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Abstract

A homotopical description of Deligne–Mumford compactifications

Yash Uday Deshmukh

In this thesis I will give a description of the Deligne–Mumford properad expressing it as the

result of homotopically trivializing 𝑆1 families of annuli (with appropriate compatibility

conditions) in the properad of smooth Riemann surfaces with parameterized boundaries. This

gives an analog of the results of Drummond-Cole and Oancea–Vaintrob in the setting of

properads. We also discuss a variation of this trivialization which gives rise to a new partial

compactification of Riemann surfaces relevant to the study of operations on symplectic

cohomology.
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Chapter 1: Introduction

1.1 Context and Motivation

Two dimensional Topological Field Theories (TFTs), in the sense of [1, Section 2] (also com-

monly referred to as Topological Conformal Field Theories (TCFTs) [2]), are field theories with

operations given by chains on the moduli spaces of Riemann surfaces. In this thesis we study ho-

motopical aspects of the problem of extending operations in the closed sector of such a field theory

from the uncompactified moduli spaces of Riemann surfaces of all genera to some of their (par-

tial) compactifications. The compactifications we considered are those arising naturally in mirror

symmetry and symplectic topology.

The motivation for considering such extensions comes from a proposal of M. Kontsevich for

the construction of the so-called categorical enumerative invariants associated with a Calabi–Yau

𝐴∞-category, under suitable hypotheses (see [3, 2.23], [4, Section 11]). The Hochschild chain

complex of a proper (respectively, smooth) Calabi–Yau 𝐴∞-category carries a chain-level two-

dimensional right (respectively, left) positive-boundary TFT structure (see [5], [2] for the proper

case and [6] for the smooth case). Recall that chain-level two-dimensional right (respectively, left)

positive-boundary TFTs are field theories with operations given by chains on the moduli spaces

of Riemann surfaces in which each connected component has at least one input (respectively,

output). The TFT structure in particular induces a chain-level 𝑆1-action on the Hochschild chains

coming from the operations given by moduli spaces of annuli. Kontsevich proposed that under the

assumption that this 𝑆1-action is homotopically trivial, the TFT structure should extend to include

operations coming from chains on the Deligne–Mumford compactification of the moduli spaces of

Riemann surfaces. The desired categorical enumerative invariants can then be defined using the

induced action of chains on the Deligne–Mumford compactifications.
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If the Calabi–Yau 𝐴∞-category is Morita equivalent to the Fukaya category of a symplectic

manifold or the category of coherent sheaves on a Calabi–Yau manifold then, under nice cir-

cumstances (for example when the open-closed map associated with the Fukaya category is an

isomorphism), the categorical enumerative invariants are expected to recover, respectively, the

Gromov-Witten (GW) invariants and the Bershadsky-Cecotti-Ooguri-Vafa (BCOV) invariants of

the underlying manifolds. In such cases homological mirror symmetry, which asserts an equiv-

alence between the Fukaya category and a 𝑑𝑔-enhancement of the derived category of coherent

sheaves of a Calabi–Yau mirror pair, can be used to deduce enumerative mirror symmetry, which

relates the GW and BCOV invariants of the mirror pair.

Remark 1.1.1. 1. In what follows, we will mostly work with left positive-boundary TFTs. This

is because of our interest in examples coming from symplectic topology which, as explained

below in Section 1.5, admit only a left positive-boundary TFT structure in general. For this

reason, below whenever we refer to a ‘positive-boundary TFT’ we will mean a left positive-

boundary TFT, unless specified otherwise.

2. An alternate approach to defining the categorical enumerative invariants was carried out in

[1] and further developed in [7]. This approach bypasses the use of Deligne–Mumford spaces

by working with a Batalin-Vilkovisky algebra constructed using the uncompactified moduli

spaces.

The genus 0, 𝑛-to-1 part of the extension described above was formulated by Kontsevich as

the following conjecture: The structure of an algebra over the framed little disk operad along

with a homotopy trivialization of the 𝑆1-action is equivalent to the structure of an algebra over the

Deligne–Mumford operad. Recall that an algebra over the framed little disk operad is equivalent

to the data of the genus 0, 𝑛-to-1 part of a TFT. Various versions of this conjecture were discussed

in [8] and [9], in the category of chain complexes over a characteristic 0 field. The statement in the

category of topological spaces was proved in [10]. An extension to higher genus, 𝑛-to-1 operations

was proved in [11] where the operad of framed little disks was replaced by the operad of Riemann

surfaces with parametrized boundaries.

2



In this thesis we consider an extension of the above conjecture from the genus 0, 𝑛-to-1 part

of a TFT to the entire connected, left positive-boundary part of the TFT. In particular, we shall

consider operations coming from Riemann surfaces with possibly higher genus and with multiple

inputs and multiple outputs. We do this using the language of ‘properads’.

1.2 Properads

Properads are a generalization of operads. Recall that operads encode algebraic structures

involving operations with multiple inputs and a single output. Generalizing this, as we shall discuss

in Chapter 2 below, properads encode algebraic structures involving operations that have multiple

inputs and outputs. Moreover, these operations can be composed along multiple inputs and outputs.

Roughly, a properad consists of (i) a spaces of operations with 𝑛− inputs and 𝑛+ outputs for every

choice of non-negative integers 𝑛− and 𝑛+, and (ii) the data of compositions of these operations by

inserting outputs of one as the inputs of another.

In this thesis, we will consider a modification of the notion of properads which we call ‘input-

output’ properads (io-properads). These are analogous to usual properads except that there are no

operations having 0 inputs and 0 outputs. Consequently, the compositions in properads resulting

in operations with no inputs and no outputs are also omitted from the structure. An io-properad is

equivalent to the data of a properad whose space of operations in arity (0, 0) is the final object in

the ambient category (a point in the case topological spaces and topological stacks). However, in

this thesis we prefer to treat them as algebraic structure in their own right.

The restriction to io-properads has been done for the purpose of technical simplification of

some parts of the proof. In the properads which concern us, this omission results in the loss of

certain structures coming from operations parametrized by the moduli spaces of stable Riemann

surfaces with no inputs and outputs. However, we do not expect the restriction to io-properads to

be an essential one and expect our results to hold at the level of usual properads.

We now briefly describe io-properads of Riemann surfaces that are relevant to us. See Chapter

4 below for more details on these properads and the moduli spaces involved.

3



The data of operations in a TFT coming from connected Riemann surfaces naturally presents itself

as representation of a certain properad. We denote the io-properad associated to it by 𝔐. The

spaces of operations in 𝔐 are given by the moduli spaces of Riemann surfaces having input and

output boundary components, each of which is equipped with an analytic 𝑆1-parameterization. We

refer to 𝔐 as the TFT-properad. There is an io-subproperad 𝜕+𝔐 of the TFT-properad which

encodes the structure given by the connected part of a positive-boundary TFT. It is obtained by

considering only the operations indexed by Riemann surfaces which have at least one output. We

refer to this io-properad as the 𝜕+TFT-properad.

Moreover, to encode the operations coming from the compactified Riemann surfaces we use the

io-properad 𝔐, which we call the Deligne–Mumford properad. The spaces of operations in 𝔐 are

given by the moduli spaces of stable nodal Riemann surfaces with input and output parametrized

boundaries.

Theorem 1.4.2 will be concerned with a variant of 𝔐, denoted 𝔐, based on a new partial com-

pactification M̂𝑔,𝑛− ,𝑛+ of the moduli spaces of Riemann surfaces with parametrized boundaries.

This compactification is obtained by considering nodal Riemann surfaces with boundaries, which

satisfy the condition that every irreducible component has at least one output boundary. We call it

the symplectic properad. See Section 1.5 for more on this io-properad.

𝔐𝑢𝑛𝑠𝑡 , 𝜕+𝔐𝑢𝑛𝑠𝑡 , 𝔐𝑢𝑛𝑠𝑡 , and 𝔐
𝑢𝑛𝑠𝑡

will be the io-subproperads of 𝔐, 𝜕+𝔐, 𝔐, and 𝔐 con-

sisting of (possibly nodal) Riemann surfaces in the unstable range

(𝑔, 𝑛−, 𝑛+) ∈ {(0, 0, 1), (0, 1, 0), (0, 1, 1), (0, 0, 2), (0, 2, 0)}.

These io-properads have no operations in arities other than those described by the above set.

(𝜕+𝔐𝑢𝑛𝑠𝑡 and 𝔐𝑢𝑛𝑠𝑡 have no operations in arity (1, 0) and (2, 0) either). Finally, 𝔐𝑛𝑜𝑝 will be

the io-subproperad of 𝔐𝑢𝑛𝑠𝑡 obtained by excluding from 𝔐𝑢𝑛𝑠𝑡 the annuli with two input bound-

aries. In particular 𝔐𝑛𝑜𝑝 has operations in arity (0, 1), (1, 0), (1, 1) and (0, 2) and not operations

4



io-properad (0,1) (1,0) (1,1) (0,2) (2,0)

𝔐𝑢𝑛𝑠𝑡

𝜕+𝔐𝑢𝑛𝑠𝑡 ∅ ∅

𝔐𝑢𝑛𝑠𝑡 ∅ ∅

𝔐
𝑢𝑛𝑠𝑡

𝔐𝑛𝑜𝑝 ∅

Table 1.1: Summary of io-properads of surfaces in the unstable range. (Nodal entries in the table
indicate that in the corresponding arities the respective properads also contain nodal curves in
addition to the non-nodal curves. E.g. 𝔐𝑢𝑛𝑠𝑡 does not allow nodal annuli in arity (1, 1), but 𝔐

𝑢𝑛𝑠𝑡

does.)

in any other arities. (The superscript ‘nop’ here stands for ‘no pairing’. This is because we think

of the operations corresponding to annuli with two inputs of as pairings.)

Table 1.1 summarizes the operations which are included in these io-properads of surfaces in

the unstable range.

The main results of the thesis are statements about certain homotopy colimits of io-properads.

In order to talk about the homotopy theory of these structures, we outline the construction of a

model category structure on the category of topological io-properads. This is carried out in Chapter

3 below.

Remark 1.2.1. The structure of a TFT has the additional data of compositions coming from taking

disjoint unions of Riemann surfaces. In order to capture this data, it is necessary to use a gen-

eralization of properads, known as PROPs. In addition to the compositions similar to those in

properads, known as the vertical compositions, PROPs also have horizontal compositions. These

latter compositions can be used to encode the operation of taking disjoint unions of Riemann sur-

faces. We however choose to work with properads instead of PROPs, since the homotopy theory

of properads is easier to handle than that of PROPs.
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1.3 Properads in Stacks

It is well know that the moduli spaces of stable curves admit natural lifts to topological stacks.

One of the main results of this thesis concerns properad 𝔐 built out of these. As a consequence,

we are required to deal with properads valued in topological stacks. This introduces an additional

layer of complexity: since topological stacks form a 2-category, it is natural to consider properads

in which compositions are associative only up to certain natural equivalences. To discuss the

homotopy theory of such properads, instead of dealing with the homotopy theory of 2-properads,

we find it convenient to use the language of∞-properads. In, Chapter 8 we outline this formalism

and describe how 𝔐 can be viewed as an∞-properad.

However, for the most part we carry out our discussion without encountering this issue. Con-

sidering the properads in stacks is necessary only for Theorem 1.4.1 (2). Theorem 1.4.1 (1) as well

as Theorem 1.4.2 deals only with moduli spaces which admit realizations in topological spaces,

and hence can be stated and proved entirely in the category of properads in topological spaces.

Specifically, throughout Chapters 2 to 6, we only work with properads in topological spaces.

On the other hand, the statement of Theorem 1.4.1 (2) is understood as a homotopy col-

imit computation in the category of properads in topological stacks. More precisely, as the (∞-

categorical) colimit in the ∞-category of ∞-properads in topological stacks. In the proof of The-

orem 1.4.1 (2) in Chapter 7, which essentially is the only place where we deal with a properad in

stacks, our computation of homotopy colimit yields a topological properad with the property that

for any (𝑛−, 𝑛+) the space of operations with 𝑛− inputs and 𝑛+ outputs has the same weak homotopy

type as the stackM𝑛− ,𝑛+ , in the sense described in Chapter 8. The results outlined in Chapter 8 can

then be used to argue that this homotopy colimit computation carried out in the category of topo-

logical properads can be upgraded to a ∞-categorical colimit of ∞-properads, with the resulting

colimit homotopy equivalent (as an∞-properad) to 𝔐.
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1.4 Statements of the Theorems

Our main results are as follows:

Theorem 1.4.1. 1. 𝔐 is the homotopy colimit of the following diagram in the category of io-

properads:
𝜕+𝔐𝑢𝑛𝑠𝑡 𝔐𝑛𝑜𝑝

𝜕+𝔐

(1.4.1)

2. 𝔐 is the homotopy colimit of the following diagram in the category of io-properads:

𝔐𝑢𝑛𝑠𝑡 𝔐
𝑢𝑛𝑠𝑡

𝔐

(1.4.2)

The first part describes the extension from a positive-boundary TFT to a TFT. This is achieved

by the introduction of a trace operation (the point consisting the space 𝔐𝑛𝑜𝑝 (1, 0)) dualizing the

cotrace operation (the point consisting the space 𝔐𝑛𝑜𝑝 (0, 1)).

The second part describes the extension of a TFT to an algebra over the Deligne–Mumford

properad. An action of properad 𝔐 in particular induces an action of the subproperad of disks and

annuli. The second statement above can be interpreted as saying that, homotopically, an extension

of this action to the properad 𝔐
𝑢𝑛𝑠𝑡

consisting of disks and possibly nodal annuli determines an

extension of the TFT structure to an algebra over the Deligne–Mumford properad.

Note that spaces of operations in 𝔐𝑢𝑛𝑠𝑡 in arities (1, 1), (0, 2), and (2, 0) are given by moduli

spaces of annuli and are all homotopy equivalent to 𝑆1. By fixing an annulus in any of these spaces

and varying the parametrization of one of its boundaries by rotations, we obtain an 𝑆1-parametrized

family of operations whose inclusion inside the respective moduli space is a homotopy equivalence.

On the other hand, the corresponding spaces of operations in 𝔐
𝑢𝑛𝑠𝑡

, given by moduli spaces of

possibly nodal annuli, are all contractible. In particular, the inclusion 𝔐𝑢𝑛𝑠𝑡 ↩→ 𝔐
𝑢𝑛𝑠𝑡

provides

any 𝑆1-family of annuli as described above with a null-homotopy inside 𝔐
𝑢𝑛𝑠𝑡

. Such a null-
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homotopy can be obtained, for example, by simultaneously scaling the modulus of every annulus

in the family, eventually making it infinite. Lastly, we note that operations in arity (0, 1) and (1, 0)

in both 𝔐𝑢𝑛𝑠𝑡 and 𝔐
𝑢𝑛𝑠𝑡

are given by points and the inclusion 𝔐𝑢𝑛𝑠𝑡 ↩→𝔐
𝑢𝑛𝑠𝑡

acts by identity on

these.

Pushout of 𝔐 along 𝔐𝑢𝑛𝑠𝑡 ↩→ 𝔐
𝑢𝑛𝑠𝑡

thus has the effect of providing null-homotopies of the

𝑆1-families of annuli in arities (1, 1), (0, 2), and (2, 0), described above. Since 𝔐𝑢𝑛𝑠𝑡 ↩→ 𝔐
𝑢𝑛𝑠𝑡

is a map of properads, these homotopies are compatible, in an appropriate sense, with properad

compositions with other 𝑆1-families, as well as with the disks in arities (1, 0) and (0, 1). In this

sense, the second part of Theorem 1.4.1 can thus be interpreted as saying that, homotopically, an

extension of 𝔐𝑢𝑛𝑠𝑡-action to an 𝔐
𝑢𝑛𝑠𝑡

-action corresponds to providing homotopy trivializations of

the 𝑆1-families of operations in arities (1, 1), (0, 2), and (2, 0), such that these trivializations are

compatible with properad compositions in the manner described above.

We also prove Theorem 1.4.2 which describes an extension of the positive-boundary TFT-

properad to the symplectic properad. The motivation for studying such extensions comes from

looking at the examples coming from symplectic cohomology (see 1.5 below).

Theorem 1.4.2. 𝔐 is the homotopy colimit of the following diagram in the category of io-properads

𝜕+𝔐𝑢𝑛𝑠𝑡 𝔐𝑢𝑛𝑠𝑡

𝜕+𝔐

(1.4.3)

Theorem 1.4.2 can be interpreted as saying that the data needed for the extension of an 𝜕+𝔐-

action to an 𝔐-action is precisely the data of extension of the induced action of the subproperad

𝜕+𝔐𝑢𝑛𝑠𝑡 to 𝔐𝑢𝑛𝑠𝑡 . Note that in this case the space of arity (0, 2) operations of 𝔐𝑢𝑛𝑠𝑡 is again

contractible, however, the space of operations in arity (1, 1) is homotopy equivalent to 𝑆1. The

extension from 𝜕+𝔐𝑢𝑛𝑠𝑡 to 𝔐𝑢𝑛𝑠𝑡 thus corresponds to homotopy trivializing 𝑆1-family of copairings

coming from operations in arity (0, 2), leaving the operations in arity (1, 1) unchanged.
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In the work under preparation [12], it is shown that such trivializations are related to conjectures

of Kontsevich regarding generalized versions of the categorical Hodge-de Rham degeneration for

smooth and for proper dg-categories. These conjectures were proved in [12] for certain classes of

Fukaya categories, but are known to be false in general [13].

1.5 Symplectic and Quantum cohomology

Symplectic cohomology and Quantum cohomology provide prototypical examples of the ex-

tensions described in the above theorems.

Symplectic cohomology 𝑆𝐻∗(𝑋) is an invariant associated with a symplectic manifold (𝑋, 𝜔)

with bounded geometry. 𝑆𝐻∗(𝑋) is known to admit a (positive boundary) topological quantum

field theory (TQFT) structure. This was introduced in [14], with a detailed construction carried out

in [15]. This structure is expected to lift to a chain-level action of the moduli spaces of Riemann

surfaces with parametrized boundaries.

This structure is defined in terms of counts of maps 𝑢 from a Riemann surface (Σ, 𝑗) to 𝑋 which

satisfy a perturbed Cauchy-Riemann equation:

(𝑑𝑢 − 𝑍 ⊗ 𝛽)0,1 = 0 (1.5.1)

Here 𝑍 and 𝛽 are, respectively, auxiliary choices of a Hamiltonian vector field on 𝑋 and a 1-form

on Σ, both having a certain standard form near the boundaries of Σ. When 𝑋 is not necessarily

compact, we must in addition require that 𝑑𝛽 ≤ 0. This is necessary to prevent a sequence of such

maps from escaping to infinity, which in turn is needed to ensure compactness of the moduli space

of these maps. Note that this condition imposes the restriction that 𝑛+ ≥ 1. Thus, in general, such

operations can only be defined for surfaces which have at least one output and therefore we only

expect a chain-level 𝜕+𝔐-action on 𝑆𝐻∗(𝑋). In particular, trace operations coming from disks

with an input boundary are not defined on 𝑆𝐻∗(𝑋) in general.

The definition of these operations can be extended to include maps from nodal curves which
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carry a 1-form 𝛽 on its non-singular locus satisfying 𝑑𝛽 ≤ 0 and vanishing near the nodes. Curves

appearing in the compactification M̂𝑔,𝑛− ,𝑛+ satisfy this condition. The chain-level action of 𝜕+𝔐

on the symplectic cohomology is thus expected to extend to an action of the properad 𝔐. Theorem

1.4.2 provides the extension statement at the level of underlying properads.

The action of the properad 𝜕+𝔐 includes the data of copairings induced by the action of cylinders

with both ends outputs. According to Theorem 1.4.2, the homotopy trivialization of this family of

copairings, given by the construction of operations corresponding to nodal annuli with two outputs,

is the homotopically essential data providing the extension from the 𝜕+𝔐-action to the 𝔐-action.

In the case when 𝑋 is compact, the condition 𝑑𝛽 ≤ 0 may be dropped. As a consequence,

operations can be defined using Riemann surfaces without any restriction on the number of out-

puts and thus the chain level 𝜕+𝔐-action is expected to extend to an 𝔐-action. The corresponding

extension statement at the level of underlying properads is given by Theorem 1.4.1. The com-

pactness of the ambient manifold 𝑋 is reflected in the properad-level statement as the existence of

the trace operations indexed by disks with an input boundary which dualize the cotrace operations

mentioned in the previous paragraph.

Moreover, in this case, similar to the extension from 𝜕+𝔐 to 𝔐 described above, the action of

𝔐 is expected to extend to an action of all stable curves in 𝔐. As a result, one would obtain a

chain-level action of the properad 𝔐 on 𝑆𝐻∗(𝑋). This corresponds to the extension from 𝔐 to 𝔐

described in second part of Theorem 1.4.1.

Recall that for a closed symplectic manifold 𝑋 , the symplectic cohomology of 𝑋 is isomor-

phic to its quantum cohomology 𝑄𝐻∗(𝑋). The quantum cohomology itself is expected to admit a

chain-level action of a properadM: the spaces of operations inM are given by the usual Deligne–

Mumford moduli spaces of stable boundary-less nodal Riemann surfaces with input-output marked

points. The compositions are given by simply concatenating stable curves along suitable marked

points. The M-action is defined by counting pseudo-holomorphic maps from stable (boundary-

less) Riemann surfaces with marked points into 𝑋 , in a manner similar to the 𝜕+𝔐-action on

𝑆𝐻∗(𝑋).
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This action is equivalent to the data of a chain-level lift of the Cohomological Field Theory (Co-

hFT) structure on𝐻∗(𝑋) ([16]). The properadM is weakly homotopy equivalent to 𝔐 (see Section

4.2) and the isomorphism between 𝑆𝐻∗(𝑋) and 𝑄𝐻∗(𝑋) should intertwine these actions. Using

Theorem 1.4.1(2) it follows that the data of the CohFT structure on quantum cohomology of 𝑋 is

homotopically equivalent to the data of the 𝔐-action along with a (suitably compatible) homotopy

trivializations of the operations coming from the 𝑆1-families of annuli in 𝔐𝑢𝑛𝑠𝑡 .

1.6 Outline of the thesis

We start by giving a brief overview of properads in Chapter 2. Here we introduce io-properads

as algebras over a monad G. We also include a discussion of pushouts in the category of topologi-

cal io-properads.

In Chapter 3 we describe a model structure on the category of topological io-properads using the

description of properads as algebras over the monad G. We then use the bar construction associ-

ated with monad G to construct cofibrant resolutions of properads, and provide a description of

homotopy pushouts of properads. Most of the technical details required to prove the statements

appearing here are deferred to Appendix A.

In Chapter 4 we give the precise definitions of the properads which appear in the main theorems

and of the moduli spaces on which these properads are based.

We then carry out the proof of Theorem 1.4.2 in Chapter 5. The technical heart of the proof is the

constructions in Section 5.3, where local weak equivalences are proved by exhibiting explicit sim-

plicial homotopies. These homotopies are the simplicial analogues of the geometric homotopies

constructed in [11] for operads. Additional work is required in our case as we work with properads

which have compositions indexed by directed graphs more general than trees and also because we

are required to work with cofibrant resolutions which are of a simplicial nature as opposed to the

geometric ones used in [11]

In Chapter 6 we prove the first part of Theorem 1.4.1. The pushout is computed with 𝔐𝑢𝑛𝑠𝑡 and 𝔐

replaced by homotopy equivalent properads of spotted surfaces (see Section 6.1). The theorem is
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then proved by the constructions similar to those in the proof of Theorem 1.4.2, with the weighted

marked point playing a role analogous to nodes there.

In Chapter 7 the proof of the second part of Theorem 1.4.1 is provided. The proof in this case

is obtained by combining the constructions used in the proofs of Theorem 1.4.2 and the first part

of Theorem 1.4.1. After a few modifications (see Remarks 7.2.2 and 7.3.1), the proof follows a

scheme very similar to that in the proof of Theorems 1.4.2 and 1.4.1(1).

Finally, in Chapter 8 we outline a formalism for ∞-io-properads and show that the homotopy col-

imits computed in earlier chapters in the category of topological properads remain valid in the

context of∞-properads.
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Chapter 2: An Overview of Properads

Notation 2.0.1. Let Top denote the category of compactly generated Hausdorff topological spaces.

Let TopSeqio denote the category TopN×N\(0,0) of bi-sequences of topological spaces indexed by

N × N \ (0, 0). Here the superscript ‘io’, short for ‘input-output’, refers to the fact that these

sequences do not contain a (0, 0) component. Below, we will often refer to these sequences as

topological io-sequences.

In this chapter we present a brief overview of input-output properads in the category of topo-

logical spaces. For a detailed treatment, in the context of usual properads, see [17]. We shall

define properads as algebras over a certain monad G. This point of view will be convenient when

we discuss the cofibrant resolutions of properads below.

2.1 Monads and algebras over them

Definition 2.1.1. A monad (also called a triple) 𝑇 on a category C, is a functor 𝑇 : C → C along

with natural transformations 𝜇 : 𝑇 ◦ 𝑇 → 𝑇 and 𝜂 : 1C → 𝑇 such that the following diagrams

commute:

𝑇 ◦ 𝑇 ◦ 𝑇 𝑇 ◦ 𝑇

𝑇 ◦ 𝑇 𝑇

𝜇◦1

1◦𝜇 𝜇

𝜇

1C ◦ 𝑇 𝑇 ◦ 𝑇 𝑇 ◦ 1C

𝑇

𝜂◦1

𝜇

1◦𝜂

The natural transformations 𝜇 and 𝜂 are referred to as the composition and the unit of 𝑇 , respec-

tively. The first commutative diagram describes the associativity of 𝜇, whereas the second one

describes the unitality of 𝜂.

An algebra over 𝑇 is an object 𝑋 ∈ C equipped with a map 𝑚 : 𝑇𝑋 → 𝑋 ∈ C such that the
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following diagrams commute:

𝑇𝑇𝑋 𝑇𝑋

𝑇𝑋 𝑇

𝜇(𝑋)

𝑇𝑚 𝑚

𝑚

𝑋 𝑇𝑋

𝑋

𝜂(𝑋)

𝑚

We denote the category of 𝑇-algebras in C by T-Alg. For any 𝑋 ∈ C, 𝑇𝑋 is canonically a 𝑇-

algebra. This defines the free 𝑇-algebra functor 𝑇 : C → T-Alg which is left adjoint to the forgetful

functor 𝐹𝑜𝑟𝑔𝑒𝑡 : T-Alg→ C.

2.2 Graphs

To define the monad G, we need to fix some conventions regarding graphs.

By a directed graph 𝐺 we mean the data of

• A finite set of vertices 𝑉 (𝐺)

• A finite set of directed edges 𝐸 (𝐺), equipped with source and target incidence maps 𝑠, 𝑡 : 𝐸 (𝐺) →

𝑉 (𝐺).

• A set of input legs 𝑖𝑛(𝐺) and output legs 𝑜𝑢𝑡 (𝐺) (also called external edges/tails), along

with incidence maps 𝑡𝑙 : 𝑖𝑛(𝐺) → 𝑉 (𝐺) and 𝑠𝑙 : 𝑜𝑢𝑡 (𝐺) → 𝑉 (𝐺).

• An ordering on the sets 𝑖𝑛(𝐺), 𝑜𝑢𝑡 (𝐺) and on 𝑖𝑛(𝑣), 𝑜𝑢𝑡 (𝑣) for every 𝑣 ∈ 𝑉 (𝐺), where 𝑖𝑛(𝑣)

(respectively, 𝑜𝑢𝑡 (𝑣)) denotes the set of edges and legs directed into (respectively, out of) 𝑣.

We say that 𝐺 is connected if the geometric realization of 𝐺 is connected. Here by the geomet-

ric realization of 𝐺 we mean the topological space obtained by considering a union of points and

intervals indexed by vertices and edges/legs of 𝐺 respectively, with the endpoints of the intervals

identified with the vertices according to the incidence maps.
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By an isomorphism of directed graphs 𝑓 : 𝐺 → 𝐻, we mean a collection of bijections

𝑓𝑣 : 𝑉 (𝐺) → 𝑉 (𝐻), 𝑓𝑒 : 𝐸 (𝐺) → 𝐸 (𝐻), 𝑓𝑙𝑖𝑛 : 𝑖𝑛(𝐺) → 𝑖𝑛(𝐻), and 𝑓𝑙𝑜𝑢𝑡 : 𝑜𝑢𝑡 (𝐺) → 𝑜𝑢𝑡 (𝐻)

which preserve the incidence maps and the orderings.

By a directed cycle in 𝐺 we mean a sequence of edges 𝑒1, ..., 𝑒𝑛 ∈ 𝐸 (𝐺) such that 𝑡 (𝑒𝑖) = 𝑠(𝑒𝑖+1)

for 1 ≤ 𝑖 ≤ 𝑛 − 1 and 𝑠(𝑒1) = 𝑡 (𝑒𝑛).

We say that𝐺 is input-output if either 𝑖𝑛(𝐺) or 𝑜𝑢𝑡 (𝐺) is non-empty i.e. if 𝐺 has at least one input

leg or output leg.

Definition 2.2.1. By an input-output directed acyclic graph (ioda-graph) we mean an input-output,

connected directed graph which contains no directed cycles.

2.3 The monad G

For an ioda-graph 𝐺 and 𝑃 ∈ TopSeqio, let

𝑃(𝐺) :=
∏

𝑣∈𝑉 (𝐺)
𝑃( |𝑖𝑛(𝑣) |, |𝑜𝑢𝑡 (𝑣) |)

denote the space of 𝑃-labelings of 𝐺. Denote by G𝑛− ,𝑛+ the collection of graphs one from each

isomorphism class of ioda-graphs having 𝑛− input and 𝑛+ output leaves. Set

G𝑛− ,𝑛+ (𝑃) :=
∐

𝐺∈G𝑛− ,𝑛+

𝑃(𝐺).

Denote by G(𝑃) ∈ TopSeqio the bi-sequence given by G(𝑃) (𝑛−, 𝑛+) = G𝑛− ,𝑛+ (𝑃).

We now describe how to make G into a monad. To do this we need to define operations

𝜇 : GG→ G and 𝜂 : 1→ G, satisfying the condition mentioned in Definition 2.1.1.
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For 𝑃 ∈ TopSeqio, GG(𝑃) is given by

GG(𝑃) (𝑛−, 𝑛+) =
∐

𝐺∈G𝑛− ,𝑛+

G(𝑃) (𝐺).

Thus an element in GG(𝑃) is represented by a G(𝑃)-labeling of an ioda-graph. Such a decorated

graph can be identified with a ‘nested’ ioda-graph. Forgetting the nesting gives an ioda-graph with

𝑃-labelings. This defines the natural transformation 𝜇 : GG→ G (see [18] for details).

Let us now turn to the unit. Given 𝑃 ∈ TopSeqio, consider the maps 𝑃(𝑛−, 𝑛+) → G𝑛− ,𝑛+ (𝑃) which

identify 𝑃(𝑛−, 𝑛+) with 𝑃-labelings of the (𝑛−, 𝑛+)-corolla, the unique graph in G𝑛− ,𝑛+ having a

single vertex and no internal edges. This defines the natural transformation 𝜂 : 1→ G.

It is not difficult to verify that 𝜇 and 𝜂 satisfy the associativity and unitality conditions in Definition

2.1.1. We record here the conclusion for future reference:

Lemma 2.3.1. (G, 𝜇, 𝜂) is a monad.

□

2.4 io-Properads as monad algebras

Definition 2.4.1. An io-properad in topological spaces is an algebra over the monad (G, 𝜇, 𝜂) in

the category TopSeqio.

We will denote the category of topological io-properads by GAlg.

Remark 2.4.2. In particular if 𝑃 is an io-properad, for any ioda-graph 𝐺 we have a map

𝑃(𝐺) → 𝑃( |𝑖𝑛(𝐺) |, |𝑜𝑢𝑡 (𝐺) |)

We will refer to it as the properad composition indexed by 𝐺 and denote it by 𝜇𝐺 . In particular, we

have the following structure maps:

1. Using the graphs as in Figure 2.1(a), we obtain a left Σ𝑛− and a right Σ𝑛+ action on 𝑃(𝑛−, 𝑛+).
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(a) a permuted corolla (b) a partially grafted corolla

Figure 2.1

2. Using the graphs as in Figure 2.1(b), for any 𝑛−, 𝑛+, 𝑚−, 𝑚+ ≥ 0 and non-empty subsets 𝑠−

and 𝑠+ of [𝑛+] and [𝑚−] respectively, with an identification 𝜙 : 𝑠− → 𝑠+, we get a composi-

tion map

◦𝜙 : 𝑃(𝑛−, 𝑛+) × 𝑃(𝑚−, 𝑚+) → 𝑃(𝑛− + 𝑚− − |𝑠+ |, 𝑛+ + 𝑚+ − |𝑠− |)

provided 𝑛−, 𝑚− − |𝑠+ |, 𝑛+ − |𝑠− |, and 𝑚+ are not all simultaneously 0. This slightly unnat-

ural constraint is imposed by the fact that we work with io-properads which have no (0, 0)

component.

These compositions are associative and are equivariant with respect to the Σ × Σ𝑜𝑝-actions,

described in point (1), in a suitable sense.

Conversely, it can be shown that Σ × Σ𝑜𝑝-actions as in point (1) and (associative, Σ × Σ𝑜𝑝-

equivariant) composition maps as in point (2) define the structure of a (G, 𝜇, 𝜂)-algebra over 𝑃.

We will not use this viewpoint and hence omit the details.
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2.5 Pushouts of topological io-properads

The main results in this paper are statements about certain homotopy pushouts in the category

of topological io-properads. An explicit description of pushouts in the category of topological io-

properads is used in Chapters 5, 6, and 7 below to give a presentation of these homotopy pushouts.

We now outline this description.

Notation 2.5.1. To distinguish colimits in the category of topological io–sequences from the col-

imits in topological io-properads, we will indicate the latter with a superscript GAlg. Below,

whenever we use 𝑐𝑜𝑒𝑞,⊔, and
∐

without a superscript GAlg, it is understood that they refer to the

respective operations in TopSeqio.

Lemma 2.5.2. Let 𝑃 ← 𝑅 → 𝑄 be a diagram of topological io-properads. Then the pushout

𝑃 ⊔GAlg
𝑅

𝑄 can be obtained as the following coequalizer in TopSeqio

𝑐𝑜𝑒𝑞

[
G(G𝑃

∐
G𝑅

G𝑄) ⇒ G(𝑃
∐
𝑅

𝑄)
]

with the io-properad structure induced from that of G(𝑃 ⊔𝑅 𝑄). Here,

1. the first arrow is given by applying functor G to the map G𝑃⊔G𝑅G𝑄 → 𝑃⊔𝑅𝑄 which itself

is induced from the G-algebra structure maps G𝑃→ 𝑃,G𝑄 → 𝑄, and G𝑅 → 𝑅

2. the second arrow is induced via the universal property of free G-algebras using the map

G𝑃 ⊔G𝑅 G𝑄 → G(𝑃 ⊔𝑅 𝑄) which in turn is the pushout of the maps given by applying

functor G to 𝑃→ 𝑃 ⊔𝑅 𝑄, 𝑄 → 𝑃 ⊔𝑅 𝑄, and 𝑅 → 𝑃 ⊔𝑅 𝑄 □

The above lemma can be proved by directly verifying that the coequalizer with the given G-

algebra structure satisfies the universal property of the pushout.

Notation 2.5.3. We say that a subgraph 𝐻 of an ioda-graph 𝐺 is collapsible if the graph 𝐺/𝐻,

obtained by replacing 𝐻 with a single vertex, contains no directed cycles. More precisely: consider

the topological io–sequence G = {G𝑛− ,𝑛+} (with the discrete topology), where, as in Section 2.3, G
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is the collection containing one representative from each isomorphism class of ioda-graphs . It has

a natural G-algebra structure. We say that 𝐻 ⊂ 𝐺 is collapsible if 𝜇𝐾 (
∏
𝑣∈𝑉 (𝐾) 𝐻𝑣) = 𝐺 for some

ioda-graphs 𝐾 and 𝐻𝑣, 𝑣 ∈ 𝑉 (𝐾), such that 𝐻𝑣, considered as a subgraph of 𝐺, coincides with 𝐻

for some 𝑣.

Unraveling the coequalizer in Lemma 2.5.2, we get that the topological io–sequence underlying

𝑃 ⊔GAlg
𝑅

𝑄 can be described as the quotient

G(𝑃 ⊔𝑄)
∼

where ∼ is the equivalence relation generated by the following identifications:

1. Let 𝐺 be a (𝑃 ⊔ 𝑄)-labeled graph which has a collapsible subgraph 𝐻 ⊂ 𝐺 with all the

vertices labeled by 𝑃 (respectively, 𝑄). Then 𝐺 is identified with the graph obtained by

collapsing 𝐻 to a single vertex labeled by the element of 𝑃(respectively, 𝑄) obtained by

applying properad composition (indexed by 𝐻) to the labels of 𝐻.

2. Suppose that the maps 𝑅 → 𝑃 and 𝑅 → 𝑄 are denoted by 𝑖 and 𝑗 respectively. Let 𝐺 be

a (𝑃 ⊔ 𝑄)-labeled graph with a vertex 𝑣 ∈ 𝐺 labeled by an element 𝑖(𝑟) ∈ 𝑖(𝑅) ⊂ 𝑃 for

some 𝑟 ∈ 𝑅. Then 𝐺 is identified with the graph obtained by switching the label of 𝑣 to

𝑗 (𝑟) ∈ 𝑗 (𝑅) ⊂ 𝑄.

This is analogous to the description of pushouts of operads presented in [11, Section 2.3].

2.6 Properads as algebras over a colored operad

We end this chapter by describing an alternate characterization of properads as algebras over

a colored operad Prpdred. We will use this alternate description in Chapter 3 below to construct

a model structure on topological io-properads and also in Chapter 8 to discuss the notion of an

∞-properad.
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In this subsection we assume basic familiarity with colored operads and algebras over them. We

refer the reader to [19, Section 1] for an exposition to these notions.

Definition 2.6.1. By a vertex-ordered ioda-graph we mean a graph as in Section 2.2, with the

additional data of an ordering on the set of vertices. Isomorphisms of such graphs are required

to preserve this ordering. We refer to isomorphisms of underlying ioda-graphs as unordered-

isomorphisms.

2.6.1 Colored Operad Prpdred

Let us start by describing the set-valued colored operad Prpdred which encodes input-output

properads. The colors of Prpdred are given by N×N\ (0, 0). Let 𝑛1
−, 𝑛

2
−, ..., 𝑛

𝑘
−, and 𝑛+ be elements

of N × N \ (0, 0). The operations corresponding to these colors,

Prpdred(𝑛1
−, 𝑛

2
−, ..., 𝑛

𝑘
−; 𝑛+),

are given by the set of isomorphism classes of vertex-ordered ioda-graphs with input-output profile

𝑛 and where the input-output profiles of the vertices, in the vertex-ordering, are given by the se-

quence 𝑛1
−, 𝑛

2
−, ..., 𝑛

𝑘
−. The Σ-action on the operad is given by permuting the ordering of the vertices

and the operad composition is given by graph substitution.

The following statement is not difficult to see:

Lemma 2.6.2. A Prpdred-algebra in Top is precisely a topological io-properad. □

We note here a fact which will be important later in Chapter 8:

Lemma 2.6.3. Prpdred is Σ-cofibrant, in other words the Σ-action on Prpdred is free.

Proof. This follows from the fact that vertex-ordered ioda-graphs have no non-trivial unordered

automorphism (since ioda-graphs have no non-trivial automorphisms). □

Remark 2.6.4. This is false for a non-io vertex-ordered graph. Figure 2.2 shows an example.
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Figure 2.2: The non-io vertex-ordered graph shown above has a non-trivial unordered-
automorphism which swaps vertices 1, 2 and 3,4 (at each vertex the order of edges is assumed
to be the one induced form the planar embedding)
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Chapter 3: Model Category Structure and cofibrant resolutions

3.1 Model Category structure

Model categories provide a natural setting for discussing homotopy theory in an abstract cat-

egorical setting. A model structure on a category consists of three distinguished classes of mor-

phisms: fibrations, cofibrations, and weak equivalences, satisfying certain conditions. A model

structure in particular allows us to define homotopy limits/colimits in a category. For more details

on model categories and homotopy limits/colimits see [20].

In order to make sense of the homotopy colimits in the category of topological io-properads

which appear in Theorems 1.4.1 and 1.4.2, we equip it with a model category structure.

Notation 3.1.1. Unless specified otherwise, whenever we refer to the model structure on Top we

mean the standard model structure with the weak equivalences given by weak homotopy equiv-

alences and fibrations given by Serre fibrations [20, Section 17.2]. By the model structure on

TopSeqio we will mean the induced model structure with weak equivalences and fibrations respec-

tively given by component-wise weak equivalences and fibrations in Top.

Let O be a colored operad in topological spaces with a set of colors 𝐶. Let 𝐴𝑙𝑔O (Top) denote

the category of algebras over O. Recall that any O-algebra 𝐴 has an underlying topological space

𝐴(𝑐), for every color 𝑐 ∈ 𝐶.

Using [19, Theorem 2.1] for the monoidal model category Top, we have the following:

Proposition 3.1.2. 𝐴𝑙𝑔O (Top) admits a cofibrantly generated model structure such that a map

𝐴→ 𝐵 of O-algebras is a weak equivalence (respectively, fibration ) if and only if the underlying

map of topological spaces 𝐴(𝑐) → 𝐵(𝑐) is a weak homotopy equivalence (respectively, Serre

fibration), for every 𝑐 ∈ 𝐶.
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Remark 3.1.3. Using the general theory of model categories, it follows that the cofibrations in the

above model structure are given by morphisms which have the left lifting property with respect to

the class of acyclic fibrations (fibrations which are weak equivalences) of O-algebras.

As a consequence, using Lemma 2.6.2, we have:

Corollary 3.1.4. The category of topological io-properads has a cofibrantly generated model

structure with weak equivalences (respectively, fibrations) given by the weak equivalences (re-

spectively, fibrations) of the underlying topological io–sequences.

Remark 3.1.5. As in Remark 3.1.3 above, cofibrations of io-properads are precisely the maps which

have left lifting property with respect to acyclic fibrations of io-properads.

3.2 Cofibrant Resolutions via the Bar Construction

Homotopy colimits are defined in terms of the cofibrant resolutions of objects (and diagrams)

in model categories. In the computations of homotopy colimits in Chapters 5, 7, and 6, we use an

explicit description of the cofibrant resolutions to provide presentations of the homotopy colimits,

which we now explain.

The cofibrant resolution we use is obtained by applying the bar construction to the monad G:

3.2.1 Monadic Bar Construction

Let (𝑇, 𝜇, 𝜂) be a monad acting on a category C. The monadic bar construction of 𝑇 applied

to a 𝑇-algebra is the analogue of the usual bar construction for algebras. Given a 𝑇-algebra 𝑋 , its

monadic bar construction 𝐵•(𝑇,𝑇, 𝑋) is a simplicial 𝑇-algebra with the 𝑛-simplices given by

𝐵𝑛 (𝑇,𝑇, 𝑋) := 𝑇𝑛+1(𝑋)

The simplicial face maps are given by

𝑑𝑖 = 𝑇
𝑖𝜇𝑇𝑛−𝑖−1𝑋, 0 ≤ 𝑖 ≤ 𝑛
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and the degeneracy maps are given by

𝑠𝑖 = 𝑇
𝑖+1𝜂𝑇𝑛−𝑖𝑋, 0 ≤ 𝑖 ≤ 𝑛.

The bar construction gives a simplicial resolution of the algebra 𝑋 in the following sense: Let

𝑠C denote the category of simplicial objects in C and let the constant simplicial object associated

to 𝑋 be denoted by 𝑋•. Then,

Proposition 3.2.1 ([21, Proposition 9.8]). 𝑋• is a simplicial deformation retract of 𝐵•(𝑇,𝑇, 𝑋) in

𝑠C. □

Applying this to the monad G and an io-properad 𝑃, we obtain a simplicial resolution of 𝑃.

When 𝑃 is nice enough, it is possible to use this to obtain a cofibrant resolution of 𝑃. This is

the cofibrant resolution we shall use below. The first step in this direction is to obtain an io-

properad starting with the simplicial io-properad 𝐵•(𝑇,𝑇, 𝑋). This is done by taking its geometric

realization, which we now outline.

3.2.2 Geometric Realization

The category of topological io-properads is tensored over topological spaces. Roughly this

means that

• for any two io-properads 𝑃1 and 𝑃2 we can endow the set of io-properad morphismsGAlg(𝑃,𝑄)

with a topology. Denote this topological space by [𝑃,𝑄], and

• for any io-properad 𝑃 and a topological space 𝑍 , we can define their ‘tensor product’ 𝑃 ⊙ 𝑍 ,

such that a version of hom-tensor adjunction holds:

Top(𝑍, [𝑃,𝑄]) ≃ GAlg(𝑃 ⊙ 𝑍,𝑄).

See Appendix A for more details on this.
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Using this tensor product over topological spaces on the category of io-properads, we can

define the geometric realization of a simplicial io-properad {𝑃•}•≥0 by the usual formula:

|𝑃• |GAlg =

∫ GAlg

Δ

𝑃𝑛 ⊙ Δ𝑛 := 𝑐𝑜𝑒𝑞GAlg
[ GAlg∐
𝜙 : [𝑛]→[𝑚]∈Δ

𝑃𝑚 ⊙ Δ𝑛 ⇒

GAlg∐
[𝑛]∈Δ

𝑃𝑛 ⊙ Δ𝑛
]
. (3.2.1)

Here Δ denotes the simplex category, and Δ𝑛 ∈ Top is the standard 𝑛-simplex. In the coequalizer,

the first arrow is induced from the properad map given by the simplicial structure map 𝑃(𝜙) : 𝑃𝑚 →

𝑃𝑛 corresponding to 𝜙 : [𝑛] → [𝑚], and the second arrow is induced from the map Δ(𝜙) : Δ𝑛 →

Δ𝑚 of topological spaces.

3.2.3 Cofibrancy of the bar construction

Proposition 3.2.2. Let 𝑃 be an io-properad which is cofibrant as a topological io-sequence. Then,

the geometric realization |𝐵•(G,G, 𝑃) |GAlg is a cofibrant io-properad.

The statement is proved by expressing the geometric realization as a sequence of pushouts in

terms of the so-called latching spaces and reformulating the cofibrancy condition in terms of these

successive pushouts. We defer the details to Appendix A.

We will also use a relative version of this statement:

Proposition 3.2.3. Let 𝑃,𝑄 be io-properads which are cofibrant as topological io–sequences, and

let 𝑃 → 𝑄 be a map of io-properads such that the underlying map of topological io-sequences is

a cofibration. Then, the induced map |𝐵•(G,G, 𝑃) |GAlg → |𝐵•(G,G, 𝑄) |GAlg is a cofibration of

io-properad.

The proof is provided in Appendix A.

3.2.4 Geometric realizations in topological io-sequences

It is possible to define the geometric realization of simplicial topological io-sequences using

the same formula (3.2.1), with ⊙ replaced by component-wise product with topological spaces and
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with the coproduct and the coequalizer taken in topological io–sequences instead of io-properads.

This coincides with taking the usual geometric realization of simplicial topological spaces component-

wise.

Let 𝑃• be a simplicial object in topological io-properads. Considering it as a simplicial object in

topological io-sequences, we can take its geometric realization |𝑃• |TopSeqio
in the category of topo-

logical io-sequences.

It is well known that | |TopSeqio
is a monoidal functor (i.e. satisfies|𝑋• × 𝑌• | = |𝑋• | × |𝑌• |), and

hence it follows that |𝑃• |TopSeqio
has a natural properad structure:

Given 𝐺 ∈ G, the composition along 𝐺, 𝜇𝐺 : 𝐺 ( |𝑃• |) → |𝑃• | (𝑖𝑛(𝐺), 𝑜𝑢𝑡 (𝐺)) is defined as the

geometric realization of the corresponding map 𝜇𝐺 : 𝐺 (𝑃•) → 𝑃•(𝑖𝑛(𝐺), 𝑜𝑢𝑡 (𝐺)).

A priori it is not clear what the relation between the two geometric realizations is. However,

we have the following (somewhat surprising) fact:

Proposition 3.2.4 ([22, Theorem 7.5 (ii)]). Let 𝑃• be a simplicial object in topological io-properads.

Then, the topological io-properads obtained by taking the geometric realization of 𝑃• in the cate-

gory of topological io-properads and the category of topological io-sequences are isomorphic.

The proof, following [22], is given in Appendix A.

Notation 3.2.5. In the sequel, we will use | | to denote this common geometric realization. When

it is necessary to emphasize the ambient category, we do so using superscripts TopSeqio and GAlg.

Corollary 3.2.6. Let 𝑃 be a topological io-properad which is cofibrant as a topological io–

sequence, then |𝐵•(G,G, 𝑃) |TopSeqio → 𝑃 is a cofibrant resolution of 𝑃.

Proof. Using Proposition 3.2.1 and taking geometric realizations, we get that |𝐵•(G,G, 𝑃) |TopSeqio →

|𝑃• |TopSeqio ≃ 𝑃 is a homotopy equivalence. Also, using Proposition 3.2.2 and Proposition 3.2.4, it

follows that |𝐵•(G,G, 𝑃) |TopSeqio ≃ |𝐵•(G,G, 𝑃) |GAlg is a cofibrant properad. This completes the

proof that |𝐵•(G,G, 𝑃) |TopSeqio → 𝑃 is a cofibrant resolution of 𝑃.

□
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Similarly using Proposition 3.2.3 we have

Corollary 3.2.7. Let 𝑃→ 𝑄 be a map of io-properad as in Proposition 3.2.3, then |𝐵•(G,G, 𝑃) |TopSeqio →

|𝐵•(G,G, 𝑄) |TopSeqio
is a cofibration of io-properads.

□

Using Corollaries 3.2.6 and 3.2.7, we get the following

Lemma 3.2.8. Let 𝑃← 𝑅 → 𝑄 be a diagram of io-properads, such that

• 𝑃,𝑄, 𝑅 are cofibrant as topological io-sequences, and

• 𝑅 → 𝑃 and 𝑅 → 𝑄 are cofibrations of topological io-sequences.

Then, the pushout of bar resolutions of 𝑃,𝑄, and 𝑅

|𝐵•𝑃 |
∐
|𝐵•𝑅 |
|𝐵•𝑄 |

computes the homotopy pushout of 𝑃← 𝑅 → 𝑄.

□

In Chapter 5, we will need to use this construction for a pushout diagram of properads where

• the map 𝑅 → 𝑄 is not a cofibration of topological io-sequences, and

• the topological io-sequence underlying 𝑃 might not be cofibrant, but satisfies the property

that 𝑃(𝑛−, 𝑛+) has the homotopy type of a CW-complex for every (𝑛−, 𝑛+).

The comparison statements in Proposition 3.2.11 and 3.2.12 below, will be useful in this situation.

Before stating the propositions we start with some terminology:

Notation 3.2.9. We will say that a map of topological io–sequences is a Hurewicz weak-equivalence

(respectively, Hurewicz cofibration) if it is component-wise a homotopy equivalence (respectively,

Hurewicz cofibration) of topological spaces. We will say that a map of topological io-properads is

a Hurewicz weak-equivalence if the underlying map of topological io–sequences is one.
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Remark 3.2.10. Hurewicz weak-equivalences and cofibrations of topological io-sequences cor-

respond to weak-equivalences and cofibrations in a certain model structure on topological io-

sequences, induced from the Hurewicz (or Strøm) model structure on topological spaces. (See

Section A.5 in Appendix A).

Proposition 3.2.11. Let
𝑃 𝑅 𝑄

𝑃′ 𝑅′ 𝑄′

(3.2.2)

be a map of pushout diagrams of io-properads. If

1. each vertical arrow is a Hurewicz weak-equivalence, and

2. 𝑅 → 𝑃 , 𝑅′→ 𝑃′ are in fact Hurewicz cofibrations of io-topological io-sequences

Then

|𝐵•𝑃 |
GAlg∐
|𝐵•𝑅 |
|𝐵•𝑄 | → |𝐵•𝑃′|

GAlg∐
|𝐵•𝑅′ |

|𝐵•𝑃′|

is a Hurewicz weak-equivalence.

Again we defer the proof of Proposition 3.2.11 to Appendix A.

Proposition 3.2.12. Let 𝑃← 𝑅 → 𝑄 be a pushout diagram of io-properads. If

1. 𝑅 → 𝑃 and 𝑅 → 𝑄 are Hurewicz cofibrations of underlying topological io–sequences, and

2. for every (𝑛−, 𝑛+), 𝑃(𝑛−, 𝑛+), 𝑄(𝑛−, 𝑛+), and 𝑅(𝑛−, 𝑛+) have the homotopy type of a CW-

complex,

then

|𝐵•𝑃 |
∐
|𝐵•𝑄 |
|𝐵•𝑅 |

computes the homotopy pushout of 𝑃← 𝑅 → 𝑄.
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Proof. Recall that Top admits a functorial cofibrant replacement given by

|𝒮𝑖𝑛𝑔(_) | : Top→ Top,

where 𝒮𝑖𝑛𝑔(_) is the singular simplicial set functor and |_| is the geometric realization func-

tor. Applying it component-wise provides a functorial cofibrant replacement on TopSeqio. Since

|𝒮𝑖𝑛𝑔(_) | is symmetric monoidal on Top, for any topological io-properad 𝑋 , the topological io–

sequence |𝒮𝑖𝑛𝑔(𝑋) | admits a canonical properad structure such that the map

|𝒮𝑖𝑛𝑔(𝑋) | → 𝑋

is a morphism of io-properads. Applying this cofibrant replacement functor to pushout diagram

𝑃← 𝑅 → 𝑄, we obtain a diagram of io-properads

|𝒮𝑖𝑛𝑔(𝑃) | |𝒮𝑖𝑛𝑔(𝑅) | |𝒮𝑖𝑛𝑔(𝑄) |

𝑃 𝑅 𝑄

, (3.2.3)

such that the vertical arrows are weak-equivalences. Using the fact that 𝑃,𝑄, and 𝑅 satisfy con-

dition (2) mentioned in the statement of the proposition, it follows that the vertical arrows are

Hurewicz weak-equivalences of properads. Moreover, note that maps |𝒮𝑖𝑛𝑔(𝑅) | → |𝒮𝑖𝑛𝑔(𝑃) |

and |𝒮𝑖𝑛𝑔(𝑅) | → |𝒮𝑖𝑛𝑔(𝑄) | are Hurewicz cofibrations. Thus the diagram (3.2.3) satisfies the

hypothesis of Proposition 3.2.11 and hence we have a weak-equivalence of io-properads

|𝐵• |𝒮𝑖𝑛𝑔(𝑃) | |
GAlg∐

|𝐵• |𝒮𝑖𝑛𝑔(𝑅) | |
|𝐵• |𝒮𝑖𝑛𝑔(𝑄) | | → |𝐵•𝑃 |

GAlg∐
|𝐵•𝑅 |
|𝐵•𝑃 |

The proposition now follows by observing that

|𝐵• |𝒮𝑖𝑛𝑔(𝑃) | |
GAlg∐

|𝐵• |𝒮𝑖𝑛𝑔(𝑅) | |
|𝐵• |𝒮𝑖𝑛𝑔(𝑄) | |
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(a) (b)

Figure 3.1: (b) shows a space of 2-simplices. (a) shows the result of applying 𝑑0 to simplices in
(b)

computes the homotopy pushout of 𝑃← 𝑅 → 𝑄. □

3.2.5 Visualizing 𝐵•(G,G, 𝑃)

Here we provide some examples of how simplices in the bar construction and their face and

degeneracy maps are visualized in the figures which will appear in the later chapters.

The 𝑛-simplices of 𝐵•(G,G, 𝑃) are given by G𝑛+1𝑃. We visualize points in this space as 𝑛-

nested graphs, with each nesting indicated using a different color. For instance, elements in the

space G2𝑃 of 1-simplices are denoted using 1-nested ioda-graphs. Figure 3.1(a) shows an example

of such a simplex. The 1-nested graph there describes an element in G2𝑃 as follows: Considering

each region in the outer nesting, indicated in blue, as a vertex, we obtain an ioda-graph. Moreover,

each vertex of this ioda-graph has a labeling by a 𝑃-labeled graph given by the part of the nested

graph lying inside the region.

Similarly, the 2-nested graph in Figure 3.1(b) represents a 2-simplex. Let us now describe the

effect of applying the simplicial face maps to this simplex.
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We start with the face map 𝑑0. From its definition it follows that applying 𝑑0 to this simplex

corresponds to applying the properad composition to the (G𝑃)-labels of the outermost nesting

(along the graph described by the outermost nesting). This corresponds to simply forgetting the

green nesting. The result is thus a 1-simplex having a shape as indicated in Figure 3.1(a). Similarly

applying 𝑑1 to a simplex in Figure 3.1(b) corresponds to forgetting the blue nesting, thus giving a

1-simplex as in Figure 3.2(a).

On the other hand, applying 𝑑2 corresponds to performing properad composition at the innermost

level of the nesting. It is thus given by replacing each blue region by the properad compositions of

the 𝑃-labels lying within it. The result of applying 𝑑2 is thus a 1-simplex as in Figure 3.2(b). Note

that unlike 𝑑0 and 𝑑1, 𝑑2 makes use of the io-properad structure of 𝑃.

Lastly, we look at an example of a degeneracy map. Let us consider the case of applying

degeneracy map 𝑠0 to the simplices in Figure 3.1(b). This map is obtained by applying the unit 𝜂

of monad G to each region in the blue nesting. It thus corresponds to adding an additional nesting

around each blue region, resulting in a 3-simplex having shape as shown in Figure 3.2(c). This

additional nesting is shown in red in Figure 3.2(c).
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(a) (b) (c)

Figure 3.2: (a), (b), (c) show the result of applying, respectively, 𝑑2, 𝑑0, and 𝑠0 to simplices in
Figure 3.1(b)

32



Chapter 4: Properads of Riemann surfaces

4.1 Some moduli spaces of Riemann surfaces

For 𝑔, 𝑛−, 𝑛+ in the stable range 2 − 2𝑔 − 𝑛− − 𝑛+ < 0, letM𝑔,𝑛− ,𝑛+ denote the moduli space of

genus 𝑔 Riemann surfaces with 𝑛− input and 𝑛+ output marked points. LetM𝑔,𝑛− ,𝑛+ be its Deligne–

Mumford compactification, given by the moduli space of stable nodal curves with 𝑛− input and 𝑛+

output marked points, and arithmetic genus 𝑔.

LetM 𝑓 𝑟
𝑔,𝑛− ,𝑛+ denote the moduli space of genus 𝑔 Riemann surfaces with 𝑛− input and 𝑛+ output

boundary components, each equipped with an analytic 𝑆1-parametrization. The parametrization

is assumed to be orientation preserving at the inputs and orientation reversing at the outputs. Let

M 𝑓 𝑟

𝑔,𝑛− ,𝑛+ be the moduli space of stable nodal Riemann surfaces with 𝑛− input and 𝑛+ output an-

alytically 𝑆1-parametrized boundaries. We assume that the nodes are away from the boundaries.

Also, let M̂ 𝑓 𝑟
𝑔,𝑛− ,𝑛+ be the subspace ofM 𝑓 𝑟

𝑔,𝑛− ,𝑛+ given by the moduli spaces of stable curves in which

every irreducible component contains at least one output.

In addition, we also consider the moduli spacesM 𝑓 𝑟
𝑔,𝑛− ,𝑛+ ,M

𝑓 𝑟

𝑔,𝑛− ,𝑛+ , M̂
𝑓 𝑟
𝑔,𝑛− ,𝑛+ for the unstable

range

(𝑔, 𝑛−, 𝑛+) ∈ {(0, 0, 1), (0, 1, 0), (0, 1, 1), (0, 0, 2), (0, 2, 0)}.

For (𝑔, 𝑛−, 𝑛+) given by {(0, 1, 1), (0, 0, 2), and (0, 1, 0),M 𝑓 𝑟
𝑔,𝑛− ,𝑛+ are all identified with the space

of annuli with 𝑆1-parametrized boundary components. The spaces M 𝑓 𝑟

𝑔,𝑛− ,𝑛+ and M̂ 𝑓 𝑟

0,0,2 are ob-

tained by compactifying these spaces by also including nodal annuli, thought of as annuli with

modulus ∞ (with boundaries suitably labeled as inputs and outputs). Consistent with the restric-

tion that each irreducible component has an output, the space M̂0,1,1 coincides with M0,1,1 and

M̂ 𝑓 𝑟

0,2,0 is empty.

For (𝑔, 𝑛−, 𝑛+) equal to (0, 0, 1) or (0, 1, 0), all the corresponding moduli spaces are identified with
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moduli spaces of disks with a parametrized boundary and thus are given by a point. Moreover, in

the case (𝑔, 𝑛−, 𝑛+) = (0, 1, 1) for all the three types of moduli mentioned above, we also allow

exceptional points corresponding to degenerate annuli with modulus 0. These points are added to

ensure that the io-properads we consider below are unital.

Finally, denote byM 𝑓 𝑟
𝑔,𝑛− ,𝑛+ (𝑖) andM 𝑓 𝑟

𝑔,𝑛− ,𝑛+ (𝑖) the moduli space of, respectively, non-nodal and

possibly nodal stable Riemann surfaces with arithmetic genus 𝑔, 𝑛− input boundaries, 𝑛+ output

boundaries, and with 𝑖 marked points disjoint from the nodes and the boundaries. For every 1 ≤

𝑗 ≤ 𝑖 we have forgetful maps

𝜋 𝑗 : M 𝑓 𝑟
𝑔,𝑛− ,𝑛+ (𝑖) → M

𝑓 𝑟
𝑔,𝑛− ,𝑛+ (𝑖 − 1) and 𝜋 𝑗 : M

𝑓 𝑟

𝑔,𝑛− ,𝑛+ (𝑖) → M
𝑓 𝑟

𝑔,𝑛− ,𝑛+ (𝑖 − 1),

given by forgetting the 𝑗 th marked point and stabilizing (by collapsing any unstable components

created) if necessary.

All the moduli spaces mentioned above are a priori topological stacks. However the following

lemma shows that most of these are in fact topological spaces. This observation already occurs in

[11, Section 3.1]:

Lemma 4.1.1. The stacksM 𝑓 𝑟
𝑔,𝑛− ,𝑛+ and M̂ 𝑓 𝑟

𝑔,𝑛− ,𝑛+ are represented by topological spaces provided

(𝑛−, 𝑛+) ≠ (0, 0). Moreover, the moduli spaces M 𝑓 𝑟

𝑔,𝑛− ,𝑛+ for (𝑔, 𝑛−, 𝑛+) in the unstable range

2𝑔 − 2 + 𝑛+ + 𝑛− < 0, are also represented by topological spaces.

Proof. Notice that a Riemann surface with at least one parametrized boundary component has no

non-trivial automorphisms: any automorphism of a Riemann surface with parametrized boundary

preserves the boundary parametrization and hence, by analytic continuation, is forced to be the

identity. Thus it follows thatM 𝑓 𝑟
𝑔,𝑛− ,𝑛+ for (𝑛−, 𝑛+) ≠ (0, 0) is in fact a topological space. Similar

arguments can be used for nodal Riemann surfaces to show that M̂ 𝑓 𝑟
𝑔,𝑛− ,𝑛+ for (𝑛−, 𝑛+) ≠ (0, 0)

and the moduli spacesM 𝑓 𝑟

𝑔,𝑛− ,𝑛+ in unstable range 2𝑔 − 2 + 𝑛− + 𝑛+ are also given by topological

spaces. □

On the other handM 𝑓 𝑟

𝑔,𝑛− ,𝑛+ are in general not spaces but only topological stacks. The stacky
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points are given by surfaces containing irreducible components which have no boundaries and have

a non-trivial conformal automorphism group.

4.2 Finite dimensional homotopy types

Even though we will not need this fact in what follows, let us note that although the spaces

M 𝑓 𝑟
𝑔,𝑛− ,𝑛+ , M̂

𝑓 𝑟
𝑔,𝑛− ,𝑛+ , M

𝑓 𝑟

𝑔,𝑛− ,𝑛+ are infinite dimensional, they have finite dimensional homotopy

types:

Let 𝑀 𝑓 𝑟
𝑔,𝑛− ,𝑛+ be the moduli space of Riemann surfaces with 𝑛− input and 𝑛+ output boundary com-

ponents with each boundary component carrying a marked point (and no analytic 𝑆1-parametrization).

It can be shown that 𝑀 𝑓 𝑟
𝑔,𝑛− ,𝑛+ is represented by a topological space and is in fact a finite dimen-

sional smooth manifold. Moreover, 𝑀 𝑓 𝑟
𝑔,𝑛− ,𝑛+ has the same homotopy type as M 𝑓 𝑟

𝑔,𝑛− ,𝑛+: there is

a homotopy equivalence M 𝑓 𝑟
𝑔,𝑛− ,𝑛+

≃−→ 𝑀
𝑓 𝑟
𝑔,𝑛− ,𝑛+ given by mapping a point in M 𝑓 𝑟

𝑔,𝑛− ,𝑛+ to the un-

derlying Riemann surface with boundary marked points given by base points of the analytic 𝑆1-

parametrizations of the boundaries.

Similarly, spaces M̂ 𝑓 𝑟
𝑔,𝑛− ,𝑛+ andM 𝑓 𝑟

𝑔,𝑛− ,𝑛+ have homotopy types of finite dimensional spaces 𝑀 𝑓 𝑟
𝑔,𝑛− ,𝑛+

and 𝑀
𝑓 𝑟

𝑔,𝑛− ,𝑛+ given by moduli spaces of stable Riemann surfaces as in M̂ 𝑓 𝑟
𝑔,𝑛− ,𝑛+ andM 𝑓 𝑟

𝑔,𝑛− ,𝑛+ , but

without the boundary parametrizations and with each boundary component carrying a marked point

(see [23] for details on topology of the spaces 𝑀 𝑓 𝑟
𝑔,𝑛− ,𝑛+ and 𝑀𝑔,𝑛− ,𝑛+). The homotopy equivalences

in these cases are realized by maps constructed similarly as before.

In the case ofM 𝑓 𝑟
𝑔,𝑛− ,𝑛+ andM 𝑓 𝑟

𝑔,𝑛− ,𝑛+ there are alternative descriptions of homotopy types that

are more closely related to their appearance in the theory of closed string invariants of symplectic

manifolds, namely symplectic cohomology and Gromov-Witten theory:

Let 𝑓MR𝑔,𝑛− ,𝑛+ denote the moduli space of Riemann surfaces (without boundaries), with 𝑛− input

and 𝑛+ output marked points and with each marked point carrying a marker i.e. a ray in the tangent

space of the marked point. This is a torus bundle over the usual moduli space of Riemann surfaces

with marked points. It can be shown that the stack 𝑓MR𝑔,𝑛− ,𝑛+ is represented by a finite dimensional

smooth manifold. Further, there is a homotopy equivalenceM 𝑓 𝑟
𝑔,𝑛− ,𝑛+

≃−→ 𝑓MR𝑔,𝑛− ,𝑛+ given by map-
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ping a surface inM 𝑓 𝑟
𝑔,𝑛− ,𝑛+ to the Riemann surface obtained by gluing-in unit disks at the boundary

components using the boundary parametrizations (see Section 4.3 below), with the marked points

at the centers of the disks and the markers determined by the positive real direction in each disc.

Similarly, it can be shown thatM 𝑓 𝑟

𝑔,𝑛− ,𝑛+ has the homotopy type of the stackM𝑔,𝑛− ,𝑛+ which is the

finite dimensional moduli stack of stable Riemann surfaces with 𝑛− input and 𝑛+ output marked

points (with no markers), in other words the usual Deligne–Mumford compactification of the mod-

uli space of Riemann surfaces (without boundaries). The mapM 𝑓 𝑟

𝑔,𝑛− ,𝑛+ →M𝑔,𝑛− ,𝑛+ is constructed

as above by gluing unit disks along boundaries followed by collapsing any unstable spheres gen-

erated as a result of this gluing.

4.3 Gluing Riemann surfaces

Let Σ1 and Σ2 be two Riemann surfaces with parametrized boundaries, and let 𝛾1 be an output

boundary of Σ1 and 𝛾2 an input boundary of Σ2. Then there exists a unique complex structure on

gluing Σ1#𝛾1,𝛾2Σ2. For an identification of the boundaries along a diffeomorphism this is a classical

fact. For an analytic identification, as in our case, it is possible to provide a simpler argument. We

give an outline, the details are described in [11, Section 3.1]: the analytic 𝑆1-parametrization of 𝛾1

can be extended to an analytic identification of a neighborhood of the boundary with an annulus

in C of the form {1 ≤ |𝑧 | ≤ 1 + 𝜖1}. Similarly a neighborhood of 𝛾2 can be identified with

{1 − 𝜖2 ≤ |𝑧 | ≤ 1}. The germs of these identifications are uniquely determined. The gluing of

these annuli is canonically identified with the annulus {1− 𝜖2 ≤ |𝑧 | ≤ 1+ 𝜖} and thus gets a unique

complex structure. This can now be used to obtain a complex structure on the gluing Σ1#𝛾1,𝛾2Σ2.

It is straightforward to generalize this to gluing along multiple boundaries and also to the gluing

of nodal Riemann surfaces.

4.4 io-Properads of Riemann surfaces

We now describe the io-properads which will appear in our discussion:
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• 𝔐 is the io-properad defined by 𝔐(𝑛−, 𝑛+) =
∐
𝑔≥0M

𝑓 𝑟
𝑔,𝑛− ,𝑛+ . The properad compositions

are given by gluing the Riemann surfaces along suitable boundaries via the 𝑆1-parametrization.

We refer to 𝔐 as the TFT-properad.

• 𝔐 is the io-properad defined by 𝔐(𝑛−, 𝑛+) =
∐
𝑔≥0M

𝑓 𝑟

𝑔,𝑛− ,𝑛+ . The properad compositions

are again given by gluing the nodal Riemann surfaces along suitable boundaries via the 𝑆1-

parametrization, followed by collapsing any unstable components created as a result of the

gluing. We refer to this as the Deligne–Mumford properad.

• 𝜕+𝔐 is the io-subproperad of 𝔐 consisting of all operations which have at least one output

i.e. 𝜕+𝔐(𝑛−, 𝑛+) =
∐
𝑔≥0M𝜕+

𝑔,𝑛− ,𝑛+ , where

M𝜕+
𝑔,𝑛− ,𝑛+ =


∅ if 𝑛+ = 0,

M 𝑓 𝑟
𝑔,𝑛− ,𝑛+ otherwise .

We refer to 𝜕+𝔐 as the 𝜕+TFT-properad.

• 𝔐 is the io-subproperad of 𝔐 defined by 𝔐(𝑛−, 𝑛+) =
∐
𝑔≥0 M̂

𝑓 𝑟
𝑔,𝑛− ,𝑛+ . Note that similarly

to 𝜕+𝔐, the components with 𝑛+ = 0 are empty. We refer to 𝔐 as the symplectic properad

Let 𝔐𝑢𝑛𝑠𝑡 , 𝔐
𝑢𝑛𝑠𝑡

, 𝔐𝑢𝑛𝑠𝑡 , and 𝜕+𝔐𝑢𝑛𝑠𝑡 be the io-subproperads of 𝔐, 𝔐, 𝔐, and 𝜕+𝔐 respec-

tively, consisting of (possibly nodal) Riemann surfaces in the unstable range. More precisely, these

properads are defined by:

• 𝔐𝑢𝑛𝑠𝑡 is the io-subproperad of 𝔐 which is empty in all components except the following:

𝔐𝑢𝑛𝑠𝑡 (0, 1) =M 𝑓 𝑟

0,0,1, 𝔐𝑢𝑛𝑠𝑡 (1, 0) =M 𝑓 𝑟

0,1,0, 𝔐𝑢𝑛𝑠𝑡 (1, 1) =M 𝑓 𝑟

0,1,1,

𝔐𝑢𝑛𝑠𝑡 (0, 2) =M 𝑓 𝑟

0,0,2, 𝔐𝑢𝑛𝑠𝑡 (2, 0) =M 𝑓 𝑟

0,2,0.
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• 𝔐
𝑢𝑛𝑠𝑡

is the io-subproperad of 𝔐 which is empty in all components except the following:

𝔐
𝑢𝑛𝑠𝑡 (0, 1) =M 𝑓 𝑟

0,0,1, 𝔐
𝑢𝑛𝑠𝑡 (1, 0) =M 𝑓 𝑟

0,1,0, 𝔐
𝑢𝑛𝑠𝑡 (1, 1) =M 𝑓 𝑟

0,1,1,

𝔐
𝑢𝑛𝑠𝑡 (0, 2) =M 𝑓 𝑟

0,0,2, 𝔐
𝑢𝑛𝑠𝑡 (2, 0) =M 𝑓 𝑟

0,2,0.

The properad operations are defined as in 𝔐, i.e. by gluing along boundaries followed by

stabilization.

• 𝔐𝑢𝑛𝑠𝑡 is the io-subproperad of 𝔐 which is empty in all components except the following:

𝔐𝑢𝑛𝑠𝑡 (1, 1) = M̂ 𝑓 𝑟

0,1,1, 𝔐𝑢𝑛𝑠𝑡 (1, 1) = M̂ 𝑓 𝑟

0,1,1, 𝔐𝑢𝑛𝑠𝑡 (0, 2) = M̂ 𝑓 𝑟

0,0,2.

• Finally 𝜕+𝔐𝑢𝑛𝑠𝑡 is the io-subproperad of 𝜕+𝔐 which is empty in all components except the

following

𝜕+𝔐
𝑢𝑛𝑠𝑡 (0, 1) =M 𝑓 𝑟

0,0,1, 𝜕+𝔐
𝑢𝑛𝑠𝑡 (1, 1) =M 𝑓 𝑟

0,1,1, 𝜕+𝔐
𝑢𝑛𝑠𝑡 (0, 2) =M 𝑓 𝑟

0,0,2.

Clearly 𝜕+𝔐𝑢𝑛𝑠𝑡 is a subproperad of 𝔐𝑢𝑛𝑠𝑡 ,𝔐𝑢𝑛𝑠𝑡 , and 𝔐
𝑢𝑛𝑠𝑡

.

Lastly, 𝔐𝑛𝑜𝑝 is the io-subproperad of 𝔐 which is empty all components except the following:

𝔐𝑛𝑜𝑝 (0, 1) =M 𝑓 𝑟

0,0,1, 𝔐𝑛𝑜𝑝 (1, 0) =M 𝑓 𝑟

0,1,0, 𝔐𝑛𝑜𝑝 (1, 1) =M 𝑓 𝑟

0,1,1, 𝔐𝑛𝑜𝑝 (0, 2) =M 𝑓 𝑟

0,0,2.

In Section 5.1 below, we will also use the following modifications of io-properads 𝜕+𝔐, 𝜕+𝔐𝑢𝑛𝑠𝑡 ,

and 𝔐𝑢𝑛𝑠𝑡 which we record here for convenience:

• 𝜕+M is the io-subproperad of 𝜕+𝔐 which coincides with 𝜕+𝔐 in all degrees except (1, 1), (0, 2).

In these degrees the genus 0 components of 𝜕+M(1, 1), 𝜕+M(0, 2) are the subspaces of

M 𝑓 𝑟 (1, 1),M 𝑓 𝑟 (0, 2), respectively, containing only the exceptional annuli which have mod-

ulus 0.
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• 𝜕+M𝑢𝑛𝑠𝑡 is the io-subproperad of 𝜕+𝔐𝑢𝑛𝑠𝑡 defined in an analogous manner.

• M̂𝑢𝑛𝑠𝑡 is an io-subproperad of 𝔐𝑢𝑛𝑠𝑡 . In degree (1, 1), similarly to the cases above, it only

contains the exceptional annuli of modulus 0. However in this case, we define M̂𝑢𝑛𝑠𝑡 (0, 2) to

coincide with 𝔐𝑢𝑛𝑠𝑡 (0, 2).
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Chapter 5: From the 𝜕+TFT-properad to the symplectic properad

In this chapter we present the proof of Theorem 1.4.2(1) . Let us start by recalling the statement:

Theorem 5.0.1. 𝔐 is the homotopy colimit of the following diagram in the category of io-properads

𝜕+𝔐𝑢𝑛𝑠𝑡 𝔐𝑢𝑛𝑠𝑡

𝜕+𝔐

(5.0.1)

5.1 The homotopy pushout

Let 𝜕+M, 𝜕+M𝑢𝑛𝑠𝑡 and M̂𝑢𝑛𝑠𝑡 be as described at the end of Chapter 4. Note that

• 𝜕+M(𝑛−, 𝑛+), 𝜕+M𝑢𝑛𝑠𝑡 (𝑛−, 𝑛+) and M̂𝑢𝑛𝑠𝑡 (𝑛−, 𝑛+) have the homotopy type of CW-complexes

([24, Corollary 1]), and

• 𝜕+M𝑢𝑛𝑠𝑡 → 𝜕+M and 𝜕+M𝑢𝑛𝑠𝑡 → M̂𝑢𝑛𝑠𝑡 are Hurewicz cofibrations of underlying topological

io-sequences (see Notation 3.2.9).

Thus using Proposition 3.2.12, it follows that

|𝐵•𝜕+M|
GAlg⊔

|𝐵•𝜕+M𝑢𝑛𝑠𝑡 |
|𝐵•M̂𝑢𝑛𝑠𝑡 | (5.1.1)

computes the homotopy pushout of 𝜕+M ← 𝜕+M
𝑢𝑛𝑠𝑡 → M̂𝑢𝑛𝑠𝑡 . The analogous conclusion for the

pushout

|𝐵•𝜕+𝔐 |
GAlg⊔

|𝐵•𝜕+𝔐𝑢𝑛𝑠𝑡 |
|𝐵•𝔐𝑢𝑛𝑠𝑡 | (5.1.2)
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is not clear from the argument above, since the map 𝜕+𝔐𝑢𝑛𝑠𝑡 → 𝔐𝑢𝑛𝑠𝑡 is not a cofibration of

topological io-sequences.

Now consider the inclusion of pushout diagrams:

𝜕+M 𝜕+M
𝑢𝑛𝑠𝑡 M̂𝑢𝑛𝑠𝑡

𝜕+𝔐 𝜕+𝔐𝑢𝑛𝑠𝑡 𝔐𝑢𝑛𝑠𝑡

(5.1.3)

Note that

• all the vertical maps are Hurewicz weak-equivalences of io-properads (see Notation 3.2.9),

and

• the maps of topological io-sequences underlying 𝜕+M𝑢𝑛𝑠𝑡 → 𝜕+M and 𝜕+𝔐𝑢𝑛𝑠𝑡 → 𝔐𝑢𝑛𝑠𝑡

are Hurewicz cofibrations.

Lemma 5.1.1. The pushouts (5.1.1) and (5.1.2) are weakly homotopy equivalent. In particular,

pushout (5.1.2) viz.

|𝐵•𝜕+𝔐 |
GAlg⊔

|𝐵•𝜕+𝔐𝑢𝑛𝑠𝑡 |
|𝐵•𝔐𝑢𝑛𝑠𝑡 |

computes the homotopy colimit of (5.0.1)

□

5.2 Pushout (5.1.2) is weak homotopy equivalent to 𝔐

From the computation (A.5.2), we have:

|𝐵•𝜕+𝔐 |
GAlg∐

|𝐵•𝜕+𝔐𝑢𝑛𝑠𝑡 |
|𝐵•𝔐𝑢𝑛𝑠𝑡 | ≃

���{G(
G•𝜕+𝔐

∐
G•𝜕+𝔐𝑢𝑛𝑠𝑡

G•𝔐𝑢𝑛𝑠𝑡
) ���
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We prove Theorem 1.4.2(1) using the following strategy: We will show that the map

𝜋 :
���{G(
G•𝜕+𝔐

∐
G•𝜕+𝔐𝑢𝑛𝑠𝑡

G•𝔐𝑢𝑛𝑠𝑡
) ���→𝔐 (5.2.1)

satisfies the property that every Σ ∈ 𝔐 has a neighborhood 𝑈Σ such that for any finite collection

Σ1, ..., Σ𝑘 ,

𝜋−1(𝑈Σ1,...,Σ𝑘
) → 𝑈Σ1,...,Σ𝑘

is a weak homotopy equivalence (5.2.2)

where𝑈Σ1,...,Σ𝑘
= 𝑈Σ1 ∩ ... ∩𝑈Σ𝑘

.

Remark 5.2.1. Note that here we are using a local criterion for weak equivalences (see for exam-

ple, [25, Corollary 1.4]). We have to resort to this approach since 𝜋 is not a fibration in general

and hence just verifying the contractibility of fibers may not be sufficient to imply weak equiva-

lence. However to understand the contracting homotopies constructed below, particularly those in

Sections 5.3.6 and 5.3.7, it might be helpful to think of them as ways of extending the contracting

homotopy of a given fiber to a neighborhood consisting of nearby fibers.

For every Σ ∈ 𝔐 we shall in fact construct a neighborhood 𝑈Σ satisfying the following prop-

erties: 𝜋−1(𝑈Σ) has a filtration

𝑊1,Σ ⊂ ... ⊂ 𝑊𝑛,Σ ... ⊂ 𝜋−1(𝑈Σ)

such that for each 𝑛,

𝜋 |𝑊𝑛,Σ
: 𝑊𝑛,Σ → 𝑈Σ

is a weak homotopy equivalence. We prove this by showing that for each 𝑛, 𝑊𝑛,Σ has a further

filtration

𝐹
(1)
𝑛,Σ
⊂ ... ⊂ 𝐹 (𝑚)

𝑛,Σ
... ⊂ 𝑊𝑛,Σ
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such that

𝐹
(𝑚)
𝑛,Σ

admits a fiberwise contracting homotopy inside𝑊𝑛,Σ,

onto a section 𝜒(𝑚)
𝑛,Σ

: 𝑈Σ → 𝑊𝑛,Σ of 𝜋 |𝑊𝑛,Σ

(5.2.3)

Note that this implies (5.2.2) for any collection of elements of the cover.

5.2.1 Construction of𝑈Σ,𝑊𝑛,Σ, and 𝐹 (𝑚)
𝑛,Σ

Let us start by describing the open set 𝑈Σ. We use a local description of the moduli spaces

as outlined in [26]. Let Σ̃ =
∐

Θ𝑖 be the normalization of Σ, where Θ𝑖 are smooth connected

Riemann surfaces. For every node 𝜈 of Σ, denote by 𝜈̂, 𝜈̌ its pre-images in Σ̃. Let V denote the

collection of nodes of Σ. Let Ṽ be the collection of the points 𝜈̂, 𝜈̌ as 𝜈 varies over V. Let Ṽ𝑖

denote the subcollection of such points on Θ𝑖. Now, let 𝑈
Θ𝑖 ,Ṽ𝑖

be a small neighborhood of Θ
𝑖,Ṽ𝑖

in the moduli space of Riemann surfaces with the same topological type as Θ𝑖 and with internal

marked points indexed by Ṽ𝑖. Let C
Θ𝑖 ,Ṽ𝑖

→ 𝑈
Θ𝑖 ,Ṽ𝑖

be the universal curve over it, and let 𝑠𝜁 be the

sections corresponding to the marked points 𝜁 ∈ Ṽ𝑖.

Consider the product family

C
Σ̃,Ṽ =

∏
C
Θ𝑖 ,Ṽ𝑖

→ 𝑈
Σ̃,𝜈̂

=
∏

𝑈
Θ𝑖 ,Ṽ𝑖

along with the sections 𝑠𝜁 , 𝜁 ∈ Ṽ. Now let 𝑧𝜁 be a holomorphic function in a neighborhood of

Im(𝑠𝜁 ) which restricts to a holomorphic co-ordinate on each fiber. Shrinking 𝑈
Θ𝑖 ,Ṽ𝑖

and rescaling

the 𝑧𝜁 if necessary, we may assume that the open sets 𝑅𝜁 = {|𝑧𝜁 | < 1} contain no marked points

other than 𝜁 and are isomorphic to𝑈
Θ𝑖 ,Ṽ𝑖
×D over𝑈

Θ𝑖 ,Ṽ𝑖
. Let 𝑡𝜈 : DV → D be the projection onto

the 𝜈th component of DV . Now, define𝑈Σ to be the neighborhood of Σ in 𝔐 given by the product

𝑈Σ := 𝑈
Σ̃
× DV .
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The restriction of the universal curve over𝑈Σ

CΣ → 𝑈Σ = 𝑈
Σ̃
× DV

is obtained as follows: for every node 𝜈 inV remove the closed subsets

{(𝑧, 𝑡) ∈ 𝑅𝜈̂ × DV | |𝑧𝜈̂ (𝑧) | ≤ |𝑡𝜈 |} and {(𝑧, 𝑡) ∈ 𝑅𝜈̌ × DV | |𝑧𝜈̌ (𝑧) | ≤ |𝑡𝜈 |}

from C
Σ̃,Ṽ × DV and identify the rest of 𝑅𝜈̂ and 𝑅𝜈̌ via

𝑧𝜈̂ · 𝑧𝜈̌ = 𝑡𝜈 .

Let us now turn to the construction of the filtrations𝑊𝑛,Σ and 𝐹 (𝑚)
𝑛,Σ

satisfying condition (5.2.3).

Let 𝑥 be an element inG𝜕+𝔐
∐
G𝜕+𝔐𝑢𝑛𝑠𝑡 G𝔐𝑢𝑛𝑠𝑡 . It is an

(
𝜕+𝔐

∐
𝜕+𝔐𝑢𝑛𝑠𝑡 𝔐𝑢𝑛𝑠𝑡

)
-labeled graph,

say with underlying ioda-graph 𝐺 and labeling
∏
𝑣∈𝑉 (𝐺) Σ𝑣. Consider the map

G1𝜕+𝔐
∐

G1𝜕+𝔐𝑢𝑛𝑠𝑡

G1𝔐𝑢𝑛𝑠𝑡 →𝔐

induced by properad compositions. It maps 𝑥 to the Riemann surface Σ𝑥 = #𝑣∈𝑉 (𝐺)Σ𝑣 obtained by

gluing the surfaces Σ𝑣 as prescribed by the edges of 𝐺. In particular, we get an analytic embedding

𝛾𝑥 :
∐

𝐸 (𝐺)∪𝑖𝑛(𝐺)∪𝑜𝑢𝑡 (𝐺)
𝑆1 → Σ𝑥

whose image lies away from the nodes of Σ𝑥 .

Now consider the analogous maps

G𝑛+1𝜕+𝔐
∐

G𝑛+1𝜕+𝔐𝑢𝑛𝑠𝑡

G𝑛+1𝔐𝑢𝑛𝑠𝑡 →𝔐

44



Figure 5.1: Construction of the embedding 𝛾𝑥 for an 𝑥 as shown in the bottom left corner. The
surface Σ𝑥 obtained by gluing the inner-most labels of 𝑥 is shown in the top right corner. The
image of 𝛾𝑥 inside Σ𝑥 is indicated in red.

induced by (iterated) properad compositions. Note that these maps factor as

G𝑛+1𝜕+𝔐
∐

G𝑛+1𝜕+𝔐𝑢𝑛𝑠𝑡

G𝑛+1𝔐𝑢𝑛𝑠𝑡 → G1𝜕+𝔐
∐

G𝜕+𝔐𝑢𝑛𝑠𝑡

G1𝔐𝑢𝑛𝑠𝑡 →𝔐

where the first map is the composition of simplicial degeneracy maps 𝑑0 ◦ ... ◦ 𝑑0︸        ︷︷        ︸
𝑛-times

and corresponds

to forgetting all the nestings in the underlying graph of an element, and the second map is as

described above. In particular, to any

𝑥 ∈ G𝑛+1𝜕+𝔐
∐

G𝑛+1𝜕+𝔐𝑢𝑛𝑠𝑡

G𝑛+1𝔐𝑢𝑛𝑠𝑡 ,

we can assign an embedding 𝛾𝑥 as in 5.2.1. For an example see Figure 5.1.

Recall the description of the family of curves CΣ over𝑈Σ given above. For each 𝑛, 𝑚 and 𝜈, let
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𝐴
(𝑚)
𝑛,𝜈 ⊂ CΣ be the subset defined, in terms of this descriptions, by

𝐴
(𝑚)
𝑛,𝜈 =

(𝑧, 𝑡) ∈ 𝑅𝜈̂ × D
Ṽ

�����|𝑡𝜈 | ∈ [
0,

1
𝑛2

]
and |𝑧𝜈̂ (𝑧) | ∈


|𝑡𝜈 |

1
𝑛

(
1 + 1

𝑚

) , 1
𝑛

(
1 + 1

𝑚

)
 .

Set

𝐴
(𝑚)
𝑛 =

⋃
𝜈∈V

𝐴
(𝑚)
𝑛,𝜈 .

Define F(𝑚)
𝑛,Σ

to be the simplicial subspace of G•+1𝜕+𝔐
∐
G•+1𝜕+𝔐𝑢𝑛𝑠𝑡 G•+1𝔐𝑢𝑛𝑠𝑡 consisting of

simplices 𝑥 such that

1. the associated embedding 𝛾𝑥 is disjoint from 𝐴
(𝑚)
𝑛 , and

2. if Σ𝑢 is one of the inner-most labels of 𝑋 (i.e. an element of 𝑑0 ◦ ... ◦ 𝑑0︸        ︷︷        ︸
𝑛-times

, the labeled

graph obtained by forgetting all the nestings of the graph underlying 𝑥) which, con-

sidered as a subset of Σ𝑥 , intersects 𝐴(𝑚)𝑛 , then each component of Σ𝑢 \ 𝐴(𝑚)𝑛 has at

least one output boundary.
(5.2.4)

We then define 𝐹 (𝑚)
𝑛,Σ

to be an open subset of
���G•+1𝜕+𝔐∐

G•+1𝜕+𝔐𝑢𝑛𝑠𝑡 G•+1𝔐𝑢𝑛𝑠𝑡
��� which fiber-

wise deformation retracts onto this subcomplex.

Finally, we set

W𝑛,Σ =
⋃
𝑚

F
(𝑚)
𝑛,Σ

and 𝑊𝑛,Σ =
⋃
𝑚

𝐹
(𝑚)
𝑛,Σ
.

Note that𝑊𝑛,Σ deformation retracts onto the geometric realization ofW𝑛,Σ.

Let𝑈𝑠𝑖𝑛𝑔

Σ
denote the subset

{(𝑧, 𝑡) | |𝑡𝜈 | = 0 for some 𝜈}.

This is the locus of nodal Riemann surfaces in𝑈Σ. Denote by𝑈𝑛
Σ

the neighborhood of𝑈𝑠𝑖𝑛𝑔

Σ
given
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(a) Part of Σ′ lying in 𝐴𝑛
𝜈 , with

Σ′ thought of as a fiber of CΣ (b) Circles 𝑆𝜈̂ , 𝑆𝜈̌

Figure 5.2

by

{(𝑧, 𝑡) | |𝑡𝜈 | ≤
1
𝑛2 for some 𝜈}.

In the constructions below we will also use the subcomplex F(𝑚)
𝑛,Σ
∩ 𝜋−1(𝑈𝑛

Σ
). Denote this by

F
(𝑚)
𝑛,Σ
|𝑈𝑛

Σ
. 𝐹𝑛 (𝑈Σ) ∩ 𝜋−1(𝑈𝑛

Σ
) give an open subset of 𝜋−1(𝑈Σ) fiberwise deformation retracting onto

this subcomplex.

5.3 Proof of condition (5.2.3)

Let us now turn to the fiberwise contractions. We begin by describing a number of preliminary

notions and maps:

5.3.1 Annuli 𝐴𝜈 and curves 𝑆𝜈̌, 𝑆𝜈̂

For any Σ′ ∈ 𝑈𝑛
Σ

, denote by 𝐴𝜈 (Σ′) the annulus

𝐴
(2𝑚)
𝑛,𝜈 ∩ Σ′
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where we think of Σ′ as sitting inside the universal curve CΣ as a fiber. Denote by 𝑆𝜈̌, 𝑆𝜈̂ the

boundaries of this annulus given by

𝑆𝜈̂ (Σ′) =
{
(𝑧, 𝑡𝜈̂ (Σ′))

���|𝑧𝜈̂ (𝑧) | = 1
𝑛

(
1 + 1

2𝑚

)}
, 𝑆𝜈̌ (Σ′) =

(𝑧, 𝑡𝜈̂ (Σ′))
���|𝑧𝜈̂ (𝑧) | = |𝑡𝜈̂ | (Σ′)

1
𝑛

(
1 + 1

2𝑚

)  ⊂ Σ′

Now consider the graph 𝐺Σ′ , with

• vertices given by the connected components of Σ′ \⋃V 𝜕𝐴𝜈 (Σ′), and

• edges correspond to the connected components of
⋃
V 𝜕𝐴𝜈 (Σ′), with all edges directed away

from vertices labeled by the annuli 𝐴𝜈 (Σ′).

Denote by 𝑥
Σ′ the 0-simplex with the underlying graph 𝐺Σ′ and with the labeling of each vertex

given by the corresponding connected component of Σ′ \⋃V 𝜕𝐴𝜈 (Σ′).
5.3.2 Graphs 𝐻𝑣

Let 𝑥 be an element in the space of 𝑘-simplices (F(𝑚)
𝑛,Σ
|𝑈𝑛

Σ
)𝑘 . Denote the underlying ioda-graph

by 𝐺. Let 𝑥
𝑣

denote the label of 𝑣 ∈ 𝑉 (𝐺) in 𝑥 and let Σ′𝑣 be the surface obtained by gluing the

inner-most labels of ∈ 𝑥𝑣. Since 𝑥 lies in F(𝑚)
𝑛,Σ

, it follows that for any 𝜈 ∈ V, the intersection

𝐴𝜈 (Σ′) ∩ Σ′𝑣 is either empty or 𝐴𝜈 (Σ′). We can then construct a graph 𝐻𝑣 as follows:

• the vertices of 𝐻𝑣 are given by the connected components of Σ′𝑣 \
⋃
V 𝜕𝐴𝜈, and

• the edges of 𝐻𝑣 are given by the connected components of
⋃
V 𝜕𝐴𝜈 lying inside Σ′𝑣, with

each edge directed away from the vertex corresponding to a component of the form 𝐴𝜈 for

some 𝜈.

The following observation will turn out to be important in the construction of the cut maps and cut

homotopies below in Sections 5.3.3 and 5.3.4:

Lemma 5.3.1. Every vertex in 𝐻𝑣 has at least one output.
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Figure 5.3: An example of cut map 𝑐𝑛 for 𝑛 = 2

Proof. The proof follows by observing that Σ′𝑣 is obtained by composing labels of a subgraph of

𝑑0 ◦ ... ◦ 𝑑0︸        ︷︷        ︸
𝑛-times

(𝑥), each of which has at least one output and moreover satisfies the condition men-

tioned in 5.2.4, (2). □

5.3.3 The cut maps

We define a simplicial map

𝑐 : F(𝑚)
𝑛,Σ
|𝑈𝑛

Σ
→W𝑛,Σ |𝑈𝑛

Σ

which will be used in the definitions of homotopies below. Intuitively, it corresponds to making

‘cuts’ to the underlying Riemann surface along the circles 𝑆𝜈̂ and 𝑆𝜈̌ (see Figure 5.3). Maps

𝑐𝑟 : (F(𝑚)
𝑛,Σ
|𝑈𝑛

Σ
)𝑟 → (W𝑛,Σ |𝑈𝑛

Σ
)𝑟

are defined inductively as follows:

• Base case: Let 𝑥 ∈ (F(𝑚)
𝑛,Σ
|𝑈𝑛

Σ
)0 and let 𝐺 be the graph underlying 𝑥. For a vertex 𝑣 ∈ 𝐺

let Σ𝑣 and 𝐻𝑣 be as described above in Section 5.3.2. Consider an element 𝑦
𝑣
∈ W0

𝑛,Σ𝑣

whose underlying ioda-graph is 𝐻𝑣 and whose vertex labels are given by the corresponding

connected components of Σ𝑣 \
⋃
V 𝜕𝐴𝜈. The fact that such a labeled ioda-graph indeed lies

inW0
𝑛,Σ𝑣

follows from Lemma 5.3.1.
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We then define 𝑐0(𝑥) as the graph composition

𝑐0(𝑥) := 𝜇𝐺 (
∏

𝑦
𝑣
). (5.3.1)

• Assume inductively that 𝑐𝑖 for 0 ≤ 𝑖 < 𝑟 , have been defined and satisfy the following

property: For any 𝑥 ∈ (W𝑛,Σ |𝑈𝑛
Σ
)𝑖 with underlying graph 𝐺,

𝑐𝑖 (𝑥) = 𝜇𝐺 (
∏

𝑦
𝑣
)

for some 𝑦
𝑣
∈ (W𝑛,Σ |𝑈𝑛

Σ
)𝑖. Notice that the condition is satisfied for 𝑖 = 0.

Now suppose 𝑥 ∈ (W𝑛,Σ |𝑈𝑛
Σ
)𝑟 , having underlying ioda-graph 𝐺. Consider the element

𝑐𝑟−1(𝑑0𝑥) ∈ (W𝑛,Σ |𝑈𝑛
Σ
)𝑟−1. From the induction hypothesis we know that 𝑐𝑟−1(𝑑0𝑥) =

𝜇𝐺𝑑0𝑥
(∏ 𝑦′′

𝑤
) for some 𝑦′′

𝑤
, 𝑤 ∈ 𝑉 (𝐺𝑑0𝑥), where 𝐺𝑑0𝑥 is the ioda-graph underlying 𝑑0𝑥.

But since 𝐺𝑑0𝑥 = 𝜇𝐺 (
∏
𝐺𝑣) for some graphs 𝐺𝑣, we can express 𝑐𝑟−1(𝑑0𝑥) as a graph com-

position 𝜇𝐺 (
∏
𝑦′
𝑣
) for some 𝑦′

𝑣
∈ (W𝑛,Σ |𝑈𝑛

Σ
)𝑟−1. For 𝑣 ∈ 𝐺, consider an element 𝑦

𝑣
∈𝑟
Σ

defined as follows: the ioda-graph underlying 𝑦
𝑣

is 𝐻𝑣. The label of a vertex 𝑢 ∈ 𝐻𝑣 in

𝑦
𝑣

is the labeled subgraph of 𝑦′
𝑣

consisting of vertices and edges mapping under 𝜋 into the

connected component Σ𝑢 of Σ \⋃V 𝜕𝐴𝜈 corresponding to 𝑢, as in Section 5.3.2. Then, we

set

𝑐𝑟 (𝑥) = 𝜇𝐺 (
∏

𝑦
𝑣
).

5.3.4 The cut homotopies

We define a fiber preserving homotopy

Φ𝑡 : 𝐹 (𝑚)𝑛,Σ
|𝑈𝑛

Σ
→ 𝑊𝑛,Σ |𝑈𝑛

Σ
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from the inclusion 𝐹 (𝑚)
𝑛,Σ
|𝑈𝑛

Σ
↩→ 𝑊𝑛,Σ |𝑈𝑛

Σ
to the geometric realization of the cut map, defined above

in 5.3.3. It turns out to be easier to write down the expression for the inverse homotopy

Φ̃𝑡 : 𝐹 (𝑚)𝑛,Σ
|𝑈𝑛

Σ
→ 𝑊𝑛,Σ |𝑈𝑛

Σ

going from the geometric realization of the cut map to the inclusion 𝐹 (𝑚)
𝑛,Σ
|𝑈𝑛

Σ
↩→ 𝑊𝑛,Σ |𝑈𝑛

Σ
.

Φ̃ is defined as the geometric realization of a simplicial homotopy

𝜙 : F(𝑚)
𝑛,Σ
|𝑈𝑛

Σ
→W𝑛,Σ |𝑈𝑛

Σ
,

which in turn consists of maps 𝜙 𝑗 : (F(𝑚)𝑛,Σ
|𝑈𝑛

Σ
)𝑟 → (W𝑛,Σ |𝑈𝑛

Σ
)𝑟+1 for 0 ≤ 𝑗 ≤ 𝑟, satisfying the usual

conditions of a simplicial homotopy.

• Base Case: Let 𝑥 ∈ (F(𝑚)
𝑛,Σ
|𝑈𝑛

Σ
)0 and let 𝐺 be the graph underlying 𝑥. Suppose that 𝑐0(𝑥) =

𝜇𝐺 (
∏
𝑦
𝑣
). Then, we define

𝜙0(𝑥) := 𝜇𝐺 (
∏

𝜂(𝑦
𝑣
)),

where we recall from Section 2.3 that 𝜂 : 1TopSeqio → G is the unit of the monad G.

• Assume inductively that the maps 𝜙 𝑗 have been defined for all degrees 𝑖 < 𝑟 and satisfy the

following property similar to the one used above in 5.3.3: For any 𝑥 ∈ (F(𝑚)
𝑛,Σ
|𝑈𝑛

Σ
)𝑖, with the

underlying graph 𝐺,

𝜙 𝑗 (𝑥) = 𝜇𝐺 (
∏

𝑦
𝑣
)

for some 𝑦
𝑣
∈ (F(𝑚)

𝑛,Σ
|𝑈𝑛

Σ
)𝑖. The maps 𝜙 𝑗 : (F(𝑚)𝑛,Σ

|𝑈𝑛
Σ
)𝑟 → (W𝑛,Σ |𝑈𝑛

Σ
)𝑟+1 are then defined as

follows for 𝑥 ∈ (F(𝑚)
𝑛,Σ
|𝑈𝑛

Σ
)𝑟 with underlying ioda-graph 𝐺:

– 𝑗 = 0: For 𝑥 ∈ (F(𝑚)
𝑛,Σ
)𝑟 , suppose that 𝑐𝑟 (𝑥) = 𝜇𝐺 (

∏
𝑦
𝑣
). Then define

𝜙 𝑗 (𝑥) := 𝜇𝐺 (
∏

𝜂(𝑦
𝑣
)).
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– 𝑗 > 0: From the condition in the inductive hypothesis we have 𝜙 𝑗−1(𝑑0𝑥) = 𝜇𝐺 (
∏
𝑦
𝑣
),

for some 𝑦
𝑣
. Then define

𝜙 𝑗 (𝑥) := 𝜇𝐺 (
∏

𝜂(𝑦
𝑣
)).

5.3.5 The homotopy Ψ

LetW𝑛,Σ |𝑀𝑈𝑛
Σ

be the subcomplex ofW𝑛,Σ |𝑈𝑛
Σ

consisting of simplices 𝑥 in which the annuli 𝐴𝜈 are

isolated in the following sense: if 𝑥
𝑣

is the label of a vertex in 𝑥, Σ𝑣 the surface obtained by gluing

the inner-most labels of 𝑥
𝑣
, then

Σ𝑣 ∩ 𝐴𝜈 ≠ 𝜙⇒ 𝑥
𝑣
= 𝜂𝑟 (𝐴𝜈), for any 𝜈 ∈ V .

Let𝑊𝑛,Σ |𝑀𝑈𝑛
Σ

be the geometric realization ofW𝑛,Σ |𝑀𝑈𝑛
Σ

.

Let 𝜒𝑀
𝑛,Σ

: 𝑈𝑛
Σ
→ 𝑊𝑛,Σ |𝑀𝑈𝑛

Σ

be a section of 𝜋 over 𝑈𝑛
Σ

defined as follows: the image of 𝜒𝑀
𝑛,Σ

is

contained inside the geometric realization of the 0-skeleton (W𝑛,Σ |𝑈𝑛
Σ
)0 with the associated map

given by

𝜒𝑀𝑛,Σ : Σ′ ↦→ 𝑥
Σ′ for every Σ′ ∈ 𝑈𝑛

Σ,

where 𝑥
Σ′ is a 0-simplex as defined in 5.3.1. Denote the constant simplicial space corresponding

to the image of 𝜒𝑀
𝑛,Σ

by X𝑀
𝑛,Σ

(recall a constant simplicial space is a simplicial space with all face

and degeneracy maps given by identities).

We will construct a fiber-preserving homotopy Ψ contracting 𝑊𝑛,Σ |𝑀𝑈𝑛
Σ

onto the image of 𝜒𝑀
𝑛,Σ

.

This will again be a geometric realization of a simplicial homotopy 𝜓, which will be constructed

by specifying extra degeneracies and augmentation onW𝑛,Σ |𝑀𝑈𝑛
Σ

(cf. [27, Section 4.5]). For this we

need to define:

1. Extra degeneracies: 𝑠−1 : (W𝑛,Σ |𝑀𝑈𝑛
Σ

)𝑟 → (W𝑛,Σ |𝑀𝑈𝑛
Σ

)𝑟+1 for all 𝑟 ≥ −1, where (W𝑛,Σ |𝑀𝑈𝑛
Σ

)−1 :=

X𝑀
𝑛,Σ

, and

2. Augmentation: 𝑑0 : (W𝑛,Σ |𝑀𝑈𝑛
Σ

)0 → (W𝑛,Σ |𝑀𝑈𝑛
Σ

)−1,
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where (W𝑛,Σ |𝑀𝑈𝑛
Σ

)−1 = X𝑀
𝑛,Σ

, satisfying:

1. 𝑑0𝑠−1 is identity on (W𝑛,Σ |𝑀𝑈𝑛
Σ

)𝑟

2. for 𝑟 ≥ 1, 0 ≤ 𝑖, 𝑗 ≤ 𝑟,

(a) 𝑑𝑖+1𝑠−1 = 𝑠−1𝑑𝑖

(b) 𝑠 𝑗+1𝑠−1 = 𝑠−1𝑠 𝑗

on (W𝑛,Σ |𝑀𝑈𝑛
Σ

)𝑟 .

The contracting homotopy 𝜓 underlying Ψ is then obtained by setting 𝜓𝑖 : (W𝑛,Σ |𝑀𝑈𝑛
Σ

)𝑟 → (W𝑛,Σ |𝑀𝑈𝑛
Σ

)𝑟+1

to be 𝑠0 . . . 𝑠0︸   ︷︷   ︸
𝑖−times

𝑠−1 𝑑0 . . . 𝑑0︸    ︷︷    ︸
𝑖−times

for 0 ≤ 𝑖 ≤ 𝑟.

• Extra degeneracies: We define 𝑠−1 : (W𝑛,Σ |𝑀𝑈𝑛
Σ

)𝑟 → (W𝑛,Σ |𝑀𝑈𝑛
Σ

)𝑟+1. Let 𝑥 ∈ (W𝑛,Σ |𝑀𝑈𝑛
Σ

)𝑟 and

Σ𝑥 the Riemann surface obtained by gluing the inner-most labels of 𝑥. Let 𝐺Σ𝑥
be the graph

for the Riemann surface Σ𝑥 as defined in 5.3.1. From the definition of W𝑛,Σ |𝑀𝑈𝑛
Σ

, it follows

that the vertices of 𝑥 can be regrouped into subgraphs 𝑦
𝑣
∈ (W𝑛,Σ |𝑀𝑈𝑛

Σ

)𝑟 labeled by 𝑣 ∈ 𝐺Σ𝑥

so that 𝑥 = 𝜇𝐺Σ𝑥
(∏ 𝑦

𝑣
). Then set

𝑠−1(𝑥) := 𝜇𝐺Σ𝑥

(∏
𝜂(𝑦

𝑣
)
)
.

• Augmentation: Note that for 𝑥 ∈ (W𝑛,Σ |𝑀𝑈𝑛
Σ

)0, 𝑑1(𝑠−1𝑥) = 𝑥Σ𝑥
∈ X𝑀

𝑛,Σ
. We define 𝑑0 : (W𝑛,Σ |𝑀𝑈𝑛

Σ

)0 →

X𝑀
𝑛,Σ

as

𝑑0 = 𝑑1 ◦ 𝑠−1.

5.3.6 The homotopy Ψ𝑛𝑠

We construct another fiber-preserving homotopy, this time contracting𝑊𝑛𝑠
𝑛,Σ

= 𝑊𝑛,Σ∩𝜋−1(𝑈𝑛𝑠
Σ
)

onto a section 𝜒𝑛𝑠 of 𝜋 over𝑈𝑛𝑠
Σ

. Here

𝑈𝑛𝑠
Σ = {(𝑧, 𝑡) |𝑡𝜈 ≠ 0 for all 𝜈} ⊂ 𝑈Σ̂ × DV = 𝑈Σ
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is the subspace of non-singular curves in𝑈Σ. LetW𝑛𝑠
𝑛,Σ

be the corresponding subcomplex ofW𝑛,Σ.

The section 𝜒𝑛𝑠
Σ

is contained in the 0-skeleton ofW𝑛𝑠
𝑛,Σ

and the corresponding map is given by

Σ′ ↦→ 𝑥̃
Σ′

where 𝑥̃
Σ′ is the 0-simplex such that the underlying graph has a single vertex, no internal edges,

and the label of the vertex is given by Σ′. Note that Σ′ is non-singular and hence 𝑥̃
Σ′ ∈ G𝜕+𝔐 ⊂

(W𝑛,Σ)0.

Denote by X𝑛𝑠
Σ

the simplicial subspace ofW𝑛𝑠
𝑛,Σ

corresponding to the image 𝜒𝑛𝑠
Σ

. It is a constant

simplicial space and is contained inside the 0-skeleton of W𝑛𝑠
𝑛,Σ

. Again we shall construct the

contraction by specifying extra degeneracies and augmentation as in 5.3.5. We continue using the

same notation for these as in 5.3.5.

• Extra degeneracies: In this case the map 𝑠𝑟+1 : (W𝑛𝑠
𝑛,Σ
)𝑟 → (W𝑛𝑠

𝑛,Σ
)𝑟+1 is defined by

𝑠−1(𝑥)=𝜂(𝑥).

• The augmentation 𝑑0 : (W𝑛𝑠
𝑛,Σ
)0 → X𝑛𝑠

Σ
is defined by

𝑑0 := 𝑑1 ◦ 𝑠−1.

The extra degeneracies 𝑠−1’s and augmentation 𝑑0 satisfy conditions analogous to those mentioned

in 5.3.5. The simplicial homotopy 𝜓𝑛𝑠 underlying Ψ𝑛𝑠 is obtained from 𝑠𝑟+1’s and 𝑑0 by formulas

similar to those in 5.3.5.

5.3.7 The contraction for proving condition (5.2.3)

We are finally ready to define the homotopy needed to show that condition (5.2.3) is satisfied:

We construct a homotopy Ω from the inclusion 𝐹 (𝑚)
𝑛,Σ

↩→ 𝑊𝑛,Σ to a map which takes 𝐹 (𝑚)
𝑛,Σ

onto a
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section of 𝜋 over 𝑈Σ. The section coincides with 𝜒𝑀
𝑛,Σ

near the singular locus 𝑈𝑠𝑖𝑛𝑔

Σ
, and with 𝜒𝑛𝑠

Σ

away from it.

Fix a continuous function 𝜁 : 𝑈Σ → [0, 1] such that

𝜁 ≡ 1 on
⋃
V
{|𝑡𝜈 | ≤

1
2𝑛2 } and

𝜁 ≡ 0 outside of𝑈𝑛
Σ =

⋃
V
{|𝑡𝜈 | ≤

1
𝑛2 }

Set 𝜅 = 𝜁 ◦ 𝜋. The homotopy Ω is defined as follows:

On 𝜋−1

(⋃
V
{|𝑡𝜈 | ≤

1
2𝑛2 }

)
: Ω(𝑥, 𝑡) =


Φ(𝑥, 2𝑡), 𝑡 < 1/2

Ψ(Φ(𝑥, 1), 2𝑡 − 1) 𝑡 ≥ 1/2

On 𝜋−1(𝑈𝑛𝑠
Σ ) : Ω(𝑥, 𝑡) =


Φ(𝑥, 2𝑡), 𝑡 < 𝜅(𝑥)/2

Φ(Ψ𝑛𝑠 (𝑥, 𝑡−𝜅/21−𝜅/2 ), 𝜅(𝑥)) 𝑡 ≥ 𝜅(𝑥)/2

To ensure that Ω is well-defined it suffices to check that the two definitions agree on points lying

over𝑈𝑛𝑠
Σ

⋂⋃
V{|𝑡𝜈 | ≤ 1

2𝑛2 }

Ψ(Φ(𝑥, 1), 𝑡) = Φ(Ψ𝑛𝑠 (𝑥, 𝑡), 1) for all 𝑡

Since Φ(𝑥, 1) = 𝑐(𝑥), this amounts to checking for every 𝑟 and 0 ≤ 𝑖 ≤ 𝑟,

𝜓𝑖𝑐𝑟 = 𝑐𝑟+1𝜓
𝑛𝑠
𝑖

on 𝑟-simplices lying over 𝑈𝑛𝑠
𝑛,Σ
∩ ⋃

V{|𝑡𝜈 | ≤ 1
2𝑛2 |}. Since 𝑐 is simplicial, from the definitions of

𝜓𝑖, 𝜓
𝑛𝑠
𝑖

we are reduced to checking

𝜓0𝑐𝑟 = 𝑐𝑟+1𝜓
𝑛𝑠
0

This can be verified directly from the definition of 𝜙0 and 𝜓𝑛𝑠0 .
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This shows that the filtration {𝐹 (𝑚)
𝑛,Σ
} constructed in Section 5.2.1 satisfies the condition (5.2.3)

and thus completes the proof of the first part of Theorem 1.4.2.
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Chapter 6: From the 𝜕+TFT-properad to the TFT-properad

In this chapter we prove the first part of Theorem 1.4.1. Let us start by recalling the statement:

Theorem 6.0.1. 𝔐 is the homotopy colimit of the following diagram in the category of io-properads

𝜕+𝔐𝑢𝑛𝑠𝑡 𝔐𝑛𝑜𝑝

𝜕+𝔐

(6.0.1)

To compute the homotopy pushout of the diagram (6.0.1), we first replace 𝔐 and 𝔐𝑢𝑛𝑠𝑡 with

homotopy equivalent properads ℳ and ℳ
𝑛𝑜𝑝 which are more suitable for the computation. A

suitable modification of the strategy used for proving Theorem 1.4.2(1) is then used to complete

the proof.

6.1 Properads ℳ𝑛𝑜𝑝 and ℳ

Define ℳ̃
𝑓 𝑟
𝑔,𝑛− ,𝑛+ (𝑘) to be the moduli space of tuples (Σ, 𝑠, 𝑡), where

• Σ ∈ M 𝑓 𝑟
𝑔,𝑛− ,𝑛+ ,

• 𝑠 = (𝑠1, ..., 𝑠𝑘 ) a tuple of 𝑘 labeled marked points in the interior of Σ, and

• 𝑡 = (𝑡1, ..., 𝑡𝑘 ) ∈ [0, 1]𝑘 , such that 𝑡𝑖 = 1 for at least one 𝑖 whenever 𝑛+ = 0.

Define ℳ
𝑓 𝑟
𝑔,𝑛− ,𝑛+ (𝑘) to be the quotient

ℳ
𝑓 𝑟
𝑔,𝑛− ,𝑛+ (𝑘) := ℳ̃

𝑓 𝑟
𝑔,𝑛− ,𝑛+ (𝑘)/Σ𝑘

where Σ𝑘 acts on ℳ
𝑓 𝑟
𝑔,𝑛− ,𝑛+ (𝑘) by permuting the labels of the marked points and the co-ordinates of

𝑡. We can think of ℳ 𝑓 𝑟
𝑔,𝑛− ,𝑛+ (𝑘) as the moduli space of Riemann surfaces with 𝑘 unlabeled marked
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points such that each point carries a weight in [0, 1] and at least one of the weights is positive when

the surface has no outputs. We refer to these marked points as weighted marked points and to a

point in ℳ
𝑓 𝑟
𝑔,𝑛− ,𝑛+ (𝑘) as a ‘spotted surface’.

Now define

ℳ
𝑓 𝑟
𝑔,𝑛− ,𝑛+ :=

∐
𝑘≥0

ℳ
𝑓 𝑟
𝑔,𝑛− ,𝑛+ (𝑘)/∼

where ∼ identifies a spotted surface with the one obtained by forgetting the marked points which

have weight 0. More precisely, ℳ 𝑓 𝑟
𝑔,𝑛− ,𝑛+ is obtained as the colimit

ℳ
𝑓 𝑟
𝑔,𝑛− ,𝑛+ = lim−−→

[
𝐹0ℳ

𝑓 𝑟
𝑔,𝑛− ,𝑛+ → 𝐹1ℳ

𝑓 𝑟
𝑔,𝑛− ,𝑛+ → . . .

]
where the spaces 𝐹𝑘ℳ

𝑓 𝑟
𝑔,𝑛− ,𝑛+ are defined inductively, satisfying the following properties:

1. 𝐹0ℳ
𝑓 𝑟
𝑔,𝑛− ,𝑛+ = ℳ

𝑓 𝑟
𝑔,𝑛− ,𝑛+ (0)

2. 𝐹𝑘ℳ
𝑓 𝑟
𝑔,𝑛− ,𝑛+ admits a map from

[
ℳ

𝑓 𝑟
𝑔,𝑛− ,𝑛+ (𝑘 +1)

]−, where
[
ℳ

𝑓 𝑟
𝑔,𝑛− ,𝑛+ (𝑘 +1)

]− is the subspace

of ℳ 𝑓 𝑟
𝑔,𝑛− ,𝑛+ (𝑘 + 1) of spotted surfaces where at least one marked point has weight 0.

3. 𝐹𝑘+1ℳ
𝑓 𝑟
𝑔,𝑛− ,𝑛+ is obtained inductively from 𝐹𝑘ℳ

𝑓 𝑟
𝑔,𝑛− ,𝑛+ as the pushout

[
ℳ̃

𝑓 𝑟
𝑔,𝑛− ,𝑛+ (𝑘 + 1)

]−
ℳ̃

𝑓 𝑟
𝑔,𝑛− ,𝑛+ (𝑘 + 1)

𝐹𝑘ℳ
𝑓 𝑟
𝑔,𝑛− ,𝑛+ 𝐹𝑘+1ℳ

𝑓 𝑟
𝑔,𝑛− ,𝑛+ .

Notation 6.1.1. 1. The image of a tuple (Σ, 𝑥, 𝑡) in ℳ
𝑓 𝑟
𝑔,𝑛− ,𝑛+ will be denoted by [Σ, 𝑥, 𝑡]

2. We fix notation for some surfaces which appear frequently in the later sections: A spotted

surface given by a disk with an output (respectively, input) boundary along with a single

positive weight marked point will be called a positive cup (respectively, cap). Note that the

marked point in a positive weight cup necessarily has weight 1.

Proposition 6.1.2. The forgetful map ℳ
𝑓 𝑟
𝑔,𝑛− ,𝑛+ →M

𝑓 𝑟
𝑔,𝑛− ,𝑛+ is a weak homotopy equivalence.
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Proof. Case 𝑛+ > 0: In this case can we consider the section of the forgetful map given by mapping

a Riemann surface Σ to a spotted surface with underlying Riemann surface Σ and with no marked

points . Then, there is a homotopy contracting ℳ
𝑓 𝑟
𝑔,𝑛− ,𝑛+ onto the image of this section given by

shrinking the weights of all the marked points to 0.

General Case: The map ℳ
𝑓 𝑟
𝑔,𝑛− ,𝑛+ → M

𝑓 𝑟
𝑔,𝑛− ,𝑛+ is a fibration and hence it suffices to show that

the fiber of this map is contractible.

Fix a surface Σ ∈ M 𝑓 𝑟
𝑔,𝑛− ,𝑛+ . We will show that the fiber over Σ has an open cover {𝑊𝑥}, indexed

by points 𝑥 ∈ Σ, such that every finite intersection 𝑊𝑥1,...,𝑥𝑛 := 𝑊𝑥1 ∩ ... ∩ 𝑈𝑥𝑛 is non-empty and

contractible.

The open sets 𝑊𝑥 are defined to be subsets of the fiber consisting of spotted surfaces which have

no marked point with weight ≥ 1/3 at 𝑥. It is clear that {𝑊𝑥} forms an open cover of the fibre,

with every finite intersection non-empty.

Let 𝐽 = {𝑥1, ..., 𝑥𝑛} be a finite subspace of Σ. We now turn to showing contractibility of the finite

intersection𝑊𝐽 = 𝑊𝑥1 ∩ ... ∩𝑊𝑥𝑛 . To show this we will exhibit a filtration

𝐹1 ⊂ 𝐹2 ⊂ ... ⊂ 𝐹𝑛 ⊂ ... of𝑊𝑥1,...,𝑥𝑛

such that the inclusion of each 𝐹𝑛 is null-homotopic inside𝑊𝐽 .

The filtration is defined as follows: Choose a conformal embedding 𝜙𝑥1 : D→ Σ with 𝜙𝑥1 (0) = 𝑥1.

For 𝑛 ∈ N, define 𝐹𝑛 to be the subspace of the fiber consisting of spotted surfaces for which all the

marked points with weight ≥ 1/3 are contained inside Σ \ 𝜙𝑥1 ( |𝑧 | ≤ 1/𝑛). The subspaces 𝐹𝑛 give

an increasing and exhausting sequence of open subsets of𝑊𝐽 .

We now prove that each 𝐹𝑛 is null-homotopic inside 𝑊𝐽 . Consider the point 𝑥0 ∈ Σ given by

𝑥0 = 𝜙𝑥1 (1/2𝑛), and the spotted surface in 𝑊𝐽 which has a single weight 1 marked point at 𝑥0 viz.

[Σ, (𝑥0), (1)]. We show that 𝐹𝑛 can be contracted to this spotted surface inside𝑊𝐽 .

The contraction homotopy is given by concatenation of 3 homotopies 𝐻1, 𝐻2, 𝐻3:

1. 𝐻1: Consider a function 𝜏 : [0, 1] → [0, 1] which is identically 0 on [0, 1/3] and identically
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1 on [2/3, 1]. Let 𝑓1 be the map [(Σ, 𝑥, (𝑡1, ..., 𝑡𝑘 ))] ↦→ [(Σ, 𝑥, (𝜏(𝑡1), ..., 𝜏(𝑡𝑘 )))]. Then 𝐻1

is a homotopy from the identity to 𝑓1. The homotopy is simply given by linearly interpolating

weights of the marked points .

2. 𝐻2: Now consider the map 𝑓2 which takes any surface [(Σ, 𝑥, 𝑡)] in 𝐹𝑛 to the surface obtained

by adding the marked point 𝑥0 with weight 1 to 𝑓1( [Σ, 𝑥, 𝑡]). (In particular, note that 𝑓2 takes

values outside 𝐹𝑛.) Define 𝐻2 as the homotopy between 𝑓1 and 𝑓2, given by interpolating

the weight of 𝛾0 from 0 to 1. The well-definedness (and continuity) of 𝑓2 and 𝐻2 follows

from the restriction in the definition of the subset 𝐹𝑛 that any marked point contained inside

𝜙𝑥1 ({|𝑧 | ≤ 1
𝑛
}) has weight < 1/3.

3. 𝐻3: Finally, 𝐻3 is a homotopy from 𝑓2 to the constant map 𝑓3 with value [Σ, (𝑥0), (1)]. The

homotopy 𝐻3 is given by decreasing the weights of marked point outside 𝜙𝑥1 ({|𝑧 | ≤ 1
𝑛
}) to

0.

□

The properads ℳ and ℳ
𝑛𝑜𝑝 are now defined as follows:

ℳ is defined in a manner similar to 𝔐 with the space M 𝑓 𝑟
𝑔,𝑛− ,𝑛+ replaced by the corresponding

spaces ℳ 𝑓 𝑟
𝑔,𝑛− ,𝑛+ .

ℳ
𝑛𝑜𝑝 is the io-subproperad of ℳ defined as follows:

• ℳ
𝑛𝑜𝑝 (0, 1) is the subspace of ℳ𝑛𝑜𝑝

0,0,1 having a positive weight cap i.e. a disk with output

having a single weight 1

spot.

• ℳ
𝑛𝑜𝑝 (1, 0) =M0,1,1 is the subspace of ℳ𝑛𝑜𝑝

0,1,0 consisting of disks with inputs having a single

marked point . Note that the weight of the spot is allowed to vary in [0, 1].

• ℳ
𝑛𝑜𝑝 (1, 1) =M0,1,1 i.e. the subspace ofM0,1,1 spotted surfaces having no positive weight

marked points . Similarly,
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• ℳ
𝑛𝑜𝑝 (0, 2) =M0,0,2 i.e. the subspace ofM0,0,2 spotted surfaces having no positive weight

marked points .

The properad compositions are given by the maps induced by the gluing of Riemann surfaces

underlying the spotted surfaces.

The following is a consequence of Proposition 6.1.2:

Corollary 6.1.3. Maps

ℳ
𝑛𝑜𝑝 →𝔐𝑛𝑜𝑝 and ℳ →𝔐

are weak equivalences of io-properads.

□

6.2 Homotopy pushout of (6.0.1)

As mentioned before, to find a model for the homotopy pushout we shall consider the diagram

𝜕+𝔐 ← 𝜕+𝔐
𝑛𝑜𝑝 →ℳ

𝑛𝑜𝑝 (6.2.1)

which is weakly equivalent to (6.0.1). It follows that

|𝐵•𝜕+𝔐 |
GAlg∐

|𝐵•𝜕+𝔐𝑛𝑜𝑝 |
|𝐵•ℳ𝑛𝑜𝑝 |

computes the homotopy pushout of (6.2.1) and thus of (6.0.1). From the computation (A.5.2), we

have:

|𝐵•𝜕+𝔐 |
GAlg∐

|𝐵•𝜕+𝔐𝑛𝑜𝑝 |
|𝐵•ℳ𝑛𝑜𝑝 | =

��G(G•𝜕+𝔐 ⊔G•𝜕+𝔐𝑛𝑜𝑝 G•ℳ𝑛𝑜𝑝)
��

To complete the proof of Theorem 1.4.1 it now suffices to show that:

𝜋 :
��G(
G•𝜕+𝔐 ⊔G•𝜕+𝔐𝑛𝑜𝑝 G•ℳ𝑛𝑜𝑝

) ��→ℳ (6.2.2)
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6.3 Map (6.2.2) is a weak equivalence of properads

The strategy of proof is similar to that of Section 5.2. In this case instead of cuts made around

nodal points, we will construct cuts around positive weight marked points . This gives a canonical

way of decomposing an element of ℳ into a surface in 𝜕+𝔐 and a collection positive weight caps

and cups. As in Section 5.2, some care will be needed to extend this decomposition continuously

to a neighborhood of the spotted surface. Cut homotopies, analogous to those in Section 5.2, will

then be constructed to homotope the points in the pushout to the zero simplices corresponding to

such decompositions.

To highlight the parallels between the formal structure of the argument here and in Section

5.2, we will use the same notation as in Section 5.2 for the analogous notions here. As we shall

see, having suitably adopted various definitions to the current context, many of the maps and

homotopies will be given by the same expressions as in Section 5.2.

As before, we will find a cover {𝑈𝜆}𝜆∈Λ of ℳ
𝑓 𝑟
𝑔,𝑛− ,𝑛+ such that for any finite subset 𝐽 =

{𝜆1, ..., 𝜆𝑘 } ⊂ Λ,

𝜋−1 |𝑈𝐽
: 𝜋−1(𝑈𝐽) → 𝑈𝐽

is a weak-equivalence, where𝑈𝐽 := 𝑈𝜆1 ∩ ... ∩𝑈𝜆𝑘 .

We will in fact show that each 𝐽,𝑈𝐽 has a filtration

𝑊1,𝐽 ⊂ . . . ⊂ 𝑊𝑛,𝐽 ⊂ . . . 𝜋−1(𝑈𝐽)

such that

𝜋 |𝑊𝑛,𝐽
: 𝑊𝑛,𝐽 → 𝑈𝐽 is a weak homotopy equivalence. (6.3.1)

Similarly to Section 5.2, we prove this by showing that each𝑊𝑛,𝐽 has a further filtration

𝐹
(1)
𝑛,𝐽
⊂ ... ⊂ 𝐹 (𝑚)

𝑛,𝐽
⊂ 𝑊𝑛,𝐽 ,
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satisfying a condition analogous to (5.2.3), with𝑊𝑛,Σ there replaced by𝑊𝑛,𝐽 .

Remark 6.3.1. Notice that unlike Section 5.2, 𝜒𝑛 is not a section of 𝜋 in this case. In particular

the homotopies as in (5.2) which we construct, will not be fiber-preserving. Thus, in contrast

to Section 5.2, it is not sufficient to work with a single 𝑈𝜆 and instead it becomes necessary to

construct the homotopies over all finite intersections𝑈𝐽 .

6.3.1 Construction of𝑈𝜆,𝑊𝑛,𝐽 , and 𝐹 (𝑚)
𝑛,𝐽

We start by describing the spaces𝑈𝜆. Let𝑈𝛼,𝑖 be the open subset of ℳ 𝑓 𝑟
𝑔,𝑛− ,𝑛+ consisting of spot-

ted surfaces containing exactly 𝑖 marked points with weight > 𝛼 and no marked point with weight

= 𝛼. Also, let 𝑍𝛼,𝑖 ⊂ 𝑈𝛼,𝑖 be the subspace of spotted surfaces containing exactly 𝑖 positive weight

marked points all of which have weight 1. There exists a deformation retraction 𝑟𝛼,𝑖 : 𝑈𝛼,𝑖 → 𝑍𝛼,𝑖

obtained by homotoping the weight 𝑤𝛾 for an marked point 𝛾 to


0 if 𝑤𝛾 < 𝛼

1 if 𝑤𝛾 > 𝛼.

Notice that we have a covering map M 𝑓 𝑟
𝑛− ,𝑛+ (𝑖) → 𝑍𝛼,𝑖, where are the spaces M 𝑓 𝑟

𝑛− ,𝑛+ (𝑖) are as

defined at the end of Section 4.1. The fiber over a spotted surface in 𝑍𝛼,𝑖 is given by different ways

of labeling the marked points . Consider a covering {𝑊𝛿
𝛼,𝑖
}𝛿∈Δ𝛼,𝑖

ofM 𝑓 𝑟
𝑔,𝑛− ,𝑛+ (𝑖), where Δ𝛼,𝑖 is some

indexing set, satisfying the following conditions:

• 𝑊𝛿
𝛼,𝑖

maps homeomorphically onto an open subset of 𝑍𝛼,𝑖.

• Over𝑊𝛿
𝛼,𝑖

, there exists a continuous choice of analytically embedded disks around the marked

points in the following sense: Let C𝑔,𝑛− ,𝑛+ (𝑖) → M
𝑓 𝑟
𝑔,𝑛− ,𝑛+ (𝑖) denote the universal curve.

Then, there exists maps

𝜎𝛿𝛼,𝑖 : 𝑊
𝛿
𝛼,𝑖 × ⊔𝑖𝑗=1D→ C𝑔,𝑛− ,𝑛+ (𝑖) |𝑊 𝛿

𝛼,𝑖
(6.3.2)
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over 𝑊𝛿
𝛼,𝑖

, such that 𝜎𝛿
𝛼,𝑖

is a fiberwise embedding which maps 0 ∈ D in the 𝑗 th disk in the

second factor to the 𝑗 th marked point of the fiber. Moreover, we assume that the embeddings

given by 𝜎𝛿
𝛼,𝑖

are disjoint from the boundaries.

Let 𝑍𝛿
𝛼,𝑖

be the image of𝑊𝛿
𝛼,𝑖

in 𝑍𝛼,𝑖. The collection {𝑍𝛿
𝛼,𝑖
} forms a cover of 𝑍𝛼,𝑖. Define𝑈𝛿

𝛼,𝑖
=

𝑟−1
𝛼,𝑖
(𝑍𝛿

𝛼,𝑖
), where 𝑟𝛼,𝑖 : 𝑈𝛼,𝑖 → 𝑍𝛼,𝑖 is the retraction mentioned above. The collection 𝑈𝛿

𝛼,𝑖
, 𝛿 ∈ Λ𝛼,𝑖

gives a covering of𝑈𝛼,𝑖. Putting all the {𝑈𝛿
𝛼,𝑖
}’s together as 𝛼, 𝑛, and 𝛿 vary in (0, 1),Z≥0, and Δ𝛼,𝑖

respectively, we obtained the desired cover {𝑈𝜆}𝜆∈Λ of ℳ 𝑓 𝑟
𝑔,𝑛− ,𝑛+ .

For a finite collection 𝐽 ⊂ Λ, we now turn to constructing a filtrations𝑊𝑛,𝐽 and 𝐹 (𝑚)
𝑛,Σ

satisfying

a condition analogous to (6.3.1). Let 𝛼1, ..., 𝛼𝑘 be the constants for 𝐽 as discussed above. Without

loss of generality, assume that 0 = 𝛼0 < 𝛼1 ≤ ... ≤ 𝛼𝑘 < 𝛼𝑘+1 = 1. From the definitions of the sets

𝑈𝜆𝑖 it is clear that for any surface in the intersection 𝑈𝐽 the number of marked points with weight

in > 𝛼𝑟 stays constant, viz. 𝑖𝑟 , for every 𝑟.

We now construct a filtration 𝐹 (𝑚)
𝑛,𝐽

satisfying (6.3.1). Analogous to Section 5.2.1, the filtered

pieces are defined to be a neighborhood deformation retracting onto of a simplicial subcomplex

F
(𝑀)
𝑛,𝐽

constructed as follows: Consider the fiberwise embeddings

(𝜎𝜆1
𝛼1,𝑖1
) (𝑚) : 𝑊𝜆1

𝛼1,𝑖1
×

{
|𝑧 | ≤ 1

𝑛

(
1 + 1

𝑚

)}
→ C𝑔,𝑛− ,𝑛+ (𝑖) |𝑊𝜆

𝛼,𝑖

obtained by restricting the maps 𝜎𝜆1
𝛼1,𝑖1

from (6.3.2). Let 𝜙𝜆1
𝛼1,𝑖1

: 𝑈𝜆1
𝛼1,𝑖1
→ 𝑊

𝜆1
𝛼1,𝑖1

denote the compo-

sition of the retraction 𝑟𝛼1,𝑖1 : 𝑈𝜆
𝛼1,𝑖1
→ 𝑍𝜆

𝛼1,𝑖1
and homeomorphism 𝑍𝜆

𝛼1,𝑖1
→ 𝑊𝜆

𝛼1,𝑖1
. Pulling back

the maps (𝜎𝜆1
𝛼1,𝑖1
) (𝑚) by 𝜙𝜆1

𝛼1,𝑖1
we obtain

(𝜙𝜆1
𝛼1,𝑖1
)∗(𝜎𝜆1

𝛼1,𝑖1
) (𝑚) : 𝑈𝜆1

𝛼1,𝑖1
×

{
|𝑧 | ≤ 1

𝑛

(
1 + 1

𝑚

)}
→ (𝜙𝜆1

𝛼1,𝑖1
)∗C𝑔,𝑛− ,𝑛+ (𝑛) |𝑊𝜆

𝛼,𝑖

Denote the image of this map along 𝐴(𝑚)
𝑛, 𝑗

and set 𝐴(𝑚)𝑛 =
⋃
𝑗 𝐴
(𝑚)
𝑛, 𝑗

.

Similar to Section 5.2.1, given an element 𝑥 ∈ G𝑛+1𝜕+𝔐
∐
G𝑛+1𝜕+𝔐𝑛𝑜𝑝 G𝑛+1ℳ𝑛𝑜𝑝, with underlying
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ioda-graph 𝐺, we can define an analytic embedding

𝛾𝑥 :
∐

𝐸 (𝐺)∪𝑖𝑛(𝐺)∪𝑜𝑢𝑡 (𝐺)
𝑆1 → Σ𝑥

with Σ𝑥 the Riemann surface obtained by gluing the inner-most labels of 𝑥 (ignoring any marked

point present on the labels). Let F(𝑚)
𝑛,𝐽

denote the subcomplex of G•𝜕+𝔐
∐
G•𝜕+𝔐𝑛𝑜𝑝 G•ℳ𝑛𝑜𝑝 con-

sisting of simplices 𝑥 such that the corresponding embedding 𝛾𝑥 is disjoint from 𝐴
(𝑚)
𝑛 . We then set

𝐹
(𝑚)
𝑛,𝐽

to be the open subset of |G𝑛+1𝜕+𝔐
∐
G𝑛+1𝜕+𝔐𝑛𝑜𝑝 G𝑛+1ℳ𝑛𝑜𝑝 | corresponding to this subcom-

plex. Set

W𝑛,𝐽 =
⋃
𝑚

F
(𝑚)
𝑛, 𝑗

and𝑊𝑛,𝐽 =
⋃
𝑚

𝐹
(𝑚)
𝑛, 𝑗
.

Note that𝑊𝑛,𝐽 deformation retracts onto the subcomplex

Notation 6.3.2. Denote the simplicial complex underlying 𝜋−1(𝑈𝜆1...,𝜆𝑘 ) byW𝑛,𝐽 .

6.3.2 Construction of maps 𝜒𝑛 : 𝑈𝐽 → 𝐹𝑛𝜋−1(𝑈𝐽)

We now construct maps 𝜒𝑛 as in (6.3.1). Note that unlike Section 5.2, 𝜒𝑛 will not be a section

in this case of 𝜋. The image of the map lies in the subspace of 0-skeleton of 𝜋−1𝑈𝐽 .

Recall that from the construction of𝑈𝜆1 it follows that any surface with weighted marked point

in 𝑈𝜆1 has 𝑖1 marked point with weight > 𝛼1 and there is a way of labeling these marked point as

1, ..., 𝑖1 with the labels varying continuously over𝑈𝜆1 .

Let Σ be an element of𝑈𝐽 and let Σ be the Riemann surface underlying Σ. We identify Σ with the

fiber over Σ of the pullback of C𝑔,𝑛− ,𝑛+ (𝑖1) to 𝑈𝐽 . Let 𝑥1, ..., 𝑥𝑖1 denote the corresponding marked

points on Σ. Denote by 𝐴𝑛
𝑗
(Σ) ⊂ Σ the image of the (pullback of) map (𝜎𝜆1

𝛼,𝑖1
)𝑛 restricted to the

fiber above Σ and by 𝑤 𝑗 (Σ) the weight of the 𝑗 th marked point , 0 ≤ 𝑗 ≤ 𝑖1. Set

𝐴𝑛𝑗 (Σ) :=


[𝐴(𝑚)

𝑛, 𝑗
(Σ), (𝑥 𝑗 ), 𝜌(𝑤 𝑗 )] ∈ℳ 𝑓 𝑟

0,0,1 for 𝑤 𝑗 < 𝛼𝑛

[𝐴(𝑚)
𝑛, 𝑗
(Σ), (𝑥 𝑗 ), 𝜌(𝑤 𝑗 ) = 1] ∈ℳ 𝑓 𝑟

0,1,0 for 𝑤 𝑗 > 𝛼𝑛

65



where 𝜌 is the step function defined on [0, 1] \ {𝛼1, ..., 𝛼𝑘 }, given by:

𝜌(𝑥) :=



0 for 𝑥 ∈ (0, 𝛼1)

𝛼𝑟+𝛼𝑟+1
2 for 𝑥 ∈ (𝛼𝑟 , 𝛼𝑟+1), 0 < 𝑟 < 𝑛

1 for 𝑥 ∈ (𝛼𝑘 , 1)

(6.3.3)

(the parametrization of the boundary 𝜕𝐴(𝑚)
𝑛, 𝑗

is given by the embeddings 𝜎𝜆1
𝛼1,𝑖1

).

Consider the complement Σ \⋃ 𝑗 𝜕𝐴
(𝑚)
𝑛, 𝑗
(Σ). Denote by 𝐺𝐽 (Σ) the graph with vertices given by

the connected component of Σ \ ⋃ 𝑗 𝜕𝐴
(𝑚)
𝑛, 𝑗
(Σ) and edges given by the components of 𝜕𝐴(𝑚)

𝑛, 𝑗
(Σ),

directed away from the vertices corresponding to disks 𝐴(𝑚)
𝑛, 𝑗
(Σ) if 𝑤 𝑗 < 𝛼𝑛 and towards them if

𝑤 𝑗 > 𝛼𝑛.

Consider a labeling of 𝐺𝐽 (Σ) with labels of vertices given by the corresponding connected

components of Σ \⋃ 𝜕𝐴
(𝑚)
𝑛, 𝑗

. The boundaries are considered as inputs or outputs according to the

orientations of the edges mentioned above.

This gives an element in the 0-skeleton (W𝑛,𝐽)0. Denote this element by 𝑥Σ.

We then define the map 𝜒𝑛 : 𝑈𝐽 → 𝑊𝑛,𝐽 by

Σ ↦→ 𝑥Σ

6.4 Verifying condition 6.3.1

We construct on 𝑊𝑛,𝐽 a homotopy between the identity and 𝜒𝑛 ◦ 𝜋. We start by describing

notions analogous to those in Section 5.3.

6.4.1 The graphs 𝐾𝑣

These are analogous to graphs 𝐻𝑣 defined in Section 5.3.2.

Let 𝑥 be an element in W𝑛,𝐽 with underlying graph 𝐺, and let 𝑥
𝑣

be the label of 𝑣 ∈ 𝑉 (𝐺) in 𝑥.

Let Σ𝑥 and Σ𝑥𝑣
denote the spotted surfaces obtained by gluing the inner-most labels of 𝑥 and 𝑥

𝑣
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respectively.

Then, denote by 𝐾𝑣 the graph with:

• vertices given by the connected components of Σ𝑥𝑣 \
⋃
𝑛 𝜕𝐴

(𝑚)
𝑛, 𝑗
(Σ𝑥), and

• edges given by connected components of
⋃
𝑛 𝜕𝐴

(𝑚)
𝑛, 𝑗
(Σ𝑥). The edges corresponding to 𝜕𝐴(𝑚)

𝑛, 𝑗

are directed away from the disk 𝐴(𝑚)
𝑛, 𝑗
(Σ𝑥) if 𝑤 𝑗 < 𝛼𝑛 and towards it if 𝑤 𝑗 > 𝛼𝑛.

6.4.2 Cut map 𝑐 : 𝐹 (𝑚)
𝑛,𝐽
→ 𝑊𝑛,𝐽

As before 𝑐 is defined as the geometric realization of a map of simplicial spaces given by

𝑐𝑟 : F(𝑚)
𝑛,𝐽
→ (W𝑛,𝐽)𝑟 . Maps 𝑐𝑟 are defined inductively as follows:

• 𝑟 = 0: Let 𝑥 ∈ (W𝑛,𝐽)0 be an element with underlying graph 𝐺. Then 𝑐0(𝑥) is defined by

the same expression as in (5.3.1), where now 𝑦
𝑣
, 𝑣 ∈ 𝑉 (𝐺) are defined as follows: let 𝑥

𝑣

denote the label of 𝑣 in 𝑥. Then 𝑦
𝑣

is defined to be the element of (W𝑛,𝐽)0 with underlying

ioda-graph 𝐾𝑣 as above and with the labels of vertices in 𝐾𝑣 given as follows:

– For vertices corresponding to connected components Σ𝑥 \
⋃
𝑖 𝜕𝐴

(𝑚)
𝑛, 𝑗

other than the disks

𝐴
(𝑚)
𝑛, 𝑗

, the label is given by the underlying Riemann surface, treating the boundaries

as inputs or outputs according to the edges of 𝐾𝑣 and forgetting any marked point

present on this surface (equivalently by the spotted surfaces containing no positive

weight marked point corresponding to the connected component).

– For vertices corresponding to the annuli 𝐴(𝑚)
𝑛, 𝑗

, the labels are given by the Riemann

surface with weighted marked point given by the annuli 𝐴(𝑚)
𝑛, 𝑗

and with both boundaries

treated as inputs.

• The inductive step for constructing the map 𝑐𝑟 assuming the existence of 𝑐𝑖 for 𝑖 < 𝑟 is

performed exactly as in section 5.3.3, with (WΣ)𝑖, 𝐻𝑣, and 𝐴𝜈 respectively replaced by

(W𝑛,𝐽)𝑖, 𝑘𝑣, and 𝐴(𝑚)
𝑛, 𝑗
(Σ).
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6.4.3 Map 𝑓𝜌 and homotopy 𝐻𝜌

Recall the step function 𝜌 from Section 6.3.3. We define 𝑓𝜌 : W𝑛,𝐽 →W𝑛,𝐽 to be the geometric

realization of the map of simplicial spaces which changes the label of a simplex by applying 𝜌 to

the weights of the marked point in the label. Function 𝜌 is continuous on its domain and thus the

induced map 𝑓𝜌 : W𝑛,𝐽 →W𝑛,𝐽 is continuous as well.

Let 𝐻𝜌 be the homotopy from the identity to 𝑓𝜌 obtained by linearly interpolating the weights of

the marked point in the labels.

6.4.4 Cut homotopy Φ𝑡 : 𝐹 (𝑚)𝑛,𝐽
→ 𝑊𝑛,𝐽

We now construct a homotopy from 𝑓𝜌 to the cut map 𝑐.

It defined exactly as the cut homotopy in Section 5.3.4, using the same formulas as there, provided

1. we replace the subcomplexW𝑛,Σ there with subcomplexW𝑛,𝐽

2. the simplicial components 𝑐𝑖 of the cut maps being used are as in Section 6.4.2 here, instead

of Section 5.3.3.

6.4.5 The Homotopy Ψ

Finally we have a homotopy Ψ form 𝑐 to the map 𝜒𝑛◦𝜋. The homotopy is again defined exactly

as in Section 5.3.5, with the following straightforward adjustments:

1. SubcomplexW𝑀
Σ

is replaced by the subcomplexW𝑛
𝑛,𝐽

given by simplices with labels 𝑥, such

that for a vertex 𝑣 with label 𝑥
𝑣

in 𝑥,

𝜋(𝑥
𝑣
) ∩ 𝐴(𝑚)

𝑛, 𝑗
(Σ) ≠ ∅ ⇒ 𝑥

𝑣
= 𝜂𝑟 (𝐴(𝑚)

𝑛, 𝑗
(Σ)) for some 𝑟

2. Section 𝜒𝑀
𝑛,Σ

is replaced by 𝜒𝑛 as in 6.3.2.

3. graph 𝐺𝜋(𝑥) is replaced by 𝐺𝐽 (𝑥) as in 6.3.2.

The homotopy Ψ is then defined using extra degeneracies and augmentations as in 5.3.5.
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6.4.6 Contraction homotopy proving condition (6.3.1)

This is just the concatenation of the cut homotopy Φ, from identity to the cut map, and homo-

topy Ψ, from 𝑐 to 𝜒𝑛 ◦ 𝜋.

This completes the proof of condition 6.3.1 and hence of the proof of Theorem 1.4.1(1).
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Chapter 7: From the TFT-properad to the Deligne–Mumford properad

We now prove that homotopy trivializing the io-subproperad of annuli 𝔐𝑢𝑛𝑠𝑡 in 𝔐 gives the

Deligne–Mumford properad 𝔐.

Let us recall the statement of the Theorem:

Theorem 7.0.1. 𝔐 is the homotopy colimit of the following diagram in the category of io-properads

𝔐𝑢𝑛𝑠𝑡 𝔐
𝑢𝑛𝑠𝑡

𝔐

(7.0.1)

As explained below in Section 8.4, properad 𝔐 takes values in stacks. In this chapter we shall

show that the homotopy colimit of the diagram (7.0.1) in the category of topological properads has

the property that for every (𝑛−, 𝑛+) the corresponding space of operations has the same homotopy

type as the stack 𝔐(𝑛−, 𝑛+) =
∐
𝑔≥0M

𝑓 𝑟
𝑔,𝑛− ,𝑛+ , in the sense of Section 8.2.2. The statement in the

category of io-properads then follows using Proposition 8.3.1.

A combination of the strategies used for proving Theorem 1.4.2 and Theorem 1.4.1(1) will

be used for proving Theorem 7.0.1. To highlight the similarity between the argument here and

in Section 5.2 as well as Section 6.3, we will use the same notation as in these sections for the

analogous notions here. As outlined in Remark 7.2.2 below, to account for the appearance of

composition of a sequence of nodal cylinders as well as nodal cylinders composed with disks with

positive weight marked points , some changes are needed when constructing the open sets and

filtration as in Section 5.2.1. In the rest of the section we carry out this proof.
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7.1 Homotopy pushout of (7.0.1)

Similar to Section 6.3, it turns out that for computing the pushout 7.0.1, it is convenient to

replace 𝔐,𝔐𝑢𝑛𝑠𝑡 ,𝔐 and 𝔐
𝑢𝑛𝑠𝑡

with homotopy equivalent properads M,M𝑢𝑛𝑠𝑡 ,M and M
𝑢𝑛𝑠𝑡

.

The definitions of these moduli spaces are of similar flavor as those in Section 6.1 using spotted

surfaces, but are slightly different. We now describe these:

Moduli spaces M𝑔,𝑛− ,𝑛+ , underlying properad M, are defined analogously as the moduli spaces

ℳ𝑔,𝑛− ,𝑛+ except the following: We do not impose the restriction that an irreducible component

without an output necessarily has a marked point of weight 1, instead we require that if (𝑔, 𝑛−, 𝑛+) =

(0, 0, 1) or (0, 1, 0), i.e. if with the Riemann surface underlying the spotted surface is given by a

disk, then it contains at least one weight 1 marked point .

Properad M is built using moduli spaces M𝑔,𝑛− ,𝑛+ which are defined similarly as M𝑔,𝑛− ,𝑛+ , with

the only difference being that we define it using stable nodal surfaces with weighted marked points

instead of smooth surfaces. We continue to impose the restriction that the spotted surface contains

at least one weight 1 marked point when (𝑔, 𝑛−, 𝑛+) = (0, 0, 1) or (0, 1, 0). Note that the identifi-

cation used for defining M by forgetting weight 0 marked points may involve collapsing unstable

components.

Finally, M𝑢𝑛𝑠𝑡 and M
𝑢𝑛𝑠𝑡

are defined as the subproperad consisting of (possibly nodal) spotted sur-

faces such that the underlying surface, obtained by forgetting all the marked points , is a (possibly

nodal) annulus, or a disk.

The following proposition is proved using an argument similar to the one used for Proposition

6.1.2:

Proposition 7.1.1. The maps

M→𝔐, M𝑢𝑛𝑠𝑡 →𝔐𝑢𝑛𝑠𝑡 , M→𝔐 and M
𝑢𝑛𝑠𝑡 →𝔐

𝑢𝑛𝑠𝑡
,

given by mapping a spotted surface to the underlying nodal Riemann surface, are a homotopy

equivalence of properads.
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□

Thus to compute the homotopy pushout of diagram (7.0.1), we use the homotopy equivalent

pushout diagram

M←M𝑢𝑛𝑠𝑡 →M
𝑢𝑛𝑠𝑡

Using Proposition 3.2.8 and 3.2.11, and an argument similar to the one used in Section 5.1, we

know that the homotopy pushout of the diagram (7.0.1) coincides with the topological io-properad�����G
(
G•M

∐
G•M𝑢𝑛𝑠𝑡

G•M
𝑢𝑛𝑠𝑡

)����� .
Consider the induced map �����G

(
G•M

∐
G•M𝑢𝑛𝑠𝑡

G•M
𝑢𝑛𝑠𝑡

)�����→M. (7.1.1)

We now show that this is a weak equivalence of io-properads in stacks, in the sense of Section

8.2.2 below.

7.2 (7.1.1) is a weak-equivalence

As in Section 5.2, we will prove that for every stable nodal spotted surface Σ, there is a chart

𝑈Σ of M such that for the atlas

𝑈 =
∐

Σ1,...,Σ𝑘∈M

𝑈Σ1,...,Σ𝑘
→M

where𝑈Σ1,...,Σ𝑘
= 𝑈Σ1

×
M
... ×

M
𝑈Σ𝑘

, and for the pullback

𝜋 :

�����G
(
G•M

∐
G•M𝑢𝑛𝑠𝑡

G•M
𝑢𝑛𝑠𝑡

)����� ×M 𝑈 → 𝑈

of (7.1.1) to this atlas, the following property holds: for every finite collection Σ1, ..., Σ𝑘 ,

𝜋−1(𝑈Σ1,...,Σ𝑘
) → 𝑈Σ1,...,Σ𝑘

is a weak homotopy equivalence. (7.2.1)
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We will in fact show that open sets 𝜋−1(𝑈Σ) have a covering {𝑊𝑛,Σ}𝑛∈N such that for every 𝐼 ⊂ N

non-empty,

𝜋 |𝑊𝐼,Σ
: 𝑊𝐼,Σ → 𝑈Σ is a weak homotopy equivalence,

where𝑊𝐼,Σ =
⋂
𝑛∈𝐼𝑊𝑛,Σ.

As in Section 5.2 we shall prove this by exhibiting a filtration

𝐹
(1)
𝐼,Σ
⊂ ... ⊂ 𝐹 (𝑚)

𝐼,Σ
... ⊂ 𝑊𝐼,Σ

which satisfies a condition analogous to Condition (5.2.3), with 𝑊𝑛,Σ there replaced by 𝑊𝐼,Σ, and

section 𝜒(𝑚)
𝑛,Σ

there replaced by a section 𝜒(𝑚)
𝑛,Σ

: 𝑈Σ → 𝑊𝐼,Σ.

7.2.1 Construction of𝑈Σ,𝑊𝑛,Σ, and 𝐹 (𝑚)
𝐼,Σ

Suppose that Σ is a nodal spotted surface. Let 𝑖 be the number of positive weight marked points

on Σ and 0 < 𝛼 < 1 be such that there exists no marked point with weight ≤ 𝛼 in Σ. Σ be the

nodal Riemann surface underlying Σ.

The open set𝑈Σ is defined to be the set of nodal spotted surfaces satisfying the following conditions

1. The underlying nodal Riemann surface lies in an open set 𝑈Σ constructed exactly as in Sec-

tion 5.2.1, the only difference being this time we work with Σ in M 𝑓 𝑟

𝑔,𝑛− ,𝑛+ (𝑖), the moduli

space of stable nodal Riemann surfaces with 𝑖 marked points, instead of M̂ 𝑓 𝑟
𝑔,𝑛− ,𝑛+ .

2. Shrinking𝑈Σ if necessary, we may assume that there exists a choice of charts 𝜎Σ′, 𝑗 , 1 ≤ 𝑗 ≤ 𝑖

centered at the 𝑗 th marked point in each surface Σ′ ∈ 𝑈Σ, varying continuously with Σ′.

Then, we assume that there are no marked points with weight ≥ 𝛼 lying outside the images

of these charts.

The open sets𝑊𝑛,Σ are constructed as follows:

For a simplex

𝑥 ∈ G𝑛+1M
∐

G𝑛+1M𝑢𝑛𝑠𝑡

G𝑛+1M
𝑢𝑛𝑠𝑡
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define 𝛾𝑥 as in Section 5.2.1.

Remark 7.2.1. In the current situation, the map 𝛾𝑥 may not be an embedding and moreover its

image may not be disjoint from the nodes or the marked points . More precisely, the image of a

component 𝑆1 under 𝛾𝑥 is either disjoint from the nodes and marked points , or is contained inside

one. Components mapping into nodes arise when we consider simplices 𝑥 for which the associated

labeled graph contains a string of nodal annuli. Such strings do not appear in graphs considered

in Section 5.2.1 since any vertex labeled by a nodal annulus there is of type (0, 2). Components

mapping into marked points arise from simplices for which the associated labeled graph contains

a path with one of the vertices labeled by a nodal annulus and which terminates in a vertex labeled

by a disk with a positive weight marked point .

For each 𝑛 and 𝜈 ∈ V, let 𝐾 (𝑚)𝑛,𝜈 be the open subset of the universal curve CΣ over 𝑈Σ defined

by

𝐾
(𝑚)
𝑛,𝜈 =

{
(𝑧, 𝑡) ∈ 𝑅𝜈̂ × DV

�����|𝑡𝜈 | ∈ [
0,

1
4𝑛2

]
, and

|𝑧𝜈̂ (𝑧) | ∈


|𝑡𝜈 |
1
𝑛−1

(
1 + 1

𝑚

) , |𝑡𝜈 |
1
𝑛

(
1 − 1

𝑚

)  ∪
[
1
𝑛

(
1 − 1

𝑚

)
,

1
𝑛 − 1

(
1 + 1

𝑚

)] }
.

Set

𝐾
(𝑚)
𝑛 :=

⋃
𝜈∈V

𝐾
(𝑚)
𝑛,𝜈 .

Also for every 𝑛 and 1 ≤ 𝑗 ≤ 𝑖, let 𝐿 (𝑚)
𝑛, 𝑗
⊂ CΣ be the open set defined by the union of images

𝐿
(𝑚)
𝑛, 𝑗

:=
⋃

Σ′∈𝑈Σ

𝜎Σ′, 𝑗

[
1
𝑛

(
1 − 1

𝑚

)
< |𝑧 | < 1

𝑛 − 1

(
1 + 1

𝑚

)]

Define F(𝑚)
𝑛,Σ

to be the simplicial subspace of G𝑛+1M
∐
G𝑛+1M𝑢𝑛𝑠𝑡 G𝑛+1M

𝑢𝑛𝑠𝑡
consisting of sim-

plices 𝑥 such that the associated embedding 𝛾𝑥 is disjoint from 𝐾
(𝑚)
𝑛 ∪ 𝐿 (𝑚)𝑛 . Set F(𝑚)

𝐼,Σ
to be the
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intersection

F𝐼,Σ :=
⋂
𝑛∈𝐼
F𝑛,Σ .

Set 𝐹 (𝑚)
𝑛,Σ

and 𝐹 (𝑚)
𝐼,Σ

to be the open sets of
���G𝑛+1M∐

G𝑛+1M𝑢𝑛𝑠𝑡 G𝑛+1M
𝑢𝑛𝑠𝑡

��� corresponding to these

subcomplexes. We set

W𝑛,Σ :=
⋃
𝑚∈N
F
(𝑚)
𝑛,Σ

and W𝐼,Σ =
⋂
𝑛∈𝐼
W𝑛,Σ

Finally, we define

𝑊𝑛,Σ =
⋃
𝑛∈N

𝐹
(𝑚)
𝑛,Σ
.

𝑊𝑛,Σ deformation retracts onto the geometric realization of the subcomplexW𝑛,Σ.

Note that the open subsets

𝐹
(𝑚)
𝐼,Σ

:=
⋂
𝑛∈𝐼

𝐹
(𝑚)
𝑛,Σ

deformation retract onto the subcomplexes F𝐼,Σ and provide a filtration of the subspace

𝑊𝐼,Σ =
⋂
𝑛∈𝐼
𝑊𝑛,Σ

Remark 7.2.2. Note that this is analogous to the construction of open sets 𝐴𝜈𝑛 and W𝑛,Σ in 5.2.1,

except that in this case instead of an annulus containing the node we have a union of two annuli,

one on each side of the node, and both disjoint from the node. This is necessary since the open

sets constructed using annuli 𝐴𝜈𝑛 as in 5.2.1 do not cover the entire geometric realization in the

current context: for all 𝑥 which contains a sequence of nodal annuli as mentioned in Remark 7.2.1,

the image of 𝛾𝑥 intersects annuli 𝐴𝜈𝑛 for any 𝑛. In order to construct a filtration which covers such

points and moreover gives an open subset in the geometric realization, it is natural to work with

the sets 𝐾𝜈𝑛 considered above.
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(a) Open sets𝑊𝑛,Σ (b) Circles 𝑆𝜈̂ , 𝑆𝜈̌

Figure 7.1

7.3 Proof of Condition (5.2.3)

Let us now turn to the fiberwise contraction.

Fix any 𝑛0 ∈ 𝐼. Let Σ′ ∈ 𝑈Σ and let 𝑆𝜈̂ (Σ′), and 𝑆𝜈̌ (Σ′) be circles defined by

𝑆𝜈̂ (Σ′) =
{
(𝑧, 𝑡𝜈̂ (Σ′))

���|𝑧𝜈̂ (𝑧) | = 1
𝑛0

(
1 + 1

2𝑚

)}
, 𝑆𝜈̌ (Σ′) =

(𝑧, 𝑡𝜈̂ (Σ′))
���|𝑧𝜈̂ (𝑧) | = |𝑡𝜈̂ | (Σ′)

1
𝑛0

(
1 + 1

2𝑚

)  ⊂ Σ′

Denote by 𝐴𝜈 (Σ′) the annulus bounded by 𝑆𝜈̂ and 𝑆𝜈̌ in Σ′. Similarly, let 𝑆 𝑗 (Σ′) and 𝑆 𝑗 (Σ′) denote

the circles

𝑆 𝑗 (Σ′) = 𝜎Σ′, 𝑗

({
|𝑧 | = 1

𝑛0

(
1 − 1

𝑚

)})
and 𝑆 𝑗 (Σ′) = 𝜎Σ′, 𝑗

({
|𝑧 | = 1

𝑛0 − 1

(
1 + 1

𝑚

)})
and 𝐴 𝑗 (Σ′) be the annulus bounded by these.

Having thus defined 𝐴𝜈 (Σ′) and 𝐴 𝑗 (Σ′), rest of the argument for verifying Condition (5.2.3),

including the construction of cut maps, cut homotopies, and the contraction proving Condition

(5.2.3), proceeds by combining the constructions in Sections 5.3 and 6.3 in a straightforward man-

ner, with cuts made around both the nodes and weight 1 marked points . The corresponding maps

and homotopies can be defined using exactly the same expressions as in Section 5.3, provided we

adopt the definition of graphs 𝐻𝑣 constructed in 5.3.2 as follows:
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7.3.1 Modification of graphs from Section 5.3.2

Let 𝑥 be an element in W𝐼,Σ with underlying graph 𝐺, and let 𝑥
𝑣

be the label of 𝑣 ∈ 𝑉 (𝐺) in

𝑥. Let Σ𝑥 and Σ𝑥𝑣
denote the spotted surfaces obtained by gluing the inner-most labels of 𝑥 and 𝑥

𝑣

respectively.

Then, in this case we define 𝐻𝑣 to be the graph with:

• vertices given by the connected components of Σ𝑥𝑣 \
(⋃

𝜈 𝜕𝐴𝜈 (Σ𝑥) ∪
⋃
𝑗 𝜕𝐴 𝑗 (Σ𝑥)

)
, and

• edges given by connected components of
⋃
𝜈 𝜕𝐴𝜈 (Σ𝑥) ∪

⋃
𝑗 𝜕𝐴 𝑗 (Σ𝑥). The edges corre-

sponding to 𝜕𝐴𝜈 (Σ𝑥) are directed away from the annulus 𝐴𝜈
𝑛, 𝑗
(Σ𝑥) and those corresponding

to 𝜕𝐴 𝑗 (Σ𝑥) are directed away from the disk 𝐴 𝑗 (Σ𝑥).

Remark 7.3.1. Unlike the graphs 𝐻𝑣 constructed in 5.3.2, analogously defined graphs here will

not satisfy the property that every vertex has an output (see Remark 5.3.1). This was needed to

ensure that the cut maps and homotopies constructed there land in appropriate targets. This itself

was necessary since properad 𝜕+𝔐 has no operations with 𝑛+ = 0. However in the current case,

properad M has operations in all components and thus the constraint on graphs 𝐻𝑣 mentioned

above is not relevant for the construction of cut maps and homotopies in this case.

Having thus adopted the definition of graphs 𝐻𝑣, the rest of the argument for proving condition

5.2.3 carries over from Section 5.3, with the same formulae defining the maps and homotopies in

this case. This concludes the proof of condition Condition (5.2.3), and hence of Theorem 7.0.1
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Chapter 8: Homotopy colimits of properads in stacks

In this chapter we outline a formalism for ∞-io-properads and explain how to view 𝔐 as an

example of such a properad. Moreover, we explain how to interpret the earlier statements about

homotopy pushouts of io-properads in the context of∞-io-properads.

In this chapter we use the language of ∞-operads and ∞-categories. The main references for

this part are [28, Section 2.1], and [29, Section 5.2]. We shall also use the theory of homotopy type

of stacks and singular simplicial complexes of stacks developed in [30] and [31].

8.1 ∞-properads

As in the case of operads, there are now a number of models available for up-to-homotopy

properads. In [32], a model for ∞-properads in terms of graphical sets (presheaves on a certain

category of graphs) was constructed, generalizing the dendroidal sets approach to ∞-operads. A

model category structure was constructed on the category of simplicial properads in [33], gener-

alizing an analogous structure on the category of simplicial operads. Another approach is to use

the fact that ordinary properads can be expressed as algebras over a colored operad. A model for

∞-properads can then be obtained by considering algebras over the∞-operad associated with this

operad.

We will follow this last approach to set up a category of ∞-io-properads. The reason behind

this choice is that in the restricted setting of io-properads, the results of [34] can be used to prove

Proposition 8.1.2. It gives a convenient way for comparing the homotopy categories, and in par-

ticular the homotopy colimits, of ordinary io-properads with those of∞-io-properads. Proposition

8.1.2 uses the fact that we are working with io-properads: the corresponding theorem for non-io-

properads is known to be false (see Remark 8.1.3 below).
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8.1.1 ∞-properads

As described in [28], we can associate to any colored operad O a category O⊗ with a map

O⊗ → F 𝑖𝑛∗ such that the associated map of nerves 𝑁O⊗ → 𝑁F 𝑖𝑛∗ defines an ∞-operad. We

denote this ∞-operad simply as O⊗ and refer to it as the ∞-operad associated to O. For later

reference, we note here that

• objects of O⊗ are sequences 𝑐1, ..., 𝑐𝑘 of colors of O, and

• morphisms in O⊗ from {𝑐𝑖}𝑖∈[𝑘] to {𝑑 𝑗 } 𝑗∈[𝑙] are given by a map 𝛼 : [𝑘] → [𝑙] along

with an element

𝜙 𝑗 ∈ O({𝑐𝑖}𝑖∈𝛼−1 ( 𝑗); 𝑑 𝑗 ) for every 𝑗
(8.1.1)

Given a symmetric monoidal category (C, ⊗), we have an associated colored operad OC . We

will denote the corresponding category O⊗C simply as C⊗. Here,

• objects of C⊗ are given by sequences of 𝑐1, ...., 𝑐𝑛 of objects in C and

• morphisms in C⊗ between {𝑐𝑖}𝑖∈[𝑘] and {𝑑 𝑗 } 𝑗∈[𝑙]) are given by a maps 𝛼 : 𝜙 : [𝑘] →

[𝑙] along with an element

𝜙 𝑗 ∈ C ©­«
⊗

𝑖∈𝛼−1 ( 𝑗)
𝑐𝑖; 𝑑 𝑗

ª®¬ for every 𝑗

(8.1.2)

Notice that the data of an O-algebra in C is equivalent to an∞-operad map O⊗ → C⊗.

More generally when C is a symmetric monoidal ∞-category, there is an associated ∞-operad

C⊗ → 𝑁F 𝑖𝑛∗. Now, recall the set-valued, colored operad Prpdred defined in Section 2.6 above.

Note that an algebra over Prpdred in Top is precisely a topological properad. Let Prpd⊗red denote

the∞-operad associated to Prpdred.

Definition 8.1.1. An ∞-io-properad in a symmetric monoidal ∞-category C is defined to be a

morphism of∞-operads Prpd⊗red → C
⊗, in other words a Prpd⊗red-algebra in C.
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These algebras can be assembled into an∞-category which we denote by 𝐴𝑙𝑔Prpd⊗red
(C).

8.1.2 The comparison functor

Recall that to any model category 𝐴 we can associate an∞-category 𝑁 (𝐴𝑐) [𝑊−1], where

1. 𝐴𝑐 denotes the full subcategory of cofibrant objects in 𝐴,

2. 𝑁 (𝐴𝑐) denotes the∞-category obtained by taking the nerve of the ordinary category 𝐴𝑐,

3. 𝑊 is the collection of weak equivalences in 𝐴𝑐, and

4. 𝑁 (𝐴𝑐) [𝑊−1] denotes the (∞-categorical) localization of the∞-category 𝑁 (𝐴𝑐) at𝑊 .

(see [28, Definition 1.3.4.15 and Remark 1.3.4.16]). This is an ∞-categorical enhancement of the

homotopy category of 𝐴. In particular, homotopy colimits in 𝐴 correspond to the ∞-categorical

colimits in 𝑁 (𝐴𝑐) [𝑊−1].

We denote the ∞-categories associated with the model categories Top and 𝐴𝑙𝑔Prpdred (Top) by

Top∞ and 𝐴𝑙𝑔Prpdred (Top)∞.

We have a comparison map

𝐴𝑙𝑔Prpdred (Top)∞ → 𝐴𝑙𝑔Prpd⊗red
(Top∞) (8.1.3)

between∞-categories.

Proposition 8.1.2. The comparison functor (8.1.3) is an equivalence of∞-categories.

Proof. This is an analogue for ∞-io-properads of [35, Theorem 7.2.4], which itself is a corollary

of [34, Theorem 7.11]. As in [35], the main step is the verification of the symmetric flatness

hypothesis in [34, Theorem 7.11], which in our case follows from Lemma 2.6.3. □

Remark 8.1.3. In Proposition 8.1.2 we use the fact that we are working with input-output prop-

erads. The corresponding statement is not true for ordinary properads (see [35, Theorem 7.2.5]).

However, even without the full strength of the proposition, it may still be possible to show that the
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homotopy colimits appearing in our theorems continue to be preserved in the context of ordinary

∞-properads. We do not pursue this here.

8.2 Topological stacks and their homotopy theory

In this section we recall the definition of topological stacks and construct an∞-category mod-

eling their homotopy theory.

8.2.1 Topological stacks

Recall that a groupoid is a category in which every morphism is an isomorphism. Groupoids

form a (strict) 2-category. An equivalence of groupoids is an equivalence of the underlying cate-

gories.

Denote by 𝒫𝒮ℎ𝑣(Grpd) the (strict) 2-category of presheaves of groupoids over topological spaces.

By the Yoneda Lemma, we have a fully faithful embedding

Top→ 𝒫𝒮ℎ𝑣(Grpd).

More precisely, for any topological space 𝑇 and a presheaf of groupoidX, we have an isomorphism

of groupoids

X(𝑇) ≃ 𝒫𝒮ℎ𝑣(Grpd) (X, 𝑇).

Say that a map of presheaves X → Y is an equivalence if for every topological space 𝑇 , the

corresponding maps X(𝑇) → Y(𝑇) are equivalences of groupoids. Two presheaves are called

equivalent if they are related by a zig-zag of equivalences.

Definition 8.2.1. A stack over topological spaces is a presheaf of groupoids X such that for any

topological space 𝑇 and an open cover {𝑈𝛼} of 𝑇 ,

X(𝑇) → lim−−→

[∏
𝛼

X(𝑈𝛼) →→
∏
𝛼,𝛽

X(𝑈𝛼𝛽) →→→
∏
𝛼,𝛽,𝛾

X(𝑈𝛼𝛽𝛾)
]
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is an equivalence of groupoids. Here lim−−→ is the 2-categorical limit in the category of groupoids.

Let 𝒮𝑡𝑘 denote the full subcategory spanned by stacks in 𝒫𝒮ℎ𝑣(Grpd). Equivalences of

stacks are precisely those of the underlying presheaves of groupoids.

Remark 8.2.2. Conventionally a stack is defined as a category fibered in groupoids which satis-

fies a descent condition. Let G𝑟 𝑝𝑑/Top denote the 2-category of categories fibered in groupoids

over Top. It was proved in [36], that there are model category structures on G𝑟 𝑝𝑑/Top and

𝒫𝒮ℎ𝑣(Grpd) such that the weak equivalences in both categories are given by the correspond-

ing notions of equivalences. Moreover, there is an adjunction

Γ : G𝑟 𝑝𝑑/Top⇆ 𝒫𝒮ℎ𝑣(Grpd) : 𝑝

which is a Quillen equivalence with respect to these model structures. Furthermore, this adjunction

restricts to one between the category of categories fibered in groupoids over topological spaces

which satisfy a descent condition and the category of stacks in the sense of Definition 8.2.1. Thus

both these approaches for defining stacks turn out to be equivalent.

For later reference, we note that the functor Γ is given by

Γ : E ↦→ (𝑇 ↦→ G𝑟 𝑝𝑑/Top𝐺𝑟𝑝𝑑 (Top/𝑇, E)).

Here ,

1. Top/𝑇 given by the category of topological spaces with a map to 𝑇 . Note that this is a

category fibered in groupoids over Top.

2. G𝑟 𝑝𝑑/Top𝐺𝑟𝑝𝑑 (_, _) denotes the groupoid of 1-morphisms in G𝑟 𝑝𝑑/Top.

Recall that a topological groupoid X is a groupoid such that the set of objects and the set

of morphisms are topological spaces, and moreover all the structure maps (source, target, iden-

tities, compositions, and inverses) are continuous. Let TopGrpd be the category of topological

groupoids.
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Given a topological groupoid X, we can define a presheaf given by

𝑇 ↦→ [X] (𝑇) := TopGrpd𝐺𝑟𝑝𝑑 (𝑇,X)

where TopGrpd𝐺𝑟𝑝𝑑 denotes the groupoid of TopGrpd-morphisms from 𝑇 to X. This presheaf

can be sheafified to obtain a stack [X], known as the quotient stack of X, by

[X] : 𝑇 → lim−−→
𝑈 ⊂

𝑜𝑝𝑒𝑛
𝑇

TopGrpd𝐺𝑟𝑝𝑑 (𝑈,X)

Definition 8.2.3. By a topological stack we mean a stack which is equivalent to the quotient stack

of some topological groupoid.

8.2.2 Homotopy type of a topological stack

Following [30, Section 5] we say that a map of topological spaces 𝑓 : 𝑋 → 𝑌 is shrinkable if it

has a section 𝑠 : 𝑌 → 𝑋 such that 𝑋 admits a fiberwise relative deformation retract onto 𝑠(𝑌 ). We

say that a map 𝑓 : 𝑋 → 𝑌 is locally shrinkable if 𝑌 has an open cover {𝑈𝛼} such that 𝑓 | 𝑓 −1 (𝑈𝛼) is

shrinkable for each 𝛼.

Say that a representable map of topological stacks 𝑓 : X → Y is locally shrinkable if for any

topological space 𝑇 and a map 𝑔 : 𝑇 → Y, the pullback 𝑔×Y 𝑓 : 𝑇 ×YX → 𝑇 is locally shrinkable.

We say that a representable mapX → Y of topological stacks is a universal weak equivalence if for

any topological space 𝑇 with a map 𝑇 → Y, the induced map 𝑇 ×Y X → 𝑇 is a weak equivalence.

In particular, any locally shrinkable map is a universal weak equivalence.

Finally, we say that a stack X admits an atlas if there exists a representable map 𝑈 → X from

a topological space 𝑈, such that for any topological space 𝑇 and a map 𝑇 → X the pullback

𝑇 ×X 𝑈 → 𝑇 admits local sections. It follows from the definition of topological stacks that every

topological stack admits an atlas.

Note that if𝑉 → Y is an atlas for𝑌 , a representable map of stacksX → Y is locally shrinkable
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(respectively, a universal weak equivalence) if and only if the induced map of topological spaces

𝑇 ×Y X → X is locally shrinkable (respectively, a weak equivalence).

Definition 8.2.4. We say that a topological space 𝑋 represents the weak homotopy type of a stack

X if there exists a universal weak homotopy equivalence 𝑋 → X.

Note that such a representative, if it exists, is unique up to weak homotopy equivalence. We

now state a theorem, due to Noohi, guaranteeing the existence of such a space:

Theorem 8.2.5 ([31, Theorem 3.4]). Let X be a topological stack. Then there exists a topological

space 𝑋 along with a map 𝑋 → X which is locally shrinkable and in particular a universal weak

equivalence.

From Theorem 8.2.5 it follows that the weak homotopy type of every topological stack can be

represented by a topological space.

Given a map of stacks 𝑓 : X → Y and a topological space 𝑌 representing the weak homotopy

type of Y via a map 𝑌 → Y, the pullback 𝑋 := 𝑌 ×Y X → X represents the weak homotopy type

of 𝑋 and moreover, we have an induced map 𝑓̃ : 𝑋 → 𝑌 . In Section 8.2.4 below, we shall construct

a model for the homotopy theory of topological stacks obtained by inverting maps 𝑓 such that the

induced maps 𝑓̃ on representatives of the homotopy types are weak homotopy equivalences.

8.2.3 Singular simplicial complexes of presheaves of groupoid

Let 𝑠𝒮𝑒𝑡 denote the category of simplicial sets. We now define a functor

𝒮𝑖𝑛𝑔 : 𝒫𝒮ℎ𝑣(Grpd) → 𝑠𝒮𝑒𝑡.

For an X ∈ 𝒫𝒮ℎ𝑣(Grpd), define XΔ to be the simplicial groupoid

XΔ : 𝑛 ↦→ X(Δ𝑛).
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Let 𝑁 (XΔ) denote the bisimplicial set obtained by taking level-wise nerve of XΔ. Finally, define

𝒮𝑖𝑛𝑔(X) by

𝒮𝑖𝑛𝑔(X) := Diag(𝑁 (XΔ)),

where Diag : 𝑏𝑠𝒮𝑒𝑡 → 𝑠𝒮𝑒𝑡 is the diagonal functor defined by {Y𝑚,𝑛}𝑚≥0,𝑛≥0 ↦→ {Y𝑛,𝑛}𝑛≥0.

We note here a useful property of 𝒮𝑖𝑛𝑔:

Lemma 8.2.6. 𝒮𝑖𝑛𝑔 preserves limits. In particular, 𝒮𝑖𝑛𝑔 preserves products. □

8.2.4 ∞-category of stacks

Given two stacks X and Y, we can consider the mapping stack Maps(X,Y). The underlying

presheaf of groupoids is given by

𝑇 ↦→ 𝒮𝑡𝑘𝐺𝑟𝑝𝑑 (X × 𝑇,Y),

where 𝒮𝑡𝑘𝐺𝑟𝑝𝑑 denotes the groupoid of stack morphisms. Using the functor 𝒮𝑖𝑛𝑔 above we can

associate with this stack a simplicial set 𝒮𝑖𝑛𝑔(Maps(X,Y)). Using Lemma 8.2.6, it follows that

this provides a simplicial enrichment of the category of stacks. Denote this simplicial category by

𝒮𝑡𝑘Δ.

We can associate with this a fibrant simplicial category by taking the Kan replacements of

the simplicial morphism spaces: Recall that the category 𝑠𝒮𝑒𝑡 has a symmetric monoidal fibrant

replacement functor given by

𝑋 ↦→ 𝑋∧ = Maps(Δ•, |𝑋 |)

Using this functor, we replace the 𝑠𝒮𝑒𝑡-morphism spaces 𝒮𝑖𝑛𝑔(Maps(X,Y)) by their fibrant re-

placement 𝒮𝑖𝑛𝑔(Maps(X,Y))∧. This gives us a fibrant simplicial enrichment of the category of

stacks. Taking the homotopy coherent nerve of this category gives an ∞-category 𝒮𝑡𝑘∞. As a

model for the homotopy theory of topological stacks, we shall use a category 𝒮𝑡𝑘∞ which is ob-

tained by further localization of 𝒮𝑡𝑘∞ at the class of morphisms mentioned at the end of Section
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8.2.2 above.

Let TopΔ denote the simplicially enriched category of spaces and T̃op∞ the corresponding

∞-category of spaces. Note that

Top∞ = T̃op∞ [𝑆−1],

where 𝑆 denotes the class of weak homotopy equivalences in T̃op∞ (see for example, [28, Theorem

1.3.4.20]). For topological spaces 𝑋,𝑌 , the mapping stack Maps(𝑋,𝑌 ) is the stack associated with

the space of continuous maps Top(𝑋,𝑌 ) with the usual compact-open topology. Thus, the functor

T̃op∞ → 𝒮𝑡𝑘∞

obtained by mapping a topological space to the stack associated to it, is fully faithful.

We now state Lemma 8.2.7 and Proposition 8.2.8 which are general category theoretic results.

These are essentially ∞-categorical refinements of some results from [30, Section 7]. We shall

use ∞-categorical generalizations of the 1-categorical arguments in loc. cit. to prove their ∞-

categorical enhancements.

Recall that for an ∞-category C and a collection of morphismsW in C, C[𝑊−1] denotes the

∞-categorical localization of C at𝑊 .

Lemma 8.2.7 ([30, Lemma 7.5]). Let 𝐹 : D ⇆ E : 𝐺 be an adjunction between∞-categories. Let

𝑆 ⊂ D and 𝑇 ⊂ E be collection of morphisms such that 𝐹 (𝑆) ⊂ 𝑇 and 𝐺 (𝑇) ⊂ 𝑆. Then, there is

an induced adjunction

𝐹 : D[𝑆−1] ⇆ E[𝑇−1] : 𝐺

Moreover, if 𝐹 is fully-faithful then so is 𝐹.

Proof. The existence of the adjoint follows using [37, Proposition 7.1.14]. If 𝐹 is fully-faithful it

follows that the unit of the adjunction 1E ⇒ 𝐺 ◦ 𝐹 is an isomorphism of∞-functors. In this case,

the unit of the adjunction induced on localized categories is also an isomorphism and it follows

that the functor 𝐹 is fully-faithful as well. □
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Let us now turn to Proposition 8.2.8. The set up for the proposition is as follows: Let B → C

be a fully-faithful functor between∞-categories and let 𝑅 be a class of morphisms in B which con-

tains all identities, is closed under compositions, and is closed under pullbacks (see [37, Definition

7.2.14] for the precise meanings of these terms). Denote by 𝑅 the class of morphisms 𝑓 : 𝑦 → 𝑥 in

C satisfying the property that for any 𝑝 : 𝑡 → 𝑥 with 𝑡 ∈ B, the pullback 𝑡 ×𝑥 𝑦 → 𝑡 of 𝑓 along 𝑝

is in 𝑅.

Proposition 8.2.8 ([30, Lemma 7.1, 7.2]). In the setting described in the previous paragraph,

suppose that for every 𝑥 ∈ C, there exists an object 𝜃 (𝑥) in B along with a map 𝜃 (𝑥) → 𝑥 lying in

𝑅. Then, the functor B → C induces a functor 𝑖 : C[𝑅−1] → B[𝑅−1] which is fully faithful and

has a right adjoint B[𝑅−1] → C[𝑅−1] which naturally extends 𝜃. Further, the functors 𝑖 and 𝜃

induce an equivalence between C[𝑅−1] and B[𝑅−1].

Proof. Let H denote the homotopy category of spaces and let ℎB[𝑅−1] and ℎC[𝑅−1] denote the

H -enriched homotopy categories of B[𝑅−1] and C[𝑅−1] respectively, as described in [29, Section

1.1.5]. Let ℎ𝑖 : ℎB[𝑅−1] → ℎC[𝑅−1] be the functor induced by inclusion 𝑖 : B → C. We shall

prove that ℎ𝑖 is fully faithful and has a right adjoint

ℎ𝜃 : ℎC[𝑅−1] → ℎB[𝑅−1]

given by 𝜃 (_) on objects. It will follows that 𝑖 is fully-faithful and using [29, Proposition 5.2.2.12]

we get that 𝑖 has a right adjoint

𝜃 : C[𝑅−1] → B[𝑅−1],

Using the proof of that proposition it follows that we may assume that 𝜃 is given by 𝜃 (_) on objects.

Finally, the fact that 𝑖 and 𝜃 induce an equivalence of categories C[𝑅−1] and B[𝑅−1] follows using

Lemma 8.2.7.

Let us now turn to the construction of the functor ℎ𝜃. In order to carry out the construction we use

the description of morphism spaces in localizations given by the theory of Calculus of Fractions

discussed in [37, Section 7.2].
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Using Theorem 7.2.16 and Remark 7.2.10 from [37] it follows that the class 𝑅 of morphisms has

a right calculus of fractions given by the maximal putative right calculus of fraction at each object

and the homotopy types of the morphism spaces in the localization are given by the following

homotopy equivalences of simplicial sets

C[𝑅−1] (𝑥, 𝑦) ≃ Span𝑅C (𝑥, 𝑦) and

B[𝑅−1] (𝑥, 𝑦) ≃ Span𝑅B (𝑥, 𝑦),

Here Span𝑅C (𝑥, 𝑦) (respectively, Span𝑅B (𝑥, 𝑦)) denotes the∞-category of diagrams of the form 𝑥
𝑟←−

𝑥̃
𝑓
−→ 𝑦 in C (respectively, B) with 𝑟 in 𝑅 (see [37, Remark 7.2.10] for more on the Span-categories).

Applying [37, Lemma 7.2.15] to the map 𝜃 (𝑦) → 𝑦 and using the fact that the pull-back of

𝜃 (𝑦) → 𝑦 along any 𝑥 → 𝑦 with 𝑥 ∈ B lies in 𝑅, it follows that the map

𝑖𝑥,𝑦 : Span𝑅B (𝑥, 𝜃 (𝑦)) → Span𝑅C (𝑥, 𝑦)

given by inclusion B → C followed by post-composition with the map 𝜃 (𝑦) → 𝑦, has a right

adjoint 𝑔𝑥,𝑦. Moreover, on the level of objects 𝑔𝑥,𝑦 is given by mapping a span 𝑥
𝑟←− 𝑧

𝑓
−→ 𝑦 in C to

the span 𝑥
𝑟 ′←− 𝑧′

𝑓 ′

−→ 𝜃 (𝑦) in B where 𝑓 ′ is obtained by considering the cartesian square

𝑧′ 𝜃 (𝑦)

𝑧 𝑦

𝑓 ′

𝑠

𝑓

and 𝑟′ = 𝑟 ◦ 𝑠. It follows that for any 𝑥 ∈ B and 𝑦 ∈ C, the map

𝑖𝑥,𝑦 : B[𝑅−1] (𝑥, 𝜃 (𝑦)) → C[𝑅−1] (𝑥, 𝑦)

induces a homotopy equivalence of the simplicial sets underlying the ∞-categories, with the ho-

motopy inverse given by the 𝑔𝑥,𝑦.
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We now describe the H -enriched functor ℎ𝜃 : ℎC[𝑅−1] → ℎB[𝑅−1] : On objects it is given by

𝜃 (_), as mentioned above. On morphisms we define ℎ𝜃𝑥,𝑦 by the composition

ℎC[𝑅−1] (𝑥, 𝑦) → ℎC[𝑅−1] (𝜃 (𝑥), 𝑦)
𝑔𝜃 (𝑥 ) ,𝑦−−−−−→ ℎB[𝑅−1] (𝜃 (𝑥), 𝜃 (𝑦))

where the first arrow is induced by pre-composing with 𝜃 (𝑥) → 𝑥. To verify compatibility with

composition note that we have the following commutative diagram in the homotopy category of

spacesH :

ℎC[𝑅−1] (𝑥, 𝑦) × ℎC[𝑅−1] (𝑦, 𝑧) ℎC[𝑅−1] (𝑥, 𝑧)

ℎC[𝑅−1] (𝜃 (𝑥), 𝑦) × ℎC[𝑅−1] (𝑦, 𝑧) ℎC[𝑅−1] (𝜃 (𝑥), 𝑧)

ℎB[𝑅−1] (𝜃 (𝑥), 𝜃 (𝑦)) × ℎC[𝑅−1] (𝑦, 𝑧)

ℎB[𝑅−1] (𝜃 (𝑥), 𝜃 (𝑦)) × ℎC[𝑅−1] (𝜃 (𝑦), 𝑧) ℎC[𝑅−1] (𝜃 (𝑥), 𝑧)

ℎB[𝑅−1] (𝜃 (𝑥), 𝜃 (𝑦)) × ℎB[𝑅−1] (𝜃 (𝑦), 𝜃 (𝑧)) ℎB[𝑅−1] (𝜃 (𝑥), 𝜃 (𝑧))

𝑖𝜃 (𝑥 ) ,𝑦×1

1×𝑖𝜃 (𝑦) ,𝑧 𝑖𝜃 (𝑥 ) ,𝑧

Here all the unlabeled vertical arrows are induced by suitable pre/post-compositions and the hor-

izontal arrows are given by compositions in suitable categories. Notice that the maps 𝑖𝜃 (𝑥),𝑦 ×

1, 1 × 𝑖𝜃 (𝑦),𝑧, and 𝑖𝜃 (𝑥),𝑧 are homotopy equivalences with inverses 𝑔𝜃 (𝑥),𝑦 × 1, 1 × 𝑔𝜃 (𝑦),𝑧, and 𝑔𝜃 (𝑥),𝑧

respectively. Thus inverting these maps and composing the vertical arrows we get the following

commutative diagram :

ℎC[𝑅−1] (𝑥, 𝑦) × ℎC[𝑅−1] (𝑦, 𝑧) ℎC[𝑅−1] (𝑥, 𝑧)

ℎB[𝑅−1] (𝜃 (𝑥), 𝜃 (𝑦)) × ℎB[𝑅−1] (𝜃 (𝑦), 𝜃 (𝑧)) ℎB[𝑅−1] (𝜃 (𝑥), 𝜃 (𝑧))

ℎ𝜃𝑥,𝑦×ℎ𝜃𝑦,𝑧 ℎ𝜃𝑥,𝑧

This completes the proof of compatibility of ℎ𝜃 with composition and thus of the fact that ℎ𝜃
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defines a functor. It is clear from the construction of ℎ𝜃 that it is right adjoint to ℎ𝑖. That ℎ𝑖, and

thus 𝑖, is fully-faithful follows from the adjunction using the fact that 𝜃 (𝑦) → 𝑦 is an isomorphism

in B[𝑅−1] for any 𝑦 ∈ 𝐵. □

Now, let 𝑅 denote the class of locally shrinkable morphisms in T̃op∞. We have the following

Proposition 8.2.9 ([30, Proposition 8.1]). 𝑖 : T̃op∞ → 𝒮𝑡𝑘∞ induces a fully faithful functor

T̃op∞ [𝑅−1] → 𝒮𝑡𝑘∞ [𝑅−1] which has a right adjoint 𝜃 : T̃op∞ → 𝒮𝑡𝑘∞.

Proof. This is an ∞-categorical restatement of [30, Proposition 8.1]. The proof follows by apply-

ing Lemma 8.2.8 to the inclusion T̃op∞ → 𝒮𝑡𝑘∞. □

Finally, recall that 𝑆 denotes the class of weak homotopy equivalences in T̃op∞ and T̃op∞ [𝑆−1] ≃

Top∞. Denote by 𝑆𝒮𝑡𝑘 the class of maps in 𝒮𝑡𝑘∞ whose image under 𝜃 lies in 𝒮𝑡𝑘 and by 𝒮𝑡𝑘∞

the localization 𝒮𝑡𝑘 [𝑆−1
𝒮𝑡𝑘
]. Then, using Lemma 8.2.7 and Proposition 8.2.9 we have:

Corollary 8.2.10 ([30, Corollary 8.3]). 𝑖 and 𝜃 as in Proposition 8.2.9 induce a pair of adjoint

functors

𝑖 : Top∞ ⇆ 𝒮𝑡𝑘∞ : 𝜃

which are in fact equivalences of categories. In particular, 𝑖 : Top∞ → 𝒮𝑡𝑘∞ is fully faithful and

preserves colimits.

□

8.3 ∞-io-Properads in 𝒮𝑡𝑘∞

Both Top∞ and 𝒮𝑡𝑘∞ admit finite products and the inclusion Top∞ ↩→ 𝒮𝑡𝑘∞ preserves fi-

nite products. Let Top⊗∞ and 𝒮𝑡𝑘⊗∞ be the symmetric monoidal categories associated with the

∞-categories Top∞ and 𝒮𝑡𝑘∞ with the monoidal structure give by finite products. Using Corollary

8.2.10 it follows that we have an equivalence of symmetric monoidal∞-categories

Top⊗∞ ↩→ 𝒮𝑡𝑘⊗∞
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Thus we have,

Proposition 8.3.1. The inclusion Top∞ ↩→ 𝒮𝑡𝑘∞ induces a functor of operad algebras

𝐴𝑙𝑔Prpd⊗red
(Top⊗∞) ↩→ 𝐴𝑙𝑔Prpd⊗red

(𝒮𝑡𝑘⊗∞)

which is an equivalence of categories and in particular preserves colimits. □

8.4 𝔐 as an∞-io-properad in 𝒮𝑡𝑘∞

Recall that M 𝑓 𝑟

𝑔,𝑛− ,𝑛+ is the moduli stack of genus 𝑔 stable nodal Riemann surfaces with 𝑛−

input and 𝑛+ output parametrized boundaries. As a category fibered in groupoids this stack is the

category with the

• objects given by the families C → 𝑇 of nodal stable Riemann surfaces of genus 𝑔 with 𝑛−

input and 𝑛+ output boundary components, over topological spaces, and

• morphisms given by pullback diagrams of such families.

The functorM 𝑓 𝑟

𝑔,𝑛− ,𝑛+ → Top is given by mapping a family (C → 𝑇) to its base 𝑇 .

The presheaf of groupoids underlyingM 𝑓 𝑟

𝑔,𝑛− ,𝑛+ , obtained by applying functor Γ described in

Remark 8.2.2, is thus given by

𝑇 ↦→ G𝑟 𝑝𝑑/Top𝐺𝑟𝑝𝑑 (Top/𝑇,M 𝑓 𝑟

𝑔,𝑛− ,𝑛+)

Notation 8.4.1. LetM 𝑓 𝑟

𝑛− ,𝑛+ denote the stack
∐
𝑔≥0M

𝑓 𝑟

𝑔,𝑛− ,𝑛+ .

We now outline how to view 𝔐 as a Prpd⊗red-algebra using these moduli spaces. We shall

in fact show that 𝔐 can be realized as an algebra over Prpdred, interpreted as a 2-operad, in the

(strict) 2-category of stacks 𝒮𝑡𝑘 . More concretely, we will construct a lax 2-functor of categories

over F 𝑖𝑛∗

𝔐2 : Prpd⊗ → 𝒮𝑡𝑘⊗ .
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Here

1. 𝒮𝑡𝑘⊗ is the category over F 𝑖𝑛∗ associated to the strict 2-category 𝒮𝑡𝑘 of stacks as in (8.1.2),

where the monoidal product is given by product of stacks. (The construction in (8.1.2) is de-

scribed for 1-categories, but generalizes to the case of strict 2-categories in a straightforward

manner).

2. Prpd⊗red is the category over F 𝑖𝑛∗ associated with the colored operad Prpdred as in (8.1.1).

For an object 𝑛1, 𝑛2, ..., 𝑛𝑘 in Prpd⊗ define

𝔐2(𝑛1, 𝑛2, ..., 𝑛𝑘 ) := {𝔐 𝑓 𝑟

𝑛𝑖 }𝑘𝑖=1

Action of the functor 𝔐2 on morphisms is defined as follows: as described in 8.1.1, the morphisms

in the category Prpd⊗ are given by a sequence of vertex-ordered ioda-graphs. We describe how 𝔐2

acts on the morphisms of type Prpd⊗ (𝑛1, 𝑛2, ..., 𝑛𝑘 ; 𝑛+), in other words on morphisms given by a

single vertex-ordered ioda-graphs. The definition extends to morphisms described by disconnected

graphs in a straightforward manner.

Let 𝐺 be a (connected) vertex-ordered ioda-graph describing a morphism form 𝑛1, 𝑛2, ..., 𝑛𝑘 to 𝑛+.

We define a map

𝜇𝐺 (𝔐2) : 𝔐2(𝑛1, 𝑛2, ..., 𝑛𝑘 ) =
∏
𝑖

𝔐
𝑓 𝑟

𝑛𝑖 →𝔐2(𝑛+) = 𝔐
𝑓 𝑟

𝑛1

Let 𝑇 be any test space, we will describe the functor

𝜇𝐺 (𝔐2) (𝑇) :
∏

𝔐
𝑓 𝑟

𝑛𝑖 (𝑇) →𝔐2(𝑛+) (𝑇)

Here,

1.
∏
𝑖𝔐

𝑓 𝑟

𝑛𝑖 (𝑇) is the groupoid of tuples {C𝑖 → 𝑇}𝑛
𝑖=1 such that the curves in C𝑖 have input-

output profile 𝑛𝑖
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2. 𝔐2(𝑛+) (𝑇) is the groupoid of families C𝑛+ → 𝑇 with input-output profile 𝑛+

The groupoid map 𝜇𝐺 (𝔐2) (𝑇) is induced by mapping a tuple of families over 𝑇 as in (1) to the

family obtained by gluing them as prescribed by the edges of 𝐺 (followed by stabilization).

Now let 𝐺 and 𝐻 be two graphs describing a pair of composible morphisms in Prpd⊗. Given a

test space 𝑇 and a tuple of families of curves {C𝑣 → 𝑇}𝑣∈𝑉 (𝐺) indexed by the vertices of 𝐺, we

note that the two families over 𝑇 obtained by

• first gluing the families along edges of 𝐺 and then gluing the resulting families along 𝐻, and

• gluing the families along the composed graph 𝐻 ◦ 𝐺

are canonically isomorphic. Thus there exist canonical isomorphisms

𝜇𝐻 (𝔐2) (𝑇) ◦ 𝜇𝐺 (𝔐2) (𝑇) ⇒ 𝜇𝐻◦𝐺 (𝑇).

These isomorphisms are natural in 𝑇 and hence it follows that there exists a unique 2-isomorphism

𝛼 : 𝔐2(𝐻) ◦𝔐2(𝐺) ⇒𝔐2(𝐻 ◦ 𝐺).

Thus we have a lax 2-functor

𝔐2 : Prpd⊗ → 𝒮𝑡𝑘⊗

as desired.

From the construction of 𝔐2 it is clear that the induced map of ∞-categories over F 𝑖𝑛∗ preserves

inert morphisms and thus defines a map of∞-operads.

Note that 𝒮𝑡𝑘 is a subcategory of the ∞-category 𝒮𝑡𝑘∞ and the inclusion 𝒮𝑡𝑘 ↩→ 𝒮𝑡𝑘∞ induces

a map of ∞-operads 𝒮𝑡𝑘⊗ → 𝒮𝑡𝑘⊗∞. Composing 𝔐2 with this map then gives a map the desired

map of∞-operads:

𝔐 : Prpd⊗ → 𝒮𝑡𝑘⊗

exhibiting 𝔐 as a Prpd⊗red-algebra.
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Appendix A: Proofs from Chapter 3

The aim of this appendix is to fill in technical details which were left out in Chapter 3.2.

In Section A.1 we explain in detail the fact that the category of topological io-properads is

tensored and cotensored over the category of topological spaces. We also prove Lemma A.1.1

which describes the compatibility of the tensor and cotensor operations with the model structure on

io-properads. In Section A.2, we recall the definition of geometric realization from Section 3.2, and

provide its alternate description in terms of latching spaces which was alluded to there. In Section

A.3, we use this description to prove Proposition 3.2.2 and Corollary 3.2.6 from Section 3.2. In

Section A.4 we provide the proof of Proposition 3.2.4 asserting that the geometric realizations of

simplicial io-properads in the categories of topological io-sequences and io-properads coincide.

Finally, in Section A.5, we provide the details of the proof of Proposition 3.2.11.

A.1 Tensor and Cotensor over topological spaces

The category of io-properads is tensored and cotensored over topological spaces. This means

that, along with the bifunctor

[ , ] : GAlg × GAlg𝑜𝑝 → Top

providing an enrichment of the category of io-properads over topological spaces, there are two

additional bifunctors

⊙ : GAlg × Top→ GAlg, and

(_)_ : GAlg × Top𝑜𝑝 → GAlg
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such that there are isomorphisms

GAlg(𝑃 ⊙ 𝑍,𝑄) ≃ Top(𝑍, [𝑃,𝑄]) ≃ GAlg(𝑃,𝑄𝑍 ),

natural in all the variables involved. These bifunctors are constructed as follows:

The enrichment of topological io-properads over topological spaces is given by endowing the

properad hom-spaces with the natural topology obtained by identifying them as subspaces of the

hom-spaces of topological io-sequences. In other words, [𝑃,𝑄] is the space of io-properad maps

form 𝑃 to 𝑄 with the product compact-open topology. Equivalently, if [ , ]TopSeqio
denotes the

enrichment of topological io-sequences over topological spaces, [𝑃,𝑄] is defined as the equalizer

[𝑃,𝑄] → [𝑃,𝑄]TopSeqio
⇒ [G𝑃,𝑄]TopSeqio

,

where the first arrow is induced by pullback along the properad structure map G𝑃 → 𝑃 and the

second map is the composition [𝑃,𝑄]TopSeqio → [G𝑃,G𝑄]TopSeqio → [G𝑃,𝑄]TopSeqio

The operation ⊙ can be constructed as

𝑃 ⊙ 𝑍 := 𝑐𝑜𝑒𝑞
[
G(G𝑃 × 𝑍) ⇒ G(𝑃 × 𝑍)

]
.

Here, for 𝑋 a topological io-sequence and 𝑍 a topological space, 𝑋 × 𝑍 denotes the topological io–

sequence given by component-wise product {𝑋 (𝑛−, 𝑛+) × 𝑍}𝑛− ,𝑛+ . The coequalizer can be taken in

either topological io-properads or topological io-sequences, since they both coincide in this case.

The first arrow is induced from the properad structure map G𝑃 → 𝑃, whereas the second arrow is

induced from G𝑃 × 𝑍 → G(𝑃 × 𝑍) using the universal property of free properads.

The operation (_)_ can be constructed as follows: The underlying sequence of 𝑃𝑍 is given by

𝑃𝑍 = {Top(𝑍, 𝑃(𝑛−, 𝑛+))}𝑛− ,𝑛+ and the properad structure is induced from that of 𝑃.

These operations are compatible with the model structure in the following sense:
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Lemma A.1.1 ([38]). The following equivalent conditions are satisfied:

1. If 𝑖 : 𝑌 → 𝑍 is a cofibration of topological spaces and 𝑗 : 𝑃 → 𝑄 is a cofibration of io-

properads, then

𝑃 ⊙ 𝑍
GAlg⊔
𝑃⊙𝑌

𝑄 ⊙ 𝑌 → 𝑄 ⊙ 𝑍

is a cofibration of io-properads. Moreover this map is a weak equivalence whenever 𝑖 or 𝑗

is.

2. If 𝑖 : 𝑌 → 𝑍 is a cofibration of topological spaces and 𝑗 : 𝑃 → 𝑄 is a fibration of io-

properads, then

𝑃𝑍 → 𝑃𝑌 ×𝑄𝑌 𝑄𝑍

is a fibration of properads. Moreover this map is a weak equivalence whenever 𝑖 or 𝑗 is.

3. If 𝑗 : 𝑃→ 𝑄 is a cofibration and 𝑘 : 𝑅 → 𝑆 a fibration of io-properads, then

[𝑄, 𝑅] → [𝑃, 𝑅] ×[𝑃,𝑆] [𝑄, 𝑆]

is a fibration. Again, this map is a weak equivalence whenever 𝑗 or 𝑘 is.

Proof. We explain the proof of (2) and the implication (2) ⇒ (1), since this is the only part we

shall use.

(2): Note that we need to show 𝑃𝑍 → 𝑃𝑌 ×𝑄𝑌 𝑄𝑍 is a fibration of underlying topological

io-sequences. The fibered product 𝑃𝑌 ×𝑄𝑌 𝑄𝑍 coincides with the fibered product of the underlying

topological io-sequences. Let 𝑉 → 𝑊 be an acyclic cofibration in topological io-sequences. We

need to show that any square

𝑉 𝑃𝑍

𝑊 𝑃𝑌 ×𝑄𝑌 𝑄𝑍

admits a lift 𝑊 → 𝑃𝑍 (in topological io-sequences). This is equivalent to the statement that any
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square
𝑊 × 𝑌 ⊔𝑉×𝑌 𝑉 × 𝑍 𝑃

𝑊 × 𝑍 𝑄

admits a lift𝑊 × 𝑍 → 𝑃 (in topological io-sequences). But this follows from the fact that

• 𝑃→ 𝑄 is a fibration of io-properads, and hence of topological io-sequences as well

• 𝑌 → 𝑍 is a cofibration of topological spaces and 𝑉 → 𝑊 is an acyclic cofibration of

topological io-sequences, and hence𝑊 ×𝑌 ⊔𝑉×𝑌 𝑉 × 𝑍 → 𝑊 × 𝑍 is an acyclic cofibration in

topological io-sequences.

The conclusion when 𝑖 or 𝑗 is a weak equivalence follows by a similar argument, starting with a

cofibration 𝑉 → 𝑊 which is not necessarily a weak equivalence. This completes the proof of (2).

(2)⇒ (1): To show that 𝑃⊙𝑍 ⊔GAlg
𝑃⊙𝑌 𝑄⊙𝑌 → 𝑄⊙𝑍 is a cofibration of topological io-properads,

we show that for any acyclic fibration 𝐸 → 𝐹 in io-properads the square

𝑃 ⊙ 𝑍 ⊔GAlg
𝑃⊙𝑌 𝑄 ⊙ 𝑌 𝐸

𝑄 ⊙ 𝑍 𝐹

admits a lift 𝑄 ⊙ 𝑍 → 𝐸 (in io-properads). This is equivalent to

𝑃 𝐸𝑍

𝑄 𝐹𝑌 ×𝐹𝑌 𝐹𝑍

admitting a lift 𝑄 → 𝐸𝑍 (in io-properads). But this is a consequence of (2) combined with the fact

that 𝑃→ 𝑄 is a properad cofibration.

Again, the conclusion when 𝑖 or 𝑗 is a weak equivalence follows by a similar argument, starting

with a fibration 𝐸 → 𝐹 which is not necessarily a weak equivalence. □
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A.2 Geometric realization

Now, using this tensor product on the category of io-properads over topological spaces, we can

define the geometric realization of a simplicial io-properad {𝑃•}•≥0 by the usual formula:

|𝑃• |GAlg =

∫ GAlg

Δ

𝑃𝑛 ⊙ Δ𝑛 := 𝑐𝑜𝑒𝑞GAlg
[ GAlg∐
𝜙 : [𝑛]→[𝑚]∈Δ

𝑃𝑚 ⊙ Δ𝑛 ⇒

GAlg∐
[𝑛]∈Δ

𝑃𝑛 ⊙ Δ𝑛.

]
(A.2.1)

Here Δ denotes the simplex category, and Δ𝑛 is the standard 𝑛-simplex. In the coequalizer, the first

arrow is induced from the simplicial structure map 𝑃∗(𝜙) : 𝑃𝑚 → 𝑃𝑛 ∈ GAlg corresponding to

𝜙 : [𝑛] → [𝑚] and the second arrow is induced from the map Δ(𝜙) : Δ𝑛 → Δ𝑚 ∈ Top.

There is an alternate description of | |GAlg as an iterated pushout in terms of the so called

‘latching spaces’:

Define the 𝑛th latching space of 𝑃• to be the coequalizer

𝐿𝑛𝑃• := 𝑐𝑜𝑒𝑞GAlg
[ GAlg∐

0≤𝑖< 𝑗≤𝑛
𝑃𝑛−1 ⇒

GAlg∐
0≤𝑖≤𝑛

𝑃𝑛

]
.

The two arrows are defined as follows: on the (𝑖, 𝑗)th summand, the first arrow is induced by

the degeneracy map 𝑠𝑖 : 𝑃𝑛−1 → 𝑃𝑛 into the 𝑗 th summand and the second arrow is induced from

𝑠 𝑗−1 : 𝑃𝑛−1 → 𝑃𝑛 into the 𝑖th summand. Note that there is a canonical map

𝐿𝑛𝑃• → 𝑃𝑛+1.

𝐿𝑛𝑃• can be thought of intuitively as “the space of degenerate simplices in 𝑃𝑛+1”.

Define | |GAlg
(𝑛) inductively as:

• |𝑃• |GAlg
(0) = 𝑃0, and
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• |𝑃• |GAlg
(𝑛+1) is defined to be the pushout

𝐿𝑛𝑃• ⊙ Δ𝑛+1
⊔GAlg
𝐿𝑛𝑃•⊙𝜕Δ𝑛+1 𝑃𝑛+1 ⊙ 𝜕Δ𝑛+1 𝑃𝑛+1 ⊙ Δ𝑛+1

|𝑃• |GAlg
(𝑛) |𝑃• |GAlg

(𝑛+1)

(A.2.2)

Then we have |𝑃• |GAlg = lim−−→𝑛
|𝑃• |GAlg

(𝑛) .

Using this description we can now reformulate the cofibrancy condition on |𝑃• |GAlg in terms of the

pushouts (A.2.2):

Lemma A.2.1. If 𝐿𝑛𝑃• → 𝑃𝑛+1 is a cofibration of io-properads for every 𝑛, then |𝑃• |GAlg is a

cofibrant io-properad.

Proof. It suffice to prove that the upper horizontal arrow in the diagram A.2.2 is a cofibration for

all 𝑛. This follows from the compatibility statements from Lemma A.1.1 since 𝜕Δ𝑛+1 ↩→ Δ𝑛+1 is a

cofibration of topological spaces and 𝑃→ 𝑄 is a cofibration of io-properads. □

We have a relative version of Lemma A.2.1:

Lemma A.2.2. If 𝑃• → 𝑄• is a map of simplicial io-properads such that 𝐿𝑛𝑄•
⊔GAlg
𝐿𝑛𝑃•

𝑃𝑛+1 →

𝑄𝑛+1 is a cofibration of properads for every 𝑛, then |𝑃• |GAlg → |𝑄• |GAlg is a cofibration of io-

properads.

Proof. Using the filtrations on |𝑃• | and |𝑄• | described by the diagram (A.2.2), it suffices to prove

that

|𝑃• |GAlg
(𝑛+1)

GAlg⊔
|𝑃• |GAlg

(𝑛)

|𝑄• |GAlg
(𝑛) → |𝑄• |

GAlg
(𝑛+1) (A.2.3)
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is a cofibration of io-properads. For convenience, set

𝐿Δ𝑛𝑃• := 𝐿𝑛𝑃• ⊙ Δ𝑛+1
GAlg⊔

𝐿𝑛𝑃•⊙𝜕Δ𝑛+1

𝑃𝑛+1 ⊙ 𝜕Δ𝑛+1, and

𝐿Δ𝑛𝑄• := 𝐿𝑛𝑄• ⊙ Δ𝑛+1
GAlg⊔

𝐿𝑛𝑄•⊙𝜕Δ𝑛+1

𝑄𝑛+1 ⊙ 𝜕Δ𝑛+1.

Then, considering the map of diagrams (A.2.2) induced by 𝑃• → 𝑄•, it can be proved that (A.2.3)

is equivalent to showing that

𝐿Δ𝑛𝑄•

GAlg⊔
𝐿Δ𝑛𝑃•

𝑃𝑛+1 ⊙ Δ𝑛+1 → 𝑄𝑛+1 ⊙ Δ𝑛+1 (A.2.4)

is a cofibration of io-properads. To prove (A.2.4) observe that

𝐿Δ𝑛𝑄•

GAlg⊔
𝐿Δ𝑛𝑃•

𝑃𝑛+1 ⊙ Δ𝑛+1 =

(
𝐿𝑛𝑄•

GAlg⊔
𝐿𝑛𝑃•

𝑃𝑛+1

)
⊙ Δ𝑛+1

GAlg∐
(𝐿𝑛𝑄•

⊔GAlg
𝐿𝑛𝑃• 𝑃𝑛+1)⊙𝜕Δ𝑛+1

𝑄𝑛 ⊙ 𝜕Δ𝑛+1

(A.2.4) now follows by Lemma A.1.1 from the hypothesis that 𝐿𝑛𝑄• ⊔GAlg
𝐿𝑛𝑃•

𝑃𝑛+1 → 𝑄𝑛+1 is a

cofibration. □

A.3 Cofibrancy of the bar construction

We now provide the proof of Proposition 3.2.2. Recall that for an io-properad 𝑃 its bar con-

struction is a simplicial properad which we denote by 𝐵•(G,G, 𝑃).

Let us start by recalling the statement of Proposition 3.2.2:

Proposition A.3.1. If the topological io-sequence underlying a io-properad 𝑃 is cofibrant, then

|𝐵(G,G, 𝑃) |GAlg is cofibrant in the category of io-properads.
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Proof. The latching objects for the bar construction are given by

𝐿𝑛𝐵(G,G, 𝑃) = 𝑐𝑜𝑒𝑞GAlg
[ GAlg∐

0≤𝑖< 𝑗≤𝑛
G𝑛𝑃 ⇒

GAlg∐
0≤𝑖≤𝑛

G𝑛+1𝑃
]
.

The free G-algebra functor, being the left adjoint in the pair G : TopSeqio ⇆ GAlg : Forget,

commutes with coproudcts and coequalizer. Thus,

𝐿𝑛𝐵(G,G, 𝑃) = G
(
𝑐𝑜𝑒𝑞

[ ∐
0≤𝑖< 𝑗≤𝑛

G𝑛−1𝑃 ⇒
∐

0≤𝑖≤𝑛
G𝑛𝑃

] )
.

Set

𝐾𝑛𝑃 := 𝑐𝑜𝑒𝑞
[ ∐

0≤𝑖< 𝑗≤𝑛
G𝑛−1𝑃 ⇒

∐
0≤𝑖≤𝑛

G𝑛𝑃
]
.

Then, to show that 𝐿𝑛𝐵(G,G, 𝑋) → 𝐵𝑛+1(G,G, 𝑃) = G𝑛+2𝑃 is a cofibration of io-properads, it

suffices to show that 𝐾𝑛𝑃 → G𝑛+1𝑃 is a cofibration of topological io-sequences. But, it is not

difficult to see that this map identifies 𝐾𝑛𝑃 with the subspace of G𝑛+1𝑃 given by
⋃

0≤𝑖≤𝑛 𝑠𝑖 (G𝑛𝑃),

where 𝑠𝑖 are the simplicial degeneracy maps.

Moreover, note that G𝑛+1𝑃 is a disjoint union of spaces indexed by (𝑛 + 1)-nested graphs and

𝑠𝑖 (G𝑛𝑃) is the union corresponding to a subset of this indexing set. Since the topological io-

sequence underlying 𝑃 is cofibrant, it follows that the inclusion
⋃

0≤𝑖≤𝑛 𝑠𝑖 (G𝑛𝑃) ↩→ G𝑛+1𝑃 is a

cofibration of topological io-sequences. □

A similar argument using Lemma A.2.2 gives the relative version of Proposition A.3.1. We

omit the details:

Proposition A.3.2. Let 𝑃,𝑄 be properads which are cofibrant as topological io-sequences and let

𝑃 → 𝑄 be a map of io-properads such that the underlying map of topological io-sequences is a

cofibration. Then, |𝐵(G,G, 𝑃) |GAlg → |𝐵(G,G, 𝑄) |GAlg is a cofibration of properads.

□
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A.4 Comparison of geometric realizations in topological io-sequences and in topological

io-properads

The aim of this section is to provide the proof of Proposition 3.2.4. In this section we follow the

discussion in [22, Section 7].

Let us start by recalling some notation: Let 𝑃• be a simplicial topological io-properad. Denote

by |𝑃• |GAlg and |𝑃• |TopSeqio
the geometric realizations of 𝑃 in the category of properads and the

category of topological io-sequences, respectively. As a consequence of the fact that the geometric

realization of simplicial spaces is a monoidal functor, it follows that |𝑃• |TopSeqio
carries a natural

properad structure induced from the structure maps of the simplicial properad 𝑃•.

Proposition 3.2.4 asserts that the io-properads given by geometric realizations of 𝑃• in the

category of io-properads and in the category of topological io-sequences are isomorphic.

Proof of Proposition 3.2.4. Recall that

𝑃𝑛 ⊙ Δ𝑛 = 𝑐𝑜𝑒𝑞

[
G(G𝑃𝑛 × Δ𝑛) ⇒ G(𝑃𝑛 × Δ𝑛)

]
(where the coequalizers taken in io-properads and io-sequences coincide).

The maps 𝑃𝑛 × Δ𝑛 → |𝑃• |TopSeqio
induce properad maps 𝑃𝑛 ⊙ Δ𝑛 → |𝑃• |TopSeqio

. Moreover, these

maps are compatible with the simplicial face and degeneracy maps, and hence we get a G-algebra

map

𝑐𝑜𝑒𝑞

[ GAlg∐
𝑚,𝑛

𝑃𝑚 ⊙ Δ𝑛 ⇒

GAlg∐
𝑛

𝑃𝑛 ⊙ Δ𝑛
]
= |𝑃• |GAlg → |𝑃• |TopSeqio

.

Now, notice that for properad 𝑃,

|G𝑃• |TopSeqio ≃ G|𝑃• |TopSeqio
. (A.4.1)
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This holds since | |TopSeqio
, being a left adjoint (| |TopSeqio : TopSeqio ⇆ TopSeqio : (_)Δ•), com-

mutes with colimits and as noted above it also commutes with finite products.

Furthermore, for any 𝑋 ∈ TopSeqio, we have

|G𝑋• |GAlg ≃ G|𝑋• |TopSeqio
. (A.4.2)

To see this, first note that for a topological io-sequence 𝑋

G𝑋𝑛 ⊙ Δ𝑛 = 𝑐𝑜𝑒𝑞

[
G(G(G𝑋𝑛) × Δ𝑛) ⇒ G(G𝑋𝑛 × Δ𝑛)

]
≃ G(𝑋𝑛 × Δ𝑛).

This implies that

GAlg∐
𝑚,𝑛

G𝑋𝑛 ⊙ Δ𝑚 ≃ G
(∐
𝑚,𝑛

𝑋𝑛 × Δ𝑚
)
, and

GAlg∐
𝑛

G𝑋𝑛 ⊙ Δ𝑛 ≃ G
(∐

𝑛

𝑋𝑛 × Δ𝑚
)
.

Since G commutes with colimits, this gives us

𝑐𝑜𝑒𝑞GAlg
[∐
G𝑋𝑛 ⊙ Δ𝑚 ⇒

∐
G𝑋𝑛 ⊙ Δ𝑛

]
≃

G
(
𝑐𝑜𝑒𝑞

[∐
𝑋𝑛 × Δ𝑚 ⇒

∐
𝑋𝑛 × Δ𝑛

] )
.

Thus, it follows that |G𝑋• |GAlg ≃ G|𝑋• |TopSeqio
for any topological io-sequence 𝑋 . Finally, for

any simplicial properad 𝑃•

G(G𝑃) ⇒ G𝑃→ 𝑃 (A.4.3)

is a coequalizer diagram (in io-properads as well as in topological io-sequences). Since | |GAlg

is a left adjoint (| |GAlg : 𝑠GAlg ⇆ GAlg : (_)Δ•), it commutes with the coequalizer. Thus, using
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(A.4.3), we have the following commutative diagram in the category of io-properads:

|G(G𝑃) |GAlg |G𝑃 |GAlg |𝑃• |GAlg

GG|𝑃• |TopSeqio
G|𝑃• |TopSeqio

|𝑃• |TopSeqio

where both the rows are coequalizer diagrams mentioned above. Further, using (A.4.1) and (A.4.2)

it follows that the first two vertical maps are isomorphisms. It thus follows that the rightmost

vertical arrow is also an isomorphism, proving the proposition. □

A.5 Proof of Proposition 3.2.11

Let us first recall the statement of Proposition 3.2.11:

Proposition A.5.1. Let
𝑃 𝑅 𝑄

𝑃′ 𝑅′ 𝑄′

(A.5.1)

be a map of pushout diagrams of io-properads. If

1. each vertical arrow is a Hurewicz weak-equivalence, and

2. 𝑅 → 𝑃 , 𝑅′→ 𝑃′ are Hurewicz cofibrations of topological io-sequences

Then

|𝐵•𝑃 |
GAlg∐
|𝐵•𝑅 |
|𝐵•𝑄 | → |𝐵•𝑃′|

GAlg∐
|𝐵•𝑅′ |

|𝐵•𝑃′|

is a Hurewicz weak-equivalence.

Note that here we continue to follow the convention mentioned in Notation 3.2.5, namely |_| de-

notes the common geometric realization in topological io-properads and topological io-sequences.

104



A.5.1 Hurewicz model structure on topological io-sequences

Before beginning the proof of Proposition 3.2.11, we start with a short discussion of the

Hurewicz model structure on topological io-sequences, alluded to in Remark 3.2.10:

There exists a model structure on the category Top, called the Hurewicz or Strøm model struc-

ture, in which the weak-equivalences, fibrations, and cofibrations are given, respectively, by homo-

topy equivalences, Hurewicz fibrations, and Hurewicz cofibrations (see [20, Section 17.1]). There

is an induced model structure on TopSeqio with weak-equivalences, fibrations, and cofibrations

defined component-wise. We will refer to this as the Hurewicz model structure on TopSeqio.

With these definitions, the Hurewicz weak equivalences and cofibrations defined in Notation 3.2.9

correspond precisely to the weak-equivalences and cofibrations in the Hurewicz model structure

on topological io-sequence.

A.5.2 Proof of Proposition 3.2.11

Note that,

|𝐵•𝑃 |
GAlg∐
|𝐵•𝑅 |
|𝐵•𝑄 | ≃

���𝐵•𝑃 GAlg∐
𝐵•𝑅

𝐵•𝑄
��� ≃ ���G•+1𝑃 GAlg∐

G•+1𝑅

G•+1𝑄
��� (A.5.2)

≃
���G(
G•𝑃

∐
G•𝑅

G•𝑄
) ���

Here the first equality holds since | | is a left adjoint in the pair | | : ⇆ GAlg : (_)Δ• and hence

commutes with colimits. Similarly the last equality holds since G is a left adjoint in the pair

G : TopSeqio ⇆ GAlg : 𝐹𝑜𝑟𝑔𝑒𝑡 and hence commutes with colimits. Similarly,

|𝐵•𝑃′|
GAlg∐
|𝐵•𝑃′ |

|𝐵•𝑄′| ≃
���G(
G•𝑃′

∐
G•𝑅′
G•𝑄′

) ���
For the rest of the proof, we shall consider the category of topological io-sequences equipped with

the Hurewicz model structure (see Section A.5.1 above). On the category of simplicial topological
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io-sequences we consider the Reedy model structure induced from the Hurewicz model structure

on topological io-sequences (see [39] for details on Reedy model structures).

Consider the simplicial topological io-sequence

G
(
G•𝑃

∐
G•𝑅

G•𝑄
)
.

Its (𝑛 + 1)-simplices are given by a disjoint union of spaces indexed by certain (𝑛 + 1)-nested

ioda-graphs. As in the proof of Proposition A.3.1, it can be seen that the latching map

𝐿𝑛

(
G

(
G•𝑃

∐
G•𝑅

G•𝑄
))
→ G

(
G𝑛+1𝑃

∐
G𝑛+1𝑅

G𝑛+1𝑄
)

(A.5.3)

identifies the latching space with the disjoint union of spaces corresponding to a subset of this

indexing set. Using the fact that all topological io-sequences are cofibrant in the Hurewicz model

structure, it then follows that map (A.5.3) is a Hurewicz cofibration as well. We conclude that

G
(
G•𝑃

∐
G•𝑅

G•𝑄
)

is a Reedy cofibrant simplicial topological io-sequence. Similarly, it follows that

G
(
G•𝑃′

∐
G•𝑅′
G•𝑄′

)
is also Reedy cofibrant. Applying [39, Corollary 10.6], it suffice to show that the map

G
(
G•𝑃

∐
G•𝑅

G•𝑄
)
→ G

(
G•𝑃′

∐
G•𝑅′
G•𝑄′

)
is a Reedy weak-equivalence i.e. a level-wise Hurewicz weak-equivalence. It follows from the
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definition of G that it preserves Hurewicz weak-equivalences and thus it suffices to verify that

G•𝑃
∐
G•𝑅

G•𝑄 → G•𝑃′
∐
G•𝑅′
G•𝑄′

is a Hurewicz weak-equivalence.

Applying G• to the diagram (A.5.1), we get a diagram of topological io-sequences

G•𝑃 G•𝑅 G•𝑄

G•𝑃′ G•𝑅′ G•𝑄′

(A.5.4)

satisfying the following conditions:

• the vertical maps are Hurewicz weak equivalences, and

• G•𝑅 → G•𝑃 , G•𝑅′→ G•𝑃′ are Hurewicz cofibrations of topological io-sequences.

The Hurewicz model structure on TopSeqio is left proper (see for example [20, Proposition 15.4.2])

and hence the pushout of any map along a cofibration coincides with its homotopy pushout . In par-

ticular, the pushouts of both the rows in (A.5.4) coincide with their homotopy pushouts. Since the

vertical arrows in (A.5.4) are Hurewicz weak-equivalences, it then follows that the two pushouts

are Hurewicz weak-equivalent. This completes the proof of the proposition.

□
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