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Abstract

Improved Asymptotics for Multi-armed Bandit Experiments under Optimism-based Policies:

Theory and Applications

Anand Kalvit

The classical multi-armed bandit paradigm is a foundational framework for online decision

making underlying a wide variety of important applications, e.g., clinical trials, advertising,

sequential assignments, assortment optimization, etc. This work will examine two salient aspects

of decision making that arise naturally in settings with large action spaces.

The first issue pertains to the division of samples across arms at the level of a trajectory (or

sample-path). Traditional bounds at the ensemble-level (or in expectation) only translate to

meaningful pathwise guarantees (high probability bounds) when the separation between mean

rewards is “large,” commonly referred to as the “well-separated” regime in the literature. On the

other hand, applications with a large action space are intrinsically endowed with smaller

separations between arm-means (e.g., multiple products of similar quality in e-retail). As a result,

classical ensemble-level guarantees for such problems become vacuous at the sample-path level

in several settings. This theoretical gap in the understanding of bandit algorithms in the “small

gap” regime can be of significant consequence in applications where considerations such as

fairness and post hoc inference play an important role. Our work provides the first systematic

treatment and analysis of this aspect under the celebrated UCB class of optimism-based bandit

algorithms, including a complete diffusion-limit characterization of its regret. The diffusion-scale

lens also reveals profound insights and highlights distinctions between UCB and the popular



posterior sampling-based method, Thompson Sampling, such as an “incomplete learning”

phenomenon that is characteristic of the latter.

The second research question studied in this work concerns the complexity of decision making in

problems where the action space is endowed with a large number of substitutable alternatives. For

example, it is common in e-retail for multiple brands to offer similar products (in terms of

quality-of-service) that compete for revenue within a given product segment. We model the

platform’s decision problem in this example as a bandit with countably many arms, and

investigate limits of achievable performance under canonical bandit algorithms adapted to this

setting. We also propose novel rate-optimal algorithms that leverage results for the “small gap”

regime alluded to earlier, and show that these outperform aforementioned conventional

adaptations. We extend the countable-armed bandit paradigm to also serve as a basal motif in

sequential assignment and dynamic matching problems typical of settings such as online labor

markets.

The last chapter of this thesis investigates achievable performance in the countable-armed bandit

problem under non-stationarity that is attributable to vanishing arms. This characteristic abstracts

away certain attrition and churn processes observable in online markets, e.g., a popular brand may

retract its product from a platform owing to under-exposure within its category – a potential

negative externality of the exploration carried out by the platform’s policy.
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Introduction

This thesis conducts inquiry into the theoretical underpinnings of the celebrated

multi-armed bandit paradigm with a two-fold objective: (i) advancing the frontier of knowledge

for classical algorithms; and (ii) distilling insights to guide algorithm design for broader problems

involving sequential decision making under parameter uncertainty. Forthcoming paragraphs

briefly elucidate the contributions in individual chapters of this thesis.

Chapter 1 provides new results on the arm-sampling behavior of popular algorithms for the

stochastic multi-armed bandit problem, such as UCB and Thompson Sampling, leading to several

important insights. Among these, it is shown that arm-sampling rates under UCB are

asymptotically deterministic regardless of the problem complexity; this discovery facilitates new

sharp asymptotics as well as a novel alternative proof of the algorithm’s worst-case regret. The

chapter also provides the first complete process-level characterization of the multi-armed bandit

problem under UCB in the conventional diffusion limit. The diffusion limit, among other things,

reveals profound distinctions between UCB and Thompson Sampling that have significant

implications for areas such as adaptive inference and algorithmic fairness.

Chapter 2 introduces a countably many-armed bandit problem motivated by sequential stochastic

assignments in large markets, and proposes a class of online adaptive policies that achieve

rate-optimal regret. The design and analysis of these policies is facilitated in part by the results

and technical machinery developed in Chapter 1. It is also established that absent these

refinements, conventional bandit policies adapted to this problem setting are inferior in a precise

sense. The countable-armed bandit model also encapsulates key elements of several applications

1



with a greater degree of complexity and provides a tractable basal motif for their analysis; notable

examples are the design of personalized recommender systems, and matching algorithms for

online labor markets.

Chapter 3 discusses a stylized application of the countable-armed problem to online labor markets

where a centralized planner must match “jobs” to “workers” dynamically subject to uncertainty

about arrivals, preferences, skills and population-level distributions thereof.

Chapter 4 lifts the aforementioned countable-armed bandit model to an incentive-driven

non-stationary setting where arms may potentially “vanish” over time. The vanishing arms

characteristic is modeled after phenomena such as customer disengagement that are widely

reported in online markets serving a large population of strategic agents.

Proofs and auxiliary technical results are relegated to the appendix.

2



Chapter 1: The classical multi-armed bandit problem: Towards a

comprehensive asymptotic theory

Background and motivation. The multi-armed bandit (MAB) paradigm provides a succinct

abstraction of the quintessential exploration vs. exploitation trade-offs inherent in many sequen-

tial decision making problems. This has origins in clinical trial studies dating back to [1] which

gave rise to the earliest known MAB heuristic, Thompson Sampling. Today, the MAB problem

manifests itself in various forms with applications ranging from dynamic pricing and online auc-

tions to packet routing, scheduling, e-commerce and matching markets among others (see [2] for

a comprehensive survey of different formulations). In the canonical stochastic MAB problem, a

decision maker (DM) pulls one of 𝐾 arms sequentially at each time 𝑡 ∈ {1, 2, ...}, and receives

a random payoff drawn according to an arm-dependent distribution. The DM, oblivious to the

statistical properties of the arms, must balance exploring new arms and exploiting the best arm

played thus far in order to maximize her cumulative payoff over the horizon of play. This objective

is equivalent to minimizing the regret relative to an oracle with perfect ex ante knowledge of the

optimal arm (the one with the highest mean reward). The classical stochastic MAB problem is

fully specified by the tuple
(
(P𝑖)16𝑖6𝐾 , 𝑛

)
, where P𝑖 denotes the distribution of rewards associated

with the 𝑖th arm, and 𝑛 the horizon of play.

The statistical complexity of regret minimization in the stochastic MAB problem is governed

by a key primitive called the gap, denoted by Δ, which accounts for the difference between the

top two arm mean rewards in the problem. For a “well-separated” or “large gap” instance, i.e.,

a fixed Δ bounded away from 0, the seminal paper of [3] showed that the order of the smallest

achievable regret is logarithmic in the horizon. There has been a plethora of subsequent work

involving algorithms which can be fine-tuned to achieve a regret arbitrarily close to the optimal

3



rate discovered in aforementioned paper (see [4, 5, 6, 7, 8], etc., for a few notable examples).

On the other hand, no algorithm can achieve an expected regret smaller than 𝐶
√
𝑛 for a fixed 𝑛

(the constant hides dependence on the number of arms) uniformly over all problem instances (also

called minimax regret); see, e.g., [9], Chapter 15. The saddle-point in this minimax formulation

occurs at a gap that satisfies Δ � 1/
√
𝑛. This has a natural interpretation: approximately 1/Δ2

samples are required to distinguish between two distributions with means separated by Δ; at the

1/
√
𝑛-scale, it becomes statistically impossible to distinguish between samples from the top two

arms within 𝑛 rounds of play. If the gap is smaller, despite the increased difficulty in the hypothesis

test, the problem becomes “easier” from a regret perspective. Thus, Δ � 1/
√
𝑛 is the statistically

“hardest” scale for regret minimization. A number of popular algorithms achieve the
√
𝑛 minimax-

optimal rate (modulo constants), see, e.g., [8, 7], and many more do this within poly-logarithmic

factors in 𝑛. Many of these are variations of the celebrated upper confidence bound algorithms,

e.g., UCB1 [10], that achieve a minimax regret of O
(√︁
𝑛 log 𝑛

)
, and at the same time also deliver

an instance-optimal regret of O (log 𝑛) (modulo constant multiplicative factors).

A major driver of the regret performance of an algorithm is its arm-sampling characteristics.

For example, in the instance-dependent (large gap) setting, optimal regret guarantees imply that

the fraction of time the optimal arm(s) are played approaches 1 in probability, as 𝑛 grows large.

However, this fails to provide any meaningful insights as to the distribution of arm-pulls for smaller

gaps, e.g., the Δ � 1/
√
𝑛 “small gap” that governs the “worst-case” instance-independent setting.

An illustrative numerical example involving “small gap.” Consider an A/B testing problem

(e.g., a vaccine clinical trial) where the experimenter is faced with two competing objectives:

first, to estimate the efficacy of each alternative with the best possible precision given a budget

of samples, and second, keeping the overall cost of the experiment low. This is a fundamentally

hard task and algorithms incurring a low cumulative cost typically spend little time exploring sub-

optimal alternatives, resulting in a degraded estimation precision (see, e.g., [11]). In other words,

algorithms tailored for (cumulative) regret minimization may lack statistical power [12]. While

this trade-off is unavoidable in “well-separated” instances, numerical evidence suggests a plausible
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resolution in instances with “small” gaps as illustrated below. For example, such a situation might

arise in trials conducted using two similarly efficacious vaccines (abstracted away as Δ ≈ 0). To

illustrate the point more vividly, consider the case where Δ is exactly 0 (of course, this information

is not known to the experimenter). This setting is numerically illustrated in Figure 1.1, which

shows the empirical distribution of 𝑁1(𝑛)/𝑛 (the fraction of time arm 1 is played until time 𝑛) in

a two-armed bandit with Δ = 0, under two different algorithms (UCB and Thompson Sampling),

and two different reward configurations.
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4

5 UCB1

(a) 𝑞 = 0.5

0.0 0.5 1.0

1
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4

5 TS with Beta priors

(b) 𝑞 = 0.5

0.0 0.5 1.0

25

50

75

100

125

TS with Beta priors

(c) 𝑞 = 0

Figure 1.1: Incomplete learning under Thompson Sampling. A two-armed bandit with
Bernoulli(𝑞) rewards for each arm: Histograms show the empirical (probability) distribution of
𝑁1 (𝑛) /𝑛 for 𝑛 = 10,000 pulls, plotted using 20,000 experiments. Algorithms: UCB1 [10], TS
with Beta priors [13].

A desirable property of the outcome in this setting is to have a linear allocation of the sampling

budget per arm on almost every sample-path of the algorithm, as this leads to “complete learning:”

an algorithm’s ability to discern statistical indistinguishability of the arm-means, and induce a

“balanced” allocation in that event. However, despite the simplicity of the zero-gap scenario,

it is far from obvious whether the aforementioned property may be satisfied for standard bandit

algorithms such as UCB and Thompson Sampling. Indeed, Figure 1.1 exhibits a striking difference

between the two. The concentration around 1/2 observable in Figure 1.1(a) indicates that UCB

results in an approximately “balanced” sample-split, i.e., the allocation is roughly 𝑛/2 per arm

for large 𝑛 (and this is observed for “most” sample-paths). In fact, we will later see that the

“bell curve” in Figure 1.1(a) eventually collapses into the Dirac measure at 1/2 (Theorem 1).
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On the other hand, under Thompson Sampling, the allocation of samples across arms may be

arbitrarily “imbalanced” despite the arms being statistically identical, as seen in Figure 1.1(b) (see,

for contrast, Figure 1.1(c), where the allocation is perfectly “balanced”). Namely, the distribution

of the posterior may be such that arm 1 is allocated anywhere from almost no sampling effort all

the way to receiving almost the entire sampling budget, as Figure 1.1(b) suggests. Non-degeneracy

of arm-sampling rates is observable also under the more widely used version of the algorithm that

is based on Gaussian priors and Gaussian likelihoods (Algorithm 2 in [7]); see Figure 1.2(a). Such

behavior can be detrimental for ex post causal inference in the general A/B testing context, and the

vaccine testing problem referenced earlier. This is demonstrated via an instructional example of

a two-armed bandit with one deterministic reference arm (aka the “one-armed” bandit paradigm),

illustrated in Figure 1.2, and discussed below.

A numerical example illustrating inference implications. Consider a model where arm 1

returns a constant reward of 0.5, while arm 2 yields rewards distributed as Bernoulli(0.5). In this

setup, the estimate of the gap Δ (average treatment effect in causal inference parlance) after 𝑛

rounds of play is given by Δ̂ = �̄�2(𝑛) − 0.5, where �̄�2(𝑛) denotes the empirical mean reward of

arm 2 at time 𝑛. The Z statistic associated with this gap estimator is given by Z = 2
√︁
𝑁2(𝑛)Δ̂,

where 𝑁2(𝑛) is the visitation count of arm 2 at time 𝑛. In the absence of any sample-adaptivity

in the arm 2 data, results from classical statistics such as the Central Limit Theorem (CLT) would

posit an asymptotically Normal distribution for Z. However, since the algorithms that play the

arms are adaptive in nature, e.g., UCB and Thompson Sampling, asymptotic-normality may no

longer be guaranteed. Indeed, the numerical evidence in Figure 1.2(b) strongly points to a sig-

nificant departure from asymptotic-normality of the Z statistic associated with the gap estimator

under Thompson Sampling (TS). Non-normality of the Z statistic can be problematic for infer-

ential tasks, e.g., it can lead to statistically unsupported inferences in the binary hypothesis test

H0 : Δ = 0 vs. H1 : Δ ≠ 0 performed using confidence intervals constructed as per the conven-

tional CLT approximation. In sharp contrast, our work shows that UCB satisfies a certain “bal-

anced” sampling property (such as that in Figure 1.1(a)) in instances with “small” gaps, formally
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stated as Theorem 1, that drives the Z statistic towards asymptotic-normality in the aforemen-

tioned binary hypothesis testing example (asymptotic-normality being a consequence of Theo-

rem 5). Furthermore, since the
√
𝑛-normalized “stochastic” regret (defined in (1.1) in §1.1) equals

−
(√︁
𝑁2(𝑛)/(4𝑛)

)
Z, it follows that this too, satisfies asymptotic-normality under UCB (due to

Theorem 5, in conjunction with Theorem 1). These properties are evident in Figure 1.2(c) below,

and signal reliability of ex post causal inference (under classical assumptions like validity of CLT)

from “small gap” data collected by UCB vis-à-vis Thompson Sampling (TS). The reliability of

inference under TS may be doubtful even in the limit of infinite data, as Figure 1.2(b) suggests.

0.0 0.5 1.0

0.25
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1.00

1.25

TS

(a) Distribution of 𝑁1(𝑛)/𝑛

−4 −2 0 2 40.0

0.1

0.2

0.3

0.4
Distribution of Z statistic under TS

Best fit
CLT
TS data (Arm 2)

(b) Departure from CLT

−4 −2 0 2 40.0

0.1

0.2

0.3

0.4
Distribution of Z statistic under UCB

Best fit
CLT
UCB data (Arm 2)

(c) Asymptotic Normality: CLT

Figure 1.2: Failure of CLT under TS. A two-armed bandit with Δ = 0: Arm 1 returns a constant
reward of 0.5, and arm 2 yields rewards distributed as Bernoulli(0.5). In (a), the histogram shows
the empirical (probability) distribution of 𝑁1(𝑛)/𝑛. Algorithms: TS (Algorithm 2 in [7]) and
UCB (UCB1 in [10]). All histograms have 𝑛 = 10,000 pulls, and are plotted using ℵ = 20,000
experiments.

While traditional literature on stochastic bandits is dedicated primarily to the regret minimiza-

tion problem, there has been significant recent interest also in finer-grain properties of popular

“adaptive” MAB algorithms such as UCB and Thompson Sampling. For example, a recent line

of work ([14, 15, 16]) investigates the “bias” of optimistic algorithms like UCB. The focus of

our work is on understanding the distribution of arm-pulls, which as discussed earlier, has sig-

nificant bearings on ex post causal inference from data collected adaptively by bandit algorithms

(see, e.g., [17, 18, 19], etc., and references therein for recent developments), algorithmic fairness

in the broader context of fairness in machine learning (see [20] for a survey), as well as on novel

formulations of the MAB problem such as [21]. Below, we discuss extant literature relevant to our
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line of work.

Previous work. The study of “well-separated” instances, or the large gap regime, is sup-

ported by rich literature. For example, [4] provides high-probability bounds on arm-sampling rates

under a parametric family of UCB algorithms. However, as the gap diminishes, leading to the

so called small gap regime, the aforementioned bounds become vacuous. The understanding of

arm-sampling behavior remains relatively under-studied here even for popular algorithms such as

UCB and Thompson Sampling. This regime is of special interest in that it also covers the classi-

cal diffusion scaling1, where Δ � 1/
√
𝑛, which as discussed earlier, corresponds to instances that

statistically constitute the “worst-case” for hypothesis testing and regret minimization. Recently, a

partial diffusion-limit characterization of the arm-sampling distribution under a version of Thomp-

son Sampling with horizon-dependent prior variances2 was provided in [19] as a solution to a

certain stochastic differential equation (SDE). The numerical solution to said SDE was observed

to have a non-degenerate distribution on [0, 1]. Similar numerical observations on non-degeneracy

of the arm-sampling distribution also under standard versions of Thompson Sampling were re-

ported in [23, 21], among others, albeit limited only to the special case of Δ = 0, and absent a

theoretical explanation for the aforementioned observations. Thus, outside of the so called “easy”

problems, where Δ is bounded away from 0 by an absolute constant, theoretical understanding of

the sampling behavior of bandit algorithms remains an open area of research.

Contributions. In this paper, we provide the first complete asymptotic characterization of arm-

sampling distributions under canonical UCB (Algorithm 1) as a function of the gap Δ (Theorem 1).

This gives rise to a fundamental insight: arm-sampling rates are asymptotically deterministic under

UCB regardless of the hardness of the instance. We also provide the first theoretical explanation

for an “incomplete learning” phenomenon under Thompson Sampling (Algorithm 3) alluded to in

Figure 1.1, as well as a sharp dichotomy between Thompson Sampling and UCB evident therein

(Theorem 3). This result earmarks an “instability” of Thompson Sampling in terms of the limiting

1This is a standard technique for performance evaluation of stochastic systems commonly used in the operations
research and mathematics literature, see, e.g., [22].

2Assumed to be vanishing in 𝑛; standard versions of the algorithm involve fixed prior variances.
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arm-sampling distribution. As a sequel to Theorem 1, we provide the first complete characteriza-

tion of the worst-case performance of canonical UCB (Theorem 4). One consequence is that the

O
(√︁
𝑛 log 𝑛

)
minimax regret of UCB is strictly unimprovable in a precise sense. Moreover, our

work also leads to the first process-level characterization of the two-armed bandit problem under

canonical UCB in the classical diffusion limit, according to which a suitably normalized cumulative

reward process converges in law to a Brownian motion with fully characterized drift and infinites-

imal variance (Theorem 5). To the best of our knowledge, this is the first such characterization

of UCB-type algorithms. Theorem 5 facilitates a complete distribution-level characterization of

UCB’s diffusion-limit regret, thereby providing sharp insights as to the problem’s minimax com-

plexity. Such distribution-level information may also be useful for a variety of inferential tasks,

e.g., construction of confidence intervals (see the binary hypothesis testing example referenced in

Figure 1.2(c)), among others. We believe our results may also present new design considerations,

in particular, how to achieve, loosely speaking, the “best of both worlds” for Thompson Sampling,

by addressing its “small gap” instability. Lastly, we note that our proof techniques are markedly

different from the conventional methodology adopted in MAB literature ([4, 2, 7]), and may be of

independent interest in the study of related learning algorithms.

Organization of the chapter. A formal description of the model and the canonical UCB

algorithm is provided in §1.1. All theoretical propositions are stated in §1.2, along with a high-

level overview of their scope and proof sketch; detailed proofs and ancillary results are relegated

to Appendix A. Finally, concluding remarks and open problems are presented in §1.4.

1.1 The model and notation

The technical development in this paper will focus on the two-armed problem purely for ex-

positional reasons. The restriction to two-armed bandits has precedence also in the literature due

to its tractability for sharp asymptotic analyses, see, e.g., [24]. This setting encapsulates the core

statistical complexity of the MAB problem in the “small gap” regime, as well as concisely high-

lighting the key novelties in our approach. Before describing the model formally, we introduce the
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following asymptotic conventions.

Notation. We say 𝑓 (𝑛) = 𝑜 (𝑔(𝑛)) or 𝑔(𝑛) = 𝜔 ( 𝑓 (𝑛)) if lim𝑛→∞
𝑓 (𝑛)
𝑔(𝑛) = 0. Similarly, 𝑓 (𝑛) =

O (𝑔(𝑛)) or 𝑔(𝑛) = Ω ( 𝑓 (𝑛)) if lim sup𝑛→∞
��� 𝑓 (𝑛)𝑔(𝑛)

��� 6 𝐶 for some constant 𝐶. If 𝑓 (𝑛) = O ((𝑔(𝑛)))

and 𝑓 (𝑛) = Ω ((𝑔(𝑛))) hold simultaneously, we say 𝑓 (𝑛) = Θ (𝑔(𝑛)), or 𝑓 (𝑛) � 𝑔(𝑛), and we

write 𝑓 (𝑛) ∼ 𝑔(𝑛) in the special case where lim𝑛→∞
𝑓 (𝑛)
𝑔(𝑛) = 1. If either sequence 𝑓 (𝑛) or 𝑔(𝑛) is

random, and one of the aforementioned ratio conditions holds in probability, we use the subscript

𝑝 with the corresponding Landau symbol. For example, 𝑓 (𝑛) = 𝑜𝑝 (𝑔(𝑛)) if 𝑓 (𝑛)/𝑔(𝑛)
𝑝
−→ 0 as

𝑛→∞. Lastly, the notation ‘⇒’ will be used for weak convergence.

The model. The arms are indexed by {1, 2}. Each arm 𝑖 ∈ {1, 2} is characterized by a reward

distribution P𝑖 supported on [0, 1] with mean `𝑖. The difference between the two mean rewards,

aka the gap, is given by Δ = |`1 − `2 |; as discussed earlier, this captures the hardness of an in-

stance. The sequence of rewards associated with the first 𝑚 pulls of arm 𝑖 is denoted by
(
𝑋𝑖, 𝑗

)
16 𝑗6𝑚.

The rewards are assumed to be i.i.d. in time, and independent across arms.3 The number of pulls

of arm 𝑖 up to (and including) time 𝑡 is denoted by 𝑁𝑖 (𝑡). A policy 𝜋 := (𝜋𝑡)𝑡∈N is an adapted

sequence that prescribes pulling an arm 𝜋𝑡 ∈ S at time 𝑡, where S denotes the probability simplex

on {1, 2}. The natural filtration at time 𝑡 is given by F𝑡 := 𝜎

{
(𝜋𝑠)𝑠6𝑡 ,

( (
𝑋𝑖, 𝑗

)
𝑗6𝑁𝑖 (𝑡) : 𝑖 = 1, 2

)}
.

The stochastic regret of policy 𝜋 after 𝑛 plays, denoted by 𝑅𝜋𝑛 , is given by

𝑅𝜋𝑛 :=
𝑛∑︁
𝑡=1

[
max (`1, `2) − 𝑋𝜋𝑡 ,𝑁𝜋𝑡 (𝑡)

]
. (1.1)

The decision maker is interested in the problem of minimizing the expected regret, given by

inf𝜋∈Π E𝑅𝜋𝑛 , where Π is the set of policies satisfying the non-anticipation property 𝜋𝑡 : F𝑡−1 →

S, 1 6 𝑡 6 𝑛, and the expectation is w.r.t. the randomness in reward realizations as well as pos-

sible randomness in the policy 𝜋. In this paper, we will focus primarily on the canonical UCB

policy given by Algorithm 1 below. This policy is parameterized by an exploration coefficient 𝜌,

which controls its arm-exploring rate. The standard UCB1 policy [10] corresponds to Algorithm 1

with 𝜌 = 2; the effect of 𝜌 on the expected and high-probability regret bounds of the algorithm is

3These assumptions can be relaxed in the spirit of [10]; our results also extend to sub-Gaussian rewards.
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well-documented in [4] for problems with a “large gap.” In what follows, �̄�𝑖 (𝑡 − 1) denotes the

empirical mean reward from arm 𝑖 ∈ {1, 2} at time 𝑡 − 1, i.e., �̄�𝑖 (𝑡 − 1) :=
∑𝑁𝑖 (𝑡−1)
𝑗=1 𝑋𝑖, 𝑗/𝑁𝑖 (𝑡 − 1).

Algorithm 1 The canonical UCB policy for two-armed bandits.
1: Input: Exploration coefficient 𝜌 ∈ R+.
2: At 𝑡 = 1, 2, play each arm 𝑖 ∈ {1, 2} once.
3: for 𝑡 ∈ {3, 4, ...} do

4: Play arm 𝜋𝑡 ∈ arg max𝑖∈{1,2}
(
�̄�𝑖 (𝑡 − 1) +

√︃
𝜌 log(𝑡−1)
𝑁𝑖 (𝑡−1)

)
.

1.2 Main results

Algorithm 1 is known to achieve E𝑅𝜋𝑛 = O (log 𝑛) in the instance-dependent setting, and

E𝑅𝜋𝑛 = O
(√︁
𝑛 log 𝑛

)
in the “small gap” minimax setting. The primary focus of this paper is on the

distribution of arm-sampling rates, i.e., 𝑁𝑖 (𝑛)/𝑛, 𝑖 ∈ {1, 2}. Our main results are split across two

sub-sections; §1.2.1 examines the behavior of UCB (Algorithm 1) as well as another popular ban-

dit algorithm, Thompson Sampling (specified in Algorithm 3). §1.2.2 is dedicated to results on the

(stochastic) regret of Algorithm 1 under the Δ �
√︁
(log 𝑛) /𝑛 “worst-case” gap and the Δ � 1/

√
𝑛

“diffusion-scaled” gap. We will slightly overload notation by adding the subscript 𝑛 to Δ (leading

to Δ𝑛) in order to clearly highlight its dependence on the horizon 𝑛. We reemphasize that this paper

is focused on the setting where Δ𝑛 scales with 𝑛; reward variances remain invariant w.r.t. 𝑛.

1.2.1 Asymptotics of arm-sampling rates

Theorem 1 (Arm-sampling rates under UCB in 2-MAB) Let 𝑖∗ ∈ arg max {`𝑖 : 𝑖 = 1, 2} with

ties broken arbitrarily. Then, the following results hold for arm 𝑖∗ as 𝑛 → ∞ under Algorithm 1

with 𝜌 > 1:

(I) “Large gap:” If Δ𝑛 = 𝜔
(√︃

log 𝑛
𝑛

)
, then

𝑁𝑖∗ (𝑛)
𝑛

𝑝
−→ 1.
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(II) “Small gap:” If Δ𝑛 = 𝑜
(√︃

log 𝑛
𝑛

)
, then

𝑁𝑖∗ (𝑛)
𝑛

𝑝
−→ 1

2
.

(III) “Moderate gap:” If Δ𝑛 ∼
√︃
\ log 𝑛
𝑛

for some fixed \ > 0, then 𝑁𝑖∗ (𝑛)/𝑛
𝑝
−→ _∗𝜌 (\), where the

limit is the unique solution (in _) to

1
√

1 − _
− 1
√
_
=

√︄
\

𝜌
, (1.2)

and is monotone increasing in \, with _∗𝜌 (0) = 1/2 and _∗𝜌 (\) → 1 as \ →∞.

Remark 1 (Permissible values of 𝜌 in Algorithm 1) For 𝜌 > 1, the expected regret of the policy

𝜋 given by Algorithm 1 is bounded as E𝑅𝜋𝑛 6 𝐶𝜌
(

log 𝑛
Δ
+ Δ
𝜌−1

)
for some absolute constant 𝐶 > 0;

the upper bound becomes vacuous for 𝜌 6 1 (see [4], Theorem 7). We therefore restrict Theorem 1

to 𝜌 > 1 to ensure that E𝑅𝜋𝑛 remains non-trivially bounded for all Δ.

Discussion and intuition. Theorem 1 essentially asserts that the sampling rates 𝑁𝑖 (𝑛)/𝑛,

𝑖 ∈ {1, 2} are asymptotically deterministic in probability under canonical UCB; Δ only serves

to determine the value of the limiting constant. The “moderate” gap regime offers a continuous

interpolation from instances with zero gaps to instances with “large” gaps as \ sweeps over R+ in

that _∗𝜌 (\) increases monotonically from 1/2 at \ = 0 to 1 at \ = ∞, consistent with intuition.

The special case of \ = 0 is numerically illustrated in Figure 1.1(a). The tails of 𝑁𝑖∗ (𝑛)/𝑛 decay

polynomially fast near the end points of the interval [0, 1] with the best possible rate approaching

O
(
𝑛−3) , occurring for \ = 0. However, as 𝑁𝑖∗ (𝑛)/𝑛 approaches its limit, convergence becomes

slower and is dominated by fatter Θ
(√︃

log log 𝑛
log 𝑛

)
tails. The behavior in this regime is regulated by

the O
(√︁
𝑛 log log 𝑛

)
envelope of the zero-drift random walk process driving the algorithm’s regret

(see proof of Theorem 1 for details).

Proof sketch. To provide the most intuitive explanation, we pivot to the special case where

the arms have identical reward distributions, and in particular, Δ = 0. The natural candidate then
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for the limit of the empirical sampling rate is 1/2. On a high level, the proof relies on polyno-

mially decaying bounds in 𝑛 for 𝜖-deviations of the form P
(���𝑁1 (𝑛)

𝑛
− 1

2

��� > 𝜖 ) derived using the

standard trick for bounding the number of pulls of any arm on a given sample-path, to wit, for any

𝑢, 𝑛 ∈ N, 𝑁1(𝑛) can be bounded above by 𝑢+∑𝑛
𝑡=𝑢+1 1 {𝜋𝑡 = 1, 𝑁1(𝑡 − 1) > 𝑢}, path-wise. Setting

𝑢 = d(1/2 + 𝜖) 𝑛e in this expression, one can subsequently show via an analysis involving careful

use of the policy structure together with appropriate Chernoff bounds that with high probability

(approaching 1 as 𝑛 → ∞), 𝑁1(𝑛)/𝑛 6 1/2 + Y𝜌 for some Y𝜌 ∈ (0, 1/2) that depends only on

𝜌. An identical result would naturally hold also for the other arm by symmetry arguments, and

therefore we arrive at a meta-conclusion that 𝑁𝑖 (𝑛)/𝑛 > 1/2− Y𝜌 > 0 for both arms 𝑖 ∈ {1, 2} with

high probability (approaching 1 as 𝑛→∞). It is noteworthy that said conclusion cannot be arrived

at for an arbitrary 𝜖 > 0 (in place of Y𝜌) since the polynomial upper bounds on P
(���𝑁1 (𝑛)

𝑛
− 1

2

��� > 𝜖 )
derived using the aforementioned path-wise upper bound on 𝑁1(𝑛), become vacuous if 𝑢 is set “too

close” to 𝑛/2, i.e., if 𝜖 is “near” 0. Extension to the full generality of 𝜖 > 0 is achieved via a refined

analysis that uses the Law of the Iterated Logarithm (see [25], Theorem 8.5.2), together with the

previous meta-conclusion, to obtain fatter O
(√︃

log log 𝑛
log 𝑛

)
tail bounds when 𝜖 is near 0. Here, it is im-

perative to point out that the “log 𝑛” appearing in the denominator is essentially from the
√︁
𝜌 log 𝑡

optimistic bias term of UCB (see Algorithm 1), and therefore the convergence will, as such, hold

also for other variations of the policy that have “less aggressive” 𝜔 (log log 𝑡) exploration functions

vis-à-vis log 𝑡. However, this will be achieved at the expense of the policy’s expected regret per-

formance, as noted in Remark 1. We also note that the extremely slow O
(√︃

log log 𝑛
log 𝑛

)
convergence

is not an artifact of our analysis, but in fact, supported by the numerical evidence in Figure 1.1(a),

suggestive of a plausible non-convergence (to 1/2) in the limit. We believe such observations in

previous works likely led to incorrect folk conjectures ruling out the existence of a deterministic

limit under UCB à la Theorem 1 (see, e.g., [23] and references therein). The proof for a general Δ

in the “small” and “moderate” gap regimes is skeletally similar to that for Δ = 0, albeit guessing

a candidate limit for 𝑁𝑖∗ (𝑛)/𝑛 is non-trivial; a closed-form expression for _∗𝜌 (\) is provided in

Appendix A.1. Full details of the proof of Theorem 1 are provided in §A.3,A.4,A.5 �
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Remark 2 (Possible generalizations of Theorem 1) 1. The behavior of UCB policies is largely

governed by their optimistic bias. While Theorem 1 only covers the generic UCB policy with√︁
𝜌 log 𝑡 bias, results of the form 𝑁𝑖 (𝑛)/𝑛

𝑝
−→ 𝑐𝑖 for some 𝑐𝑖 ∈ (0, 1) continue to hold also un-

der smaller 𝜔
(√︁
𝜌 log log 𝑡

)
bias (driven by the Law of the Iterated Logarithm). We believe

this observation will be useful when examining more complicated UCB-inspired policies

such as KL-UCB [6], DMED [26], etc.

2. A simple extension to the 𝐾-armed setting is provided in Theorem 2 below.

Algorithm 2 The canonical UCB policy for 𝐾-armed bandits.
1: Input: Exploration coefficient 𝜌 ∈ R+.
2: At 𝑡 = 1, ..., 𝐾 , play each arm 𝑖 ∈ {1, ..., 𝐾} once.
3: for 𝑡 ∈ {𝐾 + 1, 𝐾 + 2, ...} do

4: Play arm 𝜋𝑡 ∈ arg max𝑖∈{1,...,𝐾}
(
�̄�𝑖 (𝑡 − 1) +

√︃
𝜌 log(𝑡−1)
𝑁𝑖 (𝑡−1)

)
.

Theorem 2 (Sampling rate of optimal arms in 𝐾-MAB under UCB) Fix 𝐾 ∈ N, and consider

a 𝐾-armed model with arms indexed by [𝐾] := {1, ..., 𝐾}. Let I ⊆ [𝐾] be the set of optimal arms,

i.e., arms with mean max𝑖∈[𝐾] `𝑖. If I ≠ [𝐾], define Δmin := max𝑖∈[𝐾] `𝑖 − max𝑖∈[𝐾]\I `𝑖. Then,

there exists a finite 𝜌0 > 1 that depends only on |I |, such that the following results hold for any

arm 𝑖 ∈ I as 𝑛→∞ under Algorithm 2 initialized with 𝜌 > 𝜌0:

(I) If I = [𝐾], then

𝑁𝑖 (𝑛)
𝑛

𝑝
−→ 1

𝐾
.

(II) If I ≠ [𝐾] and optimal arms are “well-separated,” i.e., Δmin = 𝜔

(√︃
log 𝑛
𝑛

)
, then

𝑁𝑖 (𝑛)
𝑛

𝑝
−→ 1
|I | .
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Discussion. The main observation here is that if the set of optimal arms is “sufficiently sep-

arated” from the sub-optimal arms, then classical UCB policies eventually allocate the sampling

effort over the set of optimal arms uniformly, in probability. This is a desirable property to have

from a fairness standpoint, and also markedly different from the instability and imbalance results

for Thompson Sampling discussed earlier in Theorem 3. We remark that the 𝜌 > 𝜌0 condition is

only necessary for tractability of the proof, and conjecture the result to hold, in fact, for any 𝜌 > 1,

akin to the result for the two-armed setting (Theorem 1). We also conjecture analogous results

for “small gap” and “moderate gap” regimes, in the spirit of Theorem 1; proofs, however, can be

unwieldy in the general 𝐾-armed setting. The detailed proof of Theorem 2 is provided in §A.9.

What about Thompson Sampling? Results such as those discussed above for other popular

adaptive algorithms like Thompson Sampling are only arable in “well-separated” instances where

𝑁𝑖∗ (𝑛)/𝑛
𝑝
−→ 1 as 𝑛→∞ follows as a trivial consequence of its O

(√
𝑛
)

minimax regret bound.4 For

smaller gaps, theoretical understanding of the distribution of arm-pulls under Thompson Sampling

remains largely absent even for its most widely-studied variants. In this paper, we provide a first

result in this direction: Theorem 3 formalizes a revealing observation for classical Thompson

Sampling (Algorithm 3) in instances with zero gap, and elucidates its instability in view of the

numerical evidence reported in Figure 1.1(b) and 1.1(c). This result also offers an explanation for

the sharp contrast with the statistical behavior of canonical UCB (Algorithm 1) à la Theorem 1,

also evident from Figure 1.1(a). In what follows, rewards are Bernoulli, and 𝑆𝑖 (respectively 𝐹𝑖)

counts the number of successes/1’s (respectively failures/0’s) associated with arm 𝑖 ∈ {1, 2}.

Algorithm 3 Thompson Sampling for the two-armed Bernoulli bandit.
1: Initialize: Number of successes (1’s) and failures (0’s) for each arm 𝑖 ∈ {1, 2}, (𝑆𝑖, 𝐹𝑖) =
(0, 0).

2: for 𝑡 ∈ {1, 2, ...} do
3: Sample for each 𝑖 ∈ {1, 2}, T𝑖 ∼ Beta (𝑆𝑖 + 1, 𝐹𝑖 + 1).
4: Play arm 𝜋𝑡 ∈ arg max𝑖∈{1,2} T𝑖 and observe reward 𝑟𝑡 ∈ {0, 1}.
5: Update success-failure counts: 𝑆𝜋𝑡 ← 𝑆𝜋𝑡 + 𝑟𝑡 , 𝐹𝜋𝑡 ← 𝐹𝜋𝑡 + 1 − 𝑟𝑡 .

4This is the version of Thompson Sampling that is based on Gaussian priors and Gaussian likelihoods, not the
classical Beta-Bernoulli version that has a minimax regret of O

(√︁
𝑛 log 𝑛

)
[7].
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Theorem 3 (Incomplete learning under Thompson Sampling when Δ = 0) In a two-armed model

where both arms yield rewards distributed as Bernoulli(𝑞), the following holds under Algorithm 3

as 𝑛→∞:

(I) If 𝑞 = 0 (i.e., all rewards are deterministic 0), then

𝑁1(𝑛)
𝑛
⇒ 1

2
.

(II) If 𝑞 = 1 (i.e., all rewards are deterministic 1), then

𝑁1(𝑛)
𝑛
⇒ Uniform on [0, 1] .

Proof sketch. The proof of Theorem 3 relies on a careful application of two subtle properties

of the Beta distribution (Fact 2 and Fact 3), stated and proved in Appendix A.2,A.10. For part (I),

we invoke symmetry to deduce E𝑁1(𝑛) = 𝑛/2, and use Fact 2 to show that the standard deviation

of 𝑁1(𝑛) is sub-linear in 𝑛, thus proving the stated assertion in (I). More elaborately, Fact 2 states

for the reward configuration in (I) that the probability of playing arm 1 after it has already been

played 𝑛1 times, and arm 2 𝑛2 times, equals (𝑛2 + 1) /(𝑛1 +𝑛2 +2). This probability is smaller than

1/2 if 𝑛1 > 𝑛2, which provides an intuitive explanation for the fast convergence of 𝑁1(𝑛)/𝑛 to 1/2

observed in Figure 1.1(c). In fact, we conjecture that the result in (I) holds also with probability

1 based on the aforementioned “self-balancing” property. The conclusion in part (II) hinges on an

application of Fact 3 to show the stronger result: 𝑁1(𝑛) is uniformly distributed over {0, 1, ..., 𝑛}

for any 𝑛 ∈ N. Contrary to Fact 2, Fact 3 states that quite the opposite is true for the reward

configuration in (II): the probability of playing arm 1 after it has already been played 𝑛1 times, and

arm 2 𝑛2 times, equals (𝑛1 + 1) /(𝑛1 + 𝑛2 + 2), which is greater than 1/2 when 𝑛1 > 𝑛2. That is,

the posterior distributions evolve in such a way that the algorithm is “deceived” into incorrectly

believing one of the arms (arm 2 in this case) to be inferior. This leads to large sojourn times

between successive visitations of arm 2 on such a sample-path, thereby resulting in a perpetual
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“imbalance” in the sample-counts. This provides an intuitive explanation for the non-degeneracy

observed in Figure 1.1(b) and 1.2(a), which additionally, also indicates that such behavior, in fact,

persists also for general (non-deterministic) reward distributions, as well as under the Gaussian

prior-based version of the algorithm. Full proof of Theorem 3 is provided in Appendix A.6. �

More on “incomplete learning.” The zero-gap setting is a special case of the “small gap”

regime where canonical UCB guarantees a (1/2, 1/2) sample-split in probability (Theorem 1). On

the other hand, Theorem 3 suggests that second order factors such as the mean signal strength

(magnitude of the mean reward) could significantly affect the nature of the resulting sample-split

under Thompson Sampling. Note that even though the result only presupposes deterministic 0/1

rewards, the aforementioned claim is, in fact, borne out by the numerical evidence in Figure 1.1(b)

and 1.1(c). The sampling distribution seemingly flattens rapidly from the Dirac measure at 1/2 to

the Uniform distribution on [0, 1] as the mean rewards move away from 0. This uncertainty in the

limiting sampling behavior has non-trivial implications for a variety of application areas of such

learning algorithms. For instance, a Uniform distribution of arm-sampling rates on [0, 1] indicates

that the sample-split could be arbitrarily imbalanced along a sample-path, despite, as in the setting

of Theorem 3, the two arms being statistically identical; this phenomenon is typically referred to

as “incomplete learning” in literature and has origins in [27, 28]. Non-degeneracy in the limiting

distribution is also observable numerically up to diffusion-scale gaps of O
(
1/
√
𝑛
)

under other

versions of Thompson Sampling (see [19] for examples); our focus on the more extreme zero-gap

setting simplifies the illustration of these effects.

A brief survey of Thompson Sampling. While extant literature does not provide any explicit

result for Thompson Sampling characterizing its arm-sampling behavior in instances with “small”

and “moderate” gaps, there has been recent work on its analysis in the Δ𝑛 � 1/
√
𝑛 regime under

what is known as the diffusion approximation lens (see [19, 29]). Cited works study Thompson

Sampling primarily under the assumption that the prior variance associated with the mean reward

of any arm vanishes in the horizon of play at an “appropriate” rate; the non-vanishing variance set-

17



ting is amenable to analysis only under triangulation limits in general.5 Such a scaling, however, is

not ideal from a regret standpoint and indeed, the versions of Thompson Sampling optimized for

regret performance use fixed (non-vanishing) prior variances, e.g., Algorithm 3 and its Gaussian

prior-based counterpart (see [7]). On a high level, [19, 29] establish that as 𝑛 → ∞, the pre-limit

(𝑁𝑖 (𝑛𝑡)/𝑛)𝑡∈[0,1] under Thompson Sampling converges weakly to a “diffusion-limit” stochastic

process on 𝑡 ∈ [0, 1]. Recall from earlier discussion that Δ𝑛 � 1/
√
𝑛 is covered under the “small

gap” regime; consequently, it follows from Theorem 1 that the analogous limit for UCB is, in

fact, the deterministic process 𝑡/2. In sharp contrast, the diffusion-limit process under Thompson

Sampling may at best be characterizable only as a solution (possibly non-unique) to an appropri-

ate stochastic differential equation or ordinary differential equation driven by a suitably (random)

time-changed Brownian motion. Consequently, the diffusion limit under Thompson Sampling is

more difficult to interpret vis-à-vis UCB (see Theorem 5), and it is much harder to obtain lucid

insights as to the nature of the distribution of 𝑁𝑖 (𝑛)/𝑛 as 𝑛 → ∞. The asymptotic distribution

of 𝑁𝑖 (𝑛)/𝑛 under Thompson Sampling is also investigated in [30], albeit in a significantly dif-

ferent setting. Cited paper considers the Bayesian setting where a prior distribution exists over

problem instances, and the Thompson Sampling algorithm is “well-specified,” i.e., information

about said prior is baked into the algorithm. Specifically, a sample path of the algorithm in their

model involves a random problem instance from the instance-space. In contrast, the derivation

of the asymptotic distribution of arm-pulls in our work is for specific (fixed) problem instances,

viz., reward configurations (I) and (II) described in Theorem 3, and under the classical version of

Thompson Sampling (Algorithm 3).

1.2.2 Beyond arm-sampling rates

This part of the paper is dedicated to a more fine-grained analysis of the “stochastic” regret of

UCB (defined in (1.1) in §1.1). Results are largely facilitated by insights on the sampling behavior

of UCB in instances with “small” gaps, attributable to Theorem 1; however, we believe they are

5A first principles-based approach that applies directly (without triangulation limits) to the case of non-vanishing
prior variances is provided in Theorem 6.2 of [29].
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of interest in their own right. We commence with an application of Theorem 1 which provides the

first complete characterization of the worst-case (minimax) performance of canonical UCB. A full

diffusion-limit characterization of the two-armed bandit problem under UCB is provided thereafter

in Theorem 5.

Theorem 4 (Asymptotics of worst-case regret under UCB) In the “moderate gap” regime ref-

erenced in Theorem 1 where Δ𝑛 ∼
√︁
\ log 𝑛/𝑛, the regret of the policy 𝜋 given by Algorithm 1 with

𝜌 > 1 satisfies

𝑅𝜋𝑛√︁
𝑛 log 𝑛

⇒
√
\

(
1 − _∗𝜌 (\)

)
=: ℎ𝜌 (\) as 𝑛→∞, (1.3)

where _∗𝜌 (\) is the (unique) solution to (1.2).

To the best of our knowledge, this is the first algorithm-specific result (sharp asymptotic) that

is distinct from the general Ω
(√
𝑛
)

information-theoretic lower bound by a horizon-dependent

factor.6

Discussion. A closed-form expression for _∗𝜌 (\) and ℎ𝜌 (\) is provided in Appendix A.1. The

behavior of ℎ𝜌 (\) is illustrated below in Figure 1.3. For a fixed 𝜌, the function ℎ𝜌 (\) is numerically

observed to be uni-modal in \ and admit a global maximum at a unique \∗𝜌 := arg sup\>0 ℎ𝜌 (\),

bounded away from 0. Theorem 4 establishes that the worst-case (instance-independent) regret

admits the sharp asymptotic 𝑅𝜋𝑛 ∼ ℎ𝜌
(
\∗𝜌

) √︁
𝑛 log 𝑛. In standard bandit parlance, this substantiates

that the O
(√︁
𝑛 log 𝑛

)
worst-case (minimax) performance guarantee of canonical UCB cannot be

improved in terms of its horizon-dependence. In addition, the result also specifies the precise

asymptotic constants achievable in the worst-case setting. This can alternately be viewed as a

direct approach to proving the O
(√︁
𝑛 log 𝑛

)
performance bound for UCB vis-à-vis conventional

minimax analyses such as those provided in [2].

Proof sketch. On a high level, note that when Δ =
√︁
(\ log 𝑛)/𝑛, it follows from Theorem 1

6Previous best result for UCB was an upper bound of O
(√︁
𝑛 log 𝑛

)
[2]. It remained an open problem whether this

bound was, in fact, achieved in the worst-case setting; Theorem 4 answers this affirmatively.
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Figure 1.3: 𝒉𝝆 (𝜽) vs. 𝜽 for different values of the exploration coefficient 𝜌 in Algorithm 1. The

graphs exhibit a unique global maximizer \∗𝜌 for each 𝜌. The ordered pairs
(
\∗𝜌, ℎ𝜌

(
\∗𝜌

))
for

𝜌 ∈ {1.1, 2, 3, 4} are (1.9, 0.24), (3.5, 0.32), (5.3, 0.39), (7, 0.45).

that E𝑅𝜋𝑛 =
√︁
(\ log 𝑛)/𝑛E [𝑛 − 𝑁𝑖∗ (𝑛)] ∼ ℎ𝜌 (\)

√︁
𝑛 log 𝑛 (convergence in probability implies that

in mean since |𝑁𝑖∗ (𝑛)/𝑛| 6 1). That 𝑅𝜋𝑛 also admits the same sharp asymptotic can be shown

via a finer analysis. In other regimes of Δ, viz., “small” and “large” gaps, we already know that

𝑅𝜋𝑛 = 𝑜𝑝

(√︁
𝑛 log 𝑛

)
. This is obvious for “small” Δ since E𝑅𝜋𝑛 6 Δ𝑛 = 𝑜

(√︁
𝑛 log 𝑛

)
, while for

“large” Δ, we use E𝑅𝜋𝑛 6 𝐶𝜌 ((log 𝑛)/Δ + 1/(𝜌 − 1)) for some absolute constant 𝐶 (given 𝜌 > 1,

Δ 6 1) [4], followed by Markov’s inequality. Thus, the constant sup\>0 ℎ𝜌 (\) obtained in the

“moderate” gap regime must correspond to the worst-case performance of the algorithm. �

Towards diffusion asymptotics. Diffusion scaling is a classical stochastic analysis tecnnique

widely used in the mathematics and operations research literature, see, e.g., steady-state analy-

ses of queuing systems in [22], and a recent application to certain sequential testing problems in

[31]. Under this lens, time is accelerated linearly in 𝑛, space contracted by a factor of
√
𝑛, and

a sequence of systems indexed by 𝑛 is considered. In our problem, the 𝑛th such system refers to

an instance of the two-armed bandit with: 𝑛 as the horizon of play; a gap that vanishes in the

horizon as Δ𝑛 = 𝑐/
√
𝑛 for some fixed 𝑐; and fixed reward variances given by 𝜎2

1 , 𝜎
2
2 . This is

a natural scaling for MAB experiments in that it “preserves” the hardness of the learning prob-

lem as 𝑛 sweeps over the sequence of systems. Recall also from previous discussion that the

“hardest” information-theoretic instances have a Θ
(
1/
√
𝑛
)

gap; in short, the diffusion limit is an

appropriate asymptotic lens for observing interesting process-level behavior in the MAB problem.

However, despite the aforementioned reasons, the diffusion limit behavior of bandit algorithms
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remains poorly understood and largely unexplored. A recent foray was made in [19, 29], however,

deterministic algorithms like UCB remain outside the ambit of such analysis on account of discon-

tinuous arm-sampling probabilities. Theorem 5 provides a complete characterization of this limit

for the celebrated UCB1 policy [10].

Theorem 5 (Diffusion asymptotics for canonical UCB) Suppose that the mean reward of arm 𝑖 ∈

{1, 2} is given by `(𝑛)
𝑖

= ` + \𝑖/
√
𝑛, where 𝑛 is the horizon of play and `, \1, \2 > 0 are fixed con-

stants, and reward variances are 𝜎2
1 , 𝜎

2
2 . Define Δ0 := |\1 − \2 |. Denote the cumulative reward

earned from arm 𝑖 until time 𝑚 by 𝑆𝑖,𝑚 :=
∑𝑁𝑖 (𝑚)
𝑗=1 𝑋𝑖, 𝑗 , and let 𝑆𝑖,𝑚 := 𝑆𝑖,𝑚 − `𝑁𝑖 (𝑚). Then, the

following process-level convergences hold under the policy 𝜋 given by Algorithm 1 with 𝜌 > 1:

(I)

(
𝑆1,b𝑛𝑡c√
𝑛
,
𝑆2,b𝑛𝑡c√
𝑛

)
⇒

(
\1𝑡

2
+ 𝜎1√

2
𝐵1(𝑡),

\2𝑡

2
+ 𝜎2√

2
𝐵2(𝑡)

)
,

(II)
𝑅𝜋b𝑛𝑡c√
𝑛
⇒ Δ0𝑡

2
+

√︄
𝜎2

1 + 𝜎
2
2

2
�̃�(𝑡),

where the process-level convergence is over 𝑡 ∈ [0, 1], and 𝐵1(𝑡) and 𝐵2(𝑡) are independent

standard Brownian motions in R, and �̃�(𝑡) := −
√︂

𝜎2
1

𝜎2
1+𝜎

2
2
𝐵1(𝑡) −

√︂
𝜎2

2
𝜎2

1+𝜎
2
2
𝐵2(𝑡).

Proof sketch. Note that if the arms are played b𝑛/2c times each independently over the horizon

of play 𝑛 (resulting in 𝑁𝑖 (𝑛) = b𝑛/2c, 𝑖 ∈ {1, 2}), part (I) of the stated assertion would immedi-

ately follow from Donsker’s Theorem. However, since the sequence of plays, and hence also the

eventual allocation (𝑁1(𝑛), 𝑁2(𝑛)), is determined adaptively by the policy, the aforementioned

convergence may no longer be true. Here, the result hinges crucially on the observation from The-

orem 1 that 𝑁𝑖 (𝑛)/𝑛
𝑝
−→ 1/2 under UCB when Δ𝑛 � 1/

√
𝑛 (diffusion-scaled gaps are covered under

the “small gap” regime). This observation facilitates a standard “random time-change” argument

𝑡 ← 𝑁𝑖 (b𝑛𝑡c)/𝑛, 𝑖 ∈ {1, 2}, which followed upon by an application of Donsker’s Theorem, leads to

the assertion in (I). This has the profound implication that for diffusion-scaled gaps, a two-armed

bandit under UCB is, in fact, well-approximated by a classical system with independent samples

(sample-interdependence due to the adaptive nature of the policy is washed away in the limit). The
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conclusion in (II) follows after an application of the Continuous Mapping Theorem to (I). �

Discussion. An immediate observation following Theorem 5 is that the normalized regret

𝑅𝜋𝑛/
√
𝑛 is asymptotically Normal with mean Δ0/2 and variance

(
𝜎2

1 + 𝜎
2
2
)
/2 under UCB. Apart

from aiding in obvious inferential tasks like construction of (asymptotically valid) confidence in-

tervals (see, e.g., the binary hypothesis testing example referenced in Figure 1.2(c)), etc., such in-

formation provides new insights as to the problem’s minimax complexity as well. This is because

Δ𝑛 � 1/
√
𝑛 is known to be the information-theoretic “worst-case” for the problem; the small-

est achievable regret in this regime must asymptotically be dominated by that under UCB, i.e.,

Δ0
√
𝑛/2. It is also noteworthy that while the diffusion limit in Theorem 5 does not itself depend on

the exploration coefficient 𝜌, the rate at which the system converges to said limit indeed depends

on 𝜌. Theorem 5 will continue to hold only as long as 𝜌 = 𝜔 ((log log 𝑛) /log 𝑛); for smaller 𝜌, the

convergence of 𝑁𝑖 (𝑛)/𝑛 to 1/2 may no longer be true (refer to the proof in Appendix A.4).
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−2

−1

0

1

2

Diffusion-scaled regret process under UCB (T = 10,000 rounds)

(a) Δ = 0.
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Figure 1.4: Diffusion ensemble of UCB: x-axis is normalized time 𝑡 ∈ [0, 1]; y-axis is
𝑅𝜋b𝑛𝑡 c√
𝑛

where
𝑛 = 10,000 rounds, and 𝜋 is Algorithm 1 with 𝜌 = 2.

1.3 Numerical experiments

This section provides additional numerical experiments illustrating the various “small gap”

phenomena studied in this chapter. We consider the following three problem instances for experi-
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ments:

• Instance 1: A 2-armed Bernoulli bandit with means `1 = 0.55 and `2 = 0.5.

• Instance 2: A 2-armed Bernoulli bandit with means `1 = 0.55 and `2 = 0.51.

• Instance 3: A 2-armed Bernoulli bandit with means `1 = `2 = 0.5 each.

Each of these instances is played by Algorithm 1 with 𝜌 = 2 (same as UCB1 in [10]) and

Algorithm 3 (Thompson Sampling for Bernoulli bandits, same as Algorithm 1 in [13]) separately.

The horizon of play is limited to 𝑇 = 10,000 rounds, and we simulate ℵ = 10,000 independent

sample-paths under each algorithm.

Performance metrics. We consider the following characteristics to highlight differences be-

tween the two algorithms.

• Distribution of regret: We plot the empirical distribution of pathwise regret after 𝑇 rounds,

given by 𝑅𝜋
𝑇
=

∑𝑇
𝑡=1

[
max (`1, `2) − 𝑋𝜋𝑡 ,𝑁𝜋𝑡 (𝑡)

]
, by simulating ℵ = 10,000 independent tra-

jectories of each algorithm. We also show the 99% value-at-risk (VAR) and conditional-

value-at-risk (CVAR) on these plots to highlight differences between the tail statistics of

regret under the two algorithms. Refer to Figures 1.6, 1.7, 1.11, and 1.12.

• Arm-allocation statistics: We plot the empirical distribution of the fraction of time spent

on arm 1 after 𝑇 rounds of play, given by 𝑁1(𝑇)/𝑇 , by simulating ℵ =10,000 independent

trajectories of each algorithm. Refer to Figures 1.8, 1.9, 1.13, and 1.14. We also plot the

temporal evolution of 𝑁1(𝑡)/𝑡 over 𝑡 ∈ {1, ..., 𝑇} (on a fixed sample-path) in Figures 1.5 and

1.10. Aforementioned figures also indicate the arm pulled at each 𝑡 along said sample-path.

• Evolution of posterior means and posterior distributions under Thompson Sampling when

Δ = 0 (on a fixed sample-path): Refer to Figures 1.15 and 1.16.

• Diffusion-scaled regret: Figure 1.17 showsℵ independent trajectories of the process 𝑅𝜋b𝑡𝑇c/
√
𝑇

over 𝑡 ∈ [0, 1]. Figure 1.18 shows the cross-sectional distribution at 𝑡 = 1.
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Figure 1.5: Instance 1: x-axis is time; blue curve plots the evolution of 𝑁1(𝑡)/𝑡 on a fixed sample-
path; red dots indicate the arm pulled at time 𝑡.
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Figure 1.6: Instance 1: Distribution of regret
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Figure 1.7: Instance 1: Distribution of regret (right 1% tail)
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Figure 1.8: Instance 1: Allocation statistics for arm 1
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Figure 1.9: Instance 1: Allocation statistics for arm 1 (left 1% tail)
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Figure 1.10: Instance 2: x-axis is time; blue curve plots the evolution of 𝑁1(𝑡)/𝑡 on a fixed sample-
path; red dots indicate the arm pulled at time 𝑡.
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Figure 1.11: Instance 2: Distribution of regret

160 180 200 220 240 260
Arms have i.i.d. Bernoulli rewards with means 0.51 and 0.5

0.00

0.01

0.02

0.03

0.04

0.05

0.06
Worst 1% outcomes under UCB (after T = 10,000 rounds)

160 180 200 220 240 260
Arms have i.i.d. Bernoulli rewards with means 0.51 and 0.5

0.00

0.01

0.02

0.03

0.04

0.05

0.06
Worst 1% outcomes under TS (after T = 10,000 rounds)

Figure 1.12: Instance 2: Distribution of regret (right 1% tail)
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Figure 1.13: Instance 2: Allocation statistics for arm 1
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Figure 1.14: Instance 3: Allocation statistics for arm 1 (Histogram shows the empirical distribution
of 𝑁1(𝑇)/𝑇 after 𝑇 = 10,000 rounds plotted by simulating ℵ = 10,000 independent sample-paths)
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Figure 1.15: Instance 3: Posterior evolution under Thompson Sampling (Sample-path#1)
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Figure 1.16: Instance 3: Posterior evolution under Thompson Sampling (Sample-path#2)
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Figure 1.17: Instance 3: Diffusion ensemble of UCB and Uniform Sampling (fair coin toss at each

step); x-axis is normalized time 𝑡 ∈ [0, 1]; y-axis is
𝑅𝜋b𝑡𝑇 c√
𝑇

where 𝑇 = 10,000 rounds.
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Figure 1.18: Instance 2 (Cross-sectional statistics): Histograms show the empirical distribution of(
𝑅𝜋
𝑇
/
√
𝑇 − 𝑐/2

)
/
√︃
𝜎2

1+𝜎
2
2

2 where 𝑇 = 10,000 rounds, 𝑐 = 1, and 𝜎2
1 , 𝜎

2
2 are the reward variances.

1.4 Concluding remarks and open problems

This chapter summarizes the contributions in [32] for 𝐾 = 2. While a simple extension of

results to the 𝐾-armed setting is provided in Theorem 2, the 𝐾-armed problem in full generality

remains challenging to analyze. Under UCB, however, we do postulate a division of sampling

effort within and across clusters of “similar” and “separated” arms (determined by their relative

sub-optimality gaps) that is à la Theorem 1. We expect that similar generalizations are possible

also for Theorem 4 and Theorem 5. Under Thompson Sampling, on the other hand, things are
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less obvious even in the two-armed setting. For example, in spite of compelling numerical evi-

dence (refer, e.g., to Figure 1.1(b)) suggesting a plausible non-degenerate limiting distribution of

arm-sampling rates when mean rewards are bounded away from 0, the proof of Theorem 3 relies

heavily on the rewards being deterministic and cannot be extended to the general stochastic case.

In addition, similar results are conjectured also for the more widely used Gaussian prior-based

version of the algorithm. These remain important open problems at the moment further progress

on which would substantially improve our understanding of Thompson Sampling.
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Chapter 2: Multi-armed bandits with 𝐾 arm-types: A new countable-armed

formulation

2.1 Introduction

Background and motivation. In the classical multi-armed bandit (MAB) problem, the deci-

sion maker (DM) must play at each time instant 𝑡 ∈ {1, ..., 𝑛} one out of a set of 𝐾 � 𝑛 possible

alternatives (aka arms), each characterized by a distribution of rewards. Oblivious to their statisti-

cal properties, the DM must play a sequence of 𝑛 arms so as to maximize her cumulative expected

payoffs, an objective often converted to minimizing regret relative to an oracle with perfect ex ante

knowledge of the best arm.

Since the seminal paper of [3] that laid the main theoretical foundations, there has been a

plethora of work developing more advanced MAB models to encapsulate more realistic data-driven

decision processes. These include formulations with covariate or contextual information, choice-

models, budget constraints, non-stationary rewards, and metric space embeddings, among many

others that utilize some structure in the arms, reward distributions, or physics of the problem (see

[33, 9] for a comprehensive survey). In this paper, we are motivated by the choice overload phe-

nomenon pervading modern MAB applications with a prohibitively large action space such as

those encountered in online marketplaces, matching platforms and the likes.

Modeling choice overload. In several applications of MAB, it is quite common for the number

of arms to be “large" to the extent that it may potentially exceed even the horizon of play, i.e.

𝐾 > 𝑛. For example, the problem faced by recommendation systems in large retail platforms, such

as Amazon, is characterized by a prohibitively large number of arms (products of certain type)

and limited “display space,” creating a very challenging combinatorial problem (see, e.g., [34]).

Naturally, the canonical MAB model is ill-suited for the study of such settings. Among problems
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of this nature, a simple yet illuminating abstraction is one where an infinite population of arms is

partitioned into 𝐾 different arm-types, each characterized uniquely by some reward statistic (e.g.,

the mean), and the fraction of each arm-type in the population of arms (aka the arm-reservoir)

remains fixed over the horizon of play. The motivation to study such settings stems from several

contemporary applications, e.g., in a prototypical task-matching problem arising in the online gig

economy: the platform must choose upon each task arrival, one agent from a large pool of available

agents characterized by unknown (or only partially known) skill proficiencies. Such settings arise

naturally in populations endowed with latent low-dimensional representations, i.e., an agent can

only belong to one of finitely many possible types, each characterized distinctly by some attribute.

Market segmentation based on types is central also to the operations research literature, see, e.g.,

[35, 36, 37], etc., for examples involving analyses of online service and recommendation systems,

among several other areas.

The countable-armed bandit problem. We provide an abstraction of the aforementioned

decision problem as a bandit with countably many arms, each queried from an infinite population of

arms (henceforth referred to as the arm-reservoir). There are 𝐾 possible arm-types in the reservoir

given by K := {1, ..., 𝐾}, where 𝐾 is known a priori. Positing ex ante knowledge of 𝐾 is not

unreasonable since it is routine for platforms to run pilot experiments during initial rounds to

gather information on key primitives such as the size and stability of clusters, if any exist in the

population. One can therefore safely assume in settings where such clusters strongly exist that

the number 𝐾 of possible types is accurately estimated. The probability vector 𝜶 = {𝛼𝑖 : 𝑖 ∈ K}

denotes their corresponding fraction, i.e., relative prevalence in the reservoir, which is unknown.

Intuitively, the statistical complexity of regret minimization in the simplest formulation of the

countable-armed bandit (CAB) with 𝐾 = 2 arm-types is governed by three principal primitives: (i)

the sub-optimality gap Δ := `1− `2 between the mean rewards `1 > `2 of the optimal and inferior

arm-types; (ii) the probability 𝛼1 of sampling from the population an arm of the optimal type; and

(iii) the horizon of play 𝑛. Absent knowledge of
(
Δ, 𝛼1

)
, exploration is challenging owing to the

“large” number of arms. In particular, in contrast with the classical two-armed bandit, in the CAB
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problem, any finite selection of arms may only contain the mean `2. Consequently, any algorithm

limited to such a consideration set will suffer a linear regret. Absence of information on 𝛼1 further

exacerbates the challenges in the study of the CAB problem. Specifically, how many arms must

one query from the reservoir to collect at least one optimal arm is difficult to answer absent 𝛼1.

Contributions. There has been limited technical development in this area and the literature

remains sparse. In this work, we resolve several foundational questions pertaining to the complex-

ity of the countable-armed setting and provide a comprehensive understanding of various other

aspects thereof. Our theoretical contributions can be projected along the following axes:

(i) Complexity of regret. We establish information-theoretic performance lower bounds that

are order-wise tight (in the horizon 𝑛) in the instance-dependent setting (Theorem 6). In the

instance-independent (minimax) setting, we answer affirmatively an open question on achievabil-

ity of Õ
(√
𝑛
)

regret when 𝐾 = 2 and show that this order is best achievable up to poly-logarithmic

factors in 𝑛 (Theorem 9). In addition, we provide a uniform lower bound on achievable perfor-

mance that is tight in 𝑛 and explicitly captures the scaling behavior w.r.t. the fraction 𝛼1 of optimal

arms, and furthermore, has a novel non-information-theoretic proof based entirely on convex anal-

ysis (Theorem 7). Finally, we establish that the scaling of achievable regret w.r.t. 𝐾 must at least

be Ω (𝐾 log𝐾) (Theorem 8); the log𝐾 factor reflects the increase in problem complexity vis-à-vis

the classical 𝐾-armed problem.

(ii) Algorithm design. We design algorithms that achieve aforementioned regret guarantees

relying only on knowledge of 𝐾 and are agnostic to information pertaining to the reward distribu-

tions as well as the frequency of occurrence of different types. Our design principles (Algorithms 4

and 5) are functionally distinct from extant work on finite-armed bandits which reflects in a fun-

damentally different scaling of regret (see Theorems 9 and 10). We also provide resolution to an

outstanding design issue in extant literature for 𝐾 = 2 (see Algorithm 6 and Theorem 11).

(iii) Regret behavior and arm-type distribution. In contrast to some observations on related

models in the literature that show a higher order than log 𝑛 (instance-dependent) regret-behavior

w.r.t. 𝜶, we establish that when the learner has knowledge of 𝐾 but not of 𝜶, one can still achieve
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O (log 𝑛) regret where the dependence on 𝜶 only manifests as an additive loss (Theorems 10 and

11).

Before proceeding with a formal description of our model, we provide a brief overview of

related works below.

Extant literature on bandits with infinitely many arms. These problems involve an infi-

nite population of arms and a fixed reservoir distribution over a (typically uncountable) set of

arm-types; a common reward statistic (usually the mean) uniquely characterizes each arm-type.

The infinite-armed bandit problem traces its roots to [38] where the problem was studied under

Bernoulli rewards and a reservoir distribution of Bernoulli parameters that is Uniform on [0, 1].

Subsequent works have considered more general reward and reservoir distributions on [0, 1], see,

e.g., [39, 40, 41, 42]. In terms of the statistical complexity of regret minimization, an uncountably

rich set of arm-types is tantamount to the minimal achievable regret being polynomial in the hori-

zon of play (see aforementioned references). In contrast, the recently studied models in [21, 43]

that our work is most closely related to, are fundamentally simpler owing to a finite set of arm-

types; this is central to the achievability of logarithmic (instance-dependent) regret in this class of

problems. These two works are briefly discussed below.

The CAB problem first appeared in [21] together with an online adaptive policy achieving

O (log 𝑛) regret when 𝐾 = 2. This policy is derived from UCB1 [10] and relies on certain newly

discovered concentration and convergence properties thereof (see [32] for a detailed discussion

of said properties). However, the analysis of this policy cannot be adapted to 𝐾 > 2 types; we

will later provide an example with 𝐾 > 2 where the policy will likely run into issues that can be

effectively mitigated by the algorithms proposed in this paper. There is also recent literature [43]

on a related setting where the set of inferior arm-types may be arbitrary as long as it is Δ-separated

from the optimal mean. However, ex ante knowledge of the proportion 𝛼1 of optimal arms is

necessary to achieve logarithmic regret in this setting. This aspect distinguishes their setting from

CAB and will be discussed at length later.

Lastly, a formulation of the countable-armed problem based on pure exploration, referred to as
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the “heaviest coin identification problem,” was studied in [44] for 𝐾 = 2 (see [45] for subsequent

developments). In contrast, our problem is based on optimization of cumulative payoff (or regret);

as a result, it shares little similarity with cited works.

Outline of this chapter. A formal description of the model is provided in §2.2; §2.3 discusses

lower bounds on achievable performance. We propose our algorithms in §2.4 and state supporting

theoretical guarantees. Numerical experiments are provided in §2.5. Proofs and auxiliary results

are relegated to Appendix B.

2.2 Problem formulation

The set of arm-types is given by K = {1, ..., 𝐾}, and the decision maker (DM) only knows the

cardinality 𝐾 of K. Each type 𝑖 ∈ K is characterized by a unique mean reward `𝑖; the reservoir

is thus characterized by the collection 𝝁 := {`𝑖 : 𝑖 ∈ K} of possible mean rewards. Without loss

of generality, we assume `1 > ... > `𝐾 and refer to type 1 as the optimal type (we may refer

to the others as inferior types). Define Δ̄ := `1 − `𝐾 and Δ := `1 − `2 as the maximal and

minimal sub-optimality gaps respectively, and 𝛿 := min16𝑖< 𝑗6𝐾
(
`𝑖 − ` 𝑗

)
as the minimal reward

gap. Finally, 𝜶 := (𝛼𝑖 : 𝑖 ∈ K) denotes the vector of reservoir probabilities for each type (aka the

reservoir distribution), coordinate-wise bounded away from 0. These primitives will be important

drivers of the statistical complexity of the regret minimization problem, as we shall later see. The

horizon of play is 𝑛, and the DM must play one arm at each time 𝑡 ∈ {1, ..., 𝑛}.

The set of arms that have been played up to and including time 𝑡 ∈ {1, 2, ...} is denoted by I𝑡

(and I0 := 𝜙). The set of actions available to the DM at time 𝑡 is given by A𝑡 = I𝑡−1 ∪ {new𝑡};

the DM must either play an arm from I𝑡−1 at time 𝑡 or select the action “new𝑡” which corresponds

to querying (and playing) a new arm from the reservoir. This new arm is optimal-typed with

probability 𝛼1 and sub-optimal otherwise. The DM is oblivious to 𝜶, and furthermore precluded

from observing the type of an arm upon query or play. A policy 𝜋 := (𝜋1, 𝜋2, ...) is an adaptive

allocation rule that prescribes at time 𝑡 an action 𝜋𝑡 from A𝑡 (possibly randomized). Each pull

(or play) of an arm results in a stochastic reward. The sequence of rewards realized from the first
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𝑘 pulls of an arm labeled 𝑖 (henceforth called arm 𝑖) is denoted by
(
𝑋𝑖, 𝑗

)
16 𝑗6𝑘 ; these are mean-

preserving in time keeping the arm fixed, independent across arms and time, and take values in

[0, 1]. The natural filtration at time 𝑡, denoted by F𝑡 and defined w.r.t. the sequence of rewards

realized up to and including time 𝑡, is given by F𝑡 := 𝜎
{
(𝜋𝑠)16𝑠6𝑡 ,

{(
𝑋𝑖, 𝑗

)
16 𝑗6𝑁𝑖 (𝑡) : 𝑖 ∈ I𝑡

}}
(with

F0 := 𝜙), where 𝑁𝑖 (𝑡) denotes the number of pulls of arm 𝑖 up to and including time 𝑡. The

cumulative pseudo-regret of policy 𝜋 after 𝑛 plays is given by 𝑅𝜋𝑛 :=
∑𝑛
𝑡=1

(
`1 − `T (𝜋𝑡 )

)
, where

T (𝜋𝑡) ∈ K denotes the type of the arm played by 𝜋 at time 𝑡; note that 𝑅𝜋𝑛 is a sample path-

dependent quantity. The DM is interested in the classical problem of minimizing the expectation

of the cumulative regret �̂�𝜋𝑛 :=
∑𝑛
𝑡=1

(
`1 − 𝑋𝜋𝑡 ,𝑁𝜋𝑡 (𝑡)

)
, given by

inf
𝜋∈Π
E�̂�𝜋𝑛 = inf

𝜋∈Π
E

[
𝑛∑︁
𝑡=1

(
`1 − 𝑋𝜋𝑡 ,𝑁𝜋𝑡 (𝑡)

)]
=
(†)

inf
𝜋∈Π
E

[
𝑛∑︁
𝑡=1

(
`1 − `T (𝜋𝑡 )

) ]
= inf
𝜋∈Π
E𝑅𝜋𝑛 , (2.1)

where (†) follows from the Tower property of expectation, the infimum is over policies satisfying

the non-anticipation property 𝜋𝑡 : F𝑡−1 → P (A𝑡) for 𝑡 ∈ {1, 2, ...}; P (A𝑡) denotes the probability

simplex onA𝑡 . Accordingly, the expectation in (2.1) is w.r.t. all the possible sources of randomness

in the problem (rewards, policy, and the arm-reservoir).

2.3 Lower bounds for natural policy classes

There are three fundamental primitives governing the complexity of achievable regret in this

setting, viz., (i) the minimal sub-optimality gap Δ; (ii) the proportion 𝛼1 of the optimal arm-type

in the reservoir; and (iii) the number of arm-types 𝐾 . We next characterize lower bounds on

achievable performance w.r.t. each of these primitives.

2.3.1 Achievable performance w.r.t. Δ: Information-theoretic lower bounds

The statistical complexity of this problem setting is best illustrated via the paradigmatic case

of 𝐾 = 2 and 𝛼1 6 1/2. In this case, one anticipates the problem to be at least as hard as the

classical two-armed bandit with a mean reward gap of Δ. Indeed, we establish this in Theorem 6 via
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information-theoretic reductions adapted to handle a countable number of arms (proof is provided

in Appendix B.1). In what follows, an instance a of the problem refers to a collection of reward

distributions with gap Δ; note that we are excluding the reservoir probabilities 𝜶 = (𝛼1, 𝛼2) from

the definition of an instance. Recall that 𝛼1 denotes the reservoir probability associated with the

optimal mean reward, and 𝛼2 = 1 − 𝛼1 is the probability of the inferior. We will overload the

notation for expected cumulative regret slightly to emphasize its dependence on a as well as 𝜶.

Definition 1 (Admissible policies when 𝑲 = 2) A policy 𝜋 is deemed admissible if for any in-

stance a, reservoir distributions 𝜶 = (𝛼1, 1 − 𝛼1) ,𝜶′ =
(
𝛼′1, 1 − 𝛼

′
1
)
, and horizon 𝑛, one has that

E𝑅𝜋𝑛 (a,𝜶′) > E𝑅𝜋𝑛 (a,𝜶) whenever 𝛼′1 6 𝛼1. The set of such policies is denoted by Πadm.

We remark that the aforementioned definition is not restrictive in our problem setting since it

is only natural that any reasonable policy should incur a larger cumulative regret (in expectation)

in problems where the reservoir holds fewer optimal arms (in proportion).

Theorem 6 (Information-theoretic lower bounds when 𝑲 = 2) There exists an absolute constant

𝐶 > 0 such that the following holds under any 𝜋 ∈ Πadm and any 𝜶 with 𝛼1 6 1/2:

1. For any Δ > 0, there exists a problem instance a such that E𝑅𝜋𝑛 (a,𝜶) > 𝐶 log 𝑛/Δ for large

enough 𝑛, where the “large enough 𝑛” depends exclusively on Δ.

2. For any 𝑛 ∈ N, there exists a problem instance a such that E𝑅𝜋𝑛 (a,𝜶) > 𝐶
√
𝑛.

Distinction from classical MAB. Although the above result bears resemblance to classical

information-theoretic lower bounds for finite-armed bandits, it is imperative to note that the setting

has a fundamentally greater complexity that requires a more nuanced analysis vis-à-vis the finite-

armed problem. Traditional proofs, as a result, cannot be tailored to our setting in a translational

manner. To see this, note that when 𝛼1 is high, a query of the reservoir is very likely to return an

arm of the optimal type; in the limit as 𝛼1 → 1, the problem becomes degenerate as all policies

incur zero expected regret. Clearly, the problem cannot be harder than a two-armed bandit with

gap Δ uniformly over all values of 𝛼1. While we conjecture 𝛼1 < 1 to be a sufficient condition
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for the existence of Ω
(
log 𝑛/Δ

)
instance-dependent and Ω

(√
𝑛
)

instance-independent (minimax)

lower bounds, there are technical challenges due to probabilistic type associations over countably

many arms. The restriction to 𝛼1 6 1/2 and admissible policies (Definition 1) is then necessary

for tractability of the proof and it remains unclear if this can be generalized further. Furthermore,

when 𝐾 > 2, even defining an appropriate notion of admissibility à la Definition 1 is non-trivial

and will likely involve dependencies on 𝝁 in addition to 𝜶; pursuits in this direction are currently

left to future work.

2.3.2 Achievable performance w.r.t. 𝛼1: A uniform lower bound for front-loading

Though the bounds in Theorem 6 are tight in 𝑛 as we shall later see, they fail to provide

any actionable insights w.r.t. 𝜶. A natural question in the CAB setting is whether and in what

manner does the presence of countably many arms affect achievable regret. In particular, how

does the difficulty associated with finding optimal arms from the reservoir (and the dependence on

the distribution 𝜶) come into play. Below, we propose a lower bound that explicitly captures this

dependence, albeit with respect to a somewhat restricted policy class.

Theorem 7 (𝜶-dependent lower bound for any 𝑲 > 2) Denote by Π̃ the class of policies under

which the decision to query the arm-reservoir at any time 𝑠 ∈ {1, 2, ...} is independent of F𝑠−1.

Then, for all problem instances a with a minimal sub-optimality gap of at least Δ > 0, one has

lim inf
𝑛→∞

inf
𝜋∈Π̃

E𝑅𝜋𝑛 (a,𝜶)
log 𝑛

>
(1 − 𝛼1)2 Δ

𝛼1
.

Discussion. The proof is located in Appendix B.2. Several comments are in order. (i) The

class Π̃, in particular, includes policies that front-load queries, i.e., query the reservoir upfront for

a pre-specified number of arms and then deploy a regret minimizing routine on the queried set

until the end of the playing horizon, see, e.g., the Sampling-UCB algorithm due to [43]. (ii) The

cited paper also derives an information-theoretic Ω
(
log 𝑛/𝛼1Δ

)
lower bound based on a standard

reduction to a hypothesis testing problem, although notably their setting is non-trivially distinct
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from ours (this reflects starkly different sensitivities of achievable regret to 1/𝛼1-scale, as we shall

later see). Importantly though, akin to Theorem 6, their bound too, establishes the existence of an

instance with logarithmic regret. On the other hand, the foremost noticeable aspect of Theorem 7

that differs from aforementioned results is that it provides a uniform lower bound over all instances

that are at least Δ-separated in the mean reward, as opposed to merely establishing their existence.

(iii) The presence of Δ in the numerator (unlike traditional bounds where Δ resides in the denom-

inator) suggests that while this bound may be vacuous if Δ is “small,” it certainly becomes most

relevant when Δ is “well-separated.” At the same time, it should be noted that Theorem 7 does not

contradict the O
(
log 𝑛/𝛼1Δ

)
upper bound (up to logarithmic factors in Δ) of Sampling-UCB;

it merely provides a tool to separate regimes of Δ where one bound captures the dominant effects

vis-à-vis the other. (iv) A novelty of Theorem 7 lies in its proof, which differs from classical

lower bound proofs in that it is based entirely on ideas from convex analysis as opposed to the

information-theoretic and change-of-measure techniques hitherto used in the literature.

Remarks. (i) It is not impossible to avoid the 1/𝛼1-scaling of the instance-dependent logarith-

mic regret. We will later show via an upper bound for one of our algorithms (ALG2(𝑛)) that the

𝛼1-dependence can, in fact, be relegated to constant order terms (ALG2(𝑛) queries arms adaptively

based on sample-history and therefore does not belong to Π̃). Importantly, this will somewhat sur-

prisingly establish that the instance-dependent logarithmic bound in Theorem 6 is optimal w.r.t. to

its dependence on 𝛼1 (the scaling w.r.t. Δ, however, may not be best possible as forthcoming upper

bounds suggest). (ii) Theorem 7 holds also for any arm-reservoir where the optimal type is at least

Δ-separated from the rest, the nature of types (countable or uncountable) notwithstanding.

2.3.3 Achievable performance w.r.t. 𝐾: The Bandit and the Coupon-collector

In the classical 𝐾-armed bandit problem, the (instance-dependent) regret scales linearly with

the number of arms. We will next show that the 𝐾-typed countable-armed setting studied in this

paper differs from its 𝐾-armed counterpart on account of a fundamentally distinct scaling of regret

w.r.t. 𝐾 . We will illustrate this by pivoting to a full information setting with one-sample learning,
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i.e., a setting where the decision maker observes the mean reward of an arm immediately upon

pulling it, but does not learn whether it is optimal. Under such a setting, the optimal policy 𝜋∗ for

the 𝐾-armed problem will pull each of the 𝐾 arms once and subsequently commit the residual bud-

get of play to the optimal arm, thus incurring a lifetime regret of E𝑅𝜋
∗
∞ =

∑𝐾
𝑖=2 (`1 − `𝑖) = Θ(𝐾).

The optimal policy for the 𝐾-typed countable-armed setting will, analogously, keep querying new

arms from the reservoir until it has collected one of each of the 𝐾 types, and will subsequently

commit to the arm within said collection that has the best mean reward. In this case, regret will

only accrue until the decision maker has pulled one arm of each type.

Theorem 8 (Regret scaling w.r.t. 𝑲) In the full information setting, the lifetime regret of any pol-

icy under reservoir distribution 𝜶 and mean reward vector 𝝁 is at least
∑𝐾
𝑖=2 𝛼𝑖 (`1 − `𝑖) 𝐾 log𝐾 .

If the reservoir distribution remains non-degenerate w.r.t. the optimal type, i.e., the fraction 𝛼1

of optimal arms in the reservoir remains bounded away from 1 as 𝐾 increases, it is ensured that∑𝐾
𝑖=2 𝛼𝑖 (`1 − `𝑖) remains non-vanishing in 𝐾 . Consequently, the lower bound in Theorem 8 grows

as Ω
(
𝐾Δ log𝐾

)
.

This result establishes a fundamentally distinct scaling of regret w.r.t. 𝐾 in the countable-

armed setting vis-à-vis the 𝐾-armed one (in the full information setting). When the true type of

an arm is not immediately observable, one only expects the Ω (𝐾 log𝐾) scaling to exacerbate. In

fact, when the learning horizon is 𝑛, we conjecture that regret grows at least as Ω (𝐾 log𝐾 log 𝑛),

where the Ω(·) is modulo gap-dependent constants. Characterizing the information-theoretic op-

timal rate, however, remains a challenging open problem. The proof of Theorem 8 is provided in

Appendix B.3.

2.4 Gap and reservoir adaptive policies

As discussed, our goal here is to investigate regret achievable under 𝝁-adaptive algorithms that

are agnostic also to ex ante information on the distribution 𝜶 of possible arm types. We propose two

algorithms; ALG1(𝑛) and ALG2(𝑛), that are both predicated on ex ante knowledge of the horizon
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of play 𝑛. §2.4.1 discusses the first of these, ALG1(𝑛), which uses knowledge of 𝑛 to calibrate

the duration of its exploration phases. ALG1(𝑛) serves as an insightful basal motif for algorithm

design in that it satisfies the desiderata of an O (log 𝑛) instance-dependent regret for general 𝐾 > 2

as well as an Õ
(√
𝑛
)

instance-independent (minimax) regret when 𝐾 = 2; the latter property

settling an open problem in the literature. However, its regret has a sub-optimal dependence on

𝜶. We leverage structural insights from the analysis of ALG1(𝑛) to explore another design in

ALG2(𝑛) in §2.4.2, which determines its exploration phase lengths adaptively, as opposed to pre-

specifying them upfront. This new design guarantees the best possible dependence of regret on

𝜶. Finally in §2.4.3, we discuss a fully sequential adaptive algorithm from extant literature for

𝐾 = 2, and propose a simple modification to rid it of a certain fragile assumption pertaining to ex

ante knowledge of the support of reward distributions. We also provide new sharper bounds for the

modified algorithm and discuss potential issues with its generalization to 𝐾 > 2 vis-à-vis ALG1(𝑛)

and ALG2(𝑛).

2.4.1 Explore-then-commit with a pre-specified exploration schedule

In what follows (and all subsequent algorithms), a new arm is one that is freshly queried from

the reservoir (an arm without a history of previous pulls). This arm belongs to type 𝑖 with proba-

bility 𝛼𝑖 independent of the problem history thus far (collection of arms and types queried and the

corresponding reward realizations until the current time).

Discussion of Algorithm 4. The foremost noticeable feature of this algorithm is the (nearly)

exponentially increasing exploration schedule. Specifically, in the 𝑘 th epoch, each of the 𝐾 arms

in the consideration set is played
⌈
𝑒2
√
𝑘 log 𝑛

⌉
times. It suffices to cap the size of the consideration

set at 𝐾 since the decision maker is a priori aware of the existence of exactly 𝐾 arm-types in the

reservoir. Upon completion of the 𝑘 th epoch, the cumulative-difference-of-reward statistic for each

of the
(𝐾
2
)

arm-pairs is compared against a threshold of 2𝑒−
√
𝑘𝑚, where 2𝑒−

√
𝑘 should be imagined

as a proxy for a lower bound on the minimal reward gap 𝛿. If said statistic is small relative to the

threshold for some pair, the pair is likely to contain arms of the same type (equal means), in which
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Algorithm 4 ALG1(𝑛) (Fixed design ETC)

1: Input: Horizon of play 𝑛.
2: Set budget 𝑇 = 𝑛; set epoch counter 𝑘 = 1.
3: Initialize new epoch: Query 𝐾 new arms; call it consideration set A = {1, ..., 𝐾}.
4: Set exploration duration 𝐿 =

⌈
𝑒2
√
𝑘 log 𝑛

⌉
.

5: 𝑚 ← min (𝐿, b𝑇/𝐾c).
6: Play each arm in A 𝑚 times; observe rewards

{(
𝑋1, 𝑗 , ..., 𝑋𝐾, 𝑗

)
: 𝑗 = 1, ..., 𝑚

}
.

7: Update budget: 𝑇 ← 𝑇 − 𝐾𝑚.
8: if ∃ 𝑎, 𝑏 ∈ A, 𝑎 < 𝑏 s.t.

���∑𝑚
𝑗=1(𝑋𝑎, 𝑗 − 𝑋𝑏, 𝑗 )

��� < 2𝑚𝑒−
√
𝑘 then

9: Permanently discard A.
10: 𝑘 ← 𝑘 + 1.
11: Repeat from step (3).
12: else
13: Permanently commit to arm 𝑎∗ ∈ arg max𝑎∈A

{∑𝑚
𝑗=1 𝑋𝑎, 𝑗

}
.

case, the algorithm discards the entire consideration set and ushers in a new epoch with a larger

exploration phase. This is done to avoid the possibility of incurring linear regret should an optimal

arm be missing from the consideration set (e.g., when all 𝐾 arms belong to type 2). On the other

hand, if all arm-pairs are sufficiently separated, the algorithm simply commits permanently to the

empirically best arm. The intuition behind the (nearly) exponential schedule is that as 𝑘 grows,

2𝑒−
√
𝑘 will eventually provide a lower bound on 𝛿, and one may hope to achieve appropriate levels

of error control using window sizes in the 𝑘 th epoch. Full proof is provided in Appendix B.4.

Theorem 9 (Upper bound on the regret of ALG1(𝒏)) For a horizon of play 𝑛 > 𝐾 , the expected

cumulative regret of the policy 𝜋 given by ALG1(𝑛) is bounded as

E𝑅𝜋𝑛 6
�̃�𝜶Δ̄ log 𝑛

𝛿2 log2
(
4
𝛿

)
+ 2𝐾Δ̄,

where �̃�𝜶 is some constant that depends only on 𝜶; an exact expression is provided in (B.11). In

particular, �̃�𝜶 →∞ as
∏𝐾
𝑖=1 𝛼𝑖 approaches 0.

Discussion. The dependence on the minimal reward gap 𝛿 in Theorem 9 is not an artifact of our

analysis but, in fact, reflective of the operating principle of the algorithm. ALG1(𝑛) keeps querying

new consideration sets of size 𝐾 until it determines with high enough confidence that the queried

41



arms are all distinct-typed; this is the genesis of 𝛿 in the upper bound. Importantly, equipped just

with knowledge of 𝐾 , it remains unclear if there exists an alternative sampling strategy that does

not rely on assessing pairwise similarities between the queried arms, without necessitating any

additional information on 𝜶. Furthermore, while ALG1(𝑛) is evidently rate-optimal in 𝑛 (in the

instance-dependent sense), the scaling of its upper bound w.r.t. 𝜶 is far from optimal. In particular,

the 𝜶-dependent factor in the leading term is attributable to a naive pre-determined exploration

schedule. This dependence can, in fact, be relegated to O(1) terms using a more sophisticated

policy that operates based on an adaptive determination of stopping and re-initialization times.

Remarks. (i) When 𝐾 = 2, the upper bound in Theorem 9 reduces to
(
�̃�𝜶/Δ

)
log2 (

4/Δ
)
log 𝑛+

4Δ, leading to a worst-case regret (w.r.t. Δ) of Õ
(
�̃�𝜶
√
𝑛
)
, where the big-Oh only hides poly-

logarithmic factors in 𝑛. This settles an open question concerning the best achievable minimax

regret in the countable-armed problem with two types (since previously known guarantees were

polynomially bounded away from
√
𝑛; see [21]). (ii) While specifying the exploration schedule,

the choice of the exponent in 𝑘 can be fairly general as long as it is coercive and grows sufficiently

fast but sub-linearly; the square-root function is chosen for technical convenience. Instead, if one

were to use a linear function of 𝑘 in the exponent, the algorithm’s performance would become

fragile w.r.t. ex ante knowledge of 𝜶; an ill-calibrated ALG1(𝑛) can potentially incur linear regret.

2.4.2 Explore-then-commit with an adaptive stopping time

Discussion of Algorithm 5. At any time, the algorithm computes two thresholds; O
(√︁
𝑚 log𝑚

)
and O

(√︁
𝑚 log 𝑛

)
for the

(𝐾
2
)

pairwise difference-of-reward statistics, 𝑚 being the per-arm sample

count. If said statistic is dominated by the former threshold for some arm-pair, it is likely to contain

arms of the same type (equal means). The explanation stems from the Law of the Iterated Loga-

rithm (see [25], Theorem 8.5.2): a zero-drift length-𝑚 random walk has its envelope bounded by

O
(√︁
𝑚 log log𝑚

)
. In the aforementioned scenario, the algorithm discards the entire consideration

set and ushers in a new one. This is done to avoid the possibility of incurring linear regret should

an optimal arm be missing from the consideration set. In the other scenario that the difference-of-
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Algorithm 5 ALG2(𝑛) (ETC with adaptive stopping times)

1: Input: Horizon of play 𝑛.
2: Set budget 𝑇 = 𝑛; Burn-in samples (per arm) 𝑠𝑛.
3: Initialize new epoch: Query 𝐾 new arms; call it consideration set A = {1, ..., 𝐾}.
4: Play each arm in A for 𝑠𝑛 periods; observe rewards

{
𝑋𝑎, 𝑗 : 𝑎 ∈ A, 𝑗 = 1, ..., 𝑠𝑛

}
.

5: Set per-arm sample count 𝑚 = 𝑠𝑛.
6: Update budget: 𝑇 ← 𝑇 − 𝑠𝑛𝐾 .
7: Generate

(𝐾
2
)

independent standard Gaussian random variables
{
Z𝑎,𝑏 : 𝑎, 𝑏 ∈ A, 𝑎 < 𝑏

}
.

8: while 𝑇 > 𝐾 do
9: if ∃ 𝑎, 𝑏 ∈ A, 𝑎 < 𝑏 s.t.

���Z𝑎,𝑏 +∑𝑚
𝑗=1

(
𝑋𝑎, 𝑗 − 𝑋𝑏, 𝑗

) ��� < 4
√︁
𝑚 log𝑚 then

10: Permanently discard A and repeat from step (3).
11: else
12: if

���∑𝑚
𝑗=1

(
𝑋𝑎, 𝑗 − 𝑋𝑏, 𝑗

) ��� > 4
√︁
𝑚 log 𝑛 ∀ 𝑎, 𝑏 ∈ A, 𝑎 < 𝑏 then

13: Permanently commit to arm 𝑎∗ ∈ arg max𝑎∈A
{∑𝑚

𝑗=1 𝑋𝑎, 𝑗

}
.

14: else
15: Play each arm in A once; observe rewards

{
𝑋𝑎,𝑚+1 : 𝑎 ∈ A

}
.

16: 𝑚 ← 𝑚 + 1.
17: 𝑇 ← 𝑇 − 𝐾 .

reward statistic dominates the larger threshold for all arm-pairs, the consideration set is likely to

contain arms of distinct types (no two have equal means) and the algorithm simply commits to the

empirically best arm. Lastly, if difference-of-reward lies between the two thresholds (signifying

insufficient learning), the sample count for each arm is advanced by one, and the entire process

repeats.

Reason for introducing zero-mean corruptions supported on R. Centered Gaussian noise

is added to the difference-of-reward statistic in step (9) of ALG2(𝑛) to avoid the possibility of

incurring linear regret should the support of the reward distributions be a “very small” subset of

[0, 1]. To illustrate this point, suppose that 𝐾 = 2, 𝑠𝑛 = 1, and the rewards associated with the two

types are deterministic with Δ < 2
√︁

2 log 2. Then, as soon as the algorithm queries a heterogeneous

consideration set (one arm optimal and the other inferior) and the per-arm sample count reaches

2, the difference-of-reward statistic will satisfy
���∑2

𝑗=1
(
𝑋1, 𝑗 − 𝑋2, 𝑗

) ��� = 2Δ < 4
√︁

2 log 2, resulting in

the consideration set getting discarded. On the other hand, if the consideration set is homogeneous

(both arms simultaneously optimal or inferior), the algorithm will still re-initialize as soon as the

per-arm count reaches 2; this is because
���∑𝑚

𝑗=1
(
𝑋1, 𝑗 − 𝑋2, 𝑗

) ��� = 0 identically in this case for any
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𝑚 ∈ N while 4
√︁
𝑚 log𝑚 > 0 only for 𝑚 > 2. This will force the algorithm to keep querying new

arms from the reservoir at rate that is linear in time, which is tantamount to incurring linear regret

in the horizon. The addition of centered Gaussian noise hedges against this risk by guaranteeing

that the difference-of-reward process essentially has an infinite support at all times even when the

reward distributions might be degenerate. This rids the regret performance of its fragility w.r.t. the

support of reward distributions. The next proposition crystallizes this discussion; proof is provided

in Appendix B.5.

Proposition 1 (Persistence of heterogeneous consideration sets) Suppose
{
𝑋𝑎, 𝑗 : 𝑗 = 1, 2, ...

}
is

a collection of independent samples from an arm of type 𝑎 ∈ {1, ..., 𝐾} =: A. Further suppose that{
Z𝑎,𝑏 : 𝑎, 𝑏 ∈ A, 𝑎 < 𝑏

}
is a collection of

(𝐾
2
)

independently generated standard Normal random

variables. Then,

P
©«
⋂
𝑚>1

⋂
𝑎,𝑏∈A,𝑎<𝑏


������Z𝑎,𝑏 + 𝑚∑︁

𝑗=1

(
𝑋𝑎, 𝑗 − 𝑋𝑏, 𝑗

) ������ > 4
√︁
𝑚 log𝑚

ª®¬ > Φ̄ ( 𝑓 (𝑇0))
2

=: 𝛽𝛿,𝐾 > 0, (2.2)

where Φ̄(·) is the right tail of the standard Normal CDF, and 𝑇0 := max
(⌈(

64/𝛿2) log2
(

64
𝛿2

)⌉
,Λ𝐾

)
with Λ𝐾 := inf

{
𝑝 ∈ N :

∑∞
𝑚=𝑝

1
𝑚8 6

1
2𝐾2

}
. Lastly, 𝑓 (𝑥) := 𝑥 + 4

√︁
𝑥 log 𝑥 for all 𝑥 > 1.

Interpretation of 𝜷𝜹,𝑲 . First of all, note that 𝛽𝛿,𝐾 admits a closed-form characterization in

terms of standard functions and satisfies 𝛽𝛿,𝐾 > 0 for 𝛿 > 0 with lim𝛿→0 𝛽𝛿,𝐾 = 0. Secondly, 𝛽𝛿,𝐾

depends exclusively on 𝛿 and 𝐾 , and represents a lower bound on the probability that ALG2(𝑛)

will never discard a consideration set containing arms of distinct types. This meta-result will be

key to the upper bound on the regret of ALG2(𝑛) stated next in Theorem 10.

Theorem 10 (Upper bound on the regret of ALG2(𝒏)) For a horizon of play 𝑛 > 𝐾 and per-

arm burn-in phase of 1 6 𝑠𝑛 6 𝑛/𝐾 samples, the expected cumulative regret of the policy 𝜋 given

by ALG2(𝑛) is bounded as

E𝑅𝜋𝑛 6
𝐶𝐾3Δ̄

𝛾 (𝑠𝑛)

(
log 𝑛
𝛿2 +

𝑠𝑛

𝐾!
∏𝐾
𝑖=1 𝛼𝑖

)
,
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where 𝐶 is some absolute constant, and 𝛾 (𝑠𝑛) is as defined in (B.12). In particular, 𝛾(𝑡) is mono-

tone increasing in 𝑡 with 𝛾(𝑡) → 1 as 𝑡 → ∞, and 𝛾 (1) = 𝛽𝛿,𝐾 , where the latter is as defined in

(2.2).

Remarks. The dependence on 𝛿 in Theorem 10 is not incidental and has the same genesis as

discussed in the context of Theorem 9. However, there is a prominent distinction from Theorem 9

in that the dependence on 𝜶 is captured exclusively through the constant term (as opposed to the

logarithmic term). This should be viewed in light of the lower bound in Theorem 7; by allowing for

policies that query the arm-reservoir adaptively, one can potentially make the regret performance

robust w.r.t. 𝜶. Absence of 𝜶 from the leading term also leads to the somewhat remarkable

conclusion that the lower bound in Theorem 6 is optimal w.r.t. dependence on 𝜶. The proof is

provided in Appendix B.6.

More on the inverse scaling w.r.t. 𝜸 (𝒔𝒏). This multiplicative factor is likely a consequence

of the countable nature of arms (as opposed to finite). When 𝐾 = 2, 𝛼1 6 1/2, and the burn-

in phase 𝑠𝑛 has a fixed duration independent of 𝑛, the upper bound in Theorem 10 reduces to

O
(
𝛽−1
Δ,2

(
log 𝑛/Δ + Δ/𝛼1

) )
, where the big-Oh only hides absolute constants. Evidently, there is an

inflation by 𝛽−1
Δ,2 relative to the optimal O

(
log 𝑛/Δ

)
rate achievable in the paradigmatic two-armed

bandit with gap Δ. By setting 𝑠𝑛 as a coercive sub-logarithmic function of the horizon 𝑛 (e.g., 𝑠𝑛 =√︁
log 𝑛), one can shave off the 𝛽−1

Δ,2 factor to achieve O
(
log 𝑛/Δ

)
regret. This establishes tightness

of the instance-dependent lower bound in Theorem 6 when 𝐾 = 2. On the other hand, owing to

the dependence of 𝛾 (𝑠𝑛) (and 𝛽Δ,2) on Δ, the worst-case (instance-independent) upper bound of

ALG2(𝑛) can be observed from Theorem 10 to be bounded away from Ω
(√
𝑛
)
. However, recall

that Theorem 9 already settles the issue of characterizing the optimal minimax rate when 𝐾 = 2 (up

to logarithmic factors in 𝑛). Thus, we provide a complete characterization of the complexity of this

problem when 𝐾 = 2, thereby answering all the open problems in [21]. For 𝐾 > 2, Theorem 10

guarantees an upper bound of O
(
𝐾3Δ̄/𝛿2 log 𝑛

)
under a coercive sub-logarithmic burn-in phase. In

this case, characterizing the optimal dependence on Δ̄ and 𝛿 remains an open problem. The scaling

w.r.t. 𝐾 , however, cannot be improved to O(𝐾) as suggested by the Ω (𝐾 log𝐾) lower bound in

45



Theorem 8. A full characterization of the complexity of the general setting with 𝐾 > 2 arm-types

remains challenging and is left to future work.

2.4.3 Towards fully sequential adaptive strategies: Optimism in exploration

In this section, we revisit the UCB-based adaptive policy proposed in [21] for 𝐾 = 2. The

policy is restated as ALG3 below after suitable modifications for reasons discussed next. The

original policy (Algorithm 2 in cited paper) achieves an instance-dependent regret of O (log 𝑛)

and additionally enjoys the benefit of being anytime in 𝑛. However, it suffers a major limitation

through its dependence on ex ante knowledge of the support of reward distributions. In particular,

the algorithm requires the reward distributions to have “full support” on [0, 1], e.g., only distri-

butions such as Bernoulli(·), Uniform on [0, 1], Beta(·, ·), etc., are amenable to its performance

guarantees; Uniform on [0, 0.5], on the other hand, is not. We identify a simple fix to this issue:

Drawing inspiration from the design of ALG2(𝑛), we propose adding centered Gaussian noise to

the difference-of-reward statistic in step (6) of Algorithm 6 to essentially create an unbounded

support. This rids the algorithm of its fragility while preserving O (log 𝑛) regret (see Theorem 11).

Remark. The original Algorithm 2 in cited paper uses a different threshold in step (6) of

Algorithm 6; the choice of 4
√︁
𝑚 log𝑚 here aims to unify the technical presentation with ALG2(𝑛),

and facilitate a transparent comparison between their upper bounds.

Algorithm 6 ALG3 (Nested UCB1 for K = 2 types)

1: Initialize new epoch (resets clock 𝑡 ← 0): Query two new arms; call it set A = {1, 2}.
2: Play each arm in A once; observe rewards

{
𝑋𝑎,1 : 𝑎 ∈ A

}
.

3: Minimum per-arm sample count 𝑚 ← 1.
4: Generate a standard Gaussian random variableZ.
5: for 𝑡 ∈ {3, 4, ...} do
6: if

���Z +∑𝑚
𝑗=1

(
𝑋1, 𝑗 − 𝑋2, 𝑗

) ��� < 4
√︁
𝑚 log𝑚 then

7: Permanently discard A and repeat from step (1).
8: else
9: Play arm 𝑎𝑡 ∈ arg max𝑎∈A

(∑𝑁𝑎 (𝑡−1)
𝑗=1 𝑋𝑎, 𝑗

𝑁𝑎 (𝑡−1) +
√︃

2 log(𝑡−1)
𝑁𝑎 (𝑡−1)

)
.

10: Observe reward 𝑋𝑎𝑡 ,𝑁𝑎𝑡 (𝑡) .
11: if 𝑚 < min𝑎∈A 𝑁𝑎 (𝑡) then
12: 𝑚 ← 𝑚 + 1.
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Discussion of Algorithm 6. Similar to ALG2(𝑛), ALG3 also has an episodic dynamic with

exactly one pair of arms played per episode. The distinction, however, resides in the fact that

ALG3 plays arms according to UCB1 in every episode as opposed to playing them equally often

until committing to the empirically superior one. Secondly, unlike ALG2(𝑛), ALG3 never “com-

mits” to an arm (or a consideration set). The implication is that the algorithm will keep querying

new consideration sets throughout the playing horizon; this property is at the core of its anytime

nature. Despite these differences, the performance guarantees of the two algorithms are essentially

identical when 𝐾 = 2, as the next result illustrates. The proof is provided in Appendix B.8.

Theorem 11 (Upper bound on the regret of ALG3 when 𝑲 = 2) The expected cumulative regret

of the policy 𝜋 given by ALG3 after any number of pulls 𝑛 > 2 is bounded as

E𝑅𝜋𝑛 6
𝐶

𝛽Δ,2

(
log 𝑛
Δ
+

Δ

𝛼1

)
,

where 𝛽Δ,2 is as defined in (2.2) with 𝛿← Δ and 𝐾 ← 2, and 𝐶 is some absolute constant.

Remark. It is possible to shave off the 𝛽Δ,2 factor by introducing in ALG3 a horizon-dependent

burn-in phase à la ALG2(𝑛). This may be achieved at the expense of ALG3’s anytime property.

The performance stated in Theorem 11 together with its anytime property might appear to give

an edge to ALG3 over ALG2(𝑛). However, the former is theoretically disadvantaged in that its

logarithmic upper bound is not currently amenable to extensions to the general 𝐾-typed setting.

The adaption of ALG3 to the full generality of 𝐾 arm-types (see ALG4 below) does not currently

admit a logarithmic upper bound due to reasons discussed subsequently.
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Algorithm 7 ALG4 (Nested UCB1 for K types)

1: Initialize new epoch (resets clock 𝑡 ← 0): Query 𝐾 new arms; call it set A = {1, ..., 𝐾}.

2: Play each arm in A once; observe rewards
{
𝑋𝑎,1 : 𝑎 ∈ A

}
.

3: Minimum per-arm sample count 𝑚 ← 1.

4: Generate
(𝐾
2
)

independent standard Gaussian random variables
{
Z𝑎,𝑏 : 𝑎, 𝑏 ∈ A, 𝑎 < 𝑏

}
.

5: for 𝑡 ∈ {𝐾 + 1, 𝐾 + 2, ...} do

6: if ∃ 𝑎, 𝑏 ∈ A, 𝑎 < 𝑏 s.t.
���Z𝑎,𝑏 +∑𝑚

𝑗=1
(
𝑋𝑎, 𝑗 − 𝑋𝑏, 𝑗

) ��� < 4
√︁
𝑚 log𝑚 then

7: Permanently discard A and repeat from step (1).

8: else

9: Play arm 𝑎𝑡 ∈ arg max𝑎∈A
(∑𝑁𝑎 (𝑡−1)

𝑗=1 𝑋𝑎, 𝑗

𝑁𝑎 (𝑡−1) +
√︃

2 log(𝑡−1)
𝑁𝑎 (𝑡−1)

)
.

10: Observe reward 𝑋𝑎𝑡 ,𝑁𝑎𝑡 (𝑡) .

11: if 𝑚 < min𝑎∈A 𝑁𝑎 (𝑡) then

12: 𝑚 ← 𝑚 + 1.

Theorem 12 (Upper bound on the regret of ALG4) The expected cumulative regret of the policy

𝜋 given by ALG4 after any number 𝑛 > 1 of plays is bounded as

E𝑅𝜋𝑛 6
𝐶𝐾

𝛽𝛿,𝐾

(
log 𝑛
Δ
+ Δ̄

)
+ 𝑜

(
Δ̄𝑛

𝛽𝛿,𝐾
∏𝐾
𝑖=1 𝛼𝑖

)
,

where 𝐶 is some absolute constant, 𝛽𝛿,𝐾 is as defined in (2.2), and the little-Oh is asymptotic in 𝑛

and only hides multiplicative factors in 𝐾 .

Proof of Theorem 12 is provided in Appendix B.10.

Limitation of ALG4. The issue of a non-logarithmic upper bound traces its roots to the use

of UCB1 as a subroutine. The concentration behavior of UCB1 leveraged towards the analysis of

ALG3 when 𝐾 = 2 fails to hold when 𝐾 > 2, rendering proofs intractable. This is illustrated via a

simple example with 𝐾 = 3 types discussed below.

Technical issues with generalizing ALG3 to 𝑲 types. When 𝐾 = 2, there are only two

possibilities for what a consideration set could be; arms can have means that are either (i) distinct,
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or (ii) equal. In the former case, an optimal arm is guaranteed to exist in the consideration set and

UCB1 will spend the bulk of its sampling effort on it, which is good for regret performance. In

the latter scenario, since arms have equal means, UCB1 will split samples approximately equally

between the two with high probability (see Theorem 4(i) in [21]); subsequently the consideration

set will be discarded within a finite number of samples in expectation (see steps (6) and (7) of

ALG3). Contrast this with an alternative setting with 𝐾 = 3 and mean rewards `1 > `2 > `3. A

natural generalization of ALG3 (see ALG4) will query consideration sets of size 3. Thus, a query

can potentially return one arm with mean `2 and two with mean `3. Since an optimal arm (mean

`1) is missing, the algorithm will incur linear regret on this set; it is therefore imperative to discard

it at the earliest. Unfortunately though, UCB1will invest an overwhelming majority of its sampling

effort in the “locally optimal” arm (mean `2) and allocate logarithmically fewer samples among

the other two. This logarithmic rate of sampling arms with mean `3 is proof-inhibiting (vis-à-vis

the 𝐾 = 2 case where the rate is linear as previously discussed), making it difficult to theoretically

answer if ALG4might still be able to discard the arms within, say, logarithmically many pulls of the

horizon. This is an open research question and at the moment, an O (log 𝑛) bound exists only for

𝐾 = 2; we could only establish asymptotic-optimality (𝑜(𝑛) regret) when 𝐾 > 2 (see Theorem 12).

Among other things, identifying the optimal (instance-dependent) scaling factors w.r.t. (𝝁,𝜶) and

the optimal order of minimax regret when 𝐾 > 2 remain open problems. Numerical experiments

validating the bounds studied in this work are discussed in the next section.

2.5 Numerical experiments

We evaluate the empirical performance of our algorithms for 𝐾 = 2 and 𝐾 = 3 on synthetic

data.

Experiments. In what follows, the graphs show the performance of different algorithms sim-

ulated on synthetic data. The horizon is capped at 𝑛 = 105 for 𝐾 = 2 and at 𝑛 = 104 for 𝐾 = 3.

Each regret trajectory is averaged over at least 100 independent experiments (sample-paths). The

shaded regions indicate standard 95% confidence intervals. For horizon-dependent algorithms, re-
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gret is plotted for discrete values of the horizon 𝑛 indicated by “∗” and interpolated; for anytime

algorithms, regret accrued until each 𝑡 ∈ {1, ..., 𝑛} is plotted.

Baseline policies. We will benchmark the performance of our algorithms against two policies:

(i) Sampling-UCB [43], and (ii) ETC-∞(2) [21]. The former is a UCB-styled policy based

on front-loading exploration of new arms (Theorem 7 thus applies to this policy). It is, however,

noteworthy that Sampling-UCB is predicated on ex ante knowledge of (a lower bound on) the

probability 𝛼1 of sampling an optimal arm from the reservoir; we reemphasize that this is not

the setting of interest in our paper. Furthermore, its regret scales as Õ
(
log 𝑛/

(
𝛼1Δ

) )
(up to poly-

logarithmic factors in 1/Δ), which is inferior in terms of its dependence on 𝛼1 relative to ALG2(𝑛)

and ALG3 (see Theorem 10 and 11 respectively). There exist other algorithms as well (see, e.g.,

[46, 47]) developed for formulations with prohibitively large number of arms. However, these are

either sensitive to certain parametric assumptions on the probability of sampling an optimal arm,

or focus on a different notion of regret altogether; both directions remain outside the ambit of our

setting.

The second policy ETC-∞(2) is a non-adaptive explore-then-commit-styled algorithm for

reservoirs with 𝐾 = 2 types; this policy requires ex ante knowledge of a lower bound on the

difference between the two mean rewards. Although ETC-∞(2) was originally proposed only for

𝐾 = 2, it is easily generalizable and we present in Algorithm 8 below a version (ETC-∞(𝐾)) that

is adapted to 𝐾 types.

Algorithm 8 ETC-∞(K)
1: Input: (i) Horizon of play 𝑛, (ii) A lower bound 𝛿 ∈ (0, 𝛿] on the minimal reward gap 𝛿.
2: Set budget 𝑇 = 𝑛.
3: Initialize new epoch: Query 𝐾 new arms; call it consideration set A = {1, ..., 𝐾}.
4: Set exploration duration 𝐿 =

⌈
2𝛿−2 log 𝑛

⌉
; 𝑚 ← min (𝐿, b𝑇/𝐾c).

5: Play each arm in A 𝑚 times; observe rewards
{(
𝑋1, 𝑗 , ..., 𝑋𝐾, 𝑗

)
: 𝑗 = 1, ..., 𝑚

}
.

6: Update budget: 𝑇 ← 𝑇 − 𝐾𝑚.
7: if ∃ 𝑎, 𝑏 ∈ A, 𝑎 < 𝑏 s.t.

���∑𝑚
𝑗=1(𝑋𝑎, 𝑗 − 𝑋𝑏, 𝑗 )

��� < 𝛿𝑚 then
8: Permanently discard A, and repeat from step (3).
9: else

10: Permanently commit to arm 𝑎∗ ∈ arg max𝑎∈A
{∑𝑚

𝑗=1 𝑋𝑎, 𝑗

}
.
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Setup 1 [Figures 2.1, 2.2 and 2.3]. In this setting, we consider 𝐾 = 2 with 𝛼1 = 0.5, i.e.,

two equiprobable arm-types, characterized by Bernoulli(0.6) and Bernoulli(0.4) rewards. Via this

setup, we intend to illustrate the difference between the empirical performance achievable in the

countable-armed setting vis-à-vis its traditional two-armed counterpart. Refer to Figure 2.1. The

red curve indicates the empirical performance of ALG3 in this setting. For reference, the blue

one shows the empirical performance of UCB1 [10] in a two-armed bandit with Bernoulli(0.6) and

Bernoulli(0.4) rewards; the green curve indicates the best achievable instance-dependent regret [3]

in said two-armed configuration. As expected, the regret of ALG3 is inflated relative to UCB1. This

is owing to the 𝛽𝛿,2 6 1 factor present in the denominator of ALG3’s upper bound; characterization

of the sharpest lower bound on the probability in (2.2) (see Proposition 1) is challenging owing

to the limited theoretical tools available to this end and we leave it as an open problem at the

moment. Figure 2.2 shows the empirical performance of the algorithms proposed in this paper as

well as Sampling-UCB initialized with 𝛼1 = 1/2 and ETC-∞(2) initialized with 𝛿 = 𝛿/2 =

0.1. Evidently, the (adaptive) explore-then-commit approach in ALG2(𝑛) outperforms the pre-

specified exploration schedule-based approach of ALG1(𝑛), and performs almost as good as the

gap-aware approach in ETC-∞(2). While Sampling-UCB outmatches all explore-then-commit

styled approaches, the best performing algorithm is ALG3. Surprisingly, this is despite the fact

that the theoretical performance bounds for ALG2(𝑛) and ALG3 are identical (modulo numerical

multiplicative constants) when 𝐾 = 2 and 𝛼1 6 0.5 (see Theorem 10 and 11). A similar hierarchy

in performances is also observable in Figure 2.3, which corresponds to a slightly “easier” instance

with 𝛿 = 0.4 (as opposed to 0.2) and equiprobable Bernoulli(0.9) and Bernoulli(0.5) rewards.
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Figure 2.1: 𝐾 = 2 and 𝜶 = (1/2, 1/2): Achiev-
able regret in 2-CAB vis-à-vis 2-MAB.
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Figure 2.2: 𝐾 = 2 and 𝜶 = (1/2, 1/2): An in-
stance with Bernoulli 0.6, 0.4 rewards.

Setup 2 [Figure 2.4]. Here, we consider a setting with 𝐾 = 3 arm-types characterized by

Bernoulli rewards with means 0.9, 0.5, 0.1, each occurring with probability 1/3. We compare the

performance of ALG1(𝑛), ALG2(𝑛) and ALG4 with ETC-∞(3) initialized with 𝛿 = 𝛿/2 = 0.2,

and Sampling-UCB initialized with 𝛼1 = 1/3. It is noteworthy that despite ALG4’s significantly

superior empirical performance relative to aforementioned algorithms, only a weak 𝑜(𝑛) theoreti-

cal guarantee on its regret is currently available (see Theorem 12) due to reasons discussed earlier

in the paper. Investigating best achievable rates under ALG4 is an area of active research at the

moment.
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Figure 2.3: 𝐾 = 2 and 𝜶 = (1/2, 1/2): An in-
stance with Bernoulli 0.9, 0.5 rewards.
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Figure 2.4: 𝐾 = 3 and 𝜶 = (1/3, 1/3, 1/3): In-
stance with Bernoulli 0.9, 0.5, 0.1 rewards.
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2.6 Concluding remarks, extensions, and open problems

This chapter summarizes the contributions in [21, 48] and provides a first-order characteri-

zation of the complexity of the 𝐾-typed countable-armed bandit problem with matching lower

and upper bounds for 𝐾 = 2. For 𝐾 > 2, we establish an instance-dependent upper bound of

O
(
𝐾3Δ̄/𝛿2 log 𝑛

)
and show that the scaling w.r.t. 𝐾 cannot beat Ω (𝐾 log𝐾); the latter property

differentiates this setting fundamentally from the classical 𝐾-armed problem. Another key take-

away from our work is that achievable regret in this setting only has a second-order dependence on

the reservoir distribution, i.e., dependence on 𝜶 only manifests through sub-logarithmic terms (see

Theorem 10 and 11). Although this work is predicated on countably many arms, our algorithms

can easily be adapted to settings with a large but finite number of arms. For example, the result

on second-order dependence w.r.t. 𝜶 has profound implications for the 𝑁-armed bandit problem

with 𝐾 arm-types, where each type is characterized by a unique mean reward. A naive imple-

mentation of standard MAB algorithms in this setting will result in a regret that scales linearly

with 𝑁 . Instead, one can simulate a 𝐾-typed reservoir over the 𝑁 arms and deploy ALG2(𝑛) to

achieve an O
(
𝐾3) scaling of the leading term; if 𝐾 � 𝑁 , performance improvement can be sub-

stantial vis-à-vis naive MAB algorithms. Another important direction concerns adaptivity to 𝐾:

This paper provides algorithms that adapt to 𝜶 assuming perfect knowledge of 𝐾; performance

characterization given only an approximation thereof remains an open problem.

An extension of the countable-armed framework introduced in this chapter has been used as a

basal motif in sequential assignment and dynamic matching problems arising in settings such as

online labor markets (see Chapter 3). Another extension, pursued in Chapter 4, studies a setting

where the arm-reservoir distribution is endogenous.
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Chapter 3: Countable-armed bandits: An application to matching markets

3.1 Introduction

The problem of sequentially matching “jobs” to “workers” under uncertainty forms the bedrock

of many modern operational settings, especially in the online gig economy, see, e.g., applications

such as Amazon Mechanical Turk, TaskRabbit, Jobble, and the likes. A simpler instance of the

problem dates back to [49] where it is referred to as the sequential stochastic assignment problem

(SSAP). A fundamental issue in such settings is that the platform typically is oblivious (at least ini-

tially) to the skill proficiencies of individual workers for specific job categories. This complexity is

further compounded by the large number of workers usually present on such platforms, tantamount

to prohibitively large experimentation costs associated with acquisition of granular information at

the level of an individual worker. This issue is commonly mitigated by exploiting structure in the

problem (if any), or by positing distributional assumptions on the population of available workers,

e.g., workers may be drawn from some distribution D satisfying certain context-specific desider-

ata. Such distributional assumptions are vital to designing efficient algorithms for these systems,

and as such, traditional literature has largely relied on the availability of ex ante knowledge of D

or certain key aspects thereof (refer to the literature review below).

Key research question. An important characteristic of the gig economy is that the population

of workers may undergo distributional shifts over the course of the platform’s planning horizon.

These effects may, many a time, fail to register in a timely manner; as a result, there may be delays

in tailoring appropriately the matching algorithm (calibrated typically using available distribution-

level information) to the changed environment. This has the potential to cause revenue losses as

well as catalyze endogenous worker attrition. Such exigencies necessitate designing algorithms

that are agnostic to D and whose performance is robust to plausible realizations thereof.
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The model at a glance. We consider a finite set of possible job-types (denoted by J ), an

assumption we deem appropriate for settings such as those discussed above. In addition, we model

workers as exhibiting discrete skill-levels (aka worker-types), indexed by
{
1, ..., 𝐾 𝑗

}
, w.r.t. each

job-type 𝑗 ∈ J , and assume that
(
𝐾 𝑗 : 𝑗 ∈ J

)
is known a priori. It is not unreasonable to make

this assumption since it is common, in practice, for platforms to deploy pilot experiments prior to

the actual matching phase in order to gather sufficient information on key primitives such as the

size and stability of low-dimensional sub-population clusters, if any exist; one can therefore safely

assume in settings where such structure exists that
(
𝐾 𝑗 : 𝑗 ∈ J

)
is well-estimated a priori.

While the demand is constituted by sequential job-arrivals (possibly in batches of stochastic

size and composition), we posit availability of an unlimited number of workers on the supply side.

This feature encapsulates the choice overload phenomenon characteristic of many large market

settings where workers are available in a large number relative to the platform’s planning horizon.

To our best knowledge, extant literature on matching under uncertainty is largely limited to “fi-

nite” markets (see the literature review below), and therefore fails to accommodate this important

practical consideration. In our setting, the population of workers, albeit large, is governed by a

finitely supported distribution that controls the proportion of each worker-type. Specifically, the

𝐾 𝑗 distinct worker-types w.r.t. job-type 𝑗 are distributed according to 𝜶 𝒋 :=
(
𝛼𝑖, 𝑗 : 𝑖 = 1, ..., 𝐾 𝑗

)
,

where
∑𝐾 𝑗

𝑖=1 𝛼𝑖, 𝑗 = 1. We note that this is one possible model of a matching market that is closer in

spirit to SSAP [49]; it differs from other models in the matching literature (refer to the literature

review below) in that it tries to capture a salient aspect of large markets, viz., choice overload,

as opposed to aspects such as competition and congestion best elucidated via traditional “finite”

market models.

The platform’s goal is to maximize its expected cumulative payoffs over a sequence of 𝑛 rounds

of matching, subject to worker-types w.r.t. job-types and their distributions
{
𝜶 𝒋 : 𝑗 ∈ J

}
, as well

as mean payoffs for possible worker-job type-pairs being latent attributes. As is the norm in settings

with incomplete information and imperfect learning, we reformulate this objective as minimizing

the expected cumulative regret relative to an oracle that is privy to aforementioned primitives.
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On the complexity of the problem. With a unique job-type, say J = { 𝑗0}, and only one job

arriving per period, note that the ensuing allocation problem reduces to the countable-armed bandit

problem introduced in Chapter 2. The task then reduces to cleverly aggregating such countable-

armed bandits to solve the original matching problem.

Literature review. Our problem is situated close to a recent line of work on dynamic match-

ing under uncertainty. This stream of literature, by and large, considers an archetypal decentralized

matching problem under uncertainty in preferences where a heterogeneous collection of jobs (rep-

resented by nodes on one side of a bipartite graph) must be matched to workers (the other side

of the graph) with unknown or noisy preferences over jobs (see, e.g., [50] and references therein).

The matching proceeds iteratively in rounds in a way that meets certain stability criteria at all times

as well as ensures that the true preferences are “learnt” at a regret-optimal rate. Such models, how-

ever, are fundamentally distinct from ours in that their learning problems are posited over a finite

set of workers, which allows for sufficient exploration of each; this would be infeasible in our

setting owing to a “large” population thereof.

Another related setting is studied in [37] where a centralized steady-state model with endoge-

nous workers is considered. The key technical innovation in this work lies in the way polytope

capacity constraints are handled via shadow prices to create essentially an unconstrained learning

problem that may be solved rate-optimally using conventional heuristics. However, this necessi-

tates ex ante knowledge of
{
𝝁 𝒋 ,𝜶 𝒋 : 𝑗 ∈ J

}
among other problem primitives. Our model, on the

other hand, has a richer learning component that is challenging to address as it is, absence of ca-

pacity constraints notwithstanding. Our contribution lies in establishing fundamental achievability

results for the learning problem via reduction to a countable-armed bandit setting, and in the design

of novel rate-optimal algorithms that adapt to the problem primitives online. We leave it to future

work to incorporate into our model more realistic features such as capacity constraints, strategic

interactions between the platform and workers, etc.
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3.2 Problem formulation

Job-arrival process. The platform faces an arrival stream of jobs (i.i.d. in time) given by{(
Λ 𝑗 ,𝑡 : 𝑗 ∈ J

)
: 𝑡 = 1, 2, ...

}
, where J is finite and Λ 𝑗 ,𝑡 is the number of type 𝑗 jobs arriving at

time 𝑡. Types and multiplicities of jobs are perfectly observable upon arrival. We assume that

there exists some finite constant 𝑀 > 0 satisfying P
(
max 𝑗∈J sup𝑡>1 Λ 𝑗 ,𝑡 6 𝑀

)
= 1. Note that our

algorithms do not require knowledge of 𝑀; the assumption only serves to simplify analysis and

can be relaxed.

Supply of workers. We assume that workers are distributed on the unit interval [0, 1] ac-

cording to some probability distribution D that is absolutely continuous w.r.t. the Lebesgue

measure on [0, 1]. Associated with each job-type 𝑗 ∈ J , there exists a permutation 𝝈 𝒋 :={
𝜎𝑗 (𝑖) : 𝑖 = 1, ..., 𝐾 𝑗

}
of

{
1, ..., 𝐾 𝑗

}
, and a sequence of thresholds 0 =: _0, 𝑗 < _1, 𝑗 < ... <

_𝐾 𝑗−1, 𝑗 < _𝐾 𝑗 , 𝑗 := 1 partitioning the unit interval into 𝐾 𝑗 disjoint sub-intervals. We posit a payoff

model whereby a worker 𝑥 ∈
(
_𝑖−1, 𝑗 , _𝑖, 𝑗

)
(for some 𝑖 ∈

{
1, ..., 𝐾 𝑗

}
) generates a stochastic reward

with mean `𝜎𝑗 (𝑖), 𝑗 upon match with a type 𝑗 job; it is assumed that the 𝐾 𝑗 mean rewards adhere

to the strict order `1, 𝑗 > ... > `𝐾 𝑗 , 𝑗 . We define 𝛼𝑖, 𝑗 := P
(
𝑋 ∈

(
_](𝑖, 𝑗)−1, 𝑗 , _](𝑖, 𝑗), 𝑗

) )
, where 𝑋 ∼ D

and ](𝑖, 𝑗) ∈
{
1, ..., 𝐾 𝑗

}
is the unique element satisfying 𝜎𝑗 (](𝑖, 𝑗)) = 𝑖, as the probability that a

worker sampled at random from D (equivalently, from the population), is 𝑖th best for job-type 𝑗

(generates mean reward `𝑖, 𝑗 ); such a worker is said to have type 𝑖 w.r.t. job-type 𝑗 . Thus, a type

1 worker w.r.t. job-type 𝑗 is optimal for jobs of type 𝑗 . Note that the model allows for staggered

optimality of worker-types; see Figure 3.1.

0 1_1,2_1,1

Figure 3.1: Possible distribution of worker-types for J = {1, 2} and 𝑲1 = 𝑲2 = 2. The darker
shades represent type 1 (optimal) workers while the lighter shades represent type 2 (inferior) work-
ers w.r.t. each job-type in J . In this example, no worker can simultaneously be optimal for both
job-types.

High-level description of the matching problem. Each arriving job may be matched one-

to-one to a worker from the available supply. Each match takes one period for execution, it is
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therefore possible to match jobs arriving in consecutive periods to the same worker. Matched jobs

leave the system upon completion and the platform receives a stochastic reward for each completed

job; a job that remains unmatched drops out instantaneously. The platform has information neither

on individual worker-types w.r.t. job-types nor on their supply distribution, however, it has perfect

knowledge of
(
𝐾 𝑗 : 𝑗 ∈ J

)
. Subject to this premise, the platform must match incoming jobs to

workers in a way that maximizes its expected cumulative payoffs over 𝑛 rounds of matching.

Adaptive control. For any job that arrives at time 𝑡, the platform can match it to: (i) a worker

that has matched before, (ii) a new worker (one without any history of matches) sampled from the

population, or (iii) no worker (job is dropped). To this end, a policy 𝜋 := (𝜋1(·, ·), 𝜋2(·, ·), ...) is

an adaptive rule that prescribes the allocation 𝜋𝑡 (·, ·) at time 𝑡. Specifically, 𝜋𝑡 ( 𝑗 , 𝑘) encodes the

worker that should match with the 𝑘 th job of type 𝑗 arriving at time 𝑡 (provided there are at least 𝑘

job-arrivals of type 𝑗 at 𝑡 and the 𝑘 th job is not dropped). Upon match, a [0, 1]-valued stochastic

reward with mean `^ 𝑗 (𝜋𝑡 ( 𝑗 ,𝑘)), 𝑗 is realized, where ^ 𝑗 (𝜋𝑡 ( 𝑗 , 𝑘)) ∈
{
1, ..., 𝐾 𝑗

}
denotes the type of

worker 𝜋𝑡 ( 𝑗 , 𝑘) w.r.t. job-type 𝑗 . The realized rewards are independent across matches and in

time.

Platform’s objective. The goal of maximizing the expected cumulative payoffs over 𝑛 rounds

is converted to minimizing the expected regret relative to a clairvoyant policy that prescribes an

“optimal” match for each arriving job. We are thus interested in the following optimization problem

inf
𝜋∈Π
E𝑅𝜋𝑛 := inf

𝜋∈Π
E


𝑛∑︁
𝑡=1

∑︁
𝑗∈J :Λ 𝑗 ,𝑡>1

Λ 𝑗 ,𝑡∑︁
𝑘=1

(
`1, 𝑗 − `^ 𝑗 (𝜋𝑡 ( 𝑗 ,𝑘)), 𝑗

) . (3.1)

Here, Π is the class of non-anticipating policies, i.e., 𝜋𝑡+1(·, ·) is adapted to F𝑡 for all 𝑡 ∈ {0, 1, ...},

where F𝑡 := 𝜎 {(𝚲𝒔, 𝝅𝒔, 𝒓𝒔) : 𝑠 = 1, ..., 𝑡} denotes the natural filtration at time 𝑡. Here, 𝚲𝒔 :=(
Λ 𝑗 ,𝑠 : 𝑗 ∈ J

)
, 𝝅𝒔 is the set of matches implemented at time 𝑠 and 𝒓𝒔 is the set of collected rewards.

The expectation in (3.1) is w.r.t. the randomness in job-arrivals, worker supply, policy, and rewards.

Going forward, we will adopt standard terminology from the multi-armed bandit literature and

refer to workers as “arms” and jobs as “pulls” interchangeably.

58



3.3 Designing adaptive policies for matching

The approach we adopt in this paper directly addresses the fact that there is an unlimited supply

of available workers at all times. A natural design then is to tailor sub-routines specific to job-

types in J and instantiate them at the first arrival of each type. Specifically, if jobs of type 𝑗

arrive at {𝑡1, 𝑡2, ...}, then the platform should call the sub-routine specific to job-type 𝑗 only at

aforementioned times, independent of other job-arrivals. This leads to the meta-algorithm MATCH

(see Algorithm 9) for the matching problem. In what follows, ALG refers to an arm-allocation

rule w.r.t. a fixed job-type that prescribes one arm upon each invocation. ALG can be thought of

as a horizon-free sampling strategy for a countably many-armed bandit problem with one pull per

period. When multiple jobs (say 𝐿) of the same type (say 𝑗) arrive at the same time, we instantiate

(if necessary) new parallel threads of ALG specific to job-type 𝑗 to ensure that the demand is fully

met. In the following, 𝐿 𝑗 denotes the running count of parallel threads of ALG for type 𝑗 jobs.

Algorithm 9 MATCH: A meta-algorithm for the matching problem

1: Input: (i) J , (ii)
(
𝐾 𝑗 : 𝑗 ∈ J

)
, and (iii) ALG.

2: Initialization: Set 𝐿 𝑗 = 0 for each 𝑗 ∈ J .

3: for 𝑡 ∈ {1, 2, ...} do

4: for 𝑗 ∈ J do

5: if Λ 𝑗 ,𝑡 > 1 then

6: if Λ 𝑗 ,𝑡 6 𝐿 𝑗 then

7: Match the Λ 𝑗 ,𝑡 type 𝑗 jobs to the first Λ 𝑗 ,𝑡 threads of ALG for type 𝑗 jobs.

8: else

9: Match the first 𝐿 𝑗 type 𝑗 jobs to the 𝐿 𝑗 available threads of ALG for type 𝑗 jobs.

10: Instantiate Λ 𝑗 ,𝑡 − 𝐿 𝑗 new threads of ALG for the remaining Λ 𝑗 ,𝑡 − 𝐿 𝑗 jobs.

11: Update 𝐿 𝑗 ← Λ 𝑗 ,𝑡 .

Discussion of MATCH. An immediate observation from Algorithm 9 is that ALG ought to be

anytime, i.e., it should not depend on the horizon of play since the number of jobs of each type
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arriving over the platform’s planning horizon is not known a priori. Keeping this objective in mind,

we shift our focus to designing an arm-allocation rule ALG w.r.t. a fixed job-type, say type 𝑗 , that:

(i) prescribes one pull per period, (ii) depends only on 𝐾 𝑗 , (iii) is adaptive to the mean reward

vector 𝝁 𝒋 and the supply distribution 𝜶 𝒋 , and (iv) is horizon-free. Upon successful design of ALG,

its composition with MATCH will transfer learning guarantees to the original matching problem.

3.3.1 Shifting focus to adaptive sequential sampling strategies tailored to a specific job-type

Going forward, we will assume that jobs belong to a common fixed type and arrive one at a

time. With slight abuse of notation, the supply of available workers is characterized by 𝐾 worker-

types with distinct means 𝝁 := (`𝑖 : 𝑖 = 1, ..., 𝐾) adhering to `1 > ... > `𝐾 . The maximal and

minimal sub-optimality gaps are given by Δ̄ := `1 − `𝐾 and Δ := `1 − `2 respectively, and the

minimal reward gap is 𝛿 := min16𝑖<𝑖′6𝐾 (`𝑖 − `𝑖′). The distribution of worker-types is denoted by

𝜶 := (𝛼𝑖 : 𝑖 = 1, ..., 𝐾), where 𝛼𝑖 is the probability of sampling a type 𝑖 arm (with mean `𝑖) from

the population. The decision maker knows 𝐾 but is oblivious to (𝝁,𝜶, 𝑛), 𝑛 being the learning

horizon.

Note that the aforementioned setting is that of the countable-armed bandit problem introduced

in Chapter 2 in which ALG2 (see Algorithm 5) achieves rate-optimal regret with a second-order

dependence on the reservoir distribution (see Theorem 10).

3.3.2 Transferring learning guarantees to the matching problem

A horizon-free version of ALG2 that preserves its logarithmic regret guarantee may be obtained

by passing it to the DT operator [51] with a doubling sequence of 𝑇𝑖 = 22𝑖 .

Theorem 13 (Achievable performance under MATCH ◦DT (ALG2)) Denote by 𝜋 the compo-

sition of MATCH with ALG = DT (ALG2). Then, after any number 𝑛 > 1 of rounds, one has

E𝑅𝜋𝑛 6 𝐶𝑀
∑︁
𝑗∈J

[
𝐾3
𝑗
Δ̄ 𝑗

𝛽𝛿 𝑗 ,𝐾 𝑗

(
log 𝑛
𝛿 𝑗

2 +
log log (𝑛 + 2)
𝐾 𝑗 !

∏𝐾 𝑗

𝑖=1 𝛼𝑖, 𝑗

)]
, (3.2)
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where Δ̄ 𝑗 := `1, 𝑗 − `𝐾 𝑗 , 𝑗 , 𝛿 𝑗 := min16𝑖<𝑖′6𝐾 𝑗
(
`𝑖, 𝑗 − `𝑖′, 𝑗

)
, 𝛽𝛿 𝑗 ,𝐾 𝑗 is as defined in (2.2) with 𝛿← 𝛿 𝑗 ,

𝐾 ← 𝐾 𝑗 , and 𝐶 is some absolute constant.

Discussion. The foremost noticeable aspect of Theorem 13 is that achievable regret depends on{
𝜶 𝒋 : 𝑗 ∈ J

}
(collection of worker-type distributions w.r.t. job-types), surprisingly, only through

𝑜(log 𝑛) terms. Among other things, characterizing the minimax complexity of this problem setting

remains a challenging open problem in light of the unconventional multiplicative factors in (3.2).

Proof of Theorem 13. Using Theorem 7 of [51] for a doubling sequence of 𝑇𝑖 = 22𝑖 , together

with Theorem 10 (see Chapter 2), one obtains that E𝑅DT (ALG2)𝑛 6 𝐶𝐾3Δ̄
𝛽𝛿,𝐾

(
log 𝑛
𝛿2 + log log(𝑛+2)

𝐾!
∏𝐾
𝑖=1 𝛼𝑖

)
for

some absolute constant 𝐶. In the matching problem, note that there are exist at most 𝑀 |J | active

threads of DT(ALG2) at any time. Since DT(ALG2) is horizon-free, the regret incurred is

dominated by that in the scenario where 𝑀 |J | threads are active at each 𝑡 ∈ {1, ..., 𝑛}. The

assertion is now immediate. �

3.4 Concluding remarks

This chapter summarizes the contributions in [52] and provides a stylized model for data-driven

matching in settings such as online labor markets. There remain a lot of practical considerations,

e.g., queuing, incentives, competition, and congestion that our model currently does not address;

each of these aspects independently constitutes an important direction for future work.
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Chapter 4: Countable-armed bandits with dynamic arm-acquisition costs:

Towards a non-stationary arm-reservoir

4.1 Introduction

Cost of reservoir access. In multi-armed bandit (MAB) settings where large action space is

a defining characteristic, the decision maker may experience elevated costs of acquiring new arms

as time progresses. This can be viewed in light of plausible deterioration in the “quality” of the

reservoir either with increasing number of queries or with time. The former can be interpreted as

a Lagrangian relaxation to an optimization problem with capacity constraints on reservoir queries;

a setting potentially of interest to online resource allocation problems under costly resource ac-

quisition. The latter aspect has connotations related to market churn. For example, the relative

abundance of agents of different types in a market may undergo temporal variations over the plat-

form’s planning horizon. This is the case, for example, in online service-platforms, where arms

may represent agents capable of abandoning the platform if kept idle for protracted durations.

These effects may catalyze an agent-departure process and a temporal non-stationarity that may

seriously hinder the decision maker’s ability to discern “good” arms from “inferior” ones. There

has been significant recent interest in non-stationary bandit models, however, most of the liter-

ature is limited largely to non-stationarities in rewards, and antecedents on non-stationarities in

arm-reservoirs are markedly absent (see the literature review in §4.1.1). In this paper, we provide

the first systematic treatment of this aspect by investigating the statistical limits of learning under

endogenous variations in the arm-reservoir distribution.

Stylized model. To distill key insights, it will be convenient to focus on the paradigmatic

case of exactly two arm-types in the reservoir; this serves to highlight statistical idiosyncrasies

of the problem without unnecessary mathematical detail. The complexity of the static version
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of the problem is driven by three primitives: (i) the gap Δ between the mean rewards associated

with the two arm-types; (ii) the fraction 𝛼 of the “optimal” arm-type in the reservoir; and (iii)

the horizon of play 𝑛. The feature of costly arm-acquisitions is incorporated by endogenizing 𝛼;

consequently, its evolution is given by the stochastic process (𝛼(𝑡) : 𝑡 = 1, 2, ...). Thus, at any time

𝑡, the probability that a query of the arm-reservoir returns an arm of the optimal type is given by

(the sample path-dependent random variable) 𝛼(𝑡). As we shall later see, the interesting regime is

where 𝛼(𝑡) becomes vanishingly small as 𝑡 grows; this captures departure of optimal (unexplored)

arms from the reservoir, and abstracts out key characteristics of many online platforms that serve

a large population of impatient agents.

Challenges due to costly reservoir access. It is non-trivial to design “good” policies that are

reservoir distribution-agnostic as well as gap-adaptive. To see this, consider the simplest scenario

where 𝛼(𝑡) = 𝑐 (constant), and the decision maker is endowed with ex ante knowledge of 𝑐 as

well as the horizon 𝑛. A natural heuristic in this setting is to query Ω
(
𝑐−1 log 𝑛

)
arms upfront

(this would guarantee with probability Ω (1/𝑛) the existence of at least one optimal arm among

the queried ones), and subsequently deploy a conventional bandit algorithm such as Thompson

Sampling [13] or UCB [10] on the collected set of arms. One can quite easily show that such

an approach will incur poly-logarithmic regret in 𝑛. On the other hand, it is possible to achieve

Õ
(
(𝑐Δ)−1 log 𝑛

)
regret (up to poly-logarithmic factors in Δ−1) using a more sophisticated policy

[43]. Regardless, none of these approaches utilize the fact that there exist exactly 𝐾 arm-types in

the reservoir. By leveraging this knowledge, 𝑐-dependence of the aforementioned upper bound can,

in fact, be relegated to sub-logarithmic terms, surprisingly, in a manner that is adaptive to 𝑐 [21].

It is noteworthy, however, that the performance of such approaches is fragile w.r.t. the premise

that 𝛼(𝑡) remains bounded away from 0 by some problem-independent constant 𝑐 (which may

or may not be known a priori) at all times. Naturally, endogenous variations potentially causing

𝛼(𝑡) to vanish in 𝑡 will only exacerbate the problem, and it remains unclear if it is even possible

in this setting to achieve sub-linear regret relative to the classical full-information benchmark that

prescribes pulling an optimal arm at each 𝑡.
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Contributions. We first derive a necessary condition for “complete learning” when the evolu-

tion of 𝛼(𝑡) is independent of the decision maker’s actions; specifically,
∑∞
𝑡=1 𝛼(𝑡) = ∞ is neces-

sary for achieving sub-linear regret relative to an oracle that knows the identities of optimal arms

ex ante (Theorem 14). We also establish its near-tightness in that a slightly stronger version of

said condition is sufficient for a gap-aware policy based on the Explore-then-Commit principle

to achieve poly-logarithmic instance-dependent regret in the problem (Theorem 15). In addition,

we discuss a novel gap-adaptive policy based on the UCB principle that achieves a polynomial

regret in the same regime (Theorem 16). We then consider the setting where 𝛼(𝑡) is endogenous

(policy-dependent), and characterize matching necessary and sufficient conditions (up to leading

order terms) for asymptotic-optimality of aforementioned policies.

Before proceeding with a formal description of our model and discussion of results, we provide

a brief overview of related literature below.

4.1.1 Related literature

Bandits with state-dependent rewards. The earliest work on MAB problems involving en-

dogenous arm-reward distributions dates back to the seminal work [53] which studied finite-state

Markovian bandits. In this model, the state of an arm only changes upon execution of a pull while

remaining unchanged otherwise, thus prompting the name resting bandits; the celebrated Gittins

index policy is well-known to maximize the infinite-horizon discounted cumulative expected re-

ward in this setting. In contrast, in the so-called restless bandits formulation [54], the states of

all the arms may change simultaneously irrespective of which arms are pulled; in addition, this

formulation permits pulling any fixed number of arms in each period. Subsequent works such as

[55] focus on heuristics that are optimal in an asymptotic regime where the number of arms pulled

in each period scales linearly with the total number of arms. More recently, a finite-horizon variant

of the restless bandits problem was studied in [56] under a similar scaling; see [57, 58, 59], etc.,

for a survey of other well-studied variations.

Our work is quite distinct from this strand of literature: (i) asymptotic analyses in aforemen-
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tioned papers are w.r.t. the number of arms, not the horizon of play; (ii) the number of arms pulled

in each period is fixed at 1 in our problem setting and does not scale with the total number of

arms; (iii) most importantly, cited references formulate the problem as a Markov decision process

assuming full knowledge of the transition kernels. In contrast, we consider a learning theoretic for-

mulation where the decision maker is oblivious to the statistical properties of reward distributions

as well as the nature of endogeneity in the arm-reservoir.

Bandits with non-stationary rewards. This line of work focuses on policies that minimize

the expected cumulative regret relative to a dynamic oracle that plays at each time 𝑡 an arm with

the highest mean reward at 𝑡. Some of the early work in this area is premised on a formulation

in which the identity of the best arm may change a finite number of times adversarially during

the horizon of play, see, e.g., [60]. While other works such as [61] study specific models of

temporal variation where, for example, rewards evolve according to a Brownian motion, much of

the traditional literature is limited, by and large, to a finite number of changes in the mean rewards;

see [62] and references therein. Subsequently, a unified framework for studying aforementioned

problem classes was provided in [63] by introducing a variation budget to bound the evolution

of mean rewards over the horizon of play. Several other forms of non-stationarity have also been

studied in the literature; these include formulations with rotting [64], recharging [65], and delay-

dependent rewards [66], among others (see [67] for a survey).

Aforementioned works are largely limited to the study of finite-armed bandit problems where

non-stationarity can be ascribed to changes in arm-means. In contrast, our work differs fundamen-

tally in that it is premised on an infinite-armed formulation with non-stationarity attributable to

an endogenous arm-reservoir. In a nutshell, while preceding work focuses on distributional shifts

in rewards given a fixed set of arms, we propose a new paradigm where the arm-reservoir itself

undergoes distributional shifts owing to possible “leakages,” which is functionally a very different

concept.

Bandits with infinitely many arms. These problems involve settings where an unlimited sup-

ply of arms is governed by some fixed distribution over an uncountable set of arm-types (possible
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mean rewards); a common reward statistic (usually the mean) uniquely characterizes each arm-

type. The infinite-armed bandit problem traces its roots to [38] where it was studied under the

Bernoulli reward setting with means distributed Uniformly on [0, 1]. More general reward and

reservoir distributions on [0, 1] have also been studied in subsequent works, see, e.g., [39, 40, 41,

42]. Our model differs from this line of work in that we only assume the reservoir to be finitely

supported and posit no distributional knowledge thereof, unlike cited references. Furthermore, the

distribution of arm-types is allowed to vary endogenously over the problem horizon in a manner

that may be unknown ex ante.

4.1.2 Outline of this chapter

A formal description of the model is provided in §4.2. §4.3 discusses reservoir distribution-

agnostic algorithms; two natural modes of endogeneity in the reservoir distribution are discussed

in §4.4 along with corresponding guarantees on achievable performance. §4.5 provides concluding

remarks. Proofs and ancillary results are delegated to Appendix C.

4.2 Problem formulation

Primitives. There are finitely many possible arm-types in the reservoir denoted by the col-

lection K; the vector 𝝁 := (`𝑘 : 𝑘 ∈ K) characterizes the mean reward (pairwise distinct) asso-

ciated with each. The decision maker (DM) only knows the cardinality of K; for simplicity of

exposition, we assume |K | = 2 in this work and index the two arm-types by “1” and “2,” i.e.,

K = {1, 2}. Without loss of generality, arm-type 1 is assumed “optimal” with a gap (or separation)

of Δ := `1 − `2 > 0 from the “inferior” type (arm-type 2); as we shall later see, Δ is an important

driver of the problem’s statistical complexity. DM must play one arm at each time 𝑡 ∈ {1, ..., 𝑛},

where 𝑛 denotes the horizon of play.

Reservoir access. The collection of arms to have been played at least once until time 𝑡 (inclu-

sive) is denoted by I𝑡 (with I0 := 𝜙). The set of available actions at 𝑡 is given byA𝑡 = I𝑡−1∪{new𝑡};

DM must either play an arm from I𝑡−1 or select the action “new𝑡” which corresponds to play-
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ing a new arm queried from the reservoir. A newly queried arm at time 𝑡 is optimal-typed with

probability 𝛼(𝑡) and inferior-typed otherwise (𝛼(𝑡) may potentially be random and endogenous,

unbeknown to DM; a detailed discussion is deferred to §4.4). Arm-types are private attributes

and remain unobservable throughout. Upon pulling an arm labeled 𝑖 (henceforth referred to as

arm 𝑖) for the 𝑗 th time, DM observes a [0, 1]-valued stochastic reward denoted by 𝑋𝑖, 𝑗 . The real-

ized rewards are independent across arms and time, and mean-preserving in time (not necessarily

identically distributed) keeping the arm fixed.

Admissible controls. A policy 𝜋 := (𝜋1, 𝜋2, ...) is an adaptive allocation rule that prescribes

at time 𝑡 an action 𝜋𝑡 (possibly randomized) fromA𝑡 . The collection of all observable information

until 𝑡 is given by the natural filtration F𝑡 := 𝜎
{
(𝜋𝑠)16𝑠6𝑡 ,

{(
𝑋𝑖, 𝑗

)
16 𝑗6𝑁𝑖 (𝑡) : 𝑖 ∈ I𝑡

}}
(with F0 :=

𝜙), where 𝑁𝑖 (𝑡) indicates the number of times arm 𝑖 is pulled until 𝑡. The cumulative regret of 𝜋

after 𝑛 plays is given by 𝑅𝜋𝑛 :=
∑𝑛
𝑡=1

(
`1 − 𝑋𝜋𝑡 ,𝑁𝜋𝑡 (𝑡)

)
and its cumulative pseudo-regret by R𝜋𝑛 :=∑𝑛

𝑡=1
(
`1 − `^(𝜋𝑡 )

)
, where ^ (𝜋𝑡) ∈ K encodes the type of arm 𝜋𝑡 ; note that both regret as well as

pseudo-regret are sample path-dependent by definition. DM is interested in the following stochastic

minimization problem

inf
𝜋∈Π
E𝑅𝜋𝑛 = inf

𝜋∈Π
E

[
𝑛∑︁
𝑡=1

(
`1 − 𝑋𝜋𝑡 ,𝑁𝜋𝑡 (𝑡)

)]
=
(†)

inf
𝜋∈Π
E

[
𝑛∑︁
𝑡=1

(
`1 − `^(𝜋𝑡 )

) ]
= inf
𝜋∈Π
ER𝜋𝑛 , (4.1)

where the infimum is over the class Π of non-anticipating policies, i.e., 𝜋𝑡 : F𝑡−1 → P (A𝑡) ; 𝑡 ∈

{1, 2, ...} (P (A𝑡) denotes the probability simplex on A𝑡), the expectations are w.r.t. all the possi-

ble sources of stochasticity in the problem (rewards, policy, and the reservoir distribution), and (†)

holds since cumulative regret and pseudo-regret are equal in expectation in the stochastic bandits

setting (follows from the Tower property of expectations).

4.3 Distribution-agnostic policies

As discussed in the introduction, our goal in this work is to investigate achievable regret

under algorithms that are agnostic to the reservoir distribution. To this end, we discuss two
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such algorithms; one based on the forced-exploration principle, and the other on optimism-under-

uncertainty.

4.3.1 A fixed-design policy based on forced exploration

The non-adaptive ETC (Explore-then-Commit) approach outlined below is predicated on ex

ante knowledge of the problem horizon 𝑛 (this is not a constraining factor since the exponential

doubling trick [51] can be used to make the algorithm horizon-free) and a gap parameter 𝛿 ∈ (0,Δ].

In what follows, a new arm refers to one that is freshly queried from the arm-reservoir.

Algorithm 10 ALG1(𝑛, 𝛿) (Non-adaptive ETC)

1: Input: Horizon of play 𝑛, gap parameter 𝛿.

2: Set 𝑚 =
⌈
2𝛿−2 log 𝑛

⌉
.

3: New epoch: Play 𝐾 = 2 new arms from the reservoir (call consideration set A = {1, 2}).

4: Observe rewards
(
𝑋1,1, 𝑋2,1

)
.

5: Play each arm 𝑚 − 1 times more; observe rewards
(
𝑋1, 𝑗 , 𝑋2, 𝑗 : 𝑗 = 2, ..., 𝑚

)
.

6: if
���∑𝑚

𝑗=1(𝑋1, 𝑗 − 𝑋2, 𝑗 )
��� < 𝛿𝑚 then

7: Permanently discard A and repeat from step (3).

8: else

9: Permanently commit to arm 𝑖∗ ∈ arg max𝑖∈A
{∑𝑚

𝑗=1 𝑋𝑖, 𝑗

}
.

Policy dynamics. The horizon is divided into epochs of length 2𝑚 = Θ (log 𝑛) each. In each

epoch, the algorithm re-initializes by querying the arm-reservoir for a pair of new arms, and playing

them𝑚 times each. Subsequently, the pair is classified as either “distinct” or “identical”-typed via a

hypothesis test (step 6 of Algorithm 10). If classified as distinct, the algorithm commits the residual

budget of play to the empirically superior arm among the two (with ties broken arbitrarily). On the

other hand, if the pair is classified as identical, the algorithm discards it permanently and ushers

in a new epoch. The entire process repeats until a distinct-typed pair is identified. ALG1(𝑛, 𝛿),

albeit non-adaptive to Δ, serves as an insightful basal motif for algorithm design and its operating
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principle will guide the development of the Δ-adaptive algorithm discussed next.

4.3.2 A UCB-based approach with adaptive resampling

In this section, we revisit the UCB-based policy in [21] for the static version of our problem

(constant 𝛼(𝑡)). This policy requires ex ante knowledge of the support of reward distributions for

parameter tuning. As a result, only “maximally supported” distributions such as Bernoulli(·), Uni-

form on [0, 1], Beta(·, ·), etc., are amenable to its performance guarantees; Uniform on [0, 0.5],

on the other hand, is not. We fix this issue by adding a centered Gaussian noise term to the

cumulative-difference-of-reward statistic in step (5) of Algorithm 11 to essentially create an un-

bounded support. This rids the algorithm of its dependence on assumptions pertaining to the sup-

port while preserving logarithmic regret in the statis setting. In fact, our modifications lead to a

sharper characterization of the scaling of regret w.r.t. Δ in the static setting (see Theorem 16, 18).

Remark. The original policy (Algorithm 2 in cited reference) uses a threshold that is distinct

from 4
√︁
𝑚 log𝑚 in step (5) of Algorithm 11; the choice of 4

√︁
𝑚 log𝑚 here aims to unify technical

exposition and facilitate a fair comparison of upper bounds.

Algorithm 11 ALG2 (Nested UCB)

1: New epoch (𝒕 ← 0): Play 𝐾 = 2 new arms from the reservoir (call set A = {1, 2}).

2: Observe rewards
(
𝑋1,1, 𝑋2,1

)
. Minimum per-arm sample count 𝑚 ← 1.

3: Generate an independent sample of a standard Gaussian distributionZ.

4: for 𝑡 ∈ {3, 4, ...} do

5: if
���Z +∑𝑚

𝑗=1
(
𝑋1, 𝑗 − 𝑋2, 𝑗

) ��� < 4
√︁
𝑚 log𝑚 then

6: Permanently discard A and repeat from step (1).

7: else

8: Play arm 𝑖𝑡 ∈ arg max𝑖∈A
(∑𝑁𝑖 (𝑡−1)

𝑗=1 𝑋𝑖, 𝑗

𝑁𝑖 (𝑡−1) +
√︃

2 log(𝑡−1)
𝑁𝑖 (𝑡−1)

)
.

9: Observe reward 𝑋𝑖𝑡 ,𝑁𝑖𝑡 (𝑡) .

10: if 𝑚 < min𝑖∈A 𝑁𝑖 (𝑡) then

11: 𝑚 ← 𝑚 + 1.
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Policy dynamics. ALG2 also has an episodic dynamic with exactly one pair of arms played

per episode. It is noteworthy that ALG2 plays arms according to UCB1 [10] in every episode

as opposed to playing them equally often until committing to the empirically superior one à la

ALG1(𝑛, 𝛿). Secondly, ALG2 never “commits” to an arm (or a consideration set); the implication

is that the algorithm will keep querying new consideration sets from the reservoir throughout the

horizon of play. Aforementioned adaptive resampling property is at the core of its horizon-free

nature.

Operating principle. At any time, ALG2 computes a threshold of O
(√︁
𝑚 log𝑚

)
for the

length-𝑚 cumulative-difference-of-reward process, where 𝑚 denotes the minimum sample count

among the two arms. If the envelope of said process is dominated by O
(√︁
𝑚 log𝑚

)
, the arms

are likely to belong to the same type (simultaneously optimal or inferior). The explanation stems

from the Law of the Iterated Logarithm (see [25], Theorem 8.5.2): a zero-drift length-𝑚 random

walk process has its envelope bounded by O
(√︁
𝑚 log log𝑚

)
. In the aforementioned scenario, the

algorithm discards the consideration set and subsequently, a new epoch is ushered in. This is done

to avoid the possibility of incurring linear regret in the event that the two arms are inferior, since it

is statistically impossible to distinguish a simultaneous-inferior consideration set from one where

both arms are optimal, in the absence of any auxiliary information such as the mean rewards as-

sociated with the two types. On the other hand, if the cumulative-difference-of-reward dominates

O
(√︁
𝑚 log𝑚

)
, the consideration set is likely to contain arms of distinct types and ALG2 continues

to run UCB1 on this set until the O
(√︁
𝑚 log𝑚

)
threshold is breached again.

Reason for introducing the Gaussian corruption. Centered Gaussian noise is added to the

cumulative-difference-of-reward process in step (5) of ALG2 to avoid the possibility of incurring

linear regret should the support of the reward distributions be a “very small” subset of [0, 1].

To illustrate this point, suppose that the rewards associated with the types are deterministic with

Δ < 2
√︁

2 log 2. Then, as soon as the algorithm queries a heterogeneous consideration set (one arm

optimal and the other inferior) and the per-arm sample count reaches 2, the cumulative-difference-

of-reward statistic will satisfy
���∑2

𝑗=1
(
𝑋1, 𝑗 − 𝑋2, 𝑗

) ��� = 2Δ < 4
√︁

2 log 2, resulting in the consideration
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set getting discarded. On the other hand, if the consideration set is homogeneous (both arms opti-

mal or inferior), the algorithm will still re-initialize within a finite number of samples in expectation

(again, owing to the Law of the Iterated Logarithm). This will force the algorithm to keep querying

new arms from the reservoir at rate that is linear in time, which is tantamount to incurring linear

regret in the horizon. The addition of centered Gaussian noise hedges against this risk by guar-

anteeing that the cumulative-difference-of-reward process essentially has an infinite support at all

times (even when the reward distributions might be degenerate). This rids the regret performance

of its fragility w.r.t. ex ante knowledge of the support of reward distributions. The next proposition

crystallizes this discussion.

Proposition 2 (Persistence of heterogeneous consideration sets) Let
{
𝑋𝑖, 𝑗 : 𝑗 = 1, 2, ...

}
be a col-

lection of independent samples from an arm of type 𝑖 (implying E
[
𝑋1, 𝑗 − 𝑋2, 𝑗

]
= Δ ∀ 𝑗 = 1, 2, ..).

LetZ be an independently generated standard Gaussian random variable. Then,

P
©«
⋂
𝑚>1


������Z + 𝑚∑︁

𝑗=1

(
𝑋1, 𝑗 − 𝑋2, 𝑗

) ������ > 4
√︁
𝑚 log𝑚

ª®¬ > Φ̄ ( 𝑓 (𝑇0))
2

=: 𝛽Δ > 0, (4.2)

where Φ̄(𝑣) := 1/
√

2𝜋
∫ ∞
𝑣
𝑒−𝑢

2/2𝑑𝑢 ∀ 𝑣 > 0 is the right-tail of the standard Gaussian CDF, 𝑇0 :=⌈(
64/Δ2) log2 (

64/Δ2)⌉, and 𝑓 (𝑥) := 𝑥 + 4
√︁
𝑥 log 𝑥 ∀ 𝑥 > 1.

Interpretation of 𝜷𝚫. First of all, note that 𝛽Δ admits a closed-form characterization in terms

of standard functions and satisfies 𝛽Δ > 0 when Δ > 0 with limΔ→0 𝛽Δ = 0. Secondly, 𝛽Δ depends

exclusively on Δ, and represents a lower bound on the probability that ALG2 will never discard

a consideration set containing arms of distinct types. This meta-result will be key to the upper

bounds stated in forthcoming sections.

4.4 Natural models of the arm-reservoir

The probability 𝛼(𝑡) of a newly queried arm at time 𝑡 being optimal-typed will likely vary over

the horizon of play in realistic settings. For example, in the context of crowdsourcing applications,
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the availability of “high quality” workers for a given task may depend on the prevailing population-

level perception of the platform. This could plausibly be a function of the age 𝑡 of the platform.

Alternatively, the reservoir may react to a query at time 𝑡 through its cumulative query count J𝑡 ;

this model may be suited to settings where, for example, acquiring a new resource is costly and

yields diminishing returns. We capture these aspects through two reservoir models described next.

Model 1 (Exogenous reservoir) (𝛼(𝑡) : 𝑡 = 1, 2, ...) is a non-increasing deterministic process with

𝛼(1) = 𝑐 ∈ (0, 1), evolving independently of the decision maker’s actions.

Model 2 (Endogenous reservoir) (𝛼(𝑡) : 𝑡 = 1, 2, ...) evolves as 𝛼(𝑡) = 𝑔 (J𝑡−1), where 𝑔 : N ∪

{0} ↦→ (0, 𝑐] is a non-increasing deterministic mapping with 𝑔(0) = 𝑐 ∈ (0, 1), and J𝑡 denotes

the number of reservoir queries until time 𝑡 (inclusive) with J0 := 0.

Our first result below states a necessary condition for achievability of sub-linear regret in the

two reservoir models.

Theorem 14 (Necessary conditions for “complete learning” in the two reservoir models) 1.

Under Model 1, if
∑∞
𝑡=1 𝛼(𝑡) < ∞, the expected cumulative regret of any policy 𝜋 grows lin-

early in the horizon of play, i.e., E𝑅𝜋𝑛 = Ω (Δ𝑛), where the Ω(·) only hides multiplicative

constants independent of Δ and 𝑛. Equivalently, a necessary condition for achieving sub-

linear regret in the problem is
∑∞
𝑡=1 𝛼(𝑡) = ∞.

2. Under Model 2, if
∑∞
𝑡=1 𝑔(𝑡) < ∞, the expected cumulative regret of any policy 𝜋 grows

linearly in the horizon of play, i.e., E𝑅𝜋𝑛 = Ω (Δ𝑛), where the Ω(·) only hides multiplicative

constants independent of Δ and 𝑛. Equivalently, a necessary condition for achieving sub-

linear regret in the problem is
∑∞
𝑡=1 𝑔(𝑡) = ∞.

The proof relies essentially on reduction to a full-information setting where the decision maker

observes the true mean of an arm immediately upon play (refer to Appendix C for details). The

optimal policy is this setting will keep querying the reservoir for new arms until it finds one with the
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optimal mean, which it will subsequently commit the rest of its sampling budget to. The conditions

stated in Theorem 14 are necessary for this policy to find an optimal arm within its lifetime. It is

only natural that the same condition is necessary for achievability of sub-linear regret in the general

setting where the decision maker only observes a noisy version of the true means. Surprisingly,

however, these conditions are also almost-sufficient for sub-linear regret (as forthcoming results

will show), and are therefore nearly-tight.

4.4.1 Exogenous reservoirs

The focus here will be on settings specified by Model 1. Theorem 14 establishes a nec-

essary condition of
∑∞
𝑡=1 𝛼(𝑡) = ∞ for achievability of sub-linear instance-dependent regret in

the problem. In what follows, we show a slightly more refined characteristic: Θ̃
(
𝑡−1) is, in

fact, a critical rate for “complete learning” in that policies achieving sub-linear regret exist if

𝛼(𝑡) = 𝜔 ((log 𝑡) /𝑡).

To elucidate the criticality of the Θ̃
(
𝑡−1) rate, it will be convenient to consider a parameteri-

zation of 𝛼(𝑡) given by 𝛼(𝑡) = 𝑐𝑡−𝛾, where 𝑐 is as specified in Model 1 and 𝛾 ∈ [0, 1) is a fixed

parameter. This parameterization offers meaningful insights as to the statistical complexity of the

problem w.r.t. 𝛾 and facilitates an easy comparison between the regret guarantees of the algorithms

discussed in §4.3. We will begin with an upper bound on the performance of Algorithm 10.

Theorem 15 (Upper bound for ALG1(𝑛, 𝛿)) Under Model 1 with 𝛼(𝑡) = 𝑐𝑡−𝛾, where 𝛾 ∈ [0, 1),

the expected cumulative regret of the policy 𝜋 given by Algorithm 10 satisfies

lim sup
𝑛→∞

E𝑅𝜋𝑛

(log 𝑛)
1

1−𝛾
6 24Δ

(
8
𝛿2𝑐

) 1
1−𝛾

𝔉

(⌈
𝛾

1 − 𝛾

⌉)
,

where 𝔉(·) denotes the Factorial function.

The proof of Theorem 15 involves technical details beyond the scope of a succinct discussion

here (refer to Appendix C for details). The above result establishes that the inflation in regret as

a result of asymptotically vanishing 𝛼(𝑡) is at most poly-logarithmic in the horizon for “slowly
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decaying” 𝛼(𝑡), until a sharp phase transition to linear regret occurs around the 𝛼(𝑡) = Θ̃
(
𝑡−1)

“critical rate” (see Theorem 14.1).

Remarks. (i) Logarithmic regret. Theorem 15 implies that E𝑅𝜋𝑛 = O
(
(𝑐Δ)−1 log 𝑛

)
when

𝛿 = Δ and the reservoir has no “leakage” (𝛾 = 0), consistent with known results for the static

version of the problem [21]. (ii) Improving sample-efficiency. Instead of discarding both arms

after step 6 of Algorithm 10, one can, in principle, discard only one arm, and query only one new

arm from the reservoir as replacement. The regret incurred by this modified policy will differ only

in absolute constants. The given design only intends to unify Algorithm 10 structurally with the

other algorithm discussed in §4.3 so as to facilitate an easy comparison between the performance

guarantees of the two algorithms.

Theorem 16 (Upper bound for ALG2) Under Model 1, the expected cumulative regret of the pol-

icy 𝜋 given by Algorithm 11 satisfies

lim sup
𝑛→∞

𝛼(𝑛)E𝑅𝜋𝑛
log 𝑛

6
8

Δ𝛽Δ
,

where 𝛽Δ is as defined in (4.2).

The proof is provided in Appendix C.

Discussion. It follows directly from the above result that 𝛼(𝑛) = 𝜔 (log 𝑛/𝑛) is sufficient for

ALG2 to be first-order optimal. On the other hand, we have already identified 𝛼(𝑛) = 𝜔 (1/𝑛) as

a necessary condition for the existence of a first-order optimal policy (Theorem 14.1). Thus, the

characterization of 𝑡−1 as a critical rate in Theorem 14.1 is sharp up to a logarithmic scaling term.

Remark. The scaling factor 𝛽Δ in Theorem 16 can, in fact, be shaved off entirely by introduc-

ing in ALG2 an initial “burn-in” phase (sub-linear and coercive in the horizon) during each epoch

à la ALG1(𝑛, 𝛿). This will, however, be achieved at the expense of ALG2’s anytime property.

Horizon-independence can then be restored by the use of a standard exponential doubling trick,

see, e.g., [51]. The resulting algorithm is not discussed in this paper for brevity.

Comparison of theoretical performance. To facilitate a direct comparison between the two
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upper bounds, it is conducive to consider 𝛼(𝑛) = 𝑐𝑛−𝛾 with 𝛾 < 1 in Theorem 16. Evidently,

ALG2 pays a heavy price for adaptivity to Δ which reflects in a polynomial Õ (𝑛𝛾) regret as com-

pared to the poly-logarithmic O
(
(log 𝑛)

1
1−𝛾

)
regret achievable under ALG1(𝑛, 𝛿). As to whether a

performance gap between Δ-aware and Δ-adaptive algorithms is fundamental in Model 1 remains

an open problem at the moment.

4.4.2 Endogenous reservoirs

The focus here will be on settings specified by Model 2. We will begin with an upper bound

on the theoretical performance of Algorithm 10. As before, it will be conducive to pivot to a

parametric family of mappings 𝑔(·).

Theorem 17 (Upper bound for ALG1(𝑛, 𝛿)) Under Model 2 with 𝑔(𝑢) = 𝑐(𝑢 + 1)−𝛾 for 𝑢 > 0,

where 𝛾 ∈ [0, 1) is a fixed parameter, the expected cumulative regret of the policy 𝜋 given by

Algorithm 10 satisfies

lim sup
𝑛→∞

E𝑅𝜋𝑛
log 𝑛

6

(
48Δ
𝛿2

) (
4
𝑐

) 1
1−𝛾

𝔉

(⌈
𝛾

1 − 𝛾

⌉)
,

where 𝔉(·) denotes the Factorial function.

The proof is provided in Appendix C. Evidently, unlike Theorem 15, only the multiplicative

factors of the logarithmic term in Theorem 17 blow up as 𝛾 approaches 1. Thus, under Model 2, a

sharper phase transition from logarithmic to linear regret occurs at the critical reservoir-depletion

rate of Θ̃
(
𝑢−1) , where 𝑢 is the cumulative query count. We next look at the performance guarantee

of ALG2 under Model 2.

Theorem 18 (Upper bound for ALG2) Under Model 2, the expected cumulative regret of the pol-

icy 𝜋 given by Algorithm 11 satisfies

lim sup
𝑛→∞

E𝑅𝜋𝑛
log 𝑛

6

(
16𝑐
Δ

) ∞∑︁
𝑘=0

exp ©«−𝛽Δ
𝑘−1∑︁
𝑗=0
𝑔 (2 𝑗)ª®¬ ,
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where 𝛽Δ is as defined in (4.2).

The proof is provided in Appendix C.

Remark. If the function 𝑔(·) is constant (equal to 𝑐), the upper bound in Theorem 18 is

bounded above by 32/(Δ𝛽Δ), which is independent of 𝑐. The implication is that achievable regret

in the problem depends on the probability 𝑐 of sampling optimal-typed arms from the reservoir,

surprisingly, only through sub-logarithmic terms when the reservoir is “static.” This is fundamen-

tally distinct from the upper bound in Theorem 17 which scales inversely with 𝑐 when 𝛾 = 0.

Comparison of theoretical performance. Akin to Theorem 16, the 𝛽Δ factor in Theorem 18

may also be shaved off, albeit at the expense of ALG2’s anytime property. Then, for 𝑔(𝑢) = 𝑐(𝑢 +

1)−𝛾, the upper bound in Theorem 18 is bounded above by (𝑐/Δ) (4/𝑐)1/(1−𝛾) 𝔉 (d𝛾/(1 − 𝛾)e).

This order matches (up to numerical factors) the upper bound in Theorem 17. However, as 𝛾

approaches 0, the upper bound in Theorem 17 approaches a scaling of 𝑐−1 while that in Theorem 18

is independent of 𝑐 in the limit. This observation suggests that there is merit to using ALG2 when

the reservoir is static or nearly-static, i.e., when it suffers a negligible leakage (or loss) of optimal

arms over time (or with increasing number of queries).

In a nutshell, the upper bounds in Theorem 17 and 18, combined with the lower bound in

Theorem 14.2, underscore the criticality of 𝑔(𝑢) = Θ̃
(
𝑢−1) for achievability of sub-linear regret

in the problem when there is attrition of optimal-typed arms from the reservoir with increasing

number of queries.

4.5 Concluding remarks

This chapter summarizes the contributions in [68] and attempts to develop a principled ap-

proach to understanding the impact of endogenous variations in countably many-armed bandit

problems through stylized arm-reservoir models. While we provide a sharp characterization of

critical reservoir-decay rates necessary for achieving sub-linear regret in two natural arm-reservoir

models, an important outstanding challenge is to identify more “reasonable” models of endogene-

ity and to design “robust” algorithms for such settings. To our best knowledge, the modeling
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and methodological approaches adopted in this work are novel; we hope these may guide future

research on some of the interesting directions emanating out of the results in this chapter.
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Appendix A: Appendix to Chapter 1

General organization

1. §A.1 provides closed-form expressions for the _∗𝜌 (\) and ℎ𝜌 (\) functions that appear in

Theorem 1 and Theorem 4.

2. §A.2 states three ancillary results that will be used in other proofs.

3. §A.3 provides the proof of Theorem 1 in the “large gap” regime.

4. §A.4 provides the proof of Theorem 1 in the “small gap” regime.

5. §A.5 provides the proof of Theorem 1 in the “moderate gap” regime.

6. §A.6 provides the proof of Theorem 3.

7. §A.7 provides the proof of Theorem 4.

8. §A.8 provides the proof of Theorem 5.

9. §A.9 provides the proof of Theorem 2.

10. §A.10 provides proofs for the ancillary results stated in Appendix A.2.

Additional notation. In the proofs that follow, d·e has been used to denote the “ceiling operator,”

i.e., d𝑥e = inf {a ∈ N : a > 𝑥} for any 𝑥 ∈ R. Similarly, b·c denotes the “floor operator,” i.e.,

b𝑥c = sup {a ∈ N : a 6 𝑥} for any 𝑥 ∈ R.
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A.1 Closed-form expressions for _∗𝜌 (\) and ℎ𝜌 (\)

_∗𝜌 (\) is given by:

_∗𝜌 (\) =
1
2
+

√√√√1
4
− 1(

1 +
√︃

1 + \
𝜌

)2 . (A.1)

ℎ𝜌 (\) is given by:

ℎ𝜌 (\) =
√
\

©«
1
2
−

√√√√1
4
− 1(

1 +
√︃

1 + \
𝜌

)2

ª®®®¬ . (A.2)

A.2 Auxiliary results

We will use the following version of the Chernoff-Hoeffding inequality [69] in our proofs:

Fact 1 Chernoff-Hoeffding bound. Suppose that
{
𝑌𝑖, 𝑗 : 𝑖 ∈ {1, 2}, 𝑗 ∈ N

}
is a collection of in-

dependent, zero-mean random variables such that ∀ 𝑖 ∈ {1, 2}, 𝑗 ∈ N, 𝑌𝑖, 𝑗 ∈ [𝑐𝑖, 1 + 𝑐𝑖] almost

surely, for some fixed 𝑐1, 𝑐2 6 0. Then, for any 𝑚1, 𝑚2 ∈ N and 𝛼 > 0,

P

(∑𝑚1
𝑗=1𝑌1, 𝑗

𝑚1
−

∑𝑚2
𝑗=1𝑌2, 𝑗

𝑚2
> 𝛼

)
6 exp

(
−2𝛼2𝑚1𝑚2
𝑚1 + 𝑚2

)
.

Proof. Let [𝑛] := {1, ..., 𝑛} for 𝑛 ∈ N. The Chernoff-Hoeffding inequality in its standard

form states that for independent, zero-mean, bounded random variables
{
𝑍 𝑗 : 𝑗 ∈ [𝑛]

}
with 𝑍 𝑗 ∈[

𝑎 𝑗 , 𝑏 𝑗
]
∀ 𝑗 ∈ [𝑛], the following holds for any Y > 0,

P
©«
𝑛∑︁
𝑗=1

𝑍 𝑗 > Y𝑛
ª®¬ 6 exp ©« −2Y2𝑛2∑𝑛

𝑗=1
(
𝑏 𝑗 − 𝑎 𝑗

)2
ª®¬ . (A.3)

The desired form of the inequality can be obtained by making the following substitutions in (A.3):

𝑛 ← 𝑚1 + 𝑚2; 𝑍 𝑗 ←
𝑌1, 𝑗
𝑚1

, 𝑎 𝑗 ← 𝑐1
𝑚1

, 𝑏 𝑗 ← 1+𝑐1
𝑚1

for 𝑗 ∈ [𝑚1]; 𝑍 𝑗 ←
−𝑌2, 𝑗−𝑚1
𝑚2

, 𝑎 𝑗 ← −(1+𝑐2)
𝑚2

,
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𝑏 𝑗 ← −𝑐2
𝑚2

for 𝑗 ∈ [𝑚1 + 𝑚2] \ [𝑚1]; and Y ← 𝛼
𝑚1+𝑚2

, in that order. �

In addition, we will use in the proof of Theorem 3 the following two properties of the Beta

distribution:

Fact 2 If \𝑘 , \̃𝑘 are Beta(1, 𝑘 + 1)-distributed, and \𝑘 , \̃𝑙 are independent ∀ 𝑘, 𝑙 ∈ N ∪ {0}, then

P
(
\𝑘 > \̃𝑙

)
=

𝑙 + 1
𝑘 + 𝑙 + 2

for any 𝑘, 𝑙 ∈ N ∪ {0}.

Fact 3 If \𝑘 , \̃𝑘 are Beta(𝑘 + 1, 1)-distributed, and \𝑘 , \̃𝑙 are independent ∀ 𝑘, 𝑙 ∈ N ∪ {0}, then

P
(
\𝑘 > \̃𝑙

)
=

𝑘 + 1
𝑘 + 𝑙 + 2

for any 𝑘, 𝑙 ∈ N ∪ {0}.

The proofs of Fact (2) and Fact (3) are elementary and relegated to Appendix A.10.

A.3 Proof of Theorem 1 in the “large gap” regime

The proof is straightforward in this regime. We know that for 𝜌 > 1, E𝑅𝜋𝑛 6 𝐶𝜌
(

log 𝑛
Δ
+ Δ
𝜌−1

)
for some absolute constant 𝐶 (see [4], Theorem 7). Since E𝑅𝜋𝑛 = ΔE [𝑛 − 𝑁𝑖∗ (𝑛)], it follows that

E
[
𝑛−𝑁𝑖∗ (𝑛)

𝑛

]
= 𝑜(1) in the “large gap” regime. Using Markov’s inequality, we then conclude that

𝑛−𝑁𝑖∗ (𝑛)
𝑛

= 𝑜𝑝 (1), or equivalently, lim𝑛→∞
𝑁𝑖∗ (𝑛)
𝑛

= 1. Results for “small” and “moderate” gaps are

provided separately in Appendix A.4 and Appendix A.5 respectively. �

A.4 Proof of Theorem 1 in the “small gap” regime

Without loss of generality, suppose that arm 1 is optimal, i.e., `1 > `2. We will show that for

any 𝜖 > 0, it follows that lim𝑛→∞ P
(
𝑁1 (𝑛)
𝑛
> 1

2 + 𝜖
)
= 0. Then, since arm 2 is inferior, an identical

result would naturally hold for it as well. Combining the two would prove our assertion as desired.

To this end, pick an arbitrary 𝜖 ∈ (0, 1/2), define 𝑢(𝑛) :=
⌈(

1
2 + 𝜖

)
𝑛

⌉
, and consider the following:
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𝑁1(𝑛) 6 𝑢(𝑛) +
𝑛∑︁

𝑡=𝑢(𝑛)+1
1 {𝜋𝑡 = 1, 𝑁1(𝑡 − 1) > 𝑢(𝑛)} (this is always true)

= 𝑢(𝑛) +
𝑛−1∑︁
𝑡=𝑢(𝑛)

1 {𝜋𝑡+1 = 1, 𝑁1(𝑡) > 𝑢(𝑛)}

6 𝑢(𝑛) +
𝑛−1∑︁
𝑡=𝑢(𝑛)

1 {𝜋𝑡+1 = 1, 𝑁1(𝑡) > 𝑢(𝑡)}

6 𝑢(𝑛) +
𝑛−1∑︁
𝑡=𝑢(𝑛)

1

{
�̄�1(𝑡) − �̄�2(𝑡) >

√︁
𝜌 log 𝑡

(
1√︁
𝑁2(𝑡)

− 1√︁
𝑁1(𝑡)

)
, 𝑁1(𝑡) > 𝑢(𝑡)

}
= 𝑢(𝑛) +

𝑛−1∑︁
𝑡=𝑢(𝑛)

1

{
𝑌1(𝑡) − 𝑌2(𝑡) >

√︁
𝜌 log 𝑡

(
1√︁
𝑁2(𝑡)

− 1√︁
𝑁1(𝑡)

)
− Δ, 𝑁1(𝑡) > 𝑢(𝑡)

}
︸                                                                                                ︷︷                                                                                                ︸

=:𝑍 (𝑛)

,

(A.4)

where 𝑌𝑖 (𝑡) :=
∑𝑁𝑖 (𝑡)
𝑗=1 𝑌𝑖, 𝑗

𝑁𝑖 (𝑡) with 𝑌𝑖, 𝑗 := 𝑋𝑖, 𝑗 − `𝑖, 𝑖 ∈ {1, 2}, 𝑗 ∈ N. Clearly, 𝑌𝑖, 𝑗 ’s are independent,

zero-mean, and 𝑌𝑖, 𝑗 ∈ [−`𝑖, 1 − `𝑖] ∀ 𝑖 ∈ {1, 2}, 𝑗 ∈ N.

A.4.1 An almost sure lower bound on the arm-sampling rates

As a meta-result, we will first show that 𝑁𝑖 (𝑛)/𝑛, for both arms 𝑖 ∈ {1, 2}, is bounded away

from 0 by a positive constant, almost surely. To this end, consider 𝑛 large enough such that for the

𝜖 selected earlier, we have Δ <
√︃
𝜌 log 𝑛
𝑛

(
1√

1/2−𝜖
− 1√

1/2+𝜖

)
; this is possible since Δ = 𝑜

(√︃
log 𝑛
𝑛

)
in

the “small gap” regime. Working with a large enough 𝑛will allow us to use the Chernoff-Hoeffding

bound (Fact 1) in step (★) in the forthcoming analysis. Observe from (A.4) that
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E𝑍 (𝑛)

=

𝑛−1∑︁
𝑡=𝑢(𝑛)

P

(
𝑌1(𝑡) − 𝑌2(𝑡) >

√︁
𝜌 log 𝑡

(
1√︁
𝑁2(𝑡)

− 1√︁
𝑁1(𝑡)

)
− Δ, 𝑁1(𝑡) > 𝑢(𝑡)

)
=
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𝑡=𝑢(𝑛)

𝑡−1∑︁
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P

(∑𝑚
𝑗=1𝑌1, 𝑗

𝑚
−

∑𝑡−𝑚
𝑗=1 𝑌2, 𝑗

𝑡 − 𝑚 >
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𝜌 log 𝑡

(
1

√
𝑡 − 𝑚

− 1
√
𝑚

)
− Δ, 𝑁1(𝑡) = 𝑚

)
6
(★)

𝑛−1∑︁
𝑡=𝑢(𝑛)
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P
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𝜌 log 𝑡
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1

√
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− 1
√
𝑚
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− Δ
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6
(†)
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𝑡−1∑︁
𝑚=𝑢(𝑡)

exp
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−2𝜌
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√︂
𝑚

𝑡
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𝑡
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𝑚
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𝑡
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𝑚
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𝑡
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6
(‡)
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𝑡=𝑢(𝑛)
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exp
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log 𝑡
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exp
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exp
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−2𝜌

(
1 −

√︁
1 − 4𝜖2

)
log 𝑡

]
exp

[
4Δ

√︁
𝜌𝑡 log 𝑡

]
6

𝑛−1∑︁
𝑡=𝑢(𝑛)

𝑡−1∑︁
𝑚=𝑢(𝑡)

exp
[
−2𝜌

(
1 −

√︁
1 − 4𝜖2

)
log 𝑡

]
exp

[
4Δ

√︁
𝜌𝑛 log 𝑛

]
6 exp

[
4Δ

√︁
𝜌𝑛 log 𝑛

] 𝑛−1∑︁
𝑡=𝑢(𝑛)

𝑡
−
(
2𝜌−1−2𝜌

√
1−4𝜖2

)

= exp
[
𝑜

(
4
√
𝜌 log 𝑛

) ] 𝑛−1∑︁
𝑡=𝑢(𝑛)

𝑡
−
(
2𝜌−1−2𝜌

√
1−4𝜖2

) (
∵ Δ = 𝑜

(√︂
log 𝑛
𝑛

))
6 𝑛

1
2−𝜖

𝑛−1∑︁
𝑡=𝑢(𝑛)

𝑡
−
(
2𝜌−1−2𝜌

√
1−4𝜖2

)
, (A.5)

where (†) follows after an application of the Chernoff-Hoeffding bound (Fact 1), (‡) since 𝑚
𝑡

(
1 − 𝑚

𝑡

)
6

1
4 − 𝜖

2 on the interval {𝑚 : 𝑢(𝑡) 6 𝑚 6 𝑡 − 1}, and the last inequality in (A.5) holds for 𝑛 large
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enough. Now consider an arbitrary 𝛿 > 0. Then,

P (𝑁1(𝑛) − 𝑢(𝑛) > 𝛿𝑛) 6 P (𝑍 (𝑛) > 𝛿𝑛) (using (A.4))

6
E𝑍 (𝑛)
𝛿𝑛

(Markov’s inequality)

6

(
𝑛−( 1

2+𝜖)
𝛿

)
𝑛−1∑︁
𝑡=𝑢(𝑛)

𝑡
−
(
2𝜌−1−2𝜌

√
1−4𝜖2

)
(using (A.5))

=⇒ P

(
𝑁1(𝑛)
𝑛
>

1
2
+ 𝜖 + 𝛿 + 1

𝑛

)
6

(
𝑛−( 1

2+𝜖)
𝛿

)
𝑛−1∑︁
𝑡=d 𝑛2 e

𝑡
−
(
2𝜌−1−2𝜌

√
1−4𝜖2

)
. (A.6)

Define 𝑔(𝜌, 𝜖) := 1
2 + 𝜖 + 2𝜌 − 1 − 2𝜌

√
1 − 4𝜖2. Since 𝜌 > 1 is fixed, and 𝜖 ∈ (0, 1/2) is arbitrary,

it is possible to push 𝜖 close to 1/2 to ensure that 𝑔(𝜌, 𝜖) > 2. Therefore, ∃ 𝜖𝜌 ∈ (0, 1/2) s.t.

𝑔(𝜌, 𝜖) > 2 for 𝜖 > 𝜖𝜌. Plugging in 𝜖 = 𝜖𝜌 in (A.6), we obtain

P

(
𝑁1(𝑛)
𝑛
>

1
2
+ 𝜖𝜌 + 𝛿 +

1
𝑛

)
6

(
22𝜌−1

𝛿

)
𝑛−(𝑔(𝜌,𝜖𝜌)−1) .

Note that since 𝜖𝜌 < 1/2, ∃ 𝜖′𝜌 < 1/2 s.t. 𝜖𝜌 +1/𝑛 < 𝜖′𝜌 for 𝑛 large enough, i.e., the following holds

for all 𝑛 large enough:

P

(
𝑁1(𝑛)
𝑛
>

1
2
+ 𝜖′𝜌 + 𝛿

)
6

(
22𝜌−1

𝛿

)
𝑛−(𝑔(𝜌,𝜖𝜌)−1) .

Finally, since 𝛿 > 0 is arbitrary, and 𝑔
(
𝜌, 𝜖𝜌

)
> 2, it follows from the Borel-Cantelli Lemma that

lim sup
𝑛→∞

𝑁1(𝑛)
𝑛
6

1
2
+ 𝜖′𝜌 < 1 w.p. 1.

By assumption, arm 2 is inferior; the above result thus holds, in fact, for both the arms (An almost

identical proof can be replicated for rigor). Therefore, we conclude

lim inf
𝑛→∞

𝑁𝑖 (𝑛)
𝑛
>

1
2
− 𝜖 ′𝜌 > 0 w.p. 1 ∀ 𝑖 ∈ {1, 2}. (A.7)
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A.4.2 Closing the loop

In this part of the proof, we will leverage (A.7) to finally show that 𝑁𝑖 (𝑛)/𝑛 = 1/2 + 𝑜𝑝 (1) for

𝑖 ∈ {1, 2}. To this end, recall from (A.4) that

E𝑍 (𝑛)

=

𝑛−1∑︁
𝑡=𝑢(𝑛)

P

(
𝑌1(𝑡) − 𝑌2(𝑡) >

√︁
𝜌 log 𝑡

(
1√︁
𝑁2(𝑡)

− 1√︁
𝑁1(𝑡)

)
− Δ, 𝑁1(𝑡) > 𝑢(𝑡)

)

6
𝑛−1∑︁
𝑡=𝑢(𝑛)

P
©«𝑌1(𝑡) − 𝑌2(𝑡) >

√︂
𝜌 log 𝑡
𝑡

©«
1√︃

1
2 − 𝜖

− 1√︃
1
2 + 𝜖

ª®®¬ − Δ, 𝑁1(𝑡) > 𝑢(𝑡)
ª®®¬

6
𝑛−1∑︁
𝑡=𝑢(𝑛)

P
©«𝑌1(𝑡) − 𝑌2(𝑡) >

√︂
𝜌 log 𝑡
𝑡

©«
1√︃

1
2 − 𝜖

− 1√︃
1
2 + 𝜖

ª®®¬ − Δ
ª®®¬

=

𝑛−1∑︁
𝑡=𝑢(𝑛)

P

©«
√︂

𝑡

𝜌 log 𝑡
(
𝑌1(𝑡) − 𝑌2(𝑡)

)
︸                         ︷︷                         ︸

=:𝑊𝑡

>

√︂
2

1 − 2𝜖
−

√︂
2

1 + 2𝜖
− Δ

√︂
𝑡

𝜌 log 𝑡

ª®®®®®¬
6

𝑛−1∑︁
𝑡=𝑢(𝑛)

P

(
𝑊𝑡 >

1
√

1 − 2𝜖
− 1
√

1 + 2𝜖

)
, (A.8)
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for 𝑛 large enough; the last inequality following since Δ = 𝑜

(√︃
log 𝑛
𝑛

)
and 𝑢(𝑛) > 𝑛/2. Now,

|𝑊𝑡 |

6

√︂
𝑡

𝜌 log 𝑡
©«
������
∑𝑁1 (𝑡)
𝑗=1 𝑌1, 𝑗

𝑁1(𝑡)

������ +
������
∑𝑁2 (𝑡)
𝑗=1 𝑌2, 𝑗

𝑁2(𝑡)

������ª®¬
=

√︄
2𝑡

𝜌 log 𝑡
©«
√︄

log log 𝑁1(𝑡)
𝑁1(𝑡)

������
∑𝑁1 (𝑡)
𝑗=1 𝑌1, 𝑗√︁

2𝑁1(𝑡) log log 𝑁1(𝑡)

������ +
√︄

log log 𝑁2(𝑡)
𝑁2(𝑡)

������
∑𝑁2 (𝑡)
𝑗=1 𝑌2, 𝑗√︁

2𝑁2(𝑡) log log 𝑁2(𝑡)

������ª®¬
6

√︄
2𝑡

𝜌 log 𝑡
©«
√︄

log log 𝑡
𝑁1(𝑡)

������
∑𝑁1 (𝑡)
𝑗=1 𝑌1, 𝑗√︁

2𝑁1(𝑡) log log 𝑁1(𝑡)

������ +
√︄

log log 𝑡
𝑁2(𝑡)

������
∑𝑁2 (𝑡)
𝑗=1 𝑌2, 𝑗√︁

2𝑁2(𝑡) log log 𝑁2(𝑡)

������ª®¬
=

√︄
2 log log 𝑡
𝜌 log 𝑡

©«
√︂

𝑡

𝑁1(𝑡)

������
∑𝑁1 (𝑡)
𝑗=1 𝑌1, 𝑗√︁

2𝑁1(𝑡) log log 𝑁1(𝑡)

������ +
√︂

𝑡

𝑁2(𝑡)

������
∑𝑁2 (𝑡)
𝑗=1 𝑌2, 𝑗√︁

2𝑁2(𝑡) log log 𝑁2(𝑡)

������ª®¬ . (A.9)

We know that 𝑁𝑖 (𝑡), for both arms 𝑖 ∈ {1, 2}, can be lower bounded path-wise by a determin-

istic monotone increasing function of 𝑡, say 𝑓 (𝑡), that grows to +∞ as 𝑡 → ∞. This is a trivial

consequence of the structure of canonical UCB (Algorithm 1), and the fact that the rewards are

uniformly bounded. We therefore have for any 𝑖 ∈ {1, 2} that������
∑𝑁𝑖 (𝑡)
𝑗=1 𝑌𝑖, 𝑗√︁

2𝑁𝑖 (𝑡) log log 𝑁𝑖 (𝑡)

������ 6 sup
𝑚> 𝑓 (𝑡)

�����
∑𝑚
𝑗=1𝑌𝑖, 𝑗√︁

2𝑚 log log𝑚

����� .
For a fixed arm 𝑖 ∈ {1, 2},

{
𝑌𝑖, 𝑗 : 𝑗 ∈ N

}
is a collection of i.i.d. random variables with E𝑌𝑖,1 = 0

and Var
(
𝑌𝑖,1

)
= Var

(
𝑋𝑖,1

)
6 1. Also, 𝑓 (𝑡) is monotone increasing and coercive in 𝑡. Therefore,

the Law of the Iterated Logarithm (see [25], Theorem 8.5.2) implies

lim sup
𝑡→∞

������
∑𝑁𝑖 (𝑡)
𝑗=1 𝑌𝑖, 𝑗√︁

2𝑁𝑖 (𝑡) log log 𝑁𝑖 (𝑡)

������ 6 1 w.p. 1 ∀ 𝑖 ∈ {1, 2}. (A.10)
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Using (A.7), (A.9) and (A.10), we conclude that

lim
𝑡→∞

𝑊𝑡 = 0 w.p. 1. (A.11)

Now consider an arbitrary 𝛿 > 0. Then,

P (𝑁1(𝑛) − 𝑢(𝑛) > 𝛿𝑛) 6 P (𝑍 (𝑛) > 𝛿𝑛) (using (A.4))

6
E𝑍 (𝑛)
𝛿𝑛

(Markov’s inequality)

6
1
𝛿𝑛

𝑛−1∑︁
𝑡=𝑢(𝑛)

P

(
𝑊𝑡 >

1
√

1 − 2𝜖
− 1
√

1 + 2𝜖

)
. (using (A.8))

6
1
𝛿

sup
𝑡>𝑛/2
P

(
𝑊𝑡 >

1
√

1 − 2𝜖
− 1
√

1 + 2𝜖

)
=⇒ P

(
𝑁1(𝑛)
𝑛
>

1
2
+ 𝜖 + 𝛿 + 1

𝑛

)
6

1
𝛿

sup
𝑡>𝑛/2
P

(
𝑊𝑡 >

1
√

1 − 2𝜖
− 1
√

1 + 2𝜖

)
.

Since 𝜖, 𝛿 > 0 are arbitrary, it follows that for 𝑛 large enough,

P

(
𝑁1(𝑛)
𝑛
>

1
2
+ 2(𝜖 + 𝛿)

)
6

1
𝛿

sup
𝑡>𝑛/2
P

(
𝑊𝑡 >

1
√

1 − 2𝜖
− 1
√

1 + 2𝜖

)
. (A.12)

Using (A.11) and (A.12), we conclude that for any arbitrary 𝜖, 𝛿 > 0,

lim sup
𝑛→∞

P

(
𝑁1(𝑛)
𝑛
>

1
2
+ 2(𝜖 + 𝛿)

)
6

1
𝛿

lim sup
𝑛→∞

P

(
𝑊𝑛 >

1
√

1 − 2𝜖
− 1
√

1 + 2𝜖

)
= 0.

It therefore follows that for any 𝜖′ > 0, lim𝑛→∞ P
(
𝑁1 (𝑛)
𝑛
> 1

2 + 𝜖
′
)
= 0; equivalently, we have

lim𝑛→∞ P
(
𝑁2 (𝑛)
𝑛
6 1

2 − 𝜖
′
)
= 0. Since arm 2 is inferior by assumption, it naturally holds that

lim𝑛→∞ P
(
𝑁2 (𝑛)
𝑛
> 1

2 + 𝜖
′
)
= 0 (The steps in A.4.2 can be replicated near-identically for rigor).

Thus, the stated assertion 𝑁𝑖 (𝑛)
𝑛

𝑝
−−−−→
𝑛→∞

1
2 ∀ 𝑖 ∈ {1, 2}, follows. �
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A.5 Proof of Theorem 1 in the “moderate gap” regime

Firstly, note that the _∗𝜌 (\) that solves (1.2), satisfies the following properties: (i) Continuous

and monotone increasing in \ > 0, (ii) _∗𝜌 (\) > 1/2 for all \ > 0, (iii) _∗𝜌 (0) = 1/2 and _∗𝜌 (\) → 1

as \ →∞.

Secondly, because we are only interested in asymptotics, the Δ ∼
√︃
\ log 𝑛
𝑛

condition is as good

as Δ =

√︃
\ log 𝑛
𝑛

, since for any arbitrarily small 𝜖′ > 0, Δ ∈
(√︃
(\−𝜖 ′) log 𝑛

𝑛
,

√︃
(\+𝜖 ′) log 𝑛

𝑛

)
for 𝑛 large

enough; the stated assertion would follow in the limit as 𝜖′ approaches 0. In what follows, we will

therefore assume for readability of the proof, and without loss of generality, that Δ =

√︃
\ log 𝑛
𝑛

.

Thirdly, without loss of generality, suppose that arm 1 is optimal, i.e., `1 > `2.

A.5.1 Focusing on arm 1

Consider an arbitrary 𝜖 ∈
(
0, 1 − _∗𝜌 (\)

)
, and define 𝑢(𝑛) :=

⌈(
_∗𝜌 (\) + 𝜖

)
𝑛

⌉
. We know that

𝑁1(𝑛) 6 𝑢(𝑛) +
𝑛∑︁

𝑡=𝑢(𝑛)+1
1 {𝜋𝑡 = 1, 𝑁1(𝑡 − 1) > 𝑢(𝑛)} (this is always true)

= 𝑢(𝑛) +
𝑛−1∑︁
𝑡=𝑢(𝑛)

1 {𝜋𝑡+1 = 1, 𝑁1(𝑡) > 𝑢(𝑛)}

6 𝑢(𝑛) +
𝑛−1∑︁
𝑡=𝑢(𝑛)

1 {𝜋𝑡+1 = 1, 𝑁1(𝑡) > 𝑢(𝑡)}

6 𝑢(𝑛) +
𝑛−1∑︁
𝑡=𝑢(𝑛)

1

{
�̄�1(𝑡) − �̄�2(𝑡) >

√︁
𝜌 log 𝑡

(
1√︁
𝑁2(𝑡)

− 1√︁
𝑁1(𝑡)

)
, 𝑁1(𝑡) > 𝑢(𝑡)

}
= 𝑢(𝑛) +

𝑛−1∑︁
𝑡=𝑢(𝑛)

1

{
𝑌1(𝑡) − 𝑌2(𝑡) >

√︁
𝜌 log 𝑡

(
1√︁
𝑁2(𝑡)

− 1√︁
𝑁1(𝑡)

)
− Δ, 𝑁1(𝑡) > 𝑢(𝑡)

}
︸                                                                                                ︷︷                                                                                                ︸

=:𝑍 (𝑛)

,

(A.13)
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where 𝑌𝑖 (𝑡) :=
∑𝑁𝑖 (𝑡)
𝑗=1 𝑌𝑖, 𝑗

𝑁𝑖 (𝑡) with 𝑌𝑖, 𝑗 := 𝑋𝑖, 𝑗 − `𝑖, 𝑖 ∈ {1, 2}, 𝑗 ∈ N. Clearly, 𝑌𝑖, 𝑗 ’s are independent,

zero-mean, and 𝑌𝑖, 𝑗 ∈ [−`𝑖, 1 − `𝑖] ∀ 𝑖 ∈ {1, 2}, 𝑗 ∈ N.

An almost sure lower bound on the arm-sampling rates

Consider 𝑛 large enough such that
√︃

log 𝑛
𝑛

is monotone decreasing in 𝑛 (𝑛 > 3 suffices). This

will enable the inequality in step (†) below. From (A.13), we have

E𝑍 (𝑛)

=

𝑛−1∑︁
𝑡=𝑢(𝑛)

P

(
𝑌1(𝑡) − 𝑌2(𝑡) >

√︁
𝜌 log 𝑡

(
1√︁
𝑁2(𝑡)

− 1√︁
𝑁1(𝑡)

)
− Δ, 𝑁1(𝑡) > 𝑢(𝑡)

)
=

𝑛−1∑︁
𝑡=𝑢(𝑛)

P

(
𝑌1(𝑡) − 𝑌2(𝑡) >

√︁
𝜌 log 𝑡

(
1√︁
𝑁2(𝑡)

− 1√︁
𝑁1(𝑡)

)
−

√︂
\ log 𝑛
𝑛

, 𝑁1(𝑡) > 𝑢(𝑡)
)

6
(†)

𝑛−1∑︁
𝑡=𝑢(𝑛)

P

(
𝑌1(𝑡) − 𝑌2(𝑡) >

√︁
𝜌 log 𝑡

(
1√︁
𝑁2(𝑡)

− 1√︁
𝑁1(𝑡)

)
−

√︂
\ log 𝑡
𝑡

, 𝑁1(𝑡) > 𝑢(𝑡)
)

=

𝑛−1∑︁
𝑡=𝑢(𝑛)

P

(
𝑌1(𝑡) − 𝑌2(𝑡) >

√︁
𝜌 log 𝑡

(
1√︁
𝑁2(𝑡)

− 1√︁
𝑁1(𝑡)

−

√︄
\

𝜌𝑡

)
, 𝑁1(𝑡) > 𝑢(𝑡)

)
(A.14)

6
𝑛−1∑︁
𝑡=𝑢(𝑛)

𝑡−1∑︁
𝑚=𝑢(𝑡)

P

(∑𝑚
𝑗=1𝑌1, 𝑗

𝑚
−

∑𝑡−𝑚
𝑗=1 𝑌2, 𝑗

𝑡 − 𝑚 >
√︁
𝜌 log 𝑡

(
1

√
𝑡 − 𝑚

− 1
√
𝑚
−

√︄
\

𝜌𝑡

))
. (A.15)

Notice that in the interval 𝑚 ∈ [𝑢(𝑡), 𝑡 − 1],

1
√
𝑡 − 𝑚

− 1
√
𝑚
−

√︂
\

2𝑡
>

1√︁
𝑡 − 𝑢(𝑡)

− 1√︁
𝑢(𝑡)
−

√︄
\

𝜌𝑡
>

1
√
𝑡

(
1√︁

1 − _∗𝜌 (\) − 𝜖
− 1√︁

_∗𝜌 (\) + 𝜖
−

√︄
\

𝜌

)
> 0,
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where the final inequality follows since _∗𝜌 (\) is the solution to (1.2). We can therefore apply the

Chernoff-Hoeffding bound (Fact 1) to (A.15) to conclude

E𝑍 (𝑛)

6
𝑛−1∑︁
𝑡=𝑢(𝑛)

𝑡−1∑︁
𝑚=𝑢(𝑡)

exp
−2𝜌 log 𝑡

(
1

√
𝑡 − 𝑚

− 1
√
𝑚
−

√︄
\

𝜌𝑡

)2
𝑚(𝑡 − 𝑚)

𝑡


=

𝑛−1∑︁
𝑡=𝑢(𝑛)

𝑡−1∑︁
𝑚=𝑢(𝑡)

exp
−2𝜌 log 𝑡

(√︂
𝑚

𝑡
−

√︂
1 − 𝑚

𝑡
−

√︄
\

𝜌

√︂
𝑚

𝑡

(
1 − 𝑚

𝑡

))2
=

𝑛−1∑︁
𝑡=𝑢(𝑛)

𝑡−1∑︁
𝑚=𝑢(𝑡)

exp
[
−2𝜌 log 𝑡

(
𝑓

(𝑚
𝑡

))2
]
, (A.16)

where the function 𝑓 (𝑥) :=
√
𝑥 −
√

1 − 𝑥 −
√︁
\𝑥(1 − 𝑥)/𝜌. Notice that 𝑓 (𝑥) is monotone increasing

over the interval (1/2, 1) (∵ \, 𝜌 > 0). Also, note that 1/2 < _∗𝜌 (\) + 𝜖 < 𝑚/𝑡 < 1 in (A.16).

Thus, we have in (A.16) that 𝑓
(
𝑚
𝑡

)
> min𝑥∈[_∗𝜌 (\)+𝜖,1) 𝑓 (𝑥) = 𝑓

(
_∗𝜌 (\) + 𝜖

)
. An expression for

𝑓

(
_∗𝜌 (\) + 𝜖

)
is provided in (A.19) below. Observe that 𝑓

(
_∗𝜌 (\) + 𝜖

)
> 0; this follows since

_∗𝜌 (\) is the solution to (1.2). Using these facts in (A.16), we conclude

E𝑍 (𝑛) 6
𝑛−1∑︁
𝑡=𝑢(𝑛)

𝑡−1∑︁
𝑚=𝑢(𝑡)

exp
−2𝜌 log 𝑡

(
min

𝑥∈[_∗𝜌 (\)+𝜖,1)
𝑓 (𝑥)

)2
=

𝑛−1∑︁
𝑡=𝑢(𝑛)

𝑡−1∑︁
𝑚=𝑢(𝑡)

exp
[
−2𝜌 log 𝑡

(
𝑓

(
_∗𝜌 (\) + 𝜖

))2
]

6
𝑛−1∑︁
𝑡=𝑢(𝑛)

𝑡1−2𝜌( 𝑓 (_∗𝜌 (\)+𝜖))2

=

𝑛−1∑︁
𝑡=d(_∗𝜌 (\)+𝜖)𝑛e

𝑡1−2𝜌( 𝑓 (_∗𝜌 (\)+𝜖))2 . (A.17)
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Now consider an arbitrary 𝛿 > 0. We then have

P (𝑁1(𝑛) − 𝑢(𝑛) > 𝛿𝑛) 6 P (𝑍 (𝑛) > 𝛿𝑛) (using (A.13))

6
E𝑍 (𝑛)
𝛿𝑛

(Markov’s inequality)

=⇒ P
(
𝑁1(𝑛) >

⌈(
_∗𝜌 (\) + 𝜖

)
𝑛

⌉
+ 𝛿𝑛

)
6

1
𝛿𝑛

𝑛−1∑︁
𝑡=d(_∗𝜌 (\)+𝜖)𝑛e

𝑡1−2𝜌( 𝑓 (_∗𝜌 (\)+𝜖))2 . (using (A.17))

(A.18)

Note that 𝑓
(
_∗𝜌 (\) + 𝜖

)
is given by

𝑓

(
_∗𝜌 (\) + 𝜖

)
=

√︃
_∗𝜌 (\) + 𝜖 −

√︃
1 − _∗𝜌 (\) − 𝜖 −

√︄
\

𝜌

√︃(
_∗𝜌 (\) + 𝜖

) (
1 − _∗𝜌 (\) − 𝜖

)
. (A.19)

Setting 𝜖 = 0 in (A.19) yields 𝑓
(
_∗𝜌 (\)

)
= 0 (follows from (1.2)), whereas setting 𝜖 = 1 − _∗𝜌 (\)

yields 𝑓 (1) = 1. Since 𝜌 > 1, and 𝑓

(
_∗𝜌 (\) + 𝜖

)
is continuous and monotone increasing in 𝜖 ,

∃ 𝜖\,𝜌 ∈
(
0, 1 − _∗𝜌 (\)

)
s.t. 𝑓

(
_∗𝜌 (\) + 𝜖

)
> 1/√𝜌 for 𝜖 > 𝜖\,𝜌. Substituting 𝜖 = 𝜖\,𝜌 in (A.18) and

using the aforementioned fact, we obtain

P
(
𝑁1(𝑛) >

⌈(
_∗𝜌 (\) + 𝜖\,𝜌

)
𝑛

⌉
+ 𝛿𝑛

)
6

1
𝛿𝑛

𝑛−1∑︁
𝑡=d(_∗𝜌 (\)+𝜖\,𝜌)𝑛e

𝑡1−2𝜌( 𝑓 (_∗𝜌 (\)+𝜖\,𝜌))2

6

(
22𝜌−1

𝛿

)
𝑛
−
(
2𝜌( 𝑓 (_∗𝜌 (\)+𝜖\,𝜌))2−1

)
, (A.20)

where the last inequality follows since 1/√𝜌 < 𝑓

(
_∗𝜌 (\) + 𝜖\,𝜌

)
< 1, and _∗𝜌 (\) + 𝜖\,𝜌 > 1/2.

Finally since 𝛿 > 0 is arbitrary, we conclude from (A.20) using the Borel-Cantelli Lemma that

lim sup
𝑛→∞

𝑁1(𝑛)
𝑛
6 _∗𝜌 (\) + 𝜖\,𝜌 < 1 w.p. 1.

The above result naturally holds for arm 2 as well, since it is inferior by assumption (we resort to

96



the cop-out that a near-identical argument handles its case). Therefore, in conclusion,

lim inf
𝑛→∞

𝑁𝑖 (𝑛)
𝑛
> 1 − _∗𝜌 (\) − 𝜖\,𝜌 > 0 w.p. 1 ∀ 𝑖 ∈ {1, 2}. (A.21)

Closing the loop

From (A.14), we know that

E𝑍 (𝑛)

6
𝑛−1∑︁
𝑡=𝑢(𝑛)

P

(
𝑌1(𝑡) − 𝑌2(𝑡) >

√︁
𝜌 log 𝑡

(
1√︁
𝑁2(𝑡)

− 1√︁
𝑁1(𝑡)

−

√︄
\

𝜌𝑡

)
, 𝑁1(𝑡) > 𝑢(𝑡)

)
6

𝑛−1∑︁
𝑡=𝑢(𝑛)

P

(
𝑌1(𝑡) − 𝑌2(𝑡) >

√︂
𝜌 log 𝑡
𝑡

(
1√︁

1 − _∗𝜌 (\) − 𝜖
− 1√︁

_∗𝜌 (\) + 𝜖
−

√︄
\

𝜌

))

=

𝑛−1∑︁
𝑡=𝑢(𝑛)

P

©«
√︂

𝑡

𝜌 log 𝑡
(
𝑌1(𝑡) − 𝑌2(𝑡)

)
︸                         ︷︷                         ︸

=:𝑊𝑡

>
1√︁

1 − _∗𝜌 (\) − 𝜖
− 1√︁

_∗𝜌 (\) + 𝜖
−

√︄
\

𝜌

ª®®®®®¬
, (A.22)

where we already know that 1√
1−_∗𝜌 (\)−𝜖

− 1√
_∗𝜌 (\)+𝜖

−
√︃
\
𝜌
> 0 (since _∗𝜌 (\) is the solution to (1.2)).

Now,

|𝑊𝑡 |

6

√︂
𝑡

𝜌 log 𝑡
©«
������
∑𝑁1 (𝑡)
𝑗=1 𝑌1, 𝑗

𝑁1(𝑡)

������ +
������
∑𝑁2 (𝑡)
𝑗=1 𝑌2, 𝑗

𝑁2(𝑡)

������ª®¬
=

√︄
2𝑡

𝜌 log 𝑡
©«
√︄

log log 𝑁1(𝑡)
𝑁1(𝑡)

������
∑𝑁1 (𝑡)
𝑗=1 𝑌1, 𝑗√︁

2𝑁1(𝑡) log log 𝑁1(𝑡)

������ +
√︄

log log 𝑁2(𝑡)
𝑁2(𝑡)

������
∑𝑁2 (𝑡)
𝑗=1 𝑌2, 𝑗√︁

2𝑁2(𝑡) log log 𝑁2(𝑡)

������ª®¬
6

√︄
2𝑡

𝜌 log 𝑡
©«
√︄

log log 𝑡
𝑁1(𝑡)

������
∑𝑁1 (𝑡)
𝑗=1 𝑌1, 𝑗√︁

2𝑁1(𝑡) log log 𝑁1(𝑡)

������ +
√︄

log log 𝑡
𝑁2(𝑡)

������
∑𝑁2 (𝑡)
𝑗=1 𝑌2, 𝑗√︁

2𝑁2(𝑡) log log 𝑁2(𝑡)

������ª®¬
=

√︄
2 log log 𝑡
𝜌 log 𝑡

©«
√︂

𝑡

𝑁1(𝑡)

������
∑𝑁1 (𝑡)
𝑗=1 𝑌1, 𝑗√︁

2𝑁1(𝑡) log log 𝑁1(𝑡)

������ +
√︂

𝑡

𝑁2(𝑡)

������
∑𝑁2 (𝑡)
𝑗=1 𝑌2, 𝑗√︁

2𝑁2(𝑡) log log 𝑁2(𝑡)

������ª®¬ . (A.23)
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We know that 𝑁𝑖 (𝑡), for both arms 𝑖 ∈ {1, 2}, can be lower bounded path-wise by a determin-

istic monotone increasing function of 𝑡, say 𝑔(𝑡), that grows to +∞ as 𝑡 → ∞. This is a trivial

consequence of the structure of the canonical UCB policy (Algorithm 1), and the fact that the

rewards are uniformly bounded. Therefore, for any arm 𝑖 ∈ {1, 2}, we have������
∑𝑁𝑖 (𝑡)
𝑗=1 𝑌𝑖, 𝑗√︁

2𝑁𝑖 (𝑡) log log 𝑁𝑖 (𝑡)

������ 6 sup
𝑚>𝑔(𝑡)

�����
∑𝑚
𝑗=1𝑌𝑖, 𝑗√︁

2𝑚 log log𝑚

����� .
For a fixed 𝑖 ∈ {1, 2},

{
𝑌𝑖, 𝑗 : 𝑗 ∈ N

}
is a collection of i.i.d. random variables with E𝑌𝑖,1 = 0

and Var
(
𝑌𝑖,1

)
= Var

(
𝑋𝑖,1

)
6 1. Also, 𝑔(𝑡) is a monotone increasing and coercive function of 𝑡.

Therefore, the Law of the Iterated Logarithm (see [25], Theorem 8.5.2) implies

lim sup
𝑡→∞

������
∑𝑁𝑖 (𝑡)
𝑗=1 𝑌𝑖, 𝑗√︁

2𝑁𝑖 (𝑡) log log 𝑁𝑖 (𝑡)

������ 6 1 w.p. 1 ∀ 𝑖 ∈ {1, 2}. (A.24)

Using (A.21), (A.23) and (A.24), we conclude that

lim
𝑡→∞

𝑊𝑡 = 0 w.p. 1. (A.25)

Now consider an arbitrary 𝛿 > 0. We have

P (𝑁1(𝑛) − 𝑢(𝑛) > 𝛿𝑛)

6 P (𝑍 (𝑛) > 𝛿𝑛) (using (A.13))

6
E𝑍 (𝑛)
𝛿𝑛

(Markov’s inequality)

6
1
𝛿𝑛

𝑛−1∑︁
𝑡=𝑢(𝑛)

P

(
𝑊𝑡 >

1√︁
1 − _∗𝜌 (\) − 𝜖

− 1√︁
_∗𝜌 (\) + 𝜖

−

√︄
\

𝜌

)
(using (A.22))

6
1
𝛿

sup
𝑡>𝑛/2
P

(
𝑊𝑡 >

1√︁
1 − _∗𝜌 (\) − 𝜖

− 1√︁
_∗𝜌 (\) + 𝜖

−

√︄
\

𝜌

)
. (A.26)
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Using (A.25) and (A.26), it follows that

lim sup
𝑛→∞

P (𝑁1(𝑛) − 𝑢(𝑛) > 𝛿𝑛) 6
1
𝛿

lim sup
𝑛→∞

P

(
𝑊𝑛 >

1√︁
1 − _∗𝜌 (\) − 𝜖

− 1√︁
_∗𝜌 (\) + 𝜖

−

√︄
\

𝜌

)
= 0.

Since 𝑢(𝑛) =
⌈(
_∗𝜌 (\) + 𝜖

)
𝑛

⌉
and 𝜖, 𝛿 > 0 are arbitrary, we conclude that for any 𝜖 > 0, it holds

that lim𝑛→∞ P
(
𝑁1 (𝑛)
𝑛
> _∗𝜌 (\) + 𝜖

)
= 0. Equivalently, lim𝑛→∞ P

(
𝑁2 (𝑛)
𝑛
6 1 − _∗𝜌 (\) − 𝜖

)
= 0 holds

for any 𝜖 > 0. �

A.5.2 Focusing on arm 2 and concluding

We will essentially replicate here the proof for arm 1 given in A.5.1, albeit with a few subtle

modifications to account for the fact that arm 2 is inferior. Consistent with previous approach and

notation, we consider an arbitrary 𝜖 ∈
(
0, _∗𝜌 (\)

)
and set 𝑢(𝑛) :=

⌈(
1 − _∗𝜌 (\) + 𝜖

)
𝑛

⌉
, where _∗𝜌 (\)

is the solution to (1.2) (Note that the definition of 𝑢(𝑛) here is different from the one used in the

proof for arm 1.). We know that

𝑁2(𝑛) 6 𝑢(𝑛) +
𝑛∑︁

𝑡=𝑢(𝑛)+1
1 {𝜋𝑡 = 2, 𝑁2(𝑡 − 1) > 𝑢(𝑛)} (this is always true)

= 𝑢(𝑛) +
𝑛−1∑︁
𝑡=𝑢(𝑛)

1 {𝜋𝑡+1 = 2, 𝑁2(𝑡) > 𝑢(𝑛)}

6 𝑢(𝑛) +
𝑛−1∑︁
𝑡=𝑢(𝑛)

1

{
�̄�2(𝑡) − �̄�1(𝑡) >

√︁
𝜌 log 𝑡

(
1√︁
𝑁1(𝑡)

− 1√︁
𝑁2(𝑡)

)
, 𝑁2(𝑡) > 𝑢(𝑛)

}
= 𝑢(𝑛) +

𝑛−1∑︁
𝑡=𝑢(𝑛)

1

{
𝑌2(𝑡) − 𝑌1(𝑡) >

√︁
𝜌 log 𝑡

(
1√︁
𝑁1(𝑡)

− 1√︁
𝑁2(𝑡)

)
+ Δ, 𝑁2(𝑡) > 𝑢(𝑛)

}
︸                                                                                                ︷︷                                                                                                ︸

=:𝑍 (𝑛)

,

(A.27)

where 𝑌𝑖 (𝑡) :=
∑𝑁𝑖 (𝑡)
𝑗=1 𝑌𝑖, 𝑗

𝑁𝑖 (𝑡) with 𝑌𝑖, 𝑗 := 𝑋𝑖, 𝑗 − `𝑖, 𝑖 ∈ {1, 2}, 𝑗 ∈ N (Notice that these definitions of

𝑌𝑖 (𝑡) and 𝑌𝑖, 𝑗 are identical to their counterparts from the proof for arm 1.). From (A.27), it follows
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that

E𝑍 (𝑛)

=

𝑛−1∑︁
𝑡=𝑢(𝑛)

P

(
𝑌2(𝑡) − 𝑌1(𝑡) >

√︁
𝜌 log 𝑡

(
1√︁
𝑁1(𝑡)

− 1√︁
𝑁2(𝑡)

)
+ Δ, 𝑁2(𝑡) > 𝑢(𝑛)

)
=

𝑛−1∑︁
𝑡=𝑢(𝑛)

P

(
𝑌2(𝑡) − 𝑌1(𝑡) >

√︁
𝜌 log 𝑡

(
1√︁
𝑁1(𝑡)

− 1√︁
𝑁2(𝑡)

)
+

√︂
\ log 𝑛
𝑛

, 𝑁2(𝑡) > 𝑢(𝑛)
)

6
𝑛−1∑︁
𝑡=𝑢(𝑛)

P

(
𝑌2(𝑡) − 𝑌1(𝑡) >

√︁
𝜌 log 𝑡

(
1√︁

𝑡 − 𝑢(𝑛)
− 1√︁

𝑢(𝑛)

)
+

√︂
\ log 𝑛
𝑛

)
6

𝑛−1∑︁
𝑡=𝑢(𝑛)

P

(
𝑌2(𝑡) − 𝑌1(𝑡) >

√︁
𝜌 log 𝑡

(
1√︁

𝑛 − 𝑢(𝑛)
− 1√︁

𝑢(𝑛)

)
+

√︂
\ log 𝑡
𝑛

)
6

𝑛−1∑︁
𝑡=𝑢(𝑛)

P

(
𝑌2(𝑡) − 𝑌1(𝑡) >

√︂
𝜌 log 𝑡
𝑛

(
1√︁

_∗𝜌 (\) − 𝜖
− 1√︁

1 − _∗𝜌 (\) + 𝜖
+

√︄
\

𝜌

))
,

where 1√
_∗𝜌 (\)−𝜖

− 1√
1−_∗𝜌 (\)+𝜖

+
√︃
\
𝜌
> 0 is guaranteed since _∗𝜌 (\) is the solution to (1.2). Also,

𝑡 > 𝑢(𝑛) =
⌈(

1 − _∗𝜌 (\) + 𝜖
)
𝑛

⌉
=⇒ 𝑛 6 𝑡

1−_∗𝜌 (\)+𝜖 . Therefore,

E𝑍 (𝑛)

6
𝑛−1∑︁
𝑡=𝑢(𝑛)

P

(
𝑌2(𝑡) − 𝑌1(𝑡) >

√︃
1 − _∗𝜌 (\) + 𝜖

√︂
𝜌 log 𝑡
𝑡

(
1√︁

_∗𝜌 (\) − 𝜖
− 1√︁

1 − _∗𝜌 (\) + 𝜖
+

√︄
\

𝜌

))

=

𝑛−1∑︁
𝑡=𝑢(𝑛)

P

©«
√︂

𝑡

𝜌 log 𝑡
(
𝑌2(𝑡) − 𝑌1(𝑡)

)
︸                         ︷︷                         ︸

=:𝑊𝑡

>
√︃

1 − _∗𝜌 (\) + 𝜖
(

1√︁
_∗𝜌 (\) − 𝜖

− 1√︁
1 − _∗𝜌 (\) + 𝜖

+

√︄
\

𝜌

)
︸                                                                     ︷︷                                                                     ︸

=:Y(\,𝜌,𝜖) (Note that Y(\,𝜌,𝜖)>0 for any 𝜖∈(0,_∗𝜌 (\)))

ª®®®®®®®¬
.

(A.28)

Recall that we have already handled𝑊𝑡 (albeit a negated version thereof) in the proof for arm 1

in (A.22) and shown that 𝑊𝑡 → 0 almost surely in (A.25). Now consider an arbitrary 𝛿 > 0. We
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then have

P (𝑁2(𝑛) − 𝑢(𝑛) > 𝛿𝑛) 6 P (𝑍 (𝑛) > 𝛿𝑛) (using (A.27))

6
E𝑍 (𝑛)
𝛿𝑛

(Markov’s inequality)

6
1
𝛿𝑛

𝑛−1∑︁
𝑡=𝑢(𝑛)

P (𝑊𝑡 > Y(\, 𝜌, 𝜖)) (using (A.28))

6
1
𝛿

sup
𝑡>(1−_∗𝜌 (\))𝑛

P (𝑊𝑡 > Y(\, 𝜌, 𝜖)) . (A.29)

Taking limits on both sides of (A.29), we obtain

lim sup
𝑛→∞

P (𝑁2(𝑛) − 𝑢(𝑛) > 𝛿𝑛) 6
1
𝛿

lim sup
𝑛→∞

P (𝑊𝑛 > Y(\, 𝜌, 𝜖)) = 0,

where the final conclusion follows since 𝑊𝑛 → 0 almost surely, and hence also in probability.

Now since 𝑢(𝑛) =
⌈(

1 − _∗𝜌 (\) + 𝜖
)
𝑛

⌉
and 𝜖, 𝛿 > 0 are arbitrary, it follows that for any 𝜖 > 0,

we have lim𝑛→∞ P
(
𝑁2 (𝑛)
𝑛
> 1 − _∗𝜌 (\) + 𝜖

)
= 0. From the proof for arm 1, we already know that

lim𝑛→∞ P
(
𝑁2 (𝑛)
𝑛
6 1 − _∗𝜌 (\) − 𝜖

)
= 0 holds for any 𝜖 > 0. Therefore, it must be the case that

𝑁2 (𝑛)
𝑛

𝑝
−−−−→
𝑛→∞

1 − _∗𝜌 (\) and 𝑁1 (𝑛)
𝑛

𝑝
−−−−→
𝑛→∞

_∗𝜌 (\), as desired. �

A.6 Proof of Theorem 3

A.6.1 Proof of part (I)

Let \𝑘 , \̃𝑘 be Beta(1, 𝑘 + 1)-distributed, with \𝑘 , \̃𝑙 independent ∀ 𝑘, 𝑙 ∈ N ∪ {0}. In the two-

armed bandit with deterministic 0 rewards, at any time 𝑛+1, the probability of playing arm 1 condi-

tioned on the entire history up to that point, is given by P (𝜋𝑛+1 = 1 | F𝑛) = P
(
\𝑁1 (𝑛) > \̃𝑁2 (𝑛) | F𝑛

)
=

𝑛−𝑁1 (𝑛)+1
𝑛+2 (using Fact (2)). Since the arms are identical, and 𝑁1(𝑛) + 𝑁2(𝑛) = 𝑛, we must have

E (𝑁1(𝑛)/𝑛) = 1/2 ∀ 𝑛 ∈ N by symmetry. Define 𝑍𝑛 := 𝑁1(𝑛)/𝑛. Then, 𝑍𝑛 evolves according to
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the following Markovian rule:

𝑍𝑛+1 =

( 𝑛

𝑛 + 1

)
𝑍𝑛 +

𝑌 (𝑍𝑛, 𝑛, b𝑛)
𝑛 + 1

,

where {b𝑛} is an independent noise process that is such that 𝑌 (𝑍𝑛, 𝑛, b𝑛) |𝑍𝑛 is distributed as

Bernoulli
(
𝑛(1−𝑍𝑛)+1

𝑛+2

)
. Note that 𝑌 (·, ·, ·) ∈ {0, 1}. Then,

𝑍2
𝑛+1 =

( 𝑛

𝑛 + 1

)2
𝑍2
𝑛 +

(
𝑌 (𝑍𝑛, 𝑛, b𝑛)

𝑛 + 1

)2
+ 2𝑛𝑍𝑛𝑌 (𝑍𝑛, 𝑛, b𝑛)

(𝑛 + 1)2

=

( 𝑛

𝑛 + 1

)2
𝑍2
𝑛 +

𝑌 (𝑍𝑛, 𝑛, b𝑛)
(𝑛 + 1)2

+ 2𝑛𝑍𝑛𝑌 (𝑍𝑛, 𝑛, b𝑛)
(𝑛 + 1)2

.

Solving the recursion for 𝑍2
𝑛+1, we obtain

𝑍2
𝑛+1 =

𝑍2
1 +

∑𝑛
𝑡=1 [𝑌 (𝑍𝑡 , 𝑡, b𝑡) + 2𝑡𝑍𝑡𝑌 (𝑍𝑡 , 𝑡, b𝑡)]

(𝑛 + 1)2
=
𝑍1 +

∑𝑛
𝑡=1 [𝑌 (𝑍𝑡 , 𝑡, b𝑡) + 2𝑡𝑍𝑡𝑌 (𝑍𝑡 , 𝑡, b𝑡)]

(𝑛 + 1)2
,

where the last equality follows since 𝑍1 ∈ {0, 1}. Taking expectations and using the fact that

E𝑍𝑡 = 1/2 ∀ 𝑡 ∈ N, yields

E𝑍2
𝑛+1 =

1
2 +

∑𝑛
𝑡=1

(
1
2 + 2𝑡E

[
𝑡𝑍𝑡 (1−𝑍𝑡 )+𝑍𝑡

𝑡+2

] )
(𝑛 + 1)2

.

Using 𝑍𝑡 (1 − 𝑍𝑡) 6 1/4, we get the relation

E𝑍2
𝑛+1 6

1 +∑𝑛
𝑡=1

(
1 + 𝑡E

[
𝑡+4𝑍𝑡
𝑡+2

] )
2(𝑛 + 1)2

=
𝑛 + 1 +∑𝑛

𝑡=1 𝑡

2(𝑛 + 1)2
=

𝑛 + 2
4(𝑛 + 1) .

Thus, Var
(
𝑁1 (𝑛)
𝑛

)
= Var (𝑍𝑛) 6 𝑛+1

4𝑛 −
1
4 = 1

4𝑛 . Since E
(
𝑁1 (𝑛)
𝑛

)
= 1

2 , we conclude using Chebyshev’s

inequality that 𝑁1 (𝑛)
𝑛
→ 1

2 in probability as 𝑛→∞. �
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A.6.2 Proof of part (II)

Our proof of this part is essentially pivoted on showing the stronger result that P (𝑁1(𝑛) = 𝑚) =
1
𝑛+1 for any 𝑚 ∈ {0, ..., 𝑛} and 𝑛 ∈ N. To this end, for an arbitrary 𝑚 in said interval, let S𝑚 be

the set of sample-paths of length 𝑛 such that 𝑁1(𝑛) = 𝑚 on each sample-path s𝑚 ∈ S𝑚. Clearly,

|S𝑚 | =
( 𝑛
𝑚

)
. Let 𝑖 (s𝑚, 𝑡) ∈ {1, 2} denote the index of the arm pulled at time 𝑡 ∈ {1, ..., 𝑛} on s𝑚,

and let �̃� 𝑗 (𝑡) denote the number of pulls of arm 𝑗 ∈ {1, 2} up to (and including) time 𝑡 on s𝑚 (with

�̃�1(0) = �̃�2(0) := 0). Note that 𝑖 (s𝑚, 𝑡), �̃�1(𝑡) and �̃�2(𝑡) are deterministic for all 𝑡 ∈ {1, ..., 𝑛},

once s𝑚 is fixed. Let \𝑘 , \̃𝑘 be Beta(𝑘 + 1, 1)-distributed, with \𝑘 , \̃𝑙 independent ∀ 𝑘, 𝑙 ∈ N ∪ {0}.

It then follows that

P (𝑁1(𝑛) = 𝑚) =
∑︁

s𝑚∈S𝑚

𝑛∏
𝑡=1
P

(
\�̃�𝑖 (s𝑚,𝑡) (𝑡−1) > \̃�̃�{1,2}\𝑖 (s𝑚,𝑡) (𝑡−1)

)
=

∑︁
s𝑚∈S𝑚

𝑛∏
𝑡=1

(
�̃�𝑖(s𝑚,𝑡) (𝑡 − 1) + 1

𝑡 + 1

)
(using Fact (3))

=
1

(𝑛 + 1)!
∑︁

s𝑚∈S𝑚

𝑛∏
𝑡=1

(
�̃�𝑖(s𝑚,𝑡) (𝑡 − 1) + 1

)
=

1
(𝑛 + 1)!

∑︁
s𝑚∈S𝑚

𝑚!(𝑛 − 𝑚)!,

where the last equality follows since �̃�1(𝑛) = 𝑚, �̃�2(𝑛) = 𝑛 − 𝑚, �̃�1(0) = �̃�2(0) = 0 on s𝑚.

Therefore, we have for all 𝑚 ∈ {0, ..., 𝑛} that

P (𝑁1(𝑛) = 𝑚) =
( 𝑛
𝑚

)
𝑚!(𝑛 − 𝑚)!
(𝑛 + 1)! =

𝑛!
(𝑛 + 1)! =

1
𝑛 + 1

. (A.30)

This, in fact, proves a stronger result that 𝑁1(𝑛)/𝑛 is uniformly distributed on
{
0, 1

𝑛
, 2
𝑛
, ..., 𝑛−1

𝑛
, 1

}
for any 𝑛 ∈ N. The desired result now follows as a corollary in the limit 𝑛 → ∞; for an arbitrary

𝑥 ∈ [0, 1], consider

P

(
𝑁1(𝑛)
𝑛
6 𝑥

)
=

b𝑥𝑛c∑︁
𝑚=0
P (𝑁1(𝑛) = 𝑚) =

b𝑥𝑛c + 1
𝑛 + 1

,
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where the last equality follows using (A.30). Thus, we have lim𝑛→∞ P
(
𝑁1 (𝑛)
𝑛
6 𝑥

)
= 𝑥 for any

𝑥 ∈ [0, 1], i.e., 𝑁1 (𝑛)
𝑛

converges in law to the Uniform distribution on [0, 1]. �

A.7 Proof of Theorem 4

We essentially need to bound the growth rate of 𝑅𝜋𝑛 under the policy 𝜋 given by Algorithm 1

with 𝜌 > 1, in three (exhaustive) regimes, viz., (i) Δ = 𝑜

(√︃
log 𝑛
𝑛

)
(“small gap”), (ii) Δ = 𝜔

(√︃
log 𝑛
𝑛

)
(“large gap”), and (iii) Δ = Θ

(√︃
log 𝑛
𝑛

)
(“moderate gap”). We handle the three cases below sepa-

rately.

A.7.1 The “small gap” regime

Here, we have

E𝑅𝜋𝑛√︁
𝑛 log 𝑛

6
Δ𝑛√︁
𝑛 log 𝑛

=

√︄
Δ2𝑛

log 𝑛
.

Since Δ = 𝑜

(√︃
log 𝑛
𝑛

)
, it follows that E𝑅𝜋𝑛 = 𝑜

(√︁
𝑛 log 𝑛

)
. Therefore, we conclude using Markov’s

inequality that 𝑅𝜋𝑛 = 𝑜𝑝

(√︁
𝑛 log 𝑛

)
whenever Δ = 𝑜

(√︃
log 𝑛
𝑛

)
.

A.7.2 The “large gap” regime

In this regime, we have

E𝑅𝜋𝑛√︁
𝑛 log 𝑛

6
𝐶𝜌

(
log 𝑛
Δ
+ Δ
𝜌−1

)
√︁
𝑛 log 𝑛

,

where𝐶 is some absolute constant (follows from [4], Theorem 7). Since Δ = 𝜔

(√︃
log 𝑛
𝑛

)
and Δ 6 1

(rewards bounded in [0, 1]), it follows that E𝑅𝜋𝑛 = 𝑜

(√︁
𝑛 log 𝑛

)
. Thus, we again conclude using

Markov’s inequality that 𝑅𝜋𝑛 = 𝑜𝑝

(√︁
𝑛 log 𝑛

)
whenever Δ = 𝜔

(√︃
log 𝑛
𝑛

)
.
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A.7.3 The “moderate gap” regime

Since Δ = Θ

(√︃
log 𝑛
𝑛

)
, there exists some \ ∈ R+ and a diverging sequence of natural numbers

{𝑛𝑘 }𝑘∈N such that Δ scales with the horizon of play 𝑛𝑘 along this sequence as Δ =

√︃
\ log 𝑛𝑘
𝑛𝑘

.

Without loss of generality, suppose that arm 1 is optimal, i.e., `1 > `2. We then have

𝑅𝜋𝑛𝑘√︁
𝑛𝑘 log 𝑛𝑘

=
`1𝑛𝑘 −

∑𝑁1 (𝑛𝑘 )
𝑗=1 𝑋1, 𝑗 −

∑𝑁2 (𝑛𝑘 )
𝑗=1 𝑋2, 𝑗√︁

𝑛𝑘 log 𝑛𝑘
(using (1.1))

=
`1𝑛𝑘 − `1𝑁1 (𝑛𝑘 ) − `2𝑁2 (𝑛𝑘 ) −

∑𝑁1 (𝑛𝑘 )
𝑗=1 𝑌1, 𝑗 −

∑𝑁2 (𝑛𝑘 )
𝑗=1 𝑌2, 𝑗√︁

𝑛𝑘 log 𝑛𝑘
,

where 𝑌𝑖, 𝑗 := 𝑋𝑖, 𝑗 − `𝑖, 𝑖 ∈ {1, 2}, 𝑗 ∈ N. Therefore,

𝑅𝜋𝑛𝑘√︁
𝑛𝑘 log 𝑛𝑘

=
Δ𝑁2 (𝑛𝑘 ) −

∑𝑁1 (𝑛𝑘 )
𝑗=1 𝑌1, 𝑗 −

∑𝑁2 (𝑛𝑘 )
𝑗=1 𝑌2, 𝑗√︁

𝑛𝑘 log 𝑛𝑘

= Δ

√︂
𝑛𝑘

log 𝑛𝑘

(
𝑁2 (𝑛𝑘 )
𝑛𝑘

)
− ©«

∑𝑁1 (𝑛𝑘 )
𝑗=1 𝑌1, 𝑗 +

∑𝑁2 (𝑛𝑘 )
𝑗=1 𝑌2, 𝑗√︁

𝑛𝑘 log 𝑛𝑘
ª®¬

=
√
\

(
𝑁2 (𝑛𝑘 )
𝑛𝑘

)
− ©«

∑𝑁1 (𝑛𝑘 )
𝑗=1 𝑌1, 𝑗 +

∑𝑁2 (𝑛𝑘 )
𝑗=1 𝑌2, 𝑗√︁

𝑛𝑘 log 𝑛𝑘
ª®¬ . (A.31)

Consider the summation terms above. We have������
∑𝑁1 (𝑛𝑘 )
𝑗=1 𝑌1, 𝑗 +

∑𝑁2 (𝑛𝑘 )
𝑗=1 𝑌2, 𝑗√︁

𝑛𝑘 log 𝑛𝑘

������ 6
������
∑𝑁1 (𝑛𝑘 )
𝑗=1 𝑌1, 𝑗√︁
𝑛𝑘 log 𝑛𝑘

������ +
������
∑𝑁2 (𝑛𝑘 )
𝑗=1 𝑌2, 𝑗√︁
𝑛𝑘 log 𝑛𝑘

������
6

������
∑𝑁1 (𝑛𝑘 )
𝑗=1 𝑌1, 𝑗√︁

𝑁1 (𝑛𝑘 ) log 𝑁1 (𝑛𝑘 )

������ +
������

∑𝑁2 (𝑛𝑘 )
𝑗=1 𝑌2, 𝑗√︁

𝑁2 (𝑛𝑘 ) log 𝑁2 (𝑛𝑘 )

������ . (A.32)
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Since 𝑁𝑖 (𝑛𝑘 ), for each 𝑖 ∈ {1, 2}, can be lower-bounded path-wise by a deterministic monotone

increasing coercive function of 𝑘 , say 𝑓 (𝑘), we have������
∑𝑁𝑖 (𝑛𝑘 )
𝑗=1 𝑌𝑖, 𝑗√︁

𝑁𝑖 (𝑛𝑘 ) log 𝑁𝑖 (𝑛𝑘 )

������ 6 sup
𝑚> 𝑓 (𝑘)

�����
∑𝑚
𝑗=1𝑌𝑖, 𝑗√︁
𝑚 log𝑚

����� ∀ 𝑖 ∈ {1, 2}. (A.33)

Since 𝑌𝑖, 𝑗 ’s are independent, zero-mean, bounded random variables, it follows from the Law of the

Iterated Logarithm (see [25], Theorem 8.5.2) that

sup
𝑚> 𝑓 (𝑘)

�����
∑𝑚
𝑗=1𝑌𝑖, 𝑗√︁
𝑚 log𝑚

����� w.p. 1
−−−−→
𝑘→∞

0 ∀ 𝑖 ∈ {1, 2}. (A.34)

Combining (A.31), (A.32), (A.33) and (A.34), we conclude

𝑅𝜋𝑛𝑘√︁
𝑛𝑘 log 𝑛𝑘

=
√
\

(
𝑁2 (𝑛𝑘 )
𝑛𝑘

)
+ 𝑜𝑝 (1).

From Theorem 1, we know that when Δ ∼
√︃
\ log 𝑛𝑘
𝑛𝑘

, 𝑁2 (𝑛𝑘 )
𝑛𝑘

𝑝
−−−−→
𝑘→∞

1 − _∗𝜌 (\). Thus, it follows that

𝑅𝜋𝑛𝑘√︁
𝑛𝑘 log 𝑛𝑘

𝑝
−−−−→
𝑘→∞

√
\

(
1 − _∗𝜌 (\)

)
= ℎ𝜌 (\).

Since \ ∈ R+ is arbitrary, the worst-case regret in the Δ = Θ

(√︃
log 𝑛
𝑛

)
regime corresponds to the

choice of \ given by \∗𝜌 = arg max\>0 ℎ𝜌 (\). Since we already know that 𝑅𝜋𝑛 = 𝑜𝑝

(√︁
𝑛 log 𝑛

)
in the

other two regimes (“small” and “large” gaps), it must be that the \∗𝜌 so obtained indeed corresponds

to the global (in Δ) worst-case regret of Algorithm 1. �

A.8 Proof of Theorem 5

Notation. Let C be the space of continuous functions [0, 1] ↦→ R2, endowed with the uniform

metric. Let D be the space of right-continuous functions with left limits, mapping [0, 1] ↦→ R2,

and endowed with the Skorohod metric (see [70], Chapters 2 and 3, for an overview). Let D0 be
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the set of elements of D of the form (𝜙1, 𝜙2), where 𝜙𝑖 is a non-decreasing real-valued function

satisfying 0 6 𝜙𝑖 (𝑡) 6 1 for 𝑖 ∈ {1, 2} and 𝑡 ∈ [0, 1]. For 𝑡 ∈ [0, 1], denote the identity map by

𝔢(𝑡) := 𝑡.

For 𝑖 ∈ {1, 2} and 𝑡 ∈ [0, 1], define Ψ𝑖,𝑛 (𝑡) :=
∑ b𝑛𝑡 c
𝑗=1 𝑋𝑖, 𝑗−`𝑛𝑡
√
𝑛

. Then,
(
Ψ1,𝑛,Ψ2,𝑛

)
∈ D. Also

for 𝑖 ∈ {1, 2} and 𝑡 ∈ [0, 1], define 𝑊𝑖 (𝑡) := \𝑖𝑡 + 𝜎𝑖𝐵′𝑖 (𝑡), where 𝐵′1 and 𝐵′2 are independent

standard Brownian motions in R. Note that P (𝑊𝑖 ∈ C) = 1 for 𝑖 ∈ {1, 2}. Since
(
𝑋𝑖, 𝑗

)
𝑖∈{1,2}, 𝑗∈N’s

are independent random variables (i.i.d. within and independent across sequences), we know from

Donsker’s Theorem (see [70], Section 14, for details) that as 𝑛→∞,

(
Ψ1,𝑛,Ψ2,𝑛

)
⇒ (𝑊1,𝑊2) in D .

For 𝑖 ∈ {1, 2} and 𝑡 ∈ [0, 1], define 𝜙𝑖,𝑛 (𝑡) := 𝑁𝑖 (b𝑛𝑡c)
𝑛

. Thus,
(
𝜙1,𝑛, 𝜙2,𝑛

)
∈ D0, and it follows

from the result for the “small gap” regime in Theorem 1 that as 𝑛→∞,

(
𝜙1,𝑛, 𝜙2,𝑛

) 𝑝
−→

( 𝔢
2
,
𝔢

2

)
in D0.

Thus, we have convergence in the product space (see [70], Theorem 3.9), i.e., as 𝑛→∞,

(
Ψ1,𝑛,Ψ2,𝑛, 𝜙1,𝑛, 𝜙2,𝑛

)
⇒

(
𝑊1,𝑊2,

𝔢

2
,
𝔢

2

)
in D × D0.

For 𝑖 ∈ {1, 2} and 𝑡 ∈ [0, 1], define the composition
(
Ψ𝑖,𝑛 ◦ 𝜙𝑖,𝑛

)
(𝑡) := Ψ𝑖,𝑛

(
𝜙𝑖,𝑛 (𝑡)

)
, and(

𝑊𝑖 ◦ 𝔢
2
)
(𝑡) := 𝑊𝑖

(
𝔢(𝑡)
2

)
= 𝑊𝑖

(
𝑡
2
)
. Since 𝑊1,𝑊2, 𝔢 ∈ C w.p. 1, it follows from the random time-

change lemma (see [70], Section 14, for details) that as 𝑛→∞

(
Ψ1,𝑛 ◦ 𝜙1,𝑛,Ψ2,𝑛 ◦ 𝜙2,𝑛

)
⇒

(
𝑊1 ◦

𝔢

2
,𝑊2 ◦

𝔢

2

)
in D .

The stated assertion on cumulative rewards now follows by recognizing for 𝑖 ∈ {1, 2} and
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𝑡 ∈ [0, 1] that
(
Ψ𝑖,𝑛 ◦ 𝜙𝑖,𝑛

)
(𝑡) = 𝑆𝑖, b𝑛𝑡 c√

𝑛
, and defining 𝐵𝑖 (𝑡) :=

√
2𝐵′

𝑖

(
𝑡
2
)
. To prove the assertion

on regret, assume without loss of generality that arm 1 is optimal, i.e., \1 > \2. Then, the result

follows after a direct application of the Continuous Mapping Theorem (see [70], Theorem 2.7), to

wit,

𝑅𝜋b𝑛𝑡c =

(
` + \1√

𝑛

)
b𝑛𝑡c − 𝑆1,b𝑛𝑡c − 𝑆2,b𝑛𝑡c =

\1 b𝑛𝑡c√
𝑛
−

(
𝑆1,b𝑛𝑡c + 𝑆2,b𝑛𝑡c

)
,

and therefore as 𝑛→∞,

(
𝑅𝜋b𝑛𝑡c√
𝑛

)
𝑡∈[0,1]

⇒
(
\1𝑡 −

((
\1 + \2

2

)
𝑡 + 𝜎1√

2
𝐵1(𝑡) +

𝜎2√
2
𝐵2(𝑡)

))
𝑡∈[0,1]

=
©«Δ0𝑡

2
+

√︄
𝜎2

1 + 𝜎
2
2

2
�̃�(𝑡)ª®¬𝑡∈[0,1] ,

where �̃�(𝑡) := −
√︂

𝜎2
1

𝜎2
1+𝜎

2
2
𝐵1(𝑡) −

√︂
𝜎2

2
𝜎2

1+𝜎
2
2
𝐵2(𝑡). �

A.9 Proof of Theorem 2

We will prove this result in two parts; the preamble in A.9.1 below will prove a meta-result

stating that 𝑁𝑖 (𝑛)/𝑛 > 1/(2 |I |) with high probability (approaching 1 as 𝑛 → ∞) for any arm 𝑖 ∈

I. We will then leverage this meta-result to prove the assertions of the theorem in A.9.2.

A.9.1 Preamble

Let 𝐿 := |I |. If 𝐿 = 1, the result follows trivially from the standard logarithmic bound for the

expected regret (Theorem 7 in [4]), followed by Markov’s inequality. Therefore, without loss of

generality, suppose that |I | > 2, and fix an arbitrary arm 𝑖 ∈ I. Then, we know that the following
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is true for any integer 𝑢 > 1:

𝑁𝑖 (𝑛) 6 𝑢 +
𝑛−1∑︁
𝑡=𝑢

1 {𝜋𝑡+1 = 𝑖, 𝑁𝑖 (𝑡) > 𝑢}

6 𝑢 +
𝑛−1∑︁
𝑡=𝑢

1

𝜋𝑡+1 = 𝑖, 𝑁𝑖 (𝑡) > 𝑢,
∑︁

𝑗∈I\{𝑖}
𝑁 𝑗 (𝑡) 6 𝑡 − 𝑢

 ,
where 𝜋𝑡+1 ∈ [𝐾] indicates the arm played at time 𝑡 + 1. In particular, the above holds also for

𝑢 =

⌈(
1
𝐿
+ 𝜖

)
𝑛

⌉
, where 𝜖 ∈

(
0, 𝐿−1

𝐿

)
is arbitrarily chosen. We will fix this 𝑢 going forward, even

though we may not always express its value explicitly for readability of the analysis that follows.

We thus have

𝑁𝑖 (𝑛) 6 𝑢 +
𝑛−1∑︁
𝑡=𝑢

1

𝐵𝑖,𝑁𝑖 (𝑡),𝑡 > max
𝑗∈[𝐾]\{𝑖}

𝐵 𝑗 ,𝑁 𝑗 (𝑡),𝑡 , 𝑁𝑖 (𝑡) > 𝑢,
∑︁

𝑗∈I\{𝑖}
𝑁 𝑗 (𝑡) 6 𝑡 − 𝑢


6 𝑢 +

𝑛−1∑︁
𝑡=𝑢

1

𝐵𝑖,𝑁𝑖 (𝑡),𝑡 > max
𝑗∈I\{𝑖}

𝐵 𝑗 ,𝑁 𝑗 (𝑡),𝑡 , 𝑁𝑖 (𝑡) > 𝑢,
∑︁

𝑗∈I\{𝑖}
𝑁 𝑗 (𝑡) 6 𝑡 − 𝑢

 , (A.35)

where 𝐵𝑘,𝑠,𝑡 := �̂�𝑘 (𝑠) +
√︁
(𝜌 log 𝑡)/𝑠 for 𝑘 ∈ [𝐾], and �̂�𝑘 (𝑠) :=

∑𝑠
𝑙=1 𝑋𝑘,𝑙/𝑠 denotes the empirical

mean reward from the “first 𝑠 plays” of arm 𝑘 (Note the distinction from �̄�𝑘 (𝑠), which has been

defined before as the empirical mean reward of arm 𝑘 “at time 𝑠,” i.e., mean over its “first 𝑁𝑘 (𝑠)

plays”). Now observe that


∑︁

𝑗∈I\{𝑖}
𝑁 𝑗 (𝑡) 6 𝑡 − 𝑢

 ⊆
{
∃ 𝑗 ∈ I\{𝑖} : 𝑁 𝑗 (𝑡) 6

𝑡 − 𝑢
𝐿 − 1

}
⊆

{
∃ 𝑗 ∈ I\{𝑖} : 𝑁 𝑗 (𝑡) 6

(
1
𝐿
− 𝜖

𝐿 − 1

)
𝑡

}
,

(A.36)
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where the last inclusion follows using 𝑢 =

⌈(
1
𝐿
+ 𝜖

)
𝑛

⌉
and 𝑛 > 𝑡. Combining (A.35) and (A.36)

using the Union bound, we obtain

𝑁𝑖 (𝑛) 6 𝑢 +
𝑛−1∑︁
𝑡=𝑢

∑︁
𝑗∈I\{𝑖}

1

{
𝐵𝑖,𝑁𝑖 (𝑡),𝑡 > max

𝑗∈I\{𝑖}
𝐵 𝑗 ,𝑁 𝑗 (𝑡),𝑡 , 𝑁𝑖 (𝑡) > 𝑢, 𝑁 𝑗 (𝑡) 6

(
1
𝐿
− 𝜖

𝐿 − 1

)
𝑡

}
6 𝑢 +

𝑛−1∑︁
𝑡=𝑢

∑︁
𝑗∈I\{𝑖}

1

{
𝐵𝑖,𝑁𝑖 (𝑡),𝑡 > 𝐵 𝑗 ,𝑁 𝑗 (𝑡),𝑡 , 𝑁𝑖 (𝑡) > 𝑢, 𝑁 𝑗 (𝑡) 6

(
1
𝐿
− 𝜖

𝐿 − 1

)
𝑡

}
6 𝑢 +

𝑛−1∑︁
𝑡=𝑢

∑︁
𝑗∈I\{𝑖}

1

{
𝐵𝑖,𝑁𝑖 (𝑡),𝑡 > 𝐵 𝑗 ,𝑁 𝑗 (𝑡),𝑡 , 𝑁𝑖 (𝑡) >

(
1
𝐿
+ 𝜖

)
𝑡, 𝑁 𝑗 (𝑡) 6

(
1
𝐿
− 𝜖

𝐿 − 1

)
𝑡

}
︸                                                                                                     ︷︷                                                                                                     ︸

=:𝑍𝑛

,

(A.37)

where the last inequality again uses 𝑢 =

⌈(
1
𝐿
+ 𝜖

)
𝑛

⌉
and 𝑛 > 𝑡. Define the events:

𝐸𝑖 :=
{
𝑁𝑖 (𝑡) >

(
1
𝐿
+ 𝜖

)
𝑡

}
, and 𝐸 𝑗 :=

{
𝑁 𝑗 (𝑡) 6

(
1
𝐿
− 𝜖

𝐿−1

)
𝑡

}
. Now,

E𝑍𝑛

=

𝑛−1∑︁
𝑡=𝑢

∑︁
𝑗∈I\{𝑖}

P
(
𝐵𝑖,𝑁𝑖 (𝑡),𝑡 > 𝐵 𝑗 ,𝑁 𝑗 (𝑡),𝑡 , 𝐸𝑖, 𝐸 𝑗

)
=

𝑛−1∑︁
𝑡=𝑢

∑︁
𝑗∈I\{𝑖}

P

(
𝑌𝑖 (𝑁𝑖 (𝑡)) − 𝑌 𝑗

(
𝑁 𝑗 (𝑡)

)
>

√︁
𝜌 log 𝑡

(
1√︁
𝑁 𝑗 (𝑡)

− 1√︁
𝑁𝑖 (𝑡)

)
, 𝐸𝑖, 𝐸 𝑗

)
, (A.38)

where 𝑌𝑘 (𝑠) :=
∑𝑠
𝑙=1𝑌𝑘,𝑙/𝑠 and 𝑌𝑘,𝑙 := 𝑋𝑘,𝑙 − E𝑋𝑘,𝑙 for 𝑘 ∈ [𝐾], 𝑠 ∈ N, 𝑙 ∈ N. The last equality

above follows since 𝑖, 𝑗 ∈ I and the mean rewards of arms in I are equal. Thus,

E𝑍𝑛 6
𝑛−1∑︁
𝑡=𝑢

∑︁
𝑗∈I\{𝑖}

𝑡∑︁
𝑚𝑖=d( 1

𝐿
+𝜖)𝑡e

b( 1
𝐿
− 𝜖
𝐿−1 )𝑡c∑︁

𝑚 𝑗=1
P

(
𝑌𝑖 (𝑚𝑖) − 𝑌 𝑗

(
𝑚 𝑗

)
>

√︁
𝜌 log 𝑡

(
1
√
𝑚 𝑗

− 1
√
𝑚𝑖

))
.
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Since E
[
𝑌𝑖 (𝑚𝑖) − 𝑌 𝑗

(
𝑚 𝑗

) ]
= 0, and 𝑚 𝑗 < 𝑚𝑖 over the range of the summation above, we can use

the Chernoff-Hoeffding bound (Fact 1) to obtain

E𝑍𝑛 6
𝑛−1∑︁
𝑡=𝑢

∑︁
𝑗∈I\{𝑖}

𝑡∑︁
𝑚𝑖=d( 1

𝐿
+𝜖)𝑡e

b( 1
𝐿
− 𝜖
𝐿−1 )𝑡c∑︁

𝑚 𝑗=1
exp

−2𝜌 ©«1 − 2
√︄

𝑚𝑖𝑚 𝑗(
𝑚𝑖 + 𝑚 𝑗

)2
ª®¬ log 𝑡

 . (A.39)

Let 𝛾 := 𝑚𝑖/(𝑚𝑖 + 𝑚 𝑗 ). Then, 𝛾 >
1
𝐿
+𝜖

2
𝐿
+( 𝐿−2

𝐿−1 )𝜖
> 1/2 over the range of the summation in (A.39).

Consequently, 𝛾(1 − 𝛾) is maximized at 𝛾 =
1
𝐿
+𝜖

2
𝐿
+( 𝐿−2

𝐿−1 )𝜖
, and therefore, 𝑚𝑖𝑚 𝑗/

(
𝑚𝑖 + 𝑚 𝑗

)2
= 𝛾(1 −

𝛾) 6 ( 𝑓 (𝜖, 𝐿))2 < 1/4 in (A.39), where 𝑓 (𝜖, 𝐿) as defined as:

𝑓 (𝜖, 𝐿) :=

√︄
(𝐿 − 1) (1 + 𝜖𝐿) (𝐿 − 1 − 𝜖𝐿)
(2(𝐿 − 1) + 𝐿 (𝐿 − 2)𝜖)2

. (A.40)

Combining (A.39) and (A.40), we obtain

E𝑍𝑛 6 (𝐿 − 1)
𝑛−1∑︁
𝑡=𝑢

𝑡−2(𝜌−1−2𝜌 𝑓 (𝜖,𝐿)) . (A.41)

Now consider an arbitrary 𝛿 > 0. From (A.37), we have

P (𝑁𝑖 (𝑛) > 𝑢 + 𝛿𝑛) 6 P (𝑍𝑛 > 𝛿𝑛) 6
(★)

E𝑍𝑛
𝛿𝑛
6
(†)

(
𝐿 − 1
𝛿𝑛

) 𝑛−1∑︁
𝑡=𝑢

𝑡−2(𝜌(1−2 𝑓 (𝜖,𝐿))−1) , (A.42)

where (★) is due to Markov’s inequality, and (†) follows using (A.41). Observe from (A.40)

that 𝑓 (𝜖, 𝐿) is monotone decreasing in 𝜖 over the interval 𝜖 ∈
[
0, 𝐿−1

𝐿

]
, with 𝑓 (0, 𝐿) = 1/2 and

𝑓

(
𝐿−1
𝐿
, 𝐿

)
= 0. Therefore, 1 − 2 𝑓 (𝜖, 𝐿) > 0 in the interval 𝜖 ∈

(
0, 𝐿−1

𝐿

]
. Thus, for 𝜌 large

enough, the exponent of 𝑡 in (A.42) can be made arbitrarily small. That is, ∃ 𝜌0 ∈ R+ s.t. for all

𝜌 > 𝜌0, we have 2 (𝜌 (1 − 2 𝑓 (𝜖, 𝐿)) − 1) > 0 ∀ 𝜖 ∈
[

1
2𝐿 (𝐿−1) ,

𝐿−1
𝐿

]
. Now supposing 𝜌 > 𝜌0, plug

in 𝜖 = 1
2𝐿 (𝐿−1) in (A.42) (this includes substituting 𝑢 =

⌈(
1
𝐿
+ 1

2𝐿 (𝐿−1)

)
𝑛

⌉
). Then since 𝛿 > 0 and
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𝑖 ∈ I are arbitrary, it follows that for any 𝛿 > 0 and 𝑖 ∈ I,

lim
𝑛→∞
P

(
𝑁𝑖 (𝑛) >

(
1
𝐿
+ 1

2𝐿 (𝐿 − 1) + 𝛿
)
𝑛

)
=
𝐿2𝜌

𝛿
lim
𝑛→∞

𝑛
−2

(
𝜌

(
1−2 𝑓

(
1

2𝐿 (𝐿−1) ,𝐿
))
−1

)
= 0. (A.43)

Notice that for any 𝛿 > 0 and 𝑖 ∈ I,

P
©«𝑁𝑖 (𝑛) +

∑︁
𝑗∈[𝐾]\I

𝑁 𝑗 (𝑛) 6
(

1
2𝐿
− (𝐿 − 1)𝛿

)
𝑛
ª®¬

= P
©«

∑︁
𝑗∈I\{𝑖}

𝑁 𝑗 (𝑛) > (𝐿 − 1)
(

1
𝐿
+ 1

2𝐿 (𝐿 − 1) + 𝛿
)
𝑛
ª®¬

6
∑︁

𝑗∈I\{𝑖}
P

(
𝑁 𝑗 (𝑛) >

(
1
𝐿
+ 1

2𝐿 (𝐿 − 1) + 𝛿
)
𝑛

)
,

where the last inequality follows using the Union bound. Taking limits on both sides above, we

conclude using (A.43) that for any 𝛿 > 0 and 𝑖 ∈ I,

lim
𝑛→∞
P
©«𝑁𝑖 (𝑛) +

∑︁
𝑗∈[𝐾]\I

𝑁 𝑗 (𝑛) 6
(

1
2𝐿
− (𝐿 − 1)𝛿

)
𝑛
ª®¬ = 0. (A.44)

If I = [𝐾], the conclusion that 𝑁𝑖 (𝑛)/𝑛 > 1/(2𝐿) = 1/(2𝐾) with high probability (approaching 1

as 𝑛 → ∞) for all 𝑖 ∈ [𝐾], is immediate from (A.44). If I ≠ [𝐾], then
∑
𝑗∈[𝐾]\I E

(
𝑁 𝑗 (𝑛)/𝑛

)
6

𝐶𝐾𝜌

[(
1

Δ2
min

) (
log 𝑛
𝑛

)
+ 1
(𝜌−1)𝑛

]
for some absolute constant 𝐶 > 0 follows from [4], Theorem 7.

Consequently if Δmin = 𝜔

(√︃
log 𝑛
𝑛

)
, Markov’s inequality implies that

∑
𝑗∈[𝐾]\I 𝑁 𝑗 (𝑛)/𝑛 = 𝑜𝑝 (1).

Thus, it again follows using (A.44) that 𝑁𝑖 (𝑛)/𝑛 > 1/(2𝐿) with high probability (approaching 1

as 𝑛→∞) for all 𝑖 ∈ I. �
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A.9.2 Proof of part (I) and (II)

Note that the following holds for any integer 𝑢 > 1 and any arm 𝑖 ∈ [𝐾]:

𝑁𝑖 (𝑛) 6 𝑢 +
𝑛∑︁

𝑡=𝑢+1
1 {𝜋𝑡 = 𝑖, 𝑁𝑖 (𝑡 − 1) > 𝑢} ,

where 𝜋𝑡 ∈ [𝐾] indicates the arm played at time 𝑡. In particular, the above is true also for 𝑢 =

𝑁 𝑗 (𝑛) + d𝜖𝑛e, where 𝑗 ∈ [𝐾]\{𝑖} and 𝜖 > 0 are arbitrarily chosen. Without loss of generality,

suppose that |I | > 2 (the result is trivial for |I | = 1), and fix two arbitrary arms 𝑖, 𝑗 ∈ I. Then,

𝑁𝑖 (𝑛) 6 𝑁 𝑗 (𝑛) + d𝜖𝑛e +
𝑛∑︁

𝑡=𝑁 𝑗 (𝑛)+d𝜖𝑛e+1
1

{
𝜋𝑡 = 𝑖, 𝑁𝑖 (𝑡 − 1) > 𝑁 𝑗 (𝑛) + d𝜖𝑛e

}
6 𝑁 𝑗 (𝑛) + d𝜖𝑛e +

𝑛∑︁
𝑡=d𝜖𝑛e+1

1
{
𝜋𝑡 = 𝑖, 𝑁𝑖 (𝑡 − 1) > 𝑁 𝑗 (𝑛) + 𝜖𝑛

}
6 𝑁 𝑗 (𝑛) + d𝜖𝑛e +

𝑛∑︁
𝑡=d𝜖𝑛e+1

1
{
𝐵𝑖,𝑁𝑖 (𝑡−1),𝑡−1 > 𝐵 𝑗 ,𝑁 𝑗 (𝑡−1),𝑡−1, 𝑁𝑖 (𝑡 − 1) > 𝑁 𝑗 (𝑛) + 𝜖𝑛

}
,

where 𝐵𝑘,𝑠,𝑡 := �̂�𝑘 (𝑠) +
√︁
(𝜌 log 𝑡)/𝑠 for 𝑘 ∈ [𝐾], with �̂�𝑘 (𝑠) denoting the empirical mean reward

from the first 𝑠 plays of arm 𝑘 . Then,

𝑁𝑖 (𝑛) 6 𝑁 𝑗 (𝑛) + d𝜖𝑛e +
𝑛−1∑︁
𝑡=d𝜖𝑛e

1
{
𝐵𝑖,𝑁𝑖 (𝑡),𝑡 > 𝐵 𝑗 ,𝑁 𝑗 (𝑡),𝑡 , 𝑁𝑖 (𝑡) > 𝑁 𝑗 (𝑛) + 𝜖𝑛

}
6 𝑁 𝑗 (𝑛) + d𝜖𝑛e +

𝑛−1∑︁
𝑡=d𝜖𝑛e

1
{
𝐵𝑖,𝑁𝑖 (𝑡),𝑡 > 𝐵 𝑗 ,𝑁 𝑗 (𝑡),𝑡 , 𝑁𝑖 (𝑡) > 𝑁 𝑗 (𝑡) + 𝜖𝑡

}
6 𝑁 𝑗 (𝑛) + 𝜖𝑛 + 1 + 𝑍𝑛, (A.45)
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where 𝑍𝑛 :=
∑𝑛−1
𝑡=d𝜖𝑛e 1

{
𝐵𝑖,𝑁𝑖 (𝑡),𝑡 > 𝐵 𝑗 ,𝑁 𝑗 (𝑡),𝑡 , 𝑁𝑖 (𝑡) > 𝑁 𝑗 (𝑡) + 𝜖𝑡

}
. Now,

E𝑍𝑛

=

𝑛−1∑︁
𝑡=d𝜖𝑛e

P
{
𝐵𝑖,𝑁𝑖 (𝑡),𝑡 > 𝐵 𝑗 ,𝑁 𝑗 (𝑡),𝑡 , 𝑁𝑖 (𝑡) > 𝑁 𝑗 (𝑡) + 𝜖𝑡

}
=

𝑛−1∑︁
𝑡=d𝜖𝑛e

P

{
�̂�𝑖 (𝑁𝑖 (𝑡)) − �̂� 𝑗

(
𝑁 𝑗 (𝑡)

)
>

√︁
𝜌 log 𝑡

(
1√︁
𝑁 𝑗 (𝑡)

− 1√︁
𝑁𝑖 (𝑡)

)
, 𝑁𝑖 (𝑡) > 𝑁 𝑗 (𝑡) + 𝜖𝑡

}
=

𝑛−1∑︁
𝑡=d𝜖𝑛e

P

{
𝑌𝑖 (𝑁𝑖 (𝑡)) − 𝑌 𝑗

(
𝑁 𝑗 (𝑡)

)
>

√︁
𝜌 log 𝑡

(
1√︁
𝑁 𝑗 (𝑡)

− 1√︁
𝑁𝑖 (𝑡)

)
, 𝑁𝑖 (𝑡) > 𝑁 𝑗 (𝑡) + 𝜖𝑡

}
,

where 𝑌𝑘 (𝑠) :=
∑𝑠
𝑙=1𝑌𝑘,𝑙/𝑠 for 𝑘 ∈ [𝐾], 𝑠 ∈ N, with 𝑌𝑘,𝑙 := 𝑋𝑘,𝑙 −E𝑋𝑘,𝑙 for 𝑙 ∈ N. The last equality

above follows since 𝑖, 𝑗 ∈ I and the mean rewards of arms in I are equal. Thus,

E𝑍𝑛

=

𝑛−1∑︁
𝑡=d𝜖𝑛e

P

(
𝑌𝑖 (𝑁𝑖 (𝑡)) − 𝑌 𝑗

(
𝑁 𝑗 (𝑡)

)
>

√︄
𝜌 log 𝑡
𝑁𝑖 (𝑡)

(√︄
𝑁𝑖 (𝑡)
𝑁 𝑗 (𝑡)

− 1

)
, 𝑁𝑖 (𝑡) > 𝑁 𝑗 (𝑡) + 𝜖𝑡

)
6

𝑛−1∑︁
𝑡=d𝜖𝑛e

P

(
𝑌𝑖 (𝑁𝑖 (𝑡)) − 𝑌 𝑗

(
𝑁 𝑗 (𝑡)

)
>

√︂
𝜌 log 𝑡
𝑡

(√
1 + 𝜖 − 1

)
, 𝑁𝑖 (𝑡) > 𝑁 𝑗 (𝑡) + 𝜖𝑡

)
6

𝑛−1∑︁
𝑡=d𝜖𝑛e

P
(
𝑊𝑡 >

√
1 + 𝜖 − 1

)
, (A.46)
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where𝑊𝑡 :=
√︃

𝑡
𝜌 log 𝑡

(∑𝑁𝑖 (𝑡)
𝑙=1 𝑌𝑖,𝑙

𝑁𝑖 (𝑡) −
∑𝑁𝑗 (𝑡)
𝑙=1 𝑌 𝑗 ,𝑙

𝑁 𝑗 (𝑡)

)
. Now,

|𝑊𝑡 |

6

√︂
𝑡

𝜌 log 𝑡
©«
�����∑𝑁𝑖 (𝑡)

𝑙=1 𝑌𝑖,𝑙

𝑁𝑖 (𝑡)

����� +
������
∑𝑁 𝑗 (𝑡)
𝑙=1 𝑌 𝑗 ,𝑙

𝑁 𝑗 (𝑡)

������ª®¬
=

√︄
2𝑡

𝜌 log 𝑡
©«
√︄

log log 𝑁𝑖 (𝑡)
𝑁𝑖 (𝑡)

����� ∑𝑁𝑖 (𝑡)
𝑙=1 𝑌𝑖,𝑙√︁

2𝑁𝑖 (𝑡) log log 𝑁𝑖 (𝑡)

����� +
√︄

log log 𝑁 𝑗 (𝑡)
𝑁 𝑗 (𝑡)

������
∑𝑁 𝑗 (𝑡)
𝑙=1 𝑌 𝑗 , 𝑗√︁

2𝑁 𝑗 (𝑡) log log 𝑁 𝑗 (𝑡)

������ª®¬
6

√︄
2𝑡

𝜌 log 𝑡
©«
√︄

log log 𝑡
𝑁𝑖 (𝑡)

����� ∑𝑁𝑖 (𝑡)
𝑙=1 𝑌𝑖,𝑙√︁

2𝑁𝑖 (𝑡) log log 𝑁𝑖 (𝑡)

����� +
√︄

log log 𝑡
𝑁 𝑗 (𝑡)

������
∑𝑁 𝑗 (𝑡)
𝑙=1 𝑌 𝑗 ,𝑙√︁

2𝑁 𝑗 (𝑡) log log 𝑁 𝑗 (𝑡)

������ª®¬
=

√︄
2 log log 𝑡
𝜌 log 𝑡

©«
√︂

𝑡

𝑁𝑖 (𝑡)

����� ∑𝑁𝑖 (𝑡)
𝑙=1 𝑌𝑖,𝑙√︁

2𝑁𝑖 (𝑡) log log 𝑁𝑖 (𝑡)

����� +
√︄

𝑡

𝑁 𝑗 (𝑡)

������
∑𝑁 𝑗 (𝑡)
𝑙=1 𝑌 𝑗 ,𝑙√︁

2𝑁 𝑗 (𝑡) log log 𝑁 𝑗 (𝑡)

������ª®¬ . (A.47)

We know that 𝑁𝑘 (𝑡), for any arm 𝑘 ∈ [𝐾], can be lower-bounded path-wise by a deterministic

monotone increasing coercive function of 𝑡, say ℎ(𝑡). This follows as a trivial consequence of the

structure of the policy, and the fact that the rewards are uniformly bounded. Therefore, we have

for any arm 𝑘 ∈ I that ����� ∑𝑁𝑘 (𝑡)
𝑙=1 𝑌𝑘,𝑙√︁

2𝑁𝑘 (𝑡) log log 𝑁𝑘 (𝑡)

����� 6 sup
𝑚>ℎ(𝑡)

����� ∑𝑚
𝑙=1𝑌𝑘,𝑙√︁

2𝑚 log log𝑚

�����
=⇒ lim sup

𝑡→∞

����� ∑𝑁𝑘 (𝑡)
𝑙=1 𝑌𝑘,𝑙√︁

2𝑁𝑘 (𝑡) log log 𝑁𝑘 (𝑡)

����� 6 lim sup
𝑡→∞

����� ∑𝑡
𝑙=1𝑌𝑘,𝑙√︁

2𝑡 log log 𝑡

����� . (A.48)

For any 𝑘 ∈ I, we know that
{
𝑌𝑘,𝑙 : 𝑙 ∈ N

}
is a collection of i.i.d. random variables with E𝑌𝑘,1 = 0

and Var
(
𝑌𝑘,1

)
= Var

(
𝑋𝑘,1

)
6 1. Therefore, we conclude using the Law of the Iterated Logarithm

(see Theorem 8.5.2 in [25]) in (A.48) that

lim sup
𝑡→∞

����� ∑𝑁𝑘 (𝑡)
𝑙=1 𝑌𝑘,𝑙√︁

2𝑁𝑘 (𝑡) log log 𝑁𝑘 (𝑡)

����� 6 1 w.p. 1 ∀ 𝑘 ∈ I. (A.49)

Using (A.47), (A.49), and the meta-result from the preamble in A.9.1 that 𝑁𝑘 (𝑡)/𝑡 > 1/(2 |I |)
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with high probability (approaching 1 as 𝑡 →∞) for any arm 𝑘 ∈ I, we conclude that

𝑊𝑡

𝑝
−→ 0 as 𝑡 →∞. (A.50)

Now,

P

(
𝑁𝑖 (𝑛) − 𝑁 𝑗 (𝑛)

𝑛
> 2𝜖

)
6
(†)
P(1 + 𝑍𝑛 > 𝜖𝑛) 6

(‡)

1 + E𝑍𝑛
𝜖𝑛

6
(★)

1
𝜖𝑛
+ 1
𝜖𝑛

𝑛−1∑︁
𝑡=d𝜖𝑛e

P
(
𝑊𝑡 >

√
1 + 𝜖 − 1

)
,

where (†) follows using (A.45), (‡) using Markov’s inequality, and (★) from (A.46). Therefore,

P

(
𝑁𝑖 (𝑛) − 𝑁 𝑗 (𝑛)

𝑛
> 2𝜖

)
6

1
𝜖𝑛
+

(
1 − 𝜖
𝜖

)
sup
𝑡>𝜖𝑛
P

(
𝑊𝑡 >

√
1 + 𝜖 − 1

)
. (A.51)

Since 𝜖 > 0 is arbitrary, we conclude using (A.50) and (A.51) that for any 𝜖 > 0,

lim
𝑛→∞
P

(
𝑁𝑖 (𝑛) − 𝑁 𝑗 (𝑛)

𝑛
> 2𝜖

)
= 0. (A.52)

Our proof is symmetric w.r.t. the labels 𝑖, 𝑗 , therefore, an identical result holds also with the

labels interchanged in (A.52). Thus, we have 𝑁𝑖 (𝑛)/𝑛 − 𝑁 𝑗 (𝑛)/𝑛
𝑝
−→ 0. Since 𝑖, 𝑗 are arbitrary

in I, the aforementioned convergence holds for any pair of arms in I. Now if I = [𝐾], we are

done. If I ≠ [𝐾], then
∑
𝑖∈[𝐾]\I E (𝑁𝑖 (𝑛)/𝑛) 6 𝐶𝐾𝜌

[(
1

Δ2
min

) (
log 𝑛
𝑛

)
+ 1
(𝜌−1)𝑛

]
for some absolute

constant 𝐶 > 0 follows from Theorem 7 in [4]. Consequently if Δmin = 𝜔

(√︃
log 𝑛
𝑛

)
, it would

follow from Markov’s inequality that
∑
𝑖∈[𝐾]\I 𝑁𝑖 (𝑛)/𝑛 = 𝑜𝑝 (1). Thus, any arm 𝑖 ∈ I must satisfy

𝑁𝑖 (𝑛)/𝑛
𝑝
−→ 1/|I|. �

A.10 Proof of Fact 2 and Fact 3
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A.10.1 Fact 2

Since \𝑘 is Beta(1, 𝑘 + 1)-distributed, its PDF, say 𝑓𝑘 (·), is given by

𝑓𝑘 (𝑥) = (𝑘 + 1) (1 − 𝑥)𝑘 ; 𝑥 ∈ [0, 1] . (A.53)

∴ P
(
\𝑘 > \̃𝑙

)
=

∫ 1

0

(∫ 1

𝑦

𝑓𝑘 (𝑥)𝑑𝑥
)
𝑓𝑙 (𝑦)𝑑𝑦

=

∫ 1

0

(∫ 1

𝑦

(𝑘 + 1) (1 − 𝑥)𝑘𝑑𝑥
)
(𝑙 + 1) (1 − 𝑦)𝑙𝑑𝑦 (using (A.53))

=

∫ 1

0
(𝑙 + 1) (1 − 𝑦)𝑘+𝑙+1𝑑𝑦

=
𝑙 + 1

𝑘 + 𝑙 + 2
.

A.10.2 Fact 3

Since \𝑘 is Beta(𝑘 + 1, 1)-distributed, its PDF, say 𝑓𝑘 (·), is given by

𝑓𝑘 (𝑥) = (𝑘 + 1)𝑥𝑘 ; 𝑥 ∈ [0, 1] . (A.54)

∴ P
(
\𝑘 > \̃𝑙

)
=

∫ 1

0

(∫ 1

𝑦

𝑓𝑘 (𝑥)𝑑𝑥
)
𝑓𝑙 (𝑦)𝑑𝑦

=

∫ 1

0

(∫ 1

𝑦

(𝑘 + 1)𝑥𝑘𝑑𝑥
)
(𝑙 + 1)𝑦𝑙𝑑𝑦 (using (A.54))

=

∫ 1

0
(𝑙 + 1)

(
1 − 𝑦𝑘+1

)
𝑦𝑙𝑑𝑦

= 1 − 𝑙 + 1
𝑘 + 𝑙 + 2

=
𝑘 + 1

𝑘 + 𝑙 + 2
.

�
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Appendix B: Appendix to Chapter 2

General organization

1. §B.1 provides the proof of Theorem 6.

2. §B.2 provides the proof of Theorem 7.

3. §B.3 provides the proof of Theorem 8.

4. §B.4 provides the proof of Theorem 9.

5. §B.5 provides the proof of Proposition 1.

6. §B.6 provides the proof of Theorem 10.

7. §B.7 provides auxiliary results used in the analysis of ALG3.

8. §B.8 provides the proof of Theorem 11.

9. §B.9 provides auxiliary results used in the analysis of ALG4.

10. §B.10 provides the proof of Theorem 12.

B.1 Proof of Theorem 6

Notation. For each 𝑖 ∈ {1, 2}, let G𝑖 (𝑥) be an arbitrary collection of distributions with mean

𝑥 ∈ R. The tuple (G1(𝑥),G2(𝑦)) will be referred to as an instance.

Since the horizon of play is fixed at 𝑛, the decision maker may play at most 𝑛 distinct arms.

Therefore, it suffices to focus only on the sequence of the first 𝑛 arms that may be played. A

realization of an instance a = (G1(`1),G2(`2)) is defined as the 𝑛-tuple 𝑟 ≡ (𝑟𝑖)16𝑖6𝑛, where
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𝑟𝑖 ∈ G1(`1)∪G2(`2) denotes the reward distribution of arm 𝑖 ∈ {1, ..., 𝑛}. It must be noted that the

decision maker need not play every arm in 𝑟 . Let 𝑖∗ := arg max𝑖∈{1,2} `𝑖. Suppose that the distribu-

tion over possible realizations of a = (G1(`1),G2(`2)) in {𝑟 : 𝑟𝑖 ∈ G1(`1) ∪ G2(`2), 1 6 𝑖 6 𝑛}

satisfies P (𝑟𝑖 ∈ G𝑖∗ (`𝑖∗)) = 𝛼∗ (where 𝛼∗ ∈ (0, 1) is arbitrary) for all 𝑖 ∈ {1, ..., 𝑛}, i.e., optimal

arms occur in the reservoir with probability 𝛼∗.

Recall that the cumulative pseudo-regret after 𝑛 plays of a policy 𝜋 on a = (G1(`1),G2(`2)) is

given by 𝑅𝜋𝑛 (a) =
∑𝑛
𝑡=1

(
`𝑖∗ − `T (𝜋𝑡 )

)
, where T (𝜋𝑡) ∈ {1, 2} indicates the type of the arm played

by 𝜋 at time 𝑡. Our goal is to lower bound E𝑅𝜋𝑛 (a), where the expectation is w.r.t. the randomness

in 𝜋 as well as the distribution over possible realizations of a. To this end, we define the notion of

expected cumulative regret of 𝜋 on a realization 𝑟 of a = (G1(`1),G2(`2)) by

𝑆𝜋𝑛 (a, 𝑟) := E𝜋
[
𝑛∑︁
𝑡=1

(
`𝑖∗ − `T (𝜋𝑡 )

) ]
,

where the expectation E𝜋 is w.r.t. the randomness in 𝜋. Note that E𝑅𝜋𝑛 (a) = Ea𝑆𝜋𝑛 (a, 𝑟), where the

expectation Ea is w.r.t. the distribution over possible realizations of a. We define our problem class

NΔ as the collection of Δ-separated instances given by

NΔ :=
{
(G1(`1),G2(`2)) : `1 − `2 = Δ, (`1, `2) ∈ R2} .

Fix an arbitrary Δ > 0 and consider an instance a = ({𝑄1}, {𝑄2}) ∈ NΔ, where (𝑄1, 𝑄2) are unit-

variance Gaussian distributions with means (`1, `2) respectively. Consider an arbitrary realization

𝑟 ∈ {𝑄1, 𝑄2}𝑛 of a and let I ⊆ {1, ..., 𝑛} denote the set of inferior arms in 𝑟 (arms with reward

distribution 𝑄2). Consider another instance a′ ∈ NΔ given by a′ =
(
{𝑄1}, {𝑄1}

)
, where 𝑄1 is

another unit variance Gaussian with mean `1 + Δ. Now consider a realization 𝑟′ ∈ {𝑄1, 𝑄1}𝑛

of a′ that is such that the arms at positions in I have distribution 𝑄1 while those at positions in

{1, ..., 𝑛}\I have distribution 𝑄1. Notice that I is the set of optimal arms in 𝑟′ (arms with reward
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distribution 𝑄1). Then, the following always holds:

𝑆𝜋𝑛 (a, 𝑟) + 𝑆𝜋𝑛 (a′, 𝑟′) >
(
Δ𝑛

2

) (
P𝜋a,𝑟

(∑︁
𝑖∈I

𝑁𝑖 (𝑛) >
𝑛

2

)
+ P𝜋a′,𝑟 ′

(∑︁
𝑖∈I

𝑁𝑖 (𝑛) 6
𝑛

2

))
,

where P𝜋a,𝑟 (·) and P𝜋
a′,𝑟 ′ (·) denote the probability measures w.r.t. the instance-realization pairs (a, 𝑟)

and (a′, 𝑟′) respectively, and 𝑁𝑖 (𝑛) denotes the number of plays up to and including time 𝑛 of arm

𝑖 ∈ {1, ..., 𝑛}. Using the Bretagnolle-Huber inequality (Theorem 14.2 of [9]), we obtain

𝑆𝜋𝑛 (a, 𝑟) + 𝑆𝜋𝑛 (a′, 𝑟′) >
(
Δ𝑛

4

)
exp

(
−D

(
P𝜋a,𝑟 , P

𝜋
a′,𝑟 ′

))
,

where D
(
P𝜋a,𝑟 , P

𝜋
a′,𝑟 ′

)
denotes the KL-Divergence between P𝜋a,𝑟 and P𝜋

a′,𝑟 ′. Using Divergence de-

composition (Lemma 15.1 of [9]), we further obtain

𝑆𝜋𝑛 (a, 𝑟) + 𝑆𝜋𝑛 (a′, 𝑟′) >
(
Δ𝑛

4

)
exp

©«−
©«

D
(
𝑄2, 𝑄1

)
Δ

ª®®¬ 𝑆𝜋𝑛 (a, 𝑟)
ª®®¬ =

(
Δ𝑛

4

)
exp

(
−2Δ𝑆𝜋𝑛 (a, 𝑟)

)
,

where the equality follows since 𝑄1 and 𝑄2 are unit variance Gaussian distributions with means

separated by 2Δ. Next, taking the expectation Ea on both sides followed by a direct application of

Jensen’s inequality yields

E𝑅𝜋𝑛 (a) + Ea𝑆𝜋𝑛 (a′, 𝑟′) >
(
Δ𝑛

4

)
exp

(
−2ΔE𝑅𝜋𝑛 (a)

)
. (B.1)

Consider the Ea𝑆𝜋𝑛 (a′, 𝑟′) term in (B.1). Using a simple change-of-measure argument, we obtain

Ea𝑆𝜋𝑛 (a′, 𝑟′) = Ea
′

[
𝑆𝜋𝑛 (a′, 𝑟′)

(
1 − 𝛼∗
𝛼∗

)2(Λ(𝑟 ′)−𝑛/2)
]
,

where Λ(𝑟′) is the number of optimal arms in realization 𝑟′. Since 𝛼∗ is arbitrary, we fix 𝛼∗ = 1/2
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to obtain

Ea𝑆𝜋𝑛 (a′, 𝑟′) = Ea
′
𝑆𝜋𝑛 (a′, 𝑟′) = E𝑅𝜋𝑛 (a′) , (B.2)

Now, from (B.1) and (B.2), we have that for 𝛼∗ = 1/2,

E𝑅𝜋𝑛 (a) + E𝑅𝜋𝑛 (a′) >
Δ𝑛

4
exp

(
−2ΔE𝑅𝜋𝑛 (a)

)
=⇒ �̃�𝑛 >

Δ𝑛

8
exp

(
−2Δ�̃�𝑛

)
, (B.3)

where �̃�𝑛 := max
(
E𝑅𝜋𝑛 (a) ,E𝑅𝜋𝑛 (a′)

)
.

Instance-dependent lower bound

The assertion of the theorem follows from the fact that the inequality (B.3) is fulfilled only if

for any Y ∈ (0, 1), �̃�𝑛 satisfies for all 𝑛 large enough �̃�𝑛 > (1 − Y) log 𝑛/
(
2Δ

)
. Therefore, there

exists an instance a with gap Δ such that E𝑅𝜋𝑛 (a) > 𝐶 log 𝑛/Δ for some absolute constant 𝐶 and 𝑛

large enough, whenever 𝛼∗ = 1/2. In fact, said statement holds for all 𝛼∗ 6 1/2 since the policy 𝜋

satisfies Definition 1.

Instance-independent (minimax) lower bound

Since �̃�𝑛 6 Δ𝑛, it follows from (B.3) that

�̃�𝑛 >
Δ𝑛

8
exp

(
−2Δ2𝑛

)
.

Setting Δ = 1/
√
𝑛, and noting that the inequality, in fact, holds for all 𝛼∗ 6 1/2 (owing to the

admissibility of 𝜋; see Definition 1), proves the stated assertion. �

B.2 Proof of Theorem 7

Note that this result is stated for general 𝐾 > 2 and is not specific to 𝐾 = 2. In fact, the nature of

the set of possible sub-optimal types is inconsequential to the proof that follows as long as said set

is at least Δ-separated from the optimal mean reward. Consider an arbitrary policy 𝜋 ∈ Π̃. Denote
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by 𝐴𝜋𝑛 the number of distinct arms played by 𝜋 until time 𝑛. Consider an arbitrary 𝑘 ∈ {1, ..., 𝑛}.

Then, conditioned on 𝐴𝜋𝑛 = 𝑘 , the expected cumulative regret incurred by 𝜋 is at least

E
[
𝑅𝜋𝑛 |𝐴𝜋𝑛 = 𝑘

]
> (1 − 𝛼1)Δ𝑘 + (1 − 𝛼1)𝑘Δ(𝑛 − 𝑘) =: 𝑓 (𝑘). (B.4)

Intuition behind (B.4). Each of the 𝑘 arms played during the horizon has at least one pull asso-

ciated with it. Consider a clairvoyant policy coupled to 𝜋 that learns the best among the 𝐴𝜋𝑛 arms

played by 𝜋 as soon as each has been pulled exactly once, i.e., after a total of 𝐴𝜋𝑛 pulls. Clearly, the

regret incurred by said clairvoyant policy lower bounds E𝑅𝜋𝑛 . Further, since 𝐴𝜋𝑛 is independent of

the sample-history of arms, it follows that the 𝐴𝜋𝑛 arms are statistically identical. Thus, conditioned

on 𝐴𝜋𝑛 = 𝑘 , the expected regret from the first 𝑘 pulls of the clairvoyant policy is at least (1−𝛼1)Δ𝑘 .

Also, the probability that each of the 𝑘 arms is inferior-typed is (1 − 𝛼1)𝑘 ; the clairvoyant policy

thus incurs a regret of at least (1 − 𝛼1)𝑘Δ(𝑛 − 𝑘) going forward. This explains the lower bound in

(B.4). Therefore, for any 𝑘 ∈ {1, 2, ..., 𝑛}, we have

E
[
𝑅𝜋𝑛 |𝐴𝜋𝑛 = 𝑘

]
> min
𝑘∈{1,2,...,𝑛}

𝑓 (𝑘) > min
𝑥∈[0,𝑛]

𝑓 (𝑥).

We will show that 𝑓 (𝑥) is strictly convex over [0, 𝑛] with 𝑓 ′(0) < 0 and 𝑓 ′(𝑛) > 0. Then, it would

follow that 𝑓 (·) admits a unique minimizer 𝑥∗𝑛 ∈ (0, 𝑛) given by the solution to 𝑓 ′(𝑥) = 0. The

minimum 𝑓
(
𝑥∗𝑛

)
will turn out to be logarithmic in 𝑛. Observe that

𝑓 ′(𝑥) = (1 − 𝛼1)Δ + (1 − 𝛼1)𝑥Δ [(𝑛 − 𝑥) log(1 − 𝛼1) − 1] ,

𝑓 ′′(𝑥) = −(1 − 𝛼1)𝑥Δ [2 − (𝑛 − 𝑥) log(1 − 𝛼1)] log(1 − 𝛼1).

Since Δ > 0, it follows that 𝑓 ′′(𝑥) > 0 over [0, 𝑛]. Further, note that

𝑓 ′(0) = −𝛼1Δ + Δ𝑛 log(1 − 𝛼1) < 0,

𝑓 ′(𝑛) = (1 − 𝛼1)Δ − (1 − 𝛼1)𝑛Δ > 0.
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Solving 𝑓 ′
(
𝑥∗𝑛

)
= 0 for the unique minimizer 𝑥∗𝑛, we obtain

(
1

1 − 𝛼1

)𝑥∗𝑛−1
− 1 =

(
𝑛 − 𝑥∗𝑛

)
log

(
1

1 − 𝛼1

)
=⇒

(
1

1 − 𝛼1

)𝑥∗𝑛
+ 𝑥∗𝑛 log

(
1

1 − 𝛼1

)
> 𝑛 log

(
1

1 − 𝛼1

)
=⇒ 2

(
1

1 − 𝛼1

)𝑥∗𝑛
> 𝑛 log

(
1

1 − 𝛼1

)
,

where the last inequality follows using 𝑦 > log 𝑦. Therefore, we have

(
1

1 − 𝛼1

)𝑥∗𝑛
>
𝑛

2
log

(
1

1 − 𝛼1

)
=⇒ 𝑥∗𝑛 >

log 𝑛 + log log
(

1
1−𝛼1

)
− log 2

log
(

1
1−𝛼1

) .

Thus, for any 𝑘 ∈ {1, ..., 𝑛},

E
[
𝑅𝜋𝑛 |𝐴𝜋𝑛 = 𝑘

]
> 𝑓

(
𝑥∗𝑛

)
> (1 − 𝛼1)Δ𝑥∗𝑛 > (1 − 𝛼1)

©«
log 𝑛 + log log

(
1

1−𝛼1

)
− log 2

log
(

1
1−𝛼1

) ª®®¬Δ
=⇒ E𝑅𝜋𝑛 > (1 − 𝛼1)

©«
log 𝑛 + log log

(
1

1−𝛼1

)
− log 2

log
(

1
1−𝛼1

) ª®®¬Δ
=⇒ inf

𝜋∈Π̃

E𝑅𝜋𝑛
log 𝑛

> (1 − 𝛼1)
©«

1

log
(

1
1−𝛼1

) + log log
(

1
1−𝛼1

)
− log 2

(log 𝑛) log
(

1
1−𝛼1

) ª®®¬Δ
=⇒ inf

𝜋∈Π̃

E𝑅𝜋𝑛
log 𝑛

>
(†)
(1 − 𝛼1)

©«
1 − 𝛼1
𝛼1

+
log log

(
1

1−𝛼1

)
− log 2

(log 𝑛) log
(

1
1−𝛼1

) ª®®¬Δ
=⇒ inf

𝜋∈Π̃

E𝑅𝜋𝑛
log 𝑛

>
(1 − 𝛼1)2Δ

𝛼1
+ (1 − 𝛼1)

©«
log log

(
1

1−𝛼1

)
− log 2

(log 𝑛) log
(

1
1−𝛼1

) ª®®¬Δ,
where (†) follows using log 𝑦 6 𝑦 − 1. Taking the appropriate limit now proves the assertion. �
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B.3 Proof of Theorem 8

The reservoir distribution is given by 𝜶 = (𝛼1, ..., 𝛼𝐾). In the full information setting, the

decision maker observes the true mean reward of an arm immediately upon pulling it. Let 𝜋 =

(𝜋𝑡 : 𝑡 = 1, 2, ...) be the policy that pulls a new arm from the reservoir in each period. Let 𝑁 denote

the first time at which one arm of each of the 𝐾 types is collected under 𝜋. Then, it follows from

classical results (see Theorem 4.1 in [71]) for the Coupon-collector problem that

E𝑁 =

∫ ∞

0

©«1 −
𝐾∏
𝑗=1

(
1 − exp

(
−𝛼 𝑗 𝑦

) )ª®¬ 𝑑𝑦 >(†)
∫ ∞

0

©«1 −
𝐾∏
𝑗=1

(
1 − exp

(
− 𝑦
𝐾

))ª®¬ 𝑑𝑦
=
(‡)

𝐾∑︁
𝑗=1

𝐾

𝑗
> 𝐾 log𝐾, (B.5)

where (†) follows as
∏𝐾

𝑗=1
(
1 − exp

(
−𝛼 𝑗 𝑦

) )
is maximized when 𝜶 is the Uniform distribution;

(‡) is a classical result (see previous reference). The optimal policy 𝜋∗ follows 𝜋 until time 𝑁 ,

and subsequently commits to the arm with the highest mean among the first 𝑁 arms. The lifetime

regret of 𝜋∗ is then given by

E𝑅𝜋
∗
∞ = E

[
𝑁∑︁
𝑡=1

𝐾∑︁
𝑖=2
(`1 − `𝑖) 1 {T (𝜋𝑡) = 𝑖}

]
= E

[ ∞∑︁
𝑡=1

𝐾∑︁
𝑖=2
(`1 − `𝑖) 1 {T (𝜋𝑡) = 𝑖, 𝑡 6 𝑁}

]
=

∞∑︁
𝑡=1

𝐾∑︁
𝑖=2
(`1 − `𝑖) P (T (𝜋𝑡) = 𝑖, 𝑡 6 𝑁) , (B.6)
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where the last equality follows from Tonelli’s Theorem. Note that

P (T (𝜋𝑡) = 𝑖, 𝑡 6 𝑁) = P (T (𝜋𝑡) = 𝑖) − P (T (𝜋𝑡) = 𝑖, 𝑡 > 𝑁)

= 𝛼𝑖 − P ( T (𝜋𝑡) = 𝑖 | 𝑡 > 𝑁) P (𝑡 > 𝑁)

=
(★)
𝛼𝑖 − P (T (𝜋𝑡) = 𝑖) P (𝑡 > 𝑁)

= 𝛼𝑖 − 𝛼𝑖P (𝑡 > 𝑁)

= 𝛼𝑖P (𝑁 > 𝑡) , (B.7)

where (★) follows since T (𝜋𝑡) is i.i.d. in time 𝑡. Therefore, from (B.6) and (B.7), we have

E𝑅𝜋
∗
∞ =

∞∑︁
𝑡=1

𝐾∑︁
𝑖=2

𝛼𝑖 (`1 − `𝑖) P (𝑁 > 𝑡)

=

𝐾∑︁
𝑖=2

𝛼𝑖 (`1 − `𝑖)
∞∑︁
𝑡=1
P (𝑁 > 𝑡)

=

𝐾∑︁
𝑖=2

𝛼𝑖 (`1 − `𝑖) E𝑁. (B.8)

Finally, from (B.8) and (B.5), one obtains

E𝑅𝜋
∗
∞ >

𝐾∑︁
𝑖=2

𝛼𝑖 (`1 − `𝑖) 𝐾 log𝐾.

�

B.4 Proof of Theorem 9

Let
{(
𝑋 𝑙1, 𝑗 , ..., 𝑋

𝑙
𝐾, 𝑗

)
: 𝑗 = 1, ..., 𝑚𝑙

}
be the reward sequence associated with the 𝐾 arms played

in the 𝑙th epoch, where 𝑚𝑙 =
⌈
𝑒2
√
𝑙 log 𝑛

⌉
. Let A := {1, ..., 𝐾} and define

𝐼 := inf
𝑙 ∈ N :

������ 𝑚𝑙∑︁
𝑗=1

(
𝑋 𝑙𝑎, 𝑗 − 𝑋 𝑙𝑏, 𝑗

)������ > 2𝑚𝑙𝑒−
√
𝑙 ∀ 𝑎, 𝑏 ∈ A, 𝑎 < 𝑏

 .
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Then,

P (𝐼 > 𝑘) = P ©«
𝑘−1⋂
𝑙=1

⋃
𝑎,𝑏∈A,𝑎<𝑏


������ 𝑚𝑙∑︁
𝑗=1

(
𝑋 𝑙𝑎, 𝑗 − 𝑋 𝑙𝑏, 𝑗

)������ < 2𝑚𝑙𝑒−
√
𝑙

ª®¬
=

𝑘−1∏
𝑙=1
P
©«

⋃
𝑎,𝑏∈A,𝑎<𝑏


������ 𝑚𝑙∑︁
𝑗=1

(
𝑋 𝑙𝑎, 𝑗 − 𝑋 𝑙𝑏, 𝑗

)������ < 2𝑚𝑙𝑒−
√
𝑙

ª®¬
6

𝑘−1∏
𝑙=1

1 − P (D) + P (D) PD ©«
⋃

𝑎,𝑏∈A,𝑎<𝑏


������ 𝑚𝑙∑︁
𝑗=1

(
𝑋 𝑙𝑎, 𝑗 − 𝑋 𝑙𝑏, 𝑗

)������ < 2𝑚𝑙𝑒−
√
𝑙

ª®¬
 ,

where D denotes the event that the 𝐾 arms played in epoch 𝑙 are “all-distinct,” i.e., no two arms

belong to the same type, PD(·) := P (·|D) denotes the corresponding conditional measure, and

P (D) = 𝐾!
∏𝐾
𝑖=1 𝛼𝑖. Using the Union bound, we obtain

P (𝐼 > 𝑘) 6
𝑘−1∏
𝑙=1

1 − P (D) + P (D)
∑︁

𝑎,𝑏∈A,𝑎<𝑏
PD

©«
������ 𝑚𝑙∑︁
𝑗=1

(
𝑋 𝑙𝑎, 𝑗 − 𝑋 𝑙𝑏, 𝑗

)������ < 2𝑚𝑙𝑒−
√
𝑙ª®¬
 . (B.9)

Define 𝜏 := 𝐾
∑𝐼
𝑙=1𝑚𝑙 . Consider the following events:

• E1 := {None of the arms played in epoch 𝐼 belongs to the optimal type}.

• E2 := {At least one optimal-typed arm is played in epoch 𝐼, and the empirically best arm is

not optimal-typed}.

Recall that Δ̄ = `1 − `𝐾 denotes the maximal sub-optimality gap. Then, the cumulative pseudo-

regret 𝑅𝑛 (superscript 𝜋 suppressed for notational convenience) of ALG1(𝑛) is bounded as

𝑅𝑛 6 1 {𝜏 6 𝑛}
[
Δ̄𝜏 + 1 {E1 ∪ E2} Δ̄𝑛

]
+ 1 {𝜏 > 𝑛} Δ̄𝑛

6 Δ̄𝜏 + (1 {𝜏 6 𝑛,E1} + 1 {𝜏 6 𝑛,E2}) Δ̄𝑛 + 1 {𝜏 > 𝑛} Δ̄𝑛.
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Taking expectations,

E𝑅𝑛 6 Δ̄E𝜏 + [P (𝜏 6 𝑛,E1) + P (𝜏 6 𝑛,E2)] Δ̄𝑛 + P (𝜏 > 𝑛) Δ̄𝑛

6 2Δ̄E𝜏 + [P (𝜏 6 𝑛,E1) + P (𝜏 6 𝑛,E2)] Δ̄𝑛,

where the last step uses Markov’s inequality. Therefore,

E𝑅𝑛 6 2𝐾Δ̄E [𝐼𝑚𝐼] + [P (𝜏 6 𝑛,E1) + P (𝜏 6 𝑛,E2)] Δ̄𝑛

6 4𝐾Δ̄E
[
𝐼𝑒2
√
𝐼
]

log 𝑛 + [P (𝜏 6 𝑛,E1) + P (𝜏 6 𝑛,E2)] Δ̄𝑛.

Upper bounding E
[
𝐼𝑒2
√
𝐼
]

Recall that 𝛿 = min16𝑖< 𝑗6𝐾
(
`𝑖 − ` 𝑗

)
denotes the smallest gap between any two distinct mean

rewards. Then, on the event D, for any 𝑎, 𝑏 ∈ A, 𝑎 < 𝑏, we either have E
[
𝑋 𝑙
𝑎, 𝑗
− 𝑋 𝑙

𝑏, 𝑗

]
> 𝛿 or

E
[
𝑋 𝑙
𝑎, 𝑗
− 𝑋 𝑙

𝑏, 𝑗

]
6 −𝛿. Without loss of generality, suppose that E

[
𝑋 𝑙
𝑎, 𝑗
− 𝑋 𝑙

𝑏, 𝑗

]
> 𝛿. Then,

PD
©«
������ 𝑚𝑙∑︁
𝑗=1

(
𝑋 𝑙𝑎, 𝑗 − 𝑋 𝑙𝑏, 𝑗

)������ < 2𝑚𝑙𝑒−
√
𝑙ª®¬ 6 PD ©«

𝑚𝑙∑︁
𝑗=1

(
𝑋 𝑙𝑎, 𝑗 − 𝑋 𝑙𝑏, 𝑗

)
< 2𝑚𝑙𝑒−

√
𝑙ª®¬

= PD
©«
𝑚𝑙∑︁
𝑗=1

(
𝑋 𝑙𝑎, 𝑗 − 𝑋 𝑙𝑏, 𝑗 − 𝛿

)
< −𝑚𝑙

(
𝛿 − 2𝑒−

√
𝑙
)ª®¬ .

Then, for 𝑙 >
⌈
log2 (4/𝛿)

⌉
=: 𝑘∗, one has that

PD
©«
������ 𝑚𝑙∑︁
𝑗=1

(
𝑋 𝑙𝑎, 𝑗 − 𝑋 𝑙𝑏, 𝑗

)������ < 2𝑚𝑙𝑒−
√
𝑙ª®¬ 6 PD ©«

𝑚𝑙∑︁
𝑗=1

(
𝑋 𝑙𝑎, 𝑗 − 𝑋 𝑙𝑏, 𝑗 − 𝛿

)
< −2𝑚𝑙𝑒−

√
𝑙ª®¬ 6 𝑛−2, (B.10)

where the final inequality follows using the Chernoff-Hoeffding bound [69], together with the fact

that −1 6 𝑋 𝑙
𝑎, 𝑗
− 𝑋 𝑙

𝑏, 𝑗
6 1 and 𝑚𝑙 =

⌈
𝑒2
√
𝑙 log 𝑛

⌉
. Using (B.9) and (B.10), we obtain for 𝑘 > 𝑘∗ + 1
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that

P (𝐼 > 𝑘) 6
𝑘−1∏
𝑙=1

1 − P (D) + P (D)
∑︁

𝑎,𝑏∈A,𝑎<𝑏
PD

©«
������ 𝑚𝑙∑︁
𝑗=1

(
𝑋 𝑙𝑎, 𝑗 − 𝑋 𝑙𝑏, 𝑗

)������ < 2𝑚𝑙𝑒−
√
𝑙ª®¬


6
∏

𝑘∗<𝑙6𝑘−1

[
1 − P (D) + 𝐾

2P (D)
𝑛2

]
6

[
1 − 3P (D)

4

] 𝑘−𝑘∗−1
,

where the last inequality holds for 𝑛 > 2𝐾 (We will ensure that all guarantees hold for 𝑛 > 𝐾 by

offsetting regret by 2𝐾Δ̄ in the end). Thus, for any 𝑘 > 1 and 𝑛 > 2𝐾 , we have

P (𝐼 > 𝑘∗ + 𝑘) 6
[
1 − 3P (D)

4

] 𝑘−1
.

Now,

E
[
𝐼𝑒2
√
𝐼
]
6 𝑘∗𝑒2

√
𝑘∗ +

∞∑︁
𝑘=1
(𝑘∗ + 𝑘) 𝑒2

√
𝑘∗+𝑘P (𝐼 = 𝑘∗ + 𝑘)

6
(†)
𝑘∗𝑒2

√
𝑘∗ +

∞∑︁
𝑘=1
(𝑘∗ + 𝑘) 𝑒2

√
𝑘∗𝑒2

√
𝑘P (𝐼 = 𝑘∗ + 𝑘)

6
(‡)
𝑘∗𝑒2

√
𝑘∗ + 2

∞∑︁
𝑘=1

𝑘∗𝑘𝑒2
√
𝑘∗𝑒2

√
𝑘P (𝐼 = 𝑘∗ + 𝑘)

6 𝑘∗𝑒2
√
𝑘∗ + 2

∞∑︁
𝑘=1

𝑘∗𝑘𝑒2
√
𝑘∗𝑒2

√
𝑘P (𝐼 > 𝑘∗ + 𝑘)

6 𝑘∗𝑒2
√
𝑘∗ + 2

∞∑︁
𝑘=1

𝑘∗𝑘𝑒2
√
𝑘∗𝑒2

√
𝑘

[
1 − 3P (D)

4

] 𝑘−1

= 𝑘∗𝑒2
√
𝑘∗

[
1 + 2

∞∑︁
𝑘=1

𝑘𝑒2
√
𝑘

[
1 − 3P (D)

4

] 𝑘−1
]

6 4𝑘∗𝑒2
√
𝑘∗
∞∑︁
𝑘=1

𝑘𝑒2
√
𝑘

[
1 − 3P (D)

4

] 𝑘−1
,
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where (†) follows using
√
𝑘∗ + 𝑘 6

√
𝑘∗ +
√
𝑘 , and (‡) using 𝑘∗ + 𝑘 6 2𝑘∗𝑘 (since 𝑘∗, 𝑘 ∈ N).

Define

𝐶𝜶 :=
∞∑︁
𝑘=1

𝑘𝑒2
√
𝑘

[
1 − 3P (D)

4

] 𝑘−1
.

Since P (D) = 𝐾!
∏𝐾
𝑖=1 𝛼𝑖, note that the infinite summation is finite since 𝜶 = (𝛼𝑖 : 𝑖 = 1, ..., 𝐾) is

coordinate-wise bounded away from 0. Therefore,

E
[
𝐼𝑒2
√
𝐼
]
6 4𝐶𝜶𝑘

∗𝑒2
√
𝑘∗ .

Note that

𝑒2
√
𝑘∗ = 𝑒

2
√︃
dlog2 (4/𝛿)e 6 𝑒2

√
log2 (4/𝛿)+1 6 𝑒

2
(√

log2 (4/𝛿)+1
)
6

16𝑒2

𝛿2 .

Therefore, in conclusion,

E
[
𝐼𝑒2
√
𝐼
]
6

128𝑒2𝐶𝜶

𝛿2 log2
(
4
𝛿

)
.

Upper bounding P (𝜏 6 𝑛,E1)

Note that on the event {𝜏 6 𝑛}, the duration of epoch 𝐼 is 𝐾𝑚𝐼 . On the event E1, the considera-

tion set contains at least two arms that belong to the same type. Without loss of generality, suppose
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that these arms are indexed 1 and 2. Then,

P (𝜏 6 𝑛,E1) 6 P
©«
������ 𝑚𝐼∑︁
𝑗=1

(
𝑋 𝐼1, 𝑗 − 𝑋

𝐼
2, 𝑗

)������ > 2𝑚𝐼𝑒
−
√
𝐼 , 𝜏 6 𝑛

ª®¬
6 P

©«
������ 𝑚𝐼∑︁
𝑗=1

(
𝑋 𝐼1, 𝑗 − 𝑋

𝐼
2, 𝑗

)������ > 2𝑚𝐼𝑒
−
√
𝐼 , 𝐼 6 𝑛

ª®¬
6

𝑛∑︁
𝑙=1
P
©«
������ 𝑚𝑙∑︁
𝑗=1

(
𝑋 𝑙1, 𝑗 − 𝑋

𝑙
2, 𝑗

)������ > 2𝑚𝑙𝑒−
√
𝑙ª®¬

6
𝑛∑︁
𝑙=1

2
𝑛2

=
2
𝑛
,

where the last inequality follows using the Chernoff-Hoeffding bound [69].

Upper bounding P (𝜏 6 𝑛,E2)

Note that on the event {𝜏 6 𝑛}, the duration of epoch 𝐼 is 𝐾𝑚𝐼 . On the event E2, the consid-

eration set A contains at least one arm of the optimal type, and the empirically best arm belongs

to an inferior type. Without loss of generality, suppose that arm 1 belongs to the optimal type and

I ⊂ A denotes the set of inferior-typed arms. We then have

P (𝜏 6 𝑛,E2) 6 P
©«
⋃
𝑎∈I


𝑚𝐼∑︁
𝑗=1

(
𝑋 𝐼𝑎, 𝑗 − 𝑋 𝐼1, 𝑗

)
> 2𝑚𝐼𝑒

−
√
𝐼 , 𝜏 6 𝑛

ª®¬
6

∑︁
𝑎∈I
P
©«
𝑚𝐼∑︁
𝑗=1

(
𝑋 𝐼𝑎, 𝑗 − 𝑋 𝐼1, 𝑗

)
> 2𝑚𝐼𝑒

−
√
𝐼 , 𝐼 6 𝑛

ª®¬
6

∑︁
𝑎∈I

𝑛∑︁
𝑙=1
P
©«
𝑚𝑙∑︁
𝑗=1

(
𝑋 𝑙𝑎, 𝑗 − 𝑋 𝑙1, 𝑗

)
> 2𝑚𝑙𝑒−

√
𝑙ª®¬

6
∑︁
𝑎∈I

𝑛∑︁
𝑙=1

1
𝑛2

6
𝐾

𝑛
,
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where the second-to-last inequality follows using Hoeffding’s bound [69] since E
[
𝑋 𝑙
𝑎, 𝑗
− 𝑋 𝑙1, 𝑗

]
6

−Δ < 0 ∀ 𝑎 ∈ I.

Putting everything together

In conclusion, the expected cumulative regret of the policy 𝜋 given by ALG1(𝑛) is bounded for

any 𝑛 > 𝐾 as

E𝑅𝜋𝑛 6
�̃�𝜶𝐾Δ̄ log 𝑛

𝛿2 log2
(
4
𝛿

)
+ 4𝐾Δ̄,

where �̃�𝜶 is a finite constant that depends only on 𝜶 = (𝛼𝑖 : 𝑖 = 1, ..., 𝐾). In particular, �̃�𝜶 is given

by the following infinite summation:

�̃�𝜶 := 512𝑒2𝐶𝜶 = 512𝑒2
∞∑︁
𝑘=1

𝑘𝑒2
√
𝑘

[
1 −

3𝐾!
∏𝐾
𝑖=1 𝛼𝑖

4

] 𝑘−1

. (B.11)

�

B.5 Proof of Proposition 1

Consider the following stopping time:

𝜏 := inf
𝑚 ∈ N : ∃𝑎, 𝑏 ∈ A, 𝑎 < 𝑏 s.t.Z𝑎,𝑏 +

𝑚∑︁
𝑗=1

(
𝑋𝑎, 𝑗 − 𝑋𝑏, 𝑗

)
< 4

√︁
𝑚 log𝑚

 .
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Since P
(⋂

𝑚>1
⋂
𝑎,𝑏∈A,𝑎<𝑏

{���Z𝑎,𝑏 +∑𝑚
𝑗=1

(
𝑋𝑎, 𝑗 − 𝑋𝑏, 𝑗

) ��� > 4
√︁
𝑚 log𝑚

})
> P(𝜏 = ∞), it suffices to

show that P(𝜏 = ∞) is bounded away from 0. To this end, define the following entities:

Λ𝐾 := inf

{
𝑝 ∈ N :

∞∑︁
𝑚=𝑝

1
𝑚8 6

1
2𝐾2

}
,

𝑇0 := max
(⌈(

64
𝛿2

)
log2

(
64
𝛿2

)⌉
,Λ𝐾

)
,

𝑓 (𝑥) := 𝑥 + 4
√︁
𝑥 log 𝑥 for 𝑥 > 1.

Lemma 1 For any 𝑎, 𝑏 ∈ A s.t. 𝑎 < 𝑏, it is the case that

{
Z𝑎,𝑏 > 𝑓 (𝑇0)

}
⊆

𝑇0⋂
𝑚=1

Z +
𝑚∑︁
𝑗=1

(
𝑋𝑎, 𝑗 − 𝑋𝑏, 𝑗

)
> 4

√︁
𝑚 log𝑚

 .
Proof of Lemma 1. Note that

Z𝑎,𝑏 > 𝑓 (𝑇0)

= 𝑇0 + 4
√︁
𝑇0 log𝑇0

> 𝑚 + 4
√︁
𝑚 log𝑚 ∀ 1 6 𝑚 6 𝑇0

>
(𝔞)

𝑚∑︁
𝑗=1

(
𝑋𝑏, 𝑗 − 𝑋𝑎, 𝑗

)
+ 4

√︁
𝑚 log𝑚 ∀ 1 6 𝑚 6 𝑇0

=⇒ Z𝑎,𝑏 +
𝑚∑︁
𝑗=1

(
𝑋𝑎, 𝑗 − 𝑋𝑏, 𝑗

)
> 4

√︁
𝑚 log𝑚 ∀ 1 6 𝑚 6 𝑇0,

where (𝔞) follows since the rewards are bounded in [0, 1], i.e.,
��𝑋𝑎, 𝑗 − 𝑋𝑏, 𝑗 �� 6 1. �

Lemma 2 For 𝑚 > 𝑇0, it is the case that

𝛿 > 8
√︂

log𝑚
𝑚

.

Proof of Lemma 2. First of all, note that 𝑇0 >
(
64/𝛿2) log2 (

64/𝛿2) > 64 (since 𝛿 6 1). For

132



𝑠 =
(
64/𝛿2) log2 (

64/𝛿2) , one has

𝛿2 =

64 log2
(

64
𝛿2

)
𝑠

>
(𝔟)

64
[
log

(
64
𝛿2

)
+ 2 log log

(
64
𝛿2

)]
𝑠

=
64 log 𝑠
𝑠

,

where (𝔟) follows since the function 𝑔(𝑥) := 𝑥2 − 𝑥 − 2 log 𝑥 is monotone increasing for 𝑥 > log 64

(think of log
(
64/𝛿2) as 𝑥), and therefore attains its minimum at 𝑥 = log 64; one can verify that

this minimum is strictly positive. Furthermore, since log 𝑠/𝑠 is monotone decreasing for 𝑠 > 64, it

follows that for any 𝑚 > 𝑇0,

𝛿2 >
64 log𝑚
𝑚

.

�

Now coming back to the proof of Proposition 1, consider an arbitrary 𝑙 ∈ N such that 𝑙 > 𝑇0.

Then,

P (𝜏 6 𝑙) = P (𝜏 6 𝑙,Z > 𝑓 (𝑇0)) + P (𝜏 6 𝑙,Z 6 𝑓 (𝑇0))

6 P (𝜏 6 𝑙,Z > 𝑓 (𝑇0)) +Φ ( 𝑓 (𝑇0)) .
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Now,

P (𝜏 6 𝑙,Z > 𝑓 (𝑇0))

= P
©«

𝑙⋃
𝑚=1

⋃
𝑎,𝑏∈A,𝑎<𝑏

Z𝑎,𝑏 +
𝑚∑︁
𝑗=1

(
𝑋𝑎, 𝑗 − 𝑋𝑏, 𝑗

)
< 4

√︁
𝑚 log𝑚,Z𝑎,𝑏 > 𝑓 (𝑇0)

ª®¬
=
(†)
P
©«

𝑙⋃
𝑚=𝑇0

⋃
𝑎,𝑏∈A,𝑎<𝑏

Z𝑎,𝑏 +
𝑚∑︁
𝑗=1

(
𝑋𝑎, 𝑗 − 𝑋𝑏, 𝑗

)
< 4

√︁
𝑚 log𝑚,Z𝑎,𝑏 > 𝑓 (𝑇0)

ª®¬
6

𝑙∑︁
𝑚=𝑇0

∑︁
𝑎,𝑏∈A,𝑎<𝑏

P
©«Z𝑎,𝑏 +

𝑚∑︁
𝑗=1

(
𝑋𝑎, 𝑗 − 𝑋𝑏, 𝑗

)
< 4

√︁
𝑚 log𝑚,Z𝑎,𝑏 > 𝑓 (𝑇0)

ª®¬
=

𝑙∑︁
𝑚=𝑇0

∑︁
𝑎,𝑏∈A,𝑎<𝑏

P
©«Z𝑎,𝑏 +

𝑚∑︁
𝑗=1

(
𝑋𝑎, 𝑗 − 𝑋𝑏, 𝑗 − 𝛿

)
< −𝑚

(
𝛿 − 4

√︂
log𝑚
𝑚

)
,Z𝑎,𝑏 > 𝑓 (𝑇0)

ª®¬
6

𝑙∑︁
𝑚=𝑇0

∑︁
𝑎,𝑏∈A,𝑎<𝑏

P
©«
𝑚∑︁
𝑗=1

(
𝑋𝑎, 𝑗 − 𝑋𝑏, 𝑗 − 𝛿

)
< −𝑚

(
𝛿 − 4

√︂
log𝑚
𝑚

)
,Z𝑎,𝑏 > 𝑓 (𝑇0)

ª®¬
6
(‡)

𝑙∑︁
𝑚=𝑇0

∑︁
𝑎,𝑏∈A,𝑎<𝑏

P
©«
𝑚∑︁
𝑗=1

(
𝑋𝑎, 𝑗 − 𝑋𝑏, 𝑗 − 𝛿

)
< −4

√︁
𝑚 log𝑚,Z𝑎,𝑏 > 𝑓 (𝑇0)

ª®¬
= Φ̄ ( 𝑓 (𝑇0))

𝑙∑︁
𝑚=𝑇0

∑︁
𝑎,𝑏∈A,𝑎<𝑏

P
©«
𝑚∑︁
𝑗=1

(
𝑋𝑎, 𝑗 − 𝑋𝑏, 𝑗 − 𝛿

)
< −4

√︁
𝑚 log𝑚ª®¬

6
(★)

Φ̄ ( 𝑓 (𝑇0))
𝑙∑︁

𝑚=𝑇0

∑︁
𝑎,𝑏∈A,𝑎<𝑏

1
𝑚8

6 Φ̄ ( 𝑓 (𝑇0)) 𝐾2
∞∑︁

𝑚=𝑇0

1
𝑚8

6
(∗)

Φ̄ ( 𝑓 (𝑇0))
2

,

where (†) follows from Lemma 1, (‡) from Lemma 2, (★) follows using the Chernoff-Hoeffding

bound [69] and finally, (∗) follows from the definition of 𝑇0. Therefore, we have

P (𝜏 6 𝑙) 6 Φ̄ ( 𝑓 (𝑇0))
2

+Φ ( 𝑓 (𝑇0)) = 1 − Φ̄ ( 𝑓 (𝑇0))
2

=⇒ P (𝜏 > 𝑙) > Φ̄ ( 𝑓 (𝑇0))
2

.
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Taking the limit 𝑙 →∞ and appealing to the continuity of probability, we obtain

P (𝜏 = ∞) > Φ̄ ( 𝑓 (𝑇0))
2

=⇒ P
©«
⋂
𝑚>1

⋂
𝑎,𝑏∈A,𝑎<𝑏


������Z𝑎,𝑏 + 𝑚∑︁

𝑗=1

(
𝑋𝑎, 𝑗 − 𝑋𝑏, 𝑗

) ������ > 4
√︁
𝑚 log𝑚

ª®¬ > Φ̄ ( 𝑓 (𝑇0))
2

.

�

B.6 Proof of Theorem 10

We will initially assume 𝛿 > 8
√︁

log 𝑛/𝑛 for technical convenience. In the final step leading up

to the asserted bound, we will relax this assumption by offsetting regret appropriately.

Let A := {1, ..., 𝐾}. Define the following stopping times:

𝜏1 (𝑠𝑛) := inf
𝑚 > 𝑠𝑛 : ∃𝑎, 𝑏 ∈ A, 𝑎 < 𝑏 s.t.

������Z𝑎,𝑏 + 𝑚∑︁
𝑗=1

(
𝑋𝑎, 𝑗 − 𝑋𝑏, 𝑗

) ������ < 4
√︁
𝑚 log𝑚

 ,
𝜏2 (𝑠𝑛) := inf

𝑚 > 𝑠𝑛 :

������ 𝑚∑︁𝑗=1

(
𝑋𝑎, 𝑗 − 𝑋𝑏, 𝑗

) ������ > 4
√︁
𝑚 log 𝑛 ∀ 𝑎, 𝑏 ∈ A, 𝑎 < 𝑏

 .
To keep notations simple, we will suppress the argument and denote 𝜏1 (𝑠𝑛) and 𝜏2 (𝑠𝑛) by

𝜏1 and 𝜏2 respectively (the dependence on 𝑠𝑛 will be implicit going forward). Let 𝑅𝑡 denote the

cumulative pseudo-regret of ALG2(𝑛) after 𝑡 6 𝑛 pulls. Let D denote the event that the first batch

of 𝐾 arms queried from the reservoir is “all-distinct,” i.e., no two arms in this batch belong to the

same type; let Dc be the complement of this event. Let CI denote the event that the algorithm

commits to an inferior-typed arm. Let �̃�·, �̄�· be independently drawn from the same distribution

as 𝑅·. Let 𝑥+ := max(𝑥, 0) for 𝑥 ∈ R. Then, 𝑅𝑛 evolves according to the following stochastic
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recursion:

𝑅𝑛

6 1{D}
[
1 {𝜏1 < 𝜏2}

(
Δ̄min (𝐾𝜏1, 𝑛) + �̃�(𝑛−𝐾𝜏1)+

)]
1{D}

[
1 {𝜏1 > 𝜏2}

(
Δ̄min (𝐾𝜏2, 𝑛) + 1{CI}Δ̄ (𝑛 − 𝐾𝜏2)+

) ]
+ 1{Dc}

[
1 {𝜏1 < 𝜏2}

(
Δ̄min (𝐾𝜏1, 𝑛) + �̄�(𝑛−𝐾𝜏1)+

)
+ 1 {𝜏1 > 𝜏2} Δ̄𝑛

]
6 1{D}

[
1 {𝜏1 < 𝜏2}

(
Δ̄min (𝐾𝜏2, 𝑛) + �̃�𝑛

)
+ 1 {𝜏1 > 𝜏2}

(
Δ̄min (𝐾𝜏2, 𝑛) + 1{CI}Δ̄𝑛

) ]
+ 1{Dc}

[
1 {𝜏1 < 𝜏2}

(
Δ̄min (𝐾𝜏1, 𝑛) + �̄�𝑛

)
+ 1 {𝜏1 > 𝜏2} Δ̄𝑛

]
6 1{D}

[
2Δ̄min (𝐾𝜏2, 𝑛) + 1 {𝜏1 < 𝜏2} �̃�𝑛 + 1{CI}Δ̄𝑛

]
+ 1{Dc}

[
Δ̄𝐾𝜏1 + �̄�𝑛 + 1 {𝜏1 > 𝜏2} Δ̄𝑛

]
.

Taking expectations on both sides, one recovers using the independence of �̃�𝑛, �̄�𝑛 that

E𝑅𝑛

6
Δ̄

P ( 𝜏1 > 𝜏2 | D)

[
2E [min (𝐾𝜏2, 𝑛) | D] +

(
P (Dc)
P (D)

)
E [𝐾𝜏1 | Dc]

]
+ Δ̄

P ( 𝜏1 > 𝜏2 | D)

[(
P (CI| D) +

(
P (Dc)
P (D)

)
P ( 𝜏1 > 𝜏2 | Dc)

)
𝑛

]
,

where P (D) = 𝐾!
∏𝐾
𝑖=1 𝛼𝑖.

Lower bounding P ( 𝜏1 > 𝜏2 | D)

Define the following:

𝛾 (𝑠𝑛) := P ( 𝜏1 (𝑠𝑛) = ∞| D) , (B.12)
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where 𝜏1 (𝑠𝑛) and D are as defined before. We will suppress the dependence on 𝑠𝑛 to keep notations

minimal. Note that

P ( 𝜏1 < 𝜏2 | D) = P ( 𝜏1 < 𝜏2, 𝜏2 = ∞| D) + P ( 𝜏1 < 𝜏2, 𝜏2 < ∞| D)

6 P ( 𝜏2 = ∞| D) + P ( 𝜏1 < ∞| D)

= P ( 𝜏1 < ∞| D)

= 1 − 𝛾 (𝑠𝑛) ,

where the equality in the third step follows since 𝜏2 is almost surely finite on the event D (proved

in §B.6 below), and the final equality is due to (B.12). Thus, P ( 𝜏1 > 𝜏2 | D) > 𝛾 (𝑠𝑛).

Proof that 𝜏2 is almost surely finite on D

Let PD(·) := P (·|D) be the conditional measure w.r.t. the event D. Let A := {1, ..., 𝐾}. Then,

by continuity of probability, we have

PD (𝜏2 = ∞) = lim
𝑙→∞
PD (𝜏2 > 𝑙)

= lim
𝑙→∞
PD

©«
𝑙⋂

𝑚=𝑠𝑛

⋃
𝑎,𝑏∈A,𝑎<𝑏


������ 𝑚∑︁𝑗=1

(
𝑋𝑎, 𝑗 − 𝑋𝑏, 𝑗

) ������ < 4
√︁
𝑚 log 𝑛

ª®¬
6 lim
𝑙→∞

∑︁
𝑎,𝑏∈A,𝑎<𝑏

PD
©«
������ 𝑙∑︁
𝑗=1

(
𝑋𝑎, 𝑗 − 𝑋𝑏, 𝑗

) ������ < 4
√︁
𝑙 log 𝑛ª®¬ .

On D, it must be that
��E [

𝑋𝑎, 𝑗 − 𝑋𝑏, 𝑗
] �� > 𝛿. Without loss of generality, assume that E

[
𝑋𝑎, 𝑗 − 𝑋𝑏, 𝑗

]
>
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𝛿. Then,

PD (𝜏2 = ∞) 6 lim
𝑙→∞

∑︁
𝑎,𝑏∈A,𝑎<𝑏

PD
©«

𝑙∑︁
𝑗=1

(
𝑋𝑎, 𝑗 − 𝑋𝑏, 𝑗

)
< 4

√︁
𝑙 log 𝑛ª®¬

= lim
𝑙→∞

∑︁
𝑎,𝑏∈A,𝑎<𝑏

PD
©«

𝑙∑︁
𝑗=1

(
𝑋𝑎, 𝑗 − 𝑋𝑏, 𝑗 − 𝛿

)
< −𝑙

(
𝛿 − 4

√︂
log 𝑛
𝑙

)ª®¬
6 lim
𝑙→∞

∑︁
𝑎,𝑏∈A,𝑎<𝑏

PD
©«

𝑙∑︁
𝑗=1

(
𝑋𝑎, 𝑗 − 𝑋𝑏, 𝑗 − 𝛿

)
< −4𝑙

√︁
log 𝑛

(
2
√
𝑛
− 1
√
𝑙

)ª®¬ ,
where the last inequality follows since 𝛿 > 8

√︁
log 𝑛/𝑛 (by assumption). Now, using the

Chernoff-Hoeffding bound [69] together with the fact that −1 6 𝑋𝑎, 𝑗 − 𝑋𝑏, 𝑗 6 1, we obtain

for 𝑙 > 𝑛 and any 𝑎, 𝑏 ∈ A, 𝑎 < 𝑏 that

PD
©«

𝑙∑︁
𝑗=1

(
𝑋𝑎, 𝑗 − 𝑋𝑏, 𝑗 − 𝛿

)
< −4𝑙

√︁
log 𝑛

(
2
√
𝑛
− 1
√
𝑙

)ª®¬ 6 exp

[
−8𝑙

(
2
√
𝑛
− 1
√
𝑙

)2
log 𝑛

]

= exp
−8

(
4𝑙
𝑛
− 4

√︂
𝑙

𝑛
+ 1

)2

log 𝑛
 .

Summing over 𝑎, 𝑏 ∈ A, 𝑎 < 𝑏 and taking the limit 𝑙 →∞ proves the stated assertion. �
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Upper bounding E [min (𝐾𝜏2, 𝑛) | D]

Let PD(·) := P (·|D) be the conditional measure w.r.t. the event D. Let A := {1, ..., 𝐾}. Then,

E [min (𝐾𝜏2, 𝑛) | D] = 𝐾E
[
min

(
𝜏2,

𝑛

𝐾

)���D]
6 𝐾E [min (𝜏2, 𝑛) | D]

6 𝐾𝑠𝑛 + 𝐾
𝑛∑︁

𝑘=𝑠𝑛+1
PD (𝜏2 > 𝑘)

6 𝐾𝑠𝑛 + 𝐾
𝑛∑︁

𝑘=𝑠𝑛

PD (𝜏2 > 𝑘 + 1)

6 𝐾𝑠𝑛 + 𝐾
𝑛∑︁
𝑘=1

∑︁
𝑎,𝑏∈A,𝑎<𝑏

PD
©«
������ 𝑘∑︁
𝑗=1

(
𝑋𝑎, 𝑗 − 𝑋𝑏, 𝑗

) ������ < 4
√︁
𝑘 log 𝑛ª®¬ .

On D, it must be that
��E [

𝑋𝑎, 𝑗 − 𝑋𝑏, 𝑗
] �� > 𝛿. Without loss of generality, assume that E

[
𝑋𝑎, 𝑗 − 𝑋𝑏, 𝑗

]
>

𝛿. Then,

E [min (𝐾𝜏2, 𝑛) | D] 6 𝐾𝑠𝑛 + 𝐾
𝑛∑︁
𝑘=1

∑︁
𝑎,𝑏∈A,𝑎<𝑏

PD
©«
𝑘∑︁
𝑗=1

(
𝑋𝑎, 𝑗 − 𝑋𝑏, 𝑗

)
< 4

√︁
𝑘 log 𝑛ª®¬

= 𝐾𝑠𝑛 + 𝐾
𝑛∑︁
𝑘=1

∑︁
𝑎,𝑏∈A,𝑎<𝑏

PD
©«
𝑘∑︁
𝑗=1

(
𝑋𝑎, 𝑗 − 𝑋𝑏, 𝑗 − 𝛿

)
< −𝑘

(
𝛿 − 4

√︂
log 𝑛
𝑘

)ª®¬
6 𝐾𝑠𝑛 +

32𝐾3 log 𝑛
𝛿2 + 𝐾

𝑛∑︁
𝑘=

⌈
64 log 𝑛
𝛿2

⌉
∑︁

𝑎,𝑏∈A,𝑎<𝑏
PD

©«
𝑘∑︁
𝑗=1

(
𝑋𝑎, 𝑗 − 𝑋𝑏, 𝑗 − 𝛿

)
<
−𝑘𝛿

2
ª®¬ ,

where the last step follows since 𝛿 > 8
√︁

log 𝑛/𝑛 (by assumption) implies 𝑛 > 64 log 𝑛/𝛿2, and

𝑘 > 64 log 𝑛/𝛿2 implies 𝛿 − 4
√︁

log 𝑛/𝑘 > 𝛿/2. Finally, using the Chernoff-Hoeffding inequality

[69] together with the fact that
��𝑋𝑎, 𝑗 − 𝑋𝑏, 𝑗 �� 6 1, one obtains

E [min (𝐾𝜏2, 𝑛) | D] 6 𝐾𝑠𝑛 +
32𝐾3 log 𝑛

𝛿2 + 𝐾
3

2

𝑛∑︁
𝑘=

⌈
64 log 𝑛
𝛿2

⌉ exp
(
−𝛿2𝑘

8

)
6 𝐾𝑠𝑛 +

64𝐾3 log 𝑛
𝛿2 .
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Upper bounding E [𝐾𝜏1 | Dc]

The event Dc will be implicitly assumed and we will drop the conditional argument for nota-

tional simplicity. Let A := {1, ..., 𝐾}. Without loss of generality, suppose that arm 1 and 2 belong

to the same type. Then,

E [𝐾𝜏1 | Dc] = 𝐾𝑠𝑛 + 𝐾
∑︁

𝑘>𝑠𝑛+1
P (𝜏1 > 𝑘)

= 𝐾𝑠𝑛 + 𝐾
∑︁
𝑘>𝑠𝑛

P (𝜏1 > 𝑘 + 1)

= 𝐾𝑠𝑛 + 𝐾
∑︁
𝑘>𝑠𝑛

P
©«

𝑘⋂
𝑚=𝑠𝑛

⋂
𝑎,𝑏∈A,𝑎<𝑏


������Z𝑎,𝑏 + 𝑚∑︁

𝑗=1

(
𝑋1, 𝑗 − 𝑋2, 𝑗

) ������ > 4
√︁
𝑚 log𝑚

ª®¬
6 𝐾𝑠𝑛 + 𝐾

∑︁
𝑘>1
P
©«
������Z1,2 +

𝑘∑︁
𝑗=1

(
𝑋1, 𝑗 − 𝑋2, 𝑗

) ������ > 4
√︁
𝑘 log 𝑘ª®¬ .

SinceZ𝑎,𝑏 is a standard Gaussian, and the increments 𝑋1, 𝑗 − 𝑋2, 𝑗 are zero-mean sub-Gaussian

with variance proxy 1, it follows from the Chernoff-Hoeffding concentration bound [69] that

E [𝐾𝜏1 | Dc] 6 𝐾𝑠𝑛 + 2𝐾
∑︁
𝑘>1

1
𝑘4 =

(
𝑠𝑛 +

𝜋4

45

)
𝐾 < (𝑠𝑛 + 3) 𝐾.
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Upper bounding P (CI| D)

Let PD(·) := P (·|D) be the conditional measure w.r.t. the event D. Let A := {1, ..., 𝐾} and

without loss of generality, suppose that arm 1 is optimal (mean `1). Then,

P (CI| D) 6 PD
©«
𝐾⋃
𝑏=2


𝜏2∑︁
𝑗=1

(
𝑋1, 𝑗 − 𝑋𝑏, 𝑗

)
6 −4

√︁
𝜏2 log 𝑛

ª®¬
6

𝐾∑︁
𝑏=2

𝑛∑︁
𝑘=𝑠𝑛

PD
©«
𝑘∑︁
𝑗=1

(
𝑋1, 𝑗 − 𝑋𝑏, 𝑗

)
6 −4

√︁
𝑘 log 𝑛ª®¬ +

𝐾∑︁
𝑏=2
PD (𝜏2 > 𝑛)

6
𝐾∑︁
𝑏=2

𝑛∑︁
𝑘=1

1
𝑛8 +

𝐾3

𝑛8

6
𝐾

𝑛7 +
𝐾3

𝑛8 ,

where the second-to-last step follows using the Chernoff-Hoeffding inequality [69].

Upper bounding P ( 𝜏1 > 𝜏2 | Dc)

Let PDc (·) := P (·|Dc) be the conditional measure w.r.t. the event Dc. Let A := {1, ..., 𝐾}. On

Dc, there exist 2 arms in A that belong to the same type; without loss of generality suppose that

these arms are indexed by 1, 2. Then,

P ( 𝜏1 > 𝜏2 | Dc) 6 P ( 𝜏1 > 𝑛| Dc) + P ( 𝜏2 6 𝑛| Dc)

6
2
𝑛4 + PDc (𝜏2 6 𝑛)

=
2
𝑛4 + PDc

©«
𝑛⋃

𝑚=𝑠𝑛

⋂
𝑎,𝑏∈A,𝑎<𝑏


������ 𝑚∑︁𝑗=1

(
𝑋𝑎, 𝑗 − 𝑋𝑏, 𝑗

) ������ > 4
√︁
𝑚 log 𝑛

ª®¬
6

2
𝑛4 +

𝑛∑︁
𝑚=1
PDc

©«
������ 𝑚∑︁𝑗=1

(
𝑋1, 𝑗 − 𝑋2, 𝑗

) ������ > 4
√︁
𝑚 log 𝑛ª®¬

6
2
𝑛4 +

2
𝑛7 , (B.13)

where the last step follows using the Chernoff-Hoeffding bound [69].
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Putting everything together

Combining everything, one finally obtains that when 𝛿 > 8
√︁

log 𝑛/𝑛,

E𝑅𝑛 6
𝐶𝐾3Δ̄

𝛾 (𝑠𝑛)

(
log 𝑛
𝛿2 +

𝑠𝑛

P (D)

)
,

where 𝛾 (𝑠𝑛) is as defined in (B.12), P (D) = 𝐾!
∏𝐾
𝑖=1 𝛼𝑖, and 𝐶 is some absolute constant. When

𝛿 6 8
√︁

log 𝑛/𝑛, regret is at most Δ̄𝑛 6 64Δ̄/𝛿2 log 𝑛. Thus, the aforementioned bound, in fact,

holds generally for some large enough absolute constant 𝐶. �

B.7 Auxiliary results used in the analysis of ALG3

Lemma 3 (Persistence of heterogeneous consideration sets) Consider a two-armed bandit with

rewards bounded in [0, 1], means `1 > `2, and gap Δ = `1 − `2. Let
{
𝑋𝑖, 𝑗 : 𝑗 = 1, 2, ...

}
denote

the sequence of rewards collected from arm 𝑖 ∈ {1, 2} by UCB1 [10]. Let Z be an independently

generated standard Gaussian random variable. Let (𝑁1(𝑛), 𝑁2(𝑛)) be the per-arm sample counts

under UCB1 up to and including time 𝑛. Define

𝑀𝑛 := min (𝑁1(𝑛), 𝑁2(𝑛)) ,

𝜏 := inf
𝑛 ∈ N :

������Z + 𝑀𝑛∑︁
𝑗=1

(
𝑋1, 𝑗 − 𝑋2, 𝑗

) ������ < 4
√︁
𝑀𝑛 log𝑀𝑛

 .
Then, P (𝜏 = ∞) > 𝛽Δ,2, where 𝛽Δ,2 is as defined in (2.2) with 𝛿← Δ and 𝐾 ← 2.

Lemma 4 (Fast rejection of homogeneous consideration sets) Consider a two-armed bandit where

both arms have equal means. Let
{
𝑋𝑖, 𝑗 : 𝑗 = 1, 2, ...

}
denote the sequence of rewards collected

from arm 𝑖 ∈ {1, 2} by UCB1 [10]. Let Z be an independently generated standard Gaussian ran-

dom variable. Let (𝑁1(𝑛), 𝑁2(𝑛)) be the per-arm sample counts under UCB1 up to and including
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time 𝑛. Define

𝑀𝑛 := min (𝑁1(𝑛), 𝑁2(𝑛)) ,

𝜏 := inf
𝑛 ∈ N :

������Z + 𝑀𝑛∑︁
𝑗=1

(
𝑋1, 𝑗 − 𝑋2, 𝑗

) ������ < 4
√︁
𝑀𝑛 log𝑀𝑛

 .
Then, there exists an absolute constant 𝐶 such that E𝜏 6 𝐶.

B.7.1 Proof of Lemma 3

Since the rewards are uniformly bounded in [0, 1], it follows that 𝑁𝑖 (𝑛) → ∞ for each arm 𝑖 ∈

{1, 2} as 𝑛→∞ on every sample-path. This is due to the structure of the upper confidence bounds

used by UCB1. Consequently, 𝑀𝑛 = min (𝑁1(𝑛), 𝑁2(𝑛)) → ∞ as 𝑛 → ∞ on every sample-

path. Also note that 𝑀𝑛 is a weakly increasing integer-valued process (starting from 1) with unit

increments, wherever they exist. Thus, it follows on every sample-path that 𝜏, in fact, weakly

dominates the stopping time 𝜏′ defined below

𝜏′ := inf
𝑚 ∈ N :

������Z + 𝑚∑︁
𝑗=1

(
𝑋1, 𝑗 − 𝑋2, 𝑗

) ������ < 4
√︁
𝑚 log𝑚

 . (B.14)

Therefore, P (𝜏 = ∞) > P (𝜏′ = ∞) > 𝛽Δ,2, where the last inequality follows from Proposition 1

with 𝛿← Δ and 𝐾 ← 2. �
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B.7.2 Proof of Lemma 4

Note that

E𝜏 = 1 +
∑︁
𝑘>2
P (𝜏 > 𝑘)

= 1 +
∑︁
𝑘>2
P
©«
𝑘−1⋂
𝑛=1


������Z + 𝑀𝑛∑︁

𝑗=1

(
𝑋1, 𝑗 − 𝑋2, 𝑗

) ������ > 4
√︁
𝑀𝑛 log𝑀𝑛

ª®¬
6 1 +

∑︁
𝑘>1
P
©«
������Z + 𝑀𝑘∑︁

𝑗=1

(
𝑋1, 𝑗 − 𝑋2, 𝑗

) ������ > 4
√︁
𝑀𝑘 log𝑀𝑘

ª®¬
= 1 +

∑︁
𝑘>1

𝑘∑︁
𝑚=1
P
©«
������Z + 𝑀𝑘∑︁

𝑗=1

(
𝑋1, 𝑗 − 𝑋2, 𝑗

) ������ > 4
√︁
𝑀𝑘 log𝑀𝑘 , 𝑁1(𝑘) = 𝑚

ª®¬
= 1 +

∑︁
𝑘>1

∑︁
16𝑚6𝑘/2

P
©«
������Z + 𝑚∑︁

𝑗=1

(
𝑋1, 𝑗 − 𝑋2, 𝑗

) ������ > 4
√︁
𝑚 log𝑚, 𝑁1(𝑘) = 𝑚

ª®¬
= +

∑︁
𝑘>1

∑︁
𝑘/2<𝑚6𝑘

P
©«
������Z +

(𝑘−𝑚)∑︁
𝑗=1

(
𝑋1, 𝑗 − 𝑋2, 𝑗

) ������ > 4
√︁
(𝑘 − 𝑚) log(𝑘 − 𝑚), 𝑁1(𝑘) = 𝑚

ª®¬
= 1 +

∑︁
𝑘>1

∑︁
16𝑚6𝑘/2

P
©«
������Z + 𝑚∑︁

𝑗=1

(
𝑋1, 𝑗 − 𝑋2, 𝑗

) ������ > 4
√︁
𝑚 log𝑚, 𝑁1(𝑘) = 𝑚

ª®¬
= +

∑︁
𝑘>1

∑︁
16𝑚<𝑘/2

P
©«
������Z + 𝑚∑︁

𝑗=1

(
𝑋1, 𝑗 − 𝑋2, 𝑗

) ������ > 4
√︁
𝑚 log𝑚, 𝑁2(𝑘) = 𝑚

ª®¬
6 1 + 2

∑︁
𝑘>1

∑︁
\𝑘6𝑚6𝑘/2

P
©«
������Z + 𝑚∑︁

𝑗=1

(
𝑋1, 𝑗 − 𝑋2, 𝑗

) ������ > 4
√︁
𝑚 log𝑚ª®¬

= +
∑︁
𝑘>1
[P (𝑁1(𝑘) 6 \𝑘) + P (𝑁2(𝑘) 6 \𝑘)] ,
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where \ = 1/2 −
√

15/8. Using Theorem 4(i) of [21] with 𝜖 =
√

15/8, one obtains

E𝜏 6 1 + 2
∑︁
𝑘>1

∑︁
\𝑘6𝑚6𝑘/2

P
©«
������Z + 𝑚∑︁

𝑗=1

(
𝑋1, 𝑗 − 𝑋2, 𝑗

) ������ > 4
√︁
𝑚 log𝑚ª®¬ + 16

∑︁
𝑘>1

1
𝑘2

6 1 + 4
∑︁
𝑘>1

∑︁
\𝑘6𝑚6𝑘/2

1
𝑚4 + 16

∑︁
𝑘>1

1
𝑘2

6 1 + 4
\4

∑︁
𝑘>1

1
𝑘3 + 16

∑︁
𝑘>1

1
𝑘2 .

�

B.8 Proof of Theorem 11

Consider the first epoch and define the following:

𝑀𝑛 := min (𝑁1(𝑛), 𝑁2(𝑛)) ,

𝜏 := inf
𝑛 ∈ N :

������Z + 𝑀𝑛∑︁
𝑗=1

(
𝑋1, 𝑗 − 𝑋2, 𝑗

) ������ < 4
√︁
𝑀𝑛 log𝑀𝑛

 ,
where (𝑁1(𝑛), 𝑁2(𝑛)) are the per-arm sample counts under UCB1 up to and including time 𝑛. Note

that 𝜏 marks the termination of epoch 1.

Let 𝑅𝑛 denote the cumulative pseudo-regret of ALG3 after 𝑛 pulls (superscript 𝜋 suppressed

for notational convenience). Let 𝑆𝑛 denote the cumulative pseudo-regret of UCB1 after 𝑛 pulls in a

two-armed bandit with gap Δ. Let D and I respectively denote the events that the two arms queried

in epoch 1 have distinct and identical types. Similarly, let OPT and INF respectively denote the

events that the two arms have “optimal” and “inferior” types (Note that I = OPT ∪ INF). Let

�̃�𝑛, �̄�𝑛, �̂�𝑛 be independently drawn from the same distribution as 𝑅𝑛. Then, note that 𝑅𝑛 admits the
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following stochastic evolution:

𝑅𝑛 = 1{D}
[
𝑆min(𝜏,𝑛) + �̃�(𝑛−𝜏)+

]
+ 1{INF}

[
Δmin (𝜏, 𝑛) + �̄�(𝑛−𝜏)+

]
+ 1{OPT}�̂�(𝑛−𝜏)+

6 1{D}
[
𝑆𝑛 + 1 {𝜏 < 𝑛} �̃�𝑛

]
+ 1{INF}

[
Δ𝜏 + �̄�𝑛

]
+ 1{OPT}�̂�𝑛

6 1{D}
[
𝑆𝑛 + 1 {𝜏 < ∞} �̃�𝑛

]
+ 1{INF}

[
Δ𝜏 + �̄�𝑛

]
+ 1{OPT}�̂�𝑛,

where the first inequality follows since ALG3 is agnostic to 𝑛, and hence the pseudo-regret 𝑅𝑛 is

weakly increasing in 𝑛. Taking expectations on both sides, one recovers using the independence of

�̃�𝑛, �̄�𝑛, �̂�𝑛 that

E𝑅𝑛 6
1

P ( 𝜏 = ∞| D)

[
E𝑆𝑛 +

(
1 − 𝛼1
2𝛼1

)
ΔE [ 𝜏 | INF]

]
6

1
𝛽Δ,2

[
E𝑆𝑛 + 𝐶

(
1 − 𝛼1
2𝛼1

)
Δ

]
,

where 𝛽Δ,2 is as defined in (2.2) with 𝛿 ← Δ and 𝐾 ← 2, and 𝐶 is some absolute constant;

the last inequality follows using Lemma 3 and 4. The stated assertion now follows since E𝑆𝑛 6

𝐶′
(
log 𝑛/Δ + Δ

)
for some absolute constant 𝐶′ [10]. �

B.9 Auxiliary results used in the analysis of ALG4

Lemma 5 (Persistence of heterogeneous consideration sets) Consider a 𝐾-armed bandit with

rewards bounded in [0, 1] and means `1 > ... > `𝐾 . Let
{
𝑋𝑎, 𝑗 : 𝑗 = 1, 2, ...

}
denote the re-

wards collected from arm 𝑎 ∈ {1, ..., 𝐾} =: A by UCB1 [10]. Let
{
Z𝑎,𝑏 : 𝑎, 𝑏 ∈ A, 𝑎 < 𝑏

}
be

a collection of
(𝐾
2
)

independent standard Gaussian random variables. Let 𝑁𝑎 (𝑛) be the sample

count of arm 𝑎 under UCB1 until time 𝑛. Define

𝑀𝑙 := min
𝑎∈A

𝑁𝑎 (𝑙),

𝜏 := inf
𝑙 > 𝐾 : ∃ 𝑎, 𝑏 ∈ A, 𝑎 < 𝑏 s.t.

������Z𝑎,𝑏 + 𝑀𝑙∑︁
𝑗=1

(
𝑋𝑎, 𝑗 − 𝑋𝑏, 𝑗

) ������ < 4
√︁
𝑀𝑙 log𝑀𝑙

 .
Then, P (𝜏 = ∞) > 𝛽𝛿,𝐾 , where 𝛽𝛿,𝐾 is as defined in (2.2).
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Lemma 6 (Path-wise lower bound on the arm-sampling rate of UCB1) Consider a 𝐾-armed ban-

dit with rewards bounded in [0, 1]. Let 𝑁𝑎 (𝑛) be the sample count of arm 𝑎 ∈ {1, ..., 𝐾} =: A

under UCB1 [10] until time 𝑛. Then, for all 𝑛 > 𝐾 ,

𝑀𝑛 := min
𝑎∈A

𝑁𝑎 (𝑛) > 𝑓 (𝑛),

where ( 𝑓 (𝑛) : 𝑛 = 𝐾, 𝐾 + 1, ...) is some deterministic monotone non-decreasing integer-valued se-

quence satisfying 𝑓 (𝐾) = 1 and 𝑓 (𝑛) → ∞ as 𝑛→∞.

B.9.1 Proof of Lemma 5

Suppose that there exists a sample-path on which some non-empty subset of arms 𝔄 ⊂ A

receives a bounded number of pulls asymptotically in the horizon of play. Also suppose that 𝔄 is

the maximal such subset, i.e., each arm in A\𝔄 is played infinitely often asymptotically on said

sample-path. This implies that the UCB score of any arm inA\𝔄 is at most 1 + 𝑜
(√︁

log 𝑡
)

at time

𝑡 (since the empirical mean term remains bounded in [0, 1]). At the same time, the boundedness

hypothesis implies that the UCB score of any arm in 𝔄 is at least Ω
(√︁

log 𝑡
)
. Thus, for 𝑡 large

enough, UCB scores of arms in 𝔄 will start to dominate those in A\𝔄 and the algorithm will end

up playing an arm from 𝔄 at some point, thus increasing the cumulative sample-count of arms in 𝔄

by 1. As 𝑡 grows further, one can replicate the preceding argument an arbitrary number of times to

conclude that 𝔄 receives an unbounded number of pulls on the sample-path under consideration,

thereby contradicting the boundedness hypothesis. Therefore, it must be the case that each arm in

A is played infinitely often on every sample-path. Consequently, 𝑀𝑛 = min𝑎∈A 𝑁𝑎 (𝑛) → ∞ as

𝑛→∞ on every sample-path.

Now since (𝑀𝑛 : 𝑛 = 𝐾, 𝐾 + 1, ...) is an integer-valued process (starting from 𝑀𝐾 = 1) with

unit increments (wherever they exist), it follows that on every sample-path, 𝜏, in fact, weakly
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dominates the stopping time 𝜏′ given by

𝜏′ := inf
𝑚 ∈ N : ∃ 𝑎, 𝑏 ∈ A, 𝑎 < 𝑏 s.t.

������Z𝑎,𝑏 + 𝑚∑︁
𝑗=1

(
𝑋𝑎, 𝑗 − 𝑋𝑏, 𝑗

) ������ < 4
√︁
𝑚 log𝑚

 . (B.15)

Therefore, P (𝜏 = ∞) > P (𝜏′ = ∞) > 𝛽𝛿,𝐾 ; the last inequality follows from Proposition 1. �

B.9.2 Proof of Lemma 6

Suppose that S𝑛 = {(𝑁𝑎 (𝑛) : 𝑎 ∈ A)} denotes the set of possible sample-count realizations

under UCB1 when the horizon of play is 𝑛. Define 𝑓 (𝑛) := min(𝑁𝑎 (𝑛):𝑎∈A)∈S𝑛 min𝑎∈A 𝑁𝑎 (𝑛).

Since S𝑛 is finite, aforementioned minimum is attained at some
(
𝑁∗𝑎 (𝑛) : 𝑎 ∈ A

)
∈ S𝑛. Note

that
(
𝑁∗𝑎 (𝑛) : 𝑎 ∈ A

)
is not a random vector as it corresponds to a specific set of sample-paths

(possibly non-unique) on which min𝑎∈A 𝑁𝑎 (𝑛) is minimized. Therefore, 𝑓 (𝑛) = min𝑎∈A 𝑁∗𝑎 (𝑛)

is deterministic. We have already established in the proof of Lemma 5 that for each 𝑎 ∈ A,

𝑁𝑎 (𝑛) → ∞ as 𝑛 → ∞ on every sample-path. In particular, this also implies 𝑁∗𝑎 (𝑛) → ∞ as

𝑛 → ∞. Thus, we have established the existence of a sequence 𝑓 (𝑛) satisfying the assertions of

the lemma. �

B.10 Proof of Theorem 12

Let A := {1, ..., 𝐾} be the collection of 𝐾 arms queried during the first epoch. Consider an

arbitrary 𝑙 ∈ N s.t. 𝑙 > 𝐾 and define the following:

𝑀𝑙 := min
𝑎∈A

𝑁𝑎 (𝑙),

𝜏 := inf
𝑙 > 𝐾 : ∃ 𝑎, 𝑏 ∈ A, 𝑎 < 𝑏 s.t.

������Z𝑎,𝑏 + 𝑀𝑙∑︁
𝑗=1

(
𝑋𝑎, 𝑗 − 𝑋𝑏, 𝑗

) ������ < 4
√︁
𝑀𝑙 log𝑀𝑙

 ,
where 𝑁𝑎 (𝑙) denotes the sample count of arm 𝑎 under UCB1 until time 𝑙, and 𝜏 marks the termi-

nation of epoch 1. Let 𝑅𝑛 denote the cumulative pseudo-regret of ALG4 after 𝑛 pulls (superscript
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𝜋 suppressed for notational convenience). Let 𝑆𝑛 denote the cumulative pseudo-regret of UCB1

after 𝑛 pulls in a 𝐾-armed bandit with means `1 > `2 > ... > `𝐾 . Let D denote the event that

the 𝐾 arms queried in epoch 1 have distinct types (no two belong to the same type). Let �̃�𝑛, �̄�𝑛 be

independently drawn from the same distribution as 𝑅𝑛. Then, the evolution of 𝑅𝑛 satisfies

𝑅𝑛 6 1{D}
[
𝑆min(𝜏,𝑛) + �̃�(𝑛−𝜏)+

]
+ 1{Dc}

[
Δ̄min (𝜏, 𝑛) + �̄�(𝑛−𝜏)+

]
6
(†)

1{D}
[
𝑆𝑛 + 1 {𝜏 < 𝑛} �̃�𝑛

]
+ 1{Dc}

[
Δ̄min (𝜏, 𝑛) + �̄�𝑛

]
6 1{D}

[
𝑆𝑛 + 1 {𝜏 < ∞} �̃�𝑛

]
+ 1{Dc}

[
Δ̄min (𝜏, 𝑛) + �̄�𝑛

]
,

where (†) follows since ALG4 is agnostic to 𝑛, and hence the pseudo-regret 𝑅𝑛 is weakly increasing

in 𝑛. Taking expectations on both sides, one recovers using the independence of �̃�𝑛, �̄�𝑛 that

E𝑅𝑛 6
1

P ( 𝜏 = ∞| D)

[
E𝑆𝑛 +

(
Δ̄E [min (𝜏, 𝑛) | Dc]

P(D)

)]
6

1
𝛽𝛿,𝐾

[
E𝑆𝑛 +

(
Δ̄E [min (𝜏, 𝑛) | Dc]

P(D)

)]
,

where P(D) = 𝐾!
∏𝐾
𝑖=1 𝛼𝑖, and the last inequality follows using Lemma 5 with 𝛽𝛿,𝐾 as defined in

(2.2). We know that E𝑆𝑛 6 𝐶𝐾
(
log 𝑛/Δ + Δ̄

)
for some absolute constant 𝐶 [10]. The rest of the

proof is geared towards showing that E [min (𝜏, 𝑛) | Dc] = 𝑜(𝑛).

Proof of E [min (𝜏, 𝑛) | Dc] = 𝑜(𝑛)

Let PDc (·) := P(·|Dc) be the conditional measure w.r.t. Dc. On Dc, there exist two arms in the

consideration set A that belong to the same type. Without loss of generality, suppose these are
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indexed 1 and 2. Then,

E [min (𝜏, 𝑛) | Dc] 6 𝐾 +
𝑛∑︁

𝑘=𝐾+1
PDc (𝜏 > 𝑘)

6 𝐾 +
𝑛∑︁
𝑘=𝐾

PDc (𝜏 > 𝑘 + 1)

= 𝐾 +
𝑛∑︁
𝑘=𝐾

PDc
©«
𝑘⋂
𝑙=1

⋂
𝑎,𝑏∈A,𝑎<𝑏


������Z𝑎,𝑏 + 𝑀𝑙∑︁

𝑗=1

(
𝑋𝑎, 𝑗 − 𝑋𝑏, 𝑗

) ������ > 4
√︁
𝑀𝑙 log𝑀𝑙

ª®¬
6 𝐾 +

𝑛∑︁
𝑘=𝐾

PDc
©«
������Z1,2 +

𝑀𝑘∑︁
𝑗=1

(
𝑋1, 𝑗 − 𝑋2, 𝑗

) ������ > 4
√︁
𝑀𝑘 log𝑀𝑘

ª®¬
= 𝐾 +

𝑛∑︁
𝑘=𝐾

𝑘∑︁
𝑚=1
PDc

©«
������Z1,2 +

𝑀𝑘∑︁
𝑗=1

(
𝑋1, 𝑗 − 𝑋2, 𝑗

) ������ > 4
√︁
𝑀𝑘 log𝑀𝑘 , 𝑀𝑘 = 𝑚

ª®¬
=
(†)
𝐾 +

𝑛∑︁
𝑘=𝐾

𝑘∑︁
𝑚= 𝑓 (𝑘)

PDc
©«
������Z1,2 +

𝑀𝑘∑︁
𝑗=1

(
𝑋1, 𝑗 − 𝑋2, 𝑗

) ������ > 4
√︁
𝑀𝑘 log𝑀𝑘 , 𝑀𝑘 = 𝑚

ª®¬
6 𝐾 +

𝑛∑︁
𝑘=𝐾

𝑘∑︁
𝑚= 𝑓 (𝑘)

PDc
©«
������Z1,2 +

𝑚∑︁
𝑗=1

(
𝑋1, 𝑗 − 𝑋2, 𝑗

) ������ > 4
√︁
𝑚 log𝑚ª®¬

6
(‡)
𝐾 + 2

𝑛∑︁
𝑘=𝐾

𝑘∑︁
𝑚= 𝑓 (𝑘)

1
𝑚4

= 𝐾 + 2
𝑛∑︁
𝑘=𝐾

©« 1
( 𝑓 (𝑘))4

+
𝑘∑︁

𝑚= 𝑓 (𝑘)+1

1
𝑚4

ª®¬
6 𝐾 + 2

𝑛∑︁
𝑘=𝐾

(
1

( 𝑓 (𝑘))4
+ 1

3 ( 𝑓 (𝑘))3

)
,

where (†) follows from Lemma 6, and (‡) using the Chernoff-Hoeffding bound [69]. Since 𝑓 (𝑘)

is monotone non-decreasing and coercive in 𝑘 , it follows that E [min (𝜏, 𝑛) | Dc] = 𝑜(𝑛), where the

little-Oh only hides dependence on 𝐾 . �
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Appendix C: Appendix to Chapter 4

General organization

1. Appendix C.1 provides the proof of Theorem 14.

2. Appendix C.2 provides the proof of Proposition 2.

3. Appendix C.3 provides the regret analysis framework for Algorithm 4.

4. Appendix C.3.1 provides the proof of Theorem 15.

5. Appendix C.3.2 provides the proof of Theorem 17.

6. Appendix C.4 states the auxiliary results used in regret analysis of Algorithm 5.

7. Appendix C.5 provides the regret analysis framework for Algorithm 5.

8. Appendix C.5.1 provides the proof of Theorem 16.

9. Appendix C.5.2 provides the proof of Theorem 18.

C.1 Proof of Theorem 14

C.1.1 Proof for Model 1

In order to prove this result, we consider an oracle that can perfectly observe whether an arm

is “optimal” or “inferior”-typed immediately upon pulling it. If such an oracle incurs linear regret,

then every policy that only gets to observe a noisy realization of the mean rewards associated with

the types, must necessarily incur linear regret as well.
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Clearly, the optimal oracle policy 𝜋∗ is one that keeps pulling new arms until it finds one of the

optimal type (type 1), which it then persists with for the remaining duration of play. Let 𝑌 denote

the time at which an arm of the optimal type is pulled for the first time under 𝜋∗. Then,

P (𝑌 > 𝑘) =
𝑘−1∏
𝑡=1
(1 − 𝛼(𝑡)) for 𝑘 > 2, P (𝑌 > 1) = 1. (C.1)

The expected cumulative regret of the aforementioned policy at time 𝑛 is

E𝑅𝜋
∗
𝑛 =

𝑛∑︁
𝑘=1
P (𝑌 = 𝑘) Δ(𝑘 − 1) + P (𝑌 > 𝑛) Δ𝑛 > P (𝑌 > 𝑛) Δ𝑛 > P (𝑌 = ∞) Δ𝑛.

Thus, if P (𝑌 = ∞) is bounded away from 0, linear regret is unavoidable. Since lim𝑡→∞ 𝛼(𝑡) =

0, we know that ∃ 𝑡0 ∈ N s.t. 𝛼(𝑡) < 1/2 for all 𝑡 > 𝑡0. Then,

P (𝑌 = ∞) =
∞∏
𝑡=1
(1 − 𝛼(𝑡)) = exp

( ∞∑︁
𝑡=1

log (1 − 𝛼(𝑡))
)
=

𝑡0∏
𝑡=1
(1 − 𝛼(𝑡)) exp

( ∞∑︁
𝑡=𝑡0+1

log (1 − 𝛼(𝑡))
)

>

𝑡0∏
𝑡=1
(1 − 𝛼(𝑡)) exp

(
−2

∞∑︁
𝑡=𝑡0+1

𝛼(𝑡)
)
,

(C.2)

where the final inequality follows since 𝛼(𝑡) < 1/2 for 𝑡 > 𝑡0 and log(1−𝑥) > −2𝑥 for 𝑥 ∈ (0, 1/2].

Since 𝑡0 is finite, it is clear from (C.2) that a sufficient condition for P (𝑌 = ∞) to be bounded away

from 0 is the summability of 𝛼(𝑡), i.e.,
∑
𝑡∈N 𝛼(𝑡) < ∞. �

C.1.2 Proof for Model 2

The proof for this model proceeds along similar lines as the above. One starts by considering

an oracle that observes the type of a queried arm perfectly and immediately. The structure of the

optimal oracle policy can be argued to be identical to the one discussed in the previous section.

Subsequent steps of the proof are instructive. �
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C.2 Proof of Proposition 2

Consider the following stopping time:

𝜏 := inf
𝑚 ∈ N : Z +

𝑚∑︁
𝑗=1

(
𝑋1, 𝑗 − 𝑋2, 𝑗

)
< 4

√︁
𝑚 log𝑚

 .
Since P

(⋂
𝑚>1

{���Z +∑𝑚
𝑗=1

(
𝑋1, 𝑗 − 𝑋2, 𝑗

) ��� > 4
√︁
𝑚 log𝑚

})
> P(𝜏 = ∞), it suffices to show that

P(𝜏 = ∞) is bounded away from 0. To this end, define the following:

𝑇0 :=
⌈(

64
Δ2

)
log2

(
64
Δ2

)⌉
,

𝑓 (𝑥) := 𝑥 + 4
√︁
𝑥 log 𝑥 for 𝑥 > 1.

Lemma 7 It is the case that

{Z > 𝑓 (𝑇0)} ⊆
𝑇0⋂
𝑚=1

Z +
𝑚∑︁
𝑗=1

(
𝑋1, 𝑗 − 𝑋2, 𝑗

)
> 4

√︁
𝑚 log𝑚

 .
Proof of Lemma 7. Note that

Z > 𝑓 (𝑇0)

= 𝑇0 + 4
√︁
𝑇0 log𝑇0

> 𝑚 + 4
√︁
𝑚 log𝑚 ∀ 1 6 𝑚 6 𝑇0

>
(𝔞)

𝑚∑︁
𝑗=1

(
𝑋2, 𝑗 − 𝑋1, 𝑗

)
+ 4

√︁
𝑚 log𝑚 ∀ 1 6 𝑚 6 𝑇0

=⇒ Z +
𝑚∑︁
𝑗=1

(
𝑋1, 𝑗 − 𝑋2, 𝑗

)
> 4

√︁
𝑚 log𝑚 ∀ 1 6 𝑚 6 𝑇0,

where (𝔞) follows since the rewards are bounded in [0, 1], i.e.,
��𝑋1, 𝑗 − 𝑋2, 𝑗

�� 6 1. �
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Lemma 8 For 𝑚 > 𝑇0, it is the case that

Δ > 8
√︂

log𝑚
𝑚

.

Proof of Lemma 8. First of all, note that 𝑇0 > 64 (since Δ 6 1). For 𝑠 =
(
64/Δ2) log2 (

64/Δ2) ,
one has

Δ2 =

64 log2
(

64
Δ2

)
𝑠

>
(𝔟)

64
[
log

(
64
Δ2

)
+ 2 log log

(
64
Δ2

)]
𝑠

=
64 log 𝑠
𝑠

,

where (𝔟) follows since the function 𝑔(𝑥) := 𝑥2 − 𝑥 − 2 log 𝑥 is monotone increasing for 𝑥 > log 64

(think of log
(
64/Δ2) as 𝑥), and therefore attains its minimum at 𝑥 = log 64; one can verify that

this minimum is strictly positive. Furthermore, since log 𝑠/𝑠 is monotone decreasing for 𝑠 > 64, it

follows that for any 𝑚 > 𝑇0,

Δ2 >
64 log𝑚
𝑚

.

�

Now coming back to the proof of Proposition 2, consider an arbitrary 𝑙 ∈ N such that 𝑙 > 𝑇0.

Then,

P (𝜏 6 𝑙) = P (𝜏 6 𝑙,Z > 𝑓 (𝑇0)) + P (𝜏 6 𝑙,Z 6 𝑓 (𝑇0))

6 P (𝜏 6 𝑙,Z > 𝑓 (𝑇0)) +Φ ( 𝑓 (𝑇0)) .
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Now,

P (𝜏 6 𝑙,Z > 𝑓 (𝑇0)) = P
©«

𝑙⋃
𝑚=1

Z +
𝑚∑︁
𝑗=1

(
𝑋1, 𝑗 − 𝑋2, 𝑗

)
< 4

√︁
𝑚 log𝑚,Z > 𝑓 (𝑇0)

ª®¬
=
(†)
P
©«

𝑙⋃
𝑚=𝑇0

Z +
𝑚∑︁
𝑗=1

(
𝑋1, 𝑗 − 𝑋2, 𝑗

)
< 4

√︁
𝑚 log𝑚,Z > 𝑓 (𝑇0)

ª®¬
6

𝑙∑︁
𝑚=𝑇0

P
©«Z +

𝑚∑︁
𝑗=1

(
𝑋1, 𝑗 − 𝑋2, 𝑗

)
< 4

√︁
𝑚 log𝑚,Z > 𝑓 (𝑇0)

ª®¬
=

𝑙∑︁
𝑚=𝑇0

P
©«Z +

𝑚∑︁
𝑗=1

(
𝑋1, 𝑗 − 𝑋2, 𝑗 − Δ

)
< −𝑚

(
Δ − 4

√︂
log𝑚
𝑚

)
,Z > 𝑓 (𝑇0)

ª®¬
6

𝑙∑︁
𝑚=𝑇0

P
©«
𝑚∑︁
𝑗=1

(
𝑋1, 𝑗 − 𝑋2, 𝑗 − Δ

)
< −𝑚

(
Δ − 4

√︂
log𝑚
𝑚

)
,Z > 𝑓 (𝑇0)

ª®¬
6
(‡)

𝑙∑︁
𝑚=𝑇0

P
©«
𝑚∑︁
𝑗=1

(
𝑋1, 𝑗 − 𝑋2, 𝑗 − Δ

)
< −4

√︁
𝑚 log𝑚,Z > 𝑓 (𝑇0)

ª®¬
= Φ̄ ( 𝑓 (𝑇0))

𝑙∑︁
𝑚=𝑇0

P
©«
𝑚∑︁
𝑗=1

(
𝑋1, 𝑗 − 𝑋2, 𝑗 − Δ

)
< −4

√︁
𝑚 log𝑚ª®¬

6
(★)

Φ̄ ( 𝑓 (𝑇0))
𝑙∑︁

𝑚=𝑇0

1
𝑚8

6
(∗)

Φ̄ ( 𝑓 (𝑇0))
∞∑︁
𝑚=2

1
𝑚8

=
(•)

Φ̄ ( 𝑓 (𝑇0)) (Z (8) − 1)

6
Φ̄ ( 𝑓 (𝑇0))

200
,

where (†) follows from Lemma 7, (‡) from Lemma 8, (★) follows using the Chernoff-Hoeffding

bound [69], (∗) since 𝑇0 > 1 (this is because Δ 6 1) and finally in (•), Z (·) represents the Riemann
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zeta function. Therefore, we have

P (𝜏 6 𝑙) 6 Φ̄ ( 𝑓 (𝑇0))
200

+Φ ( 𝑓 (𝑇0)) = 1 −
(
199
200

)
Φ̄ ( 𝑓 (𝑇0))

=⇒ P (𝜏 > 𝑙) >
(
199
200

)
Φ̄ ( 𝑓 (𝑇0)) .

Taking the limit 𝑙 →∞ and appealing to the continuity of probability, we obtain

P (𝜏 = ∞) >
(
199
200

)
Φ̄ ( 𝑓 (𝑇0))

=⇒ P
©«
⋂
𝑚>1


������Z + 𝑚∑︁

𝑗=1

(
𝑋1, 𝑗 − 𝑋2, 𝑗

) ������ > 4
√︁
𝑚 log𝑚

ª®¬ >
(
199
200

)
Φ̄ ( 𝑓 (𝑇0)) .

�

C.3 Analysis of Algorithm 4

The horizon of play is divided into epochs of length 2𝑚 = 2
⌈(

2/𝛿2) log 𝑛
⌉

each (exactly one

pair of arms is played 𝑚 times each per epoch), e.g., epoch 1 starts at 𝑡 = 1, epoch 2 at 𝑡 =

2𝑚 + 1, and so on. The decision to commit forever to an empirically superior arm or to discard the

consideration set of arms and reinitialize the policy, is taken after an epoch ends. For each 𝑘 > 1,

let 𝑆𝑘 denote the cumulative pseudo-regret incurred by Algorithm 1 when it is initialized at the

beginning of epoch 𝑘 and run until the end of the horizon, i.e., from 𝑡 = (2𝑘 − 2)𝑚 + 1 to 𝑡 = 𝑛.

Let 𝑆′
𝑘

denote an i.i.d. copy of 𝑆𝑘 . We are interested in an upper bound on E𝑅𝜋𝑛 = E𝑆1, where 𝜋 =

Algorithm 1. To this end, suppose that 𝜋 is initialized at time (2𝑘 −2)𝑚+1 (beginning of epoch 𝑘).

Label the arms played in this epoch as {1, 2} (arm 1 is played first). For 𝑖 ∈ {1, 2}, let �̄�𝑖 denote

the empirical mean reward from the 𝑚 plays of arm 𝑖 in this epoch. Let ^(𝑖) ∈ K = {1, 2} denote

the type of arm 𝑖. Recall that type 1 is optimal and that, the probability of a new arm queried from

the reservoir at time 𝑡 being optimal-typed is 𝛼(𝑡). Let 1{𝐸} denote the indicator corresponding to

156



an event 𝐸 . Consider the following events:

𝐴 := {^(1) = 1, ^(2) = 2} , (C.3)

𝐵 := {^(1) = 2, ^(2) = 1} , (C.4)

𝐶 := {^(1) = 2, ^(2) = 2} , (C.5)

𝐷 := {^(1) = 1, ^(2) = 1} , (C.6)

where ^(1) and ^(2) are independent random variables with distributions given by P (^(1) = 1) =

𝛼 ((2𝑘 − 2) 𝑚 + 1) =: 𝛼𝑘 and P (^(2) = 1) = 𝛼 ((2𝑘 − 2) 𝑚 + 2) =: �̃�𝑘 respectively. Now, observe

that 𝑆𝑘 evolves according to the following stochastic recursion:

𝑆𝑘 = 1{𝐴}
[
Δ𝑚 + 1{�̄�2 − �̄�1 > 𝛿}Δ (𝑛 − 2𝑘𝑚) + {| �̄�1 − �̄�2 | < 𝛿}𝑆′𝑘+1

]
+ 1{𝐵}

[
Δ𝑚 + 1{�̄�1 − �̄�2 > 𝛿}Δ (𝑛 − 2𝑘𝑚) + 1{| �̄�1 − �̄�2 | < 𝛿}𝑆′𝑘+1

]
+ 1{𝐶}

[
2Δ𝑚 + 1{| �̄�1 − �̄�2 | > 𝛿}Δ (𝑛 − 2𝑘𝑚) + 1{| �̄�1 − �̄�2 | < 𝛿}𝑆′𝑘+1

]
+ 1{𝐷}1{| �̄�1 − �̄�2 | < 𝛿}𝑆′𝑘+1. (C.7)

Collecting like terms in (C.7) together,

𝑆𝑘 = 1{𝐴}1{�̄�2 − �̄�1 > 𝛿}Δ (𝑛 − 2𝑘𝑚) + 1{𝐵}1{�̄�1 − �̄�2 > 𝛿}Δ (𝑛 − 2𝑘𝑚)

+ 1{𝐶}1{| �̄�1 − �̄�2 | > 𝛿}Δ (𝑛 − 2𝑘𝑚) + [1{𝐴 ∪ 𝐵} + 21{𝐶}] Δ𝑚 + 1{| �̄�1 − �̄�2 | < 𝛿}𝑆′𝑘+1.

(C.8)
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Define the following conditional events:

𝐸1 :=
{
�̄�2 − �̄�1 > 𝛿

�� 𝐴} , (C.9)

𝐸2 :=
{
�̄�1 − �̄�2 > 𝛿

�� 𝐵}
, (C.10)

𝐸3 :=
{ ���̄�1 − �̄�2

�� > 𝛿 �� 𝐶}
, (C.11)

𝐸4 :=
{ ���̄�1 − �̄�2

�� < 𝛿 �� 𝐶 ∪ 𝐷}
, (C.12)

𝐸5 :=
{ ���̄�1 − �̄�2

�� < 𝛿 �� 𝐴 ∪ 𝐵}
. (C.13)

Taking expectations on both sides in (C.8) and rearranging, one obtains the following using (C.9)-

(C.13):

E𝑆𝑘

= [𝛼𝑘 (1 − �̃�𝑘 ) P(𝐸1) + �̃�𝑘 (1 − 𝛼𝑘 ) P(𝐸2)] Δ (𝑛 − 2𝑘𝑚) + [(1 − 𝛼𝑘 ) (1 − �̃�𝑘 ) P(𝐸3)] Δ (𝑛 − 2𝑘𝑚)

+ [𝛼𝑘 (1 − �̃�𝑘 ) + �̃�𝑘 (1 − 𝛼𝑘 ) + 2 (1 − 𝛼𝑘 ) (1 − �̃�𝑘 )] Δ𝑚 + P
(���̄�1 − �̄�2

�� < 𝛿) E𝑆𝑘+1. (C.14)

Note that (C.14) follows from (C.8) since E
[
1{| �̄�1 − �̄�2 | < 𝛿}𝑆′𝑘+1

]
= P

(���̄�1 − �̄�2
�� < 𝛿) E𝑆𝑘+1

due to the independence of 𝑆′
𝑘+1. Further note that

P
(���̄�1 − �̄�2

�� < 𝛿) = [𝛼𝑘 �̃�𝑘 + (1 − 𝛼𝑘 ) (1 − �̃�𝑘 )] P(𝐸4) + [𝛼𝑘 (1 − �̃�𝑘 ) + �̃�𝑘 (1 − 𝛼𝑘 )] P(𝐸5).

(C.15)

From (C.14) and (C.15), it follows after a little rearrangement that

E𝑆𝑘 = b1(𝑘) − 𝑘b2(𝑘) + b3(𝑘)E𝑆𝑘+1, (C.16)
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where the b𝑖 (𝑘)’s are given by

b1(𝑘) := Δ [𝛼𝑘 (1 − �̃�𝑘 ) P(𝐸1) + �̃�𝑘 (1 − 𝛼𝑘 ) P(𝐸2)] 𝑛 + Δ [(1 − 𝛼𝑘 ) (1 − �̃�𝑘 ) P(𝐸3)] 𝑛

:= + Δ (2 − 𝛼𝑘 − �̃�𝑘 ) 𝑚, (C.17)

b2(𝑘) := 2Δ [𝛼𝑘 (1 − �̃�𝑘 ) P(𝐸1) + �̃�𝑘 (1 − 𝛼𝑘 ) P(𝐸2)] 𝑚 + 2Δ [(1 − 𝛼𝑘 ) (1 − �̃�𝑘 ) P(𝐸3)] 𝑚,

(C.18)

b3(𝑘) := [𝛼𝑘 �̃�𝑘 + (1 − 𝛼𝑘 ) (1 − �̃�𝑘 )] P(𝐸4) + [𝛼𝑘 (1 − �̃�𝑘 ) + �̃�𝑘 (1 − 𝛼𝑘 )] P(𝐸5). (C.19)

Observe that the recursion in (C.16) is solvable in closed-form and admits the following solution:

E𝑆1 =

𝑙∑︁
𝑘=1

©«b1(𝑘)
𝑘−1∏
𝑗=1

b3( 𝑗)
ª®¬ −

𝑙∑︁
𝑘=1

©«𝑘b2(𝑘)
𝑘−1∏
𝑗=1

b3( 𝑗)
ª®¬ + E𝑆𝑙+1

(
𝑙∏
𝑘=1

b3(𝑘)
)
, (C.20)

where 𝑙 := b𝑛/(2𝑚)c, b·c being the “floor” operator. Since the b𝑖 (𝑘)’s are non-negative for all

𝑖 ∈ {1, 2, 3}, 𝑘 ∈ N and E𝑆𝑙+1 6 2Δ𝑚, it follows that

E𝑅𝜋𝑛 = E𝑆1 6
𝑙∑︁
𝑘=1

©«b1(𝑘)
𝑘−1∏
𝑗=1

b3( 𝑗)
ª®¬ + 2Δ𝑚, (C.21)

where the inequality follows since b3(𝑘) is a convex combination of P(𝐸4) and P(𝐸5) (see (C.19));

hence b3(𝑘) 6 1 ∀ 𝑘 ∈ N. Now using (C.9),(C.10),(C.11),(C.12),(C.13) and Hoeffding’s inequality

[69] together with the fact that the rewards are bounded in [0, 1], we conclude

{P(𝐸1), P(𝐸2)} 6 exp
(
−(Δ + 𝛿)2𝑚/2

)
, (C.22){

P(𝐸3), P(𝐸𝑐4)
}
6 2 exp

(
−𝛿2𝑚/2

)
, (C.23)

P(𝐸5) 6 exp
(
−(Δ − 𝛿)2𝑚/2

)
. (C.24)
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From (C.17), (C.22) and (C.23), it follows that

b1(𝑘) 6 2Δ exp
(
−𝛿2𝑚/2

)
𝑛 + 2Δ𝑚 6 2Δ + 2Δ𝑚, (C.25)

where the last inequality follows since 𝑚 =
⌈(

2/𝛿2) log 𝑛
⌉
, d·e being the “ceiling” operator. Using

(C.21) and (C.25), we now have

E𝑅𝜋𝑛 6 2Δ
1 +

𝑙∑︁
𝑘=1

𝑘−1∏
𝑗=1

b3( 𝑗)
 (𝑚 + 1). (C.26)

From (C.19), observe that

b3(𝑘) 6 1 − (𝛼𝑘 + �̃�𝑘 − 2𝛼𝑘 �̃�𝑘 ) P
(
𝐸𝑐5

)
6 exp

[
− (𝛼𝑘 + �̃�𝑘 − 2𝛼𝑘 �̃�𝑘 ) P

(
𝐸𝑐5

) ]
∀ 𝑘 ∈ N, (C.27)

where the last inequality follows since 1 − 𝑥 6 exp(−𝑥). From (C.26) and (C.27), we obtain

E𝑅𝜋𝑛 6 2Δ
1 +

𝑙∑︁
𝑘=1

exp ©«−P
(
𝐸𝑐5

) 𝑘−1∑︁
𝑗=1

(
𝛼 𝑗 + �̃� 𝑗 − 2𝛼 𝑗 �̃� 𝑗

)ª®¬
 (𝑚 + 1).

Recall from (C.24) that P
(
𝐸𝑐5

)
> 1 − exp

(
−(Δ − 𝛿)2𝑚/2

)
. Since 𝑚 =

⌈(
2/𝛿2) log 𝑛

⌉
, it follows

that exp
(
−(Δ − 𝛿)2𝑚/2

)
< 1/2 for 𝑛 > 2( 𝛿

Δ−𝛿 )2 . Therefore, for 𝑛 large enough, we have

E𝑅𝜋𝑛 6 2Δ
1 +

𝑙∑︁
𝑘=1

exp ©«−1
2

𝑘−1∑︁
𝑗=1

(
𝛼 𝑗 + �̃� 𝑗 − 2𝛼 𝑗 �̃� 𝑗

)ª®¬
 (𝑚 + 1)

6 2Δ
3 +

𝑙∑︁
𝑘=3

exp ©«−1
2

𝑘−1∑︁
𝑗=1

(
𝛼 𝑗 + �̃� 𝑗 − 2𝛼 𝑗 �̃� 𝑗

)ª®¬
 (𝑚 + 1)

6 2Δ
3 +

𝑙∑︁
𝑘=3

exp ©«−1
2

𝑘−1∑︁
𝑗=2

(
𝛼 𝑗 + �̃� 𝑗 − 2𝛼 𝑗 �̃� 𝑗

)ª®¬
 (𝑚 + 1). (C.28)

This concludes the basic analysis of Algorithm 1. We will use these results in subsequent

sub-sections to provide the proofs for specific functional forms of 𝛼(𝑡).
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C.3.1 Proof of Theorem 15

Recall that 𝛼 𝑗 := 𝛼 ((2 𝑗 − 2)𝑚 + 1). Since 𝛼(𝑡) ∼ 𝑐𝑡−𝛾, it follows that for 𝑛 large enough

(equivalently, 𝑚 large enough since 𝑚 =
⌈(

2/𝛿2) log 𝑛
⌉
), we have 𝛼 𝑗 6 1/2 for all 𝑗 > 2, which

implies 𝛼 𝑗 + �̃� 𝑗 − 2𝛼 𝑗 �̃� 𝑗 > 𝛼 𝑗 for all 𝑗 > 2. Therefore, it follows from (C.28) that for 𝑛 large

enough,

E𝑅𝜋𝑛 6 2Δ
3 +

𝑙∑︁
𝑘=3

exp ©«−1
2

𝑘−1∑︁
𝑗=2
𝛼 𝑗

ª®¬
 (𝑚 + 1). (C.29)

Now, since 𝛼(𝑡) ∼ 𝑐𝑡−𝛾, it follows that for 𝑛 large enough (equivalently, 𝑚 large enough),

𝛼 𝑗 >
𝑐

(2 𝑗𝑚)𝛾 , (C.30)

Combining (C.29) and (C.30), we get that for 𝑛 large enough,

E𝑅𝜋𝑛 6 2Δ
3 +

𝑙∑︁
𝑘=3

exp ©«− 𝑐

𝑚𝛾2𝛾+1
𝑘−1∑︁
𝑗=2

𝑗−𝛾
ª®¬
 (𝑚 + 1) (C.31)

6 2Δ

[
3 +

𝑙∑︁
𝑘=3

exp
(
− 𝑐

𝑚𝛾2𝛾+1

∫ 𝑘

2
𝑥−𝛾𝑑𝑥

)]
(𝑚 + 1)

= 2Δ

[
3 +

𝑙∑︁
𝑘=3

exp

(
−
𝑐
(
𝑘1−𝛾 − 21−𝛾 )
(1 − 𝛾)𝑚𝛾2𝛾+1

)]
(𝑚 + 1)

6 2Δ

[
3 +

𝑙∑︁
𝑘=3

exp

(
−
𝑐
(
𝑘1−𝛾 − 21−𝛾 )

4(1 − 𝛾)𝑚𝛾

)]
(𝑚 + 1)

6 6Δ

[
1 +

𝑙∑︁
𝑘=3

exp
(
− 𝑐𝑘1−𝛾

4(1 − 𝛾)𝑚𝛾

)]
(𝑚 + 1), (C.32)

161



where the last inequality holds since 𝑚 =
⌈(

2/𝛿2) log 𝑛
⌉

and 𝑛 is large enough. Now observe that

E𝑅𝜋𝑛 6 6Δ

[
1 +

𝑙∑︁
𝑘=3

exp
(
− 𝑐𝑘1−𝛾

4(1 − 𝛾)𝑚𝛾

)]
(𝑚 + 1)

6 6Δ
[
1 +

∫ 𝑙

2
exp

(
− 𝑐𝑥1−𝛾

4(1 − 𝛾)𝑚𝛾

)
𝑑𝑥

]
(𝑚 + 1)

6 6Δ
[
1 +

∫ 𝑛/(2𝑚)

2
exp

(
− 𝑐𝑥1−𝛾

4(1 − 𝛾)𝑚𝛾

)
𝑑𝑥

]
(𝑚 + 1), (C.33)

where the last inequality follows since 𝑙 = b𝑛/(2𝑚)c. We now focus on solving the integral. Define

I :=
∫ 𝑛/(2𝑚)

2
exp

(
− 𝑐𝑥1−𝛾

4(1 − 𝛾)𝑚𝛾

)
𝑑𝑥

6

∫ ∞

0
exp

(
− 𝑐𝑥1−𝛾

4(1 − 𝛾)𝑚𝛾

)
𝑑𝑥

=
(‡)
(1 − 𝛾)

𝛾

1−𝛾

(
4𝑚𝛾

𝑐

) 1
1−𝛾

∫ ∞

0
𝑧

𝛾

1−𝛾 exp(−𝑧)𝑑𝑧

6

(
4
𝑐

) 1
1−𝛾

(∫ ∞

0
𝑧

𝛾

1−𝛾 exp(−𝑧)𝑑𝑧
)
𝑚

𝛾

1−𝛾

6

(
4
𝑐

) 1
1−𝛾

(∫ ∞

0
𝑧

⌈
𝛾

1−𝛾

⌉
exp(−𝑧)𝑑𝑧

)
𝑚

𝛾

1−𝛾 ,

where (‡) follows after the variable substitution 𝑧 = 𝑐𝑥1−𝛾

4(1−𝛾)𝑚𝛾 . Now, the
⌈
𝛾

1−𝛾

⌉th
moment of a unit

rate exponential random variable is given by the factorial of
⌈
𝛾

1−𝛾

⌉
, denoted by 𝔉

(⌈
𝛾

1−𝛾

⌉)
. Thus,

we have

I 6
(
4
𝑐

) 1
1−𝛾

𝔉

(⌈
𝛾

1 − 𝛾

⌉)
𝑚

𝛾

1−𝛾 . (C.34)

Combining (C.33) and (C.34), we conclude that for large enough 𝑛,

E𝑅𝜋𝑛 6 24Δ
(
4
𝑐

) 1
1−𝛾

𝔉

(⌈
𝛾

1 − 𝛾

⌉)
𝑚

1
1−𝛾 .
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Finally, since 𝑚 =
⌈(

2/𝛿2) log 𝑛
⌉
, the stated assertion follows, i.e.,

lim sup
𝑛→∞

E𝑅𝜋𝑛

(log 𝑛)
1

1−𝛾
6 24Δ

(
8
𝛿2𝑐

) 1
1−𝛾

𝔉

(⌈
𝛾

1 − 𝛾

⌉)
.

�

C.3.2 Proof of Theorem 17

Again, we pick things up from (C.28). We know that

E𝑅𝜋𝑛 6 2Δ
3 +

𝑙∑︁
𝑘=3

exp ©«−1
2

𝑘−1∑︁
𝑗=2

(
𝛼 𝑗 + �̃� 𝑗 − 2𝛼 𝑗 �̃� 𝑗

)ª®¬
 (𝑚 + 1),

where 𝑚 =
⌈(

2/𝛿2) log 𝑛
⌉
, 𝛼 𝑗 = 𝛼 ((2 𝑗 − 2) 𝑚 + 1) and �̃� 𝑗 = 𝛼 ((2 𝑗 − 2) 𝑚 + 2). Since 𝛼(𝑡) =

𝑔 (J𝑡−1), we have 𝛼 𝑗 = 𝑔 (2( 𝑗 − 1)) and �̃� 𝑗 = 𝑔 (2 𝑗 − 1). Since 𝑔(·) 6 𝑐 6 1/2, it follows that

𝛼 𝑗 + �̃� 𝑗 − 2𝛼 𝑗 �̃� 𝑗 > 𝛼 𝑗 = 𝑔 (2( 𝑗 − 1)) for all 𝑗 > 1. Therefore, one has

E𝑅𝜋𝑛 6 2Δ
3 +

𝑙∑︁
𝑘=3

exp ©«−1
2

𝑘−1∑︁
𝑗=2
𝑔 (2( 𝑗 − 1))ª®¬

 (𝑚 + 1)

= 2Δ
3 +

𝑙∑︁
𝑘=3

exp ©«−𝑐2
𝑘−1∑︁
𝑗=2
(2 𝑗 − 1)−𝛾ª®¬

 (𝑚 + 1)

6 2Δ
3 +

𝑙∑︁
𝑘=3

exp ©«− 𝑐

2𝛾+1
𝑘−1∑︁
𝑗=2

𝑗−𝛾
ª®¬
 (𝑚 + 1). (C.35)

Drawing upon structural similarities between (C.35) and (C.31), one can proceed along an

analogous sequence of steps to eventually conclude

lim sup
𝑛→∞

E𝑅𝜋𝑛
log 𝑛

6

(
48Δ
𝛿2

) (
4
𝑐

) 1
1−𝛾

𝔉

(⌈
𝛾

1 − 𝛾

⌉)
,

where 𝔉(·) denotes the Factorial function. �
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C.4 Auxiliary results used in the analysis of Algorithm 5

Fact 4 (Lemma 2 of [21]) Consider a stochastic two-armed bandit with [0, 1]-valued rewards

and gap Δ. Let
(
𝑋𝑖, 𝑗

)
𝑗>1 be the reward sequence associated with arm 𝑖 and 𝑁𝑖 (𝑛) its sample

count until time 𝑛 under UCB1 [10]. Define 𝑀𝑛 := min (𝑁1(𝑛), 𝑁2(𝑛)) and consider the following

stopping time:

𝑇 := inf
𝑛 > 2 :

������ 𝑀𝑛∑︁
𝑗=1

(
𝑋1, 𝑗 − 𝑋2, 𝑗

) ������ < 4
√︁
𝑀𝑛 log𝑀𝑛

 .
Then, the following results hold:

1. If Δ > 0, then P (𝑇 = ∞) > 𝛽Δ > 0, where 𝛽Δ is as defined in (4.2).

2. If Δ = 0, then E𝑇 6 𝐶0 < ∞, where 𝐶0 is some absolute constant.

C.5 Analysis of Algorithm 5

Algorithm 5 runs in epochs of stochastic durations that are determined online in an adaptive

manner. Let the sequence of epoch durations be (𝑇𝑘 : 𝑘 = 1, 2, ...). Define the episode count

𝑊𝑛 := inf
{
𝑙 ∈ N :

∑𝑙
𝑘=1 𝑇𝑘 > 𝑛

}
. Let 𝐼𝑘 (𝑖) denote the event that each of the two arms queried at

the beginning of epoch 𝑘 has type 𝑖 (𝑖 is an element of K = {1, 2}). Similarly, let 𝐷𝑘 denote the

event that the aforementioned arms have “distinct” types. Suppose that 𝑆𝑛 denotes the cumulative

pseudo-regret of UCB1 [10] after 𝑛 plays in an independent instance of a two-armed bandit with

gap Δ. Then, the evolution of the cumulative pseudo-regret of the policy 𝜋 given by Algorithm 5
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after any number 𝑛 of plays satisfies

�̃�𝜋𝑛 =

𝑊𝑛−1∑︁
𝑘=1

[
1 {𝐷𝑘 } 𝑆𝑇𝑘 + 1 {𝐼𝑘 (2)}Δ𝑇𝑘

]
+ 1

{
𝐷𝑊𝑛

}
𝑆 (
𝑛−∑𝑊𝑛−1

𝑘=1 𝑇𝑘

) + 1 {
𝐼𝑊𝑛 (2)

}
Δ

(
𝑛 −

𝑊𝑛−1∑︁
𝑘=1

𝑇𝑘

)
6
(†)

𝑊𝑛−1∑︁
𝑘=1
[1 {𝐷𝑘 } 𝑆𝑛 + 1 {𝐼𝑘 (2)}Δ𝑇𝑘 ] + 1

{
𝐷𝑊𝑛

}
𝑆𝑛 + 1

{
𝐼𝑊𝑛 (2)

}
Δ𝑇𝑊𝑛

=

𝑊𝑛∑︁
𝑘=1
[1 {𝐷𝑘 } 𝑆𝑛 + 1 {𝐼𝑘 (2)}Δ𝑇𝑘 ]

=

∞∑︁
𝑘=1

1 {𝑊𝑛 > 𝑘} 1 {𝐷𝑘 } 𝑆𝑛 +
∞∑︁
𝑘=1

1 {𝑊𝑛 > 𝑘} 1 {𝐼𝑘 (2)}Δ𝑇𝑘 ,

where (†) follows since the pseudo-regret of UCB1 is weakly increasing in the horizon, and 𝑛 −∑𝑊𝑛−1
𝑘=1 𝑇𝑘 6 𝑇𝑊𝑛 . Taking expectations and invoking Tonelli’s theorem to interchange expectation

and infinite-sum (since all summands are non-negative), we obtain

E𝑅𝜋𝑛 = E�̃�𝜋𝑛 6 E𝑆𝑛

∞∑︁
𝑘=1
P (𝐷𝑘 ,𝑊𝑛 > 𝑘) + Δ

∞∑︁
𝑘=1
P (𝐼𝑘 (2),𝑊𝑛 > 𝑘) E [𝑇𝑘 | 𝐼𝑘 (2), 𝑊𝑛 > 𝑘] .

(C.36)

(Note that E [𝑆𝑛 |𝑊𝑛 > 𝑘, 𝐷𝑘 ] = E𝑆𝑛 since 𝑆𝑛, by definition, is independent of𝑊𝑛 and 𝐷𝑘 .)

Lemma 9 (Bounded epochs for identical-typed arms) The following holds for any 𝑘, 𝑛 ∈ N and

arm-type 𝑖 ∈ {1, 2}:

E [𝑇𝑘 | 𝐼𝑘 (𝑖), 𝑊𝑛 > 𝑘] = E [𝑇𝑘 | 𝐼𝑘 (𝑖)] 6 𝐶0 < ∞,

where 𝐶0 is as given in Fact 4.
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Proof of Lemma 9. Note that

E [𝑇𝑘 | 𝐼𝑘 (𝑖)]

= E [𝑇𝑘 | 𝐼𝑘 (𝑖), 𝑊𝑛 > 𝑘] P (𝑊𝑛 > 𝑘 | 𝐼𝑘 (𝑖)) + E [𝑇𝑘 | 𝐼𝑘 (𝑖), 𝑊𝑛 < 𝑘] P (𝑊𝑛 < 𝑘 | 𝐼𝑘 (𝑖))

=
(†)
E [𝑇𝑘 | 𝐼𝑘 (𝑖), 𝑊𝑛 > 𝑘] P (𝑊𝑛 > 𝑘 | 𝐼𝑘 (𝑖)) + E [𝑇𝑘 | 𝐼𝑘 (𝑖)] P (𝑊𝑛 < 𝑘 | 𝐼𝑘 (𝑖)) ,

where (†) follows since 𝑇𝑘 is independent of𝑊𝑛, given 𝐼𝑘 (𝑖) and 𝑘 > 𝑊𝑛. Thus,

E [𝑇𝑘 | 𝐼𝑘 (𝑖), 𝑊𝑛 > 𝑘] = E [𝑇𝑘 | 𝐼𝑘 (𝑖)] 6 𝐶0,

with the last inequality following from Fact 4.2. �

Now coming back to the analysis of Algorithm 5, observe that from (C.36) and Lemma 9, one

has

E𝑅𝜋𝑛 6 E𝑆𝑛

∞∑︁
𝑘=1
P (𝐷𝑘 ,𝑊𝑛 > 𝑘) + 𝐶0Δ

∞∑︁
𝑘=1
P (𝐼𝑘 (2),𝑊𝑛 > 𝑘) . (C.37)

Note that

P (𝑊𝑛 > 𝑘) = P
(
𝑘−1∑︁
𝑚=1

𝑇𝑚 < 𝑛

)
= P

©«
𝑘−1⋂
𝑗=1

{
𝑗∑︁

𝑚=1
𝑇𝑚 < 𝑛

}ª®¬
= P (𝑇1 < 𝑛)

𝑘−1∏
𝑗=2
P

(
𝑗∑︁

𝑚=1
𝑇𝑚 < 𝑛

����� 𝑇1 < 𝑛, ...,

𝑗−1∑︁
𝑚=1

𝑇𝑚 < 𝑛

)
= P (𝑇1 < 𝑛)

𝑘−1∏
𝑗=2
P

(
𝑗∑︁

𝑚=1
𝑇𝑚 < 𝑛

����� 𝑗−1∑︁
𝑚=1

𝑇𝑚 < 𝑛

)
6 P (𝑇1 < ∞)

𝑘−1∏
𝑗=2
P

(
𝑇𝑗 < ∞

����� 𝑗−1∑︁
𝑚=1

𝑇𝑚 < 𝑛

)
. (C.38)

This concludes the basic analysis of Algorithm 5. We will use these results in subsequent
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sub-sections to prove guarantees under specific functional forms of 𝛼(𝑡).

C.5.1 Proof of Theorem 16

In this setting, (𝛼(𝑡) : 𝑡 = 1, 2, ...) is a non-increasing process. Observe that conditional on the

event 𝐸𝑙 :=
{∑ 𝑗−1

𝑚=1 𝑇𝑚 = 𝑙

}
, where 𝑙 < 𝑛 is arbitrary, the probability that 𝑇𝑗 < ∞ (for 𝑗 > 2),

satisfies

P
(
𝑇𝑗 < ∞ |𝐸𝑙

)
= P

(
𝑇𝑗 < ∞ | 𝐸𝑙 , 𝐼 𝑗 (1) ∪ 𝐼 𝑗 (2)

)
P

(
𝐼 𝑗 (1) ∪ 𝐼 𝑗 (2) |𝐸𝑙

)
+ P

(
𝑇𝑗 < ∞ | 𝐸𝑙 , 𝐷 𝑗

)
P

(
𝐷 𝑗 |𝐸𝑙

)
6
(†)
P

(
𝐼 𝑗 (1) ∪ 𝐼 𝑗 (2) |𝐸𝑙

)
+ P

(
𝑇𝑗 < ∞ | 𝐷 𝑗

)
P

(
𝐷 𝑗 |𝐸𝑙

)
6
(‡)
P

(
𝐼 𝑗 (1) ∪ 𝐼 𝑗 (2) |𝐸𝑙

)
+ (1 − 𝛽Δ) P

(
𝐷 𝑗 |𝐸𝑙

)
= 1 − P

(
𝐷 𝑗 |𝐸𝑙

)
𝛽Δ,

= 1 − [𝛼(𝑙 + 1) (1 − 𝛼(𝑙 + 2)) + 𝛼(𝑙 + 2) (1 − 𝛼(𝑙 + 1))] 𝛽Δ

6
(★)

1 − 𝛼(𝑙 + 1)𝛽Δ

6
(∗)

1 − 𝛼(𝑛)𝛽Δ,

where (†) follows because 𝑇𝑗 is independent of 𝐸𝑙 , given 𝐷 𝑗 , and (‡) follows using Fact 4.1. Next,

(★) follows since 𝛼(𝑙 + 1) 6 1/2 by assumption and finally, (∗) since 𝑙 + 1 6 𝑛 and 𝛼(·) is non-

increasing. Notice that although (∗) holds for 𝑗 > 2, the same upper bound of 1 − 𝛼(𝑛)𝛽Δ holds

trivially also for P (𝑇1 < ∞) (proof is almost identical to that for 𝑗 > 2 except that the probabilities

are unconditional). Using (∗) and said observation in (C.38), one concludes that

P (𝑊𝑛 > 𝑘) 6 (1 − 𝛼(𝑛)𝛽Δ)𝑘−1 . (C.39)

Now, we know from (C.37) that

E𝑅𝜋𝑛 6 E𝑆𝑛

∞∑︁
𝑘=1
P (𝑊𝑛 > 𝑘) + 𝐶0Δ

∞∑︁
𝑘=1
P (𝑊𝑛 > 𝑘) 6

E𝑆𝑛 + 𝐶0Δ

𝛼(𝑛)𝛽Δ
,
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where the last step follows using (C.39). Finally, using E𝑆𝑛 6 (8/Δ) log 𝑛 +
(
1 + 𝜋2/3

)
Δ [10] and

taking appropriate limits, the stated assertion follows. �

C.5.2 Proof of Theorem 18

In this setting, 𝛼(𝑡) = 𝑔 (J𝑡−1), where J𝑡−1 is the number of reservoir queries until time 𝑡 −

1 (inclusive) and 𝑔(·) is non-increasing. Since the dependence on 𝑡 is only through J𝑡−1, joint

probabilities in (C.37) decouple into products and we have the following lemma:

Lemma 10 (Product-form probabilities) Consider the following cases:

1. For any 𝑘 ∈ N and any arm-type 𝑖 ∈ {1, 2}, the events 𝐷𝑘 , 𝐼𝑘 (𝑖) are independent of the

“starting time” of epoch 𝑘 .

2. For any 𝑘 ∈ N and any arm-type 𝑖 ∈ {1, 2}, the events 𝐷𝑘 , 𝐼𝑘 (𝑖) depend on the “starting

time” of epoch 𝑘 only through 𝑘 .

In either case, one has for any 𝑘, 𝑛 ∈ N and any arm-type 𝑖 ∈ {1, 2} that

P (𝐷𝑘 ,𝑊𝑛 > 𝑘) = P (𝐷𝑘 ) P (𝑊𝑛 > 𝑘) ,

P (𝐼𝑘 (𝑖),𝑊𝑛 > 𝑘) = P (𝐼𝑘 (𝑖)) P (𝑊𝑛 > 𝑘) .

Proof of Lemma 10. We know that

P (𝐷𝑘 ,𝑊𝑛 < 𝑘) = P (𝑊𝑛 < 𝑘) P (𝐷𝑘 | 𝑘 > 𝑊𝑛 )

= P (𝑊𝑛 < 𝑘) P (𝐷𝑘 ) (by assumption)

= P (𝐷𝑘 ) − P (𝐷𝑘 ) P (𝑊𝑛 > 𝑘)

=⇒ P (𝐷𝑘 ,𝑊𝑛 > 𝑘) = P (𝐷𝑘 ) P (𝑊𝑛 > 𝑘) .

The result for 𝐼𝑘 (𝑖) can also be shown similarly. �
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Now coming back to the proof of Theorem 18, we will pick things up from (C.37). Using

Lemma 10 with (C.37), we obtain

E𝑅𝜋𝑛 6 E𝑆𝑛

∞∑︁
𝑘=1
P (𝐷𝑘 ) P (𝑊𝑛 > 𝑘) + 𝐶0Δ

∞∑︁
𝑘=1
P (𝐼𝑘 (2)) P (𝑊𝑛 > 𝑘)

6 E𝑆𝑛

∞∑︁
𝑘=1
[𝑔 (2𝑘 − 2) + 𝑔 (2𝑘 − 1) − 2𝑔 (2𝑘 − 2) 𝑔 (2𝑘 − 1)] P (𝑊𝑛 > 𝑘) + 𝐶0Δ

∞∑︁
𝑘=1
P (𝑊𝑛 > 𝑘)

6
($)

2E𝑆𝑛
∞∑︁
𝑘=1

𝑔 (2𝑘 − 2) P (𝑊𝑛 > 𝑘) + 𝐶0Δ

∞∑︁
𝑘=1
P (𝑊𝑛 > 𝑘)

= 2E𝑆𝑛
∞∑︁
𝑘=0

𝑔 (2𝑘) P (𝑊𝑛 > 𝑘 + 1) + 𝐶0Δ

∞∑︁
𝑘=1
P (𝑊𝑛 > 𝑘) , (C.40)

where ($) follows since 𝑔(·) is non-increasing. Next, we upper bound P (𝑊𝑛 > 𝑘). Observe that

conditional on the event 𝐸𝑙 :=
{∑ 𝑗−1

𝑚=1 𝑇𝑚 = 𝑙

}
, where 𝑙 < 𝑛 is arbitrary, the probability that 𝑇𝑗 < ∞

(for 𝑗 > 2), satisfies

P
(
𝑇𝑗 < ∞ |𝐸𝑙

)
= P

(
𝑇𝑗 < ∞ | 𝐸𝑙 , 𝐼 𝑗 (1) ∪ 𝐼 𝑗 (2)

)
P

(
𝐼 𝑗 (1) ∪ 𝐼 𝑗 (2) |𝐸𝑙

)
+ P

(
𝑇𝑗 < ∞ | 𝐸𝑙 , 𝐷 𝑗

)
P

(
𝐷 𝑗 |𝐸𝑙

)
6
(†)
P

(
𝐼 𝑗 (1) ∪ 𝐼 𝑗 (2) |𝐸𝑙

)
+ P

(
𝑇𝑗 < ∞ | 𝐷 𝑗

)
P

(
𝐷 𝑗 |𝐸𝑙

)
6
(‡)
P

(
𝐼 𝑗 (1) ∪ 𝐼 𝑗 (2) |𝐸𝑙

)
+ (1 − 𝛽Δ) P

(
𝐷 𝑗 |𝐸𝑙

)
= 1 − P

(
𝐷 𝑗 |𝐸𝑙

)
𝛽Δ,

= 1 − [𝛼(𝑙 + 1) (1 − 𝛼(𝑙 + 2)) + 𝛼(𝑙 + 2) (1 − 𝛼(𝑙 + 1))] 𝛽Δ

6
(★)

1 − 𝛼(𝑙 + 1)𝛽Δ

=
(∗)

1 − 𝑔 (2 𝑗 − 2) 𝛽Δ,

where (†) follows because 𝑇𝑗 is independent of 𝐸𝑙 , given 𝐷 𝑗 , and (‡) follows using Fact 4.1.

Next, (★) follows since 𝛼(𝑙 + 1) 6 1/2 by assumption and finally, (∗) holds since 𝛼(𝑙 + 1) =

𝑔 (J𝑙) = 𝑔 (2 𝑗 − 2) on 𝐸𝑙 . Notice that although (∗) holds for 𝑗 > 2, the same upper bound of

1 − 𝑔 (2 𝑗 − 2) 𝛽Δ holds trivially also for P (𝑇1 < ∞) (proof is almost identical to that for 𝑗 > 2
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except that the probabilities are unconditional). Using (∗) and said observation in (C.38), one

concludes that

P (𝑊𝑛 > 𝑘) 6
𝑘−1∏
𝑗=1
(1 − 𝑔 (2 𝑗 − 2) 𝛽Δ) =

𝑘−2∏
𝑗=0
(1 − 𝛽Δ𝑔 (2 𝑗)) . (C.41)

Combining (C.40) and (C.41), one obtains

E𝑅𝜋𝑛 6 2E𝑆𝑛
∞∑︁
𝑘=0

𝑔 (2𝑘)
𝑘−1∏
𝑗=0
(1 − 𝛽Δ𝑔 (2 𝑗)) + 𝐶0Δ

∞∑︁
𝑘=0

𝑘−1∏
𝑗=0
(1 − 𝛽Δ𝑔 (2 𝑗))

6
(#1)
(2𝑐E𝑆𝑛 + 𝐶0Δ)

∞∑︁
𝑘=0

𝑘−1∏
𝑗=0
(1 − 𝛽Δ𝑔 (2 𝑗))

6
(#2)
(2𝑐E𝑆𝑛 + 𝐶0Δ)

∞∑︁
𝑘=0

exp ©«−𝛽Δ
𝑘−1∑︁
𝑗=0
𝑔 (2 𝑗)ª®¬ ,

where (#1) follows since 𝑔(·) is non-increasing with 𝑔(0) = 𝑐, and (#2) follows using the identity

log(1 + 𝑥) 6 𝑥 ∀ 𝑥 > −1. Finally, using E𝑆𝑛 6 (8/Δ) log 𝑛 +
(
1 + 𝜋2/3

)
Δ [10] and taking

appropriate limits, the stated assertion follows. �
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