 𝜏2
𝑆#

is non-trivial in the abelianisation of (1.1). We will also

need the stronger argument to obtain the closely related Theorem 1.3.

1.4.1.1 Theorem 1.2 =⇒ Theorem 1.1

Consider two tight irreducible contact manifolds (𝑌±, b±). Recall that non-vanishing of the

contact invariant implies tightness. Recall also that their sum (𝑌#, b#) is obtained by removing

two Darboux balls 𝐵± ⊂ 𝑌± and gluing the boundary spheres in an orientation-reversing and
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characteristic-foliation preserving fashion. Let CEmb
(
𝑆2, (𝑌#, b#)

)
𝑆#

be the space of co-oriented

convex embeddings 𝑆2 ↩→ (𝑌#, b#) with standard characteristic foliation, in the isotopy class of the

separating sphere 𝑆#. The group of contactomorphisms of (𝑌#, b#) acts transitively on this space

and yields a fibration2

Cont(𝑌#, b#, 𝑆#) → Cont(𝑌#, b#) → CEmb
(
𝑆2, (𝑌#, b#)

)
𝑆#
. (1.6)

𝑓 ↦→ 𝑓 (𝑆#)

From the long exact sequence of homotopy groups, a contactomorphism 𝑓 of (𝑌#, b#) fixing the

sphere 𝑆# is contact isotopic to the identity (not necessarily fixing 𝑆#) precisely when it arises as the

monodromy in (1.6) of a loop of sphere embeddings. It thus becomes essential to understand the

topology of the sphere embedding space. This brings us to the following ℎ-principle type result,

which asserts that the topological complexity of this space only comes from reparametrisations of

the source:

Theorem 1.10 ([23]). If (𝑌±, b±) are irreducible and tight then the reparametrisation map provides

a homotopy equivalence U(1) ≃−→ CEmb
(
𝑆2, (𝑌#, b#)

)
𝑆#

.

In the smooth case, the result analogous to the above was proved by Hatcher [38]. Theo-

rem 1.10 follows easily from Hatcher’s result combined with the ℎ-principle for standard convex

spheres due to Fernández–Martínez-Aguinaga–Presas [23], the latter being an application of the

ℎ-principle for (B3, bst) of Eliashberg–Mishachev [22].

With these ingredients in place, the proof of Theorem 1.5(A) goes as follows. The monodromy

in (1.6) of the standard loop in U(1) is given by the product of Dehn twists 𝜏𝜕𝐵−𝜏𝜕𝐵+ (see Lemma

3.5) where 𝜏𝜕𝐵± is the boundary parallel Dehn twist on 𝑌± \ 𝐵± extended over 𝑌# as the identity.

The contact Dehn twist 𝜏𝑆# agrees with the image of 𝜏𝜕𝐵− (or 𝜏−1
𝜕𝐵+

) in 𝜋0Cont(𝑌#, b#). Because

the manifolds (𝑌± \ 𝐵±, b±) have infinite order contact Dehn twists 𝜏𝜕𝐵± rel. 𝜕𝐵± by Theorem 1.2,

2Strictly speaking, we should replace Cont(𝑌#, b#) with the subgroup consisting of contactomorphisms which pre-
serve the isotopy class of the co-oriented sphere 𝑆#.
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then for all 𝑘 ≠ 0 the class 𝜏𝑘
𝜕𝐵−
∈ 𝜋0Cont(𝑌#, b#, 𝑆#) is not an iterate of 𝜏𝜕𝐵−𝜏𝜕𝐵+ or its inverse. It

follows that 𝜏𝑆# and its iterates are not contact isotopic to the identity in (𝑌#, b#).

1.4.1.2 Theorem 1.2

Given a Darboux ball 𝐵 in a contact 3-manifold (𝑌, b) then the isotopy problem for the bound-

ary parallel Dehn twist 𝜏𝜕𝐵 can be recast as a lifting problem. Namely, when 𝑌 is aspherical (i.e.

irreducible and with infinite fundamental group) then 𝜏2
𝜕𝐵

is isotopic to the identity rel. 𝐵 precisely

when the evaluation map 𝑒𝑣 : C(𝑌, b) → 𝑆2 admits a (homotopy) section (see Corollary 3.7).

Now, the condition c(b;Q) ∉ Im𝑈 together with the irreducibility assumption on 𝑌 implies the

aspherical property. Finally, the existence of a section is impossible by c(b;Q) ∉ Im𝑈 because of

the obstruction coming from Theorem 1.4. The result follows.

1.4.2 Outline of the construction of the families contact invariant

We summarise in this section the construction of the invariants Fc and F̃c and sketch the proof

of Theorem 1.5.

1.4.2.1 The invariant Fc

We begin with some general observations. Let 𝑋 be a 4-manifold together with a non-degenerate

2-form 𝜔 i.e. 𝜔2 is a volume form. We use 𝜔2 to orient 𝑋 . Choose an almost complex structure 𝐽

compatible with 𝜔, which by definition gives a metric 𝑔 = 𝜔(., 𝐽.). The space of choices of 𝐽 is

contractible. The structure 𝐽 equips 𝑋 with a spin-c structure, i.e. a lift of the SO(4)-frame bundle

of 𝑋 along the map Spin𝑐 (4) → SO(4). In differential-geometric terms this yields rank-two com-

plex unitary bundles 𝑆± → 𝑋 and Clifford multiplication 𝜌 : 𝑇𝑋 → Hom(𝑆+, 𝑆−) satisfying the

"Clifford identity" 𝜌(𝑣)∗𝜌(𝑣) = 𝑔(𝑣, 𝑣)Id. We follow the notation and conventions from §1 in [49]

and we assume the reader is familiar with these.

The Clifford action of the 2-form 𝜔 on 𝑆+ splits the bundle 𝑆+ into ∓2𝑖 eigen-subbundles of

rank 1. These are given by 𝑆+ = 𝐸 ⊕ 𝐸𝐾−1
𝐽

, where 𝐾𝐽 is the canonical bundle of (𝑋, 𝐽) and 𝐸 is
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a complex line bundle which is easily verified to be trivial. Choose a unit length section Φ0 of 𝐸 .

A simple calculation shows that there is a unique spin-c connection 𝐴0 on 𝑆+ such that ∇𝐴0Φ0 is a

1-form with values in the +2𝑖 eigenspace 𝐸𝐾−1
𝐽

. At this point, the symplectic condition comes in

through the following calculation involving the coupled Dirac operator 𝐷𝐴0 : Γ(𝑆+) → Γ(𝑆−)

Lemma 1.11 (Taubes [77]). The non-degenerate 2-form 𝜔 is symplectic (i.e. 𝑑𝜔 = 0) if and only

if 𝐷𝐴0Φ0 = 0.

We now bring in a smoothly varying family of symplectic structures 𝜔𝑡 parametrised by a

smooth manifold𝑈 ∋ 𝑡, with each 𝜔𝑡 in the same deformation class as 𝜔. Again, we equip the 𝜔𝑡’s

with compatible almost complex structures 𝐽𝑡 varying smoothly, which provide us with a family of

metrics 𝑔𝑡 . From our original Clifford bundle (𝑆±, 𝜌) we canonically obtain new ones as follows.

The bundles 𝑆± remain the same but new Clifford structures 𝜌𝑡 are obtained by setting 𝜌𝑡 = 𝜌 ◦ 𝑏𝑡

where 𝑏𝑡 is the canonical isometry (𝑇𝑋, 𝑔𝑡)
�−→ (𝑇𝑋, 𝑔) (the unique isometry which is positive and

symmetric with respect to 𝑔𝑡). The Clifford action of 𝜔𝑡 again decomposes 𝑆+ into eigenspaces

𝑆+ = 𝐸𝑡 ⊕ 𝐸𝑡𝐾−1
𝐽𝑡

. Each 𝐸𝑡 is trivializable individually but the family (𝐸𝑡)𝑡∈𝑈 might give a non-

trivial line bundle over𝑈 × 𝑋 . When𝑈 is contractible then we may choose a family of trivialising

sections Φ𝑡 of 𝐸𝑡 with unit length, and as before these determine unique spin-c connections 𝐴𝑡

with 𝐷𝐴𝑡Φ𝑡 = 0. Then, associated to our family (𝜔𝑡 , 𝐽𝑡) and the choices of Φ𝑡 we have a family of

"deformed" Seiberg–Witten equations on 𝑋 given by

1
2
𝜌𝑡 (𝐹+𝐴) − (ΦΦ∗)0 =

1
2
𝜌𝑡 (𝐹+𝐴𝑡 ) − (Φ𝑡Φ

∗
𝑡 )0

𝐷𝐴Φ = 𝐷𝐴𝑡Φ𝑡 .

For each 𝑡 ∈ 𝑈 this is an equation on the pair (𝐴,Φ), where 𝐴 is a connection on Λ2𝑆+ and Φ is

a section of 𝑆+. In this "deformed" version of the equations the configurations (𝐴𝑡 ,Φ𝑡) solve the

equation for the parameter 𝑡.

We apply now the above considerations to a special case. Let (𝑌, b) be a closed contact 3-

manifold with a contact form 𝛼, and let (𝑋, 𝜔) be the symplectisation 𝑋 = [1, +∞) × 𝑌 , with the
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exact symplectic form 𝜔 = 𝑑 ( 𝑠2

2 𝛼). The structure 𝐽 is chosen to be invariant under the Liouville

flow, and the associated Riemannian metric on 𝑋 is conical. We now bring into the picture a family

of contact structures b𝑡 parametrised by 𝑡 ∈ 𝑈 = Δ𝑛, to which we would like to associate an element

in the Floer chain complex of −𝑌 = 𝜕𝑋 . Here Δ𝑛 is the standard 𝑛-simplex. We equip our family

b𝑡 with corresponding contact forms 𝛼𝑡 . This gives a family 𝜔𝑡 of symplectic structures on 𝑋 .

The construction now proceeds by forming a manifold 𝑍+ by gluing the cylinder 𝑍 = (−∞, 0]×

𝑌 with the symplectic manifold 𝑋 . We extend all metrics 𝑔𝑡 over to 𝑍+ in such a way that they

all agree with a fixed translation-invariant metric on the cylinder 𝑍 . Then the bundle 𝑆+, together

with its splitting 𝑆+ = 𝐸 ⊕ 𝐸𝐾−1
𝐽

, extends over 𝑍+ naturally in a translation-invariant manner. The

𝑈-family of metrics and spin-c structures thus constructed on 𝑍+ are independent of 𝑡 ∈ 𝑈 over

𝑍 , so we have effectively trivialised our data over the cylinder end 𝑍 ⊂ 𝑍+. In order to extend the

Seiberg–Witten equations over 𝑍+ we cut off the perturbation term on the right-hand side of the

equations so that it vanishes on the cylinder end 𝑍 . This way, we have a 𝑈-parametric family of

Seiberg–Witten equations over 𝑍+, and natural boundary conditions for these equations (modulo

gauge) are

• on the cylinder 𝑍 solutions should approach a translation-invariant solution 𝔞 (a generator of

the "to" Floer complex q𝐶 (−𝑌, 𝔰b), i.e. 𝔞 is an irreducible or boundary stable monopole on

−𝑌 )

• on the symplectic end 𝑋 solutions should approach the configuration (𝐴𝑡 ,Φ𝑡).

This way we obtain parametrised moduli spaces of solutions

𝜋 : 𝑀 ( [𝔞],Δ𝑛) → Δ𝑛.

By introducing suitable perturbations we may achieve the necessary transversality and 𝑀 ( [𝔞],Δ𝑛)

will be 𝐶1-manifolds of finite dimension. At this point we note that, because of the gauge-

invariance of the equations, a different choice of trivialisations Φ𝑡 would yield diffeomorphic

moduli spaces. The connected components of 𝑀 ( [𝔞],Δ𝑛) where the index of 𝜋 is −𝑛 consist
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of a finite number of isolated points lying over values in the interior of Δ𝑛, and a signed count of

these points gives an integer #𝑀 ( [𝔞],Δ𝑛) ∈ Z. We organise these counts into a Floer chain 𝜓(Δ𝑛)

𝜓(Δ𝑛) =
∑︁
[𝔞]

#𝑀 ( [𝔞],Δ𝑛) · [𝔞] ∈ q𝐶∗(−𝑌, 𝔰b).

The assignment Δ𝑛 ↦→ 𝜓(Δ𝑛) can be made into a chain map

𝜓 : 𝐶∗(C(𝑌, b)) → q𝐶∗(−𝑌, 𝔰b)

from the complex of singular chains on C(𝑌, b). Passing to homology yields the families invariant

Fc.

1.4.2.2 The invariant F̃c and Theorem 1.5

In terms of the "to" Floer complex q𝐶∗, the "tilde" Floer complex can be defined by taking the

mapping cone of (a suitable chain level version of) the 𝑈 map. We have 𝐶∗(𝑌, 𝔰) = q𝐶∗(𝑌, 𝔰) ⊕
q𝐶∗−1(𝑌, 𝔰) with differential given by the matrix (ignoring signs)

𝜕 =
©«

q𝜕 0

𝑈 q𝜕

ª®®¬ .
If a family 𝑇 ∈ 𝐻𝑛 (C(𝑌, b)) is in the image of ]∗ : 𝐻𝑛 (C(𝑌, b, 𝐵)) → 𝐻𝑛 (C(𝑌, b)) then we

show that𝑈 · Fc(𝛽) = 0. At the chain level this is witnessed by a canonical chain homotopy \:

𝑈 · 𝜓 ◦ ]∗ = q𝜕\ + \𝜕. (1.7)

From this we build the chain map

𝜓 = (𝜓 ◦ ]∗, \) : 𝐶∗(C(𝑌, b, 𝐵)) → 𝐶∗(−𝑌, 𝔰b)
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which yields F̃c in homology. The chain homotopy \ is roughly constructed as follows. We

introduce a new parameter 𝑠 ∈ R and let 𝑝 ∈ 𝑌 be the center of the ball 𝐵. Consider the moduli

space

M([𝔞],Δ𝑛) → R × Δ𝑛

consisting of quadruples (𝐴,Φ, 𝑡, 𝑠) such that (𝐴,Φ, 𝑡) solve the previous set of equations and

boundary conditions subject to the further constraint that at the point (𝑠, 𝑝) ∈ R × 𝑌 � 𝑍+ the

spinor Φ lies in the second component of the splitting 𝑆+ = 𝐸 ⊕ 𝐸𝐾−1
𝐽

. By a simple modification

of this construction one can again achieve transversality and ensure that theM([𝔞],Δ𝑛) are 𝐶1-

manifolds of finite dimension. Then we set

\ (Δ𝑛) =
∑︁
[𝔞]

#M([𝔞],Δ𝑛) · [𝔞] .

Theorem 1.5(A) just follows by the construction, and (B) is established by carefully analysing

the "boundary at infinity" of the 1-dimensional components of the moduli M([𝔞],Δ𝑛). The es-

sential point is the following. When Δ𝑛 parametrises a family in C(𝑌, b, 𝐵) then the moduli space

is compact as we take the parameter 𝑠 → +∞. As 𝑠 → −∞ then a boundary appears with con-

nected components (roughly) of the form 𝑀 ( [𝔞],𝑈, [𝔟]) × 𝑀 ( [𝔟],Δ𝑛), where 𝑀 ( [𝔞],𝑈, [𝔟]) are

the moduli spaces that one counts to define the𝑈 map. The remaining source of non-compactness

comes from usual breaking of Floer trajectories. From this one establishes (1.7). If instead Δ𝑛

parametrises a family in the full space of contact structures C(𝑌, b), then the boundary of the

moduli space as 𝑠→ +∞ is instead given by

𝑀 ( [𝔞],Δ𝑛−2
∗ )

where Δ𝑛−2
∗ is the submanifold (with corners) of Δ𝑛 obtained (essentially) as the preimage under

Δ𝑛 → C(𝑌, b) of a fiber of the evaluation map 𝑒𝑣 : C(𝑌, b) → 𝑆2. From this one establishes

Theorem 1.5(B).
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1.5 Structure of the exposition

In Chapter 1 we present the main results of this dissertation, together with examples, relevant

context, and sketches of the main arguments. This is based on material which appeared in [63, 24].

In Chapter 2 we discuss general aspects related the main players of this dissertation: spaces of

contact structures, contactomorphisms, convex spheres, etc. We also include here an ℎ-principle

type result for the space of contact structures on a connected sum. This is based on material which

appeared in [24].

In Chapter 3 we introduce the contact Dehn twist, explore various topological aspects related to

this contactomorphism, and we end by discussing the proofs of Theorems 1.2, 1.1 and 1.3 assuming

the main technical result of this dissertation, namely Theorem 1.5. This is based on material which

appeared in [24].

In Chapter 4 we present the construction of the families contact invariant Fc, from which

Theorem 1.5(A) follows immediately by construction. This is based on material which appeared

in [63].

In Chapter 5 we discuss the algebraic structures on the homology of the space of contact struc-

ture and present the proof of Theorem 1.5(B). We also discuss the refinement of this result given

in Theorem 1.7 and construct the "tilde" version of the families contact invariant F̃c. This is based

on material which appeared in [63]

In the course of Chapters 4 and 5 various details on transversality, compactness and orientations

of Seiberg–Witten moduli spaces are omitted. These are relegated to the Appendix.
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Chapter 2: Topology of families of contact structures

2.1 Background

This section introduces the main players in this dissertation: spaces of contact structures, con-

tactomorphisms, embeddings, etc.

Remark 2.1. In this dissertation a "fibration" will mean a "Serre fibration". A "homotopy equiva-

lence" will mean a "weak homotopy equivalence". However, the latter distinction isn’t important:

the various infinite dimensional spaces that we consider are Fréchet manifolds, hence they have

the homotopy type of countable CW complexes [69, 59] and Whitehead’s Theorem applies.

2.1.1 Notation

Let (𝑌, b) be a closed contact 3-manifold. We always assume 𝑌 is connected and oriented,

and b co-oriented and positive. Occasionally we will allow 𝑌 to be compact with non-empty

boundary, in which case we assume that 𝜕𝑌 is convex for the contact structure b and we fix a collar

neighbourhood 𝐶 = (−1, 0] × 𝜕𝑌 of 𝜕𝑌 . We quickly introduce here some of the spaces that will be

relevant in the dissertation, all of which are equipped with the Whitney 𝐶∞ topology:

• We denote by Emb
(
B3, 𝑌

)
the space of orientation-preserving smooth embeddings 𝜙 : B3 ↩→

𝑌 of the closed unit ball (avoiding the closure of 𝐶, if 𝜕𝑌 ≠ ∅). Let Emb
(
(B3, bst), (𝑌, b)

)
be the subspace consisting of contact embeddings of the standard contact unit ball. Such

embeddings will be referred to as Darboux balls in (𝑌, b). Darboux’s theorem asserts that

for any interior point 𝑝 of a contact manifold we may find such 𝜙 with 𝜙(0) = 𝑝. We will

often incur in abuse of notation by referring to a Darboux ball only by its image 𝐵 := 𝜙(B3).
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• We denote by Diff (𝑌 ) the group of orientation-preserving diffeomorphisms, and by Diff (𝑌, 𝐵)

the subgroup consisting of those which fix a Darboux ball 𝐵 pointwise. By Diff0(𝑌 ) and

Diff0(𝑌, 𝐵) we denote the subgroups consisting of those which are smoothly isotopic to the

identity (rel. 𝐵 in the second case). We denote by Cont(𝑌 ) ⊂ Diff the subgroup of co-

orientation preserving contactomorphisms of (𝑌, b), and by Cont(𝑌, 𝐵) the subgroup con-

sisting of those which fix a Darboux ball 𝐵 pointwise. By Cont0(𝑌 ) and Cont0(𝑌, 𝐵) we

denote the subgroups consisting of those which are smoothly isotopic to the identity (rel. 𝐵

in the second case).

• We denote by C(𝑌, b) the space of contact structures on 𝑌 in the path-component of b.

When 𝜕𝑌 ≠ ∅ then we also require that they agree with b over 𝐶. Given a Darboux ball 𝐵

in (𝑌, b) we denote by C(𝑌, b, 𝐵) the subspace consisting of contact structures b′ for which

the coordinate ball 𝐵 is a Darboux ball for (𝑌, b′) (i.e. b = b′ over 𝐵).

• We denote by Fr(𝑌 ) the principal (SO(3) ≃)GL+(3)-bundle over𝑌 of oriented frames in 𝑇𝑌 ,

and by CFr(𝑌 ) the principal (U(1) ≃)CSp+(2,R)-bundle over 𝑌 of co-oriented frames in b.

By the smooth and contact versions of the Disk Theorem1 we have homotopy equivalences

Emb(B3, 𝑌 ) ≃−→ Fr(𝑌 ) ≃ 𝑌 × SO(3) (2.1)

𝜙 ↦→ (𝑑𝜙)0(𝑒1, 𝑒2, 𝑒3)

Emb((B3, bst), (𝑌, b))
≃−→ CFr(𝑌, b) ≃ 𝑌 × U(1)

𝜙 ↦→ (𝑑𝜙)0(𝑒1, 𝑒2).

• An embedding 𝑒 : 𝑆2 ↩→ (𝑌, b) is a standard convex embedding (or just "standard embed-

ding") if its oriented characteristic foliation (𝑒∗b) ∩ 𝑇𝑆2 coincides with the characteristic

foliation of the boundary sphere 𝑒0 : 𝑆2 = 𝜕B3 ↩→ (R3, bst) of the unit ball B3. In fact, by

this property we obtain a (homotopically) unique contact embedding of a neighbourhood of

1The key point in the contact case is that 𝜑𝑡 (𝑥, 𝑦, 𝑧) := (𝑡𝑥, 𝑡𝑦, 𝑡2𝑧) is a contactomorphism of (R3, bst) for every
𝑡 > 0, so the proof in the contact case follows along the same lines as in the smooth case (see [25], Theorem 2.6.7).
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𝑒0(𝑆2) ⊂ (R3, bst) inside (𝑌, b) such that 𝑒0 is identified with 𝑒. We recall that the north

pole of 𝑒 is then a positive elliptic point and the south pole a negative elliptic point. See

Figure 2.1. We denote by Emb(𝑆2, 𝑌 ) the space of co-oriented embeddings of 2-spheres.

By CEmb
(
𝑆2, (𝑌, b)

)
we denote the subspace consisting of standard convex spheres. More

generally, recall that a surface Σ ⊂ (𝑌, b) is convex [30][25] if there exists a contact vector

field on a neighbourhood which is transverse to Σ.

• We denote by Cont(𝑌, b, 𝑆) the subgroup of contactomorphisms which fix a standard convex

sphere 𝑆 pointwise, and likewise for Diff (𝑌, 𝑆).

Figure 2.1: Depiction of the characteristic foliation (blue) of a standard sphere, together with the
positive (resp. negative) elliptic points at the north (resp. south) poles.

2.1.2 Standard fibrations

Next, we review how the spaces introduced above relate to each other through various natural

fibrations. Some of the material from this section is treated in [33] in greater detail.
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2.1.2.1 Diffeomorphisms acting on contact structures

By an application of Gray’s stability Theorem (a.k.a Moser’s argument) [25] with parameters

one can show

Lemma 2.1. The action 𝑓 ↦→ 𝑓∗b of the group of diffeomorphisms on a fixed contact structure b

gives a fibration

Cont0(𝑌, b) → Diff0(𝑌 ) → C(𝑌, b). (2.2)

Similarly, there is fibration

Cont0(𝑌, b, 𝐵) → Diff0(𝑌, 𝐵) → C(𝑌, b, 𝐵). (2.3)

By (2.2), understanding the homotopy type of the space of contact structures C(𝑌, b) and the

group of contactomorphisms Cont0(𝑌, b) is essentially equivalent, since the homotopy type of

Diff0(𝑌 ) is often well-understood (e.g. for all prime 3-manifolds by now).

2.1.2.2 Contactomorphisms acting on Darboux balls

By an application of the contact isotopy extension Theorem [25] with parameters we have

Lemma 2.2. The action 𝑓 ↦→ 𝑓 (𝐵) of the group of contactomorphisms on a fixed Darboux ball

𝐵 ⊂ 𝑌 gives a fibration

Cont(𝑌, b, 𝐵) → Cont(𝑌, b) → Emb((B3, bst), (𝑌, b)). (2.4)

Similarly, there is a fibration

Diff (𝑌, 𝐵) → Diff (𝑌 ) → Emb(B3, 𝑌 ). (2.5)
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2.1.2.3 Evaluation of contact structures at a point

Fix a Darboux ball 𝐵 ⊂ 𝑌 with center 0 ∈ 𝑌 . By regarding the 2-sphere 𝑆2 as the space of

co-oriented planes in the tangent space 𝑇0𝐵 we obtain the evaluation map

𝑒𝑣 : C(𝑌, b) → 𝑆2 , b′ ↦→ b′(0). (2.6)

The following result is well-known but we provide a proof:

Lemma 2.3. The evaluation map (1.3) is a fibration. The inclusion C(𝑌, b, 𝐵) → (𝑒𝑣)−1(b (0)) is

a homotopy equivalence.

Proof. Let B 𝑗 be the unit 𝑗-disk and consider a homotopy [0, 1] × B 𝑗 → 𝑆2, (𝑡, 𝑢) ↦→ 𝜎𝑡,𝑢,

together with a lift of the time zero map {0} × B 𝑗 → C(𝑌, b), 𝑢 ↦→ b𝑢 i.e. at the point 0 ∈ 𝐵

we have b𝑢 (0) = 𝜎0,𝑢. We must find a family of contact structures b𝑡,𝑢 with b𝑡,𝑢 (0) = 𝜎𝑡,𝑢 and

b0,𝑢 = b𝑢.

Let 𝑣𝑡,𝑢 ∈ 𝑆(𝑇0𝐵) = 𝑆2 be the unit normal (with respect to the standard flat metric on 𝐵) to the

plane 𝜎𝑡,𝑢. Since the action of SO(3) on 𝑆2 gives a fibration SO(3) → 𝑆2, 𝐴 ↦→ 𝐴𝑒3, then we may

find 𝐴𝑡,𝑢 ∈ SO(3) such that 𝐴𝑡,𝑢𝑒3 = 𝑣𝑡,𝑢. Differentiating 𝐴𝑡,𝑢 in 𝑡 we get a vector field on 𝑉𝑡,𝑢 on

R3. After cutting off 𝑉𝑡,𝑢 outside the unit ball 𝐵 ⊂ 𝑌 we regard 𝑉𝑡,𝑢 as an 𝑢-family of 𝑡-dependent

vector fields on 𝑌 whose associated flows (starting at time 𝑡 = 0) we denote 𝜙𝑡𝑢. We obtain contact

structures b𝑡,𝑢 := (𝜙𝑡𝑢)∗b𝑢 with the desired property, which in fact agree with b outside 𝐵 ⊂ 𝑌 .

For the second part, let b𝑢 = Ker𝛼𝑢 be a family of contact structures parametrised by a sphere

𝑆 𝑗 ∋ 𝑢 and with b𝑢 (0) = b (0). We must deform rel. 0 this family of contact structures to another

family which agrees with b over the Darboux ball 𝐵. By the parametric version of Darboux’s

Theorem we obtain a family of disk embeddings 𝜙𝑢 : B3 ↩→ 𝑌 with 𝜙𝑢 (0) = 0 ∈ 𝐵 and (𝑑𝜙𝑢)0 = id

which are Darboux balls for b𝑢. By (2.1) we may deform the family of embeddings 𝜙𝑢 to the

original embedding 𝐵, and this deformation may be followed by an isotopy 𝑓𝑢,𝑡 . The contact

structures ( 𝑓𝑢,1)∗b𝑢 now agree with b over 𝐵. □
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2.1.2.4 Contactomorphisms act on standard convex spheres

Again, an application of the contact isotopy extension Theorem gives

Lemma 2.4. The action 𝑓 ↦→ 𝑓 (𝑆) of the group of contactomorphisms on a fixed standard convex

sphere 𝑆 ⊂ 𝑌 gives a fibration

Cont(𝑌, b, 𝑆) → Cont(𝑌, b) → CEmb
(
𝑆2, (𝑌, b)

)
(2.7)

Similarly, there is a fibration

Diff (𝑌, 𝑆) → Diff (𝑌 ) → Emb(𝑆2, 𝑌 ). (2.8)

Remark 2.2. The above statement isn’t quite precise. For either (2.7) or (2.8), the downstairs

projection is not surjective in general, so strictly speaking we only have a fibration over a union

of connected components of the right-hand side. We will make no further comment on this point

from now on.

2.1.3 Formal triviality and exoticness

Here we collect basic material that we need related to the notion of a formal contactomorphism.

The material in this section should be well-known to experts but we did not find a convenient

reference.

2.1.3.1 Formal contact structures and contactomorphisms

For a 3-manifold 𝑌 , the flexible analogue2 of a contact structure is a 2-plane field i.e. a codi-

mension 1 distribution b ⊂ 𝑇𝑌 . All 2-planes in a 3-manifold are assumed to be co-oriented from

now on, as we’ve been assuming with contact structures. Let Ξ(𝑌, b) denote the path-component

2In general, if 𝑌 has dimension 2𝑛 + 1 ≥ 3 one should define Ξ(𝑌, b) as the space of codimension 1 hyperplane
fields in 𝑇𝑌 equipped with a U(𝑛) structure.
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of a fixed 2-plane field b in the space of all such. If b is a contact structure we have a natural

inclusion map C(𝑌, b) → Ξ(𝑌, b). The correct flexible analogue of a contactomophism is:

Definition 2.1. A formal contactomorphism of (𝑌, b) (where b is a 2-plane field) is a pair ( 𝑓 , {𝜙𝑠}0≤𝑠≤1)

such that 𝑓 ∈ Diff (𝑌 ) and {𝜙𝑠}0≤𝑠≤1 is a homotopy through vector bundle isomorphisms 𝜙𝑠 :

𝑇𝑌
�−→ 𝑓 ∗𝑇𝑌 such that 𝜙0 = 𝑑𝑓 and 𝜙1 preserves the 2-plane field b.

The group of formal contactomorphisms of (𝑌, b) is denoted FCont(𝑌, b). When b is a contact

structure there is the obvious inclusion map Cont(𝑌, b) → FCont(𝑌, b) given by 𝑓 ↦→ ( 𝑓 , 𝑑𝑓 )

(where 𝑑𝑓 denotes the constant homotopy at 𝑑𝑓 ).

A homotopy class in 𝜋 𝑗Cont(𝑌, b) is said to be formally trivial if it lies in the kernel of

𝜋 𝑗Cont(𝑌, b) → 𝜋 𝑗FCont(𝑌, b). If, in addition, such a homotopy class is non-trivial in 𝜋 𝑗Cont(𝑌, b)

then we call it exotic. Similar terminology applies for families of contact structures.

2.1.3.2 A flexible analogue of (2.2)

We introduce a flexible counterpart of the fibration (2.2). This is done via fibrant replacement

of the map Diff0(𝑌 ) → Ξ(𝑌, b) , 𝑓 ↦→ 𝑓 ∗b. That is, we decompose this map as the composite

of a homotopy equivalence Diff0(𝑌 )
≃−→ FDiff0(𝑌 ) and a fibration FDiff0(𝑌 ) → Ξ(𝑌, b). Here

FDiff (𝑌 ) is the topological group which consists of pairs ( 𝑓 , {𝜙𝑡}0≤𝑡≤1) where 𝑓 ∈ Diff (𝑌 ) and

{𝜙𝑡}0≤𝑡≤1 is a homotopy of vector bundle isomorphisms 𝜙𝑡 : 𝑇𝑌 �−→ 𝑓 ∗𝑇𝑌 such that 𝜙0 = 𝑑𝑓 . By

FDiff0(𝑌 ) we denote the identity component. Clearly the inclusion induces a homotopy equiva-

lence Diff (𝑌 ) ≃ FDiff (𝑌 ). Define a mapping

FDiff0(𝑌 ) → Ξ(𝑌, b) (2.9)

( 𝑓 , {𝜙𝑡}) ↦→ 𝜙1(b)

Lemma 2.5. Let b be a 2-plane field on a compact oriented 3-manifold 𝑌 . Then the mapping

(2.9) is a fibration with fiber FCont0(𝑌, b). Thus, for a contact structure b we have a commuting
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diagram of fibrations inducing a homotopy equivalence of total spaces

FCont0(𝑌, b) FDiff0(𝑌 ) Ξ(𝑌, b)

Cont0(𝑌, b) Diff0(𝑌 ) C(𝑌, b)

≃

Corollary 2.6. Let (𝑌, b) be a contact 3-manifold. If 𝛽 ∈ 𝜋 𝑗C(𝑌, b) is formally trivial, then so is

its image in 𝜋 𝑗−1Cont0(𝑌, b) under the connecting map of the fibration (2.2).

Proof of Lemma 2.5. It suffices to check the Cerf-Palais fibration criterion (see [70], Theorem A):

that for every b̃ ∈ Ξ(𝑌, b) the mapping FDiff0(𝑌 ) → Ξ(𝑌, b) given by ( 𝑓 , {𝜙𝑡}) ↦→ 𝜙1(b̃) has a

section 𝑠 : 𝑈 → FDiff0(𝑌 ) defined on a neighbourhood 𝑈 of b̃. Without loss of generality b̃ = b.

We let𝑈 be a contractible neighbourhood of b and we fix a deformation retraction ℎ : [0, 1] ×𝑈 →

𝑈 to b i.e. if ℎ𝑡 := ℎ(𝑡, ·) we have ℎ1 = id𝑈 , ℎ𝑡 (b) = b for all 𝑡, and ℎ0(𝑈) = {b}. Let b𝑢 be the

plane field represented by the point 𝑢 ∈ 𝑈. Let Aut0(𝑇𝑌 ) be the identity component in the group

of automorphisms of the vector bundle 𝑇𝑌 covering the identity. The key point is:

Claim 2.1. The mapping Aut0(𝑇𝑌 ) → Ξ(𝑌, b) given by 𝜙 ↦→ 𝜙(b) admits a section over the open

𝑈.

We establish the Claim. We may find a family of isomorphisms 𝑖𝑢 : b �−→ b𝑢 of oriented vector

bundles over 𝑌 , since 𝑈 is contractible. If 𝑢0 is the point representing the plane field b then we

may assume 𝑖𝑢0 = idb . Choosing a metric on 𝑌 we obtain identifications 𝑇𝑌 = b𝑢 ⊕R for all 𝑢 ∈ 𝑈.

This gives us a family of isomorphisms 𝜙𝑢 : 𝑇𝑌 = b̃ ⊕R 𝑖𝑢⊕idR−−−−−→ b𝑢 ⊕R = 𝑇𝑌 varying continuously

with 𝑢 ∈ 𝑈, and 𝜙𝑢0 = id𝑇𝑌 . Thus the 𝜙𝑢 provide a section over 𝑈 of Aut0(𝑇𝑌 ) → Ξ(𝑌, b). The

Claim follows. Finally, we define the required section 𝑠 by 𝑠(𝑢) = (id𝑌 , {𝜙ℎ𝑡 (𝑢)}). □

The homotopy type of the space Ξ(𝑌, b) is often easy to understand, unlike that of C(𝑌, b).

Example 2.1. Let 𝑌 be any integral homology 3-sphere, and b a 2-plane field on 𝑌 . Let bst be

any contact structure on 𝑆3 (say, the tight one). By a result of Hansen [37] there is a homotopy
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equivalence Ξ(𝑆3, bst) ≃ Ξ(𝑌, b). From this one easily calculates

𝜋 𝑗Ξ(𝑌, b) ≈ 𝜋 𝑗𝑆2 × 𝜋 𝑗+3𝑆2.

2.2 The space of tight contact structures on a connected sum

In this section we study the space of tight contact structures on connected sums using tools

from ℎ-principles. The main result is Theorem 2.7, which will be an ingredient in the proof of

Theorems 1.1 and 1.3. It is, in essence, a "families version" of a classical result of Colin [10].

2.2.1 Main result

Consider 𝑛 + 1 tight contact 3-manifolds (𝑌 𝑗 , b 𝑗 ), 𝑗 = 0, . . . , 𝑛 with 𝑛 ≥ 1. Let (𝑌#, b#) be their

connected sum, which we build as follows. We fix Darboux balls 𝐵0− ⊂ 𝑌0, 𝐵𝑛+ ⊂ 𝑌𝑛 and for each

0 < 𝑗 < 𝑛 we fix two Darboux balls 𝐵 𝑗± ⊂ 𝑌 𝑗 . Then the connected sum (𝑌#, b#) is formed by

gluing in the following order

(
𝑌0 \ 𝐵0−

) ⋃
𝜕𝐵0−=−𝜕𝐵1+

(
𝑌1 \ (𝐵1+ ∪ 𝐵1−)

)
· · ·

⋃
𝜕𝐵 (𝑛−1)−=−𝜕𝐵𝑛+

(
𝑌𝑛 \ 𝐵𝑛+

)
where one glues 𝜕𝐵( 𝑗−1)− and 𝜕𝐵 𝑗+ by an orientation-reversing diffeomorphism which preserves

the oriented characteristic foliation. It is because of the latter requirement that the connected

sum 𝑌# inherits a contact structure b#. We will denote by 𝑒 𝑗 : 𝑆2 ↩→ (𝑌#, b#), 𝑗 = 1, . . . , 𝑛, the

embedding of the 𝑗 th separating standard sphere in the connected sum (𝑌#, b#). Denote by 𝑠 𝑗 the

south pole on the 𝑗 th sphere, regarded as a point in 𝑒 𝑗 (𝑆2) ⊂ 𝑌#.

We will denote by Tight(𝑌, 𝐵) the space of tight contact structures on 𝑌 that are fixed on a

Darboux ball 𝐵 and by Tight(𝑌, 𝐵, 𝐵′) the subspace of Tight(𝑌, 𝐵) given by contact structures that

are fixed on a second Darboux ball 𝐵′ disjoint from 𝐵. A classical result of Colin [10] asserts that
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the contact manifold (𝑌#, b#) is tight, and we have a well-defined map

#𝑛+1 : Tight(𝑌0, 𝐵0−) ×
𝑛−1∏
𝑗=1

Tight(𝑌 𝑗 , 𝐵 𝑗+, 𝐵 𝑗−) × Tight(𝑌𝑛, 𝐵𝑛+) → Tight(𝑌#). (2.10)

On the other hand, the evaluation map of each tight contact structure on 𝑌 at the south poles 𝑠 𝑗

defines a fibration

𝑒𝑣𝑛+1 : Tight(𝑌#) → (𝑆2)𝑛. (2.11)

The fiber F of 𝑒𝑣𝑛+1 over (b#(𝑠 𝑗 )) has the homotopy type of the space of tight contact structures

on 𝑌# that agree with b# over 𝑛 disjoint Darboux balls 𝐵# 𝑗 around 𝑠 𝑗 . Therefore, there is a natural

inclusion

𝑖# : Tight(𝑌0, 𝐵0−) ×
𝑛−1∏
𝑗=1

Tight(𝑌 𝑗 , 𝐵 𝑗+, 𝐵 𝑗−) × Tight(𝑌𝑛, 𝐵𝑛+) ↩→ F .

We establish the following ℎ-principle for families of tight contact structures on connected sums:

Theorem 2.7. The inclusion 𝑖# is a homotopy equivalence.

Remark 2.3. Since 𝑆2 is simply connected we deduce from the long exact sequence in homotopy

groups of (2.11) that

𝜋0
(
Tight(𝑌#)

)
�

𝑛∏
𝑗=0

𝜋0
(
Tight(𝑌 𝑗 )

)
which is the classical result of Colin [10].

Remark 2.4. Note how the homotopy-equivalence

C(𝑌0, 𝐵0, b0) × C(𝑌1, 𝐵1, b1) ≃ C(𝑌0#𝑌1, 𝐵#, b0#b1)

(for tight contact structures b0, b1) has an analogue in monopole Floer homology. Namely, there’s

a connected sum formula for the "tilde" flavor (proved in Heegaard Floer theory [68]): for a field F

𝐻𝑀 (−𝑌0, 𝔰b0;F) ⊗F 𝐻𝑀 (−𝑌1, 𝔰b1;F) � 𝐻𝑀 (−(𝑌0#𝑌1), 𝔰b0#b1;F).
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2.2.2 The space of standard convex spheres in a tight contact 3-manifold

The next ingredient in the proof of Theorem 2.7 is an ℎ-principle for standard convex embed-

dings in tight contact 3-manifolds due to Fernández–Martínez-Aguinaga–Presas [23] (see also the

author’s paper [24] with Eduardo Fernández, where a different proof is presented).

Consider the space of smooth embeddings Emb(⊔ 𝑗𝑆2, 𝑌 ) of 𝑛-disjoint spheres and the corre-

sponding subspace of standard spheres CEmb(⊔ 𝑗𝑆2, (𝑌, b)). Fix also an arbitrary standard embed-

ding 𝑒 : ⊔𝑆2 → (𝑌, b) and consider the subspaces Emb(⊔ 𝑗𝑆2, 𝑌 ,⊔ 𝑗 𝑠 𝑗 ) of embeddings that agree

with 𝑒 on an open neighbourhood ⊔ 𝑗𝑈 𝑗 of the south pole 𝑠 𝑗 of each sphere. Similarly, consider the

analogous subspace of standard embeddings CEmb(⊔ 𝑗𝑆2, (𝑌, b),⊔ 𝑗 𝑠 𝑗 ).

Theorem 2.8 ([23]). Assume that (𝑌, b) is tight. Then the inclusion CEmb(⊔ 𝑗𝑆2, (𝑌, b),⊔ 𝑗 𝑠) ↩→

Emb(⊔ 𝑗𝑆2, 𝑌 ,⊔ 𝑗 𝑠 𝑗 ) is a homotopy equivalence.

Two key facts are exploited in the proof of this result which require the tightness condition.

First, the ℎ-principle of Eliashberg-Mishachev (Theorem 1.9). Secondly, that the space of convex

spheres in (𝑌, b) with a fixed characteristic foliation and tight neighbourhood is𝐶0-dense inside the

space of smoothly embedded spheres when the contact 3-manifold is tight, because of Giroux’s

Genericity and Realisation Theorems and Giroux’s Tightness Criterion [30, 31]. We also have:

Corollary 2.9 ([23]). Assume that (𝑌, b) is tight. For every 𝑘 ≥ 1 the natural homomorphism

𝜋𝑘 (SO(3)𝑛,U(1)𝑛) → 𝜋𝑘 (Emb(⊔ 𝑗𝑆2, 𝑌 ),CEmb(⊔ 𝑗𝑆2, (𝑌, b)))

induced by reparametrisation on the source is an isomorphism.

Proof of Corollary 2.9. Note that there is a natural map of fibrations given by the evaluation at the

𝑛 south poles:

Emb(⊔ 𝑗𝑆2, 𝑌 ,⊔ 𝑗 𝑠 𝑗 ) Emb(⊔ 𝑗𝑆2, 𝑌 ) Fr𝑛 (𝑌 )

CEmb(⊔ 𝑗𝑆2, (𝑌, b),⊔ 𝑗 𝑠 𝑗 ) CEmb(⊔ 𝑗𝑆2, (𝑌, b)) CFr𝑛 (𝑌, b)
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in which the vertical maps are inclusions. Here, the base Fr𝑛 (𝑌 ) is the space of framings over 𝑛

different points of 𝑀 , that is, the total space of a fiber bundle over the configuration space Conf𝑛 (𝑌 )

with fiber ≈ GL+(3)𝑛, and likewise for CFr𝑛 (𝑌, b) but with contact frames. Observe that the map

between the fibers is a homotopy equivalence because of Theorem 2.8, so that the homomorphism

induced by the evaluation map

𝜋𝑘 (Emb(⊔ 𝑗𝑆2, 𝑌 ),CEmb(⊔ 𝑗𝑆2, (𝑌, b))) → 𝜋𝑘 (Fr𝑛 (𝑌 ),CFr𝑛 (𝑌, b))

� 𝜋𝑘 (SO(3)𝑛,U(1)𝑛)

is an isomorphism and defines an inverse to the reparametrisation map. This concludes the proof.

□

From the above we may deduce Theorem 1.10. We first discuss its smooth counterpart. The

relevant reference on this topic is Hatcher’s work [38]. Let 𝑌# = 𝑌−#𝑌+ with 𝑌± now irreducible.

Let Emb(𝑆2, 𝑌#)𝑆# ⊂ Emb(𝑆2, 𝑌#) be the subspace of smooth co-oriented embeddings 𝑆2 ↩→ 𝑌#

isotopic to a fixed given one 𝑆#, and let

S = Emb(𝑆2, 𝑌#)𝑆#/Diff (𝑆2)

be the space of unparametrised co-oriented non-trivial spheres. Hatcher [38] proved that S is

contractible. We also have a fibration

SO(3) ≃ Diff (𝑆2) → Emb(𝑆2, 𝑌#)𝑆# → S

and hence

Emb(𝑆2, 𝑌#)𝑆# ≃ SO(3).
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Proof of Theorem 1.10. Immediate from the commuting diagram

CEmb
(
𝑆2, (𝑌#, b#)

)
𝑆#

Emb
(
𝑆2, 𝑌#

)
𝑆#

U(1) SO(3)

≃

combined with Corollary 2.9. □

2.2.3 Proof of Theorem 2.7

Let 𝐾 be a compact parameter space and 𝐺 ⊆ 𝐾 a subspace. It is enough to prove that: if

b𝑘 ∈ F is a 𝐾-family of tight contact structures on 𝑌# that coincide with b# over the 𝑛 Darboux

balls 𝐵# 𝑗 and such that b𝑘 ∈ Im(𝑖#) for 𝑘 ∈ 𝐺, then there exists a homotopy of tight contact

structures b𝑘𝑡 , 𝑡 ∈ [0, 1], such that

• b𝑘0 = b𝑘 ,

• b𝑘𝑡 = b𝑘 for 𝑘 ∈ 𝐺 and

• b𝑘1 ∈ Im(𝑖#).

The key point is to observe that b𝑘 ∈ Im(𝑖#) if and only if the embeddings 𝑒 𝑗 : 𝑆2 ↩→ (𝑌#, b
𝑘 ) are

standard for 𝑗 = 1, . . . , 𝑛. For a given tight contact structure b denote by

CEb := CEmb(⊔𝑛𝑗=1𝑆
2, (𝑌#, b),⊔𝑛𝑗=1𝑠 𝑗 ))

the space of standard embeddings of 𝑛 disjoint spheres that coincide with (𝑒 𝑗 ) over a neighbour-

hood of the south poles (𝑠 𝑗 ), and by

E := Emb(⊔𝑛𝑗=1𝑆
2, 𝑌#,⊔𝑛𝑗=1𝑠 𝑗 ))

the analogous space of smooth embeddings. Consider the space X of pairs (b, 𝑒𝑡) where b ∈ F

and 𝑒𝑡 ∈ E, with 𝑡 ∈ [0, 1], is a homotopy of embeddings with 𝑒0 = 𝑒 and 𝑒1 ∈ CEb . There is a
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natural forgetful map

𝑝 : X → F , (b, 𝑒𝑡) ↦→ b,

which is in fact a fibration because of Lemma 2.1. By Theorem 2.8 we know that the inclusion

CEb → E is a homotopy equivalence. Therefore, the fibers of the previous fibration are con-

tractible.

This is enough to conclude the proof. Indeed, our initial family b𝑘 is given by a map 𝑗 : 𝐾 → F

and the pullback fibration 𝑗∗X → 𝐾 has a well-defined section over 𝐺 ⊆ 𝐾 given by the constant

isotopy 𝑒𝑘𝑡 = 𝑒, (𝑘, 𝑡) ∈ 𝐺 × [0, 1]. Since the fiber of this fibration is contractible we can extend

this section over 𝐾 obtaining a section 𝑒𝑘𝑡 , (𝑘, 𝑡) ∈ 𝐾 × [0, 1]. Then we apply the smooth isotopy

extension theorem to this family of embeddings to find an isotopy 𝜑𝑘𝑡 ∈ Diff (𝑌#), (𝑘, 𝑡) ∈ 𝐾×[0, 1],

such that

• 𝜑𝑘0 = Id,

• 𝜑𝑘𝑡 is the identity over a neighbourhood of the south poles (𝑠 𝑗 ),

• 𝜑𝑘𝑡 ◦ 𝑒 = 𝑒𝑘𝑡 ,

• 𝜑𝑘𝑡 = Id for (𝑘, 𝑡) ∈ 𝐺 × [0, 1].

The homotopy of contact structures b𝑘𝑡 = (𝜑𝑘𝑡 )∗b𝑘 solves the problem since now 𝑒 = (𝜑𝑘1)
−1 ◦ 𝑒𝑘1 is

standard for (𝜑𝑘𝑡 )∗b𝑘 because 𝑒𝑘1 is standard for b𝑘 . The proof is complete. □
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Chapter 3: The three-dimensional contact Dehn twist

3.1 Contact Dehn twists on spheres

In this section we define the contact Dehn twist on a sphere in several equivalent ways, establish

some key properties and discuss some examples when its square is isotopic to the identity.

3.1.1 The contact Dehn twist

Let (𝑌, b) be a contact 3-manifold, and 𝑆 ⊂ 𝑌 be a co-oriented embedded sphere. Pro-

vided 𝑆 has a tight neighbourhood, we can associate to 𝑆 a contactomorphism 𝜏𝑆 well-defined

in 𝜋0Cont(𝑌, b). We discuss this construction now.

3.1.1.1 Local model

We start by discussing the local picture. Consider the contact 3-manifold 𝑌0 = [−1, 1] × 𝑆2

with the tight contact structure b0 = Ker(𝛼0) where 𝛼0 = 𝑧𝑑𝑠+ 1
2𝑥𝑑𝑦−

1
2 𝑦𝑑𝑥. Here 𝑠 is the standard

coordinate on [−1, 1] and 𝑥, 𝑦, 𝑧 coordinates on R3 restricted onto the unit sphere 𝑆2. Consider the

sphere 𝑆0 = {0} × 𝑆2 ⊂ 𝑌0. We now describe the contact Dehn twist 𝜏𝑆0 on the sphere 𝑆0.

We choose a smooth function \ : [−1, 1] → [0, 2𝜋] with \ (𝑠) ≡ 0 near 𝑠 = −1 and \ (𝑠) = 2𝜋

near 𝑠 = 1. Let 𝑅𝜑 be the counterclockwise rotation in the 𝑥𝑦 plane with angle 𝜑. Consider the

diffeomorphism �̃�𝑆0 of 𝑌0 given by a smooth Dehn twist along 𝑆0

�̃�𝑆0 (𝑠, 𝑥, 𝑦, 𝑧) = (𝑠, 𝑅\ (𝑠) (𝑥, 𝑦), 𝑧).

Since 𝜋1SO(3) = Z/2 it follows that the squared Dehn twist �̃�2
𝑆0

is smoothly isotopic to the
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identity rel. 𝜕𝑌0. We don’t quite have a contactomorphism of (𝑌0, b0) since

�̃�∗𝑆0
𝛼0 = 𝛼0 +

\′(𝑠)
2
(𝑥2 + 𝑦2)𝑑𝑠.

However, consider the naive interpolation from 𝛼0 to �̃�∗
𝑆0
𝛼0

𝛼𝑡 = 𝛼0 + 𝑡
\′(𝑠)

2
(𝑥2 + 𝑦2)𝑑𝑠

and observe that

Lemma 3.1. For any 𝑡 ∈ [0, 1] the form 𝛼𝑡 is a contact form.

Proof. A straightforward calculation shows 𝛼𝑡 ∧ 𝑑𝛼𝑡 = 𝛼0 ∧ 𝑑𝛼0 > 0. □

Thus, by Gray stability (a.k.a Moser’s argument) [25] the deformation of contact structures

b𝑡 = Ker(𝛼𝑡) is realised by an isotopy 𝑓𝑡 i.e. 𝑓0 = id and ( 𝑓𝑡)∗b𝑡 = b0. Since the forms 𝛼𝑡 don’t

depend on 𝑡 near 𝜕𝑌0 we may further assume that 𝑓𝑡 = id near 𝜕𝑌0. We then replace �̃�𝑆0 with

𝜏𝑆0 := �̃�𝑆0 ◦ 𝑓1 and the latter is a contactomorphism of (𝑌0, b0). We also have that that the support

of 𝜏𝑆0 can be made arbitrarily close to the sphere 𝑆0 by choosing \ (𝑠) appropriately. Then, for any

𝜖 ∈ (0, 1] we have a well-defined isotopy class of contact Dehn twist

𝜏𝑆0 ∈ 𝜋0Cont( [−𝜖, 𝜖] × 𝑆2, b0).

It is worth pointing out the following

Lemma 3.2. The group Cont(𝑌0, b0) is homotopy equivalent to ΩU(1) ≃ Z. It is generated by the

contact Dehn twist 𝜏𝑆0 .

Proof. Gluing a Darboux ball 𝐵 to (𝑌0, b0) gives back the standard contact ball (B3, bst). Thus,

from the fibration (2.4) we have a map of fiber sequences
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Cont(𝑌0, b0) Cont(B3, bst) Emb
(
(B3, bst), (B3, bst)

)
ΩU(1) {∗} U(1)

≃ ≃

where the middle homotopy equivalence follows from the ℎ-principle of Eliashberg and Mishachev[22].

The first assertion now follows. For the second assertion, we need to show that the generator

1 ∈ 𝜋1U(1) maps to the class of the contact Dehn twist 𝜏𝑆0 under the connecting map.

We first describe the contact Dehn twist on 𝑆0 more conveniently in terms of the coordinates

on the ball B3 = 𝐵 ∪ 𝑌0. Recall that the standard contact structure on B3 is bst = Ker𝛼st where

𝛼st = 𝑑𝑧 + 1
2𝑥𝑑𝑦 −

1
2 𝑦𝑑𝑥. Choose a smooth function \ : [0, 1] → [0, 2𝜋] with \ = 0 near 0 and

\ = 2𝜋 near 1. Let 𝑟2 := 𝑥2+𝑦2+𝑧2 be the radius squared function on B3. Then the diffeomorphism

of B3 given by

�̃�(𝑥, 𝑦, 𝑧) := (𝑅\ (𝑟2) (𝑥, 𝑦), 𝑧)

does not quite preserve the contact structure, but

(�̃�)∗𝛼st = 𝛼st +
1
2
(𝑥2 + 𝑦2)\′(𝑟2)𝑑 (𝑟2).

As in Lemma 3.1, the obvious interpolation that takes the second term in the above identity to zero

gives a path of contact forms, and as in §3.1.1.2 we may canonically deform �̃� to a contactomor-

phism 𝜏𝑆0 in the isotopy class of the contact Dehn twist on 𝑆0.

Consider now a homotopy of maps \𝑡 : [0, 1] → [0, 2𝜋] with with \𝑡 constant near 1 (with

value 2𝜋), such that \0 = \ and \1 is the constant function with value 2𝜋. We obtain an isotopy

through diffeomorphisms of B3 (fixing a neighbourhood of the boundary 𝜕B3, but not the smaller

ball 𝐵!) given by

�̃�𝑡 (𝑥, 𝑦, 𝑧) := (𝑅\𝑡 (𝑟2) (𝑥, 𝑦), 𝑧)
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such that �̃�0 = �̃� and �̃�1 = id. Again, by observing that for each 𝑡 the obvious interpolation from

(�̃�𝑡)∗𝛼st and 𝛼st gives a path of contact forms, we may canonically deform the isotopy �̃�𝑡 to a contact

isotopy 𝜏𝑡 with 𝜏0 = 𝜏𝑆0 and 𝜏1 = id.

Now, the path of contactomorphisms 𝜏1−𝑡 from the identity to 𝜏𝜕𝐵 induces a loop of Darboux

balls (𝜏1−𝑡) (𝐵) in the class of the generator 1 ∈ Z = 𝜋1Emb
(
(B3, bst), (B3, bst)

)
. From this the

required result now follows. □

Likewise, we have a firm hold on the topology of the space of standard spheres in our local

picture. Denote by 𝑒0 : 𝑆2 ↩→ 𝑌0 the embedding of 𝑆0 ⊂ 𝑌0.

Lemma 3.3. The map induced by reparametrisation of 𝑒0

U(1) → CEmb(𝑆2, (𝑌0, b0)) , \ ↦→ 𝑒0 ◦ 𝑟\

is a homotopy equivalence. Here 𝑟\ (𝑥, 𝑦, 𝑧) = (𝑅\ (𝑥, 𝑦), 𝑧). Under the connecting homomorphism

of the fibration (2.7) the generator of 𝜋1U(1) = Z maps to the class

(𝜏𝑆−1/2)−1𝜏𝑆1/2 ∈ 𝜋0Cont(𝑌0, b0, 𝑆0).

Proof. We have the following map of fiber sequences, with homotopy equivalences on the fiber

and total space by Lemma 3.2

Cont(𝑌0, b0, 𝑆0) Cont(𝑌0, b0) CEmb(𝑆2, (𝑌0, b0))

ΩU(1) ×ΩU(1) ΩU(1) U(1)

≃ ≃

This establishes both assertions. □

3.1.1.2 General case

The robustness of our local picture allows us to consider contact Dehn twists in more general

settings. We fix a 3-manifold (𝑌, b) together with a co-oriented standard convex sphere 𝑆 ⊂ 𝑌 i.e.
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an embedded sphere whose characteristic foliation agrees with that of 𝑆0 ⊂ 𝑌0 in the local model.

It follows that neighbourhoods of 𝑆 ⊂ 𝑌 and 𝑆0 ⊂ 𝑌0 are contactomorphic in a (homotopically)

canonical fashion [30, 25], and by making the support of 𝜏𝑆0 sufficiently close to 𝑆0 we may

therefore implant 𝜏𝑆0 into (𝑌, b) as a compactly supported contactomorphism 𝜏𝑆, which we refer

to as the contact Dehn twist on the co-oriented standard convex sphere 𝑆 ⊂ 𝑌 . The class of 𝜏𝑆 in

𝜋0Cont(𝑌, b) only depends on the isotopy class of 𝑆 in the space of co-oriented standard convex

spheres, defining a map of sets

𝜋0CEmb(𝑆2, (𝑌, b)) → 𝜋0Cont(𝑌, b) , 𝑆 ↦→ 𝜏𝑆

The contactomorphism 𝜏𝑆 makes sense more generally whenever 𝑆 ⊂ 𝑌 is a just a convex co-

oriented sphere with a tight neighbourhood 𝑈 (but not necessarily having standard characteristic

foliation). Indeed, by Giroux’s Criterion [31] the dividing set of 𝑆 is connected. Then by Giroux’s

Realisation theorem, we may find a smooth isotopy of sphere embeddings 𝑆𝑡 whose image lies in

the tight neighbourhood 𝑈, 𝑆0 = 𝑆 and 𝑆1 is a standard convex sphere, to which we associate the

Dehn twist 𝜏𝑆1 by the previous construction. A different choice of isotopy 𝑆′𝑡 may yield a different

standard convex sphere 𝑆′1. The two spheres (𝑆1 and 𝑆′1)) are isotopic within𝑈 as standard convex

spheres by a result of Colin ([10], Proposition 10), so the contact Dehn twists 𝜏𝑆1 and 𝜏𝑆′1 are contact

isotopic. Therefore, we have a well defined contact Dehn twist 𝜏𝑆 ∈ 𝜋0Cont(𝑌, b) associated to

the convex sphere 𝑆 with tight neighbourhood 𝑈. In fact, since any smooth sphere can be made

convex by a small isotopy [30], this construction defines a map

𝜋0Embtight(𝑆2, (𝑌, b)) → 𝜋0Cont(𝑌, b) , 𝑆 ↦→ 𝜏𝑆

where Embtight(𝑆2, (𝑌, b)) stands for the space of smooth co-oriented embeddings 𝑆2 ⊂ 𝑌 which

admit a tight neighbourhood. In particular, if (𝑌, b) is tight (globally) then 𝜏𝑆 only depends up to

contact isotopy on the smooth isotopy class of the co-oriented sphere 𝑆.

The following particular case will play an essential role in this article, so we emphasize it
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now. Consider a Darboux ball 𝐵 = 𝜙(B3) in a contact manifold (𝑌, b). Associated to an exterior

sphere (i.e. contained in the complement 𝑌 \ 𝐵) parallel to 𝜕𝐵 we have a well defined contact

Dehn twist which fixes 𝐵 pointwise. By abuse in notation and for convenience we denote this

contactomorphism by 𝜏𝜕𝐵 even if the Dehn twist is not on the sphere 𝜕𝐵. This defines a map of

sets

𝜋0Emb
(
(B3, bst), (𝑌, b)

)
→ 𝜋0Cont(𝑌, b, 𝐵) , 𝐵 ↦→ 𝜏𝜕𝐵.

The following convenient description of 𝜏𝜕𝐵 follows from the local calculation in the proof of

Lemma 3.2.

Lemma 3.4. The Dehn twist 𝜏𝜕𝐵 ∈ 𝜋0Cont(𝑌, b, 𝐵) agrees with the image of 1 ∈ Z under the map

Z = 𝜋1U(1) → 𝜋1Emb((B3, bst), (𝑌, b)) → 𝜋0Cont(𝑌, b, 𝐵)

where the first map is induced by the reparametrisation map

U(1) → Emb
(
(B3, bst), (𝑌, b)

)
, \ ↦→ 𝜙 ◦ 𝑟\

and the second map is the connecting map in the long exact sequence of the fibration (2.4).

If 𝑆 = 𝑒(𝑆2) ⊂ (𝑌, b) is a co-oriented standard convex sphere, let 𝑆± be two parallel copies of

𝑆 given by pushing 𝑆 forward and backward. By the local calculation in Lemma 3.3 we have:

Lemma 3.5. The product of Dehn twists (𝜏𝑆− )−1𝜏𝑆+ ∈ 𝜋0Cont(𝑌, b, 𝑆) agrees with the image of

1 ∈ Z under the map

Z = 𝜋1U(1) → 𝜋1CEmb
(
𝑆2, (𝑌, b)

)
→ 𝜋0Cont(𝑌, b, 𝑆)
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where the first map is induced by the reparametrisation map

U(1) → CEmb
(
𝑆2, (𝑌, b)

)
, \ ↦→ 𝑒 ◦ 𝑟\

and the second map is the connecting map in the long exact sequence of the fibration (2.7).

3.1.2 The Dehn twist and the evaluation map

We move on to study a relative version of the isotopy problem for the Dehn twist. Consider

the Dehn twist 𝜏𝜕𝐵 on an exterior sphere parallel to the boundary 𝜕𝐵 of a Darboux ball, as in the

previous section. We will now rephrase the problem of whether 𝜏2
𝜕𝐵

defines the trivial class in

𝜋0Cont0(𝑌, b, 𝐵) as a lifting problem.

The main player is the evaluation mapping 𝑒𝑣 : C(𝑌, b) → 𝑆2 defined by (1.3), which is a

fibration (Lemma 2.3). If 𝛿 : 𝜋2𝑆
2 → 𝜋1C(𝑌, b, 𝐵) is the connecting map in the homotopy long

exact sequence, then we have a distinguished class

Ob := 𝛿(1) ∈ 𝜋1C(𝑌, b, 𝐵) (3.1)

which, by construction, is the obstruction class to finding a homotopy section of 𝑒𝑣 (i.e. a map

𝑠 : 𝑆2 → C(𝑌, b) such that 𝑒𝑣 ◦ 𝑠 : 𝑆2 → 𝑆2 has degree one):

𝑒𝑣 admits a homotopy section if and only if Ob = 0 .

We relate the problem of finding a section of 𝑒𝑣 to the triviality of the Dehn twist 𝜏2
𝜕𝐵

as follows.

Consider the connecting map 𝛿′ : 𝜋1C(𝑌, b, 𝐵) → 𝜋0Cont0(𝑌, b, 𝐵) of the fibration (2.3). The key

observation is the following:

Proposition 3.6. The class 𝛿′(Ob) ∈ 𝜋0Cont0(𝑌, b, 𝐵) agrees with the squared contact Dehn twist

𝜏2
𝜕𝐵

.

Proof. Consider first the case when (𝑌, b) is the contact unit ball (B3, bst = Ker(𝑑𝑧+ 1
2𝑥𝑑𝑦−

1
2 𝑦𝑑𝑥))

and 𝐵 ⊂ B3 a subball of smaller radius with center at 0. The fibrations from §2.1.2 fit into a
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commuting diagram

C(B3, bst, 𝐵) C(B3, bst) 𝑆2

Diff0(B3, 𝐵) Diff0(B3) Emb(B3,B3) ≃ SO(3)

Cont0(B3, bst, 𝐵) Cont0(B3, bst) Emb((B3, bst), (B3, bst)) ≃ U(1)

𝑒𝑣

In the third vertical fiber sequence the map 𝜋2𝑆
2 = Z → 𝜋1U(1) = Z is multiplication by 2.

From the diagram we see that the image of Obst ∈ 𝜋1C(B3, bst, 𝐵) in 𝜋0Cont0(B3, bst, 𝐵) can be

alternatively calculated as the image of 2 ∈ Z = 𝜋1U(1) in 𝜋0Cont0(B3, bst, 𝐵). From Lemma 3.4

this is the class of 𝜏2
𝜕𝐵

.

For an arbitrary (𝑌, b) and a Darboux ball 𝐵 ⊂ 𝑌 the result then follows from the previous local

calculation by extending the contact embedding 𝐵 ↩→ 𝑌 to a contact embedding 𝐵 ⊂ B3 ↩→ 𝑌 ,

and considering the commuting diagram

𝜋2𝑆
2 𝜋1C(B3, bst, 𝐵) 𝜋0Cont0(B3, bst, 𝐵)

𝜋2𝑆
2 𝜋1C(𝑌, b, 𝐵) 𝜋0Cont0(𝑌, b, 𝐵).

□

Corollary 3.7. Suppose 𝑌 is aspherical (i.e. irreducible and with infinite fundamental group).

Then 𝜏2
𝜕𝐵

is isotopic to the identity rel. 𝐵 if and only if the evaluation mapping (1.3) admits a

homotopy section (i.e. the obstruction class Ob vanishes).

Proof. By the fibration (2.3) we have the exact sequence

𝜋1Diff0(𝑌, 𝐵) → 𝜋1C(𝑌, b, 𝐵) → 𝜋0Cont0(𝑌, b, 𝐵)

so by Proposition 3.6 the result will follow from 𝜋1Diff (𝑌, 𝐵) = 0. Let us now explain why the
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latter group vanishes. By the fibration (2.5) we have an exact sequence

1→ 𝜋1Diff (𝑌, 𝐵) → 𝜋1Diff (𝑌 ) → 𝜋1Fr(𝑌 ) � 𝜋1𝑌 × Z2 → 𝜋0Diff (𝑌, 𝐵).

Here to have a 1 on the left we use 𝜋2𝑌 = 0 (which follows from 𝑌 being aspherical). Suppose for

the moment that 𝜋1Diff (𝑌 ) → 𝜋1𝑌 was injective. This would give us, by the second exact sequence

above, that the Dehn twist 𝜏𝜕𝐵 is non-trivial in 𝜋0Diff (𝑌, 𝐵) because the class (0, 1) ∈ 𝜋1𝑌 × Z2

is not in the image of 𝜋1Diff (𝑌 ). Thus from the exact sequence we see that 𝜋1Diff (𝑌, 𝐵) = 0,

as required. Finally, because 𝑌 is an aspherical 3-manifold, then 𝜋1Diff0(𝑌 ) → 𝜋1𝑌 is indeed

injective. This follows from the calculation of the homotopy type of the group Diff0(𝑌 ) for all

aspherical1 3-manifolds. More precisely, the papers [39, 41, 38, 44, 58] cover all aspherical 3-

manifolds with the exception of the non-Haken infranil manifolds (see [58] for a nice summary).

The latter consist of the non-trivial 𝑆1-bundles over 𝑇2, which are covered by [1]. In all these

cases Diff0(𝑌 ) has the homotopy type of (𝑆1)𝑘 where 𝑘 is the rank of the center of 𝜋1𝑌 and

𝜋1Diff (𝑌 ) → 𝜋1𝑌 is the inclusion of the center. The proof is now complete. □

3.1.3 Formal triviality of 𝜏2
𝜕𝐵

We continue in the setting of the previous section, and we show

Lemma 3.8. Suppose the Euler class of b vanishes. Then both the loop of contact structures given

by the obstruction class Ob ∈ 𝜋1C(𝑌, b, 𝐵) and the squared Dehn twist 𝜏2
𝜕𝐵
∈ 𝜋0Cont0(𝑌, b, 𝐵) are

formally trivial rel. 𝐵.

Proof. On the space of co-oriented plane fields we have an analogous evaluation mapping (a fibra-

tion also, in fact)

Ξ(𝑌, b) → 𝑆2 , b′ ↦→ b′(0).
1For the irreducible 3-manifolds with finite fundamental group, the calculation of the homotopy type of Diff0 (𝑌 )

has also been completed [43, 3, 2]. Thus, the homotopy type of Diff0 (𝑌 ) is known for all prime 3-manifolds.
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When the Euler class of b vanishes then we may identify Ξ(𝑌, b) with the space Map0(𝑌,𝑆2)

of null-homotopic smooth maps 𝑌 → 𝑆2. The evaluation mapping becomes identified with the

obvious evaluation mapping on this latter space. Clearly this fibration admits a section given by

the constant maps 𝑌 → 𝑆2. Hence, the corresponding obstruction class vanishes, and hence

Ob ∈ Ker
(
𝜋1C(𝑌, b, 𝐵) → 𝜋1Ξ(𝑌, b, 𝐵)

)
so Ob is formally trivial. From the rel. 𝐵 analogue of Corollary 2.6 it follows that 𝜏2

𝜕𝐵
is formally

trivial also. □

3.1.4 Behaviour of Ob under sum

We proceed by discussing how the obstruction class Ob from (3.1) interacts with formation of

connected sums.

First we briefly review a convenient model for the contact connected sum, following [25]. Let

(𝑌±, b±) be two contact 3-manifolds with Darboux balls 𝐵± ⊂ 𝑌± with coordinates 𝑥, 𝑦, 𝑧. On 𝐵±

the contact structures look standard

b± |𝐵± = Ker(𝑑𝑧 + 1
2
𝑥𝑑𝑦 − 1

2
𝑦𝑑𝑥).

Definition 3.1. The connected sum of contact manifolds

(𝑌#, b#) := (𝑌−, b−)#(𝑌+, b+)

is defined as follows. On R4 with coordinates (𝑥, 𝑦, 𝑧, 𝑡) and symplectic form𝜔st = 𝑑𝑥∧𝑑𝑦+𝑑𝑧∧𝑑𝑡,

we have a Liouville vector field 𝑣st =
1
2𝑥𝜕𝑥 +

1
2 𝑦𝜕𝑦 +2𝑧𝜕𝑧− 𝑡𝜕𝑡 which on the hypersurfaces {𝑡 = ±1}

induces the contact structure ker(]𝑣st𝜔st) = Ker(±𝑑𝑧 + 1
2𝑥𝑑𝑦 −

1
2 𝑦𝑑𝑥). Attach a smooth 1-handle

𝐻 := [−1, 1] × B3 by an embedding 𝐻 ↩→ R4 that connects the hyperplanes {𝑡 = ±1} by gluing

{±1} × B3 ⊂ 𝜕𝐻 in a standard manner with B3 ⊂ {𝑡 = ±1}. The embedding of 𝐻 must be such
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that 𝑣st is transverse to the boundaries of 𝐻.

Next, we identify B3 ⊂ {𝑡 = ±1} with Darboux balls 𝐵± ⊂ 𝑌+ (where the identification with 𝐵−

is by the orientation-reversing map (𝑥, 𝑦, 𝑧) ↦→ (𝑥, 𝑦,−𝑧)). Thus, we can glue the boundary piece

[−1, 1] × 𝜕B3 ⊂ 𝐻 to 𝑌− \ 𝐵− ⊔ 𝑌+ \ 𝐵+ and this yields the manifold 𝑌# together with a contact

structure b# that restricts to b± over 𝑌± \ 𝐵±.

We will fix a third Darboux ball 𝐵# ⊂ 𝑌# inside the neck region [−1, 1] × 𝜕B3 ⊂ 𝑌#. We also

have natural inclusions C(𝑌±, b±, 𝐵±) ⊂ C(𝑌#, b#, 𝐵#). We consider their induced maps on 𝜋1

(−)#b+ : 𝜋1C(𝑌−, b−, 𝐵−) → 𝜋1C(𝑌#, b#, 𝐵#)

b−#(−) : 𝜋1C(𝑌+, b+, 𝐵+) → 𝜋1C(𝑌#, b#, 𝐵#)

Proposition 3.9. The obstruction class Ob# ∈ 𝜋1C(𝑌#, b#, 𝐵#) is given by

Ob# = (Ob−#b+) · (b−#Ob+).

Proof. Consider the contact manifold (B3, bst = ker(𝑑𝑧 + 1
2𝑥𝑑𝑦 −

1
2 𝑦𝑑𝑥)) and let 𝐵 ⊂ B3 be a

smaller Darboux ball with center 0 ∈ B3. We first describe an explicit loop in the class Obst ∈

𝜋1C(B, bst, 𝐵). Let 𝑞 : [0, 1] × 𝑆1 → SO(3)/U(1) be a map such that 𝑞(𝑟, 0) = 𝑞(𝑟, 1) = [id] and

the induced map 𝑆(𝑆1) → SO(3)/U(1) from the unreduced suspension of 𝑆1 is a homeomorphism.

By the homotopy lifting property of SO(3) → SO(3)/U(1) we may find matrices 𝐴𝑟,𝜑 ∈ SO(3)

(with (𝑟, 𝜑) ∈ [0, 1] × 𝑆1) such that 𝑞(𝑟, 𝜑) = [𝐴𝑟,𝜑] and 𝐴0,𝜑 = 𝐴𝑟,0 = Id. Consider the vector

field 𝑉𝑟,𝜑 = 𝜕𝜑𝐴𝑟,𝜑 on R3, which we regard as an 𝑟-family of 𝜑-dependent vector fields. Cut off

𝑉𝑟,𝜑 outside 𝐵 and let 𝜙𝜑𝑟 be the induced flow (starting at time 𝜑 = 0) with 𝜑 ∈ R now, which we

regard as a flow on B3 supported in 𝐵. Then b𝑟,𝜑 := (𝜙𝜑𝑟 )∗bst gives a family of contact structures in

C(B3, bst) parametrised by (𝑟, 𝜑) ∈ [0, 1] ×R. Because U(1) ⊂ SO(3) acts by contactomorphisms

of bst then we see that the family b𝑟,𝜑 is in fact parametrised by (𝑟, 𝜑) ∈ [0, 1] × 𝑆1/{0} × 𝑆1 � B2

and b𝑟,0 = bst. Evaluating the B2-family b𝑟,𝑠 at the point 0 ∈ 𝐵 yields a map from 𝑆2 = B2/𝜕B2

into 𝑆(𝑇0𝐵) = 𝑆2 which represents the class of 1 ∈ Z = 𝜋2𝑆
2. The loop of contact structures b1,𝜑 ,
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which lies in C(B3, bst, 𝐵), is therefore a representative of the class Obst .

For an arbitrary (𝑌, b) we obtain a representative loop of Ob ∈ 𝜋1C(𝑌, b, 𝐵) out of the loop

constructed in the previous paragraph extending it by b outside 𝐵 ⊂ 𝑌 . Let b±1,𝜑 denote the loops

representing Ob± ∈ 𝜋1C(𝑌±, b±, 𝐵±). Now, on the 1-handle𝐻 = [−1, 1]×B3 ↩→ R4 from Definition

3.1 we have the B2-family of symplectic structures 𝜔𝑟,𝜑 := (𝜙𝜑𝑟 )∗𝜔st and corresponding Liouville

vector fields 𝑣𝑟,𝜑 := (𝜙𝜑𝑟 )∗𝑣st transverse to the boundaries of 𝐻. The induced B2-family of contact

structures b#,𝑟,𝜑 ∈ C(𝑌#, b#) has the property that b#,1,𝜑 represents Ob# . In a self-evident notation,

we have b#,𝑟,𝜑 = b−𝑟,𝜑#b+𝑟,𝜑. In particular b#,1,𝜑 = b−1,𝜑#b+1,𝜑, which completes the proof.

□

Remark 3.1. In particular, it follows from Propositions 3.9 and 3.6 that 𝜏2
𝜕𝐵+
𝜏2
𝜕𝐵−

= 𝜏2
𝐵#

in 𝜋0Cont0(𝑌#, b#, 𝜕𝐵#).

3.1.5 Examples: trivial Dehn twists

For comparison with Theorem 1.5 we now exhibit examples where the squared Dehn twist on

a connected sum becomes trivial as a contactomorphism.

3.1.5.1 Quotients of 𝑆3

Let Γ be a finite subgroup of U(2). Then Γ preserves the standard contact structure bst =

ker(∑ 𝑗=1,2 𝑥 𝑗𝑑𝑦 𝑗 − 𝑦 𝑗𝑑𝑥 𝑗 ) on the unit 3-sphere 𝑆3, so it descends onto the quotient 𝑀Γ = 𝑆3/Γ.

The 𝑀Γ’s are the spherical 3-manifolds and include, among others, the lens spaces 𝐿 (𝑝, 𝑞) and the

Poincaré sphere Σ(2, 3, 5).

Lemma 3.10. The squared Dehn twist 𝜏2
𝜕𝐵

on the boundary of a Darboux ball 𝐵 ⊂ 𝑀Γ is contact

isotopic to the identity rel. 𝐵. Hence the squared Dehn twist 𝜏2
𝑆#

on the separating sphere 𝑆# in

(𝑌, b)#(𝑀Γ, bst) is contact isotopic to the identity.

Proof. The center of U(2) is given by the subgroup � U(1) of diagonal matrices with diagonal

(_, _) for some _ ∈ U(1). This subgroup acts on 𝑌Γ by contactomorphisms and thus also on the

space of Darboux balls. This gives a map 𝜋1U(1) = Z→ 𝜋1(𝑀Γ ×U(1)) = Γ ×Z which we assert
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is given by 1 ↦→ (𝑒, 2) where 𝑒 ∈ Γ is the identity element. From Lemma 3.4 and this assertion,

the result would follow.

That the component Z → Γ is trivial follows from U(1) being the center of U(2). To verify

that Z → Z is multiplication by 2 we need to calculate the change in contact framing under

the action of U(1). We view 𝑆3 as the unit sphere in the quaternions H = R⟨1, 𝑖, 𝑗 , 𝑘⟩, so the

tangent space at 𝑞 ∈ 𝑆3 is given by 𝑇𝑞𝑆3 = R⟨𝑖𝑞, 𝑗𝑞, 𝑘𝑞⟩ and the standard contact structure is

bst(𝑞) = R⟨ 𝑗𝑞, 𝑘𝑞⟩ = C⟨ 𝑗𝑞⟩. Thus, the frame 𝑗𝑞 trivializes bst � C as a complex line bundle. The

center subgroup U(1) ⊂ U(2) acts on 𝑆3 by (_, 𝑞) ↦→ _𝑞, and the action of U(1) on the frame 𝑗𝑞

is

_ · 𝑗𝑞 = 𝑗_𝑞 = _2 · 𝑗 (_𝑞)

and thus the action on bst � C is by multiplication by _2 on the fibres. This establishes our

assertion, and hence the proof is complete. □

Remark 3.2. When Γ ⊂ SU(2), an alternative proof of Lemma 3.10 can be obtained by instead

exhibiting a section of 𝑒𝑣 : C(𝑀Γ, bst) → 𝑆2. The point is that the radial vector field 𝑥𝜕𝑥 + 𝑦𝜕𝑦 +

𝑧𝜕𝑧 + 𝑤𝜕𝑤 is a Liouville vector field for each of the symplectic forms 𝜔𝑢, 𝑢 ∈ 𝑆2, in the flat

hyperkähler structure of R4. The induced 𝑆2-family of contact structures b𝑢 on 𝑆3 descends to the

quotients 𝑀Γ (with Γ ⊂ SU(2)) and provides a section of 𝑒𝑣.

3.1.5.2 Tight 𝑆1 × 𝑆2

Consider the unique tight contact structure on 𝑆1 × 𝑆2, given by b0 = Ker(𝑧𝑑\ + 1
2𝑥𝑑𝑦 −

1
2 𝑦𝑑𝑥).

Lemma 3.11. The squared Dehn twist 𝜏2
𝜕𝐵

on the boundary of a Darboux ball 𝐵 ⊂ 𝑆1 × 𝑆2 is

contact isotopic to the identity rel. 𝐵. Hence the squared Dehn twist 𝜏2
𝑆#

on the separating sphere

𝑆# in any contact connected sum of the form (𝑌, b)#(𝑆1 × 𝑆2, b0) is contact isotopic to the identity.

Proof. By considering the subgroup U(1) ⊂ Cont(𝑆1×𝑆2, b0) given by rotating the 𝑆2 factor along

the 𝑧-axis one easily checks that 𝜋1(Cont(𝑆1×𝑆2, b0) → 𝜋1Emb((B3, bst), (𝑆1×𝑆2, b0)) → 𝜋1U(1)

is surjective, so the result follows. □
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Remark 3.3. In turn, the contact Dehn twist on the non-trivial sphere in (𝑆1× 𝑆2, b0) is non-trivial

(and with infinite order). However, it is formally non-trivial already and therefore not exotic, see

§3.1.6.

3.1.5.3 Sum with an overtwisted contact 3-manifold

Let (𝑟, \, 𝑧) ∈ R3 be cylindrical coordinates. Consider the contact structure bot in R3 defined

by the kernel of

𝛼ot = cos 𝑟𝑑𝑧 + 𝑟 sin 𝑟𝑑\.

The disk Δot = {(𝑟, \, 𝑧) ∈ R3 : 𝑧 = 0, 𝑟 ≤ 𝜋} is an overtwisted disk.

Definition 3.2 (Eliashberg [19]). An overtwisted contact 3-manifold is a contact 3-manifold that

contains an embedded overtwisted disk.

Let C(𝑌,Δot) be the space of contact structures in 𝑌 with a fixed overtwisted disk Δot ⊂ 𝑌 .

Let Ξ(𝑌,Δot) be the space of co-oriented plane fields in 𝑌 tangent to Δot at the point 0 ∈ Δot. A

foundational result of Eliashberg, generalised in higher dimensions by Borman, Eliashberg and

Murphy, is

Theorem 3.12 (Eliashberg [19, 5] ). The inclusion

C(𝑌,Δot) → Ξ(𝑌,Δot)

is a homotopy equivalence.

Remark 3.4. A relative version Eliashberg’s h-principle is available. Suppose 𝐴 ⊆ 𝑌 \ Δot is

compact and 𝑌\𝐴 is connected. Given a family of co-oriented plane fields b𝑘 ∈ Ξ(𝑌,Δot) that is

contact over an open neighbourhood of 𝐴 there exists a homotopy rel. 𝐴 from b𝑘 to a family of

contact structures.

Using Eliashberg’s ℎ-principle we obtain
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Lemma 3.13. Let (𝑌, b) be a contact 3-manifold with vanishing Euler class. Then, for every

overtwisted contact 3-manifold (𝑀, bot) the squared contact Dehn twist 𝜏2
𝑆#

in (𝑌, b)#(𝑀, bot) is

contact isotopic to the identity.

Proof. Let 𝐵 ⊂ (𝑌, b) be a Darboux ball that we remove when performing the connected sum.

By Lemma 3.8 we have that 𝜏2
𝜕𝐵

is formally contact isotopic to the identity rel. 𝐵. It follows

that 𝜏2
𝑆#

is formally contact isotopic to the identity on 𝑌#𝑀 , in fact relative to a small ball 𝐵ot

containing an overtwisted disk Δot ⊂ 𝑀 . At this point, by Eliashberg’s Theorem 3.12 and Lemma

2.5 applied to the contact 3-manifold with convex boundary (𝑌#(𝑀 \ 𝐵ot), b#bot) we see that

the group of contactomorphisms fixing Δot is homotopy equivalent to the corresponding space of

formal contactomorphisms. The result now follows. □

In §3.3 we will see that Lemma 3.13 implies exotic 1-parametric phenomena in overtwisted

contact 3-manifolds.

3.1.6 The Reidemeister I Move and Gompf’s Contactomorphism

We now describe the contact Dehn twist diagrammatically by means of front projections of

Legendrian arcs. This approach is in the spirit of Gompf’s description [34] of the contact Dehn

twist. For convenience we consider the unit ball (B3, b = ker(𝑑𝑧 − 𝑦𝑑𝑥)). Let 𝑌0 = [−1, 1] × 𝑆2 be

the complement in B3 of a small open ball 𝐵Y around the origin. Consider the standard Legendrian

arc 𝑙 : [−1, 1] → B3 , 𝑡 ↦→ (𝑡, 0, 0). Perform two Reidemeister I moves to the Legendrian 𝑙 to

obtain a second Legendrian arc 𝑙. We may assume that 𝑙 coincides with 𝑙 over the 𝐵Y. The front of

these arcs are depicted in Figure 3.1.

Figure 3.1: Front projection of 𝑙 and 𝑙. The blue ball represents the small ball 𝐵Y ⊂ B3.

These arcs are Legendrian isotopic, so there exists a contact isotopy 𝜑𝑡 ∈ Cont(B3, b) with

𝜑0 = id and 𝜑1 ◦ 𝑙 = 𝑙. Moreover, 𝜑1 can be taken to be the identity over 𝐵Y. Therefore, 𝜑1
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gives a contactomorphism 𝜏 of the contact manifold with convex boundary (𝑌0, b). From now on,

we will denote the restrictions of 𝑙 and 𝑙 to the red segments in Figure 3.1 by the same letters for

convenience. We have 𝜏(𝑙) = 𝑙 and the arc 𝑙 is obtained in (𝑌0, b) from 𝑙 by a positive stabilization,

see Figure 3.2. In particular,

rot(𝜏(𝑙)) = rot(𝑙) + 1.

Figure 3.2: The image of 𝑙 under 𝜏.

It follows that 𝜏 is not (formally) contact isotopic to the identity as a contactomorphism of

(𝑌0, b) rel. 𝜕𝑌0. This contactomorphism is contact isotopic to the contact Dehn twist as we have

defined it in this section. In fact, any contactomorphism of (𝑌0, b) can be described just in terms

of its effect of 𝑙 and, therefore, just by means of front projections of Legendrian arcs. The path-

connected components of the space Leg(𝑌0, b) of unknotted Legendrian embeddings of arcs that

coincide with 𝑙 at the end points can be easily understood:

Lemma 3.14. The map rot : 𝜋0Leg(𝑌0, b) → Z , 𝐿 ↦→ rot(𝐿), is an isomorphism.

Proof. This is an application of the Theorem of Eliashberg and Fraser [21]. Indeed, given two

Legendrian arcs 𝐿1 and 𝐿2 with the same rotation number we can always find another Legendrian

arc 𝐿′ in the ball (B3, b) in such a way that the concatenations 𝐿′#𝐿1 and 𝐿′#𝐿2 are long Leg-

endrian unknots in the ball. Observe that both have the same rotation number by hypothesis and

therefore they differ by a finite number of double stabilizations (pairs of positive and negatives sta-

bilizations). We conclude that 𝐿2 is obtained from 𝐿1, as Legendrian arcs in (𝑌0, b), by a sequence

of double stabilizations. As depicted in Figure 3.3 this shows that both Legendrians are isotopic in

(𝑌0, b). □
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Figure 3.3: Legendrian isotopy from a double stabilization of 𝑙 to 𝑙 in (𝑌0, b).

We conclude the following

Lemma 3.15. The map Cont(𝑌0, b) → Leg(𝑌0, b), 𝑓 ↦→ 𝑓 ◦ 𝑙 is a homotopy equivalence. In

particular,

𝜋0Cont(𝑌0, b) → Z , 𝑓 ↦→ rot( 𝑓 ◦ 𝑙)

is an isomorphism. Moreover, the contact Dehn twist is characterized, up to contact isotopy, by the

relation

rot( 𝑓 (𝑙)) = rot(𝑙) + 1.

Proof. This follows by the previous Lemma, the Eliashberg–Mishachev Theorem 1.9 and Hatcher’s

Theorem [41], since the fiber of Cont(𝑌0, b) → Leg(𝑌0, b) can be identified with the contactomor-

phism group of the complement of a neighbourhood of 𝑙, and the latter is a tight 3-ball. □

3.2 Proofs of main results, assuming Theorem 1.5

3.2.1 Diffeomorphisms of connected sums of two irreducible 3-manifolds

We include here a preliminary result that we shall use, Lemma 3.16.

Consider 𝑌# = 𝑌−#𝑌+ with 𝑌± irreducible. Recall that Hatcher [38] proved

Emb(𝑆2, 𝑌#)𝑆# ≃ SO(3).

This has the following useful consequence:
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Lemma 3.16. Suppose that 𝑌± are aspherical (i.e. irreducible and with infinite fundamental

group). Then 𝜋1Diff (𝑌#) = 0.

Proof of Lemma 3.16. From the fibration (2.8) we have an exact sequence

𝜋1Diff (𝑌−, 𝐵−) × 𝜋1Diff (𝑌+, 𝐵+) 𝜋1Diff (𝑌#) Z2

𝜋0Diff (𝑌−, 𝐵−) × 𝜋0Diff (𝑌+, 𝐵+)

Under the connecting map, the non-trivial element in Z/2 maps to 𝜏𝜕𝐵−𝜏𝜕𝐵+ ∈ 𝜋0Diff (𝑌−, 𝐵−)×

𝜋0Diff (𝑌+, 𝐵+). We saw in the proof of Corollary 3.7 that the Dehn twists 𝜏𝜕𝐵± ∈ 𝜋0Diff (𝑌±, 𝐵±)

are non-trivial and 𝜋1Diff (𝑌±, 𝐵±) = 0. From this and the exact sequence above it now follows that

𝜋1Diff (𝑌#) = 0. □

3.2.2 Proof of Theorem 1.2, assuming Theorem 1.5

We consider the Wang long exact sequence of the fibration 𝑒𝑣 : C(𝑌, b) → 𝑆2, a portion of

which is

𝐻2(C(𝑌, b);Q)
deg
−−→ Q 𝛿−→ 𝐻1(C(𝑌, b, 𝐵);Q).

Because c(b;Q) ∉ Im𝑈, by Formula 1.1 (which follows from Theorem 1.5) we deduce that deg = 0

and thus 𝛿 : Q ↩→ 𝐻1(C(𝑌, b, 𝐵);Q). Recall that 0 ≠ 𝛿(1) is the (homological) obstruction class

Ob .

Since 𝑌 is irreducible and c(b;Q) ∉ Im𝑈 then 𝑌 must be aspherical (as the irreducible 3-

manifolds with finite fundamental group are precisely the quotients of 𝑆3, and for these one has

that the map 𝑈 : }𝐻𝑀∗(−𝑌,Q) → }𝐻𝑀∗(−𝑌,Q) is onto). It follows then from the fact that

𝜋1Diff0(𝑌, 𝐵) = 0 (see the proof of Corollary 3.7) and the long exact sequence for the fibration

(2.3) that

𝐻1(C(𝑌, b, 𝐵);Z) � Ab
(
𝜋0Cont0(𝑌, b, 𝐵)

)
.
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Since the obstruction class 0 ≠ Ob ∈ 𝐻1(C(𝑌, b, 𝐵);Q) corresponds to the class of 𝜏2
𝜕𝐵

on the

right-hand side, we have shown that 𝜏𝜕𝐵 has infinite order in the abelianisation of

𝜋0Cont0(𝑌, b, 𝐵) = Ker
(
𝜋0Cont(𝑌, b, 𝐵) → 𝜋0Diff (𝑌, 𝐵)

)
.

Thus, Theorem 1.2(A) follows. Lemma 3.8 gives part (B).

3.2.3 Proof of Theorem 1.1, assuming Theorem 1.5

By Theorem 2.7 we have

C(𝑌#, b#, 𝐵#) ≃ C(𝑌−, b−, 𝐵−) × C(𝑌+, b+, 𝐵+)

and then by Proposition 3.9 the obstruction class Ob# ∈ 𝜋1C(𝑌#, b#, 𝐵#) to finding a homotopy

section of 𝑒𝑣# : C(𝑌#, b#) → 𝑆2 corresponds to

Ob# � (Ob− ,Ob+) ∈ 𝜋1C(𝑌−, b−, 𝐵−) × 𝜋1C(𝑌+, b+, 𝐵+).

A portion of the Wang long exact sequence for the fibration 𝑒𝑣𝐵# is

Q
𝛿−→ 𝐻1

(
C(𝑌−, b−, 𝐵−),Q

)
⊕ 𝐻1

(
C(𝑌+, b+, 𝐵+);Q

)
→ 𝐻1

(
C(𝑌#, b#);Q

)
→ 0

where 𝛿(1) = Ob# = (Ob− ,Ob+). Because c(b±;Q) ∉ Im𝑈 then as in the proof of Theorem 1.2

above we deduce that Ob± are non-trivial in 𝐻1
(
C(𝑌±, b);Q

)
. It follows that the class (Ob− , 0) is

not in the image of 𝛿, thus the image of (Ob− , 0) in 𝐻1
(
C(𝑌#, b#)

)
is non-trivial.

Now, from Lemma 3.16 we have 𝜋1Diff (𝑌#) = 0 since 𝑌± are aspherical. Then, by the long

exact sequence in homotopy groups of (2.2) it follows that

𝐻1
(
C(𝑌#, b#);Z

)
� Ab

(
𝜋0Cont0(𝑌#, b#)

)
.
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Under this isomorphism, the non-trivial class (Ob− , 0) corresponds to the class of the squared Dehn

twist 𝜏2
𝑆#

by Proposition 3.6. This completes the proof of Theorem 1.5(A).

We now establish Theorem 1.5(B). By Lemma 3.8 we have that the image of 𝜏𝜕𝐵± in 𝜋0FCont0(𝑌±, b±, 𝐵±)

is trivial. Hence, so is the image of 𝜏2
𝑆#

in 𝜋0FCont0(𝑌#, b#). The proof of Theorem 1.1 is now com-

plete. □

3.2.4 Proof of Theorem 1.1, assuming Theorem 1.5

We write (𝑌, b) = (𝑌0, b0)# · · · #(𝑌𝑛, b𝑛)#(𝑀, b𝑀) where (𝑌 𝑗 , b 𝑗 ) are those prime summands

such that c(b 𝑗 ;Q) ∉ Im𝑈 and the Euler class of b 𝑗 vanishes, and (𝑀, b𝑀) is the sum of the

remaining prime summands. We take the latter to be (𝑆3, bst) if there are no prime summands

remaining. We choose Darboux balls 𝐵0− ⊂ 𝑌0, 𝐵𝑀+ ⊂ 𝑀 and for 𝑗 = 1, . . . , 𝑛 we choose two

Darboux balls 𝐵 𝑗± ⊂ 𝑌 𝑗 . We may take the connected sum (𝑌, b) to be built by gluing in the

following order

(
𝑌0 \ 𝐵0−

) ⋃
𝜕𝐵0−=−𝜕𝐵1+

(
𝑌1 \ (𝐵1+ ∪ 𝐵1−)

)
· · ·

(
𝑌𝑘 \ (𝐵𝑛+ ∪ 𝐵𝑛−)

) ⋃
𝜕𝐵𝑛−=−𝜕𝐵𝑀+

(
𝑀 \ 𝐵𝑀+

)
with 𝑛 + 1 separating spheres. Consider the evaluation map at the 𝑛 + 1 south poles of the spheres,

which provides a fibration

F → C(𝑌, b) → (𝑆2)𝑛+1. (3.2)

Theorem 2.7 identifies the fiber as

F ≃ C(𝑌0, 𝐵0−) ×
( ∏
𝑗=1,...,𝑛+1

C(𝑌 𝑗 , 𝐵 𝑗+ ∪ 𝐵 𝑗−)
)
× C(𝑀, 𝐵𝑀+).

Observe that we have homotopy equivalences

C(𝑌 𝑗 , 𝐵 𝑗+ ∪ 𝐵 𝑗−) ≃ Ω𝑆2 × C(𝑌 𝑗 , 𝐵 𝑗−).
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Indeed, the evaluation map corresponding to the ball 𝐵′ gives a fibration

C(𝑌, b, 𝐵 ∪ 𝐵′) → C(𝑌, b, 𝐵)
𝑒𝑣𝐵′−−−→ 𝑆2

but now the map 𝑒𝑣𝐵′ is null-homotopic, as can be seen by dragging the evaluation point (the center

of 𝐵′) into the first ball 𝐵.

With this in place, we now consider the Serre spectral sequence of the fibration (3.2), from

which we can assemble an exact sequence of the form

Q𝑛+1
𝛿−→ 𝐻1(F ;Q) → 𝐻1

(
C(𝑌, b);Q

)
→ 0.

We now give an explicit description of 𝛿. Let 1 stand for the generator of 𝐻1(Ω𝑆2;Q) = Q. By a

slight variation of Proposition 3.9 we have

𝛿(𝑎1, . . . , 𝑎𝑛+1) =
(
𝑎1 · Ob0 , 𝑎1 · 1 , 𝑎2 · Ob1 , 𝑎2 · 1 , . . . , 𝑎𝑛 · 1 , 𝑎𝑛+1 · Ob𝑛 , 𝑎𝑛+1 · Ob𝑀

)
∈ 𝐻1

(
F ;Q

)
By the condition c(b 𝑗 ;Q) ∉ Im𝑈 we deduce as in the proof of Theorem 1.2 above that the classes

Ob 𝑗 ( 𝑗 = 0, . . . , 𝑛) are homologically non-trivial. Hence the 𝑛-dimensional subspace of 𝐻1
(
F ;Q

)
given by the elements

(
𝑏1 · Ob0 , 0 , 𝑏2 · Ob1 , 0 , . . . , 0 , 𝑏𝑛 · Ob𝑛−1 , 0 , 0 , 0

)
, (𝑏 𝑗 ) ∈ Q𝑛

injects as a subspace of 𝐻1
(
C(𝑌, b);Q

)
. The proof of the formal triviality assertion is similar to

the one given for Theorem 1.1. The proof of Theorem 1.3 is now complete. □

Remark 3.5. When𝑌 is the sum of two aspherical 3-manifolds we have 𝜋1Diff (𝑌 ) = 0 (see Lemma

3.16). In the proof of Theorem 1.1 this allowed us to pass from a non-trival element in 𝜋1C(𝑌, b)

to a non-trivial element in 𝜋0Cont0(𝑌, b) via the fibration (2.2). This is a special situation. For
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instance, if 𝑌 is instead the sum of at least three aspherical 3-manifolds then it is known that

𝜋1Diff (𝑌 ) is not finitely generated [56]. A better control on 𝜋1Diff (𝑌 ) for general 𝑌 would allow

us to understand whether the exotic loops of contact structures that we find in Theorem 1.3 yield

non-trivial contactomorphisms (i.e. the Dehn twists on the corresponding separating spheres).

3.3 Exotic phenomena in overtwisted contact 3-manifolds

In this final section we exhibit examples of 1-parametric exotic phenomena in overtwisted

contact 3-manifolds.

On a heuristic level, Eliashberg’s overtwisted ℎ-principle [19] is based on applying Gromov’s

h-principle for open manifolds to the complement of a 3-ball and using the overtwisted disk to

fill in the ball. In the same spirit of this idea is what we call the "overtwisted escape principle",

explained to us by F. Presas, which is a general strategy for proving an ℎ-principle for a family

of objects in a contact manifold (𝑌, b). First, perform the connected sum with an overtwisted

manifold (𝑀, bot), in order to apply the overtwisted h-principle [19, 5] in the contact 3-manifold

(𝑌, b)#(𝑀, bot). This could be thought of as analogous to opening up the 3-manifold in the previous

situation. Secondly, try to isotope the objects for which you want an ℎ-principle so that they avoid

("escape") the overtwisted region (𝑀, bot) \𝐵, where 𝐵 is a Darboux ball. However, there could be

obstructions to carrying out this second step. There are two scenarios: if these obstructions can be

sorted out then our initial problem satisfies an ℎ-principle; if not these obstructions should give rise

to an exotic phenomenon in the overtwisted contact manifold (𝑌, b)#(𝑀, bot). In [8] the authors

succesfully carry out this procedure to prove an existence h-principle for codimension 2 isocontact

embeddings. Next, we will instead start out of a problem in (𝑌, b) which we know is geometrically

obstructed a priori, and from this deduce an exotic overtwisted phenomenon.

Let 𝑒 : 𝑆2 → (𝑌, b) be a standard embedding into a contact manifold (𝑌, b). A formal standard

embedding of a sphere into (𝑌, b) is a pair ( 𝑓 , 𝐹𝑠), 𝑠 ∈ [0, 1], such that 𝑓 ∈ Emb(𝑆2, 𝑌 ) is a

smooth embedding and 𝐹𝑠 : 𝑇𝑆2 → 𝑓 ∗𝑇𝑌 is a homotopy of vector bundle injections with 𝐹0 = 𝑑𝑓

and (𝐹1)∗b = 𝑒∗b ⊂ 𝑇𝑆2. We will denote by FCEmb(𝑆2, (𝑌, b)) the space of formal standard
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embeddings and by FCEmb(𝑆2, (𝑌, b), 𝑠) the subspace of formal standard embedding that coincide

with 𝑒 over an open neighbourhood𝑈 of the south pole 𝑠 ∈ 𝑆2.

Let (𝑀, bot) be an overtwisted contact 3-manifold. Consider the overtwisted contact 3-manifold

(𝑌#, b#) = (𝑌, b)#(𝑀, bot). We will consider the spaces CEmb(𝑆2, (𝑌#, b#), 𝑠) and FCEmb(𝑆2, (𝑌#, b#), 𝑠)

as pointed spaces with base point given by the separating sphere 𝑒 : 𝑆2 ↩→ (𝑌#, b#). We have a

natural inclusion CEmb(𝑆2, (𝑌#, b#), 𝑠) ↩→ FCEmb(𝑆2, (𝑌#, b#), 𝑠). From our previous discussion

and the theory developed in this article we deduce the following

Corollary 3.17. Assume that (𝑌, b) is irreducible, b has vanishing Euler class and c(b) ∉ Im𝑈.

Then, there exists an element with infinite order in

Ker
(
𝜋1CEmb(𝑆2, (𝑌#, b#), 𝑠) → 𝜋1FCEmb(𝑆2, (𝑌#, b#), 𝑠)

)
.

Remark 3.6. • This should be compared with Theorem 2.8, which in particular asserts that

this type of phenomenon does not happen when the underlying contact manifold is tight.

• Under the same assumptions, our proof also yields an element with infinite order in

Ker
(
𝜋1CEmb(𝑆2, (𝑌#, b#)) → 𝜋1FCEmb(𝑆2, (𝑌#, b#))

)
.

Proof. Denote by 𝑆# = 𝑒(𝑆2) the standard separating sphere. Consider the squared Dehntwist

𝜏2
𝑆+#

along a parallel copy 𝑆+# of 𝑆#, where we assume that 𝑆+# is contained in (𝑌, b)\𝐵, where 𝐵

is the Darboux ball used to perform the connected sum. By the vanishing of the Euler class of b

there exists a homotopy through formal contactomorphisms joining the identity with 𝜏2
𝑆+#

(Lemma

3.8). It follows from Eliashberg’s Theorem 3.12 combined with Lemma 2.5 that we can deform

this homotopy (through formal contactomorphisms) to a homotopy 𝜑𝑡 through contactomorphisms

with 𝜑0 = id and 𝜑1 = 𝜏2
𝑆+#

. This process can be done relative to an open neighbourhood of the

south pole 𝑒(𝑠) ∈ (𝑌#𝑀, b#b𝑜𝑡), see Remark 3.4. The loop of standard spheres 𝜑𝑡 ◦ 𝑒 is formally

trivial by construction but geometrically non-trivial. Indeed, the triviality of this loop would imply
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that 𝜏2
𝑆+#

, regarded as a contactomorphism of (𝑌, b), is contact isotopic to the identity rel. 𝐵, which

is in contradiction with Theorem 1.2. □

Given a contact 3-manifold (𝑌, b) and a transverse knot 𝐾 ⊂ (𝑌, b) one can replace a small

tubular neighbourhood of 𝐾 by a Lutz Twist (𝐿𝑇 = D2 × 𝑆1, bot) to obtain an overtwisted contact

manifold (𝑌, b𝐾). Intuitively, the Lutz Twist (𝐿𝑇, bot) is an embedded 𝑆1-family of overtwisted

disks, see [25] for the precise definitions. We will denote by LT(𝑌, b𝐾) the space of contact em-

beddings 𝑒 : (𝐿𝑇, bot) ↩→ (𝑌, b𝐾), regarded as a based space with basepoint the standard one,

and by FLT(𝑌, b𝐾) the corresponding space of formal contact embeddings. As before, there is an

inclusion map LT(𝑌, b𝐾) → FLT(𝑌, b𝐾). The following can be deduced following using the same

strategy as above:

Corollary 3.18. Let (𝑌, b) be a irreducible contact 3-manifold with vanishing Euler class and such

that c(b) ∉ Im𝑈. Consider a Darboux ball 𝐵 ⊂ (𝑌, b) and a transverse knot 𝐾 ⊂ 𝐵. Then, there

exists an element with infinite order in

Ker
(
𝜋1LT(𝑌, b𝐾) → 𝜋1FLT(𝑌, b𝐾)

)
.
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Chapter 4: A monopole invariant for families of contact structures

4.1 Families of spin-c structures and irreducible configurations

In this section we discuss preliminary material regarding spin-c structures as they vary in fam-

ilies.

4.1.1 Basic notions about spin-c structures

We let 𝑀 be an oriented manifold of dimension 𝑛 = 2𝑚 or 𝑛 = 2𝑚 + 1. Our case of interest is

𝑛 = 4 or 𝑛 = 3.

Definition 4.1. A spin-c structure on 𝑀 is a triple 𝔰 = (𝑔, 𝑆, 𝜌) consisting of the following data:

(a) a Riemannian metric 𝑔 on 𝑀

(b) a unitary vector bundle 𝑆 → 𝑀 of rank 2𝑚

(c) a vector bundle map 𝜌 : 𝑇∗𝑀 → Hom(𝑆, 𝑆) which is skew-adjoint 𝜌(𝑣)∗ = −𝜌(𝑣) and

satisfies the Clifford identity 𝜌(𝑣)2 = −|𝑣 |2𝑔 · id𝑆 , for all 𝑣 ∈ 𝑇∗𝑀 .

The bundle 𝑆 is referred to as the spinor bundle of 𝔰 and its sections are spinors; the map 𝜌 is the

Clifford multiplication of 𝔰.

The Clifford multiplication 𝜌 naturally extends to a map from the complexified exterior algebra

𝜌 : Λ•𝑇∗𝑀 ⊗ C→ Hom(𝑆, 𝑆) by the rule

𝜌(𝛼 ∧ 𝛽) = 1
2
(
𝜌(𝛼)𝜌(𝛽) + (−1)deg𝛼·deg 𝛽𝜌(𝛽)𝜌(𝛼)

)
.

From the canonical volume element 𝜔 determined from the metric 𝑔 we form the complex volume

element 𝜔C = 𝑖 ⌊
𝑛+1

2 ⌋𝜔 ∈ Γ(𝑀,Λ𝑛𝑇∗𝑀 ⊗ C). One sees that 𝜌(𝜔C)2 = 1. In the case 𝑛 = 2𝑚 the
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bundle 𝑆 decomposes 𝑆 = 𝑆+ ⊕ 𝑆− as the sum of the ±1-eigensubbundles of 𝜌(𝜔C). Each 𝑆± has

rank 2𝑚−1 and these are referred to as positive or negative spinor bundles. In the case 𝑛 = 2𝑚 + 1

we require in the definition of a spin-c structure that 𝜌(𝜔C) acts on 𝑆 by −1.

If 𝑋 is an oriented manifold of dimension 2𝑚 with 𝜕𝑋 = 𝑌 and we are given a spin-c structure

𝔰𝑋 = (𝑔𝑋 , 𝑆𝑋 , 𝜌𝑋) on 𝑋 , we can restrict it to𝑌 and obtain a spin-c structure 𝔰𝑋 |𝑌 = (𝑔𝑋 |𝑌 , 𝑆+𝑋 |𝑌 , 𝜌𝑌 ).

Here 𝜌𝑌 is defined by 𝜌𝑌 (𝑣) = 𝜌𝑋 (𝑛)−1𝜌𝑋 (𝑣), where 𝑛 stands for the unit outward normal to 𝑌 .

We now describe some further differential geometric notions associated with a spin-c structure:

Definition 4.2. A unitary connection 𝐴 on the unitary bundle 𝑆 → 𝑀 is a spin-c connection if

the Clifford action 𝜌 : 𝑇∗𝑀 → Hom(𝑆, 𝑆) is parallel with respect to the connection on 𝑇𝑀 ⊗

Hom(𝑆, 𝑆) induced by 𝐴 and the Levi-Civita connection of 𝑔.

There is a one-to-one correspondence between spin-c connections on 𝑆 and unitary connections

on the associated line bundle 𝐿 = det𝑆+ if 𝑛 = 2𝑚 (and 𝐿 = det𝑆 if 𝑛 = 2𝑚 +1). The connection on

𝐿 induced by 𝐴 is denoted by �̂�, and the correspondence is just 𝐴 ↦→ �̂�. Thus, the space of spin-c

connections is an affine space over Ω1(𝑀; 𝑖R).

Definition 4.3. The Dirac operator coupled with a spin-c connection 𝐴 is the differential operator

𝐷𝐴 : Γ(𝑋, 𝑆) → (𝑋, 𝑆)

defined by 𝐷𝐴Φ = 𝜌(∇𝐴Φ), where the latter expression denotes the contraction of the 𝑇∗𝑋 and

the 𝑆 component of ∇𝐴 using the Clifford action 𝜌.

The differential operator 𝐷𝐴 is elliptic and self-adjoint. In the case dim𝑀 = 𝑛 = 2𝑚, the

Dirac operator decomposes 𝐷𝐴 = 𝐷+
𝐴
⊕ 𝐷−

𝐴
as a sum of two elliptic differential operators 𝐷±

𝐴
:

Γ(𝑋, 𝑆±) → Γ(𝑋, 𝑆∓).

4.1.2 Changing the metric of a spin-c structure

Given a spin-c structure 𝔰0 = (𝑔0, 𝑆0, 𝜌0) and a different Riemannian metric 𝑔1 on 𝑀 , there is

a natural device for producing a new spin-c structure (𝑔1, 𝑆1, 𝜌1). We describe this now following
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[7].

Consider first a real finite-dimensional vector space 𝑉 equipped with two inner products 𝑔0, 𝑔1.

Then there is a canonical linear isometry 𝑏𝑔1,𝑔0 : (𝑉, 𝑔0)
�−→ (𝑉, 𝑔1), characterised by the property

that it is positive and symmetric with respect to 𝑔0. It is constructed as follows. Write 𝑔1 = 𝑔0(𝐻·, ·)

for a (unique) symmetric positive endomorphism 𝐻 of (𝑉, 𝑔0). Then 𝑏𝑔1,𝑔0 = 𝐻
−1/2 is the required

isometry. Finally, given two Riemannian metrics 𝑔0, 𝑔1 on a manifold 𝑀 , the previous construction

applies fibrewise to produce an isometry 𝑏𝑔1,𝑔0 : (𝑇𝑀, 𝑔0)
�−→ (𝑇𝑀, 𝑔1).

Remark 4.1. The canonical isometry satisfies 𝑏−1
𝑔1,𝑔0 = 𝑏𝑔0,𝑔1 . Unfortunately, in general it is not

functorial: 𝑏𝑔2,𝑔1 ◦ 𝑏𝑔1,𝑔0 ≠ 𝑏𝑔2,𝑔0 (see [7]).

This construction allows us to change the metric in a spin-c structure 𝔰0 = (𝑔0, 𝑆0, 𝜌0). Given

another Riemannian metric 𝑔1, we define 𝑆1 = 𝑆0 and 𝜌1 : 𝑇∗𝑋 → Hom(𝑆0, 𝑆0) as 𝜌1(𝑣) =

𝜌0(𝑏∗𝑔1,𝑔0𝑣). This yields a new spin-c structure 𝔰1 = (𝑔1, 𝑆1, 𝜌1).

Definition 4.4. Given two spin-c structures 𝔰𝑖 = (𝑔𝑖, 𝑆𝑖, 𝜌𝑖) (𝑖 = 0, 1) on 𝑀 , an isomorphism

between them consists of an isomorphism of unitary vector bundles ℎ : 𝑆0
�−→ 𝑆 such that 𝜌1(𝑣) =

ℎ ◦ 𝜌0(𝑏∗𝑔1,𝑔0𝑣) ◦ ℎ
−1 for all 𝑣 ∈ 𝑇∗𝑋 .

It can be shown using Schur’s Lemma that set of isomorphism classes1 of spin-c structures

on 𝑀 is a torsor over the cohomology group 𝐻2(𝑀;Z). Given a unitary line bundle 𝑄 over 𝑀 ,

the action of 𝑐1(𝑄) ∈ 𝐻2(𝑀;Z) on the isomorphism class of the spin-c structure 𝔰 = (𝑔, 𝑆, 𝜌) is

defined by

𝑐1(𝑄) · [𝔰] = [(𝑔, 𝑆 ⊗ 𝑄, 𝜌 ⊗ id𝑄)] .

4.1.3 Irreducible configurations

The space of configurations (𝐴,Φ), where 𝐴 is a spin-c connection on 𝑆, and Φ ∈ Γ(𝑀, 𝑆+)

(resp. Φ ∈ Γ(𝑀, 𝑆) ) when 𝑛 = 2𝑚 (resp. 2𝑚 + 1) is denoted by C(𝑀, 𝔰). We equip C(𝑀, 𝔰) with

1It is clear that "isomorphism" gives a reflexive and symmetric relation on the set of spin-c structures (𝑔, 𝑆, 𝜌); it
can be shown using Schur’s Lemma that it is also transitive, even if 𝑏𝑔2 ,𝑔1 ◦ 𝑏𝑔1 ,𝑔0 = 𝑏𝑔2 ,𝑔1 does not hold in general.
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the𝐶∞ topology. We denote by C∗(𝑀, 𝔰) ⊂ C(𝑀, 𝔰) the open subset of irreducible configurations,

namely those such that Φ is not identically vanishing on 𝑀 . Configurations (𝐴, 0) are called

reducible.

The automorphism group G of a spin-c structure 𝔰 = (𝑔, 𝑆, 𝜌) is referred to as the gauge

group. It can be shown using Schur’s Lemma that G agrees with space of smooth mappings

G = Map(𝑀,U(1)). We make G into a topological group by equipping it with the 𝐶∞ topology.

There is a continuous G-action on C(𝑀, 𝔰): given 𝑣 ∈ G and configuration (𝐴,Φ) we set

𝑣 · (𝐴,Φ) = (𝐴 − 𝑣−1𝑑𝑣, 𝑣Φ).

The G-action is free on C∗(𝑋, 𝔰), whereas it has stabiliser� U(1) at the reducible configurations.

Definition 4.5. The configuration space modulo gauge is the quotient spaceB(𝑋, 𝔰) = C(𝑋, 𝔰)/G.

The subspace C∗(𝑋, 𝔰)/G ⊂ B(𝑋, 𝔰) is denoted B∗(𝑋, 𝔰).

The spaceB(𝑋, 𝔰) is Hausdorff. If an isomorphism ℎ : 𝔰0
�−→ 𝔰1 of two spin-c structures on 𝑋 is

given, there is an induced homeomorphism B(𝑋, 𝔰0)
�−→ B(𝑋, 𝔰1) given by (𝐴,Φ) ↦→ (𝐴ℎ, ℎ(Φ))

where 𝐴ℎ is the unique spin-c connection (for 𝔰1) such that (ℎ(𝐴))𝑡 = (𝐴ℎ)𝑡 .

4.1.4 Families of spin-c structures and irreducible configurations

We now consider continuously-varying families of spin-c structures 𝔰𝑡 = (𝑔𝑡 , 𝑆𝑡 , 𝜌𝑡) on a fixed

oriented smooth manifold 𝑀 parametrised by a "nice" connected topological space 𝑇 . Note that

the isomorphism class of the spin-c structures on 𝑀 given by [𝔰𝑡] is independent of 𝑡 ∈ 𝑇 . We

denote such a 𝑇-family by 𝔰 = (𝔰𝑡)𝑡∈𝑇 . By a 𝑇-family of irreducible configurations on 𝑀 we mean

a 𝑇-family of spin-c structures 𝔰 together with a continuosly varying family of (smooth) irreducible

configurations (𝐴𝑡 ,Φ𝑡) ∈ C∗(𝑀, 𝔰𝑡). Similarly, we adopt the notation (𝐴,Φ) for such a family.

Remark 4.2. We will need to work with smoothly-varying families later on (with 𝑇 a smooth

manifold); however, the discussion that follows applies equally well with only minor modifications.
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There is an obvious notion of "isomorphism" for two families of spin-c structures (resp. ir-

reducible configurations) parametrised by the same space 𝑇 : a continuosly varying 𝑇-family of

isomorphisms of spin-c structures (resp. carrying the irreducible configurations onto one another).

Much as before, the set of isomorphism classes of 𝑇-families of spin-c structures on 𝑀 is a torsor

over the cohomology group 𝐻2(𝑀×𝑇 ;Z). When it comes to families of irreducible configurations,

the relevant "moduli functor" is represented by the irreducible configuration space:

Lemma 4.1. There is a one-to-one correspondence between

(i) the set of isomorphism classes of 𝑇-families of irreducible configurations (𝐴,Φ) on 𝑀 with

underlying isomorphism class of spin-c structure on 𝑀 represented by 𝔰𝑀 , and

(ii) the set of continuous maps Map
(
𝑇,B∗(𝑀, 𝔰𝑀)

)
.

The main point is that B∗(𝑀, 𝔰𝑀) parametrises a universal family (𝐴∞,Φ∞) of irreducible

configurations on 𝑀 . This is constructed as follows. Say 𝔰𝑀 = (𝑔, 𝑆, 𝜌). The pullback of 𝑆

over the product 𝑀 × C∗(𝑀, 𝔰𝑀) is a G-equivariant unitary vector bundle: the action of 𝑣 ∈ G

on the fibres of 𝑆 over {𝑚} × C∗(𝑀, 𝔰𝑀) is given by multiplication by 𝑣(𝑚) ∈ U(1); and the

action on the base is the natural action on the second factor. The G-action on the base is free,

and passing to the quotient we obtain a unitary vector bundle 𝑆∞ over 𝑀 × B∗(𝑀, 𝔰𝑀) with a

B∗(𝑀, 𝔰𝑀)-family of Clifford multiplications. This yields a family of spin-c structures on 𝑀

parametrised by B∗(𝑀, 𝔰𝑀). Furthermore the tautological family of irreducible configurations on

𝑀 parametrised by C∗(𝑀, 𝔰𝑀) descends to a corresponding family of irreducible configurations

(𝐴∞,Φ∞) parametrised by B∗(𝑀, 𝔰𝑀).

Conversely, given a family of irreducible configurations (𝐴,Φ) we construct an associated

classifying map

𝑓𝐴,Φ : 𝑇 → B∗(𝑀, 𝔰𝑀) (4.1)

as follows. For a given 𝑡 ∈ 𝑇 we choose an isomorphism 𝔰𝑡
�−→ 𝔰𝑀 . Using this, we carry the irre-

ducible configuration (𝐴𝑡 ,Φ𝑡) ∈ C∗(𝑀, 𝔰𝑡) to an irreducible configuration (𝐴′𝑡 ,Φ′𝑡) ∈ C∗(𝑀, 𝔰𝑀).
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Choosing a different isomorphism 𝔰𝑡 � 𝔰𝑀 only results in a gauge-equivalent irreducible configu-

ration in C∗(𝑀, 𝔰𝑀). We then set 𝑓𝐴,Φ(𝑡) = [(𝐴′𝑡 ,Φ′𝑡)], which is easily verified to give a continuous

map as we vary 𝑡 ∈ 𝑇 .

Proof of Lemma 4.1. To go from (i) to (ii) we send a 𝑇-family of irreducible configurations (𝐴,Φ)

to its classifying map 𝑓(𝐴,Φ) . For the other direction, if 𝑓 : 𝑇 → B∗(𝑀, 𝔰𝑀) is a continuous map

then the universal family of irreducible configurations (𝐴∞,Φ∞) parametrised by B∗(𝑀, 𝔰𝑀) can

be pulled back along 𝑓 to produce a 𝑇-family of irreducible configurations on 𝑀 .

The two assignments described above are inverse to each other. Indeed, given a family of

irreducible configurations (𝐴,Φ) there is a unique isomorphism of (𝐴,Φ) with the pullback of the

unversal family (𝐴∞,Φ∞) by the map 𝑓𝐴,Φ. The uniqueness follows again from the fact that G acts

freely on irreducible configurations. □

The elementary correspondence from Lemma 4.1 implies the following "slogan" which plays

a role in the upcoming construction of the families contact invariant:

Slogan 4.1. One can trade a (possibly non-trivial) 𝑇-family of spin-c structures on 𝑀 carrying

a 𝑇-family of irreducible configurations for a constant family of spin-c structures on 𝑀 together

with a 𝑇-family of irreducible configurations which are only well-defined up to G-action.

In concrete terms, what this means is the following. Fix an open cover 𝑇 =
⋃
𝑖∈𝐼 𝑈𝑖 by con-

tractible open sets. Then there is a correspondence between:

(i) the set of isomorphism classes of 𝑇-families of irreducible configurations (𝐴,Φ) on 𝑀 with

underlying isomorphism class of spin-c structure on 𝑀 represented by 𝔰𝑀 , and

(ii) isomorphism classes of 𝐼-tuples of continuous maps
(
(𝐴𝑖,Φ𝑖) : 𝑈𝑖 → C∗(𝑀, 𝔰𝑀)

)
𝑖∈𝐼 such

that for each overlap𝑈𝑖 ∩𝑈 𝑗 there exists a (unique) continuous map 𝑣 𝑗𝑖 : 𝑈𝑖 ∩𝑈 𝑗 → G such

that 𝑣 𝑗𝑖 (𝑡) · (𝐴𝑖 (𝑡),Φ𝑖 (𝑡)) = (𝐴 𝑗 (𝑡),Φ 𝑗 (𝑡)).

Let us mention at this point that the role played by certain families of irreducible configurations

(coming from families of contact structures) is going to be to provide natural "boundary conditions"
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for the Seiberg–Witten equations over an end of a non-compact 4-manifold. It will be necessary

later to "trivialise" the family of spin-c structures, and the G-ambiguity of the resulting family

of irreducible configurations will pose no issue due to the G-invariance of the Seiberg–Witten

equation.

4.1.5 Families of irreducible configurations from symplectic and contact structures

4.1.5.1 Symplectic 4-manifolds

Let (𝑋, 𝜔) be a symplectic 4-manifold, oriented by the volume form 𝜔2. We make the auxiliary

choice of an 𝜔-compatible almost-complex structure 𝐽. This means that the tensor 𝑔 = 𝜔(·, 𝐽·)

defines a Riemannian metric. We refer to such a triple (𝜔, 𝐽, 𝑔) as an almost-Kähler structure on

𝑋 .

Definition 4.6. The canonical spin-c structure 𝔰𝜔,𝐽,𝑔 = (𝑔, 𝑆𝜔,𝐽,𝑔, 𝜌𝜔,𝐽,𝑔) determined from the

almost-Kähler structure (𝜔, 𝐽, 𝑔) is given by the following data:

• 𝑆+
𝜔,𝐽,𝑔

= C ⊕ Λ
0,2
𝐽
𝑇∗𝑋 and 𝑆−

𝜔,𝐽,𝑔
= Λ

0,1
𝐽
𝑇∗𝑋 , equipped with the hermitian metrics naturally

induced from 𝑔.

• the Clifford multiplication by [ ∈ 𝑇∗𝑋 has the component 𝜌+
𝜔,𝐽,𝑔
([) : 𝑆+

𝜔,𝐽,𝑔
→ 𝑆−

𝜔,𝐽,𝑔

defined by

𝜌+𝜔,𝐽,𝑔 ([) (𝛼, 𝛽) =
√

2([0,1 ∧ 𝛼 − ][0,1𝛽).

Above, ]𝑋 stands for contraction by 𝑋 on the first component, and [0,1 is the (0, 1)-part of the

metric dual tangent vector of [. The remaining component of the Clifford action, 𝜌−
𝜔,𝐽,𝑔

: 𝑆−
𝜔,𝐽,𝑔
→

𝑆+
𝜔,𝐽,𝑔

can be recovered from the above, using the fact that 𝜌𝜔,𝐽,𝑔 should be skew-adjoint.

A computation shows that the Clifford action of the symplectic form 𝜌𝜔,𝐽,𝑔 (𝜔) : 𝑆+
𝜔,𝐽,𝑔

→

𝑆+
𝜔,𝐽,𝑔

is given by −2𝑖 on C and +2𝑖 on Λ
0,2
𝐽

. Observe that there is a canonical section Φ𝜔,𝐽,𝑔 of

𝑆+
𝜔,𝐽,𝑔

given by constant 1 on the C component.
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Lemma 4.2. [78] There exists a unique spin-c connection 𝐴𝜔,𝐽,𝑔 on 𝑆𝜔,𝐽,𝑔 such that

𝐷+𝐴𝜔,𝐽,𝑔Φ𝜔,𝐽,𝑔 = 0.

Remark 4.3. Alternatively, 𝐴𝜔,𝐽,𝑔 is uniquely characterised by the property that the covariant

derivative ∇𝐴𝜔,𝐽,𝑔Φ𝜔,𝐽,𝑔 is a 1-form with values in the subbundle Λ
0,2
𝐽
𝑇∗𝑋 .

Definition 4.7. The canonical configuration associated to (𝜔, 𝐽, 𝑔) is the pair (𝐴𝜔,𝐽,𝑔,Φ𝜔,𝐽,𝑔) ∈

C∗(𝑋, 𝔰𝜔,𝐽,𝑔).

Thus, the space of almost-Kähler structures on 𝑋 parametrises a family of irreducible configu-

rations on 𝑋 .

Remark 4.4. It is a fundamental Theorem of Taubes [78] that the Seiberg–Witten invariant SW(𝔰𝜔,𝐽,𝑔) ∈

Z of the canonical spin-c structure of a closed symplectic 4-manifold with 𝑏+(𝑋) > 1 is non-

vanishing. Taubes’ proof shows that, for a suitable large perturbation of the Seiberg–Witten equa-

tions, the canonical configuration becomes the only solution to the equations, modulo G-action.

4.1.5.2 Contact 3-manifolds

Let (𝑌, b) be a contact 3-manifold. We now choose the auxiliary data of a complex structure 𝑗

on the contact distribution (inducing the positive orientation) and a (positive) contact form 𝛼. We

will refer to such a triple as contact metric structure. Indeed, given (b, 𝛼, 𝑗) there exists a unique

Riemannian metric 𝑔b,𝛼, 𝑗 on 𝑌 characterised by

• |𝛼 |𝑔b ,𝛼, 𝑗 = 1

• 𝑑𝛼 = 2 ∗ 𝛼 where ∗ is the Hodge star operator of 𝑔b,𝛼, 𝑗

• 𝑗 is an isometry of (b, 𝑔b,𝛼, 𝑗 ).

Observe that the Reeb vector field 𝑅 (determined uniquely by the requirement that 𝛼(𝑅) = 1

and 𝑑𝛼(𝑅, ·) = 0) is 𝑔b,𝛼, 𝑗 -orthogonal to the contact plane b. It is convenient to regard 𝑗 as an
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endomorphism of 𝑇𝑌 by setting 𝑗 (𝑅) = 0. Then, we can write down explicitly the Riemannian

metric 𝑔𝛼, 𝑗 as

𝑔b,𝛼, 𝑗 = 𝛼 ⊗ 𝛼 +
1
2
𝑑𝛼(·, 𝑗 ·). (4.2)

Definition 4.8. The canonical spin-c structure 𝔰b,𝛼, 𝑗 = (𝑔b,𝛼, 𝑗 , 𝑆b,𝛼, 𝑗 , 𝜌b,𝛼, 𝑗 ) determined from the

contact structure b and the auxiliary data 𝛼, 𝑗 is given by the following data

• 𝑆b,𝛼, 𝑗 = C ⊕ ⟨𝛼⟩⊥ where the second factor is the 𝑔b,𝛼, 𝑗 -orthogonal complement of 𝛼 inside

of 𝑇∗𝑌

• 𝜌b,𝛼, 𝑗 ([) (𝑥, 𝑦) = (𝑖[(𝑅)𝑥,−𝑖[(𝑅)𝑦) −
√

2([0,1𝑥 − ][0,1𝑦) for [ ∈ 𝑇∗𝑌 .

For the above, note that we can decompose [ ∈ 𝑇∗𝑌 as [ = [(𝑅)𝛼 + [1,0 + [0,1 where [𝑝,𝑞 ∈

⟨𝛼⟩⊥ ⊗R C stands for the (𝑝, 𝑞) component of the projection to ⟨𝛼 ⟩⊥ of [, using the complex

structure 𝑗 on ⟨𝛼 ⟩⊥.

The 3-dimensional contact analogue of Taubes’ Theorem about closed symplectic 4-manifolds

now states that for a contact structure b which admits a strong symplectic filling, the contact invari-

ant c(b) ∈ }𝐻𝑀
∗(−𝑌,−𝔰b,𝛼, 𝑗 ), is non-vanishing. A monopole Floer proof of this result has recently

been given by Echeverria [17].

Given a contact form 𝛼 for (𝑌, b), by its symplectization we will mean the symplectic manifold

(with concave boundary) (𝐾, 𝜔) where 𝐾 = [1, +∞) × 𝑌 and

𝜔 = 𝑑 ( 𝑠
2

2
𝛼) = 𝑠𝑑𝑠 ∧ 𝛼 + 𝑠

2

2
𝑑𝛼. (4.3)

If we start with a triple (b, 𝛼, 𝑗) on 𝑌 , we obtain an almost-Kähler structure (𝜔, 𝐽, 𝑔) on 𝐾 by

having 𝐽 agree with 𝑗 on b = ker𝛼 and setting

𝐽 (𝜕/𝜕𝑠) = 1
𝑠
𝑅 (4.4)
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where 𝑅 is the Reeb vector field of 𝛼. It follows that the Riemannian metric 𝑔 = 𝜔(·, 𝐽·) over

𝐾 = [1, +∞) × 𝑌 is the cone metric over (𝑌, 𝑔b,𝛼, 𝑗 ), namely

𝑔 = 𝑑𝑠2 + 𝑠2𝑔b,𝛼, 𝑗 .

Lemma 4.3 ([16], Lemma 35). There is a canonical identification of spin-c structures on −𝑌 = 𝜕𝐾

(𝔰𝜔,𝐽,𝑔) |−𝑌 � −𝔰b,𝛼, 𝑗 .

Above we denote by −𝔰b,𝛼, 𝑗 the induced spin-c structure on −𝑌 (obtained by adding a negative

sign to the Clifford multiplication).

Definition 4.9. The canonical configuration associated to (b, 𝛼, 𝑗) is the pair (𝐴b,𝛼, 𝑗 ,Φb,𝛼, 𝑗 ) ∈

C∗(𝑌, 𝔰b,𝛼, 𝑗 ) obtained by restriction onto 𝑌 of the canonical configurations (𝐴𝜔,𝐽,𝑔,Φ𝜔,𝐽,𝑔) ∈

C∗(𝐾, 𝔰𝜔,𝐽,𝑔) associated to the almost-Kähler structure (𝜔, 𝐽, 𝑔) on 𝐾 = [1, +∞) × 𝑌 .

Thus, the space of contact metric structures parametrises a family of irreducible configurations

on 𝑌 and 𝐾 = [1, +∞) × 𝑌 .

4.2 Construction of the families contact invariant

In this section we construct the families contact invariant (1.4). There is a Poincaré duality for

the Floer groups [[49], §3], }𝐻𝑀∗(−𝑌, 𝔰b0) � 𝐻𝑀
∗(𝑌, 𝔰b0), and the map (1.4) most naturally arises

as a map into the latter group: the from version of the monopole Floer cohomology groups. We

give a rough outline of this construction before going into the details.

First, we equip contact structures with auxiliary structures. Let CM(𝑌, b0) be the space of

contact metric structures (see §4.1.5.2) (b, 𝛼, 𝑗) on 𝑌 such that the contact structures b and b0 are

isotopic. The forgetful projection induces a weak homotopy equivalence CM(𝑌, b0) ≃ C(𝑌, b0).

We will also find it convenient to work within the realm of Banach spaces. A way to do this is

by considering triples (b, 𝛼, 𝑗) where 𝛼 (and hence b) is only assumed to be of class 𝐶 𝑙 , and
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the complex structure 𝑗 is of class 𝐶 𝑙−1, for a suitable positive integer 𝑙. The metric 𝑔b,𝛼, 𝑗 (see

(4.2)) determined from the triple (b, 𝛼, 𝑗) is therefore of class 𝐶 𝑙−1. The space of such triples is a

Banach manifold homotopy equivalent to the space of 𝐶∞ triples. From now on, we will reserve

the notation CM(𝑌, b0) for this more convenient Banach manifold version only.

Associated to each triple in CM(𝑌, b0) and each element of a certain Banach space of per-

turbations P we consider the Seiberg–Witten monopole equations over a certain non-compact

4-manifold 𝑍+, with suitable asymptotics over its ends to canonical configurations determined by

the contact structures together with critical points of the Chern-Simons functional. This leads to a

universal moduli space of solutions, which is a Banach manifold equipped with a Fredholm map

𝔐(𝑍+) 𝜋−→ CM(𝑌, b0) × P .

The moduli space decomposes according to critical points of the Chern-Simons-Dirac func-

tional

𝔐(𝑍+) =
⋃
[𝔞]

𝔐( [𝔞], 𝑍+).

Given a generic cycle𝑇 in CM(𝐾, b0)× P transverse to the Fredholm map 𝜋, we count isolated

points in 𝔐(𝑍+) which lie over 𝑇 , and this leads to integers #(𝔐( [𝔞], 𝑍+) · 𝑇) ∈ Z. Indexing the

counts by the critical points [𝔞] we obtain a cocycle in the Floer cochain complex

𝜓(𝑇) =
∑︁
[𝔞]

#
(
𝔐( [𝔞], 𝑍+) · 𝑇

)
· [𝔞] ∈ 𝐶∗(𝑌, 𝔰b0; 𝑅).

This yields the homomorphism (1.4). In fact, we will be able to define the homomorphism at the

chain level.

4.2.1 Differential-geometric aspects

4.2.1.1 The symplectic end and the cylindrical end

We start by discussing the various metric structures that come into the construction.

75



Remark 4.5. For ease in notation we will denote elements of CM(𝑌, b0) by the symbol 𝑡. When

we need to make reference to it, the contact metric structure on 𝑌 associated to 𝑡 is denoted

(b𝑡 , 𝛼𝑡 , 𝑗𝑡). From now on, we also fix a 𝐶∞ base triple (b0, 𝛼0, 𝑗0) ∈ CM(𝑌, b0).

Let 𝑍+ be the non-compact 4-manifold R × 𝑌 with the product orientation. Let 𝐾 = [1, +∞) ×

𝑌 ⊂ 𝑍+ and 𝑍 = (−∞, 0] × 𝑌 . For each 𝑡 ∈ CM(𝑌, b0) we have an almost-Kähler structure

(𝜔𝑡 , 𝐽𝑡 , 𝑔𝑡) over 𝐾 obtained from (4.3-4.4), where 𝜔𝑡 is 𝐶 𝑙−1, 𝐽𝑡 is 𝐶 𝑙 and 𝑔𝑡 is 𝐶 𝑙−1. Recall that 𝑔𝑡

is the cone metric over (𝑌, 𝑔b𝑡 ,𝛼𝑡 , 𝑗𝑡 ), namely 𝑔𝑡 = 𝑑𝑠2 + 𝑠2𝑔b𝑡 ,𝛼𝑡 , 𝑗𝑡 .

We now extend the metric 𝑔𝑡 from 𝐾 to the whole of 𝑍+. Over 𝑍 = (−∞, 0] × 𝑌 the metric 𝑔𝑡

agrees with the cylindrical product metric 𝑑𝑠2 + 𝑔b0,𝛼0, 𝑗0 . We fix the behaviour of the metric 𝑔 over

the region [0, 1] × 𝑌 as follows. Choose a smooth function ^ : [0, 1] → R≥0 such that ^ ≡ 1 on a

neighbourhood of [0, 1/2] and ^ ≡ 0 on a neighbourhood of 1. Then the metric 𝑔𝑡 over the region

[0, 1] × 𝑌 is defined as 𝑑𝑠2 + ^(𝑡)𝑔b0,𝛼0, 𝑗0 + (1 − ^(𝑠))𝑠2𝑔b𝑡 ,𝛼𝑡 , 𝑗𝑡 .

We will refer to 𝐾 as the conical or symplectic end of 𝑍+, and to 𝑍 as the cylindrical end.

Observe that in this construction the family of metrics 𝑔𝑡 restricted over the cylindrical end 𝑍 is in-

dependent of 𝑡 (it only depends on the fixed base triple (b0, 𝛼0, 𝑗0)). We will denote by (𝑔0, 𝜔0, 𝐽0)

the corresponding structures determined by the base triple (b0, 𝛼0, 𝑗0).

4.2.1.2 Families of spin-c structures and canonical configurations

We move on now to discuss families of spin-c structures and irreducible configurations on the

non-compact manifold 𝑍+. The latter will provide us with the right boundary conditions for the

Seiberg–Witten equations over the symplectic end later on.

We consider the "trivial" family of spin-c structures on 𝑍+ parametrised by CM(𝑌, b0). Namely,

we start with the spin-c structure 𝔰𝜔0,𝐽0,𝑔0 on 𝐾 determined by the almost-Kähler structure (𝜔0, 𝐽0, 𝑔0)

(see §4.1.5.1). By Lemma 4.3 we have 𝔰𝜔0,𝐽0,𝑔0 |−𝑌 = −𝔰b0,𝛼0, 𝑗0 . Hence, we may extend the spin-c

structure 𝔰𝜔0,𝐽0,𝑔0 from 𝐾 over to the whole of 𝑍+ in a translation-invariant manner over 𝑍+ \ 𝐾 .

We denote this spin-c structure on 𝑍+ by 𝔯0 = (𝑔0, 𝑆, 𝜌). Finally, by changing metrics we ob-

tain a family of spin-c structures on 𝑍+ parametrised by CM(𝑌, b0): for 𝑡 ∈ CM(𝑌, b0) we set
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𝔯𝑡 = (𝑔𝑡 , 𝑆, 𝜌𝑡) with 𝜌𝑡 = 𝜌 ◦ 𝑏∗𝑔𝑡 ,𝑔0 . Observe that the spinor bundle of 𝔯𝑡 is 𝑆, independent of 𝑡.

We now discuss irreducible configurations on 𝑍+ parametrised by CM(𝑌, b0). The Clifford

action of the symplectic structures gives a trace-less skew-adjoint map 𝜌𝑡 (𝜔𝑡) : 𝑆+ |𝐾 → 𝑆+ |𝐾 such

that 𝜌(𝜔𝑡)2 = −4 · id𝑆+ |𝐾 . This induces a decomposition

𝑆+ |𝐾 = 𝐸−(𝑡) ⊕ 𝐸+(𝑡)

into ∓2𝑖 eigensubbundles (each with with rank 1). Because 𝔯𝑡 is (non-canonically!) isomorphic

over 𝐾 to the spin-c structure induced from (𝜔𝑡 , 𝐽𝑡 , 𝑔𝑡) it follows that the −2𝑖 eigensubbundle

admits a trivialisation 𝐸−(𝑡) ≈ C for each 𝑡. We warn the reader that, as a bundle over 𝐾 ×

CM(𝑌, b0), the bundle 𝐸− need not admit a trivialisation.

Let 𝑈 ⊂ CM(𝑌, b0) be an open contractible subset. Then we may choose a unitary trivialisa-

tion of 𝐸− over 𝐾 × 𝑈 and obtain a 𝑈-family of nowhere-vanishing spinors Φ𝑡 ∈ Γ(𝐾, 𝐸−) with

pointwise unit length. As in §4.1.5.1 there is a unique 𝑈-family of spin-c connections 𝐴𝑡 over

𝐾 such that 𝐷+
𝐴𝑡
Φ𝑡 = 0. We refer to the 𝑈-family of irreducible configurations (𝐴𝑡 ,Φ𝑡) as the

canonical configurations over the symplectic end (associated to a given trivialisation of 𝐸− over

𝐾 ×𝑈).

Remark 4.6. By putting together the canonical configurations (𝐴𝑡 ,Φ𝑡) over all 𝑈 ⊂ CM(𝑌, b0)

(and applying a further change of metrics back to 𝑔0) we obtain a continuous map

𝑓 : CM(𝑌, b0) → B∗(𝐾, 𝔰𝜔0,𝐽0,𝑔0).

The interpretation of this map is clear: the space CM(𝑌, b0) parametrises a family of almost-

Kähler structures on 𝐾 , which in turn parametrises a family of irreducible configurations over 𝐾

as in §4.1.5.1. The classifying map for this family (in the sense of Lemma 4.1) is the map 𝑓 . At

a heuristic level, the families contact invariant that we construct in this section should be regarded

as a sort of "pushforward map in homology" induced by 𝑓 .
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4.2.1.3 Translation invariance of the canonical configurations

We now discuss how the canonical configurations over the symplectic end can be made trans-

lation invariant in a suitable sense, which will become convenient occasionally.

Recall that 𝑔𝑡 = 𝑑𝑠2 + 𝑠2𝑔b𝑡 ,𝛼𝑡 , 𝑗𝑡 is a conical metric over 𝐾 = [1, +∞) ×𝑌 . Denote by 𝑔𝑡 = 𝑑𝑠
2 +

𝑔b𝑡 ,𝛼𝑡 , 𝑗𝑡 the corresponding cylindrical metric. The rescaling operator R𝑡 : (𝑇𝐾, 𝑔𝑡) → (𝑇𝐾, 𝑔𝑡)

gives an isometry between the two metrics:

R𝑡 (𝜕𝑠) = 𝜕𝑠

R𝑡 (𝑣) =
1
𝑠
𝑣 , 𝑣 ∈ 𝑇𝑌 .

The almost complex structure 𝐽𝑡 is carried to a translation-invariant almost complex structure 𝐽𝑡 =

R−1
𝑡 ◦ 𝐽𝑡 ◦ R𝑡 , and we have corresponding unitary vector bundle isometries

R∗𝑡 : (Λ𝑝,𝑞

𝐽𝑡
𝑇∗𝐾, ℎ𝑡) → (Λ𝑝,𝑞

𝐽𝑡
𝑇∗𝐾, ℎ𝑡)

where ℎ𝑡 and ℎ𝑡 stand for the hermitian metrics determined by the pairs (𝑔𝑡 , 𝐽𝑡) and (𝑔𝑡 , 𝐽𝑡).

At this point, we recall that the spinor bundle 𝑆 = 𝑆+ ⊕ 𝑆− underlying our family of spin-c

structures 𝔯𝑡 is independent of 𝑡 and has the following form over 𝐾 (see §4.2.1.2 and §4.1.5.1):

𝑆+ = C ⊕ Λ
0,2
𝐽0
𝑇∗𝐾 , 𝑆− = Λ

1,1
𝐽0
𝑇∗𝐾.

The "rescaled" unitary bundle 𝑆+ := C ⊕ Λ
0,2
𝐽0
𝑇∗𝐾 (and likewise for 𝑆−) is identified with the

pullback to 𝐾 = [1, +∞) × 𝑌 of a bundle over 𝑌 , and hence one can speak of translation-invariant

sections or connections on this bundle. We have:

Lemma 4.4. Let (𝐴𝑡 ,Φ𝑡) be a𝑈-family of canonical configurations on 𝐾 , for a contractible open

𝑈 ⊂ CM(𝑌, b0). After applying a 𝑈-family of smooth gauge transformations 𝑔𝑡 : 𝐾 → U(1) to

(𝐴𝑡 ,Φ𝑡) we may assume that:

78



(i) the sections Φ𝑡 := R∗0Φ𝑡 ∈ Γ(𝐾, 𝑆+) are translation-invariant, and

(ii) the connections 𝐴𝑡 := R∗0𝐴𝑡 on 𝑆 = 𝑆+ ⊕ 𝑆− are translation-invariant.

Definition 4.10. A family of canonical configurations (𝐴𝑡 ,Φ𝑡) over 𝐾 parametrised by 𝑈 is in

translation-invariant form if it satisfies (i)-(ii) above.

Proof of Lemma 4.4. The family of spin-c structures 𝔯𝑡 = (𝑔𝑡 , 𝑆, 𝜌𝑡) is isomorphic, via the rescaling

operator R∗, to the family of spin-c structures 𝔯𝑡 = (𝑔𝑡 , 𝑆, 𝜌𝑡) where

𝜌𝑡 (𝑣) = R∗0𝜌𝑡 ((R
∗
𝑡 )−1𝑣) (R∗0)

−1, 𝑣 ∈ 𝑇∗𝐾. (4.5)

Now, we have a translation-invariant non-degenerate 2-form 𝜔𝑡 := R∗𝜔𝑡 = 𝑑𝑠 ∧ 𝛼𝑡 + 1
2𝑑𝛼𝑡 , so

the −2𝑖-eigensubbundle 𝐸− ⊂ 𝑆+ corresponding to the action of 𝜌𝑢 (𝜔𝑢) on 𝑆+ is also translation-

invariant. Thus, in view of (4.5) the assertion (𝑖) is clear: one chooses a trivialisation of 𝐸− over

𝐾 × 𝑈 by a translation-invariant unit section 𝑒 ∈ Γ(𝐾 × 𝑈, 𝐸−) to obtain a 𝑈-family of sections

(R∗𝑡 )−1𝑒(·, 𝑡) ∈ Γ(𝐾, 𝐸−(𝑡)) which agree with Φ𝑡 up to gauge transformations. Next, we verify

that (𝑖𝑖) holds assuming that Φ𝑡 satisfies (𝑖). Write the covariant derivative with respect to (R0)∗𝐴𝑡

as 𝑑
𝑑𝑠
+ ∇𝐵𝑡 (𝑠) + 𝑐𝑡 (𝑠)𝑑𝑠, where for each 𝑡 we have paths of connections 𝑠 ↦→ 𝐵𝑡 (𝑠) and 𝑖R-valued

functions 𝑠 ↦→ 𝑐𝑡 (𝑠) on 𝑌 (parametrised by 𝑠 ∈ [1, +∞)). Recall that 𝐴𝑡 can be characterised by

the property that ∇𝐴𝑡Φ𝑡 is orthogonal to Φ𝑡 (see Remark after Lemma 4.2) we obtain

⟨∇𝐵𝑡 (𝑠)Φ𝑡 ,Φ𝑡⟩ℎ0
+ 𝑐𝑡 (𝑠)𝑑𝑠 ≡ 0.

It follows that both terms above vanish. The vanishing of ⟨∇𝐵𝑡 (𝑠)Φ𝑡 ,Φ𝑡⟩ℎ0
also gives us that 𝐵𝑡 (𝑠)

is independent of 𝑠 since Φ𝑡 is translation-invariant. Thus, (ii) follows. □

4.2.1.4 A basic example

It may be instructive to review the above constructions in a particularly simple case.
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Consider the flat hyperkähler structure (𝑔0, 𝐽1, 𝐽2, 𝐽3) on R4. The radial vector field 𝑣 = 𝑥𝜕𝑥 +

𝑦𝜕𝑦 + 𝑧𝜕𝑧 + 𝑤𝜕𝑤 in R4 is Liouville for all symplectic structures in the family 𝜔𝑡 =
∑3
𝑖=1 𝑡𝑖𝑔0(𝐽𝑖 ·, ·)

parametrised by 𝑡 ∈ 𝑆2 ⊂ R3 (i.e. L𝑣𝜔𝑢 = 𝜔𝑢) and 𝑣 is transverse to 𝑆3 ⊂ R4. Thus there is

an 𝑆2-family of contact forms 𝛼𝑡 on 𝑆3 given by 𝛼𝑡 = ]𝑉𝜔𝑡 . This family of contact structures is

SU(2)-invariant, and thus will descend to a family of contact structures on the quotients 𝑆3/Γ by

a finite subgroup Γ ⊂ SU(2). The manifolds 𝑆3/Γ are precisely the links of the ADE singularities

(which include e.g. the lens spaces 𝐿 (𝑝, 𝑝 − 1) or the Poincaré sphere Σ(2, 3, 5) ).

Let 𝑌 = 𝑆3/Γ. A complex structure 𝑗𝑡 on the contact distribution b𝑡 = ker𝛼𝑡 is obtained

by restricting 𝐽𝑡 =
∑
𝑖 𝑡𝑖𝐽𝑖. We thus have a family (b𝑡 , 𝛼𝑡 , 𝑗𝑡) ∈ CM(𝑆3, b0), and we take the

base triple (b0, 𝛼0, 𝑗0) := (b𝑡 , 𝛼𝑡 , 𝑗𝑡) |𝑡=(1,0,0) . The associated family of almost-Kähler structures on

𝐾 = [1, +∞) × 𝑌 agrees with the flat hyperkähler structure under the identification

𝐾 � (R4 \ {𝑥2 + 𝑦2 + 𝑧2 + 𝑤2 < 1})/Γ , (𝑠, (𝑥, 𝑦, 𝑧, 𝑤)) ↦→ (𝑠𝑥, 𝑠𝑦, 𝑠𝑧, 𝑠𝑤).

We next calculate canonical configurations. The positive spinor bundle is 𝑆+ = C ⊕ Λ0,2
𝐽1
𝑇∗𝐾 �

C2, and we have trivialised Λ
0,2
𝐽1
𝑇∗𝐾 using 1

2𝑑𝑧
1∧𝑑𝑧2. Likewise 𝑆− � C2. The Clifford multiplica-

tions 𝜌𝑡 = 𝜌 are independent of 𝑡. The symplectic forms 𝜔𝑖 = 𝑔0(𝐽𝑖, ) have the following Clifford

actions on 𝑆+ = C2:

𝜌(𝜔1) =
©«
−2𝑖 0

0 2𝑖

ª®®¬ 𝜌(𝜔2) =
©«
0 −2

2 0

ª®®¬ 𝜌(𝜔3) =
©«

0 2𝑖

2𝑖 0

ª®®¬ .
and thus

𝜌(𝜔𝑡) =
©«
−2𝑖𝑡1 −2(𝑡2 − 𝑖𝑡3)

2(𝑡2 + 𝑖𝑡3) 2𝑖𝑡1

ª®®¬ .
An 𝑆2-family of sections of −2𝑖-eigenspace of 𝜌(𝜔𝑡) is (1+ 𝑡1, 𝑖𝑡2 − 𝑡3). Each has a transverse zero

at 𝑡 = (−1, 0, 0) and is non-vanishing elsewhere. This means that 𝐸− is not trivial over 𝐾 × 𝑆2.
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Normalising we obtain a family of unit length sections of 𝐸−(𝑡) over 𝐾 for 𝑡 ∈ 𝑈1 := 𝑆2\(−1, 0, 0):

Φ𝑡 =
(√︂1 + 𝑡1

2
,
𝑖𝑡2 − 𝑡3√︁
2(1 + 𝑡1)

)
∈ 𝑆+ = C2.

The corresponding family of spin-c connections 𝐴𝑡 is independent of 𝑡 and is given by the trivial

connection on 𝑆 = 𝑆+ ⊕ 𝑆− = C2 ⊕ C2. The family of canonical configurations carried by 𝑈1 that

we just constructed is also in translation-invariant form.

4.2.2 Space of configurations

We now construct a suitable space of configurations (𝐴,Φ) over the symplectic end 𝐾 which

has the structure of a Banach manifold.

4.2.2.1 Sobolev spaces on non-compact manifolds

To work in the convenient setting of Fredholm theory we make use of Sobolev spaces over the

non-compact symplectic end. On a Riemannian manifold (𝑀, 𝑔) of bounded geometry, the various

possible definitions of Sobolev spaces of sections will agree. We refer the reader to [[18], Chapter

11], or to [[16], §3.2] for an exposition of these results. The cone over a closed Riemannian

manifold, the case that concerns us, falls into this desirable category.

In the above setting, given an Euclidean vector bundle 𝐸 → 𝑀 with an orthogonal connection

𝐴, the space of Sobolev sections 𝐿2
𝑘,𝑔,𝐴
(𝑀, 𝐸) can be defined as the space of measurable sections

𝑠 of 𝐸 with distributional derivatives up to order 𝑘 and such that

| |𝑠 | |2
𝐿2
𝑘

:=
∑︁
𝑗≤𝑘

∫
𝑀

|∇( 𝑗)
𝐴
𝑠 |2ℎdvol𝑔 < +∞.

In the above formula, ∇( 𝑗)
𝐴

is the connection on 𝐸 ⊗ (𝑇∗𝑀)⊗( 𝑗−1) induced from 𝐴 and the

Levi-Civita connection of 𝑔, and the symbol | · |ℎ denotes the metric induced from ℎ and 𝑔𝑡 on the

bundle 𝐸 ⊗ (𝑇∗𝐾)⊗ 𝑗 . The vector space 𝐿2
𝑘,𝑔,𝐴
(𝑀, 𝐸) equipped with the 𝐿2

𝑘
inner product becomes

a Hilbert space. When 𝑔, 𝐸 , or 𝐴 are understood we might drop them from the notation.
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From now on, we will fix an integer 𝑘 ≥ 4, which ensures that 𝐿2
𝑘

configurations over a 4-

manifold of bounded geometry are in 𝐶0 by the Sobolev embedding theorem. We recall that we

have been working thus far with the space CM(𝑌, b0) of triples (b, 𝛼, 𝑗), where the regularity of

b and 𝛼 is 𝐶 𝑙 , and 𝑗 is 𝐶 𝑙−1. Hence 𝑔b,𝛼, 𝑗 is 𝐶 𝑙−1. We fix the the integer 𝑙 so that 𝑙 − 𝑘 − 2 ≥ 2,

because we will later need that 𝐶 𝑙−𝑘−2 ⊂ 𝐶2.

4.2.2.2 Boundary conditions over the symplectic end

We now set up the relevant configuration spaces over the symplectic end, with asymptotics to

the canonical configurations provided by the contact geometry. Because canonical configurations

only exist over sufficiently small neighbourhoods 𝑈 ⊂ CM(𝑌, b0), our construction of configura-

tion spaces will involve taking suitable limits over such neighbourhoods.

In what follows, it is convenient to consider the slightly larger region containing the symplectic

end: 𝐾′ = [0, 1] × 𝑌 ∪ 𝐾 ⊂ 𝑍+. Let 𝑈 ⊂ CM(𝑌, b0) be an open contractible subset, carrying

a family of canonical configurations 𝛾 := ((𝐴𝑡 ,Φ𝑡))𝑡∈𝑈 defined over 𝐾 which are in translation-

invariant form (Definition 4.10).

Definition 4.11. For (𝑈, 𝛾) as above, the configuration space for (𝑈, 𝛾), denoted C𝑘 (𝐾′, 𝛾)𝑈 , is

the space of triples (𝑡, 𝐴,Φ), where 𝑡 ∈ 𝑈, 𝐴 is a locally 𝐿2
𝑘

spin-c connection on the spinor bundle

𝑆 (for the spin-c structure 𝔯𝑡) defined over 𝐾′ and Φ is a locally 𝐿2
𝑘

section of 𝑆+ over 𝐾′, subject

to the following asymptotics:

Φ −Φ𝑡 ∈ 𝐿2
𝑘,𝑔𝑡 ,𝐴𝑡

(𝐾, 𝑆+) (4.6)

𝐴 − 𝐴𝑡 ∈ 𝐿2
𝑘,𝑔𝑡
(𝐾,𝑇∗𝐾 ⊗ 𝑖R). (4.7)

The relevant gauge group in this setting is the group G𝑘+1(𝐾′) of locally 𝐿2
𝑘+1 maps 𝑣 : 𝐾′ →

U(1) which approach the identity, i.e.

1 − 𝑣 ∈ 𝐿2
𝑘+1,𝑔𝑡 (𝐾).
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Again, the Sobolev space above does not depend on 𝑡. Observe that configurations in C𝑘 (𝐾′, 𝛾)𝑈

are necessarily irreducible (i.e. Φ doesn’t vanish everywhere on 𝐾) due to the asymptotic condition

(4.6). Hence G𝑘+1(𝐾′) acts freely on C𝑘 (𝐾′, 𝛾0)𝑈 .

Since for any two conical metrics 𝑔0, 𝑔1 over 𝐾 the difference 𝑔1𝑔
−1
0 is bounded over 𝐾 and

the configurations (𝐴𝑡 ,Φ𝑡) were chosen in translation-invariant form (Definition 4.10), it follows

that the Sobolev spaces 𝐿2
𝑘,𝑔𝑡 ,𝐴𝑡

(𝐾, 𝑆+) and 𝐿2
𝑘,𝑔𝑡
(𝐾,𝑇∗𝐾 ⊗ 𝑖R) are independent of 𝑡 ∈ 𝑈. The

configuration space for (𝑈, 𝛾) then forms a trivial bundle of affine Hilbert spaces

C𝑘 (𝐾′, 𝛾)𝑈 → 𝑈.

We make C𝑘 (𝐾′, 𝛾)𝑈 into a Banach manifold by identifying it with 𝐿2
𝑘
×𝑈 via (𝐴,Φ, 𝑡) ↦→ (𝐴 −

𝐴𝑡 ,Φ −Φ𝑡 , 𝑡). In this "chart", the G𝑘+1(𝐾′)-action G𝑘+1(𝐾′) × (𝐿2
𝑘
×𝑈) → (𝐿2

𝑘
×𝑈) acquires the

rather odd-looking form: 𝑣 · (𝑎, 𝜙, 𝑡) = (𝑎 − 𝑣−1𝑑𝑣, 𝑣𝜙 − (1 − 𝑣)Φ𝑡 , 𝑡). This action is only of class

𝐶 𝑙−𝑘−2. The reason is that Φ𝑡 depends on first derivatives of the metric 𝑔𝑡 (and also on 𝛼𝑡 and 𝑗𝑡)

which has regularity 𝐶 𝑙−1; thus we may only differentiate 𝑙 − 𝑘 − 2 = (𝑙 − 2) − 𝑘 times the action

G𝑘+1(𝐾′) × C𝑘 (𝐾′, 𝛾)𝑈 → C𝑘 (𝐾′, 𝛾)𝑈 → in order to land inside 𝐿2
𝑘
.

Most naturally, though, the tangent space at a given configuration (𝐴,Φ, 𝑡) is identified with

𝑇(𝐴,Φ,𝑡)C𝑘 (𝐾′, 𝛾)𝑈 =

{
(𝑎, 𝜙, 𝑡) | ¤𝑡 ∈ 𝑇𝑡CM(𝑌, b0) , 𝑎 −

𝜕

𝜕 ¤𝑡 𝐴𝑡 ∈ 𝐿
2
𝑘 (𝐾) , 𝜙 −

𝜕

𝜕 ¤𝑡Φ𝑡 ∈ 𝐿2
𝑘 (𝐾)

}
.

(4.8)

We omit the proof of the next result, which is done by carrying out the standard construction

of slices for the gauge action (see [49] or [16]).

Lemma 4.5. The gauge group G𝑘+1(𝐾′) is a Hilbert Lie group that acts freely in a 𝐶 𝑙−𝑘−2 fashion

on the Banach manifold C𝑘 (𝐾′, 𝛾)𝑈 by

𝑣 · (𝑡, 𝐴,Φ) = (𝑡, 𝐴 − 𝑣−1𝑑𝑣, 𝑣Φ)
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and the quotient B𝑘 (𝐾′, 𝛾)𝑈 = C𝑘 (𝐾′, 𝛾)𝑈/G𝑘+1(𝐾′) is naturally a 𝐶 𝑙−𝑘−2 Banach manifold.

Consider now a second open contractible subset �̃� ⊂ CM(𝑌, b0) together with a �̃�-family of

canonical configurations �̃� = (( �̃�𝑡 , Φ̃𝑡))𝑡∈�̃� and with 𝑈 ⊂ �̃�. We also assume that the families

of canonical configurations 𝛾 and �̃� carried by 𝑈 and �̃�, respectively, are in translation-invariant

form (Definition 4.10). Then we find a unique 𝑈-family of gauge transformations 𝑣𝑡 : 𝐾 → U(1)

(𝑡 ∈ 𝑈) such that 𝑣𝑡 · (Φ𝑡 , 𝐴𝑡) = (Φ̃𝑡 , �̃�𝑡). The translation-invariance of 𝛾 and �̃� implies that

the gauge-transformations 𝑣𝑡 are translation-invariant over the symplectic end 𝐾 = [1, +∞) × 𝑌 ,

namely 𝑣𝑡 (𝑠, 𝑦) = 𝑣𝑡 (1, 𝑦). In view of this, we may extend the 𝑣𝑡 over to the larger region 𝐾′ by

translation. We warn the reader that the 𝑣𝑡 need not satisfy the asymptotics 1 − 𝑣𝑡 ∈ 𝐿2
𝑘+1,𝑔𝑡 (𝐾).

However, we do obtain an inclusion map

C𝑘 (𝐾′, 𝛾)𝑈 → C𝑘 (𝐾′, �̃�)�̃�

(𝑡, 𝐴,Φ) ↦→ (𝑡, 𝐴 − 𝑣−1
𝑡 𝑑𝑣𝑡 , 𝑣𝑡Φ). (4.9)

Lemma 4.6. The map (4.9) is a well-defined smooth G𝑘+1(𝐾′)-equivariant map which is an open

embedding.

Proof. The only issue which requires checking is whether (4.9) is well-defined. That is, we must

check that if (𝑡, 𝐴,Φ) is in C𝑘 (𝐾′, 𝛾)𝑈 then (𝑡, �̃�, Φ̃) := 𝑣𝑡 · (𝑡, 𝐴,Φ) = (𝑡, 𝐴−𝑣−1
𝑡 𝑑𝑣𝑡 , 𝑣𝑡Φ) satisfies

the conditions of Definition 4.11:

• Φ̃ − Φ̃𝑡 = 𝑣𝑡 (Φ − Φ𝑡). Thus, Φ̃ − Φ̃𝑡 is in 𝐿2(𝐾), because Φ − Φ𝑡 ∈ 𝐿2(𝐾) and 𝑣𝑡 has unit

length

• ∇�̃�𝑡 (Φ̃ − Φ̃𝑡) = ∇𝐴𝑡−𝑣−1
𝑡 𝑑𝑣𝑡
(𝑣𝑡 (Φ −Φ𝑡)) = 𝑣𝑡∇𝐴𝑡 (Φ −Φ𝑡). Since |𝑣𝑡 | = 1 and ∇𝐴𝑡 (Φ −Φ𝑡) ∈

𝐿2(𝐾) then ∇�̃�𝑡 (Φ̃ − Φ̃𝑡) is also in 𝐿2(𝐾). Similarly, ∇𝑙
�̃�𝑡
(Φ̃ − Φ̃𝑡) ∈ 𝐿2(𝐾) for all 𝑙 ≥ 1

• �̃� − �̃�𝑡 = 𝐴 − 𝐴𝑡 over 𝐾 , and so �̃� − �̃�𝑡 ∈ 𝐿2
𝑘
(𝐾).

□
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Thus, we have a directed system whose objects are the Banach manifolds C𝑘 (𝐾′, 𝛾)𝑈 , one for

each tuples (𝑈, 𝛾) consisting of an open contractible set 𝑈 ⊂ CM(𝑌, b0) carrying the family of

canonical configurations 𝛾 in translation-invariant form. A unique morphism (4.9), which is an

open embedding of Banach manifolds, is associated with any two pairs (𝑈, 𝛾), (�̃�, �̃�) such that

𝑈 ⊂ �̃�.

Definition 4.12. We define the configuration space C𝑘 (𝐾′) as the direct limit of the above directed

system

C𝑘 (𝐾′) = lim−−→
(𝑈,𝛾)
C𝑘 (𝐾′, 𝛾)𝑈 .

𝐶𝑘 (𝐾′) is a Banach manifold. It is the total space of a bundle of affine Hilbert spaces

C𝑘 (𝐾′) → CM(𝑌, b0)

equipped with a preferred connection i.e. a complementary (horizontal) subbundle to the vertical

subbundle of 𝑇C𝑘 (𝐾′). Over each𝑈 ⊂ CM(𝑌, b0) carrying a family of canonical configurations 𝛾

this connection induces the trivial splitting of 𝑇C𝑘 (𝐾′, 𝛾)𝑈 obtained from the fact that the Sobolev

spaces 𝐿2
𝑘,𝑔𝑡 ,𝐴𝑡

(𝐾′) are independent of 𝑡 ∈ 𝑈.

We also have the configuration space modulo gauge

B𝑘 (𝐾′) = C𝑘 (𝐾′)/G𝑘+1(𝐾′) � lim−−→
(𝑈,𝛾)
B𝑘 (𝐾′, 𝛾)𝑈 .

By Proposition 4.5, B𝑘 (𝐾′) is a 𝐶 𝑙−𝑘−2 Banach manifold, and it carries a natural projection to

CM(𝑌, b0).

4.2.2.3 Configuration space on 𝑌

For future reference, we also introduce here the relevant configuration spaces for the 3-manifold

𝑌 . We refer the reader to [49] for further details. Given a spin-c structure 𝔰 = (𝑔, 𝑆, 𝜌) on 𝑌 , we
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have the configuration space C𝑘−1/2(𝑌, 𝔰) of pairs (𝐵,Ψ) consisting of a spin-c connection 𝐵 and

a section Ψ of 𝑆, both of regularity 𝐿2
𝑘−1/2. Those pairs with Ψ not identically vanishing are

called irreducible, and the locus of such is denoted C∗
𝑘−1/2(𝑌, 𝔰) ⊂ C𝑘−1/2(𝑌, 𝔰). The blown-up

configuration space C𝜎
𝑘−1/2(𝑌, 𝔰) consists of triples (𝐵, 𝑠,Ψ) where now 𝑠 ≥ 0 is a non-negative

real number, and | |Ψ| |𝐿2 = 1. The respective quotients by the (free) action of the group of 𝐿2
𝑘+1/2

gauge transformations are denoted B∗
𝑘−1/2(𝑌, 𝔰) and B𝜎

𝑘−1/2(𝑌, 𝔰). They are Hilbert manifolds in a

natural way [[49], §9.3] (provided 𝑘 ≥ 3) and B𝜎
𝑘−1/2(𝑌, 𝔰) has boundary given by configurations

(𝐵, 0,Ψ) with | |Ψ| |𝐿2 = 1.

4.2.3 Moduli space and perturbations

We now construct the promised Seiberg–Witten moduli space 𝔐( [𝔞], 𝑍+), which will be a

Banach manifold equipped with a Fredholm map 𝔐( [𝔞], 𝑍+) 𝜋−→ CM(𝑌, b0) × P. This moduli

is constructed by gluing together a moduli space over 𝐾′ with a moduli space over the cylindrical

end 𝑍 = (−∞, 0] × 𝑌 .

4.2.3.1 The moduli space over 𝐾′

The Seiberg–Witten equations define a G𝑘+1(𝐾′)-equivariant section sw of a vector bundle

Υ𝑘−1 → C𝑘 (𝐾′), which we now describe. On configuration spaces over an open 𝑈 ⊂ CM(𝑌, b0)

equipped with a family of canonical configurations, we have the Seiberg–Witten map

sw𝛾,𝑈 :C𝑘 (𝐾′, 𝛾)𝑈 → Υ𝑘−1,𝛾,𝑈

(𝑡, 𝐴,Φ) ↦→ (1
2
𝜌𝑡 (𝐹+,𝑔𝑡

�̂�
) − (ΦΦ∗)0, 𝐷+𝐴,𝑔𝑡Φ).

Remark 4.7. We explain the notation from the above formula. First Υ𝑘−1,𝛾,𝑈 is the bundle over

C𝑘 (𝐾′, 𝛾)𝑈 with fibre over the point (𝑡, 𝐴,Φ) given by 𝐿2
𝑘−1,𝑔𝑡 ,𝐴𝑡 (𝐾

′, 𝑖𝔰𝔲(𝑆+) ⊕𝑆−). Then 𝜌𝑡 (𝐹+,𝑔𝑡
�̂�
)

is the self-adjoint endomorphism 𝑆+ arising from the Clifford action of the self-dual component
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of the curvature 𝐹+,𝑔𝑡
�̂�

of the 𝑈 (1) connection �̂� on Λ2𝑆+. The quadratic term (ΦΦ∗)0 is the

endomorphism which acts on a given spinor 𝜙 ∈ 𝑆+ by

𝜙 ↦→ ⟨Φ, 𝜙⟩Φ − 1
2
|Φ|2𝜙.

As before, given two open contractible subsets𝑈 ⊂ �̃� carrying canonical configurations, there

is also a transition map

Υ𝑘−1,𝛾,𝑈
]−→ Υ𝑘−1,�̃�,�̃�

((𝜎,Ψ), (𝑡, 𝐴,Φ)) ↦→ ((𝜎, 𝑣𝑡Ψ), ](𝑡, 𝐴,Φ))

compatible with projections to the base, which thus yields a limiting bundle Υ𝑘−1 → C𝑘 (𝐾′). The

Seiberg–Witten maps fit in to give a commutative diagram

C𝑘 (𝐾′, 𝛾)𝑈 C𝑘 (𝐾′, �̃�)�̃�

Υ𝑘−1,𝛾,𝑈 Υ̃𝑘−1,�̃�,�̃� .

]

sw𝛾,𝑈 sw�̃�,�̃�

]

which provides a well-defined section sw of the bundle Υ𝑘−1 → C𝑘 (𝐾′) that we call the Seiberg–

Witten map.

In [[49], §11.6], a Banach space P of tame perturbations of the Chern-Simons-Dirac functional

on a 3-manifold 𝑌 with a spin-c structure is constructed to achieve transversality for moduli spaces

of gradient trajectories. In our context, a suitable perturbation scheme, following the approaches of

[49] , [47] and [17], is introduced as follows. Let P be such a Banach space of tame perturbations

of the Chern-Simons-Dirac functional of (𝑌, 𝑔b0,𝛼0, 𝑗0). We define a G𝑘+1(𝐾′)-equivariant section

`𝛾,𝑈 : C𝑘 (𝐾′, 𝛾)𝑈 × P → Υ𝑘−1,𝛾,𝑈 , of the form

`𝛾,𝑈 (𝑡, 𝐴,Φ, 𝔭) = 𝜑1�̂�(𝐴,Φ) + 𝜑2�̂�(𝐴,Φ) + 𝜑3�̂�𝐾,𝑡 . (4.10)
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We describe the items appearing in (4.10):

(i) we choose an admissible ([49], Definition 22.1.1) perturbation 𝔮 of the Chern-Simons-Dirac

functional on (𝑌, 𝑔b0,𝛼0, 𝑗0) . This induces a translation-invariant perturbation �̂�(𝐴,Φ) over

R×𝑌 , as in [[49], §10.1]. Then 𝜑1 is a smooth cutoff function on [0, +∞), which is identically

1 on a neighbourhood of 0, and vanishes on a neighbourhood of [1/2, +∞)

(ii) 𝔭 ∈ P induces, as before, a translation-invariant perturbation �̂� over R × 𝑌 . We choose 𝜑2 to

be a bump function compactly supported in (0, 1/2), and identically 1 at some interval in the

interior

(iii) 𝜑3 is a cutoff function on [0, +∞) which is identically 1 over [1, +∞) and vanishing on a

neighbourhood of [0, 1/2]. We take the family of sections of Υ𝑘−1,𝛾0,𝑈 given by

�̂�𝐾,𝑡 = (−
1
2
𝜌𝑡 (𝐹+,𝑔𝑡𝐴𝑡

) + (Φ𝑡Φ
∗
𝑡 )0, 0).

The sections `𝛾,𝑈 glue to a section ` : C𝑘 (𝐾′) × P → Υ𝑘−1, which we combine with sw :

C𝑘 (𝐾′) → Υ𝑘−1 to obtain the perturbed Seiberg–Witten map:

sw` = sw + ` : C𝑘 (𝐾′) × P → Υ𝑘−1.

The motivation for choosing the perturbation �̂�𝐾 comes from Taubes’ work [78]. This pertur-

bation term forces the canonical configurations to solve the equations sw` = 0 over the symplectic

end 𝐾 ⊂ 𝑍+. We include the perturbations �̂�, �̂� to achieve the necessary transversality later on.

Definition 4.13. The universal moduli space of Seiberg–Witten monopoles over 𝐾′ is

𝔐𝑘 (𝐾′) := sw−1
` (0)/G𝑘+1(𝐾′) � lim−−→

(𝛾,𝑈)
(sw𝛾,𝑈 + `𝛾,𝑈)−1(0)/G𝑘+1(𝐾′).
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The perturbed Seiberg–Witten map sw` descends to a section on the quotient bundle Υ𝑘−1/G𝑘+1(𝐾′) →

B𝑘 (𝐾′) × P .

In §A.1 we will show a general transversality result (based on those of [49] and [16]) which

applies to the various moduli spaces that appear in this article. In particular it will give us:

Proposition 4.7. The Seiberg–Witten map is a 𝐶 𝑙−𝑘−2 section of Υ𝑘−1/G𝑘+1(𝐾′) → B(𝐾′) × P

which is transverse to the zero section. Thus 𝔐𝑘 (𝐾′) is a𝐶 𝑙−𝑘−2 Banach submanifold ofB(𝐾′)×P.

4.2.3.2 The moduli space as a fibre product

Using the metric 𝑔b0,𝛼0, 𝑗0 on 𝑌 and the perturbation 𝔮 ∈ P, one can construct the moduli space

of Seiberg–Witten monopoles over the half-infinite cylinder ((−∞, 0]×𝑌, 𝑑𝑡2+𝑔b0,𝛼0, 𝑗0) asymptotic

to a critical point [𝔞] for the flow of the 𝔮-perturbed Chern-Simons-Dirac functional in the blowup.

It follows that [𝔞] is either irreducible or unstable. This moduli is denoted 𝑀𝑘 ( [𝔞], (−∞, 0] × 𝑌 )

and it is a Hilbert manifold. We refer the reader to [49] for details.

There are restriction maps onto the blown-up configuration space of the slice 0 × 𝑌

𝑀𝑘 ( [𝔞], (−∞, 0] × 𝑌 )
𝑅+−−→ B𝜎

𝑘−1/2(𝑌, 𝔰b0,𝛼0, 𝑗0)

𝔐𝑘 (𝐾′)
ℜ−−−→ B𝜎

𝑘−1/2(𝑌, 𝔰b0,𝛼0, 𝑗0).

That the restriction maps are indeed well-defined follows by a unique continuation principle for

the Seiberg–Witten equations (Proposition 10.8.1 [49]). We will see in §A.1 that the sum of the

derivatives of the restriction maps along the spinor and connection direction

𝑑𝑅+ + 𝑑ℜ−(−,−, 0, 0)

is a Fredholm map and we will establish a transversality result:

Proposition 4.8. The restriction maps 𝑅+ and ℜ− are transverse. Thus, the fibre product Fib(𝑅+,ℜ+)
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is a 𝐶 𝑙−𝑘−2 Banach manifold together with a Fredholm map

Fib(𝑅+,ℜ+)
𝜋−→ CM(𝑌, b0) × P .

Definition 4.14. The universal moduli space of Seiberg–Witten monopoles over 𝑍+ = 𝑍 ∪ 𝐾′

associated to the triple (b0, 𝛼0, 𝑗0) ∈ CM(𝑌, b0) is the Banach manifold

𝔐( [𝔞], 𝑍+) = Fib(𝑅+,ℜ−).

By 𝔐(𝑍+) we denote the union over all critical points [𝔞] of the 𝔐( [𝔞], 𝑍+).

Remark 4.8. By a standard argument (see [49], Lemma 24.2.2 and Lemma 19.1.1) one can see

that any element in 𝔐( [𝔞], 𝑍+) = Fib(𝑅+,ℜ−) is represented by a solution 𝛾 = (𝐴,Φ, 𝑡) to the

Seiberg–Witten equations over the whole 𝑍+ (modulo gauge transformations 𝑣 with 1− 𝑣 ∈ 𝐿2
𝑘+1,𝑔𝑡

on both ends of 𝑍+) such that

𝛾 − (𝐴𝑡 ,Φ𝑡) ∈ 𝐿2
𝑘 (𝐾)

𝛾 − 𝛾𝑤·𝔞 ∈ 𝐿2
𝑘 (𝑍)

where 𝑤 ∈ G𝑘+1/2(𝑌 ), 𝔞 is a critical point of the 𝔮-perturbed Chern-Simons-Dirac functional, 𝛾𝑤·𝔞

is the translation-invariant solution over the cylindrical end 𝑍 determined by 𝑤 · 𝔞, and (𝐴𝑡 ,Φ𝑡) is

a canonical configuration over 𝐾 (in translation-invariant form).

4.2.3.3 Components of the moduli space of constant index

As with the moduli spaces that are studied in [49], the index of 𝜋 will vary with the connected

component of 𝔐( [𝔞], 𝑍+). We give a more precise statement of this fact, following the ideas of

§24.4 in [49]. Denote by B𝑘 ( [𝔞], 𝐾′) the preimage of [𝔞] under the partially defined restriction

map to the slice 0 × 𝑌

B𝑘 (𝐾′) 99K B𝜎𝑘−1/2(𝑌, 𝔰b0,𝛼0, 𝑗0).
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Any element of 𝔐( [𝔞], 𝑍+) is, by definition, given by a quadruple ( [𝛾𝑍 ], [𝛾𝐾 ′], 𝑡, 𝔭) with [𝛾𝑍 |𝑌 ] =

[𝛾𝐾 ′ |𝑌 ]. We have that [𝛾𝐾 ′] is homotopic within B𝑘 (𝐾′) to a configuration in B𝑘 ( [𝔞], 𝐾′). Hence,

each element of 𝔐( [𝔞], 𝑍+) determines a connected component of B𝑘 ( [𝔞], 𝐾′), giving a map

𝜋0𝔐( [𝔞], 𝑍+) → 𝜋0B𝑘 ( [𝔞], 𝐾′). (4.11)

By the homotopy invariance of the index of a Fredholm operator we have:

Proposition 4.9. The index of 𝜋 : 𝔐( [𝔞], 𝑍+) → CM(𝑌, b0) × P is constant on the fibres of

(4.11).

Next we provide further information on 𝜋0B𝑘 ( [𝔞] , 𝐾′). Consider the natural projection 𝑝 :

B𝑘 ( [𝔞], 𝐾′) → CM(𝐾, b0), and denote the fibre over a point 𝑡 by B𝑘 ( [𝔞], 𝑍+)𝑡 .

Lemma 4.10. (i) there is a bijection 𝜋0B𝑘 ( [𝔞], 𝐾′)𝑡 � 𝐻1(𝑌 ;Z)

(ii) 𝑝 is a Serre fibration

(iii) the map 𝜋0B𝑘 ( [𝔞], 𝐾′)𝑡 → 𝜋0B𝑘 ( [𝔞], 𝐾′) induced by inclusion is surjective.

Proof. For (i), we fix a canonical configuration 𝛾𝑡 := (𝐴𝑡 ,Φ𝑡) at 𝑡, and fix a representative 𝔞 of

[𝔞]. We consider the space C𝑘 (𝔞, 𝐾′, 𝛾𝑡) which is the fibre of the partially-defined restriction map

C𝑘 (𝐾′, 𝛾𝑡) 99K C𝜎𝑘−1/2(𝑌, 𝔰b0,𝛼0, 𝑗0) over 𝔞. We choose a representative 𝑣𝑧 from every connected

component 𝑧 ∈ 𝜋0G𝑘+1/2(𝑌 ). Then we have a decomposition into disjoint closed subspaces

B𝑘 ( [𝔞], 𝐾′)𝑡 =
⋃

𝑧∈𝜋0G𝑘+1/2 (𝑌 )
C𝑘 (𝑣𝑧 · 𝔞, 𝐾′, 𝛾𝑡)/G𝑘+1(𝐾′)

where each summand is connected (because G𝑘+1(𝐾′) is connected). This sets up a bijection

𝜋0B𝑘 ( [𝔞], 𝐾′)𝑡 � 𝜋0G𝑘+1/2(𝑌 ) only depending on the representative 𝔞. Finally, the latter set is

identified with the group 𝐻1(𝑌 ;Z) = [𝑌, 𝑆1].

Part (iii) follows from (ii) and the connectedness of the base of the Serre fibration 𝑝. For (ii)

we must show: if ℎ : 𝐷 × [0, 1] → CM(𝑌, b0) is any given homotopy, where 𝐷 is a compact
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disc, and we are given a lift of ℎ over 𝐷 × 0 to B𝑘 ( [𝔞], 𝐾′), then there exists a lift of ℎ over

𝐷 × [0, 1] agreeing with the given one over 𝐷 × 0. The image of ℎ can be covered by a single

open subset 𝑈 carrying a family of canonical configurations 𝛾, since 𝐷 × [0, 1] is contractible.

It follows that we can replace 𝑝 by its pullback B𝑘 ( [𝔞], 𝐾′) |𝑈
𝑝
−→ 𝑈. Choose a representative 𝔞

for [𝔞]. We consider the space C𝑘 (𝔞, 𝐾′, 𝛾)𝑈 which is the fibre of the partially-defined restriction

map C𝑘 (𝐾′, 𝛾)𝑈 99K C𝜎𝑘−1/2(𝑌, 𝔰b0,𝛼0, 𝑗0) over the configuration 𝔞. The action of G𝑘+1(𝐾′) on

C𝑘 (𝔞, 𝐾′, 𝛾)𝑈 induces a principal G𝑘+1(𝐾′)-bundle projection

𝑞 : C𝑘 (𝔞, 𝐾′, 𝛾)𝑈 → C𝑘 (𝔞, 𝐾′, 𝛾)𝑈/G𝑘+1(𝐾′).

As before, the base of the fibre bundle 𝑞 is identified with a connected component ofB𝑘 ( [𝔞], 𝐾′, 𝛾) |𝑈 .

Choosing a possibly different representative 𝔞 we can ensure that the given lift of ℎ over 𝐷 × 0 is

contained in the component C𝑘 (𝔞, 𝐾′, 𝛾)𝑈/G𝑘+1(𝐾′). Thus, we may replace 𝑝 with its restriction

to this component. Now, we see that 𝑝 ◦ 𝑞 : C𝑘 (𝔞, 𝐾′, 𝛾)𝑈 → 𝑈 is a fibre bundle. Indeed, it is a

bundle of affine Hilbert spaces, all modelled over the same Hilbert space. One then uses a simple

2-out-of-3 property to conclude the claim: for maps 𝑋
𝑞
−→ 𝑌

𝑝
−→ 𝑍 of spaces, if 𝑞 and 𝑝 ◦ 𝑞 are

Serre fibrations, then so is 𝑝. □

Thus, by the previous results we can decompose 𝔐( [𝔞], 𝑍+) into pieces where 𝜋 has constant

index

𝔐( [𝔞], 𝑍+) =
⋃
𝑧

𝔐𝑧 ( [𝔞], 𝑍+).

which are parametrised by the connected components 𝑧 ∈ 𝜋0B𝑘 ( [𝔞], 𝐾′). Note that it does not

hold necessarily that each 𝔐𝑧 ( [𝔞], 𝑍+) is connected.

Remark 4.9. The map from Lemma 4.10(iii) is not injective, in general. More precisely, it is

injective if and only if any loop (i.e. 𝑆1-family) in CM(𝑌, b0) has a corresponding 𝑆1-family of

canonical configurations over 𝐾 .
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4.2.3.4 Orientability

In order to define the families invariant when the coefficient ring 𝑅 is not of characteristic 2,

we will need to orient the Seiberg–Witten moduli spaces. In order to do so we need to orient the

determinant line bundle of the Fredholm map

𝔐(𝑍+) =
⋃
[𝔞]

𝔐( [𝔞] , 𝑍+) 𝜋−→ CM(𝑌, b0) × P .

For the precise construction of this real line bundle det𝜋 → 𝔐(𝑍+) we refer to [[49] , §20.2]. Its

fibre over a given 𝑚 ∈ 𝔐(𝑍+) can be identified as

(det𝜋)𝑚 = Λmaxker(𝑑𝜋)𝑚 ⊗ Λmax(coker(𝑑𝜋)𝑚)∗.

We now describe what goes into orienting the determinant line bundle.

The first ingredient is to orient the moduli spaces of trajectories in monopole Floer homology.

This is formally analogous to the finite-dimensional Morse theory case. Given a critical point

[𝔞] ∈ B𝜎 (𝑌, 𝔰) in the blowup, a 2-element set Λ( [𝔞]) is associated in [[49], §20.3], playing the

role of the set of orientations for the unstable manifold of [𝔞] in the Morse theory picture.

The second ingredient is the construction of a double covering Λ of C(𝑌, b0), in the spirit of

[[49], §24.8]. We consider the moduli space 𝔐𝑘 (𝐾′) constructed as above, with the perturba-

tion 𝔮 identically vanishing. In this case 𝔐𝑘 (𝐾′) is still a Banach submanifold of B(𝐾′) × P.

For any given configuration (𝑡, 𝐴,Φ, 𝔭) ∈ 𝔐𝑘 (𝐾′), if it projects onto the configuration [𝔞] ∈

B𝜎
𝑘−1/2(𝑌, 𝔰b0,𝛼0, 𝑗0) under the restriction map from 𝐾′ to 0 × 𝑌

𝔐𝑘 (𝐾′)
ℜ−−−→ B𝜎

𝑘−1/2(𝑌, 𝔰b0,𝛼0, 𝑗0)

then we have an operator

𝑃(𝑡,𝐴,Φ,𝔭) := (𝜋[𝔞] ◦ 𝑑ℜ− + 𝑑𝜋)(𝑡,𝐴,Φ,𝔭) : 𝑇(𝑡,𝐴,Φ)𝔐𝑘 (𝐾′) → K+[𝔞] ⊕ 𝑇𝑡CM(𝑌, b0) ⊕ 𝑇𝔭P,
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where

𝜋[𝔞] : 𝑇[𝔞]B𝜎𝑘−1/2(𝑌, 𝔰b0,𝛼0, 𝑗0) → K+[𝔞]

denotes the orthogonal projection onto the subspace K+[𝔞] which is defined as the closure of the

span of the non-negative eigenvectors of the (unperturbed) Hessian Hess𝜎 : 𝑇[𝔞]B𝜎𝑘 (𝑌, 𝔰b0,𝛼0, 𝑗0) →

𝑇[𝔞]B𝜎𝑘−1(𝑌, 𝔰b0,𝛼0, 𝑗0) of the Chern–Simons–Dirac functional. The Atiyah–Patodi–Singer theory

implies the Fredholm property of 𝑃(𝑡,𝐴,Φ,𝔭) .

Definition 4.15. We define a double covering Λ of C(𝑌, b0) with fibers Λ(b) as follows. For a given

b ∈ C(𝑌, b0) choose any configuration (𝑡, 𝐴,Φ, 𝔭) ∈ 𝔐𝑘 (𝐾′) lying over b (i.e. 𝑡 = (b, 𝛼, 𝑗) for

some 𝛼 and 𝑗) such that it restricts along the boundary onto a fixed reducible configuration [𝔞0] ∈

B𝜎
𝑘−1/2(𝑌, 𝔰b0,𝛼0, 𝑗0). We define Λ(b) to be the two-element set of orientations of det𝑃(𝑡,𝐴,Φ,𝔭) .

Remark 4.10. The two-element set Λ(b) is independent of the choice of reducible configuration

𝔞0 and the configuration (𝑡, 𝐴,Φ, 𝔭), up to canonical bijection. Furthermore, it is also independent

of our chosen base configuration (b0, 𝛼0, 𝑗0), up to canonical bijection. These assertions all follow

from [[49], Lemma 20.3.3] and standard homotopy arguments as those found in [[49], §20.3 and

§24.8].

Associated to our double cover Λ there is a local system ΛZ whose fibers are Z-modules of

rank 1. Explicitly, we can take the fiber ΛZ(b) to be the quotient of the free Z-module on the two-

element set Λ(b) = {𝔬, 𝔬′} by the submodule generated by the element 𝔬 + 𝔬′, and the monodromy

action of paths is inherited from that on Λ. We write Λ𝑅 for the local system of free 𝑅-modules of

rank 1 obtained by taking the tensor product ΛZ ⊗Z 𝑅.

The proof of the next result follows the same argument as in §24.8 of [49]

Proposition 4.11. Given a choice of an element in each orientation set Λ( [𝔞]) for each critical

point [𝔞], there is a canonical homotopy class of isomorphism of real line bundles det𝜋 � 𝜋∗ΛR

over 𝔐(𝑍+). Here det𝜋 is the determinant line bundle of 𝜋 : 𝔐(𝑍+) → CM(𝑌, b0) × P, and

𝜋∗ΛR is the pullback of ΛR by 𝜋 : 𝔐(𝑍+) → CM(𝑌, b0) × P ≃ C(𝑌, b0).
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We explain how this orients the moduli spaces that will be relevant. Consider a 𝐶2 map 𝜎 :

Δ𝑛 → CM(𝑌, b0) × P from the standard 𝑛-simplex Δ𝑛 = {𝑥 ∈ (R≥0)𝑛+1 |
∑𝑛+1
𝑖=1 𝑥𝑖 = 1}. We equip

Δ𝑛 with its canonical orientation. Suppose 𝜎 is transverse to 𝜋 : 𝔐𝑧 (𝑍+) → CM(𝑌, b0) ×P along

each stratum of Δ𝑛. Then we obtain a 𝐶2 manifold 𝑀𝑧 ( [𝔞], 𝜎) = Fib(𝜋, 𝜎) as the fibre product

of 𝜋 : 𝔐𝑧 ( [𝔞], 𝑍+) → CM(𝑌, b0) × P with 𝜎, which is of dimension ind𝜋 + 𝑛, where ind𝜋 is

computed over the component 𝔐𝑧 ( [𝔞], 𝑍+).

If choices in each Λ( [𝔞]) are made and we are given an orientation in Λ(𝜎(𝑏)), where 𝑏 stands

for the barycenter of Δ𝑛, then Proposition 4.11 picks out preferred orientations of all the moduli

spaces 𝑀𝑧 ( [𝔞], 𝑇). This is is a matter of linear algebra:

Lemma 4.12. Consider transverse linear maps 𝑀
𝜋−→ 𝐶

𝜎←− Δ of Banach spaces, with 𝜋 Fredholm

and Δ of finite dimension. Let 𝐹 = 𝜋 − 𝜎 : 𝑀 ⊕ Δ → 𝐶. Then 𝐹 is Fredholm and there is a

canonical isomorphism

det𝐹 � det𝜋 ⊗ ΛmaxΔ.

Proof. Because of the transversality assumption, one has the canonical isomorphism (see the con-

struction of [[49],§20.2], and put 𝐽 = Im𝜎)

det𝜋 � Λmax𝜋−1(Im𝜎) ⊗
(
ΛmaxIm𝜎

)∗
.

Then the short exact sequences

0→ Ker𝜎 → Ker𝐹 → 𝜋−1(Im𝜎) → 0

0→ Ker𝜎 → Δ→ Im𝜎 → 0

provide us with canonical isomorphisms

Λmax𝜋−1(Im𝜎) � ΛmaxKer𝐹 ⊗
(
ΛmaxKer𝜎

)∗
� ΛmaxKer𝐹 ⊗

(
ΛmaxΔ

)∗
⊗ ΛmaxIm𝜎.
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This says det𝜋 � det𝐹 ⊗
(
Λmax𝑁

)∗
. □

More precisely, one orients 𝑀𝑧 ( [𝔞], 𝜎) by following the proof of Lemma 4.12 above using the

fibre-first convention for orienting vector spaces in a short exact sequence. This agrees with orien-

tation conventions in [49] (see p.525) for parametrised moduli spaces over an oriented manifold.

We refer to this as the canonical orientation of 𝑀𝑧 ( [𝔞], 𝜎) (depending on the choices of el-

ements in Λ( [𝔞]) and Λ(𝜎(𝑏))). Whenever these moduli are 0-dimensional and we use them to

make counts of points, each point is counted with a sign corresponding to its canonical orientation

(relative to the natural orientation of a point).

4.2.4 The families contact invariant

We describe now the construction of the homomorphism (1.4). We will write C for the Banach

manifold CM(𝑌, b0) ×P for ease in notation. This space has the weak homotopy type of the space

of contact structures C(𝑌, b0).

We fix orientations in Λ( [𝔞]) for all critical points [𝔞]. We fix a ring 𝑅 (commutative, unital).

4.2.4.1 Transverse singular chains

Let 𝑀
𝜋−→ 𝐶 be a 𝐶𝑟 Fredholm map of 𝐶𝑟 Banach manifolds. We assume that 𝐶 is connected

but allow 𝑀 disconnected, with at most countably many components. The index of 𝜋, ind𝜋 ∈ Z,

depends on the chosen connected component of 𝑀 .

Below we view the standard 𝑛-simplex Δ𝑛 = {𝑥 ∈ (R≥0)𝑛+1 |
∑𝑛+1
𝑖=1 𝑥𝑖 = 1} as a manifold with

corners, and by a 𝐶𝑟 map with domain Δ𝑛 we mean a map which extends to a 𝐶𝑟 map on an open

neighbourhood of Δ𝑛 ⊂ R𝑛+1.

Definition 4.16. A 𝐶𝑟 singular 𝑛-simplex 𝜎 : Δ𝑛 → 𝐶 is transverse to 𝜋 if the restriction of 𝜎

to each stratum (i.e. face) of the 𝑛-simplex Δ𝑛 is transverse to 𝜋. In particular, the image of each

vertex of Δ𝑛 under 𝜎 is a regular value of 𝜋.
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For our purposes it suffices to take 𝑟 = 2. Next we set up a version of the complex of singular

chains on C with coefficients in the local system Λ𝑅, made up of transverse chains

Definition 4.17. Let (𝑆𝜋∗ (𝐶;Λ𝑅), 𝜕) be the chain complex over 𝑅 given by finite formal sums

∑︁
𝑎 · 𝜎

where 𝜎 is a 𝐶2 singular simplex 𝜎 : Δ𝑛 → 𝐶 (with 𝑛 ≥ 0) which is transverse to 𝜋 along

components of 𝑀 with ind𝜋 ≤ 1 − 𝑛; and 𝑎 is an element of the ring Λ𝑅 (𝜎(𝑏)), where 𝑏 ∈ Δ𝑛

is the barycenter of Δ𝑛. The differential 𝜕 is the singular differential coupled to the isomorphism

Λ(𝜎(𝑏)) → Λ(𝜎𝑖 (𝑏𝑖)) associated with the straight line segment from 𝑏 to 𝑏𝑖, where 𝜎𝑖 denotes

the restriction of 𝜎 to the 𝑖th codimension 1 face Δ𝑛
𝑖

of Δ𝑛 and 𝑏𝑖 the barycenter of Δ𝑛
𝑖
.

Remark 4.11. For ease in notation, whenever we refer to a singular 𝑛-simplex 𝜎 : Δ𝑛 → C we

will assume it is equipped with an element in Λ(𝜎(𝑏)), and regard instead the coefficient 𝑎 as an

element in the ring 𝑅.

The restriction to components of 𝑀 with ind𝜋 ≤ 1 − 𝑛 is imposed on us by the Thom-Smale

transversality theorem [74]. This result states that for 𝐶𝑟 maps (𝑟 ≥ 1) of 𝐶𝑟 Banach manifolds

𝑋
𝑓
−→ 𝑌

𝑔
←− 𝑍 with dim𝑋 = 𝑛 < +∞ and 𝑔 Fredholm, one can always 𝐶𝑟-approximate 𝑓 by a

map 𝑓 ′ which is transverse to 𝑔, provided that 𝑟 > max(ind𝑔 + 𝑛, 0). Furthermore, if 𝑓 was al-

ready transverse to 𝑔 along a closed subset 𝑋′ ⊂ 𝑋 then one can choose 𝑓 ′ to agree with 𝑓 along

𝑋′. Then, by the Thom-Smale transversality theorem we learn that the inclusion of 𝑆𝜋∗ (𝐶;Λ𝑅)

into the chain complex of (continuous) singular chains on 𝐶 with coefficients in the local sys-

tem Λ𝑅 induces a quasi-isomorphism, so that (𝑆𝜋∗ (𝐶;Λ𝑅), 𝜕) computes the singular homology

𝐻∗(𝐶;Λ𝑅) � 𝐻∗(C(𝑌, b0);Λ𝑅).

4.2.4.2 Counting solutions to the Seiberg–Witten equations

Consider a 𝐶2 singular 𝑛-simplex 𝜎 : Δ𝑛 → C satisfying the transversality condition of Def-

inition 4.17 with respect to the Fredholm map 𝜋 : 𝔐(𝑍+) → C (of regularity 𝐶 𝑙−𝑘−2 ⊂ 𝐶2).
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For such 𝜎 and each pair ( [𝔞], 𝑧) we have the space 𝑀𝑧 ( [𝔞], 𝜎) consisting of solutions of the

Seiberg–Witten equations over the singular simplex 𝜎. Namely, 𝑀𝑧 ( [𝔞], 𝜎) = Fib(𝜋, 𝜎) is the fi-

bre product of 𝜋 : 𝔐𝑧 ( [𝔞], 𝑍+) → C and 𝜎. Whenever the expected dimension 𝑀𝑧 ( [𝔞], 𝜎) is ≤ 1,

i.e. ind𝜋 ≤ 1 − 𝑛, we can guarantee that this fibre product is transverse, and hence that 𝑀𝑧 ( [𝔞], 𝜎)

will be a 𝐶2-manifold with corners. We denote by #𝑀𝑧 ( [𝔞], 𝜎) the count of points in the discrete

(0-dimensional) moduli space 𝑀𝑧 ( [𝔞], 𝜎) when ind𝜋 = −𝑛, counted with the signs corresponding

to their canonical orientation (see §4.2.3.4); and we set #𝑀𝑧 ( [𝔞], 𝜎) = 0 if ind𝜋 ≠ −𝑛. The pos-

sibility to make such count relies on the fact that the 0-dimensional moduli spaces 𝑀𝑧 ( [𝔞], 𝜎) are

indeed finite, which we will address momentarily.

We can now assemble the counts of solutions to the Seiberg–Witten equations into a homomor-

phism of 𝑅-modules

𝜓 : 𝑆∗(C;Λ𝑅) → 𝐶∗(𝑌, 𝔰b0,𝛼0, 𝑗0; 𝑅) (4.12)

𝜎 ↦→𝔐(𝑍+) · 𝜎 :=
∑︁
[𝔞],𝑧

(
#𝑀𝑧 ( [𝔞], 𝜎)

)
· [𝔞] .

The right side of (4.12) is the monopole Floer cochain complex of 𝑌 (in the from version), ob-

tained by taking the dual of the monopole Floer chain complex 𝐶∗(𝑌, 𝔰b0,𝛼0, 𝑗0; 𝑅) with differential

𝜕. The latter complex is constructed from the spin-c structure 𝔰b0,𝛼0, 𝑗0 and admissible perturbation

𝔮. It is freely generated over 𝑅 by the union of the sets ℭ𝑜, ℭ𝑢 of irreducible and unstable critical

points, which gives a decomposition 𝐶∗(𝑌, 𝔰b0,𝛼0, 𝑗0) = 𝐶𝑜∗ ⊕ 𝐶𝑠∗ . The Floer differential is given by

the following matrix (see [49], Definition 22.1.3)

𝜕 =
©«
𝜕𝑜𝑜 𝜕𝑢𝑜

−𝜕𝑠𝑢𝜕𝑜𝑠 −𝜕
𝑢

𝑢 − 𝜕
𝑠

𝑢𝜕
𝑢
𝑠

ª®®¬ . (4.13)

Remark 4.12. For the expression (4.12) to be well-defined, we require the fact that there are only

finitely many pairs ( [𝔞], 𝑧) for which 𝑀𝑧 ( [𝔞], 𝜎) is of dimension 0 and non-empty. This can be

shown following the standard arguments in [49], and we defer a discussion of this fact to §A.2.
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Proposition 4.13. Up to signs, 𝜓 is a chain map. Precisely, 𝜓(𝜕𝜎) = (−1)𝑛𝜕∗𝜓(𝜎), where 𝜎 is a

singular 𝑛-simplex.

To see this, we first make some remarks on the compactness properties of the moduli spaces

𝑀𝑧 ( [𝔞], 𝜎). We restrict to the case of the moduli spaces of expected dimension ≤ 1, since for the

higher dimensional ones we cannot guarantee that they are transversely cut out. The 𝑀𝑧 ( [𝔞], 𝜎)

are, in general, non-compact manifolds with corners. However, we have

Proposition 4.14. The 0-dimensional moduli spaces 𝑀𝑧 ( [𝔞], 𝜎) consist of finitely-many points.

The 1-dimensional moduli spaces 𝑀𝑧 ( [𝔞], 𝜎) admit a compactification into a space 𝑀+𝑧 ( [𝔞], 𝜎)

stratified by manifolds. The top stratum consists of 𝑀𝑧 ( [𝔞], 𝜎) itself, and the boundary of the top

stratum consists of “broken” configurations of the form

(a) �̆�𝑧1 ( [𝔞], [𝔟]) × 𝑀𝑧0 ( [𝔟], 𝜎)

(b) �̆�𝑧2 ( [𝔞], [𝔟]) × �̆�𝑧1 ( [𝔟], [𝔠]) × 𝑀𝑧0 ( [𝔠], 𝜎)

where the middle factor in (b) is boundary-obstructed; together with configurations arising from

the boundary stratum of Δ𝑛, which is the union of the (𝑛 − 1)-simplices Δ𝑛−1
0 ,Δ𝑛−1

1 , . . . ,Δ𝑛−1
𝑛 that

are codimension-1 faces of Δ𝑛:

(c)
⋃
𝑖=0,𝑛 𝑀𝑧 ( [𝔞], 𝜎|Δ𝑛−1

𝑖
) .

For each boundary stratum above, the homotopy classes must concatenate to 𝑧 (e.g. for (a) we

need 𝑧1 ◦ 𝑧0 = 𝑧). Furthermore, the structure near each boundary stratum is: 𝐶0 manifold-

with-boundary structure at (a); a codimension-1 𝛿-structure (a more general structure than 𝐶0

manifold-with-boundary, see [[49], Definition 19.5.3]) at (b); and a 𝐶2 manifold-with-boundary

structure at (c).

All the analysis required to deduce these results is provided by the techniques in [49], [47],

[81]. We discuss in §A.2 some technical results that are involved.
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Proof of Proposition 4.13. In general, for any singular simplex 𝜎 transverse to 𝜋 : 𝔐𝑧 ( [𝔞], 𝑍+) →

C, one can construct a compactification 𝑀+𝑧 ( [𝔞], 𝜎) of 𝑀𝑧 ( [𝔞], 𝜎) by adding broken configura-

tions as in [49]. In the case when 𝑀𝑧 ( [𝔞], 𝜎) is transversely cut out and of dimension 0, it follows

from index reasons that no broken configurations are added, and so the moduli consists of finitely-

many points. In the case where the dimension of 𝑀𝑧 ( [𝔞], 𝜎) is 1, the corresponding compactifi-

cation 𝑀+𝑧 ( [𝔞], 𝜎) is a 1-dimensional stratified space with a codimension-1 𝛿-structure along its

boundary. Such a space enjoys the nice property that the enumeration of its boundary points gives

total count zero [[49], Corollary 21.3.2]. Thus, enumerating the boundary points, of types (a), (b)

and (c) as above, yields corresponding identities

⟨𝜓(𝜎)𝑜, 𝜕𝑜𝑜 [𝔞]⟩ − ⟨𝜓(𝜎)𝑢, 𝜕
𝑠

𝑢𝜕
𝑜
𝑠 [𝔞]⟩ + (−1)𝑛−1⟨𝜓(𝜕𝜎)𝑜, [𝔞]⟩ = 0 , ∀[𝔞] ∈ ℭ𝑜

⟨𝜓(𝜎)𝑜, 𝜕𝑢𝑜 [𝔞]⟩ + ⟨𝜓(𝜎)𝑢, 𝜕
𝑢

𝑢 [𝔞]⟩ − ⟨𝜓(𝜎)𝑢, 𝜕
𝑠

𝑢𝜕
𝑢 [𝔞]⟩ + (−1)𝑛−1⟨𝜓(𝜕𝜎)𝑢, [𝔞]⟩ = 0 , ∀[𝔞] ∈ ℭ𝑢

which give the required equality 𝜓(𝜕𝜎) = (−1)𝑛𝜕∗𝜓(𝜎). For the origin of the signs see Lemma

A.14 2 in §A.2. □

Definition 4.18. The families contact invariant of (𝑌, b0) is the homomorphism induced by the

chain map 𝜓

Fc := 𝜓∗ : 𝐻∗(C(𝑌, b0);Λ𝑅) � 𝐻∗(C;Λ𝑅) → 𝐻𝑀
∗(𝑌, 𝔰b0; 𝑅). (4.14)

Some observations are relevant now:

Remark 4.13. (i) Invariant for a single contact structure. Fixing an element of the 2-element

set Λ(b0) fixes the sign of the contact invariant c(b0) of Kronheimer–Mrowka-Ozsváth-Szabó

[46]. In turn, this also picks out a canonical generator 1 ∈ 𝐻0(C(𝑌, b0);Λ𝑅)(= 𝑅 or 𝑅/2𝑅

accoding as to whether the local system Λ is trivial or not). It is clear from our construction

2A rather technical point is that the sign of +⟨𝜓(𝜎)𝑢, 𝜕𝑢𝑢 [𝔞]⟩ written above should be flipped if one follows the
reducible convention for orienting the moduli 𝑀𝑧1 ( [𝔞], [𝔟]) when both [𝔞], [𝔟] are boundary-unstable (see §20.6
[49]). This reducible convention is meant when writing the term −𝜕𝑢𝑢 in the Floer differential (4.13). The signs listed
in Lemma A.14 follow the usual convention. These two conventions differ by the sign (−1)dim𝑀𝑧1 ( [𝔞 ], [𝔟] ) = −1.
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that c(b0) agrees with Fc(1). Part (A) of Theorem 1.5 is then proved.

(ii) Gradings. With respect to the natural grading of the Floer cohomology groups by the set of

homotopy classes of oriented 2-plane fields, the map 𝜓 defining (1.4) has the form

𝜓 : 𝑆𝜋𝑛 (C(𝑌, b0);Λ𝑅) → 𝐶 [b0]−𝑛 (𝑌, 𝔰b0; 𝑅), 𝑛 ≥ 0.

For 𝑛 = 0, i.e. for the contact invariant c(b0), a proof of this fact can be found in [[16], §7.1].

For higher 𝑛 ≥ 0 the statement follows in a straightforward way from the 𝑛 = 0 case and the

identity of expected dimensions dim𝑀𝑧 ( [𝔞], 𝜎) = 𝑛 + dim𝑀𝑧 ( [𝔞], ∗), with 𝜎 : Δ𝑛 → C an

𝑛-simplex and ∗ : {∗} → C the inclusion of a point.

(iii) Criterion for triviality of Λ. It is unclear to the author whether the double cover Λ can be non-

trivial in general. However, under the assumption that the contact invariant c(b0) with 𝑅 = Z

coefficients is not a 2-torsion element, then we can conclude that Λ is trivial (Corollary 1.6).

This criterion applies in many cases of interest, e.g. whenever the contact structure admits a

strong symplectic filling.

(iv) Sign-ambiguity. Even when the double cover Λ of C(𝑌, b0) is trivial, there is no canonical

choice in the 2-element set Λ(b0). In fact, Lin–Ruberman–Saveliev [53] have shown that

one cannot associate canonically an element in Λ(b0) to each isotopy class of a contact

structure b0 in such a way that the contact invariant c(b0) is natural with respect to orientation-

preserving diffeomorphisms of 𝑌 . This is done by showing that the unique tight contact

structure on −Σ(2, 3, 7) admits a contactomorphism which reverses the sign of c(b0). We

also note that the local system Λ is trivial, because this contact structure is strongly (and in

fact Stein) fillable.

(v) Invariance. The construction of (4.14) involved choices. The main ones were a lift of b0

to a triple (b0, 𝛼0, 𝑗0) ∈ CM(𝑌, b0) and an admissible perturbation 𝔮 ∈ P. The remaining

ones were rather inessential choices of cutoff functions (§4.2.1.1 , §4.2.3). Given two choices
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(b0, 𝛼𝑖, 𝑗𝑖) ∈ CM(𝑌, b0), 𝑖 = 0, 1, together with perturbations and cutoff functions that we

omit from the notation, we obtain two corresponding chain maps

𝜓𝑖 : 𝑆𝜋𝑖∗ (C;Λ𝑅) → 𝐶∗(𝑌, 𝔰b𝑖 ,𝛼𝑖 , 𝑗𝑖 ; 𝑅), 𝑖 = 0, 1.

Choosing a generic path from choices at 𝑖 = 0 and 𝑖 = 1 yields, in particular, a path of

spin-c structures 𝔰b𝑡 ,𝛼𝑡 , 𝑗𝑡 and perturbations, from which a continuation map is constructed

^ : 𝐶∗(𝑌, 𝔰b1,𝛼1, 𝑗1; 𝑅) → 𝐶∗(𝑌, 𝔰b0,𝛼0, 𝑗0; 𝑅). We also define a subcomplex 𝑆∗ ⊂ 𝑆𝜋𝑖∗ (C;Λ𝑅)

of chains transverse to both 𝜋0 and 𝜋1 (in the same index range as before). The inclusion of

this subcomplex is a quasi-isomorphism. Then, one concludes by showing that the following

diagram is homotopy-commutative, which is a standard argument

𝑆
𝜋0
∗ (C;Λ𝑅) 𝐶∗(𝑌, 𝔰b0,𝛼0, 𝑗0; 𝑅)

𝑆∗

𝑆
𝜋1
∗ (C;Λ𝑅) 𝐶∗(𝑌, 𝔰b1,𝛼1, 𝑗1; 𝑅)

𝜓0

𝜓1

^

(vi) Naturality. The assertion on naturality from Theorem 1.5 (see the Remark after the afore-

mentioned Theorem) readily follows from the construction from this section.
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Chapter 5: The𝑈 map and families of contact structures

5.1 Module structures

In this section we define the module structures that Theorem 1.5 (B) refers to. We consider the

graded ring

A(𝑌 ;Z) = Z[𝑈] ⊗Z Λ∗
(
𝐻1(𝑌 ;Z)/torsion

)
|𝑈 | = 2, |𝛾 | = 1 𝛾 ∈ 𝐻1(𝑌 ;Z)/torsion.

We write A†(𝑌 ;Z) for the opposite ring, with the opposite grading: |𝑈 | = −2, |𝛾 | = −1 for

𝛾 ∈ 𝐻1(𝑌 ;Z)/torsion. For a given (commutative, unital) ring 𝑅, we obtain graded 𝑅-algebras

A(𝑌 ; 𝑅) := A(𝑌 ;Z) ⊗ 𝑅 and A†(𝑌 ; 𝑅) := A†(𝑌 ;Z) ⊗ 𝑅.

Remark 5.1. A different notation was used earlier, namely A(𝑅) = A†(𝑌 ; 𝑅) (see (1.2)).

The Floer cohomology groups 𝐻𝑀
∗(𝑌, 𝔰; 𝑅) carry a natural module structure over the graded

𝑅-algebra A(𝑌 ; 𝑅) [49]. In this section, we first give a chain level description of this module

structure which is well-suited to our purposes. We make no claim of originality here, as the material

presented here is surely known to the experts. Our approach is "dual" to that of [[49], §VII], and

in a similar spirit to the construction of the𝑈 map given in [[46], §4.11]. Finally, we introduce the

analogous A†(𝑌 ; 𝑅)-module structure on 𝐻∗(C(𝑌, b0);Λ𝑅). The geometric interpretation of these

algebraic structures that we provide in this section will be a key ingredient in the proof of Theorem

1.5 (B).
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5.1.1 The module structure on 𝐻𝑀
∗(𝑌, 𝔰)

Throughout this subsection, we fix a closed oriented 3-manifold 𝑌 , and a spin-c structure

𝔰 = (𝑔, 𝑆, 𝜌) on 𝑌 . A construction reminiscent of the cup product pairing on the cohomology

of B𝜎 (𝑌, 𝔰) yields a pairing

𝐻𝑘 (B𝜎 (𝑌, 𝔰); 𝑅) ⊗ 𝐻𝑀∗(𝑌, 𝔰; 𝑅) ∪−→ 𝐻𝑀
∗+𝑘 (𝑌, 𝔰; 𝑅). (5.1)

The A(𝑌 ; 𝑅)-module structure on 𝐻𝑀
∗(𝑌, 𝔰; 𝑅) is then obtained from a canonical isomorphism

A(𝑌 ; 𝑅) � 𝐻∗(B𝜎 (𝑌, 𝔰); 𝑅). In what follows, our goal is to first describe this isomorphism (Propo-

sition 5.6) and later define the pairing (5.1).

5.1.1.1 The cohomology ring of configuration space

We consider the blown-up configuration space B𝜎 (𝑌, 𝔰) as in §4.2.2.3, where we have dropped

the 𝑘 − 1/2 subscript for ease in notation. Its homotopy type is that of C𝑃∞ ×𝑇 , where 𝑇 is a torus

of dimension 𝑏1(𝑌 ) = rank𝐻1(𝑌 ;Z). This fact is proved in [[49], §9.7]. Because we will use it

later, we present here a short argument (in the same spirit) that proves a weaker statement.

Proposition 5.1 ([49]). There is an isomorphism of graded algebras

𝐻∗(B𝜎 (𝑌, 𝔰);Z) � A(𝑌 ;Z).

Remark 5.2. The isomorphism given in the proof below is not canonical. We will obtain a canon-

ical isomorphism in Proposition 5.6 using a different approach.

Proof. The inclusion ofB∗(𝑌, 𝔰) into the blown-up configuration spaceB𝜎 (𝑌, 𝔰) induces a homotopy-

equivalence, so we work with the former. We fix a spin-c connection 𝐵0 on 𝑆. For another spin-c

connection 𝐵 we have the Hodge decomposition 𝐵 − 𝐵0 = ℎ + 𝑑𝛼 + 𝑑∗𝛽 where ℎ is harmonic. The

104



projection (𝐵,Ψ) ↦→ ℎ + 𝑑∗𝛽 induces a well-defined fibre bundle projection

B∗(𝑌, 𝔰) →
{
𝑎 ∈ Ω1(𝑌 ; 𝑖R) | 𝑑∗𝑎 = 0

}
/Gℎ (𝑌 ) (5.2)

Here Gℎ (𝑌 ) stands for the group of harmonic maps𝑌 → U(1). The fiber of (5.2) is given by the

projectivisation of the complex vector space of 𝐿2
𝑘−1/2 sections of 𝑆, which has the weak homotopy-

type of C𝑃∞. By further projecting to the harmonic part, we obtain a homotopy equivalence of the

base of (5.2) with the torus of harmonic 1-formsH1(𝑌 ; 𝑖R)/H1(𝑌 ; 2𝜋𝑖Z), which is diffeomorphic

to a torus 𝑇 of rank 𝑏1(𝑌 ).

We next argue that this fibre bundle is cohomologically trivial, which completes the proof.

The space B∗(𝑌, 𝔰) is the base of a principal G(𝑌 )-bundle with weakly contractible total space

C∗(𝑌, 𝔰) ≃ ∗ and so B∗(𝑌, 𝔰) is a model for the classifying space 𝐵G(𝑌 ). The inclusion of the

fibre agrees with the map on classifying spaces induced by the inclusion map U(1) → G(𝑌 ) by the

constant gauge transformations. Now, the inclusion followed by evaluation at a fixed point U(1) →

G(𝑌 ) → U(1) has degree 1, which shows that the inclusion of the fibre induces a surjective map

on cohomology. This shows that the bundle is cohomologically trivial by the Theorem of Leray-

Hirsch. □

5.1.1.2 The slant product construction

A standard construction [[15], §5] involving the slant product

\ : 𝐻𝑘 (𝐶∗) ⊗ 𝐻𝑛 ((𝐶∗)̌ ⊗ 𝐵∗) → 𝐻𝑛−𝑘 (𝐵∗)

𝛼 ⊗ 𝑐 ↦→ 𝛼\𝑐

can be used to produce cohomology classes on B𝜎 (𝑌, 𝔰) from homology classes in 𝑌 , by taking

the slant product with characteristic classes of bundles over 𝑌 × B𝜎 (𝑌, 𝔰). We now describe this

construction adapted to our setting.

Definition 5.1. The canonical line bundle U over 𝑌 × B𝜎 (𝑌, 𝔰) is constructed from the trivial
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complex line bundle C ×𝑌 × C𝜎 (𝑌, 𝔰) over 𝑌 × C𝜎 (𝑌, 𝔰) as follows: make this vector bundle into

G(𝑌 )-equivariant vector bundle by acting on the base in the standard way and on the total space

by 𝑣 · (_, 𝑝, 𝐵, 𝑠,Ψ) := (𝑣(𝑝)_, 𝑝, 𝐵 − 𝑣−1𝑑𝑣, 𝑠, 𝑣Ψ), where 𝑣 ∈ G(𝑌 ). The bundleU is obtained

by taking the quotient by the G(𝑌 )-action.

Definition 5.2. The slant product map is defined for 𝑘 = 0, 1 by

` : 𝐻𝑘 (𝑌 ;Z)/torsion→ 𝐻2−𝑘 (B𝜎 (𝑌, 𝔰);Z) (5.3)

𝛼 ↦→ 𝛼\𝑐1(U)

Remark 5.3. Observe that the torsion in 𝐻𝑘 (𝑌 ;Z) is not in play in (5.3) because the cohomology

of B𝜎 (𝑌, 𝔰) has no torsion (Proposition 5.1).

Recall from §4.1.4 that there is a universal family of spin-c structures and irreducible config-

urations on 𝑌 parametrised by B𝜎 (𝑌, 𝔰). We denote by S := 𝑆∞ → 𝑌 × B𝜎 (𝑌, 𝔰) the universal

family of spinor bundles, which arises from the quotient by the natural action of G(𝑌 ) on the fibres

and base of the bundle pr∗1𝑆 → 𝑌 × C𝜎 (𝑌, 𝔰). We denote by 𝐿 := Λ2𝑆 → 𝑌 the line bundle

associated to the spin-c structure 𝔰 on 𝑌 . From the definitions it is clear that:

Lemma 5.2. There is an isomorphism of U(1)-bundles over 𝑌 × B𝜎 (𝑌 )

Λ2S � pr∗1𝐿 ⊗ U
⊗2.

Thus, since pr∗1𝐿 is pulled back from 𝑌 , one could have defined ` in terms of the bundle S

instead, as

`(𝛼) = 1
2
(
𝛼\𝑐1(S)

)
=

1
2
(
𝛼\𝑐1(Λ2S)

)
. (5.4)

Below we provide geometric interpretations for the maps ` : 𝐻𝑘 (𝑌 ;Z)/torsion→ 𝐻2−𝑘 (B𝜎 (𝑌, 𝔰);Z)

for 𝑘 = 0, 1. The ultimate goal in doing so is to describe the image of ` from a dual point of view.
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5.1.1.3 The case 𝑘 = 0

From (5.4) it is clear that `(1) agrees with the first Chern class of the restriction of the bundle

U to a slice 𝑝 × B𝜎 (𝑌, 𝔰) : `(1) = 𝑐1(U|𝑝×B𝜎 (𝑌,𝔰)). This class can be understood from a dual

point of view, which we do now.

Remark 5.4. Below, any inclusion 𝑀 ⊂ 𝐵 of manifolds 𝑀 and 𝐵 with boundary is assumed to

provide an inclusion of the boundaries 𝜕𝑀 ⊂ 𝜕𝐵 as well.

Definition 5.3. Let 𝐵 be a Banach manifold with boundary, and let 𝑍 ⊂ 𝐵 be a Banach submanifold

with boundary which is of finite codimension and cooriented. We say that 𝑍 is Poincaré dual to

a given cohomology class 𝑐 ∈ 𝐻𝑞 (B𝜎 (𝑌, 𝔰);Z) if for any finite-dimensional compact oriented

submanifold with boundary 𝑀 ⊂ 𝐵 embedded transversely to 𝑍 , in the sense that 𝑀 ∩ 𝑍 , 𝜕𝑀 ∩ 𝑍

and 𝑀 ∩ 𝜕𝑍 are transverse intersections in the ambient 𝐵, then the oriented submanifold with

boundary 𝑀 ∩ 𝑍 ⊂ 𝑀 is Poincaré dual to the cohomology class 𝑐 restricted onto 𝑀 . Namely,

PD(𝑐 |𝑀) = [𝑀 ∩ 𝑍, 𝜕𝑀 ∩ 𝜕𝑍] ∈ 𝐻dim𝑀−𝑞 (𝑀, 𝜕𝑀;Z).

Remark 5.5. Above, 𝑀 ∩ 𝑍 is oriented in the standard way: by the exact sequence 0 → 𝑇𝑀 ∩

𝑇𝑍 → 𝑇𝑀 → 𝑇𝐵/𝑇𝑍 → 0.

Going back to our case of interest, a section ofU|𝑝×B𝜎 (𝑌,𝔰) is provided by a G(𝑌 )-equivariant

map 𝑓 : C𝜎 (𝑌, 𝔰) → C, with 𝑣 ∈ G(𝑌 ) acting on C by the element 𝑣(𝑝) ∈ U(1). A concrete

example of such map can be obtained as follows: fix a unitary trivialisation of the fibre of 𝑆 at the

point 𝑝 ∈ 𝑌 , denoted by 𝜏 = (𝜏1, 𝜏2) : 𝑆𝑝
�−→ C2, and set 𝑓𝜏 (𝐵, 𝑠,Ψ) = 𝜏1Ψ(𝑝). The section 𝑓𝜏 just

constructed is transverse to the zero section ofU|𝑝×B𝜎 (𝑌,𝔰) . We obtain:

Lemma 5.3. The oriented submanifold with boundary 𝑍𝜏 := 𝑓 −1
𝜏 (0) ⊂ B𝜎 (𝑌, 𝔰) is Poincaré dual

to `(1) ∈ 𝐻2(B𝜎 (𝑌, 𝔰);Z).
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5.1.1.4 The case 𝑘 = 1

The dual interpretation of the classes `( [𝛾]) ∈ 𝐻1(B𝜎 (𝑌, 𝔰);Z) for a homology class [𝛾] ∈

𝐻1(𝑌 ;Z) brings in the holonomy of U(1)-connections, as follows. The universal family of spinor

bundles S → 𝑌 × B𝜎 (𝑌 ;Z) carries a tautological family of connections along the 𝑌 -slices. For a

given oriented closed curve 𝛾 ⊂ 𝑌 , we obtain a half-holonomy evaluation map

B𝜎 (𝑌, 𝔰)
hol𝛾−−−→ U(1)

[𝐵, 𝑠,Ψ] ↦→ exp
(1
2

∫
𝛾

�̂�

)
.

Remark 5.6. As before, �̂� stands for the U(1) connection induced by 𝐵 on 𝐿 = Λ2𝑆. By the

integral above we mean the following: choose a trivialisation of 𝑆 along the closed curve 𝛾, so as

to identify �̂� with a 1-form 𝑏 on 𝛾 with values in 𝑖R, and evaluate exp1
2

∫
𝛾
𝑏. This element of U(1)

will be independent of the chosen trivialisation.

The geometric content of the slant map for 𝑘 = 1 is:

Proposition 5.4. Let 𝛾 be an oriented closed curve in 𝑌 . The class `( [𝛾]) ∈ 𝐻1(B𝜎 (𝑌, 𝔰);Z) is

represented by the half-holonomy map hol𝛾 : B𝜎 (𝑌, 𝔰) → U(1). Thus, `(𝛾) is Poincaré dual to

the fibres of the submersion hol𝛾 .

To show this, we consider a hermitian line bundle 𝐿 over a finite-dimensional manifold 𝑋 .

Denote by A the affine space of unitary connections on 𝐿, and by G the gauge group of 𝐿. As

before, there is a tautological unitary line bundle L over (A/G) × 𝑋 carrying a tautological family

of unitary connections on the 𝑋-slices.

Lemma 5.5. For each 𝛾 ∈ 𝐻1(𝑋;Z), the class 𝛾\𝑐1(L) ∈ 𝐻1(A/G;Z) is the cohomology class

represented by the holonomy map hol𝛾 : A/G → U(1).

Proof. We view U(1) as 𝑖R/2𝜋𝑖Z, and denote by 𝜔 = [ 1
2𝜋 𝑑𝑥] ∈ 𝐻

1(U(1);Z) the fundamental

cohomology class. We must establish the identity hol∗𝛾𝜔 = 𝛾\𝑐1(L), which is equivalent to the
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following: for any integral 1-cycle 𝛿 in A/G we have

⟨𝜔, (hol𝛾)∗𝛿⟩ = ⟨𝑐1(L), 𝛾 × 𝛿⟩. (5.5)

That it suffices to show (5.5) follows from the fact A/G has no torsion in its cohomology.

We may suppose that 𝛿 is a smooth map 𝛿 : 𝑆1 → A/G. This can be viewed as a path 𝑡 ↦→ 𝐵(𝑡)

of unitary connections on 𝐿 with 𝐵(0) gauge-equivalent to 𝐵(1). We see that

⟨𝜔, (hol𝛾)∗𝛿⟩ =
1

2𝜋𝑖

∫ 1

𝑡=0

( ∫
𝛾

𝜕𝐵(𝑡)
𝜕𝑡

)
𝑑𝑡 = −𝑖

∫
𝛾×𝛿

𝜕𝐵(𝑡)
𝜕𝑡
∧ 𝜔.

We now provide a representative for the class 𝑐1(L)|𝛾×𝛿 . The bundle L|𝛾×𝛿 carries the family

of connections 𝐵(𝑡) on the 𝛾-slices, and these induce a well-defined connection B on L|𝛾×𝛿 by

setting ∇B = 𝑑
𝑑𝑡
+ ∇𝐵(𝑡) . The class 𝑐1(L)|𝛾×𝛿 is represented by the Chern-Weil form

𝑖

2𝜋
𝐹B =

𝑖

2𝜋

(
𝐹𝐵(𝑡) + 𝑑𝑡 ∧

𝜕𝐵(𝑡)
𝜕𝑡

)
and hence

⟨𝑐1(L), 𝛾 × 𝛿⟩ = 𝑖
∫
𝛾×𝛿

𝜔 ∧ 𝜕𝐵(𝑡)
𝜕𝑡

= −𝑖
∫
𝛾×𝛿

𝜕𝐵(𝑡)
𝜕𝑡
∧ 𝜔.

□

5.1.1.5 The cohomology ring of the configuration space, again

We can now upgrade the isomorphism in Proposition 5.1 to a canonical one:

Proposition 5.6. The slant map ` induces an isomorphism of graded rings

A(𝑌 ;Z) �−→ 𝐻∗(B𝜎 (𝑌, 𝔰);Z)

determined by sending𝑈 ↦→ `(1), and [𝛾] ↦→ `( [𝛾]) for [𝛾] ∈ 𝐻1(𝑌 ;Z)/torsion.

Proof. We consider the fibre bundle (5.2) from the proof of Proposition 5.1. Its fibre has the weak
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homotopy-type of C𝑃∞, and the line bundleU|𝑝×B∗ (𝑌,𝔰) restricts to the canonical line bundle O(1)

over C𝑃∞. Hence the class `(1) = 𝑐1(U|𝑝×B∗ (𝑌,𝔰)) ∈ 𝐻2(B∗(𝑌, 𝔰);Z) restricts to a generator of

the cohomology ring of the fibres.

On the other hand, the base of the fibre bundle has the homotopy type of the torusH1(𝑌 ; 𝑖R)/H1(𝑌 ; 2𝜋𝑖Z).

Choosing a Z-basis of oriented closed curves (𝛾𝑖)𝑖=1,...,𝑏1 (𝑌 ) for 𝐻1(𝑌 ;Z)/torsion we obtain an ex-

plicit identification with the torus 𝑇 = U(1)×𝑏1 (𝑌 )

H1(𝑌 ; 𝑖R)/H1(𝑌 ; 2𝜋𝑖Z) �−→ 𝑇 , [𝑏] ↦→
(
exp

∫
𝛾𝑖

𝑏

)
𝑖=1,...,𝑏1 (𝑌 )

and the bundle projection B∗(𝑌, 𝔰) → 𝑇 is then identified with

[𝐵,Ψ] ↦→
(
exp

∫
𝛾𝑖

(𝐵 − 𝐵0)H
)
𝑖=1,...,𝑏1 (𝑌 )

.

The latter map is easily seen to be homotopic to the product of the half-holonomy maps hol𝛾𝑖 , and

hence a basis for the cohomology of the base of the fibre bundle pulls back to the classes `(𝛾𝑖)

(using Proposition 5.4). The fact that the fibre bundle is cohomologically trivial was shown in the

proof of 5.1, so the result follows. □

5.1.1.6 The module structure in Floer cohomology

The cup product pairing (5.1) in Floer cohomology is obtained, roughly speaking, by integrat-

ing cohomology classes in B𝜎 (𝑌, 𝔰) over the moduli spaces 𝑀𝑧 ( [𝔞], [𝔟]). A general definition

using Čech cohomology is given in [[49], §25]. Using our dual description of the generators of the

cohomology of B𝜎 (𝑌, 𝔰) we now give an equivalent description of this pairing which will serve

better our purposes.

After choosing a metric and admissible perturbation (𝑔, 𝔮), there is a (universal) Seiberg–

Witten moduli space 𝔐′( [𝔞], [𝔟]) → P over the cylinder (R × 𝑌, 𝑑𝑡2 + 𝑔) . This is constructed in

[[49] , §25] in the more general setting of cobordism maps, as a fibre product of moduli spaces over

the cylinders (−∞,−1/2] × 𝑌 , [−1/2, 1/2] × 𝑌 and [1/2, +∞) × 𝑌 . Here, the moduli space over
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[−1/2, 1/2] ×𝑌 consists of configurations (𝐴,Φ, 𝔱) where 𝔱 ∈ P is used to construct a perturbation

term supported in a collar neighbourhood of the boundary, by taking [𝔱, with [(𝑡) a bump function

compactly supported in (−1/2, 0) ∪ (0, 1/2).

By the unique continuation principle, the moduli 𝔐′( [𝔞], [𝔟]) can be regarded as a subset of

the configuration space B𝜎 ( [−1/2, 1/2] ×𝑌, 𝔰)×P. On the latter space we have two maps defined.

First, there is the section 𝑓𝜏 of the canonical line bundleU, 𝑓𝜏 (𝐴, 𝑠,Φ) = 𝜏1Φ(0, 𝑝) ∈ C, defined

by a choice of unitary splitting 𝜏 = (𝜏1, 𝜏2) : 𝑆+(0,𝑝)
�−→ C2 at (0, 𝑝) ∈ R × 𝑌 . On the other hand,

we have the half-holonomy map hol𝛾 (𝐴, 𝑠,Φ) = exp1
2

∫
0×𝛾 �̂� ∈ U(1) obtained from an oriented

closed curve 0 × 𝛾 in the slice 0 × 𝑌 ⊂ R × 𝑌 .

Proposition 5.7. Fix oriented closed curves 𝛾𝑖 ⊂ 𝑌, 𝑖 = 1, . . . , 𝑏1(𝑌 ) providing a basis of𝐻1(𝑌 ;Z)/torsion.

Then

(i) the fibre product defining the moduli spaces 𝔐′( [𝔞] , [𝔟]) is transverse

(ii) 𝑍𝜏 = 𝑓 −1
𝜏 (0) is transverse to the submanifold 𝔐′( [𝔞], [𝔟]) ⊂ B𝜎 ( [−1/2, 1/2] × 𝑌, 𝔰) × P

(iii) for each 𝑖, 𝑍𝛾𝑖 ,^ = hol−1
𝛾𝑖
(^) is transverse to the submanifold 𝔐′( [𝔞], [𝔟]) ⊂ B𝜎 ( [−1/2, 1/2]×

𝑌, 𝔰) × P, where ^ ∈ U(1) is any given value.

Part (i) is proved in [[49], §25] in a more general setting, and (ii)-(iii) follow in a similar way

as the transversality results presented in §A.1. To define the module structure on the monopole

Floer cohomology group 𝐻𝑀
∗(𝑌, 𝔰;Z) one chooses a perturbation 𝔱 ∈ P that is a regular value of

the Fredholm maps

𝑍𝜏 ∩𝔐′( [𝔞], [𝔟]) → P

𝑍𝛾𝑖 ,^ ∩𝔐′( [𝔞], [𝔟]) → P

for all 𝑖 and all pairs of critical points [𝔞], [𝔟], and we denote by 𝑀 ( [𝔞],𝑈, [𝔟]; 𝜏) and 𝑀 ( [𝔞], 𝛾𝑖, [𝔟]; ^)

the corresponding fibres over 𝔱, which are smooth manifolds of finite dimension.
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The A(𝑌 ;Z)-module structure on 𝐻𝑀
∗(𝑌, 𝔰;Z) is now constructed by writing down maps

𝑚(𝑈; 𝜏)∗, 𝑚(𝛾𝑖; ^)∗ : 𝐶∗(𝑌, 𝔰) → 𝐶∗(𝑌, 𝔰) as follows. Each enumerates trajectories between

joining critical points of the three kinds, e.g.

𝑚(𝑈)𝑢𝑜 : 𝐶𝑢 → 𝐶𝑜 , [𝔞] ↦→
∑︁
[𝔟] ∈ℭ𝑜

#𝑀 ( [𝔞],𝑈, [𝔟]; 𝜏) · [𝔟]

and similarly for maps𝑚(𝑈)𝑜𝑠 , 𝑚(𝑈)𝑜𝑜 , 𝑚(𝑈)𝑠𝑢, 𝑚(𝑈)𝑢𝑠 together with similar maps𝑚(𝑈)𝑠𝑢, 𝑚(𝑈)𝑢𝑢 , 𝑚(𝑈)𝑠𝑢
for the reducible loci in the moduli spaces. These assemble into a chain map 𝑚(𝑈) : 𝐶∗(𝑌, 𝔰;Z) →

𝐶∗(𝑌, 𝔰;Z) given by

©«
𝑚(𝑈)𝑜𝑜 𝑚(𝑈)𝑢𝑜

𝑚(𝑈)𝑠𝑢𝜕𝑜𝑠 − 𝜕
𝑠

𝑢𝑚(𝑈)𝑜𝑠 𝑚(𝑈)𝑢𝑢 + 𝑚(𝑈)𝑠𝑢𝜕𝑢𝑠 − 𝜕
𝑠

𝑢𝑚(𝑈)𝑢𝑠

ª®®¬
and dualising yields the desired cochain map 𝑚(𝑈; 𝜏)∗. Similarly one obtains the cochain map

𝑚(𝛾𝑖, ^)∗. Passing to cohomology defines the action of 𝑈, 𝛾𝑖 ∈ A(𝑌,Z) on 𝐻𝑀
∗(𝑌, 𝔰;Z), which

gives the pairing (5.1) when 𝑅 = Z. For a general ring 𝑅, we tensor the cochain maps𝑚(𝑈)∗, 𝑚(𝛾𝑖)∗

with 𝑅, and this induces the action of A(𝑌 ; 𝑅) = A(𝑌 ;Z) ⊗ 𝑅 on the monopole Floer cohomology

𝐻𝑀
∗(𝑌, 𝔰; 𝑅). This completes our description of the module structure (5.1) in monopole Floer

cohomology.

5.1.2 The module structure on 𝐻∗(C(𝑌, b0);Λ𝑅)

We now fix a closed oriented contact 3-manifold (𝑌, b0). We will define a graded A†(𝑌 ; 𝑅)-

module structure

A†(𝑌 ; 𝑅) ⊗ 𝐻∗(C(𝑌, b0);Λ𝑅) → 𝐻∗−𝑘 (C(𝑌, b0);Λ𝑅)

and describe its geometric meaning.
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5.1.2.1 The slant construction

We do a similar construction as before, using the slant product

𝐻𝑘 (𝑌 ;Z) ⊗ 𝐻𝑛 (𝑌 × C(𝑌, b0);Z) → 𝐻𝑛−𝑘 (C(𝑌, b0);Z).

There is a tautological family of contact structures on 𝑌 parametrised by C(𝑌, b0), which provide

us with a real oriented rank 2 vector bundle 𝝃 → 𝑌 × C(𝑌, b0). The bundle 𝝃 is a subbundle

of a trivial rank 3 bundle (since 𝑇𝑌 is trivial for any closed oriented 3-manifold), so its second

Stiefel-Whitney class 𝑤2(𝝃) vanishes. Consequently, the Euler class 𝑒(𝝃) ∈ 𝐻2(𝑌 × C(𝑌, b0);Z)

is divisible by 2.

Definition 5.4. For 𝑘 = 0, 1 we define

` : 𝐻𝑘 (𝑌 ;Z)/torsion→ 𝐻2−𝑘 (C(𝑌, b0);Z) (5.6)

𝛼 ↦→ 1
2
𝛼\𝑒(𝝃).

Remark 5.7. Observe that for 𝑘 = 0, the slant product map (5.6) is, a priori, only well-defined as a

map into 𝐻2(C(𝑌, b0);Z) modulo the 2-torsion subgroup. This ambiguity arises from dividing by

2 in (5.6). However, we now explain that there is a canonical lift, which we take as the definition

of (5.6). Observe that taking 𝛼 = 1 ∈ 𝐻0(𝑌 ;Z) = Z we have 𝛼\𝑒(𝝃) = 𝑒(𝝃 |𝑝×C(𝑌,b0)), so the

matter reduces to having a preferred square root of 𝝃 |𝑝×C(𝑌,b0) , up to isomorphism. This rank 2

bundle comes with a preferred homotopy class of embeddings into the trivial rank 3 bundle, simply

obtained by fixing a positive framing 𝑇𝑝𝑌 � R3. In other words, there is a canonical homotopy

class of maps C(𝑌, b0) → G̃r2(R3) into the Grassmannian of oriented 2-planes in R3, which by

pullling back the tautological 2-plane bundle over G̃r2(R3) yield 𝝃 |𝑝×C(𝑌,b0) . It is now elementary

to observe that there is a unique square root (i.e. spin structure) for the tautological 2-plane bundle

over G̃r2(R3).
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Definition 5.5. We endow 𝐻∗(C(𝑌, b0);Λ𝑅) with a graded A†(𝑌 ; 𝑅)-module structure

A†(𝑌 ; 𝑅) ⊗ 𝐻∗(C(𝑌, b0);Λ𝑅) → 𝐻∗(C(𝑌, b0);Λ𝑅) (5.7)

by setting: for 𝑇 ∈ 𝐻𝑛 (C(𝑌, b0);Λ𝑅)

𝑈 · 𝑇 := `(1) ∩ 𝑇 ∈ 𝐻𝑛−2(C(𝑌, b0);Λ𝑅)

𝛾 · 𝑇 := `(𝛾) ∩ 𝑇 ∈ 𝐻𝑛−1(C(𝑌, b0);Λ𝑅) , 𝛾 ∈ 𝐻1(𝑌 ;Z)/torsion.

Here ∩ denotes the cap product with coefficients in the local system Λ𝑅:

𝐻𝑘 (C(𝑌, b0);Z) ⊗ 𝐻𝑛 (C(𝑌, b0);Λ𝑅) → 𝐻𝑛−𝑘 (C(𝑌, b0);Λ𝑅).

We now relate the slant product maps ` and `. The space CM(𝑌, b0) of triples (b, 𝛼, 𝑗)

parametrises a family of spin-c structures and irreducible configurations on 𝑌 (see §4.1.5.2), and

to this it corresponds a classifying map 𝑓 : CM(𝑌, b0) → B∗(𝑌, 𝔰b0,𝛼0, 𝑗0) (see Lemma 4.1). Here,

(b0, 𝛼0, 𝑗0) is a fixed triple.

Lemma 5.8. We have the identity ` = 𝑓 ∗`, where 𝑓 : CM(𝑌, b0) → B∗(𝑌, 𝔰b0,𝛼0, 𝑗0) is the

classifying map.

Proof. Indeed, under the map id𝑌 × 𝑓 : 𝑌 × C(𝑌, b0) → 𝑌 × B∗(𝑌, 𝔰b0,𝛼0, 𝑗0) the bundle Λ2S pulls

back to the bundle 𝝃, and hence 𝑒(𝝃) = (id𝑌 × 𝑓 )∗𝑐1(Λ2S). □

5.1.2.2 Geometric interpretations

We conclude this section by interpreting the module action (5.1) in geometric terms. We start

with the𝑈 map

𝐻∗(C(𝑌, b0);Λ𝑅)
𝑈−→ 𝐻∗−2(C(𝑌, b0; 𝑅) , 𝑇 ↦→ `(1) ∩ 𝑇.
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Fixing a point 𝑝 ∈ 𝑌 , there is a natural evaluation map to the Grassmanian of oriented planes in

𝑇𝑝𝑌

C(𝑌, b0)
𝑒𝑣−−→ G̃r2(𝑇𝑝𝑌 ) � 𝑆2 , b ↦→ b (𝑝).

The main geometric content is:

Proposition 5.9. The class `(1) ∈ 𝐻2(C(𝑌, b0);Z) is represented by the map 𝑒𝑣, i.e. `(1) =

𝑒𝑣∗ [𝑆2]∨.

From this it follows that the more geometric description of the𝑈 action on 𝐻∗(C(𝑌, b0)) given

in §?? agrees with the one just given in Definition 5.5.

Proof. For each unitary framing (𝜏1, 𝜏2) : 𝑆𝑝
�−→ C2 of the fibre over 𝑝 ∈ 𝑌 of the spinor bundle

𝑆 := 𝑆b0,𝛼0, 𝑗0 we have the section 𝑓𝜏 (𝐵,Ψ) = 𝜏1Ψ(𝑝) of the canonical line bundle U restricted to

𝑝 × B∗(𝑌, 𝔰b0,𝛼0, 𝑗0). This “pencil" of sections induces a map 𝑒 to the projectivisation of 𝑆𝑝, away

from the base locus 𝐵 = {[𝐵,Ψ] : Ψ(𝑝) = 0}

B∗(𝑌, 𝔰b0,𝛼0, 𝑗0) \ 𝐵
𝑒−→ P(𝑆𝑝) � P1 , [𝐵,Ψ] ↦→ C · Ψ(𝑝).

It follows that the zero set 𝑍𝜏 := 𝑓 −1
𝜏 (0) ⊂ B∗(𝑌, 𝔰b0,𝛼0, 𝑗0) \ 𝐵 is Poincare dual to the regular fibres

of 𝑒. Precomposing by the classifying map 𝑓 : CM(𝑌, b0) → B∗(𝑌, 𝔰b0,𝛼0, 𝑗0), whose image does

not intersect 𝐵, we have shown that the cohomology class `(1) ∈ 𝐻2(CM(𝑌, b0)) is represented

by the map 𝑒 ◦ 𝑓 : CM(𝑌, b0) → P(𝑆𝑝).

The key observation is now the following

Lemma 5.10. Let (𝑉, 𝑔) be a 3-dimensional real oriented inner product vector space, and let

𝑆 � C2 be its fundamental spin-c representation. Then there exists a canonical diffeomorphism

G̃r2(𝑉) � P(𝑆).
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Proof. The Grassmanian G̃r2(𝑉) is diffeomorphic to the unit sphere in 𝑉∗ via

Sph(𝑉∗, 𝑔) �−→ G̃r2(𝑉) , 𝛼 ↦→ ker𝛼.

Recall that the fundamental spin-c representation provides an isomorphism𝑉∗ � 𝔰𝔲(𝑆) as SpinC(3)

modules. Under this isomorphism, the Clifford multiplication, a given 𝛼 ∈ Sph(𝑉∗, 𝑔) acts on 𝑆

decomposing it into ±𝑖 eigenspaces 𝑆 = 𝑙+ ⊕ 𝑙−. Each 𝑙± is a complex line in 𝑆, and the assignment

Sph(𝑉∗, 𝑔) → P(𝑆) , 𝛼 ↦→ 𝑙+

provides a diffeomophism, concluding the proof. □

To conclude, apply Lemma 5.10 for each 𝑡 ∈ CM(𝑌, b0) to the inner product spaces (𝑇𝑝𝑌, 𝑔b𝑡 ,𝛼𝑡 , 𝑗𝑡 )

and spin-c structures (𝑔b𝑡 ,𝛼𝑡 , 𝑗𝑡 , 𝑆b0,𝛼0, 𝑗0 , 𝜌b0,𝛼0, 𝑗0 ◦ 𝑏∗𝑔,𝑔b0 ,𝛼0 , 𝑗0
). Under the diffeomorphism described

in the proof of Lemma 5.10, one identifies the maps 𝑒 ◦ 𝑓 and 𝑒𝑣 as the same. □

Finally, we briefly comment on the action of 𝛾 ∈ 𝐻1(𝑌,Z)

𝐻∗(C(𝑌, b0))
𝛾
−→ 𝐻∗−1(C(𝑌, b0)).

The geometric interpretation that we will need in the subsequent sections is already provided by

Lemma 5.5: upon choosing a reduction of the structure group of 𝝃 → 𝑌 × C(𝑌, b0) to U(1), and a

family of unitary connections {𝐵b} over the 𝑌 -slices, one obtains a holonomy map

C(𝑌, b0) → U(1) , b ↦→ exp
∫
𝛾

𝐵b

whose regular fibres are Poincare dual to 2`(𝛾) ∈ 𝐻1(C(𝑌, b0);Z). In particular, the canonical

spin-c connections �̂�b,𝛼, 𝑗 on 𝑌 parametrised by (b, 𝛼, 𝑗) ∈ CM(𝑌, b0) ≃ C(𝑌, b0) provide such a

family of connections.
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5.2 The neck-stretching argument

In this section we establish Theorem 1.5 (B). This asserts that the families contact invariant Fc :

𝐻∗(C(𝑌, b0);Λ𝑅) → 𝐻𝑀
∗(𝑌, 𝔰b0; 𝑅) intertwines the module structures, which were introduced in

§5.1. We must show: for 𝑇 ∈ 𝐻∗(C(𝑌, b0);Λ𝑅) and a homology class 𝛾 ∈ 𝐻1(𝑌 ;Z)

𝑈 · Fc(𝑇) = Fc(𝑈 · 𝑇) (5.8)

𝛾 · Fc(𝑇) = Fc(𝛾 · 𝑇). (5.9)

We sketch now the main ideas in the case of 𝑈. The key is to consider, for a given simplex 𝜎 :

Δ𝑛 → CM(𝑌, b0), a moduli spaceM([𝔞],𝑈, 𝜎; 𝜏) → Δ𝑛 ×R ∋ (𝑡, 𝑠) of solutions to the Seiberg–

Witten equations on 𝑍+ that meet certain evaluation constraint at the point (𝑠, 𝑝) ∈ R × 𝑌 � 𝑍+.

Here 𝑝 ∈ 𝑌 is fixed, whereas 𝑠 ∈ R is not, and hence the evaluation constraint is thought of

as travelling through 𝑍+ from the cylindrical to the symplectic end. The evaluation constraint

itself is that the spinor Φ satisfies 𝜏1Φ = 0 at the point (𝑠, 𝑝), for a suitably chosen trivialisation

𝜏 = (𝜏1, 𝜏2) of the bundle 𝑆+ along the line R × 𝑝 ⊂ 𝑍+. Such moduli spaces will be referred to

as parametrised evaluation moduli spaces. The main part of the argument is to analyse the ends of

the (non-compact) moduliM([𝔞],𝑈, 𝜎; 𝜏) as 𝑠→ ±∞. As 𝑠→ −∞ we will see that the solutions

to the equations degenerate into broken configurations, which in the simplest case consist of pairs

of configurations (𝛾1, 𝛾0), the first of which solves the Seiberg–Witten equations over an infinite

cylinder R ×𝑌 with an evaluation constraint, and the second is an unconstrained solution over 𝑍+.

The interesting part of the moduli space, however, shows up as 𝑠 → +∞. Here we will show that

M([𝔞],𝑈, 𝜎; 𝜏) looks like the product R×𝑀 where 𝑀 is, in a sense, the intersection of the moduli

𝑀 ( [𝔞], 𝜎) over the simplex (constructed in §4.2.4) with a fibre of the map B∗(𝑌, 𝔰b0,𝛼0, 𝑗0) 99K P1

from §5.1.

This will allow us to construct compactifications of the parametrised evaluation moduli spaces,

and the identities (5.8)-(5.9) arise from counting the boundary points of the compactified 1-dimensional
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parametrised evaluation moduli.

Remark 5.8. Throughout this section, we use the notation of §??. The spinor bundle over 𝑌 is

denoted 𝑆b0,𝛼0, 𝑗0 → 𝑌 , and for our family 𝔯𝑡 of spin-c structures over 𝑍+ we have the spinor bundle

denoted 𝑆 = 𝑆+ ⊕ 𝑆− → 𝑍+.

5.2.1 Parametrised evaluation moduli spaces over 𝑍+

5.2.1.1 A family of perturbations

As a starting point for the construction of the parametrised evaluation moduli spaces we intro-

duce an intermediate moduli space

M([𝔞], 𝑍+) → CM(𝑌, b0) × P × R (5.10)

analogous to 𝔐( [𝔞], 𝑍+) from §4.2.3. The only new feature is that the R factor in the base will

parametrise various perturbations of the Seiberg–Witten equations. The parametrised evaluation

moduli space will result from imposing constraints on the configurations inM([𝔞] , 𝑍+). Follow-

ing the same scheme as in §4.2.3, we constructM([𝔞], 𝑍+) as a fibre product of moduli.

The first step is constructing a moduli space

M𝑘 → CM(𝑌, b0) × P × R (5.11)

in the same flavour of 𝔐𝑘 (𝐾′) → CM(𝑌, b0) × P. The moduli space M𝑘 consists of gauge-

equivalence classes of quintuples (𝐴,Φ, 𝑡, 𝔭, 𝑠), where the variables (𝑡, 𝔭, 𝑠) ∈ CM(𝑌, b0) ×P ×R

provide the map in (5.11), and (𝐴,Φ) are configurations over the region

𝐾 (𝑠) = [m(𝑠), +∞) × 𝑌 ⊂ 𝑍+ (5.12)

Here m(𝑠) stands for the function min(𝑠 − 1, 0), or rather, a suitable smooth approximation of

it. Such (𝐴,Φ, 𝑡, 𝔭, 𝑠) must be asymptotic to canonical configurations as before, and satisfy the
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Seiberg–Witten equations

sw(𝐴,Φ, 𝑢) + _(𝐴,Φ, 𝑡, 𝔭, 𝑠) = 0

perturbed by a certain quantity _(𝐴,Φ, 𝑡, 𝔭, 𝑠) ∈ Υ𝑘−1 which we now describe. It is given by the

section

_ : C𝑘 (𝐾 (𝑠)) × P × R→ Υ𝑘−1

(𝐴,Φ, 𝑡, 𝔭, 𝑠) ↦→ 𝜑1
𝑠 �̂�(𝐴,Φ) + 𝜑2

𝑠 �̂�(𝐴,Φ) + [𝑠𝔱(𝐴,Φ) + 𝜑3�̂�𝐾,𝑢 . (5.13)

Here, 𝔮, 𝔱 are fixed generic perturbations chosen as in §4.2.3 and §5.1.1.6. Also, 𝜑1
𝑠 , 𝜑

2
𝑠 , [𝑠

are fixed R-families of non-negative functions on R, and 𝜑3 is the function we chose in §4.2.3.

We require that they relate to the functions 𝜑1, 𝜑2 of §4.2.3, and [ of §5.1.1.6 as follows. Let

(𝜏𝑠 𝑓 ) (𝑡) := 𝑓 (𝑡 + 𝑠). Then

(i) 𝜑1
𝑠 = 𝜏−m(𝑠)𝜑

1 for all 𝑠 ∈ R

(ii) 𝜑2
𝑠 = 𝜏−m(𝑠)𝜑

2 for all 𝑠 ∈ R

(iii) [𝑠 = 𝜏−𝑠[ for 𝑠 < 0 very negative, and identically vanishing for 𝑠 ≥ 0.

The choice of such perturbation data will ultimately ensure the behaviour of the parametrised

evaluation moduli spaces that we have described at the beginning of §5.2.

We want to makeM𝑘 into a Banach manifold. By applying the R-family of translations 𝑡 ↦→

𝑡− 𝑠 we can viewM𝑘 as a subset of a suitable configuration space B𝑘 = C𝑘/G𝑘+1 over [0, +∞)×𝑌 .

As before, the latter is a 𝐶 𝑙−𝑘−2 Banach manifold andM𝑘 is the transverse zero set of a section

of a bundle over B𝑘 given by the perturbed Seiberg–Witten map; hence a Banach manifold of the

same regularity. The claimed transversality follows, once more, from the results in §A.1.

We then have restriction maps

M𝑘

R−−−→ B𝜎
𝑘−1/2(𝑌, 𝔰b0,𝛼0, 𝑗0)

𝑀𝑘 ( [𝔞], (−∞, 0] × 𝑌 )
𝑅+−−→ B𝜎

𝑘−1/2(𝑌, 𝔰b0,𝛼0, 𝑗0)
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onto the left-most and right-most end, respectively. From §A.1 it will follow that the fibre product

M([𝔞], 𝑍+) = Fib(𝑅+,R−)

is transverse, and that the projection to CM(𝑌, b0) × P × R is Fredholm. This completes the

construction of (5.10).

5.2.1.2 The parametrised𝑈-moduli space

We fix a point 𝑝 ∈ 𝑌 throughout. We denote by 𝜏 an arbitrary unitary splitting of the fibre of

the spinor bundle 𝑆b0,𝛼0, 𝑗0 → 𝑌 over the point 𝑝 ∈ 𝑌 , i.e. a unitary isomorphism 𝜏 = (𝜏1, 𝜏2) :

(𝑆b0,𝛼0, 𝑗0)𝑝
�−→ C2. Given such 𝜏, which we may view as an element in the unitary group U(2),

we obtain an extension to a unitary splitting of the positive spinor bundle 𝑆+ → 𝑍+ as follows.

First, over the cylindrical end 𝑍 = (−∞, 0] × 𝑌 ⊂ 𝑍+ by translation. For the symplectic end

𝐾 = [1, +∞)×𝑌 ⊂ 𝑍+ we proceed as follows. Recall that in §4.2.1.3 that we introduced a rescaling

operator R0, which upon acting on canonical configurations yields them translation-invariant in

some gauge. We have the translation-invariant bundle over 𝐾 given by

𝑆+ = R∗0𝑆
+ = C ⊕ Λ

0,2
𝐽0
𝑇∗𝐾.

Usinf the identification (𝑆b0,𝛼0, 𝑗0)𝑝 = 𝑆+(1,𝑝) � R
∗
0𝑆
+
(1,𝑝) we may simply translate the splitting 𝜏

along 𝐾 . In the transition region [0, 1] × 𝑌 ⊂ 𝑍+ we extend 𝜏 in an arbitrary manner.

We have the canonical line bundle U → B𝑘 × R, which arises from the R-family of repre-

sentations of the group of gauge transformations G𝑘+1 → U(1) given by 𝑣 ↦→ 𝑣(𝑠, 𝑝), where 𝑠

varies within R. We pullback this bundle over toM([𝔞], 𝑍+), which can be identified naturally as

a Banach submanifold of B(𝑍+) × R. We consider the section of this pullback bundle given by

𝑓𝜏 (𝐴,Φ, 𝑡, 𝔭, 𝑠) = 𝜏1Φ(𝑠, 𝑝)
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where Φ = R∗0Φ is the rescaled version of Φ. Note that we only defined R0 over the region 𝐾; we

extend it here over the whole 𝑍+ as the identity over the cylindrical end 𝑍 .

The following will follow from §A.1:

Proposition 5.11. The section 𝑓𝜏 is transverse to the zero section ofU →M([𝔞], 𝑍+).

Definition 5.6. The (universal) parametrised𝑈-moduli space is the Banach submanifold

M([𝔞] ,𝑈, 𝑍+; 𝜏) ⊂ M([𝔞], 𝑍+)

given by the zero set of the section 𝑓𝜏.

Remark 5.9. Allowing for arbitrary splittings 𝜏 ∈ U(2) might seem strange at this point. The

main case to have in mind is the basic splitting 𝑆b0,𝛼0, 𝑗0 = C ⊕ b0, which over the symplectic end

corresponds to the splitting 𝑆+ = C⊕Λ0,2
𝐽0
𝑇∗𝐾. The section ofU that we would want to take in this

case is simply given by projecting Φ(𝑠, 𝑝) to the trivial C factor. However, it will soon become

apparent that, in order for the ends of the relevant moduli spaces in the neck-stretching argument

to have a nice structure, we have to pass to a generic splitting 𝜏.

5.2.1.3 The parametrised 𝛾-moduli space

In a similar fashion, we fix a smooth oriented closed curve 𝛾 ⊂ 𝑌 and consider the map

hol𝛾 :M([𝔞], 𝑍+) → U(1) (5.14)

obtained by associating to (𝐴,Φ, 𝑡, 𝔭, 𝑠) the half-holonomy of the induced connection �̂� on Λ2𝑆+

around the loop 𝑠 × 𝛾 ⊂ 𝑍+

hol𝛾 (𝐴,Φ, 𝑡, 𝔭, 𝑠) = exp
1
2

∫
𝑠×𝛾

�̂�.

In §A.1 we show:
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Proposition 5.12. The map (5.14) is a submersion.

Definition 5.7. The (universal) parametrised 𝛾-moduli space is the Banach submanifold

M([𝔞], 𝛾, 𝑍+; ^) ⊂ M([𝔞], 𝑍+)

given by the preimage of ^ ∈ U(1) under (5.14).

5.2.2 Compactifications

5.2.2.1 The setup

We first introduce the moduli spaces that will be the main players in the neck-stretching argu-

ment that will follow. These are associated to a singular chain 𝜎 : Δ𝑛 → C := CM(𝑌, b0) × P

equipped with a unitary splitting 𝜏 ∈ U(2) and a value ^ ∈ U(1).

First, by taking the fibre product ofM𝑧 ( [𝔞], 𝑍+)
𝜋−→ C×R and 𝜎×idR : Δ𝑛×R→ C×Rwe ob-

tain the spaceM𝑧 ( [𝔞], 𝜎) which is a 𝐶2 manifold with corners provided the fibre product is trans-

verse. Similarly, taking the fibre product of the each of the two mapsM𝑧 ( [𝔞],𝑈, 𝑍+),M𝑧 ( [𝔞], 𝛾, 𝑍+)
𝜋−→

C × R with 𝜎 × idR we obtain 𝐶2 manifolds with cornersM𝑧 ( [𝔞] ,𝑈, 𝜎; 𝜏),M𝑧 ( [𝔞], 𝛾, 𝜎; ^) if

transversality holds. In both cases the required transversality can be achieved by a 𝐶2 perturbation

of 𝜎 whenever the index of 𝜋 is ≤ 1− 𝑛, by the Thom-Smale transversality theorem (see §4.2.4.1).

The task that we take up for the remainder of this section is to analyze the ends of the 1-

dimensional non-compact moduli spacesM𝑧 ( [𝔞] ,𝑈, 𝜎; 𝜏), M𝑧 ( [𝔞], 𝛾, 𝜎; ^) and construct suit-

able compactifications of them with a nice boundary structure.

5.2.2.2 Exponential decay

Consider a configuration (𝐴,Φ, 𝑡, 𝑠) in the moduliM𝑧 ( [𝔞], 𝜎). Over the symplectic end 𝐾 ⊂

𝑍+ the positive spinor bundle 𝑆+ → 𝑍+ decomposes into the ±2𝑖 eigenspaces of the Clifford action

of 𝜔𝑡 . The canonical spinor Φ𝑡 provides a framing of the −2𝑖 eigenspace, and we decompose Φ
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accordingly

Φ = 𝛼Φ𝑡 + 𝛽 (5.15)

where 𝛼 is a function, and 𝛽 is a section of the +2𝑖 eigenspace. Similarly, using the canonical

connection 𝐴𝑡 we obtain a decomposition

𝐴 = 𝐴𝑡 + 𝑎 (5.16)

for an 𝑖R-valued 1-form 𝑎. We regard 𝑎 as a unitary connection ∇𝑎 = 𝑑 + 𝑎 on the trivial line

bundle, with curvature given by 𝐹𝑎 = 𝑑𝑎. There is a also a unitary connection ∇̃𝐴 on the +2𝑖

eigenspace 𝐸+(𝑡) obtained from 𝐴 by orthogonal projection.

The main ingredient for the various compactness results needed in this article is the following

exponential decay estimate, which follows from the work of Kronheimer–Mrowka [47] and Zhang

[81].

Theorem 5.13. There exists constants 𝐶, 𝜖 > 0 depending on 𝜎, with the following significance:

if (𝐴,Φ, 𝑡, 𝑠) ∈ M𝑧 ( [𝔞], 𝜎) for some [𝔞], 𝑧, we have the following estimate over 𝐾 ⊂ 𝑍+

|1 − |𝛼 |2 + |𝛽 |2 |2 + |𝛽 |2 + |∇𝑎𝛼 |2 + |∇̃𝐴 𝛽 |2 + |𝐹𝑎 |2 ≤ 𝐶𝑒−𝜖 𝑠 .

Corollary 5.14. For any element inM𝑧 ( [𝔞], 𝜎) there is a gauge representative (𝐴,Φ, 𝑡, 𝑠) of it

such that 𝐴 − 𝐴𝑡 and Φ − Φ𝑡 decay exponentially over 𝐾 with first derivatives (with constants

𝐶, 𝜖 > 0 only depending on 𝜎).

Proof. The only part which doesn’t follow directly from Theorem 5.13 is that |𝐴 − 𝐴𝑡 |2 ≤ 𝐶𝑒−𝜖 𝑠.

This is proved exactly as in Corollary 3.16 of [47]. □
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5.2.2.3 The boundary ofM𝑧 ( [𝔞],𝑈, 𝜎; 𝜏) at 𝑠 = +∞

We now describe the behaviour of configurations (𝐴,Φ, 𝑡, 𝑠) ∈ M𝑧 ( [𝔞],𝑈, 𝜎; 𝜏) when 𝑠 ap-

proaches +∞.

Denote by 𝑒∞ : Δ𝑛 → P(𝑆+(1,𝑝)) the map that associates to 𝑡 ∈ Δ𝑛 the fibre over the point

(1, 𝑝) ∈ 𝑍+ of the −2𝑖-eigenspace for 𝜌𝑡 (𝜔𝑡), namely the line

C · Φ𝑡 (1, 𝑝) ⊂ 𝑆+(1,𝑝) .

We encountered this map in the proof of Proposition 5.9. Recall that 𝜏 provides a translation-

invariant unitary splitting 𝜏 = (𝜏1, 𝜏2) : 𝑆+ | [1,+∞)×𝑝 � C2 as in §5.2.1.2. This provides us with a

preferred line 𝑙𝜏 ∈ P(𝑆+𝑝), namely that line which corresponds with 0 : 1 under the identification

P(𝑆+𝑝) � P(C2) given by 𝜏.

Definition 5.8. The𝑈-limiting locus at 𝑠 = +∞ of 𝜎 is the subset 𝑍∞,𝜏 (𝜎) := 𝑒−1
∞ (𝑙𝜏) ⊂ Δ𝑛.

The limiting set at infinity is a compact subset of Δ𝑛. Later we will require that 𝑙𝜏 is a regular

value (by varying 𝜏), so that 𝑍∞,𝜏 (𝜎) will be a submanifold (with corners) of Δ𝑛. The terminology

we chose is justified by the next observation:

Lemma 5.15. Suppose (𝐴𝑛,Φ𝑛, 𝑡𝑛, 𝑠𝑛) ∈ M𝑧 ( [𝔞],𝑈, 𝜎; 𝜏) is a sequence of configurations such

that lim𝑛→+∞ 𝑠𝑛 = +∞ and lim𝑛→+∞ 𝑡𝑛 = 𝑡∗ for some 𝑡∗ ∈ Δ𝑛. Then 𝑡∗ lies in 𝑍∞,𝜏 (𝜎) ⊂ Δ𝑛

Proof. We choose a family of canonical configurations (𝐴𝑡 ,Φ𝑡) defined for 𝑡 ∈ Δ𝑛, since Δ𝑛

is contractible. By Lemma 4.4 we may assume, after passing to a different gauge, that Φ𝑡 are

translation-invariant spinors over the symplectic end 𝐾 .

By Theorem 5.13, there exist constants 𝐶 > 0 and 𝜖 > 0 independent of 𝑛, such that for any

𝑠 ∈ R and 𝑦 ∈ 𝑌

|Φ𝑛 (𝑠, 𝑦) −Φ𝑡𝑛 (𝑠, 𝑦) | ≤ 𝐶𝑒−𝜖 𝑠 .
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Thus

|Φ𝑛 (𝑠, 𝑦) −Φ0,𝑡𝑛 (𝑠, 𝑦) | ≤ |R∗0(𝑠) | |Φ𝑛 (𝑠, 𝑦) −Φ𝑡𝑛 (𝑠, 𝑦) | ≤ 𝐶 |R∗0(𝑠) |𝑒
−𝜖 𝑠 .

where |R∗0(𝑠) | denotes the pointwise norm of the rescaling operator, which for 𝑠 ≥ 1 equals 1.

On the other hand, by the definition ofM𝑧 ( [𝔞],𝑈, 𝜎; 𝜏), at the point (𝑠𝑛, 𝑝) the evaluation con-

straint 𝜏1Φ𝑛 (𝑠𝑛, 𝑝) = 0 holds. By the above bound, |Φ𝑛 (𝑠𝑛, 𝑝) −Φ𝑡𝑛 (𝑠𝑛, 𝑝) | converges to zero, and

hence lim𝑛→∞ 𝜏1Φ𝑡𝑛 (𝑠𝑛, 𝑝) = 0. By translation-invariance we have 𝜏1Φ𝑡𝑛 (1, 𝑝) = 𝜏1Φ𝑡𝑛 (𝑠𝑛, 𝑝) = 0.

Hence we obtain 𝜏1Φ𝑡∗ (1, 𝑝) = lim𝑛→∞ 𝜏1Φ𝑡𝑛 (1, 𝑝) = 0, which means that 𝑒∞(𝑡∗) = 𝑙𝜏, as re-

quired. □

Definition 5.9. The 𝑈-limiting moduli space at 𝑠 = +∞ is the preimage of the 𝑈-limiting locus

𝑍∞,𝜏 (𝜎) = 𝑒−1
∞ (𝑙𝜏) ⊂ Δ𝑛 under the map 𝑀𝑧 ( [𝔞], 𝜎) → Δ𝑛. We denote it by 𝑀𝑧 ( [𝔞], 𝑍∞,𝜏 (𝜎)).

The next is the main result of this section. It describes the shape ofM𝑧 ( [𝔞],𝑈, 𝜎; 𝜏) as the

evaluation constraint goes to +∞.

Theorem 5.16. Let 𝜎 be a 𝐶2 singular chain in C = CM(𝑌, b0) × P. After a 𝐶2 pertubation of 𝜎

and a residual choice of splitting 𝜏 ∈ U(2), there exists a constant 𝑠0 > 0 such that the following

holds for all [𝔞], 𝑧 for which the moduli spaceM𝑧 ( [𝔞],𝑈, 𝜎; 𝜏) has expected dimension 1:

• the moduli spacesM𝑧 ( [𝔞],𝑈, 𝜎; 𝜏) are transversely cut out and the moduli spaces 𝑀𝑧 ( [𝔞], 𝑍∞,𝜏 (𝜎))

consist of a finite set of transversely cut out points

• there is a homeomorphism of the open subset {𝑠 > 𝑠0} ∩M𝑧 ( [𝔞],𝑈, 𝜎; 𝜏) with the product

𝑀𝑧 ( [𝔞], 𝑍∞,𝜏 (𝜎)) × (𝑠0, +∞), compatible with the projection to (𝑠0, +∞).

Proof. We start with some preliminary observations. First, note that the transversality assertion for

the moduli spacesM𝑧 ( [𝔞],𝑈, 𝜎; 𝜏) of dimension 1 follows by an application of the Thom-Smale

transversality theorem, in the same way as for the moduli spaces 𝑀𝑧 ( [𝔞], 𝜎). In this case, again by

standard finiteness results (see §A.2) we only have finitely many non-emptyM𝑧 ( [𝔞],𝑈, 𝜎; 𝜏) with

125



dimension 1. Also, the moduli space 𝑀𝑧 ( [𝔞], 𝑍∞,𝜏 (𝜎)) is compact, since its expected dimension

is 0. Thus, if it is transversely cut out then it will consist of finitely-many points.

We choose a family of canonical configurations (𝐴𝑡 ,Φ𝑡) parametrised by 𝑡 ∈ Δ𝑛 in translation-

invariant form (see Proposition 4.4, Definition 4.10). The open subset {𝑠 > 0} ∩ M𝑧 ( [𝔞], 𝜎) is

canonically identified with the product 𝑀𝑧 ( [𝔞], 𝜎) × (0, +∞), compatibly with the projection to

(0, +∞). For this product structure, the canonical line bundleU →M𝑧 ( [𝔞], 𝜎) is identified with

a pullback to the first factor in the product. Next, we extend the section 𝑓𝜏 ofU (whose zeros give

M𝑧 ( [𝔞],𝑈, 𝜎; 𝜏) ⊂ M𝑧 ( [𝔞], 𝜎; 𝜏)) to a section 𝐹 defined over 𝑠 = +∞ as follows

𝐹 :𝑀𝑧 ( [𝔞], 𝜎) × (0, +∞] → U

(𝐴,Φ, 𝑡, 𝑠) ↦→ 𝜏1Φ(𝑠, 𝑝), if 𝑠 ≠ +∞

(𝐴,Φ, 𝑡, +∞) ↦→ 𝜏1Φ𝑡 (1, 𝑝).

We write 𝐹𝑠 for the smooth section given by restriction of 𝐹 to the slice 𝑀𝑧 ( [𝔞], 𝜎) × {𝑠}. The

required result is thus of Implicit Function Theorem type. Namely, from the version of this given

in [[49], Lemma 19.3.3] it will follow that the map 𝐹−1(0) → (0, +∞] (given by the projection

(𝐴,Φ, 𝑡, 𝑠) ↦→ 𝑠) defines a topological submersion over (𝐹∞)−1(0) = 𝑀𝑧 ( [𝔞], 𝑍∞,𝜏 (𝜎)) (and

therefore the required homeomorphismM𝑧 ( [𝔞],𝑈, 𝜎; 𝜏) � 𝑀𝑧 ( [𝔞], 𝑍∞,𝜏 (𝜎))×(𝑠0, +∞) for some

large 𝑠0 > 0) provided we can show

(i) 𝐹 is continuous

(ii) 𝐹𝑠 → 𝐹∞ in 𝐶1
loc

(iii) 𝐹∞ is transverse to the zero section.

Item (i) follows from the exponential decay estimates (Theorem 5.13). For item (ii) we proceed as

follows. Recall that the configuration space C𝑘 (𝐾′) over the symplectic end is a Banach manifold
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with tangent space

𝑇(𝐴,Φ,𝑡)C𝑘 (𝐾′) �
{
(𝑎, 𝜙, ¤𝑡) | 𝑎 − 𝜕

𝜕 ¤𝑡 𝐴𝑡 ∈ 𝐿
2
𝑘 (𝐾, 𝑔𝑡) , 𝜙 −

𝜕

𝜕 ¤𝑡Φ𝑡 ∈ 𝐿2
𝑘 (𝐾, 𝑔𝑡) , ¤𝑡 ∈ 𝑇𝑡CM(𝑌, b0)

}
(see (4.8)) and a Banach space norm induced from a local chart is given by

| | (𝑎, 𝜙, ¤𝑡) | | = | |𝑎 − 𝜕

𝜕 ¤𝑡 𝐴𝑡 | |𝐿2
𝑘
(𝐾,𝑔𝑡 ) + ||𝜙 −

𝜕

𝜕 ¤𝑡Φ𝑡 | |𝐿2
𝑘
(𝐾,𝑔𝑡 ) + || ¤𝑡 | |.

The vertical components (taken with respect to the obvious connection onU) of the derivatives of

the sections 𝐹𝑠 and 𝐹∞ are

(D 𝑓𝑠)(𝐴,Φ,𝑡) (𝑎, 𝜙, ¤𝑡) = 𝜙(𝑠, 𝑝)

(D 𝑓∞)(𝐴,Φ,𝑡) (𝑎, 𝜙, ¤𝑡) =
𝜕

𝜕 ¤𝑡Φ𝑡 (1, 𝑝).

We then use the continuous embedding 𝐿2
𝑘,𝑔𝑡 ,𝐴𝑡

(𝐾, 𝑆+) ↩→ 𝐶0(𝐾, 𝑆+) (recall that the cylindri-

cal metric is 𝑔𝑡 = 𝑑𝑠2 + 𝑔b𝑡 ,𝛼𝑡 , 𝑗𝑡 over 𝐾) together with the identity of Riemannian volume forms

𝑑vol𝑔𝑡 = 𝑠3𝑑vol𝑔𝑡 to obtain the estimate

𝑠3/2 · | (D(𝐹𝑠 − 𝐹∞))(𝐴,Φ,𝑡) (𝑎, 𝜙, ¤𝑡) | ≤ | |𝑠3/2(𝜙 − 𝜕

𝜕 ¤𝑡Φ𝑡) | |𝐶0 (𝐾,𝑆+)

≤ 𝐶 · | |𝑠3/2(𝜙 − 𝜕

𝜕 ¤𝑡Φ𝑡) | |𝐿2
𝑘,𝑔𝑡 ,𝐴𝑡

(𝐾,𝑆+)

≤ 𝐶 | |𝜙 − 𝜕

𝜕 ¤𝑡Φ𝑡 | |𝐿2
𝑘,𝑔𝑡 ,𝐴𝑡

(𝐾,𝑆+) .

From this we deduce that | |𝐹𝑠 − 𝐹∞ | |𝐶1 (𝑀𝑧 ( [𝔞],𝜎)) ≤ 𝐶/𝑠3/2, and in particular we have 𝐶1
loc conver-

gence 𝐹𝑠 → 𝐹∞ as 𝑠→ +∞ follows.

For (iii) recall that 𝑍∞,𝜏 = 𝑒−1(𝑙𝜏). The space of unitary splittings 𝜏 is identified with the unitary

group U(2). There exists, by Sard’s theorem, a residual subset of the space unitary splittings

𝜏 ∈ U(2) for which 𝑙𝜏 ∈ P(𝑆+(1,𝑝)) is a regular value of 𝑒∞. It is straightforward to see then that

127



Lemma 5.17. If 𝑙𝜏 is a regular value of 𝑒∞, then the map from the configuration space

C𝑘 ( [0, +∞) × 𝑌 ) |Δ𝑛
𝐹∞−−→ C

(𝐴,Φ, 𝑢) ↦→ 𝜏1Φ𝑡 (1, 𝑝)

has a regular value at 0.

In §A.1 we establish a general transversality result for moduli spaces with evaluation con-

straints, which applies to certain evaluation maps that fall into an suitable class (Definition A.1).

Lemma 5.17 shows that 𝐹∞ falls into this class. This general result implies in this instance that

𝑀𝑧 ( [𝔞], 𝜎)
𝐹∞−−→ U is transverse to the zero section of U. This concludes the proof of Theorem

5.16. □

5.2.2.4 The boundary ofM𝑧 ( [𝔞], 𝛾, 𝜎; ^) at 𝑠 = +∞

We now carry out an analogous study of the shape as 𝑠 approaches +∞ of the second kind of

parametrised evaluation moduli spacesM𝑧 ( [𝔞], 𝛾, 𝜎; ^) where 𝛾 ⊂ 𝑌 is a smooth oriented closed

curve. First, have the analogue of Lemma 5.15. This time it involves the map 𝑒𝛾∞ : Δ𝑛 → U(1)

which associates to 𝑡 ∈ Δ𝑛 the half-holonomy exp1
2

∫
1×𝛾 �̂�𝑡 .

Definition 5.10. The 𝛾-limiting locus at 𝑠 = +∞ of 𝜎 is the subset 𝑍𝛾∞,^ (𝜎) = (𝑒
𝛾
∞)−1(^) ⊂ Δ𝑛.

Lemma 5.18. Suppose (𝐴𝑛,Φ𝑛, 𝑡𝑛, 𝑠𝑛) ∈ M𝑧 ( [𝔞], 𝛾, 𝜎; ^) is a sequence of configurations such

that lim𝑛→+∞ 𝑠𝑛 = +∞ and lim𝑛→+∞ 𝑡𝑛 = 𝑡∗ for some 𝑡∗ ∈ Δ𝑛. Then 𝑡∗ lies in 𝑍𝛾∞,^ ⊂ Δ𝑛.

Proof. Let 𝑎𝑛 = 𝐴𝑛 − 𝐴𝑡𝑛 . By Corollary 5.14 we may assume |𝑎𝑛 |2 ≤ 𝐶𝑒−𝜖 𝑠 over 𝐾 . For conve-

nience, regard U(1) as 𝑖R/2𝜋𝑖Z. There we have the identity

1
2

∫
𝑠𝑛×𝛾

�̂�𝑛 −
1
2

∫
1×𝛾

�̂�𝑡𝑛 =

∫
𝑠𝑛×𝛾

𝑎𝑛 +
1
2

∫
𝑠𝑛×𝛾−1×𝛾

�̂�𝑡𝑛 .

The second term on the right-hand side vanishes (mod 2𝜋𝑖Z) by the translation-invariance property

of the canonical connection 𝐴𝑡 . From the exponential decay estimate on |𝑎𝑛 | it follows that the first
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term goes to zero as 𝑛→∞. The result follows. □

Definition 5.11. The 𝛾-limiting moduli space at 𝑠 = +∞ is the preimage of the 𝛾-limiting locus

𝑍
𝛾
∞,^ ⊂ Δ𝑛 under the map 𝑀𝑧 ( [𝔞], 𝜎) → Δ𝑛. We denote it by 𝑀𝑧 ( [𝔞], 𝑍𝛾∞,^ (𝜎)).

We have the following analogue of Theorem 5.16, describing the shape ofM𝑧 ( [𝔞], 𝛾, 𝜎; ^) as

the evaluation constraint goes to +∞.

Theorem 5.19. Let 𝜎 be a 𝐶2 singular chain in C = CM(𝑌, b0) × P. After a 𝐶2 pertubation of 𝜎

and a residual choice of ^ ∈ U(1), there exists a constant 𝑠0 > 0 such that the following holds for

all [𝔞], 𝑧 such thatM𝑧 ( [𝔞], 𝛾, 𝜎; ^) has expected dimension 1:

• all the moduli spaces M𝑧 ( [𝔞],𝑈, 𝜎; ^) are transversely cut out and the moduli spaces

𝑀𝑧 ( [𝔞], 𝑍𝛾∞,^ (𝜎)) consist of a finite set of transversely cut out points

• there is a homeomorphism of the open subset {𝑠 > 𝑠0} ⊂ M𝑧 ( [𝔞], 𝛾, 𝜎; ^) with the product

𝑀𝑧 ( [𝔞], 𝑍𝛾∞,^ (𝜎)) × (𝑠0, +∞), compatible with the projection to (𝑠0, +∞).

Proof. The strategy is the same as in the proof of Theorem 5.16. Rather than working with

the half-holonomy map hol𝛾 (𝐴,Φ, 𝑡, 𝑠) = exp1
2

∫
𝑡×𝛾 �̂� we view U(1) as 𝑖R/2𝜋𝑖Z and work with

𝑓𝛾 (𝐴,Φ, 𝑡, 𝑠) = 1
2

∫
{𝑠}×𝛾 �̂�. We extend this to a map 𝐹 defined over 𝑠 = +∞ in a similar fashion as

before:

𝐹 :𝑀𝑧 ( [𝔞], 𝜎) × (0, +∞] → 𝑖R/2𝜋𝑖Z � U(1)

(𝐴,Φ, 𝑡, 𝑠) ↦→ 1
2

∫
{𝑠}×𝛾

�̂� if 𝑠 ≠ +∞

(𝐴,Φ, 𝑡, +∞) ↦→ 1
2

∫
{1}×𝛾

�̂�𝑡 .

As in the proof of Theorem 5.16 we need to show that the restrictions to the slices 𝐹𝑠 satisfy

129



(i)-(iii). For (iii) we have the statement analogous to Lemma 5.17: for residual ^ ∈ U(1) the map

C𝑘 ( [0, +∞) × 𝑌 ) |Δ𝑛
𝑓∞−−→ U(1)

(𝐴,Φ, 𝑢) ↦→ 1
2

∫
1×𝛾

�̂�𝑡

has a regular value at ^. Indeed, ^ has this property whenever the map 𝑒𝛾∞ : Δ𝑛 → U(1) has a

regular value at ^. Then the general transversality results of §A.1 imply (iii). This concludes the

proof of Theorem 5.19.

□

5.2.2.5 The chain complex

We now set up a new chain complex generated by singular chains for which regularity of

all the moduli spaces in our neck-stretching argument holds. Again, we use the notation C :=

CM(𝑌, b0) × P.

Definition 5.12. We denote by 𝑆ev
∗ (C;Λ𝑅) the chain complex consisting of formal sums

∑︁
𝑎 · (𝜎, 𝜏, ^),

where 𝜎 : Δ𝑛 → C is a 𝐶2 singular simplex; 𝑎 is an element of the ring Λ𝑅 (𝜎(𝑏)) where 𝑏

is the barycenter of Δ𝑛; 𝜏 ∈ U(2) is a unitary splitting, and ^ ∈ U(1), subject to the following

transversality requirements:

(i) 𝜎 is transverse to the Fredholm maps 𝔐(𝑍+) → C (see §4.2.3) along components with index

≤ 1 − 𝑛

(ii) the map Δ𝑛 × R ∋ (𝑢, 𝑠) ↦→ (𝜎(𝑢), 𝑠) ∈ C × R is transverse to the Fredholm maps

M(𝑈, 𝑍+; 𝜏),M(𝛾, 𝑍+; ^) → C × R
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(see §5.2.1) along the components of index ≤ 1 − 𝑛.

(iii) the map 𝑒𝛾∞ : Δ𝑛 → U(1), defined in terms of 𝜎, has a regular value at ^, and the map

𝑒∞ : Δ𝑛 → P(𝑆+(1,𝑝)) has a regular value at 𝑙𝜏 ∈ P(𝑆+(1,𝑝)).

The differential on 𝑆ev
∗ (C;Λ𝑅) is defined by 𝜕 (𝜎, 𝜏, ^) := (𝜕𝜎, 𝜏, ^), where the latter 𝜕 stands for

the usual singular differential with coefficients in the local system Λ𝑅.

By the Thom-Smale transversality theorem, the inclusion of 𝑆ev
∗ (C;Λ𝑅) into the chain com-

plex of singular chains in C with coefficients in Λ𝑅, given by (𝜎, 𝜏, ^) ↦→ 𝜎, induces a quasi-

isomorphism. Thus, we will now work with 𝑆ev
∗ (C;Λ𝑅) in order to prove Theorem 1.5 (b).

Remark 5.10. In practice, when we consider a chain 𝑎 · (𝜎, 𝜏, ^) in 𝑆ev
∗ (C;Λ𝑅) we will regard 𝜎

as equipped with an element of Λ(𝜎(𝑏)) and the coefficient 𝑎 as an element of the ring 𝑅.

5.2.2.6 The compactification ofM𝑧 ( [𝔞],𝑈, 𝜎; 𝜏) andM𝑧 ( [𝔞], [𝔞], 𝛾, 𝜎; ^)

We are now set to describe the compactification of the parametrised evaluation moduli spaces

over a simplex 𝜎. This brings together the various moduli spaces we have thus far encountered:

𝑀𝑧 ( [𝔞], 𝜎) (§4.2.4),M𝑧 ( [𝔞],𝑈, 𝜎; 𝜏) andM𝑧 ( [𝔞], 𝛾, 𝜎; ^) (§5.2.2.1). In addition, we also have

the usual moduli spaces of Floer trajectories �̆�𝑧 ( [𝔞], [𝔟]) (where we quotient by the reparametriza-

tion action of R, as usual), and the 𝑈 and 𝛾-moduli spaces over cylinders 𝑀𝑧 ( [𝔞],𝑈, [𝔟]; 𝜏),

𝑀𝑧 ( [𝔞], 𝛾, [𝔟]; ^) introduced in §5.1.1.6.

Proposition 5.20. Let (𝜎, 𝜏, ^) be a triple satisfying the transversality conditions (i)-(iii) of Def-

inition 5.12. If the moduli space M𝑧 ( [𝔞],𝑈, 𝜎; 𝜏) has expected dimension 0, then it consists of

finitely-many transversely cut-out points. If it has expected dimension 1, then it is a 𝐶2 manifold

with boundary which admits a compactification M+𝑧 ( [𝔞],𝑈, 𝜎; 𝜏) with the structure of a space

stratified by manifolds. Its top stratum is given byM𝑧 ( [𝔞],𝑈, 𝜎; 𝜏) itself, and the boundary of the

top stratum consists of configurations of the following types:

(a) 𝑀𝑧 ( [𝔞], 𝑍∞,𝜏 (𝜎))
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(b) the moduliM𝑧 ( [𝔞],𝑈, 𝜎 |Δ𝑛−1
𝑖

; 𝜏) over the codimension 1 faces Δ𝑛−1
𝑖
⊂ Δ𝑛 of 𝜎

(c) �̆�𝑧1 ( [𝔞], [𝔟]) ×M𝑧0 ( [𝔟],𝑈, 𝜎; 𝜏)

(d) �̆�𝑧2 ( [𝔞], [𝔟]) × �̆�𝑧1 ( [𝔟], [𝔠]) ×M𝑧0 ( [𝔠],𝑈, 𝜎; 𝜏)

(e) 𝑀𝑧1 ( [𝔞] ,𝑈, [𝔟]; 𝜏) × 𝑀𝑧0 ( [𝔟], 𝜎)

(f) 𝑀𝑧2 ( [𝔞] ,𝑈, [𝔟]; 𝜏) × �̆�𝑧1 ( [𝔟], [𝔠]) × 𝑀𝑧0 ( [𝔠], 𝜎)

(g) �̆�𝑧2 ( [𝔞] , [𝔟]) × 𝑀𝑧1 ( [𝔟],𝑈, [𝔠]; 𝜏) × 𝑀𝑧0 ( [𝔠], 𝜎).

(Here, the middle factor in the triple products must be boundary-obstructed. The concatenation of

the homotopy classes 𝑧𝑖 in every product must equal 𝑧.)

Furthermore, the structure near the boundary strata of type (a),(b),(c),(e) is that of a 𝐶0 man-

ifold with boundary, and the structure near (d), (f),(g) is that of a codimension 1 𝛿-structure (see

[49], Definition 19.5.3.)

The analogous result holds for the 𝛾-moduli spaces.

More generally, a compactification by broken trajectories of the moduli M𝑧 ( [𝔞],𝑈, 𝜎; 𝜏) of

any dimension can be constructed, provided transversality holds. However, we will only use those

of dimension 0 or 1. We refer to §A.2 for an outline of the standard technical results that enable us

to establish the compactness. We have carried out in this section the analysis of the structure of the

compactification near the boundary stratum of type (a). This component of the boundary stratum

is the most interesting, and will be the key to the proof of Theorem 1.5 (B). For the strata of type

(c)-(g) the required gluing analysis follows similar techniques as those in [49].

5.2.3 The proof of Theorem 1.5 (B)

We are now ready to complete the proof of Theorem 1.5 (B). This follows from chain level

identities arising from enumeration of boundary points ofM𝑧 ( [𝔞],𝑈, 𝜎; 𝜏) andM𝑧 ( [𝔞], 𝛾;𝜎; ^).
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5.2.3.1 Orientations

We explained in §4.2.3.4 how to orient the moduli 𝑀𝑧 ( [𝔞], 𝜎). We now want to orient the

parametrised moduliM𝑧 ( [𝔞],𝑈, 𝜎; 𝜏) andM𝑧 ( [𝔞], 𝛾, 𝜎; ^), and for this we first orient the bigger

moduliM𝑧 ( [𝔞], 𝜎) that contains them. The latter moduli is defined as the fibre product Fib(𝜋, 𝜎)

of the natural map 𝜋 : M𝑧 ( [𝔞], 𝑍+) → C := CM(𝑌, b0) × P (as in (5.10) but projecting the R

factor away) and 𝜎.

To orient M𝑧 ( [𝔞], 𝜎) we need to orient the determinant line det𝜋 of the Fredholm map 𝜋 :

M𝑧 ( [𝔞], 𝑍+) → C. Once that is doneM𝑧 ( [𝔞], 𝜎) becomes oriented by Lemma 4.12. Since the

moduli 𝔐𝑧 ( [𝔞], 𝑍+) is the fibre over 𝑠 = 1 of the natural map

M𝑧 ( [𝔞], 𝑍+) → R

then an orientation of det𝜋 is determined by an orientation of the determinant line of 𝔐𝑧 ( [𝔞], 𝜎) →

C and the convention that the R factor goes first. This is contrary to the usual fibre-first convention,

but agrees with standard conventions in [49].

The remaining moduli spaces are oriented as follows:

• M𝑧 ( [𝔞],𝑈, 𝜎; 𝜏) is the zero set of a section of a complex line bundle overM𝑧 ( [𝔞], 𝜎), so

we orient it as such.

• M𝑧 ( [𝔞], 𝛾, 𝜎; ^) is the fibre of a mapM𝑧 ( [𝔞], 𝜎) → U(1), so we orient it using the fibre-

first convention.

• 𝑀𝑧 ( [𝔞], 𝑍∞,𝜏 (𝜎)) is the fibre of a map 𝑀𝑧 ( [𝔞], 𝜎) → P1, so we orient it by the fibre-first

convention.

• 𝑀𝑧 ( [𝔞],𝑈, [𝔟]; 𝜏) and 𝑀𝑧 ( [𝔞], 𝛾, [𝔟]; ^) are analogous to the first two bullets.

We refer to the above as the canonical orientations of the moduli spaces.
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5.2.4 Counting solutions to the Seiberg–Witten equations

We set up chain maps that enumerate the moduli spaces that we need. For transversality rea-

sons, it is necessary to modify slightly the monopole Floer cochain complex in what follows.

We consider the cochain complex 𝐶∗ev(𝑌, 𝔰b0,𝛼0, 𝑗0; 𝑅) over 𝑅 which is freely generated by triples

( [𝔞], 𝜏, ^) where [𝔞] is a critical point of unstable or irreducible type, and 𝜏 ∈ U(2), ^ ∈ U(1).

The differential is given by the usual Floer differential (𝜕)∗ acting on the first component of each

( [𝔞], 𝜏, ^). Clearly this cochain complex is quasi-isomorphic to the original 𝐶∗(𝑌, 𝔰b0,𝛼0, 𝑗0; 𝑅).

Definition 5.13. Let 𝛼 = (𝜎, 𝜏, ^) stand for a standard generator of the complex 𝑆ev
∗ (C;Λ𝑅) (Def-

inition 5.12). We have the following 7 linear maps

𝜓 : 𝑆ev
∗ (C;Λ𝑅) → 𝐶∗ev(𝑌, 𝔰b0,𝛼0, 𝑗0; 𝑅)

𝑚(𝑈) , 𝑚(𝛾) : 𝐶∗ev(𝑌, 𝔰b0,𝛼0, 𝑗0; 𝑅) → 𝐶∗(𝑌, 𝔰b0,𝛼0, 𝑗0; 𝑅)

\ (𝑈) , \ (𝛾) , 𝜓∞ , 𝜓𝛾∞ : 𝑆ev
∗ (C;Λ𝑅) → 𝐶∗(𝑌, 𝔰b0,𝛼0, 𝑗0)

obtained as follows:

• the chain map 𝜓 : 𝑆ev
∗ (C;Λ𝑅) → 𝐶∗ev(𝑌, 𝔰b0,𝛼0, 𝑗0; 𝑅) is defined in a manner analogous to the

chain map that computes the families contact invariant Fc (see §4.2.4, also denoted 𝜓), by

the count of 0-dimensional moduli

𝜓(𝛼) =
∑︁
[𝔞],𝑧

(
#𝑀𝑧 ( [𝔞], 𝜎)

)
· ( [𝔞], 𝜎, 𝜏)

• the maps𝑚(𝑈), 𝑚(𝛾) are obtained from the corresponding maps𝑚(𝑈; 𝜏), 𝑚(𝛾; ^) : 𝐶∗(𝑌, 𝔰b0,𝛼0, 𝑗0; 𝑅) →

𝐶∗(𝑌, 𝔰b0,𝛼0, 𝑗0; 𝑅) (§5.1.1.6) by setting 𝑚(𝑈) ( [𝔞], 𝜏, ^) = 𝑚(𝑈, 𝜏) [𝔞] and 𝑚(𝛾) ( [𝔞], 𝜏, ^) =
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𝑚(𝛾, ^). Thus, they are obtained from the counts

𝑚(𝑈) ( [𝔞], 𝜏, ^) =
∑︁
[𝔟],𝑧]

(
#𝑀𝑧 ( [𝔞],𝑈, [𝔟]; 𝜏)

)
· [𝔟]

𝑚(𝛾) ( [𝔞], 𝜏, ^) =
∑︁
[𝔟],𝑧]

(
#𝑀𝑧 ( [𝔞], 𝛾, [𝔟]; ^)

)
· [𝔟]

• the maps \ (𝑈), \ (𝛾) are obtained from the count

\ (𝑈) (𝛼) =
∑︁
[𝔞],𝑧

(
#M𝑧 ( [𝔞],𝑈, 𝜎; 𝜏)

)
· [𝔞]

\ (𝛾) (𝛼) =
∑︁
[𝔞],𝑧

(
#M𝑧 ( [𝔞], 𝛾, 𝜎; ^)

)
· [𝔞]

• the maps 𝜓∞, 𝜓
𝛾
∞ are obtained from the counts

𝜓∞(𝛼) =
∑︁
[𝔞],𝑧

(
#𝑀𝑧 ( [𝔞], 𝑍∞,𝜏 (𝜎))

)
· [𝔞]

𝜓
𝛾
∞(𝛼) =

∑︁
[𝔞],𝑧

(
#𝑀𝑧 ( [𝔞], 𝑍𝛾∞,^ (𝜎))

)
· [𝔞] .

That all these sums are indeed finite follows from standard compactness arguments as in [49]

that we will review in §A.2. Clearly, the map in homology induced by the chain map 𝜓ev is the

families contact invariant Fc, and 𝑚(𝑈) and 𝑚(𝛾) induce the action of 𝑈 and [𝛾] on the Floer

cohomology. Similar arguments as for Proposition 4.13 show that 𝜓∞ and 𝜓𝛾∞ are chain maps (up

to signs): 𝜕∗𝜓∞ = (−1)𝑛𝜓∞𝜕 on simplices of dimension 𝑛, and similarly for 𝜓𝛾∞.

The next result explains the meaning of 𝜓∞ and 𝜓𝛾∞ and clarifies the connection between the

limiting moduli spaces at 𝑠 = +∞ and the module structure on the homology of C(𝑌, b0) (see

Definition 5.5):

Proposition 5.21. For any homology class 𝑇 ∈ 𝐻∗(C(𝑌, b0);Λ𝑅), the maps induced by 𝜓∞ and

𝜓
𝛾
∞ in homology satisfy (𝜓∞)∗𝑇 = Fc(𝑈 · 𝑇) and (𝜓𝛾∞)∗𝑇 = Fc( [𝛾] · 𝑇).
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Proof. We explain the first identity, and the second follows identically. Recall from Lemma 5.3 that

the cohomology class `(1) ∈ 𝐻2(C(𝑌, b0); 𝑅) is Poincaré dual to the zero set of the section 𝑓𝜏 :

B𝜎 (𝑌, 𝔰b0,𝛼0, 𝑗0) → U restricted to CM(𝑌, b0) ⊂ B𝜎 (𝑌, 𝔰b0,𝛼0, 𝑗0). For residual 𝜏 the section 𝑓𝜏 will

be transverse to the zero section along CM(𝑌, b0). Any given homology class𝑇 can be represented

by a 𝐶2 cycle (also denoted 𝑇) in C(𝑌, b0). By deforming 𝑇 we can achieve that 𝑇 intersects

transversely the zero set 𝑓 −1
𝜏 (0). This intersection is given by restricting 𝑇 to the union over the

limiting loci 𝑍∞,𝜏 (𝜎), where 𝜎 runs over subfaces 𝜎 ⊂ 𝑇 of all dimensions. This intersection can

be given the structure of a cycle 𝑇∞, and it follows that in homology 𝑇∞ = `(1) ∩ 𝑇 =: 𝑈 · 𝑇 . The

result now follows from applying Fc to both sides. □

5.2.4.1 A chain homotopy

Theorem 1.5 (B) now follows from combining Proposition 5.21 and

Proposition 5.22. Let 𝛼 be a singular chain in the complex 𝑆ev
∗ (C;Λ𝑅) (Definition 5.12). Then the

following identities hold:

𝑚(𝑈)∗𝜓(𝛼) − 𝜓∞(𝛼) = (𝜕)∗\ (𝑈) (𝛼) + (−1)𝑛\ (𝑈) (𝜕𝛼)

𝑚(𝛾)∗𝜓(𝛼) − 𝜓𝛾∞(𝛼) = (𝜕)∗\ (𝛾) (𝛼) + (−1)𝑛−1\ (𝛾) (𝜕𝛼).

That is, \ (𝑈) provides (up to signs) a chain homotopy between the chain maps 𝑚(𝑈)∗𝜓 and 𝜓∞,

and similarly for the 𝛾 case.

Proof. We show how the first identity is obtained. For the second we proceed identically. We write

down for reference the two operators involved (see [[49], Definition 22.1.3, Definition 25.3.3] ),

namely the differential 𝜕 : 𝐶∗(𝑌, 𝔰b0) → 𝐶∗−1(𝑌, 𝔰b0,𝛼0, 𝑗0) and the chain map𝑚(𝑈) : 𝐶∗(𝑌, 𝔰b0,𝛼0, 𝑗0) →
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𝐶∗−2(𝑌, 𝔰b0,𝛼0, 𝑗0),

𝜕 =
©«
𝜕𝑜𝑜 𝜕𝑢𝑜

−𝜕𝑠𝑢𝜕𝑜𝑠 −𝜕
𝑢

𝑢 − 𝜕
𝑠

𝑢𝜕
𝑢
𝑠

ª®®¬ (5.17)

𝑚(𝑈) =
©«

𝑚𝑜𝑜 (𝑈) 𝑚𝑢𝑜 (𝑈)

𝑚𝑠
𝑢 (𝑈)𝜕𝑜𝑠 − 𝜕

𝑠

𝑢𝑚
𝑜
𝑠 (𝑈) 𝑚𝑢𝑢 (𝑈) + 𝑚𝑠

𝑢 (𝑈)𝜕𝑢𝑠 − 𝜕
𝑠

𝑢𝑚
𝑢
𝑠 (𝑈)

ª®®¬ . (5.18)

Recall that we are interested in the duals (𝜕)∗ , �̂�(𝑈)∗ of the above operators, acting on cochains.

We first let [𝔞] be an irreducible critical point, and 𝑧 a component for which dimM𝑧 ( [𝔞],𝑈, 𝜎; 𝜏) =

1. By Proposition 5.20 its compactificationM𝑧 ( [𝔞],𝑈, 𝜎; 𝜏) has a codimension 1 𝛿-structure near

the boundary stratum. This has the desirable property that the total count of boundary points (with

orientations) vanishes [[49] , Corollary 21.3.2]. Then, enumerating the points on the boundary

strata yields the identity

0 = +#𝑀𝑧 ( [𝔞], 𝑍∞,𝜏 (𝜎))

+(−1)𝑛 ·
∑︁

subfaces Δ𝑛−1
𝑖
⊂Δ𝑛
(−1)𝑖#M𝑧 ( [𝔞],𝑈, 𝜎 |Δ𝑛−1

𝑖
; 𝜏)

+
∑︁

[𝔟]∈ℭ𝑜,𝑧1,𝑧0

#�̆�𝑧1 ( [𝔞], [𝔟])#M𝑧0 ( [𝔟],𝑈, 𝜎; 𝜏)

−
∑︁

[𝔟]∈ℭ𝑠 ,[𝔠]∈ℭ𝑢,𝑧2,𝑧1,𝑧0

#�̆�𝑧2 ( [𝔞], [𝔟])#�̆�𝑧1 ( [𝔟], [𝔠])#M𝑧0 ( [𝔟],𝑈, 𝜎; 𝜏)

−
∑︁

[𝔟]∈ℭ𝑜,𝑧1,𝑧0

#𝑀𝑧1 ( [𝔞],𝑈, [𝔟]; 𝜏)#𝑀𝑧0 ( [𝔟], 𝜎)

+
∑︁

[𝔟]∈ℭ𝑠 ,[𝔠]∈ℭ𝑢,𝑧2,𝑧1,𝑧0

#𝑀𝑧2 ( [𝔞],𝑈, [𝔟]; 𝜏)#�̆�𝑧1 ( [𝔟], [𝔠])#𝑀𝑧0 ( [𝔠] , 𝜎)

−
∑︁

[𝔟]∈ℭ𝑠 ,[𝔠]∈ℭ𝑢,𝑧2,𝑧1,𝑧0

#�̆�𝑧2 ( [𝔞], [𝔟])#𝑀𝑧1 ( [𝔟],𝑈, [𝔠]; 𝜏)#𝑀𝑧0 ( [𝔠] , 𝜎)
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Let [𝔞] be boundary-unstable now. The corresponding enumeration yields the identity

0 = +#𝑀𝑧 ( [𝔞], 𝑍∞,𝜏 (𝜎)).

+(−1)𝑛 ·
∑︁

subfaces Δ𝑛−1
𝑖
⊂Δ𝑛
(−1)𝑖#M𝑧 ( [𝔞],𝑈, 𝜎 |Δ𝑛−1

𝑖
; 𝜏) (5.19)

+
∑︁

[𝔟]∈ℭ𝑜,𝑧1,𝑧0

#�̆�𝑧1 ( [𝔞], [𝔟])#M𝑧0 ( [𝔟],𝑈, 𝜎; 𝜏)

−
∑︁

[𝔟]∈ℭ𝑢,𝑧1,𝑧0

#�̆�𝑧1 ( [𝔞], [𝔟])#M𝑧0 ( [𝔟],𝑈, 𝜎; 𝜏) (5.20)

−
∑︁

[𝔟]∈ℭ𝑠 ,[𝔠]∈ℭ𝑢,𝑧2,𝑧1,𝑧0

#�̆�𝑧2 ( [𝔞], [𝔟])#�̆�𝑧1 ( [𝔟], [𝔠])#M𝑧0 ( [𝔟],𝑈, 𝜎; 𝜏)

−
∑︁

[𝔟]∈ℭ𝑜,𝑧1,𝑧0

#𝑀𝑧1 ( [𝔞],𝑈, [𝔟]; 𝜏)#𝑀𝑧0 ( [𝔟], 𝜎)

−
∑︁

[𝔟]∈ℭ𝑢,𝑧1,𝑧0

#𝑀𝑧1 ( [𝔞],𝑈, [𝔟]; 𝜏)#𝑀𝑧0 ( [𝔟], 𝜎) (5.21)

+
∑︁

[𝔟]∈ℭ𝑠 ,[𝔠]∈ℭ𝑢,𝑧2,𝑧1,𝑧0

#𝑀𝑧2 ( [𝔞],𝑈, [𝔟]; 𝜏)#�̆�𝑧1 ( [𝔟], [𝔠])#𝑀𝑧0 ( [𝔠] , 𝜎)

−
∑︁

[𝔟]∈ℭ𝑠 ,[𝔠]∈ℭ𝑢,𝑧2,𝑧1,𝑧0

#�̆�𝑧2 ( [𝔞], [𝔟])#𝑀𝑧1 ( [𝔟],𝑈, [𝔠]; 𝜏)#𝑀𝑧0 ( [𝔠] , 𝜎)

For the origin of the signs above we refer to Lemma A.151.

For each of the two cases considered above, the corresponding identity can be written in terms

of the natural pairing ⟨·, ·⟩ : 𝐶∗(𝑌 ) ⊗𝑅 𝐶∗(𝑌 ) → 𝑅 as

⟨\ (𝑈)𝛼, 𝜕 [𝔞]⟩ + ⟨\ (𝑈) (𝜕𝛼), [𝔞]⟩ − ⟨𝜓(𝛼), 𝑚(𝑈) [𝔞]⟩ + ⟨𝜓∞(𝛼), [𝔞]⟩ = 0.

This concludes the proof of the desired identity. □

1Again, we encounter the technical point that we must change some signs if we follow the reducible conven-
tion for orienting the moduli 𝑀𝑧1 ( [𝔞], [𝔟]) or 𝑀𝑧1 ( [𝔞],𝑈, [𝔟]) when both [𝔞], [𝔟] are boundary-unstable (see §20.6
[49]). This reducible convention is meant when writing the term −𝜕𝑢𝑢 in the Floer differential (5.17) and the term
𝑚𝑢𝑢 (𝑈) in (5.18). The signs listed in Lemma A.15 follow the usual convention. The only sign that one must add
is (−1)dim𝑧1𝑀 ( [𝔞 ], [𝔟] ) = −1 for line (5.20). In line (5.21) the sign is correct, since the difference between the two
conventions is given by the sign (−1)dim𝑀𝑧1 ( [𝔞 ],𝑈, [𝔟];𝜏 ) = +1.
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5.3 Exact triangles

For the whole of this section we assume that Λ is a trivial double cover of C(𝑌, b0) and fix a

trivialization. See Corollary 1.6 for a criterion that ensures this and which applies in particular if

b0 is strongly fillable. We work throughout with homology and cohomology with coefficients in a

ring 𝑅.

We recall that C(𝑌, b0, 𝐵) ⊂ C(𝑌, b0) denotes the subspace of contact structures b which agree

with b0 over a Darboux ball 𝐵 (for b0) around the point 𝑝 ∈ 𝑌 . The goal of this section is to

establish Theorem 1.7. We rewrite this result in cohomological terms:

Theorem 5.23. Associated to any closed contact 3-manifold (𝑌, b0) for which the local system Λ

is trivial, there is a natural diagram which is commutative up to signs

· · · 𝐻𝑀
∗(𝑌, 𝔰b0) 𝐻𝑀

∗+2(𝑌, 𝔰b0) 𝐻𝑀
∗(𝑌, 𝔰b0) 𝐻𝑀

∗+1(𝑌, 𝔰b0) · · ·

· · · 𝐻∗(C(𝑌, b0)) 𝐻∗−2(C(𝑌, b0, 𝐵)) 𝐻∗−1(C(𝑌, b0, 𝐵)) 𝐻∗−1(C(𝑌, b0)) · · ·

𝑈 𝑈

Fc Fc F̃c Fc

where the top row is the long exact sequence of the mapping cone of 𝑈 in Floer cohomology,

the bottom row is Wang’s long exact sequence associated to the Serre fibration C(𝑌, b0, 𝐵) →

C(𝑌, b0)
𝑒𝑣−−→ 𝑆2, the vertical arrows Fc denote the families contact invariant, and F̃c is another

families invariant which is to be defined.

5.3.1 A better chain complex

To establish above result, it is convenient to work with singular chains in CM(𝑌, b0) satisfying

stronger transversality properties: that the perturbation term 𝔭 ∈ P is constant for each simplex.

Definition 5.14. Let 𝐶∗ be the chain complex which is freely generated over the ring 𝑅 by triples

(𝜎, 𝔭, 𝜏 ) where 𝜎 : Δ𝑛 → CM(𝑌, b0) is a singular simplex, 𝔭 ∈ P is a perturbation, and 𝜏 ∈ U(2)

is a unitary splitting, subject to the following transversality condition: that for the singular simplex
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𝜎𝔭 : Δ𝑛 → CM(𝑌, b0) × P defined by 𝜎𝔭 (𝑢) = (𝜎(𝑢), 𝔭), the pair (𝜎𝔭, 𝜏) satisfies the same

transversality conditions as in (i)-(iii) of Definition 5.12 (ignoring those conditions that involve the

𝛾-moduli space). The differential 𝜕 of 𝐶∗ is the singular differential acting on the first component

of a given triple (𝜎, 𝔭, 𝜏).

In order to be able to work with the complex 𝐶∗ we need to establish:

Proposition 5.24. The inclusion 𝐶∗ → 𝑆∗(CM(𝑌, b0)), (𝜎, 𝔭, 𝜏) ↦→ 𝜎𝔭, into the complex of

singular chains with 𝑅 coefficients in CM(𝑌, b0) induces a quasi-isomorphism.

We now proceed to explain why the above holds. LetM stand for either of the moduli spaces

𝔐(𝑍+),M(𝑍+) orM(𝑈, 𝑍+; 𝜏). Recall that there is a natural Fredholm mapM 𝜋−→ 𝐴 × P where

𝐴 = CM(𝑌, b0) in the first case, and 𝐴 = CM(𝑌, b0) ×R in the other two. We write pr : 𝐴×P →

CM(𝑌, b0) × P for the natural projection in all cases above.

In §A.1 we deal with establishing the various transversality statements used in this paper. From

the arguments there, we can deduce a finer transversality property than those stated thus far: that

in order to achieve transversality for M one does not need to consider variations along the 𝐴

direction. Essentially, this is a consequence of the fact that the fibre product construction of the

moduli space involved a restriction map to the slice 0×𝑌 , over which the family of spin-c structures

was constant, independent of 𝐴. The result is:

Proposition 5.25. The mapM 𝜋−→ 𝐴 × P
pr1−−→ 𝐴 is a submersion.

Using Proposition 5.25, which will follow from §A.1, we obtain Corollary 5.26 below, from

which Proposition 5.24 follows.

Corollary 5.26. Let 𝜎 : Δ𝑛 → CM(𝑌, b0) be any 𝐶2 singular chain. Then there exists a residual

subset of perturbations 𝔭 ∈ P for which the singular chain 𝜎𝔭 : Δ𝑛 → CM(𝑌, b0) × P, defined

by 𝜎𝔭 (𝑢) = (𝜎(𝑢), 𝔭), is transverse to 𝜋′ := pr ◦ 𝜋 : M 𝜋−→ 𝐴 × P
pr
−→ CM(𝑌, b0) × P along

components ofM with ind𝜋′ ≤ 1 − 𝑛.
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Proof of Corollary 5.26. By Proposition 5.25, the product map 𝜎×idP : Δ𝑛×P → CM(𝑌, b0)×P

is transverse to 𝜋′, and so their fibre product is transverse:

M(𝜎) := Fib(𝜎 × idP , 𝜋′) M

Δ𝑛 × P = CM(𝑌, b0) × P .

𝜋′𝜎 𝜋′

𝜎×idP

Now, the 𝐶2 map pr2 ◦𝜋′𝜎 :M(𝜎) → P is Fredholm and has index ind(𝜋′𝜎) = ind𝜋′+𝑛, where

ind𝜋′ depends on the component ofM. The Sard-Smale theorem [74] gives us a residual subset of

perturbations 𝔭 ∈ P which are regular values for the map pr2 ◦ 𝜋′𝜎, provided that ind(pr2 ◦ 𝜋′𝜎) ≤ 1

(because pr2 ◦ 𝜋′𝜎 is 𝐶2). For those 𝔭, the map ]𝔭 : Δ𝑛 → Δ𝑛 ×P given by 𝑢 ↦→ (𝑢, 𝔭) is transverse

to 𝜋′𝜎, and we obtain a transverse fibre product:

𝑀 (𝜎) := Fib(]𝔭, 𝜋′𝜎) M(𝜎)

Δ𝑛 Δ𝑛 × P

𝜋′𝜎
]𝔭

A simple diagram chasing argument involving the two diagrams above shows now that 𝜎𝔭 =

(𝜎 × idP) ◦ ]𝔭 is transverse to 𝜋′. □

5.3.2 The map between triangles

Equipped with the better chain complex (𝐶∗, 𝜕) from Definition 5.14 we proceed to compare

the two long exact sequences of Theorem 5.23.

Consider the subspace AC(𝑌, b0, 𝐵) ⊂ CM(𝑌, b0) of triples (b, 𝛼, 𝑗) which over 𝐵 agree

with the fixed triple (b0, 𝛼0, 𝑗0). We have a subcomplex 𝐶𝐵∗ ⊂ 𝐶∗ which is generated by triples

(𝜎, 𝔭, 𝜏) satisfying the transversality conditions of Definition 5.14, and with 𝜎 : Δ𝑛 → CM(𝑌, b0)

factoring through AC(𝑌, b0, 𝐵). By the same arguments of the previous section, the homology of

𝐶𝐵∗ is identified with 𝐻∗(C(𝑌, b0, 𝐵)).

Remark 5.11. So far, we have worked with maps 𝜓, 𝜓∞, \ (𝑈), etc. which were chain maps, or
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chain homotopies, up to signs (see Proposition 4.12, Proposition 5.22). We find it convenient

to resolve this issue, by redefining the maps 𝜓, 𝜓∞, \ (𝑈) simply by placing the sign (−1)
𝑛(𝑛+1)

2

whenever they act on simplices 𝜎 of dimension 𝑛. It is straightforward to verify that we now have

strict chain maps and homotopies:

𝜓𝜕 = 𝜕∗𝜓

𝜓∞𝜕 = 𝜕∗𝜓∞

𝑚(𝑈)∗𝜓 − 𝜓∞ = 𝜕∗\ (𝑈) + \ (𝑈)𝜕.

With 𝜓 and \ (𝑈) redefined as above, the diagram in Theorem 5.23 will, in fact, commute strictly.

The next result implies that the𝑈 action annihilates the image of𝐻∗(C(𝑌, b0, 𝐵)) in𝐻∗(C(𝑌, b0)):

Lemma 5.27. 𝑚(𝑈)∗𝜓(𝛼) = 𝜕∗\ (𝑈)𝛼 + \ (𝑈)𝜕𝛼 for any 𝛼 ∈ 𝐶𝐵∗ .

Proof. This follows from Proposition 5.22, because 𝜓∞(𝛼) = 0 for 𝛼 ∈ 𝐶𝐵∗ , as we now show. For

this we may assume that 𝛼 = (𝜎, 𝔭, 𝜏). That 𝜓∞(𝛼) = 0 then follows from observing that the mod-

uli spaces 𝑀𝑧 ( [𝔞], 𝑍∞,𝜏 (𝜎)) of dimension 0 are empty. The point is that 𝜎 : Δ𝑛 → AC(𝑌, b0, 𝐵)

parametrises triples that agree with (b0, 𝛼0, 𝑗0) on a neighbourhood of 𝑝 ∈ 𝑌 . Thus the limiting set

𝑍∞,𝜏 (𝜎) ⊂ Δ𝑛 must be either empty, or equal to Δ𝑛. But 𝑍∞,𝜏 (𝜎) ⊂ Δ𝑛 is a codimension 2 subman-

ifold with corners that is cut out transversely, because of the transversality conditions in Definition

5.14. Thus 𝑍∞,𝜏 (𝜎) must be empty, and hence the moduli 𝑀𝑧 ( [𝔞], 𝑍∞,𝜏 (𝜎)) of dimension 0 are

empty. □

We abbreviate to 𝐶∗ the monopole cochain complex 𝐶∗ev(𝑌, 𝔰b0,𝛼0, 𝑗0) (as in §5.2.4) from now

on.

Remark 5.12. For degree shifts of a chain complex 𝐴∗ we use the notation 𝐴∗ [𝑘] := 𝐴∗−𝑘 , whereas

for a cochain complex 𝐴∗ we use 𝐴∗ [𝑘] := 𝐴∗+𝑘 . In both cases, the differential in the shifted

complex is modified by an overall sign: 𝑑𝐴[𝑘] = (−1)𝑘𝑑𝐴. The conventions we use for the algebraic
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mapping cone cone( 𝑓 ) of a chain map 𝑓 : 𝐴∗ → 𝐵∗ (and similarly for a cochain map) are the

following: as a module cone( 𝑓 )∗ = 𝐴∗−1 ⊕ 𝐵∗, and the differential in the cone is given by

𝑑cone =
©«
−𝑑𝐴 0

− 𝑓 𝑑𝐵

ª®®¬ .
Associated to a chain map 𝑓 : 𝐴∗ → 𝐵∗ there is a sequence of chain maps

𝐴∗
𝑓
−→ 𝐵∗

𝑖−→ cone( 𝑓 ) 𝛿−→ 𝐴∗ [1]

where 𝑖(𝛽) = (0, 𝛽) and 𝛿(𝛼, 𝛽) = −𝛼. Recall that the sequence above becomes exact upon taking

homology.

Lemma 5.28. There is a commutative diagram of chain maps

𝐶∗ 𝐶∗ [2]

𝐶∗ cone
(
𝐶𝐵∗ → 𝐶∗

)
,

𝑚(𝑈)∗

𝜓

𝑖

Ψ

where Ψ(𝛼, 𝛽) = −\ (𝑈)𝛼 + 𝑚(𝑈)∗𝜓𝛽. Thus, from the functoriality of the cone construction, we

obtain a canonical chain map Ψ′ that yields a commutative diagram of chain maps

𝐶∗ 𝐶∗ [2] cone(𝑚(𝑈)∗) 𝐶∗ [1]

𝐶∗ cone
(
𝐶𝐵∗ → 𝐶∗

)
cone(𝑖) 𝐶∗ [1] .

𝑚(𝑈)∗

𝜓

𝑖

Ψ Ψ′ 𝜓

Proof. Lemma 5.27 tells us that Ψ is a chain map, and the commutativity is straightforward. For

the second part, we use

Ψ′(𝛾, (𝛼, 𝛽)) = (𝜓𝛾,−\ (𝑈)𝛼 + 𝑚(𝑈)∗𝜓𝛽)

and the remaining items to check are straightforward. □
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The map between the long exact sequences in Theorem 5.23 will emerge from taking the ho-

mology of the second diagram in Lemma 5.28. The remaining part of the construction of the

map comes down to identifing the map induced by Ψ in homology. Recall that the chain com-

plex cone(𝐶𝐵∗ → 𝐶∗) is chain equivalent to the quotient complex 𝐶∗/𝐶𝐵∗ via the chain map

(𝛼, 𝛽) ↦→ [𝛽].

Lemma 5.29. Under the chain equivalence cone(𝐶𝐵∗ → 𝐶∗) ≃ 𝐶∗/𝐶𝐵∗ , the map in homology

induced by Ψ is given by

𝐻𝑛 (C(𝑌, b0), C(𝑌, b0; 𝑝)) � 𝐻𝑛 (𝐶∗/𝐶𝐵∗ )
Ψ∗−−→ 𝐻𝑀

[b0]−𝑛+2(𝑌, 𝔰b0)

[𝛽] ↦→ [𝜓∞(𝛽)] .

Proof. We fix a chain 𝛽 ∈ 𝐶∗ in degree 𝑛 which gives a closed chain in 𝐶∗/𝐶𝐵∗ . Before establishing

the above, note that the chain 𝜓∞(𝛽) is indeed closed: 𝜕𝜓∞(𝛽) = 𝜓∞ 𝜕𝛽 = 0 since 𝜕𝛽 ∈ 𝐶𝐵∗ , and

using Lemma 5.27.

In order to compute Ψ∗ [𝛽 ], we first choose a closed chain (𝛼, 𝛽′) ∈ cone(𝐶 𝑝
∗ → 𝐶∗) such that

𝛽 and 𝛽′ yield the same homology class [𝛽] = [𝛽′] ∈ 𝐻∗(𝐶∗/𝐶𝐵∗ ). Hence we have 𝛽′ = 𝛽 + 𝛾 + 𝜕[

for some 𝛾 ∈ 𝐶𝐵∗ and [ ∈ 𝐶∗. That (𝛼, 𝛽′) is a closed chain means precisely that 𝜕𝛽′ = 𝛼. We then

compute

Ψ(𝛼, 𝛽′) = −\ (𝑈)𝛼 + 𝑚(𝑈)𝜓𝛽′ = −\ (𝑈)𝜕𝛽′ + 𝑚(𝑈)𝜓𝛽′

= 𝜓∞(𝛽′) + 𝜕\ (𝑈)𝛽′

= 𝜓∞(𝛽) + 𝜓∞(𝛾) + 𝜕
(
𝜓∞([) + \ (𝑈)𝛽′

)
= 𝜓∞(𝛽) + 𝜕

(
𝜓∞([) + \ (𝑈)𝛽′

)
where the second line used Proposition 5.22, and the last line used the vanishing of 𝜓∞(𝛾) (see

Lemma 5.27 and its proof). From this the result follows. □

The final step is to identify the bottom row of the second diagram in Lemma 5.28 as Wang’s
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long exact sequence. This follows in a straightforward way from the derivation of Wang’s sequence

from the Serre spectral sequence of the Serre fibration C(𝑌, b0; 𝑝) → C(𝑌, b0)
𝑒𝑣−−→ 𝑆2 (recall that

𝑒𝑣(b) = b (𝑝)) by using the standard excision isomorphism

𝐻𝑛−2(C(𝑌, b0, 𝐵))
�−→ 𝐻𝑛 (C(𝑌, b0), C(𝑌, b0, 𝐵)). (5.22)

Let us recall how this isomorphism is constructed. Let 𝑥0 ∈ 𝑆2 be the point corresponding

to the plane b0(𝑝), and −𝑥0 ∈ 𝑆2 its antipodal. We take the standard CW structure of 𝑆2, where

𝑥0 is the 0-cell, and the 2-cell 𝐷2 is centered at −𝑥0. The map 1 × pr : 𝑒𝑣−1(−𝑥0) × 𝐷2 → 𝑆2

which collapses 𝜕𝐷2 to the point 𝑥0 ∈ 𝑆2 can be lifted through the fibration 𝑒𝑣 : C(𝑌, b0) → 𝑆2 to

produce a map of pairs

𝑓 : (𝑒𝑣−1(−𝑥0) × 𝐷2, 𝑒𝑣−1(−𝑥0) × 𝜕𝐷2) → (C(𝑌, b0), 𝑒𝑣−1(𝑥0))

which at the center −𝑥0 ∈ 𝐷2 agrees with the fibre inclusion 𝑒𝑣−1(−𝑥0) ↩→ C(𝑌, b0). The map 𝑓

is a homotopy equivalence of pairs. The pair (C(𝑌, b0), 𝑒𝑣−1(𝑥0)) is weakly homotopy equivalent

to the pair (C(𝑌, b0), C(𝑌, b0, 𝐵)), so their homology is identified. The fibre transport along a path

joining 𝑥0 to −𝑥0 combined with the Künneth isomorphism yields an isomorphism

𝑡∗ : 𝐻𝑛−2(C(𝑌, b0, 𝐵))
�−→ 𝐻𝑛−2(𝑒𝑣−1(−𝑥0))

�−→ 𝐻𝑛 (𝑒𝑣−1(−𝑥0) × 𝐷2, 𝑒𝑣−1(−𝑥0) × 𝜕𝐷2).

The map 𝑡∗ is independent of the chosen path joining 𝑥0,−𝑥0 by 𝜋1𝑆
2 = 0. Then the excision

isomorphism (5.22) is concretely described as the map 𝑓∗ ◦ 𝑡∗. Equipped with this description, we

re-identify the map Ψ∗:

Lemma 5.30. Under the excision isomorphism (5.22), the map Ψ∗ is identified with the families

contact invariant

Fc = 𝜓∗ : 𝐻𝑛−2(C(𝑌, b0, 𝐵)) → 𝐻𝑀
[b0]−𝑛+2(𝑌, 𝔰b0).

Proof. Choose an (𝑛−2)-cycle 𝑇 in C(𝑌, b0, 𝐵). The homology class [𝑇] corresponds on the right-
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hand side of (5.22) to the class of the chain 𝑇 = 𝑓 (𝑇 ′ × 𝐷2), where 𝑇 ′ is the cycle in 𝑒𝑣−1(−𝑥0)

obtained by transporting 𝑇 along a path from 𝑥0 to −𝑥0. Thus, we need to compute the class Ψ∗ [𝑇].

By Lemma 5.29 we have Ψ∗ [𝑇] = [𝜓∞(𝑇)]. By construction, the chain 𝜓∞(𝑇) agrees with the

chain 𝜓(𝑇∞), where 𝑇∞ is obtained by intersecting 𝑇 with the union over the limiting loci 𝑍∞,𝜏 (𝜎)

with 𝜎 running over the subfaces of 𝑇 of all dimensions. To ensure a transverse intersection, and

hence that 𝑇∞ can be given the structure of a chain, to choose a generic splitting 𝜏 suffices. Now,

from the proof of Proposition 5.9, we know that 𝑇∞ agrees with the intersection of 𝑇 and a fibre

of 𝑒𝑣 : C(𝑌, b0) → 𝑆2. By the description of 𝑇 we see then that 𝑇∞ is, in fact, a cycle in C(𝑌, b0)

which is homologous to 𝑇 . Thus, we have Ψ∗ [𝑇] = 𝜓∗ [𝑇], as required. □

Proof of Theorem 5.23. Take the homology of the second diagram in Lemma 5.28, noting Lemma

5.30 and that the complex 𝐶𝐵∗ [1] is chain homotopy equivalent to cone(𝑖), via the map 𝜙 : 𝛼 ↦→

(𝛼, (−𝛼, 0)). The invariant F̃c is defined as the map induced by �̃� := Ψ′ ◦ 𝜙 in homology, where

�̃� : 𝐶𝐵∗ [1] → cone(𝑚(𝑈)∗)

𝛼 ↦→ (𝜓𝛼,−\ (𝑈)𝛼).

□

146



Appendix A: Transversality, compactness and orientations

A.1 Transversality

We now take up the task of establishing the transversality results claimed in the previous sec-

tions. The arguments used follow quite closely those of [49] and [16], and we will focus on

describing the differences. This section has the nature of an appendix.

We recall that we have chosen integers 𝑘 ≥ 4 and 𝑙 with 𝑙 − 𝑘 − 2 ≥ 1.

A.1.1 Main results

We consider the following setup, in the spirit of the one considering thus far. We consider a

𝑃-family of Riemannian metrics {𝑔𝑝} on 𝑍+ = R×𝑌 . As before, we consider metrics of regularity

𝐶 𝑙−1. The parametrising space 𝑃 is a Banach manifold, possibly just finite-dimensional. The cases

we have in mind are mainly 𝑃 = CM(𝑌, b0) and 𝑃 = CM(𝑌, b0) ×R. We assume that the metrics

𝑔𝑝 coincide with a fixed cylindrical metric 𝑔0 = 𝑑𝑡2+𝑔0,𝑌 over the region (−∞, 1/2]×𝑌 . We assume

that 𝐾 = [1, +∞)×𝑌 is equipped with a family of almost-Kähler structures {(𝜔𝑝, 𝐽𝑝, 𝑔𝑝)} such that

𝑔𝑝 = 𝜔𝑝 (·, 𝐽𝑝 ·). We assume that each (𝜔𝑝, 𝐽𝑝, 𝑔𝑝) makes 𝐾 an asymptotically flat almost-Kähler

end (for the definition see [47] , §3(i)). We also assume that the differences 𝑔𝑝𝑔−1
0 are bounded

over 𝑍+ (though not necessarily uniformly in 𝑃). There is then a 𝑃-family of spin-c structures on

𝑍+ constructed as in §4.2.1.2 using the triple (𝜔0, 𝐽0, 𝑔0) and the 𝑃-family of metrics.

We remark at this point that if we consider a compact end or a cylindrical end, rather than an

asymptotically flat almost-Kähler end, then the results of this section will still apply.

The corresponding space of configurations (𝐴,Φ, 𝑝) over 𝐾′ = [0, +∞) × 𝑌 , and its quotient

by the group G𝑘+1(𝐾′) of 𝐿2
𝑘+1 gauge transformations asymptotic to the identity, are denoted by

C𝑘 (𝐾′) and B𝑘 (𝐾′) respectively. B𝑘 (𝐾′) is a 𝐶 𝑙−𝑘−2 Banach manifold away from the reducible
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locus. The moduli space 𝔐(𝐾′) ⊂ B𝑘 (𝐾′) × P is defined as the zero set of the perturbed Seiberg–

Witten map sw[, which is naturallly a section of a Hilbert bundle Υ𝑘−1 over B𝑘 (𝐾′) × P. The

perturbation [ is taken of the form

[(𝐴,Φ, 𝑝, 𝔭) = 𝜑1
𝑝�̂�(𝐴,Φ) + 𝜑2

𝑝�̂�(𝐴,Φ) + 𝜑3
𝑝�̂�𝐾,𝑝 .

Here 𝔮 is a fixed admissible perturbation, and 𝔭𝐾,𝑝 is the Taubes perturbation used earlier. We

consider 𝑃-families of functions satisfying similar constraints as before. Namely, (i) cutoff func-

tions 𝜑1
𝑝 which are identically 1 on a neighbourhood of (−∞, 0] and vanishing on a neighbourhood

of [1/2, +∞); (ii) bump functions 𝜑2
𝑝 with compact support inside (0, 1/2); (iii) and cutoff func-

tions 𝜑3
𝑝 which are identically 1 over [1, +∞) and vanish on a neighbourhood of (−∞, 1/2]. One

can include more perturbation terms in [ to adjust to each particular situation, and as long as they

don’t depend on P the results of this section apply.

Below we introduce a suitable class of maps ev : C𝑘 (𝐾′) → 𝑉 that we call good (Definition

A.1 below). These are equivariant sections of a G𝑘+1(𝐾′)-equivariant fibre bundle 𝑉 over C𝑘 (𝐾′),

and we wish to impose the constraint that ev(𝐴,Φ, 𝑝, 𝔭) = 𝜎(𝐴,Φ, 𝑝, 𝔭) on the moduli 𝔐(𝐾′).

Here 𝜎 is a fixed equivariant section of 𝑉 (Definition A.1). We prove:

Proposition A.1. The Seiberg–Witten map sw[ : B𝑘 (𝐾′) × P → Υ𝑘−1 is transverse to the zero

section. If ev is a good evaluation map, then ev and 𝜎 are transverse sections of 𝑉 →𝔐(𝐾′).

Thus, the space 𝔐𝑘 (𝐾′, ev) := 𝔐(𝐾′) ∩ ev−1(Im𝜎) is a Banach manifold, of class 𝐶 𝑙−𝑘−2. We

have two restriction maps to the configuration space of the boundary

𝑅+ : 𝑀∗( [𝔞], (−∞, 0] × 𝑌 ) → B∗
𝑘−1/2(𝑌 ) (A.1)

ℜ− : 𝔐(𝐾′, ev) → B∗
𝑘−1/2(𝑌 ). (A.2)

and their fibre product 𝔐( [𝔞], 𝑍+, ev) = Fib(𝑅+,ℜ−) is the moduli space we are interested in. The

main result of this section is:
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Proposition A.2. For a good evaluation map, the maps 𝑅+ and ℜ− are transverse. Thus, the

moduli space 𝔐( [𝔞] , 𝑍+, ev)𝑃 is a 𝐶 𝑙−𝑘−2 Banach manifold. The map 𝔐( [𝔞] , 𝑍+, ev) → 𝑃 × P

is 𝐶 𝑙−𝑘−2 and Fredholm.

We now describe the class of evaluation maps for which our transversality results apply.

Definition A.1. Fix a smooth G𝑘+1(𝐾′)-equivariant fibre bundle𝑉 → C𝑘 (𝐾′) with finite-dimensional

fibre, together with a preferred equivariant section 𝜎 and a connection on 𝑉 along 𝜎 (that is, a con-

nection on the pullback fibre bundle 𝜎∗𝑉). A good evaluation map compatible with such data is a

section ev : C𝑘 (𝐾′) → 𝑉 subject to the following conditions:

(i) ev is a G𝑘+1(𝐾′)-equivariant section

(ii) ev is transverse to 𝜎 as sections of 𝑉 → C𝑘 (𝐾′)

(iii) There exists a compact set 𝐸 ⊂ (1/2, 1) ×𝑌 with ( [0, +∞) ×𝑌 ) \ 𝐸 connected such that, for

any (𝐴,Φ, 𝑝) ∈ ev−1(Im𝜎), all the smooth configurations tangent to (𝐴,Φ, 𝑝) of the form

(𝑎, 𝜙, 0) ∈ 𝑇(𝐴,Φ,𝑝)C𝑘 ( [0, +∞) × 𝑌 )

which are compactly supported away from 𝐸 are contained in

𝑇(𝐴,Φ,𝑝)
(
ev−1(Im𝑣)

)
= ker(Dev − D𝜎)(𝐴,Φ,𝑝) .

In (iii), D denotes the differential of a section projected onto the the vertical direction using

the connection 𝑉 defined along 𝜎.

The evaluation constraints we have considered thus far in the article fall into the above category.

These are:

Example A.1. One of the main examples (see §5.2.1) is the evaluation map ev : (𝐴,Φ, 𝑝) ↦→

𝜏1Φ(𝑥0) induced by an unitary splitting 𝜏 of the fibre of the spinor bundle 𝑆+ at a point 𝑥0 ∈
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(1/2, 1) ×𝑌 . Here 𝑉 is the trivial bundle with fibre C carrying the G𝑘+1(𝐾′)-action 𝑣 · _ = 𝑣(𝑥0)_,

and 𝜎 is the zero section. The subset 𝐸 can be taken to be the point 𝑥0.

In §5.2.1 we considered the moduliM([𝔞], 𝑍+,𝑈; 𝜏) with an evaluation constraint that trav-

elled along the R direction: 𝜏1Φ(𝑠, 𝑦0) = 0, 𝑠 ∈ R. By applying an R-family of diffeomorphisms

taking the point (𝑠, 𝑦0) to (1/2, 1) × {𝑦0} we see that the situation considered in §5.2.1 fall into our

current setup.

Example A.2. Another example (see §5.2.1) is the half-holonomy evaluation map, associated to

a smooth oriented closed curve 𝛾 ⊂ 𝑌 , given by hol𝛾 (𝐴,Φ, 𝑝) = exp1
2

∫
𝑠0×𝛾

�̂�, where 𝑠0 is a fixed

number in (1/2, 1). Here, the fibre bundle 𝑉 is equivariantly trivial, with fibre U(1), and we take

𝜎 constant. 𝐸 can be taken to be 𝑠0 × 𝛾 ⊂ (1/2, 1) × 𝑌 .

Example A.3. In §5.2.2 we considered a map that evaluates the canonical spinors at a point 𝑥0.

The zero set of this map are the limiting moduli space 𝑀 ( [𝔞], 𝑍∞,𝜏 (𝜎)) (Definition 5.9). This

was defined, after choosing an unitary splitting, by ev : (𝐴,Φ, 𝑝) ↦→ 𝜏1Φ𝑝 (𝑥0). The bundle 𝑉 of

which ev is a section is a vector bundle with trivial G𝑘+1(𝐾′) action, and 𝜎 is the zero section. This

defines a good evaluation map for generic unitary splittings (Lemma 5.17). An analogous map was

considered for the half-holonomy of the canonical connections.

Recall from §4.2.2.2 that C(𝐾′) → 𝑃 is a bundle of affine Hilbert spaces equipped with a

preferred connection on C(𝐾′) → 𝑃 i.e. a complementary (horizontal) subbundle for the vertical

subbundle of 𝑇C𝑘 (𝐾′).

Definition A.2. An admissible evaluation map ev : C𝑘 (𝐾′) → 𝑉 is very good for the data 𝑉, 𝜎

if the transversality condition (ii) from Definition A.1 can be achieved without variation along the

horizontal direction of 𝑇C(𝐾′).

Remark A.1. Examples A.1 and A.2 are very good, while A.3 is not.

Finally, we will show:

Proposition A.3. For a very good evaluation map ev, the map 𝔐( [𝔞] , 𝑍+, ev) → 𝑃 is a submer-

sion.
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A.1.2 Proof of Proposition A.1

Let 𝛾 = (𝐴,Φ, 𝑝, 𝔭) be a configuration in C𝑘 ( [0, +∞) × 𝑌 ) solving the equations sw[ (𝛾) = 0,

and denote by d𝛾 : 𝐿2
𝑘+1( [0, +∞) × 𝑌, 𝑖R) → 𝑇𝑝𝑃 × 𝐿2

𝑘
( [0, +∞) × 𝑌, 𝑖Λ1 ⊕ 𝑆+) the linearisation

of the gauge action at 𝛾. To establish the first statement in Proposition A.1 it suffices to show the

stronger result that the operator 𝑄𝛾 = (Dsw[)𝛾 + d∗𝛾 is surjective. This operator takes the form

𝐿2
𝑘 (𝐾

′, 𝑖Λ1 ⊕ 𝑆+) × 𝑇𝑝𝑃 × P →

𝐿2
𝑘−1(𝐾

′, 𝑖𝔰𝔲(𝑆+) ⊕ 𝑆− ⊕ 𝑖R)

The desired surjectivity is established in [[16], p.51] using similar ideas to [49]. We explain

how to adapt these ideas to the case of the moduli space with evaluation constraint 𝔐(𝐾′, ev). For

this suppose that 𝛾 = (𝐴,Φ, 𝑝, 𝔭) satisfies, in addition, the constraint ev = 𝜎. We have the vertical

derivative at 𝛾 of ev : C𝑘 ( [0, +∞) × 𝑌 )𝑃 → 𝑉 , which is a linear map of the form

Dev𝛾 : 𝐿2
𝑘 (𝐾

′, 𝑖Λ1 ⊕ 𝑆+) × 𝑇𝑝𝑃 × P → 𝑉0

where 𝑉0 denotes the fibre of 𝑉 at 𝛾. We wish to establish the surjectivity of the operator 𝑄𝛾 +

(Dev − D𝜎)𝛾, which takes the form

𝐿2
𝑘 (𝐾

′, 𝑖Λ1 ⊕ 𝑆+) × 𝑇𝑝𝑃 × P →

𝐿2
𝑘−1(𝐾

′, 𝑖𝔰𝔲(𝑆+) ⊕ 𝑆− ⊕ 𝑖R) ⊕ 𝑉0.

Equivalently, because (Dev − D𝜎)𝛾 is surjective (condition (ii) of Definition A.1), it suffices

to prove the surjectivity of

ker(Dev − D𝜎)𝛾
𝑄𝛾−−→ 𝐿2

𝑘−1(𝐾
′, 𝑖𝔰𝔲(𝑆+) ⊕ 𝑆− ⊕ 𝑖R). (A.3)

Lemma A.4. For all 𝛾 with sw[ (𝛾) = 0 and ev(𝛾) = 𝜎(𝛾), the operator (A.3) is surjective.
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Proof. We follow the argument in the proof of [[49], Proposition 24.3.1], and explain the necessary

modifications. We first show that the image of ker(Dev − D𝜎)𝛾 under 𝑄𝛾 is dense in the 𝐿2

topology on the target. Suppose not, for a contradiction, and hence choose a non-zero element

𝑉 ∈ 𝐿2 which annihilates the image of ker(Dev − D𝜎)𝛾.

In particular, it annihilates the image under D := 𝑄𝛾 (−,−, 0, 0) of the subspace consisting

of all smooth configurations (𝑎, 𝜙, 0, 0) compactly supported away from 𝐸 (see (iii) of Definition

A.1). Now, D is an elliptic differential operator, so by elliptic regularity we obtain that 𝑉 is in

𝐿2
1,loc on ( [0, +∞)×𝑌 ) \𝐸 . In particular𝑉 is in 𝐿2

1 on the collar neighbourhood [0, 1/2) ×𝑌 , where

it satisfies the formal adjoint equation D∗𝑉 = 0. By the unique continuation principle (see [49]:

Lemma 7.1.3 for the cylindrical case, and the argument in Lemma 7.1.4 for arbitrary manifolds),

because 𝑉 is not identically zero over 𝐾′ = [0, +∞) × 𝑌 and 𝐸 does not disconnect this set (see

(iii) of Definition A.1), we know that 𝑉 does not vanish identically on the collar [0, 1/2) × 𝑌 . The

fact that D∗ satisfies the unique continuation property follows from [[49], eq. (24.15)]. We thus

obtain that the restriction of 𝑉 to the boundary 0 ×𝑌 is non-zero, again by the unique continuation

principle [[49] , Lemma 7.1.3].

However, using the argument in the proof of [[49] ,Corollary 17.1.5] we can show that the

restriction must be zero, by orthogonality of 𝑉 to the image. This gives the desired contradiction.

Thus, the image under 𝑄𝛾 of kerD(ev − 𝜎)𝛾 is dense in the 𝐿2 topology. As we mentioned in

the previous section, D : 𝐿2
𝑘
→ 𝐿2

𝑘−1 is surjective [[16], p.51], for which the argument is similar

but simpler than this. Hence, the image of ker(Dev−D𝜎)𝛾 under 𝑄𝛾 is of finite-codimension and

dense in 𝐿2, so (A.3) is surjective.

□

The previous lemma, together with the fact that 𝑄𝛾 is also surjective on the bigger domain,

and the surjectivity of (Dev − D𝜎)𝛾, complete the proof of Proposition A.1 with the aid of the

following observation from linear algebra:

Lemma A.5. Suppose 𝑋
𝑞
−→ 𝑌 and 𝑋

𝑒−→ 𝑉 are linear maps of vector spaces. Assume that the

following maps are surjective: 𝑞 , 𝑒 and the restriction ker 𝑒
𝑞
−→ 𝑌 . Then ker 𝑞 𝑒−→ 𝑉 is also
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surjective.

Proof. The cokernel of ker𝑒
𝑞
−→ 𝑌 is

𝑉

𝑒(ker 𝑞) =
𝑒(𝑋)
𝑒(ker 𝑞) �

𝑋

𝑒−1 (𝑒(ker 𝑞)
) =

𝑋

ker 𝑞 + ker 𝑒

�
𝑋/ker 𝑞

ker 𝑒/ker 𝑞 ∩ ker 𝑒
� 𝑞(𝑋)/𝑞(ker 𝑒) = 0.

□

Remark A.2. The proof of Lemma A.4 shows that the surjectivity of (A.3) is already achieved by

the tangent configurations {(𝑎, 𝜙, 0, 0)} ⊂ ker(Dev − D𝜎)𝛾. In particular, the map 𝔐(𝐾′, ev) →

P is a submersion. If, in addition, (Dev−D𝜎)𝛾 achieves surjectivity without varying in 𝑇𝑝𝑃 (the

"very good" condition), then the map 𝔐(𝐾′, ev) → 𝑃 × P will also be a submersion.

A.1.3 Proof of Propositions A.2 and A.3

For Proposition A.2 we need to establish the transversality of the fibre product. In other words,

we need to check that the sum of the derivatives

(𝑑𝑅+)𝑎 + (𝑑ℜ−)𝑏 : 𝑇𝑎𝑀∗( [𝔞], (−∞, 0] × 𝑌 ) ⊕ 𝑇𝑏𝔐(𝐾′, ev) → 𝑇[𝔠]B𝑘−1/2(𝑌 )

is surjective for each (𝑎, 𝑏) in the fibre product Fib(𝑅+,ℜ−), and [𝔠] the restriction to the boundary.

The sum ((𝑑𝑅+)𝑎 + (𝑑ℜ−)𝑏) (−,−, 0, 0), i.e. acting on tangent directions which vanish on the

𝑃 and P directions, is a Fredholm operator. This can be extracted from [16], Lemma 26 (see

assertions (3),(4),(7),(8)). Thus, (𝑑𝑅+)𝑎 + (𝑑ℜ−)𝑏 has finite dimensional cokernel. This, together

with Lemma A.6, coming up next, shows that (𝑑𝑅+)𝑎 + (𝑑ℜ−)𝑏 is surjective.

Lemma A.6. Let 𝛾 = (𝐴,Φ, 𝑝, 𝔭) ∈ 𝔐( [0, +∞) × 𝑌, ev)𝑃, and let [𝔠] = ℜ−(𝛾). Then

(𝑑ℜ−)𝛾 : 𝑇𝛾𝔐(𝐾′, ev) → 𝑇[𝔠]B𝑘−1/2(𝑌 )
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has dense image in the 𝐿2
1/2 topology.

Proof. We follow the proof of [[49] ,Lemma 24.4.8]. The result will follow if we show that the

following operator has dense image in the 𝐿2 × 𝐿2
1/2 topology. It is the operator given by the

restriction of (Dsw[)𝛾 to ker(Dev − D𝜎)𝛾 ⊕ P, coupled with the derivative of the restriction ℜ̃−

to the configuration space of the boundary C𝑘−1/2(𝑌 ), which has the form

ker(Dev − D𝜎)𝛾 ⊕ P →𝐿2
𝑘−1(𝐾

′, 𝑖𝔰𝔲(𝑆+) ⊕ 𝑆−) (A.4)

⊕ 𝐿2
𝑘−1/2(𝑌 ; 𝑖Λ1 ⊕ 𝑆𝑌 ).

Here 𝑆𝑌 is the restriction of 𝑆+ to 0 × 𝑌 , and note that

ker(Dev − D𝜎)𝛾 ⊂ 𝐿2
𝑘 (𝐾

′; 𝑖Λ1 ⊕ 𝑆+) ⊕ 𝑇𝑝𝑃.

We suppose for a contradiction that the image of this operator is not dense in 𝐿2 × 𝐿2
1/2, and

pick a non-zero (𝑉, 𝑣) ∈ 𝐿2 × 𝐿2
−1/2 which annihilates the image. By considering directions in

C𝑘 (𝐾′) which are tangent to the gauge-orbit of 𝛾 (these are contained in ker(Dev − D𝜎)𝛾 by (i)

of Definition A.1) we see that 𝑣 is orthogonal to the directions tangent to the gauge-orbit through

𝛾|𝑌 .

Consider the restriction map 𝑟 to the 𝑑𝑡 component of the connection form at the boundary. We

couple the previous operator with 𝑟 and the operator d∗𝛾 to obtain an operator on ker(Dev −D𝜎)𝛾

by restriction of

𝐿2
𝑘 (𝐾

′;𝑖Λ1 ⊕ 𝑆+) ⊕ 𝑇𝑝𝑃 ⊕ P
𝔔⊕𝑟−−−→

𝐿2
𝑘−1(𝐾

′; 𝑖𝔰𝔲(𝑆+) ⊕ 𝑆−) ⊕ 𝐿2
𝑘−1(𝐾

′; 𝑖R)

⊕𝐿2
𝑘−1/2(𝑌 ; 𝑖Λ1 ⊕ 𝑆𝑌 ) ⊕ 𝐿2

𝑘−1/2(𝑌 ; 𝑖R).

The image of ker(Dev − D𝜎)𝛾 under this operator is orthogonal to (𝑉, 0, 𝑣, 0). The operator
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𝑄 := 𝔔 (−, 0, 0) is elliptic. As in the proof of Lemma A.4, (𝑉, 0, 𝑣, 0) is orthogonal to the image of

the smooth configurations (𝑎, 𝜙, 0, 0) that are compactly supported away 𝐸 , which are contained

inside ker(Dev−D𝜎)𝛾 by (iii) of Definition A.1. Elliptic regularity then implies that 𝑉 is in 𝐿2
1,loc

away from 𝐸 ; so 𝑉 is in 𝐿2
1 on the collar [0, 1/2) × 𝑌 since 𝐸 ⊂ (1/2, 1). Thus, 𝑉 satisfies the

formal adjoint equation 𝑄∗𝑉 = 0 over the collar [0, 1/2) × 𝑌 , and so 𝑉 does not vanish identically

over this region by the unique continuation principle (similar argument as in the proof of Lemma

A.4).

From this point on, the argument of [[49] ,Lemma 24.4.8] carries through without modifica-

tion. Namely, by integrating by parts we see that 𝑉|𝑌 = −𝑣 (under standard identifications of the

corresponding bundles), and combining this with the fact that 𝑣 was orthogonal to the gauge orbit,

an argument as in [[49] ,Lemma 15.1.4] shows that 𝑉 is orthogonal to the gauge-orbit on every

slice 𝑡 × 𝑌 . Finally, the argument of [[49] , Proposition 15.1.3] produces, because 𝑉 does not van-

ish identically on the collar, a perturbation 𝔱 ∈ 𝑇𝔭P = P for which the derivative of (A.4) in the

direction of (0, 0, 0, 𝔱) is not orthogonal to (𝑉, 𝑣), a contradiction. □

If ev is very good, then no variation in the 𝑃 direction (horizontal) will be needed to achieve

transversality in the previous Lemma. This, together with the Remark at the end of the previous

subsection, gives us the stronger result of Proposition A.3.

A.2 Compactness

Here we briefly describe some of the compactness results that lead to the construction of the

compactified moduli spaces by broken configurations. Large part of the material presented here is

a straightforward adaptation of results found in [47], [81] and [49].

The main moduli spaces that will concern us in this section are 𝔐(𝑍+) andM(𝑍+), the lat-

ter because it contains the parametrised evaluation moduli M(𝑈, 𝑍+; 𝜏) and M(𝛾, 𝑍+; ^). For

simplicity in notation we state all results forM(𝑍+) orM(𝑈, 𝑍+; 𝜏), but we note that the corre-

sponding results for 𝔐(𝑍+) are analogous and simpler. As before, we use the notationM(𝜎) for
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the fibre product ofM(𝑍+) → AC(𝑌, b0)×P and a𝐶2 singular simplex 𝜎 : Δ𝑛 → AC(𝑌, b0)×P.

𝑀 (𝜎) is a 𝐶2 manifold with corners provided transversality holds, and its points consist of gauge-

equivalence classes [(𝐴,Φ, 𝑡, 𝑠)] of Seiberg–Witten monopoles with 𝑡 ∈ Δ𝑛 , 𝑠 ∈ R. The projection

to the 𝑠 ∈ R coordinate is denoted 𝜋R :M(𝜎) → R. The simplex 𝜎 : Δ𝑛 → AC(𝑌, b0) × P will

be kept fixed throughout this section.

It is also convenient to introduce the moduli space Mloc(𝑍+) of gauge-equivalence classes

of solutions to the same equations as M(𝑍+), also approaching the canonical configurations in

𝐿2
𝑘

on the conical end, but with no asymptotics to critical points on the cylindrical end. The

relevant gauge group involved in the quotient is now the topological group Gloc of locally 𝐿2
𝑘+1

gauge transformations which along the conical end approach the identity in 𝐿2
𝑘
. The moduli space

Mloc(𝑍+) is not a Banach manifold, but carries a natural topology – that of convergence in 𝐿2
𝑘

away

from infinite cylindrical regions (−∞, 𝑙) × 𝑌 . We use the notationMloc(𝜎) for the corresponding

space obtained by a fibre product as above.

A.2.1 A local compactness result

The exponential decay estimates of Theorem 5.13 can be interpreted as telling us that certain

energy along the conical end for configurations (𝐴,Φ, 𝑡, 𝑠) ∈ M(𝜎) is uniformly bounded, by a

constant depending on 𝜎, and hence that the conical end 𝐾 behaves like a compact end for the

purpose of the compactness analysis ofM(𝜎). We now introduce the relevant notion of energy

along the cylindrical energy, and describe the main local compactness result.

We fix 𝑟 ≥ 1. Later we will require that 𝑟 is large enough, depending on 𝜎 only, so that for

all configurations (𝐴,Φ, 𝑡, 𝑠) ∈ M(𝜎) we have |𝛼 | ≥ 1/2 (using the notation of (5.16-5.15)) over

the portion [𝑟, +∞) × 𝑌 of the conical end 𝐾 . That this can be done follows from the exponential

decay estimate of Theorem 5.13. Let 𝑍+𝑟 = 𝑍+ \ (𝑟, +∞) × 𝑌 .

Throughout the article we have been fixing an admissible perturbation 𝔮 of the Chern-Simons-

Dirac functional on (𝑌, 𝔰b0,𝛼0, 𝑗0). By the construction in [[49], §10.1], the admissible perturbation

𝔮 is the formal 𝐿2-gradient of some gauge-invariant function 𝑓 on the configuration space C(𝑌 ).
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Definition A.3. The cylindrical energy of a configuration 𝛾 = (𝐴,Φ, 𝑡, 𝑠) ∈ M𝑧 ( [𝔞]) is

E𝑟 (𝛾) =
1
4

∫
𝑍+𝑟

𝐹�̂� ∧ 𝐹�̂� −
∫
𝑟×𝑌
⟨Φ|𝑟×𝑌 , 𝐷𝐵Φ|𝑟×𝑌 ⟩

+
∫
𝑟×𝑌
(𝐻/2) |Φ|2 + 2 𝑓 ( [𝔞] ). (A.5)

Above, 𝐵 denotes the restriction of 𝐴 to the boundary 𝜕𝑍+𝑟 = 𝑟 × 𝑌 . By 𝐻 we denote the mean

curvature vector field of the boundary 𝜕𝑍+𝑟 = 𝑟 × 𝑌 .

That one should just integrate over 𝑍+𝑟 ⊂ 𝑍+ was proposed by B.Zhang (see p.54 [81]). The

point of cutting off at 𝑟 is that E𝑟 (𝛾) approches +∞ as 𝑟 grows. This can be deduced from Lemma

A.7 below. In [49] this type of energy is called topological: the analogous integral over a compact

manifold with a cylindrical end attached only depends on the critical point [𝔞], the homotopy class

𝑧 and the chosen perturbation 𝔮. This interpretation is lost in our case, due to the cutting off that is

forced upon us, but we do have the identity

E𝑟 (𝛾) = 2CSD𝔮 (𝔞) − 2CSD(𝛾 |𝑟) +
1
4

∫
𝑍+𝑟

𝐹�̂�0
∧ 𝐹�̂�0

(A.6)

whose terms we describe now. First recall that for a closed oriented 3-manifold 𝑌 with a spin-

c structure 𝔰, the Chern-Simons-Dirac functional (see [49], §4.1) is defined on the configuration

space of pairs (𝐵,Ψ) by

CSD(𝐵,Ψ) = −1
8

∫
𝑟×𝑌
(�̂� − �̂�0) ∧ (𝐹�̂� + 𝐹�̂�0

) + 1
2

∫
𝑟 ×𝑌
⟨𝐷𝐵Ψ,Ψ⟩. (A.7)

The above formula needs the choice of a base spin-c connection 𝐵0. Then in formula (A.6),

CSD𝔮 = CSD + 𝑓 is the 𝔮-perturbed Chern-Simons-Dirac functional for (𝑌, 𝔰b0,𝛼0, 𝑗0) and some

choice of base connection 𝐵0. The term 𝛾 |𝑟 is the restriction of 𝛾 onto the slice 𝑟 × 𝑌 . We have

chosen a spin-c connection 𝐴0 over 𝑍+𝑟 which becomes translation invariant over the cylindrical

end with the form 𝐴0 = 𝑑/𝑑𝑡 + 𝐵0, and we use the restriction of 𝐴0 onto the slice 𝑟 × 𝑌 as base

connection for the function CSD on configurations on the slice 𝑟×𝑌 . The identity (A.6) is obtained
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by integrating by parts as in [[49], §4.1].

That the cylindrical energy provides a good notion of energy along the cylindrical end is pro-

vided by the fact that it controls the 𝐿2 norms of 𝐹�̂�, Φ and ∇𝐴Φ over compact sets:

Lemma A.7. There exists a constant 𝐶 > 0 depending on 𝜎, such that for any configuration

𝛾 = (𝐴,Φ, 𝑡, 𝑠) ∈ M(𝜎) we have the following estimate: for any 𝑙 ≤ 0

E𝑟 (𝛾) ≥
1

16

∫
[𝑙,𝑟 ] ×𝑌

( |𝐹�̂� |
2 + (|Φ|2 − 𝐶)2 + |∇𝐴Φ|2) − 𝐶 (𝑟 − 𝑙 + 1).

The proof of the above is analogous to that of Lemma 24.5.1 in [49]. By an argument as

in [[47], pp. 26-27], we can combine Theorem 5.13 and Lemma A.7 and obtain, following the

standard compactness argument (based on the proof of Theorem 5.1.1 in [49]), the following local

compactness result:

Proposition A.8. For any sequence 𝛾𝑛 ∈ M(𝜎) with uniform bounds E𝑟 (𝛾𝑛) ≤ 𝐶 and −𝐶 ≤

𝜋R(𝛾𝑛) ≤ 𝐶, there exist a subsequence which converges inMloc(𝜎).

At this point the compactness of the moduli spaces of broken configurationsM+𝑧 ( [𝔞],𝑈, 𝜎; 𝜏),

M+𝑧 ( [𝔞], 𝛾, 𝜎; ^) or 𝑀+𝑧 ( [𝔞], 𝜎) follows. We state the result for the first. The broken configura-

tions that can appear in the 1-dimensional case were listed in Proposition 5.20, and in the general

one may see further breaking on the cylindrical end. The statement that we obtain is the following,

and its proof follows the arguments of §16.1 and §24.6 of [49]:

Corollary A.9. For a fixed [𝔞] and𝐶 > 0, the space of broken configurations 𝛾 ∈ ⋃𝑧M+𝑧 ( [𝔞],𝑈, 𝜎; 𝜏)

with E𝑟 (𝛾) ≤ 𝐶 is compact. In particular, eachM+𝑧 ( [𝔞],𝑈, 𝜎; 𝜏) is compact.

Above, the cylindrical energy E𝑟 has been extended to broken configurations 𝛾 as in [49]: by

adding up the energies of each component of 𝛾. We recall that the energy of a configuration 𝛾 in

the cylinder moduli space 𝑀𝑧 ( [𝔞], [𝔟]) is 2 · (CSD𝔮 (𝔞) − CSD𝔮 (𝔟)) provided 𝛾 approaches 𝔞 and

𝔟 on the corresponding ends. The second assertion in Corollary A.9 uses that E𝑟 is bounded on

M+𝑧 ( [𝔞],𝑈, 𝜎; 𝜏), which can be seen from (A.6) combined with Lemma A.10 below.
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Lemma A.10. There is a constant 𝐶 > 0 depending on 𝜎 such that for any 𝛾 = (𝐴,Φ, 𝑡, 𝑠) ∈

M(𝑈, 𝜎; 𝜏) one has |CSD(𝛾 |𝑟) − CSD((𝐴𝑡 ,Φ𝑡) |𝑟 ) | ≤ 𝐶.

Proof. This follows from the exponential decay estimates in Theorem 5.13 and Corollary 5.14. □

A.2.2 Finiteness results

We now outline how to deduce the finiteness result below. This result is the input needed to

conclude that the counts of zero dimensional moduli in this paper are indeed finite. We state our

results forM𝑧 ( [𝔞],𝑈, 𝜎; 𝜏) but the same holds forM+𝑧 ( [𝔞], 𝛾, 𝜎; ^) or 𝑀+𝑧 ( [𝔞], 𝜎).

Proposition A.11. Suppose that the moduli spaces M𝑧 ( [𝔞],𝑈, 𝜎; 𝜏) of expected dimension at

most 1 are transversely cut out. Then there exist only finitely many pairs ( [𝔞], 𝑧) such that the

compactified moduli spacesM+𝑧 ( [𝔞],𝑈, 𝜎; 𝜏) are non-empty and of dimension ≤ 1.

Remark A.3. The reason why the dimension is cut to at most 1 has to do with the fact that we have

been working with 𝐶 𝑙 contact structures and 𝐶2 simplices. This poses a problem if we want that all

moduli spaces of all dimensions are transversely cut out after perturbing 𝜎, due to the assumptions

of the Thom-Smale transversality theorem. Raising the differentiability of our data would allow us

to conclude the above result for moduli of higher dimensions.

The main estimate one needs to prove the above is

Lemma A.12 (Bounds on energy by dimension). There exists constants 𝑟 ≥ 1 𝐶 > 0 depending

on 𝜎 such that the following holds. For any 𝛾 ∈ M𝑧 ( [𝔞],𝑈, 𝜎; 𝜏) we have

𝑒 − 𝐶 ≤ E𝑟 (𝛾) + 4𝜋2(gr𝑧 ( [𝔞],𝑈, 𝜎; 𝜏) − 2]( [𝔞])) ≤ 𝑒 + 𝐶

where gr𝑧 ( [𝔞],𝑈, 𝜎; 𝜏) denotes the expected dimension ofM𝑧 ( [𝔞],𝑈, 𝜎; 𝜏), ]( [𝔞]) is defined in

[[49], p.286] and 𝑒 ∈ R is a constant only depending on 𝜎 and the image of the critical point [𝔞]

under the blow-down map B𝜎
𝑘−1/2(𝑌 ) → B𝑘−1/2(𝑌 ).
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Proof. The corresponding result for the topological energy over a compact manifold with bound-

ary would state that the quantity in the middle, denote it 𝑄(𝛾), only depends on the blow-down

of [𝔞] (see Proposition 24.6.6 in [49] and its proof). This time, given two configurations 𝛾 ∈

M𝑧 ( [𝔞],𝑈, 𝜎; 𝜏) , �̃� ∈ M𝑧 ( [�̃�],𝑈, 𝜎; 𝜏) with [𝔞] and [�̃�] having the same blow-down, their

difference in 𝑄 can be computed using (A.6) and we see

𝑄(𝛾) −𝑄(�̃�) = −2CSD(𝛾 |𝑟) + 2CSD(�̃� |𝑟) (A.8)

We want to establish that |𝑄(𝛾) − 𝑄(�̃�) | ≤ 𝐶 for a constant 𝐶 only depending on 𝜎, and this

follows from Lemma A.10. □

Lemma A.13. Suppose the moduli spacesM𝑧 ( [𝔞],𝑈, 𝜎; 𝜏) of dimension ≤ 1 are transversely cut

out. Then for fixed [𝔞] there are only finitely many 𝑧 for which the compactificationM+𝑧 ( [𝔞],𝑈, 𝜎; 𝜏)

is non-empty and of dimension ≤ 1.

Proof. We note that Lemma A.12 also holds for broken trajectories, with identical proof. For [𝔞]

and 𝑧 with M+𝑧 ( [𝔞],𝑈, 𝜎; 𝜏) non-empty, and transversely cut out, we obtain from Lemma A.12

that any broken trajectory 𝛾 in the moduli space has

E𝑟 (𝛾) ≤ 𝐶 − gr𝑧 ( [𝔞],𝑈, 𝜎; 𝜏) + 8𝜋2](𝔞) ≤ 𝐶 + 8𝜋2](𝔞)

where the second inequality follows from gr𝑧 ( [𝔞],𝑈, 𝜎; 𝜏) ≥ 0 because the moduli is non-empty

and transverse. Since 𝔮 is an admissible perturbation there are finitely many critical points in the

blow-down, and the quantity ]( [𝔞]) depends on the blow-down of [𝔞] only. So we obtain a uniform

bound E𝑟 (𝛾) ≤ 𝐶. Then Corollary A.9 yields finitely many such 𝑧. □

Proof of Proposition A.11. If the first Chern class of contact structure b0, or equivalently that of

the spin-c structure 𝔰b0 , is non-torsion, then there are only finitely-many critical points 𝔞 and the

result follows from Lemma A.13.

In the torsion case, we can still argue that there is a bound, independent of [𝔞] or 𝑧, on the
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cylindrical energy of all broken configurations. Indeed, consider just the case of an unbroken

configuration [𝛾] ∈ M𝑧 ( [𝔞],𝑈, 𝜎; 𝜏) and the identity (A.6) for E𝑟 (𝛾). Since the Chern-Simons-

Dirac function is fully gauge-invariant in the torsion case, then there is a bound |CSD𝔮 (𝔞) | ≤ 𝐶,

since CSD𝔮 only depends on the blow-down of the critical point 𝔞, for which there are only finitely-

many possibilities. Also there is a bound |CSD(𝛾 |𝑟) | ≤ 𝐶 from applying Lemma A.10. The

remaining term in (A.6) can also be bounded, so this shows that E𝑟 (𝛾) is bounded. The case of a

broken configuration is no different.

Now, Lemma A.12 provides upper and lower bounds on

E𝑟 (𝛾) + 4𝜋2(dimM𝑧 ( [𝔞],𝑈, 𝜎; 𝜏) − 2]( [𝔞])).

Since we have upper and lower bounds on both the energy and dimension, we obtain |]( [𝔞]) | ≤ 𝐶.

This gives finitely-many choices for [𝔞] again. □

A.3 Orientations

We described in §4.2.3.4 and §5.2.3.1 the rule for orienting all the moduli spaces in this article,

which we called the canonical orientations. Whenever these moduli are 0-dimensional and we use

them to make counts of points, each point is counted with a sign corresponding to its canonical

orientation (relative to the natural orientation of a point). The compactifications 𝑀+𝑧 ( [𝔞], 𝜎) and

M+𝑧 ( [𝔞],𝑈, 𝜎; 𝜏) of 1-dimensional moduli are 1-dimensional stratified spaces with a codimension-

1 𝛿-structure near its boundary – a more general form than a manifold with boundary structure (see

[49], Definition 19.5.3). In this situation each boundary point inherits a boundary orientation

(see [49], Definition 20.5.1) generalising the usual outward-normal first convention for orienting

the boundary of a manifold. The total enumeration of the boundary points of the compactified

1-dimensional moduli equals zero, provided the boundary points are counted with their boundary

orientation.

The next two results compare the canonical and boundary orientations for the relevant moduli
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spaces. These provide the final touch to the proofs of Proposition 4.13 and Proposition 5.22.

Lemma A.14. Let 𝑀𝑧 ( [𝔞], 𝜎) be a 1-dimensional moduli. For each of its codimension-1 stra-

tum components listed in Proposition 4.14, the difference between the canonical and boundary

orientation is given by the sign

(a) +1

(b) (−1)dim𝑀𝑧1 ( [𝔟],[𝔠]) = −1.

(c) (−1)𝑛−1(−1)𝑖 for the moduli over the face Δ𝑛−1
𝑖
⊂ Δ𝑛.

Proof. (a) and (b) are analogous to cases (i) and (iii) in Proposition 25.2.2 of [49].

For (c) we sketch the main idea. The key result is the following (see [49], p.379, formula

(20.3)): if 𝑃1 and 𝑃2 are two Fredholm linear maps of Banach spaces, and the determinant lines

det𝑃1 and det𝑃2 are oriented, then both det(𝑃1 ⊕ 𝑃2) and det(𝑃2 ⊕ 𝑃1) inherit orientations in a

natural way, which under the obvious isomorphism det(𝑃1 ⊕ 𝑃2) = det(𝑃2 ⊕ 𝑃1) differ by the sign

(−1)ind𝑃1×dim coker𝑃2+dim coker𝑃1×ind𝑃2 .

Suppose now 𝑃2 = 0𝑁 : 𝑁 → 0 is the zero map out of a finite-dimensional oriented vector space

𝑁 . We also assume 𝑁 = R× 𝐵 is a product of oriented vector spaces, and that the orientation on 𝑁

is the product orientation. Then we write 0𝑁 = 0R ⊕ 0𝐵, and the previous result now gives us that

the orientations of det(𝑃1 ⊕ 0R ⊕ 0𝐵) and det(⊕R ⊕ 𝑃1 ⊕ 0𝐵) differ by the sign (−1)dim coker𝑃1 .

Going back to our case of interest, what we want is to compute the boundary orientation (rela-

tive to the canonical orientation) of the boundary stratum component 𝑀𝑧 ( [𝔞], 𝜕𝜎) of 𝑀𝑧 ( [𝔞], 𝜎),

where 𝜎 : Δ𝑛 → AC(𝑌, b0) × P is a singular simplex of dimension 𝑛 and 𝑀𝑧 ( [𝔞], 𝜎) is 1-

dimensional. The deformation operator for a configuration 𝛾 in 𝑀𝑧 ( [𝔞], 𝜎) (say lying over the

point 𝑢 ∈ Δ𝑛) can be transformed by a homotopy to an operator 𝑃 ⊕ 0𝑁 where 𝑃 is the deformation

operator for the configuration 𝛾 in the moduli over a point 𝑀𝑧 ( [𝔞], 𝜎(𝑢)) and 𝑁 := 𝑇𝑢Δ
𝑛 is the
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tangent space to the simplex. When 𝑢 lies on the interior of the face Δ𝑛−1
𝑖

, whose boundary ori-

entation is given by the sign (−1)𝑖, we decompose 𝑁 = R ⊕ 𝐵 where 𝐵 = 𝑇𝑢Δ
𝑛−1
𝑖

(with boundary

orientation) and R is the outward-normal direction. The number dim coker𝑃 is 𝑛 − 1, which by the

above arguments gives the sign (c). □

Lemma A.15. Let M𝑧 ( [𝔞],𝑈, 𝜎; 𝜏) be a 1-dimensional moduli. For each of its codimension-1

stratum components listed in Proposition 5.20, the difference between the canonical and boundary

orientation is given by the sign

(a) +1

(b) (−1)𝑛 (−1)𝑖 for the moduli over the face Δ𝑛−1
𝑖
⊂ Δ𝑛

(c) +1

(d) (−1)dim𝑀𝑧1 ( [𝔟],[𝔠]) = −1

(e) −1

(f) (−1)dim𝑀𝑧1 ( [𝔟],[𝔠])+1 = +1

(g) (−1)dim𝑀𝑧2 ( [𝔞],[𝔟])+dim𝑀𝑧1 ( [𝔟],𝑈,[𝔠]) = −1

Proof. (a) is clear, and (b) is analogous to (c) of the previous Lemma. (c) and (d) are analogous

to cases (i) and (iii) in Proposition 25.2.2 of [49], whereas (e), (g) and (f) are analogous to cases

(i),(ii) and (iii) in Proposition 26.1.7 of [49]. □
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