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Abstract

The geometry of polymers and other results in the KPZ universality class

Weitao Zhu

This thesis investigates the geometry of polymers and other micellaneous results in the

Kardar-Parisi-Zhang (KPZ) universality class. Directed polymers have enjoyed a rich history in

both probability theory and mathematical physics and have connections to several families of

statistical mechanical and random growth models that belong to the KPZ universality class [77].

In this thesis, we focus on 2 integrable polymer models, the (1+1)-dimensional continuum

directed random polymer (CDRP) and the half-space log-gamma (HSLG) polymer, and study

their path properties. For the CDRP, we show both of its superdiffusivity and localization

features. Namely, the annealed law of polymer of length C, upon C2/3 superdiffusive scaling, is

tight in the space of � ( [0, 1])-valued random variables and the quenched law of any point

distance ?C from the origin on the path a point-to-point polymer (or the endpoint of a point-to-line

polymer) concentrates in a $ (1) window around a random favorite pointM?,C . The former marks

the first pathwise tightness result for positive temperature models and the latter result confirms the

“favorite region conjecture” for the CDRP. Moreover, we provide an explicit random density for

the quenched distribution around the favorite pointM?,C . The proofs of both results utilize

connections with the KPZ equation and our techniques also allow us to prove properties of the

KPZ equation itself, such as ergodicity and limiting Bessel behaviors around the maximum.

For the HSLG polymers, we combine our localization techniques from the CDRP and the

recently developed HSLG line ensemble results [22, 27] with an innovative combinatorial



argument to obtain its limiting quenched endpoint distribution from the diagonal in the bound

phase (U < 0). This result proves Kardar’s “pinning” conjecture in the case of HSLG

polymers[158].

Finally, this thesis also contains two separate works on the tightness of the Bernoulli

Gibbsian line ensemble under mild conditions and the upper-tail large deviation principle (LDP)

of the asymmetric simple exclusion process (ASEP) with step initial data. In the first work, we

prove that under a mild but uniform control of the one-point marginals of the top curve of the line

ensemble, i.e. the shape of the top curve as approximately an inverse parabola and asymptotically

covering the entire real line after scaling and recentering, the sequence of line ensembles is tight.

With a characterization of [109], our tightness result implies the convergence of the Bernoulli

Gibbsian line ensemble to the parabolic Airy line ensemble if the top curve converges to the

parabolic Airy2 process in the finite dimensional sense. Compared to a similar work of [93], our

result applies to line ensembles with possibly random initial and terminal data, instead of a

packed initial condition, and does not rely on exact formulas. In our work on the ASEP, we obtain

the exact Lyapunov exponent for the height function of ASEP with step initial data and

subsequently its upper-tail LDP, where the rate function matches with that of the TASEP given in

a variational form in [156].
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Chapter 1: Introduction

The Kardar-Parisi-Zhang (KPZ) universality class describes a host of important probabilistic

and physical models which are believed to display the same universal large-time fluctuation be-

haviors through the common scalings [160, 77, 139, 162, 169, 181, 186, 224]. This thesis focuses

on only a few models known to belong in this universality class: the continuum directed random

polymer, the half-space log-gamma polymer, the asymmetric simple exclusion process and in con-

nection to these models, the KPZ equation and Gibbsian line ensembles. A theme in this thesis

is the typical geometry of some of these models and a motif throughout is the KPZ equation. By

way of our discussions, this thesis hopes to illustrate some connections and progress in the KPZ

universality class.

The first part of the thesis focuses on directed polymer models in random media, which have

a rich history in probability theory (see [129, 100, 65] and the references therein) and form an

important group of the KPZ universality class. This type of models was first introduced in the

statistical physics literature by [148] to study the domain walls of Ising models with impurities

and was later mathematically reformulated as similar to random walks in random environments in

[152, 44]. As a unifying framework, directed polymers have proved useful in studying a variety

of different mathematical and physical problems [100, 50, 104, 156, 75]. In general, the model

involves the following ingredients: a discrete or continuous space, a random environment specified

by a discrete or continuous space-time noise, a reference path measure on the space and an inverse

temperature parameter. Given the marginal measure of the random environment and the inverse

temperature, the path measure becomes reweighted by its journey through the environment. This

reweighted distrbution is called polymer path measure and a random path sampled through this

distribution is refered to as a polymer.

Depending on the (inverse) temparature, the polymer path measure exhibits a phase transi-
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tion phenomenon. In the high temperature regime, the polymer paths behave diffusively and fall

into weak disorder. On the other hand, in the low temperature regime, diffusivity is no longer

guaranteed. Instead, the polymers fall into strong disorder and two phenomenons are conjectured:

1. Superdiffusivity: the polymer measure in strong disorder belongs to the KPZ universality

class and a path of length = has typical fluctuations of $ (=2/3) (compared to $ (
√
=) dif-

fusive behavior; see [148], [149], [160], [169], [179],[202], [155],[56], [188] for physics

predictions and a few konwn examples).

2. Localization: upon fixing the environment, the quenched polymer measure coalesces around

environments with large potential values and forms favorite corridors of width much smaller

than =2/3.

While the above conjectures have been demonstrated in a few disjoint cases, they are far from

resolved. In this thesis, we first investigate the continuum directed random polymer (CDRP),

which is a universal scaling of discrete directed polymers in the intermediate disorder regime and

settle the above two conjectures for the CDRP. In a series of joint works with Sayan Das [89,

90], we have shown that the CDRP paths are superdiffusive and the quenched density of the path

measure localizes within a region of stochastically bounded width around a random favorite point.

Both of these results are derived from a connection between the CDRP and the KPZ equation.

To show superdiffusivity, we prove a short-time local fluctuation result for the KPZ equation. To

prove localization, we derive the Bessel convergence of two independent KPZ equations around

their joint maximizer. Together with a previous one-point convergence result of the CDRP to the

Tracy-Widom GUE distribution in [5], our works completely characterize the typical geometry of

the CDRP. We refer the reader to Section 1.1.1 for more details.

From a technique perspective, our localization method in the proof of the above results does

not rely on integrability other than the Gibbs property, which in the case of the CDRP is accessed

through the KPZ line ensembles. Thus, our method can extend to other integrable models with

similar setups. Indeed this proves to be true in our attempt to study the geometry of the half-
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space log-gamma polymers (HSLG polymers) in the bound phase. The half-space polymers are a

variant of the full-space polymers where the paths are restricted to stay on or below the diagonal.

The weights on the diagonal differ from those in the bulk. Thus the structure of these polymer

resembles the behavior of an interface in the presence of an attractive wall and is expected to

exhibit a “depinning” phase transition contingent upon the diagonal weights[158]. In the bound

phase, or when the diagonal weights are large, the endpoint of the polymer is expected to be pinned

to the wall. This conjecture is consistent with the localization conjecture for full-space polymers.

When we set the weights to be log-gamma random variables, the polymer is endowed with an

integrable strucutre. In a recent work by [22], a construction of the HSLG line ensemble has be-

come available. With our localization technique, in a joint work with Sayan Das [91], we showed

the endpoint of the HSLG polymer localizes around a window of width $ (1) around the diagonal

in the bound phase and cofirmed the pinning conjecture of this model. Moreover, when combined

with the diagonal free energy fluctuation result from [151], our resuls yields a similar Gaussian

fluctuation around the diagonal. These results are explained in more detail in Section 1.1.5. Our

localization techniques depend on the Gibbsian line ensembles as a principal tool and this line en-

semble structure also appears in a large number of models beyond the Brownian bridge, the KPZ

equation and the log-gamma polymers. In a joint work with a group of authors [108], we con-

structed a Bernoulli Gibbsian line ensemble, which is the law of = independent Bernoulli random

walkers conditioned to not intersect. Under mild but uniform control of the one-point marginal

of the top curve, i.e. the shape of the top curve as approximately an inverse parabola and as-

symptotically covering the entire real line after scaling and recentering, we proved the tightness

of the line ensemble. Furthermore, with finite-dimensional convergence of the top curve to the

parabolic Airy2 process, the entire line ensemble converges to the parobolic Airy line ensemble.

More discussions of this result are available in Section 1.2.

Finally, in the last part of the thesis, we discuss a separate result on the upper-tail large deviation

principle (LDP) of the asymmetric simple exclusion process (ASEP) with step initial data. The

ASEP is a pre-limit of the KPZ equation and a type of interacting particle system. The observable
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of interest in ASEP is the height function � (0, C), which is the number of particles to the right

of zero at time C. Its strong law of large number is well-known: C−1� (0, C
@−? ) →

1
4 , where @

and ? := 1 − @ are the right and left jump rates for the particles under an exponential clock. In

addition, Tracy and Widom showed the convergence of the height function to the Tracy-Widom

GUE fluctuation upon appropriate centering and scaling in a series of works [230, 229, 228]. A

natural question that follows these fluctuation results is to inquire into its LDP, i.e. probability of

when the event −�0( C
@−? ) +

C
4 has deviations of order C. The upper tail, P

(
−�0( C

@−? ) +
C
4 >

C
4 H

)
,

corresponds to the ASEP being "too slow" and it is expected to be different from the lower tail

P
(
−�0( C

@−? ) +
C
4 < −

C
4 H

)
due to the nature of the speed process. Prior to our work, [85] obtained

a one-sided bound for the upper-tail LDP of the ASEP via contour analysis. Through a different

approach by Lyapunov exponents pioneered by [88, 128, 182], our result was able to produce the

exact upper tail. Section 1.3 contains a summary of our technique and contributions.

1.1 Directed polymers in random environments

In the (1+1)-dimensional discrete case, directed polymers are modeled by up-right paths on the

Z2 integer lattices and the environment is specified by a collection of zero-mean, i.i.d. random vari-

ables {l = l(8, 9) | (8, 9 ∈ Z+ × Z)}. Given the environment, the energy or hamiltonian of a =-step

nearest neighbour random walk ((8)=8=0 starting at the origin is given by �l= (() :=
∑=
8=1 F(8, (8).

The point-to-line polymer on the set of all such paths is defined as

Pl=,V (() =
1
/l
=,V

4V�
l
= (()P((),

where P(() is the simple random walk measure, V is the inverse temperature and /l
=,V

is the parti-

tion function. For point-to-point polymers, P(() is the random walk bridge measure.

A competition exists between the entropy of the paths and the energy of the random environ-

ment in the polymer path measure. Under this competition, two distinct regimes emerge depending

on the inverse temperature V. When V = 0, the polymer measure is a simple random walk. Hence
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it’s entropy-dominated and exhibits diffusive behaviors. We refer to this scenario as weak disor-

der. For V > 0, the polymer measure concentrates on paths with high energies and the diffusive

behaviors cease to be guaranteed. This type of energy domination is known as strong disorder (see

[64, 69, 171] and the references therein for more precise definitions).

In the strong disorder regime, instead of behaving diffusively, the polymer measure is believed

to fall into the KPZ universality class (see [148, 149, 77, 169]) and their fluctuations are conjec-

tured to be characterized by the fluctuation exponent j = 1
3 and transversal exponent Z = 2

3 [220,

4]:

fluctuation of the endpoint of the path: |(= | ∼ =Z ,

fluctuation of the log partition function: [log /l=,V − d(V)=] ∼ =
j .

This instance of the transversal exponent appearing larger than the diffusive scaling exponent 1
2 is

called superdiffusivity. Crucially, the conjectured values for j and Z satisfy the “KPZ relation”:

j = 2Z − 1.

At the moment, rigorous results on either exponent or the KPZ relation have been scarce. For

directed polymers, Z = 2/3 has only been obtained for log-gamma polymers in [220, 23]. Upper

and lower bounds on Z have been established in [202, 188] under additional weight assumptions.

For zero-temperature models, Z = 2
3 has been established in [155, 49, 140, 94, 28].

Another conjecture for polymers in strong disorder is the localization phenomenon (see [69,

33, 89] for partial surveys), which expects the quenched denseity of the midpoint or any specific

point in the bulk of the path of length = to concentrate in a relavtively small region around a

random point. The size of this region or corridor is believed to be much smaller than =2/3 while

the random point itself is of the order =2/3. In particular, the favorite region conjecture speculates

that the midpoint (or any other point) of the polymer is asymptotically localized in a region of

stochastically bounded diameter (see [66, 33, 32, 17, 89] for related results). We emphasize that
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this localization phenonemon is not explained by the theory of KPZ universality class, which

addresses the location of the corridor but not its width.

While much progress has taken place in advancing our understanding of these two conjectures,

they are far from resolved. In a series of joint works with Sayan Das ([89, 90]), we settled the ques-

tions of superdiffusivity and localization for the continuous directed random polymers (CDRP).

More specifically, we showed pathwise tightness of the continuous directed random polymers un-

der superdiffusive scaling and pointwise localization of the CDRP in the sense of the favorite

region conjecture. The pathwise result has never been previously proven for any discrete polymer

model and the localization result has only been proven for the midpoint of stationary log-gamma

polymer [67]. We will now introduce our first polymer model, the CDRP, in the next section and

our results on localization and superdiffusivity are covered in Chapters 2 and 3 respectively.

1.1.1 The continuum directed random polymer

This section serves as a summary for Chapters 2 and 3. The continuum directed random poly-

mer (CDRP) is a probability measure on the space of continuous functions � ( [0, C]), C > 0.

Heuristically speaking, the random environment b is the space-time white noise, i.e. a random

function with independent values at distinct space-time. One can realize b as a Gaussian process

on R+ × R with covariance structure

E[b (B, H)b (C, G)] = XC=BXG=H .

The base measure on the paths is given by the law of Brownian bridges with endpoints (0, 0) and

(C, G). The seminal works of [3, 4] showed that the CDRP can be obtained as a universal scaling

limit of discrete directed polymers in the intermediate disordered regime and that the polymer path

measure is singular with regard to the Brownian bridge. Instead, the CDRP is deteremined by its

finite dimensional distributions given in terms of the partition function.

Definition 1.1.1 (Point-to-point CDRP). Conditioned on the white noise b, let Pb be a measure
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on � ( [B, C]) whose finite-dimensional distribution is given by

Pb (- (C1) ∈ 3G1, . . . , - (C: ) ∈ 3G: ) =
1

Z(G, B; H, C)

:∏
9=0
Z(G 9 , C 9 , ; G 9+1, C 9+1)3G1 · · · 3G: . (1.1.1)

for B = C0 ≤ C1 < · · · < C: ≤ C:+1 = C, with G0 = G and G:+1 = H.

Here for each (G, B) ∈ R×R+, the function (H, C) ↦→ Z(G, B; H, C) is the solution of the sotchastic

heat equation (SHE) starting from location G at time B, i.e. the unique solution of

mCZ =
1
2
m2
GZ +Zb

with Dirac delta intial data limC↓BZ(G, B; H, C) = X(G − H) and the space-time white noise b. We

denote - ∼ CDRPC if - (·) is a random continuous function on [0, C] with - (0) = - (C) = 0 and

its finite dimensional distributions satisty (1.1.1) condtioned on b. We will comment more on the

connections between polymers, SHE and the KPZ equation in the next section but now we state

our key results for point-to-point CDRP (the results for point-to-line CDRP are analogous.)

Theorem 1.1.2. ([89, 90]) For each C > 0, consider - ∼ CDRPC .

• (Pathwise tightness) The annealed law of (C−2/3- (?C))?∈[0,1] when viewed as a random vari-

able in the space of � ( [0, 1]) is tight as C → ∞. As a process in ?, C−2/3- (?C) converges

weakly to a non-trivial distribution as C →∞.

• (Pointwise localization) For each C > 0 and ? ∈ [0, 1], there exists a random variableM?,C

dependent only on the environment, such that |- (?C) − M?,C | = $ (1) as C → ∞. Further-

more, the quenched density of - (?C) when centered aroundM?,C converges in distribution

to an explicit random density proportional to 4−
√

2R(G)3G where R(G) is a standard two-sided

Bessel process with diffusion coefficient 2.

A similar localization result for the midpoint of point-to-point stationary log-gamma polymer

was established in [67] by virtue of the Burke property of the model from [220]. This property
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allows one to express the quenched density of the midpoint as an exponent of a simple symmetric

random walk (SSRW) and one can obtain the localization result through analyzing the behavior of

SSRW around its maximizer. However, this technique in [67] is only restriced to the midpoint of

the stationary log-gamma polymer alone.

1.1.2 Connections to the KPZ equation and the KPZ line ensemble

The principal tool we use to access the result in (1.1.2) is the Gibbs resampling property [74]

enjoyed by the Kardar-Parisi-Zhang (KPZ) equation equation H(C, G) := logZ(0, 0; G, C). It is a

central object of the KPZ universality class as well as a motif throughout this thesis. The KPZ

equation is a stochastic PDE first introduced in [160] and formally, it can be written as a PDE on

the domain R × R+:

mCH(G, C) =
1
2
m2
GH(G, C) + (mGH(G, C))2 + b (C, G), (1.1.2)

where b is a space-time white noise defined in Section 1.1.1.

In the mathematical physics literature, the KPZ equation arises universally as a scaling limit

of a vast collection of models, including one-dimensional interface growth processes, interacting

particle systems and random polymers in random environment [77]. In light of the physical rel-

evance of the KPZ equation, we can interpret H as a time-evolving height profile. The equation

formally implies that, starting from a given initial data H(G, 0), the time evolution of the height

profile is governed by three features: a smoothing mechanism associated with the heat operator, a

slope-dependent growth governed by the nonlinear term and a random forcing given by the noise

term.

Based on these features, it is predicted that the height profile will fluctuate around its mean

like C1/3 and the correlation of these fluctuations will be non-trivial on a spatial scale of C2/3.

However, inspite of the above interpretation, the KPZ equation in (1.1.2) is classically ill-posed

due the presence of the nonlinear term (the function H is believed to be locally Brownian so it
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doesn’t make sense to square its derivative). Instead, we consider the Hopf-Cole solution to the

KPZ equation as H(G, C) := logZ(0, 0; G, C) where Z solves the multiplicative-noise stochastic

heat equation (SHE):

mCZ(G, C) = m2
GZ(G, C) + Z(G, C)b (C, G).

While scaling remain governed by the characteristic 1/3, 2/3 exponents, the height function fluc-

tuations detect differences in the inital data or geometry. The KPZ equation/SHE has six dif-

ferent types of initial data and the one that we will work with throughout this paper is the nar-

row wedge initial data, which corresponds to the SHE started from the Dirac delta function, i.e.

Z(G, 0) = XG=0. The narrow wedge initial condition endows the KPZ equation with an integrable

or exactly solvable structure. An important result confirms that the KPZ equation with the narrow

wedge initial data belongs to the KPZ universality class as C → ∞ through computing the exact

formulas for its one-point marginal distributions [5]:

C−1/3(H (0, C) + C

24
) 3→ ��*� .

Here ��*� is the Tracy-Widom GUE distribution, first discovered to describe the largest eigen-

value of a random GUE matrix in [231], and later proved to be the limiting fluctuation statistics in

the KPZ universality class in the works of [12, 155]. In addition, in this one-point convergence,

we observe the usual KPZ 1/3 scaling exponent.

Finally on the connections to polymers, via a version of the Feynman-Kac formula, we can

interpret the solution to the SHE as the partition function of the CDRP (see [4]), which has ap-

peared in (1.1.1) in the quenched density of - (?C) in Section 1.1.1. Thus the Hopf-Cole solution

to the KPZ equation corresponds to the free energy of the CDRP. Here, the initial data for the

SHE corresponds to an initial potential which affects the starting position of the polymer and the

narrow wedge initial data is equivalent to fixing the departure position at 0. It is easy to see that

the joint maximizerM?,C in Theorem1.1.2 should correspond to the random mode of the quenched

density of - (?C), which is the joint maximizer of two independent copies of the KPZ equations

9



argmaxG∈RH1(G, ?C) +H2(G, (1− ?)C). The quenched density recentered around this random mode

is proportional to

G ↦→ H1(M?,C , ?C) − H1(M?,C + G, ?C) + H2(M?,C , ?C) − H2(M?,C + G, ?C). (1.1.3)

1.1.3 Gibbs property and the KPZ line ensemble

For each fixed C > 0, the process H(·, C) can be viewed as the top curve of the KPZ line

ensemble [74]. Conditioned on all the information outside, the law of the first : curves restricted

to a fixed interval [0, 1] is absolutely continuous with regard to : Brownian bridges on [0, 1] with

the same endpoints modulo an explicit Radon-Nikodym derivative. Note that here the interval is

fixed. As we are working with a random interval around the random maximizerM?,C , traditional

tools such that the usual Gibbs property on an interval or stochastic monotonicity cannot be applied

to (1.1.3).

Figure 1.1: The Gibbs property around the random joint maximizer of the top curves (black) of
two independent KPZ line ensembles. The blue curves are the associated second curves.
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The solution we provide for this issue is a different version of the Gibbs resampling prop-

erty with two copies of the KPZ equation around the joint maximizer (Fig. 1.1). It states that

conditioned on the data at the random maximizer (location and the value of each KPZ equa-

tion at this location) as well as boundary data, the joint law around the joint maximizer of the

2 KPZ equations is the same as that of two independent pairs of nonintersecting Brownian bridges

with appropriate endpoints. More specifically, we fix  > 0 and define a local joint maximizer

M∗?,C := argmax|G |≤ C2/3 (H1(·, ?C) + H2(·, (1 − ?)C)). One can ensure that the local joint maxi-

mizer coincides with the global joint maximizer with high probability by choosing  large enough.

Hence it suffices to work with the local maximizer. To embed this problem in a line ensem-

ble framework, we consider two independent copies of KPZ line ensembles for H1 and H2 and

first study the behavior of 2 independent Brownian motions around its joint maximizer. Then

utilizing the existing Radon-Nikodym derivative of the KPZ line ensemble gives us an explicit

way to resample the top curves of both line ensembles simultaneously over intervals of the form

[M∗?,C − 0C ,M∗?,C + 1C] ⊂ [− C2/3,  C2/3] . This method could be adapted to solve similar problems

for other integrable models with a line ensemble setup.

1.1.4 Pathwise tightness for the CDRP

Note that the localization result in [89] explained above automatically implies pointwise tight-

ness of C−2/3- (?C) for each ? ∈ [0, 1] . To establish the pathwise tightness result in Theorem 1.1.2,

we need a uniform control of the path fluctuations on the local level. With the long-time [5, 79, 80,

81] and short-time [87] tail estimates from existing literature, we are able to produce a quantitative

modulus of continuity estimate for the CDRP, which leads to the final pathwise tightness result.

This is the first pathwise tightness result for polymer models. The process-level convergence of

C−2/3- (?C) to the geodesics of the directed landscape in [90] follows from a recent work of [241]

that established the convergence from the KPZ sheet to the Airy sheet.
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1.1.5 Localization of the half-space log-gamma polymer

Lastly in the vein of directed polymers, we build on the localization result in [89] to investigate

the geometry of the half-space log-gamma polymer in the bound phase in an upcoming work with

Sayan Das [91]. We now present a motivation and summary of this work, which is detailed in

Chapter 4.

Half-space polymers are a variant of the full-space directed polymers where the paths are re-

stricted to be on or below the diagonal. In terms of the environment, the weights placed on the

diagonal differ from those in the bulk. From the physics perspective, the half-space polymer im-

itate the behavior of an interface in the presence of an attractive wall and this model has been

linked to the studies of “wetting” phenomenon [1, 198, 51]. Depending on the strength of the di-

agonal weights, a phase transition known as “depinning” appears [158] where the model alternates

between behaving like a full-space polymer or diffusively with Guassian fluctuations for the free

energy and a coalescence of the endpoint to the diagonal.

For the half-space log-gamma (HSLG) polymer, which is an integrable model, the diagonal

weights are Gamma−1(U + \) random variables and the bulk weights distribute as Gamma−1(2\).

The “depinning” phase transition occurs at U = 0 (see [158, 204, 33]). When U > 0, [27, 22]

showed that the polymer measure is unpinned and the endpoint lies in a $ (#2/3) window. For

U ∈ (−\, 0), [27, 151] proved the free energy conjecture for the diagonal. However, the bounded

endpoint conjecture for the HSLG polymer remains open and that’s the goal of our project.

More specifically, let Πhalf
#

be the set of all upright lattice paths of length 2# − 2 starting from

(1, 1) that are confined to the half-space I− (see Figure 4.2). Given the weights in (4.1.1), the

half-space log-gamma (HSLG) polymer is a random measure on Πhalf
#

defined as

P, (c) = 1
/ (#)

∏
(8, 9)∈c

,8, 9 · 1c∈Πhalf
#
, (1.1.4)

where / (#) is the normalizing constant. Our result states that

Theorem 1.1.3 (Bounded endpoint, [91]). Fix \ > 0 and U ∈ (−\, 0) and consider the random

12



(1, 1)

(11, 5)

(9, 7)
Gamma−1 (U + \)

Gamma−1 (2\)

Figure 1.2: Two possible paths of length 14 in Πhalf
8 are shown in the figure.

measure P, from (4.1.2). For a path c ∈ Πhalf
#

, we denote c(2# − 2) as the height (i.e., H-

coordinate) of the endpoint of the polymer. We have

lim sup
:→∞

lim sup
#→∞

P, (c(2# − 2) ≤ # − :) = 0, in probability. (1.1.5)

This is the first result to capture the “pinning” phenomenon of the half-space log-gamma poly-

mer measure to the diagonal. Moreover, in [91], we deduce the following quenched distribution of

the endpoint when viewed from around the diagonal.

Theorem 1.1.4 ([91]). Fix \ > 0 and U ∈ (−\, 0) and consider the random measure P, from

(1.1.4). Let ((: ):≥0 be a log-gamma random walk such that (: :=
∑:
8=1 -8 and -8 := logΓ(\ +

U)/Γ(\ − U) are i.i.d. random variables. Set & :=
∑
?≥0 4

−(? . For a path c ∈ Πhalf
#

, we denote

c(2# − 2) as the height (i.e., H-coordinate) of the endpoint of the polymer. Then for each : ≥ 1,

as # →∞, we have the following multi-point convergence in distribution

(
P, (c(2# − 2) = # − A)

)
A∈È0,:É

3→
(
&−1 · 4−(A

)
A∈È0,:É

. (1.1.6)

A stationary version of the half-space log-gamma polymer with U ∈ (−\, \) has been consid-

ered in the physics work of [24]. As a remark, we note that our above two theorems continue to

hold for this stationary model.

Finally, our result also has implications on the one-point free-energy fluctuations near the di-

13



agonal. Given that the free-energy on the diagonal log / (#, #) after appropriate recentering and

scaling converges toN(0, 1), we are able to derive that for 0#,8/
√
# → 0, log / (# +0#,8, #−0#,8)

also has one-point Gaussian convergences with the same recentering and scaling using a strong

coupling result behind the proof of our localization theorem.

Similar to the our localization work on the CDRP in [89], our proof for the HSLG polymers

relies on the Gibbsian line ensemble inputs for the HSLG polymers recently developed in [22]

as well as point-to-(partial)line half-space log-partition functions in [27]. In addition to the lo-

calization techniques from [89], our argument crucially depends on an innovative combinatorial

argument on the necessary separation between the top two curves in the HSLG line ensemble that

bridges the micellaneous inputs and enables our proof.

1.2 The Bernoulli Gibbsian line ensemble

The Gibbsian line ensemble structure also appears in other continuous or discrete settings, one

of which constructed is the Bernoulli Gibbsian line ensemble in [108], i.e., a collection of avoiding

Bernoulli random walkers with a Schur Gibbs property. As a reminder, a Gibbs property refers to a

type of resampling invaraince. One of the most well-known types of Gibbs property is the Brown-

ian Gibbs property, i.e., the line ensemble is non-intersecting almost surely and the conditional law

of consecutive line ensemble curves given the boundary data is that of non-intersecting Brownian

bridges. The Schur Gibbs property is the discrete analog of the Brownian Gibbs property, which

specifies the local conditional distribution to be that of Bernoulli random walk bridges. The Brow-

nian Gibbsian line ensembles arise naturally in various models in statistical mechanics, integrable

probability and mathematical physics. Examples of this type include the Dyson Brownian motion

(which is the line of # independent one-dimensional Brownian motions all started at the origin

and conditioned to never cross), Brownian last passage percolation [142, 143, 144, 141] and the

parabolic Airy line ensemble [73, 204]. In particular, the Airy line ensemble has helped establish

a lot of convergence results including the ones in this thesis and played a foundational role in the

construction of the Airy sheet in [94].

14



The top curve of the parobolic Airy line ensemble is the parabolic Airy2 process, which is a

universal object in the KPZ unversality class, and the Airy line ensemble itself is believed to be

a universal scaling limits of a variety of Gibbsian line ensembles. However, besides the case of a

few examples with special integrable structures and initial conditions [93], the questions of conver-

gence to the Airy line ensemble for general Gibbsian line ensembles with general boundary data

had been wide open. The work in Chapter 5 sets out to investigate questions in this direction. Built

upon a recent characterization result for the convegrence of Brownian Gibbsian line ensembles by

[109], our work showed the convergence of the Bernoulli Gibbsian line ensemble to the parabolic

Airy line ensemble under a mild but uniform control on the top curve.

Theorem 1.2.1. [108] Consider a sequence of Bernoulli Gibbsian line ensembles !# with #

curves. Fix U > 0, ? ∈ (0, 1), _ > 0. Let k : N→ (0,∞) be a function such that lim#→∞ k(#) =

∞, 0# < −k(#)#U and 1# > k(#)#U . Suppose that there exists q : (0,∞) → (0,∞) and

sup
=∈Z

lim sup
#→∞

P
(���#−U/2(!#1 (=#U) − ?=#U + _=2#U/2)

��� ≥ q(Y)) Y
for any Y > 0. Then any subsequential limit !∞ of !# satisfies the Brownian Gibbs property.

Moreover, if the top curve !#1 conveges in finite dimensional distribution to the parabolic Airy2

process, then !# converges to the parobolic Airy line ensemble.

Unlike [93] which relied on exact formulas for the finite dimensional distributions for the ran-

dom walkers for each fixed # and packed initial data to prove convergence for several discrete

non-inersecting random walks, our result has much more relaxed boundary conditions and no de-

pendence on exact formulas. Instead, we used a strong coupling result to compare the Bernoulli

random walk bridge with Brownian bridges. The main technical result of this work is presented in

Section 5.1.3 and we refer the reader to Chpater 5 for details.

1.3 The upper-tail large deviation principle of the ASEP

This section serves as a summary for Chapter 6.
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The asymmetric simple exclusion process (ASEP) is a continuous-time Markov chain on par-

ticle configurations x = (G1 > G2 > · · · ) in Z that first appeared in [184, 222]. The process can

be described as follows. Each site 8 ∈ Z can be occupied by at most one particle, which has an

independent exponential clock with exponential waiting time of mean 1. When the clock rings, the

particle jumps to the right with probability @ or to the left with probability ? = 1 − @. However,

the jump is only permissible when the target site is unoccupied. For our purposes, it suffices to

consider configurations with a rightmost particle. At any time C ∈ R>0, the process has the config-

uration x(C) = (G1(C) > G2(C) > · · · ) in Z, where G 9 (C) denotes the location of the 9-th rightmost

particle at this time. When @ = 1, the ASEP becomes the total asymmetric simple exclusion pro-

cess. In this work, we focus on the ASEP with step initial data, where all the particles are lined up

at zero or the left of zero.

The ASEP is one of the pre-limiting processes of the KPZ equation and a model in the KPZ

unviersality class. A number of results are available about its statistics of interest, the height

function �0(C), i.e. the number of particles to the right of zero at time C, including its law of large

number and its central limit theorem [230, 229, 228]. The natural question to inquire next is its

large deviation principle (LDP), which is concerned with the tails of the distribution −�0( C
@−? )

centered by its law of large numbers. The lower tail of the ASEP LDP P(−�0( C
@−? ) +

C
4 <

HC

4 ),

which corresponds to the ASEP being “too fast”, has been notoriously difficult. In general in the

KPZ universality class, we only have the precise lower tail LDP of the KPZ equation with narrow-

wedge initial data [232, 52] and the TASAP [155] although a number of results on the lower tail

bounds have been developed in both math and physics works [219, 72, 168, 166, 176, 80]. For the

upper tail P(−�0( C
@−? ) +

C
4 >

HC

4 ), prior to our work, the best available result is a one-sided bound

from [85] obtained from contour analysis.

Our work on the precise upper-tail large deviation principle of the ASEP takes the route of

Lyapunov exponent and intermittency in random media, which has been pioneered by [88, 128,

182] for the KPZ equation and its variants. Intermittency problem has been an active area of

research in both mathematics and physics literature for the last few decades. Mathematically,
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it is characterized by rapid growth of moments of a process. Formally, we say a process ΨC is

intermittent if limC→∞ C−1 log E[Ψ:C ]/: is strictly increasing where the limit limC→∞ C−1 log E[Ψ:C ]

is known as its Lyapunov exponent. In terms of the KPZ equation, the physics work of [159]

suggests that the SHE is intermittent. Thus, as the ASEP is a pre-limit of the KPZ equation, we

expect that a similar intermittent phenomonon also exists. The main technical contribution of our

work lies in computing the Lypunov exponent for (?/@)�0 (C) using known Fredholm determinant

formulas [49]. This is the first instance of obtaining the Lyapunov exponent for the ASEP. After

this step, a standard Legendre-Fenchel transform technique yields the precise upper-tail LDP for

the ASEP in the fashion of [88, 128, 182]. Our result states

Theorem 1.3.1. For B ∈ (0,∞) we have

lim
C→∞

1
C

log E[gB�0 (C)] = −ℎ@ (B) =: −(@ − ?)1 − g
B
2

1 + g B2
. (1.3.1)

For any H ∈ (0, 1) we have

lim
C→∞

1
C

logP
(
−�0

(
C
W

)
+ C

4 >
C
4 H

)
= −[√H − (1 − H) tanh−1(√H)] =: −Φ+(H), (1.3.2)

where W = 2@ − 1. Furthermore, we have the following asymptotics near zero:

lim
H→0+

H−3/2Φ+(H) = 2
3 . (1.3.3)

Note that our large deviation result is restricted to H ∈ (0, 1) as P(−�0
(
C
W

)
+ C

4 > C
4 H) = 0

for H ≥ 1. Furthermore, although (1.3.2) makes sense when @ = 1, one cannot recover it from

(1.3.1), which only makes sense for g = (1 − @)/@ ∈ (0, 1). However, as mentioned before, [155]

has already settled the @ = 1 TASEP case and obtained the upper-tail rate function in a variational

form, which matches with our rate function in (6.1.4). Finally, the large deviation bound in [85]

coincides with the correct rate function Φ+ defined in (1.3.2) only for H ≤ H0 := 1−2
√
@(1−@)

1+2
√
@(1−@)

.

For any H ∈ (H0, 1), their result is suboptimal. Note that in the contour analysis of [85], one
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had to deform the contour to pass through critical points. Thus this threshold H0 appeared due to

the limitations of their choice of contour (see Figure 1.3). On the other hand, while our analysis

Figure 1.3: The figure on the left is the plot of Φ+(H). The right one is the plot of Φ̃+(H).

followed a well-trodden approach, significant technical challenge remained in our steepest descent

analysis of the Fredholm determinant as the underlying kernel is asymmetric and periodic and

much more intricate than its KPZ counterpart. As we encountered infinitely many critical points

from the periodic nature of the kernel, a major step in our proof was to prove that the contribution

from only one of the critical points dominates those from the rest.

1.4 Other works

Lastly, in this section, we give the summary of a separate ongoing project not related to the

KPZ universality class conducted during my PhD. This work is about the universal fluctuations of

mean-field Ising models and is not included in the body of this thesis.

Consider the magnetization density
∑=
8 E8f8 of an Ising model on an approximately 3=-regular

graph �= on = vertices. We show that in the high-temperature regime (V < 1), when the average

degree 3= � =1/3, if ®E = (E8)8=1,...,= is a unit eigenvector of the scaled adjacency matrix �= of

�=, the fluctuations converge to those of a normal random variable. As a corrollary of our the-

orem, we can deduce an error bound for the mean-field approximation of the partition funciton.

Our techniques mainly use Stein’s method of exchangeable pairs and can also extend to the case

of multivariate convergence. Beyond the high temperature regime (V < 1), we also expect the
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aforementioned fluctuations to be universal throughout the ferromagnetic regime (V > 0) and the

anti-ferromagnetic regime (V < 0). Both of these goals have been currently pursued in an ongoing

collaboration with Sumit Mukhurjee.

The motivation of this project comes from the topic of variational inference (VI), which is

a powerful techinique unibiqitous in probabilistic machine learning. It approximates an exact

posterior P through minimizing the Kullback-Leibler (KL) divergence between a variational family

P of distributions of the latent variables and the exact posterior, i.e.

̂̀= arg min
`∈P

� (` | |P) = arg min
`∈P

∫
d`
dP

log
d`
dP

d`

(see [42, 41] and the references therein). One of the most popular variational families is the mean-

field family, i.e. P = Pprod(R?). It assumes independence between the latent parameters and

has appeared in models including the Latent Dirichlet Allocation model (LDA), Bayesian mixture

models and general linear models [41]. Given its simplicity and popularity, several questions

naturally arise regarding the naive mean-field technique. For instance,

1. what’s the constraint on the posterior P such that naive mean-field approximation is appro-

priate?

2. What is the size of the approximation error � (̂̀| |P)?
3. When the error � (̂̀| |P) is small, can we understand P by analyzing ̂̀ instead, i.e. finding

the law of large numbers and the central limit theorem under the posterior?

While there’s rich literature in response to the first question (see [71], [120], [8], [243], [170]), the

others are less explored (see [99]). Thus through this project, we hope to start addressing questions

(2) and (3) for the Ising model on 3=-regular graphs, which has strong connections to machine

learning.
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Chapter 2: Localization of the continuum directed random polymer

2.1 Introduction

The continuum directed random polymer (CDRP) is a continuum version of the discrete di-

rected polymer measures modeled by a path interacting with a space-time white noise that first

appeared in [3]. It arises as a scaling limit of the 1+1 dimensional directed polymers in the “in-

termediate disorder regime” and can be defined through the Kardar-Parisi-Zhang (KPZ) equation

with narrow wedge initial data (see Section 3.1.2). A folklore “favorite region" conjecture on di-

rected polymers states that under strong disorder, the midpoint (or any other point) distribution of

a point-to-point directed polymer is asymptotically localized in a region of stochastically bounded

diameter (see [59],[33], Section 2.1.1).

In light of the “favorite region" conjecture, we initiate such study of the CDRP’s long-time

localization behaviors in this paper. Our main result, stated in Section 3.1.2, asserts that any point

at a fixed proportional location on the point-to-point CDRP relative to it length converges to an

explicit density function when centered around its almost surely unique random mode. The limiting

density involves a two-sided 3D Bessel process with an appropriate diffusion coefficient (defined in

Section 2.5.1).A similar result for the endpoint of point-to-line CDRP is also obtained, confirming

the “favorite region" conjecture for the CDRP. In this process, through the connections between

the CDRP and the KPZ equation with narrow wedge initial data, we have shown properties such

as ergodicity and Bessel behaviors around the maximum for the latter. These and other results are

summarized in Section 2.1.2 and explained in fuller detail in Section 3.1.2.

As an effort to understand the broader localization phenomena, our main theorems (Theorems

2.1.4, 2.1.5) confirm the “favorite region" conjecture for the first non-stationary integrable model,

i.e. without stationary boundary conditions or the Burke property. The first rigorous localization
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type result for directed polymers in random environment appeared in [56], which proved the exis-

tence of “favorite sites" in the Gaussian environment, known as the strong localization. This notion

of localization is weaker than the “favorite region" conjecture and the result of [56] has been later

extended to general environments in [68]. As the techniques for both of these results relied on

martingales, they are not applicable in proving the existence of “favorite sites” for the midpoint of

the point-to-point polymers in our considerations. (For discussions on different notions of local-

izations, see Section 2.1.1.) The only other model where the “favorite region” conjecture has been

proven so far is the one-dimensional stationary log-gamma polymer in [67]. A striking feature of

this stationary model in [67] is its special integrable structure, which reduced the endpoint distri-

bution to exponents of simple random walks [220]. As a consequence, the analysis of the limiting

endpoint distribution around its mode in [67] was considerably simplified to that of a random walk

seen from its infimum. In the case of the CDRP, the absence of a similar stationary boundary

condition calls for an entirely new approach in showing the “favorite region" conjecture, which

we discuss in this paper. Conversely, as we do not rely on integrability conditions other than the

Gibbs property, our proof for the CDRP has the potential to generalize to other integrable models.

Finally, accompanying our localization results, we also establish the convergence of the scaled fa-

vorite points to the almost sure unique maximizer of the Airy2 process minus a parabola and the

geodesics of the directed landscape respectively (see Theorem 2.1.8).

Beyond the polymer considerations, from the persepctive of the KPZ universality class, our

paper is also an innovative application of several fundamental new techniques and results that

have recently emerged in the community. These include the Brownian Gibbs resampling property

[74], the weak convergence from the KPZ line ensemble to the Airy line ensemble [208], the tail

estimates of the KPZ equation with narrow wedge initial data [79, 80, 81] as well as probabilistic

properties of the Airy line ensemble from [96]. In particular, even though the Gibbs property has

been utilized before in works such as [96, 55, 81, 82], in the CDRP case we overcome a unique

challenge of quantifying the Gibbs property precisely on a symmetric random interval around the

joint local maximizer of two independent copies of the KPZ equation with narrow wedge initial
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data. This issue is resolved after we prescribe the joint law of the KPZ equations around the desired

interval. Additionally in our analysis, we treat the Radon-Nikodym derivative from the Gibbsian

resampling directly and ensure that it converges exactly to 1. A more detailed description of our

main technical innovations is available in Section 2.1.4.

Presently, we begin with an introduction on the CDRP’s foundation - the discrete directed

lattice polymers and related key concepts.

2.1.1 Introducing the CDRP through discrete directed lattice polymers

Directed polymers in random environments were first introduced in statistical physics literature

by Huse and Henley [148] to study the phase boundary of the Ising model with random impuri-

ties. Later, it was mathematically reformulated as a random walk in a random environment by

Imbrie and Spencer [152] and Bolthausen [44]. Since then immense progress has been made in

understanding this model (see [65] for a general introduction and [129, 33] for partial surveys).

In the (3 + 1)- dimensional discrete polymer case, the random environment is specified by

a collection of zero-mean i.i.d. random variables {l = l(8, 9) | (8, 9) ∈ Z+ × Z3}. Given the

environment, the energy of the =-step nearest neighbour random walk ((8)=8=0 starting and ending

at the origin (one can take the endpoint to be any suitable x ∈ R3 as well) is given by �l= (() :=∑=
8=1 l(8, (8). The point-to-point polymer measure on the set of all such paths is then defined as

Pl=,V (() =
1
/l
=,V

4V�
l
= (()P((), (2.1.1)

where P(() is the uniform measure on set of all =-step nearest neighbour paths starting and ending

at origin, V is the inverse temperature, and /l
=,V

is the partition function. Meanwhile, one can

also consider the point-to-line polymer measures where the endpoint is ‘free’ and the reference

measure P is given by =-step simple symmetric random walks. In the polymer measure, there is a

competition between the entropy of paths and the disorder strength of the environment. Under this

competition, depending on the inverse temperature V, two distinct regimes [69] have been shown
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to appear:

• Weak Disorder: When V is small or equivalently in high temperature regime, intuitively the

disorder strength diminishes. The walk is dominated by the entropy and exhibits diffusive

behaviors. This type of entropy domination is termed as weak disorder.

• Strong Disorder: If V is large and positive or equivalently the temperature is low but remains

positive, the polymer measure concentrates on singular paths with high energies and the

diffusive behavior is no longer guaranteed. This type of disorder strength domination is

known as the strong disorder.

We refer the reader to [69] for the precise definitions of weak and strong disorder regimes. More-

over, [69] showed that there exists a critical inverse temperature V2 (3), depending on the dimension

3, such that weak disorder holds for 0 ≤ V < V2 and strong disorder for V > V2. In particular,

when 3 = 1 or 3 = 2, V2 = 0, i.e. all positive V fall into the strong disorder regime for 3 = 1, 2.

The rest of the article focuses on 3 = 1. While our previous discussion on weak disorder

states that for V = 0, the paths fluctuations are of the order
√
= via Brownian considerations, the

situation is much more complex in the strong disorder regime. The following two phenomena are

conjectured:

• Superdiffusivity: Under strong disorder, the polymer measure is believed to be in the KPZ

universality class and paths have typical fluctuations of the order =2/3. This phenomenon is

known as superdiffusion and has been conjectured widely in physics literature (see [148],

[149], [160], [169]). Although it has been rigorously proven in specific situations (see

[179],[202], [155],[56], [188]), much remains unknown, especially for 3 ≥ 2.

• Localization and the “favorite region" conjecture: The polymer exhibits certain localization

phenomena under strong disorder. The quenched density of the midpoint of the path (or any

specific point in the bulk of the path) is believed to be distributed in a relatively small region

of order 1 around a random point which itself is of the order =2/3 (see [59], [32] for partial

survey.)
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We remark that there exist many different notions of localizations. In addition to the one

discussed above and the strong localization in [56] mentioned earlier, other notions of localization

such as the atomic localization [235] and the geometric localization [33] were studied under a

general abstract framework in [33] for simple random walks and were later extended to general

reference walks in [32]. Both of [33] and [32] provide sufficient criteria for the existence of

the ‘favorite region’ of order one for the endpoint in arbitrary dimension. However, despite the

sufficiency of these criteria, it is yet unknown how to check them for standard directed polymers.

We refer the readers to Bates’ thesis [31] for a more detailed survey on this topic.

Even though the critical inverse temperature V2 (1) = 0 for 3 = 1, one might hope to scale the

inverse temperature with the length of the polymer in a critical manner to capture the transition

between weak and strong disorder. In this spirit, the seminal work of [4] considered an interme-

diate disordered regime where V = V= is taken to be =−1/4 , where = is the length of the polymer.

[4] showed that the partition function /l
=,V=

has a universal scaling limit given by the solution of

the Stochastic Heat Equation (SHE) when l has finite exponential moments. Furthermore, under

the diffusive scaling, the polymer path itself converges to a universal object called the Continuous

Directed Random Polymer (denoted as CDRP hereafter) which appeared first in [3] and depended

on a continuum external environment given by the space-time white noise.

More precisely, given a white noise b on [0, C] × R, CDRP is a path measure on the space of

� ( [0, C]) (continuous functions on [0, C]) for each realization of b. It was shown in [4] that con-

ditioned on the environment, the CDRP is a continuous Markov process with the same quadratic

variation as the Brownian motion but is singular w.r.t. the Brownian motion. Due to this singular-

ity w.r.t. the Wiener measure, it is not clear how to express the CDRP path measure in a Gibbsian

form similar to (2.1.1). Instead, using the partition functions as building blocks, one can construct

a consistent family of finite dimensional distributions which uniquely specify the path measure

(see [3] or Section 3.1.2 for more details).

As the CDRP sits between weak and strong disorder regimes, one expects it to exhibit weak

disorder type behaviors in the short-time regime (C ↓ 0) and strong ones in the long-time regime
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(C ↑ ∞). Indeed, the log partition function of CDRP is Gaussian in the short time limit ( see

[5]), providing evidence for weak disorder. Upon varying the endpoint of the CDRP measure,

the log partition function can be viewed as a random function of the endpoint and converges to

the parabolic Airy2 process under the 1 : 2 : 3 KPZ scaling (see [208, 236]). Note that the

KPZ scaling itself bears the characteristic 2/3 spatial scaling. Thus, it provides evidence for the

superdiffusivity in the strong disorder regime. However, the theory of universality class alone does

not provide much insight into the possible localization phenomena of the CDRP measures.

2.1.2 Summary of Results

As we have explained in the previous section, the purpose of the present article is to study the

localization phenomena for the long-time CDRP measure. The following summarizes our results,

which we will elaborate on individually in Section 3.1.2. Our first two results affirm the ‘favorite

region’ conjecture (discussed above) which has so far only been proven for the log-gamma polymer

model in [67].

• For a point-to-point CDRP of length C, the quenched density of ?C-point of the polymer with

fixed ? ∈ (0, 1) when centered around its almost sure unique mode (which is the maximizer

of the probability density function) M?,C , converges weakly to a density proportional to

4−R2 (G) . Here, R2 is a two-sided 3D-Bessel process with diffusion coefficient 2 defined in

(2.5.2)(Theorem 2.1.4).

• Similarly, for a point-to-line CDRP of length C, the quenched density of the endpoint of

the polymer when centered around its almost sure unique modeM∗,C converges weakly to

a density proportional to 4−R1 (G) , where R1 is a two-sided 3D-Bessel process with diffusion

coefficient 1 (Theorem 2.1.5).

• The random mode M∗,C of the endpoint of point-to-line CDRP of length C upon 2−1/3C2/3

scaling converges in law to the unique maximum of the Airy2 process minus a parabola,

whereas the random modeM?,C of the ?C point of point-to-point CDRP of length C upon
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C2/3 scaling converges to Γ(?
√

2), where Γ(·) is the geodesic from (0, 0) to (0,
√

2) of the

Directed landscape (Theorem 2.1.8).

Next, the well-known KPZ equation with the narrow wedge initial data forms the log-partition

function of the CDRP. Our main results below shed light on some local information about the

KPZ equation:

• Ergodicity: The spatial increments of the KPZ equation with the narrow wedge initial data as

time tends to infinity converges weakly to a standard two-sided Brownian motion (Theorem

2.1.11).

• The sum of two independent copies of the KPZ equation with the narrow wedge initial data

when re-centered around its maximum converges to a two-sided 3D-Bessel process with

diffusion coefficient 2 (Theorem 2.1.10).

These results provide a comprehensive characterization of the localization picture for the CDRP

model. We present the formal statements of the results in the next subsection.

2.1.3 The model and the main results

In order to define the CDRP model we use the stochastic heat equation (SHE) with multiplica-

tive noise as our building blocks. Towards this end, we consider a four-parameter random field

Z(G, B; H, C) defined on

R4
↑ := {(G, B; H, C) ∈ R4 : B < C}.

For each (G, B) ∈ R × R, the field (H, C) ↦→ Z(G, B; H, C) is the solution of the SHE starting from

location G at time B, i.e., the unique solution of

mCZ = 1
2mGGZ +Z · b, (H, C) ∈ R × (B,∞),
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with Dirac delta initial data

lim
C↓B
Z(G, B; H, C) = X(G − H).

Here b = b (G, C) is the space-time white noise. The SHE itself enjoys a well-developed solution

theory based on Itô integral and chaos expansion [34, 237] also [77, 206]. Moreover, the solution

of the SHE is naturally connected to the partition functions of the directed polymers in continuum

random environment via the Feynmann-Kac formula [149, 65]. In particular the four-parameter

random field can be written in terms of chaos expansion as

Z(G, B; H, C) =
∞∑
:=0

∫
Δ:,B,C

∫
R:

:+1∏
ℓ=1

?(Hℓ − Hℓ−1, Bℓ − Bℓ−1)b (Hℓ, Bℓ)3®H 3®B, (2.1.2)

with Δ:,B,C := {(Bℓ):ℓ=1 : B < B1 < · · · < B: < C}, B0 = B, H0 = G, B:+1 = C, and H:+1 = H. Here

?(G, C) := (2cC)−1/2 exp(−G2/(2C)) denotes the standard heat kernel. The field Z satisfies several

other properties including the Chapman-Kolmogorov equations [3, Theorem 3.1]. Namely, for all

0 ≤ B < A < C, and G, H ∈ R we have

Z(G, B; H, C) =
∫
R
Z(G, B; I, A)Z(I, A; H, C)3I. (2.1.3)

For all (G, B; H, C) ∈ R4
↑, we also set

Z(G, B; ∗, C) :=
∫
R
Z(G, B; H, C)3H. (2.1.4)

Definition 2.1.1 (Point-to-point CDRP). Conditioned on the white noise b, let Pb be a measure

� ( [B, C]) whose finite dimensional distribution is given by

Pb (- (C1) ∈ 3G1, . . . , - (C: ) ∈ 3G: ) =
1

Z(G, H; B, C)

:∏
9=0
Z(G 9 , C 9 , ; G 9+1, C 9+1)3G1 . . . 3G: . (2.1.5)

for B = C0 ≤ C1 < · · · < C: ≤ C:+1 = C, with G0 = G and G:+1 = H.
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The measure Pb also depends on G and H but we suppress it from our notations. We will also use

the notation CDRP(G, B; H, C) and write - ∼ CDRP(G, B; H, C) when - (·) is a random continuous

function on [B, C] with - (B) = G and - (C) = H and its finite dimensional distributions given by

(3.1.5) conditioned on b.

Definition 2.1.2 (Point-to-line CDRP). Conditioned on the white noise b, we also let Pb∗ be a

measure � ( [B, C]) whose finite dimensional distributions are given by

Pb∗ (- (C1) ∈ 3G1, . . . , - (C: ) ∈ 3G: ) =
1

Z(G, B; ∗, C)

:∏
9=0
Z(G 9 , C 9 , ; G 9+1, C 9+1)3G1 . . . 3G: . (2.1.6)

for B = C0 ≤ C1 < · · · < C: ≤ C:+1 = C, with G0 = G and G:+1 = ∗.

Remark 2.1.3. Note that the Chapman-Kolmogorov equations (3.1.4) and (2.1.4) ensure that the

finite dimensional distributions in (3.1.5) and (3.1.6) are consistent, and that Pb and Pb∗ are prob-

ability measures. The measure Pb∗ also depends on G but we again suppress it from our notations.

We similarly use CDRP(G, H; ∗, C) to refer to Pb∗.

Theorem 2.1.4 (Pointwise localization for point-to-point CDRP). Fix any ? ∈ (0, 1). Let - ∼

CDRP(0, 0; 0, C) and let 5?,C (·) denotes the density of - (?C) which depends on the white noise b.

Then, for all C > 0 the random density 5?,C has almost surely a unique modeM?,C . Furthermore,

as C →∞, we have the following convergence in law

5?,C (G +M?,C)
3→ A2(G) :=

4−R2 (G)∫
R

4−R2 (H)3H
, (2.1.7)

in the uniform-on-compact topology. Here R2(·) is a two-sided 3D-Bessel process with diffusion

coefficient 2 defined in Definition 2.5.2.

Theorem 2.1.5 (Endpoint localization for point-to-line CDRP). Let - ∼ CDRP(0, 0; ∗, C) and let

5C (·) denotes the density of - (C) which depends on the white noise b. Then for C > 0, the random

density 5C has almost surely a unique modeM∗,C . Furthermore, as C → ∞, we have the following

28



convergence in law

5∗,C (G +M∗,C)
3→ A1(G) :=

4−R1 (G)∫
R

4−R1 (H)3H
, (2.1.8)

in the uniform-on-compact topology. Here R1(·) is a two-sided 3D-Bessel process with diffusion

coefficient 1 defined in Definition 2.5.2.

Remark 2.1.6. In Proposition 2.7.1 we show that for a two-sided 3D-Bessel process Rf with

diffusion coefficient f > 0,
∫
R
4−Rf (H)3H is finite almost surely. Thus A1(·) and A2(·) defined

in (2.1.8) and (2.1.7) respectively are valid random densities. Theorems 2.1.4 and 2.1.5 derive

explicit limiting probability densities for the quenched distributions of the endpoints of the point-

to-line polymers and the ?C-point of point-to-point polymers when centered around their respective

modes, providing a complete description of the localization phenomena in the CDRP model. More

concretely, it shows that the corresponding points are concentrated in a microscopic region of order

one around their “favorite points" (see Corollary 2.7.3).

We next study the random modesM∗,C andM?,C . The “favorite point"M?,C is of the order C2/3

and converges in distribution upon scaling. The limit is given in terms of the directed landscape

constructed in [94, 187] which arises as an universal full scaling limit of several zero temperature

models [97]. Below we briefly introduce this limiting model in order to state our next result.

The directed landscape L is a random continuous function R4
↑ → R that satisfies the metric

composition law

L(G, B; H, C) = max
I∈R
[L(G, B; I, A) + L(I, A; H, C)] , (2.1.9)

with the property that L(·, C8; ·, C8 + B38 ) are independent for any set of disjoint intervals (C8, C8 + B38 ),

and as a function in G, H, L(G, C; H, C + B3) 3
= B · S(G/B2, H/B2), where S(·, ·) is a parabolic Airy

Sheet. We will not define the parabolic Airy Sheet (see Definition 1.2 in [94]) here but we mention

that S(0, ·) 3= A(·) whereA is the parabolic Airy2 process andA(G) + G2 is the (stationary) Airy2

29



process constructed in [204]

Definition 2.1.7 (Geodesics of the directed landscape). For (G, B; H, C) ∈ R4
↑, a geodesic from (G, B)

to (H, C) of the directed landscape is a random continuous function Γ : [B, C] → R such that

Γ(B) = G and Γ(C) = H and for any B ≤ A1 < A2 < A3 ≤ C we have

L(Γ(A1), A1;Γ(A3), A3) = L(Γ(A1), A1;Γ(A2), A2) + L(Γ(A2), A2;Γ(A3), A3).

Thus geodesics precisely contain the points where the equality holds in (3.1.7). Given any (G, B; H, C) ∈

R4
↑, by Theorem 12.1 in [94], it is known that almost surely there is a unique geodesic Γ from (G, B)

to (H, C).

With the above definitions in place, we now state our favorite point scaling result.

Theorem 2.1.8 (Favorite Point Limit). Fix any ? ∈ (0, 1). ConsiderM?,C andM∗,C defined almost

surely in Theorems 2.1.4 and 2.1.5 respectively. As C →∞ we have

2−1/3C−2/3M∗,C
3→M, C−2/3M?,C

3→ Γ(?
√

2)

where M is the almost sure unique maximizer of the Airy2 process minus a parabola, and Γ :

[0,
√

2] → R is the almost sure unique geodesic of the directed landscape from (0, 0) to (0,
√

2).

Remark 2.1.9. Theorem 2.1.8 shows that the random mode fluctuates in the order of C2/3. This

corroborates the fact that CDRP undergoes superdiffusion as C → ∞. We remark that the M∗,C

convergence was anticipated in [190] modulo a conjecture about convergence of scaled KPZ equa-

tion to the parabolic Airy2 process. This conjecture was later proved in [236, 208].

The proof of Theorem 2.1.4 relies on establishing fine properties of the partition function

Z(G, C) := Z(0, 0; G, C), or more precisely, properties of the log-partition function logZ(G, C).

For delta initial data, Z(G, C) > 0 for all (G, C) ∈ R × (0,∞) almost surely [124]. Thus the loga-

rithm of the partition function H(G, C) := logZ(G, C) is well-defined. It formally solves the KPZ
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equation:

mCH = 1
2mGGH +

1
2 (mGH)

2 + b, H = H(G, C), (G, C) ∈ R × [0,∞). (2.1.10)

The KPZ equation was introduced in [160] to study the random growing interfaces and since then

it has been extensively studied in both the mathematics and the physics communities. We refer to

[123, 206, 77, 209, 58, 84] for surveys related to it.

It is worthwhile to note that as a stochastic PDE, (2.1.10) is ill-posed due to the presence of the

nonlinear term 1
2 (mGH)

2. The above notion of solutions coming from the logarithm of the solution

of SHE is referred to as the Cole-Hopf solution. The corresponding initial data is called the narrow

wedge initial data for the KPZ equation. Other notions of solutions, such as regularity structures

[137, 136], paracontrolled distributions [131, 133], and energy solutions [130, 132], have been

shown to coincide with the Cole-Hopf solution within the class of initial datas the theory applies.

Returning to Theorem 2.1.4, to prove this statement one needs to understand how multiple

copies of the KPZ equation behave around its joint maximum. Towards this end, we present our

first main result related to the KPZ equation that studies the limiting behavior of sum of two

independent copies of KPZ equation re-centered around its joint maximum as C →∞.

Theorem 2.1.10 (Bessel behavior around joint maximum). Fix : = 1 or : = 2. Consider :

independent copies of the KPZ equation {H8 (G, C)}:8=1 started from the narrow wedge initial data.

For each C > 0, almost surely, the process G ↦→ ∑:
8=1H8 (G, C) has a unique maximizer, say P:,C .

Furthermore, as C →∞, we have the following convergence in law

': (G, C) :=
:∑
8=1

[
H8 (P:,C , C) − H8 (G + P:,C , C)

] 3→ R: (G) (2.1.11)

in the uniform-on-compact topology. Here R: (G) is a two-sided Bessel process with diffusion

coefficient : .

We also present the next theorem to complement the above result in Theorem 2.1.10. Theorem
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2.1.11 is a by-product of our analysis and does not quite appear in the proof of Theorem 2.1.4. It

captures the behaviors of the increments ofH(·, C) .

Theorem 2.1.11 (Ergodicity of the KPZ equation). Consider the KPZ equation H(G, C) started

from the narrow wedge initial data. As C →∞, we have the following convergence in law

H(G, C) − H (0, C) 3→ �(G)

in the uniform-on-compact topology. Here �(G) is a two-sided standard Brownian motion.

Remark 2.1.12. For a Brownian motion on a compact interval, it is well known that the law of

the process when re-centered around its maximum is absolutely continuous w.r.t. Bessel process.

In light of Theorem 2.1.11, it is natural to expect the Bessel process as a limit in Theorem 2.1.10.

The diffusion coefficient is : because there are : independent copies of the KPZ equation.

Remark 2.1.13. We stress the fact that we prove (2.1.11) for : = 1 and : = 2 only. The : = 1 case

is related to Theorem 2.1.5 whereas the : = 2 case is related to Theorem 2.1.4. Our proof strategy

for Theorem 2.1.10 can also be adapted to prove the general case when : ≥ 3. We explain later

in Remark 2.4.12 what are the missing pieces for the proof of (2.1.11) for general : . Although

Theorem 2.1.10 for general : is an interesting result in its own right, due to brevity and the lack of

applications to our localization problem, we restrict ourselves only to when : = 1, 2.

A useful property in establishing the ergodicity of a given Markov process is the strong Feller

property. For instance, the work of [138] introduced a framework to study the strong Feller prop-

erty for singular SPDEs and established it for a multicomponent KPZ equation. One caveat of this

framework is that [138] techniques and results are limited to only periodic boundary conditions,

i.e. on torus domain, and are thus inaccessible for the KPZ equation with narrow-wedge initial

data. For a more thorough discussion on the recent advances in singular stochastic PDEs, we refer

the reader to [84]. It’s also worth mentioning that as a consequence of the strong Feller property,

[138] was able to conclude the Brownian bridge measure as the unique invariant measure for the

32



KPZ equation with periodic boundary conditions. The existence of the Brownian invariant mea-

sures for the KPZ equation, on the other hand, has been well-known since the work of [35] and

proved via many different approaches such as renormalization [126] and paracontrolled distribu-

tions [133].For the spatial derivative of the KPZ equation, i.e. the Burgers’ equation, long time

properties such as ergodicity, synchronization and one-force-one-solution principle have also been

studied extensively in the literature (see [212, 134, 115] and the references therein).

In addition to the strong Feller property, we can also probe the KPZ equation’s ergodicity

through its connection to the KPZ universality class. Often viewed as the fundamental positive

temperature model at the heart of the KPZ universality class, the KPZ equation shares the same 1 :

2 : 3 scaling exponents and universal long-time behaviors expected or proven for other members of

the class. A widely-held belief about the KPZ universality class is that under the 1 : 2 : 3 scaling

and in the large scale limit, all models in the class converge to an universal scaling limit called

the KPZ fixed point [94, 187]. In fact, this very conjecture has been recently proved for the KPZ

equation in [208, 236]. As we utilize this result later, we recall a special case of the statement in

[208] here. Consider the 1 : 2 : 3 scaling of the KPZ equation (the scaled KPZ equation)

hC (G) := C−1/3
(
H(C2/3G, C) + C

24

)
.

Then we have that 21/3hC (21/3G) converges to the parabolic Airy2 process as C →∞. Note that the

parabolic Airy2 process is the marginal of the parabolic Airy Sheet, which is a canonical object in

the construction of the KPZ fixed point and the related directed landscape (see [94, 208]).

On the KPZ fixed point level, questions about ergodicity and behavior around maximum are

much better understood in the literature. Under the zero temperature setings, a plethora of results

and techniques are available to address the ergodicity question for the KPZ fixed point. For in-

stance, due to the 1 : 2 : 3 scaling invariance, ergodicity of the KPZ fixed point is equivalent to the

local Brownian behavior ([187, Theorem 4.14 and 4.15]) or can be deduced in [201] using certain

coupling that are applicable only in zero temperature settings.
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On the other hand, [95] showed that local Brownianity and local Bessel behaviors around the

maximizer hold for any process which is absolutely continuous w.r.t. Brownian motions on every

compact set. The scaled KPZ equation is also known to have such property [74] and the question

of ergodicity can be transformed into certain local Brownian behaviors of the scaled KPZ equation.

Indeed we have

H(G, C) − H (0, C) = C−1/3
(
hC (C−2/3G) − hC (0)

)
.

However a crucial difference for the KPZ equation is that the law of hC changes with respect to time

and the diffusive scaling precisely depends on C. Therefore in such a scenario, it is unclear how to

extend the soft techniques in [95, Lemma 4.3] to address the limiting local Brownian behaviors in

above setting.

A recent line of inquiries regarding the behavior around the maxima is the investigation of the

fractal nature of exceptional times for the KPZ fixed point with multiple maximizers [82, 92]. In

[82], the authors computed the Hausdorff dimension of the set of times for the KPZ fixed point with

at least two maximizers. [92] later extended the results in [82] to the case of exactly : maximizers.

In [92], the author relied on a striking property of the KPZ fixed point. Namely, the evolution of

the KPZ fixed point, when started with Bessel initial conditions, after recentering at the maximum

becomes stationary in C. This property considerably simplified their analysis. Other initial data

were then accessed through a transfer principle based on [216]. Unfortunately, such analogous

properties for the KPZ equation are not yet known in the literature.

2.1.4 Proof Ideas

In this section we sketch the key ideas behind the proofs of our main results. For brevity, we

present a heuristic argument for the proofs of Theorem 2.1.4 and the related Theorem 2.1.10 with

the : = 2 case only. The proofs for the point-to-line case (Theorem 2.1.5) and the related : = 1

case of Theorem 2.1.10 and ergodicity (Theorem 2.1.11) follow from similar ideas. Meanwhile,

the tools and methods related to the uniqueness and convergence of random modes (Theorem 2.1.8)

are of a different flavor. As the corresponding arguments are relatively simple, we present them
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directly in Section 2.3.

Recall from the statement of Theorem 2.1.4 that 5?,C denotes the quenched density of - (?C)

where - ∼ CDRP(0, 0; 0, C). To simplify our discussion below, we let ? = 1
2 and replace C by 2C.

From (3.1.5) we have

5 1
2 ,2C
(G) = Z(0, 0; G, C)Z(G, C; 0, 2C)

Z(0, 0; 0, 2C) .

Recall the chaos expansion for Z(G, B; H, C) from (3.1.3). Note that Z(0, 0; G, C) and Z(G, C; 0, 2C)

are independent as they uses different sections of the noise b. By a change of variable and symme-

try, we obtain that Z(G, C; 0, 2C) is same in distribution as Z(0, 0; G, C) as a process in G. Thus as

a process in G, Z(0, 0; G, C)Z(G, C; 0, 2C) 3= 4H1 (G,C)+H2 (G,C) wereH1(G, C) andH2(G, C) are indepen-

dent copies of the KPZ equation with narrow wedge initial data. This puts Theorem 2.1.4 in the

framework of Theorem 2.1.10. Viewing the density around its unique random modeM 1
2 ,2C

(that is

the maximizer), we may thus write 5 1
2 ,2C
(G +M 1

2 ,2C
) as

4−'2 (G,C)∫
R

4−'2 (H,C)3H
,

where '2(G, C) is defined in (2.1.11). For simplicity, let us use the notation P =M 1
2 ,2C

.

The rest of the argument hinges on the following two main facts:

(i) Bessel convergence: '2(G, C) converges weakly to 3D-Bessel process with diffusion coeffi-

cient 2 in the uniform-on-compact topology (Theorem 2.1.10).

(ii) Controlling the tails: By taking  large,
∫
[− , ]2 4

−'2 (H,C)3H can be made arbitrarily small

for all large C (see Proposition 2.7.2 for precise statement).

Theorem 2.1.4 can then be deduced from the above two items by standard analysis. We now

explain the ideas behind items (i) and (ii). The principal tool of our analysis is the Gibbsian line

ensemble – an object bearing an integrable origin but are largely used in probabilistic setting. More

precisely, we use the KPZ line ensemble (recalled in Proposition 3.5.1), a set of random continuous
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functions whose lowest indexed curve is same in distribution as the narrow wedge solution of the

KPZ equation. The law of the lowest indexed curve enjoys a certain Gibbs property which is known

as H-Brownian Gibbs property. Roughly, this property states that the law of the lowest indexed

curve conditioned on an interval depends only on the curve indexed one below and the starting

and ending points. Furthermore, this conditional law is absolutely continuous w.r.t. a Brownian

bridge of the same starting and ending points with an explicit expression of the Radon-Nikodym

derivative.

We recast the problem in item (i) in the language of Gibbsian line ensemble. Note that '2(G, C)

is a sum of two independent KPZ equations viewed from joint maximum (see (2.1.11)). To access

the distribution of '2(G, C) one then needs a precise description of the conditional joint law of the

top curves of two independent copies of the KPZ line ensemble on random intervals determined

by the location of the joint maximizer. In view of this, to establish item (i) we prove the following

two items:

(a) Two Brownian bridges when viewed around joint maximum can be appropriately given by

two pairs of non-intersecting Brownian bridges to either side of the maximum (Proposition

2.4.9).

(b) For a suitable  (C) ↑ ∞, the Radon-Nikodym derivatives associated with the KPZ line en-

sembles (see (2.2.3) for the precise expression of Radon-Nikodym derivative) on the random

interval [P −  (C),P +  (C)] containing the maximizer goes to 1.

Combining the above two ideas, we can conclude the joint law of

(�1(G, C), �2(G, C)) := (H1(P, C) − H1(P + G, C),H2(P + G, C) − H2(P, C)) (2.1.12)

on G ∈ [− (C),  (C)] is close to two-sided pair of non-intersecting Brownian bridges with the

same starting point and appropriate endpoints. Upon taking C → ∞, one obtains a two-sided

Dyson Brownian motion (D1,D2) defined in Definition 2.5.1 as a distributional limit. Proposition
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2.6.1 is the precise rendering of this fact. Finally a 3D-Bessel process emerges as the difference of

two parts of the Dyson Brownian motion: D1(·) − D2(·) (see Lemma 2.5.3).

Before expanding upon items (a) and (b), let us explain why we adopted an approach substan-

tially different from the existing methods. Since the random interval in question includes joint

maximizers, it is not a stopping domain and one cannot utilize classical properties such as the

strong Gibbs property for KPZ line ensemble. In the context of the KPZ fixed point [82] used

Gibbs property on random intervals defined to the right of the maximizer as one of the ingredients

of their proof. There they relied on a path decomposition of Markov processes at certain spatial

times from [189]. The result of [189] argues that conditioned on the maximizer, the process to the

right of the maximizer is Markovian. However in our context, the intervals around the maximum is

symmetric. Thus the abstract setup of [189] is not suited for our case. Thus, the precise description

of the law given for the Brownian bridges in item (a) is indispensable to our argument.

To go from Brownian laws to KPZ laws, one needs an exact comparison between the two.

Traditional tools such as stochastic monotonicity for the KPZ line ensembles are known to help

obtain one-sided bounds for monotone events. Especially in the context of tail estimates of the KPZ

equation, such tools reduce the problem to the setting of Brownian bridges, which can be treated

classically. However, this approach only produces a one-sided bound and is thus insufficient for

the precise convergence we wish to obtain. Hence we establish the exact comparison between the

two laws by treating the Radon-Nikodym derivative directly.

To describe the result in item (a), consider two independent Brownian bridges �1 and �2 on

[0, 1] both starting and ending at zero. See Figure 2.1. Let " =: argmax(�1(G) +�2(G)). We wish

to study the conditional law of (�1, �2) given the max data: (", �1("), �2(")). The key fact

from Proposition 2.4.9 is that conditioned on the max data

(�1(") − �1(" − G), �2(" − G) − �2("))G∈[0,"] , (�1(") − �1(G), �2(G) − �2("))G∈[",1]

are independent and each is a non-intersecting Brownian bridge with appropriate end points (see
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Figure 2.1: First idea for the proof: The first two figures depicts two independent Brownian bridges
‘blue’ and ‘black’ on [0, 1] both starting and ending at zero. We flip the blue one and shift it
appropriately so that when it is superimposed with the black one, the blue curve always stays
above the black one and touches the black curve at exactly one point. The superimposed figure is
shown in third figure. The red point denotes the ‘touching’ point or equivalent the joint maximizer.
Conditioned on the max data, the trajectories on the left and right of the red points are given by
two pairs of non-intersecting Brownian bridges with appropriate end points.

Definition 2.4.4). The key proof idea is to show such a decomposition at the level of discrete

random walks, then take diffusive limits to get the same for Brownian motions and finally for

Brownian bridges after conditioning. The details are all presented in Section 2.4.

Figure 2.2: Second idea for the proof: For all “good" boundary data and max data, with high
probability, there is an uniform separation of order C1/3 between the first two curves on the random
interval ["C −  , "C +  ].

To illustrate the idea behind item (b), let us consider an easier yet pertinent scenario. Let
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H (1) (G, C) andH (2) (G, C)) be the first two curves of the KPZ line ensemble. Let "C = argmaxH (1) (G, C).

We consider the interval �C := ["C −  , "C +  ]. See Figure 2.2. We show that

1. Maximum is not too high: H (1) ("C , C) − H (1) ("C ±  , C) = $ (1),

2. The gap at the end points is sufficiently large: H (1) ("C ± , C) −H (2) ("C ± , C) = $ (C1/3).

3. The fluctuations of the second curve on �C are $ (1).

Under the above favorable class of boundary data: H (1) ("C ±  , C),H (2) (·, C) and the max data:

("C ,H (1) ("C , C)), we show that the conditional fluctuations of the first curve are$ (1). This forces

a uniform separation between the first two curves throughout the random interval �C . Consequently

the Radon-Nikodym derivative converges to 1 as C → ∞ (see (2.2.3) for the precise expression of

Radon-Nikodym derivative).

In order to conclude such a statement rigorously, we rely on tail estimates for the KPZ equation

as well as some properties of the Airy line ensemble which are the distributional limits of the scaled

KPZ line ensemble defined in (2.2.6). We review in depth of the necessary tools in Section 3.2.

We remark that the rigorous argument for the Radon-Nikodym derivative present in the proof of

Theorem 2.1.4 (Proposition 2.6.1 to be precise) is slightly different and more involved. Indeed,

one needs to consider another copy of line ensemble and argue that similar uniform separation

holds for both when viewed around the joint maximum P. We also take  =  (C) ↑ ∞ and the

separation length is consequently different.

We have argued so far that (�1(G, C), �2(G, C)) (defined in (2.1.12)) jointly converges to a

two-sided Dyson Brownian motion. This convergence holds in the uniform-on-compact topology.

However, this does not address the question about behavior of the tail integral

∫
[− , ]2

4�2 (H,C)−�1 (H,C)dH

that appears in item (ii).
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Figure 2.3: Third idea for the proof: The three regimes

To control the tail, we divide the tail integral into three parts based on the range of integration

(See Figure 2.3):

• Dyson regime: The law of (D1(G, C),D2(G, C)) on the interval [0, XC2/3] is comparable to

that of the Dyson Brownian motions for small enough X and for all large C. Under the Dyson

Brownian motion law, it is known that with high probability D1(G) − D2(G) ≥ Y |G |1/4 for

all large enough |G |. This property translates to (�1(G, C), �2(G, C)) and provides a decay

estimate for our integral over this interval.

• Parabolic Regime: The maximizer P can be shown to lie in a window of order C2/3 region

with high probability. On the other hand, the KPZ equation upon centering is known to

have a parabolic decay: H(G, C) + C
24 ≈ −

G2

2C + $ (C
1/3). Thus taking � large enough ensures

with high probability �1(G, C) ≈ G2

4C and �2(G, C) ≈ − G
2

4C on the interval [�C2/3,∞). These

estimates give the rapid decay of our integral in this regime.

• Transition Regime: In between the two regimes, we use soft arguments related to non-

intersecting brownian bridges to ensure that with high probability �1(G, C) − �2(G, C) is at

least dC1/3 uniformly on [XC2/3, �C2/3].
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Proposition 2.5.6 and Proposition 2.7.2 together are the rigorous manifestations of the above

idea. In the proof of Proposition 2.5.6 we provide decay estimates in the Dyson and transition

regimes together for Brownian objects. Later in the proof of Proposition 2.7.2 we show how

estimates in Proposition 2.5.6 translates to �1, �2 for those two regimes which we collectively

refer to as “shallow tail regime" (see Figure 2.10). The parabolic regime (which we refer to as the

“deep tail" later in Section 2.7) is also handled in Proposition 2.7.2.

Outline

The remainder of the paper is organized as follows. Section 3.2 reviews some of the existing

results related to the KPZ line ensemble and its zero temperature counterpart, the Airy line ensem-

ble. With the necessary background, we then prove the existence and uniqueness of random modes

in Theorem 2.1.8 in Section 2.3. Section 2.4 is dedicated to the behaviors of the Brownian bridges

around their joint maximum. Two key objects emerge in this Section: the Bessel bridges and

the non-intersecting Brownian bridges. Several properties of these two objects are subsequently

proved in Section 2.5. The proofs of Theorems 2.1.10 and 2.1.11 comprise section 2.6. Finally in

Section 2.7, we complete the proofs of Theorems 2.1.4 and 2.1.5. Appendix 2.8 contains a conver-

gence result about non-intersecting random walks used in Section 2.4. We defer the proof to the

appendix as the arguments are standard.
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2.2 Basic framework and tools

Remark on Notations

Throughout this paper we use C = C(U, V, W, . . .) > 0 to denote a generic deterministic pos-

itive finite constant that may change from line to line, but dependent on the designated variables

U, V, W, . . .. We will often write CU in case we want to stress the dependence of the constant to the

variable U. We will use serif fonts such as A,B, . . . to denote events as well as CDRP,DBM . . . to

denote laws. The distinction will be clear from the context. The complement of an event A will be

denoted as ¬A.

In this section, we present the necessary background on the directed landscape and Gibbsian

line ensembles including the Airy line ensemble and the KPZ line ensemble as well as known

results on these objects that are crucial in our proofs.

2.2.1 The directed landscape and the Airy line ensemble

We recall the definition of the directed landscape and several related objects from [94, 96]. The

directed landscape is the central object in the KPZ universality class constructed as a scaling limit

of the Brownian Last Passage percolation (BLPP). We recall the setup of the BLPP below to define

the directed landscape.

Definition 2.2.1 (Directed landscape). Consider an infinite collection � := (�: (·)):∈Z of indepen-

dent two-sided Brownian motions with diffusion coefficient 2. For G ≤ H and = ≤ <, the last

passage value from (G, <) to (H, =) is defined by

�[(G, <) → (H, =)] = sup
c

<∑
:==

[�: (c: ) − �: (c:−1)],
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where the supremum is over all c ∈ Π<,= (G, H) := {c< ≤ · · · ≤ c= ≤ c=−1 | c< = G, c=−1 =

H}. Now for any (G, B; H, C) ∈ R4
↑, we denote (G, B)= := (B + 2G=−1/3,−bB=c) and (H, C)= := (C +

2H=−1/3,−bC=c) and define

L= (G, B; H, C) := =1/6�= [(G, B)= → (H, C)=] − 2(C − B)=2/3 − 2(H − G)=1/3.

The directed landscape L is the distributional limit of L= as = → ∞ with respect to the uniform

convergence on compact subsets of R4
↑. By [94], the limit exists and is unique.

The marginal A1(G) := L(0, 0; G, 1) is known as the parabolic Airy2 process. In [204] the

Airy2 process A1(G) + G2 was constructed as the scaling limit of the polynuclear growth model.

At the same time, A1(G) can also be viewed as the top curve of the Airy line ensemble, which we

define formally below in the approach of [73].

Definition 2.2.2 (Brownian Gibbs Property). Recall the general notion of line ensembles from

Section 2 in [73]. Fix :1 ≤ :2 with :1, :2 ∈ N and an interval (0, 1) ∈ R and two vectors

®G, ®H ∈ R:2−:1+1. Given two measurable functions 5 , 6 : (0, 1) → R ∪ {±∞}, let P:1,:2,(0,1),®G,®H, 5 ,6
nonint

be the law of :2 − :1 + 1 many independent Brownian bridges (with diffusion coefficient 2) {�8 :

[0, 1] → R}:2
8=:1

with �8 (0) = G8 and �8 (1) = H8 conditioned on the event that

5 (G) > �:1 (G) > �:1+1(G) > · · · > �:2 (G) > 6(G), for all G ∈ [0, 1] .

Then the N × R indexed line ensemble L = (L1,L2, . . .) is said to enjoy the Brownian Gibbs

property if, for all  = {:1, . . . , :2} ⊂ N and (0, 1) ⊂ R, the following distributional equality

holds:

Law
(
L ×(0,1) conditioned on LN×R\ ×(0,1)

)
= P

:1,:2,(0,1),®G,®H, 5 ,6
nonint ,

where ®G = (L:1 (0), . . . ,L:2 (0)), ®H = (L:1 (1), . . . ,L:2 (1)), L:1−1 = 5 (or ∞ if :1 = 1) and

L:2+1 = 6.

43



Definition 2.2.3 (Airy line ensemble). The Airy line ensemble A = (A1,A2, . . .) is the unique

N × R-indexed line ensemble satisfying Brownian Gibbs property whose top curve A1(·) is the

parabolic Airy2 process. The existence and uniqueness of A follow from [73] and [109] respec-

tively.

The Airy line ensemble is in fact a strictly ordered line ensemble in the sense that almost surely,

A: (G) > A:+1(G) for all : ∈ N, G ∈ R. (2.2.1)

(2.2.1) follows from the Brownian Gibbs property and the fact that for each G ∈ R, (A: (G) +

G2):≥1 is equal in distribution to the Airy point process. The latter is strictly ordered. In [96], the

authors studied several probabilistic properties of the Airy line ensembles such as tail estimates

and modulus of continuity. Below we state an extension of one of such results used later in our

proof.

Proposition 2.2.4. Fix : ≥ 1. There exists a universal constant C: > 0 such that for all < > 0

and ' ≥ 1 we have

P
©« sup
G≠H∈[−',']
|G−H |≤1

|A: (G) + G2 − A: (H) − H2 |√
|G − H | log

1
2 2
|G−H |

≥ <
ª®®¬ ≤ C: · ' exp

(
− 1

C :<
2
)
. (2.2.2)

Proof. Fix : ≥ 1. By [96, Lemma 6.1] there exists a constant C: such that for all G, H ∈ R with

|G − H | ≤ 1, we have

P
(
|A: (G) + G2 − A: (H) − H2 | ≥ <√G − H

)
≤ C: exp

(
− 1

C:<
2
)
.

Thus applying Lemma 3.3 in [96] (with 3 = 1, ) = [−', '], A1 = 1, U1 =
1
2 , V1 = 2) and adjusting

the value of C: yields (2.2.2).
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2.2.2 KPZ line ensemble

Let L = (L1,L2, . . .) be an N × R-indexed line ensemble. Fix :1 ≤ :2 with :1, :2 ∈ N

and an interval (0, 1) ∈ R and two vectors ®G, ®H ∈ R:2−:1+1. Given a continuous function H :

R → [0,∞) (Hamiltonian) and two measurable functions 5 , 6 : (0, 1) → R ∪ {±∞}, the law

P
:1,:2,(0,1),®G,®H, 5 ,6
H on L:1 , . . . ,L:2 : (0, 1) → R has the following Radon-Nikodym derivative with

respect to P:1,:2,(0,1),®G,®H
free , the law of :2 − :1 + 1 many independent Brownian bridges (with diffusion

coefficient 1) taking values ®G at time 0 and ®H at time 1:

3P
:1,:2,(0,1),®G,®H, 5 ,6
H

3P
:1,:2,(0,1),®G,®H
free

(L:1 , . . . ,L:2) =
exp

{
−∑:2+1

8=:1

∫
H

(
L8 (G) − L8−1(G)

)
3G

}
/
:1,:2,(0,1),®G,®H, 5 ,6
H

, (2.2.3)

where L:1−1 = 5 , or ∞ if :1 = 1; and L:2+1 = 6. Here, / :1,:2,(0,1),®G,®H, 5 ,6
H is the normalizing

constant which produces a probability measure. We say L enjoys the H-Brownian Gibbs property

if, for all  = {:1, . . . , :2} ⊂ N and (0, 1) ⊂ R, the following distributional equality holds:

Law
(
L ×(0,1) conditioned on LN×R\ ×(0,1)

)
= P

:1,:2,(0,1),®G,®H, 5 ,6
H ,

where ®G = (L:1 (0), . . . ,L:2 (0)), ®H = (L:1 (1), . . . ,L:2 (1)), and where again L:1−1 = 5 , or ∞ if

:1 = 1; and L:2+1 = 6.

In the following text, we consider a specific class of H such that

HC (G) = C2/34C
1/3G . (2.2.4)

The next proposition then recalls the unscaled and scaled KPZ line ensemble constructed in [74]

with HC-Brownian Gibbs property.

Proposition 2.2.5 (Theorem 2.15 in [74]). Let C ≥ 1. There exists an N×R-indexed line ensemble

HC = {H (=)C (G)}=∈N,G∈R such that:
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(a) the lowest indexed curve H (1)C (G) is equal in distribution (as a process in G) to the Cole-Hopf

solution H(G, C) of the KPZ equation started from the narrow wedge initial data and the line

ensembleHC satisfies the H1-Brownian Gibbs property;

(b) the scaled KPZ line ensemble {h(=)C (G)}=∈N,G∈R, defined by

h
(=)
C (G) := C−1/3

(
H (=)C

(
C2/3G

)
+ C/24

)
(2.2.5)

satisfies the HC-Brownian Gibbs property. Furthermore, for any interval (0, 1) ⊂ R and Y > 0,

there exists X > 0 such that, for all C ≥ 1,

P
(
/

1,1,(0,1),h(1)C (0),h
(1)
C (1),∞,h

(2)
C

HC
< X

)
≤ Y,

where /1,1,(0,1),h(1)C (0),h
(1)
C (1),∞,h

(2)
C

HC
is the normalizing constant defined in (2.2.3).

Remark 2.2.6. In part (3) of Theorem 2.15 [74] it is erroneously mentioned that the scaled KPZ

line ensemble satisfies HC-Brownian Gibbs property with HC (G) = 4C
1/3G (instead of HC (G) =

C2/34C
1/3G from (2.2.4)). This error was reported by Milind Hegde and has been acknowledged

by the authors of [74], who are currently preparing an errata for the same.

More recently, it has also been shown in [107] that the KPZ line ensemble as defined in Propo-

sition 3.5.1 is unique as well. We will make extensive use of this scaled KPZ line ensemble h(=)C (G)

in our proofs in later sections. For = = 1, we also adopt the shorthand notation:

hC (G) := h(1)C (G) = C−1/3
(
H(C2/3G, C) + C

24

)
. (2.2.6)

Note that for C large, the Radon-Nikodym derivative in (2.2.3) attaches heavy penalty if the curves

are not ordered. Thus, intuitively at C → ∞, one expects to get completely ordered curves, where

the HC-Brownian Gibbs property will be replaced by the usual Brownian Gibbs property (see Defi-

nition 2.2.2) for non-intersecting Brownian bridges. Thus it’s natural to expect the scaled KPZ line
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ensemble to converge to the Airy line ensemble. Along with the recent progress on the tightness of

KPZ line ensemble [242] and characterization of Airy line ensemble [109], this remarkable result

has been recently proved in [208].

Proposition 2.2.7 (Theorem 2.2 (4) in [208]). Consider the KPZ line ensemble and the Airy line

ensemble defined in Proposition 3.5.1 and Definition 2.2.3 respectively. For any : ≥ 1, we have

(21/3h(8)C (21/3G)):8=1
3→ (A8 (G)):8=1,

in the uniform-on-compact topology.

The 21/3 factor in Proposition 2.2.7 corrects the different diffusion coefficient used when we

define the Brownian Gibbs property and HC Brownian Gibbs property. We end this section by

recalling several known results and tail estimates for the scaled KPZ equation with narrow wedge

initial data.

Proposition 2.2.8. Recall hC (G) from (2.2.6). The following results hold:

(a) For each C > 0, hC (G) + G2/2 is stationary in G.

(b) Fix C0 > 0. There exists a constant C = C(C0) > 0 such that for all C ≥ C0 and < > 0 we have

P( |hC (0) | ≥ <) ≤ C exp
(
− 1

C<
3/2

)
.

(c) Fix C0 > 0 and V > 0. There exists a constant C = C(V, C0) > 0 such that for all C ≥ C0 and

< > 0 we have

P
(
sup
G∈R

(
hC (G) + G2

2 (1 − V)
)
≥ <

)
≤ C exp

(
− 1

C<
3/2

)
.

The results in Proposition 2.2.8 is a culmination of results from several papers. Part (a) follows

from [5, Corollary 1.3 and Proposition 1.4]. The one-point tail estimates for KPZ equation are
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obtained in [79, 80]. One can derive part (b) from those results or can combine the statements of

Proposition 2.11 and 2.12 in [81] to get the same. Part (c) is Proposition 4.2 from [81].

2.3 Uniqueness and convergence of random modes

In this section we prove the uniqueness of random modes that appears in Theorems 2.1.4 and

2.1.5 and prove Theorem 2.1.8 which claims the convergences of random modes to appropriate

limits. The following lemma settles the uniqueness question.

Lemma 2.3.1. Fix ? ∈ (0, 1) and C > 0. Recall 5?,C and 5∗,C from Theorem 2.1.4 and 2.1.5.

Then 5∗,C has almost surely a unique modeM∗,C and 5?,C has almost surely a unique modeM?,C .

Furthermore for any C0 > 0, there exist a constant C(?, C0) > 0 such that for all C > C0 we have

P(C−2/3 |M?,C | > <) ≤ C exp
(
− 1

C<
3
)
, and P(C−2/3 |M∗,C | > <) ≤ C exp

(
− 1

C<
3
)
. (2.3.1)

Proof. We first prove the point-to-point case. Fix ? ∈ (0, 1) and set @ = 1 − ?. Take C > 0.

Throughout the proof C > 0 will depend on ?, we won’t mention this further.

Note that (3.1.5) implies that the density 5?,C (G) is proportional to Z(0, 0; G, ?C)Z(G, ?C; 0, C)

and that Z(0, 0; G, ?C) and Z(G, ?C; 0, C) are independent. By time reversal property of SHE we

have Z(G, ?C; 0, C) 3= H(G, @C) as functions in G. Using the 1 : 2 : 3 scaling from (2.2.6) we may

write

5?,C (G)
3
=

1
/̃?,C

exp
(
C1/3?1/3h?C,↑(?−2/3C−2/3G) + C1/3@1/3h@C,↓(@−2/3C−2/3G)

)
(2.3.2)

where hC,↑(G) and hC,↓(G) are independent copies of the scaled KPZ line ensemble hC (G) defined in

(2.2.6) and /̃?,C is the normalizing constant. Thus it suffices to study the maximizer of

S?,C (G) := ?1/3h?C,↑(?−2/3G) + @1/3h@C,↓(@−2/3G). (2.3.3)

Note that maximizer of 5?,C can be retrieved from that of S?,C by a C−2/3 scaling.
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We first claim that for all < > 0 we have

P (A1) ≤ C exp
(
− 1

C<
3
)
, where A1 :=

{
h?C,↑(?−2/3G) > h?C,↑(0) for some |G | > <

}
(2.3.4)

P (A2) ≤ C exp
(
− 1

C<
3
)
, where A2 :=

{
h@C,↓(@−2/3G) > h@C,↓(0) for some |G | > <

}
. (2.3.5)

Let us prove (2.3.4). Define

D1 :=
{
sup
G∈R

(
h?C,↑(?−2/3G) + G2

4?4/3

)
≤ <2

8?4/3

}
, D2 :=

{
|h?C,↑(0) | ≤

<2

16?4/3

}
.

Note that on D2, h?C,↑(0) ∈ [− <2

16?4/3 ,
<2

16?4/3 ], whereas on D1, for all |G | > < we have

h?C,↑(?−2/3G) < <2

8?4/3 − <2

4?4/3 = − <2

8?4/3 .

Thus A1 ⊂ ¬D1 ∪ ¬D2 where A1 is defined in (2.3.4). On the other hand, by Proposition 2.2.8(c)

with V = 1
2 and Proposition 2.2.8 (b) we have

P(D1) > 1 − C exp
(
− 1

C<
3
)
, P(D2) > 1 − C exp

(
− 1

C<
3
)
.

Hence by union bound we get P(A1) ≤ P(¬D1) + P(¬D2) ≤ C exp(− 1
C<

3). This proves (2.3.4).

Proof of (2.3.5) is analogous.

Now via the Brownian Gibbs property hC is absolute continuous w.r.t. Brownian motion on

every compact interval. Hence for each C > 0, S?,C (G) defined in (2.3.3) has a unique maximum on

any compact interval almost surely. But due to the bounds in (2.3.4) and (2.3.5), we see that

P
(
S?,C (G) > S?,C (0) for some |G | > <

)
≤ C exp

(
− 1

C<
3
)
. (2.3.6)

Thus S?,C (·) has a unique maximizer almost surely. By the definitions of 5?,C (G) and S?,C (G) from
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(2.3.2) and (2.3.3), this implies 5?,C (G) also has a unique maximizerM?,C and we have that

M?,C
3
= C2/3 argmax

G∈R
S?,C (G). (2.3.7)

In view of (2.3.6), the above relation (2.3.7) leads to the first inequality in (2.3.1).

For the point-to-line case, note that via (3.1.6) and (2.2.6), 5∗,C (G) is proportional to exp(C1/3hC (C−2/3G)).

The proofs of uniqueness of the maximizer and the second bound in (2.3.1) then follow by analo-

gous arguments. This completes the proof.

In the course of proving the above lemma, we have also proved an important result that connects

the random modes to the maximizers of the KPZ equations. We isolate this result as a separate

lemma.

Lemma 2.3.2. Consider three independent copiesH ,H↑,H↓ of the KPZ equation started from the

narrow wedge initial data. The random modeM?,C of 5?,C (defined in statement of Theorem 2.1.4)

is same in distribution as the maximizer of

H↑(G, ?C) + H↓(G, @C).

Similarly one has that the random mode M∗,C of 5∗,C (defined in statement of Theorem 2.1.5) is

same in distribution as the maximizer ofH(G, C).

Proof of Theorem 2.1.8. Due to the identity in (2.3.7) we see that C−2/3M?,C is same in distribution

as

argmax
G∈R

(?,C (G)

where S?,C (G) is defined in (2.3.3). By Proposition 2.2.7 we see that as C →∞

S?,C (G)
3→ 2−1/3

(
?1/3A1,↑(2−1/3?−2/3G) + @1/3A1,↓(2−1/3@−2/3G)

)
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in the uniform-on-compact topology where A1,↑,A1,↓ are independent parabolic Airy2 processes.

Note that the expression in the r.h.s. of the above equation is the same as

A(G) := 2−1/2
(
A (?

√
2)

↑ (G) + A (@
√

2)
↓ (G)

)
(2.3.8)

where A (?
√

2)
↑ (G),A (@

√
2)

↓ (G) are independent Airy sheets of index ?
√

2 and @
√

2 respectively. By

Lemma 9.5 in [94] we know that A(G) has almost surely a unique maximizer on every compact

set. Thus,

argmax
G∈[− , ]

S?,C (G)
3→ argmax

G∈[− , ]
A(G). (2.3.9)

Finally the decay bounds for the maximizer of S?,C (G) from Lemma 2.3.1 and the decay bounds for

the maximizer ofA from [207] allow us to extend the weak convergence to the case of maximizers

on the full line. However, by the definition of the geodesic of the directed landscape from Defini-

tion 3.1.6, we see that Γ(?
√

2) 3= argmaxG∈RA(G). This concludes the proof for the point-to-point

case. For the point-to-line case, following Lemma 2.3.2 and recalling again the scaled KPZ line

ensemble from (2.2.6), we have

2−1/3C−2/3M∗,C = argmax
G∈R

H(21/3C2/3G, C) = argmax
G∈R

(
C1/3hC (21/3G) − C

24

)
= argmax

G∈R
21/3hC (21/3G).

From Proposition 2.2.7 we know 21/3hC (21/3G) converges in distribution to A1(G) in the uniform-

on-compact topology. Given the decay estimates forM∗,C from (2.3.1) and decay bounds for the

maximizer of A1 from [94], we thus get that argmaxG∈R 21/3hC (21/3G) converges in distribution to

M, the unique maximizer of the parabolic Airy2 process. This completes the proof.

2.4 Decomposition of Brownian bridges around joint maximum

The goal of this section is to prove certain decomposition properties of Brownian bridges

around the joint maximum outlined in Proposition 2.4.8 and Proposition 2.4.9. To achieve this
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goal, we first discuss several Brownian objects and their related properties in Section 2.4.1 which

will be foundational for the rest of the paper. Then we prove Proposition 2.4.8 and 2.4.9 in the en-

suing subsection. We refer to Figure 2.4 for the structure and various Brownian laws convergences

in this and the next sections. The notation ?C (H) := (2cC)−1/24−H
2/(2C) for the standard heat kernel

will appear throughout the rest of the paper.

Non-intersecting Brownian motions
(NonInt-BM) defined in Defintion 2.4.3.

Non-intersecting Brownian bridges
(NonInt-BrBridge) defined in Defintion 2.4.4.

Dyson Brownian mo-
tion (DBM) defined
in Definition 2.5.1

3D Bessel process
(Definition 2.5.2)

Bessel bridges
(Definition 2.4.1)

Non-intersecting
random walks

Diffusive limit
Lemma 2.4.7

(Conditioning)

Diffusive limit
Proposition 2.5.8

(Taking Differences)Lemma 2.5.3

Diffusive limit
Corollary 2.5.9

(Taking Differences)Lemma 2.4.6

Figure 2.4: Relationship between different laws used in Sections 2.4 and 2.5.

2.4.1 Brownian objects

In this section we recall several objects related to Brownian motion, including the Brown-

ian meanders, Bessel bridges, non-intersecting Brownian motions and non-intersecting Brownian

bridges.

Definition 2.4.1 (Brownian meanders and Bessel bridges). Given a standard Brownian motion

�(·) on [0, 1], a standard Brownian meander Bme : [0, 1] → R is a process defined by

Bme(G) = (1 − \)−
1
2 |�(\ + (1 − \)G) |, G ∈ [0, 1],
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where \ = sup{G ∈ [0, 1] | �(G) = 0}. In general, we say a process Bme : [0, 1] → R is a

Brownian meander on [0, 1] if

B′me(G) := (1 − 0)− 1
2Bme(0 + G(1 − 0)), G ∈ [0, 1]

is a standard Brownian meander. A Bessel bridge Rbb on [0, 1] ending at H > 0 is a Brownian

meander Bme on [0, 1] subject to the condition (in the sense of Doob) Bme(1) = H.

A Bessel bridge can also be realized as conditioning a 3D Bessel process to end at some point

and hence the name. As we will not make use of this fact, we do not prove this in the paper.

Lemma 2.4.2 (Transition densities for Bessel Bridge). Let + be a Bessel bridge on [0, 1] ending

at 0. Then for 0 < C < 1,

P(+ (C) ∈ 3G) = G

0C

?C (G)
?1(0)

[?1−C (G − 0) − ?1−C (G + 0)]3G, G ∈ [0,∞).

For 0 < B < C < 1 and G > 0,

P(+ (C) ∈ 3H | + (B) = G) = [?C−B (G − H) − ?C−B (G + H)] [?1−C (H − 0) − ?1−C (H + 0)]
[?1−B (G − 0) − ?1−B (G + 0)]

3H, H ∈ [0,∞).

Proof. We recall the joint density formula for Brownian meander , on [0, 1] from [150]. For

0 = C0 < C1 < C2 < · · · < C: ≤ 1:

P(, (C1) ∈ 3G1, . . . ,, (C: ) ∈ 3G: ) =
G1
C
?C1 (G1)Ψ( G:√

1−C:
)
:−1∏
9=1

6(G 9 , G 9+1; C 9+1 − C 9 )
:∏
9=1

3G 9

where

6(G 9 , G 9+1; C 9+1 − C 9 ) := [?C 9+1−C 9 (G 9 − G 9+1) − ?C 9+1−C 9 (G 9 + G 9+1)],

Ψ(G) := (2/c) 1
2

∫ G

0
4−D

2/23D.
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The joint density is supported on [0,∞): . We now use Doob-ℎ transform to get the joint density

for Bessel bridge on [0, 1] ending at 0. For 0 = C0 < C1 < C2 < · · · < C: < 1:

P(+ (C1) ∈ 3G1, . . . , + (C: ) ∈ 3G: ) =
G1
0C1

?C1 (G1)
?1(0)

:∏
9=1

6(G 9 , G 9+1; C 9+1 − C 9 )
:∏
9=1

3G 9

where G:+1 = 0 and C:+1 = 1. Formulas in Lemma 2.4.2 is obtained easily from the above joint

density formula.

Definition 2.4.3 (Non-intersecting Brownian motions). We say a random continuous function

, (C) = (,1(C),,2(C)) : [0, 1] → R2 is a pair of non-intersecting Brownian motion (NonInt-BM

in short) if its distribution is given by the following formulas:

(a) We have for any H1, H2 ∈ R

P(,1(1) ∈ dH1,,2(1) ∈ dH2) =
1{H1 > H2}(H1 − H2)?1(H1)?1(H2)∫
A1>A2
(A1 − A2)?1(A1)?1(A2)dA1dA2

dH1dH2. (2.4.1)

(b) For 0 < C < 1, we have

P(,1(C) ∈ dH1,,2(C) ∈ dH2)

=
1{H1 > H2}(H1 − H2)?C (H1)?C (H2)

∫
A1>A2

det(?1−C (H8 − A 9 ))28, 9=1dA1dA2

C
∫
A1>A2
(A1 − A2)?1(A1)?1(A2)dA1dA2

dH1dH2.
(2.4.2)

(c) For 0 < B < C ≤ 1 and G1 > G2, we have

P(,1(C) ∈ dH1,,2(C) ∈ dH2 |,1(B) = G1,,2(B) = G2)

= 1{H1 > H2}
det(?C−B (H8 − G 9 ))28, 9=1

∫
A1>A2

det(?1−C (H8 − A 9 ))28, 9=1dA1dA2∫
A1>A2

det(?1−B (G8 − A 9 ))28, 9=1dA1dA2
dH1dH2.

(2.4.3)

We call, [0,"] a NonInt-BM on [0, "] if ("−1/2, [0,"]1 ("G), "−1/2, [0,"]2 ("G)) is a NonInt-BM

on [0, 1].
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Definition 2.4.4 (Non intersection Brownian bridges). A 2-level non-intersecting Brownian bridge

(NonInt-BrBridge in short)+ = (+1, +2) on [0, 1] ending at (I1, I2) with (I1 ≠ I2) is a NonInt-BM

on [0, 1] defined in Definition 2.4.3 subject to the condition (in the sense of Doob) + (1) =

I1, + (1) = I2. It is straight forward to check we have the following formulas for the distribu-

tion of + :

(a) For 0 < C < 1, we have

P(+1(C) ∈ dH1, +2(C) ∈ dH2) =
1{H1 > H2}(H1 − H2)?C (H1)?C (H2)

C (I1 − I2)?1(I1)?1(I2)
det(?1−C (H8 − I 9 ))28, 9=1dH1dH2.

(b) For 0 < B < C ≤ 1 and G1 > G2, we have

P(+1(C) ∈ dH1, +2(C) ∈ dH2 |+1(B) = G1, +2(B) = G2)

=
det(?C−B (H8 − G 9 ))28, 9=1 det(?1−C (H8 − I 9 ))28, 9=1

det(?1−B (G8 − I 9 ))28, 9=1
dH1dH2.

Just like NonInt-BM, we call+ [0,"] a NonInt-BrBridge on [0, "] if ( 1√
"
+
[0,"]
1 ("G), 1√

"
+
[0,"]
2 ("G))

is a NonInt-BrBridge on [0, 1].

Remark 2.4.5. It is possible to specify the distributions for a =-level non-intersecting Brownian

bridge. However, the notations tend to get cumbersome due to the possibility of some paths sharing

the same end points. We refer to Definition 8.1 in [108] for a flavor of such formulas. We remark

that in this paper we will focus exclusively on the = = 2 case with distinct endpoints.

The following Lemma connects NonInt-BrBridge with Bessel bridges.

Lemma 2.4.6 (NonInt-BrBridge to Bessel bridges). Let + = (+1, +2) be a NonInt-BrBridge on

[0, 1] ending at (I1, I2) with I1 > I2. Then, as functions in G, we have +1(G) − +2(G)
3
=
√

2Rbb(G)

where Rbb : [0, 1] → R is a Bessel bridge (see Definition 2.4.1) ending at (I1 − I2)/
√

2.

The proof of Lemma 2.4.6 is based on the following technical lemma that discusses how

NonInt-BM comes up as a limit of non-intersecting random walks.
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Lemma 2.4.7. Let - 8
9

be i.i.d. N(0, 1) random variables. Let ((8)0 = 0 and (
(8)
:
=

∑:
9=1 -

8
9
.

Consider .= (C) = (.=,1(C), .=,2(C)) := ( (
(1)
=C√
=
,
(
(2)
=C√
=
) an R2 valued process on [0, 1] where the in-

between points are defined by linear interpolation. Then conditioned on the non-intersecting event

Λ= := ∩=
9=1{(

(1)
9

> (
(2)
9
}, .=

3→ , , where , (C) = (,1(C),,2(C)) is distributed as NonInt-BM

defined in Definition 2.4.3.

We defer the proof of this lemma to the Appendix as it roughly follows standard calculations

based on the Karlin-McGregor formula [161].

Proof of Lemma 2.4.6. Let - 8
9

to be i.i.d. N(0, 1) random variables. Let ((8)0 = 0 and (
(8)
:

=∑:
9=1 -

8
9
. Set .= (C) = ( (

(1)
=C√
=
,
(
(2)
=C√
=
) an R2 valued process on [0, 1] where the in-between points

are defined by linear interpolation. By Lemma 2.4.7, conditioned on the non-intersecting event

Λ= := ∩=
9=1{(

(1)
9
> (

(2)
9
}, .= converges to , = (,1,,2), a NonInt-BM on [0, 1] defined in Def-

inition 2.4.3. On the other hand, classical results from [150] tell us, (((1)=C − (
(2)
=C )/
√
= conditioned

on Λ= converges weakly to
√

2Bme(C), where Bme(·) is a Brownian meander defined in Definition

2.4.1. The
√

2 factor comes because ((1)
:
− ((2)

:
is random walk with variance 2. Thus

,1(·) −,2(·)
3
=
√

2Bme(·).

From [150],Bme is known to be Markov process. Hence the law of,1−,2 depends on (,1(1),,2(1))

only through ,1(1) − ,2(1). In particular conditioning on (,1(1) = I1,,2(1) = I2), for any

I1 > I2, makes , to be a NonInt-BrBridge on [0, 1] ending at (I1, I2) and the conditional law of

1√
2
(,1 −,2) is then a Bessel bridge ending at 1√

2
(I1 − I2). This completes the proof.

2.4.2 Decomposition Results

In this section we prove two path decomposition results around the maximum for a single

Brownian bridge and for a sum of two Brownian bridges. The first one is for a single Brownian

bridge.
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Proposition 2.4.8 (Bessel bridge decomposition). Let � : [0, 1] → R be a Brownian bridge

with �(0) = G and �(1) = H. Let " be the almost sure unique maximizer of �. Consider

,ℓ : [0, "] → R defined as ,ℓ (G) = �(") − �(" + 0 − G), and ,r : [", 1] → R defined as

,r(G) = �(") − �(G). Then, conditioned on (", �(")),

(a) ,ℓ (·) and,r(·) are independent.

(b) ,ℓ (·) is a Bessel bridge on [0, "] starting at zero and ending at �(") − G.

(c) ,r(·) is a Bessel bridge on [", 1] starting at zero and ending at �(") − H.

Recall that the Bessel bridges are defined in Definition 2.4.1.

Proof. We will prove the result for 0 = 0, 1 = 1 and G = 0; the general case then follows from

Brownian scaling and translation property of bridges. We recall the classical result of Brownian

motion decomposition around maximum from [101]. Consider a map Υ : � ( [0, 1]) → � ( [0, 1]) ×

� ( [0, 1]) given by

(Υ 5 )−(C) := "−
1
2 [ 5 (") − 5 (" (1 − C))], C ∈ [0, 1],

(Υ 5 )+(C) := (1 − ")− 1
2 [ 5 (") − 5 (" + (1 − ")C)], C ∈ [0, 1],

where " = " ( 5 ) := inf{C ∈ [0, 1] | 5 (B) ≤ 5 (C), 0 ≤ B ≤ 1} is the left-most maximizer of 5 . We

set (Υ 5 )− ≡ (Υ 5 )+ ≡ 0 if " = 0 or " = 1. We also define

(Υ" 5 )−(C) := "1/2(Υ 5 )−( C" ), C ∈ [0, "],

(Υ" 5 )+(C) := (1 − ") 1
2 (Υ 5 )+( C−"1−" ), C ∈ [", 1] .

Given a standard Brownian motion � on [0, 1], by Theorem 1 in [101], Υ(�) is independent of

" = " (�) andΥ(�)− andΥ(�)+ are independent Brownian meanders on [0, 1]. By the Brownian

scaling and the fact that Υ(�) is independent of " (�), conditioned on " (�), we see that (Υ"�)−

and (Υ"�)+ are independent Brownian meanders on [0, "] and [", 1] respectively. Observe that
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(Υ" 5 )−(") = 5 (") and (Υ" 5 )+(1) = 5 (")− 5 (1) for any 5 ∈ � ( [0, 1]). Thus conditioning on

(�(") = E, �(1) = H) is equivalent to conditioning on ((Υ"�)−(") = E, (Υ"�)+(1) = E−H). By

definition the conditional law of Brownian meanders upon conditioning their end points are Bessel

bridges. Thus conditioning on (" = <, �(") = E, �(1) = H), we see that (Υ"�)− and (Υ"�)+

are independent Bessel bridges on [0, "] and [", 1] ending at E and E − H respectively. But the

law of a Brownian motion conditioned on (" = <, �(") = E, �(1) = H) is same as the law of a

Brownian bridge � on [0, 1] starting at 0 and ending at H, conditioned on (" (�) = <, �(") = E).

Identifying (Υ"�)− and (Υ"�)+ with,ℓ and,r gives us the desired result.

The next proposition show that for two Brownian bridges the decomposition around the joint

maximum is given by non-intersecting Brownian bridges.

Proposition 2.4.9 (Non-intersecting Brownian bridges decomposition). Let �1, �2 : [0, 1] → R

be independent Brownian bridges such that �8 (0) = G8, �8 (1) = H8. Let " be the almost sure

unique maximizer of (�1(G) + �2(G)) on [0, 1]. Define +ℓ (G) : [0, " − 0] → R2 and +A :

[0, 1 − "] → R2 as follows:

+ℓ (G) := (�1(") − �1(" − G),−�2(") + �2(" − G))

+A (G) := (�1(") − �1(" + G),−�2(") + �2(" + G))

Then, conditioned on (", �1("), �2(")),

(a) +ℓ (·) and +A (·) are independent.

(b) +ℓ (·) is a NonInt-BrBridge on [0, " − 0] ending at (�1(") − G1, G2 − �2(")).

(c) +A (·) is a NonInt-BrBridge on [0, 1 − "] ending at (�1(") − H1, H2 − �2(")).

Recall that NonInt-BrBridges are defined in Definition 2.4.4.

As in the proof of Proposition 2.4.8, to prove Proposition 2.4.9 we rely on a decomposition

result for Brownian motions instead. To state the result we introduce the Ωmap which encodes the

trajectories of around the joint maximum of the sum of two functions.
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Definition 2.4.10. For any 5 = ( 51, 52) ∈ � ( [0, 1] → R2), we define Ω 5 ∈ � ( [−1, 1] → R2) as

follows:

(Ω 5 )1(C) =


[ 51(") − 51(" (1 + C))]"−1/2 −1 ≤ C ≤ 0

[ 51(") − 51(" + (1 − ")C)] (1 − ")−1/2 0 ≤ C ≤ 1

(Ω 5 )2(C) =


−[ 52(") − 52(" (1 + C))]"−1/2 −1 ≤ C ≤ 0

−[ 52(") − 52(" + (1 − ")C)] (1 − ")−1/2 0 ≤ C ≤ 1

where " = inf{C ∈ [0, 1] : 51(B) + 52(B) ≤ 51(C) + 52(C),∀B ∈ [0, 1]} is the left most maximizer.

We set (Ω 5 ) ≡ (0, 0) if " = 0 or 1 on [0, 1] . With this we define two functions in � ( [0, 1] → R2)

as follows

(Ω 5 )+(G) := ((Ω 5 )1(G), (Ω 5 )2(G)), G ∈ [0, 1]

(Ω 5 )−(G) := ((Ω 5 )1(−G), (Ω 5 )2(−G)), G ∈ [0, 1] .

We are now ready to state the corresponding result for Brownian motions.

Lemma 2.4.11. Suppose � = (�1, �2) are independent Brownian motions on [0, 1] with �8 (0) =

G8 . Let

" = argmax
C∈[0,1]

(�1(C) + �2(C)).

Then (Ω�)+, (Ω�)− are independent and distributed as non-intersecting Brownian motions on

[0, 1] (see Definition 2.4.3). Furthermore, (Ω�)+, (Ω�)− are independent of " .

We first complete the proof of Proposition 2.4.9 assuming the above Lemma.

Proof of Proposition 2.4.9. Without loss of generality, we set 0 = 0 and 1 = 1. Let �1, �2 :

[0, 1] → R be two independent Brownian bridges with �8 (0) = G8 and denote " = argmaxG∈[0,1] �1(G)+

�2(G). Consider

+ℓ (G) := (�1(") − �1(" − G),−�2(") + �2(" − G))G∈[0,"]
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+A (G) := (�1(") − �1(" + G),−�2(") + �2(" + G))G∈[0,1−"]

By Lemma 2.4.11, conditioned on " and after Brownian re-scaling, we have where +A , +ℓ are

conditionally independent and +A ∼ , [0,1−"] and +ℓ ∼ , [0,"] where , [0,d] denote a NonInt-BM

on [0, d] defined in Definition 2.4.4. To convert the above construction to Brownian bridges, we

observe that the map

(�1("), �2("), �1(1), �2(1)) ↔ (+A (1 − "), +ℓ ("))

is bijective. Indeed, we have that

©«
�1(") = 11, �2(") = 12

�1(1) = H1, �2(1) = H2

ª®®¬⇔
©«
+A (1 − ") = (11 − H1,−12 + H2)

+ℓ (") = (11 − G1,−12 + G2)

ª®®¬ .
Thus conditioned on (" = <, �8 (") = 18, �8 (1) = H8),+A (·) is now a NonInt-BrBridge Brownian

bridge on [0, 1 − <] ending at (11 − H1,−12 + H2) and +ℓ (·) is a NonInt-BrBridge on [0, <]

ending at (11 − G1,−12 + G2) where both are conditionally independent of each other. But the

law of a Brownian motions conditioned on (" = <, �8 (") = 18, �8 (1) = H8) is same as the

law of a Brownian bridges � on [0, 1] starting at (G1, G2) and ending at (H1, H2), conditioned on

(" = <, �8 (") = 18). Thus this leads to the desired decomposition for Brownian bridges.

Let us now prove Lemma 2.4.11. The proof of Lemma 2.4.11 follows similar ideas from [101]

and [150]. To prove such a decomposition holds, we first show it at the level of random walks.

Then we take diffusive limit to get the same decomposition for Brownian motions.

Proof of Lemma 2.4.11. Let - (8)
9

8.8.3.∼ N(0, 1), 8 = 1, 2, 9 ≥ 1 and set ((8)
:
=

∑=
9=1 -

(8)
9
. Define

"= := =argmax
:=1

{((1)
:
+ ((2)

:
},
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and let �(8)
9

be subsets of R. Define

I := P
( :−1⋂
9=0
8=1,2

{((8)
:
− ((8)

9
∈ (−1)8+1�(8)

:− 9 } ∩
=⋂

9=:+1
8=1,2

{((8)
:
− ((8)

9
∈ (−1)8+1�(8)

9
} ∩ {"= = :}

)
. (2.4.4)

Noting that the event {"= = :} is the same as

:−1⋂
9=0
8=1,2

{((1)
:
+ ((2)

:
> (

(1)
9
+ ((2)

9
}

=⋂
9=:+1
8=1,2

{((1)
:
+ ((2)

:
> (

(1)
9
+ ((2)

9
},

we have

r.h.s of (2.4.4) = P
( :−1⋂
9=0
8=1,2

{((8)
:
− ((8)

9
∈ (−1)8+1�(8)

:− 9 , (
(1)
:
+ ((2)

:
> (

(1)
9
+ ((2)

9
}

∩
=⋂

9=:+1
8=1,2

{((8)
:
− ((8)

9
∈ (−1)8+1�(8)

9
, (
(1)
:
+ ((2)

:
> (

(1)
9
+ ((2)

9
}
)
.

We also observe that the pairs (((1)
:
− ((1)

9
, (
(2)
:
− ((2)

9
):−1
9=0 and (((1)

:
− ((1)

9
, (
(2)
:
− ((2)

9
)=
9=:+1 are

independent of each other and as - 8
9

is symmetric

(((1)
:
− ((1)

9
, (
(2)
:
− ((2)

9
):−1
9=0

(3)
= (((1)

:− 9 ,−(
(2)
:− 9 )

:−1
9=0

(((1)
:
− ((1)

9
, (
(2)
:
− ((2)

9
)=9=:+1

(3)
= (((1)

9−: ,−(
(2)
9−: )

=
9=:+1.

Thus,

I = P
( :−1⋂
9=0
8=1,2

{((8)
9
∈ �(8)

9
, (
(1)
9
> (

(2)
9
}
)
· P

( =−:⋂
9=1
8=1,2

{((8)
9
∈ �(8)

9
, (
(1)
9
> (

(2)
9
}
)
. (2.4.5)
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Based on (2.4.5), we obtain that

I
P("= = :)

= P
( :−1⋂
9=0
8=1,2

{((8)
9
∈ �(8)

9
}|

:⋂
9=1
{((1)

9
> (

(2)
9
})

· P
( =−:⋂
9=1
8=1,2

{((8)
9
∈ �(8)

9
}|
=−:⋂
9=1
{((1)

9
> (

(2)
9
}
) (2.4.6)

where we utilize the fact P("= = :) = P(∩:
9=1(

(1)
9
> (

(2)
9
)P(∩=−:

9=1 (
(1)
9
> (

(2)
9
). The above splitting

essentially shows that conditioned on the maximizer, the left and right portion of the maximizer

are independent non-intersecting random walks.

We now consider /= (C) = ( (
(1)
=C√
=
,
(
(2)
=C√
=
) on [0, 1] where it is linearly interpolated in between.

By Donsker’s invariance principle, /= ⇒ � = (�1, �2) independent Brownian motions on [0, 1] .

Recall Ω from Definition 2.4.10. Clearly P(� ∈ Discontinuity of Ω) = 0, so

(Ω/=)+ ⇒ (Ω�)+ and (Ω/=)− ⇒ (Ω�)−.

On the other hand, following (2.4.6) we see that conditioned on "= = :, (Ω/=)+
(3)
= .=−: and

(Ω/=)−
(3)
= .: are independent where .= (·) is the linearly interpolated non-intersecting random

walk defined in Proposition 2.4.7. As :, = → ∞, .: (·), .=−: (·)
3→ , where , is the non-

intersecting Brownian motion on [0, 1] defined in Definition 2.4.3. At the same time, "=
=
⇒ " ,

which has density ∝ 1√
C (1−C)

on [0, 1] . Thus, (Ω�)+, (Ω�)−, " are independent and (Ω�)+
(3)
=

(Ω�)−
(3)
= ,.

Remark 2.4.12. We expect similar decomposition results to hold for 3 or more Brownian motions

or bridges around the maximizer of their sums. More precisely, if " is the maximizer of �1(G) +

�2(G) + �3(G), where �8 are independent Brownian motion on [0, 1], we expect the law of

(�1(") − �1(" + G), �2(") − �2(" + G), �3(") − �3(" + G))
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to be again Brownian motions but their sum conditioned to be positive (its singular conditioning;

so requires some care to define properly). Indeed, such a statement can be proven rigorously at the

level of random walks. Then a possible approach is to take diffusive limit of random walks under

conditioning and prove existence of weak limits. Due to lack of results for such conditioning event,

proving such a statement require quite some technical work. Since it is extraneous for our purpose,

we do not pursue this direction here.

2.5 Bessel bridges and non-intersecting Brownian bridges

In this section, we study diffusive limits and separation properties of Bessel bridges and non-

intersecting Brownian bridges. The central object that appears in this section is the Dyson Brown-

ian motion [118] which are intuitively several Brownian bridges conditioned on non-intersection.

In Section 2.5.1, we recall Dyson Brownian motion and study different properties of it. In Sec-

tion 2.5.2 we prove a technical estimate that indicates the two parts of non-intersecting Brown-

ian bridges have uniform separation and derive the diffusive limits of non-intersecting Brownian

bridges. The precise renderings of these results are given in Proposition 2.5.6 and Proposition

2.5.8.

2.5.1 Diffusive limits of Bessel bridges and NonInt-BrBridge

We first recall the definition of Dyson Brownian motion. Although they are Brownian motions

conditioned on non-intersection, since the conditioning event is singular, such an interpretation

needs to be justified properly. There are several ways to rigorously define the Dyson Brownian

motion, either through the eigenvalues of Hermitian matrices with Brownian motions as entries or

as a solution of system of stochastic PDEs. In this paper, we recall the definition via specifying the

entrance law and transition densities (see [196] and [238, Section 3] for example).

Definition 2.5.1 (Dyson Brownian motion). A 2-level Dyson Brownian motionD(·) = (D1(·),D2(·))
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is an R2 valued process on [0,∞) with D1(0) = D2(0) = 0 and with the entrance law

P (D1(C) ∈ dH1,D2(C) ∈ dH2) = 1{H1 > H2}
(H1 − H2)2

C
?C (H1)?C (H2)dH1dH2, C > 0. (2.5.1)

For 0 < B < C < ∞ and G1 > G2, its transition densities are given by

P (D1(C) ∈ dH1,D2(C) ∈ dH2 | D1(B) = G1,D2(B) = G2)

= 1{H1 > H2}
H1 − H2
G1 − G2

det(?C−B (G8 − H 9 ))28, 9=1dH1dH2.
(2.5.2)

The above formulas can be extended to =-level Dyson Brownian motions with (see [238, Section

3]) but for the rest of the paper we only require the = = 2 case. So, we will refer to the 2-level

object defined above loosely as Dyson Brownian motion or DBM in short.

We next define the Bessel processes via specifying the entrance law and transition densities

which are also well known in literature (see [211, Chapter VI.3]).

Definition 2.5.2 (Bessel Process). A 3D Bessel process R1 with diffusion coefficient 1 is an R-

valued process on [0,∞) with R1(0) = 0 and with the entrance law

P(R1(C) ∈ 3H) = 2H2

C
?C (H)dH, G ∈ [0,∞), C > 0.

For 0 < B < C < ∞ and G > 0, its transition densities are given by

P(R1(C) ∈ 3H | R1(B) = G) =
H

G
[?C−B (G − H) − ?C−B (G + H)]3H, H ∈ [0,∞).

More generally, Rf (·) is a 3D Bessel process with diffusion coefficient f > 0 if f−1/2Rf (·) is a

3D Bessel process with diffusion coefficient 1.

In this paper we will only deal with 3-dimensional Bessel processes. Thus we will just loosely

refer to the above processes as Bessel processes.

DBM is directly linked with Bessel processes. Indeed the difference of the two paths of DBM
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is known (see [112] for example) to be a 3D Bessel process with diffusion coefficient 2. This fact

can be proven easily via SPDE or the Hermitian matrices interpretation of DBM. Since we use this

result repeatedly in later sections we record it as a lemma below.

Lemma 2.5.3 (Dyson to Bessel). Let D = (D1,D2) be a DBM. Then, as a function in G, we have

D1(G) + D2(G)
3
=
√

2�(G) and D1(G) − D2(G)
3
= R2(G) where �(G) is a Brownian motion and

R2 : [0,∞) → R is a Bessel process (see Definition 2.5.2) with diffusion coefficient 2.

We end this subsection by providing two lemmas that compare the densities of NonInt-BrBridge

and DBM.

Lemma 2.5.4. Suppose the pair of random variables (*1,*2) has joint probability density func-

tion:

P(*1 ∈ dH1,*2 ∈ dH2) =
(H1 − H2)2

C
?C (H1)?C (H2), H1 > H2. (2.5.3)

Conditioning on (*1,*2), we consider a NonInt-BrBridge (+1, +2) on [0, C] ending at (*1,*2),

see Definition 2.4.4. Then unconditionally, (+1, +2) is equal in distribution as DBM (D1,D2) on

[0, C] . (see Definition 2.5.1).

Lemma 2.5.5. Fix X, " > 0. Consider a NonInt-BrBridge (+1, +2) on [0, 1] ending at (01, 02)

(see Definition 2.4.4), where 01 > 02. Then, there exists a constant C",X > 0 such that for all

C ∈ (0, X), H1 > H2 and −" ≤ 02 < 01 ≤ " ,

P(+1(C) ∈ dH1, +2(C) ∈ dH2)
P(D1(C) ∈ dH1,D2(C) ∈ dH2)

≤ C",X, (2.5.4)

where (D1,D2) is a DBM defined in Definition 2.5.1.

Proof of Lemma 2.5.4. To show that (+1, +2) is equal in distribution to (D1,D2) on [0, C], it suf-

fices to show that (+1, +2) has the same finite dimensional distribution as (D1,D2) on [0, C]. Fix

any : ∈ N, and 0 < B1 < . . . < B: < C and H1 > H2. Using Brownian scaling and the formulas from
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Definition 2.4.4 we have

P
( :⋂
8=1
{+1(B8) ∈ dG8,1, +2(B8) ∈ dG8,2}|*1 = H1,*2 = H2

)
=
(G1,1 − G1,2)

B1
?B1 (G1,1)?B1 (G1,2)

:−1∏
<=1

det(?B<+1−B< (G<+1,8 − G<, 9 ))28, 9=1

·
det(?C−B: (G:,8 − H 9 ))28, 9=1
1
C
(H1 − H2)?C (H1)?C (H2)

:∏
8=1

dG8,1dG8,2,

where the above density is supported on {G8,1 > G8,2 | 8 = 1, 2, . . . , :}. For convenience, in the

rest of the calculations, we drop
∏:
8=1 dG8,1dG8,2 from the above formula. In view of the marginal

density of (*1,*2) given by (2.5.3), we thus have that

P
( :⋂
8=1
{+1(B8) ∈ dG8,1, +2(B8) ∈ dG8,2}

)
=

∫
H1>H2

P
( :⋂
8=1
{+1(B8) ∈ dG8,1, +2(B8) ∈ dG8,2}|*1 = H1,*2 = H2

)
(H1 − H2)2

C
?C (H1)?C (H2)dH1dH2

=
(G1,1 − G1,2)

B1
?B1 (G1,1)?B1 (G1,2)

:−1∏
<=1

det(?B<+1−B< (G<+1,8 − G<, 9 ))28, 9=1

·
∫
H1>H2

(H1 − H2)det(?C−B: (G:,8 − H 9 ))28, 9=1dH1dH2.

But given the transition densities for DBM from (2.5.2). we know that

∫
H1>H2

(H1 − H2)det(?C−B: (G:,8 − H 9 ))28, 9=1dH1dH2 = G:,1 − G:,2.

Plugging this back we get

P
( :⋂
8=1
{+1(B8) ∈ dG8,1, +2(B8) ∈ dG8,2}

)
=
(G1,1 − G1,2)2

B1
?B1 (G1,1)?B1 (G1,2)

:−1∏
<=1

G<+1,1 − G<+1,2
G<,1 − G<,2

det(?B<+1−B< (G<+1,8 − G<, 9 ))28, 9=1.
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Using the entrance law and transition densities formulas for DBM from Definition 2.5.1, we see

that the above formula matches with the finite dimensional density formulas for DBM. This com-

pletes the proof.

Proof of Lemma 2.5.5. Fix any arbitrary H1 > H2 and C ∈ (0, X) Recall the density formulas for

NonInt-BrBridge and DBM from Definitions 2.4.4 and 2.5.1. We have

l.h.s of (2.5.4) =
det(?1−C (H8 − 0 9 ))28, 9=1

(H1 − H2) (01 − 02)?1(01)?1(02)
(2.5.5)

=
?1−C (H1 − 02)?1−C (H2 − 01)

(H1 − H2) (01 − 02)?1(01)?1(02)

[
4
(H1−H2) (01−02)

1−C − 1
]
. (2.5.6)

If (H1 − H2) (01 − 02) ≥ 1 − C, then

r.h.s. of (2.5.5) ≤
det(?1−C (H8 − 0 9 ))28, 9=1

(1 − C)?1(01)?1(02)
≤ 1
(1−C)2 4

02
1+0

2
2

2 ≤ 1
(1−X)2 4

"2
.

If (H1 − H2) (01 − 02) ≤ 1 − C, we utilize the elementary inequality that W(4
1
W − 1) ≤ 4 − 1, for all

W ≥ 1. Indeed, taking W = 1−C
(H1−H2) (01−02) ≥ 1 in this case we have

r.h.s. of (2.5.6) ≤ ?1−C (H1 − 02)?1−C (H2 − 01)
(1 − C)?1(01)?1(02)

(4 − 1) ≤ 2
(1−C)2 4

02
1+0

2
2

2 ≤ 2
(1−X)2 4

"2
.

Combining both cases yields the desired result.

2.5.2 Uniform separation and diffusive limits

The main goal of this subsection is to prove Proposition 2.5.6 and Proposition 2.5.8. Propo-

sition 2.5.6 highlights a uniform separation between the two parts of the NonInt-BrBridge de-

fined in Definition 2.4.4, while Proposition 2.5.8 shows DBMs are obtained as diffusive limits of

NonInt-BrBridges.

Proposition 2.5.6. Fix " > 0. Let (+ (=)1 , +
(=)
2 ) be a sequence of NonInt-BrBridges (see Definition

2.4.4) on [0, 1] beginning at 0 and ending at (0 (=)1 , 0
(=)
2 ). Suppose that 0 (=)1 − 0 (=)2 > 1

"
and
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|0 (=)
8
| ≤ " for all = and 8 = 1, 2. Then for all d > 0, we have

lim sup
\→∞

lim sup
=→∞

P
(∫ =

\

exp
(
−
√
=
[
+
(=)
1 (

H

=
) −+ (=)2 (

H

=
)
] )

dH ≥ d
)
= 0. (2.5.7)

Recall that by Lemma 2.4.6, the difference of the two parts of NonInt-BrBridge is given by

a Bessel bridge (upto a constant). Hence we can recast the above result in terms of separations

between Bessel bridges from the G-axis as well.

Corollary 2.5.7. Fix " > 0. Let R (=)bb be a sequence of Bessel bridges (see Definition 2.4.1) on

[0, 1] beginning at 0 and ending at 0 (=) . Suppose that " > 0
(=)
1 > 1

"
for all =. Then for all d > 0,

we have

lim sup
\→∞

lim sup
=→∞

P
(∫ =

\

exp
(
−
√
=R (=)bb (

H

=
)
)

dH ≥ d
)
= 0.

Proof of Proposition 2.5.6. We fix X ∈ (0, 1
4 ). To prove the inequality in (2.5.7), we divide the in-

tegral from \ to = into two parts: (\, =X) and [=X, =) for some X ∈ (0, 1) and = large and prove each

one separately. For the interval (=X, =) interval, we use the fact that the non-intersecting Brownian

bridges + (=)1 (H), +
(=)
2 (H) are separated by a uniform distance when away from 0. For the smaller

interval (\, =X) close to 0, we define a Gap=,\,X event that occurs with high probability and utilize

Lemmas 2.5.4 and 2.5.5 to transform the computations of NonInt-BrBridge into those of the DBM

to simplify the proof.

We now fill out the details of the above road-map. First, as (+ (=)1 , +
(=)
2 ) are non-intersecting

Brownian bridges on [0, 1] starting from 0 and ending at two points which are within [−", "]

and are separated by at least 1
"

, for every _, X > 0, there exists U(", X, _) > 0 small enough such

that

P
(
+
(=)
1 (H) −+

(=)
2 (H) ≥ U,∀H ∈ [X, 1]

)
≥ 1 − _. (2.5.8)
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(2.5.8) implies that with probability at least 1 − _,

∫ =

=X

exp
(
−
√
=
[
+
(=)
1 (

H

=
) −+ (=)2 (

H

=
)
] )

dH ≤ (= − =X)4−
√
=U (2.5.9)

which converges to 0 as =→∞. Next we define the event

Gap=,\,X :=
{√
=
[
+
(=)
1 (

H

=
) −+ (=)2 (

H

=
)
]
≥ H 1

4 ,∀H ∈ [\, =X]
}
.

We claim that ¬Gap=,\,X event is negligible in the sense that

lim sup
\→∞

lim sup
=→∞

P(¬Gap=,\,X) = 0. (2.5.10)

Note that on Gap=,\,X event, we have

∫ =X

\

exp
(
−
√
=
[
+
(=)
1 (

H

=
) −+ (=)2 (

H

=
)
] )

dH ≤
∫ =X

\

exp(−H1/4)dH (2.5.11)

which goes to zero as = → ∞, followed by \ → ∞. In view of the probability estimates from

(2.5.8) and (2.5.9), combining (2.5.10) and (2.5.11) yields

lim sup
\→∞

lim sup
=→∞

P
(∫ =

\

exp
(
−
√
=
[
+
(=)
1 (

H

=
) −+ (=)2 (

H

=
)
] )

dH ≥ d
)
≤ _. (2.5.12)

Since _ is arbitrary, (2.5.12) completes the proof. Hence it suffices to show (2.5.10). Towards this

end, by the properties of the conditional expectation, if we condition on the values of+ (=)1 (2X), +
(=)
2 (2X),

we have that

P(¬Gap=,\,X) = E
[
P

(
¬Gap=,\,X |+

(=)
1 (2X), +

(=)
2 (2X)

)]
=

∫
H1>H2

PH1,H2 (¬Gap=,\,X)P(+
(=)
1 (2X) ∈ dH1, +

(=)
2 (2X) ∈ dH2) (2.5.13)

where PH1,H2 is the conditional law of NonInt-BrBridge conditioned on (+ (=)1 (2X) = H1, +
(=)
2 (2X) =
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H2). Note that Gap=,\,X event depends only on the [0, X] path of the NonInt-BrBridge. Thus by

Markovian property of the NonInt-BrBridge, PH1,H2 (Gap=,\,X) can be computed by assuming the

NonInt-BrBridge is on [0, 2X] and ends at (H1, H2).

On the other hand, P(+=1 (2X) ∈ dH1, +
=
2 (2X) ∈ dH2) is the probability density function of the

marginal density of NonInt-BrBridge on [0, 1]. Via Lemma 2.5.5, this is comparable to the density

of (D1(2X),D2(2X)), where D follows DBM law defined in Definition 2.5.1. Thus by (2.5.4) the

r.h.s of (2.5.13) is bounded from above by

r.h.s of (2.5.13) ≤ C",2X

∫
PH1,H2 (¬Gap=,\,X)P(D1(2X) ∈ dH1,D2(2X) ∈ dH2)dH1dH2

= C",2X · PDyson(¬Gap=,\,X). (2.5.14)

Here the notation PDyson means the law of the paths (+1, +2) is assumed to follow DBM law. With

this notation, the last equality of (2.5.14) follows from Lemma 2.5.4. From the density formulas

of DBM from Definition 2.5.1, it is clear that DBM is invariant under diffusive scaling, i.e.

√
=(D1( ·= ),D2( ·= ))

3
= (D1(·),D2(·)) (2.5.15)

and by Lemma 2.5.3, D1(·) − D2(·) = R2(·), a 3D Bessel process with diffusion coefficient 2.

Thus, we obtain that for any = ∈ N,

PDyson(¬Gap=,\,X) ≤ P(R2(H) ≤ H1/4, for some H ∈ [\,∞)). (2.5.16)

Meanwhile, Motoo’s theorem [191] tells us that

lim sup
\→∞

P(R2(H) ≤ H1/4, for some H ∈ [\,∞)) = 0. (2.5.17)

Hence (2.5.14), (2.5.16) and (2.5.17) imply (2.5.10). This completes the proof.

We now state our results related to the diffusive limits of NonInt-BrBridge (defined in Defini-
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tion 2.4.4) and Bessel bridges (defined in Definition 2.4.1) with varying endpoints.

Proposition 2.5.8. Fix " > 0. Let+ (=) = (+ (=)1 , +
(=)
2 ) : [0, 0=] → R be a sequence of NonInt-BrBridges

(defined in Definition 2.4.4) with + (=)
8
(0) = 0 and + (=)

8
(0=) = I(=)8 . Suppose that for all = ≥ 1 and

8 = 1, 2, " > 0= >
1
"

and |I(=)
8
| < 1

"
. Then as =→∞ we have:

√
=
(
+
(=)
1 (

C
=
), + (=)2 (

C
=
)
) 3→ (D1(C),D2(C))

in the uniform-on-compact topology. Here D is a DBM defined in Definition 2.5.1.

In view of Lemma 2.4.6 and Lemma 2.5.3, Proposition 2.5.8 also leads to the following corol-

lary.

Corollary 2.5.9. Fix " > 0. Let R (=)bb : [0, 0=] → R be a sequence of Bessel bridges (defined in

Definition 2.4.1) with R (=)bb (0) = 0 and R (=)bb (0=) = I
(=) . Suppose for all = ≥ 1, " > 0= >

1
"

and

|I(=) | < 1
"

. Then as =→∞ we have:

√
=R (=)bb (

C
=
) 3→ R1(C)

in the uniform-on-compact topology. Here R1 is a Bessel process with diffusion coefficient 1,

defined in Definition 2.5.2.

Proof of Proposition 2.5.8. For convenience, we drop the superscript (=) from +1, +2 and I8’s. We

proceed by showing convergence of one-point densities and transition densities of
√
=(+1( C= ), +2( C= ))

to that of DBM and then verifying the tightness of the sequence. Fix any C > 0. For each fixed

H1 > H2, it is not hard to check that we have as =→∞

0=
√
= det(?0=− C= (

H8√
=
− I 9 ))28, 9=1

(I1 − I2)?0= (I1)?0= (I2)
→ H1 − H2. (2.5.18)

uniformly over 0= ∈ [ 1
"
, "] and I1, I2 ∈ [−", "].

71



Utilizing the one-point densities and transition densities formulas for NonInt-BrBridge of

length 1 in Definition 2.4.4, we may perform a Brownian rescaling to get analogous formulas

for +1, +2 which are NonInt-BrBridge of length 0=. Then by a change of variable, the density of

(
√
=+1( C= ),

√
=+2( C= )) is given by

0= (H1 − H2)?C (H1)?C (H2)
C (I1 − I2)?0= (I1)?0= (I2)

√
= det(?0=− C= (

H8√
=
− I 9 ))28, 9=1.

Using (2.5.18) we see that for each fixed H1 > H2, the above expression goes to (H1−H2)2
C

?C (H1)?C (H2)

which matches with (2.5.1).

Similarly for the transition probability, letting 0 < B < C < 0=, H1 > H2 and G1 > G2, we have

P
(√
=+1( C= ) ∈ dH1,

√
=+2( C= ) ∈ dH2 |

√
=+1( B= ) ∈ dG1,

√
=+2( B= ) ∈ dG2

)
= det(?C−B (H8 − G 9 ))28, 9=1

det(?0=− C= (
H8√
=
− I 9 ))28, 9=1

det(?0=− B= (
G8√
=
− I 9 ))28, 9=1

dH1dH2. (2.5.19)

Applying (2.5.18) we see that as =→∞

r.h.s of (2.5.19)→ det(?C−B (G8 − H 9 ))28, 9=1 ·
H1 − H2
G1 − G2

.

which matches with (2.5.2). This verifies the finite dimensional convergence by Scheffe’s theorem.

For tightness we will show that there exists a constant C ," > 0 such that for all 0 < B < C <  ,

2∑
8=1

E
[ (√

=+8 ( C= ) −
√
=+8 ( B= )

)4
]
≤ C ," (C − B)2. (2.5.20)

We compute the above expectation by comparing with DBM as was done in the proof of Proposi-

tion 2.5.6. Using definition of the conditional expectation we have

E
[ (√

=+8 ( C= ) −
√
=+8 ( B= )

)4
]

=

∫
H1>H2

E
[ (√

=+8 ( C= ) −
√
=+8 ( B= )

)4 | +1(  = ) = H1, +1(  = ) = H2

]
P(+1(  = ) ∈ dH1, +2(  = ) ∈ dH2)
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≤ C ,"
∫
H1>H2

E
[ (√

=+8 ( C= ) −
√
=+8 ( B= )

)4 | +1(  = ) = H1, +1(  = ) = H2

]
P(D1(  = ) ∈ dH1,D2(  = ) ∈ dH2)

where the last inequality follows from Lemma 2.5.5 by taking = large enough. HereD = (D1,D2)

follows DBM law. Due to Lemma 2.5.4 and (2.5.15) the last integral above is precisely E[(D8 (C) −

D8 (B))4]. Hence it suffices to show

E[(D8 (C) − D8 (B))4] ≤ C(C − B)2. (2.5.21)

By Lemma 2.5.3, we see
√

2�(G) := D1(G) +D2(G) and
√

2R(G) := D1(G) −D2(G) are a standard

Brownian motion and a 3D Bessel process with diffusion coefficient 1 respectively. We have

E[(D8 (C) − D8 (B))4] ≤ C
[
E[(R(C) − R(B))4] + E[(�(C) − �(B))4]

]
.

We have E[(�(C) −�(B))4] = 3(C− B)2, whereas for R(·), we use Pitman’s theorem [211, Theorem

VI.3.5], to get that R(C) 3= 2" (C) − �(C), where � is a Brownian motion and " (C) = supD≤C �(D).

Thus,

E[(R(C) − R(B))4] ≤ C
[
E[(" (C) − " (B))4] + E[(�(C) − �(B))4]

]
≤ C

[
E
[ (

sup
B≤D≤C

�(D) − �(B)
)4] + E[(�(C) − �(B))4]

]
.

Clearly both the expressions above are at most C(C − B)2. This implies (2.5.21) completing the

proof.

2.6 Ergodicity and Bessel behavior of the KPZ equation

The goal of this section is to prove Theorems 2.1.10 and 2.1.11. As the proof of the latter is

shorter and illustrates some of the ideas behind the proof of the former, we first tackle Theorem

2.1.11 in Section 2.6.1. After that in Section 2.6.2, we state a general version of the : = 2 case of

Theorem 2.1.10, namely Proposition 2.6.1. This proposition will then be utilized in the proof of
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Theorem 2.1.4. Finally in Section 2.6.3, we show how to obtain Theorem 2.1.10 from Proposition

2.6.1.

2.6.1 Proof of Theorem 2.1.11

For clarity we divide the proof into several steps.

Step 1. In this step, we introduce necessary notations used in the proof and explain the heuristic

idea behind the proof.

Fix any 0 > 0. Consider any Borel set � of � ( [−0, 0]) which is also a continuity set of a

two-sided Brownian motion �(G) restricted to [−0, 0]. By Portmanteau theorem, it suffices to

show

P((H (·, C) − H (0, C) ∈ �) → P(�(·) ∈ �). (2.6.1)

For simplicity let us write PC (�) := P((H (·, C) − H (0, C) ∈ �). Using (2.2.6) we have H(G, C) −

H (0, C) = C1/3(hC (C−2/3G) − hC (0)). Recall that hC (·) = h(1)C (·) can be viewed as the top curve of the

KPZ line ensemble {h(=)C (·)}=∈N which satisfies the HC-Brownian Gibbs property with HC given by

(2.2.4).

Note that at the level of the scaled KPZ line ensembles we are interested in understanding the

law of h(1)C (·) restricted to a very small interval: G ∈ [−C−2/30, C−2/30]. At such a small scale, we

expect the Radon-Nikodym derivative appearing in (2.2.3) to be very close to 1. Hence the law

of top curve should be close to a Brownian bridge with appropriate end points. To get rid of the

endpoints we employ the following strategy, which is also illustrated in Figure 2.5 and its caption.

• We start with a slightly larger but still vanishing interval �C := (−C−U, C−U) with U = 1
6 say.

We show that conditioned on the end points h(1)C (−C−U), h
(1)
C (C−U) of the first curve and the

second curve h(2)C , the law of h(1)C is close to that of a Brownian bridge on �C starting and

ending at h(1)C (−C−U) and h(1)C (C−U) respectively.
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• Once we probe further into an even narrower window of [−C2/30, C2/30], the Brownian bridge

no longer feels the effect of the endpoints and one gets a Brownian motion in the limit.

Figure 2.5: Illustration of the proof of Theorem 2.1.11. In a window of [C−U, CU], the curves
h
(1)
C (G), h

(2)
C (G) attains an uniform gap with high probability. This allows us to show law of h(1)C on

that small patch is close to a Brownian bridge. Upon zooming in a the tiny interval [−C2/30, C2/30]
we get a two-sided Brownian bridge as explained in Step 1 of the proof.

Step 2. In this step and next step, we give a technical roadmap of the heuristics presented in Step

1. Set U = 1
6 and consider the small interval �C = (C−U, C−U). Let F be the f-field generated by

F := f
(
{h(1)C (G)}G∈�2C , {h

(=)
C (·)}=≥2

)
. (2.6.2)

Fix any arbitrary X > 0 and consider the following three events:

GapC (X) :=
{
h
(2)
C (−C−U) ≤ min{h(1)C (C−U), h

(1)
C (−C−U)} − X

}
, (2.6.3)

RiseC (X) :=
{
sup
G∈�C

h
(2)
C (G) ≤ 1

4X + h
(2)
C (−C−U)

}
, (2.6.4)

TightC (X) :=
{
−X−1 ≤ h(1)C (C−U), h

(1)
C (−C−U) ≤ X−1

}
. (2.6.5)
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Note that all the above events are measurable w.r.t. F . A visual interpretation of the above events

are given later in Figure 2.6. Since the underlying curves are continuous almost surely, while

specifying events over �C , such as the RiseC (X) event defined in (2.6.4), one may replace �C by its

closure � C = [−C−U, C−U] as well; the events will remain equal almost surely. We will often make

use of this fact, and will not make a clear distinction between �C and � C .

We set

FavC (X) := GapC (X) ∩ RiseC (X) ∩ TightC (X). (2.6.6)

The FavC (X) event is a favorable event in the sense that given any Y > 0, there exists X0 ∈ (0, 1)

such that for all X ∈ (0, X0)

lim inf
C→∞

FavC (X) ≥ 1 − Y. (2.6.7)

We will prove (2.6.7) in Step 4. For the moment, we assume this and continue with our calcula-

tions. We now proceed to find tight upper and lower bounds for PC (�) = P((H (·, C)−H (0, C) ∈ �).

Recall the f-field F from (2.6.2). Note that using the tower property of the conditional expectation

we have

PC (�) = E [PC (� | F )] ≥ E [1{FavC (X)}PC (� | F )] . (2.6.8)

PC (�) = E [PC (� | F )] ≤ E [1{FavC (X)}PC (� | F )] + P (¬FavC (X)) . (2.6.9)

Applying the HC-Brownian Gibbs property for the interval �C we have

PC (� | F ) = P1,1,�C ,hC (−C−U),hC (C−U),h(2)C
HC

(�) =
Efree,C [,1�]
Efree,C [,]

, (2.6.10)
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where

, := exp
(
−C2/3

∫ C−U

C−U
4C

1/3 (h(2)C (G)−h
(1)
C (G))dG

)
(2.6.11)

and Pfree,C := P1,1,�C ,hC (−C−U),hC (C−U)
free and Efree,C := E1,1,�C ,hC (−C−U),hC (C−U)

free are the probability and the

expectation operator respectively for a Brownian bridge �1(·) on �C starting at hC (−C−U) and ending

at hC (C−U). Note that the second equality in (2.6.10) follows from (2.2.3). We now seek to find

upper and lower bounds for r.h.s. of (2.6.10). For, , we have the trivial upper bound: , ≤ 1. For

the lower bound, we claim that there exists C0(X) > 0, such that for all C ≥ C0, we have

1{FavC (X)}Pfree,C (, ≥ 1 − X) ≥ 1{FavC (X)}(1 − X). (2.6.12)

Note that (2.6.12) suggests that the , is close to 1 with high probability. This is the technical

expression of the first conceptual step that we highlighted in Step 1. In the similar spirit for the

second conceptual step, we claim that there exists C0(X) > 0, such that for all C ≥ C0, we have

1{FavC (X)}
��Pfree,C (�) − W(�)

�� ≤ 1{FavC (X)} · X, (2.6.13)

where W(�) := P(�(·) ∈ �) ∈ [0, 1]. We remark that the l.h.s. of (2.6.12) and (2.6.13) are random

variables measurable w.r.t. F . The inequalities above hold pointwise. We will prove (2.6.12) and

(2.6.13) in Step 5 and Step 6 respectively. We next complete the proof of the Theorem 2.1.11

assuming the above claims.

Step 3. In this step we assume (2.6.7), (2.6.12), and (2.6.13) and complete the proof of (2.6.1). Fix

any Y ∈ (0, 1). Get a X0 ∈ (0, 1), so that (2.6.7) is true for all X ∈ (0, X0). Fix any such X ∈ (0, X0).

Get C0(X) large enough so that both (2.6.12) and (2.6.13) hold for all C ≥ C0. Fix any such C ≥ C0.

As, ≤ 1, we note that on the event FavC (X),

Efree,C [,1�]
Efree,C [,]

≥ Efree,C [,1�]
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≥ (1 − X)Pfree,C (� ∩ {, ≥ 1 − X})

≥ (1 − X)Pfree,C (�) − (1 − X)Pfree,C (, < 1 − X)

≥ (1 − X)Pfree,C (�) − (1 − X)X,

where in the last line we used (2.6.12). Plugging this bound back in (2.6.8) we get

PC (�) ≥ (1 − X)E
[
1{FavC (X)}Pfree,C (�)

]
− (1 − X)X

≥ (1 − X)E [1{FavC (X)}W(�) − X] − (1 − X)X

= W(�) (1 − X)P(FavC (X)) − 2X(1 − X).

where the inequality in the penultimate line follows from (2.6.13). Taking lim inf both sides as

C →∞, in view of (2.6.7) we see that

lim inf
C→∞

PC (�) ≥ (1 − X) (1 − Y)W(�) − 2X(1 − X).

Taking lim infX↓0 and using the fact that Y is arbitrary, we get that lim infC→∞ PC (�) ≥ W(�).

Similarly for the upper bound, on the event FavC (X) we have

Efree,C [,1�]
Efree,C [,]

≤
Pfree,C (�)

(1 − X)Pfree,C (, ≥ 1 − X) ≤
1

(1 − X)2
Pfree,C (�),

where we again use (2.6.12) for the last inequality. Inserting the above bound in (2.6.9) we get

PC (�) ≤
1

(1 − X)2
E

[
1{FavC (X)}Pfree,C (�)

]
+ P (¬FavC (X))

≤ X

(1 − X)2
+ 1
(1 − X)2

E [1{FavC (X)}W(�)] + P (¬FavC (X))

≤ X

(1 − X)2
+ 1
(1 − X)2

W(�) + P (¬FavC (X)) .

The inequality in the penultimate line above follows from (2.6.13). Taking lim sup both sides as
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C →∞, in view of (2.6.7) we see that

lim sup
C→∞

PC (�) ≤
X

(1 − X)2
+ 1
(1 − X)2

W(�) + Y.

As before taking lim supX↓0 and using the fact that Y is arbitrary, we get that lim supC→∞ PC (�) ≤

W(�). With the matching upper bound for lim inf derived above, we thus arrive at (2.6.1), com-

pleting the proof of Theorem 2.1.11.

Step 4. In this step we prove (2.6.7). Fix any X > 0. Recall the distributional convergence of KPZ

line ensemble to Airy line ensemble from Proposition 2.2.7. By the Skorokhod representation

theorem, we may assume that our probability space are equipped with A1(G) A2(G), such that as

C →∞, almost surely we have

max
8=1,2

sup
G∈[−1,1]

|21/3h(8)C (21/3G) − A8 (G) | → 0. (2.6.14)

For 8 = 1, 2, consider the event

Fluc(8)C (X) :=
{
sup
G∈�C
|h(8)C (G) − h

(8)
C (−C−U) | ≤ 1

4X

}
. (2.6.15)

See Figure 2.6 and its caption for an interpretation of this event. We claim that for every X > 0,

lim inf
C→∞

P
(
Fluc(8)C (X)

)
= 1. (2.6.16)

Let us complete the proof of (2.6.7) assuming (2.6.16). Fix any Y > 0. Note that {|h(1)C (−C−U) −

h
(1)
C (C−U) | ≤ 1

4X} ⊃ Fluc(1)C (X). Recall GapC (X) from (2.6.3). Observe that

¬GapC (X) ∩
{
|h(1)C (−C−U) − h

(1)
C (C−U) | ≤ 1

4X
}
⊂

{
h
(2)
C (−CU) − h

(1)
C (−C−U) ≥ −5

4X
}

⊂
{

inf
G∈[−1,0]

[h(2)C (G) − h
(1)
C (G)] ≥ −5

4X

}
.
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Figure 2.6: In the above figure GapC (X) defined in (2.6.3) denotes the event that the value of the
blue point is smaller than the value of each of the red points at least by X, The RiseC (X) event
defined in (2.6.4) requires no point on the whole blue curve (restricted to �C = (−C−U, C−U)) exceed
the value of the blue point by a factor 1

4X (i.e., there is no significant rise). The TightC (X) defined
in (2.6.5) event ensures the value of the red points are within [−X−1, X−1]. The Fluc(8)C (X) event
defined in (2.6.15) signifies every value of every point on the 8-th curve (restricted to �C) is within
1
4X distance away from its value on the left boundary: h(1)C (−C−U). Finally, SinkC (X) event defined
in (2.6.20) denotes the event that no point on the black curve (restricted to �C) drops below the value
of the red points by a factor larger than 1

4X, (i.e., there is no significant sink).

Using these two preceding set relations, by union bound we have

P
(
¬GapC (X)

)
≤ P

(
|h(1)C (−C−U) − h

(1)
C (C−U) | ≥ 1

4X
)
+ P

(
¬GapC (X) ∩ |h

(1)
C (−C−U) − h

(1)
C (C−U) | ≤ 1

4X
)

≤ P
(
¬Rise(1)C (X)

)
+ P

(
inf

G∈[−1,0]
[h(2)C (G) − h

(1)
C (G)] ≥ −5

4X

)
.

As C → ∞, the first term goes to zero due (2.6.16) and by Proposition 2.2.7, the second term goes

to

P
(

inf
G∈[−1,0]

[A2(2−1/3G) − A1(2−1/3G)] ≥ − 5
4·21/3 X

)
.

But by (2.2.1) we know Airy line ensembles are strictly ordered. Thus the above probability can
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be made arbitrarily small be choose X small enough. In particular, there exists a X1 ∈ (0, 1) such

that for all X ∈ (0, X1) the above probability is always less than Y
2 . This forces

lim inf
C→∞

P
(
GapC (X)

)
≥ 1 − Y

2 . (2.6.17)

Recall RiseC (X) from (2.6.4). Clearly RiseC (X) ⊂ Fluc(2)C (X). Thus for every X > 0,

lim inf
C→∞

P(RiseC (X)) = 1. (2.6.18)

Finally using Proposition 2.2.8 (a) and (b) we see that h(1)C (C−U), h
(1)
C (C−U) are tight. Thus there

exists X2 ∈ (0, 1) such that for all X ∈ (0, X2), we have

lim inf
C→∞

P
(
TightC (X)

)
≥ 1 − Y

2 . (2.6.19)

Combining (2.6.17), (2.6.18), (2.6.19), and recalling the definition of FavC (X) from (2.6.6), by

union bound we get (2.6.7) for all X ∈ (0,min{X1, X2}).

Let us now prove (2.6.16). Recall Fluc(8)C (X) from (2.6.15). Define the event:

ConvC (X) :=

{
sup

G∈[−1,1]
|h(8)C (G) − 2−1/3A8 (2−1/3G) | ≤ 1

16X

}
.

Observe that

{
¬Fluc(8)C (X),ConvC (X)

}
⊂

{
sup

|G |≤2−1/3C−U

[
A8 (G) − A8 (−2−1/3C−U)

]
≥ 21/3

8 X

}
.

Thus by union bound

P
(
¬Fluc(8)C (X)

)
≤ P (¬ConvC (X)) + P

(
¬Fluc(8)C (X),ConvC (X)

)
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≤ P (¬ConvC (X)) + P

(
sup

|G |≤2−1/3C−U

[
A8 (G) − A8 (−2−1/3C−U)

]
≥ 21/3

8 X

)
.

By (2.6.14), the first term above goes to zero as C → ∞, whereas the second term goes to zero

as C → ∞, via modulus of continuity of Airy line ensembles from Proposition 2.2.4. Note that

in Proposition 2.2.4 the modulus of continuity is stated for A8 (G) + G2. However, in the above

scenario since we deal with a vanishing interval [−2−1/3C−U, 2−1/3C−U], the parabolic term does not

play any role. This establishes (2.6.16).

Step 5. In this step we prove (2.6.12). Let us consider the event

SinkC (X) :=
{
inf
G∈�C

h
(1)
C (G) ≥ −1

4X +min{hC (−C−U), hC (C−U)}
}
. (2.6.20)

See Figure 2.6 and its caption for an interpretation of this event. Recall GapC (X) and RiseC (X)

from (2.6.3) and (2.6.4). Observe that on the event GapC (X) ∩RiseC (X), we have supG∈�C h
(2)
C (G) ≤

min{hC (−C−U), hC (C−U)} − 3
4X. Thus on GapC (X) ∩ RiseC (X) ∩ SinkC (X), we have

inf
G∈�C

[
h
(1)
C (G) − h

(2)
C (G)

]
≥ 1

2X.

Recall , from (2.6.11). On the event {infG∈�C
[
h
(1)
C (G) − h

(2)
C (G)

]
≥ 1

2X} we have the pointwise

inequality

, > exp(−2C2/3−U4−
1
2 C

1/3X) ≥ 1 − X,

where we choose a C1(X) > 0 so that the last inequality is true for all C ≥ C1. Thus for all C ≥ C1,

1{FavC (X)}Pfree,C (, ≥ 1 − X) ≥ 1{FavC (X)}Pfree,C (SinkC (X)). (2.6.21)

Recall that Pfree,C denotes the law of a Brownian bridge �1(·) on �C starting at �1(−C−U) = hC (−C−U)

and ending at �1(C−U) = hC (C−U). Let us consider another Brownian bridge �̃1(·) on �C starting and

ending at min{hC (−C−U), hC (C−U)}. By standard estimates for Brownian bridge (see Lemma 2.11 in
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[74] for example)

P
(
inf
G∈�C

�̃1(G) ≥ −1
4X +min{hC (−C−U), hC (C−U)}

)
= 1 − exp

(
− X2

8|�C |

)
= 1 − exp

(
− X2

16 C
U
)
.

Note that �1(·) is stochastically larger than �̃1(·). Since the above event is increasing, we thus have

Pfree,C (SinkC (X)) is at least 1−exp
(
− X2

16 C
U
)
. We now choose C2(X) > 0, such that 1−exp

(
− X2

16 C
U
)
≥

1 − X. Taking C0 = max{C1, C2}, we thus get (2.6.12) from (4.5.21).

Step 6. In this step we prove (2.6.13). As before consider the Brownian bridge �1(·) on �C starting

at �1(−C−U) = hC (−C−U) and ending at �1(C−U) = hC (C−U). We may write �1 as

�1(G) = h(1)C (−C−U) +
G + C−U
2C−U

(h(1)C (C−U) − h
(1)
C (−C−U)) + �(G).

where � is a Brownian bridge on �C starting and ending at zero. Thus,

C1/3(�1(C−2/3G) − �1(0)) = C1/3
[
�(C−2/3G) − �(0)

]
+ 1

2 C
U−1/3G(h(1)C (C−U) − h

(1)
C (−C−U)).

(2.6.22)

Recall that U = 1
6 . By Brownian scaling, �∗(G) := C1/3�(C−2/3G) is a Brownian bridge on the large

interval [−
√
C,
√
C] starting and ending at zero. By computing the covariances, it is easy to check

that as C →∞, �∗(G) − �∗(0) converges weakly to a two-sided Brownian motion �(·) on [−0, 0].

This gives us the weak limit for the first term on the r.h.s. of (2.6.22). For the second term, recall

the event TightC (X) from (2.6.5). As |G | ≤ 0, on TightC (X), we have

1
2 C
U−1/3G(h(1)C (C−U) − h

(1)
C (−C−U)) ≤ C−1/60X−1.

This gives an uniform bound (uniform over the event FavC (X)) on the second term in (2.6.22).

Thus as long as the boundary data is in TightC (X), Pfree,C (�) → W(�) where W(�) = P(�(·) ∈ �).

This proves (2.6.13).
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2.6.2 Dyson Behavior around joint maximum

In this subsection we state and prove Proposition 2.6.1.

Proposition 2.6.1 (Dyson behavior around joint maximum). Fix ? ∈ (0, 1). Set @ = 1 − ?.

Consider 2 independent copies of the KPZ equation H↑(G, C), and H↓(G, C), both started from

the narrow wedge initial data. Let M?,C be the almost sure unique maximizer of the process

G ↦→ (H↑(G, ?C) + H↓(G, @C)) which exists via Lemma 2.3.1. Set

�1(G, C) := H↑(M?,C , ?C) − H↑(G +M?,C , ?C),

�2(G, C) := H↓(G +M?,C , @C) − H↓(M?,C , @C).
(2.6.23)

As C →∞, we have the following convergence in law

(�1(G, C), �2(G, C))
3→ (D1(G),D2(G)) (2.6.24)

in the uniform-on-compact topology. Here D = (D1,D2) : R → R2 is a two-sided DBM, that

is, D+(·) := D(·) | [0,∞) and D−(·) := D(−·) | (−∞,0] are independent copies of DBM defined in

Definition 2.5.1.

For clarity, the proof is completed over several subsections (Sections 2.6.2-2.6.2) below and

we refer to Figure 2.7 for the structure of the proof.

KPZ line ensemble framework

In this subsection, we convert Proposition 2.6.1 into the language of scaled KPZ line ensemble

defined in Proposition 3.5.1. We viewH↑(G, C) = H (1)C,↑ (G),H↓(G, C) = H
(1)
C,↓ (G) as the top curves of

two (unscaled) KPZ line ensembles: {H (=)
C,↑ (G),H

(=)
C,↓ (G)}=∈N,G∈R. Following (2.2.5) we define their
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Recasting Proposi-
tion 2.6.1 in the KPZ
line ensemble frame-
work (Section 2.6.2)

Heuristics and outline
of proof of Proposition

2.6.1 (Section 2.6.2)

Reducing the global
maximizer to the local

maximizer (Section 2.6.2)

Defining “Nice" events
that happen with high
probability (Lemma
2.6.2, Section 2.6.2)

Conditioning w.r.t.
large boundaries to

obtain Brownian bridge
law (Section 2.6.2)

Conditioning w.r.t. the
max data and small
boundaries to obtain

NonInt-BrBridge
law (Section 2.6.2)

Obtaining match-
ing upper and lower
bounds for (2.6.31)

and the desired conver-
gence (Section 2.6.2)

Proof of Lemma
2.6.2 (Section 2.6.2)

Proofs of Lemmas 2.6.6
and 2.6.7 (Section 2.6.2)

Figure 2.7: Structure of Section 2.6.2.

scaled versions:

h
(=)
C,↑ (G) := C−1/3

(
H (=)
C,↑ (C

2/3G) + C
24

)
, h

(=)
C,↓ (G) := C−1/3

(
H (=)
C,↓ (C

2/3G) + C
24

)
.

Along with the full maximizerM?,C , we will also consider local maximizer defined by

M"
?,C := argmax

G∈[−"C2/3,"C2/3]
(H (1)

?C,↑(G) + H
(1)
@C,↓(G)), " ∈ [0,∞] . (2.6.25)

For each " > 0,M"
?,C is unique almost surely by HC-Brownian Gibbs property. We now set

.
(=)
",C,↑(G) := ?1/3h(=)

?C,↑
(
(?C)−2/3M"

?,C

)
− ?1/3h(=)

?C,↑
(
?−2/3G

)
,

.
(=)
",C,↓(G) := @1/3h(=)

@C,↓
(
@−2/3G

)
− @1/3h(=)

@C,↓
(
(@C)−2/3M"

?,C

)
.

(2.6.26)
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Taking into account of (2.6.23) and all the above new notations, it can now be checked that for

each C > 0,

�1(G, C)
3
= C1/3. (1)∞,C,↑

(
C−2/3(M∞?,C + G)

)
, �2(G, C)

3
= C1/3. (1)∞,C,↓

(
C−2/3(M∞?,C + G)

)
, (2.6.27)

both as functions in G. Thus it is equivalent to verify Proposition 2.6.1 for the above . (1)∞,C,↑, .
(1)
∞,C,↓

expressions. In our proof we will mostly deal with local maximizer version, and so for convenience

we define:

�",C,↑(G) : =C1/3. (1)
",C,↑

(
C−2/3(M"

?,C + G)
)
, �",C,↓(G) = C1/3. (1)",C,↓

(
C−2/3(M"

?,C + G)
)
. (2.6.28)

where . (1)
",C,↑, .

(1)
",C,↓ are defined in (2.6.26). We will introduce several other notations and parame-

ters later in the proof. For the moment, the minimal set of notations introduced here facilitate our

discussion of ideas and outline of the proof of Proposition 2.6.1 in the next subsection.

Ideas and Outline of Proof of Proposition 2.6.1

Before embarking on a rather lengthy proof, in this subsection we explain the core ideas behind

the proof and provide an outline for the remaining subsections.

First we contrast the proof idea with that of Theorem 2.1.11. Indeed, similar to the proof of

Theorem 2.1.11, from (2.6.27) we see that at the level . (1)∞,C,↑, .
(1)
∞,C,↓ we are interested in under-

standing their laws restricted to a very small symmetric interval of order $ (C−2/3) around the point

C−2/3M∞?,C . However, the key difference from the conceptual argument presented at the beginning

of the proof if Theorem 2.1.11 is that the centered point C−2/3M∞?,C is random and it does not go to

zero. Rather by Theorem 2.1.8 it converges in distribution to a nontrivial random quantity (namely

Γ(?
√

2)). Hence one must take additional care of this random point. This makes the argument

significantly more challenging compared to that of Theorem 2.1.11.

We now give a road-map of our proof. At this point, readers are also invited to look into Figure
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Figure 2.8: An overview of the proof for Proposition 2.6.1. The top and bottom black curves are
.
(1)
",C,↑ and . (1)

",C,↓ respectively. Note that the way they are defined in (2.6.26), . (1)
",C,↑(G) ≥ .

(1)
",C,↓(G)

with equality at G = Φ = C−2/3M"
?,C labelled as the red dot in the above figure. The blue curves are

.
(1)
",C,↑, .

(2)
",C,↓. There is no such ordering within blue curves. They may intersect among themselves

as well as with the black curves. With U = 1
6 , we consider the interval  C = (Φ − C−U,Φ + C−U).

In this vanishing interval around Φ, the curves will be ordered with high probability. In fact, with
high probability, there will be a uniform separation. For instance, for small enough X, we will have
.
(2)
",C,↑(G) −.

(1)
",C,↑(G) ≥

1
4X, and . (1)

",C,↓(G) −.
(2)
",C,↓(G) ≥

1
4X, for all G ∈  C wth high probability. This

will allow us to conclude black curves are behave approximately like two-sided NonInt-BrBridges
on that narrow window. Then upon going into a even smaller window of $ (C−2/3), the two-sided
NonInt-BrBridges turn into a two-sided DBM.

2.8 alongside the explanation offered in its caption.

• As noted in Lemma 2.3.1, the random centering C−2/3M∞?,C has decaying properties and can

be approximated by C−2/3M"
?,C by taking large enough " . Hence on a heuristic level it
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suffices to work with the local maximizers instead. In Subsection 2.6.2, this heuristics will

be justified rigorously. We will show there how to pass from .
(1)
∞,C,↑, .

(1)
∞,C,↓ defined in (2.6.27)

to their finite centering analogs: . (1)
",C,↑, .

(1)
",C,↓. The rest of the proof then boils down to

analyzing the laws of the latter.

• We now fix a " > 0 for the rest of the proof. Our analysis will now operate withM"
?,C . For

simplicity, let us also use the notation

Φ := C−2/3M"
?,C (2.6.29)

for the rest of the proof. We now perform several conditioning on the laws of the curves.

Recall that by Proposition 3.5.1, {h(=)
?C,↑(·)}=∈N {h

(=)
@C,↓(·)}=∈N satisfy the H?C-Brownian Gibbs

property and the H@C-Brownian Gibbs property respectively with HC given by (2.2.4). Con-

ditioned on the end points of h(1)
?C,↑(±"?

−2/3) and h(1)
@C,↓(±"@

−2/3) and the second curves

h
(2)
?C,↑(·) and h(2)

@C,↓(·), the laws of h(1)
?C,↑(·), and h(1)

?C,↑(·) are absolutely continuous w.r.t. Brown-

ian bridges with appropriate end points. This conditioning is done in Subsection 2.6.2.

• We then condition further on Max data : M"
?,C , h

(1)
?C,↑((?C)

−2/3M"
?,C), h

(1)
@C,↓((@C)

−2/3M"
?,C).

Under this conditioning, via the decomposition result in Proposition 2.4.9, the underlying

Brownian bridges mentioned in the previous point, when viewed from the joint maximizer,

becomes two-sided NonInt-BrBridges defined in Definition 2.4.4. This viewpoint from the

joint maximizer is given by . (1)
",C,↑, .

(1)
",C,↓. See Figure 2.8 for more details.

• We emphasize the fact that the deduction of NonInt-BrBridges done above is only for the

underlying Brownian law. One still needs to analyze the Radon-Nikodym (RN) derivative.

As we are interested in the laws of . (1)
",C,↑, .

(1)
",C,↓ on an interval of order C−2/3 around Φ, we

analyze the RN derivative only on a small interval around Φ. To be precise, we consider a

slightly larger yet vanishing interval of length 2C−U for U = 1
6 around the random point Φ.

We show that the RN derivative on this small random patch is close to 1. Thus upon further
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conditioning on the boundary data of this random small interval, the trajectories of. (1)
",C,↑ and

.
(1)
",C,↓ defined in (2.6.26) around Φ turns out to be close to two-sided NonInt-BrBridge with

appropriate (random) endpoints.

• Finally, we zoom further into a tiny interval of order $ (C−2/3) symmetric around the random

point Φ. Utilizing Lemma 2.5.3, we convert the two-sided NonInt-BrBridges to two-sided

DBMs.

We now provide an outline of the rest of the subsections. In Subsection 2.6.2 we reduce our

proof from understanding laws around global maximizers to that of local maximizers. As explained

in the above road-map, the proof follows by performing several successive conditioning. On a

technical level, this requires defining several high probability events on which we can carry out our

conditional analysis. These events are all defined in Subsection 2.6.2 and are claimed to happen

with high probability in Lemma 2.6.2. We then execute the first layer of conditioning in Subsection

2.6.2. The two other layers of conditioning are done in Subsection 2.6.2. Lemma 2.6.6 and Lemma

2.6.7 are the precise technical expressions for the heuristic claims in the last two bullet points of

the road-map. Assuming them, we complete the final steps of the proof in Subsection 2.6.2. Proof

of Lemma 2.6.2 is then presented in Subsection 2.6.2. Finally, in Subsection 2.6.2, we prove the

remaining lemmas: Lemma 2.6.6 and 2.6.7.

Global to Local maximizer

We now fill out the technical details of the road-map presented in the previous subsection. Fix

any 0 > 0. Consider any Borel set � of � ( [−0, 0] → R2) which is a continuity set of a two-sided

DBM D(·) restricted to [−0, 0] . By Portmanteau theorem, it is enough to show that

P((�1(·, C), �2(·, C)) ∈ �) → P(D(·) ∈ �), (2.6.30)
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where �1, �2 are defined in (2.6.23). In this subsection, we describe how it suffices to check

(2.6.30) withM"
?,C . Recall �",C,↑(·), �",C,↓(·) from (2.6.28). We claim that for all " > 0:

lim
C→∞

P((�",C,↑(·), �",C,↓(·)) ∈ �) → P(D(·) ∈ �). (2.6.31)

Note that whenM∞?,C =M"
?,C , (�",C,↑(·), �",C,↓(·)) is exactly equal to

C1/3. (1)∞,C,↑
(
C−2/3(M∞?,C + ·)

)
, C1/3. (1)∞,C,↓

(
C−2/3(M∞?,C + ·)

)
which via (2.6.27) is same in distribution as �1(·, C), �2(·, C). Thus,

��P((�1(·, C), �2(·, C)) ∈ �) − P((�",C,↑(·), �",C,↓(·)) ∈ �)
�� ≤ 2P(M?,C ≠M"

?,C).

Now given any Y > 0, by Lemma 2.3.1, we can take " = " (Y) > 0 large enough so that

2P(M?,C ≠ M"
?,C) ≤ Y. Then upon taking C → ∞ in the above equation, in view of (2.6.31), we

see that

lim sup
C→∞

| |P((�1(·, C), �2(·, C)) ∈ �) − P((D(·) ∈ �) | ≤ Y.

As Y is arbitrary, this proves (2.6.30). The rest of the proof is now devoted in proving (2.6.31).

Nice events

In this subsection, we focus on defining several events that are collectively ‘nice’ in the sense

that they happen with high probability. We fix an " > 0 for the rest of the proof and work with

the local maximizerM"
?,C defined in (2.6.25). We will also make use of the notation Φ defined in

(2.6.29) heavily in this and subsequent subsections. We now proceed to define a few events based

on the location and value of the maximizer and values at the endpoints of an appropriate interval.

Fix any arbitrary X > 0. Let us consider the event:

ArMx(X) := {Φ ∈ [−" + X, " − X]} . (2.6.32)
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The ArMx(X) controls the location of the local maximizer Φ. Set U = 1
6 . We define tightness event

that corresponds to the boundary of the interval of length 2C−U around Φ :

Bd↑(X) := Bd+,↑(X) ∩ Bd−,↑(X), Bd↓(X) := Bd+,↓(X) ∩ Bd−,↓(X), (2.6.33)

where

Bd±,↑(X) :=
{���h(1)

?C,↑
(
?−2/3(Φ ± C−U)

)
− h(1)

?C,↑
(
Φ?−2/3)

��� ≤ 1
X
C−U/2

}
(2.6.34)

Bd±,↓(X) :=
{���h(1)

@C,↓
(
@−2/3(Φ ± C−U)

)
− h(1)

@C,↓
(
Φ@−2/3)

��� ≤ 1
X
C−U/2

}
,

Finally we consider the gap events that provide a gap between the first curve and the second curve

for each of the line ensemble:

Gap",↑(X) :=
{
?1/3h(1)

?C,↑
(
Φ?−2/3) ≥ ?1/3h(2)

?C,↑
(
Φ?−2/3) + X} , (2.6.35)

Gap",↓(X) :=
{
@1/3h(1)

@C,↓
(
Φ@−2/3) ≥ @1/3h(2)

@C,↓
(
Φ@−2/3) + X} . (2.6.36)

We next define the ‘rise’ events which roughly says the second curves h(1)
?C,↑ and h(2)

@C,↓ of the line

ensembles does not rise too much on a small interval of length 2C−U around Φ?−2/3 and Φ@−2/3

respectively.

Rise",↑(X) :=

{
sup

G∈[−C−U,C−U]
?1/3h(2)

?C,↑
(
Φ?−2/3 + G

)
≤ ?1/3h(2)

?C,↑
(
Φ?−2/3) + X

4

}
, (2.6.37)

Rise",↓(X) :=

{
sup

G∈[−C−U,C−U]
@1/3h(2)

@C,↓
(
Φ@−2/3 + G

)
≤ @1/3h(2)

?C,↓
(
Φ@−2/3) + X

4

}
. (2.6.38)

Bd, Gap, Rise type events and their significance are discussed later in Subsection 2.6.2 in greater

details. See also Figure 2.9 and its caption for explanation of some of these events. We put all the
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above events into one final event:

Nice" (X) :=
ArMx(X) ∩

⋂
G∈{↑,↓}

BdG (X) ∩Gap",G (X) ∩ Rise",G (X)
 . (2.6.39)

All the above events are dependent on C. But we have suppressed this dependence from the nota-

tions. The Nice" (X) turns out to be a favorable event. We isolate this fact as a lemma below.

Lemma 2.6.2. For any " > 0, under the above setup we have

lim inf
X↓0

lim inf
C→∞

PC (Nice" (X)) = 1. (2.6.40)

We postpone the proof of this technical lemma to Section 2.6.2 and for the moment we continue

with the current proof of Proposition 2.6.1 assuming its validity.

Conditioning with respect to large boundaries

As alluded in Subsection 2.6.2, the proof involves conditioning on different f-fields succes-

sively. We now specify all the different f-fields that we will use throughout the proof. Set U = 1
6 .

We consider the random interval

 C := (Φ − C−U,Φ + C−U). (2.6.41)

Let us define:

F1 := f
({
h
(1)
?C,↑(?

−2/3G), h(1)
@C,↓(@

−2/3G)
}
G∈(−",")2

,

{
h
(2)
?C,↑(G), h

(2)
@C,↓(G)

}
G∈R

)
(2.6.42)

F2 := f
(
Φ, h

(1)
?C,↑(Φ?

−2/3), h(1)
@C,↓(Φ@

−2/3)
)
, (2.6.43)

F3 := f
({
h
(1)
?C,↑(?

−2/3G), h(1)
@C,↓(@

−2/3G)
}
G∈ 2C

)
. (2.6.44)

In this step we perform conditioning w.r.t. F1 for the expression on the l.h.s. of (2.6.31). We

denote PC (�) := P
(
(�",C,↑(·), �",C,↓(·)) ∈ �

)
. Taking the Nice" (X) event defined in (2.6.39)
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under consideration, upon conditioning with F1 we have the following upper and lower bounds:

PC (�) ≥ PC (Nice" (X), �) = EC [PC (Nice" (X), � | F1)] , (2.6.45)

PC (�) ≤ PC (Nice" (X), �) + PC (¬Nice" (X)) = EC [PC (Nice" (X), � | F1)] + PC (¬Nice" (X)).

(2.6.46)

Note that the underlying measure consists of the mutually independent h(1)
?C,↑(·) and h(1)

@C,↓(·) which

by Proposition 3.5.1 satisfy H?C and H@C Brownian Gibbs property respectively. Applying the

respectively Brownian Gibbs properties and following (2.2.3) we have

PC (Nice" (X), � | F1) =
Efree,C [1Nice" (X),�,↑,↓]

Efree,C [,↑,↓]
. (2.6.47)

Here

,↑ := exp
(
−C2/3

∫ "

−"
exp

(
C1/3

[
?1/3h(2)

?C,↑(?
−2/3G) − ?1/3h(1)

?C,↑(?
−2/3G)

] )
dG

)
(2.6.48)

and

,↓ := exp
(
−C2/3

∫ "

−"
exp

(
C1/3

[
@1/3h(2)

@C,↓(@
−2/3G) − @1/3h(1)

@C,↓(@
−2/3G)

] )
dG

)
. (2.6.49)

In (2.6.47), Pfree,C and Efree,C are the probability and the expectation operator respectively corre-

sponding to the joint ‘free’ law for (?1/3h?C,↑(?−2/3G), @1/3h@C,↓(@−2/3G))G∈[−","] which by Brow-

nian scaling is given by a pair of independent Brownian bridges (�1(·), �2(·)) on [−", "] with

starting points (?1/3h?C,↑(−"?−2/3), @1/3h@C,↓(−"@−2/3)) and endpoints (@1/3h?C,↑("?−2/3), @1/3h@C,↓("@−2/3)).

Conditioning with respect to maximum data and small boundaries

In this subsection we perform conditioning on the numerator of r.h.s. of (2.6.47) w.r.t. F2 and

F3 defined in (2.6.43) and (2.6.44). Recall that by Proposition 2.4.9, upon conditioning Brownian

bridges on F2, the conditional laws around the joint local maximizerΦ over [−", "] is now given
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by two NonInt-BrBridges (defined in Definition 2.4.4) with appropriate lengths and endpoints.

Indeed, based on Proposition 2.4.9, given F1, F2, we may construct the conditional laws for the

two functions on [−", "]:

Definition 2.6.3 (Nlarge Law). Consider two independent NonInt-BrBridge +
large
ℓ

and + large
A

with following description:

1. + large
ℓ

is a NonInt-BrBridge on [0,Φ + "] ending at

(
?1/3

[
h
(1)
?C,↑(Φ?

−2/3) − h(1)
?C,↑(−"?

−2/3)
]
, @1/3

[
h
(1)
@C,↓(−"@

−2/3) − h(1)
@C,↓(Φ@

−2/3)
] )
,

2. + large
A is a NonInt-BrBridge on [0, " −Φ] ending at

(
?1/3

[
h
(1)
?C,↑(Φ?

−2/3) − h(1)
?C,↑("?

−2/3)
]
, @1/3

[
h
(1)
@C,↓("@

−2/3) − h(1)
@C,↓(Φ@

−2/3)
] )
.

We then define �large : [−", "] → R2 as follows:

�large(G) =


+ℓ (Φ − G) G ∈ [−",Φ]

+A (G −Φ) G ∈ [Φ, "]
.

We denote the expectation and probability operator under above law for �large (which depends on

F1, F2) as ENlarge|2,1 and PNlarge|2,1.

Thus we may write

Efree,C [1Nice" (X),�,↑,↓] = Efree,C [ENlarge|2,1 [1Nice" (X),�,↑,↓]] . (2.6.50)

Since NonInt-BrBridges are Markovian, we may condition further upon F3 to get NonInt-BrBridges

again but on a smaller interval. To precisely define the law, we now give the following definitions:
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Definition 2.6.4 (Nsmall law). Consider two independent NonInt-BrBridge+small
ℓ

and+small
A with

the following descriptions:

1. +small
ℓ

is a NonInt-BrBridge on [0, C−U] ending at

(
?1/3

[
h
(1)
?C,↑(Φ?

−2/3) − h(1)
?C,↑(?

−2/3(Φ − C−U))
]
, @1/3

[
h
(1)
@C,↓(@

−2/3(Φ − C−U)) − h(1)
@C,↓(Φ@

−2/3)
] )
,

2. +small
A is a NonInt-BrBridge on [0, C−U] ending at

(
?1/3

[
h
(1)
?C,↑(Φ?

−2/3) − h(1)
?C,↑(?

−2/3(Φ + C−U))
]
, @1/3

[
h
(1)
@C,↓(@

−2/3(Φ + C−U)) − h(1)
@C,↓(Φ@

−2/3)
] )
.

We then define �small : [Φ + C−U,Φ − C−U] → R2 as follows:

�small(G) =


+ℓ (Φ − G) G ∈ [Φ − C−U,Φ]

+A (G −Φ) G ∈ [Φ,Φ + C−U]
.

We denote the the expectation and probability operators under the above law for �small (which

depends on F1, F2, F3) as ENsmall|3,2,1 and PNsmall|3,2,1 respectively.

We thus have

r.h.s. of (2.6.50) = Efree,C [1Nice" (X)ENsmall|3,2,1 [1�,↑,↓]] . (2.6.51)

The 1Nice" (X) comes of the interior expectation above as Nice" (X) is measurable w.r.t. F1∪F2∪F3

(see its definition in (2.6.39)).

Next note that due to the definition of,↑,,↓ from (2.6.48) and (2.6.49), we may extract certain

parts of it which are measurable w.r.t. F1 ∪ F2 ∪ F3. Indeed, we can write ,↑ = ,↑,1,↑,2 and

,↓ = ,↓,1,↓,2 where

,↑,1 := exp
(
−C2/3

∫
 C

exp
(
C1/3

[
?1/3h(2)

?C,↑(?
−2/3G) − ?1/3h(1)

?C,↑(?
−2/3G)

] )
dG

)
(2.6.52)
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,↑,2 := exp

(
−C2/3

∫
[−","]∩ 2C

exp
(
C1/3

[
?1/3h(2)

?C,↑(?
−2/3G) − ?1/3h(1)

?C,↑(?
−2/3G)

] )
dG

)
,

and

,↓,1 := exp
(
−C2/3

∫
 C

exp
(
C1/3

[
@1/3h(2)

@C,↓(@
−2/3G) − @1/3h(1)

@C,↓(@
−2/3G)

] )
dG

)
. (2.6.53)

,↓,2 := exp

(
−C2/3

∫
[−","]∩ 2C

exp
(
C1/3

[
@1/3h(2)

@C,↓(@
−2/3G) − @1/3h(1)

@C,↓(@
−2/3G)

] )
dG

)
,

where recall  C from (2.6.41). The key observation is that ,↑,2,,↓,2 are measurable w.r.t. F1 ∪

F2 ∪ F3. Thus we have

r.h.s. of (2.6.51) = Efree,C [1Nice" (X),↑,2,↓,2 · ENsmall|3,2,1 [1�,↑,1,↓,1]] . (2.6.54)

Remark 2.6.5. It is crucial to note that in (2.6.51) the event Nice" (X) includes the event ArMx(X)

defined in (2.6.32). Indeed, the ArMx(X) event is measurable w.r.t. F1 ∪ F2 and ensures that

[Φ − C−U,Φ + C−U] ⊂ [−", "] for all large enough C, which is essential for going from Nlarge

law to Nsmall law. Thus such a decomposition is not possible for Efree,C [,↑,↓] which appears

in the denominator of r.h.s. of (2.6.47). Nonetheless, we may still provide a lower bound for

Efree,C [,↑,↓] as follows:

Efree,C [,↑,↓] ≥ Efree,C [1Nice" (X),↑,↓] = Efree,C [,↑,2,↓,21Nice" (X) · ENsmall|3,2,1 [,↑,1,↓,1]] .

(2.6.55)

With the deductions in (2.6.54) and (2.6.55), we now come to the task of analyzing ,↑,1,↓,1

under Nsmall law. The following lemma ensures that on Nice" (X), ,↑,1,↓,1 is close to 1 under

Nsmall law.
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Lemma 2.6.6. There exist C0(X) > 0 such that for all C ≥ C0 we have

1Nice" (X)PNsmall|3,2,1(,↑,1,↓,1 > 1 − X) ≥ 1Nice" (X) (1 − X). (2.6.56)

This allow us to ignore ,↑,1,↓,1, in ENsmall|3,2,1 [1�,↑,1,↓,1]. Hence it suffices to study

PNsmall|3,2,1(�). The following lemma then compares this conditional probability with that of

DBM.

Lemma 2.6.7. There exist C0(X) > 0 such that for all C ≥ C0 we have

1Nice" (X) |PNsmall|3,2,1(�) − g(�) | ≤ 1Nice" (X) · X, (2.6.57)

where g(�) := P(D(·) ∈ �), D being a two-sided DBM defined in the statement of Proposition

2.6.1.

We prove these two lemmas in Section 2.6.2. For now, we proceed with the current proof of

(2.6.31) in the next section.

Matching Lower and Upper Bounds

In this subsection, we complete the proof of (2.6.31) by providing matching lower and upper

bounds in the two steps below. We assume throughout this subsection that C is large enough, so

that (2.6.56) and (2.6.57) holds.

Step 1: Lower Bound. We start with (2.6.45). Following the expression in (2.6.47), and our

deductions in (2.6.50), (2.6.51), (2.6.54) we see that

PC (�) ≥ EC [PC (Nice" (X), � | F1)]

= E
[Efree,C [1Nice" (X),↑,2,↓,2 · ENsmall|3,2,1 [1�,↑,1,↓,1]]

Efree,C [,↑,↓]

]
(2.6.58)

≥ (1 − X)EC
[Efree,C [1Nice" (X),↑,2,↓,2 · PNsmall|3,2,1(�,,↑,1,↓,1 > 1 − X)]

Efree,C [,↑,↓]

]
(2.6.59)
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where in the last inequality we used the fact,↑,1,↓,1 ≤ 1. Now applying Lemma 2.6.6 and Lemma

2.6.7 successively we get

1Nice" (X)PNsmall|3,2,1(�,,↑,1,↓,1 > 1 − X)

≥ 1Nice" (X) [PNsmall|3,2,1(�) − PNsmall|3,2,1(,↑,1,↓,1 ≤ 1 − X)]

≥ 1Nice" (X) [PNsmall|3,2,1(�) − X]

≥ 1Nice" (X) [g(�) − 2X]

where recall g(�) = P(D(·) ∈ �). As ,↑,1,↓,1 ≤ 1 and probabilities are nonnegative, following

the above inequalities we have

1Nice" (X)PNsmall|3,2,1(�,,↑,1,↓,1 > 1 − X) ≥ max{0, g(�) − 2X}1Nice" (X),↑,1,↓,1.

Substituting the above bound back to (2.6.59) and using the fact that ,↑,2,↓,2,↑,1,↓,1 = ,↑,↓,

we get

PC (�) ≥ (1 − X)max{0, g(�) − 2X}EC
[Efree,C [1Nice" (X),↑,↓]

Efree,C [,↑,↓]

]
= (1 − X)max{0, g(�) − 2X}PC (Nice" (X)).

In view of Lemma 2.6.2, taking lim infC→∞ followed by lim infX↓0 we get that lim infC→∞ PC (�) ≥

g(�). This proves the lower bound.

Step 2: Upper Bound. We start with (2.6.46). Using the equality in (2.6.58) we get

PC (�) ≤ E
[Efree,C [1Nice" (X),↑,2,↓,2 · ENsmall|3,2,1 [1�,↑,1,↓,1]]

Efree,C [,↑,↓]

]
+ PC (¬Nice" (X))

≤ E
[Efree,C [1Nice" (X),↑,2,↓,2 · PNsmall|3,2,1(�)]

Efree,C [,↑,↓]

]
+ PC (¬Nice" (X))

≤ (g(�) + X)E
[Efree,C [1Nice" (X),↑,2,↓,2]

Efree,C [,↑,↓]

]
+ PC (¬Nice" (X)). (2.6.60)
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Let us briefly justify the inequalities presented above. Going from first line to second line we

used the fact ,↑,1,↓,1 ≤ 1. The last inequality follows from Lemma 2.6.7 where recall that

g(�) = P(D(·) ∈ �). Now note that by Lemma 2.6.6, on Nice" (X),

ENsmall|3,2,1 [,↑,1,↓,1] ≥ ENsmall|3,2,1 [1,↑,1,↓,1≥1−X ·,↑,1,↓,1]

≥ (1 − X)PNsmall|3,2,1(,↑,1,↓,1 ≥ 1 − X) ≥ (1 − X)2.

Using the expression from (2.6.55) we thus have

Efree,C [,↑,↓] ≥ Efree,C [1Nice" (X),↑,2,↓,2 · ENsmall|3,2,1 [,↑,1,↓,1]]

≥ (1 − X)2Efree,C [1Nice" (X),↑,2,↓,2] .

Going back to (2.6.60), this forces

r.h.s. of (2.6.60) ≤ g(�) + X
(1 − X)2

+ PC (¬Nice" (X)).

In view of Lemma 2.6.2, taking lim supC→∞, followed by lim supX↓0 in above inequality we get that

lim supC→∞ PC (�) ≤ g(�). Along with the matching lower bound obtained in Step 1 above, this

establishes (2.6.31).

Proof of Lemma 2.6.2

Recall from (2.6.39) that Nice" (X) event is an intersection of several kinds of events. To show

(2.6.40), it suffices to prove the same for each of the events. That is, given an event E which is part

of Nice" (X) we will show

lim sup
X→∞

lim sup
C→∞

P(E) = 1. (2.6.61)

Below we analyze each such possible choices for E separately.
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ArMx(X) event. Recall ArMx(X) event from (2.6.32). As noted in (2.3.9),

M"
?,C

3→ argmax
G∈[−","]

A(G),

whereA is defined in (2.3.8). SinceA restricted to [−", "] is absolutely continuous with Brow-

nian motion with appropriate diffusion coefficients, argmaxG∈[−","] A(G) ∈ (−", ") almost

surely. In other words, maximum is not attained on the boundaries almost surely. But then

lim inf
X↓0

lim inf
C→∞

P(ArMx(X)) = lim inf
X↓0

P( argmax
G∈[−","]

A(G) ∈ [−" + X, " − X])

= P( argmax
G∈[−","]

A(G) ∈ (−", ")) = 1.

This proves (2.6.61) with E ↦→ ArMx(X).

Bd↑(X),Bd↓(X) events. We first define

Tight±,↑(_) :=
{
?1/3

���h(1)
?C,↑(Φ?

−2/3) − h(1)
?C,↑(±"?

−2/3)
��� ≤ 1

_

}
,

Tight±,↓(_) :=
{
@1/3

���h(1)
@C,↓(Φ@

−2/3) − h(1)
@C,↓(±"@

−2/3)
��� ≤ 1

_

}
,

and set

Sp(_) := ArMx(_) ∩ Tight+,↑(_) ∩ Tight−,↑(_) ∩ Tight+,↓(_) ∩ Tight−,↓(_) (2.6.62)

where ArMx(_) is defined in (2.6.32). We claim that

lim sup
_↓0

lim sup
C→∞

P(¬Sp(_))) = 0. (2.6.63)

Let us assume (2.6.63) for the time being and consider the main task of analyzing the probabil-

ity of the events Bd↑(X),Bd↓(X) defined in (2.6.33). We have Bd↑(X) = Bd+↑(X) ∩ Bd−,↑(X)

where Bd±,↑(X) is defined in (2.6.34). Let us focus on Bd+,↑(X). Recall the f-fields F1, F2 from
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(2.6.42) and (2.6.43). As described in Subsection 2.6.2, upon conditioning on F1 ∪ F2, the con-

ditional law on [−", "] are given by Nlarge defined in Definition 2.6.3, which are made up of

NonInt-BrBridges + large
ℓ

, +
large
A defined in Definition 2.6.3.

Note that applying Markov inequality conditionally we have

1Sp(_)P
(
Bd+,↑(X) | F1, F2

)
= 1Sp(_) · P

(
|h(1)
?C,↑(?

−2/3(Φ + C−U)) − h(1)
?C,↑(Φ?

−2/3) | > 1
X
C−U/2 | F1, F2

)
≤ 1Sp(_) · X2C2U · ENlarge|2,1

[
[+ large
A,1 (?

−2/3C−U)]4
]

However, on 1Sp(_) , the NonInt-BrBridge has length bounded away from zero and the endpoints

are tight. Applying (2.5.20) with  ↦→ 2, C ↦→ 1, B ↦→ 0, = ↦→ ?2/3CU, " ↦→ 1/_, for all large

enough C we get ENlarge|2,1
[
[+ large
A,1 (?

−2/3C−U)]4
]
≤ C?,_C

−2U. Thus,

lim sup
C→∞

P
(
¬Bd+,↑(X)

)
≤ lim sup

C→∞
P(¬Sp(_)) + X2C?,_.

Taking X ↓ 0, followed by _ ↓ 0, in view of (2.6.63) we get lim supX↓0 lim supC→∞ P(¬Bd+,↑(X)) =

0. Similarly one can conclude lim supX↓0 lim supC→∞ P(¬Bd−,↑(X)) = 0 Thus, this two together

yields lim infX↓0 lim infC→∞ P(Bd↑(X)) = 1. By exactly the same approach one can derive that

P(Bd↓(X)) goes to 1 under the same iterated limit. Thus it remains to show (2.6.63).

Let us recall from (2.6.62) that Sp(_) event is composed of four tightness events and one event

about the argmax. We first claim that lim sup_↓0 lim supC→∞ P(TightG,H (_)) = 1 for each G ∈ {+,−}

and H ∈ {↑, ↓}. The earlier analysis of ArMx(_) event in (2.6.62) then enforces (2.6.63). Since

all the tightness events are similar, it suffices to prove any one of them say Tight+,↑. By Propo-

sition 3.5.1 we have the distributional convergence of 21/3h(1)
?C,↑(2

1/3G) to A1(G) in the uniform-

on-compact topology, where A1(·) is the parabolic Airy2 process. As Φ ∈ [−", "], we thus
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have

lim sup
C→∞

P(Tight+,↑(_)) ≤ lim sup
C→∞

P

(
?1/3 sup

G∈[−","]

���h(1)
?C,↑(G?

−2/3) − h(1)
?C,↑("?

−2/3)
��� ≤ 1

_

)
= P

(
?1/3 sup

|G |≤2−1/3"

���A1(G?−2/3) − A1(2−1/3"?−2/3)
��� ≤ 21/3

_

)
.

For fixed ?, " , by tightness of parabolic Airy2 process on a compact interval, the last expression

goes to one as _ ↓ 0, which is precisely what we wanted to show.

Gap",↑(X),Gap",↓(X) events. Recall the definitions of Gap",↑(X) and Gap",↓(X) from(2.6.35)

and (2.6.36).We begin with the proof of Gap",↑(X). Let

Diff",↑(X) :=
{

inf
|G |≤"

?1/3
(
h
(1)
?C,↑(?

−2/3G) − h(2)
?C,↑(?

−2/3G)
)
≥ X

}
.

Note that Φ ∈ [−", "]. Thus Gap",↑(X) ⊃ Diff",↑(X). Thus to show (2.6.61) with E ↦→

Gap",↑(X) it suffices to prove

lim inf
X↓0

lim inf
C→∞

P(Diff",↑(X)) = 1, (2.6.64)

We recall from Proposition 2.2.7 the distributional convergence of the KPZ line ensemble to the

Airy line ensemble in the uniform-on-compact topology. By Skorokhod representation theorem,

we may assume that our probability space is equipped with A1(·) and A2(·) such that almost

surely as C →∞

max
8=1,2

sup
|G |≤"?−2/3

|21/3h(8)
C,↑ (2

1/3G) − A8 (G) | → 0. (2.6.65)

We thus have

lim inf
C→∞

P(Diff",↑(X)) = P
(

inf
|G |≤"2−1/3?−2/3

?1/3 (A1(G) − A2(G)) ≥ 21/3X

)
. (2.6.66)
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As the Airy line ensemble is absolutely continuous w.r.t. non-intersecting Brownian motions,

it is strictly ordered with touching probability zero (see (2.2.1)). Hence r.h.s. of (2.6.66) goes to

zero as X ↓ 0. This proves (2.6.64). The proof is similar for Gap",↓(X).

Rise",↑(X),Rise",↑(X) events. Recall Rise",↑(X),Rise",↑(X) events from (2.6.37) and (2.6.38).

Due to their similarities, we only analyze the Rise",↑(X) event. As with the previous case, we

assume that our probability space is equipped withA1(·) andA2(·) (first two lines of the Airy line

ensemble) such that almost surely as C →∞ (2.6.65) holds. Applying union bound we have

P (¬Rise" (X)) ≤ P

(
sup

|G |≤"?−2/3
?1/3 |21/3h(2)

?C,↑(2
1/3G) − A2(G) | ≥ X

16

)
+ P

(
¬Rise" (X), sup

|G |≤"?−2/3
?1/3 |21/3h(2)

?C,↑(2
1/3G) − A2(G) | ≤ X

16

)
≤ P

(
sup

|G |≤"?−2/3
?1/3 |21/3h(2)

?C,↑(2
1/3G) − A2(G) | ≥ X

16

)
+ P

(
sup

G,H∈[−","]
|G−H |≤C−U

?1/3 |A2(G) − A2(H) | ≥ X
8

)
.

In the r.h.s. of above equation, the first term goes to zero as C → ∞ by (2.6.65). The second

term on the other hand goes to zero as C → ∞ by modulus of continuity estimates for Airy line

ensemble from Proposition 2.2.4. This shows, limC→∞ P(Rise",↑(X)) = 1. Similarly one has

limC→∞ P(Rise",↓(X)) = 1 as well. This proves (2.6.61) for E ↦→ Rise",↑(X),Rise",↓(X).

We have thus shown (2.6.61) for all the events listed in (2.6.39). This establishes (2.6.40)

concluding the proof of Lemma 2.6.2.

Proof of Lemma 2.6.6 and 2.6.7

In this subsection we prove Lemma 2.6.6 and 2.6.7.

Proof of Lemma 2.6.6. Recall ,↑,1 and ,↓,1 from (2.6.52) and (2.6.53) respectively. We claim
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Figure 2.9: In the above figure we have plotted the curves 5 (G) := ?1/3h(1)
?C,↑(?

−2/3G) (black) and

6(G) := ?1/3h(2)
?C,↑(?

−2/3G) (blue) restricted to the interval  C := (Φ−C−U,Φ+C−U). For convenience,
we have marked two blue points along with their values as (�, 5 (�)), (�, 6(�)). Gap",↑(X)
defined in (2.6.35) denote the event that the blue points are separated by X, i.e, 5 (�) − 6(�) ≥ X.
The Rise",↑(X) defined in (2.6.37) ensures no point on the blue curve (restricted to  C) has value
larger than 6(�) + 1

4X (that is no significant rise). The Bd↑(X) event defined in (2.6.33) indicates
the red points on the black curve are within [ 5 (�) − 1

X
C−U/2, 5 (�) + 1

X
C−U/2]. The Sink↑(X) event

defined in (2.6.68) ensures that all points on the black curve (restricted to  C) have values larger
than 5 (�) − 1

4X (that is no significant sink). Clearly then on Sink↑(X) ∩ Rise",↑(X) ∩Gap",↑(X)
for all G ∈  C , we have 5 (G) − 6(G) ≥ 5 (�) − 1

4X − 6(�) −
1
4X ≥

1
2X.

that for all large enough C, on Nice" (X) we have

PNsmall|3,2,1(,↑,1 >
√

1 − X) ≥ 1 − 1
2X, PNsmall|3,2,1(,↓,1 >

√
1 − X) ≥ 1 − 1

2X (2.6.67)

simultaneously. (2.6.56) then follows via union bound. Hence we focus on proving (2.6.67). In

the proof below we only focus on first part of (2.6.67) and the second one follows analogously. We

now define the ‘sink’ event:

Sink↑(X) :=
{

inf
G∈[−C−U,C−U]

?1/3h(1)
?C,↑(Φ?

−2/3 + G) ≥ ?1/3h(1)
?C,↑(Φ?

−2/3) − X
4

}
. (2.6.68)

Recall Rise",↑(X) and Gap",↑(X) from (2.6.37) and (2.6.35). Note that on Sink↑(X)∩Rise",↑(X)∩
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Gap",↑(X) we have uniform separation between h(1)
?C,↑ and h(2)

?C,↓ on the interval ?−2/3 C , that is

inf
G∈[Φ−C−U,Φ+C−U]

[
?1/3h(1)

?C,↑(?
−2/3G) − ?1/3h(2)

?C,↑(?
−2/3G)

]
≥ X

2 . (2.6.69)

See Figure 2.9 alongside its caption for further explanation of the above fact. But then (2.6.69)

forces ,↑,1 ≥ exp(−C2/32C−U4− 1
4 C

1/3X) which can be made strictly larger than
√

1 − X for all large

enough C. Thus,

1Nice" (X)PNsmall|3,2,1(,↑,1 >
√

1 − X) ≥ 1Nice" (X)PNsmall|3,2,1(Sink↑(X)). (2.6.70)

Now we divide the sink event into two parts: Sink↑(X) = Sink+↑(X) ∩ Sink−,↑(X) where

Sink±,↑(X) :=
{

inf
G∈[0,C−U]

?1/3h(1)
?C,↑(Φ?

−2/3 ± G) ≥ ?1/3h(1)
?C,↑(Φ?

−2/3) − X
4

}
,

In view of (2.6.70), to prove first part of (2.6.67), it suffices to show for all large enough C, on

Nice" (X) we have

PNsmall|3,2,1(Sink+,↑(X)) ≥ 1 − X
4 , PNsmall|3,2,1(Sink−,↑(X)) ≥ 1 − X

4 . (2.6.71)

We only prove first part of (2.6.71) below. Towards this end, recall . (1)
",C,↑, .

(1)
",C,↓ from (2.6.26).

Observe that

.
(1)
",C,↑(Φ + G) = ?

1/3h(1)
?C,↑(Φ?

−2/3) − ?1/3h(1)
?C,↑(Φ?

−2/3 + G).

Recall Nsmall law from Definition 2.6.4. Our discussion in Subsection 2.6.2 implies that under

PNsmall|3.2,1,

(. (1)
",C,↑, .

(1)
",C,↓) (Φ + ·) | [0,C−U]

3
= +small

A (·), (. (1)
",C,↑, .

(1)
",C,↓) (Φ + ·) | [−C−U,0]

3
= +small

ℓ (−·),
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where recall that +small
ℓ

and +small
A are conditionally independent NonInt-BrBridge on [0, C−U]

with appropriate end points, defined in Definition 2.6.4. In particular we have,

PNsmall|3,2,1(Sink+,↑(X)) = PNsmall|3,2,1

(
sup

G∈[0,C−U]
+small
A,1 (G) ≤ 1

4X

)
(2.6.72)

where +small
A = (+small

A,1 , +small
A,2 ). Recall Nice" (X) event from (2.6.39). It contains Bd↑(X) event

defined in (2.6.33). On this event, −1
X
≤ +Small

A,1 (C−U), +Small
A,2 (C−U) ≤ 1

X
C−U/2. We consider another

NonInt-BrBridge * = (*1,*2) on [0, C−U] with non-random endpoints *1(C−U) = *2(C−U) =
1
X
C−U/2. On Bd↑(X) event, by monotonicity of non-intersecting Brownian bridges (Lemma 2.6 in

[73]), one may couple * = (*1,*2) and +small
A so that *8 always lies above +small

A,8
for 8 = 1, 2.

Thus on Bd↑(X) event,

PNsmall|3,2,1

(
sup

G∈[0,C−U]
+small
A,1 (G) ≤ _C−U/2

)
≥ P

(
sup
G∈[0,1]

CU/2*1(GC−U) ≤ _
)
≥ 1 − X

4 ,

where the last inequality is true by taking _ large enough. This choice of _ is possible as by Brow-

nian scaling, CU/2*1(GC−U), CU/2*2(GC−U) is NonInt-BrBridge on [0, 1] ending at ( 1
X
, 1
X
). Taking C

large enough one can ensure _C−U/2 ≤ X
4 . Using the equality in (2.6.72) we thus establish the first

part of (2.6.71). The second part is analogous. This proves the first part of (2.6.67). The second

part of (2.6.67) follows similarly. This completes the proof of Lemma 2.6.6.

Proof of Lemma 2.6.7. The idea behind this proof is Proposition 2.5.8, which states that a

NonInt-BrBridge after Brownian rescaling converges in distribution to a DBM. The following

fills out the details. Recall that

PNsmall|3.2,1(�) = PNsmall|3.2,1(�",C,↑, �",C,↓(·) ∈ �).

Recall from (2.6.28) that �",C,↑, �",C,↓ is a diffusive scaling of . (1)
",C,↑, .

(1)
",C,↓ when centering at

Φ, where . (1)
",C,↑, .

(1)
",C,↓ are defined in (2.6.26). Recall Nsmall law from Definition 2.6.4. Our
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discussion in Subsection 2.6.2 implies that under PNsmall|3.2,1,

(. (1)
",C,↑, .

(1)
",C,↓) (Φ + ·) | [0,C−U]

3
= +small

A (·), (. (1)
",C,↑, .

(1)
",C,↓) (Φ + ·) | [−C−U,0]

3
= +small

ℓ (−·),

where +small
ℓ

and +small
A are conditionally independent NonInt-BrBridge on [0, C−U] with appro-

priate end points defined in Definition 2.6.4. Using Brownian scaling, we consider

+0
ℓ (G) := CU/2+small

ℓ (GC−U), +0
A (G) := CU/2+small

A (GC−U),

which are now NonInt-BrBridge on [0, 1]. Note that on Bd↑(X),Bd↓(X) (defined in (2.6.33)), we

see that endpoints of +0
ℓ
, +0
A are in [−1

X
, 1
X
]. Thus as U = 1

6 , performing another diffusive scaling by

Proposition 2.5.8 we see that as C →∞

C1/4+0
ℓ (GC

−1/2) , C1/4+A (GC−1/2)

converges to two independent copies of DBMs (defined in Definition 2.5.1) in the uniform-on-

compact topology. Hence we get two-sided DBM convergence for the pair (�",C,↑, �",C,↓) under

PNsmall|3.2,1 as long as 1{Nice" (X)} holds. This proves (2.6.57).

2.6.3 Proof of Theorem 2.1.10

We take ? ↦→ 1
2 and C ↦→ 2C in Proposition 2.6.1. Then by Lemma 2.3.2, P2,C defined in the

statement of Theorem 2.1.10 is same asM 1
2 ,2C

considered in Proposition 2.6.1. Its uniqueness is

already justified in Lemma 2.3.1. Furthermore,

'2(G, C)
3
= �1(G, C) − �2(G, C),

as functions in G, where '2(G, C) is defined in (2.1.11) and �1, �2 are defined in (2.6.24). By

Proposition 2.6.1 and Lemma 2.5.3 we get that �1(G, C) − �2(G, C)
3→ R2(G) in the uniform-on-

compact topology. This proves Theorem 2.1.10 for : = 2 case.
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For : = 1 case, by Lemma 2.3.2, P1,C is same asM∗,C which is unique almost surely by Lemma

2.3.1. This guarantees P1,C is unique almost surely as well. Thus we are left to show

H(P1,C , C) − H (G + P1,C , C)
3→ R1(G). (2.6.73)

where R1(G) is a two-sided Bessel process with diffusion coefficient 1 defined in Definition 2.5.2.

The proof of (2.6.73) is exactly similar to that of Proposition 2.6.1 with few minor alterations listed

below.

1. Just as in Subsection 2.6.2, one may put the problem in (2.6.73) under the framework of KPZ

line ensemble. Compared to Subsection 2.6.2, in this case, clearly there will be just one set

of line ensemble.

2. Given the decay estimates forM∗,C from Lemma 2.3.1, it boils down to show Bessel behavior

around local maximizers. The rigorous justification follows from a soft argument analogous

to what is done in Subsection 2.6.2.

3. In the spirit of Subsection 2.6.2, one can define a similar Nice′" (X) event but now for a single

line ensemble. Nice′" (X) will contain similar events, such as:

• control on the location of local maximizer (analog of ArMx(X) event (2.6.32)),

• control on the gap between first curve and second curve at the maximizer (analog of

Gap",↑(X) event (2.6.35)),

• fluctuations of the first curve on a small interval say � around maximizer (analog of

Rise",↑(X) event (2.6.37),

• and control on the value of the endpoints of � (analog of Bd↑(X) event (2.6.33)).

On Nice′" (X) event, the conditional analysis can be performed in the same manner.
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4. Next, as in proof of Proposition 2.6.1, we proceed by three layers of conditioning. For first

layer, we use the HC Brownian Gibbs property of the single line ensemble under considera-

tion. Next, conditioning on the location and values of the maximizer, we similarly apply the

same Bessel bridge decomposition result from Proposition 2.4.8 to convert the conditional

law to that of the Bessel bridges over a large interval (see Subsection 2.6.2). Finally, anal-

ogous to Subsection 2.6.2, the third layer of conditioning reduces large Bessel bridges to

smaller ones following the Markovian property of Bessel bridges, see Lemma 2.4.2.

5. Since a Bessel bridge say on [0, 1] is a Brownian bridge conditioned to stay positive on

[0, 1], it has the Brownian scaling property and it admits monotonicity w.r.t. endpoints.

These are two crucial tools that went into the Proof of Lemma 2.6.6 in Subsection 2.6.2. Thus

the Bessel analogue of Lemma 2.6.6 can be derived using the scaling property and mono-

tonicity stated above in the exact same way. Finally, the Bessel analogue of Lemma 2.6.7 can

be obtained from Corollary 2.5.9. Indeed Corollary 2.5.9 ensures that small Bessel bridges

converges to Bessel process under appropriate diffusive limits on the Nice′" (X) event.

Executing all the above steps in an exact same manner as proof of Proposition 2.6.1, (2.6.73)

is established. This completes the proof of Theorem 2.1.10.

2.7 Proof of localization theorems

In this section we prove our main results: Theorem 2.1.4 and Theorem 2.1.5. In Section 2.7.1

we study certain tail properties (Lemma 2.7.1 and Proposition 2.7.2) of the quantities that we are

interested in and prove Theorem 2.1.4. Proof of Proposition 2.7.2 is then completed in Section

2.7.2 along with proof of Theorem 2.1.5.

2.7.1 Tail Properties and proof of Theorem 2.1.4

We first settle the question of finiteness of the Bessel integral appearing in the statements of

Theorems 2.1.4 and 2.1.5 in the following Lemma.
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Lemma 2.7.1. Let 'f (·) be a Bessel process with diffusion coefficient f > 0, defined in Definition

2.5.2. Then

P
(∫
R
4−'f (G)dG ∈ (0,∞)

)
= 1.

Proof. Since 'f (·) has continuous paths, supG∈[0,1] 'f (G) is finite almost surely. Thus almost

surely we have ∫
R
4−'f (G)dG ≥

∫ 1

0
4−'f (G)dG > 0.

On the other hand, by the classical result from [191] it is known that

P('f (G) < G1/4 infinitely often) = 0.

Thus, there exists Ω such that P(Ω) = 1 and for all l ∈ Ω, there exists G0(l) ∈ (0,∞) such that

'f (G) (l) ≥ G1/4 for all G ≥ G0(l).

Hence for this l,

∫ ∞

0
4−'f (G) (l)dG =

∫ G0 (l)

0
4−'f (G) (l)dG +

∫ ∞

G0 (l)
4−'f (G) (l)dG < G0(l) +

∫ ∞

0
4−G

1/4
dG < ∞.

This establishes that
∫
R
4−'f (G)dG is finite almost surely.

Our next result studies the tail of the integral of the pre-limiting process.

Proposition 2.7.2. Fix ? ∈ (0, 1). Set @ = 1 − ?. Consider 2 independent copies of the KPZ

equation H↑(G, C), and H↓(G, C), both started from the narrow wedge initial data. LetM?,C be the

almost sure unique maximizer of the process G ↦→ (H↑(G, ?C) +H↓(G, @C)) which exists via Lemma

2.3.1. Set

�1(G, C) := H↑(M?,C , ?C) − H↑(G +M?,C , ?C),

�2(G, C) := H↓(G +M?,C , @C) − H↓(M?,C , @C).
(2.7.1)
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For all d > 0 we have

lim sup
 →∞

lim sup
C→∞

P
(∫
[− , ]2

4�2 (G,C)−�1 (G,C) dG ≥ d
)
= 0. (2.7.2)

As a corollary, we derive that for any ? ∈ (0, 1) the ?C-point density of point-to-point CDRP

of length C indeed concentrates in a microscopic region of size $ (1) around the favorite point.

Corollary 2.7.3. Recall the definition of CDRP and the notation Pb from Definition 3.1.1. Fix

? ∈ (0, 1). Suppose - ∼ CDRP(0, 0; 0, C). ConsiderM?,C the almost sure unique mode of 5?,C ,

the quenched density of - (?C). We have

lim sup
 →∞

lim sup
C→∞

Pb
(
|- (?C) −M?,C | ≥  

)
= 0, in probability.

One also has the analogous version of Proposition 2.7.2 involving one single copy of the KPZ

equation viewed around its maximum. This leads to a similar corollary about tightness of the

quenched endpoint distribution for point-to-line CDRP (see Definition 3.1.2) when re-centered

around its mode. The details are skipped for brevity.

The proof of Proposition 2.7.2 is heavily technical and relies on the tools as well as notations

from Proposition 2.6.1. For clarity, we first prove Corollary 2.7.3 and Theorem 2.1.4 assuming the

validity of Proposition 2.7.2. The proof of Proposition 2.7.2 is then presented in Section 2.7.2.

Proof of Corollary 2.7.3. We haveZ(0, 0; G, ?C) 3= 4H↑(G,?C) and by time reversal propertyZ(G, ?C; 0, C) 3=

4H↓(G,@C) as functions in G, whereH↑,H↓ are independent copies of KPZ equation started from nar-

row wedge initial data. The uniqueness of the mode M?,C for 5?,C is already settled in Lemma

2.3.1. Thus, the quenched density of - (?C) −M?,C is given by

5?,C (G +M?,C) =
exp(�2(G, C) − �1(G, C))∫

R

exp(�2(H, C) − �1(H, C))dH
, (2.7.3)
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where �8 (G, C), 8 = 1, 2 are defined in (2.6.23). Thus,

Pb
(
|- (?C) −M?,C | ≥  

)
=

∫
[− , ]2

4�2 (G,C)−�1 (G,C) dG∫
R

4�2 (G,C)−�1 (G,C) dG
≤

∫
[− , ]2

4�2 (G,C)−�1 (G,C) dG∫
[− , ]

4�2 (G,C)−�1 (G,C) dG
. (2.7.4)

Notice that by by (2.7.2) the numerator of r.h.s. of (2.7.4) goes to zero in probability under the

iterated limit lim supC→∞ followed by lim sup →∞. Whereas due to Proposition 2.6.1, under the

iterated limit, the denominator converges in distribution to
∫
R
4−'2 (G)dG which is strictly positive

by Lemma 2.7.1. Thus overall the r.h.s. of (2.7.4) goes to zero in probability under the iterated

limit. This completes the proof.

Proof of Theorem 2.1.4. Fix any ? ∈ (0, 1). Set @ = 1 − ?. Recall from (2.7.3) that

5?,C (G +M?,C) =
exp(�2(G, C) − �1(G, C))∫

R

exp(�2(H, C) − �1(H, C))dH
(2.7.5)

where �8 (G, C), 8 = 1, 2 are defined in (2.6.23). Note that by Proposition 2.6.1, a continuous map-

ping theorem immediately implies that for any  < ∞

exp(�2(G, C) − �1(G, C))∫  

− exp(�2(H, C) − �1(H, C))dH
3→ 4−R2 (G)∫  

− 4
−R2 (H)dH

(2.7.6)

in the uniform-on-compact topology. Here R2 is a 3D Bessel process with diffusion coefficient 2.

For simplicity, we denote

gC (G) := exp(�2(G, C) − �1(G, C)) and g(G) = exp(−R2(G)).

We can then rewrite (2.7.5) as product of four factors:

5?,C (G +M?,C) =
gC (G)∫
R
gC (H)dH

=

∫  

− gC (H)dH∫
R
gC (H)dH

·
∫
R
g(H)dH∫  

− g(H)dH
·
∫  

− g(H)dH∫
R
g(H)dH

· gC (G)∫  

− gC (H)dH
.
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Corollary 2.7.3 ensures ∫  

− gC (H)dH∫
R
gC (H)dH

= Pb ( |- (?C) −M?,C | ≤  )
?
→ 1

as C → ∞ followed by  → ∞. Lemma 2.7.1 with f = 2 yields that
∫
[− , ]2 g(H)dH =∫

[− , ]2 4
−R2 (H)dH

?
→ 0 as  →∞. Thus as  →∞

∫
R
g(H)dH∫  

− g(H)dH
?
→ 1.

Meanwhile, (2.7.6) yields that as C →∞,∫  

− g(H)dH∫
R
g(H)dH

· gC (G)∫  

− gC (H)dH
3→

∫  

− g(H)dH∫
R
g(H)dH

· g(G)∫  

− g(H)dH
=

g(G)∫
R
g(H)dH

.

in the uniform-on-compact topology. Thus, overall we get that 5?,C (G + M?,C)
3→ g(G)∫

R
g(H)dH , in the

uniform-on-compact topology. This establishes (2.1.7), completing the proof of Theorem 2.1.4.

2.7.2 Proof of Proposition 2.7.2 and Theorem 2.1.5

Coming to the proof of Proposition 2.7.2, we note that the setup of Proposition 2.7.2 is same as

that of Proposition 2.6.1. Hence all the discussions pertaining to Proposition 2.6.1 are applicable

here. In particular, to prove Proposition 2.7.2, we will be using few notations and certain results

from the proof of Proposition 2.6.1.

Proof of Proposition 2.7.2. Fix any " > 0. The proof of (2.6.24) proceeds by dividing the integral

into two parts depending on the range:

*1 := [−C2/3" −M?,C , C
2/3" −M?,C]2, (Deep Tail)

*2 := [ ,  ]2 ∩ [−C2/3" −M?,C , C
2/3" −M?,C], (Shallow Tail)
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and controlling each of them individually. See Figure 2.10 for details. In the following two steps,

we control these two kind of tails respectively.

Figure 2.10: Illustration for the proof of Proposition 2.7.2. In Deep Tail region we use parabolic
decay of KPZ line ensemble, and in Shallow Tail we use non-intersecting Brownian bridge sepa-
ration estimates from Proposition 2.5.6.

Step 1. In this step, we control the Deep Tail region: *1. The goal of this step is to show

lim sup
C→∞

P
(∫
*1

4�2 (G,C)−�1 (G,C) dG ≥ d

2

)
≤ C exp(− 1

C"
3), (2.7.7)

for some constant C = C(?) > 0. We now recall the framework of KPZ line ensemble discussed

in Subsection 2.6.2. We define

S?,C (G) := ?1/3h(1)
?C,↑(?

−2/3G) + @1/3h(1)
@C,↓(@

−2/3G) (2.7.8)

where hC,↑, hC,↓ are scaled KPZ line ensembles corresponding toH↑,H↓, see (2.2.6). Observe that

�2(G, C) − �1(G, C)
3
= C1/3

[
S?,C (C−2/3(G +M?,C)) − sup

I∈R
S?,C (I)

]
,
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where �1, �2 are defined in (2.7.1). Thus we have

∫
*1

exp(�2(G, C) − �1(G, C))dG
3
=

∫
|G |≥"

exp
(
C1/3

[
S?,C (G) − sup

I∈R
S?,C (I)

] )
dG

where*1 is defined in (Deep Tail). Towards this end, we define two events

A :=
{
sup
I∈R
S?,C (I) ≤ −"

2

4

}
, B :=

{
sup
G∈R

(
S?,C (G) + G2

)
> "2

4

}
,

Note that on ¬� ∩ ¬�, for all |G | ≥ " , we have

S?,C (G) − sup
I∈R
S?,C (I) ≤ "2

4 +
"2

4 − G
2 ≤ "2

2 −
3"2

4 −
G2

4 ≤ −
"2

4 −
G2

4 .

This forces

∫
|G |≥"

exp
(
C1/3

[
S?,C (G) − sup

I∈R
S?,C (I)

] )
dG ≤

∫
[−","]2

exp
(
−C1/3("2

2 +
H2

4 )
)

dH,

which goes to zero as C →∞. Hence l.h.s. of (2.7.7) ≤ P(¬A) + P(¬B). Hence it suffices to show

P(¬A) ≤ C exp
(
− 1

C"
3
)
, P(¬B) ≤ C exp

(
− 1

C"
3
)
. (2.7.9)

To prove the first part of (2.7.9), note that

P (¬�) ≤ P
(
S?,C (0) ≤ −"

2

4

)
≤ P

(
?1/3h(1)

?C,↑(0) ≤ −
"2

8

)
+ P

(
@1/3h(1)

@C,↓(0) ≤ −
"2

8

)
≤ C exp(− 1

C"
3).

where the last inequality follows by Proposition 2.2.8 (b), for some constant C = C(?) > 0. This

proves the first part of (2.7.9). For the second part of (2.7.9), following the definition of S?,C (G)
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from (2.7.8), and using the elementary inequality 1
4? +

1
4@ ≥ 1 by a union bound we have

P
(
sup
G∈R

(
S?,C (G) + G2

)
> "2

4

)
≤ P

(
sup
G∈R

(
?1/3h(1)

?C,↑(?
−2/3G) + G2

4?

)
> "2

8

)
+ P

(
sup
G∈R

(
@1/3h(1)

@C,↑(@
−2/3G) + G2

4@

)
> "2

8

)
.

(2.7.10)

Applying Proposition (2.2.8) (c) with V = 1
2 , we get that each of the terms on r.h.s. of (2.7.10) are

at most C exp(− 1
C"

3) where C = C(?) > 0. This establishes the second part of (2.7.9) completing

the proof of (2.7.7).

Step 2. In this step, we control the Shallow Tail region: *2. We first lay out the heuristic idea

behind the Shallow Tail region controls. We recall the nice event Sp(_) from (2.6.62) which occurs

with high probability. Assuming Sp(_) holds, we apply the the HC Brownian Gibbs property of

the KPZ line ensembles, and analyze the desired integral

∫
*2

4�2 (G,C)−�1 (G,C)dG

under the ‘free’ Brownian bridge law. Further conditioning on the information of the maximizer

converts the free law into the law of the NonInt-BrBridge (defined in Definition 2.4.4). On Sp(_),

we may apply Proposition 2.5.6 to obtain the desired estimates for the ‘free’ law. One then obtain

the desired estimates for KPZ law using the lower bound for the normalizing constant from Propo-

sition 3.5.1 (b).

We now expand upon the technical details. In what follows we will only work with the right

tail:

*+,2 := [−C2/3" −M?,C , C
2/3" −M?,C] ∩ [ ,∞) = [ , C2/3" −M?,C]

and the argument for the left part of the shallow tail is analogous. Note that we also implicitly

assumed C2/3" − M?,C ≥  above. Otherwise there is nothing to prove. As before we utilize

116



the the notations defined in Subsection 2.6.2. Recall the local maximizerM"
?,C defined in (2.6.25).

Recall . (1)
",C,↑, .

(1)
",C,↓ from (2.6.26). Set

ΓC,", :=
∫ "C2/3−M?,C

 

4
−C1/3

[
.
(1)
",C,↑(C

−2/3 (M"
?,C+G))−.

(1)
",C,↓(C

−2/3 (M"
?,C+G))

]
dG (2.7.11)

=

∫ "C2/3−M?,C

 

exp(−�",C,↑(G) + �",C,↓(G))dG,

where the last equality follows from the definition of �",C,↑, �",C,↓ from (2.6.28). Recall that the

only difference between �1, �2 (defined in (2.6.27)) and �",C,↑, �",C,↓ is that former is defined

using the global maximizerM?,C and the latter by local maximizerM"
?,C . However, Lemma 2.3.1

implies that with probability at least 1 − C exp(− 1
C"

3), we haveM?,C = M"
?,C . Next, fix _ > 0.

Consider Sp(_) event defined in (2.6.62). We thus have

P
(∫
*+,2

4�2 (G,C)−�1 (G,C)dG ≥ d

4

)
≤ C exp(− 1

C"
3) + P(¬Sp(_)) + P

(
ΓC,", ≥ d

4 ,Sp(_)
)
.

(2.7.12)

We recall the f-fields F1, F2 defined in (2.6.42) and (2.6.43). We first condition on F1. As

noted in Subsection 2.6.2, since h(1)
?C,↑ and h(1)

@C,↓ are independent, applying H?C and H@C Brownian

Gibbs property from Proposition 3.5.1 for h(1)
?C,↑, h

(1)
@C,↓ respectively we have

P
(
ΓC,", ≥ d

2 ,Sp(_)
)
= E


Efree,C [1ΓC ," , ≥ d4 ,Sp(_),↑,↓]

Efree,C [,↑,↓]

 , (2.7.13)

where,↑,,↓ are defined in (2.6.48) and (2.6.49). Here Pfree,C and Efree,C are the probability and the

expectation operator respectively corresponding to the joint ‘free’ law for (?1/3h?C,↑(?−2/3G), and

@1/3h@C,↓(@−2/3G))G∈[−","] which by Brownian scaling is given by a pair of independent Brownian

bridges (�1(·), �2(·)) on [−", "] with starting points (?1/3h?C,↑(−"?−2/3), @1/3h@C,↓(−"@−2/3))

and endpoints (@1/3h?C,↑("?−2/3), @1/3h@C,↓("@−2/3)).

In addition, from the last part of Proposition 3.5.1 we know that for any given _ > 0, there
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exists X(", ?, _) > 0 such that

P(Efree,C [,↑,↓] > X) ≥ 1 − _. (2.7.14)

Since the weight,↑,↓ ∈ [0, 1], (2.7.13) and (2.7.14) give us

r.h.s. of (2.7.12) ≤ C exp(− 1
C"

3) + P(¬Sp(_)) + _ + 1
X

E
[
Pfree,C

(
ΓC,", ≥ d

4 ,Sp(_)
) ]
.

(2.7.15)

Next we condition on F2 defined in (2.6.43). By Proposition 2.4.9, upon conditioning the

free measure of two Brownian bridges when viewed around the maximizer are given by two

NonInt-BrBridge (defined in Definition 2.4.4). The precise law is given by Nlarge law defined in

Definition 2.6.3. Note that Sp(_) is measurable w.r.t. F1∪F2. By Reverse Fatou’s Lemma and the

tower property of conditional expectations, we obtain that

lim sup
 →∞

lim sup
C→∞

E
[
Pfree,C

(
ΓC,", ≥ d

4 ,Sp(_)
) ]

≤ E
[
lim sup
 →∞

lim sup
C→∞

1Sp(_)PNlarge|2,1
(
ΓC,", ≥ d

4
) ]
. (2.7.16)

Following the Definition 2.6.3 and (2.7.11) we see that under Nlarge law,

ΓC,", 
3
=

∫ "C2/3−M?,C

 

4
−C1/3

[
+

large
A ,1 (C

−2/3G)−+ large
A ,2 (C

−2/3G)
]
dG. (2.7.17)

where + large
A = (+ large

A,1 , +
large
A,2 ) is a NonInt-BrBridge defined in Definition 2.6.3. Now notice that

by the definition in (2.6.62), on the Sp(_) event, the length of the Brownian bridges considered

are bounded from below and above and the end points are tight. Following the equality in distribu-

tion in (2.7.17), the technical result of Proposition 2.5.6 precisely tells us that the term inside the
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expectation of r.h.s. of (2.7.16) is zero. Thus, going back to (2.7.15) we get that

lim sup
 →∞

lim sup
C→∞

P
(∫
*+,2

4�2 (G,C)−�1 (G,C)dG ≥ d

4

)
≤ C exp(− 1

C"
3) + lim sup

C→∞
P(¬Sp(_)) + _.

Taking lim sup_↓0, in view of (2.6.63), we get that last two terms in r.h.s. of the above equa-

tion are zero. Similarly one can show the same bound for the integral under *−,2 := [−C2/3" −

M?,C , C
2/3" −M?,C] ∩ (−∞,− ]. Together with (2.7.7), we thus have

lim sup
 →∞

lim sup
C→∞

P
(∫
[− , ]2

4�2 (G,C)−�1 (G,C)dG ≥ d
)
≤ C exp(− 1

C"
3).

Taking " →∞ we get (2.7.2) completing the proof.

Proof of Theorem 2.1.5. Recall from (3.1.6) that

5∗,C (G) =
Z(0, 0; G, C)
Z(0, 0; ∗, C) =

4H(G,C)∫
R
4H(H,C)dH

.

The uniqueness of the modeM∗,C for 5∗,C is already proved in Lemma 2.3.1. Thus, we have

5∗,C (G +M∗,C) =
exp

(
H(M∗,C + G, C) − H (M∗,C , C)

)∫
R

exp
(
H(M∗,C + H, C) − H (M∗,C , C)

)
dH
.

Just like in Proposition 2.7.2, we claim that

lim sup
 →∞

lim sup
C→∞

P
(∫
[− , ]2

4H(M∗,C+H,C)−H (M∗,C ,C)dH ≥ d
)
= 0. (2.7.18)

The proof of (2.7.18) is exactly same as that of (2.7.2), where we divide the integral in (2.7.18) into

a deep tail and a shallow tail and bound them individually. To avoid repetition, we just add few

pointers for the readers. Indeed the two key steps of proof of Proposition 2.7.2 that bound the deep

and shallow tails can be carried out for the (2.7.18) case. The deep tail regime follows an exact

similar strategy as Step 1 of the proof of Proposition 2.7.2 and utilizes the same parabolic decay
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of the KPZ equation from Proposition 2.2.8. The analogous shallow tail regime also follows in a

similar manner by using the uniform separation estimate for Bessel bridges from Corollary 2.5.7.

Now note that by Theorem 2.1.10 with : = 1, we have

H(M∗,C + G, C) − H (M∗,C , C)
3→ R1(G), (2.7.19)

in the uniform-on-compact topology. Here R1 is a 3D-Bessel process with diffusion coefficient

1. With the tail decay estimate in (2.7.18) and the same for the Bessel process from Proposition

2.7.1, in view of (2.7.19) one can show 5∗,C (G + M∗,C) → 4−R1 (G)∫
R
4−R1 (H)dH in the uniform-on-compact

topology by following the analogous argument from the proof of Theorem 2.1.4. This completes

the proof.

2.8 Appendix: Non-intersecting random walks

In this section we prove Lemma 2.4.7 that investigates the convergence of non-intersecting ran-

dom walks to non-intersecting brownian motions. We remark that similar types of Theorems are

already known in the literature such as [119], where the authors considered random walks to start

at different locations. Since our walks starts at the same point, additional care is required.

We now recall Lemma 2.4.7 for readers’ convenience.

Lemma 2.8.1. Let - 8
9

be i.i.d. N(0, 1) random variables. Let ((8)0 = 0 and (
(8)
:
=

∑:
9=1 -

8
9
.

Consider .= (C) = (.=,1(C), .=,2(C)) := ( (
(1)
=C√
=
,
(
(2)
=C√
=
) an R2 valued process on [0, 1] where the in-

between points are defined by linear interpolation. Then conditioned on the non-intersecting event

Λ= := ∩=
9=1{(

(1)
9

> (
(2)
9
}, .=

3→ , , where , (C) = (,1(C),,2(C)) is distributed as NonInt-BM

defined in Definition 2.4.3.

Proof of Lemma 2.8.1. To show weak convergence, it suffices to show finite dimensional conver-

gence and tightness. Based on the availability of exact joint densities for non-intersecting random
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walks from Karlin-McGregor formula [161], the verification of weak convergence is straightfor-

ward. So, we only highlight major steps of the computations below.

Step 1. One point convergence at C = 1. Note that

P
(
|
√
=.=,8 (C) − ((8)b=Cc | >

√
=Y | Λ=

)
≤ 1

P(Λ=)
P

(
|-b=Cc+1 | >

√
=Y

)
≤ C

Y2√=

The last inequality above follows by Markov inequality and the classical result that P(Λ=) ≥ C√
=

in

Spitzer [222]. Thus it suffices to show finite dimensional convergence for the cadlag process:

(/ (1)=C , /
(2)
=C ) :=

1
√
=
(((1)b=Cc , (

(2)
b=Cc). (2.8.1)

We assume that = large enough so that =−1
"
√
=
≥ 1 for some " > 0 to be chosen later. When C = 1,

applying the Karlin-McGregor formula, we obtain that

P(/= (1) ∈ dH1, /= (1) ∈ dH2 |Λ=) = g= · 5=,1(H1, H2)dH1dH2

where

5=,1(H1, H2) :=
∫

01>02

?1(01)?1(02) det(?=−1(08 − H 9
√
=))28, 9=1d01d02,

and

g−1
= :=

∫
A1>A2

∫
01>02

?1(01)?1(02) det(?=−1(08 − A 9
√
=))28, 9=1d01d02dA1dA2. (2.8.2)

Note that here the Karlin-McGregor formula, after we have conditioned on the first step of the

random walks with -1
1 = 01 > -

2
1 = 02.

We will now show that (=−1)2√
=
g−1
= and (=−1)2√

=
5=,1(H1, H2) converges to a nontrivial limit. Observe
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that

(=−1)2√
=

det(?=−1(08 − H 9
√
=))28, 9=1 = (= − 1)?=−1(01 − H2

√
=)?=−1(02 − H1

√
=)

· =−1√
=
[4
√
=(01−02) (H1−H2)

=−1 − 1] .
(2.8.3)

Thus, as =→∞, we have

(=−1)2√
=

det(?=−1(08 − H 9
√
=))28, 9=1 → ?1(H1)?1(H2) (01 − 02) (H1 − H2). (2.8.4)

Next we proceed to find a uniform bound for the expression in (2.8.3). Not that for G, A ≥ 1,

one has the elementary inequality GA ≥ GA − 1 ≥ A (G − 1). Now taking A = =−1
"
√
=

and G =

exp(
√
=

=−1 (01 − 02) (H1 − H2) we get

r.h.s. of (2.8.3) ≤ 1
2c

exp
(
− (01−H2

√
=)2

2=−2 − (02−H1
√
=)2

2=−2 + 1
"
(01 − 02) (H1 − H2)

)
≤ 1

2c
exp

(
− H

2
2

4 −
H2

1
4 +

1
"
(01 − 02) (H1 − H2) + 1

"
( |01H2 | + |02H1 |)

)
≤ 1

2c
exp

(
− H

2
2

4 −
H2

1
4 +

2(02
1+H

2
1+0

2
2+H

2
2)

"
)
)
, (2.8.5)

where the last inequality follows by several application of the elementary inequality |GH | ≤ 1
2 (G

2 +

H2). One can choose " large enough so that the uniform bound in (2.8.5) is integrable w.r.t. the

measure ?1(01)?1(02)d01d02. With the pointwise limit from (2.8.4), by dominated convergence

theorem we have

(=−1)2√
=
5=,1(H1, H2) = (=−1)2√

=

∫
01>02

?1(01)?1(02) det(?=−1(08 − H 9
√
=))28, 9=1d01d02

→ ?1(H1)?1(H2) (H1 − H2)
∫
01>02

(01 − 02)?1(01)?1(02)d01d02.

Similarly one can compute the pointwise limit for the integrand in g−1
= (defined in (2.8.2)) and the
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uniform bound in (2.8.5) works for the denominator as well. We thus have

(=−1)2√
=
g−1
= →

∫
01>02

∫
A1>A2

?1(A1)?1(A2) (A1 − A2) (01 − 02)?1(01)?1(02)d01d02dA1dA2. (2.8.6)

Plugging these limits back in (2.8.1), we arrive at (2.4.1) (the one point density formula for

NonInt-BM) as the limit for (2.8.1).

Step 2. One point convergence at 0 < C < 1. When 0 < C < 1, with the Karlin-Mcgregor

formula, we similarly obtain

P(/ (1)=C ∈ dH1, /
(2)
=C ∈ dH2 | Λ=) = g= · 5=,C (H1, H2)dH1dH2 (2.8.7)

where g= is defined in (2.8.2) and

5=,C (H1, H2) =
∫
A1>A2

∫
01>02

?1(01)?1(02)
[
det(? b=Cc−1(08 − H 9

√
=))28, 9=1

= · det(?=−b=Cc (
√
=H8 −

√
=A 9 ))28, 9=1

]
d01d02dA1dA2.

(2.8.8)

One can check that as =→∞, we have

=3/2 det(? b=Cc−1(08 − H 9
√
=))28, 9=1 → 1

C
?C (H1)?C (H2) (01 − 02) (H1 − H2),

= · det(?=−b=Cc (
√
=H8 −

√
=A 9 ))28, 9=1 → det(?1−C (H8 − A 9 ))28, 9=1.

One can provide uniformly integrable bound for the integrand in 5=,C (H1, H2) in a similar fashion.

Thus by dominated convergence theorem,

=3/2 5=,C (H1, H2) → 1
C
?C (H1)?C (H2) (H1 − H2)

∫
01>02

?1(01)?1(02) (01 − 02)d01d02∫
A1>A2

det(?1−C (H8 − A 9 ))28, 9=1dA1dA2.

Using (2.8.6) we get that g= · 5=,C (H1, H2) converges to (2.4.2), the one point density formula for
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NonInt-BM.

Step 3. Transition density convergence. For the transition densities, let 0 < C1 < C2 < 1, and fix

G1 > G2. Another application of Karlin-McGregor formula tells us

P(/ (1)=C2 ∈ dH1, /
(2)
=C2
∈ dH2 | / (1)=C1 = G1, /

(2)
=C1
= G2)

= = det(? b=C2c−b=C1c (
√
=H8 −

√
=G 9 ))28, 9=1

·

∫
A1>A2

det(?=−b=C2c (
√
=H8 −

√
=A 9 ))28, 9=1dA1dA2dH1dH2∫

A1>A2

det(?=−b=C1c (
√
=G8 −

√
=A 9 ))28, 9=1dA1dA2

.

(2.8.9)

One can check as =→∞

r.h.s of (2.8.9)→
det(?C2−C1 (H8 − G 9 ))28, 9=1

∫
A1>A2

det(?1−C2 (H8 − A 9 ))28, 9=1dA1dA2dH1dH2∫
A1>A2

det(?1−C1 (G8 − A 9 ))28, 9=1dA1dA2

which is same as transition densities for NonInt-BM as shown in (2.4.3). This proves finite dimen-

sional convergence.

Step 4. Tightness. To show tightness, by Kolmogorov tightness criterion, it suffices to show

there exist  > 0 and =0 ∈ N such that for all = ≥ =0

E
[
|.=,8 (C) − .=,8 (B) | | Λ=

]
≤ C ,=0 · (C − B)2 (2.8.10)

holds for all 0 ≤ B < C ≤ 1.

Recall that P(Λ=) ≥ C√
=
. For C − B ≤ 1

=
with  ≥ 5 we have

E
[
|.=,8 (C) − .=,8 (B) | | Λ=

]
≤ C ·

√
=E

[
|.=,8 (C) − .=,8 (B) | 

]
≤ C ·

√
=
(=C − =B) 

= /2
E[|-1

1 |
 ] ≤ C=

1− 
2 (=C − =B)2 ≤ C (C − B)2.

Thus we may assume C − B ≥ 1/=. Then it is enough to show (2.8.10) for / (8)=C (defined in (2.8.1))
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instead. Note that if C − B ∈ [=−1, =−1/4], we may take  large enough so 1
4 ( − 4) ≥ 1. Then we

have

E
[
|/ (8)=C − /

(8)
=B | | Λ=

]
≤ C ·

√
=E

[
|/ (8)=C − /

(8)
=B | 

]
≤ C ·

√
=(C − B) /2 ≤ C · =1/2−( −4)/8(C − B)2

where in the last line we used the fact (C − B) ( −4)/2 ≤ =−( −4)/8. As 1
4 ( − 4) ≥ 1, we have

E
[
|/ (8)=C − /

(8)
=B | | Λ=

]
≤ C(C − B)2 in this case. So, we are left with the case C − B ≥ =−1/4.

Let us assume C = 0, B ≥ =− 1
4 . As =B ≥ =3/4 → ∞, we will no longer make the distinction

between =B and b=Bc in our computations. We use the pdf formula from (2.8.7) and (2.8.8) to get

E[|/ (8)=B |5] ≤ g=
∫
H1>H2

|H8 |5
∫
A1>A2

∫
01>02

?1(01)?1(02) det(?=B−1(08 − H 9
√
=))28, 9=1

= · det(?=−=B (
√
=H8 −

√
=A 9 ))28, 9=1

]
d01d02dA1dA2dH1dH2.

(2.8.11)

For the last determinant we may use

= · det(?=−=B (
√
=H8 −

√
=A 9 ))28, 9=1dA1dA2

≤ = · ?=−=B (
√
=H1 −

√
=A1)?=−=B (

√
=H2 −

√
=A2)dA1dA2

which integrates to 1 irrespective of the value of H1, H2. Thus

r.h.s. of (2.8.11) ≤ g=
∫
H1>H2

|H8 |5
∫
01,02

?1(01)?1(02) det(?=B−1(08 − H 9
√
=))28, 9=1d01d02dH1dH2.

(2.8.12)

Making the change of variable H8 =
√
BI8 and setting < = =B, we have

r.h.s. of (2.8.12) ≤ g= · B
5
2+1I<,
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where

I< :=
∫
I1>I2

|I8 |5
∫
01>02

?1(01)?1(02) det(?<−1(08 − I 9
√
<))28, 9=1d01d02dI1dI2.

We claim that (<−1)2√
<
I< ≤ C for some universal constant C > 0. Clearly this integral is finite for

each <. And by exact same approach in Step 1, one can show as < →∞,

(< − 1)2
√
<
I< :=

∫
I1>I2

|I8 |5
∫
01>02

?1(I1)?1(I2)?1(01)?1(02) (01 − 02) (I1 − I2)d01d02dI1dI2.

Thus, (<−1)2√
<
I ≤ C for all < ≥ 1. Thus following (2.8.11), (2.8.12), in view of the above estimate

we get

E[|/ (8)=B |5] ≤ Cg=
√
<

(< − 1)2
B

5
2+1.

However, by Step 1, =3/2g−1
= converges to a finite positive constant. As < = =B, we thus get that

the above term is at most C · B2. The case C ≠ 0 can be checked similarly using the formulas from

(2.8.7) and (2.8.8) as well as transition densities formula (2.8.9). This completes the proof.

126



Chapter 3: Short- and long-time path tightness of the continuum directed

random polymer

3.1 Introduction

3.1.1 Background and motivation

Directed polymers in random environment can be considered as random walks interacting

with a random external environment. First introduced and studied in [148], [152] and [44], they

have since become a fertile ground for research in orthogonal polynomials, random matrices,

stochastic PDEs, and integrable systems (see [65, 129, 33] and the references therein). In the

(1 + 1)-dimensional discrete polymer case, the random environment is specified by a collection

of zero-mean i.i.d. random variables {l = l(8, 9) | (8, 9) ∈ Z+ × Z}. Given the environment,

the energy of the =-step nearest neighbour random walk ((8)=8=0 starting at the origin is given by

�l= (() :=
∑=
8=1 l(8, (8). The point-to-line polymer measure on the set of all such paths is then

defined as

Pl=,V (() =
1
/l
=,V

4V�
l
= (()P((),

where P(() is the simple random walk measure, V is the inverse temperature, and /l
=,V

is the

partition function.

A competition exists between the entropy of paths and the energy of the environment in this

polymer measure. Spurred by this competition, two distinct regimes appear depending on the

inverse temperature V. When V = 0 the polymer measure is the simple random walk; hence it is

entropy-dominated and exhibits diffusive behavior. We refer to this scenario as weak disorder. For

V > 0, the polymer measure concentrates on paths with high energies and the diffusive behavior
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ceases to be guaranteed. This type of energy domination is known as strong disorder. For the

definitions and results on the precise separation between the two regimes as well as results on

higher dimensions, we refer the readers to [69, 171, 64].

While the polymer behavior is characterized by diffusivity in weak disorder, the fluctuations

of polymers in strong disorder are conjecturally characterized by two scaling exponents Z and j

([220], [4]):

Fluctuation of the endpoint of the path: |(= | ∼ =Z , (3.1.1)

Fluctuation of the log partition function: [log /l=,V − d(V)=] ∼ =
j .

It is believed that directed polymers fall under the “Kardar-Parisi-Zhang (KPZ) universality class"

(see [77, 148, 149, 160, 169]) with fluctuation exponent j = 1
3 and transversal exponent Z = 2

3 .

This instance of the transversal exponent appearing larger than the diffusive scaling exponent 1
2 is

called superdiffusivity. Crucially, the conjectured values for j and Z satisfy the “KPZ relation":

j = 2Z − 1. (3.1.2)

At the moment, rigorous results on either exponent or the KPZ relation have been scarce. For

directed polymers, Z = 2/3 has only been obtained for log-gamma polymers in [220, 23]. Upper

and lower bounds on Z have been established in [202, 188] under additional weight assumptions.

For zero-temperature models, Z = 2
3 has been established in [155, 49, 140, 94, 28]. Outside

the temperature models, the KPZ relation in (3.1.2) has also been shown in other random growth

models such as first passage percolation in [60] and [7] under the assumption that the exponents

exist in a certain sense. In strong disorder, the polymer also exhibits certain localization phenomena

(see [69, 33, 89] for partial surveys). In particular, the favorite region conjecture speculates that the

endpoint of the polymer is asymptotically localized in a region of stochastically bounded diameter

(see [66, 33, 32, 17, 89] for related results).

Given the conceptual pictures on the two extreme regimes, in the present paper, we consider
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polymer fluctuations in the intermediate disorder regime. Introduced in [4], the intermediate dis-

order regime corresponds to scaling the inverse temperature V = V= = =−1/4 with the length of the

polymer =, which captures the transitions between the weak and strong disorders and retains fea-

tures of both. Within this regime, [3] showed that the partition function for point-to-point directed

polymers has a universal scaling limit given by the solution of the Stochastic Heat Equation (SHE)

for environment with finite exponential moments. In addition, the polymer path itself converges to

a universal object called the Continuum Directed Random Polymer (denoted as CDRP hereafter)

under the diffusive scaling.

We consider point-to-point CDRP of length C. The main contribution of this paper can be

summarized as follows.

(a) We show that as C ↓ 0, the polymer paths behave diffusively and its annealed law converges in

to the law of a Brownian bridge (Theorem 3.1.4).

(b) On the other hand, as C ↑ ∞, the polymers have C2/3 pathwise fluctuations. The latter result

confirms superdiffusivity and the conjectural 2/3 exponent for the CDRP (Theorem 3.1.7 (a)).

Moreover, the strength of our result exceeds the conjecture in (3.1.1), which only claims end-

point tightness. Instead, in Theorem 3.1.7 (a), we prove that the annealed law of paths of

point-to-point CDRP of length C are tight (as C ↑ ∞) upon C2/3 scaling. This marks the first

result of path tightness among all positive-temperature models.

(c) We also show pointwise weak convergence of the polymer paths under the C2/3 scaling to points

on the geodesic of the directed landscape (Theorem 3.1.7 (b)). This ensures the 2/3 scaling

exponent is indeed tight. Modulo a conjecture on convergence of the KPZ sheet to the Airy

Sheet (Conjecture 3.1.9), we obtain pathwise convergence of the rescaled CDRP to the geodesic

of the directed landscape (Theorem 3.1.10).

These results provide a comprehensive picture of fluctuations of CDRP paths under short- and

long-time scaling. Our short-time and long-time tightness results also extend to point-to-line

CDRP (Theorem 3.1.8). The formal statement of the main results are given in Section 3.1.2.
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3.1.2 The model and the main results

We use the stochastic heat equation (SHE) with multiplicative noise to define the CDRP model.

To start with, consider a four-parameter random fieldZ(G, B; H, C) defined on

R4
↑ := {(G, B; H, C) ∈ R4 : B < C}.

For each (G, B) ∈ R×R, the function (H, C) ↦→ Z(G, B; H, C) is the solution of the SHE starting from

location G at time B, i.e., the unique solution of

mCZ = 1
2mGGZ +Z · b, (H, C) ∈ R × (B,∞),

with Dirac delta initial data limC↓BZ(G, B; H, C) = X(G − H). Here b = b (G, C) is the space-time white

noise. The SHE itself enjoys a well-developed solution theory based on Itô integral and chaos

expansion [34, 237] also [77, 206]. Via the Feynmann-Kac formula ([149, 65]) the four-parameter

random field can be written in terms of chaos expansion as

Z(G, B; H, C) = ?(H − G, C − B) +
∞∑
:=1

∫
Δ:,B,C

∫
R:

:+1∏
ℓ=1

?(Hℓ − Hℓ−1, Bℓ − Bℓ−1)b (Hℓ, Bℓ)3®H 3®B, (3.1.3)

with Δ:,B,C := {(Bℓ):ℓ=1 : B < B1 < · · · < B: < C}, B0 = B, H0 = G, B:+1 = C, and H:+1 = H. Here

?(G, C) := (2cC)−1/2 exp(−G2/(2C))

denotes the standard heat kernel. The field Z satisfies several other properties including the

Chapman-Kolmogorov equations [3, Theorem 3.1]. For all 0 ≤ B < A < C, and G, H ∈ R we

have

Z(G, B; H, C) =
∫
R
Z(G, B; I, A)Z(I, A; H, C)3I. (3.1.4)
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Definition 3.1.1 (Point-to-point CDRP). Conditioned on the white noise b, let Pb be a measure on

� ( [B, C]) whose finite-dimensional distribution is given by

Pb (- (C1) ∈ 3G1, . . . , - (C: ) ∈ 3G: ) =
1

Z(G, B; H, C)

:∏
9=0
Z(G 9 , C 9 , ; G 9+1, C 9+1)3G1 · · · 3G: . (3.1.5)

for B = C0 ≤ C1 < · · · < C: ≤ C:+1 = C, with G0 = G and G:+1 = H. (3.1.4) ensure Pb is a valid

probability measure. Note that Pb also depends on G and H but we suppress it from our notations.

We will use the notation CDRP(G, B; H, C) and write - ∼ CDRP(G, B; H, C) when - (·) is a random

continuous function on [B, C] with - (B) = G and - (C) = H and its finite-dimensional distributions

given by (3.1.5) conditioned on b. We will also use the notation Pb ,Eb to denote the law and

expectation conditioned on the noise b, and P,E for the annealed law and expectation respectively.

Definition 3.1.2 (Point-to-line CDRP). Conditioned on the white noise b, we let Pb∗ be a measure

� ( [B, C]) whose finite-dimensional distributions are given by

Pb∗ (- (C1) ∈ 3G1, . . . , - (C: ) ∈ 3G: ) =
1

Z(G, B; ∗, C)

:∏
9=0
Z(G 9 , C 9 , ; G 9+1, C 9+1)3G1 · · · 3G: . (3.1.6)

for B = C0 ≤ C1 < · · · < C: ≤ C:+1 = C, with G0 = G and G:+1 = ∗. Here Z(G, B; ∗, C) :=∫
R
Z(G, B; H, C)3H. Note that the Chapman-Kolmogorov equations (3.1.4) ensure Pb∗ is a probability

measure. The measure Pb∗ also depends on G but we again suppress it from our notations. We

similarly use CDRP(G, H; ∗, C) to refer to random variables with Pb∗ law.

Remark 3.1.3. In both [3] and [65], the authors considered a five-parameter random fieldZV (G, B; H, C)

with inverse temperature V, which is the simultaneous solution of the stochastic heat equation

mCZV =
1
2mGGZV + VZVb, lim

C↓B
ZV (G, B; H, C) = XG (H).

and defined corresponding CDRP measures. Observe that when V = 0, the stochastic heat equation

becomes the heat equation and the corresponding CDRP measures reduce to Brownian measures.
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Furthermore, for any V > 0, by the scaling property of the random field ZV, i.e. (iii) of Theorem

3.1 in [3], we have

ZV (G, B; H, C)
3
= V−2Z1(V2G, V4B; V2H, V4C),

Thus in this paper, we focus on exclusively on V = 1.

We now state our first main result which discusses the annealed convergence of the CDRP in

the short-time regime to Brownian bridge law.

Theorem 3.1.4 (Annealed short-time convergence). Fix Y > 0. Let - ∼ CDRP(0, 0; 0, Y). Con-

sider the random function . (Y) : [0, 1] → R defined by . (Y)C := 1√
Y
- (YC). Let PY denote the

annealed law of . (Y) on the space of continuous functions on � ( [0, 1]). As Y ↓ 0, PY converges

weakly to P�, where P� is the measure on � ( [0, 1]) generated by a Brownian bridge on [0, 1]

starting and ending at 0.

Remark 3.1.5. The proof of Theorem 3.1.4 appears in Section 3.4.1. With minor modification in

the proof, the above theorem can be extended to include endpoints of the form G
√
Y. The resulting

distributional limit is then a Brownian bridge on [0, 1] starting at 0 and ending at G. We also

remark that we expect Theorem 3.1.4 to hold true even in the quenched case. However, some of

our arguments, in particular the tightness, do not generalize to the quenched case. We hope to

explore this direction in future works.

Our next result concerns the tightness and annealed convergence of the CDRP in the long-time

regime and gives a rigorous justification of the 2/3 scaling exponent discussed in Section 4.2. The

limit is given in terms of the directed landscape constructed in [94, 187] which arises as a universal

full scaling limit of several zero-temperature models [97]. Below we briefly introduce this limiting

model before stating our result.

The directed landscape L is a random continuous function R4
↑ → R that satisfies the metric

composition law

L(G, B; H, C) = max
I∈R
[L(G, B; I, A) + L(I, A; H, C)] , (3.1.7)
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with the property thatL(·, C8; ·, C8+B38 ) are independent for any set of disjoint intervals (C8, C8+B38 ). As

a function in G, H, L(G, C; H, C + B3) 3= B · S(G/B2, H/B2), where S(·, ·) is a parabolic Airy Sheet. We

omit definitions of the parabolic Airy Sheet (see Definition 1.2 in [94]) except that S(0, ·) 3= A(·)

whereA is the parabolic Airy2 process andA(G) +G2 is the (stationary) Airy2 process constructed

in [204].

Definition 3.1.6 (Geodesics of the directed landscape). For (G, B; H, C) ∈ R4
↑, a geodesic from (G, B)

to (H, C) of the directed landscape is a random continuous function Γ : [B, C] → R such that

Γ(B) = G and Γ(C) = H and for any B ≤ A1 < A2 < A3 ≤ C we have

L (Γ(A1), A1;Γ(A3), A3) = L (Γ(A1), A1;Γ(A2), A2) + L (Γ(A2), A2;Γ(A3), A3) .

Thus the geodesic precisely contain the points where the equality holds in (3.1.7). Given any

(G, B; H, C) ∈ R4
↑, by Theorem 12.1 in [94], it is known that almost surely there is a unique geodesic

Γ from (G, B) to (H, C).

Theorem 3.1.7 (Long-time CDRP path tightness). Fix Y > (0, 1]. + ∼ CDRP(0, 0; 0, Y−1).

Define a random continuous function ! (Y) : [0, 1] → R as ! (Y)C := Y2/3+ (Y−1C). We have the

following:

(a) Let PY denote the annealed law of ! (Y) , which is viewed as a random variable in the space

of continuous functions on [0, 1] equipped with uniform topology and Borel f-algebra. The

sequence PY is tight w.r.t. Y.

(b) For each C ∈ (0, 1), ! (Y)C converges weakly to Γ(C
√

2), where Γ(·) is the geodesic of directed

landscape from (0, 0) to (0,
√

2).

The above path tightness result under 2/3 scaling is first such result among all positive-temperature

models. Part (b) of the above theorem shows that this 2/3 scaling is indeed correct: upon this scal-

ing, the CDRP paths have pointwise non-trivial weak limit.
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In the same spirit, we have the following short- and long-time tightness result for point-to-line

CDRP.

Theorem 3.1.8 (Point-to-line CDRP path tightness). Fix Y ∈ (0, 1]. Suppose - ∼ CDRP(0, 0; ∗, Y)

and + ∼ CDRP(0, 0; ∗, Y−1). Define two random continuous functions . (Y)∗ , !
(Y)
∗ : [0, 1] → R as

.
(Y)
∗ (C) := Y−1/2- (YC) and ! (Y)∗ (C) := Y2/3+ (Y−1C). We have the following:

(a) If we let PY∗,s denote the annealed law of . (Y)∗ (·), then as Y ↓ 0, PY∗,s converges weakly to P�∗ ,

where P�∗ is the measure on � ( [0, 1]) generated by a standard Brownian motion.

(b) If we let PY∗,L denote the annealed law of ! (Y)∗ (·), then the sequence PY∗,L is tight w.r.t. Y.

(c) ! (Y)∗ (1) converges weakly to 21/3M, where M is the almost sure unique maximizer of Airy2

process minus the parabola G2.

We now explain how the pointwise weak convergence result in Theorem 3.1.7 (b) can be up-

graded to a process-level convergence modulo the following conjecture.

Conjecture 3.1.9 (KPZ sheet to Airy sheet). Set hC (G, H) := C−1/3 [logZ(C2/3G, 0; C2/3H, C) + C
24 ] . As

C →∞ we have the following convergence in law (as functions in (G, H))

21/3hC (21/3G, 21/3H) 3→ S(G, H)

in the uniform-on-compact topology. Here S is the parabolic Airy sheet.

When either G or H is fixed, the above weak convergence as a function in one variable is proven

in [208]. For zero-temperature models, such convergence has been shown recently in [97] for a

large class of integrable models. It remains to show that their methods can be extended to prove

the Airy sheet convergence for positive-temperature models such as above.

Assuming the validity of Conjecture 3.1.9, we can strengthen Theorem 3.1.7 (b) to the follow-

ing statement.
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Theorem 3.1.10 (Process annealed long-time convergence). Fix Y > 0. Let+ ∼ CDRP(0, 0; 0, Y−1).

Define ! (Y)C := Y2/3+ (Y−1C), C ∈ [0, 1]. This scaling produces a measure on � ( [0, 1]) for each

Y > 0 conditioned on b. Assume Conjecture 3.1.9. For C ∈ (0, 1), Y ↓ 0, the annealed law of ! (Y)C

as a process in C converges weakly to Γ(
√

2C), where Γ(·) is the geodesic of the directed landscape

L from (0, 0) to (0,
√

2).

3.1.3 Proof Ideas

Our main result on short-time and long-time tightness of CDRP (i.e., Theorems 3.1.4, 3.1.7

and 3.1.8) follows a host of efforts that attempts to unravel the geometry of CDRP paths. In

[89], the authors showed that the quenched density of point-to-point long-time CDRP exhibit

pointwise localization. In particular, they showed any particular point on a point-to-point CDRP

of length C lives within a order 1 window of a ‘favorite site’ (depending only on the environment)

and this favorite site varies in a C2/3 window upon changing the environment. This suggests that the

annealed law of polymers are within C2/3 window pointwise. Our theorems on long-time tightness

extend this result to the full path of the polymers.

One of the key ingredients behind our tightness proofs is a detailed probabilistic understanding

of the log-partition function of CDRP. The log of the partition function of point-to-point CDRP,

i.e.,

H(G, B; H, C) := logZ(G, B; H, C) (3.1.8)

solves the KPZ equation with narrow wedge initial data. Introduced in [77] as a model for random

growth interfaces, KPZ equation has been extensively studied in both the mathematics and the

physics communities (see [123, 206, 77, 137, 136, 209, 58, 84] and the references therein). In [5],

the authors showed the one-point distribution of the KPZ equation H(G, C) := H(0, 0; G, C), has

limiting Tracy-Widom GUE fluctuations of the order C1/3 as C ↑ ∞ (long-time regime), whereas

fluctuations are Gaussian of the order C1/4 as C ↓ 0 (short-time regime). Detailed information of
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the one-point tails ofH(G, C) as well as tail for the spatial processH(·, C) are rigorously proved in

the mathematics works [79, 80, 81, 232, 88] for long-time regime and in [87, 183, 172, 233] for

short-time regime.

For brevity, we only sketch the proof for our long-time path tightness result. The proof of

short-time path tightness uses a relation of annealed law of CDRP with that of Brownian counter-

parts (Lemma 3.4.1). The finite-dimensional convergence for the short-time case (Theorem 3.1.4)

follows from chaos expansion and the same results for the long-time regime (Theorem 3.1.7 (b)

and Theorem 3.1.8 (c)) follow from the localization results in [89]. Let us take a long-time poly-

mer + ∼ CDRP(0, 0; 0, Y−1) and scale it according to long-time scaling ! (Y)C = Y−2/3+ (Y−1C) for

C ∈ [0, 1]. By the definition of the CDRP (Definition 3.1.1), we see that the joint law of (! (Y)B , !
(Y)
C )

(where 0 < B < C < 1) is proportional to

Y−4/3 exp
[
Λ(B,C);Y (G, H)

]
where

Λ(B,C);Y (G, H) := H
(
0, 0; GY−

2
3 , B
Y

)
+ H

(
GY−

2
3 , B
Y
; HY−

2
3 , C
Y

)
+ H

(
HY−

2
3 , C
Y
; 0, 1

Y

)
+ Err(B,C);Y . (3.1.9)

Here Err(B,C);Y is a correction term free of G, H that one needs to add to extract meaningful fluctuation

and tail results for the KPZ equation (see statement of Lemma 3.3.7). This correction term does

not affect the joint density as it can be absorbed into the proportionality constant.

We next proceed to understand behaviors of the process (G, H) ↦→ Λ(B,C);Y (G, H). From [5], it is

known that for each fixed B < C and H ∈ R, the process G ↦→ [H (G, B; H, C) + (G−H)
2

2(C−B) ] is stationary.

Naively speaking, G ↦→ H (G, B; H, C) looks like a negative parabola: − (G−H)
2

2(C−B) . Thus it is natural to

expect

Y1/3Λ(B,C);Y (G, H) ≈ −
G2

2B
− (H − G)

2

2(C − B) −
H2

2(1 − C) . (3.1.10)
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One of the technical contributions of this paper is to rigorously prove the above approximation

holds for all G, H. Given any a > 0, we show with probability at least 1 − C exp(− 1
C"

2),

Y1/3Λ(B,C);Y (G, H) ≤ " − (1 − a)
[
G2

2B
+ (H − G)

2

2(C − B) +
H2

2(1 − C)

]
, for all G, H ∈ R.

The precise statement of the above result appears in Lemma 3.3.7. This multivariate process

estimate allows us to conclude the quenched density of (! (Y)B , !
(Y)
C ) at (G, H) is exponentially small,

whenever |G−H |√
C−B → ∞. Armed with this understanding of quenched density, in Proposition 3.3.1,

we show that given any X > 0, with probability at least 1 − C exp(− 1
C"

2) we have

|! (Y)B − ! (Y)C | ≤ " |C − B |
1
2−X .

In fact the sharp decay estimates of quenched density (Lemma 3.3.7) allows us to prove a quenched

version of the above statement (Proposition 3.3.1). Due to exponentially tight probability bounds

of the above two-point differences, Proposition 3.3.1 can be extended to quenched modulus of

continuity estimates (Proposition 3.3.3) by standard methods. This leads to the path tightness of

long-time CDRP.

Outline

The rest of the paper is organized as follows. Section 3.2 reviews some of the existing results

related to the KPZ equation before proving a useful result on the short-time local fluctuations of

the KPZ equation (Proposition 3.2.4). We then prove in Section 3.3 a multivariate spatial process

tail bound (Lemma 3.3.7) and modulus of continuity results (Propositions 3.3.1 and 3.3.1-(point-

to-line)) that culminate in the quenched modulus of continuity estimate in Proposition 3.3.3 and

Proposition 3.3.3-(point-to-line). In Section 3.4, we prove Theorems 3.1.4, 3.1.7, and 3.1.8, and

Theorem 3.1.10 (modulo Conjecture 3.1.9). Lastly, proof of a technical lemma used in Section 3.2

appears in Appendix 3.5.
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3.2 Short- and long-time tail results for KPZ equation

Throughout this paper we use C = C(G, H, I, . . .) > 0 to denote a generic deterministic posi-

tive finite constant that may change from line to line, but dependent on the designated variables

G, H, I, . . .. We use sans serif fonts such as A,B, . . . to denote events and ¬A,¬B, . . . to denote

their complements.

In this section, we collect several estimates related to the short-time and long-time tails of the

KPZ equation. We record existing estimates from the literature in Proposition 3.2.2 and Proposition

3.2.3. These estimates form crucial tools to our later proofs. For our analysis, we also require an

estimate on the short-time local fluctuations of the KPZ equation which is not available in the

literature. We present this new estimate in Proposition 3.2.4. Its proof appears at the end of this

section.

Recall the four-parameter stochastic heat equationZ(G, B; H, C) from (3.1.3). We set

H(G, B; H, C) := logZ(G, B; H, C). (3.2.1)

When G = B = 0, we use the abbreviated notation H(H, C) := H(0, 0; H, C). As mentioned in the

introduction, fluctuation and scaling of the KPZ equation varies as C ↓ 0 (short-time) and C ↑ ∞

(long-time). For the two separate regimes we consider the following scalings:

gB,C (G, H) :=
H(

√
c(C−B)

4 G, B;
√
c(C−B)

4 H, C) + log
√

2c(C − B)

( c(C−B)4 )1/4
for the short-time regime,

hB,C (G, H) :=
H((C − B)2/3G, B; (C − B)2/3H, C) + C−B

24
(C − B)1/3

for the long-time regime.

(3.2.2)

We will often refer to the above bivariate functions as short-time and long-time KPZ sheet. In

particular, when both B = 0 and G = 0, we use the shorthands gC (H) := g0,C (0, H), and hC (H) :=

h0,C (0, H).

Remark 3.2.1. The above scalings satisfy several distributional identities. For fixed B < C and
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H ∈ R, from chaos representation for SHE it follows that

Z(0, B; G, C) 3= Z(0, B;−G, C), Z(G, B; H, C) 3= Z(0, 0; H − G, C − B).

where the equality in distribution holds as processes in G. This leads to gB,C (G, H)
3
= gC−B (G − H) and

hB,C (G, H)
3
= hC−B (G − H), as processes in G.

The following proposition collects several probabilistic facts for the long-time rescaled KPZ

equation.

Proposition 3.2.2. Recall hC (G) from (3.2.2). The following results hold:

(a) For each C > 0, hC (G) + G2/2 is stationary in G.

(b) Fix C0 > 0. There exists a constant C = C(C0) > 0 such that for all C ≥ C0 and B > 0 we have

P ( |hC (0) | ≥ B) ≤ C exp
(
− 1

C B
3/2

)
.

(c) Fix C0 > 0. There exists a constant C = C(C0) > 0 such that for all G ∈ R, B > 0, C ≥ C0, and

W ∈ (0, 1], we have

P

(
sup

I∈[G,G+W]

���hC (I) + I2

2 − hC (G) −
G2

2

��� ≥ B√W) ≤ C exp
(
− 1

C B
3/2

)
.

The results in Proposition 3.2.2 are a culmination of results from several papers. Part (a)

follows from [5, Corollary 1.3 and Proposition 1.4]. The one-point tail estimates for KPZ equation

are obtained in [79, 80]. One can derive part (b) from those results or can combine the statements

of Proposition 2.11 and 2.12 in [81] to get the same. Part (c) is Theorem 1.3 from [81].

The study of short-time tails was initiated in [87]. Below we recall some known results from

the same paper.

Proposition 3.2.3. Recall gC (G) from (3.2.2). The following results hold:
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(a) For each C > 0, gC (G) + (cC/4)
3/4

2C G2 is stationary in G.

(b) There exists a constant C > 0 such that for all C ≤ 1 and B > 0 we have

P( |gC (0) | > B) ≤ C exp
(
− 1

C B
3/2

)
.

Part (a) follows from [87, Lemma 2.11]. The one-point tail estimates for short-time rescaled

KPZ equation are obtained in [87, Corollary 1.6, Theorem 1.7], from which one can derive part

(b).

For convenience, we write <C (G) := ( cC4 )
3/4 G2

2C to denote the parabolic term associated to the

short-time scaling. The following result concerns the short-time analogue of Proposition 3.2.2 (c).

Proposition 3.2.4 (Short-time local fluctuations of the KPZ equation). There exists a constant

C > 0 such that for all C ∈ (0, 1), G ∈ R, W ∈ (0,
√
C) and B > 0 we have

P

(
sup

I∈[G,G+W]
|gC (I) + <C (I) − gC (G) − <C (G) | ≥ B

√
W

)
≤ C exp

(
− 1

C B
3/2

)
. (3.2.3)

Remark 3.2.5. The parabolic term <C (G) is steeper (as C ≤ 1) than the usual parabola that appears

in the long-time scaling. This is the reason why Proposition 3.2.4 requires W <
√
C, whereas

Proposition 3.2.2 (c) holds for all W ∈ (0, 1].

The proof of Proposition 3.2.4 follows the same strategy as those of Proposition 4.3 and Theo-

rem 1.3 in [81] which employ the Brownian Gibbs property of the KPZ line ensemble (see [74]).

The same Brownian Gibbs property continues to hold for short-time gC (·) process (see Lemma 2.5

(4) in [87]). We include the proof of Proposition 3.2.4 below for completeness after first describing

its key proof ingredient.

We recall a property of gC (·) under monotone events. Given an interval [0, 1], we denote

B(� ( [0, 1])) to be the Borel f-algebra on � ( [0, 1]) generated by the uniform norm topology.

We call an event � ∈ B(� ( [0, 1])) monotone w.r.t. [0, 1] if for every pair of functions 5 , 6 ∈
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[0, 1] → R with 5 (0) = 6(0), 5 (1) = 6(1) and 5 (G) ≥ 6(G) for all G ∈ (0, 1), we have

5 (G) ∈ � =⇒ 6(G) ∈ �. (3.2.4)

We call (a, b) a stopping domain for gC (·) if {a ≤ 0, b ≥ 1} is measurable w.r.t. f-algebra gener-

ated by (gC (G))G∉(0,1) for all 0, 1 ∈ R. A crucial property is the following:

Lemma 3.2.6. Fix any C > 0. For any [0, 1] ⊂ R, and a monotone set � ∈ B(� ( [0, 1]))

(w.r.t. [0, 1]), we have

P
[
gC (·) | [0,1] ∈ � | (gC (G))G∉(0,1)

]
≤ P(0,1),(gC (0),gC (1))free (�) (3.2.5)

where P(0,1),(H,I)free denotes the law of Brownian bridge on [0, 1] starting at H and ending at I.

Furthermore (3.2.5) continues to hold if (0, 1) is a stopping domain for gC (·).

We will abuse our definition and call {gC (·) | [0,1] ∈ �} to be monotone w.r.t. [0, 1] if � is

monotone w.r.t. [0, 1]. The proof of the above lemma follows by utilizing the notion of the KPZ

line ensemble and its Brownian Gibbs property [74, 87]. We defer its proof and the necessary

background on the KPZ line ensemble to Appendix 3.5.

Proof of Proposition 3.2.4. Assume B ≥ 100. For B ≤ 100, the constant C > 0 can be adjusted so

that the proposition holds trivially. We fix a C0 ∈ (0, 1) such that for all B ≥ 100, and C ≤ C0 we

have

1
4 B ≥ C

1/4(B + <C (2)) = C1/4B + 2(c/4)3/4. (3.2.6)

Let us first consider C ∈ [C0, 1]. We use the scalings from (3.2.2) to get

gC (G) + <C (G) = 1√
AC

(
hC (ACG) + A2

C G
2

2

)
+ 2C , (3.2.7)

where AC := C−1/6√c/4 and 2C := (cC/4)−1/4(
√

2cC − C/24). Take any G ∈ R and W ∈ (0,
√
C). We
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have ACW ≤ 1. Setting H := ACG and then applying Proposition 3.2.2 (c) with G ↦→ H and W ↦→ ACW

we get

l.h.s. of (3.2.3) = P

(
sup

I∈[H,H+ACW]

���hC (I) + I2

2 − hC (H) −
H2

2

��� ≥ B√WAC) ≤ C exp
(
− 1

C B
3/2

)
. (3.2.8)

Let us now assume C ≤ C0. By Proposition 3.2.3 (a), we know that the process gC (G) + <C (G) is

stationary in G. Thus it suffices to prove Proposition 3.2.4 with G = 0. Consider the following

events

GW,B :=
⋂

G∈{W−2,0,W,2}

{
− B4 ≤ gC (G) + <C (G) ≤

B
4
}
,

FallW,B :=
{

inf
I∈[0,W]

(gC (I) + <C (I)) ≤ gC (0) − BW1/2
}
,

RiseW,B :=
{

sup
I∈[0,W]

(gC (I) + <C (I)) ≥ gC (0) + BW1/2
}
.

By one-point tail bounds from Proposition 3.2.3 (b) we have that P(¬GW,B) ≤ C exp(− 1
C B

3/2).

Thus, to show the proposition, it suffices to verify the following two bounds:

P
(
FallW,B,GW,B

)
≤ C exp

(
− 1

C B
2
)
, P

(
RiseW,B,GW,B

)
≤ C exp

(
− 1

C B
2
)
. (3.2.9)

We begin with the FallW,B bound in (3.2.9). Clearly FallW,B event is monotone w.r.t. [0, 2], by

Lemma 3.2.6 we have

P
(
FallW,B | (gC (G))G∈(0,2)

)
≤ P(0,2),(gC (0),gC (2))free

(
FallW,B

)
where P(0,1),(H,I)free denotes the law of Brownian bridge on [0, 1] starting at H and ending at I. Using

this we have

P
(
FallW,B,GW,B

)
≤ P

(
FallW,B, gC (0) ≤ B

4 , gC (2) + <C (2) ≥ −
B
4
)

≤ E
[
1gC (0)≤ B4 · 1gC (2)+<C (2)≥− B4 P(0,2),(gC (0),gC (2))free

(
FallW,B

) ]
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≤ sup
{
P(0,2),H,Ifree

(
FallW,B

)
: H ≤ B

4 , I + <C (2) ≥ −
B
4

}
= P(0,2),B/4,−B/4−<C (2)free

(
FallW,B

)
. (3.2.10)

Next, we write the final term in (3.2.10) as

P(0,2),B/4,−B/4−<C (2)free

(
FallW,B

)
= P

(
inf

I∈[0,W]

{
�′(I) + <C (I)

}
≤ −BW1/2

)
where �′ : [0, 2] → R is a Brownian bridge with �′(0) = 0 and �′(2) = −<C (2) − B

2 . Now, set

�(I) := �′(I) − I
2 (−<C (2) −

B
2 ). Then � is a Brownian bridge with �(0) = �(2) = 0 and we obtain

P
(

inf
I∈[0,W]

(�′(I) + <C (I)) ≤ −BW1/2
)
≤ P

(
inf

I∈[0,W]
�(I) ≤ −BW1/2 − W

2 (−<C (2) −
B
2 )

)
≤ P

(
inf

I∈[0,W]
�(I) ≤ − B2W

1/2
)
. (3.2.11)

The latter inequality is due to W1/2(<C (2) + B
2 ) ≤ B as B ≥ 100 and W ≤

√
C. The right-hand

probability can be estimated via Brownian calculations, which yields the desired bound of the

form C exp(− 1
C B

2).

We next prove the RiseW,B bound in (3.2.9). Note that supI∈[0,W] <C (I) ≤
W2

C1/4
≤ 1

2 BW
1/2 (as W ≤

√
C ≤ 1 and B ≥ 4). Thus it suffices to show

P
(
Rise(1)W,B ,GW,B

)
≤ C exp

(
− 1

C B
2
)
, Rise(1)W,B :=

{
sup
I∈[0,W]

gC (I) ≥ gC (0) + 1
2 B
√
W

}
. (3.2.12)

Set

j := inf
{
G ∈ (0, W] | gC (G) − gC (0) ≥ 1

2 BW
1/2

}
,

and set j = ∞ if no such points exist. Then we have P
(
Rise(1)W,B ,GW,B

)
= P

(
j ≤ W,GW,B

)
and we

can write the right-hand probability as

P
(
j ≤ W,GW,B, gC (j) − gC (W) < 1

4 B
√
W

)
+ P

(
j ≤ W,GW,B, gC (j) − gC (W) ≥ 1

4 B
√
W

)
. (3.2.13)
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On the event {j ≤ W,GW,B, gC (j) − gC (W) < 1
4 B
√
W} we have that {gC (W) − gC (0) ≥ 1

4 B
√
W} holds

as the continuity of gC (·) implies that gC (j) = gC (0) + 1
2 B
√
W on {j ≤ W} event. Now with the

same argument of the FallW,B event, we bound the probability of this occurrence by C exp(− 1
C B

2)

for some constant C > 0. This is why GW,B involves gC (−2 + W) and gC (W). The parabolic term

<C (I) again can be ignored as supI∈[0,W] <C (I) ≤ W3/2 ≤ 1
8 BW

1/2 for B ≥ 8.

Let us focus on the second term in (3.2.13). Note that (j, 2) is a stopping domain and {gC (j) −

gC (W) ≥ 1
4 B
√
W} is a monotone event w.r.t. [j, 2]. Applying Lemma 3.2.6 one has

P
(
gC (j) − gC (W) ≥ 1

4 B
√
W | (gC (G))G∉(j,2)

)
≤ P(j,2),(gC (j),gC (2))free

(
gC (j) − gC (W) ≥ 1

4 B
√
W

)
.

Note that on {j ≤ W,GW,B} we have

|gC (j) − gC (2) | = |gC (0) + 1
2 B
√
W − gC (2) | ≤ B/4 + 1

2 B
√
W + <C (2) + B/4 = B + <C (2). (3.2.14)

As 2−j ≥ 1 on {j ≤ W}, we thus get that the absolute value of the slope of the linearly interpolated

line joining (j, gC (j)) and (2, gC (2)) is at most B + <C (2). Note that 1
4 B
√
W ≥ W(B + <C (2)) due

to (3.2.6). Thus the event {gC (j) − gC (W) ≥ 1
4 B
√
W} entails that the gC (W) lies below the linearly

interpolated line. Under Brownian law, this has probability 1/2. Thus,

P
(
j ≤ W,GW,B, gC (j) − gC (W) ≥ 1

4 B
√
W

)
≤ E

[
1j≤W,GW,B

P(j,2),(gC (j),gC (2))free

(
gC (j) − gC (W) ≥ 1

4 B
√
W

)]
≤ 1

2E
[
1j≤W,GW,B

]
.

Hence we have shown that P
(
j ≤ W,GW,B

)
≤ C exp(− 1

C B
2) + 1

2P
(
j ≤ W,GW,B

)
which implies that

P
(
j ≤ W,GW,B

)
≤ 2C exp(− 1

C B
2) which gives us the bound in (3.2.12), completing the proof.

3.3 Modulus of Continuity for rescaled CDRP measures

The main goal of this section is to establish quenched modulus of continuity estimates: Propo-

sition 3.3.3 and Proposition 3.3.3-(point-to-line), for CDRP measures under long-time scalings.
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The proof of these propositions requires detailed study of the tail probabilities of two-point differ-

ence when scaled according to long-time. This is conducted in Proposition 3.3.1 and Proposition

3.3.1-(point-to-line) respectively. One of the key technical inputs in the proofs of Propositions

3.3.1 and 3.3.1-(point-to-line) is a parabolic decay estimate of a multivariate spatial process in-

volving several long-time KPZ sheets. This estimate appears in Lemma 3.3.7 and is proved in

Section 3.3.1. In the following text, we first state those Propositions 3.3.1 and 3.3.1-(point-to-line)

and assuming their validity, we state and prove the modulus of continuity estimates. Proofs of

Proposition 3.3.1 and 3.3.1-(point-to-line) are deferred to Section 3.3.2.

Proposition 3.3.1 (Long-time two-point difference). Fix any Y ∈ (0, 1], X ∈ (0, 1
2 ), and g ≥ 1.

Take G ∈ [−gY− 2
3 , gY−

2
3 ]. Let + ∼ CDRP(0, 0; G, Y−1). For C ∈ [0, 1], set ! (Y)C := Y

2
3+ (Y−1C).

There exist two absolute constants C1(g, X) > 0 and C2(g, X) > 0 such that for all < ≥ 1 and

C ≠ B ∈ [0, 1] we have

P
[
Pb ( |! (Y)B − ! (Y)C | ≥ < |B − C |

1
2−X) ≥ C1 exp(− 1

C1
<2)

]
≤ C2 exp

(
− 1

C2
<3

)
.

We have the following point-to-line analogue.

Proposition 3.3.1-(point-to-line). Fix any Y ∈ (0, 1], X ∈ (0, 1
2 ). Let + ∼ CDRP(0, 0; ∗, Y−1).

For C ∈ [0, 1], set ! (Y)C,∗ := Y 2
3+ (Y−1C). There exist two absolute constants C1(X) > 0 and C2(X) > 0

such that for all < ≥ 1 and C ≠ B ∈ [0, 1] we have

P
[
Pb∗ ( |! (Y)B,∗ − ! (Y)C,∗ | ≥ < |B − C |

1
2−X) ≥ C1 exp(− 1

C1
<2)

]
≤ C2 exp

(
− 1

C2
<3

)
.

Remark 3.3.2. In the above propositions, the quenched probability of the tail event of two-point

difference of rescaled polymers is viewed as a random variable. The above propositions provide

quantitative decay estimates of this random variable being away from zero for point-to-point and

point-to-line polymers under long-time regime.

Proposition 3.3.3 (Quenched Modulus of Continuity). Fix Y ∈ (0, 1], X ∈ (0, 1
2 ) and g ≥ 1. Take
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H ∈ [−gY− 2
3 , gY−

2
3 ]. Let + ∼ CDRP(0, 0; H, Y−1). Set ! (Y)C := Y 2

3+ (Y−1C) for C ∈ [0, 1]. Then there

exist two constants C1(g, X) > 0 and C2(g, X) > 0 such that for all < ≥ 1 we have

P
[
Pb

(
sup

C≠B∈[0,1]

|! (Y)B − ! (Y)C |
|C − B | 12−X log 2

|C−B |

≥ <
)
≥ C1 exp

(
− 1

C1
<2

) ]
≤ C2 exp

(
− 1

C2
<3

)
. (3.3.1)

Proposition 3.3.3-(point-to-line). Fix Y ∈ (0, 1], X ∈ (0, 1
2 ). Let + ∼ CDRP(0, 0; ∗, Y−1). For

C ∈ [0, 1], set ! (Y)C,∗ := Y 2
3+ (Y−1C). Then there exist two constants C1(X) > 0 and C2(X) > 0 such

that for all < ≥ 1 we have

P
[
Pb∗

(
sup

C≠B∈[0,1]

|! (Y)B,∗ − ! (Y)C,∗ |

|C − B | 12−X log 2
|C−B |

≥ <
)
≥ C1 exp

(
− 1

C1
<2

) ]
≤ C2 exp

(
− 1

C2
<3

)
.

Remark 3.3.4. The paths of continuum directed random polymer are known to be Hölder contin-

uous with exponent W, for every W < 1/2 (see [3, Theorem 4.3]). Our Theorem 3.3.3 corroborates

this fact by giving quantitative tail bounds to the quenched modulus of continuity.

Before proving Propositions 3.3.3 and 3.3.3-(point-to-line), we present below a few important

corollaries for point-to-point long-time polymer. Similar corollaries hold for point-to-line case as

well.

Corollary 3.3.5. Fix Y ∈ (0, 1], and g ≥ 1. Take G ∈ [−gY− 2
3 , gY−

2
3 ]. Let + ∼ CDRP(0, 0; G, Y−1).

For C ∈ [0, 1] set ! (Y)C := Y 2
3+ (Y−1C). Then there exist two constants C1(g) > 0 and C2(g) > 0

such that for all < ≥ 1 we have

P
[
Pb

(
sup
C∈[0,1]

|! (Y)C | ≥ <
)
≥ C1 exp

(
− 1

C1
<2

) ]
≤ C2 exp

(
− 1

C2
<3

)
. (3.3.2)

Proof. Set B = 0 and d = 1 + supC∈(0,1] C1/4 log 2
C
∈ (1,∞). By Proposition 3.3.3, with X = 1

4 there

exist C1(g) and C2(g) such that for all < ≥ 1, (3.3.1) holds with B = 0. Replacing < with </d in
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(3.3.1) yields that

P
[
Pb

(
sup
C∈[0,1]

|! (Y)C | ≥ <
)
≥ C1 exp

(
− 1

C1
<2

) ]
≤ P

[
Pb

(
sup
C∈[0,1]

|! (Y)C |
C

1
4 log 2

C

≥ <
d

)
≥ C1 exp

(
− 1

C1
(<
d
)2

) ]
≤ C2 exp

(
− 1

C2
(<
d
)3

)
.

Adjusting C2 further we get the desired result.

From Proposition 3.3.3, we also obtain the annealed modulus of continuity.

Corollary 3.3.6 (Annealed Modulus of Continuity). Fix Y ∈ (0, 1], X ∈ (0, 1
2 ) and g ≥ 1. Take

H ∈ [−gY− 2
3 , gY−

2
3 ]. Let + ∼ CDRP(0, 0; H, Y−1). Set ! (Y)C := Y 2

3+ (Y−1C) for C ∈ [0, 1]. Then there

exists a constant C(g, X) > 0 such that for all < ≥ 1 we have

P
(

sup
C≠B∈[0,1]

|! (Y)B − ! (Y)C |
|C − B | 12−X log 2

|C−B |

≥ <
)
≤ C exp

(
− 1

C<
2
)
. (3.3.3)

Clearly one has similar corollaries for the point-to-line version which follow from Proposition

3.3.3-(point-to-line) instead. For brevity, we do not record them separately. We now assume

Proposition 3.3.1 (Proposition 3.3.1-(point-to-line)) and complete the proof of Proposition 3.3.3

(Proposition 3.3.3-(point-to-line)).

Proof of Propositions 3.3.3 and 3.3.3-(point-to-line). Fix g ≥ 1 and < ≥ 16g2 + 1. The main idea

is to mimic Levy’s proof of modulus of continuity of Brownian motion. Since our proposition

deals with quenched versions, we keep the proof here for the sake of completeness. We only

prove (3.3.1) using Proposition 3.3.1. Proof of Proposition 3.3.3-(point-to-line) follows in a similar

manner using Proposition 3.3.1-(point-to-line). To prove (3.3.1), we first control the modulus of

continuity on dyadic points of [0, 1]. Fix X > 0 and set W = 1
2 − X. Define

‖! (Y) ‖= := sup
:={1,...,2=}

���! (Y)
:2−= − !

(Y)
(:−1)2−=

��� , ‖! (Y) ‖ := sup
=≥0

‖! (Y) ‖=2=W
= + 1

.

147



Observe that by union bound

Pb
(
‖! (Y) ‖ ≥ <

)
≤
∞∑
==0

2=∑
:=1

Pb
(���! (Y)

:2−= − !
(Y)
(:−1)2−=

��� ≥ <2−=W (= + 1)
)
.

Thus in light of Proposition 3.3.1 we see that with probability at least

1 −
∞∑
==0

C22= exp
(
− 1

C2
<3(= + 1)3

)
≥ 1 − C′2 exp

(
− 1

C′2
<3

)
we have

Pb
(
‖! (Y) ‖ ≥ <

)
≤
∞∑
==0

C12= exp
(
− 1

C1<
2(= + 1)2

)
≤ C′1 exp

(
− 1

C′1
<2

)
.

Finally one can extend the results to all points by continuity of ! (Y) and observing the following

string of inequalities that holds deterministically. For any 0 ≤ B < C ≤ 1 we have

|! (Y)C − !
(Y)
B | ≤

∞∑
==1

���! (Y)2−= b2=Cc − !
(Y)
2−=+1 b2=−1Cc − !

(Y)
2−= b2=Bc + !

(Y)
2−=+1 b2=−1Bc

��� . (3.3.4)

Note that we have

���! (Y)2−= b2=Cc − !
(Y)
2−=+1 b2=−1Cc − !

(Y)
2−= b2=Bc + !

(Y)
2−=+1 b2=−1Bc

���
≤

���! (Y)2−= b2=Cc − !
(Y)
2−=+1 b2=−1Cc

��� + ���! (Y)2−= b2=Bc − !
(Y)
2−=+1 b2=−1Bc

��� ≤ 2‖! (Y) ‖=,

and

���! (Y)2−= b2=Cc − !
(Y)
2−=+1 b2=−1Cc − !

(Y)
2−= b2=Bc + !

(Y)
2−=+1 b2=−1Bc

���
≤

���! (Y)2−= b2=Cc − !
(Y)
2−= b2=Bc

��� + ���! (Y)2−=+1 b2=−1Cc − !
(Y)
2−=+1 b2=−1Bc

��� ≤ 2(C − B)2=‖! (Y) ‖=.
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Combining the above two inequalities we get

r.h.s. of (3.3.4) ≤
∞∑
==1

2 ( |C − B |2= ∧ 2) ‖! (Y) ‖=

≤ ‖! (Y) ‖
∞∑
==1
(= + 1)2−=W ( |C − B |2= ∧ 2) ≤ 22‖! (Y) ‖ · |C − B |W log 2

|C−B | .

where 22 > 0 is an absolute constant. Combining this with the bound for Pb (‖! (Y) ‖ ≥ <),

completes the proof.

3.3.1 Tail bounds for multivariate spatial process

Recall the KPZ sheet H(·, ·; ·, ·) defined in (3.2.1). The core idea behind the proof of Propo-

sitions 3.3.1 and 3.3.1-(point-to-line) is to establish parabolic decay estimates of sum of several

KPZ sheets scaled according to long-time. We record this parabolic decay estimate in the follow-

ing Lemma 3.3.7.

Lemma 3.3.7 (Long-time multivariate spatial process tail bound). Fix any : ∈ Z>0 and a ∈ (0, 1).

Set G0 = 0, and ®G := (G1, . . . , G: ). For any Y ∈ (0, 1) consider 0 = C0 < C1 < · · · < C: = 1. Set

®C := (C1, . . . , C: ). Then there exists a constant C = C(:, a) such that for all B > 0 we have

P

(
sup
®G∈R:

[
�®C;Y (®G) +

:−1∑
8=0

(1 − a) (G8+1 − G8)2
2(C8+1 − C8)

]
≥ B

)
≤ C exp

(
− 1

C B
3/2

)
. (3.3.5)

where

�®C;Y (®G) := Y1/3
:−1∑
8=0

[
H(G8Y−2/3, Y−1C8; G8+1Y−2/3, Y−1C8+1) + Y−1 (C8+1−C8)

24

+1{C8+1 − C8 ≤ Y} · log
√

2cY−1(C8+1 − C8)
]
.

(3.3.6)

Proof. For clarity, we split the proof into three steps.

Step 1. Let us fix any Y ∈ (0, 1) consider 0 = C0 < C1 < · · · < C: = 1. For brevity, we denote
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� (®G) := �®C;Y (®G) and set

� (®G) := � (®G) +
:−1∑
8=0

(G8+1 − G8)2
2(C8+1 − C8)

. (3.3.7)

For any ®0 = (01, . . . , 0: ) ∈ Z: , set +®0 := [01, 01 + 1] × · · · × [0: , 0: + 1] and set

‖ ®0‖2 := 02
1 +min
®G∈+®0

:−1∑
8=1
(G8+1 − G8)2. (3.3.8)

We claim that for any ®0 = (01, . . . , 0: ) ∈ Z: and a ∈ (0, 1)

P

(
sup
®G∈+®0

[
� (®G) +

:−1∑
8=0

(1 − a) (G8+1 − G8)2
2(C8+1 − C8)

]
≥ B

)
≤ C exp

(
− 1

C (B
3/2 + ‖ ®0‖3)

)
(3.3.9)

for some C = C(:, a) > 0. Assuming (3.3.9) by union bound we obtain

l.h.s of (3.3.5) = P

(
sup
®G∈R:

[
� (®G) +

:−1∑
8=0

(1 − a) (G8+1 − G8)2
2(C8+1 − C8)

]
≥ B

)
≤

∑
®0∈Z:

P

(
sup
®G∈+®0

[
� (®G) +

:−1∑
8=0

(1 − a) (G8+1 − G8)2
2(C8+1 − C8)

]
≥ B

)
≤

∑
®0∈Z:

C exp
(
− 1

C (B
3/2 + ‖ ®0‖3)

)
.

The r.h.s. of the above display is upper bounded by C exp(− 1
C B

3/2) and proves (3.3.5). Thus it

suffices to verify (3.3.9) in the rest of the proof.

Step 2. In this step, we prove the claim in (3.3.9). Note that

P

(
sup
®G∈+®0

[
� (®G) +

:−1∑
8=0

(1 − a) (G8+1 − G8)2
2(C8+1 − C8)

]
≥ B

)
≤ P

(
sup
®G∈+®0
|� (®G) | ≥ B + a

2 ‖ ®0‖
2

)

by the definition of � (·) in (3.3.7) and the defintion of ‖ ®0‖2 from (3.3.8). Applying union bound
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yields

P

(
sup
®G∈+®0
|� (®G) | ≥ B + a

2 ‖ ®0‖
2

)
≤ P

(
sup
®G∈+®0
|� (®G) − � ( ®0) | ≥ B

2 +
a
4 ‖ ®0‖

2

)
+ P

(
|� ( ®0) | ≥ B

2 +
a
4 ‖ ®0‖

2
)
. (3.3.10)

In the rest of the proof, we bound both summands on the r.h.s of (3.3.10) from above by C exp(− 1
C (B

3/2+

‖ ®0‖3)) individually. To control the first term, we first need an a priori estimate. We claim that for

all D ∈ [0, 1], 8 = 1, 2, . . . , : and B > 0 we have

P
(
� ( ®0 + 48 · D) − � ( ®0) ≥ BD1/4

)
≤ C exp

(
− 1

C B
3/2

)
. (3.3.11)

for some absolute constant C > 0. We will prove (6.2.2) in the next step. Given (6.2.2), appealing

to Lemma 3.3 in [96] with U = U8 = 1
4 , V = V8 =

3
2 , A = A8 = 1, we get that for all < > 0

P

(
sup
®G∈+®0
|� (®G) − � ( ®0) | ≥ <

)
≤ C exp

(
− 1

C<
3/2

)
.

Taking < = B
2 +

a
4 ‖ ®0‖

2 in above, this yields the desired estimate for the first term in (3.3.10).

For the second term in (3.3.10), via the definition of � in (3.3.7) applying union bounds we

have

P
(
|� ( ®0) | ≥ B

4 +
a
4 ‖ ®0‖

2
)

≤
:−1∑
8=0

P
(���Y1/3H(08Y−2/3, Y−1C8; 08+1Y−2/3, Y−1C8+1) + Y−2/3 (C8+1−C8)

24

+ (08+1−08)
2

2(C8+1−C8) + Y
1/31{C8+1 − C8 ≤ Y} · log

√
2cY−1(C8+1 − C8)

��� ≥ B
4: +

a
4: ‖ ®0‖

2
)

≤
:−1∑
8=0

P
(���Y1/3H(0, Y−1(C8+1 − C8)) + Y−2/3 (C8+1−C8)

24

+Y1/31{C8+1 − C8 ≤ Y} · log
√

2cY−1(C8+1 − C8)
��� ≥ B

4: +
a

4: ‖ ®0‖
2
)

(3.3.12)
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where the last line follows from stationarity of the shifted version ofH . Now if Y−1(C8+1 − C8) > 1,

we may use long-time scaling to get

Y1/3H(0, Y−1(C8+1 − C8)) +
Y−2/3(C8+1 − C8)

24
=
hY−1 (C8+1−C8) (0)
(C8+1 − C8)−1/3 .

Using the fact that Y < |C8+1 − C8 | ≤ 1 along with the one-point long-time tail estimates from

Proposition 3.2.2 (b) we get

P
(
|hY−1 (C8+1−C8) (0) | ≥ (C8+1 − C8)

−1/3( B4: +
a

4: ‖ ®0‖
2)

)
≤ P

(
|hY−1 (C8+1−C8) (0) | ≥

B
4: +

a
4: ‖ ®0‖

2
)

≤ C exp(− 1
C (B + ‖ ®0‖

2)3/2)

≤ C exp
(
− 1

C (B
3/2 + ‖ ®0‖3)

)
,

for some constant C = C(:, a) > 0. If Y−1(C8+1 − C8) ≤ 1, we may use short-time scaling to get

Y1/3H(0, Y−1(C8+1 − C8)) +
Y−2/3(C8+1 − C8)

24
+ Y1/3 log

√
2cY−1(C8+1 − C8)

= Y1/3 ( cY−1 (C8+1−C8)
4

)1/4
gY−1 (C8+1−C8) (0) +

Y−2/3(C8+1 − C8)
24

.

The linear term above is uniformly bounded in this case. Furthermore,

Y1/3 ( cY−1 (C8+1−C8)
4

)1/4
=

( c(C8+1−C8)
4

)1/4
Y1/12 ≤ 1.

Thus, in this case, appealing to one-point short-time tail estimates from Proposition 3.2.3 (b), we

have

r.h.s. of (3.3.12) ≤ C exp(− 1
C (B + ‖ ®0‖

2)3/2) ≤ C exp
(
− 1

C (B
3/2 + ‖ ®0‖3)

)
for some constant C = C(:, a) > 0.

This proves the required bound for the second term in (3.3.10). Combining the bounds for the
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two terms in (6.2.2), we thus arrive at (3.3.9). Hence, all we are left to show is (6.2.2) which we

do in the next step.

Step 3. Fix ®0 ∈ Z: , fix 8 = 1, 2, . . . , : . The goal of this step is to show (6.2.2). Towards this end,

note that for each coordinate vector 48, 8 = 1, . . . , : − 1, and for D ∈ [0, 1] observe that

� ( ®0 + 48 · D) − � ( ®0)

= Y1/3
[
H(08−1Y

−2/3, Y−1C8−1; (08 + D)Y−2/3, Y−1C8) − H (08−1Y
−2/3, Y−1C8−1; 08Y−2/3, Y−1C8)

]
+ (08−1 − 08 − D)2 − (08−1 − 08)2

2(C8 − C8−1)

+ Y1/3
[
H((08 + D)Y−2/3, Y−1C8; 08+1Y−2/3, Y−1C8+1) − H (08Y−2/3, Y−1C8; 08+1Y−2/3, Y−1C8+1)

]
+ (08+1 − 08 − D)

2 − (08+1 − 08)2
2(C8+1 − C8)

.

Thus using distributional identities (see Remark 3.2.1) by union bound for all B > 0 we get that

P
(
|� ( ®0 + 48 · D) − � ( ®0) | ≥ BD

1
4

)
≤ P

(
Y

1
3

���H Y−1 (C8−C8−1) ((08 + D − 08−1)Y−2/3) − H Y−1 (C8−C8−1) ((08 − 08−1)Y−2/3)
��� ≥ B

2D
1
4

)
(3.3.13)

+ P
(
Y

1
3

���H Y−1 (C8+1−C8) ((08 + D − 08+1)Y
−2/3) − H Y−1 (C8+1−C8) ((08 − 08+1)Y

−2/3)
��� ≥ B

2D
1
4

)
,

(3.3.14)

where H C (G) := H(G, C) + G2

2C . We now proceed to bound the second term on the r.h.s. of above

display (that is the term in (3.3.14)); the bound for the first term follows analogously.

Case 1. Y−1(C8+1 − C8) ≥ 1. We then use the long-time scaling to conclude

Y
1
3

���H Y−1 (C8+1−C8) ((08 + D − 08+1)Y
−2/3) − H Y−1 (C8+1−C8) ((08 − 08+1)Y

−2/3)
���

=

hY−1 (C8+1−C8)

(
08+D−08+1
(C8+1−C8)2/3

)
− hY−1 (C8+1−C8)

(
08−08+1
(C8+1−C8)2/3

)
(C8+1 − C8)−1/3

where hB (G) := hB (G) + G2

2 . We now consider two cases depending on the value of D.

153



Case 1.1. Suppose D ∈ [0, (C8+1 − C8)2/3]. By Proposition 3.2.2 (c) with W ↦→ D

(C8+1−C8)2/3
, and using

the fact that
√
W ≤ D1/4(C8+1 − C8)−1/3, we see that (3.3.14) ≤ C exp(− 1

C B
3/2) for some C > 0 in this

case.

Case 1.2. For D ∈ [(C8+1− C8)2/3, 1], we rely on one-point tail bounds. Indeed applying union bound

we have

(3.3.13) ≤ P
©«
�������
hY−1 (C8+1−C8)

(
08+D−08+1
(C8+1−C8)2/3

)
(C8+1 − C8)−1/3

������� ≥ B
8D

1/4ª®®¬ + P
©«
�������
hY−1 (C8+1−C8)

(
08−08+1
(C8+1−C8)2/3

)
(C8+1 − C8)−1/3

������� ≥ B
8D

1/4ª®®¬
≤ C exp

(
− 1

C B
3/2D3/8(C8+1 − C8)−1/2

)
≤ C exp

(
− 1

C B
3/2

)
.

The penultimate inequality above follows from Proposition 3.2.2 (a), (b) and the last one follows

from the fact D ≥ (C8+1 − C8)2/3 and C8+1 − C8 ∈ (0, 1].

Case 2. Y−1(C8+1 − C8) ≤ 1. We here use the short-time scaling to conclude

Y
1
3

���H Y−1 (C8+1−C8) ((08 + D − 08+1)Y
−2/3) − H Y−1 (C8+1−C8) ((08 − 08+1)Y

−2/3)
���

=
( cY1/3 (C8+1−C8)

4
) 1

4

[
gY−1 (C8+1−C8)

(
2(08+D−08+1)√
cY1/3 (C8+1−C8)

)
− gY−1 (C8+1−C8)

(
2(08−08+1)√
cY1/3 (C8+1−C8)

)]
where gB (G) := gB (G) + (cB/4)

3/4G2

2B . We again consider two cases depending on the value of D.

Case 2.1. Suppose D ∈ (0,
√
c

2 Y
−1/3(C8+1 − C8)). Then 2D√

cY1/3 (C8+1−C8)
<

√
Y−1(C8+1 − C8). This allows

us to apply Proposition 3.2.4 with W ↦→ 2D√
cY1/3 (C8+1−C8)

and C ↦→ Y−1(C8+1 − C8). Using the fact that

D1/2 ≤ D1/4 for D ∈ [0, 1], we see that (3.3.14) ≤ C exp(− 1
C B

3/2) for some C > 0 in this case.

Case 2.2. For D ∈ [
√
c

2 Y
−1/3(C8+1 − C8), 1], we rely on stationarity and one-point tail bounds (Propo-

sition 3.2.3 (a), (b)). Indeed applying union bound we have

(3.3.14) ≤ P
( ( cY1/3 (C8+1−C8)

4
) 1

4

����gY−1 (C8+1−C8)

(
2(08+D−08+1)√
cY1/3 (C8+1−C8)

)���� ≥ B
8D

1/4
)

+ P
( ( cY1/3 (C8+1−C8)

4
) 1

4

����gY−1 (C8+1−C8)

(
2(08−08+1)√
cY1/3 (C8+1−C8)

)���� ≥ B
8D

1/4
)
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≤ C exp
(
− 1

C

[
BD1/4(C8+1 − C8)−1/4Y−

1
12

]3/2
)
.

As D ≥
√
c

2 Y
−1/3(C8+1 − C8), and Y ∈ (0, 1) we have D1/4(C8+1 − C8)−1/4Y−1/12 ≥

√
c

2 . Thus the last

expression above is at most C exp
(
− 1

C B
3/2

)
.

Combining the above two cases we have (3.3.14) ≤ C exp(− 1
C B

3/2) uniformly for D ∈ [0, 1].

By the same argument one can show the term in (3.3.13) is also upper bounded by C exp(− 1
C B

3/2).

This yields (6.2.2) for 8 = 1, 2, . . . , : − 1.

Finally for 8 = : , observe that

� ( ®0 + 4: · D) − � ( ®0)

= Y1/3
[
H(0:−1Y

−2/3, Y−1C:−1; (0: + D)Y−2/3, Y−1) − H (0:−1Y
−2/3, Y−1C:−1; 0:Y−2/3, Y−1)

]
+ (0:−1 − 0: − D)2 − (0:−1 − 0: )2

2(1 − C:−1)
.

Then (6.2.2) follows for 8 = : by the exact same computations as above. This completes the proof

of the lemma.

3.3.2 Proof of Proposition 3.3.1 and 3.3.1-(point-to-line)

We now present the proofs of Proposition 3.3.1 and 3.3.1-(point-to-line).

Proof of Proposition 3.3.1. We assume < ≥ 16g2 + 1. Otherwise the constant C1 can be chosen

large enough so that the inequality holds trivially. Without loss of generality assume B < C. We

first consider the case when B, C ∈ (0, 1). Note that

Pb ( |! (Y)B − ! (Y)C | ≥ < |B − C |
1
2−X)

=

∬
|D−E |≥<Y−2/3 |B−C |

1
2−X

Z(0, 0; D, Y−1B)Z(D, Y−1B; E, Y−1C)Z(E, Y−1C; G, Y−1)
Z(0, 0; G, Y−1)

dD dE.
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We make a change of variable D = ?Y−2/3, E = @Y−2/3 and G = IY−2/3. Then

Pb ( |! (Y)B − ! (Y)C | ≥ < |B − C |
1
2−X)

=Y−4/3
∬

|?−@ |≥< |B−C |
1
2−X

Z(0, 0; ?Y−2/3, B
Y
)Z(?Y−2/3, B

Y
; @Y−2/3, C

Y
)Z(@Y−2/3, C

Y
; IY−2/3, 1

Y
)

Z(0, 0; IY−2/3, Y−1)
d@ d?.

(3.3.15)

Recall the multivariate spatial process �®C;Y (®G) from (3.3.6). Take : = 3 and set ®C = (B, C, 1), and

®G = (?, @, I). We also set

�(®C ) := 1{B ≤ Y} log
√

2c
B

Y
+ 1{C − B ≤ Y} log

√
2c
C − B
Y
+ 1{1 − C ≤ Y} log

√
2c

1 − C
Y
.

For the numerator of the integrand in (3.3.15) observe that

Z(0, 0; ?Y−
2
3 , B
Y
)Z(?Y− 2

3 , B
Y
; @Y−

2
3 , C
Y
)Z(@Y− 2

3 , C
Y
; IY−

2
3 , 1
Y
) = exp

[
Y−

1
3�®C;Y (®G) − Y−1

24 − �(®C )
]
.

(3.3.16)

Set " = <2

64 . Applying Lemma 3.3.7 with a = 1
2 and B = " , we see that with probability greater

than 1 − C exp(− 1
C"

3/2),

r.h.s. of (3.3.16) ≤ exp
[
Y−1/3" − Y−1/3

(
?2

4B +
(@−?)2
4(C−B) +

(I−@)2
4(1−C)

)
− Y−1

24 − �(®C )
]
. (3.3.17)

On the other hand, for the denominator of the integrand in (3.3.15) by one-point long-time tail

bound from Proposition 3.2.2 with probability at least 1 − C exp(− 1
C"

3/2) we have

Z(0, 0; IY−2/3, Y−1) ≥ exp
(
Y−1/3hY−1 (I) − Y−1

24

)
≥ exp

(
−Y−1/3(" + 1

2g
2) − Y−1

24

)
.

Combining the previous equation with (3.3.17) we get that with probability at least 1−C exp(− 1
C"

3/2)
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we have

r.h.s. of (3.3.15) ≤ Y− 4
3 exp

(
Y−1/3(2" + 1

2g
2) − �(®C )

)
·∬

|?−@ |≥< |B−C |
1
2−X

exp
[
−Y−1/3

(
?2

4B +
(@−?)2
4(C−B) +

(I−@)2
4(1−C)

)]
3@ 3?

≤ Y− 4
3 exp

(
Y−

1
3 (2" + 1

2g
2 − <2

4|C−B |2X ) − �(®C )
) ∬

R2
exp

[
−Y− 1

3

(
?2

4B +
A2

4(1−C)

)]
3A 3?

= 4c
√
B(1 − C)Y−1 exp

(
Y−

1
3 (2" + 1

2g
2 − <2

4|C−B |2X ) − �(®C )
)
. (3.3.18)

Observe that

√
A exp

(
−1{A ≤ Y} log

√
2cA
Y

)
≤ 1. (3.3.19)

As " = <2

64 we have 2" − <2

4|C−B |2X ≤ −
<2

8|C−B |2X . Furthermore 1
2g

2 ≤ <2

16|C−B |2X under the condition

< ≥ 16g2 + 1. Thus,

r.h.s. of (3.3.18) ≤ 4cY−1 exp
(
−Y− 1

3 <2

16|C−B |2X − 1{C − B ≤ Y} log
√

2c(C−B)
Y

)
.

Clearly the last expression is at most C1 exp(− 1
C1
<2) for some C1 > 0 depending on g, X. This

bound holds uniformly over C, B ∈ (0, 1) with C ≠ B and Y ∈ (0, 1). This concludes the proof for

B, C ∈ (0, 1).

Finally, when B = 0 we have

Pb ( |! (Y)C | ≥ < |C |
1
2−X) =

∬
|E |≥<Y−2/3 |C |

1
2−X

Z(0, ; E, Y−1C)Z(E, Y−1C; G, Y−1)
Z(0, 0; G, Y−1)

dE.

The proof can now be completed by following the argument for B, C ∈ (0, 1) case. Indeed, the

denominator can be bounded by the exact same manner as above, whereas the numerator can be

controlled with the : = 2 version of Lemma 3.3.7. The case C = 1 is analogous to the case B = 0.

We have thus established Proposition 3.3.1.
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Proof of Proposition 3.3.1-(point-to-line). We now explain how the above proof can be modified

to extend it to the point-to-line version. Fix any < > 0 and " > 1. Indeed observe that for

0 < B < C < 1, one has

Pb∗ ( |! (Y)B,∗ − ! (Y)C,∗ | ≥ < |B − C |
1
2−X)

=Y−
4
3

∫
R

∬
|?−@ |≥< |B−C |

1
2−X

Z(0, 0; ?Y− 2
3 , B
Y
)Z(?Y− 2

3 , B
Y
; @Y− 2

3 , C
Y
)Z(@Y− 2

3 , C
Y
; IY− 2

3 , 1
Y
)∫

R
Z(0, 0; HY− 2

3 , Y−1)dH
d@ d? dI.

(3.3.20)

Since Lemma 3.3.7 is a process-level estimate that allows even the endpoint to vary, (3.3.17) con-

tinues to hold simultaneously for all ?, @, I ∈ R with same high probability. However for the lower

bound on the denominator, one-point lower-tail bound is not sufficient. Instead, for the denom-

inator we use long-time process-level lower bound from Proposition 4.1 in [81] to get that with

probability at least 1 − C exp(− 1
C"

3/2) we have

∫
R
Z(0, 0; HY−2/3, Y−1)dH ≥

∫
R

exp
(
−"+H

2

Y1/3 − Y−1

24

)
dH ≥ CY

1
6 exp

(
−Y−1/3" − Y−1

24

)
.

Combining the previous equation with (3.3.17) we get that with probability at least 1−C exp(− 1
C"

3/2)

we have

r.h.s. of (3.3.20) ≤ Y− 3
2 exp

(
2Y−1/3" − �(®C )

)
·∫

R

∬
|?−@ |≥< |B−C |

1
2−X

exp
[
−Y−1/3

(
?2

4B +
(@−?)2
4(C−B) +

(I−@)2
4(1−C)

)]
3@ 3? 3I.

(3.3.21)

On |? − @ | ≥ < |B− C | 12−X, we have (@ − ?)2/4(C − B) ≥ (@ − ?)2/8(C − B) +<2/8|C − B |2X. Applying

this inequality followed by expanding the range of integration we get

r.h.s. of (3.3.21) ≤ Y− 3
2 exp

(
Y−

1
3 (2" − <2

8|C−B |2X ) − �(®C )
)

·
∫
R

∫
R

∫
R

exp
[
−Y− 1

3

(
?2

4B +
A2

8(C−B) +
D2

4(1−C)

)]
3@ 3A 3D
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=
√

27c3B(1 − C) (C − B) · Y−1 exp
(
Y−

1
3 (2" − <2

8|C−B |2X ) − �(®C )
)
.

Just as in the proof of Proposition 3.3.1, setting " = <2

64 , and using (3.3.19), the above expression

can be shown to be at most C exp(− 1
C<

2) uniformly over Y ∈ (0, 1) and 0 < B < C < 1. This

establishes the proposition.

3.4 Annealed Convergence for short-time and long-time

In this section we prove our main results. In Section 3.4.1 we prove Theorems 3.1.4, 3.1.7, and

3.1.8. In Section 3.4.2, we show Theorem 3.1.10 assuming Conjecture 3.1.9.

3.4.1 Proof of Theorems 3.1.4, 3.1.7, and 3.1.8

In this section we prove results related to short-time and long-time tightness and related point-

wise weak convergence. While the proof of long-time tightness relies on modulus of continu-

ity estimates from Proposition 3.3.1 and Proposition 3.3.1-(point-to-line), the proof of short-time

tightness relies on the following Brownian relation of annealed law of CDRP.

Lemma 3.4.1 (Brownian Relation). Let - ∼ CDRP(0, 0; 0, C) and . ∼ CDRP(0, 0; ∗, C). For any

continuous functional L : � ( [0, C]) → R we have

E
[
Z(0, 0; 0, C)

√
2cC · L(-)

]
= E(L(�)), E [Z(0, 0; ∗, C) · L(. )] = E(L(�∗)) (3.4.1)

where �∗ and � are standard Brownian motion and standard Brownian bridge on [0, C] respec-

tively.

Remark 3.4.2. Note that
√

2cC = 1
?(0,C) where ?(0, C) is the heat kernel. Since the Brownian

bridge finite-dimensional densities are product of heat kernels divided by ?(0, C), this additional

factor 1
?(0,C) is required in the point-to-point version for appropriate comparison to the the Brownian

bridge law (see (3.4.2) below).
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Proof. Take 0 = C0 < C1 < · · · < C: < C:+1 = C. The Brownian motion identity appears as Lemma

4.2 in [3]. To show the bridge version note that by Definition 3.1.1, the quantity

Z(0, 0; 0, C)Pb (- (C1) ∈ dG1, . . . , - (C: ) ∈ dG: )

is product of independent random variables with mean ?(G 9+1− G 9 , C 9+1− C 9 ) where ?(G, C) denotes

the heat kernel. Noting that ?(0, C) = 1√
2cC

, and recalling the finite-dimensional distribution of

Brownian bridge (Problem 6.11 in [157]) we get that

E
[
Z(0, 0; 0, C)

√
2cC · Pb (- (C1) ∈ dG1, . . . , - (C: ) ∈ dG: )

]
=

1
?(0, C)

:∏
9=0

?(G 9+1 − G 9 , C 9+1 − C 9 )

= P (�(C1) ∈ dG1, . . . , �(C: ) ∈ dG: ) .
(3.4.2)

(3.4.1) now follows from the above by approximation of L with simple functions.

Proof of Theorem 3.1.4. We first show finite-dimensional convergence. Fix 0 = C0 < C1 < · · · <

C:+1 = 1. Take G1, . . . , G: ∈ R. Set G0 = 0 and G:+1 = 0. Note that the density for (. (Y)C8
):
8=1 at (G8):8=1

is given by

5®C;Y (®G) :=
Y:/2

Z(0, 0; 0, Y)

:∏
9=0
Z(
√
YG 9 , YC 9 ;

√
YG 9+1, YC 9+1).

For a Brownian bridge � on [0, 1] starting at 0 and ending at G, the density for (�C8 ):8=1 at (G8):8=1 is

given by

6®C (®G) :=
1

?(0, 1)

:∏
9=0

?(G 9+1 − G 9 , C 9+1 − C 9 )

where ?(G, C) = 1√
2cC
4−G

2/2C . Using the distributional identities forZ (see Remark 3.2.1) and using
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Equation (8.11) in [65] and Brownian scaling, we deduce

Z(
√
YG 9 , YC 9 ;

√
YG 9+1, YC 9+1)

?(
√
Y(G 9+1 − G 9 ), Y(C 9+1 − C 9 ))

3
= EC 9+1−C 9 ,G 9+1−G 90,0

[
: exp :

{
Y1/4

∫ C 9+1−C 9

0
b (B, �(B))3B

}]
where � is a Brownian bridge conditioned �(0) = 0 and �(C 9+1 − C 9 ) = G 9+1 − G 9 . The expectation

above is taken w.r.t. this Brownian bridge only. Here : exp : denotes the Wick exponential (see [65]

for details). The right side of the above equation is a random variable (function of the noise b). We

claim that this random variable converges to 1 in probability. Indeed using chaos expansion, and

Lemma 2.4 in [76], it follows that for every fixed C, G we have

E

[{
EC,G0,0

[
: exp :

{
Y1/4

∫ C

0
b (B, �(B))3B

}]
− 1

}2
]
=
√
Y

∞∑
:=1

Y(:−1)/2C:/2

(4c):/2
(Γ(1/2): )
Γ(:/2) .

The above sum converges. Thus as Y ↓ 0, the above expression goes to zero, proving the claim. As

?(
√
YG, YC) = Y−1/2?(G, C), we thus have 5®C;Y (®G)

?
→ 6®C (®G). Thus the quenched finite-dimensional

density of . (Y) converges in probability to the finite-dimensional density of the Brownian Bridge.

We now show that the same holds for the annealed law. Indeed, note that
��6®C (®G) − 5®C;Y (®G)��+ con-

verges to zero in probability and is bounded above by 6®C (®G). Thus by DCT and Jensen’s inequality,

we obtain

��6®C (®G) − E[ 5®C;Y (®G)]
��+ ≤ Eb

��6®C (®G) − 5®C;Y (®G)��+ → 0

as Y ↓ 0. Now by Scheffe’s theorem, it follows that the annealed finite-dimensional distribution of

. (Y) converges weakly to the finite-dimensional distribution of the Brownian bridge.

Let us now verify tightness. Recall that - (YC) =
√
Y.
(Y)
C . Observe that by union bound followed

by Markov inequality we have

P

 sup
0≤C,B≤1
|C−B |≤X

|. (Y)C − .
(Y)
B | ≥ [

 ≤ P

Z(0, 0; 0, Y)
√

2cY sup
0≤C,B≤1
|C−B |≤X

|. (Y)C − .
(Y)
B | ≥ [X1/3
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+ P
[
Z(0, 0; 0, Y)

√
2cY ≤ X1/3

]
≤
√

2c
[X1/3 E

Z(0, 0; 0, Y) sup
0≤C,B≤1
|C−B |≤X

|- (YC) − - (YB) |


+ P
[
gY (0) ≤ (4Y/c)−1/4 log(X1/3)

]
.

Note that by one-point short-time tail bounds from Proposition 3.2.3 (b), the second expression

above goes to zero as X ↓ 0 uniformly in Y ≤ 1. For the first expression, by Lemma 3.4.1 we have

E

Z(0, 0; 0, Y) sup
0≤C,B≤1
|C−B |≤X

|- (YC) − - (YB) |
 =

1
√

2cY
E

 sup
0≤C,B≤1
|C−B |≤X

|�′YC − �′YB |
 ,

where �′ is a Brownian bridge on [0, Y]. By scaling property of Brownian bridges we may write

the last expression simply as

1√
2c

E

 sup
0≤C,B≤1
|C−B |≤X

|�C − �B − (C − B)�1 |


where � is a Brownian motion on [0, 1]. This expression is free of Y and by [fis] this goes to zero

with rate $ (X1/2−W) for any W > 0. Thus we have shown

lim sup
X↓0

sup
Y∈(0,1)

P

 sup
0≤C,B≤1
|C−B |≤X

|. (Y)C − .
(Y)
B | ≥ [

 = 0.

Since . (Y)0 = 0, by standard criterion of tightness (see Theorem 4.10 in [157]) combined with

finite-dimensional convergence shown before, we have weak convergence to Brownian Bridge.

This completes the proof.

Proof of Theorem 3.1.7. Let us first prove (a) using Corollary 3.3.6. Fix W ∈ (0, 1). We consider

V ∈ (0, 1) small enough so that W ≥ d(V) where d(V) := supC∈(0,V] C
1
4 log 2

C
. Taking X = 1

4 , the

162



estimates in (3.3.3) ensure that for all Y ∈ (0, 1) we have

P

(
sup

C≠B∈[0,1],|C−B |<V
|! (Y)B − ! (Y)C | ≥ W

)
≤ P ©« sup

C≠B∈[0,1],|C−B |<V

|! (Y)B − ! (Y)C |
|C − B | 14 log 2

|C−B |

≥ W

d(V)
ª®¬

≤ C exp
(
− 1

C
W2

d(V)2

)
.

Note that as V ↓ 0, we have d(V) ↓ 0. Hence

lim sup
V↓0

sup
Y∈(0,1)

P

(
sup

C≠B∈[0,1],|C−B |<V
|! (Y)B − ! (Y)C | ≥ W

)
= 0.

Since ! (Y)0 = 0, the above modulus of continuity estimate yields tightness for the process ! (Y)C .

For (b), let us fix C ∈ (0, 1) and consider + ∼ CDRP(0, 0; 0, Y−1). LetMC,Y−1 denote the unique

mode of the quenched density of + (Y−1C). By [89, Theorem 1.4], we knowMC,Y−1 exists uniquely

almost surely. By [89, Corollary 7.3] we have

lim sup
 →∞

lim sup
Y↓0

Pb ( |+ (Y−1C) −MC,Y−1 | ≥  ) = 0, in probability.

Applying reverse Fatou’s Lemma we have

lim sup
 →∞

lim sup
Y↓0

P( |+ (Y−1C) −MC,Y−1 | ≥  ) = 0.

Thus in particular, Y−
2
3 [+ (Y−1C) − MC,Y−1]

?
→ 0. However, Y−2/3MC,Y−1

3→ Γ(C
√

2) due to [89,

Theorem 1.8]. This proves (b).

Proof of Theorem 3.1.8. Let us first prove part (a) which claims short-time process convergence.

We first show finite-dimensional convergence. Fix 0 = C0 < C1 < · · · < C:+1 = 1. Take G1, . . . , G: ∈
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R. Set G0 = 0 and G:+1 = ∗. Note that the density for (. (Y)∗ (C8)):8=1 at (G8):8=1 is given by

5 ∗®C;Y (®G) :=
Y:/2

Z(0, 0; ∗, Y)

:∏
9=0
Z(
√
YG 9 , YC 9 ;

√
YG 9+1, YC 9+1).

From the finite-dimensional convergence argument in proof of Theorem 3.1.4 we know that

Y:/2
:−1∏
9=0
Z(
√
YG 9 , YC 9 ;

√
YG 9+1, YC 9+1)

?
→

:−1∏
9=0

?(G 9+1 − G 9 , C 9+1 − C 9 ) =: 6∗®C (®G). (3.4.3)

Note that 6∗®C (®G) is the finite-dimensional density for the standard Brownian motion. We now claim

that

Z(0, 0; ∗, Y)
?
→ 1, Z(

√
YG:−1, YC:−1; ∗, YC: )

?
→ 1. (3.4.4)

Combining (3.4.3) and (3.4.4) we have that 5 ∗®C;Y (®G)
?
→ 6∗®C (®G) which implies quenched finite-

dimensional density convergence. This convergence can then be upgraded to annealed finite-

dimensional density convergence by the same argument of the proof of Theorem 3.1.4.

We thus focus on proving (3.4.4). To prove the first part of (3.4.4) we utilize the short-time

scaling from (3.2.2) to get

Z(0, 0; ∗, Y) =
∫
R
4H(G,C)3G =

1
√

2cY

∫
R

exp
(
( cY4 )

1/4gY
(
G

√
4
cY

) )
3G. (3.4.5)

Fix any a ∈ (0, 1). Applying [87, Proposition 4.4] (with B = Y−
1
6 ) we get that with probability at

least 1 − C exp(− 1
CY
− 1

4 )

− (cY/4)
3/4(1 + a)G2

2Y
− Y−1/6 ≤ gY

(
G
)
≤ − (cY/4)

3/4(1 − a)G2

2Y
+ Y−1/6, for all G ∈ R, (3.4.6)

where the constant C depends on a. Inserting the above inequality in (3.4.5) we get that with
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probability at least 1 − C exp(− 1
CY
− 1

4 )

exp
(
−( c4 )

1/4Y1/12
) 1
√

2cY

∫
R
4−
(1+a)G2

2Y 3G ≤ Z(0, 0; ∗, Y) ≤ exp
(
( c4 )

1/4Y1/12
) 1
√

2cY

∫
R
4−
(1−a)G2

2Y 3G.

Thus

P
©«
exp

(
−( c4 )

1/4Y1/12
)

√
1 + a

≤ Z(0, 0; ∗, Y) ≤
exp

(
( c4 )

1/4Y1/12
)

√
1 − a

ª®®¬ ≥ 1 − C exp(− 1
CY
− 1

4 ),

which implies

lim sup
Y→∞

P
(

1√
1+a
≤ Z(0, 0; ∗, Y) ≤ 1√

1−a

)
= 1.

Taking a ↓ 0, we get the first part of (3.4.4). The second part follows analogously.

Let us now verify tightness. Observe that by union bound followed by Markov inequality we

have

P

 sup
0≤C,B≤1
|C−B |≤X

|. (Y)∗ (C) − . (Y)∗ (C) | ≥ [
 ≤ P

Z(0, 0; ∗, Y) sup
0≤C,B≤1
|C−B |≤X

|. (Y)∗ (C) − . (Y)∗ (B) | ≥ [X1/3


+ P

[
Z(0, 0; ∗, Y) ≤ X1/3

]
≤ 1
[X1/3 E

Z(0, 0; ∗, Y) 1
√
Y

sup
0≤C,B≤1
|C−B |≤X

|- (YC) − - (YB) |


+ P
[
gY (∗) ≤ Y−1/4 log(X1/3)

]
,

(3.4.7)

where

gY (∗) := Y−1/4 logZ(0, 0; ∗, Y)

= Y−1/4
[
− log

√
2cY + log

∫
R

exp
(
( cY4 )

1/4gY (
√

4
cY
G)

)
dG

]
with gY (G) defined in (3.2.2). Let us now bound each term in the r.h.s. of (3.4.7) separately. For
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the second term we claim that

lim sup
X↓0

sup
Y∈(0,1)

P
[
gY (∗) ≤ Y−1/4 log(X1/3)

]
= 0. (3.4.8)

Note that by Proposition 4.4 in [87] (the infimum process bound with a = 1) we have for any B > 0

with probability at least 1 − C exp(− 1
C B

3/2),

( cY4 )
1/4gY (

√
4
cY
G) ≥ −( cY4 )

1/4
[
B + ( cY4 )

3/4 · 4
cY

G2

Y

]
= −( cY4 )

1/4B − G2

Y
, for all G ∈ R.

Thus, with probability at least 1 − C exp(− 1
C B

3/2),

gY (∗) ≥ Y−1/4
[
− log

√
2cY + log

(∫
R

exp
(
−( cY4 )

1/4B − G2

Y

)
dG

)]
= Y−1/4

[
− log

√
2cY + log

(√
cY exp

(
−( cY4 )

1/4B
))]

= Y−1/4
[
− log

√
2 − ( cY4 )

1/4B
]
≥ −B − Y−1/4 log 2.

Now we take B = −Y−1/4 log(2X1/6) which is positive for X small enough. Then −B − Y−1/4 log 2 =
1
2Y
−1/4 log(X1/3) > Y−1/4 log(X1/3). Hence uniformly in all Y ∈ (0, 1), with probability at least

1 − C exp(− 1
C [− log(2X1/6)]3/2), we have gY (∗) ≥ Y−1/4 log(X1/3). This verifies (3.4.8).

Next for the first expression on r.h.s. of (3.4.7), by Lemma 3.4.1 we have

E

Z(0, 0; ∗, Y) 1
√
Y

sup
0≤C,B≤1
|C−B |≤X

|- (YC) − - (YB) |
 =

1
√
Y

E

 sup
0≤C,B≤1
|C−B |≤X

|�′YC − �′YB |
 ,

where �′ is a Brownian motion on [0, Y]. By scaling property of Brownian motion we may write

the last expression simply as

E

 sup
0≤C,B≤1
|C−B |≤X

|�C − �B |


where � is a Brownian motion on [0, 1]. This expression is free of Y and by [fis] this goes to zero
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with rate $ (X1/2−W) for any W > 0. Thus we have shown

lim sup
X↓0

sup
Y∈(0,1)

P

 sup
0≤C,B≤1
|C−B |≤X

|. (Y)∗ (C) − . (Y)∗ (B) | ≥ [
 = 0.

Since . (Y)∗ (0) = 0, this proves tightness. Along with finite-dimensional convergence, this estab-

lishes part (a).

The tightness results in part (b) follows via the same arguments as in the proof of Theorem

3.1.7 (a) utilizing the point-to-line modulus of continuity from Proposition 3.3.3-(point-to-line).

For part (c), we rely on localization results from [89]. Indeed, by Theorem 1.5 in [89], we know

the quenched density of + (Y−1) (recall + ∼ CDRP(0, 0; ∗, Y−1)) has a unique modeM∗,Y−1 almost

surely. By the same argument as in the proof of Theorem 3.1.7 (b), the point-to-line version of

Corollary 7.3 in [89] leads to the fact that Y−2/3 [! (Y)∗ (1) −M∗,Y−1]
?
→ 0. Finally from Theorem 1.8

in [89] we have Y−2/3M∗,Y−1
3→ 21/3M. This establishes (c).

3.4.2 Proof of Theorem 3.1.10 modulo Conjecture 3.1.9

In this section we prove Theorem 3.1.10 assuming Conjecture 3.1.9. The proof also relies on a

technical result which we first state below.

Lemma 3.4.3 (Deterministic convergence). Let 5 (G) : R: → R be a continuous function with

a unique maximizer ®0 ∈ R: and 5Y (G) : R: → R be a sequence of continuous functions that

converges to 5 (G) uniformly over compact subsets. Fix any X > 0 and take " > 0 so that

(08 − X, 08 + X) ∈ [−", "] for all 8. For G ∈ R, set

6Y (G) :=
exp(Y− 1

3 5Y (®G))∫
[−","]: exp(Y− 1

3 5Y (®H))d®H
.

For all ®1 ∈ [−", "]: , we have:
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lim sup
Y↓0

∫ 11

−"
· · ·

∫ 1:

−"
6Y (®G)d®G ≤

:∏
8=1

1{08 ≤ 18 + X}, (3.4.9)

lim inf
Y↓0

∫ 11

−"
· · ·

∫ 1:

−"
6Y (®G)d®G ≥

:∏
8=1

1{08 ≤ 18 − X}. (3.4.10)

Proof of this lemma follows via standard real analysis and hence we defer its proof to the end

of this section. We now proceed to prove Theorem 3.1.10 assuming the above lemma.

Proof of Theorem 3.1.10. For clarity we split the proof into three steps.

Step 1. Fix 0 = C0 < C1 < . . . < C: < C:+1 = 1. For convenience set ΓC8 := Γ(C8
√

2) where Γ(·) is the

geodesic of directed landscape from (0, 0) to (0,
√

2). Consider any ®0 = (01, . . . , 0: ) ∈ R: , which

is a continuity point for the CDF of (ΓC8 ):8=1. For any " ≥ sup8 |08 | + 1, define

+®0 (") := [−", 08] × · · · × [−", 0: ] ⊂ R: . (3.4.11)

To show convergence in finite-dimensional distribution, it suffices to prove that as Y ↓ 0

P

(
:⋂
8=1
{! (Y)C8 ≤ 08}

)
→ P

(
:⋂
8=1
{ΓC8 ≤ 08}

)
. (3.4.12)

From Definition 3.1.1 and using the long-time scaling from (3.2.2), we obtain that the joint density

of (! (Y)C1 , !
(Y)
C2
, . . . , !

(Y)
C:
) at (G8):8=1 is given by

6®C;Y (®G)∫
R:
6®C;Y (®H)3®H

, 6®C;Y (®G) := exp(Y−1/3*®C;Y (®G))

where

*®C;Y (®G) :=
:+1∑
8=1
(C8 − C8−1)1/3hY−1C8−1,Y−1C8 ((C8 − C8−1)−2/3G8−1, (C8 − C8−1)−2/3G8) (3.4.13)

Here G0 = G:+1 = 1.
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In this step, we reduce our computation to understanding the integral behavior of 6®C;Y on a

compact set. More precisely, the goal of this step is to show there there exists a constant C > 0

such that for all " large enough�����P
(
:⋂
8=1
{! (Y)C8 ≤ 08}

)
− E

[ ∫
+®0 (")

6®C;Y (®H)3®H∫
[−","]: 6®C;Y (®H)3®H

] ����� ≤ C exp
(
− 1

C"
2
)

(3.4.14)

where +®0 (") is defined in (3.4.11). We proceed to prove (3.4.14) by demonstrating appropriate

lower and upper bounds. For upper bound observe that by union bound we have

P

(
:⋂
8=1
{! (Y)C8 ≤ 08}

)
≤ P

(
:⋂
8=1
{! (Y)C8 ∈ [−", 08]}

)
+ P

(
sup
C∈[0,1]

|! (Y)C | ≥ "
)

≤ E

[ ∫
+®0 (")

6®C;Y (®H)3®H∫
[−","]: 6®C;Y (®H)3®H

]
+ P

(
sup
C∈[0,1]

|! (Y)C | ≥ "
)

≤ E

[ ∫
+®0 (")

6®C;Y (®H)3®H∫
[−","]: 6®C;Y (®H)3®H

]
+ C exp

(
− 1

C"
2
)

(3.4.15)

where the last inequality follows from Corollary 3.3.5 for some constant C > 0. For the lower

bound we have

P

(
:⋂
8=1
{! (Y)C8 ≤ 08}

)
≥ P

(
:⋂
8=1
{! (Y)C8 ∈ [−", 08]}

)
= E

[ ∫
+®0 (")

6®C;Y (®H)3®H∫
[−","]: 6®C;Y (®H)3®H

·

∫
[−","]: 6®C;Y (®H)3®H∫
R:
6®C;Y (®H)3®H

]
≥ E

[ ∫
+®0 (")

6®C;Y (®H)3®H∫
[−","]: 6®C;Y (®H)3®H

· Pb
(

sup
C∈[0,1]

|! (Y)C | ≤ "
)]
. (3.4.16)

By Corollary 3.3.5 we see that there exist two constants C1,C2 > 0 such that with probabil-

ity at least 1 − C2 exp(− 1
C2
"3), the random variable Pb

(
supC∈[0,1] |!

(Y)
C | ≤ "

)
is at least 1 −
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C1 exp(− 1
C1
"2). Thus,

r.h.s. of (6.3.33) ≥
[
1 − C2 exp

(
− 1

C2
"3

)]
E

[ ∫
+®0 (")

6®C;Y (®H)3®H∫
[−","]: 6®C;Y (®H)3®H

·
[
1 − C1 exp

(
− 1

C1
"2

)] ]
≥ E

[ ∫
+®0 (")

6®C;Y (®H)3®H∫
[−","]: 6®C;Y (®H)3®H

]
− C1 exp

(
− 1

C1
"2

)
. (3.4.17)

In view of (3.4.15) and (3.4.17), we thus arrive at (3.4.14) by adjusting the constants. This com-

pletes our work for this step.

Step 2. In this step, we discuss how directed landscape and hence the geodesic appear in the limit.

Recall the random function *®C;Y (®G) from (3.4.13). We exploit Conjecture 3.1.9, to show that as

Y ↓ 0, as R: -valued processes we have the following convergence in law

*®C;Y (®G)
3→ U®C (®G) := 2−

1
3

:+1∑
8=1
L(G8−1, C8−1

√
2; G8, C8

√
2) (3.4.18)

in the uniform-on-compact topology. Here L(G, B; H, C) denotes the directed landscape. Note that

by Definition 3.1.6, (ΓC8 ):8=1 is precisely the almost sure unique :-point maximizer of f®C (®G).

To show (3.4.18), we rely on Conjecture 3.1.9 heavily. Indeed, assuming Conjecture 3.1.9, for

each 8, as Y ↓ 0 we have

hY−1C8−1,Y−1C8 ((C8 − C8−1)−2/3G, (C8 − C8−1)−2/3H)
3→ 2−1/3S (8)

(
2−1/3(C8 − C8−1)−2/3G, 2−1/3(C8 − C8−1)−2/3H

)
where the convergence holds under the uniform-on-compact topology. Here S (8) are independent

Airy sheets as hY−1C8−1,Y−1C8 (·, ·) are independent. Now by the definition of directed landscape we

have

2−
1
3

:+1∑
8=1
L(G8−1, C8−1

√
2; G8, C8

√
2)
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3
= 2−

1
3

:+1∑
8=1
(C8+1 − C8)1/3S (8)

(
2−1/3(C8 − C8−1)−2/3G8−1, 2−1/3(C8 − C8−1)−2/3G8

)
with G0 = G:+1 = 1. Here the equality in distribution holds as R: -valued processes in ®G. This allow

us to conclude the desired convergence for*®C;Y (®G) in (3.4.18), completing our work for this step.

Step 3. In this step, we complete the proof of (3.4.12) utilizing (3.4.14) and the weak convergence

in (3.4.18). Using Skorokhod’s representation theorem, given any fixed " , we may assume that

we are working on a probability space where

P(A) = 1, for A :=
{

sup
®G∈[−","]:

��*®C;Y (®G) − U®C (®G)
��→ 0

}
.

Let us define

(ΓC8 (")):8=1 := argmax
®G∈[−","]:

f®C (®G),

where in case there are multiple maximizers we take the one whose sum of coordinates is the

largest. We next define

B :=
{

argmax
®G∈[−","]:

U®C (®G) exists uniquely and (ΓC8 (")):8=1 ∈ [−
"
2 ,

"
2 ]

:

}
.

Fix any X ∈ (0, "2 ). By Lemma 3.4.3 we have

lim sup
Y↓0

E

[ ∫
+®0 (")

6®C;Y (®H)3®H∫
[−","]: 6®C;Y (®H)3®H

]
≤ P(¬B) + E

[
lim sup
Y↓0

∫
+®0 (")

6®C;Y (®H)3®H∫
[−","]: 6®C;Y (®H)3®H

1{A ∩ B}
]

≤ P(¬B) + P

(
:⋂
8=1
{ΓC8 (") ≤ 08 + X}

)
≤ P(¬B) + P

(
:⋂
8=1
{ΓC8 ≤ 08 + X}

)
+ P

(
sup
C∈[0,1]

|ΓC | ≥ "
)
,

(3.4.19)

where the last inequality follows by observing that ΓC8 (") = ΓC8 for all 8, whenever supC∈[0,1] |ΓC | ≤
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" (and the fact that Γ(·) exists uniquely almost surely via Theorem 12.1 in [94]). In the same

manner we have

lim inf
Y↓0

E

[ ∫
+®0 (")

6®C;Y (®H)3®H∫
[−","]: 6®C;Y (®H)3®H

]
≥ E

[
lim inf
Y↓0

∫
+®0 (")

6®C;Y (®H)3®H∫
[−","]: 6®C;Y (®H)3®H

1{A ∩ B}
]

≥ P

(
:⋂
8=1
{ΓC8 (") ≤ 08 − X},A ∩ B

)
≥ P

(
:⋂
8=1
{ΓC8 ≤ 08 − X}

)
− P(¬B) − P

(
sup
C∈[0,1]

|ΓC | ≥ "
)
.

(3.4.20)

By Proposition 12.3 in [94],

P(¬B) ≤ P

(
sup
C∈[0,1]

|ΓC | ≥ "
)
≤ C exp

(
− 1

C"
3
)
.

Thus taking " ↑ ∞, followed by X ↓ 0, and using the fact that ®0 is a continuity point of the

density on both sides of (3.4.19) and (3.4.20) we have

lim
"→∞

lim sup
Y↓0

E

[ ∫
+®0 (")

6®C;Y (®H)3®H∫
[−","]: 6®C;Y (®H)3®H

]
= lim
"→∞

lim inf
Y↓0

E

[ ∫
+®0 (")

6®C;Y (®H)3®H∫
[−","]: 6®C;Y (®H)3®H

]
= P

(
:⋂
8=1
{ΓC8 ≤ 08}

)
Combining this with (3.4.14) we thus arrive at (3.4.12). This completes the proof.

Proof of Lemma 3.4.3. We begin by proving (3.4.9). When 08 ≤ 18 + X for all 8, the r.h.s of (3.4.9)

is 1 whereas the l.h.s of (3.4.9) is always less than 1. Thus we focus on when 0 9 > 1 9 + X for some

9 . In that case ®0 ∉ [−", 11] × · · · × [−", 1: ]. As ®0 is the unique maximizer of the continuous

function 5 (®G), there exists [ > 0 such that

sup
H8∈[−",18],8=1,2,...,:

5 (®H) < 5 ( ®0) − [.
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By uniform convergence over compacts, we can get Y0 such that

sup
Y≤Y0

sup
®G∈[−","]:

| 5Y (®G) − 5 (®G) | < 1
4[.

By continuity of 5 at ®0, we can get X0 < X such that for all 0 ≤ d ≤ X we have

sup
G8∈[08−d,08+d],8=1,...,:

| 5 (®G) − 5 ( ®0) | < 1
4[.

Thus for all Y ≤ Y0 and 0 ≤ d ≤ X0 we have 5Y (®G) ≥ 5 ( ®0) − 1
2[ for all ®G with G8 ∈ [08 − d, 08 + d].

And for all Y ≤ Y0, 5Y (®H) < 5 ( ®0) − 3
4[ for all ®H with H8 ∈ [−", 18]. Thus in conclusion

∫ 11

−"
· · ·

∫ 1:

−"
exp(Y− 1

3 5Y (®G))d®G ≤ (2"): exp(Y−1/3 [ 5 ( ®0) − 3
4[)])

and

∫
[−","]:

exp(Y− 1
3 5Y (®G))d®G ≥

∫ 01+X0

01−X0

· · ·
∫ 0:+X0

0:−X0

exp(Y− 1
3 5Y (®G))d®G ≥ (2X0): exp(Y−1/3 [ 5 ( ®0) − 1

2[)]).

Combining the above two bounds we have

∫ 11

−"
· · ·

∫ 1:

−"
6Y (®G)d®G ≤ ("X0

): exp(−1
4Y
−1/3[),

which goes to zero as Y ↓ 0. Thus, we conclude the proof of (3.4.9). The proof of (3.4.10) follows

analogously.

3.5 Appendix: Proof of Lemma 3.2.6

In this section, we prove Lemma 3.2.6. The idea is to view short-time scaled KPZ equation

gC (·) defined in (3.2.2) as the lowest index curve of an appropriate line ensemble and use certain

stochastic monotonicity properties of the same. To make our exposition self-contained, below we

briefly introduce the line ensemble machinery.
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Fix C > 0 throughout this section and consider the convex function

GC (G) = (cC/4)1/24(cC/4)
1/4G .

Recall the general notion of line ensembles from Section 2 in [73]. Let L = (L1,L2, . . .) be

an N × R indexed line ensemble. Fix :1 ≤ :2 with :1, :2 ∈ N and an interval (0, 1) ∈ R and

two vectors ®G, ®H ∈ R:2−:1+1. Let P:1,:2,(0,1),®G,®H
free denote the law of :2 − :1 + 1 many independent

Brownian bridges taking values ®G at time 0 and ®H at time 1. Given two measurable functions

5 , 6 : (0, 1) → R ∪ {±∞}, the law P:1,:2,(0,1),®G,®H, 5 ,6
GC

on L:1 , . . . ,L:2 : (0, 1) → R has the

following Radon-Nikodym derivative w.r.t. P:1,:2,(0,1),®G,®H
free :

3P
:1,:2,(0,1),®G,®H, 5 ,6
GC

3P
:1,:2,(0,1),®G,®H
free

(L:1 , . . . ,L:2) =
exp

{
−∑:2+1

8=:1

∫
GC

(
L8 (G) − L8−1(G)

)
3G

}
/
:1,:2,(0,1),®G,®H, 5 ,6
GC

, (3.5.1)

where L:1−1 = 5 , or∞ if :1 = 1; and L:2+1 = 6. Here / :1,:2,(0,1),®G,®H, 5 ,6
GC

is the normalizing constant

which produces a probability measure. We say L enjoys the GC-Brownian Gibbs property if, for

all  = {:1, . . . , :2} ⊂ N and (0, 1) ⊂ R, the following distributional equality holds:

Law
(
L ×(0,1) conditioned on LN×R\ ×(0,1)

)
= P

:1,:2,(0,1),®G,®H, 5 ,6
GC

, (3.5.2)

where ®G = (L:1 (0), . . . ,L:2 (0)), ®H = (L:1 (1), . . . ,L:2 (1)), and where again L:1−1 = 5 , or ∞ if

:1 = 1; and L:2+1 = 6.

Similar to the Markov property, a strong version of the GC-Brownian Gibbs property that is

valid with respect to stopping domains exists. A pair (a, b) of random variables is called a  -

stopping domain if
{
a ≤ 0, b ≥ 1

}
∈ Fext

(
 × (0, 1)

)
, the f-field generated by L(N×R)\( ×(0,1)) .

L satisfies the strong GC-Brownian Gibbs property if for all  = {:1, . . . , :2} ⊂ N and  -stopping

domain if (a, b), the conditional distribution of L ×(a,b) given Fext
(
 × (a, b)

)
is P:1,:2,(;,A),®G,®H, 5 ,6

GC
,

where ℓ = a, A = b, ®G = (L8 (a))8∈ , ®H = (L8 (b))8∈ , and where again L:1−1 = 5 , or ∞ if :1 = 1;
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and L:2+1 = 6.

The following lemma shows how the short-time scaled KPZ process gC (·) fits into a line en-

semble satisfying the GC-Brownian Gibbs property.

Lemma 3.5.1 (Lemma 2.5 in [87] and Lemma 2.5 of [74]). For each C > 0, there exists an N × R-

indexed line ensemble {g(=)C (G)}=∈N,G∈R satisfying the GC-Brownian Gibbs property and the lowest

indexed curve g(1)C (G) is equal in distribution (as a process in G) to gC (G) defined in (3.2.2). Fur-

thermore, the line ensemble {g(=)C (G)}=∈N,G∈R satisfies the strong GC-Brownian Gibbs property.

Before beginning the proof of Lemma 3.2.6 we recall one more property of line ensembles,

i.e. the stochastic monotonicity, which is indispensable to the study of monotone events in Lemma

3.2.6.

Lemma 3.5.2 (Lemmas 2.6 and 2.7 of [74]). Fix a finite interval (0, 1) ⊂ R and G, H ∈ R. For

8 ∈ {1, 2}, fix measurable functions 68 : (0, 1) → R∪{−∞} such that 62(B) ≤ 61(B) for B ∈ (0, 1).

For each E ∈ {1, 2}, let PE denote the law P1,1,(0,1),G,H,+∞,6E
GC

, so that a PE-distributed random

variable R8 = {RE (B)}B∈(0,1) is a random function on [0, 1] with endpoints G and H. Then a

common probability space may be constructed on which the two measures are supported such that,

almost surely, R1(B) ≥ R2(B) for all B ∈ (0, 1).

Proof of Lemma 3.2.6. Fix an interval [0, 1] and a corresponding monotone set � ∈ B(� ( [0, 1])).

By Lemma 3.5.1 and tower property of expectation we may write

P
[
gC (·) | [0,1] ∈ � | (gC (G))G∉(0,1)

]
= E(≥2)

[
P

[
g
(1)
C (·) | [0,1] ∈ � | (g

(=)
C (·))=≥2, (g(1)C (G))G∉(0,1)

] ]
= E(≥2)

[
P

1,1,(0,1),g(1)C (0),g
(1)
C (1),+∞,g

(2)
C (·)

GC

(
g
(1)
C (·) | [0,1] ∈ �

)]
(3.5.3)

where the last equality follows from (3.5.2). Here E(≥2) denotes the expectation operator taken

over all lower curves {g(=)C (·)}=≥2. Now by Lemma 3.5.2, decreasing g(2)C (·) pointwise on [0, 1]

reduces the value of g(1)C (·) pointwise stochastically. But by the definition of monotone set � (see
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(3.2.4)), we know decreasing g(1)C (·) | [0,1] stochastically pointwise and keeping the endpoint fixed,

only increases the conditional probability appearing above. Thus, we may drop g(2)C (·) all the way

to −∞, to obtain

r.h.s. of (4.6.2) ≤ E(≥2)
[
P

1,1,(0,1),g(1)C (0),g
(1)
C (1),+∞,−∞

GC

(
g
(1)
C (·) | [0,1] ∈ �

)]
. (3.5.4)

Under the above situation the Radon-Nikodym derivative appearing in (3.5.1) becomes constant,

and thus

P
1,1,(0,1),g(1)C (0),g

(1)
C (1),+∞,−∞

GC
[·] = P1,1,(0,1),g(1)C (0),g

(1)
C (1)

free [·] .

The measure on the right side above is a single Brownian bridge measure on [0, 1] starting at

g
(1)
C (0) and ending at g(1)C (1) and hence free of {g(=)C (·)}=≥2. Thus r.h.s. of (3.5.4) can be viewed

as P(0,1),(g
(1)
C (0),g

(1)
C (1))

free (�). This establishes (3.2.5). The case when [0, 1] is a stopping domain

follows from the same calculation and the fact that {g(=)C (·)}=≥1 satisfies the strong GC-Brownian

Gibbs property via Lemma 3.5.1.
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Chapter 4: The half-space log-gamma polymer in the bound phase

4.1 Introduction

Figure 4.1: The bound and the unbound phase.

Directed polymers in random environments, first appeared in [149, 152, 44], are a rich class

of mathematical physics models that have been extensively studied over the last several decades

(see books [226, 129, 100, 65] and the references therein). More recently, a particular variant of

the polymer models, the half-space polymers, has garnered considerable attention. The structure

of the half-space polymers resembles the behavior of an interface in the presence of an attractive

wall and their understanding renders importance to the studies of the wetting phenomena ([1,

198, 51]). Depending on the attraction force of the wall, it was conjectured in [158] that these

models exhibit a “depinning" phase transition. When the attraction force exceeds a certain critical

threshold (colloquially known as the bound phase), [158] conjectured that the endpoint of the

polymer stays within a $ (1) window around the wall, i.e., it gets pinned to the wall. In this paper,

we focus on the half-space polymers with log-gamma weights which make the model integrable

and resolve Kardar’s $ (1) conjecture in the bound phase. Our work is the first rigorous instance
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that positively solves Kardar’s $ (1) conjecture.

Presently, we begin with an introduction to the model and the statements of our main results.

4.1.1 The model and the main results

Fix any \ > 0 and U > −\ and define the half-space index set: I− = {(8, 9) ∈ Z2
>0 | 9 ≤ 8}. We

consider a family of independent variables (,8, 9 )(8, 9)∈I−:

,8,8 ∼ Gamma−1(U + \) ,8, 9 ∼ Gamma−1(2\) for 8 < 9 , (4.1.1)

where Gamma(V) denotes a random variable with density 1{G > 0}[Γ(V)]−1GV−14−G . Let Πhalf
#

be the set of all upright lattice paths of length 2# − 2 starting from (1, 1) that are confined to the

half-space I− (see Figure 4.2). Given the weights in (4.1.1), the half-space log-gamma (HSLG)

polymer is a random measure on Πhalf
#

defined as

P, (c) = 1
/ (#)

∏
(8, 9)∈c

,8, 9 · 1c∈Πhalf
#
, (4.1.2)

where / (#) is the normalizing constant.

(1, 1)

(11, 5)

(9, 7)
Gamma−1 (U + \)

Gamma−1 (2\)

Figure 4.2: Two possible paths of length 14 in Πhalf
8 are shown in the figure.

The parameter U controls the strength of the boundary weights, i.e. the attractiveness of the

wall, and a “depinning" phase transition occurs when U = 0 (see [158, 204, 33]). When U ≥ 0,

[27, 22] showed that the polymer measure is unpinned and the endpoint lies in a $ (#2/3) window.
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For U < 0, the conjecture is that the attraction is strong enough so that the polymer measure is

pinned to the diagonal (see Figure 4.1). Indeed, our first main result below confirms that in the

bound phase, i.e., when U ∈ (−\, 0), the endpoint of the HSLG polymer is within $ (1) window

of the diagonal and is the first such result to capture the “pinning" phenomenon of the half-space

polymer measure to the diagonal.

Theorem 4.1.1 (Bounded endpoint). Fix \ > 0 and U ∈ (−\, 0) and consider the random measure

P, from (4.1.2). For a path c ∈ Πhalf
#

, we denote c(2# − 2) as the height (i.e., H-coordinate) of

the endpoint of the polymer. We have

lim sup
:→∞

lim sup
#→∞

P, (c(2# − 2) ≤ # − :) = 0, in probability. (4.1.3)

Theorem 4.1.1 is a quenched result and naturally implies its annealed version. Following the

above theorem, our next point of inquiry is the limiting behavior of the quenched distribution of

the endpoints around the diagonal. We introduce and clarify a few more notations below before

stating our results in this direction. Let Πhalf
<,= is the set of all upright lattice paths starting from

(1, 1) and ending at (<, =) that reside solely in the half-space I−. We define the point-to-point

partition function as

/ (<, =) :=
∑

c∈Πhalf
<,=

∏
(8, 9)∈c

,8, 9 . (4.1.4)

Under the above definition, the normalizing constant / (#) in (4.1.2), can also be viewed as the

point-to-line partition function, i.e.

/ (#) =
#−1∑
?=0

/ (# + ?, # − ?).

The natural logarithm of the partition function is termed as the free energy of the polymer. The

aforementioned depinning phase transition can be observed by studying the fluctuations of the free

energy of the polymer. In this context, [27] obtained precise one-point fluctuations for the point-
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to-line free energy log / (#) in both the bound and unbound phases and observed the BBP phase

transition. A similar fluctuation result and Baik-Rains phase transition were later shown in [151]

for the point-to-point free energy log / (#, #) on the diagonal. For U ≥ 0, it was recently proven

in [22] that the point-to-point free energy process

(
log / (# + ?#2/3, # − ?#2/3)

)
?∈[0,A]

after appropriate centering and scaling by #1/3 is functionally tight. This result captures the char-

acteristic KPZ 1/3 fluctuation and 2/3 transversal scaling exponents. In our present work, we

study the point-to-point free energy process under U < 0 case. Our second main result below ob-

tains precise fluctuations for the increments of the point-to-point free energy process when U < 0.

To state the result, we introduce the definition of the log-gamma random walk.

Definition 4.1.2. Fix \ > 0 and U ∈ (−\, 0]. Let .1 ∼ Gamma(\ + U) and .2 ∼ Gamma(\ − U) be

independent random variables. We refer to - := log.2 − log.1 as a log-gamma random variable.

It has a density given by

?(G) :=
1

Γ(\ + U)Γ(\ − U)

∫
R

exp ((\ − U)H − 4H + (\ + U) (H − G) − 4H−G) 3H. (4.1.5)

Let (-8)8≥0 be a sequence of such iid log-gamma random variables. Set (0 = 0 and (: =
∑:
8=1 -8.

We refer to ((: ):≥0 as a log-gamma random walk.

Our next result states that in the bound phase, the above random walk is an attractor for the

increments of the half-space log-partition function.

Theorem 4.1.3. Fix \ > 0 and U ∈ (−\, 0). For each : ≥ 1, as # → ∞, we have the following

multi-point convergence in distribution

(
/ (# + A, # − A)

/ (#, #)

)
A∈È0,:É

3→
(
4−(A

)
A∈È0,:É

, (4.1.6)

where ((A)A≥0 is a log-gamma random walk from Definition 4.1.2.
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From the above result, we deduce the following limiting quenched distribution of the endpoint

when viewed around the diagonal.

Theorem 4.1.4. Fix \ > 0 and U ∈ (−\, 0) and consider the random measure P, from (4.1.2).

Let ((: ):≥0 be a log-gamma random walk from Definition 4.1.2. Set & :=
∑
?≥0 4

−(? . For a path

c ∈ Πhalf
#

, we denote c(2# − 2) as the height (i.e., H-coordinate) of the endpoint of the polymer.

Then for each : ≥ 1, as # →∞, we have the following multi-point convergence in distribution

(
P, (c(2# − 2) = # − A)

)
A∈È0,:É

3→
(
&−1 · 4−(A

)
A∈È0,:É

. (4.1.7)

Beyond proving the $ (1) transversal fluctuation around the point (#, #) and pinning down

the exact density within this region, our main theorems above also shed light on the attractive

properties of half-space log-gamma stationary measures. In [24] a stationary version of the half-

space log-gamma polymer was considered for U ∈ (−\, \), where the horizontal weights along the

first row are assumed to be distributed as Gamma−1(\ − U) (i.e.,,8,1 ∼ Gamma−1(\ − U)). Let us

denote /stat(=, <) to be the point-to-point HSLG partition function computed using these weights.

It was shown in [24, Proposition 4.5], that this model is stationary in the sense that for all : ≥ 1,

and # ≥ : + 1

(log /stat(#, #) − log /stat(# + A, # − A))A∈È0,:É
3
= ((A)A∈È0,:É.

where ((A)A≥0 is a log-gamma random walk defined in Definition 4.1.2.

Remark 4.1.5. Using the above stationary weights, one can define an associated polymer measure

P,stat in the spirit of (4.1.2). We remark that both Theorem 4.1.1 and Theorem 4.1.4 continue to

hold under P,stat. This is not hard to check from our log-gamma random walk results presented in

Appendix 4.6.

Theorem 4.1.3 shows that for U < 0 the above log-gamma random walk measure is an attractor

for the original polymer model in the sense that the increment of the log-partition function of the
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original model converges to the same log-gamma random walk measure. We believe that our

broad techniques should also lead to a similar convergence result for U ≥ 0. We leave this for

future consideration.

We end this section by mentioning a recent work [21] on the stationary measures for the HSLG

polymer. The point-to-point log-gamma polymer partition function / (=, <) satisfies a recurrence

relation

/ (=, <) = ,=,< · (/ (= − 1, <) + / (=, < − 1)) for = > < ≥ 1,

/ (=, =) = ,=,= · / (=, = − 1) for = ≥ 1,

We refer to a process (ℎ(:)):≥0 as horizontal-stationary for the HSLG polymer if the solution to

the above recurrence relation with initial data I(·, 0) = 4ℎ(·) has stationary horizontal increments.

For instance, the distribution of horizontal increments (log / (# + :, #) − log / (#, #)):≥0 is same

for all # ≥ 0 (and equal to that of the initial data). Recently, [21] posited a one-parameter family

of horizontal-stationary measures for the HSLG polymer model and conjectured that these station-

ary measures are attractors for a large class of initial data (/ (=, 0))=≥0 subject to the condition

lim:→∞ log / (:, 0)/: = 3 ∈ R. However, the initial data relevant to our polymer model corre-

sponds to / (:, 0) = 1:=1 and is not covered in [21].

Implications of Gaussian fluctuations on the diagonal

In [151], the authors studied one point fluctuations of the HSLG log-partition function on the

diagonal, log / (#, #), in both phases. In bound phase, they showed that

log / (#, #) − '#
f
√
#

→ �, (4.1.8)

where � ∼ N(0, 1) and

'(\, U) := −Ψ(\ + U) −Ψ(\ − U), f2(\, U) := Ψ′(\ + U) −Ψ′(\ − U).

182



Here Ψ(·) denote the digamma function defined on R>0 by

Ψ(I) = mI logΓ(I) = −W +
∞∑
==0

(
1

= + 1
− 1
= + I

)
, (4.1.9)

where W is the Euler-Mascheroni constant. Combining the above result from [151] with our results,

we prove gaussianity away from the diagonal.

Theorem 4.1.6. Fix any : ∈ Z≥1. For each # > 0, fix (0#,1, . . . , 0#,: ) ∈ Z:≥0. Suppose that as

# →∞, 0#,8/
√
# → 0 for each 8 ∈ {1, . . . , :}. We have

(
log / (# + 0#,8, # − 0#,8) − '#

f
√
#

) :
8=1
→ (�,�, . . . , �).

where � ∼ N(0, 1).

The above theorem establishes gaussianity in the >(
√
#) window around the diagonal with

trivial correlations. In fact, we expect the above theorem to hold even if 0#,8/# → 0. When 0#,8

are precisely of the order # , we still expect to see gaussianity but with nontrivial correlations. The

above result is proved using a strong coupling result (Proposition 4.5.3) that we prove in Section

4.5. The gaussianity in the above theorem essentially comes from the [151] input. However, we

believe that it is possible to establish (4.1.8) using the machinery developed in this paper. We leave

this for future work.

4.1.2 Proof Ideas

In this section we sketch the key ideas behind the proofs of our main results. Our proof relies

on inputs from the recently developed HSLG Gibbsian line ensemble in [22], one-point fluctuation

results for point-to-(partial)line half-space log-partition functions from [27] and the localization

techniques from [89]. At the heart of our argument lies an innovative combinatorial argument that

bridges the aforementioned inputs and enables our proof.

The starting point of our analysis is the HSLG Gibbsian line ensemble in [22], which allows us
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�
(1)
#
( ·)

�
(2)
#
( ·)

�
(3)
#
( ·)

"1
√
#

√
#

Figure 4.3: First three curves of the HSLG line ensemble. There is a high probability uniform
separation of length

√
# between the first two curves in the above "1

√
# window.

to embed the free energy log / (# + A, # − A) of the HSLG polymer as the top curve of a Gibbsian

line ensemble (� (:)
#
(·)):∈È1,#É of log-gamma increment random walks interacting through a soft

version of non-intersection (Theorem 4.2.4) conditioning and subject to an energetic interaction at

the left boundary (where A = 0) depending on the value of U. This fact is due to the geometric

RSK correspondence [75, 195, 193, 40] and the half-space Whittaker process [19]. The key idea

of our proof is to show that with high probability, the first and the second curves in our line

ensemble ensemble (see Figure 4.3) are sufficiently uniformly separated. Then the separation

allows us to conclude that the first curve indeed behaves similarly to a log-gamma random walk by

a localization analysis.

The existing literature contains some information about the locations of the top two curves.

When U < 0, one can deduce from the line ensemble description in [22] that the first and the second

curves are repulsed from each other at the left boundary. Results in [27] also supply information

about the location for the first curve. However, one cannot deduce that the entire second curve lies

uniformly much lower than the first curve from the above two inputs and line ensemble techniques

alone.
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Intuition behind the separation

Before we proceed to further break down our argument about the separation, it is worth dwelling

on the mathematical intuition behind the separation between the first and second curves, which

originates from the definition of the line ensemble defined in Section 4.2.1. For simplicity, let us

focus only on the left boundary. By Definition 4.2.1, we have � (1)
#
(1) = log / (#, #), and

�
(1)
#
(1) + � (2)

#
(1) := log

2
∑
c1,c2

∏
(8, 9)∈c1∪c2

,̃8, 9

 , (4.1.10)

where the above sum is over all pair of non-intersecting upright paths c1, c2 from (1, 1) to (#, # −

1) and from (1, 2) to (#, #) confined in the entire quadrant Z2
≥1 (instead of octant). Here ,̃8, 9 is

the symmetrized version of the weights defined in (4.1.1) on the entire quadrant as:

,̃8,8 = ,8,8/2 for 8 ≥ 1, ,̃8, 9 = ,̃ 9 ,8 = ,8, 9 for 8 > 9 . (4.1.11)

Using point-to-(partial)line log-partition function fluctuation results from [27] and line ensemble

techniques, it is not hard to deduce that 1
#
�
(1)
#
(1) → ' := −Ψ(\ + U) − Ψ(\ − U), where Ψ is

the digamma function defined in (4.2.8). However, � (2)
#
(1) should follow a different law of large

numbers. This can be understood intuitively from (4.1.10) as follows. For U close to −\, the

weights on the diagonal are huge and stochastically dominate all the other weights. The sum in

(4.1.10) then concentrates on the pair of paths c∗1, c
∗
2 which jointly have the maximal numbers of

diagonal points. This occurs when one of the paths carries all the diagonal weights and the other

path has no diagonal weights. Thus we expect,

∑
c1,c2

∏
(8, 9)∈c1∪c2

,̃8, 9 �

∑
c1

∏
(8, 9)∈c1

,̃8, 9

 ·


∑
c2 |diag(c2)=∅

∏
(8, 9)∈c2

,̃8, 9

 (4.1.12)

Upon taking logarithms and dividing by # , the first term goes to '. However, the second term does

not feel the effect of the diagonal and hence should follow the law of large numbers corresponding
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to the unbound phase, i.e., U > 0. The unbound phase law of large numbers is given by −Ψ(\)

noted in [27, 22]. Thus overall, we expect 1
#
(� (1)

#
(1) + � (2)

#
(1)) → ' − Ψ(\). As Ψ is concave,

the above heuristics suggests � (2)
#
(1) follow a lower law of large numbers. While our technical

arguments to be presented later do not yield exactly (4.1.12), we utilize the above idea to obtain a

large enough separation between the two curves, which turns out to be sufficient for proving our

main theorems.

The* map and its consequences

We now describe the key idea that makes the above intuition work. All the statements men-

tioned in this subsection should be understood as high probability statements. The above idea of

having one path having all diagonal weights is made precise in Section 4.3, where we develop a

combinatorial map in Lemma 4.3.1, referred to as the* map.

The * map takes every pair of paths c1, c2 in the sum in (4.1.10) and returns a pair of non-

intersecting paths c′1, c
′
2 while preserving their shared weights up to reflections (see Figure 4.6).

Moreover, the diagonal weights collectively carried by the pair will only rest on one of the paths

among c′1, c
′
2. The * map is not injective but has at most 2# many inverses for each pair in its

image.

When we apply the* map to a single pair of adjacent paths, we get that

1
#
(� (1)

#
(1) + � (2)

#
(1)) ≤ log 2 + ' −Ψ(\).

The log 2 is an entropy factor that comes from overcounting the number of inverses of our *

map. To remove its influence, we rely on the definition of the lower curves of the line ensem-

ble. Indeed, similar to (4.1.10),
∑2:
8=1 �

(8)
#
(1) admits a representation in terms of 2:-many non-

intersecting paths. When we apply the * map to : pairs of adjacent paths simultaneously, it leads
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[b]0.45

c1

c2

Figure 4.4:

[b]0.45

c′1

c′2

Figure 4.5:

Figure 4.6: The * map takes c1, c2 from (A) and returns c′1, c
′
2 in (B). The precise description of

the map is given in the proof of Lemma 4.3.1

to the following average law of large numbers of the top 2: curves:

1
2:#

2:∑
8=1

�
(8)
#
(1) ≤ 1

2: log 2 − 1
2Ψ(\) −

1
2Ψ(\ + U) −

1
2Ψ(\ − U).

Taking : large enough, one can ensure the right-hand side constant is strictly less than '. In fact,

the above argument can be strengthened to conclude that for large enough :

sup
?∈È1,2#−4:+2É

1
2:#

2:∑
8=1

�
(8)
#
(?) ≤ ' − X,
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for some X > 0. This is obtained in Proposition 4.3.4.

As a consequence of this result, using soft non-intersection property of the line ensemble (The-

orem 4.2.4), we derive that with high probability, the (2: + 2)-th curve �2:+2
#
(·) is uniformly

Const · # below '# over È1, #É in Section 4.4. Employing one-point results from [27], one can

ensures the point � (1)
#
("1
√
#) on the top curve is ("2 +1)

√
# below '#. Combining the last two

results and line ensemble techniques we are able to benchmark the second curve from above:

sup
?∈È1,"1

√
#É
�
(2)
#
(?) ≤ '# − "2

√
# (4.1.13)

in Proposition 4.4.2. The details of the argument are presented in Section 4.4. While we are unable

to obtain a mismatch in the laws of large numbers for the first two curves following the above

procedures, the fact that the second curve is below the diffusive regime of the first curve (since "2

can be chosen as large as possible) over an interval of length "1
√
# is sufficient for our next step

of the analysis.

Localization analysis

The remaining piece of our proof of main theorems boils down to a localization analysis of the

first curve in Section 4.5. Our proof roughly follows the techniques developed in our paper [89].

First, to prove Theorem 4.1.1 we divide the tail into a deep and a shallow tail depending on the

distance away from (#, #), see Figure 4.7.

Our argument in Lemma 4.5.1 uses one-point fluctuations results of point-to-(partial)line log-

partition function from [27] as input and shows that the probability of the endpoint living in the

deep tail region is exponentially small. To show that the shallow tail contribution is also small

and to prove our remaining theorems, we establish the following strong convergence result in

Proposition 4.5.3:

(a) the law of the top curve within the [1, "
√
#] window is arbitrarily close to that of a log-gamma

random walk for large enough # (Proposition 4.5.3).
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H = # − "
√
#

H = # − :

(#, #)

(1, 1) (2# − 1, 1)

deep tail starting point

deep tail

shallow tail

Figure 4.7: If the height of the endpoint of the polymer is less than # − : , it either lies in the
shallow tail or in the deep tail (illustrated above). Lemma 4.5.1 shows it is exponentially unlikely
to lie in the deep tail.

In light of (a), the conclusion that the shallow tail contribution is small follows from estimating the

probability of the same event under the log-gamma random walk law. Theorem 4.1.3 is immediate

from (a) and Theorem 4.1.4 also follows from (a) after some calculations. The details are presented

in Section 4.5.2.

Finally, we briefly explain how we establish (a). A detailed discussion appears in the Step 1

of the proof of Proposition 4.5.3. As � (1)
#
(·) is a log-gamma random walk subject to soft non-

intersecting condition with � (2)
#
(·), it suffices to show that there’s sufficient distance between the

first and the second curves. Indeed, this will imply � (1)
#

behaves like a true log-gamma random

walk. As we have already benchmarked the second curve in (4.1.13), it remains to determine a

suitable lower bound for the first curve. The key idea here is to find a point ? = $ (
√
#) on the first

curve in the deep tail region such that with high probability

�
(1)
#
(?) ≥ '# − "′

√
#

for some "′. This is achieved in Lemma 4.5.2 using fluctuation results from [27]. Then using

standard random walk tools such as Kolmogorov’s maximal inequality, we derive that with high
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probability � (1)
#
(@) ≥ '# − ("′ + 1)

√
# for all @ ∈ È1, ?É. Choosing "2 = "

′ + 2 in (4.1.13) im-

plies that with high probability the first curve is at least
√
# above the second curve, This completes

our deduction and consequently establishes (a).

4.1.3 Related works and future directions

Our study of half-space polymers succeeds an extensive history of endeavors that attempt to

unravel their full-space variant. These full-space polymer models have rich connections with sym-

metric functions, random matrices, stochastic PDEs and integrable systems and are believed to

belong to the KPZ universality class (see [bc20, 65, 129]). Yet in spite of intense efforts in the past

decade, rigorous results proving either the 1/3 fluctuation exponent or the 2/3 transversal exponent

for general polymers have been scarce outside a few integrable cases (see [bc20, 65, 220, 23, 89,

90] and the references therein).

In the half-space geometry, a wealth of literature has focused on the phase diagram for limiting

distributions based on the diagonal strength. One of the first mathematical works goes to the series

of joint works [13, 15, 14] on the geometric last passage percolation (LPP), i.e. polymers with

zero temperature. Their multi-point fluctuations were studied in [217] and similar results were

later proved for exponential LPP in [9, 10] using Pfaffian Schur processes. For further recent

works on half-space LPP, we refer to [36, 37, 38, 122] and the references therein.

For positive temperature models, i.e., polymers, as they are no longer directly related to the

Pfaffian point processes, the first rigorous proof of the depinning transition appeared much later in

[27]. Here the authors also included precise fluctuation results such as the BBP phase transition

[11] for the point-to-line log-gamma free energy. For the point-to-point log-gamma free energy,

the limit theorem as well as the Baik-Rains phase transition were conjectured in [19] based on

steepest descent analysis of half-space Macdonald processes. This result has been recently proved

in [151] by relating the half- space model to a free boundary version of the Schur process.

Similar to their full-space counterparts, in addition to fluctuations, another dimension of in-

terest to half-space polymers is their localization behaviors, which refer to the concentration of
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polymers in a very small region given the environment. Figure 4.1 is a simulation of 30 samples

of HSLG polymers of length 120 sampled from the same environment with \ = 1, U = −0.2 and

U = +0.2. The simulation suggests that even in the unbound phase, we expect a localization phe-

nomenon around a favorite site given by the environment. Localization is a unique behavior of

the polymer path in the strong disorder regime. In the full space, various levels of localization

results have been established for discrete and continuous polymers. The mathematical work began

with the strong localization result of [56] that confirmed the existence of the favorite sites for the

endpoint distributions of point-to-line polymers and has been upgraded to the notion of atomic and

geometric localization for general reference random walks in a series of joint works [bc20, 32,

17, 16]. An even stronger notion, the “favorite region conjecture", which conjectures the favorite

corridor of a polymer to be stochastically bounded, has been proved for two integrable models:

the stationary log-gamma polymer in the discrete case ([67]) and the continuous directed random

polymer (CDRP) in the continuous case ([89]). In this direction, building up on [89] work, recently

[116] have studied the localization distance of the CDRP.

Investigating the geometry of the half-space CDRP is an interesting question to consider next.

Recently, a number of new results have appeared on the half-space KPZ equation, which arises

as the free energy of the half-space CDRP [240, 21], in both the mathematics [83, 20, 19, 200,

199, 21, 151] and the physics literature [bbc16, 135, 153, 98, 165, 24, 26, 25]. These results on

the free energy render the half-space continuous polymers amenable to analysis. However, the

challenge with further studying the geometry of the half-space CDRP remains, due to the lack of

an analogous half-space KPZ line ensemble.

Outline

The rest of the paper is organized as follows. Section 4.2 reviews some of the existing results

related to HSLG line ensemble and one-point fluctuations of point-to-(partial)line free energy of

HSLG polymer. In Section 4.3 we prove our key combinatorial lemma and use it to control the

average law of large numbers for the top curves of the line ensemble. In Section 4.4, we establish
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control over the second curve of the line ensemble. Finally, in Section 4.5, we complete the proofs

of our main theorems. Appendix 4.6 contains basic properties of log-gamma random walks.

Notation

Throughout this paper, we will assume \ > 0 and U ∈ (−\, 0) are fixed parameters. We write

È0, 1É := [0, 1] ∩ Z to denote the set of integers between 0 and 1. We will use serif fonts such as

A,B, . . . to denote events. The complement of an event A will be denoted as ¬A.
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4.2 Basic framework and tools

In this section, we present the necessary background on the half-space log-gamma (HSLG) line

ensemble and point-to-(partial) line partition function. From [22] and [27] we gather a few of the

known results on these objects that are crucial in our proofs.

4.2.1 The HSLG line ensemble and its Gibbs property

We begin with the description of the HSLG line ensemble and its Gibbs property. The def-

inition of the HSLG line ensemble is based on the point-to-point symmetrized partition func-

tion for multiple paths defined in (4.2.1). These are sum over multiple non-intersecting upright

paths on the entire quadrant Z2
>0 of products of the symmetrized version defined in (4.1.11) of

the weights defined in (4.1.1). Fix <, =, A ∈ Z>0 with = ≥ A, let Π(A)<,= be the set of all A-tuples

of non-intersecting upright paths in Z2
>0 starting from (1, A), (1, A − 1), . . . , (1, 1) and going to

(<, =), (<, = − 1), . . . , (<, = − A + 1) respectively. We define the point-to-point symmetrized par-
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tition function for A paths as

/
(A)
sym(<, =) :=

∑
(c1,...,cA )∈Π(A )<,=

∏
(8, 9)∈c1∪···∪cA

,̃8, 9 . (4.2.1)

where ,̃8, 9 are defined in (4.1.11). We write /sym(<, =) := / (1)sym(<, =) and use the convention that

/
(0)
sym(<, =) ≡ 1. One can recover HSLG partition function from symmetrized partition function via

the following identity. For each (<, =) ∈ I− we have

2/sym(<, =) = / (<, =). (4.2.2)

The above identity appears in Section 2.1 of [27] and follows easily due to the symmetry of the

weights. We stress that the above relation is an exact equality not just in distribution.

Definition 4.2.1 (HSLG line ensemble). Fix # > 1. For each : ∈ È1, # − 1É and ? ∈ È1, 2# −

2: + 2É set

�
(:)
#
(?) := log

(
2/ (:)sym(# + b?/2c, # − d?/2e + 1)

/
(:−1)
sym (# + b?/2c, # − d?/2e + 1)

)
(4.2.3)

We view the :-th curve � (:)
#

as a random continuous function � (:)
#

: [1, 2(# − : + 1)] → R

by linearly interpolating its values on integer points. We call the collection of curves �# :=

(� (1)
#
, �
(2)
#
, . . . , �

(#)
#
) as the HSLG line ensemble.

We remark that in Definition 2.7 in [22], the authors defined the HSLG line ensemble by defin-

ing L#
8
( 9) = � (8)

#
( 9) +Const ·# where the ‘Const’ is explicit and encodes the law of large numbers

for the HSLG free energy process (as well as the entire line ensemble) in the unbound phase. Since

the law of large numbers for the first curve and the second curve in the bound phase are possibly

different (recall our discussion of the proof idea in the introduction), we choose to not add this

constant in our definition of line ensemble. All the results from [22] can be easily translated to

results in our setting by adding this appropriate constant.
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In view of (4.2.2), for all ? ≤ 2# we have

�
(1)
#
(?) = log / (# + b?/2c, # − d?/2e + 1). (4.2.4)

The HSLG line ensemble enjoys a property that is known as the HSLG Gibbs property. To state

theHSLG Gibbs property, we introduce the HSLG Gibbs measures via graphical representation.

We consider a diamond lattice on the lower-right quadrant with vertices {(<,−=), (< + 1
2 ,−= +

1
2 ) | <, = ∈ Z

2
>0} and nearest neighbor edges as shown in Figure 4.10. We label the vertices by

setting q((<, =)) = (−b=c, 2< − 1). We shall always use this labeling to identify a vertex in this

lattice and will not mention its actual coordinates further.

On the diamond lattice domain, we add potential directed-colored edges. A directed-colored

edge ®4 = {E1 → E2} on this lattice is a directed edge from E1 to E2 that has three choices of colors:

blue, red, and black. Given a directed-colored edge, we associate a weight function based on the

color of the edge defined as follows:

,®4 (G) =



exp((\ − U)G − 4G) if ®4 is blue

exp((\ + U)G − 4G) if ®4 is red

exp(−4G) if ®4 is black.

(4.2.5)

We consider a graph �# on the diamond lattice with vertex set

 # := {(8, 9) | 8 ∈ È1, #É, 9 ∈ È1, 2# − 28 + 2É}.

with directed-colored edges described below. For each (?, @) ∈  # ,

• If @ is odd and ? is odd (even resp.), we put a blue (red resp.) edge: (?, @) → (?, @ + 1).

• If @ ≥ 3 is odd and ? is odd (even resp.), we put a red (blue resp.) edge: (?, @) → (?, @ − 1).

• If @ is even, we put two black edges: (?, @) → (? − 1, @) and (?, @) → (? + 1, @).
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The corresponding graph is shown in Figure 4.10. We write � (�) for the set of edges of any graph

� ⊂ �# .

[b]0.45
...

· · ·

...

· · ·

...

· · ·

...

· · ·

...
· · ·

(1, 1)

(2, 1)

(3, 1)

(1, 2) (1, 4)

(3, 4)

(3, 5)

(3, 6)

(3, 7)

Figure 4.8:

[b]0.45

Figure 4.9:

Figure 4.10: (A) Diamond lattice with a few of the labeling of the vertices shown in the figure.
The <-th gray-shaded region have vertices with labels of the form {(<, =) | = ∈ Z2

>0}. Thus each
such region consists of vertices with the same first coordinate labeling. Potential directed-colored
edges on the lattice are also drawn above. (B)  # with # = 4. Λ∗

#
consists of all vertices in the

shaded region.

The following result from [22] shows how the conditional distribution of the HSLG line ensem-

ble is given by certain measures called HSLG Gibbs measures.

Theorem 4.2.2 (Gibbs property). Consider the directed-colored graph �# described above. Set
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Λ be a connected subset of the graph �# on the diamond lattice  #

Λ∗# = {(8, 9) | 8 ∈ È1, # − 1É, 9 ∈ È1, 2# − 28 + 1É}.

Let Λ be a connected subset of Λ# . Recall the HSLG line ensemble �# from Theorem 4.2.1. The

law of {�#
8
( 9) | (8, 9) ∈ Λ} conditioned on {�#

8
( 9) | (8, 9) ∈ Λ2} is a measure on R|Λ| with

density at (D8, 9 )(8, 9)∈Λ proportional to

∏
®4={E1→E2}∈� (Λ∪mΛ)

,®4 (DE1 − DE2), (4.2.6)

where D8, 9 = �#
8
( 9) for (8, 9) ∈ mΛ.

We call the above conditional law as the HSLG Gibbs measure with boundary condition ®D =

(D8, 9 )(8, 9)∈mΛ and denote this measure as P®Dgibbs(·). The above theorem follows directly from the

results in [22]). Theorem 1.3 in [22] specifies the Gibbs property for the centered line ensemble

!#
8
( 9). The same Gibbs property holds for � (8)

#
( 9) as HSLG Gibbs measures are translation invari-

ant (Observation 2.1 (b) in [22]. The Gibbs property stated in Theorem 1.3 is different and valid

for all U > −\. When U ∈ (−\, \), one can redistribute the edge-weights (see Observation 4.2 in

[22]) to obtain the above stated Gibbs property.

The HSLG Gibbs measures satisfy stochastic monotonicity w.r.t. the boundary data.

Proposition 4.2.3 (Stochastic monotonicity, Proposition 2.6 in [22]). Fix :1 ≤ :2, 08 ≤ 18 for

:1 ≤ 8 ≤ :2 and U > −\. Let

Λ := {(8, 9) | :1 ≤ 8 ≤ :2, 08 ≤ 9 ≤ 18}.

There exists a probability space consisting of a collection of random variables

{! (E; (DF)F∈mΛ) | E ∈ Λ, (DF)F∈mΛ ∈ R|mΛ|}
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such that

1. For each (DF)F∈mΛ ∈ R|mΛ|, the law of {! (E; (DF)F∈mΛ) | E ∈ Λ} is given by the HSLG Gibbs

measure for the domain Λ with boundary condition (DF)F∈mΛ ∈ R|mΛ|.

2. With probability 1, for all E ∈ Λ we have

! (E; (DF)F∈mΛ) ≤ ! (E; (D′F)F∈mΛ) whenever DF ≤ D′F for all F ∈ mΛ.

As mentioned in the introduction, the HSLG line ensemble enjoys a certain soft non-intersection

property. This property is captured in our next theorem.

Theorem 4.2.4 (Ordering of points, Theorem 3.1 in [22]). Fix any : ∈ Z>0 and d ∈ (0, 1). There

exists #0 = #0(d, :) > 0 such that for all # ≥ #0, 8 ∈ È1, :É and ? ∈ È1, # − 8É the following

inequalities holds:

P(� (8)
#
(2? + 1) ≤ � (8)

#
(2?) + log2 #) ≥ 1 − d# ,

P(� (8)
#
(2? − 1) ≤ � (8)

#
(2?) + log2 #) ≥ 1 − d# ,

P(� (8+1)
#
(2?) ≤ � (8)

#
(2? + 1) + log2 #) ≥ 1 − d# ,

P(� (8+1)
#
(2?) ≤ � (8)

#
(2? − 1) + log2 #) ≥ 1 − d# .

We remark that the above theorem is true in the unbound phase as well (i.e., for all U > −\).

We now introduce the interacting random walks which are a specialized version of HSLG Gibbs

measures (see Figure 4.27).

Definition 4.2.5 (Interacting random walk). We say (!1, !2) = (!1È1, 2) − 2É, !2È1, 2) − 1É)

is an interacting random walk (IRW) of length ) with boundary condition (0, 1) if its law is a

measure on R4)−3 with density at (D1, 9 )2)−2
9=1 , (D2, 9 )2)−1

9=1 proportional to

)−1∏
9=1

exp(−4D2,2 9−D1,2 9−1 − 4D2,2 9−D1,2 9+1)
2∏
8=1

2)−1∏
9=1

�\+(−1)8+ 9U
(
(−1) 9+1(D8, 9 − D8, 9+1)

)
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where �V (G) = [Γ(V)]−1 exp(VG − 4G), D1,2)−1 = 0, D2,2) = 1, and D1,2) = 0 (which forces

�\+U (D1,2)−1−D1,2) ) to be a constant). Figure 4.27 provides the graphical representation of IRW.

1

0

Figure 4.11: IRW of length 6 with boundary condition 0 and 1.

Note that the directed-colored graph associated to IRW can be viewed as a subset of �# (in-

troduced above). Specifically, for each 8 ≥ 1, if we consider the vertex set

+8,) := {(28, 9), (28 + 1, 9) | 9 ∈ È1, 2) − 1É} ∪ {(28 + 1, 2))},

the subgraph induced by +8,) , � (+8,) ) corresponds to the graph associated to IRW. Note that the

graph associated to IRW can also be viewed as the subgraph induced by +̂) , � (+̂) ) where

+̂) := {(1, 9), (2, 9) | 9 ∈ È1, 2) − 1É} ∪ {(2, 2))},

provided we switch U to −U in (4.2.5) (i.e., switching red and blue edges). Since we have restricted

U ∈ (−\, 0) (bound phase), under this switching IRW can be viewed as certain HSLG Gibbs

measures in the unbound phase. Indeed, after switching U to −U, in the language of [22], IRW

precisely corresponds to bottom-free measure on the domain K2,) with boundary condition (0, 1)

(see Definition 2.3 in [22]). This allows us to use the unbound phase estimates developed in [22].

We end this section by recording one such estimate.

Proposition 4.2.6 (Lemma 5.3 in [22]). Fix any ) ≥ 2. Let (!1, !2) be a IRW of length ) with

boundary condition (0,−
√
)). Fix Y ∈ (0, 1). There exists "0 = "0(Y) > 0 such that

P

(
sup

?∈È1,2)−1É
|!1(?) | + sup

@∈È1,2)É
|!2(@) | ≥ "0

√
)

)
≤ Y.
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4.2.2 One-point fluctuations of point-to-(partial)line free energy

In this section, we gather the point-to-(partial)line free energy fluctuation results from [27]. To

state the theorem, we introduce a few necessary objects first.

Recall the point-to-point half-space partition function / (<, =) from (4.1.4). For : ∈ È0, #−1É,

we define the point-to-(partial)line half-space partition function as

ZPL
# (<) =

#−1∑
?=<

/ (# + ?, # − ?) =
#−1∑
?=<

4�
(1)
#
(2?+1) . (4.2.7)

For the second equality, note that by (4.2.4) we have � (1)
#
(2? + 1) = log / (# + ?, # − ?) and

thus we can translate the point-to-(partial)line partition function in Definition 1.8 (or equivalently

in Definition 1.3) of [27] into sums of 4�
(1)
#
(2?+1) by way of the full-space point-to-point partition

function / (= + ?, = − ?).

Let Ψ(·) denote the digamma function defined on R>0 by

Ψ(I) = mI logΓ(I) = −W +
∞∑
==0

(
1

= + 1
− 1
= + I

)
, (4.2.8)

where W is the Euler-Mascheroni constant. For any : ∈ Z>0, we set

'(\, U) := −Ψ(\ + U) −Ψ(\ − U),

g(\, U) := Ψ(\ − U) −Ψ(\ + U),

f2(\, U) := Ψ′(\ + U) −Ψ′(\ − U),

Δ: (\, U) := Ψ(\) − 1
2 [Ψ(\ + U) +Ψ(\ − U)] −

1
2: log 2.

(4.2.9)

For the remainder of the paper, we will make use of the above notation repeatedly. AsΨ is a strictly

concave function, for all large enough : (depending on U, \) we have Δ: > 0. For the results and

proofs in the remainder of the paper, we always choose : large enough such that Δ: > 0.

We now state the necessary results from [27] about the point-to-(partial)line partition function
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ZPL
#
(<) that we need in our subsequent analysis.

Theorem 4.2.7. Suppose 6 : Z>0 → Z>0. Suppose further that # is an integer that tends to infinity

in such a way that 6(#)
#
→ 0. We have

1
#1/2f

[
log ZPL

# (6(#)) − '# + 6(#)g
]

3→ N(0, 1). (4.2.10)

where ', g, f are defined in (4.2.9). We have the following law of large numbers

1
#

log

#−1∑
?=1

/ (# + ?, # − ?)


?
→ '

1
#

log

#∑
?=1

/ (# + ?, # − ? + 1)


?
→ '. (4.2.11)

Furthermore, the above law of large numbers continues to hold when U = 0, i.e., the diagonal

weights are assumed to be distributed as Gamma−1(\). In that case '(\, U) is interpreted as

'(\, 0) = −2Ψ(\).

Proof. Theorem 1.10 in [27] discusses several fluctuation results for point-to-(partial)line partition

function for the HSLG polymer, of which Theorem 1.10(3) applies to the bound phase in this paper.

Letting = = # − 6(#) and < = # + 6(#) in (1.12) of [27] yields

1
(# − 6(#))1/2f?

[
log ZPL

# (6(#)) + (# − 6(#))`?
]

3→ N(0, 1).

where `? := Ψ(\ + U) + ?Ψ(\ − U) and f2
? := Ψ′(\ + U) − ?Ψ′(\ − U) with ? = #+6(#)

#−6(#) . Observe

that (# − 6(#))`? = −'# + 6(#)g. As 6(#)/# → 0, we have that

(# − 6(#))1/2f?
#1/2f

→ 1.

Therefore the above fluctuation result implies (4.2.10). For the law of large numbers, the first one

in (4.2.11) follows by taking 6(#) ≡ 1 and appealing to (4.2.10). The second law of large numbers

also follows from Theorem 1.10(3) in [27] as their result also gives fluctuation results for point-to-

(partial)line free energy of that form with the same law of large numbers. Finally, the last point of
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Theorem 4.2.7 follows by from Theorem 1.10(2) in [27] which deals with the U = 0 case.

4.3 Controlling the average law of large numbers of the top curves

In this section, we control the average law of large numbers of the top 2: curves for large

enough : (Proposition 4.3.4). As explained in the introduction, the key idea behind this proposition

is to show that the contribution of diagonal weights in the 2: many non-intersecting paths of

/
(2:)
sym (<, =) (defined in (4.2.1)) essentially comes from : many paths. The starting point of this

idea is Lemma 4.3.1. Given a pair of non-intersecting paths (c1, c2) starting and ending at adjacent

locations with the same G-coordinate, Lemma 4.3.1 constructs two new non-intersecting paths

(c′1, c
′
2) from (c1, c2) such that the new paths collectively carry the same weight variables but

the diagonal weights only rest on the lower path. This combinatorial result proceeds to help us

decompose the symmetrized multilayer partition function /
(2:)
sym (<, =) into pairs of single-layer

ones in Lemmas 4.3.2 and 4.3.3 before culminating into the final result in Proposition 4.3.4.

Let Π(E1 → E2, D1 → D2) denote the set of pairs of non-intersecting upright paths in Z2
>0

starting from D1, E1 and ending at D2, E2 respectively. Recall that I− =
{
(8, 9) ∈ Z2

>0 | 9 ≤ 8
}
. Define

I+ :=
{
(8, 9) ∈ Z2

>0 | 9 ≥ 8
}

which represents the half-space index set that includes points on and

above the diagonal. The first lemma constructs the* map.

Lemma 4.3.1 (Construction of * map). Fix G ∈ Z>0 and any (<, =) ∈ I− with = ≥ 2. Then there

exists a map* : Π1 → Π2 where

Π1 := Π((1, G + 1) → (<, =), (1, G) → (<, = − 1))

Π2 := Π((1, G + 1) → (= − 1, <), (1, G) → (=, <)),

such that the following properties hold (let (c′1, c
′
2) := * (c1, c2)):

(a) c′1 has no diagonal points, i.e., {(8, 8) ∈ Z2
>0} ∩ c

′
1 is empty and

{(8, 8) ∈ Z2
>0} ∩ c

′
2 = {(8, 8) ∈ Z

2
>0} ∩ {c1 ∪ c2}.
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(b) Recall the symmetrized weights (,̃8, 9 )(8, 9)∈Z2
>0

from (4.1.11). We have

∏
(8, 9)∈c1∪c2

,̃8, 9
0.B.
=

∏
(8, 9)∈c′1∪c

′
2

,̃8, 9 .

(c) For each (c′1, c
′
2) ∈ Π2 we have

��*−1({(c′1, c
′
2)})

�� ≤ 2|{(8,8)∈c1∪c2}| .

[b]0.45

Figure 4.12:

[b]0.45

Figure 4.13:

Figure 4.14: The* map takes (A) to (B).

We remark that Lemma 4.3.1 is entirely combinatorial and does not use any results about the

integrability of the model. Lemma 4.3.1 continues to hold for any collection of symmetrized
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weights that are not necessarily distributed as inverse-Gamma random variables.

Proof. We define a partial order < on the points Z2
>0 by requiring %1 = (01, 11) < %2 = (02, 12)

whenever 01 + 11 < 02 + 12. Let c1 denote the path from (1, G + 1) to (<, =) and c2 the path

from (1, G) to (<, = − 1). We denote diag(c8) as the set of points on c8 that lie on the diagonal set

� := {(8, 8) ∈ Z2
>0}. Recall that I+ = {(8, 9) ∈ Z2

>0 | 8 ≤ 9} and I− = {(8, 9) ∈ Z2
>0 | 9 ≤ 8}.

We first define a special collection of points, SPDiag from diag(c2). Let �1 < �2 < �3 <

· · · < �B be all the points in diag(c1 ∪ c2) arranged in the increasing order. We put the point

� 9 ∈ diag(c2) in the set SPDiag if � 9−1 ∈ diag(c1) or � 9+1 ∈ diag(c1). In other words, SPDiag

consists of the diagonal points in c2 that bookend contiguous clusters of diag(c1) in diag(c1∪c2).

We enumerate the points in SPDiag as �1 < �2 < · · · < �A . Let � 9 be the first point on c1 that has

the same G-coordinate as � 9 . Note that by construction, either only c1 intersects the diagonal or

only c2 intersects the diagonal between � 9 and � 9+1, 9 = 1, . . . , A . Let us denote �A+1 := (<, =−1)

and �A+1 := (<, =).

We now construct new paths c′2 and c′1 from c2 and c1 by reconstructing each segment between

� 9 and � 9+1 (and � 9 and � 9+1 for c1 respectively), 9 = 1, . . . , A . We separate the reconstruction

procedures for each segment into the following cases: if only c2 intersects the diagonal and 9 ≤

A − 1, if only c1 intersects the diagonal and 9 ≤ A − 1, or if 9 = A.

1. When 1 ≤ 9 ≤ A − 1 and only c2 intersects the diagonal, we keep the original paths. We set

c′1 and c′2 on these segments to be the same as those on c1 and c2 respectively.

2. When 1 ≤ 9 ≤ A − 1 and only c1 intersects the diagonal between � 9 and � 9+1 (see Figure

4.17), the portion of the path c2 from � 9 to � 9+1 (excluding � 9 and � 9+1) lies in I− \ �.

Reflecting the portion of the path c2 from � 9 to � 9+1 (black path in Figure 4.17) across the

diagonal yields a path c3 (black dashed path in Figure 4.17). Let & be the first point on

diag(c1) that lies between � 9 and � 9+1 and &′ be the last, which exist by construction of the

SPdiag set (& and &′ may overlap). As the H-coordinate of �8 is strictly smaller than that of
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[b]0.45 � 9

� 9

� 9+1

� 9+1

&

&′

%1

%2

c3

c1

c2

Figure 4.15:

[b]0.45 � 9

� 9

� 9+1

� 9+1

%1

%2

%′1

%′2

c′2

c′1

Figure 4.16:

Figure 4.17: The second case when 9 ≤ A − 1 and only c1 intersects with the diagonal. c1 and c2
are black and blue paths in Figure (A) respectively. c3 is the black dashed path in Figure (A). c′1
is the path in Figure (B) which is formed by the concatenation of solid blue paths and the black
dashed path. c′2 is the path in Figure (B) which is formed by the concatenation of solid black paths
and the blue dashed path. The* map takes c1, c2 and spits out c′1, c

′
2.
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�8 and &,&′ are on the diag(c1), c1 and c3 must intersect on the segments between � 9 and &

and &′ and � 9+1. Let %1 be the first point of intersection and %2 the last point of intersection.

Clearly %1 ≠ %2 as the former is between � 9 and & and the latter lies between &′ and � 9+1.

Replacing the portion of c1 between %1 and %2 with that of c3 yields a path c′1 from � 9 to

� 9+1. As the part of c3 between %1 and %2 lies in I+ \�, c′1 lies entirely in I+ \�. We denote

the reflections of %1 and %2 across the diagonal as %′1 and %′2, which must lie on the original c2

by construction. Similarly replacing the portion of c2 between %′1 and %′2 with the reflection of

c1 between %1 and %2 across the diagonal yields a path c′2 from � 9 to � 9+1. As c1 and c2 are

non-intersecting, the reflected paths are also non-intersecting. Thus the new paths c′1 and c′2

are non-intersecting.

3. When 9 = A, consider the portion of the path c2 from �A to �A+1 (see Figure 4.20). Note that

in this segment, all the diagonal points belong to c1. Reflecting this portion of c2 across the

diagonal gives us c3 (black dashed path in Figure 4.20). Let & be the first point on diag(c1)

that lies between � 9 and � 9+1 and & exists as c1 ends at �A+1 := (<, =) ∈ I−. Note that c3

lies entirely in I+ \ �, excluding �A . Thus c1 and c3 necessarily intersect in I+ \ �. Again,

we locate the first point intersection % and replace the portion of c1 from % to �A+1 with the

portion of c3 from % to �′
A+1 := (= − 1, <). Similarly, reflecting the portion of c1 from % and

�A+1 across the diagonal and replacing the portions of c2 between %′ and �A+1 with the portion

of reflection between % and �′
A+1 := (=, <) yields a path c′2 from �A to �′

A+1. Clearly, the new

path c′1 lies in I+ \ � and the paths c′1 and c′2 are non-intersecting as the reflected portions are

non-intersecting.

As � 9 and � 9 remain unchanged, connecting all the segments between � 9 ’s (and � 9 ’s respec-

tively) for 9 ≤ A and �A and �′
A+1 (and �A and �′

A+1) yields the new path c′2 from (1, G) to (=, <)

and the new path c′1 from (1, G + 1) to (= − 1, <) (see Figure 4.14). At each step of the above con-

struction, the paths remain non-intersecting. Thus (c′1, c
′
2) form a non-intersecting pair. We call

this explicitly constructed map *. By construction, c′1 lies entirely in I+ \ � and has no diagonal
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[b]0.45 �A

�A

�A+1

�A+1

&%c1

c2

c3

Figure 4.18:

[b]0.45 �A

�A

�′
A+1 �′

A+1

%

%′

c′2

c′1

Figure 4.19:

Figure 4.20: The 9 = A case. c1 and c2 are black and blue paths in Figure (A) respectively. c3 is the
black dashed path in Figure (A). c′1 is the path in Figure (B) which is formed by the concatenation
of the solid blue path and the black dashed path. c′2 is the path in Figure (B) which is formed by
the concatenation of the solid black path and the blue dashed path. The * map takes c1, c2 and
spits out c′1, c

′
2.

points. This proves (a). Since the construction involves only exchanges of reflected portions, due

to the symmetry of the weights ,̃8, 9 across the diagonal, we have (b). Finally to verify (c), note

that there are at most 2diag(c′1∪c
′
2) possible choices of diag(c1) and diag(c2) for a given pair of two

paths (c′1, c
′
2) in the pre-image of*. As diag(c1) and diag(c2) uniquely determine SPDiag where

reflections are performed, reverting the same operations on c′1 and c′2 between consecutive points
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in SPDiag leads to original c1 and c2. Thus the map has at most 2diag(c′1∪c
′
2) inverses for (c′1, c

′
2),

which completes the proof.

Note that the* map in Lemma 4.3.1 gives us a path that does not contain any diagonal vertex.

To capture the contribution of this path, we now introduce diagonal-avoiding symmetrized partition

function. Let Π̃(1)<,= be the collection of all upright paths from (1, 1) to (<, =) that do not touch the

diagonal after (1, 1). Set

/̃sym(<, =) :=
∑

c∈Π̃(1)<,=

∏
(8, 9)∈c

,̃8, 9 , +̃@ :=
∑

(8, 9) |8+ 9=@
/̃sym(8, 9) (4.3.1)

where ,̃8, 9 is defined in (4.1.11). We call /̃sym(<, =) the diagonal-avoiding symmetrized partition

function. Let us recall /sym(<, =) from (4.2.1) and we similarly define

+@ :=
∑

(8, 9) |8+ 9=@
/sym(8, 9) (4.3.2)

The next lemma establishes a relation between / (2:)sym (<, =), +<+= and +̃<+=.

Lemma 4.3.2. For all (<, =) ∈ I−, almost surely we have

/
(2:)
sym (<, =) ≤ 2= ·

2:∏
8=2

8−1∏
9=1
(,̃1, 9 )−1 ·

:∏
8=1

[
+<+=+2−28+̃<+=+1−28

]
(4.3.3)

where / (8)sym(<, =), +<+=+2−28 and +̃<+=+1−28 are defined in (4.2.1), (4.3.2) and (4.3.1) respectively.

Proof. We extend our definition of * map from Lemma 4.3.1 to the domain Π(2:)<,= by defining

* (c1, . . . , c2: ) := (* (c1, c2), . . . ,* (c2:−1, c2: )). Let '8,:<,= be the collection of all upright paths

from (1, 2: − 28 + 1) to (= − 28 + 2, <). Let '̃8,:<,= be the collection of all upright paths from

(1, 2: − 28 + 2) to (= − 28 + 1, <) that avoid the diagonal. Given any (c′1, . . . , c
′
2: ) ∈ * (Π

(2:)
<,= ), by
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(c), there are at most

:∏
8=1

2| ( 9 , 9)∈c
′
28−1∪c

′
28 |

many inverses in the pre-image of the* map. The* map preserves the number of diagonal vertices

by (a). Furthermore by non-intersection, a 2:-tuple of paths in Π(2:)<,= has at most = many diagonal

vertices. Thus there are at most 2= many inverses. Hence by (a) we have

/
(2:)
sym (<, =) ≤ 2= ·

:∏
8=1


∑

c1∈'̃8,:<,=

∏
(8, 9)∈c1

,̃8, 9

 ·
:∏
8=1


∑

c2∈'8,:<,=

∏
(8, 9)∈c2

,̃8, 9

 . (4.3.4)

We may elongate each of the path in '8,:<,= and '̃8,:<,= by appending an up-path from (1, 1) to (1, 2:−

28 + 2) and from (1, 1) to (1, 2: − 28 + 1) respectively. This produces elongated paths in Π̃(1)
=−28+2,<

and Π=−28+1,< respectively. In terms of weights, we need to multiply the existing weights in (4.3.4)

by
∏2:−28+1

9=1 ,̃1, 9 and
∏2:−28

9=1 ,̃1, 9 respectively to get the corresponding weights of elongated paths.

After doing precisely the above, we have

/
(2:)
sym (<, =) ≤ 2= ·

2:∏
8=2

8−1∏
9=1
(,̃1, 9 )−1 ·

:∏
8=1

[
/sym(= − 28 + 2, <) /̃sym(= − 28 + 1, <)

]
. (4.3.5)

We get (4.3.3) from the above inequality in (4.3.5) by observing the definition of +@ and +̃@ from

(4.3.2). This completes the proof.

The next lemma bounds log+@ and log +̃@ from above with high probability.

Lemma 4.3.3. Recall ' from (4.2.9). For every X > 0 and 1 ≤ ? < =, we have

lim
@→∞

P
(
log+@ ≤ (' + X) @2

)
= 1, lim

@→∞
P

(
log +̃@ ≤ (−2Ψ(\) + X) @2

)
= 1. (4.3.6)
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Proof. Fix any X > 0. By Lemma 4.2.2 we have

+2# =

#−1∑
?=0

/ (# + ?, # − ?), +2#+1 =
#∑
?=1

/ (# + ?, # − ? + 1).

From Theorem 4.2.7 ((4.2.11) in particular) we have that

1
#

log

#∑
?=1

/ (# + ?, # − ? + 1)


?
→ ',

1
#

log

#−1∑
?=1

/ (# + ?, # − ?)


?
→ ', (4.3.7)

Note that in the above equation, we have excluded / (#, #) as their result does not contain / (#, #)

in the sum. However, in our case, we may include / (#, #) by appealing to Theorem 4.2.4. First,

in view of the above law of large numbers in (4.3.7), we have

P(log+2#+1 ≤ (' + 1
2X)#) → 1. (4.3.8)

On the other hand, by (4.2.4) we have
∑#
?=1 4

�
(1)
#
(2?) =

∑#
?=1 / (# + ?, # − ? +1). Since � (1)

#
(2) ≤

log
∑#
?=1 4

�
(1)
#
(2?) = log+2#+1, (4.3.8) implies

P(� (1)
#
(2) ≤ (' + 1

2X)#) → 1,

as # → ∞. In addition, by ordering of points in the line ensemble (Theorem 4.2.4) we know that

with probability at least 1 − 2−# , � (1)
#
(1) ≤ � (2)

#
(2) + log2 # . Thus we have

P(� (1)
#
(1) ≤ (' + X)#) → 1, (4.3.9)

as # → ∞. Given that � (1)
#
(1) = / (#, #), combining (4.3.9) and the second convergence in

(4.3.7) yields P(log+2# ≤ (' + X)#) → 1 and together with (4.3.8) this concludes the proof of

the first convergence in (4.3.6).

Next, for the diagonal-avoiding case, let (,U=0
8,8
)8≥1 be a family of weights distributed as
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Gamma(\) independent of (,8, 9 ). We set ,U=0
8, 9

:= ,̃8, 9 for 8 ≠ 9 . This gives us a new collec-

tion of symmetrized weights. We denote the corresponding symmetrized partition function and the

diagonal-avoiding symmetrized partition function as /U=0
sym and /̃U=0

sym respectively. Observe that

/̃sym(8, 9) ≤
,̃1,1

,U=0
1,1
· /̃U=0

sym (8, 9) ≤
,̃1,1

,U=0
1,1
· /U=0

sym (8, 9). (4.3.10)

The first equality in (4.3.10) is due to the fact that the weight corresponding (1, 1) is common in

all paths and that is the only diagonal weight that appears in the diagonal avoiding symmetrized

partition functions. The next inequality is obvious as we have just removed the diagonal avoiding

restriction. This leads to

log +̃@ ≤ log ,̃1,1 − log,U=0
1,1 + log


∑

(8, 9) |8+ 9=@
/U=0

sym (8, 9)
 .

The first two terms on the right-hand side of the above display are tight. An upper bound on the

third term can be computed by the exact same analysis as +@. Indeed, the law of large numbers and

Theorem 4.2.4 continue to hold for U = 0 when ' becomes −2Ψ(\) (see the last point in Theorem

4.2.7). This concludes the proof of (4.3.6).

Finally, with Lemmas 4.3.2 and 4.3.3 in place, we are ready to control the average law of large

numbers of the top curves of the HSLG line ensemble.

Proposition 4.3.4. Recall Δ: , ' in (4.2.9). Fix any Y > 0 and : ∈ Z>0 large such that Δ: > 0.

Then there exists #0(:, Y) > 2: + 1 such that for all # ≥ #0 we have

P

(
sup

?∈È1,2#−4:+2É

1
2:

2:∑
8=1

�
(8)
#
(?) ≤ (' − 1

2Δ: )#
)
≥ 1 − Y.

In plain words, Proposition 4.3.4 claims that when : is taken large enough so that Δ: > 0, the

average law of large numbers of top 2: curves is strictly less than ', which is the law of large

numbers for point-to-(partial)line free energy process (see Theorem 4.2.7).
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Proof. Fix any Y > 0. The definition of the HSLG line ensemble in (4.2.3) and (4.3.3) collectively

yield that, for all ? ∈ È1, # − 2: + 1É,

2:∑
8=1

�
(8)
#
(2?) = 2: log 2 + log / (2:)sym (# + ?, # − ? + 1)

≤ 2: log 2 + # log 2 − log


2:∏
8=2

8−1∏
9=1
,̃1, 9

 + log
:∏
8=1

[
+2#+3−28+̃2#+2−28

]
,

where the r.h.s. is free of ?. Hence we may take supremum over ? ∈ È1, # − 2: + 1É over both

sides of the above display to get

sup
?∈È1,#−2:+1É

2:∑
8=1

�
(8)
#
(2?) ≤ (2: + #) log 2 − log


2:∏
8=2

8−1∏
9=1
,̃1, 9


+ log

:∏
8=1

[
+2#+3−28+̃2#+2−28

]
.

(4.3.11)

We now provide high probability upper bounds for each of the terms on the r.h.s. of (4.3.11). Let

us take X := Δ:
4 . By Lemma 4.3.3, we may choose #0(:, Y) > 2: + 1 large enough such that for all

# ≥ #0

P(log+# ≤ (' + X) #2 ) ≥ 1 − Y
8: , P(log +̃# ≤ (−2Ψ(\) + X) #2 ) ≥ 1 − Y

8: .

Thus applying a union bound we see that for all large enough # , with probability 1 − Y
4 ,

log
:∏
8=1

[
+#+3−28+̃#+2−28

]
≤ ':# − 2Ψ(\):# + 2:X#. (4.3.12)

Note that the random variable log
[∏2:

8=2
∏8−1

9=1 ,̃1, 9

]
is tight and free of # . Hence with probability
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1 − Y
4 one can ensure that

(2: + #) log 2 − log


2:∏
8=2

8−1∏
9=1
,̃1, 9

 ≤ # log 2 + 2:X#. (4.3.13)

holds for all large enough # . Inserting the above two bounds in (4.3.12) and (4.3.13) back in

(4.3.11), we have that with probability at least 1 − Y
2 ,

sup
?∈È1,#−2:+1É

1
2:

2:∑
8=1

�
(8)
#
(2?) ≤

[ 1
2: log 2 + 2X + '

2 −Ψ(\)
]
#, (4.3.14)

for all large enough # . As X = Δ:
4 , the r.h.s. of (4.3.14) is precisely (' − 1

2Δ: )# . By the exact

same argument, one can check that with probability at least 1 − Y
2 we have

sup
?∈È0,#−2:É

1
2:

2:∑
8=1

�
(8)
#
(2? + 1) ≤ (' − 1

2Δ: )#, (4.3.15)

for all large enough # . Taking another union bound of (4.3.14) and (4.3.15), we get the desired

result.

4.4 Controlling the second curve

In this section, we establish the separation between the first and the second curve of our HSLG

line ensemble. Appealing to Proposition 4.3.4, Lemma 4.4.1 first establishes that for large enough

: with high probability the (2: + 2)-th curve � (2:+2)
#

(·) is uniformly const · # below than '#

over an interval of È1, #É, where ' defined in (4.2.9) is the law of large numbers for point-to-

(partial)line free energy process (Theorem 4.2.7). This helps us show that with high probability

the second curve � (2)
#
(·) over an interval of length $ (

√
#) is "

√
# below '# next in Proposition

4.4.2 for any " > 0.

Lemma 4.4.1. Recall ' in (4.2.9). Fix any Y > 0 and : ∈ Z>0 large enough such that Δ: > 0.
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Then there exists #0(:, Y) such that for all # ≥ #0 we have

P

(
sup

?∈È1,#É
�
(2:+2)
#

(?) ≤ (' − 1
4Δ: )#

)
≥ 1 − Y. (4.4.1)

Proof. Let us consider the following events

A :=

{
sup

?∈È1,#É
�
(2:+2)
#

(?) ≤ (' − 1
4Δ: )#

}
,

B :=
{
�
(8+1)
#
(?) ≤ � (8)

#
(?) + 2 log2 #, for all 8 ∈ È1, 2: + 1É, ? ∈ È1, #É

}
,

C :=

{
sup

?∈È1,#É

1
2:

2:∑
8=1

�
(8)
#
(?) ≤ (' − 1

2Δ: )#
}
.

We claim that for all large enough # , we have (B ∩ ¬A) ⊂ ¬C. To see this, note that on B ∩ ¬A,

there exists a point ?∗ ∈ È1, #É such that � (2:+2)
#

(?∗) > (' − 1
4Δ: )#) and hence (as B holds)

�
(8)
#
(?∗) > (' − 1

4Δ: )# − (4: + 4) log2 #,

for all 8 ∈ È1, 2: + 1É. However, the above display also implies that

sup
?∈È1,#É

1
2:

2:∑
8=1

�
(8)
#
(?) > (' − 1

4Δ: )# − (4: + 4) log2 #

which is strictly bigger than (' − 1
2g)# and implies ¬C. Thus by a union bound, we have

P(¬A) ≤ P(¬B) + P(B ∩ ¬A) ≤ P(¬B) + P(¬C). (4.4.2)

Note that for fixed : , by Theorem 4.2.4 with d = 1
2 and a union bound, we have P(¬B) ≤ # ·

(2: + 1) · 2−# ≤ Y
2 for all # ≥ #1(:, Y). On the other hand, Proposition 4.3.4 yields that for fixed

: and Y, P(¬C) ≤ Y
2 for all # greater than some #2(:, Y2 ). Letting #0(:, Y) = max{#1, #2} and

inserting these two bounds in (4.4.2) leads to (4.4.1).
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Building on Lemma 4.4.1, the next result demonstrates that on a given interval of length$ (
√
#)

starting from 1 and any "2 > 0, the second curve � (2)
#
(·) is uniformly lower than '# − "2

√
#

with high probability (see Figure 4.21).

Proposition 4.4.2. Recall Δ: , ' in (4.2.9). Fix Y ∈ (0, 1), "1, "2 ≥ 1 and : ∈ Z>0 such that

Δ: > 0. Then there exists a constant #2(Y, "1, "2) > 0 such that for all # ≥ #2 we have

P

(
sup

?∈[1,2b"1
√
#c+1]

�
(2)
#
(?) ≤ '# − "2

√
#

)
≥ 1 − 1

2n . (4.4.3)

H = '# − "2
√
#

�
(2)
#
(·)

G = 1 G = 2b"1
√
#c + 1

Figure 4.21: The high probability event in Proposition 4.4.2.

Proof. The proof of Proposition 4.4.2 is conducted in the following stages:

• Using Theorem 4.2.7 and Lemma 4.4.1, we determine high probability locations of� (1)
#
(2"
√
#+

1) and � (2:+2)
#

(·). Using the ordering of points in Theorem 4.2.4, we then bound the end-

points � (8)
#
(2"
√
# + 1), 8 ∈ È1, 2: + 1É from above based on the high probability locations of

�
(1)
#
(2"
√
# + 1) and the (2: + 2)-th curve.

• We next consider the conditional law of (� (8)
#
È1, 2"

√
#É)8∈È1,2:+1É given the above bound-

ary conditions. By Theorem 4.2.2, this law is given by an appropriate HSLG Gibbs mea-

sure. Applying stochastic monotonicity, we may also assume that the � (28−1)
#

(2"
√
# + 1)
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and � (28)
#
(2"
√
# + 1) are sufficiently far apart. This will allow us to approximate the Gibbs

measure as a product of interacting random walks defined in Definition 4.2.5.

• Lastly, we use the associated estimates of interacting random walks from Proposition 4.2.6 to

dissect the Gibbs measure and yield a quantitative bound in our favor.

Let us begin by fleshing out the technical details of the above stages. In the following proof,

we assume all the multiples of
√
# appearing below are integers for convenience in notation. The

general case follows verbatim by considering the floor function. For clarity, we split our proof into

several steps.

Step 1. In this step, we reduce our proof of (4.4.3) to (4.4.7). Let us consider the HSLG line

ensemble �# = (� (1)
#
, . . . , �

(#)
#
). Fix any Y ∈ (0, 1), "1, "2 ≥ 1 and any : ∈ Z>0 such that

Δ: > 0. Let Φ(G) be the cumulative distribution function of a standard Gaussian random variable.

Set g := |Ψ(\ − U) − Ψ(\ + U) |. Let " ∈ Z>0 whose precise value is to be determined. Taking

6(#) = "
√
# in Theorem 4.2.7 yields

1
f
√
#

[
log ZPL

# ("
√
#) − '# + "g

√
#

]
3→ N

(
0, 1

)
. (4.4.4)

Note that (4.4.4) implies

P
(

1
f
√
#

[
log

[
ZPL
# ("

√
#)

]
− '# + "g

√
#

]
≤ Φ(1 − Y

2
)
)
→ 1 − Y

2
.

Thus for # large enough, we have that with probability greater than 1 − Y,

log
[
ZPL
# ("

√
#)

]
≤ '# −

(
"g −Φ(1 − Y

2 )f
)√
#. (4.4.5)

Set " ≥ max{"1,
1
g
("2 + : + 1 + Φ(1 − Y

2 )f)}. Note that by definition, � (1)
#
(2"
√
# + 1) ≤

log ZPL
#
("
√
#) and as "g −Φ(1 − Y

2 )f > "2 + : + 1, (4.4.5) yields that

P(A) ≥ 1 − Y, where A :=
{
�
(1)
#
(2"
√
# + 1) ≤ '# − ("2 + : + 1)

√
#

}
(4.4.6)
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for all large enough # . Set ) = "
√
# + 1. We claim that

P(¬E) ≤ 3Y + :Y

(1 − Y):+1
, where E :=

{
sup

?∈È1,2)−1É
�
(2)
#
(?) ≤ '# − "2

√
#

}
. (4.4.7)

Since 2) − 1 ≥ 2"1
√
# + 1, assuming (4.4.7) and adjusting Y yield (4.4.3).

Step 2. In this step we prove (4.4.7). To begin with, we consider several events:

B :=
2:⋂
8=1

{
�
(8+1)
#
(2)) ≤ � (8)

#
(2) − 1) + log2 #,

�
(8+1)
#
(2) − 1) ≤ � (8+1)

#
(2)) + log2 #

}
,

C :=

{
sup

?∈È1,#É
�
(2:+2)
#

(?) ≤ (' − 1
4Δ: )#

}
,

D :=
:⋂
8=1

{
max

{
�
(28)
#
(2) − 1), � (28)

#
(2)), � (28+1)

#
(2))

}
≤ '# − ("2 + : + 1)

√
# + 2: log2 #

}
.

Let us consider the f-field

F := f
{
�
(28)
#
È2) − 1, 2# − 48 + 2É, � (28+1)

#
È2), 2# − 48É, 8 ∈ È1, :É,

�
(1)
#
È1, 2#É, � ( 9)

#
È1, 2# − 2 9 + 2É, 9 ∈ È2: + 2, #É

}
.

By Theorem 4.2.4 with d = 1
2 , we have P(¬B) ≤ 4:2−# ≤ Y for all large enough # . Observe that

A ∩ B ⊂ D and recall that P(¬A) < Y in (4.4.6). Thus via the union bound, we have P(¬D) ≤

P(¬A) + P(¬B) ≤ 2Y. Note that C ∩ D is measurable w.r.t. F . Applying the union bound and

tower property of conditional expectation we get

P(¬E) ≤ P(¬C) + P(¬D) + P(C ∩ D ∩ ¬E) ≤ 3Y + E [1C∩D · E [1¬E | F ]] . (4.4.8)

where in the last inequality we have used Lemma 4.4.1 to get that P(¬C) ≤ Y for all large enough
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# . We claim that

E [1C∩D · E [1¬E | F ]] ≤
:Y

(1 − Y):+1
. (4.4.9)

We will demonstrate (4.4.9) in the Steps 3-4. Currently, assuming the validity of (4.4.9) and

appealing to (4.4.8) prove (4.4.7).

Step 3. In this step we study 1C∩DE [1¬E | F ] by invoking the Gibbs property (Theorem 4.2.2).

Let us consider the domain

Θ:,) := {(8, 9) | 8 ∈ È2, 2: + 1É, 9 ∈ È1, 2) − 1 − 18=evenÉ}.

By Theorem 4.2.2, the distribution of the line ensemble conditioned on F is given by P®Dgibbs, i.e.

Figure 4.22: Θ:,) for : = 3, ) = 4 shown in the shaded region. The HSLG Gibbs measure on Θ3,4
with boundary condition (D8, 9 )(8, 9)∈mΘ3,4 .

the HSLG Gibbs measure on the domain Θ:,) with boundary condition ®D := (� (8)
#
( 9))(8, 9)∈mΘ:,)

and the boundary set of Θ:,) is given by

mΘ:,) := {(1, 2 9 − 1), (2, 2) − 1), (3, 2)), (28, 2) − 1), (28, 2)), (28 + 1, 2)) | 8 ∈ È2, :É, 9 ∈ È1, )É} .
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Note that for large enough # , on the event C ∩ D we have

�
(1)
#
(2 9 − 1) ≤ G1,2 9−1 := ∞, 9 ∈ È1, )É, (4.4.10)

�
(28)
#
(2) − 1) ≤ G28,2)−1 = '# − ("2 + 8)

√
#, 8 ∈ È1, :É,

�
(28)
#
(2)) ≤ G28,2) := '# − ("2 + 8)

√
#, 8 ∈ È2, :É,

�
(28+1)
#

(2)) ≤ G28+1,2) := '# − ("2 + 8)
√
# −
√
), 8 ∈ È1, :É,

�
(2:+2)
#

(2 9) ≤ G2:+2,2 9 := '# − ("2 + : + 1)
√
#, 9 ∈ È1, )É.

where C holds only in the last inequality. Since ¬E event is increasing with respect to the boundary

data, by stochastic monotonicity we have

1C∩D · E [1¬E | F ] ≤ 1C∩D · P®Dgibbs(¬E) ≤ P®Ggibbs(¬E). (4.4.11)

To bound P®Ggibbs(¬E) we seek for a convenient alternative representation for the P®Ggibbs measure. To-

wards this end, by carefully studying the Gibbs measure, we dissect the P®Ggibbs measure into blocks

of independent interacting random walks (Definition 4.2.5) and the Radon-Nikodym derivatives

interleaved between adjacent blocks (see Figure 4.23). Let us now describe this decomposition.

Recall the interacting random walk (IRW) from Definition 4.2.5. Let (!28È1, 2)−2É, !28+1È1, 2)−

1É):
8=1 be : independent IRWs of length ) with boundary condition (G28,2)−1, G28+1,2) ). Let us de-

note the joint law and expectation of ! as P®Gblock and E®Gblock respectively. Set

,br := exp ©«−
:∑
8=1

)∑
9=1

[
4!28+2 (2 9)−!28+1 (2 9+1) + 4!28+2 (2 9)−!28+1 (2 9−1)

]ª®¬ (4.4.12)

with the convention !28+1(2) + 1) = ∞ for 8 ∈ È1, :É and !8 ( 9) = G8, 9 for all (8, 9) ∈ mΘ:,) . Note

that here only � (1)
#
(2 9 + 1), 9 ∈ È1, )É are in the boundary and are set to∞ in (4.4.10). Thus, their

contributions to the Radon-Nikodym derivative ,br would be
∏2)−2

9=1 exp(−4�
(2)
#
( 9)−∞) = 1. From
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the description of the HSLG Gibbs measure, we have

P®Ggibbs(¬E) =
E®Gblock [,br1¬E]

E®Gblock [,br]
, (4.4.13)

= ×

Figure 4.23: Proof Scheme: The Gibbs measure on Θ2,4 domain (left figure) can be decomposed
into two parts: One is the combination of the top colored row and 2 IRWs (middle figure) and
two are the remaining black weights (right figure) which will be viewed as a Radon-Nikodym
derivative. Here note that in the middle figure, the only contribution from the top row comes from
the odd points, � (1)

#
(2 9 −1) for 9 ∈ È1, )É, which are set to∞. Thus, their contribution to (4.4.12)

from (4.2.6) would be exp(−4−∞) = 1.

Step 4. Finally in this step, we provide an upper bound for the right-hand side of (4.4.13) by

bounding its numerator and denominator separately. Let us consider the event:

G :=
:⋂
8=1

{
sup

?∈È1,2)−1É
|!28 (?) − G28,2)−1 | + sup

@∈È1,2)É
|!28+1(@) − G28,2)−1 | ≤ "0

√
)

}
.

where "0 comes from Proposition 4.2.6. From the description of the Gibbs measure, it is clear

that if (!28 (·), !28+1(·)) is an IRW with boundary condition (G28,2)−1, G28,2)−1 −
√
)), then (!28 (·) −

G28,2)−1, !28+1(·) − G28,2)−1) is an IRW with boundary condition (0,−
√
)). Thus, appealing to

Proposition 4.2.6, we see that

P®Gblock(G) ≥ (1 − Y)
: ≥ 1 − :Y.

Let us assume # is large enough so that
√
# − 2"0

√
) ≥ 1

2
√
# (recall ) = $ (

√
#)). Observe that
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under the event G, we have for all ? ≤ 2) − 1

!28 (?) ≤ G2,2)−1 + "0
√
) = '# − ("2 + 1)

√
# + "0

√
) ≤ '# − "2

√
#.

Thus, E defined in (4.4.7) holds. This implies ¬E ⊂ ¬G. Hence

E®Gblock [,br1¬E] ≤ P®Gblock(¬E) ≤ P®Gblock(¬G) ≤ :Y. (4.4.14)

1G ·,br ≥ 1G · exp
(
−: (2) − 1)4

√
#−2"0

√
)
)
≥ (1 − Y).

where the last one follows by taking # large enough (recall ) = $ (
√
#)). Thus, Eblock [,br] ≥

(1 − Y)Pblock(G) ≥ (1 − Y):+1. Inserting this bound and the bound in (4.4.14) back in (4.4.13) we

get that P®Ggibbs(¬E) ≤ :Y

(1−Y):+1 . Combining this bound with (4.4.11) yields (4.4.9). This completes

the proof.

4.5 Proof of main theorems

In this section, we prove our main theorems, Theorems 4.1.1, 4.1.3, and 4.1.4. This section

is structured as follows: In Section 4.5.1 we first present a few supporting technical results. In

Section 4.5.2 we complete the proof of our main theorems by assuming a technical proposition

(Proposition 4.5.3) which in turn is proved in Section 6.3.1.

4.5.1 Preparatory lemmas

In this section, we prove two preparatory lemmas that will serve as necessary ingredients in

proving our main theorems. Recall the polymer measure P, from (4.1.2), the partition func-

tion / (<, =) from (4.1.4), and the HSLG line ensemble �# from Definition 4.2.1. Note that the

220



quenched distribution of the endpoint of the polymer is related via

P, (c(2# − 2) = # − A) = / (# + A, # − A)∑#−1
?=0 / (# + ?, # − ?)

=
4�
(1)
#
(2A+1)∑#−1

?=0 4
�
(1)
#
(2?+1)

. (4.5.1)

where the second equality follows from the relation (4.2.4). Recalling ZPL
#
(:) = ∑#−1

?=: 4
�
(1)
#
(2?+1)

from (4.2.7), we obtain

P, (c(2# − 2) ≤ # − :) =
ZPL
#
(:)

ZPL
#
(0)

.

Theorem 4.1.1 claims that this quenched probability decays as # → ∞ followed by : → ∞.

The following lemma settles a weaker version of Theorem 4.1.1 where we take : = b"
√
#c. For

notational convenience, we assume all the multiples of
√
# appearing in the proofs in this section

are integers. The general case follows verbatim by considering the floor function.

Lemma 4.5.1. Fix Y > 0 and recall ZPL
#
(·) from Theorem 4.2.7. There exist constants " (Y) >

0, #1(Y) > 0 such that for all # ≥ #1,

P

(
ZPL
#
("
√
#)

ZPL
#
(1)

≤ 4−
√
#

)
≥ 1 − 1

2Y. (4.5.2)

Proof. Fix Y ∈ (0, 1). Recall f from (4.2.9) Taking 6 = 1 and 6 = "
√
# in Theorem 4.2.7 yields

1
f
√
#

[
log ZPL

# (1) − '#
]

3→ N
(
0, 1

)
,

1
f
√
#

[
log ZPL

# ("
√
#) − '# + "g

√
#

]
3→ N

(
0, 1

)
(4.5.3)

respectively, where ', f, g are defined in (4.2.9). Let us set % := %(Y) = Φ−1(1 − Y
8 ) + 1, where

Φ(·) is the cumulative distribution function of N(0, 1). For all large enough # we have

P
(
log ZPL

# (1) ≥ '# − %f
√
#

)
≥ 1 − Y

4 ,
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P
(
log ZPL

# ("
√
#) ≤ '# − "g

√
# + %f

√
#

)
≥ 1 − Y

4 .

Applying a union bound gives us

P
(
log ZPL

# ("
√
#) + ("g − 2%f)

√
# ≤ log ZPL

# (1)
)
≥ 1 − Y

2 ,

for all large enough # . Taking " := 1
g
(2%f+1) in above equation leads to (4.5.2). This completes

the proof.

Let us recall our discussion in Section 4.1.2 and Figure 4.7. Let us call the region È# −

"
√
#, # − :É and the region È1, # −"

√
#É as shallow tail and deep tail respectively (see Figure

4.7). Lemma 4.5.1 implies that with high probability the quenched probability of c(2# − 2) living

in the deep tail region is exponentially small. Thus the mass accumulates in the window of "
√
#

below the point (#, #). To establish Theorem 4.1.1, we thus have to show the mass in the shallow

tail also goes to zero. For convenience, in our proofs below we shall often refer to the point

(# + "
√
#, # − "

√
#) as the deep tail starting point. Given the connection in (4.2.4), the deep

tail starting point corresponds to (2"
√
# + 1)-th point for the top curve � (1)

#
(·) of the HSLG line

ensemble. So, in the coordinates of the HSLG line ensemble, we shall refer 2"
√
# + 1 as the deep

tail starting point.

Below, we record another important preparatory lemma which claims the existence of a “high

point" in � (1)
#
(·) not far after the deep tail starting point (see Figure 4.24).

Lemma 4.5.2. Fix any Y > 0 and recall ', g from (4.2.9). There exists a constant "0(Y) > 0 such

that for all " ≥ "0, there exists #0(Y, ") such that for all # ≥ #0,

P

(
sup

?∈È"
√
#,2"

√
#É
�
(1)
#
(2? + 1) ≥ '# − 5

2"g
√
#

)
≥ 1 − 1

2Y, (4.5.4)

where g := Ψ(\ − U) −Ψ(\ + U).

Proof. Let us set % := %(Y) = Φ−1(1 − Y
6 ) + 1, where Φ(·) is the cumulative distribution function
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of N(0, 1). In view of (4.5.3), for all large enough # we have

P
(
log ZPL

# ("
√
#) ≥ '# − "g

√
# − %f

√
#

)
≥ 1 − Y

6 , (4.5.5)

P
(
log ZPL

# (2"
√
#) ≤ '# − 2"g

√
# + %f

√
#

)
≥ 1 − Y

6 .

Applying a union bound gives us

P
(
log ZPL

# (2"
√
#) + ("g − 2%f)

√
# ≤ log ZPL

# ("
√
#)

)
≥ 1 − Y

3 .

Thus for any " ≥ 2%f+1
g

, we have that with probability at least 1 − Y
3 , log ZPL

#
(2"
√
#) ≤

log ZPL
#
("
√
#) −

√
# , which implies

2ZPL
# (2"

√
#) ≤ ZPL

# ("
√
#).

However, by definition of ZPL
#
(·), the above display implies that with probability at least 1 − Y

3 ,

sup
?∈È"

√
#,2"

√
#É
�
(1)
#
(2? + 1) ≥ log ZPL

# ("
√
#) − log ZPL

# (2"
√
#) − log(2"

√
#)

≥ log ZPL
# (2"

√
#) − log(2"

√
#).

Note that by the first entry in (4.5.5) with " substituted by 2" , with probability at least 1 − Y
6 ,

we have log ZPL
#
(2"
√
#) ≥ '# − 2"g

√
# − %f

√
# . Since for all large enough # , we have

'# − (2"g +%f)
√
# − log(2"

√
#) ≥ '# − 5

2"g
√
# . Thus applying another union bound helps

us arrive at (4.5.4) and complete the proof.
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4.5.2 Proof of Theorems 4.1.1, 4.1.3, and 4.1.4

In this section, we prove our main theorems assuming a technical proposition. Let us first begin

by describing the proposition. Fix any ", # ≥ 1 and assume "
√
# ∈ Z>0. For any Borel set � of

R"
√
# we consider the event

A =

{
(� (1)

#
(1) − � (1)

#
(2A + 1))"

√
#

A=1 ∈ �
}
. (4.5.6)

for # > "2 + 1. Let ((A)"
√
#

A=0 be the log-gamma random walk defined in Definition 4.1.2. We

write

P', (A) := P
(
((A)"

√
#

A=1 ∈ �
)

(4.5.7)

Finally, the last technical proposition below is the main crux of the proof. It claims that P and

P', are close to each other when # is large and we postpone its proof to Section 6.3.1.

Proposition 4.5.3. Fix any Y ∈ (0, 1
2 ). Set " (Y) > 0, #1(Y) > 0 such that Lemma 4.5.1 and

Lemma 4.5.2 hold simultaneously for all # ≥ #1 for this fixed choice of " . Then there exists

#0(Y) > 0 such that for all # ≥ #0,

|P(A) − P', (A) | ≤ 9Y, (4.5.8)

where A and P', (A) are defined in (4.5.6) and (4.5.7).

In lieu of these results, we are ready to prove our main theorems. Theorems 4.1.3 and 4.1.1

are direct applications of the supporting lemmas. For convenience, we shall assume in the proofs

below "
√
# is an integer. The general case follows verbatim by considering floor functions.

Proof of Theorem 4.1.6. Given (4.1.8), it suffices to check that

1√
#
(log / (#, #) − log / (# + 0# , # − 0# ))

?
→ 0,
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where {0# }#≥1 is a sequence of nonnegative integers less than # , with 0#/
√
# → 0. In light of

(4.2.4), it boils down to checking

1√
#

(
�
(1)
#
(1) − � (1)

#
(20# + 1)

)
?
→ 0.

But thanks to Proposition 4.5.3, it is equivalent to argue that (0# /
√
#

?
→ 0 where ((A)A≥0 is the

log-gamma random walk defined in Definition 4.1.2. Since the increment of the walk has the

finite first moment and 0#/
√
# → 0, by Markov inequality we deduce that (0# /

√
#

?
→ 0. This

establishes Theorem 4.1.6.

Proof of Theorem 4.1.3. Take the set � as (−∞, G1] × (−∞, G2] × · · · × (−∞, G: ] × R"
√
#−: in

(4.5.6). By Proposition 4.5.3,

lim sup
#→∞

�����P
(
:⋂
A=1
{� (1)

#
(1) − � (1)

#
(2A + 1) ∈ (−∞, GA]}

)
− P',

(
:⋂
A=1
{(A ∈ (−∞, GA]}

)����� ≤ 9Y,

where ((A):A=0 is defined in Definition (4.1.2). As Y is arbitrary, this implies

(
�
(1)
#
(1) − � (1)

#
(2A + 1)

) :
A=0

3→ ((A):A=0.

In conjunction with relation (4.2.4), we get the desired convergence in Theorem 4.1.3.

Proof of Theorem 4.1.1. Fix any Y > 0. Get " (Y), #1(Y) > 0 such that Lemma 4.5.1 and Lemma

4.5.2 hold simultaneously for all # ≥ #1 for this fixed choice of " . Using this " we split the

probability as follows

P, (c(2# − 2) ≤ # − :)

= P,
(
c(2# − 2) ∈ (# − "

√
#, # − :]

)
+ P,

(
c(2# − 2) ≤ # − "

√
#

)
.
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For the first term observe that by (4.5.1)

P,
(
c(2# − 2) ∈ (# − "

√
#, # − :]

)
=

∑"
√
#−1

?=:
4�
(1)
#
(2?+1)∑#−1

?=0 4
�
(1)
#
(2?+1)

≤
∑"

√
#

?=:
4�
(1)
#
(2?+1)∑"

√
#

?=1 4�
(1)
#
(2?+1)

=

∑"
√
#

?=:
4�
(1)
#
(2?+1)−� (1)

#
(1)∑"

√
#

?=1 4�
(1)
#
(2?+1)−� (1)

#
(1)
.

Fix any X > 0 and consider the set

AX :=

∑"

√
#

?= 
4�
(1)
#
(2?+1)−� (1)

#
(1)∑"

√
#

?=1 4�
(1)
#
(2?+1)−� (1)

#
(1)
≥ X

 .
By Proposition 4.5.3, P(AX) ≤ P', (AX) + 9Y for all large enough # . On the other hand, by

Corollary 4.6.3 we see that lim:→∞ lim#→∞ P', (AX) = 0. Thus, as Y is arbitrary,

lim
:→∞

lim
#→∞

P,
(
c(2# − 2) ∈ (# − "

√
#, # − :]

)
= 0, in probability. (4.5.9)

For the second term by Lemma 4.5.1, we see that with probability 1 − Y
2

P,
(
c(2# − 2) ≤ # − "

√
#

)
≤

∑#−1
?="

√
#
4�
(1)
#
(2?+1)∑#−1

?=1 4
�
(1)
#
(2?+1)

=
ZPL
#
("
√
#)

ZPL
#
(1)

≤ 4−
√
# .

Again, as Y is arbitrary, we have that as # →∞, P, (c(2# − 2) ≤ # −"
√
#) → 0 in probability.

This completes the proof together with (4.5.9).

Lastly, with Theorems 4.1.1 and 4.1.3 established, we present the proof of the limiting quenched

distribution of the endpoint viewed from around the diagonal.

Proof of Theorem 4.1.4. Fixed \ > 0 and U ∈ (−\, 0). Recall from (4.5.1) that

P\,U;# (c(2# − 2) = # − A) = 4�
(1)
#
(2A+1)∑#−1

?=0 4
�
(1)
#
(2?+1)

=
4�
(1)
#
(2A+1)−� (1)

#
(1)∑#−1

?=0 4
�
(1)
#
(2?+1)−� (1)

#
(1)

(4.5.10)
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where the second equality is derived through (4.2.4). Note that by Theorem 4.1.3, a continuous

mapping theorem immediately implies that for a positive integer : < ∞,

©«
exp(� (1)

#
(2A + 1) − � (1)

#
(1))∑:

?=0 exp(� (1)
#
(2? + 1) − � (1)

#
(1))

ª®¬A∈È0,:É 3→
(

4−(A∑:
?=0 4

−(?

)
A∈È0,:É

(4.5.11)

Here ((8)8≥0 denotes a log-gamma random walk. For simplicity, we denote

Λ# (?) := exp(� (1)
#
(2? + 1) − � (1)

#
(1)).

We can then rewrite (4.5.10) as

P\,U;# (c(2# − 2) = # − A) = Λ# (A)∑#−1
?=0 Λ# (?)

=

∑:
?=0Λ# (?)∑#−1
?=0 Λ# (?)

·
∑∞
?=0 4

−(?∑:
?=0 4

−(?
·
∑:
?=0 4

−(?∑∞
?=0 4

−(?
· Λ# (A)∑:

?=0Λ# (?)
.

Theorem 4.1.1 ensures that∑:
?=0Λ# (?)∑#−1
?=0 Λ# (?)

= P\,U;# (c(2# − 2) ≥ # − :) = 1 − P\,U;# (c(2# − 2) < # − :)
?
→ 1

as # →∞ followed by : →∞. By Lemma 4.6.2 we have

lim
:→∞

∑∞
?=0 4

−(?∑:
?=0 4

−(?

?
→ 1.

Meanwhile, (4.5.11) yields that as # →∞,(∑:
?=0 4

−(?∑∞
?=0 4

−(?
· Λ# (A)∑:

?=0Λ# (?)

)
A∈È0,:É

3→
(∑:

?=0 4
−(?∑∞

?=0 4
−(?
· Λ(A)∑:

?=0 4
−(?

)
A∈È0,:É

=

(
4−(A∑∞
?=> 4

−(?

)
A∈È0,:É

.

Thus we establish (4.1.7) and complete the proof of Theorem 4.1.4.

4.5.3 Proof of Proposition 4.5.3

For clarity, we divide the proof into several steps.
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Step 1. In this step we sketch the main ideas behind the proof. At this point, we encourage the

readers to consult with Figure 4.24. Recall the event A defined in (4.5.6).

H = '# − (3"g + 1)
√
#

�
(2)
#
(·)

�
(1)
#
(·)

H = '# − 3"g
√
#

2"
√
# + 1 4"

√
# + 1

Deep tail starting point

High point

Figure 4.24: Illustration of the proof of Proposition 4.5.3. As claimed by Lemma 4.5.2, there exists
a high point in È2"

√
#+1, 4"

√
#+1É such that � (1)

#
(2?∗+1) lies above '#− 5

2"g
√
# with high

probability. This high point is illustrated as the blue point in the figure. This high point between
È2"
√
# + 1, 4"

√
# + 1É helps us show that � (1)

#
(·) ≥ '# − 3"g

√
# between È1, 2?∗ + 1É.

However, invoking Proposition 4.4.2, we can ensure the second curve stays below the benchmark
of '# − (3"g + 1)

√
# on the interval È1, 4"

√
# + 1É with high probability. Thus there is a

√
#

separation (with high probability) between the two curves. By the Gibbs property, this separation
ensures that the top curve is close to a log-gamma random walk.

• Let us take " and #1 as described in the statement of the Proposition 4.5.3. In the language

introduced in Figure 4.7 and the text before Lemma 4.5.2, 2"
√
# + 1 serves as the deep tail

starting point. As we have assumed Lemma 4.5.2 holds, we thus have a point in 2?∗ + 1 ∈

È2"
√
# + 1, 4"

√
# + 1É where � (1)

#
(2?∗ + 1) is ‘high’ enough (see Figure 4.24). This high

point event is denoted as event B in Step 2 which has a probability of at least 1− 1
2Y by Lemma

4.5.2.

• Invoking Proposition 4.4.2 with high probability we can take the second curve of the line

ensemble to be lower than a certain benchmark. More precisely, Proposition 4.4.2 with "1 =
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2" and "2 = 3"g + 1 implies that

sup
?∈È1,4"

√
#+1É

�
(2)
#
(?) ≤ '# − (3"g + 1)

√
#

with probability at least 1 − Y
2 . We denote this phenomenon as the Fluc event. As B and Fluc

are high probability events, to prove our desired estimate in (4.5.8), it suffices to show that

|P(A∩B∩Fluc) −P', (A) | is small. This is achieved by considering the measure conditioned

on the entire second curve and the first curve beyond 2?∗ + 1. We remark that in reality, this is

not exactly how we do it. But for the sketch of the proof, we present it in this way. We refer to

the last bullet point for details.

• From the Gibbs property in Theorem 4.2.2, we deduce a key observation regarding the con-

ditional measure in Step 3. In colloquial terms, we note that the conditional measure is ab-

solutely continuous w.r.t. a log-gamma random walk ((: ):≥0 from Definition 4.1.2 starting at

�
(1)
#
(2?∗ + 1) and an explicit Radon-Nikodym derivative,?∗ . As the free law is precisely the

limiting law we are interested in, it suffices to prove that the Radon-Nikodym derivative ,?∗

over this interval [1, 2?∗ + 1] is approximately 1.

• Loosely speaking, ,?∗ is close to 1 whenever there is a wide enough separation between the

two curves. Due to the diffusive nature of the random walk (with positive drift), under the free

law, the walk does not become too low. This guarantees that under B ∩ Fluc event we have a

uniform separation of
√
# between the top two curves between È1, 2?∗ + 1È. Thus, we deduce

that ,?∗ ≈ 1 when # is large. The details are presented in Step 5. This shows that the law of

the � (1)
#
(·) is close to the free law of a log-gamma random walk starting at � (1)

#
(2?∗ + 1).

• One issue in carrying out the arguments in the last two bullet points is that ?∗ is random. The

Gibbs property cannot be applied at ?∗, as the property is formulated for fixed boundary points.

This issue can be circumvented easily by a graining argument. We write B as B =
⊔

Bi with B8

being a disjoint collection of events with B8 ⊂ {� (1)# (28 + 1) ≥ '# − 5
2"
√
#} and then apply
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the Gibbs property for each 8.

Step 2. Take "1 = 2" and "2 = 3"g + 1 in Proposition 4.4.2. Taking #2(Y, "1, "2) > 0

(which depends only on Y as "1, "2 depends only on Y) from Proposition 4.4.2, we see that

P(Fluc) ≥ 1 − Y
2 , where Fluc :=

{
sup

?∈È1,4"
√
#+1É

�
(2)
#
(?) ≤ '# − (3"g + 1)

√
#

}
(4.5.12)

for all # ≥ #2. Next we consider the events

G8 :=
{
�
(1)
#
(28 + 1) ≥ '# − 5

2
"g
√
#

}
and B8 :=

2"
√
#⋂

9=8+1
G2
9 ∩G8 .

Note that (B8)8∈È"√#,2"√#É forms a disjoint collection of events. Define

B :=
⊔

8∈È"
√
#,2"

√
#É

B8

=
⋃

8∈È"
√
#,2"

√
#É

G8 =

{
sup

?∈È"
√
#,2"

√
#É
�
(1)
#
(2? + 1) ≥ '# − 5

2"g
√
#

}
,

where we write t to stress that the events are disjoint in the union. In particular, as Lemma 4.5.2

holds, we have P(B) ≥ 1 − 1
2Y. Thus for all # ≥ #1 + #2, by a union bound we have

|P(A) − P(A ∩ B ∩ Fluc) | ≤ P(¬B) + P(¬Fluc) ≤ Y.

Hence to prove (4.5.8) it suffices to show

|P(A ∩ B ∩ Fluc) − P', (A) | ≤ 8Y. (4.5.13)

Define F8 as the f-field f
(
�
(1)
#
(G)

G≥28+1, �
( 9)
#
(G) 9≥2,G≥1

)
. Note that B8,Fluc are both measurable
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w.r.t. F8 . Exploiting the fact that �8’s are disjoint yields

P(A ∩ B ∩ Fluc) =
2"
√
#∑

8="
√
#

E
[
1B8∩FlucE [1A | F8]

]
(4.5.14)

where the last equality is due to the tower property of the conditional expectation. Thus we are left

to estimate E [1A | F8] for each 8.

Step 3. Gibbs law. To analyze E [1A | F8], we invoke the Gibbs property (Theorem 4.2.2) for the

HSLG line ensemble. By Theorem 4.2.2, the distribution of (� (1)
#
( 9))28

9=1 conditioned on F8 has a

density at (D 9 )289=1

exp ©«−
8∑
9=1

[
4�
(2)
#
(2 9)−D2 9+1 + 4�

(2)
#
(2 9)−D2 9−1

]ª®¬ (4.5.15)

·
8∏
9=1

exp
(
(\ + U) (D2 9+1 − D2 9 ) − 4D2 9+1−D2 9

)
(4.5.16)

·
8∏
9=1

exp
(
(\ − U) (D2 9−1 − D2 9 ) − 4D2 9−1−D2 9

)
(4.5.17)

with D28+1 = �
(1)
#
(28 + 1). The above explicit expression is obtained from (4.2.6) and (4.2.5). Note

that the terms in (4.5.15), (4.5.16), and (4.5.17) correspond to weights of black, red, and blue edges

in the graphical representation (see left figure of Figure 4.25) respectively.

Based on the above decomposition, we define a free law Pfree,8 that depends only on� (1)
#
(28 + 1).

We define that under the law Pfree,8, the distribution of (� (1)
#
( 9))28

9=1 has a density at (D 9 )289=1 pro-

portional to

8∏
9=1

exp
(
(\ + U) (D2 9+1 − D2 9 ) − 4D2 9+1−D2 9

)
·

8∏
9=1

exp
(
(\ − U) (D2 9−1 − D2 9 ) − 4D2 9−1−D2 9

)
with D28+1 = �

(1)
#
(28 + 1). Note that free law collects all the blue and red edge weights only. A

quick comparison of the above formula with (4.1.5) shows that under the free law, (� (1)
#
(1) −
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�
(1)
#
(2A + 1))8

A=0 is precisely distributed as log-gamma random walk defined in Definition 4.1.2.

In order to obtain the original conditional distribution from the free law, we may introduce the

black weights as a Radon-Nikodym derivative (see the decomposition in Figure 4.25). Indeed, we

have

E [1A | F8] =
Efree,8 [,81A]
Efree,8 [,8]

(4.5.18)

where

,8 := exp ©«−
8∑
9=1

[
4�
(2)
#
(2 9)−� (1)

#
(2 9+1) + 4�

(2)
#
(2 9)−� (1)

#
(2 9−1)

]ª®¬ (4.5.19)

= × 0
0 0

I1 I2 I3 I1 I2 I3 I1 I2 I3

Figure 4.25: Gibbs decomposition. The left figure shows the gibbs measure corresponding to
conditioned on F8 with 8 = 3. Here 0 = � (1)

#
(28+1), and I 9 := � (2)

#
(2 9) for 9 ∈ È1, 8É. The measure

has been decomposed into two parts. The free law (middle) and a Radon-Nikodym derivative
(right).

We notice that ,8 has a trivial upper bound: ,8 ≤ 1. For the lower bound, we claim that there

exists #0(Y) > 0 such that for all # ≥ #0 we have

1Fluc∩B8Pfree,8 (,8 ≥ 1 − Y) ≥ 1Fluc∩B8 · (1 − Y). (4.5.20)

Thus, (4.5.20) implies that ,8 is close to 1 with high probability under Fluc ∩ B8. Thus, going

back to (4.5.18), we expect E [1A | F8] to be close to Pfree,8 (A). As under the free law Pfree,8 (A) =

P', (A), for all 8 ∈ È"
√
#, 2"

√
#É, (4.5.14) eventually leads to (4.5.13), which we make precise

in the next step.
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Step 4. Assuming (4.5.20), we complete the proof of (4.5.13) in this step. As,8 ≤ 1, we have

1Fluc∩B8
Efree,8 [,81A]

Efree,8 [,]
≥ 1Fluc∩B8Efree,8 [,81A] ≥ (1 − Y) · 1Fluc∩B8Pfree,8 (A ∩ {, ≥ 1 − Y})

≥ (1 − Y) · 1Fluc∩B8
[
Pfree,8 (A) − Pfree,8 (,8 < 1 − Y)

]
≥ (1 − Y) · 1Fluc∩B8

[
Pfree,8 (A) − Y

]
where we use (4.5.20) in the last inequality. Recall Pfree,8 (A) = P', (A). Inserting this bound in

(4.5.18) and then going back to (4.5.14) yields

P(A ∩ B ∩ Fluc) ≥ (1 − Y) · [P', (A) − Y]
2"
√
#∑

8="
√
#

P(B8 ∩ Fluc)

= (1 − Y) · [P', (A) − Y] P(B ∩ Fluc) ≥ (1 − Y)2 [P', (A) − Y] .

for all large enough # . The equality in the above equation follows by recalling that B8’s form a

disjoint collection of events and the result implies that P(A ∩ B ∩ Fluc) − P', (A) ≥ −3Y. This

proves the lower bound inequality in (4.5.13). Similarly for the upper bound, as,8 ≤ 1, we have

1Fluc∩B8 ·
Efree,8 [,81A]
Efree,8 [,8]

≤ 1Fluc∩B8 ·
Pfree,8 (A)

(1 − Y)Pfree,8 (,8 ≥ 1 − Y) ≤ 1Fluc∩B8 ·
Pfree,8 (A)
(1 − Y)2

where the last inequality stems from (4.5.20). Again, Inserting this bound in (4.5.18) and then

going back to (4.5.14) gives us

P(A ∩ B ∩ Fluc) ≤ P', (A)
(1 − Y)2

2"
√
#∑

8="
√
#

P(B8 ∩ Fluc) = P', (A)
(1 − Y)2

P(B ∩ Fluc) ≤ P', (A)
(1 − Y)2

where again the equality comes from the disjointness of B8’s. As Y ≤ 1
2 , this implies

P(A ∩ B ∩ Fluc) − P', (A) ≤
1 − (1 − Y)2
(1 − Y)2

≤ 8Y
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which proves the upper bound in (4.5.13). The proof of Theorem 4.1.3 modulo (4.5.20) is thus

complete.

Step 5. Finally in this step we prove (4.5.20). We define the event

Sink(8) :=
{

inf
?∈È0,8É

�
(1)
#
(2? + 1) ≥ '# − 3"g

√
#

}
.

We claim that there exists #0(Y) > 0 such that for all # ≥ #0, we have

1B8Pfree,8 (Sink(8)) ≥ 1B8 (1 − Y), (4.5.21)

for all 8 ∈ È"
√
#, 2"

√
#É.

Recall that the event Fluc in (4.5.12) requires the second curve � (2)
#
(?) to lie below certain

threshold within the range ? ∈ È1, 4"
√
# + 1É. Recall the definition of , 9 from (4.5.19). Note

that on Sink( 9) ∩ Fluc we have

, 9 ≥ exp(−2 9 4−
√
# ) ≥ exp(−4"

√
#4−

√
# )

as 9 ≤ 2"
√
# . Note that exp(−4"

√
#4−

√
# ) ≥ 1 − Y for all large enough # . Therefore, in view

of (4.5.21) we have

1Fluc∩B8Pfree,8 (,8 ≥ 1 − Y) ≥ 1Fluc∩B8Pfree,8 (Sink(8)) ≥ 1Fluc∩B8 · (1 − Y)

for all large enough # . This verifies (4.5.20). We are left to show (4.5.21). Towards this end, note

that on the event B8, we have � (1)
#
(28 + 1) ≥ '# − 5

2"g
√
# . Thus,

1B8Pfree,8 (Sink(8)) ≥ 1B8Pfree,8

(
inf

G∈È0,8É
�
(1)
#
(2G + 1) − � (1)

#
(28 + 1) ≥ −1

2"g
√
#

)
. (4.5.22)

Recall from our discussion in Step 2 that under the law Pfree,8, (� (1)# (1) − �
(1)
#
(2A + 1))8

A=0 is

distributed as a log-gamma random walk. Let us use ((: )8:=0 to denote a log-gamma random walk.
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We have

Pfree,8

(
inf

?∈È0,8É
�
(1)
#
(2? + 1) − � (1)

#
(28 + 1) ≥ −1

2"g
√
#

)
= P

(
inf

?∈È0,8É
((8 − (?) ≥ −1

2"g
√
#

)
.

(4.5.23)

Note that ((8−(?)8?≥0 is again a time-reversed log-gamma random walk. As 8 ≤ 2"
√
# , appealing

to Lemma 4.6.1 yields that

1B8Pfree,8 (Sink(8)) ≥ P
(

inf
?∈È0,8É

((8 − (?) ≥ −1
2"g
√
#

)
≥ 1 − 8 Var((1)

"g2
√
#
≥ 1 − Y

for all large enough # (uniformly over 8 ∈ È"
√
#, 2"

√
#É. Inserting this bound in (4.5.23), in

view of the lower bound in (4.5.22), leads to (4.5.21). This completes the proof of Proposition

4.5.3.

�
(1)
#
(1)

�
(2)
#
(1)

�
(3)
#
(1)

�
(2)
#
(5)

�
(3)
#
(7)

�
(1)
#
(8)

Figure 4.26: Ordering of points within HSLG line ensemble: The above figure consists of first
3 curves of the line ensemble �# . An arrow from 0 → 1 signifies 0 ≤ 1 − log2 # with expo-
nential high probability. The blue arrows depict the ordering within a particular indexed curve
(inter-ordering). The dashed arrow indicates ordering between the two consecutive curves (intra-
ordering).
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Figure 4.27: Θ2,2

4.6 Appendix: Properties of random walks with positive drift

In this section, we collect some useful properties of random walks with positive drift whose

proofs follow by classical analysis. Note that the log-gamma random walk introduced in Definition

4.1.2 is a random walk with positive drift. This is because the density ?(G) introduced in (4.1.5)

has mean:

∫
R
G?(G)3G = Ψ(\ − U) −Ψ(\ + U),

which is positive as the digamma function Ψ is strictly increasing (recall U < 0).

Lemma 4.6.1. Let (-8)8≥0 be a sequence of iid random variables with E[-1] = V > 0 and
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Var[-1] = W < ∞. Set (0 = 0 and (: =
∑:
8=1 -8. For all ", #, _ > 0 we have

P

(
inf

:∈È1,"
√
#É
(: ≤ −_

)
≤ "
√
#W

_2 .

Proof. As V > 0, by Kolmogorov’s maximal inequality, we have

P

(
inf

:∈È1,"
√
#É
(: ≤ −_

)
= P

(
sup

:∈È1,"
√
#É
|(: − :V | ≥ _

)
≤ 1
_2

"
√
#∑

8=1
Var(-8) =

"
√
#W

_2 ,

which is precisely what we want to show.

Lemma 4.6.2. Let (-8)8≥0 be a sequence of iid random variables with E[-1] = V > 0 and

Var[-1] = W < ∞. Set (0 = 0 and (= =
∑=
8=1 -8. We have

P

( ∞∑
A=0

4−(A < ∞
)
= 1

Proof. By Kolmogorov’s maximal inequality

P
(

sup
1≤8≤=2

|(8 − 8V | ≥ =2

2 V
)
≤ 4
=4V2

=2∑
8=1

Var(-8) =
4W
=2V2 .

The last bound is summable in =. Thus invoking Borel-Cantelli’s lemma we have that there exists

a random # with %(7 ≤ # < ∞) = 1 such that

(8 ≥ 8V − (#2/2)V ≥ −(#2/2)V, for all 1 ≤ 8 ≤ #2,

and for all = ≥ # + 1 we have

(8 ≥ (= − 1)2V − (=2/2)V ≥ (=2/4)V, for all (= − 1)2 + 1 ≤ 8 ≤ =2,
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where above we used the fact that = ≥ # + 1 ≥ 8. Thus with probability 1, we have

∞∑
A=0

4−(A =
#2∑
A=0

4−(A +
∞∑

==#+1

=2∑
8=(=−1)2+1

4−(8

≤ #24(#
2/2)V +

∞∑
==#+1

=2∑
8=(=−1)2+1

4−(=
2/4)V ≤ #24(#

2/2)V +
∞∑

==#+1
=24−(=

2/4)V < ∞.

This completes the proof.

As a corollary, we have the following double-limit result.

Corollary 4.6.3. Under the setup of Lemma 4.6.2, almost surely we have

lim
:→∞

lim
=→∞

∑∞
A=: 4

−(A∑=
A=0 4

−(A
= 0.

Proof. Note that
∑=
A=0 4

(A is a monotone sequence in = which converges to a random variable that

is almost surely finite by Lemma 4.6.2. Thus,∑∞
A=: 4

(A∑=
A=0 4

(A
= 1 −

∑:−1
A=0 4

(A∑=
A=0 4

(A

=→∞→ 1 −
∑:−1
A=0 4

(A∑∞
A=0 4

(A
.

Taking : →∞ yields the desired result.
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Chapter 5: Tightness of the Bernoulli Gibbsian line ensemble

5.1 Line ensembles

In this section we introduce various definitions and notation that are used throughout the paper.

5.1.1 Line ensembles and the Brownian Gibbs property

In this section we introduce the notions of a line ensemble and the (partial) Brownian Gibbs

property. Our exposition in this section closely follows that of [105, Section 2] and [73, Section

2].

Given two integers ? ≤ @, we let È?, @É denote the set {?, ? + 1, . . . , @}. Given an interval

Λ ⊂ R we endow it with the subspace topology of the usual topology on R. We let (� (Λ), C)

denote the space of continuous functions 5 : Λ → R with the topology of uniform convergence

over compacts, see [192, Chapter 7, Section 46], and Borel f-algebra C. Given a set Σ ⊂ Z we

endow it with the discrete topology and denote by Σ × Λ the set of all pairs (8, G) with 8 ∈ Σ

and G ∈ Λ with the product topology. We also denote by (� (Σ × Λ), CΣ) the space of continuous

functions on Σ × Λ with the topology of uniform convergence over compact sets and Borel f-

algebra CΣ. Typically, we will take Σ = È1, #É (we use the convention Σ = N if # = ∞) and then

we write
(
� (Σ × Λ), C|Σ|

)
in place of (� (Σ × Λ), CΣ).

The following defines the notion of a line ensemble.

Definition 5.1.1. Let Σ ⊂ Z and Λ ⊂ R be an interval. A Σ-indexed line ensemble L is a random

variable defined on a probability space (Ω, F , P) that takes values in (� (Σ × Λ), CΣ). Intuitively,

L is a collection of random continuous curves (sometimes referred to as lines), indexed by Σ, each

of which maps Λ in R. We will often slightly abuse notation and write L : Σ × Λ → R, even

though it is not L which is such a function, but L(l) for every l ∈ Ω. For 8 ∈ Σ we write
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L8 (l) = (L(l)) (8, ·) for the curve of index 8 and note that the latter is a map L8 : Ω → � (Λ),

which is (C, F )−measurable. If 0, 1 ∈ Λ satisfy 0 < 1 we let L8 [0, 1] denote the restriction of L8

to [0, 1].

We will require the following result, whose proof is postponed until Section 5.6.1. In simple

terms it states that the space � (Σ × Λ) where our random variables L take value has the structure

of a complete, separable metric space.

Lemma 5.1.2. Let Σ ⊂ Z and Λ ⊂ R be an interval. Suppose that {0=}∞==1, {1=}
∞
==1 are sequences

of real numbers such that 0= < 1=, [0=, 1=] ⊂ Λ, 0=+1 ≤ 0=, 1=+1 ≥ 1= and ∪∞
==1 [0=, 1=] = Λ. For

= ∈ N we let  = = Σ=× [0=, 1=] where Σ= = Σ∩È−=, =É. Define 3 : � (Σ×Λ)×� (Σ×Λ) → [0,∞)

by

3 ( 5 , 6) =
∞∑
==1

2−= min
{

sup
(8,C)∈ =

| 5 (8, C) − 6(8, C) |, 1
}
. (5.1.1)

Then 3 defines a metric on � (Σ × Λ) and moreover the metric space topology defined by 3 is the

same as the topology of uniform convergence over compact sets. Furthermore, the metric space

(� (Σ × Λ), 3) is complete and separable.

Definition 5.1.3. Given a sequence {L= : = ∈ N} of random Σ-indexed line ensembles we say that

L= converge weakly to a line ensemble L, and write L= =⇒ L if for any bounded continuous

function 5 : � (Σ × Λ) → R we have that

lim
=→∞
E [ 5 (L=)] = E [ 5 (L)] .

We also say that {L= : = ∈ N} is tight if for any n > 0 there exists a compact set  ⊂ � (Σ×Λ)

such that P(L= ∈  ) ≥ 1 − n for all = ∈ N.

We call a line ensemble non-intersecting if P-almost surely L8 (A) > L 9 (A) for all 8 < 9 and

A ∈ Λ.

We will require the following sufficient condition for tightness of a sequence of line ensembles,

which extends [39, Theorem 7.3]. We give a proof in Section 5.6.2.
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Lemma 5.1.4. Let Σ ⊂ Z and Λ ⊂ R be an interval. Suppose that {0=}∞==1, {1=}
∞
==1 are sequences

of real numbers such that 0= < 1=, [0=, 1=] ⊂ Λ, 0=+1 ≤ 0=, 1=+1 ≥ 1= and ∪∞
==1 [0=, 1=] = Λ.

Then {L=} is tight if and only if for every 8 ∈ Σ we have

(i) lim0→∞ lim sup=→∞ ( |L=8 (00) | ≥ 0) = 0;

(ii) For all n > 0 and : ∈ N, limX→0 lim sup=→∞

(
supG,H∈[0: ,1: ],

|G−H |≤X
|L=

8
(G) − L=

8
(H) | ≥ n

)
= 0.

We next turn to formulating the Brownian Gibbs property – we do this in Definition 5.1.8

after introducing some relevant notation and results. If ,C denotes a standard one-dimensional

Brownian motion, then the process

�̃(C) = ,C − C,1, 0 ≤ C ≤ 1,

is called a Brownian bridge (from �̃(0) = 0 to �̃(1) = 0) with diffusion parameter 1. For brevity

we call the latter object a standard Brownian bridge.

Given 0, 1, G, H ∈ R with 0 < 1 we define a random variable on (� ( [0, 1]), C) through

�(C) = (1 − 0)1/2 · �̃
( C − 0
1 − 0

)
+

(
1 − C
1 − 0

)
· G +

( C − 0
1 − 0

)
· H, (5.1.2)

and refer to the law of this random variable as a Brownian bridge (from �(0) = G to �(1) = H) with

diffusion parameter 1. Given : ∈ N and ®G, ®H ∈ R: we let P0,1,®G,®H
5 A44

denote the law of : independent

Brownian bridges {�8 : [0, 1] → R}:
8=1 from �8 (0) = G8 to �8 (1) = H8 all with diffusion parameter

1.

We next state a couple of results about Brownian bridges from [73] for future use.

Lemma 5.1.5. [73, Corollary 2.9]. Fix a continuous function 5 : [0, 1] → R such that 5 (0) > 0

and 5 (1) > 0. Let � be a standard Brownian bridge and let � = {�(C) > 5 (C) for some C ∈ [0, 1]}

(crossing) and ) = {�(C) = 5 (C) for some C ∈ [0, 1]} (touching). Then P() ∩ �2) = 0.
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Lemma 5.1.6. [73, Corollary 2.10]. Let * be an open subset of � ( [0, 1]), which contains a

function 5 such that 5 (0) = 5 (1) = 0. If � : [0, 1] → R is a standard Brownian bridge then

P(�[0, 1] ⊂ *) > 0.

The following definition introduces the notion of an ( 5 , 6)-avoiding Brownian line ensemble,

which in simple terms is a collection of : independent Brownian bridges, conditioned on not-

crossing each other and staying above the graph of 6 and below the graph of 5 for two continuous

functions 5 and 6.

Definition 5.1.7. Let : ∈ N and : denote the open Weyl chamber in R: , i.e.

: = {®G = (G1, . . . , G: ) ∈ R: : G1 > G2 > · · · > G: }.

(In [73] the notation R:> was used for this set.) Let ®G, ®H ∈: , 0, 1 ∈ R with 0 < 1, and 5 : [0, 1] →

(−∞,∞] and 6 : [0, 1] → [−∞,∞) be two continuous functions. The latter condition means that

either 5 : [0, 1] → R is continuous or 5 = ∞ everywhere, and similarly for 6. We also assume

that 5 (C) > 6(C) for all C ∈ [0, 1], 5 (0) > G1, 5 (1) > H1 and 6(0) < G: , 6(1) < H: .

With the above data we define the ( 5 , 6)-avoiding Brownian line ensemble on the interval

[0, 1] with entrance data ®G and exit data ®H to be the Σ-indexed line ensemble Q with Σ = È1, :É

on Λ = [0, 1] and with the law of Q equal to P0,1,®G,®H
5 A44

(the law of : independent Brownian bridges

{�8 : [0, 1] → R}:
8=1 from �8 (0) = G8 to �8 (1) = H8) conditioned on the event

� = { 5 (A) > �1(A) > �2(A) > · · · > �: (A) > 6(A) for all A ∈ [0, 1]} .

It is worth pointing out that � is an open set of positive measure and so we can condition on it in

the usual way – we explain this briefly in the following paragraph. Let (Ω, F , P) be a probability

space that supports : independent Brownian bridges {�8 : [0, 1] → R}:
8=1 from �8 (0) = G8 to

�8 (1) = H8 all with diffusion parameter 1. Notice that we can find D̃1, . . . , D̃: ∈ � ( [0, 1]) and

n > 0 (depending on ®G, ®H, 5 , 6, 0, 1) such that D̃8 (0) = D̃8 (1) = 0 for 8 = 1, . . . , : and such that if
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ℎ̃1, . . . , ℎ̃: ∈ � ( [0, 1]) satisfy ℎ̃8 (0) = ℎ̃8 (1) = 0 for 8 = 1, . . . , : and supC∈[0,1] |D̃8 (C) − ℎ̃8 (C) | < n

then the functions

ℎ8 (C) = (1 − 0)1/2 · ℎ̃8
( C − 0
1 − 0

)
+

(
1 − C
1 − 0

)
· G8 +

( C − 0
1 − 0

)
· H8,

satisfy 5 (A) > ℎ1(A) > · · · > ℎ: (A) > 6(A). It follows from Lemma 5.1.6 that

P(�) ≥ P
(
max
1≤8≤:

sup
A∈[0,1]

|�̃8 (A) − D̃8 (A) | < n
)
=

:∏
8=1
P

(
sup
A∈[0,1]

|�̃8 (A) − D̃8 (A) | < n
)
> 0,

and so we can condition on the event � .

To construct a realization of Q we proceed as follows. For l ∈ � we define

Q(l) (8, A) = �8 (A) (l) for 8 = 1, . . . , : and A ∈ [0, 1] .

Observe that for 8 ∈ {1, . . . , :} and an open set* ∈ � ( [0, 1]) we have that

Q−1({8} ×*) = {�8 ∈ *} ∩ � ∈ F ,

and since the sets {8} × * form an open basis of � (È1, :É × [0, 1]) we conclude that Q is F -

measurable. This implies that the law Q is indeed well-defined and also it is non-intersecting

almost surely. Also, given measurable subsets �1, . . . , �: of � ( [0, 1]) we have that

P(Q8 ∈ �8 for 8 = 1, . . . , :) =
P
0,1,®G,®H
5 A44

({�8 ∈ �8 for 8 = 1, . . . , :} ∩ �)

P
0,1,®G,®H
5 A44

(�)
.

We denote the probability distribution of Q as P0,1,®G,®H, 5 ,6
0E>83

and write E0,1,®G,®H, 5 ,6
0E>83

for the expectation

with respect to this measure.

The following definition introduces the notion of the Brownian Gibbs property from [73].

Definition 5.1.8. Fix a set Σ = È1, #É with # ∈ N or # = ∞ and an interval Λ ⊂ R and let
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 = {:1, :1 + 1, . . . , :2} ⊂ Σ be finite and 0, 1 ∈ Λ with 0 < 1. Set 5 = L:1−1 and 6 = L:2+1

with the convention that 5 = ∞ if :1 − 1 ∉ Σ and 6 = −∞ if :2 + 1 ∉ Σ. Write � ,0,1 =  × (0, 1)

and �2
 ,0,1

= (Σ × Λ) \ � ,0,1. A Σ-indexed line ensemble L : Σ × Λ → R is said to have the

Brownian Gibbs property if it is non-intersecting and

Law
(
L| ×[0,1] conditional on L|�2

 ,0,1

)
= Law (Q) ,

where Q8 = Q̃8−:1+1 and Q̃ is the ( 5 , 6)-avoiding Brownian line ensemble on [0, 1] with entrance

data (L:1 (0), . . . ,L:2 (0)) and exit data (L:1 (1), . . . ,L:2 (1)) from Definition 5.1.7. Note that &̃

is introduced because, by definition, any such ( 5 , 6)-avoiding Brownian line ensemble is indexed

from 1 to :2 − :1 + 1 but we want Q to be indexed from :1 to :2.

An equivalent way to express the Brownian Gibbs property is as follows. A Σ-indexed line

ensemble L on Λ satisfies the Brownian Gibbs property if and only if it is non-intersecting and

for any finite  = {:1, :1 + 1, . . . , :2} ⊂ Σ and [0, 1] ⊂ Λ and any bounded Borel-measurable

function � : � ( × [0, 1]) → R we have P-almost surely

E
[
�

(
L| ×[0,1]

) ��F4GC ( × (0, 1))] = E0,1,®G,®H, 5 ,60E>83

[
� (Q̃)

]
, (5.1.3)

where

F4GC ( × (0, 1)) = f
{
L8 (B) : (8, B) ∈ �2

 ,0,1

}
is the f-algebra generated by the variables in the brackets above, L| ×[0,1] denotes the restriction

of L to the set  × [0, 1], ®G = (L:1 (0), . . . ,L:2 (0)), ®H = (L:1 (1), . . . ,L:2 (1)), 5 = L:1−1 [0, 1]

(the restriction of L to the set {:1 − 1} × [0, 1]) with the convention that 5 = ∞ if :1 − 1 ∉ Σ, and

6 = L:2+1 [0, 1] with the convention that 6 = −∞ if :2 + 1 ∉ Σ.

Remark 5.1.9. Let us briefly explain why equation (5.1.3) makes sense. Firstly, since Σ × Λ is

locally compact, we know by [192, Lemma 46.4] that L → L| ×[0,1] is a continuous map from

� (Σ × Λ) to � ( × [0, 1]), so that the left side of (5.1.3) is the conditional expectation of a
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bounded measurable function, and is thus well-defined. A more subtle question is why the right

side of (5.1.3) is F4GC ( × (0, 1))-measurable. This question was resolved in [105, Lemma 3.4],

where it was shown that the right side is measurable with respect to the f-algebra

f {L8 (B) : 8 ∈  and B ∈ {0, 1}, or 8 ∈ {:1 − 1, :2 + 1} and B ∈ [0, 1]} ,

which in particular implies the measurability with respect to F4GC ( × (0, 1)).

In the present paper it is convenient for us to use the following modified version of the definition

above, which we call the partial Brownian Gibbs property – it was first introduced in [105]. We

explain the difference between the two definitions, and why we prefer the second one in Remark

5.1.12.

Definition 5.1.10. Fix a set Σ = È1, #É with # ∈ N or # = ∞ and an interval Λ ⊂ R. A Σ-indexed

line ensemble L on Λ is said to satisfy the partial Brownian Gibbs property if and only if it is

non-intersecting and for any finite  = {:1, :1 + 1, . . . , :2} ⊂ Σ with :2 ≤ # − 1 (if Σ ≠ N),

[0, 1] ⊂ Λ and any bounded Borel-measurable function � : � ( × [0, 1]) → R we have P-almost

surely

E
[
� (L| ×[0,1])

��F4GC ( × (0, 1))] = E0,1,®G,®H, 5 ,60E>83

[
� (Q̃)

]
, (5.1.4)

where we recall that � ,0,1 =  × (0, 1) and �2
 ,0,1

= (Σ × Λ) \ � ,0,1, and

F4GC ( × (0, 1)) = f
{
L8 (B) : (8, B) ∈ �2

 ,0,1

}
is the f-algebra generated by the variables in the brackets above, L| ×[0,1] denotes the restriction

of L to the set  × [0, 1], ®G = (L:1 (0), . . . ,L:2 (0)), ®H = (L:1 (1), . . . ,L:2 (1)), 5 = L:1−1 [0, 1]

with the convention that 5 = ∞ if :1 − 1 ∉ Σ, and 6 = L:2+1 [0, 1].

Remark 5.1.11. Observe that if # = 1 then the conditions in Definition 5.1.10 become void, i.e.,

any line ensemble with one line satisfies the partial Brownian Gibbs property. Also we mention

that (5.1.4) makes sense by the same reason that (5.1.3) makes sense, see Remark 5.1.9.
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Remark 5.1.12. Definition 5.1.10 is slightly different from the Brownian Gibbs property of Defi-

nition 5.1.8 as we explain here. Assuming that Σ = N the two definitions are equivalent. However,

if Σ = {1, . . . , #} with 1 ≤ # < ∞ then a line ensemble that satisfies the Brownian Gibbs property

also satisfies the partial Brownian Gibbs property, but the reverse need not be true. Specifically,

the Brownian Gibbs property allows for the possibility that :2 = # in Definition 5.1.10 and in this

case the convention is that 6 = −∞. As the partial Brownian Gibbs property is more general we

prefer to work with it and most of the results later in this paper are formulated in terms of it rather

than the usual Brownian Gibbs property.

5.1.2 Bernoulli Gibbsian line ensembles

In this section we introduce the notion of a Bernoulli line ensemble and the Schur Gibbs prop-

erty. Our discussion will parallel that of [CD], which in turn goes back to [74, Section 2.1].

Definition 5.1.13. Let Σ ⊂ Z and )0, )1 ∈ Z with )0 < )1. Consider the set . of functions

5 : Σ × È)0, )1É → Z such that 5 ( 9 , 8 + 1) − 5 ( 9 , 8) ∈ {0, 1} when 9 ∈ Σ and 8 ∈ È)0, )1 − 1É

and let D denote the discrete topology on . . We call a function 5 : È)0, )1É → Z such that

5 (8 + 1) − 5 (8) ∈ {0, 1} when 8 ∈ È)0, )1 − 1É an up-right path and elements in . collections of

up-right paths.

A Σ-indexed Bernoulli line ensemble L on È)0, )1É is a random variable defined on a probabil-

ity space (Ω,B, P), taking values in . such that L is a (B,D)-measurable function.

Remark 5.1.14. In [CD] Bernoulli line ensembles L were called discrete line ensembles in order

to distinguish them from the continuous line ensembles from Definition 5.1.1. In this paper we

have opted to use the term Bernoulli line ensembles to emphasize the fact that the functions 5 ∈ .

satisfy the property that 5 ( 9 , 8+1)− 5 ( 9 , 8) ∈ {0, 1} when 9 ∈ Σ and 8 ∈ È)0, )1−1É. This condition

essentially means that for each 9 ∈ Σ the function 5 ( 9 , ·) can be thought of as the trajectory of

a Bernoulli random walk from time )0 to time )1. As other types of discrete line ensembles, see

e.g. [239], have appeared in the literature we have decided to modify the notation in [CD] so as to

avoid any ambiguity.
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The way we think of Bernoulli line ensembles is as random collections of up-right paths on

the integer lattice, indexed by Σ (see Figure 5.1). Observe that one can view an up-right path !

on È)0, )1É as a continuous curve by linearly interpolating the points (8, !(8)). This allows us

to define (L(l)) (8, B) for non-integer B ∈ [)0, )1] and to view Bernoulli line ensembles as line

ensembles in the sense of Definition 5.1.1. In particular, we can think of L as a random variable

taking values in (� (Σ × Λ), CΣ) with Λ = [)0, )1]. We will often slightly abuse notation and write

Figure 5.1: Two samples of È1, 3É-indexed Bernoulli line ensembles with )0 = 1 and )1 = 8, with
the left ensemble avoiding and the right ensemble nonavoiding.

L : Σ × È)0, )1É → Z, even though it is not L which is such a function, but rather L(l) for each

l ∈ Ω. Furthermore we write !8 = (L(l)) (8, ·) for the index 8 ∈ Σ path. If ! is an up-right path

on È)0, )1É and 0, 1 ∈ È)0, )1É satisfy 0 < 1 we let !È0, 1É denote the resitrction of ! to È0, 1É.

Let C8, I8 ∈ Z for 8 = 1, 2 be given such that C1 < C2 and 0 ≤ I2 − I1 ≤ C2 − C1. We denote

by Ω(C1, C2, I1, I2) the collection of up-right paths that start from (C1, I1) and end at (C2, I2), by

PC1,C2,I1,I2
�4A

the uniform distribution on Ω(C1, C2, I1, I2) and write EC1,C2,I1,I2
�4A

for the expectation with

respect to this measure. One thinks of the distribution PC1,C2,I1,I2
�4A

as the law of a simple random

walk with i.i.d. Bernoulli increments with parameter ? ∈ (0, 1) that starts from I1 at time C1 and is

conditioned to end in I2 at time C2 – this interpretation does not depend on the choice of ? ∈ (0, 1).
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Notice that by our assumptions on the parameters the state space Ω(C1, C2, I1, I2) is non-empty.

Given : ∈ N, )0, )1 ∈ Z with )0 < )1 and ®G, ®H ∈ Z: we let P)0,)1,®G,®H
�4A

denote the law of : inde-

pendent Bernoulli bridges {�8 : È)0, )1É → Z}:8=1 from �8 ()0) = G8 to �8 ()1) = H8. Equivalently,

this is just : independent random up-right paths �8 ∈ Ω()0, )1, G8, H8) for 8 = 1, . . . , : that are

uniformly distributed. This measure is well-defined provided that Ω()0, )1, G8, H8) are non-empty

for 8 = 1, . . . , : , which holds if )1 − )0 ≥ H8 − G8 ≥ 0 for all 8 = 1, . . . , : .

The following definition introduces the notion of an ( 5 , 6)-avoiding Bernoulli line ensemble,

which in simple terms is a collection of : independent Bernoulli bridges, conditioned on not-

crossing each other and staying above the graph of 6 and below the graph of 5 for two functions 5

and 6.

Definition 5.1.15. Let : ∈ N and W: denote the set of signatures of length : , i.e.

W: = {®G = (G1, . . . , G: ) ∈ Z: : G1 ≥ G2 ≥ · · · ≥ G: }.

Let ®G, ®H ∈ W: , )0, )1 ∈ Z with )0 < )1, ( ⊆ È)0, )1É, and 5 : È)0, )1É → (−∞,∞] and

6 : È)0, )1É → [−∞,∞) be two functions.

With the above data we define the ( 5 , 6; ()-avoiding Bernoulli line ensemble on the interval

È)0, )1É with entrance data ®G and exit data ®H to be the Σ-indexed Bernoulli line ensemble Q with

Σ = È1, :É on È)0, )1É and with the law of Q equal to P)0,)1,®G,®H
�4A

(the law of : independent uniform

up-right paths {�8 : È)0, )1É → R}:8=1 from �8 ()0) = G8 to �8 ()1) = H8) conditioned on the event

�( = { 5 (A) ≥ �1(A) ≥ �2(A) ≥ · · · ≥ �: (A) ≥ 6(A) for all A ∈ (} .

The above definition is well-posed if there exist �8 ∈ Ω()0, )1, G8, H8) for 8 = 1, . . . , : that satisfy

the conditions in �( (i.e. if the set of such up-right paths is not empty). We will denote by

Ω0E>83 ()0, )1, ®G, ®H, 5 , 6; () the set of collections of : up-right paths that satisfy the conditions in �(

and then the distribution on Q is simply the uniform measure on Ω0E>83 ()0, )1, ®G, ®H, 5 , 6; (). We

denote the probability distribution of Q as P)0,)1,®G,®H, 5 ,6
0E>83,�4A;( and write E)0,)1,®G,®H, 5 ,6

0E>83,�4A;( for the expectation
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with respect to this measure. If ( = È)0, )1É, we write Ω0E>83 ()0, )1, ®G, ®H, 5 , 6), P)0,)1,®G,®H, 5 ,6
0E>83,�4A

, and

E
)0,)1,®G,®H, 5 ,6
0E>83,�4A

. If 5 = +∞ and 6 = −∞, we write Ω0E>83 ()0, )1, ®G, ®H), P)0,)1,®G,®H
0E>83,�4A

, and E)0,)1,®G,®H
0E>83,�4A

.

It will be useful to formulate simple conditions under which Ω0E>83 ()0, )1, ®G, ®H, 5 , 6) is non-

empty and thus P)0,)1,®G,®H, 5 ,6
0E>83,�4A

well-defined. Note thatΩ0E>83 ()0, )1, ®G, ®H, 5 , 6; () ⊇ Ω0E>83 ()0, )1, ®G, ®H, 5 , 6)

for any ( ⊆ È)0, )1É, so P)0,)1,®G,®H, 5 ,6
0E>83,�4A;( is also well-defined in this case. We accomplish this in the

following lemma, whose proof is postponed until Section 5.6.3.

Lemma 5.1.16. Suppose that : ∈ N and )0, )1 ∈ Z with )0 < )1. Suppose further that

1. ®G, ®H ∈ W: satisfy )1 − )0 ≥ H8 − G8 ≥ 0 for 8 = 1, . . . , : ,

2. 5 : È)0, )1É → (−∞,∞] and 6 : È)0, )1É → [−∞,∞) satisfy 5 (8 + 1) = 5 (8) or 5 (8 + 1) =

5 (8) + 1, and 6(8 + 1) = 6(8) or 6(8 + 1) = 6(8) + 1 for 8 = )0, . . . , )1 − 1,

3. 5 ()0) ≥ G1, 5 ()1) ≥ H1 and 6()0) ≤ G: , 6()1) ≤ H: .

Then the set Ω0E>83 ()0, )1, ®G, ®H, 5 , 6) from Definition 5.1.15 is non-empty.

The following definition introduces the notion of the Schur Gibbs property, which can be

thought of a discrete analogue of the partial Brownian Gibbs property the same way that Bernoulli

random walks are discrete analogues of Brownian motion.

Definition 5.1.17. Fix a set Σ = È1, #É with # ∈ N or # = ∞ and )0, )1 ∈ Z with )0 < )1. A

Σ-indexed Bernoulli line ensemble L : Σ×È)0, )1É → Z is said to satisfy the Schur Gibbs property

if it is non-crossing, meaning that

! 9 (8) ≥ ! 9+1(8) for all 9 = 1, . . . , # − 1 and 8 ∈ È)0, )1É,

and for any finite  = {:1, :1 + 1, . . . , :2} ⊂ È1, # − 1É and 0, 1 ∈ È)0, )1É with 0 < 1 the

following holds. Suppose that 5 , 6 are two up-right paths drawn in {(A, I) ∈ Z2 : 0 ≤ A ≤ 1} and

®G, ®H ∈ W: with : = :2 − :1 + 1 altogether satisfy that P(�) > 0 where � denotes the event

� = {®G = (!:1 (0), . . . , !:2 (0)), ®H = (!:1 (1), . . . , !:2 (1)), !:1−1È0, 1É = 5 , !:2+1È0, 1É = 6},
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where if :1 = 1 we adopt the convention 5 = ∞ = !0. Then writing : = :2 − :1 + 1, we have for

any {�8 ∈ Ω(0, 1, G8, H8)}:8=1 that

P
(
!8+:1−1È0, 1É = �8 for 8 = 1, . . . , : |�

)
= P

0,1,®G,®H, 5 ,6
0E>83,�4A

(
∩:8=1{Q8 = �8}

)
. (5.1.5)

Remark 5.1.18. In simple words, a Bernoulli line ensemble is said to satisfy the Schur Gibbs

property if the distribution of any finite number of consecutive paths, conditioned on their end-

points and the paths above and below them is simply the uniform measure on all collection of

up-right paths that have the same end-points and do not cross each other or the paths above and

below them.

Remark 5.1.19. Observe that in Definition 5.1.17 the index :2 is assumed to be less than or equal

to # − 1, so that if # < ∞ the #-th path is special and is not conditionally uniform. This is

what makes Definition 5.1.17 a discrete analogue of the partial Brownian Gibbs property rather

than the usual Brownian Gibbs property. Similarly to the partial Brownian Gibbs property, see

Remark 5.1.11, if # = 1 then the conditions in Definition 5.1.17 become void, i.e., any Bernoulli

line ensemble with one line satisfies the Schur Gibbs property. Also we mention that the well-

posedness of P)0,)1,®G,®H, 5 ,6
0E>83,�4A

in (5.1.5) is a consequence of Lemma 5.1.16 and our assumption that

P(�) > 0.

Remark 5.1.20. In [CD] the authors studied a generalization of the Gibbs property in Definition

5.1.17 depending on a parameter C ∈ (0, 1), which was called the Hall-Littlewood Gibbs property

due to its connection to Hall-Littlewood polynomials [185]. The property in Definition 5.1.17 is the

C → 0 limit of the Hall-Littlewood Gibbs property. Since under this C → 0 limit Hall-Littlewood

polynomials degenerate to Schur polynomials we have decided to call the Gibbs property in Defi-

nition 5.1.17 the Schur Gibbs property.

Remark 5.1.21. An immediate consequence of Definition 5.1.17 is that if " ≤ # , we have that the

induced law on {!8}"8=1 also satisfies the Schur Gibbs property as an {1, . . . , "}-indexed Bernoulli

line ensemble on È)0, )1É.
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We end this section with the following definition of the term acceptance probability.

Definition 5.1.22. Assume the same notation as in Definition 5.1.15 and suppose that )1 − )0 ≥

H8 − G8 ≥ 0 for 8 = 1, . . . , : . We define the acceptance probability / ()0, )1, ®G, ®H, 5 , 6) to be the

ratio

/ ()0, )1, ®G, ®H, 5 , 6) =
|Ω0E>83 ()0, )1, ®G, ®H, 5 , 6) |∏:

8=1 |Ω()0, )1, G8, H8) |
. (5.1.6)

Remark 5.1.23. The quantity / ()0, )1, ®G, ®H, 5 , 6) is precisely the probability that if �8 are sampled

uniformly from Ω()0, )1, G8, H8) for 8 = 1, . . . , : then the �8 satisfy the condition

� = { 5 (A) ≥ �1(A) ≥ �2(A) ≥ · · · ≥ �: (A) ≥ 6(A) for all A ∈ È)0, )1É} .

Let us explain briefly why we call this quantity an acceptance probability. One way to sample

P
)0,)1,®G,®H, 5 ,6
0E>83,�4A

is as follows. Start by sampling a sequence of i.i.d. up-right paths �#
8

uniformly from

Ω()0, )1, G8, H8) for 8 = 1, . . . , : and # ∈ N. For each = check if �=1, . . . , �
=
:

satisfy the condition

� and let " denote the smallest index that accomplishes this. If Ω0E>83 ()0, )1, ®G, ®H, 5 , 6) is non-

empty then " is geometrically distributed with parameter / ()0, )1, ®G, ®H, 5 , 6), and in particular "

is finite almost surely and {�"
8
}:
8=1 has distribution P)0,)1,®G,®H, 5 ,6

0E>83,�4A
. In this sampling procedure we

construct a sequence of candidates {�#
8
}:
8=1 for # ∈ N and reject those that fail to satisfy condition

� , the first candidate that satisfies it is accepted and has law P)0,)1,®G,®H, 5 ,6
0E>83,�4A

and the probability that

a candidate is accepted is precisely / ()0, )1, ®G, ®H, 5 , 6), which is why we call it an acceptance

probability.

5.1.3 Main technical result

In this section we present the main technical result of the paper. We start with the following

technical definition.

Definition 5.1.24. Fix : ∈ N, U, _ > 0 and ? ∈ (0, 1). Suppose we are given a sequence {)# }∞#=1

with )# ∈ N and that {L# }∞
#=1, L# = (!#1 , !

#
2 , . . . , !

#
:
) is a sequence of È1, :É-indexed Bernoulli

line ensembles on È−)# , )#É. We call the sequence (U, ?, _)-good if
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• for each # ∈ N we have that L# satisfies the Schur Gibbs property of Definition 5.1.17;

• there is a function k : N → (0,∞) such that lim#→∞ k(#) = ∞ and for each # ∈ N we

have that )# > k(#)#U;

• there is a function q : (0,∞) → (0,∞) such that for any n > 0 we have

sup
=∈Z

lim sup
#→∞

P
(���#−U/2(!#1 (=#U) − ?=#U + _=2#U/2)

��� ≥ q(n)) ≤ n . (5.1.7)

Remark 5.1.25. Let us elaborate on the meaning of Definition 5.1.24. In order for a sequence of

L# of È1, :É-indexed Bernoulli line ensembles on È−)# , )#É to be (U, ?, _)-good we want several

conditions to be satisfied. Firstly, we want for each # the Bernoulli line ensemble L# to satisfy

the Schur Gibbs property. The second condition is that while the interval of definition of L# is

finite for each # and given by È−)# , )#É, we want this interval to grow at least with speed #U.

This property is quantified by the function k, which can be essentially thought of as an arbitrary

unbounded increasing function on N. The third condition is that we want for each = ∈ Z the

sequence of random variables #−U/2(!#1 (=#
U) − ?=#U) to be tight but moreover we want globally

these random variables to look like the parabola −_=2. This statement is reflected in (5.1.7), which

provides a certain uniform tightness of the random variables #−U/2(!#1 (=#
U) − ?=#U +_=2#U/2).

A particular case when (5.1.7) is satisfied is for example if we know that for each = ∈ Z the

random variables #−U/2(!#1 (=#
U) − ?=#U + _=2#U/2) converge to the same random variable - .

In the applications that we have in mind these random variables would converge to the 1-point

marginals of the Airy2 process that are all given by the same Tracy-Widom distribution (since the

Airy2 process is stationary). Equation (5.1.7) is a significant relaxation of the requirement that

#−U/2(!#1 (=#
U) − ?=#U + _=2#U/2) all converge weakly to the Tracy-Widom distribution – the

convergence requirement is replaced with a mild but uniform control of all subsequential limits.

The main result of the paper is as follows.
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Theorem 5.1.26. Fix : ∈ N with : ≥ 2, U, _ > 0 and ? ∈ (0, 1) and let L# = (!#1 , !
#
2 , . . . , !

#
:
)

be an (U, ?, _)-good sequence of È1, :É-indexed Bernoulli line ensembles. Set

5 #8 (B) = #−U/2(!#8 (B#U) − ?B#U + _B2#U/2), for B ∈ [−k(#), k(#)] and 8 = 1, . . . , : − 1,

and extend 5 #
8

to R by setting for 8 = 1, . . . , : − 1

5 #8 (B) = 5 #8 (−k(#)) for B ≤ −k(#) and 5 #8 (B) = 5# (k(#)) for B ≥ k(#).

Let P# denote the law of { 5 #
8
}:−1
8=1 as a È1, : −1É-indexed line ensemble (i.e. as a random variable

in (� (È1, : − 1É × R), C)), and let P̃# denote the law of {( 5 #
8
− _B2)/

√
?(1 − ?)}:−1

8=1 . Then we

have

(i) The sequence P# is tight;

(ii) Any subsequential limit L∞ = { 5∞
8
}:−1
8=1 of P̃# satisfies the partial Brownian Gibbs property

of Definition 5.1.10.

Roughly, Theorem 5.1.26 (i) states that if we have a sequence of È1, :É-indexed Bernoulli line

ensembles that satisfy the Schur Gibbs property and the top paths of these ensembles under some

shift and scaling have tight one-point marginals with a non-trivial parabolic shift, then under the

same shift and scaling the top : − 1 paths of the line ensemble will be tight. The extension of 5 #
8

to R is completely arbitrary and irrelevant for the validity of Theorem 5.1.26 since the topology on

� (È1, : − 1É ×R) is that of uniform convergence over compacts. Consequently, only the behavior

of these functions on compact intervals matters in Theorem 5.1.26 and not what these functions do

near infinity, which is where the modification happens as lim#→∞ k(#) = ∞ by assumption. The

only reason we perform the extension is to embed all Bernoulli line ensembles into the same space

(� (È1, : − 1É × R), C).

We mention that the :-th up-right path in the sequence of Bernoulli line ensembles is special

and Theorem 5.1.26 provides no tightness result for it. The reason for this stems from the Schur
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Gibbs property, see Definition 5.1.17, which assumes less information for the :-th path. In practice,

one either has an infinite Bernoulli line ensemble for each # or one has a Bernoulli line ensemble

with finite number of paths, which increase with # to infinity. In either of these settings one can

use Theorem 5.1.26 to prove tightness of the full line ensemble - we will have more to say about

this in Section 7.

The proof of Theorem 5.1.26 is presented in Section 5.3. In the next section we derive various

properties for Bernoulli line ensembles.

5.2 Properties of Bernoulli line ensembles

In this section we derive several results for Bernoulli line ensembles, which will be used in the

proof of Theorem 5.1.26 in Section 5.3.

5.2.1 Monotone coupling lemmas

In this section we formulate two lemmas that provide couplings of two Bernoulli line ensembles

of non-intersecting Bernoulli bridges on the same interval, which depend monotonically on their

boundary data. Schematic depictions of the couplings are provided in Figure 5.2. We postpone the

proof of these lemmas until Section 5.6.

Lemma 5.2.1. Assume the same notation as in Definition 5.1.15. Fix : ∈ N, )0, )1 ∈ Z with

)0 < )1, ( ⊆ È)0, )1É, a function 6 : È)0, )1É → [−∞,∞) as well as ®G, ®H, ®G ′, ®H ′ ∈ W: . Assume

that Ω0E>83 ()0, )1, ®G, ®H,∞, 6; () and Ω0E>83 ()0, )1, ®G′, ®H′,∞, 6; () are both non-empty. Then there

exists a probability space (Ω, F , P), which supports two È1, :É-indexed Bernoulli line ensembles

LC and L1 on È)0, )1É such that the law of LC
(
resp. L1

)
under P is given by P)0,)1,®G ′,®H ′,∞,6

0E>83,�4A;(
(
resp.

P
)0,)1,®G,®H,∞,6
0E>83,�4A;(

)
and such that P-almost surely we have LC

8
(A) ≥ L1

8
(A) for all 8 = 1, . . . , : and A ∈

È)0, )1É.

Lemma 5.2.2. Assume the same notation as in Definition 5.1.15. Fix : ∈ N, )0, )1 ∈ Z with

)0 < )1, ( ⊆ È)0, )1É, two functions 6C , 61 : È)0, )1É → [−∞,∞) and ®G, ®H ∈ W: . We assume that
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Figure 5.2: Two diagrammatic depictions of the monotone coupling Lemma 5.2.1 (left part) and
Lemma 5.2.2 (right part). Red depicts the lower line ensemble and accompanying entry data, exit
data, and bottom bounding curve, while blue depicts that of the higher ensemble.

6C (A) ≥ 61 (A) for all A ∈ È)0, )1É and thatΩ0E>83 ()0, )1, ®G, ®H,∞, 6C ; () andΩ0E>83 ()0, )1, ®G, ®H,∞, 61; ()

are both non-empty. Then there exists a probability space (Ω, F , P), which supports two È1, :É-

indexed Bernoulli line ensembles LC and L1 on È)0, )1É such that the law of LC
(
resp. L1

)
under P

is given by P)0,)1,®G,®H,∞,6C
0E>83,�4A;(

(
resp. P)0,)1,®G,®H,∞,61

0E>83,�4A;(
)

and such that P-almost surely we have LC
8
(A) ≥ L1

8
(A)

for all 8 = 1, . . . , : and A ∈ È)0, )1É.

In plain words, Lemma 5.2.1 states that one can couple two Bernoulli line ensembles LC and L1

of non-intersecting Bernoulli bridges, bounded from below by the same function 6, in such a way

that if all boundary values of LC are above the respective boundary values of L1, then all up-right

paths of LC are almost surely above the respective up-right paths of L1. See the left part of Figure

5.2. Lemma 5.2.2, states that one can couple two Bernoulli line ensembles LC and L1 that have the

same boundary values, but the lower bound 6C of LC is above the lower bound 61 of L1, in such a

way that all up-right paths of LC are almost surely above the respective up-right paths of L1. See

the right part of Figure 5.2.
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5.2.2 Properties of Bernoulli and Brownian bridges

In this section we derive several results about Bernoulli bridges, which are random up-right

paths that have law P)0,)1,G,H
�4A

as in Section 5.1.2, as well as Brownian bridges with law P)0,)1,G,H
5 A44

as

in Section 5.1.1. Our results will rely on the two monotonicity Lemmas 5.2.1 and 5.2.2 as well as

a strong coupling between Bernoulli bridges and Brownian bridges from [CD] – recalled here as

Theorem 5.2.3.

If,C denotes a standard one-dimensional Brownian motion and f > 0, then the process

�fC = f(,C − C,1), 0 ≤ C ≤ 1,

is called a Brownian bridge (conditioned on �0 = 0, �1 = 0) with variance f2. We note that �f is

the unique a.s. continuous Gaussian process on [0, 1] with �0 = �1 = 0, [�fC ] = 0, and

[�fA �fB ] = f2(A ∧ B − AB − BA + BA) = f2(A ∧ B − AB). (5.2.1)

With the above notation we state the strong coupling result we use.

Theorem 5.2.3. Let ? ∈ (0, 1). There exist constants 0 < �, 0, U < ∞ (depending on ?) such that

for every positive integer =, there is a probability space on which are defined a Brownian bridge

�f with variance f2 = ?(1− ?) and a family of random paths ℓ(=,I) ∈ Ω(0, =, 0, I) for I = 0, . . . , =

such that ℓ(=,I) has law P0,=,0,I
�4A

and

E
[
40Δ(=,I)

]
≤ �4U(log =)24 |I−?=|

2/=, where Δ(=, I) := sup0≤C≤=

���√=�f
C/= +

C
=
I − ℓ(=,I) (C)

��� . (5.2.2)

Remark 5.2.4. When ? = 1/2 the above theorem follows (after a trivial affine shift) from [173,

Theorem 6.3] and the general ? ∈ (0, 1) case was done in [CD]. We mention that a significant

generalization of Theorem 5.2.3 for general random walk bridges has recently been proved in [106,

Theorem 2.3].
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We will use the following simple corollary of Theorem 5.2.3 to compare Bernoulli bridges with

Brownian bridges. We use the same notation as in the theorem.

Corollary 5.2.5. Fix ? ∈ (0, 1), V > 0, and � > 0. Suppose |I− ?=| ≤  
√
= for a constant  > 0.

Then for any n > 0, there exists # large enough depending on ?, n, �,  so that for = ≥ # ,

P
(
Δ(=, I) ≥ �=V

)
< n.

Proof. Applying Chebyshev’s inequality and (5.2.2) gives

P
(
Δ(=, I) ≥ �=V

)
≤ 4−�=V

[
40Δ(=,I)

]
≤ � exp

[
− �=V + U(log =)2 + |I − ?=|

2

=

]
≤ � exp

[
− �=V + U(log =)2 +  

]
.

The conclusion is now immediate.

We also state the following result regarding the distribution of the maximum of a Brownian

bridge, which follows from formulas in [113, Section 12.3].

Lemma 5.2.6. Fix ? ∈ (0, 1), and let �f be a Brownian bridge of variance f2 = ?(1 − ?) on

[0, 1]. Then for any �,) > 0 we have

P

(
max
B∈[0,)]

�f
B/) ≥ �

)
= exp

(
− 2�2

?(1 − ?)

)
,

P

(
max
B∈[0,)]

���f
B/)

�� ≥ �)
= 2

∞∑
==1
(−1)=−1 exp

(
− 2=2�2

?(1 − ?)

)
.

(5.2.3)

In particular,

P

(
max
B∈[0,)]

���f
B/)

�� ≥ �)
≤ 2 exp

(
− 2�2

?(1 − ?)

)
. (5.2.4)

Proof. Let �1 be a Brownian bridge with variance 1 on [0, 1]. Then �fC has the same distribution
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as f�1
C . Hence

P

(
max
B∈[0,)]

�f
B/) ≥ �

)
= P

(
max
C∈[0,1]

�1
C ≥ �/f

)
= 4−2(�/f)2 = 4−2�2/?(1−?) .

The second equality follows from [113, Proposition 12.3.3]. This proves the first equality in (5.2.3).

Similarly, using [113, Proposition 12.3.4] we find

P

(
max
B∈[0,)]

���f
B/)

�� ≥ �)
= P

(
max
C∈[0,1]

���1
C

�� ≥ �/f)
= 2

∞∑
==1
(−1)=−14−2=2�2/f2

,

proving the second inequality in (5.2.3).

Lastly to prove (5.2.4), observe that since �fC has mean 0, �fC and −�fC have the same distribu-

tion. It follows from the first equality above that

P

(
max
B∈[0,)]

���f
B/)

�� ≥ �)
≤ P

(
max
B∈[0,)]

�f
B/) ≥ �

)
+ P

(
max
B∈[0,)]

(
− �f

B/)
)
≥ �

)
=

2P
(

max
B∈[0,)]

�f
B/) ≥ �

)
= 24−2�2/?(1−?) .

We state one more lemma about Brownian bridges, which allows us to decompose a bridge on

[0, 1] into two independent bridges with Gaussian affine shifts meeting at a point in (0, 1).

Lemma 5.2.7. Fix ? ∈ (0, 1), ) > 0, C ∈ (0, )), and let �f be a Brownian bridge of variance

f2 = ?(1 − ?) on [0, 1]. Let b be a Gaussian random variable with mean 0 and variance

[b2] = f2 C

)

(
1 − C

)

)
.

Let �1, �2 be two independent Brownian bridges on [0, 1] with variances f2C/) and f2() − C)/)

respectively, also independent from �f. Define the process

�̃B/) =
B

C
b + �1

( B
C

)
, B ≤ C, ) − B

) − C b + �
2
( B − C
) − C

)
, B ≥ C,
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for B ∈ [0, )]. Then �̃ is a Brownian bridge with variance f.

Proof. It is clear that the process �̃ is a.s. continuous. Since �̃ is built from three independent

zero-centered Gaussian processes, it is itself a zero-centered Gaussian process and thus completely

characterized by its covariance. Consequently, to show that �̃ is a Brownian bridge of variance f2,

it suffices to show by (5.2.1) that if 0 ≤ A ≤ B ≤ ) we have

[�̃A/) �̃B/) ] = f2 A

)

(
1 − B

)

)
. (5.2.5)

First assume B ≤ C Using the fact that b and �1
· are independent with mean 0, we find

[�̃A/) �̃B/) ] =
AB

C2
· f2 C

)

(
1 − C

)

)
+ f2 C

)
· A
C

(
1 − B

C

)
=

f2 A

)

( B
C
− B
)
+ 1 − B

C

)
= f2 A

)

(
1 − B

)

)
.

If A ≥ C, we compute

[�̃A/) �̃B/) ] =
() − A) () − B)
() − C)2

· f2 C

)

(
1 − C

)

)
+ f2) − C

)
· A − C
) − C

(
1 − B − C

) − C

)
=

f2() − B)
) () − C)

(
C () − A)
)

+ A − C
)
=
f2() − B)
) () − C) ·

A () − C)
)

= f2 A

)

(
1 − B

)

)
.

If A < C < B, then since b, �1
· , and �2

· are all independent, we have

[�̃A/) �̃B/) ] =
A

C
· ) − B
) − C · f

2 C () − C)
)2 = f2 A () − B)

)2 = f2 A

)

(
1 − B

)

)
.

This proves (5.2.5) in all cases.

Below we list four lemmas about Bernoulli bridges. We provide a brief informal explanation

of what each result says after it is stated. All six lemmas are proved in a similar fashion. For the

first two lemmas one observes that the event whose probability is being estimated is monotone in

ℓ. This allows us by Lemmas 5.2.1 and 5.2.2 to replace G, H in the statements of the lemmas with

the extreme values of the ranges specified in each. Once the choice of G and H is fixed one can use
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our strong coupling results, Theorem 5.2.3 and Corollary 5.2.5, to reduce each of the lemmas to an

analogous one involving a Brownian bridge with some prescribed variance. The latter statements

are then easily confirmed as one has exact formulas for Brownian bridges, such as Lemma 5.2.6.

Lemma 5.2.8. Fix ? ∈ (0, 1), ) ∈ N and G, H ∈ Z such that ) ≥ H − G ≥ 0, and suppose that ℓ has

distribution P0,),G,H
�4A

. Let "1, "2 ∈ R be given. Then we can find ,0 = ,0(?, "2 − "1) ∈ N such

that for ) ≥ ,0, G ≥ "1)
1/2, H ≥ ?) + "2)

1/2 and B ∈ [0, )] we have

P
0,),G,H
�4A

(
ℓ(B) ≥ ) − B

)
· "1)

1/2 + B
)
·
(
?) + "2)

1/2) − )1/4
)
≥ 1

3
. (5.2.6)

Remark 5.2.9. If "1, "2 = 0 then Lemma 5.2.8 states that if a Bernoulli bridge ℓ is started from

(0, G) and terminates at (), H), which are above the straight line of slope ?, then at any given time

B ∈ [0, )] the probability that ℓ(B) goes a modest distance below the straight line of slope ? is

upper bounded by 2/3.

Proof. Define � = b"1)
1/2c and � = b?) + "2)

1/2c. Then since � ≤ G and � ≤ H, it follows

from Lemma 3.1 that there is a probability space with measure P0 supporting random variables !1

and !2, whose laws under P0 are P0,),�,�
�4A

and P0,),G,H
�4A

respectively, and P0-a.s. we have !1 ≤ !2.

Thus

P
0,),G,H
�4A

(
ℓ(B) ≥ ) − B

)
· "1)

1/2 + B
)
·
(
?) + "2)

1/2) − )1/4
)
=

P0

(
!2(B) ≥

) − B
)
· "1)

1/2 + B
)
·
(
?) + "2)

1/2) − )1/4
)
≥

P0

(
!1(B) ≥

) − B
)
· "1)

1/2 + B
)
·
(
?) + "2)

1/2) − )1/4
)
=

P0,),�,�
�4A

(
ℓ(B) ≥ ) − B

)
· "1)

1/2 + B
)
·
(
?) + "2)

1/2) − )1/4
)
.

(5.2.7)

Since the uniform distribution on upright paths on È0, )É × È�, �É is the same as that on upright
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paths on È0, )É × È0, � − �É shifted vertically by �, the last line of (5.2.7) is equal to

P0,),0,�−�
�4A

(
ℓ(B) + � ≥ ) − B

)
· "1)

1/2 + B
)
·
(
?) + "2)

1/2) − )1/4
)
.

Now we employ the coupling provided by Theorem 5.2.3. We have another probability space

(Ω, F , P) supporting a random variable ℓ(),�−�) whose law under P is P0,),0,�−�
�4A

as well as a Brow-

nian bridge �f coupled with ℓ(),�−�) . We have

P0,),0,�−�
�4A

(
ℓ(B) + � ≥ ) − B

)
· "1)

1/2 + B
)
·
(
?) + "2)

1/2) − )1/4
)
=

P

(
ℓ(),�−�) (B) + � ≥ ) − B

)
· "1)

1/2 + B
)
·
(
?) + "2)

1/2) − )1/4
)
=

P

( [
ℓ(),�−�) (B) −

√
)�f

B/) −
B

)
· (� − �)

]
+
√
)�f

B/) ≥

− � − B
)
· (� − �) + ) − B

)
· "1)

1/2 + B
)
·
(
?) + "2)

1/2) − )1/4
)
.

(5.2.8)

Recalling the definitions of � and �, we can rewrite the quantity in the last line of (5.2.8) and

bound by

) − B
)
· ("1)

1/2 − �) + B
)
· (?) + "2)

1/2 − �) − )1/4 ≤
) − B
)
+ B
)
− )1/4 = −)1/4 + 1.

Thus the last line of (5.2.7) is bounded below by

P
( [
ℓ(),�−�) (B) −

√
)�f

B/) −
B

)
· (� − �)

]
+
√
)�f

B/) ≥ −)
1/4 + 1

)
≥

P
(√
)�f

B/) ≥ 0 and Δ(), � − �) < )1/4 − 1
)
≥

P
(
�f
B/) ≥ 0

)
− P

(
Δ(), � − �) ≥ )1/4 − 1

)
=

1
2
− P

(
Δ(), � − �) ≥ )1/4 − 1

)
.

(5.2.9)

For the first inequality, we used the fact that the quantity in brackets is bounded in absolute value
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by Δ(), � − �). The second inequality follows by dividing the event {�f
B/) ≥ 0} into cases and

applying subadditivity. Since |�−�− ?) | ≤ ("2−"1+1)
√
) , Corollary 5.2.5 allows us to choose

,0 large enough depending on ? and "2 − "1 so that if ) ≥ ,0, then the last line of (5.2.9) is

bounded above by 1/2 − 1/6 = 1/3. In combination with (5.2.7) this proves (5.2.6).

Lemma 5.2.10. Fix ? ∈ (0, 1), ) ∈ N and H, I ∈ Z such that ) ≥ H, I ≥ 0, and suppose that

ℓH, ℓI have distributions P0,),0,H
�4A

, P0,),0,I
�4A

respectively. Let " > 0 and n > 0 be given. Then we can

find ,1 = ,1(", ?, n) ∈ N and � = �(", ?, n) > 0 such that for ) ≥ ,1, H ≥ ?) − ")1/2,

I ≤ ?) + ")1/2 we have

P
0,),0,H
�4A

(
inf

B∈[0,)]

[
ℓH (B) − ?B

]
≤ −�)1/2

)
≤ n,

P0,),0,I
�4A

(
sup
B∈[0,)]

[
ℓI (B) − ?B

]
≥ �)1/2

)
≤ n .

(5.2.10)

Remark 5.2.11. Roughly, Lemma 5.2.10 states that if a Bernoulli bridge ℓ is started from (0, 0)

and terminates at time ) not significantly lower (resp. higher) than the straight line of slope ?, then

the event that ℓ goes significantly below (resp. above) the straight line of slope ? is very unlikely.

Proof. The two inequalities are proven in essentially the same way. We begin with the first in-

equality. If � = b?) − ")1/2c then it follows from Lemma 5.2.1 that

P
0,),0,H
�4A

(
inf

B∈[0,)]

[
ℓH (B) − ?B

]
≤ −�)1/2

)
≤ P0,),0,�

�4A

(
inf

B∈[0,)]

[
ℓ(B) − ?B

]
≤ −�)1/2

)
, (5.2.11)

where ℓ has law P0,),0,�
�4A

. By Theorem 5.2.3, there is a probability space (Ω, F , P) supporting a

random variable ℓ(),�) whose law under P is also P0,),0,�
�4A

, and a Brownian bridge �f with variance
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f2 = ?(1 − ?). Therefore

P0,),0,�
�4A

(
inf

B∈[0,)]

[
ℓ(B) − ?B

]
≤ −�)1/2

)
= P

(
inf

B∈[0,)]

[
ℓ(),�) (B) − ?B

]
≤ −�)1/2

)
≤

P

(
inf

B∈[0,)]

√
)�f

B/) ≤ −
1
2
�)1/2

)
+ P

(
sup
B∈[0,)]

���√)�fB/) + ?B − ℓ(),�) (B)��� ≥ 1
2
�)1/2

)
≤

P

(
max
B∈[0,)]

�f
B/) ≥ �/2

)
+ P

(
Δ(), �) ≥ 1

2
�)1/2 − ")1/2 − 1

)
.

(5.2.12)

For the first term in the last line, we used the fact that �f and −�f have the same distribution. For

the second term, we used the fact that

sup
B∈[0,)]

���?B − B
)
· �

��� ≤ sup
B∈[0,)]

���?B − ?) − ")1/2

)
· B

��� + 1 = ")1/2 + 1.

By Lemma 5.2.6, the first term in the last line of (5.2.12) is equal to 4−�
2/2?(1−?) . If we choose

� ≥
√

2?(1 − ?) log(2/n), then this is ≤ n/2. If we also take � > 2" , then since |� − ?) | ≤

(" + 1)
√
) , Corollary 5.2.5 gives us a ,1 large enough depending on ", ?, n so that the second

term in the last line of (5.2.12) is also < n/2 for ) ≥ ,1. Adding the two terms and using (5.2.11)

gives the first inequality in (5.2.10).

If we replace � with d?) + ")1/2e and change signs and inequalities where appropriate, then

the same argument proves the second inequality in (5.2.10).

We need the following definition for our next result. For a function 5 ∈ � ( [0, 1]) we define its

modulus of continuity for X > 0 by

F( 5 , X) = sup
G,H∈[0,1]
|G−H |≤X

| 5 (G) − 5 (H) |. (5.2.13)

Lemma 5.2.12. Fix ? ∈ (0, 1), ) ∈ N and H ∈ Z such that ) ≥ H ≥ 0, and suppose that ℓ

has distribution P0,),0,H
�4A

. For each positive " , n and [, there exist a X(n, [, ") > 0 and ,2 =
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,2(", ?, n, [) ∈ N such that for ) ≥ ,2 and |H − ?) | ≤ ")1/2 we have

P
0,),0,H
�4A

(
F

(
5 ℓ, X

)
≥ n

)
≤ [, (5.2.14)

where 5 ℓ (D) = )−1/2 (ℓ(D)) − ?D) )
for D ∈ [0, 1].

Remark 5.2.13. Lemma 5.2.12 states that if ℓ is a Bernoulli bridge that is started from (0, 0) and

terminates at (), H) with H close to ?) (i.e. with well-behaved endpoints) then the modulus of

continuity of ℓ is also well-behaved with high probability.

Proof. By Theorem 5.2.3, we have a probability measure P supporting a random variable ℓ(),H)

with law P0,),0,H
�4A

as well as a Brownian bridge �f with variance f2 = ?(1 − ?). We have

P
0,),0,H
�4A

(
F

(
5 ℓ, X

)
≥ n

)
= P

(
F

(
5 ℓ
() ,H)

, X
)
≥ n

)
, (5.2.15)

and

F
(
5 ℓ
() ,H)

, X
)
= )−1/2 sup

B,C∈[0,1], |B−C |≤X

���ℓ(),H) (B)) − ?B) − ℓ(),H) (C)) + ?C) ��� ≤
)−1/2 sup

B,C∈[0,1], |B−C |≤X

( ���√) �fB + BH − ?B) − √) �fC − CH + ?C) ���+���√) �fB + BH − ℓ(),H) (B))��� + ���√) �fC + CH − ℓ(),H) (C))��� ) ≤
sup

B,C∈[0,1], |B−C |≤X

����fB − �fC + )−1/2(H − ?)) (B − C)
��� + 2)−1/2Δ(), H) ≤

F
(
�f, X

)
+ "X + 2)−1/2Δ(), H).

(5.2.16)

The last line follows from the assumption that |H − ?) | ≤ ")1/2. Now (5.2.15) and (5.2.16)

together imply that

P
0,),0,H
�4A

(
F

(
5 ℓ, X

)
≥ n

)
≤ P

(
F

(
�f, X

)
+ "X + 2)−1/2Δ(), H) ≥ n

)
≤

P
(
F

(
�f, X

)
+ "X ≥ n/2

)
+ P

(
Δ(), H) ≥ n )1/2/4

)
.

(5.2.17)

264



Corollary 5.2.5 gives us a ,2 large enough depending on ", ?, n, [ so that the second term in the

second line of 5.2.17 is ≤ [/2 for ) ≥ ,2. Since �f is a.s. uniformly continuous on the compact

interval [0, 1], F(�f, X) → 0 as X → 0. Thus we can find X0 > 0 small enough depending on n, [

so that F(�f, X0) < n/4 with probability at least 1 − [/2. Then with X = min(X0, n/4"), the first

term in the second line of (5.2.17) is ≤ [/2 as well. This implies (5.2.14).

Lemma 5.2.14. Fix ) ∈ N, ? ∈ (0, 1), �,  > 0, and 0, 1 ∈ Z such that Ω(0, ), 0, 1) is nonempty.

Let ℓ1>C ∈ Ω(0, ), 0, 1). Suppose ®G, ®H ∈ W:−1, : ≥ 2, are such that) ≥ H8−G8 ≥ 0 for 1 ≤ 8 ≤ :−1.

Write ®I = ®H − ®G, and suppose that

(1) G:−1 + (I:−1/))B − ℓ1>C (B) ≥ �
√
) for all B ∈ [0, )]

(2) G8 − G8+1 ≥ �
√
) and H8 − H8+1 ≥ �

√
) for 1 ≤ 8 ≤ : − 2,

(3) |I8 − ?) | ≤  
√
) for 1 ≤ 8 ≤ : − 1, for a constant  > 0.

Let L = (!1, . . . , !:−1) be a line ensemble with law P0,),®G,®H
�4A

, and let � denote the event

� = {!1(B) ≥ · · · ≥ !:−1(B) ≥ ℓ1>C (B) for B ∈ [0, )]} .

Then we can find,3 = ,3(?, �,  ) so that for ) ≥ ,3,

P
0,),®G,®H
�4A

(�) ≥
(
1
2
−
∞∑
==1
(−1)=−14−=

2�2/8?(1−?)
) :−1

. (5.2.18)

Moreover if � ≥
√

8?(1 − ?) log 3, then for ) ≥ ,3 we have

P
0,),®G,®H
�4A

(�) ≥
(
1 − 34−�

2/8?(1−?)
) :−1

. (5.2.19)

Remark 5.2.15. This lemma states that if : independent Bernoulli bridges are well-separated from

each other and ℓ1>C , then there is a positive probability that the curves will intersect neither each

other nor ℓ1>C . We will use this result to compare curves in an avoiding Bernoulli line ensemble

with free Bernoulli bridges.
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Proof. Observe that condition (1) simply states that ℓ1>C lies a distance of at least �
√
) uniformly

below the line segment connecting G:−1 and H:−1. Thus (1) and (2) imply that � occurs if each

curve !8 remains within a distance of �
√
)/2 from the line segment connecting G8 and H8. As

in Theorem 5.2.3, let P8 be probability measures supporting random variables ℓ(),I8) with laws

P0,),0,I8
�4A

. Then

P
0,),®G,®H
�4A

(�) ≥ P0,),®G,®H
�4A

(
sup
B∈[0,)]

��!8 (B) − G8 − (I8/))B�� ≤ �√)/2, 1 ≤ 8 ≤ : − 1

)
=

:−1∏
8=1

[
P0,),0,I8
�4A

(
sup
B∈[0,)]

��!8 (B + A#U) − (I8/))B�� ≤ �√)/2)] =
:−1∏
8=1

[
1 − P8

(
sup
B∈[0,)]

��ℓ(),I8) − (I8/))B�� > �√)/2)] .
(5.2.20)

In the third line, we used the fact that !1, . . . , !:−1 are independent from each other under P0,),0,I8
�4A

.

Let �f,8 be the Brownian bridge with variance f2 = ?(1−?) coupled with ℓ(),I8) given by Theorem

5.2.3. Then we have

P8

(
sup
B∈[0,)]

��ℓ(),I8) (B) − (I8/))B�� > �√)/2) ≤
P8

(
sup
B∈[0,)]

|
√
)�f

B/) | > �
√
)/4

)
+ P8

(
Δ(), I8) > �

√
)/4

)
.

(5.2.21)

By Lemma 5.2.6, the first term in the second line of (5.2.21) is equal to 2
∑∞
==1(−1)=−14−=

2�2/8?(1−?) .

Moreover, condition (3) in the hypothesis and Corollary 5.2.5 allow us to find ,3 depending on

?, �,  but not on 8 so that the last probability in (5.2.21) is bounded above by 1
2−

∑∞
==1(−1)=−14−=

2�2/8?(1−?)

for ) ≥ ,3. Adding these two terms and referring to (5.2.20) proves (5.2.18).

Now suppose � ≥
√

8?(1 − ?) log 3. By (5.2.4) in Lemma 5.2.6, the first term in the second

line of (5.2.21) is bounded above by bounded above by 24−�2/8?(1−?) . After possibly enlarging

,3 from above, the second term is < 4−�
2/8?(1−?) for ) ≥ ,3. The assumption on � implies that

1 − 34−�2/8?(1−?) ≥ 0, and now combining (5.2.21) and (5.2.20) proves (5.2.19).
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5.2.3 Properties of avoiding Bernoulli line ensembles

In this section we derive two results about avoiding Bernoulli line ensembles, which are Bernoulli

line ensembles with law P)0,)1,®G,®H, 5 ,6
0E>83,�4A;( as in Definition 5.1.15. The lemmas we prove only involve the

case when 5 (A) = ∞ for all A ∈ È)0, )1É and we denote the measure in this case by P)0,)1,®G,®H,∞,6
0E>83,�4A;( . A

P
)0,)1,®G,®H,∞,6
0E>83,�4A;( -distributed random variable will be denoted byQ = (&1, . . . , &: ) where : is the num-

ber of up-right paths in the ensemble. As usual, if 6 = −∞, we write P)0,)1,®G,®H
0E>83,�4A;(. Our first result

will rely on the two monotonicity Lemmas 5.2.1 and 5.2.2 as well as the strong coupling between

Bernoulli bridges and Brownian bridges from Theorem 5.2.3, and the further results make use of

the material in Section 5.7.

Lemma 5.2.16. Fix ? ∈ (0, 1), : ∈ N. Let ®G, ®H ∈ W: be such that ) ≥ H8 − G8 ≥ 0 for 8 = 1, . . . , : .

Then for any ", "1 > 0 we can find ,4 ∈ N depending on ?, :, ", "1 such that if ) ≥ ,4,

G: ≥ −"1
√
) , and H: ≥ ?) − "1

√
) , then for any ( ⊆ È0, )É we have

P
0,),®G,®H
0E>83,�4A;(

(
&: ()/2) − ?)/2 ≥ "

√
)

)
≥

2:/2
(
1 − 24−4/?(1−?) )2:

(c?(1 − ?)):/2
exp

(
−2: (" + "1 + 6)2

?(1 − ?)

)
.

(5.2.22)

Proof. Define vectors ®G, ®H ∈ W: by

G′8 = b−"1
√
)c − 10(8 − 1) d

√
)e,

H′8 = b?) − "1
√
)c − 10(8 − 1) d

√
)e .

Then G′
8
≤ G: ≤ G8 and H′

8
≤ H: ≤ H8 for 1 ≤ 8 ≤ : − 1. Thus by Lemma 5.2.1, we have

P
0,),®G,®H
0E>83,�4A;(

(
&: ()/2) − ?)/2 ≥ "

√
)

)
≥ P0,),®G ′,®H ′

0E>83,�4A;(

(
&: ()/2) − ?)/2 ≥ "

√
)

)
.

Let us write  8 = ?)/2 + "
√
) + (10(: − 8) − 5) d

√
)e for 1 ≤ 8 ≤ : . Note  8 is the midpoint of

?)/2 +"
√
) + 10(: − 8 − 1) d

√
)e and ?)/2 +"

√
) + 10(: − 8) d

√
)e. Let � denote the event that

the following conditions hold for 1 ≤ 8 ≤ ::
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(1)
���&8 ()/2) − ?)/2 − "√) − (10(: − 8) − 5) d

√
)e

��� ≤ 2d
√
)e,

(2) supB∈[0,)/2]
���&8 (B) − G′8 −  8 − G′8)/2 B

��� ≤ 3
√
) ,

(3) supB∈[)/2,)]
���&8 (B) −  8 − H′8 −  8

)/2 (B − )/2)
��� ≤ 3
√
) .

The first condition implies in particular that &: ()/2) − ?)/2 ≥ "
√
) , and also that &8 ()/2) −

&8+1()/2) ≥ 6
√
) for each 8. The second and third conditions require that each curve &8 remain

within a distance of 3
√
) of the graph of the piecewise linear function on [0, )] passing through

the points (0, G′1), ()/2,  8), and (), H′
8
). We observe that

P
0,),®G ′,®H ′
0E>83,�4A;(

(
&: ()/2) − ?C) ≥ "

√
)

)
≥ P0,),®G ′,®H ′

0E>83,�4A;( (�) ≥ P
0,),®G ′,®H ′
�4A

(�).

The second inequality follows since the event � implies that &1(B) ≥ · · · ≥ &: (B) for all B ∈

È0, )É. Write I = H′
:
− G′

:
. Then we have

P
0,),®G ′,®H ′
�4A

(�) =
[
P0,),0,I
�4A

( ���ℓ()/2) − ?)/2 − "√) − 5d
√
)e + G′1

��� ≤ 2d
√
)e and

sup
B∈[0,)/2]

����ℓ(B) −  1 − G′1
)/2 B

���� ≤ 3
√
) and

sup
B∈[)/2,)]

����ℓ(B) − ( 1 − G′1) −
H′1 −  1

)/2 (B − )/2)
���� ≤ 3
√
)

)] :
.

(5.2.23)

Let P be a probability space supporting a random variable ℓ(),I) with law P0,),0,I coupled with a

Brownian bridge �f with variance f2, as in Theorem 5.2.3. Then the expression in (5.2.23) is
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Figure 5.3: Sketch of the argument for Lemma 5.2.16: We use Lemma 5.2.1 to lower the entry
and exit data ®G, ®H of the curves to ®G ′ and ®H ′. The event � occurs when each curve lies within the
blue bounding lines shown in the figure. We then use strong coupling with Brownian bridges via
Theorem 5.2.3 and bound the probability of the bridges remaining within the blue windows.
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bounded below by

P0,),0,I
�4A

( ���ℓ()/2) − ?)/2 − (" + "1 + 5)
√
)

��� ≤ 2
√
) − 5 and

sup
B∈[0,)/2]

�����ℓ(B) − ?B − " + "1 + 5
√
)/2

B

����� ≤ 3
√
) − 1 and

sup
B∈[)/2,)]

�����ℓ(B) − ?B − (" + "1 + 5)
√
) + " + "1 + 5

√
)/2

(B − )/2)
����� ≤ 3
√
) − 1

)
≥

P

( ���√) �f1/2 − (" + "1 + 5)
√
)

��� ≤ √) and

sup
B∈[0,)/2]

����√) �fB/) − (" + "1 + 5)
√
) · B

)/2

���� ≤ 2
√
) and

sup
B∈[)/2,)]

����√) �fB/) − (" + "1 + 5)
√
) · ) − B

)/2

���� ≤ 2
√
)

)
− P

(
Δ(), I) >

√
)/2

)
.

(5.2.24)

Note that �f1/2 is a centered Gaussian random variable with variance ?(1 − ?)/4 = f2(1/2) (1 −

1/2). Writing b = �f1/2, it follows from Lemma 5.2.7 that there exist independent Brownian

bridges �1, �2 with variance f2/2 so that �fB has the same law as B
)/2b + �

1
2B/) for B ∈ [0, )/2]

and )−B
)/2 b + �

2
(2B−))/) for B ∈ [)/2, )]. The first term in the last expression in (5.2.24) is thus equal

to

P

(
|b − (" + "1 + 5) | ≤ 1 and sup

B∈[0,)/2]

�����1
B/) − (" + "1 + 5 − b) · B

)/2

���� ≤ 2 and

sup
B∈[)/2,)]

�����2
(2B−))/) − (" + "1 + 5 − b) · ) − B

)/2

���� ≤ 2
)
≥

P

(
|b − (" + "1 + 5) | ≤ 1 and sup

B∈[0,)/2]

���1
2B/)

�� ≤ 1 and sup
B∈[)/2,)]

���2
(2B−))/)

�� ≤ 1
)
=

P
(
|b − (" + "1 + 5) | ≤ 1

)
· P

(
sup

B∈[0,)/2]

���1
2B/)

�� ≤ 1
)
· P

(
sup

B∈[0,)/2]

���2
(2B−))/)

�� ≤ 1
)
≥(

1 − 24−4/?(1−?)
)2 ∫ "+"1+6

"+"1+4

4−2b2/?(1−?)√
c?(1 − ?)/2

3b ≥

2
√

2 4−2("+"1+6)2/?(1−?)√
c?(1 − ?)

(
1 − 24−4/?(1−?) )2

.

(5.2.25)
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In the fourth line, we used the fact that b, �1
· , and �2

· are independent, and in the second to last line

we used Lemma 5.2.6. Since |I − ?) | ≤ ("1 + 1)
√
) , Lemma 5.2.5 allows us to choose ) large

enough so that P(Δ(), I) >
√
)/2) is less than 1/2 the expression in the last line of (5.2.25). Then

in view of (5.2.23) and (5.2.24), we conclude (5.2.22).

We now state an important weak convergence result, whose proof occupies Section 5.7. (See

Propositions 5.7.2 and 5.7.3.)

Proposition 5.2.17. Fix ?, C ∈ (0, 1), : ∈ N, ®0, ®1 ∈ W: . Suppose that ®G) = (G)1 , . . . , G
)
:
) and

®H) = (H)1 , . . . , H
)
:
) are two sequences in W: such that for 8 ∈ È1, :É,

lim
)→∞

G)
8√
)
= 08 and lim

)→∞

H)
8
− ?)
√
)

= 18 .

Let (&)1 , . . . , &
)
:
) have law P0,),®G) ,®H)

0E>83,�4A
, and define the sequence {/) } of random :-dimensional

vectors by

/) =

(
&)1 (C)) − ?C)√

)
, . . . ,

&)
:
(C)) − ?C)
√
)

)
.

Then as ) → ∞, /) converges weakly to a random vector /̂ on R: with a probability density d

supported on,◦
:
.

The convergence result in Lemma 5.2.17 allows us to prove the following lemma, which

roughly states that if the entrance and exit data of a sequence of avoiding Bernoulli line ensembles

remain in compact windows, then with high probability the curves of the ensemble will remain

separated from one another at each point by some small positive distance on scale
√
) .

Lemma 5.2.18. Fix ?, C ∈ (0, 1) and : ∈ N. Suppose that ®G ) = (G)1 , . . . , G
)
:
), ®H ) = (H)1 , . . . , H

)
:
)

are elements of W: such that ) ≥ H)
8
− G)

8
≥ 0 for 8 ∈ È1, :É. Then for any "1, "2 > 0 and n > 0

there exists ,5 ∈ N and X > 0 depending on ?, :, "1, "2 such that if ) ≥ ,5, |G)
8
| ≤ "1

√
) and

271



|H)
8
− ?) | ≤ "2

√
) , then

0,),®G) ,®H)
0E>83,�4A

(
min

1≤8≤:−1

[
&8 (C)) −&8+1(C))

]
< X
√
)

)
< n.

Proof. We prove the claim by contradiction. Suppose there exist "1, "2, n > 0 such that for any

,5 ∈ N and X > 0 there exists some ) ≥ ,5 with

0,),®G) ,®H)
0E>83,�4A

(
min

1≤8≤:−1

[
&8 (C)) −&8+1(C))

]
< X
√
)

)
≥ n .

Then we can obtain sequences )=, X= > 0, )= ↗∞, X= ↘ 0, such that for all = we have

0,),®G )= ,®H )=
0E>83,�4A

(
min

1≤8≤:−1

[
&8 (C)=) −&8+1(C)=)√

)=

]
< X=

)
≥ n .

Since |G)=
8
| < "1

√
)= and |H)=

8
− ?)= | ≤ "2

√
)= for 1 ≤ 8 ≤ : , the sequences {®G )=/

√
)=}, {(®H )= −

?)=)/
√
)=} are bounded in R: . It follows that there exist ®G, ®H ∈ R= and a subsequence {)=<} such

that
®G )=<√
)=<

−→ ®G,
®H )=< − ?)=<√

)=<

−→ ®H

as < →∞ (see [213, Theorem 3.6]). Denote

/<8 =
&8 (C)=<) − ?C)=<√

)=<

.

Fix X > 0 and choose " large enough so that if < ≥ " then X< < X. Then for < ≥ " we have

n ≤ lim inf
<→∞

(
min

1≤8≤:−1

[
/<8 − /<8+1

]
< X=<

)
≤ lim inf

<→∞

(
min

1≤8≤:−1

[
/<8 − /<8+1

]
≤ X

)
. (5.2.26)

Now by Lemma 5.2.17, (/<1 , . . . , /
<
:
) converges weakly to a random vector /̂ on R: with a density

d. It follows from the portmanteau theorem [117, Theorem 3.2.11] applied with the closed set
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 = [0, X] that

lim sup
<→∞

(
min

1≤8≤:−1

[
/<8 − /<8+1

]
∈  

)
≤

(
min

1≤8≤:−1

[
/̂8 − /̂8+1

]
∈  

)
. (5.2.27)

Combining (5.2.26) and (5.2.27), we obtain

n ≤
(
0 ≤ min

1≤8≤:−1

[
/̂8 − /̂8+1

]
≤ X

)
≤

:−1∑
8=1

(
0 ≤ /̂8 − /̂8+1 ≤ X

)
. (5.2.28)

To conclude the proof, we find a X for which (6.3.3) cannot hold. For [̃ ≥ 0 put

�
[̃

8
= {®I ∈ R: : 0 ≤ I8 − I8+1 ≤ [̃}.

For each 8 ∈ È1, : − 1É and [ > 0, we have

P
(
0 ≤ /̂8 − /̂8+1 ≤ [

)
=

∫
R:
d · 1� [

8
3I1 · · · 3I: . (5.2.29)

Clearly d · 1� [
8
→ d · 1�0

8
pointwise as [ → 0, and �0

8
= {®I ∈ R: : I8 = I8+1} has Lebesgue

measure 0. Thus d · 1� [
8
→ 0 a.e. as [→ 0. Since |d · 1� [

8
| ≤ d and d is integrable, the dominated

convergence theorem [214, Theorem 1.34] and (5.2.29) imply that

P
(
0 ≤ /̂8 − /̂8+1 ≤ [

)
−→ 0

as [ → 0. Thus for each 8 ∈ È1, : − 1É and n > 0 we can find an [8 > 0 such that 0 < [ ≤ [8

implies P(0 ≤ /̂8 − /̂8+1 ≤ [) < n/(: − 1). Putting X = min1≤8≤:−1 [8 we find that

:−1∑
8=1

(
0 ≤ /̂8 − /̂8+1 ≤ X

)
< n,

contradicting (6.3.3) for this choice of X.
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5.3 Proof of Theorem 5.1.26

The goal of this section is to prove Theorem 5.1.26. Throughout this section, we assume that

we have fixed : ∈ N with : ≥ 2, ? ∈ (0, 1), U, _ > 0, and

{
L# = (!#1 , !

#
2 , . . . , !

#
: )

}∞
#=1

an (U, ?, _)-good sequence of È1, :É-indexed Bernoulli line ensembles as in Definition 5.1.24, all

defined on a probability space with measure P. The proof of Theorem 5.1.26 depends on three

results – Proposition 5.3.1 and Lemmas 5.3.2 and 5.3.3. In these three statements we establish

various properties of the sequence of line ensembles L# . The constants in these statements depend

implicitly on U, ?, _, : , and the functions q, k from Definition 5.1.24, which are fixed throughout.

We will not list these dependencies explicitly. The proof of Proposition 5.3.1 is given in Section

5.3.1 while the proofs of Lemmas 5.3.2 and 5.3.3 are in Section 5.4. Theorem 5.1.26 (i) and (ii)

are proved in Sections 5.3.2 and 5.3.3 respectively.

5.3.1 Bounds on the acceptance probability

The main result in this section is presented as Proposition 5.3.1 below. In order to formulate it

and some of the lemmas below, it will be convenient to adopt the following notation for any A > 0

and < ∈ N:

C< = b(A + <)#Uc . (5.3.1)

Proposition 5.3.1. Let P be the measure from the beginning of this section. For any n > 0, A > 0

there exist X = X(n, A) > 0 and #1 = #1(n, A) such that for all # ≥ #1 we have

P
(
/
(
− C1, C1, ®G, ®H,∞, !#: È−C1, C1É

)
< X

)
< n,

where ®G = (!#1 (−C1), . . . , !
#
:−1(−C1)), ®H = (!

#
1 (C1), . . . , !

#
:−1(C1)), !

#
:
È−C1, C1É is the restriction

of !#
:

to the set È−C1, C1É, and / is the acceptance probability of Definition 5.1.22.
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The general strategy we use to prove Proposition 5.3.1 is inspired by the proof of [74, Proposi-

tion 6.5]. We begin by stating three key lemmas that will be required. The proofs of Lemmas 5.3.2

and 5.3.3 are postponed to Section 5.4 and Lemma 5.3.4 is proved in Section 5.5.

Lemma 5.3.2. Let P be the measure from the beginning of this section. For any n > 0, A > 0 there

exist '1 = '1(n, A) > 0 and #2 = #2(n, A) such that for # ≥ #2

P

(
sup

B∈[−C3,C3]

[
!#1 (B) − ?B

]
≥ '1#

U/2
)
< n.

Lemma 5.3.3. Let P be the measure from the beginning of this section. For any n > 0, A > 0 there

exist '2 = '2(n, A) > 0 and #3 = #3(n, A) such that for # ≥ #3

P

(
inf

B∈[−C3,C3]

[
!#:−1(B) − ?B

]
≤ −'2#

U/2
)
< n.

Lemma 5.3.4. Fix : ∈ N, : ≥ 2, ? ∈ (0, 1), A, U, "1, "2 > 0 . Suppose that ℓ1>C : È−C3, C3É →

R ∪ {−∞}, and ®G, ®H ∈ W:−1 are such that |Ω0E>83 (−C3, C3, ®G, ®H,∞, ℓ1>C) | ≥ 1. Suppose further that

1. supB∈[−C3,C3]
[
ℓ1>C (B) − ?B

]
≤ "2(2C3)1/2,

2. −?C3 + "1(2C3)1/2 ≥ G1 ≥ G:−1 ≥ max
(
ℓ1>C (−C3),−?C3 − "1(2C3)1/2

)
,

3. ?C3 + "1(2C3)1/2 ≥ H1 ≥ H:−1 ≥ max
(
ℓ1>C (C3), ?C3 − "1(2C3)1/2

)
.

Then there exist constants 6, ℎ and #4 ∈ N all depending on "1, "2, ?, :, A, U such that for any

ñ > 0 and # ≥ #4 we have

P
−C3,C3,®G,®H,∞,ℓ1>C
0E>83,�4A

(
/
(
− C1, C1,Q(−C1),Q(C1),∞, ℓ1>CÈ−C1, C1É

)
≤ 6ℎñ

)
≤ ñ , (5.3.2)

where / is the acceptance probability of Definition 5.1.22, ℓ1>CÈ−C1, C1É is the vector, whose coor-

dinates match those of ℓ1>C on È−C1, C1É and Q(0) = (&1(0), . . . , &:−1(0)) is the value of the line

ensemble Q = (&1, . . . , &:−1) whose law is P−C3,C3,®G,®H,∞,ℓ1>C
0E>83,�4A

at location 0.
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Proof of Proposition 5.3.1. Let n > 0 be given. Define the event

�# =

{
!#:−1(±C3) ∓ ?C3 ≥ −"1(2C3)1/2

}
∩

{
!#1 (±C3) ∓ ?C3 ≤ "1(2C3)1/2

}
∩{

sup
B∈[−C3,C3]

[!#: (B) − ?B] ≤ "2(2C3)1/2
}
.

In view of Lemmas 5.3.2 and 5.3.3 and the fact that P-almost surely !#1 (B) ≥ !#
:
(B) for all B ∈

[−C3, C3] we can find sufficiently large "1, "2 and #2 such that for # ≥ #2 we have

P(�2# ) < n/2. (5.3.3)

Let 6, ℎ, #4 be as in Lemma 5.3.4 for the values "1, "2 as above, the values U, ?, : from the

beginning of the section and A as in the statement of the proposition. For X = (n/2) · 6ℎ we denote

+ =

{
/
(
− C1, C1, ®G, ®H,∞, !#: È−C1, C1É

)
< X

}
and make the following deduction for # ≥ #4

P
(
+ ∩ �#

)
= E

[
E
[
1�# · 1+

���f (
L# (−C3),L# (C3), !#: È−C3, C3É

) ] ]
=

E

[
1�# · E

[
1{/

(
− C1, C1, ®G, ®H,∞, !#: È−C1, C1É

)
< X}

���f (
L# (−C3),L# (C3), !#: È−C3, C3É

) ] ]
=

E
[
1�# · E0E>83

[
1{/

(
− C1, C1,L(−C1),L(C1),∞, !#: È−C1, C1É

)
< X}

] ]
≤ E

[
1�# · n/2

]
≤ n/2.

(5.3.4)

In (5.3.4) we have written E0E>83 in place of E
−C3,C3,L# (−C3),L# (C3),∞,!#: È−C3,C3É
0E>83,�4A

to ease the notation;

in addition, we have that L# (0) = (!#1 (0), . . . , !
#
:−1(0)) and L on the last line is distributed

according to P
−C3,C3,L# (−C3),L# (C3),∞,!#: È−C3,C3É
0E>83,�4A

. We elaborate on (5.3.4) in the paragraph below.

The first equality in (5.3.4) follows from the tower property for conditional expectations. The

second equality uses the definition of + and the fact that 1�# is f
(
L# (−C3),L# (C3), !#: È−C3, C3É

)
-

measurable and can thus be taken outside of the conditional expectation. The third equality uses the
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Schur Gibbs property, see Definition 5.1.17. The first inequality on the third line holds if # ≥ #4

and uses Lemma 5.3.4 with ñ = n/2 as well as the fact that on the event �# the random variables

L# (−C3),L# (C3) and !#
:
È−C3, C3É (that play the roles of ®G, ®H and ℓ1>C) satisfy the inequalities

1. supB∈[−C3,C3]
[
!#
:
(B) − ?B

]
≤ "2(2C3)1/2,

2. −?C3 + "1(2C3)1/2 ≥ !#1 (−C3) ≥ !
#
:−1(−C3) ≥ max

(
!#
:
(−C3),−?C3 − "1(2C3)1/2

)
,

3. ?C3 + "1(2C3)1/2 ≥ !#1 (C3) ≥ !
#
:−1(C3) ≥ max

(
!#
:
(C3), ?C3 − "1(2C3)1/2

)
.

The last inequality in (5.3.4) is trivial.

Combining (5.3.4) with (5.3.3), we see that for all # ≥ max(#2, #4) we have

P (+) = P(+ ∩ �# ) + P(+ ∩ �2# ) ≤ n/2 + P(�
2
# ) < n,

which proves the proposition.

5.3.2 Proof of Theorem 5.1.26 (i)

By Lemma 5.1.4, it suffices to verify the following two conditions for all 8 ∈ È1, : − 1É, A > 0,

and n > 0:

lim
0→∞

lim sup
#→∞

( | 5 #8 (0) | ≥ 0) = 0 (5.3.5)

lim
X→0

lim sup
#→∞

(
sup

G,H∈[−A,A],|G−H |≤X
| 5 #8 (G) − 5 #8 (H) | ≥ n

)
= 0. (5.3.6)

For the sake of clarity, we will prove these conditions in several steps.

Step 1. In this step we prove (5.3.5). Let n > 0 be given. Then by Lemmas 5.3.2 and 5.3.3 we can

find #2, #3 and '1, '2 such that for # ≥ max(#1, #2)(
sup

B∈[−C3,C3]
[!#1 (B) − ?B] ≥ '1#

U/2
)
< n/2,
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(
inf

B∈[−C3,C3]
[!#:−1(B) − ?B] ≤ −'2#

U/2
)
< n/2.

In particular, if we set ' = max('1, '2) and utilize the fact that !#1 (0) ≥ · · · ≥ !#
:−1(0) we

conclude that for any 8 ∈ È1, : − 1É we have

(
|!#8 (0) | ≥ '#U/2

)
≤

(
!#1 (0) ≥ '1#

U/2) + (
!#:−1(0) ≤ −'2#

U/2) < n,
which implies (5.3.5).

Step 2. In this step we prove (5.3.6). In the sequel we fix A, n > 0 and 8 ∈ È1, : − 1É. To prove

(5.3.6) it suffices to show that for any [ > 0, there exists a X > 0 and #0 such that # ≥ #0 implies(
sup

G,H∈[−A,A],|G−H |≤X
| 5 #8 (G) − 5 #8 (H) | ≥ n

)
< [. (5.3.7)

For X > 0 we define the event

�#X =

{
sup

G,H∈[−C1,C1],|G−H |≤X#U
∗!#8 (G) − !#8 (H) − ?(G − H) ≥

3#U/2n
4

}
, (5.3.8)

where we recall that C1 = b(A + 1)#Uc from (5.3.1). We claim that there exist X0 > 0 and #0 ∈ N

such that for X ∈ (0, X0] and # ≥ #0 we have

P(�#X ) < [. (5.3.9)

We prove (5.3.9) in the steps below. Here we assume its validity and conclude the proof of (5.3.7).

Observe that if X ∈
(
0,min

(
X0, n · (8_A)−1) ) , where _ is as in the statement of the theorem, we
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have the following tower of inequalities(
sup

G,H∈[−A,A],|G−H |≤X
| 5 #8 (G) − 5 #8 (H) | ≥ n

)
=(

sup
G,H∈[−A,A],|G−H |≤X

∗#−U/2
(
!#8 (G#U) − !#8 (H#U)

)
− ?(G − H)#U/2 + _(G2 − H2) ≥ n

)
≤(

sup
G,H∈[−A,A],|G−H |≤X

#−U/2 ∗ !#8 (G#U) − !#8 (H#U) − ?(G − H)#U + 2_AX ≥ n
)
≤(

sup
G,H∈[−A,A],|G−H |≤X

∗!#8 (G#U) − !#8 (H#U) − ?(G − H)#U ≥
3#U/2n

4

)
≤ P(�#X ) < [.

(5.3.10)

In (5.3.10) the first equality follows from the definition of 5 #
8

, and the inequality on the second line

follows from the inequality |G2− H2 | ≤ 2AX, which holds for all G, H ∈ [−A, A] such that |G − H | ≤ X.

The inequality in the third line of (5.3.10) follows from our assumption that X < n · (8_A)−1 and

the first inequality on the last line follows from the definition of �#
X

in (5.3.8), and the fact that

C1 ≥ A#U. The last inequality follows from our assumption that X < X0 and (5.3.9). In view of

(5.3.10) we conclude (5.3.7).

Step 3. In this step we prove (5.3.9) and fix [ > 0 in the sequel. For X1, "1 > 0 and # ∈ N we

define the events

�1 =

{
max

1≤ 9≤:−1
∗!#9 (±C1) ∓ ?C1 ≤ "1#

U/2
}
, �2 =

{
/ (−C1, C1, ®G, ®H,∞, !#: È−C1, C1É) > X1

}
,

(5.3.11)

where we used the same notation as in Proposition 5.3.1 (in particular ®G = (!#1 (−C1), . . . , !
#
:−1(−C1))

and ®H = (!#1 (C1), . . . , !
#
:−1(C1))). Combining Lemmas 5.3.2, 5.3.3 and Proposition 5.3.1 we know

that we can find X1 > 0 sufficiently small, "1 sufficiently large and #̃ ∈ N such that for # ≥ #̃

we know

P
(
�21 ∪ �

2
2
)
< [/2. (5.3.12)
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We claim that we can find X0 > 0 and #0 ≥ #̃ such that for # ≥ #0 and X ∈ (0, X0) we have

P(�#X ∩ �1 ∩ �2) < [/2. (5.3.13)

Since

(�#X ) = (�
#
X ∩ �1 ∩ �2) + (�#X ∩

(
�21 ∪ �

2
2
)
) ≤ (�#X ∩ �1 ∩ �2) + P

(
�21 ∪ �

2
2
)
,

we see that (5.3.12) and (5.3.13) together imply (5.3.9).

Step 4. In this step we prove (5.3.13). We define the f-algebra

F = f
(
!#: È−C1, C1É, !

#
1 (±C1), !

#
2 (±C1), . . . , !

#
:−1(±C1)

)
.

Clearly �1, �2 ∈ F , so the indicator random variables �1 and �2 are F -measurable. It follows from

the tower property of conditional expectation that

(
�#X ∩ �1 ∩ �2

)
=

[
�#
X
�1�2

]
=

[
�1�2

[
�#
X
| F

] ]
. (5.3.14)

By the Schur-Gibbs property (see Definition 5.1.17), we know that P-almost surely

[
�#
X
| F

]
=
−C1,C1,®G,®H,∞,!#: È−C1,C1É
0E>83,�4A

[
�#
X

]
. (5.3.15)

We now observe that the Radon-Nikodym derivative of
−C1,C1,®G,®H,∞,!#: È−C1,C1É
0E>83,�4A

with respect to −C1,C1,®G,®H
�4A

is given by

3
−C1,C1,®G,®H,∞,!#: È−C1,C1É
0E>83,�4A

(&1, . . . , &:−1)

3
−C1,C1,®G,®H
�4A

=
{&1≥···≥&:−1≥&: }

/ (−C1, C1, ®G, ®H,∞, !#: È−C1, C1É)
, (5.3.16)

where Q = (&1, . . . , &:−1) is −C1,C1,®G,®H
�4A

-distributed and &: = !
#
:
È−C1, C1É. To see this, note that by
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Definition 5.1.15 we have for any set � ⊂ ∏:−1
8=1 Ω(−C1, C1, G8, H8) that

−C1,C1,®G,®H,∞,!#: È−C1,C1É
0E>83,�4A

(�) =
−C1,C1,®G,®H
�4A

(� ∩ {&1 ≥ · · · ≥ &:−1 ≥ &: })
−C1,C1,®G,®H
�4A

(&1 ≥ · · · ≥ &:−1 ≥ &: )
=

−C1,C1,®G,®H
�4A

[
�·{&1≥···≥&:−1≥&: }

]
/ (−C1, C1, ®G, ®H,∞, !#: È−C1, C1É)

=

∫
�

{&1≥···≥&:−1≥&: }

/ (−C1, C1, ®G, ®H,∞, !#: È−C1, C1É)
3
−C1,C1,®G,®H
�4A

.

It follows from (5.3.14), (5.3.16), and the definition of �2 in 5.3.11 that

(�#X ∩ �1 ∩ �2) =
[
�1�2

−C1,C1,®G,®H
�4A

[
�#
X
·{&1≥···≥&: }

/ (−C1, C1, ®G, ®H, !#: È−C1, C1É)

] ]
≤

≤
[
�1�2

−C1,C1,®G,®H
�4A

[
�#
X

X1

] ]
≤ 1
X1

[
�1 ·
−C1,C1,®G,®H
�4A

(�#X )
]
,

(5.3.17)

where X1 is as in 5.3.11, and

�#X =

{
sup

G,H∈[−C1,C1],|G−H |≤X#U
∗&8 (G) −&8 (H) − ?(G − H) ≥

3#U/2n
4

}
.

Notice that under −C1,C1,®G,®H
�4A

the law of &8 is precisely −C1,C1,G8 ,H8
�4A

, and so we conclude that

−C1,C1,®G,®H
�4A

(�#X ) =
0,2C1,0,H8−G8
�4A

(
sup

G,H∈[0,2C1],|G−H |≤X#U
∗ℓ(G) − ℓ(H) − ?(G − H) ≥ 3#U/2n

4

)
, (5.3.18)

where ℓ has law 0,2C1,0,H8−G8
�4A

(note that in (5.3.18) we implicitly translated the path ℓ to the right by C1

and up by −G8, which does not affect the probability in question). Since on the event �1 we know

that |H8 − G8 − 2?C1 | ≤ 2"1#
U we conclude from Lemma 5.2.12 that we can find #0 and X0 > 0

depending on "1, A, U such that for # ≥ #0 and X ∈ (0, X0) we have

�1 ·
0,2C1,0,H8−G8
�4A

(
sup

G,H∈[0,2C1],|G−H |≤X#U
∗ℓ(G) − ℓ(H) − ?(G − H) ≥ 3#U/2n

4

)
<
X1[

2
. (5.3.19)

Combining (5.3.17), (5.3.18) and (5.3.19) we conclude (5.3.13), and hence statement (i) of the

theorem.
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5.3.3 Proof of Theorem 5.1.26 (ii)

In this section we fix a subsequential limit L∞ = ( 5∞1 , . . . , 5
∞
:−1) of the sequence P̃# as in

the statement of Theorem 5.1.26, and we prove that L∞ possesses the partial Brownian Gibbs

property. Our approach is similar to that in [105, Sections 5.1 and 5.2]. We first give a definition of

measures on scaled free and avoiding Bernoulli random walks. These measures will appear when

we apply the Schur Gibbs property to the scaled line ensembles 5 # .

Definition 5.3.5. Let 0, 1 ∈ #−UZ with 0 < 1 and G, H ∈ #−U/2Z satisfy 0 ≤ H − G ≤ (1 − 0)#U/2.

Let ℓ(),I) denote a random variable with law P0,),0,I
�4A

as before Definition 5.1.15. We define P0,1,G,H
5 A44,#

to be the law of the � ( [0, 1])-valued random variable . given by

. (C) =
G + #−U/2

[
ℓ
((1−0)#U, (H−G)#U/2))
(C−0)#U − ?C#U

]
√
?(1 − ?)

, C ∈ [0, 1] .

Now for 8 ∈ È1, :É, let ℓ(#,I),8 denote iid random variables with laws P0,#,0,I
�4A

. Let ®G, ®H ∈ (#−U/2Z):

satisfy 0 ≤ H8 − G8 ≤ (1 − 0)#U/2 for 8 ∈ È1, :É. We define the È1, :É-indexed line ensemble Y#

by

Y#
8 (C) =

G8 + #−U/2
[
ℓ
((1−0)#U, (H8−G8)#U/2)),8
(C−0)#U − ?C#U

]
√
?(1 − ?)

, 8 ∈ È1, :É, C ∈ [0, 1] .

We let P0,1,®G,®H
5 A44,#

denote the law of Y# . Suppose ®G, ®H ∈ (#−U/2Z): ∩,◦
:

and 5 : [0, 1] → (−∞,∞],

6 : [0, 1] → [−∞,∞) are continuous functions. We define the probability measure P0,1,®G,®H, 5 ,6
0E>83,#

to

be P0,1,®G,®H
5 A44,#

conditioned on the event

� = { 5 (A) ≥ Y#
1 (A) ≥ · · · ≥ Y

#
: (A) ≥ 6(A) for A ∈ [0, 1]}.

This measure is well-defined if � is nonempty.

Next, we state two lemmas whose proofs we give in Section 5.6.4. The first lemma proves weak

convergence of the scaled avoiding random walk measures in Definition 5.3.5. It states roughly that

if the data of these measures converge, then the measures converge weakly to the law of avoiding
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Brownian bridges with the limiting data, as in Definition 5.1.7.

Lemma 5.3.6. Fix : ∈ N and 0, 1 ∈ R with 0 < 1, and let 5 : [0 − 1, 1 + 1] → (−∞,∞],

6 : [0−1, 1+1] → [−∞,∞) be continuous functions such that 5 (C) > 6(C) for all C ∈ [0−1, 1+1].

Let ®G, ®H ∈ ,◦
:

be such that 5 (0) > G1, 5 (1) > H1, 6(0) < G: , and 6(1) < H: . Let 0# = b0#Uc#−U

and 1# = d1#Ue#−U, and let 5# : [0−1, 1+1] → (−∞,∞] and 6# : [0−1, 1+1] → [−∞,∞) be

continuous functions such that 5# → 5 and 6# → 6 uniformly on [0−1, 1+1]. Lastly, let ®G # , ®H # ∈

(#−U/2Z): ∩,◦
:
, write G̃#

8
= (G#

8
− ?0##U/2)/

√
?(1 − ?), H̃#

8
= (H#

8
− ?1##U/2)/

√
?(1 − ?), and

suppose that G̃#
8
→ G8 and H̃#

8
→ H8 as # → ∞ for each 8 ∈ È1, :É. Then there exists #0 ∈ N so

that P0# ,1# ,®G
# ,®H # , 5# ,6#

0E>83,#
is well-defined for # ≥ #0. Moreover, ifY# have laws P0# ,1# ,®G

# ,®H # , 5# ,6#
0E>83,#

andZ# = Y# |Σ×[0,1] , then the law ofZ# converges weakly to P0,1,®G,®H, 5 ,6
0E>83

as # →∞.

The next lemma shows that at any given point, the values of the : − 1 curves in L∞ are each

distinct, so that Lemma 5.3.6 may be applied.

Lemma 5.3.7. For any B ∈ R, we have L∞(B) = ( 5∞1 (B), . . . , 5
∞
:−1(B)) ∈ ,

◦
:−1, P-a.s.

Using these two lemmas whose proofs are postponed, we now give the proof of Theorem 5.1.26

(ii).

Proof. We will write Σ = È1, :É. Let us writeY# = (.#1 , . . . , .
#
:−1) with.#

8
(B) = #−U/2(!#

8
(B#U)−

?B#U)/
√
?(1 − ?). We may assume without loss of generality that Y# =⇒ L∞ as # → ∞. Fix

a set  = È:1, :2É ⊆ È1, : − 2É and 0, 1 ∈ R with 0 < 1. We also fix a bounded Borel-measurable

function � : � ( × [0, 1]) → R. It suffices to prove that P-a.s.,

[� (L∞ | ×[0,1]) | F4GC ( × (0, 1))] =0,1,®G,®H, 5 ,60E>83
[� (Q)], (5.3.20)

where ®G = ( 5∞
:1
(0), . . . , 5∞

:2
(0)), ®H = ( 5∞

:1
(1), . . . , 5∞

:2
(1)), 5 = 5∞

:1−1 (with 5∞0 = +∞), 6 = 5∞
:2+1,

the f-algebra F4GC ( ×(0, 1)) is as in Definition 5.1.8, and Q has law P0,1,®G,®H, 5 ,6
0E>83

. We prove (5.3.20)

in two steps.
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Step 1. Fix < ∈ N, =1, . . . , =< ∈ Σ, C1, . . . , C< ∈ R, and ℎ1, . . . , ℎ< : R→ R bounded continuous

functions. Define ( = {8 ∈ È1, <É : =8 ∈  , C8 ∈ [0, 1]}. In this step we prove that[
<∏
8=1

ℎ8 ( 5∞=8 (C8))
]
=

[∏
B∉(

ℎB ( 5∞=B (CB)) ·
0,1,®G,®H, 5 ,6
0E>83

[∏
B∈(

ℎB (&=B (CB))
] ]
, (5.3.21)

where & denotes a random variable with law 0,1,®G,®H, 5 ,6
0E>83

. By assumption, we have

lim
#→∞

[
<∏
8=1

ℎ8 (.#=8 (C8))
]
=

[
<∏
8=1

ℎ8 ( 5∞=8 (C8))
]
. (5.3.22)

We define the sequences 0# = b0#Uc#−U, 1# = d1#Ue#−U, ®G # = (!#
:1
(0# ), . . . , !#:2

(0# )),

®H # = (!#
:1
(1# ), . . . , !#:2

(1# )), 5# = .#:1−1 (where .0 = +∞), 6# = .#:2+1. Since 0# → 0, 1# → 1,

we may choose #0 sufficiently large so that if # ≥ #0, then CB < 0# or CB > 1# for all B ∉ ( with

=B ∈  . Since the line ensemble (!#1 , . . . , !
#
:−1) in the definition of Y# satisfies the Schur Gibbs

property (see Definition 5.1.17), we see from Definition 5.3.5 that the law of Y# | ×[0,1] condi-

tioned on the f-algebra F = f
(
.#
:1−1, .

#
:2+1, .

#
:1
(0# ), .#:1

(1# ), . . . , .#:2
(0# ), .#:2

(1# )
)

is precisely

P
0# ,1# ,®G # ,®H # , 5# ,6#
0E>83,#

. Therefore, writing /# for a random variable with this law, we have

[
<∏
8=1

ℎ8 (.#=8 (C8))
]
=

[∏
B∉(

ℎB (.#=B (CB)) ·
0# ,1# ,®G # ,®H # , 5# ,6#
0E>83,#

[∏
B∈(

ℎB (/#=B−:1+1(CB))
] ]
. (5.3.23)

Now by Lemma 5.3.7, we have P-a.s. that ®G, ®H ∈ ,◦
:2−:1+1, where we recall that ®G = L∞(0), ®H =

L∞(1). By the Skorohod representation theorem, there is a probability space (Ω, F , P) supporting

random variables with the laws of Y# , L∞ (which we denote by the same symbols), such that

Y# → L∞ uniformly on compact sets at every point of Ω. In particular, 5# → 5 = 5∞
:2+1 and

6# → 6 = 5∞
:1−1 uniformly on [0 − 1, 1 + 1] ⊇ [0# , 1# ], and (G8 # − ?0##U/2)/

√
?(1 − ?) → ®G,

(H8 # − ?1##U/2)/
√
?(1 − ?) → ®H for 8 ∈ È1, : − 1É. It follows from Lemma 5.3.6 that

0# ,1# ,®G # ,®H # , 5# ,6#
lim
#→∞ 0E>83,#

[∏
B∈(

ℎB (/#=B−:1+1(CB))
]
=
0,1,®G,®H, 5 ,6
0E>83

[∏
B∈(

ℎB (&=B (CB))
]
. (5.3.24)
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Lastly, the continuity of the ℎ8 implies that

lim
#→∞

∏
B∉(

ℎB (.#=B (CB)) =
∏
B∉(

ℎB ( 5∞=B (CB)). (5.3.25)

Combining (5.3.22), (5.3.23), (5.3.24), and (5.3.25) and applying the bounded convergence theo-

rem proves (5.3.21).

Step 2. In this step we prove (5.3.20) as a consequence of (5.3.21). For = ∈ Nwe define piecewise

linear functions

j= (G, A) =



0, G > A + 1/=,

1 − =(G − A), G ∈ [A, A + 1/=],

1, G < A.

We fix <1, <2 ∈ N, =1
1, . . . , =

1
<1 , =

2
1, . . . , =

2
<2 ∈ Σ, C11, . . . , C

1
<1 , C

2
1, . . . , C

2
<2 ∈ R, such that (=1

8
, C1
8
) ∉

 × [0, 1] and (=2
8
, C2
8
) ∈  × [0, 1] for all 8. Then (5.3.21) implies that[

<1∏
8=1

j= ( 5∞=1
8

(C18 ), 08)
<2∏
8=1

j= ( 5∞=2
8

(C28 ), 18)
]
=

[
<1∏
8=1

j= ( 5∞=1
8

(C18 ), 08)
0,1,®G,®H, 5 ,6
0E>83

[
<2∏
8=1

j= (&=2
8
(C28 ), 18)

] ]
.

Letting = → ∞, we have j= (G, A) → j(G, A) = 1G≤A , and the bounded convergence theorem

implies that[
<1∏
8=1

j( 5∞
=1
8

(C18 ), 08)
<2∏
8=1

j( 5∞
=2
8

(C28 ), 18)
]
=

[
<1∏
8=1

j( 5∞
=1
8

(C18 ), 08)
0,1,®G,®H, 5 ,6
0E>83

[
<2∏
8=1

j(&=2
8
(C28 ), 18)

] ]
.

LetH denote the space of bounded Borel measurable functions � : � ( × [0, 1]) → R satisfying[
<1∏
8=1

j( 5∞
=1
8

(C18 ), 08)� (L∞ | ×[0,1])
]
=

[
<1∏
8=1

j( 5∞
=1
8

(C18 ), 08)
0,1,®G,®H, 5 ,6
0E>83

[� (Q)]
]
. (5.3.26)

The above shows thatH contains all functions 1� for sets � contained in the c-systemA consist-
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ing of sets of the form

{ℎ ∈ � ( × [0, 1]) : ℎ(=2
8 , C

2
8 ) ≤ 18 for 8 ∈ È1, <2É}.

We note that H is closed under linear combinations simply by linearity of expectation, and if

�= ∈ H are nonnegative bounded measurable functions converging monotonically to a bounded

function �, then � ∈ H by the monotone convergence theorem. Thus by the monotone class

theorem [117, Theorem 5.2.2], H contains all bounded f(A)-measurable functions. Since the

finite dimensional sets in A generate the full Borel f-algebra C (see for instance [105, Lemma

3.1]), we have in particular that � ∈ H .

Now let B denote the collection of sets � ∈ F4GC ( × (0, 1)) such that

[1� · � (L∞ | ×[0,1])] = [1� ·0,1,®G,®H, 5 ,60E>83
[� (Q)]] . (5.3.27)

We observe that B is a _-system. Indeed, since (5.3.26) holds for � = �, taking 08, 18 → ∞

and applying the bounded convergence theorem shows that (5.3.27) holds with 1� = 1. Thus if

� ∈ B then �2 ∈ B since 1�2 = 1 − 1�. If �8 ∈ B, 8 ∈ N, are pairwise disjoint and � =
⋃
8 �8,

then 1� =
∑
8 1�8 , and it follows from the monotone convergence theorem that � ∈ B. Moreover,

(5.3.26) with � = � implies that B contains the c-system % of sets of the form

{ℎ ∈ � (Σ × R) : ℎ(=8, C8) ≤ 08 for 8 ∈ È1, <1É, where (=8, C8) ∉  × (0, 1)}.

By the c-_ theorem [117, Theorem 2.1.6] it follows that B contains f(%) = F4GC ( ×(0, 1)). Thus

(5.3.27) holds for all � ∈ F4GC ( ×(0, 1)). It is proven in [105, Lemma 3.4] that 0,1,®G,®H, 5 ,6
0E>83

[� (Q)] is

an F4GC ( ×(0, 1))-measurable function. Therefore (5.3.20) follows from (5.3.27) by the definition

of conditional expectation.
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5.4 Bounding the max and min

In this section we prove Lemmas 5.3.2 and 5.3.3 and we assume the same notation as in the

statements of these lemmas. In particular, we assume that : ∈ N, : ≥ 2, ? ∈ (0, 1), U, _ > 0 are

all fixed and {
L# = (!#1 , !

#
2 , . . . , !

#
: )

}∞
#=1,

is an (U, ?, _)-good sequence of È1, :É-indexed Bernoulli line ensembles as in Definition 5.1.24

that are all defined on a probability space with measure P. The proof of Lemma 5.3.2 is given in

Section 5.4.1 and Lemma 5.3.3 is proved in Section 5.4.2.

5.4.1 Proof of Lemma 5.3.2

Our proof of Lemma 5.3.2 is similar to that of [CD]. For clarity we split the proof into three

steps. In the first step we introduce some notation that will be required in the proof of the lemma,

which is presented in Steps 2 and 3.

Step 1. We write B4 = dA + 4e#U, B3 = bA + 3c#U, so that B3 ≤ C3 ≤ B4, and assume that # is large

enough so that k(#)#U from Definition 5.1.24 is at least B4. Notice that such a choice is possible

by our assumption that L# is an (U, ?, _)-good sequence and in particular, we know that !#
8

are

defined at ±B4 for 8 ∈ È1, :É. We define events

� (") =
{��!#1 (−B4) + ?B4�� > "#U/2}, � (") =

{
!#1 (−B3) > −?B3 + "#

U/2
}
,

� (") =
{

sup
B∈[0,B4]

[
!#1 (B) − ?B

]
≥ (6A + 22) (2A + 10)1/2(" + 1)#U/2

}
.

If n > 0 is as in the statement of the lemma, we note by (5.1.7) that we can find " and #̃1

sufficiently large so that if # ≥ #̃1 we have

P(� (")) < n/4 and P(� (")) < n/12. (5.4.1)
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In the remainder of this step we show that the event � (") \ � (") can be written as a countable

disjoint union of certain events, i.e. we show that

⊔
(0,1,B,ℓC>? ,ℓ1>C )∈� (")

� (0, 1, B, ℓC>?, ℓ1>C) = � (") \ � ("), (5.4.2)

where the sets � (0, 1, B, ℓC>?, ℓ1>C) and � (") are described below.

For 0, 1, I1, I2, I3 ∈ Z with I1 ≤ 0, I2 ≤ 1, B ∈ È0, B4É, ℓ1>C ∈ Ω(−B4, B, I1, I2) and ℓC>? ∈

Ω(B, B4, 1, I3) we define � (0, 1, B, ℓC>?, ℓ1>C) to be the event that !#1 (−B4) = 0, !#1 (B) = 1, !#1

agrees with ℓC>? on ÈB, B4É, and !#2 agrees with ℓ1>C on È−B4, BÉ. Let � (") be the set of tuples

(0, 1, B, ℓC>?, ℓ1>C) satisfying

(1) 0 ≤ B ≤ B4,

(2) 0 ≤ 1 − 0 ≤ B + B4, |0 + ?B4 | ≤ "#U/2, and 1 − ?B ≥ (6A + 22) (2A + 10)1/2(" + 1)#U/2,

(3) I1 ≤ 0, I2 ≤ 1, and ℓ1>C ∈ Ω(−B4, B, I1, I2),

(4) 1 ≤ I3 ≤ 1 + (B4 − B), and ℓC>? ∈ Ω(B, B4, 1, I3),

(5) if B < B′ ≤ B4, then ℓC>? (B′) − ?B′ < (6A + 22) (2A + 10)1/2(" + 1)#U/2.

It is clear that � (") is countable. The five conditions above together imply that

⋃
(0,1,B,ℓC>? ,ℓ1>C )∈� (")

� (0, 1, B, ℓC>?, ℓ1>C) = � (") \ � ("),

and what remains to be shown to prove (5.4.2) is that � (0, 1, B, ℓC>?, ℓ1>C) are pairwise disjoint.

On the intersection of � (0, 1, B, ℓC>?, ℓ1>C) and � (0̃, 1̃, B̃, ℓ̃C>?, ℓ̃1>C) we must have 0̃ = !#1 (−B4) =

0 so that 0 = 0̃. Furthermore, we have by properties (2) and (5) that B ≥ B̃ and B̃ ≥ B from which

we conclude that B = B̃ and then we conclude 1̃ = 1, ℓC>? = ℓ̃C>?, ℓ1>C = ℓ̃1>C . In summary, if

� (0, 1, B, ℓC>?, ℓ1>C) and � (0̃, 1̃, B̃, ℓ̃C>?, ℓ̃1>C) have a non-trivial intersection then (0, 1, B, ℓC>?, ℓ1>C) =

(0̃, 1̃, B̃, ℓ̃C>?, ℓ̃1>C), which proves (5.4.2).
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Step 2. In this step we prove that we can find an #2 so that for # ≥ #2

P

(
sup

B∈[0,C3]

[
!#1 (B) − ?B

]
≥ (6A + 22) (2A + 10)1/2(" + 1)#U/2

)
≤ P(� (")) < n/2. (5.4.3)

A similar argument, which we omit, proves the same inequality with [−C3, 0] in place of [0, C3] and

then the statement of the lemma holds for all # ≥ #2, with '1 = (6A + 22) (2A + 10)1/2(" + 1).

We claim that we can find #̃2 ∈ N sufficiently large so that if # ≥ #̃2 and (0, 1, B, ℓC>?, ℓ1>C) ∈

� (") satisfies P(� (0, 1, B, ℓC>?, ℓ1>C)) > 0 then we have

P−B4,B,0,1,∞,ℓ1>C
0E>83,�4A

(
ℓ(−B3) > −?B3 + "#U/2

)
≥ 1

3
. (5.4.4)

We will prove (5.4.4) in Step 3. For now we assume its validity and conclude the proof of (5.4.3).

Let (0, 1, B, ℓC>?, ℓ1>C) ∈ � (") be such that P(� (0, 1, B, ℓC>?, ℓ1>C)) > 0. By the Schur Gibbs

property, see Definition 5.1.17, we have for any ℓ0 ∈ Ω(−B4, B, 0, 1) that

P
(
!#1 È−B4, BÉ = ℓ0 | � (0, 1, B, ℓC>?, ℓ1>C)

)
= P−B4,B,0,1,∞,ℓ1>C

0E>83,�4A
(ℓ = ℓ0), (5.4.5)

where !#1 È−B4, BÉ denotes the restriction of !#1 to the set È−B4, BÉ.

Combining (5.4.4) and (5.4.5) we get for # ≥ #̃2

P
(
!#1 (−B3) > −?B3 + "#

U/2 |� (0, 1, B, ℓC>?, ℓ1>C)
)
=

P−B4,B,0,1,∞,ℓ1>C
0E>83,�4A

(
ℓ(−B3) > −?B3 + "#U/2

)
≥ 1

3
.

(5.4.6)
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It follows from (5.4.6) that for # ≥ #̃2 we have

n/12 > P(� (")) ≥
∑

(0,1,B,ℓC>? ,ℓ1>C )∈� ("),
P(� (0,1,B,ℓC>? ,ℓ1>C ))>0

P
(
� (") ∩ � (0, 1, B, ℓC>?, ℓ1>C)

)
=

∑
(0,1,B,ℓC>? ,ℓ1>C )∈� ("),
P(� (0,1,B,ℓC>? ,ℓ1>C ))>0

P
(
!#1 (−B3) > −?B3 + "#

U/2 |� (0, 1, B, ℓC>?, ℓ1>C)
)
P

(
� (0, 1, B, ℓC>?, ℓ1>C)

)
≥

∑
(0,1,B,ℓC>? ,ℓ1>C )∈� ("),
P(� (0,1,B,ℓC>? ,ℓ1>C ))>0

1
3
· P

(
� (0, 1, B, ℓC>?, ℓ1>C)

)
=

1
3
· P(� (") \ � (")),

(5.4.7)

where in the last equality we used (5.4.2). From (5.4.1) and (5.4.7) we have for # ≥ #2 =

max(#̃1, #̃2)

P(� (")) ≤ P(� (")) + P(� (") \ � (")) < n/4 + n/4,

which proves (5.4.3).

Step 3. In this step we prove (5.4.4) and in the sequel we let (0, 1, B, ℓC>?, ℓ1>C) ∈ � (") be such

that P(� (0, 1, B, ℓC>?, ℓ1>C)) > 0. We remark that the condition P(� (0, 1, B, ℓC>?, ℓ1>C)) > 0 implies

that Ω0E>83 (−B4, B, 0, 1,∞, ℓ1>C) is not empty. By Lemma 5.2.2 we know that

P−B4,B,0,1,∞,ℓ1>C
0E>83,�4A

(
ℓ(−B3) > −?B3 + "#U/2

)
≥ P−B4,B,0,1

�4A

(
ℓ(−B3) > −?B3 + "#U/2

)
,

and so it suffices to show that

P−B4,B,0,1
�4A

(
ℓ(−B3) > −?B3 + "#U/2

)
≥ 1

3
. (5.4.8)
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One directly observes that

P−B4,B,0,1
�4A

(
ℓ(−B3) > −?B3 + "#U/2

)
= P0,B+B4,0,1−0

�4A

(
ℓ(B4 − B3) + 0 ≥ −?B3 + "#U/2

)
≥

P0,B+B4,0,1−0
�4A

(
ℓ(B4 − B3) ≥ ?(B4 − B3) + 2"#U/2

)
,

(5.4.9)

where the inequality follows from the assumption in (2) that 0 + ?B4 ≥ −"#U/2. Moreover, since

1 − ?B ≥ (6A + 22) (2A + 10)1/2(" + 1)#U/2 and 0 + ?B4 ≤ "#U/2, we have

1 − 0 ≥ ?(B + B4) + (6A + 21) (2A + 10)1/2(" + 1)#U/2 ≥ ?(B + B4) + (6A + 21) (" + 1) (B + B4)1/2.

The second inequality follows since B + B4 ≤ 2B4 ≤ (2A + 10)#U.

It follows from Lemma 5.2.8 with "1 = 0, "2 = (6A + 21) (" + 1) that for sufficiently large #

P0,B+B4,0,1−0
�4A

(
ℓ(B4 − B3) ≥

B4 − B3
B + B4

[?(B + B4) + "2(B + B4)1/2] − (B + B4)1/4
)
≥ 1/3. (5.4.10)

Note that B4−B3
B+B4 ≥

#U

(2A+10)#U =
1

2A+10 and so for all # ∈ N we have

B4 − B3
B + B4

[?(B + B4) + "2(B + B4)1/2] − (B + B4)1/4 ≥

?(B4 − B3) +
(6A + 21) (" + 1) (B + B4)1/2

2A + 10
− (B + B4)1/4 ≥ ?(B4 − B3) + 2"#U/2.

(5.4.11)

Combining (5.4.9), (5.4.10) and (5.4.11) we conclude that we can find #̃2 ∈ N such that if # ≥ #̃2

we have (5.4.8). This suffices for the proof.

5.4.2 Proof of Lemma 5.3.3

We begin by proving the following important lemma, which shows that it is unlikely that the

curve !#
:−1 falls uniformly very low on a large interval.

Lemma 5.4.1. Under the same conditions as in Lemma 5.3.3 the following holds. For any A, n > 0
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there exist ' > 0 and #5 ∈ N such that for all # ≥ #5

P

(
sup

G∈[A,']

(
!#:−1(G#

U) − ?G#U
)
≤ −(_'2 + q(n/16) + 1)#U/2

)
< n, (5.4.12)

where _, q are as in the definition of an (U, ?, _)-good sequence of line ensembles, see Definition

5.1.24. The same statement holds if [A, '] is replaced with [−',−A] and the constants #5, '

depend on n, A as well as the parameters U, ?, _, : and the functions q, k from Definition 5.1.24.

Proof. Before we go into the proof we give an informal description of the main ideas. The key to

this lemma is the parabolic shift implicit in the definition of an (U, ?, _)-good sequence. This shift

requires that the deviation of the top curve !#1 from the line of slope ? to appear roughly parabolic.

On the event in equation (5.4.12) we have that the (: − 1)-th curve dips very low uniformly on

the interval [A, '] and we will argue that on this event the top : − 2 curves essentially do not feel

the presence of the (: − 1)-th curve. After a careful analysis using the monotone coupling lemmas

from Section 5.2.1 we will see that the latter statement implies that the curve !#1 behaves like a free

bridge between its end-points that have been slighly raised. Consequently, we would expect the

midpoint !#1 (#
U (' + A)/2) to be close (on scale #U/2) to [!#1 (A#

U) + !#1 ('#
U)]/2. However,

with high probability [!#1 (A#
U) +!#1 ('#

U)]/2 lies much lower than the inverted parabola −_('+

A)2#U/2/4 (due to the concavity of the latter), and so it is very unlikely for !#1 (#
U (' + A)/2) to

be near it by our assumption. The latter would imply that the event in (5.4.12) is itself unlikely,

since conditional on it an unlikely event suddenly became likely.

We proceed to fill in the details of the above sketch of the proof in the following steps. In total

there are six steps and we will only prove the statement of the lemma for the interval [A, '], since

the argument for [−',−A] is very similar.

Step 1. We begin by specifying the choice of ' in the statement of the lemma, fixing some notation

and making a few simplifying assumptions.
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Fix A, n > 0 as in the statement of the lemma. Note that for any ' > A ,

sup
A≤G≤'

(
!#:−1(G#

U) − ?G#U
)
≥ sup
dAe≤G≤'

(
!#:−1(G#

U) − ?G#U
)
.

Thus by replacing A with dAe, we can assume that A ∈ Z, which we do in the sequel. Notice that by

our assumption that L# is (U, ?, _)-good we know that (5.4.12) holds trivially if : = 2 (with the

right side of (5.4.12) being any number greater than n/16 and in particular n) and so in the sequel

we assume that : ≥ 3.

Define constants

� =

√
8?(1 − ?) log

3
1 − (11/12)1/(:−2) , (5.4.13)

and '0 > A sufficiently large so that for ' ≥ '0 and # ∈ N we have

_(' − A)2
4

≥ 2q(n/16) + 2 + : d� d'#Ue − bA#Uce#−U/2. (5.4.14)

We define ' = d'0e + 1d'0e+A odd, so that ' ≥ '0 and the midpoint (' + A)/2 are integers. This

specifies our choice of ' and for convenience we denote < = (' + A)/2.

In the following, we always assume # is large enough so that k(#) > ', hence !#
8

are defined

at '#U for 1 ≤ 8 ≤ : . We may do so by the second condition in the definition of an (U, ?, _)-good

sequence (see Definition 5.1.24).

With the choice of ' as above we define the events

� =

{
!#1 (<#

U) − ?<#U + _<2#U/2 < −q(n/16)#U/2
}
,

� =

{
sup

G∈[A,']

(
!#:−1(G#

U) − ?G#U
)
≤ −[_'2 + q(n/16) + 1]#U/2

}
.

(5.4.15)

The goal of the lemma is to prove that we can find #5 ∈ N so that for all # ≥ #5

P(�) < n, (5.4.16)
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which we accomplish in the steps below.

Step 2. In this step we introduce some notation that will be used throughout the next steps. Let

W = bA#Uc and Γ = d'#Ue. We also define the event

� =

{
sup

B∈{W,Γ}

���!#1 (B) − ?B + _B2#−U/2��� < [q(n/16) + 1]#U/2
}
. (5.4.17)

In the remainder of this step we show that � ∩ � can be written as a countable disjoint union

� ∩ � =
⊔

(®G,®H,ℓ1>C )∈�
� (®G, ®H, ℓ1>C), (5.4.18)

where the sets � (®G, ®H, ℓ1>C) and � are defined below.

For ®G, ®H ∈ W:−2, I1, I2 ∈ Z, and ℓ1>C ∈ Ω(W, Γ, I1, I2), let � (®G, ®H, ℓ1>C) denote the event that

!#
8
(W) = G8 and !#

8
(Γ) = H8 for 1 ≤ 8 ≤ : − 2, and !#

:−1 agrees with ℓ1>C on [W, Γ]. Let � denote

the set of triples (®G, ®H, ℓ1>C) satisfying

(1) 0 ≤ H8 − G8 ≤ Γ − W for 1 ≤ 8 ≤ : − 2,

(2) |G1 − ?W + _W2#−3U/2 | < q(n/16)#U/2 and |H1 − ?Γ + _Γ2#−3U/2 | < q(n/16)#U/2,

(3) I1 ≤ G:−2, I2 ≤ H:−2, and ℓ1>C ∈ Ω(W, Γ, I1, I2),

(4) supG∈[A,'] [ℓ1>C (G#U) − ?G#U] ≤ −[_'2 + q(n/16) + 1]#U/2.

It is clear that � is countable, the events � (®G, ®H, ℓ1>C) are pairwise disjoint for different elements

in � and (5.4.18) is satisfied.

Step 3. We claim that we can find #̃0 so that for # ≥ #̃0 we have

P(�|� (®G, ®H, ℓ1>C)) ≥ 1/4 (5.4.19)
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for all (®G, ®H, ℓ1>C) ∈ � such that P(� (®G, ®H, ℓ1>C)) > 0. We will prove (5.4.19) in the steps below. In

this step we assume its validity and conclude the proof of (5.4.16).

It follows from (5.4.18) and (5.4.19) that for # ≥ #̃0 and P(� ∩ �) > 0 we have

P(�|� ∩ �) =
∑

(®G,®H,ℓ1>C )∈�,P(� (®G,®H,ℓ1>C )))>0

P(�|� (®G, ®H, ℓ1>C)P(� (®G, ®H, ℓ1>C))
P(� ∩ �) ≥

1
4
·
∑
(®G,®H,ℓ1>C )∈�,P(� (®G,®H,ℓ1>C )))>0 P(� (®G, ®H, ℓ1>C))

P(� ∩ �) =
1
4
.

From the third condition in the definition of an (U, ?, _)-good sequence, see Definition 5.1.24,

we can find #̃1 so that P(�) < n/8 for # ≥ #̃1. Hence if # ≥ max(#̃1, #̃2) and P(� ∩ �) > 0 we

have

P(� ∩ �) = P(� ∩ � ∩ �)
P(�|� ∩ �) ≤ 4P(�) < n/2. (5.4.20)

Lastly, by the same condition in Definition 5.1.24 we can find #̃2 so that for # ≥ #̃2 we have

P(�2) = 2 · n/8 = n/4. (5.4.21)

In deriving (5.4.21) we used the fact that |!#1 (W) − !
#
1 (A#

U) | ≤ 1, |!#1 (Γ) − !
#
1 ('#

U) | ≤ 1 and

? ∈ [0, 1]. Combining (5.4.20) and (5.4.21) we conclude that if # ≥ #5 = max(#̃0, #̃1, #̃2)

P(�) ≤ P(� ∩ �) + P(�2) ≤ n/2 + n/4 < n,

which proves (5.4.16).
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Step 4. In this step we prove (5.4.19). We define ®G ′, ®H ′ ∈ W:−2 through

G′8 = G + (: − 1 − 8) d�
√
) e, H′8 = H + (: − 1 − 8) d�

√
) e for 8 = 1, . . . , : − 2 with

G = d?W − _W2#−3U/2 + [q(n/16) + 1]#U/2e, H = d?Γ − _Γ2#−3U/2 + [q(n/16) + 1]#U/2e,

(5.4.22)

where � is as in (5.4.13) and ) = Γ − W. Note that for any (®G, ®H, ℓ1>C) ∈ � we have

G′8 ≥ G ≥ G1 ≥ G8 and H′8 ≥ H ≥ H1 ≥ H8

for each 8 = 1, . . . , : − 2. Furthermore,

G′8 − G′8+1 ≥ �
√
) and H′8 − H′8+1 ≥ �

√
)

for all 8 = 1, . . . , : − 2 with the convention G′
:−1 = G and H′

:−1 = H.

We claim that we can find #̃0 so that for all # ≥ #̃0 and (®G, ®H, ℓ1>C) ∈ � such that P(� (®G, ®H, ℓ1>C)) >

0 we have
∏:−2
8=1 |Ω(W, Γ, G′8 , H′8) | ≥ |Ω0E>83 (W, Γ, ®G′, ®H′,∞, ℓ1>C) | ≥ 1 and moreover we have

P
W,Γ,®G ′,®H′
�4A

(
&1 (<#U) − ?<#U + _<2#U/2 < −q(n/16)#U/2

)
≥ 1/3, (5.4.23)

P
W,Γ,®G ′,®H′
�4A

(&1 ≥ · · · ≥ &:−1) ≥ 11/12, (5.4.24)

where Q = (&1, . . . , &:−2) is PW,Γ,®G
′,®H′

�4A
-distributed and we used the convention that &:−1 = ℓ1>C .

We prove (5.4.23) and (5.4.24) in the steps below. In this step we assume their validity and con-

clude the proof of (5.4.19).

Observe that for any (®G, ®H, ℓ1>C) ∈ � such that P(� (®G, ®H, ℓ1>C)) > 0 we the following tower of
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inequalities provided that # ≥ #̃0

P(�|� (®G, ®H, ℓ1>C)) = PW,Γ,®G,®H,∞,ℓ1>C0E>83,�4A

(
&1 (<#U) − ?<#U + _<2#U/2 < −q(n/16)#U/2

)
≥

P
W,Γ,®G ′,®H′,∞,ℓ1>C
0E>83,�4A

(
&1 (<#U) − ?<#U + _<2#U/2 < −q(n/16)#U/2

)
=

P
W,Γ,®G ′,®H′
�4A

(
{&1 (<#U) − ?<#U + _<2#U/2 < −q(n/16)#U/2} ∩ {&1 ≥ · · · ≥ &:−1}

)
P
W,Γ,®G ′,®H′
�4A

(&1 ≥ · · · ≥ &:−1)
.

(5.4.25)

Let us elaborate on (5.4.25) briefly. The condition that P(� (®G, ®H, ℓ1>C)) > 0 is required to ensure

that the probabilities on the first line of (5.4.25) are well-defined and # ≥ #̃0 ensures that all

other probabilities are also well-defined. The equality on the first line of (5.4.25) follows from

the definition of � and the Schur Gibbs property, see Definition 5.1.17, and Q = (&1, . . . , &:−2)

is PW,Γ,®G,®H,∞,ℓ1>C
0E>83,�4A

-distributed. The inequality in the first line of (5.4.25) follows from Lemma 5.2.1,

while the equality in the second line follows from Definition 5.1.15, and now Q = (&1, . . . , &:−2)

is PW,Γ,®G
′,®H′

�4A
-distributed with the convention that &:−1 = ℓ1>C .

Combining (5.4.23), (5.4.24) and (5.4.25) we conclude that

P(�|� (®G, ®H, ℓ1>C)) ≥ 1/3 − 1/12 = 1/4,

which proves (5.4.19).

Step 5. In this step we prove (5.4.23). We observe that since P(� (®G, ®H, ℓ1>C)) > 0 we know that

|Ω0E>83 (W, Γ, ®G, ®H,∞, ℓ1>C) | ≥ 1 and then we conclude from Lemma 5.1.16 that there exist #̂1 ∈ N

such that for # ≥ #̂1 we have |Ω0E>83 (W, Γ, ®G′, ®H′,∞, ℓ1>C) | ≥ 1.

Below ℓ will be used for a generic random variable with law P·,·,·,·
�4A

, where the boundary data
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changes from line to line. With G, H as in (5.4.22), write I = H − G and recall that ) = Γ − W. Then

P
W,Γ,G ′1,H

′
1

�4A

(
ℓ (<#U) − ?<#U + _<2#U/2 < −q(n/16)#U/2

)
=

P
0,),G ′1,H

′
1

�4A

(
ℓ()/2) − ?<#U + _<2#U/2 < −q(n/16)#U/2

)
=

P
0,),G,H
�4A

(
ℓ()/2) − ?<#U + _<2#U/2 < −q(n/16)#U/2 − (: − 2) d�

√
)e

)
≥

P
0,),G,H
�4A

(
ℓ()/2) − G + H

2
< _

(
W2 + Γ2

2#3U/2

)
− [2q(n/16) + 1 + _<2]#U/2 − : d�

√
)e

)
=

P0,),0,I
�4A

(
ℓ()/2) − I/2 < _

(
W2 + Γ2

2#3U/2

)
− [2q(n/16) + 1 + _<2]#U/2 − : d�

√
)e

)
.

(5.4.26)

The equalities in (5.4.26) follow from shifting the boundary data of the curve ℓ, while the inequality

on the third line follows from the definition of G, H as in (5.4.22).

From our choice of ' in Step 1 and the definition of W, Γ we know that

_
W2 + Γ2

2#2U − _<
2 ≥ _ (' − A)

2

4
− A_

#U
≥ 2q(n/16) + 2 + : d�

√
)e#−U/2 − A_

#U
.

.

The last inequality and (5.4.26) imply

P
W,Γ,G ′1,H

′
1

�4A

(
ℓ (<#U) − ?<#U + _<2#U/2 < −q(n/16)#U/2

)
≥

P0,),0,I
�4A

(
ℓ()/2) − I/2 < #U/2 − A_#−U/2

)
.

(5.4.27)

Let P̃ be the probability measure on the space afforded by Theorem 5.2.3, supporting a random

variable ℓ(),I) with law P0,),0,I
�4A

and a Brownian bridge �f with variance f2 = ?(1 − ?). Then the

probability in the last line of (5.4.26) is equal to

P0,),0,I
�4A

(
ℓ()/2) − I/2 < #U/2 − A_#−U/2

)
= P̃

(
ℓ(),I) ()/2) − I/2 < #U/2 − A_#−U/2

)
≥

P̃
(√
)�f1/2 < 0 and Δ(), I) < #U/2 − A_#−U/2

)
≥ 1

2
− P̃

(
Δ(), I) ≥ #U/2 − A_#−U/2

)
,

(5.4.28)
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where we recall that Δ(), I) is as in (5.2.2). Since as # →∞ we have

) ∼ (' − A)#U and
|I − ?) |2

)
∼ (' + A),

we conclude from Lemma 5.2.5 that there exists #̂2 ∈ N such that if # ≥ max(#̂1, #̂2) we have

P̃
(
Δ(), I) ≥ #U/2 − A_#−U/2

)
≤ 1

6
. (5.4.29)

Combining (5.4.27), (5.4.28) and (5.4.29) we obtain (5.4.23).

Step 6. In this last step, we prove (5.4.24). Let ℓ1>C be the straight segment connecting G and H,

defined in (5.4.22). By construction, we have that there is #̂3 ∈ N such that if # ≥ #̂3 we have for

any (®G, ®H, ℓ1>C) ∈ � that ℓ1>C lies uniformly below the line segment ℓ1>C , which in turn lies at least

�
√
) below the straight segment connecting G′

:−2 and H′
:−2. If #̂1 is as in Step 5 we conclude from

Lemma 5.2.14 that there exists #̂4 ∈ N such that if # ≥ max(#̂1, #̂3, #̂4) and P(� (®G, ®H, ℓ1>C)) > 0

P
W,Γ,®G ′,®H′
�4A

(&1 ≥ · · · ≥ &:−1) ≥
(
1 − 34−�

2/8?(1−?)
) :−2

=
11
12
. (5.4.30)

where the condition that # ≥ #̂1 is included to ensure that the probability PW,Γ,®G
′,®H′

�4A
is well-defined.

In deriving (5.4.30) we also used (5.4.13), which implies

� =

√
8?(1 − ?) log

3
1 − (11/12)1/(:−2) ≥

√
8?(1 − ?) log 3.

We see that (5.4.30) implies (5.4.24), which concludes the proof of the lemma.

In the remainder of this section we use Lemma 5.4.1 to prove Lemma 5.3.3.

Proof. (Lemma 5.3.3) For clarity we split the proof into five steps.

Step 1. In this step we specify the choice of '2 in the statement of the lemma and introduce some
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notation that will be used in the proof of the lemma, which is given in Steps 2,3 and 4 below.

Throughout we fix A, n > 0. Define the constant

�1 =

√
16?(1 − ?) log

3
1 − 2−1/(:−1) . (5.4.31)

Let ' > A + 3, " > 0 and #̃1 ∈ N be such that for # ≥ #̃1 we have that the event

� =

{
sup

G∈[A+3,']∪[−',−A−3]

(
!#:−1(G#

U) − ?G#U
)
≥ −"#U/2

}
(5.4.32)

satisfies

P (�) ≥ 1 − n/2. (5.4.33)

Such a choice of ', ", #̃1 is possible by Lemma 5.4.1.

Let us set

B−1 = d−' · #
Ue, B−2 = b−(A + 3) · #Uc, B+1 = d(A + 3) · #Ue, B+2 = b' · #

Uc,

and for 0 ∈ ÈB−1 , B
−
2É and 1 ∈ ÈB+1 , B

+
2É we define ®G ′, ®H ′ ∈ W:−1 by

G′8 = b?0 − "#U/2c − (8 − 1) d�1#
U/2e,

H′8 = b?1 − "#U/2c − (8 − 1) d�1#
U/2e,

(5.4.34)

for 8 = 1, . . . , : − 1. We will write ®I = ®H′ − ®G′, and we note that I:−1 ≥ ?(1 − 0) − 1 and also

2'#U ≥ 1 − 0 ≥ 2(A + 3)#U. The latter and Lemma 5.2.10 imply that there exists '2 > 0 and

#̃2 ∈ N such that if # ≥ #̃2 we have

P0,1−0,0,I:−1
�4A

(
inf

B∈[0,1−0]

(
ℓ(B) − ?B

)
≤ −('2 − " − �1:)#U/2

)
< n/4. (5.4.35)

This fixes our choice of '2 in the statement of the lemma.
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With the above choice of '2 we define the event

� =

{
inf

B∈[−C3,C3]

[
!#:−1(B) − ?B

]
≤ −'2#

U/2
}
, (5.4.36)

and then to prove the lemma it suffices to show that there exists #4 ∈ N such that for # ≥ #4

P(�) < n (5.4.37)

Step 2. In this step, we prove that the event � from (5.4.32) can be written as a countable disjoint

union of the form

� =
⊔

(0,1,®G,®H,ℓ1>C ,ℓ−C>? ,ℓ+C>?)∈�
� (0, 1, ®G, ®H, ℓ1>C , ℓ−C>?, ℓ+C>?), (5.4.38)

where the set � and events � (0, 1, ®G, ®H, ℓ1>C , ℓ−C>?, ℓ+C>?) are defined below.

For 0 ∈ ÈB−1 , B
−
2É and 1 ∈ ÈB+1 , B

+
2É, ®G, ®H ∈ W:−1, I1, I2, I−1 , I

+
2 ∈ Z, ℓ1>C ∈ Ω(0, 1, I1, I2),

ℓ−C>? ∈ Ω(B−1 , 0, I
−
1 , G:−1) , ℓ+C>? ∈ Ω(1, B+2 , H:−1, I

+
2) we define � (0, 1, ®G, ®H, ℓ1>C , ℓ−C>?, ℓ+C>?) to be the

event that !#
8
(0) = G8 and !#

8
(1) = H8 for 1 ≤ 8 ≤ : − 1, and !#

:
agrees with ℓ1>C on È0, 1É, !#

:−1

agrees with ℓ−C>? on ÈB−1 , 0É and with ℓ+C>? on È1, B+2É.

We also let � be the collection of tuples (0, 1, ®G, ®H, ℓ1>C , ℓ−C>?, ℓ+C>?) satisfying:

(1) 0 ∈ ÈB−1 , B
−
2É, 1 ∈ ÈB

+
1 , B
+
2É;

(2) ®G, ®H ∈ W:−1, 0 ≤ H8 − G8 ≤ 1 − 0, G:−1 − ?0 > −"#U/2, and H:−1 − ?1 > −"#U/2;

(3) if 2 ∈ ÈB−1 , B
−
2É ∩ (−∞, 0) then ℓ−C>? (2) − ?2 ≤ −"#U/2;

(4) if 3 ∈ ÈB+1 , B
+
2É ∩ (1,∞) then ℓ+C>? (3) − ?3 ≥ −"#U/2;

(5) I1 ≤ G:−1, I2 ≤ H:−1, and ℓ1>C ∈ Ω(0, 1, I1, I2).
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It is clear that � is countable, and that

� =
⋃

(0,1,®G,®H,ℓ1>C )∈�
� (0, 1, ®G, ®H, ℓ1>C , ℓ−C>?, ℓ+C>?),

so to prove (5.4.38) it suffices to show that the events � (0, 1, ®G, ®H, ℓ1>C , ℓ−C>?, ℓ+C>?) are pairwise dis-

joint. Observe that on the intersection of � (0, 1, ®G, ®H, ℓ1>C , ℓ−C>?, ℓ+C>?) and � (0̃, 1̃, ®̃G, ®̃H, ℓ̃1>C , ℓ̃−C>?, ℓ̃+C>?),

conditions (2) and (3) imply that 0 = 0̃, while conditions (2) and (4) that 1 = 1̃. Afterwards, we

conclude that ®G = ®̃G, ®H = ®̃H, ℓ1>C = ℓ̃1>C , ℓ−C>? = ℓ̃
−
C>? and ℓ+C>? = ℓ̃

+
C>?, confirming (5.4.38).

Step 3. In this step we prove (5.4.37). We claim that we can find #̃3 ∈ N such that if # ≥ #̃3 and

(0, 1, ®G, ®H, ℓ1>C , ℓ−C>?, ℓ+C>?) ∈ � is such that P
(
� (0, 1, ®G, ®H, ℓ1>C , ℓ−C>?, ℓ+C>?)

)
> 0 we have

P(� | � (0, 1, ®G, ®H, ℓ1>C , ℓ−C>?, ℓ+C>?)) < n/2. (5.4.39)

We will prove (5.4.39) in the steps below. Here we assume its validity and conclude the proof of

(5.4.37).

If # ≥ max(#̃1, #̃2, #̃3) we have in view of (5.4.38) and (5.4.39) that

P(�) ≤ P(� ∩ �) + P(�2) = P(�2) +
∑

(0,1,®G,®H,ℓ1>C ,ℓ−C>? ,ℓ+C>?)∈�
P(� (0,1,®G,®H,ℓ1>C ,ℓ−C>? ,ℓ+C>?))>0

P(�|� (0, 1, ®G, ®H, ℓ1>C , ℓ−C>?, ℓ+C>?))×

P(� (0, 1, ®G, ®H, ℓ1>C , ℓ−C>?, ℓ+C>?)) ≤ P(�2) +
n

2

∑
(0,1,®G,®H,ℓ1>C ,ℓ−C>? ,ℓ+C>?)∈�

P(� (0,1,®G,®H,ℓ1>C ,ℓ−C>? ,ℓ+C>?))>0

P(� (0, 1, ®G, ®H, ℓ1>C , ℓ−C>?, ℓ+C>?)) =

P(�2) + n
2
· P(�) < n,

where in the last inequality we used (5.4.33). The above inequality clearly implies (5.4.37).

Step 4. In this step we prove (5.4.39). We claim that there exists #̃4 ∈ N such that if # ≥ #̃4,
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0 ∈ ÈB−1 , B
−
2É and 1 ∈ ÈB+1 , B

+
2É we have that

∏:−1
8=1 |Ω(0, 1, G′8 , H′8) | ≥ 1 and

P
0,1,®G ′,®H′
�4A

(&1 ≥ · · · ≥ &:−1) ≥
1
2
, (5.4.40)

whereQ = (&1, . . . , &:−1) is P0,1,®G
′,®H′

�4A
-distributed and we recall that ®G′, ®H′ were defined in (5.4.34).

We will prove (5.4.40) in Step 5 below. Here we assume its validity and conclude the proof of

(5.4.39).

Observe that by condition (2) in Step 2, we have that G′
8
≤ ?0 − "#U/2 ≤ G:−1 ≤ G8,

and similarly H′
8
≤ ?1 − "#U/2 ≤ H:−1 ≤ H8 for 8 = 1, . . . , : − 1. From this observation

we conclude that if # ≥ #̃4 is sufficiently large and (0, 1, ®G, ®H, ℓ1>C , ℓ−C>?, ℓ+C>?) ∈ � is such that

P
(
� (0, 1, ®G, ®H, ℓ1>C , ℓ−C>?, ℓ+C>?)

)
> 0 we have

P(�|� (0, 1, ®G, ®H, ℓ1>C , ℓ−C>?, ℓ+C>?)) ≤

P

(
inf

B∈[0,1]

(
!#:−1(B) − ?B

)
≤ −'2#

U/2 �� � (0, 1, ®G, ®H, ℓ1>C , ℓ−C>?, ℓ+C>?)) =
P
0,1,®G,®H,∞,ℓ1>C
0E>83,�4A

(
inf

B∈[0,1]
(&:−1(B) − ?B) ≤ −'2#

U/2
)
≤

P
0,1,®G ′,®H′
0E>83,�4A

(
inf

B∈[0,1]

(
&:−1(B) − ?B

)
≤ −'2#

U/2
)
=

P
0,1,®G ′,®H′
�4A

(
{infB∈[0,1]

(
&:−1(B) − ?B

)
≤ −'2#

U/2} ∩ {&1 ≥ · · · ≥ &:−1}
)

P
0,1,®G ′,®H ′
�4A

(&1 ≥ · · · ≥ &:−1)
≤

P
0,1,®G ′,®H′
�4A

(
infB∈[0,1]

(
&:−1(B) − ?B

)
≤ −'2#

U/2
)

P
0,1,®G ′,®H ′
�4A

(&1 ≥ · · · ≥ &:−1)
.

(5.4.41)

Let us elaborate on (5.4.41) briefly. The first inequality in (5.4.41) follows from the definition of �

and the fact that 0 ≤ −C3 while 1 ≥ C3 by construction. The condition P
(
� (0, 1, ®G, ®H, ℓ1>C , ℓ−C>?, ℓ+C>?)

)
>

0 ensures that the first three probabilities in (5.4.41) are all well-defined. The equality on the sec-

ond line follows from the Schur Gibbs property and the inequality on the third line follows from

Lemmas 5.2.1 and 5.2.2 since G′
8
≤ G8 and H′

8
≤ H8 by construction. To ensure that the probability
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in the fourth line is well-defined (and hence Lemmas 5.2.1 and 5.2.2 are applicable) it suffices to

assume that # ≥ #̃4, in view of Lemma 5.1.16. The equality on the fourth line follows from the

definition of P0,1,®G
′,®H′

0E>83,�4A
, see Definition 5.1.15 and the last inequality is trivial.

By our choice of '2, see (5.4.35), we know that there is #̃5 ∈ N such that if # ≥ #̃5

P
0,1,®G ′,®H′
�4A

(
inf

B∈[0,1]

(
&:−1(B) − ?B

)
≤ −'2#

U/2
)
=

P0,1−0,0,I:−1
�4A

(
inf

B∈[0,1−0]

(
ℓ(B) − ?B

)
≤ −'2#

U/2 − G′:−1

)
≤

P0,1−0,0,I:−1
�4A

(
inf

B∈[0,1−0]

(
ℓ(B) − ?B

)
≤ −('2 − " − �1:)#U/2

)
< n/4.

(5.4.42)

Combining (5.4.40), (5.4.41) and (5.4.41) we conclude that for # ≥ #̃3 = max(#̃4, #̃5) we have

P(�|� (0, 1, ®G, ®H, ℓ1>C , ℓ−C>?, ℓ+C>?)) < 2 · n/4 = n/2,

which implies (5.4.39).

Step 5. In this final step we prove (5.4.40).

Lastly, we prove that we can enlarge #̃1 so that (5.4.45) holds for # ≥ #̃1. Write 0 = 0′#U, 1 =

1′#U, and ) = 0 + 1 = (0′ + 1′)#U. Also let �′ = �/
√
0′ + 1′ with � as in (5.4.31), so that

G′
8
− G′

8+1 ≥ �#
U/2 = �′

√
) and likewise for H′

8
. Note that |I:−1 − ?) | ≤ 1. It follows from Lemma

5.2.14, applied with ℓ1>C = −∞ and �′ in place of �, that for ) larger than some )0,

P
−0,1,®G ′,®H ′
�4A

(!1 ≥ · · · ≥ !:−1) = P0,0+1,®G ′,®H ′
�4A

(!1 ≥ · · · ≥ !:−1) ≥(
1 − 34−(�

′)2/8?(1−?)
) :−1
≥

(
1 − 34−�

2/16?(1−?)'
) :−1

.

(5.4.43)

Here, we used the fact that 0′+1′ ≤ 2', hence �′ ≥ �/
√

2'. The constant )0 depends in particular

on �′, hence possibly on 0+1. Referring to the proofs of Lemmas 5.2.14 and 5.2.5, we see that the

dependency of )0 on �′ amounts to requiring that 4−�
′√)0 be sufficiently small. But �′ ≥ �/

√
2',

304



so for this it suffices to choose )0 depending on � and '. Moreover, ) ≥ 2A#U, so as long as

#̃1 ≥ ()0/2A)1/U, we have the bound in (5.4.43) for # ≥ #̃1 independent 0, 1, ®G, ®H. Our choice of

� in (5.4.31) ensures that the expression on the right in (5.4.43) is at least 1/2, proving (5.4.45).

In this step, we fix '2 > 0 and #̃1 so that for # ≥ #̃1, we have

P
−0,1,®G ′,®H ′
�4A

(
inf

B∈[0,0+1]

(
!:−1(B) − ?B

)
≤ −'2#

U/2
)
< n/4, (5.4.44)

P
−0,1,®G ′,®H ′
�4A

(!1 ≥ · · · ≥ !:−1) ≥ 1/2. (5.4.45)

Let us first prove (5.4.44). Writing ®I = ®H ′−®G ′, and using the fact that !1, . . . , !:−1 are independent

under P−0,1,®G
′,®H ′

�4A
, we can rewrite the left hand side of (5.4.44) as

P
0,0+1,G ′

:−1,H
′
:−1

�4A

(
inf

B∈[0,0+1]

(
ℓ(B) − ?(B − 0)

)
≤ −'2#

U/2
)
=

P0,0+1,0,I:−1
�4A

(
inf

B∈[0,0+1]

(
ℓ(B) − ?B + ?0 − d?0 + "#U/2e − (: − 2) d�#U/2e

)
≤ −'2#

U/2
)
≤

P0,0+1,0,I:−1
�4A

(
inf

B∈[0,0+1]

(
ℓ(B) − ?B

)
≤ −('2 − " − �:)#U/2

)
.

(5.4.46)

5.5 Lower bounds on the acceptance probability

5.5.1 Proof of Lemma 5.3.4

Throughout this section we assume the same notation as in Lemma 5.3.4, i.e., we assume that

we have fixed : ∈ N, ? ∈ (0, 1), "1, "2 > 0, ℓ1>C : È−C3, C3É → R ∪ {−∞}, and ®G, ®H ∈ W:−1 such

that |Ω0E>83 (−C3, C3, ®G, ®H,∞, ℓ1>C) | ≥ 1. We also assume that

1. supB∈[−C3,C3]
[
ℓ1>C (B) − ?B

]
≤ "2(2C3)1/2,

2. −?C3 + "1(2C3)1/2 ≥ G1 ≥ G:−1 ≥ max
(
ℓ1>C (−C3),−?C3 − "1(2C3)1/2

)
,
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3. ?C3 + "1(2C3)1/2 ≥ H1 ≥ H:−1 ≥ max
(
ℓ1>C (C3), ?C3 − "1(2C3)1/2

)
.

Definition 5.5.1. We write ( = È−C3,−C1É ∪ ÈC1, C3É, and we denote by Q = (&1, . . . , &:−1)

and Q̃ = (&̃1, . . . , &̃:−1) the È1, : − 1É-indexed line ensembles which are uniformly distributed

on Ω0E>83 (−C3, C3, ®G, ®H,∞, ℓ1>C) and Ω0E>83 (−C3, C3, ®G, ®H,∞, ℓ1>C ; () respectively. We let PQ and PQ̃

denote these uniform measures.

In other words, Q̃ has the law of :−1 independent Bernoulli bridges that have been conditioned

on not-crossing each other on the set ( and also staying above the graph of ℓ1>C but only on the

intervals È−C3,−C1É and ÈC1, C3É. The latter restriction means that the lines are allowed to cross on

È−C1 + 1, C1 − 1É, and &̃:−1 is allowed to dip below ℓ1>C on È−C1 + 1, C1 − 1É as well.

Lemma 5.5.2. There exists #5 ∈ N and constants 6, ℎ such that for # ≥ #5 we have

PQ̃

(
/
(
− C1, C1, Q̃(−C1), Q̃(C1), ℓ1>CÈ−C1, C1É

)
≥ 6

)
≥ ℎ. (5.5.1)

We will prove Lemma 5.5.2 in Section 5.5.2. In the remainder of this section, we give the proof

of Lemma 5.3.4, with the constants 6 and ℎ given by Lemma 5.5.2. The proof begins by evaluating

the Radon-Nidokum derivative between Q′ and Q̃′. We then use this Radon-Nikodym derivative to

transition between Q̃ in Lemma 5.5.2 which ignores ℓ1>C on È−(C1 − 1), C1 − 1É and Q in Lemma

5.3.4 which avoids ℓ1>C everywhere.

Proof of Lemma 5.3.4. Let us denote by Q′ and Q̃′ the measures on È1, : − 1É-indexed Bernoulli

line ensembles Q′, Q̃′ on the set ( in Definition 5.5.1 induced by the restrictions of the measures

PQ, PQ̃ to (. Also let us write Ω0 (·) for Ω0E>83 (·) for simplicity, and denote by Ω0 (() the set

of elements of Ω0E>83 (−C3, C3, Q̃(−C3), Q̃(C3)) restricted to (. We claim that the Radon-Nikodym

derivative between these two restricted measures is given on elements B of Ω0 (() by

3Q′

3Q̃′
(B) = PQ

′ (B)
PQ̃′ (B)

= (/′)−1/ (−C1, C1,B (−C1) ,B (C1) , ℓ1>CÈ−C1, C1É) , (5.5.2)
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with /′ =Q̃′ [/ (−C1, C1,B(−C1),B(C1), ℓ1>CÈ−C1, C1É)]. The first equality holds simply because the

measures are discrete. To prove the second equality, observe that

Q′ (B) =
|Ω0 (−C1, C1,B(−C1),B(C1), ℓ1>CÈ−C1, C1É)|
|Ω0 (−C3, C3,Q(−C3),Q(C3), ℓ1>C) |

,

Q̃′ (B) =
∏:−1
8=1 |Ω(−C1, C1, �8 (−C1), �8 (C1)) |

|Ω0 (−C3, C3, Q̃(−C3), Q̃(C3), ℓ1>C ; () |

(5.5.3)

These identities follow from the restriction, and the fact that the measures are uniform. Then, from

Definition 5.1.22,

/ (−C1, C1,B(−C1),B(C1), ℓ1>C) =
|Ω0 (−C1, C1,B(−C1),B(C1), ℓ1>CÈ−C1, C1É)|∏:−1

8=1 |Ω(−C1, C1, �8 (−C1), �8 (C1)) |

and hence

/′ =
∑

B∈Ω0 (()

∏:−1
8=1 |Ω(−C1, C1, �8 (−C1), �8 (C1)) |

|Ω0 (−C3, C3, Q̃(−C3), Q̃(C3), ℓ1>C ; () |
· |Ω0 (−C1, C1,B(−C1),B(C1), ℓ1>C) |∏:−1

8=1 |Ω(−C1, C1, �8 (−C1), �8 (C1)) |
=∑

B∈Ω0 (() |Ω0 (−C1, C1,B(−C1),B(C1), ℓ1>C) |
|Ω0 (−C3, C3, Q̃(−C3), Q̃(C3), ℓ1>C ; () |

=
|Ω0 (−C3, C3,Q(−C3),Q(C3), ℓ1>C) |
|Ω0 (−C3, C3, Q̃(−C3), Q̃(C3), ℓ1>C ; () |

.

Comparing the above identities proves the second equality in (5.5.2).

Now note that / (−C1, C1,B(−C1),B(C1), ℓ1>CÈ−C1, C1É) is a deterministic function of ((B(−C1),B(C1)).

In fact, the law of ((B(−C1),B(C1)) under Q̃′ is the same as that of
(
Q̃(−C1), Q̃(C1)

)
by way of the

restriction. It follows from Lemma 5.5.2 that

/′ =Q̃′ [/ (−C1, C1,B(−C1),B(C1), ℓ1>CÈ−C1, C1É)]

=Q̃ [/ (−C1, C1,Q(−C1),Q(C1), ℓ1>CÈ−C1, C1É)] ≥ 6ℎ,

which gives us

(/′)−1 ≤ 1
6ℎ
. (5.5.4)

Similarly, the law of (B(−C1),B(C1)) under Q′ is the same as that of (Q(−C1),Q(C1)) under Q.

307



Hence

Q

(
/ (−C1, C1,Q(−C1),Q(C1), ℓ1>CÈ−C1, C1É) ≤ 6ℎñ

)
=

Q′

(
/ (−C1, C1,B(−C1),B(C1), ℓ1>CÈ−C1, C1É) ≤ 6ℎñ

)
.

(5.5.5)

Now let us write � = {/ (−C1, C1,B(−C1),B(C1), ℓ1>CÈ−C1, C1É) ≤ 6ℎñ} ⊂ Ω0 ((). Then according

to (5.5.2), we have

Q′ (�) =
∫
Ω0 (()

� 3Q′ = (/′)−1
∫
Ω0 (()

� · / (−C1, C1,B(−C1),B(C1), ℓ1>CÈ−C1, C1É) 3Q̃′ (B).

From the definition of � , the inequality (5.5.4), and the fact that 1� ≤ 1, it follows that

Q′ (�) ≤ (/′)−1
∫
Ω0 (()

� · 6ℎñ 3Q̃′ ≤
1
6ℎ

∫
Ω0 (()

6ℎñ 3Q̃′ ≤ ñ .

In combination with (5.5.5), this proves (5.3.2).

5.5.2 Proof of Lemma 5.5.2

In this section, we prove Lemma 5.5.2. We first state and prove two auxiliary lemmas necessary

for the proof. The first lemma establishes a set of conditions under which we have the desired lower

bound on the acceptance probability.

Lemma 5.5.3. Let n > 0 and + C>? > 0 be given such that + C>? > "2 + 6(: − 1)n . Suppose further

that ®0, ®1 ∈ W:−1are such that

1. + C>? (2C3)1/2 ≥ 01 + ?C1 ≥ 0:−1 + ?C1 ≥ ("2 + 2n) (2C3)1/2;

2. + C>? (2C3)1/2 ≥ 11 − ?C1 ≥ 1:−1 − ?C1 ≥ ("2 + 2n) (2C3)1/2;

3. 08 − 08+1 ≥ 3n (2C3)1/2 and 18 − 18+1 ≥ 3n (2C3)1/2 for 8 = 1, . . . , : − 2.
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Then we can find 6 = 6(n,+ C>?, "2) > 0 and #6 ∈ N such that for all # ≥ #6 we have

/
(
− C1, C1, ®0, ®1, ℓ1>CÈ−C1, C1É

)
≥ 6. (5.5.6)

Proof. Observe by the rightmost inequalities in conditions (1) and (2) in the hypothesis, as well as

condition (1) in Lemma 5.3.4, that ℓ1>C lies a distance of at least 2n (2C3)1/2 ≥ 2n (2C1)1/2 uniformly

below the line segment connecting 0:−1 and 1:−1. Also note that (1) and (2) imply |18−08−2?C1 | ≤

(+ C>? −"2 − 2n) (2C3)1/2 for each 8. Lastly noting (3), we see that the conditions of Lemma 5.2.14

are satisfied with � = 2n . This implies (5.5.6), with

6 =

(
1
2
−
∞∑
==1
(−1)=−14−n

2=2/2?(1−?)
) :−1

.

The next lemma helps us derive the lower bound ℎ in (5.5.1).

Lemma 5.5.4. For any ' > 0 we can find + C1, +
1
1 ≥ "2 + ', ℎ1 > 0 and #7 ∈ N (depending on ')

such that if # ≥ #7 we have

PQ̃

(
(2C3)1/2+ C1 ≥ &̃1(±C2) ∓ ?C2 ≥ &̃:−1(±C2) ∓ ?C2 ≥ (2C3)1/2+ 11

)
≥ ℎ1. (5.5.7)

Proof. We first define the constants + 11 and ℎ1, as well as two other constants � and  1 to be used

in the proof. We put

� =

√
8?(1 − ?) log

3
1 − (11/12)1/(:−2) ,

+ 11 = "1 + �: + "2 + ',  1 = (4A + 10)+ 11 ,

ℎ1 =
2:/2−5 (1 − 24−4/?(1−?) )2:

(c?(1 − ?)):/2
exp

(
−2: ( 1 + "1 + 6)2

?(1 − ?)

)
.

(5.5.8)

Note in particular that + 11 > "2 + '. We will fix + C1 > +
1
1 in Step 3 below depending on ℎ1. We
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will prove in the following steps that for these choices of + 11 , +
C
1, ℎ1, we can find #7 so that for

# ≥ #7 we have

PQ̃

(
&̃:−1(±C2) ∓ ?C2 ≥ (2C3)1/2+ 11

)
≥ 2ℎ1, (5.5.9)

PQ̃

(
&̃1(±C2) ∓ ?C2 > (2C3)1/2+ C1

)
≤ ℎ1. (5.5.10)

Assuming the validity of the claim, we then observe that the probability in (5.5.7) is bounded be-

low by 2ℎ1 − ℎ1 = ℎ1, proving the lemma. We will prove (5.5.9) and (5.5.10) in three steps.

Step 1. In this step we prove that there exists #7 so that (5.5.9) holds for # ≥ #7, assuming results

from Step 2 below. We condition on the value of Q̃ at 0 and divide Q̃ into two independent line

ensembles on [−C3, 0] and [0, C3]. Observe by Lemma 5.2.2 that

PQ̃

(
&̃:−1(±C2) ∓ ?C2 ≥ (2C3)1/2+ 11

)
≥ P−C3,C3,®G,®H

0E>83,�4A;(

(
&̃:−1(±C2) ∓ ?C2 ≥ (2C3)1/2+ 11

)
. (5.5.11)

With  1 as in (5.5.8), we define events

�®I =
{(
&̃1(0), . . . , &̃:−1(0)

)
= ®I

}
, - =

{
®I ∈ W:−1 : I:−1 ≥  1(2C3)1/2 and P−C3,C3,®G,®H

0E>83,�4A;( (�®I) > 0
}
,

and � =
⊔
®I∈- �®I. By Lemma 5.1.16, we can choose #̃0 large enough depending on "1, �, :, "2, '

so that - is non-empty for # ≥ #̃0. By Lemma 5.2.16 we can find #̃1 so that

P
−C3,C3,®G,®H
0E>83,�4A;( (�) ≥ P

−C3,C3,®G,®H
0E>83,�4A;(

(
&̃:−1(0) ≥  1(2C3)1/2

)
≥ � exp

(
−2: ( 1 + "1 + 6)2

?(1 − ?)

)
(5.5.12)

for # ≥ #̃1, where � = �(?, :) is a constant given explicitly in (5.2.22).

Now let &̃1
8

and &̃2
8

denote the restrictions of &̃8 to [−C3, 0] and [0, C3] respectively for 1 ≤ 8 ≤

310



: − 1, and write (1 = ( ∩ È−C3, 0É, (2 = ( ∩ È0, C3É. We observe that if ®I ∈ - , then

P
−C3,C3,®G,®H
0E>83,�4A;(

(
&̃1
:−1 = ℓ1, &̃

2
:−1 = ℓ2 | �®I

)
= P−C3,0,®G,®I

0E>83,�4A;(1
(ℓ1) · P0,C3,®I,®H

0E>83,�4A;(2
(ℓ2). (5.5.13)

In Step 2, we will find #̃2 so that for # ≥ #̃2 we have

P−C3,0,®G,®I
0E>83,�4A;(1

(
&̃1
:−1(−C2) + ?C2 ≥ (2C3)

1/2+ 11

)
≥ 1

4
,

P0,C3,®G,®I
0E>83,�4A;(2

(
&̃2
:−1(C2) − ?C12 ≥ (2C3)1/2+ 11

)
≥ 1

4
.

(5.5.14)

Using (5.5.12), (5.5.13), and (5.5.14), we conclude that

P
−C3,C3,®G,®H
0E>83,�4A;(

(
&̃:−1(±C2) ∓ ?C2 ≥ (2C3)1/2+ 11

)
≥ �

16
exp

(
−2: ( 1 + "1 + 6)2

?(1 − ?)

)
for # ≥ #7 = max(#̃0, #̃1, #̃2). In combination with (5.5.11), this proves (5.5.9) with ℎ1 = �/16

as in (5.5.8).

Step 2. In this step, we prove the inequalities in (5.5.14) from Step 1, using Lemma 5.2.8. Let us

define vectors ®G ′, ®I ′, ®H ′ by

G′8 = b−?C3 − "1(2C3)1/2c − (8 − 1) d� (2C3)1/2e,

I′8 = b 1(2C3)1/2c − (8 − 1) d� (2C3)1/2e,

H′8 = b?C3 − "1(2C3)1/2c − (8 − 1) d� (2C3)1/2e .

Note that G′
8
≤ G:−1 ≤ G8 and G′

8
− G′

8+1 ≥ � (2C3)
1/2 for 1 ≤ 8 ≤ : − 1, and likewise for I′

8
, H′
8
. By

Lemma 5.2.1 we have

P−C3,0,®G,®I
0E>83,�4A;(1

(
&̃1
:−1(−C2) + ?C2 ≥ (2C3)

1/2+ 11

)
≥ P−C3,0,®G

′,®I ′
0E>83,�4A;(1

(
&̃1
:−1(−C2) + ?C2 ≥ (2C3)

1/2+ 11

)
≥

P
−C3,0,G ′:−1,I

′
:−1

�4A

(
ℓ1(−C2) + ?C2 ≥ (2C3)1/2+ 11

)
−

(
1 − P−C3,C3,®G

′,®I ′
�4A

(
&̃1

1 ≥ · · · ≥ &̃
1
:−1

))
.

(5.5.15)
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To bound the first term on the second line, first note that G′
:−1 ≥ −?C3 − ("1 + � (: − 1)) (2C3)1/2

and I′
:−1 ≥  1(2C3)1/2 − � (: − 1) (2C3)1/2 for sufficiently large # . Let us write G̃, Ĩ for these two

lower bounds. Then by Lemma 5.2.8, we have an #̃3 so that for # ≥ #̃3,

P
−C3,0,G ′:−1,I

′
:−1

�4A

(
ℓ1(−C2) ≥

C2
C3
G̃ + C3 − C2

C3
Ĩ − (2C3)1/4

)
≥ 1

3
. (5.5.16)

Moreover, as long as #̃U3 > 2, we have for # ≥ #̃U3 that

C3 − C2
C3
≥ 1 − (A + 2)#U

(A + 3)#U − 1
> 1 − A + 2

A + 5/2 =
1

2A + 5
. (5.5.17)

It follows from our choice of + 11 and  1 = 2(2A + 5)+ 11 in (5.5.8), as well as (5.5.17), that

C2
C3
G̃ + C3 − C2

C3
Ĩ − (2C3)1/4 = −?C2 − � (: − 1) (2C3)1/2 −

C2
C3
"1(2C3)1/2 +

C3 − C2
C3

 1(2C3)1/2 − (2C3)1/4 ≥

− ?C2 − �: (2C3)1/2 − "1(2C3)1/2 +
1

2A + 5
 1(2C3)1/2 = −?C2 + ("1 + �: + 2("2 + ')) (2C3)1/2 >

− ?C2 + (2C3)1/2+ 11 .

For the first inequality, we used the fact that C2/C3 < 1, and we assumed that #̃3 is sufficiently large

so that � (: − 1) (2C3)1/2 + (2C3)1/4 ≤ �: (2C3)1/2 for # ≥ #̃3. Using (5.5.16), we conclude for

# ≥ #̃3 that

P
−C3,0,G ′:−1,I

′
:−1

�4A

(
ℓ1(−C2) + ?C2 ≥ (2C3)1/2+ 11

)
≥ 1

3
. (5.5.18)

Since |I′
8
− G′

8
− ?C2 | ≤ ( 1 + "1 + 1) (2C2)1/2, we have by Lemma 5.2.14 and our choice of � that

the second probability in the second line of (5.5.15) is bounded below by

(
1 − 34−�

2/8?(1−?)
) :−1
≥ 11/12

for # larger than some #̃4. It follows from (5.5.15) and (5.5.18) that for # ≥ #̃2 = max(#̃3, #̃4),

P−C3,0,®G,®I
0E>83,�4A;(1

(
&̃1
:−1(−C2) + ?C2 ≥ (2C3)

1/2+ 11

)
≥ 1

3
− 1

12
=

1
4
,
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proving the first inequality in (5.5.14). The second inequality is proven similarly.

Step 3. In this last step, we fix + C1 and prove that we can enlarge #7 from Step 1 so that (5.5.10)

holds for # ≥ #7. Let � be as in (5.5.8), and define vectors ®G ′′, ®H ′′ ∈ W:−1 by

G′′8 = d−?C3 + "1(2C3)1/2e + (: − 8) d� (2C3)1/2e,

H′′8 = d?C3 + "1(2C3)1/2e + (: − 8) d� (2C3)1/2e .

Note that G′′
8
≥ G1 ≥ G8 and G′′

8
−G′′

8+1 ≥ � (2C3)
1/2, and likewise for H′′

8
. Moreover, ℓ1>C lies a distance

of at least � (2C3)1/2 uniformly below the line segment connecting G′′
:−1 and H′′

:−1. By Lemma 5.2.1

we have

PQ̃

(
&̃1(±C2) ∓ ?C2 > (2C3)1/2+ C1

)
≤ P−C3,C3,®G

′′,®H ′′,∞,ℓ1>C
0E>83,�4A;(

(
sup

B∈[−C3,C3]

[
&̃1(B) − ?B

]
≥ (2C3)1/2+ C1

)
≤

P
−C3,C3,G ′′1 ,H

′′
1

�4A

(
supB∈[−C3,C3]

[
!̃1(B) − ?B

]
≥ (2C3)1/2+ C1

)
P
−C3,C3,®G ′′,®H ′′
�4A

(
!̃1 ≥ · · · ≥ !̃:−1 ≥ ℓ1>C

) .

In the numerator in the second line, we used the fact that the curves !̃1, . . . , !̃:−1 are independent

under P
−C3,C3,G ′′1 ,H

′′
1

�4A
, and the event in the parentheses depends only on !̃1. By Lemma 5.2.10, since

min(G′′1 + ?C3, H
′′
1 − ?C3) ≤ ("1 + � (: − 1)) (2C3)1/2, we can choose + C1 > +

1
1 as well as #̃5 large

enough so that the numerator is bounded above by ℎ1/2 for # ≥ #̃5. Since |H′′
8
− G′′

8
− 2?C3 | ≤ 1,

our choice of � and Lemma 5.2.14 give a #̃6 so that the denominator is at least 11/12 for # ≥ #̃6.

This gives an upper bound of 12/11 · ℎ1/2 < ℎ1/2 in the above as long as #7 ≥ max(#̃5, #̃6),

proving (5.5.10).

We are now equipped to prove Lemma 5.5.2. Let us put

C12 =
⌊ C1 + C2

2

⌋
. (5.5.19)
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Proof. We first introduce some notation to be used in the proof. Let ( be as in Definition 5.5.1.

For ®2, ®3 ∈ W:−1, let us write (̃ = È−C2,−C1É ∪ ÈC1, C2É, Ω̃( ®2, ®3) = Ω0E>83 (−C2, C2, ®2, ®3,∞, ℓ1>C ; (̃).

For B ∈ (̃ we define events

�( ®2, ®3, B) =
{
Q̃ ∈ Ω̃( ®2, ®3) : &̃:−1(±B) ∓ ?B ≥ ("2 + 1) (2C3)1/2

}
,

�( ®2, ®3,+ C>?, B) =
{
Q̃ ∈ Ω̃( ®2, ®3) : &̃1(±B) ∓ ?B ≤ + C>? (2C3)1/2

}
,

� ( ®2, ®3, n, B) =
{
Q̃ ∈ Ω̃( ®2, ®3) : min

1≤8≤:−2, e∈{−1,1}

[
&̃8 (eB) − &̃8+1(eB)

]
≥ 3n (2C3)1/2

}
,

� ( ®2, ®3,+ C>?, n , B) = �( ®2, ®3, B) ∩ �( ®2, ®3,+ C>?, B) ∩ � ( ®2, ®3, n, B).

(5.5.20)

Here, n and + C>? are constants which we will specify later. By Lemma 5.5.3, for all ( ®2, ®3) and #

sufficiently large we have

� ( ®2, ®3,+ C>?, n , B) ⊂ {/ (−C1, C1,Q(−C1),Q(C1), ℓ1>CÈ−C1, C1É) > 6}

for some 6 depending on n,+ C>?, "2. Thus we will prove that probability of the event on the left

under the uniform measure on Ω̃( ®2, ®3) is bounded below by ℎ = ℎ1/2, with ℎ1 as in (5.5.8). We

split the proof into several steps.

Step 1. In this step, we show that there exist ' > 0 and #0 sufficiently large so that if 2:−1 + ?C2 ≥

(2C3)1/2("2 + ') and 3:−1 − ?C2 ≥ (2C3)1/2("2 + '), then for all B ∈ (̃ and # ≥ #0 we have

P−C2,C2,®2,
®3,∞,ℓ1>C

0E>83,�4A;(̃

(
�( ®2, ®3, B)

)
≥ 19

20
and P−C2,C2,®2,

®3
0E>83,�4A;(̃

(
&:−1 |(̃ ≥ ℓ1>C |(̃

)
≥ 99

100
. (5.5.21)

Let us begin with the first inequality. We observe via Lemma 5.2.2 that

P−C2,C2,®2,
®3,∞,ℓ1>C

0E>83,�4A;(̃

(
�( ®2, ®3, B)

)
≥ P−C2,C2,®2, ®3

0E>83,�4A;(̃

(
�( ®2, ®3, B)

)
. (5.5.22)

314



Now define the constant

� =

√
8?(1 − ?) log

3
1 − (199/200)1/(:−1) (5.5.23)

and vectors ®2 ′, ®3 ′ ∈ W: by

2′8 = b−?C2 + ("2 + ') (2C3)1/2c − (8 − 1) d� (2C2)1/2e,

3′8 = b?C2 + ("2 + ') (2C3)1/2c − (8 − 1) d� (2C2)1/2e .

Then by Lemma 5.2.1 we have

P−C2,C2,®2,
®3

0E>83,�4A;(̃

(
�( ®2, ®3, B)

)
≥ P−C2,C2,®2

′, ®3 ′
0E>83,�4A;(̃

(�( ®2 ′, ®3 ′, B)) ≥

P
−C2,C2,2′:−1,3

′
:−1

�4A

(
inf
B∈(̃

[
ℓ(B) − ?B

]
≥ ("2 + 1) (2C3)1/2

)
−(

1 − P−C2,C2,®2
′, ®3 ′

�4A
(!1 ≥ · · · ≥ !:−1)

)
.

(5.5.24)

By Lemma 5.2.14 and our choice of �, we can find #̃0 so that P−C2,C2,®2
′, ®3 ′

�4A
(!1 ≥ · · · ≥ !:−1) >

199/200 > 39/40 for # ≥ #̃0. Writing I = 3′
:−1 − 2

′
:−1, the term in the second line of (5.5.24) is

equal to

P−C2,C2,0,I
�4A

(
inf
B∈(̃

[
ℓ(B) + 2′:−1 − ?B

]
≥ ("2 + 1) (2C3)1/2

)
≥

P0,2C2,0,I
�4A

(
inf

B∈[0,2C2]

[
ℓ(B) − ?B

]
≥ (−' + �: + 1) (2C3)1/2

)
.

In the second line, we used the estimate 2′
:−1 ≥ −?C2 + ("2 + ' − �:) (2C3)1/2. Now by Lemma

5.2.10, we can choose ' large enough depending on �, :, "2, ? so that this probability is greater

than 39/40 for # greater than some #̃1. This gives a lower bound in (5.5.24) of 39/40 − 1/40 =

19/20 for # ≥ max(#̃0, #̃1), and in combination with (5.5.22) this proves the first inequality in

(5.5.21).

We prove the second inequality in (5.5.21) similarly. Note that since ℓ1>C (B) ≤ ?B +"2(2C3)1/2
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on [−C3, C3] by assumption, we have

P−C2,C2,®2,
®3

0E>83,�4A;(̃

(
&̃:−1 |(̃ ≥ ℓ1>C |(̃

)
≥ P−C2,C2,®2, ®3

0E>83,�4A;(̃

(
inf

B∈[−C2,C2]

[
&:−1(B) − ?B

]
≥ "2(2C3)1/2

)
≥

P−C2,C2,®2
′, ®3 ′

0E>83,�4A;(̃

(
inf

B∈[−C2,C2]

[
&̃:−1(B) − ?B

]
≥ "2(2C3)1/2

)
≥

P0,2C2,0,I
�4A

(
inf

B∈[0,2C2]

[
ℓ(B) − ?B

]
≥ −(' − �:) (2C3)1/2

)
−(

1 − P−C2,C2,®2
′, ®3 ′

�4A
( !̃1 ≥ · · · ≥ !̃:−1)

)
.

(5.5.25)

We enlarge ' if necessary so that the probability in the third line of (5.5.25) is > 199/200 for

# ≥ #̃2 by Lemma 5.2.10, and 5.2.14 implies as above that the expression in the last line of

(5.5.25) is > −1/200 for # ≥ #̃3. This gives us a lower bound of 199/200 − 1/200 = 99/100

for # ≥ #̃0 = max(#̃2, #̃3) as desired. This proves the two inequalities in (5.5.21) for # ≥ #0 =

max(#̃0, #̃1, #̃2, #̃3).

Step 2. With ' fixed from Step 1, let + C1, +
1
1 , and ℎ1 be as in Lemma 5.5.4 for this choice of '.

Define the event

� =
{
®2, ®3 ∈ W:−1 : (2C3)1/2+ C1 ≥ max(21 + ?C231 − ?C2) and

min(2:−1 + ?C2, 3:−1 − ?C2) ≥ (2C3)1/2+ 11
}
.

(5.5.26)

We show in this step that there exists + C>? ≥ "2 + 6(: − 1) and #1 such that for all ( ®2, ®3) ∈ � ,

B ∈ (̃, and # ≥ #1 we have

P−C2,C2,®2,
®3,∞,ℓ1>C

0E>83,�4A;(̃

(
�( ®2, ®3,+ C>?, B)

)
≥ 19

20
. (5.5.27)

Let � be as in (5.5.23), and define ®2 ′′, ®3 ′′ ∈ W:−1 by

2′′8 = d−?C2 + (2C3)1/2+ C1e + (: − 1 − 8) d� (2C2)1/2e,

3′′8 = d?C2 + (2C3)1/2+ C1e + (: − 1 − 8) d� (2C2)1/2e .
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Then 2′′
8
≥ 21 ≥ 28 and 2′′

8
− 2′′

8+1 ≥ � (2C2)
1/2 for each 8, and likewise for 3′′

8
. Furthermore, since

+ 11 ≥ "2+', we see that ℓ1>C lies a distance of at least '(2C3)1/2 uniformly below the line segment

connecting 2′′
:−1 and 3′′

:−1. By construction, ' > �. By Lemma 5.2.1, the left hand side of (5.5.27)

is bounded below by

P−C2,C2,®2
′′, ®3 ′′,∞,ℓ1>C

0E>83,�4A;(̃

(
sup
B∈(̃

[
&̃1(B) − ?B

]
≤ + C>? (2C3)1/2

)
≥

P0,2C2,0,I′
�4A

(
sup

B∈[−C2,C2]

[
ℓ(B) − ?B

]
≤ (+ C>? −+ C1 − �:) (2C3)

1/2
)
−(

1 − P−C2,C2,®2
′′, ®3 ′′,∞,ℓ1>C

�4A
(!1 ≥ · · · ≥ !:−1 ≥ ℓ1>C)

)
.

(5.5.28)

In the last line, we have written I′ = 3′′1−2
′′
1 , and we used the fact that 2′′1 ≤ −?C2+(+

C
1+�:) (2C3)

1/2.

By Lemma 5.2.10, we can find + C>? large enough depending on + C1, �, :, ? so that the probability

in the third line of (5.5.28) is at least 39/40 for # ≥ #̃4. On the other hand, the above observations

regarding ®2 ′′, ®3 ′′, and ℓ1>C , as well as the fact that |3′′1 − 2
′′
1 − 2?C2 | ≤ 1, allow us to conclude from

Lemma 5.2.14 that the probability in the last line of (5.5.28) is at least 39/40 for # ≥ #̃5. This

gives a lower bound of 39/40 − 1/40 = 19/20 in (5.5.28) for #1 = max(#̃4, #̃5) as desired.

Step 3. In this step, we show that with � , + C1, and + 11 as in Step 2, there exist n > 0 sufficiently

small and #2 such that for ( ®2, ®3) ∈ � and # ≥ #2, we have

P−C2,C2,®2,
®3,∞,ℓ1>C

0E>83,�4A;(̃

(
� ( ®2, ®3,+ C>?, n , C12)

)
≥ 1

2
. (5.5.29)

We claim that this follows if we find #̃6 so that for # ≥ #̃6,

P−C2,C2,®2,
®3

0E>83,�4A;(̃

(
� ( ®2, ®3, n, C12) | �( ®2, ®3, C1) ∩ �( ®2, ®3,+ C>?, C1)

)
≥ 9

10
. (5.5.30)
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To see this, note that (5.5.21) and (5.5.27) imply that for # ≥ max(#0, #1),

P−C2,C2,®2,
®3

0E>83,�4A;(̃

(
�( ®2, ®3, C1) ∩ �( ®2, ®3,+ C>?, C1)

)
≥ 19

20
− 1

20
− 1

100
>

4
5
,

and then (5.5.30) and the second inequality in (5.5.21) imply that for # ≥ #2 = max(#0, #1, #̃6),

P−C2,C2,®2,
®3,∞,ℓ1>C

0E>83,�4A;(̃

(
�( ®2, ®3, C1) ∩ �( ®2, ®3,+ C>?, C1) ∩ � ( ®2, ®3, n, C12)

)
>

9
10
· 4

5
− 1

100
>

17
25
.

Then using (5.5.21) and (5.5.27) once again and recalling the definition of � ( ®2, ®3,+ C>?, n , C12)

gives a lower bound on the probability in (5.5.29) of 17/25 − 1/10 > 14/25 > 1/2 for # ≥ #2 as

desired.

In the remainder of this step, we verify (5.5.30). Observe that �( ®2, ®3, C1) ∩ �( ®2, ®3,+ C>?, C1) can

be written as a countable disjoint union:

�( ®2, ®3, C1) ∩ �( ®2, ®3,+ C>?, C1) =
⊔
( ®0,®1)∈�

� ( ®0, ®1). (5.5.31)

Here, for ®0, ®1 ∈ W:−1, � ( ®0, ®1) is the event that Q(−C1) = ®0 and Q(C1) = ®1, and � is the collection

of pairs ( ®0, ®1) satisfying

(1) 0 ≤ min(08 − 28, 38 − 18) ≤ C2 − C1 and 0 ≤ 18 − 08 ≤ 2C1 for 1 ≤ 8 ≤ : − 1,

(2) min(0:−1 + ?C1, 1:−1 − ?C1) ≥ ("2 + 1) (2C3)1/2,

(3) max(01 + ?C1, 11 − ?C1) ≤ + C>? (2C3)1/2.

Now let Q1 = (&1
1, . . . , &

1
:−1) and Q2 = (&2

2, . . . , &
2
:−1) denote the restrictions of Q̃ to È−C2,−C1É

and ÈC1, C2É respectively. Then we observe that

P−C2,C2,®2,
®3

0E>83,�4A;(̃

(
Q1 = B1,Q2 = B2 �� � ( ®0, ®1)) = P−C2,−C1,®2,®0

0E>83,�4A

(
Q1 = B1

)
· PC1,C2,®1, ®3

0E>83,�4A

(
Q2 = B2

)
.

(5.5.32)
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We also let �̃ = {( ®0, ®1) ∈ � :−C2,C2,®2, ®3
0E>83,�4A;(̃

(� ( ®0, ®1)) > 0}, and we choose #̃7 so that �̃ is nonempty for

# ≥ #̃7 using Lemma 5.1.16. We now fix ( ®0, ®1) and argue that we can choose n > 0 small enough

and #̃8 so that for # ≥ #̃8,

−C2,C2,®2, ®3
0E>83,�4A;(̃

(
� ( ®2, ®3, n, C12)

�� � ( ®0, ®1)) ≥ 9
10
. (5.5.33)

Then using (5.5.33) and (5.5.31) and summing over �̃ proves (5.5.30) for # ≥ #̃6 = max(#̃7, #̃8).

To prove (5.5.33), we first show that we can find X > 0 and #̃7 so that

P−C2,−C1,®2,®0
0E>83,�4A

(
max

1≤8≤:−2

[
&1
8 (−C12) −&1

8+1(−C12)
]
≥ X(2C3)1/2

)
≥ 3
√

10
(5.5.34)

for # ≥ #̃7. We prove this inequality using Lemma 5.2.18. In order to apply this result, we first

observe that since | − C12 + 1
2 (C1 + C2) | ≤ 1 by (5.5.19), we have

0 ≤ &1
8 (−C12) −&1

8 (−1
2 (C1 + C2)) ≤ 1. (5.5.35)

Now applying Lemma 5.2.18 with "1 = +
C
1, "2 = +

C>?, we obtain #̃7 and X > 0 such that if

# ≥ #̃7, then

−C2,−C1,®2,®0
0E>83,�4A

(
min

1≤8≤:−1

[
&1
8 (−1

2 (C1 + C2)) −&
1
8+1(−1

2 (C1 + C2))
]
< X(C2 − C1)1/2

)
< 1 − 3

√
10
.

Together with (5.5.35) and the fact that C3/4 < C2 − C1, this implies that

−C2,−C1,®2,®0
0E>83,�4A

(
min

1≤8≤:−1

[
&1
8 (−C12) −&1

8+1(−C12)
]
< (X/2) (2C3)1/2 − 1

)
< 1 − 3

√
10

(5.5.36)

for # ≥ #̃7. Now we observe that as long as #̃U7 ≥
1+8/X2

A+3 , then (X/4) (2C3)1/2 ≤ (X/2) (2C2)1/2 − 1

for # ≥ #̃7. This implies (5.5.34). A similar argument gives us a X̃ > 0 such that

−C2,−C1,®2,®0
0E>83,�4A

(
min

1≤8≤:−1

[
&8 (−C12) −&8+1(−C12)

]
< (X̃/4) (2C3)1/2

)
< 1 − 3

√
10
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for # ≥ #̃7. Then putting n = min(X, X̃)/12 and using (5.5.32), we obtain (5.5.33) for # ≥ #̃7.

Step 4. In this step, we find #3 so that

P−C2,C2,®2,
®3,∞,ℓ1>C

0E>83,�4A;(̃

(
� ( ®2, ®3,+ C>?, n , C1)

)
≥ 1

2

(
1
2
−
∞∑
==1
(−1)=−14−n

2=2/2?(1−?)
) :−1

(5.5.37)

for # ≥ #3. We will find #̃9 so that for # ≥ #̃9,

P−C2,C2,®2,
®3,∞,ℓ1>C

0E>83,�4A;(̃

(
� ( ®2, ®3,+ C>?, n , C1)

��� ( ®2, ®3,+ C>?, n , C12)
)
≥

(
1
2
−
∞∑
==1
(−1)=−14−n

2=2/2?(1−?)
) :−1

.

(5.5.38)

Then (5.5.29) implies (5.5.37) for # ≥ #3 = max(#2, #̃9).

To prove (5.5.38) we first observe that we can write

� ( ®2, ®3,+ C>?, n , C12) =
⊔
( ®0,®1)∈�

� ( ®0, ®1). (5.5.39)

Here, for ®0, ®1 ∈ W:−1,� ( ®0, ®1) is the event thatQ(−C12) = ®0 andQ(C12) = ®1, and � is the collection

of ( ®0, ®1) satisfying

(1) 0 ≤ min(08 − 28, 38 − 18) ≤ C2 − C12 and 0 ≤ 18 − 08 ≤ 2C12 for 1 ≤ 8 ≤ : − 1,

(2) min(0:−1 + ?C1, 1:−1 − ?C1) ≥ ("2 + 1) (2C3)1/2,

(3) max(01 + ?C1, 11 − ?C1) ≤ + C>? (2C3)1/2,

(4) min(08 − 08+1, 18 − 18+1) ≥ 3n (2C3)1/2 for 1 ≤ 8 ≤ : − 2.

We let �̃ = {( ®0, ®1) ∈ � : P−C2,C2,®2, ®3,∞,ℓ1>C
0E>83,�4A;(̃

(� ( ®0, ®1)) > 0}, and we take #̃9 large enough by

Lemma 5.1.16 so that �̃ ≠ ∅. We also let �̃ (+ C>?, n , C1) denote the set consisting of elements
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of � ( ®2, ®3,+ C>?, n , C1) restricted to È−C12, C12É. Then for ( ®0, ®1) ∈ �̃ we have

P−C2,C2,®2,
®3,∞,ℓ1>C

0E>83,�4A;(̃

(
� ( ®2, ®3,+ C>?, n , C1)

��� ( ®0, ®1)) = P−C12,C12,®0,®1,∞,ℓ1>C
0E>83,�4A;(̃

(
�̃ (+ C>?, n , C1)

)
≥

P−C12,C12,®0,®1
�4A

(
�̃ (+ C>?, n , C1) ∩ {!1 ≥ · · · ≥ !:−1 ≥ ℓ1>C}

)
.

(5.5.40)

We observe that the event in the second line of (5.5.40) occurs as long as each curve !8 remains

within a distance of n (2C3)1/2 from the straight line segment connecting 08 and 18 on [−C12, C12],

for 1 ≤ 8 ≤ : − 2. By the argument in the proof of Lemma 5.2.14, we can enlarge #̃9 so that the

probability of this event is bounded below by the expression on the right in (5.5.38) for # ≥ #̃9.

Then using (5.5.40) and (5.5.39) and summing over �̃ implies (5.5.38).

Step 5. In this last step, we complete the proof of the lemma, fixing the constants 6 and ℎ as well

as #5. Let 6 = 6(n,+ C>?, "2) be as in Lemma 5.5.3 for the choices of n,+ C>? in Steps 2 and 3, let

ℎ =
ℎ1
2

(
1
2
−
∞∑
==1
(−1)=−14−n

2=2/2?(1−?)
) :−1

with ℎ1 as in Step 2, and let #5 = max(#0, #1, #2, #3, #7), with #7 as in Lemma 5.5.4. In the

following we assume that # ≥ #7. By (5.5.37) we have that if ( ®2, ®3) ∈ � and # ≥ #5, then

P−C2,C2,®2,
®3,∞,ℓ1>C

0E>83,�4A;(̃
(�) ≥ ℎ

ℎ1
,

where � is the event that

1. + C>? (2C3)1/2 ≥ &̃1(−C1) + ?C1 ≥ &̃:−1(−C1) + ?C1 ≥ ("2 + 1) (2C2)1/2,

2. + C>? (2C3)1/2 ≥ &̃1(C1) − ?C1 ≥ &̃:−1(C1) − ?C1 ≥ ("2 + 1) (2C3)1/2,

3. &̃8 (−C1) − &̃8+1(−C1) ≥ 3n (2C2)1/2 and &̃8 (C1) − &̃8+1(C1) ≥ 3n (2C2)1/2 for 8 = 1, . . . , : − 2.

Let . denote the event appearing in (5.5.7). Then we can write . =
⊔
( ®2, ®3)∈� . ( ®2, ®3), where

. ( ®2, ®3) is the event that Q̃(−C2) = ®2, Q̃(C2) = ®3, and � is defined in Step 2. If �̃ = {( ®2, ®3) ∈ � :
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PQ̃(. ( ®2, ®3)) > 0}, we can assume by Lemma 5.1.16 that #5 is large enough so that �̃ ≠ ∅. It

follows from Lemma 5.5.4 that PQ̃(. ) ≥ ℎ1. We conclude from the definition of PQ̃ that for all

# ≥ #5,

PQ̃(�) ≥ PQ̃(� ∩ . ) =
∑
( ®2, ®3)∈�̃

PQ̃(. ( ®2, ®3)) · PQ̃(� |. ( ®2, ®3)) =∑
( ®2, ®3)∈�̃

PQ̃(. ( ®2, ®3)) · P
−C2,C2,®2, ®3,∞,ℓ1>C
0E>83,�4A;(̃

(�) ≥ ℎ

ℎ1

∑
( ®2, ®3)∈�̃

PQ̃(. ( ®2, ®3)) =
ℎ

ℎ1
PQ̃(. ) ≥ ℎ.

Now Lemma 5.5.3 implies (5.5.1), completing the proof.

5.6 Appendix A

5.6.1 Proof of Lemma 5.1.2

Observe that the sets  1 ⊂  2 ⊂ · · · ⊂ Σ × Λ are compact, they cover Σ × Λ, and any compact

subset  of Σ × Λ is contained in all  = for sufficiently large =. To see this last fact, let c1, c2

denote the canonical projection maps of Σ × Λ onto Σ and Λ respectively. Since these maps are

continuous, c1( ) and c2( ) are compact in Σ and Λ. This implies that c1( ) is finite, so it is

contained in Σ=1 = Σ ∩ È−=1, =1É for some =1. On the other hand, c2( ) is closed and bounded

in R, thus contained in some closed interval [U, V] ⊆ Λ. Since 0= ↘ 0 and 1= ↗ 1, we can

choose =2 large enough so that c2( ) ⊆ [U, V] ⊆ [0=2 , 1=2]. Then taking = = max(=1, =2), we

have  ⊆ c1( ) × c2( ) ⊆ Σ= × [0=, 1=] =  =.

We now split the proof into several steps.

Step 1. In this step, we show that the function 3 defined in the statement of the lemma is a metric.

For each = and 5 , 6 ∈ � (Σ × Λ), we define

3= ( 5 , 6) = sup
(8,C)∈ =

| 5 (8, C) − 6(8, C) |, 3′= ( 5 , 6) = min{3= ( 5 , 6), 1}
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Then we have

3 ( 5 , 6) =
∞∑
==1

2−=3′= ( 5 , 6).

Clearly each 3= is nonnegative and satisfies the triangle inequality, and it is then easy to see that

the same properties hold for 3′=. Furthermore, 3′= ≤ 1, so 3 is well-defined. Observe that 3 is non-

negative, and if 5 = 6, then each 3′= ( 5 , 6) = 0, so the sum 3 ( 5 , 6) is 0. Conversely, if 5 ≠ 6, then

since the  = cover Σ×Λ, we can choose = large enough so that  = contains an G with 5 (G) ≠ 6(G).

Then 3′= ( 5 , 6) ≠ 0, and hence 3 ( 5 , 6) ≠ 0. Lastly, the triangle inequality holds for 3 since it holds

for each 3′=.

Step 2. Now we prove that the topology g3 on � (Σ × Λ) induced by 3 is the same as the topology

of uniform convergence over compacts, which we denote by g2. Recall that g2 is generated by the

basis consisting of sets

� ( 5 , n) =
{
6 ∈ � (Σ × Λ) : sup

(8,C)∈ 
| 5 (8, C) − 6(8, C) | < n

}
,

for  ⊂ Σ × Λ compact, 5 ∈ � (Σ × Λ), and n > 0, and g3 is generated by sets of the form

�3n ( 5 ) = {6 : 3 ( 5 , 6) < n}.

We first show that g3 ⊆ g2. It suffices to prove that every set �3n ( 5 ) is a union of sets � ( 5 , n).

First, choose n > 0 and 5 ∈ � (Σ × Λ). Let 6 ∈ �3n ( 5 ). We will find a basis element �6 of g2 such

that 6 ∈ �6 ⊂ �3n ( 5 ). Let X = 3 ( 5 , 6) < n , and choose = large enough so that
∑
:>= 2−: < n−X

2 .

Define �6 = � = (6, n−X= ), and suppose ℎ ∈ �6. Then since  < ⊆  = for < ≤ =, we have

3 ( 5 , ℎ) ≤ 3 ( 5 , 6) + 3 (6, ℎ) ≤ X +
=∑
:=1

2−:3= (6, ℎ) +
∑
:>=

2−: ≤ X + n − X
2
+ n − X

2
= n .

Therefore 6 ∈ �6 ⊂ �3n ( 5 ). Then we can write

�3n ( 5 ) =
⋃

6∈�3n ( 5 )

�6,
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a union of basis elements of g2.

We now prove conversely that g2 ⊆ g3 . Let  ⊂ Σ × Λ be compact, 5 ∈ � (Σ × Λ), and

n > 0. Choose = so that  ⊂  =, and let 6 ∈ � ( 5 , n) and X = supG∈ | 5 (G) − 6(G) | < n . If

3 (6, ℎ) < 2−= (n − X), then 3′= (6, ℎ) ≤ 2=3 (6, ℎ) < n − X, hence 3= (6, ℎ) < n − X, assuming without

loss of generality that n ≤ 1. It follows that

sup
G∈ 
| 5 (G) − ℎ(G) | ≤ X + sup

G∈ 
|6(G) − ℎ(G) | ≤ X + 3= (6, ℎ) ≤ X + n − X = n .

Thus 6 ∈ �32−= (n−X) (6) ⊂ � ( 5 , n), proving that � ( 5 , n) ∈ g3 by the same argument as above.

We conclude that g3 = g2.

Step 3. In this step, we show that (� (Σ×Λ), 3) is a complete metric space. Let { 5=}=≥1 be Cauchy

with respect to 3. Then we claim that { 5=} must be Cauchy with respect to 3′=, on each  =. This

follows from the observation that 3′= ( 5ℓ, 5<) ≤ 2=3 ( 5ℓ, 5<). Thus { 5=} is Cauchy with respect to

the uniform metric on each  =, and hence converges uniformly to a continuous limit 5  = on each

 = (see [213, Theorem 7.15]). Since the pointwise limit must be unique at each G ∈ Σ × Λ, we

have 5  = (G) = 5  < (G) if G ∈  = ∩  <. Since
⋃
 = = Σ × Λ, we obtain a well-defined function

5 on all of Σ × Λ given by 5 (G) = lim=→∞ 5  = (G). We have 5 ∈ � (Σ × Λ) since 5 | = = 5  =

is continuous on  = for all =. Moreover, if  ⊂ Σ × Λ is compact and = is large enough so that

 ⊂  =, then because 5= → 5  = = 5 | = uniformly on  =, we have 5= → 5  = | = 5 | uniformly

on  . That is, for any  ⊂ Σ × Λ compact and n > 0, we have 5= ∈ � ( 5 , n) for all sufficiently

large =. Therefore 5= → 5 in g2, and equivalently in the metric 3 by Step 2.

Step 4. Lastly, we prove separability, c.f. [39, Example 1.3]. For each pair of positive integers

=, : , let �=,: be the subcollection of � (Σ×Λ) consisting of polygonal functions that are piecewise

linear on { 9} × �=,:,8 for each 9 ∈ Σ= and each subinterval

�=,:,8 =
[
0= + 8−1

:
(1= − 0=), 0= + 8

:
(1= − 0=)

]
, 1 ≤ 8 ≤ :,
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taking rational values at the endpoints of these subintervals, and extended linearly to all of Λ =

[0, 1]. Then � =
⋃
=,: �=,: is countable, and we claim that it is dense in g2. To see this, let

 ⊂ Σ × Λ be compact, 5 ∈ � (Σ × Λ), and n > 0, and choose = so that  ⊂  =. Since 5 is

uniformly continuous on  =, we can choose : large enough so that for 0 ≤ 8 ≤ : , if C ∈ �=,:,8, then

�� 5 ( 9 , C) − 5 ( 9 , 0= + 8
:
(1= − 0=))

�� < n/2
for all 9 ∈ Σ=. We then choose 6 ∈ ⋃

: �=,: with |6( 9 , 0=+ 8: (1=−0=))− 5 ( 9 , 0=+
8
:
(1=−0=)) | < n/2.

Then we have

�� 5 ( 9 , C) − 6( 9 , 0= + 8−1
:
(1= − 0=))

�� < n and
�� 5 ( 9 , C) − 6( 9 , 0= + 8

:
(1= − 0=))

�� < n.
Since 6( 9 , 0= + 8−1

:
(1= − 0=)) ≤ 6( 9 , C) ≤ 6( 9 , 0= + 8

:
(1= − 0=)), it follows that

| 5 ( 9 , C) − 6( 9 , C) | < n

as well. In summary,

sup
( 9 ,C)∈ 

| 5 ( 9 , C) − 6( 9 , C) | ≤ sup
( 9 ,C)∈ =

| 5 ( 9 , C) − 6( 9 , C) | < n,

so 6 ∈ � ( 5 , n). This proves that � is a countable dense subset of � (Σ × Λ).

5.6.2 Proof of Lemma 5.1.4

We first prove two lemmas that will be used in the proof of Lemma 5.1.4. The first result allows

us to identify the space � (Σ × Λ) with a product of copies of � (Λ). In the following, we assume

the notation of Lemma 5.1.4.

Lemma 5.6.1. Let c8 : � (Σ × Λ) → � (Λ), 8 ∈ Σ, be the projection maps given by c8 (�) (G) =

� (8, G) for G ∈ Λ. Then the c8 are continuous. Endow the space
∏
8∈Σ� (Λ) with the product topol-
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ogy induced by the topology of uniform convergence over compacts on � (Λ). Then the mapping

� : � (Σ × Λ) −→
∏
8∈Σ

� (Λ), 5 ↦→ (c8 ( 5 ))8∈Σ

is a homeomorphism.

Proof. We first prove that the c8 are continuous. Since � (Σ × Λ) is metrizable by Lemma 5.1.2,

and by a similar argument so is � (Λ), it suffices to assume that 5= → 5 in � (Σ×Λ) and show that

c8 ( 5=) → c8 ( 5 ) in � (Λ). Let  be compact in Λ. Then {8} ×  is compact in Σ × Λ, and 5= → 5

on {8} ×  by assumption, so we have c8 ( 5=) | = 5= |{8}× → 5 |{8}× = c8 ( 5 ) | uniformly on  .

Since  was arbitrary, we conclude that c8 ( 5=) → c8 ( 5 ) in � (Λ) as desired.

We now observe that � is invertible. If ( 58)8∈Σ ∈
∏
8∈Σ� (Λ), then the function 5 defined by

5 (8, ·) = 58 (·) is in � (Σ × Λ), since Σ has the discrete topology. This gives a well-defined inverse

for �. It suffices to prove that � and �−1 are open maps.

We first show that � sends each basis element � ( 5 , n) of � (Σ × Λ) to a basis element in∏
8∈Σ� (Λ). Note that a basis for the product topology is given by products

∏
8∈Σ � 8 ( 58, n), where

at most finitely many of the  8 are nonempty. Here, we use the convention that �∅( 58, n) = � (Λ).

Let cΣ, cΛ denote the canonical projections of Σ × Λ onto Σ,Λ. The continuity of cΣ implies

that if  ⊂ Σ × Λ is compact, then cΣ( ) is compact in Σ, hence finite. Observe that the set

 ∩ ({8} × Λ) is an intersection of two compacts sets, hence compact in Σ × Λ. Therefore the sets

 8 = cΛ( ∩ ({8} × Λ)) are compact in Λ for each 8 ∈ Σ since cΛ is continuous. We observe that

� (� ( 5 , n)) =
∏
8∈Σ*8, where

*8 = � 8 (c8 ( 5 ), n), if 8 ∈ cΣ( ),

and *8 = � (Λ) otherwise. Since cΣ( ) is finite and the  8 are compact, we see that � (� ( 5 , n))

is a basis element in the product topology as claimed.

Lastly, we show that �−1 sends each basis element * =
∏
8∈Σ � 8 ( 58, n) for the product

topology to a set of the form � ( 5 , n). We have  8 = ∅ for all but finitely many 8. Write
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5 = �−1(( 58)8∈Σ) and  =
∏
8∈Σ  8. By Tychonoff’s theorem, [192, Theorem 37.3],  is com-

pact in Σ × Λ, and

�−1(*) = � ( 5 , n).

We next prove a lemma which states that a sequence of line ensembles is tight if and only if all

individual curves form tight sequences.

Lemma 5.6.2. Suppose that {L=}=≥1 is a sequence of Σ-indexed line ensembles on Λ, and let

-=
8
= c8 (L=). Then the -=

8
are � (Λ)-valued random variables on (Ω, F , P), and {L=} is tight if

and only if for each 8 ∈ Σ the sequence {-=
8
}=≥1 is tight.

Proof. The fact that the -=
8

are random variables follows from the continuity of the c8 in Lemma

5.6.1 and [117, Theorem 1.3.5]. First suppose the sequence {L=} is tight. By Lemma 5.1.2,

� (Σ×Λ) is a Polish space, so it follows from Prohorov’s theorem, [39, Theorem 5.1], that {L=} is

relatively compact. That is, every subsequence {L=: } has a further subsequence {L=:ℓ } converging

weakly to some L. Then for each 8 ∈ Σ, since c8 is continuous by the above, the subsequence

{c8 (L=:ℓ )} of {c8 (L=: )} converges weakly to c8 (L) by the continuous mapping theorem, [117,

Theorem 3.2.10]. Thus every subsequence of {c8 (L=)} has a convergent subsequence. Since� (Λ)

is a Polish space by the same argument as in the proof of Lemma 5.1.2, Prohorov’s theorem implies

that each {c8 (L=)} is tight.

Conversely, suppose {-=
8
} is tight for all 8 ∈ Σ. Then given n > 0, we can find compact sets

 8 ⊂ � (Λ) such that

P(-=8 ∉  8) ≤ n/28

for each 8 ∈ Σ. By Tychonoff’s theorem, [192, Theorem 37.3], the product  ̃ =
∏
8∈Σ  8 is compact

in
∏
8∈Σ� (Λ). We have

P
(
(-=8 )8∈Σ ∉  ̃

)
≤

∑
8∈Σ
P(-=8 ∉  8) ≤

∞∑
8=1

n/28 = n . (5.6.1)
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By Lemma 5.6.1, we have a homeomorphism � :
∏
8∈Σ� (Λ) → � (Σ × Λ). We observe that

� ((-=
8
)8∈Σ) = L=, and  = � ( ̃) is compact in� (Σ×Λ). ThusL= ∈  if and only if (-=

8
)8∈Σ ∈  ̃ ,

and it follows from (5.6.1) that

P(L= ∈  ) ≥ 1 − n .

This proves that {L=} is tight.

We are now ready to prove Lemma 5.1.4.

Proof. Fix an 8 ∈ Σ. By Lemma 5.6.2, it suffices to show that the sequence {L=
8
}=≥1 of � (Λ)-

valued random variables is tight. By [39, Theorem 7.3], a sequence {%=} of probability measures

on � [0, 1] with the uniform topology is tight if and only if the following conditions hold:

lim
0→∞

lim sup
=→∞

%= ( |G(0) | ≥ 0) = 0,

lim
X→0

lim sup
=→∞

%=

(
sup
|B−C |≤X

|G(B) − G(C) | ≥ n
)
= 0 for all n > 0.

By replacing [0, 1] with [0<, 1<] and 0 with 00, we see that the hypotheses in the lemma imply

that the sequence {L=
8
| [0<,1<]}= is tight for every < ≥ 1. Let c< : � (Λ) → � ( [0<, 1<]) denote

the map 5 ↦→ 5 | [0<,1<] . Then c< is continuous, since � (Λ) and � ( [0<, 1<]) with the topologies

of uniform convergence over compacts are metrizable by Lemma 5.1.2, and if 5= → 5 uniformly

on compact subsets of Λ, then 5= | [0<,1<] → 5 | [0<,1<] uniformly on compact subsets of [0<, 1<].

It follows from [117, Theorem 1.3.5] that c< (L=) = L=8 | [0<,1<] is a � ( [0<, 1<])-valued random

variable. Tightness of the sequence implies that for any n > 0, we can find compact sets  < ⊂

� ( [0<, 1<]) so that

P
(
c< (L=8 ) ∉  <

)
≤ n/2<

328



for each < ≥ 1. Writing  =
⋂∞
<=1 c

−1
< ( <), it follows that

P
(
L=8 ∈  

)
≥ 1 −

∞∑
<=1

n/2< = 1 − n .

To conclude tightness of {L=
8
}, it suffices to prove that  =

⋂∞
<=1 c

−1
< ( <) is sequentially compact

in � (Λ). We argue by diagonalization. Let { 5=} be a sequence in  , so that 5= | [0<,1<] ∈  <

for every <, =. Since  1 is compact, there is a sequence {=1,: } of natural numbers such that

the subsequence { 5=1,: | [01,11]}: converges in � ( [01, 11]). Since  2 is compact, we can take a

further subsequence {=2,: } of {=1,: } so that { 5=2,: | [02,12]}: converges in � ( [02, 12]). Continuing

in this manner, we obtain sequences {=1,: } ⊇ {=2,: } ⊇ · · · so that { 5=<,: | [0<,1<]}: converges in

� ( [0<, 1<]) for all <. Writing =: = =:,: , it follows that the sequence { 5=: } converges uniformly

on each [0<, 1<]. If  is any compact subset of � (Λ), then  ⊂ [0<, 1<] for some <, and hence

{ 5=: } converges uniformly on  . Therefore { 5=: } is a convergent subsequence of { 5=}.

5.6.3 Proof of Lemma 5.1.16

Proof. We will construct a candidate B of Ω0E>83 ()0, )1, ®G, ®H, 5 , 6) with the conditions of 5.1.16

assumed. Construct the ensemble B in the following manner. Denote �0 = 5 and �:+1 = 6 with

G0 = 5 ()0) and H0 = 5 ()1). By Condition (3) of Lemma 5.1.16 we know G0 ≥ G1 and H0 ≥ H1.

Then let � 9 ()0) = G 9 for all 9 ∈ È1, :É and then for all 8 ∈ È)0, )1 − 1É we have

� 9 (8 + 1) =


� 9 (8) + 1 if � 9 (8) + 1 ≤ min{� 9−1(8 + 1), H 9 }

� 9 (8) Else.
(5.6.2)

This definition is well-defined, since we may find �1 depending solely on the predetermined 5 ,

and then inductively find � 9 since � 9−1 has been determined by the previous curves in B.

In order to verify that this candidate ensembleB is an element ofΩ0E>83 ()0, )1, ®G, ®H, 5 , 6), three
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properties must be ensured:

(a) B()0) = ®G and B()1) = ®H

(b) 5 (8) ≥ �1(8) ≥ · · · ≥ �: (8) ≥ 6(8) for all 8 ∈ È)0, )1É

(c) � 9 (8 + 1) − � 9 (8) ∈ {0, 1} for all 8 ∈ È)0, )1 − 1É and 9 ∈ È1, :É

(5.6.3)

Property (c) follows directly from Definition 5.6.2, since � 9 (8+1) = � 9 (8) or � 9 (8+1) = � 9 (8) +1,

and hence � 9 (8 + 1) − � 9 (8) ∈ {0, 1}. The remainder of the proof will be broken up into two steps,

the first step proving property (a), and the second proving Property (b).

Step 1:

We know by definition that B()0) = ®G, and we claim that B()1) = ®H. We will show this claim

inductively on 9 : We trivially know the claim is true for 9 = 0, since H0 = 5 ()1) is given. Then

suppose that � 9 ()1) = G 9 holds upto 9 = = − 1. First, we know by definition that �= (8 + 1) = �= (8)

if either �= (8) = H= or �= (8) + 1 > �= (8 + 1). Suppose that for some 80 ∈ È)0, )1É we have

�= (80) = �= (80 + 1).

If �= (80) = �= (80 + 1) because �= (80) = H=, then �= ()1) = H= since

H= = �= (80) = �= (80 + 1) = · · · = �= ()1)

and then the claim is true, namely that �= ()1) = H=, and so induction holds.

Then, for the other case, when �= (80) = �= (80 + 1) because �= (80) + 1 > �=−1(80 + 1), we first

need to prove that � 9 (8) ≤ � 9−1(8) for 9 ∈ È1, :É for any 8 ∈ È)0, )1É. We know this is true for )0

since G0 ≥ G1 ≥ · · · ≥ G: . Then, inductively we know that if � 9 (8) ≤ � 9−1(8), � 9 (8 + 1) = � 9 (8)

or � 9 (8) + 1. In the first case, � 9 (8 + 1) = � 9 (8) ≤ � 9−1(8) ≤ � 9 (8) by property (3) of 5.6.3. Then,

if � 9 (8 + 1) = � 9 (8) + 1 implies � 9 (8 + 1) ≤ � 9 (8 + 1) by equation 5.6.2. Hence, we know that for

8 ∈ È)0, )1É

5 (8) ≥ �1(8) ≥ · · · ≥ �: (8) (5.6.4)
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Therefore, we know that �= (80) = �= (80 + 1) and �= (80) + 1 > �=−1(80 + 1), which implies

�= (8) = �=−1(8). This implies that if we denote 81 as the least 8 such that �=−1(81) = H= then

�= (8) = �=−1(8) for all 8 ∈ È80, 81É

We know that there exists such an 81 ∈ È)0, )1É because where 81 is the first 8 such that �=−1(81) =

H=, since if �=−1(8 +1) = �=−1(8) then �= (8) +1 = �=−1(8) +1 > �=−1(8 +1) by 5.6.2, the definition

of B. Therefore we know �= (8 + 1) = �= (8) = �=−1(8) = �=−1(8 + 1).

If �=−1(8 + 1) = �= (8) + 1 then �= (8) + 1 ≤ �=−1(8 + 1) by 5.6.2 so �= (8 + 1) = �=−1(8 + 1)

therefore inductively until �= cannot increase above H=, we know �= (8) = �=−1(8). Because we

know that there is some 81 such that �=−1(81) = H=, and hence �= (81) = H= we get �= ()1) = H= and

the claim that �= ()1) = H= is true if there exists some 80 such that �= (80) = �= (80 + 1)

Finally, assume that there exists no such 80 that �= (80) = �= (80+1). Then conversely �= (8)+1 ≤

�= (8 + 1) for all 8, then we know that �= (8 + 1) = �= (8) + 1 for all 8 unless �= (8) = H= by 5.6.2.

Therefore, until �= (8) = H=, we have �= (8+B) = �= (8)+B hence �= ()0+H=−G=) = �= ()0)+H=−G= =

H=. By the inequality in condition (1) of 5.1.16, we have the following inequalities:

)1 − )0 ≥ H= − G= ≥ 0

)0 ≤ )0 + H= − G=

)1 ≥ )0 + H= − G=

(5.6.5)

so )0 + H= − G= ∈ È)0, )1É and so �= ()0 + H= − G=)�= ()1) = H=. This means whether or not 80 exists,

the induction holds and therefore we know that for all 9 we have � 9 ()1) = H 9 , so we know that

B()0) = ®G and B()1) = ®H which concludes Step 1, proving Property (a) of 5.6.3.

Step 2: Now all that is left to verify avoidance, or Property (b) of 5.6.3. In equation 5.6.4, we

already found that

5 (8) ≥ �1(8) ≥ · · · ≥ �: (8)

so we must only prove that �: (8) ≥ 6(8) for all 8. Suppose that 6(8) > �: (8) for some 8 ∈ È)0, )1É.
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Since 6()0) < �: ()0) = G: by Condition (3) in Lemma 5.1.16, we know that there exists some

point 80 such that 6(80) = �: (80) and 6(80 + 1) > �: (80 + 1). In particular, since 6 and �: can

each only increase by 1, this implies �: (80) = �: (80 + 1). This implies either �: (80) = H: or

�: (80) + 1 > �:−1(80 + 1). If �: (80) = H: then since 6(80 + 1) ≤ H: by Condition (3) of Lemma

5.1.16, there is a contradiction.

Therefore, it must be the case that �: (8) +1 > �:−1(8+1). Then we find that for any 9 ∈ È1, :É

we know that � 9 (8) + 1 > � 9−1(8 + 1) implies � 9 (80) = � 9−1(80) since � 9 (80) = � 9 (80 + 1) and

� 9−1(80) ≥ � 9 (80) . This can be applied to each 9 to find that 6(80) = 5 (80) and 6(80+1) > 5 (80+1),

which we assumed not to be the case. Therefore, we know that 6 ≤ �: and so we have proven

property (3), implying that if the three conditions in the statement of Lemma 5.1.16 are met then

we know B ∈ Ω0E>83 ()0, )1, ®G, ®H, 5 , 6) and so Ω0E>83 ()0, )1, ®G, ®H, 5 , 6) is non-empty.

5.6.4 Proof of Lemmas 5.3.6 and 5.3.7

We first prove Lemma 5.3.6. We will use the following lemma, which proves an analogous

convergence result for a single rescaled Bernoulli random walk.

Lemma 5.6.3. Let G, H, 0, 1 ∈ R with 0 < 1, and let 0# , 1# ∈ #−UZ, G# , H# ∈ #−U/2Z be

sequences with 0# ≤ 0, 1# ≥ 1, and |H# − G# | ≤ (1# − 0# )#U/2. Suppose 0# → 0, 1# → 1.

Write G̃# = (G# − ?0##U/2)/
√
?(1 − ?), H̃# = (H# − ?1##U/2)/

√
?(1 − ?), and assume G̃# → G,

H̃# → H as # → ∞. Let .# be a sequence of random variables with laws P0# ,1# ,G
# ,H#

5 A44,#
, and let

/# = .# | [0,1] . Then the law of /# converges weakly to P0,1,G,H
5 A44

as # →∞.

Proof. Let us write I# = (H# − G# )#U/2 and )# = (1# − 0# )#U. Let �̃ be a standard Brown-

ian bridge on [0, 1], and define random variables �# , � taking values in � ( [0# , 1# ]), � ( [0, 1])

respectively via

�# (C) =
√
1# − 0# · �̃

(
C − 0#
1# − 0#

)
+ C − 0#
1# − 0#

· H̃# + 1# − C
1# − 0#

· G̃# ,

�(C) =
√
1 − 0 · �̃

( C − 0
1 − 0

)
+ C − 0
1 − 0 · H +

1 − C
1 − 0 · G.
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We observe that � has law P0,1,G,H
5 A44

and �# =⇒ � as # →∞. By [39, Theorem 3.1], to show that

/# =⇒ �, it suffices to find a sequence of probability spaces supporting .# , �# so that

d(�# , .# ) = sup
C∈[0# ,1# ]

|�# (C) − .# (C) | =⇒ 0 as # →∞. (5.6.6)

It follows from Theorem 5.2.3 that for each # ∈ N there is a probability space supporting �# and

.# , as well as constants �, 0′, U′ > 0, such that

[
40
′Δ(#,G# ,H# )

]
≤ �4U′ log #4 |I

#−?)# |2/#U , (5.6.7)

where Δ(#, G# , H# ) =
√
?(1 − ?) #U/2d(�# , .# ). Since (I# − ?)# )#−U/2 →

√
?(1 − ?) (H − G)

by assumption, there exist #0 ∈ N and � > 0 so that |I − ?)# | ≤ �#U/2 for # ≥ #0. Then for

n > 0 and # ≥ #0, Chebyshev’s inequality and (5.6.7) give

P(d(�# , .# ) > n) ≤ �4−0′n
√
?(1−?) #U/24U

′ log #4�
2
.

The right hand side tends to 0 as # →∞, implying (5.6.6).

We now give the proof of Lemma 5.3.6.

Proof. We prove the two statements of the lemma in two steps.

Step 1. In this step we fix #0 ∈ N so that P0# ,1# ,®G
# ,®H # , 5# ,6#

0E>83,#
is well-defined for # ≥ #0.

Observe that we can choose n > 0 and continuous functions ℎ1, . . . , ℎ: : [0, 1] → R depending

on 0, 1, ®G, ®H, 5 , 6 with ℎ8 (0) = G8, ℎ8 (1) = H8 for 8 ∈ È1, :É, such that if D8 : [0, 1] → R are

continuous functions with d(D8, ℎ8) = supG∈[0,1] |D8 (G) − ℎ8 (G) | < n , then

5 (G) − n > D1(G) + n > D1(G) − n > · · · > D: (G) + n > D: (G) − n > 6(G) + n (5.6.8)
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for all G ∈ [0, 1]. By Lemma 5.1.6, we have

P
0,1,®G,®H
5 A44

(d(Q8, ℎ8) > n for 8 ∈ È1, :É) > 0. (5.6.9)

Since H#
8
− G#

8
− ?(1# − 0# )#U/2 →

√
?(1 − ?) (H8 − G8) as # →∞ for 8 ∈ È1, :É and ? < 1, we

can find #1 ∈ N so that for # ≥ #1, |H#
8
−G#

8
| ≤ (1# −0# )#U/2. It follows from Lemma 5.6.3 that

if Y# have laws P0# ,1# ,®G
# ,®H #

5 A44,#
for # ≥ #1 and Z# = Y# |Σ×[0,1] , then the law of Z# converges

weakly to P0,1,®G,®H
0E>83

. In view of (5.6.9) we can then find #2 so that if # ≥ max(#1, #2) then

P
0# ,1# ,®G # ,®H #
5 A44,#

(d(Q8, ℎ8) > n for 8 ∈ È1, :É) > 0.

We now choose #3 so that supG∈[0−1,1+1] | 5 (G) − 5# (G) | < n/4 and supG∈[0−1,1+1] |6(G) − 6# (G) | <

n/4. If 5 = ∞ (resp. 6 = −∞), we interpret this to mean that 5# = ∞ (resp. 6# = −∞). We take #4

large enough so that if # ≥ #4 and |G − H | ≤ #−U/2 then | 5 (G) − 5 (H) | < n/4 and |6(G) − 6(H) | <

n/4. Lastly, we choose #5 so that #−U5 < n/4. Then for # ≥ #0 = max(#1, #2, #3, #4, #5), we

have

{d(Q8, ℎ8) > n for 8 ∈ È1, :É} ⊂ { 5# ≥ Y#
1 ≥ · · · ≥ Y

#
: ≥ 6# on [0# , 1# ]}.

By (5.6.9), this implies that P0# ,1# ,®G
# ,®H # , 5# ,6#

0E>83,#
is well-defined.

Step 2. In this step we prove that Z# =⇒ P
0,1,®G,®H, 5 ,6
0E>83

, with Z# defined in the statement of the

lemma. We write Σ = È1, :É, Λ = [0, 1], and Λ# = [0# , 1# ]. It suffices to show that for any

bounded continuous function � : � (Σ × Λ) → R we have

lim
#→∞
[� (Z# )] = [� (Q)], (5.6.10)

where Q has law P0,1,®G,®H, 5 ,6
0E>83

.
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We define the functions � 5 ,6 : � (Σ × Λ) → R and �#
5 ,6

: � (Σ × Λ# ) → R by

� 5 ,6 (L) = 1{ 5 > L1 > · · · > L: > 6 on Λ},

�#
5 ,6 (L

# ) = 1{ 5 ≥ L#1 ≥ · · · ≥ L
#
: ≥ 6 on Λ# }.

Then we observe that for # ≥ #0,

[� (Z# )] =
[� (L# |Σ×[0,1])�#

5 ,6
(L# )]

[�#
5 ,6
(L# )]

, (5.6.11)

where L# has law P0# ,1# ,®G
# ,®H #

5 A44,#
. By our choice of #0 in Step 1, the denominator in (5.6.11) is

positive for all # ≥ #0. Similarly, we have

[� (Q)] =
[� (L)� 5 ,6 (L)]
[� 5 ,6 (L)]

, (5.6.12)

where L has law P0,1,®G,®H
5 A44

. From (5.6.11) and (5.6.12), we see that to prove (5.6.10) it suffices to

show that for any bounded continuous function � : � (Σ × Λ) → R,

lim
#→∞
[� (L# |Σ×[0,1])�#

5 ,6 (L
# )] = [� (L)� 5 ,6 (L)] . (5.6.13)

By Lemma 5.6.3, L# |Σ×[0,1] =⇒ L as # → ∞. Since � (Σ × Λ) is separable, the Skorohod

representation theorem [39, Theorem 6.7] gives a probability space (Ω, F , P) supporting � (Σ ×

Λ# )-valued random variables L# with laws P0# ,1# ,®G
# ,®H #

5 A44,#
and a � (Σ×Λ)-valued random variable

L with law P0,1,®G,®H
5 A44

such that L# |Σ×[0,1] → L uniformly on compact sets, pointwise on Ω. Here

we rely on the fact that 0# , 1# are respectively the largest element of #−UZ less than 0 and the

smallest element greater than 1, so that L# |Σ×[0,1] uniquely determines L# on [0# , 1# ].

Define the events

�1 = {l : 5 > L1(l) > · · · > L: (l) > 6 on [0, 1]},
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�2 = {l : L8 (l) (A) < L8+1(l) (A) for some 8 ∈ È0, :É and A ∈ [0, 1]},

where in the definition of �2 we use the convention L0 = 5 , L:+1 = 6. The continuity of � implies

that � (L# |Σ×[0,1])�#
5# ,6#
(L# ) → � (L) on the event �1, and � (L# |Σ×[0,1])�#

5# ,6#
(L# ) → 0 on

the event �2. By Lemma 5.1.5 we have P(�1∪�2) = 1, so P-a.s. we have � (L# |Σ×[0,1])�#
5# ,6#
(L# ) →

� (L)� 5 ,6 (L). The bounded convergence theorem then implies (5.6.13), completing the proof of

(5.6.10).

We now state two lemmas about Brownian bridges which will be used in the proof of Lemma

5.3.7. The first lemma shows that a Brownian bridge started at 0 almost surely becomes negative

somewhere on its domain.

Lemma 5.6.4. Fix any ) > 0 and H ∈ R, and let & denote a random variable with law P0,),0,H
5 A44

.

Define the event � = {infB∈[0,)] &(B) < 0}. Then P0,),0,H
5 A44

(�) = 1.

Proof. Let � denote a standard Brownian bridge on [0, 1], and let

�̃B = �B/) +
BH

)
, for B ∈ [0, )] .

Then �̃ has the law of &. Consider the stopping time g = inf{B > 0 : �̃B < 0}. We will argue that

g = 0 a.s, which implies the conclusion of the lemma since {g = 0} ⊂ �. We observe that since �̃

is a.s. continuous and Q is dense in R,

{g = 0} =
⋂
n>0

⋃
B∈(0,n)∩Q

{�̃B < 0} ∈
⋂
n>0

f(�̃B : B < n).

Here, f(�̃B : B < n) denotes the f-algebra generated by �̃B for B < n . We used the fact that

for a fixed n , each set {�̃B < 0} for B ∈ (0, n) ∩ Q is contained in this f-algebra, and thus so is

their countable union. It follows from Blumenthal’s 0-1 law [117, Theorem 7.2.3] that P(g = 0) ∈

{0, 1}. To complete the proof, it suffices to show that P(g = 0) > 0. By (5.2.1), �B/) is distributed
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normally with mean 0 and variance f2 = (B/)) (1 − B/)). We observe that for any B ∈ (0, )),

P(g ≤ B) ≥ P(�B/) < −BH/)) = P (fN(0, 1) > (B/))H) = P
(
N(0, 1) > H

√
B/() − B)

)
.

As B → 0, the probability on the right tends to P(N (0, 1) > 0) = 1/2. Since {g = 0} = ⋂∞
==1{g ≤

1/=} and {g ≤ 1/(= + 1)} ⊂ {g ≤ 1/=}, we conclude that

P(g = 0) = lim
=→∞
P(g ≤ 1/=) ≥ 1/2.

Therefore P(g = 0) = 1.

The second lemma shows that a difference of two independent Brownian bridges is another

Brownian bridge.

Lemma 5.6.5. Let 0, 1, G1, H1, G2, H2, ∈ R with 0 < 1. Let �1(C), �2(C) be independent Brownian

bridges from on [0, 1] from G1 to H1 and from G2 to H2 respectively, as defined in 5.1.2. If �(C) =

�1(C) − �2(C) for C ∈ [0, 1], then � is itself a Brownian bridge on [0, 1].

Proof. By definition, for 8 = 1, 2 we have

�8 (C) = (1 − 0)1/2 · �̃8
( C − 0
1 − 0

)
+

(
1 − C
1 − 0

)
· G8 +

( C − 0
1 − 0

)
· H8,

with �̃8 (C) = , 8
C − C, 8

1 for independent Brownian motions,1 and,2. We have

�1(C) −�2(C) = (1−0)1/2 · (�̃1− �̃2)
( C − 0
1 − 0

)
+

(
1 − C
1 − 0

)
· (G1− G2) +

( C − 0
1 − 0

)
· (H1− H2). (5.6.14)

Note that the process �̃1 − �̃2 is a linear combination of continuous Gaussian mean 0 processes, so

it is a continuous Gaussian mean 0 process, and is thus characterized by its covariance. Since �̃1(·)

and �̃2(·) are both Gaussian with mean 0 and the same covariance, their difference �̃1(·) − �̃2(·) is

also Gaussian with the same mean and covariance. This implies that �̃1 − �̃2 is itself a Brownian
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bridge �̃ on [0, 1], and hence equation 5.6.14 can be rewritten

�1(C) − �2(C) = (1 − 0)1/2 · �̃
( C − 0
1 − 0

)
+

(
1 − C
1 − 0

)
· (G1 − G2) +

( C − 0
1 − 0

)
· (H1 − H2).

This is a Brownian bridge on [0, 1] from G1 − G2 to H1 − H2.

To conclude this section, we prove Lemma 5.3.7.

Proof. Without loss of generality we may assume thatL# is the weak limit of ( 5 #−_B2)/
√
?(1 − ?)

as # → ∞. By the Skorohod representation theorem, there is a probability space (Ω, F , P) sup-

porting random variables X# and X with the laws of 5 # and 5∞ respectively, such that X# → X

uniformly on compact sets as # → ∞, pointwise on all of Ω. In particular, X# (B) → X(B). We

have 5 #
8
(B) = #−U/2(!#

8
(B#U) − ?B#U) +_B2, so X#

8
(B) = #−U/2(L#

8
(B#U) − ?B#U)/

√
?(1 − ?),

where L# has the law of !# .

Suppose thatX8 (B) = X8+1(B) for some 8 ∈ È1, : −2É. Then we haveX#
8
(B) −X#

8+1(B) → 0, i.e.,

#−U/2(L#
8
(B#U) −L#

8+1(B#
U)) → 0 as # →∞. Let us write 0 = bB#Uc#−U, 1 = d(B+2)#Ue#−U

and G# = L#
8
(0#U) − L#

8+1(0#
U), H# = L#

8
(1#U) − L#

8+1(1#
U). Then #−U/2G# → 0. If &8, &8+1

are independent Bernoulli bridges with laws P
0,1,L#

8
(0#U),L#

8
(1#U)

�4A
and P

0,1,L#
8+1 (0#

U),L#
8+1 (1#

U)
�4A

, then

ℓ = &8 − &8+1 is a random walk bridge taking values in {−1, 0, 1}, from (0, G# ) to (1, H# ). Let us

denote the law of #−U/2ℓ/
√
?(1 − ?) by P0,1,G

# ,H#

385 5
.

By Lemma 5.6.3, (G# +#−U/2&8+1− ?C#U)/
√
?(1 − ?) and (G# +#−U/2&8− ?C#U)/

√
?(1 − ?)

converge weakly to the law of two Brownian bridges �1 and �2 respectively, and hence their

difference #−U/2ℓ/
√
?(1 − ?) converges weakly to the difference of two independent Brownian

bridges, �1−�2. By Lemma 5.6.5, this difference is itself a Brownian bridge � on [B, B+2] from 0

to H, i.e., � has law PB,B+2,0,H
5 A44

. Therefore P0,1,G
# ,H#

38 5 5
converges weakly to PB,B+2,0,H

5 A44
. With probability

one, minC∈[B,B+2] �C < 0 by Lemma 5.6.4. Thus given X > 0, we can choose # large enough so that

the probability of #−U/2ℓ/
√
?(1 − ?), or equivalently ℓ, remaining above 0 on [0, 1] is less than
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X. Thus for large enough # we have

P
(
5∞8 (B) = 5∞8+1(B)

)
≤ P

(
P
0,1,G# ,H#

38 5 5

(
sup
B∈[0,1]

ℓ(B) ≥ 0
)
< X

)
≤

P
(
/ (0, 1,L# (0#U),L# (1#U),∞,L#: ) < X

)
.

(5.6.15)

Here, / denotes the acceptance probability of Definition 5.1.22. This is the probability that : − 1

independent Bernoulli bridges &1, . . . , &:−1 on [0, 1] with entrance and exit data L# (0) and

L# (1) do not cross one another or L#
:

. The last inequality follows because ℓ has the law of the

difference of &8 and &8+1, and the acceptance probability is bounded above by the probability that

&8 and &8+1 do not cross, i.e., that &8 −&8+1 ≥ 0. By Proposition 5.3.1, given n > 0 we can choose

X so that the probability on the right in (5.6.15) is < n . We conclude that

P
(
5∞8 (B) = 5∞8+1(B)

)
= 0.

5.6.5 Proof of Lemmas 5.2.1 and 5.2.2

We will prove the following lemma, of which the two lemmas are immediate consequences.

In particular, Lemma 5.2.1 is the special case when 61 = 6C , and Lemma 5.2.2 is the case when

®G = ®G ′ and ®H = ®H ′. We argue in analogy to [105, Lemma 5.6].

Lemma 5.6.6. Fix : ∈ N, )0, )1 ∈ Z with )0 < )1, ( ⊆ È)0, )1É, and two functions 61, 6C :

È)0, )1É → [−∞,∞) with 61 ≤ 6C on (. Also fix ®G, ®H, ®G ′, ®H ′ ∈ W: such that G8 ≤ G′8 , H8 ≤ H′8 for

1 ≤ 8 ≤ : . Assume that Ω0E>83 ()0, )1, ®G, ®H,∞, 61; () and Ω0E>83 ()0, )1, ®G ′, ®H ′,∞, 6C ; () are both

non-empty. Then there exists a probability space (Ω, F , P), which supports two È1, :É-indexed

Bernoulli line ensembles LC and L1 on È)0, )1É such that the law of LC
(
resp. L1

)
under P is given

by P)0,)1,®G ′,®H ′,∞,6C
0E>83,�4A;(

(
resp. P)0,)1,®G,®H,∞,61

0E>83,�4A;(
)

and such that P-almost surely we have LC
8
(A) ≥ L1

8
(A) for

all 8 = 1, . . . , : and A ∈ È)0, )1É.
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Proof. Throughout the proof, we will write Ω0,( to mean Ω0E>83 ()0, )1, ®G, ®H,∞, 61; () and Ω′
0,(

to

mean Ω0E>83 ()0, )1, ®G ′, ®H ′,∞, 6C ; (). We split the proof into two steps.

Step 1. We first aim to construct a Markov chain (-=, . =)=≥0, with -= ∈ Ω0,(, . = ∈ Ω′0,(, with

initial distribution given by

-0
8 (C) = min(G8 + C − )0, H8), .0

8 (C) = min(G′8 + C − )0, H
′
8),

for C ∈ È)0, )1É and 1 ≤ 8 ≤ : . First observe that we do in fact have -0 ∈ Ω0,(, since -0
8
()0) = G8,

-0
8
()1) = H8, -0

8
(C) ≤ min(G8−1 + C−)0, H8−1) = -0

8−1(C), and -0
:
(C) ≥ G8 + C−)0 ≥ 61 ()0) + C−)0 ≥

61 (C). We also note here that -0 is maximal on the entire space Ω()0, )1, ®G, ®H), in the sense that for

any / ∈ Ω()0, )1, ®G, ®H), we have /8 (C) ≤ -0
8
(C) for all C ∈ È)0, )1É. In particular, -0 is maximal on

Ω0,(. Likewise, we see that .0 is maximal on Ω′
0,(

.

We want the chain (-=, . =) to have the following properties:

(1) (-=)=≥0 and (. =)=≥0 are both Markov in their own filtrations,

(2) (-=) is irreducible and aperiodic, with invariant distribution P)0,)1,®G,®H,∞,61
0E>83,�4A;( ,

(3) (. =) is irreducible and aperiodic, with invariant distribution P)0,)1,®G ′,®H ′,∞,6C
0E>83,�4A;( ,

(4) -=
8
≤ . =

8
on È)0, )1É for all = ≥ 0 and 1 ≤ 8 ≤ : .

This will allow us to conclude convergence of -= and . = to these two uniform measures.

We specify the dynamics of (-=, . =) as follows. At time =, we uniformly sample a triple

(8, C, I) ∈ È1, :É×È)0, )1É×ÈG: , H′1 − 1É. We also flip a fair coin, with P(heads) = P(tails) = 1/2.

We update -= and . = using the following procedure. If 9 ≠ 8, we leave - 9 , . 9 unchanged, and for

all points B ≠ C, we set -=+1
8
(B) = -=

8
(B). If )0 < C < )1, -=

8
(C − 1) = I, and -=

8
(C + 1) = I + 1 (note
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that this implies -=
8
(C) ∈ {I, I + 1}), we consider two cases. If C ∈ (, then we set

-=+18 (C) =


I + 1, if heads,

I, if tails,

assuming this does not cause -=+1
8
(C) to fall below -=

8+1(C), with the convention that -=
:+1 = 6

1. If

C ∉ (, we perform the same update regardless of whether it results in a crossing. In all other cases,

we leave -=+1
8
(C) = -=

8
(C). We update . = using the same rule, with 6C in place of 61.

We first observe that -= and . = are in fact non-intersecting on ( for all =. Note -0 is non-

intersecting, and if -= is non-intersecting, then the only way -=+1 could be intersecting on ( is if

the update were to push -=+1
8
(C) below -=

8+1(C) for some 8, C with C ∈ (. But any update of this form

is suppressed, so it follows by induction that -= ∈ Ω0,( for all =. Similarly, we see that . = ∈ Ω′
0,(

.

It is easy to see that (-=, . =) is a Markov chain, since at each time =, the value of (-=+1, . =+1)

depends only on the current state (-=, . =), and not on the time = or any of the states prior to time

=. Moreover, the value of -=+1 depends only on the state -=, not on . =, so (-=) is a Markov chain

in its own filtration. The same applies to (. =). This proves the property (1) above.

We now argue that (-=) and (. =) are irreducible. Fix any / ∈ Ω0;(. As observed above, we

have /8 ≤ -0
8

on È)0, )1É for all 8. We argue that we can reach the state / starting from -0 in

some finite number of steps with positive probability. Due to the maximality of -0, we only need

to move the paths downward. If we do this starting with the bottom path, then there is no danger

of the paths -8 crossing on (, or of -: crossing 61 on (. To ensure that -=
:
= /: , we successively

sample triples (:, C, I) as follows. We initialize C = )0 + 1. If -=
:
(C) = /: (C), we increment C by

1. Otherwise, we have -=
:
(C) > /: (C), so we set I = -=

:
(C) − 1 and flip tails. This may or may

not push -: (C) downwards by 1. We then increment C and repeat this process. If C reaches )1 − 1,

then at the increment we reset C = )0 + 1. After finitely many steps, -: will agree with /: on all of

È)0, )1É. We then repeat this process for -=
8

and /8, with 8 descending. Since each of these samples

and flips has positive probability, and this process terminates in finitely many steps, the probability
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of transitioning from -= to / after some number of steps is positive. The same reasoning applies

to show that (. =) is irreducible.

To see that the chains are aperiodic, simply observe that if we sample a triple (8, )0, I) or

(8, )1, I), then the states of both chains will be unchanged.

To see that the uniform measure P)0,)1,®G,®H,∞,61
0E>83,�4A;( on Ω0,( is invariant for (-=), fix any l ∈ Ω0,(.

For simplicity, write ` for the uniform measure. Then for all g ∈ Ω0,(, we have `(g) = 1/|Ω0,( |.

Hence

∑
g∈Ω0,(

`(g)P(-=+1 = l | -= = g) = 1
|Ω0,( |

∑
g∈Ω0,(

P(-=+1 = l | -= = g) =

1
|Ω0,( |

∑
g∈Ω0,(

P(-=+1 = g | -= = l) = 1
|Ω0,( |

· 1 = `(l).

The second equality is clear if g = l. Otherwise, note that P(-=+1 = l | -= = g) ≠ 0 if and only

if g and l differ only in one indexed path (say the 8th) at one point C, where |g8 (C) − l8 (C) | = 1,

and this condition is also equivalent to P(-=+1 = g | -= = l) ≠ 0. If -= = g, there is exactly

one choice of triple (8, C, I) and one coin flip which will ensure -=+1
8
(C) = l(C), i.e., -=+1 = l.

Conversely, if -= = l, there is one triple and one coin flip which will ensure -=+1 = g. Since the

triples are sampled uniformly and the coin flips are fair, these two conditional probabilities are in

fact equal. This proves (2), and an analogous argument proves (3).

Lastly, we argue that -=
8
≤ . =

8
on È)0, )1É for all = ≥ 0 and 1 ≤ 8 ≤ : . This is of course true

at = = 0. Suppose it holds at some = ≥ 0, and suppose that we sample a triple (8, C, I). Then the

update rule can only change the values of the -=
8
(C) and . =

8
(C). Notice that the values can change

by at most 1, and if . =
8
(C) − -=

8
(C) = 1, then the only way the ordering could be violated is if .8

were lowered and -8 were raised at the next update. But this is impossible, since a coin flip of

heads can only raise or leave fixed both curves, and tails can only lower or leave fixed both curves.

Thus it suffices to assume -=
8
(C) = . =

8
(C).

There are two cases to consider that violate the ordering of -=+1
8
(C) and . =+1

8
(C). Either (i)

-8 (C) is raised but .8 (C) is left fixed, or (ii) .8 (C) is lowered yet -8 (C) is left fixed. These can only
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occur if the curves exhibit one of two specific shapes on ÈC − 1, C + 1É. For -8 (C) to be raised,

we must have -=
8
(C − 1) = -=

8
(C) = -=

8
(C + 1) − 1, and for .8 (C) to be lowered, we must have

. =
8
(C − 1) − 1 = . =

8
(C) = . =

8
(C + 1). From the assumptions that -=

8
(C) = . =

8
(C), and -=

8
≤ . =

8
,

we observe that both of these requirements force the other curve to exhibit the same shape on

ÈC − 1, C + 1É. Then the update rule will be the same for both curves for either coin flip, proving

that both (i) and (ii) are impossible.

Step 2. It follows from (2) and (3) and [194, Theorem 1.8.3] that (-=)=≥0 and (. =)=≥0 converge

weakly to P)0,)1,®G,®H,∞,61
0E>83,�4A;( and P)0,)1,®G ′,®H ′,∞,6C

0E>83,�4A;( respectively. In particular, (-=) and (. =) are tight, so

(-=, . =)=≥0 is tight as well. By Prohorov’s theorem, it follows that (-=, . =) is relatively compact.

Let (=<) be a sequence such that (-=< , . =<) converges weakly. Then by the Skorohod representa-

tion theorem [39, Theorem 6.7], it follows that there exists a probability space (Ω, F , P) supporting

random variables X=, Y= and X,Y taking values in Ω0,(,Ω′0,( respectively, such that

(1) The law of (X=,Y=) under P is the same as that of (-=, . =),

(2) X= (l) −→ X(l) for all l ∈ Ω,

(3) Y= (l) −→ Y(l) for all l ∈ Ω.

In particular, (1) implies thatX=< has the same law as -=< , which converges weakly to P)0,)1,®G,®H,∞,61
0E>83,�4A;( .

It follows from (2) and the uniqueness of limits that X has law P)0,)1,®G,®H,∞,61
0E>83,�4A;( . Similarly, Y has law

P
)0,)1,®G ′,®H ′,∞,6C
0E>83,�4A;( . Moreover, condition (4) in Step 1 implies that X=

8
≤ Y=

8
, P-a.s., so X8 ≤ Y8 for

1 ≤ 8 ≤ : , P-a.s. Thus we can take L1 = X and LC = Y.

5.7 Appendix B

The goal of this section is to establish the weak convergence of scaled avoiding Bernoulli line

ensemble. We consider the È1, :É-indexed line ensembles with distribution given by P0,),®G,®H,∞,−∞
0E>83,�4A

in the sense of Definition 5.1.15. Recall that this is just the law of : independent Bernoulli
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random walks that have been conditioned to start from ®G = (G1, . . . , G: ) at time 0 and and at

®H = (H1, · · · , H: ) at time ) and are always ordered. Here ®G, ®H ∈ W: satisfy ) ≥ H8 − G8 ≥ 0 for

8 = 1, . . . , : . We will drop the infinities and simply write P0,),®G,®H
0E>83,�4A

for the measure.

This section will be divided into 5 subsections. In Section 5.7.1, we introduce some definitions

and formulate the precise statements of two main results we want to prove as Proposition 5.7.2

and Proposition 5.7.3. In Section 5.7.2, we introduce some fundamental knowledge about Skew

Schur Polynomials and give the distribution of avoiding Bernoulli line ensembles at integer times

through Skew Schur Polynomials as Lemma 5.7.8. In Section 5.7.3, we will prove our first main

result Proposition 5.7.2. In Section 5.7.4 we introduce some notations and results about multi-

indices and multivariate functions which paves the way for proof of Proposition 5.7.3. Section

5.7.5 will prove our second main result Proposition 5.7.3.

5.7.1 Definitions and Main Results

We start by introducing some helpful notations.

Definition 5.7.1. Fix ?, C ∈ (0, 1), : ∈ N, ®0, ®1 ∈ W: are two vectors in Weyl chamber defined

in Definition 5.1.7. Suppose that ®G) = (G)1 , · · · , G
)
:
) and ®H) = (H)1 , · · · , H

)
:
) are two sequences of

:-dimensional vectors in W: such that

lim
)→∞

G)
8√
)
= 08 and lim

)→∞

H)
8
− ?)
√
)

= 18

for 8 = 1, . . . , : . Define the sequence of random :-dimensional vectors /) by

/) =
(!1(C)) − ?C)√

)
, · · · , !: (C)) − ?C)√

)

)
(5.7.1)

where (!1, · · · , !: ) is P0,),®G) ,®H)
0E>83,�4A

-distributed.
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We also introduce some constants below

21(?, C) =
1

?(1 − ?)C , 22(?, C) =
1

?(1 − ?) (1 − C) , 23(?, C) =
1

2?(1 − ?)C (1 − C)

/ = (2c) :2 (?(1 − ?)C (1 − C)) :2 · 4
21 (C , ?)

2
∑:
8=1 0

2
8 · 4

22 (C , ?)
2

∑:
8=1 1

2
8 det

[
4
− 1

2? (1−?) (18−0 9 )
2 ] :
8, 9=1

(5.7.2)

and define the function d(I1, · · · , I: ) ≡ d(®I) as the following:

d(I1, · · · , I: ) =
1
/
· 1{I1>···>I: } · det

[
421 (C,?)08I 9 ] :

8, 9=1 det
[
422 (C,?)18I 9 ] :

8, 9=1

:∏
8=1

4−23 (C,?)I28 (5.7.3)

We will prove that the function d(I) defined in (5.7.3) is a probability density function, meaning

that it is non-negative and integrates to 1 over R: . Since this is an important ingredient of our

results, we isolate it as Lemma 5.7.10 and will prove it in Section 5.7.3. For now, we assume that

d(®I) in (5.7.3) is a density so that we can state our first main result in the following, which gives

the limiting distribution of /) when vectors ®0 and ®1 contain distinct values.

Proposition 5.7.2. Assume the same notation as in the Definition 5.7.1. When 01 > · · · > 0: and

11 > · · · > 1: are all distinct, the random vector /) converges weakly to a continuous distribution

with the density in (5.7.3).

Proposition 5.7.2 states the result when ®0 and ®1 consist of distinct values. When the values

in ®0 and ®1 start to collide, the three determinants in the density function (5.7.3) will vanish(one

in constant / in equation (5.7.2) and the other two are in the expression of equation (5.7.3)). In

the following, we are going to formulate the result under this new situation. We will construct

a modified density function and the random vector /) will weakly converge to this new density

function.

345



Suppose vectors ®0 and ®1 cluster as the following:

®0 = (01, · · · , 0: ) = (U1, · · · , U1︸       ︷︷       ︸
<1

, · · · , U?, · · · , U?︸       ︷︷       ︸
<?

)

®1 = (11, · · · , 1: ) = (V1, · · · , V1︸       ︷︷       ︸
=1

, · · · , V@, · · · , V@︸       ︷︷       ︸
=@

)
(5.7.4)

where U1 > U2 > · · · > U?, V1 > V2 > · · · > V@ and
∑?

8=1<8 =
∑@

8=1 =8 = : . Denote ®< =

(<1, · · · , <?), ®= = (=1, · · · , =@) and define two determinants i( ®0, ®I, ®<) and k(®1, ®I, ®=) below:

i( ®0, ®I, ®<) = det



(
(21(C, ?)I 9 )8−1421 (C,?)U1I 9

)
8=1,··· ,<1
9=1,··· ,:

...(
(21(C, ?)I 9 )8−1421 (C,?)U?I 9

)
8=1,··· ,<?
9=1,··· ,:


k(®1, ®I, ®=) = det



(
(22(C, ?)I 9 )8−1422 (C,?)V1I 9

)
8=1,··· ,=1
9=1,··· ,:

...

((22(C, ?)I 9 )8−1422 (C,?)V@I 9 )8=1,··· ,=@
9=1,··· ,:



(5.7.5)

Then define the function

� (®I) = i( ®0, ®I, ®<)k(®1, ®I, ®=)
:∏
8=1

4−23 (C,?)I28 (5.7.6)

we can prove that � (®I) in (5.7.6) is non-negative and integrable over R: , so that we can multiply

it with the normalizing constant /2 =
∫
R:
� (I) · 1{I1>···>I: }3I < ∞ (the subscript 2 is for “collide”)

and make it a probability density function:

d2 (I1, · · · , I: ) =
1
/2
· 1{I1>···>I: } · i( ®0, ®I, ®<)k(®1, ®I, ®=)

:∏
8=1

4−23 (C,?)I28 (5.7.7)

Now we are ready to state our second main result, which gives the weak convergence of /)
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when ®0 and ®1 have collided values.

Proposition 5.7.3. Assume the same notation as in the Definition 5.7.1 and suppose vectors ®0, ®1

has the form in (5.7.4). Then, the random vector /) converges weakly to a continuous distribution

with density in (5.7.7).

5.7.2 Skew Schur polynomials and distribution of avoiding Bernoulli line ensembles

First, We give some definitions and elementary results regarding skew Schur polynomials,

which are mainly based on [185, Chapter 1].

Definition 5.7.4. Partition, Interlaced, Conjugate

1. A partition is an infinite sequence _ = (_1, _2, · · · , _A , · · · ) of non-negative integers in de-

creasing order _1 ≥ _2 ≥ · · · ≥ _A ≥ · · · and containing only finitely many non-zero terms.

The non-zero _8 are called parts of _, the number of parts is called the length of the partition

_, denoted by ; (_), and the sum of the parts is the weight of _, denoted by |_ |.

2. Suppose _ and ` are two partitions, we denote _ ⊃ ` if _8 ≥ `8 for all 8 ∈ Z+, and we can

define a new partition _ − ` = (_1 − `1, _2 − `2, · · · ).

3. Partitions _ = (_1, _2, · · · ) and ` = (`1, `2, · · · ) are call interlaced, denoted by ` � _, if

_1 ≥ `1 ≥ _2 ≥ `2 ≥ · · · .

4. The conjugate of a partition _ is the partition _′ such that

_′8 = max
9≥1
{ 9 : _ 9 ≥ 8}

In particular, _′1 = ; (_), _1 = ; (_′) and notice that _′′ = _. For example, the conjugate of

(5441) is (43331).

According to Definition 5.7.4, we directly get that if ` ⊂ _ then ; (_) ≥ ; (`) and ; (_′) ≥ ; (`′).

Also, ` � _ implies ` ⊂ _. We can also derive the following corollary that is not very immediate.
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Corollary 5.7.5. If ` � _ are interlaced, then _′
8
− `′

8
= 0 or 1 for every 8 ≥ 1,.

Proof. By definition, _′
8
= max{ 9 : _ 9 ≥ 8} and `′

8
= max{ 9 : ` 9 ≥ 8}. Since ` � _ are interlaced,

we have _ 9 ≥ ` 9 ≥ _ 9+1 for every 9 ≥ 1, where the first inequality _ 9 ≥ ` 9 directly implies

_′
8
≥ `′

8
. Suppose there exists an 8 such that _′

8
− `′

8
≥ 2. Then, by definition of `′

8
and _′

8
we have

__′
8
≥ 8 and ``′

8
+1 < 8. When _′

8
− `′

8
≥ 2, we have _`′

8
+2 ≥ __′

8
≥ 8 > ``′

8
+1, which contradicts the

fact that ` � _ are interlaced. Therefore, we conclude that _′
8
− `′

8
can only be 0 or 1.

Definition 5.7.6. Elementary Symmetric Function

For each integer A ≥ 0, the A-th elementary symmetric function 4A is the sum of all products of A

distinct variables G8, so that 40 = 1 and

4A =
∑

81<82<···<8A
G81G82 · · · G8A (5.7.8)

for A ≥ 1. For A < 0, we define 4A to be zero. In particular, when G1 = G2 = · · · = G= = 1,

G=+1 = G=+2 = · · · = 0, 4A is just the binomial coefficient when 0 ≤ A ≤ =:

4A (1=) =
(
=

A

)
and 4A = 0 when A > =.

Next, we introduce Skew Schur Polynomial based on [185, Chapter 1, (5.5), (5.11), (5.12)].

Definition 5.7.7. Skew Schur Polynomial, Jacob-Trudi Formula

1. Suppose ` ⊂ _ are partitions. If ` � _ are interlaced, then the skew Schur polynomial B_/`

with single variable G is defined by B_/` (G) = G |_−` |. Otherwise, we define B_/` (G) = 0.

2. Suppose ` ⊂ _ are two partitions, define the skew Schur polynomial B_/` with respect to

variables G1, G2, · · · , G= by

B_/` (G1, · · · , G=) =
∑
(a)

=∏
8=1

Ba8/a8−1 (G8) =
∑
(a)

=∏
8=1

G
|a8−a8−1 |
8

(5.7.9)
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summed over all sequences (a) = (a0, a1, · · · , a=) of partitions such that a0 = `, a= = _ and

a0 � a1 � · · · � a=. In particular, when G1 = G2 = · · · = G= = 1, the skew Schur polynomial

is just the number of such sequences of interlaced partitions (a). This definition also implies

the following branching relation of skew Schur polynomials:

B^/` =
∑
_

B^/_ · B_/` (5.7.10)

3. We also have the following Jacob-Trudi Formula[185, Chapter 1, (5.5)] for the skew Schur

polynomial:

B_/` = det
(
4_′

8
−`′

9
−8+ 9

)
1≤8, 9≤<

(5.7.11)

where < ≥ ; (_′), and 4A is the elementary symmetric function in Definition 5.7.6.

Based on the above preparation, we are ready to state the following lemma giving the distribu-

tion of avoiding Bernoulli line ensembles at time bC)c.

Lemma 5.7.8. Assume the same notations as in Section 5.7.1, denote < = bC)c, = = ) − bC)c.

Then, the avoiding Bernoulli line ensemble at time < has the following distribution:

P
0,),®G) ,®H)
0E>83,�4A

(!1(<) = _1, · · · , !: (<) = _: ) =
B_′/`′ (1<) · B^′/_′ (1=)

B^′/`′ (1) )
(5.7.12)

where _1 ≥ _2 ≥ · · · ≥ _: are positive integers, B_/` denote skew Schur polynomials and they are

specialized in all parameters equal to 1. The ` partition is just the vector ®G) and the ^ partition

should be ®H) .

Remark 5.7.9. Here we let _1 ≥ _2 ≥ · · · ≥ _: be positive integers, although they could po-

tentially be negative. However, we can shift all the endpoints up such that all possible _8 are

positive. Also, in the proof we treat finite dimensional vectors as partitions because as long as we

add infinitely many zeros at their ends we can and make them “partitions” in Definition 5.7.4.

Proof. Let Ω(0, ), ®G) , ®H) ) be the set of all avoiding Bernoulli line ensembles from ®G) to ®H) and
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define the set

)�)
_/` := {(_0, ..., _) ) | _0 = `, _) = _, _8 � _8+1 for 8 = 0, · · · , ) − 1}

From the result regarding the relationship between number of sequences of interlaced partitions

and skew Schur polynomials (Definition 5.7.7, (2)), we have |)�)
_/` | = B_/` (1) ). In the rest

of the proof, we want to establish the fact that there is a bijection between Ω(0, ), ®G) , ®H) ) and

)�)
^′/`′ so that we have |Ω(0, ), ®G) , ®H) ) | = B^′/`′. Similarly, we get |Ω(0, <, ®G) , _) | = B_′/`′ and

|Ω(<,), _, ®H) ) | = B^′/_′. Then, since P0,),®G) ,®H)
0E>83,�4A

puts uniform measure on the set Ω(0, ), ®G) , ®H) ),

we conclude

0,),®G) ,®H)
0E>83,�4A

(!1(<) = _1, · · · , !: (<) = _: ) =
|Ω(0, <, ®G) , _) | · |Ω(<,), _, ®H) ) |

|Ω(0, ), ®G) , ®H) ) |

=
B_′/`′ (1<) · B^′/_′ (1=)

B^′/`′ (1) )

where _ = (_1, · · · , _: ) is a partition such that ®G) ⊂ _ ⊂ ®H) , thus finishing the proof.

Now we prove that there exists a bijection 5 : Ω(0, ), ®G) , ®H) ) → )�)
^′/`′. For each line

ensemble L ∈ Ω(0, ), ®G) , ®H) ) with L = (!1, · · · , !: ), we define a :-dimensional vector _8 (L) :=

(_81, _
8
2, ..., _

8
:
), where 0 ≤ 8 ≤ ) is an integer and _8U = !U (8). In the following discussion we drop

L and briefly write _8. We claim that their conjugates (_8)′ form interlaced partitions:

(_0)′ � (_1)′ � · · · � (_) )′ (5.7.13)

where
(
_0)′ = `′ and

(
_)

)′
= ^′. We first explain that (_8)′ is a partition for every 8 = 0, · · · , ) .

Actually, it simply follows from that (_8U)′ = max{ 9 : _8
9
≥ U} ≥ max{ 9 : _8

9
≥ U + 1} = (_8

U+1)
′.

Now we prove (5.7.13), which requires us to show

(_8+1U )′ ≥ (_8U)′ ≥ (_8+1U+1)
′, for every 8 = 0, · · · , ) − 1 and U = 1, · · · , : − 1
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By the definition of Bernoulli random walk, we have _8+1
9
≥ _8

9
≥ _8+1

9
− 1. Therefore, we have

max{ 9 : _8+19 ≥ U} ≥ max{ 9 : _89 ≥ U} ≥ max{ 9 : _8+19 ≥ U + 1}

and this is exactly (5.7.13). Therefore, we have defined a function 5 : Ω(0, ), G) , H) ) → )�)
^′/`′

by

5 (L) =
(
(_0)′, · · · , (_) )′

)
(5.7.14)

Next, we prove the function 5 is in fact a bijection. First, to show injectivity, suppose that

there are two Bernoulli line ensembles, L, L̃ ∈ Ω(0, ), G) , H) ) such that L ≠ L̃. Bernoulli line

ensembles are determined by their values at integer times, so this would imply that there exists

some (@, A) such that 0 ≤ A ≤ ) , 0 ≤ @ ≤ : and !@ (A) ≠ !̃@ (A) where !@ and !̃@ are components

of L and L̃ respectively. This implies that (_A (L))′ ≠
(
_A (L̃)

)′
, so we have injectivity.

Now, we prove surjectivity. For any sequence of interlaced partitions _ = (_0, · · · , _) ) sat-

isfying (_0)′ = ®G) and (_) )′ = ®H) , we claim that (_0)′, (_1)′, · · · , (_) )′ consist of an avoiding

Bernoulli line ensemble in Ω(0, ), ®G) , ®H) ) by letting !U (8) = (_8U)′. Applying Corollary 5.7.5, we

have !U (8 + 1) − !U (8) = (_8+1U )′ − (_8U)′ can only be 0 or 1, thus !U (8), 0 ≤ 8 ≤ ) is a Bernoulli

random walk for every 1 ≤ U ≤ : . In addition, by using _8U ≥ _8U+1 we get (_8U)′ ≥ (_8U+1)
′, which

indicates that : Bernoulli random walks avoid each other. Therefore, we proved the surjectivity

and complete the proof.

By Jacob-Trudi formula (5.7.11) and Lemma 5.7.8, we further get

(!1(<) = _1, · · · , !: (<) = _: ) =
det

[
4_8−` 9+ 9−8 (1<)

] :
8, 9=1 · det

[
4^8−_ 9+ 9−8 (1=)

] :
8, 9=1

det
[
4^8−` 9+ 9−8 (1) )

] :
8, 9=1

(5.7.15)

where `8 = ®G)8 and ^8 = ®H)8 .

351



5.7.3 Proof of Proposition 5.7.2

In this section, we first prove prove that the function in (5.7.3) is a density and then prove the

weak convergence result in Proposition 5.7.2. The fact that (5.7.3) is a density is formulated in the

following lemma.

Lemma 5.7.10. Assume the same notations as in Section 5.7.1. Denote the function

d̃(I1, · · · , I: ) = 1{I1>I2>···>I: } det
[
421 (C,?)08I 9

] :
8, 9=1
· det

[
422 (C,?)18I 9

] :
8, 9=1
·

:∏
8=1

4−23 (C,?)I28 (5.7.16)

Then d̃(I1, · · · , I: ) ≥ 0 for all ®I = (I1, · · · , I: ) ∈ R: and d̃(I1, · · · , I: ) > 0 if I1 > I2 > · · · > I: .

Moreover, the function d̃ is integrable on R: and we have

∫
R:
d̃(I1, · · · , I: )3I1 · · · 3I: = / (5.7.17)

where the constant / is defined in (5.7.2), thus implying the function d(®I) in (5.7.3) is a density.

To prove Lemma 5.7.10, we are going to find the asymptotic formula of the probability mass

function (5.7.15) and its relationship with function d(I) in (5.7.3). By Jacob-Trudi formula (5.7.11),

we only need to find the asymptotic formula for elementary symmetric functions 4_8−G)9 + 9−8 (1
<),

4H)
8
−_ 9+ 9−8 (1

=) and 4H)
8
−G)

9
+ 9−8 (1) ). By the definition of random vector /) in (5.7.1), we find that

{
/)1 = I1, · · · , /

)
: = I:

}
≡ {!1(C)) = _1, · · · , !: (C)) = _: } (5.7.18)

where _8 = I8
√
) + ?C) are integers for 8 = 1, · · · , : . In addition, G)

8
= 08
√
) + >

(√
)

)
and

H)
8
= 18
√
) + ?) + >

(√
)

)
by Definition 5.7.1. Therefore, we have

_8 − G)9 + 9 − 8 = ?< + (I8 − 0 9 )
√
) + >

(
)1/2

)
,

H)8 − _ 9 + 9 − 8 = ?= + (18 − I 9 )
√
) + >

(
)1/2

)
,

H)8 − G)9 + 9 − 8 = ?) + (18 − 0 9 )
√
) + >

(
)1/2

) (5.7.19)
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Thus, we only need to consider the elementary symmetric functions in the form 4# (1=), where

# = ?= + G
√
= and G ∈ [−', '] is bounded. In this case, we have the following lemma giving the

asymptotic behavior of 4# (1=).

Lemma 5.7.11. Suppose that ? ∈ (0, 1) and ' > 0 are given. Suppose that G ∈ [−', '] and

# = ?= +
√
=G is an integer. Then

4# (1=) = (
√

2c)−1 · exp
(
− G2

2(1 − ?)?

)
· exp

(
# log

(
1 − ?
?

))
· exp

(
$ (=−1/2)

)
· exp (−= log(1 − ?) − (1/2) log = − (1/2) log (?(1 − ?)))

(5.7.20)

where the constant in the big $ notation depends on ? and ' alone. Moreover, there exist positive

constants �, 2 > 0 depending on ? alone such that for all large enough = ∈ N and # ∈ [0, =],

4# (1=) ≤ � · exp
(
# log

1 − ?
?
− = log(1 − ?) − (1/2) log =

)
· exp

(
−2=−1(# − ?=)2

)
. (5.7.21)

Remark 5.7.12. Notice that when ' > 0 is fixed, # ∈ [?= − '
√
=, ?= + '

√
=]. However, we

specify the range of # by [0, =]. First, it is because when # < 0 or # > = the elementary

symmetric function 4# (1=) would be zero by Definition 5.7.6 and the situation becomes trivial.

Second, when = is sufficiently large, the interval [0, =] will cover [?= − '
√
=, ?= + '

√
=], so it’s

sufficient to consider the case when # ∈ [0, =].

Proof of Lemma 5.7.11. For clarity the proof is split into several steps.

Step 1. In this step we prove (5.7.20). Using the formula for elementary symmetric function

(5.7.6), we obtain

4# (1=) =
=!

#!(= − #)! (5.7.22)

We have the following Stirling’s formula [145] that for = ≥ 1

=! =
√

2c===4−=4A= , where
1

12= + 1
< A= <

1
12=

(5.7.23)
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Applying the Stirling’s formula to equation (5.7.22) implies that

4# (1=) =
exp

(
(= + 1/2) log = − (# + 1/2) log # − (= − # + 1/2) log(= − #) +$

(
=−1) )

√
2c

= (
√

2c)−1 · exp
(
(= + 1/2) log = − (# + 1/2) log

#

?=
− (= − # + 1/2) log

= − #
(1 − ?)=

)
· exp

(
−(# + 1/2) log(?=) − (= − # + 1/2) log((1 − ?)=) +$

(
=−1

))
.

(5.7.24)

Denote Δ =
√
=G = $

(
=−1/2

)
, and we now use the Taylor expansion of the logarithm and the

expression for # to get

log
#

?=
= log

(
1 + Δ

?=

)
=
Δ

?=
− 1

2
Δ2

?2=2 +$
(
=−3/2

)
Analogously, we have

log
= − #
(1 − ?)= = log

(
1 − Δ

(1 − ?)=

)
= − Δ

(1 − ?)= −
1
2

Δ2

(1 − ?)2=2 +$
(
=−3/2

)
Plugging the two equations above to equation (5.7.24) we get

4# (1=) = (
√

2c)−1 · exp
(
−(# + 1/2)

[
Δ

?=
− 1

2
Δ2

?2=2 +$
(
=−3/2

)] )
· exp

(
−(= − # + 1/2)

[
− Δ

(1 − ?)= −
1
2

Δ2

(1 − ?)2=2 +$
(
=−3/2

)] )
· exp

(
(= + 1/2) log = − (# + 1/2) log(?=) − (= − # + 1/2) log((1 − ?)=) +$

(
=−1

)) (5.7.25)
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We next observe that

− Δ(# + 1/2)
?=

+ (= − # + 1/2)Δ
(1 − ?)= = − Δ2

?(1 − ?)= +$
(
=−1/2

)
Δ2(# + 1/2)

2=2?2 + Δ
2(= − # + 1/2)
2(1 − ?)2=2 =

Δ2

2?(1 − ?)= +$
(
=−1/2

)
(= + 1/2) log = − (# + 1/2) log(?=) − (= − # + 1/2) log((1 − ?)=) =

# log
1 − ?
?
− 1

2
log ?(1 − ?) − 1

2
log = − = log(1 − ?)

(5.7.26)

Plugging (5.7.26) into (5.7.25) we arrive at (5.7.20).

Step 2. In this step we prove (5.7.21). If # = 0 or = we know that 4# (1=) = 1 and then (5.7.21)

is easily seen to hold with � = 1 and any 2 ∈ (0,min(− log ?,− log(1 − ?))). Thus it suffices to

consider the case when # ∈ [1, = − 1] and in the sequel we also assume that = ≥ 2.

Combining (5.7.22) and (5.7.23) we conclude that

4# (1=) ≤ exp ((= + 1/2) log = − (# + 1/2) log # − (= − # + 1/2) log(= − #)) (5.7.27)

From (5.7.27) we get for all large enough = that

q= := log [4# (1=) · exp (−# log((1 − ?)/?) + = log(1 − ?) + (1/2) log =)]

≤ (= + 1
2
) log = − (# + 1

2
) log # − (= − # + 1

2
) log(= − #) − # log

1 − ?
?
+ = log(1 − ?) + 1

2
log =

= (= + 1/2) log = − (# + 1/2) log
#

?=
− (# + 1/2) log(?=) − (= − # + 1/2) log

= − #
(1 − ?)=

− (= − # + 1/2) log((1 − ?)=) − # log
1 − ?
?
+ = log(1 − ?) + (1/2) log =

= −(# + 1
2
) log

#

?=
− (= − # + 1

2
) log

= − #
(1 − ?)= −

1
2

log (?(1 − ?))

= −(?= + Δ + 1/2) log
(
1 + Δ

?=

)
− ((1 − ?)= − Δ + 1/2) log

(
1 − Δ

(1 − ?)=

)
− 1

2
log (?(1 − ?))

≤ �1 + k= (Δ)

355



where �1 > 0 is sufficiently large depending on ? alone and

k= (B) = −(?= + B + 1/2) log
(
1 + B

?=

)
− ((1 − ?)= − B + 1/2) log

(
1 − B

(1 − ?)=

)
(5.7.28)

where B ∈ [−?= + 1, (1 − ?)= − 1]. We claim that we can find positive constants �2 > 0 and 2 > 0

such that for all = sufficiently large and B ∈ [−?= + 1, (1 − ?)= − 1] we have

k= (B) ≤ �2 − 2=−1B2 (5.7.29)

We prove (5.7.29) in Step 3 below. For now we assume its validity and conclude the proof of

(5.7.21). In view of q= ≤ �1 + k= (B) and (5.7.29) we know that

4# (1=) ≤ exp (�1 + �2 + # log((1 − ?)/?) − = log(1 − ?) − (1/2) log =) · exp(−2=−1(# − ?=)2),

which proves (5.7.21) with � = 4�1+�2 .

Step 3. In this step we prove (5.7.29) in the case B ∈ [0, =]. A direct computation gives

k′= (B) = − log
(
1 + C

?=

)
+ log

(
1 − C

(1 − ?)=

)
+ 1

2
· 1
?= + C +

1
2
· 1
(1 − ?)= − C

k′′= (B) =
(= + 1) · B2 + (2? − 1)=(= + 1) · B + ?(? − 1)=2(= + 1) + (1/2)=2

(?= + B)2((1 − ?)= − B)2

(5.7.30)

Notice that the numerator of k′′= (B) is a quadratic function and its minimum is at G<8= = − (2?−1)=(=+1)
2(=+1) =

(−? + 1/2)=, which is the midpoint of the interval [−?= + 1, (1 − ?)= − 1]. Thus, the numerator

reaches its maximum at either of the two endpoints of the interval [−?= + 1, (1− ?)=− 1]. The de-

nominator is the square of a parabola that reaches its minimum also at the endpoints of the interval

[−?= + 1, (1 − ?)= − 1]. Therefore, we conclude that

k′′= (B) ≤ k′′= (−?= + 1) = k′′= ((1 − ?)= − 1) =
−1

2=
2 + 1

(= − 1)2
= −1

2
− 1
= − 1

+ 1
2
· 1
(= − 1)2

≤ −1
2
· 1
= − 1

≤ − 1
2=

= −22=−1
(5.7.31)
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where 2 = 1/4. Next, we prove (5.7.21) under two cases when B ∈ [−?= + 1, 0] and B ∈ [0, (1 −

?)= − 1], respectively.

1◦ When B ∈ [−?= + 1, 0], by the fundamental theorem of calculus and (5.7.31) we get

k′= (B) = k′= (0) −
∫ 0

B

k′′= (H)3H ≥ k′= (0) − (−B) (−22=−1) = 2? − 1
2?(1 − ?)= − 22=−1B,

and a second application of the same argument yields for B ∈ [−?= + 1, 0]

k= (B) = k= (0) −
∫ 0

B

k′= (H)3H ≤ −
∫ 0

B

(
2? − 1

2?(1 − ?)= − 22=−1H

)
3H =

(2? − 1)B
2?(1 − ?)= − 2=

−1B2,

When ? ≤ 1/2, (2?−1)B
2?(1−?)= ≤

(2?−1)?=
2?(1−?)= =

1−2?
2(1−?) , so (5.7.29) gets proved with �2 =

1−2?
2(1−?) . When

? > 1/2, (5.7.29) gets proved �2 = 0.

2◦ When B ∈ [0, (1 − ?)= − 1], similarly using the fundamental theorem of calculus and (5.7.31)

we get

k′= (B) = k′= (0) +
∫ B

0
k′′= (H)3H ≤=

2? − 1
2?(1 − ?)= − 22=−1B,

and a second application of the same argument yields for B ∈ [0, (1 − ?)= − 1]

k= (B) = k= (0) +
∫ B

0
k′= (H)3H ≤

(2? − 1)B
2?(1 − ?)= − 2=

−1B2,

When ? ≥ 1/2, (2?−1)B
2?(1−?)= ≤

(2?−1) (1−?)=
2?(1−?)= =

2?−1
2? , so (5.7.29) gets proved with �2 =

2?−1
2? . When

? < 1/2, (5.7.29) gets proved �2 = 0. Combining cases 1◦ and 2◦ we complete the proof.

Based on Lemma 5.7.11, we introduce the following lemma computing quantities �_ ()) and

�_ ()) which help us to find the asymptotic behavior of probability mass function (5.7.15) and its

relationship with d(I).

Lemma 5.7.13. Assume the same notation as in Section 5.7.1 and Section 5.7.2. Fix ®I ∈ R: such
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that I1 > · · · > I: . Suppose that )0 ∈ N is sufficiently large so that for ) ≥ )0 we have

I:
√
) + ?C) ≥ 01

√
) + : + 1 and 1:

√
) + ?) ≥ I1

√
) + ?C) + : + 1,

which ensures that _8 − G)9 + 9 − 8 and H)
8
− _ 9 + 9 − 8 in (5.7.19) are positive. Then, for a signature

_ of length : we define

�_ ()) = B_′/`′ (1<) · B^′/_′ (1=), where < = bC)c, = = ) − <, ` = ®G) , ^ = ®H) (5.7.32)

�_ ()) = (
√

2c): · exp (:) log(1 − ?) + : log) + (:/2) log(?(1 − ?)))

· exp

(
− log

(
1 − ?
?

) :∑
8=1
(H)8 − G)8 )

)
· �_ ())

(5.7.33)

We claim that

lim
)→∞

�_ ()) = d̃(I1, · · · , I: ) · (2c?(1 − ?)C (1 − C))−
:
2 ·

:∏
8=1

exp

(
−
21(C, ?)02

8
+ 22(C, ?)12

8

2

)
(5.7.34)

Proof. From the Jacob-Trudi formula for skew Schur polynomials (5.7.11) and Lemma 5.7.11 we

have

B_′/`′ (1<) = det

[
exp

(
−
(_8 − G)9 + 9 − 8 − ?<)2

2(1 − ?)?<

)
exp

(
$

(
)−1/2

))]
· (
√

2c)−: ·

exp

(
−:< log(1 − ?) − (:/2) log< − (:/2) log(?(1 − ?)) + log

(
1 − ?
?

) :∑
8=1
(_8 − G)8 )

)
(5.7.35)
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B^′/_′ (1=) = det

[
exp

(
−
(H)
8
− _ 9 + 9 − 8 − ?=)2

2(1 − ?)?=

)
exp

(
$

(
)−1/2

))]
· (
√

2c)−: ·

exp

(
−:= log(1 − ?) − (:/2) log = − (:/2) log(?(1 − ?)) + log

(
1 − ?
?

) :∑
8=1
(H)8 − _8)

) (5.7.36)

B^′/`′ (1) ) = det

[
exp

(
−
(H)
8
− G)

9
+ 9 − 8 − ?))2

2(1 − ?)?)

)
exp

(
$

(
)−1/2

))]
· (
√

2c)−: ·

exp

(
−:) log(1 − ?) − (:/2) log) − (:/2) log(?(1 − ?)) + log

(
1 − ?
?

) :∑
8=1
(H)8 − G)8 )

)
(5.7.37)

where the constants in the big $ notation are uniform as I8 vary over compact subsets of R. Com-

bining (5.7.36), (5.7.35) and (5.7.19) we see that

�_ ()) = (2c)−:/2 · exp(−(:/2) log(?(1 − ?)) − (:/2) log(C (1 − C)) +$ ()−1))

· det

[
exp

(
−
(I8 − 0 9 )2

2?(1 − ?)C +$ ()
−1/2)

)]
· det

[
exp

(
−

(18 − I 9 )2

2?(1 − ?) (1 − C) +$ ()
−1/2)

)] (5.7.38)

Taking the limit ) →∞ in (5.7.38), and noticing the identities

det

[
exp

(
−
(I8 − 0 9 )2

2?(1 − ?)C

)]
= det

[
421 (C,?)08I 9

] :
8, 9=1
·

:∏
8=1

exp
(
−21(C, ?)

2
(02
8 + I28 )

)
, and

det

[
exp

(
−

(18 − I 9 )2

2?(1 − ?) (1 − C)

)]
= det

[
422 (C,?)18I 9

] :
8, 9=1
·

:∏
8=1

exp
(
−22(C, ?)

2
(12
8 + I28 )

)
we get (5.7.34).

The following corollary of Lemma 5.7.13 gives the connection between the probability mass

function in (5.7.8) and the probability density function in (5.7.3).

Corollary 5.7.14. Assume the same notation as in Lemma 5.7.8. Fix ' > 0, take any (I1, · · · , I: ) ∈

[−', ']: ∩W>
:

such that _8 = I8
√
) + ?C) are integers for 8 = 1, · · · , : . Define function ℎ) (I) on
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R: :

ℎ) (I) = 1{[−',']:∩W>
:
} (I) · (

√
)): · P(!1(<) = _1, · · · , !: (<) = _: )

Then, we have

lim
)→∞

ℎ) (I) = d(I1, · · · , I: ) (5.7.39)

where d(I1, · · · , I: ) is defined in (5.7.3). Moreover, ℎ) (I) is uniformly bounded on the compact

set [−', ']: .

Proof. Plugging (5.7.35), (5.7.36) and (5.7.37) into (5.7.12) we get

) :/2 · P(!1(<) = _1, · · · , !: (<) = _: )

= /) ·
det

[
exp

(
− (I8−0 9 )

2

2?(1−?)C

)]
· det

[
exp

(
− (18−I 9 )2

2?(1−?) (1−C)

)]
det

[
exp

(
− (18−0 9 )

2

2?(1−?)

)] · exp(>(1))
(5.7.40)

where

/) = (
√

2c)−: exp (−:< log(1 − ?) − (:/2) log< − (:/2) log(?(1 − ?)))

· exp (−:= log(1 − ?) − (:/2) log = − (:/2) log(?(1 − ?)))

· exp (:) log(1 − ?) + : log) + (:/2) log(?(1 − ?)))

= (
√

2c)−: exp (−(:/2) log(?(1 − ?)C (1 − C)) = (2c?(1 − ?)C (1 − C))−:/2

(5.7.41)

Plugging (5.7.41) into (5.7.40) we conclude (5.7.39) and at the meantime, we have

ℎ) (I1, · · · , I: ) =
det

[
exp

(
− (I8−0 9 )

2

2?(1−?)C

)]
· det

[
exp

(
− (18−I 9 )2

2?(1−?) (1−C)

)]
(2c?(1 − ?)C (1 − C)):/2 det

[
exp

(
− (18−0 9 )

2

2?(1−?)

)] · exp(>(1)) (5.7.42)

Notice that the determinants in (5.7.42) are continuous function of I, so they are all bounded on the
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compact set [−', ']: . Plus, >(1) is uniformly bounded on [−', ']: . Therefore, ℎ) (I) is bounded

over [−', ']: .

Before proving Lemma 5.7.10, we need to introduce another result regarding the non-vanishing

of determinant, which will be used in the proof of Lemma 5.7.10.

Lemma 5.7.15. Suppose the vector ®< = (<1, · · · , <?) satisfies : =
∑?

8=1<8, and U1 > U2 > · · · >

U?. Then the following determinant

* = det


(I8−1
9
4U1I 9 )8=1,··· ,<1

9=1,··· ,:
...

(I8−1
9
4U?I 9 )8=1,··· ,<?

9=1,··· ,:


is non-zero for any (I1, · · · , I: ) whose elements are distinct.

Proof. We claim that, the following equation with respect to ®I:

(b1 + b2I + · · · + b<1I
<8−1)4U1I + · · · (b<1+···+<?−1+1 + · · · + b: I<?−1)4U?I = 0

has at most (: − 1) distinct roots, where (b1, · · · , b: ) ∈ R: is non-zero.

Denote the above determinant by det
[ E1
...
E:

]
. If this claim holds, we can conclude that we cannot

find non-zero (b1, · · · , b: ) ∈ R: such that b1E1 + · · · + b:E: = 0. Thus, the : row vectors of the

determinant are linear independent and the determinant is non-zero. Then we prove the claim by

induction on : .

1◦ If : = 2, the equation is (b1 + b2I)4U1I = 0 or b14
U1I + b24

U2I = 0, where b1, b2 ∈ R cannot be

zero at the same time. Then, it’s easy to see that the equation has at most 1 root in two scenarios.

2◦ Suppose the claim holds for : ≤ =.

3◦ When : = = + 1, we have the equation

(b1 + b2I + · · · + b<1I
<8−1)4U1I + · · · (b<1+···+<?−1+1 + · · · + b: I<?−1)4U?I = 0
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but now
∑?

8=1<8 = = + 1. WLOG, suppose (b1, · · · , b<1) has a non-zero element and bℓ is the first

non-zero element. Notice that the above equation has the same roots as the following one:

� (I) = (bℓIℓ−1 + · · · + b<1I
<1−1) + · · · + (b<1+···+<?−1+1 + · · · + b: I<?−1)4(U?−U1)I = 0

Assume it has at least (= + 1) distinct roots [1 < [2 < · · · < [=+1. Then �′(I) = 0 has at

least = distinct roots X1 < · · · < X= such that [1 < X1 < [2 < · · · < X= < [=+1, by Rolle’s

Theorem. Actually, �′(I) = (bℓ (ℓ − 1))Iℓ−2 + · · · + b<1 (<1 − 1)I<1−2) + · · · + (b′
<1+···+<?−1+1 + · · · +

b′
:
I<?−1)4(U?−U1)I = 0 where b′

8
, 8 = <1 + 1, · · · , : are coefficients that can be calculated. This

equation has at most (<1−1) +<2+· · ·+<?−1 = =−1 roots by 2◦, which leads to a contradiction.

Therefore, our claim holds and we proved Lemma 5.7.15.

Now, we are ready to prove Lemma 5.7.10.

Proof of Lemma 5.7.10. For clarity we split the proof into several steps.

Step 1. In this step we show that d̃(I1, · · · , I: ) ≥ 0 and d̃(I1, · · · , I: ) > 0 if I1 > I2 > · · · > I: .

Because of the indicator function in d̃(I1, · · · , I: ), we know d̃(I1, · · · , I: ) = 0 unless I1 > · · · >

I: . Therefore, it suffices to show that

d̃(I1, · · · , I: ) > 0 if I1 > · · · > I: (5.7.43)

Choose )0 as we did in Lemma 5.7.13 and assume ) ≥ )0. By definition of �_ ()) we know

�_ ()) ≥ 0 for all ) ≥ )0, which implies d̃(I1, · · · , I: ) ≥ 0 combined with (5.7.34). Also, by

Lemma 5.7.15 we know that d̃(I1, · · · , I: ) ≠ 0 so (5.7.43) holds.

Step 2. In this step we prove that d̃(I1, · · · , I: ) is integrable. Using the formula

det
[
�8, 9

] :
8, 9=1 =

∑
f∈(:
(−1)f ·

:∏
8=1

�8,f(8)
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and the triangle inequality we see that

����det
[
421 (C,?)08I 9

] :
8, 9=1

���� ≤ ∑
f∈(:

:∏
9=1

421 (C,?)0f ( 9) I 9 ≤
∑
f∈(:

:∏
9=1

421 (C,?)(∑:
8=1 |08 |) ·|I 9 |

≤ (:!)
:∏
8=1

4�1 |I 9 |, where �1 =

:∑
8=1

21(C, ?) |08 |

(5.7.44)

Analogously, define the constant �2 =
∑:
8=1 22(C, ?) |18 | and we have

����det
[
422 (C,?)18I 9

] :
8, 9=1

���� ≤ (:!)
:∏
8=1

4�2 |I 9 | (5.7.45)

Plugging (5.7.44) and (5.7.45) into the expression of d̃ we have

| d̃(I1, · · · , I: ) | ≤ (:!)2 ·
:∏
8=1

4� |I8 |−23 (C,?)I28 (5.7.46)

where � = �1 + �2. Since the right side of (5.7.46) is integrable (because of the square in the

exponential) we conclude that d̃ is also integrable by domination.

Step 3. In this step, we prove (5.7.17) and conclude Lemma 5.7.10. Using the branching relations

for skew Schur polynomials (5.7.10) we know that

∑
_∈W:

�_ ())
) :/2

= (
√

2c): · exp(:) log(1 − ?) + (:/2) log) + (:/2) log ?(1 − ?))

· exp

(
− log

(
1 − ?
?

) :∑
8=1
(H)8 − G)8 )

)
· B^′/`′ (1) )

(5.7.47)

Plugging (5.7.19) and (5.7.37) into (5.7.47) we conclude

lim
)→∞

∑
_∈W:

�_ ())
) :/2

= det
[
4
− 1

2? (1−?) (18−0 9 )
2 ] :
8, 9=1

(5.7.48)

For a signature _ ∈ W: and ) ∈ Nwe define&_ ()) to be the cube [_1)
−1/2−?C

√
), (_1+1))−1/2−

?C
√
)] × · · · × [_:)−1/2 − ?C

√
), (_: + 1))−1/2 − ?C

√
)] with Lebesgue measure )−:/2. In addition,
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we define the simple function 5) through

5) (I) =
∑
_∈W:

�_ ()) · 1&_ ()) (I) · 1W>: (I) (5.7.49)

and observe that

∑
_∈W:

�_ ())
) :/2

=

∫
R:
5) (I)3I (5.7.50)

where 3I represents the usual Lebesgue measure on R: .

In view of (5.7.34) we know that for almost every I = (I1, · · · , I: ) ∈ R: we have

lim
)→∞

5) (I) = d̃(I) · (2c?(1 − ?)C (1 − C))−
:
2 ·

:∏
8=1

exp

(
−
21(C, ?)02

8
+ 22(C, ?)12

8

2

)
. (5.7.51)

We claim that there exists a non-negative integrable function 6 on R: such that if ) is large enough

| 5) (I1, · · · , I: ) | ≤ |6(I1, · · · , I: ) | (5.7.52)

We will prove (5.7.52) in Step 4 below. For now we assume its validity and conclude the proof of

(5.7.17).

From (5.7.51) and the dominated convergence theorem with dominating function 6 as in (5.7.52)

we know that

lim
)→∞

∫
R:
5) (I)3I =

∫
R:
d̃(I)3I · (2c?(1 − ?)C (1 − C))− :2 ·

:∏
8=1

exp

(
−
21(C, ?)02

8
+ 22(C, ?)12

8

2

)
(5.7.53)
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Combining (5.7.53), (5.7.50) and (5.7.48) we conclude that

det
[
4
− 1

2? (1−?) (18−0 9 )
2 ] :
8, 9=1

=

∫
R:
d̃(I)3I · (2c?(1 − ?)C (1 − C))− :2 ·

:∏
8=1

4−
21 (C , ?)02

8
+22 (C , ?)12

8
2 .

(5.7.54)

which clearly establishes (5.7.17).

Step 4. In this step we demonstrate an integrable function 6 that satisfies (5.7.52). Let us fix

_ ∈ W: . If _8 ≥ G)8 + < + 1 or _8 < `8 for some 8 ∈ {1, 2, · · · , :} we know that B_′/`′ (1<) = 0

because there is no avoiding Bernoulli ensembles starting with ` and ending with _. Similarly, if

H)
8
≥ _8 + = + 1 or H)

8
< _8 for some 8 ∈ {1, 2, · · · , :}, we have B^′/_′ (1=) = 0. We conclude that

�_ ()) = 0 unless

< ≥ _8 − G)8 ≥ 0 and = ≥ H)8 − _8 ≥ 0 for all 8 ∈ {1, · · · , :}

which implies that for all large enough ) we have

�_ ()) = 0, unless |_8 − G)9 + 9 − 8 | ≤ (1 + ?)< and |H)8 − _ 9 + 9 − 8 | ≤ (1 + ?)= (5.7.55)

for all 8, 9 ∈ {1, · · · , :}. This is because if there exist 8, 9 such that (1 + ?)< < |_8 − G)9 + 9 − 8 |,

then we have

(1 + ?)< < |_8 − G)9 + 9 − 8 | ≤ _1 − G): + : − 1 = (_1 − _: ) + (_: − G): ) + : − 1

When ) is sufficiently large, the above inequality implies _: − G): > < so that �_ ()) = 0, and

similar result holds for H)
8
− _ 9 + 9 − 8, which justifies (5.7.55). Using the definition of �_ ()) and
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�_ ()) we know that

�_ ()) = �) · det[� (_8 − G)9 + 9 − 8, <)]:8, 9=1 · det[� (H)8 − _ 9 + 9 − 8, =)]:8, 9=1, where

� (#, =) = 4# (1=) · exp
(
−# log

(
1 − ?
?

)
+ = log(1 − ?) + (1/2) log =

)
, and

�) = (
√

2c): (?(1 − ?)):/2 · exp(: log) − (:/2) log = − (:/2) log<).

(5.7.56)

Notice that �) is uniformly bounded for all ) large enough, because

: log) − :
2

log = − :
2

log< =
:

2
log

(
)2

bC)c · () − bC)c)

)
= − :

2
log(C (1 − C)) +$

(
)−1

)
(5.7.57)

and $
(
)−1) is uniformly bounded.

In view of (5.7.21) we know that we can find constants�1, 21 > 0 such that for all large enough

) and #1 ∈ [0, <] and #2 ∈ [0, =] we have

� (#1, <) ≤ �1 exp(−21<
−1(#1 − ?<)2) and � (#2, =) ≤ �1 exp(−21=

−1(#2 − ?=)2) (5.7.58)

Observing that 4A (1=) = 0 for A > = or A < 0, we know that (5.7.58) also holds for all #1 ∈

[−(1 + ?)<, (1 + ?)<] and #2 ∈ [−(1 + ?)=, (1 + ?)=]. Combining (5.7.55), (5.7.56) and (5.7.58)

we see that for all _ ∈ W: and ) sufficiently large

0 ≤ �_ ()) ≤ �̃
∑
f∈(:

∑
g∈(:

1{|_8 − G)9 + 9 − 8 | ≤ (1 + ?)<} · 1{|H)8 − _ 9 + 9 − 8 | ≤ (1 + ?)=}

· exp
(
−2̃)−1

[
(_8 −

√
)0f(8) − ?C))2 + (

√
)18 − _g(8) + ?C))2

] )
(5.7.59)

where 2̃, �̃ > 0 depend on ?, C, : but not on ) provided that it is sufficiently large.

In particular, we see that if I ∈ R: then either I ∉ &_ ()) for any _ ∈ W: in which case
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5) (I) = 0 or I ∈ &_ ()) for some _ ∈ W: in which case (5.7.59) and (5.7.19) imply

0 ≤ 5) (I) ≤ �
∑
f∈(:

∑
g∈(:

exp
(
−2((I8 − 0f(8))2 + (18 − Ig(8))2)

)
(5.7.60)

where �, 2 > 0 depend on ?, C, : but not on ) provided that it is sufficiently large. We finally see

that (5.7.46) holds with 6 being equal to the right side of (5.7.60), which is clearly integrable.

Now we are ready to prove Proposition 5.7.2.

Proof of Proposition 5.7.2. In the following, we prove the weak convergence of the random vector

/) , when ®0 = (01, · · · , 0: ) and ®1 = (11, · · · , 1: ) consist of distinct entries. In order to show weak

convergence, it is sufficient to show that for every open set $ ∈ R: , we have:

lim inf
)→∞

P((/)1 , · · · , /
)
: ) ∈ $) ≥

∫
$

d(I1, · · · , I: )3I13I2 · · · 3I:

according to [117, Theorem 3.2.11]. It is also sufficient to show that for any open set * ∈ W>
:
, we

have:

lim inf
)→∞

P((/)1 , · · · , /
)
: ) ∈ *) ≥

∫
*

d(I1, · · · , I: )3I13I2 · · · 3I: (5.7.61)

which implies that:

lim inf
)→∞

P((/)1 , · · · , /
)
: ) ∈ $) ≥ lim inf

)→∞
P((/)1 , · · · , /

)
: ) ∈ $ ∩W

>
: )

≥
∫
W>
:
∩$
d(I1, · · · , I: )3I1 · · · 3I: =

∫
$

d(I1, · · · , I: )3I1 · · · 3I:

The second inequality uses the above result (5.7.61), sinceW>
:
∩ $ is an open set inW>

:
. The last

equality is because d(I) is zero outsideW>
:
. The rest of the proof will be divided into 2 steps. In

Step 1, we prove that weak convergence holds on every closed rectangle. In Step 2, we prove the

inequality (5.7.61) by writing open set as countable union of almost disjoint rectangles.

Step 1. In this step, we establish the following result:
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For any closed rectangle ' = [D1, E1] × [D2, E2] × · · · × [D: , E: ] ∈ W>
:
,

lim
)→∞

P((/)1 , · · · , /
)
: ) ∈ ') =

∫
'

d(I1, · · · , I: )3I1 · · · 3I: (5.7.62)

where d(I) is given in Proposition 5.7.2.

Define <)
8
= dD8

√
) + ?C)e and ")

8
= bE8

√
) + ?C)c. Then we have:

P
(
(/)1 , · · · , /

)
: ) ∈ '

)
= P

(
D1 ≤ /)1 ≤ E1, . . . , D: ≤ /): ≤ E:

)
= P

(
D8
√
) + ?C) ≤ !8 (bC)c) ≤ E8

√
) + ?C), 8 = 1, . . . , :

)
=

")
1∑

_1=<
)
1

· · ·
")
:∑

_:=<
)
:

P(!1(bC)c) = _1, . . . , !: (bC)c) = _: )

=

")
1∑

_1=<
)
1

· · ·
")
:∑

_:=<
)
:

(
√
))−: · (

√
)):P(!1(bC)c) = _1, . . . , !: (bC)c) = _: )

Find sufficiently large � such that ' ⊂ [−�, �]: , for example, � = 1 + max1≤8≤: |08 | +

max1≤8≤: |18 |. Define ℎ) (I1, · · · , I: ) as a simple function on R: : When (I1, · · · , I: ) ∈ ', it takes

value (
√
)): · P(!1(bC)c) = _1, · · · , !: (bC)c) = _: ) if there exist integers _1 ≥ · · · ≥ _: such that

_8 ≤ I8
√
) + ?C) < _8 + 1; It takes value 0 otherwise, when (I1, · · · , I: ) ∉ '. Since the Lebesgue

measure of the set {I : _8 ≤ I8
√
)+?C) < _8+1, 8 = 1, · · · , :} =

[
_1)

−1/2 − ?C
√
), (_1 + 1))−1/2 − ?C

√
)

)
×

· · · ×
[
_:)

−1/2 − ?C
√
), (_: + 1))−1/2 − ?C

√
)

)
is (
√
))−: , the above probability can be further

written as an integral of simple functions ℎ) (I1, · · · , I: ):

P((/)1 , · · · , /
)
: ) ∈ ') =

∫
[−�,�]:

ℎ) (I1, · · · , I: )3I1 · · · 3I:

By Corollary 5.7.14, the function ℎ) (I1, · · · , I: ) pointwise converges to d(I) and is bounded

on the compact set [−�, �]: . Since the Lebesgue measure of [−�, �]: is finite, by bounded
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convergence theorem we have:

lim
)→∞

P((/)1 , · · · , /
)
: ) ∈ ') =

∫
'

d(I1, · · · , I: )3I1 · · · 3I: (5.7.63)

Step 2. In this step, we prove the statement (5.7.61). Take any open set * ∈ W>
:

and it can

be written as a countable union of closed rectangles with disjoint interiors: * =
⋃∞
8=1 '8, where

'8 = [081, 1
8
1] × · · · × [0

8
:
, 18

:
]([225, Theorem 1.4]). Choose sufficiently small n > 0, and denote

'n
8
= [081 + n, 1

8
1 − n] × · · · × [0

8
:
+ n, 18

:
− n], then 'n

8
are disjoint. Therefore,

lim inf
)→∞

P((/)1 , · · · , /
)
: ) ∈ *) ≥ lim inf

)→∞
P((/)1 , · · · , /

)
: ) ∈

=⋃
8=1

'n8 )

= lim inf
)→∞

=∑
8=1
P((/)1 , · · · , /

)
: ) ∈ '

n
8 ) =

=∑
8=1

∫
'n
8

d(I1, · · · , I: )3I1 · · · 3I:

=

∫
⋃=
8=1 '

n
8

d(I1, · · · , I: )3I1 · · · 3I:
n↓0, =↑∞
−−−−−−−→

∫
*

d(I1, · · · , I: )3I1 · · · 3I:

The last line uses the monotone convergence theorem since the when we let n ↓ 0 and = ↑ ∞ the

indicator function 1⋃=
8=1 '

n
8

is monotonically increasing, and converges to 1* . Thus, we have proved

the inequality (5.7.61). By Lemma 5.7.10, d(I) is a probability density function, thus implying the

weak convergence of /) .

5.7.4 Multi-indices and Multivariate Taylor Expansion

In this section, we introduce some notations and results about multivariate functions and per-

mutations.

Suppose f = (f1, · · · , f=) is a multi-index of length =. In our context, we require f1, · · · , f=

be all non-negative integers(some of them might be equal). We define |f | = ∑=
8=1 f8 as the order

of f. Suppose g = (g1, · · · , g=) is another multi-index of length =. We say g ≤ f if g8 ≤ f8 for

8 = 1, · · · , =. We say g < f if g ≤ f and there exists at least one index 8 such that g8 < f8. Then,
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define the partial derivative with respect to the multi-index f:

�f 5 (G1, · · · , G=) =
m |f | 5 (G1, · · · , G=)
mG

f1
1 mG

f2
2 · · · mG

f=
=

We have the general Leibniz rule:

�f ( 5 6) =
∑
g≤f

(
f

g

)
�g 5 · �f−g6

where
(f
g

)
=

f1!···f=!
g1!···g=!(f1−g1)!···(f=−g=)! .

We also have the Taylor expansion for multi-variable functions:

5 (G1, · · · , G=) =
∑
|f |≤A

1
f!
�f 5 (®G0) (®G − ®G0)f + 'A+1(®G, ®G0) (5.7.64)

In the equation, f! = f1!f2! · · ·f=! is the factorial with respect to the multi-index f, ®G0 =

(G0
1, · · · , G

0
=) is a constant vector at which we expands the function 5 , (®G − ®G0)f stands for (G1 −

G0
1)
f1 · · · (G= − G0

=)f= , and

'A+1(®G, ®G0) =
∑

f:|f |=A+1

1
f!
�f 5 (®G0 + \ (®G − ®G0)) (®G − ®G0)f

is the remainder, where \ ∈ (0, 1)([54, Theorem 3.18 & Corollary 3.19]).

We also need some knowledge about permutation. Suppose B= is a permutation of = non-

negative integers, for example {1, · · · , =}, and B= (8) represents the 8-Cℎ element in the permutation

B=. We define the number of inversions of B= by � (B=) =
∑=−1
8=1

∑=
9=8+1 1{B= (8)>B= ( 9)}. For example, the

permutation B= = (1, · · · , =) has 0 number of inversions, while the permutation B5 = (3, 2, 5, 1, 4)

has number of inversions 5(2 + 1 + 2 + 0 + 0). Define the sign of permutation B= by B6=(B=) =

(−1) � (B=) . For instance, B6=((1, · · · , =)) = 1 and B6=(B5) = −1 in the previous example.
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5.7.5 Proof of Proposition 5.7.3

Based on the notation in Section 5.7.4, we are going to prove Proposition 5.7.3 in this section.

We assume vectors ®00, ®10 cluster in the way described in (5.7.4):

®00 = (U1, · · · , U1︸       ︷︷       ︸
<1

, · · · , U?, · · · , U?︸       ︷︷       ︸
<?

)

®10 = (V1, · · · , V1︸       ︷︷       ︸
=1

, · · · , V@, · · · , V@︸       ︷︷       ︸
=@

)
(5.7.65)

and

lim
)→∞

®G)
√
)
= ®00, lim

)→∞

®H) − ?)1:√
)

= ®10

Let ®0 = (01, · · · , 0: ) and ®1 = (11, · · · , 1: ) denote two vectors in W>
:

so they contain distinct

elements. We also denote ®0 (1) = (01, · · · , 0<1), · · · , ®0 (?) = (0<1+···+<?−1+1, · · · , 0<1+···+<? ) and

®0 = ( ®0 (1) , · · · , ®0 (?)). That is, we divide the vector ®0 into ? blocks according to the shape of ®00.

Similarly, we write ®1 = (1 (1) , · · · , 1 (@)) according to the shape of ®10. We will keep using similar

notations in the following discussion, when we need to divide the vector according to the shape of

®00 and ®10. Next, denote

5 ( ®0, ®I) = det[421 (C,?)08I 9 ]:8, 9=1, 6(®1, ®I) = det[422 (C,?)18I 9 ]:8, 9=1 (5.7.66)

and it’s not difficult to see that they are all smooth multi-variable functions with respect to corre-

sponding vectors because of the exponentials. In addition, lim
®0→®00

5 ( ®0, ®I) = 0 and lim
®1→®10

6(®1, ®I) = 0.

However, when we taking proper derivatives with respect to ®0 and ®1, we can get a non-zero

derivative. The following lemma gives the minimal order of derivatives such that �f 5 ( ®00, ®I)

and �f6(®10, ®I) are non-zero, where 5 ( ®0, ®I) and 6(®1, ®I) are defined in (5.7.66).

Lemma 5.7.16. Assume the same notations as in (5.7.65) and ®I ∈ W>
:
. Then, the smallest

order of f0 that makes the derivative �f0 5 ( ®00, ®I) non-zero is D =
∑?

8=1
<8 (<8−1)

2 . Similarly,
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E =
∑@

9=1
= 9 (= 9−1)

2 is the smallest order of f1 that makes �f1 5 (®10, ®I) non-zero.

Proof. If the order of derivative is less than D, then there exists an 8 ∈ {1, · · · , ?} such that f (8)0

contains two equal elements < <8 − 1, and the determinant �f0 5 ( ®00, ®I) would have two equal

rows, thus equal to zero. Suppose B= is the set of all permutations of {0, 1, · · · , = − 1}. Then, if

f0 =

(
f
(1)
0 , · · · , f (?)0

)
and f (8)0 ∈ B<8 , �f0 5 ( ®00, ®I) is non-zero by Lemma 5.7.15. In this case, the

order of f0 is
∑?

8=1
∑<8−1
9=1 9 =

∑?

8=1
<8 (<8−1)

2 = D. Analogous result also holds for �f16(®10, ®I) and

we conclude Lemma 5.7.16.

Remark 5.7.17. Denote the set

Λ0 = {f0 =
(
f
(1)
0 , · · · , f (?)0

)
: f (8)0 ∈ (<8 , 8 = 1, · · · , ?}

Λ1 = {f1 =
(
f
(1)
1
, · · · , f (?)

1

)
: f (8)

1
∈ (=8 , 8 = 1, · · · , @}

(5.7.67)

Then we have that f0 ∈ Λ0 and f1 ∈ Λ1 imply �f0 5 ( ®00, ®I) and �f1 5 (®10, ®I) are non-zero.

Finally, we give the proof for Proposition 5.7.3.

Proof of Proposition 5.7.3. For clarity, the proof will be split into 3 steps. In Step 1, we use multi-

variate Taylor expansion to find the speed of convergence of 5 ( ®0, ®I) and 6(®1, ®I) to zero, when

®0 → ®00 and ®1 → ®10. In Step 2, we construct a new density function based on Step 1, and

we will prove that /) weakly converges to the this newly constructed density in Step 3. In Step

3, we use monotone coupling lemma to “squeeze” the probability and prove the weak convergence.

Step 1. In this step, we find the converging speed of 5 ( ®0, ®I) when ®0 → ®00. Take n ∈ (0, :−1 min
1≤8≤?−1

(U8−

U8+1)) and construct the following vectors:

®�n,+ = (U1 + <1n, U1 + (<1 − 1)n, · · · , U1 + n, · · · , U? + <?n, · · · , U? + n)

®�n,− = (U1 − n, U1 − 2n, · · · , U1 − <1n, · · · , U? − n, · · · , U? − <?n)

That is, the vector ®�n,+(resp. ®�n,−) upwardly(resp. downwardly) spreads out the vector ®00 such

that ®�n,+(resp. ®�n,−) has distinct elements. By the choice of n , the elements of ®�n,+ and ®�n,− are
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strictly ordered. In addition, when n ↓ 0, the vector ®�n,± converges to ®00. The main result of this

step is the following:

lim
n↓0

n−D 5 ( ®�n,±, ®I) = i( ®00, ®I, ®<) (5.7.68)

where D =
∑?

8=1
<8 (<8−1)

2 in Lemma 5.7.16, ®< = (<1, · · · , <?), and i( ®00, ®I, ®<) defined in (5.7.5).

Additionally, i( ®00, ®I, ®<) is non-zero because of Lemma 5.7.15.

To prove this result, we first keep ®I fixed and expand the function 5 ( ®0, ®I) to the order of D at

®00 using multi-variate Taylor expansion (5.7.64):

5 ( ®0, ®I) =
∑
|f0 |≤D

�f0 5 ( ®00, ®I)
f0!

( ®0 − ®00)f0 + 'D+1( ®0, ®00, ®I)

=
∑
f0∈Λ0

�f0 5 ( ®00, ®I)
f0!

( ®0 − ®00)f0 + 'D+1( ®0, ®00, ®I)
(5.7.69)

where

'D+1( ®0, ®00, ®I) =
∑

f0:|f0 |=D+1

1
f0!

�f0 5 ( ®00 + \ ( ®0 − ®00), ®I) ( ®0 − ®00)f0 , \ ∈ (0, 1) (5.7.70)

is the remainder and Λ0 is defined in remark 5.7.17. The second equality in (5.7.69) results from

Lemma 5.7.16, since it indicates that all the terms of order less than D are zero, and for the terms

of order D, they are non-zero only when f0 ∈ Λ0.

Consider the first term in the second line of (5.7.69). Denote B6=(f (8)0 ) as the sign of the

permutation f (8)0 ∈ (<8 , and define the sign of f0 by: B6=(f0) =
∏?

8=1 B6=(f
(8)
0 ). Denote f★0 =(

f
(1)★
0 , · · · , f (?)★0

)
, where f (8)★0 = (0, 1, · · · , <8 − 1). Thus, f★0 is a special element in Λ0 and

B6=(f★0 ) = 1 because all of f (1)★0 , · · · , f (?)★0 have 0 number of inversions. Notice that for any

f0 ∈ Λ0, we have �f0 5 ( ®00, ®I) = B6=(f0) · �f★0 5 ( ®00, ®I) by the property of determinant. Then we
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obtain:

∑
f0∈Λ0

1
f0!

�f0 5 ( ®00) ( ®0 − ®00)f0 =
�f★0 5 ( ®00)∏?

8=1(<8 − 1)!

∑
f0∈Λ0

( ®0 − ®00)f0 · B6=(f0)

Notice that

∑
f0∈Λ0

( ®0 − ®00)f0 · B6=(f0) =
?∏
8=1

©«
∑

f
(8)
0 ∈(<8

( ®0 (8) − ®0 (8)0 )
f
(8)
0 · B6=(f (8)0 )

ª®®¬
=

?∏
8=1
Δ<8 (0

(8)
1 − U8, 0

(8)
2 − U8, · · · , 0

(8)
<8 − U8) ≡

?∏
8=1
Δ0<8

where Δ= (G1, G2, · · · , G=) is the Vandermonde Determinant, 0 (8)
9
= 0<1+···+<8−1+ 9 is the 9-Cℎ ele-

ment of ®0 (8) , and the last line holds by the expansion formula of determinant and definition of

Vandermonde Determinant. Now replace ®0 with ®�n,+, we get the Vandermonde determinant Δ0<8 is

actually (<8 − 1)! · n 1
2<8 (<8−1) . Therefore, we have:

∑
f0∈Λ0

1
f0!

�f0 5 ( ®00, ®I) ( ®0 − ®00)f0 = �f★0 5 ( ®00, ®I) · nD (5.7.71)

Since the 8-th row of determinant 5 ( ®0, ®I) only depends on one variable 08 if we fix ®I, taking

derivative of 5 ( ®0, ®I) with respect to 08 is actually taking derivatives of entries in the 8-th row of

5 ( ®0, ®I) and let other rows stay unchanged. Therefore, we observe that �f★0 5 ( ®00, ®I) is exactly the

determinant i( ®00, ®I, ®<) defined in (5.7.5) and by Lemma 5.7.15, �f★0 5 ( ®00, ®I) is non-zero.

Next, we consider the remainder 'D+1( ®�n,+, ®00, ®I) in (5.7.70). Suppose f0 is a permutation of

order D+1. First notice that the terms in the sum in the remainder is non-zero only when there exist

an 8 ∈ {1, · · · , ?} such that f (8)0 = (0, 1, · · · , <8 − 2, <8) and for 9 ≠ 8, f ( 9)0 ∈ (< 9
. Otherwise, the

terms are zero because the determinant �f0 5 ( ®00, ®I) will have at least two equal lines. Therefore,

there are only finitely many non-zero terms in the sum, and we denote the number of non-zero

terms by # , which only depends on ®<. Second, we observe that f0! only has finitely many possible

outcomes when its order is D + 1, thus 1
f0! can be bounded by a constant " only depending on ®<.
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Third, by the construction of ®�n,+ we have

| ( ®�n,+ − ®00) |f0 ≤ (max
1≤8≤?

<8 · n)D+1 (5.7.72)

for every f0 such that f0 = D+1. Finally, denote vector ®�\ = ®00+ \ ( ®�n,+− ®00) = (�1,\ , · · · , �:,\).

Following similar approach as in (5.7.44), combined with the form of �f0 5 ( ®00, ®I), we have

����f0 5 ( ®�\ , ®I)
��� ≤ (:!)

(
(max
1≤8≤?

|I8 |)D+1
) :∏
9=1

421 (C,?)(∑:
8=1 |�8, \ |) |I 9 |

≤ (:!) ( |I1 | + |I: |)D+1
:∏
9=1

421 (C,?)·: ·(max1≤8≤? <8)·n ·|I 9 |

≤ (:!) ( |I1 | + |I: |)D+1
:∏
9=1

4�1 |I 9 |

(5.7.73)

when n < 1, and the constant �1 = 21(C, ?) · : · (max1≤8≤? <8).

Combining (5.7.73), (5.7.72) and the fact that 1
f0! is bounded by a constant " ( ®<), we have

|'D+1( ®�n,+, ®00, ®I) | ≤ # · " · (:!) ( |I1 | + |I: |)D+1 exp ©«�1

:∑
9=1
|I 9 |

ª®¬ (max
1≤8≤?

<8 · n)D+1 (5.7.74)

which indicates that 'D+1( ®�n,+, ®00, ®I) is$ (nD+1), where the constant in big$ notation only depends

on ®00, ®�n,+ and ®< and does not depend on n . Therefore, we conclude from (5.7.69), (5.7.71) and

the fact that 'D+1( ®�n,+, ®00, ®I) is >(nD) that:

lim
n↓0

n−D 5 ( ®�n,+, ®I) = �f★0 5 ( ®00, ®I)

Analogously, we can prove limn↓0 n
−D 5 ( ®�n,−, ®I) = �f★0 5 ( ®00, ®I) also holds and we complete

the proof of (5.7.68). We can construct vectors ®�n,± similarly, which spread out from vector ®10
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upward and downward, and get similar results for 6( ®�n,±, ®I):

lim
n↓0

n−E 5 ( ®�n,±, ®I) = �f★
1 6(®10, ®I) ≡ k(®10, ®I, ®=) (5.7.75)

where E =
∑@

8=1
=8 (=8−1)

2 in Lemma 5.7.16, ®= = (=1, · · · , =@) and the non-zero function k(®10, ®I, ®=)

is defined in (5.7.5).

Step 2. In this step, we mainly prove the following result:

The function � (®I) = i( ®00, ®I, ®<) · k(®10, ®I, ®=) ·
:∏
8=1

4−23 (C,?)I28 is integrable over R: . (5.7.76)

Notice that i( ®00, ®I, ®<) and k(®10, ®I, ®=) are two determinants whose expression are given in

(5.7.5), and they are positive when ®I ∈ W>
:

because of (5.7.68) and (5.7.75). Following similar

approach as in (5.7.73) we can find

i( ®00, ®I, ®<) ≤ (:!) ( |I1 | + |I: |)D
:∏
9=1

421 (C,?)·(∑?

8=1 |U8 |<8) |I 9 |,

k(®10, ®I, ®=) ≤ (:!) ( |I1 | + |I: |)E
:∏
9=1

422 (C,?)·(∑@

8=1 |V8 |=8) |I 9 |,
(5.7.77)

when I1 > I2 > · · · > I: . Therefore,

� (®I) ≤ (:!)2 · ( |I1 | + |I: |)D+E ·
:∏
8=1

4� |I8 |−23 (C,?)·I28 (5.7.78)

where � = 21(C, ?) ·
∑?

8=1 |U8 |<8 + 22(C, ?) ·
∑@

8=1 |V8 |=8. The right hand side is integrable over R:

because of the quadratic terms in the exponential. Thus, � (®I) is integrable and we can define the

constant /2 =
∫
R:
� (I)1{I1>I2>···>I: }3I < ∞ and the function

d2 (I1, · · · , I: ) = /−1
2 · 1{I1>I2>···>I: } · i( ®00, ®I, ®<) · k(®10, ®I, ®=) ·

:∏
8=1

4−23 (C,?)I28 (5.7.79)
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is a density because it’s non-negative and integrates to 1 over R: .

Step 3. Denote /)
®00,®10

as the random vector /) in Definition 5.7.1 associated with vectors ®00 and

®10, and in this step we prove it weakly converges to the continuous distribution with density d2 (I)

we just constructed in (5.7.79). Suppose L)+ is an avoiding Bernoulli line ensemble starting with

®G)+ =
(
G)+,1, · · · , G

)
+,:

)
and ending with ®H)+ =

(
H)+,1, · · · , H

)
+,:

)
and follows the distribution P0,),®G)+ ,®H)+

�E>83,�4A
.

The vectors ®G)+ and ®H)+ are two signatures of length : that satisfies the following:

1. Let 1: denote the vector (1, 1, · · · , 1) of length : , then

lim
)→∞

®G)+√
)
= ®�n,+, lim

)→∞

®H)+ − ?)1:√
)

= ®�n,+ (5.7.80)

2. G)+,8 ≥ G)8 , H)+,8 ≥ H)8 , for 8 = 1, · · · , : , which means the endpoints of the newly constructed

line ensembles dominate the original ones.

This can be achieved due to the limiting behavior of ®G)+ and ®H)+ and the fact that ®�n,+ and ®�n,+

dominate ®00 and ®10. Analogously, we construct another avoiding Bernoulli line ensemble L)− with

endpoints ®G)− and ®H)− and distribution P0,),®G)− ,®H)−
�E>83,�4A

such that lim)→∞
®G)−√
)
= ®�n,−, lim)→∞

®H)−−?)1:√
)

=

®�n,−, and G)−,8 ≤ G)8 , H)−,8 ≤ H)8 for 8 = 1, · · · , : .

Since now ®�n,+, ®�n,−, ®�n,+, ®�n,− have distinct elements, we can apply the results in Proposition

5.7.2 and conclude the weak convergence:

/)®�n ,+, ®�n ,+
⇒ dn,+(I), /)®�n ,−, ®�n ,−

⇒ dn,−(I)

where /)®�n ,+, ®�n ,+
and /)®�n ,−, ®�n ,−

are obtained by scaling the line ensembles L)+ and L)− through

Definition 5.7.1, dn,+(I) and dn,−(I) are densities which are obtained by plugging ®�n,+, ®�n,+ and

®�n,−, ®�n,− into the formula of d(I) in (5.7.3).

In order to prove the weak convergence of /)
®00,®10

, it is sufficient to prove for any ' = (−∞, D1]×
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(−∞, D2] × · · · × (−∞, D: ], where D8 ∈ R, we have

lim
)→∞

P(/)
®00,®10
∈ ') =

∫
'

d2 (I)3I (5.7.81)

Actually, by Lemma 5.2.1, we can construct a sequence of probability spaces (Ω) , F) , P) ))≥1

such that for each ) ∈ Z+, we have random variables L)+ and L) having law P0,),®G)+ ,®H)+
�E>83,�4A

, and

P
0,),®G) ,®H)
�E>83,�4A

under measure P) , respectively. Also, we have L)+ (8, A) ≥ L) (8, A) with probability 1,

where L)+ (8, A)(resp., L) (8, A)) is the value of the 8-Cℎ up-right path of L)+(resp., L) ) at A ∈ È0, )É.

Similarly, we can construct another sequence of probability spaces (Ω′
)
, F ′

)
,Q) ))≥1 such that for

each ) ∈ Z+, we have random variables L)− and L) have law P0,),®G)− ,®H)−
0E>83,�4A

, and P0,),®G) ,®H)
0E>83,�4A

under

measure Q) , respectively, along with Q)
(
L)−(8, A) ≤ L) (8, A), 8 = 1, · · · , :, A ∈ È0, )É

)
= 1.

Therefore, we have that under measure P) and Q) :

P) (/)®�n ,+, ®�n ,+ ∈ ') ≤ P) (/
)

®00,®10
∈ '), Q) (/)®�n ,−, ®�n ,− ∈ ') ≥ Q) (/

)

®00,®10
∈ ') (5.7.82)

Take limit-infimum and limit-supremum on both sides of the first and second inequality in (5.7.82)

respectively, we get

∫
'

dn,+(I)3I ≤ lim inf
)→∞

P) (/)®00,®10
∈ '),

∫
'

dn,−(I)3I ≥ lim sup
)→∞

Q) (/)®00,®10
∈ ') (5.7.83)

because of the weak convergence of /)®�n ,+, ®�n ,+
and /)®�n ,−, ®�n ,−

. Since the distributions of /)
®00,®10

under

measure P) and Q) are the same, we can combine the above two inequalities in (5.7.83) and get

∫
'

dn,+(I)3I ≤ lim inf
)→∞

P) (/)®00,®10
∈ ') ≤ lim sup

)→∞
P) (/)®00,®10

∈ ') ≤
∫
'

dn,−(I)3I (5.7.84)

The rest of the proof establishes the following statement:

lim
n↓0

∫
'

dn,+(I)3I = lim
n↓0

∫
'

dn,−(I)3I =
∫
'

d2 (I)3I (5.7.85)
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and thereby concluding

lim
)→∞

P) (/)®00,®10
∈ ') =

∫
'

d2 (I)3I

by letting n ↓ 0 in the inequality (5.7.84), and we prove the weak convergence of /)
®00,®10

.

The rest of the proof intends to establish (5.7.85). By (5.7.69), (5.7.71) and (5.7.74), we have

when n < 1:

n−D 5 ( ®�n,+, ®I) ≤ i( ®00, ®I, ®<) + �̃1 · ( |I1 | + |I: |)D+1 · 4�1·
∑:
9=1 |I 9 | ≡ � (®I) (5.7.86)

where the constants �̃1 = # ( ®<) · " ( ®<) · (:!) ·
(
max1≤8≤? <8

)
, �1 = 21(C, ?) · : · (max1≤8≤? <8)

only depend on ®<. Analogously, we can find constants �̃2 and �2 only depending on ®= such that

n−E 5 ( ®�n,+, ®I) ≤ i(®10, ®I, ®=) + �̃2 · ( |I1 | + |I: |)E+1 · 4�2·
∑:
9=1 |I 9 | ≡ � (®I) (5.7.87)

Therefore, we obtain

n−(D+E) 5 ( ®�n,+, ®I)6( ®�n,+, ®I)
:∏
8=1

4−23 (C,?)I28 ≤ � (®I)� (®I)
:∏
8=1

4−23 (C,?)I28 (5.7.88)

and the right hand side of (5.7.88) is integrable because of the quadratic terms in the exponential.

Let / ®�n ,+, ®�n ,+ be the normalizing constant in the density (5.7.3) when ®0 and ®1 equal to ®�n,+ and

®�n,+. Then, we have

lim
n↓0

n−(D+E)/ ®�n ,+, ®�n ,+ = lim
n↓0

∫
W>
:

(
n−D 5 ( ®�n,+, ®I)

) (
n−E6( ®�n,+, ®I)

) :∏
8=1

4−23 (C,?)I28 3I

=

∫
W>
:

i( ®00, ®I, ®<)k(®10, ®I, ®=)
:∏
8=1

4−23 (C,?)I28 3I = /2

(5.7.89)

where the second equality uses dominated convergence theorem with the dominating function

being the right hand side of (5.7.88) as well as results (5.7.68) and (5.7.75), and the last equality is
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due to (5.7.79) which gives the definition of /2. Therefore, we conclude

lim
n↓0

/−1
®�n ,+, ®�n ,+

· 5 ( ®0, ®I) · 6(®1, ®I) = lim
n↓0

(
nD+E/−1

®�n ,+, ®�n ,+

)
· (n−D 5 ( ®0, ®I)) ·

(
n−E6(®1, ®I)

)
= /−1

2 i( ®00, ®I, ®<)k(®10, ®I, ®=)
(5.7.90)

which implies dn,+(I) pointwise converges to d2 (I) when n ↓ 0. Since dn,+(I)1' ≤ dn,+(I) is

bounded by an integrable function, by Dominated Convergence Theorem we have:

lim
n↓0

∫
'

dn,+(I)3I =
∫
'

d2 (I)3I

Analogously, we can get limn↓0
∫
'
dn,−(I)3I =

∫
'
d2 (I)3I and we proved the statement (5.7.85),

which completes the proof.
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Chapter 6: Large deviation principle of the asymmetric simple exclusion

process (ASEP)

6.1 Introduction

6.1.1 The ASEP and main results

In this paper, we study the upper-tail Large Deviation Principle (LDP) of the asymmetric simple

exclusion process (ASEP) with step initial data. The ASEP is a continuous-time Markov chain on

particle configurations x = (G1 > G2 > · · · ) in Z. The process can be described as follows. Each

site 8 ∈ Z can be occupied by at most one particle, which has an independent exponential clock

with exponential waiting time of mean 1. When the clock rings, the particle jumps to the right

with probability @ or to the left with probability ? = 1 − @. However, the jump is only permissible

when the target site is unoccupied. For our purposes, it suffices to consider configurations with a

rightmost particle. At any time C ∈ R>0, the process has the configuration x(C) = (G1(C) > G2(C) >

· · · ) in Z, where G 9 (C) denotes the location of the 9-th rightmost particle at this time. Appearing

first in the biology work of Macdonald, Gibbs, and Pipkin [184] and introduced to the mathematics

community two years later by [223], the ASEP has since become the “default stochastic model

to study transport phenomena", including mass transport, traffic flow, queueing behavior, driven

lattices and turbulence. We refer to [49, 181, 180, 224] for the mathematical study of and related

to the ASEP.

When @ = 1, we obtain the totally asymmetric simple exclusion process (TASEP), which allows

jumps only to the right. It connects to several other physical systems such as the exponential

last-passage percolation, zero-temperature directed polymer in a random environment, the corner

growth process and is known to possess complete determinantal structure (free-fermionicity). We
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refer the readers to [155, 181, 180, 203] and the references therein for more thorough treatises of

the TASEP.

The dynamics of ASEP are uniquely determined once we specify its initial state. In the present

paper, we restrict our attention to the ASEP started from the step initial configuration, i.e. G 9 (0) =

− 9 , 9 = 1, 2, . . .. We set W = @ − ? and assume @ > 1
2 , i.e., ASEP has a drift to the right. An

observable of interest in ASEP is �0(C), the integrated current through 0 which is defined as:

�0(C) := the number of particles to the right of zero at time C. (6.1.1)

�0(C) can also be interpreted as the one-dimensional height function of the interface growth of

the ASEP and thus carries significance in the broader context of the Kardar-Parisi-Zhang (KPZ)

universality class. We will elaborate on the connection to KPZ universality class later in Section

6.1.3. As a well-known random growth model itself, the large-time behaviors of ASEP with step

initial conditions have been well-studied. Indeed, it is known [181, Chapter VIII, Theorem 5.12]

that the current satisfies the following strong law of large numbers:

1
C
�0

(
C
W

)
→ 1

4 , almost surely as C →∞.

The strong law has been later complemented by fluctuation results in the seminal works by

Tracy and Widom. In a series of papers [228], [230] [229], Tracy and Widom exploit the integra-

bility of ASEP with step initial data and establish via contour analysis that �0(C) when centered

by C
4 has typical deviations of the order C1/3 and has the following asymptotic fluctuations:

1
C1/3

24/3 ( − �0
(
C
W

)
+ C

4
)
=⇒ bGUE, (6.1.2)

where bGUE is the GUE Tracy-Widom distribution [231]. When @ = 1, (6.1.2) recovers the same

result on TASEP, which has been proved earlier by [155].

Given the existing fluctuation results on the ASEP with step initial data, it is natural to inquire
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into its Large Deviation Principle (LDP). Namely, we seek to find the probability of when the event

−�0( CW ) +
C
4 has deviations of order C. Intriguingly, one expects the lower- and upper-tail LDPs to

have different speeds: the upper-tail deviation is expected to occur at speed C whereas the lower-tail

has speed C2:

P
(
−�0

(
C
W

)
+ C

4 < −
C
4 H

)
≈ 4−C2Φ− (H); (Lower Tail)

P
(
−�0

(
C
W

)
+ C

4 > +
C
4 H

)
≈ 4−CΦ+ (H) . (Upper Tail)

Thus, the upper tail corresponds to ASEP being “too slow" while the lower tail corresponds to

ASEP being “too fast". Heuristically, we can make sense of such speed differentials. Because of

the nature of the exclusion process, when a single particle is moving slower than the usual, it forces

all the particles on the left of it to be automatically slower. Hence ASEP becomes slow if only one

particle is moving slow. This event has probability of the order exp(−$ (C)). However, in order

to ensure that there are many particles on the right side of origin (this corresponds to ASEP being

fast), it requires a large number of particles to move fast simulatenously. This event is much more

unlikely and happens with probability exp(−$ (C2)).

In this article, we focus on the upper-tail deviations of the ASEP with step initial data and

present the first proof of the ASEP upper-tail LDP on the complete real line. Consider ASEP with

@ ∈ ( 12 , 1) and set ? = 1 − @ and g = ?/@ ∈ (0, 1). Our first theorem computes the Bth-Lyapunov

exponent of g�0 (C) , which is the limit of the logarithm of E[gB�0 (C)] scaled by time:

Theorem 6.1.1. For B ∈ (0,∞) we have

lim
C→∞

1
C

log E[gB�0 (C)] = −ℎ@ (B) =: −(@ − ?)1 − g
B
2

1 + g B2
. (6.1.3)

It is well known (see Proposition 1.12 in [128] for example) that the upper-tail large deviation

principle of the stochastic process log g�0 (C) is the Legendre-Fenchel dual of the Lyapunov expo-
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nent in (6.1.3). Since g < 1, as a corollary, we obtain the following upper-tail large deviation rate

function for −�0(C).

Theorem 6.1.2. For any H ∈ (0, 1) we have

lim
C→∞

1
C

logP
(
−�0

(
C
W

)
+ C

4 >
C
4 H

)
= −[√H − (1 − H) tanh−1(√H)] =: −Φ+(H), (6.1.4)

where W = 2@ − 1. Furthermore, we have the following asymptotics near zero:

lim
H→0+

H−3/2Φ+(H) = 2
3 . (6.1.5)

Figure 6.1: The figure on the left is the plot of Φ+(H). The right one is the plot of Φ̃+(H).

Remark 6.1.3. Note that our large deviation result is restricted to H ∈ (0, 1) as P(−�0
(
C
W

)
+ C

4 >

C
4 H) = 0 for H ≥ 1. Furthermore, although Theorem 6.1.2 makes sense when @ = 1, one cannot

recover it from Theorem 6.1.1, which only makes sense for g = (1 − @)/@ ∈ (0, 1). However, as

mentioned before, [155] has already settled the @ = 1 TASEP case and obtained the upper-tail rate

function in a variational form. We will later show in Appendix 6.5 that [155] variational formula

for TASEP matches with our rate function in (6.1.4).

Remark 6.1.4. Recently, the work [85] has obtained a one-sided large deviation bound for the
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upper tail of the ASEP. In particular, they showed

P
(
−�0

(
C
W

)
+ C

4 >
C
4 H

)
≤ C4−CΦ̃+ (H) , H ∈ (0, 1). (6.1.6)

The function Φ̃+ coincides with the correct rate function Φ+ defined in (6.1.4) only for H ≤ H0 :=
1−2
√
@(1−@)

1+2
√
@(1−@)

, as captured by Figure 6.1. We will further compare and contrast our results and method

with [85] later in Section 6.1.3.

Remark 6.1.5. For H small enough, following (6.1.2) and upper tail decay of GUE Tracy-Widom

distribution [114], one expects

P
(
−�0

(
C
W

)
+ C

4 >
C
4 H

)
≈ P(bGUE > 2−2/3HC2/3) ≈ 4− 2

3 H
3/2C

Thus the asymptotics in (6.1.5) shows thatΦ+(H) indeed recovers the expected GUE Tracy-Widom

tails as H → 0+.

6.1.2 Sketch of proof

In this section we present a sketch of the proof of our main results. As explained before, Theo-

rem 6.1.2 can be obtained from Theorem 6.1.1 by standard Legendre-Fenchel transform technique.

So here we only give a brief account of the proof idea of Theorem 6.1.1. A more detailed overview

of the proofs of our main results can be found in Section 6.2.

The main component of our proof is the following g-Laplace transform formula for �0(C) that

appears in Theorem 5.3 in [49]:

Theorem 6.1.6 (Theorem 5.3 in [49]). Fix any X ∈ (0, 1). For Z > 0 we have

E
[
�@ (Zg�0 (C))

]
= det(� +  Z,C), �@ (Z) :=

∞∏
==0

1
1 + Zg= . (6.1.7)

Here det(� +  Z,C) is the Fredholm determinant of  Z,C : !2(ℭ(g1− X2 )) → !2(ℭ(g1− X2 )), and

ℭ(g1− X2 ) denotes a positively-oriented circular contour centered at 0 with radius g1− X2 . The oper-
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ator  Z,C is defined through the integral kernel

 Z,C (F, F′) :=
1

2ci

∫ X+i∞

X−i∞
Γ(−D)Γ(1 + D)ZD 6C (F)

6C (gDF)
dD

F′ − gDF , (6.1.8)

for 6C (I) = exp
(
(@−?)C
1+ I

g

)
.

Remark 6.1.7. The original statement of the above theorem in [49] appears in a much more gen-

eral setup with general conditions on the contours. We will explain the choice of our contours

stated above in Section 6.3 and check that it satisfies the general criterion for contours as stated in

Theorem 5.3 in [49].

We next recall that the Fredholm determinant is defined as a series as follows.

det(� +  Z,C) := 1 +
∞∑
!=1

tr( ∧!Z,C ) (6.1.9)

:= 1 +
∞∑
!=1

1
!!

∫
ℭ(g1− X2 )

· · ·
∫
ℭ(g1− X2 )

det( Z,C (F8, F 9 ))!8, 9=1

!∏
8=1

dF8 . (6.1.10)

The notation  ∧!
Z,C

comes from the exterior algebra definition, which we refer to [221] for more

details. As a clarifying remark, we use this exterior algebra notation only for the simplicity of its

expression and rely essentially on the definition in (6.1.10) throughout the rest of the paper.

To extract information on the fractional moments of g�0 (C) , we combine the formula in (6.1.7)

with the following elementary identity, which is a generalized version of Lemma 1.4 in [88].

Lemma 6.1.8. Fix = ∈ Z>0 and U ∈ [0, 1). Let* be a nonnegative random variable with finite =-th

moment. Let � : [0,∞) → [0, 1] be a =-times differentiable function such that
∫ ∞
0 Z−U� (=) (Z)dZ

is finite. Assume further that ‖� (:) ‖∞ < ∞ for all 1 ≤ : ≤ =. Then the (= − 1 + U)-th moment of

* is given by

E[*=−1+U] =

∞∫
0
Z−UE[*=� (=) (Z*)]dZ

∞∫
0
Z−U� (=) (Z)dZ

=

∞∫
0
Z−U d=

dZ=E[� (Z*)]dZ

∞∫
0
Z−U� (=) (Z)dZ

.
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The proof of this lemma follows by an interchange of measure justified by Fubini’s theorem

and the dominated convergence theorem, as E[*=] and ‖� (:) ‖∞ < ∞ for all 1 ≤ : ≤ =.

For B > 0, we apply this lemma with * = g�0 (C) , = = bBc + 1 and U = B − bBc. We take

� (G) = �@ (G) defined in (6.1.7) which is shown to be satisfy the hypothesis of Lemma 6.1.8 (see

Proposition 6.2.2). As a result, we transform the computation of E[gB�0 (C)] into that of

∫ ∞

0
Z−U

d=

dZ=
E[�@ (Zg�0 (C))]dZ . (6.1.11)

Utilizing the exact formula from (6.1.7) and the definition of Fredholm determinant from (6.1.10),

we can write the above expression as a series where we identify the leading term (corresponding

to ! = 1 term of the series) and a higher-order term (corresponding to ! ≥ 2 terms of the series).

We eventually show that the asymptotics of the leading term matches with the exact asymptotics in

(6.1.3) while the higher-order term decays much faster. This leads to the proof of Theorem 6.1.1.

The above description of our method is in line with the Lyapunov moment approach adopted

in the works of [88], [128] and [182] to obtain upper-tail large deviation results of other integrable

models, such as the KPZ equation. Namely, we extract fractional moments from the (g-)Laplace

transform such as (6.1.7) according to Lemma 6.1.8. In particular, our work draws from those of

[88] and [182], which studied the fractional moments of the Stochastic Heat Equation (SHE) and

the half-line Stochastic Heat Equation, respectively. We will further contextualize the connections

of our work to [88], [128] and [182] in Section 6.1.3. In the following text, however, we emphasize

a few key differences and technical challenges unique to the ASEP that we have encountered and

resolved in our proof.

First, unlike SHE or half-line SHE, the usual Laplace transform is not available in case of the

ASEP. Instead, we only have the g-Laplace transform for our observable of interest. As a result,

we have formulated Lemma 6.1.8 in our paper, which is more generalized than its prototype in [88,

Lemma 1.4], to feed in the g-Laplace transform. Consequently, we have worked with g-exponential

functions in our analysis.
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Another key difference is that the kernel  Z,C in (6.1.8) in our model is much more intricate

than its counterpart in the KPZ model and leads to much more involved analysis of the leading

term. Indeed,  Z,C is asymmetric and as D varies in (X − i∞, X + i∞), the function 6C (F)
6C (gDF) appearing

in the kernel  Z,C , exhibits a periodic behavior, whereas the kernel in the KPZ models involves

Airy functions in its integrand which have a unique maximum and are much easier to analyze.

Furthermore, our model exhibits exponentially decaying moments of g�0 (C) as opposed to the ex-

ponentially increasing ones of the KPZ models in [88] and [182] and this demands a more precise

understanding of the trace term of our Fredholm determinant expansion. For instance in Section

6.3, to obtain the precise asymptotics for our leading term, we have performed steepest descent

analysis on the kernel  Z,C , where the periodic nature of 6C (F)
6C (gDF) results in infinitely many critical

points. A major technical challenge in our proof is to argue how the contribution from only one

of the critical points dominates the those from the rest and this is accomplished in the proof of

Proposition 6.2.4. Similarly, the asymmetry of the kernel in the ASEP model has led us to opt for

the Hadamard’s inequality approach as exemplified in Section 4 of [182], instead of the operator

theory argument in [88], to obtain a sufficient upper bound for the higher-order terms in our paper

in Section 6.4.

6.1.3 Comparison to Previous Works

In a broader context, our main result on the Lyapunov exponent for the ASEP with step initial

data and its upper-tail large deviation belongs to the undertakings of studying the intermittency

phenomenon and large deviation problems of integrable models in the KPZ universality class. As

we have previously alluded to, the KPZ universality class contains a collection of random growth

models that are characterized by scaling exponent of 1/3 and certain universal non-Gaussian large

time fluctuations. We refer to [5, 77, 227] and the references therein for more details. The ASEP

is one of the standard one-dimensional models of the KPZ universality class and bears connection

to several other integrable models in this class, such as the stochastic six-vertex model [48, 2, 78],

KPZ equation [53, 110, 218, 5, 77], and @-TASEP [49].
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On the other hand, the intermittency property is a universal phenomenon that captures high

population concentrations on small spatial islands over large time. Mathematically, the intermit-

tency of a random field is defined in terms of its Lyapunov exponents. In particular, the connection

between integer Lyapunov moments and intermittency has long been an active area of study in the

SPDE community in last few decades [127, 57, 34, 125, 147, 70, 61, 18]. For the KPZ equation,

[159] predicted the integer Lyapunov exponents for the SHE using replica Bethe anstaz techniques.

This result was later first rigorously attempted in [34] and correctly proven in [62]. Similar formu-

las were shown for the moments of the parabolic Anderson model, semi-discrete directed polymers,

q-Whittaker process (see [46] and [47]). For the ASEP, integer moments formula for g�0 (C) were

obtained in [49] using nested contour integral ansatz.

From the perspective of tail events, by studying the asymptotics of integer Lyapunov exponents

formulas, one can extract one-sided bounds on the upper tails of integrable models. However,

these integer Lyapunov exponents alone are not sufficient to provide the exact large deviation rate

function.

Recently, a stream of effort has been devoted to studying large deviations for some KPZ class

models by explicitly computing the fractional Lyapunov exponents. The work of [88] set this series

of effort in motion by solving the KPZ upper-tail large deviation principle through the fractional

Lyapunov exponents of the SHE with delta initial data. [128] soon extended the same result for

the SHE for a large class of initial data, including any random bounded positive initial data and the

stationary initial data. An exact way to compute every positive Lyapunov exponent of the half-line

SHE was also uncovered in [182]. In lieu of these developments, our main result for the ASEP

with step initial data and its upper-tail large deviation fits into this broader endeavor of studying

large deviation problems of integrable models with the Lyapunov exponent appproach.

Meanwhile, in the direction of the ASEP, as mentioned before, [85] has produced a one-sided

large deviation bound for the upper-tail probability appearing in (6.1.4) which coincides with the

correct rate function Φ+ defined in (6.1.4) for H ≤ H0 := 1−2
√
@(1−@)

1+2
√
@(1−@)

. This result was sufficient for

their purpose of establishing a near-exponential fixation time for the coarsening model on Z2 and
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[85] obtained it via steepest descent analysis on the exact formula for the probability of �0(C/W).

More specially, they worked with the following result from [229, Lemma 4] as input:

P
(
−�0

(
C
W

)
+ C

4 >
C
4 H

)
=

1
2ci

∫
|` |='
(`; g)∞ det(1 + `� (`)<,C )

d`
`
, (6.1.12)

where < = b 14 C (1 − H)c, ' ∈ (g,∞) \ {1, g
−1, g−2, . . .} is fixed, (`; g)∞ := (1 − `) (1 − `g) (1 −

`g2) . . . is the infinite g-Pochhammer symbol and � (`)<,C is the kernel defined in Equation (3.4) of

[85]. Analyzing the exact pre-limit Fredholm determinant det(1 + `� (`)<,C ), [85] chose appropriate

contours for the kernel � (`)<,C that pass through its critical points and performed a steepest descent

analysis. However, their choice of contours was unattainable beyond the threshold H0. Namely,

if we attempted to deform the same contours for H > H0, we would inevitably cross poles, which

rendered the steepest descent analysis much trickier. By adopting the Lyapunov moment approach,

we have avoided this problem when looking for the precise large deviation rate function.

In addition to the relavence of our upper-tail LDP result, it is also worthy to remark on the

difficulty of obtaining a lower-tail LDP of the ASEP with step initial data. As explained before, the

lower-tail P(−�0
(
C
W

)
+ C

4 < −
C
4 H) is expected to go to zero at a much faster rate of exp(−C2Φ−(H)).

The existence of the lower-tail rate function has so far only been shown in the case of TASEP in

[155] through its connection to continuous log-gases. The functional LDPs for TASEP for both

tails have been studied in [154], [234], [210] (upper tail), and [197] (lower-tail). Large deviations

for open systems with boundaries in contact with stochastic reservoirs has also been studied in

physics literature. We mention [103], [102], [43] and the references therein for works in these

directions.

More broadly for integrable models in the KPZ universality class, lower tail of the KPZ equa-

tion has been extensively studied in both mathematics and physics communities. In the physics

literature, [175] provided the first prediction of the large deviation tails of the KPZ equation for

narrow wedge initial data. For the upper tail, their analysis also yields subdominant corrections

([178, Supp. Mat.]). Furthermore, the physics work of [219] first predicted lower-tail rate function
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of the KPZ equation for narrow wedge initial data in an analytical form, followed by the derivations

in [72] and [168] via different methods. The asymptotics of deep lower tail of KPZ equation was

later obtained in [167] for a wide class of initial data. From the mathematics front, the work [80]

provided detailed, rigorous tail bounds for the lower tail of the KPZ equation for narrow wedge

initial data. The precise rate function of its lower-tail LDP was later proved in [232] and [52],

which confirmed the prediction of existing physics literature. The four different routes of deriving

the lower-tail LDP in [219], [72], [168] and [232] were later shown to be closely related in [166].

A new route has also been recently obtained in the physics work of [176] (see also [205]).

In the short time regime, large deviations for the KPZ equation has been studied extensively in

physics literature (see [177], [164], [163] and the references therein for a review). Recently, [183]

rigorously derived the large deviation rate function of the KPZ equation in the short-time regime

in a variational form and recovered deep lower-tail asymptotics, confirming existing physics pre-

dictions. For non-integrable models, large deviations of first-passage percolation were studied in

[63] and more recently [30]. For last-passage percolation with general weights, recently, geometry

of polymers under lower tail large deviation regime has been studied in [29].

Notation

Throughout the rest of the paper, we use C = C(0, 1, 2, . . .) > 0 to denote a generic deter-

ministic positive finite constant that is dependent on the designated variables 0, 1, 2, . . .. However,

its particular content may change from line to line. We also use the notation ℭ(A) to denote a

positively oriented circle with center at origin and radius A > 0.

Outline

The rest of this article is organized as follows. In Section 6.2, we introduce the main ingredients

for the proofs of Theorem 6.1.1 and 6.1.2. In particular, we reduce the proof of our main results to

Proposition 6.2.4 (asymptotics of the leading order) and Proposition 6.2.5 (estimates for the higher

order), which are proved in Sections 6.3 and 6.4 respectively. Finally, in Appendix 6.5 we compare
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our rate function Φ+(H), defined in (6.1.4), to that of TASEP.

6.2 Proof of Main Results

In this section, we give a detailed outline of the proofs of Theorems 6.1.1 and 6.1.2. In Section

6.2.1 we collect some useful properties of ℎ@ and �@ functions defined in (6.1.4) and (6.1.7) re-

spectively. In Section 6.2.2 we complete the proof of Theorems 6.1.1 and 6.1.2 assuming technical

estimates on the leading order term (Proposition 6.2.4) and higher order term (Proposition 6.2.5).

Throughout this paper, we fix B > 0 and set = = bBc +1 ≥ 1 and U = B− bBc so that B = =−1+U.

We also fix @ ∈ ( 12 , 1) and set ? = 1 − @ and g = ?/@ ∈ (0, 1) for the rest of the article.

6.2.1 Properties of ℎ@ (G) and �@ (G)

Recall the Lyapunov exponent ℎ@ (G) defined in (6.1.3) and the �@ (G) function defined in

(6.1.7). The following two propositions investigates various properties of these two functions

which are necessary for our later proofs.

Proposition 6.2.1 (Properties of ℎ@). Consider the function ℎ@ : (0,∞) → R defined by ℎ@ (G) =

(@ − ?) 1−g
G
2

1+g
G
2

. Then, the following properties hold true:

(a) �@ (G) := ℎ@ (G)
G

is strictly positive and strictly decreasing with

lim
G→0+

�@ (G) = 1
4 (? − @) log g > 0.

(b) ℎ@ is strictly subadditive in the sense that for any G, H ∈ (0,∞) we have

ℎ@ (G + H) < ℎ@ (G) + ℎ@ (H).

(c) ℎ@ is related to Φ+ defined in (6.1.4) via the following Legendre-Fenchel type transformation:

Φ+(H) = sup
B∈R>0

{
B
1 − H

4
log g + 1

@ − ? ℎ@ (B)
}
, H ∈ (0, 1).
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Proof. For (a), first, the positivity of �@ (G) follows from the positivity of ℎ@ (G). To see its growth,

taking the derivative of �@ (G) we obtain

�′@ (G) =
(@ − ?) (−Gg G2 log g − 1 + gG)

(1 + g G2 )2G2
. (6.2.1)

Note that the numerator on the r.h.s of (6.2.1) is 0 when G = 0 and its derivative against G is

g
G
2 log g(g G2 − G

2 log g − 1) < 0 for G > 0. Thus �′@ (G) is strictly negative when G > 0 and �@ (G) is

strictly decreasing for G > 0. L’Hôpital’s rule yields that limG→0+ �@ (G) = ℎ′@ (0) = 1
4 (@ − ?) log g.

For (b), direct computation yields

ℎ@ (G + H) − ℎ@ (G) − ℎ@ (H) = −(@ − ?)
(1 − g

H

2 ) (1 − g G2 ) (1 − g
G+H

2 )
(1 + g

G+H
2 ) (1 + g G2 ) (1 + g

H

2 )
< 0. (6.2.2)

Lastly, for part (c), we fix H ∈ (0, 1) and define

6H (B) := B
1 − H

4
log g + 1

@ − ? ℎ@ (B), B > 0.

Direct computation yields 6′H (B) = (
1−H

4 −
g
B
2

(1+g
B
2 )2
) log g and 6′′H (B) =

g
B
2 (g

B
2 −1) log2 g

2(1+g
B
2 )3

< 0. Thus

6H (B) is concave on (0,∞) and hence attains its unique maxima when 6′H (B) = 0 or equivalently

1−H
4 = g

B
2

(1+g
B
2 )2
. The last equation has B = 2 logg (

1−√H
1+√H ) as the only positive solution and hence

it defines the unique maximum. Substituting this B back into 6H (B) generates the final result as

Φ+(H).

Proposition 6.2.2 (Properties of �@ (Z)). Consider the function �@ : [0,∞) → [0, 1] defined by

�@ (Z) :=
∏∞
==0(1 + Zg=)−1. Then, the following properties hold true:

(a) �@ is an infinitely differentiable function with (−1)=� (=)@ (Z) ≥ 0 for all G > 0. Furthermore,

‖� (=)@ ‖∞ < ∞ for each =.

(b) For each = ∈ Z>0, and U ∈ [0, 1), (−1)=
∫ ∞
0 Z−U� (=)@ (Z)dZ is positive and finite.
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(c) All the derivatives of �@ have superpolynomial decay. In other words for any <, = ∈ Z≥0 we

have

sup
Z>0
|Z<� (=)@ (Z) | < ∞.

Proof. (a) Note that �@ (Z) =
∏∞
==0(1 + Zg=)−1 = (−Z ; g)−1

∞ where we recall that (−Z ; g)∞ is the

g-Pochhammer symbol. As (−Z ; g)∞ is analytic [6, Corollary A.1.6.] and nonzero for Z ∈ [0,∞),

its inverse �@ (Z) is analytic.

We next rewrite �@ (Z) =
∏∞
==0 5= (Z), where 5= (Z) = (1 + Zg=)−1. Denote � (Z) := log �@ (Z).

Since each 5= (Z) ∈ (0, 1) is analytic for Z ∈ [0,∞) and the product
∏∞
==0 5= (Z) ∈ (0, 1) converges

locally and uniformly, � (Z) is well-defined and� (Z) = ∑∞
==0 log 5= (Z).Given that |∑∞==0

1
5= (Z) 5

′
= (Z) | =∑∞

==0
g=

(1+Zg=) <
1

1−g , we have

�′(Z) =
�′@ (Z)
�@ (Z)

=

∞∑
==1

5 ′= (Z)
5= (Z)

=: � (Z). (6.2.3)

Note that � (Z) = −∑∞
9=1 g

9 5 9 (Z) and |� (Z) | < ∞. For each < ∈ Z>0, let us set � (<) (Z) :=

−∑∞
9=1 g

9 5
(<)
9
(Z). As 5 (<)

9
(Z) = (−1)<<! g<9

(1+bg 9 )<+1 , we obtain |� (<) (Z) | ≤ <!
1−g<+1 < ∞ converges

locally and uniformly. Induction on < gives us that � (Z) is infinitely differentiable and the <-th

derivative of � is � (<) . It follows that �@ (Z) is infinitely differentiable too. In particular, for any

finite = ∈ Z≥0, by Leibniz’s rule on the relation (6.2.3) we obtain

�
(=+1)
@ (Z) =

=∑
:=0

(
=

:

)
�
(=−:)
@ (Z)� (:) (Z). (6.2.4)

Observe that (−1):+1� (:) is positive and finite. As �@ is positive and finite, using (6.2.4), induction

gives us that (−1)=� (=)@ is also positive and finite. As ‖� (<) ‖∞ and ‖�@ ‖∞ are finite, using (6.2.4),

induction gives us that ‖� (=)@ ‖∞ is finite for any = ∈ Z≥0.

(b) For U ∈ [0, 1), positivity of the integral (−1)=
∫ ∞
0 Z−U� (=)@ (Z)dZ follows from part (a). To
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check the integrability, we first verify the = = 0 case. Since Z ≥ 0 and g ∈ (0, 1),

0 <
∫ ∞

0
Z−U�@ (Z)dZ =

∫ ∞

0
Z−U

∞∏
<=0

1
1 + Zg< dZ <

∫ ∞

0
Z−U

1
1 + Z dZ

=

∫ 1

0
Z−U

1
1 + Z dZ +

∫ ∞

1

dZ
ZU (1 + Z) <

∫ 1

0
Z−UdZ +

∫ ∞

1

dZ
ZU+1

< ∞.

When = > 0, using (6.2.4) and the fact the |� (<) (Z) | < <!
1−g<+1 , by induction we deduce the

finiteness of (−1)=
∫ ∞
0 Z−U� (=)@ (Z)dZ .

(c) Clearly for each < we have �@ (Z) ≤ 1
(1+Zg<)<+1 forcing superpolynomial decay of �@. The

superpolynomial decay of higher order derivative now follows via induction using (6.2.4).

6.2.2 Proof of Theorem 6.1.1 and Theorem 6.1.2

Recall �0(C) from (6.1.1). As explained in Section 6.1.2, the main idea is to use Lemma 6.1.8

with * = g�0 (C) and � = �@ defined in (6.1.7). Observe that Proposition 6.2.2 guarantees � = �@

can be chosen in Lemma 6.1.8. In the following proposition, we show that limiting behavior of

E[gB�0 (C)] is governed by the integral in (6.1.11) restricted to [1,∞).

Proposition 6.2.3. For any B > 0, we have

lim
C→∞

1
C

log E[gB�0 (C)] = lim
C→∞

1
C

log
[
(−1)=

∫ ∞

1
Z−U

d=

dZ=
E[�@ (Zg�0 (C))]dZ

]
, (6.2.5)

where = = bBc + 1 ≥ 1 and U = B − bBc so that B = = − 1 + U.

Proof. Let * = g�0 (C) . In this proof, we find an upper and a lower bound of E[*B] and show that

as C →∞, after taking logarithm of E[*B] and dividing by C, the two bounds give matching results.

Note that as g ∈ (0, 1) and �0(C) ≥ 0 for any = ∈ Z≥0 and C > 0, * has finite =-th moment. By

Proposition 6.2.2, �@ is =-times differentiable and |
∫ ∞
0 G−U� (=)@ (G)dG | < ∞. Denoting dP* (D) as

the measure corresponding to the random variable* we have

(−1)=
∫ ∞

1
Z−U

d=

dZ=
E[�@ (Zg�0 (C))]dZ = (−1)=

∫ ∞

1
Z−U

∫ ∞

0
D=�

(=)
@ (ZD)dP* (D)dZ . (6.2.6)
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The (−1)= factor ensures that the above quantities are nonnegative via Proposition 6.2.2 (a). By the

finiteness of the =-th moment of*, ‖� (=)@ ‖∞ < ∞ (by Proposition 6.2.2 (a)), and Fubini’s theorem,

we can interchange the integrals and obtain

r.h.s of (6.2.6) = (−1)=
∫ ∞

0
D=−1+U

∫ ∞

1
(ZD)−U� (=)@ (ZD)d(DZ)dP* (D)

= (−1)=
∫ ∞

0
D=−1+U

∫ ∞

D

G−U� (=)@ (G)dG dP* (D). (6.2.7)

Since the random variable* ∈ [0, 1], we can lower bound the inner integral on the r.h.s. of (6.2.7)

by restricting the G-integral to [1,∞). Recalling that B = = − 1 + U we have

r.h.s. of (6.2.6) ≥ (−1)=
(∫ ∞

1
G−U� (=)@ (G)dG

)
E[gB�0 (C)] . (6.2.8)

As for the upper bound for r.h.s. of (6.2.6), we may extend the range of integration to [0,∞). Apply

Lemma 6.1.8 with � ↦→ �@ and* ↦→ gB�0 (C) to get

r.h.s. of (6.2.6) ≤ (−1)=
∫ ∞

0
Z−U

d=

dZ=
E

[
�@ (Z*)

]
dZ

=

[
(−1)=

∫ ∞

0
Z−U� (=)@ (Z)dZ

]
E[gB�0 (C)] .

(6.2.9)

Note that both the prefactors of E[gB�0 (C)] in (6.2.8) and (6.2.9) are positive and free of C. Taking

logarithms and dividing by C, we get the desired result.

Next we truncate the integral in r.h.s. of (6.2.5) further. Recall the function �@ (G) defined in

Proposition 6.2.1 (a). We separate the range of integration [1,∞) into [1, 4C�@ (B/2)] and (4C�@ (B/2) ,∞)

and make use of the Fredholm determinant formula for E[�@ (Zg�0 (C))] from Theorem 6.1.6 to

write the integral in r.h.s. of (6.2.5) as follows.

(−1)=
∫ ∞

1
Z−U

d=

dZ=
E[�@ (Zg�0 (C))]dZ = (−1)=

∫ 4
C�@ ( B2 )

1
Z−U

d=

dZ=
E[�@ (Zg�0 (C))]dZ + RB (C)
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= (−1)=
∫ 4

C�@ ( B2 )

1
Z−U

d=

dZ=
det(� +  Z,C)dZ + RB (C),

(6.2.10)

where

RB (C) := (−1)=
∫ ∞

4
C�@ ( B2 )

Z−U
d=

dZ=
E[�@ (Zg�0 (C))]dZ (6.2.11)

Recall the definition of Fredholm determinant from (6.1.10). Assuming tr( Z,C) to be differentiable

for a moment we may split the first term in (6.2.10) into two parts and write

(−1)=
∫ 4

C�@ ( B2 )

1
Z−U

d=

dZ=
det(� +  Z,C)dZ = AB (C) + BB (C) (6.2.12)

where

AB (C) := (−1)=
∫ 4

C�@ ( B2 )

1
Z−U

d=

dZ=
tr( Z,C) dZ, (6.2.13)

BB (C) := (−1)=
∫ 4

C�@ ( B2 )

1
Z−U

d=

dZ=
[det(� +  Z,C) − tr( Z,C)] dZ . (6.2.14)

The next two propositions verify that both AB (C) and BB (C) are well-defined and we defer

their proofs to Sections 6.3 and 6.4, respectively. The first one guarantees that tr( Z,C) is indeed

infinitely differentiable and provides the asymptotics for Re[AB (C)].

Proposition 6.2.4. For each Z > 0, the function Z ↦→ tr( Z,C) is infinitely differentiable and thus

AB (C) in (6.2.13) is well defined. Furthermore, for any B > 0, we have

lim
C→∞

log (Re[AB (C)]) = −ℎ@ (B). (6.2.15)

From (6.2.10), we know that the Fredholm determinant det(� + Z,C) is infinitely differentiable.

Thus, proposition 6.2.4 renders (det(� +  Z,C) − tr( Z,C)) infinitely differentiable as well. Hence

BB (C) is well-defined. In fact, we have the following asymptotics for BB (C).
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Proposition 6.2.5. Fix any B > 0 so that B − bBc > 0. Recall BB (C) from (6.2.14). There exists a

constant C = C(@, B) > 0 such that for all C > 0, we have

|BB (C) | ≤ C exp(−Cℎ@ (B) − 1
C C), (6.2.16)

where ℎ@ (B) is defined in (6.1.3).

Note that Proposition 6.2.5 in its current form does not cover integer B. We later explain in

Section 6.4 why B − bBc > 0 is necessary for our proof. However, this does not effect our main

results as one can deduce Theorem 6.1.1 for integer B as well via a simple continuity argument,

which we present below. Assuming Propositions 6.2.4 and 6.2.5, we now complete the proof of

Theorem 6.1.1 and Theorem 6.1.2.

Proof of Theorem 6.1.1. Fix B > 0 so that B− bBc > 0. Appealing to Proposition 6.2.3 and (6.2.10)

and (6.2.12) we see that

lim
C→∞

1
C

log E[gB�0 (C)] = lim
C→∞

1
C

log [AB (C) + BB (C) + RB (C)] ,

whereAB (C), BB (C), and RB (C) are defined in (6.2.13), (6.2.14) and (6.2.11) respectively. For RB (C),

setting + = Zg�0 (C) and noting B = = − 1 + U, we see that

|RB (C) | =
∫ ∞

4
C�@ ( B2 )

Z−U−=E
[
|+=� (=)@ (+) |

]
dZ ≤

[
sup
E>0
|E=� (=)@ (E) |

]
B−1 exp(−CB�@ ( B2 )).

The fact that supE>0 |E=�
(=)
@ (E) | is finite follows from Proposition 6.2.2 (c). Note that B�@ ( B2 ) is

strictly bigger than ℎ@ (B) = B�@ (B) > 0 via Proposition 6.2.1 (a). By Proposition 6.2.4, when C is

large, we see that Re[AB (C)] grows like exp(−Cℎ@ (B)) > exp(−CB�@ ( B2 )). Similarly, Proposition

6.2.5 shows that Re[BB (C)] is bounded from above by C exp(−Cℎ@ (B) − 1
C C) for some constant

C = C(@, B), which is strictly less than exp(−Cℎ@ (B)) for large enough C. Indeed for all large
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enough C, we have

1
2

Re[AB (C)] ≤ Re[AB (C) + BB (C) + RB (C)] ≤
3
2

Re[AB (C)] .

Taking logarithms and dividing by C, and noting that AB (C) + BB (C) + RB (C) is always real, we get

(6.1.3) for any noninteger positive B.

To prove (6.1.3) for positive integer B, we fix B ∈ Z>0. For any  > 2, observe that as �0(C) is

a non-negative random variable (recall the definition from (6.1.1)) we have

g(B− 
−1)�0 (C) ≥ gB�0 (C) ≥ g(B+ −1)�0 (C) .

Taking expectations, then logarithms and dividing by C, in view of noninteger version of (6.1.3) we

have

−ℎ@ (B −  −1) ≥ lim sup
C→∞

1
C

log E[gB�0 (C)] ≥ lim inf
C→∞

1
C

log E[gB�0 (C)] ≥ −ℎ@ (B +  −1).

Taking  →∞ we get the desired result for integer B.

Proof of Theorem 6.1.2. For the large deviation result, applying Proposition 1.12 in [128], with

- (C) = �0(C/W) · log g, and noting the Legendre-Fenchel type identity for Φ+(H) from Proposition

6.2.1 (c), we arrive at (6.1.4). To prove (6.1.5), applying L-Hôpital rule a couple of times we get

lim
H→0+

Φ+(H)
H3/2 = lim

H→0+
2
3
Φ′+(H)√

H
= lim
G→0+

2
3

tanh−1(G)
G

= lim
G→0+

2
3
· 1

1 − G2 =
2
3
.

This completes the proof of the theorem.

6.3 Asymptotics of the Leading Term

The goal of this section is to obtain exact asymptotics of Re[AB (C)] defined in (6.2.13) as

C → ∞. Recall the definition of the kernel  Z,C from (6.1.8). We employ a standard idea that the
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asymptotic behavior of the kernel  Z,C and its ‘derivative’ (see (6.3.8)) and subsequently that of

Re[AB (C)] can be derived by the steepest descent method.

Towards this end, we first collect all the technical estimates related to the kernel  Z,C in Section

6.3.1 and go on to complete the proof of Proposition 6.2.4 in Section 6.3.2.

6.3.1 Technical estimates of the Kernel

In this section, we analyze the kernel  Z,C . Much of our subsequent analysis boils down to

understanding the function 6C (I), defined in (6.1.8), that appears in the kernel  Z,C . Towards this

end, we consider

5 (D, I) :=
(@ − ?)
1 + I

g

− (@ − ?)
1 + gDI

g

, (6.3.1)

so that the ratio 6C (I)
6C (gDI) that appears in the kernel  Z,C defined in (6.1.8) equals to exp (C 5 (D, I)).

Below we collect some useful properties of this function 5 (D, I). First note that mI 5 (D, I) = 0 has

two solutions I = ±g1− D2 , and

m2
I 5 (D, I)

��
I=−g1− D2 = −2(@ − ?) g

3D
2 −2 + g2D−2

(1 − g D2 )3
,

m2
I 5 (D, I)

��
I=g

1− D2 = 2(@ − ?) g
3D
2 −2 − g2D−2

(1 + g D2 )3
.

(6.3.2)

The following lemma tells us how the maximum of Re[ 5 (D, I)] behaves.

Lemma 6.3.1. Fix d > 0. For any D ∈ C, with Re[D] = d and I ∈ ℭ(g1− d2 ), we have

Re[ 5 (D, I)] ≤ 5 (d, g1− d2 ) = −ℎ@ (d) (6.3.3)

where ℎ@ (d) is defined in (6.1.3) and ℭ(g1− d2 ) is the circle with center at the origin and radius

g
1− d2 . Equality in (6.3.3) holds if and only if gi Im D = 1, and I = g1− d2 simultaneously. Furthermore,
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for the same range of D and I, we have the following inequality:

5 (g, g1− d2 ) − Re[ 5 (D, I)] ≥ (@ − ?) (1 − g
g

2 )g
d

2

4(1 + g
d

2 )2
(2g

d

2−1 |I − g1− d2 | + |gi Im D − 1|). (6.3.4)

Proof. Set D = d + iH and I = g1− d2 4i\ with H ∈ R and \ ∈ [0, 2c]. Note that 5 (d, g1− d2 ) = −ℎ@ (d),

where ℎ@ (G) is defined in (6.1.3). Direct computation yields

Re[ 5 (D, I)] = (@ − ?) (g
g − 1) ( |1 + g

g

2 4−i\ |2 + |1 + g
g

2+iH4i\ |2)
2|1 + g

g

2 4−i\ |2 |1 + g
g

2+iH4i\ |2
. (6.3.5)

Since g < 1, applying the inequality |1+ g
g

2 4−i\ |2 + |1+ g
g

2+iH4i\ |2 ≥ 2|1+ g
g

2 4−i\ | |1+ g
g

2+iH4i\ |, and

then noting that |1 + g
g

2 4−i\ | |1 + g
g

2+iH4i\ | ≤ (1 + g
g

2 )2, we see (r.h.s. of (6.3.5)) ≤ −(@ − ?) 1−g
d
2

1+g
d
2

.

Clearly equality holds if and only if \ = 0 and giH = 1 simultaneously. Furthermore, following

the above inequalities, we have Re[ 5 (d + iH, I)] ≤ −(@ − ?) 1−g
d
2

|1+g
d
2 4i\ |

and Re[ 5 (d + iH, I)] ≤

−(@ − ?) 1−g
d
2

|1+g
d
2 +iH4i\ |

. This yields

5 (d, g1− d2 ) − Re[ 5 (d + iH, I)] ≥ (@ − ?)
[

1 − g
d

2

|1 + g
d

2 4i\ |
− 1 − g

d

2

1 + g
d

2

]
≥ (@ − ?) (g

d

2 − gd) |4i\ − 1|
(1 + g

d

2 )2

(6.3.6)

and

5 (d, g1− d2 ) − Re[ 5 (d + iH, I)] ≥ (@ − ?)
[

1 − g
d

2

|1 + g
d

2 +iH4i\ |
− 1 − g

d

2

1 + g
d

2

]
≥ (@ − ?) (1 − g

g

2 )g
d

2 |giH4i\ − 1|
(1 + g

d

2 )2
.

Adding the above two inequalities we have 5 (d, g1− d2 ) − Re[ 5 (d + iH, I)] ≥ (@−?) (1−g
g
2 )g

d
2 |giH−1|

2(1+g
d
2 )2

.

Combining this with (6.3.6) and the substitution g1− d2 4i\ = I we get (6.3.4). This completes the

proof.
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Using the above technical lemma we can now explain the proof of Theorem 6.1.6.

Proof of Theorem 6.1.6. Due to Theorem 5.3 in [49], the only thing that we need to verify is

inf
F,F′∈ℭ(g1− X2 )

D∈X+iR

|F′ − gDF | > 0 and sup
F,F′∈ℭ(g1− X2 )

D∈X+iR

���� 6C (F)6C (gDF)

���� > 0. (6.3.7)

Indeed, for every D ∈ X + iR and F, F′ ∈ ℭ(g1− X2 ), we have |F′ − gDF | ≥ |F′| − |gDF | = g1− X2 −

g1+ X2 > 0. Recall 5 (D, I) from (6.3.1). Applying Lemma 6.3.1 with d ↦→ X yields���� 6C (F)6C (gDF)

���� = | exp(C 5 (D, F)) | = exp(C Re[ 5 (D, F)]) ≤ exp(C 5 (X, g1− X2 )) = exp(−Cℎ@ (X)),

where ℎ@ is defined in (6.1.3). This verifies (6.3.7) and completes the proof.

Remark 6.3.2. We now explain our choice of the contour  Z,C defined in (6.1.8), which comes from

the method of steepest descent. Suppose Re[D] = X. As noted before, directly taking derivative of

5 (D, I) = exp( 6C (I)
6C (gDI) ), with respect to I suggests that critical points are at I = ±g1− D2 , and thus we

take our contour to be ℭ(g1− X2 ), so that it passes through the critical points.

Next we turn to the case of differentiability of tr( Z,C) where  Z,C is defined in (6.1.8). Using

the function 5 defined in (6.3.1), we rewrite the kernel as follows.

 Z,C (F, F′) =
1

2ci

∫ X+i∞

X−i∞
Γ(−D)Γ(1 + D)ZD4C 5 (D,F) dD

F′ − gDF .

Differentiating the integrand inside the integral in  Z,C (F.F′) =-times defines a sequence of

kernel { (=)
Z,C
}=≥1 : !2(ℭ(g1− X2 )) → !2(ℭ(g1− X2 )) given by the kernel:

 
(=)
Z,C
(F, F′) :=

1
2ci

∫ X+i∞

X−i∞
Γ(−D)Γ(1 + D) (D)=ZD−=4C 5 (D,F)

dD
F′ − gDF , (6.3.8)

where (0)= :=
∏=−1
8=0 (0 − 8) for = ∈ Z>0 and (0)0 = 1 is the Pochhammmer symbol and X ∈ (0, 1).

We also set  (0)
Z,C

:=  Z,C .
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Remark 6.3.3. We remark that unlike Lemma 3.1 in [88], we do not aim to show that  Z,C is

differentiable as an operator, or its higher order derivatives are equal to the operator  (=)
Z,C

. Indeed,

showing convergence in the trace class norm is more involved because of the lack of symmetry

and positivity of the operator  Z,C . However, since we are dealing with the Fredholm determinant

series only, for our analysis it is enough to investigate how each term of the series are differentiable

and how their derivatives are related to  (=)
Z,C

.

Remark 6.3.4. Note that when viewing  (=)
Z,C

as a complex integral, we can deform its D-contour

to g + iR for any g ∈ (0, = ∨ 1). This is due to the analytic continuity of the integrand as the factor

(D)= removes the poles at 1, . . . , = − 1 of Γ(−D).

The following lemma provides estimates of  (=)
Z,C

that is useful for the subsequent analysis in

Sections 6.3 and 6.4.

Lemma 6.3.5. Fix = ∈ Z≥0, C > 0, X, d ∈ (0, = ∨ 1), and consider any borel set � ⊂ R. Recall

ℎ@ (G) and �@ (G) from Proposition 6.2.1 and  (=)
Z,C

from (6.3.8). For any F ∈ ℭ(g1− X2 ) and F′ ∈ C

and Z ∈ [1, 4C�@ ( B2 )], there exists a constant C = C(=, X, @) > 0 such that whenever |F′| ≠ g1+ X2 we

have ∫
�

���� (X + iH)=Z d−=+iH
sin(−c(X + iH)) 4

C 5 (X+iH,F)
���� dH
|F′ − gX+iHF |

≤ CZ d−=

| |F′| − g1+ X2 |
4C·supH∈�Re[ 5 (X+iH,F)]

≤ CZ d−=

| |F′| − g1+ X2 |
4−Cℎ@ (X) .

(6.3.9)

In particular when F′ ∈ ℭ(g1− X2 ) we have

| (=)
Z,C
(F, F′) | ≤ CZ X−= exp(−Cℎ@ (X)). (6.3.10)

Consequently,  (=)
Z,C
(F, F′) is continuous in the Z-variable.

Proof. Fix = ∈ Z≥0, C > 0, X, d ∈ (0, = ∨ 1) and F ∈ ℭ(g1− X2 ) and F′ ∈ C such that |F′| ≠ g1+ X2 .

Throughout the proof the constant C > 0 depends on =, X, and @ – we will not mention it further.
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Consider the integral on the r.h.s. of (6.3.9). Observe that when X ∉ Z, | (X + iH)= | ≤ C|H |= and

1
| sin(−c(X+iH)) | ≤ C4−|H |/C. For = ≥ 2, and X ∈ Z>0 ∩ (0, =), we observe that the product (X + iH)=

contains the term iH. Hence | iH
sin(−c(X+iH)) | = |

iH
sin(−c(iH)) | ≤ C4−|H |/C for such an integer X. Whereas,

| X+iHiH | ≤ C|H |=−1 for such an integer X. Finally, |F′ − gX+iHF | ≥ | |F′| − |gXF | | = | |F′| − g1+ X2 |.

Combining the aforementioned estimates, we obtain that

r.h.s. of (6.3.9) ≤
∫
�

C|H |=4−|H |/CZ d−= |4C 5 (X+iH,F) | dH
| |F′| − g1+ X2 |

.

Since
∫
R
|H |=4−|H |/CdH converges applying |4C 5 (X+iH,F) | ≤ 4C Re[ 5 (X+iH,F)] we arrive at the first in-

equality in (6.3.9). The second inequality follows by observing Re[ 5 (X + iH, F)] ≤ −ℎ@ (X) by

Lemma 6.3.1.

Recall  (=)
Z,C

from (6.3.8). Recall from Remark 6.3.4 that the X appearing in (6.3.8) can be

chosen in (0, = ∨ 1). Pushing the absolute value sign inside the explicit formula in (6.3.8) and

applying Euler’s reflection principle with change of variables D = X + iH yield

| (=)
Z,C
(F, F′) | ≤ 1

2c

∫
R

���� (X + iH)=Z X−=+iH
sin(−c(X + iH)) 4

C 5 (X+iH,F)
���� dH
|F′ − gX+iHF |

.

(6.3.10) now follows from (6.3.9) by taking d = X. To see the continuity of  (=)
Z,C
(F, F′) in Z, we

fix Z1 < Z2 < Z1 + 1. By repeating the same set of arguments as above we arrive at

| (=)
Z2,C
(F, F′) −  (=)

Z1,C
(F, F′) | ≤ � |Z X−=2 − Z X−=1 | exp(−Cℎ@ (X)) (6.3.11)

with the same constant C in (6.3.10). Clearly l.h.s. of (6.3.11) converges to 0 when Z2 → Z1, which

confirms the kernel’s Z-continuity.

6.3.2 Proof of Proposition 6.2.4

The goal of this section is to prove Proposition 6.2.4. Before diving into the proof, we first

settle the infinite differentiability separately in the next proposition.
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Proposition 6.3.6. For any = ∈ Z≥0 and C > 0, the operator  (=)
Z,C

defined in (6.3.8) is a trace-class

operator with

tr( (=)
Z,C
) = 1

2ci

∫
ℭ(g1− X2 )

 
(=)
Z,C
(F, F)dF. (6.3.12)

Furthermore, tr( (=)
Z,C
) is differentiable in Z at each Z > 0 and we have mZ tr( (=)Z,C ) = tr( (=+1)

Z,C
).

Proof. Fix = ∈ Z≥0, C > 0, and Z > 0.  (=)
Z,C
(F, F′) is simultaneously continuous in both F and

F′ and mF′ 
(=)
Z,C
(F, F′) is continuous in F′. By Lemma 3.2.7 in [46] (also see [174, page 345] or

[45]) we see that  (=)
Z,C

is indeed trace-class, and thus (6.3.12) follows from Theorem 12 in [174,

Chapter 30]. To show differentiability of tr( (=)
Z,C
) in variable Z , we fix Z1, Z2 > 0. Without loss of

generality we may assume Z1 + 1 > Z2 > Z1. Let us define

�Z1,Z2 :=
tr( (=)

Z2,C
) − tr( (=)

Z1,C
)

Z2 − Z1
− tr( (=+1)

Z1,C
)

=
1
(2ci)2

∫
ℭ(g1− X2 )

∫ X+i∞

X−i∞
Γ(−D)Γ(1 + D)'Z1,Z2;= (D)4C 5 (D,F)

dD
F − gDFdF,

where

'Z1,Z2;= (D) := (D)=
[
ZD−=2 − ZD−=1
Z2 − Z1

− (D − =)ZD−=−1
1

]
=

∫ Z2

Z1

(Z2 − f)
Z2 − Z1

(D)=+2fD−=−2df.
(6.3.13)

Taking absolute value and appealing to Euler’s reflection principle, we obtain

|�Z1,Z2 | ≤
���� 1
(2ci)2

∫
ℭ(g1− X2 )

∫ X+i∞

X−i∞

∫ Z2

Z1

(D)=+2
sin(−cD)

(Z2 − f)
Z2 − Z1

fD−=−24C 5 (D,F)
dfdD
F − gDFdF

���� (6.3.14)

≤ g
1− X2

2c

∫ Z2

Z1

|fX+iH−=−2 |df · max
F∈ℭ(g1− X2 )

∫
R

(X + iH)=+2
sin(−c(X + iH)) |4

C 5 (X+iH,F) | dH
|F − gX+iHF |

.

Note that Lemma 6.3.5 ((6.3.9) specifically) we see that the above maximum is bounded by

C exp(−Cℎ@ (X)) where the constant C is same as in (6.3.9). Since |fD−=−2 | = |fX−=−2 | ≤ |Z X−=−2
1 |
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over the interval [Z1, Z2] for X ∈ (0, = ∨ 1), we obtain

|�Z1,Z2 | ≤ C exp(−ℎ@ (X))
∫ Z2

Z1

|fD−=−2 |df ≤ C exp(−Cℎ@ (X)) (Z2 − Z1) |Z X−=−2
1 |.

Thus, taking the limit as Z2 − Z1 → 0 yields |�Z1,Z2 | → 0 and completes the proof.

Remark 6.3.7. We prove a higher order version of Proposition 6.3.6 later in Section 6.4 as Propo-

sition 6.4.1 which includes the statement of the above Proposition when ! = 1. However, we

keep the above simple version for reader’s convenience, which will serve as a guide in proving

Proposition 6.4.1.

With the above results in place, we can now turn towards the main technical component of the

proof of Proposition 6.2.4.

Proof of Proposition 6.2.4. Before proceeding with the proof, we fix some notations. Fix B > 0,

and set = = bBc + 1 ≥ 1 and U = B − bBc ∈ [0, 1) so that B = = − 1 + U. Throughout the proof, we

will denote C to be positive constant depending only on B, @ – we will not mention this further. We

will also use the big $ notation. For two complex-valued functions 51(C) and 52(C) and V ∈ R, the

equations 51(C) = (1 + $ (CV)) 52(C) and 51(C) = 52(C) + $ (CV) have the following meaning: there

exists a constant C > 0 such that for all large enough C,���� 51(C)52(C)
− 1

���� ≤ C · CV, and | 51(C) − 52(C) | ≤ C · CV,

respectively. The constant C > 0 value may change from line to line.

For clarity we divide the proof into seven steps. In Steps 1 and 2, we provide the upper and

lower bounds for |AB (C) | and Re[AB (C)] respectively and complete the proof of (6.2.15); in Steps

3–7, we verify the technical estimates assumed in the previous steps.

Step 1. Recall AB (C) from (6.2.13). The goal of this step is to provide a different expression for

AB (C), which will be much more amenable to our analysis, as well as an upper bound for |AB (C) |.

By Proposition 6.3.6, we have d=
dZ= tr( Z,C) = tr( (=)

Z,C
) and consequently using the expression in
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(6.3.8) we have

AB (C) := (−1)=
∫ 4

C�@ ( B2 )

1

Z−U

(2ci)2

∫
ℭ(g1− X2 )

∫ X+i∞

X−i∞
Γ(−D)Γ(1 + D) (D)=ZD−=

4C 5 (D,F)dD
F − gDF dFdZ .

where X ∈ (0, 1) is chosen to be less than B. We now proceed to deform the D-contour and F-

contour sequentially. As we explained in Remark 6.3.4, the integrand has no poles when D =

1, 2, . . . , = − 1. Hence D-contour can be deformed to (B − i∞, B + i∞) as B = = − 1 + U ∈ (0, =).

Next, for the F-contour, we wish to deform it from ℭ(g1− X2 ) to ℭ(g1− B2 ). In order to do so, we

need to ensure that we do not cross any poles. We observe that the potential sources of poles lie in

the exponent 5 (D, F) := (@−?)
1+Fg−1 − (@−?)

1+gD−1F
(recalled from (6.3.1)) and in the denominator F − gDF.

Since for any F ∈ ℭ(g1− X′2 ), where X′ ∈ (X, B), and D ∈ (B − i∞, B + i∞), we have

|F − gDF | ≥ |F | − |gDF | = g1− X′2 (1 − gB) > 0, |1 + Fg−1 | ≥ |Fg−1 | − 1 = g−
X′
2 − 1 > 0,

and |1 + gD−1F | ≥ 1 − |gD−1F | = 1 − gB− X
′

2 > 0.

Thus, we can deform the F-contour to ℭ(g1− B2 ) as well without crossing any poles. With the

change of variable D = B + iH, F = g1− B2 4i\ , and Euler’s reflection formula we have

AB (C) = (−1)=
∫ 4

C�@ ( B2 )

1

Z−1

4c2

∫ c

−c

∫
R

(B + iH)=Z iH

sin(−c(B + iH)) 4
C 5 (B+iH,g1− B2 4i\ ) dH

1 − gB+iH
d\dZ . (6.3.15)

With this expression in hand, upper bound is immediate. By Lemma 6.3.5 ((6.3.9) specifically

with d ↦→ = − 1, X ↦→ B) pushing the absolute value inside the integrals we see that

|AB (C) | ≤ C exp(−Cℎ@ (B))
∫ 4

C�@ ( B2 )

1

1
Z

dZ = C · C�@ ( B2 ) exp(−Cℎ@ (B)) (6.3.16)

for some constant C = C(@, B) > 0. Hence taking logarithm and dividing by C, we get

lim sup
C→∞

|AB (C) | ≤ −ℎ@ (B) = −(@ − ?)
1 − g B2
1 + g B2

. (6.3.17)
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Step 2. In this step, we provide a lower bound for Re[AB (C)]. Set Y = C−2/5 > 0. For each : ∈ Z,

set E: = − 2c
log g : and consider the interval +: := [E: − Y2, E: + Y2] . Also set �Y := {\ ∈ [−c, c] :

|4i\ − 1| ≤ Y | log g |}. We divide the triple integral in (6.3.15) into following parts

AB (C) =
∑
:∈Z
(I): + (II) + (III), (6.3.18)

where

(I): :=
∫ 4

C�@ ( B2 )

1

∫
�Y

∫
+:

(−1)=
4c2Z

(B + iH)=Z iH

sin(−c(B + iH))
4C 5 (B+iH,g

1− B2 4i\ )dH
1 − gB+iH

d\dZ, (6.3.19)

(II) :=
∫ 4

C�@ ( B2 )

1

∫
�Y

∫
R\∪:+:

(−1)=
4c2Z

(B + iH)=Z iH

sin(−c(B + iH))
4C 5 (B+iH,g

1− B2 4i\ )dH
1 − gB+iH

d\dZ, (6.3.20)

(III) :=
∫ 4

C�@ ( B2 )

1

∫
[−c,c]∩�2Y

∫
R

(−1)=
4c2Z

(B + iH)=Z iH

sin(−c(B + iH))
4C 5 (B+iH,g

1− B2 4i\ )dH
1 − gB+iH

d\dZ . (6.3.21)

In subsequent steps we obtain the following estimates for each integral. We claim that we have

(I)0 = (1 +$ (C−
1
5 ))C0√

C
exp(−Cℎ@ (B)), (6.3.22)

where ℎ@ (B) is defined in (6.1.3) and

C0 :=

√
(1 + g B2 )3

4c(@ − ?) (g 3B
2 −2 − g2B−2)

(−1)= (B)=
sin(−cB) (1 − gB) > 0. (6.3.23)

When B is an integer the above constant is defined in a limiting sense. Note that C0 is indeed

positive as = = bBc + 1. Furthermore, we claim that we have the following upper bounds for the

other integrals:

∑
:∈Z\{0}

| (I): | ≤ CC−
13
10 exp(−Cℎ@ (B)). (6.3.24)

408



where E: = − 2c
log g : and

| (II) |, | (III) | ≤ CC exp
(
−Cℎ@ (B)

)
exp(− 1

C C
1
5 ). (6.3.25)

Assuming the validity of (6.3.22), (6.3.24) and (6.3.25) we can complete the proof of lower bound

for (6.2.15). Following the decomposition in (6.3.18) we see that for all large enough C,

Re[AB (C)] ≥ Re[(I)0] −
∑

:∈/\{0}
| (I): | − |(II) | − |(III) |

≥ 1√
C
exp(−Cℎ@ (B))

[
1
2C0 − CC−

4
5 − CC

3
2 exp(− 1

C C
3
5 )

]
≥ C0

4
√
C
exp(−Cℎ@ (B)).

Taking logarithms and dividing by C we get that lim infC→∞ Re[AB (C)] ≥ −ℎ@ (B). Combining with

(6.3.17) we arrive at (6.2.15).

Step 3. From this step on, we dedicate the proof to justifying the various equations and claims that

appeared in Step 2. First in this step, we prove (6.3.25). Recall (II) and (III) defined in (6.3.20)

and (6.3.21). For each of them, we push the absolute value around each term of the integrand. We

use (6.3.9) from Lemma 6.3.5 to get

| (II) | ≤ C exp
(
C sup

H∈R\∪:+:
|4i\−1|≤Y | log g |

Re[ 5 (B + iH, g1− B2 4i\)]
) ∫ 4

C�@ ( B2 )

1

dZ
Z
, (6.3.26)

| (III) | ≤ C exp
(
C sup

H∈R
|4i\−1|>Y | log g |

Re[ 5 (B + iH, g1− B2 4i\)]
) ∫ 4

C�@ ( B2 )

1

dZ
Z
. (6.3.27)

Note that in (6.3.26), we have |giH−1| ≥ |giC−
4
5 −1| ≥ 1

2 | log g |C− 4
5 for all large enough C. Meanwhile

in (6.3.27), |g1− B2 (4i\ − 1) | ≥ g1− B2 Y | log g | = g1− B2 | log g |C− 2
5 . In either case, appealing to (6.3.4) in

Lemma 6.3.1 with d ↦→ B gives us that

5 (B, g1− B2 ) − Re[ 5 (B + iH, g1− B2 4i\)] ≥ 1
C · C

− 4
5 .
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Substituting 5 (B, g1− B2 ) with −ℎ@ (B) and evaluating the integrals in (6.3.26) and (6.3.27) gives us

(6.3.25).

Step 4. In this step and subsequent steps we prove (6.3.22) and (6.3.24). Recall that E: = − 2c
log g :

and Y = C−
2
5 . We first focus on the (I): integral defined in (6.3.30). Our goal in this and next step

is to show

(I): = (1 +$ (C−
1
5 ))C0(:)

2c
√
C

∫ 4
C�@ ( B2 )

1

Z iE:

Z

∫ Y2

−Y2
Z iH exp(−Cℎ@ (B + iH))dHdZ . (6.3.28)

where

C0(:) :=

√
(1 + g B2 )3

4c(@ − ?) (g 3B
2 −2 − g2B−2)

(−1)= (B + iE: )=
sin(−c(B + iE: )) (1 − gB)

(6.3.29)

Towards this end, note that in the argument for (6.3.16), we push the absolute value around

each term of the integrand. Thus, the upper bound achieved in (6.3.16) guarantees that the triple

integral in (I): is absolutely convergent. Thereafter, Fubini’s theorem allows us to switch the order

of integration inside (I): . By a change-of-variables, we see that

(I): = (−1)=
∫ 4

C�@ ( B2 )

1

Z iE:−1

4c2

∫ Y2

−Y2

(B + iH + iE: )=Z iH

sin(−c(B + iH + iE: ))

∫
�Y

4C 5 (B+iH,g
1− B2 4i\ )d\

1 − gB+iH
dHdZ,

where recall �Y = {\ ∈ [−c, c] : |4i\ − 1| ≤ Y | log g |}. Note that in this case range of H lies in a

small window of [−C− 4
5 , C−

4
5 ]. As B is fixed, one can replace (B + iH + iE: )=, sin(−c(B + iH + iE: )),

and 1 − gB+iH by (B + iE: )=, sin(−c(B + iE: )), and 1 − gB with an expense of $ (C− 4
5 ) term (which

can be chosen independent of :). We thus obtain

(I): =
(−1)= (B + iE: )= (1 +$ (C−

4
5 ))

sin(−c(B + iE: )) (1 − gB)

∫ 4
C�@ ( B2 )

1

Z iE:

4c2Z

∫ Y2

−Y2
Z iH

∫
�Y

4C 5 (B+iH,g
1− B2 4i\ )d\dHdZ .

(6.3.30)
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We now evaluate the \-integral in the above expression. We claim that

∫
�Y

4C 5 (B+iH,g
1− B2 4i\ )d\ = (1 +$ (C− 1

5 ))
√

c(1 + g B2 )3

C (@ − ?) (g 3B
2 −2 − g2B−2)

exp(−Cℎ@ (B + iH)) (6.3.31)

Note that (6.3.28) follows from (6.3.31). Hence we focus on proving (6.3.31) in next step.

Step 5. In this step we prove (6.3.31). For simplicity we let D = B + iH temporarily. Taylor

expanding the exponent appearing in l.h.s. of (6.3.31) around \ = − H2 log g and using the fact

mI 5 (D, I) |I=g1− D2 = 0, we get

l.h.s. of (6.3.31) =
∫
�Y

4C 5 (D,g
1− D2 4i(\+ H2 log g) )d\

= exp(C 5 (D, g1− D2 ))
∫
�Y

exp
(
− C

2
m2
I 5 (D, g1− D2 ) (\ + H

2 log g)2 +$ (C− 1
5 )

)
d\.

(6.3.32)

Note that we have replaced the higher order terms by $ (C− 1
5 ) in the exponent above as \, H are at

most of the order $ (C− 2
5 ). Furthermore, for all C large enough,

�Y = {\ ∈ [−c, c] : |4i\ − 1| ≤ Y | log g |}

= {\ ∈ [−c, c] : | sin \
2 | ≤

1
2Y | log g |} ⊃ {\ ∈ [−c, c] : |\ | ≤ Y | log g |}

As H ∈ [−Y2, Y2], we see that �Y ⊃ {\ ∈ [−c, c] : |\ + H

2 log g | ≤ 1
2Y | log g |} for all large enough

C. Thus on �2Y we have |\ + H

2 log g | ≥ 1
2 C
− 2

5 | log g |. Furthermore for small enough H, by (6.3.2), we

have Re[m2
I 5 (D, g1− D2 )] > 0. Hence the above integral can be approximated by Gaussian integral.

In particular, we have

r.h.s. of (6.3.32) = (1 +$ (C− 1
5 )) exp(C 5 (D, g1− D2 ))

√
2c

Cm2
I 5 (D, g1− D2 )

(6.3.33)

Observe that as D = B + iH and H is at most $ (C− 4
5 ), m2

I 5 (D, g1− D2 ) in r.h.s. of (6.3.33) can be
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replaced by m2
I 5 (B, g1− B2 ) by adjusting the order term. Recall the expression for m2

I 5 (B, g1− B2 )

from (6.3.2) and observe that from the definition of 5 and ℎ@ from (6.3.1) and (6.1.3) we have

5 (D, g1− D2 ) = ℎ@ (B + iH). We thus arrive at (6.3.31).

Step 6. With the expression of (I): obtained in (6.3.28), in this step we prove (6.3.22) and (6.3.24).

As H varies in the window of H ∈ [−C− 4
5 , C−

4
5 ], by Taylor expansion we may replace Cℎ@ (B + iH)

appearing in the r.h.s. of (6.3.28) by C (ℎ@ (B) + iHℎ′@ (B)) at the expense of an $ (C− 3
5 ) term. Upon

making a change of variable A = log Z − Cℎ′@ (B) we thus have

(I): = (1 +$ (C−
1
5 ))C0(:)

2c
√
C
4−Cℎ@ (B)

∫ C�@ ( B2 )−Cℎ
′
@ (B)

−Cℎ′@ (B)
4iE: (A+Cℎ′@ (B))

∫ Y2

−Y2
4iHAdHdA

= (1 +$ (C− 1
5 ))C0(:)

2c
√
C
4−Cℎ@ (B)

∫ C�@ ( B2 )−Cℎ
′
@ (B)

−Cℎ′@ (B)
4iE: (A+Cℎ′@ (B)) 4

iY2A − 4−iY2A

iA
dA. (6.3.34)

We claim that for : = 0, (which implies E: = 0) we have

∫ C�@ ( B2 )−Cℎ
′
@ (B)

−Cℎ′@ (B)

4iY2A − 4−iY2A

iA
dA = 2c(1 +$ (C− 1

5 )) (6.3.35)

For : ≠ 0, we have �����∫ C�@ ( B2 )−Cℎ
′
@ (B)

−Cℎ′@ (B)
4iE: (A+Cℎ′@ (B)) 4

iY2A − 4−iY2A

iA
dA

����� ≤ CC−
4
5 (6.3.36)

where C > 0 can be chosen free of : . Assuming (6.3.35) and (6.3.36) we may now complete the

proof of (6.3.22) and (6.3.24). Indeed, for : = 0 upon observing that C0 = C0(0) (recall (6.3.23)

and (6.3.29)), in view of (6.3.34) and (6.3.35) we get (6.3.22). Whearas for : ≠ 0, thanks to the

estimate in (6.3.36), in view of (6.3.34), we have

∑
:∈Z\{0}

| (I): | ≤ CC−
13
10 exp(−Cℎ@ (B))

∑
:∈Z\{0}

|C0(:) |. (6.3.37)
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For H ≠ 0, | (B+iH)=
sin(−c(B+iH)) | ≤ C|H |=4−|H |/C forces r.h.s. of (6.3.37) to be summable proving (6.3.24).

Step 7. In this step we prove (6.3.35) and (6.3.36). Recalling that Y2 = C−
4
5 , we see that

∫ C�@ ( B2 )−Cℎ
′
@ (B)

−Cℎ′@ (B)

4iY2A − 4−iY2A

iA
dA =

∫ C1/5�@ ( B2 )−C
1/5ℎ′@ (B)

−C1/5ℎ′@ (B)

2 sin A
A

dA. (6.3.38)

Following the definition of ℎ@ and �@ in Proposition 6.2.1 we observe that −ℎ′@ (B) =
g
B
2 log g
(1+g

B
2 )2

< 0

and

�@ (B) − ℎ′@ (B) =
1 − gB + g B2 B log g

B(1 + g B2 )
= −B�′@ (B) > 0,

where �′@ (B) < 0 follows from (6.2.1). Thus as �@ is strictly decreasing (Proposition 6.2.1 (a))

we have �@ ( B2 ) > �@ (B) > ℎ′@ (B). Thus the integral on r.h.s. of (6.3.38) can be approximated

by (1 + $ (C−1/5))
∫
R

2 sin A
A

dA = 2c(1 + $ (C−1/5)). This proves (6.3.35). We now focus on proving

(6.3.36). Towards this end, we divide the integral appearing in (6.3.36) into three regions as follows

l.h.s. of (6.3.36) ≤
�����∫ −1

−Cℎ′@ (B)
4iE: (A+Cℎ′@ (B)) 4

iY2A − 4−iY2A

iA
dA

����� +
�����∫ 1

−1
4iE: (A+Cℎ′@ (B)) 4

iY2A − 4−iY2A

iA
dA

�����
+

�����∫ C�@ ( B2 )−Cℎ
′
@ (B)

1
4iE: (A+Cℎ′@ (B)) 4

iY2A − 4−iY2A

iA
dA

����� .
(6.3.39)

Note that for the second term appearing in r.h.s. of (6.3.39) can be bounded by 4C− 4
5 using����∫ 1

−1
4iE: (A+Cℎ′@ (B)) 2 sin(Y2A)

A
dA

���� ≤ ∫ 1

−1

����2 sin(Y2A)
A

���� dA ≤ 4Y2 = 4C−
4
5 .

For the first term appearing in r.h.s. of (6.3.39), by making a change of variable A ↦→ A
E:−Y2

E:+Y2 we

observe the following identity:

∫ −1

−Cℎ′@ (B)
4iE: (A+Cℎ′@ (B)) 4

iY2A

iA
dA =

∫ − E:+Y
2

E:−Y2

−Cℎ′@ (B)
E:+Y2

E:−Y2

4iE: (A+Cℎ′@ (B)) 4
−iY2A

iA
dA.
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This leads to

∫ −1

−Cℎ′@ (B)
4iE: (A+Cℎ′@ (B)) 4

iY2A − 4−iY2A

iA
dA =

∫ −Cℎ′@ (B)
E:+Y2

E:−Y2

−Cℎ′@ (B)
4iE: (A+Cℎ′@ (B)) 4

−iY2A

iA
dA

+
∫ −1

− E:+Y
2

E:−Y2

4iE: (A+Cℎ′@ (B)) 4
−iY2A

iA
dA.

In the first integral the length of the interval is $ (C1/5). However, the integrand itself is $ (C−1).

For the second integral, the length of the interval is$ (C−4/5), and the integrand itself is$ (1). Note

that this is only possible when : ≠ 0 (forcing E: ≠ 0). And indeed all the $ terms can be taken

to be free of E: (and hence of :). Combining this we get that the first term appearing in r.h.s of

(6.3.39) can be bounded by CC− 4
5 . An exact analogous argument provides the same bound for the

third term in r.h.s. of (6.3.39) as well. This proves (6.3.36) completing the proof.

6.4 Bounds for the Higher order terms

The goal of this section is to establish bounds for the higher-order term BB (C) defined in

(6.2.14). First, recall the Fredholm determinant formula from (6.1.10). Using the tr( ∧!
Z,C
) no-

tation from (6.1.9) we may rewrite BB (C) as follows.

BB (C) = (−1)=
∫ 4

C�@ ( B2 )

1
Z−U

d=

dZ=

[
1 +

∞∑
!=2

tr( ∧!Z .C )
]
dZ . (6.4.1)

We claim that we could exchange the various integrals, derivatives and sums appearring in the r.h.s.

of (6.4.1) and obtain BB (C) through term-by-term differentiation, i.e.

BB (C) = (−1)=
∞∑
!=2

∫ 4
C�@ ( B2 )

1
Z−Um=Z (tr( 

∧!
Z,C ))dZ . (6.4.2)

Towards this end, we devote Section 6.4.1 to its justification. Following the technical lemmas in

Section 6.4.1, we proceed to prove Proposition 6.2.5 in Section 6.4.2.
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6.4.1 Interchanging sums, integrals and derivatives

Recall from (6.3.8) the definition of  (=)
Z,C
. As a starting point of our analysis, we introduce the

following notations before providing the bounds on |m=
Z
tr( ∧!

Z,C
) |. For any =, ! ∈ Z>0, define

M(!, =) := { ®< = (<1, . . . , <!) ∈ (Z≥0)! : <1 + · · · + <! = =}, (6.4.3)

and
( =
®<
)

:= =!
<1!···<!! . Furthermore, for any ! ∈ Z>0, Z ∈ R>0 and ®< ∈ M(!, =), let

�Z ( ®<) :=
∫

. . .

∫
det( (<8)

Z,C
(F8, F 9 ))!8, 9=1

!∏
8=1

dF8 (6.4.4)

where F8-contour lies on ℭ(g1− X2 ). We also set | ®< |>0 := |{8 | 8 ∈ Z ∩ [1, !], <8 > 0}|, i.e. the

number of positive <8 in ®<.

To begin with, the next two lemma investigate the term-by-term =-th derivatives of tr( ∧!
Z,C
)

that appear on the r.h.s. of (6.4.2). The following should be regarded as a higher order version of

Proposition 6.3.6.

Proposition 6.4.1. Fix =, ! ∈ Z>0 and let M(!, =) be defined as in (6.4.3). Recall the function

�@ (G) from Proposition 6.2.1. For any C > 0, the function Z ↦→ tr( ∧!
Z,C
) is infinitely differentiable

at each Z ∈ [1, 4C�@ ( B2 )], with

m=Z tr( ∧!Z,C ) =
1
!!

∑
®<∈M(!,=)

(
=

®<

)
�Z ( ®<), (6.4.5)

where the r.h.s of (6.4.5) converges absolutely uniformly. Furthermore, there exists a constant

C = C(=, X, @) > 0 such that for all ®< ∈ M(!, =) we have

|�Z ( ®<) | ≤ C!!
!
2 Z !X−=4−Cℎ@ (X) , |m=Z tr( ∧!Z,C ) | ≤

C!

!!
!=!

!
2 Z !X−=4−Cℎ@ (X) . (6.4.6)

Proof. The proof idea is same as that of Proposition 6.3.6, but it’s more cumbersome notation-
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ally. For clarity we split the proof into four steps. In the first step, we introduce some necessary

notations. In Steps 2-3, we prove (6.4.5) and in the final step, we prove (6.4.6).

Step 1. In this step we summarize the notation we will require in the proof of (6.4.5). We fix

! ∈ Z>0, X ∈ (0, 1), C > 0, and Z1, Z2 > 0 and recall �@ (G) from Proposition 6.2.1.

We define ®b: ∈ [1, 4C�@ (
B
2 )]! to be the vector whose first : entries are Z2 and the rest ! − :

entries are Z1:

®b: := (b:,1, b:,2, . . . , b:,!) := ( Z2 , Z2 , . . . , Z2︸               ︷︷               ︸
: times

, Z1 , Z1 , . . . , Z1︸               ︷︷               ︸
!−: times

), : = 0, 1, . . . , !.

For any ®< = (<1, <2, . . . , <!) ∈ (Z≥0)! we define the following integral of mixed parameters

�
(:)
Z1,Z2
( ®<) :=

∫
. . .

∫
det( (<8)

b:,8 ,C
(F8, F 9 ))!8, 9=1

!∏
8=1

dF8 . (6.4.7)

where F8-contour lies on ℭ(g1− X2 ). � (:)
Z1,Z2
( ®<) serves as an interpolation between �Z1 ( ®<) and �Z2 ( ®<)

defined in (6.4.4) as : increases from 0 to ! where the parameters Z are now allowed to be different

for different rows in the determinant.

We next define ®4: = (4:,1, 4:,2, . . . , 4:,!) to be the unit vector with 1 in the :-th position and 0

elsewhere. With the above notations in place, for each 9 , : ∈ {1, 2, . . . , !} and ®< ∈ (Z≥0)! we set

L
(1)
Z1,Z2
( ®<; :) :=

1
Z2 − Z1

[
�
(:)
Z1,Z2
( ®<) − � (:−1)

Z1,Z2
( ®<) − (Z2 − Z1)� (:−1)

Z1,Z2
( ®< + ®4: )

]
, (6.4.8)

L
(2)
Z1,Z2
( ®<; 9 , :) := � ( 9)

Z1,Z2
( ®< + ®4: ) − � ( 9−1)

Z1,Z2
( ®< + ®4: ). (6.4.9)

Note that we define (6.4.8) modelling after �Z1,Z2 in the proof of Proposition 6.3.6. Here, the only

differences between the three determinants of the respective � (:)
Z1,Z2
( ®<)’s lie in the :-th row, i.e.

 
(<: )
Z2,C

v.s.  (<: )
Z1,C

v.s.  (<:+1)
Z1,C

. So we have isolated the differences and tried to reduce the question

of differentiability to row-wise in (6.4.8). Meanwhile, (6.4.9) “measures" the distance between

�
(:)
Z1,Z2
( ®< + ®4: ) and � (:−1)

Z1,Z2
( ®< + ®4: ) where they differ only in b:,: = Z2 or Z1 for  (<: )

b:,: ,C
on the :-th
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row of the determinant.

We finally remark that all the F8-contours in the integrals appearing throughout the proof are

on ℭ(g1− X2 ) – we will not mention this further. We would also drop (F8, F 9 ) from  
(<8)
•,C (F8, F 9 )

when it is clear from the context.

Step 2. We show the infinite differentiability of tr( ∧!
Z,C
) by proving (6.4.5) in this step. The proof

proceeds via induction on =. When = = 0, observe that (6.4.5) recovers the formula of tr( ∧!
Z,C
).

This constitutes the base case. To prove the induction step, suppose (6.4.5) holds for = = # . Then

for = = # + 1, we fix Z1, Z2 > 0. Without loss of generality, we assume Z1 + 1 > Z2 > Z1 and

consider

�Z1,Z2 :=
m#
Z

tr( ∧!
Z2,C
) − m#

Z
tr( ∧!

Z1,C
)

Z2 − Z1
− 1
!!

∑
®<∈M(!,#+1)

(
# + 1
®<

)
�Z1 ( ®<). (6.4.10)

To prove (6.4.5), it suffices to show |�Z1,Z2 | → 0 as Z2 → Z1. Towards this end, we first claim that

for all ®< ∈ M(!, #) and for all 9 , : ∈ {1, 2, . . . , !} we have

��L(1)
Z1,Z2
( ®<; :)

��→ 0, and
��L(2)
Z1,Z2
( ®<; 9 , :)

��→ 0, as Z2 → Z1, (6.4.11)

where L(1)
Z1,Z2
( ®<; :) and L(2)

Z1,Z2
( ®<; 9 , :) are defined in (6.4.8) and (6.4.9) respectively. We postpone

the proof of (6.4.11) to the next step. Assuming its validity, we now proceed to complete the

induction step.

Towards this end, we first manipulate the expression appearing in r.h.s. of (6.4.10). A simple

combinatorial fact shows

∑
®<∈M(!,#+1)

(
# + 1
®<

)
�Z1 ( ®<) =

!∑
:=1

∑
®<∈M(!,#)

(
#

®<

)
�Z1 ( ®< + ®4: ),

where ®4: is defined in Step 1. Substituting this combinatorics back into the r.h.s. of (6.4.10) and
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using the induction step for = = # , allows us to rewrite �Z1,Z2 as follows:

r.h.s. of (6.4.10) =
1
!!

∑
®<∈M(!,#)

(
#

®<

) [
�Z2 ( ®<) − �Z1 ( ®<)

Z2 − Z1
−

!∑
:=1

�Z1 ( ®< + ®4: )
]
. (6.4.12)

Recalling the definition of �Z ( ®<) in (6.4.4) and that of � (:)
Z1,Z2
( ®<) in (6.4.7), we see that

∑!
:=1 [�

(:)
Z1,Z2
( ®<)−

�
(:−1)
Z1,Z2
( ®<)] telescopes to �Z2 ( ®<) − �Z1 ( ®<). Furthermore, if we recall L(1)

Z1,Z2
( ®<; :) and L(2)

Z1,Z2
( ®<; 9 , :)

from (6.4.8) and (6.4.9) respectively, we observe that

�
(:−1)
Z1,Z2
( ®< + ®4: ) − �Z1 ( ®< + ®4: ) = �

(:−1)
Z1,Z2
( ®< + ®4: ) − � (0)Z1,Z2

( ®< + ®4: ) =
:∑
9=1
L
(2)
Z1,Z2
( ®<; 9 , :).

Combining these observations, we have

r.h.s. of (6.4.12) =
1
!!

∑
®<∈M(!,#)

(
#

®<

) !∑
:=1

[
�
(:)
Z1,Z2
( ®<) − � (:−1)

Z1,Z2
( ®<) − (Z2 − Z1)�Z1 ( ®< + ®4: )

]
Z2 − Z1

=
1
!!

∑
®<∈M(!,#)

(
#

®<

) !∑
:=1

L(1)Z1,Z2
( ®<; :) +

:−1∑
9=1
L
(2)
Z1,Z2
( ®<; 9 , :)

 . (6.4.13)

Clearly r.h.s. of (6.4.13) goes to zero as Z2 → Z1 whenever (6.4.11) is true. Thus by induction

we have (6.4.5).

Step 3. In this step we prove (6.4.11). Recall L(1)
Z1,Z2
( ®<; :) from (6.4.8). Following the definition

of � (:)
Z1,Z2
( ®<) from (6.4.7) we have

��L(1)
Z1,Z2
( ®<; :)

�� ≤ ∫
· · ·

∫
1

Z2 − Z1

���det( (<8)
b:,8 ,C
)!8, 9=1 − det( (<8)

b:−1,8 ,C
)!8, 9=1

−(Z2 − Z1) det( (<8+4:,8)
b:−1,8 ,C

)!8, 9=1

��� !∏
8=1

dF8 .

Recall that in the above expression, up to a constant, the three determinants differ only in the :-th

row. Hence the above expression can be written as
∫
· · ·

∫
| det(�) |∏!

8=1 dF8, where the entries of
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� are given as follows:

�8, 9 =  
(<8)
Z2,C
(F8, F 9 ), 8 < :, �8, 9 =  

(<8)
Z1,C
(F8, F 9 ), 8 > :,

�:, 9 =
1

Z2 − Z1
[ (<: )

Z2,C
(F: , F 9 ) −  (<: )Z1,C

(F: , F 9 ) − (Z2 − Z1) (<:+1)Z1,C
(F: , F 9 )]

=
1

2ci

∫ X+i∞

X−i∞
Γ(−D)Γ(1 + D)'Z1,Z2;<: (D)4C 5 (D,F: )

dD
F 9 − gDF:

,

where 'Z1,Z2;<: (D) is same as in (6.3.13). As <8’s are at most =, by Lemma 6.3.5 ((6.3.10) specifi-

cally), we can get a constant C > 0 depending only on =, X, and @, so that

|�8, 9 | ≤ C(Z X−<:1 + Z X−<:2 ) exp(−Cℎ@ (X)) ≤ C(1 + Z X2 ) exp(−Cℎ@ (X))

for all 8 ≠ : . For �:, 9 , we follow the same argument as in Proposition 6.3.6 (along the lines of

(6.3.14)) to get

|�:, 9 | ≤
g1− X2

2c

∫ Z2

Z1

��fX+iH−<:−2�� df
· max
F 9 ,F:∈ℭ(g1− X2 )

∫
R

���� (X + iH)<:+2
sin(−c(X + iH)) 4

C 5 (X+iH,F: )
���� dH
|F 9 − gX+iHF: |

.

Note that by Lemma 6.3.5 ((6.3.9) specifically) we see that the above maximum is bounded by

C exp(−Cℎ@ (X)) where again as <8’s are at most =, the constant C can be chosen dependent only

on =,X, and @. Since |fD−=−2 | = |fX−<:−2 | ≤ |Z X−<:−2
1 | ≤ |Z X−2

1 | over the interval [Z1, Z2] for

X ∈ (0, 1), we obtain

|�:, 9 | ≤ C exp(−Cℎ@ (X))
∫ Z2

Z1

|f |X−<:−2df ≤ C exp(−Cℎ@ (X))Z X−2
1 (Z2 − Z1).

As all the above estimates on |�8, 9 | are uniform in F8’s, using Hadamard inequality we have

∫
· · ·

∫
| det(�) |

!∏
8=1

dF8 ≤ C!!
!
2 exp(−C!ℎ@ (X)) (1 + Z X2 )

!−1Z X−2
1 (Z2 − Z1)
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Taking Z2 → Z1 above, we get the first part of (6.4.11). The proof of the second part of (6.4.11)

follows similarly by observing that the corresponding determinants also differ only in one row.

One can then deduce the second part of (6.4.11) using the uniform estimates of the kernel and

difference of kernels given in (6.3.10) and (6.3.11) respectively. As the proof follows exactly in

the lines of above arguments, we omit the technical details.

Step 4. In this step we prove (6.4.6).

Recall the definition of �Z ( ®<) from (6.4.4). By Hadamard’s inequality and Lemma 6.3.5 we

have

| det( (<8)
Z,C
)!8, 9=1 | ≤ !

!
2

!∏
8=1

max
F8 ,F 9∈ℭ(g1− X2 )

| (<8)
Z,C
(F8, F 9 ) |

≤ ! !
2

!∏
8=1

CZ X−<8 exp(−Cℎ@ (X)) = C!!
!
2 Z !X−= exp(−Cℎ@ (X)),

(6.4.14)

where the last equality follows as
∑!
8=1<8 = =. Note that here also C > 0 can be chosen to be

dependent only on =, X, and @ as <8’s are at most =. Recall that F8-contour in �Z ( ®<) lies on

ℭ(g1− X2 ). Thus in view of (6.4.14) adjusting the constant C we obtain first inequality of (6.4.6).

For the second inequality, We observe the following recurrence relation:

|M(!, =) | = |{ ®< = (<1, . . . , <!) ∈ Z!≥0,

!∑
8=1

<8 = =}| ≤ ! · |M(!, = − 1) |. (6.4.15)

It follows immediately that |M(!, =) | ≤ !=. Observe that for each ®< ∈ M(!, =),
( =
®<
)

is bounded

from above by =!. Thus collectively with (6.4.5) we have

|m=Z tr( ∧!Z,C ) | ≤
=!!=

!!
max
®<∈M(!,=)

|�Z ( ®<) |.

Applying the first inequality of (6.4.6) above leads to the second inequality of (6.4.6) completing

the proof.
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Lemma 6.4.2. Fix = ∈ Z>0, Z ∈ [1, 4C�@ ( B2 )], and C > 0. Then

m=Z

( ∞∑
!=1

tr( ∧!Z,C )
)
=

∞∑
!=1

m=Z (tr( 
∧!
Z,C )).

Proof. On account of [88, Proposition 4.2]), it suffices to verify the following conditions:

1.
∑∞
!=1 tr( ∧!

Z,C
) converges absolutely pointwise for Z ∈ [1, 4C�@ ( B2 )];

2. the absolute derivative series
∑∞
!=1 m

=
Z
(tr( ∧!

Z,C
)) converges uniformly for Z ∈ [1, 4C�@ ( B2 )] .

By Proposition 6.4.1, we can pass the derivative inside the trace in (2). Both (1) and (2) fol-

low from (6.4.6) in Proposition 6.4.1 as
∑∞
!=1

1
!!C

!!=!
!
2 Z !X−= exp(−C!ℎ@ (X)) < ∞ for each

Z ∈ [1, 4C�@ ( B2 )].

Now, with the results from Lemmas 6.4.1 and 6.4.2, we are poised to justify the interchanges

of operations leading to (6.4.2).

Proposition 6.4.3. For fixed =, ! ∈ Z≥0, Z ∈ [1, 4C�@ ( B2 )] and C > 0,

∫ 4
C�@ ( B2 )

1
Z−Um=Z

[
1 +

∞∑
!=2

tr( ∧!Z,C )
]
dZ =

∞∑
!=2

∑
®<∈M(!,=)

(
=

®<

)
1
!!

∫ 4
C�@ ( B2 )

1
Z−U �Z ( ®<)dZ . (6.4.16)

Proof. Thanks to Lemma 6.4.2 we can switch the order of derivative and sum to get

l.h.s. of (6.4.16) =
∫ 4

C�@ ( B2 )

1

∞∑
!=2

Z−Um=Z (tr( 
∧!
Z,C ))dZ .

We next justify the interchange of the integral and the sum in above expression. Note that via the

estimate in (6.4.6) we have

∫ 4
C�@ ( B2 )

1

∞∑
!=2

Z−U |m=Z (tr( 
∧!
Z,C )) |dZ ≤

∞∑
!=2

1
!!

C!!=!
!
2 exp(−Cℎ@ (X))

∫ 4
C�@ ( B2 )

1
Z !X−=−UdZ < ∞.

Hence Fubini’s theorem justifies the exchange of summation and integration. Finally we arrive at

r.h.s. of (6.4.16) by using the higher order derivative identity (see (6.4.5)) from Proposition 6.4.1.
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6.4.2 Proof of Proposition 6.2.5

Finally, in this subsection we present the proof of Proposition 6.2.5 via obtaining an upper-

bound for |BB (C) |, defined in (6.2.14).

Recall �Z ( ®<) from (6.4.4). We first introduce the following technical lemma that upper bounds

the absolute value of the integral
∫ 4

C�@ ( B2 )

1 Z−U �Z ( ®<)dZ and will be an important ingredient in the

proof of Proposition 6.2.5.

Lemma 6.4.4. Fix B > 0 so that U := B − bBc > 0. Set = = bBc + 1. Fix ! ∈ Z>0 with ! ≥ 2 and

®< ∈ M(!, =), where M(!, =) is defined in (6.4.3). There exists a constant C = C(@, B) > 0 such

that ∫ 4
C�@ ( B2 )

1
Z−U |�Z ( ®<) |dZ ≤ C!!

!
2 exp(−Cℎ@ (B) − 1

C C). (6.4.17)

where �Z ( ®<) is defined in (6.4.4) and the functions �@ and ℎ@ are defined in Proposition 6.2.1.

Proof. As we obtain upper bounds for the LHS of (6.4.17) differently depending on the value of !,

we split the proof into two steps as follows. Fix !0 = 2(= + 1). In Step 1, we prove the inequality

for when 2 ≤ ! ≤ !0 and in Step 2, we consider the case when ! > !0. In both steps, we deform

the F-contours in �Z ( ®<) appropriately to achieve its upper bound.

Step 1. In this step, we prove (6.4.17) for when 2 ≤ ! ≤ !0. Fix ®< = (<1, . . . , <!) ∈ M(!, =),

where M(!, =) is defined in (6.4.3) and set

d8 :=


<8 + U

!
− 1
| ®< |>0

if <8 > 0

U
!

if <8 = 0.
(6.4.18)

where we recall that | ®< |>0 = |{8 | 8 ∈ Z, <8 > 0}|.

Recall the definition of �Z ( ®<) in (6.4.4). Note that each  (<8)
Z,C
(F8, F 9 ) (see (6.3.8)) are them-

selves complex integral over X + iR. As U > 0 and ! ≤ !0 = 2(= + 1) we may take the X appearing
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in the kernel in  (<8)
Z,C

less than all the d8’s. Note that this is only possible when U > 0. This is why

we assumed this in the hypothesis here and as well as in the statement of Proposition 6.2.5.

In what follows we show that the contours of  (<8)
Z,C
(F8, F 9 ) followed by F8-contours can be

deformed appropriately without crossing any pole in �Z ( ®<). Indeed for each  (<8)
Z,C

in �Z ( ®<) we

can write

 
(<8)
Z,C
(F8, F 9 ) =

1
2ci

∫ d8+i∞

d8−i∞
Γ(−D8)Γ(1 + D8) (D8)=ZD8−=4 5 (D8 ,F8)

dD8
F 9 − gD8F8

.

As each d8 ∈ (0, <8 ∨ 1) (see (6.4.18)), by Remark 6.3.4, the above equality is true as we do not

cross any poles in the integrand. Ensuing this change, we claim that we can deform the F8-contour

to ℭ(g1− d82 ) one by one without crossing any pole in �Z ( ®<). Similar to the argument given in the

beginning of the proof of Proposition 6.2.4, we note that as we deform the F8-contours potential

sources of poles in �Z ( ®<) lie in the exponent 5 (D8, F8) := (@−?)
1+F8g−1 − (@−?)

1+gD8−1F8
(recalled from (6.3.1))

and in the denominator F 9 − gD8F8 .

Take F8 ∈ ℭ(g1− X82 ), X8, ∈ [X, d8], and D8 ∈ d8 + iR. Observe that

|F 9 − gD8F8 | ≥ |F 9 | − |gD8F8 | ≥ g1−
X 9

2 − g1+d8−
X8
2 > 0,

|1 + F8g−1 | ≥ |F8g−1 | − 1 ≥ g−
X8
2 − 1, |1 + gD8−1F8 | ≥ 1 − |gD8−1F8 | ≥ 1 − gd8−

X8
2 .

This ensures that each F8-contour can be taken as ℭ(g1− d82 ) without crossing any pole.

Permitting these contour deformations, we wish to apply Lemma 6.3.5, (6.3.9) specifically.

Indeed we apply (6.3.9) with d, X ↦→ d8, F ↦→ F′, F′ ↦→ F 9 . Note that we indeed have |F 9 | ≠ g1+ d82

here. We thus obtain

| (<8)
Z,C
(F8, F 9 ) | ≤ CZ d8−<8 exp(−Cℎ@ (d8)). (6.4.19)

Here, C is supposed to be dependent on <8, d8, and @. Note that d8 are in turn dependent on <8,

B and !. Since ! is at most !0 = 2(= + 1), there are at most finitely many choices of <8’s which

in turn produced finitely many choices of d8’s. As B is fixed, all of the d8’s are uniformly bounded
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away from 0. Hence we can choose the constant C to be dependent only B and @ (recall that = is

also dependent on B).

Observe that as ®< ∈ M(!, =) defined in (6.4.3), we have
∑
<8 = = and consequently

∑
d8 =

= − 1 + U = B. In view of the estimate in (6.4.19) and the definition of �Z ( ®<) from (6.4.4), by

Hadamard’s inequality, we obtain

|�Z ( ®<) | ≤ C!!
!
2 Z B−= exp

(
−C

!∑
8=1

ℎ@ (d8)
)
= C!!

!
2 Z−1+U exp

(
−C

!∑
8=1

ℎ@ (d8)
)
.

Thus ∫ 4
C�@ ( B2 )

1
Z−U |�Z ( ®<) |dZ ≤ C!!

!
2 exp

(
−C

!∑
8=1

ℎ@ (d8)
) ∫ 4

C�@ ( B2 )

1
Z−1dZ . (6.4.20)

Observe that
∫ H

G
Z−13Z = log H

G
. We appeal to the subadditivity ℎ@ (G) + ℎ@ (H) > ℎ@ (G + H) in

Proposition 6.2.1 to get that
∑!
8=1 ℎ@ (d8) ≥ ℎ@ (B − d1) + ℎ@ (d1). Note that here we used the fact

that ! ≥ 2. This leads to

r.h.s. of (6.4.20) ≤ C!!
!
2 C�@ ( B2 ) exp(−Cℎ@ (B)) exp(−C (ℎ@ (B − d1) + ℎ@ (d1) − ℎ@ (B))) (6.4.21)

Note that from (6.4.18), d8 ≥ U
!
≥ U

!0
, this forces U

!0
≤ B − d1, d1 ≤ B − U

!0
. Appealing to the

strict subadditivity in (6.2.2) gives us that ℎ@ (B − d1) + ℎ@ (d1) − ℎ@ (B) can be lower bounded by

a constant 1
C > 0 depending only on B and @. Adjusting the constant C we can absorb C�@ ( B2 )

appearing in r.h.s. of (6.4.21), to get (6.4.17), completing our work for this step.

Step 2. In this step, we prove (6.4.17) for the rest of the cases when ! > !0. Fix ®< =

(<1, . . . , <!) ∈ M(!, =). Recall the definition of �Z ( ®<) in (6.4.4). Note that each  (<8)
Z,C
(F8, F 9 )

(see (6.3.8)) is a complex integral over X + iR. Here we set X = min( 12 ,
B
2 ). Thanks to (6.4.6) we

have

|�Z ( ®<) | ≤ C!!
!
2 Z !X−= exp(−C!ℎ@ (X)),
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where the constant C depends only on =, X, and @ and thus only on B and @. This leads to

∫ 4
C�@ ( B2 )

1
Z−U |�Z ( ®<) |dZ ≤ C!!

!
2 exp(−C!ℎ@ (X))

∫ 4
C�@ ( B2 )

1
Z−U−=+!XdZ . (6.4.22)

Recall that B = = − 1 + U. As ! ≥ 2(= + 1) and X = min( 12 ,
B
2 ) we have !X − = − U > 0 in this case.

Thus, we can upper bound the integral in (6.4.22) to get

r.h.s. of (6.4.22) ≤ C!!
!
2 exp(−C!ℎ@ (X))

exp(C�@ ( B2 ) (−B + !X))
−B + !X . (6.4.23)

We incorporate 1
−B+!X into the constant C, Recall the definition of �@ (G) from Proposition (6.2.1).

We have G�@ (G) = ℎ@ (G). As �@ (G) is strictly decreasing for G > 0, (Proposition 6.2.1 (a), (b)) we

have

r.h.s. of (6.4.23) ≤ C!!
!
2 exp(−2Cℎ@ ( B2 ) − C!X(�@ (X) − �@ (

B
2 )))

≤ C!!
!
2 exp(−2Cℎ@ ( B2 )) ≤ C!!

!
2 exp(−Cℎ@ (B) − 1

C C),

where the last inequality above follows from (6.2.2) by observing that by subadditivity we can get

a constant C = C(@, B) > 0 such that 2ℎ@ ( B2 ) − ℎ@ (B) ≥
1
C . This completes the proof.

With Lemma 6.4.4, we are now ready to prove Proposition 6.2.5.

Proof of Proposition 6.2.5. Recall the definition of BB (C) as defined in (6.2.14). Appealing to

(6.4.1) and Proposition (6.4.3) we get that

|BB (C) | =
∞∑
!=2

1
!!

∑
®<∈M(!,=)

(
=

®<

) ∫ 4
C�@ ( B2 )

1
Z−U |�Z ( ®<) |dZ (6.4.24)

Note that
( =
®<
)

is bounded from above by =!, and by (6.4.15) we have |M(!, =) | ≤ !=. Applying

these inequalities along with the estimate in Lemma 6.4.4 we have that

r.h.s. of (6.4.24) ≤ exp(−Cℎ@ (B) − 1
C C)

∞∑
!=2

1
!!

C!!
!
2 !=
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for some constant C = C(@, B) > 0. By Stirling’s formula,
∑∞
!=2

1
!!C

!!
!
2 != converges and hence

adjusting the constant C, we obtain (6.2.16) completing the proof of the proposition.

6.5 Appendix: Comparison to TASEP

In this section, we compute explicit expression for the upper tail rate function for TASEP

(ASEP with @ = 1) with step initial data and show that it matches with general ASEP rate function

Φ+ defined in (6.1.4).

Indeed, the large deviation problem for TASEP is already solved in [155] and is formulated in

terms of Exponential Last Passage Percolation (LPP) model (Theorem 1.6 in [155]).

In order to state the connection between TASEP and Exponential LPP, we briefly recall the

Exponential LPP model. Let Π# be the set of all upright paths c in Z2
>0 from (1, 1) to (#, #).

Let F(8, 9), (8, 9) ∈ Z2
>0 be independent exponential distributed random variables with parameter

1. The last passage value for (#, #) is defined to be

H(#) := max
{ ∑
(8, 9)∈c

F(8, 9); c ∈ Π#
}
.

As with the ASEP, for TASEP, we also set �@=1
0 (C) to be the number of particles to the right of

origin at time C. It is well known (see [155] for example) that �@=1
0 (C) is related to the last passage

valueH(#) in the following way

P
(
−�@=1

0 (C) + C
4 ≥

C
4 H

)
= P(H ("C) ≥ C), where "C = b C4 (1 − H)c + 1. (6.5.1)

Theorem 6.5.1. For H ∈ (0, 1) we have

lim
C→∞

1
C

logP
(
−�@=1

0 (C) + C
4 ≥

C
4 H

)
= −Φ+(H). (6.5.2)

where Φ+ is defined in (6.1.4).
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The idea of the proof of Theorem 6.5.1 is to use large deviation principle for H(#) which

appears in Theorem 1.6 in [155] followed by an application of the relation (6.5.1). The only

impediment is that the Johansson result appears in a variational form.

Let us recall Theorem 1.6 in [155]. According to Eq (1.21) in [155] (with W = 1), the upper tail

ofH(#) satisfy the following large deviation principle

lim
#→∞

1
#

logP(H (#) ≥ #I) = −� (I), I ≥ 4. (6.5.3)

where the rate function � is given by

� (C) := inf
G≥C
[�+ (G) − �+ (4)], C ≥ 4, where

�+ (G) := −2
∫
R

log |G − A |d`+ (A) ++ (A), G ≥ 4.
(6.5.4)

Here + (G) = G is defined on [0,∞), and the measure `+ is the unique minimizer of �+ (`) over

M(R≥0), the set of probability measures on [0,∞). �+ (·) is known as the logarithmic entropy in

presence of the external field + and is given by

�+ (`) := −
∬
R2

log |G1 − G2 |d`(G1)d`(G2) +
∫
R
+ (G)d`(G), ` ∈ M(R≥0).

The logarithmic entropy �+ (`) is well studied in both mathematical and physics literature and has

several applications to random matrix theory and related models. We refer to [215] and [146] and

the references there in for more details.

The form of the rate function defined in (6.5.4) is not exactly same as in [155]. However, one

can show the rate function � defined in (6.5.4) is same as Eq (2.15) in [155] using the properties of

minimizing measure (see Theorem 1.3 in [215] or Eq (1.6) in [111]). Such an expression for the

rate function is derived using Coulomb gas theory. We refer to [155], [121], and [86] for treatment

on the LDP problems of such nature.

Proof of Theorem 6.5.1. For clarity we split the proof into two steps.
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Step 1. We claim that � defined in (6.5.4) has the following explicit expression.

� (C) =
√
C2 − 4C − 2 log

C − 2 +
√
C2 − 4C

2
, C ≥ 4. (6.5.5)

We will prove (6.5.5) in Step 2. Here we assume its validity and conclude the proof of (6.5.2).

Towards this end, fix H ∈ (0, 1) and  large enough such that [H − 1
 
, H + 1

 
] ⊂ (0, 1). Recall

the definition of "C from (6.5.1). Note that for all large enough C, we have 4
1−H+ −1"C ≤ C ≤

4
1−H− −1"C . Thus

P
(
H("C) ≥ 4

1−H+ −1"C

)
≥ P

(
−�@=1

0 (C) + C
4 ≥

C
4 H

)
≥ P

(
H("C) ≥ 4

1−H− −1"C

)
.

Taking logarithms on each side, dividing by "C and then taking C →∞ we get

−�
( 4

1−H+ −1

)
≥ lim sup

C→∞

1
"C

P
(
−�@=1

0 (C) + C
4 ≥

C
4 H

)
≥ lim inf

C→∞
1
"C

P
(
−�@=1

0 (C) + C
4 ≥

C
4 H

)
≥ −�

( 4
1−H− −1

)
.

(6.5.6)

where we used the upper tail large deviation principle forH(#) from (6.5.3). Observe that "C
C
→

1−H
4 , and using (6.5.5) we see that

1 − H
4

�
( 4
1 − H

)
=

1 − H
4

( 4√H
1 − H − 2 log

2(1 + H) − 4√H
2(1 − H)

)
= Φ+(H),

where Φ+ is defined in (6.1.4). Thus taking  →∞ in (6.5.6) we arrive at (6.5.2).

Step 2. We now turn our attention to prove (6.5.5). It is well known that for + (G) = G, the

minimizer `+ is given by the Marchenko-Pastur measure (see Equation 3.3.2 and Proposition 5.3.7

in [146] with _ = 1):

d`+ (G) =
√

4G − G2

2cG
1G∈[0,4]dG.

Recall �+ (G) defined in (6.5.4). Using the Cauchy Transform for `+ (see the last unnumbered
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equation in Page 200 of [146]) we get that for G > 4,

d
dG

∫
log |G − A |d`+ (A) =

1
2
−
√
G2 − 4G

2G
,

which implies �+ (I) − �+ (4) =
∫ I

4

√
G2−4G
G

dG. Thus �+ (I) − �+ (4) is strictly increasing in H and

whence by (6.5.4) we have

� (C) =
∫ C

4

√
G2 − 4G
G

dG.

To compute the above integral, we make the change of variable G ↦→ (I+1)2
I

so that dG = (1 − 1
I2
)dI

and G2 − 4G = (I
2−1)2
I2

. Set 0 = C−2
2 +

√
C2−4C
2 to get

∫ C

4

√
G2 − 4G
G

dG =
∫ 0

1

(I − 1)2
I2

dI =
[
I − 1

I
− 2 log I

]0
1
= 0 − 1

0
− 2 log 0.

Plugging the value of 0 we get (6.5.5) completing the proof.
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