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Abstract

Path properties of KPZ models

Sayan Das

In this thesis we investigate large deviation and path properties of a few models within the

Kardar-Parisi-Zhang (KPZ) universality class.

The KPZ equation is the central object in the KPZ universality class. It is a stochastic PDE

describing various objects in statistical mechanics such as random interface growth, directed poly-

mers, interacting particle systems. In the first project we study one point upper tail large deviations

of the KPZ equationH(𝑡, 𝑥) started from narrow wedge initial data. We obtain precise expression

of the upper tail LDP in the long time regime for the KPZ equation. We then extend our techniques

and methods to obtain upper tail LDP for the asymmetric exclusion process model, which is a

prelimit of the KPZ equation.

In the next direction, we investigate temporal path properties of the KPZ equation. We show

that the upper and lower law of iterated logarithms for the rescaled KPZ temporal process occurs at

a scale (log log 𝑡)2/3 and (log log 𝑡)1/3 respectively. We also compute the exact Hausdorff dimen-

sion of the upper level sets of the solution, i.e., the set of times when the rescaled solution exceeds

𝛼(log log 𝑡)2/3. This has relevance from the point of view of fractal geometry of the KPZ equation.

We next study superdiffusivity and localization features of the (1+1)-dimensional continuum

directed random polymer whose free energy is given by the KPZ equation. We show that for a

point-to-point polymer of length 𝑡 and any 𝑝 ∈ (0, 1), the point on the path which is 𝑝𝑡 distance

away from the origin stays within a 𝑂 (1) stochastic window around a random point M𝑝,𝑡 that



depends on the environment. This provides an affirmative case of the folklore ‘favorite region’

conjecture. Furthermore, the quenched density of the point when centered aroundM𝑝,𝑡 converges

in law to an explicit random density function as 𝑡 → ∞ without any scaling. The limiting random

density is proportional to 𝑒−R(𝑥) where R(𝑥) is a two-sided 3D Bessel process with diffusion co-

efficient 2. Our proof techniques also allow us to prove properties of the KPZ equation such as

ergodicity and limiting Bessel behaviors around the maximum. In a follow up project, we show

that the annealed law of polymer of length 𝑡, upon 𝑡2/3 superdiffusive scaling, is tight (as 𝑡 → ∞)

in the space of 𝐶 ( [0, 1]) valued random variables. On the other hand, as 𝑡 → 0, under diffusive

scaling, we show that the annealed law of the polymer converges to Brownian bridge.

In the final part of this thesis, we focus on an integrable discrete half-space variant of the CDRP,

called half-space log-gamma polymer. We consider the point-to-point log-gamma polymer of

length 2𝑁 in a half-space with i.i.d. Gamma−1(2𝜃) distributed bulk weights and i.i.d. Gamma−1(𝛼+

𝜃) distributed boundary weights for 𝜃 > 0 and 𝛼 > −𝜃. We establish the KPZ exponents (1/3 fluc-

tuation and 2/3 transversal) for this model when 𝛼 ≥ 0. In particular, in this regime, we show

that after appropriate centering, the free energy process with spatial coordinate scaled by 𝑁2/3 and

fluctuations scaled by 𝑁1/3 is tight. The primary technical contribution of our work is to construct

the half-space log-gamma Gibbsian line ensemble and develop a toolbox for extracting tightness

and absolute continuity results from minimal information about the top curve of such half-space

line ensembles. This is the first study of half-space line ensembles. The 𝛼 ≥ 0 regime correspond

to a polymer measure which is not pinned at the boundary. In a companion work, we investigate

the 𝛼 < 0 setting. We show that in this case, the endpoint of the point-to-line polymer stays within

𝑂 (1) window of the diagonal. We also show that the limiting quenched endpoint distribution of

the polymer around the diagonal is given by a random probability mass function proportional to

the exponential of a random walk with log-gamma type increments.
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enforces the blue line staying above the black curve. Here P𝑠 is the law of the black
solid curve and Pfree is the law of free Brownian bridge, i.e., the law of the top line
of a KPZ line ensemble with 𝔥̂

(2)
𝑡 = −∞ and 𝔥̂

(1)
𝑡 has the same end point as 𝔥

(1)
𝑡 .

By the monotone coupling, P𝑠 (D) ≤ Pfree(D) for the event D. The probability of
a Brownian bridge staying below the interpolating line of its end point is less than
1
2 . This shows P𝑠 (D) is bounded above by 1

2 . . . . . . . . . . . . . . . . . . . . . 153

5.1 First idea for the proof: The first two figures depict two independent Brownian
bridges ‘blue’ and ‘black’ on [0, 1] starting and ending at zero. We flip the blue
one and shift it appropriately so that when it is superimposed with the black one,
the blue curve always stays above the black one and touches the black curve at
exactly one point. The superimposed figure is shown in third figure. The red point
denotes the ‘touching’ point or equivalently the joint maximizer. Conditioned on
the max data, the trajectories on the left and right of the red points are given by two
pairs of non-intersecting Brownian bridges with appropriate end points. . . . . . . 221

5.2 Second idea for the proof: For all “good" boundary data and max data, with high
probability, there is an uniform separation of order 𝑡1/3 between the first two curves
on the random interval [𝑀𝑡 − 𝐾, 𝑀𝑡 + 𝐾]. . . . . . . . . . . . . . . . . . . . . . . 222

5.3 Third idea for the proof: The three regimes . . . . . . . . . . . . . . . . . . . . . . 223

5.4 Relationship between different laws used in Sections 5.4 and 5.5. . . . . . . . . . . 235

5.5 Illustration of the proof of Theorem 5.1.11. In a window of [𝑡−𝛼, 𝑡𝛼], the curves
𝔥
(1)
𝑡 (𝑥), 𝔥

(2)
𝑡 (𝑥) attains an uniform gap with high probability. This allows us to

show law of 𝔥(1)𝑡 on that small patch is close to a Brownian bridge. Upon zoom-
ing in a the tiny interval [−𝑡2/3𝑎, 𝑡2/3𝑎] we get a two-sided Brownian bridge as
explained in Step 1 of the proof. . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
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5.6 In the above figure Gap𝑡 (𝛿) defined in (5.6.3) denotes the event that the value of
the blue point is smaller than the value of each of the red points at least by 𝛿,
The Rise𝑡 (𝛿) event defined in (5.6.4) requires no point on the whole blue curve
(restricted to 𝐼𝑡 = (−𝑡−𝛼, 𝑡−𝛼)) exceed the value of the blue point by a factor 1

4𝛿
(i.e., there is no significant rise). The Tight𝑡 (𝛿) defined in (5.6.5) event ensures
the value of the red points are within [−𝛿−1, 𝛿−1]. The Fluc(𝑖)𝑡 (𝛿) event defined in
(5.6.15) signifies every value of every point on the 𝑖-th curve (restricted to 𝐼𝑡) is
within 1

4𝛿 distance away from its value on the left boundary: 𝔥(1)𝑡 (−𝑡−𝛼). Finally,
Sink𝑡 (𝛿) event defined in (5.6.20) denotes the event that no point on the black curve
(restricted to 𝐼𝑡) drops below the value of the red points by a factor larger than 1

4𝛿,
(i.e., there is no significant sink). . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

5.7 Structure of Section 5.6.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

5.8 An overview of the proof for Proposition 5.6.1. The top and bottom black curves
are 𝑌 (1)

𝑀,𝑡,↑ and 𝑌 (1)
𝑀,𝑡,↓ respectively. Note that the way they are defined in (5.6.26),

𝑌
(1)
𝑀,𝑡,↑(𝑥) ≥ 𝑌

(1)
𝑀,𝑡,↓(𝑥) with equality at 𝑥 = Φ = 𝑡−2/3M𝑀

𝑝,𝑡 labelled as the red dot

in the above figure. The blue curves are 𝑌 (1)
𝑀,𝑡,↑, 𝑌

(2)
𝑀,𝑡,↓. There is no such ordering

within blue curves. They may intersect among themselves as well as with the
black curves. With 𝛼 = 1

6 , we consider the interval 𝐾𝑡 = (Φ − 𝑡−𝛼,Φ + 𝑡−𝛼). In
this vanishing interval around Φ, the curves will be ordered with high probability.
In fact, with high probability, there will be a uniform separation. For instance, for
small enough 𝛿, we will have 𝑌 (2)

𝑀,𝑡,↑(𝑥) −𝑌
(1)
𝑀,𝑡,↑(𝑥) ≥

1
4𝛿, and 𝑌 (1)

𝑀,𝑡,↓(𝑥) −𝑌
(2)
𝑀,𝑡,↓(𝑥) ≥

1
4𝛿, for all 𝑥 ∈ 𝐾𝑡 wth high probability. This will allow us to conclude black
curves are behave approximately like two-sided NonInt-BrBridges on that narrow
window. Then upon going into a even smaller window of 𝑂 (𝑡−2/3), the two-sided
NonInt-BrBridges turn into a two-sided DBM. . . . . . . . . . . . . . . . . . . . 271

5.9 In the above figure we have plotted the curves 𝑓 (𝑥) := 𝑝1/3𝔥(1)
𝑝𝑡,↑(𝑝

−2/3𝑥) (black)

and 𝑔(𝑥) := 𝑝1/3𝔥(2)
𝑝𝑡,↑(𝑝

−2/3𝑥) (blue) restricted to the interval 𝐾𝑡 := (Φ − 𝑡−𝛼,Φ +
𝑡−𝛼). For convenience, we have marked two blue points along with their values as
(𝐴, 𝑓 (𝐴)), (𝐵, 𝑔(𝐵)). Gap𝑀,↑(𝛿) defined in (5.6.35) denote the event that the blue
points are separated by 𝛿, i.e, 𝑓 (𝐴)−𝑔(𝐵) ≥ 𝛿. The Rise𝑀,↑(𝛿) defined in (5.6.37)
ensures no point on the blue curve (restricted to 𝐾𝑡) has value larger than 𝑔(𝐵) + 1

4𝛿
(that is no significant rise). The Bd↑(𝛿) event defined in (5.6.33) indicates the red
points on the black curve are within [ 𝑓 (𝐴) − 1

𝛿
𝑡−𝛼/2, 𝑓 (𝐴) + 1

𝛿
𝑡−𝛼/2]. The Sink↑(𝛿)

event defined in (5.6.68) ensures that all points on the black curve (restricted to
𝐾𝑡) have values larger than 𝑓 (𝐴) − 1

4𝛿 (that is no significant sink). Clearly then
on Sink↑(𝛿) ∩ Rise𝑀,↑(𝛿) ∩ Gap𝑀,↑(𝛿) for all 𝑥 ∈ 𝐾𝑡 , we have 𝑓 (𝑥) − 𝑔(𝑥) ≥
𝑓 (𝐴) − 1

4𝛿 − 𝑔(𝐵) −
1
4𝛿 ≥

1
2𝛿. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
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5.10 Illustration for the proof of Proposition 5.7.2. In Deep Tail region we use parabolic
decay of KPZ line ensemble, and in Shallow Tail we use non-intersecting Brownian
bridge separation estimates from Proposition 5.5.6. . . . . . . . . . . . . . . . . . 298

7.1 Vertex weights for the half-space log-gamma polymer and two possible paths (one
marked in blue and the other in black) in Π8,8. . . . . . . . . . . . . . . . . . . . . 362

7.2 (A) depicts the half-space log-gamma line ensemble for large 𝑁 along with the
type of scalings that are deduced in proving Theorem 7.1.1. This ensemble en-
joys a half-space log-gamma Gibbs property. (B) depicts a potential limiting line
ensemble which should enjoy a half-space non-intersecting Brownian Gibbs property.366

7.3 (A) The graph 𝐺 associated to half-space log-gamma Gibbs measures. In the
figure, a few of the vertices of 𝐺 are labeled by 𝜙-induced labeling. A generic
bounded connected domain Λ is shown in the figure which contains all vertices in
the shaded region. 𝜕Λ consists of white vertices in the figure. (B) The domain 𝐾𝑁
considered in Theorem 7.1.3. Λ∗

𝑁
consists of vertices in the shaded region. . . . . . 370

7.4 The above is a realization of the PRW law having non-intersection where we have
assumed 𝑎𝑇 = 0 and 𝑏𝑇 = −

√
𝑇 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

7.5 The above figure corresponds to a realization of PRW law with non-intersection,
where we can only assume 𝑎𝑇 , 𝑏𝑇 = 𝑂 (

√
𝑇) and 𝑎𝑇 − 𝑏𝑇 ≥ −(log𝑇)7/6. We utilize

the fact that the event associated to (iv) depends only on the first-quarter of points
of the walk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382

7.6 Two domains K𝑘,𝑇 and K′
𝑘,𝑇

are shown in (A) and (B) with 𝑘 = 3, 𝑇 = 4 and
boundary conditions (®𝑦, ®𝑧) and (®𝑦, ®𝑤) respectively. They include all the vertices
within the gray dashed box as well some labels for the points. The directed edges
with lighter colors are edges connecting vertices from Λ to 𝜕Λ or viceversa (Λ =

K𝑘,𝑇 or Λ = K′
𝑘,𝑇

). The boundary variable 𝑧0 does not actually play any role in
the density of the corresponding HSLG Gibbs measure after normalizing it to be a
probability density. This point is explained after the statement of Observation 7.2.2. 386

7.7 The marginal distribution of the odd (black) points of the HSLG Gibbs measure
shown above with 𝑇1 = 1, 𝑇2 = 6 is described in Observation 7.2.5. . . . . . . . . . 390

7.8 Half-space log gamma line ensemble = (𝑖 (·))𝑁𝑖=1 (𝑁 = 6 in above figure). Each
curve 𝑖 (·) has 2𝑁 − 2𝑖 + 2 many coordinates. Λ∗

𝑁
in Theorem 7.1.3 is the set of

all black points in the above figure. Theorem 7.1.3 tells us that conditioned on the
blue points, the law of the black points is given by the HSLG Gibbs measures. . . . 392
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7.9 Ordering of points within Half-space log gamma line ensemble: The above figure
consists of first 3 curves of the line ensemble . A black or blue arrow from 𝑎 → 𝑏

signifies 𝑎 ≤ 𝑏 − (log 𝑁)7/6 with exponential high probability. The blue arrows
depicts the ordering within a particular indexed curve (inter-ordering). The black
arrow indicates ordering between the two consecutive curves (intra-ordering). . . . 397

7.10 Diagram for Proposition 7.3.4. In the above figure 𝑁
1 (2𝑝 + 1) is given by the black

rough curve. 𝑓±(𝑥) := −(𝑁𝜈)−1𝑥2±𝑀2𝑁
1/3 are the parabolic curves drawn above.

The horizontal lines are drawn in such a way that they meet the parabolas at 𝑥 =

𝑘𝑁2/3. The event in (7.3.14) tells us that on I𝑘 := J𝑘𝑁2/3, (𝑀1+2𝑘)𝑁2/3K the black
rough curve stays entirely below the black horizontal line. The event in (7.3.15)
asserts that there is a point on I𝑘 such that the black rough curve is above the red
horizontal curve at that point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404

7.11 In the above figure 1(2𝑝 + 1) (black curve) and 2(2𝑝) (blue curve) are plotted for
𝑝 ∈ J . A denotes the event that the blue curve lies below the horizontal line 𝑦 = 𝑣.
B denotes the event that the black curve starts below 𝑎 and ends below 𝑏. The curve
𝑓 in the figure is given by 𝑓 (𝑥) = −(𝑁𝜈)−1𝑥2 − 𝑎. The event C denotes that there
is a point 𝑝′ ∈ I on black curve such that 1(2𝑝′ + 1) ≥ 𝑓 (𝑆𝑁2/3) (this event does
not occur in the above figure). The key idea is that on A ∩ B, the blue curve lies
below 𝑦 = 𝑣 completely, and the black curve behaves like a simple random bridge
and follows a linear trajectory with starting and ending points less than 𝑎 and 𝑏
respectively. As a result, the event C (which requires the black curve to follow
parabolic trajectory) does not occur with high probability. But we know both B
and C occurs with high probability. Thus the event A occurs with low probability. . 406

7.12 In the above figure the random bridge 𝑋𝑖 from 𝑎 to 𝑏 is depicted by the black curve.
The event D ensures the random bridge lies below the blue line 𝑦 = 𝑎 + 𝑥

𝑛
(𝑏 − 𝑎) +√

𝑅𝑛. The event C requires 𝑋𝑖 ≥ −[𝑀0 + 𝑆2𝜈]𝑁1/3 for some 𝑖 ∈ K := [(𝑆 −
𝑘)𝑁2/3, (𝑀0 + 2𝑆 − 𝑘)𝑁2/3]. One can choose 𝑅 large enough so that the horizontal
black line 𝑦 = −[𝑀0 + 𝑆2𝜈]𝑁1/3 lies above the blue line 𝑦 = 𝑎 + 𝑥

𝑛
(𝑏 − 𝑎) +

√
𝑅𝑛

for all 𝑥 ≥ (𝑆 − 𝑘)𝑁2/3. This forces D ⊂ ¬C. . . . . . . . . . . . . . . . . . . . . 407

7.13 The above figure depicts the event RP2,𝑀 under the law P®𝑦,(−∞)
2𝑇 ;2,2𝑇

𝛼2 . . . . . . . . 422

7.14 Redistribution of edge weights for 𝛼 ∈ (−𝜃, 𝜃) (Figure A) and for 𝛼 > 0 and 𝑘 even
(Figure B). The weights of green, teal, and purple edges are 𝑒(𝜃−𝛼)𝑥−𝑒

𝑥

, 𝑒𝛼𝑥−𝑒
𝑥

,
and 𝑒(𝜃+𝛼)𝑥−𝑒

𝑥

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
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7.15 Figures (A) and (B) are graphical representations of probability distributions P𝑦1,(−∞)4;1,4
𝛼1

and 𝜉 (𝑎,𝑏)
𝜃1,𝜃2;±1 respectively. Figure (C) shows decomposition of P(𝑦1,𝑦2),(−∞)4;2,4

𝛼1 into
P̃(𝑦1,𝑦2) (middle figure) and 𝑊cr (right figure). The marginal law of the gray (blue
resp.) shaded region is a random walk started at 𝑦1 (𝑦2 resp.) with increment
𝐺𝜃+𝛼1,−1 ∗ 𝐺𝜃−𝛼1,+1 (𝐺𝜃+𝛼1,+1 ∗ 𝐺𝜃−𝛼1,−1 resp.). . . . . . . . . . . . . . . . . . . . 424

7.16 P(𝑦1,𝑦2),(−∞)3;2,3
𝛼2 law is decomposed into two parts. The first part (middle figure)

shaded region corresponds to a paired random walk. The second part (right figure)
corresponds to𝑊sc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427

7.17 Modified random bridge. We start random walks of length 𝑝 and 𝑞 from 𝐴 and 𝐵
with the second one viewed in the reverse direction. From their endpoints 𝐶 and 𝐷
we then consider a random bridge of length 𝑛 − 𝑝 − 𝑞. . . . . . . . . . . . . . . . . 437

7.18 Graphical representation of 𝑋 (left) and 𝑌 (right) distribution from Lemma 7.5.3. . 447

7.19 In the above figure, we have plotted 𝐿1J1, 2𝑇−1K (black curve) and 𝐿2J2, 2𝑇K (blue
curve).Due to endpoint tightness, Lemma 7.3.8 ensure 𝐿1(1), 𝐿2(2) ∈ (−𝑀0

√
𝑇, 𝑀0

√
𝑇).

Assuming this, in order to seek an uniform upper bound for the blue curve, by
stochastic monotonicity we may push the black curve all the way to +∞. The re-
sulting law for the blue curve is given by 𝑌 introduced in Lemma 7.5.3. Uniform
upper bound for the resulting law for the blue curve law can then be estimated by
Lemma 7.5.3. The upper bound is shown in the dashed line above. Once we have
an uniform upper bound for the blue curve, we may elevate the endpoints of black
curve much higher (from black points to red points in the above right figure) so that
the curve no longer feels the effect of the blue curve. The red curve above denotes
a sample for 𝐿1 from this elevated end points. Without the blue curve its law (upto
a translation) equals to 𝑋 in Lemma 7.5.3. An uniform upper bound for the red
curve can then be estimated by Lemma 7.5.3. . . . . . . . . . . . . . . . . . . . . 450

7.20 (A) A possible domain Λ. (B) Reduction in the case of 𝛼 ∈ (−𝜃, 𝜃). (C) Reduction
in the case of 𝛼 > 0. (D) Type I Gibbs measures. The figure shows two of them
of even length. It may also have odd length with one edge at either of the end
removed. (E) Type II Gibbs measures. It may also have odd length with one edge
at right end removed. (F) Few examples of Type III Gibbs measures. . . . . . . . . 470

7.21 (A) A possible domain Λ includes all the vertices in the shaded region. 𝑤𝑖’s are
the vertices of Λ enumerated in lexicographic order. Directed edges 𝑒𝑟 going are
shown above for 𝑟 = 5 and 𝑟 = 8. These are the blue edges with 𝑤𝑟 as the left point
of 𝑒𝑟 . (B) The domain Λ5 includes the vertices in the shaded region. 𝑄5 is the set
of all red and black edges that have one vertex as 𝑤6 and one vertex in 𝜕Λ6. In the
above figure, 𝑄5 is composed of two black edges that points toward 𝑤6. . . . . . . 491
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8.1 The bound and the unbound phase. . . . . . . . . . . . . . . . . . . . . . . . . . . 497

8.2 Two possible paths of length 14 in Πhalf
8 are shown in the figure. . . . . . . . . . . 497

8.3 First three curves of the HSLG line ensemble. There is a high probability uniform
separation of length

√
𝑁 between the first two curves in the above 𝑀1

√
𝑁 window. . 502

8.4 The𝑈 map takes 𝜋1, 𝜋2 from (A) and returns 𝜋′1, 𝜋
′
2 in (B). The precise description

of the map is given in the proof of Lemma 8.3.1 . . . . . . . . . . . . . . . . . . . 504

8.5 If the height of the endpoint of the polymer is less than 𝑁 − 𝑘 , it either lies in
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exponentially unlikely to lie in the deep tail. . . . . . . . . . . . . . . . . . . . . . 506

8.6 (A) Diamond lattice with a few of the labeling of the vertices shown in the figure.
The 𝑚-th gray-shaded region have vertices with labels of the form {(𝑚, 𝑛) | 𝑛 ∈
Z2
>0}. Thus each such region consists of vertices with the same first coordinate

labeling. Potential directed-colored edges on the lattice are also drawn above. (B)
𝐾𝑁 with 𝑁 = 4. Λ∗

𝑁
consists of all vertices in the shaded region. . . . . . . . . . . 513
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′
2. . . . . . . . . . . . . . . . . . . . . . . . . . 521

8.10 The 𝑗 = 𝑟 case. 𝜋1 and 𝜋2 are black and blue paths in Figure (A) respectively. 𝜋3 is
the black dashed path in Figure (A). 𝜋′1 is the path in Figure (B) which is formed by
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8.13 Proof Scheme: The Gibbs measure on Θ2,4 domain (left figure) can be decomposed
into two parts: One is the combination of the top colored row and 2 IRWs (middle
figure) and two are the remaining black weights (right figure) which will be viewed
as a Radon-Nikodym derivative. Here note that in the middle figure, the only
contribution from the top row comes from the odd points, 𝐻 (1)

𝑁
(2 𝑗 − 1) for 𝑗 ∈

J1, 𝑇K, which are set to ∞. Thus, their contribution to (8.4.12) from (8.2.6) would
be exp(−𝑒−∞) = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535

8.14 Illustration of the proof of Proposition 8.5.3. As claimed by Lemma 8.5.2, there
exists a high point in J2𝑀

√
𝑁 + 1, 4𝑀

√
𝑁 + 1K such that 𝐻 (1)

𝑁
(2𝑝∗ + 1) lies above

𝑅𝑁 − 5
2𝑀𝜏
√
𝑁 with high probability. This high point is illustrated as the blue point

in the figure. This high point between J2𝑀
√
𝑁 + 1, 4𝑀

√
𝑁 + 1K helps us show that

𝐻
(1)
𝑁
(·) ≥ 𝑅𝑁 − 3𝑀𝜏

√
𝑁 between J1, 2𝑝∗ + 1K. However, invoking Proposition

8.4.2, we can ensure the second curve stays below the benchmark of 𝑅𝑁 − (3𝑀𝜏 +
1)
√
𝑁 on the interval J1, 4𝑀

√
𝑁 + 1K with high probability. Thus there is a

√
𝑁

separation (with high probability) between the two curves. By the Gibbs property,
this separation ensures that the top curve is close to a log-gamma random walk. . . 544

8.15 Gibbs decomposition. The left figure shows the gibbs measure corresponding to
conditioned on F𝑖 with 𝑖 = 3. Here 𝑎 = 𝐻

(1)
𝑁
(2𝑖 + 1), and 𝑧 𝑗 := 𝐻

(2)
𝑁
(2 𝑗) for

𝑗 ∈ J1, 𝑖K. The measure has been decomposed into two parts. The free law (middle)
and a Radon-Nikodym derivative (right). . . . . . . . . . . . . . . . . . . . . . . . 548
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Chapter 1: Introduction

The Kardar-Parisi-Zhang (KPZ) equation, a stochastic PDE which is formally written

𝜕𝑡H = 1
2𝜕𝑥𝑥H +

1
2 (𝜕𝑥H)

2 + 𝜉, H := H(𝑡, 𝑥) (𝑡, 𝑥) ∈ [0,∞) × R. (1.0.1)

Here 𝜉 = 𝜉 (𝑡, 𝑥) is the space time white noise. The KPZ equation was introduced in [217] for

studying the fluctuation of growing interfaces and since then, it has found links to many systems

including directed polymers, last passage percolation, interacting particle systems, and random

matrices via its connections to the KPZ universality class (see [166, 278, 113, 281]).

The KPZ equation, as given in (1.0.1), is ill-posed as a stochastic PDE due to the presence

of the nonlinear term (𝜕𝑥H)2. The physically relevant notion of solution for the KPZ equation is

given by the Cole-Hopf solution which is defined as

H(𝑡, 𝑥) := logZ(𝑡, 𝑥),

whereZ(𝑡, 𝑥) is the solution of the stochastic heat equation (SHE):

𝜕𝑡Z = 1
2𝜕𝑥𝑥Z + 𝜉Z, Z := Z(𝑡, 𝑥). (1.0.2)

Throughout this paper, we work with the fundamental solution Znw(𝑡, 𝑥) of (1.0.2) and the asso-

ciated Cole-Hopf solutionHnw(𝑡, 𝑥) := logZnw(𝑡, 𝑥) which corresponds to the SHE being started

from the delta initial measure, i.e., Znw(0, 𝑥) = 𝛿𝑥=0. For any 𝑡 > 0, Znw(𝑡, 𝑥) is strictly positive

[168] which makes the Cole-Hopf solutionHnw(𝑡, 𝑥) well-defined. The corresponding initial data

of the KPZ equation is termed as the narrow wedge initial data. We shall often drop the ’nw’

superscript from the notation and just writeH orZ for the rest of the text.
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As an important model for the random interface growth, it is valuable to understand long time

behavior of the KPZ equation. In this direction, [6] proved that as 𝑡 →∞

𝑡−1/3 (
H(2𝑡, 0) + 𝑡

12
) 𝑑→ Tracy-Widom GUE.

This result asserts that, for large 𝑡, the height H(2𝑡, 0) concentrates around − 𝑡
12 , has typical devi-

ations of order 𝑡1/3, and after being scaled by 𝑡−1/3 the fluctuations converge to the GUE Tracy–

Widom distribution [308].

A natural question that follows the fluctuation result is establishing a Large Deviation Principle

(LDP), namely questions about tails of the distribution of H(2𝑡, 0) + 𝑡
12 . We seek to find the

probability of the rare events when the height H(2𝑡, 0) + 𝑡
12 has a deviation of order 𝑡. In a joint

work with Li-Cheng Tsai, we derive the upper tail LDP for the KPZ equation. We give an overview

of the precise result and proof idea in Section 1.1. Using the same machinery, we also prove an

upper-tail LDP for asymmetric simple exclusion process, which is a prelimit of the KPZ equation.

The details are given in Section 1.1.

Being a non-linear PDE, KPZ equation exhibits remarkable fractal behavior. A systematic

way to study the fractal behavior of the peaks of KPZ/SHE or in general any process Ψ𝑡 is to

first determine asymptotic heights of the peaks. This can be done by determining a non-random

function 𝑔(𝑡) such that

lim sup
𝑡→∞

Ψ(𝑡)/𝑔(𝑡) = 1 𝑎.𝑠.

Then a natural way to study the peaks is to investigate the geometry of the level sets of the pro-

cess: PΨ (𝛼) := {𝑡 > 0 | Ψ(𝑡)/𝑔(𝑡) ≥ 𝛼}. The geometry of these random sets can be measured by

studying its macroscopic Hausdorff dimension [22]. If there are infinitely many possible values of

𝛼 each producing a different value for dim(PΨ (𝛼)) (macroscopic Hausdorff dimension of PΨ (𝛼)),

it indicates a rich geometric structure among the level sets. Such a process is known as multifrac-

tal. Whereas if dim(PΨ (𝛼)) = 1 for all 𝛼 ∈ (0, 1), we call it monofractal. In a joint work with

Promit Ghosal, we initiated the study of the peaks of the KPZ equation in the temporal direction.
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We show that KPZ temporal process peaks are monofractal. However, upon an exponential time

change it becomes multifractal. We give a brief overview of our results in this direction in Section

1.1.

In the second half of the thesis, we study the model of directed polymers in random environ-

ments (DPRE). DPRE considers an up-right random walk on the integer lattice, whose paths –

considered the ‘polymer’ – are reweighted according to a random environment that refreshes at

each time step. Based on physics predictions, two phenomena are conjectured in this model: (a)

The 𝑛-length polymer path fluctuates in the order of 𝑛2/3 (superdiffusive). This is in sharp contrast

with the usual random walk diffusive behavior where we see
√
𝑛 fluctuations. (b) Upon fixing the

environment, the polymer exhibits localization phenomena. Large values in the environment tend

to attract the random walker and possibly force it to follow a favorite path dictated by the environ-

ment. Although there is immense progress in the rigorous understanding of several aspects of the

above two phenomena in the last two decades, the full resolution of these conjectures is far from

being settled.

In this thesis, we focus on the continuum directed random polymer (CDRP) model which arises

as a universal scaling limit of discrete directed polymers in the intermediate disorder regime. In

two joint works with Weitao Zhu, we have settled the above two conjectures for CDRP model.

We show that the paths of the CDRP are superdiffusive and upon fixing the environment the paths

localized within an 𝑂 (1) window around the favorite point. We refer to Section 1.2 for more

details.

The final part of this thesis is focussed on understanding the geometry of half-space polymers.

Half-space polymers are a variant of DPREs where the polymer interacts with a given surface.

Mathematically they are modeled by restricting the paths to stay on or above the diagonal and

introducing a different random weight on the diagonal. Half-space models are interesting as they

show certain depinning transition. When diagonal weights are not too large, the polymers are

conjectured to behave like the full-space ones (unbound phase), whereas if the weights are large

enough, the polymers are believed to be pinned to the diagonal (bound phase).
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In two recent works, we establish the above picture for a very particular integrable half-space

polymer called half-space log-gamma polymer. In a joint work with Ivan Corwin and Guillaume

Barraquand, we proved superdiffusivity for this particular polymer in the unbound phase. Our

proof relies on the novel construction of the half-space line ensemble for the underlying model.

In a companion work with Weitao Zhu, we showed that the endpoint of the half-space log-gamma

polymer are localized within 𝑂 (1) window around the diagonal in the bound phase, i.e., the poly-

mer is pinned to the diagonal. We refer to Section 1.2 for detailed overview of the results in this

direction.

1.1 Large Deviations and fractal properties of integrable models

1.1.1 LDP for KPZ equation

This subsection serves as a summary for Chapter 2. We focus on the large deviation problem for

the KPZ equation (1.0.1). We establish the first rigorous proof of the upper-tail LDP ofH(2𝑡, 0) +
𝑡

12 with the rate function Φ+(𝑠) = 4
3 𝑠

3/2. Our result confirms the existing physics predictions [243]

and also [213].

Theorem 1.1.1 ([131]). For all 𝑠 > 0 we have

𝑡−1 logP(H (2𝑡, 0) + 𝑡
12 > 𝑠𝑡) → −

4
3 𝑠

3/2. (1.1.1)

The above result is obtained by computing 𝑡 →∞ asymptotic of the 𝑝-th moment ofZ(2𝑡, 0),

for any real 𝑝 > 0. Moments of SHE are historically connected to the concept of intermittency.

Intermittency in random media is an active area of research in both mathematics and physics lit-

erature for the last few decades. Mathematically, it is characterized by rapid growth of moments

of a process. Formally, we say a process Ψ𝑡 is intermittent if 𝛾𝑘/𝑘 is strictly increasing where

𝛾𝑘 (Ψ) := lim𝑡→∞ 𝑡−1 logE[Ψ𝑘
𝑡 ] are known as the Lyapunov exponents for Ψ. There are heuris-

tics [69] suggesting that this property indicates a presence of a peculiar fractal structure in the Ψ

process.
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In case of the SHE, it is known since the physics works of Kardar [216] that the SHE is inter-

mittent. Kardar also predicted 𝛾𝑝 (Z(0, ·)) = 𝑝3−𝑝
24 for all 𝑝 > 0. This formula was later shown

to be true in [94, 115] for all positive integers 𝑝 ∈ N. We showed Kardar’s formula holds for all

𝑝 > 0.

Theorem 1.1.2 ([131]). For all 𝑝 > 0 we have

𝑡−1 logE(Z(2𝑡, 0)𝑝) → − 𝑝
3−𝑝
24 . (1.1.2)

In fact, Theorem 1.1.1 is obtained from Theorem 1.1.2 by taking standard Legendre transform.

Integer moment formulas for SHE [179] and explicit distribution formulas for KPZ equation

[6] exist in the literature and have been used to derive integer Lyapunov exponents [115] and sub-

optimal tail bounds for KPZ equation [122] respectively. However, it is not clear how to extend or

improve their analysis to yield the above theorem.

In [131], we take an unconventional route. We start with a Fredholm determinant formula for

the laplace transform ofZ(𝑡, 0)𝑒𝑡/24 from [6]:

E[exp(−𝑠Z(𝑡, 0)𝑒𝑡/24)] = det(𝐼 − 𝐾𝑠,𝑡) = 1 −
∫
R
𝐾𝑠,𝑡 (𝑥, 𝑥)𝑑𝑥 + higher order.

where 𝐾𝑠,𝑡 is an explicit kernel involving Airy function (see Eq (1.11) in [131]) and ’higher order’

term is an infinite series of integrals of determinants of matrices (increasing in size) involving

the kernel 𝐾𝑠,𝑡 . We then insert the above formula in the following elementary fractional moment

formula:

E
[
𝑈𝑛−1+𝛼] = (−1)𝑛

Γ(1 − 𝛼)

∫ ∞

0
𝑠−𝛼

𝑑𝑛

𝑑𝑠𝑛
E[𝑒−𝑠𝑈]𝑑𝑠, 𝑛 ∈ N, 𝛼 ∈ [0, 1),

with𝑈 := Z(𝑡, 0)𝑒𝑡/24. It turns out this formula is quite amenable to our analysis, yielding precise

Lyapunov exponents. The leading contribution comes from the
∫
R
𝐾𝑠,𝑡 (𝑥, 𝑥)𝑑𝑥 term, whereas the

higher order term can be shown to be sub-dominant.
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Using our formulas as an input, [180] has extended Kardar’s formula to other initial data. The

robustness of our proof approach makes it applicable for other integrable models. [248] success-

fully carried our approach to solve the same problem for half-space KPZ. In a joint work with

Weitao Zhu [135], we carry out this program for asymmetric simple exclusion process (ASEP) to

derive its upper-tail LDP.

1.1.2 LDP for Asymmetric Simple Exclusion Process

This subsection serves as a summary for Chapter 3. Asymmetric Simple Exclusion Process

(ASEP) is a classical example of interacting particle systems and is one of the pre-limiting model

of the KPZ equation. It is a continuous time Markov chain on particle configurations living on

integer lattice. Each site 𝑖 ∈ Z can be occupied by at most one particle, which has an independent

exponential clock of rate 1. When the clock rings, the particle jumps to the right with probability

𝑞 or to the left with probability 𝑝 = 1 − 𝑞 (𝑞 > 𝑝). However, the jump is only permissible when

the target site is unoccupied. At time 0, all negative integer sites has a particle.

The observable of interest in ASEP is 𝐻 (𝑡, 0) := the number of particles to the right of zero

at time 𝑡. It acts as the height function of interface growth for ASEP. It is well known that

𝑡−1𝐻 (0, 𝑡
𝑞−𝑝 ) →

1
4 . In a series of works [307, 306, 306], Tracy and Widom exploit the integrability

of ASEP and showed −𝐻 (0, 𝑡
𝑞−𝑝 ), upon centering and appropriate scaling, has Tracy-Widom (TW)

GUE fluctuations.

This leads to the natural question of large deviations for ASEP. In a joint work with Weitao

Zhu [135], we obtained the following result in relation to the upper-tail LDP.

Theorem 1.1.3 ([135]). Fix 𝑞 ∈ ( 12 , 1). For any 𝑦 ∈ (0, 1) we have

𝑡−1 logP(−𝐻 (0, 𝑡
𝑞−𝑝 ) +

𝑡
4 >

𝑦𝑡

4 ) → −[
√
𝑦 − (1 − 𝑦) tanh−1(√𝑦)] .

Note that for 𝑦 > 1, the above probability is zero as 𝐻 (0, ·) is non-negative. Prior to our

work, [125] obtained a one-sided large deviation bound for the upper tail of the ASEP utilizing
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distributional formulas from [305]. Their rate function coincides with ours for 𝑦 < 𝑦0 for some

explicit threshold 𝑦0 ∈ (0, 1). For 𝑦 ∈ (𝑦0, 1), their rate function is sub-optimal. Their proof is

based on contour analysis where one deforms the contours to pass through critical points to obtain

the leading behavior. This threshold 𝑦0 appears in their arguments as their choice of contours was

unattainable beyond this threshold.

In [135] we follow the approach of [131], producing first Lyapunov exponents for (𝑝/𝑞)𝐻0 (𝑡)

using certain known Fredholm determinant formulas [72]. However, the underlying kernel in the

Fredholm determinant here is asymmetric, exhibits a periodic behavior, and much more intricate

that its KPZ counterpart. To extract the precise asymptotics for the leading term here, one needs

to perform careful steepest descent analysis on the ASEP kernel, where the periodic nature of the

kernel results in infinitely many critical points. A major technical challenge in our proof is to argue

how the contribution from only one of the critical points dominates the those from the rest.

1.1.3 Fractal properties of the KPZ equation

This subsection serves as a summary for Chapter 4. While discussing the LDP for KPZ equa-

tion, we mentioned that intermittency indicates a peculiar fractal behavior in complex random

media. The fractal behavior of a process can also be studied through the lens of law of iterated

logarithms (LIL) as explained in the introduction. In the context of the KPZ equation, this LIL

framework was successfully carried out for the spatial process in [221]. In a joint work with Promit

Ghosal [128], we initiated the study of the peaks of the KPZ equation in the temporal direction.

Theorem 1.1.4 ([128]). Consider the normalized KPZ height function 𝔥𝑡 := 𝑡−1/3(H (𝑡, 0) + 𝑡
24 ).

We have

lim sup
𝑡→∞

𝔥𝑡

(log log 𝑡)2/3
=

( 3
4
√

2

)2/3
𝑎.𝑠. (1.1.3)

Furthermore, 𝔥𝑡 is monofractal. However, upon an exponential transformation, 𝔥𝑒𝑡 becomes mul-

tifractal.
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Note that the constant in (1.1.3) also appears in the rate function in (1.1.1). This is not a complete

coincidence. Indeed, this constant can be anticipated by the shallow one-point tail behavior of 𝔥𝑡 .

In our analysis, we improved upon the existing one point tail estimates in [115] to make it work in

our setting. However, to conclude such a LIL type result, one also requires a good understanding

of 𝔥𝑡 at a process level.

Study of the temporal process is arguably more difficult that the spatial one due to lack of rich

structure (such as Gibbs resampling property mentioned in Section 2.1). One of the important piece

in analyzing the process 𝔥𝑡 , understanding its increments in particular, is short time tail bounds for

the KPZ equation. In [128] we provided first such tail bounds. Using this, along with Gibbs

property of the KPZ line ensemble, and a multi-point convolution formula coming from properties

of SHE, two of our main contributions are:

• Computing tail probabilities for the difference in fluctuations at two times. This result

was proven when the time points are sufficiently far apart in [117]. We fill the gap in [117]

by establishing similar estimates that works when two times are arbitrarily close. This leads to

temporal modulus of continuity estimates for the KPZ equation.

• Proving an ‘independence structure’ of the process 𝔥𝑡 . At a two-point level, roughly speak-

ing, we produce a proxy for 𝔥𝛼𝑡 that is independent of 𝔥𝑡 . The proxy is ‘close’ to 𝔥𝛼𝑡 for 𝛼 large.

A different version of the independence structure in terms of correlation was proven in [117].

A corollary of our independence structure result is that 𝔥𝑡 decorrelates on a multiplicative scale.

On a high level, this is the reason for mono and multifractal behavior. Upon exponential trans-

formation, decorrelation happens on an additive scale which then allows more chaotic behavior

of the height function.

1.2 Directed Polymers in random environments

Directed polymers in random environments (DPREs) were first introduced in statistical physics

and math literature [202, 206, 61] to study the phase boundary of the Ising model with random
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impurities. In the (1 + 1)- dimension, they are modeled by up-right paths on Z2 lattice (see Figure

1.1). The random environment is specified by a collection of i.i.d. random variables {𝜔𝑖, 𝑗 | (𝑖, 𝑗) ∈

Z+ × Z}.

Figure 1.1: DPREs.

The point-to-point polymer measure on the set of all up-right paths starting at origin and

ending at (𝑛, 𝑛) is then defined as

P𝜔𝑛,𝛽 (𝑆) =
1
𝑍𝜔
𝑛,𝛽

𝑒𝛽
∑𝑛
𝑖=1 𝜔𝑖,𝑆𝑖 · P(𝑆), (1.2.1)

where P(𝑆) is the uniform measure on set of all up-right paths starting at origin and ending at

(𝑛, 𝑛), 𝛽 is the inverse temperature, and 𝑍𝜔
𝑛,𝛽

is the partition function. As evident from (1.2.1), in

the polymer measure, there is a competition between the entropy of paths and the disorder strength

of the environment. In fact for every 𝛽 > 0, the polymers are in strong disorder where disorder

strength dominates. The following two phenomena are conjectured:

• Superdiffusivity: The polymer measure is believed to be in the KPZ universality class and

paths have typical fluctuations of the order 𝑛2/3 (compared to
√
𝑛 order diffusive behavior at

𝛽 = 0) (see physics works [202, 203, 218, 235]). This conjectured phenomenon is known as

superdiffusion.
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• Localization and the favorite region conjecture: The polymer exhibits certain localization

phenomena. The favorite region conjecture speculates that any point on the path of a point-

to-point directed polymer is asymptotically localized in a region of stochastically bounded

diameter (see [42, 44]).

Although there is an immense progress in understanding several aspects of the above two phe-

nomena in last two decades (see [274, 253, 294, 44, 29] and the references therein), the full res-

olution of these conjectures is far from being settled. In a series of two joint works with Weitao

Zhu ([132] and [133]), we settle these two questions for continuous polymers. We showed path-

wise tightness of continuous polymers under superdiffusive scaling and pointwise localization of

continuous polymers. Both of these results are not proven for any discrete polymer model.

1.2.1 Continuum Directed Random Polymer

This subsection serves as a summary of Chapter 5 and 6. In the seminal work, [5] considered

an intermediate disordered regime where they took 𝛽 = 𝛽𝑛 = 𝑛−1/4 with 𝑛 being the length of

the polymer. [5] showed that the partition function 𝑍𝜔
𝑛,𝛽𝑛

has a universal scaling limit given by

the solution of the Stochastic Heat Equation (SHE) with multiplicative noise (when 𝜔 has finite

exponential moments). Furthermore, under the diffusive scaling, the polymer path itself converges

to a universal object called the Continuous Directed Random Polymer (CDRP) which depends

on a continuum random environment given by the space-time white noise.

Following [4], we define the CDRP model using the SHE with multiplicative noise as our

building blocks. Namely, we consider a four-parameter random field Z(𝑥, 𝑠; 𝑦, 𝑡) defined on

{(𝑥, 𝑠; 𝑦, 𝑡) ∈ R4 : 𝑠 < 𝑡}. For each (𝑥, 𝑠) ∈ R × R, (𝑦, 𝑡) ↦→ Z(𝑥, 𝑠; 𝑦, 𝑡) is the solution of

the SHE starting from location 𝑥 at time 𝑠, i.e., the unique solution of

𝜕𝑡Z = 1
2𝜕𝑥𝑥Z +Z · 𝜉, (𝑦, 𝑡) ∈ R × (𝑠,∞),

with Dirac delta initial data lim𝑡↓𝑠Z(𝑥, 𝑠; 𝑦, 𝑡) = 𝛿(𝑥 − 𝑦). Here 𝜉 = 𝜉 (𝑡, 𝑥) is the space-time white
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noise.

Definition 1.2.1 (Point-to-point CDRP). Conditioned on the white noise 𝜉, let P𝜉 be a measure on

𝐶 ( [0, 𝑡]) whose finite dimensional distribution is given by

P𝜉 (𝑋 (𝑡1) ∈ 𝑑𝑥1, . . . , 𝑋 (𝑡𝑘 ) ∈ 𝑑𝑥𝑘 ) =
1

Z(0, 0; 0, 𝑡)

𝑘∏
𝑗=0
Z(𝑥 𝑗 , 𝑡 𝑗 , ; 𝑥 𝑗+1, 𝑡 𝑗+1)𝑑𝑥1 . . . 𝑑𝑥𝑘 . (1.2.2)

for 𝑠 = 𝑡0 ≤ 𝑡1 < · · · < 𝑡𝑘 ≤ 𝑡𝑘+1 = 𝑡, with 𝑥0 = 0 and 𝑥𝑘+1 = 0. We write 𝑋 ∼ CDRP𝑡 when

𝑋 (·) is a random continuous function on [0, 𝑡] with 𝑋 (0) = 𝑋 (𝑡) = 0 and its finite dimensional

distributions given by (1.2.2) conditioned on 𝜉.

The following theorem summarizes our key findings for point-to-point CDRP.

Theorem 1.2.2 ([132, 133]). For each 𝑡 > 0 consider 𝑋 ∼ CDRP𝑡 .

(a) (Pointwise Localization) For each 𝑡 > 0 and 𝑝 ∈ [0, 1], there exists a random variableM𝑝,𝑡

dependent only on the environment, such that |𝑋 (𝑝𝑡) −M𝑝,𝑡 | = 𝑂 (1) as 𝑡 → ∞. Furthermore,

the quenched density of 𝑋 (𝑝𝑡) when centered around M𝑝,𝑡 converges in distribution to an

explicit random density proportional to 𝑒−
√

2R(𝑥)𝑑𝑥 where R(𝑥) is a standard two-sided Bessel

process.

(b) (Pathwise Tightness) The annealed law of (𝑡−2/3𝑋 (𝑝𝑡))𝑝∈[0,1] when viewed as a random vari-

able in the space of𝐶 [0, 1] is tight as 𝑡 →∞. For each 𝑝 ∈ [0, 1], 𝑡−2/3𝑋 (𝑝𝑡) weakly converges

to a non-trivial distribution as 𝑡 →∞.

A similar localization result for the midpoint of point-to-point stationary log-gamma polymer

was established in [101] using Burke property of the model [294]. The Burke property allows

one to write the quenched density of the midpoint in terms of exponent of a simple symmetric

random walk (SSRW). It then suffices to study the behavior SSRW around maximizer. However,

[101] technique does not work for other points besides the midpoint and for the non-stationary

log-gamma model.
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The principle tool for the proof of (a) is the Gibbs resampling property [110] enjoyed by the

KPZ equationH(𝑡, 𝑥) := logZ(0, 0; 𝑡, 𝑥). For each fixed 𝑡 > 0, the processH(𝑡, ·) can be viewed

as the top curve of the KPZ line ensemble [110]. The law of the first 𝑘 curves restricted to a fixed

interval [𝑎, 𝑏] (blue part in Figure 1.2 with 𝑘 = 3) conditioned on all the information outside

is absolutely continuous w.r.t. 𝑘 Brownian bridges on [𝑎, 𝑏] with appropriate endpoints with an

explicit Radon-Nikodym derivative.
 

Figure 1.2: KPZ line ensemble.

KPZ equation comes up, as via (6.1.5) the quenched density of 𝑋 (𝑝𝑡) can be written as function

of two independent copies of the KPZ equation. The choice ofM𝑝,𝑡 is given by the random mode of

the quenched density. It is not hard to check that the quenched density upon this random centering

is proportional to

𝑥 ↦→
[
H1(M𝑝,𝑡 , 𝑝𝑡) + H2(M𝑝,𝑡 , (1 − 𝑝)𝑡)

]
−

[
H1(M𝑝,𝑡 + 𝑥, 𝑝𝑡) + H2(M𝑝,𝑡 + 𝑥, (1 − 𝑝)𝑡)

]
(1.2.3)

whereM𝑝,𝑡 := argmax𝑥∈R(H1(𝑝𝑡, ·) + H2((1 − 𝑝)𝑡, ·)) andH1,H2 are two independent copies of

the KPZ equation. Although traditional tools associated to the Gibbs property such as stochastic

monotonicity or the Gibbs property on an interval (described above informally) has been used ex-

tensively in the literature, such tools are inapplicable in the analysis the process in (1.2.3) because
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of the random centering byM𝑝,𝑡 .

Fix any 𝐾 > 0 and letM∗𝑝,𝑡 := argmax|𝑥 |≤𝐾𝑡2/3 (H1(𝑝𝑡, ·) + H2((1 − 𝑝)𝑡, ·)). Choosing 𝐾 large

enough, one can ensureM𝑝,𝑡 = M∗𝑝,𝑡 with high probability. Hence it suffices to work with these

finite maximizers. Coming back to the line ensemble framework, there are two sets of KPZ line

ensemble corresponding to eachH𝑖 for 𝑖 = 1, 2. In [132], we give an explicit way to resample the

top curves of both the line ensembles simultaneously over intervals of the form [M∗𝑝,𝑡 − 𝑎𝑡 ,M∗𝑝,𝑡 +

𝑏𝑡] ⊂ [𝐾𝑡2/3, 𝐾𝑡2/3]. This is done by first analyzing the behavior of two independent copies of

Brownian motions around its joint maximizer and then utilizing the explicit description of the

Radon-Nikodym derivative. The above solution has the potential to generalize to other integrable

models such as the non-stationary log-gamma polymer model.

Our localization theorem and results on the random modeM𝑝,𝑡 stated in [132] leads to point-

wise tightness of 𝑡−2/3𝑋 (𝑝𝑡) for each 𝑝 ∈ [0, 1]. However, to upgrade the result to pathwise

tightness (b), one needs to control the fluctuations of the path on mesoscopic scales. One of the

ingredients in establishing such control is the short time tail bounds in the KPZ equation developed

in one of my previous paper [128]. Utilizing this, in [133], we produce quantitative modulus of

continuity estimates for the polymer paths which eventually leads to pathwise tightness result. We

mention that similar pointwise tightness result are known for stationary and non-stationary log-

gamma polymer model in [294, 29] but pathwise tightness is not shown for any discrete polymer

model due to lack of such short-time estimates. In fact, assuming a conjecture about KPZ sheet

to Airy sheet convergence, in [133] we show that the process limit of 𝑡−2/3𝑋 (𝑝𝑡) is given by the

geodesic of directed landscape, an universal limiting object in the KPZ universality class [138].

1.2.2 Half-space log-gamma polymers

In the final chapters, Chapters 7 and 8, we focus on half-space log-gamma polymers. Half-

space directed polymers are variants of DPREs where the polymers interact with a given surface.

Mathematically, in this model the paths are restricted to the octant and the weights on the diagonal

are of different strength. It has been predicted in physics literature [215] that such polymers un-
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dergo a phase transition called ‘depinning transition’. When the strength of the diagonal is under

a threshold, the model is expected to behave like the full-space ones, whereas for large enough

strength of the diagonal, the free energy of the model is conjectured to have Gaussian fluctuations

with polymer paths within 𝑂 (1) window of the diagonal.

The depinning transition has been recently proven in few of the solvable models in terms of the

free energy for the diagonal [34, 205]. However, the transversal exponent is not established so far

in any of the half-space models. In an ongoing work with Ivan Corwin (my advisor) and Guillaume

Barraquand, we take the first step in establishing such transversal exponent in half-space models.

Gamma−1(𝛼 + 𝜃)

Gamma−1(2𝜃)

Figure 1.3: HSLG polymers.

We work with the solvable half-space log-gamma (HSLG) polymer model (Figure 1.3) defined

via following weights and partition function:

𝑊𝑖, 𝑗 ∼


Gamma−1(𝛼 + 𝜃) 𝑖 = 𝑗

Gamma−1(2𝜃) 𝑗 < 𝑖

, 𝑍half (𝑚, 𝑛) :=
∑︁

𝜋:(1,1)→(𝑚,𝑛)

∏
(𝑖, 𝑗)∈𝜋

𝑊𝑖, 𝑗 ,

where 𝜃 > 0, 𝛼 > −𝜃, and in the above sum paths are restricted to the octant (see Figure 1.3).

This particular choice of weights makes the model solvable via combinatorial techniques [263,

121, 260] and via eigenrelations of Macdonald polynomials [25]. For this model, we prove the
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following result.

Theorem 1.2.3 ([28]). Fix 𝜃 > 0, 𝛼 ≥ 0 and 𝑟 > 0. The law of

(𝑁−1/3 [log 𝑍half (𝑁 + 𝑡𝑁2/3, 𝑁 − 𝑡𝑁2/3) − 𝑐𝑁])𝑡∈[0,𝑟]

when viewed as a random variable in the space of 𝐶 [0, 𝑟] is tight as 𝑁 → ∞ for some explicit

constant 𝑐 = 𝑐(𝜃) ∈ R.

The above result establishes the 2/3 transversal exponent and the 1/3 fluctuation exponent

away from the diagonal. The main technique in our proof is the novel construction of the HSLG

line ensemble using geometric RSK [263, 121, 260]. Although it is now fairly well known how

to extract spatial tightness for the line ensemble once one-point uniform tightness of the top-curve

along a parabolic curvature is established ([29] and references therein), in our case such tightness

result is not available away from the diagonal. To tackle this, we rely on recently proven fluctu-

ations results for half-space point-to-line log-gamma polymer [34] to establish a weaker version

of one-point uniform tightness. Utilizing the line ensemble framework, we then establish both the

exponents simultaneously.

The above theorem does not covers the case when 𝛼 ∈ (−𝜃, 0). In fact, the situation in this case

is radically different. For 𝛼 < 0, the polymer is pinned to the diagonal and the free energy does

not exhibit KPZ fluctuations. In a companion work with Weitao Zhu, we investigate the geometry

of the half-space log-gamma polymers for 𝛼 < 0 case (bound phase).

Let Πhalf
𝑁

be the set of all upright lattice paths of length 2𝑁 − 2 starting from (1, 1) that are

confined to the half-space I− (see Figure 8.2). Given the weights above, the half-space log-gamma

(HSLG) polymer is a random measure on Πhalf
𝑁

defined as

P𝑊 (𝜋) = 1
𝑍 (𝑁)

∏
(𝑖, 𝑗)∈𝜋

𝑊𝑖, 𝑗 · 1𝜋∈Πhalf
𝑁
, (1.2.4)

where 𝑍 (𝑁) is the normalizing constant. Our main result below confirms that in the bound phase,
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i.e., when 𝛼 ∈ (−𝜃, 0), the endpoint of the HSLG polymer is within 𝑂 (1) window of the diagonal

and is the first such result to capture the “pinning" phenomenon of the half-space polymer measure

to the diagonal.

Theorem 1.2.4 ([134]). Fix 𝜃 > 0 and 𝛼 ∈ (−𝜃, 0) and consider the random measure P𝑊 from

(1.2.4). For a path 𝜋 ∈ Πhalf
𝑁

, we denote 𝜋(2𝑁 −2) as the height (i.e., 𝑦-coordinate) of the endpoint

of the polymer. We have

lim sup
𝑘→∞

lim sup
𝑁→∞

P𝑊 (𝜋(2𝑁 − 2) ≤ 𝑁 − 𝑘) = 0, in probability. (1.2.5)

We also show that the limiting quenched endpoint distribution of the polymer around the diag-

onal is given by a random probability mass function proportional to the exponential of a random

walk with log-gamma type increments. Our proof relies on inputs from the recently developed

half-space log-gamma Gibbsian line ensemble Chapter 7, one-point fluctuation results for point-

to-(partial)line half-space log-partition functions from [34] and the localization techniques from

Chapter 5. At the heart of our argument lies an innovative combinatorial argument that bridges the

aforementioned inputs and enables our proof. We refer to Chapter 8 for more details.

1.3 Other Works

During my time as a graduate student, I have worked on other research projects within KPZ

area as well as used probability theory to explore other research areas such as network sampling,

random quadratic forms, graph coloring and large deviation aspects of random permutations. In

this section, I give a brief summary of these works.

1.3.1 Discrete 𝛽-ensembles

Note that Theorem 1.1.3 does not cover the special 𝑞 = 1 case which corresponds to totally

ASEP (TASEP). TASEP is a much more well understood object. It has connections to Exponential

Last Passage Percolation (LPP), log-gases, zero-temperature version of DPREs. In particular,
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the LDP problem for TASEP was solved by Johansson [211] exploiting the following log-gas

connection: P(𝐻𝑞=1(𝑡, 0) ≤ 𝑧𝑡) = P(𝜆(b𝑧𝑡c+1max ≥ 𝑡), where 𝜆(𝑛)max is the largest particle of an 𝑛-

particle system (called continuous log-gas) distributed as

∏
1≤𝑖≤ 𝑗≤𝑛

(𝜆𝑖 − 𝜆 𝑗 )2
𝑛∏
𝑖=1

𝑒−𝜆𝑖1𝜆𝑖>0𝑑𝜆𝑖 .

Using the technology from potential theory, combined with combinatorial and probabilistic

arguments, Johansson essentially proved an LDP for the largest particle of the above ensemble. In

fact, his argument is quite general and works for discrete log-gases as well where particles now

live on Z>0.

Later, [73] proposed a new discrete version of continuous log-gases called discrete 𝛽-ensembles

(D𝛽E) where the particles now live on different shifted lattices and the interaction term is given by

certain ratios of gamma functions. This discretization is of high interest as it bears connections to

integrable probability, discrete Selberg integrals, Jack measures and satisfies discrete loop equa-

tions. Although loop equations are immensely useful in studying global and edge fluctuations of

largest particle in D𝛽E [73, 190], it is not clear how to use them to derive an LDP for the largest

particle.

In a joint work with Evgeni Dimitrov [127], we settled this question by proving an LDP (both

upper and lower tail) for the largest particle of D𝛽E. To prove this result, we adopt the potential

theory based approach followed by Johansson. However, the argument present in [jo2] heavily

relies on the symmetry of the interaction and the fact that particles live on the same lattice, both

of which are absent in D𝛽E. The combinatorial part of the argument in [jo2] essentially breaks

down in D𝛽E. Thus we had to find a significantly more involved set of arguments involving novel

combinatorial constructions as well as detailed estimates of number of particles in appropriate

windows.
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1.3.2 Short time peaks of the KPZ equation

Another line of related research is the study of short time peaks, i.e., the peaks of the local

increments Ψ𝑡+𝜀 − Ψ𝑡 as 𝜀 ↓ 0. Such behaviors determine local growth of the process and also

potential fractal behavior in short time scale. In this line, in [126] I have studied the temporal

increments of the KPZ equation. The main result in [126] can be stated as follows.

Theorem 1.3.1 ([126]). We have

lim sup
𝜀↓0

H(0, 𝑡 + 𝜀) − H (𝑡, 0)
𝜀1/4

√︁
log log(1/𝜀)

= (8/𝜋)1/4 𝑎.𝑠.

Furthermore for each 𝛼 ∈ (0, 1) almost surely we have

dim
{
𝑡 ∈ [1, 2] | lim sup

𝜀↓0

H(0, 𝑡 + 𝜀) − H (𝑡, 0)
𝜀1/4

√︁
log(1/𝜀)

≥ 𝛼(8/𝜋)1/4
}
= 1 − 𝛼2, (1.3.1)

where dim denotes the usual Hausdorff dimension.

The first result above determines the precise asymptotic height of the short time peaks. Whereas

the second result indicates there are exceptional time points with unusually large local growth (log

instead of log log in the denominator) and such time points have a rich multifractal structure. The

proof of Theorem 1.3.1 uses tools from SPDE theory and is applicable to wide range of initial data.

The key idea is to show the multiplicative SHE behaves like additive SHE on small scales. The

later quantity is known to be a fractional Brownian Motion of index 1
4 in temporal direction which

essentially yields the above two results.

1.3.3 Long and short-time peaks of the KPZ fixed point

The study of fractal properties can also be undertaken in other models of the KPZ universality

class. In this line, recently with Promit Ghosal and Yier Lin [129], we have explored the fractal

aspects of the KPZ fixed point. The KPZ fixed point H𝑡 (𝑥) [251, 138] is conjecturally the universal

scaling limit of all models in the KPZ universality class. 𝑡 ↦→ H𝑡 can be viewed as a Markov
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process with explicit transition probabilities and initial condition H0. It has been shown very

recently that KPZ equation under 1:2:3 scaling converges to the KPZ fixed point [315, 280]. Being

a scaling limit, KPZ fixed point possesses interesting fractal properties which has been the subject

of intense recent study (see [170] for a recent survey). Our work [129] follows a host of effort that

attempts to unravel such fractal properties of the KPZ fixed point.

Theorem 1.3.2 ([129]). For a large class of initial data H0, almost surely we have

lim sup
𝜀↓0

H1+𝜀 (0) −H1(0)
𝜀

1
3 (log log 𝜀−1)2/3

= (3/2)2/3 .

We also proved a long time LIL result for the KPZ fixed point in the spirit of (1.1.3). In fact,

similar mono and multifractal behavior can also be established using our proof techniques (not

proved explicitly in [129]).

The KPZ fixed point does not have any SPDE description. Neither it satisfies the Gibbs prop-

erty for general initial data H0. Thus both of the previous proof ideas are not applicable. Instead,

the proof of Theorem 1.3.2 relies on rich geometric structure of the directed landscape (an ob-

ject related to the KPZ fixed point) and certain basic coupling properties that the KPZ fixed point

inherits from TASEP.

1.3.4 Motif estimation

In network analysis, often due to the massive size of network only a sample of the network

is observed in practice. The central statistical question then is how to efficiently estimate global

features of the parent network, that accounts for the bias and variability induced by the sampling

paradigm. In this line, with Bhaswar Bhattacharya and Sumit Mukherjee, we consider the problem

of motif estimation, that is, counting the number of copies of a fixed graph 𝐻 under subgraph

sampling model (SSM) [54]. Given a large parent graph 𝐺𝑛, in SSM, each vertex of 𝐺𝑛 is sampled

independently with probability 𝑝𝑛 ∈ (0, 1) and the subgraph induced by these sampled vertices

is observed. Let 𝑇𝑛 be the number of copies of 𝐻 in the sample induced from 𝐺𝑛. Set 𝑍𝑛 :=
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[𝑇𝑛 − E(𝑇𝑛)]/
√︁

Var(𝑇𝑛). In [54], we derived necessary and sufficient conditions for 𝑍𝑛 to have

Gaussian fluctuations. We showed that for 𝑝𝑛 ≤ 1
20 , the Wasserstein distance between 𝑍𝑛 and

𝑁 (0, 1) is control by the fourth moment of 𝑍𝑛:

Wass(𝑍𝑛, 𝑁 (0, 1)) .
√︃
E(𝑍4

𝑛) − 3.

The above result can be viewed as a fourth-moment phenomenon which since the pioneer works of

Nualart and Peccati [262] has emerged as a unifying principle governing the central limit theorems

for various non-linear functionals of random fields [261]. The proof of the above result relies on

Stein’s method for normal approximation.

1.3.5 Graph coloring

Given a graph 𝐺𝑛 with uniformly random vertex coloring 𝑐 colors, we consider 𝑆𝑛, number

of monochromatic copies of 𝐻 in 𝐺𝑛. The statistic 𝑆𝑛 arises in a variety of contexts. When 𝐻

is an edge, it counts the number of pairs of friends on friendship network 𝐺𝑛 that have the same

birthday, thus generalizing the classical birthday paradox. The asymptotic distribution of 𝑆𝑛 has

been studied extensively in the literature for 𝐻 being an edge [55] or triangle [56] and for general

𝐻 under the assumption that 𝐺𝑛 are dense [57]. However, there has been little prior work giving

precise conditions describing when 𝑆𝑛 (𝐻) has a Gaussian limit for a general sequence of 𝐺𝑛. With

Zoe Himwich and Nitya Mani, in [130] we provide explicit error rates for asymptotic normality

for 𝑆𝑛 under general setting. We show that our error rates arise from graph counts of certain joins

of 𝐻 which we called good-join (see [130, Definition 1.2]). Furthermore, the statistic 𝑆𝑛 exhibits a

fourth-moment phenomenon as long as 𝑐 ≥ 30.

The proof follows the strategy of [56], which relies on Hoeffding decomposition of 𝑆𝑛. It

allows us to write 𝑆𝑛 as a sum of terms in a martingale difference sequence. By applying the

standard martingale CLT with error bounds, we obtain error rates in terms of moments of the

martingale sequence. One of the main contributions of [130] is a delicate understanding of these
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error rates in terms of graph counts. This is achieved by careful probabilistic and combinatorial

type arguments. We show that the nontrivial contributions from the errors precisely come from the

good-joins of 𝐻 that we introduce in the paper.

1.3.6 Random quadratic forms

Suppose 𝑋 is a 1 × 𝑛 vector of i.i.d. mean zero entries from some distribution 𝐹 and 𝐴 is an

adjacency matrix of some graph 𝐺𝑛 with 𝑛 vertices. A quantity of interest is the fluctuations of

the quadratic form 𝑅𝑛 := 𝑋>𝐴𝑋 . The asymptotic normality of 𝑅𝑛 has been extensively studied

in the literature [47, 286]. Broadly speaking, 𝑅𝑛 has Gaussian fluctuations when 𝐺𝑛 is somewhat

‘sparse’. On the other hand, the fluctuations are given by chi-square type random variable when

the graph is ‘dense’. A natural question is then what are the all possible limiting distributions of

𝑅𝑛?

In a joint work with Bhaswar Bhattacharya, Somabha Mukherjee, and Sumit Mukherjee [53],

we gave a comprehensive answer to this question. We showed that the limiting distribution for 𝑅𝑛

is a given by a sum of three components: a Gaussian, a (possibly) infinite weighted sum of inde-

pendent centered chi-square random variables, random variables, and a normal variance mixture,

where the random variance is a (possibly) infinite quadratic form in the variables {𝑋𝑖}𝑖≥1. The

proof proceeds by partitioning the vertices of 𝐺𝑛 in a clever manner and analyzing each compo-

nent separately. The proof uses tools from extremal graph theory and several standard probabilistic

techniques.

1.3.7 LDP for random permutations

Studying LDP for uniform random permutations is an important question in probabilistic com-

binatorics and has received attention in [309, 220]. In a joint work with Jacopo Borga, Sumit

Mukherjee, and Peter Winkler [63], we initiate the study of LDP for random permutations in-

duced by probability measures of the unit square, called permutons. These permutations are called

𝜇-random permutations. We also introduce and study a new general class of models of random
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permutations, called Gibbs permutation models, which combines and generalizes 𝜇-random per-

mutations and the celebrated Mallows model for permutations. Using the tools that we develop,

we prove the existence of at least one phase transition for a generalized version of the Mallows

model where the base measure is non-uniform. This is in contrast with the results on the (stan-

dard) Mallows model [300, 301] where the absence of phase transition, i.e., phase uniqueness, was

proven.

Our results naturally lead us to investigate a new notion of permutons, called conditionally con-

stant (CC) permutons. It generalizes both pattern-avoiding and pattern-packing permutons which

are extensively studied in the combinatorics community (see [62] and references therein). We

describe few measure theoretic properties (such as empty interior) of CC permutons w.r.t. inver-

sions. The tools that we mainly use in our proof is the general LDP theory and our arguments are

probabilistic and combinatorial in nature.
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Chapter 2: Fractional moments of the Stochastic Heat Equation

2.1 Introduction

In this article we study the Stochastic Heat Equation (SHE) in one spatial dimension

𝜕𝑡Z = 1
2𝜕𝑥𝑥Z + 𝜉Z, Z = Z(𝑡, 𝑥), (𝑡, 𝑥) ∈ [0,∞) × R, (2.1.1)

where 𝜉 = 𝜉 (𝑡, 𝑥) is the Gaussian spacetime white noise. Via the Feynman–Kac formula, solutions

of the SHE gives the partition function of the directed polymer in a continuum random environment

[203, 98]. On the other hand, the logarithm H(𝑡, 𝑥) := logZ(𝑡, 𝑥) formally solves the Kardar–

Parisi–Zhang (KPZ) equation

𝜕𝑡H = 1
2𝜕𝑥𝑥H +

1
2 (𝜕𝑥H)

2 + 𝜉. (2.1.2)

Introduced in [218], the KPZ equation is a paradigm for random surface growth. It connects

to many physical systems including directed polymers, last passage percolation, random fluids,

interacting particle systems, and exhibits statistical behaviors similar to certain random matrices.

We refer to [166, 278, 113, 281, 87, 124] and the references therein for the mathematical study of

and related to the KPZ equation.

Throughout this paper we will consider the solutionZ(𝑡, 𝑥) of the SHE (2.1.1) with the initial

data

Z(0, 𝑥) = 𝛿(𝑥), (2.1.3)

the Dirac delta function at the origin. The SHE (2.1.1) enjoys a well-developed solution theory
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based on Itô integral and chaos expansion [316, 48], also [278, 113]. In particular, there exists a

unique 𝐶 ((0,∞),R)-valued process Z that solves (2.1.1) with the delta initial data (2.1.3) in the

mild sense, i.e.,

Z(𝑡, 𝑥) = 𝑝(𝑡, 𝑥) +
∫ 𝑡

0

∫
R
𝑝(𝑡 − 𝑠, 𝑥 − 𝑦)Z(𝑠, 𝑦)𝜉 (𝑠, 𝑦) d𝑠d𝑦,

where 𝑝(𝑡, 𝑥) := (2𝜋𝑡)−1/2 exp(−𝑥2/(2𝑡)) denotes the standard heat kernel.

The solution Z of the SHE can be transformed into a solution of the KPZ equation. For a

nonzero initial dataZ(0, ·) that is bounded, nonnegative, and has a compact support, [259] showed

that almost surely Z(𝑡, 𝑥) > 0 for all (𝑡, 𝑥) ∈ (0,∞) × R. For the delta initial data (2.1.3) consid-

ered here, the same positivity result was established in [168]. The logarithmH(𝑡, 𝑥) := logZ(𝑡, 𝑥)

is defined to be Hopf–Cole solution of the KPZ equation. This is the notion of solutions that we

will be working with throughout this paper. The motivation is, as mentioned previously, that non-

rigorously taking logarithm in (2.1.1) yields the KPZ equation (2.1.2). The KPZ equation (2.1.2)

itself is ill-posed due to the roughness of the solution and the presence of the quadratic term.

New theories have been developed for making sense of the KPZ equation and constructing the

corresponding solution process. This includes regularity structures [192, 191], paracontrolled dis-

tributions [186, 188], and energy solutions [184, 187]. The Hopf–Cole formulation bypasses the

ill-posedness issue, and arises in several discrete or regularized version of the KPZ equation, e.g.,

[48, 49]. Further, other notions of solutions from the aforementioned theories have been shown to

coincide with the Hopf–Cole solution within the class of initial datas the theory applies.

Of interest is the large time behaviors of H(𝑡, 𝑥) := logZ(𝑡, 𝑥). Simultaneously and inde-

pendently, the physics works [80, 156, 291] and mathematics work [6] gave the following large 𝑡

asymptotic fluctuation result ofH(𝑡, 𝑥), and [6] provided a rigorous proof:

1
𝑡1/3

(
H(2𝑡, 0) + 𝑡

12
)
=⇒ GUE Tracy–Widom distribution.

This result asserts that, for large 𝑡, the height H(2𝑡, 0) concentrates around − 𝑡
12 , has typical devi-
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ations of order 𝑡1/3, and after being scaled by 𝑡−1/3 the fluctuations converge to the GUE Tracy–

Widom distribution [308].

A natural question that follows the fluctuation result is establishing a LDP, namely questions

about tails of the distribution of H(2𝑡, 0) + 𝑡
12 . We seek to find the probability of the rare events

when the height H(2𝑡, 0) + 𝑡
12 has a deviation of order 𝑡. Interestingly the lower- and upper-

tail LDPs have different speeds. The lower-tail deviations occurs at speed 𝑡2 while the upper-tail

deviations occurs at speed 𝑡.

P[H (2𝑡, 0) + 𝑡
12 < 𝑡𝑦] ≈ 𝑒

−𝑡2Φ− (𝑦) , (𝑦 < 0) (2.1.4)

P[H (2𝑡, 0) + 𝑡
12 > 𝑡𝑦] ≈ 𝑒

−𝑡Φ+ (𝑦) . (𝑦 > 0) (2.1.5)

Such distinct speeds can be heuristically explained by directed polymers. For a discrete polymer

on an 𝑁 × 𝑁 grid with i.i.d. site weights, we consider the point to point partition function. It can

be made anomalously large by increasing the weights along any single path. The cost of changing

the weights of 𝑁 such sites amounts to exp(−O(𝑁)). However, smaller partition function can

be realized only when the weights along most of the paths are decreased jointly. This can occur

with probability exp(−O(𝑁2)) by decreasing the weights of most of the sites, c.f., Remark 2.1.1.

For the KPZ equation, recall that the Feynman–Kac formula identifies solution of the SHE as the

partition function of the directed polymer in a continuum random environment. This is analogous

to discrete polymers, with Brownian motion replacing random walks and space-time white noise

replacing site weights. In the continuum setting 𝑡 plays the analogous role as 𝑁 , since both 𝑡 and

𝑁 parametrize the polymer length. Identifying 𝑡 with 𝑁 , we should expect the 𝑡2 vs 𝑡 speeds in

(2.1.4) and (2.1.5). These speeds were predicted in the physics work [243], where the prescribed

polymer argument was given.

Remark 2.1.1. The speed of lower-tail deviations is in fact not universal when the random envi-

ronment is unbounded. Specifically, [46] showed that the lower-tail speed of the directed polymer

with a Gaussian environment is 𝑁2/log 𝑁 instead of 𝑁2.
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Recently there has been much development around the large deviations of the KPZ equation in

the mathematics and physics communities. Employing the optimal fluctuation theory, the physics

works [226, 225, 252] predicted various tail behaviors of the KPZ equation. These predictions

were further supported by the analysis of exact formulae in the physics works [241, 230, 233].

In mathematics terms, the optimal fluctuation theory corresponds to Fredilin–Wentzell type large

deviations of stochastic PDEs with a small noise. There has been rigorous treatment [194, 86] of

such large deviations for certain nonlinear stochastic PDEs.

Under the same initial data as this paper, the physics works [292, 118, 234] each employed a

different method to derive the same explicit rate function for the lower-tail deviations ofH(2𝑡, 0) +
𝑡

12 . The work [116] provides detailed, rigorous bounds on tails of H(2𝑡, 0) + 𝑡
12 , which are valid

for all 𝑡 > 0 and capture a crossover behavior predicted in [225, 252]. The lower-tail LDP with the

exact rate function was later proven in [310], and more recently in [79]. The four different routes

[292, 118, 234, 310] of deriving the lower-tail LDP were later shown to be closely related [232].

Two new routes have been recently obtained in the rigorous work [79] and physics work [240].

In this paper we focus on the upper tail — the complement of the aforementioned results. Since

Z(𝑡, 𝑥) = exp(H (𝑡, 𝑥)), the upper tail is closely related to positive moments of Z. The moments

of SHE and its connection to intermittency property [175, 176] has been previously studied in

[104, 92, 94, 223]. These works established finite time estimates of tails or moments of Z(𝑡, 𝑥)

and solutions of related stochastic PDEs. The work [93] studied a class of equations that includes

the SHE with the delta initial data considered here. With the aim of establishing the existence of

the smooth density, the work obtained finite time tail estimates of the solution.

For the large time regime considered here, the form Φ+(𝑦) = 4
3 𝑦

3/2 was predicted in [243]

by analyzing an exact formula. The analysis also yields subdominant corrections; see [242,

Supp. Mat.]. We note that, for the short time regime, [213] predicted the same 3
2 -power law.

A priori, the optimal fluctuation theory used therein works only for short time, although the va-

lidity in large time was argued therein. For the large time regime, [122] gave a bound on of the

upper tail of Z(𝑡, 𝑥) (with a different initial data). The bound exhibits the predicted 3
2 -power for
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small 𝑦 but not large 𝑦. Extracting information from positive integer moments of Z, [115] pro-

vided detail bounds on the upper-tail probability. The upper and lower bounds therein capture the

aforementioned 3
2 -power law but do not match as 𝑡 →∞.

In this paper we present the first rigorous proof of the upper-tail LDP ofH(2𝑡, 0) + 𝑡
12 with the

predicted Φ+(𝑦) = 4
3 𝑦

3/2 rate function. Interestingly, this matches exactly with the upper-tail rate

function for the Tracy-Widom distribution [308]. Our main result gives both the 𝑡 →∞ asymptotic

of the 𝑝-th moment ofZ(2𝑡, 0), for any real 𝑝 > 0, and the upper-tail LDP of the KPZ equation.

Theorem 2.1.2. Let Z(𝑡, 𝑥) be the solution of the SHE (2.1.1) with the delta initial data (2.1.3),

and letH(𝑡, 𝑥) := logZ(𝑡, 𝑥) be the Hopf–Cole solution of the KPZ equation (2.1.2).

(a) For any 𝑝 ∈ (0,∞), we have

lim
𝑡→∞

1
𝑡

log E
[
𝑒𝑝(H (2𝑡,0)+

𝑡
12 )

]
= lim
𝑡→∞

1
𝑡

log E
[ (
Z(2𝑡, 0)𝑒 𝑡

12
) 𝑝]

=
𝑝3

12
. (2.1.6)

(b) For any 𝑦 ∈ (0,∞), we have

lim
𝑡→∞

1
𝑡

log P
[
H(2𝑡, 0) + 𝑡

12 ≥ 𝑡𝑦
]
= −Φ+(𝑦) := −4

3
𝑦3/2. (2.1.7)

Remark 2.1.3. The results in Theorem 2.1.2 immediately generalize to 𝑥 ≠ 0. This is so because,

under the delta initial data (2.1.3), the random variables Z(2𝑡, 0) and Z(2𝑡, 𝑥) exp(𝑥2/4𝑡) have

the same law. This fact can be verified from either the Feynman–Kac formula or the chaos ex-

pansion. Hence, the results in Theorem 2.1.2 hold withZ(2𝑡, 𝑥) exp(𝑥2/4𝑡) replacingZ(𝑡, 0) and

H(2𝑡, 𝑥) + 𝑥2

4𝑡 replacingH(2𝑡, 0).

Our method is based on a perturbative analysis of Fredholm determinants, and the major input

is the formula (2.1.10) that expresses the Laplace transform ofZ(2𝑡, 0) as a Fredholm determinant.

We emphasize that our method differs from existing methods used in the same context. The work

[243] postulates a form of the upper tail and verifies a posteriori the consistency with the formula

(2.1.10); see [242, Supp. Mat.]. There are, however, infinitely many postulated forms that are
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consistent with (2.1.10). We explain this phenomenon in Section 2.1.1. There we reprint the

consistency check as a variational problem (2.1.14), which has infinitely many solutions given

in (2.1.15). The work [122] utilizes an formula of the tail probabilty of H(2𝑡, 0) + 𝑡
12 , under the

Brownian initial data. Such a formula can be viewed as the inverse Laplace transform of (2.1.10).

By analyzing the inverse Laplace transform formula, it was shown [122, Corollary 14] that there

exists constants 𝑐1, 𝑐2, 𝑐3 such that for all 𝑦 > 0 and large enough 𝑡

P
[
H(2𝑡, 0) + 𝑡

12 ≥ 𝑡𝑦
]
≤ 𝑐1𝑡

1/2𝑒−𝑐2𝑦𝑡 + 𝑐1𝑡
1/2𝑒−𝑐3𝑦

3/2𝑡 .

This bound exhibits the 3
2 -power law for small 𝑦 but becomes linear in 𝑦 (in the exponent) for large

𝑦. In this paper we employ a new way of utilizing the formula (2.1.10), by applying it for getting

the 𝑝-moment growth ofZ(2𝑡, 0).

The main body of our proof is devoted to proving Theorem 2.1.2(a), or more precisely its re-

fined version Theorem 2.1.2(a)* stated in the following. From Theorem 2.1.2(a) standard argument

produces Theorem 2.1.2(b), with the rate function −4
3 𝑦

3/2 being the Legendre transform of 𝑝3

12 . The

first indication of Theorem 2.1.2(a) being true came form the study of positive integer moments of

(2.1.6). The mixed joint moment of Z solves the delta Bose gas, and the delta Bose operator can

be diagonalized by the Bethe ansatz. The work [216] carried out such analysis and pointed out that

(2.1.6) should hold for positive integers, i.e.,

lim
𝑡→∞

1
𝑡

log E
[
𝑒𝑛(H (2𝑡,0)+

𝑡
12 )

]
=
𝑛3

12
, for 𝑛 ∈ Z>0. (2.1.6-int)

This assertion (2.1.6-int) was proven in [94] for function-valued, bounded initial data, and in [115,

Lemma 4.5] for the delta initial data considered here. It has long been speculated and conjectured

that (2.1.6-int) should extend to all positive real 𝑝. However, the connection to the delta Bose gas

only gave access to integer moments. Here, by utilizing a known formula but in an unconventional

way, we bridge the gap between integers. In the same spirit as [115, Lemma 4.5], we provide a

quantitative bound on the 𝑝-th moment ofZ that holds for all 𝑡 and 𝑝 away from 0. This is stated
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as a refined version of Theorem 2.1.2(a) as

Theorem 2.1.2(a)*. LetZ be as in Theorem 2.1.2. We have a decomposition

E
[ (
Z(2𝑡, 0)𝑒 𝑡

12
) 𝑝]

= A𝑝 (𝑡) + B𝑝 (𝑡)

of the 𝑝-th moment of Z(2𝑡, 0)𝑒 𝑡
12 into a leading term A𝑝 (𝑡) and remainder term B𝑝 (𝑡). For any

𝑡0, 𝑝0 > 0, there exists a constant C = C(𝑡0, 𝑝0) > 0 that depends only on 𝑡0, 𝑝0, such that for all

𝑡 ≥ 𝑡0 and 𝑝 ≥ 𝑝0,

1
C
𝑝−

3
2Γ(𝑝 + 1) 𝑡− 1

2 𝑒
𝑝3𝑡
12 ≤A𝑝 (𝑡) ≤ C𝑝−

3
2Γ(𝑝 + 1) 𝑡− 1

2 𝑒
𝑝3𝑡
12 , (2.1.8)

and for 𝑛 := b𝑝c + 1 ∈ Z>0 and 𝜅𝑝 := min{ 1
6 ,

𝑝3

16 },

|B𝑝 (𝑡) | ≤ 𝑛 · (𝑛!)2 (𝑛C)𝑛 𝑡
1
2 𝑒

𝑝3𝑡
12 −𝜅𝑝𝑡 . (2.1.9)

From the bounds (2.1.8) and (2.1.9), one see that A𝑝 (𝑡) dominates as 𝑡 → ∞, uniformly over any

close intervals in (0,∞)NI𝑝. Theorem 2.1.2(a)* immediately implies Theorem 2.1.2(a).

The upper tail problem has also been studied for several other models in the class of integrable

systems starting from the fluctuation results and LDP for the longest increasing subsequence [224,

293, 148, 14]. There are also analogous results on upper-tail LDP for integrable polymer models

[177, 208], and also for last passage percolation in Bernoulli and white noise environments [96,

209] and inhomogeneous corner growth models [162].

The main input of our proof is the known formula (2.1.10) that express the Laplace transform

of Z(2𝑡, 0) as a Fredholm determinant. There are multiple equivalent ways to define Fredholm

determinants [296]. We will work with the exterior algebra definition: for a trace-class operator

𝑇 on a Hilbert space, consider
∧𝐿
𝑖=1 𝐻 and the operator 𝑇∧𝐿 defined by 𝑇∧𝐿 (𝑣1 ∧ · · · ∧ 𝑣𝐿) :=

(𝑇𝑣1) ∧ · · · ∧ (𝑇𝑣𝐿). The operator 𝑇∧𝐿 is trace-class on
∧𝐿
𝑖=1 𝐻. We then define the Fredholm
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determant as

det(𝐼 − 𝑇) := 1 +
∞∑︁
𝐿=1
(−1)𝐿tr(𝑇∧𝐿).

The following formula is known thanks to the integrability of the SHE and related models:

E
[
exp(−𝑠Z(2𝑡, 0)𝑒 𝑡

12
) ]

= det(𝐼 − 𝐾𝑠,𝑡) = 1 +
∞∑︁
𝐿=1
(−1)𝐿tr(𝐾∧𝐿𝑠,𝑡 ), (2.1.10)

where 𝐾𝑠,𝑡 is an integral operator 𝐿2(R≥0) with the kernel

𝐾𝑠,𝑡 (𝑥, 𝑦) :=
∫
R

Ai(𝑥 + 𝑟) Ai(𝑦 + 𝑟)
1 + 1

𝑠
𝑒−𝑡1/3𝑟

d𝑟, (2.1.11)

and Ai(𝑥) is the Airy function. It is standard to check that 𝐾𝑠,𝑡 is a positive operator via the square-

root trick, c.f., Lemma 2.2.1. The formula (2.1.10) or its closely related forms was first derived

simultaneously and independently in [6, 80, 156, 291], with a rigorous proof given in [6] based on

results of [306]. In particular, the formula (2.1.10) can be obtained by taking Laplace transform

of [6, Eq. (1.13)]. A direct derivation of (2.1.10) with a rigorous proof can be found in [70]; see

Theorem 1.10 (a) and Eq. (1.7) therein.

A standard way to extract tail information from (2.1.10) is to parameterize 𝑠 = 𝑒−𝑡𝑦 and substi-

tute inZ(2𝑡, 0) = exp(H (2𝑡, 0)) to get

E
[
exp(−𝑒H(2𝑡,0)+ 𝑡12−𝑡𝑦)

]
= 1 − tr(𝐾𝑠,𝑡) +

∞∑︁
𝐿=2
(−1)𝐿tr(𝐾∧𝐿𝑠,𝑡 ). (2.1.12)

The double exponential function exp(−𝑒·) on the l.h.s. of (2.1.12) may be deemed as a good proxy

of the indicator function 1(−∞,0) , and hence analyzing the r.h.s. of (2.1.12) could produce informa-

tion on P[H (2𝑡, 0) + 𝑡
12 < 𝑡𝑦]. This approximation procedure has been successfully implemented

in getting the limiting fluctuations and lower-tail LDP (but using different representations of the

r.h.s. than the Fredholm determinant).
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2.1.1 An issue of nonuniqueness

However, for the upper tail, the preceding procedure would not produce the full LDP. To see

this, rewrite (2.1.12) as

E
[
1 − exp(−𝑒H(2𝑡,0)+ 𝑡12−𝑡𝑦)

]
=

∞∑︁
𝐿=1
(−1)𝐿−1tr(𝐾∧𝐿𝑒−𝑡 𝑦 ,𝑡). (2.1.13)

For 𝑦 > 0, it is possible to show that the r.h.s. of (2.1.13) is dominated by the 𝐿 = 1 term as 𝑡 →∞,

and analyzing the trace of 𝐾𝑠,𝑡 from the formula (2.1.11) should yield

lim
𝑡→∞

1
𝑡

log
(
r.h.s. of (2.1.13)

)
= 𝐼 (𝑦) :=


−4

3 𝑦
3/2, 𝑦 ∈ (0, 1

4 ],
1
12 − 𝑦 , 𝑦 ∈ ( 14 ,∞).

For the left hand side, if we assume the existence of the upper-tail LDP but with an unknown rate

function, i.e., lim𝑡→∞
1
𝑡

log P[H (2𝑡, 0) + 𝑡
12 > 𝑡𝑦] = −Φ+(𝑦), for 𝑦 ∈ (0,∞), using the fact that

1 − exp(−𝑒𝑡𝜉) ≈ exp(𝑡min{𝜉, 0}), as 𝑡 →∞, we should have

lim
𝑡→∞

1
𝑡

log E
[
1 − exp(−𝑒H(2𝑡,0)+ 𝑡12−𝑡𝑦)

]
= sup
𝜉>0

{
min{𝜉 − 𝑦, 0} −Φ+(𝜉)

}
.

Putting these two sides together suggests the variational problem

sup
𝜉>0

{
min{𝜉 − 𝑦, 0} −Φ+(𝜉)

}
=


−4

3 𝑦
3/2, 𝑦 ∈ (0, 1

4 ],
1
12 − 𝑦 , 𝑦 ∈ ( 14 ,∞).

(2.1.14)

The function Φ+(𝑦) = 4
3 𝑦

3/2 does solve this variational problem. However, the solution is not

unique. Any function that satisfies

Φ+(𝑦) = −4
3 𝑦

3/2, for 𝑦 ∈ (0, 1
4 ],

1
12 − 𝑦 ≤ Φ+(𝑦) ≤ 4

3 𝑦
3/2, for 𝑦 ∈ ( 14 ,∞) (2.1.15)

solves the preceding variational problem.
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The preceding calculations strongly suggest that the conventional scheme (2.1.12) and (2.1.13)

of using the Fredholm determinant would not produce the exact rate function.

2.1.2 Our solution

To circumvent the aforementioned issue, we provide a new way of using the formula (2.1.10).

The start point is the following elementary identity:

Lemma 2.1.4. Let𝑈 be a nonnegative random variable with a finite 𝑛-th moment, where 𝑛 ∈ Z>0.

Let 𝛼 ∈ [0, 1) Then the (𝑛 − 1 + 𝛼)-th moment of𝑈 is given by

E[𝑈𝑛−1+𝛼] = 1
Γ(1 − 𝛼)

∫ ∞

0
𝑠−𝛼E[𝑈𝑛𝑒−𝑠𝑈] d𝑠 = (−1)𝑛

Γ(1 − 𝛼)

∫ ∞

0
𝑠−𝛼

d𝑛

d𝑠𝑛
E[𝑒−𝑠𝑈] d𝑠. (2.1.16)

The proof of this lemma follows by an interchange of measure via Fubini’s theorem. We will apply

this lemma with 𝑈 = Z(2𝑡, 0)𝑒 𝑡
12 and with 𝑛 := b𝑝c + 1 ∈ Z>0 and 𝛼 := 𝑝 − b𝑝c ∈ [0, 1) so that

𝑝 = 𝑛 − 1 + 𝛼.

Utilizing the formula (2.1.10) for E[𝑒−𝑠𝑈] = E[𝑒−𝑠Z(2𝑡,0)𝑒
𝑡

12 ] in (2.1.16), we will then be able

to express the 𝑝-th moment of Z(2𝑡, 0)𝑒 𝑡
12 as a series. From this series we identify the leading

term and higher order terms. This eventually leads to the desired estimate in Theorem 2.1.2(a)*.

It seems possible to directly analyze the inverse Laplace transform formula in [6, Theorem

1.1]. Doing so may provide an alternative proof of Theorem 2.1.2(b).

Outline.

In Section 2.2 we setup the framework of the proof. Namely we introduce an expansion of the

𝑝-th moment of Z, identify a trace term as the leading term, and establish several technical lem-

mas. In Section 2.3, we give precise asymptotics of the leading trace term, and in Section 2.4 we

establish bounds on the remaining terms. Finally, in Section 2.5, we collect results from previous

sections to give a proof of Theorem 2.1.2 and Theorem 2.1.2(a)*.
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2.2 Basic framework

Throughout this paper we use C = C(𝑎, 𝑏, 𝑐, . . .) > 0 to denote a generic deterministic pos-

itive finite constant that may change from line to line, but dependent on the designated variables

𝑎, 𝑏, 𝑐, . . ..

As mentioned previously, we will utilize Lemma 2.1.4 and (2.1.10) to develop a series ex-

pansion for E[(Z(2𝑡, 0)𝑒 𝑡
12 )𝑝]. This, however, requires a truncation at 𝑠 = 1 first. To see why,

referring to (2.1.12), with 𝑠 = 𝑒−𝑡𝑦, we see that 𝑠 < 1 corresponds to upper tail while 𝑠 > 1 corre-

sponds to lower tail. While we expect the later to have minor contribution in the regime 𝑝 > 0 we

are probing, it is known that for 𝑠 � 1 the Fredholm determinant (2.1.12) behaves in an oscillatory

fashion as 𝑡 →∞. With 𝑛 := b𝑝c + 1 ∈ Z>0 and 𝛼 := 𝑝 − b𝑝c ∈ [0, 1), we truncate

E
[
(Z(2𝑡, 0)𝑒 𝑡

12 )𝑝
]
=
(−1)𝑛

Γ(1 − 𝛼)

∫ 1

0
𝑠−𝛼 𝜕𝑛𝑠 E[𝑒−𝑠Z(2𝑡,0)𝑒

𝑡
12 ] d𝑠 + B𝑝,1(𝑡), (2.2.1)

where

B𝑝,1(𝑡) :=
1

Γ(1 − 𝛼)

∫ ∞

1
𝑠−𝛼E[𝑈𝑛𝑒−𝑠𝑈] d𝑠, 𝑈 := Z(2𝑡, 0)𝑒 𝑡

12 . (2.2.2)
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For this term B𝑝,1(𝑡) we bound

0 ≤ B𝑝,1(𝑡) =
1

Γ(1 − 𝛼)

∫ ∞

1
𝑠−𝑛−𝛼E[(𝑠𝑈)𝑛𝑒−𝑠𝑈] d𝑠 ≤ 1

Γ(1 − 𝛼) sup
𝑥≥0

{
𝑥𝑛𝑒−𝑥

} 1
𝑛 + 𝛼 − 1

.

Recognize 𝑛+𝛼−1 = 𝑝, and apply the bounds 1
Γ(1−𝛼) ≤ C, for 𝛼 ∈ [0, 1), and sup𝑥≥0{𝑥𝑛𝑒−𝑥} ≤ 𝑛𝑛.

|B𝑝,1(𝑡) | ≤ C 𝑝−1 𝑛𝑛. (2.2.3)

The bound (2.2.3) does not grow with 𝑡, and hence B𝑝,1(𝑡) will be a subdominant term.

Next, we wish to take 𝜕𝑛𝑠 in the Fredholm determinant expansion (2.1.10) and develop the

corresponding series. Assuming (justified later) the derivative can be passed into the sum, we have

(−1)𝑛
Γ(1 − 𝛼)

∫ 1

0
𝑠−𝛼 𝜕𝑛𝑠 E[𝑒−𝑠Z(2𝑡,0)𝑒

𝑡
12 ] d𝑠

=
(−1)𝑛

Γ(1 − 𝛼)

∫ 1

0
𝑠−𝛼 𝜕𝑛𝑠

( ∞∑︁
𝐿=1
(−1)𝐿tr(𝐾∧𝐿𝑠,𝑡 )

)
d𝑠 =

(−1)𝑛
Γ(1 − 𝛼)

∫ 1

0
𝑠−𝛼

∞∑︁
𝐿=1
(−1)𝐿 𝜕𝑛𝑠 tr(𝐾∧𝐿𝑠,𝑡 ) d𝑠.

(2.2.4)

The passing of derivatives into sums will be justified in Lemma 2.4.4, and in Sections 2.3 and

2.4.1, we will show that tr(𝐾∧𝐿𝑠,𝑡 ) is infinitely differentiable in 𝑠. As it turns out, the 𝐿 = 1 term

dominates. We then let

Ã𝑝 (𝑡) :=
(−1)𝑛+1
Γ(1 − 𝛼)

∫ 1

0
𝑠−𝛼 𝜕𝑛𝑠 tr(𝐾𝑠,𝑡) d𝑠, (2.2.5)

B𝑝,𝐿 (𝑡) :=
(−1)𝑛+𝐿
Γ(1 − 𝛼)

∫ 1

0
𝑠−𝛼 𝜕𝑛𝑠 tr(𝐾∧𝐿𝑠,𝑡 ) d𝑠, 𝐿 ≥ 2 (2.2.6)

denote the leading and higher order terms.

In the following we will work with the Schatten norms of operators. Recall that, for 𝑢 ∈ [1,∞]
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and for a compact operator 𝑇 on 𝐿2(R≥0), the 𝑢-th Schatten norm of 𝑇 is defined as

‖𝑇 ‖𝑢 :=
(
tr(𝑇∗𝑇)𝑢/2

)1/𝑢
=

( ∞∑︁
𝑖=1

𝑠𝑖 (𝑇)𝑢
)1/𝑢

,

with the convention ‖𝑇 ‖∞ := lim𝑢→∞ ‖𝑇 ‖𝑢, where 𝑠𝑖 (𝑇), 𝑖 ∈ Z>0, are the singular values of 𝑇 . In

particular, 𝑢 = 1 gives the trace norm, 𝑢 = 2 gives the Hilbert–Schmidt norm, and 𝑢 = ∞ gives the

operator norm ‖𝑇 ‖op := sup{ |𝑇 𝑓 || 𝑓 | : 𝑓 ∈ 𝐿2(R≥0) \ {0}}, where | 𝑓 | := (
∫ ∞
0 | 𝑓 (𝑥) |

2 d𝑥)1/2 denotes

the norm on 𝐿2(R≥0). The Schatten norm decreases in 𝑢, so the trace norm is the strongest among

all 𝑢 ∈ [1,∞]. We will use the following ‘square-root trick’ to evaluate the trace norm of some

operators.

Lemma 2.2.1. Consider a square-integrable kernel 𝐽 (𝑟, 𝑦) with
∫
R+
(
∫
R
|𝐽 (𝑟, 𝑦) |2 d𝑟)d𝑦 < ∞. Then

the integral operator 𝑇 on 𝐿2(R≥0) with the kernel

𝑇 (𝑥, 𝑦) :=
∫
R
𝐽 (𝑟, 𝑥) 𝐽 (𝑟, 𝑦) d𝑟

is positive and trace-class, with tr(𝑇) = ‖𝑇 ‖1 =
∫
R+
(
∫
R
|𝐽 (𝑟, 𝑦) |2 d𝑟)d𝑦.

Proof. It is more convenient to embed 𝑇 into operators on 𝐿2(R). We do this by setting the kernel

𝑇 (𝑥, 𝑦) := 1R≥0 (𝑥)1R≥0 (𝑦)
∫
R
𝐽 (𝑟, 𝑥) 𝐽 (𝑟, 𝑦) d𝑟

to be zero outside (𝑥, 𝑦) ∈ R2
≥0. This way we have the factorization 𝑇 = 𝐽∗𝐽, where 𝐽 is an

operator on 𝐿2(R) with kernel 1R≥0 (𝑦)𝐽 (𝑟, 𝑦). The square integrability of 𝐽 (𝑟, 𝑦) guarantees that

the operator 𝐽 is Hilbert–Schmidt, and the Cauchy–Schwartz inequality ‖𝑇1𝑇2‖1 ≤ ‖𝑇1‖2‖𝑇2‖2

applied with 𝑇1 = 𝐽∗, 𝑇2 = 𝐽 concludes that 𝑇 is trace-class, whence tr(𝑇) =
∫
R+
(
∫
R
|𝐽 (𝑟, 𝑦) |2 d𝑟)d𝑦

by Theorem 3.1 in [77]. The factorization 𝑇 = 𝐽∗𝐽 implies that 𝑇 is positive, whence tr(𝑇) =

‖𝑇 ‖1.

Lemma 2.2.1 applied with 𝐽 (𝑟, 𝑦) = Ai(𝑦 + 𝑟) (1 + 1
𝑠
𝑒−𝑡

1/3𝑟)−1/2 proves that the operator 𝐾𝑠,𝑡 (de-

fined in (2.1.11)) is positive and trace-class.
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Much of our subsequent analysis boils down to estimating integrals involving the Airy function

Ai(𝑥). Here we prepare two technical lemmas that will be frequently used. To setup the notation,

set

Φ(𝑦) :=
∫ ∞

𝑦

Ai2(𝑥) d𝑥. (2.2.7)

Using the Airy differential equation, one can explicitly compute the antiderivative of Ai(𝑥)2 to get

Φ(𝑦) = Ai′(𝑦)2 − 𝑦Ai(𝑦)2. Using known expansions of Ai(𝑥),Ai′(𝑥) for |𝑥 | � 1, e.g., Equation

(1.07), (1.08), and (1.09) in Chapter 11 of [267], we have that, for all 𝑦 ≥ 0 and for some universal

C > 0,

1
C
(
√︁
|𝑦 | + 1) ≤Φ(−𝑦) ≤ C (

√︁
|𝑦 | + 1), (2.2.8)

1
C (𝑦+1) 𝑒

− 4
3 𝑦

3/2 ≤Φ(𝑦) ≤ C
𝑦+1𝑒

−4
3 𝑦

3/2
. (2.2.9)

Also consider

𝑈𝑞 (𝑥) := 𝑞𝑥2 − 4
3𝑥

3, (2.2.10)

which enjoys the property

𝑈𝑞 (𝑥) increases on 𝑥 ∈ [0, 𝑞2 ] and decreases on 𝑥 ∈ [ 𝑞2 ,∞), 𝑈𝑞 ( 𝑞2 ) =
𝑞3

12 . (2.2.11)

Lemma 2.2.2. Fix 𝑡0, 𝑞0 ∈ (0,∞). There exists a constant C(𝑡0, 𝑞0) > 0, such that for all 𝑡 ≥ 𝑡0

and 𝑞 ≥ 𝑞0,

1
C(𝑡0, 𝑞0)

𝑡−7/6𝑞−3/2𝑒
𝑞3𝑡
12 ≤

∫
R
𝑒𝑞𝑟𝑡Φ(𝑡2/3𝑟) d𝑟 ≤ C(𝑡0, 𝑞0)𝑡−7/6𝑞−3/2𝑒

𝑞3𝑡
12 . (2.2.12)

Proof. Let us first give a heuristic of the proof. The idea is to apply Laplace’s method. We

seek to approximate
∫
R
𝑒𝑞𝑟𝑡Φ(𝑡2/3𝑟) d𝑟 by

∫
R
𝑒𝑡𝑔𝑞 (𝑟)d𝑟, for some appropriate function 𝑔𝑞 (𝑟), and
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search the maximum of 𝑔𝑞 (𝑟) over 𝑟 ∈ R. The bounds of Φ from (2.2.8) and (2.2.9) suggest

logΦ(𝑡2/3𝑟) ≈ −4
3 𝑡𝑟

3/2
+ and 𝑔𝑞 (𝑟) = 𝑞𝑟 − 4

3𝑟
3/2
+ . This function achieves a maximum of 𝑞3/12

at 𝑟 = 𝑞2/4, which gives the exponential factor exp( 𝑞
3𝑡

12 ). The prefactor 𝑡−7/6𝑞−3/2 can then be

obtained from localizing the integral around 𝑟 = 𝑞2/4 and using (2.2.9) to approximate the integral

as a Gaussian integral.

We now start the proof. Fix 𝑡0, 𝑞0 > 0. To simplify notation, throughout this proof we write

C = C(𝑡0, 𝑞0) > 0, and for positive functions 𝑓1(𝑎, 𝑏, . . .), 𝑓2(𝑎, 𝑏, . . .), we write 𝑓1 ∼ 𝑓2 if they

bound each other by a constant multiple, i.e.,

1
C 𝑓2(𝑎, 𝑏, . . .) ≤ 𝑓1(𝑎, 𝑏, . . .) ≤ C 𝑓2(𝑎, 𝑏, . . .),

within the specified ranges of the variables 𝑎, 𝑏, . . .. Set 𝜌 := 𝑞0
4 . Divide

∫
R
𝑒𝑞𝑟𝑡Φ(𝑡2/3𝑟) d𝑟 into

three regions and let I1,I2, and I3 denote the respective integrals:( ∫
[( 𝑞2−𝜌)2,(

𝑞

2 +𝜌)2]
+
∫
R−

+
∫
R≥0\[( 𝑞2−𝜌)2,(

𝑞

2 +𝜌)2]

)
𝑒𝑞𝑟𝑡Φ(𝑡2/3𝑟)d𝑟 := I1(𝑞, 𝑡) + I2(𝑞, 𝑡) + I3(𝑞, 𝑡).

(2.2.13)

As suggested by the preceding heuristics, we anticipate I1(𝑞, 𝑡) to dominate. We begin with esti-

mating this term. Recall𝑈𝑞 (𝑥) from (2.2.10). The bounds from (2.2.9) gives, for all 𝑟, 𝑡 ∈ R≥0,

𝑒𝑞𝑟𝑡Φ(𝑡2/3𝑟) ∼ 𝑒𝑡𝑈𝑞 (
√
𝑟)

1 + 𝑡2/3𝑟
. (2.2.14)

The function𝑈𝑞 (𝑥) attains a maximum of 𝑞3

12 at 𝑥 = 𝑞

2 and𝑈𝑞 (𝑥) − 𝑞3

12 = −(𝑥 − 𝑞

2 )
2( 43 (𝑥 −

𝑞

2 ) + 𝑞).

Integrate both sides of (2.2.14) over [( 𝑞2 −𝜌)
2, ( 𝑞2 +𝜌)

2] and make a change of variable
√
𝑟− 𝑞2 ↦→ 𝑥.

We get, for all 𝑞, 𝑡 ∈ R≥0,

I1(𝑞, 𝑡) ∼ 𝑒
𝑞3𝑡
12

∫ 𝜌

−𝜌

2(𝑥 + 𝑞

2 )𝑒
−𝑡𝑥2 ( 43 𝑥+𝑞)

1 + 𝑡2/3(𝑥 + 𝑞

2 )2
d𝑥.
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The choice 𝜌 =
𝑞0
4 guarantees that for all 𝑥 ∈ [−𝜌, 𝜌] and for all 𝑞 ≥ 𝑞0, we have 𝑞

C ≤
4
3𝑥+𝑞, 𝑥+

𝑞

2 ≤

C𝑞. Then for all 𝑡 ≥ 𝑡0 and 𝑞 ≥ 𝑞0, there exists C > 0 such that for 𝑥 ∈ [−𝜌, 𝜌],

1
C𝑡2/3𝑞

𝑒−C𝑞𝑡𝑥2 ≤
2(𝑥 + 𝑞

2 )𝑒
−𝑡𝑥2 ( 43 𝑥+𝑞)

1 + 𝑡2/3(𝑥 + 𝑞

2 )2
≤ C
𝑡2/3𝑞

𝑒−
1
C 𝑞𝑡𝑥

2
. (2.2.15)

Integrate (2.2.15) over [−𝜌, 𝜌] and use
∫ 𝜌

−𝜌 𝑒
−𝑞𝑥2𝑡 d𝑥 ∼ (𝑡𝑞)−1/2, for all 𝑡 ≥ 𝑡0 and 𝑞 ≥ 𝑞0. We now

obtain, for 𝑡 ≥ 𝑡0 and 𝑞 ≥ 𝑞0,

I1(𝑞, 𝑡) ∼ 𝑡−7/6𝑞−3/2𝑒
𝑞3𝑡
12 . (2.2.16)

Having settled the asymptotics of I1(𝑞, 𝑡), we now turn to I2(𝑞, 𝑡),I3(𝑞, 𝑡). For I2(𝑞, 𝑡), use (2.2.8)

to get

0 ≤ I2(𝑞, 𝑡) ≤ C
∫ 0

−∞
𝑒𝑞𝑟𝑡 (

√︃
𝑡2/3 |𝑟 | + 1)d𝑟 ≤ C𝑞−3/2𝑡−7/6 + C𝑞−1𝑡−1. (2.2.17)

As for I3(𝑞, 𝑡), integrate both sides of (2.2.14) over R≥0 \ [( 𝑞2 − 𝜌)
2, ( 𝑞2 + 𝜌)

2] and then make the

change of variable
√
𝑟 ↦→ 𝑥 to get

0 ≤ I3(𝑞, 𝑡) ≤ C𝑒
𝑞3𝑡
12

∫
R≥0\[( 𝑞2−𝜌),(

𝑞

2 +𝜌)]

2𝑥𝑒− 𝑡3 (𝑥−
𝑞

2 )
2 (4𝑥+𝑞)

1 + 𝑡2/3𝑥2 d𝑥. (2.2.18)

For 𝑥 ∈ R≥0 \ [( 𝑞2 − 𝜌), (
𝑞

2 + 𝜌)], we have (𝑥 − 𝑞

2 )
2 ≥ 𝜌2. The AM-GM inequality inequality

gives 1 + 𝑡2/3𝑥2 ≥ 2𝑡1/3𝑥, and equivalently 2𝑥
1+𝑡2/3𝑥2 ≤ 𝑡−1/3. Applying these bounds on the r.h.s.

of (2.2.18) and then releasing the region of integration to R≥0, we get that

I3(𝑞, 𝑡) ≤ C𝑒
𝑞3𝑡
12 𝑡−4/3𝜌−2𝑒−

𝑞𝑡𝜌2
3 . (2.2.19)

It is straightforward to check that the r.h.s. of (2.2.17) and (2.2.19) can be further bounded by
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C 𝑡−7/6𝑞−3/2𝑒
𝑞3𝑡
12 , for all 𝑡 ≥ 𝑡0 and 𝑞 ≥ 𝑞0. Hence

0 ≤ I2(𝑞, 𝑡) + I3(𝑞, 𝑡) ≤ C 𝑡−7/6𝑞−3/2𝑒
𝑞3𝑡
12 .

This together with (2.2.16) gives the desired result (2.2.12).

Lemma 2.2.3. Recall𝑈𝑞 from (2.2.10). There exists a constant C = C(𝑡0, 𝑞0) > 0 such that for all

𝑡 ≥ 𝑡0, 𝑞 ≥ 𝑞0, and 𝑦 ∈ [0,∞],

∫ 𝑦

−∞
𝑒𝑞𝑟𝑡Φ(𝑡2/3𝑟)d𝑟 ≤ C(𝑡0, 𝑞0) 𝑡−5/6 exp

(
𝑡𝑈𝑞 (min{√𝑦, 𝑞2 } )

)
. (2.2.20)

Remark 2.2.4. The prefactor 𝑡−5/6 in (2.2.12) is likely suboptimal, but suffices for our subsequent

analysis.

Proof. When 𝑦 ∈ [ 𝑞
2

4 ,∞], we release the range of integration of the l.h.s. of (2.2.20) to R and use

the upper bound in Lemma 2.2.2. Observe that 𝑈𝑞
(
min{√𝑦, 𝑞2 }

)
=

𝑞3

12 and 𝑡 and 𝑞 are bounded

below by 𝑡0 and 𝑞0. Absorb 𝑡−1/3 and 𝑞−3/2 in the constant 𝐶 (𝑡0, 𝑞0) to get the desired bound in

(2.2.20).

Moving onto 𝑦 ∈ [0, 𝑞2/4), from (2.2.17) we already have a bound on
∫ 0
−∞ 𝑒

𝑞𝑟𝑡Φ(𝑡2/3𝑟)d𝑟 of

the desired form. Hence, it suffices to bound for
∫ 𝑦

0 𝑒𝑞𝑟𝑡Φ(𝑡2/3𝑟)d𝑟. From (2.2.14), make a change

of variable
√
𝑟 ↦→ 𝑥, and in the result bound 2𝑥

1+𝑡2/3𝑥2 ≤ 𝑡−1/3. We have

∫ 𝑦

0
𝑒𝑞𝑟𝑡Φ(𝑡2/3𝑟)d𝑟 ≤ C

∫ 𝑦

0

𝑒𝑡𝑈𝑞 (
√
𝑟)

1 + 𝑡2/3𝑟
d𝑟 = C

∫ √
𝑦

0

2𝑥𝑒𝑡𝑈𝑞 (𝑥)

1 + 𝑡2/3𝑥2 d𝑥 ≤ C𝑡−1/3
∫ √

𝑦

0
𝑒𝑡𝑈𝑞 (𝑥)d𝑥.

(2.2.21)

We next bound the last expression in (2.2.21) in two cases.

Case 1. 0 ≤ 𝑦 ≤ 𝑞2

16 . Since 𝑈′′𝑞 (𝑥) = 2𝑞 − 8𝑥 is positive for 𝑥 ∈ [0, 𝑞4 ), the derivative 𝑈′𝑞 (𝑥) =

2𝑥(𝑞 − 2𝑥) is increasing in 𝑥 ∈ [0, 𝑞4 ]. Hence, for any 𝑧 ∈ [0, 𝑞4 ], 𝑈
′
𝑞 (𝑧) ≤ 𝑈′𝑞 (

𝑞

4 ) =
𝑞2

4 . Thus, for
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any 𝑥 ∈ [0,√𝑦], we have 𝑧∗ ∈ [𝑥,
√
𝑦] for which

𝑈𝑞 (
√
𝑦) −𝑈𝑞 (𝑥) = 𝑈′𝑞 (𝑧∗) (

√
𝑦 − 𝑥) ≤ 𝑈′𝑞 (

𝑞

4 ) (
√
𝑦 − 𝑥) = 𝑞2

4 (
√
𝑦 − 𝑥). (2.2.22)

Using (2.2.22) to bound exp(𝑡𝑈𝑞 (𝑥)) and integrating the result over 𝑥 ∈ [0,√𝑦] gives

∫ √
𝑦

0
𝑒𝑡𝑈𝑞 (𝑥)d𝑥 ≤

∫ √
𝑦

0
𝑒𝑡𝑈𝑞 (

√
𝑦)− 1

4 𝑞
2𝑡 (√𝑦−𝑥)d𝑥 ≤

∫ √
𝑦

−∞
𝑒𝑡𝑈𝑞 (

√
𝑦)− 1

4 𝑞
2𝑡 (√𝑦−𝑥)d𝑥 ≤ 4

𝑞2𝑡
𝑒𝑡𝑈𝑞 (

√
𝑦) .

(2.2.23)

Case 2. 𝑞2

16 ≤ 𝑦 ≤
𝑞2

4 . In this case we have 𝑞 ≥ 2√𝑦, which gives

𝑈𝑞 (
√
𝑦) −𝑈𝑞 (𝑥) = 𝑞(𝑦 − 𝑥2) − 4

3 (𝑦
3/2 − 𝑥3) ≥ 2

√
𝑦(𝑦 − 𝑥2) − 4

3 (𝑦
3/2 − 𝑥3) = 2

3 (
√
𝑦 − 𝑥)2(√𝑦 + 2𝑥).

In the last expression, further use
√
𝑦 + 2𝑥 ≥ √𝑦 ≥ 𝑞

4 to get

𝑈𝑞 (
√
𝑦) −𝑈𝑞 (𝑥) ≥ 𝑞

6 (
√
𝑦 − 𝑥)2. (2.2.24)

Using (2.2.24) to bound exp(𝑡𝑈𝑞 (𝑥)) and integrate the result over 𝑥 ∈ [0,√𝑦] gives

∫ √
𝑦

0
𝑒𝑡𝑈𝑞 (𝑥)d𝑥 ≤

∫ √
𝑦

0
𝑒𝑡𝑈𝑞 (

√
𝑦)− 1

6 𝑞𝑡 (
√
𝑦−𝑥)2d𝑥 ≤

∫ √
𝑦

−∞
𝑒𝑡𝑈𝑞 (

√
𝑦)− 1

6 𝑞𝑡 (
√
𝑦−𝑥)2d𝑥 ≤

√︄
C
𝑞𝑡
𝑒𝑡𝑈𝑞 (

√
𝑦) .

(2.2.25)

Combining (2.2.23) and (2.2.25) and inserting the bounds into (2.2.21) gives the desired result.

2.3 Estimates for the leading term

The goal of this section is to obtain the 𝑡 →∞ asymptotics of Ã𝑝 (𝑡) defined in (2.2.5), accurate

up to constant multiples.
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Let us first settle the differentiability in 𝑠 of the operator 𝐾𝑠,𝑡 , defined in (2.1.11). Recall

𝐾𝑠,𝑡 (𝑥, 𝑦) from (2.1.11), then perform a change of variable 𝑟 ↦→ 𝑡2/3𝑟 to get

𝐾𝑠,𝑡 (𝑥, 𝑦) = 𝑡2/3
∫
R

Ai(𝑥 + 𝑡2/3𝑟) Ai(𝑦 + 𝑡2/3𝑟)𝑣(𝑠, 𝑡, 𝑟)d𝑟, (2.3.1)

𝑣(𝑠, 𝑡, 𝑟) :=
1

1 + 1
𝑠
𝑒−𝑟𝑡

. (2.3.2)

Formally differentiating the kernel 𝐾𝑠,𝑡 (𝑥, 𝑦) in (2.1.11) in 𝑠 suggests that the 𝑛-th derivative of

𝐾𝑠,𝑡 should have kernel

𝐾
(𝑛)
𝑠,𝑡 (𝑥, 𝑦) := 𝑡2/3

∫
R

Ai(𝑥 + 𝑡2/3𝑟) Ai(𝑦 + 𝑡2/3𝑟)𝜕𝑛𝑠 𝑣(𝑠, 𝑡, 𝑟) d𝑟, (2.3.3)

with the convention 𝐾 (0)𝑠,𝑡 (𝑥, 𝑦) := 𝐾𝑠,𝑡 (𝑥, 𝑦). Differentiating (2.3.2) with respect to 𝑠 we get

𝜕𝑛𝑠 𝑣(𝑠, 𝑡, 𝑟) =
(−1)𝑛−1𝑛!𝑒−𝑟𝑡

(𝑠 + 𝑒−𝑟𝑡)𝑛+1
. (2.3.4)

Since (−1)𝑛−1𝜕𝑛𝑠 𝑣(𝑠, 𝑡, 𝑟) > 0, Lemma 2.2.1 applied with 𝐽 (𝑟, 𝑦) = Ai(𝑦 + 𝑡2/3𝑟) ((−1)𝑛−1𝜕𝑛𝑠 𝑣(𝑠, 𝑡, 𝑟))1/2

gives that (−1)𝑛−1𝐾
(𝑛)
𝑠,𝑡 defines a positive trace-class operator on 𝐿2(R≥0).

Lemma 2.3.1. For any 𝑛 ∈ Z≥0, 𝑢 ∈ [1,∞] and 𝑡 > 0, the operator 𝐾 (𝑛)𝑠,𝑡 is differentiable in 𝑠 at

each 𝑠 > 0 in the 𝑢-th Schatten norm, with derivative being equal to 𝐾 (𝑛+1)𝑠,𝑡 , i.e.,

lim
𝑠′→𝑠




𝐾 (𝑛)𝑠′,𝑡 − 𝐾 (𝑛)𝑠,𝑡
𝑠′ − 𝑠 − 𝐾 (𝑛+1)𝑠,𝑡





𝑢
= 0.

Proof. Since the Schatten norms decreases in 𝑢, without lost of generality we assume 𝑢 = 1. Fix

𝑛 ∈ Z≥0 and 𝑡 > 0, and set 𝐷𝑠,𝑠′ := 1
𝑠′−𝑠 (𝐾

(𝑛)
𝑠′,𝑡 − 𝐾

(𝑛)
𝑠,𝑡 ) − 𝐾

(𝑛+1)
𝑠,𝑡 . Use (2.3.3) to express the kernel

of 𝐷𝑠,𝑠′ as an integral involving 𝜕𝑛𝑠 𝑣 and 𝜕𝑛+1𝑠 𝑣, and Taylor expand 𝜕𝑛𝜎𝑣(𝜎, 𝑡, 𝑟) around 𝜎 = 𝑠 up to

the first order, i.e., 𝜕𝑛𝜎𝑣(𝑠′, 𝑟) −𝜕𝑛𝜎𝑣(𝑠, 𝑡, 𝑟) − (𝑠′− 𝑠)𝜕𝑛+1𝜎 𝑣(𝑠, 𝑡, 𝑟) = 1
2

∫ 𝑠′

𝑠
(𝑠′−𝜎)𝜕𝑛+2𝜎 𝑣(𝜎, 𝑡, 𝑟) d𝜎.
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We then get

𝐷𝑠,𝑠′ (𝑥, 𝑦) = 𝑡2/3
∫
R

Ai(𝑥 + 𝑡2/3𝑟) Ai(𝑦 + 𝑡2/3𝑟)
( 1
2(𝑠′ − 𝑠)

∫ 𝑠′

𝑠

(𝑠′ − 𝜎)𝜕𝑛+2𝜎 𝑣(𝜎, 𝑡, 𝑟) d𝜎
)
d𝑟

= 𝑡2/3
∫
R≥0×R

Ai(𝑥 + 𝑡2/3𝑟) Ai(𝑦 + 𝑡2/3𝑟)sign(𝑠′ − 𝑠)1| (𝑠,𝑠′) | (𝜎)
(𝑠′ − 𝜎)
2(𝑠′ − 𝑠) 𝜕

𝑛+2
𝜎 𝑣(𝜎, 𝑡, 𝑟) d𝜎d𝑟,

where | (𝑠, 𝑠′) | := (𝑠, 𝑠′) for 𝑠 < 𝑠′ and | (𝑠, 𝑠′) | := (𝑠′, 𝑠) for 𝑠′ < 𝑠.

Our goal is to show that ‖𝐷𝑠,𝑠′ ‖1 converges to zero as 𝑠′ → 𝑠. As seen from (2.3.4), we have

(−1)𝑛+1𝜕𝑛+2𝜎 𝑣(𝜎, 𝑡, 𝑟) > 0. Applying Lemma 2.2.1 with 𝐽 (𝑟, 𝑦) = Ai(𝑦 + 𝑡2/3𝑟) ((−1)𝑛+1𝜕𝑛+2𝜎 𝑣(𝜎, 𝑡, 𝑟))−1/2

gives

‖𝐷𝑠,𝑠′ ‖1 = 𝑡2/3
∫
R2
≥0×R

Ai2(𝑥 + 𝑡2/3𝑟)1| (𝑠,𝑠′) | (𝜎)
��� (𝑠′ − 𝜎)2(𝑠′ − 𝑠) 𝜕

𝑛+2
𝜎 𝑣(𝜎, 𝑡, 𝑟)

���d𝜎d𝑥d𝑟, (2.3.5)

provided that the last integral converges. To check the convergence, recognizing
∫
R≥0

Ai(𝑥 +

𝑡2/3𝑟)2d𝑥 = Φ(𝑡2/3𝑟) substituting (2.3.4) into (2.3.5), bound (𝜎 + 𝑒−𝑟𝑡)𝑛+3 ≥ 𝑒−(𝑛+3)𝑟𝑡 , and | 𝑠′−𝜎2(𝑠′−𝑠) | ≤
1
2 ,

(r.h.s. of (2.3.5)) ≤ 1
2
(𝑛 + 2)!𝑡2/3

∫
R≥0×R

𝑒(𝑛+2)𝑟𝑡Φ(𝑡2/3𝑟)1| (𝑠,𝑠′) | (𝜎) |d𝜎d𝑟. (2.3.6)

By Lemma 2.2.3 with 𝑦 ↦→ ∞, the r.h.s. of (2.3.6) is finite for each 𝑠′ ∈ R≥0. From this and the

dominated convergence theorem, we conclude the desired result ‖𝐷𝑠,𝑠′ ‖1 ≤ (r.h.s. of (2.3.6)) → 0,

as 𝑠′→ 𝑠.

Applying Lemma 2.3.1 with 𝑢 = 1 gives 𝜕𝑛𝑠 tr(𝐾𝑠,𝑡) = tr(𝐾 (𝑛)𝑠,𝑡 ). Further, since the operator 𝐾 (𝑛)𝑠,𝑡

has a continuous kernel given in (2.3.3) and is a trace-class operator, the trace can be written as

tr(𝐾 (𝑛)𝑠,𝑡 ) =
∫ ∞
0 𝐾

(𝑛)
𝑠,𝑡 (𝑥, 𝑥) d𝑥 (see Corollary 3.2 in [77]). To evaluate the last integral, insert (2.3.2)

into (2.3.1) and (2.3.4) into (2.3.3) to get

tr(𝐾𝑠,𝑡) = 𝑡2/3
∫
R

1
1 + 1

𝑠
𝑒−𝑟𝑡

Φ(𝑡2/3𝑟) d𝑟, (2.3.7)
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𝜕𝑛𝑠 tr(𝐾𝑠,𝑡) = tr(𝐾 (𝑛)𝑠,𝑡 ) = 𝑡2/3
∫
R

(−1)𝑛−1 𝑛! 𝑒−𝑟𝑡

(𝑠 + 𝑒−𝑟𝑡)𝑛+1
Φ(𝑡2/3𝑟) d𝑟, 𝑛 ∈ Z>0, (2.3.8)

where Φ(𝑦) is defined in (2.2.7). Armed with the expressions (2.3.7) and (2.3.8), we now proceed

to establish the desired asymptotics of Ã𝑝 (𝑡). Recall from (2.2.5) Ã𝑝 (𝑡) involves an integral over

𝑠 ∈ [0, 1]. It is convention to write it as the difference of an integral over 𝑠 ∈ [0,∞) and over

𝑠 ∈ [0, 1]:

Ã𝑝 (𝑡) = A𝑝 (𝑡) − Â𝑝 (𝑡), (2.3.9)

A𝑝 (𝑡) :=
(−1)𝑛+1
Γ(1 − 𝛼)

∫ ∞

0
𝑠−𝛼 𝜕𝑛𝑠 tr(𝐾𝑠,𝑡) d𝑠, Â𝑝 (𝑡) :=

(−1)𝑛+1
Γ(1 − 𝛼)

∫ ∞

1
𝑠−𝛼 𝜕𝑛𝑠 tr(𝐾𝑠,𝑡) d𝑠,

(2.3.10)

where 𝑛 := b𝑝c + 1 ∈ Z>0 and 𝛼 := 𝑝 − b𝑝c ∈ [0, 1).

Proposition 2.3.2. Fix any 𝑡0, 𝑝0 > 0. There exists C = C(𝑡0, 𝑝0) > 0 such that for all 𝑡 ≥ 𝑡0 and

𝑝 ≥ 𝑝0,

1
C 𝑝
− 3

2Γ(𝑝 + 1) 𝑡− 1
2 𝑒

𝑝3𝑡
12 ≤A𝑝 (𝑡) ≤ C𝑝−

3
2Γ(𝑝 + 1) 𝑡− 1

2 𝑒
𝑝3𝑡
12 , (2.3.11)

|Â𝑝 (𝑡) | ≤ Γ(𝑝 + 1)C. (2.3.12)

Proof. Fix 𝑡0, 𝑝0 > 0. To simplify notation, throughout this proof we assume 𝑡 ≥ 𝑡0 and 𝑝 ≥ 𝑝0

and write C = C(𝑡0, 𝑝0). Referring to (2.2.5) and (2.3.8), we set

𝜙𝑝,𝑡 (𝑠) :=
𝑛!𝑡2/3

Γ(1 − 𝛼) 𝑠
−𝛼

∫
R

𝑒−𝑟𝑡Φ(𝑡2/3𝑟)
(𝑠 + 𝑒−𝑟𝑡)𝑛+1

d𝑟 (2.3.13)

so that A𝑝 (𝑡) =
∫ ∞
0 𝜙𝑝,𝑡 (𝑠)d𝑠 and Â𝑝 (𝑡) =

∫ ∞
1 𝜙𝑝,𝑡 (𝑠)d𝑠.

To estimate A𝑝 (𝑡) =
∫ ∞
0 𝜙𝑝,𝑡 (𝑠)d𝑠, integrate (2.3.13) over 𝑠 ∈ [0,∞) to get

∫ ∞

0
𝜙𝑝,𝑡 (𝑠) d𝑠 =

𝑛!𝑡2/3

Γ(1 − 𝛼)

∫
R
𝑒−𝑟𝑡Φ(𝑡2/3𝑟)

( ∫ ∞

0

𝑠−𝛼d𝑠
(𝑠 + 𝑒−𝑟𝑡)𝑛+1

)
d𝑟.
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The inner integral on the right hand side can be identified with the Beta integral. Namely the

change of variable 𝑣 = 𝑠
𝑠+𝑒−𝑟𝑡 yields

∫ ∞

0

𝑠−𝛼d𝑠
(𝑠 + 𝑒−𝑟𝑡)𝑛+1

= 𝑒𝑛𝑟𝑡+𝛼𝑟𝑡
∫ 1

0
𝑣−𝛼 (1 − 𝑣)𝑛−1+𝛼d𝑣 = 𝑒𝑛𝑟𝑡+𝛼𝑟𝑡

Γ(1 − 𝛼)Γ(𝑛 + 𝛼)
𝑛!

. (2.3.14)

This then gives
∫ ∞
0 𝜙𝑝,𝑡 (𝑠) d𝑠 = 𝑡2/3Γ(𝑝 + 1)

∫
R
𝑒𝑝𝑟𝑡Φ(𝑡2/3𝑟)d𝑟. The asymptotics of last integral is

given by Lemma 2.2.2 with 𝑞 ↦→ 𝑝. From this we conclude the desired estimate (2.3.11) ofA𝑝 (𝑡).

Next we turn to Â𝑝 (𝑡) =
∫ ∞
1 𝜙𝑝,𝑡 (𝑠)d𝑠. Integrate (2.3.13) over 𝑠 ∈ (1,∞), divide the integral

over 𝑟 ∈ (−∞, 0] and 𝑟 ∈ [0,∞), and for the former release the integral over 𝑠 from 𝑠 ∈ (1,∞) to

𝑠 ∈ [0,∞). This gives 0 ≤
∫ ∞
1 𝜙𝑝,𝑡 (𝑠) d𝑠 ≤ 𝐴1 + 𝐴2, where

𝐴1 :=
𝑛!𝑡2/3

Γ(1 − 𝛼)

∫
[0,∞)×(−∞,0]

𝑠−𝛼
𝑒−𝑟𝑡Φ(𝑡2/3𝑟)
(𝑠 + 𝑒−𝑟𝑡)𝑛+1

d𝑠d𝑟, 𝐴2 :=
𝑛!𝑡2/3

Γ(1 − 𝛼)

∫
(1,∞)×[0,∞)

𝑠−𝛼
𝑒−𝑟𝑡Φ(𝑡2/3𝑟)
(𝑠 + 𝑒−𝑟𝑡)𝑛+1

d𝑠d𝑟.

For 𝐴1 use (2.3.14) and then the bound from Lemma 2.2.3 with 𝑞 ↦→ 𝑝 and 𝑦 ↦→ 0. We have

𝐴1 = 𝑡2/3Γ(𝑝 + 1)
∫ 0

−∞
𝑒𝑝𝑟𝑡Φ(𝑡2/3𝑟) d𝑟 ≤ 𝑡−1/6Γ(𝑝 + 1)C. (2.3.15)

For 𝐴2, use 𝑠 ≥ 1 to bound 𝑠−𝛼 1
(𝑠+𝑒−𝑟𝑡 )𝑛+1 ≤ 𝑠

−𝑛−1 and use the fact that Φ is decreasing (see (2.2.7))

to bound Φ(𝑡2/3𝑟) ≤ Φ(0) = C. Together with 1
Γ(1−𝛼) ≤ 1, for 𝛼 ∈ [0, 1), we have

𝐴2 ≤ C
𝑛!𝑡2/3

Γ(1 − 𝛼)

∫ ∞

1
𝑠−1−𝑛 d𝑠

∫ ∞

0
𝑒−𝑟𝑡d𝑟 ≤ (𝑛 − 1)!𝑡−1/3C ≤ 𝑡−1/3Γ(𝑝 + 1)C. (2.3.16)

The last inequality follows from the fact that Γ(𝑦) is increasing for 𝑦 ≥ 1 to bound (𝑛 − 1)! =

Γ(𝑛) ≤ Γ(𝑝 + 1). Using 𝑡 ≥ 𝑡0 to bound 𝑡−1/6, 𝑡−1/3 ≤ C, the bounds (2.3.15) and (2.3.16) together

gives the desired bound for (2.3.12).
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2.4 Bounds for higher order terms

To goal of this section is to establish bounds on the term B𝑝,𝐿 (𝑡) defined in (2.2.6). Along the

way we will also justify passing derivatives into sums in (2.2.4).

Recall from (2.3.3) and Lemma 2.3.1 that 𝐾 (𝑛)𝑠,𝑡 is the 𝑛-th derivative in 𝑠 of 𝐾𝑠,𝑡 . To prepare for

subsequent analysis, we provide bounds on tr(𝐾𝑠,𝑡) and tr(𝐾 (𝑛)𝑠,𝑡 ).

Lemma 2.4.1. Recall𝑈𝑞 from (2.2.10). For any 𝑡0 > 0, there exists a constant C(𝑡0) > 0 such that

for all 𝜎 ∈ [0,∞], 𝑡 > 𝑡0, and 𝑛 ∈ Z>0,

��tr(𝐾𝑒−𝑡 𝜎 ,𝑡)�� ≤ C(𝑡0) exp(𝑡𝑈1(min{
√
𝜎, 1

2 }) − 𝑡𝜎), (2.4.1)��tr(𝐾 (𝑛)
𝑒−𝑡 𝜎 ,𝑡)

�� ≤ 𝑛! C(𝑡0) exp(𝑡𝑈𝑛 (min{
√
𝜎, 𝑛2 })). (2.4.2)

Proof. The starting point of the proof is the explicit expressions (2.3.7) and (2.3.8) of the traces.

In (2.3.7), set 𝑠 = 𝑒−𝜎𝑡 and divide the integral into 𝑟 < 𝜎 and 𝑟 > 𝜎 to get

tr(𝐾𝑒−𝑡 𝜎 ,𝑡) = 𝑡2/3
( ∫ 𝜎

−∞
+
∫ ∞

𝜎

)Φ(𝑡2/3𝑟)d𝑟
1 + 𝑒𝑡𝜎−𝑡𝑟 := I1 + I2. (2.4.3)

For I1 use 1 + 𝑒𝑡𝜎−𝑡𝑟 ≥ 𝑒𝑡𝜎−𝑡𝑟 and Lemma 2.2.3 with 𝑞 = 1 and 𝑦 = 𝜎. We have, for all 𝑡 ≥ 𝑡0,

I1 ≤ C(𝑡0) exp(𝑡𝑈1(min{
√
𝜎, 1

2 }) − 𝑡𝜎). (2.4.4)

The second integral I2 can be calculated explicitly by using Airy differential equation, whereby

I2 =

∫ ∞

𝑡2/3𝜎
Φ(𝑟)d𝑟 := 𝑔(𝑡2/3𝜎), 𝑔(𝑦) = 1

3 (2𝑦
2 Ai(𝑦)2 − 2𝑦Ai′(𝑦)2 − Ai(𝑦) Ai′(𝑦)). (2.4.5)

Using the known |𝑦 | � 1 asymptotics of Ai(𝑦) and Ai′(𝑦) (see Equations (1.07), (1.08), and

(1.09) in Chapter 11 of [267] for example), we obtain 𝑔(𝑦) ≤ C exp(−4
3 𝑦

3/2) for all 𝑦 ≥ 0.

Using (2.2.11) we further bound the exponent −4
3 𝑦

3/2 ≤ 𝑈1(min{√𝑦, 1
2 }) − 𝑦 for all 𝑦 ≥ 0. From
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this we conclude (2.4.1).

Moving on, similarly to the preceding, in (2.3.7) we set 𝑠 = 𝑒−𝜎𝑡 and divide the integral into

𝑟 < 𝜎 and 𝑟 > 𝜎 to get

|tr(𝐾 (𝑛)
𝑒−𝑡 𝜎 ,𝑡) | = 𝑛!𝑡

2/3
( ∫ 𝜎

−∞
+
∫ ∞

𝜎

) 𝑒−𝑟𝑡Φ(𝑡2/3𝑟)d𝑟
(𝑒−𝜎𝑡 + 𝑒−𝑟𝑡)𝑛+1

:= J1 + J2.

For J1, use 𝑒−𝜎𝑡 + 𝑒−𝑟𝑡 ≥ 𝑒−𝑟𝑡 and Lemma 2.2.3 with 𝑞 = 𝑛 to get, for 𝑡 ≥ 𝑡0,

J1 ≤
∫ 𝜎

−∞
𝑒𝑛𝑟𝑡Φ(𝑡2/3𝑟)d𝑟 ≤ 𝑛! C(𝑡0) 𝑡−5/6 exp(𝑡𝑈𝑛 (min{

√
𝜎, 𝑛2 })) ≤ 𝑛! C(𝑡0) exp(𝑡𝑈𝑛 (min{

√
𝜎, 𝑛2 })).

This gives the desired bound for showing (2.4.2). As for J2, use 𝑒−𝜎𝑡 + 𝑒−𝑟𝑡 ≥ 𝑒−𝜎𝑡 and the fact

that Φ is non-increasing to get

J2 ≤ 𝑒𝑡 (𝑛+1)𝜎Φ(𝑡2/3𝜎)
∫ ∞

𝜎

𝑒−𝑟𝑡d𝑟 = 𝑡−1𝑒𝑡𝑛𝜎Φ(𝑡2/3𝜎).

Further bounding Φ(𝑦) ≤ C exp(−4
3 𝑦

3/2) (by (2.2.9)) gives J2 ≤ 𝑡−1
0 exp(𝑡𝑈𝑛 (

√
𝜎)), for all 𝑡 ≥ 𝑡0.

From (2.2.11) we have 𝑈𝑞 (
√
𝑠) ≤ 𝑈𝑞 (min{

√
𝑠, 𝑞/2}), for all 𝜎, 𝑞 > 0. From this we conclude

J2 ≤ 𝑡−1
0 exp(𝑡𝑈𝑛 (min{

√
𝑠, 𝑛2 })), for all 𝑡 ≥ 𝑡0. This completes the proof of (2.4.2).

2.4.1 Interchange of sum and derivatives

In this subsection, we show that the series

∞∑︁
𝐿=1
(−1)𝐿tr(𝐾∧𝐿𝑠,𝑡 ) (2.4.6)

is infinitely differentiable in 𝑠 and the derivative can be obtained by taking term-by-term differen-

tiation. To this end we will use the following standard criterion:

Proposition 2.4.2. Let 𝑓𝑘 (𝑠), 𝑘 ∈ Z>0, be (𝑛 + 1) times continuously differentiable functions

on 𝑠 ∈ [0, 1], where 𝑛 ∈ Z>0. If the series 𝑓 (𝑠) :=
∑∞
𝑘=1 𝑓𝑘 (𝑠) converges absolutely at each
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𝑠 ∈ [0, 1], and if the absolute derivative series
∑∞
𝑘=1 | d

𝑗

d𝑠 𝑗 𝑓𝑘 (𝑠) | converges uniformly over bounded

intervals in [0, 1], for all 𝑗 = 1, . . . , 𝑛 + 1, then 𝑓 is 𝑛-th differentiable for all 𝑠 ∈ [0, 1] with

d 𝑗
d𝑠 𝑗 𝑓 (𝑠) =

∑∞
𝑘=1

d 𝑗
d𝑠 𝑗 𝑓𝑘 (𝑠), for all 𝑗 = 1, . . . , 𝑛.

The proof of this proposition is standard by applying Dini’s theorem to the sequence
∑𝑘
ℓ=1

∫ 𝑠

0 |
d 𝑗+1
d𝑠 𝑗+1 𝑓ℓ (𝑠) |d𝑠.

Let us consider first the 𝑠 derivative of tr(𝐾∧𝐿𝑠,𝑡 ). Recall from (2.3.3) and Lemma 2.4.4 that 𝐾 (𝑛)𝑠,𝑡

denotes the 𝑛-th 𝑠 derivative of 𝐾𝑠,𝑡 . Fix any orthonormal basis {𝑒𝑖}𝑖≥1 for 𝐿2(R≥0) and write

tr(𝐾∧𝐿𝑠,𝑡 ) =
∑︁

𝑖1<...<𝑖𝐿

〈
𝑒𝑖1 ∧ . . . ∧ 𝑒𝑖𝐿 , 𝐾𝑠,𝑡𝑒𝑖1 ∧ . . . ∧ 𝐾𝑠,𝑡𝑒𝑖𝐿

〉
=

∑︁
𝑖1<...<𝑖𝐿

det
(〈
𝑒𝑖𝑘 , 𝐾𝑠,𝑡𝑒𝑖ℓ

〉)𝐿
𝑘,ℓ=1. (2.4.7)

Formally taking 𝜕𝑛𝑠 in (2.4.7) and passing (without justification at the moment) the derivatives into

the sum and inner product suggest that the following should hold

𝜕𝑛𝑠 tr(𝐾∧𝐿𝑠,𝑡 ) =
∑︁

𝑖1<...<𝑖𝐿

∑︁
®𝑚∈𝔐(𝐿,𝑛)

(
𝑛

®𝑚

)
det

(〈
𝑒𝑖𝑘 , 𝐾

(𝑚ℓ )
𝑠,𝑡 𝑒𝑖ℓ

〉)𝐿
𝑘,ℓ=1,

where

𝔐(𝐿, 𝑛) :=
{
®𝑚 = (𝑚1, . . . , 𝑚𝐿) ∈ (Z≥0)𝐿 : 𝑚1 + · · · + 𝑚𝐿 = 𝑛

}
, (2.4.8)(

𝑛

®𝑚

)
:=

𝑛!
𝑚1! · · ·𝑚𝐿!

. (2.4.9)

We now proceed to justify this formal calculation. Doing so requires an inequality. Recall that

‖·‖2 denotes the Hilbert–Schmidt norm.

Lemma 2.4.3. Fix any 𝑘 ∈ Z>0 and any permutation 𝜋 ∈ S𝑘 . Let 𝑇1, 𝑇2, . . . , 𝑇𝑘 be self-adjoint

Hilbert–Schmidt operators on a separable Hilbert space 𝐻, and let {𝑒𝑖}𝑖≥1 be any orthonormal

basis. Then

∑︁
𝑖1,...,𝑖𝑘∈Z>0

𝑘∏
ℓ=1

��〈𝑒𝑖ℓ , 𝑇𝜋(ℓ)𝑒𝑖𝜋 (ℓ ) 〉�� ≤ 𝑘∏
𝑖=1
‖𝑇𝑖‖2. (2.4.10)

Proof. It suffices to prove (2.4.10) for the case when 𝜋 is a cycle of length 𝑘 . For general 𝜋 ∈ S𝑘 ,
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decompose it into cycles of smaller lengths and apply the result within each cycle. Further, since

the r.h.s. of (2.4.10) is symmetric in 𝑇1, . . . , 𝑇𝑘 , we may assume without loss of generality 𝜋 =

(12 . . . 𝑘). Under this assumption the l.h.s. of (2.4.10) becomes

∑︁
𝑖1,...,𝑖𝑘∈Z>0

𝑘∏
ℓ=1

��〈𝑒𝑖ℓ , 𝑇ℓ+1𝑒𝑖ℓ+1〉��, (2.4.11)

with the convention 𝑇𝑘+1 := 𝑇1 and 𝑒𝑖𝑘+1 := 𝑒𝑖1 .

Let |·|𝐻 denote the norm of the Hilbert space 𝐻. Apply the Cauchy–Schwarz inequality

in (2.4.11) over the sum 𝑖2 ∈ Z>0, and within the result recognize (∑𝑖2 |〈𝑒𝑖1 , 𝑇2𝑒𝑖2〉|2)1/2 = |𝑇2𝑒𝑖1 |𝐻

and (∑𝑖2 |〈𝑒𝑖2 , 𝑇3𝑒𝑖3〉|2)1/2 = |𝑇3𝑒𝑖3 |𝐻 . We have

l.h.s. of (2.4.11) ≤
∑︁

𝑖1,𝑖3,...,𝑖𝑘

��𝑇2𝑒𝑖1
��
𝐻

��𝑇3𝑒𝑖3
��
𝐻

𝑘∏
ℓ=4

��〈𝑒𝑖ℓ , 𝑇ℓ+1𝑒𝑖ℓ+1〉��.
Next apply the Cauchy-Schwarz inequality over the sum 𝑖3 ∈ Z>0. Within the result recognize

(∑𝑖3 |𝑇3𝑒𝑖3 |2𝐻)1/2 = ‖𝑇3‖2 and (∑𝑖3 |〈𝑒𝑖3 , 𝑇4𝑒𝑖4〉|2)1/2 = |𝑇4𝑒𝑖4 |𝐻 . We have

l.h.s. of (2.4.11) ≤
∑︁

𝑖1,𝑖4,...,𝑖𝑘

��𝑇2𝑒𝑖1
��
𝐻



𝑇3𝑒𝑖3




2

��𝑇4𝑒𝑖4
��
𝐻

𝐿∏
ℓ=5

��〈𝑒𝑖ℓ , 𝑇ℓ+1𝑒𝑖ℓ+1〉��.
Continue this procedure through 𝑖 𝑗 , 𝑗 = 4, . . . , 𝑘 . Each application of the the Cauchy-Schwarz

inequality turns the preexisting |𝑇𝑗𝑒𝑖 𝑗 |𝐻 into ‖𝑇𝑗 ‖2 and produces |𝑇𝑗+1𝑒𝑖 𝑗+1 |𝐻 . Finally, after the

𝑗 = 𝑘 step, an application of the Cauchy–Schwarz inequality over 𝑖1 turns |𝑇2𝑒𝑖1 |𝐻 and |𝑇1𝑒𝑖1 |𝐻

into ‖𝑇2‖2 and ‖𝑇1‖2.

Lemma 2.4.4. Let 𝔐(𝐿, 𝑛) be in (2.4.8). Fix 𝐿 ∈ Z>0, and fix any orthonormal basis {𝑒𝑖}𝑖≥1 for

𝐿2(R≥0). For any 𝑡 > 0, the function 𝑠 ↦→ tr(𝐾∧𝐿𝑠,𝑡 ) is infinitely differentiable at each 𝑠 ∈ [0, 1],

with

𝜕𝑛𝑠 tr(𝐾∧𝐿𝑠,𝑡 ) =
∑︁

𝑖1<...<𝑖𝐿

∑︁
®𝑚∈𝔐(𝐿,𝑛)

(
𝑛

®𝑚

)
det

(〈
𝑒𝑖𝑘 , 𝐾

(𝑚ℓ )
𝑠,𝑡 𝑒𝑖ℓ

〉)𝐿
𝑘,ℓ=1, (2.4.12)
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where the r.h.s. converges absolutely uniformly over [0, 1]NI𝑠.

Proof. First, by the product rule of calculus we have

𝜕𝑛𝑠 det
(〈
𝑒𝑖𝑘 , 𝐾𝑠,𝑡𝑒𝑖ℓ

〉)𝐿
𝑘,ℓ=1 =

∑︁
®𝑚∈𝔐(𝐿,𝑛)

(
𝑛

®𝑚

)
det

(
𝜕𝑚ℓ𝑠

〈
𝑒𝑖𝑘 , 𝐾𝑠,𝑡𝑒𝑖ℓ

〉)𝐿
𝑘,ℓ=1.

By Lemma 2.3.1 for 𝑢 = ∞, the derivatives on the r.h.s. can be passed into the inner product to

give

𝜕𝑛𝑠 det
(〈
𝑒𝑖𝑘 , 𝐾𝑠,𝑡𝑒𝑖ℓ

〉)𝐿
𝑘,ℓ=1 =

∑︁
®𝑚∈𝔐(𝐿,𝑛)

(
𝑛

®𝑚

)
det

(〈
𝑒𝑖𝑘 , 𝐾

(𝑚ℓ )
𝑠,𝑡 𝑒𝑖ℓ

〉)𝐿
𝑘,ℓ=1. (2.4.13)

We wish to apply Proposition 2.4.2 with { 𝑓𝑘 }∞𝑘=1 being an enumeration of {det(
〈
𝑒𝑖𝑘 , 𝐾𝑠,𝑡𝑒𝑖ℓ

〉
)𝐿
𝑘,ℓ=1}𝑖1<...<𝑖𝐿 .

The series in (2.4.7) converges absolutely for each 𝑠 ∈ [0, 1] (with 𝑡 ∈ (0,∞) fixed) because 𝐾∧𝐿𝑠,𝑡

is trace-class. Given the identity (2.4.13) for the derivative series, it suffices to prove that the r.h.s.

of (2.4.12) converges absolutely and uniformly over [0, 1]NI𝑠. To this end, apply Lemma 2.4.3

with 𝑘 = 𝐿 and 𝑇𝑖 = 𝐾
(𝑚𝑖)
𝑠,𝑡 to get

∑︁
𝑖1<...<𝑖𝐿

∑︁
®𝑚∈𝔐(𝐿,𝑛)

(
𝑛

®𝑚

) ��� det
(〈
𝑒𝑖𝑘 , 𝐾

(𝑚ℓ )
𝑠,𝑡 𝑒𝑖ℓ

〉)𝐿
𝑘,ℓ=1

��� ≤ 𝐿!
∑︁

®𝑚∈𝔐(𝐿,𝑛)

(
𝑛

®𝑚

) 𝐿∏
ℓ=1



𝐾 (𝑚ℓ )𝑠,𝑡




2.

Recall that (−1)𝑚−1𝐾
(𝑚)
𝑠,𝑡 is a positive trace-class operator, whereby ‖𝐾 (𝑚)𝑠,𝑡 ‖2 ≤ ‖𝐾

(𝑚)
𝑠,𝑡 ‖1 = |tr(𝐾 (𝑚)𝑠,𝑡 ) |

and

∑︁
𝑖1<...<𝑖𝐿

∑︁
®𝑚∈𝔐(𝐿,𝑛)

(
𝑛

®𝑚

) ��� det
(〈
𝑒𝑖𝑘 , 𝐾

(𝑚ℓ )
𝑠,𝑡 𝑒𝑖ℓ

〉)𝐿
𝑘,ℓ=1

��� ≤ 𝐿!
∑︁

®𝑚∈𝔐(𝐿,𝑛)

(
𝑛

®𝑚

) 𝐿∏
ℓ=1

��tr(𝐾 (𝑚ℓ )𝑠,𝑡 )
��. (2.4.14)

The bounds from Lemma 2.4.1 guarantee that the r.h.s. of (2.4.14) converges uniformly over

[0, 1]NI𝑠, for fixed 𝑡 > 0.

We now consider the 𝑠 derivative of the series (2.4.6).
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Proposition 2.4.5. Let 𝔐(𝐿, 𝑛) be in (2.4.8). For ®𝑚 ∈ 𝔐(𝐿, 𝑛), set ®𝑚>0 := {𝑘 : 𝑚𝑘 > 0} ⊂

{1, . . . , 𝐿} and let | ®𝑚>0 | denotes the cardinality. For any 𝑡 > 0, the series (2.4.6) is infinitely

differentiable in 𝑠 ∈ [0, 1], with

𝜕𝑛𝑠

( ∞∑︁
𝐿=1
(−1)𝐿tr(𝐾∧𝐿𝑠,𝑡 )

)
=

∞∑︁
𝐿=1
(−1)𝐿 𝜕𝑛𝑠 tr(𝐾∧𝐿𝑠,𝑡 ), (2.4.15)

��𝜕𝑛𝑠 tr(𝐾∧𝐿𝑠,𝑡 )
�� ≤ ∑︁

®𝑚∈𝔐(𝐿,𝑛)

(
𝑛

®𝑚

)
( | ®𝑚>0 |)!
(𝐿 − | ®𝑚>0 |)!

𝐿∏
𝑘=1

��tr(𝐾 (𝑚𝑘)𝑠,𝑡 )
��. (2.4.16)

Proof. We will appeal to Proposition 2.4.2, with the choice 𝑓𝐿 (𝑠) = (−1)𝐿tr(𝐾∧𝐿𝑠,𝑡 ). Doing so

requires bounds on the derivatives series, which we achieve by using Lemma 2.4.4. This lemma

holds for any orthonormal basis, and here, with 𝐾𝑠,𝑡 being compact and symmetric, we specialize

to the eigenbasis of 𝐾𝑠,𝑡 . Let {𝑣𝑖}𝑖≥1 be an orthonormal basis of 𝐾𝑠,𝑡 , with eigenvalue 𝜆𝑖. Indeed 𝑣𝑖

and 𝜆𝑖 depend on 𝑠, 𝑡, but we omit such dependence since in the subsequent analysis we will not

vary 𝑠, 𝑡. Expand the determinant in (2.4.12) into a sum of permutations, and specialize to 𝑒𝑖 = 𝑣𝑖:

𝜕𝑛𝑠 tr(𝐾∧𝐿𝑠,𝑡 ) =
∑︁

𝑖1<...<𝑖𝐿

∑︁
®𝑚∈𝔐(𝐿,𝑛)

(
𝑛

®𝑚

) ∑︁
𝜋∈S𝐿

sign(𝜋)
𝐿∏
𝑘=1

〈
𝑣𝑖𝑘 , 𝐾

(𝑚𝜋 (𝑖𝑘 ) )
𝑠,𝑡 𝑣𝑖𝜋 (𝑖𝑘 )

〉
. (2.4.17)

Recall the convention 𝐾 (0)𝑠,𝑡 := 𝐾𝑠,𝑡 . Because of the eigenrelation 𝐾𝑠,𝑡𝑣𝑖 = 𝜆𝑖𝑣𝑖, the product in

(2.4.17) vanishes unless 𝜋(𝑟) = 𝑟 for all 𝑟 ∈ {𝑘 : 𝑚𝑘 = 0}. Such permutations can be reduced

to permutations on the set ®𝑚>0 ⊂ {1, . . . , 𝐿}, and we let S( ®𝑚>0) denote the subgroup of all such

reduced permutations. The preceding discussion brings (2.4.17) to

𝜕𝑛𝑠 tr(𝐾∧𝐿𝑠,𝑡 ) =
∑︁

𝑖1<...<𝑖𝐿

∑︁
®𝑚∈𝔐(𝐿,𝑛)

(
𝑛

®𝑚

) ∏
𝑘:𝑚𝑘=0

𝜆𝑖𝑘

∑︁
𝜋∈S( ®𝑚>0)

sign(𝜋)
∏
𝑘∈ ®𝑚>0

〈
𝑣𝑖𝑘 , 𝐾

(𝑚𝜋 (𝑖𝑘 ) )
𝑠,𝑡 𝑣𝑖𝜋 (𝑖𝑘 )

〉
.

To bound this expression, take absolute value and pass it into the sum and products on the r.h.s.,

bound the ordered sum
∑
𝑖1<...<𝑖𝐿 by the symmetrized sum 1

(𝐿−| ®𝑚>0 |)!
∑
𝑖𝑘 :𝑚𝑘=0

∑
𝑖ℓ :ℓ∈ ®𝑚>0 , and then
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use
∑
𝑖 |𝜆𝑖 | =

∑
𝑖 𝜆𝑖 = tr(𝐾𝑠,𝑡) = tr(𝐾 (0)𝑠,𝑡 ). We have

��𝜕𝑛𝑠 tr(𝐾∧𝐿𝑠,𝑡 )
�� ≤ ∑︁

®𝑚∈𝔐(𝐿,𝑛)

(
𝑛

®𝑚

)
1

(𝐿 − | ®𝑚>0 |)!
tr(𝐾 (0)𝑠,𝑡 )𝐿−| ®𝑚>0 |

∑︁
𝜋∈S( ®𝑚>0)

∑︁
𝑖ℓ :ℓ∈ ®𝑚>0

∏
ℓ∈ ®𝑚>0

��〈𝑣𝑖ℓ , 𝐾 (𝑚𝜋 (𝑖ℓ ) )𝑠,𝑡 𝑣𝑖𝜋 (𝑖ℓ )
〉��.

Now apply Lemma 2.4.3 with 𝑘 ↦→ | ®𝑚>0 | and with the 𝑇𝑖’s being the 𝐾 (𝑚𝑘)𝑠,𝑡 ’s, and use ‖𝐾 (𝑚)𝑠,𝑡 ‖2 ≤

‖𝐾 (𝑚)𝑠,𝑡 ‖1 = |tr(𝐾 (𝑚)𝑠,𝑡 ) |. We further obtain

��𝜕𝑛𝑠 tr(𝐾∧𝐿𝑠,𝑡 )
�� ≤ ∑︁

®𝑚∈𝔐(𝐿,𝑛)

(
𝑛

®𝑚

)
( | ®𝑚>0 |)!
(𝐿 − | ®𝑚>0 |)!

𝐿∏
𝑘=1

��tr(𝐾 (𝑚𝑘)𝑠,𝑡 )
��. (2.4.18)

This is exactly (2.4.16).

The bounds from Lemma 2.4.1 ensure that
∏𝐿
𝑘=1 |tr(𝐾

(𝑚𝑘)
𝑠,𝑡 ) | ≤ C(𝑡, 𝑛)𝐿 , for all 𝑠 ∈ [0, 1].

Given this, it is straightforward to verify that, when summed over 𝐿 ≥ 1, the r.h.s. of (2.4.18) con-

verges uniformly over [0, 1]NI𝑠, for fixed 𝑡, 𝑛. Proposition 2.4.2 applied with 𝑓𝐿 (𝑠) = (−1)𝐿tr(𝐾∧𝐿𝑠,𝑡 )

completes the proof.

2.4.2 Bounds.

The goal of this subsection is to bound the term B𝑝,𝐿 (𝑡), defined in (2.2.6). Recall 𝔐(𝐿, 𝑛)

from (2.4.8). Referring to (2.2.6) and (2.4.16), we see that

��B𝑝,𝐿 (𝑡)�� ≤ 1
Γ(1 − 𝛼)

∑︁
®𝑚∈𝔐(𝐿,𝑛)

(
𝑛

®𝑚

)
( | ®𝑚>0 |)!
(𝐿 − | ®𝑚>0 |)!

𝐿∏
𝑘=1

∫ 1

0
𝑠−𝛼

��tr(𝐾 (𝑚𝑘)𝑠,𝑡 )
�� d𝑠. (2.4.19)

In view of (2.4.19), we first establish

Proposition 2.4.6. Fix any 𝑡0, 𝑝0 > 0. There exists a constant C = C(𝑡0, 𝑝0) > 0 such that for all

𝑡 > 𝑡0, 𝑝 ≥ 𝑝0, 𝐿 ≥ 2, and ®𝑚 = (𝑚1, . . . , 𝑚𝐿) ∈ 𝔐(𝐿, 𝑛),

1
Γ(1 − 𝛼)

∫ 1

0
𝑠−𝛼

𝐿∏
𝑗=1
|tr(𝐾 (𝑚 𝑗 )

𝑠,𝑡 ) |d𝑠 ≤ 𝑛 · 𝑛! C𝐿 𝑡
1
2 𝑒

𝑝3𝑡
12 −𝜅𝑝𝑡 . (2.4.20)
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where 𝑛 := b𝑝c + 1 and 𝛼 := 𝑝 − b𝑝c and 𝜅𝑝 := min{ 1
6 ,

𝑝3

16 }.

Proof. Fix 𝐿 ≥ 2, 𝑝 ≥ 𝑝0, ®𝑚 = (𝑚1, . . . , 𝑚𝐿) ∈ 𝔐(𝐿, 𝑛). To simplify notation, throughout this

proof we assume 𝑡 ≥ 𝑡0 and 𝑝 ≥ 𝑝0, and write C = C(𝑡0, 𝑝0). Set

I :=
1

Γ(1 − 𝛼)

∫ 1

0
𝑠−𝛼

𝐿∏
𝑗=1
|tr(𝐾 (𝑚 𝑗 )

𝑠,𝑡 ) |d𝑠 (2.4.21)

and | ®𝑚>0 | := 𝑟. Assume without loss of generality 0 < 𝑚1, . . . , 𝑚𝑟 and 𝑚𝑟+1 = · · · = 𝑚𝐿 = 0.

Our goal is to bound I. In (2.4.21), perform a change of variable 𝑠 = 𝑒−𝑡𝜎, apply the bounds from

Lemma 2.4.1, and recall𝑈𝑞 from (2.2.10). We have, for all 𝑡 ≥ 𝑡0,

I ≤ C𝐿

Γ(1 − 𝛼)

∫ ∞

0
𝑒𝑡𝜎𝛼

(
C𝑒𝑡𝑈1 (min{

√
𝜎, 12 }−𝑡𝜎)

)𝐿−𝑟
·

𝑟∏
𝑗=1
(𝑚 𝑗 )!𝑒𝑡𝑈𝑚𝑗 (min{

√
𝜎,

𝑚𝑗

2 }) · 𝑡𝑒−𝑡𝜎d𝜎,

(2.4.22)

Given that 𝑚1 + . . .+𝑚𝐿 = 𝑛 we have
∏𝑟

𝑗=1(𝑚 𝑗 )! ≤ 𝑛!. Apply this bound in (2.4.22), and combine

the exponential functions in the integrand together to get exp(𝑡𝑀 (𝜎)), where

𝑀 (𝜎) := (𝛼 − 𝐿 + 𝑟 − 1)𝜎 + (𝐿 − 𝑟)𝑈1(min{
√
𝜎, 1

2 }) +
𝑟∑︁
𝑗=1
𝑈𝑚 𝑗
(min{

√
𝜎,

𝑚 𝑗

2 }). (2.4.23)

We arrive at

I ≤ 𝑡C𝐿𝑛!
Γ(1 − 𝛼)

∫ ∞

0
𝑒𝑡𝑀 (𝜎) d𝜎. (2.4.24)

Our next step is to bound the exponent 𝑀 (𝜎), which we do in several different cases.

1. When 𝜎 ∈ [0, 1
4 ].

Recall from (2.2.10) that 𝑈𝑞 (𝑥) is increasing on 𝑥 ∈ [0, 𝑞/2]. Hence, for 𝜎 ≤ 1
4 , the ‘min’

operators in (2.4.23) always pick up
√
𝜎, whence 𝑀 (𝜎) simplifies into 𝑀 (𝜎) = 𝑝𝜎 − 4𝐿

3 𝜎
3/2 :=

𝑔1(𝜎). This function 𝑔1 achieves its maximum 𝑝3

12𝐿2 at 𝜎 =
𝑝2

4𝐿2 . Further, 𝑔1(𝜎) − 𝑝3

12𝐿2 = −1
3 (
√
𝜎 −
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𝑝

2𝐿 )
2(𝑝 + 4𝐿

√
𝜎) ≤ − 𝑝3 (

√
𝜎 − 𝑝

2𝐿 )
2. This gives

𝑀 (𝜎) ≤ 𝑝3

12𝐿2 − 𝑝

3 (
√
𝜎 − 𝑝

2𝐿 )
2. (2.4.25)

2. When 𝑟 ≥ 2 and 𝜎 ∈ ( 14 ,∞).

In this case, referring to (2.2.10), we see 𝑈1(min{
√
𝜎, 1

2 }) = 𝑈1( 12 ) =
1
12 . Hence 𝑀 (𝜎) simplifies

into 𝑀 (𝜎) = 𝜎(𝛼 − 1) − (𝐿 − 𝑟) (𝜎 − 1
12 ) +

∑𝑟
𝑗=1𝑈𝑚 𝑗

(min{
√
𝜎, 1

2𝑚 𝑗 }). Forgo the negative term

−(𝐿 − 𝑟) (𝜎 − 1
12 ) and use (2.2.11) to bound𝑈𝑚 𝑗

(min{
√
𝜎, 1

2𝑚 𝑗 }) ≤ 1
12𝑚

3
𝑗
. We have

𝑀 (𝜎) ≤ 𝜎(𝛼 − 1) +
∑︁𝑟

𝑗=1
1
12𝑚

3
𝑗 . (2.4.26)

Recall that 𝑚1 + . . .+𝑚𝑟 = 𝑛. The cubic sum in (2.4.26) tends to be larger when mass concentrates

on fewer 𝑚𝑖’s. Under the current assumption 𝑟 ≥ 2, it is conceivable that the cubit sum is at most

(𝑛−1)3 +13. To prove this, write 𝑚3
1 + . . .+𝑚

3
𝑛 ≤ 𝑚3

1 + (𝑚2 + · · · +𝑚𝑛)3 = 𝑚3
1 + (𝑛−𝑚1)3, and note

that the last expression, as a function of 𝑚1 ∈ [1, 𝑛 − 1], reaches its maximum at 𝑚1 = 1, (𝑛 − 1).

Using this bound on the cubic sum we have

𝑀 (𝜎) ≤ 𝜎(𝛼 − 1) + 1
12 ((𝑛 − 1)3 + 1). (2.4.27)

3. When 𝑟 = 1 and 𝜎 ∈ ( 𝑛2

4 ,∞).

Under current assumptions, using (2.2.11) we see that

𝑀 (𝜎) = 𝜎(𝛼 − 𝐿) + 𝑛
3 + 𝐿 − 1

12
. (2.4.28)

4. When 𝑟 = 1, 𝜎 ∈ ( 14 ,
𝑛2

4 ], and 𝑝 > 𝐿.

53



When 𝑟 = 1 and 𝜎 > 1
4 , the exponent 𝑀 (𝜎) takes the form

𝑀 (𝜎) = 𝜎(𝛼 − 𝐿) + 1
12 (𝐿 − 1) +𝑈𝑛 (

√
𝜎) = 𝜎(𝑛 + 𝛼 − 𝐿) + 1

12 (𝐿 − 1) − 4
3𝜎

3/2 =: 𝑔2(𝜎).

(2.4.29)

Differentiating in 𝜎 shows that 𝑔2 reaches its maximum 1
12 (𝑝 − 𝐿 + 1)3 + 1

12 (𝐿 − 1) at 𝜎 =

(𝑝 − 𝐿 + 1)2/4. Further 𝑔2(𝜎) − (𝑝−𝐿+1)
3

12 − 𝐿−1
12 = −1

3 (
√
𝜎 − 𝑝−𝐿+1

2 )2(𝑝 − 𝐿 + 1 + 4
√
𝜎). Using the

current assumption 𝑝 > 𝐿 to bound (𝑝 − 𝐿 + 1 + 4
√
𝜎) ≥ 1 we get

𝑀 (𝜎) ≤ (𝑝−𝐿+1)
3

12 + 𝐿−1
12 −

1
3 (
√
𝜎 − 𝑝−𝐿+1

2 )2. (2.4.30)

5. When 𝑟 = 1, 𝜎 ∈ ( 14 ,
𝑛2

4 ], and 𝑝 ≤ 𝐿.

Here we also have the expression (2.4.29) of 𝑀 (𝜎). Under the current assumption 𝑝 ≤ 𝐿. Differ-

entiating in 𝜎 shows that 𝑔2 is decreasing on 𝑠 ∈ ( 14 ,
𝑛2

4 ]. Further 𝑔2(𝜎) − 𝑔2( 14 ) = (𝑝 − 𝐿 + 1) (𝜎 −
1
4 ) −

4
3 (𝜎

3/2 − 1
8 ). Use the current assumptions to bound (𝑝 − 𝐿 + 1) (𝜎 − 1

4 ) ≤ (𝜎 −
1
4 ). We get

𝑔2(𝜎)−𝑔2( 14 ) ≤ (𝜎−
1
4 )−

4
3 (𝜎

3/2− 1
8 ) = −

1
3 (1+4

√
𝜎) (
√
𝜎− 1

2 )
2. Further bound −1

3 (1+4
√
𝜎) ≤ 1.

Together with 𝑔2( 14 ) =
3𝑝−2𝐿

12 , we have

𝑀 (𝜎) ≤ 1
12 (3𝑝 − 2𝐿) − (

√
𝜎 − 1

2 )
2. (2.4.31)

Now, in each of the preceding case, use the respective bound (2.4.25), (2.4.27), (2.4.28),

(2.4.30), or (2.4.31) to bound the integral
∫
𝐴
𝑒𝑡𝑀 (𝜎)d𝜎 on the relevant range 𝐴. For the result-

ing integral,

1. perform a change of variable
√
𝜎 ↦→ 𝑢, which introduces a factor 2𝑢; bound this factor by 2 · 1

2 ,

release the range of integration from 𝑢 ∈ (0, 1
2 ) to 𝑢 ∈ R, and evaluate the resulting integral.

2. evaluate the resulting integral.

3. evaluate the resulting integral.
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4. perform a change of variable
√
𝜎 ↦→ 𝑢, which introduces a factor 2𝑢; bound this factor by 2𝑢 ≤ 𝑛,

release the range of integration from 𝑢 ∈ ( 12 ,
𝑛
2 ) to 𝑢 ∈ R, and evaluate the resulting integral.

5. perform a change of variable
√
𝜎 ↦→ 𝑢 + 1

2 , which introduces a factor 2𝑢 + 1; release the range of

integration from 𝑢 ∈ (0, 𝑛−1
2 ) to 𝑢 ∈ R≥0, and evaluate the resulting integral.

This gives the following bound on
∫
𝐴
𝑒𝑡𝑀 (𝜎)d𝜎 on the relevant region 𝐴:

1. C 𝑝−
1
2 𝑡−

1
2 exp(𝑡 𝑝3

12𝐿2 ))

2. C 𝑡−1(1 − 𝛼)−1 exp(𝑡 ( (𝑛−1)3+1
12 − 1−𝛼

4 ))

3. C 𝑡−1(𝐿 − 𝛼)−1 exp(𝑡 ( (𝑛
3+𝐿−1)

12 − 𝑛2 (𝐿−𝛼)
4 ))

4. C 𝑡− 1
2𝑛 exp( 𝑡12 ((𝑝 − 𝐿 + 1)3 + (𝐿 − 1)))

5. C (𝑡−1 + 𝑡−1/2) exp( 𝑡12 (3𝑝 − 2𝐿))

Our goal is to have the exponent strictly less that 𝑡 𝑝
3

12 .

(1) Since 𝐿 ≥ 2 we have 𝑝3

12𝐿2 ≤ 𝑝3𝑡
12 −

𝑝3

16 .

(2) Under the current assumption 𝑟 ≥ 2 forces 𝑛 ≥ 2, and 𝑝 ≥ 1 and hence

(𝑛−1)3+1
12 − 1−𝛼

4 =
𝑝3

12 −
(𝑝(𝑛−1)−1)𝛼

4 − 𝛼3

12 −
1
6 ≤

𝑝3

12 −
1
6 .

(3) The exponent in (3) therein is decreasing in 𝐿. This gives

𝑛3+𝐿−1
12 − 𝑛2 (𝐿−𝛼)

4 ≤ 𝑛3+1
12 −

𝑛2 (2−𝛼)
4 =

𝑝3

12 −
(1−𝛼)2 (𝑝+2𝑛)

12 − 3𝑛2−1
12 ≤ 𝑝3

12 −
1
6 .

(4) View the exponent in (4) as a function 𝑔3(𝑥) := 1
12 ((𝑝 − 𝑥)

3 + 𝑥) of 𝑥 := 𝐿 − 1. Under the

relevant assumption 𝑝 ≥ 𝐿 and 2 ≤ 𝐿, differentiating 𝑔3 show that 𝑔3 is maximized at 𝑥 = 1.

This gives 1
12 ((𝑝 − 𝐿 + 1)3 + (𝐿 − 1)) ≤ 𝑔3(1) = 1

12 (𝑝
3 − 3𝑝2 + 3𝑝) ≤ 1

12 (𝑝
3 − 6).
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(5) Use 𝐿 ≥ 2 to bound 1
12 (3𝑝 − 2𝐿) ≤ 1

12 (3𝑝 − 4). For 𝑝 ≥ 0, the last expression is always

bounded by 𝑝3

12 −
1
6 , which gives 1

12 (3𝑝 − 2𝐿) ≤ 𝑝3

12 −
1
6 .

Collect the preceding discussion and refer back to (2.4.24). We arrive at

I ≤ 𝑒
𝑝3𝑡
12 C𝐿 𝑛!

Γ(1 − 𝛼)

(
𝑝−

1
2 𝑡

1
2 𝑒−

𝑝3𝑡
16 + 𝑒−

𝑡
6

(1 − 𝛼) + 𝑒
− 𝑡6 + 𝑛𝑡 1

2 𝑒−
𝑡
2 + (1 + 𝑡 1

2 )𝑒− 𝑡6
)
.

Further apply the bounds 𝑝−
1
2 ≤ 𝑝−

1
2

0 = C, 1
Γ(1−𝛼) ≤ C, and 1

(1−𝛼)Γ(1−𝛼) ≤ C, for all 𝛼 ∈ [0, 1). We

conclude the desired result.

Proposition 2.4.7. Fix any 𝑡0, 𝑝0 > 0. Recall B𝑝,𝐿 (𝑡) from (2.2.6). There exists a constant C =

C(𝑡0, 𝑝0) > 0 such that for all 𝑡 > 𝑡0 and 𝑝 ≥ 𝑝0,

∑︁
𝐿≥2
|B𝑝,𝐿 (𝑡) | ≤ 𝑛 · (𝑛!)2 (𝑛C)𝑛 𝑡

1
2 𝑒

𝑝3𝑡
12 −𝜅𝑝𝑡 , (2.4.32)

where 𝑛 := b𝑝c + 1 and 𝛼 := 𝑝 − b𝑝c, and 𝜅𝑝 := min{ 1
6 ,

𝑝3

16 }.

Proof. Multiply both sides of (2.4.16) by 𝑠−𝛼, integrate the result over 𝑠 ∈ [0, 1], and apply the

bound (2.4.20). We get, for C = C(𝑡0, 𝑝0),

l.h.s. of (2.4.32) ≤ (𝑛 + 1)! 𝑡 1
2 𝑒

𝑝3𝑡
12 −𝜅𝑝𝑡

∑︁
𝐿≥2

∑︁
®𝑚∈𝔐(𝐿,𝑛)

(
𝑛

®𝑚

)
( | ®𝑚>0 |)!C𝐿

(𝐿 − | ®𝑚>0 |)!

Within the last expression, use | ®𝑚>0 | ≤ 𝑛 to bound ( | ®𝑚>0 |)!
(𝐿−| ®𝑚>0 |)! ≤

𝑛!
((𝐿−𝑛)+)! , and evaluate the sum∑

®𝑚∈𝔐(𝐿,𝑛)
( 𝑛
®𝑚
)
= 𝐿𝑛. This gives

l.h.s. of (2.4.32) ≤ 𝑛 · (𝑛!)2 𝑡 1
2 𝑒

𝑝3𝑡
12 −𝜅𝑝𝑡

∑︁
𝐿≥2

𝐿𝑛C𝐿

((𝐿 − 𝑛)+)!
. (2.4.33)

In the sum in (2.4.33), bound 𝐿𝑛 ≤ (2𝑛+ (𝐿 − 2𝑛)+)𝑛 ≤ 2𝑛 (2𝑛)𝑛 + 2𝑛 ((𝐿 − 2𝑛)+)𝑛, use ((𝐿−2𝑛)+)𝑛
((𝐿−𝑛)+)! ≤

1
((𝐿−2𝑛)+)! , and evaluate the resulting series. The result shows that the sum in (2.4.33) is bounded

by (𝑛C)𝑛. This completes the proof.
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2.5 Proof of Theorem 2.1.2 and Theorem 2.1.2(a)*

We begin with the proof of Theorem 2.1.2(a)*. Lemma 2.4.4 justifies the passing of derivatives

in (2.2.4). Recall the definition of Ã𝑝 (𝑡), B𝑝,𝐿 (𝑡), 𝐿 ≥ 2, and B𝑝,1(𝑡) from in (2.2.5), (2.2.6),

and (2.2.2), we have E[(Z(2𝑡, 0)𝑒 𝑡
12 )𝑝] = Ã𝑝 (𝑡) +

∑
𝐿≥1 B𝑝,𝐿 (𝑡). Further, recall from (2.3.9) that

Ã𝑝 (𝑡) = A𝑝 (𝑡) − Â𝑝 (𝑡), so

E
[
(Z(2𝑡, 0)𝑒 𝑡

12 )𝑝
]
= A𝑝 (𝑡) − Â𝑝 (𝑡) +

∑︁
𝐿≥1
B𝑝,𝐿 (𝑡).

Given the bound (2.2.3) and the bounds from Propositions 2.3.2 and 2.4.7, Theorem 2.1.2(a)* now

follows for B𝑝 (𝑡) := −Â𝑝 (𝑡) +
∑
𝐿≥1 B𝑝,𝐿 (𝑡).

Next, Theorem 2.1.2(a) follows immediately from Theorem 2.1.2(a)*. It now remains only to

show Theorem 2.1.2(b). We will establish the large deviation upper and lower bound separately.

To simplify notation set 𝑉𝑡 := H(2𝑡, 0) + 𝑡
12 . Fix 𝑦 > 0. Markov’s inequality gives P[𝑉𝑡 ≥ 𝑡𝑦] ≤

𝑒−𝑝𝑦E[𝑒𝑝𝑉𝑡 ]. Apply Theorem 2.1.2(a), take logarithm, and divide by 𝑡. We obtain, for all 𝑝 > 0,

lim sup
𝑡→∞

1
𝑡

log P
[
𝑉𝑡 ≥ 𝑡𝑦

]
≤ −𝑝𝑦 + 1

12 𝑝
3. (2.5.1)

Minimizing the right side of (2.5.1) over 𝑝 > 0, we obtain the desired large deviation upper bound

lim sup
𝑡→∞

1
𝑡

log P[𝑉𝑡 ≥ 𝑡𝑦
]
≤ −4

3 𝑦
3/2.

For lower bound we employ the standard change-of-measure argument and utilize the strict

convexity of the function 1
12 𝑝

3, 𝑝 > 0. Fix 𝜀 > 0, set 𝑞∗ := 2(𝑦 + 𝜀)1/2, and let 𝑉𝑡 denote the

random variable with the tilted law P[𝑉𝑡 ∈ 𝐴] = 1
E[𝑒𝑞∗𝑉𝑡 ]E[𝑒

𝑞∗𝑉𝑡1{𝐴} (𝑉𝑡)]. We write

P[𝑉𝑡 ≥ 𝑡𝑦] = E[𝑒−𝑞∗𝑉𝑡1{𝑉𝑡≥𝑡𝑦}] · E[𝑒
𝑞∗𝑉𝑡 ] ≥ 𝑒−𝑡𝑞∗ (𝑦+2𝜀)E[𝑒𝑞∗𝑉𝑡 ] P

[
𝑉𝑡 ∈ [𝑡𝑦, 𝑡 (𝑦 + 2𝜀)]

]
. (2.5.2)

Our goal is to show that lim𝑡→∞ P[𝑉𝑡 ∈ [𝑡𝑦, 𝑡 (𝑦 + 2𝜀)]] = 1. To this end, for 𝜆 ∈ (0, 𝑞∗) bound the
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complement probability by Markov’s inequality as

P
[
𝑉𝑡 < 𝑡𝑦

]
≤ 𝑒𝜆𝑡𝑦E[𝑒−𝜆𝑉𝑡 ] = 𝑒𝜆𝑡𝑦E[𝑒(𝑞∗−𝜆)𝑉𝑡 ]

E[𝑒𝑞∗𝑉𝑡 ]
,

P
[
𝑉𝑡 > 𝑡 (𝑦 + 2𝜀)

]
≤ 𝑒−𝜆𝑡 (𝑦+2𝜀)E[𝑒𝜆𝑉𝑡 ] = 𝑒−𝜆𝑡 (𝑦+2𝜀)E[𝑒

(𝑞∗+𝜆)𝑉𝑡 ]
E[𝑒𝑞∗𝑉𝑡 ]

.

Take log, divide the result by 𝑡, and apply Theorem 2.1.2(a). We obtain

lim sup
𝑡→∞

1
𝑡

log P
[
𝑉𝑡 < 𝑡𝑦

]
≤ 𝑦𝜆 + 1

12 (𝑞∗ − 𝜆)
3 − 1

12𝑞
3
∗, (2.5.3)

lim sup
𝑡→∞

1
𝑡

log P
[
𝑉𝑡 > 𝑡 (𝑦 + 2𝜀)

]
≤ −(𝑦 + 2𝜀)𝜆 + 1

12 (𝑞∗ + 𝜆)
3 − 1

12𝑞
3
∗ . (2.5.4)

Now, view the r.h.s. of (2.5.3) and (2.5.4) as functions of 𝜆 ∈ (−𝑞∗, 𝑞∗). It is readily checked that

these functions are strictly convex, zero at 𝜆 = 0, and has negative derivative at 𝜆 = 0. Hence there

exists a small enough 𝜆∗ = 𝜆∗(𝜀, 𝑦) > 0 such that the r.h.s. of (2.5.3) and (2.5.4) are negative for

𝜆 = 𝜆∗. This gives lim𝑡→∞ P[𝑉𝑡 ∈ [𝑡𝑦, 𝑡 (𝑦 + 2𝜀)]] = 1. Use this in (2.5.2), take log, divide the

result by 𝑡, and apply Theorem 2.1.2(a) to get

lim inf
𝑡→∞

1
𝑡

log P[𝑉𝑡 ≥ 𝑡𝑦
]
≥ −𝑞∗(𝑦 + 2𝜀) + 1

12𝑞
3
∗ = −4

3 (𝑦 + 𝜀)
3/2 − 2𝜀(𝑦 + 𝜀)1/2.

Since 𝜀 > 0 was arbitrary, sending 𝜀 → 0 gives the desired large deviation lower bound.
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Chapter 3: Upper-tail large deviation principle for the ASEP

3.1 Introduction

3.1.1 The ASEP and main results

In this paper, we study the upper-tail Large Deviation Principle (LDP) of the asymmetric simple

exclusion process (ASEP) with step initial data. The ASEP is a continuous-time Markov chain on

particle configurations x = (𝑥1 > 𝑥2 > · · · ) in Z. The process can be described as follows. Each

site 𝑖 ∈ Z can be occupied by at most one particle, which has an independent exponential clock

with exponential waiting time of mean 1. When the clock rings, the particle jumps to the right

with probability 𝑞 or to the left with probability 𝑝 = 1 − 𝑞. However, the jump is only permissible

when the target site is unoccupied. For our purposes, it suffices to consider configurations with a

rightmost particle. At any time 𝑡 ∈ R>0, the process has the configuration x(𝑡) = (𝑥1(𝑡) > 𝑥2(𝑡) >

· · · ) in Z, where 𝑥 𝑗 (𝑡) denotes the location of the 𝑗-th rightmost particle at this time. Appearing

first in the biology work of Macdonald, Gibbs, and Pipkin [250] and introduced to the mathematics

community two years later by [298], the ASEP has since become the “default stochastic model

to study transport phenomena", including mass transport, traffic flow, queueing behavior, driven

lattices and turbulence. We refer to [72, 247, 246, 299] for the mathematical study of and related

to the ASEP.

When 𝑞 = 1, we obtain the totally asymmetric simple exclusion process (TASEP), which allows

jumps only to the right. It connects to several other physical systems such as the exponential

last-passage percolation, zero-temperature directed polymer in a random environment, the corner

growth process and is known to possess complete determinantal structure (free-fermionicity). We

refer the readers to [211, 247, 246, 276] and the references therein for more thorough treatises of

the TASEP.
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The dynamics of ASEP are uniquely determined once we specify its initial state. In the present

paper, we restrict our attention to the ASEP started from the step initial configuration, i.e. 𝑥 𝑗 (0) =

− 𝑗 , 𝑗 = 1, 2, . . .. We set 𝛾 = 𝑞 − 𝑝 and assume 𝑞 > 1
2 , i.e., ASEP has a drift to the right. An

observable of interest in ASEP is 𝐻0(𝑡), the integrated current through 0 which is defined as:

𝐻0(𝑡) := the number of particles to the right of zero at time 𝑡. (3.1.1)

𝐻0(𝑡) can also be interpreted as the one-dimensional height function of the interface growth of

the ASEP and thus carries significance in the broader context of the Kardar-Parisi-Zhang (KPZ)

universality class. We will elaborate on the connection to KPZ universality class later in Section

3.1.3. As a well-known random growth model itself, the large-time behaviors of ASEP with step

initial conditions have been well-studied. Indeed, it is known [247, Chapter VIII, Theorem 5.12]

that the current satisfies the following strong law of large numbers:

1
𝑡
𝐻0

(
𝑡
𝛾

)
→ 1

4 , almost surely as 𝑡 →∞.

The strong law has been later complemented by fluctuation results in the seminal works by

Tracy and Widom. In a series of papers [305], [307] [306], Tracy and Widom exploit the integra-

bility of ASEP with step initial data and establish via contour analysis that 𝐻0(𝑡) when centered

by 𝑡
4 has typical deviations of the order 𝑡1/3 and has the following asymptotic fluctuations:

1
𝑡1/3

24/3 ( − 𝐻0
(
𝑡
𝛾

)
+ 𝑡

4
)
=⇒ 𝜉GUE, (3.1.2)

where 𝜉GUE is the GUE Tracy-Widom distribution [308]. When 𝑞 = 1, (3.1.2) recovers the same

result on TASEP, which has been proved earlier by [211].

Given the existing fluctuation results on the ASEP with step initial data, it is natural to inquire

into its Large Deviation Principle (LDP). Namely, we seek to find the probability of when the event

−𝐻0( 𝑡𝛾 ) +
𝑡
4 has deviations of order 𝑡. Intriguingly, one expects the lower- and upper-tail LDPs to
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have different speeds: the upper-tail deviation is expected to occur at speed 𝑡 whereas the lower-tail

has speed 𝑡2:

P
(
−𝐻0

(
𝑡
𝛾

)
+ 𝑡

4 < −
𝑡
4 𝑦

)
≈ 𝑒−𝑡2Φ− (𝑦); (Lower Tail)

P
(
−𝐻0

(
𝑡
𝛾

)
+ 𝑡

4 > +
𝑡
4 𝑦

)
≈ 𝑒−𝑡Φ+ (𝑦) . (Upper Tail)

Thus, the upper tail corresponds to ASEP being “too slow" while the lower tail corresponds to

ASEP being “too fast". Heuristically, we can make sense of such speed differentials. Because of

the nature of the exclusion process, when a single particle is moving slower than the usual, it forces

all the particles on the left of it to be automatically slower. Hence ASEP becomes slow if only one

particle is moving slow. This event has probability of the order exp(−𝑂 (𝑡)). However, in order

to ensure that there are many particles on the right side of origin (this corresponds to ASEP being

fast), it requires a large number of particles to move fast simulatenously. This event is much more

unlikely and happens with probability exp(−𝑂 (𝑡2)).

In this article, we focus on the upper-tail deviations of the ASEP with step initial data and

present the first proof of the ASEP upper-tail LDP on the complete real line. Consider ASEP with

𝑞 ∈ ( 12 , 1) and set 𝑝 = 1 − 𝑞 and 𝜏 = 𝑝/𝑞 ∈ (0, 1). Our first theorem computes the 𝑠th-Lyapunov

exponent of 𝜏𝐻0 (𝑡) , which is the limit of the logarithm of E[𝜏𝑠𝐻0 (𝑡)] scaled by time:

Theorem 3.1.1. For 𝑠 ∈ (0,∞) we have

lim
𝑡→∞

1
𝑡

log E[𝜏𝑠𝐻0 (𝑡)] = −ℎ𝑞 (𝑠) =: −(𝑞 − 𝑝)1 − 𝜏
𝑠
2

1 + 𝜏 𝑠2
. (3.1.3)

It is well known (see Proposition 1.12 in [180] for example) that the upper-tail large deviation

principle of the stochastic process log 𝜏𝐻0 (𝑡) is the Legendre-Fenchel dual of the Lyapunov expo-

nent in (3.1.3). Since 𝜏 < 1, as a corollary, we obtain the following upper-tail large deviation rate

function for −𝐻0(𝑡).
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Theorem 3.1.2. For any 𝑦 ∈ (0, 1) we have

lim
𝑡→∞

1
𝑡

logP
(
−𝐻0

(
𝑡
𝛾

)
+ 𝑡

4 >
𝑡
4 𝑦

)
= −[√𝑦 − (1 − 𝑦) tanh−1(√𝑦)] =: −Φ+(𝑦), (3.1.4)

where 𝛾 = 2𝑞 − 1. Furthermore, we have the following asymptotics near zero:

lim
𝑦→0+

𝑦−3/2Φ+(𝑦) = 2
3 . (3.1.5)

Figure 3.1: The figure on the left is the plot of Φ+(𝑦). The right one is the plot of Φ̃+(𝑦).

Remark 3.1.3. Note that our large deviation result is restricted to 𝑦 ∈ (0, 1) as P(−𝐻0
(
𝑡
𝛾

)
+ 𝑡

4 >

𝑡
4 𝑦) = 0 for 𝑦 ≥ 1. Furthermore, although Theorem 3.1.2 makes sense when 𝑞 = 1, one cannot

recover it from Theorem 3.1.1, which only makes sense for 𝜏 = (1 − 𝑞)/𝑞 ∈ (0, 1). However, as

mentioned before, [211] has already settled the 𝑞 = 1 TASEP case and obtained the upper-tail rate

function in a variational form. We will later show in Appendix 3.5 that [211] variational formula

for TASEP matches with our rate function in (3.1.4).

Remark 3.1.4. Recently, the work [125] has obtained a one-sided large deviation bound for the

upper tail of the ASEP. In particular, they showed

P
(
−𝐻0

(
𝑡
𝛾

)
+ 𝑡

4 >
𝑡
4 𝑦

)
≤ C𝑒−𝑡Φ̃+ (𝑦) , 𝑦 ∈ (0, 1). (3.1.6)
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The function Φ̃+ coincides with the correct rate function Φ+ defined in (3.1.4) only for 𝑦 ≤ 𝑦0 :=
1−2
√
𝑞(1−𝑞)

1+2
√
𝑞(1−𝑞)

, as captured by Figure 3.1. We will further compare and contrast our results and method

with [125] later in Section 3.1.3.

Remark 3.1.5. For 𝑦 small enough, following (3.1.2) and upper tail decay of GUE Tracy-Widom

distribution [159], one expects

P
(
−𝐻0

(
𝑡
𝛾

)
+ 𝑡

4 >
𝑡
4 𝑦

)
≈ P(𝜉GUE > 2−2/3𝑦𝑡2/3) ≈ 𝑒− 2

3 𝑦
3/2𝑡

Thus the asymptotics in (3.1.5) shows that Φ+(𝑦) indeed recovers the expected GUE Tracy-Widom

tails as 𝑦 → 0+.

3.1.2 Sketch of proof

In this section we present a sketch of the proof of our main results. As explained before, Theo-

rem 3.1.2 can be obtained from Theorem 3.1.1 by standard Legendre-Fenchel transform technique.

So here we only give a brief account of the proof idea of Theorem 3.1.1. A more detailed overview

of the proofs of our main results can be found in Section 3.2.

The main component of our proof is the following 𝜏-Laplace transform formula for 𝐻0(𝑡) that

appears in Theorem 5.3 in [72]:

Theorem 3.1.6 (Theorem 5.3 in [72]). Fix any 𝛿 ∈ (0, 1). For 𝜁 > 0 we have

E
[
𝐹𝑞 (𝜁𝜏𝐻0 (𝑡))

]
= det(𝐼 + 𝐾𝜁,𝑡), 𝐹𝑞 (𝜁) :=

∞∏
𝑛=0

1
1 + 𝜁𝜏𝑛 . (3.1.7)

Here det(𝐼 + 𝐾𝜁,𝑡) is the Fredholm determinant of 𝐾𝜁,𝑡 : 𝐿2(ℭ(𝜏1− 𝛿2 )) → 𝐿2(ℭ(𝜏1− 𝛿2 )), and

ℭ(𝜏1− 𝛿2 ) denotes a positively-oriented circular contour centered at 0 with radius 𝜏1− 𝛿2 . The oper-

ator 𝐾𝜁,𝑡 is defined through the integral kernel

𝐾𝜁,𝑡 (𝑤, 𝑤′) :=
1

2𝜋i

∫ 𝛿+i∞

𝛿−i∞
Γ(−𝑢)Γ(1 + 𝑢)𝜁𝑢 𝑔𝑡 (𝑤)

𝑔𝑡 (𝜏𝑢𝑤)
d𝑢

𝑤′ − 𝜏𝑢𝑤 , (3.1.8)
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for 𝑔𝑡 (𝑧) = exp
(
(𝑞−𝑝)𝑡
1+ 𝑧

𝜏

)
.

Remark 3.1.7. The original statement of the above theorem in [72] appears in a much more gen-

eral setup with general conditions on the contours. We will explain the choice of our contours

stated above in Section 3.3 and check that it satisfies the general criterion for contours as stated in

Theorem 5.3 in [72].

We next recall that the Fredholm determinant is defined as a series as follows.

det(𝐼 + 𝐾𝜁,𝑡) := 1 +
∞∑︁
𝐿=1

tr(𝐾∧𝐿𝜁,𝑡 ) (3.1.9)

:= 1 +
∞∑︁
𝐿=1

1
𝐿!

∫
ℭ(𝜏1− 𝛿2 )

· · ·
∫
ℭ(𝜏1− 𝛿2 )

det(𝐾𝜁,𝑡 (𝑤𝑖, 𝑤 𝑗 ))𝐿𝑖, 𝑗=1

𝐿∏
𝑖=1

d𝑤𝑖 . (3.1.10)

The notation 𝐾∧𝐿
𝜁,𝑡

comes from the exterior algebra definition, which we refer to [296] for more

details. As a clarifying remark, we use this exterior algebra notation only for the simplicity of its

expression and rely essentially on the definition in (3.1.10) throughout the rest of the paper.

To extract information on the fractional moments of 𝜏𝐻0 (𝑡) , we combine the formula in (3.1.7)

with the following elementary identity, which is a generalized version of Lemma 1.4 in [131].

Lemma 3.1.8. Fix 𝑛 ∈ Z>0 and 𝛼 ∈ [0, 1). Let𝑈 be a nonnegative random variable with finite 𝑛-th

moment. Let 𝐹 : [0,∞) → [0, 1] be a 𝑛-times differentiable function such that
∫ ∞
0 𝜁−𝛼𝐹 (𝑛) (𝜁)d𝜁

is finite. Assume further that ‖𝐹 (𝑘) ‖∞ < ∞ for all 1 ≤ 𝑘 ≤ 𝑛. Then the (𝑛 − 1 + 𝛼)-th moment of

𝑈 is given by

E[𝑈𝑛−1+𝛼] =

∞∫
0
𝜁−𝛼E[𝑈𝑛𝐹 (𝑛) (𝜁𝑈)]d𝜁

∞∫
0
𝜁−𝛼𝐹 (𝑛) (𝜁)d𝜁

=

∞∫
0
𝜁−𝛼 d𝑛

d𝜁𝑛E[𝐹 (𝜁𝑈)]d𝜁

∞∫
0
𝜁−𝛼𝐹 (𝑛) (𝜁)d𝜁

.

The proof of this lemma follows by an interchange of measure justified by Fubini’s theorem

and the dominated convergence theorem, as E[𝑈𝑛] and ‖𝐹 (𝑘) ‖∞ < ∞ for all 1 ≤ 𝑘 ≤ 𝑛.
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For 𝑠 > 0, we apply this lemma with 𝑈 = 𝜏𝐻0 (𝑡) , 𝑛 = b𝑠c + 1 and 𝛼 = 𝑠 − b𝑠c. We take

𝐹 (𝑥) = 𝐹𝑞 (𝑥) defined in (3.1.7) which is shown to be satisfy the hypothesis of Lemma 3.1.8 (see

Proposition 3.2.2). As a result, we transform the computation of E[𝜏𝑠𝐻0 (𝑡)] into that of

∫ ∞

0
𝜁−𝛼

d𝑛

d𝜁𝑛
E[𝐹𝑞 (𝜁𝜏𝐻0 (𝑡))]d𝜁 . (3.1.11)

Utilizing the exact formula from (3.1.7) and the definition of Fredholm determinant from (3.1.10),

we can write the above expression as a series where we identify the leading term (corresponding

to 𝐿 = 1 term of the series) and a higher-order term (corresponding to 𝐿 ≥ 2 terms of the series).

We eventually show that the asymptotics of the leading term matches with the exact asymptotics in

(3.1.3) while the higher-order term decays much faster. This leads to the proof of Theorem 3.1.1.

The above description of our method is in line with the Lyapunov moment approach adopted in

the works of [131], [180] and [248] to obtain upper-tail large deviation results of other integrable

models, such as the KPZ equation. Namely, we extract fractional moments from the (𝜏-)Laplace

transform such as (3.1.7) according to Lemma 3.1.8. In particular, our work draws from those of

[131] and [248], which studied the fractional moments of the Stochastic Heat Equation (SHE) and

the half-line Stochastic Heat Equation, respectively. We will further contextualize the connections

of our work to [131], [180] and [248] in Section 3.1.3. In the following text, however, we empha-

size a few key differences and technical challenges unique to the ASEP that we have encountered

and resolved in our proof.

First, unlike SHE or half-line SHE, the usual Laplace transform is not available in case of

the ASEP. Instead, we only have the 𝜏-Laplace transform for our observable of interest. As a

result, we have formulated Lemma 3.1.8 in our paper, which is more generalized than its prototype

in [131, Lemma 1.4], to feed in the 𝜏-Laplace transform. Consequently, we have worked with

𝜏-exponential functions in our analysis.

Another key difference is that the kernel 𝐾𝜁,𝑡 in (3.1.8) in our model is much more intricate

than its counterpart in the KPZ model and leads to much more involved analysis of the leading
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term. Indeed, 𝐾𝜁,𝑡 is asymmetric and as 𝑢 varies in (𝛿 − i∞, 𝛿 + i∞), the function 𝑔𝑡 (𝑤)
𝑔𝑡 (𝜏𝑢𝑤) appearing

in the kernel 𝐾𝜁,𝑡 , exhibits a periodic behavior, whereas the kernel in the KPZ models involves

Airy functions in its integrand which have a unique maximum and are much easier to analyze.

Furthermore, our model exhibits exponentially decaying moments of 𝜏𝐻0 (𝑡) as opposed to the ex-

ponentially increasing ones of the KPZ models in [131] and [248] and this demands a more precise

understanding of the trace term of our Fredholm determinant expansion. For instance in Section

3.3, to obtain the precise asymptotics for our leading term, we have performed steepest descent

analysis on the kernel 𝐾𝜁,𝑡 , where the periodic nature of 𝑔𝑡 (𝑤)
𝑔𝑡 (𝜏𝑢𝑤) results in infinitely many critical

points. A major technical challenge in our proof is to argue how the contribution from only one

of the critical points dominates the those from the rest and this is accomplished in the proof of

Proposition 3.2.4. Similarly, the asymmetry of the kernel in the ASEP model has led us to opt for

the Hadamard’s inequality approach as exemplified in Section 4 of [248], instead of the operator

theory argument in [131], to obtain a sufficient upper bound for the higher-order terms in our paper

in Section 3.4.

3.1.3 Comparison to Previous Works

In a broader context, our main result on the Lyapunov exponent for the ASEP with step initial

data and its upper-tail large deviation belongs to the undertakings of studying the intermittency

phenomenon and large deviation problems of integrable models in the KPZ universality class. As

we have previously alluded to, the KPZ universality class contains a collection of random growth

models that are characterized by scaling exponent of 1/3 and certain universal non-Gaussian large

time fluctuations. We refer to [6, 113, 304] and the references therein for more details. The ASEP

is one of the standard one-dimensional models of the KPZ universality class and bears connection

to several other integrable models in this class, such as the stochastic six-vertex model [71, 3, 114],

KPZ equation [80, 156, 290, 6, 113], and 𝑞-TASEP [72].

On the other hand, the intermittency property is a universal phenomenon that captures high

population concentrations on small spatial islands over large time. Mathematically, the intermit-
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tency of a random field is defined in terms of its Lyapunov exponents. In particular, the connection

between integer Lyapunov moments and intermittency has long been an active area of study in

the SPDE community in last few decades [ber, 175, 85, 169, 201, 104, 92, 21]. For the KPZ

equation, [216] predicted the integer Lyapunov exponents for the SHE using replica Bethe anstaz

techniques. This result was later first rigorously attempted in [48] and correctly proven in [che].

Similar formulas were shown for the moments of the parabolic Anderson model, semi-discrete di-

rected polymers, q-Whittaker process (see [68] and [69]). For the ASEP, integer moments formula

for 𝜏𝐻0 (𝑡) were obtained in [72] using nested contour integral ansatz.

From the perspective of tail events, by studying the asymptotics of integer Lyapunov exponents

formulas, one can extract one-sided bounds on the upper tails of integrable models. However,

these integer Lyapunov exponents alone are not sufficient to provide the exact large deviation rate

function.

Recently, a stream of effort has been devoted to studying large deviations for some KPZ class

models by explicitly computing the fractional Lyapunov exponents. The work of [131] set this

series of effort in motion by solving the KPZ upper-tail large deviation principle through the frac-

tional Lyapunov exponents of the SHE with delta initial data. [180] soon extended the same result

for the SHE for a large class of initial data, including any random bounded positive initial data

and the stationary initial data. An exact way to compute every positive Lyapunov exponent of the

half-line SHE was also uncovered in [248]. In lieu of these developments, our main result for

the ASEP with step initial data and its upper-tail large deviation fits into this broader endeavor of

studying large deviation problems of integrable models with the Lyapunov exponent appproach.

Meanwhile, in the direction of the ASEP, as mentioned before, [125] has produced a one-sided

large deviation bound for the upper-tail probability appearing in (3.1.4) which coincides with the

correct rate function Φ+ defined in (3.1.4) for 𝑦 ≤ 𝑦0 := 1−2
√
𝑞(1−𝑞)

1+2
√
𝑞(1−𝑞)

. This result was sufficient for

their purpose of establishing a near-exponential fixation time for the coarsening model on Z2 and

[125] obtained it via steepest descent analysis on the exact formula for the probability of 𝐻0(𝑡/𝛾).
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More specially, they worked with the following result from [306, Lemma 4] as input:

P
(
−𝐻0

(
𝑡
𝛾

)
+ 𝑡

4 >
𝑡
4 𝑦

)
=

1
2𝜋i

∫
|𝜇 |=𝑅
(𝜇; 𝜏)∞ det(1 + 𝜇𝐽 (𝜇)𝑚,𝑡 )

d𝜇
𝜇
, (3.1.12)

where 𝑚 = b 14 𝑡 (1 − 𝑦)c, 𝑅 ∈ (𝜏,∞) \ {1, 𝜏
−1, 𝜏−2, . . .} is fixed, (𝜇; 𝜏)∞ := (1 − 𝜇) (1 − 𝜇𝜏) (1 −

𝜇𝜏2) . . . is the infinite 𝜏-Pochhammer symbol and 𝐽 (𝜇)𝑚,𝑡 is the kernel defined in Equation (3.4) of

[125]. Analyzing the exact pre-limit Fredholm determinant det(1+ 𝜇𝐽 (𝜇)𝑚,𝑡 ), [125] chose appropriate

contours for the kernel 𝐽 (𝜇)𝑚,𝑡 that pass through its critical points and performed a steepest descent

analysis. However, their choice of contours was unattainable beyond the threshold 𝑦0. Namely,

if we attempted to deform the same contours for 𝑦 > 𝑦0, we would inevitably cross poles, which

rendered the steepest descent analysis much trickier. By adopting the Lyapunov moment approach,

we have avoided this problem when looking for the precise large deviation rate function.

In addition to the relavence of our upper-tail LDP result, it is also worthy to remark on the

difficulty of obtaining a lower-tail LDP of the ASEP with step initial data. As explained before, the

lower-tail P(−𝐻0
(
𝑡
𝛾

)
+ 𝑡

4 < −
𝑡
4 𝑦) is expected to go to zero at a much faster rate of exp(−𝑡2Φ−(𝑦)).

The existence of the lower-tail rate function has so far only been shown in the case of TASEP in

[211] through its connection to continuous log-gases. The functional LDPs for TASEP for both

tails have been studied in [210], [312], [282] (upper tail), and [266] (lower-tail). Large deviations

for open systems with boundaries in contact with stochastic reservoirs has also been studied in

physics literature. We mention [147], [146], [60] and the references therein for works in these

directions.

More broadly for integrable models in the KPZ universality class, lower tail of the KPZ equa-

tion has been extensively studied in both mathematics and physics communities. In the physics

literature, [243] provided the first prediction of the large deviation tails of the KPZ equation for

narrow wedge initial data. For the upper tail, their analysis also yields subdominant corrections

([242, Supp. Mat.]). Furthermore, the physics work of [292] first predicted lower-tail rate function

of the KPZ equation for narrow wedge initial data in an analytical form, followed by the derivations
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in [106] and [234] via different methods. The asymptotics of deep lower tail of KPZ equation was

later obtained in [233] for a wide class of initial data. From the mathematics front, the work [116]

provided detailed, rigorous tail bounds for the lower tail of the KPZ equation for narrow wedge

initial data. The precise rate function of its lower-tail LDP was later proved in [310] and [79],

which confirmed the prediction of existing physics literature. The four different routes of deriving

the lower-tail LDP in [292], [JointLetter], [234] and [310] were later shown to be closely related

in [232]. A new route has also been recently obtained in the physics work of [240] (see also [277]).

In the short time regime, large deviations for the KPZ equation has been studied extensively in

physics literature (see [241], [230], [229] and the references therein for a review). Recently, [249]

rigorously derived the large deviation rate function of the KPZ equation in the short-time regime

in a variational form and recovered deep lower-tail asymptotics, confirming existing physics pre-

dictions. For non-integrable models, large deviations of first-passage percolation were studied in

[95] and more recently [39]. For last-passage percolation with general weights, recently, geometry

of polymers under lower tail large deviation regime has been studied in [38].

Notation

Throughout the rest of the paper, we use C = C(𝑎, 𝑏, 𝑐, . . .) > 0 to denote a generic deter-

ministic positive finite constant that is dependent on the designated variables 𝑎, 𝑏, 𝑐, . . .. However,

its particular content may change from line to line. We also use the notation ℭ(𝑟) to denote a

positively oriented circle with center at origin and radius 𝑟 > 0.

Outline

The rest of this article is organized as follows. In Section 3.2, we introduce the main ingredients

for the proofs of Theorem 3.1.1 and 3.1.2. In particular, we reduce the proof of our main results to

Proposition 3.2.4 (asymptotics of the leading order) and Proposition 3.2.5 (estimates for the higher

order), which are proved in Sections 3.3 and 3.4 respectively. Finally, in Appendix 3.5 we compare

our rate function Φ+(𝑦), defined in (3.1.4), to that of TASEP.
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3.2 Proof of Main Results

In this section, we give a detailed outline of the proofs of Theorems 3.1.1 and 3.1.2. In Section

3.2.1 we collect some useful properties of ℎ𝑞 and 𝐹𝑞 functions defined in (3.1.4) and (3.1.7) re-

spectively. In Section 3.2.2 we complete the proof of Theorems 3.1.1 and 3.1.2 assuming technical

estimates on the leading order term (Proposition 3.2.4) and higher order term (Proposition 3.2.5).

Throughout this paper, we fix 𝑠 > 0 and set 𝑛 = b𝑠c +1 ≥ 1 and 𝛼 = 𝑠− b𝑠c so that 𝑠 = 𝑛−1+𝛼.

We also fix 𝑞 ∈ ( 12 , 1) and set 𝑝 = 1 − 𝑞 and 𝜏 = 𝑝/𝑞 ∈ (0, 1) for the rest of the article.

3.2.1 Properties of ℎ𝑞 (𝑥) and 𝐹𝑞 (𝑥)

Recall the Lyapunov exponent ℎ𝑞 (𝑥) defined in (3.1.3) and the 𝐹𝑞 (𝑥) function defined in

(3.1.7). The following two propositions investigates various properties of these two functions

which are necessary for our later proofs.

Proposition 3.2.1 (Properties of ℎ𝑞). Consider the function ℎ𝑞 : (0,∞) → R defined by ℎ𝑞 (𝑥) =

(𝑞 − 𝑝) 1−𝜏
𝑥
2

1+𝜏
𝑥
2

. Then, the following properties hold true:

(a) 𝐵𝑞 (𝑥) := ℎ𝑞 (𝑥)
𝑥

is strictly positive and strictly decreasing with

lim
𝑥→0+

𝐵𝑞 (𝑥) = 1
4 (𝑝 − 𝑞) log 𝜏 > 0.

(b) ℎ𝑞 is strictly subadditive in the sense that for any 𝑥, 𝑦 ∈ (0,∞) we have

ℎ𝑞 (𝑥 + 𝑦) < ℎ𝑞 (𝑥) + ℎ𝑞 (𝑦).

(c) ℎ𝑞 is related to Φ+ defined in (3.1.4) via the following Legendre-Fenchel type transformation:

Φ+(𝑦) = sup
𝑠∈R>0

{
𝑠
1 − 𝑦

4
log 𝜏 + 1

𝑞 − 𝑝 ℎ𝑞 (𝑠)
}
, 𝑦 ∈ (0, 1).
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Proof. For (a), first, the positivity of 𝐵𝑞 (𝑥) follows from the positivity of ℎ𝑞 (𝑥). To see its growth,

taking the derivative of 𝐵𝑞 (𝑥) we obtain

𝐵′𝑞 (𝑥) =
(𝑞 − 𝑝) (−𝑥𝜏 𝑥2 log 𝜏 − 1 + 𝜏𝑥)

(1 + 𝜏 𝑥2 )2𝑥2
. (3.2.1)

Note that the numerator on the r.h.s of (3.2.1) is 0 when 𝑥 = 0 and its derivative against 𝑥 is

𝜏
𝑥
2 log 𝜏(𝜏 𝑥2 − 𝑥

2 log 𝜏 − 1) < 0 for 𝑥 > 0. Thus 𝐵′𝑞 (𝑥) is strictly negative when 𝑥 > 0 and 𝐵𝑞 (𝑥) is

strictly decreasing for 𝑥 > 0. L’Hôpital’s rule yields that lim𝑥→0+ 𝐵𝑞 (𝑥) = ℎ′𝑞 (0) = 1
4 (𝑞 − 𝑝) log 𝜏.

For (b), direct computation yields

ℎ𝑞 (𝑥 + 𝑦) − ℎ𝑞 (𝑥) − ℎ𝑞 (𝑦) = −(𝑞 − 𝑝)
(1 − 𝜏

𝑦

2 ) (1 − 𝜏 𝑥2 ) (1 − 𝜏
𝑥+𝑦

2 )
(1 + 𝜏

𝑥+𝑦
2 ) (1 + 𝜏 𝑥2 ) (1 + 𝜏

𝑦

2 )
< 0. (3.2.2)

Lastly, for part (c), we fix 𝑦 ∈ (0, 1) and define

𝑔𝑦 (𝑠) := 𝑠
1 − 𝑦

4
log 𝜏 + 1

𝑞 − 𝑝 ℎ𝑞 (𝑠), 𝑠 > 0.

Direct computation yields 𝑔′𝑦 (𝑠) = (
1−𝑦

4 −
𝜏
𝑠
2

(1+𝜏
𝑠
2 )2
) log 𝜏 and 𝑔′′𝑦 (𝑠) =

𝜏
𝑠
2 (𝜏

𝑠
2 −1) log2 𝜏

2(1+𝜏
𝑠
2 )3

< 0. Thus

𝑔𝑦 (𝑠) is concave on (0,∞) and hence attains its unique maxima when 𝑔′𝑦 (𝑠) = 0 or equivalently

1−𝑦
4 = 𝜏

𝑠
2

(1+𝜏
𝑠
2 )2
. The last equation has 𝑠 = 2 log𝜏 (

1−√𝑦
1+√𝑦 ) as the only positive solution and hence

it defines the unique maximum. Substituting this 𝑠 back into 𝑔𝑦 (𝑠) generates the final result as

Φ+(𝑦).

Proposition 3.2.2 (Properties of 𝐹𝑞 (𝜁)). Consider the function 𝐹𝑞 : [0,∞) → [0, 1] defined by

𝐹𝑞 (𝜁) :=
∏∞
𝑛=0(1 + 𝜁𝜏𝑛)−1. Then, the following properties hold true:

(a) 𝐹𝑞 is an infinitely differentiable function with (−1)𝑛𝐹 (𝑛)𝑞 (𝜁) ≥ 0 for all 𝑥 > 0. Furthermore,

‖𝐹 (𝑛)𝑞 ‖∞ < ∞ for each 𝑛.

(b) For each 𝑛 ∈ Z>0, and 𝛼 ∈ [0, 1), (−1)𝑛
∫ ∞
0 𝜁−𝛼𝐹 (𝑛)𝑞 (𝜁)d𝜁 is positive and finite.
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(c) All the derivatives of 𝐹𝑞 have superpolynomial decay. In other words for any 𝑚, 𝑛 ∈ Z≥0 we

have

sup
𝜁>0
|𝜁𝑚𝐹 (𝑛)𝑞 (𝜁) | < ∞.

Proof. (a) Note that 𝐹𝑞 (𝜁) =
∏∞
𝑛=0(1 + 𝜁𝜏𝑛)−1 = (−𝜁 ; 𝜏)−1

∞ where we recall that (−𝜁 ; 𝜏)∞ is the

𝜏-Pochhammer symbol. As (−𝜁 ; 𝜏)∞ is analytic [8, Corollary A.1.6.] and nonzero for 𝜁 ∈ [0,∞),

its inverse 𝐹𝑞 (𝜁) is analytic.

We next rewrite 𝐹𝑞 (𝜁) =
∏∞
𝑛=0 𝑓𝑛 (𝜁), where 𝑓𝑛 (𝜁) = (1 + 𝜁𝜏𝑛)−1. Denote 𝐻 (𝜁) := log 𝐹𝑞 (𝜁).

Since each 𝑓𝑛 (𝜁) ∈ (0, 1) is analytic for 𝜁 ∈ [0,∞) and the product
∏∞
𝑛=0 𝑓𝑛 (𝜁) ∈ (0, 1) converges

locally and uniformly, 𝐻 (𝜁) is well-defined and𝐻 (𝜁) = ∑∞
𝑛=0 log 𝑓𝑛 (𝜁).Given that |∑∞𝑛=0

1
𝑓𝑛 (𝜁) 𝑓

′
𝑛 (𝜁) | =∑∞

𝑛=0
𝜏𝑛

(1+𝜁𝜏𝑛) <
1

1−𝜏 , we have

𝐻′(𝜁) =
𝐹′𝑞 (𝜁)
𝐹𝑞 (𝜁)

=

∞∑︁
𝑛=1

𝑓 ′𝑛 (𝜁)
𝑓𝑛 (𝜁)

=: 𝐺 (𝜁). (3.2.3)

Note that 𝐺 (𝜁) = −∑∞
𝑗=1 𝜏

𝑗 𝑓 𝑗 (𝜁) and |𝐺 (𝜁) | < ∞. For each 𝑚 ∈ Z>0, let us set 𝐺 (𝑚) (𝜁) :=

−∑∞
𝑗=1 𝜏

𝑗 𝑓
(𝑚)
𝑗
(𝜁). As 𝑓 (𝑚)

𝑗
(𝜁) = (−1)𝑚𝑚! 𝜏𝑚𝑗

(1+𝜉𝜏 𝑗 )𝑚+1 , we obtain |𝐺 (𝑚) (𝜁) | ≤ 𝑚!
1−𝜏𝑚+1 < ∞ converges

locally and uniformly. Induction on 𝑚 gives us that 𝐺 (𝜁) is infinitely differentiable and the 𝑚-th

derivative of 𝐺 is 𝐺 (𝑚) . It follows that 𝐹𝑞 (𝜁) is infinitely differentiable too. In particular, for any

finite 𝑛 ∈ Z≥0, by Leibniz’s rule on the relation (3.2.3) we obtain

𝐹
(𝑛+1)
𝑞 (𝜁) =

𝑛∑︁
𝑘=0

(
𝑛

𝑘

)
𝐹
(𝑛−𝑘)
𝑞 (𝜁)𝐺 (𝑘) (𝜁). (3.2.4)

Observe that (−1)𝑘+1𝐺 (𝑘) is positive and finite. As 𝐹𝑞 is positive and finite, using (3.2.4), induction

gives us that (−1)𝑛𝐹 (𝑛)𝑞 is also positive and finite. As ‖𝐺 (𝑚) ‖∞ and ‖𝐹𝑞 ‖∞ are finite, using (3.2.4),

induction gives us that ‖𝐹 (𝑛)𝑞 ‖∞ is finite for any 𝑛 ∈ Z≥0.

(b) For 𝛼 ∈ [0, 1), positivity of the integral (−1)𝑛
∫ ∞
0 𝜁−𝛼𝐹 (𝑛)𝑞 (𝜁)d𝜁 follows from part (a). To
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check the integrability, we first verify the 𝑛 = 0 case. Since 𝜁 ≥ 0 and 𝜏 ∈ (0, 1),

0 <
∫ ∞

0
𝜁−𝛼𝐹𝑞 (𝜁)d𝜁 =

∫ ∞

0
𝜁−𝛼

∞∏
𝑚=0

1
1 + 𝜁𝜏𝑚 d𝜁 <

∫ ∞

0
𝜁−𝛼

1
1 + 𝜁 d𝜁

=

∫ 1

0
𝜁−𝛼

1
1 + 𝜁 d𝜁 +

∫ ∞

1

d𝜁
𝜁𝛼 (1 + 𝜁) <

∫ 1

0
𝜁−𝛼d𝜁 +

∫ ∞

1

d𝜁
𝜁𝛼+1

< ∞.

When 𝑛 > 0, using (3.2.4) and the fact the |𝐺 (𝑚) (𝜁) | < 𝑚!
1−𝜏𝑚+1 , by induction we deduce the

finiteness of (−1)𝑛
∫ ∞
0 𝜁−𝛼𝐹 (𝑛)𝑞 (𝜁)d𝜁 .

(c) Clearly for each 𝑚 we have 𝐹𝑞 (𝜁) ≤ 1
(1+𝜁𝜏𝑚)𝑚+1 forcing superpolynomial decay of 𝐹𝑞. The

superpolynomial decay of higher order derivative now follows via induction using (3.2.4).

3.2.2 Proof of Theorem 3.1.1 and Theorem 3.1.2

Recall 𝐻0(𝑡) from (3.1.1). As explained in Section 3.1.2, the main idea is to use Lemma 3.1.8

with 𝑈 = 𝜏𝐻0 (𝑡) and 𝐹 = 𝐹𝑞 defined in (3.1.7). Observe that Proposition 3.2.2 guarantees 𝐹 = 𝐹𝑞

can be chosen in Lemma 3.1.8. In the following proposition, we show that limiting behavior of

E[𝜏𝑠𝐻0 (𝑡)] is governed by the integral in (3.1.11) restricted to [1,∞).

Proposition 3.2.3. For any 𝑠 > 0, we have

lim
𝑡→∞

1
𝑡

log E[𝜏𝑠𝐻0 (𝑡)] = lim
𝑡→∞

1
𝑡

log
[
(−1)𝑛

∫ ∞

1
𝜁−𝛼

d𝑛

d𝜁𝑛
E[𝐹𝑞 (𝜁𝜏𝐻0 (𝑡))]d𝜁

]
, (3.2.5)

where 𝑛 = b𝑠c + 1 ≥ 1 and 𝛼 = 𝑠 − b𝑠c so that 𝑠 = 𝑛 − 1 + 𝛼.

Proof. Let 𝑈 = 𝜏𝐻0 (𝑡) . In this proof, we find an upper and a lower bound of E[𝑈𝑠] and show that

as 𝑡 →∞, after taking logarithm of E[𝑈𝑠] and dividing by 𝑡, the two bounds give matching results.

Note that as 𝜏 ∈ (0, 1) and 𝐻0(𝑡) ≥ 0 for any 𝑛 ∈ Z≥0 and 𝑡 > 0, 𝑈 has finite 𝑛-th moment. By

Proposition 3.2.2, 𝐹𝑞 is 𝑛-times differentiable and |
∫ ∞
0 𝑥−𝛼𝐹 (𝑛)𝑞 (𝑥)d𝑥 | < ∞. Denoting dP𝑈 (𝑢) as

the measure corresponding to the random variable𝑈 we have

(−1)𝑛
∫ ∞

1
𝜁−𝛼

d𝑛

d𝜁𝑛
E[𝐹𝑞 (𝜁𝜏𝐻0 (𝑡))]d𝜁 = (−1)𝑛

∫ ∞

1
𝜁−𝛼

∫ ∞

0
𝑢𝑛𝐹

(𝑛)
𝑞 (𝜁𝑢)dP𝑈 (𝑢)d𝜁 . (3.2.6)
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The (−1)𝑛 factor ensures that the above quantities are nonnegative via Proposition 3.2.2 (a). By the

finiteness of the 𝑛-th moment of𝑈, ‖𝐹 (𝑛)𝑞 ‖∞ < ∞ (by Proposition 3.2.2 (a)), and Fubini’s theorem,

we can interchange the integrals and obtain

r.h.s of (3.2.6) = (−1)𝑛
∫ ∞

0
𝑢𝑛−1+𝛼

∫ ∞

1
(𝜁𝑢)−𝛼𝐹 (𝑛)𝑞 (𝜁𝑢)d(𝑢𝜁)dP𝑈 (𝑢)

= (−1)𝑛
∫ ∞

0
𝑢𝑛−1+𝛼

∫ ∞

𝑢

𝑥−𝛼𝐹 (𝑛)𝑞 (𝑥)d𝑥 dP𝑈 (𝑢). (3.2.7)

Since the random variable𝑈 ∈ [0, 1], we can lower bound the inner integral on the r.h.s. of (3.2.7)

by restricting the 𝑥-integral to [1,∞). Recalling that 𝑠 = 𝑛 − 1 + 𝛼 we have

r.h.s. of (3.2.6) ≥ (−1)𝑛
(∫ ∞

1
𝑥−𝛼𝐹 (𝑛)𝑞 (𝑥)d𝑥

)
E[𝜏𝑠𝐻0 (𝑡)] . (3.2.8)

As for the upper bound for r.h.s. of (3.2.6), we may extend the range of integration to [0,∞). Apply

Lemma 3.1.8 with 𝐹 ↦→ 𝐹𝑞 and𝑈 ↦→ 𝜏𝑠𝐻0 (𝑡) to get

r.h.s. of (3.2.6) ≤ (−1)𝑛
∫ ∞

0
𝜁−𝛼

d𝑛

d𝜁𝑛
E

[
𝐹𝑞 (𝜁𝑈)

]
d𝜁

=

[
(−1)𝑛

∫ ∞

0
𝜁−𝛼𝐹 (𝑛)𝑞 (𝜁)d𝜁

]
E[𝜏𝑠𝐻0 (𝑡)] .

(3.2.9)

Note that both the prefactors of E[𝜏𝑠𝐻0 (𝑡)] in (3.2.8) and (3.2.9) are positive and free of 𝑡. Taking

logarithms and dividing by 𝑡, we get the desired result.

Next we truncate the integral in r.h.s. of (3.2.5) further. Recall the function 𝐵𝑞 (𝑥) defined in

Proposition 3.2.1 (a). We separate the range of integration [1,∞) into [1, 𝑒𝑡𝐵𝑞 (𝑠/2)] and (𝑒𝑡𝐵𝑞 (𝑠/2) ,∞)

and make use of the Fredholm determinant formula for E[𝐹𝑞 (𝜁𝜏𝐻0 (𝑡))] from Theorem 3.1.6 to

write the integral in r.h.s. of (3.2.5) as follows.

(−1)𝑛
∫ ∞

1
𝜁−𝛼

d𝑛

d𝜁𝑛
E[𝐹𝑞 (𝜁𝜏𝐻0 (𝑡))]d𝜁 = (−1)𝑛

∫ 𝑒
𝑡𝐵𝑞 ( 𝑠2 )

1
𝜁−𝛼

d𝑛

d𝜁𝑛
E[𝐹𝑞 (𝜁𝜏𝐻0 (𝑡))]d𝜁 + R𝑠 (𝑡)
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= (−1)𝑛
∫ 𝑒

𝑡𝐵𝑞 ( 𝑠2 )

1
𝜁−𝛼

d𝑛

d𝜁𝑛
det(𝐼 + 𝐾𝜁,𝑡)d𝜁 + R𝑠 (𝑡),

(3.2.10)

where

R𝑠 (𝑡) := (−1)𝑛
∫ ∞

𝑒
𝑡𝐵𝑞 ( 𝑠2 )

𝜁−𝛼
d𝑛

d𝜁𝑛
E[𝐹𝑞 (𝜁𝜏𝐻0 (𝑡))]d𝜁 (3.2.11)

Recall the definition of Fredholm determinant from (3.1.10). Assuming tr(𝐾𝜁,𝑡) to be differentiable

for a moment we may split the first term in (3.2.10) into two parts and write

(−1)𝑛
∫ 𝑒

𝑡𝐵𝑞 ( 𝑠2 )

1
𝜁−𝛼

d𝑛

d𝜁𝑛
det(𝐼 + 𝐾𝜁,𝑡)d𝜁 = A𝑠 (𝑡) + B𝑠 (𝑡) (3.2.12)

where

A𝑠 (𝑡) := (−1)𝑛
∫ 𝑒

𝑡𝐵𝑞 ( 𝑠2 )

1
𝜁−𝛼

d𝑛

d𝜁𝑛
tr(𝐾𝜁,𝑡) d𝜁, (3.2.13)

B𝑠 (𝑡) := (−1)𝑛
∫ 𝑒

𝑡𝐵𝑞 ( 𝑠2 )

1
𝜁−𝛼

d𝑛

d𝜁𝑛
[det(𝐼 + 𝐾𝜁,𝑡) − tr(𝐾𝜁,𝑡)] d𝜁 . (3.2.14)

The next two propositions verify that both A𝑠 (𝑡) and B𝑠 (𝑡) are well-defined and we defer

their proofs to Sections 3.3 and 3.4, respectively. The first one guarantees that tr(𝐾𝜁,𝑡) is indeed

infinitely differentiable and provides the asymptotics for Re[A𝑠 (𝑡)].

Proposition 3.2.4. For each 𝜁 > 0, the function 𝜁 ↦→ tr(𝐾𝜁,𝑡) is infinitely differentiable and thus

A𝑠 (𝑡) in (3.2.13) is well defined. Furthermore, for any 𝑠 > 0, we have

lim
𝑡→∞

log (Re[A𝑠 (𝑡)]) = −ℎ𝑞 (𝑠). (3.2.15)

From (3.2.10), we know that the Fredholm determinant det(𝐼 +𝐾𝜁,𝑡) is infinitely differentiable.

Thus, proposition 3.2.4 renders (det(𝐼 + 𝐾𝜁,𝑡) − tr(𝐾𝜁,𝑡)) infinitely differentiable as well. Hence

B𝑠 (𝑡) is well-defined. In fact, we have the following asymptotics for B𝑠 (𝑡).
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Proposition 3.2.5. Fix any 𝑠 > 0 so that 𝑠 − b𝑠c > 0. Recall B𝑠 (𝑡) from (3.2.14). There exists a

constant C = C(𝑞, 𝑠) > 0 such that for all 𝑡 > 0, we have

|B𝑠 (𝑡) | ≤ C exp(−𝑡ℎ𝑞 (𝑠) − 1
C 𝑡), (3.2.16)

where ℎ𝑞 (𝑠) is defined in (3.1.3).

Note that Proposition 3.2.5 in its current form does not cover integer 𝑠. We later explain in

Section 3.4 why 𝑠 − b𝑠c > 0 is necessary for our proof. However, this does not effect our main

results as one can deduce Theorem 3.1.1 for integer 𝑠 as well via a simple continuity argument,

which we present below. Assuming Propositions 3.2.4 and 3.2.5, we now complete the proof of

Theorem 3.1.1 and Theorem 3.1.2.

Proof of Theorem 3.1.1. Fix 𝑠 > 0 so that 𝑠− b𝑠c > 0. Appealing to Proposition 3.2.3 and (3.2.10)

and (3.2.12) we see that

lim
𝑡→∞

1
𝑡

log E[𝜏𝑠𝐻0 (𝑡)] = lim
𝑡→∞

1
𝑡

log [A𝑠 (𝑡) + B𝑠 (𝑡) + R𝑠 (𝑡)] ,

whereA𝑠 (𝑡), B𝑠 (𝑡), and R𝑠 (𝑡) are defined in (3.2.13), (3.2.14) and (3.2.11) respectively. For R𝑠 (𝑡),

setting 𝑉 = 𝜁𝜏𝐻0 (𝑡) and noting 𝑠 = 𝑛 − 1 + 𝛼, we see that

|R𝑠 (𝑡) | =
∫ ∞

𝑒
𝑡𝐵𝑞 ( 𝑠2 )

𝜁−𝛼−𝑛E
[
|𝑉𝑛𝐹 (𝑛)𝑞 (𝑉) |

]
d𝜁 ≤

[
sup
𝑣>0
|𝑣𝑛𝐹 (𝑛)𝑞 (𝑣) |

]
𝑠−1 exp(−𝑡𝑠𝐵𝑞 ( 𝑠2 )).

The fact that sup𝑣>0 |𝑣𝑛𝐹
(𝑛)
𝑞 (𝑣) | is finite follows from Proposition 3.2.2 (c). Note that 𝑠𝐵𝑞 ( 𝑠2 ) is

strictly bigger than ℎ𝑞 (𝑠) = 𝑠𝐵𝑞 (𝑠) > 0 via Proposition 3.2.1 (a). By Proposition 3.2.4, when 𝑡 is

large, we see that Re[A𝑠 (𝑡)] grows like exp(−𝑡ℎ𝑞 (𝑠)) > exp(−𝑡𝑠𝐵𝑞 ( 𝑠2 )). Similarly, Proposition

3.2.5 shows that Re[B𝑠 (𝑡)] is bounded from above by C exp(−𝑡ℎ𝑞 (𝑠) − 1
C 𝑡) for some constant

C = C(𝑞, 𝑠), which is strictly less than exp(−𝑡ℎ𝑞 (𝑠)) for large enough 𝑡. Indeed for all large
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enough 𝑡, we have

1
2

Re[A𝑠 (𝑡)] ≤ Re[A𝑠 (𝑡) + B𝑠 (𝑡) + R𝑠 (𝑡)] ≤
3
2

Re[A𝑠 (𝑡)] .

Taking logarithms and dividing by 𝑡, and noting that A𝑠 (𝑡) + B𝑠 (𝑡) + R𝑠 (𝑡) is always real, we get

(3.1.3) for any noninteger positive 𝑠.

To prove (3.1.3) for positive integer 𝑠, we fix 𝑠 ∈ Z>0. For any 𝐾 > 2, observe that as 𝐻0(𝑡) is

a non-negative random variable (recall the definition from (3.1.1)) we have

𝜏(𝑠−𝐾
−1)𝐻0 (𝑡) ≥ 𝜏𝑠𝐻0 (𝑡) ≥ 𝜏(𝑠+𝐾−1)𝐻0 (𝑡) .

Taking expectations, then logarithms and dividing by 𝑡, in view of noninteger version of (3.1.3) we

have

−ℎ𝑞 (𝑠 − 𝐾−1) ≥ lim sup
𝑡→∞

1
𝑡

log E[𝜏𝑠𝐻0 (𝑡)] ≥ lim inf
𝑡→∞

1
𝑡

log E[𝜏𝑠𝐻0 (𝑡)] ≥ −ℎ𝑞 (𝑠 + 𝐾−1).

Taking 𝐾 →∞ we get the desired result for integer 𝑠.

Proof of Theorem 3.1.2. For the large deviation result, applying Proposition 1.12 in [180], with

𝑋 (𝑡) = 𝐻0(𝑡/𝛾) · log 𝜏, and noting the Legendre-Fenchel type identity for Φ+(𝑦) from Proposition

3.2.1 (c), we arrive at (3.1.4). To prove (3.1.5), applying L-Hôpital rule a couple of times we get

lim
𝑦→0+

Φ+(𝑦)
𝑦3/2 = lim

𝑦→0+
2
3
Φ′+(𝑦)√

𝑦
= lim
𝑥→0+

2
3

tanh−1(𝑥)
𝑥

= lim
𝑥→0+

2
3
· 1

1 − 𝑥2 =
2
3
.

This completes the proof of the theorem.

3.3 Asymptotics of the Leading Term

The goal of this section is to obtain exact asymptotics of Re[A𝑠 (𝑡)] defined in (3.2.13) as

𝑡 → ∞. Recall the definition of the kernel 𝐾𝜁,𝑡 from (3.1.8). We employ a standard idea that the
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asymptotic behavior of the kernel 𝐾𝜁,𝑡 and its ‘derivative’ (see (3.3.8)) and subsequently that of

Re[A𝑠 (𝑡)] can be derived by the steepest descent method.

Towards this end, we first collect all the technical estimates related to the kernel 𝐾𝜁,𝑡 in Section

8.5.3 and go on to complete the proof of Proposition 3.2.4 in Section 3.3.2.

3.3.1 Technical estimates of the Kernel

In this section, we analyze the kernel 𝐾𝜁,𝑡 . Much of our subsequent analysis boils down to

understanding the function 𝑔𝑡 (𝑧), defined in (3.1.8), that appears in the kernel 𝐾𝜁,𝑡 . Towards this

end, we consider

𝑓 (𝑢, 𝑧) :=
(𝑞 − 𝑝)
1 + 𝑧

𝜏

− (𝑞 − 𝑝)
1 + 𝜏𝑢𝑧

𝜏

, (3.3.1)

so that the ratio 𝑔𝑡 (𝑧)
𝑔𝑡 (𝜏𝑢𝑧) that appears in the kernel 𝐾𝜁,𝑡 defined in (3.1.8) equals to exp (𝑡 𝑓 (𝑢, 𝑧)).

Below we collect some useful properties of this function 𝑓 (𝑢, 𝑧). First note that 𝜕𝑧 𝑓 (𝑢, 𝑧) = 0 has

two solutions 𝑧 = ±𝜏1− 𝑢2 , and

𝜕2
𝑧 𝑓 (𝑢, 𝑧)

��
𝑧=−𝜏1− 𝑢2 = −2(𝑞 − 𝑝) 𝜏

3𝑢
2 −2 + 𝜏2𝑢−2

(1 − 𝜏 𝑢2 )3
,

𝜕2
𝑧 𝑓 (𝑢, 𝑧)

��
𝑧=𝜏

1− 𝑢2 = 2(𝑞 − 𝑝) 𝜏
3𝑢
2 −2 − 𝜏2𝑢−2

(1 + 𝜏 𝑢2 )3
.

(3.3.2)

The following lemma tells us how the maximum of Re[ 𝑓 (𝑢, 𝑧)] behaves.

Lemma 3.3.1. Fix 𝜌 > 0. For any 𝑢 ∈ C, with Re[𝑢] = 𝜌 and 𝑧 ∈ ℭ(𝜏1− 𝜌2 ), we have

Re[ 𝑓 (𝑢, 𝑧)] ≤ 𝑓 (𝜌, 𝜏1− 𝜌2 ) = −ℎ𝑞 (𝜌) (3.3.3)

where ℎ𝑞 (𝜌) is defined in (3.1.3) and ℭ(𝜏1− 𝜌2 ) is the circle with center at the origin and radius

𝜏
1− 𝜌2 . Equality in (3.3.3) holds if and only if 𝜏i Im 𝑢 = 1, and 𝑧 = 𝜏1− 𝜌2 simultaneously. Furthermore,
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for the same range of 𝑢 and 𝑧, we have the following inequality:

𝑓 (𝜌, 𝜏1− 𝜌2 ) − Re[ 𝑓 (𝑢, 𝑧)] ≥ (𝑞 − 𝑝) (1 − 𝜏
𝜌

2 )𝜏
𝜌

2

4(1 + 𝜏
𝜌

2 )2
(2𝜏

𝜌

2−1 |𝑧 − 𝜏1− 𝜌2 | + |𝜏i Im 𝑢 − 1|). (3.3.4)

Proof. Set 𝑢 = 𝜌 + i𝑦 and 𝑧 = 𝜏1− 𝜌2 𝑒i𝜃 with 𝑦 ∈ R and 𝜃 ∈ [0, 2𝜋]. Note that 𝑓 (𝜌, 𝜏1− 𝜌2 ) = −ℎ𝑞 (𝜌),

where ℎ𝑞 (𝑥) is defined in (3.1.3). Direct computation yields

Re[ 𝑓 (𝑢, 𝑧)] = (𝑞 − 𝑝) (𝜏
𝜌 − 1) ( |1 + 𝜏

𝜌

2 𝑒−i𝜃 |2 + |1 + 𝜏
𝜌

2 +i𝑦𝑒i𝜃 |2)
2|1 + 𝜏

𝜌

2 𝑒−i𝜃 |2 |1 + 𝜏
𝜌

2 +i𝑦𝑒i𝜃 |2
. (3.3.5)

Since 𝜏 < 1, applying the inequality |1+𝜏
𝜌

2 𝑒−i𝜃 |2+ |1+𝜏
𝜌

2 +i𝑦𝑒i𝜃 |2 ≥ 2|1+𝜏
𝜌

2 𝑒−i𝜃 | |1+𝜏
𝜌

2 +i𝑦𝑒i𝜃 |, and

then noting that |1 + 𝜏
𝜌

2 𝑒−i𝜃 | |1 + 𝜏
𝜌

2 +i𝑦𝑒i𝜃 | ≤ (1 + 𝜏
𝜌

2 )2, we see (r.h.s. of (3.3.5)) ≤ −(𝑞 − 𝑝) 1−𝜏
𝜌
2

1+𝜏
𝜌
2

.

Clearly equality holds if and only if 𝜃 = 0 and 𝜏i𝑦 = 1 simultaneously. Furthermore, following

the above inequalities, we have Re[ 𝑓 (𝜌 + i𝑦, 𝑧)] ≤ −(𝑞 − 𝑝) 1−𝜏
𝜌
2

|1+𝜏
𝜌
2 𝑒i𝜃 |

and Re[ 𝑓 (𝜌 + i𝑦, 𝑧)] ≤

−(𝑞 − 𝑝) 1−𝜏
𝜌
2

|1+𝜏
𝜌
2 +i𝑦𝑒i𝜃 |

. This yields

𝑓 (𝜌, 𝜏1− 𝜌2 ) − Re[ 𝑓 (𝜌 + i𝑦, 𝑧)] ≥ (𝑞 − 𝑝)
[

1 − 𝜏
𝜌

2

|1 + 𝜏
𝜌

2 𝑒i𝜃 |
− 1 − 𝜏

𝜌

2

1 + 𝜏
𝜌

2

]
≥ (𝑞 − 𝑝) (𝜏

𝜌

2 − 𝜏𝜌) |𝑒i𝜃 − 1|
(1 + 𝜏

𝜌

2 )2

(3.3.6)

and

𝑓 (𝜌, 𝜏1− 𝜌2 ) − Re[ 𝑓 (𝜌 + i𝑦, 𝑧)] ≥ (𝑞 − 𝑝)
[

1 − 𝜏
𝜌

2

|1 + 𝜏
𝜌

2 +i𝑦𝑒i𝜃 |
− 1 − 𝜏

𝜌

2

1 + 𝜏
𝜌

2

]
≥ (𝑞 − 𝑝) (1 − 𝜏

𝜌

2 )𝜏
𝜌

2 |𝜏i𝑦𝑒i𝜃 − 1|
(1 + 𝜏

𝜌

2 )2
.

Adding the above two inequalities we have 𝑓 (𝜌, 𝜏1− 𝜌2 ) − Re[ 𝑓 (𝜌 + i𝑦, 𝑧)] ≥ (𝑞−𝑝) (1−𝜏
𝜌
2 )𝜏

𝜌
2 |𝜏i𝑦−1|

2(1+𝜏
𝜌
2 )2

.

Combining this with (3.3.6) and the substitution 𝜏1− 𝜌2 𝑒i𝜃 = 𝑧 we get (3.3.4). This completes the

proof.
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Using the above technical lemma we can now explain the proof of Theorem 3.1.6.

Proof of Theorem 3.1.6. Due to Theorem 5.3 in [72], the only thing that we need to verify is

inf
𝑤,𝑤′∈ℭ(𝜏1− 𝛿2 )

𝑢∈𝛿+iR

|𝑤′ − 𝜏𝑢𝑤 | > 0 and sup
𝑤,𝑤′∈ℭ(𝜏1− 𝛿2 )

𝑢∈𝛿+iR

���� 𝑔𝑡 (𝑤)𝑔𝑡 (𝜏𝑢𝑤)

���� > 0. (3.3.7)

Indeed, for every 𝑢 ∈ 𝛿 + iR and 𝑤, 𝑤′ ∈ ℭ(𝜏1− 𝛿2 ), we have |𝑤′ − 𝜏𝑢𝑤 | ≥ |𝑤′| − |𝜏𝑢𝑤 | = 𝜏1− 𝛿2 −

𝜏1+ 𝛿2 > 0. Recall 𝑓 (𝑢, 𝑧) from (3.3.1). Applying Lemma 3.3.1 with 𝜌 ↦→ 𝛿 yields���� 𝑔𝑡 (𝑤)𝑔𝑡 (𝜏𝑢𝑤)

���� = | exp(𝑡 𝑓 (𝑢, 𝑤)) | = exp(𝑡 Re[ 𝑓 (𝑢, 𝑤)]) ≤ exp(𝑡 𝑓 (𝛿, 𝜏1− 𝛿2 )) = exp(−𝑡ℎ𝑞 (𝛿)),

where ℎ𝑞 is defined in (3.1.3). This verifies (3.3.7) and completes the proof.

Remark 3.3.2. We now explain our choice of the contour 𝐾𝜁,𝑡 defined in (3.1.8), which comes from

the method of steepest descent. Suppose Re[𝑢] = 𝛿. As noted before, directly taking derivative of

𝑓 (𝑢, 𝑧) = exp( 𝑔𝑡 (𝑧)
𝑔𝑡 (𝜏𝑢𝑧) ), with respect to 𝑧 suggests that critical points are at 𝑧 = ±𝜏1− 𝑢2 , and thus we

take our contour to be ℭ(𝜏1− 𝛿2 ), so that it passes through the critical points.

Next we turn to the case of differentiability of tr(𝐾𝜁,𝑡) where 𝐾𝜁,𝑡 is defined in (3.1.8). Using

the function 𝑓 defined in (3.3.1), we rewrite the kernel as follows.

𝐾𝜁,𝑡 (𝑤, 𝑤′) =
1

2𝜋i

∫ 𝛿+i∞

𝛿−i∞
Γ(−𝑢)Γ(1 + 𝑢)𝜁𝑢𝑒𝑡 𝑓 (𝑢,𝑤) d𝑢

𝑤′ − 𝜏𝑢𝑤 .

Differentiating the integrand inside the integral in 𝐾𝜁,𝑡 (𝑤.𝑤′) 𝑛-times defines a sequence of

kernel {𝐾 (𝑛)
𝜁,𝑡
}𝑛≥1 : 𝐿2(ℭ(𝜏1− 𝛿2 )) → 𝐿2(ℭ(𝜏1− 𝛿2 )) given by the kernel:

𝐾
(𝑛)
𝜁,𝑡
(𝑤, 𝑤′) :=

1
2𝜋i

∫ 𝛿+i∞

𝛿−i∞
Γ(−𝑢)Γ(1 + 𝑢) (𝑢)𝑛𝜁𝑢−𝑛𝑒𝑡 𝑓 (𝑢,𝑤)

d𝑢
𝑤′ − 𝜏𝑢𝑤 , (3.3.8)

where (𝑎)𝑛 :=
∏𝑛−1
𝑖=0 (𝑎 − 𝑖) for 𝑛 ∈ Z>0 and (𝑎)0 = 1 is the Pochhammmer symbol and 𝛿 ∈ (0, 1).

We also set 𝐾 (0)
𝜁,𝑡

:= 𝐾𝜁,𝑡 .
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Remark 3.3.3. We remark that unlike Lemma 3.1 in [131], we do not aim to show that 𝐾𝜁,𝑡 is

differentiable as an operator, or its higher order derivatives are equal to the operator 𝐾 (𝑛)
𝜁,𝑡

. Indeed,

showing convergence in the trace class norm is more involved because of the lack of symmetry

and positivity of the operator 𝐾𝜁,𝑡 . However, since we are dealing with the Fredholm determinant

series only, for our analysis it is enough to investigate how each term of the series are differentiable

and how their derivatives are related to 𝐾 (𝑛)
𝜁,𝑡

.

Remark 3.3.4. Note that when viewing 𝐾 (𝑛)
𝜁,𝑡

as a complex integral, we can deform its 𝑢-contour

to 𝜌 + iR for any 𝜌 ∈ (0, 𝑛 ∨ 1). This is due to the analytic continuity of the integrand as the factor

(𝑢)𝑛 removes the poles at 1, . . . , 𝑛 − 1 of Γ(−𝑢).

The following lemma provides estimates of 𝐾 (𝑛)
𝜁,𝑡

that is useful for the subsequent analysis in

Sections 3.3 and 3.4.

Lemma 3.3.5. Fix 𝑛 ∈ Z≥0, 𝑡 > 0, 𝛿, 𝜌 ∈ (0, 𝑛 ∨ 1), and consider any borel set 𝐴 ⊂ R. Recall

ℎ𝑞 (𝑥) and 𝐵𝑞 (𝑥) from Proposition 3.2.1 and 𝐾 (𝑛)
𝜁,𝑡

from (3.3.8). For any 𝑤 ∈ ℭ(𝜏1− 𝛿2 ) and 𝑤′ ∈ C

and 𝜁 ∈ [1, 𝑒𝑡𝐵𝑞 ( 𝑠2 )], there exists a constant C = C(𝑛, 𝛿, 𝑞) > 0 such that whenever |𝑤′| ≠ 𝜏1+ 𝛿2 we

have ∫
𝐴

���� (𝛿 + i𝑦)𝑛𝜁 𝜌−𝑛+i𝑦
sin(−𝜋(𝛿 + i𝑦)) 𝑒

𝑡 𝑓 (𝛿+i𝑦,𝑤)
���� d𝑦
|𝑤′ − 𝜏𝛿+i𝑦𝑤 |

≤ C𝜁 𝜌−𝑛

| |𝑤′| − 𝜏1+ 𝛿2 |
𝑒𝑡·sup𝑦∈𝐴Re[ 𝑓 (𝛿+i𝑦,𝑤)]

≤ C𝜁 𝜌−𝑛

| |𝑤′| − 𝜏1+ 𝛿2 |
𝑒−𝑡ℎ𝑞 (𝛿) .

(3.3.9)

In particular when 𝑤′ ∈ ℭ(𝜏1− 𝛿2 ) we have

|𝐾 (𝑛)
𝜁,𝑡
(𝑤, 𝑤′) | ≤ C𝜁 𝛿−𝑛 exp(−𝑡ℎ𝑞 (𝛿)). (3.3.10)

Consequently, 𝐾 (𝑛)
𝜁,𝑡
(𝑤, 𝑤′) is continuous in the 𝜁-variable.

Proof. Fix 𝑛 ∈ Z≥0, 𝑡 > 0, 𝛿, 𝜌 ∈ (0, 𝑛 ∨ 1) and 𝑤 ∈ ℭ(𝜏1− 𝛿2 ) and 𝑤′ ∈ C such that |𝑤′| ≠ 𝜏1+ 𝛿2 .

Throughout the proof the constant C > 0 depends on 𝑛, 𝛿, and 𝑞 – we will not mention it further.
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Consider the integral on the r.h.s. of (3.3.9). Observe that when 𝛿 ∉ Z, | (𝛿 + i𝑦)𝑛 | ≤ C|𝑦 |𝑛 and

1
| sin(−𝜋(𝛿+i𝑦)) | ≤ C𝑒−|𝑦 |/C. For 𝑛 ≥ 2, and 𝛿 ∈ Z>0 ∩ (0, 𝑛), we observe that the product (𝛿 + i𝑦)𝑛

contains the term i𝑦. Hence | i𝑦
sin(−𝜋(𝛿+i𝑦)) | = |

i𝑦
sin(−𝜋(i𝑦)) | ≤ C𝑒−|𝑦 |/C for such an integer 𝛿. Whereas,

| 𝛿+i𝑦i𝑦 | ≤ C|𝑦 |𝑛−1 for such an integer 𝛿. Finally, |𝑤′ − 𝜏𝛿+i𝑦𝑤 | ≥ | |𝑤′| − |𝜏𝛿𝑤 | | = | |𝑤′| − 𝜏1+ 𝛿2 |.

Combining the aforementioned estimates, we obtain that

r.h.s. of (3.3.9) ≤
∫
𝐴

C|𝑦 |𝑛𝑒−|𝑦 |/C𝜁 𝜌−𝑛 |𝑒𝑡 𝑓 (𝛿+i𝑦,𝑤) | d𝑦
| |𝑤′| − 𝜏1+ 𝛿2 |

.

Since
∫
R
|𝑦 |𝑛𝑒−|𝑦 |/Cd𝑦 converges applying |𝑒𝑡 𝑓 (𝛿+i𝑦,𝑤) | ≤ 𝑒𝑡 Re[ 𝑓 (𝛿+i𝑦,𝑤)] we arrive at the first in-

equality in (3.3.9). The second inequality follows by observing Re[ 𝑓 (𝛿 + i𝑦, 𝑤)] ≤ −ℎ𝑞 (𝛿) by

Lemma 3.3.1.

Recall 𝐾 (𝑛)
𝜁,𝑡

from (3.3.8). Recall from Remark 3.3.4 that the 𝛿 appearing in (3.3.8) can be

chosen in (0, 𝑛 ∨ 1). Pushing the absolute value sign inside the explicit formula in (3.3.8) and

applying Euler’s reflection principle with change of variables 𝑢 = 𝛿 + i𝑦 yield

|𝐾 (𝑛)
𝜁,𝑡
(𝑤, 𝑤′) | ≤ 1

2𝜋

∫
R

���� (𝛿 + i𝑦)𝑛𝜁 𝛿−𝑛+i𝑦
sin(−𝜋(𝛿 + i𝑦)) 𝑒

𝑡 𝑓 (𝛿+i𝑦,𝑤)
���� d𝑦
|𝑤′ − 𝜏𝛿+i𝑦𝑤 |

.

(3.3.10) now follows from (3.3.9) by taking 𝜌 = 𝛿. To see the continuity of 𝐾 (𝑛)
𝜁,𝑡
(𝑤, 𝑤′) in 𝜁, we

fix 𝜁1 < 𝜁2 < 𝜁1 + 1. By repeating the same set of arguments as above we arrive at

|𝐾 (𝑛)
𝜁2,𝑡
(𝑤, 𝑤′) − 𝐾 (𝑛)

𝜁1,𝑡
(𝑤, 𝑤′) | ≤ 𝐶 |𝜁 𝛿−𝑛2 − 𝜁 𝛿−𝑛1 | exp(−𝑡ℎ𝑞 (𝛿)) (3.3.11)

with the same constant C in (3.3.10). Clearly l.h.s. of (3.3.11) converges to 0 when 𝜁2 → 𝜁1, which

confirms the kernel’s 𝜁-continuity.

3.3.2 Proof of Proposition 3.2.4

The goal of this section is to prove Proposition 3.2.4. Before diving into the proof, we first

settle the infinite differentiability separately in the next proposition.
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Proposition 3.3.6. For any 𝑛 ∈ Z≥0 and 𝑡 > 0, the operator 𝐾 (𝑛)
𝜁,𝑡

defined in (3.3.8) is a trace-class

operator with

tr(𝐾 (𝑛)
𝜁,𝑡
) = 1

2𝜋i

∫
ℭ(𝜏1− 𝛿2 )

𝐾
(𝑛)
𝜁,𝑡
(𝑤, 𝑤)d𝑤. (3.3.12)

Furthermore, tr(𝐾 (𝑛)
𝜁,𝑡
) is differentiable in 𝜁 at each 𝜁 > 0 and we have 𝜕𝜁 tr(𝐾 (𝑛)𝜁,𝑡 ) = tr(𝐾 (𝑛+1)

𝜁,𝑡
).

Proof. Fix 𝑛 ∈ Z≥0, 𝑡 > 0, and 𝜁 > 0. 𝐾 (𝑛)
𝜁,𝑡
(𝑤, 𝑤′) is simultaneously continuous in both 𝑤 and

𝑤′ and 𝜕𝑤′𝐾
(𝑛)
𝜁,𝑡
(𝑤, 𝑤′) is continuous in 𝑤′. By Lemma 3.2.7 in [68] (also see [239, page 345] or

[64]) we see that 𝐾 (𝑛)
𝜁,𝑡

is indeed trace-class, and thus (3.3.12) follows from Theorem 12 in [239,

Chapter 30]. To show differentiability of tr(𝐾 (𝑛)
𝜁,𝑡
) in variable 𝜁 , we fix 𝜁1, 𝜁2 > 0. Without loss of

generality we may assume 𝜁1 + 1 > 𝜁2 > 𝜁1. Let us define

𝐷𝜁1,𝜁2 :=
tr(𝐾 (𝑛)

𝜁2,𝑡
) − tr(𝐾 (𝑛)

𝜁1,𝑡
)

𝜁2 − 𝜁1
− tr(𝐾 (𝑛+1)

𝜁1,𝑡
)

=
1
(2𝜋i)2

∫
ℭ(𝜏1− 𝛿2 )

∫ 𝛿+i∞

𝛿−i∞
Γ(−𝑢)Γ(1 + 𝑢)𝑅𝜁1,𝜁2;𝑛 (𝑢)𝑒𝑡 𝑓 (𝑢,𝑤)

d𝑢
𝑤 − 𝜏𝑢𝑤d𝑤,

where

𝑅𝜁1,𝜁2;𝑛 (𝑢) := (𝑢)𝑛
[
𝜁𝑢−𝑛2 − 𝜁𝑢−𝑛1
𝜁2 − 𝜁1

− (𝑢 − 𝑛)𝜁𝑢−𝑛−1
1

]
=

∫ 𝜁2

𝜁1

(𝜁2 − 𝜎)
𝜁2 − 𝜁1

(𝑢)𝑛+2𝜎𝑢−𝑛−2d𝜎.
(3.3.13)

Taking absolute value and appealing to Euler’s reflection principle, we obtain

|𝐷𝜁1,𝜁2 | ≤
���� 1
(2𝜋i)2

∫
ℭ(𝜏1− 𝛿2 )

∫ 𝛿+i∞

𝛿−i∞

∫ 𝜁2

𝜁1

(𝑢)𝑛+2
sin(−𝜋𝑢)

(𝜁2 − 𝜎)
𝜁2 − 𝜁1

𝜎𝑢−𝑛−2𝑒𝑡 𝑓 (𝑢,𝑤)
d𝜎d𝑢
𝑤 − 𝜏𝑢𝑤d𝑤

���� (3.3.14)

≤ 𝜏
1− 𝛿2

2𝜋

∫ 𝜁2

𝜁1

|𝜎𝛿+i𝑦−𝑛−2 |d𝜎 · max
𝑤∈ℭ(𝜏1− 𝛿2 )

∫
R

(𝛿 + i𝑦)𝑛+2
sin(−𝜋(𝛿 + i𝑦)) |𝑒

𝑡 𝑓 (𝛿+i𝑦,𝑤) | d𝑦
|𝑤 − 𝜏𝛿+i𝑦𝑤 |

.

Note that Lemma 3.3.5 ((3.3.9) specifically) we see that the above maximum is bounded by

C exp(−𝑡ℎ𝑞 (𝛿)) where the constant C is same as in (3.3.9). Since |𝜎𝑢−𝑛−2 | = |𝜎𝛿−𝑛−2 | ≤ |𝜁 𝛿−𝑛−2
1 |
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over the interval [𝜁1, 𝜁2] for 𝛿 ∈ (0, 𝑛 ∨ 1), we obtain

|𝐷𝜁1,𝜁2 | ≤ C exp(−ℎ𝑞 (𝛿))
∫ 𝜁2

𝜁1

|𝜎𝑢−𝑛−2 |d𝜎 ≤ C exp(−𝑡ℎ𝑞 (𝛿)) (𝜁2 − 𝜁1) |𝜁 𝛿−𝑛−2
1 |.

Thus, taking the limit as 𝜁2 − 𝜁1 → 0 yields |𝐷𝜁1,𝜁2 | → 0 and completes the proof.

Remark 3.3.7. We prove a higher order version of Proposition 3.3.6 later in Section 3.4 as Propo-

sition 3.4.1 which includes the statement of the above Proposition when 𝐿 = 1. However, we

keep the above simple version for reader’s convenience, which will serve as a guide in proving

Proposition 3.4.1.

With the above results in place, we can now turn towards the main technical component of the

proof of Proposition 3.2.4.

Proof of Proposition 3.2.4. Before proceeding with the proof, we fix some notations. Fix 𝑠 > 0,

and set 𝑛 = b𝑠c + 1 ≥ 1 and 𝛼 = 𝑠 − b𝑠c ∈ [0, 1) so that 𝑠 = 𝑛 − 1 + 𝛼. Throughout the proof, we

will denote C to be positive constant depending only on 𝑠, 𝑞 – we will not mention this further. We

will also use the big 𝑂 notation. For two complex-valued functions 𝑓1(𝑡) and 𝑓2(𝑡) and 𝛽 ∈ R, the

equations 𝑓1(𝑡) = (1 + 𝑂 (𝑡𝛽)) 𝑓2(𝑡) and 𝑓1(𝑡) = 𝑓2(𝑡) + 𝑂 (𝑡𝛽) have the following meaning: there

exists a constant C > 0 such that for all large enough 𝑡,���� 𝑓1(𝑡)𝑓2(𝑡)
− 1

���� ≤ C · 𝑡𝛽, and | 𝑓1(𝑡) − 𝑓2(𝑡) | ≤ C · 𝑡𝛽,

respectively. The constant C > 0 value may change from line to line.

For clarity we divide the proof into seven steps. In Steps 1 and 2, we provide the upper and

lower bounds for |A𝑠 (𝑡) | and Re[A𝑠 (𝑡)] respectively and complete the proof of (3.2.15); in Steps

3–7, we verify the technical estimates assumed in the previous steps.

Step 1. Recall A𝑠 (𝑡) from (3.2.13). The goal of this step is to provide a different expression for

A𝑠 (𝑡), which will be much more amenable to our analysis, as well as an upper bound for |A𝑠 (𝑡) |.

By Proposition 3.3.6, we have d𝑛
d𝜁𝑛 tr(𝐾𝜁,𝑡) = tr(𝐾 (𝑛)

𝜁,𝑡
) and consequently using the expression in
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(3.3.8) we have

A𝑠 (𝑡) := (−1)𝑛
∫ 𝑒

𝑡𝐵𝑞 ( 𝑠2 )

1

𝜁−𝛼

(2𝜋i)2

∫
ℭ(𝜏1− 𝛿2 )

∫ 𝛿+i∞

𝛿−i∞
Γ(−𝑢)Γ(1 + 𝑢) (𝑢)𝑛𝜁𝑢−𝑛

𝑒𝑡 𝑓 (𝑢,𝑤)d𝑢
𝑤 − 𝜏𝑢𝑤 d𝑤d𝜁 .

where 𝛿 ∈ (0, 1) is chosen to be less than 𝑠. We now proceed to deform the 𝑢-contour and 𝑤-

contour sequentially. As we explained in Remark 3.3.4, the integrand has no poles when 𝑢 =

1, 2, . . . , 𝑛 − 1. Hence 𝑢-contour can be deformed to (𝑠 − i∞, 𝑠 + i∞) as 𝑠 = 𝑛 − 1 + 𝛼 ∈ (0, 𝑛).

Next, for the 𝑤-contour, we wish to deform it from ℭ(𝜏1− 𝛿2 ) to ℭ(𝜏1− 𝑠2 ). In order to do so, we

need to ensure that we do not cross any poles. We observe that the potential sources of poles lie in

the exponent 𝑓 (𝑢, 𝑤) := (𝑞−𝑝)
1+𝑤𝜏−1 − (𝑞−𝑝)

1+𝜏𝑢−1𝑤
(recalled from (3.3.1)) and in the denominator 𝑤 − 𝜏𝑢𝑤.

Since for any 𝑤 ∈ ℭ(𝜏1− 𝛿′2 ), where 𝛿′ ∈ (𝛿, 𝑠), and 𝑢 ∈ (𝑠 − i∞, 𝑠 + i∞), we have

|𝑤 − 𝜏𝑢𝑤 | ≥ |𝑤 | − |𝜏𝑢𝑤 | = 𝜏1− 𝛿′2 (1 − 𝜏𝑠) > 0, |1 + 𝑤𝜏−1 | ≥ |𝑤𝜏−1 | − 1 = 𝜏−
𝛿′
2 − 1 > 0,

and |1 + 𝜏𝑢−1𝑤 | ≥ 1 − |𝜏𝑢−1𝑤 | = 1 − 𝜏𝑠− 𝛿
′

2 > 0.

Thus, we can deform the 𝑤-contour to ℭ(𝜏1− 𝑠2 ) as well without crossing any poles. With the

change of variable 𝑢 = 𝑠 + i𝑦, 𝑤 = 𝜏1− 𝑠2 𝑒i𝜃 , and Euler’s reflection formula we have

A𝑠 (𝑡) = (−1)𝑛
∫ 𝑒

𝑡𝐵𝑞 ( 𝑠2 )

1

𝜁−1

4𝜋2

∫ 𝜋

−𝜋

∫
R

(𝑠 + i𝑦)𝑛𝜁 i𝑦

sin(−𝜋(𝑠 + i𝑦)) 𝑒
𝑡 𝑓 (𝑠+i𝑦,𝜏1− 𝑠2 𝑒i𝜃 ) d𝑦

1 − 𝜏𝑠+i𝑦
d𝜃d𝜁 . (3.3.15)

With this expression in hand, upper bound is immediate. By Lemma 3.3.5 ((3.3.9) specifically

with 𝜌 ↦→ 𝑛 − 1, 𝛿 ↦→ 𝑠) pushing the absolute value inside the integrals we see that

|A𝑠 (𝑡) | ≤ C exp(−𝑡ℎ𝑞 (𝑠))
∫ 𝑒

𝑡𝐵𝑞 ( 𝑠2 )

1

1
𝜁

d𝜁 = C · 𝑡𝐵𝑞 ( 𝑠2 ) exp(−𝑡ℎ𝑞 (𝑠)) (3.3.16)

for some constant C = C(𝑞, 𝑠) > 0. Hence taking logarithm and dividing by 𝑡, we get

lim sup
𝑡→∞

|A𝑠 (𝑡) | ≤ −ℎ𝑞 (𝑠) = −(𝑞 − 𝑝)
1 − 𝜏 𝑠2
1 + 𝜏 𝑠2

. (3.3.17)
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Step 2. In this step, we provide a lower bound for Re[A𝑠 (𝑡)]. Set 𝜀 = 𝑡−2/5 > 0. For each 𝑘 ∈ Z,

set 𝑣𝑘 = − 2𝜋
log 𝜏 𝑘 and consider the interval 𝑉𝑘 := [𝑣𝑘 − 𝜀2, 𝑣𝑘 + 𝜀2] . Also set 𝐴𝜀 := {𝜃 ∈ [−𝜋, 𝜋] :

|𝑒i𝜃 − 1| ≤ 𝜀 | log 𝜏 |}. We divide the triple integral in (3.3.15) into following parts

A𝑠 (𝑡) =
∑︁
𝑘∈Z
(I)𝑘 + (II) + (III), (3.3.18)

where

(I)𝑘 :=
∫ 𝑒

𝑡𝐵𝑞 ( 𝑠2 )

1

∫
𝐴𝜀

∫
𝑉𝑘

(−1)𝑛
4𝜋2𝜁

(𝑠 + i𝑦)𝑛𝜁 i𝑦

sin(−𝜋(𝑠 + i𝑦))
𝑒𝑡 𝑓 (𝑠+i𝑦,𝜏

1− 𝑠2 𝑒i𝜃 )d𝑦
1 − 𝜏𝑠+i𝑦

d𝜃d𝜁, (3.3.19)

(II) :=
∫ 𝑒

𝑡𝐵𝑞 ( 𝑠2 )

1

∫
𝐴𝜀

∫
R\∪𝑘𝑉𝑘

(−1)𝑛
4𝜋2𝜁

(𝑠 + i𝑦)𝑛𝜁 i𝑦

sin(−𝜋(𝑠 + i𝑦))
𝑒𝑡 𝑓 (𝑠+i𝑦,𝜏

1− 𝑠2 𝑒i𝜃 )d𝑦
1 − 𝜏𝑠+i𝑦

d𝜃d𝜁, (3.3.20)

(III) :=
∫ 𝑒

𝑡𝐵𝑞 ( 𝑠2 )

1

∫
[−𝜋,𝜋]∩𝐴𝑐𝜀

∫
R

(−1)𝑛
4𝜋2𝜁

(𝑠 + i𝑦)𝑛𝜁 i𝑦

sin(−𝜋(𝑠 + i𝑦))
𝑒𝑡 𝑓 (𝑠+i𝑦,𝜏

1− 𝑠2 𝑒i𝜃 )d𝑦
1 − 𝜏𝑠+i𝑦

d𝜃d𝜁 . (3.3.21)

In subsequent steps we obtain the following estimates for each integral. We claim that we have

(I)0 = (1 +𝑂 (𝑡− 1
5 ))C0√

𝑡
exp(−𝑡ℎ𝑞 (𝑠)), (3.3.22)

where ℎ𝑞 (𝑠) is defined in (3.1.3) and

C0 :=

√︄
(1 + 𝜏 𝑠2 )3

4𝜋(𝑞 − 𝑝) (𝜏 3𝑠
2 −2 − 𝜏2𝑠−2)

(−1)𝑛 (𝑠)𝑛
sin(−𝜋𝑠) (1 − 𝜏𝑠) > 0. (3.3.23)

When 𝑠 is an integer the above constant is defined in a limiting sense. Note that C0 is indeed

positive as 𝑛 = b𝑠c + 1. Furthermore, we claim that we have the following upper bounds for the

other integrals:

∑︁
𝑘∈Z\{0}

| (I)𝑘 | ≤ C𝑡−
13
10 exp(−𝑡ℎ𝑞 (𝑠)). (3.3.24)
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where 𝑣𝑘 = − 2𝜋
log 𝜏 𝑘 and

| (II) |, | (III) | ≤ C𝑡 exp
(
−𝑡ℎ𝑞 (𝑠)

)
exp(− 1

C 𝑡
1
5 ). (3.3.25)

Assuming the validity of (3.3.22), (3.3.24) and (3.3.25) we can complete the proof of lower bound

for (3.2.15). Following the decomposition in (3.3.18) we see that for all large enough 𝑡,

Re[A𝑠 (𝑡)] ≥ Re[(I)0] −
∑︁

𝑘∈𝑍\{0}
| (I)𝑘 | − |(II) | − |(III) |

≥ 1√
𝑡
exp(−𝑡ℎ𝑞 (𝑠))

[
1
2C0 − C𝑡−

4
5 − C𝑡

3
2 exp(− 1

C 𝑡
3
5 )

]
≥ C0

4
√
𝑡
exp(−𝑡ℎ𝑞 (𝑠)).

Taking logarithms and dividing by 𝑡 we get that lim inf𝑡→∞ Re[A𝑠 (𝑡)] ≥ −ℎ𝑞 (𝑠). Combining with

(3.3.17) we arrive at (3.2.15).

Step 3. From this step on, we dedicate the proof to justifying the various equations and claims that

appeared in Step 2. First in this step, we prove (3.3.25). Recall (II) and (III) defined in (3.3.20)

and (3.3.21). For each of them, we push the absolute value around each term of the integrand. We

use (3.3.9) from Lemma 3.3.5 to get

| (II) | ≤ C exp
(
𝑡 sup

𝑦∈R\∪𝑘𝑉𝑘
|𝑒i𝜃−1|≤𝜀 | log 𝜏 |

Re[ 𝑓 (𝑠 + i𝑦, 𝜏1− 𝑠2 𝑒i𝜃)]
) ∫ 𝑒

𝑡𝐵𝑞 ( 𝑠2 )

1

d𝜁
𝜁
, (3.3.26)

| (III) | ≤ C exp
(
𝑡 sup

𝑦∈R
|𝑒i𝜃−1|>𝜀 | log 𝜏 |

Re[ 𝑓 (𝑠 + i𝑦, 𝜏1− 𝑠2 𝑒i𝜃)]
) ∫ 𝑒

𝑡𝐵𝑞 ( 𝑠2 )

1

d𝜁
𝜁
. (3.3.27)

Note that in (3.3.26), we have |𝜏i𝑦−1| ≥ |𝜏i𝑡−
4
5 −1| ≥ 1

2 | log 𝜏 |𝑡− 4
5 for all large enough 𝑡. Meanwhile

in (3.3.27), |𝜏1− 𝑠2 (𝑒i𝜃 − 1) | ≥ 𝜏1− 𝑠2 𝜀 | log 𝜏 | = 𝜏1− 𝑠2 | log 𝜏 |𝑡− 2
5 . In either case, appealing to (3.3.4) in

Lemma 3.3.1 with 𝜌 ↦→ 𝑠 gives us that

𝑓 (𝑠, 𝜏1− 𝑠2 ) − Re[ 𝑓 (𝑠 + i𝑦, 𝜏1− 𝑠2 𝑒i𝜃)] ≥ 1
C · 𝑡

− 4
5 .
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Substituting 𝑓 (𝑠, 𝜏1− 𝑠2 ) with −ℎ𝑞 (𝑠) and evaluating the integrals in (3.3.26) and (3.3.27) gives us

(3.3.25).

Step 4. In this step and subsequent steps we prove (3.3.22) and (3.3.24). Recall that 𝑣𝑘 = − 2𝜋
log 𝜏 𝑘

and 𝜀 = 𝑡−
2
5 . We first focus on the (I)𝑘 integral defined in (3.3.30). Our goal in this and next step

is to show

(I)𝑘 = (1 +𝑂 (𝑡−
1
5 ))C0(𝑘)

2𝜋
√
𝑡

∫ 𝑒
𝑡𝐵𝑞 ( 𝑠2 )

1

𝜁 i𝑣𝑘

𝜁

∫ 𝜀2

−𝜀2
𝜁 i𝑦 exp(−𝑡ℎ𝑞 (𝑠 + i𝑦))d𝑦d𝜁 . (3.3.28)

where

C0(𝑘) :=

√︄
(1 + 𝜏 𝑠2 )3

4𝜋(𝑞 − 𝑝) (𝜏 3𝑠
2 −2 − 𝜏2𝑠−2)

(−1)𝑛 (𝑠 + i𝑣𝑘 )𝑛
sin(−𝜋(𝑠 + i𝑣𝑘 )) (1 − 𝜏𝑠)

(3.3.29)

Towards this end, note that in the argument for (3.3.16), we push the absolute value around

each term of the integrand. Thus, the upper bound achieved in (3.3.16) guarantees that the triple

integral in (I)𝑘 is absolutely convergent. Thereafter, Fubini’s theorem allows us to switch the order

of integration inside (I)𝑘 . By a change-of-variables, we see that

(I)𝑘 = (−1)𝑛
∫ 𝑒

𝑡𝐵𝑞 ( 𝑠2 )

1

𝜁 i𝑣𝑘−1

4𝜋2

∫ 𝜀2

−𝜀2

(𝑠 + i𝑦 + i𝑣𝑘 )𝑛𝜁 i𝑦

sin(−𝜋(𝑠 + i𝑦 + i𝑣𝑘 ))

∫
𝐴𝜀

𝑒𝑡 𝑓 (𝑠+i𝑦,𝜏
1− 𝑠2 𝑒i𝜃 )d𝜃

1 − 𝜏𝑠+i𝑦
d𝑦d𝜁,

where recall 𝐴𝜀 = {𝜃 ∈ [−𝜋, 𝜋] : |𝑒i𝜃 − 1| ≤ 𝜀 | log 𝜏 |}. Note that in this case range of 𝑦 lies in a

small window of [−𝑡− 4
5 , 𝑡−

4
5 ]. As 𝑠 is fixed, one can replace (𝑠 + i𝑦 + i𝑣𝑘 )𝑛, sin(−𝜋(𝑠 + i𝑦 + i𝑣𝑘 )),

and 1 − 𝜏𝑠+i𝑦 by (𝑠 + i𝑣𝑘 )𝑛, sin(−𝜋(𝑠 + i𝑣𝑘 )), and 1 − 𝜏𝑠 with an expense of 𝑂 (𝑡− 4
5 ) term (which

can be chosen independent of 𝑘). We thus obtain

(I)𝑘 =
(−1)𝑛 (𝑠 + i𝑣𝑘 )𝑛 (1 +𝑂 (𝑡−

4
5 ))

sin(−𝜋(𝑠 + i𝑣𝑘 )) (1 − 𝜏𝑠)

∫ 𝑒
𝑡𝐵𝑞 ( 𝑠2 )

1

𝜁 i𝑣𝑘

4𝜋2𝜁

∫ 𝜀2

−𝜀2
𝜁 i𝑦

∫
𝐴𝜀

𝑒𝑡 𝑓 (𝑠+i𝑦,𝜏
1− 𝑠2 𝑒i𝜃 )d𝜃d𝑦d𝜁 .

(3.3.30)
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We now evaluate the 𝜃-integral in the above expression. We claim that

∫
𝐴𝜀

𝑒𝑡 𝑓 (𝑠+i𝑦,𝜏
1− 𝑠2 𝑒i𝜃 )d𝜃 = (1 +𝑂 (𝑡− 1

5 ))
√︄

𝜋(1 + 𝜏 𝑠2 )3

𝑡 (𝑞 − 𝑝) (𝜏 3𝑠
2 −2 − 𝜏2𝑠−2)

exp(−𝑡ℎ𝑞 (𝑠 + i𝑦)) (3.3.31)

Note that (3.3.28) follows from (3.3.31). Hence we focus on proving (3.3.31) in next step.

Step 5. In this step we prove (3.3.31). For simplicity we let 𝑢 = 𝑠 + i𝑦 temporarily. Taylor

expanding the exponent appearing in l.h.s. of (3.3.31) around 𝜃 = − 𝑦2 log 𝜏 and using the fact

𝜕𝑧 𝑓 (𝑢, 𝑧) |𝑧=𝜏1− 𝑢2 = 0, we get

l.h.s. of (3.3.31) =
∫
𝐴𝜀

𝑒𝑡 𝑓 (𝑢,𝜏
1− 𝑢2 𝑒i(𝜃+ 𝑦2 log 𝜏 ) )d𝜃

= exp(𝑡 𝑓 (𝑢, 𝜏1− 𝑢2 ))
∫
𝐴𝜀

exp
(
− 𝑡

2
𝜕2
𝑧 𝑓 (𝑢, 𝜏1− 𝑢2 ) (𝜃 + 𝑦

2 log 𝜏)2 +𝑂 (𝑡− 1
5 )

)
d𝜃.

(3.3.32)

Note that we have replaced the higher order terms by 𝑂 (𝑡− 1
5 ) in the exponent above as 𝜃, 𝑦 are at

most of the order 𝑂 (𝑡− 2
5 ). Furthermore, for all 𝑡 large enough,

𝐴𝜀 = {𝜃 ∈ [−𝜋, 𝜋] : |𝑒i𝜃 − 1| ≤ 𝜀 | log 𝜏 |}

= {𝜃 ∈ [−𝜋, 𝜋] : | sin 𝜃
2 | ≤

1
2𝜀 | log 𝜏 |} ⊃ {𝜃 ∈ [−𝜋, 𝜋] : |𝜃 | ≤ 𝜀 | log 𝜏 |}

As 𝑦 ∈ [−𝜀2, 𝜀2], we see that 𝐴𝜀 ⊃ {𝜃 ∈ [−𝜋, 𝜋] : |𝜃 + 𝑦

2 log 𝜏 | ≤ 1
2𝜀 | log 𝜏 |} for all large enough

𝑡. Thus on 𝐴𝑐𝜀 we have |𝜃 + 𝑦

2 log 𝜏 | ≥ 1
2 𝑡
− 2

5 | log 𝜏 |. Furthermore for small enough 𝑦, by (3.3.2), we

have Re[𝜕2
𝑧 𝑓 (𝑢, 𝜏1− 𝑢2 )] > 0. Hence the above integral can be approximated by Gaussian integral.

In particular, we have

r.h.s. of (3.3.32) = (1 +𝑂 (𝑡− 1
5 )) exp(𝑡 𝑓 (𝑢, 𝜏1− 𝑢2 ))

√︄
2𝜋

𝑡𝜕2
𝑧 𝑓 (𝑢, 𝜏1− 𝑢2 )

(3.3.33)

Observe that as 𝑢 = 𝑠 + i𝑦 and 𝑦 is at most 𝑂 (𝑡− 4
5 ), 𝜕2

𝑧 𝑓 (𝑢, 𝜏1− 𝑢2 ) in r.h.s. of (3.3.33) can be

89



replaced by 𝜕2
𝑧 𝑓 (𝑠, 𝜏1− 𝑠2 ) by adjusting the order term. Recall the expression for 𝜕2

𝑧 𝑓 (𝑠, 𝜏1− 𝑠2 )

from (3.3.2) and observe that from the definition of 𝑓 and ℎ𝑞 from (3.3.1) and (3.1.3) we have

𝑓 (𝑢, 𝜏1− 𝑢2 ) = ℎ𝑞 (𝑠 + i𝑦). We thus arrive at (3.3.31).

Step 6. With the expression of (I)𝑘 obtained in (3.3.28), in this step we prove (3.3.22) and (3.3.24).

As 𝑦 varies in the window of 𝑦 ∈ [−𝑡− 4
5 , 𝑡−

4
5 ], by Taylor expansion we may replace 𝑡ℎ𝑞 (𝑠 + i𝑦)

appearing in the r.h.s. of (3.3.28) by 𝑡 (ℎ𝑞 (𝑠) + i𝑦ℎ′𝑞 (𝑠)) at the expense of an 𝑂 (𝑡− 3
5 ) term. Upon

making a change of variable 𝑟 = log 𝜁 − 𝑡ℎ′𝑞 (𝑠) we thus have

(I)𝑘 = (1 +𝑂 (𝑡−
1
5 ))C0(𝑘)

2𝜋
√
𝑡
𝑒−𝑡ℎ𝑞 (𝑠)

∫ 𝑡𝐵𝑞 ( 𝑠2 )−𝑡ℎ
′
𝑞 (𝑠)

−𝑡ℎ′𝑞 (𝑠)
𝑒i𝑣𝑘 (𝑟+𝑡ℎ′𝑞 (𝑠))

∫ 𝜀2

−𝜀2
𝑒i𝑦𝑟d𝑦d𝑟

= (1 +𝑂 (𝑡− 1
5 ))C0(𝑘)

2𝜋
√
𝑡
𝑒−𝑡ℎ𝑞 (𝑠)

∫ 𝑡𝐵𝑞 ( 𝑠2 )−𝑡ℎ
′
𝑞 (𝑠)

−𝑡ℎ′𝑞 (𝑠)
𝑒i𝑣𝑘 (𝑟+𝑡ℎ′𝑞 (𝑠)) 𝑒

i𝜀2𝑟 − 𝑒−i𝜀2𝑟

i𝑟
d𝑟. (3.3.34)

We claim that for 𝑘 = 0, (which implies 𝑣𝑘 = 0) we have

∫ 𝑡𝐵𝑞 ( 𝑠2 )−𝑡ℎ
′
𝑞 (𝑠)

−𝑡ℎ′𝑞 (𝑠)

𝑒i𝜀2𝑟 − 𝑒−i𝜀2𝑟

i𝑟
d𝑟 = 2𝜋(1 +𝑂 (𝑡− 1

5 )) (3.3.35)

For 𝑘 ≠ 0, we have �����∫ 𝑡𝐵𝑞 ( 𝑠2 )−𝑡ℎ
′
𝑞 (𝑠)

−𝑡ℎ′𝑞 (𝑠)
𝑒i𝑣𝑘 (𝑟+𝑡ℎ′𝑞 (𝑠)) 𝑒

i𝜀2𝑟 − 𝑒−i𝜀2𝑟

i𝑟
d𝑟

����� ≤ C𝑡−
4
5 (3.3.36)

where C > 0 can be chosen free of 𝑘 . Assuming (3.3.35) and (3.3.36) we may now complete the

proof of (3.3.22) and (3.3.24). Indeed, for 𝑘 = 0 upon observing that C0 = C0(0) (recall (3.3.23)

and (3.3.29)), in view of (3.3.34) and (3.3.35) we get (3.3.22). Whearas for 𝑘 ≠ 0, thanks to the

estimate in (3.3.36), in view of (3.3.34), we have

∑︁
𝑘∈Z\{0}

| (I)𝑘 | ≤ C𝑡−
13
10 exp(−𝑡ℎ𝑞 (𝑠))

∑︁
𝑘∈Z\{0}

|C0(𝑘) |. (3.3.37)
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For 𝑦 ≠ 0, | (𝑠+i𝑦)𝑛
sin(−𝜋(𝑠+i𝑦)) | ≤ C|𝑦 |𝑛𝑒−|𝑦 |/C forces r.h.s. of (3.3.37) to be summable proving (3.3.24).

Step 7. In this step we prove (3.3.35) and (3.3.36). Recalling that 𝜀2 = 𝑡−
4
5 , we see that

∫ 𝑡𝐵𝑞 ( 𝑠2 )−𝑡ℎ
′
𝑞 (𝑠)

−𝑡ℎ′𝑞 (𝑠)

𝑒i𝜀2𝑟 − 𝑒−i𝜀2𝑟

i𝑟
d𝑟 =

∫ 𝑡1/5𝐵𝑞 ( 𝑠2 )−𝑡
1/5ℎ′𝑞 (𝑠)

−𝑡1/5ℎ′𝑞 (𝑠)

2 sin 𝑟
𝑟

d𝑟. (3.3.38)

Following the definition of ℎ𝑞 and 𝐵𝑞 in Proposition 3.2.1 we observe that −ℎ′𝑞 (𝑠) =
𝜏
𝑠
2 log 𝜏
(1+𝜏

𝑠
2 )2

< 0

and

𝐵𝑞 (𝑠) − ℎ′𝑞 (𝑠) =
1 − 𝜏𝑠 + 𝜏 𝑠2 𝑠 log 𝜏

𝑠(1 + 𝜏 𝑠2 )
= −𝑠𝐵′𝑞 (𝑠) > 0,

where 𝐵′𝑞 (𝑠) < 0 follows from (3.2.1). Thus as 𝐵𝑞 is strictly decreasing (Proposition 3.2.1 (a))

we have 𝐵𝑞 ( 𝑠2 ) > 𝐵𝑞 (𝑠) > ℎ′𝑞 (𝑠). Thus the integral on r.h.s. of (3.3.38) can be approximated

by (1 + 𝑂 (𝑡−1/5))
∫
R

2 sin 𝑟
𝑟

d𝑟 = 2𝜋(1 + 𝑂 (𝑡−1/5)). This proves (3.3.35). We now focus on proving

(3.3.36). Towards this end, we divide the integral appearing in (3.3.36) into three regions as follows

l.h.s. of (3.3.36) ≤
�����∫ −1

−𝑡ℎ′𝑞 (𝑠)
𝑒i𝑣𝑘 (𝑟+𝑡ℎ′𝑞 (𝑠)) 𝑒

i𝜀2𝑟 − 𝑒−i𝜀2𝑟

i𝑟
d𝑟

����� +
�����∫ 1

−1
𝑒i𝑣𝑘 (𝑟+𝑡ℎ′𝑞 (𝑠)) 𝑒

i𝜀2𝑟 − 𝑒−i𝜀2𝑟

i𝑟
d𝑟

�����
+

�����∫ 𝑡𝐵𝑞 ( 𝑠2 )−𝑡ℎ
′
𝑞 (𝑠)

1
𝑒i𝑣𝑘 (𝑟+𝑡ℎ′𝑞 (𝑠)) 𝑒

i𝜀2𝑟 − 𝑒−i𝜀2𝑟

i𝑟
d𝑟

����� .
(3.3.39)

Note that for the second term appearing in r.h.s. of (3.3.39) can be bounded by 4𝑡− 4
5 using����∫ 1

−1
𝑒i𝑣𝑘 (𝑟+𝑡ℎ′𝑞 (𝑠)) 2 sin(𝜀2𝑟)

𝑟
d𝑟

���� ≤ ∫ 1

−1

����2 sin(𝜀2𝑟)
𝑟

���� d𝑟 ≤ 4𝜀2 = 4𝑡−
4
5 .

For the first term appearing in r.h.s. of (3.3.39), by making a change of variable 𝑟 ↦→ 𝑟
𝑣𝑘−𝜀2

𝑣𝑘+𝜀2 we

observe the following identity:

∫ −1

−𝑡ℎ′𝑞 (𝑠)
𝑒i𝑣𝑘 (𝑟+𝑡ℎ′𝑞 (𝑠)) 𝑒

i𝜀2𝑟

i𝑟
d𝑟 =

∫ − 𝑣𝑘+𝜀
2

𝑣𝑘−𝜀2

−𝑡ℎ′𝑞 (𝑠)
𝑣𝑘+𝜀2

𝑣𝑘−𝜀2

𝑒i𝑣𝑘 (𝑟+𝑡ℎ′𝑞 (𝑠)) 𝑒
−i𝜀2𝑟

i𝑟
d𝑟.
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This leads to

∫ −1

−𝑡ℎ′𝑞 (𝑠)
𝑒i𝑣𝑘 (𝑟+𝑡ℎ′𝑞 (𝑠)) 𝑒

i𝜀2𝑟 − 𝑒−i𝜀2𝑟

i𝑟
d𝑟 =

∫ −𝑡ℎ′𝑞 (𝑠)
𝑣𝑘+𝜀2

𝑣𝑘−𝜀2

−𝑡ℎ′𝑞 (𝑠)
𝑒i𝑣𝑘 (𝑟+𝑡ℎ′𝑞 (𝑠)) 𝑒

−i𝜀2𝑟

i𝑟
d𝑟

+
∫ −1

− 𝑣𝑘+𝜀
2

𝑣𝑘−𝜀2

𝑒i𝑣𝑘 (𝑟+𝑡ℎ′𝑞 (𝑠)) 𝑒
−i𝜀2𝑟

i𝑟
d𝑟.

In the first integral the length of the interval is 𝑂 (𝑡1/5). However, the integrand itself is 𝑂 (𝑡−1).

For the second integral, the length of the interval is𝑂 (𝑡−4/5), and the integrand itself is𝑂 (1). Note

that this is only possible when 𝑘 ≠ 0 (forcing 𝑣𝑘 ≠ 0). And indeed all the 𝑂 terms can be taken

to be free of 𝑣𝑘 (and hence of 𝑘). Combining this we get that the first term appearing in r.h.s of

(3.3.39) can be bounded by C𝑡− 4
5 . An exact analogous argument provides the same bound for the

third term in r.h.s. of (3.3.39) as well. This proves (3.3.36) completing the proof.

3.4 Bounds for the Higher order terms

The goal of this section is to establish bounds for the higher-order term B𝑠 (𝑡) defined in

(3.2.14). First, recall the Fredholm determinant formula from (3.1.10). Using the tr(𝐾∧𝐿
𝜁,𝑡
) no-

tation from (3.1.9) we may rewrite B𝑠 (𝑡) as follows.

B𝑠 (𝑡) = (−1)𝑛
∫ 𝑒

𝑡𝐵𝑞 ( 𝑠2 )

1
𝜁−𝛼

d𝑛

d𝜁𝑛

[
1 +

∞∑︁
𝐿=2

tr(𝐾∧𝐿𝜁 .𝑡 )
]
d𝜁 . (3.4.1)

We claim that we could exchange the various integrals, derivatives and sums appearring in the r.h.s.

of (3.4.1) and obtain B𝑠 (𝑡) through term-by-term differentiation, i.e.

B𝑠 (𝑡) = (−1)𝑛
∞∑︁
𝐿=2

∫ 𝑒
𝑡𝐵𝑞 ( 𝑠2 )

1
𝜁−𝛼𝜕𝑛𝜁 (tr(𝐾

∧𝐿
𝜁,𝑡 ))d𝜁 . (3.4.2)

Towards this end, we devote Section 3.4.1 to its justification. Following the technical lemmas in

Section 3.4.1, we proceed to prove Proposition 3.2.5 in Section 3.4.2.
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3.4.1 Interchanging sums, integrals and derivatives

Recall from (3.3.8) the definition of 𝐾 (𝑛)
𝜁,𝑡
. As a starting point of our analysis, we introduce the

following notations before providing the bounds on |𝜕𝑛
𝜁
tr(𝐾∧𝐿

𝜁,𝑡
) |. For any 𝑛, 𝐿 ∈ Z>0, define

𝔐(𝐿, 𝑛) := { ®𝑚 = (𝑚1, . . . , 𝑚𝐿) ∈ (Z≥0)𝐿 : 𝑚1 + · · · + 𝑚𝐿 = 𝑛}, (3.4.3)

and
( 𝑛
®𝑚
)

:= 𝑛!
𝑚1!···𝑚𝐿! . Furthermore, for any 𝐿 ∈ Z>0, 𝜁 ∈ R>0 and ®𝑚 ∈ 𝔐(𝐿, 𝑛), let

𝐼𝜁 ( ®𝑚) :=
∫

. . .

∫
det(𝐾 (𝑚𝑖)

𝜁,𝑡
(𝑤𝑖, 𝑤 𝑗 ))𝐿𝑖, 𝑗=1

𝐿∏
𝑖=1

d𝑤𝑖 (3.4.4)

where 𝑤𝑖-contour lies on ℭ(𝜏1− 𝛿2 ). We also set | ®𝑚 |>0 := |{𝑖 | 𝑖 ∈ Z ∩ [1, 𝐿], 𝑚𝑖 > 0}|, i.e. the

number of positive 𝑚𝑖 in ®𝑚.

To begin with, the next two lemma investigate the term-by-term 𝑛-th derivatives of tr(𝐾∧𝐿
𝜁,𝑡
)

that appear on the r.h.s. of (3.4.2). The following should be regarded as a higher order version of

Proposition 3.3.6.

Proposition 3.4.1. Fix 𝑛, 𝐿 ∈ Z>0 and let 𝔐(𝐿, 𝑛) be defined as in (3.4.3). Recall the function

𝐵𝑞 (𝑥) from Proposition 3.2.1. For any 𝑡 > 0, the function 𝜁 ↦→ tr(𝐾∧𝐿
𝜁,𝑡
) is infinitely differentiable

at each 𝜁 ∈ [1, 𝑒𝑡𝐵𝑞 ( 𝑠2 )], with

𝜕𝑛𝜁 tr(𝐾∧𝐿𝜁,𝑡 ) =
1
𝐿!

∑︁
®𝑚∈𝔐(𝐿,𝑛)

(
𝑛

®𝑚

)
𝐼𝜁 ( ®𝑚), (3.4.5)

where the r.h.s of (3.4.5) converges absolutely uniformly. Furthermore, there exists a constant

C = C(𝑛, 𝛿, 𝑞) > 0 such that for all ®𝑚 ∈ 𝔐(𝐿, 𝑛) we have

|𝐼𝜁 ( ®𝑚) | ≤ C𝐿𝐿
𝐿
2 𝜁 𝐿𝛿−𝑛𝑒−𝑡ℎ𝑞 (𝛿) , |𝜕𝑛𝜁 tr(𝐾∧𝐿𝜁,𝑡 ) | ≤

C𝐿

𝐿!
𝐿𝑛𝐿

𝐿
2 𝜁 𝐿𝛿−𝑛𝑒−𝑡ℎ𝑞 (𝛿) . (3.4.6)

Proof. The proof idea is same as that of Proposition 3.3.6, but it’s more cumbersome notation-
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ally. For clarity we split the proof into four steps. In the first step, we introduce some necessary

notations. In Steps 2-3, we prove (3.4.5) and in the final step, we prove (3.4.6).

Step 1. In this step we summarize the notation we will require in the proof of (3.4.5). We fix

𝐿 ∈ Z>0, 𝛿 ∈ (0, 1), 𝑡 > 0, and 𝜁1, 𝜁2 > 0 and recall 𝐵𝑞 (𝑥) from Proposition 3.2.1.

We define ®𝜉𝑘 ∈ [1, 𝑒𝑡𝐵𝑞 (
𝑠
2 )]𝐿 to be the vector whose first 𝑘 entries are 𝜁2 and the rest 𝐿 − 𝑘

entries are 𝜁1:

®𝜉𝑘 := (𝜉𝑘,1, 𝜉𝑘,2, . . . , 𝜉𝑘,𝐿) := ( 𝜁2 , 𝜁2 , . . . , 𝜁2︸               ︷︷               ︸
𝑘 times

, 𝜁1 , 𝜁1 , . . . , 𝜁1︸               ︷︷               ︸
𝐿−𝑘 times

), 𝑘 = 0, 1, . . . , 𝐿.

For any ®𝑚 = (𝑚1, 𝑚2, . . . , 𝑚𝐿) ∈ (Z≥0)𝐿 we define the following integral of mixed parameters

𝐼
(𝑘)
𝜁1,𝜁2
( ®𝑚) :=

∫
. . .

∫
det(𝐾 (𝑚𝑖)

𝜉𝑘,𝑖 ,𝑡
(𝑤𝑖, 𝑤 𝑗 ))𝐿𝑖, 𝑗=1

𝐿∏
𝑖=1

d𝑤𝑖 . (3.4.7)

where 𝑤𝑖-contour lies on ℭ(𝜏1− 𝛿2 ). 𝐼 (𝑘)
𝜁1,𝜁2
( ®𝑚) serves as an interpolation between 𝐼𝜁1 ( ®𝑚) and 𝐼𝜁2 ( ®𝑚)

defined in (3.4.4) as 𝑘 increases from 0 to 𝐿 where the parameters 𝜁 are now allowed to be different

for different rows in the determinant.

We next define ®𝑒𝑘 = (𝑒𝑘,1, 𝑒𝑘,2, . . . , 𝑒𝑘,𝐿) to be the unit vector with 1 in the 𝑘-th position and 0

elsewhere. With the above notations in place, for each 𝑗 , 𝑘 ∈ {1, 2, . . . , 𝐿} and ®𝑚 ∈ (Z≥0)𝐿 we set

𝔏
(1)
𝜁1,𝜁2
( ®𝑚; 𝑘) :=

1
𝜁2 − 𝜁1

[
𝐼
(𝑘)
𝜁1,𝜁2
( ®𝑚) − 𝐼 (𝑘−1)

𝜁1,𝜁2
( ®𝑚) − (𝜁2 − 𝜁1)𝐼 (𝑘−1)

𝜁1,𝜁2
( ®𝑚 + ®𝑒𝑘 )

]
, (3.4.8)

𝔏
(2)
𝜁1,𝜁2
( ®𝑚; 𝑗 , 𝑘) := 𝐼 ( 𝑗)

𝜁1,𝜁2
( ®𝑚 + ®𝑒𝑘 ) − 𝐼 ( 𝑗−1)

𝜁1,𝜁2
( ®𝑚 + ®𝑒𝑘 ). (3.4.9)

Note that we define (3.4.8) modelling after 𝐷𝜁1,𝜁2 in the proof of Proposition 3.3.6. Here, the only

differences between the three determinants of the respective 𝐼 (𝑘)
𝜁1,𝜁2
( ®𝑚)’s lie in the 𝑘-th row, i.e.

𝐾
(𝑚𝑘)
𝜁2,𝑡

v.s. 𝐾 (𝑚𝑘)
𝜁1,𝑡

v.s. 𝐾 (𝑚𝑘+1)
𝜁1,𝑡

. So we have isolated the differences and tried to reduce the question

of differentiability to row-wise in (3.4.8). Meanwhile, (3.4.9) “measures" the distance between

𝐼
(𝑘)
𝜁1,𝜁2
( ®𝑚 + ®𝑒𝑘 ) and 𝐼 (𝑘−1)

𝜁1,𝜁2
( ®𝑚 + ®𝑒𝑘 ) where they differ only in 𝜉𝑘,𝑘 = 𝜁2 or 𝜁1 for 𝐾 (𝑚𝑘)

𝜉𝑘,𝑘 ,𝑡
on the 𝑘-th
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row of the determinant.

We finally remark that all the 𝑤𝑖-contours in the integrals appearing throughout the proof are

on ℭ(𝜏1− 𝛿2 ) – we will not mention this further. We would also drop (𝑤𝑖, 𝑤 𝑗 ) from 𝐾
(𝑚𝑖)
•,𝑡 (𝑤𝑖, 𝑤 𝑗 )

when it is clear from the context.

Step 2. We show the infinite differentiability of tr(𝐾∧𝐿
𝜁,𝑡
) by proving (3.4.5) in this step. The proof

proceeds via induction on 𝑛. When 𝑛 = 0, observe that (3.4.5) recovers the formula of tr(𝐾∧𝐿
𝜁,𝑡
).

This constitutes the base case. To prove the induction step, suppose (3.4.5) holds for 𝑛 = 𝑁 . Then

for 𝑛 = 𝑁 + 1, we fix 𝜁1, 𝜁2 > 0. Without loss of generality, we assume 𝜁1 + 1 > 𝜁2 > 𝜁1 and

consider

𝐷𝜁1,𝜁2 :=
𝜕𝑁
𝜁

tr(𝐾∧𝐿
𝜁2,𝑡
) − 𝜕𝑁

𝜁
tr(𝐾∧𝐿

𝜁1,𝑡
)

𝜁2 − 𝜁1
− 1
𝐿!

∑︁
®𝑚∈𝔐(𝐿,𝑁+1)

(
𝑁 + 1
®𝑚

)
𝐼𝜁1 ( ®𝑚). (3.4.10)

To prove (3.4.5), it suffices to show |𝐷𝜁1,𝜁2 | → 0 as 𝜁2 → 𝜁1. Towards this end, we first claim that

for all ®𝑚 ∈ 𝔐(𝐿, 𝑁) and for all 𝑗 , 𝑘 ∈ {1, 2, . . . , 𝐿} we have

��𝔏(1)
𝜁1,𝜁2
( ®𝑚; 𝑘)

��→ 0, and
��𝔏(2)
𝜁1,𝜁2
( ®𝑚; 𝑗 , 𝑘)

��→ 0, as 𝜁2 → 𝜁1, (3.4.11)

where 𝔏
(1)
𝜁1,𝜁2
( ®𝑚; 𝑘) and 𝔏

(2)
𝜁1,𝜁2
( ®𝑚; 𝑗 , 𝑘) are defined in (3.4.8) and (3.4.9) respectively. We postpone

the proof of (3.4.11) to the next step. Assuming its validity, we now proceed to complete the

induction step.

Towards this end, we first manipulate the expression appearing in r.h.s. of (3.4.10). A simple

combinatorial fact shows

∑︁
®𝑚∈𝔐(𝐿,𝑁+1)

(
𝑁 + 1
®𝑚

)
𝐼𝜁1 ( ®𝑚) =

𝐿∑︁
𝑘=1

∑︁
®𝑚∈𝔐(𝐿,𝑁)

(
𝑁

®𝑚

)
𝐼𝜁1 ( ®𝑚 + ®𝑒𝑘 ),

where ®𝑒𝑘 is defined in Step 1. Substituting this combinatorics back into the r.h.s. of (3.4.10) and
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using the induction step for 𝑛 = 𝑁 , allows us to rewrite 𝐷𝜁1,𝜁2 as follows:

r.h.s. of (3.4.10) =
1
𝐿!

∑︁
®𝑚∈𝔐(𝐿,𝑁)

(
𝑁

®𝑚

) [
𝐼𝜁2 ( ®𝑚) − 𝐼𝜁1 ( ®𝑚)

𝜁2 − 𝜁1
−

𝐿∑︁
𝑘=1

𝐼𝜁1 ( ®𝑚 + ®𝑒𝑘 )
]
. (3.4.12)

Recalling the definition of 𝐼𝜁 ( ®𝑚) in (3.4.4) and that of 𝐼 (𝑘)
𝜁1,𝜁2
( ®𝑚) in (3.4.7), we see that

∑𝐿
𝑘=1 [𝐼

(𝑘)
𝜁1,𝜁2
( ®𝑚)−

𝐼
(𝑘−1)
𝜁1,𝜁2
( ®𝑚)] telescopes to 𝐼𝜁2 ( ®𝑚) − 𝐼𝜁1 ( ®𝑚). Furthermore, if we recall 𝔏(1)

𝜁1,𝜁2
( ®𝑚; 𝑘) and 𝔏

(2)
𝜁1,𝜁2
( ®𝑚; 𝑗 , 𝑘)

from (3.4.8) and (3.4.9) respectively, we observe that

𝐼
(𝑘−1)
𝜁1,𝜁2
( ®𝑚 + ®𝑒𝑘 ) − 𝐼𝜁1 ( ®𝑚 + ®𝑒𝑘 ) = 𝐼

(𝑘−1)
𝜁1,𝜁2
( ®𝑚 + ®𝑒𝑘 ) − 𝐼 (0)𝜁1,𝜁2

( ®𝑚 + ®𝑒𝑘 ) =
𝑘∑︁
𝑗=1

𝔏
(2)
𝜁1,𝜁2
( ®𝑚; 𝑗 , 𝑘).

Combining these observations, we have

r.h.s. of (3.4.12) =
1
𝐿!

∑︁
®𝑚∈𝔐(𝐿,𝑁)

(
𝑁

®𝑚

) 𝐿∑︁
𝑘=1

[
𝐼
(𝑘)
𝜁1,𝜁2
( ®𝑚) − 𝐼 (𝑘−1)

𝜁1,𝜁2
( ®𝑚) − (𝜁2 − 𝜁1)𝐼𝜁1 ( ®𝑚 + ®𝑒𝑘 )

]
𝜁2 − 𝜁1

=
1
𝐿!

∑︁
®𝑚∈𝔐(𝐿,𝑁)

(
𝑁

®𝑚

) 𝐿∑︁
𝑘=1

𝔏(1)𝜁1,𝜁2
( ®𝑚; 𝑘) +

𝑘−1∑︁
𝑗=1

𝔏
(2)
𝜁1,𝜁2
( ®𝑚; 𝑗 , 𝑘)

 . (3.4.13)

Clearly r.h.s. of (3.4.13) goes to zero as 𝜁2 → 𝜁1 whenever (3.4.11) is true. Thus by induction

we have (3.4.5).

Step 3. In this step we prove (3.4.11). Recall 𝔏(1)
𝜁1,𝜁2
( ®𝑚; 𝑘) from (3.4.8). Following the definition

of 𝐼 (𝑘)
𝜁1,𝜁2
( ®𝑚) from (3.4.7) we have

��𝔏(1)
𝜁1,𝜁2
( ®𝑚; 𝑘)

�� ≤ ∫
· · ·

∫
1

𝜁2 − 𝜁1

���det(𝐾 (𝑚𝑖)
𝜉𝑘,𝑖 ,𝑡
)𝐿𝑖, 𝑗=1 − det(𝐾 (𝑚𝑖)

𝜉𝑘−1,𝑖 ,𝑡
)𝐿𝑖, 𝑗=1

−(𝜁2 − 𝜁1) det(𝐾 (𝑚𝑖+𝑒𝑘,𝑖)
𝜉𝑘−1,𝑖 ,𝑡

)𝐿𝑖, 𝑗=1

��� 𝐿∏
𝑖=1

d𝑤𝑖 .

Recall that in the above expression, up to a constant, the three determinants differ only in the 𝑘-th

row. Hence the above expression can be written as
∫
· · ·

∫
| det(𝐴) |∏𝐿

𝑖=1 d𝑤𝑖, where the entries of
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𝐴 are given as follows:

𝐴𝑖, 𝑗 = 𝐾
(𝑚𝑖)
𝜁2,𝑡
(𝑤𝑖, 𝑤 𝑗 ), 𝑖 < 𝑘, 𝐴𝑖, 𝑗 = 𝐾

(𝑚𝑖)
𝜁1,𝑡
(𝑤𝑖, 𝑤 𝑗 ), 𝑖 > 𝑘,

𝐴𝑘, 𝑗 =
1

𝜁2 − 𝜁1
[𝐾 (𝑚𝑘)

𝜁2,𝑡
(𝑤𝑘 , 𝑤 𝑗 ) − 𝐾 (𝑚𝑘)𝜁1,𝑡

(𝑤𝑘 , 𝑤 𝑗 ) − (𝜁2 − 𝜁1)𝐾 (𝑚𝑘+1)𝜁1,𝑡
(𝑤𝑘 , 𝑤 𝑗 )]

=
1

2𝜋i

∫ 𝛿+i∞

𝛿−i∞
Γ(−𝑢)Γ(1 + 𝑢)𝑅𝜁1,𝜁2;𝑚𝑘 (𝑢)𝑒𝑡 𝑓 (𝑢,𝑤𝑘)

d𝑢
𝑤 𝑗 − 𝜏𝑢𝑤𝑘

,

where 𝑅𝜁1,𝜁2;𝑚𝑘 (𝑢) is same as in (3.3.13). As 𝑚𝑖’s are at most 𝑛, by Lemma 3.3.5 ((3.3.10) specifi-

cally), we can get a constant C > 0 depending only on 𝑛, 𝛿, and 𝑞, so that

|𝐴𝑖, 𝑗 | ≤ C(𝜁 𝛿−𝑚𝑘1 + 𝜁 𝛿−𝑚𝑘2 ) exp(−𝑡ℎ𝑞 (𝛿)) ≤ C(1 + 𝜁 𝛿2 ) exp(−𝑡ℎ𝑞 (𝛿))

for all 𝑖 ≠ 𝑘 . For 𝐴𝑘, 𝑗 , we follow the same argument as in Proposition 3.3.6 (along the lines of

(3.3.14)) to get

|𝐴𝑘, 𝑗 | ≤
𝜏1− 𝛿2

2𝜋

∫ 𝜁2

𝜁1

��𝜎𝛿+i𝑦−𝑚𝑘−2�� d𝜎
· max
𝑤 𝑗 ,𝑤𝑘∈ℭ(𝜏1− 𝛿2 )

∫
R

���� (𝛿 + i𝑦)𝑚𝑘+2
sin(−𝜋(𝛿 + i𝑦)) 𝑒

𝑡 𝑓 (𝛿+i𝑦,𝑤𝑘)
���� d𝑦
|𝑤 𝑗 − 𝜏𝛿+i𝑦𝑤𝑘 |

.

Note that by Lemma 3.3.5 ((3.3.9) specifically) we see that the above maximum is bounded by

C exp(−𝑡ℎ𝑞 (𝛿)) where again as 𝑚𝑖’s are at most 𝑛, the constant C can be chosen dependent only

on 𝑛,𝛿, and 𝑞. Since |𝜎𝑢−𝑛−2 | = |𝜎𝛿−𝑚𝑘−2 | ≤ |𝜁 𝛿−𝑚𝑘−2
1 | ≤ |𝜁 𝛿−2

1 | over the interval [𝜁1, 𝜁2] for

𝛿 ∈ (0, 1), we obtain

|𝐴𝑘, 𝑗 | ≤ C exp(−𝑡ℎ𝑞 (𝛿))
∫ 𝜁2

𝜁1

|𝜎 |𝛿−𝑚𝑘−2d𝜎 ≤ C exp(−𝑡ℎ𝑞 (𝛿))𝜁 𝛿−2
1 (𝜁2 − 𝜁1).

As all the above estimates on |𝐴𝑖, 𝑗 | are uniform in 𝑤𝑖’s, using Hadamard inequality we have

∫
· · ·

∫
| det(𝐴) |

𝐿∏
𝑖=1

d𝑤𝑖 ≤ C𝐿𝐿
𝐿
2 exp(−𝑡𝐿ℎ𝑞 (𝛿)) (1 + 𝜁 𝛿2 )

𝐿−1𝜁 𝛿−2
1 (𝜁2 − 𝜁1)
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Taking 𝜁2 → 𝜁1 above, we get the first part of (3.4.11). The proof of the second part of (3.4.11)

follows similarly by observing that the corresponding determinants also differ only in one row.

One can then deduce the second part of (3.4.11) using the uniform estimates of the kernel and

difference of kernels given in (3.3.10) and (3.3.11) respectively. As the proof follows exactly in

the lines of above arguments, we omit the technical details.

Step 4. In this step we prove (3.4.6).

Recall the definition of 𝐼𝜁 ( ®𝑚) from (3.4.4). By Hadamard’s inequality and Lemma 3.3.5 we

have

| det(𝐾 (𝑚𝑖)
𝜁,𝑡
)𝐿𝑖, 𝑗=1 | ≤ 𝐿

𝐿
2

𝐿∏
𝑖=1

max
𝑤𝑖 ,𝑤 𝑗∈ℭ(𝜏1− 𝛿2 )

|𝐾 (𝑚𝑖)
𝜁,𝑡
(𝑤𝑖, 𝑤 𝑗 ) |

≤ 𝐿 𝐿
2

𝐿∏
𝑖=1

C𝜁 𝛿−𝑚𝑖 exp(−𝑡ℎ𝑞 (𝛿)) = C𝐿𝐿
𝐿
2 𝜁 𝐿𝛿−𝑛 exp(−𝑡ℎ𝑞 (𝛿)),

(3.4.14)

where the last equality follows as
∑𝐿
𝑖=1𝑚𝑖 = 𝑛. Note that here also C > 0 can be chosen to be

dependent only on 𝑛, 𝛿, and 𝑞 as 𝑚𝑖’s are at most 𝑛. Recall that 𝑤𝑖-contour in 𝐼𝜁 ( ®𝑚) lies on

ℭ(𝜏1− 𝛿2 ). Thus in view of (3.4.14) adjusting the constant C we obtain first inequality of (3.4.6).

For the second inequality, We observe the following recurrence relation:

|𝔐(𝐿, 𝑛) | = |{ ®𝑚 = (𝑚1, . . . , 𝑚𝐿) ∈ Z𝐿≥0,

𝐿∑︁
𝑖=1

𝑚𝑖 = 𝑛}| ≤ 𝐿 · |𝔐(𝐿, 𝑛 − 1) |. (3.4.15)

It follows immediately that |𝔐(𝐿, 𝑛) | ≤ 𝐿𝑛. Observe that for each ®𝑚 ∈ 𝔐(𝐿, 𝑛),
( 𝑛
®𝑚
)

is bounded

from above by 𝑛!. Thus collectively with (3.4.5) we have

|𝜕𝑛𝜁 tr(𝐾∧𝐿𝜁,𝑡 ) | ≤
𝑛!𝐿𝑛

𝐿!
max
®𝑚∈𝔐(𝐿,𝑛)

|𝐼𝜁 ( ®𝑚) |.

Applying the first inequality of (3.4.6) above leads to the second inequality of (3.4.6) completing

the proof.
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Lemma 3.4.2. Fix 𝑛 ∈ Z>0, 𝜁 ∈ [1, 𝑒𝑡𝐵𝑞 ( 𝑠2 )], and 𝑡 > 0. Then

𝜕𝑛𝜁

( ∞∑︁
𝐿=1

tr(𝐾∧𝐿𝜁,𝑡 )
)
=

∞∑︁
𝐿=1

𝜕𝑛𝜁 (tr(𝐾
∧𝐿
𝜁,𝑡 )).

Proof. On account of [131, Proposition 4.2]), it suffices to verify the following conditions:

1.
∑∞
𝐿=1 tr(𝐾∧𝐿

𝜁,𝑡
) converges absolutely pointwise for 𝜁 ∈ [1, 𝑒𝑡𝐵𝑞 ( 𝑠2 )];

2. the absolute derivative series
∑∞
𝐿=1 𝜕

𝑛
𝜁
(tr(𝐾∧𝐿

𝜁,𝑡
)) converges uniformly for 𝜁 ∈ [1, 𝑒𝑡𝐵𝑞 ( 𝑠2 )] .

By Proposition 3.4.1, we can pass the derivative inside the trace in (2). Both (1) and (2) fol-

low from (3.4.6) in Proposition 3.4.1 as
∑∞
𝐿=1

1
𝐿!C

𝐿𝐿𝑛𝐿
𝐿
2 𝜁 𝐿𝛿−𝑛 exp(−𝑡𝐿ℎ𝑞 (𝛿)) < ∞ for each

𝜁 ∈ [1, 𝑒𝑡𝐵𝑞 ( 𝑠2 )].

Now, with the results from Lemmas 3.4.1 and 3.4.2, we are poised to justify the interchanges

of operations leading to (3.4.2).

Proposition 3.4.3. For fixed 𝑛, 𝐿 ∈ Z≥0, 𝜁 ∈ [1, 𝑒𝑡𝐵𝑞 ( 𝑠2 )] and 𝑡 > 0,

∫ 𝑒
𝑡𝐵𝑞 ( 𝑠2 )

1
𝜁−𝛼𝜕𝑛𝜁

[
1 +

∞∑︁
𝐿=2

tr(𝐾∧𝐿𝜁,𝑡 )
]
d𝜁 =

∞∑︁
𝐿=2

∑︁
®𝑚∈𝔐(𝐿,𝑛)

(
𝑛

®𝑚

)
1
𝐿!

∫ 𝑒
𝑡𝐵𝑞 ( 𝑠2 )

1
𝜁−𝛼 𝐼𝜁 ( ®𝑚)d𝜁 . (3.4.16)

Proof. Thanks to Lemma 3.4.2 we can switch the order of derivative and sum to get

l.h.s. of (3.4.16) =
∫ 𝑒

𝑡𝐵𝑞 ( 𝑠2 )

1

∞∑︁
𝐿=2

𝜁−𝛼𝜕𝑛𝜁 (tr(𝐾
∧𝐿
𝜁,𝑡 ))d𝜁 .

We next justify the interchange of the integral and the sum in above expression. Note that via the

estimate in (3.4.6) we have

∫ 𝑒
𝑡𝐵𝑞 ( 𝑠2 )

1

∞∑︁
𝐿=2

𝜁−𝛼 |𝜕𝑛𝜁 (tr(𝐾
∧𝐿
𝜁,𝑡 )) |d𝜁 ≤

∞∑︁
𝐿=2

1
𝐿!

C𝐿𝐿𝑛𝐿
𝐿
2 exp(−𝑡ℎ𝑞 (𝛿))

∫ 𝑒
𝑡𝐵𝑞 ( 𝑠2 )

1
𝜁 𝐿𝛿−𝑛−𝛼d𝜁 < ∞.

Hence Fubini’s theorem justifies the exchange of summation and integration. Finally we arrive at

r.h.s. of (3.4.16) by using the higher order derivative identity (see (3.4.5)) from Proposition 3.4.1.
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3.4.2 Proof of Proposition 3.2.5

Finally, in this subsection we present the proof of Proposition 3.2.5 via obtaining an upper-

bound for |B𝑠 (𝑡) |, defined in (3.2.14).

Recall 𝐼𝜁 ( ®𝑚) from (3.4.4). We first introduce the following technical lemma that upper bounds

the absolute value of the integral
∫ 𝑒

𝑡𝐵𝑞 ( 𝑠2 )

1 𝜁−𝛼 𝐼𝜁 ( ®𝑚)d𝜁 and will be an important ingredient in the

proof of Proposition 3.2.5.

Lemma 3.4.4. Fix 𝑠 > 0 so that 𝛼 := 𝑠 − b𝑠c > 0. Set 𝑛 = b𝑠c + 1. Fix 𝐿 ∈ Z>0 with 𝐿 ≥ 2 and

®𝑚 ∈ 𝔐(𝐿, 𝑛), where 𝔐(𝐿, 𝑛) is defined in (3.4.3). There exists a constant C = C(𝑞, 𝑠) > 0 such

that ∫ 𝑒
𝑡𝐵𝑞 ( 𝑠2 )

1
𝜁−𝛼 |𝐼𝜁 ( ®𝑚) |d𝜁 ≤ C𝐿𝐿

𝐿
2 exp(−𝑡ℎ𝑞 (𝑠) − 1

C 𝑡). (3.4.17)

where 𝐼𝜁 ( ®𝑚) is defined in (3.4.4) and the functions 𝐵𝑞 and ℎ𝑞 are defined in Proposition 3.2.1.

Proof. As we obtain upper bounds for the LHS of (3.4.17) differently depending on the value of 𝐿,

we split the proof into two steps as follows. Fix 𝐿0 = 2(𝑛 + 1). In Step 1, we prove the inequality

for when 2 ≤ 𝐿 ≤ 𝐿0 and in Step 2, we consider the case when 𝐿 > 𝐿0. In both steps, we deform

the 𝑤-contours in 𝐼𝜁 ( ®𝑚) appropriately to achieve its upper bound.

Step 1. In this step, we prove (3.4.17) for when 2 ≤ 𝐿 ≤ 𝐿0. Fix ®𝑚 = (𝑚1, . . . , 𝑚𝐿) ∈ 𝔐(𝐿, 𝑛),

where 𝔐(𝐿, 𝑛) is defined in (3.4.3) and set

𝜌𝑖 :=


𝑚𝑖 + 𝛼

𝐿
− 1
| ®𝑚 |>0

if 𝑚𝑖 > 0

𝛼
𝐿

if 𝑚𝑖 = 0.
(3.4.18)

where we recall that | ®𝑚 |>0 = |{𝑖 | 𝑖 ∈ Z, 𝑚𝑖 > 0}|.

Recall the definition of 𝐼𝜁 ( ®𝑚) in (3.4.4). Note that each 𝐾 (𝑚𝑖)
𝜁,𝑡
(𝑤𝑖, 𝑤 𝑗 ) (see (3.3.8)) are them-

selves complex integral over 𝛿 + iR. As 𝛼 > 0 and 𝐿 ≤ 𝐿0 = 2(𝑛 + 1) we may take the 𝛿 appearing
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in the kernel in 𝐾 (𝑚𝑖)
𝜁,𝑡

less than all the 𝜌𝑖’s. Note that this is only possible when 𝛼 > 0. This is why

we assumed this in the hypothesis here and as well as in the statement of Proposition 3.2.5.

In what follows we show that the contours of 𝐾 (𝑚𝑖)
𝜁,𝑡
(𝑤𝑖, 𝑤 𝑗 ) followed by 𝑤𝑖-contours can be

deformed appropriately without crossing any pole in 𝐼𝜁 ( ®𝑚). Indeed for each 𝐾 (𝑚𝑖)
𝜁,𝑡

in 𝐼𝜁 ( ®𝑚) we

can write

𝐾
(𝑚𝑖)
𝜁,𝑡
(𝑤𝑖, 𝑤 𝑗 ) =

1
2𝜋i

∫ 𝜌𝑖+i∞

𝜌𝑖−i∞
Γ(−𝑢𝑖)Γ(1 + 𝑢𝑖) (𝑢𝑖)𝑛𝜁𝑢𝑖−𝑛𝑒 𝑓 (𝑢𝑖 ,𝑤𝑖)

d𝑢𝑖
𝑤 𝑗 − 𝜏𝑢𝑖𝑤𝑖

.

As each 𝜌𝑖 ∈ (0, 𝑚𝑖 ∨ 1) (see (3.4.18)), by Remark 3.3.4, the above equality is true as we do not

cross any poles in the integrand. Ensuing this change, we claim that we can deform the 𝑤𝑖-contour

to ℭ(𝜏1− 𝜌𝑖2 ) one by one without crossing any pole in 𝐼𝜁 ( ®𝑚). Similar to the argument given in the

beginning of the proof of Proposition 3.2.4, we note that as we deform the 𝑤𝑖-contours potential

sources of poles in 𝐼𝜁 ( ®𝑚) lie in the exponent 𝑓 (𝑢𝑖, 𝑤𝑖) := (𝑞−𝑝)
1+𝑤𝑖𝜏−1 − (𝑞−𝑝)

1+𝜏𝑢𝑖−1𝑤𝑖
(recalled from (3.3.1))

and in the denominator 𝑤 𝑗 − 𝜏𝑢𝑖𝑤𝑖 .

Take 𝑤𝑖 ∈ ℭ(𝜏1− 𝛿𝑖2 ), 𝛿𝑖, ∈ [𝛿, 𝜌𝑖], and 𝑢𝑖 ∈ 𝜌𝑖 + iR. Observe that

|𝑤 𝑗 − 𝜏𝑢𝑖𝑤𝑖 | ≥ |𝑤 𝑗 | − |𝜏𝑢𝑖𝑤𝑖 | ≥ 𝜏1−
𝛿 𝑗

2 − 𝜏1+𝜌𝑖−
𝛿𝑖
2 > 0,

|1 + 𝑤𝑖𝜏−1 | ≥ |𝑤𝑖𝜏−1 | − 1 ≥ 𝜏−
𝛿𝑖
2 − 1, |1 + 𝜏𝑢𝑖−1𝑤𝑖 | ≥ 1 − |𝜏𝑢𝑖−1𝑤𝑖 | ≥ 1 − 𝜏𝜌𝑖−

𝛿𝑖
2 .

This ensures that each 𝑤𝑖-contour can be taken as ℭ(𝜏1− 𝜌𝑖2 ) without crossing any pole.

Permitting these contour deformations, we wish to apply Lemma 3.3.5, (3.3.9) specifically.

Indeed we apply (3.3.9) with 𝜌, 𝛿 ↦→ 𝜌𝑖, 𝑤 ↦→ 𝑤′, 𝑤′ ↦→ 𝑤 𝑗 . Note that we indeed have |𝑤 𝑗 | ≠ 𝜏1+ 𝜌𝑖2

here. We thus obtain

|𝐾 (𝑚𝑖)
𝜁,𝑡
(𝑤𝑖, 𝑤 𝑗 ) | ≤ C𝜁 𝜌𝑖−𝑚𝑖 exp(−𝑡ℎ𝑞 (𝜌𝑖)). (3.4.19)

Here, C is supposed to be dependent on 𝑚𝑖, 𝜌𝑖, and 𝑞. Note that 𝜌𝑖 are in turn dependent on 𝑚𝑖,

𝑠 and 𝐿. Since 𝐿 is at most 𝐿0 = 2(𝑛 + 1), there are at most finitely many choices of 𝑚𝑖’s which

in turn produced finitely many choices of 𝜌𝑖’s. As 𝑠 is fixed, all of the 𝜌𝑖’s are uniformly bounded
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away from 0. Hence we can choose the constant C to be dependent only 𝑠 and 𝑞 (recall that 𝑛 is

also dependent on 𝑠).

Observe that as ®𝑚 ∈ 𝔐(𝐿, 𝑛) defined in (3.4.3), we have
∑
𝑚𝑖 = 𝑛 and consequently

∑
𝜌𝑖 =

𝑛 − 1 + 𝛼 = 𝑠. In view of the estimate in (3.4.19) and the definition of 𝐼𝜁 ( ®𝑚) from (3.4.4), by

Hadamard’s inequality, we obtain

|𝐼𝜁 ( ®𝑚) | ≤ C𝐿𝐿
𝐿
2 𝜁 𝑠−𝑛 exp

(
−𝑡

𝐿∑︁
𝑖=1

ℎ𝑞 (𝜌𝑖)
)
= C𝐿𝐿

𝐿
2 𝜁−1+𝛼 exp

(
−𝑡

𝐿∑︁
𝑖=1

ℎ𝑞 (𝜌𝑖)
)
.

Thus ∫ 𝑒
𝑡𝐵𝑞 ( 𝑠2 )

1
𝜁−𝛼 |𝐼𝜁 ( ®𝑚) |d𝜁 ≤ C𝐿𝐿

𝐿
2 exp

(
−𝑡

𝐿∑︁
𝑖=1

ℎ𝑞 (𝜌𝑖)
) ∫ 𝑒

𝑡𝐵𝑞 ( 𝑠2 )

1
𝜁−1d𝜁 . (3.4.20)

Observe that
∫ 𝑦

𝑥
𝜁−1𝑑𝜁 = log 𝑦

𝑥
. We appeal to the subadditivity ℎ𝑞 (𝑥) + ℎ𝑞 (𝑦) > ℎ𝑞 (𝑥 + 𝑦) in

Proposition 3.2.1 to get that
∑𝐿
𝑖=1 ℎ𝑞 (𝜌𝑖) ≥ ℎ𝑞 (𝑠 − 𝜌1) + ℎ𝑞 (𝜌1). Note that here we used the fact

that 𝐿 ≥ 2. This leads to

r.h.s. of (3.4.20) ≤ C𝐿𝐿
𝐿
2 𝑡𝐵𝑞 ( 𝑠2 ) exp(−𝑡ℎ𝑞 (𝑠)) exp(−𝑡 (ℎ𝑞 (𝑠 − 𝜌1) + ℎ𝑞 (𝜌1) − ℎ𝑞 (𝑠))) (3.4.21)

Note that from (3.4.18), 𝜌𝑖 ≥ 𝛼
𝐿
≥ 𝛼

𝐿0
, this forces 𝛼

𝐿0
≤ 𝑠 − 𝜌1, 𝜌1 ≤ 𝑠 − 𝛼

𝐿0
. Appealing to the

strict subadditivity in (3.2.2) gives us that ℎ𝑞 (𝑠 − 𝜌1) + ℎ𝑞 (𝜌1) − ℎ𝑞 (𝑠) can be lower bounded by

a constant 1
C > 0 depending only on 𝑠 and 𝑞. Adjusting the constant C we can absorb 𝑡𝐵𝑞 ( 𝑠2 )

appearing in r.h.s. of (3.4.21), to get (3.4.17), completing our work for this step.

Step 2. In this step, we prove (3.4.17) for the rest of the cases when 𝐿 > 𝐿0. Fix ®𝑚 =

(𝑚1, . . . , 𝑚𝐿) ∈ 𝔐(𝐿, 𝑛). Recall the definition of 𝐼𝜁 ( ®𝑚) in (3.4.4). Note that each 𝐾 (𝑚𝑖)
𝜁,𝑡
(𝑤𝑖, 𝑤 𝑗 )

(see (3.3.8)) is a complex integral over 𝛿 + iR. Here we set 𝛿 = min( 12 ,
𝑠
2 ). Thanks to (3.4.6) we

have

|𝐼𝜁 ( ®𝑚) | ≤ C𝐿𝐿
𝐿
2 𝜁 𝐿𝛿−𝑛 exp(−𝑡𝐿ℎ𝑞 (𝛿)),
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where the constant C depends only on 𝑛, 𝛿, and 𝑞 and thus only on 𝑠 and 𝑞. This leads to

∫ 𝑒
𝑡𝐵𝑞 ( 𝑠2 )

1
𝜁−𝛼 |𝐼𝜁 ( ®𝑚) |d𝜁 ≤ C𝐿𝐿

𝐿
2 exp(−𝑡𝐿ℎ𝑞 (𝛿))

∫ 𝑒
𝑡𝐵𝑞 ( 𝑠2 )

1
𝜁−𝛼−𝑛+𝐿𝛿d𝜁 . (3.4.22)

Recall that 𝑠 = 𝑛 − 1 + 𝛼. As 𝐿 ≥ 2(𝑛 + 1) and 𝛿 = min( 12 ,
𝑠
2 ) we have 𝐿𝛿 − 𝑛 − 𝛼 > 0 in this case.

Thus, we can upper bound the integral in (3.4.22) to get

r.h.s. of (3.4.22) ≤ C𝐿𝐿
𝐿
2 exp(−𝑡𝐿ℎ𝑞 (𝛿))

exp(𝑡𝐵𝑞 ( 𝑠2 ) (−𝑠 + 𝐿𝛿))
−𝑠 + 𝐿𝛿 . (3.4.23)

We incorporate 1
−𝑠+𝐿𝛿 into the constant C, Recall the definition of 𝐵𝑞 (𝑥) from Proposition (3.2.1).

We have 𝑥𝐵𝑞 (𝑥) = ℎ𝑞 (𝑥). As 𝐵𝑞 (𝑥) is strictly decreasing for 𝑥 > 0, (Proposition 3.2.1 (a), (b)) we

have

r.h.s. of (3.4.23) ≤ C𝐿𝐿
𝐿
2 exp(−2𝑡ℎ𝑞 ( 𝑠2 ) − 𝑡𝐿𝛿(𝐵𝑞 (𝛿) − 𝐵𝑞 (

𝑠
2 )))

≤ C𝐿𝐿
𝐿
2 exp(−2𝑡ℎ𝑞 ( 𝑠2 )) ≤ C𝐿𝐿

𝐿
2 exp(−𝑡ℎ𝑞 (𝑠) − 1

C 𝑡),

where the last inequality above follows from (3.2.2) by observing that by subadditivity we can get

a constant C = C(𝑞, 𝑠) > 0 such that 2ℎ𝑞 ( 𝑠2 ) − ℎ𝑞 (𝑠) ≥
1
C . This completes the proof.

With Lemma 3.4.4, we are now ready to prove Proposition 3.2.5.

Proof of Proposition 3.2.5. Recall the definition of B𝑠 (𝑡) as defined in (3.2.14). Appealing to

(3.4.1) and Proposition (3.4.3) we get that

|B𝑠 (𝑡) | =
∞∑︁
𝐿=2

1
𝐿!

∑︁
®𝑚∈𝔐(𝐿,𝑛)

(
𝑛

®𝑚

) ∫ 𝑒
𝑡𝐵𝑞 ( 𝑠2 )

1
𝜁−𝛼 |𝐼𝜁 ( ®𝑚) |d𝜁 (3.4.24)

Note that
( 𝑛
®𝑚
)

is bounded from above by 𝑛!, and by (3.4.15) we have |𝔐(𝐿, 𝑛) | ≤ 𝐿𝑛. Applying

these inequalities along with the estimate in Lemma 3.4.4 we have that

r.h.s. of (3.4.24) ≤ exp(−𝑡ℎ𝑞 (𝑠) − 1
C 𝑡)

∞∑︁
𝐿=2

1
𝐿!

C𝐿𝐿
𝐿
2 𝐿𝑛
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for some constant C = C(𝑞, 𝑠) > 0. By Stirling’s formula,
∑∞
𝐿=2

1
𝐿!C

𝐿𝐿
𝐿
2 𝐿𝑛 converges and hence

adjusting the constant C, we obtain (3.2.16) completing the proof of the proposition.

3.5 Comparison to TASEP

In this section, we compute explicit expression for the upper tail rate function for TASEP

(ASEP with 𝑞 = 1) with step initial data and show that it matches with general ASEP rate function

Φ+ defined in (3.1.4).

Indeed, the large deviation problem for TASEP is already solved in [211] and is formulated in

terms of Exponential Last Passage Percolation (LPP) model (Theorem 1.6 in [211]).

In order to state the connection between TASEP and Exponential LPP, we briefly recall the

Exponential LPP model. Let Π𝑁 be the set of all upright paths 𝜋 in Z2
>0 from (1, 1) to (𝑁, 𝑁).

Let 𝑤(𝑖, 𝑗), (𝑖, 𝑗) ∈ Z2
>0 be independent exponential distributed random variables with parameter

1. The last passage value for (𝑁, 𝑁) is defined to be

H(𝑁) := max
{ ∑︁
(𝑖, 𝑗)∈𝜋

𝑤(𝑖, 𝑗); 𝜋 ∈ Π𝑁

}
.

As with the ASEP, for TASEP, we also set 𝐻𝑞=1
0 (𝑡) to be the number of particles to the right of

origin at time 𝑡. It is well known (see [211] for example) that 𝐻𝑞=1
0 (𝑡) is related to the last passage

valueH(𝑁) in the following way

P
(
−𝐻𝑞=1

0 (𝑡) + 𝑡
4 ≥

𝑡
4 𝑦

)
= P(H (𝑀𝑡) ≥ 𝑡), where 𝑀𝑡 = b 𝑡4 (1 − 𝑦)c + 1. (3.5.1)

Theorem 3.5.1. For 𝑦 ∈ (0, 1) we have

lim
𝑡→∞

1
𝑡

logP
(
−𝐻𝑞=1

0 (𝑡) + 𝑡
4 ≥

𝑡
4 𝑦

)
= −Φ+(𝑦). (3.5.2)

where Φ+ is defined in (3.1.4).
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The idea of the proof of Theorem 3.5.1 is to use large deviation principle for H(𝑁) which

appears in Theorem 1.6 in [211] followed by an application of the relation (3.5.1). The only

impediment is that the Johansson result appears in a variational form.

Let us recall Theorem 1.6 in [211]. According to Eq (1.21) in [211] (with 𝛾 = 1), the upper tail

ofH(𝑁) satisfy the following large deviation principle

lim
𝑁→∞

1
𝑁

logP(H (𝑁) ≥ 𝑁𝑧) = −𝐽 (𝑧), 𝑧 ≥ 4. (3.5.3)

where the rate function 𝐽 is given by

𝐽 (𝑡) := inf
𝑥≥𝑡
[𝐺𝑉 (𝑥) − 𝐺𝑉 (4)], 𝑡 ≥ 4, where

𝐺𝑉 (𝑥) := −2
∫
R

log |𝑥 − 𝑟 |d𝜇𝑉 (𝑟) +𝑉 (𝑟), 𝑥 ≥ 4.
(3.5.4)

Here 𝑉 (𝑥) = 𝑥 is defined on [0,∞), and the measure 𝜇𝑉 is the unique minimizer of 𝐼𝑉 (𝜇) over

M(R≥0), the set of probability measures on [0,∞). 𝐼𝑉 (·) is known as the logarithmic entropy in

presence of the external field 𝑉 and is given by

𝐼𝑉 (𝜇) := −
∬
R2

log |𝑥1 − 𝑥2 |d𝜇(𝑥1)d𝜇(𝑥2) +
∫
R
𝑉 (𝑥)d𝜇(𝑥), 𝜇 ∈ M(R≥0).

The logarithmic entropy 𝐼𝑉 (𝜇) is well studied in both mathematical and physics literature and has

several applications to random matrix theory and related models. We refer to [287] and [200] and

the references there in for more details.

The form of the rate function defined in (3.5.4) is not exactly same as in [211]. However, one

can show the rate function 𝐽 defined in (3.5.4) is same as Eq (2.15) in [211] using the properties

of minimizing measure (see Theorem 1.3 in [287] or Eq (1.6) in [157]). Such an expression for

the rate function is derived using Coulomb gas theory. We refer to [211], [164], and [127] for

treatment on the LDP problems of such nature.

Proof of Theorem 3.5.1. For clarity we split the proof into two steps.
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Step 1. We claim that 𝐽 defined in (3.5.4) has the following explicit expression.

𝐽 (𝑡) =
√︁
𝑡2 − 4𝑡 − 2 log

𝑡 − 2 +
√
𝑡2 − 4𝑡

2
, 𝑡 ≥ 4. (3.5.5)

We will prove (3.5.5) in Step 2. Here we assume its validity and conclude the proof of (3.5.2).

Towards this end, fix 𝑦 ∈ (0, 1) and 𝐾 large enough such that [𝑦 − 1
𝐾
, 𝑦 + 1

𝐾
] ⊂ (0, 1). Recall

the definition of 𝑀𝑡 from (3.5.1). Note that for all large enough 𝑡, we have 4
1−𝑦+𝐾−1𝑀𝑡 ≤ 𝑡 ≤

4
1−𝑦−𝐾−1𝑀𝑡 . Thus

P
(
H(𝑀𝑡) ≥ 4

1−𝑦+𝐾−1𝑀𝑡

)
≥ P

(
−𝐻𝑞=1

0 (𝑡) + 𝑡
4 ≥

𝑡
4 𝑦

)
≥ P

(
H(𝑀𝑡) ≥ 4

1−𝑦−𝐾−1𝑀𝑡

)
.

Taking logarithms on each side, dividing by 𝑀𝑡 and then taking 𝑡 →∞ we get

−𝐽
( 4

1−𝑦+𝐾−1

)
≥ lim sup

𝑡→∞

1
𝑀𝑡

P
(
−𝐻𝑞=1

0 (𝑡) + 𝑡
4 ≥

𝑡
4 𝑦

)
≥ lim inf

𝑡→∞
1
𝑀𝑡

P
(
−𝐻𝑞=1

0 (𝑡) + 𝑡
4 ≥

𝑡
4 𝑦

)
≥ −𝐽

( 4
1−𝑦−𝐾−1

)
.

(3.5.6)

where we used the upper tail large deviation principle forH(𝑁) from (3.5.3). Observe that 𝑀𝑡
𝑡
→

1−𝑦
4 , and using (3.5.5) we see that

1 − 𝑦
4

𝐽
( 4
1 − 𝑦

)
=

1 − 𝑦
4

( 4√𝑦
1 − 𝑦 − 2 log

2(1 + 𝑦) − 4√𝑦
2(1 − 𝑦)

)
= Φ+(𝑦),

where Φ+ is defined in (3.1.4). Thus taking 𝐾 →∞ in (3.5.6) we arrive at (3.5.2).

Step 2. We now turn our attention to prove (3.5.5). It is well known that for 𝑉 (𝑥) = 𝑥, the

minimizer 𝜇𝑉 is given by the Marchenko-Pastur measure (see Equation 3.3.2 and Proposition 5.3.7

in [200] with 𝜆 = 1):

d𝜇𝑉 (𝑥) =
√

4𝑥 − 𝑥2

2𝜋𝑥
1𝑥∈[0,4]d𝑥.

Recall 𝐺𝑉 (𝑥) defined in (3.5.4). Using the Cauchy Transform for 𝜇𝑉 (see the last unnumbered
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equation in Page 200 of [200]) we get that for 𝑥 > 4,

d
d𝑥

∫
log |𝑥 − 𝑟 |d𝜇𝑉 (𝑟) =

1
2
−
√
𝑥2 − 4𝑥

2𝑥
,

which implies 𝐺𝑉 (𝑧) − 𝐺𝑉 (4) =
∫ 𝑧

4

√
𝑥2−4𝑥
𝑥

d𝑥. Thus 𝐺𝑉 (𝑧) − 𝐺𝑉 (4) is strictly increasing in 𝑦 and

whence by (3.5.4) we have

𝐽 (𝑡) =
∫ 𝑡

4

√
𝑥2 − 4𝑥
𝑥

d𝑥.

To compute the above integral, we make the change of variable 𝑥 ↦→ (𝑧+1)2
𝑧

so that d𝑥 = (1 − 1
𝑧2
)d𝑧

and 𝑥2 − 4𝑥 = (𝑧
2−1)2
𝑧2

. Set 𝑎 = 𝑡−2
2 +

√
𝑡2−4𝑡
2 to get

∫ 𝑡

4

√
𝑥2 − 4𝑥
𝑥

d𝑥 =
∫ 𝑎

1

(𝑧 − 1)2
𝑧2

d𝑧 =
[
𝑧 − 1

𝑧
− 2 log 𝑧

]𝑎
1
= 𝑎 − 1

𝑎
− 2 log 𝑎.

Plugging the value of 𝑎 we get (3.5.5) completing the proof.
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Chapter 4: Law of iterated logarithms and fractal properties of the KPZ

equation

4.1 Introduction

We study the Kardar-Parisi-Zhang (KPZ) equation, a stochastic PDE which is formally written

𝜕𝑡H = 1
2𝜕𝑥𝑥H +

1
2 (𝜕𝑥H)

2 + 𝜉, H := H(𝑡, 𝑥) (𝑡, 𝑥) ∈ [0,∞) × R. (4.1.1)

Here 𝜉 = 𝜉 (𝑡, 𝑥) is the space time white noise. The KPZ equation was introduced in [218] for

studying the fluctuation of growing interfaces and since then, it has found links to many systems

including directed polymers, last passage percolation, interacting particle systems, and random

matrices via its connections to the KPZ universality class (see [166, 278, 113, 281]).

The KPZ equation, as given in (4.1.1), is ill-posed as a stochastic PDE due to the presence

of the nonlinear term (𝜕𝑥H)2. The physically relevant notion of solution for the KPZ equation is

given by the Cole-Hopf solution which is defined as

H(𝑡, 𝑥) := logZ(𝑡, 𝑥),

whereZ(𝑡, 𝑥) is the solution of the stochastic heat equation (SHE):

𝜕𝑡Z = 1
2𝜕𝑥𝑥Z + 𝜉Z, Z := Z(𝑡, 𝑥). (4.1.2)

Throughout this paper, we work with the fundamental solution Znw(𝑡, 𝑥) of (4.1.2) and the asso-

ciated Cole-Hopf solutionHnw(𝑡, 𝑥) := logZnw(𝑡, 𝑥) which corresponds to the SHE being started

from the delta initial measure, i.e., Znw(0, 𝑥) = 𝛿𝑥=0. For any 𝑡 > 0, Znw(𝑡, 𝑥) is strictly positive
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[168] which makes the Cole-Hopf solutionHnw(𝑡, 𝑥) well-defined. The corresponding initial data

of the KPZ equation is termed as the narrow wedge initial data.

The ubiquity of the SHE is discernible in many applications stretching from modeling the den-

sity of the particles diffusing through random environments [255, 222, 24, 108] to the partition

function of the continuum directed random polymer model [4, 80, 68]. The solution theory for

the SHE is standard [316, 278, 105]; based on Itô integral theory or martingale problems. The

mathematical theory of the KPZ equation however has unleashed new challenges in recent years.

Most notably, the study of the KPZ equation can now be classified into three broad directions,

namely, to understand how the KPZ equation approximates the interface fluctuation of the random

growth models, to build a robust solution theory of the KPZ equation and to unveil fine properties

and asymptotics of the solution of the KPZ equation. The Cole-Hopf solution of the KPZ equa-

tion coincides with the limits of certain growth processes [Lin20, 49, 112, 111, 178, 107]. The

KPZ equation being a testing ground for the nonlinear stochastic PDEs, stirs up intense recent

innovations in the theory of singular PDEs including regularity structures [192], paracontrolled

distributions [186, 185], energy solution [184] and renormalisation group [236] methods. In this

paper, we seek to pursue the third direction, i.e., to unravel finer properties of the Cole-Hopf solu-

tion of the KPZ equation.

In this paper, we consider the following 1 : 2 : 3 scaled version of the KPZ height function:

𝔥𝑡 (𝛼, 𝑥) :=
Hnw(𝛼𝑡, 𝑡2/3𝑥) + 𝛼𝑡

24
𝑡1/3

. (4.1.3)

where 𝑡 specifies the time scale and 𝛼 measures the time judged on that scale, 𝑥 measures the space

judged on 𝑡2/3 scale. Although the presence of 𝑡 and 𝛼 bears a stain of redundancy, the notation

introduced in (4.1.3) will be useful in stating and proving many of our results. For 𝛼 = 1, we will

often use the shorthand 𝔥𝑡 (𝑥) := 𝔥𝑡 (1, 𝑥) and 𝔥𝑡 := 𝔥𝑡 (0). We will call the stochastic process 𝔥𝑡

indexed by the time parameter 𝑡 as the KPZ temporal process. In a seminal work, [6] showed that

𝔥𝑡
𝑑→ 2−1/3𝑇𝑊GUE, as 𝑡 →∞.
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Here, 𝑇𝑊GUE is the Tracy-Widom GUE distribution. The KPZ scaling of the fluctuation, space and

time, i.e., the ratio of the corresponding scaling exponents being 1 : 2 : 3 and 𝑇𝑊GUE as the limit

of the fluctuations are the characteristics of the models in the KPZ universality class. Recently,

[280, 315] have announced proofs of the convergence of the spatial process 𝔥𝑡 (𝑥) (upto a parabola)

to the universal limiting process of the KPZ universality class, namely the KPZ fixed point as 𝑡

goes to∞.

Our objects of study are the large peaks and valleys of the KPZ temporal process as the KPZ

equation approaches the KPZ fixed point. Such study for any generic one-dimensional stochastic

process with a macroscopic limiting profile usually starts up with two questions: What are the

scalings of the large peaks and valleys? Do they converge to any limit under such scaling? For a

Brownian motion 𝔅𝑡 , these questions are answered via the (Brownian) law of iterated logarithms

(LIL). Under the
√
𝑡 scaling, the fluctuation of the Brownian motion 𝔅𝑡 has the Gaussian limit. At

the onset of this macroscopic Gaussianity, the peaks and valleys of 𝔅𝑡/
√
𝑡 under further scaling

by
√︁

2 log log 𝑡 stays in between −1 and 1. The extra scaling by an iterated logarithmic factor√︁
2 log log 𝑡 inflicts the name ‘law of iterated logarithms’.

Our first main result which is stated as follows concerns with the law of iterated logarithms of

the KPZ equation started from the narrow wedge initial data.

Theorem 4.1.1. With probability 1, we have

lim sup
𝑡→∞

2 1
3𝔥𝑡

(log log 𝑡)2/3
=

(3
4

) 2
3
, and lim inf

𝑡→∞
2 1

3𝔥𝑡

(log log 𝑡)1/3
= −(12) 1

3 .

The above law of iterated logarithms reveals the scaling of the large peaks and valleys of 𝔥𝑡 .

As we may see, the scalings for limsup and liminf differ from each other. This naturally gives rise

to the following two questions:

(1) What are the origins of the scalings (log log 𝑡)2/3 and (log log 𝑡)1/3?

The scaling of the large peaks and valleys for the KPZ height fluctuation are in fact orchestrated

by the Tracy-Widom GUE distribution which is the scaling limit of 2 1
3𝔥𝑡 as 𝑡 goes to ∞. This is
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in line with the LIL for the Brownian motion where the exponent 1/2 of (log log 𝑡) factor stems

from the Gaussian tail decay of the limiting law. For the KPZ equation, the peaks and valleys have

different scaling thanks to the distinct decay exponents of the upper and lower tail probabilities of

the Tracy-Widom GUE. If 𝑋 is a Tracy-Widom GUE random variable, then, the probability of 𝑋

being higher than 𝑠 (i.e., upper tail probability) decays as exp(−4
3 (1 + 𝑜(1))𝑠

3/2) and the probabil-

ity of 𝑋 being lower (i.e., lower tail probability) than −𝑠 decays as exp(− 1
12 (1 + 𝑜(1))𝑠

3). So, the

upper tail decay exponent is 3/2 which induce the scaling (log log 𝑡)2/3 for the peaks of the KPZ

temporal process whereas the lower tail exponent being 3 is the source of the scaling (log log 𝑡)1/3

of the valleys. Interestingly, as one may observe, the values of the limsup and liminf in Theo-

rem 4.1.1 are seemingly connected to the constants 4/3 and 1/12 of the respective tail decays of

the Tracy-Widom GUE distribution. This association is commensurate with the Brownian LIL and

predicted in other works (discussed in Section 4.1.2).

(2) How the LILs will vary with the initial data?

Based on the LIL for the narrow wedge solution, one may insinuate that the scaling of the

peaks and valleys of the KPZ temporal process under other initial condition will be governed by

the tail exponents of the limiting random variables. It follows from Theorem 1.1 and 1.4 of [115]

that for a wide class of initial data, the upper tail exponents of the limiting r.v. of the KPZ equation

under KPZ scaling is 3/2 and the lower tail exponent is at least 3. By drawing the analogy with the

narrow wedge case, we conjecture that correct scaling of the peaks and valleys of the KPZ height

fluctuation will be (log log 𝑡)2/3 and (log log 𝑡)1/3 respectively. In particular, we believe that such

scaling of the peaks and valleys will hold for all classes of initial data which are considered in

[115] including the bounded initial data and Brownian initial data. Proving these claims is beyond

the scope of the present paper since some of the major tools that we use are not available for the

KPZ height function under other initial data. However, we hope to explore this direction in future

works.

Our next objective is to quantify how often the peaks and valleys of the KPZ temporal process

exceed a given level. This entails to studying the upper level sets {𝑡 > 𝑡0 : 𝔥𝑡 ≥ 𝛾(log log 𝑡)2/3}
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and lower level sets {𝑡 > 𝑡0 : 𝔥𝑡 ≤ −𝛾(log log 𝑡)1/3} for different values of 𝛾 where 𝛾 > 0 is a

tuning parameter and 𝑡0 is an arbitrary constant. In particular, we study the macroscopic fractal

nature of the level sets. For brevity, we mainly focus on the study of the upper level sets in this

paper.

Fractal nature of the level sets of the KPZ equation is intimately connected to the moment

growth of the SHE which is captured through the Lyapunov exponents, i.e., the limit of 𝑡−1E[(Znw(𝑡, 0))𝑘 ]

as 𝑡 →∞ for any integer 𝑘 . The nonlinear nature of the Lyapunov exponents of the SHE (predicted

by Kardar’s formula [Kardar87]) suggests an abundance of the large peaks of the SHE. This is

manifested through the existence of infinitely many scales for the peaks, a property often called as

multifractality. In contrast, the peaks of a scaled Brownian motion 𝔅𝑡/
√
𝑡 only show a single scale

as time 𝑡 increases to infinity. This latter property is named as monofractality. In the following, we

give a mathematical definition of these two different natures of the (macroscopic) fractality.

Definition 4.1.2 (Mono- and Multifractality). Let 𝑋 be a stochastic process. Suppose there exists

a non-random gauge function 𝑔 such that 𝑔(𝑟) increases to∞ as 𝑟 →∞ and

lim sup
𝑟→∞

𝑋 (𝑟)
𝑔(𝑟) = 1 a.s.

Fix a scalar 𝛾, 𝑡0 > 0. Define

Ξ𝑋,𝑔 (𝛾) :=
{
𝑡 > 𝑡0 :

𝑋 (𝑡)
𝑔(𝑡) > 𝛾

}
.

We denote the (Barlow-Taylor) macroscopic Hausdorff dimension (see Definition 4.2.5) of any

Borel set 𝔉 by DimH(𝔉). The tall peaks of 𝑋 is multifractal in gauge 𝑔 when there exist infinitely

many length scales 𝛾1 > 𝛾2 > . . . > 0 such that, with probability one,

DimH
(
Ξ𝑋,𝑔 (𝛾𝑖+1)

)
< DimH

(
Ξ𝑋,𝑔 (𝛾𝑖)

)
.
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Whereas the peaks of 𝑋 with gauge function 𝑔 is monofractal when for some 𝛾0 > 0,

DimH(Ξ𝑋,𝑔 (𝛾)) =


Constant 𝛾 ≤ 𝛾0,

0 𝛾 > 𝛾0.

By the law of iterated logarithms, the gauge function of a scaled Brownian motion 𝔅𝑡/
√
𝑡 is

dictated as (2 log log 𝑡)1/2. It follows from the works of [223, 302, 257] that the Brownian mo-

tion with such choice of the gauge function is monofractal. However, the macroscopic nature of

the peaks undergoes a transition under the exponential transformation of the time variable under-

pinning the Brownian motion. For instance, the Ornstein-Uhlenbeck process which is defined as

𝑈 (𝑡) := exp(−𝑡/2)𝔅𝑒𝑡 for 𝑡 ∈ R is multifractal in the gauge function (2 log 𝑡)1/2.

Our second main result which is stated below shows that the KPZ temporal process is monofrac-

tal in the gauge function ( 3
4
√

2
log log 𝑡)2/3. Whereas under the exponential transformation of the

time variable, the peaks of the KPZ temporal process exhibits multifractality.

Theorem 4.1.3. Consider the rescaled height function 𝔥𝑡 of the KPZ equation and the exponential

time-changed process 𝔊(𝑡) := 𝔥𝑒𝑡 . Then, we have the following: 𝔥𝑡 is monofractal with positive

probability in gauge function (log log 𝑡)2/3, i.e., for every 𝑡0, 𝛾 > 0,

DimH
{
𝑡 ≥ 𝑒𝑒 :

𝔥𝑡

(log log 𝑡)2/3
≥ 𝛾

}
𝑎.𝑠.
=


1 when 𝛾 ≤

( 3
4
√

2

) 2
3 ,

0 when 𝛾 >
( 3

4
√

2

) 2
3 .

(4.1.4)

In contrast, 𝔊(𝑡) is multifractal in gauge function (3/4
√

2)2/3(log 𝑡)2/3. In fact,

DimH
{
𝑡 ≥ 𝑒𝑒 :

𝔊(𝑡)
(3/4
√

2)2/3(log 𝑡)2/3
≥ 𝛾

}
𝑎.𝑠.
= 1 − 𝛾3/2, for 𝛾 ∈ [0, 1] . (4.1.5)

Note that (4.1.4) shows that the peaks of 𝔥𝑡 are monofractal in the gauge function (log log 𝑡)2/3.
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On the other hand, the multifractality of the peaks of 𝔊(𝑡) is clear from (4.1.5) since

Ξ
𝔊(𝑡),(3/4

√
2)2/3 (log 𝑡)2/3 (𝛾2)

𝑎.𝑠
= 1 − 𝛾3/2

2 < 1 − 𝛾3/2
1

𝑎.𝑠
= Ξ

𝔊(𝑡),(3/4
√

2)2/3 (log 𝑡)2/3 (𝛾1)

for 0 ≤ 𝛾1 < 𝛾2 ≤ 1. This raises the following three interesting questions.

(1) What is the minimal speed up needed for the time variable to see transition from monofractality

to multifractality of the peaks of the KPZ equation?

We are indebted to Davar Khoshnevisan for asking this question. By carefully studying the

outreach of our tools, we expect to see the appearance of multifractality of the peaks under the

transformation 𝑡 ↦→ 𝔥𝑒 (log 𝑡 )𝑎 for any 𝑎 > 1. Due to lack of detailed information on the correlation

decay of the KPZ temporal process, we are unable to make precise prediction of the fractality

under the transformation 𝑡 ↦→ 𝔥𝑡𝑎 for any 𝑎 > 1. We expect that the monofractality will still survive

under such transformations. This expectation is based on the intuition that the mono- and multi-

fractality are closely tied to the two point correlation function of the associated process. While

monofractality is tied to the presence of strong correlation, the multifractality is rather prevalent

when the correlation decays. In [117], the authors had investigated the correlation of the KPZ

temporal process. They had shown that for any two time points 𝑡1 < 𝑡2 such that 𝑡2 − 𝑡1 > 𝑡1, the

correlation function between 𝔥𝑡1 and 𝔥𝑡2 decays as (𝑡1/𝑡2)1/3, i.e., the correlation function is both

upper and lower bounded by some constant multiples of (𝑡1/𝑡2)1/3. This implies that when 𝑡2 − 𝑡1

grows like a higher order polynomial in 𝑡1, the correlation between the KPZ height function at 𝑡1

and 𝑡2 decays to zero as 𝑡1 increases. On the other hand, for any 𝑡1 < 𝑡2 = 𝑐𝑡1 for some constant

𝑐 > 1, the correlation between 𝔥𝑡1 and 𝔥𝑡2 remains bounded away from 0 while the correlation

between 𝔥𝑒 (log 𝑡1 )𝑎 and 𝔥𝑒 (log 𝑡2 )𝑎 rapidly goes to 0 as 𝑡1 goes to ∞. This is one of the main reasons

which lead us to believe that the transition from monofractality to multifractality happens under

the transformation 𝑡 ↦→ 𝑒(log 𝑡)𝑎 for some 𝑎 > 1.

(2) Is there a similar notion of macroscopic fractality for the valleys? What are the macroscopic

fractal properties of the valleys of the KPZ height function?
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The fractal properties of the valleys can be studied using the lower level sets. For instance,

if 𝑋 is a stochastic process such that lim inf𝑟→−∞ 𝑋 (𝑟)/ 𝑓 (𝑟) = −1 almost surely for some gauge

function 𝑓 , then, the multifractality and/or monofractality of the valleys of 𝑋 can be defined in

the same way as in Definition 4.1.2 using the macroscopic Hausdorff dimension of the following

lower level sets

Ξ̂𝑋, 𝑓 (𝛾) :=
{
𝑡 > 𝑡0 :

𝑋 (𝑡)
𝑓 (𝑡) < −𝛾

}
.

For studying the valleys of 𝔥𝑡 , the natural choice of the gauge function is (6 log log 𝑡)1/3 as shown

by Theorem 4.1.1. Using the tools of this paper, we expect that one can show monofractality of the

valleys of 𝔥𝑡 in the gauge function (6 log log 𝑡)1/3. Furthermore, drawing the analogy with (4.1.5),

we also expect the following equality holds

DimH
(
Ξ̂𝔊(𝑡),(6 log 𝑡)1/3 (𝛾)

)
𝑎.𝑠
= 1 − 𝛾3.

While the fractal properties of the valleys seem extremely exciting, for brevity, we restrict ourselves

only to exploring the peaks of the KPZ temporal process in this paper.

(3) What is expected about the peaks and valleys of the KPZ fixed point in the temporal direction?

It is believed that 𝔥𝑡 (𝛼, 𝑥) weakly converges as a time-space process to the KPZ fixed point

(started from the narrow wedge data) which has recently been constructed in [251] via its transition

probability and simultaneously in [138] via the Airy sheet. Very recently, [280, 315] announced

proofs of a special case of this conjecture, namely the weak convergence of the spatial process

𝑥 ↦→ (2𝛼−1)1/3(𝔥𝑡 (𝛼, 𝑥) + 𝑥2

2 ) to the Airy2 process (introduced in [275]) for any fixed 𝛼 > 0. In

light of this conjecture, we expect that the law of iterated logarithms of the KPZ fixed point in the

temporal direction bear the same scaling as in Theorem 4.1.1. Moreover, the macroscopic nature

of the peaks and valleys of the KPZ equation as revealed in the above discussion is expected to

be reflective of the case for the KPZ fixed point. Although, our proof techniques which will be

touched on in Section 4.1.1 are very much likely to be applicable for the KPZ fixed point, we defer

from proving results analogous to Theorem 4.1.1 and 4.1.3 for the KPZ fixed point.
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Proving the law of iterated logarithms and the fractal properties of the KPZ equation requires

information on the growth of 𝔥𝑡1 − 𝔥𝑡2 for 𝑡1 > 𝑡2 > 0. When 𝑡1 − 𝑡2 is large, [117, Theorem 1.5]

obtained upper and lower bounds on the tail probabilities of 𝔥𝑡1 − 𝔥𝑡2 . However, controlling the

variations of the peaks in a smaller interval necessitates the study of the tail probabilities of the

increments 𝔥𝑡1 − 𝔥𝑡2 for 𝑡1 − 𝑡2 small. One of the main obstructions for studying the increments of

𝔥𝑡 in a small interval is the lack of uniform tail bounds of 𝔥𝑡 for all small 𝑡 > 0. In the following

two results, we seek to fill this gap. To state those results, we introduce the following notations:

𝔤𝑡 :=
Hnw(𝑡, 0) + log

√
2𝜋𝑡

(𝜋𝑡/4)1/4
.

The first result proves a uniform bound on the upper tail probabilities of 𝔤𝑡 for all small 𝑡 > 0.

Theorem 4.1.4. Fix 𝜀 > 0. There exist 𝑡0 = 𝑡0(𝜀) > 0, 𝑐 = 𝑐(𝜀) > 0, and 𝑠0 = 𝑠0(𝜀) > 0 such that

for all 𝑡 ≤ 𝑡0 and 𝑠 ≥ 𝑠0,

P(𝔤𝑡 ≥ 𝑠) ≤ exp
(
− 𝑐𝑠2

1+
√

1+𝑠𝑡1/4−4𝜀

)
. (4.1.6)

Remark 4.1.5. Note that the r.h.s. of (4.1.6) decays like Gaussian tails, i.e., exp(−𝑐𝑠2) for some

constant 𝑐 > 0 as 𝑡 ↓ 0. This is embraced by the fact that 𝔤𝑡 weakly converges to a standard

Gaussian distribution as 𝑡 approaches 0 (shown in [6, Proposition 1.8]). On the other hand, for

large 𝑡, the decay turns to exp(−𝑐𝑠3/2𝑡−1/8+2𝜀). The decay exponent 3/2 accords with the finite

time upper tail exponent (see [115, Theorem 1.10]) of the KPZ equation.

For the purpose of later use, we will only require the following loose bound which is free of

the time variable and follows immediately from Theorem 4.1.4.

Corollary 4.1.6. There exist 𝑡0 > 0, 𝑐 > 0, and 𝑠0 > 0 such that for all 𝑡 ≤ 𝑡0 and 𝑠 ≥ 𝑠0, we have

P(𝔤𝑡 ≥ 𝑠) ≤ exp(−𝑐𝑠3/2).

The next result shows an uniform bound on the lower tail probability of 𝔤𝑡 for all small 𝑡 > 0.
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Theorem 4.1.7. There exist constants 𝑡0 ∈ (0, 2], 𝑠0, 𝑐 > 0 such that for all 𝑡 ≤ 𝑡0, 𝑠 ≥ 𝑠0,

P(𝔤𝑡 ≤ −𝑠) ≤ 𝑒−𝑐𝑠
2
. (4.1.7)

Remark 4.1.8. The decay exponent of the upper bound in (4.1.7) is consistent with the Gaussian

limit of 𝔤𝑡 as 𝑡 goes down to zero. It is worthwhile to note that Theorem 4.1.7 provides an upper

bound to the lower tail probability which holds uniformly for all small 𝑡 > 0. This should be

contrasted with the work of [116, Theorem 1.1] which showed that the lower tail probability at

finite time 𝑡 > 0 decays as exp(−𝑐𝑡1/3𝑠5/2) for some constant 𝑐 > 0. The interpolation between

the exponents 2 and 5/2 as one gradually increases time 𝑡 from 0 to a finite value is not covered in

Theorem 4.1.7.

Short time uniform tail bounds of Theorems 4.1.4 and 4.1.7 open directions to a plethora of

new results. One of such directions is the study of modulus of continuity of the time-space process

𝔥𝑡 (𝛼, 𝑥). Our next and final main result proves a super-exponential tail bound of the modulus of

continuity of 𝔥𝑡 (𝛼, 𝑥).

Theorem 4.1.9. Fix 𝜀 ∈ (0, 1
4 ) and any interval [𝑎, 𝑏] ⊂ R≥1 and [𝑐, 𝑑] ⊂ R. Define Norm :

( [𝑎, 𝑏] × [𝑐, 𝑑])2 → R≥0

Norm(𝛼1, 𝑥1;𝛼2, 𝑥2) = |𝑥1 − 𝑥2 |
1
2

(
log

2|𝑏 − 𝑎 |
|𝑥1 − 𝑥2 |

)2/3
+ |𝛼1 − 𝛼2 |

1
4−𝜀

(
log

2|𝑑 − 𝑐 |
|𝛼1 − 𝛼2 |

)2/3
(4.1.8)

and

C := sup
𝛼1≠𝛼2,𝑥1≠𝑥2

1
Norm(𝛼1, 𝑥1;𝛼2, 𝑥2)

��𝔥𝑡 (𝛼1, 𝑥1) +
𝑥2

1
2𝛼1
− 𝔥𝑡 (𝛼2, 𝑥2) −

𝑥2
2

2𝛼2

��. (4.1.9)

Then there exist 𝑡0(𝜀) > 0, 𝑠0 = 𝑠0( |𝑏 − 𝑎 |, |𝑐 − 𝑑 |, 𝜀) > 0 and 𝑚 = 𝑚( |𝑏 − 𝑎 |, |𝑐 − 𝑑 |, 𝜀) > 0 such

that for all 𝑠 ≥ 𝑠0 and 𝑡 ≥ 𝑡0,

P(C > 𝑠) ≤ 𝑒−𝑚𝑠3/2 . (4.1.10)
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Remark 4.1.10. It was known ([48, Theorem 2.2]) that the fundamental solution of the SHE

(Znw(𝑡, 𝑥)) as a time-space process is almost surely Hölder continuous with the spatial and tem-

poral Hölder exponents being less than 1
2 and 1

4 respectively. This indicates Hölder continuity of

Hnw(𝑡, 𝑥) with same spatial and temporal Hölder exponents as that of Znw(𝑡, 𝑥). Theorem 4.1.9

corroborates this fact by giving tail bounds to the modulus of continuity.

4.1.1 Proof ideas

We start with discussing what makes our work hard to accomplish using other approaches. As

a testing ground for non-linear SPDE’s, the KPZ equation embraces a stack of new tools including

regularity structures, paracontrolled distributions, energy solution method. Through its connection

with the KPZ universality class, the KPZ equation advocates the usage of various techniques from

integrable systems and random matrix theory. While these tools unveiled salient features of the

KPZ equation in the past, many finer properties are still out of reach. One of the basic requirement

for showing the law of iterated logarithms and the fractal nature of the KPZ height function level

sets is to attain a delicate understanding of the modulus of continuity of the KPZ temporal process.

This entails to knowing multi-point joint distribution of the KPZ equation. While the seminal

paper [6] derived one point distribution of the narrow wedge solution of the KPZ equation, the

exact formulas of more than one point does not seem to be on the horizon (see [150] for some

recent progress in other positive temperature models). In [117, Theorem 1.5], the authors derived

near-exponentially decaying bounds on the tail probabilities of the difference of the KPZ equation

at two time points. Although these tail bounds were useful for finding the two time correlations of

the KPZ equation, they failed to produce the modulus of continuity of the KPZ temporal process

since those bounds are only valid when the two time points are far apart.

Our approach is mainly probabilistic while some of the key inputs bear an integrable origin.

Two of such examples are the short time (upper) tail bounds of the KPZ equation (see Theo-

rem 4.1.4) and the Gibbsian line ensemble. The short time upper tail will be derived using the

integer moments of the SHE which has the recourse to some amenable contour integral formulas.
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On the other hand, while the Gibbsian line ensemble owes its inception to some integrable sys-

tem, it has so far been fostered by the probabilistic ideas. One of the other key tools which we

will procure in the due course of this paper is the short time lower tail bound (see Theorem 4.1.7)

which in contrast to the upper tail has its chassis made of core probabilistic ideas like Talagrand’s

concentration inequality.

Our first main tool is a multi-point composition law (see Proposition 4.2.11) which generalizes

the two-point composition law of [117, Proposition 2.9]. In words, for any given set of time points

0 < 𝑡1 < 𝑡2 < . . . < 𝑡𝑘 , this law constructs 𝑘 independent random spatial profiles equivalent in law

to the narrow wedge solution such that the KPZ temporal process at at 𝑡𝑖 is obtained by exponential

convolution of one of such independent profiles and 𝔥𝑡𝑖−1 (·) for 𝑖 = 2, . . . , 𝑘 .

Our second main tool is the Gibbsian line ensemble. More precisely, we use a special Gibbsian

line ensemble called the KPZ line ensemble introduced by [109]. In short, KPZ line ensemble is

a set of random curves whose lowest indexed curve has the same law as the narrow wedge solu-

tion of the KPZ equation. Furthermore, this set of random curves satisfies the H-Brownian Gibbs

property which ensures that the law of any fixed index curve in an interval only depends on the

boundary value and can be described using the law of a Brownian bridge conditioned to have same

boundary values, a connection elicited through a very explicit Radon-Nikodym derivative expres-

sion. As it was revealed in [109], the Brownian Gibbs property of the KPZ line ensemble imparts

stochastic monotonicity on its lowest indexed curve, a property amenable to finding delicate tail

bounds of the spatial profile of the KPZ equation. Furthermore, we also enrich the arsenal of the

Gibbsian line ensemble by introducing and exploring a short time KPZ line ensemble (see Proposi-

tion 6.5.1) whose lowest indexed curve is the narrow wedge solution with short-time KPZ scaling,

i.e., the scaling exponent of the fluctuation, space and time follows the ratio 1 : 2 : 4. In order to

distinguish, we would refer the KPZ line ensemble whose lowest indexed curve is narrow wedge

solution with the KPZ scaling as the long-time KPZ line ensemble.

Our third main tool is the short time upper and lower tail bounds (Theorem 4.1.4 and 4.1.7) and

the long time tail bounds of the KPZ equation from [116, 115] (summarized in Proposition 4.2.12-
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4.2.14). The short time upper tail is derived using the contour integral formulas of the moments

of the SHE whereas the short time lower tail (uniform in time) is obtained via controlling the tail

estimates of the partition function of random polymer model whose continuum limit solves the

SHE. We also improve the bounds available for the long time upper tail of the KPZ equation (see

Proposition 4.8.5 of Section ??), an important input for showing the fractal nature of the upper

level sets in Theorem 4.1.3.

Now we proceed to discuss how we use those tools to prove our results. The one point tail

estimates of the KPZ equation (from Theorem 4.1.4, 4.1.7 and Propositions 4.2.12-4.2.14) in con-

jugation with the tail bounds of the Brownian bridge fluctuations would allow us to derive delicate

tail bounds of the spatial profile of the narrow wedge solution in finite intervals at the behest of

the Brownian Gibbs property of the long and short time KPZ line ensembles. All these new tail

estimates are detailed in Section 4.4. For any given 𝑡1 > 𝑡2, the two point composition law relates

𝔥𝑡1 with the narrow wedge profile 𝔥𝑡2 (1, ·) via an exponential convolution with another indepen-

dent random spatial process which will be denoted as 𝔥𝑡2↓𝑡1 (·) and has the same distribution as

𝔥𝑡1 ((𝑡2 − 𝑡1)/𝑡1, ·). Mating of this convolution principle with the tail bounds of the KPZ spatial

process from Section 4.4 propagates the one point tail estimates to the tail bounds of the difference

of the KPZ height functions at two time points. These ideas, inculcated in Propositions 4.5.1-4.5.4

of Section 4.5, will unfold to be a mainstay on which the proof of Theorem 4.1.9 rests.

Strategy for LIL: By the Borel-Cantelli lemmas, the law of iterated logarithms of Theo-

rem 4.1.1 can be recast as showing that the infimum and supremum of the LIL adjusted temporal

processes 𝔥𝑡/(log log 𝑡)1/3 and 𝔥𝑡/(log log 𝑡)2/3 respectively over the intervalsI𝑛 := [exp(𝑒𝑛), exp(𝑒𝑛+1)]

cannot stay further away from −61/3 and (3/4
√

2)2/3 infinitely often, i.e., we need to show that with

high probability, the following holds

−(6(1 + 𝜖)) 1
3 ≤ inf

𝑡∈I𝑛

𝔥𝑡

(log log 𝑡)1/3
≤ −(6(1 − 𝜖)) 1

3 , (4.1.11)( 3
4
√

2
(1 − 𝜖)

) 2
3 ≤ sup

𝑡∈I𝑛

𝔥𝑡

(log log 𝑡)2/3
≤

( 3
4
√

2
(1 + 𝜖)

) 2
3 . (4.1.12)
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There are mainly two core ideas behind the proofs of (4.1.11) and (4.1.12). The proofs of the

second inequality of (4.1.11) and the first inequality in (4.1.12) will be based on similar ideas

whereas the proof of the first inequality of (4.1.11) and the second inequality of (4.1.12) will use

a different strategy. We now divide the proof ideas of the inequalities in (4.1.11) and (4.1.12) into

few steps. While these steps are not in chronological order, we mention the appropriate sections

where these steps will be carried out.

Step 1: The first major idea which trickles down into the proof of the second inequality of

(4.1.11) and the first inequality of (4.1.12) is to establish approximate independence of the incre-

ments of the KPZ height function over an increasing set of time intervals. Proposition 4.6.1 exactly

proves this claim where we show that when the gaps between time points 𝑡1 < 𝑡2 < . . . < 𝑡𝑘 are

large, the multi-point distribution of the temporal process 𝔥𝑡 (0) at time points 𝑡1 < 𝑡2 < . . . < 𝑡𝑘 is

well approximated by joint distribution of a set of independent random variables. More precisely,

we show that if (𝑡𝑖+1/𝑡𝑖) − 1 ≥ 𝑠 > 0 for 1 ≤ 𝑖 ≤ 𝑘 − 1, one can construct independent random

variables 𝑌1, 𝑌2, . . . , 𝑌𝑘 on the same probability space such that P( |𝔥𝑡𝑖 −𝑌𝑖 | ≥ 1) ≤ exp(−𝑐𝑠1/2) for

all 𝑖 = 1, 2, . . . , 𝑘 . The construction of this new set of random variables is done via the multi-point

composition law which demonstrates that for any given set of time points 0 < 𝑡1 < . . . < 𝑡𝑘 ,

𝔥𝑡𝑖+1 (0) for 1 ≤ 𝑖 ≤ 𝑘 − 1 can be written in terms of the spatial profile of the KPZ equation at

𝑡𝑖 and a spatial process 𝔥𝑡𝑖+1↓𝑡𝑖 (·) such that {𝔥𝑡𝑖+1↓𝑡𝑖 (·)}1≤𝑖≤𝑘−1’s are independent processes in the

same probability space as the white noise of the KPZ equation. The error of the approximations

in Proposition 4.6.1 is obtained via Proposition 4.5.4 of Section 4.5 which provides tail bounds of

the increments of the temporal process 𝔥𝑡 between two time points for varying choices of the gap

size between the time points.

Step 2: This step finds the tail probabilities of the KPZ spatial process which are obtained

by combining two-point composition law (in the time direction) of the KPZ equation with precise

estimates on the tail probabilities of the maximal variation of the height profile of the KPZ equation

along the spatial direction (see Section 4.4). While similar tail events are studied in [117], the

results of Section 4.4 improves on many sides which includes bringing new ideas for improving
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Law of Iterated Logarithms
(Theorem 4.1.1)

Upper Bound for Liminf (Section 4.6.1),
Lower Bound for Limsup (Section 4.6.2)

Lower Bound for Liminf (Section 4.6.1),
Upper Bound for Limsup (Section 4.6.2)

Independence structure
(Proposition 4.7.1)

Temporal Modulus
of Continuity

(Proposition 4.5.5)

Multipoint Con-
volution formula

(Proposition 4.2.11)

Independent proxy
(Proposition 4.5.4)

Tail bounds for two point
temporal differences

(Propositions
4.5.1 and 4.5.2)

Properties of Long Time
KPZ spatial process

(Propositions
4.4.1 and 4.4.2)

Properties of Short Time
KPZ spatial process

(Propositions
4.4.3 and 4.4.4)

Short Time Tail Bounds
(Theorems 4.1.4 and 4.1.7)

Figure 4.1: Flowchart of the proof of Theorem 4.1.1

the exponents of the tail probabilities of the maximal variation of the spatial profile of the KPZ

height function on bounded intervals.

Step 3: Our other main idea behind the proofs of the law of iterated logarithms of the KPZ

equation revolves around the tail probability bound for the spatio-temporal modulus of continuity

of the KPZ equation of Theorem 4.1.9 which is proven in Section 4.5. The proof of Theorem 4.1.9

stands on the probability estimates derived from Propositions 4.5.1-4.5.2 which bound the tail

probabilities of the KPZ height function between two time points. One of the important features

of these tail estimates lies in the flexibility in varying the gap between two time points which were

not known in the earlier works. The key ingredients for these estimates are twofold: (𝑎) short time

tail probabilities of the KPZ equation which are stated in Theorem 4.1.4 and Theorem 4.1.7 and,

(𝑏) short-time KPZ line ensemble which is defined in Lemma 6.5.1. Both of these tools are new

and will be used in future for exploring many important properties of the KPZ equation.

In Figure 4.1, we summarize the above proof ideas of Theorem 4.1.1 using a flowchart.
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Strategy for fractality: Much akin to the law of iterated logarithms, the proofs of mono- and

multi-fractality of the KPZ equation heavily rely on the tail probabilities of the supremum and

infimum of the KPZ temporal process in compact intervals. In the same spirit as in the proof of

the law of iterated logarithms, the proofs of the fractality of the KPZ use two core ideas. The

monofractality result which is stated in (4.1.4) of Theorem 4.1.3 uses the idea of independent

proxies of Proposition 4.6.1 which we have discussed above. Furthermore, it leverages on precise

estimates of the upper tail probability of the KPZ equation in long time. In Proposition 4.8.5 of

Section ??, we derive such estimate from the scratch which was unknown before and hefty to obtain

otherwise. Combining the construction of independent proxy of Proposition 4.6.1 with Proposi-

tion 4.8.5, we show approximate independence between the upper level sets {𝔥𝑡 ≥ (log log 𝑡)2/3𝛾}

and {𝔥𝑠 ≥ (log log 𝑠)2/3𝛾} when 𝑡 and 𝑠 are sufficiently far apart. We like to stress the fact that the

mono-fractality result ((4.1.4) of Theorem 4.1.3) requires fast decoupling of the joint probabilities

of events {𝔥𝑡 ≥ (log log 𝑡)2/3𝛾} and {𝔥𝑠 ≥ (log log 𝑠)2/3𝛾}. While such decoupling results are

obtained for the Brownian motion in [223, Lemma 3.5-3.6] without much ado, the situation for the

KPZ equation is more complicated and hinges on getting fine estimates of the one-point upper tail

probability. Based on similar techniques as in [115, Proposition 4.1], Proposition 4.8.7 of Section

?? provides such tail bounds which will be finally used in Proposition 4.7.1 for showcasing the de-

coupling in the KPZ upper tail probabilities. Unlike the monofractality, the key ingredient behind

the proof of the multifractality result of (4.1.5) is the spatio-temporal modulus of continuity from

Theorem 4.1.9. The summary of the proof ideas of Theorem 4.1.3 is shown in Figure 4.2 using a

flowchart.

Our approach of studying the peaks and valleys of the KPZ equation has the potential to gen-

eralize for other models in the KPZ universality class. As it was mentioned earlier, our approach

stands on the shoulders of three main components: multi-point composition law, Gibbsian line

ensemble and one-point tail probabilities. For the zero temperature models like the last passage

percolation model, Airy process and many more, the analogues of the multi-point composition

law are easy to obtain and stated in terms of the maximum convolution instead of the exponential
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Monofractality
(Theorem 4.1.3)

Multifractality
(Theorem 4.1.3)

Precise estimates
for Level Sets

(Proposition 4.8.5)

Independence of Level Sets
(Proposition 4.7.1)

Law of Iterated Logarithms
(Theorem 4.1.1)

Independence structure
(Proposition 4.6.1)

Temporal Modulus
of Continuity

(Proposition 4.5.5)

Figure 4.2: Flowchart of the proof of Theorem 4.1.3

convolution. Gibbsian line ensemble approach was first introduced by [109] for studying the Airy

line ensemble and then, latter been applied in numerous zero temperature models. Furthermore,

precise one-point tail estimates are available for many zero temperature models including the KPZ

fixed point. Some of these technical appliances are also available for few positive temperature

models such as the asymmetric simple exclusion process (ASEP), stochastic six vertex model,

strictly weak lattice polymer model etc. With the aid of the above three proof components, the

revelation of the landscape of the aforementioned models bears immense possibilities which we

hope to explore in future.

4.1.2 Previous works

Studying macroscopic landscapes of stochastic processes is one of the most compelling re-

search directions in probability theory. Starting from the middle of the previous century to the

present time, Brownian motion serves as a fertile ground for doing alluring predictions on the

landscape of the models in the Gaussian universality class and demonstrating those with lots of

success. One of the main goals of this work is to showcase the KPZ equation as a representative of

the models in the KPZ universality class when it comes to explaining the macroscopic landscape of
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its members under the KPZ scaling. Below, we review some of the previous works on the LIL and

fractal properties of the models in the KPZ universality with the aim of comparing and contrasting

those with our results.

Random matrix theory is intimately connected with the models of the KPZ universality class.

In fact, the Tracy-Widom GUE distribution which became one of the characteristics of the fixed

points of the universality class was borne out [Tracy94] as a by-product of a random matrix model.

To be more precise, the limiting distribution of the largest eigenvalue 𝜆GUE
𝑛 of an 𝑛 × 𝑛 Gaussian

unitary ensemble under centering by
√

2𝑛 and scaling by 𝑛−(1/6) is known as the Tracy-Widom

GUE distribution. One may also regard 𝜆GUE
𝑛 as the 𝑛-th element of the GUE minor process. From

this point of view, it was an interesting open question to study the law of fractional logarithm of

𝜆GUE
𝑛 which was finally solved by [270]. The authors found the value of the limsup of (𝜆GUE

𝑛 −
√

2𝑛)
√

2𝑛1/6 under a normalization by (log 𝑛)2/3 when 𝑛 goes to ∞. The authors had shown that

the value of the limsup is almost surely equal to (1/4)2/3. On the other hand, [270] had also shown

that the liminf of (𝜆GUE
𝑛 −

√
2𝑛)
√

2𝑛1/6 under a normalization by (log 𝑛)1/3 is almost surely finite.

They had conjectured that the liminf is almost surely equal to −41/3. To the best of our knowledge,

the macroscopic Hausdorff dimensions of the level sets of 𝜆GUE
𝑛 are not known yet. Drawing the

analogy with the KPZ equation, we conjecture that the peaks and valleys of 𝜆GUE
𝑛 are monofractal

in the gauge functions (log 𝑛)2/3 and (log 𝑛)1/3 respectively.

Last passage percolation (LPP) is one of the widely studied models in the KPZ universality

class. Due to the presence of endearing geometric properties, the study of the LPP model fueled

lots of interests in the recent times. [244] had initiated the study on the laws of iterated logarithms

in the case of integrable LPP models. In [244], the author had considered the LPP model in Z2
≥0

lattice where the weights of the lattice sites are independent exponential or, geometric random

variables. It was shown in [244] that the limsup of point to point last passage percolation time

from (0, 0) to (𝑛, 𝑛) (centered by 4𝑛 and scaled by (24𝑛)1/3(log log 𝑛)2/3) is almost surely bounded

between 𝛼sup and (3/4)2/3 for some 0 < 𝛼sup ≤ (3/4)2/3. In fact, [244] had conjectured that 𝛼sup

is equal to (3/4)2/3. [244] had also investigated the liminf of the LPP model. It was shown that the
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last passage time between (0, 0) and (𝑛, 𝑛) (centered by 4𝑛 and scaled by (24𝑛)1/3(log log 𝑛)1/3) is

almost surely lower bounded by some constant. Recently, [36] have shown that the value of liminf

is almost surely equal to a constant. However, not much is known about the exact value.

Fractal properties of the putative distributional limit of the models in the KPZ universality class,

namely the KPZ fixed point has been investigated in few of the latest works. Recently, [138] gave

a probabilistic construction of the KPZ fixed point as a distributional limit of the point-to-point

Brownian last passage percolation model. The limiting space-time process which they named

as the directed landscape led to a flurry of new discoveries. The study of the fractal geometry

of the directed landscape has lately been initiated by [37, 45] who considered the problem of

fractal dimension of some exceptional points along the spatial direction. In spite of the recent

developments, the fractal nature of the space-time process of the directed landscape is still not

fully understood. We hope that our results on fractality of the KPZ equation would shed some light

for such study in future.

In the last decade, fractal properties of stochastic partial differential equations (SPDE) became

an active area of research. The main focus of a vast majority of those works resided on the study of

the large peaks of the SPDEs with multiplicative noise [BC16, 175, 85, 48, 201, 169, 104, 92, 90,

91]. The growth of the large peaks of the SPDEs is attested by the intermittency property which

is the center of attention in the field of the research of complex multiscale system for last five-six

decades. See introduction of [48] and [CM94, 222] for a detailed discussion. Recently, [223]

investigated the fractal properties of the stochastic heat equation started from the constant initial

data at the onset of intermittency and established the multifractal nature of the spatial process.

Denote the solution of the SHE started from the constant initial data (i.e., Zflat(0, 𝑥) = 1 for all

𝑥 ∈ R) by Zflat(𝑡, 𝑥). Drawing on an earlier result of [94] which showed a fractional law of

logarithm -

lim sup
𝑥→∞

logZflat(𝑡, 𝑥)
𝑡1/3( 3

4
√

2
log+ 𝑥)2/3

= 1 a.s., (4.1.13)
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Theorem 1.2 of [223] established the multifractal nature of the spatial process logZflat(𝑡, ·) for

any fixed 𝑡 > 0. The results of [223] is complemented by the study of the spatio-temporal fractal

properties by [221] which showed that there are infinitely many different stretch scale (in the

spatial direction) and time scale such that for any given stretch and time scale, the peaks of the

spatio-temporal process of the stochastic heat equation attain non-trivial macroscopic Hausdorff

dimensions. The idea of peaks of the stochastic heat equation forming complex multiscale system

were also echoed in [324, 183, 182]. However, the macroscopic behavior of the KPZ temporal

process as considered in this paper shows a different nature due to its slow decay of correlations in

comparison to the KPZ equation along the spatial direction. For instance, our first result, Theorem

4.1.1 exhibits LIL for the KPZ temporal process as opposed to the fractional law of logarithm

satisfied by the KPZ spatial process demonstrated in (4.1.13). In the same spirit, our second result

(Theorem 4.1.3) which is reminiscent of a similar result in [223, Theorem 1.4] for 1-dimensional

Brownian motion shows that the peaks of the KPZ temporal process exhibit a monofractal (see

Definition 4.1.2) nature as time 𝑡 goes to ∞. This is in contrast to the multifractal nature of the

spatial process as shown in [223]. Nevertheless, Theorem 4.1.3 shows that the crossover to the

multifractality of the KPZ temporal process happens under exponential transformation of the time

variable. While the complete understanding of the spatio-temporal landscape of the KPZ equation

is far-off to our present reach, we hope that our results will ignite further interests along this

direction.

We end this section with a review on the tail probabilities of the KPZ equation, one of the key

tools of this paper. Study of the KPZ tail probabilities had been taken up in many works [258,

122, 168] in the past. One of the recent major advances has been achieved in [116] which proved

tight bounds to the lower tail probability of the KPZ equation started from the narrow wedge initial

data. This sowed the seeds of a series of works [118, 310, 232, 79, 323, 78] which studied in detail

the lower tail large deviation of the KPZ equation as time goes to ∞. The upper tail probabilities

of the KPZ equation has been recently investigated by [115]. The same paper also initiated the

study of the tail probabilities under general initial data. The upper tail large deviation was later
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found in [131] for narrow wedge initial data and in [180] for general initial data. In spite of these

recent advances, not much were known about the evolution of the tail probabilities of the KPZ

equation as time 𝑡 goes to 0. In a very recent work, [249] showed the large deviation of the KPZ

equation as 𝑡 tends to 0. However, this does not shed much light on the uniform tail estimates of

the KPZ height function starting from time equal to 0 to a finite value. Such uniform estimates

which were reported in Theorems 4.1.4 and 4.1.7 will be instrumental in obtaining our other main

results Theorems 4.1.1, 4.1.3 and 4.1.9.

Outline. Section 4.2 will introduce the basic frameworks of the KPZ line ensemble and the

Barlow-Taylor macroscopic fractal theory. It will also introduce other useful tools including

multipoint composition law, one-point tail probabilities of the KPZ equation, tail probabilities

of the supremum and infimum of the KPZ spatial process. Section 4.3 will prove Theorems 4.1.4

and 4.1.7. This will be followed by Section 4.4 where we derive delicate tail bounds of the KPZ

spatial process for finite and short time. Section 4.5 will study the temporal modulus of continuity

of the KPZ equation and use it to prove Theorem 4.1.9. Based on the tools from Sections 4.2-4.5,

the law of iterated logarithms of Theorem 4.1.1 will be proved in Section 4.6. The proof of the

mono- and multifractality results of the KPZ equation from Theorem 4.1.3 will be given in Sec-

tion 4.7. This last section will use an improved KPZ upper tail probability estimate which is proved

in Proposition 4.8.5 of Appendix ??.

4.2 Basic Framework and Tools

In this section, we will review three topics which are required for our subsequent analysis. One

of the main topics of this section is the KPZ line ensemble and its Brownian Gibbs property. The

KPZ line ensemble is a set of random curves whose lowest indexed curve is same in distribution

with the narrow wedge solution of the KPZ equation. The H-Brownian Gibbs property of the KPZ

line ensemble induces stochastic monotonicity of the spatial profile the KPZ equation, one of the

major tools in our analysis. Lemma 6.5.2 of Section 4.2.1 will precisely state such monotonicity

result. In a similar way as in [CH16], we will introduce a short-time version of the KPZ line
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ensemble which would play a key role in later sections to find the temporal modulus of continuity

of the KPZ equation.

Our second main topic of this section is the Barlow-Taylor theory of macroscopic fractal prop-

erties of a stochastic process. In light of the expositions in [223, 23, 22], the notions of Barlow-

Taylor Hausdorff content and dimension of any Borel set will be recalled. Some of the basic prop-

erties of the Barlow-Taylor Hausdorff dimension are presented in Proposition 4.2.6, 4.2.7 and 4.2.9

of Section 4.2.2.

Lastly, we recall some of the known facts about the KPZ equation including its multipoint

composition law and the tail estimates of its one point distribution in Section 4.2.3.

4.2.1 KPZ line ensemble

Recall the general notion of line ensembles from Section 2 in [109].

Let L = (L1,L2, . . .) be an N × R indexed line ensemble. Fix 𝑘1 ≤ 𝑘2 with 𝑘1, 𝑘2 ∈ N

and an interval (𝑎, 𝑏) ∈ R and two vectors ®𝑥, ®𝑦 ∈ R𝑘2−𝑘1+1. Given a continuous function H :

R → [0,∞) (Hamiltonian) and two measurable functions 𝑓 , 𝑔 : (𝑎, 𝑏) → R ∪ {±∞}, the law

P
𝑘1,𝑘2,(𝑎,𝑏),®𝑥,®𝑦, 𝑓 ,𝑔
H on L𝑘1 , . . . ,L𝑘2 : (𝑎, 𝑏) → R has the following Radon-Nikodym derivative with

respect to P𝑘1,𝑘2,(𝑎,𝑏),®𝑥,®𝑦
free , the law of 𝑘2 − 𝑘1 + 1 many independent Brownian bridges taking values

®𝑥 at time 𝑎 and ®𝑦 at time 𝑏:

𝑑P
𝑘1,𝑘2,(𝑎,𝑏),®𝑥,®𝑦, 𝑓 ,𝑔
H

𝑑P
𝑘1,𝑘2,(𝑎,𝑏),®𝑥,®𝑦
free

(L𝑘1 , . . . ,L𝑘2) =
exp

{
−∑𝑘2+1

𝑖=𝑘1

∫
H

(
L𝑖 (𝑥) − L𝑖−1(𝑥)

)
𝑑𝑥

}
𝑍
𝑘1,𝑘2,(𝑎,𝑏),®𝑥,®𝑦, 𝑓 ,𝑔
H

,

where L𝑘1−1 = 𝑓 , or ∞ if 𝑘1 = 1; and L𝑘2+1 = 𝑔. Here, 𝑍 𝑘1,𝑘2,(𝑎,𝑏),®𝑥,®𝑦, 𝑓 ,𝑔
H is the normalizing

constant which produces a probability measure.

We say L enjoys the H-Brownian Gibbs property if, for all 𝐾 = {𝑘1, . . . , 𝑘2} ⊂ N and (𝑎, 𝑏) ⊂

R, the following distributional equality holds:

Law
(
L𝐾×(𝑎,𝑏) conditioned on LN×R\𝐾×(𝑎,𝑏)

)
= P

𝑘1,𝑘2,(𝑎,𝑏),®𝑥,®𝑦, 𝑓 ,𝑔
H ,
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where ®𝑥 = (L𝑘1 (𝑎), . . . ,L𝑘2 (𝑎)), ®𝑦 = (L𝑘1 (𝑏), . . . ,L𝑘2 (𝑏)), and where again L𝑘1−1 = 𝑓 , or ∞ if

𝑘1 = 1; and L𝑘2+1 = 𝑔.

Just as for the Markov property, there is a strong version of the H-Brownian Gibbs prop-

erty which is valid with respect to stopping domains which we now describe. A pair (𝔞, 𝔟) of

random variables is called a 𝐾-stopping domain if
{
𝔞 ≤ 𝑎, 𝔟 ≥ 𝑏

}
∈ 𝔉ext

(
𝐾 × (𝑎, 𝑏)

)
, the 𝜎-

field generated by L(N×R)\(𝐾×(𝑎,𝑏)) . L satisfies the strong H-Brownian Gibbs property if for all

𝐾 = {𝑘1, . . . , 𝑘2} ⊂ N and 𝐾-stopping domain if (𝔞, 𝔟), the conditional distribution of L𝐾×(𝔞,𝔟)

given 𝔉ext
(
𝐾 × (𝔞, 𝔟)

)
is P𝑘1,𝑘2,(𝑙,𝑟),®𝑥,®𝑦, 𝑓 ,𝑔

H , where ℓ = 𝔞, 𝑟 = 𝔟, ®𝑥 = (L𝑖 (𝔞))𝑖∈𝐾 , ®𝑦 = (L𝑖 (𝔟))𝑖∈𝐾 , and

where again L𝑘1−1 = 𝑓 , or∞ if 𝑘1 = 1; and L𝑘2+1 = 𝑔.

The following lemma demonstrates a sufficient condition under which the strong H-Brownian

Gibbs property holds.

Lemma 4.2.1 (Lemma 2.5 of [CH16]). Any line ensemble which enjoys the H-Brownian Gibbs

property also enjoys the strong H-Brownian Gibbs property.

Line ensembles with the H-Brownian Gibbs property benefit from certain stochastic mono-

tonicities of the underlying measures. The following proposition shows that two line ensembles

with the same index set can be coupled in such a way that if the boundary conditions of one en-

semble dominates the other, then same is true for laws of the restricted curves.

Lemma 4.2.2 (Stochastic monotonicity: Lemmas 2.6 and 2.7 of [CH16]). Fix finite intervals

𝐾 ⊂ N and (𝑎, 𝑏) ⊂ R; and, for 𝑖 ∈ {1, 2}, vectors ®𝑥𝑖 =
(
𝑥
(𝑘)
𝑖

: 𝑘 ∈ 𝐾
)

and ®𝑦𝑖 =
(
𝑦
(𝑘)
𝑖

: 𝑘 ∈ 𝐾
)

in R𝐾 that satisfy 𝑥 (𝑘)2 ≤ 𝑥
(𝑘)
1 and 𝑦 (𝑘)2 ≤ 𝑦

(𝑘)
1 for 𝑘 ∈ 𝐾; as well as measurable functions 𝑓𝑖 :

(𝑎, 𝑏) → R ∪ {+∞} and 𝑔𝑖 : (𝑎, 𝑏) → R ∪ {−∞} such that 𝑓2(𝑠) ≤ 𝑓1(𝑠) and 𝑔2(𝑠) ≤ 𝑔1(𝑠) for

𝑠 ∈ (𝑎, 𝑏). For 𝑖 ∈ {1, 2}, let P𝑖 denote the law P𝑘1,𝑘2,(𝑎,𝑏),®𝑥𝑖 ,®𝑦𝑖 , 𝑓𝑖 ,𝑔𝑖
H , so that a P𝑖-distributed random

variable L𝑖 = {L𝑘
𝑖
(𝑠)}𝑘∈𝐾,𝑠∈(𝑎,𝑏) is a 𝐾 × (𝑎, 𝑏)-indexed line ensemble. If H : [0,∞) → R

is convex, then a common probability space may be constructed on which the two measures are

supported such that, almost surely, L𝑘1 (𝑠) ≥ L
𝑘
2 (𝑠) for 𝑘 ∈ 𝐾 and 𝑠 ∈ (𝑎, 𝑏).
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In the present article, we will consider the following two kinds of H:

Hlong
𝑡 (𝑥) = 𝑡2/3𝑒𝑡

1/3𝑥 and, Hshort
𝑡 (𝑥) = (𝜋𝑡/4)1/2𝑒(𝜋𝑡/4)1/4𝑥 for given 𝑡 > 0 . (4.2.1)

Clearly Hlong
𝑡 (𝑥) and Hshort

𝑡 (𝑥) in (4.2.1) are convex. Thus, Lemma 6.5.2 applies to any Hlong
𝑡 or,

Hshort
𝑡 -Brownian Gibbs line ensemble. The following proposition recalls the unscaled and scaled

KPZ line ensemble constructed in [CH16] which satisfies Hlong
𝑡 -Brownian Gibbs property and

introduces the short time KPZ line ensemble which exhibits Hshort
𝑡 -Brownian Gibbs property.

Lemma 4.2.3. Let 𝑡 > 0. There exists an N × R-indexed line ensemble H𝑡 = {H (𝑛)𝑡 (𝑥)}𝑛∈N,𝑥∈R

such that:

1. the lowest indexed curveH (1)𝑡 (𝑥) is equal in distribution (as a process in 𝑥) to the Cole-Hopf

solutionHnw(𝑡, 𝑥) of KPZ started from the narrow wedge initial data and the line ensemble

H𝑡 satisfies the Hlong
1 -Brownian Gibbs property;

2. the scaled KPZ line ensemble {𝔥(𝑛)𝑡 (𝑥)}𝑛∈N,𝑥∈R, defined by

𝔥
(𝑛)
𝑡 (𝑥) = 𝑡−1/3

(
H (𝑛)𝑡

(
𝑡2/3𝑥

)
+ 𝑡/24

)
,

satisfies the Hlong
𝑡 -Brownian Gibbs property.

3. and the scaled short time line ensemble {𝔤(𝑛)𝑡 (𝑥)}𝑛∈N,𝑥∈R, defined by

𝔤
(𝑛)
𝑡 (𝑥) = (𝜋𝑡/4)−1/4

(
H (𝑛)𝑡

(
(𝜋𝑡/4)1/2𝑥

)
+ log

√
2𝜋𝑡

)
, (4.2.2)

satisfies the Hshort
𝑡 -Brownian Gibbs property.

Proof. Part (1) is precisely part ((1) + (2)) of Theorem 2.15 of [CH16]. The proof of Part (2) and

Part (3) follows from an easy change of variable lemma (Lemma 4.8.1). For brevity, we postpone

the details of the proof of Lemma 4.8.1 to Section ??.
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Remark 4.2.4. In part (3) of Theorem 2.15 [CH16] it is erroneously mentioned that the scaled

KPZ line ensemble satisfies H𝑡-Brownian Gibbs property with H𝑡 (𝑥) = 𝑒𝑡
1/3𝑥 (instead of Hlong

𝑡 ).

This error was reported by Milind Hegde and has been communicated to the authors of [CH16].

They have acknowledged the error and are currently preparing an errata for the same. We use H-

Brownian Gibbs property of line ensembles only in Section 4.4 and in some parts of the supplement

file. More precisley, we use KPZ line ensemble to import some stochastic monotonicity properties

of the KPZ equation which holds as long as the Hamiltonians are convex (see [CH16]). Indeed,

the Hamiltonians remain convex even after modification. Therefore, changing Hamiltonians has

nearly no effect in those places where H-Brownian Gibbs property been used. Furthermore, we

never write the Hamiltonians explicitly in Section 4.4 and always refer to (4.2.1) for their definition.

As a result, there are no changes in any equations or formulas.

The above result demonstrates that the lowest indexed curves 𝔥
(1)
𝑡 and 𝔤

(1)
𝑡 in the scaled long

time and short time KPZ line ensemble have the laws of the centered and scaled narrow wedge

solution 𝔥𝑡 (𝑥) := 𝔥𝑡 (1, 𝑥) and 𝔤𝑡 (𝑥) := 𝔤𝑡 (1, 𝑥) of the KPZ equation defined in (4.2.4). This

property is crucial in extracting further probabilistic information of spatial processes 𝔥𝑡 (𝑥) and

𝔤𝑡 (𝑥) as done in Section 4.4. For the rest of the article, we will loosely say 𝔥
(𝑛)
𝑡 or 𝔤(𝑛)𝑡 satisfy the

Brownian Gibbs property since the Hamiltonian will be clear from the context.

4.2.2 Barlow-Taylor’s macroscopic fractal theory

Definition 4.2.5 (Hausdorff content and dimension). For any Borel setA ⊂ R, the 𝑛-th shell ofA

is defined as A ∩
{
(−𝑒𝑛+1,−𝑒𝑛] ∪ [𝑒𝑛, 𝑒𝑛+1)

}
. Let us fix a number 𝑐0 > 0, and the set A ⊂ R and

𝜌 > 0, define 𝜌-dimensional Hausdorff content of the 𝑛-th shell of A as

𝜈𝑛,𝜌 (A) := inf
𝑚∑︁
𝑖=1

(Length(𝑄𝑖)
𝑒𝑛

) 𝜌
where the infimum is taken over all sets of intervals 𝑄1, . . . , 𝑄𝑚 of length greater than 𝑐0 and

covering 𝑛-th shell of A. Define the 𝜌-dimensional Hausdorff content of the set A as a sum total
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of 𝜈𝑛,𝜌 (A) as 𝑛 varies over the set of all positive integers. Then, the Barlow-Taylor macroscopic

Hausdorff dimension the setA is defined as the infimum over all 𝜌 > 0 such that the 𝜌-dimensional

Hausdorff content of A is finite, i.e.,

DimH(A) := inf
{
𝜌 > 0 :

∞∑︁
𝑛=0

𝜈𝑛,𝜌 (A) < ∞
}
.

From the definition, it follows that the macroscopic Hausdorff dimension of a bounded set is 0.

Just as in the microscopic case, one has DimH(𝐸) ≤ DimH(𝐹) when 𝐸 ⊂ 𝐹. Furthermore, it has

been observed in [223, Lemma 2.3] that the macroscopic Hausdorff dimension does not depend on

𝑐0. These observations are summarized in the following proposition.

Proposition 4.2.6 ([23, 22, 223]). Consider 𝐸 ⊂ R. Then, DimH(𝐸) does not depend on the value

of 𝑐0 of Definition 4.2.5 and DimH(𝐸) ≤ DimH(𝐹) for 𝐹 ⊃ 𝐸 . Moreover, DimH(𝐸) = 0 if 𝐸 is

bounded.

Since the choice of 𝑐0 > 0 does not matter, from now on we will work with 𝑐0 := 1. We

next mention a technical estimate on the Hausdorff content of any set. The following proposition,

as stated in [223] is a macroscopic analogue of the classical Frostman lemma for microscopic

Hausdorff dimension.

Proposition 4.2.7 (Lemma 2.5 of [223]). Fix 𝑛 ∈ R≥1, and suppose 𝐸 is a subset of the shell

𝑆𝑛 := [−𝑒𝑛+1,−𝑒𝑛) ∪ (𝑒𝑛, 𝑒𝑛+1]. Denote the Lebesgue measure of a Borel set 𝐵 ⊂ R by Leb(𝐵).

Let 𝜇 be a finite Borel measure on R and define for 𝜌 > 0,

𝐾𝑛,𝜌 := sup
{
𝜇(𝑄)

Leb(𝑄) : 𝑄 is a Borel set in 𝑆𝑛, Leb(𝑄) ≥ 1
}
. (4.2.3)

Then we have 𝜈𝑛,𝜌 (𝐸) ≥ 𝐾−1
𝑛,𝜌𝑒

−𝑛𝜌𝜇(𝐸).

The above proposition will be used in Section 4.7 to show lower bound to the macroscopic

Hausdorff dimension of the level sets of the KPZ equation. In the following, we recall the notion of

thickness of a set (introduced in [223]), another important tool to bound the Hausdorff dimension.
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Definition 4.2.8 (𝜃-Thickness). Fix 𝜃 ∈ (0, 1) and define

Π𝑛 (𝜃) :=
⋃

0≤ 𝑗≤𝑒𝑛(1−𝜃 )+1−𝑒𝑛(1−𝜃 )
𝑗∈Z

{𝑒𝑛 + 𝑗 𝑒𝑛𝜃}.

We say 𝐸 ⊂ R is 𝜃-thick if there exist integer 𝑀 = 𝑀 (𝜃) such that 𝐸 ∩ [𝑥, 𝑥 + 𝑒𝜃𝑛] ≠ ∅ for all

𝑥 ∈ Π𝑛 (𝜃) and for all 𝑛 ≥ 𝑀 .

The following result (Corollary 4.6 in [223]) provides a lower bound to the Hausdorff dimen-

sion of a given set in terms of its thickness.

Proposition 4.2.9. If 𝐸 ⊂ R is 𝜃-thick for some 𝜃 ∈ (0, 1), then DimH(𝐸) ≥ 1 − 𝜃.

4.2.3 KPZ equation results

We start with introducing the space-time scaling of the KPZ height function appropriate for the

short time regime, i.e., the case when the time variable goes to 0.

𝔤𝑡 (𝛼, 𝑥) :=
Hnw(𝛼𝑡, (𝜋𝑡/4)1/2𝑥) + log

√
2𝜋𝛼𝑡

(𝜋𝑡/4)1/4
. (4.2.4)

We will often use the shorthand notation 𝔤𝑡 (𝑥) := 𝔤𝑡 (1, 𝑥). In addition, we simply write 𝔤𝑡 :=

𝔤𝑡 (1, 0) when 𝑥 = 0. The following lemma shows the spatial stationarity of the processes 𝔥𝑡 (·) and

𝔤𝑡 (·).

Lemma 4.2.10 (Stationarity). The one point distribution of 𝔥𝑡 (𝑥) + 𝑥2

2 is independent of 𝑥 and

converges weakly to Tracy-Widom GUE distribution as 𝑡 ↑ ∞. On the other hand, the one point

distribution of 𝔤𝑡 (𝑥) + (𝜋𝑡/4)
3/4𝑥2

2𝑡 is independent of 𝑥 and converges weakly to standard Gaussian

distribution as 𝑡 ↓ 0.

Proof. The first part was proved in Proposition 1.7 of [CH16]. By Proposition 1.4 of [6], we know

Hnw(𝑡, 𝑧) + 𝑧2/(2𝑡) is stationary in 𝑧. As a result,

𝔤𝑡 (𝑥) + (𝜋𝑡/4)
3/4𝑥2

2𝑡 = (𝜋𝑡/4)−1/4
[
Hnw(𝑡, (𝜋𝑡/4)1/2𝑥) + (𝜋𝑡/4)𝑥

2

2𝑡 + log
√

2𝜋𝑡
]
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is stationary in 𝑥. From Proposition 1.8 in [6], it follows that 𝔤𝑡 (0) converges weakly to standard

Gaussian distribution as 𝑡 ↓ 0.

Our next result provides a multipoint composition law of the KPZ temporal process. In latter

sections, this will be used to infer properties of multipoint distributions of 𝔥𝑡 . Our proof of the

multipoint composition law follow similar strategies as in [117, Proposition 2.9] which proves the

two point composition law. For stating the law, we introduce the following notation. For 𝑡 > 0,

define a 𝑡-indexed composition map 𝐼𝑡 ( 𝑓 , 𝑔) between two functions 𝑓 (·) and 𝑔(·) as

𝐼𝑡 ( 𝑓 , 𝑔) := 𝑡−1/3 log
∫ ∞

−∞
𝑒𝑡

1/3
(
𝑓 (𝑡−2/3𝑦)+𝑔(−𝑡−2/3𝑦)

)
𝑑𝑦 . (4.2.5)

Proposition 4.2.11. For any fixed 𝑡 > 0, 𝑘 ∈ N and 1 < 𝛼1 < 𝛼2 < . . . < 𝛼𝑘 , there exist in-

dependent spatial processes 𝔥𝛼1𝑡↓𝑡 , 𝔥𝛼2𝑡↓𝛼1𝑡 , · · · , 𝔥𝛼𝑘 𝑡↓𝛼𝑘−1𝑡 supported on the same probability space

as the KPZ equation solution such that:

1. 𝔥𝛼𝑖𝑡↓𝛼𝑖−1𝑡 (·) is distributed according to the law of the process 𝔥𝛼𝑖−1𝑡 ((𝛼𝑖 − 𝛼𝑖−1)/𝛼𝑖−1, ·);

2. 𝔥𝛼𝑖𝑡↓𝛼𝑖−1𝑡 (·) is independent of 𝔥𝛼𝑖−1𝑡 (·); and

3. 𝔥𝛼𝑖−1𝑡 (
𝛼𝑖
𝛼𝑖−1

, 0) = 𝐼𝛼𝑖−1𝑡
(
𝔥𝛼𝑖−1𝑡 , 𝔥𝛼𝑖𝑡↓𝛼𝑖−1𝑡

)
.

Proof. For 𝑠 < 𝑡 and 𝑥, 𝑦 ∈ R, let Znw
𝑠,𝑥 (𝑡, 𝑦) be the solution at time 𝑡 and position 𝑦 of the SHE

started at time 𝑠 with Dirac delta initial data at position 𝑥. We will show that for any 0 < 𝑡1 < . . . <

𝑡𝑘 and 𝑦1, . . . , 𝑦𝑘 ∈ R, there exists independent spatial processes Z𝑦2 (𝑡2 ↓ 𝑡1, ·), . . . ,Z𝑦𝑘 (𝑡𝑘 ↓

𝑡𝑘−1, ·) coupled on a probability space upon which the space-time white noise of the KPZ equation

is defined such that

Znw(𝑡𝑖, 𝑦𝑖) = Znw
0,0 (𝑡𝑖, 𝑦𝑖) =

∫
R
Znw

0,0 (𝑡𝑖−1, 𝑥)Z𝑦𝑖 (𝑡𝑖 ↓ 𝑡𝑖, 𝑥)𝑑𝑥 , (4.2.6)

and the law of Z𝑦𝑖 (𝑡𝑖 ↓ 𝑡𝑖−1, ·) is same as that of Znw(𝑡𝑖 − 𝑡𝑖−1, 𝑦𝑖 − ·) for 2 ≤ 𝑖 ≤ 𝑘 . Expressing

the convolution and interchange properties in terms of 𝔥𝑡 immediately yields the proposition.
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We now return to show (4.2.6). The above convolution formula is known when 𝑘 = 2 (see

[117]). We extend the proof given in [117] for 𝑘 > 2 using the chaos series for the SHE (see [105,

316, 4] for background). We write ®𝑠 = (𝑠1, . . . , 𝑠ℓ) ∈ Rℓ≥0, ®𝑥 = (𝑥1, . . . , 𝑥ℓ) ∈ Rℓ and define the set

of ordered times

Δℓ (𝑠, 𝑡) = {®𝑠 : 𝑠 ≤ 𝑠1 ≤ 𝑠2 ≤ . . . ≤ 𝑠ℓ ≤ 𝑡}.

For any 0 ≤ 𝑠 < 𝑡 and 𝑥, 𝑦 ∈ R, Znw
𝑠,𝑥 (𝑡, 𝑦) is given as the following chaos series expansion (see

Theorem 2.2 of [105]):

Znw
𝑠,𝑥 (𝑡, 𝑦) =

∞∑︁
ℓ=0

∫
Δℓ (𝑠,𝑡)

∫
Rℓ
𝑃ℓ;𝑠,𝑥;𝑡,𝑦 (®𝑠, ®𝑥)𝑑𝜉⊗ℓ (®𝑠, ®𝑥). (4.2.7)

The integration in (4.2.7) is a multiple Itô stochastic integral against the white noise 𝜉 and the term

𝑃ℓ;𝑠,𝑥;𝑡,𝑦 (®𝑠, ®𝑥) is the density function for a one-dimensional Brownian motion starting from (𝑠, 𝑥) to

go through the time-space points (𝑠1, 𝑥1), . . . , (𝑠ℓ, 𝑥ℓ) and ends up at (𝑡, 𝑦). This transition density

has the following product formula using the Gaussian heat kernel 𝑝(𝑠, 𝑦) := (2𝜋𝑠)−1/2 exp(−𝑦2/2𝑠)

and the conventions 𝑠0 = 𝑠, 𝑠ℓ+1 = 𝑡, 𝑥0 = 𝑥 and 𝑥ℓ+1 = 𝑦:

𝑃ℓ;𝑠,𝑥;𝑡,𝑦 (®𝑠, ®𝑥) =
ℓ∏
𝑗=0

𝑝(𝑠𝑖+1 − 𝑠𝑖, 𝑥𝑖+1 − 𝑥𝑖).

For any 0 ≤ 𝑠 < 𝑡, the heat kernel 𝑝(·, ·) satisfies the simple convolution identity

𝑝(𝑡, 𝑥) =
∫

𝑝(𝑠, 𝑦)𝑝(𝑡 − 𝑠, 𝑥 − 𝑦)𝑑𝑦. (4.2.8)

Fix 2 ≤ 𝑖 ≤ 𝑘 . By using the fact that the sum of indicator functions gives the value one, we

may replace
∫
Δℓ (0,𝑡𝑖)

in (4.2.7) by the quantity
∑ℓ
𝑗=0

∫
Δℓ (0,𝑡𝑖)

1𝑠 𝑗≤𝑡𝑖−1<𝑠 𝑗+1 . As a consequence, we get

Znw
0,0 (𝑡𝑖, 𝑦𝑖) =

∞∑︁
ℓ=0

ℓ∑︁
𝑗=0

∫
Δℓ (𝑠 𝑗 ,𝑡𝑖)

∫
R𝑘

1𝑠 𝑗≤𝑡𝑖−1<𝑠 𝑗+1𝑃ℓ;0,0;𝑡𝑖 ,𝑦𝑖 (®𝑠, ®𝑥)𝑑𝜉⊗ℓ (®𝑠, ®𝑥). (4.2.9)

For 1 ≤ 𝑎 ≤ 𝑏 ≤ 𝑘 , ®𝑠[𝑎,𝑏] denotes (𝑠𝑎, . . . , 𝑠𝑏) and likewise for ®𝑥. Using these notations and
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(4.2.8), we may write

1𝑠 𝑗≤𝑡𝑖−1<𝑠 𝑗+1𝑃ℓ;0,0;𝑡𝑖 ,𝑦𝑖 (®𝑠, ®𝑥) = 1𝑠 𝑗≤𝑡𝑖−1<𝑠 𝑗+1

∫
R
𝑃 𝑗 ;0,0;𝑡𝑖−1,𝑧 (®𝑠[1, 𝑗] , ®𝑥 [1, 𝑗]) (4.2.10)

× 𝑃ℓ− 𝑗 ;𝑡𝑖−1,𝑧;𝑡𝑖 ,𝑦𝑖 (®𝑠[ 𝑗+1,ℓ] , ®𝑥 [ 𝑗+1,ℓ])𝑑𝑧. (4.2.11)

We now insert the above display into (4.2.9). We also replace
∫
Δℓ (0,𝑡𝑖)

1𝑠 𝑗≤𝑡𝑖−1<𝑠 𝑗+1 by the product

of the integral
∫
Δ 𝑗 (0,𝑡𝑖−1)

∫
Δℓ− 𝑗 (𝑡𝑖−1,𝑡𝑖)

and relabel ®𝑠[1, 𝑗] = ®𝑢, ®𝑠[ 𝑗+1,ℓ] = ®𝑣, ®𝑥 [1, 𝑗] = ®𝑎, ®𝑥 [ 𝑗+1,ℓ] = ®𝑏,

𝑃 𝑗 ;0,0;𝑡𝑖−1,𝑧 ( ®𝑢, ®𝑎) = 𝑃
0,0
𝑗 ;𝑡𝑖−1,𝑧

( ®𝑢, ®𝑎) = 𝑃 𝑗 ;𝑡𝑖−1,𝑧 ( ®𝑢, ®𝑎) and 𝑃ℓ− 𝑗 ;𝑡𝑖−1,𝑧;𝑡𝑖 ,𝑦𝑖 (®𝑣, ®𝑏) = 𝑃
𝑡𝑖−1,𝑧
ℓ− 𝑗 ;𝑡𝑖 ,𝑦𝑖 (®𝑣,

®𝑏). Using

the fact that the white noise integration can be split since the times range over disjoint intervals,

we find

Znw
0,0 (𝑡𝑖, 𝑦𝑖) =

∞∑︁
ℓ=0

ℓ∑︁
𝑗=0

∫
Δ 𝑗 (0,𝑡𝑖−1)

∫
Δℓ− 𝑗 (𝑡𝑖−1,𝑡𝑖)

∫
R𝑖

∫
Rℓ− 𝑗

∫
R
𝑃 𝑗 ;𝑡𝑖−1,𝑧 ( ®𝑢, ®𝑎) (4.2.12)

× 𝑃𝑡𝑖−1,𝑧
ℓ− 𝑗 ;𝑡𝑖 ,𝑦𝑖 (®𝑣,

®𝑏)𝑑𝑧𝑑𝜉⊗ 𝑗 ( ®𝑢, ®𝑎)𝑑𝜉⊗ℓ− 𝑗 (®𝑣, ®𝑏). (4.2.13)

By the change of variables 𝑚 = ℓ − 𝑗 , the double sum
∑∞
ℓ=0

∑ℓ
𝑗=0 can be replaced by

∑∞
𝑗=0

∑∞
𝑚=0.

We bring the integral in 𝑧 to the outside. Note that the reordering of integrals and sums is readily

justified since all sums are convergent in 𝐿2 (with respect to the probability space on which 𝜉 is

defined – see, for example, [105, Theorem 2.2] for details). As a result, we get

Znw
0,0 (𝑡𝑖, 𝑦𝑖) =

∫
R
𝑑𝑧

( ∞∑︁
𝑗=0

∫
Δ 𝑗 (0,𝑡𝑖−1)

𝑃 𝑗 ;𝑡𝑖−1,𝑧 ( ®𝑢, ®𝑎)𝑑𝜉⊗ 𝑗 ( ®𝑢, ®𝑎)
)

×
( ∞∑︁
𝑚=0

∫
Δℓ− 𝑗 (𝑡𝑖−1,𝑡𝑖)

𝑃
𝑡𝑖−1,𝑧
ℓ− 𝑗 ;𝑡𝑖 ,𝑦𝑖 (®𝑣,

®𝑏)𝑑𝜉⊗ℓ− 𝑗 (®𝑣, ®𝑏)
)
.

Comparing with (4.2.7), we may now recognize that

Znw
0,0 (𝑡𝑖−1, 𝑧) =

∞∑︁
𝑗=0

∫
Δ 𝑗 (0,𝑡𝑖−1)

𝑃 𝑗 ;𝑡𝑖−1,𝑧 ( ®𝑢, ®𝑎)𝑑𝜉⊗ 𝑗 ( ®𝑢, ®𝑎),
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for any 𝑧 ∈ R whereas the stochastic process

Z𝑦𝑖 (𝑡𝑖 ↓ 𝑡𝑖−1, 𝑧) :=
∞∑︁
𝑚=0

∫
Δℓ− 𝑗 (𝑡𝑖−1,𝑡𝑖)

𝑃
𝑡𝑖−1,𝑧
ℓ− 𝑗 ;𝑡𝑖 ,𝑦𝑖 (®𝑣,

®𝑏)𝑑𝜉⊗ℓ− 𝑗 (®𝑣, ®𝑏)

is same in distribution with Znw
𝑡𝑖−1,𝑧
(𝑡𝑖, 𝑦𝑖). Furthermore, Znw

0,0 (𝑡𝑖−1, ·) and Z𝑦𝑖 (𝑡𝑖 ↓ 𝑡𝑖−1, ·) are inde-

pendent since they are defined with respect to disjoint portions of the space-time white noise. Due

to the same reason, Z𝑦𝑖 (𝑡𝑖 ↓ 𝑡𝑖−1, ·) and Z𝑦 𝑗 (𝑡 𝑗−1 ↓ 𝑡 𝑗−1, ·) are independent for any 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 .

Recall the interchange property of the SHE: namely that, for 𝑠 < 𝑡 and 𝑦 ∈ R fixed, Znw
𝑠,𝑥 (𝑡, 𝑦)

is equal in law as a process in 𝑥 to Znw
𝑠,𝑦 (𝑡, 𝑥) – the change between the two expressions is in the

interchange of 𝑥 and 𝑦. By the interchange property, the spatial processZnw
𝑡𝑖−1,·(𝑡𝑖, 𝑦𝑖) has same law

asZnw
0,0 (𝑡𝑖 − 𝑡𝑖−1, 𝑦𝑖 − ·). This completes the proof of (4.2.6).

In the following result, we collect the one point tail probabilities of the temporal process 𝔥𝑡

which are proved in [116, 115]. We state the results from [117] which has used same notations as

ours. These results hold for any finite time 𝑡 > 0. Since the short time scaling of the KPZ equation

has the Gaussian limit, the same tail bounds as in the forthcoming result does not hold as 𝑡 ↓ 0.

The short time tail bounds which are stated in Theorem 4.1.6 and 4.1.7 should be contrasted with

the following proposition.

Proposition 4.2.12 (Proposition 2.11 and 2.12 from [117]). For any 𝑡0 > 0, 𝜀 > 0, there exist

𝑠0 = 𝑠0(𝑡0) > 0 and 𝑐 = 𝑐(𝑡0) > 0 such that, for 𝑡 > 𝑡0, 𝑠 > 𝑠0 and 𝑥 ∈ R,

P
( ���𝔥𝑡 (𝑥) + 𝑥2

2

��� ≥ 𝑠) ≤ exp
(
− 𝑐𝑠3/2

)
. (4.2.14)

As one may notice, the constant of the tail bound in the above proposition is left imprecise.

For deriving tail bounds of Section 4.4 and 4.5, we do not need precise tail estimates. However, in

Section 4.6 and 4.7, we require precise bounds only in the case when the time variable 𝑡 is large.

The following proposition quotes relevant tail bounds from [116, 115, 79, 323] for large 𝑡.
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Proposition 4.2.13. Fix 𝑡0 > 0 large and 𝜀 ∈ (0, 1). Then, there exist 𝑠0 = 𝑠0(𝑡0, 𝜀) > 0 and

𝑐 = 𝑐(𝑡0, 𝜀) > 0 such that, for 𝑡 > 𝑡0, 𝑐(log 𝑡)2/3 > 𝑠 > 𝑠0 and 𝑥 ∈ R,

exp
(
− 4
√

2
3 (1 + 𝜀)𝑠

3/2) ≤ P(𝔥𝑡 (𝑥) + 𝑥2/2 ≥ 𝑠
)
≤ exp

(
− 4
√

2
3 (1 − 𝜀)𝑠

3/2) , (4.2.15)

exp
(
− 1

6 (1 + 𝜀)𝑠
3) ≤ P(𝔥𝑡 (𝑥) + 𝑥2/2 ≤ −𝑠

)
≤ exp

(
− 1

6 (1 − 𝜀)𝑠
3) . (4.2.16)

Proof. Since 𝔥𝑡 (𝑥) + 𝑥2

2 is stationary in 𝑥, it suffices to prove (4.2.15) and (4.2.16) for 𝑥 = 0. From

the specifications of the upper and lower bounds of the upper tail probabilities in Theorem 1.10

(part (a)) of [115], (4.2.15) follows immediately. It remains to show (4.2.16). Theorem 1.1 of [116]

which is recently been strengthened in [79, 323] proves that for any given 𝜀, 𝑡0 > 0, there exists

𝑠0 = (𝑡0, 𝜀) > 0 such that for all 𝑠 ≥ 𝑠0 and 𝑡 ≥ 𝑡0,

P
(
𝔥𝑡 (0) ≤ −𝑠

)
≤ 𝑒−

4
√

2(1−2𝜀)
15 𝑡

1
3 𝑠

5
2 + 𝑒−𝐾𝑠3−𝜀𝑠𝑡

1
3 + 𝑒−

(1−2𝜀)
6 𝑠3 (4.2.17)

and,

P
(
𝔥𝑡 (0) ≤ −𝑠

)
≥ 𝑒−

4
√

2
15 (1+𝜀)𝑡

1
3 𝑠

5
2 + 𝑒− 1

6 (1+𝜀)𝑠
3
. (4.2.18)

The first inequality of (4.2.16) follows from (4.2.18). Note that 𝑠5/2𝑡1/3 � 𝑠3 and 𝜀𝑠𝑡1/3 � 𝑠3

when we have (log 𝑡)2/3 � 𝑠. By choosing 𝑠0 and 𝑐 large, we may bound the r.h.s. of (4.2.17) by

exp(−(1 − 𝜀)𝑠3/6) for all 𝑠 ≥ 𝑠0 satisfying 𝑐(log 𝑡)2/3 > 𝑠. This proves (4.2.16).

The next result, which is proved in [117], provides tail bounds on the supremum and infimum

of the spatial process 𝔥𝑡 (·) for any fixed time 𝑡 > 0.

Proposition 4.2.14 (Proposition 4.1 and 4.2 from [117]). For any 𝑡0 > 0 and 𝜈 ∈ (0, 1], there exist

𝑠0 = 𝑠0(𝑡0, 𝜈) > 0 and 𝑐 = 𝑐(𝑡0, 𝜈) > 0 such that, for 𝑡 ≥ 𝑡0 and 𝑠 > 𝑠0,

P(A) ≤ exp
(
− 𝑐2𝑠

3/2) where A =

{
sup
𝑥∈R

(
𝔥𝑡 (𝑥) + (1−𝜈)𝑥

2

2

)
≥ 𝑠

}
,

139



P(B) ≤ exp
(
− 𝑐𝑠5/2

)
where B =

{
inf
𝑥∈R

(
𝔥𝑡 (𝑥) + (1−𝜈)𝑥

2

2

)
≤ −𝑠

}
.

4.3 Short Time Tail Bounds

The main goal of this section is to prove Theorem 4.1.4 and 4.1.7 which describe uniform

bounds for the one point tail probabilities of the KPZ height function as time variable 𝑡 goes to

0. The proof of Theorem 4.1.4 which is given in Section 4.3.1 will use the exact formulas of the

integer moments of the SHE. These formulas are put forward by Kardar [Kardar87] using the

techniques of replica Bethe ansatz. See [179] for a discussion on different approaches to prove

those formulas rigorously. On the other hand, the proof of Theorem 4.1.7 which is contained in

Section 4.3.2 will be based on core probabilistic aspect like Gaussian concentration.

4.3.1 Upper Tail

Our starting point which is the content of the following proposition is to provide upper bounds

to the exponential moments of 𝔤𝑡 . Using these moment estimates, the proof of Theorem 4.1.4 will

be completed in the ensuing subsection.

Proposition 4.3.1. Fix 𝜀 > 0. There exist 𝑡0 = 𝑡0(𝜀) > 0, 𝐶 = 𝐶 (𝜀) > 0, and 𝑠0 = 𝑠0(𝜀) > 0, such

that for all 𝑡 ≤ 𝑡0, 𝑠 ≥ 𝑠0 and 𝑘 := b𝑠(𝜋𝑡/4)−1/4c we have

E
[
exp

(
𝑘 (𝜋𝑡/4)1/4𝔤2𝑡

) ]
≤ exp

(
𝐶 (𝑠3𝑡1/4−4𝜀 + 𝑠2)

)
. (4.3.1)

Proof. For any positive integer 𝑘 , we recall the 𝑘-moment formula forZnw(2𝑡, 0) (see [68, 179])

E
[
Znw(2𝑡, 0)𝑘𝑒 𝑘𝑡12

]
=

∑︁
𝜆`𝑘

𝑘!∏
𝑚 𝑗 !

ℓ(𝜆)∏
𝑖=1

𝑒
𝑡𝜆3
𝑖

12

2𝜋

∫
Rℓ (𝜆)

ℓ(𝜆)∏
𝑖=1

𝑑𝑧𝑖𝑒
−𝑡

1
3 𝜆𝑖𝑧

2
𝑖

𝑡
1
3𝜆𝑖

ℓ(𝜆)∏
𝑖< 𝑗

𝑡
2
3 (𝜆𝑖−𝜆 𝑗 )2

4 + (𝑧𝑖 − 𝑧 𝑗 )2

𝑡
2
3 (𝜆𝑖+𝜆 𝑗 )2

4 + (𝑧𝑖 − 𝑧 𝑗 )2
.

Here the sum 𝜆 ` 𝑘 is over all positive integer partitions 𝜆 = (𝜆1, 𝜆2, . . .) of 𝑘 where 𝜆1 ≥ 𝜆2 ≥ . . ..

Furthermore, 𝑚𝑖 = 𝑚𝑖 (𝜆) := |{ 𝑗 | 𝜆 𝑗 = 𝑖}| and ℓ(𝜆) := |{ 𝑗 | 𝜆 𝑗 > 0}|. Note that each terms of the
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product inside the integral is less than 1. Bounding those terms by 1 and evaluating the left over

Gaussian integral, we have

E
[
Znw(2𝑡, 0)𝑘𝑒 𝑘𝑡12

]
≤

∑︁
𝜆`𝑘

𝑘!∏
𝑚 𝑗 !

ℓ(𝜆)∏
𝑖=1

𝑒
𝑡𝜆3
𝑖

12

2𝜋

ℓ(𝜆)∏
𝑖=1

√
𝜋

𝑡
1
2𝜆

3/2
𝑖

≤
∑︁
𝜆`𝑘

𝑘!𝑒 𝑡 𝑘
3

12

(4𝜋𝑡)
ℓ (𝜆)

2
∏
𝑚 𝑗 !

.

The last inequality in above equation follows by using 𝜆3/2
𝑖
≥ 1 and

∑
𝑖 𝜆

3
𝑖
≤ 𝑘3. Expressing the

left hand side of the above display in terms of 𝔤2𝑡 we get

E𝑒𝑘 (𝜋𝑡/2)
1/4𝔤2𝑡 = E

[
(Znw(2𝑡, 0)

√
4𝜋𝑡)𝑘

]
≤ 𝑒 𝑡 𝑘

3−𝑡 𝑘
12

∑︁
𝜆`𝑘
(4𝜋𝑡)

𝑘−ℓ (𝜆)
2

𝑘!∏
𝑚 𝑗 !

. (4.3.2)

We choose 𝑡0 and 𝑠0 such that 25/2𝑡𝜀0 (𝜋/2)
1/4 ≤ 1

2 and 𝑠0 ≥ 2(𝜋𝑡0/2)1/4. Then for all 𝑡 ≤ 𝑡0

and 𝑠 ≥ 𝑠0, we set 𝑘 = 𝑘 (𝑡) := b𝑠(𝜋𝑡/2)−1/4c. By the condition on 𝑡0, 𝑠0 and 𝑘 , we always have

𝑘 ≥ 2. We further have 𝑘 ≤ 𝑠(𝜋𝑡/2)−1/4 which implies 𝑡 ≤ 2𝑠4
𝜋𝑘4 . Bounding 𝑡 with this inequality,

combining it with the estimate 𝑘! ≤ 𝑘 𝑘−𝑚1𝑚1! and using those in the r.h.s. of (4.3.2) yields

E𝑒𝑘 (𝜋𝑡/2)
1/4𝔤2𝑡 ≤ 𝑒 𝑠4

6𝜋𝑘
∑︁
𝜆`𝑘

(
23/4𝑠

)2𝑘−2ℓ(𝜆) 𝑘 𝑘−𝑚1𝑘2ℓ(𝜆)−2𝑘∏
𝑗≥2
𝑚 𝑗 !

. (4.3.3)

Throughout the rest, we provide bound for the r.h.s. of (4.3.3). We separate our analysis into three

cases depending on the location of 𝑠.

Case-1. 𝑠 ≤ 𝑡−1/4+𝜀. Observe that 𝑘−ℓ(𝜆) = ∑
𝑗≥2( 𝑗−1)𝑚 𝑗 and 2ℓ(𝜆)−𝑚1−𝑘 = −∑

𝑗≥3( 𝑗−2)𝑚 𝑗 .

We extend the range of 𝑚2, 𝑚3, 𝑚4, . . . over all non-negative integers in (4.3.3). Taking first the

sum w.r.t. 𝑚2 shows

r.h.s. of (4.3.3) ≤ 𝑒 𝑠4
6𝜋𝑘

∞∑︁
𝑗=3

∞∑︁
𝑚 𝑗=0

[
2

3
2 𝑠2

] ∑
𝑗≥3
( 𝑗−1)𝑚 𝑗 𝑘

− ∑
𝑗≥3
( 𝑗−2)𝑚 𝑗∏

𝑗≥3
𝑚 𝑗 !

∞∑︁
𝑚2=0

(2 3
2 𝑠2)𝑚2

𝑚2!
. (4.3.4)

Note that the inner sum w.r.t. 𝑚2 is equal to exp(23/2𝑠2). We may now write the r.h.s. of the above
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display as

𝑒
𝑠4

6𝜋𝑘 𝑒2
3
2 𝑠2

∞∏
𝑗=3

∞∑︁
𝑚 𝑗=0

[
2

3
2 𝑠2

] ( 𝑗−1)𝑚 𝑗 𝑘−( 𝑗−2)𝑚 𝑗

𝑚 𝑗 !
= exp

(
𝑠4

6𝜋𝑘 + 2
3
2 𝑠2 + 23𝑠4𝑘−1

1−2
3
2 𝑠2𝑘−1

)
,

where the equality is obtained by taking sum w.r.t. 𝑚3, 𝑚4, ... separately and simplifying the prod-

uct. With this equality, we get

r.h.s. of (4.3.4) ≤ exp
(

2𝑠3 (𝜋𝑡/2)1/4
6𝜋 + 2

3
2 𝑠2 + 24𝑠3 (𝜋𝑡/2)1/4

1−25/2𝑠(𝜋𝑡/2)1/4

)
≤ exp

(
𝐶𝑠3𝑡1/4 + 𝐶𝑠2

)
,

where the last inequality is obtained by using the facts 𝑘−1 ≤ 2𝑠−1(𝜋𝑡/2)1/4, 𝑠 ≤ 𝑡−1/4+𝜀 and 𝑡 ≤ 𝑡0

with 25/2𝑡𝜀0 (𝜋/2)
1/4 ≤ 1

2 . This proves (4.3.1) for 𝑠 ≤ 𝑡−1/4+𝜀.

Case-2. 𝑠 ≥ 𝑡−1/4−𝜀. We assume 𝑡0 ≤ 1
4𝜋 . Recall the definition of 𝑘 . Since 𝑘 + 1 ≥ 𝑠/(𝜋𝑡/2)1/4,

we may bound 𝑠2𝑘−2ℓ(𝜆) by (𝜋𝑡/2) (𝑘−ℓ(𝜆))/2(𝑘 + 1)2𝑘−2ℓ(𝜆) . Combining this with the facts 𝑘! ≤ 𝑘 𝑘

and
∏
𝑚 𝑗 ! ≥ 1, we get

r.h.s. of (4.3.2) ≤ 𝑒 𝑠4
6𝜋𝑘

∑︁
𝜆`𝑘
(4𝜋𝑡)

𝑘−ℓ (𝜆)
2 𝑘 𝑘−𝑚1 · 𝑘!

(
1 + 1

𝑘

)2(𝑘−ℓ(𝜆)) ≤ 𝑒 𝑠4
6𝜋𝑘 𝑘2𝑘 ,

where we bound (1 + 1/𝑘)2(𝑘−ℓ(𝜆)) by 1 and the number of partitions of 𝑘 by 𝑘 𝑘 to get the last

inequality. Since we are in the case 𝑠 ≥ 𝑡−1/4−𝜀, we have 𝑠4𝑘−1 ≤ 𝑠3(𝜋𝑡/2)1/4 and 𝑘 ln 𝑘 ≤

𝑐𝑠𝑡−1/4 ln(𝑠𝑡−1/4) ≤ 𝑐𝑠3𝑡1/4. Due to these inequalities, the r.h.s. of the above display is bounded by

exp(𝑐𝑠3𝑡1/4) for some constant 𝑐 > 0. Combining this with (4.3.3) shows E[exp(𝑘 (𝜋𝑡/2)1/4𝔤2𝑡)] ≤

exp(𝑐𝑠3𝑡1/4).

Case-3. 𝑡−1/4+𝜀 ≤ 𝑠 ≤ 𝑡−1/4−𝜀. Define 𝑠 = 𝑡−1/4−𝜀 and 𝑘̃ := b𝑠(𝜋𝑡/2)−1/4c. Note that 𝑘 ≤ 𝑘̃

since 𝑠 ≤ 𝑡−1/4−𝜀. Using the Hölder’s inequality, we know E exp(𝑘 (𝜋𝑡/2)1/4𝔤2𝑡) is bounded by(
E exp( 𝑘̃ (𝜋𝑡/2)1/4𝔤2𝑡)

) 𝑘/𝑘̃ . By Case-2, we know E exp( 𝑘̃ (𝜋𝑡/2)1/4𝔤2𝑡) ≤ exp(𝑐𝑠3𝑡1/4) for all
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𝑡 ≤ 𝑡0 = 1
4𝜋 . Combining these observations shows

E exp(𝑘 ( 𝜋𝑡2 )
1/4𝔤2𝑡) ≤ exp(𝑐𝑘𝑠3𝑡1/4/𝑘̃) ≤ exp(𝑐𝑡−3/4−3𝜀𝑡1/4𝑠𝑡1/4+𝜀) = exp(𝑐𝑠𝑡−1/4−2𝜀),

where the second inequality follows from the definition of 𝑘̃ and 𝑠. Since 𝑠 ≥ 𝑡−1/4+𝜀, the last term

of the above display is bounded by exp(𝑐𝑠3𝑡1/4−4𝜀). This completes the proof for Case-3.

Combining all cases we get (4.3.1). This completes the proof.

Proof of Theorem 4.1.4

We introduce the notations 𝑓𝑡,𝑠 := 1
𝐶+
√
𝐶2+3𝐶𝑠𝑡1/4−4𝜀 , 𝑠 := 𝑠 𝑓𝑡,𝑠 and 𝑘̃ := b𝑠(𝜋𝑡/2)−1/4c where the

constant 𝐶 is same as in (4.3.1). By Markov’s inequality,

P(𝔤2𝑡 ≥ 𝑠) = P
(
𝑒 𝑘̃ (𝜋𝑡/2)

1/4𝔤2𝑡 ≥ 𝑒 𝑘̃ 𝑠(𝜋𝑡/2)1/4
)
≤ exp(−𝑘̃ 𝑠( 𝜋𝑡2 )

1
4 )E

[
exp( 𝑘̃ ( 𝜋𝑡2 )

1
4𝔤2𝑡)

]
≤ exp

(
𝐶𝑠3 𝑓 3

𝑡,𝑠𝑡
1
4−4𝜀 + 𝐶𝑠2 𝑓 2

𝑡,𝑠 − 𝑘̃ 𝑠( 𝜋𝑡2 )
1
4
)
, (4.3.5)

where the last inequality follows from Proposition 4.3.1. We choose 𝑠0 large enough such that

for all 𝑠 ≥ 𝑠0 and 𝑡 ≤ 𝑡0 we have 𝑘̃ 𝑠(𝜋𝑡/2)1/4 ≥ 11
12 𝑠

2 𝑓𝑡,𝑠. From the definition of 𝑓𝑡,𝑠, it follows

𝐶 𝑓𝑡,𝑠 ≤ 𝐶 1
2𝐶 = 1

2 , and 𝐶𝑠𝑡1/4−4𝜀 𝑓 2
𝑡,𝑠 ≤ 𝐶𝑠𝑡1/4−4𝜀 1

3𝐶𝑠𝑡1/4−4𝜀 = 1
3 . Plugging all these inequalities in

the right side of (4.3.5) yields

P(𝔤2𝑡 ≥ 𝑠) ≤ exp
(
− 𝑠2 𝑓𝑡 ,𝑠

12
)
≤ exp

(
− 𝐶′𝑠2

1+
√

1+𝑠𝑡1/4−4𝜀

)
for all 𝑡 ≤ 𝑡0, 𝑠 ≥ 𝑠0 and some constant 𝐶′ > 0. This completes the proof.

4.3.2 Lower Tail

Our proof of Theorem 4.1.7 will utilize ideas from [168]. In [168], the author provided an

upper bound to the lower tail probability of Hnw. However, it was not clear whether the same

bound holds for 𝔤𝑡 , i.e., centering Hnw with log
√

2𝜋𝑡 and scaling by (𝜋𝑡/4)1/4. Our analysis will
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demonstrate that it is indeed possible to derive similar tail bound for 𝔤𝑡 . The main tool of our proof

of Theorem 4.1.7 are some properties of the directed random polymer partition functions and its

convergence to the solution of the SHE. Below, we introduce relevant notations.

Let Ξ := {E(𝑖, 𝑥) : 𝑖 ∈ N, 𝑥 ∈ Z} be a collection of independent standard normal random

variables. We call such collections as lattice environment. Let {𝑆𝑖}𝑖≥0 be a simple symmetric

random walk on Z starting at 𝑆0 = 0 independent of Ξ. Denote the law of {𝑆𝑖}𝑖≥0 by P𝑆. At inverse

temperature 𝛽 > 0, the directed polymer partition function 𝑍 (Ξ)𝑛 (𝛽) is defined as

𝑍
(Ξ)
𝑛 (𝛽) := E𝑆

[
exp

{
𝛽

𝑛∑︁
𝑖=1
E(𝑖, 𝑆𝑖)

}
1𝑆𝑛=0

]

where the expectation E𝑆 is taken w.r.t. P𝑆. Define 𝛽𝑛 := (𝑡/2𝑛)1/4. From [5], we know as 𝑛→∞

1
(𝜋𝑡/2)1/4

[
log

√︃
𝑛𝜋
2 + log 𝑍

(Ξ)
𝑛 (𝛽𝑛)

E𝑍 (Ξ)𝑛 (𝛽𝑛)

]
𝑑→ 𝔤𝑡 , for each 𝑡 > 0. (4.3.6)

To complete the proof of Theorem 4.1.7, we need the following two lemmas. Lemma 4.3.2 is

originally from a part of the proof of Theorem 1.5 in [84].

Lemma 4.3.2 (Lemma 1 of [168]). Let Ξ and Ξ′ be two independent lattice environments. Let

𝑆(1) and 𝑆(2) be two independent simple symmetric random walks starting at origin. Denote the

expectation w.r.t. the joint law of 𝑆(1) and 𝑆(2) by E𝑆 (1) ,𝑆 (2) . Then we have

log 𝑍 (Ξ)𝑛 (𝛽) ≥ log 𝑍 (Ξ
′)

𝑛 (𝛽) − 𝛽𝑑𝑛 (Ξ,Ξ′)
√︃
𝔒Ξ′ (𝑆(1) , 𝑆(2)),

where 𝑑𝑛 (Ξ,Ξ′)2 :=
∑𝑛
𝑖=1

∑
|𝑥 |≤𝑖 (E(𝑖, 𝑥) − E′(𝑖, 𝑥))2 and

𝔒Ξ′ (𝑆(1) , 𝑆(2)) := 1
𝑍
(Ξ′ )
𝑛 (𝛽)2

E𝑆 (1) ,𝑆 (2)

[
𝑛∑︁
𝑖=1

1
𝑆
(1)
𝑖

=𝑆
(2)
𝑖

𝑒
𝛽
𝑛∑
𝑖=1
(E′ (𝑖,𝑆 (1)

𝑖
)+E′ (𝑖,𝑆 (2)

𝑖
))

1
𝑆
(1)
𝑛 =𝑆

(2)
𝑛 =0

]
.

The next lemma is similar to Lemma 2 of [168]. To state the lemma, we introduce for any
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𝑛 ∈ N, 𝑡 > 0 and 𝐶 > 0

𝐴𝑛,𝑡,𝐶 :=
{
Ξ′ : 𝑍 (Ξ

′)
𝑛 (𝛽𝑛) ≥

√︃
2
𝑛𝜋

E𝑍 (Ξ)𝑛 (𝛽𝑛),𝔒Ξ′ (𝑆(1) , 𝑆(2)) ≤ 𝐶
√
𝑛

}
.

Lemma 4.3.3. For any given 𝜀 > 0, there exist constants 𝑡0 = 𝑡0(𝜀) ∈ (0, 2] and 𝐶 = 𝐶 (𝜀) > 0

satisfying the following: for any 𝑡 ≤ 𝑡0, there exists 𝑛𝑡 ∈ N such that for all 𝑛 ≥ 𝑛𝑡 , we have

P(𝐴𝑛,𝑡,𝐶) ≥ 1
2 − 𝜀.

Our proof of the above lemma uses some of the ideas from the proof of Lemma 2 of [168].

However, there is a major difference between these two results. Unlike Lemma 2 of [168],

Lemma 4.3.3 provides a lower bound to P(𝐴𝑛,𝑡,𝐶) which does not depend on 𝑡. On the other hand,

the lower bound of Lemma 2 of [168] is valid for all 𝑛 ≥ 1 which is not the case in Lemma 4.3.3.

Since we are interested in the evolution of tail probabilities of 𝑍 (Ξ)𝑛 ((𝑡/2𝑛)1/4) as 𝑛 grows large,

the probability bound of 𝐴𝑛,𝑡,𝐶 for large 𝑛 is more relevant to our analysis than a uniform bound

for all 𝑛 ≥ 1. Furthermore, the independence of the lower bound of P(𝐴𝑛,𝑡,𝐶) from 𝑡 enables us in

Theorem 4.1.7 to derive bounds on the lower tail probability of 𝔤𝑡 uniform in 𝑡. Before proceeding

to the proof of Lemma 4.3.3, we will show Theorem 4.1.7 by assuming Lemma 4.3.3.

Proof of Theorem 4.1.7

Fix 𝜀 ∈ (0, 1
2 ). We choose 𝑡0 = 𝑡0(𝜀) ∈ (0, 2] as defined in Lemma 4.3.3. Fix 𝑡 ≤ 𝑡0. From

Lemma 4.3.3 we pick 𝐶 > 0 and 𝑛𝑡 ∈ N such that for all 𝑛 ≥ 𝑛𝑡 , P(𝐴𝑛,𝑡,𝐶) ≥ 1
4 . Fix 𝑛 ≥ 𝑛𝑡 .

Consider any Ξ′ ∈ 𝐴𝑛,𝑡,𝐶 . By Lemma 4.3.2, we have

log 𝑍 (Ξ)𝑛 (𝛽𝑛) ≥ log 𝑍 (Ξ
′)

𝑛 (𝛽𝑛) − 𝛽𝑛𝑑𝑛 (Ξ,Ξ′)
√︃
𝔒Ξ′ (𝑆(1) , 𝑆(2))

≥ log
√︃

2
𝑛𝜋
+ log E𝑍 (Ξ)𝑛 (𝛽𝑛) − 𝛽𝑛𝑑𝑛 (Ξ,Ξ′)

√︁
𝐶𝑛1/2,
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where the second inequality follows since Ξ′ ∈ 𝐴𝑛,𝑡,𝐶 . Rearranging the above inequality and using

the fact that it holds for any Ξ′ ∈ 𝐴𝑛,𝑡,𝐶 shows

1
( 𝜋𝑡2 )

1
4

[
log

√︃
𝑛𝜋
2 + log 𝑍

(Ξ)
𝑛 (𝛽𝑛)

E𝑍 (Ξ)𝑛 (𝛽𝑛)

]
≥ −

√
𝐶

𝜋
1
4

inf
Ξ′∈𝐴𝑛,𝑡 ,𝐶

𝑑𝑛 (Ξ,Ξ′).

Thus, for all 𝑠 > 0,

P
(

1
( 𝜋𝑡2 )

1
4

[
log

√︃
𝑛𝜋
2 + log 𝑍

(Ξ)
𝑛 (𝛽𝑛)

E𝑍 (Ξ)𝑛 (𝛽𝑛)

]
≤ −𝑠

)
≤ P

(
𝑑𝑛 (Ξ, 𝐴𝑛,𝑡,𝐶) ≥ 𝑠𝜋

1
4√
𝐶

)
, (4.3.7)

where 𝑑𝑛 (Ξ, 𝐴𝑛,𝑡,𝐶) := infΞ′∈𝐴𝑛,𝑡 ,𝐶 𝑑𝑛 (Ξ,Ξ′). Since P(𝐴𝑛,𝑡,𝐶) ≥ 1
2 −𝜀, applying Theorem 3 of [168]

(Talagrand’s inequality) shows P(𝑑𝑛 (Ξ, 𝐴𝑛,𝑡,𝐶) ≥ 𝑢+
√︁

4 log 2) ≤ 𝑒−𝑢2/2. Applying this probability

bound into the r.h.s. of the above display yields

r.h.s. of (4.3.7) ≤ exp
(
−1

2

{
𝑠𝜋−1/4𝐶−1/2 −

√︁
4 log 2

}2
)
≤ 𝑒−𝑐𝑠2 (4.3.8)

for some positive constant 𝑐 > 0 and for all 𝑠 ≥ 𝑠0 where neither 𝑠0 nor 𝑐 does depend on 𝑛 or 𝑡.

Due to the weak convergence of (4.3.6), we have

P
(

1
(𝜋𝑡/2)1/4

[
log

√︃
𝑛𝜋
2 + log 𝑍

(Ξ)
𝑛 (𝛽𝑛)

E𝑍 (Ξ)𝑛 (𝛽𝑛)

]
≤ −𝑠

)
𝑛→∞→ P(𝔤𝑡 ≤ −𝑠).

Combining this convergence with (4.3.7) and (4.3.8) shows the desired conclusion.

Proof of Lemma 4.3.3

Recall 𝛽𝑛 = (𝑡/2𝑛)1/4. By Proposition 1.8 of [6], 𝔤𝑡 converges weakly to the standard Gaussian

distribution implying lim
𝑡→0

P(𝔤𝑡 ≥ 0) = 1
2 . We choose the largest 𝑡0 = 𝑡0(𝜀) ∈ (0, 2] such that

P(𝔤𝑡 ≥ 0) ≥ 1
2 −

𝜀
2 for all 𝑡 ≤ 𝑡0. For simplicity in notations, we set

𝔏𝑛 :=
𝑛∑︁
𝑖=1

1
𝑆
(1)
𝑖

=𝑆
(2)
𝑖

· 1
𝑆
(1)
𝑛 =𝑆

(2)
𝑛 =0 · 𝑒

𝛽𝑛
∑𝑛
𝑖=1 (E′ (𝑖,𝑆

(1)
𝑖
)+E′ (𝑖,𝑆 (2)

𝑖
)) , 𝐿𝑛 =

𝑛∑︁
𝑖=1

1
𝑆
(1)
𝑖

=𝑆
(2)
𝑖

.
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Recall that 𝔒Ξ′ (𝑆(1) , 𝑆(2)) is equal to E𝑆 (1) ,𝑆 (2) [𝔏𝑛]/(𝑍
(Ξ′)
𝑛 (𝛽))2. By simple probability bounds, we

get

P(𝐴𝑛,𝑡,𝐶) ≥ P
(
𝑍
(Ξ′)
𝑛 (𝛽𝑛) ≥

√︃
2
𝑛𝜋

E𝑍 (Ξ)𝑛 (𝛽𝑛),E𝑆 (1)𝑆 (2) (𝔏𝑛) ≤ 2𝐶√
𝑛𝜋2 (E𝑍

(Ξ)
𝑛 (𝛽𝑛))2

)
≥ P

(
𝑍
(Ξ′ )
𝑛 (𝛽𝑛)

E𝑍 (Ξ)𝑛 (𝛽𝑛)
≥

√︃
2
𝑛𝜋

)
− P

(E
𝑆 (1)𝑆 (2) (𝔏𝑛)
(E𝑍 (Ξ)𝑛 (𝛽𝑛))2

> 2𝐶√
𝑛𝜋2

)
. (4.3.9)

We claim that for any 𝑡 ≤ 𝑡0, there exists 𝑛𝑡 ∈ N such that for all 𝑛 ≥ 𝑛𝑡 ,

P
(
𝑍
(Ξ′ )
𝑛 (𝛽𝑛)

E𝑍 (Ξ)𝑛 (𝛽𝑛)
≥

√︃
2
𝑛𝜋

)
≥ 1

2 −
3𝜀
4 , P

(E
𝑆 (1)𝑆 (2) (𝔏𝑛)
(E𝑍 (Ξ)𝑛 (𝛽𝑛))2

> 2𝐶√
𝑛𝜋2

)
≤ 𝜀

4 . (4.3.10)

Substituting the above inequalities into the r.h.s. of (4.3.9) completes the proof of Lemma 4.3.3.

Thus, it suffices to show that the above inequalities hold for all large 𝑛. To see the first inequality

of (4.3.10), we first note that E𝑍 (Ξ)𝑛 (𝛽𝑛) = E𝑍 (Ξ
′)

𝑛 (𝛽𝑛) and write

P

(
𝑍
(Ξ′)
𝑛 (𝛽𝑛)

E𝑍 (Ξ
′)

𝑛 (𝛽𝑛)
≥

√︂
2
𝑛𝜋

)
= P

(
1
( 𝜋𝑡2 )

1
4

[
log

√︂
𝑛𝜋

2
+ log

𝑍
(Ξ′)
𝑛 (𝛽𝑛)

E𝑍 (Ξ
′)

𝑛 (𝛽𝑛)

]
≥ 0

)
.

By the weak convergence in (4.3.6) and P(𝔤𝑡 ≥ 0) ≥ 1
2 −

𝜀
2 , it follows that the right side of the

above display is greater than 1
2 −

3𝜖
4 for all large 𝑛. This proves the first inequality of (4.3.10). For

the second inequality, note that E𝑍 (Ξ)𝑛 (𝛽𝑛) = 𝑒𝑛𝛽
2
𝑛/2. By Fubini, we have

EΞE𝑆 (1)𝑆 (2) [𝔏𝑛] = E𝑆 (1)𝑆 (2)

[ 𝑛∑︁
𝑖=1

1
𝑆
(1)
𝑖

=𝑆
(2)
𝑖

· 1
𝑆
(1)
𝑛 =𝑆

(2)
𝑛 =0 ·

𝑛∏
𝑗=1

EΞ

(
𝑒
𝛽𝑛 (E( 𝑗 ,𝑆 (1)𝑗 )+E( 𝑗 ,𝑆

(2)
𝑗
))
)]

= 𝑒𝑛𝛽
2
𝑛E𝑆 (1)𝑆 (2)

[ 𝑛∑︁
𝑖=1

1
𝑆
(1)
𝑖

=𝑆
(2)
𝑖

· 1
𝑆
(1)
𝑛 =𝑆

(2)
𝑛 =0 · exp

(
𝛽2
𝑛

𝑛∑︁
𝑖=1

1
𝑆
(1)
𝑖

=𝑆
(2)
𝑖

) ]
= (E𝑍 (Ξ)𝑛 (𝛽)𝑛)2E𝑆 (1)𝑆 (2)

[
𝐿𝑛𝑒

𝛽2
𝑛𝐿𝑛1

𝑆
(1)
𝑛 =𝑆

(2)
𝑛 =0

]
.

Applying Markov’s inequality and using the above expression of EΞE𝑆 (1)𝑆 (2) [𝔏𝑛] shows

P
(E

𝑆 (1)𝑆 (2) (𝔏𝑛)
(E𝑍 (Ξ)𝑛 (𝛽𝑛))2

> 2𝐶√
𝑛𝜋2

)
≤
√
𝑛𝜋2

2𝐶 E𝑆 (1)𝑆 (2)

[
𝐿𝑛𝑒

𝛽2
𝑛𝐿𝑛1

𝑆
(1)
𝑛 =𝑆

(2)
𝑛 =0

]
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≤
√
𝑛𝜋2

2𝐶 P(𝑆(1)𝑛 = 𝑆
(2)
𝑛 = 0)E𝑆 (1)𝑆 (2)

[
𝐿𝑛𝑒

𝛽2
𝑛𝐿𝑛 | 𝑆(1)𝑛 = 𝑆

(2)
𝑛 = 0

]
.

By Stirling’s approximation, there exists constant 𝑎 > 0 such that P(𝑆(1)𝑛 = 𝑆
(2)
𝑛 = 0) = 1

22𝑛

( 𝑛
𝑛/2

)2 ≤
𝑎
𝑛

for all 𝑛. Since 𝛽𝑛 = (𝑡/2𝑛)1/4, we have 𝐿𝑛𝑒𝛽
2
𝑛𝐿𝑛 = 𝐿𝑛𝑒

(𝑡/2𝑛)1/2𝐿𝑛 ≤ 𝐿𝑛𝑒𝑛
−1/2𝐿𝑛 for all 𝑡 ≤ 𝑡0 ≤ 2.

Furthermore, Lemma 3 in [168] proves

sup
𝑛≥1

𝑛−
1
2 E𝑆 (1)𝑆 (2)

[
𝐿𝑛𝑒

𝑛−1/2𝐿𝑛 | 𝑆(1)𝑛 = 𝑆
(2)
𝑛 = 0

]
= 𝐾 < ∞.

Thus for all 𝑡 ≤ 𝑡0 we have a constant 𝐾′ > 0 (free of 𝑡) so that P
(E

𝑆 (1)𝑆 (2) (𝔏𝑛)
(E𝑍 (Ξ)𝑛 (𝛽𝑛))2

> 2𝐶√
𝑛𝜋2

)
≤ 𝐾 ′

𝐶
.

Taking 𝐶 large shows the second inequality of (4.3.10) for all large 𝑛.

4.4 Tail Bounds of the KPZ Spatial Process

In this section, we prove delicate tail bounds on several events of the long and short time spatial

processes 𝔥𝑡 (·) and 𝔤𝑡 (·) respectively. Four propositions will be proved in this section; two of them

are about the supremum and the infimum of the spatial process 𝔥𝑡 and other two are devoted on

similar results about 𝔤𝑡 . One may notice similarities between Proposition 4.4.1, 4.4.2 and The-

orem 1.3 of [117] since both bound the tail probabilities of the supremum and/or infimum of the

KPZ height differences between spatial points. However, in comparison to [117, Theorem 1.3], the

bounds in Proposition 4.4.1 and 4.4.2 improve on multiple aspects (e.g., decay exponents) which

turn out to be extremely useful for proving the results of Section 4.5. The main ingredients of the

proofs of this sections are: (1) tail bounds from Section 4.3 and (2) Brownian Gibbs property of

the line ensemble discussed in Section 4.2. From this time forth, we will denote complement of

any set B by ¬B.

Proposition 4.4.1. Fix 𝜅 > 0 and 𝛼 ∈ [ 32 , 2]. There exist constant 𝑐 > 0, 𝑡0 > 0 such that for all

𝑡 ≥ 𝑡0, 𝛽 ∈ (0, 1] and 𝑠 ≥ 𝑠0(𝑡0) we have

P
(

inf
|𝑦 |≤𝛽2𝜅 𝑠2−𝛼

(𝔥𝑡 (𝑦) − 𝔥𝑡 (0)) ≤ −7
8 𝛽

𝜅𝑠

)
≤ 𝑒−𝑐𝑠𝛼 . (4.4.1)
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Proof. Let us define

A :=
{

inf
𝑦∈[0,𝛽2𝜅 𝑠2−𝛼]

(𝔥𝑡 (𝑦) − 𝔥𝑡 (0)) ≤ −7
8 𝛽

𝜅𝑠

}
, B :=

{
𝔥𝑡 (𝛽𝜅𝑠1−

𝛼
3 ) − 𝔥𝑡 (0) ≤ −3𝑠2𝛼/3

4

}
.

Observe that P(A) ≤ P(A ∩ ¬B) + P(B). In what follows, we show that there exists 𝑠0 = 𝑠0(𝑡0),

𝑐 > 0 such that for all 𝑠 ≥ 𝑠0 and 𝑡 > 𝑡0,

P(B) ≤ exp(−𝑐𝑠𝛼), P(A ∩ ¬B) ≤ exp(−𝑐𝑠𝛼). (4.4.2)

(4.4.2) will bound P(A). By repeating the same argument for the interval [−𝛽2𝜅𝑠2−𝛼, 0], one can

show P
(
inf𝑦∈[−𝛽2𝜅 𝑠2−𝛼,0] (𝔥𝑡 (𝑦) − 𝔥𝑡 (0)) ≤ −7

8 𝛽
𝜅𝑠

)
≤ 𝑒−𝑐𝑠𝛼 . This will complete the proof of this

proposition. Throughout the rest, we prove (4.4.2). For the first one, note that B is contained in the

union of {𝔥𝑡 (𝛽𝜅𝑠1−𝛼/3) ≤ −5𝑠2𝛼/3/8} and {𝔥𝑡 (0) ≥ 𝑠2𝛼/3/8}. By the union bound,

P(B) ≤ P
(
𝔥𝑡 (𝛽𝜅𝑠1−

𝛼
3 ) + 𝛽2𝜅 𝑠2−

2𝛼
3

2 ≤ −5𝑠2𝛼/3
8 + 𝛽2𝜅 𝑠2−

2𝛼
3

2

)
+ P

(
𝔥𝑡 (0) ≥ 𝑠2𝛼/3

8

)
. (4.4.3)

Due to the stationarity, 𝔥𝑡 (𝛽𝜅𝑠1−
𝛼
3 ) + 𝛽2𝜅𝑠2−

2𝛼
3 /2 is same in distribution with 𝔥𝑡 (0). Furthermore

we have the inequality −5𝑠2𝛼/38+ 𝛽2𝜅𝑠2−
2𝛼
3 /2 ≤ −𝑠2𝛼/3/8 because 𝛼 ≥ 3/2 and 𝛽 ≤ 1. Combining

we get

r.h.s. of (4.4.3) ≤ P
(
𝔥𝑡 (0) ≤ −𝑠2𝛼/3/8

)
+ P

(
𝔥𝑡 (0) ≥ 𝑠2𝛼/3/8

)
.

Using Proposition 4.2.12 we bound P(𝔥𝑡 (0) ≤ −𝑠2𝛼/3/8) and P(𝔥𝑡 (0) ≥ 𝑠2𝛼/3/8) by exp(−𝑐𝑠𝛼)

for some constant 𝑐 > 0. Substituting these bound into the right side of the above display yields

P(B) ≤ 2 exp(−𝑐𝑠𝛼).

For the second inequality in (4.4.2) we use the Brownian Gibbs Property of the KPZ line

ensemble. See Figure 8.2 and its caption for more details. Denote I𝑠,𝛽 := (0, 𝛽𝜅𝑠1−𝛼/3). Recall that

𝔥𝑡 is the lowest indexed curve 𝔥
(1)
𝑡 of the KPZ line ensemble {𝔥(𝑛)𝑡 }𝑛∈N. Let F𝑠 := Fext({1},I𝑠,𝛽)
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Figure 4.3: Illustration for the proof of second inequality in (4.4.2): The two solid black curves
denote first two curves of a KPZ line ensemble {𝔥(𝑛)𝑡 }𝑛≥0 inside the interval I𝑠,𝛽. The dotted line
denotes the top line 𝔥̂

(1)
𝑡 of another KPZ line line ensemble coupled with {𝔥(𝑛)𝑡 }𝑛≥0 such that (𝑖)

𝔥̂
(1)
𝑡 has the same end point as 𝔥

(1)
𝑡 , (𝑖𝑖) always stays below of 𝔥

(1)
𝑡 and 𝔥̂

(2)
𝑡 = −∞. The law

of ℎ̂(1)𝑡 is same a Brownian bridge between 0 and 𝛽𝜅𝑠1−𝛼/3. Recall A denotes the event that
𝔥
(1)
𝑡 (𝑦) goes below of 𝔥

(1)
𝑡 (0) by −7𝛽𝜅𝑠/8 for some 𝑦 in (0, 𝛽𝜅𝑠1−𝛼/3). The event ¬B controls

that ℎ(1)𝑡 (𝛽𝜅𝑠1−𝛼/3) does not fall much below than ℎ(1)𝑡 (0). By the monotone coupling, we have
P𝑠 (A ∩ ¬B) ≤ Pfree(A ∩ ¬B). Here, P𝑠 is the law of 𝔥

(1)
𝑡 conditioned on 𝔥

(2)
𝑡 and everything

outside of I𝑠,𝛽 whereas Pfree is the law of a Brownian bridge with same end point as 𝔥(1)𝑡 . Finally,
Pfree(A ∩ ¬B) is estimated using the tail probability estimates of a Brownian bridge.

be the 𝜎-algebra generated by {𝔥(1)𝑡 (𝑥) : 𝑥 ∈ R\I𝑠,𝛽} and {𝔥(𝑛)𝑡 (𝑥) : 𝑥 ∈ R}𝑛∈N≥2 . Note that ¬B is

measurable w.r.t. F𝑠. Thus, we may write

P
(
A ∩ ¬B

)
= E [1¬BE[1A |F𝑠]] = E [1¬BP𝑠 (A)] . (4.4.4)

where P𝑠 := P1,1,(0,𝛽𝜅 𝑠1−
𝛼
3 ),𝔥(1)𝑡 (0),𝔥

(1)
𝑡 (𝛽𝜅 𝑠

1− 𝛼3 ),+∞,𝔥(2)𝑡
Hlong
𝑡

. By the monotone coupling (Lemma 6.5.2)

P𝑠 (A) ≤ Pfree(A), where Pfree := P1,1,(0,𝛽𝜅 𝑠1−
𝛼
3 ),𝔥(1)𝑡 (0),𝔥

(1)
𝑡 (𝛽𝜅 𝑠

1− 𝛼3 ),+∞,−∞
Hlong
𝑡

is the law of a Brownian

Bridge 𝔅 on [0, 𝛽𝜅𝑠1− 𝛼3 ] with 𝔅(0) := 𝔥𝑡 (0) and 𝔅(𝛽𝜅𝑠1− 𝛼3 ) := 𝔥𝑡 (𝛽𝜅𝑠1−
𝛼
3 ). Since 𝛽 ∈ (0, 1] and

𝛼 ≥ 3/2, we have 𝛽𝜅𝑠1−𝛼/3 ≥ 𝛽2𝜅𝑠2−𝛼. By the affine equivariance of the law of Brownian bridges

{
𝔅(𝑥) : 𝑥 ∈ I𝑠,𝛽

} 𝑑
=

{
𝔅̃(𝑥) + 𝔥𝑡 (𝛽𝜅 𝑠1−

𝛼
3 )−𝔥𝑡 (0)

𝛽𝜅 𝑠
1− 𝛼3

𝑦 : 𝑥 ∈ I𝑠,𝛽
}
,

where 𝔅̃ is a Brownian Bridge on [0, 𝛽𝜅𝑠1− 𝛼3 ] starting and ending at 0. Combining these observa-
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tions with (4.4.4) shows

P(A ∩ ¬B) ≤ E[1¬BP𝑠 (A)]

= E
[
1¬BP

(
inf

𝑦∈[0,𝛽2𝜅 𝑠2−𝛼]

[
𝔅̃(𝑦) + 𝔥𝑡 (𝛽𝜅 𝑠1−

𝛼
3 )−𝔥𝑡 (0)

𝛽𝜅 𝑠
1− 𝛼3

𝑦
]
≤ −7

8 𝛽
𝜅𝑠

��F𝑠) ]
≤ E

[
1¬BP

(
inf

𝑦∈[0,𝛽2𝜅 𝑠2−𝛼]
𝔅̃(𝑦) − 3𝑠2𝛼/3𝛽2𝜅 𝑠2−𝛼

4𝛽𝜅 𝑠1−
𝛼
3
≤ −7

8 𝛽
𝜅𝑠

��F𝑠)]
≤ P

(
inf

𝑦∈[0,𝛽2𝜅 𝑠2−𝛼]
𝔅̃(𝑦) ≤ − 𝛽

𝜅 𝑠

8

)
= P

(
1

𝛽𝜅 𝑠
1− 𝛼2

inf
𝑦∈[0,𝛽2𝜅 𝑠2−𝛼]

𝔅̃(𝑦) ≤ − 𝑠𝛼/28

)
.

The inequality in the third line follows since

inf
𝑦∈[0,𝛽2𝜅 𝑠2−𝛼]

{
𝔅̃(𝑦) + 𝔥𝑡 (𝛽𝜅𝑠1−

𝛼
3 ) − 𝔥𝑡 (0)

𝛽𝜅𝑠1−
𝛼
3

𝑦

}
≥ inf
𝑦∈[0,𝛽2𝜅 𝑠2−𝛼]

𝔅̃(𝑦) − 3𝑠2𝛼/3𝛽2𝜅𝑠2−𝛼

4𝛽𝜅𝑠1− 𝛼3

on the event ¬B. The next inequality follows by neglecting the indicator. The last probability is

clearly bounded by exp(−𝑐𝑠𝛼) by tail estimates of Brownian motion. This proves (II) and hence,

completes the proof of this proposition.

Proposition 4.4.2. Fix 𝜅 > 0. There exist constant 𝑐 > 0, 𝑡0 > 0 such that for all 𝑡 ≥ 𝑡0 and

𝛽 ∈ (0, 1] and 𝑠 ≥ 𝑠0(𝑡0) we have

P
(

sup
|𝑦 |≤ 1

16 𝛽
2𝜅√𝑠
(𝔥𝑡 (𝑦) − 𝔥𝑡 (0)) ≥ 𝛽𝜅𝑠

)
≤ 𝑒−𝑐𝑠3/2 . (4.4.5)

Proof. Set 𝑝 = 𝛽2𝜅√𝑠/16. Let Sup1 and Sup2 be the supremum value of 𝔥𝑡 (𝑦) − 𝔥𝑡 (0) for

𝑦 ∈ [0, 𝑝] and 𝑦 ∈ [−𝑝, 0] respectively. In what follows, we only bound P(Sup1 ≥ 𝛽𝜅𝑠). One can

bound P(Sup2 ≥ 𝛽𝜅𝑠) analogously. Let 𝜒 be the infimum of 𝑦 in [0, 𝑝] such that 𝔥𝑡 (𝑦) − 𝔥𝑡 (0) ≥

𝛽𝜅𝑠. If there is no such 𝑦, define 𝜒 to be +∞. Note that P(Sup1 ≥ 𝛽𝜅𝑠) = P(𝜒 ≤ 𝑝). We can write

this event as a disjoint union of A1 and A2 which are defined as

A1 := {𝜒 ≤ 𝑝, 𝔥𝑡 (𝜒) − 𝔥𝑡 (𝑝) < 𝛽𝜅 𝑠

8 }, A2 := {𝜒 ≤ 𝑝, 𝔥𝑡 (𝜒) − 𝔥𝑡 (𝑝) ≥ 𝛽𝜅 𝑠

8 }.
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In what follows, we show there exist 𝑠0 = 𝑠0(𝑡0) > 0 and constant 𝑐 > 0 such that for all 𝑠 ≥ 𝑠0

and 𝑡 ≥ 𝑡0, we have

P(A1) ≤ exp(−𝑐𝑠3/2), P(A2) ≤ 1
2P(𝜒 ≤ 𝑝) + exp(−𝑐𝑠3/2). (4.4.6)

As P(𝜒 ≤ 𝑝) = P(A1) + P(A2), combining the above two inequalities show P(𝜒 ≤ 𝑝) ≤

4 exp(−𝑐𝑠𝛼). Thus, proving (4.4.5) boils down to showing (4.4.6). We first prove P(A1) ≤

exp(−𝑐𝑠3/2). By the continuity of the spatial process 𝔥𝑡 (·), we have 𝔥𝑡 (𝜒) = 𝔥𝑡 (0) + 𝛽𝜅𝑠 on

the event {𝜒 ≤ 𝑝}. Thus

P(A1) ≤ P(𝔥𝑡 (0) − 𝔥𝑡 (𝑝) ≤ −7𝛽𝜅𝑠/8) ≤ P( inf
𝑦∈[0,𝑝]

(𝔥𝑡 (𝑦) − 𝔥𝑡 (𝑝)) ≤ −7𝛽𝜅𝑠/8).

The r.h.s. of the above inequality is bounded by exp(−𝑐𝑠3/2) due to Proposition 4.4.1 and the

stationarity of spatial process 𝔥𝑡 (𝑥) + 𝑥
2

2 . This proves the first inequality of (4.4.6). Now we turn to

show the second inequality of (4.4.6). Consider the following event

B :=
{
𝔥𝑡 (0) ∈ [−𝑠/4, 𝑠/4], 𝔥𝑡 (𝛽𝜅

√
𝑠) ∈ [−3𝑠/4, 𝑠/4]

}
.

Observe that P(A2) ≤ P(A2∩B)+P(¬B). By Proposition 4.2.12, we get P(¬B) ≤ exp(−𝑐𝑠3/2)

for some constant 𝑐 > 0 and all large 𝑠 and 𝑡. It suffices to show

P(A2 ∩ B) ≤ 2−1P(𝜒 ≤ 𝑝). (4.4.7)

Towards this end, we use the strong Brownian Gibbs property of the KPZ line ensemble. Let F𝑠 =

Fext({1}, (𝜒, 𝛽𝜅
√
𝑠)) be the 𝜎-algebra generated by {𝔥(𝑛)𝑡 (𝑥)}𝑛∈N,𝑥∈R outside {𝔥(1)𝑡 (𝑥)}𝑥∈(𝜒,𝛽𝜅√𝑠) .

By the tower property of the conditional expectation, we have

P(A2 ∩ B) = E
[
1{𝜒≤𝑝}∩BE(1D |F𝑠)

]
= E

[
1{𝜒≤𝑝}∩BP𝑠 (D)

]
, (4.4.8)
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Figure 4.4: Illustration for the proof of (4.4.7): The solid curves denotes 𝔥(1)𝑡 and 𝜒 is the nearest
point from 0 in [0, 𝑝] where 𝔥

(1)
𝑡 (𝑦) exceeds 𝔥

(1)
𝑡 (0) + 𝛽𝑘 𝑠. If no such point exists, then, 𝜒 =

+∞. The blue line connects (𝜒, 𝔥(1)𝑡 (𝜒)) with (𝛽𝑘
√
𝑠, 𝔥
(1)
𝑡 (𝛽𝑘

√
𝑠)). The event D indicates a rapid

downfall of 𝔥
(1)
𝑡 from 𝜒 to 𝑝 and the event B ensures that the line joining the endpoints of 𝔥𝑡

from 0 to 𝛽2𝑘√𝑠 does not become too steep. Since 𝔥𝑡 (𝜒) = 𝔥𝑡 (0) + 𝛽𝜅𝑠, B also controls the slope
of the line joining the endpoints of 𝔥𝑡 from 𝜒 to 𝛽2𝑘√𝑠. The rapid downfall of the black solid
curve induced by D enforces the blue line staying above the black curve. Here P𝑠 is the law of
the black solid curve and Pfree is the law of free Brownian bridge, i.e., the law of the top line of
a KPZ line ensemble with 𝔥̂

(2)
𝑡 = −∞ and 𝔥̂

(1)
𝑡 has the same end point as 𝔥

(1)
𝑡 . By the monotone

coupling, P𝑠 (D) ≤ Pfree(D) for the event D. The probability of a Brownian bridge staying below
the interpolating line of its end point is less than 1

2 . This shows P𝑠 (D) is bounded above by 1
2 .

where D := {𝔥𝑡 (𝜒) − 𝔥𝑡 (𝑝) ≥ 1
8 𝛽

𝜅𝑠} and P𝑠 := P1,1,(𝜒,𝛽𝜅
√
𝑠),𝔥(1)𝑡 (𝜒),𝔥

(1)
𝑡 (𝛽𝜅

√
𝑠),+∞,𝔥(2)𝑡

Hlong
𝑡

. We show

that P𝑠 (D) ≤ 1
2 on the event {𝜒 ≤ 𝑝} ∩ B. By Lemma 6.5.2, P𝑠 (D) ≤ Pfree(D), where Pfree :=

P1,1,(𝜒,𝛽𝜅
√
𝑠),𝔥(1)𝑡 (𝜒),𝔥

(1)
𝑡 (𝛽𝜅

√
𝑠),+∞,−∞

Hlong
𝑡

is the law of a Brownian Bridge 𝔅(·) on [𝜒, 𝛽𝜅
√
𝑠] with 𝔅(𝜒) :=

𝔥𝑡 (𝜒) and 𝔅(𝛽𝜅
√
𝑠) := 𝔥𝑡 (𝛽𝜅

√
𝑠). Let us define

𝔅Int(𝑦) := 𝛽𝜅
√
𝑠−𝑦

𝛽𝜅
√
𝑠−𝜒𝔥𝑡 (𝜒) +

𝑦−𝜒
𝛽𝜅
√
𝑠−𝜒𝔥𝑡 (𝛽

𝜅
√
𝑠) for 𝑦 ∈ [𝜒, 𝛽𝜅

√
𝑠] .

On the event {𝜒 ≤ 𝑝} ∩ B, we have 𝔥𝑡 (𝜒) = 𝔥𝑡 (0) + 𝛽𝜅𝑠 by the continuity of the spatial process 𝔥𝑡

and hence, 𝔥𝑡 (𝛽𝜅
√
𝑠) −𝔥𝑡 (𝜒) is bounded below by −3𝑠

4 −𝔥𝑡 (0) − 𝛽
𝜅𝑠 which is further lower bounded

by −2𝑠. This shows 𝔅Int(𝑝) ≥ 𝔥𝑡 (𝜒) − 𝛽𝜅 𝑠

8 . However, we know that 𝔅(𝑝) ≤ 𝔥𝑡 (𝜒) − 𝛽𝜅 𝑠

8 on the

event D. This shows 𝔅(𝑝) ≤ 𝔅Int(𝑝) on the event {𝜒 ≤ 𝑝} ∩ B. However, since 𝔅 is a Brownian

bridge and 𝔅Int is the linear interpolation of the end points of 𝔅, P(𝔅(𝑝) ≤ 𝔅Int(𝑝)) = 1
2 . This

implies P𝑠 (D) ≤ 1
2 on the event {𝜒 ≤ 𝑝} ∩ B. Substituting this bound into the r.h.s. of (4.4.8)
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shows (4.4.7). This completes the proof.

Proposition 4.4.3. Fix 𝑎 ∈ R and 𝛿 > 0. There exist 𝑡0 ∈ (0, 1) and an absolute constant 𝑐 > 0

such that for all 𝑡 ≤ 𝑡0, 𝑠 ≥ 𝑠0(𝑡0) satisfying ( |𝑎 | + 𝛿)2 − 𝑎2 ≤ 𝑠

28 , we have

P
(

sup
𝑥∈[𝑎,𝑎+𝛿]

(
𝔤𝑡 ((43𝑡/𝜋3)1/8𝑥) + 𝑥2/2

)
≥ 𝑠

)
≤ 𝑒−𝑐𝑠3/2 . (4.4.9)

P
(

inf
𝑥∈[𝑎,𝑎+𝛿]

(
𝔤𝑡 ((43𝑡/𝜋3)1/8𝑥) + 𝑥2/2

)
≤ −𝑠

)
≤ 𝑒−𝑐𝑠2 + 𝑒−𝑐𝑠2𝑡−1/8𝛿−1

. (4.4.10)

Proof. We introduce the shorthand 𝔤̃𝑡 (𝑥) := 𝔤𝑡 ((43𝑡/𝜋3)1/8𝑥) which will be used throughout this

proof. We divide the proof of this proposition in two stages. We prove (4.4.9) and (4.4.10) in

Stage-1 and Stage-2 respectively.

Stage-1: Proof of (4.4.9). Define

C[𝑎,𝑎+𝛿] :=
{

sup
𝑥∈[𝑎,𝑎+𝛿]

(𝔤̃𝑡 (𝑥) + 𝑥2/2) ≥ 𝑠
}
, C′[𝑎,𝑎+𝛿] :=

{
sup

𝑥∈[𝑎,𝑎+𝛿]
(𝔤̃𝑡 (𝑥) − 𝔤̃𝑡 (𝑎)) ≥

𝑠

4

}
,

D𝑤 :=
{
− 𝑠

32 ≤𝔤̃𝑡 (𝑤) +
𝑤2

2 ≤
𝑠

32

}
,

where 𝑤 ∈ R. We seek to show that P(C[𝑎,𝑎+𝛿]) ≤ exp(−𝑐𝑠3/2) for all large 𝑠 and small 𝑡. The

stationarity in 𝑥 of the process 𝔤̃𝑡 (𝑥) + 𝑥2

2 (Lemma 4.2.10) with Corollary 4.1.6 and Theorem 4.1.7

yields P(¬D𝑤) ≤ exp(−𝑐𝑠3/2) for all 𝑤 ∈ R. This will be used throughout the proof. On the event

C[𝑎,𝑎+𝛿] ∩ D𝑎, there exists 𝑥 ∈ [𝑎, 𝑎 + 𝛿] such that

𝔤̃𝑡 (𝑥) ≥ 𝑠 − 𝑥2/2 ≥ 𝑠 − (𝑎 + 𝛿)2/2 ≥ 31𝑠
32 + 𝔤̃𝑡 (𝑎) + 𝑎

2/2 − (𝑎 + 𝛿)2/2 ≥ 𝑠
4 + 𝔤̃𝑡 (𝑎),

where the second inequality follows since 𝑥 ≤ 𝑎 + 𝛿, the third inequality follows since 𝔤̃𝑡 (𝑎) + 𝑎
2

2 ≤

𝑠/32 on D𝑎 and the last inequality holds since (𝑎 + 𝛿)2 − 𝑎2 ≤ 𝑠/28. The above inequalities

shows C[𝑎,𝑎+𝛿] ∩ D𝑎 ⊂ C′[𝑎,𝑎+𝛿] which implies P(C[𝑎,𝑎+𝛿]) ≤ P(¬D𝑎) + P(C′[𝑎,𝑎+𝛿]). Recall that
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P(¬D𝑎) ≤ exp(−𝑐𝑠3/2). To complete the proof, it suffices to show that P(C′[𝑎,𝑎+𝛿]) ≤ exp(−𝑐𝑠3/2)

for large 𝑠 and small 𝑡. This we do as follows.

Let 𝜎 be the infimum of 𝑦 ∈ [𝑎, 𝑎 + 𝛿] such that 𝔤̃𝑡 (𝑦) − 𝔤̃𝑡 (𝑎) ≥ 𝑠
4 , with the convention that

𝜎 = ∞ if no such point exists. Define B := {𝔤̃𝑡 (𝑎 + 𝛿) − 𝔤̃𝑡 (𝜎) ≤ − 𝑠8 } and write

P(C′[𝑎,𝑎+𝛿]) = P(𝜎 ≤ 𝑎 + 𝛿) = P({𝜎 ≤ 𝑎 + 𝛿} ∩ B) + P({𝜎 ≤ 𝑎 + 𝛿} ∩ ¬B).

On the event {𝜎 ≤ 𝑎 + 𝛿}, we have 𝔤̃𝑡 (𝜎) = 𝔤̃𝑡 (𝑎) + 𝑠
4 . This implies 𝔤̃𝑡 (𝑎 + 𝛿) − 𝔤̃𝑡 (𝑎) = 𝔤̃𝑡 (𝑎 + 𝛿) −

𝔤̃𝑡 (𝜎) + 𝑠/4 ≥ −𝑠/8 on {𝜎 ≤ 𝑎 + 𝛿} ∩ ¬B and hence,

P({𝜎 ≤ 𝑎 + 𝛿} ∩ ¬B) ≤ P
(
𝔤̃𝑡 (𝑎 + 𝛿) + (𝑎 + 𝛿)2/2 − 𝔤̃𝑡 (𝑎) − 𝑎2/2 ≥ − 𝑠8

)
≤ P

(
𝔤̃𝑡 (𝑎 + 𝛿) + (𝑎 + 𝛿)2/2 > 𝑠

16
)
+ 𝑃

(
𝔤̃𝑡 (𝑎) + 𝑎2/2 ≤ − 𝑠

16
)
≤ exp(−𝑐𝑠3/2),

(4.4.11)

where the second inequality follows from the union bound and the last inequality follows by com-

bining the stationarity of 𝔤̃𝑡 (𝑥) + 𝑥2

2 with Corollary 4.1.6 and Theorem 4.1.7.

Now we proceed to bound P({𝜎 ≤ 𝑎 + 𝛿} ∩ B). By the union bound, we have

P({𝜎 ≤ 𝑎 + 𝛿} ∩ B) ≤ P({𝜎 ≤ 𝑎 + 𝛿} ∩ B ∩ D𝑎 ∩ D𝑎+4𝛿) + P(¬D𝑎) + P(¬D𝑎+4𝛿). (4.4.12)

We know P(¬D𝑎) +P(¬D𝑎+4𝛿) is bounded above by exp(−𝑐𝑠3/2) for some constant 𝑐 > 0. In what

follows, we show that

P({𝜎 ≤ 𝑎 + 𝛿} ∩ B ∩ D𝑎 ∩ D𝑎+4𝛿) ≤ 1
2P(𝜎 ≤ 𝑎 + 𝛿). (4.4.13)

Combining this inequality with (4.4.12) and (4.4.11) shows that P(C′[𝑎,𝑎+𝛿]) ≤ 2−1P(C′[𝑎,𝑎+𝛿]) +

exp(−𝑐𝑠3/2) for all large 𝑠 and small 𝑡. By simplifying this inequality, we get the desired result. It

remains to show (4.4.13) whose proof is similar to that of (4.4.7). To avoid repetition, we sketch

the key ideas without details. The main tool that we use is the Brownian Gibbs property of the
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short time KPZ line ensemble {𝔤(𝑛)𝑡 }𝑛∈N (Recall Definition (4.2.2)). By the tower property, we

write the left hand side of (4.4.13) as E[1{𝜎≤𝑎+𝛿}∩D𝑎∩D𝑎+4𝛿P𝑠 (B)] where

P𝑠 := P1,1,(43𝑡/𝜋3)1/8 (𝜎,𝑎+4𝛿),𝔤̃ (1)𝑡 (𝜎),𝔤̃
(1)
𝑡 (𝑎+4𝛿),+∞,𝔤

(2)
𝑡

Hshort
𝑡

.

By monotone coupling, P𝑠 (B) ≤ Pfree(B) where Pfree is the law of a free Brownian bridge between

(43𝑡/𝜋3)1/8𝜎 and (43𝑡/𝜋3)1/8(𝑎 + 4𝛿) with the value of the end points being 𝔤̃𝑡 (𝜎) and 𝔤̃𝑡 (𝑎 + 4𝛿).

On the event {𝜎 ≤ 𝑎 + 𝛿} ∩D𝑎 ∩D𝑎+4𝛿 ∩B, the value of the Brownian bridge at (43𝑡/𝜋3)1/8(𝑎 + 𝛿)

has to be lower than the value of the line joining two end points of the Brownian bridge. The

probability of this is bounded by 1/2 which shows Pfree(B) ≤ 1/2 on {𝜎 ≤ 𝑎 + 𝛿} ∩ D𝑎 ∩ D𝑎+4𝛿.

Hence, we get E[1{𝜎≤𝑎+𝛿}∩D𝑎∩D𝑎+4𝛿P𝑠 (B)] is less than P(𝜎 ≤ 𝑎 + 𝛿)/2. This shows (4.4.13) and

hence, completes the proof of (4.4.9).

Stage-2: Proof of (4.4.10). Let us define the following two events:

B[𝑎,𝑎+𝛿] = {𝑎2/2 + inf
𝑥∈[𝑎,𝑎+𝛿]

𝔤̃𝑡 (𝑥) ≤ −𝑠}, E𝑤 := {𝔤̃𝑡 (𝑤) + 𝑤2/2 ≥ −𝑠/4}

for 𝑤 ∈ R. Note that P
(
inf𝑥∈[𝑎,𝑎+𝛿]

(
𝔤̃𝑡 (𝑥) + 𝑥2

2
)
≤ −𝑠

)
is bounded by P(B[𝑎,𝑎+𝛿]). Furthermore,

P(B[𝑎,𝑎+𝛿]) ≤ P(¬E𝑎) + P(¬E𝑎+𝛿) + P(B[𝑎,𝑎+𝛿] ∩ E𝑎 ∩ E𝑎+𝛿).

Due to the spatial stationarity of the process 𝔤̃𝑡 (𝑥) + 𝑥2/2 (Lemma 4.2.10) and Theorem 4.1.7,

we have P(¬E𝑎+𝛿) = P(¬E0) ≤ exp(−𝑐𝑠2) for all large 𝑠 and small 𝑡. To complete the proof of

(4.4.10), it suffices to show

P(B[𝑎,𝑎+𝛿] ∩ E𝑎 ∩ E𝑎+𝛿) ≤ exp(−𝑐𝑠2𝑡−1/8𝛿−1). (4.4.14)

To show the above inequality, we use the Brownian-Gibbs property of the short time KPZ line

ensemble. Recall from (4.2.4) and (4.2.2) that
{
𝔤̃𝑡 ((43𝑡/𝜋3)−1/8𝑤)

}
𝑤∈R is same in distribution
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with 𝔤
(1)
𝑡 (·) where 𝔤

(1)
𝑡 is the lowest indexed curve of the short-time KPZ line ensemble de-

fined in (3) of Lemma 6.5.1. Let us set 𝑎′ := (43𝑡/𝜋3)1/8𝑎 and 𝛿′ := (43𝑡/𝜋3)1/8𝛿 for conve-

nience. Let F𝑠 := Fext({1}, (𝑎′, 𝑎′ + 𝛿′)) be the 𝜎-algebra generated by {𝔤̃(𝑛)𝑡 (𝑥)}𝑛∈N≥2,𝑥∈R outside

{𝔤̃(1)𝑡 (𝑥)}𝑥∈R\(𝑎′,𝑎′+𝛿′) . Consider the following two measures

P𝑠 := P1,1,(𝑎′,𝑎′+𝛿′),𝔤̃𝑡 (𝑎),𝔤̃𝑡 (𝑎+𝛿),∞,𝔤 (2)𝑡
Hshort
𝑡

, Pfree := P1,1,(𝑎′,𝑎′+𝛿′),𝔤̃𝑡 (𝑎),𝔤̃𝑡 (𝑎+𝛿),∞,−∞
Hshort
𝑡

,

where Pfree denotes the law of a Brownian bridge on [𝑎′, 𝑎′ + 𝛿′] with the boundary values 𝔤̃𝑡 (𝑎)

and 𝔤̃𝑡 (𝑎 + 𝛿) respectively. By the strong Brownian Gibbs property for the short-time KPZ line

ensemble,

P(B[𝑎,𝑎+𝛿] ∩ E𝑎 ∩ E𝑎+𝛿) = E
[
1E𝑎1E𝑎+𝛿E(B[𝑎,𝑎+𝛿] |F𝑠)

]
= E

[
1E𝑎1E𝑎+𝛿P𝑠 (B[𝑎,𝑎+𝛿])

]
.

Due to the monotone coupling, we know P𝑠 (B[𝑎,𝑎+𝛿]) ≤ Pfree(B[𝑎,𝑎+𝛿]). Let 𝔅 be a Brownian

bridge on [0, 𝛿′] with 𝔅(0) = 𝔅(𝛿′) = 0. Then, the law of 𝔅(𝑥) + 𝔤̃𝑡 (𝑎) 𝛿
′−𝑥
𝛿′ + 𝔤̃𝑡 (𝑎 + 𝛿)

𝑥
𝛿′ is same

as Pfree. So, we have

P(E𝑎 ∩ E𝑎+𝛿 ∩ B[𝑎,𝑎+𝛿]) ≤ E
[
1E𝑎1E𝑎+𝛿P

(
𝑎2

2 + inf
𝑥∈[0,𝛿′]

[
𝔅(𝑥) + 𝔤̃𝑡 (𝑎) 𝛿

′−𝑥
𝛿′ + 𝔤̃𝑡 (𝑎 + 𝛿)

𝑥
𝛿′
]
≤ −𝑠

)]
≤ E

[
1E𝑎1E𝑎+𝛿P

(
𝑎2

2 + inf
𝑥∈[0,𝛿′]

[
𝔅(𝑥) −

(
𝑠
4 +

𝑎2

2
)
𝛿′−𝑥
𝛿′ −

(
𝑠
4 +

(𝑎+𝛿)2
2

)
𝑥
𝛿′
]
≤ −𝑠

)]
(4.4.15)

≤ P
(
𝑎2−(𝑎+𝛿)2

2 − 𝑠
4 + inf

𝑥∈[0,𝛿′]

[
𝔅(𝑥) + [(𝑎+𝛿)

2−𝑎2] (𝛿′−𝑥)
2𝛿′

]
≤ −𝑠

)
. (4.4.16)

The inequality in (4.4.15) follows by noting that 𝔤̃𝑡 (𝑎) + 𝑎2/2 and 𝔤̃𝑡 (𝑎 + 𝛿) + (𝑎 + 𝛿)2/2 are at

least −𝑠/4 on the event on (E𝑎 ∩ E𝑎+𝛿). The last inequality in (7.3.22) follows by dropping the

indicators 1E𝑎 and 1E𝑎+𝛿 from inside the expectation. Recall that ( |𝑎 | + |𝛿 |)2 − 𝑎2 ≤ 𝑠/28. Using
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this inequality to bound in the last line of the above display yields

r.h.s. of (7.3.22) ≤ P
(

inf
𝑥∈[0,𝛿′]

[
𝔅(𝑥) + [(𝑎+𝛿)

2−𝑎2] (𝛿′−𝑥)
2𝛿′

]
≤ −3𝑠

4 +
𝑠

29

)
. (4.4.17)

Note that | (𝑎 + 𝛿)2 − 𝑎2 | ≤ 2|𝑎 |𝛿 + 𝛿2 = ( |𝑎 | + 𝛿)2 − 𝑎2 ≤ 𝑠/28 by the hypothesis. Adjusting

the bound on the drift term in (4.4.17), we get r.h.s. of (7.3.22) ≤ P
(
inf𝑥∈[0,𝛿′] 𝔅(𝑥) ≤ −3𝑠

4 +
𝑠

28

)
.

Upper bounding −3𝑠
4 +

𝑠

29 by − 𝑠4 , we get

r.h.s. of (4.4.17) ≤ P
(

inf
𝑥∈[0,𝛿′]

𝔅(𝑥) ≤ − 𝑠4
)
= P

(
inf

𝑥∈[0,1]
𝔅̃(𝑥) ≤ − 𝑠

4
√
𝛿′

)
≤ exp(−𝑐𝑠2/𝛿′)

Here, 𝔅̃ is a Brownian bridge on [0, 1] with 𝔅̃(0) = 𝔅̃(1) = 0. The equality in the above display

follows from the scale invariance property of the Brownian bridge. The last inequality is obtained

by bounding the tail probability of the infimum of a Brownian bridge using reflection principle.

Noting that 𝛿′ ≤ 2𝑡1/8𝛿, we get (4.4.14) from (4.4.17) and hence obtain (4.4.9), completing the

proof.

Our next and final proposition of this section bounds the tail probabilities of the supremum and

infimum of the spatial process 𝑥 ↦→ 𝔤𝑡 (𝑥) + (𝜋𝑡/4)3/4𝑥2/(2𝑡). Proof of this proposition is similar

to that of Proposition 4.1 and 4.2 of [117] and thus deferred to Section ??.

Proposition 4.4.4. Let 𝜈 > 0. There exist 𝑡0 = 𝑡0(𝜈) ∈ (0, 1), 𝑐 = 𝑐(𝜈) > 0 and 𝑠 = 𝑠(𝜈) > 0 such

that for all 𝑡 ≤ 𝑡0 and 𝑠 ≥ 𝑠0, we have

P
(
sup
𝑥∈R

(
𝔤𝑡 (𝑥) + (𝜋𝑡/4)

3/4 (1−𝜈)𝑥2

2𝑡
)
≥ 𝑠

)
≤ exp(−𝑐𝑠3/2),

P
(

inf
𝑥∈R

(
𝔤𝑡 (𝑥) + (𝜋𝑡/4)

3/4 (1+𝜈)𝑥2

2𝑡
)
≤ −𝑠

)
≤ exp(−𝑐𝑠2).

4.5 Spatio-Temporal Modulus of Continuity

The main goal of this section is to study the temporal modulus of continuity of the KPZ equa-

tion and use it for proving Theorem 4.1.9. The proof of Theorem 4.1.9 requires detailed study of
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the tail probabilities for difference of the KPZ height function at two distinct time points. This

will be explored in Proposition 4.5.1 and 4.5.2. In particular, Proposition 4.5.1 will study the tail

estimates when two time points are close to each other and Proposition 4.5.2 will focus on the

case when the time points are far apart. With these result in hand, we show the Hölder continu-

ity of the sample path of 𝔥𝑡 in Proposition 4.5.5. Below, we first state those propositions; prove

Theorem 4.1.9; and then, complete proving those proposition in three ensuing subsections.

Proposition 4.5.1. Fix 𝜀 ∈ (0, 1
4 ). There exist 𝑡0 = 𝑡0(𝜀) ≥ 1, 𝑐 = 𝑐(𝜀) > 0, and 𝑠0 = 𝑠0(𝜀) > 0

such that for all 𝑡 ≥ 𝑡0, 𝑠 ≥ 𝑠0 and 𝛽 ≤ (0, 1] satisfying 𝛽𝑡 ≤ 1
𝑡0

, we have

P(𝔥𝑡 (1 + 𝛽, 0) − 𝔥𝑡 (1, 0) ≥ 𝛽1/4−𝜀𝑠) ≤ exp(−𝑐𝑠3/2), (4.5.1)

P(𝔥𝑡 (1 + 𝛽, 0) − 𝔥𝑡 (1, 0) ≤ −𝛽1/4−𝜀𝑠) ≤ exp(−𝑐𝑠2). (4.5.2)

Proposition 4.5.2. Fix 𝑡0 > 0. There exist 𝑐 = 𝑐(𝑡0) > 0, and 𝑠0 = 𝑠0(𝑡0) > 0 such that for all

𝑡 ≥ 𝑡0 satisfying 𝛽𝑡 ≥ 𝑡0, 𝛽 ∈ (0, 1] and 𝑠 ≥ 𝑠0,

P(𝔥𝑡 (1 + 𝛽, 0) − 𝔥𝑡 (1, 0) ≥ 𝛽1/4𝑠) ≤ exp(−𝑐𝑠3/2), (4.5.3)

P(𝔥𝑡 (1 + 𝛽, 0) − 𝔥𝑡 (1, 0) ≤ −𝛽1/4𝑠) ≤ exp(−𝑐𝑠2). (4.5.4)

Remark 4.5.3. Note that Proposition 4.5.1 and 4.5.2 together bounds the upper and lower tail prob-

abilities of the difference of the KPZ height function at any two time points irrespective of their

distance. This is in sharp contrast with Theorem 1.5 of [117] which was able to prove some tail

bounds of the KPZ height difference only under the assumption that the two associated time points

are far apart. While Proposition 4.5.2 may appear to share the same spirit as [117, Theorem 1.5]

since they both work under the assumption of the time points being distant from each other, how-

ever, the tail bounds of Proposition 4.5.2 improve on the decay exponents in comparison with those

in [117]. That being said, we expect that same tail bounds as in (4.5.3) and (4.5.4) hold even when

the exponent of 𝛽 is 1
3 instead of 1

4 . Nevertheless, the present tail bounds of Proposition 4.5.1
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and 4.5.2 are sufficient for proving main results of this paper.

Proposition 4.5.1 and 4.5.2 will be proved in Section 4.5.1 and 4.5.2 respectively. The follow-

ing proposition is in the same vein as Proposition 4.5.2.

Proposition 4.5.4. Fix 𝑡0 > 0. For any given 𝛽 > 0, recall the spatial process 𝔥(1+𝛽)𝑡↓𝑡 (·) from

Proposition 4.2.11. There exist 𝑐 = 𝑐(𝑡0) > 0, and 𝑠0 = 𝑠0(𝑡0) > 0 such that for all 𝑡 ≥ 𝑡0,

𝑠 ≥ 𝑠0, 𝛽 ≥ 1 with 𝑡 ≥ 𝑡0 we have

P(𝔥𝑡 (1 + 𝛽, 0) − 𝔥(𝑡+𝛽𝑡)↓𝑡 (0) ≥ 𝑠) ≤ exp(−𝑐𝑠3/2)

P(𝔥𝑡 (1 + 𝛽, 0) − 𝔥(𝑡+𝛽𝑡)↓𝑡 (0) ≤ −𝑠) ≤ exp(−𝑐𝑠2).

The proofs of Proposition 4.5.2 and Proposition 4.5.4, both use the representation ℎ𝑡 (1+𝛽, 0) =

𝐼𝑡 (𝔥𝑡 , 𝔥(1+𝛽)𝑡↓𝑡) (Recall 𝐼𝑡 from (4.2.5)). In fact, the proof of Proposition 4.5.4 is ditto to that of

Proposition 4.5.2 upto switching the role of 𝔥𝑡 and 𝔥(1+𝛽)𝑡↓𝑡 . For avoiding repetitions, we will only

prove Proposition 4.5.2 here and postpone the proof of Proposition 4.5.4 to Section ??.

Although Theorem 4.1.9 captures the tail bounds for spatio-temporal modulus of continuity,

we record a stronger tail bounds of the modulus of continuity of the KPZ temporal process. This

result which will proved in Section 4.5.3 is useful for several estimates in Section 4.6 and 4.7.

Proposition 4.5.5 (Temporal moulus of continuity). Fix 𝜀 ∈ (0, 1
4 ). There exist 𝑡0 = 𝑡0(𝜀), 𝑠0 =

𝑠0(𝜀) > 0 and 𝑐 = 𝑐(𝜀) > 0, such that for all 𝑎, 𝑡 ≥ 0 with 𝑎𝑡 ≥ 𝑡0 and 𝑠 ≥ 𝑠0,

P

(
sup
𝜏∈[0,𝑎]

𝔥𝑡 (𝑎 + 𝜏, 0) − 𝔥𝑡 (𝑎, 0)
(𝜏/𝑎) 1

4−𝜀 log2/3 2𝑎
𝜏

≥ 𝑎1/3𝑠

)
≤ 𝑒−𝑐𝑠3/2 , (4.5.5)

P

(
inf

𝜏∈[0,𝑎]

𝔥𝑡 (𝑎 + 𝜏, 0) − 𝔥𝑡 (𝑎, 0)
(𝜏/𝑎) 1

4−𝜀 log1/2 2𝑎
𝜏

≤ −𝑎1/3𝑠

)
≤ 𝑒−𝑐𝑠2 . (4.5.6)

Proof of Theorem 4.1.9. Fix 𝜀 > 0. Take 𝑡0(𝜀) from Proposition 4.5.1. Fix any 𝑡 ≥ 𝑡0. Fix

[𝑐, 𝑑] ⊂ [1,∞). We claim that there exists 𝑠0(𝑐, 𝑑, 𝜀) > 0 and 𝑚(𝑐, 𝑑, 𝜀) > 0 such that for all
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𝛼1 ≠ 𝛼2 ∈ [𝑐, 𝑑] and 𝑥 ∈ R, we have

P
(
|𝔥𝑡 (𝛼1, 𝑥) + 𝑥2

2𝛼1
− 𝔥𝑡 (𝛼2, 𝑥) + 𝑥2

2𝛼2
| ≥ (𝛼1 − 𝛼2)

1
4−𝜀𝑠

)
≤ exp(−𝑚𝑠3/2). (4.5.7)

By stationarity we may assume 𝑥 = 0. Assume 𝛼1 > 𝛼2. If 𝛼1 − 𝛼2 < 1, by the scaling property:

𝔥𝑡 (𝛼1, 0)−𝔥𝑡 (𝛼2, 0) = 𝛼1/3
2 [𝔥𝑡 (𝛼1/𝛼2, 0)−𝔥𝑡 (1, 0)], and using Proposition 4.5.1 and 4.5.2 together,

we have (4.5.7). For 𝛼1 − 𝛼2 > 1, by union bound and Proposition 4.2.12 we have

P
(
|𝔥𝑡 (𝛼1, 0) − 𝔥𝑡 (𝛼2, 0) | ≥ (𝛼1 − 𝛼2)

1
4−𝜀𝑠

)
≤ P ( |𝔥𝑡 (𝛼1, 0) | ≥ 𝑠/2) + P ( |𝔥𝑡 (𝛼2, 0) | ≥ 𝑠/2)

≤ exp(−𝑚𝑠3/2).

Next fix [𝑎, 𝑏] ⊂ R. By Theorem 1.3 from [117], there exists 𝑠0(𝑐, 𝑑, 𝜀) > 0 and 𝑚(𝑐, 𝑑, 𝜀) > 0

such that for all 𝛼 ∈ [𝑐, 𝑑] and |𝑥1 − 𝑥2 | ≤ 1 with 𝑥1, 𝑥2 ∈ [𝑎, 𝑏] ⊂ R we have

P
(
|𝔥𝑡 (𝛼, 𝑥1) +

𝑥2
1

2𝛼 − 𝔥𝑡 (𝛼, 𝑥2) +
𝑥2

2
2𝛼 | ≥ (𝑥1 − 𝑥2)

1
2 𝑠

)
≤ exp(−𝑚𝑠3/2). (4.5.8)

Utilizing the tail bounds of two point differences from (4.5.7) and (4.5.8), one may get the modulus

of continuity result of Theorem 4.1.9 via Lemma 2.8 in [138]. This completes the proof.

4.5.1 Proof of Proposition 4.5.1

We will prove (4.5.2) and (4.5.1) in Stage-1 and Stage-2 respectively. We start with introducing

relevant notations which will be used throughout the proof. Fix 𝑡0 > 0, 𝜀 ∈ (0, 1
4 ) and set 𝜅 = 1

4 −𝜀.

By the composition law

𝔥𝑡 (1 + 𝛽, 0) − 𝔥𝑡 (1, 0) = 𝑡−
1
3 log

∫
R
𝑒
𝑡

1
3

(
𝔥𝑡 (1,𝑡−

2
3 𝑦)+𝔥 (𝑡+𝛽𝑡 )↓𝑡 (−𝑡−

2
3 𝑦)−𝔥𝑡 (1,0)

)
𝑑𝑦, (4.5.9)
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where 𝔥(𝑡+𝛽𝑡)↓𝑡 (·) is independent of 𝔥𝑡 (1, ·) and is distributed as 𝔥𝑡 (𝛽, ·). We define 𝔥̃𝑡 (𝛽, ·) : R→ R

and 𝔤̃𝛽𝑡 (·) : R→ R by 𝔥̃𝑡 (𝛽, ·) := 𝔥(𝑡+𝛽𝑡)↓𝑡 (·) and

𝔥̃𝑡 (𝛽, 𝑡−
2
3 𝑦) = 𝑡− 1

3

(
𝜋𝛽𝑡

4

) 1
4
(̃
𝔤𝛽𝑡 (𝑧) + 𝑧2/2

)
+

𝛽𝑡

24−log
√

2𝜋𝛽𝑡

𝑡
1
3

− 𝑦2

2𝛽𝑡
4
3
,

where 𝑧 = (𝜋𝛽5𝑡5/4)−1/8𝑦. Note that 𝔤̃𝛽𝑡 (𝑥) is distributed as 𝔤𝛽𝑡 ((43𝑡/𝜋3)1/8𝑥) and independent of

𝔥𝑡 (1, ·). Writing the r.h.s. of (4.5.9) in terms of of 𝔤̃𝛽𝑡 yields

𝔥𝑡 (1 + 𝛽, 0) − 𝔥𝑡 (1, 0) = 𝛽𝑡2/3

24 + 𝑡
−1/3 log

∫
R

1√
2𝜋𝛽𝑡

exp
{
− 𝑦2

2𝛽𝑡 + 𝑡
1
3

(
𝔥𝑡 (𝑡−

2
3 𝑦) − 𝔥𝑡 (0)

)
+

(
𝜋𝛽𝑡

4

) 1
4
[̃
𝔤𝛽𝑡

(
−𝑦

(𝜋𝛽5𝑡5/4)1/8

)
+ 𝑦2

2(𝜋𝛽5𝑡5/4)1/4

]}
𝑑𝑦

=: 𝛽𝑡2/3

24 + 𝑡
−1/3 log

∫
R
𝑋𝑡 (𝛽, 𝑦)𝑑𝑦, (4.5.10)

where the space-time stochastic process 𝑋𝑡 (𝛽, 𝑦) : R>0×R→ R≥0 is defined by the above relation.

We seek for an upper bound and a lower bound for the r.h.s. of (4.5.10) which will prove (4.5.1)

and (4.5.2) respectively.

Stage-1. Define ℑ𝔫𝔱(𝛽, 𝑡) := [−𝑡2/3𝛽2𝜅, 𝑡2/3𝛽2𝜅]. From (4.5.10), 𝔥𝑡 (1 + 𝛽, 0) − 𝔥𝑡 (1, 0) is bounded

below by 𝑡−1/3 log
∫
ℑ𝔫𝔱(𝛽,𝑡) 𝑋𝑡 (𝛽, 𝑦)𝑑𝑦. This implies

P
(
𝔥𝑡 (1 + 𝛽, 0) − 𝔥𝑡 (1, 0) ≤ −𝛽

1
4−𝜀𝑠

)
≤ P

(
log

∫
ℑ𝔫𝔱(𝛽,𝑡)

𝑋𝑡 (𝛽, 𝑦)𝑑𝑦 ≤ −𝛽
1
4−𝜀𝑡

1
3 𝑠

)
. (4.5.11)

By the definition of 𝑋𝑡 (·, ·) we have

𝑡−1/3 log
∫
ℑ𝔫𝔱(𝛽,𝑡)

𝑋𝑡 (𝛽, 𝑦)𝑑𝑦 ≥ 𝑡−1/3 log
∫
ℑ𝔫𝔱(𝛽,𝑡)

𝑒−𝑦
2/(2𝛽𝑡 )√
2𝜋𝛽𝑡

𝑑𝑦 + inf
|𝑦 |≤𝛽2𝜅

(𝔥𝑡 (𝑦) − 𝔥𝑡 (0))

+ 𝑡− 1
3
( 𝜋𝛽𝑡

4
) 1

4 inf
|𝑦 |≤(𝜋𝛽5𝑡5/4)−1/8𝑡2/3𝛽2𝜅

(̃
𝔤𝛽𝑡 (𝑦) + 𝑦2/2

)
. (4.5.12)
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The first term on the r.h.s. is deterministic. Using the Gaussian integral bound, we can write

𝑡−
1
3 log

∫
ℑ𝔫𝔱(𝛽,𝑡)

𝑒−𝑦
2/(2𝛽𝑡 )√
2𝜋𝛽𝑡

𝑑𝑦 ≥ 𝑡− 1
3 log(1 − 𝑒−𝑡1/3𝛽4𝜅−1/2) ≥ −2𝑡−

1
3 𝑒−𝑡

1
3 𝛽4𝜅−1/2, (4.5.13)

where the last inequality follows since log(1 − 𝑥) ≥ −𝑥 for any 𝑥 ∈ (0, 1). Note that 4𝜅 − 1 < 0.

For any given 𝑠0(𝜀), choosing 𝑡0(𝜀) large, we may bound 𝑡−1/3𝑒−𝑡
1/3𝛽4𝜅−1/2 by 𝛽𝜅𝑠0/8 for all 𝑡 ≥ 𝑡0,

and 𝛽 ≤ 𝑡−2
0 . This shows there exists 𝑡0(𝜀) large such that the r.h.s. of (4.5.13) is bounded below

by −𝛽𝜅𝑠/4 for all 𝑡 ≥ 𝑡0, 𝛽𝑡 ≤ 𝑡−1
0 and 𝑠 ≥ 𝑠0. By the inequality (4.5.12), (4.5.13) and the union

bound, the right side of (4.5.11) is bounded by P(A1) + P(A2) for all 𝑡 ≥ 𝑡0, 𝛽𝑡 ≤ 𝑡−1
0 and 𝑠 ≥ 𝑠0

where

A1 := { inf
|𝑦 |≤𝛽2𝜅

𝔥𝑡 (𝑦) − 𝔥𝑡 (0) ≤ −𝛽𝜅𝑠/8},

A2 := { inf
|𝑦 |≤(𝜋𝛽5𝑡5/4)−1/8𝑡2/3𝛽2𝜅

(𝔤̃𝛽𝑡 (𝑦) + 𝑦2/2) ≤ −𝛽𝜅− 1
4 𝑡1/12𝑠/8}.

By setting 𝛼 = 2 in Lemma 4.4.1, we get P(A1) ≤ exp(−𝑐𝑠2) from (4.4.1). In order to bound

P(A2), we use Lemma 4.4.3. Mapping 𝑎 ↦→ −(𝜋𝛽5𝑡5/4)−1/8𝑡2/3𝛽2𝜅, 𝛿 ↦→ 2(𝜋𝛽5𝑡5/4)−1/8𝑡2/3𝛽2𝜅

and 𝑠 ↦→ −1
8 𝛽

𝜅 1
4 𝑡1/12𝑠 and choosing 𝑠0(𝜀) large, we note ( |𝑎 | + 𝛿)2 − 𝑎2 ≤ 𝑠/28 for all 𝑠 ≥ 𝑠0. With

those choice of 𝑎, 𝛿, 𝑠 in hand, the condition of Lemma 4.4.3 is satisfied and hence, (4.4.10) yields

P(A2) ≤ exp(−𝑐𝑠2𝑡1/6𝛽2𝜅− 1
2 ) + exp(−𝑐𝑠2𝑡1/6𝛽2𝜅− 1

2 (𝛽𝑡)−1/8𝑡−1/24𝛽𝜅−
3
8 )

≤ exp(−𝑐𝑠2𝑡1/6𝛽2𝜅− 1
2 ) + exp(−𝑐𝑠2𝛽3𝜅−1) ≤ exp(−𝑐𝑠2).

Combining the upper bounds on P(A1) and P(A2) and using those to bound the right side of

(4.5.11) completes the proof of (4.5.2).

Stage-2: Here we prove (4.5.1). According to (4.5.10), 𝔥𝑡 (1 + 𝛽, 0) − 𝔥𝑡 (1, 0) equals 𝛽𝑡2/3/24 +

𝑡−1/3 log
∫
𝑋𝑡 (𝛽, 𝑦)𝑑𝑦. For all 𝑡 ≥ 𝑡0 and 𝛽 > 0 satisfying 𝛽𝑡 ≤ 𝑡−1

0 , 𝛽𝑡2/3 is less than 𝛽1/3𝑡−2/3
0 . We

can choose 𝑠0(𝜀) > 0 large such that 𝛽𝑡2/3/24 ≤ 𝛽1/4−𝜀𝑠/2 for all 𝑠 ≥ 𝑠0, 𝑡 ≥ 𝑡0 and 𝛽 satisfying
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𝛽𝑡 ≤ 𝑡−1
0 . Thus, for all 𝑠 ≥ 𝑠0, we have

P(𝔥𝑡 (1 + 𝛽, 0) − 𝔥𝑡 (1, 0) ≥ 𝛽1/4−𝜀𝑠) ≤ P
(
𝑡−1/3 log

∫
𝑋𝑡 (𝛽, 𝑦)𝑑𝑦 ≥ 𝛽1/4−𝜀𝑠/2

)
. (4.5.14)

Our objective is to the upper bound the r.h.s. of the above inequality. To this end, let us denote

ℑ𝔫𝔱𝑠 (𝛽, 𝑡) := [− 1
64 𝑡

2/3𝛽2𝜅√𝑠, 1
64 𝑡

2/3𝛽2𝜅√𝑠]. By the union bound, we may write

r.h.s. of (4.5.14) ≤ P
( ∫

ℑ𝔫𝔱𝑠 (𝛽,𝑡)
𝑋𝑡 (𝛽, 𝑦)𝑑𝑦 ≥ 𝑒

𝑠
2 𝑡

1
3 𝛽

1
4 −𝜀 )︸                                         ︷︷                                         ︸

=:(I)

+P
( ∫
R\ℑ𝔫𝔱𝑠 (𝛽,𝑡)

𝑋𝑡 (𝛽, 𝑦)𝑑𝑦 ≥ 𝑒
𝑠
2 𝑡

1
3 𝛽

1
4 −𝜀 )︸                                            ︷︷                                            ︸

=:(II)

.

We will show that (I) and (II) are bounded above by exp(−𝑐𝑠3/2) for some constant 𝑐 > 0 in Step

I and Step II respectively. Substituting these bounds into the right side of the above inequality

completes the proof of (4.5.1).

Step I: Using similar ideas as in (4.5.12), we have

𝑡−1/3 log
∫
ℑ𝔫𝔱𝑠 (𝛽,𝑡)

𝑋𝑡 (𝛽, 𝑦)𝑑𝑦 ≤ 𝑡−1/3 log
∫
ℑ𝔫𝔱𝑠 (𝛽,𝑡)

𝑒−𝑦
2/(2𝛽𝑡 )√
2𝜋𝛽𝑡

𝑑𝑦 + sup
|𝑦 |≤ 1

64 𝛽
2𝜅√𝑠
(𝔥𝑡 (𝑦) − 𝔥𝑡 (0))

+ 𝑡−1/3
(
𝜋𝛽𝑡

4

) 1
4 sup
|𝑦 |≤ 1

64 (𝜋𝛽5𝑡5/4)−1/8𝑡2/3𝛽2𝜅√𝑠

(̃
𝔤𝛽𝑡 (𝑦) + 𝑦2/2

)
.

Since (2𝜋𝛽𝑡)−1/2
∫
ℑ𝔫𝔱𝑠 (𝛽,𝑡)

𝑒−𝑦
2/2𝛽𝑡𝑑𝑦 < 1, from the above inequality and the union bound, it fol-

lows that (I) ≤ P(A3) + P(A4) where

A3 := { sup
|𝑦 |≤ 1

64 𝛽
2𝜅√𝑠
(𝔥𝑡 (𝑦) − 𝔥𝑡 (0)) ≥ 𝛽𝜅𝑠/8},

A4 := { sup
|𝑦 |≤ 1

64 (𝜋𝛽5𝑡5/4)−1/8𝑡2/3𝛽2𝜅√𝑠

(̃
𝔤𝛽𝑡 (𝑦) + 𝑦2/2

)
≥ 𝛽𝜅− 1

4 𝑡1/12𝑠/8}.

Indeed, from Lemma 4.4.2, we know P(A3) ≤ exp(−𝑐𝑠3/2). In what follows, we claim and

prove that P(A4) ≤ exp(−𝑐𝑠3/2) for all large 𝑠 and some constant 𝑐 > 0. Let us denote 𝔐 :=
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1
64 (4/𝜋)

1/8𝛽2𝜅− 5
8 𝑡1/24√𝑠 and 𝛿 := 1

214 𝛽
3
8−𝜅𝑡1/24√𝑠. Define 𝑁 := d𝔐/𝛿e. For any 𝑎 ∈ R, define

B[𝑎,𝑎+𝛿] = { sup
𝑦∈[𝑎,𝑎+𝛿]

(̃
𝔤𝛽𝑡 (𝑦) + 𝑦2/2

)
≥ 𝛽𝜅− 1

4 𝑡1/12𝑠/8}.

Notice that A4 ⊂ ∪𝑁𝑖=−𝑁−1B[𝑖𝛿,(𝑖+1)𝛿] . Hence, by the union bound

P(A4) ≤
𝑁∑︁

𝑖=−𝑁−1
P(B[𝑖𝛿,(𝑖+1)𝛿]). (4.5.15)

In what follows, we seek to bound P(B[𝑎,𝑎+𝛿]) for 𝑎 ∈ {−(𝑁 + 1)𝛿,−𝑁𝛿, . . . , 𝑁𝛿}. To this end,

we wish to apply Lemma 4.4.3. It is readily checked that we have | ( |𝑎 | + |𝛿 |)2 − 𝑎2 | ≤ 𝛽
𝜅− 1

4 𝑡1/12𝑠
211

for 𝑎 ∈ {−(𝑁 + 1)𝛿,−𝑁𝛿, . . . , 𝑁𝛿}. Thus with the substitutions 𝑡 ↦→ 𝛽𝑡, 𝑠 ↦→ 𝛽𝜅−
1
4 𝑡1/12𝑠, and

𝛿 ↦→ 1
214 𝛽

3
8−𝜅𝑡1/24√𝑠 in Lemma 4.4.3 we have

P(B[𝑎,𝑎+𝛿]) ≤ exp(−𝑐𝑠3/2𝑡1/8𝛽 3𝜅
2 −

3
8 ) + exp(−𝑐𝑠2𝑡1/6𝛽2𝜅− 1

2 (𝛽𝑡)−1/8𝑡−1/24𝛽𝜅−
3
8 𝑠−1/2)

≤ exp(−𝑐𝑠3/2𝑡1/8𝛽 3𝜅
2 −

3
8 ) + exp(−𝑐𝑠3/2𝛽3𝜅−1).

Substituting this upper bound into the r.h.s. of (4.5.15) and using the fact that 2(𝑁 + 1) ≤ 4𝑁 ≤

211𝛽3𝜅−1, we get

P(A4) ≤ 211𝛽3𝜅−1
[
exp(−𝑐𝑠3/2𝑡1/8𝛽 3𝜅

2 −
3
8 ) + exp(−𝑐𝑠3/2𝛽3𝜅−1)

]
≤ exp(−𝑐𝑠3/2).

This completes the proof of the claim. Combining the bounds on P(A3) and P(A4) shows (I) ≤

exp(−𝑐𝑠3/2) for all large 𝑠.

Step II: Define 𝑦̃ := 𝑦/(𝜋𝛽5𝑡5/4)1/8. Recall the definition of 𝑋𝑡 (𝛽, 𝑦) from (4.5.10). Adjusting the

parabolic term inside the exponent, we may rewrite

𝑋𝑡 (𝛽, 𝑦) =
1√︁

2𝜋𝛽𝑡
exp{−𝑦2/(4𝛽𝑡) + 𝑡 1

3
(
𝔥𝑡 (𝑦𝑡−

2
3 ) − 𝔥𝑡 (0)

)
+ ( 𝜋𝛽𝑡4 )

1
4 [𝔤̃𝛽𝑡 ( 𝑦̃) + 𝑦̃2/4]}
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≤ exp{𝑡 1
3 sup
𝑧∈R
(𝔥𝑡 (𝑧) − 𝔥𝑡 (0)) + ( 𝜋𝛽𝑡4 )

1
4 sup
𝑧∈R
[𝔤̃𝛽𝑡 (𝑧) + 𝑧2/4]} 1√

2𝜋𝛽𝑡
𝑒−𝑦

2/(4𝛽𝑡) ,

where the last inequality follows by fixing the quadratic term in 𝑦 and taking supremum of the rest

of the terms over 𝑦 ∈ R. Integrating both sides of the last inequality over R\ℑ𝔫𝔱𝑠 (𝛽, 𝑡) and taking

log on both sides yields shows 1
𝑡

1
3

log
∫
R\ℑ𝔫𝔱𝑠 (𝛽,𝑡)

𝑋𝑡 (𝛽, 𝑦)𝑑𝑦 is bounded by

− 𝑠𝛽4𝜅−1

215 + sup
𝑧∈R

𝔥𝑡 (𝑧) − 𝔥𝑡 (0) +
( 𝜋𝛽𝑡4 )

1
4

𝑡
1
3

sup
𝑧∈R

(̃
𝔤𝛽𝑡 (𝑧) + 𝑧2

4
)
, (4.5.16)

where − 1
215 𝑠𝛽

4𝜅−1 is an upper bound to the logarithm of the Gaussian integral term. To bound (II)

using the above inequality, we introduce the following events:

A5 := {sup
𝑦∈R

𝔥𝑡 (𝑦) ≥ 𝑠

217 }, A6 :=
{
𝔥𝑡 (0) ≤ − 𝑠

217

}
, A7 := {sup

𝑧∈R

(̃
𝔤𝛽𝑡 (𝑧) + 𝑧2

4

)
≥ 𝑠

8 }.

Note that on ¬A5 ∩ ¬A6 ∩ ¬A7, we get

(4.5.16) ≤ −2−15𝑠𝛽4𝜅−1 + 2−16𝑠 + 𝛽1/4𝑡−1/12𝑠/8 ≤ 𝛽1/4𝑠/4 − 2−16𝑠𝛽4𝜅−1,

for any 𝛽 < 1. Owing to this and the union bound, we have (II) ≤ P(A5) + P(A6) + P(A7).

From Proposition 4.2.12 and 4.2.14 with 𝜈 = 1, we get P(A5),P(A6) ≤ exp(−𝑐𝑠3/2). Lemma

4.4.4 shows P(A7) ≤ exp(−𝑐𝑠3/2). Combining these bounds with the above inequality proves

(II) ≤ exp(−𝑐𝑠3/2) for all 𝑠 large and 𝛽 small. This completes the proof of (4.5.1).

4.5.2 Proof of Proposition 4.5.2

Recall the composition law

𝔥𝑡 (1 + 𝛽, 0) =
1
𝑡1/3

log
∫
R
𝑒
𝑡1/3

(
𝔥𝑡 (1,𝑡−2/3𝑦)+𝛽1/3𝔥̂ (𝑡+𝛽𝑡 )↓𝑡 (−(𝛽𝑡)−2/3𝑦)

)
𝑑𝑦, (4.5.17)
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where 𝔥̂𝛽𝑡 (𝑥) := 𝔥 (𝑡+𝛽𝑡 )↓𝑡 (𝛽2/3𝑥)
𝛽1/3 . We prove (4.5.3) and (4.5.4) in Stage-1 and Stage-2 respectively.

Stage-1: Proof of (4.5.3): We use the following notation 𝔥∇𝑡 (𝑦) := 𝔥𝑡 (𝑦) − 𝔥𝑡 (0) throughout this

proof. Subtract 𝔥𝑡 (1, 0) from both sides of (4.8.10). Furthermore, subtracting and adding the

parabola 𝑦2

4𝛽𝑡 inside the exponent of the integrand on the r.h.s. of (4.8.10) shows

𝔥𝑡 (1 + 𝛽, 0) − 𝔥𝑡 (1, 0) =
1
𝑡

1
3

log
∫
R
𝑒
− 𝑦

2
4𝛽𝑡 +𝑡

1
3

(
𝔥∇𝑡 (𝑡

− 2
3 𝑦)+𝛽

1
3 𝔥̂𝛽𝑡 (−𝛽−2/3𝑡−2/3𝑦)+ 𝑦2

4𝛽𝑡4/3

)
𝑑𝑦

≤ 𝛽1/3 sup
𝑦∈R

(̂
𝔥𝛽𝑡 (𝑦) + 𝑦2/4

)
+ 1
𝑡1/3

log
∫
R
𝑒
− 𝑦

2
4𝛽𝑡 +𝑡

1/3𝔥∇𝑡 (𝑡−2/3𝑦)
𝑑𝑦. (4.5.18)

Let us consider the following events.

A1 := { sup
𝑥∈
√
𝛽𝑠/32

𝔥∇𝑡 (𝑥) ≥ 𝛽1/4𝑠/4}, A2 := {sup
𝑥∈R

(̂
𝔥𝛽𝑡 (𝑦) + 𝑦2/4

)
≥ 𝑠/4}

A3 := { sup
|𝑥 |∈R

𝔥𝑡 (𝑥) ≥ 2−14𝑠}, A4 := {𝔥𝑡 (0) ≤ −2−14𝑠}.

To complete the proof of (4.5.3), we need the following lemma.

Lemma 4.5.6. {𝔥𝑡 (1 + 𝛽, 0) − 𝔥𝑡 (1, 0) ≥ 𝛽1/4𝑠} ⊂ (A1 ∪ A2 ∪ A3 ∪ A4).

Before proceeding to prove Lemma 4.5.6, we show how this will imply (4.5.3). From the above

lemma and the union bound, we get P(𝔥𝑡 (1 + 𝛽, 0) − 𝔥𝑡 (1, 0) ≥ 𝛽1/4𝑠) ≤ ∑4
𝑖=1 P(A𝑖). By Lemma

4.4.2 with 𝜅 = 1
4 we get that P(A1) ≤ exp(−𝑐𝑠3/2). By Proposition 4.2.14 with 𝜈 = 1

2 and 𝜈 = 0

we get P(A2) ≤ exp(−𝑐𝑠3/2) and P(A3) ≤ exp(−𝑐𝑠3/2) respectively. The one point tail estimate in

Proposition 4.2.12 yields P(A4) ≤ exp(−𝑐𝑠3/2). Combining all these bounds completes the proof

of (4.5.3) modulo Lemma 4.5.6.

Proof of Lemma 4.5.6: Define ℑ̂𝔫𝔱𝑠 (𝛽, 𝑡) := 1
32 𝑡

2/3√𝛽𝑠. Observe the following two inequalities

∫
ℑ̂𝔫𝔱𝑠 (𝛽,𝑡)

𝑒
− 𝑦

2
4𝛽𝑡 +𝑡

1/3𝔥∇𝑡 (𝑡−2/3𝑦)
𝑑𝑦 ≤ sup

|𝑥 |≤
√
𝛽𝑠/32

𝔥∇𝑡 (𝑥) + 𝑡−1/3 log
√︁

4𝜋𝛽𝑡, (4.5.19)∫
R\ℑ̂𝔫𝔱𝑠 (𝛽,𝑡)

exp
(
− 𝑦2

4𝛽𝑡
+ 𝑡1/3𝔥∇𝑡 (𝑡−2/3𝑦)

)
𝑑𝑦 ≤ sup

𝑥∈R
𝔥∇𝑡 (𝑥) + 𝑡−1/3 log

∫
R\ℑ̂𝔫𝔱𝑠 (𝛽,𝑡)

𝑒
− 𝑦

2
4𝛽𝑡 𝑑𝑦
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≤ sup
𝑥∈R

𝔥∇𝑡 (𝑥) + 𝑡−1/3 log
√︁

4𝜋𝛽𝑡 − 𝑠/213, (4.5.20)

where the last inequality follows from the bounds on the Gaussian tail integral. On ¬A1 and

(¬A3 ∩ ¬A4), we have

r.h.s. of (4.5.19) ≤ 1
4 𝛽

1
4 𝑠 + 𝑡− 1

3 log
√︁

4𝜋𝛽𝑡, r.h.s. of (4.5.20) ≤ 𝑡− 1
3 log

√︁
4𝜋𝛽𝑡 + 1

4 𝛽
1/4𝑠

respectively. Thus on ¬(A1 ∪ A2 ∪ A3 ∪ A4) we get

r.h.s. of (4.8.11) ≤ 1
4 𝛽

1/3𝑠 + 𝑡−1/3 log 2 + 𝑡−1/3 log
√︁

4𝜋𝛽𝑡 + 1
4
𝛽1/4𝑠

≤ 1
2 𝛽

1/4𝑠 + (2𝜋𝛽)1/3(16𝜋𝛽𝑡)−1/3 log(16𝜋𝛽𝑡) < 𝛽1/4𝑠.

The last inequality is true for all large enough 𝑠 since sup𝑟>0 𝑟
−1/3 log 𝑟 is bounded. This shows

¬(A1 ∪ A2 ∪ A3 ∪ A4) is contained in {𝔥𝑡 (1 + 𝛽, 0) ≤ 𝔥𝑡 (1, 0) + 𝛽1/4𝑠} and hence, completes the

proof of the lemma.

Proof of (4.5.2): Restricting the integral in (4.8.10) over the region {|𝑦 | ≤ 𝑡2/3𝛽1/2} yields

𝔥𝑡 (1 + 𝛽, 0) ≥
1
𝑡1/3

log
∫
|𝑦 |≤𝑡2/3𝛽1/2

exp
(
𝑡1/3

(
𝔥𝑡 (𝑡−2/3𝑦) + 𝛽1/3𝔥̂𝛽𝑡 (−𝛽−2/3𝑡−2/3𝑦)

) )
𝑑𝑦

≥ 𝛽1/3 inf
𝑦∈R

(̂
𝔥𝛽𝑡 (𝑦) + 𝑦2

4
)
+ inf
|𝑦 |≤𝛽1/2

𝔥𝑡 (𝑦) + 𝑡−
1
3 log

∫
|𝑦 |≤𝑡2/3𝛽1/2

exp
(
− 𝑦2

4𝛽𝑡

)
𝑑𝑦. (4.5.21)

From the Gaussian tail bound, we have

𝑡−1/3 log
∫
|𝑦 |≤𝑡2/3𝛽1/2

exp
(
− 𝑦2

4𝛽𝑡

)
𝑑𝑦 ≥ 𝑡−1/3 log

√︁
4𝜋𝛽𝑡 − 2𝑡−1/3 exp

(
− 𝑡1/3

4
)
. (4.5.22)

We now claim and prove that there exists 𝑠0 = 𝑠0(𝑡0) > 0 such that {𝔥𝑡 (1 + 𝛽, 0) − 𝔥𝑡 (1, 0) ≤

−𝛽1/4𝑠} ⊂ A5 ∪ A6 for all 𝑠 ≥ 𝑠0 and 𝛽 > 0 satisfying 𝛽𝑡 ≥ 𝑡0 where

A5 := { inf
|𝑦 |≤𝛽1/2

𝔥𝑡 (𝑦) ≤ 𝔥𝑡 (0) − 𝛽
1
4 𝑠}, A6 := { inf

𝑦∈R

(̂
𝔥𝛽𝑡 (𝑦) + 𝑦2/4

)
≤ −𝑠/4}.
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To see this, using (4.5.21) and (4.5.22), we have

r.h.s. of (4.5.21) ≥ −1
4 𝛽

1
3 𝑠 + 𝔥𝑡 (0) − 𝛽

1
4 𝑠 + 𝑡− 1

3 log
√︁

4𝜋𝛽𝑡 − 2𝑡−1/3 exp
(
− 𝑡1/3

4
)

on ¬(A5 ∪ A6). Note that log
√︁

4𝜋𝛽𝑡/𝑡1/3 is bounded below by log(4𝜋𝑡0)/2𝑡1/30 for all 𝑡, 𝛽 > 0

satisfying 𝑡 ≥ 𝑡0 and 𝛽𝑡 ≥ 𝑡0. Furthermore, exp(−𝑡1/3)/𝑡1/3 converge to 0 as 𝑡 increases to∞. This

shows there exists 𝑠0 = 𝑠0(𝑡0) > 0 such that for all 𝑡 ≥ 𝑡0, 𝑠 ≥ 𝑠0 and 𝛽 satisfying 𝛽𝑡 ≥ 𝑡0, the

r.h.s. of the above display is greater than 𝔥𝑡 (1, 0) − 𝛽1/4𝑠. This shows ¬(A5∪A6) ⊂ {𝔥𝑡 (1+ 𝛽, 0) >

𝔥𝑡 (1, 0) − 𝛽1/4𝑠} and hence, the claim. From the above claim, we have P(𝔥𝑡 (1 + 𝛽, 0) − 𝔥𝑡 (1, 0) ≤

−𝛽1/4𝑠) ≤ P(A5) + P(A6). Using Lemma 4.4.1, we see that P(A5) ≤ 𝑒−𝑐𝑠
2

and Proposition 4.2.14

implies P(A6) ≤ 𝑒−𝑐𝑠
5/2

. Thus, P(𝔥𝑡 (1 + 𝛽, 0) − 𝔥𝑡 (0) ≤ −𝛽1/4𝑠) ≤ P(A5) + P(A6) ≤ 𝑒−𝑐𝑠
2
. This

completes the proof.

4.5.3 Proof of Proposition 4.5.5

Fix 𝜀 ∈ (0, 1
4 ). From the scaling of 𝔥𝑡 , it follows that 𝔥𝑡 (𝛼, 0) = 𝛼1/3𝔥𝛼𝑡 (1, 0) for any 𝛼, 𝑡 > 0.

Hence, it suffices to prove the result for 𝑎 = 1. In the following, we first set up few notations and

recall relevant result that we use in this proof. Consider the following events

B1 :=

{
sup
𝜏∈[0,1]

𝔥𝑡 (1+𝜏,0)−𝔥𝑡 (1,0)
𝜏

1
4 −𝜀 log2/3 2

𝜏

≥ 𝑠
}
, B2 :=

{
inf

𝜏∈[0,1]
𝔥𝑡 (1+𝜏,0)−𝔥𝑡 (1,0)
𝜏

1
4 −𝜀 log1/2 2

𝜏

≤ −𝑠
}
.

Set 𝜅1 = 1
4 − 𝜀 and 𝜅2 = 1

12 + 𝜀. For any 𝛼1 > 𝛼2 ≥ 1, define

𝔥∇𝑡,𝛼1,𝛼2 := 𝔥𝑡 (𝛼1, 0) − 𝔥𝑡 (𝛼2, 0) = 𝛼1/3
2 (𝔥𝑡𝛼2 (

𝛼1
𝛼2
, 0) − 𝔥𝑡𝛼2 (1, 0)),

and set 𝛽 =
𝛼1
𝛼2
− 1. Combining Proposition 4.5.1 and Proposition 4.5.2, we get 𝑡0 = 𝑡0(𝜀) > 0,

𝑠0 = 𝑠0(𝜀) > 0 and 𝑐 = 𝑐(𝜀) > 0 such that for all 𝑠 ≥ 𝑠0 and 2𝛼2 ≥ 𝛼1 > 𝛼2 ≥ 1,

P
(

𝔥∇𝑡 ,𝛼1 ,𝛼2
(𝛼1−𝛼2)𝜅1 ≥ 𝛼

𝜅2
2 𝑠

)
≤ 𝑒−𝑐𝑠3/2 , P

(
𝔥∇𝑡 ,𝛼1 ,𝛼2
(𝛼1−𝛼2)𝜅1 ≤ −𝛼

𝜅2
2 𝑠

)
≤ 𝑒−𝑐𝑠2 . (4.5.23)
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Now we proceed to complete the proof. We first construct a dyadic mesh of points of the

interval [1, 2] and prove the tail bounds of the modulus of continuity over that mesh. Finally, the

tail bounds of the modulus of continuity will be extended for all points of [1, 2]. To begin with,

we consider the dyadic partitions {⋃2𝑛
𝑘=1 J

(𝑛)
𝑘
}𝑛∈N of the interval [1, 2]: J (𝑛)

𝑘
:= [𝛼(𝑛)

𝑘−1, 𝛼
(𝑛)
𝑘
], with

𝛼
(𝑛)
𝑘

:= 1 + 𝑘
2𝑛 , for 𝑘 = 0, 1, . . . , 2𝑛. We now define

Aup(𝑠) :=
∞⋃
𝑛=1

2𝑛⋃
𝑘=1

{
𝔥∇
𝑡,𝛼
(𝑛)
𝑘
,𝛼
(𝑛)
𝑘−1
≥ (𝛼(𝑛)

𝑘−1)
𝜅2 (𝛼(𝑛)

𝑘
− 𝛼(𝑛)

𝑘−1)
𝜅1 (𝑛 log 2) 2

3 𝑠

}
,

Alow(𝑠) :=
∞⋃
𝑛=1

2𝑛⋃
𝑘=1

{
𝔥∇
𝑡,𝛼
(𝑛)
𝑘
,𝛼
(𝑛)
𝑘−1
≤ −(𝛼(𝑛)

𝑘−1)
𝜅2 (𝛼(𝑛)

𝑘
− 𝛼(𝑛)

𝑘−1)
𝜅1 (𝑛 log 2) 1

2 𝑠

}
.

By the union bound, we write

P(Aup(𝑠)) ≤
∞∑︁
𝑛=1

2𝑛∑︁
𝑘=1
P
(
𝔥∇
𝑡,𝛼
(𝑛)
𝑘
,𝛼
(𝑛)
𝑘−1
≥ (𝛼(𝑛)

𝑘−1)
𝜅2 (𝛼(𝑛)

𝑘
− 𝛼(𝑛)

𝑘−1)
𝜅1 (𝑛 log 2) 2

3 𝑠

)
. (4.5.24)

Applying (4.5.23) in the r.h.s. of (4.5.24), we get

P(Aup(𝑠)) ≤
∞∑︁
𝑛=1

2𝑛∑︁
𝑘=1

exp
(
− 𝑐𝑛 log 2𝑠

3
2
)
≤
∞∑︁
𝑛=1

exp
(
− 𝑛 log 2(𝑐𝑠 3

2 − 1)
)
≤ exp

(
− 𝑐

2 𝑠
3
2
)
.

Fix 𝜏 ∈ [ 1
2𝑘+1 ,

1
2𝑘 ). By continuity of the process 𝔥𝑡 (·, 0), we have the following on ¬Aup(𝑠)

𝔥𝑡 (1 + 𝜏, 0) − 𝔥𝑡 (1, 0) =
∞∑︁
𝑛=1

[
𝔥𝑡

(
1
2𝑛 b2

𝑛 (1 + 𝜏)c, 0
)
− 𝔥𝑡

(
1

2𝑛−1 b2𝑛−1(1 + 𝜏)c, 0
)]

≤
∞∑︁
𝑛=1

(
b2𝑛−1 (1+𝜏)c

2𝑛−1

) 𝜅2 (
b2𝑛 (1+𝜏)c−2b2𝑛−1 (1+𝜏)c

2𝑛

) 𝜅1
(𝑛 log 2) 2

3 𝑠

≤ 2
∞∑︁

𝑛=𝑘+1

(
b2𝑛 (1+𝜏)c−2b2𝑛−1 (1+𝜏)c

2𝑛

) 𝜅1
(𝑛 log 2) 2

3 𝑠 ≤ 𝑐′ (𝑘+1)
2/3𝑠

2𝜅1 (𝑘+1) .

Clearly for the given range of 𝜏, last term is bounded by 𝑐′′𝑠𝜏𝜅1 log2/3 2
𝜏
. Thus B1 ⊂ Aup(𝑠/𝑐′′)

which proves (4.5.5). Similarly we get B2 ⊂ Alow(𝑠/𝑐) for some constant 𝑐 > 0 and using sim-

ilar summation trick as in (4.5.24), we have P(Alow(𝑠)) ≤ 𝑒−𝑐𝑠
2
. This proves (4.5.6) and hence,
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completes the proof of the desired results.

4.6 Law Of Iterated Logarithms

The main goal of this section is to prove Theorem 4.1.1. We will prove the liminf and the limsup

result in Section 4.6.1 and 4.6.2 respectively. One of the key ideas of our proof is to approximate

multi-point distributions of the KPZ temporal process 𝔥𝑡 with a set of independent random variables

using the multipoint composition law (Proposition 4.2.11). The following proposition captures this

idea.

Proposition 4.6.1. For any 0 = 𝑡0 < 𝑡1 < 𝑡2 < 𝑡3 < . . . < 𝑡𝑚, with 𝔰 := min𝑖 | exp(𝑡𝑖+1 − 𝑡𝑖) − 1|,

there exist independent random variables 𝑌1, 𝑌2, . . . , 𝑌𝑚 and some constants 𝑠0 = 𝑠0(𝑡0) > 0, 𝑐 =

𝑐(𝑡0) > 0 such that for all 𝑥𝔰1/3 ≥ 𝑠0 and 1 ≤ 𝑖 ≤ 𝑚,

𝑌𝑖
𝑑
= (1 − 𝑒−(𝑡𝑖−𝑡𝑖−1))1/3𝔥𝑒𝑡𝑖−𝑒𝑡𝑖−1 and P ( |𝔥𝑒𝑡𝑖 − 𝑌𝑖 | ≥ 𝑥) ≤ exp(−𝑐𝑥3/2𝔰1/2). (4.6.1)

Proof. Denote 𝑡𝑖 := 𝑒𝑡𝑖 and 𝛽𝑖 := (𝑡𝑖− 𝑡𝑖−1)/𝑡𝑖−1. For any 1 ≤ 𝑖 ≤ 𝑚, define 𝑌𝑖 := (1+ 𝛽𝑖)−1/3𝔥𝑡𝑖↓𝑡𝑖−1 .

Recall from Proposition 4.2.11 that {𝔥𝑡𝑖↓𝑡𝑖−1}𝑚𝑖=1 are set of independent random variables and 𝔥𝑡𝑖↓𝑡𝑖−1

is same in distribution with (1 − (𝑡𝑖−1/𝑡𝑖))−1/3𝔥𝑡𝑖−𝑡𝑖−1 . From this, it follows that 𝑌1, . . . , 𝑌𝑚 are

independent and 𝑌𝑖
𝑑
= (1 − exp(−(𝑡𝑖 − 𝑡𝑖−1)))1/3𝔥𝑒𝑡𝑖−𝑒𝑡𝑖−1 . Furthermore, applying Proposition 4.5.4

with setting 𝑡 := 𝑡𝑖−1, 𝛽 := 𝛽𝑖 and 𝑠 := 𝑥𝛽
1/3
𝑖

, there exists 𝑠0 > 0 such that for all 𝑥 satisfying

𝑥𝔰1/3 ≥ 𝑠0,

P
(��𝔥𝑡𝑖−1 (1 + 𝛽𝑖, 0) − 𝔥𝑡𝑖↓𝑡𝑖−1 (1, 0)

�� ≥ 𝑥𝛽1/3
𝑖

)
≤ exp(−𝑐𝑥3/2𝛽1/2

𝑖
)

for some absolute constant 𝑐 > 0 which does not depend on 𝑡1, . . . , 𝑡𝑚. Note that 𝔥𝑡𝑖−1 (1 + 𝛽𝑖, 0) is

equal to (1 + 𝛽𝑖)1/3𝔥𝑡𝑖 . Furthermore, 𝔥𝑡𝑖↓𝑡𝑖−1 (1, 0)
𝑑
= (1 + 𝛽𝑖)1/3𝑌𝑖. As a result, we obtain

P
(
|𝔥𝑡𝑖 − 𝑌𝑖 | ≥ 𝑥𝛽

1/3
𝑖
(1 + 𝛽𝑖)−1/3) ≤ exp(−𝑐𝑥3/2𝛽1/2

𝑖
) ≤ exp(−𝑐𝑥3/2𝔰1/2),
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where the last inequality follows since 𝛽𝑖 ≥ min𝑖 (𝑒𝑡𝑖−𝑡𝑖−1 − 1) = 𝔰. (4.6.1) follows from the above

inequality.

4.6.1 Proof of Liminf

In this section, we will prove that the liminf of 𝔥𝑡/(log log 𝑡)1/3 is almost surely equal to −61/3.

For any given 𝜖 > 0, we show that the following hold

−
(
6(1 + 𝜖)

)1/3 ≤ lim inf
𝑡→∞

𝔥𝑡

(log log 𝑡)1/3︸                                        ︷︷                                        ︸
𝔏𝔦𝔪ℑ𝔫𝔣𝑙

, lim inf
𝑡→∞

𝔥𝑡

(log log 𝑡)1/3 ≤ −
(
6(1 − 𝜖)

)1/3︸                                        ︷︷                                        ︸
𝔏𝔦𝔪ℑ𝔫𝔣𝑢

with probability 1 in Section 4.6.1 and 4.6.1 respectively. By letting 𝜖 → 0 in the above two

inequalities, it follows that lim inf 𝔥𝑡/(log log 𝑡)1/3 is equal to −61/3.

Proof of 𝔏𝔦𝔪ℑ𝔫𝔣𝑢

For any 𝑛 ∈ N, define I𝑛 := [exp(𝑒𝑛), exp(𝑒𝑛+1)]]. Fix any 𝜖 ∈ (0, 1) and set 𝛾 := (6(1−𝜖))1/3.

We will show that

∞∑︁
𝑛=1

P
(

inf
𝑡∈I𝑛

𝔥𝑡

(log log 𝑡)1/3 ≥ −𝛾
)
< ∞. (4.6.2)

Clearly then by the Borel-Cantelli lemma, we have 𝔏𝔦𝔪ℑ𝔫𝔣𝑢 with probability 1. Choose 𝜂 > 0

small such that ( 16 + 𝜂) (𝛾 + 2𝜂)3 < 1. We define 𝜁 := ( 16 + 𝜂) (𝛾 + 2𝜂)3. Fix 𝜃 ∈ (𝜁, 1) and choose

𝛿 ∈ (0, 𝜃 − 𝜁). For any 𝑛 ≥ 1, we consider the following sub-intervals of I𝑛,

I ( 𝑗)𝑛 := [𝑒𝑒𝑛+( 𝑗−1)𝑒𝑛𝜃 , 𝑒𝑒
𝑛+ 𝑗 𝑒𝜃𝑛], 1 ≤ 𝑗 ≤ M𝜃 := b𝑒𝑛−𝜃𝑛+1 − 𝑒𝑛−𝑛𝜃c . (4.6.3)

By the union bound, we have

P
(

inf
𝑡∈I𝑛

𝔥𝑡

(log log 𝑡)
1
3
≥ −𝛾

)
≤
M𝜃∑︁
𝑗=1

P
(

inf
𝑡∈I ( 𝑗 )𝑛

𝔥𝑡

(log log 𝑡)
1
3
≥ −𝛾

)
≤
M𝜃∑︁
𝑗=1

P
(
A( 𝑗)𝑛

)
, (4.6.4)
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where A( 𝑗)𝑛 :=
{

inf
𝑡∈I ( 𝑗 )𝑛

𝔥𝑡 ≥ −(𝑛+1)1/3𝛾
}
. The last inequality in above follows since max

𝑡∈I ( 𝑗 )𝑛
log log 𝑡 ≤

(𝑛 + 1). Now we bound each term of the above sum. We now claim that there exists constants

𝑐1, 𝑐2 > 0 such that

P(A( 𝑗)𝑛 ) ≤ exp(−𝑐𝑒𝑛(𝜃−𝛿)𝑒−𝑛𝜁 ) + exp
(
𝑛(𝜃 − 𝛿) − 𝑐2(exp(𝑒𝑛𝛿) − 1)1/2

)
(4.6.5)

for all 1 ≤ 𝑗 ≤ 𝑛 and all large 𝑛. We first assume (4.6.5) and complete the proof of (4.6.2). Using

(4.6.5), we may estimate the r.h.s. of (4.6.4) as

r.h.s. of (4.6.4) ≤ 𝑒𝑛−𝑛𝜃+1
(
𝑒−𝑐𝑒

𝑛(𝜃−𝛿 )𝑒−𝑛𝜁 + 𝑒𝑛(𝜃−𝛿)−𝑐2 (exp(𝑒𝑛𝛿)−1)1/2
)
. (4.6.6)

Here, the factor 𝑒𝑛−𝑛𝜃+1 is an upper bound to the number of summands in (4.6.4). Recalling that

𝜃 > 𝜁 + 𝛿, we observe that the r.h.s. of the above display can be bounded by exp(−𝑐1𝑒
𝑛𝜔) for some

constant 𝑐1 > 0 and 𝜔 ∈ (0, 1) for all large 𝑛. This shows the sum in (4.6.2) is finite and hence,

completes the proof of 𝔏𝔦𝔪ℑ𝔫𝔣𝑢 modulo (4.6.5) which we show as follows.

Fix 𝑗 ∈ {1, . . . ,M𝜃} and some constant 𝑎 > 1. We choose a sequence 𝑡1 < 𝑡2 < · · · < 𝑡𝐿𝑛 ∈

[𝑒𝑛 + ( 𝑗 − 1)𝑒𝑛𝜃 , 𝑒𝑛 + 𝑗 𝑒𝑛𝜃] such that min |𝑡𝑖+1 − 𝑡𝑖 | ≥ 𝑒𝑛𝛿 and 𝑎−1(𝑒𝑛(𝜃−𝛿)) ≤ 𝐿𝑛 ≤ 𝑎(𝑒𝑛(𝜃−𝛿)).

Applying Proposition 4.6.1, we get 𝑌1, 𝑌2, . . . , 𝑌𝐿𝑛 such that (4.6.1) (with 𝔰 ≥ 𝑒𝑛𝛿) will be satisfied

for the above choice of 𝑡1, 𝑡2, . . . , 𝑡𝐿𝑛 . As a result, we get

P(A( 𝑗)𝑛 ) ≤ P( min
1≤𝑖≤𝐿𝑛

𝔥𝑒𝑡𝑖 ≥ −(𝑛 + 1)1/3𝛾)

≤ P
(

min
1≤𝑖≤𝐿𝑛

𝑌𝑖 ≥ −(𝑛 + 1)1/3𝛾 − 1
)
+

𝐿𝑛∑︁
𝑖=1

P(𝔥𝑒𝑡𝑖 − 𝑌𝑖 ≥ 1)

≤
𝐿𝑛∏
𝑖=1

P
(
𝑌𝑖 ≥ −(𝑛 + 1)1/3𝛾 − 1

)
+ 𝑎 exp

(
𝑛(𝜃 − 𝛿) − 𝑐(exp(𝑒𝑛𝛿) − 1)1/2

)
, (4.6.7)

where in the last line we use the independence of 𝑌𝑖 to write P
(
min1≤𝑖≤𝐿𝑛 𝑌𝑖 ≥ −(𝑛+1)1/3𝛾−1

)
as

a product over P
(
𝑌𝑖 ≥ −(𝑛 + 1)1/3𝛾 − 1

)
and use the inequality in (4.6.1) to bound P(𝔥𝑒𝑡𝑖 −𝑌𝑖 ≥ 1).
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Using the distributional identity of (4.6.1) , we get

𝐿𝑛∏
𝑖=1

P
(
𝑌𝑖 ≥ −(𝑛 + 1)1/3𝛾 − 1

)
=

𝐿𝑛∏
𝑖=1

P
(
(1 − 𝑒−(𝑡𝑖−𝑡𝑖−1))1/3𝔥𝑒𝑡𝑖−𝑒𝑡𝑖−1 ≥ −(𝑛 + 1)1/3𝛾 − 1

)
≤

𝐿𝑛∏
𝑖=1

P
(
𝔥𝑒𝑡𝑖−𝑒𝑡𝑖−1 ≥ −𝑛1/3(𝛾 + 𝜂)

)
≤

[
1 − exp(−( 16 + 𝜂)𝑛(𝛾 + 2𝜂)3)

] 𝐿𝑛
≤ exp

(
− 𝐿𝑛 exp(−( 16 + 𝜂)𝑛(𝛾 + 2𝜂)3)

)
≤ 𝑒−𝑒𝑛(𝜃−𝛿−𝜁 )/𝑎,

where the first inequality follows by noting that (1− 𝑒−(𝑡𝑖−𝑡𝑖−1))−1/3((𝑛 + 1)1/3𝛾 + 1) ≤ 𝑛1/3(𝛾 + 𝜂)

for all large 𝑛 and the second inequality follows due to (4.2.16) of Proposition 4.2.13. The last

inequality follows since 𝐿𝑛 ≥ 𝑒𝑛(𝜃−𝛿)/𝑎 and 𝜁 = ( 16 + 𝜂) (𝛾 + 2𝜂)3. Substituting the inequality of

the above display into the r.h.s. of (4.6.7) yields the inequality (4.6.5). This completes the proof.

Proof of 𝔏𝔦𝔪ℑ𝔫𝔣𝑙

Fix 𝑡0 > 0. Define 𝜓 : R>1 → R>0 as 𝜓(𝛼) = 𝛼1/3(log log𝛼)1/3. Let 𝛼𝑛 := 2𝑛 and 𝑘𝑛 :=

b(log log𝛼𝑛)4c for any 𝑛 ∈ N. Let us denote I𝑛 := [𝛼𝑛, 𝛼𝑛+1] and its 𝑘𝑛 many equal length sub-

intervals as I ( 𝑗)𝑛 := [(1 + 𝑗−1
𝑘𝑛
)𝛼𝑛, (1 + 𝑗

𝑘𝑛
)𝛼𝑛] for 1 ≤ 𝑗 ≤ 𝑘𝑛. Fix 𝜖 > 0. Set 𝑠 = (6(1 + 𝜖)) 1

3 . We

will show that

∞∑︁
𝑛=1

P
(

inf
𝛼∈I𝑛

𝔥𝑡0 (𝛼,0)
𝜓(𝛼) ≤ −𝑠

)
< ∞. (4.6.8)

Applying (4.6.8) and Borel-Cantelli lemma, we can conclude that lim inf𝛼→∞
𝔥𝑡0 (𝛼,0)
𝜓(𝛼) = lim inf𝑡→∞ 𝔥𝑡

(log log 𝑡)1/3 ≥

−𝑠 with probability 1 where the equality is obtained by substituting 𝑡 = 𝛼𝑡0. Letting 𝜖 → 0 on

the r.h.s. of the above inequality yields 𝔏𝔦𝔪ℑ𝔫𝔣𝑙 . It boils down to showing (4.6.8) which we do as

follows. We claim that there exist constant 𝑐1 > 0 and 𝑐2 > 1 such that

P
(

inf
𝛼∈I𝑛

𝔥𝑡0 (𝛼,0)
𝜓(𝛼) ≤ −𝑠

)
≤ (log log𝛼𝑛)4

(
𝑒−𝑐1 (log log𝛼𝑛)7/6 + 𝑒−𝑐2 log log𝛼𝑛

)
(4.6.9)
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for all large 𝑛. Recall that 𝛼𝑛 = 2𝑛. Substituting this into the r.h.s. of the above inequality, we see

that (4.6.8) holds modulo the last inequality. We now proceed to prove this last inequality. Let 𝑁

be the smallest positive integer such that 𝛼𝑁 ≥ 𝑒𝑒. For any 𝑛 ≥ 𝑁 , using the union bound we have

P
(

inf
𝛼∈I𝑛

𝔥𝑡0 (𝛼,0)
𝜓(𝛼) ≤ −𝑠

)
≤

𝑘𝑛∑︁
𝑗=1

P
(

inf
𝛼∈I ( 𝑗 )𝑛

𝔥𝑡0 (𝛼,0)
𝜓(𝛼) ≤ −𝑠

)
. (4.6.10)

In what follows, we will show

P
(

inf
𝛼∈I ( 𝑗 )𝑛

𝔥𝑡0 (𝛼,0)
𝜓(𝛼) ≤ −𝑠

)
≤ 𝑒−𝑐1 (log log𝛼𝑛)7/6 + 𝑒−𝑐2 log log𝛼𝑛 (4.6.11)

for all 1 ≤ 𝑗 ≤ 𝑛, 𝑛 large and some constant 𝑐1 > 0 and 𝑐2 > 1. Substituting the above inequality

into right side of (4.6.10) and recalling that 𝑘𝑛 ≤ (log log𝛼𝑛)4 show (4.6.9). We now focus on

proving (4.6.11). Fix any 𝑗 ∈ {1, . . . , 𝑘𝑛}. Denote the left and right end point of I ( 𝑗)𝑛 by 𝑎𝑛 and

𝑏𝑛. We choose 𝜂 ∈ (0, 1) such that (1 − 𝜂)4(1 + 𝜖) > 1. Using the fact that 𝜓(𝛼) is an increasing

function of 𝛼, we get

P
(

inf
𝛼∈I ( 𝑗 )𝑛

𝔥𝑡0 (𝛼,0)
𝜓(𝛼) ≤ −𝑣

)
≤ P

(
inf

𝛼∈I ( 𝑗 )𝑛

𝔥𝑡0 (𝛼, 0) ≤ −𝑠𝜓(𝑎𝑛)
)

≤ P
(

inf
𝛼∈I ( 𝑗 )𝑛

𝔥𝑡0 (𝛼, 0) − 𝔥𝑡0 (𝑎𝑛, 0) ≤ −𝜂𝑠𝜓(𝑎𝑛)
)

+ P
(
𝔥𝑡0 (𝑎𝑛, 0) ≤ −(1 − 𝜂)𝑠𝜓(𝑎𝑛)

)
, (4.6.12)

where the last inequality follows by the union bound. We now apply (4.5.6) of Proposition 4.5.5

and (4.2.16) of Proposition 4.2.13 to bound the first and the second term of the right side of the last

inequality. To apply (4.5.6), we set 𝜀 = 1
8 . We may now write

P
(

inf
𝛼∈I ( 𝑗 )𝑛

𝔥𝑡0 (𝛼, 0) − 𝔥𝑡0 (𝑎𝑛, 0) ≤ −𝜂𝑠𝜓(𝑎𝑛)
)

≤ P
(

inf
𝜏∈[0,𝑘−1

𝑛 ]

𝔥𝑡0 (𝑎𝑛+𝜏,0)−𝔥𝑡0 (𝑎𝑛,0)
(𝜏/𝑎𝑛)1/8 (log |𝜏/𝑎𝑛 |)1/2

≤ − 𝜂𝑠𝜓(𝑎𝑛)
𝑘
−1/8
𝑛 (log |𝑘𝑛 |)1/2

)
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≤ exp
(
− 𝑐(𝜂𝑠)2𝑘1/4

𝑛 (log |𝑘𝑛 |)−1(log log𝛼𝑛)2/3
)
, (4.6.13)

where the second inequality follows by applying (4.5.6). Since 𝑘𝑛 = b(log log𝛼𝑛)4c, we get the

following bound

𝑘
1/4
𝑛 (log |𝑘𝑛 |)−1(log log𝛼𝑛)2/3 ≥ (log log𝛼𝑛)

1
2+

2
3 = (log log𝛼𝑛)7/6

for all large 𝑛. By substituting inequality into the r.h.s. of (4.6.13), we may bound the first term in

the r.h.s. of (4.6.12) by exp(−𝑐1(log log𝛼𝑛)7/6) for all large integer 𝑛 where 𝑐1 is a positive which

does not depend on 𝑛. On the other hand, (4.2.16) of Proposition 4.2.13 implies

P
(
𝔥𝑡0 (𝑎𝑛, 0) ≤ −(1 − 𝜂)𝑠𝜓(𝑎𝑛)

)
≤ 𝑒−(1−𝜂)4 (1+𝜖) (log log 𝑎𝑛) ≤ 𝑒−𝑐2 log log𝛼𝑛 (4.6.14)

for all large 𝑛 where 𝑐2 is a constant greater than 1. The second inequality of the above display

follows since 𝑎𝑛 ≥ 𝛼𝑛 and (1− 𝜂)4(1 + 𝜖) > 1. Combining the bounds in (4.6.13) and (4.6.14) and

substituting those into (4.6.12) shows (4.6.11). This completes the proof of 𝔏𝔦𝔪𝔦𝔫𝔣𝑙 .

4.6.2 Proof of Limsup

The main goal of this section is to prove the limsup result of the law of iterated logarithms for

which we need to show that for any 𝜖 ∈ (0, 1),

lim sup
𝑡→∞

𝔥𝑡

(log log 𝑡)2/3 ≥
(

3(1−𝜖)
4
√

2

)2/3

︸                                    ︷︷                                    ︸
𝔏𝔦𝔪𝔖𝔲𝔭𝑙

, lim sup
𝑡→∞

𝔥𝑡

(log log 𝑡)2/3 ≤
(

3(1+𝜖)
4
√

2

)2/3

︸                                   ︷︷                                   ︸
𝔏𝔦𝔪𝔖𝔲𝔭𝑢

with probability 1. In what follows, we first show 𝔏𝔦𝔪𝔖𝔲𝔭𝑢. As we discuss in the next sec-

tion, 𝔏𝔦𝔪𝔖𝔲𝔭𝑢 will imply that the macroscopic Hausdorff dimension of the level sets {𝑡 ≥ 𝑒𝑒 :

𝔥𝑡/(log log 𝑡)2/3 ≥ (3(1 + 𝜖)/4
√

2)2/3} are equal to 0 with probability 1 for any 𝜖 > 0 proving

partially (4.1.4).
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Proof of 𝔏𝔦𝔪𝔖𝔲𝔭𝑢

Fix 𝜖, 𝜃 ∈ (0, 1) and 𝑡0 > 0. Define 𝜙 : [𝑒𝑒,∞) → R by 𝜙(𝑥) = 𝑥1/3(log log 𝑥)2/3. We note

that 𝜙(𝑥) is increasing in 𝑥. Define 𝑠 := (3(1 + 𝜖)/4
√

2)2/3. Fix 𝛿 ∈ (0, 1). We will make the

choice 𝛿 precise in due course of the proof. For any 𝑛 ∈ N, we define 𝛼𝑛 := (1 + 𝛿)𝑖 and denote

I𝑛 := [𝛼𝑛, 𝛼𝑛+1]. We claim and prove that

∑︁
𝑛≥𝑁

P
(

sup
𝛼∈I𝑛

𝔥𝑡 (𝛼,0)
𝜙(𝛼) ≥ 𝑠

)
< ∞ (4.6.15)

for all 𝜖 > 0. Then by Borel-Cantelli lemma, we get lim sup𝛼→∞
𝔥𝑡 (𝛼,0)
𝜙(𝛼) ≤ 𝑠 holds with probability

1 for all large 𝑡. 𝔏𝔦𝔪𝔖𝔲𝔭𝑢 now follows by noting

lim sup
𝑡→∞

𝔥𝑡

(log log 𝑡)2/3 = lim sup
𝛼→∞

𝔥𝛼𝑡0
(log log𝛼𝑡0)2/3

= lim sup
𝛼→∞

[
𝔥𝑡0 (𝛼,0)

𝛼1/3 (log log𝛼)2/3 ·
( log log𝛼𝑡0

log log𝛼
)2/3

]
= lim sup

𝛼→∞

𝔥𝑡0 (𝛼,0)
𝜙(𝛼) .

To prove (4.6.15) we show the following: there exists and 𝑐 > 1 such that

P
(

sup
𝛼∈I𝑛

𝔥𝑡 (𝛼,0)
𝜙(𝛼) ≥ 𝑠

)
≤ exp(−𝑐 log log𝛼𝑛) (4.6.16)

for all large 𝑛 and 𝑡. Let 𝑁 be the smallest positive integer such that 𝛼𝑁 ≥ 𝑒𝑒. For 𝑛 ≥ 𝑁 and

𝜂 ∈ (0, 1), we have

P
(

sup
𝛼∈I𝑛

𝔥𝑡0 (𝛼, 0)
𝜙(𝛼) ≥ 𝑠

)
≤ P

(
sup
𝛼∈I𝑛

𝔥𝑡0 (𝛼, 0) ≥ 𝑠𝜙(𝛼𝑖)
)

≤ P
(

sup
𝛼∈I𝑛

𝔥𝑡0 (𝑥, 0) − 𝔥𝑡0 (𝛼𝑖, 0) ≥ 𝜂𝑠𝜙(𝛼𝑖)
)
+ P

(
𝔥𝑡0 (𝛼𝑖 ,0)
𝜙(𝛼𝑖) ≥ (1 − 𝜂)𝑠

)
, (4.6.17)

where the first inequality follows since 𝜙 is an increasing function of 𝛼 and the second inequality

follows by the union bound. We proceed to bound the two terms in the r.h.s. of the last display. For

the first term, we seek to apply (4.5.5) of Proposition 4.5.5. We set 𝜀 = 1
8 in Proposition 4.5.5, and
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define 𝑟 := sup𝜏∈(0,𝛿] 𝜏
1
8
(
log(1/𝜏)

) 2
3 . It straightforward to see that 𝑟 decreases to 0 as 𝛿 goes to 0.

We may now write

P
(

sup
𝛼∈I𝑛

𝔥𝑡0 (𝛼, 0) − 𝔥𝑡0 (𝛼𝑛, 0) ≥ 𝜂𝑠𝜙(𝛼𝑖)
)
≤ P

(
sup
𝜏∈(0,𝛿]

𝔥𝑡0 ((1+𝜏)𝛼𝑛,0)−𝔥𝑡0 (𝛼𝑛,0)
𝜏1/8 log2/3 (1/𝜏) ≥ 𝜂 𝑠

𝑟
𝜙(𝛼𝑛)

)
≤ exp

(
− 𝑐

(
𝑠𝜂𝑟−1(log log𝛼𝑛)2/3

)3/2) (4.6.18)

where the last inequality follows from Proposition 4.5.5. For any fixed 𝜂, we choose 𝛿 > 0 small

such that 𝑐(𝜂𝑟−1)3/2 > 1. For such choice of 𝛿, the r.h.s. of the last line of the above display will

be bounded above by exp(−𝑐1 log log𝛼𝑛) for some constant 𝑐1 > 1. This bounds the first term in

the r.h.s. of (4.6.17). We now proceed to bound the second term. Note that 𝔥𝑡0 (𝛼𝑛, 0)/𝛼
1/3
𝑛 is same

as 𝔥𝛼𝑛𝑡0 (1, 0) = 𝔥𝛼𝑛𝑡0 . Using the second inequality of (4.2.15) in Proposition 4.2.13, for all large 𝑡

and 𝑛

P
(
𝔥𝑡0 (𝛼𝑛,0)
𝜙(𝛼𝑛) ≥ (1 − 𝜂)𝑠

)
≤ exp

(
− 4
√

2
3 (1 − 𝛾)

5/2𝑠3/2 log log𝛼𝑛
)
.

Recall that 𝜂 is chosen in a way such that (1 − 𝜂)5/2(1 + 𝜖) > 0. Since 4
√

2
3 (1 − 𝛾)

5/2𝑠3/2 =

(1−𝜂)5/2(1+𝜖), the r.h.s. of the above display is bounded by exp(−𝑐2 log log𝛼𝑛) for some constant

𝑐2 > 0. Combining this upper bound with the bounds in (4.6.18) an substituting those into the

r.h.s. of (4.6.17) yields (4.6.16). This completes the proof.

Proof of 𝔏𝔦𝔪𝔖𝔲𝔭𝑙

We prove 𝔏𝔦𝔪𝔖𝔲𝔭𝑙 using similar argument as in the proof of 𝔏𝔦𝔪ℑ𝔫𝔣𝑢 (see Section 4.6.1).

Recall the definitions of the interval I𝑛 from Section 4.6.1. Set 𝛾 := (3(1 − 𝜖)/4
√

2)2/3. Due to

Borel-Cantelli lemma, it suffices to show

∞∑︁
𝑛=1

P
(
sup
𝑡∈I𝑛

𝔥𝑡

(log log 𝑡)1/3 ≤ 𝛾
)
< ∞. (4.6.19)
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Choose 𝜂 > 0 such that 𝜁 := ( 4
√

2
3 + 𝜂) (𝛾 + 2𝜂)3/2 < 1. Fix 𝜃 ∈ (𝜁, 1) and 𝛿 ∈ (0, 𝜃 − 𝜁). With

this 𝜃, recall the definition of the subintervals {I ( 𝑗)𝑛 }M𝜃

𝑗=1 from (4.6.3). Set Ã( 𝑗)𝑛 := {sup
𝑡∈I ( 𝑗 )𝑛

𝔥𝑡 ≤

(𝑛 + 1)2/3𝛾}. By union bound P
(
sup𝑡∈I𝑛

𝔥𝑡

(log log 𝑡)1/3 ≤ 𝛾
)
≤ ∑M𝜃

𝑗=1 P(Ã( 𝑗)𝑛 ). In a similar way as in

(4.6.5), we claim that there exists 𝑐1, 𝑐2 > 0 such that

P(Ã( 𝑗)𝑛 ) ≤ exp(−𝑐1𝑒
𝑛(𝜃−𝛿)𝑒−𝑛𝜁 ) + exp

(
𝑛(𝜃 − 𝛿) − 𝑐2(exp(𝑒𝑛𝛿) − 1)1/2

)
(4.6.20)

for all 1 ≤ 𝑗 ≤ 𝑛 and all large 𝑛. Using this upper bound on P(Ã( 𝑗)𝑛 ), we may bound each term

in the sum (4.6.19) exactly in the same way as in (4.6.6). Since 𝜃 > 𝜁 + 𝛿 by our choice, we may

also bound each term of the sum in (4.6.19) by exp(−𝑒𝑛𝜔) for some 𝜔 ∈ (0, 1). This shows the

finiteness of the sum in (4.6.19). To complete the proof, it boils down to showing (4.6.20) which

we do as follows.

Fix 𝑗 ∈ {1, . . . ,M𝜃} and some constant 𝑎 > 1. We choose a sequence 𝑡1 < 𝑡2 < · · · < 𝑡𝐿𝑛 ∈

[𝑒𝑛 + ( 𝑗 − 1)𝑒𝑛𝜃 , 𝑒𝑛 + 𝑗 𝑒𝑛𝜃] such that min |𝑡𝑖+1 − 𝑡𝑖 | ≥ 𝑒𝑛𝛿 and 𝑎−1(𝑒𝑛(𝜃−𝛿)) ≤ 𝐿𝑛 ≤ 𝑎(𝑒𝑛(𝜃−𝛿)).

Proposition 4.6.1 shows the existence of independent r.v. 𝑌1, 𝑌2, . . . , 𝑌𝐿𝑛 satisfying (4.6.1) (with

𝔰 ≥ 𝑒𝑛𝛿) for the above choice of 𝑡1, 𝑡2, . . . , 𝑡𝐿𝑛 . Using similar ideas as in (4.6.7), we can write

P(Ã( 𝑗)𝑛 ) ≤ P( sup
1≤𝑖≤𝐿𝑛

𝔥𝑒𝑡𝑖 ≤ (𝑛 + 1)2/3𝛾)

≤ P
(

sup
1≤𝑖≤𝐿𝑛

𝑌𝑖 ≤ (𝑛 + 1)2/3𝛾 + 1
)
+

𝐿𝑛∑︁
𝑖=1

P(𝑌𝑖 − 𝔥𝑒𝑡𝑖 ≥ 1)

≤
𝐿𝑛∏
𝑖=1

P
(
𝑌𝑖 ≤ (𝑛 + 1)2/3𝛾 + 1

)
+ 𝑎 exp

(
𝑛(𝜃 − 𝛿) − 𝑐(exp(𝑒𝑛𝛿) − 1)1/2

)
Now we apply the distributional identity of (4.6.1) to write

𝐿𝑛∏
𝑖=1

P
(
𝑌𝑖 ≤ (𝑛 + 1)2/3𝛾 + 1

)
=

𝐿𝑛∏
𝑖=1

P
(
(1 − 𝑒−(𝑡𝑖−𝑡𝑖−1))1/3𝔥𝑒𝑡𝑖−𝑒𝑡𝑖−1 ≤ (𝑛 + 1)2/3𝛾 + 1

)
≤

𝐿𝑛∏
𝑖=1

P
(
𝔥𝑒𝑡𝑖−𝑒𝑡𝑖−1 ≤ 𝑛2/3(𝛾 + 𝜂)

)
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≤
[
1 − exp(−(𝜂 + 4

√
2

3 )𝑛(𝛾 + 2𝜂)3/2)
] 𝐿𝑛

≤ exp
(
− 𝐿𝑛 exp(−(𝜂 + 4

√
2

3 )𝑛(𝛾 + 2𝜂)3/2)
)
≤ 𝑒−𝑒𝑛(𝜃−𝛿−𝜁 )/𝑎,

where the first inequality follows by noting that (1− 𝑒−(𝑡𝑖−𝑡𝑖−1))−1/3((𝑛 + 1)1/3𝛾 + 1) ≤ 𝑛1/3(𝛾 + 𝜂)

for all large 𝑛 and the second inequality follows due to (4.2.15) of Proposition 4.2.13. The last

inequality follows since 𝐿𝑛 ≥ 𝑒𝑛(𝜃−𝛿)/𝑎 and 𝜁 = (𝜂 + 4
√

2
3 ) (𝛾 + 2𝜂)3/2. Substituting the inequality

in the above display into the r.h.s. of (4.6.20) completes the proof of (4.6.20).

4.7 Mono- and Multifractality of the KPZ equation

The aim of this section is to prove Theorem 4.1.3. The monofractality result of the KPZ

equation which is stated in (4.1.4) will be proved in Section 4.7.1 where the multifractality result

of (4.1.5) will be proved in Section 4.7.2.

4.7.1 Monofractality: Proof of 4.1.4

By the inequality 𝔏𝔦𝔪𝔖𝔲𝔭𝑢, we know that the limsup of 𝔥𝑡/(log log 𝑡)2/3 as 𝑡 goes to ∞ is

strictly less than 𝛾 with probability 1 for any 𝛾 > (3/4
√

2)2/3. This shows {𝑡 ≥ 𝑒𝑒 : 𝔥𝑡/(log log 𝑡)2/3 ≥

𝛾} is almost surely bounded. From Proposition 4.2.6, it follows that the Barlow-Taylor Hausdorff

dimension of a bounded set is zero. This shows DimH({𝑡 ≥ 𝑒𝑒 : 𝔥𝑡/(log log 𝑡)2/3 ≥ 𝛾}) 𝑎.𝑠.= 0 for

any 𝛾 > (3/4
√

2)2/3. We now proceed to prove DimH({𝑡 ≥ 𝑒𝑒 : 𝔥𝑡/(log log 𝑡)2/3 ≥ 𝛾}) = 1 with

probability 1 for any 𝛾 ≤ (3/4
√

2)2/3. For this, it suffices to show that

DimH(P𝔥)
𝑎.𝑠.
= 1, where P𝔥 :=

{
𝑡 ≥ 𝑒𝑒 : 𝔥𝑡

(log log 𝑡)2/3 ≥
3

4
√

2

}
. (4.7.1)

Throughout the rest of this section, we show (4.7.1). Denote 𝛾0 := (3/4
√

2)2/3 and set A𝑠 :={
𝔥𝑠

(log log 𝑠)2/3 ≥ 𝛾0

}
for any 𝑠 > 0. For showing (4.7.1), we need the following two propositions.

These two propositions will shed light on the nature of dependence between A𝑡 and A𝑠 when 𝑡 and

𝑠 are far from each other and 1-dimensional Hausdorff content (see Definition 4.2.5) of the the set
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P𝔥. We first complete the proof of (4.7.1) using these two propositions and then, those will be

proved in two ensuing subsections.

We are now ready to state Proposition 4.7.1 which will demonstrate that A𝑡 and A𝑠 are approx-

imately independent when 𝑡 and 𝑠 are sufficiently far apart.

Proposition 4.7.1. There exist 𝑇0 > 0, such that for all 𝑡 > 𝑠 ≥ 𝑇0 with

𝑡 ≥ 𝑠(log log 𝑡)3(log log 𝑠 + log log 𝑡)2, (4.7.2)

we have P(A𝑠 ∩ A𝑡) = (1 + 𝑜(1))P(A𝑠)P(A𝑡), where 𝑜(1) goes to zero as 𝑠, 𝑡 →∞.

The next proposition will investigate 1-dimensional Hausdorff contents of the set P𝔥.

Proposition 4.7.2. Denote V𝑛 := [−𝑒𝑛, 𝑒𝑛] and S0 := V0,S𝑛+1 := V𝑛+1 \ V𝑛 for 𝑛 ∈ N. For any

Borel set 𝐺, define 𝜇(𝐺) := Leb
(
P𝔥 ∩ 𝐺

)
. We have

∞∑︁
𝑛=4

𝑒−𝑛𝜇(S𝑛)
𝑎.𝑠.
= ∞. (4.7.3)

Assuming Proposition 4.7.1 and 4.7.2, we proceed to complete the proof of (4.7.1).

Proof of (4.7.1). Recall the definition of 𝜌-dimensional Hausdorff content 𝜈𝑛,𝜌 from Definition 4.2.5.

By Proposition 4.2.7, there exists some constant 𝐾1,𝑛 > 0 (defined in (4.2.3)) such that 𝜈𝑛,1(P𝔥) ≥

𝐾−1
1,𝑛𝑒
−𝑛𝜇(P𝔥). Since 𝜇(𝑄) ≤ Leb(𝑄) for any finite Borel set 𝑄, 𝐾1,𝑛 is less than 1. This im-

plies 𝜈𝑛,1(P𝔥) ≥ 𝑒−𝑛𝜇(P𝔥). Combining this inequality with (4.7.3) of Proposition 4.7.2 yields∑∞
𝑛=4 𝜈𝑛,1(P𝔥) ≥

∑∞
𝑛=4 𝑒

−𝑛𝜇(S𝑛)
𝑎.𝑠.
= ∞. From Definition 4.2.5 it now follows that DimH(P𝔥) = 1

occurs with probability 1. This completes the proof.

Proof of Proposition 4.7.1. By Proposition 2.7 (FKG inequality) in [117] we know P(A𝑡 ∩ A𝑠) ≥

P(A𝑡)P(A𝑠). It suffices to show that P(A𝑡∩A𝑠) ≤ (1+𝑜(1))P(A𝑡)P(A𝑠) as 𝑠, 𝑡 →∞. For showing

this, we use Proposition 4.6.1. Fix 𝑡 > 𝑠 > 𝑇0 such that 𝑡, 𝑠 satisfy the inequality (4.7.2). Note that

(log log 𝑡)−1/2( 𝑡
𝑠
− 1)1/3 → ∞ as 𝑠, 𝑡 → ∞. By Proposition 4.6.1, there exists a r.v. 𝑌 independent
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of 𝔥𝑠 and constant 𝑐 > 0 such that

𝑌
𝑑
=

(
1 − 𝑠

𝑡

) 1
3𝔥𝑡−𝑠, P

(
|𝔥𝑡 − 𝑌 | ≥ (log log 𝑡)− 1

2
)
≤ 𝑒−𝑐(

𝑡
𝑠
−1)

1
2 (log log 𝑡)−

3
4
. (4.7.4)

Using the above display and the union bound of the probability, we write

P(A𝑠 ∩ A𝑡) ≤ P
(
{A𝑠 ∩ A𝑡} ∩ {|𝔥𝑡 − 𝑌 | ≤ (log log 𝑡)−1/2}

)
+ P

(
|𝔥𝑡 − 𝑌 | ≥ (log log 𝑡)−1/2)

≤ P
(
{𝔥𝑠 ≥ 𝛾0(log log 𝑠)2/3} ∩ {𝑌 ≥ 𝛾0(log log 𝑡)2/3 − (log log 𝑡)−1/2}

)
+ exp

(
− 𝑐(𝑡/𝑠 − 1)1/2(log log 𝑡)−3/4)

≤ P
(
𝔥𝑠 ≥ 𝛾0(log log 𝑠)2/3)P(𝑌 ≥ 𝛾0(log log 𝑡)2/3 − (log log 𝑡)−1/2

)
+ exp

(
− 𝑐(log log 𝑡)3/4 log

(
log 𝑠 log 𝑡

) )
≤ P

(
𝔥𝑠 ≥ 𝛾0(log log 𝑠)2/3

)
P

(
𝔥𝑡−𝑠 ≥ 𝛾0(log log 𝑡)2/3 − (log log 𝑡)−1/2

)
+ 𝑜(1) (log log 𝑡 log 𝑡 log log 𝑠 log 𝑠)−1

≤
(16𝜋𝛾3/2

0 )
−2(1 + 𝑜(1))

log log 𝑠 log 𝑠 log log 𝑡 log 𝑡
= (1 + 𝑜(1))P(A𝑡)P(A𝑠),

where the inequality in the second line follows by observing that

A𝑡 ∩ {|𝔥𝑡 − 𝑌 | ≤ (log log 𝑡)−1/2} ⊂
{
𝑌 ≥ 𝛾0(log log 𝑡)2/3 − (log log 𝑡)−1/2}

and using the probability bound in (4.7.4). The next inequality follows by the independence of 𝔥𝑠

and 𝑌 and through the following observation

exp
(
− 𝑐(𝑡/𝑠 − 1)1/2(log log 𝑡)−3/4) ≤ exp

(
− 𝑐(log log 𝑡)3/4 log

(
log 𝑠 log 𝑡

) )
which is a consequence of the fact that 𝑡, 𝑠 satisfy the condition (4.7.2). The inequality in the sixth
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line follows by noting 𝑌 𝑑
=

(
1 − 𝑠/𝑡

)1/3
𝔥𝑡−𝑠 and observing

exp
(
− 𝑐(log log 𝑡)3/4 log

(
log 𝑠 log 𝑡

) )
= 𝑜(1) · (log log 𝑡)−1(log 𝑡)−1(log log 𝑠)−1(log 𝑠)−1.

The last equality follows by using Proposition 4.8.5 of the Section ??. This completes the proof of

Proposition 4.7.1.

Proof of Proposition 4.7.2. Fix 𝜀 > 0. Let 𝑁0 = 𝑁0(𝜀) > 𝑇0 be such that for any 𝑡, 𝑠 ≥ 𝑒𝑁0

satisfying (4.7.2), we have

(1 − 𝜀) ≤ P(A𝑠) log 𝑠 log log 𝑠
(16𝜋𝛾3/2

0 )−1
≤ (1 + 𝜀), (1 − 𝜀) ≤ P(A𝑡 ) log 𝑡 log log 𝑡

(16𝜋𝛾3/2
0 )−1

≤ (1 + 𝜀),

(1 − 𝜀) ≤ P(A𝑡∩A𝑠)
P(A𝑡 )P(A𝑠) ≤ (1 + 𝜀).

Note that the first two inequalities hold due to Proposition 4.8.5 of the Section ?? and the last

inequality holds due to Proposition 4.7.1. Next we define a subsequence {𝑁𝑘 } recursively as

follows: 𝑁1 := max{𝑁0, 𝑒
𝑒10}, 𝑁𝑘+1 = 𝑁𝑘 + 10 log log 𝑁𝑘 , for 𝑘 ∈ N. Consider the following

random variables

𝑆𝑀 :=
𝑀∑︁
𝑘=1

𝑒−𝑁𝑘𝜇(S𝑁𝑘 ), 𝑀 ∈ N, 𝑆∞ :=
∞∑︁
𝑘=1

𝑒−𝑁𝑘𝜇(S𝑁𝑘 ).

Define 𝜅 := (1 − 𝑒−1). For 𝑀 ∈ N, we will show that

E[𝑆𝑀 ]
1−𝜀 ≥ (1 + 𝑜(1))

𝜅 log log log 𝑁𝑀
16𝜋𝛾3/2

0
,

E[𝑆2
𝑁,𝑀
]−(1+𝜀) (E[𝑆𝑁,𝑀 ])2
(1+𝜀) (1+𝑜(1)) ≤ 𝜅2 log log log 𝑁𝑀

80𝜋𝛾3/2
0

, (4.7.5)

where the term 𝑜(1) goes to 0 as 𝑀 goes to∞. By assuming the above inequality, we first complete

the proof of Proposition 4.7.2. We seek to show P(𝑆∞ = ∞) ≥ 1. Note that P(𝑆∞ = ∞) =

P(lim𝑀→∞ 𝑆𝑀 = ∞). We may now write

P
(

lim
𝑀→∞

𝑆𝑀 = ∞
)
≥ lim inf

𝑀→∞
P
(
𝑆𝑀 ≥ 1√

log log log 𝑁𝑀
E𝑆𝑁,𝑀

)
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≥ lim inf
𝑀→∞

(1 − (log log log 𝑁𝑀)−1/2)2(E[𝑆𝑁,𝑀])2

E[𝑆2
𝑁,𝑀
]

≥ lim inf
𝑀→∞

(1 − (log log log 𝑁𝑀)−1/2)2 · (1−𝜀)
2

1+𝜀

(1 + 𝑜(1))4𝜋𝛾3/2
0 (log log log 𝑁𝑀)−1 + 1

=
(1 − 𝜀)2

1 + 𝜀 . (4.7.6)

The first inequality in the above display follows since (log log log 𝑁𝑀)−1/2E[𝑆𝑀] goes to∞ thanks

to the first inequality of (4.7.5). We obtained the second inequality by applying Paley-Zygmund

inequality [268] for the random variable 𝑆𝑀 with setting 𝛿 := (log log log 𝑁𝑀)−1/2. The third

inequality follows by noticing from (4.7.5) that

E[𝑆2
𝑀
]

(E[𝑆𝑀 ])2
≤ 1+𝜀
(1−𝜀)2

(
(1 + 𝑜(1))4𝜋𝛾3/2

0 (log log log 𝑁𝑀)−1 + 1
)
.

From (4.7.6), Proposition 4.7.2 follows by letting 𝜀 to 0 and observing that 𝑆∞ ≤
∑∞
𝑛=4 𝑒

−𝑛𝜇(S𝑛).

Throughout the rest, we prove (4.7.5). Note that

E[𝑆𝑀] =
𝑀∑︁
𝑘=1

𝑒−𝑁𝑘
∫ 𝑒𝑁𝑘

𝑒𝑁𝑘−1
P(A𝑠)d𝑠 ≥

𝑀∑︁
𝑘=1

𝑒−𝑁𝑘
∫ 𝑒𝑁𝑘

𝑒𝑁𝑘−1

(1 − 𝜀) (16𝜋𝛾3/2
0 )

−1

log log 𝑠 log 𝑠
d𝑠 (4.7.7)

≥
𝑀∑︁
𝑘=1

𝜅(16𝜋𝛾3/2
0 )

−1

𝑁𝑘 log 𝑁𝑘
. (4.7.8)

where the first inequality follows since P(A𝑠) ≥ (1 − 𝜀) (16𝜋𝛾3/2
0 log 𝑠 log log 𝑠)−1 for all 𝑠 ≥ 𝑒𝑁0

and the second inequality follows since log 𝑠 ≤ 𝑁𝑘 for all 𝑠 ∈ [𝑒𝑁𝑘−1, 𝑒𝑁𝑘 ]. To lower bound the

r.h.s. of (4.7.8), we note

𝑁𝑘−1∑︁
𝑛=𝑁𝑘−1

1
𝑛 log 𝑛 log log 𝑛

≤
𝑁𝑘−1∑︁
𝑛=𝑁𝑘−1

(log log 𝑁𝑘−1)−1

𝑁𝑘−1 log 𝑁𝑘−1
≤ 10 log log 𝑁𝑘−1
𝑁𝑘−1 log 𝑁𝑘−1 log log 𝑁𝑘−1

,

where the first inequality is straightforward and the second inequality follows since |𝑁𝑘 − 𝑁𝑘−1 | =

10(1 + 𝑜(1)) log log 𝑁𝑘−1. It is worth noting that the r.h.s. of the last inequality is equal to
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10/(𝑁𝑘−1 log 𝑁𝑘−1). Using the above display, we may write

𝑀∑︁
𝑘=1
[𝑁𝑘 log 𝑁𝑘 ]−1 ≥ 1

10

𝑁𝑘∑︁
𝑛=𝑁0

[𝑛 log 𝑛 log log 𝑛]−1 = 1
10 (1 + 𝑜(1)) log log log 𝑁𝑀 , (4.7.9)

where 𝑜(1) goes to 0 as 𝑀 goes to∞. This implies the first inequality of (4.7.5). Now we proceed

to prove the second inequality of (4.7.5). We introduce the notation ℑ𝔫𝔱(𝑛, 𝑚) := 𝑒−𝑛−𝑚
∫ 𝑒𝑛

𝑒𝑛−1

∫ 𝑒𝑚

𝑒𝑚−1 P(A𝑡∩

A𝑠)d𝑡d𝑠. Observe that

E[𝑆2
𝑀] =

𝑀∑︁
𝑘=1

𝑀∑︁
ℓ=1

ℑ𝔫𝔱(𝑁𝑘 , 𝑁ℓ) =
𝑀∑︁
𝑘=1

ℑ𝔫𝔱(𝑁𝑘 , 𝑁𝑘 )︸               ︷︷               ︸
(I)

+
𝑀∑︁
𝑘≠ℓ

ℑ𝔫𝔱(𝑁𝑘 , 𝑁ℓ)︸               ︷︷               ︸
(II)

.

We first bound (I). Using the inequality P(A𝑠 ∩ A𝑡) ≤ P(A𝑡) ≤ (1 + 𝜀) (16𝜋𝛾3/2
0 log log 𝑡 log 𝑡)−1

for any 𝑠, 𝑡 ∈ [𝑒𝑁𝑘−1, 𝑒𝑁𝑘 ], we see

∫ 𝑒𝑁𝑘

𝑒𝑁𝑘−1

∫ 𝑒𝑁𝑘

𝑒𝑁𝑘−1
P(A𝑠 ∩ A𝑡)d𝑠d𝑡 ≤

(1 + 𝜀) (𝑒𝑁𝑘 − 𝑒𝑁𝑘−1)2

16𝜋𝛾3/2
0 (𝑁𝑘 − 1) log(𝑁𝑘 − 1)

.

Multiplying both sides by 𝑒−2𝑁𝑘 and summing over 𝑘 as 𝑘 varies in [1, 𝑀] ∩ Z≥1 yields

(I) ≤
𝑀∑︁
𝑘=1

𝜅2(1 + 𝜀)
16𝜋𝛾3/2

0 (𝑁𝑘 − 1) log(𝑁𝑘 − 1)
≤ 𝜅

2(1 + 𝜀)
80𝜋𝛾3/2

0

𝑁𝑀∑︁
𝑛=𝑁0

𝐶

(𝑛 − 1) log(𝑛 − 1) log log(𝑛 − 1)

= 𝜅2(1 + 𝑜(1)) (1 + 𝜀) log log log 𝑁𝑀
80𝜋𝛾3/2

0

. (4.7.10)

The equality in the last line follows since
∑𝑁𝑀
𝑛=𝑁0
((𝑛 − 1) log(𝑛 − 1) log log(𝑛 − 1))−1 = (1 +

𝑜(1)) log log log(𝑛). It remains to explain the second inequality of the above display. To see this,

notice that for any 𝑘 ∈ N,

(log(𝑁𝑘 − 1))−1

(𝑁𝑘 − 1) ≤ 2 log log(𝑁𝑘−1)
(𝑁𝑘 − 1) log(𝑁𝑘 − 1) log log(𝑁𝑘 − 1) ≤ 2

𝑁𝑘∑︁
𝑛=𝑁𝑘−1

(log log(𝑛 − 1))−1

10(𝑛 − 1) log(𝑛 − 1) .
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The first inequality follows since 2 log log 𝑁𝑘−1 ≥ log log(𝑁𝑘 − 1) whereas the second inequality

is obtained by noting that |𝑁𝑘 − 𝑁𝑘−1 | ≤ 10 log log 𝑁𝑘−1. Now we bound (II). Fix any 𝑡 ∈

[𝑒𝑁𝑘−1, 𝑒𝑁𝑘 ] and 𝑠 ∈ [𝑒𝑁ℓ−1, 𝑒𝑁ℓ ] for 𝑘 > ℓ ∈ N. Using this information, we write

𝑡/𝑠 ≥ 𝑒𝑁𝑘−𝑁ℓ−1 ≥ 𝑒10 log log(𝑁𝑘−1)−1 ≥ 𝑒5 log log(𝑁𝑘)+log 4 = 4(log 𝑁𝑘 )5 ≥ 4(log log 𝑡)5,

where the second inequality follows since 𝑁𝑘 − 𝑁ℓ ≥ 𝑁𝑘 − 𝑁𝑘−1 ≥ 10 log log 𝑁𝑘−1 and the third

inequality is obtained by noting that 10 log log(𝑁𝑘−1) ≥ 5 log log 𝑁𝑘 + 1 + log 4. From the above

display, it follows that 𝑡 and 𝑠 satisfy (4.7.2). Due to Proposition 4.7.1, we have P(A𝑡 ∩ A𝑠) ≤

(1 + 𝜀)P(A𝑡)P(A𝑠). This implies

(II) = 2
𝑀∑︁
ℓ=1

𝑀∑︁
𝑘=ℓ+1

𝑒−𝑁𝑘−𝑁ℓ
∫ 𝑒𝑁𝑘

𝑒𝑁𝑘−1

∫ 𝑒𝑁ℓ

𝑒𝑁ℓ−1
P(A𝑠 ∩ A𝑡)d𝑠d𝑡

≤ 2(1 + 𝜀)
𝑀∑︁
ℓ=1

𝑀∑︁
𝑘=ℓ+1

𝑒−𝑁𝑘−𝑁ℓ
∫ 𝑒𝑁𝑘

𝑒𝑁𝑘−1

∫ 𝑒𝑁ℓ

𝑒𝑁ℓ−1
P(A𝑠)P(A𝑡)d𝑠d𝑡 ≤ (1 + 𝜀)

(
E[𝑆𝑀]

)2
. (4.7.11)

Combining (4.7.10) and (4.7.11) yields (4.7.5). This completes the proof.

4.7.2 Multifractality: Proof of 4.1.5

Recall the definition of the exponential time changed process 𝔊(𝑡). Define

Λ𝛾 := {𝑡 ≥ 𝑒 | 𝔊(𝑡) ≥ 𝛾
(

3
4
√

2
log 𝑡

)2/3
}, 𝛾 ∈ R. (4.7.12)

Due to Theorem 4.1.1, we know lim sup𝑡→∞
𝔊(𝑡)

(3 log 𝑡/4
√

2)2/3
𝑎.𝑠.
= 1, which shows that Λ𝛾 is almost

surely bounded for 𝛾 > 1. This proves DimH(Λ𝛾) = 0 with probability 1 when 𝛾 > 1. In the

rest of the section, we focus on showing (4.1.5) for 𝛾 ∈ (0, 1]. We divide the proof into two

stages. The first stage will show the upper bound DimH(Λ𝛾) ≤ 1 − 𝛾3/2 and the lower bound

DimH(Λ𝛾) ≥ 1 − 𝛾3/2 will be shown in the second stage.

Stage 1: Proof of DimH(Λ𝛾) ≤ 1−𝛾3/2. Recall the definition of 𝜌-dimensional Hausdorff content
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𝜈𝑛,𝜌 from Definition 4.2.5. The main step of the proof is to show that

∞∑︁
𝑛=1
E
[
𝜈𝑛,𝜌

(
Λ𝛾

) ]
< ∞, ∀𝜌 > 1 − (1 − 𝜖)𝛾3/2, 𝜖 ∈ (0, 1). (4.7.13)

This immediately implies that
∑∞
𝑛=1 𝜈𝑛,1−(1−𝜖)𝛾3/2 (Λ𝛾) < ∞ almost surely for all 𝜖 ∈ (0, 1) and

hence, DimH(Λ𝛾) ≤ 1 − (1 − 𝜖)𝛾3/2. From this upper bound, the result will follow by taking

𝜖 to 0. Below, we state a lemma showing a technical estimate which will be required to bound

E
[
𝜈𝑛,1−(1−𝜖)𝛾3/2

(
Λ𝛾

) ]
for any 𝑛 ∈ N. After that, we will proceed to complete the proof of the upper

bound which will be followed by the proof of the lemma.

Lemma 4.7.3. Fix 𝜖 ∈ (0, 1). We have

P
(
Λ𝛾 ∩ [𝑚, 𝑚 + 1] ≠ ∅

)
≤ 2𝑚−(1−𝜖)

3/2𝛾3/2+𝑜(1) log𝑚, (4.7.14)

where 𝑜(1) term goes to zero as 𝑚 →∞.

Final steps of the upper bound proof. Fix 𝜖 > 0 and take any 𝜌 > 1 − (1 − 𝜖)3/2𝛾3/2. For any

𝑛 ≥ 1, define Ξ𝑛 := [−𝑒𝑛+1,−𝑒𝑛) ∪ (𝑒𝑛, 𝑒𝑛+1]. From the definition of 𝜈𝑛,𝜌, it follows that

𝜈𝑛,𝜌 (Λ𝛾) ≤
∑︁
𝑚∈Z>0

𝑒−𝑛𝜌1Λ𝛾∩[𝑚,𝑚+1]≠∅ · 1[𝑚,𝑚+1]⊂Ξ𝑛 .

Taking expectation on both sides, we get

E
[
𝜈𝑛,𝜌 (Λ𝛾)

]
≤ 𝑒−𝑛𝜌

∑︁
𝑚∈Z>0

1[𝑚,𝑚+1]∈Ξ𝑛 · P
(
Λ𝛾 ∩ [𝑚, 𝑚 + 1] ≠ ∅

)
≤ 𝑒−𝑛𝜌

∑︁
𝑚∈Z>0

2𝑚−(1−𝜖)
3/2𝛾3/2+𝑜(1) log𝑚 · 1[𝑚,𝑚+1]∈Ξ𝑛

≤ 𝑒−𝑛𝜌 · 2𝑒𝑛+1 · 2𝑛𝑒−(1−𝜖)3/2𝛾3/2𝑛 = 4𝑛𝑒𝑛(1−𝜌−(1−𝜖)
3/2𝛾3/2)+1. (4.7.15)

The second inequality follows from Lemma 5.5.18. We get the third inequality by observing

that the number of non-zero terms in the sum is bounded by 2𝑒𝑛+1 and each non-zero term is
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bounded above by 2𝑛𝑒−(1−𝜖)3/2𝛾3/2𝑛. The upper bound of E[𝜈𝑛,𝜌 (Λ𝛾)] in (4.7.15) is summable over

𝑛 whenever 𝜌 > 1− (1− 𝜖)𝛾3/2. This shows (4.7.13). Alluding to the discussion after (4.7.13), we

get the proof of DimH(Λ𝛾) ≤ 1 − 𝛾3/2.

Proof of Lemma 5.5.18. Define 𝐵𝑚 := dlog𝑚e. We divide the interval [𝑒𝑚, 𝑒𝑚+1] into 𝐵𝑚 many

intervals {I𝑚
𝑗
}𝑚
𝑗=1 where I𝑚

𝑗
:= [𝑥 (𝑚)

𝑗−1, 𝑥
(𝑚)
𝑗
] and, 𝑥 (𝑚)

𝑗
:= 𝑒𝑚 (1 + (𝑒−1) 𝑗

𝐵𝑚
), for 𝑗 = 1, . . . , 𝐵𝑚 . We

may now write

P(Λ𝛾 ∩ [𝑚, 𝑚 + 1] ≠ ∅) ≤ P
(

sup
𝑡∈[𝑚,𝑚+1]

𝔊(𝑡) ≥ 𝛾
( 3

4
√

2
log𝑚

) 2
3
)

= P
(

sup
𝑡∈[𝑒𝑚,𝑒𝑚+1]

𝔥𝑡 ≥ 𝛾
( 3

4
√

2
log𝑚

) 2
3
)
≤

𝐵𝑚∑︁
𝑗=1

P
(

sup
𝑡∈I𝑚

𝑗

𝔥𝑡 ≥ 𝛾
( 3

4
√

2
log𝑚

) 2
3
)
,

(4.7.16)

where the last inequality follows by the union bound. In what follows, we show that

P
(

sup
𝑡∈I𝑚

𝑗

𝔥𝑡 ≥ 𝛾
( 3

4
√

2
log𝑚

)2/3
)
≤ 2𝑚−(1−𝜖)

3/2𝛾3/2+𝑜(1) , (4.7.17)

where 𝑜(1) term converges to 0 as 𝑚 goes to ∞ uniformly for all 𝑗 = 1, . . . , 𝐵𝑚. From (4.7.17),

(4.7.14) of Lemma 5.5.18 will follow by noting that there are at most log𝑚 terms in the sum

(4.7.16). Fix 𝑗 ∈ {1, . . . , 𝐵𝑚}. For convenience, we use shorthand 𝑥 𝑗 and 𝑥 𝑗−1 to denote 𝑥 (𝑚)
𝑗

and

𝑥
(𝑚)
𝑗−1 respectively. Consider the events

A 𝑗 ,𝑚 :=
{

sup
𝑡∈I𝑚

𝑗

(
𝔥𝑡 −

( 𝑥 𝑗−1
𝑡

) 1
3𝔥𝑥 𝑗−1

)
≥ 𝜖𝛾

( 3 log𝑚
4
√

2

) 2
3
}
,B 𝑗 ,𝑚 :=

{
𝔥𝑥 𝑗−1 ≥ (1 − 𝜖)𝛾

( 3 log𝑚
4
√

2

) 2
3
}
.

Note that

sup
𝑡∈I𝑚

𝑗

𝔥𝑡 ≤ sup
𝑡∈I𝑚

𝑗

(
𝔥𝑡 −

( 𝑥 𝑗−1
𝑡

)1/3
𝔥𝑥 𝑗−1

)
+ sup
𝑡∈I𝑚

𝑗

(
𝑥 𝑗−1
𝑡

)1/3
𝔥𝑥 𝑗−1

= sup
𝑡∈I𝑚

𝑗

(
𝔥𝑡 −

( 𝑥 𝑗−1
𝑡

)1/3
𝔥𝑥 𝑗−1,𝑚

)
+max

{( 𝑥 𝑗−1
𝑥 𝑗

)1/3
𝔥𝑥 𝑗−1 , 𝔥𝑥 𝑗−1

}
.
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Due to the above inequality, we have
{

sup𝑡∈I𝑚
𝑗
𝔥𝑡 ≥ 𝛾

( 3
4
√

2
log𝑚

)2/3
}
⊂ A 𝑗 ,𝑚 ∪B 𝑗 ,𝑚 . By the union

bound, we get

P
(

sup
𝑡∈I𝑚

𝑗

𝔥𝑡 ≥ 𝛾
( 3

4
√

2
log𝑚

)2/3
)
≤ P(A 𝑗 ,𝑚) + P(B 𝑗 ,𝑚). (4.7.18)

In what follows, we claim and prove that

𝑚𝛾
3/2

P(A 𝑗 ,𝑚) = 𝑜(1), and P(B 𝑗 ,𝑚) = 𝑚−(1−𝜖)
3/2𝛾3/2+𝑜(1) , (4.7.19)

where 𝑜(1) terms converge to 0 as 𝑚 → ∞ uniformly for all 𝑗 ∈ {1, . . . , 𝐵𝑚}. Substituting the

bounds of (4.7.19) into the r.h.s. of (4.7.18) shows (4.7.18). To complete the proof of this lemma,

it suffices to to show (4.7.19).

By noting that log 𝑥 𝑗−1,𝑚 ∈ [𝑚, 𝑚 + 1], we use (4.2.15) of Proposition 4.2.13 to get

P(B 𝑗 ,𝑚) ≤ exp
(
−(1 + 𝑜(1))𝛾3/2(1 − 𝜖)3/2 log𝑚

)
= 𝑚−(1−𝜖)

3/2𝛾3/2+𝑜(1) ,

where the 𝑜(1) term goes to zero as 𝑚 → ∞ uniformly for all 𝑗 . This proves the bound on

P(B 𝑗 ,𝑚) in (4.7.19). Now we proceed to prove the bound on P(A 𝑗 ,𝑚). To this end, recall that

ℎ𝑡 (𝛼, 0) = 𝛼1/3ℎ𝛼𝑡 for any 𝛼, 𝑡 > 0. Using this, we may write

P(A 𝑗 ,𝑚) = P
(

sup
𝑡∈I 𝑗𝑚

( 𝑥 𝑗−1
𝑡

)1/3 (
𝔥𝑥 𝑗−1 ( 𝑡

𝑥 𝑗−1
, 0) − 𝔥𝑥 𝑗−1 (1, 0)

)
≥ 𝜖𝛾

( 3
4
√

2
log𝑚

)2/3
)

≤ P
(

sup
𝜏∈[0, 𝑒−1

𝐵𝑚
]

(
𝔥𝑥 𝑗−1 (1 + 𝜏, 0) − 𝔥𝑥 𝑗−1 (1, 0)

)
≥ 𝜖𝛾( 𝑥 𝑗

𝑥 𝑗−1
)1/3

( 3
4
√

2
log𝑚

)2/3
)
, (4.7.20)

where the second inequality follows since (𝑡−1𝑥 𝑗−1)1/3 is bounded below by (𝑥−1
𝑗
𝑥 𝑗−1)1/3 for any
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𝑡 ∈ I𝑚
𝑗

. Setting 𝑟 := sup𝜏∈(0,(𝑒−1)/𝐵𝑚] 𝜏
1/8 log2/3(1/𝜏) < ∞, we get

r.h.s. of (4.7.20) ≤ P
(

sup
𝜏∈[0, 𝑒−1

𝐵𝑚
]

𝔥𝑥 𝑗−1 (1 + 𝜏, 0) − 𝔥𝑥 𝑗−1 (1, 0)
𝜏1/8 log2/3(1/𝜏)

≥ 𝜖𝛾
𝑟
( 𝑥 𝑗
𝑥 𝑗−1
)1/3

( 3
4
√

2
log𝑚

)2/3
)
.

(4.7.21)

Applying Proposition 4.5.5 with 𝜀 = 1
8 , 𝛿 = 𝑒−1

𝐵𝑚
, 𝑎 = 1, we get

r.h.s. of (4.7.21) ≤ exp
(
− 𝑐( 𝜖𝛾

𝑟
) 3

2 ( 𝑥 𝑗
𝑥 𝑗−1
) 1

2
( 3

4
√

2
log𝑚

) )
≤ exp(−𝐶 (log𝑚)1+ 3

32 ) = 𝑜(𝑚−𝛾3/2)

for all large 𝑚. Here, 𝐶 is a constant which will only depend 𝜖 . The second inequality follows

since 𝑟−
3
2 ≥ 𝑐1(log𝑚) 3

32 for some 𝑐1 > 0 and (𝑥 𝑗/𝑥 𝑗−1) ≥ 1. This proves the first bound in (4.7.19)

and hence, completes the proof of the lemma.

Stage 2: Proof of DimH(Λ𝛾) ≥ 1 − 𝛾3/2. To prove the lower bound, we use similar techniques

used as in [223, (4.14) of Theorem 4.7]. Recall the definition of ‘thickness’ of a set from Defi-

nition 4.2.8. We seek to use to use Proposition 4.2.9. Let us fix 𝜃 ∈ (𝛾3/2, 1). Recall Λ𝛾 from

(4.7.12). We will show that Λ𝛾 is 𝜃-thick with probability 1. This will prove the almost sure lower

bound DimH(Λ𝛾)≥1 − 𝛾3/2 via Proposition 4.2.9. Let us define

D𝑛 :=
{
Λ𝛾 ∩ [𝑥, 𝑥 + 𝑒𝜃𝑛] = ∅, for some 𝑥 ∈ Π𝑛 (𝜃)

}
.

The 𝜃-thickness of Λ𝛾 will follow through the Borel-Cantelli lemma if the following holds

∞∑︁
𝑛=1

P(D𝑛) < ∞. (4.7.22)

Showing the above display will be the main focus of the rest of the proof.

Recall the definition of the interval I𝑛 and its M𝜃 many sub-intervals {I ( 𝑗)𝑛 }M𝜃

𝑗=1 from Sec-

tion 4.6.1. Let us denote the end points of the sub-intervals {I ( 𝑗)𝑛 }M𝜃

𝑗=1 as 𝑥 (1)𝑛 , . . . , 𝑥
(M𝜃 )
𝑛 such that
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I ( 𝑗)𝑛 = [exp(𝑥 ( 𝑗−1)
𝑛 ), exp(𝑥 ( 𝑗)𝑛 )]. Let us define

B( 𝑗)𝑛 :=
{

sup
𝑡∈[𝑥 ( 𝑗−1)

𝑛 ,𝑥
( 𝑗 )
𝑛 ]

𝔊(𝑡) ≤ 𝛾
( 3

4
√

2

) 2
3 (𝑛 + 1) 2

3

}
.

From the definition of B( 𝑗)𝑛 , it follows that D𝑛 ⊂ ∪M𝜃

𝑗=1B( 𝑗)𝑛 . By the union bound, we get P(D𝑛) ≤∑
𝑗 P(B( 𝑗)𝑛 ). We will now show (4.7.22) by proving a bound (uniform on 𝑗 and 𝑛) on P(B( 𝑗)𝑛 ).

Choose 𝜂 > 0 such that 𝜁 := ( 4
√

2
3 + 𝜂) (𝛾(

3
4
√

2
) 2

3 + 2𝜂)3/2 < 𝜃 and pick 𝛿 ∈ (0, 𝜃 − 𝜁). We now

claim and prove that there exists 𝑐1, 𝑐2 > 0 such that

P(B( 𝑗)𝑛 ) ≤ exp(−𝑐𝑒𝑛(𝜃−𝛿)𝑒−𝑛𝜁 ) + exp
(
𝑛(𝜃 − 𝛿) − 𝑐2(exp(𝑒𝑛𝛿) − 1)1/2

)
(4.7.23)

for all 1 ≤ 𝑗 ≤ 𝑛 and all large 𝑛. Using the above inequality, we may bound P(D𝑛) by exp(𝑛−𝑛𝜃+1)

times the r.h.s. of (4.7.23). Since 𝜃 > 𝜁 +𝛿, we can bound P(D𝑛) by exp(−𝑒𝑛𝜔) for some 𝜔 ∈ (0, 1)

and for all large 𝑛. This shows (4.7.22) and hence, completes the proof modulo (4.7.23) which is

finally remained to be shown. By the identification 𝔊(𝑡) = ℎ𝑒𝑡 and I ( 𝑗)𝑛 = [exp(𝑥 ( 𝑗−1)
𝑛 ), exp(𝑥 ( 𝑗)𝑛 )],

it is straightforward to see that

B( 𝑗)𝑛 =

{
sup
𝑡∈I ( 𝑗 )𝑛

𝔥𝑡 ≤ 𝛾
( 3

4
√

2

) 2
3 (𝑛 + 1) 2

3

}
.

Due to this identity, (4.7.23) now follows from the proof of (4.6.20), completing the proof.

4.8 Auxiliary results

Lemma 4.8.1. Fix 𝛽 > 0 and a constant 𝐶 = 𝐶 (𝛽) ∈ R. If a line ensemble L satisfies the

H-Brownian Gibbs property, then the line ensemble D defined by

D𝑖 (𝑥) := 1√
𝛽
L𝑖 (𝛽𝑥) + 𝐶 (4.8.1)

satisfies the H𝛽-Brownian Gibbs property where H𝛽 (𝑥) := 𝛽𝑒
√
𝛽𝑥 .
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Proof. Fix 𝑎, 𝑏 ∈ R with 𝑎 < 𝑏. Fix 𝑘1 ≤ 𝑘2 with 𝑘1, 𝑘2 ∈ N. Set 𝐾 = {𝑘1, . . . , 𝑘2}. The

conditional law of L𝐾×(𝑎𝛽,𝑏𝛽) conditioned on LN×R\𝐾×(𝑎𝛽,𝑏𝛽) is given by

P𝑘1,𝑘2,(𝑎𝛽,𝑏𝛽),®𝑥,®𝑦, 𝑓 ,𝑔
H

whereL𝑘1−1 = 𝑓 , or∞ if 𝑘1 = 1 andL𝑘2+1 = 𝑔, and ®𝑥 = (L𝑘1 (𝑎𝛽), . . . ,L𝑘2 (𝑎𝛽)) = (
√
𝛽(D𝑘1 (𝑎)−

𝐶), . . . ,
√
𝛽(D𝑘2 (𝑎)−𝐶)) and ®𝑦 = (L𝑘1 (𝑏𝛽), . . . ,L𝑘2 (𝑏𝛽)) = (

√
𝛽(D𝑘1 (𝑏)−𝐶), . . . ,

√
𝛽(D𝑘2 (𝑏)−

𝐶)). Note that under the scaling (4.8.1), the underlying law of free Brownian bridges are still free

Brownian bridges but with endpoints ®𝑥′ = (D𝑘1 (𝑎), . . . ,D𝑘2 (𝑎)) and ®𝑦′ = (D𝑘1 (𝑏), . . . ,D𝑘2 (𝑏)).

On the other hand, the Radon Nikodym derivative is proportional to

exp

(
−

𝑘2−1∑︁
𝑖=𝑘1+1

∫ 𝑏𝛽

𝑎𝛽

H(L𝑖 (𝑥) − L𝑖−1(𝑥)) d𝑥
)

= exp

(
−

𝑘2−1∑︁
𝑖=𝑘1+1

∫ 𝑏𝛽

𝑎𝛽

H(
√︁
𝛽[D𝑖 (𝑥/𝛽) − D𝑖−1(𝑥/𝛽)]) d𝑥

)
= exp

(
−

𝑘2−1∑︁
𝑖=𝑘1+1

∫ 𝑏

𝑎

𝛽H(
√︁
𝛽[D𝑖 (𝑥) − D𝑖−1(𝑥)]) d𝑥

)
= exp

(
−

𝑘2−1∑︁
𝑖=𝑘1+1

∫ 𝑏

𝑎

H𝛽 (D𝑖 (𝑥) − D𝑖−1(𝑥)) d𝑥
)
.

This completes the proof.

Proposition 4.8.2. Let 𝜈 > 0. There exist 𝑡0 = 𝑡0(𝜈) ∈ (0, 1), 𝑐 = 𝑐(𝜈) > 0 and 𝑠 = 𝑠(𝜈) > 0 such

that for all 𝑡 ≤ 𝑡0 and 𝑠 ≥ 𝑠0, we have

P
(

inf
𝑥∈R

(
𝔤𝑡 (𝑥) + (𝜋𝑡/4)

3/4 (1+𝜈)𝑥2

2𝑡
)
≤ −𝑠

)
≤ exp(−𝑐𝑠2), (4.8.2)

P
(
sup
𝑥∈R

(
𝔤𝑡 (𝑥) + (𝜋𝑡/4)

3/4 (1−𝜈)𝑥2

2𝑡
)
≥ 𝑠

)
≤ exp(−𝑐𝑠3/2). (4.8.3)

Proof. Proof of (4.8.2): Set 𝔤̃𝑡 (𝑥) = 𝔤𝑡 ((43𝑡/𝜋3)1/8𝑥). Fix 𝜈 > 0. For any 𝐴 ⊂ R and 𝑚 ∈ Z,
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define

G𝐴 =

{
inf
𝑥∈𝐴

(̃
𝔤𝑡 (𝑥) + (1+𝜈)𝑥

2

2

)
≤ −𝑠

}
, D𝑚 =

{
𝔤̃𝑡 (𝑚) + 𝑚2

2 ≥ −
𝑠
4 −

𝑣𝑚2

4

}
.

We seek to bound P(GR). Using the union bound, we have

P(GR) ≤ P(G(−∞,−16𝜈−1]) + P(G[−16𝜈−1,16𝜈−1]) + P(G[16𝜈−1.∞)). (4.8.4)

Let 𝑁 = b16𝜈−1c. Note that we are allowed to choose the threshold of 𝑠, namely 𝑠0 dependent on

𝜈. So, we can choose 𝑠 large enough so that 𝑠 ≥ 15𝑁 is satisfied. Choosing 𝛿 = 1 and 𝑡0 ≤ 1 in

Proposition 4.4.3, via the union bound we get

P
(
G[−16𝜈−1,16𝜈−1]

)
= P

(
𝑁⋃

𝑖=−𝑁−1
G[𝑖,𝑖+1]

)
≤ 𝑁 exp(−𝑐𝑠2) ≤ exp(−𝑐′𝑠2), (4.8.5)

where 𝑐′ depends on 𝑁 . We now turn to bound P(G[16𝜈−1,∞)). Due to the spatial stationarity of

𝔤̃𝑡 (𝑥) + 𝑥2

2 , similar argument can be used to bound P(G(−∞,−16𝜈−1]). We start by writing

P(G[16𝜈−1,∞)) ≤
∞∑︁
𝑚=𝑁

P(¬D𝑚) +
∞∑︁
𝑚=𝑁

P(D𝑚 ∩ D𝑚+1 ∩ G[𝑚,𝑚+1]). (4.8.6)

Note that for all 𝑠 large enough, we have for all 𝑚, P(¬D𝑚) ≤ exp
(
− 𝑐

(
𝑠
4 +

𝜈𝑚2

4
)2) ≤ exp(−𝑐′(𝑠2 +

|𝑚 |4)). Here the constant 𝑐′ depends on 𝜈. Hence the first sum in r.h.s. of (4.8.6) is clearly bounded

exp(−𝑐𝑠2). For the second sum, we will invoke the Brownian Gibbs property. The rest of the

calculations is in similar spirit with proof of Proposition 4.4.3. Define the event

G′[𝑚,𝑚+1] =
{
(1+𝜈) (𝑚+1)2

2 + inf
𝑥∈[𝑚,𝑚+1]

𝔤̃𝑡 (𝑥) ≤ −𝑠
}
⊃ G[𝑚,𝑚+1] .

From (4.2.4) and (4.2.2), it follows that
{
𝔤̃𝑡 ((43𝑡/𝜋3)−1/8𝑤)

}
𝑤∈R is same in distribution as 𝔤(1)𝑡 (·)

where 𝔤
(1)
𝑡 is the top curve of the short-time line ensemble defined in (3) of Lemma 6.5.1. Let us

set 𝑎 = (43𝑡/𝜋3)1/8𝑚 and 𝑏 = (43𝑡/𝜋3)1/8(𝑚 + 1) for convenience. Let F𝑠 = Fext({1}, (𝑎, 𝑏))
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be the 𝜎-algebra generated by {𝔤(𝑛)𝑡 (𝑥)}𝑛∈N,𝑥∈R outside {𝔤(1)𝑡 (𝑥)}𝑥∈(𝑎,𝑏) . By the strong Brownian

Gibbs property for the short-time line ensemble we have

P(D𝑚 ∩ D𝑚+1 ∩ G′[𝑚,𝑚+1]) = E
[
1D𝑚1D𝑚+1E(G′[𝑚,𝑚+1] |F𝑠)

]
= E

[
1D𝑚1D𝑚+1P𝑠 (G′[𝑚,𝑚+1])

]
.

where P𝑠 := P1,1,(𝑎,𝑏),𝔤𝑡 (𝑚),𝔤𝑡 (𝑚+1),∞,𝔤 (2)𝑡
G𝑡

. By monotone coupling Lemma P𝑠 (G′[𝑚,𝑚+1]) ≤ Pfree(G′[𝑚,𝑚+1]),

where Pfree := P1,1,(𝑎,𝑏),𝔤𝑡 (𝑚),𝔤𝑡 (𝑚+1),∞,−∞
G𝑡

is the law of a Brownian bridge on [𝑎, 𝑏] with entry value

𝔤𝑡 (𝑚) and exit value 𝔤𝑡 (𝑚 + 1). Thus if 𝔅 be a Brownian bridge on [0, 𝑏 − 𝑎] independent of the

𝜎-algebra F𝑠, we get that P(D𝑚 ∩ D𝑚+1 ∩ G′[𝑚,𝑚+1]) is atmost

E
[
1D𝑚1D𝑚+1P

(
(1+𝜈) (𝑚+1)2

2 + inf
𝑥∈[0,𝑏−𝑎]

(
𝔅(𝑥) + 𝔤𝑡 (𝑚) (𝑏−𝑎−𝑥)+𝔤𝑡 (𝑚+1)𝑥

𝑏−𝑎

)
≤ −𝑠

����F𝑠)] .
On (D𝑚 ∩ D𝑚+1), 𝔤𝑡 (𝑚) is atleast − 𝑠4 −

(1+𝜈/2)𝑚2

2 and 𝔤𝑡 (𝑚 + 1) is atleast − 𝑠4 −
(1+𝜈/2) (𝑚+1)2

2 . We

use these inequalities and then neglect the indicator events above. Then using the fact that 𝔅(·) is

independent of F𝑠 we get that

P(D𝑚 ∩ D𝑚+1 ∩ G′[𝑚,𝑚+1])

≤ P
(

inf
𝑥∈[0,𝑏−𝑎]

[
𝔅(𝑥) − (1+𝜈/2) (2𝑚+1)𝑥2(𝑏−𝑎)

]
≤ −3𝑠

4 +
𝜈
4 (𝑚 + 1)2 − (1+𝜈/2) (2𝑚+1)2

)
≤ P

(
inf

𝑥∈[0,𝑏−𝑎]
𝔅(𝑥) ≤ −3𝑠

4 +
𝜈
4 (𝑚 + 1)2 − (1+𝜈/2) (2𝑚+1)2

)
. (4.8.7)

We note that 1
8𝜈(𝑚 + 1)2 ≥ 𝑚 + 1 ≥ (1−𝜈/2) (2𝑚+1)2 . Furthermore for 𝑡 ≤ 𝜋3

43 , 𝑏 − 𝑎 ≤ 1. Hence

r.h.s. of (4.8.7) ≤ P

(
sup

𝑥∈[0,𝑏−𝑎]
𝔅(𝑥) ≥ 3𝑠

4 +
𝜈
8𝑚

2

)
≤ exp

[
−𝑐( 3𝑠4 +

𝜈𝑚2

8 )
2
]

≤ exp
[
−𝑐′(𝑠2 + 𝑚4)

]
,

where 𝑐′ > 0 is dependent on 𝜈. Clearly this implies the second sum in r.h.s. of (4.8.6) is bounded

by exp(−𝑐𝑠2). Overall we get P(G[16𝜈−1,∞)) ≤ exp(−𝑐𝑠2). Similar analysis on the negative side
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yields P(G(−∞,−16𝜈−1]) ≤ exp(−𝑐𝑠2). Plugging the bounds in (4.8.4) gives the desired result.

Proof of (4.8.3). For the supremum process, the proof is similar to Proposition 4.2 in [117]. For

the aid of the reader, we point out the key changes that one needs to do in their proof.

Recall that 𝔤̃𝑡 (𝑥) = 𝔤𝑡 ((43𝑡/𝜋3)1/8𝑥). We replace 𝔥𝑡 in the proof of Proposition 4.2 in [117]

with 𝔤̃𝑡 (·). In what follows we justify briefly how almost every step in their analysis holds true

even after this replacement.

Note that just like 𝔥𝑡 (·), 𝔤̃(·) is also stationary when the parabola 𝑥2

2 is added to it. Furthermore,

𝔤̃𝑡 (0) also has similar one point lower tail and upper tail estimates (holds for all 𝑡 small enough).

The only difference here is decay in short time lower tail is not as fast as that of long time upper

tail. However, it is not hard to check that having P(𝔤𝑡 (0) ≤ −𝑠) ≤ exp(−𝑐𝑠3/2) suffices. This

enables us to reduce the proof to proving the 𝔤̃𝑡 analogue of Eq. (26) in [117].

Next we justify the second part of their proof where the Brownian Gibbs property of 𝔥𝑡 is

applied. Here one needs to be careful as it is the process 𝔤𝑡 (·) (instead of 𝔤̃𝑡 (·)) that satisfies the

Brownian Gibbs property with Hshort
𝑡 as Hamiltonian. However, as we will explain in a moment,

the arguments present in [117] after Eq. (26) still holds in our case. Indeed, Hshort
𝑡 being convex,

monotone coupling still holds. Hence one arrives at an analogue of Eq. (27) in [117] for 𝔤̃𝑡 with

the measures PH𝑡
suitably redefined. Next to arrive at Eq. (28), we still demand a given point on

the Brownian bridge to stay above the line formed by linearly interpolating its endpoints. Because

of the change from 𝔤̃𝑡 to 𝔤𝑡 , the Brownian bridge is not of the same length as considered in [117].

But the above probability is still 1
2 leading to our analogue of Eq. (28) in [117].

The rest of the algebraic calculations is applicable to our case as well which leads to the last

math display of their proof (with 𝔥
(1)
𝑡 = 𝔥𝑡 replaced by 𝔤̃𝑡). Finally one invokes the stationarity of

𝔤̃𝑡 (𝑥) + 𝑥2

2 proving the 𝔤̃𝑡 analogue of Eq. (26) in [117]. This completes the proof.

Proposition 4.8.3. Fix 𝑡0 > 0. For any given 𝛽 > 0, recall the spatial process 𝔥(1+𝛽)𝑡↓𝑡 (·) from

Proposition 4.2.11. There exist 𝑐 = 𝑐(𝑡0) > 0, and 𝑠0 = 𝑠0(𝑡0) > 0 such that for all 𝑡 ≥ 𝑡0,
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𝑠 ≥ 𝑠0, 𝛽 ≥ 1 with 𝑡 ≥ 𝑡0 we have

P(𝔥𝑡 (1 + 𝛽, 0) − 𝔥(𝑡+𝛽𝑡)↓𝑡 (0) ≥ 𝑠) ≤ exp(−𝑐𝑠3/2) (4.8.8)

P(𝔥𝑡 (1 + 𝛽, 0) − 𝔥(𝑡+𝛽𝑡)↓𝑡 (0) ≤ −𝑠) ≤ exp(−𝑐𝑠2). (4.8.9)

Proof. Recall the composition law from

𝔥𝑡 (1 + 𝛽, 0) =
1
𝑡1/3

log
∫
R
𝑒
𝑡1/3

(
𝔥𝑡 (1,𝑡−2/3𝑦)+𝛽1/3𝔥̃𝛽𝑡 (−(𝛽𝑡)−2/3𝑦)

)
𝑑𝑦, (4.8.10)

where 𝔥̃𝛽𝑡 (𝑥) := 𝔥 (𝑡+𝛽𝑡 )↓𝑡 (𝛽2/3𝑥)
𝛽1/3 . We prove (4.8.8) and (4.8.9) in Stage-1 and Stage-2 respectively.

Stage-1: Proof of (4.8.8): We consider the following events:

A1 :=

{
sup

|𝑥 |≤ 1
32 𝛽
−2/3√𝑠

(𝔥̃𝛽𝑡 (𝑥) − 𝔥̃𝛽𝑡 (0)) ≥ 1
4 𝛽
−1/3𝑠

}
, A2 :=

{
sup
𝑥∈R

(
𝔥𝑡 (𝑦) + 𝑦2

4

)
≥ 𝑠

4

}
A3 :=

{
sup
𝑥∈R

𝔥̃𝛽𝑡 (𝑥) ≥ 𝑠

214

}
, A4 :=

{
𝔥̃𝛽𝑡 (0) ≤ − 𝑠

214

}
,

Lemma 4.8.4. {𝔥𝑡 (1 + 𝛽, 0) − 𝛽1/3𝔥̃𝛽𝑡 (0) ≥ 𝑠} ⊂ (A1 ∪ A2 ∪ A3 ∪ A4) for large enough 𝑠.

Before proceeding to prove Lemma 4.8.4, we show how this will imply (4.8.8). From the above

lemma and the union bound, we get P(𝔥𝑡 (1+ 𝛽, 0) − 𝛽1/3𝔥̃𝛽𝑡 (0) ≥ 𝑠) ≤
∑4
𝑖=1 P(A𝑖). By Proposition

4.4.2 with 𝛽 ↦→ 𝛽−1 and 𝜅 = 2
3 we get that P(A1) ≤ exp(−𝑐𝑠3/2). By Proposition 4.2.14, we get

P(A2) ≤ exp(−𝑐𝑠3/2) and P(A3) ≤ exp(−𝑐𝑠3/2). The one point tail estimate in Proposition 4.2.12

yields P(A4) ≤ exp(−𝑐𝑠3/2). This proves (4.8.8).

Proof of Lemma 4.8.4. Assume ¬(A1 ∪ A2 ∪ A3 ∪ A4) holds. Note that ¬(A1 ∪ A2 ∪ A3 ∪ A4) =

(¬A1) ∩ (¬A2) ∩ (¬A3) ∩ (¬A4). Subtracting and adding the parabola 𝑦2

4𝑡 inside the exponent of

the term on r.h.s. of (4.8.10) shows

𝔥𝑡 (1 + 𝛽, 0) =
1
𝑡

1
3

log
∫
R
𝑒
− 𝑦

2
4𝑡 +𝑡

1
3

(
𝔥𝑡 (𝑡−

2
3 𝑦)+𝛽

1
3 𝔥̃
𝛽𝑡
(−(𝛽𝑡)−2/3𝑦)+ 𝑦2

4𝑡4/3

)
𝑑𝑦

196



≤ sup
𝑦∈R

(
𝔥𝑡 (𝑦) + 𝑦2

4
)
+ 1
𝑡1/3

log
∫
R
𝑒
− 𝑦

2
4𝑡 +𝑡

1/3𝛽1/3𝔥̃
𝛽𝑡
(−(𝛽𝑡)−2/3𝑦)

𝑑𝑦

≤ 𝑠
4 +

1
𝑡1/3

log
∫
R
𝑒
− 𝑦

2
4𝑡 +𝑡

1/3𝛽1/3𝔥̃
𝛽𝑡
(−(𝛽𝑡)−2/3𝑦)

𝑑𝑦, (4.8.11)

where we have bound sup𝑦∈R
(
𝔥𝑡 (𝑦) + 𝑦2

4
)

by 𝑠
4 since we have assumed ¬A2 holds. Now we divide

the above integral into two parts in the following way:
∫
|𝑦 |≤ 1

32 𝑡
2/3√𝑠 +

∫
|𝑦 |≥ 1

32 𝑡
2/3√𝑠. For the first

integral we have

1
𝑡

1
3

log
∫
|𝑦 |≤ 1

32 𝑡
2/3√𝑠

exp
(
− 𝑦

2

4𝑡 + 𝑡
1/3𝛽1/3𝔥̃𝛽𝑡 (−𝛽−2/3𝑡−2/3𝑦)

)
𝑑𝑦

≤ 𝛽1/3 sup
|𝑥 |≤ 1

32 𝛽
−2/3√𝑠

𝔥̃𝛽𝑡 (𝑥) + 𝑡−1/3 log
∫
|𝑦 |≤ 1

32 𝑡
2/3√𝛽𝑠

𝑒−
𝑦2
4𝑡 𝑑𝑦

≤ 𝛽1/3 sup
|𝑥 |≤ 1

32 𝛽
−2/3√𝑠

𝔥̃𝛽𝑡 (𝑥) + 1
𝑡

1
3

log
√

4𝜋𝑡 ≤ 𝛽1/3𝔥̃𝛽𝑡 (0) + 𝑠
4 +

1
𝑡

1
3

log
√

4𝜋𝑡. (4.8.12)

Here the last integral is bounded by extending the range of integration to R. The final inequality

follows from the fact that ¬A1 holds. For the other integral observe that

1
𝑡

1
3

log
∫
|𝑦 |≥ 1

32 𝑡
2/3√𝑠

exp
(
− 𝑦

2

4𝑡 + (𝛽𝑡)
1/3𝔥̃𝛽𝑡 ((𝛽𝑡)−2/3𝑦)

)
𝑑𝑦 (4.8.13)

≤ sup
𝑥∈R

𝛽1/3𝔥̃𝛽𝑡 (𝑥) + 𝑡−1/3 log
∫
|𝑦 |≥ 1

32 𝑡
2/3√𝑠

𝑒−
𝑦2
4𝑡 𝑑𝑦 (4.8.14)

Using the fact that
∫
|𝑦 |≥𝑝 𝑒

−𝑦2/4𝑡d𝑦 ≤ 4
√
𝜋𝑡 · 𝑒−𝑝2/4𝑡 as long as 𝑝 ≥

√
2𝑡, we get that

∫
|𝑦 |≥ 1

32 𝑡
2/3√𝑠

𝑒−
𝑦2
4𝑡 𝑑𝑦 ≤ 4

√
𝜋𝑡 · exp

(
− (𝑡

2/3√𝑠)2
(32)2·4𝑡

)
= 4
√
𝜋𝑡 · exp

(
− 𝑠𝑡1/3212

)
.

Plugging this bound back we get

(4.8.14) ≤ 𝛽 1
3 sup
𝑥∈R

𝔥̃𝛽𝑡 (𝑥) + 𝑡−
1
3 log 4

√
𝜋𝑡 − 𝑠

212 ≤ 𝛽
1
3 𝔥̃𝛽𝑡 (0) + 𝑠

4 +
1
𝑡

1
3
4 log

√
𝜋𝑡. (4.8.15)

where the last inequality follows from the fact that ¬A3 ∩ ¬A4 holds. Thus for large enough 𝑠 we
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get

r.h.s. of (4.8.11) ≤ 1
4 𝑠 + 𝑡

−1/3 log 2 + 𝛽1/3𝔥̃𝛽𝑡 (0) + 𝑡−1/3 log 4
√
𝜋𝑡 + 1

4 𝑠

≤ 1
2 𝑠 +

1
2 𝑡
−1/3 log(64𝜋𝑡) + 𝛽1/3𝔥̃𝛽𝑡 (0) < 𝛽1/3𝔥̃𝛽𝑡 (0) + 𝛽1/3𝑠,

which entails 𝔥𝑡 (1+ 𝛽, 0) < 𝛽1/3𝔥̃𝛽𝑡 (0) + 𝛽1/3𝑠 on ¬(A1∪A2∪A3∪A4) completing the proof.

Stage-2: Proof of (4.8.9): In this stage we seek to find a lower bound for 𝔥𝑡 (1 + 𝛽, 0). Towards

this end, we recall (4.8.10) and lower bound the expression by integrating over the smaller region

{|𝑦 | ≤ 𝑡2/3}. We thus have

𝔥𝑡 (1 + 𝛽, 0) ≥
1
𝑡

1
3

log
∫
|𝑦 |≤𝑡2/3

𝑒
−3𝑦2

4𝑡 +𝑡
1
3

(
𝔥𝑡 (𝑡−

2
3 𝑦)+𝛽

1
3 𝔥̃𝛽𝑡 (−(𝛽𝑡)−2/3𝑦)+ 3𝑦2

4𝑡4/3

)
𝑑𝑦

≥ inf
𝑦∈R

(
𝔥𝑡 (𝑦) + 3𝑦2

4

)
+ 𝛽1/3 inf

|𝑦 |≤𝛽−2/3
𝔥̃𝛽𝑡 (𝑦) +

1
𝑡1/3

log
∫
|𝑦 |≤𝑡2/3

𝑒−
3𝑦2
4𝑡 𝑑𝑦

≥ inf
𝑦∈R

(
𝔥𝑡 (𝑦) + 3𝑦2

4

)
+ 𝛽1/3 inf

|𝑦 |≤𝛽−2/3
𝔥̃𝛽𝑡 (𝑦) + 1

𝑡
1
3

log
√︃

4𝜋𝑡
3 −

2
𝑡

1
3
𝑒−3𝑡

1
3 /4, (4.8.16)

where the last inequality follows from Gaussian tail bounds. Next we consider the following

events:

A5 := { inf
|𝑦 |≤𝛽−2/3

𝔥̃𝛽𝑡 (𝑦) ≤ 𝔥̃𝛽𝑡 (0) − 1
4 𝛽
−1/3𝑠}, A6 :=

{
inf
𝑦∈R

(
𝔥𝑡 (𝑦) + 𝑦2

4

)
≤ − 𝑠4

}
.

From Proposition 4.4.1, we see that P(A5) ≤ 𝑒−𝑐𝑠
2

and Proposition 4.2.14 implies P(A6) ≤ 𝑒−𝑐𝑠
5/2

.

On ¬(A5 ∪ A6) we observe that

r.h.s. of (4.8.16) ≥ − 𝑠
4
+ 𝛽 1

3 𝔥̃𝛽𝑡 (0) − 𝑠
4 +

1
𝑡

1
3

log
√︃

4𝜋𝑡
3 −

2
𝑡

1
3
𝑒−3𝑡

1
3 /4 > 𝛽1/3𝔥̃𝛽𝑡 (0) − 𝑠

for all large enough 𝑠 ≥ 𝑠0(𝑡0). Thus, P(𝔥𝑡 (1+ 𝛽, 0) − 𝛽1/3𝔥̃𝛽𝑡 (0) ≤ −𝑠) ≤ P(A5) +P(A6) ≤ 𝑒−𝑐𝑠
2
.

This completes the proof.
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Proposition 4.8.5. Set 𝛾0 = (3/4
√

2)2/3. Define 𝑏𝑡 := (log log 𝑡)−7/6. Then, for any fixed constant

𝐾 ∈ R,

P
( 𝔥𝑡

1 + 𝐾𝑏𝑡
≥ 𝛾0(log log 𝑡)2/3

)
=
(16𝜋)−1(1 + 𝑜(1))
𝛾

3/2
0 log 𝑡 log log 𝑡

.

where 𝑜(1) term converges to 0 as 𝑡 goes to∞.

Our proof of Proposition 4.8.5 is closely in line with the proof of Proposition 4.1 of [115]. It

will use a Laplace transform formula for Znw(𝑇, 0) proved in [65]. It connects Znw(𝑇, 0) with

the Airy point process a1 > a2 > . . ., a well studied determinantal point process in random matrix

theory (see, e.g., [7, Section 4.2]).

Throughout the rest, we use the following shorthand notations.

I𝑠 (𝑥) :=
1

1 + exp(𝑡 1
3 (𝑥 − 𝑠))

, J𝑠 (𝑥) := log
(
1 + exp(𝑡 1

3 (𝑥 − 𝑠))
)
.

Proposition 4.8.6 (Theorem 1 of [65]). For all 𝑠 ∈ R,

EKPZ

[
exp

(
− exp

(
𝑡

1
3 (𝔥𝑡 (0) − 𝑠)

) )]
= EAiry

[ ∞∏
𝑘=1
I𝑠 (a𝑘 )

]
. (4.8.17)

The following proposition proves an upper and a lower bound on the r.h.s. of (4.8.17). We use

these bounds to complete the proof of Proposition 4.8.5. We defer the proof of Proposition 4.8.7

to Section 4.8.

Proposition 4.8.7. Fix any constants 𝐾1, 𝐾2, 𝐾3 > 0 with 𝐾1 < 𝐾2. Recall 𝑏𝑡 from Proposi-

tion 4.8.5. There exists 𝑡0 = 𝑡0(𝐾1, 𝐾2, 𝐾3) > 0 and two sequences {𝔭𝑡}𝑡≥𝑡0 , {𝔮𝑡}𝑡≥𝑡0 such that for

all 𝑡 ≥ 𝑡0, 𝐾1(log log 𝑡)2/3 ≤ 𝑠 ≤ 𝐾2(log log 𝑡)2/3 and 𝐾 ∈ [−𝐾3, 𝐾3],

1 − E
[ ∞∏
𝑘=1
I(1+𝐾𝑏𝑡 )𝑠 (a𝑘 )

]
≤ (1 + 𝔭𝑡)

1
16𝜋𝑠3/2

𝑒−
4
3 𝑠

3/2
, (4.8.18)

1 − E
[ ∞∏
𝑘=1
I(1+𝐾𝑏𝑡 )𝑠 (a𝑘 )

]
≥ (1 + 𝔮𝑡)

1
16𝜋𝑠3/2

𝑒−
4
3 𝑠

3/2
(4.8.19)
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and 𝔭𝑡 → 0, 𝔮𝑡 → 0 as 𝑡 →∞.

Proof of Proposition 4.8.5. Define

𝑠 := 𝛾0(1 + 𝐾𝑏𝑡) (log log 𝑡)2/3, 𝑠 := 𝛾0(1 + (𝐾 + 1)𝑏𝑡) (log log 𝑡)2/3

and 𝜃 (𝑠) := exp
(
− exp

(
𝑡

1
3 (𝔥𝑡 − 𝑠)

) )
. By (4.8.17), we know EKPZ [𝜃 (𝑠)] = EAiry [

∏∞
𝑘=1 I𝑠 (a𝑘 )].

Note that

𝜃 (𝑠) ≤ 1(𝔥𝑡 (0) ≤ 𝑠) + 1(𝔥𝑡 (0) > 𝑠) exp(− exp(𝑏𝑡𝑠𝑡1/3))

which after rearranging, taking expectations and applying (4.8.17) will lead to

P(𝔥𝑡 (0) > 𝑠) ≤
(
1 − exp(− exp(𝑏𝑡𝑠𝑡

1
3 ))

)−1 (
1 − EAiry

[ ∞∏
𝑘=1
I𝑠 (a𝑘 )]

)
.

We may write 1 − exp(− exp(𝑏𝑡𝑠𝑡
1
3 )) = 1 + 𝑜(𝑡). Combining this with (4.8.18) yields

P(𝔥𝑡 (0) ≥ 𝑠) ≤ (1 + 𝑜(1))
1

16𝜋𝑠3/2
𝑒−

4
3 𝑠

3/2

for all large 𝑡.

We turn now to prove the lower bound. By Markov’s inequality, we get

P(𝔥𝑡 (0) ≤ 𝑠) = P
(
𝜃 (𝑠) ≥ exp

(
− 𝑒−𝑏𝑡 𝑠𝑡1/3

) )
≤ exp

(
𝑒−𝑏𝑡 𝑠𝑡

1/3 ) · E[𝜃 (𝑠)]
which after rearranging yields 1 − exp

(
− 𝑒−𝑏𝑡 𝑠𝑡1/3

)
P(𝔥𝑡 (0) ≤ 𝑠) ≥ 1 − E [𝜃 (𝑠)]. Finally, applying

(4.8.19) to the right hand side of the above display shows the lower bound.
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Proof of Proposition 4.8.7

Proof of (4.8.18). Define 𝑠 := (1+𝐾𝑏𝑡)𝑠. Define A(−) :=
{
a1 ≤ (1− 𝐾̃𝑏𝑡)𝑠

}
for some 𝐾̃ ∈ [0, 𝐾3]

and note the following lower bound

EAiry
[ ∞∏
𝑘=1
I𝑠 (a𝑘 )

]
≥ EAiry

[ ∞∏
𝑘=1
I𝑠 (a𝑘 )1(A(−))

]
. (4.8.20)

We show a lower bound to the right hand side of the above display. We set 𝑘0 := b 2
3𝜋 𝑠

9
4+2𝑏𝑡 c. By

the inequality J𝑠 (a𝑘 ) ≤ exp(−𝐾̃𝑡 1
3 𝑠𝑏𝑡) which follows on the event A(−) , we observe that

𝑘0∏
𝑘=1
I𝑠 (a𝑘 )1A(−) = exp

(
−

𝑘0∑︁
𝑘=1
J𝑠 (a𝑘 )

)
1A(−) ≥ exp

(
− 2

3𝜋 𝑠
9
4+2𝑏𝑡 𝑒−𝐾̃𝑠𝑏𝑡 𝑡

1
3
)
. (4.8.21)

We now focus on bounding
∏
𝑘>𝑘0 I𝑠 (a𝑘 ) from below on the event A(−) . By the result of [116,

Proposition 4.5], for any 𝜖, 𝛿 ∈ (0, 1) the probability space corresponding to the Airy point process

can be augmented so that there exists a random variable 𝐶Ai
𝜖 satisfying

(1 + 𝜖)𝜆𝑘 − 𝐶Ai
𝜖 ≤ a𝑘 ≤ (1 − 𝜖)𝜆𝑘 + 𝐶Ai

𝜖 for all 𝑘 ≥ 1 and P(𝐶Ai
𝜖 ≥ 𝑠) ≤ 𝑒−𝑠

1−𝛿

for all 𝑠 ≥ 𝑠0 where 𝑠0 = 𝑠0(𝜖, 𝛿) is a constant. Here, 𝜆𝑘 is the 𝑘-th zero of the Airy function (see

[116, Proposition 4.6]) and we fix some 𝛿 ∈ (0, 𝜖). Define 𝜙(𝑠) := 𝑠
3+8𝜖 /3

2(1−𝛿 )2 and observe that

∏
𝑘>𝑘0

I𝑠 (a𝑘 ) ≥
∏
𝑘>𝑘0

I𝑠 (a𝑘 )1(𝐶Ai
𝜖 ≤ 𝜙(𝑠)) ≥ exp

(
−

∑︁
𝑘>𝑘0

J𝑠
(
(1 − 𝜖)𝜆𝑘 + 𝜙(𝑠)

) )
. (4.8.22)

Using tail probability of 𝐶Ai
𝜖 , we have P(𝐶Ai

𝜖 ≤ 𝜙(𝑠)) ≥ 1 − exp
(
− 𝑠 3

2+
4
3 𝜖

)
. We now claim that for

𝑘 ≥ 𝑘0

J𝑠
(
(1 − 𝜖)𝜆𝑘 + 𝜙(𝑠)

)
≤ 𝑒𝑡1/3

(
−𝑠−(1−𝜖) (3𝜋𝑘/2)2/3+𝜙(𝑠)

)
≤ 𝑒𝑡1/3

(
−𝑠−(1−𝜖) (𝑘−𝑘0)2/3

)
. (4.8.23)
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To see this note that for all 𝑘 ≥ 𝑘0,

𝜆𝑘 ≤ −
(3𝜋𝑘

2

) 3
2

and, (1 − 𝜖) (3𝜋𝑘
2

) 2
3 − 𝜙(𝑠) ≥ (1 − 𝜖)

(3𝜋
2
(𝑘 − 𝑘0)

) 1
3
.

The first and second inequalities are consequences of [116, Proposition 4.6] and [116, Lemma 5.6]

respectively. Summing both sides of (4.8.23) over 𝑘 > 𝑘0 in (4.8.23), approximating the sum by

the corresponding integral, and evaluating shows

∑︁
𝑘>𝑘0

J𝑠 ((1 − 𝜖)𝜆𝑘 + 𝜙(𝑠)) ≤ 𝐶𝑡−
1
3 exp(−𝑠𝑡 1

3 ) (4.8.24)

for some constant 𝐶 > 0. Now, we substitute (4.8.24) into the r.h.s. of (4.8.22) to write

∏
𝑘>𝑘0

I𝑠 (a𝑘 )1(𝐶Ai
𝜖 ≤ 𝜙(𝑠)) ≥ exp

(
−C𝑡−

1
3 exp(−𝑠𝑡 1

3 )
)
.

Applying (4.8.21) in combination with the above inequality shows

l.h.s. of (4.8.20) ≥ exp
(
− 2

3𝜋 𝑠
9
4+2𝑏𝑡 𝑒−𝐾̃𝑏𝑡 𝑠𝑡

1
3 − 𝐶

𝑡
1
3
𝑒−𝑠𝑡

1
3
)
P
(
{𝐶Ai

𝜖 ≤ 𝜙(𝑠)} ∩ A(−)
)
. (4.8.25)

First we note that

exp
(
− 2

3𝜋
𝑠

9
4+2𝑏𝑡 𝑒−𝐾̃𝑏𝑡 𝑠𝑡

1
3 − 𝐶𝑡− 1

3 𝑒−𝑠𝑡
1
3
)
= 1 + 𝑜(1)

as 𝑡 →∞. Using the tail bound of 𝐶Ai
𝜖 ≤ 𝜙(𝑠), we may now write

P
(
{𝐶Ai

𝜖 ≤ 𝜙(𝑠)} ∩ A(−)
)
≥ 1 − P(𝐶Ai

𝜖 ≥ 𝜙(𝑠)) − P(¬A(−))

≥ 1 − 𝑒−𝑠
3
2 +

4
3 𝜖 − (1 + 𝑜(1))

16𝜋𝑠 3
2

𝑒
−4

3 𝑠
3
2

(4.8.26)

for all large 𝑡. The second inequality above also uses

P(¬A(−)) = P(a1 ≥ (1 − 𝐾̃𝑏𝑡)𝑠) ≤ (1 + 𝑜(1))
1

16𝜋𝑠3/2
exp(−4

3 𝑠
3
2 )
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which holds when 𝑡 is sufficiently large (see [75, Theorem 1]). Substituting (4.8.26) into the right

hand side of (4.8.25) yields (4.8.18).

Proof of (4.8.19). Now we show an upper bound on E
[∏∞

𝑘=1 I𝑠 (a𝑘 )
]
, where recall that 𝑠 = (1 +

𝐾𝑏𝑡)𝑠. Define A(+) :=
{
a1 ≤ (1 + 𝐾̃𝑏𝑡)𝑠

}
for some 𝐾̃ ∈ [0, 𝐾3]. We split E

[∏∞
𝑘=1 I𝑠 (a𝑘 )

]
into

two different parts shown as follows

E
[ ∞∏
𝑘=1
I𝑠 (a𝑘 )

]
≤ E

[ ∞∏
𝑘=1
I𝑠 (a𝑘 )1(A(+))

]
+ P(¬A(+)) · exp(−𝐾̃𝑏𝑡𝑠𝑡

1
3 ). (4.8.27)

Let us denote 𝜒Ai(𝑠) := #{a𝑖 ≥ 𝑠}. Fix 𝜖 ∈ (0, 1), 𝑐 ∈ (0, 2
3𝜋 ) and define

B :=
{
𝜒Ai(−𝜖 𝑠) − E

[
𝜒Ai(−𝜖 𝑠)

]
≥ −𝑐(𝜖 𝑠) 3

2

}
.

We split the first term on the r.h.s. of (4.8.27) as follows

E
[ ∞∏
𝑘=1
I𝑠 (a𝑘 )1(A(+))

]
≤ E

[ ∞∏
𝑘=1
I𝑠 (a𝑘 )1

(
B ∩ A(+)

) ]
+ E

[
1
(
(¬B) ∩ A(+))

]
.

We now bound each term on the right hand side of the above display. Note that

∞∏
𝑘=1
I𝑠 (a𝑘 )1(B) ≤ exp

(
−

(
2

3𝜋 − 𝑐
)
(𝜖 𝑠) 3

2 𝑒−(1+𝜖)𝑠𝑡
1
3
)

holds on the event B. As a consequence, we get

E
[ ∞∏
𝑘=1
I𝑠 (a𝑘 )1

(
B ∩ A(+)

) ]
≤ exp

(
−

(
2

3𝜋 − 𝑐
)
(𝜖 𝑠) 3

2 𝑒−(1+𝜖)𝑠𝑡
1
3
)
· P(A(+)). (4.8.28)

We may bound the r.h.s. of (4.8.28) by (1 − exp(−𝜁 𝑠𝑡1/3))P(A(+)) for some 𝜁 > 0 as 𝑡 gets large.

On the other hand, we note that there exists 𝑡𝛿 > 0 such that P(¬B) ≤ 𝑒−𝑐(𝜖 𝑠)
3−𝛿

for all 𝑡 > 𝑡𝛿.
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Substituting these bounds into the r.h.s. of (4.8.27) shows

1 − E
[ ∞∏
𝑘=1
I𝑠 (a𝑘 )

]
≥ P(¬A(+)) + P(A(+)) (𝑒−𝜁 𝑠𝑡

1
3 − 𝑒−𝐾̃𝑏𝑡 𝑠𝑡1/3) − 𝑒−𝑐(𝜁 𝑠)3−𝛿 . (4.8.29)

Thanks to [75, Theorem 1] we know

P(¬A(+)) ≥ (1 + 𝑜(1)) 1
16𝜋𝑠3/2

exp
(
− 4

3 𝑠
3
2
)
.

Recall that 𝐾1(log log 𝑡)2/3 ≤ 𝑠 ≤ 𝐾2(log log 𝑡)2/3. In this range we have

exp(−𝜁 𝑠𝑡1/3) + exp(−𝐾𝑏𝑡𝑠𝑡1/3) + exp(−𝑐(𝜖 𝑠)3−𝛿) = 𝑜(1) · exp(−4𝑠3/2/3).

Thus as 𝑡 grows large, the r.h.s. of (4.8.29) is lower bounded by

(1 + 𝑜(1)) (16𝜋𝑠3/2)−1 exp(−4𝑠3/2/3).

This completes the proof of (4.8.19) and hence also of Proposition 4.8.7.
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Chapter 5: Localization of the continuum directed random polymer

5.1 Introduction

The continuum directed random polymer (CDRP) is a continuum version of the discrete di-

rected polymer measures modeled by a path interacting with a space-time white noise that first

appeared in [4]. It arises as a scaling limit of the 1+1 dimensional directed polymers in the “in-

termediate disorder regime” and can be defined through the Kardar-Parisi-Zhang (KPZ) equation

with narrow wedge initial data (see Section 6.1.2). A folklore favorite region conjecture on di-

rected polymers states that under strong disorder, the midpoint (or any other point) distribution of

a point-to-point directed polymer is asymptotically localized in a region of stochastically bounded

diameter ( [88], [44], Section 5.1.1).

In light of this conjecture, we initiate such study of the CDRP’s long-time localization be-

haviors. Our main result, stated in Section 6.1.2, asserts that any point at a fixed proportional

location on the point-to-point CDRP relative to its length converges to an explicit density function

when centered around its almost surely unique random mode. A similar result for the endpoint

of point-to-line CDRP is also obtained, confirming the favorite region conjecture for the CDRP.

In this process, through the connections between the CDRP and the KPZ equation with narrow

wedge initial data, we have shown properties such as ergodicity and Bessel behaviors around the

maximum for the latter. These and other results are summarized in Section 5.1.2 and explained in

fuller detail in Section 6.1.2.

As an effort to understand the broader localization phenomena, our main theorems (Theorems

5.1.4, 5.1.5) confirm the favorite region conjecture for the first non-stationary integrable model

and are the first to obtain pointwise localization along the entire path (Theorem 5.1.4). The first

rigorous localization result for directed polymers in random environment appeared in [84] and

205



proved the existence of “favorite sites" in the Gaussian environment, which was later extended

to general environments in [102]. This notion of localization is known as the strong localization

and is weaker than the favorite region conjecture (See Section 5.1.1 for discussions on different

notions of localizations). The only other case where the favorite region conjecture is proved, is

the mid and endpoint localizations of the point-to-point and point-to-line one-dimensional station-

ary log-gamma polymers in [101]. The proofs of the results and the specificity of the locales

(mid/endpoints) in [101] relied on the stationary boundary condition of the model, which reduced

the endpoint distribution to exponents of simple random walks [294]. For CDRP, the absence of

a similar stationarity necessitates a new approach towards the favorite region conjecture, which

extends to every point on the polymer’s path. Conversely, as we do not rely on integrability other

than the Gibbs property, our proof for the CDRP has the potential to generalize to other integrable

models. Other works that have considered localization along the whole path include the pathwise

localization of the parabolic Anderson polymer model in [100] and that of the discrete polymer in

Gaussian environments [43] [40]. Lastly, accompanying our localization results, we establish the

convergence of the scaled favorite points to the almost sure unique maximizer of the Airy2 process

minus a parabola and the geodesics of the directed landscape respectively (Theorem 5.1.8).

Finally, from the perspective of the KPZ universality class, our paper is an innovative applica-

tion of several fundamental new techniques and results that have recently emerged in the commu-

nity. These include the Brownian Gibbs resampling property [CH16], the weak convergence from

the KPZ line ensemble to the Airy line ensemble [280], the tail estimates of the KPZ equation with

narrow wedge initial data [115, 116, 117] as well as probabilistic properties of the Airy line ensem-

ble from [140]. In particular, although the Gibbs property has been utilized before in works such as

[140, 81, 117, 119], we overcome a unique challenge of quantifying the Gibbs property precisely

on a symmetric random interval around the joint local maximizer of two independent copies of the

KPZ equation with narrow wedge initial data. This issue is resolved after we prescribe the joint

law of the KPZ equations around the desired interval. A more detailed description of our main

technical innovations is available in Section 5.1.4.
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Presently, we begin with the background of our model and related key concepts.

5.1.1 Introducing the CDRP through discrete directed lattice polymers

Directed polymers in random environments were first introduced in statistical physics literature

by Huse and Henley [202] to study the phase boundary of the Ising model with random impuri-

ties. Later, it was mathematically reformulated as a random walk in a random environment by

Imbrie and Spencer [206] and Bolthausen [61]. Since then immense progress has been made in

understanding this model (see [99] for a general introduction and [181, 44] for partial surveys).

In the (𝑑 + 1)- dimensional discrete polymer case, the random environment is specified by

a collection of zero-mean i.i.d. random variables {𝜔 = 𝜔(𝑖, 𝑗) | (𝑖, 𝑗) ∈ Z+ × Z𝑑}. Given the

environment, the energy of the 𝑛-step nearest neighbour random walk (𝑆𝑖)𝑛𝑖=0 starting and ending

at the origin (one can take the endpoint to be any suitable x ∈ R𝑑 as well) is given by 𝐻𝜔𝑛 (𝑆) :=∑𝑛
𝑖=1 𝜔(𝑖, 𝑆𝑖). The point-to-point polymer measure on the set of all such paths is then defined as

P𝜔𝑛,𝛽 (𝑆) =
1
𝑍𝜔
𝑛,𝛽

𝑒𝛽𝐻
𝜔
𝑛 (𝑆)P(𝑆), (5.1.1)

where P(𝑆) is the uniform measure on set of all 𝑛-step nearest neighbour paths starting and ending

at origin, 𝛽 is the inverse temperature, and 𝑍𝜔
𝑛,𝛽

is the partition function. Meanwhile, one can

also consider the point-to-line polymer measures where the endpoint is ‘free’ and the reference

measure P is given by 𝑛-step simple symmetric random walks. In the polymer measure, there is a

competition between the entropy of paths and the disorder strength of the environment. Under this

competition, two distinct regimes appear depending on the inverse temperature 𝛽 [103]:

• Weak Disorder: When 𝛽 is small or equivalently in high temperature regime, intuitively the

disorder strength diminishes. The walk is dominated by the entropy and exhibits diffusive

behaviors. This type of entropy domination is termed as weak disorder.

• Strong Disorder: If 𝛽 is large and positive or equivalently the temperature is low but remains

positive, the polymer measure concentrates on singular paths with high energies and the
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diffusive behavior is no longer guaranteed. This type of disorder strength domination is

known as the strong disorder.

The precise definitions of weak and strong disorder regimes are available in [103]. Furthermore,

there exists a critical inverse temperature 𝛽𝑐 (𝑑) that depends on the dimension 𝑑 such that weak

disorder holds for 0 ≤ 𝛽 < 𝛽𝑐 and strong disorder for 𝛽 > 𝛽𝑐. When 𝑑 = 1 or 𝑑 = 2, 𝛽𝑐 = 0, i.e.

all positive 𝛽 fall into the strong disorder regime.

The rest of the article focuses on 𝑑 = 1. While for 𝛽 = 0, the path fluctuations are of the

order
√
𝑛 via Brownian considerations, the situation is much more complex in the strong disorder

regime. The following two phenomena are conjectured:

• Superdiffusivity: Under strong disorder, the polymer measure is believed to be in the KPZ

universality class and paths have typical fluctuations of the order 𝑛2/3. This widely conjec-

tured phenomenon is physics literature is known as superdiffusion (see [202], [203], [218],

[235]) and has been rigorously proven in specific situations (see [245],[274], [212],[84],

[253]). But much remains unknown especially for 𝑑 ≥ 2.

• Localization and the favorite region conjecture: The polymer exhibits certain localization

phenomena under strong disorder. The favorite region conjecture speculates that any point

on the path of a point-to-point directed polymer is asymptotically localized in a region of

stochastically bounded diameter (see [88], [42] for partial survey.)

We remark that there exist many different notions of localizations. In addition to the favorite

region one discussed above and the strong localization in [84] mentioned earlier, the atomic local-

ization [313] and the geometric localization [44] were studied in [44] for simple random walks and

later extended to general reference walks in [42]. Both of [44] and [42] provided sufficient criteria

for the existence of the ‘favorite region’ of order one for the endpoint in arbitrary dimension. Yet

in spite of the sufficiency, it is unknown how to check them for standard directed polymers. We

refer the readers to Bates’ thesis [41] for a more detailed survey on this topic.
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Meanwhile, even though the critical inverse temperature 𝛽𝑐 (1) = 0 for 𝑑 = 1, one might scale

the inverse temperature with the length of the polymer critically to capture the transition between

weak and strong disorder. In this spirit, the seminal work of [5] considered an intermediate dis-

ordered regime where 𝛽 = 𝛽𝑛 = 𝑛−1/4 and 𝑛 is the length of the polymer. [5] showed that the

partition function 𝑍𝜔
𝑛,𝛽𝑛

has a universal scaling limit given by the solution of the Stochastic Heat

Equation (SHE) for 𝜔 with finite exponential moments. Furthermore, under the diffusive scaling,

the polymer path itself converges to a universal object called the Continuous Directed Random

Polymer (denoted as CDRP hereafter) which appeared first in [4] and depended on a continuum

external environment given by the space-time white noise.

More precisely, given a white noise 𝜉 on [0, 𝑡] × R, CDRP is a path measure on the space of

𝐶 ( [0, 𝑡]) (continuous functions on [0, 𝑡]) for each realization of 𝜉. Conditioned on the environ-

ment, the CDRP is a continuous Markov process with the same quadratic variation as the Brownian

motion but is singular w.r.t. the Brownian motion ([5]). Due to this singularity w.r.t. the Wiener

measure, expressing the CDRP path measure in a Gibbsian form similar to (5.1.1) is challenging.

Instead, one can construct a consistent family of finite dimensional distributions using the partition

functions which uniquely specify the path measure (see [4] or Section 6.1.2).

As the CDRP sits between weak and strong disorder regimes, it exhibits weak disorder type

behaviors in the short-time regime (𝑡 ↓ 0) and strong ones in the long-time regime (𝑡 ↑ ∞). Indeed,

the log partition function of CDRP is Gaussian in the short time limit (see [6]), which provides

evidence for weak disorder. Upon varying the endpoint of the CDRP measure, the log partition

function becomes a random function of the endpoint and converges to the parabolic Airy2 process

under the 1 : 2 : 3 KPZ scaling (see [280, 315]) with the characteristic 2/3 exponent. This alludes

to the superdiffusivity in the strong disorder regime. That said, the theory of universality class

alone does not shed insight on the possible localization phenomena of the CDRP measures.
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5.1.2 Summary of Results

The purpose of the present article is to study the localization phenomena for the long-time

CDRP measure. The following summarizes our results, which we elaborate on individually in

Section 6.1.2. Our first two results affirm the favorite region conjecture which so far has only been

proven for the mid and endpoints of the log-gamma polymer model in [101].

• For a point-to-point CDRP of length 𝑡, the quenched density of its 𝑝𝑡-point with fixed

𝑝 ∈ (0, 1) when centered around its almost sure unique mode (which is the maximizer

of the probability density function) M𝑝,𝑡 , converges weakly to a density proportional to

𝑒−R2 (𝑥) . Here, R2 is a two-sided 3D-Bessel process with diffusion coefficient 2 defined in

(5.5.2)(Theorem 5.1.4).

• For a point-to-line CDRP of length 𝑡, the quenched density of its endpoint when centered

around its almost sure unique mode M∗,𝑡 converges weakly to a density proportional to

𝑒−R1 (𝑥) . R1 is a two-sided 3D-Bessel process with diffusion coefficient 1 (Theorem 5.1.5).

• The random mode M∗,𝑡 of length-𝑡 point-to-line CDRP’s endpoint upon 2−1/3𝑡2/3 scaling

converges in law to the unique maximum of the Airy2 process minus a parabola; the random

modeM𝑝,𝑡 of the 𝑝𝑡 point of point-to-point CDRP of length 𝑡 upon 𝑡2/3 scaling converges

to Γ(𝑝
√

2), the Directed landscape’s geodesic from (0, 0) to (0, 𝑝
√

2) (Theorem 5.1.8).

Next, the well-known KPZ equation with narrow wedge initial data forms the log-partition

function of the CDRP. Our main results below shed light on some of its local information:

• Ergodicity: The spatial increment of the KPZ equation with narrow wedge initial data as

𝑡 →∞ converges weakly to a standard two-sided Brownian motion (Theorem 5.1.11).

• The sum of two independent copies of the KPZ equation with narrow wedge initial data when

re-centered around its maximum converges to a two-sided 3D-Bessel process with diffusion

coefficient 2 (Theorem 5.1.10).
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These results provide a comprehensive characterization of the localization picture for the CDRP

model. We present the formal statements of the results in the next subsection.

5.1.3 The model and the main results

In order to define the CDRP model we use the stochastic heat equation (SHE) with multiplica-

tive noise as our building blocks. Namely, we consider a four-parameter random fieldZ(𝑥, 𝑠; 𝑦, 𝑡)

defined on

R4
↑ := {(𝑥, 𝑠; 𝑦, 𝑡) ∈ R4 : 𝑠 < 𝑡}.

For each (𝑥, 𝑠) ∈ R × R, the field (𝑦, 𝑡) ↦→ Z(𝑥, 𝑠; 𝑦, 𝑡) is the solution of the SHE starting from

location 𝑥 at time 𝑠, i.e., the unique solution of

𝜕𝑡Z = 1
2𝜕𝑥𝑥Z +Z · 𝜉, (𝑦, 𝑡) ∈ R × (𝑠,∞),

with Dirac delta initial data lim𝑡↓𝑠Z(𝑥, 𝑠; 𝑦, 𝑡) = 𝛿(𝑥 − 𝑦). Here 𝜉 = 𝜉 (𝑥, 𝑡) is the space-time

white noise. The SHE itself enjoys a well-developed solution theory based on Itô integral and

chaos expansion [48, 316] also [113, 278]. Via the Feynmann-Kac formula ([203, 99]) the four-

parameter random field can be written in terms of chaos expansion as

Z(𝑥, 𝑠; 𝑦, 𝑡) =
∞∑︁
𝑘=0

∫
Δ𝑘,𝑠,𝑡

∫
R𝑘

𝑘+1∏
ℓ=1

𝑝(𝑦ℓ − 𝑦ℓ−1, 𝑠ℓ − 𝑠ℓ−1)𝜉 (𝑦ℓ, 𝑠ℓ)𝑑®𝑦 𝑑®𝑠, (5.1.2)

with Δ𝑘,𝑠,𝑡 := {(𝑠ℓ)𝑘ℓ=1 : 𝑠 < 𝑠1 < · · · < 𝑠𝑘 < 𝑡}, 𝑠0 = 𝑠, 𝑦0 = 𝑥, 𝑠𝑘+1 = 𝑡, and 𝑦𝑘+1 = 𝑦.

Here 𝑝(𝑥, 𝑡) := (2𝜋𝑡)−1/2 exp(−𝑥2/(2𝑡)) denotes the standard heat kernel. The field Z satisfies

several other properties including the Chapman-Kolmogorov equations [4, Theorem 3.1]. For all

0 ≤ 𝑠 < 𝑟 < 𝑡, and 𝑥, 𝑦 ∈ R we have

Z(𝑥, 𝑠; 𝑦, 𝑡) =
∫
R
Z(𝑥, 𝑠; 𝑧, 𝑟)Z(𝑧, 𝑟; 𝑦, 𝑡)𝑑𝑧. (5.1.3)
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For all (𝑥, 𝑠; 𝑦, 𝑡) ∈ R4
↑, we also set

Z(𝑥, 𝑠; ∗, 𝑡) :=
∫
R
Z(𝑥, 𝑠; 𝑦, 𝑡)𝑑𝑦. (5.1.4)

Definition 5.1.1 (Point-to-point CDRP). Conditioned on the white noise 𝜉, let P𝜉 be a measure

𝐶 ( [𝑠, 𝑡]) whose finite dimensional distribution is given by

P𝜉 (𝑋 (𝑡1) ∈ 𝑑𝑥1, . . . , 𝑋 (𝑡𝑘 ) ∈ 𝑑𝑥𝑘 ) =
1

Z(𝑥, 𝑠; 𝑦, 𝑡)

𝑘∏
𝑗=0
Z(𝑥 𝑗 , 𝑡 𝑗 , ; 𝑥 𝑗+1, 𝑡 𝑗+1)𝑑𝑥1 . . . 𝑑𝑥𝑘 . (5.1.5)

for 𝑠 = 𝑡0 ≤ 𝑡1 < · · · < 𝑡𝑘 ≤ 𝑡𝑘+1 = 𝑡, with 𝑥0 = 𝑥 and 𝑥𝑘+1 = 𝑦.

The measure P𝜉 also depends on 𝑥 and 𝑦 but we suppress it from our notations. We will also use

the notation CDRP(𝑥, 𝑠; 𝑦, 𝑡) and write 𝑋 ∼ CDRP(𝑥, 𝑠; 𝑦, 𝑡) when 𝑋 (·) is a random continuous

function on [𝑠, 𝑡] with 𝑋 (𝑠) = 𝑥 and 𝑋 (𝑡) = 𝑦 and its finite dimensional distributions given by

(5.1.5) conditioned on 𝜉.

Definition 5.1.2 (Point-to-line CDRP). Conditioned on the white noise 𝜉, we also let P𝜉∗ be a

measure 𝐶 ( [𝑠, 𝑡]) whose finite dimensional distributions are given by

P𝜉∗ (𝑋 (𝑡1) ∈ 𝑑𝑥1, . . . , 𝑋 (𝑡𝑘 ) ∈ 𝑑𝑥𝑘 ) =
1

Z(𝑥, 𝑠; ∗, 𝑡)

𝑘∏
𝑗=0
Z(𝑥 𝑗 , 𝑡 𝑗 , ; 𝑥 𝑗+1, 𝑡 𝑗+1)𝑑𝑥1 . . . 𝑑𝑥𝑘 . (5.1.6)

for 𝑠 = 𝑡0 ≤ 𝑡1 < · · · < 𝑡𝑘 ≤ 𝑡𝑘+1 = 𝑡, with 𝑥0 = 𝑥 and 𝑥𝑘+1 = ∗.

Remark 5.1.3. Note that the Chapman-Kolmogorov equations (5.1.3) and (5.1.4) ensure that the

finite dimensional distributions in (5.1.5) and (5.1.6) are consistent, and that P𝜉 and P𝜉∗ are prob-

ability measures. The measure P𝜉∗ also depends on 𝑥 but we again suppress it from our notations.

We similarly use CDRP(𝑥, 𝑦; ∗, 𝑡) to refer to P𝜉∗.

Theorem 5.1.4 (Pointwise localization for point-to-point CDRP). Fix any 𝑝 ∈ (0, 1). Let 𝑋 ∼

CDRP(0, 0; 0, 𝑡) and let 𝑓𝑝,𝑡 (·) denotes the density of 𝑋 (𝑝𝑡) which depends on the white noise 𝜉.

Then, for all 𝑡 > 0 the random density 𝑓𝑝,𝑡 has almost surely a unique modeM𝑝,𝑡 . Furthermore,
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as 𝑡 →∞, we have the following convergence in law

𝑓𝑝,𝑡 (𝑥 +M𝑝,𝑡)
𝑑→ 𝑟2(𝑥) :=

𝑒−R2 (𝑥)∫
R

𝑒−R2 (𝑦)𝑑𝑦
, (5.1.7)

in the uniform-on-compact topology. Here R2(·) is a two-sided 3D-Bessel process with diffusion

coefficient 2 defined in Definition 5.5.2.

Theorem 5.1.5 (Endpoint localization for point-to-line CDRP). Let 𝑋 ∼ CDRP(0, 0; ∗, 𝑡) and let

𝑓𝑡 (·) denotes the density of 𝑋 (𝑡) which depends on the white noise 𝜉. Then for 𝑡 > 0, the random

density 𝑓𝑡 has almost surely a unique modeM∗,𝑡 . Furthermore, as 𝑡 → ∞, we have the following

convergence in law

𝑓∗,𝑡 (𝑥 +M∗,𝑡)
𝑑→ 𝑟1(𝑥) :=

𝑒−R1 (𝑥)∫
R

𝑒−R1 (𝑦)𝑑𝑦
, (5.1.8)

in the uniform-on-compact topology. Here R1(·) is a two-sided 3D-Bessel process with diffusion

coefficient 1 defined in Definition 5.5.2.

Remark 5.1.6. In Proposition 5.7.1 we show that for a two-sided 3D-Bessel process R𝜎 with

diffusion coefficient 𝜎 > 0,
∫
R
𝑒−R𝜎 (𝑦)𝑑𝑦 is finite almost surely. Thus 𝑟1(·) and 𝑟2(·) defined

in (5.1.8) and (5.1.7) respectively are valid random densities. Theorems 5.1.4 and 5.1.5 derive

explicit limiting probability densities for the quenched distributions of the endpoints of the point-

to-line polymers and the 𝑝𝑡-point of point-to-point polymers when centered around their respective

modes, providing a complete description of the localization phenomena in the CDRP model. More

concretely, it shows that the corresponding points are concentrated in a microscopic region of order

one around their “favorite points" (see Corollary 5.7.3).

We next study the random modesM∗,𝑡 andM𝑝,𝑡 . The “favorite point"M𝑝,𝑡 is of the order 𝑡2/3

and converges in distribution upon scaling. The limit is given in terms of the directed landscape

constructed in [138, 251] which arises as an universal full scaling limit of several zero temperature

models [141]. Below we briefly introduce this limiting model in order to state our next result.
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The directed landscape L is a random continuous function R4
↑ → R that satisfies the metric

composition law

L(𝑥, 𝑠; 𝑦, 𝑡) = max
𝑧∈R
[L(𝑥, 𝑠; 𝑧, 𝑟) + L(𝑧, 𝑟; 𝑦, 𝑡)] , (5.1.9)

with the property that L(·, 𝑡𝑖; ·, 𝑡𝑖 + 𝑠3𝑖 ) are independent for any set of disjoint intervals (𝑡𝑖, 𝑡𝑖 + 𝑠3𝑖 ),

and as a function in 𝑥, 𝑦, L(𝑥, 𝑡; 𝑦, 𝑡 + 𝑠3) 𝑑
= 𝑠 · S(𝑥/𝑠2, 𝑦/𝑠2), where S(·, ·) is a parabolic Airy

Sheet. We omit definitions of the parabolic Airy Sheet (see Definition 1.2 in [138]) except that

S(0, ·) 𝑑
= A(·) where A is the parabolic Airy2 process and A(𝑥) + 𝑥2 is the (stationary) Airy2

process constructed in [275]

Definition 5.1.7 (Geodesics of the directed landscape). For (𝑥, 𝑠; 𝑦, 𝑡) ∈ R4
↑, a geodesic from (𝑥, 𝑠)

to (𝑦, 𝑡) of the directed landscape is a random continuous function Γ : [𝑠, 𝑡] → R such that

Γ(𝑠) = 𝑥 and Γ(𝑡) = 𝑦 and for any 𝑠 ≤ 𝑟1 < 𝑟2 < 𝑟3 ≤ 𝑡 we have

L(Γ(𝑟1), 𝑟1; Γ(𝑟3), 𝑟3) = L(Γ(𝑟1), 𝑟1; Γ(𝑟2), 𝑟2) + L(Γ(𝑟2), 𝑟2; Γ(𝑟3), 𝑟3).

Thus geodesics precisely contain the points where the equality holds in (5.1.9). Given any (𝑥, 𝑠; 𝑦, 𝑡) ∈

R4
↑, by Theorem 12.1 in [138], it is known that almost surely there is a unique geodesic Γ from

(𝑥, 𝑠) to (𝑦, 𝑡).

We are now ready to state our favorite point scaling result.

Theorem 5.1.8 (Favorite Point Limit). Fix any 𝑝 ∈ (0, 1). ConsiderM𝑝,𝑡 andM∗,𝑡 defined almost

surely in Theorems 5.1.4 and 5.1.5 respectively. As 𝑡 →∞ we have

2−1/3𝑡−2/3M∗,𝑡
𝑑→M, 𝑡−2/3M𝑝,𝑡

𝑑→ Γ(𝑝
√

2)

where M is the almost sure unique maximizer of the Airy2 process minus a parabola, and Γ :

[0,
√

2] → R is the almost sure unique geodesic of the directed landscape from (0, 0) to (0,
√

2).
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Remark 5.1.9. Theorem 5.1.8 shows that the random mode fluctuates in the order of 𝑡2/3. This

corroborates the fact that CDRP undergoes superdiffusion as 𝑡 → ∞. We remark that the M∗,𝑡

convergence was anticipated in [256] modulo a conjecture about convergence of scaled KPZ equa-

tion to the parabolic Airy2 process. This conjecture was later proved in [315, 280].

The proof of Theorem 5.1.4 relies on establishing fine properties of the partition function

Z(𝑥, 𝑡) := Z(0, 0; 𝑥, 𝑡), or more precisely, properties of the log-partition function logZ(𝑥, 𝑡).

For delta initial data, Z(𝑥, 𝑡) > 0 for all (𝑥, 𝑡) ∈ R × (0,∞) almost surely [168]. Thus the loga-

rithm of the partition function H(𝑥, 𝑡) := logZ(𝑥, 𝑡) is well-defined. It formally solves the KPZ

equation:

𝜕𝑡H = 1
2𝜕𝑥𝑥H +

1
2 (𝜕𝑥H)

2 + 𝜉, H = H(𝑥, 𝑡), (𝑥, 𝑡) ∈ R × [0,∞). (5.1.10)

The KPZ equation was introduced in [218] to study the random growing interfaces and since then

it has been extensively studied in both the mathematics and the physics communities. We refer to

[166, 278, 113, 281, 87, 124] for partial surveys.

As a stochastic PDE, (5.1.10) is ill-posed due to the presence of the nonlinear term 1
2 (𝜕𝑥H)

2.

The above notion of solutions from the logarithm of the solution of SHE is referred to as the

Cole-Hopf solution. The corresponding initial data is called the narrow wedge initial data for the

KPZ equation. Other notions of solutions, such as regularity structures [192, 191], paracontrolled

distributions [186, 188], and energy solutions [184, 187], have been shown to coincide with the

Cole-Hopf solution within the class of initial datas the theory applies.

To prove Theorem 5.1.4, one needs to understand how multiple copies of the KPZ equation

behave around the maximum of their sum. We present below our first main result that studies

the limiting behavior of sum of two independent copies of KPZ equation re-centered around the

maximizer of the sum, which we often refer to as the joint maximizer in the subsequent text as

𝑡 →∞.

Theorem 5.1.10 (Bessel behavior around the maximizer). Fix 𝑘 = 1 or 𝑘 = 2. Consider 𝑘 in-
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dependent copies of the KPZ equation {H𝑖 (𝑥, 𝑡)}𝑘𝑖=1 started from the narrow wedge initial data.

For each 𝑡 > 0, almost surely, the process 𝑥 ↦→ ∑𝑘
𝑖=1H𝑖 (𝑥, 𝑡) has a unique maximizer, say P𝑘,𝑡 .

Furthermore, as 𝑡 →∞, we have the following convergence in law

𝑅𝑘 (𝑥, 𝑡) :=
𝑘∑︁
𝑖=1

[
H𝑖 (P𝑘,𝑡 , 𝑡) − H𝑖 (𝑥 + P𝑘,𝑡 , 𝑡)

] 𝑑→ R𝑘 (𝑥) (5.1.11)

in the uniform-on-compact topology. Here R𝑘 (𝑥) is a two-sided Bessel process with diffusion

coefficient 𝑘 .

The next result captures the behaviors of the increments ofH(·, 𝑡) and complements Theorem

5.1.10. It’s a by-product of our analysis and doesn’t appear in the proof of Theorem 5.1.4.

Theorem 5.1.11 (Ergodicity of the KPZ equation). Consider the KPZ equation H(𝑥, 𝑡) started

from the narrow wedge initial data. As 𝑡 →∞, we have the following convergence in law

H(𝑥, 𝑡) − H (0, 𝑡) 𝑑→ 𝐵(𝑥)

in the uniform-on-compact topology. Here 𝐵(𝑥) is a two-sided standard Brownian motion.

Remark 5.1.12. For a Brownian motion on a compact interval, the law of the process when re-

centered around its maximum is absolutely continuous w.r.t. Bessel process. In light of Theorem

5.1.11, one expects the Bessel process as a limit in Theorem 5.1.10. The diffusion coefficient is 𝑘

because there are 𝑘 independent copies of the KPZ equation.

Remark 5.1.13. We prove (5.1.11) for 𝑘 = 1 and 𝑘 = 2 only, where 𝑘 = 1 case relates to Theorem

5.1.5 and the 𝑘 = 2 case relates to Theorem 5.1.4. Our proof strategy for Theorem 5.1.10 can be

adapted for general 𝑘 ≥ 3 and Remark 5.4.13 explains the missing pieces for the proof of (5.1.11)

for general 𝑘 . While Theorem 5.1.10 for general 𝑘 is an interesting result, due to brevity and the

lack of applications to our localization problem, we restrict to only 𝑘 = 1, 2.

A useful property in establishing the ergodicity of a given Markov process is the strong Feller

property. For instance, [193] studied the strong Feller property for singular SPDEs to establish
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ergodicity for a multicomponent KPZ equation. However, [193] techniques and results are limited

to only periodic boundary conditions, i.e. on torus domain, and are thus inaccessible for the KPZ

equation with narrow-wedge initial data.

In addition to the strong Feller property, we can also probe the KPZ equation’s ergodicity

through the lens of the KPZ universality class. Often viewed as the fundamental positive tem-

perature model of the latter, the KPZ equation shares the same 1 : 2 : 3 scaling exponents and

universal long-time behaviors expected or proven for other members of the class. A widely-held

belief about the KPZ universality class is that under the 1 : 2 : 3 scaling and in the large scale

limit, all models in the class converge to an universal scaling limit, the KPZ fixed point [138, 251].

This very conjecture has been recently proved for the KPZ equation in [280, 315]. Here we recall

a special case of the statement in [280] useful to us later. Consider the 1 : 2 : 3 scaling of the KPZ

equation (the scaled KPZ equation)

𝔥𝑡 (𝑥) := 𝑡−1/3
(
H(𝑡2/3𝑥, 𝑡) + 𝑡

24

)
.

Then 21/3𝔥𝑡 (21/3𝑥) converges to the parabolic Airy2 process as 𝑡 → ∞. Note that the parabolic

Airy2 process is the marginal of the parabolic Airy Sheet, which is a canonical object in the con-

struction of the KPZ fixed point and the related directed landscape (see [138, 280]).

On the KPZ fixed point level, ergodicity and behaviors around the maximum are better under-

stood. Under the zero temperature setting, numerous results and techniques address the ergodicity

question for the KPZ fixed point. For instance, due to the 1 : 2 : 3 scaling invariance, ergodicity of

the fixed point is equivalent to the local Brownian behavior ([251, Theorem 4.14 and 4.15]) or can

be deduced in [273] using coupling techniques applicable only in zero temperature settings.

Meanwhile, [139] showed that local Brownianity and local Bessel behaviors around the maxi-

mizer hold for any process which is absolutely continuous w.r.t. Brownian motions on every com-

pact set. The scaled KPZ equation possesses such property [CH16] and its ergodicity question can

217



be transformed into local Brownian behaviors of the scaled KPZ equation. Note that we have

H(𝑥, 𝑡) − H (0, 𝑡) = 𝑡−1/3
(
𝔥𝑡 (𝑡−2/3𝑥) − 𝔥𝑡 (0)

)
.

However, the law of 𝔥𝑡 changes with respect to time and the diffusive scaling precisely depends

on 𝑡. Therefore it is unclear how to extend the soft techniques in [139, Lemma 4.3] for the KPZ

equation to address the limiting local Brownian behaviors in above setting.

Another recent line of inquiries regarding the behavior around the maxima is the investigation

of the fractal nature of exceptional times for the KPZ fixed point with multiple maximizers [119,

136]. In [119], the authors computed the Hausdorff dimension of the set of times for the KPZ fixed

point with at least two maximizers and was extended to the case of exactly 𝑘 maximizers in [136].

The latter work relied on a striking property of the KPZ fixed point where it becomes stationary

in 𝑡 after recentering at the maximum with Bessel initial conditions. This property considerably

simplified their analysis. Other initial data were then accessed through a transfer principle from

[288]. Unfortunately, analogous properties for the KPZ equation are not available.

5.1.4 Proof Ideas

In this section we sketch the key ideas behind the proofs of our main results. For brevity, we

present a heuristic argument for the proofs of Theorem 5.1.4 and the related Theorem 5.1.10 with

the 𝑘 = 2 case only. The proofs for the point-to-line case (Theorem 5.1.5) and the related 𝑘 = 1

case of Theorem 5.1.10 and ergodicity (Theorem 5.1.11) follow from similar ideas. Meanwhile,

the methods related to the uniqueness and convergence of random modes (Theorem 5.1.8) are of a

different flavor. We present them directly in Section 5.3 as the arguments are more straightforward.

Recall from Theorem 5.1.4 that 𝑓𝑝,𝑡 denotes the quenched density of 𝑋 (𝑝𝑡) for 𝑋 ∼ CDRP(0, 0; 0, 𝑡).

To simplify our discussion below, we let 𝑝 = 1
2 and replace 𝑡 by 2𝑡. (5.1.5) gives us

𝑓 1
2 ,2𝑡
(𝑥) = Z(0, 0; 𝑥, 𝑡)Z(𝑥, 𝑡; 0, 2𝑡)

Z(0, 0; 0, 2𝑡) .
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Recall the chaos expansion for Z(𝑥, 𝑠; 𝑦, 𝑡) from (5.1.2). Note that Z(0, 0; 𝑥, 𝑡) and Z(𝑥, 𝑡; 0, 2𝑡)

are independent for using different sections of the noise 𝜉. A change of variable and symmetry

yields that Z(𝑥, 𝑡; 0, 2𝑡) is same in distribution as Z(0, 0; 𝑥, 𝑡) as a process in 𝑥. Thus as a pro-

cess in 𝑥, Z(0, 0; 𝑥, 𝑡)Z(𝑥, 𝑡; 0, 2𝑡) 𝑑
= 𝑒H1 (𝑥,𝑡)+H2 (𝑥,𝑡) were H1(𝑥, 𝑡) and H2(𝑥, 𝑡) are independent

copies of the KPZ equation with narrow wedge initial data. This puts Theorem 5.1.4 in the frame-

work of Theorem 5.1.10. Viewing the density around its unique random modeM 1
2 ,2𝑡

(that is the

maximizer), we may thus write 𝑓 1
2 ,2𝑡
(𝑥 +M 1

2 ,2𝑡
) as

𝑒−𝑅2 (𝑥,𝑡)∫
R

𝑒−𝑅2 (𝑦,𝑡)𝑑𝑦
,

where 𝑅2(𝑥, 𝑡) is defined in (5.1.11). For simplicity, let us use the notation P =M 1
2 ,2𝑡

.

The rest of the argument hinges on the following two results:

(i) Bessel convergence: 𝑅2(𝑥, 𝑡) converges weakly to 3D-Bessel process with diffusion coeffi-

cient 2 in the uniform-on-compact topology (Theorem 5.1.10).

(ii) Controlling the tails:
∫
[−𝐾,𝐾]𝑐 𝑒

−𝑅2 (𝑦,𝑡)𝑑𝑦 can be made arbitrarily small for all large 𝑡 by

taking large 𝐾 (Proposition 5.7.2).

Theorem 5.1.4 then follows from the above two items by standard analysis. We now explain

the ideas behind items (i) and (ii) and our principal tool is the Gibbsian line ensemble, which is an

object of integrable origin often used in probabilistic settings. More precisely, we use the KPZ line

ensemble (recalled in Proposition 6.5.1), i.e. a set of random continuous functions whose lowest

indexed curve is same in distribution as the narrow wedge solution of the KPZ equation. The law

of the lowest indexed curve enjoys a Gibbs property called the H-Brownian Gibbs property. This

property states that the law of the lowest indexed curve conditioned on an interval depends only

on the curve indexed one below and the starting and ending points. Furthermore, this conditional

law is absolutely continuous w.r.t. a Brownian bridge of the same starting and ending points with

an explicit expression of the Radon-Nikodym derivative.
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We now recast (i) in the language of Gibbsian line ensemble. Note that 𝑅2(𝑥, 𝑡) is a sum of

two independent KPZ equations viewed from the maximum of the sume ((5.1.11)). Accessing

its distribution requires a precise description of the conditional joint law of the top curves of two

independent copies of the KPZ line ensemble on random intervals around the joint maximizer.

Thus (i) reduces to the following results, which we elaborate on individually:

(a) Two Brownian bridges when viewed around the maximum of their sum can be given by

two pairs of non-intersecting Brownian bridges to either side of the maximum (Proposition

5.4.10).

(b) For a suitable 𝐾 (𝑡) ↑ ∞, the Radon-Nikodym derivatives associated with the KPZ line en-

sembles (see (5.2.3) for the precise expression of Radon-Nikodym derivative) on the random

interval [P − 𝐾 (𝑡),P + 𝐾 (𝑡)] containing the maximizer goes to 1.

Combining the above two ideas, we can conclude the joint law of

(𝐷1(𝑥, 𝑡), 𝐷2(𝑥, 𝑡)) := (H1(P, 𝑡) − H1(P + 𝑥, 𝑡),H2(P + 𝑥, 𝑡) − H2(P, 𝑡)) (5.1.12)

on 𝑥 ∈ [−𝐾 (𝑡), 𝐾 (𝑡)] is close to two-sided pair of non-intersecting Brownian bridges with the

same starting point and appropriate endpoints. Upon taking 𝑡 → ∞, one obtains a two-sided

Dyson Brownian motion (D1,D2) defined in Definition 5.5.1 as a distributional limit. Proposition

5.6.1 is the precise rendering of this fact. Finally a 3D-Bessel process emerges as the difference of

two parts of the Dyson Brownian motion: D1(·) − D2(·) (see Lemma 5.5.3).

Before expanding upon items (a) and (b), let us explain the reasons behind our approach. Since

our desired random interval includes the maximizer of two independenet copies or the joint max-

imizer, it is not a stopping domain and is inaccessible by classical properties such as the strong

Gibbs property for KPZ line ensemble. Note that a similar context of the KPZ fixed point appeared

in [119], where the authors used Gibbs property on random intervals defined to the right of the

maximizer in their proof. However, [119] relied on a path decomposition of Markov processes at

certain spatial times from [254], which states that conditioned on the maximizer, the process to the
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right of the maximizer is Markovian. However in our case, the intervals around the maximum is

two-sided. Thus the abstract setup of [254] is not suited for our case. Thus, the precise description

of the law given in item (a) is indispensable to our argument.

Next, one needs an exact comparison of the Brownian law and KPZ law to transition between

the two. Traditional tools such as stochastic monotonicity for the KPZ line ensembles help obtain

one-sided bounds for monotone events. Especially for tail estimates of the KPZ equation, it reduces

the problem to the setting of Brownian bridges, which can be treated classically. However, this

approach only produces a one-sided bound, which is insufficient for the precise convergence we

need. Hence we treat the Radon-Nikodym derivative directly to exactly compare the two laws.

Figure 5.1: First idea for the proof: The first two figures depict two independent Brownian bridges
‘blue’ and ‘black’ on [0, 1] starting and ending at zero. We flip the blue one and shift it appro-
priately so that when it is superimposed with the black one, the blue curve always stays above the
black one and touches the black curve at exactly one point. The superimposed figure is shown in
third figure. The red point denotes the ‘touching’ point or equivalently the joint maximizer. Con-
ditioned on the max data, the trajectories on the left and right of the red points are given by two
pairs of non-intersecting Brownian bridges with appropriate end points.

To describe the result in item (a), consider two independent Brownian bridges 𝐵1 and 𝐵2 on

[0, 1] both starting and ending at zero. See Figure 5.1. Let 𝑀 =: argmax(𝐵1(𝑥) + 𝐵2(𝑥)). We

study the conditional law of (𝐵1, 𝐵2) given the max data: (𝑀, 𝐵1(𝑀), 𝐵2(𝑀)). The key fact from

Proposition 5.4.10 is that conditioned on the max data

(𝐵1(𝑀) − 𝐵1(𝑀 − 𝑥), 𝐵2(𝑀 − 𝑥) − 𝐵2(𝑀))𝑥∈[0,𝑀] , (𝐵1(𝑀) − 𝐵1(𝑥), 𝐵2(𝑥) − 𝐵2(𝑀))𝑥∈[𝑀,1]

are independent and each is a non-intersecting Brownian bridge with appropriate end points (see
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Definition 5.4.4). The proof proceeds to show such a decomposition at the level of discrete random

walks before taking diffusive limits to get the same for Brownian motions and finally for Brownian

bridges. The details are presented in Section 5.4.

Figure 5.2: Second idea for the proof: For all “good" boundary data and max data, with high
probability, there is an uniform separation of order 𝑡1/3 between the first two curves on the random
interval [𝑀𝑡 − 𝐾, 𝑀𝑡 + 𝐾].

To illustrate the idea behind item (b), let us consider an easier yet pertinent scenario. Let

H (1) (𝑥, 𝑡) andH (2) (𝑥, 𝑡)) be the first two curves of the KPZ line ensemble. Let 𝑀𝑡 = argmaxH (1) (𝑥, 𝑡).

We consider the interval 𝐼𝑡 := [𝑀𝑡 − 𝐾, 𝑀𝑡 + 𝐾]. See Figure 5.2. We show that

1. The maximum is not too high: H (1) (𝑀𝑡 , 𝑡) − H (1) (𝑀𝑡 ± 𝐾, 𝑡) = 𝑂 (1),

2. The gap at the end points is sufficiently large: H (1) (𝑀𝑡 ±𝐾, 𝑡) −H (2) (𝑀𝑡 ±𝐾, 𝑡) = 𝑂 (𝑡1/3).

3. The fluctuations of the second curve on 𝐼𝑡 are 𝑂 (1).

Under the above favorable class of boundary data: H (1) (𝑀𝑡 ± 𝐾, 𝑡),H (2) (·, 𝑡) and the max data:

(𝑀𝑡 ,H (1) (𝑀𝑡 , 𝑡)), we show that the conditional fluctuations of the first curve are𝑂 (1). This forces

a uniform separation between the first two curves throughout the random interval 𝐼𝑡 . Consequently

the Radon-Nikodym derivative in (5.2.3) converges to 1 as 𝑡 →∞.
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We rely on tail estimates for the KPZ equation as well as some properties of the Airy line

ensemble which are the distributional limits of the scaled KPZ line ensemble defined in (5.2.6)

to conclude such a statement rigorously. Section 5.2 contains a review of the necessary tools.

Note that the rigorous argument for the Radon-Nikodym derivative in the proof of Theorem 5.1.4

(Proposition 5.6.1) is more involved. Indeed, one needs to consider another copy of line ensemble

and argue that similar uniform separation holds for both when viewed around the joint maximum

P. We also take 𝐾 = 𝐾 (𝑡) ↑ ∞ and the separation length is consequently different.

We have argued so far that (𝐷1(𝑥, 𝑡), 𝐷2(𝑥, 𝑡)) defined in (5.1.12) jointly converges to a two-

sided Dyson Brownian motion. This convergence holds in the uniform-on-compact topology.

However, this does not address the question about behavior of the tail integral in (ii)

∫
[−𝐾,𝐾]𝑐

𝑒𝐷2 (𝑦,𝑡)−𝐷1 (𝑦,𝑡)d𝑦.

Figure 5.3: Third idea for the proof: The three regimes

To control the tail, we divide the tail integral into three parts based on the range of integration

(See Figure 5.3):

• Dyson regime: The law of (D1(𝑥, 𝑡),D2(𝑥, 𝑡)) on the interval [0, 𝛿𝑡2/3] is comparable to
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that of the Dyson Brownian motions for small 𝛿 and for large 𝑡. For Dyson Brownian

motions, w.h.p. D1(𝑥) − D2(𝑥) ≥ 𝜀 |𝑥 |1/4 for all large enough |𝑥 |. This translates to

(𝐷1(𝑥, 𝑡), 𝐷2(𝑥, 𝑡)) and provides a decay estimate over this interval.

• Parabolic Regime: The maximizer P lies in a window of order 𝑡2/3 region w.h.p.. On the

other hand, the KPZ equation upon centering has a parabolic decay: H(𝑥, 𝑡) + 𝑡
24 ≈ −

𝑥2

2𝑡 +

𝑂 (𝑡1/3). Thus taking 𝐴 large enough ensures w.h.p. 𝐷1(𝑥, 𝑡) ≈ 𝑥2

4𝑡 and 𝐷2(𝑥, 𝑡) ≈ − 𝑥
2

4𝑡 on the

interval [𝐴𝑡2/3,∞). These estimates give a rapid decay of our integral in this regime.

• Transition Regime: Between the two regimes, we use soft arguments of non-intersecting

brownian bridges to ensure that 𝐷1(𝑥, 𝑡)−𝐷2(𝑥, 𝑡) ≥ 𝜌𝑡1/3 w.h.p. uniformly on [𝛿𝑡2/3, 𝐴𝑡2/3].

Proposition 5.5.6 and Proposition 5.7.2 are the precise manifestations of the above idea. Propo-

sition 5.5.6 provides decay estimates in the Dyson and transition regimes for Brownian objects.

Proposition 5.7.2 translates the estimates in Proposition 5.5.6 to 𝐷1, 𝐷2 for the “shallow tail

regime" (see Figure 5.10). The parabolic regime or the “deep tail" in Section 5.7 is addressed

in Proposition 5.7.2.

Outline

The remainder of the paper is organized as follows. Section 5.2 reviews some of the exist-

ing results related to the KPZ line ensemble and its zero temperature counterpart, the Airy line

ensemble. We then prove the existence and uniqueness of random modes in Theorem 5.1.8 in

Section 5.3. Section 5.4 is dedicated to the behaviors of the Brownian bridges around their joint

maximum. Two important objects are defined in this Section: the Bessel bridges and the non-

intersecting Brownian bridges. Several properties of these two objects are subsequently proved in

Section 5.5. The proofs of Theorems 5.1.10 and 5.1.11 comprise section 5.6. Finally in Section

5.7, we complete the proofs of Theorems 5.1.4 and 5.1.5. Appendix 5.8 contains a convergence

result about non-intersecting random walks used in Section 5.4.
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5.2 Basic framework and tools

Remark on Notations

Throughout this paper we use C = C(𝛼, 𝛽, 𝛾, . . .) > 0 to denote a generic deterministic pos-

itive finite constant that may change from line to line, but dependent on the designated variables

𝛼, 𝛽, 𝛾, . . .. We will often write C𝛼 in case we want to stress the dependence of the constant to the

variable 𝛼. We will use serif fonts such as A,B, . . . to denote events as well as CDRP,DBM . . . to

denote laws. The distinction will be clear from the context. The complement of an event A will be

denoted as ¬A.

In this section, we present the necessary background on the directed landscape and Gibbsian

line ensembles including the Airy line ensemble and the KPZ line ensemble as well as known

results on these objects that are crucial in our proofs.

5.2.1 The directed landscape and the Airy line ensemble

We recall the definition of the directed landscape and several related objects from [138, 140].

The directed landscape is the central object in the KPZ universality class constructed as a scaling
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limit of the Brownian Last Passage percolation (BLPP). We recall the setup of the BLPP below to

define the directed landscape.

Definition 5.2.1 (Directed landscape). Consider an infinite collection 𝐵 := (𝐵𝑘 (·))𝑘∈Z of indepen-

dent two-sided Brownian motions with diffusion coefficient 2. For 𝑥 ≤ 𝑦 and 𝑛 ≤ 𝑚, the last

passage value from (𝑥, 𝑚) to (𝑦, 𝑛) is defined by

𝐵[(𝑥, 𝑚) → (𝑦, 𝑛)] = sup
𝜋

𝑚∑︁
𝑘=𝑛

[𝐵𝑘 (𝜋𝑘 ) − 𝐵𝑘 (𝜋𝑘−1)],

where the supremum is over all 𝜋 ∈ Π𝑚,𝑛 (𝑥, 𝑦) := {𝜋𝑚 ≤ · · · ≤ 𝜋𝑛 ≤ 𝜋𝑛−1 | 𝜋𝑚 = 𝑥, 𝜋𝑛−1 =

𝑦}. Now for any (𝑥, 𝑠; 𝑦, 𝑡) ∈ R4
↑, we denote (𝑥, 𝑠)𝑛 := (𝑠 + 2𝑥𝑛−1/3,−b𝑠𝑛c) and (𝑦, 𝑡)𝑛 := (𝑡 +

2𝑦𝑛−1/3,−b𝑡𝑛c) and define

L𝑛 (𝑥, 𝑠; 𝑦, 𝑡) := 𝑛1/6𝐵𝑛 [(𝑥, 𝑠)𝑛 → (𝑦, 𝑡)𝑛] − 2(𝑡 − 𝑠)𝑛2/3 − 2(𝑦 − 𝑥)𝑛1/3.

The directed landscape L is the distributional limit of L𝑛 as 𝑛 → ∞ with respect to the uniform

convergence on compact subsets of R4
↑. By [138], the limit exists and is unique.

The marginal A1(𝑥) := L(0, 0; 𝑥, 1) is known as the parabolic Airy2 process. In [275] the

Airy2 process A1(𝑥) + 𝑥2 was constructed as the scaling limit of the polynuclear growth model.

At the same time, A1(𝑥) can also be viewed as the top curve of the Airy line ensemble, which we

define formally below in the approach of [109].

Definition 5.2.2 (Brownian Gibbs Property). Recall the general notion of line ensembles from

Section 2 in [109]. Fix 𝑘1 ≤ 𝑘2 with 𝑘1, 𝑘2 ∈ N and an interval (𝑎, 𝑏) ∈ R and two vectors

®𝑥, ®𝑦 ∈ R𝑘2−𝑘1+1. Given two measurable functions 𝑓 , 𝑔 : (𝑎, 𝑏) → R ∪ {±∞}, let P𝑘1,𝑘2,(𝑎,𝑏),®𝑥,®𝑦, 𝑓 ,𝑔
nonint

be the law of 𝑘2 − 𝑘1 + 1 many independent Brownian bridges (with diffusion coefficient 2) {𝐵𝑖 :

[𝑎, 𝑏] → R}𝑘2
𝑖=𝑘1

with 𝐵𝑖 (𝑎) = 𝑥𝑖 and 𝐵𝑖 (𝑏) = 𝑦𝑖 conditioned on the event that

𝑓 (𝑥) > 𝐵𝑘1 (𝑥) > 𝐵𝑘1+1(𝑥) > · · · > 𝐵𝑘2 (𝑥) > 𝑔(𝑥), for all 𝑥 ∈ [𝑎, 𝑏] .
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Then the N × R indexed line ensemble L = (L1,L2, . . .) is said to enjoy the Brownian Gibbs

property if, for all 𝐾 = {𝑘1, . . . , 𝑘2} ⊂ N and (𝑎, 𝑏) ⊂ R, the following distributional equality

holds:

Law
(
L𝐾×(𝑎,𝑏) conditioned on LN×R\𝐾×(𝑎,𝑏)

)
= P

𝑘1,𝑘2,(𝑎,𝑏),®𝑥,®𝑦, 𝑓 ,𝑔
nonint ,

where ®𝑥 = (L𝑘1 (𝑎), . . . ,L𝑘2 (𝑎)), ®𝑦 = (L𝑘1 (𝑏), . . . ,L𝑘2 (𝑏)), L𝑘1−1 = 𝑓 (or ∞ if 𝑘1 = 1) and

L𝑘2+1 = 𝑔.

Definition 5.2.3 (Airy line ensemble). The Airy line ensemble A = (A1,A2, . . .) is the unique

N × R-indexed line ensemble satisfying Brownian Gibbs property whose top curve A1(·) is the

parabolic Airy2 process. The existence and uniqueness of A follow from [109] and [151] respec-

tively.

The Airy line ensemble is in fact a strictly ordered line ensemble in the sense that almost surely,

A𝑘 (𝑥) > A𝑘+1(𝑥) for all 𝑘 ∈ N, 𝑥 ∈ R. (5.2.1)

(5.2.1) follows from the Brownian Gibbs property and the fact that for each 𝑥 ∈ R, (A𝑘 (𝑥) +𝑥2)𝑘≥1

is equal in distribution to the Airy point process. The latter is strictly ordered. In [140], the

authors studied several probabilistic properties of the Airy line ensembles such as tail estimates

and modulus of continuity. Below we state an extension of one of such results used later in our

proof.

Proposition 5.2.4. Fix 𝑘 ≥ 1. There exists a universal constant C𝑘 > 0 such that for all 𝑚 > 0

and 𝑅 ≥ 1 we have

P
©­­« sup
𝑥≠𝑦∈[−𝑅,𝑅]
|𝑥−𝑦 |≤1

|A𝑘 (𝑥) + 𝑥2 − A𝑘 (𝑦) − 𝑦2 |√︁
|𝑥 − 𝑦 | log

1
2 2
|𝑥−𝑦 |

≥ 𝑚
ª®®¬ ≤ C𝑘 · 𝑅 exp

(
− 1

C 𝑘𝑚
2
)
. (5.2.2)

Proof. Fix 𝑘 ≥ 1. By [140, Lemma 6.1] there exists a constant C𝑘 such that for all 𝑥, 𝑦 ∈ R with
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|𝑥 − 𝑦 | ≤ 1, we have

P
(
|A𝑘 (𝑥) + 𝑥2 − A𝑘 (𝑦) − 𝑦2 | ≥ 𝑚√𝑥 − 𝑦

)
≤ C𝑘 exp

(
− 1

C𝑘𝑚
2
)
.

Thus applying Lemma 3.3 in [140] (with 𝑑 = 1, 𝑇 = [−𝑅, 𝑅], 𝑟1 = 1, 𝛼1 = 1
2 , 𝛽1 = 2) and adjusting

the value of C𝑘 yields (5.2.2).

5.2.2 KPZ line ensemble

Let L = (L1,L2, . . .) be an N × R-indexed line ensemble. Fix 𝑘1 ≤ 𝑘2 with 𝑘1, 𝑘2 ∈ N

and an interval (𝑎, 𝑏) ∈ R and two vectors ®𝑥, ®𝑦 ∈ R𝑘2−𝑘1+1. Given a continuous function H :

R → [0,∞) (Hamiltonian) and two measurable functions 𝑓 , 𝑔 : (𝑎, 𝑏) → R ∪ {±∞}, the law

P
𝑘1,𝑘2,(𝑎,𝑏),®𝑥,®𝑦, 𝑓 ,𝑔
H on L𝑘1 , . . . ,L𝑘2 : (𝑎, 𝑏) → R has the following Radon-Nikodym derivative with

respect to P𝑘1,𝑘2,(𝑎,𝑏),®𝑥,®𝑦
free , the law of 𝑘2 − 𝑘1 + 1 many independent Brownian bridges (with diffusion

coefficient 1) taking values ®𝑥 at time 𝑎 and ®𝑦 at time 𝑏:

𝑑P
𝑘1,𝑘2,(𝑎,𝑏),®𝑥,®𝑦, 𝑓 ,𝑔
H

𝑑P
𝑘1,𝑘2,(𝑎,𝑏),®𝑥,®𝑦
free

(L𝑘1 , . . . ,L𝑘2) =
exp

{
−∑𝑘2+1

𝑖=𝑘1

∫
H

(
L𝑖 (𝑥) − L𝑖−1(𝑥)

)
𝑑𝑥

}
𝑍
𝑘1,𝑘2,(𝑎,𝑏),®𝑥,®𝑦, 𝑓 ,𝑔
H

, (5.2.3)

where L𝑘1−1 = 𝑓 , or ∞ if 𝑘1 = 1; and L𝑘2+1 = 𝑔. Here, 𝑍 𝑘1,𝑘2,(𝑎,𝑏),®𝑥,®𝑦, 𝑓 ,𝑔
H is the normalizing

constant which produces a probability measure. We say L enjoys the H-Brownian Gibbs property

if, for all 𝐾 = {𝑘1, . . . , 𝑘2} ⊂ N and (𝑎, 𝑏) ⊂ R, the following distributional equality holds:

Law
(
L𝐾×(𝑎,𝑏) conditioned on LN×R\𝐾×(𝑎,𝑏)

)
= P

𝑘1,𝑘2,(𝑎,𝑏),®𝑥,®𝑦, 𝑓 ,𝑔
H ,

where ®𝑥 = (L𝑘1 (𝑎), . . . ,L𝑘2 (𝑎)), ®𝑦 = (L𝑘1 (𝑏), . . . ,L𝑘2 (𝑏)), and where again L𝑘1−1 = 𝑓 , or ∞ if

𝑘1 = 1; and L𝑘2+1 = 𝑔.
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In the following text, we consider a specific class of H such that

H𝑡 (𝑥) = 𝑡2/3𝑒𝑡
1/3𝑥 . (5.2.4)

The next proposition then recalls the unscaled and scaled KPZ line ensemble constructed in [CH16]

with H𝑡-Brownian Gibbs property.

Proposition 5.2.5 (Theorem 2.15 in [CH16]). Let 𝑡 ≥ 1. There exists an N × R-indexed line

ensembleH𝑡 = {H (𝑛)𝑡 (𝑥)}𝑛∈N,𝑥∈R such that:

(a) the lowest indexed curve H (1)𝑡 (𝑥) is equal in distribution (as a process in 𝑥) to the Cole-Hopf

solution H(𝑥, 𝑡) of the KPZ equation started from the narrow wedge initial data and the line

ensembleH𝑡 satisfies the H1-Brownian Gibbs property;

(b) the scaled KPZ line ensemble {𝔥(𝑛)𝑡 (𝑥)}𝑛∈N,𝑥∈R, defined by

𝔥
(𝑛)
𝑡 (𝑥) := 𝑡−1/3

(
H (𝑛)𝑡

(
𝑡2/3𝑥

)
+ 𝑡/24

)
(5.2.5)

satisfies the H𝑡-Brownian Gibbs property. Furthermore, for any interval (𝑎, 𝑏) ⊂ R and 𝜀 > 0,

there exists 𝛿 > 0 such that, for all 𝑡 ≥ 1,

P
(
𝑍

1,1,(𝑎,𝑏),𝔥(1)𝑡 (𝑎),𝔥
(1)
𝑡 (𝑏),∞,𝔥

(2)
𝑡

H𝑡
< 𝛿

)
≤ 𝜀,

where 𝑍1,1,(𝑎,𝑏),𝔥(1)𝑡 (𝑎),𝔥
(1)
𝑡 (𝑏),∞,𝔥

(2)
𝑡

H𝑡
is the normalizing constant defined in (5.2.3).

Remark 5.2.6. In part (3) of Theorem 2.15 [CH16] it is erroneously mentioned that the scaled

KPZ line ensemble satisfies H𝑡-Brownian Gibbs property with H𝑡 (𝑥) = 𝑒𝑡
1/3𝑥 (instead of H𝑡 (𝑥) =

𝑡2/3𝑒𝑡
1/3𝑥 from (5.2.4)). This error was reported by Milind Hegde and has been acknowledged by

the authors of [CH16], who are currently preparing an errata for the same.

More recently, it has also been shown in [149] that the KPZ line ensemble as defined in Propo-

sition 6.5.1 is unique as well. We will make extensive use of this scaled KPZ line ensemble 𝔥(𝑛)𝑡 (𝑥)
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in our proofs in later sections. For 𝑛 = 1, we also adopt the shorthand notation:

𝔥𝑡 (𝑥) := 𝔥
(1)
𝑡 (𝑥) = 𝑡−1/3

(
H(𝑡2/3𝑥, 𝑡) + 𝑡

24

)
. (5.2.6)

Note that for 𝑡 large, the Radon-Nikodym derivative in (5.2.3) attaches heavy penalty if the curves

are not ordered. Thus, intuitively at 𝑡 → ∞, one expects to get completely ordered curves, where

the H𝑡-Brownian Gibbs property will be replaced by the usual Brownian Gibbs property (see Defi-

nition 5.2.2) for non-intersecting Brownian bridges. Thus it’s natural to expect the scaled KPZ line

ensemble to converge to the Airy line ensemble. Along with the recent progress on the tightness of

KPZ line ensemble [321] and characterization of Airy line ensemble [151], this remarkable result

has been recently proved in [280].

Proposition 5.2.7 (Theorem 2.2 (4) in [280]). Consider the KPZ line ensemble and the Airy line

ensemble defined in Proposition 6.5.1 and Definition 5.2.3 respectively. For any 𝑘 ≥ 1, we have

(21/3𝔥(𝑖)𝑡 (21/3𝑥))𝑘𝑖=1
𝑑→ (A𝑖 (𝑥))𝑘𝑖=1,

in the uniform-on-compact topology.

The 21/3 factor in Proposition 5.2.7 corrects the different diffusion coefficient used when we

define the Brownian Gibbs property and H𝑡 Brownian Gibbs property. We end this section by

recalling several known results and tail estimates for the scaled KPZ equation with narrow wedge

initial data.

Proposition 5.2.8. Recall 𝔥𝑡 (𝑥) from (5.2.6). The following results hold:

(a) For each 𝑡 > 0, 𝔥𝑡 (𝑥) + 𝑥2/2 is stationary in 𝑥.

(b) Fix 𝑡0 > 0. There exists a constant C = C(𝑡0) > 0 such that for all 𝑡 ≥ 𝑡0 and 𝑚 > 0 we have

P( |𝔥𝑡 (0) | ≥ 𝑚) ≤ C exp
(
− 1

C𝑚
3/2

)
.
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(c) Fix 𝑡0 > 0 and 𝛽 > 0. There exists a constant C = C(𝛽, 𝑡0) > 0 such that for all 𝑡 ≥ 𝑡0 and

𝑚 > 0 we have

P
(
sup
𝑥∈R

(
𝔥𝑡 (𝑥) + 𝑥2

2 (1 − 𝛽)
)
≥ 𝑚

)
≤ C exp

(
− 1

C𝑚
3/2

)
.

The results in Proposition 5.2.8 is a culmination of results from several papers. Part (a) follows

from [6, Corollary 1.3 and Proposition 1.4]. The one-point tail estimates for KPZ equation are

obtained in [115, 116]. One can derive part (b) from those results or can combine the statements

of Proposition 2.11 and 2.12 in [117] to get the same. Part (c) is Proposition 4.2 from [117].

5.3 Uniqueness and convergence of random modes

In this section we prove the uniqueness of random modes that appears in Theorems 5.1.4 and

5.1.5 and prove Theorem 5.1.8 which claims the convergences of random modes to appropriate

limits. The following lemma settles the uniqueness question.

Lemma 5.3.1. Fix 𝑝 ∈ (0, 1) and 𝑡 > 0. Recall 𝑓𝑝,𝑡 and 𝑓∗,𝑡 from Theorem 5.1.4 and 5.1.5.

Then 𝑓∗,𝑡 has almost surely a unique modeM∗,𝑡 and 𝑓𝑝,𝑡 has almost surely a unique modeM𝑝,𝑡 .

Furthermore for any 𝑡0 > 0, there exist a constant C(𝑝, 𝑡0) > 0 such that for all 𝑡 > 𝑡0 we have

P(𝑡−2/3 |M𝑝,𝑡 | > 𝑚) ≤ C exp
(
− 1

C𝑚
3
)
, and P(𝑡−2/3 |M∗,𝑡 | > 𝑚) ≤ C exp

(
− 1

C𝑚
3
)
. (5.3.1)

Proof. We first prove the point-to-point case. Fix 𝑝 ∈ (0, 1) and set 𝑞 = 1 − 𝑝. Take 𝑡 > 0.

Throughout the proof C > 0 will depend on 𝑝, we won’t mention this further.

Note that (5.1.5) implies that the density 𝑓𝑝,𝑡 (𝑥) is proportional to Z(0, 0; 𝑥, 𝑝𝑡)Z(𝑥, 𝑝𝑡; 0, 𝑡)

and that Z(0, 0; 𝑥, 𝑝𝑡) and Z(𝑥, 𝑝𝑡; 0, 𝑡) are independent. By time reversal property of SHE we

have Z(𝑥, 𝑝𝑡; 0, 𝑡) 𝑑= H(𝑥, 𝑞𝑡) as functions in 𝑥. Using the 1 : 2 : 3 scaling from (5.2.6) we may
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write

𝑓𝑝,𝑡 (𝑥)
𝑑
=

1
𝑍𝑝,𝑡

exp
(
𝑡1/3𝑝1/3𝔥𝑝𝑡,↑(𝑝−2/3𝑡−2/3𝑥) + 𝑡1/3𝑞1/3𝔥𝑞𝑡,↓(𝑞−2/3𝑡−2/3𝑥)

)
(5.3.2)

where 𝔥𝑡,↑(𝑥) and 𝔥𝑡,↓(𝑥) are independent copies of the scaled KPZ line ensemble 𝔥𝑡 (𝑥) defined in

(5.2.6) and 𝑍𝑝,𝑡 is the normalizing constant. Thus it suffices to study the maximizer of

S𝑝,𝑡 (𝑥) := 𝑝1/3𝔥𝑝𝑡,↑(𝑝−2/3𝑥) + 𝑞1/3𝔥𝑞𝑡,↓(𝑞−2/3𝑥). (5.3.3)

Note that maximizer of 𝑓𝑝,𝑡 can be retrieved from that of S𝑝,𝑡 by a 𝑡−2/3 scaling.

We first claim that for all 𝑚 > 0 we have

P (A1) ≤ C exp
(
− 1

C𝑚
3
)
, where A1 :=

{
𝔥𝑝𝑡,↑(𝑝−2/3𝑥) > 𝔥𝑝𝑡,↑(0) for some |𝑥 | > 𝑚

}
(5.3.4)

P (A2) ≤ C exp
(
− 1

C𝑚
3
)
, where A2 :=

{
𝔥𝑞𝑡,↓(𝑞−2/3𝑥) > 𝔥𝑞𝑡,↓(0) for some |𝑥 | > 𝑚

}
. (5.3.5)

Let us prove (5.3.4). Define

D1 :=
{
sup
𝑥∈R

(
𝔥𝑝𝑡,↑(𝑝−2/3𝑥) + 𝑥2

4𝑝4/3

)
≤ 𝑚2

8𝑝4/3

}
, D2 :=

{
|𝔥𝑝𝑡,↑(0) | ≤

𝑚2

16𝑝4/3

}
.

Note that on D2, 𝔥𝑝𝑡,↑(0) ∈ [− 𝑚2

16𝑝4/3 ,
𝑚2

16𝑝4/3 ], whereas on D1, for all |𝑥 | > 𝑚 we have

𝔥𝑝𝑡,↑(𝑝−2/3𝑥) < 𝑚2

8𝑝4/3 − 𝑚2

4𝑝4/3 = − 𝑚2

8𝑝4/3 .

Thus A1 ⊂ ¬D1 ∪ ¬D2 where A1 is defined in (5.3.4). On the other hand, by Proposition 5.2.8(c)

with 𝛽 = 1
2 and Proposition 5.2.8 (b) we have

P(D1) > 1 − C exp
(
− 1

C𝑚
3
)
, P(D2) > 1 − C exp

(
− 1

C𝑚
3
)
.
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Hence by union bound we get P(A1) ≤ P(¬D1) + P(¬D2) ≤ C exp(− 1
C𝑚

3). This proves (5.3.4).

Proof of (5.3.5) is analogous.

Now via the Brownian Gibbs property 𝔥𝑡 is absolute continuous w.r.t. Brownian motion on

every compact interval. Hence for each 𝑡 > 0, S𝑝,𝑡 (𝑥) defined in (5.3.3) has a unique maximum on

any compact interval almost surely. But due to the bounds in (5.3.4) and (5.3.5), we see that

P
(
S𝑝,𝑡 (𝑥) > S𝑝,𝑡 (0) for some |𝑥 | > 𝑚

)
≤ C exp

(
− 1

C𝑚
3
)
. (5.3.6)

Thus S𝑝,𝑡 (·) has a unique maximizer almost surely. By the definitions of 𝑓𝑝,𝑡 (𝑥) and S𝑝,𝑡 (𝑥) from

(5.3.2) and (5.3.3), this implies 𝑓𝑝,𝑡 (𝑥) also has a unique maximizerM𝑝,𝑡 and we have that

M𝑝,𝑡
𝑑
= 𝑡2/3 argmax

𝑥∈R
S𝑝,𝑡 (𝑥). (5.3.7)

In view of (5.3.6), the above relation (5.3.7) leads to the first inequality in (5.3.1).

For the point-to-line case, note that via (5.1.6) and (5.2.6), 𝑓∗,𝑡 (𝑥) is proportional to exp(𝑡1/3𝔥𝑡 (𝑡−2/3𝑥)).

The proofs of uniqueness of the maximizer and the second bound in (5.3.1) then follow by analo-

gous arguments. This completes the proof.

In the course of proving the above lemma, we have also proved an important result that connects

the random modes to the maximizers of the KPZ equations. We isolate this result as a separate

lemma.

Lemma 5.3.2. Consider three independent copiesH ,H↑,H↓ of the KPZ equation started from the

narrow wedge initial data. The random modeM𝑝,𝑡 of 𝑓𝑝,𝑡 (defined in statement of Theorem 5.1.4)

is same in distribution as the maximizer of

H↑(𝑥, 𝑝𝑡) + H↓(𝑥, 𝑞𝑡).

Similarly one has that the random mode M∗,𝑡 of 𝑓∗,𝑡 (defined in statement of Theorem 5.1.5) is

same in distribution as the maximizer ofH(𝑥, 𝑡).

233



Proof of Theorem 5.1.8. Due to the identity in (5.3.7) we see that 𝑡−2/3M𝑝,𝑡 is same in distribution

as

argmax
𝑥∈R

𝑆𝑝,𝑡 (𝑥)

where S𝑝,𝑡 (𝑥) is defined in (5.3.3). By Proposition 5.2.7 we see that as 𝑡 →∞

S𝑝,𝑡 (𝑥)
𝑑→ 2−1/3

(
𝑝1/3A1,↑(2−1/3𝑝−2/3𝑥) + 𝑞1/3A1,↓(2−1/3𝑞−2/3𝑥)

)
in the uniform-on-compact topology where A1,↑,A1,↓ are independent parabolic Airy2 processes.

Note that the expression in the r.h.s. of the above equation is the same as

A(𝑥) := 2−1/2
(
A (𝑝

√
2)

↑ (𝑥) + A (𝑞
√

2)
↓ (𝑥)

)
(5.3.8)

where A (𝑝
√

2)
↑ (𝑥),A (𝑞

√
2)

↓ (𝑥) are independent Airy sheets of index 𝑝
√

2 and 𝑞
√

2 respectively. By

Lemma 9.5 in [138] we know that A(𝑥) has almost surely a unique maximizer on every compact

set. Thus,

argmax
𝑥∈[−𝐾,𝐾]

S𝑝,𝑡 (𝑥)
𝑑→ argmax

𝑥∈[−𝐾,𝐾]
A(𝑥). (5.3.9)

Finally the decay bounds for the maximizer of S𝑝,𝑡 (𝑥) from Lemma 5.3.1 and the decay bounds for

the maximizer ofA from [279] allow us to extend the weak convergence to the case of maximizers

on the full line. However, by the definition of the geodesic of the directed landscape from Defini-

tion 6.1.6, we see that Γ(𝑝
√

2) 𝑑= argmax𝑥∈RA(𝑥). This concludes the proof for the point-to-point

case. For the point-to-line case, following Lemma 5.3.2 and recalling again the scaled KPZ line

ensemble from (5.2.6), we have

2−1/3𝑡−2/3M∗,𝑡 = argmax
𝑥∈R

H(21/3𝑡2/3𝑥, 𝑡) = argmax
𝑥∈R

(
𝑡1/3𝔥𝑡 (21/3𝑥) − 𝑡

24

)
= argmax

𝑥∈R
21/3𝔥𝑡 (21/3𝑥).
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From Proposition 5.2.7 we know 21/3𝔥𝑡 (21/3𝑥) converges in distribution to A1(𝑥) in the uniform-

on-compact topology. Given the decay estimates forM∗,𝑡 from (5.3.1) and decay bounds for the

maximizer of A1 from [138], we thus get that argmax𝑥∈R 21/3𝔥𝑡 (21/3𝑥) converges in distribution

toM, the unique maximizer of the parabolic Airy2 process. This completes the proof.

5.4 Decomposition of Brownian bridges around joint maximum

The goal of this section is to prove certain decomposition properties of Brownian bridges

around the joint maximum outlined in Proposition 5.4.8 and Proposition 5.4.10. To achieve this

goal, we first discuss several Brownian objects and their related properties in Section 5.4.1 which

will be foundational for the rest of the paper. Then we prove Proposition 5.4.8 and 5.4.10 in the

ensuing subsection. We refer to Figure 5.4 for the structure and various Brownian laws conver-

gences in this and the next sections. The notation 𝑝𝑡 (𝑦) := (2𝜋𝑡)−1/2𝑒−𝑦
2/(2𝑡) for the standard heat

kernel will appear throughout the rest of the paper.

Non-intersecting Brownian motions
(NonInt-BM) defined in Defintion 5.4.3.

Non-intersecting Brownian bridges
(NonInt-BrBridge) defined in Defintion 5.4.4.

Dyson Brownian mo-
tion (DBM) defined
in Definition 5.5.1

3D Bessel process
(Definition 5.5.2)

Bessel bridges
(Definition 5.4.1)

Non-intersecting
random walks

Diffusive limit
Lemma 5.4.7

(Conditioning)

Diffusive limit
Proposition 5.5.8

(Taking Differences)Lemma 5.5.3

Diffusive limit
Corollary 5.5.9

(Taking Differences)Lemma 5.4.6

Figure 5.4: Relationship between different laws used in Sections 5.4 and 5.5.
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5.4.1 Brownian objects

In this section we recall several objects related to Brownian motion, including the Brown-

ian meanders, Bessel bridges, non-intersecting Brownian motions and non-intersecting Brownian

bridges.

Definition 5.4.1 (Brownian meanders and Bessel bridges). Given a standard Brownian motion

𝐵(·) on [0, 1], a standard Brownian meander 𝔅me : [0, 1] → R is a process defined by

𝔅me(𝑥) = (1 − 𝜃)−
1
2 |𝐵(𝜃 + (1 − 𝜃)𝑥) |, 𝑥 ∈ [0, 1],

where 𝜃 = sup{𝑥 ∈ [0, 1] | 𝐵(𝑥) = 0}. In general, we say a process 𝔅me : [𝑎, 𝑏] → R is a

Brownian meander on [𝑎, 𝑏] if

𝔅′me(𝑥) := (𝑏 − 𝑎)− 1
2𝔅me(𝑎 + 𝑥(𝑏 − 𝑎)), 𝑥 ∈ [0, 1]

is a standard Brownian meander. A Bessel bridge Rbb on [𝑎, 𝑏] ending at 𝑦 > 0 is a Brownian

meander 𝔅me on [𝑎, 𝑏] subject to the condition (in the sense of Doob) 𝔅me(𝑏) = 𝑦.

A Bessel bridge can also be realized as conditioning a 3D Bessel process to end at some point

and hence the name. As we will not make use of this fact, we do not prove this in the paper.

Lemma 5.4.2 (Transition densities for Bessel Bridge). Let 𝑉 be a Bessel bridge on [0, 1] ending

at 𝑎. Then for 0 < 𝑡 < 1,

P(𝑉 (𝑡) ∈ 𝑑𝑥) = 𝑥

𝑎𝑡

𝑝𝑡 (𝑥)
𝑝1(𝑎)

[𝑝1−𝑡 (𝑥 − 𝑎) − 𝑝1−𝑡 (𝑥 + 𝑎)]𝑑𝑥, 𝑥 ∈ [0,∞).

For 0 < 𝑠 < 𝑡 < 1 and 𝑥 > 0,

P(𝑉 (𝑡) ∈ 𝑑𝑦 | 𝑉 (𝑠) = 𝑥) = [𝑝𝑡−𝑠 (𝑥 − 𝑦) − 𝑝𝑡−𝑠 (𝑥 + 𝑦)] [𝑝1−𝑡 (𝑦 − 𝑎) − 𝑝1−𝑡 (𝑦 + 𝑎)]
[𝑝1−𝑠 (𝑥 − 𝑎) − 𝑝1−𝑠 (𝑥 + 𝑎)]

𝑑𝑦, 𝑦 ∈ [0,∞).
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Proof. We recall the joint density formula for Brownian meander 𝑊 on [0, 1] from [204]. For

0 = 𝑡0 < 𝑡1 < 𝑡2 < · · · < 𝑡𝑘 ≤ 1:

P(𝑊 (𝑡1) ∈ 𝑑𝑥1, . . . ,𝑊 (𝑡𝑘 ) ∈ 𝑑𝑥𝑘 ) =
𝑥1
𝑡
𝑝𝑡1 (𝑥1)Ψ( 𝑥𝑘√

1−𝑡𝑘
)
𝑘−1∏
𝑗=1

𝑔(𝑥 𝑗 , 𝑥 𝑗+1; 𝑡 𝑗+1 − 𝑡 𝑗 )
𝑘∏
𝑗=1

𝑑𝑥 𝑗

where

𝑔(𝑥 𝑗 , 𝑥 𝑗+1; 𝑡 𝑗+1 − 𝑡 𝑗 ) := [𝑝𝑡 𝑗+1−𝑡 𝑗 (𝑥 𝑗 − 𝑥 𝑗+1) − 𝑝𝑡 𝑗+1−𝑡 𝑗 (𝑥 𝑗 + 𝑥 𝑗+1)],

Ψ(𝑥) := (2/𝜋) 1
2

∫ 𝑥

0
𝑒−𝑢

2/2𝑑𝑢.

The joint density is supported on [0,∞)𝑘 . We now use Doob-ℎ transform to get the joint density

for Bessel bridge on [0, 1] ending at 𝑎. For 0 = 𝑡0 < 𝑡1 < 𝑡2 < · · · < 𝑡𝑘 < 1:

P(𝑉 (𝑡1) ∈ 𝑑𝑥1, . . . , 𝑉 (𝑡𝑘 ) ∈ 𝑑𝑥𝑘 ) =
𝑥1
𝑎𝑡1

𝑝𝑡1 (𝑥1)
𝑝1(𝑎)

𝑘∏
𝑗=1

𝑔(𝑥 𝑗 , 𝑥 𝑗+1; 𝑡 𝑗+1 − 𝑡 𝑗 )
𝑘∏
𝑗=1

𝑑𝑥 𝑗

where 𝑥𝑘+1 = 𝑎 and 𝑡𝑘+1 = 1. Formulas in Lemma 5.4.2 is obtained easily from the above joint

density formula.

Definition 5.4.3 (Non-intersecting Brownian motions). We say a random continuous function

𝑊 (𝑡) = (𝑊1(𝑡),𝑊2(𝑡)) : [0, 1] → R2 is a pair of non-intersecting Brownian motion (NonInt-BM

in short) if its distribution is given by the following formulas:

(a) We have for any 𝑦1, 𝑦2 ∈ R

P(𝑊1(1) ∈ d𝑦1,𝑊2(1) ∈ d𝑦2) =
1{𝑦1 > 𝑦2}(𝑦1 − 𝑦2)𝑝1(𝑦1)𝑝1(𝑦2)∫
𝑟1>𝑟2
(𝑟1 − 𝑟2)𝑝1(𝑟1)𝑝1(𝑟2)d𝑟1d𝑟2

d𝑦1d𝑦2. (5.4.1)
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(b) For 0 < 𝑡 < 1, we have

P(𝑊1(𝑡) ∈ d𝑦1,𝑊2(𝑡) ∈ d𝑦2)

=
1{𝑦1 > 𝑦2}(𝑦1 − 𝑦2)𝑝𝑡 (𝑦1)𝑝𝑡 (𝑦2)

∫
𝑟1>𝑟2

det(𝑝1−𝑡 (𝑦𝑖 − 𝑟 𝑗 ))2𝑖, 𝑗=1d𝑟1d𝑟2

𝑡
∫
𝑟1>𝑟2
(𝑟1 − 𝑟2)𝑝1(𝑟1)𝑝1(𝑟2)d𝑟1d𝑟2

d𝑦1d𝑦2.
(5.4.2)

(c) For 0 < 𝑠 < 𝑡 ≤ 1 and 𝑥1 > 𝑥2, we have

P(𝑊1(𝑡) ∈ d𝑦1,𝑊2(𝑡) ∈ d𝑦2 |𝑊1(𝑠) = 𝑥1,𝑊2(𝑠) = 𝑥2)

= 1{𝑦1 > 𝑦2}
det(𝑝𝑡−𝑠 (𝑦𝑖 − 𝑥 𝑗 ))2𝑖, 𝑗=1

∫
𝑟1>𝑟2

det(𝑝1−𝑡 (𝑦𝑖 − 𝑟 𝑗 ))2𝑖, 𝑗=1d𝑟1d𝑟2∫
𝑟1>𝑟2

det(𝑝1−𝑠 (𝑥𝑖 − 𝑟 𝑗 ))2𝑖, 𝑗=1d𝑟1d𝑟2
d𝑦1d𝑦2.

(5.4.3)

We call𝑊 [0,𝑀] a NonInt-BM on [0, 𝑀] if (𝑀−1/2𝑊 [0,𝑀]1 (𝑀𝑥), 𝑀−1/2𝑊 [0,𝑀]2 (𝑀𝑥)) is a NonInt-BM

on [0, 1].

Definition 5.4.4 (Non intersection Brownian bridges). A 2-level non-intersecting Brownian bridge

(NonInt-BrBridge in short)𝑉 = (𝑉1, 𝑉2) on [0, 1] ending at (𝑧1, 𝑧2) with (𝑧1 ≠ 𝑧2) is a NonInt-BM

on [0, 1] defined in Definition 5.4.3 subject to the condition (in the sense of Doob) 𝑉 (1) =

𝑧1, 𝑉 (1) = 𝑧2. It is straight forward to check we have the following formulas for the distribu-

tion of 𝑉 :

(a) For 0 < 𝑡 < 1, we have

P(𝑉1(𝑡) ∈ d𝑦1, 𝑉2(𝑡) ∈ d𝑦2) =
1{𝑦1 > 𝑦2}(𝑦1 − 𝑦2)𝑝𝑡 (𝑦1)𝑝𝑡 (𝑦2)

𝑡 (𝑧1 − 𝑧2)𝑝1(𝑧1)𝑝1(𝑧2)
det(𝑝1−𝑡 (𝑦𝑖 − 𝑧 𝑗 ))2𝑖, 𝑗=1d𝑦1d𝑦2.

(b) For 0 < 𝑠 < 𝑡 ≤ 1 and 𝑥1 > 𝑥2, we have

P(𝑉1(𝑡) ∈ d𝑦1, 𝑉2(𝑡) ∈ d𝑦2 |𝑉1(𝑠) = 𝑥1, 𝑉2(𝑠) = 𝑥2)

=
det(𝑝𝑡−𝑠 (𝑦𝑖 − 𝑥 𝑗 ))2𝑖, 𝑗=1 det(𝑝1−𝑡 (𝑦𝑖 − 𝑧 𝑗 ))2𝑖, 𝑗=1

det(𝑝1−𝑠 (𝑥𝑖 − 𝑧 𝑗 ))2𝑖, 𝑗=1
d𝑦1d𝑦2.
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Just like NonInt-BM, we call𝑉 [0,𝑀] a NonInt-BrBridge on [0, 𝑀] if ( 1√
𝑀
𝑉
[0,𝑀]
1 (𝑀𝑥), 1√

𝑀
𝑉
[0,𝑀]
2 (𝑀𝑥))

is a NonInt-BrBridge on [0, 1].

Remark 5.4.5. It is possible to specify the distributions for a 𝑛-level non-intersecting Brownian

bridge. However, the notations tend to get cumbersome due to the possibility of some paths sharing

the same end points. We refer to Definition 8.1 in [155] for a flavor of such formulas. We remark

that in this paper we will focus exclusively on the 𝑛 = 2 case with distinct endpoints.

The following Lemma connects NonInt-BrBridge with Bessel bridges.

Lemma 5.4.6 (NonInt-BrBridge to Bessel bridges). Let 𝑉 = (𝑉1, 𝑉2) be a NonInt-BrBridge on

[0, 1] ending at (𝑧1, 𝑧2) with 𝑧1 > 𝑧2. Then, as functions in 𝑥, we have 𝑉1(𝑥) − 𝑉2(𝑥)
𝑑
=
√

2Rbb(𝑥)

where Rbb : [0, 1] → R is a Bessel bridge (see Definition 5.4.1) ending at (𝑧1 − 𝑧2)/
√

2.

The proof of Lemma 5.4.6 is based on the following technical lemma that discusses how

NonInt-BM comes up as a limit of non-intersecting random walks.

Lemma 5.4.7. Let 𝑋 𝑖
𝑗

be i.i.d. N(0, 1) random variables. Let 𝑆(𝑖)0 = 0 and 𝑆
(𝑖)
𝑘

=
∑𝑘
𝑗=1 𝑋

𝑖
𝑗
.

Consider 𝑌𝑛 (𝑡) = (𝑌𝑛,1(𝑡), 𝑌𝑛,2(𝑡)) := ( 𝑆
(1)
𝑛𝑡√
𝑛
,
𝑆
(2)
𝑛𝑡√
𝑛
) an R2 valued process on [0, 1] where the in-

between points are defined by linear interpolation. Then conditioned on the non-intersecting event

Λ𝑛 := ∩𝑛
𝑗=1{𝑆

(1)
𝑗

> 𝑆
(2)
𝑗
}, 𝑌𝑛

𝑑→ 𝑊 , where 𝑊 (𝑡) = (𝑊1(𝑡),𝑊2(𝑡)) is distributed as NonInt-BM

defined in Definition 5.4.3.

We defer the proof of this lemma to the Appendix as it roughly follows standard calculations

based on the Karlin-McGregor formula [219].

Proof of Lemma 5.4.6. Let 𝑋 𝑖
𝑗

to be i.i.d. N(0, 1) random variables. Let 𝑆(𝑖)0 = 0 and 𝑆
(𝑖)
𝑘

=∑𝑘
𝑗=1 𝑋

𝑖
𝑗
. Set 𝑌𝑛 (𝑡) = ( 𝑆

(1)
𝑛𝑡√
𝑛
,
𝑆
(2)
𝑛𝑡√
𝑛
) an R2 valued process on [0, 1] where the in-between points

are defined by linear interpolation. By Lemma 5.4.7, conditioned on the non-intersecting event

Λ𝑛 := ∩𝑛
𝑗=1{𝑆

(1)
𝑗
> 𝑆

(2)
𝑗
}, 𝑌𝑛 converges to 𝑊 = (𝑊1,𝑊2), a NonInt-BM on [0, 1] defined in Def-

inition 5.4.3. On the other hand, classical results from [204] tell us, (𝑆(1)𝑛𝑡 − 𝑆
(2)
𝑛𝑡 )/
√
𝑛 conditioned
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on Λ𝑛 converges weakly to
√

2𝔅me(𝑡), where 𝔅me(·) is a Brownian meander defined in Definition

5.4.1. The
√

2 factor comes because 𝑆(1)
𝑘
− 𝑆(2)

𝑘
is random walk with variance 2. Thus

𝑊1(·) −𝑊2(·)
𝑑
=
√

2𝔅me(·).

From [204], 𝔅me is known to be Markov process. Hence the law of𝑊1−𝑊2 depends on (𝑊1(1),𝑊2(1))

only through 𝑊1(1) − 𝑊2(1). In particular conditioning on (𝑊1(1) = 𝑧1,𝑊2(1) = 𝑧2), for any

𝑧1 > 𝑧2, makes 𝑊 to be a NonInt-BrBridge on [0, 1] ending at (𝑧1, 𝑧2) and the conditional law of

1√
2
(𝑊1 −𝑊2) is then a Bessel bridge ending at 1√

2
(𝑧1 − 𝑧2). This completes the proof.

5.4.2 Decomposition Results

In this section we prove two path decomposition results around the maximum for a single

Brownian bridge and for a sum of two Brownian bridges. The first one is for a single Brownian

bridge.

Proposition 5.4.8 (Bessel bridge decomposition). Let 𝐵 : [𝑎, 𝑏] → R be a Brownian bridge

with 𝐵(𝑎) = 𝑥 and 𝐵(𝑏) = 𝑦. Let 𝑀 be the almost sure unique maximizer of 𝐵. Consider

𝑊ℓ : [𝑎, 𝑀] → R defined as 𝑊ℓ (𝑥) = 𝐵(𝑀) − 𝐵(𝑀 + 𝑎 − 𝑥), and 𝑊r : [𝑀, 𝑏] → R defined as

𝑊r(𝑥) = 𝐵(𝑀) − 𝐵(𝑥). Then, conditioned on (𝑀, 𝐵(𝑀)),

(a) 𝑊ℓ (·) and𝑊r(·) are independent.

(b) 𝑊ℓ (·) is a Bessel bridge on [𝑎, 𝑀] starting at zero and ending at 𝐵(𝑀) − 𝑥.

(c) 𝑊r(·) is a Bessel bridge on [𝑀, 𝑏] starting at zero and ending at 𝐵(𝑀) − 𝑦.

Recall that the Bessel bridges are defined in Definition 5.4.1.

Remark 5.4.9. There is a technical issue in considering the regular conditional distribution of𝑊ℓ,

𝑊r separately as the objects are defined on intervals of random length. Instead we should always

view𝑊ℓ,𝑊r appended together as one random function defined on the deterministic interval [𝑎, 𝑏],
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as done in our proofs in Sections 5.6 and 5.7. However here in Proposition 5.4.8 (as well as in

Proposition 5.4.10), we state their distributions separately for simplicity.

Proof. We will prove the result for 𝑎 = 0, 𝑏 = 1 and 𝑥 = 0; the general case then follows from

Brownian scaling and translation property of bridges. We recall the classical result of Brownian

motion decomposition around maximum from [145]. Consider a map Υ : 𝐶 ( [0, 1]) → 𝐶 ( [0, 1]) ×

𝐶 ( [0, 1]) given by

(Υ 𝑓 )−(𝑡) := 𝑀−
1
2 [ 𝑓 (𝑀) − 𝑓 (𝑀 (1 − 𝑡))], 𝑡 ∈ [0, 1],

(Υ 𝑓 )+(𝑡) := (1 − 𝑀)− 1
2 [ 𝑓 (𝑀) − 𝑓 (𝑀 + (1 − 𝑀)𝑡)], 𝑡 ∈ [0, 1],

where 𝑀 = 𝑀 ( 𝑓 ) := inf{𝑡 ∈ [0, 1] | 𝑓 (𝑠) ≤ 𝑓 (𝑡), 0 ≤ 𝑠 ≤ 1} is the left-most maximizer of 𝑓 . We

set (Υ 𝑓 )− ≡ (Υ 𝑓 )+ ≡ 0 if 𝑀 = 0 or 𝑀 = 1. We also define

(Υ𝑀 𝑓 )−(𝑡) := 𝑀1/2(Υ 𝑓 )−( 𝑡𝑀 ), 𝑡 ∈ [0, 𝑀],

(Υ𝑀 𝑓 )+(𝑡) := (1 − 𝑀) 1
2 (Υ 𝑓 )+( 𝑡−𝑀1−𝑀 ), 𝑡 ∈ [𝑀, 1] .

Given a standard Brownian motion 𝐵 on [0, 1], by Theorem 1 in [145], Υ(𝐵) is independent of

𝑀 = 𝑀 (𝐵) and Υ(𝐵)− and Υ(𝐵)+ are independent Brownian meanders on [0, 1]. By the Brownian

scaling and the fact that Υ(𝐵) is independent of 𝑀 (𝐵), conditioned on 𝑀 (𝐵), we see that (Υ𝑀𝐵)−

and (Υ𝑀𝐵)+ are independent Brownian meanders on [0, 𝑀] and [𝑀, 1] respectively. Observe that

(Υ𝑀 𝑓 )−(𝑀) = 𝑓 (𝑀) and (Υ𝑀 𝑓 )+(1) = 𝑓 (𝑀)− 𝑓 (1) for any 𝑓 ∈ 𝐶 ( [0, 1]). Thus conditioning on

(𝐵(𝑀) = 𝑣, 𝐵(1) = 𝑦) is equivalent to conditioning on ((Υ𝑀𝐵)−(𝑀) = 𝑣, (Υ𝑀𝐵)+(1) = 𝑣−𝑦). By

definition the conditional law of Brownian meanders upon conditioning their end points are Bessel

bridges. Thus conditioning on (𝑀 = 𝑚, 𝐵(𝑀) = 𝑣, 𝐵(1) = 𝑦), we see that (Υ𝑀𝐵)− and (Υ𝑀𝐵)+

are independent Bessel bridges on [0, 𝑀] and [𝑀, 1] ending at 𝑣 and 𝑣 − 𝑦 respectively. But the

law of a Brownian motion conditioned on (𝑀 = 𝑚, 𝐵(𝑀) = 𝑣, 𝐵(1) = 𝑦) is same as the law of a

Brownian bridge 𝐵 on [0, 1] starting at 0 and ending at 𝑦, conditioned on (𝑀 (𝐵) = 𝑚, 𝐵(𝑀) = 𝑣).
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Identifying (Υ𝑀𝐵)− and (Υ𝑀𝐵)+ with𝑊ℓ and𝑊r gives us the desired result.

The next proposition show that for two Brownian bridges the decomposition around the joint

maximum is given by non-intersecting Brownian bridges.

Proposition 5.4.10 (Non-intersecting Brownian bridges decomposition). Let 𝐵1, 𝐵2 : [𝑎, 𝑏] → R

be independent Brownian bridges such that 𝐵𝑖 (𝑎) = 𝑥𝑖, 𝐵𝑖 (𝑏) = 𝑦𝑖. Let 𝑀 be the almost sure

unique maximizer of (𝐵1(𝑥) + 𝐵2(𝑥)) on [0, 1]. Define 𝑉ℓ (𝑥) : [0, 𝑀 − 𝑎] → R2 and 𝑉𝑟 :

[0, 𝑏 − 𝑀] → R2 as follows:

𝑉ℓ (𝑥) := (𝐵1(𝑀) − 𝐵1(𝑀 − 𝑥),−𝐵2(𝑀) + 𝐵2(𝑀 − 𝑥))

𝑉𝑟 (𝑥) := (𝐵1(𝑀) − 𝐵1(𝑀 + 𝑥),−𝐵2(𝑀) + 𝐵2(𝑀 + 𝑥))

Then, conditioned on (𝑀, 𝐵1(𝑀), 𝐵2(𝑀)),

(a) 𝑉ℓ (·) and 𝑉𝑟 (·) are independent.

(b) 𝑉ℓ (·) is a NonInt-BrBridge on [0, 𝑀 − 𝑎] ending at (𝐵1(𝑀) − 𝑥1, 𝑥2 − 𝐵2(𝑀)).

(c) 𝑉𝑟 (·) is a NonInt-BrBridge on [0, 𝑏 − 𝑀] ending at (𝐵1(𝑀) − 𝑦1, 𝑦2 − 𝐵2(𝑀)).

Recall that NonInt-BrBridges are defined in Definition 5.4.4.

As in the proof of Proposition 5.4.8, to prove Proposition 5.4.10 we rely on a decomposition

result for Brownian motions instead. To state the result we introduce the Ω map which encodes the

trajectories of around the joint maximum of the sum of two functions.

Definition 5.4.11. For any 𝑓 = ( 𝑓1, 𝑓2) ∈ 𝐶 ( [0, 1] → R2), we define Ω 𝑓 ∈ 𝐶 ( [−1, 1] → R2) as

follows:

(Ω 𝑓 )1(𝑡) =


[ 𝑓1(𝑀) − 𝑓1(𝑀 (1 + 𝑡))]𝑀−1/2 −1 ≤ 𝑡 ≤ 0

[ 𝑓1(𝑀) − 𝑓1(𝑀 + (1 − 𝑀)𝑡)] (1 − 𝑀)−1/2 0 ≤ 𝑡 ≤ 1
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(Ω 𝑓 )2(𝑡) =


−[ 𝑓2(𝑀) − 𝑓2(𝑀 (1 + 𝑡))]𝑀−1/2 −1 ≤ 𝑡 ≤ 0

−[ 𝑓2(𝑀) − 𝑓2(𝑀 + (1 − 𝑀)𝑡)] (1 − 𝑀)−1/2 0 ≤ 𝑡 ≤ 1

where 𝑀 = inf{𝑡 ∈ [0, 1] : 𝑓1(𝑠) + 𝑓2(𝑠) ≤ 𝑓1(𝑡) + 𝑓2(𝑡),∀𝑠 ∈ [0, 1]} is the left most maximizer.

We set (Ω 𝑓 ) ≡ (0, 0) if 𝑀 = 0 or 1 on [0, 1] . With this we define two functions in 𝐶 ( [0, 1] → R2)

as follows

(Ω 𝑓 )+(𝑥) := ((Ω 𝑓 )1(𝑥), (Ω 𝑓 )2(𝑥)), 𝑥 ∈ [0, 1]

(Ω 𝑓 )−(𝑥) := ((Ω 𝑓 )1(−𝑥), (Ω 𝑓 )2(−𝑥)), 𝑥 ∈ [0, 1] .

We are now ready to state the corresponding result for Brownian motions.

Lemma 5.4.12. Suppose 𝐵 = (𝐵1, 𝐵2) are independent Brownian motions on [0, 1] with 𝐵𝑖 (0) =

𝑥𝑖 . Let

𝑀 = argmax
𝑡∈[0,1]

(𝐵1(𝑡) + 𝐵2(𝑡)).

Then (Ω𝐵)+, (Ω𝐵)− are independent and distributed as non-intersecting Brownian motions on

[0, 1] (see Definition 5.4.3). Furthermore, (Ω𝐵)+, (Ω𝐵)− are independent of 𝑀 .

We first complete the proof of Proposition 5.4.10 assuming the above Lemma.

Proof of Proposition 5.4.10. Without loss of generality, we set 𝑎 = 0 and 𝑏 = 1. Let 𝐵1, 𝐵2 :

[0, 1] → R be two independent Brownian bridges with 𝐵𝑖 (0) = 𝑥𝑖 and denote 𝑀 = argmax𝑥∈[0,1] 𝐵1(𝑥)+

𝐵2(𝑥). Consider

𝑉ℓ (𝑥) := (𝐵1(𝑀) − 𝐵1(𝑀 − 𝑥),−𝐵2(𝑀) + 𝐵2(𝑀 − 𝑥))𝑥∈[0,𝑀]

𝑉𝑟 (𝑥) := (𝐵1(𝑀) − 𝐵1(𝑀 + 𝑥),−𝐵2(𝑀) + 𝐵2(𝑀 + 𝑥))𝑥∈[0,1−𝑀]

By Lemma 5.4.12, conditioned on 𝑀 and after Brownian re-scaling, we have where 𝑉𝑟 , 𝑉ℓ are

conditionally independent and 𝑉𝑟 ∼ 𝑊 [0,1−𝑀] and 𝑉ℓ ∼ 𝑊 [0,𝑀] where 𝑊 [0,𝜌] denote a NonInt-BM
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on [0, 𝜌] defined in Definition 5.4.4. To convert the above construction to Brownian bridges, we

observe that the map

(𝐵1(𝑀), 𝐵2(𝑀), 𝐵1(1), 𝐵2(1)) ↔ (𝑉𝑟 (1 − 𝑀), 𝑉ℓ (𝑀))

is bijective. Indeed, we have that

©­­«
𝐵1(𝑀) = 𝑏1, 𝐵2(𝑀) = 𝑏2

𝐵1(1) = 𝑦1, 𝐵2(1) = 𝑦2

ª®®¬⇔
©­­«
𝑉𝑟 (1 − 𝑀) = (𝑏1 − 𝑦1,−𝑏2 + 𝑦2)

𝑉ℓ (𝑀) = (𝑏1 − 𝑥1,−𝑏2 + 𝑥2)

ª®®¬ .
Thus conditioned on (𝑀 = 𝑚, 𝐵𝑖 (𝑀) = 𝑏𝑖, 𝐵𝑖 (1) = 𝑦𝑖),𝑉𝑟 (·) is now a NonInt-BrBridge Brownian

bridge on [0, 1 − 𝑚] ending at (𝑏1 − 𝑦1,−𝑏2 + 𝑦2) and 𝑉ℓ (·) is a NonInt-BrBridge on [0, 𝑚]

ending at (𝑏1 − 𝑥1,−𝑏2 + 𝑥2) where both are conditionally independent of each other. But the

law of a Brownian motions conditioned on (𝑀 = 𝑚, 𝐵𝑖 (𝑀) = 𝑏𝑖, 𝐵𝑖 (1) = 𝑦𝑖) is same as the

law of a Brownian bridges 𝐵 on [0, 1] starting at (𝑥1, 𝑥2) and ending at (𝑦1, 𝑦2), conditioned on

(𝑀 = 𝑚, 𝐵𝑖 (𝑀) = 𝑏𝑖). Thus this leads to the desired decomposition for Brownian bridges.

Let us now prove Lemma 5.4.12. The proof of Lemma 5.4.12 follows similar ideas from [145]

and [204]. To prove such a decomposition holds, we first show it at the level of random walks.

Then we take diffusive limit to get the same decomposition for Brownian motions.

Proof of Lemma 5.4.12. Let 𝑋 (𝑖)
𝑗

𝑖.𝑖.𝑑.∼ N(0, 1), 𝑖 = 1, 2, 𝑗 ≥ 1 and set 𝑆(𝑖)
𝑘

=
∑𝑛
𝑗=1 𝑋

(𝑖)
𝑗
. Define

𝑀𝑛 := 𝑛argmax
𝑘=1

{𝑆(1)
𝑘
+ 𝑆(2)

𝑘
},

and let 𝐴(𝑖)
𝑗

be subsets of R. Define

I := P
( 𝑘−1⋂
𝑗=0
𝑖=1,2

{𝑆(𝑖)
𝑘
− 𝑆(𝑖)

𝑗
∈ (−1)𝑖+1𝐴(𝑖)

𝑘− 𝑗 } ∩
𝑛⋂

𝑗=𝑘+1
𝑖=1,2

{𝑆(𝑖)
𝑘
− 𝑆(𝑖)

𝑗
∈ (−1)𝑖+1𝐴(𝑖)

𝑗
} ∩ {𝑀𝑛 = 𝑘}

)
. (5.4.4)
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Noting that the event {𝑀𝑛 = 𝑘} is the same as

𝑘−1⋂
𝑗=0
𝑖=1,2

{𝑆(1)
𝑘
+ 𝑆(2)

𝑘
> 𝑆

(1)
𝑗
+ 𝑆(2)

𝑗
}

𝑛⋂
𝑗=𝑘+1
𝑖=1,2

{𝑆(1)
𝑘
+ 𝑆(2)

𝑘
> 𝑆

(1)
𝑗
+ 𝑆(2)

𝑗
},

we have

r.h.s of (5.4.4) = P
( 𝑘−1⋂
𝑗=0
𝑖=1,2

{𝑆(𝑖)
𝑘
− 𝑆(𝑖)

𝑗
∈ (−1)𝑖+1𝐴(𝑖)

𝑘− 𝑗 , 𝑆
(1)
𝑘
+ 𝑆(2)

𝑘
> 𝑆

(1)
𝑗
+ 𝑆(2)

𝑗
}

∩
𝑛⋂

𝑗=𝑘+1
𝑖=1,2

{𝑆(𝑖)
𝑘
− 𝑆(𝑖)

𝑗
∈ (−1)𝑖+1𝐴(𝑖)

𝑗
, 𝑆
(1)
𝑘
+ 𝑆(2)

𝑘
> 𝑆

(1)
𝑗
+ 𝑆(2)

𝑗
}
)
.

We also observe that the pairs (𝑆(1)
𝑘
− 𝑆(1)

𝑗
, 𝑆
(2)
𝑘
− 𝑆(2)

𝑗
)𝑘−1
𝑗=0 and (𝑆(1)

𝑘
− 𝑆(1)

𝑗
, 𝑆
(2)
𝑘
− 𝑆(2)

𝑗
)𝑛
𝑗=𝑘+1 are

independent of each other and as 𝑋 𝑖
𝑗

is symmetric

(𝑆(1)
𝑘
− 𝑆(1)

𝑗
, 𝑆
(2)
𝑘
− 𝑆(2)

𝑗
)𝑘−1
𝑗=0

(𝑑)
= (𝑆(1)

𝑘− 𝑗 ,−𝑆
(2)
𝑘− 𝑗 )

𝑘−1
𝑗=0

(𝑆(1)
𝑘
− 𝑆(1)

𝑗
, 𝑆
(2)
𝑘
− 𝑆(2)

𝑗
)𝑛𝑗=𝑘+1

(𝑑)
= (𝑆(1)

𝑗−𝑘 ,−𝑆
(2)
𝑗−𝑘 )

𝑛
𝑗=𝑘+1.

Thus,

I = P
( 𝑘−1⋂
𝑗=0
𝑖=1,2

{𝑆(𝑖)
𝑗
∈ 𝐴(𝑖)

𝑗
, 𝑆
(1)
𝑗
> 𝑆

(2)
𝑗
}
)
· P

( 𝑛−𝑘⋂
𝑗=1
𝑖=1,2

{𝑆(𝑖)
𝑗
∈ 𝐴(𝑖)

𝑗
, 𝑆
(1)
𝑗
> 𝑆

(2)
𝑗
}
)
. (5.4.5)

Based on (5.4.5), we obtain that

I
P(𝑀𝑛 = 𝑘)

= P
( 𝑘−1⋂
𝑗=0
𝑖=1,2

{𝑆(𝑖)
𝑗
∈ 𝐴(𝑖)

𝑗
}|

𝑘⋂
𝑗=1
{𝑆(1)

𝑗
> 𝑆

(2)
𝑗
})

· P
( 𝑛−𝑘⋂
𝑗=1
𝑖=1,2

{𝑆(𝑖)
𝑗
∈ 𝐴(𝑖)

𝑗
}|
𝑛−𝑘⋂
𝑗=1
{𝑆(1)

𝑗
> 𝑆

(2)
𝑗
}
) (5.4.6)
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where we utilize the fact P(𝑀𝑛 = 𝑘) = P(∩𝑘
𝑗=1𝑆

(1)
𝑗
> 𝑆

(2)
𝑗
)P(∩𝑛−𝑘

𝑗=1 𝑆
(1)
𝑗
> 𝑆

(2)
𝑗
). The above splitting

essentially shows that conditioned on the maximizer, the left and right portion of the maximizer

are independent non-intersecting random walks.

We now consider 𝑍𝑛 (𝑡) = ( 𝑆
(1)
𝑛𝑡√
𝑛
,
𝑆
(2)
𝑛𝑡√
𝑛
) on [0, 1] where it is linearly interpolated in between.

By Donsker’s invariance principle, 𝑍𝑛 ⇒ 𝐵 = (𝐵1, 𝐵2) independent Brownian motions on [0, 1] .

Recall Ω from Definition 5.4.11. Clearly P(𝐵 ∈ Discontinuity of Ω) = 0, so

(Ω𝑍𝑛)+ ⇒ (Ω𝐵)+ and (Ω𝑍𝑛)− ⇒ (Ω𝐵)−.

On the other hand, following (5.4.6) we see that conditioned on 𝑀𝑛 = 𝑘, (Ω𝑍𝑛)+
(𝑑)
= 𝑌𝑛−𝑘 and

(Ω𝑍𝑛)−
(𝑑)
= 𝑌𝑘 are independent where 𝑌𝑛 (·) is the linearly interpolated non-intersecting random

walk defined in Proposition 5.4.7. As 𝑘, 𝑛 → ∞, 𝑌𝑘 (·), 𝑌𝑛−𝑘 (·)
𝑑→ 𝑊 where 𝑊 is the non-

intersecting Brownian motion on [0, 1] defined in Definition 5.4.3. At the same time, 𝑀𝑛
𝑛
⇒ 𝑀 ,

which has density ∝ 1√
𝑡 (1−𝑡)

on [0, 1] . Thus, (Ω𝐵)+, (Ω𝐵)−, 𝑀 are independent and (Ω𝐵)+
(𝑑)
=

(Ω𝐵)−
(𝑑)
= 𝑊.

Remark 5.4.13. We expect similar decomposition results to hold for 3 or more Brownian motions

or bridges around the maximizer of their sums. More precisely, if 𝑀 is the maximizer of 𝐵1(𝑥) +

𝐵2(𝑥) + 𝐵3(𝑥), where 𝐵𝑖 are independent Brownian motion on [0, 1], we expect the law of

(𝐵1(𝑀) − 𝐵1(𝑀 + 𝑥), 𝐵2(𝑀) − 𝐵2(𝑀 + 𝑥), 𝐵3(𝑀) − 𝐵3(𝑀 + 𝑥))

to be again Brownian motions but their sum conditioned to be positive (its singular conditioning;

so requires some care to define properly). Indeed, such a statement can be proven rigorously at the

level of random walks. Then a possible approach is to take diffusive limit of random walks under

conditioning and prove existence of weak limits. Due to lack of results for such conditioning event,

proving such a statement require quite some technical work. Since it is extraneous for our purpose,

we do not pursue this direction here.
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5.5 Bessel bridges and non-intersecting Brownian bridges

In this section, we study diffusive limits and separation properties of Bessel bridges and non-

intersecting Brownian bridges. The central object that appears in this section is the Dyson Brown-

ian motion [dyson1962brownian] which are intuitively several Brownian bridges conditioned on

non-intersection. In Section 5.5.1, we recall Dyson Brownian motion and study different properties

of it. In Section 5.5.2 we prove a technical estimate that indicates the two parts of non-intersecting

Brownian bridges have uniform separation and derive the diffusive limits of non-intersecting Brow-

nian bridges. The precise renderings of these results are given in Proposition 5.5.6 and Proposition

5.5.8.

5.5.1 Diffusive limits of Bessel bridges and NonInt-BrBridge

We first recall the definition of Dyson Brownian motion. Although they are Brownian motions

conditioned on non-intersection, since the conditioning event is singular, such an interpretation

needs to be justified properly. There are several ways to rigorously define the Dyson Brownian

motion, either through the eigenvalues of Hermitian matrices with Brownian motions as entries or

as a solution of system of stochastic PDEs. In this paper, we recall the definition via specifying the

entrance law and transition densities (see [265] and [317, Section 3] for example).

Definition 5.5.1 (Dyson Brownian motion). A 2-level Dyson Brownian motionD(·) = (D1(·),D2(·))

is an R2 valued process on [0,∞) with D1(0) = D2(0) = 0 and with the entrance law

P (D1(𝑡) ∈ d𝑦1,D2(𝑡) ∈ d𝑦2) = 1{𝑦1 > 𝑦2}
(𝑦1 − 𝑦2)2

𝑡
𝑝𝑡 (𝑦1)𝑝𝑡 (𝑦2)d𝑦1d𝑦2, 𝑡 > 0. (5.5.1)

For 0 < 𝑠 < 𝑡 < ∞ and 𝑥1 > 𝑥2, its transition densities are given by

P (D1(𝑡) ∈ d𝑦1,D2(𝑡) ∈ d𝑦2 | D1(𝑠) = 𝑥1,D2(𝑠) = 𝑥2)

= 1{𝑦1 > 𝑦2}
𝑦1 − 𝑦2
𝑥1 − 𝑥2

det(𝑝𝑡−𝑠 (𝑥𝑖 − 𝑦 𝑗 ))2𝑖, 𝑗=1d𝑦1d𝑦2.
(5.5.2)
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The above formulas can be extended to 𝑛-level Dyson Brownian motions with (see [317, Section

3]) but for the rest of the paper we only require the 𝑛 = 2 case. So, we will refer to the 2-level

object defined above loosely as Dyson Brownian motion or DBM in short.

We next define the Bessel processes via specifying the entrance law and transition densities

which are also well known in literature (see [284, Chapter VI.3]).

Definition 5.5.2 (Bessel Process). A 3D Bessel process R1 with diffusion coefficient 1 is an R-

valued process on [0,∞) with R1(0) = 0 and with the entrance law

P(R1(𝑡) ∈ 𝑑𝑦) = 2𝑦2

𝑡
𝑝𝑡 (𝑦)d𝑦, 𝑥 ∈ [0,∞), 𝑡 > 0.

For 0 < 𝑠 < 𝑡 < ∞ and 𝑥 > 0, its transition densities are given by

P(R1(𝑡) ∈ 𝑑𝑦 | R1(𝑠) = 𝑥) =
𝑦

𝑥
[𝑝𝑡−𝑠 (𝑥 − 𝑦) − 𝑝𝑡−𝑠 (𝑥 + 𝑦)]𝑑𝑦, 𝑦 ∈ [0,∞).

More generally, R𝜎 (·) is a 3D Bessel process with diffusion coefficient 𝜎 > 0 if 𝜎−1/2R𝜎 (·) is a

3D Bessel process with diffusion coefficient 1.

In this paper we will only deal with 3-dimensional Bessel processes. Thus we will just loosely

refer to the above processes as Bessel processes.

DBM is directly linked with Bessel processes. Indeed the difference of the two paths of DBM

is known (see [158] for example) to be a 3D Bessel process with diffusion coefficient 2. This fact

can be proven easily via SPDE or the Hermitian matrices interpretation of DBM. Since we use this

result repeatedly in later sections we record it as a lemma below.

Lemma 5.5.3 (Dyson to Bessel). Let D = (D1,D2) be a DBM. Then, as a function in 𝑥, we have

D1(𝑥) + D2(𝑥)
𝑑
=
√

2𝐵(𝑥) and D1(𝑥) − D2(𝑥)
𝑑
= R2(𝑥) where 𝐵(𝑥) is a Brownian motion and

R2 : [0,∞) → R is a Bessel process (see Definition 5.5.2) with diffusion coefficient 2.

We end this subsection by providing two lemmas that compare the densities of NonInt-BrBridge

and DBM.
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Lemma 5.5.4. Suppose the pair of random variables (𝑈1,𝑈2) has joint probability density func-

tion:

P(𝑈1 ∈ d𝑦1,𝑈2 ∈ d𝑦2) =
(𝑦1 − 𝑦2)2

𝑡
𝑝𝑡 (𝑦1)𝑝𝑡 (𝑦2), 𝑦1 > 𝑦2. (5.5.3)

Conditioning on (𝑈1,𝑈2), we consider a NonInt-BrBridge (𝑉1, 𝑉2) on [0, 𝑡] ending at (𝑈1,𝑈2),

see Definition 5.4.4. Then unconditionally, (𝑉1, 𝑉2) is equal in distribution as DBM (D1,D2) on

[0, 𝑡] . (see Definition 5.5.1).

Lemma 5.5.5. Fix 𝛿, 𝑀 > 0. Consider a NonInt-BrBridge (𝑉1, 𝑉2) on [0, 1] ending at (𝑎1, 𝑎2)

(see Definition 5.4.4), where 𝑎1 > 𝑎2. Then, there exists a constant C𝑀,𝛿 > 0 such that for all

𝑡 ∈ (0, 𝛿), 𝑦1 > 𝑦2 and −𝑀 ≤ 𝑎2 < 𝑎1 ≤ 𝑀 ,

P(𝑉1(𝑡) ∈ d𝑦1, 𝑉2(𝑡) ∈ d𝑦2)
P(D1(𝑡) ∈ d𝑦1,D2(𝑡) ∈ d𝑦2)

≤ C𝑀,𝛿, (5.5.4)

where (D1,D2) is a DBM defined in Definition 5.5.1.

Proof of Lemma 5.5.4. To show that (𝑉1, 𝑉2) is equal in distribution to (D1,D2) on [0, 𝑡], it suf-

fices to show that (𝑉1, 𝑉2) has the same finite dimensional distribution as (D1,D2) on [0, 𝑡]. Fix

any 𝑘 ∈ N, and 0 < 𝑠1 < . . . < 𝑠𝑘 < 𝑡 and 𝑦1 > 𝑦2. Using Brownian scaling and the formulas from

Definition 5.4.4 we have

P
( 𝑘⋂
𝑖=1
{𝑉1(𝑠𝑖) ∈ d𝑥𝑖,1, 𝑉2(𝑠𝑖) ∈ d𝑥𝑖,2}|𝑈1 = 𝑦1,𝑈2 = 𝑦2

)
=
(𝑥1,1 − 𝑥1,2)

𝑠1
𝑝𝑠1 (𝑥1,1)𝑝𝑠1 (𝑥1,2)

𝑘−1∏
𝑚=1

det(𝑝𝑠𝑚+1−𝑠𝑚 (𝑥𝑚+1,𝑖 − 𝑥𝑚, 𝑗 ))2𝑖, 𝑗=1

·
det(𝑝𝑡−𝑠𝑘 (𝑥𝑘,𝑖 − 𝑦 𝑗 ))2𝑖, 𝑗=1
1
𝑡
(𝑦1 − 𝑦2)𝑝𝑡 (𝑦1)𝑝𝑡 (𝑦2)

𝑘∏
𝑖=1

d𝑥𝑖,1d𝑥𝑖,2,

where the above density is supported on {𝑥𝑖,1 > 𝑥𝑖,2 | 𝑖 = 1, 2, . . . , 𝑘}. For convenience, in the

rest of the calculations, we drop
∏𝑘
𝑖=1 d𝑥𝑖,1d𝑥𝑖,2 from the above formula. In view of the marginal
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density of (𝑈1,𝑈2) given by (5.5.3), we thus have that

P
( 𝑘⋂
𝑖=1
{𝑉1(𝑠𝑖) ∈ d𝑥𝑖,1, 𝑉2(𝑠𝑖) ∈ d𝑥𝑖,2}

)
=

∫
𝑦1>𝑦2

P
( 𝑘⋂
𝑖=1
{𝑉1(𝑠𝑖) ∈ d𝑥𝑖,1, 𝑉2(𝑠𝑖) ∈ d𝑥𝑖,2}|𝑈1 = 𝑦1,𝑈2 = 𝑦2

)
(𝑦1 − 𝑦2)2

𝑡
𝑝𝑡 (𝑦1)𝑝𝑡 (𝑦2)d𝑦1d𝑦2

=
(𝑥1,1 − 𝑥1,2)

𝑠1
𝑝𝑠1 (𝑥1,1)𝑝𝑠1 (𝑥1,2)

𝑘−1∏
𝑚=1

det(𝑝𝑠𝑚+1−𝑠𝑚 (𝑥𝑚+1,𝑖 − 𝑥𝑚, 𝑗 ))2𝑖, 𝑗=1

·
∫
𝑦1>𝑦2

(𝑦1 − 𝑦2)det(𝑝𝑡−𝑠𝑘 (𝑥𝑘,𝑖 − 𝑦 𝑗 ))2𝑖, 𝑗=1d𝑦1d𝑦2.

But given the transition densities for DBM from (5.5.2). we know that

∫
𝑦1>𝑦2

(𝑦1 − 𝑦2)det(𝑝𝑡−𝑠𝑘 (𝑥𝑘,𝑖 − 𝑦 𝑗 ))2𝑖, 𝑗=1d𝑦1d𝑦2 = 𝑥𝑘,1 − 𝑥𝑘,2.

Plugging this back we get

P
( 𝑘⋂
𝑖=1
{𝑉1(𝑠𝑖) ∈ d𝑥𝑖,1, 𝑉2(𝑠𝑖) ∈ d𝑥𝑖,2}

)
=
(𝑥1,1 − 𝑥1,2)2

𝑠1
𝑝𝑠1 (𝑥1,1)𝑝𝑠1 (𝑥1,2)

𝑘−1∏
𝑚=1

𝑥𝑚+1,1 − 𝑥𝑚+1,2
𝑥𝑚,1 − 𝑥𝑚,2

det(𝑝𝑠𝑚+1−𝑠𝑚 (𝑥𝑚+1,𝑖 − 𝑥𝑚, 𝑗 ))2𝑖, 𝑗=1.

Using the entrance law and transition densities formulas for DBM from Definition 5.5.1, we see

that the above formula matches with the finite dimensional density formulas for DBM. This com-

pletes the proof.

Proof of Lemma 5.5.5. Fix any arbitrary 𝑦1 > 𝑦2 and 𝑡 ∈ (0, 𝛿) Recall the density formulas for

NonInt-BrBridge and DBM from Definitions 5.4.4 and 5.5.1. We have

l.h.s of (5.5.4) =
det(𝑝1−𝑡 (𝑦𝑖 − 𝑎 𝑗 ))2𝑖, 𝑗=1

(𝑦1 − 𝑦2) (𝑎1 − 𝑎2)𝑝1(𝑎1)𝑝1(𝑎2)
(5.5.5)

=
𝑝1−𝑡 (𝑦1 − 𝑎2)𝑝1−𝑡 (𝑦2 − 𝑎1)

(𝑦1 − 𝑦2) (𝑎1 − 𝑎2)𝑝1(𝑎1)𝑝1(𝑎2)

[
𝑒
(𝑦1−𝑦2 ) (𝑎1−𝑎2 )

1−𝑡 − 1
]
. (5.5.6)
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If (𝑦1 − 𝑦2) (𝑎1 − 𝑎2) ≥ 1 − 𝑡, then

r.h.s. of (5.5.5) ≤
det(𝑝1−𝑡 (𝑦𝑖 − 𝑎 𝑗 ))2𝑖, 𝑗=1

(1 − 𝑡)𝑝1(𝑎1)𝑝1(𝑎2)
≤ 1
(1−𝑡)2 𝑒

𝑎2
1+𝑎

2
2

2 ≤ 1
(1−𝛿)2 𝑒

𝑀2
.

If (𝑦1 − 𝑦2) (𝑎1 − 𝑎2) ≤ 1 − 𝑡, we utilize the elementary inequality that 𝛾(𝑒
1
𝛾 − 1) ≤ 𝑒 − 1, for all

𝛾 ≥ 1. Indeed, taking 𝛾 = 1−𝑡
(𝑦1−𝑦2) (𝑎1−𝑎2) ≥ 1 in this case we have

r.h.s. of (5.5.6) ≤ 𝑝1−𝑡 (𝑦1 − 𝑎2)𝑝1−𝑡 (𝑦2 − 𝑎1)
(1 − 𝑡)𝑝1(𝑎1)𝑝1(𝑎2)

(𝑒 − 1) ≤ 2
(1−𝑡)2 𝑒

𝑎2
1+𝑎

2
2

2 ≤ 2
(1−𝛿)2 𝑒

𝑀2
.

Combining both cases yields the desired result.

5.5.2 Uniform separation and diffusive limits

The main goal of this subsection is to prove Proposition 5.5.6 and Proposition 5.5.8. Propo-

sition 5.5.6 highlights a uniform separation between the two parts of the NonInt-BrBridge de-

fined in Definition 5.4.4, while Proposition 5.5.8 shows DBMs are obtained as diffusive limits of

NonInt-BrBridges.

Proposition 5.5.6. Fix 𝑀 > 0. Let (𝑉 (𝑛)1 , 𝑉
(𝑛)
2 ) be a sequence of NonInt-BrBridges (see Definition

5.4.4) on [0, 1] beginning at 0 and ending at (𝑎 (𝑛)1 , 𝑎
(𝑛)
2 ). Suppose that 𝑎 (𝑛)1 − 𝑎 (𝑛)2 > 1

𝑀
and

|𝑎 (𝑛)
𝑖
| ≤ 𝑀 for all 𝑛 and 𝑖 = 1, 2. Then for all 𝜌 > 0, we have

lim sup
𝜃→∞

lim sup
𝑛→∞

P
(∫ 𝑛

𝜃

exp
(
−
√
𝑛
[
𝑉
(𝑛)
1 (

𝑦

𝑛
) −𝑉 (𝑛)2 (

𝑦

𝑛
)
] )

d𝑦 ≥ 𝜌
)
= 0. (5.5.7)

Recall that by Lemma 5.4.6, the difference of the two parts of NonInt-BrBridge is given by

a Bessel bridge (upto a constant). Hence we can recast the above result in terms of separations

between Bessel bridges from the 𝑥-axis as well.

Corollary 5.5.7. Fix 𝑀 > 0. Let R (𝑛)bb be a sequence of Bessel bridges (see Definition 5.4.1) on

[0, 1] beginning at 0 and ending at 𝑎 (𝑛) . Suppose that 𝑀 > 𝑎
(𝑛)
1 > 1

𝑀
for all 𝑛. Then for all 𝜌 > 0,
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we have

lim sup
𝜃→∞

lim sup
𝑛→∞

P
(∫ 𝑛

𝜃

exp
(
−
√
𝑛R (𝑛)bb (

𝑦

𝑛
)
)

d𝑦 ≥ 𝜌
)
= 0.

Proof of Proposition 5.5.6. We fix 𝛿 ∈ (0, 1
4 ). To prove the inequality in (5.5.7), we divide the in-

tegral from 𝜃 to 𝑛 into two parts: (𝜃, 𝑛𝛿) and [𝑛𝛿, 𝑛) for some 𝛿 ∈ (0, 1) and 𝑛 large and prove each

one separately. For the interval (𝑛𝛿, 𝑛) interval, we use the fact that the non-intersecting Brownian

bridges 𝑉 (𝑛)1 (𝑦), 𝑉
(𝑛)
2 (𝑦) are separated by a uniform distance when away from 0. For the smaller

interval (𝜃, 𝑛𝛿) close to 0, we define a Gap𝑛,𝜃,𝛿 event that occurs with high probability and utilize

Lemmas 5.5.4 and 5.5.5 to transform the computations of NonInt-BrBridge into those of the DBM

to simplify the proof.

We now fill out the details of the above road-map. First, as (𝑉 (𝑛)1 , 𝑉
(𝑛)
2 ) are non-intersecting

Brownian bridges on [0, 1] starting from 0 and ending at two points which are within [−𝑀, 𝑀]

and are separated by at least 1
𝑀

, for every 𝜆, 𝛿 > 0, there exists 𝛼(𝑀, 𝛿, 𝜆) > 0 small enough such

that

P
(
𝑉
(𝑛)
1 (𝑦) −𝑉

(𝑛)
2 (𝑦) ≥ 𝛼,∀𝑦 ∈ [𝛿, 1]

)
≥ 1 − 𝜆. (5.5.8)

(5.5.8) implies that with probability at least 1 − 𝜆,

∫ 𝑛

𝑛𝛿

exp
(
−
√
𝑛
[
𝑉
(𝑛)
1 (

𝑦

𝑛
) −𝑉 (𝑛)2 (

𝑦

𝑛
)
] )

d𝑦 ≤ (𝑛 − 𝑛𝛿)𝑒−
√
𝑛𝛼 (5.5.9)

which converges to 0 as 𝑛→∞. Next we define the event

Gap𝑛,𝜃,𝛿 :=
{√
𝑛
[
𝑉
(𝑛)
1 (

𝑦

𝑛
) −𝑉 (𝑛)2 (

𝑦

𝑛
)
]
≥ 𝑦 1

4 ,∀𝑦 ∈ [𝜃, 𝑛𝛿]
}
.
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We claim that ¬Gap𝑛,𝜃,𝛿 event is negligible in the sense that

lim sup
𝜃→∞

lim sup
𝑛→∞

P(¬Gap𝑛,𝜃,𝛿) = 0. (5.5.10)

Note that on Gap𝑛,𝜃,𝛿 event, we have

∫ 𝑛𝛿

𝜃

exp
(
−
√
𝑛
[
𝑉
(𝑛)
1 (

𝑦

𝑛
) −𝑉 (𝑛)2 (

𝑦

𝑛
)
] )

d𝑦 ≤
∫ 𝑛𝛿

𝜃

exp(−𝑦1/4)d𝑦 (5.5.11)

which goes to zero as 𝑛 → ∞, followed by 𝜃 → ∞. In view of the probability estimates from

(5.5.8) and (5.5.9), combining (5.5.10) and (5.5.11) yields

lim sup
𝜃→∞

lim sup
𝑛→∞

P
(∫ 𝑛

𝜃

exp
(
−
√
𝑛
[
𝑉
(𝑛)
1 (

𝑦

𝑛
) −𝑉 (𝑛)2 (

𝑦

𝑛
)
] )

d𝑦 ≥ 𝜌
)
≤ 𝜆. (5.5.12)

Since 𝜆 is arbitrary, (5.5.12) completes the proof. Hence it suffices to show (5.5.10). Towards this

end, by the properties of the conditional expectation, if we condition on the values of𝑉 (𝑛)1 (2𝛿), 𝑉
(𝑛)
2 (2𝛿),

we have that

P(¬Gap𝑛,𝜃,𝛿) = E
[
P

(
¬Gap𝑛,𝜃,𝛿 |𝑉

(𝑛)
1 (2𝛿), 𝑉

(𝑛)
2 (2𝛿)

)]
=

∫
𝑦1>𝑦2

P𝑦1,𝑦2 (¬Gap𝑛,𝜃,𝛿)P(𝑉
(𝑛)
1 (2𝛿) ∈ d𝑦1, 𝑉

(𝑛)
2 (2𝛿) ∈ d𝑦2) (5.5.13)

where P𝑦1,𝑦2 is the conditional law of NonInt-BrBridge conditioned on (𝑉 (𝑛)1 (2𝛿) = 𝑦1, 𝑉
(𝑛)
2 (2𝛿) =

𝑦2). Note that Gap𝑛,𝜃,𝛿 event depends only on the [0, 𝛿] path of the NonInt-BrBridge. Thus by

Markovian property of the NonInt-BrBridge, P𝑦1,𝑦2 (Gap𝑛,𝜃,𝛿) can be computed by assuming the

NonInt-BrBridge is on [0, 2𝛿] and ends at (𝑦1, 𝑦2).

On the other hand, P(𝑉𝑛1 (2𝛿) ∈ d𝑦1, 𝑉
𝑛
2 (2𝛿) ∈ d𝑦2) is the probability density function of the

marginal density of NonInt-BrBridge on [0, 1]. Via Lemma 5.5.5, this is comparable to the density

of (D1(2𝛿),D2(2𝛿)), where D follows DBM law defined in Definition 5.5.1. Thus by (5.5.4) the
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r.h.s of (5.5.13) is bounded from above by

r.h.s of (5.5.13) ≤ C𝑀,2𝛿

∫
P𝑦1,𝑦2 (¬Gap𝑛,𝜃,𝛿)P(D1(2𝛿) ∈ d𝑦1,D2(2𝛿) ∈ d𝑦2)d𝑦1d𝑦2

= C𝑀,2𝛿 · PDyson(¬Gap𝑛,𝜃,𝛿). (5.5.14)

Here the notation PDyson means the law of the paths (𝑉1, 𝑉2) is assumed to follow DBM law. With

this notation, the last equality of (5.5.14) follows from Lemma 5.5.4. From the density formulas

of DBM from Definition 5.5.1, it is clear that DBM is invariant under diffusive scaling, i.e.

√
𝑛(D1( ·𝑛 ),D2( ·𝑛 ))

𝑑
= (D1(·),D2(·)) (5.5.15)

and by Lemma 5.5.3, D1(·) − D2(·) = R2(·), a 3D Bessel process with diffusion coefficient 2.

Thus, we obtain that for any 𝑛 ∈ N,

PDyson(¬Gap𝑛,𝜃,𝛿) ≤ P(R2(𝑦) ≤ 𝑦1/4, for some 𝑦 ∈ [𝜃,∞)). (5.5.16)

Meanwhile, Motoo’s theorem [257] tells us that

lim sup
𝜃→∞

P(R2(𝑦) ≤ 𝑦1/4, for some 𝑦 ∈ [𝜃,∞)) = 0. (5.5.17)

Hence (5.5.14), (5.5.16) and (5.5.17) imply (5.5.10). This completes the proof.

We now state our results related to the diffusive limits of NonInt-BrBridge (defined in Defini-

tion 5.4.4) and Bessel bridges (defined in Definition 5.4.1) with varying endpoints.

Proposition 5.5.8. Fix 𝑀 > 0. Let𝑉 (𝑛) = (𝑉 (𝑛)1 , 𝑉
(𝑛)
2 ) : [0, 𝑎𝑛] → R be a sequence of NonInt-BrBridges

(defined in Definition 5.4.4) with 𝑉 (𝑛)
𝑖
(0) = 0 and 𝑉 (𝑛)

𝑖
(𝑎𝑛) = 𝑧(𝑛)𝑖 . Suppose that for all 𝑛 ≥ 1 and

𝑖 = 1, 2, 𝑀 > 𝑎𝑛 >
1
𝑀

and |𝑧(𝑛)
𝑖
| < 1

𝑀
. Then as 𝑛→∞ we have:

√
𝑛
(
𝑉
(𝑛)
1 (

𝑡
𝑛
), 𝑉 (𝑛)2 (

𝑡
𝑛
)
) 𝑑→ (D1(𝑡),D2(𝑡))
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in the uniform-on-compact topology. Here D is a DBM defined in Definition 5.5.1.

In view of Lemma 5.4.6 and Lemma 5.5.3, Proposition 5.5.8 also leads to the following corol-

lary.

Corollary 5.5.9. Fix 𝑀 > 0. Let R (𝑛)bb : [0, 𝑎𝑛] → R be a sequence of Bessel bridges (defined in

Definition 5.4.1) with R (𝑛)bb (0) = 0 and R (𝑛)bb (𝑎𝑛) = 𝑧
(𝑛) . Suppose for all 𝑛 ≥ 1, 𝑀 > 𝑎𝑛 >

1
𝑀

and

|𝑧(𝑛) | < 1
𝑀

. Then as 𝑛→∞ we have:

√
𝑛R (𝑛)bb (

𝑡
𝑛
) 𝑑→ R1(𝑡)

in the uniform-on-compact topology. Here R1 is a Bessel process with diffusion coefficient 1,

defined in Definition 5.5.2.

Proof of Proposition 5.5.8. For convenience, we drop the superscript (𝑛) from 𝑉1, 𝑉2 and 𝑧𝑖’s. We

proceed by showing convergence of one-point densities and transition densities of
√
𝑛(𝑉1( 𝑡𝑛 ), 𝑉2( 𝑡𝑛 ))

to that of DBM and then verifying the tightness of the sequence. Fix any 𝑡 > 0. For each fixed

𝑦1 > 𝑦2, it is not hard to check that we have as 𝑛→∞

𝑎𝑛
√
𝑛 det(𝑝𝑎𝑛− 𝑡𝑛 (

𝑦𝑖√
𝑛
− 𝑧 𝑗 ))2𝑖, 𝑗=1

(𝑧1 − 𝑧2)𝑝𝑎𝑛 (𝑧1)𝑝𝑎𝑛 (𝑧2)
→ 𝑦1 − 𝑦2. (5.5.18)

uniformly over 𝑎𝑛 ∈ [ 1
𝑀
, 𝑀] and 𝑧1, 𝑧2 ∈ [−𝑀, 𝑀].

Utilizing the one-point densities and transition densities formulas for NonInt-BrBridge of

length 1 in Definition 5.4.4, we may perform a Brownian rescaling to get analogous formulas

for 𝑉1, 𝑉2 which are NonInt-BrBridge of length 𝑎𝑛. Then by a change of variable, the density of

(
√
𝑛𝑉1( 𝑡𝑛 ),

√
𝑛𝑉2( 𝑡𝑛 )) is given by

𝑎𝑛 (𝑦1 − 𝑦2)𝑝𝑡 (𝑦1)𝑝𝑡 (𝑦2)
𝑡 (𝑧1 − 𝑧2)𝑝𝑎𝑛 (𝑧1)𝑝𝑎𝑛 (𝑧2)

√
𝑛 det(𝑝𝑎𝑛− 𝑡𝑛 (

𝑦𝑖√
𝑛
− 𝑧 𝑗 ))2𝑖, 𝑗=1.

Using (5.5.18) we see that for each fixed 𝑦1 > 𝑦2, the above expression goes to (𝑦1−𝑦2)2
𝑡

𝑝𝑡 (𝑦1)𝑝𝑡 (𝑦2)
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which matches with (5.5.1).

Similarly for the transition probability, letting 0 < 𝑠 < 𝑡 < 𝑎𝑛, 𝑦1 > 𝑦2 and 𝑥1 > 𝑥2, we have

P
(√
𝑛𝑉1( 𝑡𝑛 ) ∈ d𝑦1,

√
𝑛𝑉2( 𝑡𝑛 ) ∈ d𝑦2 |

√
𝑛𝑉1( 𝑠𝑛 ) ∈ d𝑥1,

√
𝑛𝑉2( 𝑠𝑛 ) ∈ d𝑥2

)
= det(𝑝𝑡−𝑠 (𝑦𝑖 − 𝑥 𝑗 ))2𝑖, 𝑗=1

det(𝑝𝑎𝑛− 𝑡𝑛 (
𝑦𝑖√
𝑛
− 𝑧 𝑗 ))2𝑖, 𝑗=1

det(𝑝𝑎𝑛− 𝑠𝑛 (
𝑥𝑖√
𝑛
− 𝑧 𝑗 ))2𝑖, 𝑗=1

d𝑦1d𝑦2. (5.5.19)

Applying (5.5.18) we see that as 𝑛→∞

r.h.s of (5.5.19)→ det(𝑝𝑡−𝑠 (𝑥𝑖 − 𝑦 𝑗 ))2𝑖, 𝑗=1 ·
𝑦1 − 𝑦2
𝑥1 − 𝑥2

.

which matches with (5.5.2). This verifies the finite dimensional convergence by Scheffe’s theorem.

For tightness we will show that there exists a constant C𝐾,𝑀 > 0 such that for all 0 < 𝑠 < 𝑡 < 𝐾 ,

2∑︁
𝑖=1

E
[ (√

𝑛𝑉𝑖 ( 𝑡𝑛 ) −
√
𝑛𝑉𝑖 ( 𝑠𝑛 )

)4
]
≤ C𝐾,𝑀 (𝑡 − 𝑠)2. (5.5.20)

We compute the above expectation by comparing with DBM as was done in the proof of Proposi-

tion 5.5.6. Using definition of the conditional expectation we have

E
[ (√

𝑛𝑉𝑖 ( 𝑡𝑛 ) −
√
𝑛𝑉𝑖 ( 𝑠𝑛 )

)4
]

=

∫
𝑦1>𝑦2

E
[ (√

𝑛𝑉𝑖 ( 𝑡𝑛 ) −
√
𝑛𝑉𝑖 ( 𝑠𝑛 )

)4 | 𝑉1( 𝐾𝑛 ) = 𝑦1, 𝑉1( 𝐾𝑛 ) = 𝑦2

]
P(𝑉1( 𝐾𝑛 ) ∈ d𝑦1, 𝑉2( 𝐾𝑛 ) ∈ d𝑦2)

≤ C𝐾,𝑀
∫
𝑦1>𝑦2

E
[ (√

𝑛𝑉𝑖 ( 𝑡𝑛 ) −
√
𝑛𝑉𝑖 ( 𝑠𝑛 )

)4 | 𝑉1( 𝐾𝑛 ) = 𝑦1, 𝑉1( 𝐾𝑛 ) = 𝑦2

]
P(D1( 𝐾𝑛 ) ∈ d𝑦1,D2( 𝐾𝑛 ) ∈ d𝑦2)

where the last inequality follows from Lemma 5.5.5 by taking 𝑛 large enough. HereD = (D1,D2)

follows DBM law. Due to Lemma 5.5.4 and (5.5.15) the last integral above is precisely E[(D𝑖 (𝑡) −

D𝑖 (𝑠))4]. Hence it suffices to show

E[(D𝑖 (𝑡) − D𝑖 (𝑠))4] ≤ C(𝑡 − 𝑠)2. (5.5.21)
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By Lemma 5.5.3, we see
√

2𝐵(𝑥) := D1(𝑥) +D2(𝑥) and
√

2R(𝑥) := D1(𝑥) −D2(𝑥) are a standard

Brownian motion and a 3D Bessel process with diffusion coefficient 1 respectively. We have

E[(D𝑖 (𝑡) − D𝑖 (𝑠))4] ≤ C
[
E[(R(𝑡) − R(𝑠))4] + E[(𝐵(𝑡) − 𝐵(𝑠))4]

]
.

We have E[(𝐵(𝑡) −𝐵(𝑠))4] = 3(𝑡− 𝑠)2, whereas for R(·), we use Pitman’s theorem [284, Theorem

VI.3.5], to get that R(𝑡) 𝑑= 2𝑀 (𝑡) − 𝐵(𝑡), where 𝐵 is a Brownian motion and 𝑀 (𝑡) = sup𝑢≤𝑡 𝐵(𝑢).

Thus,

E[(R(𝑡) − R(𝑠))4] ≤ C
[
E[(𝑀 (𝑡) − 𝑀 (𝑠))4] + E[(𝐵(𝑡) − 𝐵(𝑠))4]

]
≤ C

[
E
[ (

sup
𝑠≤𝑢≤𝑡

𝐵(𝑢) − 𝐵(𝑠)
)4] + E[(𝐵(𝑡) − 𝐵(𝑠))4]

]
.

Clearly both the expressions above are at most C(𝑡 − 𝑠)2. This implies (5.5.21) completing the

proof.

5.6 Ergodicity and Bessel behavior of the KPZ equation

The goal of this section is to prove Theorems 5.1.10 and 5.1.11. As the proof of the latter is

shorter and illustrates some of the ideas behind the proof of the former, we first tackle Theorem

5.1.11 in Section 5.6.1. After that in Section 5.6.2, we state a general version of the 𝑘 = 2 case of

Theorem 5.1.10, namely Proposition 5.6.1. This proposition will then be utilized in the proof of

Theorem 5.1.4. Finally in Section 5.6.3, we show how to obtain Theorem 5.1.10 from Proposition

5.6.1.

5.6.1 Proof of Theorem 5.1.11

For clarity we divide the proof into several steps.

Step 1. In this step, we introduce necessary notations used in the proof and explain the heuristic

idea behind the proof.
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Fix any 𝑎 > 0. Consider any Borel set 𝐴 of 𝐶 ( [−𝑎, 𝑎]) which is also a continuity set of a

two-sided Brownian motion 𝐵(𝑥) restricted to [−𝑎, 𝑎]. By Portmanteau theorem, it suffices to

show

P((H (·, 𝑡) − H (0, 𝑡) ∈ 𝐴) → P(𝐵(·) ∈ 𝐴). (5.6.1)

For simplicity let us write P𝑡 (𝐴) := P((H (·, 𝑡) − H (0, 𝑡) ∈ 𝐴). Using (5.2.6) we have H(𝑥, 𝑡) −

H (0, 𝑡) = 𝑡1/3(𝔥𝑡 (𝑡−2/3𝑥) − 𝔥𝑡 (0)). Recall that 𝔥𝑡 (·) = 𝔥
(1)
𝑡 (·) can be viewed as the top curve of the

KPZ line ensemble {𝔥(𝑛)𝑡 (·)}𝑛∈N which satisfies the H𝑡-Brownian Gibbs property with H𝑡 given by

(5.2.4).

Note that at the level of the scaled KPZ line ensembles we are interested in understanding the

law of 𝔥(1)𝑡 (·) restricted to a very small interval: 𝑥 ∈ [−𝑡−2/3𝑎, 𝑡−2/3𝑎]. At such a small scale, we

expect the Radon-Nikodym derivative appearing in (5.2.3) to be very close to 1. Hence the law

of top curve should be close to a Brownian bridge with appropriate end points. To get rid of the

endpoints we employ the following strategy, which is also illustrated in Figure 5.5 and its caption.

• We start with a slightly larger but still vanishing interval 𝐼𝑡 := (−𝑡−𝛼, 𝑡−𝛼) with 𝛼 = 1
6 say.

We show that conditioned on the end points 𝔥
(1)
𝑡 (−𝑡−𝛼), 𝔥

(1)
𝑡 (𝑡−𝛼) of the first curve and the

second curve 𝔥
(2)
𝑡 , the law of 𝔥(1)𝑡 is close to that of a Brownian bridge on 𝐼𝑡 starting and

ending at 𝔥(1)𝑡 (−𝑡−𝛼) and 𝔥
(1)
𝑡 (𝑡−𝛼) respectively.

• Once we probe further into an even narrower window of [−𝑡2/3𝑎, 𝑡2/3𝑎], the Brownian bridge

no longer feels the effect of the endpoints and one gets a Brownian motion in the limit.

Step 2. In this step and next step, we give a technical roadmap of the heuristics presented in Step

1. Set 𝛼 = 1
6 and consider the small interval 𝐼𝑡 = (𝑡−𝛼, 𝑡−𝛼). Let F be the 𝜎-field generated by

F := 𝜎
(
{𝔥(1)𝑡 (𝑥)}𝑥∈𝐼𝑐𝑡 , {𝔥

(𝑛)
𝑡 (·)}𝑛≥2

)
. (5.6.2)
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Figure 5.5: Illustration of the proof of Theorem 5.1.11. In a window of [𝑡−𝛼, 𝑡𝛼], the curves
𝔥
(1)
𝑡 (𝑥), 𝔥

(2)
𝑡 (𝑥) attains an uniform gap with high probability. This allows us to show law of 𝔥(1)𝑡 on

that small patch is close to a Brownian bridge. Upon zooming in a the tiny interval [−𝑡2/3𝑎, 𝑡2/3𝑎]
we get a two-sided Brownian bridge as explained in Step 1 of the proof.

Fix any arbitrary 𝛿 > 0 and consider the following three events:

Gap𝑡 (𝛿) :=
{
𝔥
(2)
𝑡 (−𝑡−𝛼) ≤ min{𝔥(1)𝑡 (𝑡−𝛼), 𝔥

(1)
𝑡 (−𝑡−𝛼)} − 𝛿

}
, (5.6.3)

Rise𝑡 (𝛿) :=
{
sup
𝑥∈𝐼𝑡

𝔥
(2)
𝑡 (𝑥) ≤ 1

4𝛿 + 𝔥
(2)
𝑡 (−𝑡−𝛼)

}
, (5.6.4)

Tight𝑡 (𝛿) :=
{
−𝛿−1 ≤ 𝔥

(1)
𝑡 (𝑡−𝛼), 𝔥

(1)
𝑡 (−𝑡−𝛼) ≤ 𝛿−1

}
. (5.6.5)

Note that all the above events are measurable w.r.t. F . A visual interpretation of the above events

are given later in Figure 5.6. Since the underlying curves are continuous almost surely, while

specifying events over 𝐼𝑡 , such as the Rise𝑡 (𝛿) event defined in (5.6.4), one may replace 𝐼𝑡 by its

closure 𝐼 𝑡 = [−𝑡−𝛼, 𝑡−𝛼] as well; the events will remain equal almost surely. We will often make

use of this fact, and will not make a clear distinction between 𝐼𝑡 and 𝐼 𝑡 .
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We set

Fav𝑡 (𝛿) := Gap𝑡 (𝛿) ∩ Rise𝑡 (𝛿) ∩ Tight𝑡 (𝛿). (5.6.6)

The Fav𝑡 (𝛿) event is a favorable event in the sense that given any 𝜀 > 0, there exists 𝛿0 ∈ (0, 1)

such that for all 𝛿 ∈ (0, 𝛿0)

lim inf
𝑡→∞

Fav𝑡 (𝛿) ≥ 1 − 𝜀. (5.6.7)

We will prove (5.6.7) in Step 4. For the moment, we assume this and continue with our calcula-

tions. We now proceed to find tight upper and lower bounds for P𝑡 (𝐴) = P((H (·, 𝑡)−H (0, 𝑡) ∈ 𝐴).

Recall the 𝜎-field F from (5.6.2). Note that using the tower property of the conditional expectation

we have

P𝑡 (𝐴) = E [P𝑡 (𝐴 | F )] ≥ E [1{Fav𝑡 (𝛿)}P𝑡 (𝐴 | F )] . (5.6.8)

P𝑡 (𝐴) = E [P𝑡 (𝐴 | F )] ≤ E [1{Fav𝑡 (𝛿)}P𝑡 (𝐴 | F )] + P (¬Fav𝑡 (𝛿)) . (5.6.9)

Applying the H𝑡-Brownian Gibbs property for the interval 𝐼𝑡 we have

P𝑡 (𝐴 | F ) = P1,1,𝐼𝑡 ,𝔥𝑡 (−𝑡−𝛼),𝔥𝑡 (𝑡−𝛼),𝔥(2)𝑡
H𝑡

(𝐴) =
Efree,𝑡 [𝑊1𝐴]
Efree,𝑡 [𝑊]

, (5.6.10)

where

𝑊 := exp
(
−𝑡2/3

∫ 𝑡−𝛼

𝑡−𝛼
𝑒𝑡

1/3 (𝔥(2)𝑡 (𝑥)−𝔥
(1)
𝑡 (𝑥))d𝑥

)
(5.6.11)

and Pfree,𝑡 := P1,1,𝐼𝑡 ,𝔥𝑡 (−𝑡−𝛼),𝔥𝑡 (𝑡−𝛼)
free and Efree,𝑡 := E1,1,𝐼𝑡 ,𝔥𝑡 (−𝑡−𝛼),𝔥𝑡 (𝑡−𝛼)

free are the probability and the

expectation operator respectively for a Brownian bridge 𝐵1(·) on 𝐼𝑡 starting at 𝔥𝑡 (−𝑡−𝛼) and ending
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at 𝔥𝑡 (𝑡−𝛼). Note that the second equality in (5.6.10) follows from (5.2.3). We now seek to find

upper and lower bounds for r.h.s. of (5.6.10). For𝑊 , we have the trivial upper bound: 𝑊 ≤ 1. For

the lower bound, we claim that there exists 𝑡0(𝛿) > 0, such that for all 𝑡 ≥ 𝑡0, we have

1{Fav𝑡 (𝛿)}Pfree,𝑡 (𝑊 ≥ 1 − 𝛿) ≥ 1{Fav𝑡 (𝛿)}(1 − 𝛿). (5.6.12)

Note that (5.6.12) suggests that the 𝑊 is close to 1 with high probability. This is the technical

expression of the first conceptual step that we highlighted in Step 1. In the similar spirit for the

second conceptual step, we claim that there exists 𝑡0(𝛿) > 0, such that for all 𝑡 ≥ 𝑡0, we have

1{Fav𝑡 (𝛿)}
��Pfree,𝑡 (𝐴) − 𝛾(𝐴)

�� ≤ 1{Fav𝑡 (𝛿)} · 𝛿, (5.6.13)

where 𝛾(𝐴) := P(𝐵(·) ∈ 𝐴) ∈ [0, 1]. We remark that the l.h.s. of (5.6.12) and (5.6.13) are random

variables measurable w.r.t. F . The inequalities above hold pointwise. We will prove (5.6.12) and

(5.6.13) in Step 5 and Step 6 respectively. We next complete the proof of the Theorem 5.1.11

assuming the above claims.

Step 3. In this step we assume (5.6.7), (5.6.12), and (5.6.13) and complete the proof of (5.6.1). Fix

any 𝜀 ∈ (0, 1). Get a 𝛿0 ∈ (0, 1), so that (5.6.7) is true for all 𝛿 ∈ (0, 𝛿0). Fix any such 𝛿 ∈ (0, 𝛿0).

Get 𝑡0(𝛿) large enough so that both (5.6.12) and (5.6.13) hold for all 𝑡 ≥ 𝑡0. Fix any such 𝑡 ≥ 𝑡0.

As𝑊 ≤ 1, we note that on the event Fav𝑡 (𝛿),

Efree,𝑡 [𝑊1𝐴]
Efree,𝑡 [𝑊]

≥ Efree,𝑡 [𝑊1𝐴]

≥ (1 − 𝛿)Pfree,𝑡 (𝐴 ∩ {𝑊 ≥ 1 − 𝛿})

≥ (1 − 𝛿)Pfree,𝑡 (𝐴) − (1 − 𝛿)Pfree,𝑡 (𝑊 < 1 − 𝛿)

≥ (1 − 𝛿)Pfree,𝑡 (𝐴) − (1 − 𝛿)𝛿,
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where in the last line we used (5.6.12). Plugging this bound back in (5.6.8) we get

P𝑡 (𝐴) ≥ (1 − 𝛿)E
[
1{Fav𝑡 (𝛿)}Pfree,𝑡 (𝐴)

]
− (1 − 𝛿)𝛿

≥ (1 − 𝛿)E [1{Fav𝑡 (𝛿)}𝛾(𝐴) − 𝛿] − (1 − 𝛿)𝛿

= 𝛾(𝐴) (1 − 𝛿)P(Fav𝑡 (𝛿)) − 2𝛿(1 − 𝛿).

where the inequality in the penultimate line follows from (5.6.13). Taking lim inf both sides as

𝑡 →∞, in view of (5.6.7) we see that

lim inf
𝑡→∞

P𝑡 (𝐴) ≥ (1 − 𝛿) (1 − 𝜀)𝛾(𝐴) − 2𝛿(1 − 𝛿).

Taking lim inf𝛿↓0 and using the fact that 𝜀 is arbitrary, we get that lim inf𝑡→∞ P𝑡 (𝐴) ≥ 𝛾(𝐴).

Similarly for the upper bound, on the event Fav𝑡 (𝛿) we have

Efree,𝑡 [𝑊1𝐴]
Efree,𝑡 [𝑊]

≤
Pfree,𝑡 (𝐴)

(1 − 𝛿)Pfree,𝑡 (𝑊 ≥ 1 − 𝛿) ≤
1

(1 − 𝛿)2
Pfree,𝑡 (𝐴),

where we again use (5.6.12) for the last inequality. Inserting the above bound in (5.6.9) we get

P𝑡 (𝐴) ≤
1

(1 − 𝛿)2
E

[
1{Fav𝑡 (𝛿)}Pfree,𝑡 (𝐴)

]
+ P (¬Fav𝑡 (𝛿))

≤ 𝛿

(1 − 𝛿)2
+ 1
(1 − 𝛿)2

E [1{Fav𝑡 (𝛿)}𝛾(𝐴)] + P (¬Fav𝑡 (𝛿))

≤ 𝛿

(1 − 𝛿)2
+ 1
(1 − 𝛿)2

𝛾(𝐴) + P (¬Fav𝑡 (𝛿)) .

The inequality in the penultimate line above follows from (5.6.13). Taking lim sup both sides as

𝑡 →∞, in view of (5.6.7) we see that

lim sup
𝑡→∞

P𝑡 (𝐴) ≤
𝛿

(1 − 𝛿)2
+ 1
(1 − 𝛿)2

𝛾(𝐴) + 𝜀.

As before taking lim sup𝛿↓0 and using the fact that 𝜀 is arbitrary, we get that lim sup𝑡→∞ P𝑡 (𝐴) ≤
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Figure 5.6: In the above figure Gap𝑡 (𝛿) defined in (5.6.3) denotes the event that the value of the
blue point is smaller than the value of each of the red points at least by 𝛿, The Rise𝑡 (𝛿) event
defined in (5.6.4) requires no point on the whole blue curve (restricted to 𝐼𝑡 = (−𝑡−𝛼, 𝑡−𝛼)) exceed
the value of the blue point by a factor 1

4𝛿 (i.e., there is no significant rise). The Tight𝑡 (𝛿) defined
in (5.6.5) event ensures the value of the red points are within [−𝛿−1, 𝛿−1]. The Fluc(𝑖)𝑡 (𝛿) event
defined in (5.6.15) signifies every value of every point on the 𝑖-th curve (restricted to 𝐼𝑡) is within
1
4𝛿 distance away from its value on the left boundary: 𝔥(1)𝑡 (−𝑡−𝛼). Finally, Sink𝑡 (𝛿) event defined
in (5.6.20) denotes the event that no point on the black curve (restricted to 𝐼𝑡) drops below the value
of the red points by a factor larger than 1

4𝛿, (i.e., there is no significant sink).

𝛾(𝐴). With the matching upper bound for lim inf derived above, we thus arrive at (5.6.1), com-

pleting the proof of Theorem 5.1.11.

Step 4. In this step we prove (5.6.7). Fix any 𝛿 > 0. Recall the distributional convergence of KPZ

line ensemble to Airy line ensemble from Proposition 5.2.7. By the Skorokhod representation

theorem, we may assume that our probability space are equipped with A1(𝑥) A2(𝑥), such that as

𝑡 →∞, almost surely we have

max
𝑖=1,2

sup
𝑥∈[−1,1]

|21/3𝔥(𝑖)𝑡 (21/3𝑥) − A𝑖 (𝑥) | → 0. (5.6.14)
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For 𝑖 = 1, 2, consider the event

Fluc(𝑖)𝑡 (𝛿) :=
{
sup
𝑥∈𝐼𝑡
|𝔥(𝑖)𝑡 (𝑥) − 𝔥

(𝑖)
𝑡 (−𝑡−𝛼) | ≤ 1

4𝛿

}
. (5.6.15)

See Figure 5.6 and its caption for an interpretation of this event. We claim that for every 𝛿 > 0,

lim inf
𝑡→∞

P
(
Fluc(𝑖)𝑡 (𝛿)

)
= 1. (5.6.16)

Let us complete the proof of (5.6.7) assuming (5.6.16). Fix any 𝜀 > 0. Note that {|𝔥(1)𝑡 (−𝑡−𝛼) −

𝔥
(1)
𝑡 (𝑡−𝛼) | ≤ 1

4𝛿} ⊃ Fluc(1)𝑡 (𝛿). Recall Gap𝑡 (𝛿) from (5.6.3). Observe that

¬Gap𝑡 (𝛿) ∩
{
|𝔥(1)𝑡 (−𝑡−𝛼) − 𝔥

(1)
𝑡 (𝑡−𝛼) | ≤ 1

4𝛿
}
⊂

{
𝔥
(2)
𝑡 (−𝑡𝛼) − 𝔥

(1)
𝑡 (−𝑡−𝛼) ≥ −5

4𝛿
}

⊂
{

inf
𝑥∈[−1,0]

[𝔥(2)𝑡 (𝑥) − 𝔥
(1)
𝑡 (𝑥)] ≥ −5

4𝛿

}
.

Using these two preceding set relations, by union bound we have

P
(
¬Gap𝑡 (𝛿)

)
≤ P

(
|𝔥(1)𝑡 (−𝑡−𝛼) − 𝔥

(1)
𝑡 (𝑡−𝛼) | ≥ 1

4𝛿
)
+ P

(
¬Gap𝑡 (𝛿) ∩ |𝔥

(1)
𝑡 (−𝑡−𝛼) − 𝔥

(1)
𝑡 (𝑡−𝛼) | ≤ 1

4𝛿
)

≤ P
(
¬Rise(1)𝑡 (𝛿)

)
+ P

(
inf

𝑥∈[−1,0]
[𝔥(2)𝑡 (𝑥) − 𝔥

(1)
𝑡 (𝑥)] ≥ −5

4𝛿

)
.

As 𝑡 → ∞, the first term goes to zero due (5.6.16) and by Proposition 5.2.7, the second term goes

to

P
(

inf
𝑥∈[−1,0]

[A2(2−1/3𝑥) − A1(2−1/3𝑥)] ≥ − 5
4·21/3 𝛿

)
.

But by (5.2.1) we know Airy line ensembles are strictly ordered. Thus the above probability can

be made arbitrarily small be choose 𝛿 small enough. In particular, there exists a 𝛿1 ∈ (0, 1) such

that for all 𝛿 ∈ (0, 𝛿1) the above probability is always less than 𝜀
2 . This forces

lim inf
𝑡→∞

P
(
Gap𝑡 (𝛿)

)
≥ 1 − 𝜀

2 . (5.6.17)
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Recall Rise𝑡 (𝛿) from (5.6.4). Clearly Rise𝑡 (𝛿) ⊂ Fluc(2)𝑡 (𝛿). Thus for every 𝛿 > 0,

lim inf
𝑡→∞

P(Rise𝑡 (𝛿)) = 1. (5.6.18)

Finally using Proposition 5.2.8 (a) and (b) we see that 𝔥(1)𝑡 (𝑡−𝛼), 𝔥
(1)
𝑡 (𝑡−𝛼) are tight. Thus there

exists 𝛿2 ∈ (0, 1) such that for all 𝛿 ∈ (0, 𝛿2), we have

lim inf
𝑡→∞

P
(
Tight𝑡 (𝛿)

)
≥ 1 − 𝜀

2 . (5.6.19)

Combining (5.6.17), (5.6.18), (5.6.19), and recalling the definition of Fav𝑡 (𝛿) from (5.6.6), by

union bound we get (5.6.7) for all 𝛿 ∈ (0,min{𝛿1, 𝛿2}).

Let us now prove (5.6.16). Recall Fluc(𝑖)𝑡 (𝛿) from (5.6.15). Define the event:

Conv𝑡 (𝛿) :=

{
sup

𝑥∈[−1,1]
|𝔥(𝑖)𝑡 (𝑥) − 2−1/3A𝑖 (2−1/3𝑥) | ≤ 1

16𝛿

}
.

Observe that

{
¬Fluc(𝑖)𝑡 (𝛿),Conv𝑡 (𝛿)

}
⊂

{
sup

|𝑥 |≤2−1/3𝑡−𝛼

[
A𝑖 (𝑥) − A𝑖 (−2−1/3𝑡−𝛼)

]
≥ 21/3

8 𝛿

}
.

Thus by union bound

P
(
¬Fluc(𝑖)𝑡 (𝛿)

)
≤ P (¬Conv𝑡 (𝛿)) + P

(
¬Fluc(𝑖)𝑡 (𝛿),Conv𝑡 (𝛿)

)
≤ P (¬Conv𝑡 (𝛿)) + P

(
sup

|𝑥 |≤2−1/3𝑡−𝛼

[
A𝑖 (𝑥) − A𝑖 (−2−1/3𝑡−𝛼)

]
≥ 21/3

8 𝛿

)
.

By (5.6.14), the first term above goes to zero as 𝑡 → ∞, whereas the second term goes to zero

as 𝑡 → ∞, via modulus of continuity of Airy line ensembles from Proposition 5.2.4. Note that

in Proposition 5.2.4 the modulus of continuity is stated for A𝑖 (𝑥) + 𝑥2. However, in the above
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scenario since we deal with a vanishing interval [−2−1/3𝑡−𝛼, 2−1/3𝑡−𝛼], the parabolic term does not

play any role. This establishes (5.6.16).

Step 5. In this step we prove (5.6.12). Let us consider the event

Sink𝑡 (𝛿) :=
{
inf
𝑥∈𝐼𝑡

𝔥
(1)
𝑡 (𝑥) ≥ −1

4𝛿 +min{𝔥𝑡 (−𝑡−𝛼), 𝔥𝑡 (𝑡−𝛼)}
}
. (5.6.20)

See Figure 5.6 and its caption for an interpretation of this event. Recall Gap𝑡 (𝛿) and Rise𝑡 (𝛿)

from (5.6.3) and (5.6.4). Observe that on the event Gap𝑡 (𝛿) ∩Rise𝑡 (𝛿), we have sup𝑥∈𝐼𝑡 𝔥
(2)
𝑡 (𝑥) ≤

min{𝔥𝑡 (−𝑡−𝛼), 𝔥𝑡 (𝑡−𝛼)} − 3
4𝛿. Thus on Gap𝑡 (𝛿) ∩ Rise𝑡 (𝛿) ∩ Sink𝑡 (𝛿), we have

inf
𝑥∈𝐼𝑡

[
𝔥
(1)
𝑡 (𝑥) − 𝔥

(2)
𝑡 (𝑥)

]
≥ 1

2𝛿.

Recall 𝑊 from (5.6.11). On the event {inf𝑥∈𝐼𝑡
[
𝔥
(1)
𝑡 (𝑥) − 𝔥

(2)
𝑡 (𝑥)

]
≥ 1

2𝛿} we have the pointwise

inequality

𝑊 > exp(−2𝑡2/3−𝛼𝑒−
1
2 𝑡

1/3𝛿) ≥ 1 − 𝛿,

where we choose a 𝑡1(𝛿) > 0 so that the last inequality is true for all 𝑡 ≥ 𝑡1. Thus for all 𝑡 ≥ 𝑡1,

1{Fav𝑡 (𝛿)}Pfree,𝑡 (𝑊 ≥ 1 − 𝛿) ≥ 1{Fav𝑡 (𝛿)}Pfree,𝑡 (Sink𝑡 (𝛿)). (5.6.21)

Recall that Pfree,𝑡 denotes the law of a Brownian bridge 𝐵1(·) on 𝐼𝑡 starting at 𝐵1(−𝑡−𝛼) = 𝔥𝑡 (−𝑡−𝛼)

and ending at 𝐵1(𝑡−𝛼) = 𝔥𝑡 (𝑡−𝛼). Let us consider another Brownian bridge 𝐵1(·) on 𝐼𝑡 starting and

ending at min{𝔥𝑡 (−𝑡−𝛼), 𝔥𝑡 (𝑡−𝛼)}. By standard estimates for Brownian bridge (see Lemma 2.11 in

[CH16] for example)

P
(
inf
𝑥∈𝐼𝑡

𝐵1(𝑥) ≥ −1
4𝛿 +min{𝔥𝑡 (−𝑡−𝛼), 𝔥𝑡 (𝑡−𝛼)}

)
= 1 − exp

(
− 𝛿2

8|𝐼𝑡 |

)
= 1 − exp

(
− 𝛿2

16 𝑡
𝛼
)
.

Note that 𝐵1(·) is stochastically larger than 𝐵1(·). Since the above event is increasing, we thus have

Pfree,𝑡 (Sink𝑡 (𝛿)) is at least 1−exp
(
− 𝛿2

16 𝑡
𝛼
)
. We now choose 𝑡2(𝛿) > 0, such that 1−exp

(
− 𝛿2

16 𝑡
𝛼
)
≥

266



1 − 𝛿. Taking 𝑡0 = max{𝑡1, 𝑡2}, we thus get (5.6.12) from (5.6.21).

Step 6. In this step we prove (5.6.13). As before consider the Brownian bridge 𝐵1(·) on 𝐼𝑡 starting

at 𝐵1(−𝑡−𝛼) = 𝔥𝑡 (−𝑡−𝛼) and ending at 𝐵1(𝑡−𝛼) = 𝔥𝑡 (𝑡−𝛼). We may write 𝐵1 as

𝐵1(𝑥) = 𝔥
(1)
𝑡 (−𝑡−𝛼) +

𝑥 + 𝑡−𝛼
2𝑡−𝛼

(𝔥(1)𝑡 (𝑡−𝛼) − 𝔥
(1)
𝑡 (−𝑡−𝛼)) + 𝐵(𝑥).

where 𝐵 is a Brownian bridge on 𝐼𝑡 starting and ending at zero. Thus,

𝑡1/3(𝐵1(𝑡−2/3𝑥) − 𝐵1(0)) = 𝑡1/3
[
𝐵(𝑡−2/3𝑥) − 𝐵(0)

]
+ 1

2 𝑡
𝛼−1/3𝑥(𝔥(1)𝑡 (𝑡−𝛼) − 𝔥

(1)
𝑡 (−𝑡−𝛼)).

(5.6.22)

Recall that 𝛼 = 1
6 . By Brownian scaling, 𝐵∗(𝑥) := 𝑡1/3𝐵(𝑡−2/3𝑥) is a Brownian bridge on the large

interval [−
√
𝑡,
√
𝑡] starting and ending at zero. By computing the covariances, it is easy to check

that as 𝑡 →∞, 𝐵∗(𝑥) − 𝐵∗(0) converges weakly to a two-sided Brownian motion 𝐵(·) on [−𝑎, 𝑎].

This gives us the weak limit for the first term on the r.h.s. of (5.6.22). For the second term, recall

the event Tight𝑡 (𝛿) from (5.6.5). As |𝑥 | ≤ 𝑎, on Tight𝑡 (𝛿), we have

1
2 𝑡
𝛼−1/3𝑥(𝔥(1)𝑡 (𝑡−𝛼) − 𝔥

(1)
𝑡 (−𝑡−𝛼)) ≤ 𝑡−1/6𝑎𝛿−1.

This gives an uniform bound (uniform over the event Fav𝑡 (𝛿)) on the second term in (5.6.22).

Thus as long as the boundary data is in Tight𝑡 (𝛿), Pfree,𝑡 (𝐴) → 𝛾(𝐴) where 𝛾(𝐴) = P(𝐵(·) ∈ 𝐴).

This proves (5.6.13).

5.6.2 Dyson Behavior around joint maximum

In this subsection we state and prove Proposition 5.6.1.

Proposition 5.6.1 (Dyson behavior around joint maximum). Fix 𝑝 ∈ (0, 1). Set 𝑞 = 1 − 𝑝.

Consider 2 independent copies of the KPZ equation H↑(𝑥, 𝑡), and H↓(𝑥, 𝑡), both started from

the narrow wedge initial data. Let M𝑝,𝑡 be the almost sure unique maximizer of the process
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𝑥 ↦→ (H↑(𝑥, 𝑝𝑡) + H↓(𝑥, 𝑞𝑡)) which exists via Lemma 5.3.1. Set

𝐷1(𝑥, 𝑡) := H↑(M𝑝,𝑡 , 𝑝𝑡) − H↑(𝑥 +M𝑝,𝑡 , 𝑝𝑡),

𝐷2(𝑥, 𝑡) := H↓(𝑥 +M𝑝,𝑡 , 𝑞𝑡) − H↓(M𝑝,𝑡 , 𝑞𝑡).
(5.6.23)

As 𝑡 →∞, we have the following convergence in law

(𝐷1(𝑥, 𝑡), 𝐷2(𝑥, 𝑡))
𝑑→ (D1(𝑥),D2(𝑥)) (5.6.24)

in the uniform-on-compact topology. Here D = (D1,D2) : R → R2 is a two-sided DBM, that

is, D+(·) := D(·) | [0,∞) and D−(·) := D(−·) | (−∞,0] are independent copies of DBM defined in

Definition 5.5.1.

For clarity, the proof is completed over several subsections (Sections 5.6.2-5.6.2) below and

we refer to Figure 5.7 for the structure of the proof.

KPZ line ensemble framework

In this subsection, we convert Proposition 5.6.1 into the language of scaled KPZ line ensemble

defined in Proposition 6.5.1. We viewH↑(𝑥, 𝑡) = H (1)𝑡,↑ (𝑥),H↓(𝑥, 𝑡) = H
(1)
𝑡,↓ (𝑥) as the top curves of

two (unscaled) KPZ line ensembles: {H (𝑛)
𝑡,↑ (𝑥),H

(𝑛)
𝑡,↓ (𝑥)}𝑛∈N,𝑥∈R. Following (5.2.5) we define their

scaled versions:

𝔥
(𝑛)
𝑡,↑ (𝑥) := 𝑡−1/3

(
H (𝑛)
𝑡,↑ (𝑡

2/3𝑥) + 𝑡
24

)
, 𝔥

(𝑛)
𝑡,↓ (𝑥) := 𝑡−1/3

(
H (𝑛)
𝑡,↓ (𝑡

2/3𝑥) + 𝑡
24

)
.

Along with the full maximizerM𝑝,𝑡 , we will also consider local maximizer defined by

M𝑀
𝑝,𝑡 := argmax

𝑥∈[−𝑀𝑡2/3,𝑀𝑡2/3]
(H (1)

𝑝𝑡,↑(𝑥) + H
(1)
𝑞𝑡,↓(𝑥)), 𝑀 ∈ [0,∞] . (5.6.25)
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Recasting Proposi-
tion 5.6.1 in the KPZ
line ensemble frame-
work (Section 5.6.2)

Heuristics and outline
of proof of Proposition

5.6.1 (Section 5.6.2)

Reducing the global
maximizer to the local

maximizer (Section 5.6.2)

Defining “Nice" events
that happen with high
probability (Lemma
5.6.2, Section 5.6.2)

Conditioning w.r.t.
large boundaries to

obtain Brownian bridge
law (Section 5.6.2)

Conditioning w.r.t. the
max data and small
boundaries to obtain

NonInt-BrBridge
law (Section 5.6.2)

Obtaining match-
ing upper and lower
bounds for (5.6.31)

and the desired conver-
gence (Section 5.6.2)

Proof of Lemma
5.6.2 (Section 5.6.2)

Proofs of Lemmas 5.6.6
and 5.6.7 (Section 5.6.2)

Figure 5.7: Structure of Section 5.6.2.

For each 𝑀 > 0,M𝑀
𝑝,𝑡 is unique almost surely by H𝑡-Brownian Gibbs property. We now set

𝑌
(𝑛)
𝑀,𝑡,↑(𝑥) := 𝑝1/3𝔥(𝑛)

𝑝𝑡,↑
(
(𝑝𝑡)−2/3M𝑀

𝑝,𝑡

)
− 𝑝1/3𝔥(𝑛)

𝑝𝑡,↑
(
𝑝−2/3𝑥

)
,

𝑌
(𝑛)
𝑀,𝑡,↓(𝑥) := 𝑞1/3𝔥(𝑛)

𝑞𝑡,↓
(
𝑞−2/3𝑥

)
− 𝑞1/3𝔥(𝑛)

𝑞𝑡,↓
(
(𝑞𝑡)−2/3M𝑀

𝑝,𝑡

)
.

(5.6.26)

Taking into account of (5.6.23) and all the above new notations, it can now be checked that for

each 𝑡 > 0,

𝐷1(𝑥, 𝑡)
𝑑
= 𝑡1/3𝑌 (1)∞,𝑡,↑

(
𝑡−2/3(M∞𝑝,𝑡 + 𝑥)

)
, 𝐷2(𝑥, 𝑡)

𝑑
= 𝑡1/3𝑌 (1)∞,𝑡,↓

(
𝑡−2/3(M∞𝑝,𝑡 + 𝑥)

)
, (5.6.27)

both as functions in 𝑥. Thus it is equivalent to verify Proposition 5.6.1 for the above 𝑌 (1)∞,𝑡,↑, 𝑌
(1)
∞,𝑡,↓

expressions. In our proof we will mostly deal with local maximizer version, and so for convenience
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we define:

𝐷𝑀,𝑡,↑(𝑥) : =𝑡1/3𝑌 (1)
𝑀,𝑡,↑

(
𝑡−2/3(M𝑀

𝑝,𝑡 + 𝑥)
)
, 𝐷𝑀,𝑡,↓(𝑥) = 𝑡1/3𝑌 (1)𝑀,𝑡,↓

(
𝑡−2/3(M𝑀

𝑝,𝑡 + 𝑥)
)
. (5.6.28)

where 𝑌 (1)
𝑀,𝑡,↑, 𝑌

(1)
𝑀,𝑡,↓ are defined in (5.6.26). We will introduce several other notations and parame-

ters later in the proof. For the moment, the minimal set of notations introduced here facilitate our

discussion of ideas and outline of the proof of Proposition 5.6.1 in the next subsection.

Ideas and Outline of Proof of Proposition 5.6.1

Before embarking on a rather lengthy proof, in this subsection we explain the core ideas behind

the proof and provide an outline for the remaining subsections.

First we contrast the proof idea with that of Theorem 5.1.11. Indeed, similar to the proof of

Theorem 5.1.11, from (5.6.27) we see that at the level 𝑌 (1)∞,𝑡,↑, 𝑌
(1)
∞,𝑡,↓ we are interested in under-

standing their laws restricted to a very small symmetric interval of order 𝑂 (𝑡−2/3) around the point

𝑡−2/3M∞𝑝,𝑡 . However, the key difference from the conceptual argument presented at the beginning

of the proof if Theorem 5.1.11 is that the centered point 𝑡−2/3M∞𝑝,𝑡 is random and it does not go to

zero. Rather by Theorem 5.1.8 it converges in distribution to a nontrivial random quantity (namely

Γ(𝑝
√

2)). Hence one must take additional care of this random point. This makes the argument

significantly more challenging compared to that of Theorem 5.1.11.

We now give a road-map of our proof. At this point, readers are also invited to look into Figure

5.8 alongside the explanation offered in its caption.

• As noted in Lemma 5.3.1, the random centering 𝑡−2/3M∞𝑝,𝑡 has decaying properties and can

be approximated by 𝑡−2/3M𝑀
𝑝,𝑡 by taking large enough 𝑀 . Hence on a heuristic level it

suffices to work with the local maximizers instead. In Subsection 5.6.2, this heuristics will

be justified rigorously. We will show there how to pass from 𝑌
(1)
∞,𝑡,↑, 𝑌

(1)
∞,𝑡,↓ defined in (5.6.27)

to their finite centering analogs: 𝑌 (1)
𝑀,𝑡,↑, 𝑌

(1)
𝑀,𝑡,↓. The rest of the proof then boils down to
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Figure 5.8: An overview of the proof for Proposition 5.6.1. The top and bottom black curves are
𝑌
(1)
𝑀,𝑡,↑ and 𝑌 (1)

𝑀,𝑡,↓ respectively. Note that the way they are defined in (5.6.26), 𝑌 (1)
𝑀,𝑡,↑(𝑥) ≥ 𝑌

(1)
𝑀,𝑡,↓(𝑥)

with equality at 𝑥 = Φ = 𝑡−2/3M𝑀
𝑝,𝑡 labelled as the red dot in the above figure. The blue curves are

𝑌
(1)
𝑀,𝑡,↑, 𝑌

(2)
𝑀,𝑡,↓. There is no such ordering within blue curves. They may intersect among themselves

as well as with the black curves. With 𝛼 = 1
6 , we consider the interval 𝐾𝑡 = (Φ − 𝑡−𝛼,Φ + 𝑡−𝛼).

In this vanishing interval around Φ, the curves will be ordered with high probability. In fact, with
high probability, there will be a uniform separation. For instance, for small enough 𝛿, we will have
𝑌
(2)
𝑀,𝑡,↑(𝑥) −𝑌

(1)
𝑀,𝑡,↑(𝑥) ≥

1
4𝛿, and 𝑌 (1)

𝑀,𝑡,↓(𝑥) −𝑌
(2)
𝑀,𝑡,↓(𝑥) ≥

1
4𝛿, for all 𝑥 ∈ 𝐾𝑡 wth high probability. This

will allow us to conclude black curves are behave approximately like two-sided NonInt-BrBridges
on that narrow window. Then upon going into a even smaller window of 𝑂 (𝑡−2/3), the two-sided
NonInt-BrBridges turn into a two-sided DBM.

analyzing the laws of the latter.

• We now fix a 𝑀 > 0 for the rest of the proof. Our analysis will now operate withM𝑀
𝑝,𝑡 . For
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simplicity, let us also use the notation

Φ := 𝑡−2/3M𝑀
𝑝,𝑡 (5.6.29)

for the rest of the proof. We now perform several conditioning on the laws of the curves.

Recall that by Proposition 6.5.1, {𝔥(𝑛)
𝑝𝑡,↑(·)}𝑛∈N {𝔥

(𝑛)
𝑞𝑡,↓(·)}𝑛∈N satisfy the H𝑝𝑡-Brownian Gibbs

property and the H𝑞𝑡-Brownian Gibbs property respectively with H𝑡 given by (5.2.4). Con-

ditioned on the end points of 𝔥
(1)
𝑝𝑡,↑(±𝑀𝑝

−2/3) and 𝔥
(1)
𝑞𝑡,↓(±𝑀𝑞

−2/3) and the second curves

𝔥
(2)
𝑝𝑡,↑(·) and 𝔥

(2)
𝑞𝑡,↓(·), the laws of 𝔥(1)

𝑝𝑡,↑(·), and 𝔥
(1)
𝑝𝑡,↑(·) are absolutely continuous w.r.t. Brown-

ian bridges with appropriate end points. This conditioning is done in Subsection 5.6.2.

• We then condition further on Max data : M𝑀
𝑝,𝑡 , 𝔥

(1)
𝑝𝑡,↑((𝑝𝑡)

−2/3M𝑀
𝑝,𝑡), 𝔥

(1)
𝑞𝑡,↓((𝑞𝑡)

−2/3M𝑀
𝑝,𝑡).

Under this conditioning, via the decomposition result in Proposition 5.4.10, the underlying

Brownian bridges mentioned in the previous point, when viewed from the joint maximizer,

becomes two-sided NonInt-BrBridges defined in Definition 5.4.4. This viewpoint from the

joint maximizer is given by 𝑌 (1)
𝑀,𝑡,↑, 𝑌

(1)
𝑀,𝑡,↓. See Figure 5.8 for more details.

• We emphasize the fact that the deduction of NonInt-BrBridges done above is only for the

underlying Brownian law. One still needs to analyze the Radon-Nikodym (RN) derivative.

As we are interested in the laws of 𝑌 (1)
𝑀,𝑡,↑, 𝑌

(1)
𝑀,𝑡,↓ on an interval of order 𝑡−2/3 around Φ, we

analyze the RN derivative only on a small interval around Φ. To be precise, we consider a

slightly larger yet vanishing interval of length 2𝑡−𝛼 for 𝛼 = 1
6 around the random point Φ.

We show that the RN derivative on this small random patch is close to 1. Thus upon further

conditioning on the boundary data of this random small interval, the trajectories of𝑌 (1)
𝑀,𝑡,↑ and

𝑌
(1)
𝑀,𝑡,↓ defined in (5.6.26) around Φ turns out to be close to two-sided NonInt-BrBridge with

appropriate (random) endpoints.

• Finally, we zoom further into a tiny interval of order 𝑂 (𝑡−2/3) symmetric around the random

point Φ. Utilizing Lemma 5.5.3, we convert the two-sided NonInt-BrBridges to two-sided

272



DBMs.

We now provide an outline of the rest of the subsections. In Subsection 5.6.2 we reduce our

proof from understanding laws around global maximizers to that of local maximizers. As explained

in the above road-map, the proof follows by performing several successive conditioning. On a

technical level, this requires defining several high probability events on which we can carry out our

conditional analysis. These events are all defined in Subsection 5.6.2 and are claimed to happen

with high probability in Lemma 5.6.2. We then execute the first layer of conditioning in Subsection

5.6.2. The two other layers of conditioning are done in Subsection 5.6.2. Lemma 5.6.6 and Lemma

5.6.7 are the precise technical expressions for the heuristic claims in the last two bullet points of

the road-map. Assuming them, we complete the final steps of the proof in Subsection 5.6.2. Proof

of Lemma 5.6.2 is then presented in Subsection 5.6.2. Finally, in Subsection 5.6.2, we prove the

remaining lemmas: Lemma 5.6.6 and 5.6.7.

Global to Local maximizer

We now fill out the technical details of the road-map presented in the previous subsection. Fix

any 𝑎 > 0. Consider any Borel set 𝐴 of 𝐶 ( [−𝑎, 𝑎] → R2) which is a continuity set of a two-sided

DBM D(·) restricted to [−𝑎, 𝑎] . By Portmanteau theorem, it is enough to show that

P((𝐷1(·, 𝑡), 𝐷2(·, 𝑡)) ∈ 𝐴) → P(D(·) ∈ 𝐴), (5.6.30)

where 𝐷1, 𝐷2 are defined in (5.6.23). In this subsection, we describe how it suffices to check

(5.6.30) withM𝑀
𝑝,𝑡 . Recall 𝐷𝑀,𝑡,↑(·), 𝐷𝑀,𝑡,↓(·) from (5.6.28). We claim that for all 𝑀 > 0:

lim
𝑡→∞

P((𝐷𝑀,𝑡,↑(·), 𝐷𝑀,𝑡,↓(·)) ∈ 𝐴) → P(D(·) ∈ 𝐴). (5.6.31)

Note that whenM∞𝑝,𝑡 =M𝑀
𝑝,𝑡 , (𝐷𝑀,𝑡,↑(·), 𝐷𝑀,𝑡,↓(·)) is exactly equal to

𝑡1/3𝑌 (1)∞,𝑡,↑
(
𝑡−2/3(M∞𝑝,𝑡 + ·)

)
, 𝑡1/3𝑌 (1)∞,𝑡,↓

(
𝑡−2/3(M∞𝑝,𝑡 + ·)

)
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which via (5.6.27) is same in distribution as 𝐷1(·, 𝑡), 𝐷2(·, 𝑡). Thus,

��P((𝐷1(·, 𝑡), 𝐷2(·, 𝑡)) ∈ 𝐴) − P((𝐷𝑀,𝑡,↑(·), 𝐷𝑀,𝑡,↓(·)) ∈ 𝐴)
�� ≤ 2P(M𝑝,𝑡 ≠M𝑀

𝑝,𝑡).

Now given any 𝜀 > 0, by Lemma 5.3.1, we can take 𝑀 = 𝑀 (𝜀) > 0 large enough so that

2P(M𝑝,𝑡 ≠ M𝑀
𝑝,𝑡) ≤ 𝜀. Then upon taking 𝑡 → ∞ in the above equation, in view of (5.6.31), we

see that

lim sup
𝑡→∞

| |P((𝐷1(·, 𝑡), 𝐷2(·, 𝑡)) ∈ 𝐴) − P((D(·) ∈ 𝐴) | ≤ 𝜀.

As 𝜀 is arbitrary, this proves (5.6.30). The rest of the proof is now devoted in proving (5.6.31).

Nice events

In this subsection, we focus on defining several events that are collectively ‘nice’ in the sense

that they happen with high probability. We fix an 𝑀 > 0 for the rest of the proof and work with

the local maximizerM𝑀
𝑝,𝑡 defined in (5.6.25). We will also make use of the notation Φ defined in

(5.6.29) heavily in this and subsequent subsections. We now proceed to define a few events based

on the location and value of the maximizer and values at the endpoints of an appropriate interval.

Fix any arbitrary 𝛿 > 0. Let us consider the event:

ArMx(𝛿) := {Φ ∈ [−𝑀 + 𝛿, 𝑀 − 𝛿]} . (5.6.32)

The ArMx(𝛿) controls the location of the local maximizer Φ. Set 𝛼 = 1
6 . We define tightness event

that corresponds to the boundary of the interval of length 2𝑡−𝛼 around Φ :

Bd↑(𝛿) := Bd+,↑(𝛿) ∩ Bd−,↑(𝛿), Bd↓(𝛿) := Bd+,↓(𝛿) ∩ Bd−,↓(𝛿), (5.6.33)

where

Bd±,↑(𝛿) :=
{���𝔥(1)

𝑝𝑡,↑
(
𝑝−2/3(Φ ± 𝑡−𝛼)

)
− 𝔥(1)

𝑝𝑡,↑
(
Φ𝑝−2/3)

��� ≤ 1
𝛿
𝑡−𝛼/2

}
(5.6.34)
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Bd±,↓(𝛿) :=
{���𝔥(1)

𝑞𝑡,↓
(
𝑞−2/3(Φ ± 𝑡−𝛼)

)
− 𝔥(1)

𝑞𝑡,↓
(
Φ𝑞−2/3)

��� ≤ 1
𝛿
𝑡−𝛼/2

}
,

Finally we consider the gap events that provide a gap between the first curve and the second curve

for each of the line ensemble:

Gap𝑀,↑(𝛿) :=
{
𝑝1/3𝔥(1)

𝑝𝑡,↑
(
Φ𝑝−2/3) ≥ 𝑝1/3𝔥(2)

𝑝𝑡,↑
(
Φ𝑝−2/3) + 𝛿} , (5.6.35)

Gap𝑀,↓(𝛿) :=
{
𝑞1/3𝔥(1)

𝑞𝑡,↓
(
Φ𝑞−2/3) ≥ 𝑞1/3𝔥(2)

𝑞𝑡,↓
(
Φ𝑞−2/3) + 𝛿} . (5.6.36)

We next define the ‘rise’ events which roughly says the second curves 𝔥
(1)
𝑝𝑡,↑ and 𝔥

(2)
𝑞𝑡,↓ of the line

ensembles does not rise too much on a small interval of length 2𝑡−𝛼 around Φ𝑝−2/3 and Φ𝑞−2/3

respectively.

Rise𝑀,↑(𝛿) :=

{
sup

𝑥∈[−𝑡−𝛼,𝑡−𝛼]
𝑝1/3𝔥(2)

𝑝𝑡,↑
(
Φ𝑝−2/3 + 𝑥

)
≤ 𝑝1/3𝔥(2)

𝑝𝑡,↑
(
Φ𝑝−2/3) + 𝛿

4

}
, (5.6.37)

Rise𝑀,↓(𝛿) :=

{
sup

𝑥∈[−𝑡−𝛼,𝑡−𝛼]
𝑞1/3𝔥(2)

𝑞𝑡,↓
(
Φ𝑞−2/3 + 𝑥

)
≤ 𝑞1/3𝔥(2)

𝑝𝑡,↓
(
Φ𝑞−2/3) + 𝛿

4

}
. (5.6.38)

Bd, Gap, Rise type events and their significance are discussed later in Subsection 5.6.2 in greater

details. See also Figure 5.9 and its caption for explanation of some of these events. We put all the

above events into one final event:

Nice𝑀 (𝛿) :=
ArMx(𝛿) ∩

⋂
𝑥∈{↑,↓}

Bd𝑥 (𝛿) ∩Gap𝑀,𝑥 (𝛿) ∩ Rise𝑀,𝑥 (𝛿)
 . (5.6.39)

All the above events are dependent on 𝑡. But we have suppressed this dependence from the nota-

tions. The Nice𝑀 (𝛿) turns out to be a favorable event. We isolate this fact as a lemma below.

Lemma 5.6.2. For any 𝑀 > 0, under the above setup we have

lim inf
𝛿↓0

lim inf
𝑡→∞

P𝑡 (Nice𝑀 (𝛿)) = 1. (5.6.40)
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We postpone the proof of this technical lemma to Section 5.6.2 and for the moment we continue

with the current proof of Proposition 5.6.1 assuming its validity.

Conditioning with respect to large boundaries

As alluded in Subsection 5.6.2, the proof involves conditioning on different 𝜎-fields succes-

sively. We now specify all the different 𝜎-fields that we will use throughout the proof. Set 𝛼 = 1
6 .

We consider the random interval

𝐾𝑡 := (Φ − 𝑡−𝛼,Φ + 𝑡−𝛼). (5.6.41)

Let us define:

F1 := 𝜎
({
𝔥
(1)
𝑝𝑡,↑(𝑝

−2/3𝑥), 𝔥(1)
𝑞𝑡,↓(𝑞

−2/3𝑥)
}
𝑥∈(−𝑀,𝑀)𝑐

,

{
𝔥
(2)
𝑝𝑡,↑(𝑥), 𝔥

(2)
𝑞𝑡,↓(𝑥)

}
𝑥∈R

)
(5.6.42)

F2 := 𝜎
(
Φ, 𝔥

(1)
𝑝𝑡,↑(Φ𝑝

−2/3), 𝔥(1)
𝑞𝑡,↓(Φ𝑞

−2/3)
)
, (5.6.43)

F3 := 𝜎
({
𝔥
(1)
𝑝𝑡,↑(𝑝

−2/3𝑥), 𝔥(1)
𝑞𝑡,↓(𝑞

−2/3𝑥)
}
𝑥∈𝐾𝑐𝑡

)
. (5.6.44)

In this step we perform conditioning w.r.t. F1 for the expression on the l.h.s. of (5.6.31). We

denote P𝑡 (𝐴) := P
(
(𝐷𝑀,𝑡,↑(·), 𝐷𝑀,𝑡,↓(·)) ∈ 𝐴

)
. Taking the Nice𝑀 (𝛿) event defined in (5.6.39)

under consideration, upon conditioning with F1 we have the following upper and lower bounds:

P𝑡 (𝐴) ≥ P𝑡 (Nice𝑀 (𝛿), 𝐴) = E𝑡 [P𝑡 (Nice𝑀 (𝛿), 𝐴 | F1)] , (5.6.45)

P𝑡 (𝐴) ≤ P𝑡 (Nice𝑀 (𝛿), 𝐴) + P𝑡 (¬Nice𝑀 (𝛿)) = E𝑡 [P𝑡 (Nice𝑀 (𝛿), 𝐴 | F1)] + P𝑡 (¬Nice𝑀 (𝛿)).

(5.6.46)

Note that the underlying measure consists of the mutually independent 𝔥(1)
𝑝𝑡,↑(·) and 𝔥

(1)
𝑞𝑡,↓(·) which

by Proposition 6.5.1 satisfy H𝑝𝑡 and H𝑞𝑡 Brownian Gibbs property respectively. Applying the
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respectively Brownian Gibbs properties and following (5.2.3) we have

P𝑡 (Nice𝑀 (𝛿), 𝐴 | F1) =
Efree,𝑡 [1Nice𝑀 (𝛿),𝐴𝑊↑𝑊↓]

Efree,𝑡 [𝑊↑𝑊↓]
. (5.6.47)

Here

𝑊↑ := exp
(
−𝑡2/3

∫ 𝑀

−𝑀
exp

(
𝑡1/3

[
𝑝1/3𝔥(2)

𝑝𝑡,↑(𝑝
−2/3𝑥) − 𝑝1/3𝔥(1)

𝑝𝑡,↑(𝑝
−2/3𝑥)

] )
d𝑥

)
(5.6.48)

and

𝑊↓ := exp
(
−𝑡2/3

∫ 𝑀

−𝑀
exp

(
𝑡1/3

[
𝑞1/3𝔥(2)

𝑞𝑡,↓(𝑞
−2/3𝑥) − 𝑞1/3𝔥(1)

𝑞𝑡,↓(𝑞
−2/3𝑥)

] )
d𝑥

)
. (5.6.49)

In (5.6.47), Pfree,𝑡 and Efree,𝑡 are the probability and the expectation operator respectively corre-

sponding to the joint ‘free’ law for (𝑝1/3𝔥𝑝𝑡,↑(𝑝−2/3𝑥), 𝑞1/3𝔥𝑞𝑡,↓(𝑞−2/3𝑥))𝑥∈[−𝑀,𝑀] which by Brow-

nian scaling is given by a pair of independent Brownian bridges (𝐵1(·), 𝐵2(·)) on [−𝑀, 𝑀] with

starting points (𝑝1/3𝔥𝑝𝑡,↑(−𝑀𝑝−2/3), 𝑞1/3𝔥𝑞𝑡,↓(−𝑀𝑞−2/3)) and endpoints (𝑞1/3𝔥𝑝𝑡,↑(𝑀𝑝−2/3), 𝑞1/3𝔥𝑞𝑡,↓(𝑀𝑞−2/3)).

Conditioning with respect to maximum data and small boundaries

In this subsection we perform conditioning on the numerator of r.h.s. of (5.6.47) w.r.t. F2 and

F3 defined in (5.6.43) and (5.6.44). Recall that by Proposition 5.4.10, upon conditioning Brownian

bridges on F2, the conditional laws around the joint local maximizer Φ over [−𝑀, 𝑀] is now given

by two NonInt-BrBridges (defined in Definition 5.4.4) with appropriate lengths and endpoints.

Indeed, based on Proposition 5.4.10, given F1, F2, we may construct the conditional laws for the

two functions on [−𝑀, 𝑀]:

Definition 5.6.3 (Nlarge Law). Consider two independent NonInt-BrBridge 𝑉
large
ℓ

and 𝑉 large
𝑟

with following description:
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1. 𝑉 large
ℓ

is a NonInt-BrBridge on [0,Φ + 𝑀] ending at

(
𝑝1/3

[
𝔥
(1)
𝑝𝑡,↑(Φ𝑝

−2/3) − 𝔥(1)
𝑝𝑡,↑(−𝑀𝑝

−2/3)
]
, 𝑞1/3

[
𝔥
(1)
𝑞𝑡,↓(−𝑀𝑞

−2/3) − 𝔥(1)
𝑞𝑡,↓(Φ𝑞

−2/3)
] )
,

2. 𝑉 large
𝑟 is a NonInt-BrBridge on [0, 𝑀 −Φ] ending at

(
𝑝1/3

[
𝔥
(1)
𝑝𝑡,↑(Φ𝑝

−2/3) − 𝔥(1)
𝑝𝑡,↑(𝑀𝑝

−2/3)
]
, 𝑞1/3

[
𝔥
(1)
𝑞𝑡,↓(𝑀𝑞

−2/3) − 𝔥(1)
𝑞𝑡,↓(Φ𝑞

−2/3)
] )
.

We then define 𝐵large : [−𝑀, 𝑀] → R2 as follows:

𝐵large(𝑥) =


𝑉ℓ (Φ − 𝑥) 𝑥 ∈ [−𝑀,Φ]

𝑉𝑟 (𝑥 −Φ) 𝑥 ∈ [Φ, 𝑀]
.

We denote the expectation and probability operator under above law for 𝐵large (which depends on

F1, F2) as ENlarge|2,1 and PNlarge|2,1.

Thus we may write

Efree,𝑡 [1Nice𝑀 (𝛿),𝐴𝑊↑𝑊↓] = Efree,𝑡 [ENlarge|2,1 [1Nice𝑀 (𝛿),𝐴𝑊↑𝑊↓]] . (5.6.50)

Since NonInt-BrBridges are Markovian, we may condition further upon F3 to get NonInt-BrBridges

again but on a smaller interval. To precisely define the law, we now give the following definitions:

Definition 5.6.4 (Nsmall law). Consider two independent NonInt-BrBridge𝑉small
ℓ

and𝑉small
𝑟 with

the following descriptions:

1. 𝑉small
ℓ

is a NonInt-BrBridge on [0, 𝑡−𝛼] ending at

(
𝑝1/3

[
𝔥
(1)
𝑝𝑡,↑(Φ𝑝

−2/3) − 𝔥(1)
𝑝𝑡,↑(𝑝

−2/3(Φ − 𝑡−𝛼))
]
, 𝑞1/3

[
𝔥
(1)
𝑞𝑡,↓(𝑞

−2/3(Φ − 𝑡−𝛼)) − 𝔥(1)
𝑞𝑡,↓(Φ𝑞

−2/3)
] )
,
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2. 𝑉small
𝑟 is a NonInt-BrBridge on [0, 𝑡−𝛼] ending at

(
𝑝1/3

[
𝔥
(1)
𝑝𝑡,↑(Φ𝑝

−2/3) − 𝔥(1)
𝑝𝑡,↑(𝑝

−2/3(Φ + 𝑡−𝛼))
]
, 𝑞1/3

[
𝔥
(1)
𝑞𝑡,↓(𝑞

−2/3(Φ + 𝑡−𝛼)) − 𝔥(1)
𝑞𝑡,↓(Φ𝑞

−2/3)
] )
.

We then define 𝐵small : [Φ + 𝑡−𝛼,Φ − 𝑡−𝛼] → R2 as follows:

𝐵small(𝑥) =


𝑉ℓ (Φ − 𝑥) 𝑥 ∈ [Φ − 𝑡−𝛼,Φ]

𝑉𝑟 (𝑥 −Φ) 𝑥 ∈ [Φ,Φ + 𝑡−𝛼]
.

We denote the the expectation and probability operators under the above law for 𝐵small (which

depends on F1, F2, F3) as ENsmall|3,2,1 and PNsmall|3,2,1 respectively.

We thus have

r.h.s. of (5.6.50) = Efree,𝑡 [1Nice𝑀 (𝛿)ENsmall|3,2,1 [1𝐴𝑊↑𝑊↓]] . (5.6.51)

The 1Nice𝑀 (𝛿) comes of the interior expectation above as Nice𝑀 (𝛿) is measurable w.r.t. F1∪F2∪F3

(see its definition in (5.6.39)).

Next note that due to the definition of𝑊↑,𝑊↓ from (5.6.48) and (5.6.49), we may extract certain

parts of it which are measurable w.r.t. F1 ∪ F2 ∪ F3. Indeed, we can write 𝑊↑ = 𝑊↑,1𝑊↑,2 and

𝑊↓ = 𝑊↓,1𝑊↓,2 where

𝑊↑,1 := exp
(
−𝑡2/3

∫
𝐾𝑡

exp
(
𝑡1/3

[
𝑝1/3𝔥(2)

𝑝𝑡,↑(𝑝
−2/3𝑥) − 𝑝1/3𝔥(1)

𝑝𝑡,↑(𝑝
−2/3𝑥)

] )
d𝑥

)
(5.6.52)

𝑊↑,2 := exp

(
−𝑡2/3

∫
[−𝑀,𝑀]∩𝐾𝑐𝑡

exp
(
𝑡1/3

[
𝑝1/3𝔥(2)

𝑝𝑡,↑(𝑝
−2/3𝑥) − 𝑝1/3𝔥(1)

𝑝𝑡,↑(𝑝
−2/3𝑥)

] )
d𝑥

)
,

and

𝑊↓,1 := exp
(
−𝑡2/3

∫
𝐾𝑡

exp
(
𝑡1/3

[
𝑞1/3𝔥(2)

𝑞𝑡,↓(𝑞
−2/3𝑥) − 𝑞1/3𝔥(1)

𝑞𝑡,↓(𝑞
−2/3𝑥)

] )
d𝑥

)
. (5.6.53)
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𝑊↓,2 := exp

(
−𝑡2/3

∫
[−𝑀,𝑀]∩𝐾𝑐𝑡

exp
(
𝑡1/3

[
𝑞1/3𝔥(2)

𝑞𝑡,↓(𝑞
−2/3𝑥) − 𝑞1/3𝔥(1)

𝑞𝑡,↓(𝑞
−2/3𝑥)

] )
d𝑥

)
,

where recall 𝐾𝑡 from (5.6.41). The key observation is that 𝑊↑,2,𝑊↓,2 are measurable w.r.t. F1 ∪

F2 ∪ F3. Thus we have

r.h.s. of (5.6.51) = Efree,𝑡 [1Nice𝑀 (𝛿)𝑊↑,2𝑊↓,2 · ENsmall|3,2,1 [1𝐴𝑊↑,1𝑊↓,1]] . (5.6.54)

Remark 5.6.5. It is crucial to note that in (5.6.51) the event Nice𝑀 (𝛿) includes the event ArMx(𝛿)

defined in (5.6.32). Indeed, the ArMx(𝛿) event is measurable w.r.t. F1 ∪ F2 and ensures that

[Φ − 𝑡−𝛼,Φ + 𝑡−𝛼] ⊂ [−𝑀, 𝑀] for all large enough 𝑡, which is essential for going from Nlarge

law to Nsmall law. Thus such a decomposition is not possible for Efree,𝑡 [𝑊↑𝑊↓] which appears

in the denominator of r.h.s. of (5.6.47). Nonetheless, we may still provide a lower bound for

Efree,𝑡 [𝑊↑𝑊↓] as follows:

Efree,𝑡 [𝑊↑𝑊↓] ≥ Efree,𝑡 [1Nice𝑀 (𝛿)𝑊↑𝑊↓] = Efree,𝑡 [𝑊↑,2𝑊↓,21Nice𝑀 (𝛿) · ENsmall|3,2,1 [𝑊↑,1𝑊↓,1]] .

(5.6.55)

With the deductions in (5.6.54) and (5.6.55), we now come to the task of analyzing 𝑊↑,1𝑊↓,1

under Nsmall law. The following lemma ensures that on Nice𝑀 (𝛿), 𝑊↑,1𝑊↓,1 is close to 1 under

Nsmall law.

Lemma 5.6.6. There exist 𝑡0(𝛿) > 0 such that for all 𝑡 ≥ 𝑡0 we have

1Nice𝑀 (𝛿)PNsmall|3,2,1(𝑊↑,1𝑊↓,1 > 1 − 𝛿) ≥ 1Nice𝑀 (𝛿) (1 − 𝛿). (5.6.56)

This allow us to ignore 𝑊↑,1𝑊↓,1, in ENsmall|3,2,1 [1𝐴𝑊↑,1𝑊↓,1]. Hence it suffices to study

PNsmall|3,2,1(𝐴). The following lemma then compares this conditional probability with that of

DBM.
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Lemma 5.6.7. There exist 𝑡0(𝛿) > 0 such that for all 𝑡 ≥ 𝑡0 we have

1Nice𝑀 (𝛿) |PNsmall|3,2,1(𝐴) − 𝜏(𝐴) | ≤ 1Nice𝑀 (𝛿) · 𝛿, (5.6.57)

where 𝜏(𝐴) := P(D(·) ∈ 𝐴), D being a two-sided DBM defined in the statement of Proposition

5.6.1.

We prove these two lemmas in Section 5.6.2. For now, we proceed with the current proof of

(5.6.31) in the next section.

Matching Lower and Upper Bounds

In this subsection, we complete the proof of (5.6.31) by providing matching lower and upper

bounds in the two steps below. We assume throughout this subsection that 𝑡 is large enough, so

that (5.6.56) and (5.6.57) holds.

Step 1: Lower Bound. We start with (5.6.45). Following the expression in (5.6.47), and our

deductions in (5.6.50), (5.6.51), (5.6.54) we see that

P𝑡 (𝐴) ≥ E𝑡 [P𝑡 (Nice𝑀 (𝛿), 𝐴 | F1)]

= E
[Efree,𝑡 [1Nice𝑀 (𝛿)𝑊↑,2𝑊↓,2 · ENsmall|3,2,1 [1𝐴𝑊↑,1𝑊↓,1]]

Efree,𝑡 [𝑊↑𝑊↓]

]
(5.6.58)

≥ (1 − 𝛿)E𝑡
[Efree,𝑡 [1Nice𝑀 (𝛿)𝑊↑,2𝑊↓,2 · PNsmall|3,2,1(𝐴,𝑊↑,1𝑊↓,1 > 1 − 𝛿)]

Efree,𝑡 [𝑊↑𝑊↓]

]
(5.6.59)

where in the last inequality we used the fact𝑊↑,1𝑊↓,1 ≤ 1. Now applying Lemma 5.6.6 and Lemma

5.6.7 successively we get

1Nice𝑀 (𝛿)PNsmall|3,2,1(𝐴,𝑊↑,1𝑊↓,1 > 1 − 𝛿)

≥ 1Nice𝑀 (𝛿) [PNsmall|3,2,1(𝐴) − PNsmall|3,2,1(𝑊↑,1𝑊↓,1 ≤ 1 − 𝛿)]

≥ 1Nice𝑀 (𝛿) [PNsmall|3,2,1(𝐴) − 𝛿]

≥ 1Nice𝑀 (𝛿) [𝜏(𝐴) − 2𝛿]

281



where recall 𝜏(𝐴) = P(D(·) ∈ 𝐴). As 𝑊↑,1𝑊↓,1 ≤ 1 and probabilities are nonnegative, following

the above inequalities we have

1Nice𝑀 (𝛿)PNsmall|3,2,1(𝐴,𝑊↑,1𝑊↓,1 > 1 − 𝛿) ≥ max{0, 𝜏(𝐴) − 2𝛿}1Nice𝑀 (𝛿)𝑊↑,1𝑊↓,1.

Substituting the above bound back to (5.6.59) and using the fact that 𝑊↑,2𝑊↓,2𝑊↑,1𝑊↓,1 = 𝑊↑𝑊↓,

we get

P𝑡 (𝐴) ≥ (1 − 𝛿)max{0, 𝜏(𝐴) − 2𝛿}E𝑡
[Efree,𝑡 [1Nice𝑀 (𝛿)𝑊↑𝑊↓]

Efree,𝑡 [𝑊↑𝑊↓]

]
= (1 − 𝛿)max{0, 𝜏(𝐴) − 2𝛿}P𝑡 (Nice𝑀 (𝛿)).

In view of Lemma 5.6.2, taking lim inf𝑡→∞ followed by lim inf𝛿↓0 we get that lim inf𝑡→∞ P𝑡 (𝐴) ≥

𝜏(𝐴). This proves the lower bound.

Step 2: Upper Bound. We start with (5.6.46). Using the equality in (5.6.58) we get

P𝑡 (𝐴) ≤ E
[Efree,𝑡 [1Nice𝑀 (𝛿)𝑊↑,2𝑊↓,2 · ENsmall|3,2,1 [1𝐴𝑊↑,1𝑊↓,1]]

Efree,𝑡 [𝑊↑𝑊↓]

]
+ P𝑡 (¬Nice𝑀 (𝛿))

≤ E
[Efree,𝑡 [1Nice𝑀 (𝛿)𝑊↑,2𝑊↓,2 · PNsmall|3,2,1(𝐴)]

Efree,𝑡 [𝑊↑𝑊↓]

]
+ P𝑡 (¬Nice𝑀 (𝛿))

≤ (𝜏(𝐴) + 𝛿)E
[Efree,𝑡 [1Nice𝑀 (𝛿)𝑊↑,2𝑊↓,2]

Efree,𝑡 [𝑊↑𝑊↓]

]
+ P𝑡 (¬Nice𝑀 (𝛿)). (5.6.60)

Let us briefly justify the inequalities presented above. Going from first line to second line we

used the fact 𝑊↑,1𝑊↓,1 ≤ 1. The last inequality follows from Lemma 5.6.7 where recall that

𝜏(𝐴) = P(D(·) ∈ 𝐴). Now note that by Lemma 5.6.6, on Nice𝑀 (𝛿),

ENsmall|3,2,1 [𝑊↑,1𝑊↓,1] ≥ ENsmall|3,2,1 [1𝑊↑,1𝑊↓,1≥1−𝛿 ·𝑊↑,1𝑊↓,1]

≥ (1 − 𝛿)PNsmall|3,2,1(𝑊↑,1𝑊↓,1 ≥ 1 − 𝛿) ≥ (1 − 𝛿)2.
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Using the expression from (5.6.55) we thus have

Efree,𝑡 [𝑊↑𝑊↓] ≥ Efree,𝑡 [1Nice𝑀 (𝛿)𝑊↑,2𝑊↓,2 · ENsmall|3,2,1 [𝑊↑,1𝑊↓,1]]

≥ (1 − 𝛿)2Efree,𝑡 [1Nice𝑀 (𝛿)𝑊↑,2𝑊↓,2] .

Going back to (5.6.60), this forces

r.h.s. of (5.6.60) ≤ 𝜏(𝐴) + 𝛿
(1 − 𝛿)2

+ P𝑡 (¬Nice𝑀 (𝛿)).

In view of Lemma 5.6.2, taking lim sup𝑡→∞, followed by lim sup𝛿↓0 in above inequality we get that

lim sup𝑡→∞ P𝑡 (𝐴) ≤ 𝜏(𝐴). Along with the matching lower bound obtained in Step 1 above, this

establishes (5.6.31).

Proof of Lemma 5.6.2

Recall from (5.6.39) that Nice𝑀 (𝛿) event is an intersection of several kinds of events. To show

(5.6.40), it suffices to prove the same for each of the events. That is, given an event E which is part

of Nice𝑀 (𝛿) we will show

lim sup
𝛿→∞

lim sup
𝑡→∞

P(E) = 1. (5.6.61)

Below we analyze each such possible choices for E separately.

ArMx(𝛿) event. Recall ArMx(𝛿) event from (5.6.32). As noted in (5.3.9),

M𝑀
𝑝,𝑡

𝑑→ argmax
𝑥∈[−𝑀,𝑀]

A(𝑥),

whereA is defined in (5.3.8). SinceA restricted to [−𝑀, 𝑀] is absolutely continuous with Brow-

nian motion with appropriate diffusion coefficients, argmax𝑥∈[−𝑀,𝑀] A(𝑥) ∈ (−𝑀, 𝑀) almost
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surely. In other words, maximum is not attained on the boundaries almost surely. But then

lim inf
𝛿↓0

lim inf
𝑡→∞

P(ArMx(𝛿)) = lim inf
𝛿↓0

P( argmax
𝑥∈[−𝑀,𝑀]

A(𝑥) ∈ [−𝑀 + 𝛿, 𝑀 − 𝛿])

= P( argmax
𝑥∈[−𝑀,𝑀]

A(𝑥) ∈ (−𝑀, 𝑀)) = 1.

This proves (5.6.61) with E ↦→ ArMx(𝛿).

Bd↑(𝛿),Bd↓(𝛿) events. We first define

Tight±,↑(𝜆) :=
{
𝑝1/3

���𝔥(1)
𝑝𝑡,↑(Φ𝑝

−2/3) − 𝔥(1)
𝑝𝑡,↑(±𝑀𝑝

−2/3)
��� ≤ 1

𝜆

}
,

Tight±,↓(𝜆) :=
{
𝑞1/3

���𝔥(1)
𝑞𝑡,↓(Φ𝑞

−2/3) − 𝔥(1)
𝑞𝑡,↓(±𝑀𝑞

−2/3)
��� ≤ 1

𝜆

}
,

and set

Sp(𝜆) := ArMx(𝜆) ∩ Tight+,↑(𝜆) ∩ Tight−,↑(𝜆) ∩ Tight+,↓(𝜆) ∩ Tight−,↓(𝜆) (5.6.62)

where ArMx(𝜆) is defined in (5.6.32). We claim that

lim sup
𝜆↓0

lim sup
𝑡→∞

P(¬Sp(𝜆))) = 0. (5.6.63)

Let us assume (5.6.63) for the time being and consider the main task of analyzing the probabil-

ity of the events Bd↑(𝛿),Bd↓(𝛿) defined in (5.6.33). We have Bd↑(𝛿) = Bd+↑(𝛿) ∩ Bd−,↑(𝛿)

where Bd±,↑(𝛿) is defined in (5.6.34). Let us focus on Bd+,↑(𝛿). Recall the 𝜎-fields F1, F2 from

(5.6.42) and (5.6.43). As described in Subsection 5.6.2, upon conditioning on F1 ∪ F2, the con-

ditional law on [−𝑀, 𝑀] are given by Nlarge defined in Definition 5.6.3, which are made up of

NonInt-BrBridges 𝑉 large
ℓ

, 𝑉
large
𝑟 defined in Definition 5.6.3.

Note that applying Markov inequality conditionally we have

1Sp(𝜆)P
(
Bd+,↑(𝛿) | F1, F2

)
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= 1Sp(𝜆) · P
(
|𝔥(1)
𝑝𝑡,↑(𝑝

−2/3(Φ + 𝑡−𝛼)) − 𝔥(1)
𝑝𝑡,↑(Φ𝑝

−2/3) | > 1
𝛿
𝑡−𝛼/2 | F1, F2

)
≤ 1Sp(𝜆) · 𝛿2𝑡2𝛼 · ENlarge|2,1

[
[𝑉 large
𝑟,1 (𝑝

−2/3𝑡−𝛼)]4
]

However, on 1Sp(𝜆) , the NonInt-BrBridge has length bounded away from zero and the endpoints

are tight. Applying (5.5.20) with 𝐾 ↦→ 2, 𝑡 ↦→ 1, 𝑠 ↦→ 0, 𝑛 ↦→ 𝑝2/3𝑡𝛼, 𝑀 ↦→ 1/𝜆, for all large

enough 𝑡 we get ENlarge|2,1
[
[𝑉 large
𝑟,1 (𝑝

−2/3𝑡−𝛼)]4
]
≤ C𝑝,𝜆𝑡

−2𝛼. Thus,

lim sup
𝑡→∞

P
(
¬Bd+,↑(𝛿)

)
≤ lim sup

𝑡→∞
P(¬Sp(𝜆)) + 𝛿2C𝑝,𝜆.

Taking 𝛿 ↓ 0, followed by 𝜆 ↓ 0, in view of (5.6.63) we get lim sup𝛿↓0 lim sup𝑡→∞ P(¬Bd+,↑(𝛿)) =

0. Similarly one can conclude lim sup𝛿↓0 lim sup𝑡→∞ P(¬Bd−,↑(𝛿)) = 0 Thus, this two together

yields lim inf𝛿↓0 lim inf𝑡→∞ P(Bd↑(𝛿)) = 1. By exactly the same approach one can derive that

P(Bd↓(𝛿)) goes to 1 under the same iterated limit. Thus it remains to show (5.6.63).

Let us recall from (5.6.62) that Sp(𝜆) event is composed of four tightness events and one event

about the argmax. We first claim that lim sup𝜆↓0 lim sup𝑡→∞ P(Tight𝑥,𝑦 (𝜆)) = 1 for each 𝑥 ∈ {+,−}

and 𝑦 ∈ {↑, ↓}. The earlier analysis of ArMx(𝜆) event in (5.6.62) then enforces (5.6.63). Since

all the tightness events are similar, it suffices to prove any one of them say Tight+,↑. By Propo-

sition 6.5.1 we have the distributional convergence of 21/3𝔥(1)
𝑝𝑡,↑(2

1/3𝑥) to A1(𝑥) in the uniform-

on-compact topology, where A1(·) is the parabolic Airy2 process. As Φ ∈ [−𝑀, 𝑀], we thus

have

lim sup
𝑡→∞

P(Tight+,↑(𝜆)) ≤ lim sup
𝑡→∞

P

(
𝑝1/3 sup

𝑥∈[−𝑀,𝑀]

���𝔥(1)
𝑝𝑡,↑(𝑥𝑝

−2/3) − 𝔥(1)
𝑝𝑡,↑(𝑀𝑝

−2/3)
��� ≤ 1

𝜆

)
= P

(
𝑝1/3 sup

|𝑥 |≤2−1/3𝑀

���A1(𝑥𝑝−2/3) − A1(2−1/3𝑀𝑝−2/3)
��� ≤ 21/3

𝜆

)
.

For fixed 𝑝, 𝑀 , by tightness of parabolic Airy2 process on a compact interval, the last expression

goes to one as 𝜆 ↓ 0, which is precisely what we wanted to show.
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Gap𝑀,↑(𝛿),Gap𝑀,↓(𝛿) events. Recall the definitions of Gap𝑀,↑(𝛿) and Gap𝑀,↓(𝛿) from(5.6.35)

and (5.6.36).We begin with the proof of Gap𝑀,↑(𝛿). Let

Diff𝑀,↑(𝛿) :=
{

inf
|𝑥 |≤𝑀

𝑝1/3
(
𝔥
(1)
𝑝𝑡,↑(𝑝

−2/3𝑥) − 𝔥(2)
𝑝𝑡,↑(𝑝

−2/3𝑥)
)
≥ 𝛿

}
.

Note that Φ ∈ [−𝑀, 𝑀]. Thus Gap𝑀,↑(𝛿) ⊃ Diff𝑀,↑(𝛿). Thus to show (5.6.61) with E ↦→

Gap𝑀,↑(𝛿) it suffices to prove

lim inf
𝛿↓0

lim inf
𝑡→∞

P(Diff𝑀,↑(𝛿)) = 1, (5.6.64)

We recall from Proposition 5.2.7 the distributional convergence of the KPZ line ensemble to the

Airy line ensemble in the uniform-on-compact topology. By Skorokhod representation theorem,

we may assume that our probability space is equipped with A1(·) and A2(·) such that almost

surely as 𝑡 →∞

max
𝑖=1,2

sup
|𝑥 |≤𝑀𝑝−2/3

|21/3𝔥(𝑖)
𝑡,↑ (2

1/3𝑥) − A𝑖 (𝑥) | → 0. (5.6.65)

We thus have

lim inf
𝑡→∞

P(Diff𝑀,↑(𝛿)) = P
(

inf
|𝑥 |≤𝑀2−1/3𝑝−2/3

𝑝1/3 (A1(𝑥) − A2(𝑥)) ≥ 21/3𝛿

)
. (5.6.66)

As the Airy line ensemble is absolutely continuous w.r.t. non-intersecting Brownian motions,

it is strictly ordered with touching probability zero (see (5.2.1)). Hence r.h.s. of (5.6.66) goes to

zero as 𝛿 ↓ 0. This proves (5.6.64). The proof is similar for Gap𝑀,↓(𝛿).

Rise𝑀,↑(𝛿),Rise𝑀,↑(𝛿) events. Recall Rise𝑀,↑(𝛿),Rise𝑀,↑(𝛿) events from (5.6.37) and (5.6.38).

Due to their similarities, we only analyze the Rise𝑀,↑(𝛿) event. As with the previous case, we

assume that our probability space is equipped withA1(·) andA2(·) (first two lines of the Airy line

286



ensemble) such that almost surely as 𝑡 →∞ (5.6.65) holds. Applying union bound we have

P (¬Rise𝑀 (𝛿)) ≤ P

(
sup

|𝑥 |≤𝑀𝑝−2/3
𝑝1/3 |21/3𝔥(2)

𝑝𝑡,↑(2
1/3𝑥) − A2(𝑥) | ≥ 𝛿

16

)
+ P

(
¬Rise𝑀 (𝛿), sup

|𝑥 |≤𝑀𝑝−2/3
𝑝1/3 |21/3𝔥(2)

𝑝𝑡,↑(2
1/3𝑥) − A2(𝑥) | ≤ 𝛿

16

)
≤ P

(
sup

|𝑥 |≤𝑀𝑝−2/3
𝑝1/3 |21/3𝔥(2)

𝑝𝑡,↑(2
1/3𝑥) − A2(𝑥) | ≥ 𝛿

16

)
+ P

(
sup

𝑥,𝑦∈[−𝑀,𝑀]
|𝑥−𝑦 |≤𝑡−𝛼

𝑝1/3 |A2(𝑥) − A2(𝑦) | ≥ 𝛿
8

)
.

In the r.h.s. of above equation, the first term goes to zero as 𝑡 → ∞ by (5.6.65). The second

term on the other hand goes to zero as 𝑡 → ∞ by modulus of continuity estimates for Airy line

ensemble from Proposition 5.2.4. This shows, lim𝑡→∞ P(Rise𝑀,↑(𝛿)) = 1. Similarly one has

lim𝑡→∞ P(Rise𝑀,↓(𝛿)) = 1 as well. This proves (5.6.61) for E ↦→ Rise𝑀,↑(𝛿),Rise𝑀,↓(𝛿).

We have thus shown (5.6.61) for all the events listed in (5.6.39). This establishes (5.6.40)

concluding the proof of Lemma 5.6.2.

Proof of Lemma 5.6.6 and 5.6.7

In this subsection we prove Lemma 5.6.6 and 5.6.7.

Proof of Lemma 5.6.6. Recall 𝑊↑,1 and 𝑊↓,1 from (5.6.52) and (5.6.53) respectively. We claim

that for all large enough 𝑡, on Nice𝑀 (𝛿) we have

PNsmall|3,2,1(𝑊↑,1 >
√

1 − 𝛿) ≥ 1 − 1
2𝛿, PNsmall|3,2,1(𝑊↓,1 >

√
1 − 𝛿) ≥ 1 − 1

2𝛿 (5.6.67)

simultaneously. (5.6.56) then follows via union bound. Hence we focus on proving (5.6.67). In

the proof below we only focus on first part of (5.6.67) and the second one follows analogously. We
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Figure 5.9: In the above figure we have plotted the curves 𝑓 (𝑥) := 𝑝1/3𝔥(1)
𝑝𝑡,↑(𝑝

−2/3𝑥) (black) and

𝑔(𝑥) := 𝑝1/3𝔥(2)
𝑝𝑡,↑(𝑝

−2/3𝑥) (blue) restricted to the interval 𝐾𝑡 := (Φ−𝑡−𝛼,Φ+𝑡−𝛼). For convenience,
we have marked two blue points along with their values as (𝐴, 𝑓 (𝐴)), (𝐵, 𝑔(𝐵)). Gap𝑀,↑(𝛿)
defined in (5.6.35) denote the event that the blue points are separated by 𝛿, i.e, 𝑓 (𝐴) − 𝑔(𝐵) ≥ 𝛿.
The Rise𝑀,↑(𝛿) defined in (5.6.37) ensures no point on the blue curve (restricted to 𝐾𝑡) has value
larger than 𝑔(𝐵) + 1

4𝛿 (that is no significant rise). The Bd↑(𝛿) event defined in (5.6.33) indicates
the red points on the black curve are within [ 𝑓 (𝐴) − 1

𝛿
𝑡−𝛼/2, 𝑓 (𝐴) + 1

𝛿
𝑡−𝛼/2]. The Sink↑(𝛿) event

defined in (5.6.68) ensures that all points on the black curve (restricted to 𝐾𝑡) have values larger
than 𝑓 (𝐴) − 1

4𝛿 (that is no significant sink). Clearly then on Sink↑(𝛿) ∩ Rise𝑀,↑(𝛿) ∩Gap𝑀,↑(𝛿)
for all 𝑥 ∈ 𝐾𝑡 , we have 𝑓 (𝑥) − 𝑔(𝑥) ≥ 𝑓 (𝐴) − 1

4𝛿 − 𝑔(𝐵) −
1
4𝛿 ≥

1
2𝛿.

now define the ‘sink’ event:

Sink↑(𝛿) :=
{

inf
𝑥∈[−𝑡−𝛼,𝑡−𝛼]

𝑝1/3𝔥(1)
𝑝𝑡,↑(Φ𝑝

−2/3 + 𝑥) ≥ 𝑝1/3𝔥(1)
𝑝𝑡,↑(Φ𝑝

−2/3) − 𝛿
4

}
. (5.6.68)

Recall Rise𝑀,↑(𝛿) and Gap𝑀,↑(𝛿) from (5.6.37) and (5.6.35). Note that on Sink↑(𝛿)∩Rise𝑀,↑(𝛿)∩

Gap𝑀,↑(𝛿) we have uniform separation between 𝔥
(1)
𝑝𝑡,↑ and 𝔥

(2)
𝑝𝑡,↓ on the interval 𝑝−2/3𝐾𝑡 , that is

inf
𝑥∈[Φ−𝑡−𝛼,Φ+𝑡−𝛼]

[
𝑝1/3𝔥(1)

𝑝𝑡,↑(𝑝
−2/3𝑥) − 𝑝1/3𝔥(2)

𝑝𝑡,↑(𝑝
−2/3𝑥)

]
≥ 𝛿

2 . (5.6.69)

See Figure 5.9 alongside its caption for further explanation of the above fact. But then (5.6.69)

forces 𝑊↑,1 ≥ exp(−𝑡2/32𝑡−𝛼𝑒− 1
4 𝑡

1/3𝛿) which can be made strictly larger than
√

1 − 𝛿 for all large
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enough 𝑡. Thus,

1Nice𝑀 (𝛿)PNsmall|3,2,1(𝑊↑,1 >
√

1 − 𝛿) ≥ 1Nice𝑀 (𝛿)PNsmall|3,2,1(Sink↑(𝛿)). (5.6.70)

Now we divide the sink event into two parts: Sink↑(𝛿) = Sink+↑(𝛿) ∩ Sink−,↑(𝛿) where

Sink±,↑(𝛿) :=
{

inf
𝑥∈[0,𝑡−𝛼]

𝑝1/3𝔥(1)
𝑝𝑡,↑(Φ𝑝

−2/3 ± 𝑥) ≥ 𝑝1/3𝔥(1)
𝑝𝑡,↑(Φ𝑝

−2/3) − 𝛿
4

}
,

In view of (5.6.70), to prove first part of (5.6.67), it suffices to show for all large enough 𝑡, on

Nice𝑀 (𝛿) we have

PNsmall|3,2,1(Sink+,↑(𝛿)) ≥ 1 − 𝛿
4 , PNsmall|3,2,1(Sink−,↑(𝛿)) ≥ 1 − 𝛿

4 . (5.6.71)

We only prove first part of (5.6.71) below. Towards this end, recall 𝑌 (1)
𝑀,𝑡,↑, 𝑌

(1)
𝑀,𝑡,↓ from (5.6.26).

Observe that

𝑌
(1)
𝑀,𝑡,↑(Φ + 𝑥) = 𝑝

1/3𝔥(1)
𝑝𝑡,↑(Φ𝑝

−2/3) − 𝑝1/3𝔥(1)
𝑝𝑡,↑(Φ𝑝

−2/3 + 𝑥).

Recall Nsmall law from Definition 5.6.4. Our discussion in Subsection 5.6.2 implies that under

PNsmall|3.2,1,

(𝑌 (1)
𝑀,𝑡,↑, 𝑌

(1)
𝑀,𝑡,↓) (Φ + ·) | [0,𝑡−𝛼]

𝑑
= 𝑉small

𝑟 (·), (𝑌 (1)
𝑀,𝑡,↑, 𝑌

(1)
𝑀,𝑡,↓) (Φ + ·) | [−𝑡−𝛼,0]

𝑑
= 𝑉small

ℓ (−·),

where recall that 𝑉small
ℓ

and 𝑉small
𝑟 are conditionally independent NonInt-BrBridge on [0, 𝑡−𝛼]

with appropriate end points, defined in Definition 5.6.4. In particular we have,

PNsmall|3,2,1(Sink+,↑(𝛿)) = PNsmall|3,2,1

(
sup

𝑥∈[0,𝑡−𝛼]
𝑉small
𝑟,1 (𝑥) ≤ 1

4𝛿

)
(5.6.72)

where 𝑉small
𝑟 = (𝑉small

𝑟,1 , 𝑉small
𝑟,2 ). Recall Nice𝑀 (𝛿) event from (5.6.39). It contains Bd↑(𝛿) event
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defined in (5.6.33). On this event, −1
𝛿
≤ 𝑉Small

𝑟,1 (𝑡−𝛼), 𝑉Small
𝑟,2 (𝑡−𝛼) ≤ 1

𝛿
𝑡−𝛼/2. We consider another

NonInt-BrBridge 𝑈 = (𝑈1,𝑈2) on [0, 𝑡−𝛼] with non-random endpoints 𝑈1(𝑡−𝛼) = 𝑈2(𝑡−𝛼) =
1
𝛿
𝑡−𝛼/2. On Bd↑(𝛿) event, by monotonicity of non-intersecting Brownian bridges (Lemma 2.6 in

[109]), one may couple 𝑈 = (𝑈1,𝑈2) and 𝑉small
𝑟 so that 𝑈𝑖 always lies above 𝑉small

𝑟,𝑖
for 𝑖 = 1, 2.

Thus on Bd↑(𝛿) event,

PNsmall|3,2,1

(
sup

𝑥∈[0,𝑡−𝛼]
𝑉small
𝑟,1 (𝑥) ≤ 𝜆𝑡−𝛼/2

)
≥ P

(
sup
𝑥∈[0,1]

𝑡𝛼/2𝑈1(𝑥𝑡−𝛼) ≤ 𝜆
)
≥ 1 − 𝛿

4 ,

where the last inequality is true by taking 𝜆 large enough. This choice of 𝜆 is possible as by Brow-

nian scaling, 𝑡𝛼/2𝑈1(𝑥𝑡−𝛼), 𝑡𝛼/2𝑈2(𝑥𝑡−𝛼) is NonInt-BrBridge on [0, 1] ending at ( 1
𝛿
, 1
𝛿
). Taking 𝑡

large enough one can ensure 𝜆𝑡−𝛼/2 ≤ 𝛿
4 . Using the equality in (5.6.72) we thus establish the first

part of (5.6.71). The second part is analogous. This proves the first part of (5.6.67). The second

part of (5.6.67) follows similarly. This completes the proof of Lemma 5.6.6.

Proof of Lemma 5.6.7. The idea behind this proof is Proposition 5.5.8, which states that a

NonInt-BrBridge after Brownian rescaling converges in distribution to a DBM. The following

fills out the details. Recall that

PNsmall|3.2,1(𝐴) = PNsmall|3.2,1(𝐷𝑀,𝑡,↑, 𝐷𝑀,𝑡,↓(·) ∈ 𝐴).

Recall from (5.6.28) that 𝐷𝑀,𝑡,↑, 𝐷𝑀,𝑡,↓ is a diffusive scaling of 𝑌 (1)
𝑀,𝑡,↑, 𝑌

(1)
𝑀,𝑡,↓ when centering at

Φ, where 𝑌 (1)
𝑀,𝑡,↑, 𝑌

(1)
𝑀,𝑡,↓ are defined in (5.6.26). Recall Nsmall law from Definition 5.6.4. Our

discussion in Subsection 5.6.2 implies that under PNsmall|3.2,1,

(𝑌 (1)
𝑀,𝑡,↑, 𝑌

(1)
𝑀,𝑡,↓) (Φ + ·) | [0,𝑡−𝛼]

𝑑
= 𝑉small

𝑟 (·), (𝑌 (1)
𝑀,𝑡,↑, 𝑌

(1)
𝑀,𝑡,↓) (Φ + ·) | [−𝑡−𝛼,0]

𝑑
= 𝑉small

ℓ (−·),

where 𝑉small
ℓ

and 𝑉small
𝑟 are conditionally independent NonInt-BrBridge on [0, 𝑡−𝛼] with appro-
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priate end points defined in Definition 5.6.4. Using Brownian scaling, we consider

𝑉0
ℓ (𝑥) := 𝑡𝛼/2𝑉small

ℓ (𝑥𝑡−𝛼), 𝑉0
𝑟 (𝑥) := 𝑡𝛼/2𝑉small

𝑟 (𝑥𝑡−𝛼),

which are now NonInt-BrBridge on [0, 1]. Note that on Bd↑(𝛿),Bd↓(𝛿) (defined in (5.6.33)), we

see that endpoints of 𝑉0
ℓ
, 𝑉0
𝑟 are in [−1

𝛿
, 1
𝛿
]. Thus as 𝛼 = 1

6 , performing another diffusive scaling by

Proposition 5.5.8 we see that as 𝑡 →∞

𝑡1/4𝑉0
ℓ (𝑥𝑡

−1/2) , 𝑡1/4𝑉𝑟 (𝑥𝑡−1/2)

converges to two independent copies of DBMs (defined in Definition 5.5.1) in the uniform-on-

compact topology. Hence we get two-sided DBM convergence for the pair (𝐷𝑀,𝑡,↑, 𝐷𝑀,𝑡,↓) under

PNsmall|3.2,1 as long as 1{Nice𝑀 (𝛿)} holds. This proves (5.6.57).

5.6.3 Proof of Theorem 5.1.10

We take 𝑝 ↦→ 1
2 and 𝑡 ↦→ 2𝑡 in Proposition 5.6.1. Then by Lemma 5.3.2, P2,𝑡 defined in the

statement of Theorem 5.1.10 is same asM 1
2 ,2𝑡

considered in Proposition 5.6.1. Its uniqueness is

already justified in Lemma 5.3.1. Furthermore,

𝑅2(𝑥, 𝑡)
𝑑
= 𝐷1(𝑥, 𝑡) − 𝐷2(𝑥, 𝑡),

as functions in 𝑥, where 𝑅2(𝑥, 𝑡) is defined in (5.1.11) and 𝐷1, 𝐷2 are defined in (5.6.24). By

Proposition 5.6.1 and Lemma 5.5.3 we get that 𝐷1(𝑥, 𝑡) − 𝐷2(𝑥, 𝑡)
𝑑→ R2(𝑥) in the uniform-on-

compact topology. This proves Theorem 5.1.10 for 𝑘 = 2 case.

For 𝑘 = 1 case, by Lemma 5.3.2, P1,𝑡 is same asM∗,𝑡 which is unique almost surely by Lemma
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5.3.1. This guarantees P1,𝑡 is unique almost surely as well. Thus we are left to show

H(P1,𝑡 , 𝑡) − H (𝑥 + P1,𝑡 , 𝑡)
𝑑→ R1(𝑥). (5.6.73)

where R1(𝑥) is a two-sided Bessel process with diffusion coefficient 1 defined in Definition 5.5.2.

The proof of (5.6.73) is exactly similar to that of Proposition 5.6.1 with few minor alterations listed

below.

1. Just as in Subsection 5.6.2, one may put the problem in (5.6.73) under the framework of KPZ

line ensemble. Compared to Subsection 5.6.2, in this case, clearly there will be just one set

of line ensemble.

2. Given the decay estimates forM∗,𝑡 from Lemma 5.3.1, it boils down to show Bessel behavior

around local maximizers. The rigorous justification follows from a soft argument analogous

to what is done in Subsection 5.6.2.

3. In the spirit of Subsection 5.6.2, one can define a similar Nice′𝑀 (𝛿) event but now for a single

line ensemble. Nice′𝑀 (𝛿) will contain similar events, such as:

• control on the location of local maximizer (analog of ArMx(𝛿) event (5.6.32)),

• control on the gap between first curve and second curve at the maximizer (analog of

Gap𝑀,↑(𝛿) event (5.6.35)),

• fluctuations of the first curve on a small interval say 𝐼 around maximizer (analog of

Rise𝑀,↑(𝛿) event (5.6.37),

• and control on the value of the endpoints of 𝐼 (analog of Bd↑(𝛿) event (5.6.33)).

On Nice′𝑀 (𝛿) event, the conditional analysis can be performed in the same manner.

4. Next, as in proof of Proposition 5.6.1, we proceed by three layers of conditioning. For first

layer, we use the H𝑡 Brownian Gibbs property of the single line ensemble under considera-

tion. Next, conditioning on the location and values of the maximizer, we similarly apply the
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same Bessel bridge decomposition result from Proposition 5.4.8 to convert the conditional

law to that of the Bessel bridges over a large interval (see Subsection 5.6.2). Finally, anal-

ogous to Subsection 5.6.2, the third layer of conditioning reduces large Bessel bridges to

smaller ones following the Markovian property of Bessel bridges, see Lemma 5.4.2.

5. Since a Bessel bridge say on [0, 1] is a Brownian bridge conditioned to stay positive on

[0, 1], it has the Brownian scaling property and it admits monotonicity w.r.t. endpoints.

These are two crucial tools that went into the Proof of Lemma 5.6.6 in Subsection 5.6.2. Thus

the Bessel analogue of Lemma 5.6.6 can be derived using the scaling property and mono-

tonicity stated above in the exact same way. Finally, the Bessel analogue of Lemma 5.6.7 can

be obtained from Corollary 5.5.9. Indeed Corollary 5.5.9 ensures that small Bessel bridges

converges to Bessel process under appropriate diffusive limits on the Nice′𝑀 (𝛿) event.

Executing all the above steps in an exact same manner as proof of Proposition 5.6.1, (5.6.73)

is established. This completes the proof of Theorem 5.1.10.

5.7 Proof of localization theorems

In this section we prove our main results: Theorem 5.1.4 and Theorem 5.1.5. In Section 5.7.1

we study certain tail properties (Lemma 5.7.1 and Proposition 5.7.2) of the quantities that we are

interested in and prove Theorem 5.1.4. Proof of Proposition 5.7.2 is then completed in Section

5.7.2 along with proof of Theorem 5.1.5.

5.7.1 Tail Properties and proof of Theorem 5.1.4

We first settle the question of finiteness of the Bessel integral appearing in the statements of

Theorems 5.1.4 and 5.1.5 in the following Lemma.

Lemma 5.7.1. Let 𝑅𝜎 (·) be a Bessel process with diffusion coefficient 𝜎 > 0, defined in Definition
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5.5.2. Then

P
(∫
R
𝑒−𝑅𝜎 (𝑥)d𝑥 ∈ (0,∞)

)
= 1.

Proof. Since 𝑅𝜎 (·) has continuous paths, sup𝑥∈[0,1] 𝑅𝜎 (𝑥) is finite almost surely. Thus almost

surely we have ∫
R
𝑒−𝑅𝜎 (𝑥)d𝑥 ≥

∫ 1

0
𝑒−𝑅𝜎 (𝑥)d𝑥 > 0.

On the other hand, by the classical result from [257] it is known that

P(𝑅𝜎 (𝑥) < 𝑥1/4 infinitely often) = 0.

Thus, there exists Ω such that P(Ω) = 1 and for all 𝜔 ∈ Ω, there exists 𝑥0(𝜔) ∈ (0,∞) such that

𝑅𝜎 (𝑥) (𝜔) ≥ 𝑥1/4 for all 𝑥 ≥ 𝑥0(𝜔).

Hence for this 𝜔,

∫ ∞

0
𝑒−𝑅𝜎 (𝑥) (𝜔)d𝑥 =

∫ 𝑥0 (𝜔)

0
𝑒−𝑅𝜎 (𝑥) (𝜔)d𝑥 +

∫ ∞

𝑥0 (𝜔)
𝑒−𝑅𝜎 (𝑥) (𝜔)d𝑥 < 𝑥0(𝜔) +

∫ ∞

0
𝑒−𝑥

1/4
d𝑥 < ∞.

This establishes that
∫
R
𝑒−𝑅𝜎 (𝑥)d𝑥 is finite almost surely.

Our next result studies the tail of the integral of the pre-limiting process.

Proposition 5.7.2. Fix 𝑝 ∈ (0, 1). Set 𝑞 = 1 − 𝑝. Consider 2 independent copies of the KPZ

equation H↑(𝑥, 𝑡), and H↓(𝑥, 𝑡), both started from the narrow wedge initial data. LetM𝑝,𝑡 be the

almost sure unique maximizer of the process 𝑥 ↦→ (H↑(𝑥, 𝑝𝑡) +H↓(𝑥, 𝑞𝑡)) which exists via Lemma

5.3.1. Set

𝐷1(𝑥, 𝑡) := H↑(M𝑝,𝑡 , 𝑝𝑡) − H↑(𝑥 +M𝑝,𝑡 , 𝑝𝑡),

𝐷2(𝑥, 𝑡) := H↓(𝑥 +M𝑝,𝑡 , 𝑞𝑡) − H↓(M𝑝,𝑡 , 𝑞𝑡).
(5.7.1)
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For all 𝜌 > 0 we have

lim sup
𝐾→∞

lim sup
𝑡→∞

P
(∫
[−𝐾,𝐾]𝑐

𝑒𝐷2 (𝑥,𝑡)−𝐷1 (𝑥,𝑡) d𝑥 ≥ 𝜌
)
= 0. (5.7.2)

As a corollary, we derive that for any 𝑝 ∈ (0, 1) the 𝑝𝑡-point density of point-to-point CDRP

of length 𝑡 indeed concentrates in a microscopic region of size 𝑂 (1) around the favorite point.

Corollary 5.7.3. Recall the definition of CDRP and the notation P𝜉 from Definition 6.1.1. Fix

𝑝 ∈ (0, 1). Suppose 𝑋 ∼ CDRP(0, 0; 0, 𝑡). ConsiderM𝑝,𝑡 the almost sure unique mode of 𝑓𝑝,𝑡 ,

the quenched density of 𝑋 (𝑝𝑡). We have

lim sup
𝐾→∞

lim sup
𝑡→∞

P𝜉
(
|𝑋 (𝑝𝑡) −M𝑝,𝑡 | ≥ 𝐾

)
= 0, in probability.

One also has the analogous version of Proposition 5.7.2 involving one single copy of the KPZ

equation viewed around its maximum. This leads to a similar corollary about tightness of the

quenched endpoint distribution for point-to-line CDRP (see Definition 6.1.2) when re-centered

around its mode. The details are skipped for brevity.

The proof of Proposition 5.7.2 is heavily technical and relies on the tools as well as notations

from Proposition 5.6.1. For clarity, we first prove Corollary 5.7.3 and Theorem 5.1.4 assuming the

validity of Proposition 5.7.2. The proof of Proposition 5.7.2 is then presented in Section 5.7.2.

Proof of Corollary 5.7.3. We haveZ(0, 0; 𝑥, 𝑝𝑡) 𝑑= 𝑒H↑ (𝑥,𝑝𝑡) and by time reversal propertyZ(𝑥, 𝑝𝑡; 0, 𝑡) 𝑑=

𝑒H↓ (𝑥,𝑞𝑡) as functions in 𝑥, whereH↑,H↓ are independent copies of KPZ equation started from nar-

row wedge initial data. The uniqueness of the mode M𝑝,𝑡 for 𝑓𝑝,𝑡 is already settled in Lemma

5.3.1. Thus, the quenched density of 𝑋 (𝑝𝑡) −M𝑝,𝑡 is given by

𝑓𝑝,𝑡 (𝑥 +M𝑝,𝑡) =
exp(𝐷2(𝑥, 𝑡) − 𝐷1(𝑥, 𝑡))∫

R

exp(𝐷2(𝑦, 𝑡) − 𝐷1(𝑦, 𝑡))d𝑦
, (5.7.3)
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where 𝐷𝑖 (𝑥, 𝑡), 𝑖 = 1, 2 are defined in (5.6.23). Thus,

P𝜉
(
|𝑋 (𝑝𝑡) −M𝑝,𝑡 | ≥ 𝐾

)
=

∫
[−𝐾,𝐾]𝑐

𝑒𝐷2 (𝑥,𝑡)−𝐷1 (𝑥,𝑡) d𝑥∫
R

𝑒𝐷2 (𝑥,𝑡)−𝐷1 (𝑥,𝑡) d𝑥
≤

∫
[−𝐾,𝐾]𝑐

𝑒𝐷2 (𝑥,𝑡)−𝐷1 (𝑥,𝑡) d𝑥∫
[−𝐾,𝐾]

𝑒𝐷2 (𝑥,𝑡)−𝐷1 (𝑥,𝑡) d𝑥
. (5.7.4)

Notice that by by (5.7.2) the numerator of r.h.s. of (5.7.4) goes to zero in probability under the

iterated limit lim sup𝑡→∞ followed by lim sup𝐾→∞. Whereas due to Proposition 5.6.1, under the

iterated limit, the denominator converges in distribution to
∫
R
𝑒−𝑅2 (𝑥)d𝑥 which is strictly positive

by Lemma 5.7.1. Thus overall the r.h.s. of (5.7.4) goes to zero in probability under the iterated

limit. This completes the proof.

Proof of Theorem 5.1.4. Fix any 𝑝 ∈ (0, 1). Set 𝑞 = 1 − 𝑝. Recall from (5.7.3) that

𝑓𝑝,𝑡 (𝑥 +M𝑝,𝑡) =
exp(𝐷2(𝑥, 𝑡) − 𝐷1(𝑥, 𝑡))∫

R

exp(𝐷2(𝑦, 𝑡) − 𝐷1(𝑦, 𝑡))d𝑦
(5.7.5)

where 𝐷𝑖 (𝑥, 𝑡), 𝑖 = 1, 2 are defined in (5.6.23). Note that by Proposition 5.6.1, a continuous map-

ping theorem immediately implies that for any 𝐾 < ∞

exp(𝐷2(𝑥, 𝑡) − 𝐷1(𝑥, 𝑡))∫ 𝐾

−𝐾 exp(𝐷2(𝑦, 𝑡) − 𝐷1(𝑦, 𝑡))d𝑦
𝑑→ 𝑒−R2 (𝑥)∫ 𝐾

−𝐾 𝑒
−R2 (𝑦)d𝑦

(5.7.6)

in the uniform-on-compact topology. Here R2 is a 3D Bessel process with diffusion coefficient 2.

For simplicity, we denote

𝔤𝑡 (𝑥) := exp(𝐷2(𝑥, 𝑡) − 𝐷1(𝑥, 𝑡)) and 𝔤(𝑥) = exp(−R2(𝑥)).

We can then rewrite (5.7.5) as product of four factors:

𝑓𝑝,𝑡 (𝑥 +M𝑝,𝑡) =
𝔤𝑡 (𝑥)∫
R
𝔤𝑡 (𝑦)d𝑦

=

∫ 𝐾

−𝐾 𝔤𝑡 (𝑦)d𝑦∫
R
𝔤𝑡 (𝑦)d𝑦

·
∫
R
𝔤(𝑦)d𝑦∫ 𝐾

−𝐾 𝔤(𝑦)d𝑦
·
∫ 𝐾

−𝐾 𝔤(𝑦)d𝑦∫
R
𝔤(𝑦)d𝑦

· 𝔤𝑡 (𝑥)∫ 𝐾

−𝐾 𝔤𝑡 (𝑦)d𝑦
.
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Corollary 5.7.3 ensures ∫ 𝐾

−𝐾 𝔤𝑡 (𝑦)d𝑦∫
R
𝔤𝑡 (𝑦)d𝑦

= P𝜉 ( |𝑋 (𝑝𝑡) −M𝑝,𝑡 | ≤ 𝐾)
𝑝
→ 1

as 𝑡 → ∞ followed by 𝐾 → ∞. Lemma 5.7.1 with 𝜎 = 2 yields that
∫
[−𝐾,𝐾]𝑐 𝔤(𝑦)d𝑦 =∫

[−𝐾,𝐾]𝑐 𝑒
−R2 (𝑦)d𝑦

𝑝
→ 0 as 𝐾 →∞. Thus as 𝐾 →∞

∫
R
𝔤(𝑦)d𝑦∫ 𝐾

−𝐾 𝔤(𝑦)d𝑦
𝑝
→ 1.

Meanwhile, (5.7.6) yields that as 𝑡 →∞,∫ 𝐾

−𝐾 𝔤(𝑦)d𝑦∫
R
𝔤(𝑦)d𝑦

· 𝔤𝑡 (𝑥)∫ 𝐾

−𝐾 𝔤𝑡 (𝑦)d𝑦
𝑑→

∫ 𝐾

−𝐾 𝔤(𝑦)d𝑦∫
R
𝔤(𝑦)d𝑦

· 𝔤(𝑥)∫ 𝐾

−𝐾 𝔤(𝑦)d𝑦
=

𝔤(𝑥)∫
R
𝔤(𝑦)d𝑦

.

in the uniform-on-compact topology. Thus, overall we get that 𝑓𝑝,𝑡 (𝑥 + M𝑝,𝑡)
𝑑→ 𝔤(𝑥)∫

R
𝔤(𝑦)d𝑦 , in the

uniform-on-compact topology. This establishes (5.1.7), completing the proof of Theorem 5.1.4.

5.7.2 Proof of Proposition 5.7.2 and Theorem 5.1.5

Coming to the proof of Proposition 5.7.2, we note that the setup of Proposition 5.7.2 is same as

that of Proposition 5.6.1. Hence all the discussions pertaining to Proposition 5.6.1 are applicable

here. In particular, to prove Proposition 5.7.2, we will be using few notations and certain results

from the proof of Proposition 5.6.1.

Proof of Proposition 5.7.2. Fix any 𝑀 > 0. The proof of (5.6.24) proceeds by dividing the integral

into two parts depending on the range:

𝑈1 := [−𝑡2/3𝑀 −M𝑝,𝑡 , 𝑡
2/3𝑀 −M𝑝,𝑡]𝑐, (Deep Tail)

𝑈2 := [𝐾, 𝐾]𝑐 ∩ [−𝑡2/3𝑀 −M𝑝,𝑡 , 𝑡
2/3𝑀 −M𝑝,𝑡], (Shallow Tail)
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and controlling each of them individually. See Figure 5.10 for details. In the following two steps,

we control these two kind of tails respectively.

Figure 5.10: Illustration for the proof of Proposition 5.7.2. In Deep Tail region we use parabolic
decay of KPZ line ensemble, and in Shallow Tail we use non-intersecting Brownian bridge sepa-
ration estimates from Proposition 5.5.6.

Step 1. In this step, we control the Deep Tail region: 𝑈1. The goal of this step is to show

lim sup
𝑡→∞

P
(∫
𝑈1

𝑒𝐷2 (𝑥,𝑡)−𝐷1 (𝑥,𝑡) d𝑥 ≥ 𝜌

2

)
≤ C exp(− 1

C𝑀
3), (5.7.7)

for some constant C = C(𝑝) > 0. We now recall the framework of KPZ line ensemble discussed

in Subsection 5.6.2. We define

S𝑝,𝑡 (𝑥) := 𝑝1/3𝔥(1)
𝑝𝑡,↑(𝑝

−2/3𝑥) + 𝑞1/3𝔥(1)
𝑞𝑡,↓(𝑞

−2/3𝑥) (5.7.8)

where 𝔥𝑡,↑, 𝔥𝑡,↓ are scaled KPZ line ensembles corresponding toH↑,H↓, see (5.2.6). Observe that

𝐷2(𝑥, 𝑡) − 𝐷1(𝑥, 𝑡)
𝑑
= 𝑡1/3

[
S𝑝,𝑡 (𝑡−2/3(𝑥 +M𝑝,𝑡)) − sup

𝑧∈R
S𝑝,𝑡 (𝑧)

]
,
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where 𝐷1, 𝐷2 are defined in (5.7.1). Thus we have

∫
𝑈1

exp(𝐷2(𝑥, 𝑡) − 𝐷1(𝑥, 𝑡))d𝑥
𝑑
=

∫
|𝑥 |≥𝑀

exp
(
𝑡1/3

[
S𝑝,𝑡 (𝑥) − sup

𝑧∈R
S𝑝,𝑡 (𝑧)

] )
d𝑥

where𝑈1 is defined in (Deep Tail). Towards this end, we define two events

A :=
{
sup
𝑧∈R
S𝑝,𝑡 (𝑧) ≤ −𝑀

2

4

}
, B :=

{
sup
𝑥∈R

(
S𝑝,𝑡 (𝑥) + 𝑥2

)
> 𝑀2

4

}
,

Note that on ¬𝐴 ∩ ¬𝐵, for all |𝑥 | ≥ 𝑀 , we have

S𝑝,𝑡 (𝑥) − sup
𝑧∈R
S𝑝,𝑡 (𝑧) ≤ 𝑀2

4 +
𝑀2

4 − 𝑥
2 ≤ 𝑀2

2 −
3𝑀2

4 −
𝑥2

4 ≤ −
𝑀2

4 −
𝑥2

4 .

This forces

∫
|𝑥 |≥𝑀

exp
(
𝑡1/3

[
S𝑝,𝑡 (𝑥) − sup

𝑧∈R
S𝑝,𝑡 (𝑧)

] )
d𝑥 ≤

∫
[−𝑀,𝑀]𝑐

exp
(
−𝑡1/3(𝑀2

2 +
𝑦2

4 )
)

d𝑦,

which goes to zero as 𝑡 →∞. Hence l.h.s. of (5.7.7) ≤ P(¬A) + P(¬B). Hence it suffices to show

P(¬A) ≤ C exp
(
− 1

C𝑀
3
)
, P(¬B) ≤ C exp

(
− 1

C𝑀
3
)
. (5.7.9)

To prove the first part of (5.7.9), note that

P (¬𝐴) ≤ P
(
S𝑝,𝑡 (0) ≤ −𝑀

2

4

)
≤ P

(
𝑝1/3𝔥(1)

𝑝𝑡,↑(0) ≤ −
𝑀2

8

)
+ P

(
𝑞1/3𝔥(1)

𝑞𝑡,↓(0) ≤ −
𝑀2

8

)
≤ C exp(− 1

C𝑀
3).

where the last inequality follows by Proposition 5.2.8 (b), for some constant C = C(𝑝) > 0. This

proves the first part of (5.7.9). For the second part of (5.7.9), following the definition of S𝑝,𝑡 (𝑥)
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from (5.7.8), and using the elementary inequality 1
4𝑝 +

1
4𝑞 ≥ 1 by a union bound we have

P
(
sup
𝑥∈R

(
S𝑝,𝑡 (𝑥) + 𝑥2

)
> 𝑀2

4

)
≤ P

(
sup
𝑥∈R

(
𝑝1/3𝔥(1)

𝑝𝑡,↑(𝑝
−2/3𝑥) + 𝑥2

4𝑝

)
> 𝑀2

8

)
+ P

(
sup
𝑥∈R

(
𝑞1/3𝔥(1)

𝑞𝑡,↑(𝑞
−2/3𝑥) + 𝑥2

4𝑞

)
> 𝑀2

8

)
.

(5.7.10)

Applying Proposition (5.2.8) (c) with 𝛽 = 1
2 , we get that each of the terms on r.h.s. of (5.7.10) are

at most C exp(− 1
C𝑀

3) where C = C(𝑝) > 0. This establishes the second part of (5.7.9) completing

the proof of (5.7.7).

Step 2. In this step, we control the Shallow Tail region: 𝑈2. We first lay out the heuristic idea

behind the Shallow Tail region controls. We recall the nice event Sp(𝜆) from (5.6.62) which occurs

with high probability. Assuming Sp(𝜆) holds, we apply the the H𝑡 Brownian Gibbs property of

the KPZ line ensembles, and analyze the desired integral

∫
𝑈2

𝑒𝐷2 (𝑥,𝑡)−𝐷1 (𝑥,𝑡)d𝑥

under the ‘free’ Brownian bridge law. Further conditioning on the information of the maximizer

converts the free law into the law of the NonInt-BrBridge (defined in Definition 5.4.4). On Sp(𝜆),

we may apply Proposition 5.5.6 to obtain the desired estimates for the ‘free’ law. One then obtain

the desired estimates for KPZ law using the lower bound for the normalizing constant from Propo-

sition 6.5.1 (b).

We now expand upon the technical details. In what follows we will only work with the right

tail:

𝑈+,2 := [−𝑡2/3𝑀 −M𝑝,𝑡 , 𝑡
2/3𝑀 −M𝑝,𝑡] ∩ [𝐾,∞) = [𝐾, 𝑡2/3𝑀 −M𝑝,𝑡]

and the argument for the left part of the shallow tail is analogous. Note that we also implicitly

assumed 𝑡2/3𝑀 − M𝑝,𝑡 ≥ 𝐾 above. Otherwise there is nothing to prove. As before we utilize
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the the notations defined in Subsection 5.6.2. Recall the local maximizerM𝑀
𝑝,𝑡 defined in (5.6.25).

Recall 𝑌 (1)
𝑀,𝑡,↑, 𝑌

(1)
𝑀,𝑡,↓ from (5.6.26). Set

Γ𝑡,𝑀,𝐾 :=
∫ 𝑀𝑡2/3−M𝑝,𝑡

𝐾

𝑒
−𝑡1/3

[
𝑌
(1)
𝑀,𝑡,↑ (𝑡

−2/3 (M𝑀
𝑝,𝑡+𝑥))−𝑌

(1)
𝑀,𝑡,↓ (𝑡

−2/3 (M𝑀
𝑝,𝑡+𝑥))

]
d𝑥 (5.7.11)

=

∫ 𝑀𝑡2/3−M𝑝,𝑡

𝐾

exp(−𝐷𝑀,𝑡,↑(𝑥) + 𝐷𝑀,𝑡,↓(𝑥))d𝑥,

where the last equality follows from the definition of 𝐷𝑀,𝑡,↑, 𝐷𝑀,𝑡,↓ from (5.6.28). Recall that the

only difference between 𝐷1, 𝐷2 (defined in (5.6.27)) and 𝐷𝑀,𝑡,↑, 𝐷𝑀,𝑡,↓ is that former is defined

using the global maximizerM𝑝,𝑡 and the latter by local maximizerM𝑀
𝑝,𝑡 . However, Lemma 5.3.1

implies that with probability at least 1 − C exp(− 1
C𝑀

3), we haveM𝑝,𝑡 = M𝑀
𝑝,𝑡 . Next, fix 𝜆 > 0.

Consider Sp(𝜆) event defined in (5.6.62). We thus have

P
(∫
𝑈+,2

𝑒𝐷2 (𝑥,𝑡)−𝐷1 (𝑥,𝑡)d𝑥 ≥ 𝜌

4

)
≤ C exp(− 1

C𝑀
3) + P(¬Sp(𝜆)) + P

(
Γ𝑡,𝑀,𝐾 ≥ 𝜌

4 ,Sp(𝜆)
)
.

(5.7.12)

We recall the 𝜎-fields F1, F2 defined in (5.6.42) and (5.6.43). We first condition on F1. As

noted in Subsection 5.6.2, since 𝔥
(1)
𝑝𝑡,↑ and 𝔥

(1)
𝑞𝑡,↓ are independent, applying H𝑝𝑡 and H𝑞𝑡 Brownian

Gibbs property from Proposition 6.5.1 for 𝔥(1)
𝑝𝑡,↑, 𝔥

(1)
𝑞𝑡,↓ respectively we have

P
(
Γ𝑡,𝑀,𝐾 ≥ 𝜌

2 ,Sp(𝜆)
)
= E


Efree,𝑡 [1Γ𝑡 ,𝑀,𝐾≥ 𝜌4 ,Sp(𝜆)𝑊↑𝑊↓]

Efree,𝑡 [𝑊↑𝑊↓]

 , (5.7.13)

where𝑊↑,𝑊↓ are defined in (5.6.48) and (5.6.49). Here Pfree,𝑡 and Efree,𝑡 are the probability and the

expectation operator respectively corresponding to the joint ‘free’ law for (𝑝1/3𝔥𝑝𝑡,↑(𝑝−2/3𝑥), and

𝑞1/3𝔥𝑞𝑡,↓(𝑞−2/3𝑥))𝑥∈[−𝑀,𝑀] which by Brownian scaling is given by a pair of independent Brownian

bridges (𝐵1(·), 𝐵2(·)) on [−𝑀, 𝑀] with starting points (𝑝1/3𝔥𝑝𝑡,↑(−𝑀𝑝−2/3), 𝑞1/3𝔥𝑞𝑡,↓(−𝑀𝑞−2/3))

and endpoints (𝑞1/3𝔥𝑝𝑡,↑(𝑀𝑝−2/3), 𝑞1/3𝔥𝑞𝑡,↓(𝑀𝑞−2/3)).

In addition, from the last part of Proposition 6.5.1 we know that for any given 𝜆 > 0, there
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exists 𝛿(𝑀, 𝑝, 𝜆) > 0 such that

P(Efree,𝑡 [𝑊↑𝑊↓] > 𝛿) ≥ 1 − 𝜆. (5.7.14)

Since the weight𝑊↑𝑊↓ ∈ [0, 1], (5.7.13) and (5.7.14) give us

r.h.s. of (5.7.12) ≤ C exp(− 1
C𝑀

3) + P(¬Sp(𝜆)) + 𝜆 + 1
𝛿

E
[
Pfree,𝑡

(
Γ𝑡,𝑀,𝐾 ≥ 𝜌

4 ,Sp(𝜆)
) ]
.

(5.7.15)

Next we condition on F2 defined in (5.6.43). By Proposition 5.4.10, upon conditioning the

free measure of two Brownian bridges when viewed around the maximizer are given by two

NonInt-BrBridge (defined in Definition 5.4.4). The precise law is given by Nlarge law defined in

Definition 5.6.3. Note that Sp(𝜆) is measurable w.r.t. F1∪F2. By Reverse Fatou’s Lemma and the

tower property of conditional expectations, we obtain that

lim sup
𝐾→∞

lim sup
𝑡→∞

E
[
Pfree,𝑡

(
Γ𝑡,𝑀,𝐾 ≥ 𝜌

4 ,Sp(𝜆)
) ]

≤ E
[
lim sup
𝐾→∞

lim sup
𝑡→∞

1Sp(𝜆)PNlarge|2,1
(
Γ𝑡,𝑀,𝐾 ≥ 𝜌

4
) ]
. (5.7.16)

Following the Definition 5.6.3 and (5.7.11) we see that under Nlarge law,

Γ𝑡,𝑀,𝐾
𝑑
=

∫ 𝑀𝑡2/3−M𝑝,𝑡

𝐾

𝑒
−𝑡1/3

[
𝑉

large
𝑟 ,1 (𝑡

−2/3𝑥)−𝑉 large
𝑟 ,2 (𝑡

−2/3𝑥)
]
d𝑥. (5.7.17)

where 𝑉 large
𝑟 = (𝑉 large

𝑟,1 , 𝑉
large
𝑟,2 ) is a NonInt-BrBridge defined in Definition 5.6.3. Now notice that

by the definition in (5.6.62), on the Sp(𝜆) event, the length of the Brownian bridges considered

are bounded from below and above and the end points are tight. Following the equality in distribu-

tion in (5.7.17), the technical result of Proposition 5.5.6 precisely tells us that the term inside the
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expectation of r.h.s. of (5.7.16) is zero. Thus, going back to (5.7.15) we get that

lim sup
𝐾→∞

lim sup
𝑡→∞

P
(∫
𝑈+,2

𝑒𝐷2 (𝑥,𝑡)−𝐷1 (𝑥,𝑡)d𝑥 ≥ 𝜌

4

)
≤ C exp(− 1

C𝑀
3) + lim sup

𝑡→∞
P(¬Sp(𝜆)) + 𝜆.

Taking lim sup𝜆↓0, in view of (5.6.63), we get that last two terms in r.h.s. of the above equa-

tion are zero. Similarly one can show the same bound for the integral under 𝑈−,2 := [−𝑡2/3𝑀 −

M𝑝,𝑡 , 𝑡
2/3𝑀 −M𝑝,𝑡] ∩ (−∞,−𝐾]. Together with (5.7.7), we thus have

lim sup
𝐾→∞

lim sup
𝑡→∞

P
(∫
[−𝐾,𝐾]𝑐

𝑒𝐷2 (𝑥,𝑡)−𝐷1 (𝑥,𝑡)d𝑥 ≥ 𝜌
)
≤ C exp(− 1

C𝑀
3).

Taking 𝑀 →∞ we get (5.7.2) completing the proof.

Proof of Theorem 5.1.5. Recall from (5.1.6) that

𝑓∗,𝑡 (𝑥) =
Z(0, 0; 𝑥, 𝑡)
Z(0, 0; ∗, 𝑡) =

𝑒H(𝑥,𝑡)∫
R
𝑒H(𝑦,𝑡)d𝑦

.

The uniqueness of the modeM∗,𝑡 for 𝑓∗,𝑡 is already proved in Lemma 5.3.1. Thus, we have

𝑓∗,𝑡 (𝑥 +M∗,𝑡) =
exp

(
H(M∗,𝑡 + 𝑥, 𝑡) − H (M∗,𝑡 , 𝑡)

)∫
R

exp
(
H(M∗,𝑡 + 𝑦, 𝑡) − H (M∗,𝑡 , 𝑡)

)
d𝑦
.

Just like in Proposition 5.7.2, we claim that

lim sup
𝐾→∞

lim sup
𝑡→∞

P
(∫
[−𝐾,𝐾]𝑐

𝑒H(M∗,𝑡+𝑦,𝑡)−H (M∗,𝑡 ,𝑡)d𝑦 ≥ 𝜌
)
= 0. (5.7.18)

The proof of (5.7.18) is exactly same as that of (5.7.2), where we divide the integral in (5.7.18) into

a deep tail and a shallow tail and bound them individually. To avoid repetition, we just add few

pointers for the readers. Indeed the two key steps of proof of Proposition 5.7.2 that bound the deep

and shallow tails can be carried out for the (5.7.18) case. The deep tail regime follows an exact

similar strategy as Step 1 of the proof of Proposition 5.7.2 and utilizes the same parabolic decay
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of the KPZ equation from Proposition 5.2.8. The analogous shallow tail regime also follows in a

similar manner by using the uniform separation estimate for Bessel bridges from Corollary 5.5.7.

Now note that by Theorem 5.1.10 with 𝑘 = 1, we have

H(M∗,𝑡 + 𝑥, 𝑡) − H (M∗,𝑡 , 𝑡)
𝑑→ R1(𝑥), (5.7.19)

in the uniform-on-compact topology. Here R1 is a 3D-Bessel process with diffusion coefficient

1. With the tail decay estimate in (5.7.18) and the same for the Bessel process from Proposition

5.7.1, in view of (5.7.19) one can show 𝑓∗,𝑡 (𝑥 + M∗,𝑡) → 𝑒−R1 (𝑥 )∫
R
𝑒−R1 (𝑦)d𝑦 in the uniform-on-compact

topology by following the analogous argument from the proof of Theorem 5.1.4. This completes

the proof.

5.8 Non-intersecting random walks

In this section we prove Lemma 5.4.7 that investigates the convergence of non-intersecting ran-

dom walks to non-intersecting brownian motions. We remark that similar types of Theorems are

already known in the literature such as [161], where the authors considered random walks to start

at different locations. Since our walks starts at the same point, additional care is required.

We now recall Lemma 5.4.7 for readers’ convenience.

Lemma 5.8.1. Let 𝑋 𝑖
𝑗

be i.i.d. N(0, 1) random variables. Let 𝑆(𝑖)0 = 0 and 𝑆
(𝑖)
𝑘

=
∑𝑘
𝑗=1 𝑋

𝑖
𝑗
.

Consider 𝑌𝑛 (𝑡) = (𝑌𝑛,1(𝑡), 𝑌𝑛,2(𝑡)) := ( 𝑆
(1)
𝑛𝑡√
𝑛
,
𝑆
(2)
𝑛𝑡√
𝑛
) an R2 valued process on [0, 1] where the in-

between points are defined by linear interpolation. Then conditioned on the non-intersecting event

Λ𝑛 := ∩𝑛
𝑗=1{𝑆

(1)
𝑗

> 𝑆
(2)
𝑗
}, 𝑌𝑛

𝑑→ 𝑊 , where 𝑊 (𝑡) = (𝑊1(𝑡),𝑊2(𝑡)) is distributed as NonInt-BM

defined in Definition 5.4.3.

Proof of Lemma 5.8.1. To show weak convergence, it suffices to show finite dimensional conver-

gence and tightness. Based on the availability of exact joint densities for non-intersecting random
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walks from Karlin-McGregor formula [219], the verification of weak convergence is straightfor-

ward. So, we only highlight major steps of the computations below.

Step 1. One point convergence at 𝑡 = 1. Note that

P
(
|
√
𝑛𝑌𝑛,𝑖 (𝑡) − 𝑆(𝑖)b𝑛𝑡c | >

√
𝑛𝜀 | Λ𝑛

)
≤ 1

P(Λ𝑛)
P

(
|𝑋b𝑛𝑡c+1 | >

√
𝑛𝜀

)
≤ C

𝜀2√𝑛

The last inequality above follows by Markov inequality and the classical result that P(Λ𝑛) ≥ C√
𝑛

in

Spitzer [297]. Thus it suffices to show finite dimensional convergence for the cadlag process:

(𝑍 (1)𝑛𝑡 , 𝑍
(2)
𝑛𝑡 ) :=

1
√
𝑛
(𝑆(1)b𝑛𝑡c , 𝑆

(2)
b𝑛𝑡c). (5.8.1)

We assume that 𝑛 large enough so that 𝑛−1
𝑀
√
𝑛
≥ 1 for some 𝑀 > 0 to be chosen later. When 𝑡 = 1,

applying the Karlin-McGregor formula, we obtain that

P(𝑍𝑛 (1) ∈ d𝑦1, 𝑍𝑛 (1) ∈ d𝑦2 |Λ𝑛) = 𝜏𝑛 · 𝑓𝑛,1(𝑦1, 𝑦2)d𝑦1d𝑦2

where

𝑓𝑛,1(𝑦1, 𝑦2) :=
∫

𝑎1>𝑎2

𝑝1(𝑎1)𝑝1(𝑎2) det(𝑝𝑛−1(𝑎𝑖 − 𝑦 𝑗
√
𝑛))2𝑖, 𝑗=1d𝑎1d𝑎2,

and

𝜏−1
𝑛 :=

∫
𝑟1>𝑟2

∫
𝑎1>𝑎2

𝑝1(𝑎1)𝑝1(𝑎2) det(𝑝𝑛−1(𝑎𝑖 − 𝑟 𝑗
√
𝑛))2𝑖, 𝑗=1d𝑎1d𝑎2d𝑟1d𝑟2. (5.8.2)

Note that here the Karlin-McGregor formula, after we have conditioned on the first step of the

random walks with 𝑋1
1 = 𝑎1 > 𝑋

2
1 = 𝑎2.

We will now show that (𝑛−1)2√
𝑛
𝜏−1
𝑛 and (𝑛−1)2√

𝑛
𝑓𝑛,1(𝑦1, 𝑦2) converges to a nontrivial limit. Observe
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that

(𝑛−1)2√
𝑛

det(𝑝𝑛−1(𝑎𝑖 − 𝑦 𝑗
√
𝑛))2𝑖, 𝑗=1 = (𝑛 − 1)𝑝𝑛−1(𝑎1 − 𝑦2

√
𝑛)𝑝𝑛−1(𝑎2 − 𝑦1

√
𝑛)

· 𝑛−1√
𝑛
[𝑒
√
𝑛(𝑎1−𝑎2 ) (𝑦1−𝑦2 )

𝑛−1 − 1] .
(5.8.3)

Thus, as 𝑛→∞, we have

(𝑛−1)2√
𝑛

det(𝑝𝑛−1(𝑎𝑖 − 𝑦 𝑗
√
𝑛))2𝑖, 𝑗=1 → 𝑝1(𝑦1)𝑝1(𝑦2) (𝑎1 − 𝑎2) (𝑦1 − 𝑦2). (5.8.4)

Next we proceed to find a uniform bound for the expression in (5.8.3). Not that for 𝑥, 𝑟 ≥ 1,

one has the elementary inequality 𝑥𝑟 ≥ 𝑥𝑟 − 1 ≥ 𝑟 (𝑥 − 1). Now taking 𝑟 = 𝑛−1
𝑀
√
𝑛

and 𝑥 =

exp(
√
𝑛

𝑛−1 (𝑎1 − 𝑎2) (𝑦1 − 𝑦2) we get

r.h.s. of (5.8.3) ≤ 1
2𝜋

exp
(
− (𝑎1−𝑦2

√
𝑛)2

2𝑛−2 − (𝑎2−𝑦1
√
𝑛)2

2𝑛−2 + 1
𝑀
(𝑎1 − 𝑎2) (𝑦1 − 𝑦2)

)
≤ 1

2𝜋
exp

(
− 𝑦

2
2

4 −
𝑦2

1
4 +

1
𝑀
(𝑎1 − 𝑎2) (𝑦1 − 𝑦2) + 1

𝑀
( |𝑎1𝑦2 | + |𝑎2𝑦1 |)

)
≤ 1

2𝜋
exp

(
− 𝑦

2
2

4 −
𝑦2

1
4 +

2(𝑎2
1+𝑦

2
1+𝑎

2
2+𝑦

2
2)

𝑀
)
)
, (5.8.5)

where the last inequality follows by several application of the elementary inequality |𝑥𝑦 | ≤ 1
2 (𝑥

2 +

𝑦2). One can choose 𝑀 large enough so that the uniform bound in (5.8.5) is integrable w.r.t. the

measure 𝑝1(𝑎1)𝑝1(𝑎2)d𝑎1d𝑎2. With the pointwise limit from (5.8.4), by dominated convergence

theorem we have

(𝑛−1)2√
𝑛
𝑓𝑛,1(𝑦1, 𝑦2) = (𝑛−1)2√

𝑛

∫
𝑎1>𝑎2

𝑝1(𝑎1)𝑝1(𝑎2) det(𝑝𝑛−1(𝑎𝑖 − 𝑦 𝑗
√
𝑛))2𝑖, 𝑗=1d𝑎1d𝑎2

→ 𝑝1(𝑦1)𝑝1(𝑦2) (𝑦1 − 𝑦2)
∫
𝑎1>𝑎2

(𝑎1 − 𝑎2)𝑝1(𝑎1)𝑝1(𝑎2)d𝑎1d𝑎2.

Similarly one can compute the pointwise limit for the integrand in 𝜏−1
𝑛 (defined in (5.8.2)) and the
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uniform bound in (5.8.5) works for the denominator as well. We thus have

(𝑛−1)2√
𝑛
𝜏−1
𝑛 →

∫
𝑎1>𝑎2

∫
𝑟1>𝑟2

𝑝1(𝑟1)𝑝1(𝑟2) (𝑟1 − 𝑟2) (𝑎1 − 𝑎2)𝑝1(𝑎1)𝑝1(𝑎2)d𝑎1d𝑎2d𝑟1d𝑟2. (5.8.6)

Plugging these limits back in (5.8.1), we arrive at (5.4.1) (the one point density formula for

NonInt-BM) as the limit for (5.8.1).

Step 2. One point convergence at 0 < 𝑡 < 1. When 0 < 𝑡 < 1, with the Karlin-Mcgregor

formula, we similarly obtain

P(𝑍 (1)𝑛𝑡 ∈ d𝑦1, 𝑍
(2)
𝑛𝑡 ∈ d𝑦2 | Λ𝑛) = 𝜏𝑛 · 𝑓𝑛,𝑡 (𝑦1, 𝑦2)d𝑦1d𝑦2 (5.8.7)

where 𝜏𝑛 is defined in (5.8.2) and

𝑓𝑛,𝑡 (𝑦1, 𝑦2) =
∫
𝑟1>𝑟2

∫
𝑎1>𝑎2

𝑝1(𝑎1)𝑝1(𝑎2)
[
det(𝑝 b𝑛𝑡c−1(𝑎𝑖 − 𝑦 𝑗

√
𝑛))2𝑖, 𝑗=1

𝑛 · det(𝑝𝑛−b𝑛𝑡c (
√
𝑛𝑦𝑖 −

√
𝑛𝑟 𝑗 ))2𝑖, 𝑗=1

]
d𝑎1d𝑎2d𝑟1d𝑟2.

(5.8.8)

One can check that as 𝑛→∞, we have

𝑛3/2 det(𝑝 b𝑛𝑡c−1(𝑎𝑖 − 𝑦 𝑗
√
𝑛))2𝑖, 𝑗=1 → 1

𝑡
𝑝𝑡 (𝑦1)𝑝𝑡 (𝑦2) (𝑎1 − 𝑎2) (𝑦1 − 𝑦2),

𝑛 · det(𝑝𝑛−b𝑛𝑡c (
√
𝑛𝑦𝑖 −

√
𝑛𝑟 𝑗 ))2𝑖, 𝑗=1 → det(𝑝1−𝑡 (𝑦𝑖 − 𝑟 𝑗 ))2𝑖, 𝑗=1.

One can provide uniformly integrable bound for the integrand in 𝑓𝑛,𝑡 (𝑦1, 𝑦2) in a similar fashion.

Thus by dominated convergence theorem,

𝑛3/2 𝑓𝑛,𝑡 (𝑦1, 𝑦2) → 1
𝑡
𝑝𝑡 (𝑦1)𝑝𝑡 (𝑦2) (𝑦1 − 𝑦2)

∫
𝑎1>𝑎2

𝑝1(𝑎1)𝑝1(𝑎2) (𝑎1 − 𝑎2)d𝑎1d𝑎2∫
𝑟1>𝑟2

det(𝑝1−𝑡 (𝑦𝑖 − 𝑟 𝑗 ))2𝑖, 𝑗=1d𝑟1d𝑟2.

Using (5.8.6) we get that 𝜏𝑛 · 𝑓𝑛,𝑡 (𝑦1, 𝑦2) converges to (5.4.2), the one point density formula for
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NonInt-BM.

Step 3. Transition density convergence. For the transition densities, let 0 < 𝑡1 < 𝑡2 < 1, and fix

𝑥1 > 𝑥2. Another application of Karlin-McGregor formula tells us

P(𝑍 (1)𝑛𝑡2 ∈ d𝑦1, 𝑍
(2)
𝑛𝑡2
∈ d𝑦2 | 𝑍 (1)𝑛𝑡1 = 𝑥1, 𝑍

(2)
𝑛𝑡1

= 𝑥2)

= 𝑛 det(𝑝 b𝑛𝑡2c−b𝑛𝑡1c (
√
𝑛𝑦𝑖 −

√
𝑛𝑥 𝑗 ))2𝑖, 𝑗=1

·

∫
𝑟1>𝑟2

det(𝑝𝑛−b𝑛𝑡2c (
√
𝑛𝑦𝑖 −

√
𝑛𝑟 𝑗 ))2𝑖, 𝑗=1d𝑟1d𝑟2d𝑦1d𝑦2∫

𝑟1>𝑟2

det(𝑝𝑛−b𝑛𝑡1c (
√
𝑛𝑥𝑖 −

√
𝑛𝑟 𝑗 ))2𝑖, 𝑗=1d𝑟1d𝑟2

.

(5.8.9)

One can check as 𝑛→∞

r.h.s of (5.8.9)→
det(𝑝𝑡2−𝑡1 (𝑦𝑖 − 𝑥 𝑗 ))2𝑖, 𝑗=1

∫
𝑟1>𝑟2

det(𝑝1−𝑡2 (𝑦𝑖 − 𝑟 𝑗 ))2𝑖, 𝑗=1d𝑟1d𝑟2d𝑦1d𝑦2∫
𝑟1>𝑟2

det(𝑝1−𝑡1 (𝑥𝑖 − 𝑟 𝑗 ))2𝑖, 𝑗=1d𝑟1d𝑟2

which is same as transition densities for NonInt-BM as shown in (5.4.3). This proves finite dimen-

sional convergence.

Step 4. Tightness. To show tightness, by Kolmogorov tightness criterion, it suffices to show

there exist 𝐾 > 0 and 𝑛0 ∈ N such that for all 𝑛 ≥ 𝑛0

E
[
|𝑌𝑛,𝑖 (𝑡) − 𝑌𝑛,𝑖 (𝑠) |𝐾 | Λ𝑛

]
≤ C𝐾,𝑛0 · (𝑡 − 𝑠)2 (5.8.10)

holds for all 0 ≤ 𝑠 < 𝑡 ≤ 1.

Recall that P(Λ𝑛) ≥ C√
𝑛
. For 𝑡 − 𝑠 ≤ 1

𝑛
with 𝐾 ≥ 5 we have

E
[
|𝑌𝑛,𝑖 (𝑡) − 𝑌𝑛,𝑖 (𝑠) |𝐾 | Λ𝑛

]
≤ C ·

√
𝑛E

[
|𝑌𝑛,𝑖 (𝑡) − 𝑌𝑛,𝑖 (𝑠) |𝐾

]
≤ C ·

√
𝑛
(𝑛𝑡 − 𝑛𝑠)𝐾

𝑛𝐾/2
E[|𝑋1

1 |
𝐾] ≤ C𝑛

1−𝐾
2 (𝑛𝑡 − 𝑛𝑠)2 ≤ C𝐾 (𝑡 − 𝑠)2.

Thus we may assume 𝑡 − 𝑠 ≥ 1/𝑛. Then it is enough to show (5.8.10) for 𝑍 (𝑖)𝑛𝑡 (defined in (5.8.1))
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instead. Note that if 𝑡 − 𝑠 ∈ [𝑛−1, 𝑛−1/4], we may take 𝐾 large enough so 1
4 (𝐾 − 4) ≥ 1. Then we

have

E
[
|𝑍 (𝑖)𝑛𝑡 − 𝑍

(𝑖)
𝑛𝑠 |𝐾 | Λ𝑛

]
≤ C ·

√
𝑛E

[
|𝑍 (𝑖)𝑛𝑡 − 𝑍

(𝑖)
𝑛𝑠 |𝐾

]
≤ C ·

√
𝑛(𝑡 − 𝑠)𝐾/2 ≤ C · 𝑛1/2−(𝐾−4)/8(𝑡 − 𝑠)2

where in the last line we used the fact (𝑡 − 𝑠) (𝐾−4)/2 ≤ 𝑛−(𝐾−4)/8. As 1
4 (𝐾 − 4) ≥ 1, we have

E
[
|𝑍 (𝑖)𝑛𝑡 − 𝑍

(𝑖)
𝑛𝑠 |𝐾 | Λ𝑛

]
≤ C(𝑡 − 𝑠)2 in this case. So, we are left with the case 𝑡 − 𝑠 ≥ 𝑛−1/4.

Let us assume 𝑡 = 0, 𝑠 ≥ 𝑛− 1
4 . As 𝑛𝑠 ≥ 𝑛3/4 → ∞, we will no longer make the distinction

between 𝑛𝑠 and b𝑛𝑠c in our computations. We use the pdf formula from (7.4.16) and (5.8.8) to get

E[|𝑍 (𝑖)𝑛𝑠 |5] ≤ 𝜏𝑛
∫
𝑦1>𝑦2

|𝑦𝑖 |5
∫
𝑟1>𝑟2

∫
𝑎1>𝑎2

𝑝1(𝑎1)𝑝1(𝑎2) det(𝑝𝑛𝑠−1(𝑎𝑖 − 𝑦 𝑗
√
𝑛))2𝑖, 𝑗=1

𝑛 · det(𝑝𝑛−𝑛𝑠 (
√
𝑛𝑦𝑖 −

√
𝑛𝑟 𝑗 ))2𝑖, 𝑗=1

]
d𝑎1d𝑎2d𝑟1d𝑟2d𝑦1d𝑦2.

(5.8.11)

For the last determinant we may use

𝑛 · det(𝑝𝑛−𝑛𝑠 (
√
𝑛𝑦𝑖 −

√
𝑛𝑟 𝑗 ))2𝑖, 𝑗=1d𝑟1d𝑟2

≤ 𝑛 · 𝑝𝑛−𝑛𝑠 (
√
𝑛𝑦1 −

√
𝑛𝑟1)𝑝𝑛−𝑛𝑠 (

√
𝑛𝑦2 −

√
𝑛𝑟2)d𝑟1d𝑟2

which integrates to 1 irrespective of the value of 𝑦1, 𝑦2. Thus

r.h.s. of (5.8.11) ≤ 𝜏𝑛
∫
𝑦1>𝑦2

|𝑦𝑖 |5
∫
𝑎1,𝑎2

𝑝1(𝑎1)𝑝1(𝑎2) det(𝑝𝑛𝑠−1(𝑎𝑖 − 𝑦 𝑗
√
𝑛))2𝑖, 𝑗=1d𝑎1d𝑎2d𝑦1d𝑦2.

(5.8.12)

Making the change of variable 𝑦𝑖 =
√
𝑠𝑧𝑖 and setting 𝑚 = 𝑛𝑠, we have

r.h.s. of (5.8.12) ≤ 𝜏𝑛 · 𝑠
5
2+1I𝑚,
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where

I𝑚 :=
∫
𝑧1>𝑧2

|𝑧𝑖 |5
∫
𝑎1>𝑎2

𝑝1(𝑎1)𝑝1(𝑎2) det(𝑝𝑚−1(𝑎𝑖 − 𝑧 𝑗
√
𝑚))2𝑖, 𝑗=1d𝑎1d𝑎2d𝑧1d𝑧2.

We claim that (𝑚−1)2√
𝑚
I𝑚 ≤ C for some universal constant C > 0. Clearly this integral is finite for

each 𝑚. And by exact same approach in Step 1, one can show as 𝑚 →∞,

(𝑚 − 1)2
√
𝑚
I𝑚 :=

∫
𝑧1>𝑧2

|𝑧𝑖 |5
∫
𝑎1>𝑎2

𝑝1(𝑧1)𝑝1(𝑧2)𝑝1(𝑎1)𝑝1(𝑎2) (𝑎1 − 𝑎2) (𝑧1 − 𝑧2)d𝑎1d𝑎2d𝑧1d𝑧2.

Thus, (𝑚−1)2√
𝑚
I ≤ C for all 𝑚 ≥ 1. Thus following (5.8.11), (5.8.12), in view of the above estimate

we get

E[|𝑍 (𝑖)𝑛𝑠 |5] ≤ C𝜏𝑛
√
𝑚

(𝑚 − 1)2
𝑠

5
2+1.

However, by Step 1, 𝑛3/2𝜏−1
𝑛 converges to a finite positive constant. As 𝑚 = 𝑛𝑠, we thus get that

the above term is at most C · 𝑠2. The case 𝑡 ≠ 0 can be checked similarly using the formulas from

(7.4.16) and (5.8.8) as well as transition densities formula (5.8.9). This completes the proof.
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Chapter 6: Short- and long-time path tightness of the continuum directed

random polymer

6.1 Introduction

6.1.1 Background and motivation

Directed polymers in random environment can be considered as random walks interacting

with a random external environment. First introduced and studied in [202], [206] and [61], they

have since become a fertile ground for research in orthogonal polynomials, random matrices,

stochastic PDEs, and integrable systems (see [99, 181, 44] and the references therein). In the

(1 + 1)-dimensional discrete polymer case, the random environment is specified by a collection

of zero-mean i.i.d. random variables {𝜔 = 𝜔(𝑖, 𝑗) | (𝑖, 𝑗) ∈ Z+ × Z}. Given the environment,

the energy of the 𝑛-step nearest neighbour random walk (𝑆𝑖)𝑛𝑖=0 starting at the origin is given by

𝐻𝜔𝑛 (𝑆) :=
∑𝑛
𝑖=1 𝜔(𝑖, 𝑆𝑖). The point-to-line polymer measure on the set of all such paths is then

defined as

P𝜔𝑛,𝛽 (𝑆) =
1
𝑍𝜔
𝑛,𝛽

𝑒𝛽𝐻
𝜔
𝑛 (𝑆)P(𝑆),

where P(𝑆) is the simple random walk measure, 𝛽 is the inverse temperature, and 𝑍𝜔
𝑛,𝛽

is the

partition function.

A competition exists between the entropy of paths and the energy of the environment in this

polymer measure. Spurred by this competition, two distinct regimes appear depending on the

inverse temperature 𝛽. When 𝛽 = 0 the polymer measure is the simple random walk; hence it is

entropy-dominated and exhibits diffusive behavior. We refer to this scenario as weak disorder. For

𝛽 > 0, the polymer measure concentrates on paths with high energies and the diffusive behavior
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ceases to be guaranteed. This type of energy domination is known as strong disorder. For the

definitions and results on the precise separation between the two regimes as well as results on

higher dimensions, we refer the readers to [103, 237, 97].

While the polymer behavior is characterized by diffusivity in weak disorder, the fluctuations

of polymers in strong disorder are conjecturally characterized by two scaling exponents 𝜁 and 𝜒

([294], [5]):

Fluctuation of the endpoint of the path: |𝑆𝑛 | ∼ 𝑛𝜁 , (6.1.1)

Fluctuation of the log partition function: [log 𝑍𝜔𝑛,𝛽 − 𝜌(𝛽)𝑛] ∼ 𝑛
𝜒 .

It is believed that directed polymers fall under the “Kardar-Parisi-Zhang (KPZ) universality class"

(see [202, 203, 218, 235, 113]) with fluctuation exponent 𝜒 = 1
3 and transversal exponent 𝜁 = 2

3 .

This instance of the transversal exponent appearing larger than the diffusive scaling exponent 1
2 is

called superdiffusivity. Crucially, the conjectured values for 𝜒 and 𝜁 satisfy the “KPZ relation":

𝜒 = 2𝜁 − 1. (6.1.2)

At the moment, rigorous results on either exponent or the KPZ relation have been scarce. For

directed polymers, 𝜁 = 2/3 has only been obtained for log-gamma polymers in [294, 29] and for

certain semi-discrete polymers called O’Connell-Yor polymer [lan]. Upper and lower bounds on

𝜁 have been established in [274, 253] under additional weight assumptions. For zero-temperature

models, 𝜁 = 2
3 has been established in [212, 72, 195, 138, 35]. Outside the temperature models, the

KPZ relation in (6.1.2) has also been shown in other random growth models such as first passage

percolation in [89] and [9] under the assumption that the exponents exist in a certain sense. In

strong disorder, the polymer also exhibits certain localization phenomena (see [103, 44, 132] for

partial surveys). In particular, the favorite region conjecture speculates that the endpoint of the

polymer is asymptotically localized in a region of stochastically bounded diameter (see [100, 44,

42, 20, 132] for related results).
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Given the conceptual pictures on the two extreme regimes, in the present paper, we consider

polymer fluctuations in the intermediate disorder regime. Introduced in [5], the intermediate dis-

order regime corresponds to scaling the inverse temperature 𝛽 = 𝛽𝑛 = 𝑛
−1/4 with the length of the

polymer 𝑛, which captures the transitions between the weak and strong disorders and retains fea-

tures of both. Within this regime, [4] showed that the partition function for point-to-point directed

polymers has a universal scaling limit given by the solution of the Stochastic Heat Equation (SHE)

for environment with finite exponential moments. In addition, the polymer path itself converges to

a universal object called the Continuum Directed Random Polymer (denoted as CDRP hereafter)

under the diffusive scaling.

We consider point-to-point CDRP of length 𝑡. The main contribution of this paper can be

summarized as follows.

(a) We show that as 𝑡 ↓ 0, the polymer paths behave diffusively and its annealed law converges in

to the law of a Brownian bridge (Theorem 6.1.4).

(b) On the other hand, as 𝑡 ↑ ∞, the polymers have 𝑡2/3 pathwise fluctuations. The latter result

confirms superdiffusivity and the conjectural 2/3 exponent for the CDRP (Theorem 6.1.7 (a)).

Moreover, the strength of our result exceeds the conjecture in (6.1.1), which only claims end-

point tightness. Instead, in Theorem 6.1.7 (a), we prove that the annealed law of paths of

point-to-point CDRP of length 𝑡 are tight (as 𝑡 ↑ ∞) upon 𝑡2/3 scaling. This marks the first

result of path tightness among all positive-temperature models.

(c) We also show pointwise weak convergence of the polymer paths under the 𝑡2/3 scaling to points

on the geodesic of the directed landscape (Theorem 6.1.7 (b)). This ensures the 2/3 scaling

exponent is indeed tight. Modulo a conjecture on convergence of the KPZ sheet to the Airy

Sheet (Conjecture 6.1.9), we obtain pathwise convergence of the rescaled CDRP to the geodesic

of the directed landscape (Theorem 6.1.10).

These results provide a comprehensive picture of fluctuations of CDRP paths under short- and

long-time scaling. Our short-time and long-time tightness results also extend to point-to-line
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CDRP (Theorem 6.1.8). The formal statement of the main results are given in Section 6.1.2.

6.1.2 The model and the main results

We use the stochastic heat equation (SHE) with multiplicative noise to define the CDRP model.

To start with, consider a four-parameter random fieldZ(𝑥, 𝑠; 𝑦, 𝑡) defined on

R4
↑ := {(𝑥, 𝑠; 𝑦, 𝑡) ∈ R4 : 𝑠 < 𝑡}.

For each (𝑥, 𝑠) ∈ R×R, the function (𝑦, 𝑡) ↦→ Z(𝑥, 𝑠; 𝑦, 𝑡) is the solution of the SHE starting from

location 𝑥 at time 𝑠, i.e., the unique solution of

𝜕𝑡Z = 1
2𝜕𝑥𝑥Z +Z · 𝜉, (𝑦, 𝑡) ∈ R × (𝑠,∞),

with Dirac delta initial data lim𝑡↓𝑠Z(𝑥, 𝑠; 𝑦, 𝑡) = 𝛿(𝑥 − 𝑦). Here 𝜉 = 𝜉 (𝑥, 𝑡) is the space-time

white noise. The SHE itself enjoys a well-developed solution theory based on Itô integral and

chaos expansion [48, 316] also [113, 278]. Via the Feynmann-Kac formula ([203, 99]) the four-

parameter random field can be written in terms of chaos expansion as

Z(𝑥, 𝑠; 𝑦, 𝑡) = 𝑝(𝑦 − 𝑥, 𝑡 − 𝑠) +
∞∑︁
𝑘=1

∫
Δ𝑘,𝑠,𝑡

∫
R𝑘

𝑘+1∏
ℓ=1

𝑝(𝑦ℓ − 𝑦ℓ−1, 𝑠ℓ − 𝑠ℓ−1)𝜉 (𝑦ℓ, 𝑠ℓ)𝑑®𝑦 𝑑®𝑠, (6.1.3)

with Δ𝑘,𝑠,𝑡 := {(𝑠ℓ)𝑘ℓ=1 : 𝑠 < 𝑠1 < · · · < 𝑠𝑘 < 𝑡}, 𝑠0 = 𝑠, 𝑦0 = 𝑥, 𝑠𝑘+1 = 𝑡, and 𝑦𝑘+1 = 𝑦. Here

𝑝(𝑥, 𝑡) := (2𝜋𝑡)−1/2 exp(−𝑥2/(2𝑡))

denotes the standard heat kernel. The field Z satisfies several other properties including the

Chapman-Kolmogorov equations [4, Theorem 3.1]. For all 0 ≤ 𝑠 < 𝑟 < 𝑡, and 𝑥, 𝑦 ∈ R we
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have

Z(𝑥, 𝑠; 𝑦, 𝑡) =
∫
R
Z(𝑥, 𝑠; 𝑧, 𝑟)Z(𝑧, 𝑟; 𝑦, 𝑡)𝑑𝑧. (6.1.4)

Definition 6.1.1 (Point-to-point CDRP). Conditioned on the white noise 𝜉, let P𝜉 be a measure on

𝐶 ( [𝑠, 𝑡]) whose finite-dimensional distribution is given by

P𝜉 (𝑋 (𝑡1) ∈ 𝑑𝑥1, . . . , 𝑋 (𝑡𝑘 ) ∈ 𝑑𝑥𝑘 ) =
1

Z(𝑥, 𝑠; 𝑦, 𝑡)

𝑘∏
𝑗=0
Z(𝑥 𝑗 , 𝑡 𝑗 , ; 𝑥 𝑗+1, 𝑡 𝑗+1)𝑑𝑥1 · · · 𝑑𝑥𝑘 . (6.1.5)

for 𝑠 = 𝑡0 ≤ 𝑡1 < · · · < 𝑡𝑘 ≤ 𝑡𝑘+1 = 𝑡, with 𝑥0 = 𝑥 and 𝑥𝑘+1 = 𝑦. (6.1.4) ensure P𝜉 is a valid

probability measure. Note that P𝜉 also depends on 𝑥 and 𝑦 but we suppress it from our notations.

We will use the notation CDRP(𝑥, 𝑠; 𝑦, 𝑡) and write 𝑋 ∼ CDRP(𝑥, 𝑠; 𝑦, 𝑡) when 𝑋 (·) is a random

continuous function on [𝑠, 𝑡] with 𝑋 (𝑠) = 𝑥 and 𝑋 (𝑡) = 𝑦 and its finite-dimensional distributions

given by (6.1.5) conditioned on 𝜉. We will also use the notation P𝜉 ,E𝜉 to denote the law and

expectation conditioned on the noise 𝜉, and P,E for the annealed law and expectation respectively.

Definition 6.1.2 (Point-to-line CDRP). Conditioned on the white noise 𝜉, we let P𝜉∗ be a measure

𝐶 ( [𝑠, 𝑡]) whose finite-dimensional distributions are given by

P𝜉∗ (𝑋 (𝑡1) ∈ 𝑑𝑥1, . . . , 𝑋 (𝑡𝑘 ) ∈ 𝑑𝑥𝑘 ) =
1

Z(𝑥, 𝑠; ∗, 𝑡)

𝑘∏
𝑗=0
Z(𝑥 𝑗 , 𝑡 𝑗 , ; 𝑥 𝑗+1, 𝑡 𝑗+1)𝑑𝑥1 · · · 𝑑𝑥𝑘 . (6.1.6)

for 𝑠 = 𝑡0 ≤ 𝑡1 < · · · < 𝑡𝑘 ≤ 𝑡𝑘+1 = 𝑡, with 𝑥0 = 𝑥 and 𝑥𝑘+1 = ∗. Here Z(𝑥, 𝑠; ∗, 𝑡) :=∫
R
Z(𝑥, 𝑠; 𝑦, 𝑡)𝑑𝑦. Note that the Chapman-Kolmogorov equations (6.1.4) ensure P𝜉∗ is a probability

measure. The measure P𝜉∗ also depends on 𝑥 but we again suppress it from our notations. We

similarly use CDRP(𝑥, 𝑦; ∗, 𝑡) to refer to random variables with P𝜉∗ law.

Remark 6.1.3. In both [4] and [99], the authors considered a five-parameter random fieldZ𝛽 (𝑥, 𝑠; 𝑦, 𝑡)
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with inverse temperature 𝛽, which is the simultaneous solution of the stochastic heat equation

𝜕𝑡Z𝛽 =
1
2𝜕𝑥𝑥Z𝛽 + 𝛽Z𝛽𝜉, lim

𝑡↓𝑠
Z𝛽 (𝑥, 𝑠; 𝑦, 𝑡) = 𝛿𝑥 (𝑦).

and defined corresponding CDRP measures. Observe that when 𝛽 = 0, the stochastic heat equation

becomes the heat equation and the corresponding CDRP measures reduce to Brownian measures.

Furthermore, for any 𝛽 > 0, by the scaling property of the random field Z𝛽, i.e. (iii) of Theorem

3.1 in [4], we have

Z𝛽 (𝑥, 𝑠; 𝑦, 𝑡)
𝑑
= 𝛽−2Z1(𝛽2𝑥, 𝛽4𝑠; 𝛽2𝑦, 𝛽4𝑡),

Thus in this paper, we focus on exclusively on 𝛽 = 1.

We now state our first main result which discusses the annealed convergence of the CDRP in

the short-time regime to Brownian bridge law.

Theorem 6.1.4 (Annealed short-time convergence). Fix 𝜀 > 0. Let 𝑋 ∼ CDRP(0, 0; 0, 𝜀). Con-

sider the random function 𝑌 (𝜀) : [0, 1] → R defined by 𝑌 (𝜀)𝑡 := 1√
𝜀
𝑋 (𝜀𝑡). Let P𝜀 denote the

annealed law of 𝑌 (𝜀) on the space of continuous functions on 𝐶 ( [0, 1]). As 𝜀 ↓ 0, P𝜀 converges

weakly to P𝐵, where P𝐵 is the measure on 𝐶 ( [0, 1]) generated by a Brownian bridge on [0, 1]

starting and ending at 0.

Remark 6.1.5. The proof of Theorem 6.1.4 appears in Section 6.4.1. With minor modification in

the proof, the above theorem can be extended to include endpoints of the form 𝑥
√
𝜀. The resulting

distributional limit is then a Brownian bridge on [0, 1] starting at 0 and ending at 𝑥. We also

remark that we expect Theorem 6.1.4 to hold true even in the quenched case. However, some of

our arguments, in particular the tightness, do not generalize to the quenched case. We hope to

explore this direction in future works.

Our next result concerns the tightness and annealed convergence of the CDRP in the long-

time regime and gives a rigorous justification of the 2/3 scaling exponent discussed in Section 8.2.

The limit is given in terms of the directed landscape constructed in [138, 251] which arises as a
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universal full scaling limit of several zero-temperature models [141]. Below we briefly introduce

this limiting model before stating our result.

The directed landscape L is a random continuous function R4
↑ → R that satisfies the metric

composition law

L(𝑥, 𝑠; 𝑦, 𝑡) = max
𝑧∈R
[L(𝑥, 𝑠; 𝑧, 𝑟) + L(𝑧, 𝑟; 𝑦, 𝑡)] , (6.1.7)

with the property thatL(·, 𝑡𝑖; ·, 𝑡𝑖+𝑠3𝑖 ) are independent for any set of disjoint intervals (𝑡𝑖, 𝑡𝑖+𝑠3𝑖 ). As

a function in 𝑥, 𝑦, L(𝑥, 𝑡; 𝑦, 𝑡 + 𝑠3) 𝑑= 𝑠 · S(𝑥/𝑠2, 𝑦/𝑠2), where S(·, ·) is a parabolic Airy Sheet. We

omit definitions of the parabolic Airy Sheet (see Definition 1.2 in [138]) except that S(0, ·) 𝑑= A(·)

whereA is the parabolic Airy2 process andA(𝑥) +𝑥2 is the (stationary) Airy2 process constructed

in [275].

Definition 6.1.6 (Geodesics of the directed landscape). For (𝑥, 𝑠; 𝑦, 𝑡) ∈ R4
↑, a geodesic from (𝑥, 𝑠)

to (𝑦, 𝑡) of the directed landscape is a random continuous function Γ : [𝑠, 𝑡] → R such that

Γ(𝑠) = 𝑥 and Γ(𝑡) = 𝑦 and for any 𝑠 ≤ 𝑟1 < 𝑟2 < 𝑟3 ≤ 𝑡 we have

L (Γ(𝑟1), 𝑟1; Γ(𝑟3), 𝑟3) = L (Γ(𝑟1), 𝑟1; Γ(𝑟2), 𝑟2) + L (Γ(𝑟2), 𝑟2; Γ(𝑟3), 𝑟3) .

Thus the geodesic precisely contain the points where the equality holds in (6.1.7). Given any

(𝑥, 𝑠; 𝑦, 𝑡) ∈ R4
↑, by Theorem 12.1 in [138], it is known that almost surely there is a unique geodesic

Γ from (𝑥, 𝑠) to (𝑦, 𝑡).

Theorem 6.1.7 (Long-time CDRP path tightness). Fix 𝜀 > (0, 1]. 𝑉 ∼ CDRP(0, 0; 0, 𝜀−1).

Define a random continuous function 𝐿 (𝜀) : [0, 1] → R as 𝐿 (𝜀)𝑡 := 𝜀2/3𝑉 (𝜀−1𝑡). We have the

following:

(a) Let P𝜀 denote the annealed law of 𝐿 (𝜀) , which is viewed as a random variable in the space

of continuous functions on [0, 1] equipped with uniform topology and Borel 𝜎-algebra. The

sequence P𝜀 is tight w.r.t. 𝜀.
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(b) For each 𝑡 ∈ (0, 1), 𝐿 (𝜀)𝑡 converges weakly to Γ(𝑡
√

2), where Γ(·) is the geodesic of directed

landscape from (0, 0) to (0,
√

2).

The above path tightness result under 2/3 scaling is first such result among all positive-temperature

models. Part (b) of the above theorem shows that this 2/3 scaling is indeed correct: upon this scal-

ing, the CDRP paths have pointwise non-trivial weak limit.

In the same spirit, we have the following short- and long-time tightness result for point-to-line

CDRP.

Theorem 6.1.8 (Point-to-line CDRP path tightness). Fix 𝜀 ∈ (0, 1]. Suppose 𝑋 ∼ CDRP(0, 0; ∗, 𝜀)

and 𝑉 ∼ CDRP(0, 0; ∗, 𝜀−1). Define two random continuous functions 𝑌 (𝜀)∗ , 𝐿
(𝜀)
∗ : [0, 1] → R as

𝑌
(𝜀)
∗ (𝑡) := 𝜀−1/2𝑋 (𝜀𝑡) and 𝐿 (𝜀)∗ (𝑡) := 𝜀2/3𝑉 (𝜀−1𝑡). We have the following:

(a) If we let P𝜀∗,s denote the annealed law of 𝑌 (𝜀)∗ (·), then as 𝜀 ↓ 0, P𝜀∗,s converges weakly to P𝐵∗ ,

where P𝐵∗ is the measure on 𝐶 ( [0, 1]) generated by a standard Brownian motion.

(b) If we let P𝜀∗,L denote the annealed law of 𝐿 (𝜀)∗ (·), then the sequence P𝜀∗,L is tight w.r.t. 𝜀.

(c) 𝐿 (𝜀)∗ (1) converges weakly to 21/3M, where M is the almost sure unique maximizer of Airy2

process minus the parabola 𝑥2.

We now explain how the pointwise weak convergence result in Theorem 6.1.7 (b) can be up-

graded to a process-level convergence modulo the following conjecture.

Conjecture 6.1.9 (KPZ sheet to Airy sheet). Set 𝔥𝑡 (𝑥, 𝑦) := 𝑡−1/3 [logZ(𝑡2/3𝑥, 0; 𝑡2/3𝑦, 𝑡) + 𝑡
24 ] . As

𝑡 →∞ we have the following convergence in law (as functions in (𝑥, 𝑦))

21/3𝔥𝑡 (21/3𝑥, 21/3𝑦) 𝑑→ S(𝑥, 𝑦)

in the uniform-on-compact topology. Here S is the parabolic Airy sheet.

When either 𝑥 or 𝑦 is fixed, the above weak convergence as a function in one variable is proven

in [280]. For zero-temperature models, such convergence has been shown recently in [141] for a
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large class of integrable models. It remains to show that their methods can be extended to prove

the Airy sheet convergence for positive-temperature models such as above.

Assuming the validity of Conjecture 6.1.9, we can strengthen Theorem 6.1.7 (b) to the follow-

ing statement.

Theorem 6.1.10 (Process annealed long-time convergence). Fix 𝜀 > 0. Let𝑉 ∼ CDRP(0, 0; 0, 𝜀−1).

Define 𝐿 (𝜀)𝑡 := 𝜀2/3𝑉 (𝜀−1𝑡), 𝑡 ∈ [0, 1]. This scaling produces a measure on 𝐶 ( [0, 1]) for each

𝜀 > 0 conditioned on 𝜉. Assume Conjecture 6.1.9. For 𝑡 ∈ (0, 1), 𝜀 ↓ 0, the annealed law of 𝐿 (𝜀)𝑡

as a process in 𝑡 converges weakly to Γ(
√

2𝑡), where Γ(·) is the geodesic of the directed landscape

L from (0, 0) to (0,
√

2).

6.1.3 Proof Ideas

Our main result on short-time and long-time tightness of CDRP (i.e., Theorems 6.1.4, 6.1.7

and 6.1.8) follows a host of efforts that attempts to unravel the geometry of CDRP paths. In

[132], the authors showed that the quenched density of point-to-point long-time CDRP exhibit

pointwise localization. In particular, they showed any particular point on a point-to-point CDRP

of length 𝑡 lives within a order 1 window of a ‘favorite site’ (depending only on the environment)

and this favorite site varies in a 𝑡2/3 window upon changing the environment. This suggests that the

annealed law of polymers are within 𝑡2/3 window pointwise. Our theorems on long-time tightness

extend this result to the full path of the polymers.

One of the key ingredients behind our tightness proofs is a detailed probabilistic understanding

of the log-partition function of CDRP. The log of the partition function of point-to-point CDRP,

i.e.,

H(𝑥, 𝑠; 𝑦, 𝑡) := logZ(𝑥, 𝑠; 𝑦, 𝑡) (6.1.8)

solves the KPZ equation with narrow wedge initial data. Introduced in [218] as a model for random

growth interfaces, KPZ equation has been extensively studied in both the mathematics and the
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physics communities (see [166, 278, 113, 192, 191, 281, 87, 124] and the references therein). In

[6], the authors showed the one-point distribution of the KPZ equation H(𝑥, 𝑡) := H(0, 0; 𝑥, 𝑡),

has limiting Tracy-Widom GUE fluctuations of the order 𝑡1/3 as 𝑡 ↑ ∞ (long-time regime), whereas

fluctuations are Gaussian of the order 𝑡1/4 as 𝑡 ↓ 0 (short-time regime). Detailed information of the

one-point tails ofH(𝑥, 𝑡) as well as tail for the spatial processH(·, 𝑡) are rigorously proved in the

mathematics works [115, 116, 117, 310, 131] for long-time regime and in [128, 249, 238, 311] for

short-time regime.

For brevity, we only sketch the proof for our long-time path tightness result. The proof of

short-time path tightness uses a relation of annealed law of CDRP with that of Brownian counter-

parts (Lemma 6.4.1). The finite-dimensional convergence for the short-time case (Theorem 6.1.4)

follows from chaos expansion and the same results for the long-time regime (Theorem 6.1.7 (b)

and Theorem 6.1.8 (c)) follow from the localization results in [132]. Let us take a long-time poly-

mer 𝑉 ∼ CDRP(0, 0; 0, 𝜀−1) and scale it according to long-time scaling 𝐿 (𝜀)𝑡 = 𝜀−2/3𝑉 (𝜀−1𝑡) for

𝑡 ∈ [0, 1]. By the definition of the CDRP (Definition 6.1.1), we see that the joint law of (𝐿 (𝜀)𝑠 , 𝐿
(𝜀)
𝑡 )

(where 0 < 𝑠 < 𝑡 < 1) is proportional to

𝜀−4/3 exp
[
Λ(𝑠,𝑡);𝜀 (𝑥, 𝑦)

]
where

Λ(𝑠,𝑡);𝜀 (𝑥, 𝑦) := H
(
0, 0; 𝑥𝜀−

2
3 , 𝑠
𝜀

)
+ H

(
𝑥𝜀−

2
3 , 𝑠
𝜀
; 𝑦𝜀−

2
3 , 𝑡
𝜀

)
+ H

(
𝑦𝜀−

2
3 , 𝑡
𝜀
; 0, 1

𝜀

)
+ Err(𝑠,𝑡);𝜀 . (6.1.9)

Here Err(𝑠,𝑡);𝜀 is a correction term free of 𝑥, 𝑦 that one needs to add to extract meaningful fluctuation

and tail results for the KPZ equation (see statement of Lemma 6.3.7). This correction term does

not affect the joint density as it can be absorbed into the proportionality constant.

We next proceed to understand behaviors of the process (𝑥, 𝑦) ↦→ Λ(𝑠,𝑡);𝜀 (𝑥, 𝑦). From [6], it is

known that for each fixed 𝑠 < 𝑡 and 𝑦 ∈ R, the process 𝑥 ↦→ [H (𝑥, 𝑠; 𝑦, 𝑡) + (𝑥−𝑦)
2

2(𝑡−𝑠) ] is stationary.

Naively speaking, 𝑥 ↦→ H (𝑥, 𝑠; 𝑦, 𝑡) looks like a negative parabola: − (𝑥−𝑦)
2

2(𝑡−𝑠) . Thus it is natural to
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expect

𝜀1/3Λ(𝑠,𝑡);𝜀 (𝑥, 𝑦) ≈ −
𝑥2

2𝑠
− (𝑦 − 𝑥)

2

2(𝑡 − 𝑠) −
𝑦2

2(1 − 𝑡) . (6.1.10)

One of the technical contributions of this paper is to rigorously prove the above approximation

holds for all 𝑥, 𝑦. Given any 𝜈 > 0, we show with probability at least 1 − C exp(− 1
C𝑀

2),

𝜀1/3Λ(𝑠,𝑡);𝜀 (𝑥, 𝑦) ≤ 𝑀 − (1 − 𝜈)
[
𝑥2

2𝑠
+ (𝑦 − 𝑥)

2

2(𝑡 − 𝑠) +
𝑦2

2(1 − 𝑡)

]
, for all 𝑥, 𝑦 ∈ R.

The precise statement of the above result appears in Lemma 6.3.7. This multivariate process

estimate allows us to conclude the quenched density of (𝐿 (𝜀)𝑠 , 𝐿
(𝜀)
𝑡 ) at (𝑥, 𝑦) is exponentially small,

whenever |𝑥−𝑦 |√
𝑡−𝑠 → ∞. Armed with this understanding of quenched density, in Proposition 6.3.1,

we show that given any 𝛿 > 0, with probability at least 1 − C exp(− 1
C𝑀

2) we have

|𝐿 (𝜀)𝑠 − 𝐿 (𝜀)𝑡 | ≤ 𝑀 |𝑡 − 𝑠 |
1
2−𝛿 .

In fact the sharp decay estimates of quenched density (Lemma 6.3.7) allows us to prove a quenched

version of the above statement (Proposition 6.3.1). Due to exponentially tight probability bounds

of the above two-point differences, Proposition 6.3.1 can be extended to quenched modulus of

continuity estimates (Proposition 6.3.3) by standard methods. This leads to the path tightness of

long-time CDRP.

Outline

The rest of the paper is organized as follows. Section 6.2 reviews some of the existing results

related to the KPZ equation before proving a useful result on the short-time local fluctuations of

the KPZ equation (Proposition 6.2.4). We then prove in Section 6.3 a multivariate spatial process

tail bound (Lemma 6.3.7) and modulus of continuity results (Propositions 6.3.1 and 6.3.1-(point-

to-line)) that culminate in the quenched modulus of continuity estimate in Proposition 6.3.3 and
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Proposition 6.3.3-(point-to-line). In Section 6.4, we prove Theorems 6.1.4, 6.1.7, and 6.1.8, and

Theorem 6.1.10 (modulo Conjecture 6.1.9). Lastly, proof of a technical lemma used in Section 6.2

appears in Appendix 7.6.

6.2 Short- and long-time tail results for KPZ equation

Throughout this paper we use C = C(𝑥, 𝑦, 𝑧, . . .) > 0 to denote a generic deterministic posi-

tive finite constant that may change from line to line, but dependent on the designated variables

𝑥, 𝑦, 𝑧, . . .. We use sans serif fonts such as A,B, . . . to denote events and ¬A,¬B, . . . to denote

their complements.

In this section, we collect several estimates related to the short-time and long-time tails of the

KPZ equation. We record existing estimates from the literature in Proposition 6.2.2 and Proposition

6.2.3. These estimates form crucial tools to our later proofs. For our analysis, we also require an

estimate on the short-time local fluctuations of the KPZ equation which is not available in the

literature. We present this new estimate in Proposition 6.2.4. Its proof appears at the end of this

section.

Recall the four-parameter stochastic heat equationZ(𝑥, 𝑠; 𝑦, 𝑡) from (6.1.3). We set

H(𝑥, 𝑠; 𝑦, 𝑡) := logZ(𝑥, 𝑠; 𝑦, 𝑡). (6.2.1)

When 𝑥 = 𝑠 = 0, we use the abbreviated notation H(𝑦, 𝑡) := H(0, 0; 𝑦, 𝑡). As mentioned in the

introduction, fluctuation and scaling of the KPZ equation varies as 𝑡 ↓ 0 (short-time) and 𝑡 ↑ ∞

(long-time). For the two separate regimes we consider the following scalings:

𝔤𝑠,𝑡 (𝑥, 𝑦) :=
H(

√︃
𝜋(𝑡−𝑠)

4 𝑥, 𝑠;
√︃
𝜋(𝑡−𝑠)

4 𝑦, 𝑡) + log
√︁

2𝜋(𝑡 − 𝑠)

( 𝜋(𝑡−𝑠)4 )1/4
for the short-time regime,

𝔥𝑠,𝑡 (𝑥, 𝑦) :=
H((𝑡 − 𝑠)2/3𝑥, 𝑠; (𝑡 − 𝑠)2/3𝑦, 𝑡) + 𝑡−𝑠

24
(𝑡 − 𝑠)1/3

for the long-time regime.

(6.2.2)

We will often refer to the above bivariate functions as short-time and long-time KPZ sheet. In

322



particular, when both 𝑠 = 0 and 𝑥 = 0, we use the shorthands 𝔤𝑡 (𝑦) := 𝔤0,𝑡 (0, 𝑦), and 𝔥𝑡 (𝑦) :=

𝔥0,𝑡 (0, 𝑦).

Remark 6.2.1. The above scalings satisfy several distributional identities. For fixed 𝑠 < 𝑡 and

𝑦 ∈ R, from chaos representation for SHE it follows that

Z(0, 𝑠; 𝑥, 𝑡) 𝑑= Z(0, 𝑠;−𝑥, 𝑡), Z(𝑥, 𝑠; 𝑦, 𝑡) 𝑑= Z(0, 0; 𝑦 − 𝑥, 𝑡 − 𝑠).

where the equality in distribution holds as processes in 𝑥. This leads to 𝔤𝑠,𝑡 (𝑥, 𝑦)
𝑑
= 𝔤𝑡−𝑠 (𝑥 − 𝑦) and

𝔥𝑠,𝑡 (𝑥, 𝑦)
𝑑
= 𝔥𝑡−𝑠 (𝑥 − 𝑦), as processes in 𝑥.

The following proposition collects several probabilistic facts for the long-time rescaled KPZ

equation.

Proposition 6.2.2. Recall 𝔥𝑡 (𝑥) from (6.2.2). The following results hold:

(a) For each 𝑡 > 0, 𝔥𝑡 (𝑥) + 𝑥2/2 is stationary in 𝑥.

(b) Fix 𝑡0 > 0. There exists a constant C = C(𝑡0) > 0 such that for all 𝑡 ≥ 𝑡0 and 𝑠 > 0 we have

P ( |𝔥𝑡 (0) | ≥ 𝑠) ≤ C exp
(
− 1

C 𝑠
3/2

)
.

(c) Fix 𝑡0 > 0. There exists a constant C = C(𝑡0) > 0 such that for all 𝑥 ∈ R, 𝑠 > 0, 𝑡 ≥ 𝑡0, and

𝛾 ∈ (0, 1], we have

P

(
sup

𝑧∈[𝑥,𝑥+𝛾]

���𝔥𝑡 (𝑧) + 𝑧2

2 − 𝔥𝑡 (𝑥) −
𝑥2

2

��� ≥ 𝑠√𝛾) ≤ C exp
(
− 1

C 𝑠
3/2

)
.

The results in Proposition 6.2.2 are a culmination of results from several papers. Part (a)

follows from [6, Corollary 1.3 and Proposition 1.4]. The one-point tail estimates for KPZ equation

are obtained in [115, 116]. One can derive part (b) from those results or can combine the statements

of Proposition 2.11 and 2.12 in [117] to get the same. Part (c) is Theorem 1.3 from [117].
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The study of short-time tails was initiated in [128]. Below we recall some known results from

the same paper.

Proposition 6.2.3. Recall 𝔤𝑡 (𝑥) from (6.2.2). The following results hold:

(a) For each 𝑡 > 0, 𝔤𝑡 (𝑥) + (𝜋𝑡/4)
3/4

2𝑡 𝑥2 is stationary in 𝑥.

(b) There exists a constant C > 0 such that for all 𝑡 ≤ 1 and 𝑠 > 0 we have

P( |𝔤𝑡 (0) | > 𝑠) ≤ C exp
(
− 1

C 𝑠
3/2

)
.

Part (a) follows from [128, Lemma 2.11]. The one-point tail estimates for short-time rescaled

KPZ equation are obtained in [128, Corollary 1.6, Theorem 1.7], from which one can derive part

(b).

For convenience, we write 𝑚𝑡 (𝑥) := ( 𝜋𝑡4 )
3/4 𝑥2

2𝑡 to denote the parabolic term associated to the

short-time scaling. The following result concerns the short-time analogue of Proposition 6.2.2 (c).

Proposition 6.2.4 (Short-time local fluctuations of the KPZ equation). There exists a constant

C > 0 such that for all 𝑡 ∈ (0, 1), 𝑥 ∈ R, 𝛾 ∈ (0,
√
𝑡) and 𝑠 > 0 we have

P

(
sup

𝑧∈[𝑥,𝑥+𝛾]
|𝔤𝑡 (𝑧) + 𝑚𝑡 (𝑧) − 𝔤𝑡 (𝑥) − 𝑚𝑡 (𝑥) | ≥ 𝑠

√
𝛾

)
≤ C exp

(
− 1

C 𝑠
3/2

)
. (6.2.3)

Remark 6.2.5. The parabolic term 𝑚𝑡 (𝑥) is steeper (as 𝑡 ≤ 1) than the usual parabola that appears

in the long-time scaling. This is the reason why Proposition 6.2.4 requires 𝛾 <
√
𝑡, whereas

Proposition 6.2.2 (c) holds for all 𝛾 ∈ (0, 1].

The proof of Proposition 6.2.4 follows the same strategy as those of Proposition 4.3 and The-

orem 1.3 in [117] which employ the Brownian Gibbs property of the KPZ line ensemble (see

[CH16]). The same Brownian Gibbs property continues to hold for short-time 𝔤𝑡 (·) process (see

Lemma 2.5 (4) in [128]). We include the proof of Proposition 6.2.4 below for completeness after

first describing its key proof ingredient.
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We recall a property of 𝔤𝑡 (·) under monotone events. Given an interval [𝑎, 𝑏], we denote

B(𝐶 ( [𝑎, 𝑏])) to be the Borel 𝜎-algebra on 𝐶 ( [𝑎, 𝑏]) generated by the uniform norm topology.

We call an event 𝐴 ∈ B(𝐶 ( [𝑎, 𝑏])) monotone w.r.t. [𝑎, 𝑏] if for every pair of functions 𝑓 , 𝑔 ∈

[𝑎, 𝑏] → R with 𝑓 (𝑎) = 𝑔(𝑎), 𝑓 (𝑏) = 𝑔(𝑏) and 𝑓 (𝑥) ≥ 𝑔(𝑥) for all 𝑥 ∈ (𝑎, 𝑏), we have

𝑓 (𝑥) ∈ 𝐴 =⇒ 𝑔(𝑥) ∈ 𝐴. (6.2.4)

We call (𝔞, 𝔟) a stopping domain for 𝔤𝑡 (·) if {𝔞 ≤ 𝑎, 𝔟 ≥ 𝑏} is measurable w.r.t. 𝜎-algebra gener-

ated by (𝔤𝑡 (𝑥))𝑥∉(𝑎,𝑏) for all 𝑎, 𝑏 ∈ R. A crucial property is the following:

Lemma 6.2.6. Fix any 𝑡 > 0. For any [𝑎, 𝑏] ⊂ R, and a monotone set 𝐴 ∈ B(𝐶 ( [𝑎, 𝑏]))

(w.r.t. [𝑎, 𝑏]), we have

P
[
𝔤𝑡 (·) | [𝑎,𝑏] ∈ 𝐴 | (𝔤𝑡 (𝑥))𝑥∉(𝑎,𝑏)

]
≤ P(𝑎,𝑏),(𝔤𝑡 (𝑎),𝔤𝑡 (𝑏))free (𝐴) (6.2.5)

where P(𝑎,𝑏),(𝑦,𝑧)free denotes the law of Brownian bridge on [𝑎, 𝑏] starting at 𝑦 and ending at 𝑧.

Furthermore (6.2.5) continues to hold if (𝑎, 𝑏) is a stopping domain for 𝔤𝑡 (·).

We will abuse our definition and call {𝔤𝑡 (·) | [𝑎,𝑏] ∈ 𝐴} to be monotone w.r.t. [𝑎, 𝑏] if 𝐴 is

monotone w.r.t. [𝑎, 𝑏]. The proof of the above lemma follows by utilizing the notion of the KPZ

line ensemble and its Brownian Gibbs property [CH16, 128]. We defer its proof and the necessary

background on the KPZ line ensemble to Appendix 7.6.

Proof of Proposition 6.2.4. Assume 𝑠 ≥ 100. For 𝑠 ≤ 100, the constant C > 0 can be adjusted so

that the proposition holds trivially. We fix a 𝑡0 ∈ (0, 1) such that for all 𝑠 ≥ 100, and 𝑡 ≤ 𝑡0 we

have

1
4 𝑠 ≥ 𝑡

1/4(𝑠 + 𝑚𝑡 (2)) = 𝑡1/4𝑠 + 2(𝜋/4)3/4. (6.2.6)
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Let us first consider 𝑡 ∈ [𝑡0, 1]. We use the scalings from (6.2.2) to get

𝔤𝑡 (𝑥) + 𝑚𝑡 (𝑥) = 1√
𝑟𝑡

(
𝔥𝑡 (𝑟𝑡𝑥) + 𝑟2

𝑡 𝑥
2

2

)
+ 𝑐𝑡 , (6.2.7)

where 𝑟𝑡 := 𝑡−1/6√︁𝜋/4 and 𝑐𝑡 := (𝜋𝑡/4)−1/4(
√

2𝜋𝑡 − 𝑡/24). Take any 𝑥 ∈ R and 𝛾 ∈ (0,
√
𝑡). We

have 𝑟𝑡𝛾 ≤ 1. Setting 𝑦 := 𝑟𝑡𝑥 and then applying Proposition 6.2.2 (c) with 𝑥 ↦→ 𝑦 and 𝛾 ↦→ 𝑟𝑡𝛾

we get

l.h.s. of (6.2.3) = P

(
sup

𝑧∈[𝑦,𝑦+𝑟𝑡𝛾]

���𝔥𝑡 (𝑧) + 𝑧2

2 − 𝔥𝑡 (𝑦) −
𝑦2

2

��� ≥ 𝑠√𝛾𝑟𝑡) ≤ C exp
(
− 1

C 𝑠
3/2

)
. (6.2.8)

Let us now assume 𝑡 ≤ 𝑡0. By Proposition 6.2.3 (a), we know that the process 𝔤𝑡 (𝑥) + 𝑚𝑡 (𝑥) is

stationary in 𝑥. Thus it suffices to prove Proposition 6.2.4 with 𝑥 = 0. Consider the following

events

G𝛾,𝑠 :=
⋂

𝑥∈{𝛾−2,0,𝛾,2}

{
− 𝑠4 ≤ 𝔤𝑡 (𝑥) + 𝑚𝑡 (𝑥) ≤ 𝑠

4
}
,

Fall𝛾,𝑠 :=
{

inf
𝑧∈[0,𝛾]

(𝔤𝑡 (𝑧) + 𝑚𝑡 (𝑧)) ≤ 𝔤𝑡 (0) − 𝑠𝛾1/2
}
,

Rise𝛾,𝑠 :=
{

sup
𝑧∈[0,𝛾]

(𝔤𝑡 (𝑧) + 𝑚𝑡 (𝑧)) ≥ 𝔤𝑡 (0) + 𝑠𝛾1/2
}
.

By one-point tail bounds from Proposition 6.2.3 (b) we have that P(¬G𝛾,𝑠) ≤ C exp(− 1
C 𝑠

3/2).

Thus, to show the proposition, it suffices to verify the following two bounds:

P
(
Fall𝛾,𝑠,G𝛾,𝑠

)
≤ C exp

(
− 1

C 𝑠
2
)
, P

(
Rise𝛾,𝑠,G𝛾,𝑠

)
≤ C exp

(
− 1

C 𝑠
2
)
. (6.2.9)

We begin with the Fall𝛾,𝑠 bound in (6.2.9). Clearly Fall𝛾,𝑠 event is monotone w.r.t. [0, 2], by

Lemma 6.2.6 we have

P
(
Fall𝛾,𝑠 | (𝔤𝑡 (𝑥))𝑥∈(0,2)

)
≤ P(0,2),(𝔤𝑡 (0),𝔤𝑡 (2))free

(
Fall𝛾,𝑠

)
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where P(𝑎,𝑏),(𝑦,𝑧)free denotes the law of Brownian bridge on [𝑎, 𝑏] starting at 𝑦 and ending at 𝑧. Using

this we have

P
(
Fall𝛾,𝑠,G𝛾,𝑠

)
≤ P

(
Fall𝛾,𝑠, 𝔤𝑡 (0) ≤ 𝑠

4 , 𝔤𝑡 (2) + 𝑚𝑡 (2) ≥ −
𝑠
4
)

≤ E
[
1𝔤𝑡 (0)≤ 𝑠4 · 1𝔤𝑡 (2)+𝑚𝑡 (2)≥− 𝑠4 P(0,2),(𝔤𝑡 (0),𝔤𝑡 (2))free

(
Fall𝛾,𝑠

) ]
≤ sup

{
P(0,2),𝑦,𝑧free

(
Fall𝛾,𝑠

)
: 𝑦 ≤ 𝑠

4 , 𝑧 + 𝑚𝑡 (2) ≥ −
𝑠
4

}
= P(0,2),𝑠/4,−𝑠/4−𝑚𝑡 (2)free

(
Fall𝛾,𝑠

)
. (6.2.10)

Next, we write the final term in (6.2.10) as

P(0,2),𝑠/4,−𝑠/4−𝑚𝑡 (2)free

(
Fall𝛾,𝑠

)
= P

(
inf

𝑧∈[0,𝛾]

{
𝐵′(𝑧) + 𝑚𝑡 (𝑧)

}
≤ −𝑠𝛾1/2

)
where 𝐵′ : [0, 2] → R is a Brownian bridge with 𝐵′(0) = 0 and 𝐵′(2) = −𝑚𝑡 (2) − 𝑠

2 . Now, set

𝐵(𝑧) := 𝐵′(𝑧) − 𝑧
2 (−𝑚𝑡 (2) −

𝑠
2 ). Then 𝐵 is a Brownian bridge with 𝐵(0) = 𝐵(2) = 0 and we obtain

P
(

inf
𝑧∈[0,𝛾]

(𝐵′(𝑧) + 𝑚𝑡 (𝑧)) ≤ −𝑠𝛾1/2
)
≤ P

(
inf

𝑧∈[0,𝛾]
𝐵(𝑧) ≤ −𝑠𝛾1/2 − 𝛾

2 (−𝑚𝑡 (2) −
𝑠
2 )

)
≤ P

(
inf

𝑧∈[0,𝛾]
𝐵(𝑧) ≤ − 𝑠2𝛾

1/2
)
. (6.2.11)

The latter inequality is due to 𝛾1/2(𝑚𝑡 (2) + 𝑠
2 ) ≤ 𝑠 as 𝑠 ≥ 100 and 𝛾 ≤

√
𝑡. The right-hand

probability can be estimated via Brownian calculations, which yields the desired bound of the

form C exp(− 1
C 𝑠

2).

We next prove the Rise𝛾,𝑠 bound in (6.2.9). Note that sup𝑧∈[0,𝛾] 𝑚𝑡 (𝑧) ≤
𝛾2

𝑡1/4
≤ 1

2 𝑠𝛾
1/2 (as 𝛾 ≤

√
𝑡 ≤ 1 and 𝑠 ≥ 4). Thus it suffices to show

P
(
Rise(1)𝛾,𝑠 ,G𝛾,𝑠

)
≤ C exp

(
− 1

C 𝑠
2
)
, Rise(1)𝛾,𝑠 :=

{
sup
𝑧∈[0,𝛾]

𝔤𝑡 (𝑧) ≥ 𝔤𝑡 (0) + 1
2 𝑠
√
𝛾

}
. (6.2.12)
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Set

𝜒 := inf
{
𝑥 ∈ (0, 𝛾] | 𝔤𝑡 (𝑥) − 𝔤𝑡 (0) ≥ 1

2 𝑠𝛾
1/2

}
,

and set 𝜒 = ∞ if no such points exist. Then we have P
(
Rise(1)𝛾,𝑠 ,G𝛾,𝑠

)
= P

(
𝜒 ≤ 𝛾,G𝛾,𝑠

)
and we

can write the right-hand probability as

P
(
𝜒 ≤ 𝛾,G𝛾,𝑠, 𝔤𝑡 (𝜒) − 𝔤𝑡 (𝛾) < 1

4 𝑠
√
𝛾

)
+ P

(
𝜒 ≤ 𝛾,G𝛾,𝑠, 𝔤𝑡 (𝜒) − 𝔤𝑡 (𝛾) ≥ 1

4 𝑠
√
𝛾

)
. (6.2.13)

On the event {𝜒 ≤ 𝛾,G𝛾,𝑠, 𝔤𝑡 (𝜒) − 𝔤𝑡 (𝛾) < 1
4 𝑠
√
𝛾} we have that {𝔤𝑡 (𝛾) − 𝔤𝑡 (0) ≥ 1

4 𝑠
√
𝛾} holds

as the continuity of 𝔤𝑡 (·) implies that 𝔤𝑡 (𝜒) = 𝔤𝑡 (0) + 1
2 𝑠
√
𝛾 on {𝜒 ≤ 𝛾} event. Now with the

same argument of the Fall𝛾,𝑠 event, we bound the probability of this occurrence by C exp(− 1
C 𝑠

2)

for some constant C > 0. This is why G𝛾,𝑠 involves 𝔤𝑡 (−2 + 𝛾) and 𝔤𝑡 (𝛾). The parabolic term

𝑚𝑡 (𝑧) again can be ignored as sup𝑧∈[0,𝛾] 𝑚𝑡 (𝑧) ≤ 𝛾3/2 ≤ 1
8 𝑠𝛾

1/2 for 𝑠 ≥ 8.

Let us focus on the second term in (6.2.13). Note that (𝜒, 2) is a stopping domain and {𝔤𝑡 (𝜒) −

𝔤𝑡 (𝛾) ≥ 1
4 𝑠
√
𝛾} is a monotone event w.r.t. [𝜒, 2]. Applying Lemma 6.2.6 one has

P
(
𝔤𝑡 (𝜒) − 𝔤𝑡 (𝛾) ≥ 1

4 𝑠
√
𝛾 | (𝔤𝑡 (𝑥))𝑥∉(𝜒,2)

)
≤ P(𝜒,2),(𝔤𝑡 (𝜒),𝔤𝑡 (2))free

(
𝔤𝑡 (𝜒) − 𝔤𝑡 (𝛾) ≥ 1

4 𝑠
√
𝛾

)
.

Note that on {𝜒 ≤ 𝛾,G𝛾,𝑠} we have

|𝔤𝑡 (𝜒) − 𝔤𝑡 (2) | = |𝔤𝑡 (0) + 1
2 𝑠
√
𝛾 − 𝔤𝑡 (2) | ≤ 𝑠/4 + 1

2 𝑠
√
𝛾 + 𝑚𝑡 (2) + 𝑠/4 = 𝑠 + 𝑚𝑡 (2). (6.2.14)

As 2−𝜒 ≥ 1 on {𝜒 ≤ 𝛾}, we thus get that the absolute value of the slope of the linearly interpolated

line joining (𝜒, 𝔤𝑡 (𝜒)) and (2, 𝔤𝑡 (2)) is at most 𝑠 + 𝑚𝑡 (2). Note that 1
4 𝑠
√
𝛾 ≥ 𝛾(𝑠 + 𝑚𝑡 (2)) due

to (6.2.6). Thus the event {𝔤𝑡 (𝜒) − 𝔤𝑡 (𝛾) ≥ 1
4 𝑠
√
𝛾} entails that the 𝔤𝑡 (𝛾) lies below the linearly

interpolated line. Under Brownian law, this has probability 1/2. Thus,

P
(
𝜒 ≤ 𝛾,G𝛾,𝑠, 𝔤𝑡 (𝜒) − 𝔤𝑡 (𝛾) ≥ 1

4 𝑠
√
𝛾

)
≤ E

[
1𝜒≤𝛾,G𝛾,𝑠

P(𝜒,2),(𝔤𝑡 (𝜒),𝔤𝑡 (2))free

(
𝔤𝑡 (𝜒) − 𝔤𝑡 (𝛾) ≥ 1

4 𝑠
√
𝛾

)]
≤ 1

2E
[
1𝜒≤𝛾,G𝛾,𝑠

]
.
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Hence we have shown that P
(
𝜒 ≤ 𝛾,G𝛾,𝑠

)
≤ C exp(− 1

C 𝑠
2) + 1

2P
(
𝜒 ≤ 𝛾,G𝛾,𝑠

)
which implies that

P
(
𝜒 ≤ 𝛾,G𝛾,𝑠

)
≤ 2C exp(− 1

C 𝑠
2) which gives us the bound in (6.2.12), completing the proof.

6.3 Modulus of Continuity for rescaled CDRP measures

The main goal of this section is to establish quenched modulus of continuity estimates: Propo-

sition 6.3.3 and Proposition 6.3.3-(point-to-line), for CDRP measures under long-time scalings.

The proof of these propositions requires detailed study of the tail probabilities of two-point differ-

ence when scaled according to long-time. This is conducted in Proposition 6.3.1 and Proposition

6.3.1-(point-to-line) respectively. One of the key technical inputs in the proofs of Propositions

6.3.1 and 6.3.1-(point-to-line) is a parabolic decay estimate of a multivariate spatial process in-

volving several long-time KPZ sheets. This estimate appears in Lemma 6.3.7 and is proved in

Section 6.3.1. In the following text, we first state those Propositions 6.3.1 and 6.3.1-(point-to-line)

and assuming their validity, we state and prove the modulus of continuity estimates. Proofs of

Proposition 6.3.1 and 6.3.1-(point-to-line) are deferred to Section 6.3.2.

Proposition 6.3.1 (Long-time two-point difference). Fix any 𝜀 ∈ (0, 1], 𝛿 ∈ (0, 1
2 ), and 𝜏 ≥ 1.

Take 𝑥 ∈ [−𝜏𝜀− 2
3 , 𝜏𝜀−

2
3 ]. Let 𝑉 ∼ CDRP(0, 0; 𝑥, 𝜀−1). For 𝑡 ∈ [0, 1], set 𝐿 (𝜀)𝑡 := 𝜀

2
3𝑉 (𝜀−1𝑡).

There exist two absolute constants C1(𝜏, 𝛿) > 0 and C2(𝜏, 𝛿) > 0 such that for all 𝑚 ≥ 1 and

𝑡 ≠ 𝑠 ∈ [0, 1] we have

P
[
P𝜉 ( |𝐿 (𝜀)𝑠 − 𝐿 (𝜀)𝑡 | ≥ 𝑚 |𝑠 − 𝑡 |

1
2−𝛿) ≥ C1 exp(− 1

C1
𝑚2)

]
≤ C2 exp

(
− 1

C2
𝑚3

)
.

We have the following point-to-line analogue.

Proposition 6.3.1-(point-to-line). Fix any 𝜀 ∈ (0, 1], 𝛿 ∈ (0, 1
2 ). Let 𝑉 ∼ CDRP(0, 0; ∗, 𝜀−1).

For 𝑡 ∈ [0, 1], set 𝐿 (𝜀)𝑡,∗ := 𝜀 2
3𝑉 (𝜀−1𝑡). There exist two absolute constants C1(𝛿) > 0 and C2(𝛿) > 0

such that for all 𝑚 ≥ 1 and 𝑡 ≠ 𝑠 ∈ [0, 1] we have

P
[
P𝜉∗ ( |𝐿 (𝜀)𝑠,∗ − 𝐿 (𝜀)𝑡,∗ | ≥ 𝑚 |𝑠 − 𝑡 |

1
2−𝛿) ≥ C1 exp(− 1

C1
𝑚2)

]
≤ C2 exp

(
− 1

C2
𝑚3

)
.
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Remark 6.3.2. In the above propositions, the quenched probability of the tail event of two-point

difference of rescaled polymers is viewed as a random variable. The above propositions provide

quantitative decay estimates of this random variable being away from zero for point-to-point and

point-to-line polymers under long-time regime.

Proposition 6.3.3 (Quenched Modulus of Continuity). Fix 𝜀 ∈ (0, 1], 𝛿 ∈ (0, 1
2 ) and 𝜏 ≥ 1. Take

𝑦 ∈ [−𝜏𝜀− 2
3 , 𝜏𝜀−

2
3 ]. Let 𝑉 ∼ CDRP(0, 0; 𝑦, 𝜀−1). Set 𝐿 (𝜀)𝑡 := 𝜀 2

3𝑉 (𝜀−1𝑡) for 𝑡 ∈ [0, 1]. Then there

exist two constants C1(𝜏, 𝛿) > 0 and C2(𝜏, 𝛿) > 0 such that for all 𝑚 ≥ 1 we have

P
[
P𝜉

(
sup

𝑡≠𝑠∈[0,1]

|𝐿 (𝜀)𝑠 − 𝐿 (𝜀)𝑡 |
|𝑡 − 𝑠 | 12−𝛿 log 2

|𝑡−𝑠 |

≥ 𝑚
)
≥ C1 exp

(
− 1

C1
𝑚2

) ]
≤ C2 exp

(
− 1

C2
𝑚3

)
. (6.3.1)

Proposition 6.3.3-(point-to-line). Fix 𝜀 ∈ (0, 1], 𝛿 ∈ (0, 1
2 ). Let 𝑉 ∼ CDRP(0, 0; ∗, 𝜀−1). For

𝑡 ∈ [0, 1], set 𝐿 (𝜀)𝑡,∗ := 𝜀 2
3𝑉 (𝜀−1𝑡). Then there exist two constants C1(𝛿) > 0 and C2(𝛿) > 0 such

that for all 𝑚 ≥ 1 we have

P
[
P𝜉∗

(
sup

𝑡≠𝑠∈[0,1]

|𝐿 (𝜀)𝑠,∗ − 𝐿 (𝜀)𝑡,∗ |

|𝑡 − 𝑠 | 12−𝛿 log 2
|𝑡−𝑠 |

≥ 𝑚
)
≥ C1 exp

(
− 1

C1
𝑚2

) ]
≤ C2 exp

(
− 1

C2
𝑚3

)
.

Remark 6.3.4. The paths of continuum directed random polymer are known to be Hölder contin-

uous with exponent 𝛾, for every 𝛾 < 1/2 (see [4, Theorem 4.3]). Our Theorem 6.3.3 corroborates

this fact by giving quantitative tail bounds to the quenched modulus of continuity.

Before proving Propositions 6.3.3 and 6.3.3-(point-to-line), we present below a few important

corollaries for point-to-point long-time polymer. Similar corollaries hold for point-to-line case as

well.

Corollary 6.3.5. Fix 𝜀 ∈ (0, 1], and 𝜏 ≥ 1. Take 𝑥 ∈ [−𝜏𝜀− 2
3 , 𝜏𝜀−

2
3 ]. Let 𝑉 ∼ CDRP(0, 0; 𝑥, 𝜀−1).

For 𝑡 ∈ [0, 1] set 𝐿 (𝜀)𝑡 := 𝜀
2
3𝑉 (𝜀−1𝑡). Then there exist two constants C1(𝜏) > 0 and C2(𝜏) > 0

such that for all 𝑚 ≥ 1 we have

P
[
P𝜉

(
sup
𝑡∈[0,1]

|𝐿 (𝜀)𝑡 | ≥ 𝑚
)
≥ C1 exp

(
− 1

C1
𝑚2

) ]
≤ C2 exp

(
− 1

C2
𝑚3

)
. (6.3.2)
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Proof. Set 𝑠 = 0 and 𝜌 = 1 + sup𝑡∈(0,1] 𝑡1/4 log 2
𝑡
∈ (1,∞). By Proposition 6.3.3, with 𝛿 = 1

4 there

exist C1(𝜏) and C2(𝜏) such that for all 𝑚 ≥ 1, (6.3.1) holds with 𝑠 = 0. Replacing 𝑚 with 𝑚/𝜌 in

(6.3.1) yields that

P
[
P𝜉

(
sup
𝑡∈[0,1]

|𝐿 (𝜀)𝑡 | ≥ 𝑚
)
≥ C1 exp

(
− 1

C1
𝑚2

) ]
≤ P

[
P𝜉

(
sup
𝑡∈[0,1]

|𝐿 (𝜀)𝑡 |
𝑡

1
4 log 2

𝑡

≥ 𝑚
𝜌

)
≥ C1 exp

(
− 1

C1
(𝑚
𝜌
)2

) ]
≤ C2 exp

(
− 1

C2
(𝑚
𝜌
)3

)
.

Adjusting C2 further we get the desired result.

From Proposition 6.3.3, we also obtain the annealed modulus of continuity.

Corollary 6.3.6 (Annealed Modulus of Continuity). Fix 𝜀 ∈ (0, 1], 𝛿 ∈ (0, 1
2 ) and 𝜏 ≥ 1. Take

𝑦 ∈ [−𝜏𝜀− 2
3 , 𝜏𝜀−

2
3 ]. Let 𝑉 ∼ CDRP(0, 0; 𝑦, 𝜀−1). Set 𝐿 (𝜀)𝑡 := 𝜀 2

3𝑉 (𝜀−1𝑡) for 𝑡 ∈ [0, 1]. Then there

exists a constant C(𝜏, 𝛿) > 0 such that for all 𝑚 ≥ 1 we have

P
(

sup
𝑡≠𝑠∈[0,1]

|𝐿 (𝜀)𝑠 − 𝐿 (𝜀)𝑡 |
|𝑡 − 𝑠 | 12−𝛿 log 2

|𝑡−𝑠 |

≥ 𝑚
)
≤ C exp

(
− 1

C𝑚
2
)
. (6.3.3)

Clearly one has similar corollaries for the point-to-line version which follow from Proposition

6.3.3-(point-to-line) instead. For brevity, we do not record them separately. We now assume

Proposition 6.3.1 (Proposition 6.3.1-(point-to-line)) and complete the proof of Proposition 6.3.3

(Proposition 6.3.3-(point-to-line)).

Proof of Propositions 6.3.3 and 6.3.3-(point-to-line). Fix 𝜏 ≥ 1 and 𝑚 ≥ 16𝜏2 + 1. The main idea

is to mimic Levy’s proof of modulus of continuity of Brownian motion. Since our proposition

deals with quenched versions, we keep the proof here for the sake of completeness. We only

prove (6.3.1) using Proposition 6.3.1. Proof of Proposition 6.3.3-(point-to-line) follows in a similar

manner using Proposition 6.3.1-(point-to-line). To prove (6.3.1), we first control the modulus of
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continuity on dyadic points of [0, 1]. Fix 𝛿 > 0 and set 𝛾 = 1
2 − 𝛿. Define

‖𝐿 (𝜀) ‖𝑛 := sup
𝑘={1,...,2𝑛}

���𝐿 (𝜀)
𝑘2−𝑛 − 𝐿

(𝜀)
(𝑘−1)2−𝑛

��� , ‖𝐿 (𝜀) ‖ := sup
𝑛≥0

‖𝐿 (𝜀) ‖𝑛2𝑛𝛾
𝑛 + 1

.

Observe that by union bound

P𝜉
(
‖𝐿 (𝜀) ‖ ≥ 𝑚

)
≤
∞∑︁
𝑛=0

2𝑛∑︁
𝑘=1

P𝜉
(���𝐿 (𝜀)

𝑘2−𝑛 − 𝐿
(𝜀)
(𝑘−1)2−𝑛

��� ≥ 𝑚2−𝑛𝛾 (𝑛 + 1)
)
.

Thus in light of Proposition 6.3.1 we see that with probability at least

1 −
∞∑︁
𝑛=0

C22𝑛 exp
(
− 1

C2
𝑚3(𝑛 + 1)3

)
≥ 1 − C′2 exp

(
− 1

C′2
𝑚3

)
we have

P𝜉
(
‖𝐿 (𝜀) ‖ ≥ 𝑚

)
≤
∞∑︁
𝑛=0

C12𝑛 exp
(
− 1

C1𝑚
2(𝑛 + 1)2

)
≤ C′1 exp

(
− 1

C′1
𝑚2

)
.

Finally one can extend the results to all points by continuity of 𝐿 (𝜀) and observing the following

string of inequalities that holds deterministically. For any 0 ≤ 𝑠 < 𝑡 ≤ 1 we have

|𝐿 (𝜀)𝑡 − 𝐿
(𝜀)
𝑠 | ≤

∞∑︁
𝑛=1

���𝐿 (𝜀)2−𝑛 b2𝑛𝑡c − 𝐿
(𝜀)
2−𝑛+1 b2𝑛−1𝑡c − 𝐿

(𝜀)
2−𝑛 b2𝑛𝑠c + 𝐿

(𝜀)
2−𝑛+1 b2𝑛−1𝑠c

��� . (6.3.4)

Note that we have

���𝐿 (𝜀)2−𝑛 b2𝑛𝑡c − 𝐿
(𝜀)
2−𝑛+1 b2𝑛−1𝑡c − 𝐿

(𝜀)
2−𝑛 b2𝑛𝑠c + 𝐿

(𝜀)
2−𝑛+1 b2𝑛−1𝑠c

���
≤

���𝐿 (𝜀)2−𝑛 b2𝑛𝑡c − 𝐿
(𝜀)
2−𝑛+1 b2𝑛−1𝑡c

��� + ���𝐿 (𝜀)2−𝑛 b2𝑛𝑠c − 𝐿
(𝜀)
2−𝑛+1 b2𝑛−1𝑠c

��� ≤ 2‖𝐿 (𝜀) ‖𝑛,

and

���𝐿 (𝜀)2−𝑛 b2𝑛𝑡c − 𝐿
(𝜀)
2−𝑛+1 b2𝑛−1𝑡c − 𝐿

(𝜀)
2−𝑛 b2𝑛𝑠c + 𝐿

(𝜀)
2−𝑛+1 b2𝑛−1𝑠c

���
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≤
���𝐿 (𝜀)2−𝑛 b2𝑛𝑡c − 𝐿

(𝜀)
2−𝑛 b2𝑛𝑠c

��� + ���𝐿 (𝜀)2−𝑛+1 b2𝑛−1𝑡c − 𝐿
(𝜀)
2−𝑛+1 b2𝑛−1𝑠c

��� ≤ 2(𝑡 − 𝑠)2𝑛‖𝐿 (𝜀) ‖𝑛.

Combining the above two inequalities we get

r.h.s. of (6.3.4) ≤
∞∑︁
𝑛=1

2 ( |𝑡 − 𝑠 |2𝑛 ∧ 2) ‖𝐿 (𝜀) ‖𝑛

≤ ‖𝐿 (𝜀) ‖
∞∑︁
𝑛=1
(𝑛 + 1)2−𝑛𝛾 ( |𝑡 − 𝑠 |2𝑛 ∧ 2) ≤ 𝑐2‖𝐿 (𝜀) ‖ · |𝑡 − 𝑠 |𝛾 log 2

|𝑡−𝑠 | .

where 𝑐2 > 0 is an absolute constant. Combining this with the bound for P𝜉 (‖𝐿 (𝜀) ‖ ≥ 𝑚),

completes the proof.

6.3.1 Tail bounds for multivariate spatial process

Recall the KPZ sheet H(·, ·; ·, ·) defined in (6.2.1). The core idea behind the proof of Propo-

sitions 6.3.1 and 6.3.1-(point-to-line) is to establish parabolic decay estimates of sum of several

KPZ sheets scaled according to long-time. We record this parabolic decay estimate in the follow-

ing Lemma 6.3.7.

Lemma 6.3.7 (Long-time multivariate spatial process tail bound). Fix any 𝑘 ∈ Z>0 and 𝜈 ∈ (0, 1).

Set 𝑥0 = 0, and ®𝑥 := (𝑥1, . . . , 𝑥𝑘 ). For any 𝜀 ∈ (0, 1) consider 0 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑘 = 1. Set

®𝑡 := (𝑡1, . . . , 𝑡𝑘 ). Then there exists a constant C = C(𝑘, 𝜈) such that for all 𝑠 > 0 we have

P

(
sup
®𝑥∈R𝑘

[
𝐹®𝑡;𝜀 (®𝑥) +

𝑘−1∑︁
𝑖=0

(1 − 𝜈) (𝑥𝑖+1 − 𝑥𝑖)2
2(𝑡𝑖+1 − 𝑡𝑖)

]
≥ 𝑠

)
≤ C exp

(
− 1

C 𝑠
3/2

)
. (6.3.5)

where

𝐹®𝑡;𝜀 (®𝑥) := 𝜀1/3
𝑘−1∑︁
𝑖=0

[
H(𝑥𝑖𝜀−2/3, 𝜀−1𝑡𝑖; 𝑥𝑖+1𝜀−2/3, 𝜀−1𝑡𝑖+1) + 𝜀−1 (𝑡𝑖+1−𝑡𝑖)

24

+1{𝑡𝑖+1 − 𝑡𝑖 ≤ 𝜀} · log
√︁

2𝜋𝜀−1(𝑡𝑖+1 − 𝑡𝑖)
]
.

(6.3.6)

Proof. For clarity, we split the proof into three steps.
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Step 1. Let us fix any 𝜀 ∈ (0, 1) consider 0 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑘 = 1. For brevity, we denote

𝐹 (®𝑥) := 𝐹®𝑡;𝜀 (®𝑥) and set

𝐹 (®𝑥) := 𝐹 (®𝑥) +
𝑘−1∑︁
𝑖=0

(𝑥𝑖+1 − 𝑥𝑖)2
2(𝑡𝑖+1 − 𝑡𝑖)

. (6.3.7)

For any ®𝑎 = (𝑎1, . . . , 𝑎𝑘 ) ∈ Z𝑘 , set 𝑉®𝑎 := [𝑎1, 𝑎1 + 1] × · · · × [𝑎𝑘 , 𝑎𝑘 + 1] and set

‖ ®𝑎‖2 := 𝑎2
1 +min
®𝑥∈𝑉®𝑎

𝑘−1∑︁
𝑖=1
(𝑥𝑖+1 − 𝑥𝑖)2. (6.3.8)

We claim that for any ®𝑎 = (𝑎1, . . . , 𝑎𝑘 ) ∈ Z𝑘 and 𝜈 ∈ (0, 1)

P

(
sup
®𝑥∈𝑉®𝑎

[
𝐹 (®𝑥) +

𝑘−1∑︁
𝑖=0

(1 − 𝜈) (𝑥𝑖+1 − 𝑥𝑖)2
2(𝑡𝑖+1 − 𝑡𝑖)

]
≥ 𝑠

)
≤ C exp

(
− 1

C (𝑠
3/2 + ‖ ®𝑎‖3)

)
(6.3.9)

for some C = C(𝑘, 𝜈) > 0. Assuming (6.3.9) by union bound we obtain

l.h.s of (6.3.5) = P

(
sup
®𝑥∈R𝑘

[
𝐹 (®𝑥) +

𝑘−1∑︁
𝑖=0

(1 − 𝜈) (𝑥𝑖+1 − 𝑥𝑖)2
2(𝑡𝑖+1 − 𝑡𝑖)

]
≥ 𝑠

)
≤

∑︁
®𝑎∈Z𝑘

P

(
sup
®𝑥∈𝑉®𝑎

[
𝐹 (®𝑥) +

𝑘−1∑︁
𝑖=0

(1 − 𝜈) (𝑥𝑖+1 − 𝑥𝑖)2
2(𝑡𝑖+1 − 𝑡𝑖)

]
≥ 𝑠

)
≤

∑︁
®𝑎∈Z𝑘

C exp
(
− 1

C (𝑠
3/2 + ‖ ®𝑎‖3)

)
.

The r.h.s. of the above display is upper bounded by C exp(− 1
C 𝑠

3/2) and proves (6.3.5). Thus it

suffices to verify (6.3.9) in the rest of the proof.

Step 2. In this step, we prove the claim in (6.3.9). Note that

P

(
sup
®𝑥∈𝑉®𝑎

[
𝐹 (®𝑥) +

𝑘−1∑︁
𝑖=0

(1 − 𝜈) (𝑥𝑖+1 − 𝑥𝑖)2
2(𝑡𝑖+1 − 𝑡𝑖)

]
≥ 𝑠

)
≤ P

(
sup
®𝑥∈𝑉®𝑎
|𝐹 (®𝑥) | ≥ 𝑠 + 𝜈

2 ‖ ®𝑎‖
2

)

by the definition of 𝐹 (·) in (6.3.7) and the defintion of ‖ ®𝑎‖2 from (6.3.8). Applying union bound
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yields

P

(
sup
®𝑥∈𝑉®𝑎
|𝐹 (®𝑥) | ≥ 𝑠 + 𝜈

2 ‖ ®𝑎‖
2

)
≤ P

(
sup
®𝑥∈𝑉®𝑎
|𝐹 (®𝑥) − 𝐹 ( ®𝑎) | ≥ 𝑠

2 +
𝜈
4 ‖ ®𝑎‖

2

)
+ P

(
|𝐹 ( ®𝑎) | ≥ 𝑠

2 +
𝜈
4 ‖ ®𝑎‖

2
)
. (6.3.10)

In the rest of the proof, we bound both summands on the r.h.s of (6.3.10) from above by C exp(− 1
C (𝑠

3/2+

‖ ®𝑎‖3)) individually. To control the first term, we first need an a priori estimate. We claim that for

all 𝑢 ∈ [0, 1], 𝑖 = 1, 2, . . . , 𝑘 and 𝑠 > 0 we have

P
(
𝐹 ( ®𝑎 + 𝑒𝑖 · 𝑢) − 𝐹 ( ®𝑎) ≥ 𝑠𝑢1/4

)
≤ C exp

(
− 1

C 𝑠
3/2

)
. (6.3.11)

for some absolute constant C > 0. We will prove (6.3.11) in the next step. Given (6.3.11), ap-

pealing to Lemma 3.3 in [140] with 𝛼 = 𝛼𝑖 = 1
4 , 𝛽 = 𝛽𝑖 = 3

2 , 𝑟 = 𝑟𝑖 = 1, we get that for all

𝑚 > 0

P

(
sup
®𝑥∈𝑉®𝑎
|𝐹 (®𝑥) − 𝐹 ( ®𝑎) | ≥ 𝑚

)
≤ C exp

(
− 1

C𝑚
3/2

)
.

Taking 𝑚 = 𝑠
2 +

𝜈
4 ‖ ®𝑎‖

2 in above, this yields the desired estimate for the first term in (6.3.10).

For the second term in (6.3.10), via the definition of 𝐹 in (6.3.7) applying union bounds we

have

P
(
|𝐹 ( ®𝑎) | ≥ 𝑠

4 +
𝜈
4 ‖ ®𝑎‖

2
)

≤
𝑘−1∑︁
𝑖=0

P
(���𝜀1/3H(𝑎𝑖𝜀−2/3, 𝜀−1𝑡𝑖; 𝑎𝑖+1𝜀−2/3, 𝜀−1𝑡𝑖+1) + 𝜀−2/3 (𝑡𝑖+1−𝑡𝑖)

24

+ (𝑎𝑖+1−𝑎𝑖)
2

2(𝑡𝑖+1−𝑡𝑖) + 𝜀
1/31{𝑡𝑖+1 − 𝑡𝑖 ≤ 𝜀} · log

√︁
2𝜋𝜀−1(𝑡𝑖+1 − 𝑡𝑖)

��� ≥ 𝑠
4𝑘 +

𝜈
4𝑘 ‖ ®𝑎‖

2
)

≤
𝑘−1∑︁
𝑖=0

P
(���𝜀1/3H(0, 𝜀−1(𝑡𝑖+1 − 𝑡𝑖)) + 𝜀−2/3 (𝑡𝑖+1−𝑡𝑖)

24

+𝜀1/31{𝑡𝑖+1 − 𝑡𝑖 ≤ 𝜀} · log
√︁

2𝜋𝜀−1(𝑡𝑖+1 − 𝑡𝑖)
��� ≥ 𝑠

4𝑘 +
𝜈

4𝑘 ‖ ®𝑎‖
2
)

(6.3.12)
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where the last line follows from stationarity of the shifted version ofH . Now if 𝜀−1(𝑡𝑖+1 − 𝑡𝑖) > 1,

we may use long-time scaling to get

𝜀1/3H(0, 𝜀−1(𝑡𝑖+1 − 𝑡𝑖)) +
𝜀−2/3(𝑡𝑖+1 − 𝑡𝑖)

24
=
𝔥𝜀−1 (𝑡𝑖+1−𝑡𝑖) (0)
(𝑡𝑖+1 − 𝑡𝑖)−1/3 .

Using the fact that 𝜀 < |𝑡𝑖+1 − 𝑡𝑖 | ≤ 1 along with the one-point long-time tail estimates from

Proposition 6.2.2 (b) we get

P
(
|𝔥𝜀−1 (𝑡𝑖+1−𝑡𝑖) (0) | ≥ (𝑡𝑖+1 − 𝑡𝑖)

−1/3( 𝑠4𝑘 +
𝜈

4𝑘 ‖ ®𝑎‖
2)

)
≤ P

(
|𝔥𝜀−1 (𝑡𝑖+1−𝑡𝑖) (0) | ≥

𝑠
4𝑘 +

𝜈
4𝑘 ‖ ®𝑎‖

2
)

≤ C exp(− 1
C (𝑠 + ‖ ®𝑎‖

2)3/2)

≤ C exp
(
− 1

C (𝑠
3/2 + ‖ ®𝑎‖3)

)
,

for some constant C = C(𝑘, 𝜈) > 0. If 𝜀−1(𝑡𝑖+1 − 𝑡𝑖) ≤ 1, we may use short-time scaling to get

𝜀1/3H(0, 𝜀−1(𝑡𝑖+1 − 𝑡𝑖)) +
𝜀−2/3(𝑡𝑖+1 − 𝑡𝑖)

24
+ 𝜀1/3 log

√︁
2𝜋𝜀−1(𝑡𝑖+1 − 𝑡𝑖)

= 𝜀1/3 ( 𝜋𝜀−1 (𝑡𝑖+1−𝑡𝑖)
4

)1/4
𝔤𝜀−1 (𝑡𝑖+1−𝑡𝑖) (0) +

𝜀−2/3(𝑡𝑖+1 − 𝑡𝑖)
24

.

The linear term above is uniformly bounded in this case. Furthermore,

𝜀1/3 ( 𝜋𝜀−1 (𝑡𝑖+1−𝑡𝑖)
4

)1/4
=

( 𝜋(𝑡𝑖+1−𝑡𝑖)
4

)1/4
𝜀1/12 ≤ 1.

Thus, in this case, appealing to one-point short-time tail estimates from Proposition 6.2.3 (b), we

have

r.h.s. of (6.3.12) ≤ C exp(− 1
C (𝑠 + ‖ ®𝑎‖

2)3/2) ≤ C exp
(
− 1

C (𝑠
3/2 + ‖ ®𝑎‖3)

)
for some constant C = C(𝑘, 𝜈) > 0.

This proves the required bound for the second term in (6.3.10). Combining the bounds for the
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two terms in (6.3.11), we thus arrive at (6.3.9). Hence, all we are left to show is (6.3.11) which we

do in the next step.

Step 3. Fix ®𝑎 ∈ Z𝑘 , fix 𝑖 = 1, 2, . . . , 𝑘 . The goal of this step is to show (6.3.11). Towards this end,

note that for each coordinate vector 𝑒𝑖, 𝑖 = 1, . . . , 𝑘 − 1, and for 𝑢 ∈ [0, 1] observe that

𝐹 ( ®𝑎 + 𝑒𝑖 · 𝑢) − 𝐹 ( ®𝑎)

= 𝜀1/3
[
H(𝑎𝑖−1𝜀

−2/3, 𝜀−1𝑡𝑖−1; (𝑎𝑖 + 𝑢)𝜀−2/3, 𝜀−1𝑡𝑖) − H (𝑎𝑖−1𝜀
−2/3, 𝜀−1𝑡𝑖−1; 𝑎𝑖𝜀−2/3, 𝜀−1𝑡𝑖)

]
+ (𝑎𝑖−1 − 𝑎𝑖 − 𝑢)2 − (𝑎𝑖−1 − 𝑎𝑖)2

2(𝑡𝑖 − 𝑡𝑖−1)

+ 𝜀1/3
[
H((𝑎𝑖 + 𝑢)𝜀−2/3, 𝜀−1𝑡𝑖; 𝑎𝑖+1𝜀−2/3, 𝜀−1𝑡𝑖+1) − H (𝑎𝑖𝜀−2/3, 𝜀−1𝑡𝑖; 𝑎𝑖+1𝜀−2/3, 𝜀−1𝑡𝑖+1)

]
+ (𝑎𝑖+1 − 𝑎𝑖 − 𝑢)

2 − (𝑎𝑖+1 − 𝑎𝑖)2
2(𝑡𝑖+1 − 𝑡𝑖)

.

Thus using distributional identities (see Remark 6.2.1) by union bound for all 𝑠 > 0 we get that

P
(
|𝐹 ( ®𝑎 + 𝑒𝑖 · 𝑢) − 𝐹 ( ®𝑎) | ≥ 𝑠𝑢

1
4

)
≤ P

(
𝜀

1
3

���H 𝜀−1 (𝑡𝑖−𝑡𝑖−1) ((𝑎𝑖 + 𝑢 − 𝑎𝑖−1)𝜀−2/3) − H 𝜀−1 (𝑡𝑖−𝑡𝑖−1) ((𝑎𝑖 − 𝑎𝑖−1)𝜀−2/3)
��� ≥ 𝑠

2𝑢
1
4

)
(6.3.13)

+ P
(
𝜀

1
3

���H 𝜀−1 (𝑡𝑖+1−𝑡𝑖) ((𝑎𝑖 + 𝑢 − 𝑎𝑖+1)𝜀
−2/3) − H 𝜀−1 (𝑡𝑖+1−𝑡𝑖) ((𝑎𝑖 − 𝑎𝑖+1)𝜀

−2/3)
��� ≥ 𝑠

2𝑢
1
4

)
,

(6.3.14)

where H 𝑡 (𝑥) := H(𝑥, 𝑡) + 𝑥2

2𝑡 . We now proceed to bound the second term on the r.h.s. of above

display (that is the term in (6.3.14)); the bound for the first term follows analogously.

Case 1. 𝜀−1(𝑡𝑖+1 − 𝑡𝑖) ≥ 1. We then use the long-time scaling to conclude

𝜀
1
3

���H 𝜀−1 (𝑡𝑖+1−𝑡𝑖) ((𝑎𝑖 + 𝑢 − 𝑎𝑖+1)𝜀
−2/3) − H 𝜀−1 (𝑡𝑖+1−𝑡𝑖) ((𝑎𝑖 − 𝑎𝑖+1)𝜀

−2/3)
���

=

𝔥𝜀−1 (𝑡𝑖+1−𝑡𝑖)

(
𝑎𝑖+𝑢−𝑎𝑖+1
(𝑡𝑖+1−𝑡𝑖)2/3

)
− 𝔥𝜀−1 (𝑡𝑖+1−𝑡𝑖)

(
𝑎𝑖−𝑎𝑖+1
(𝑡𝑖+1−𝑡𝑖)2/3

)
(𝑡𝑖+1 − 𝑡𝑖)−1/3

where 𝔥𝑠 (𝑥) := 𝔥𝑠 (𝑥) + 𝑥2

2 . We now consider two cases depending on the value of 𝑢.
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Case 1.1. Suppose 𝑢 ∈ [0, (𝑡𝑖+1 − 𝑡𝑖)2/3]. By Proposition 6.2.2 (c) with 𝛾 ↦→ 𝑢

(𝑡𝑖+1−𝑡𝑖)2/3
, and using

the fact that
√
𝛾 ≤ 𝑢1/4(𝑡𝑖+1 − 𝑡𝑖)−1/3, we see that (6.3.14) ≤ C exp(− 1

C 𝑠
3/2) for some C > 0 in this

case.

Case 1.2. For 𝑢 ∈ [(𝑡𝑖+1− 𝑡𝑖)2/3, 1], we rely on one-point tail bounds. Indeed applying union bound

we have

(6.3.13) ≤ P
©­­«
�������
𝔥𝜀−1 (𝑡𝑖+1−𝑡𝑖)

(
𝑎𝑖+𝑢−𝑎𝑖+1
(𝑡𝑖+1−𝑡𝑖)2/3

)
(𝑡𝑖+1 − 𝑡𝑖)−1/3

������� ≥ 𝑠
8𝑢

1/4ª®®¬ + P
©­­«
�������
𝔥𝜀−1 (𝑡𝑖+1−𝑡𝑖)

(
𝑎𝑖−𝑎𝑖+1
(𝑡𝑖+1−𝑡𝑖)2/3

)
(𝑡𝑖+1 − 𝑡𝑖)−1/3

������� ≥ 𝑠
8𝑢

1/4ª®®¬
≤ C exp

(
− 1

C 𝑠
3/2𝑢3/8(𝑡𝑖+1 − 𝑡𝑖)−1/2

)
≤ C exp

(
− 1

C 𝑠
3/2

)
.

The penultimate inequality above follows from Proposition 6.2.2 (a), (b) and the last one follows

from the fact 𝑢 ≥ (𝑡𝑖+1 − 𝑡𝑖)2/3 and 𝑡𝑖+1 − 𝑡𝑖 ∈ (0, 1].

Case 2. 𝜀−1(𝑡𝑖+1 − 𝑡𝑖) ≤ 1. We here use the short-time scaling to conclude

𝜀
1
3

���H 𝜀−1 (𝑡𝑖+1−𝑡𝑖) ((𝑎𝑖 + 𝑢 − 𝑎𝑖+1)𝜀
−2/3) − H 𝜀−1 (𝑡𝑖+1−𝑡𝑖) ((𝑎𝑖 − 𝑎𝑖+1)𝜀

−2/3)
���

=
( 𝜋𝜀1/3 (𝑡𝑖+1−𝑡𝑖)

4
) 1

4

[
𝔤𝜀−1 (𝑡𝑖+1−𝑡𝑖)

(
2(𝑎𝑖+𝑢−𝑎𝑖+1)√
𝜋𝜀1/3 (𝑡𝑖+1−𝑡𝑖)

)
− 𝔤𝜀−1 (𝑡𝑖+1−𝑡𝑖)

(
2(𝑎𝑖−𝑎𝑖+1)√
𝜋𝜀1/3 (𝑡𝑖+1−𝑡𝑖)

)]
where 𝔤𝑠 (𝑥) := 𝔤𝑠 (𝑥) + (𝜋𝑠/4)

3/4𝑥2

2𝑠 . We again consider two cases depending on the value of 𝑢.

Case 2.1. Suppose 𝑢 ∈ (0,
√
𝜋

2 𝜀
−1/3(𝑡𝑖+1 − 𝑡𝑖)). Then 2𝑢√

𝜋𝜀1/3 (𝑡𝑖+1−𝑡𝑖)
<

√︁
𝜀−1(𝑡𝑖+1 − 𝑡𝑖). This allows

us to apply Proposition 6.2.4 with 𝛾 ↦→ 2𝑢√
𝜋𝜀1/3 (𝑡𝑖+1−𝑡𝑖)

and 𝑡 ↦→ 𝜀−1(𝑡𝑖+1 − 𝑡𝑖). Using the fact that

𝑢1/2 ≤ 𝑢1/4 for 𝑢 ∈ [0, 1], we see that (6.3.14) ≤ C exp(− 1
C 𝑠

3/2) for some C > 0 in this case.

Case 2.2. For 𝑢 ∈ [
√
𝜋

2 𝜀
−1/3(𝑡𝑖+1 − 𝑡𝑖), 1], we rely on stationarity and one-point tail bounds (Propo-

sition 6.2.3 (a), (b)). Indeed applying union bound we have

(6.3.14) ≤ P
( ( 𝜋𝜀1/3 (𝑡𝑖+1−𝑡𝑖)

4
) 1

4

����𝔤𝜀−1 (𝑡𝑖+1−𝑡𝑖)

(
2(𝑎𝑖+𝑢−𝑎𝑖+1)√
𝜋𝜀1/3 (𝑡𝑖+1−𝑡𝑖)

)���� ≥ 𝑠
8𝑢

1/4
)

+ P
( ( 𝜋𝜀1/3 (𝑡𝑖+1−𝑡𝑖)

4
) 1

4

����𝔤𝜀−1 (𝑡𝑖+1−𝑡𝑖)

(
2(𝑎𝑖−𝑎𝑖+1)√
𝜋𝜀1/3 (𝑡𝑖+1−𝑡𝑖)

)���� ≥ 𝑠
8𝑢

1/4
)
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≤ C exp
(
− 1

C

[
𝑠𝑢1/4(𝑡𝑖+1 − 𝑡𝑖)−1/4𝜀−

1
12

]3/2
)
.

As 𝑢 ≥
√
𝜋

2 𝜀
−1/3(𝑡𝑖+1 − 𝑡𝑖), and 𝜀 ∈ (0, 1) we have 𝑢1/4(𝑡𝑖+1 − 𝑡𝑖)−1/4𝜀−1/12 ≥

√
𝜋

2 . Thus the last

expression above is at most C exp
(
− 1

C 𝑠
3/2

)
.

Combining the above two cases we have (6.3.14) ≤ C exp(− 1
C 𝑠

3/2) uniformly for 𝑢 ∈ [0, 1].

By the same argument one can show the term in (6.3.13) is also upper bounded by C exp(− 1
C 𝑠

3/2).

This yields (6.3.11) for 𝑖 = 1, 2, . . . , 𝑘 − 1.

Finally for 𝑖 = 𝑘 , observe that

𝐹 ( ®𝑎 + 𝑒𝑘 · 𝑢) − 𝐹 ( ®𝑎)

= 𝜀1/3
[
H(𝑎𝑘−1𝜀

−2/3, 𝜀−1𝑡𝑘−1; (𝑎𝑘 + 𝑢)𝜀−2/3, 𝜀−1) − H (𝑎𝑘−1𝜀
−2/3, 𝜀−1𝑡𝑘−1; 𝑎𝑘𝜀−2/3, 𝜀−1)

]
+ (𝑎𝑘−1 − 𝑎𝑘 − 𝑢)2 − (𝑎𝑘−1 − 𝑎𝑘 )2

2(1 − 𝑡𝑘−1)
.

Then (6.3.11) follows for 𝑖 = 𝑘 by the exact same computations as above. This completes the proof

of the lemma.

6.3.2 Proof of Proposition 6.3.1 and 6.3.1-(point-to-line)

We now present the proofs of Proposition 6.3.1 and 6.3.1-(point-to-line).

Proof of Proposition 6.3.1. We assume 𝑚 ≥ 16𝜏2 + 1. Otherwise the constant C1 can be chosen

large enough so that the inequality holds trivially. Without loss of generality assume 𝑠 < 𝑡. We

first consider the case when 𝑠, 𝑡 ∈ (0, 1). Note that

P𝜉 ( |𝐿 (𝜀)𝑠 − 𝐿 (𝜀)𝑡 | ≥ 𝑚 |𝑠 − 𝑡 |
1
2−𝛿)

=

∬
|𝑢−𝑣 |≥𝑚𝜀−2/3 |𝑠−𝑡 |

1
2 −𝛿

Z(0, 0; 𝑢, 𝜀−1𝑠)Z(𝑢, 𝜀−1𝑠; 𝑣, 𝜀−1𝑡)Z(𝑣, 𝜀−1𝑡; 𝑥, 𝜀−1)
Z(0, 0; 𝑥, 𝜀−1)

d𝑢 d𝑣.
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We make a change of variable 𝑢 = 𝑝𝜀−2/3, 𝑣 = 𝑞𝜀−2/3 and 𝑥 = 𝑧𝜀−2/3. Then

P𝜉 ( |𝐿 (𝜀)𝑠 − 𝐿 (𝜀)𝑡 | ≥ 𝑚 |𝑠 − 𝑡 |
1
2−𝛿)

=𝜀−4/3
∬

|𝑝−𝑞 |≥𝑚 |𝑠−𝑡 |
1
2 −𝛿

Z(0, 0; 𝑝𝜀−2/3, 𝑠
𝜀
)Z(𝑝𝜀−2/3, 𝑠

𝜀
; 𝑞𝜀−2/3, 𝑡

𝜀
)Z(𝑞𝜀−2/3, 𝑡

𝜀
; 𝑧𝜀−2/3, 1

𝜀
)

Z(0, 0; 𝑧𝜀−2/3, 𝜀−1)
d𝑞 d𝑝.

(6.3.15)

Recall the multivariate spatial process 𝐹®𝑡;𝜀 (®𝑥) from (6.3.6). Take 𝑘 = 3 and set ®𝑡 = (𝑠, 𝑡, 1), and

®𝑥 = (𝑝, 𝑞, 𝑧). We also set

𝐵(®𝑡 ) := 1{𝑠 ≤ 𝜀} log
√︂

2𝜋
𝑠

𝜀
+ 1{𝑡 − 𝑠 ≤ 𝜀} log

√︂
2𝜋
𝑡 − 𝑠
𝜀
+ 1{1 − 𝑡 ≤ 𝜀} log

√︂
2𝜋

1 − 𝑡
𝜀
.

For the numerator of the integrand in (6.3.15) observe that

Z(0, 0; 𝑝𝜀−
2
3 , 𝑠
𝜀
)Z(𝑝𝜀− 2

3 , 𝑠
𝜀
; 𝑞𝜀−

2
3 , 𝑡
𝜀
)Z(𝑞𝜀− 2

3 , 𝑡
𝜀
; 𝑧𝜀−

2
3 , 1
𝜀
) = exp

[
𝜀−

1
3𝐹®𝑡;𝜀 (®𝑥) − 𝜀−1

24 − 𝐵(®𝑡 )
]
.

(6.3.16)

Set 𝑀 = 𝑚2

64 . Applying Lemma 6.3.7 with 𝜈 = 1
2 and 𝑠 = 𝑀 , we see that with probability greater

than 1 − C exp(− 1
C𝑀

3/2),

r.h.s. of (6.3.16) ≤ exp
[
𝜀−1/3𝑀 − 𝜀−1/3

(
𝑝2

4𝑠 +
(𝑞−𝑝)2
4(𝑡−𝑠) +

(𝑧−𝑞)2
4(1−𝑡)

)
− 𝜀−1

24 − 𝐵(®𝑡 )
]
. (6.3.17)

On the other hand, for the denominator of the integrand in (6.3.15) by one-point long-time tail

bound from Proposition 6.2.2 with probability at least 1 − C exp(− 1
C𝑀

3/2) we have

Z(0, 0; 𝑧𝜀−2/3, 𝜀−1) ≥ exp
(
𝜀−1/3𝔥𝜀−1 (𝑧) − 𝜀−1

24

)
≥ exp

(
−𝜀−1/3(𝑀 + 1

2𝜏
2) − 𝜀−1

24

)
.

Combining the previous equation with (6.3.17) we get that with probability at least 1−C exp(− 1
C𝑀

3/2)
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we have

r.h.s. of (6.3.15) ≤ 𝜀− 4
3 exp

(
𝜀−1/3(2𝑀 + 1

2𝜏
2) − 𝐵(®𝑡 )

)
·∬

|𝑝−𝑞 |≥𝑚 |𝑠−𝑡 |
1
2 −𝛿

exp
[
−𝜀−1/3

(
𝑝2

4𝑠 +
(𝑞−𝑝)2
4(𝑡−𝑠) +

(𝑧−𝑞)2
4(1−𝑡)

)]
𝑑𝑞 𝑑𝑝

≤ 𝜀− 4
3 exp

(
𝜀−

1
3 (2𝑀 + 1

2𝜏
2 − 𝑚2

4|𝑡−𝑠 |2𝛿 ) − 𝐵(®𝑡 )
) ∬

R2
exp

[
−𝜀− 1

3

(
𝑝2

4𝑠 +
𝑟2

4(1−𝑡)

)]
𝑑𝑟 𝑑𝑝

= 4𝜋
√︁
𝑠(1 − 𝑡)𝜀−1 exp

(
𝜀−

1
3 (2𝑀 + 1

2𝜏
2 − 𝑚2

4|𝑡−𝑠 |2𝛿 ) − 𝐵(®𝑡 )
)
. (6.3.18)

Observe that

√
𝑟 exp

(
−1{𝑟 ≤ 𝜀} log

√︃
2𝜋𝑟
𝜀

)
≤ 1. (6.3.19)

As 𝑀 = 𝑚2

64 we have 2𝑀 − 𝑚2

4|𝑡−𝑠 |2𝛿 ≤ −
𝑚2

8|𝑡−𝑠 |2𝛿 . Furthermore 1
2𝜏

2 ≤ 𝑚2

16|𝑡−𝑠 |2𝛿 under the condition

𝑚 ≥ 16𝜏2 + 1. Thus,

r.h.s. of (6.3.18) ≤ 4𝜋𝜀−1 exp
(
−𝜀− 1

3 𝑚2

16|𝑡−𝑠 |2𝛿 − 1{𝑡 − 𝑠 ≤ 𝜀} log
√︃

2𝜋(𝑡−𝑠)
𝜀

)
.

Clearly the last expression is at most C1 exp(− 1
C1
𝑚2) for some C1 > 0 depending on 𝜏, 𝛿. This

bound holds uniformly over 𝑡, 𝑠 ∈ (0, 1) with 𝑡 ≠ 𝑠 and 𝜀 ∈ (0, 1). This concludes the proof for

𝑠, 𝑡 ∈ (0, 1).

Finally, when 𝑠 = 0 we have

P𝜉 ( |𝐿 (𝜀)𝑡 | ≥ 𝑚 |𝑡 |
1
2−𝛿) =

∬
|𝑣 |≥𝑚𝜀−2/3 |𝑡 |

1
2 −𝛿

Z(0, ; 𝑣, 𝜀−1𝑡)Z(𝑣, 𝜀−1𝑡; 𝑥, 𝜀−1)
Z(0, 0; 𝑥, 𝜀−1)

d𝑣.

The proof can now be completed by following the argument for 𝑠, 𝑡 ∈ (0, 1) case. Indeed, the

denominator can be bounded by the exact same manner as above, whereas the numerator can be

controlled with the 𝑘 = 2 version of Lemma 6.3.7. The case 𝑡 = 1 is analogous to the case 𝑠 = 0.

We have thus established Proposition 6.3.1.
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Proof of Proposition 6.3.1-(point-to-line). We now explain how the above proof can be modified

to extend it to the point-to-line version. Fix any 𝑚 > 0 and 𝑀 > 1. Indeed observe that for

0 < 𝑠 < 𝑡 < 1, one has

P𝜉∗ ( |𝐿 (𝜀)𝑠,∗ − 𝐿 (𝜀)𝑡,∗ | ≥ 𝑚 |𝑠 − 𝑡 |
1
2−𝛿)

=𝜀−
4
3

∫
R

∬
|𝑝−𝑞 |≥𝑚 |𝑠−𝑡 |

1
2 −𝛿

Z(0, 0; 𝑝𝜀− 2
3 , 𝑠
𝜀
)Z(𝑝𝜀− 2

3 , 𝑠
𝜀
; 𝑞𝜀− 2

3 , 𝑡
𝜀
)Z(𝑞𝜀− 2

3 , 𝑡
𝜀
; 𝑧𝜀− 2

3 , 1
𝜀
)∫

R
Z(0, 0; 𝑦𝜀− 2

3 , 𝜀−1)d𝑦
d𝑞 d𝑝 d𝑧.

(6.3.20)

Since Lemma 6.3.7 is a process-level estimate that allows even the endpoint to vary, (6.3.17) con-

tinues to hold simultaneously for all 𝑝, 𝑞, 𝑧 ∈ R with same high probability. However for the lower

bound on the denominator, one-point lower-tail bound is not sufficient. Instead, for the denomi-

nator we use long-time process-level lower bound from Proposition 4.1 in [117] to get that with

probability at least 1 − C exp(− 1
C𝑀

3/2) we have

∫
R
Z(0, 0; 𝑦𝜀−2/3, 𝜀−1)d𝑦 ≥

∫
R

exp
(
−𝑀+𝑦

2

𝜀1/3 − 𝜀−1

24

)
d𝑦 ≥ C𝜀

1
6 exp

(
−𝜀−1/3𝑀 − 𝜀−1

24

)
.

Combining the previous equation with (6.3.17) we get that with probability at least 1−C exp(− 1
C𝑀

3/2)

we have

r.h.s. of (6.3.20) ≤ 𝜀− 3
2 exp

(
2𝜀−1/3𝑀 − 𝐵(®𝑡 )

)
·∫

R

∬
|𝑝−𝑞 |≥𝑚 |𝑠−𝑡 |

1
2 −𝛿

exp
[
−𝜀−1/3

(
𝑝2

4𝑠 +
(𝑞−𝑝)2
4(𝑡−𝑠) +

(𝑧−𝑞)2
4(1−𝑡)

)]
𝑑𝑞 𝑑𝑝 𝑑𝑧.

(6.3.21)

On |𝑝 − 𝑞 | ≥ 𝑚 |𝑠− 𝑡 | 12−𝛿, we have (𝑞 − 𝑝)2/4(𝑡 − 𝑠) ≥ (𝑞 − 𝑝)2/8(𝑡 − 𝑠) +𝑚2/8|𝑡 − 𝑠 |2𝛿. Applying

this inequality followed by expanding the range of integration we get

r.h.s. of (6.3.21) ≤ 𝜀− 3
2 exp

(
𝜀−

1
3 (2𝑀 − 𝑚2

8|𝑡−𝑠 |2𝛿 ) − 𝐵(®𝑡 )
)

·
∫
R

∫
R

∫
R

exp
[
−𝜀− 1

3

(
𝑝2

4𝑠 +
𝑟2

8(𝑡−𝑠) +
𝑢2

4(1−𝑡)

)]
𝑑𝑞 𝑑𝑟 𝑑𝑢
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=
√︁

27𝜋3𝑠(1 − 𝑡) (𝑡 − 𝑠) · 𝜀−1 exp
(
𝜀−

1
3 (2𝑀 − 𝑚2

8|𝑡−𝑠 |2𝛿 ) − 𝐵(®𝑡 )
)
.

Just as in the proof of Proposition 6.3.1, setting 𝑀 = 𝑚2

64 , and using (6.3.19), the above expression

can be shown to be at most C exp(− 1
C𝑚

2) uniformly over 𝜀 ∈ (0, 1) and 0 < 𝑠 < 𝑡 < 1. This

establishes the proposition.

6.4 Annealed Convergence for short-time and long-time

In this section we prove our main results. In Section 6.4.1 we prove Theorems 6.1.4, 6.1.7, and

6.1.8. In Section 6.4.2, we show Theorem 6.1.10 assuming Conjecture 6.1.9.

6.4.1 Proof of Theorems 6.1.4, 6.1.7, and 6.1.8

In this section we prove results related to short-time and long-time tightness and related point-

wise weak convergence. While the proof of long-time tightness relies on modulus of continu-

ity estimates from Proposition 6.3.1 and Proposition 6.3.1-(point-to-line), the proof of short-time

tightness relies on the following Brownian relation of annealed law of CDRP.

Lemma 6.4.1 (Brownian Relation). Let 𝑋 ∼ CDRP(0, 0; 0, 𝑡) and 𝑌 ∼ CDRP(0, 0; ∗, 𝑡). For any

continuous functional L : 𝐶 ( [0, 𝑡]) → R we have

E
[
Z(0, 0; 0, 𝑡)

√
2𝜋𝑡 · L(𝑋)

]
= E(L(𝐵)), E [Z(0, 0; ∗, 𝑡) · L(𝑌 )] = E(L(𝐵∗)) (6.4.1)

where 𝐵∗ and 𝐵 are standard Brownian motion and standard Brownian bridge on [0, 𝑡] respec-

tively.

Remark 6.4.2. Note that
√

2𝜋𝑡 = 1
𝑝(0,𝑡) where 𝑝(0, 𝑡) is the heat kernel. Since the Brownian

bridge finite-dimensional densities are product of heat kernels divided by 𝑝(0, 𝑡), this additional

factor 1
𝑝(0,𝑡) is required in the point-to-point version for appropriate comparison to the the Brownian

bridge law (see (6.4.2) below).
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Proof. Take 0 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑘 < 𝑡𝑘+1 = 𝑡. The Brownian motion identity appears as Lemma

4.2 in [4]. To show the bridge version note that by Definition 6.1.1, the quantity

Z(0, 0; 0, 𝑡)P𝜉 (𝑋 (𝑡1) ∈ d𝑥1, . . . , 𝑋 (𝑡𝑘 ) ∈ d𝑥𝑘 )

is product of independent random variables with mean 𝑝(𝑥 𝑗+1− 𝑥 𝑗 , 𝑡 𝑗+1− 𝑡 𝑗 ) where 𝑝(𝑥, 𝑡) denotes

the heat kernel. Noting that 𝑝(0, 𝑡) = 1√
2𝜋𝑡

, and recalling the finite-dimensional distribution of

Brownian bridge (Problem 6.11 in [214]) we get that

E
[
Z(0, 0; 0, 𝑡)

√
2𝜋𝑡 · P𝜉 (𝑋 (𝑡1) ∈ d𝑥1, . . . , 𝑋 (𝑡𝑘 ) ∈ d𝑥𝑘 )

]
=

1
𝑝(0, 𝑡)

𝑘∏
𝑗=0

𝑝(𝑥 𝑗+1 − 𝑥 𝑗 , 𝑡 𝑗+1 − 𝑡 𝑗 )

= P (𝐵(𝑡1) ∈ d𝑥1, . . . , 𝐵(𝑡𝑘 ) ∈ d𝑥𝑘 ) .
(6.4.2)

(6.4.1) now follows from the above by approximation of L with simple functions.

Proof of Theorem 6.1.4. We first show finite-dimensional convergence. Fix 0 = 𝑡0 < 𝑡1 < · · · <

𝑡𝑘+1 = 1. Take 𝑥1, . . . , 𝑥𝑘 ∈ R. Set 𝑥0 = 0 and 𝑥𝑘+1 = 0. Note that the density for (𝑌 (𝜀)𝑡𝑖
)𝑘
𝑖=1 at (𝑥𝑖)𝑘𝑖=1

is given by

𝑓®𝑡;𝜀 (®𝑥) :=
𝜀𝑘/2

Z(0, 0; 0, 𝜀)

𝑘∏
𝑗=0
Z(
√
𝜀𝑥 𝑗 , 𝜀𝑡 𝑗 ;

√
𝜀𝑥 𝑗+1, 𝜀𝑡 𝑗+1).

For a Brownian bridge 𝐵 on [0, 1] starting at 0 and ending at 𝑥, the density for (𝐵𝑡𝑖 )𝑘𝑖=1 at (𝑥𝑖)𝑘𝑖=1 is

given by

𝑔®𝑡 (®𝑥) :=
1

𝑝(0, 1)

𝑘∏
𝑗=0

𝑝(𝑥 𝑗+1 − 𝑥 𝑗 , 𝑡 𝑗+1 − 𝑡 𝑗 )

where 𝑝(𝑥, 𝑡) = 1√
2𝜋𝑡
𝑒−𝑥

2/2𝑡 . Using the distributional identities forZ (see Remark 6.2.1) and using
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Equation (8.11) in [99] and Brownian scaling, we deduce

Z(
√
𝜀𝑥 𝑗 , 𝜀𝑡 𝑗 ;

√
𝜀𝑥 𝑗+1, 𝜀𝑡 𝑗+1)

𝑝(
√
𝜀(𝑥 𝑗+1 − 𝑥 𝑗 ), 𝜀(𝑡 𝑗+1 − 𝑡 𝑗 ))

𝑑
= E𝑡 𝑗+1−𝑡 𝑗 ,𝑥 𝑗+1−𝑥 𝑗0,0

[
: exp :

{
𝜀1/4

∫ 𝑡 𝑗+1−𝑡 𝑗

0
𝜉 (𝑠, 𝐵(𝑠))𝑑𝑠

}]
where 𝐵 is a Brownian bridge conditioned 𝐵(0) = 0 and 𝐵(𝑡 𝑗+1 − 𝑡 𝑗 ) = 𝑥 𝑗+1 − 𝑥 𝑗 . The expectation

above is taken w.r.t. this Brownian bridge only. Here : exp : denotes the Wick exponential (see [99]

for details). The right side of the above equation is a random variable (function of the noise 𝜉). We

claim that this random variable converges to 1 in probability. Indeed using chaos expansion, and

Lemma 2.4 in [105], it follows that for every fixed 𝑡, 𝑥 we have

E

[{
E𝑡,𝑥0,0

[
: exp :

{
𝜀1/4

∫ 𝑡

0
𝜉 (𝑠, 𝐵(𝑠))𝑑𝑠

}]
− 1

}2
]
=
√
𝜀

∞∑︁
𝑘=1

𝜀(𝑘−1)/2𝑡𝑘/2

(4𝜋)𝑘/2
(Γ(1/2)𝑘 )
Γ(𝑘/2) .

The above sum converges. Thus as 𝜀 ↓ 0, the above expression goes to zero, proving the claim. As

𝑝(
√
𝜀𝑥, 𝜀𝑡) = 𝜀−1/2𝑝(𝑥, 𝑡), we thus have 𝑓®𝑡;𝜀 (®𝑥)

𝑝
→ 𝑔®𝑡 (®𝑥). Thus the quenched finite-dimensional

density of 𝑌 (𝜀) converges in probability to the finite-dimensional density of the Brownian Bridge.

We now show that the same holds for the annealed law. Indeed, note that
��𝑔®𝑡 (®𝑥) − 𝑓®𝑡;𝜀 (®𝑥)��+ con-

verges to zero in probability and is bounded above by 𝑔®𝑡 (®𝑥). Thus by DCT and Jensen’s inequality,

we obtain

��𝑔®𝑡 (®𝑥) − E[ 𝑓®𝑡;𝜀 (®𝑥)]
��+ ≤ E𝜉

��𝑔®𝑡 (®𝑥) − 𝑓®𝑡;𝜀 (®𝑥)��+ → 0

as 𝜀 ↓ 0. Now by Scheffe’s theorem, it follows that the annealed finite-dimensional distribution of

𝑌 (𝜀) converges weakly to the finite-dimensional distribution of the Brownian bridge.

Let us now verify tightness. Recall that 𝑋 (𝜀𝑡) =
√
𝜀𝑌
(𝜀)
𝑡 . Observe that by union bound followed

by Markov inequality we have

P

 sup
0≤𝑡,𝑠≤1
|𝑡−𝑠 |≤𝛿

|𝑌 (𝜀)𝑡 − 𝑌
(𝜀)
𝑠 | ≥ 𝜂

 ≤ P

Z(0, 0; 0, 𝜀)
√

2𝜋𝜀 sup
0≤𝑡,𝑠≤1
|𝑡−𝑠 |≤𝛿

|𝑌 (𝜀)𝑡 − 𝑌
(𝜀)
𝑠 | ≥ 𝜂𝛿1/3


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+ P
[
Z(0, 0; 0, 𝜀)

√
2𝜋𝜀 ≤ 𝛿1/3

]
≤
√

2𝜋
𝜂𝛿1/3 E

Z(0, 0; 0, 𝜀) sup
0≤𝑡,𝑠≤1
|𝑡−𝑠 |≤𝛿

|𝑋 (𝜀𝑡) − 𝑋 (𝜀𝑠) |


+ P
[
𝔤𝜀 (0) ≤ (4𝜀/𝜋)−1/4 log(𝛿1/3)

]
.

Note that by one-point short-time tail bounds from Proposition 6.2.3 (b), the second expression

above goes to zero as 𝛿 ↓ 0 uniformly in 𝜀 ≤ 1. For the first expression, by Lemma 6.4.1 we have

E

Z(0, 0; 0, 𝜀) sup
0≤𝑡,𝑠≤1
|𝑡−𝑠 |≤𝛿

|𝑋 (𝜀𝑡) − 𝑋 (𝜀𝑠) |
 =

1
√

2𝜋𝜀
E

 sup
0≤𝑡,𝑠≤1
|𝑡−𝑠 |≤𝛿

|𝐵′𝜀𝑡 − 𝐵′𝜀𝑠 |
 ,

where 𝐵′ is a Brownian bridge on [0, 𝜀]. By scaling property of Brownian bridges we may write

the last expression simply as

1√
2𝜋

E

 sup
0≤𝑡,𝑠≤1
|𝑡−𝑠 |≤𝛿

|𝐵𝑡 − 𝐵𝑠 − (𝑡 − 𝑠)𝐵1 |


where 𝐵 is a Brownian motion on [0, 1]. This expression is free of 𝜀 and by [167, Lemma 1] this

goes to zero with rate 𝑂 (𝛿1/2−𝛾) for any 𝛾 > 0. Thus we have shown

lim sup
𝛿↓0

sup
𝜀∈(0,1)

P

 sup
0≤𝑡,𝑠≤1
|𝑡−𝑠 |≤𝛿

|𝑌 (𝜀)𝑡 − 𝑌
(𝜀)
𝑠 | ≥ 𝜂

 = 0.

Since 𝑌 (𝜀)0 = 0, by standard criterion of tightness (see Theorem 4.10 in [214]) combined with

finite-dimensional convergence shown before, we have weak convergence to Brownian Bridge.

This completes the proof.

Proof of Theorem 6.1.7. Let us first prove (a) using Corollary 6.3.6. Fix 𝛾 ∈ (0, 1). We consider

𝛽 ∈ (0, 1) small enough so that 𝛾 ≥ 𝜌(𝛽) where 𝜌(𝛽) := sup𝑡∈(0,𝛽] 𝑡
1
4 log 2

𝑡
. Taking 𝛿 = 1

4 , the
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estimates in (6.3.3) ensure that for all 𝜀 ∈ (0, 1) we have

P

(
sup

𝑡≠𝑠∈[0,1],|𝑡−𝑠 |<𝛽
|𝐿 (𝜀)𝑠 − 𝐿 (𝜀)𝑡 | ≥ 𝛾

)
≤ P ©­« sup

𝑡≠𝑠∈[0,1],|𝑡−𝑠 |<𝛽

|𝐿 (𝜀)𝑠 − 𝐿 (𝜀)𝑡 |
|𝑡 − 𝑠 | 14 log 2

|𝑡−𝑠 |

≥ 𝛾

𝜌(𝛽)
ª®¬

≤ C exp
(
− 1

C
𝛾2

𝜌(𝛽)2

)
.

Note that as 𝛽 ↓ 0, we have 𝜌(𝛽) ↓ 0. Hence

lim sup
𝛽↓0

sup
𝜀∈(0,1)

P

(
sup

𝑡≠𝑠∈[0,1],|𝑡−𝑠 |<𝛽
|𝐿 (𝜀)𝑠 − 𝐿 (𝜀)𝑡 | ≥ 𝛾

)
= 0.

Since 𝐿 (𝜀)0 = 0, the above modulus of continuity estimate yields tightness for the process 𝐿 (𝜀)𝑡 .

For (b), let us fix 𝑡 ∈ (0, 1) and consider 𝑉 ∼ CDRP(0, 0; 0, 𝜀−1). LetM𝑡,𝜀−1 denote the unique

mode of the quenched density of𝑉 (𝜀−1𝑡). By [132, Theorem 1.4], we knowM𝑡,𝜀−1 exists uniquely

almost surely. By [132, Corollary 7.3] we have

lim sup
𝐾→∞

lim sup
𝜀↓0

P𝜉 ( |𝑉 (𝜀−1𝑡) −M𝑡,𝜀−1 | ≥ 𝐾) = 0, in probability.

Applying reverse Fatou’s Lemma we have

lim sup
𝐾→∞

lim sup
𝜀↓0

P( |𝑉 (𝜀−1𝑡) −M𝑡,𝜀−1 | ≥ 𝐾) = 0.

Thus in particular, 𝜀−
2
3 [𝑉 (𝜀−1𝑡) − M𝑡,𝜀−1]

𝑝
→ 0. However, 𝜀−2/3M𝑡,𝜀−1

𝑑→ Γ(𝑡
√

2) due to [132,

Theorem 1.8]. This proves (b).

Proof of Theorem 6.1.8. Let us first prove part (a) which claims short-time process convergence.

We first show finite-dimensional convergence. Fix 0 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑘+1 = 1. Take 𝑥1, . . . , 𝑥𝑘 ∈
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R. Set 𝑥0 = 0 and 𝑥𝑘+1 = ∗. Note that the density for (𝑌 (𝜀)∗ (𝑡𝑖))𝑘𝑖=1 at (𝑥𝑖)𝑘𝑖=1 is given by

𝑓 ∗®𝑡;𝜀 (®𝑥) :=
𝜀𝑘/2

Z(0, 0; ∗, 𝜀)

𝑘∏
𝑗=0
Z(
√
𝜀𝑥 𝑗 , 𝜀𝑡 𝑗 ;

√
𝜀𝑥 𝑗+1, 𝜀𝑡 𝑗+1).

From the finite-dimensional convergence argument in proof of Theorem 6.1.4 we know that

𝜀𝑘/2
𝑘−1∏
𝑗=0
Z(
√
𝜀𝑥 𝑗 , 𝜀𝑡 𝑗 ;

√
𝜀𝑥 𝑗+1, 𝜀𝑡 𝑗+1)

𝑝
→

𝑘−1∏
𝑗=0

𝑝(𝑥 𝑗+1 − 𝑥 𝑗 , 𝑡 𝑗+1 − 𝑡 𝑗 ) =: 𝑔∗®𝑡 (®𝑥). (6.4.3)

Note that 𝑔∗®𝑡 (®𝑥) is the finite-dimensional density for the standard Brownian motion. We now claim

that

Z(0, 0; ∗, 𝜀)
𝑝
→ 1, Z(

√
𝜀𝑥𝑘−1, 𝜀𝑡𝑘−1; ∗, 𝜀𝑡𝑘 )

𝑝
→ 1. (6.4.4)

Combining (6.4.3) and (6.4.4) we have that 𝑓 ∗®𝑡;𝜀 (®𝑥)
𝑝
→ 𝑔∗®𝑡 (®𝑥) which implies quenched finite-

dimensional density convergence. This convergence can then be upgraded to annealed finite-

dimensional density convergence by the same argument of the proof of Theorem 6.1.4.

We thus focus on proving (6.4.4). To prove the first part of (6.4.4) we utilize the short-time

scaling from (6.2.2) to get

Z(0, 0; ∗, 𝜀) =
∫
R
𝑒H(𝑥,𝑡)𝑑𝑥 =

1
√

2𝜋𝜀

∫
R

exp
(
( 𝜋𝜀4 )

1/4𝔤𝜀
(
𝑥

√︃
4
𝜋𝜀

) )
𝑑𝑥. (6.4.5)

Fix any 𝜈 ∈ (0, 1). Applying [128, Proposition 4.4] (with 𝑠 = 𝜀−
1
6 ) we get that with probability at

least 1 − C exp(− 1
C𝜀
− 1

4 )

− (𝜋𝜀/4)
3/4(1 + 𝜈)𝑥2

2𝜀
− 𝜀−1/6 ≤ 𝔤𝜀

(
𝑥
)
≤ − (𝜋𝜀/4)

3/4(1 − 𝜈)𝑥2

2𝜀
+ 𝜀−1/6, for all 𝑥 ∈ R, (6.4.6)

where the constant C depends on 𝜈. Inserting the above inequality in (6.4.5) we get that with
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probability at least 1 − C exp(− 1
C𝜀
− 1

4 )

exp
(
−( 𝜋4 )

1/4𝜀1/12
) 1
√

2𝜋𝜀

∫
R
𝑒−
(1+𝜈)𝑥2

2𝜀 𝑑𝑥 ≤ Z(0, 0; ∗, 𝜀) ≤ exp
(
( 𝜋4 )

1/4𝜀1/12
) 1
√

2𝜋𝜀

∫
R
𝑒−
(1−𝜈)𝑥2

2𝜀 𝑑𝑥.

Thus

P
©­­«
exp

(
−( 𝜋4 )

1/4𝜀1/12
)

√
1 + 𝜈

≤ Z(0, 0; ∗, 𝜀) ≤
exp

(
( 𝜋4 )

1/4𝜀1/12
)

√
1 − 𝜈

ª®®¬ ≥ 1 − C exp(− 1
C𝜀
− 1

4 ),

which implies

lim sup
𝜀→∞

P
(

1√
1+𝜈
≤ Z(0, 0; ∗, 𝜀) ≤ 1√

1−𝜈

)
= 1.

Taking 𝜈 ↓ 0, we get the first part of (6.4.4). The second part follows analogously.

Let us now verify tightness. Observe that by union bound followed by Markov inequality we

have

P

 sup
0≤𝑡,𝑠≤1
|𝑡−𝑠 |≤𝛿

|𝑌 (𝜀)∗ (𝑡) − 𝑌 (𝜀)∗ (𝑡) | ≥ 𝜂
 ≤ P

Z(0, 0; ∗, 𝜀) sup
0≤𝑡,𝑠≤1
|𝑡−𝑠 |≤𝛿

|𝑌 (𝜀)∗ (𝑡) − 𝑌 (𝜀)∗ (𝑠) | ≥ 𝜂𝛿1/3


+ P

[
Z(0, 0; ∗, 𝜀) ≤ 𝛿1/3

]
≤ 1
𝜂𝛿1/3 E

Z(0, 0; ∗, 𝜀) 1
√
𝜀

sup
0≤𝑡,𝑠≤1
|𝑡−𝑠 |≤𝛿

|𝑋 (𝜀𝑡) − 𝑋 (𝜀𝑠) |


+ P
[
𝔤𝜀 (∗) ≤ 𝜀−1/4 log(𝛿1/3)

]
,

(6.4.7)

where

𝔤𝜀 (∗) := 𝜀−1/4 logZ(0, 0; ∗, 𝜀)

= 𝜀−1/4
[
− log

√
2𝜋𝜀 + log

∫
R

exp
(
( 𝜋𝜀4 )

1/4𝔤𝜀 (
√︃

4
𝜋𝜀
𝑥)

)
d𝑥

]
with 𝔤𝜀 (𝑥) defined in (6.2.2). Let us now bound each term in the r.h.s. of (6.4.7) separately. For

349



the second term we claim that

lim sup
𝛿↓0

sup
𝜀∈(0,1)

P
[
𝔤𝜀 (∗) ≤ 𝜀−1/4 log(𝛿1/3)

]
= 0. (6.4.8)

Note that by Proposition 4.4 in [128] (the infimum process bound with 𝜈 = 1) we have for any

𝑠 > 0 with probability at least 1 − C exp(− 1
C 𝑠

3/2),

( 𝜋𝜀4 )
1/4𝔤𝜀 (

√︃
4
𝜋𝜀
𝑥) ≥ −( 𝜋𝜀4 )

1/4
[
𝑠 + ( 𝜋𝜀4 )

3/4 · 4
𝜋𝜀

𝑥2

𝜀

]
= −( 𝜋𝜀4 )

1/4𝑠 − 𝑥2

𝜀
, for all 𝑥 ∈ R.

Thus, with probability at least 1 − C exp(− 1
C 𝑠

3/2),

𝔤𝜀 (∗) ≥ 𝜀−1/4
[
− log

√
2𝜋𝜀 + log

(∫
R

exp
(
−( 𝜋𝜀4 )

1/4𝑠 − 𝑥2

𝜀

)
d𝑥

)]
= 𝜀−1/4

[
− log

√
2𝜋𝜀 + log

(√
𝜋𝜀 exp

(
−( 𝜋𝜀4 )

1/4𝑠
))]

= 𝜀−1/4
[
− log

√
2 − ( 𝜋𝜀4 )

1/4𝑠
]
≥ −𝑠 − 𝜀−1/4 log 2.

Now we take 𝑠 = −𝜀−1/4 log(2𝛿1/6) which is positive for 𝛿 small enough. Then −𝑠 − 𝜀−1/4 log 2 =

1
2𝜀
−1/4 log(𝛿1/3) > 𝜀−1/4 log(𝛿1/3). Hence uniformly in all 𝜀 ∈ (0, 1), with probability at least

1 − C exp(− 1
C [− log(2𝛿1/6)]3/2), we have 𝔤𝜀 (∗) ≥ 𝜀−1/4 log(𝛿1/3). This verifies (6.4.8).

Next for the first expression on r.h.s. of (6.4.7), by Lemma 6.4.1 we have

E

Z(0, 0; ∗, 𝜀) 1
√
𝜀

sup
0≤𝑡,𝑠≤1
|𝑡−𝑠 |≤𝛿

|𝑋 (𝜀𝑡) − 𝑋 (𝜀𝑠) |
 =

1
√
𝜀

E

 sup
0≤𝑡,𝑠≤1
|𝑡−𝑠 |≤𝛿

|𝐵′𝜀𝑡 − 𝐵′𝜀𝑠 |
 ,

where 𝐵′ is a Brownian motion on [0, 𝜀]. By scaling property of Brownian motion we may write

the last expression simply as

E

 sup
0≤𝑡,𝑠≤1
|𝑡−𝑠 |≤𝛿

|𝐵𝑡 − 𝐵𝑠 |


where 𝐵 is a Brownian motion on [0, 1]. This expression is free of 𝜀 and by [167, Lemma 1] this
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goes to zero with rate 𝑂 (𝛿1/2−𝛾) for any 𝛾 > 0. Thus we have shown

lim sup
𝛿↓0

sup
𝜀∈(0,1)

P

 sup
0≤𝑡,𝑠≤1
|𝑡−𝑠 |≤𝛿

|𝑌 (𝜀)∗ (𝑡) − 𝑌 (𝜀)∗ (𝑠) | ≥ 𝜂
 = 0.

Since 𝑌 (𝜀)∗ (0) = 0, this proves tightness. Along with finite-dimensional convergence, this estab-

lishes part (a).

The tightness results in part (b) follows via the same arguments as in the proof of Theorem

6.1.7 (a) utilizing the point-to-line modulus of continuity from Proposition 6.3.3-(point-to-line).

For part (c), we rely on localization results from [132]. Indeed, by Theorem 1.5 in [132], we know

the quenched density of 𝑉 (𝜀−1) (recall 𝑉 ∼ CDRP(0, 0; ∗, 𝜀−1)) has a unique modeM∗,𝜀−1 almost

surely. By the same argument as in the proof of Theorem 6.1.7 (b), the point-to-line version of

Corollary 7.3 in [132] leads to the fact that 𝜀−2/3 [𝐿 (𝜀)∗ (1) − M∗,𝜀−1]
𝑝
→ 0. Finally from Theorem

1.8 in [132] we have 𝜀−2/3M∗,𝜀−1
𝑑→ 21/3M. This establishes (c).

6.4.2 Proof of Theorem 6.1.10 modulo Conjecture 6.1.9

In this section we prove Theorem 6.1.10 assuming Conjecture 6.1.9. The proof also relies on a

technical result which we first state below.

Lemma 6.4.3 (Deterministic convergence). Let 𝑓 (𝑥) : R𝑘 → R be a continuous function with

a unique maximizer ®𝑎 ∈ R𝑘 and 𝑓𝜀 (𝑥) : R𝑘 → R be a sequence of continuous functions that

converges to 𝑓 (𝑥) uniformly over compact subsets. Fix any 𝛿 > 0 and take 𝑀 > 0 so that

(𝑎𝑖 − 𝛿, 𝑎𝑖 + 𝛿) ∈ [−𝑀, 𝑀] for all 𝑖. For 𝑥 ∈ R, set

𝑔𝜀 (𝑥) :=
exp(𝜀− 1

3 𝑓𝜀 (®𝑥))∫
[−𝑀,𝑀]𝑘 exp(𝜀− 1

3 𝑓𝜀 (®𝑦))d®𝑦
.

For all ®𝑏 ∈ [−𝑀, 𝑀]𝑘 , we have:
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lim sup
𝜀↓0

∫ 𝑏1

−𝑀
· · ·

∫ 𝑏𝑘

−𝑀
𝑔𝜀 (®𝑥)d®𝑥 ≤

𝑘∏
𝑖=1

1{𝑎𝑖 ≤ 𝑏𝑖 + 𝛿}, (6.4.9)

lim inf
𝜀↓0

∫ 𝑏1

−𝑀
· · ·

∫ 𝑏𝑘

−𝑀
𝑔𝜀 (®𝑥)d®𝑥 ≥

𝑘∏
𝑖=1

1{𝑎𝑖 ≤ 𝑏𝑖 − 𝛿}. (6.4.10)

Proof of this lemma follows via standard real analysis and hence we defer its proof to the end

of this section. We now proceed to prove Theorem 6.1.10 assuming the above lemma.

Proof of Theorem 6.1.10. For clarity we split the proof into three steps.

Step 1. Fix 0 = 𝑡0 < 𝑡1 < . . . < 𝑡𝑘 < 𝑡𝑘+1 = 1. For convenience set Γ𝑡𝑖 := Γ(𝑡𝑖
√

2) where Γ(·)

is the geodesic of directed landscape from (0, 0) to (0,
√

2). Consider any ®𝑎 = (𝑎1, . . . , 𝑎𝑘 ) ∈ R𝑘 ,

which is a continuity point for the CDF of (Γ𝑡𝑖 )𝑘𝑖=1. For any 𝑀 ≥ sup𝑖 |𝑎𝑖 | + 1, define

𝑉®𝑎 (𝑀) := [−𝑀, 𝑎𝑖] × · · · × [−𝑀, 𝑎𝑘 ] ⊂ R𝑘 . (6.4.11)

To show convergence in finite-dimensional distribution, it suffices to prove that as 𝜀 ↓ 0

P

(
𝑘⋂
𝑖=1
{𝐿 (𝜀)𝑡𝑖 ≤ 𝑎𝑖}

)
→ P

(
𝑘⋂
𝑖=1
{Γ𝑡𝑖 ≤ 𝑎𝑖}

)
. (6.4.12)

From Definition 6.1.1 and using the long-time scaling from (6.2.2), we obtain that the joint density

of (𝐿 (𝜀)𝑡1 , 𝐿
(𝜀)
𝑡2
, . . . , 𝐿

(𝜀)
𝑡𝑘
) at (𝑥𝑖)𝑘𝑖=1 is given by

𝑔®𝑡;𝜀 (®𝑥)∫
R𝑘
𝑔®𝑡;𝜀 (®𝑦)𝑑®𝑦

, 𝑔®𝑡;𝜀 (®𝑥) := exp(𝜀−1/3𝑈®𝑡;𝜀 (®𝑥))

where

𝑈®𝑡;𝜀 (®𝑥) :=
𝑘+1∑︁
𝑖=1
(𝑡𝑖 − 𝑡𝑖−1)1/3𝔥𝜀−1𝑡𝑖−1,𝜀−1𝑡𝑖 ((𝑡𝑖 − 𝑡𝑖−1)−2/3𝑥𝑖−1, (𝑡𝑖 − 𝑡𝑖−1)−2/3𝑥𝑖) (6.4.13)

Here 𝑥0 = 𝑥𝑘+1 = 1.
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In this step, we reduce our computation to understanding the integral behavior of 𝑔®𝑡;𝜀 on a

compact set. More precisely, the goal of this step is to show there there exists a constant C > 0

such that for all 𝑀 large enough�����P
(
𝑘⋂
𝑖=1
{𝐿 (𝜀)𝑡𝑖 ≤ 𝑎𝑖}

)
− E

[ ∫
𝑉®𝑎 (𝑀)

𝑔®𝑡;𝜀 (®𝑦)𝑑®𝑦∫
[−𝑀,𝑀]𝑘 𝑔®𝑡;𝜀 (®𝑦)𝑑®𝑦

] ����� ≤ C exp
(
− 1

C𝑀
2
)

(6.4.14)

where 𝑉®𝑎 (𝑀) is defined in (6.4.11). We proceed to prove (6.4.14) by demonstrating appropriate

lower and upper bounds. For upper bound observe that by union bound we have

P

(
𝑘⋂
𝑖=1
{𝐿 (𝜀)𝑡𝑖 ≤ 𝑎𝑖}

)
≤ P

(
𝑘⋂
𝑖=1
{𝐿 (𝜀)𝑡𝑖 ∈ [−𝑀, 𝑎𝑖]}

)
+ P

(
sup
𝑡∈[0,1]

|𝐿 (𝜀)𝑡 | ≥ 𝑀
)

≤ E

[ ∫
𝑉®𝑎 (𝑀)

𝑔®𝑡;𝜀 (®𝑦)𝑑®𝑦∫
[−𝑀,𝑀]𝑘 𝑔®𝑡;𝜀 (®𝑦)𝑑®𝑦

]
+ P

(
sup
𝑡∈[0,1]

|𝐿 (𝜀)𝑡 | ≥ 𝑀
)

≤ E

[ ∫
𝑉®𝑎 (𝑀)

𝑔®𝑡;𝜀 (®𝑦)𝑑®𝑦∫
[−𝑀,𝑀]𝑘 𝑔®𝑡;𝜀 (®𝑦)𝑑®𝑦

]
+ C exp

(
− 1

C𝑀
2
)

(6.4.15)

where the last inequality follows from Corollary 6.3.5 for some constant C > 0. For the lower

bound we have

P

(
𝑘⋂
𝑖=1
{𝐿 (𝜀)𝑡𝑖 ≤ 𝑎𝑖}

)
≥ P

(
𝑘⋂
𝑖=1
{𝐿 (𝜀)𝑡𝑖 ∈ [−𝑀, 𝑎𝑖]}

)
= E

[ ∫
𝑉®𝑎 (𝑀)

𝑔®𝑡;𝜀 (®𝑦)𝑑®𝑦∫
[−𝑀,𝑀]𝑘 𝑔®𝑡;𝜀 (®𝑦)𝑑®𝑦

·

∫
[−𝑀,𝑀]𝑘 𝑔®𝑡;𝜀 (®𝑦)𝑑®𝑦∫
R𝑘
𝑔®𝑡;𝜀 (®𝑦)𝑑®𝑦

]
≥ E

[ ∫
𝑉®𝑎 (𝑀)

𝑔®𝑡;𝜀 (®𝑦)𝑑®𝑦∫
[−𝑀,𝑀]𝑘 𝑔®𝑡;𝜀 (®𝑦)𝑑®𝑦

· P𝜉
(

sup
𝑡∈[0,1]

|𝐿 (𝜀)𝑡 | ≤ 𝑀
)]
. (6.4.16)

By Corollary 6.3.5 we see that there exist two constants C1,C2 > 0 such that with probabil-

ity at least 1 − C2 exp(− 1
C2
𝑀3), the random variable P𝜉

(
sup𝑡∈[0,1] |𝐿

(𝜀)
𝑡 | ≤ 𝑀

)
is at least 1 −
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C1 exp(− 1
C1
𝑀2). Thus,

r.h.s. of (6.4.16) ≥
[
1 − C2 exp

(
− 1

C2
𝑀3

)]
E

[ ∫
𝑉®𝑎 (𝑀)

𝑔®𝑡;𝜀 (®𝑦)𝑑®𝑦∫
[−𝑀,𝑀]𝑘 𝑔®𝑡;𝜀 (®𝑦)𝑑®𝑦

·
[
1 − C1 exp

(
− 1

C1
𝑀2

)] ]
≥ E

[ ∫
𝑉®𝑎 (𝑀)

𝑔®𝑡;𝜀 (®𝑦)𝑑®𝑦∫
[−𝑀,𝑀]𝑘 𝑔®𝑡;𝜀 (®𝑦)𝑑®𝑦

]
− C1 exp

(
− 1

C1
𝑀2

)
. (6.4.17)

In view of (6.4.15) and (6.4.17), we thus arrive at (6.4.14) by adjusting the constants. This com-

pletes our work for this step.

Step 2. In this step, we discuss how directed landscape and hence the geodesic appear in the limit.

Recall the random function 𝑈®𝑡;𝜀 (®𝑥) from (6.4.13). We exploit Conjecture 6.1.9, to show that as

𝜀 ↓ 0, as R𝑘 -valued processes we have the following convergence in law

𝑈®𝑡;𝜀 (®𝑥)
𝑑→ U®𝑡 (®𝑥) := 2−

1
3

𝑘+1∑︁
𝑖=1
L(𝑥𝑖−1, 𝑡𝑖−1

√
2; 𝑥𝑖, 𝑡𝑖

√
2) (6.4.18)

in the uniform-on-compact topology. Here L(𝑥, 𝑠; 𝑦, 𝑡) denotes the directed landscape. Note that

by Definition 6.1.6, (Γ𝑡𝑖 )𝑘𝑖=1 is precisely the almost sure unique 𝑘-point maximizer of f®𝑡 (®𝑥).

To show (6.4.18), we rely on Conjecture 6.1.9 heavily. Indeed, assuming Conjecture 6.1.9, for

each 𝑖, as 𝜀 ↓ 0 we have

𝔥𝜀−1𝑡𝑖−1,𝜀−1𝑡𝑖 ((𝑡𝑖 − 𝑡𝑖−1)−2/3𝑥, (𝑡𝑖 − 𝑡𝑖−1)−2/3𝑦)
𝑑→ 2−1/3S (𝑖)

(
2−1/3(𝑡𝑖 − 𝑡𝑖−1)−2/3𝑥, 2−1/3(𝑡𝑖 − 𝑡𝑖−1)−2/3𝑦

)
where the convergence holds under the uniform-on-compact topology. Here S (𝑖) are independent

Airy sheets as 𝔥𝜀−1𝑡𝑖−1,𝜀−1𝑡𝑖 (·, ·) are independent. Now by the definition of directed landscape we

have

2−
1
3

𝑘+1∑︁
𝑖=1
L(𝑥𝑖−1, 𝑡𝑖−1

√
2; 𝑥𝑖, 𝑡𝑖

√
2)
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𝑑
= 2−

1
3

𝑘+1∑︁
𝑖=1
(𝑡𝑖+1 − 𝑡𝑖)1/3S (𝑖)

(
2−1/3(𝑡𝑖 − 𝑡𝑖−1)−2/3𝑥𝑖−1, 2−1/3(𝑡𝑖 − 𝑡𝑖−1)−2/3𝑥𝑖

)
with 𝑥0 = 𝑥𝑘+1 = 1. Here the equality in distribution holds as R𝑘 -valued processes in ®𝑥. This allow

us to conclude the desired convergence for𝑈®𝑡;𝜀 (®𝑥) in (6.4.18), completing our work for this step.

Step 3. In this step, we complete the proof of (6.4.12) utilizing (6.4.14) and the weak convergence

in (6.4.18). Using Skorokhod’s representation theorem, given any fixed 𝑀 , we may assume that

we are working on a probability space where

P(A) = 1, for A :=
{

sup
®𝑥∈[−𝑀,𝑀]𝑘

��𝑈®𝑡;𝜀 (®𝑥) − U®𝑡 (®𝑥)
��→ 0

}
.

Let us define

(Γ𝑡𝑖 (𝑀))𝑘𝑖=1 := argmax
®𝑥∈[−𝑀,𝑀]𝑘

f®𝑡 (®𝑥),

where in case there are multiple maximizers we take the one whose sum of coordinates is the

largest. We next define

B :=
{

argmax
®𝑥∈[−𝑀,𝑀]𝑘

U®𝑡 (®𝑥) exists uniquely and (Γ𝑡𝑖 (𝑀))𝑘𝑖=1 ∈ [−
𝑀
2 ,

𝑀
2 ]

𝑘

}
.

Fix any 𝛿 ∈ (0, 𝑀2 ). By Lemma 6.4.3 we have

lim sup
𝜀↓0

E

[ ∫
𝑉®𝑎 (𝑀)

𝑔®𝑡;𝜀 (®𝑦)𝑑®𝑦∫
[−𝑀,𝑀]𝑘 𝑔®𝑡;𝜀 (®𝑦)𝑑®𝑦

]
≤ P(¬B) + E

[
lim sup
𝜀↓0

∫
𝑉®𝑎 (𝑀)

𝑔®𝑡;𝜀 (®𝑦)𝑑®𝑦∫
[−𝑀,𝑀]𝑘 𝑔®𝑡;𝜀 (®𝑦)𝑑®𝑦

1{A ∩ B}
]

≤ P(¬B) + P

(
𝑘⋂
𝑖=1
{Γ𝑡𝑖 (𝑀) ≤ 𝑎𝑖 + 𝛿}

)
≤ P(¬B) + P

(
𝑘⋂
𝑖=1
{Γ𝑡𝑖 ≤ 𝑎𝑖 + 𝛿}

)
+ P

(
sup
𝑡∈[0,1]

|Γ𝑡 | ≥ 𝑀
)
,

(6.4.19)

where the last inequality follows by observing that Γ𝑡𝑖 (𝑀) = Γ𝑡𝑖 for all 𝑖, whenever sup𝑡∈[0,1] |Γ𝑡 | ≤
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𝑀 (and the fact that Γ(·) exists uniquely almost surely via Theorem 12.1 in [138]). In the same

manner we have

lim inf
𝜀↓0

E

[ ∫
𝑉®𝑎 (𝑀)

𝑔®𝑡;𝜀 (®𝑦)𝑑®𝑦∫
[−𝑀,𝑀]𝑘 𝑔®𝑡;𝜀 (®𝑦)𝑑®𝑦

]
≥ E

[
lim inf
𝜀↓0

∫
𝑉®𝑎 (𝑀)

𝑔®𝑡;𝜀 (®𝑦)𝑑®𝑦∫
[−𝑀,𝑀]𝑘 𝑔®𝑡;𝜀 (®𝑦)𝑑®𝑦

1{A ∩ B}
]

≥ P

(
𝑘⋂
𝑖=1
{Γ𝑡𝑖 (𝑀) ≤ 𝑎𝑖 − 𝛿},A ∩ B

)
≥ P

(
𝑘⋂
𝑖=1
{Γ𝑡𝑖 ≤ 𝑎𝑖 − 𝛿}

)
− P(¬B) − P

(
sup
𝑡∈[0,1]

|Γ𝑡 | ≥ 𝑀
)
.

(6.4.20)

By Proposition 12.3 in [138],

P(¬B) ≤ P

(
sup
𝑡∈[0,1]

|Γ𝑡 | ≥ 𝑀
)
≤ C exp

(
− 1

C𝑀
3
)
.

Thus taking 𝑀 ↑ ∞, followed by 𝛿 ↓ 0, and using the fact that ®𝑎 is a continuity point of the

density on both sides of (6.4.19) and (6.4.20) we have

lim
𝑀→∞

lim sup
𝜀↓0

E

[ ∫
𝑉®𝑎 (𝑀)

𝑔®𝑡;𝜀 (®𝑦)𝑑®𝑦∫
[−𝑀,𝑀]𝑘 𝑔®𝑡;𝜀 (®𝑦)𝑑®𝑦

]
= lim
𝑀→∞

lim inf
𝜀↓0

E

[ ∫
𝑉®𝑎 (𝑀)

𝑔®𝑡;𝜀 (®𝑦)𝑑®𝑦∫
[−𝑀,𝑀]𝑘 𝑔®𝑡;𝜀 (®𝑦)𝑑®𝑦

]
= P

(
𝑘⋂
𝑖=1
{Γ𝑡𝑖 ≤ 𝑎𝑖}

)
Combining this with (6.4.14) we thus arrive at (6.4.12). This completes the proof.

Proof of Lemma 6.4.3. We begin by proving (6.4.9). When 𝑎𝑖 ≤ 𝑏𝑖 + 𝛿 for all 𝑖, the r.h.s of (6.4.9)

is 1 whereas the l.h.s of (6.4.9) is always less than 1. Thus we focus on when 𝑎 𝑗 > 𝑏 𝑗 + 𝛿 for some

𝑗 . In that case ®𝑎 ∉ [−𝑀, 𝑏1] × · · · × [−𝑀, 𝑏𝑘 ]. As ®𝑎 is the unique maximizer of the continuous

function 𝑓 (®𝑥), there exists 𝜂 > 0 such that

sup
𝑦𝑖∈[−𝑀,𝑏𝑖],𝑖=1,2,...,𝑘

𝑓 (®𝑦) < 𝑓 ( ®𝑎) − 𝜂.
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By uniform convergence over compacts, we can get 𝜀0 such that

sup
𝜀≤𝜀0

sup
®𝑥∈[−𝑀,𝑀]𝑘

| 𝑓𝜀 (®𝑥) − 𝑓 (®𝑥) | < 1
4𝜂.

By continuity of 𝑓 at ®𝑎, we can get 𝛿0 < 𝛿 such that for all 0 ≤ 𝜌 ≤ 𝛿 we have

sup
𝑥𝑖∈[𝑎𝑖−𝜌,𝑎𝑖+𝜌],𝑖=1,...,𝑘

| 𝑓 (®𝑥) − 𝑓 ( ®𝑎) | < 1
4𝜂.

Thus for all 𝜀 ≤ 𝜀0 and 0 ≤ 𝜌 ≤ 𝛿0 we have 𝑓𝜀 (®𝑥) ≥ 𝑓 ( ®𝑎) − 1
2𝜂 for all ®𝑥 with 𝑥𝑖 ∈ [𝑎𝑖 − 𝜌, 𝑎𝑖 + 𝜌].

And for all 𝜀 ≤ 𝜀0, 𝑓𝜀 (®𝑦) < 𝑓 ( ®𝑎) − 3
4𝜂 for all ®𝑦 with 𝑦𝑖 ∈ [−𝑀, 𝑏𝑖]. Thus in conclusion

∫ 𝑏1

−𝑀
· · ·

∫ 𝑏𝑘

−𝑀
exp(𝜀− 1

3 𝑓𝜀 (®𝑥))d®𝑥 ≤ (2𝑀)𝑘 exp(𝜀−1/3 [ 𝑓 ( ®𝑎) − 3
4𝜂)])

and

∫
[−𝑀,𝑀]𝑘

exp(𝜀− 1
3 𝑓𝜀 (®𝑥))d®𝑥 ≥

∫ 𝑎1+𝛿0

𝑎1−𝛿0

· · ·
∫ 𝑎𝑘+𝛿0

𝑎𝑘−𝛿0

exp(𝜀− 1
3 𝑓𝜀 (®𝑥))d®𝑥 ≥ (2𝛿0)𝑘 exp(𝜀−1/3 [ 𝑓 ( ®𝑎) − 1

2𝜂)]).

Combining the above two bounds we have

∫ 𝑏1

−𝑀
· · ·

∫ 𝑏𝑘

−𝑀
𝑔𝜀 (®𝑥)d®𝑥 ≤ (𝑀𝛿0

)𝑘 exp(−1
4𝜀
−1/3𝜂),

which goes to zero as 𝜀 ↓ 0. Thus, we conclude the proof of (6.4.9). The proof of (6.4.10) follows

analogously.

6.5 Proof of Lemma 6.2.6

In this section, we prove Lemma 6.2.6. The idea is to view short-time scaled KPZ equation

𝔤𝑡 (·) defined in (6.2.2) as the lowest index curve of an appropriate line ensemble and use certain

stochastic monotonicity properties of the same. To make our exposition self-contained, below we

briefly introduce the line ensemble machinery.
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Fix 𝑡 > 0 throughout this section and consider the convex function

G𝑡 (𝑥) = (𝜋𝑡/4)1/2𝑒(𝜋𝑡/4)
1/4𝑥 .

Recall the general notion of line ensembles from Section 2 in [109]. Let L = (L1,L2, . . .) be

an N × R indexed line ensemble. Fix 𝑘1 ≤ 𝑘2 with 𝑘1, 𝑘2 ∈ N and an interval (𝑎, 𝑏) ∈ R and

two vectors ®𝑥, ®𝑦 ∈ R𝑘2−𝑘1+1. Let P𝑘1,𝑘2,(𝑎,𝑏),®𝑥,®𝑦
free denote the law of 𝑘2 − 𝑘1 + 1 many independent

Brownian bridges taking values ®𝑥 at time 𝑎 and ®𝑦 at time 𝑏. Given two measurable functions

𝑓 , 𝑔 : (𝑎, 𝑏) → R ∪ {±∞}, the law P𝑘1,𝑘2,(𝑎,𝑏),®𝑥,®𝑦, 𝑓 ,𝑔
G𝑡

on L𝑘1 , . . . ,L𝑘2 : (𝑎, 𝑏) → R has the

following Radon-Nikodym derivative w.r.t. P𝑘1,𝑘2,(𝑎,𝑏),®𝑥,®𝑦
free :

𝑑P
𝑘1,𝑘2,(𝑎,𝑏),®𝑥,®𝑦, 𝑓 ,𝑔
G𝑡

𝑑P
𝑘1,𝑘2,(𝑎,𝑏),®𝑥,®𝑦
free

(L𝑘1 , . . . ,L𝑘2) =
exp

{
−∑𝑘2+1

𝑖=𝑘1

∫
G𝑡

(
L𝑖 (𝑥) − L𝑖−1(𝑥)

)
𝑑𝑥

}
𝑍
𝑘1,𝑘2,(𝑎,𝑏),®𝑥,®𝑦, 𝑓 ,𝑔
G𝑡

, (6.5.1)

where L𝑘1−1 = 𝑓 , or∞ if 𝑘1 = 1; and L𝑘2+1 = 𝑔. Here 𝑍 𝑘1,𝑘2,(𝑎,𝑏),®𝑥,®𝑦, 𝑓 ,𝑔
G𝑡

is the normalizing constant

which produces a probability measure. We say L enjoys the G𝑡-Brownian Gibbs property if, for

all 𝐾 = {𝑘1, . . . , 𝑘2} ⊂ N and (𝑎, 𝑏) ⊂ R, the following distributional equality holds:

Law
(
L𝐾×(𝑎,𝑏) conditioned on LN×R\𝐾×(𝑎,𝑏)

)
= P

𝑘1,𝑘2,(𝑎,𝑏),®𝑥,®𝑦, 𝑓 ,𝑔
G𝑡

, (6.5.2)

where ®𝑥 = (L𝑘1 (𝑎), . . . ,L𝑘2 (𝑎)), ®𝑦 = (L𝑘1 (𝑏), . . . ,L𝑘2 (𝑏)), and where again L𝑘1−1 = 𝑓 , or ∞ if

𝑘1 = 1; and L𝑘2+1 = 𝑔.

Similar to the Markov property, a strong version of the G𝑡-Brownian Gibbs property that is

valid with respect to stopping domains exists. A pair (𝔞, 𝔟) of random variables is called a 𝐾-

stopping domain if
{
𝔞 ≤ 𝑎, 𝔟 ≥ 𝑏

}
∈ 𝔉ext

(
𝐾 × (𝑎, 𝑏)

)
, the 𝜎-field generated by L(N×R)\(𝐾×(𝑎,𝑏)) .

L satisfies the strong G𝑡-Brownian Gibbs property if for all 𝐾 = {𝑘1, . . . , 𝑘2} ⊂ N and 𝐾-stopping

domain if (𝔞, 𝔟), the conditional distribution of L𝐾×(𝔞,𝔟) given 𝔉ext
(
𝐾 × (𝔞, 𝔟)

)
is P𝑘1,𝑘2,(𝑙,𝑟),®𝑥,®𝑦, 𝑓 ,𝑔

G𝑡
,

where ℓ = 𝔞, 𝑟 = 𝔟, ®𝑥 = (L𝑖 (𝔞))𝑖∈𝐾 , ®𝑦 = (L𝑖 (𝔟))𝑖∈𝐾 , and where again L𝑘1−1 = 𝑓 , or ∞ if 𝑘1 = 1;
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and L𝑘2+1 = 𝑔.

The following lemma shows how the short-time scaled KPZ process 𝔤𝑡 (·) fits into a line en-

semble satisfying the G𝑡-Brownian Gibbs property.

Lemma 6.5.1 (Lemma 2.5 in [128] and Lemma 2.5 of [CH16]). For each 𝑡 > 0, there exists an

N × R-indexed line ensemble {𝔤(𝑛)𝑡 (𝑥)}𝑛∈N,𝑥∈R satisfying the G𝑡-Brownian Gibbs property and the

lowest indexed curve 𝔤
(1)
𝑡 (𝑥) is equal in distribution (as a process in 𝑥) to 𝔤𝑡 (𝑥) defined in (6.2.2).

Furthermore, the line ensemble {𝔤(𝑛)𝑡 (𝑥)}𝑛∈N,𝑥∈R satisfies the strong G𝑡-Brownian Gibbs property.

Before beginning the proof of Lemma 6.2.6 we recall one more property of line ensembles,

i.e. the stochastic monotonicity, which is indispensable to the study of monotone events in Lemma

6.2.6.

Lemma 6.5.2 (Lemmas 2.6 and 2.7 of [CH16]). Fix a finite interval (𝑎, 𝑏) ⊂ R and 𝑥, 𝑦 ∈ R.

For 𝑖 ∈ {1, 2}, fix measurable functions 𝑔𝑖 : (𝑎, 𝑏) → R ∪ {−∞} such that 𝑔2(𝑠) ≤ 𝑔1(𝑠) for

𝑠 ∈ (𝑎, 𝑏). For each 𝑣 ∈ {1, 2}, let P𝑣 denote the law P1,1,(𝑎,𝑏),𝑥,𝑦,+∞,𝑔𝑣
G𝑡

, so that a P𝑣-distributed

random variable R𝑖 = {R𝑣 (𝑠)}𝑠∈(𝑎,𝑏) is a random function on [𝑎, 𝑏] with endpoints 𝑥 and 𝑦. Then

a common probability space may be constructed on which the two measures are supported such

that, almost surely, R1(𝑠) ≥ R2(𝑠) for all 𝑠 ∈ (𝑎, 𝑏).

Proof of Lemma 6.2.6. Fix an interval [𝑎, 𝑏] and a corresponding monotone set 𝐴 ∈ B(𝐶 ( [𝑎, 𝑏])).

By Lemma 6.5.1 and tower property of expectation we may write

P
[
𝔤𝑡 (·) | [𝑎,𝑏] ∈ 𝐴 | (𝔤𝑡 (𝑥))𝑥∉(𝑎,𝑏)

]
= E(≥2)

[
P

[
𝔤
(1)
𝑡 (·) | [𝑎,𝑏] ∈ 𝐴 | (𝔤

(𝑛)
𝑡 (·))𝑛≥2, (𝔤(1)𝑡 (𝑥))𝑥∉(𝑎,𝑏)

] ]
= E(≥2)

[
P

1,1,(𝑎,𝑏),𝔤 (1)𝑡 (𝑎),𝔤
(1)
𝑡 (𝑏),+∞,𝔤

(2)
𝑡 (·)

G𝑡

(
𝔤
(1)
𝑡 (·) | [𝑎,𝑏] ∈ 𝐴

)]
(6.5.3)

where the last equality follows from (6.5.2). Here E(≥2) denotes the expectation operator taken

over all lower curves {𝔤(𝑛)𝑡 (·)}𝑛≥2. Now by Lemma 6.5.2, decreasing 𝔤
(2)
𝑡 (·) pointwise on [𝑎, 𝑏]

reduces the value of 𝔤(1)𝑡 (·) pointwise stochastically. But by the definition of monotone set 𝐴 (see
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(6.2.4)), we know decreasing 𝔤
(1)
𝑡 (·) | [𝑎,𝑏] stochastically pointwise and keeping the endpoint fixed,

only increases the conditional probability appearing above. Thus, we may drop 𝔤
(2)
𝑡 (·) all the way

to −∞, to obtain

r.h.s. of (6.5.3) ≤ E(≥2)
[
P

1,1,(𝑎,𝑏),𝔤 (1)𝑡 (𝑎),𝔤
(1)
𝑡 (𝑏),+∞,−∞

G𝑡

(
𝔤
(1)
𝑡 (·) | [𝑎,𝑏] ∈ 𝐴

)]
. (6.5.4)

Under the above situation the Radon-Nikodym derivative appearing in (6.5.1) becomes constant,

and thus

P
1,1,(𝑎,𝑏),𝔤 (1)𝑡 (𝑎),𝔤

(1)
𝑡 (𝑏),+∞,−∞

G𝑡
[·] = P1,1,(𝑎,𝑏),𝔤 (1)𝑡 (𝑎),𝔤

(1)
𝑡 (𝑏)

free [·] .

The measure on the right side above is a single Brownian bridge measure on [𝑎, 𝑏] starting at

𝔤
(1)
𝑡 (𝑎) and ending at 𝔤(1)𝑡 (𝑏) and hence free of {𝔤(𝑛)𝑡 (·)}𝑛≥2. Thus r.h.s. of (6.5.4) can be viewed

as P(𝑎,𝑏),(𝔤
(1)
𝑡 (𝑎),𝔤

(1)
𝑡 (𝑏))

free (𝐴). This establishes (6.2.5). The case when [𝑎, 𝑏] is a stopping domain

follows from the same calculation and the fact that {𝔤(𝑛)𝑡 (·)}𝑛≥1 satisfies the strong G𝑡-Brownian

Gibbs property via Lemma 6.5.1.
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Chapter 7: KPZ exponents for the half-space log-gamma polymer

7.1 Introduction

7.1.1 The model and the main results

Fix 𝜃 > 0, 𝛼 > −𝜃, and consider a family of independent variables (𝑊𝑖, 𝑗 )(𝑖, 𝑗)∈I with I :=

{(𝑖, 𝑗) ∈ Z2
>0 : 𝑗 ≤ 𝑖} such that

𝑊𝑖, 𝑗 ∼ Gamma−1(𝛼 + 𝜃) for 𝑖 = 𝑗 and 𝑊𝑖, 𝑗 ∼ Gamma−1(2𝜃) for 𝑗 < 𝑖, (7.1.1)

where 𝑋 ∼ Gamma−1(𝛽) means 𝑋 is a random variable with density 1{𝑥 > 0}Γ−1(𝛽)𝑥−𝛽−1𝑒−1/𝑥 .

A directed lattice path 𝜋 =
(
(𝑥𝑖, 𝑦𝑖)

) 𝑘
𝑖=1 confined to the half-space index set I is an up-right

path with all (𝑥𝑖, 𝑦𝑖) ∈ I, such that it only makes unit steps in the coordinate directions, that

is, (𝑥𝑖+1, 𝑦𝑖+1) = (𝑥𝑖, 𝑦𝑖) + (0, 1) or (𝑥𝑖+1, 𝑦𝑖+1) = (𝑥𝑖, 𝑦𝑖) + (1, 0); see Figure 7.1. Given (𝑚, 𝑛) ∈ I,

we denote Π𝑚,𝑛 to be the set of all directed paths from (1, 1) to (𝑚, 𝑛) confined to I. Given the

random variables from (7.1.1), we define the weight of a path 𝜋 and the point-to-point partition

function of the half-space log-gamma (HSLG) polymer as

𝑤(𝜋) :=
∏
(𝑖, 𝑗)∈𝜋

𝑊𝑖, 𝑗 , 𝑍(𝛼,𝜃) (𝑚, 𝑛) :=
∑︁

𝜋∈Π𝑚,𝑛
𝑤(𝜋).

The parameter 𝛼 controls the strength of the boundary weights and there is a phase transition

in the behavior of this model at 𝛼 = 0. In our current work we will probe the behavior in the

critical regime where 𝛼 is in a scaling window of order 𝑁−1/3 of 0, as well as in the supercritical

regime when 𝛼 is strictly positive. The subcritical regime may be probed in subsequent work as

described in Section 7.1.4. This phase transition has been the subject of quite a lot of previous
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Gamma−1(𝛼 + 𝜃)

Gamma−1(2𝜃)

Figure 7.1: Vertex weights for the half-space log-gamma polymer and two possible paths (one
marked in blue and the other in black) in Π8,8.

work, some which we review in Section 7.1.4. The basic picture (some as of yet unproved) is

as follows. For 𝛼 ≥ 0 the free energy (i.e., log of the partition function) should demonstrate the

KPZ 1/3 fluctuation and 2/3 transversal scaling exponents as well as certain universal limiting

distributions. Here the transversal scaling references both the 𝑁2/3 fluctuations of the endpoint of

the length 2𝑁 half-space polymer as well as the 𝑁2/3 correlation length of the free energy as a

function of (𝑚, 𝑛) subject to 𝑚 + 𝑛 = 2𝑁 . For 𝛼 < 0 the situation is different – the free energy

fluctuations should be of order 𝑁1/2, the endpoint should fluctuate transversally in an order one

scale (i.e., not growing with 𝑁), while the free energy correlation length should be of order 𝑁 and

the limiting distributions should be Gaussian. To be clear, in terms of the polymer measure, this

phase transition relates to the pinning (𝛼 < 0) or unpinning (𝛼 ≥ 0) of the path from the diagonal.

Our main result captures the KPZ scaling exponents in the critical and subcritical regimes.

Theorem 7.1.1. Fix 𝜃, 𝑟 > 0. For each 𝛼 > −𝜃, 𝑠 ∈ [0, 𝑟], and 𝑁 ≥ max{3, 𝑟3} define the centered

and scaled HSLG free energy process

𝑓 𝛼𝑁 (𝑠) :=
log 𝑍(𝛼,𝜃) (𝑁 + 𝑠𝑁2/3, 𝑁 − 𝑠𝑁2/3) + 2𝑁Ψ(𝜃)

𝑁1/3 .
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Here Ψ denotes the digamma function defined on R>0 by

Ψ(𝑧) := 𝜕𝑧 log Γ(𝑧) = −𝛾 +
∞∑︁
𝑛=0

(
1

𝑛 + 1
− 1
𝑛 + 𝑧

)
, (7.1.2)

where 𝛾 is the Euler-Mascheroni constant. The function 𝑓 𝛼
𝑁
(·) is linearly interpolated in between

points where 𝑍(𝛼,𝜃) is defined. Let P𝛼
𝑁

denotes the law of 𝑓 𝛼
𝑁
(·) as a random variable in (𝐶 [0, 𝑟], C)

– the space of continuous functions on [0, 𝑟] equipped with uniform topology and Borel 𝜎-algebra

C. Then the following holds.

(a) The sequence P𝛼
𝑁

is tight for each 𝛼 ∈ (0,∞).

(b) For 𝛼𝑁 = 𝑁−1/3𝜇 with 𝜇 ∈ R fixed (noting that for large enough 𝑁 , 𝛼𝑁 > −𝜃, and thus 𝑓 𝛼𝑁
𝑁
(·)

is well defined), the sequence P𝛼𝑁
𝑁

is tight.

As discussed below, it is possible to show (e.g. using the ideas of [29]) absolute continuity of

the limit points in Theorem 7.1.1 with respect to certain Brownian measures. We do not pursue

this here, but remark further about this and related directions below.

The rest of this introduction is structured as follows. Section 7.1.2 introduces the idea of a

half-space Gibbsian line ensemble, the study of which constitutes the key technical innovation

responsible for the above theorem. Section 7.1.3 provides a precise definition of the half-space

log-gamma line ensemble and Gibbs property, the key input from [34] and then a sketch of the

steps to proving Theorem 7.1.1. Finally, Section 7.1.4 reviews some related work in studying half-

space polymer and related models (Section 7.1.2 contains extensive literature review on the topic

of Gibbsian line ensembles).

7.1.2 Half-space Gibbsian line ensembles

In order to prove Theorem 7.1.1 we develop a new probabilistic structure – half space Gibbsian

line ensembles – and introduce a toolbox through which to study limits of such ensembles. A

remarkable fact, due to the geometric RSK correspondence [121, 263, 260, 59] and the half-space
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Whittaker process [25], is that the free energy process log 𝑍(𝛼,𝜃) (𝑁 +𝑚, 𝑁 −𝑚) for the log-gamma

polymer can be embedded as the top labeled curve of an ensemble of log-gamma increment random

walks interacting through a soft version of non-intersection conditioning and subject to an energetic

interaction at the left boundary (where 𝑚 = 0) depending on the value of 𝛼. In particular, when

𝛼 > 0 the 2𝑖 − 1 and 2𝑖 labeled curves of the line ensemble are attracted for each 𝑖, while for 𝛼 < 0

they are repulsed (and 𝛼 = 0 corresponds to no interaction). We briefly describe this embedding in

Section 7.1.3 and 7.1.3 (see Section 7.2.2 for further discussion).

The basic premise of Gibbsian line ensembles, as initiated in the study of full-space models

in [109], is to use the resampling invariance of a sequence of such ensembles to propagate one-

point tightness information (generally for the top curve of the ensemble) into tightness of the entire

sequence of ensembles. In particular once the scale of one-point fluctuations (in this case 𝑁1/3)

is known, the Gibbs property implies transversal fluctuations are correlated in a diffusive scale

(in this case 𝑁2/3) and that lower curves also all fluctuate with these exponents in the same scale.

In other words, one point tightness of the top curve translates into spatial tightness of the entire

ensemble. Moreover, all subsequential limits of these line ensembles enjoy, themselves, a Gibbs

property corresponding to the diffusive limit of that of the pre-limiting ensembles. This general

approach has been applied widely in studying a variety of different Gibbs properties related to

probabilistic models, e.g. [110, 114, 137, 322, 29, 154, 155, 295, 319]. Moreover, it has been

leveraged to give fine information about the local behavior of these models [197, 199, 196, 198,

81, 172, 171, 82, 83, 117, 128, 318, 132, 133, 174] and in studying related scaling limits such as

the Airy sheet and directed landscape [dov18, 140, 37, 45, 139, 288, 119, 173, 283].

In this work we initiate the study of half-space Gibbsian line ensembles. These are measures

on collections of curves in which there exists a left boundary around which the Gibbs property

differs from its behavior in the bulk. As an illustrative example, consider curves 1(𝑠) ≥ 2(𝑠) ≥ · · ·

for 𝑠 ≥ 0 which enjoy the following resampling invariance. In the bulk, for 0 < 𝑎 < 𝑏 and

1 ≤ 𝑘1 ≤ 𝑘2 the law of J𝑘1,𝑘2K( [𝑎, 𝑏]) (i.e., curves 𝑘1 through 𝑘2 on the interval [𝑎, 𝑏]) conditioned

on the values of J𝑘1,𝑘2K(𝑎), J𝑘1,𝑘2K(𝑏), 𝑘1−1( [𝑎, 𝑏]) (if 𝑘1 = 1 then 0 ≡ +∞) and 𝑘2+1( [𝑎, 𝑏]) is
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that of Brownian motions conditioned to start and end at the correct boundary values and to not

intersect each other or the curve 𝑘1−1( [𝑎, 𝑏]) above and 𝑘2+1( [𝑎, 𝑏]) below. At the boundary, for

𝑐 > 0 and 1 ≤ 𝑘1 ≤ 𝑘2 the law of J𝑘1,𝑘2K( [0, 𝑐]) conditioned on the values of J𝑘1,𝑘2K(𝑐), 𝑘1−1( [0, 𝑐])

and 𝑘2+1( [0, 𝑐]) is the law of Brownian motions conditioned to end at values J𝑘1,𝑘2K(𝑐) at time 𝑐,

not intersect with each other or the 𝑘1−1 and 𝑘2+1 curves on the interval [0, 𝑐] and to have values at

zero such that 2𝑖−1(0) = 2𝑖 (0) for all 𝑖. It is this last condition that is quite novel to the half-space

models. An example of such an ensemble is illustrated in Figure 7.2 (B).

Half-space Gibbsian line ensembles have not previously been studied. However, this structure

exists implicitly in some previous literature studying half-space integrable probabilistic models.

For instance, the half-space (or Pfaffian) Schur processes [sis, 74, 12] have such a structure where

the Brownian resampling is replaced by certain discrete random walks (geometric, exponential

or Bernoulli), the non-intersection conditioning persists, and where the odd/even pairing at the

boundary is replaced by an exponential interaction in the spirit of 𝑒−𝛼(2𝑖−1 (0)−2𝑖 (0)) . Half-space

Whittaker processes [hbigmac] have a more complicated Gibbs property which is the one relevant

to our current work. Essentially, the Brownian motion is replaced by log-gamma random walks, the

non-intersection by a soft exponential energy reweighing, and the interaction at zero by the same

sort of 𝑒−𝛼(2𝑖−1 (0)−2𝑖 (0)) reweighing. There are other half-space Gibbs properties that should be

studied such as related to half-space version of Hall-Littlewood processes, 𝑞-Whittaker processes

and their spin generalizations. Furthermore, periodic or two-sided boundary versions of Gibbsian

line ensembles (for instance related to periodic or two-sided boundary versions of Schur processes

as in [66, 50] will also likely play a key role in study of related integrable probabilistic models and

hence warrant study in the spirit of what is done here.

The core technical purpose of this paper is to extend the Gibbsian line ensemble methodology to

address half-space models. We do this for the type of Gibbs property mentioned above that relates

to half-space Whittaker processes which, owing to its relation to the log-gamma polymer, we call

the half-space log-gamma Gibbs property. However, the ideas and tools developed here should be

useful in studying more general line ensembles and related probabilistic models mentioned above.
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𝑂 (𝑁2/3 )

𝑂 (𝑁1/3 )

𝑂 (𝑁1/3 )

𝑂 (𝑁1/3 )

𝑂 (𝑁1/3 )

𝑂 (𝑁1/3 )

𝑂 (1)

𝑂 (1)

𝑂 (1)

𝑁
1 ( ·)

𝑁
2 ( ·)𝑁

3 ( ·)

𝑁
4 ( ·)

𝑁
5 ( ·)

𝑁
6 ( ·)

(a)

1(·)

2(·)

3(·)

4(·)

5(·)

6(·)

(b)

Figure 7.2: (A) depicts the half-space log-gamma line ensemble for large 𝑁 along with the type of
scalings that are deduced in proving Theorem 7.1.1. This ensemble enjoys a half-space log-gamma
Gibbs property. (B) depicts a potential limiting line ensemble which should enjoy a half-space non-
intersecting Brownian Gibbs property.

As in the full-space setting, the challenge is to develop a route to take one-point fluctuation

information about the top curve 𝑁
1 of a sequence of line ensembles 𝑁 and propagate that into
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fluctuation information about the whole ensemble. (Figure 7.2 (A) illustrates the scalings that we

prove to be associated with this sequence of line ensembles.) One-point information about the top

curve for the half-space log-gamma polymer (and hence the top curve of our line ensemble) is in

short supply with only two result due to (chronologically) [34] and then [205].

As explained in Section 7.1.3, we rely only on the work of [34]. From [34] we are able to

extract two vital pieces of information: after proper centering the process 𝑠 ↦→ 𝑁−1/3𝑁
1 (𝑠𝑁

2/3)

stays bounded from positive infinity at 𝑁 → ∞, and at a random sequence of growing times

𝑠𝑁1 , 𝑠
𝑁
2 , . . . that stay tight as 𝑁 → ∞, the process has tight (bounded from positive and negative

infinity) fluctuations around the parabola −𝜈𝑠2 (for some explicit 𝜈 > 0). The slightly odd nature

of these inputs come from the fact that [34] studies a point-to-(partial)line partition function and

not point-to-point directly. The work of [205] does provide tightness (and a limit theorem) for the

point-to-point free energy, but is restricted to precisely the left boundary of 𝑁1 which is insufficient

information for our approach. Currently, there are no limit theorems proved for the point-to-point

free energy process away from the left-boundary.

With the above input we proceed to show how the Gibbs property propagates tightness to the

whole ensemble. The idea is to first argue that (with proper centering) 𝑁−1/3𝑁
2 (𝑠𝑁

2/3) must be tight

at some random time 𝑠. If not, the first curve would not follow a parabolic decay but rather a linear

one in contradiction our parabolic decay input. Now, we know that the (scaled) first and second

curves are tight at some random times (not necessarily the same). The next step is to argue that

this pair of scaled curves to the left of the random times (including the left-boundary) are likewise

tight. This relies on showing (using the Gibbs property and some a priori bounds) that the third

curve cannot rise much beyond the first two curves, and that the first two curves remain bounded

from infinity (as follows from [34]). With this and a form of stochastic monotonicity associated to

this Gibbs property, the control over the first two curves can be established by a fine analysis of the

behavior of a pair of log-gamma random walks subject to soft non-intersection conditioning and

attractive energetic pinning at zero. We call these weighted paired random walks and a substantial

amount of work is needed to develop tools and estimates regarding them. We give a more detailed
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overview of the steps of our proof in Section 7.1.3. The attractive nature of the boundary is directly

linked to the choice here that 𝛼 ≥ 0.

In this paper we do not pursue showing that the tightness propagation process extends to the

entire line ensemble, though it very likely can be done, e.g. in the spirit of [154]. Any subsequential

limit should enjoy the type of half-space Brownian Gibbs property discussed earlier. This would

show that any such subsequential limit should also enjoy local comparison to Brownian motions

when looking away from the boundary, or two 2-particle Dyson Brownian motions started paired

together when looking near the boundary (provided 𝛼 > 0; for 𝛼 = 𝑁−1/3𝜇 the paired particles start

in an attractive potential but are not equal). In fact, for the top two curves we can extract (though do

not explicitly record here) such absolute continuity results without showing tightness of the whole

ensemble, e.g. as in [29]. Note, the Gibbs property in [154, 29] differs slightly from that here since

they consider point-to-point polymer endpoints varying along a horizontal line, while we consider

endpoints varying along a down-right zigzag path.

Besides the directions alluded to above, we mention here a few more natural points of inquiry

spurred by our work. Our analysis is restricted to 𝛼 ≥ 0. When 𝛼 < 0, the pair interaction at

the boundary becomes repulsive and thus curves separate and behave quite differently. In particu-

lar, the log-gamma free energy (i.e., top curve) is expected to have 𝑂 (
√
𝑁) Gaussian fluctuations

and 𝑂 (1) transversal fluctuation around (𝑁, 𝑁). The Gaussian fluctuations on the diagonal was

recently proven in [205], while the 𝑂 (1) transversal fluctuations result will appear in the upcom-

ing work [134]. The behavior in this 𝑂 (1) scale relates to a portion of the phase diagram for the

half-space log-gamma stationary measure [27]. Using our Gibbsian line ensemble techniques and

modifications of the log-gamma polymer (i.e., adding a boundary condition on the first row too), it

should be possible to access and re-derive the description of the entire phase diagram.

Beyond tightness, the half-space log-gamma line ensemble should converge to a universal limit,

the half-space Airy line ensemble. This object, which should enjoy the type of Brownian Gibbs

property discussed earlier, has not been constructed. While the log-gamma convergence result is

currently out of reach, it should be possible to construct this from solvable last passage percolation,
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i.e. half-space Schur processes [12]. This should enjoy uniqueness characterization in the spirit of

[152, 149] and may even relate to a half-space Airy sheet in the spirit of [dov18].

A different scaling regime for the half-space log-gamma line ensemble involves weak-noise

scaling in which 𝜃 goes to infinity while 𝛼 remains fixed. In the full-space setting, [320] proved

tightness of the full-space line ensemble and (via [120]) convergence to the KPZ line ensemble

[264, 110]. A half-space analog of this result should hold and help in exploring questions related

to the half-space KPZ equation and the corresponding half-space continuous directed random poly-

mer.

7.1.3 Ideas in the proof of Theorem 7.1.1

We start in Section 7.1.3 by precisely defining the half-space log-gamma Gibbs measure and

line ensemble. In Section 7.1.3 we record the key input from [34] which we then combine with the

Gibbs line ensemble structure in Section 7.1.3 to give the key deductions in the course of proving

Theorem 7.1.1 (see Section 7.5 for the full proof of this theorem).

Though the Gibbs measure and line ensemble definition holds for general 𝛼, most of our discus-

sion, especially around the proof, will focus on the case 𝛼 > 0 which is harder than the 𝛼 = 𝑁−1/3𝜇

case. As noted earlier, we do not address the case of 𝛼 < 0 here.

HSLG Gibbs measures and the HSLG line ensemble

The main technique that goes into the proof of Theorem 7.1.1 is our construction of the half-

space log-gamma (HSLG) line ensemble whose law enjoys a property that we call the half-space

log-gamma (HSLG) Gibbs measures. In what follows we construct these objects and describe how

they relate to the HSLG polymer free energy.

We will start by defining the HSLG Gibbs measure whose state-space and associated weight

function is indexed by the following directed/colored graph. Define the graph 𝐺 with vertices

𝑉 (𝐺) := {(𝑚, 𝑛) : 𝑚 ∈ Z>0, 𝑛 ∈ Z<0 + 1
21𝑚∈2Z} and with the following directed/colored edges:
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• For each (𝑚, 𝑛) ∈ Z2
>0, we put two blue edges:

(2𝑚 − 1,−𝑛) → (2𝑚,−𝑛 + 0.5) and (2𝑚 + 1,−𝑛) → (2𝑚,−𝑛 + 0.5).

• For each (𝑚, 𝑛) ∈ Z2
>0, we put two black edges:

(2𝑚,−𝑛 − 0.5) → (2𝑚 − 1,−𝑛) and (2𝑚,−𝑛 + 0.5) → (2𝑚 + 1,−𝑛).

• For each 𝑚 ∈ Z>0, we put one red edge: (1,−2𝑚 + 1) → (1,−2𝑚).

The portion of the corresponding graph is shown in Figure 7.3 (A). We write 𝐸 (𝐺) for the set of

edges of graph 𝐺 and 𝑒 = {𝑣1 → 𝑣2} for a generic directed edge from 𝑣1 to 𝑣2 in 𝐸 (𝐺) (the color

of the edge is suppressed from the notation).

· · ·

· · ·

· · ·

· · ·
...

...
...

(1, 2)

(1, 3)

(1, 4)

(2, 5)

(3, 3)

(4, 1)

(4, 6)

(a) (b)

Figure 7.3: (A) The graph 𝐺 associated to half-space log-gamma Gibbs measures. In the figure, a
few of the vertices of 𝐺 are labeled by 𝜙-induced labeling. A generic bounded connected domain
Λ is shown in the figure which contains all vertices in the shaded region. 𝜕Λ consists of white
vertices in the figure. (B) The domain 𝐾𝑁 considered in Theorem 7.1.3. Λ∗

𝑁
consists of vertices in

the shaded region.

We next define a bijection 𝜙 : 𝑉 (𝐺) → Z2
>0 by 𝜙((𝑚, 𝑛)) = (−b𝑛c, 𝑚). This pushes the

directed/colored edges in 𝐺 onto directed/colored edges on Z2
>0 which we denote by 𝐸 (Z2

>0). We

will always view𝐺 as in Figure 7.3 and will use the 𝜙-induced labeling when describing this graph.
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We associate to each 𝑒 ∈ 𝐸 (Z2) a weight function based on the color of edge defined as follows:

𝑊𝑒 (𝑥) :=



exp(𝜃𝑥 − 𝑒𝑥) if 𝑒 is blue,

exp(−𝑒𝑥) if 𝑒 is black,

exp(−𝛼𝑥) if 𝑒 is red.

(7.1.3)

Definition 7.1.2 (Half-space log-gamma Gibbs measure). Consider the graph Z2
>0 endowed with

directed/colored edges 𝐸 (Z2
>0) as above. Let Λ be a bounded connected subset of Z2

>0. Set

𝜕Λ :=
{
𝑣 ∈ Z2

>0 ∩ Λ
𝑐 : {𝑣′→ 𝑣} ∈ 𝐸 (Z2

>0) or {𝑣 → 𝑣′} ∈ 𝐸 (Z2
>0), for some 𝑣′ ∈ Λ

}
.

The half-space log-gamma (HSLG) Gibbs measure for the domain Λ, with boundary condition(
𝑢𝑖, 𝑗 ∈ R : (𝑖, 𝑗) ∈ 𝜕Λ

)
, is a measure on R|Λ| with density at (𝑢𝑖, 𝑗 )(𝑖, 𝑗)∈Λ proportional to

∏
𝑒={𝑣1→𝑣2}∈𝐸 (Λ∪𝜕Λ)

𝑊𝑒 (𝑢𝑣1 − 𝑢𝑣2).

Lemma 7.6.2 shows that the HSLG Gibbs measure is well defined.

The following result shows how the HSLG free energy process can be embedded in a HSLG

Gibbs measure. Its proof, given in Section 7.2.2, relies directly on results of [34] that build on the

analysis of the log-gamma polymer via the geometric RSK correspondence [121] on symmetrized

domains [263, 260, 59]. In Section 7.2.2, for each 𝑁 > 0, we will define explicitly such a choice

for
(
𝑁
𝑖
( 𝑗) : (𝑖, 𝑗) ∈ K𝑁

)
that will satisfy the two criterion of the above theorem. We will call this

the half-space log-gamma (HSLG) line ensemble.

Theorem 7.1.3. Fix 𝜃 > 0, 𝛼 > −𝜃, and 𝑁 ∈ Z>0. Set K𝑁 := {(𝑖, 𝑗) ∈ Z2
>0 : 𝑖 ∈ [1, 𝑁], 𝑗 ∈

[1, 2𝑁 − 2𝑖 + 2]}. There exists a collection of random variables
(
𝑁
𝑖
( 𝑗) : (𝑖, 𝑗) ∈ K𝑁

)
defined on

the same probability space such that the following holds.
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(i) We have the following equality in distribution

(𝑁1 (2 𝑗 + 1)) 𝑗∈J0,𝑁−1K
𝑑
=

(
log 𝑍(𝛼,𝜃) (𝑁 + 𝑗 , 𝑁 − 𝑗) + 2𝑁Ψ(𝜃)

)
𝑗∈J0,𝑁−1K. (7.1.4)

(ii) Let Λ∗
𝑁

:= {(𝑖, 𝑗) ∈ Z2
>0 : 𝑖 ∈ [1, 𝑁 − 1], 𝑗 ∈ [1, 2𝑁 − 2𝑖 + 1]}. The law of

(
𝑁
𝑖
( 𝑗) : (𝑖, 𝑗) ∈ Λ∗

𝑁

)
conditioned on

(
𝑁
𝑖
( 𝑗) : (𝑖, 𝑗) ∈ (Λ∗

𝑁
)𝑐

)
is given by the HSLG Gibbs measure for the domain

Λ∗
𝑁

with boundary condition
(
𝑁
𝑖
( 𝑗) : (𝑖, 𝑗) ∈ 𝜕Λ∗

𝑁

)
.

Deductions from the HSLG Gibbs measures

It is useful to visualize the HSLG Gibbs measures from Theorem 7.1.3 in terms of the language

of Gibbsian line ensembles. Consider 𝑘 and 𝑇 fixed and 𝑁 sufficiently large so that all of the ran-

dom variables 𝑁1 J1, 𝑇K, 𝑁2 J1, 𝑇K, . . . , 𝑁2𝑘J1, 𝑇K are defined. We will think of 𝑁
𝑖

as the label 𝑖 line in the

ensemble. The values of
(
𝑁
𝑖
(2𝑇 +1) : 𝑖 ∈ J1, 2𝑘K

)
and 𝑁

2𝑘+1(·) constitute boundary data which, once

known, uniquely identify (via the Gibbs description) the laws of 𝑁1 J1, 𝑇K, 𝑁2 J1, 𝑇K, . . . , 𝑁2𝑘J1, 𝑇K.

Let us consider the three types of weights in the Gibbs measure. The weights corresponding to

black edges 𝑣1 → 𝑣2 contribute a factor of 𝑒−𝑒
𝑢𝑣1 −𝑢𝑣2 (here 𝑢𝑣 is the dummy variable in the Gibbs

density corresponding to a vertex 𝑣) in the Gibbs measure. Whenever 𝑢𝑣1 � 𝑢𝑣2 , this weight is

very close to 0, whereas otherwise it is close to 1. Thus, this weight produces a soft version of

conditioning on the event that 𝑁𝑣2 ≥
𝑁
𝑣1 . Black edges arise between consecutive lines thus we expect

that our measure will strongly favor configurations where 𝑁
1 (·) ≥

𝑁
2 (·) ≥

𝑁
3 (·) ≥ · · · , i.e., the

curves are non-intersecting (Theorem 7.3.1 provides a precise statement substantiating this). Of

course, the soft nature of this conditioning will not rule out crossing, but a heavy penalty will be

incurred so at a heuristic level it is useful to think in terms of non-intersecting lines.

The red edges are (2𝑖 − 1, 1) → (2𝑖, 1) and come with a weight 𝑒−𝛼(𝑢2𝑖−1,1−𝑢2𝑖,1) . This weight

is close to 0 when 𝑢2𝑖−1,1 � 𝑢2𝑖,1 (since 𝛼 > 0). This creates an attractive force between 𝑁
2𝑖−1(1)

and 𝑁
2𝑖 (1) which tries to establish the ordering 𝑁

2𝑖−1 ≤
𝑁
2𝑖. Of course, this is in opposition to the

soft non-intersecting influence already discussed. Combined, these forces ultimately (through our
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analysis of weighted paired random walks) result in the difference 𝑁
2𝑖−1(1) −

𝑁
2𝑖 (1) remaining 𝑂 (1)

as 𝑁 → ∞. In contrast, in the critical regime, when 𝛼𝑁 = 𝑁−1/3𝜇, the attraction weakens with 𝑁

and the forces result in 𝑁
2𝑖−1(1) −

𝑁
2𝑖 (1) like 𝑂 (𝑁1/3). It is the 𝑂 (1) distance between 𝑁

2𝑖−1(1) and

𝑁
2𝑖 (1) that makes the supercritical case harder than the critical case.

Finally, consider the blue edges that encode the Gibbs weights between consecutive values of

a given line, i.e. between 𝑁
𝑖
( 𝑗) and 𝑁

𝑖
( 𝑗 + 1). Alone, these weights define log-gamma increment

random walks (with two-step periodicity in the law of the increments). Thus, putting these three

factors together one arrives at the picture illustrated in Figure 7.2 (A) – an ensemble of softly non-

intersecting log-gamma random walks whose 2𝑖 − 1 and 2𝑖 left starting points are 𝑂 (1) distance

apart for each 𝑖. In order to prove Theorem 7.1.1 we essentially need to justify the distance scales

in Figure 7.2 (A). To do that, we use the Gibbs property (in the spirit of the line ensemble language

described above) along with some one-point control over the behavior of 𝑁1 that we describe now.

Point-to-line free energy fluctuations

The HSLG Gibbs measures machinery gives us access to the behavior of the HSLG line ensem-

ble conditioned on the boundary data. However, we still need to understand the behavior of the

boundary data. The theory of (full-space) Gibbsian line ensembles that has been developed over

the last decade has become proficient at taking very minimal seed information, such as the scale in

which tightness occurs for the one-point fluctuations of the top curve of a Gibbsian line ensemble,

and outputting the scaling and tightness for the entire edge of the line ensemble. We take the first

step in developing such a half-space theory.

There are currently only two fluctuation results about the HSLG polymer. The first (chronolog-

ically) is a result of [34] that we will recall below and appeal to, while the second is the slightly

more recent work of [205] that proves a limit theorem for 𝑁−1/3𝑁
1 (1) (i.e. 𝑓 𝛼

𝑁
(0)). Our work began

prior to the release of [205] and thus we rely only on the work of [34]. The control [205] provides

is for 𝑁
1 (1) only and since we need some information away from the boundary too, most of the

work herein is unavoidable and not really simplified by using [205]. It is natural to wonder if [205]
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could have been used along, in place of [34], at the seed for our analysis. While we do not rule this

out, it would certainly require a very different type of argument since we rely heavily on the fact

that [34] provides some information about 𝑁1 ( 𝑗) as 𝑗 varies.

Let us recall the result of [34]. For each 𝑘 > 0, define the point-to-(partial)line partition

function

𝑍 line
𝑁 (𝑘) :=

𝑁∑︁
𝑗=d𝑘e

𝑍(𝛼,𝜃) (𝑁 + 𝑗 , 𝑁 − 𝑗). (7.1.5)

This sum is restricted to endpoints at least distance 2𝑘 from the boundary. Set 𝑝 = 𝑁+𝑘
𝑁−𝑘 , Let 𝜃𝑐 be

the unique solution to Ψ′(𝜃𝑐) = 𝑝Ψ′(2𝜃 − 𝜃𝑐) and set (recall the digamma function Ψ from (7.1.2))

𝑓𝜃,𝑝 := −Ψ(𝜃𝑐) − 𝑝Ψ(2𝜃 − 𝜃𝑐), 𝜎𝜃,𝑝 :=
(

1
2 (−Ψ

′′(𝜃𝑐) − 𝑝𝜓′′(2𝜃 − 𝜃𝑐)
)1/3

.

Theorem 7.1.4 (Theorem 1.10 in [34]). Suppose (𝑘𝑁 )𝑁∈Z>0 is such that for some 𝑦 ∈ R ∪ {∞},

lim𝑁→∞(𝑁 − 𝑘𝑁 )1/3𝜎𝜃,𝑝 (𝛼 + 𝜃 − 𝜃𝑐) = 𝑦. Then, as 𝑁 →∞

log 𝑍 line
𝑁
(𝑘𝑁 ) − (𝑁 − 𝑘𝑁 ) 𝑓𝜃,𝑝
(𝑁 − 𝑘𝑁 )1/3𝜎𝜃,𝑝

→ 𝑈−𝑦 .

where for 𝑦 ∈ R, 𝑈−𝑦 is distributed as the Baik-Ben Arous-Péché distribution with parameter 𝑦

(see Eq. (5.2) in [34]). When 𝑦 = ∞,𝑈−∞ is distributed as the GUE Tracy-Widom distribution.

The crucial deduction from Theorem 7.1.4 is that there exists 𝜈 > 0 such that for each 𝑀 > 0,

𝑉𝑁 (𝑀) + 𝑀2 𝑑→ 𝑋𝑀 , where 𝑉𝑁 (𝑀) :=
log 𝑍 line

𝑁
(𝑀𝑁2/3) + 2Ψ(𝜃)𝑁
𝑁1/3𝜈

. (7.1.6)

Here the BBP distributions of the limiting random variables (𝑋𝑀)𝑀>0 form a tight sequence in

𝑀 , in particular they converge in law to the GUE Tracy-Widom distribution as 𝑀 → ∞. A

precise version of this deduction in given later in Lemma 7.3.6. Essentially, the rescaled point-to-

(partial)line free energy process𝑉𝑁 (𝑀) looks like an inverted parabola −𝑀2 with tight fluctuations
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around it.

Using the Gibbs line ensemble structure to prove Theorem 7.1.1

We now give a brief overview of the steps of our proof and how it follows from combining the

seed information from [34], i.e. (7.1.6), and the HSLG line ensemble Gibbs property.

Fix any 𝑟 > 0 and 𝑁0 large enough so everything below is well defined for 𝑁 ≥ 𝑁0. Let us set

𝑇 = 8b𝑟𝑁2/3c (the key point is that this time window scales like 𝑁2/3). We will say that a sequence

of random variables 𝑋𝑁 is upper-tight if max(𝑋𝑁 , 0) is tight, and lower-tight if min(𝑋𝑁 , 0) is tight.

Recall that 𝑋𝑁 is tight if for all 𝜀 > 0 there exists 𝐾 = 𝐾 (𝜀) > 0 such that P( |𝑋𝑁 | ≥ 𝐾) < 𝜀 for

all 𝑁 ≥ 𝑁0. If 𝑋𝑁 is both upper and lower tight, then it is tight. The broad steps of establishing

our main theorem can be summarized as follows. Note that we consider staggered (i.e., even and

odd) arguments for 𝑁1 and 𝑁
2 below due to the diagonal interaction of the Gibbs property. This is a

technical point which can be ignored currently.

(i) Prove that 𝑁−
1
3 𝑁1 (2𝑝

∗ − 1) and 𝑁−
1
3 𝑁2 (2𝑝

∗) are tight for some random 𝑝∗ ∈ [𝑀1𝑁
2
3 , 𝑀2𝑁

2
3 ].

(ii) Assuming (i) and 𝑁
3 ≡ −∞, prove that 𝑁−

1
3 𝑁1 (1) and 𝑁−

1
3 𝑁2 (2) are lower-tight.

(iii) Assuming (i) and 𝑁
3 ≡ −∞, prove that any 𝑀∗ > 0, with positive probability (depending on

𝑀∗ and 𝑟 but not of 𝑁) that

𝑁
1 (𝑝) ≥ 𝑀

∗𝑁1/3, and 𝑁
2 (𝑝) ≥ 𝑀

∗𝑁1/3, for all 𝑝 ∈ J1, 𝑇K.

(iv) Assuming (i) and 𝑁
3 (·) ≡ −∞, prove process-level tightness of

(𝑁−1/3𝑁
1 (𝑥𝑁

2/3), 𝑁−1/3𝑁
2 (𝑥𝑁

2/3))𝑥∈[0,2𝑟] .

We shall describe how we establish the above broad steps in a moment. Let us first sketch how

the above steps work together to yield our main theorem, Theorem 7.1.1.
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We first argue that 𝑁−
1
3 𝑁1 (1) and 𝑁−

1
3 𝑁2 (2) are tight without any conditioning on 𝑁

3 ≡ −∞.

Indeed, since point-to-line free energy is an upper bound for the point-to-point free energy process,

utilizing (7.1.6) it follows immediately that 𝑁−
1
3 𝑁1 (1) and 𝑁−

1
3 𝑁2 (2) are upper-tight. Since the

lower-tightness event is increasing with respect to the boundary data, by stochastic monotonicity

of HSLG Gibbs line ensembles (Proposition 8.2.3) it suffices to show the lower-tightness under

𝑁
3 ≡ −∞, which is precisely established in item (ii).

We next argue that with positive probability there is a uniform separation of order 𝑁1/3 between

the first two curves 𝑁
1 and 𝑁

2 and the third curve 𝑁
3 . Indeed, once we have tightness at the left

boundary, it is not hard to show that 𝑁−
1
3 𝑁1 (2𝑣 − 1) and 𝑁−

1
3 𝑁2 (2𝑣) are tight for any 𝑣 ∈ J1, 𝑝∗K.

Combining this with the soft non-intersection property of the line ensembles and (ii), we deduce

in Theorem 7.3.7 that with high probability sup𝑝∈J1,2𝑇K 𝑁
−1/3𝑁

3 (𝑝) is upper tight. As the event

considered in (iii) is increasing with respect to the boundary data, using (iii) we establish the

desired uniform separation of order 𝑁1/3.

Finally, to prove the process-level tightness of the top two curves of our ensemble, we com-

bine the uniform separation deduced above with the stochastic monotonicity of HSLG Gibbs line

ensembles (Proposition 8.2.3) and the process-level tightness of the first two curves with the third

curve moved to −∞ (as shown in item (iv)). This establishes tightness of the first two curves which,

through identifying the first curve with the free energy process, yields Theorem 7.1.3.

Remark 7.1.5. We mention that in a recent work, [205] established fluctuation results for log 𝑍(𝛼,𝜃) (𝑁, 𝑁)

(equivalently 𝑁
1 (1)). Their result immediately implies the tightness of 𝑁−1/3𝑁

1 (1). However, to

carry our proof outlined above we need tightness of 𝑁2 (1), and other fine information about 𝑁1 and

𝑁
2 away from the boundary, as described in item (ii) and (iv), which to our best understanding is

beyond the scope of [205]. Our argument does not need the input from [205] and since there is

little reduction in length or complexity gained from using [205], we have opted to rely only on the

results from [34].

We return to steps (i)-(iv) stated above and describe the main ideas in achieving them.

Proof idea for (i):
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(a) We start by proving (Theorem 7.3.1) that the curves 𝑁
𝑖

are typically non-intersecting, or at least

do not overlap by much. Owing to this and the fact that the point-to-line partition function

controlled in [34] dominates the point-to-point partition function for any point along the line, it

follows that sup𝑖, 𝑗 𝑁−1/3𝑁
𝑖
( 𝑗) is upper-tight. Lower-tightness is more difficult.

(b) From the parabolic decay of the point-to-(partial)line free energy (7.1.6), we deduce that the

point-to-point free energy process has to be in the 𝑁1/3 fluctuation scale at some random point

𝑝∗1 in a 𝑂 (𝑁2/3) window. We essentially (see Proposition 7.3.4) we show that for 𝑀0 large

enough

sup
𝑝∈J𝑆𝑁2/3,(𝑀0+2𝑆)𝑁2/3K

𝑁
1 (2𝑝 + 1)
𝑁1/3𝜈

+ 𝑆2 (7.1.7)

is uniformly tight over all 𝑆 > 0. The parameter 𝜈 is an explicit function of 𝜃, see (7.3.13). Here

the crucial point is the uniformity, i.e., the constant 𝐾 (𝜀) in the definition of tightness can be

chosen independent of 𝑆 > 0. Thus, in 𝑁1/3 and 𝑁2/3 scaling 𝑁
1 follows an inverted parabola.

(c) We next show essentially (see Proposition 7.3.3) that there exists 𝑀1 and 𝑀2 large enough so

that sup𝑝2∈J𝑀1𝑁2/3,𝑀2𝑁2/3K 𝑁
−1/3𝑁

2 (2𝑝2) is tight. The idea is if 𝐿𝑁2 is uniformly low in [𝑀1𝑁
2/3, 𝑀2𝑁

2/3],

then, due to the Gibbs property of the line ensemble, the first curve 𝐿𝑁1 behaves like a random

bridge, i.e., linearly, in that interval. However, as we show in the proof of Proposition 7.3.3, this

violates the inverted parabolic trajectory (7.1.7) for some 𝑆. This leaves us with a random point

𝑝∗2 ∈ [𝑀1𝑁
2/3, 𝑀2𝑁

2/3], so that 𝑁−1/3𝑁
2 (2𝑝

∗
2) is tight. Owing to the typical non-intersection

(Proposition 7.3.1) we have that 𝑁−1/3𝑁
1 (2𝑝

∗
2 − 1) is tight as well.

Proof idea for (ii) and (iii): Our proof relies on understanding the

law of 𝑁1 ,
𝑁
2 conditioned on 𝑁

1 (2𝑇 − 1) = 𝑎𝑇 , 𝑁2 (2𝑇) = 𝑏𝑇 and 𝑁
3 ≡ −∞ (7.1.8)

for𝑇 , as above, of order 𝑁2/3 and 𝑎𝑇 , 𝑏𝑇 of order
√
𝑇 . Since the events in (ii) and (iii) are increasing

w.r.t. the boundary data, we may further assume 𝑎𝑇 = 0 and 𝑏𝑇 = −
√
𝑇 by stochastic monotonicity
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(Proposition 8.2.3). We focus on the proof idea of (ii). The proof idea for (iii) is quite similar and

done parallelly in Section 7.4.

As alluded to in Section 7.1.2, (7.1.8) has connections to weighted paired random walk (WPRW)

law. We now briefly introduce them here. Let 𝑓 denote the density of log𝑌1 − log𝑌2 were 𝑌1, 𝑌2

are independent Gamma(𝜃) random variables. Let 𝑔(𝑧) := [Γ(𝛼)]−1𝑒𝛼𝑧−𝑒
𝑧

. A paired random walk

(PRW) (𝑅𝑘 , 𝑆𝑘 )𝑇𝑘=1 with endpoints 𝑅𝑇 = 𝑎𝑇 and 𝑆𝑇 = 𝑏𝑇 is a measure on R2𝑇−2 with density

P

(
𝑇−1⋂
𝑘=0
{𝑅𝑘 ∈ 𝑑𝑥𝑘 , 𝑆𝑘 ∈ 𝑑𝑦𝑘 }

)
∝ 𝑔(𝑦1 − 𝑥1)

𝑇∏
𝑖=2
[ 𝑓 (𝑥𝑖 − 𝑥𝑖−1) 𝑓 (𝑦𝑖 − 𝑦𝑖−1)]

𝑇−1∏
𝑘=1

𝑑𝑥𝑘 𝑑𝑦𝑘 . (7.1.9)

We define the random variable:

𝑊sc := exp
(
− 𝑒𝑆1−𝑅1 −

𝑇−1∑︁
𝑘=2

(
𝑒𝑆𝑘−𝑅𝑘+1 + 𝑒𝑆𝑘−𝑅𝑘

) )
.

Using𝑊sc we define a new measure on R2𝑇−2 as:

P𝑊sc (A) =
E[𝑊sc1A]
E[𝑊sc]

(7.1.10)

We call the above measure as weighted paired random walk (WPRW). The measure depends on

𝑎𝑇 and 𝑏𝑇 as well but we have hide its dependency from the notation.

𝑎𝑇 = 0

𝑏𝑇 = −
√
𝑇

Figure 7.4: The above is a realization of the PRW law having non-intersection where we have
assumed 𝑎𝑇 = 0 and 𝑏𝑇 = −

√
𝑇 .

The law of (𝑅𝑘 , 𝑆𝑘 )𝑇𝑘=1 under P𝑊sc is same as the law of (𝑁1 (2𝑘 − 1), 𝑁2 (2𝑘))
𝑇
𝑘=1 under (7.1.8).
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Thus to establish (ii), it suffices to show P𝑊sc (𝑅1 ≤ −𝑀
√
𝑇) and P𝑊sc (𝑆1 ≤ −𝑀

√
𝑇) can be made

arbitrarily small by choosing 𝑀 large enough. Towards this end, we shall utilize the formula in

(7.1.10) for A := {𝑅1 ≤ −𝑀
√
𝑇} (and A := {𝑆1 ≤ −𝑀

√
𝑇}). Under this setting we show that

1
C ·𝑇

−1/2 ≤ E[𝑊sc] ≤ C·𝑇−1/2,

1
C ·𝑇

−1/2 ·E[1A] ≤ E[𝑊sc1A] ≤ C·𝑇−1/2 ·E[1A] .
(7.1.11)

for some universal constant C > 0. The inequalities in (7.1.11) are established in the proof of

Lemma 7.4.1, Lemma 7.4.11, and Corollary 7.4.12. The 𝑇−1/2 behavior here is particular to

(𝑎𝑇 , 𝑏𝑇 ) = (0,−
√
𝑇). For general boundary values of 𝑎𝑇 , 𝑏𝑇 , this estimates may not be true.

We now briefly explain the proof idea first for the upper bound of E[𝑊sc]. Along the way,

we shall explain why 𝑇−1/2 factor shows up. The starting point of our proof is to first convert

the soft non-intersection reweighing (𝑊sc) to hard non-intersection conditioning by the following

inequality

𝑊sc ≤
∞∑︁
𝑝=0

𝑒−𝑒
𝑝 ·1{𝑅𝑘 ≥ 𝑆𝑘 − 𝑝 − 1,∀𝑘 ∈ J2, 𝑇K}.

Let us write NI := {𝑅𝑘 ≥ 𝑆𝑘 ,∀𝑘 ∈ J2, 𝑇K} for the non-intersection event. In Lemma 7.7.5, we show

that there is an absolute constant C > 0, such that P(𝑅𝑘 ≥ 𝑆𝑘 − 𝑝 − 1,∀𝑘 ∈ J2, 𝑇K) ≤ 𝑒C𝑝 · P(NI)

for all 𝑝 ≥ 0. Thus plugging this inequality in the above display yields E[𝑊sc] ≤ C · P(NI). It is

thus suffices to understand the order of P(NI).

Due to the presence of 𝑔 factor in (7.1.9), under PRW we expect a pinning effect in the left

boundary, i.e., 𝑅1 − 𝑆1 = 𝑂 (1). Thus we expect the large scale behavior under PRW should be

similar to that of two independent random walks with zero as a starting point. It is well known

(see for example [297, 228]) that when 𝑅𝑘 , 𝑆𝑘 are independent random walks with 𝑅1 = 𝑆1 = 0,

the non-intersection probability P(NI) is precisely of the order 𝑇−1/2. This is why we expect 𝑇−1/2

behavior of the non-intersection probability under PRW law as well. We show this fact by using

the following two lemmas:
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• Lemma 7.4.7: |𝑅1 − 𝑆1 |, 𝑅1/
√
𝑇 , and 𝑆1/

√
𝑇 have exponential tails.

• Lemma 7.7.6: P
(
NI · 1|𝑅1 |+|𝑆1 |≤

√
𝑇 (log𝑇)3/2

)
≤ C√

𝑇
E

[
(max{𝑅1 − 𝑆1, 0} + 1) ·max

{
1√
𝑇
|𝑅1 |, 2

} 3
2
]
.

The first bullet point follows from the description of the PRW law in (7.1.9) and the nature of

the densities 𝑓 and 𝑔. The second bullet point is more subtle and requires various estimates under

random walk bridge law that are uniform over a specified set of starting and ending points. The

details are presented in Appendix 7.7. Clearly from the above two bullet points, it is not hard to

deduce that P(NI) ≤ C𝑇−1/2. The upper bound for E[𝑊sc1A] also follows in a similar manner.

The lower bound argument for E[𝑊sc] is more involved. Here we define a particular event,

called Gap𝛽 (see (7.4.20) for definition), and show in Lemma 7.4.8 that𝑊sc ≥ 𝑎𝛽·1Gap𝛽∩{𝑅1−𝑆1∈[0,1]},

for some deterministic constant 𝑎𝛽 > 0. To estimate P(Gap𝛽 ∩ {𝑅1 − 𝑆1 ∈ [0, 1]}). Note that

conditioned on 𝑅1, 𝑆1, PRW are two independent random walk bridges started from 𝑅1, 𝑆1 and

ending at 𝑎𝑇 , 𝑏𝑇 . In Lemma 7.4.10, we show that random walk bridge can be compared to mod-

ified random bridge which is a certain concatenation of random walks and random bridges (see

Definition 7.4.9). In particular, this leads to

P(Gap𝛽 ∩ {𝑅1 − 𝑆1 ∈ [0, 1]}) ≥ E
[
1𝑅1−𝑆1∈[0,1] · P̃𝑅1,𝑆1 (Gap𝛽)

]
(7.1.12)

where P̃𝑅1,𝑆1 is the law of two independent modified random bridges started from 𝑅1, 𝑆1 and ending

at 𝑎𝑇 , 𝑏𝑇 . The key point is that the modified random bridge has a true random walk portion,

and hence one can rely on standard non-intersecting random walk estimates to eventually obtain

estimates for the above quantity. In Appendix 7.7, we establish various uniform estimates and in

particular show that P̃𝑅1,𝑆1 (NI) ≥ C𝑇−1/2 and P̃𝑅1,𝑆1 (Gap𝛽 | NI) ≥ 1
2 uniformly over 𝑅1, 𝑆1 ≤

𝑀
√
𝑇 and 𝑅1 − 𝑆1 ∈ [0, 1]. This leads to a 𝑇−1/2 order lower bound for the right hand side of

(7.1.12).

There is an extensive literature in studying non-intersecting random walks and random bridges

that are pinned at the starting and/or ending points (see [18, 161, 144] and the reference therein).

In particular, non-intersecting random walks and non-intersecting random bridges under diffu-
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sive scaling are known to converge to Dyson Brownian motion and non-intersecting Brownian

bridges. Our work establishes uniform estimates (uniform over starting and ending points) for

non-intersection probabilities of random walks and random bridges. Indeed in our technical ar-

guments, we require our estimates of probability of events (such as the Gap𝛽 event and others)

under random bridges to be uniform over all possible 𝑂 (1) apart ending points that lies in a diffu-

sive 𝑂 (𝑇1/2) window. In Appendix 7.7, we thus develop the machinery to establish such uniform

estimates.

Proof idea for (iv):

The argument to prove (iv) also uses the machinery developed in the proof of (ii) and (iii). How-

ever, one caveat is that to show (iv), one needs to consider events related to modulus of continuity

of the processes which are not increasing events. Thus one can not assume 𝑎𝑇 = 0, 𝑏𝑇 = −
√
𝑇 . In-

stead, here we can only use the soft non-intersection property to deduce that 𝑎𝑇−𝑏𝑇 ≥ −(log𝑇)7/6.

Under this boundary conditions the estimates in (7.1.11) may no longer be true. However note that

(iv) claims tightness for the processes on the range J1, 𝑇/4K, i.e., the first quarter of the total points.

Hence here the strategy is to first perform a decomposition:

E[𝑊sc1A]
E[𝑊sc]

�
E[𝑊1

sc1A] · E[𝑊2
sc]

E[𝑊1
sc]E[𝑊2

sc]
=

E[𝑊1
sc1A]

E[𝑊1
sc]

, (7.1.13)

where A corresponds to the tightness event associated to the modulus of continuity of the process.

Here 𝑊1
sc (resp. 𝑊2

sc) are super-exponential factors associated to the first (resp. last) quarter of the

points of the walk (the point before the first dashed line and points after the second dashed line in

Figure 7.5).

Let us briefly explain why the approximation in (7.1.13) is true. Recall from our discussion in

the proof idea of (ii) and (iii) that 𝑊sc is close to the indicator of non-intersection event. Since the

walks have pinning effect in either of the boundaries, the non-intersection probabilities essentially

depend on the initial part of walks and final part of the walks. The non-intersection probabil-

ity for the middle portion does not decay to zero. Thus we expect, E[𝑊sc1A] � E[𝑊1
sc𝑊

2
sc1A].
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𝑎𝑇

𝑏𝑇

Figure 7.5: The above figure corresponds to a realization of PRW law with non-intersection, where
we can only assume 𝑎𝑇 , 𝑏𝑇 = 𝑂 (

√
𝑇) and 𝑎𝑇 − 𝑏𝑇 ≥ −(log𝑇)7/6. We utilize the fact that the event

associated to (iv) depends only on the first-quarter of points of the walk.

As mentioned before, one can compare the PRW law to modified random bridges. In a modi-

fied random bridge the first quarter and the last quarter of the walk are completely independent.

Thus, via the comparison between PRW and modified random bridges, one eventually gets to

E[𝑊1
sc𝑊

2
sc1A] � E[𝑊1

sc1A]E[𝑊2
sc] . The last term in (7.1.13) is then estimated by following similar

ideas to what described in the proof of (ii) and (iii). The full technical details are presented in the

proofs of Lemmas 7.5.2 and 7.5.6.

7.1.4 Related works on half-space polymers

Half-space polymers are a particular variant of full-space polymers that are well-studied in the

literature (introduced in [202, 206, 61]). Full-space polymers are widely believed to be in the KPZ

universality class in the sense that they are expected to have 1/3 fluctuation exponent and 2/3

transversal exponent. However, besides a few solvable models, these exponents are not proven

rigorously for general polymers. We refer to [99, 294, 44, 29, 132, 133] and references therein for

more details.

Half-space polymer models have been studied in the physics literature since the work of Kardar

[215]. They arise naturally in the context of modeling wetting phenomena [269, 1, 76] where one

studies directed polymers in the presence of a wall. They have been of great interest due to the

presence of phase transition (called the ‘depinning transition’) and a rich phase diagram for limiting
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distributions based on the diagonal strength. This phase diagram was first rigorously proven for

geometric last passage percolation (LPP), i.e., polymers with zero temperature, in a series of works

by Baik and Rains [15, 17, 16]. Multi-point fluctuations were studied then in [289] and similar

results were later proven for exponential LPP in [11, 12] using Pfaffian Schur processes. For

further recents works on half-space LPP, we refer to [bete, 51, 52, 165].

Positive temperature models such as polymers resisted rigorous treatment for longer compared

to LPP since they are no longer directly related to Pfaffian point processes. For such class of models

in the half-space geometry, the first rigorous proof of depinning transition appeared in [34] where

the authors proved precise fluctuation results including the BBP phase transition [10] for the point-

to-line log-gamma free energy. For the point-to-point log-gamma free energy, the limit theorem

along with Baik-Rains phase transition was conjectured in [hbigmac] based on an uncontrolled

steepest descent analysis of certain formulas coming from half-space Macdonald processes. This

result was proved recently in [205] using a new set of ideas, relating the half-space model to a

free boundary version of the Schur process. In fact, [205] also proves analogous results for the

half-space KPZ equation which is the free energy of the continuum directed random polymer in

half-space. The half-space KPZ equation arises as a limit of free energy of HSLG polymer [320,

27]. Since the early work by Kardar [215], the half-space KPZ equation has received significant

attention, with a flurry of new results recently in in both mathematics [123, 26, 25, 272, 271,

27, 205] and physics literature [189, 67, 207, 142, 231, 30, 32, 31]. Apart from log-gamma and

continuum polymer, a half-space version of the beta polymer was recently introduced and studied

in [33].

Organization

In Section 7.2, we study several properties of HSLG Gibbs measures and Gibbsian line en-

semble, and prove Theorem 7.1.3. Section 7.3 is divided into three subsections that discuss three

important probabilistic results for the line ensemble. In Section 7.3.1, we show a certain ordering

of points on the line ensemble (Theorem 7.3.1). This is the precise technical form of the typical
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non-intersection property discussed in Section 7.1.3. In Section 7.3.2, we show that there is ‘high

point on the second curve’ (Theorem 7.3.3) that is discussed in item (i)(c) from Section 7.1.3. In

Section 7.3.2, we provide high probability uniform upper bounds for the second and third curves

(Theorem 7.3.7). These bounds are used later in proving item (ii) from Section 7.1.3. In Section

7.4, we prove one-point tightness on the left boundary and study the probability of a certain ‘re-

gion pass event’. The study of the region pass event is utilized in proving the lower bound on

the uniform separation between the first two curves and the third curve (described earlier in (ii)

from Section 7.1.3). Finally, in Section 7.5, we study the modulus of continuity under the WPRW

law and prove Theorem 7.1.1. Appendix 7.6 collects several basic facts about log-gamma random

variables and related measures. Appendix 7.7 is devoted to proving several technical estimates

related to non-intersecting random walk bridges which are required in studying the WPRW law.

Appendix 7.8 includes the proof of stochastic monotonicity for HSLG Gibbsian line ensembles.

Notations and Conventions

For 𝑎, 𝑏 ∈ R, we denote J𝑎, 𝑏K := [𝑎, 𝑏] ∩ Z, 𝑎 ∧ 𝑏 = min(𝑎, 𝑏), and 𝑎 ∨ 𝑏 = max(𝑎, 𝑏).

Throughout this paper we work with three fixed parameters: 𝜃 > 0 (bulk parameter), 𝜁 > 0

(supercritical boundary parameter), and 𝜇 ∈ R (critical boundary parameter). All our constants

appearing in the rest of the paper may depend on 𝜃, 𝜁 , 𝜇 and possibly other specified variables.

We will only specify the dependency of the constants on the variables besides 𝜃, 𝜁 , 𝜇 by writing

C = C(𝑎, 𝑏, 𝑐, · · · ) > 0 to denote a generic deterministic positive finite constant that may change

from line to line, but is dependent on the designated variables 𝑎, 𝑏, 𝑐, · · · . We will often write

𝑓 (𝑥) &� 𝑔(𝑥) to mean that for all 𝑥, 𝑓 (𝑥) ≥ C𝑔(𝑥) for some C > 0 depending on the subscript

parameters. If 𝑓 (𝑥) &� 𝑔(𝑥) and 𝑔(𝑥) &� 𝑓 (𝑥), we write 𝑓 (𝑥) �� 𝑔(𝑥). Given a density function

𝑓 , 𝑋 ∼ 𝑓 denotes a random variable 𝑋 whose distribution function has a density given by 𝑓 . For

two densities 𝑓 and 𝑔, we write 𝑓 ∗ 𝑔(𝑥) =
∫
R
𝑓 (𝑧)𝑔(𝑥 − 𝑧)𝑑𝑧 for the convolution density.

384



Acknowledgements

The project was initiated during the authors’ participation in the ‘Universality and Integrability

in Random Matrix Theory and Interacting Particle Systems’ semester program at MSRI in fall

2021. The authors thank the program organizers for their hospitality and acknowledge the support

from NSF DMS-1928930. GB was partially supported by ANR grant ANR-21-CE40-0019. IC was

partially supported by the NSF through grants DMS-1937254, DMS-1811143, DMS-1664650, as

well as through a Packard Fellowship in Science and Engineering, a Simons Fellowship, a Simons

Investigator Award, a Miller Visiting Professorship from the Miller Institute for Basic Research in

Science, and a W.M. Keck Foundation Science and Engineering Grant. SD’s research was partially

supported by Ivan Corwin’s NSF grant DMS-1811143 and the Fernholz Foundation’s “Summer

Minerva Fellows” program.

7.2 Half-space log-gamma objects and proof of Theorem 7.1.3

In Section 8.2.1, we gather several useful properties of HSLG Gibbs measures from Definition

7.1.2 including stochastic monotonicity (Proposition 8.2.3). The HSLG line ensemble is defined in

Section 7.2.2 which includes the proof of Theorem 7.1.3.

7.2.1 Properties of HSLG Gibbs measures

We start by writing down several immediate observations that all follow directly from the defi-

nition of HSLG Gibbs measures (Definition 7.1.2).

Observation 7.2.1. Fix a bounded connected subset Λ. For each (𝑖, 𝑗) ∈ 𝜕Λ fix some 𝑢𝑖, 𝑗 ∈ R.

Fix any C > 0. Let
(
𝐿 (𝑣) : 𝑣 ∈ Λ

)
be a collection of random variables that are distributed as the

HSLG Gibbs measure on the domain Λ with boundary condition
(
𝑢𝑖, 𝑗 : (𝑖, 𝑗) ∈ 𝜕Λ

)
.

(a) (Translation invariance) The law of
(
𝐿 (𝑣) +C : 𝑣 ∈ Λ

)
is given by the HSLG Gibbs measure on

the domain Λ with boundary condition
(
𝑢𝑖, 𝑗 + C : (𝑖, 𝑗) ∈ 𝜕Λ

)
.
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(b) (Gibbs property on smaller domain) Take a bounded connected Λ′ ⊂ Λ. The law of
(
𝐿 (𝑣) : 𝑣 ∈

Λ′
)

conditioned on
(
𝐿 (𝑣) : 𝑣 ∈ Λ \ Λ′

)
is given by the HSLG Gibbs measure on the domain Λ′

with the boundary condition
(
𝐿 (𝑣) : 𝑣 ∈ 𝜕Λ′

)
where we set 𝐿 (𝑣) = 𝑢𝑣 for 𝑣 ∈ 𝜕Λ.

Although HSLG Gibbs measures are defined for any bounded connected subset Λ, we will be

mainly concerned with two kinds of domains Λ. Given 𝑘 ≥ 1 and 𝑇 ≥ 2, we define

K𝑘,𝑇 :=
{
(𝑖, 𝑗) : 𝑖 ∈ J1, 𝑘K, 𝑗 ∈ J1, 2𝑇 − 1 − 1𝑖=1K

}
, K′𝑘,𝑇 := J1, 𝑘K × J1, 2𝑇 − 2K. (7.2.1)

The domains K𝑘,𝑇 and K′
𝑘,𝑇

are shown as shaded regions in Figure 7.6.

𝑦1
𝑦2

𝑦3

𝑧0
𝑧1 𝑧2 𝑧3

𝑧4

(1, 2)

(2, 3) (2, 5)
(2, 4)

(3, 6)

(a) K𝑘,𝑇

𝑦1

𝑦2

𝑦3

𝑧0
𝑤1 𝑤2 𝑤3

(1, 6)

(3, 3)

(2, 5)

(3, 1)

(2, 2)

(b) K ′
𝑘,𝑇

Figure 7.6: Two domains K𝑘,𝑇 and K′
𝑘,𝑇

are shown in (A) and (B) with 𝑘 = 3, 𝑇 = 4 and boundary
conditions (®𝑦, ®𝑧) and (®𝑦, ®𝑤) respectively. They include all the vertices within the gray dashed box
as well some labels for the points. The directed edges with lighter colors are edges connecting
vertices from Λ to 𝜕Λ or viceversa (Λ = K𝑘,𝑇 or Λ = K′

𝑘,𝑇
). The boundary variable 𝑧0 does not

actually play any role in the density of the corresponding HSLG Gibbs measure after normalizing
it to be a probability density. This point is explained after the statement of Observation 7.2.2.

Observation 7.2.2. Fix 𝑘, 𝑇 ∈ Z≥2 and 𝛼 > −𝜃. Fix ®𝑦 ∈ R𝑘 , ®𝑧 ∈ R𝑇 , and ®𝑤 ∈ R𝑇−1.

(a) The HSLG Gibbs measure on the domain K𝑘,𝑇 with boundary condition (®𝑦, ®𝑧) is a probability

measure on R|K𝑘,𝑇 | whose density at u = (𝑢𝑖, 𝑗 )(𝑖, 𝑗)∈K𝑘,𝑇 is proportional to

𝑓
®𝑦,®𝑧
𝑘,𝑇
(u) :=

𝑘∏
𝑖=1

𝑒(−1)𝑖𝛼𝑢𝑖,1
𝑇−1𝑖=1∏
𝑗=1

𝑊 (𝑢𝑖+1,2 𝑗 ; 𝑢𝑖,2 𝑗+1, 𝑢𝑖,2 𝑗−1)
2𝑇−1−1𝑖=1∏

𝑗=1
𝐺𝜃,(−1) 𝑗+1 (𝑢𝑖, 𝑗 − 𝑢𝑖, 𝑗+1)


(7.2.2)
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where𝑊 (𝑎; 𝑏, 𝑐) := exp(−𝑒𝑎−𝑏 − 𝑒𝑎−𝑐) and (owing to the two-step periodicity of the measures)

𝐺𝜃,(−1)𝑚 (𝑦) := 𝑒𝜃 (−1)𝑚𝑦−𝑒 (−1)𝑚𝑦/Γ(𝜃). (7.2.3)

Here 𝑢𝑘+1,2 𝑗 = 𝑧 𝑗 for each 𝑗 ∈ J1, 𝑇K, 𝑢1,2𝑇−1 = 𝑦1, and 𝑢𝑖,2𝑇 = 𝑦𝑖, 𝑢𝑖,2𝑇+1 := +∞ (so that the

factor exp(−𝑒𝑢𝑖+1,2𝑇−𝑢𝑖,2𝑇+1) = 1) for each 𝑖 ∈ J2, 𝑘K.

(b) The HSLG Gibbs measure on the domain K′
𝑘,𝑇

with boundary condition (®𝑦, ®𝑤) is a probability

measure on R|K
′
𝑘,𝑇
| whose density at u = (𝑢𝑖, 𝑗 )(𝑖, 𝑗)∈K′

𝑘,𝑇
is proportional to

𝑄
®𝑦′,®𝑧
𝑘,𝑇
(u) :=

𝑘∏
𝑖=1

𝑒(−1)𝑖𝛼𝑢𝑖,1
𝑇−1∏
𝑗=1
𝑊 (𝑢𝑖+1,2 𝑗 ; 𝑢𝑖,2 𝑗+1, 𝑢𝑖,2 𝑗−1)

2𝑇−2∏
𝑗=1

𝐺𝜃,(−1) 𝑗+1 (𝑢𝑖, 𝑗 − 𝑢𝑖, 𝑗+1)
 .
(7.2.4)

Here 𝑢𝑘+1,2 𝑗 = 𝑤 𝑗 for each 𝑗 ∈ J1, 𝑇 − 1K, and 𝑢𝑖,2𝑇−1 = 𝑦𝑖 for each 𝑖 ∈ J1, 𝑘K.

Let us explain how we arrived at the above formulas (see Figure 7.6 for a visual representation

of the measures). Recall the edge weights from (7.1.3). The blue edges in the figure corresponds

to 𝐺𝜃,(−1) 𝑗+1 (·) factors that appear in (7.2.2) and (7.2.4). The (−1) 𝑗+1 factor is due to the alternate

switching of the direction of blue weights as we read off from left to right. Here we have obtained

the 𝐺 function from the blue edge weights by multiplying by a constant. This is done so that the

𝐺 function becomes density (i.e., integrates to 1), a fact that will be useful in the later analysis.

The black edge weights from (7.1.3) corresponds to the 𝑊 factor in (7.2.2) and (7.2.4). Finally

the red edge weights are of type 𝑒−𝛼𝑢2𝑖−1,1−𝑢2𝑖,1 = 𝑒−𝛼𝑢2𝑖−1,1 · 𝑒𝛼𝑢2𝑖,1 . Note that only for odd 𝑘 is

(𝑘 + 1, 1) ∈ 𝜕K𝑘,𝑇 , 𝜕K′𝑘,𝑇 . In that case, the factor 𝑒−𝛼𝑢𝑘+1,1 can be absorbed into the proportionality

constant. Thus, overall, the red weights contributes the factor
∏𝑘
𝑖=1 𝑒

(−1)𝑖𝛼𝑖,1 in the above densities.

This also explains why the 𝑧0 value does not play any role in the definition of these densities.

We will mostly be concerned with the HSLG Gibbs measure on K𝑘,𝑇 with boundary condition

(®𝑦, ®𝑧). We will denote the probability and the expectation operator under this law as P®𝑦,®𝑧;𝑘,𝑇𝛼 and

E®𝑦,®𝑧;𝑘,𝑇𝛼 respectively and a random variable with this law by 𝐿 :=
(
𝐿 (𝑖, 𝑗) := 𝐿𝑖 ( 𝑗) : (𝑖, 𝑗) ∈ K𝑘,𝑇

)
.
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We may drop 𝛼 and write P®𝑦,®𝑧;𝑘,𝑇 and E®𝑦,®𝑧;𝑘,𝑇 when clear from the context. We will also use the

HSLG Gibbs measure on K𝑘,𝑇 with boundary condition ®𝑦 ∈ R𝑘 , ®𝑧 := (−∞)𝑇 , as now defined.

Definition 7.2.3. The bottom-free measure on the domain K𝑘,𝑇 with boundary condition ®𝑦 is the

HSLG Gibbs measure on the domain K𝑘,𝑇 with boundary condition (®𝑦, (−∞)𝑇 ). We shall see in

Observation 7.4.2 that the corresponding density 𝑓
®𝑦,(−∞)𝑇
𝑘,𝑇

is integrable when 𝑘 is even and 𝛼 ∈ R

(in fact, in that case the measure does not even depend on 𝛼) or when 𝑘 is odd and 𝛼 ∈ (−𝜃, 𝜃).

Note that whenever the bottom-free measure is a valid probability measure, we have

P®𝑦,®𝑧;𝑘,𝑇𝛼 (A) = 1
𝑉𝑇
𝑘
(®𝑦, ®𝑧)

E®𝑦;(−∞)
𝑇 ;𝑘,𝑇

𝛼

1A ·
𝑇∏
𝑗=1
𝑊 (𝑧2 𝑗 ; 𝐿𝑘 (2 𝑗 + 1), 𝐿𝑘 (2 𝑗 − 1))

 , (7.2.5)

for any event 𝐴, where we set 𝐿𝑘 (2𝑇 + 1) = +∞ and the normalization is given by

𝑉𝑇𝑘 (®𝑦, ®𝑧) := E®𝑦;(−∞)
𝑇 ;𝑘,𝑇

𝛼


𝑇∏
𝑗=1
𝑊 (𝑧2 𝑗 ; 𝐿𝑘 (2 𝑗 + 1), 𝐿𝑘 (2 𝑗 − 1))

 . (7.2.6)

In other words, we can build the full Gibbs measure P®𝑦,®𝑧;𝑘,𝑇𝛼 by reweighting the bottom-free mea-

sure by a Radon-Nikodym derivative given by the expression (except 1A) inside the expectation in

(7.2.5), normalized by dividing by 𝑉𝑇
𝑘
(®𝑦, ®𝑧).

Next, we record how HSLG Gibbs measures are absolutely continuous with certain random

walks.

Remark 7.2.4 (Absolute continuity with random walks). The bottom-free measure can be de-

scribed as a reweighting of certain log-gamma random walks subject to a Radon-Nikoydym deriva-

tive. This type of absolute continuity with respect to random walks is a common feature in Gibbsian

line ensembles, see [109, 110, 155, 29, 154] for example. However, the key difference from the

existing works is that now we may condition only on the right-side boundary and consider the law

up to and including at zero. This is essential in understanding the effect of the boundary parameter

on the HSLG Gibbs measures.
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Consider a collection of independent random variables (𝑋𝑖,𝑣)(𝑖,𝑣)∈K𝑘,𝑇 where 𝑋𝑖,𝑣 has probabil-

ity density function 𝐺𝜃,(−1)𝑣+1 (·) from (7.2.3). For (𝑖, 𝑗) ∈ K𝑘,𝑇 set

𝑉𝑖 ( 𝑗) := 𝑦𝑖 +
2𝑇−1𝑖=1− 𝑗∑︁

𝑣=1
𝑋𝑖,2𝑇−1𝑖=1−𝑣 .

We denote the probability and the expectation operator for (𝑉𝑖 ( 𝑗))(𝑖, 𝑗)∈K𝑘,𝑇 as P®𝑦;𝑘,𝑇free and E®𝑦;𝑘,𝑇free

respectively. In words, P®𝑦;𝑘,𝑇free is the law of 𝑘 independent ‘zigzag’ random walks starting at ®𝑦

(‘zigzag’ as the increments alternate their signs). For each 𝛼 > −𝜃, the HSLG Gibbs measure

P®𝑦,®𝑧;𝑘,𝑇𝛼 is absolutely continuous with respect to P®𝑦;𝑘,𝑇free with a Radon-Nikodym derivative

𝑑P®𝑦,®𝑧;𝑘,𝑇𝛼

𝑑P®𝑦;𝑘,𝑇free

(𝐿1, . . . , 𝐿𝑘 ) ∝ exp
(
−H𝛼

(
(𝐿 𝑗 )𝑘𝑗=1; ®𝑧

) )
,

where H𝛼 (sometimes called the interaction Hamiltonian in the literature) is given by

H𝛼

(
(𝐿 𝑗 )𝑘𝑗=1; ®𝑧

)
=

𝑘∑︁
𝑖=1

𝛼(−1)𝑖+1𝐿𝑖 (1) +
𝑘∑︁
𝑖=1

𝑇−1𝑖=1∑︁
𝑗=1

[
𝑒𝐿𝑖+1 (2 𝑗)−𝐿𝑖 (2 𝑗+1) + 𝑒𝐿𝑖+1 (2 𝑗)−𝐿𝑖 (2 𝑗−1)

]
with 𝐿𝑘+1( 𝑗) = 𝑧 𝑗 for 𝑗 ∈ J1, 2𝑇K, 𝐿𝑖 (2𝑇 −1𝑖=1) = 𝑦𝑖 and 𝐿𝑖 (2𝑇 +1) = ∞ for 𝑖 ∈ J1, 𝑘K. The above

observation follows immediately from the form of the density given in (7.2.2).

Besides one-sided conditioning as in the above remark, we can also use the Gibbs property

when conditioning on boundary data on both sides as is standard full-space discrete line ensembles

[155, 29, 154]. We record here one such result that will be useful in our later proofs.

Observation 7.2.5 (Two-sided boundaries). Fix 1 ≤ 𝑇1 < 𝑇2 − 1. Suppose 𝐿 is distributed as

P®𝑦,®𝑧;1,𝑇2 . Let (𝑋 𝑗 )𝑇2−1
𝑗=𝑇1−1 be a random bridge from 𝑋𝑇1−1 = 𝑎 to 𝑋𝑇2−1 = 𝑏 with i.i.d. increments

from the density 𝐺𝜃,1 ∗ 𝐺𝜃,−1. The law of
(
𝐿1(2 𝑗 + 1) : 𝑇1 ≤ 𝑗 ≤ 𝑇2 − 2

)
conditioned on

{𝐿1(2𝑇1 − 1) = 𝑎, 𝐿1(2𝑇2 − 1) = 𝑏} is absolutely continuous with respect to the law of (𝑋 𝑗 )𝑇2−2
𝑗=𝑇1
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with Radon-Nikodym derivative proportional to

𝑊 := exp
(
−
𝑇2−1∑︁
𝑗=𝑇1

(𝑒𝑧 𝑗−𝑋 𝑗 + 𝑒𝑧 𝑗−𝑋 𝑗−1)
)
.

The 𝐺𝜃,1 ∗𝐺𝜃,−1 appearing in the statement of Observation 7.2.5 is due to the fact that we focus

on the marginal distribution of the odd points only (see Figure 7.7). The proof follows by utilizing

the explicit form of the density given in (7.2.2).

𝑏𝑎

𝑧1 𝑧2 𝑧3 𝑧4 𝑧5

Figure 7.7: The marginal distribution of the odd (black) points of the HSLG Gibbs measure shown
above with 𝑇1 = 1, 𝑇2 = 6 is described in Observation 7.2.5.

As with full space line ensemble Gibbs measures [109, 110, 320, 29, 154], the HSLG Gibbs

measures satisfy stochastic monotonicity with respect to the boundary data.

Proposition 7.2.6 (Stochastic monotonicity). Fix 𝑘1 ≤ 𝑘2, 𝑎𝑖 ≤ 𝑏𝑖 for 𝑘1 ≤ 𝑖 ≤ 𝑘2 and 𝛼 > −𝜃.

Let

Λ := {(𝑖, 𝑗) : 𝑘1 ≤ 𝑖 ≤ 𝑘2, 𝑎𝑖 ≤ 𝑗 ≤ 𝑏𝑖}.

There exists a probability space consisting of a collection of random variables

(
𝐿 (𝑣; (𝑢𝑤)𝑤∈𝜕Λ) : 𝑣 ∈ Λ, (𝑢𝑤)𝑤∈𝜕Λ ∈ R|𝜕Λ|

)
such that

1. For each (𝑢𝑤)𝑤∈𝜕Λ ∈ R|𝜕Λ|, the marginal law of
(
𝐿 (𝑣; (𝑢𝑤)𝑤∈𝜕Λ) : 𝑣 ∈ Λ

)
is given by the

HSLG Gibbs measure for the domain Λ with boundary condition (𝑢𝑤)𝑤∈𝜕Λ ∈ R|𝜕Λ|.
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2. With probability 1, for all 𝑣 ∈ Λ we have

𝐿
(
𝑣; (𝑢𝑤)𝑤∈𝜕Λ

)
≤ 𝐿

(
𝑣; (𝑢′𝑤)𝑤∈𝜕Λ

)
whenever 𝑢𝑤 ≤ 𝑢′𝑤 for all 𝑤 ∈ 𝜕Λ.

The proof of the above proposition follows a similar strategy as in [29, 154] and is provided in

Appendix 7.8 for completeness.

7.2.2 The HSLG line ensemble and Proof of Theorem 7.1.3

In this section we define the half-space log-gamma (HSLG) line ensemble and prove Theorem

7.1.3. The construction of the line ensemble is based on the multipath point-to-point partition

functions. These are defined in (7.2.8) as sums over multiple non-intersecting paths on the full

quadrant Z2
>0 (not just half-quadrant) of products of the symmetrized versions of the weights from

(7.1.1):

𝑊𝑖, 𝑗 ∼



1
2𝑊𝑖, 𝑗 when 𝑖 = 𝑗 ,

𝑊 𝑗 ,𝑖 when 𝑗 > 𝑖,

𝑊𝑖, 𝑗 when 𝑗 < 𝑖.

(7.2.7)

For 𝑚, 𝑛, 𝑟 ∈ Z≥1 with 𝑛 ≥ 𝑟, let Π (𝑟)𝑚,𝑛 be the set of 𝑟-tuples of non-intersecting upright paths in

Z2
>0 starting from (1, 𝑟), (1, 𝑟 − 1), · · · , (1, 1) and going to (𝑚, 𝑛), (𝑚, 𝑛 − 1), . . . , (𝑚, 𝑛 − 𝑟 + 1)

respectively. We define the multipath point-to-point symmetrized partition function as

𝑍
(𝑟)
sym(𝑚, 𝑛) :=

∑︁
(𝜋1,...,𝜋𝑟 )∈Π (𝑟 )𝑚,𝑛

∏
(𝑖, 𝑗)∈𝜋1∪···∪𝜋𝑟

𝑊𝑖, 𝑗 , (7.2.8)

with the convention that 𝑍 (0)sym(𝑚, 𝑛) ≡ 1 for all 𝑚, 𝑛 ∈ Z≥1.

Definition 7.2.7 (Half-space log-gamma line ensemble). Fix 𝑁 ∈ Z≥1. For each 𝑖 ∈ J1, 𝑁K and
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1 2𝑁

1(·)

2(·)

...

𝑁 (·)

Figure 7.8: Half-space log gamma line ensemble = (𝑖 (·))𝑁𝑖=1 (𝑁 = 6 in above figure). Each curve
𝑖 (·) has 2𝑁 − 2𝑖 + 2 many coordinates. Λ∗

𝑁
in Theorem 7.1.3 is the set of all black points in the

above figure. Theorem 7.1.3 tells us that conditioned on the blue points, the law of the black points
is given by the HSLG Gibbs measures.

𝑗 ∈ J1, 2𝑁 − 2𝑖 + 2K, we set

𝑁
𝑖 ( 𝑗) = log

(
2𝑍 (𝑖)sym(𝑝, 𝑞)

𝑍
(𝑖−1)
sym (𝑝, 𝑞)

)
+ 2Ψ(𝜃)𝑁.

where 𝑝 := 𝑁 + b 𝑗/2c and 𝑞 := 𝑁 − d 𝑗/2e + 1. We call the collection of random variables

(
𝑁
𝑖 ( 𝑗) : 𝑖 ∈ J1, 𝑁K, 𝑗 ∈ J1, 2𝑁 − 2𝑖 + 2K

)
the half-space log-gamma (HSLG) line ensemble with parameters (𝛼, 𝜃), see Figure 7.8.

Proof of Theorem 7.1.3. Recalling the convention 𝑍 (0)sym(𝑚, 𝑛) ≡ 1, we can write

𝑁
1 ( 𝑗) = log

(
2𝑍 (1)sym(𝑁 + b 𝑗/2c, 𝑁 − d 𝑗/2e + 1)

)
+ 2Ψ(𝜃)𝑁.

Assuming Part (ii) of Theorem 7.1.3 (verified below), Part (i) follows from the easily verified
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identity 2𝑍 (1)sym(𝑝, 𝑞) = 𝑍 (𝑝, 𝑞). The above identity is noted in Section 2.1 of [34] and follows

easily due to symmetry of the weights (the factor of 2 comes from a lack of double-counting the

weight at (1, 1)). This is an equality (not just in distribution). In any case, from it immediately

follows the claim of Part (i).

Part (ii) is a highly non-trivial deduction from first principles. However, the works of [121,

263, 260, 59, 34] have built a rich theory using the geometric RSK correspondence from which

this part follows in a rather straightforward manner, as now described. We seek to determine the

joint density of the HSLG line ensemble defined above. Let us start by defining

𝐾𝑁 := {(𝑖, 𝑗) : 𝑖 ∈ J1, 𝑁K, 𝑗 ∈ J1, 2𝑁 − 2𝑖 + 2K}, I (𝑁) := {(𝑖, 𝑗) ∈ Z2
≥1 : 𝑖 + 𝑗 ≤ 2𝑁 + 1}.

Note that the map (𝑖, 𝑗) ↦→ (𝑁 + b 𝑗/2c − 𝑖 + 1, 𝑁 − d 𝑗/2e − 𝑖 + 2) is a bijection from 𝐾𝑁 to

I (𝑁) ∩ {𝑖 ≥ 𝑗}. For any (𝑖, 𝑗) ∈ 𝐾𝑁 , we then define

𝑇𝑁+b 𝑗/2c−𝑖+1,𝑁−d 𝑗/2e−𝑖+2 :=
𝑍
(𝑖)
sym(𝑁 + b 𝑗/2c, 𝑁 − d 𝑗/2e + 1)

𝑍
(𝑖−1)
sym (𝑁 + b 𝑗/2c, 𝑁 − d 𝑗/2e + 1)

,

and then set 𝑇𝑗 ,𝑖 := 𝑇𝑖, 𝑗 for 𝑖 ≥ 𝑗 . From Proposition 2.6 in [260], (𝑇𝑖, 𝑗 )(𝑖, 𝑗)∈I (𝑁 ) is precisely the

image under the geometric RSK map of the symmetrized weights (7.2.7) with indices restricted to

the I (𝑁) array. The density of this image has been computed in [34]. Indeed, setting 𝑚 = 0, 𝑛 = 𝑁 ,

𝛼𝑖 = 𝜃 and 𝛼0 = 𝛼 in the final two (unnumbered) equations on page 28 in [34] (in the arXiv version

see the second unnumbered equation on page 20), we see that the density of (2𝑇𝑖, 𝑗 )𝑖≥ 𝑗 at (𝑡𝑖, 𝑗 )𝑖≥ 𝑗

is given by

𝑒
− 1
𝑡1,1

∏𝑁
𝑖=1 𝑡

(−1)𝑁−𝑖+1𝛼
𝑖,𝑖

(Γ(𝛼 + 𝜃))𝑁 (Γ(2𝜃))𝑁2

𝑁∏
𝑗=1

(𝜏2𝑁−2 𝑗+2 · 𝜏2𝑁−2 𝑗

𝜏2
2𝑁−2 𝑗+1

)𝜃
exp

(
−

∑︁
𝑖≥ 𝑗>1

𝑡𝑖, 𝑗−1

𝑡𝑖, 𝑗
−

∑︁
𝑖> 𝑗

𝑡𝑖−1, 𝑗

𝑡𝑖, 𝑗

) ∏
(𝑖, 𝑗)∈I (𝑁 )

𝑡−1
𝑖, 𝑗 1𝑡𝑖, 𝑗>0

(7.2.9)

where the 𝜏 variables are defined as 𝜏𝑘 =
∏ (

𝑡𝑖, 𝑗 : (𝑖, 𝑗) ∈ I (𝑁) , 𝑖 − 𝑗 = 𝑘
)
=

∏ (
𝑡𝑖+𝑘,𝑖 : 1 ≤

𝑖 ≤ 𝑁 − 𝑘−1
2

)
. In fact, the density formula in [34] is for (2𝑇𝑖, 𝑗 )𝑖≤ 𝑗 at (𝑡𝑖, 𝑗 )𝑖≤ 𝑗 , thus we needed to
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permute the indices in that formula to arrive at the above formula. The line ensemble 𝑁
𝑖
( 𝑗) defined

in Definition 7.2.7 is related to (2𝑇𝑖, 𝑗 )(𝑖, 𝑗)∈I (𝑁 ) via the relation

𝑁
𝑖 ( 𝑗) − 2Ψ(𝜃)𝑁 = log

(
𝑇𝑁+b 𝑗/2c−𝑖+1,𝑁−d 𝑗/2e−𝑖+2

)
.

Thus, under the change of variables 𝑢𝑖, 𝑗 = log
(
𝑡𝑁+b 𝑗/2c−𝑖+1,𝑁−d 𝑗/2e−𝑖+2

)
for (𝑖, 𝑗) ∈ 𝐾𝑁 and after

considerable rewriting of (7.2.9), we find that the density of (𝑁
𝑖
( 𝑗) − 2Ψ(𝜃)𝑁) at (𝑢𝑖, 𝑗 )(𝑖, 𝑗)∈𝐾𝑁 is

given by

𝑒−𝑒
−𝑢𝑁,1 ∏𝑁

𝑖=1 𝑒
(−1)𝑖𝑢𝑖,1𝛼

(Γ(𝛼 + 𝜃))𝑁 (Γ(2𝜃))𝑁2

𝑁∏
𝑖=1

©­«𝑒−𝜃𝑢𝑖,2𝑁−2𝑖+2
𝑁−𝑖+1∏
𝑗=1

𝑒𝜃 [𝑢𝑖,2 𝑗−1−𝑢𝑖,2 𝑗 ]
𝑁−𝑖∏
𝑗=1

𝑒−𝜃 [𝑢𝑖,2 𝑗−𝑢𝑖,2 𝑗+1]
ª®¬ (7.2.10)

· exp ©­«−
𝑁∑︁
𝑖=1

𝑁−𝑖+1∑︁
𝑗=1

𝑒𝑢𝑖,2 𝑗−1−𝑢𝑖,2 𝑗 −
𝑁−1∑︁
𝑖=1

𝑁−𝑖∑︁
𝑗=1
𝑒𝑢𝑖+1,2 𝑗−𝑢𝑖,2 𝑗+1

ª®¬ (7.2.11)

· exp ©­«−
𝑁−1∑︁
𝑖=1

𝑁−𝑖∑︁
𝑗=1
𝑒𝑢𝑖,2 𝑗+1−𝑢𝑖,2 𝑗 −

𝑁−1∑︁
𝑖=1

𝑁−𝑖∑︁
𝑗=1
𝑒𝑢𝑖+1,2 𝑗−𝑢𝑖,2 𝑗−1ª®¬ . (7.2.12)

This follows from the fact that the factor
∏
𝑡−1
𝑖, 𝑗

in (7.2.9) is absorbed as the Jacobian of the change

of variables, as well as the following four relations:

𝑁∏
𝑗=1

(
𝜏2𝑁−2 𝑗+2𝜏2𝑁−2 𝑗

𝜏2
2𝑁−2 𝑗+1

)𝜃
=

𝑁∏
𝑖=1

©­«𝑒−𝜃𝑢𝑖,2𝑁−2𝑖+2
𝑁−𝑖+1∏
𝑗=1

𝑒𝜃 [𝑢𝑖,2 𝑗−1−𝑢𝑖,2 𝑗 ]
𝑁−𝑖∏
𝑗=1

𝑒𝜃 [𝑢𝑖,2 𝑗+1−𝑢𝑖,2 𝑗 ]
ª®¬ (7.2.13)

∑︁
𝑖> 𝑗

𝑡𝑖−1, 𝑗

𝑡𝑖, 𝑗
=

𝑁∑︁
𝑖=1

𝑁−𝑖+1∑︁
𝑗=1

𝑒𝑢𝑖,2 𝑗−1−𝑢𝑖,2 𝑗 +
𝑁−1∑︁
𝑖=1

𝑁−𝑖∑︁
𝑗=1
𝑒𝑢𝑖+1,2 𝑗−𝑢𝑖,2 𝑗+1 (7.2.14)

∑︁
𝑖≥ 𝑗>1

𝑡𝑖, 𝑗−1

𝑡𝑖, 𝑗
=

𝑁−1∑︁
𝑖=1

𝑁−𝑖∑︁
𝑗=1
𝑒𝑢𝑖,2 𝑗+1−𝑢𝑖,2 𝑗 +

𝑁−1∑︁
𝑖=1

𝑁−𝑖∑︁
𝑗=1
𝑒𝑢𝑖+1,2 𝑗−𝑢𝑖,2 𝑗−1 (7.2.15)

𝑁∏
𝑗=1
𝑡
(−1)𝑁− 𝑗+1𝛼
𝑗, 𝑗

=

𝑁∏
𝑗=1
𝑡
(−1) 𝑗𝛼
𝑁− 𝑗+1,𝑁− 𝑗+1 =

𝑁∏
𝑖=1

𝑒(−1)𝑖𝑢𝑖,1𝛼 . (7.2.16)

While (7.2.16) is obvious, (7.2.13), (7.2.14) and (7.2.15) are proved in Appendix 7.9.

Recall now that we are interested in the density conditioned on (𝑁
𝑖
( 𝑗)−2Ψ(𝜃)𝑁) at (𝑢𝑖, 𝑗 )(𝑖, 𝑗)∈𝐾𝑁 \Λ∗𝑁 .
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To compute this conditional density we may absorb all the 𝑢𝑖, 𝑗 terms with (𝑖, 𝑗) ∈ 𝐾𝑁 \Λ∗𝑁 into the

proportionality constant. Thus in (7.2.10), we may absorb the 𝑒−𝑢𝑁,1 term and 𝑒−𝜃𝑢𝑖,2𝑁−2𝑖+2 terms

and observe
𝑁∏
𝑖=1

𝑒(−1)𝑖𝑢𝑖,1𝛼 ∝
∏

𝑖∈J1,𝑁/2K

𝑒−𝛼(𝑢2𝑖−1,1−𝑢2𝑖,1) .

Upon a quick inspection of the form of the weight function in (7.1.3), one sees that these factors are

precisely the red edge weights functions in the HSLG Gibbs measure on the domain Λ∗
𝑁

; see Figure

7.3 (B) and Definition 7.1.2. Combining the terms which have (𝑢𝑖,2 𝑗−1 − 𝑢𝑖,2 𝑗 ) and (𝑢𝑖,2 𝑗+1 − 𝑢𝑖,2 𝑗 )

in (7.2.10), (7.2.11), (7.2.12) give rise to the following factor

𝑁∏
𝑖=1

𝑁−𝑖+1∏
𝑗=1

exp
(
𝜃 (𝑢𝑖,2 𝑗−1 − 𝑢𝑖,2 𝑗 ) − 𝑒𝑢𝑖,2 𝑗−1−𝑢𝑖,2 𝑗 ) 𝑁−1∏

𝑖=1

𝑁−𝑖∏
𝑗=1

exp
(
𝜃 (𝑢𝑖,2 𝑗+1 − 𝑢𝑖,2 𝑗 ) − 𝑒𝑢𝑖,2 𝑗+1−𝑢𝑖,2 𝑗

)
.

The above factor corresponds to the blue edge weight functions in the HSLG Gibbs measure on the

domain Λ∗
𝑁

. Finally, the remaining terms in (7.2.11) and (7.2.12) corresponds to black edge weight

function in the HSLG Gibbs measure on the domain Λ∗
𝑁

. Thus the density of {𝑁
𝑖
( 𝑗) − 2Ψ(𝜃)𝑁 :

(𝑖, 𝑗) ∈ Λ∗
𝑁
} conditioned on {𝑁

𝑖
( 𝑗) − 2Ψ(𝜃)𝑁 : (𝑖, 𝑗) ∈ 𝐾𝑁 \ Λ∗𝑁 } is precisely given by the HSLG

Gibbs measure with boundary condition {𝑁
𝑖
( 𝑗)−2Ψ(𝜃)𝑁 : (𝑖, 𝑗) ∈ 𝐾𝑁 \Λ∗𝑁 } as in Definition 7.1.2.

By the translation invariance of the Gibbs measures, we obtained Part (ii) of Theorem 7.1.3.

7.3 Properties of the first three curves

In this section we extract probabilistic information about the first few curves of HSLG line

ensemble 𝑁 (Definition 7.2.7). The section is divided into three parts. In Section 7.3.1 we prove

Theorem 7.3.1, which claims that there is a certain high probability ordering among the points of

the curve. Section 7.3.2 contains Theorem 7.3.3 which asserts that with high probability there is a

point 𝑝 = 𝑂 (𝑁2/3) such that 𝑁2 (𝑝) is reasonably large. Finally in Section 7.3.3, we show Theorem

7.3.7 which argues that with high probability (𝑁2 (𝑠))𝑠∈J1,𝑘𝑁2/3K and (𝑁3 (𝑠))𝑠∈J1,𝑘𝑁2/3K always lies

below 𝑀𝑁1/3 for large enough 𝑀 .
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7.3.1 Ordering of the points in the line ensemble

In this section we show that there is ordering among the points of the HSLG line ensemble.

Throughout this subsection we shall assume 𝛼 ∈ (−𝜃,∞) is a fixed parameter. The results can be

easily extended to the case where 𝛼 = 𝛼(𝑁) satisfying

−𝜃 < lim inf
𝑁→∞

𝛼(𝑁) ≤ lim sup
𝑁→∞

𝛼(𝑁) < ∞.

We consider the HSLG line ensemble 𝑁 from Definition 7.2.7 with parameter (𝛼, 𝜃).

Theorem 7.3.1. Fix any 𝑘 ∈ Z>0 and 𝜌 ∈ (0, 1). There exists 𝑁0 = 𝑁0(𝜌, 𝑘) > 0 such that for all

𝑁 ≥ 𝑁0, 𝑖 ∈ J1, 𝑘K and 𝑝 ∈ J1, 𝑁 − 𝑘 − 2K the following inequalities holds:

P(𝑁𝑖 (2𝑝 + 1) ≤ 𝑁
𝑖 (2𝑝) + (log 𝑁)7/6) ≥ 1 − 𝜌𝑁 ,

P(𝑁𝑖 (2𝑝 − 1) ≤ 𝑁
𝑖 (2𝑝) + (log 𝑁)7/6) ≥ 1 − 𝜌𝑁 ,

P(𝑁𝑖+1(2𝑝) ≤
𝑁
𝑖 (2𝑝 + 1) + (log 𝑁)7/6) ≥ 1 − 𝜌𝑁 ,

P(𝑁𝑖+1(2𝑝) ≤
𝑁
𝑖 (2𝑝 − 1) + (log 𝑁)7/6) ≥ 1 − 𝜌𝑁 .

(7.3.1)

We refer to the caption of Figure 7.9 for a visual interpretation of the above Theorem. In order

to prove the above theorem, we first provide an apriori loose bound for the entries of the first 𝑘

curves of the line ensemble 𝑁 .

Proposition 7.3.2. Fix any 𝜌 ∈ (0, 1) and 𝑘 ∈ Z>0. There exists a constant C = C(𝜌, 𝑘) > 0 and

𝑁0(𝜌, 𝑘) > 0 such that for all 𝑁 ≥ 𝑁0, 𝑖 ∈ J1, 𝑘K, 𝑗 ∈ J1, 2𝑁 − 2𝑖 + 2K we have

P
(
|𝑁𝑖 ( 𝑗) | ≤ C · 𝑁

)
≥ 1 − 𝜌𝑁 . (7.3.2)

We first prove Theorem 7.3.1 assuming Proposition 7.3.2.

Proof of Theorem 7.3.1. Fix any 𝜌 ∈ (0, 1) and 𝑘 ∈ Z>0. Set 𝑇 := 𝑁 − 𝑘 . Fix 𝑖0 ∈ J1, 𝑘K and

𝑝 ∈ J1, 𝑇 − 2K. We will show only the first of the inequalities in (7.3.1), as the rest are all proved
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· · ·

· · ·

· · ·

· · ·
...

...
...

𝑁
1 (2)

𝑁
1 (4)

𝑁
2 (5)

𝑁
3 (3)

𝑁
4 (1)

𝑁
4 (6)

Figure 7.9: Ordering of points within Half-space log gamma line ensemble: The above figure
consists of first 3 curves of the line ensemble . A black or blue arrow from 𝑎 → 𝑏 signifies
𝑎 ≤ 𝑏 − (log 𝑁)7/6 with exponential high probability. The blue arrows depicts the ordering within
a particular indexed curve (inter-ordering). The black arrow indicates ordering between the two
consecutive curves (intra-ordering).

analogously. For simplicity, we write for 𝑁 . Consider the event

V :=
{
𝑖0 (2𝑝 + 1) ≥ 𝑖0 (2𝑝) + (log 𝑁)7/6

}
.

We apply Proposition 7.3.2 with 𝑘 ↦→ 𝑘 + 1 and 𝜌 ↦→ 𝜌/2 to get C > 0 so that for all large enough

𝑁 , by union bound we have P(A) ≥ 1 − 2𝑁𝑘 · (𝜌/2)𝑁 where

A :=
{
|𝑘+1( 𝑗) |, |𝑖 (2𝑇 − 1) | ≤ C · 𝑁, 𝑗 ∈ J1, 2𝑇K, 𝑖 ∈ J1, 𝑘K

}
.

Thus if we consider the 𝜎-field

F := 𝜎
(
𝑘+1( 𝑗), 𝑖 (2𝑇 − 1) : 𝑗 ∈ J1, 2𝑇K, 𝑖 ∈ J1, 𝑘K

)
,

by union bound and tower property of the conditional expectation we have

P(V) ≤ P(¬A) + P(V ∩ A) ≤ 2𝑁𝑘 · (𝜌/2)𝑁 + E [1AE[1V | F ]] . (7.3.3)

Recall K′
𝑘,𝑇

from (7.2.1). From Theorem 7.1.3 and Observation 7.2.1 (b), the law of {(𝑣) : 𝑣 ∈
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K′
𝑘,𝑇
} conditioned on F is given by the HSLG Gibbs measure on the domain K′

𝑘,𝑇
with boundary

condition ®𝑦 := { 𝑗 (2𝑇 − 1)}𝑘
𝑗=1. ®𝑧 := {𝑘+1(2𝑖)}𝑇−1

𝑖=1 . In view of Observation 7.2.2 (b) we see that

E[1V | F ] =

∫
V𝑄

®𝑦,®𝑧
𝑘,𝑇
(u)𝑑u∫

R
|K′
𝑘,𝑇
| 𝑄
®𝑦,®𝑧
𝑘,𝑇
(u)𝑑u

(7.3.4)

where 𝑄 ®𝑦,®𝑧
𝑘,𝑇
(u) is defined in (7.2.4). We will now bound the numerator and denominator of (7.3.4)

respectively. Towards this end, we claim that there exists 𝑅, 𝜏 > 0 depending only on 𝑘, 𝛼, 𝜃,C

such that

1A ·
∫

V
𝑄
®𝑦,®𝑧
𝑘,𝑇
(u)𝑑u ≤ 1A exp(−1

2𝑒
(log 𝑁)7/6) · 𝑅𝑁 , and 1A

∫
R
|K′
𝑘,𝑇
|
𝑄
®𝑦,®𝑧
𝑘,𝑇
(u)𝑑u ≥ 1A · 𝜏𝑁 .

(7.3.5)

Clearly plugging this bounds back in (7.3.4) and then back in (7.3.3) leads to P(V) ≤ 𝜌𝑁 for all

large enough 𝑁 , which is precisely what we wanted to show. Thus we focus on proving the two

inequalities in (7.3.5).

Proof of the first inequality in (7.3.5). Recall 𝐺 defined in (7.2.3). Set

𝐻𝜃,(−1)𝑘 (𝑦) := 𝑒
1
2 𝑒
(−1)𝑘 𝑦

𝐺𝜃,(−1)𝑘 (𝑦) =
1

Γ(𝜃) exp(𝜃 (−1)𝑘 𝑦 − 1
2𝑒
(−1)𝑘 𝑦), 𝑊 (𝑎; 𝑏, 𝑐) := exp(−𝑒𝑎−𝑏−𝑒𝑎−𝑐).

Set
√
𝑊 (𝑎; 𝑏, 𝑐) :=

√︁
𝑊 (𝑎; 𝑏, 𝑐). From (7.2.4) we have

𝑄
®𝑦,®𝑧
𝑘,𝑇
(u) =

𝑘∏
𝑖=1

𝑒(−1)𝑖𝛼𝑢𝑖,1
𝑇−1∏
𝑗=1

√
𝑊 (𝑢𝑖+1,2 𝑗 ; 𝑢𝑖,2 𝑗+1, 𝑢𝑖,2 𝑗−1)

2𝑇−2∏
𝑗=1

𝐻𝜃,(−1) 𝑗+1 (𝑢𝑖, 𝑗 − 𝑢𝑖, 𝑗+1)


·
𝑘∏
𝑖=1


𝑇−1∏
𝑗=1

√
𝑊 (𝑢𝑖+1,2 𝑗 ; 𝑢𝑖,2 𝑗+1, 𝑢𝑖,2 𝑗−1)

2𝑇−2∏
𝑗=1

exp(−1
2𝑒
(−1) 𝑗+1 (𝑢𝑖, 𝑗−𝑢𝑖, 𝑗+1))

 .
Now on V, among the terms appearing in the last line of the above equation, the term exp(−1

2𝑒
𝑢2𝑝+1,𝑖0−𝑢2𝑝,𝑖0 )

is at most exp(−1
2𝑒
(log 𝑁)7/6). We bound the rest of the terms in the above last line just by 1, so that

398



on V, we have 𝑄 ®𝑦,®𝑧
𝑘,𝑇
(u) ≤ 𝑒− 1

2 𝑒
(log 𝑁 )7/6

𝑄
®𝑦,®𝑧
𝑘,𝑇
(u) where

𝑄
®𝑦,®𝑧
𝑘,𝑇
(u) :=

𝑘∏
𝑖=1

𝑒(−1)𝑖𝛼𝑢𝑖,1
𝑇−1∏
𝑗=1

√
𝑊 (𝑢𝑖+1,2 𝑗 ; 𝑢𝑖,2 𝑗+1, 𝑢𝑖,2 𝑗−1)

2𝑇−2∏
𝑗=1

𝐻𝜃,(−1) 𝑗+1 (𝑢𝑖, 𝑗 − 𝑢𝑖, 𝑗+1)
 .

By Lemma 7.6.2 it follows that
∫
R
|K′
𝑘,𝑇
| 𝑄
®𝑦,®𝑧
𝑘,𝑇
(u)𝑑u ≤ 𝑅𝑁 for some 𝑅 > 0 depending on 𝑘, 𝛼, 𝜃 and

C only. This verifies the first inequality in (7.3.5).

Proof of the second inequality in (7.3.5). We define the event

D :=
𝑘⋂
𝑖=1

2𝑇−2⋂
𝑗=1
{𝑖 ( 𝑗) − 𝐶𝑁 − 2𝑁 + 2𝑖 ∈ [0, 1]}.

Note that on D, |𝑖 (1) | ≤ 𝐶𝑁 + 2𝑁 + 3 and 𝑖+1(2 𝑗) ≤ 𝐿𝑖 (2 𝑗 + 1), 𝑖 (2 𝑗 − 1). Hence on D we have

𝑊 (𝑖+1(2 𝑗); 𝑖 (2 𝑗 + 1), 𝑖 (2 𝑗 − 1)) = exp
(
−𝑒𝑖+1 (2 𝑗)−𝑖 (2 𝑗+1) − 𝑒𝑖+1 (2 𝑗)−𝑖 (2 𝑗−1)

)
≥ 𝑒−2.

Hence on D we have

𝑄
®𝑦,®𝑧
𝑘,𝑇
(u) =

𝑘∏
𝑖=1

𝑒(−1)𝑖𝛼𝑢𝑖,1
𝑇−1∏
𝑗=1
𝑊 (𝑢𝑖+1,2 𝑗 ; 𝑢𝑖,2 𝑗+1, 𝑢𝑖,2 𝑗−1)

2𝑇−2∏
𝑗=1

𝐺𝜃,(−1) 𝑗+1 (𝑢𝑖, 𝑗 − 𝑢𝑖, 𝑗+1)


≥ 𝑒−𝛼𝑘 (𝐶𝑁+2𝑁)𝑒−2𝑘𝑇
𝑘∏
𝑖=1

2𝑇−2∏
𝑗=1

𝐺𝜃,(−1) 𝑗+1 (𝑢𝑖, 𝑗 − 𝑢𝑖, 𝑗+1).

Again note that on D, |𝑖 ( 𝑗) − 𝑖 ( 𝑗 + 1) | ≤ 2 for all 𝑖 ∈ J1, 𝑘K and 𝑗 ∈ J1, 2𝑇 − 3K, whereas on A∩D,

𝑖 (2𝑇 − 2) − 𝑖 (2𝑇 − 1) ∈ [0, 2𝐶𝑁 + 2𝑁] .

Thus, on D

𝑄
®𝑦,®𝑧
𝑘,𝑇
(u) ≥ 𝑒−𝛼𝑘 (𝐶𝑁+2𝑁)−2𝑘𝑇

[
inf
|𝑥 |≤2

𝐺𝜃,1(𝑥)
] 𝑘 (2𝑇−3) [

inf
𝑥∈[0,2𝐶𝑁+2𝑁]

𝐺𝜃,1(−𝑥)
] 𝑘
.
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Note that the lower tail of 𝐺𝜃,1(𝑥) is exponential. Thus inf𝑥∈[0,2𝐶𝑁+2𝑁] 𝐺𝜃,1(−𝑥) ≥ 𝜏𝑁1 for some

𝜏1 > 0 depending on 𝛼, 𝜃, and 𝐶. Thus overall on A ∩ D, 𝑄 ®𝑦,®𝑧
𝑘,𝑇
(u) ≥ 𝜏𝑁 for some 𝜏 depending on

𝛼, 𝜃, 𝑘, and 𝐶. Since the Lebesgue measure of D is 1 we have

1A

∫
R
|K′
𝑘,𝑇
|
𝑄
®𝑦,®𝑧
𝑘,𝑇
(u)𝑑u ≥ 1A

∫
D
𝑄
®𝑦,®𝑧
𝑘,𝑇
(u)𝑑u ≥ 1A · 𝜏𝑁

∫
D
𝑑u = 1A · 𝜏𝑁 .

This proves the second inequality in (7.3.5) completing the proof.

Proof of Proposition 7.3.2. Recall 𝑁
𝑖
( 𝑗) from Definition 7.2.7. Fix any 𝑘 ∈ Z>0 and 𝜌 ∈ (0, 1).

For all 𝑟 ∈ J1, 𝑘K and 𝑗 ∈ J1, 2𝑁 − 2𝑖 + 2K set

B𝑟 ( 𝑗) :=
𝑟∑︁
𝑖=1

𝑁
𝑖 ( 𝑗) = 𝑟 log 2 + 2𝑟Ψ(𝜃)𝑁 + log 𝑍 (𝑟)sym(𝑁 + b 𝑗/2c, 𝑁 − d 𝑗/2e + 1),

where recall 𝑍 (𝑟)sym(·, ·) defined in (7.2.8). Set B0( 𝑗) ≡ 0. We claim that there exist C = C(𝜌, 𝑘) > 0

and 𝑁0 = 𝑁0(𝜌, 𝑘) > 0, such that for all 𝑁 ≥ 𝑁0 and 𝑟 ∈ J1, 𝑘K

P
(���log 𝑍 (𝑟)sym(𝑁 + b 𝑗/2c, 𝑁 − d 𝑗/2e + 1)

��� ≤ C · 𝑁
)
≥ 1 − 𝜌𝑁 . (7.3.6)

In view of the above bound, setting C′ = C + 2𝑘 |Ψ(𝜃) | + 𝑘 log 2 we see that, by triangle inequality

and union bound

P( |𝑟 ( 𝑗) | ≤ 2C′ · 𝑁) ≥ P( |B𝑟−1( 𝑗) | ≤ C′ · 𝑁) + P( |B𝑟 ( 𝑗) | ≤ C′ · 𝑁) − 1 ≥ 1 − 2 · 𝜌𝑁 .

Adjusting 𝜌, 𝑁0 the above inequality yields (7.3.2). The rest of the proof is devoted in proving

(7.3.6).

Recall that 𝑍 (𝑟)sym(·, ·), defined in (7.2.8), can be viewed as sum of weights of 𝑟-tuple of non-

intersecting paths. We first provide concentration bound for weight of a given path 𝜋 with endpoints

in I (𝑁)sym := {(𝑖, 𝑗) : 𝑖 + 𝑗 ≤ 2𝑁 + 1} via standard Chernoff bound for i.i.d. random variables. Then
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we provide an upper bound on the number of 𝑟-tuple of non-intersecting paths. Via union bound,

this gives a concentration bound of type (7.3.6) for 𝑍 (𝑟)sym(·, ·).

Recall the symmetric weight 𝑊𝑖, 𝑗 from (7.2.7). Note that for an upright path 𝜋, (𝑖, 𝑗) ∈ 𝜋 and

( 𝑗 , 𝑖) ∈ 𝜋 cannot happen simultaneously provided 𝑖 ≠ 𝑗 . Thus (𝑊𝑖, 𝑗 )(𝑖, 𝑗)∈𝜋 forms an independent

collection. Set

𝑅1 := max{log Γ(𝜃) − log Γ(2𝜃), log Γ(𝛼) − 𝜃 log 2 − log Γ(𝛼 + 𝜃)},

𝑅2 := max{log Γ(3𝜃) − log Γ(2𝜃), log Γ(𝛼 + 2𝜃) + 𝜃 log 2 − log Γ(𝛼 + 𝜃)}.

Using moments of Gamma distribution and Markov inequality for each 𝑠 > 0 we have

P ©­«
∑︁
(𝑖, 𝑗)∈𝜋

log𝑊𝑖, 𝑗 ≥ 𝑠+𝑅1
𝜃
|𝜋 |ª®¬ ≤ 𝑒−(𝑠+𝑅1) |𝜋 |

∏
(𝑖, 𝑗)∈𝜋

E[𝑊 𝜃
𝑖, 𝑗 ]

= 𝑒−(𝑠+𝑅1) |𝜋 |
∏

(𝑖, 𝑗)∈𝜋,𝑖≠ 𝑗

Γ(𝜃)
Γ(2𝜃)

∏
(𝑖,𝑖)∈𝜋

Γ(𝛼)
2𝜃Γ(𝛼 + 𝜃)

≤ 𝑒−𝑠 |𝜋 |,

and

P ©­«
∑︁
(𝑖, 𝑗)∈𝜋

log𝑊𝑖, 𝑗 ≤ − 𝑠+𝑅2
𝜃
|𝜋 |ª®¬ ≤ 𝑒−(𝑠+𝑅2) |𝜋 |

∏
(𝑖, 𝑗)∈𝜋

E[𝑊−𝜃𝑖, 𝑗 ]

= 𝑒−(𝑠+𝑅2) |𝜋 |
∏

(𝑖, 𝑗)∈𝜋,𝑖≠ 𝑗

Γ(3𝜃)
Γ(2𝜃)

∏
(𝑖,𝑖)∈𝜋

2𝜃Γ(𝛼 + 2𝜃)
Γ(𝛼 + 𝜃) ≤ 𝑒

−𝑠 |𝜋 | .

This leads to the following concentration bound

P
(���� ∑︁
(𝑖, 𝑗)∈𝜋

log𝑊𝑖, 𝑗

���� ≤ 𝑠+𝑅1+𝑅2
𝜃
|𝜋 |

)
≥ 1 − 2𝑒−𝑠 |𝜋 | . (7.3.7)

To upgrade the above bound to (7.3.6), we need an upper bound for the number of 𝑟-tuples of

non-intersecting upright paths. To do this, we introduce a few notations. Set 𝑚 := 𝑁 + b 𝑗/2c,

𝑛 := 𝑁 − d 𝑗/2e + 1. Given two points x, y ∈ I (𝑁)sym , let 𝐹𝑁 (x → y) be the set of all upright paths
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from x to y. For any 𝜋 ∈ Π
(𝑟)
(𝑚,𝑛) we have 𝑁 ≤ |𝜋 | ≤ 2𝑁 . Furthermore, |𝐹𝑁 (x → y) | ≤ 4𝑁 for all

x, y ∈ I (𝑁)sym . Thus |Π (𝑟)(𝑚,𝑛) | ≤ 4𝑘𝑁 as 𝑟 ≤ 𝑘 . Fix 𝑠 = 𝑠(𝜌, 𝑘) > 0 such that 4𝑘𝑁 · 2𝑒−𝑠𝑁 ≤ 𝜌𝑁 and

consider the event

A :=
{���� log

∏
(𝑖, 𝑗)∈𝜋1∪···∪𝜋𝑟

𝑊𝑖, 𝑗

���� ≤ 𝑠+𝑅1+𝑅2
𝜃
· 2𝑟𝑁 for all (𝜋𝑞)𝑟𝑞=1 ∈ Π

(𝑟)
(𝑚,𝑛)

}
.

Applying the concentration bound (7.3.7) for each path in Π
(𝑟)
(𝑚,𝑛) , an union bound yields

P (A) ≥ 1 − 4𝑘𝑁 · 2𝑒−𝑠𝑁 ≥ 1 − 𝜌𝑁 . (7.3.8)

Next set C = C(𝜌, 𝑘) := 𝑘 log 4 + 𝑠+𝑅1+𝑅2
𝜃

2𝑘 . Note that on A we have

log 𝑍 (𝑟)sym(𝑚, 𝑛) ≤ log


∑︁

(𝜋1,...,𝜋𝑟 )∈Π (𝑟 )(𝑚,𝑛)

∏
(𝑖, 𝑗)∈𝜋1∪···∪𝜋𝑟

𝑊𝑖, 𝑗


≤ log

[
4𝑘𝑁 · 𝑒

𝑠+𝑅1+𝑅2
𝜃

2𝑟𝑁
]
≤ 𝑘𝑁 log 4 + 𝑠+𝑅1+𝑅2

𝜃
2𝑘𝑁 ≤ C · 𝑁.

(7.3.9)

Similarly for the lower bound we consider any (𝜋1, . . . , 𝜋𝑟) ∈ Π
(𝑟)
(𝑚,𝑛) which forms a disjoint col-

lection of paths. Then on A we have

log 𝑍 (𝑟)sym(𝑚, 𝑛) ≥ log
∏

(𝑖, 𝑗)∈𝜋1∪···∪𝜋𝑟

𝑊𝑖, 𝑗 ≥ − 𝑠+𝑅1+𝑅2
𝜃

2𝑘𝑁 ≥ −C · 𝑁. (7.3.10)

(7.3.6) now follows from (7.3.9) and (7.3.10) and the bound in (7.3.8). This completes the proof.

7.3.2 High point on the second curve

The goal of this section is to show there is a point 𝑝 = 𝑂 (𝑁2/3) such that with high probability

𝑁
2 (2𝑝) ≥ −C𝑁1/3 where 𝑁 is the HSLG line ensemble defined in Definition 7.2.7. For the rest

of this section we work with the boundary parameter fixed in critical or supercritical phase. We
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assume 𝛼 equals 𝛼1 or 𝛼2 where


𝛼1 := 𝛼1(𝑁) := 𝑁−1/3𝜇 (Critical)

𝛼2 := 𝜁 (Super-Critical)
(7.3.11)

where 𝜇 ∈ R and 𝜁 > 0 are fixed numbers. The labeling of the parameter might seem a bit

unnatural at this moment. It is related to the technical arguments in Section 7.4. Broadly speaking,

when the boundary parameter is 𝛼𝑖, we shall resample top 𝑖 curves of the HSLG line ensemble in

Section 7.4.

Theorem 7.3.3 (High point on the second curve). Fix any 𝜀 ∈ (0, 1) and 𝑘 > 0. There exist

𝑅0(𝑘, 𝜀) > 0 such that for all 𝑅 ≥ 𝑅0

lim inf
𝑁→∞

P

(
sup

𝑝∈[𝑘𝑁2/3,𝑅𝑁2/3]
L𝑁2 (2𝑝) ≥ −[

1
8𝑅

2𝜈 + 2
√
𝑅]𝑁1/3

)
> 1 − 𝜀. (7.3.12)

where

𝜈 :=
(Ψ′(𝜃))2

(−Ψ′′(𝜃))4/3
. (7.3.13)

The proof of Theorem 7.3.3 relies on two probabilistic information related to the first curve

which we record below.

Proposition 7.3.4 (High point on the first curve). Fix any 𝜀 ∈ (0, 1). There exists 𝑀0(𝜀) > 0 such

that for all 𝑀1, 𝑀2 ≥ 𝑀0 and 𝑘 > 0 we have

lim inf
𝑁→∞

P

(
sup

𝑝∈J𝑘𝑁2/3,(𝑀1+2𝑘)𝑁2/3K

L𝑁1 (2𝑝 + 1)
𝑁1/3 + 𝑘2𝜈 ≤ 𝑀2

)
> 1 − 𝜀, (7.3.14)

lim inf
𝑁→∞

P

(
sup

𝑝∈J𝑘𝑁2/3,(𝑀1+2𝑘)𝑁2/3K

L𝑁1 (2𝑝 + 1)
𝑁1/3 + 𝑘2𝜈 ≥ −𝑀2

)
> 1 − 𝜀. (7.3.15)
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where 𝜈 is defined in (7.3.13).

Figure 7.10 depicts the high probability events considered in Proposition 7.3.4.

𝑓+(·)

𝑓−(·)

I𝑘

𝑥 = 𝑘𝑁2/3

Figure 7.10: Diagram for Proposition 7.3.4. In the above figure 𝑁
1 (2𝑝 + 1) is given by the black

rough curve. 𝑓±(𝑥) := −(𝑁𝜈)−1𝑥2 ±𝑀2𝑁
1/3 are the parabolic curves drawn above. The horizontal

lines are drawn in such a way that they meet the parabolas at 𝑥 = 𝑘𝑁2/3. The event in (7.3.14)
tells us that on I𝑘 := J𝑘𝑁2/3, (𝑀1 + 2𝑘)𝑁2/3K the black rough curve stays entirely below the black
horizontal line. The event in (7.3.15) asserts that there is a point on I𝑘 such that the black rough
curve is above the red horizontal curve at that point.

Proposition 7.3.5 (Low point on the first curve). Fix any 𝜀 ∈ (0, 1). There exists 𝑀0(𝜀) such that

for all 𝑀 ≥ 𝑀0,

lim inf
𝑁→∞

P
(
L𝑁1 (2𝑀𝑁

2/3 + 1) ≤ −1
8𝑀

2𝑁1/3𝜈
)
> 1 − 𝜀, (7.3.16)

where 𝜈 is defined in (7.3.13).

The proofs of Propositions 7.3.4 and 7.3.5 rely on the fluctuation results from [34], namely

Theorem 7.1.4, and are postponed to the next subsection. Assuming their validity, we complete

the proof of Theorem 7.3.3.

Proof of Theorem 7.3.3. For clarity we divide the proof into two steps.
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Step 1. In this step we define notation and events used in the proof. For simplicity we write 𝑖 ( 𝑗)

for 𝑁
𝑖
( 𝑗). Fix 𝜀 ∈ (0, 1) and 𝑘 > 0. Take 𝑀0 from Proposition 7.3.4. We set 𝑅 large enough so that

2−5𝑅 ≥ 2𝑘 + 1, 𝑀0 − 2−5( 18𝑅
2𝜈 + 𝑀0) + 𝑅3/2 ≤ −𝑀0 − 2−10𝑅2𝜈 (7.3.17)

and 𝑆 := 2−5𝑅. The precise choice of 𝑅 will depend on certain probability bounds that will be

specified in the next step. We set

𝑎 := 𝑀0𝑁
1/3, 𝑏 := −1

8𝑅
2𝑁1/3𝜈, 𝑛 := 𝑅𝑁2/3 − 𝑘𝑁2/3, 𝑣 := −[ 18𝑅

2𝜈 + 2
√
𝑅]𝑁1/3.

Let us define the sets I := J𝑆𝑁2/3, (𝑀0 + 2𝑆)𝑁2/3K and J := J𝑘𝑁2/3, 𝑅𝑁2/3K. Next we define the

following events:

A :=

{
sup
𝑝∈J
L2(2𝑝) ≤ 𝑣

}
, B :=

{
L1(2𝑘𝑁2/3 + 1) ≤ 𝑎,L1(2𝑅𝑁2/3 + 1) ≤ 𝑏

}
.

The A event demands that the second curve 2(2𝑝) does not rise above 𝑣 for any 𝑝 ∈ J . The B

event requires both 1(2𝑘𝑁2/3 + 1) and 1(2𝑅𝑁2/3 + 1) to be less than 𝑎 and 𝑏 respectively. Finally

we set

C :=
{

sup
𝑝∈I

1(2𝑝 + 1) + 𝑆2𝜈𝑁1/3 ≥ −𝑎
}

In words, the event C ensures there exists some 𝑝 ∈ I such that 1(2𝑝 + 1) is greater than −𝑎 −

𝑆2𝜈𝑁1/3.

Note that by Proposition 7.3.4 we have P(C) ≥ 1 − 𝜀 . Furthermore, by Proposition 7.3.4 and

Proposition 7.3.5 for large enough 𝑅 we also have P(¬B) ≤ 2𝜀. We claim that for all large enough

𝑅 we have

P(A ∩ B ∩ C) ≤ 𝜀. (7.3.18)
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𝑦 = 𝑣

𝑎

𝑏

𝑓 (·)

I

J

Figure 7.11: In the above figure 1(2𝑝 + 1) (black curve) and 2(2𝑝) (blue curve) are plotted for
𝑝 ∈ J . A denotes the event that the blue curve lies below the horizontal line 𝑦 = 𝑣. B denotes
the event that the black curve starts below 𝑎 and ends below 𝑏. The curve 𝑓 in the figure is given
by 𝑓 (𝑥) = −(𝑁𝜈)−1𝑥2 − 𝑎. The event C denotes that there is a point 𝑝′ ∈ I on black curve such
that 1(2𝑝′ + 1) ≥ 𝑓 (𝑆𝑁2/3) (this event does not occur in the above figure). The key idea is that on
A∩B, the blue curve lies below 𝑦 = 𝑣 completely, and the black curve behaves like a simple random
bridge and follows a linear trajectory with starting and ending points less than 𝑎 and 𝑏 respectively.
As a result, the event C (which requires the black curve to follow parabolic trajectory) does not
occur with high probability. But we know both B and C occurs with high probability. Thus the
event A occurs with low probability.

We prove (7.3.18) in next step. Assuming this, note that by union bound we have

P(¬A) ≥ P(C) − P(¬B) − P(A ∩ B ∩ C) ≥ 1 − 4𝜀.

Changing 𝜀 ↦→ 𝜀/4 we arrive at (7.3.12). This completes the proof modulo (7.3.18).

Step 2. In this step we will prove (7.3.18). The readers are encouraged to consult with Figure 7.11

and its caption to get an overview of the key idea behind the proof.

We consider the 𝜎-field:

F := 𝜎
{

2J1, 2𝑁 − 2𝑖K, 1(J1, 2𝑘𝑁2/3 + 1K ∪ J2𝑅𝑁2/3 + 1, 2𝑁K)
}
.
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𝑎

𝑏

K

𝑦 = −𝑎 − 𝑆2𝜈𝑁1/3

Figure 7.12: In the above figure the random bridge 𝑋𝑖 from 𝑎 to 𝑏 is depicted by the black curve.
The event D ensures the random bridge lies below the blue line 𝑦 = 𝑎 + 𝑥

𝑛
(𝑏 − 𝑎) +

√
𝑅𝑛. The event

C requires 𝑋𝑖 ≥ −[𝑀0 + 𝑆2𝜈]𝑁1/3 for some 𝑖 ∈ K := [(𝑆 − 𝑘)𝑁2/3, (𝑀0 + 2𝑆 − 𝑘)𝑁2/3]. One can
choose 𝑅 large enough so that the horizontal black line 𝑦 = −[𝑀0 + 𝑆2𝜈]𝑁1/3 lies above the blue
line 𝑦 = 𝑎 + 𝑥

𝑛
(𝑏 − 𝑎) +

√
𝑅𝑛 for all 𝑥 ≥ (𝑆 − 𝑘)𝑁2/3. This forces D ⊂ ¬C.

Note that A ∩ B is measurable with respect to F . Hence

P(A ∩ B ∩ C) = E [1A∩BE [1C | F ]] .

Using the Gibbs property for two-sided boundaries (see Observation 7.2.5), the conditional law is

determined by the boundary data and is monotone with respect to the boundary data (see Propo-

sition 8.2.3). On the event A ∩ B, 2 (on even points) is at most 𝑣, 1(2𝑘𝑁2/3 + 1) is at most 𝑎 and

1(2𝑅𝑁2/3 + 1) is at most 𝑏. Thus by stochastic monotonicity on A ∩ B we have

1A∩B · E
(
1C | F

)
≤ 1A∩B ·

E𝑎,𝑏free

(
𝑊 ( ®𝑋, 𝑣)1{C}

)
E𝑎,𝑏free

(
𝑊 ( ®𝑋, 𝑣)

) ≤ 1A∩B ·
P𝑎,𝑏free (C)

E𝑎,𝑏free

(
𝑊 ( ®𝑋, 𝑣)

) . (7.3.19)

Here ®𝑋 = (𝑋0, . . . , 𝑋𝑛) is a random bridge with 𝑋0 = 𝑎 and 𝑋𝑛 = 𝑏 with i.i.d. increments from

𝐺𝜃,+1 ∗ 𝐺𝜃,−1, and 𝑛. P𝑎,𝑏free and E𝑥,𝑦free denotes the probability and the expectation operator of the
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random walk, and𝑊 ( ®𝑋, 𝑣) := exp
(
−2

∑𝑛−1
𝑖=1 𝑒

𝑣−𝑋𝑖
)
. The event C is now interpreted as

C =

{
sup

𝑝∈J𝑆𝑁2/3,(𝑀0+2𝑆)𝑁2/3K
𝑋𝑝−𝑘𝑁2/3 + 𝑆2𝜈𝑁1/3 ≥ −𝑎

}
.

Note that

E𝑎,𝑏free

(
𝑊 ( ®𝑋, 𝑣)

)
≥ exp

(
−2𝑛𝑒−

√
𝑛
)

P𝑥,𝑦free
(
𝑋𝑖 ≥ 𝑣 +

√
𝑛, for all 𝑖 ∈ J0, 𝑛K

)
≥ exp

(
−2𝑛𝑒−

√
𝑛
)

P𝑎,𝑏free

(
𝑋𝑖 − 𝑎 − 𝑖(𝑏−𝑎)

𝑛
≥ −
√
𝑛, for all 𝑖 ∈ J0, 𝑛K

)
. (7.3.20)

where the last inequality follows by noting that 𝑋𝑖−𝑎− 𝑖(𝑏−𝑎)𝑛
≥ −
√
𝑛 implies 𝑋𝑖 ≥ 𝑏−

√
𝑛 ≥ 𝑣+

√
𝑛.

Now by the KMT coupling for Brownian bridges and estimates for Brownian bridges, r.h.s. of

(7.3.20) is uniformly bounded below by some absolute constant 𝛿. We now claim that for all large

enough 𝑅 we have

D ⊂ ¬C, P𝑎,𝑏free(D) ≥ 1 − 𝜀𝛿, where D :=

{
sup
𝑖∈J0,𝑛K

(
𝑋𝑖 − 𝑎 − 𝑖(𝑏−𝑎)

𝑛

)
≤
√
𝑅
√
𝑛

}
. (7.3.21)

Note that (7.3.21) implies P𝑥,𝑦free(C) ≤ 𝜀𝛿. Plugging this back in (7.3.19) along with the bound

E𝑥,𝑦free

(
𝑊 ( ®𝑋, 𝑧)

)
≥ 𝛿, yields that r.h.s. of (7.3.19) is at most 𝜀. This proves (7.3.18).

Let us now verify (7.3.21). Indeed, P𝑎,𝑏free(D) can be made arbitrarily close to 1 by choosing 𝑅

large enough due to the KMT coupling for Brownian bridges. We choose 𝑅 so large that P𝑎,𝑏free(D)

is at least 1 − 𝜀𝛿. Let us now verify D ⊂ ¬C (see also Figure 7.12 and its caption). For 𝑞 ≥ 𝑆 we

see that

𝑎 + (𝑞−𝑘) (𝑏−𝑎)
𝑅−𝑘 +

√
𝑅
√
𝑛 ≤

[
𝑀0 − 𝑆−𝑘

𝑅−𝑘 (
1
8𝑅

2𝜈 + 𝑀0) + 𝑅3/2
]
𝑁1/3

≤
[
𝑀0 − 2−5( 18𝑅

2𝜈 + 𝑀0) + 𝑅3/2
]
𝑁1/3 ≤ −

[
𝑀0 + 𝑆2𝜈

]
𝑁1/3

The penultimate inequality follows by observing that as 𝑆 = 2−5𝑅, we have 𝑆−𝑘 ≥ 2−5(𝑅−𝑘) > 0.
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Finally the last inequality follows from (7.3.17). Thus for all 𝑝 ≥ 𝑆𝑁2/3,

𝑥 + (𝑝−𝑘𝑁
2/3) (𝑦−𝑥)

(𝑅−𝑘)𝑁2/3 +
√
𝑅
√
𝑛 ≤ 𝑀0𝑁

1/3 − 𝑆2𝜈𝑁1/3

Clearly this implies D ⊂ ¬C, completing the proof (7.3.21).

Proof of Propositions 7.3.4 and 7.3.5

Recall 𝑍 line
𝑁
(𝑚), the point-to-(partial)line partition function defined in (7.1.5). The proofs of

Proposition 7.3.4 and Proposition 7.3.5 rely on the following lemma.

Lemma 7.3.6 (Uniform tightness). Fix 𝜀 ∈ (0, 1). There exists 𝐾0 = 𝐾0(𝜀) > 0, such that for all

𝑀 > 0 and 𝐾 ≥ 𝐾0 we have

lim inf
𝑁→∞

P

(
−𝐾 ≤

log 𝑍 line
𝑁
(𝑀𝑁2/3) + 2Ψ(𝜃)𝑁

𝑁1/3 + 𝑀2𝜈 ≤ 𝐾
)
> 1 − 𝜀

where 𝜈 is defined in (7.3.13).

We remark that the above lemma was alluded in the introduction in the form of (7.1.6).

Proof. We recall the notations introduced in Section 7.1.3. Fix any 𝑀 > 0. Set 𝑘 = 𝑀𝑁2/3

and 𝑝 := 1 + 2𝑘
𝑁−𝑘 . Let 𝜃𝑐 be the unique solution to Ψ′(𝜃𝑐) − 𝑝Ψ′(2𝜃 − 𝜃𝑐) = 0. Set 𝑓𝜃,𝑝 =

−Ψ(𝜃𝑐) − 𝑝Ψ(2𝜃 − 𝜃𝑐) and 𝜎3
𝜃,𝑝

= 1
2 (−Ψ

′′(𝜃𝑐) − Ψ′′(2𝜃 − 𝜃𝑐)) where Ψ is the digamma function

defined in (7.1.2). It is not hard to check that

(𝑁 − 𝑘) 𝑓𝜃,𝑝 = −2𝑁Ψ(𝜃) + 𝑀2𝑁1/3(Ψ′(𝜃))2/Ψ′′(𝜃) +𝑂 (1), and 𝜎𝜃,𝑝 = (−Ψ′′(𝜃))1/3 +𝑂 (1),

where 𝑂 (1) terms depend on 𝑀, 𝜃, but are bounded in 𝑁 . When 𝛼 = 𝛼2 > 0, we have that

lim𝑁→∞(𝑁 − 𝑘)1/3𝜎𝜃,𝑝 (𝛼2 + 𝜃 − 𝜃𝑐) = ∞ for each fixed 𝑀 > 0. Thus by Theorem 7.1.4 we get

log 𝑍 line
𝑁
(𝑀𝑁2/3) + 2Ψ(𝜃)𝑁
(−𝑁Ψ′′(𝜃))1/3

+ 𝑀2𝜈
𝑑→ TWGUE,
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where TWGUE is the GUE Tracy-Widom distribution [308] and 𝜈 is defined in (7.3.13). For 𝛼 =

𝛼1 = 𝑁−1/3𝜇, we have lim𝑁→∞(𝑁 − 𝑘)1/3𝜎𝜃,𝑝 (𝛼1 + 𝜃 − 𝜃𝑐) = 𝑦 := 𝜎𝜃,1(𝜇 − 𝑀Ψ′(𝜃)/Ψ′′(𝜃)).

Another application of Theorem 7.1.4 yields

log 𝑍 line
𝑁
(𝑀𝑁2/3) + 2Ψ(𝜃)𝑁
(−𝑁Ψ′′(𝜃))1/3

+ 𝑀2𝜈
𝑑→ 𝑈−𝑦 .

where𝑈−𝑦 is the Baik-Ben Arous-Péché distribution [10] (see [34, (5.2)] for definition). As 𝑀 →

∞, 𝑦 →∞. Since𝑈−𝑦 → TWGUE as 𝑦 →∞ (see [17, (2.36)]), we can thus get tightness uniformly

in 𝑀 . This completes the proof.

Proof of Proposition 7.3.4. Fix 𝑘 > 0, 𝜀 ∈ (0, 1). Since for any 𝑀1 > 0

sup
𝑗∈J𝑘𝑁2/3,(𝑀1+2𝑘)𝑁2/3K

𝑍 (𝑁 + 𝑗 , 𝑁 − 𝑗) ≤ 𝑍 line
𝑁 (𝑘𝑁

2/3).

Appealing to Lemma 7.3.6 with 𝑀 ↦→ 𝑘 we see that

P

(
sup

𝑗∈J𝑘𝑁2/3,(𝑀1+2𝑘)𝑁2/3K

log 𝑍 (𝑁 + 𝑗 , 𝑁 − 𝑗) + 2Ψ(𝜃)𝑁
𝑁1/3 + 𝑘2𝜈 ≤ 𝑀2

)
≥ 1 − 𝜀,

where 𝑀2 can be chosen to be any 𝑀 ≥ 𝐾0 where 𝐾0(𝜀) comes from Lemma 7.3.6. Recalling that

1(2 𝑗 + 1) = log 𝑍 (𝑁 + 𝑗 , 𝑁 − 𝑗) + 2Ψ(𝜃)𝑁 from (7.1.4), we get (7.3.14).

The remainder of the proof is now devoted in proving (7.3.15). Towards this end, set 𝐾1 =

1
2 (𝑀1 + 2𝑘)2𝜈. Choose 𝑀1 large enough so that 𝐾1 ≥ 𝐾0(𝜀/4) where 𝐾0 comes from Lemma

7.3.6. Applying Lemma 7.3.6 with 𝑀 ↦→ 𝑀1 + 2𝑘 , 𝐾 ↦→ 𝐾1, and 𝜀 ↦→ 𝜀/4 we have

lim inf
𝑁→∞

P

(
log 𝑍 line

𝑁
((𝑀1 + 2𝑘)𝑁2/3) + 2Ψ(𝜃)𝑁

𝑁1/3 ≤ −1
2 (𝑀1 + 2𝑘)2𝜈

)
> 1 − 1

4𝜀. (7.3.22)

Now we take 𝐾2 = ( (𝑀1+2𝑘)2
4 − 𝑘2)𝜈 − log 2 ≥ 1

4𝑀
2
1 𝜈. We again choose 𝑀1 large enough so that
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𝐾2 ≥ 𝐾0(𝜀/4). Then applying Lemma 7.3.6 with 𝑀 ↦→ 𝑘 , 𝐾 ↦→ 𝐾2, and 𝜀 ↦→ 𝜀/4 we have

lim inf
𝑁→∞

P

(
log 𝑍 line

𝑁
(𝑘𝑁2/3) + 2Ψ(𝜃)𝑁
𝑁1/3 ≥ −1

4 (𝑀 + 2𝑘)2𝜈 + log 2

)
> 1 − 1

4𝜀. (7.3.23)

By union bound the above two estimates implies for all large enough 𝑀1 we have

lim inf
𝑁→∞

P
(
𝑍 line
𝑁 (𝑘𝑁

2/3) > 2 · 𝑍 line
𝑁 ((𝑀1 + 2𝑘)𝑁2/3)

)
> 1 − 1

2𝜀. (7.3.24)

Let us temporarily set 𝐴 = 𝑍 line
𝑁
(𝑘𝑁2/3) − 𝑍 line

𝑁
((𝑀1 + 2𝑘)𝑁2/3 and 𝐵 = 𝑍 line

𝑁
((𝑀1 + 2𝑘)𝑁2/3.

Observe that 𝐴 + 𝐵 > 2𝐵 implies 2𝐴 > 𝐴 + 𝐵. Recall from (7.1.5) that

𝐴 =

d(𝑀1+2𝑘)𝑁2/3e−1∑︁
d𝑘𝑁2/3e

𝑍 (𝑁 + 𝑗 , 𝑁 − 𝑗) ≤ (𝑀1 + 𝑘)𝑁
2
3 sup
𝑗∈J𝑘𝑁

2
3 ,(𝑀1+2𝑘)𝑁

2
3 K

𝑍 (𝑁 + 𝑗 , 𝑁 − 𝑗).

We thus have

{
𝑍 line
𝑁 (𝑘𝑁

2/3) > 2 · 𝑍 line
𝑁 ((𝑀1 + 2𝑘)𝑁2/3)

}
⊂

{
sup

𝑗∈J𝑘𝑁
2
3 ,(𝑀1+2𝑘)𝑁

2
3 K

log 𝑍 (𝑁 + 𝑗 , 𝑁 − 𝑗) > log 𝑍 line
𝑁 (𝑘𝑁

2
3 ) − log(2(𝑀1 + 𝑘)𝑁

2
3 )

}
.

(7.3.25)

By Lemma 7.3.6, one can choose 𝑀2 large enough (but free of 𝑘) so that

lim inf
𝑁→∞

P(log 𝑍 line
𝑁 (𝑘𝑁

2/3) + 2Ψ(𝜃)𝑁 + 𝑘2𝜈𝑁1/3 ≥ −𝑀2𝑁
1
3 + log(2(𝑀1 + 𝑘)𝑁

2
3 ) > 1 − 1

2𝜀.

Using this, in view of (7.3.25) and (7.3.24), and using 1(2 𝑗 + 1) = log 𝑍 (𝑁 + 𝑗 , 𝑁 − 𝑗) + 2Ψ(𝜃)𝑁

(see (7.1.4)) we arrive at (7.3.15). This proves Proposition 7.3.4.

Proof of Proposition 7.3.5. We use the same notations from proof of Proposition 7.3.4 and utilize

(7.3.22) and (7.3.23) obtained there with 𝑘 = 1. Let us set 𝑀 = 𝑀1 + 2. Indeed combining (7.3.22)
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and (7.3.23) we have

lim inf
𝑁→∞

P
(
log 𝑍 line

𝑁 (𝑁
2/3) > 1

4𝑀
2𝑁1/3𝜈 + log 𝑍 line

𝑁 (𝑀𝑁
2/3)

)
≥ 1 − 1

2𝜀.

As 𝑍 line
𝑁
(𝑀𝑁2/3) ≥ 𝑍 (𝑁 + 𝑀𝑁2/3; 𝑁 − 𝑀𝑁2/3), this leads to

lim inf
𝑁→∞

P
(
log 𝑍 line

𝑁 (𝑁
2/3) > 1

4𝑀
2𝑁1/3𝜈 + log 𝑍 (𝑁 + 𝑀𝑁2/3, 𝑁 − 𝑀𝑁2/3)

)
≥ 1 − 1

2𝜀.

Again by Lemma 7.3.6, one can choose 𝑀 large enough so that

lim inf
𝑁→∞

P
(
log 𝑍 line

𝑁 (𝑁
2/3) ≤ 1

8𝑀
2𝑁1/3𝜈 − 2Ψ(𝜃)𝑁

)
> 1 − 1

2𝜀,

which forces

lim inf
𝑁→∞

P
(
log 𝑍 (𝑁 + 𝑀𝑁2/3; 𝑁 − 𝑀𝑁2/3) < −2𝑁Ψ(𝜃) − 1

8𝑀
2𝑁1/3𝜈

)
≥ 1 − 𝜀.

Recalling that 1(2𝑀𝑁2/3 + 1) = log 𝑍 (𝑁 + 𝑀𝑁2/3; 𝑁 − 𝑀𝑁2/3) − 2Ψ(𝜃)𝑁 from (7.1.4), we get

(7.3.16). This completes the proof of Proposition 7.3.5.

7.3.3 Spatial properties of the lower curves

In this section, we study spatial properties of the lower curves of the HSLG line ensemble. The

main result of this section is the following.

Theorem 7.3.7. Fix any 𝑝 ∈ {1, 2}. Set 𝛼 := 𝛼𝑝 according to (7.3.11). Consider the HSLG line

ensemble from Definition 7.2.7 with parameters (𝛼, 𝜃). Given any 𝑘, 𝜀 > 0, there exist constants

𝑀 = 𝑀 (𝑘, 𝜀) ≥ 1 and 𝑁0(𝑘, 𝜀) ≥ 1 such that for all 𝑁 ≥ 𝑁0(𝑘, 𝜀) and 𝑣 ∈ {2, 3} we have

P

(
sup

𝑠∈J1,𝑘𝑁2/3K

𝑁
𝑣 (𝑠) ≥ 𝑀𝑁1/3

)
≤ 𝜀. (7.3.26)

In plain words, Theorem 7.3.7 argues that with high probability on the domain J1, 𝑘𝑁2/3K, the
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entire second curve and third curve lies below a threshold 𝑀𝑁1/3. The proof of Theorem 7.3.7 can

be easily extended to include other lower indexed curves as well. However, for the proofs of our

main results, it suffices to consider the first three curves.

Recall from Theorem 7.1.3 that the conditional laws of the HSLG line ensemble are given by

HSLG Gibbs measures introduced in Definition 7.1.2. The key technical ingredient in proving

Theorem 7.3.7 is the tightness of left boundary points of the first two curves under bottom-free

measure, defined in Definition 7.2.3.

Lemma 7.3.8. Fix any 𝑝 ∈ {1, 2}. Set 𝛼 := 𝛼𝑝 according to (7.3.11). Fix any 𝑟 ≥ 1 and 𝜀 > 0.

Set 𝑇 = b𝑟𝑁2/3c. Define

𝐴 :=


1 +
√
𝑟 |𝜇 |Ψ′( 12𝜃) if 𝑝 = 1,

1 if 𝑝 = 2.
(7.3.27)

There exists 𝑀 = 𝑀 (𝜀) > 0 and 𝑁0(𝜀) > 0 such that for all 𝑁 ≥ 𝑁0 we have

P(0,−𝐴
√
𝑇),(−∞)𝑇 ;2,𝑇

𝛼𝑝

(
|𝐿1(1) | + |𝐿2(2) | ≥ 𝑀

√
𝑇
)
≤ 𝜀. (7.3.28)

where the law P®𝑦,(−∞)
2𝑇 ;2,𝑇

𝛼𝑝 is defined in Definition 7.2.3. Furthremore, there exists 𝑀 = 𝑀 (𝜀) > 0

and 𝑁0(𝜀) > 0 such that for all 𝑁 ≥ 𝑁0 we have

P0,(−∞)𝑇 ;1,𝑇
𝛼1

(
|𝐿1(1) | ≥ 𝑀

√
𝑇
)
≤ 𝜀. (7.3.29)

As we shall see in the next section, the proof of the above lemma can be extended to include

𝐿2(1) instead of 𝐿2(2). For technical reasons we work with 𝐿2(2).

As mentioned in the introduction, the proof of Lemma 7.3.8 relies on several ingredients related

to non-intersecting random walks. We postpone its proof to Section 7.4. We now complete the

proof of Theorem 7.3.7 assuming Lemma 7.3.8.

Proof of Theorem 7.3.7. We first prove Theorem 7.3.7 for the 𝑣 = 2 case and then use it to show
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𝑣 = 3 case.

Part I: 𝑣 = 2 case. For clarity we divide the proof into two steps.

Step 1. We shall write 𝑖 ( 𝑗) for the HSLG line ensemble 𝑁
𝑖
( 𝑗). Recall that the points in the line

ensemble satisfy certain high probability ordering due to Theorem 7.3.1. In particular, if we know

the even points on 2 are not too high, Theorem 7.3.1 will force that with high probability the odd

points are not too high as well. Thus it suffices to control the even points on 2. In this step, we flesh

out the details of the above idea. The proof of control on even points on 2 appears in the second

step of the proof.

We begin by defining a few events that will appear in the rest of the proof. Fix 𝑘, 𝜀 > 0. For

any 𝑟 ∈ J1, 𝑘𝑁2/3K ∩ 2Z, define

A𝑟 (𝑀) :=
{

2(𝑟) ≥ 𝑀𝑁1/3}, F𝑟 (𝑀) := {1(𝑟 − 1) ≥ 3𝑀
4 𝑁

1/3}.

Define

B𝑟 (𝑀) = A𝑟 (𝑀) ∩
⋂

𝑠∈J𝑟+2,𝑘𝑁2/3K∩2Z

¬A𝑠 (𝑀),

so that (B𝑟 (𝑀))𝑟∈J1,𝑘𝑁2/3K forms a disjoint collections of events. We next define

G+(𝑀) :=
⊔

𝑟∈J1,𝑘𝑁2/3K∩2Z

B𝑟 (𝑀) ∩ F𝑟 (𝑀), G−(𝑀) :=
⊔

𝑟∈J1,𝑘𝑁2/3K∩2Z

B𝑟 (𝑀) ∩ ¬F𝑟 (𝑀).

In the above equation, we use t instead of ∪ to stress on the fact that it is an union of disjoint

events. Finally set G(𝑀) := G+(𝑀) tG−(𝑀). Observe that the event

¬G(𝑀) =
{

sup
𝑠∈J1,𝑘𝑁2/3K∩2Z

2(𝑠) < 𝑀𝑁1/3
}

controls the supremum of the second curve over the even points. Take 0 < 𝑘′ < 𝑘 . By the union
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bound we get that

P

(
sup

𝑠∈J1,𝑘 ′𝑁2/3K
2(𝑠) ≥ 3𝑀𝑁

1
3

)
≤ P(G(2𝑀)) + P

(
sup

𝑠∈J1,𝑘 ′𝑁2/3K
𝑠∈(2Z+1)

2(𝑠) ≥ 3𝑀𝑁
1
3 ,¬G(2𝑀)

)
. (7.3.30)

Note that on −G(2𝑀) the supremum of 2(𝑠) over all 𝑠 ∈ J1, 𝑘𝑁2/3K is at most 2𝑀𝑁1/3. Then by

the ordering of the line ensemble (Theorem 7.3.1) on ¬G(2𝑀) it is exponentially unlikely that any

odd point within J1, 𝑘′𝑁2/3K will exceed 2𝑀𝑁1/3 + (log 𝑁)7/6. In particular the second term on

the r.h.s. of (7.3.30) can be made smaller than 𝜀
2 by choosing 𝑁 large enough and taking 𝑀 ≥ 1.

For the first term we claim that there exists 𝑀0, 𝑁0 depending on 𝑘, 𝜀 such that for all 𝑁 ≥ 𝑁0 and

𝑀 ≥ 𝑀0 we have

P(G(2𝑀)) ≤ 𝜀
2 . (7.3.31)

Clearly plugging this bound back in r.h.s. of (7.3.30) proves (7.3.26) with 𝑀 ↦→ 3𝑀 and 𝑘′ ↦→ 𝑘 .

For the remainder of the proof we focus on proving (7.3.31).

Step 2. In this step we prove (7.3.31). Observe that from the definition of G−(2𝑀) we have

P(G−(2𝑀)) ≤ P
(
1(𝑟 − 1) − 2(𝑟) ≥ −𝑀2 𝑁

1/3, for some 𝑟 ∈ J1, 𝑘𝑁1/3K ∩ 2Z
)
.

However by Theorem 7.3.1 the r.h.s. of the above equation can be made smaller that 𝜀
4 for all

𝑁 ≥ 𝑁0 and 𝑀 ≥ 1, by choosing 𝑁0 := 𝑁0(𝑘, 𝜀) > 0 appropriately. We next claim that

P(G+(2𝑀)) ≤ 2P(A2(𝑀)) ≤ 𝜀
4 . (7.3.32)

As G(2𝑀) = G−(2𝑀) ∪G+(2𝑀), in view of the above claim, (7.3.31) follows via a union bound.
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Let us now prove (7.3.32). Observe that by definition of 𝐺+(2𝑀) we have

P
(
A2(𝑀)

)
≥ P

(
G+(2𝑀) ∩ A2(𝑀)

)
=

∑︁
𝑟∈J1,𝑘𝑁2/3K∩2Z

P
(
B𝑟 (2𝑀) ∩ F𝑟 (2𝑀) ∩ A2(𝑀)

)
. (7.3.33)

We focus on each of the terms in the above sum. Using the tower property of the expectation we

have
P
(
B𝑟 (2𝑀) ∩ F𝑟 (2𝑀) ∩ A2(𝑀)

)
= E

[
1B𝑟 (2𝑀)∩F𝑟 (2𝑀)E

(
1A2 (𝑀) | 3, 1J𝑟 − 1, 𝑘𝑁2/3K, 2J𝑟, 𝑘𝑁2/3K

)]
.

(7.3.34)

Using the Gibbs property (see Theorem 7.1.3 and Observation 7.2.2 (a)) we have almost surely

that
1B𝑟 (2𝑀)∩F𝑟 (2𝑀)E

(
1A2 (𝑀) | 3, 1J𝑟 − 1, 𝑘𝑁2/3K, 2J𝑟, 𝑘𝑁2/3K

)
= 1B𝑟 (2𝑀)∩F𝑟 (2𝑀)P

®𝑦,®𝑧;2,𝑟/2
𝛼𝑝 (𝐿2(2) > 𝑀𝑁1/3)

≥ 1B𝑟 (2𝑀)∩F𝑟 (2𝑀)P
®𝑤,(−∞)𝑟 ;2,𝑟/2
𝛼𝑝 (𝐿2(2) > 𝑀𝑁1/3),

(7.3.35)

where ®𝑦 = (1(𝑟 − 1), 2(𝑟)), ®𝑧 = (3(2𝑣))𝑟/2𝑣=1 and ®𝑤 := ( 3𝑀2 𝑁
1/3, 3𝑀

2 𝑁
1/3 − 𝐴

√︁
𝑟/2) (𝐴 ≥ 1 is defined

in (7.3.27)). The last inequality above follows by stochastic monotonicity (Proposition 8.2.3). We

now briefly explain how stochastic monotonicity works here. Not that the event {𝐿2(2) > 𝑀𝑁1/3}

is decreasing as the boundary data decreases. Thus to acheive a lower bounda, we can reduce the

boundary ®𝑧 to (−∞)𝑟 . Furthermore, on B𝑟 (2𝑀) ∩ F𝑟 (2𝑀), we may reduce ®𝑦 to ®𝑤 as 𝑦𝑖 ≥ 𝑤𝑖 on

B𝑟 (2𝑀) ∩ F𝑟 (2𝑀).

Note that 𝑀𝑁1/3 ≥ 𝑀𝑘−
1
2
√︁
𝑟/2. Now by translation invariance (Observation 7.2.1 (a)) and

Lemma 7.3.8, we may choose 𝑀0(𝑘, 𝜀) large enough so that for all 𝑀 ≥ 𝑀0 and for all 𝑟 ∈

J1, 𝑘𝑁2/3K ∩ 2Z we have

P ®𝑤,(−∞)
𝑟 ;2,𝑟/2

𝛼𝑝 (𝐿2(2) > 𝑀𝑁1/3) = P(0,−𝐴
√
𝑟/2),(−∞)𝑟 ;2,𝑟/2

𝛼𝑝

(
𝐿2(2) > −1

2𝑀𝑁
1/3) ≥ 1

2 .
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Inserting the above bound in (7.3.35) and then going back to (7.3.34) we get

r.h.s. of (7.3.34) ≥ 1
2P

(
B𝑟 (2𝑀) ∩ F𝑟 (2𝑀)

)
.

Recall that B𝑟 (2𝑀) ∩F𝑟 (2𝑀) are all disjoint events whose union over 𝑟 ∈ J1, 𝑘𝑁2/3K∩2Z is given

by G+(2𝑀). Summing the above inequality over 𝑟 ∈ J1, 𝑘𝑁2/3K∩ 2Z, in view of (7.3.33), we thus

arrive at P(A2(𝑀)) ≥ 1
2P(G+(2𝑀)). This proves the first inequality in (7.3.32). For the second

one observe that by union bound

P(A2(𝑀)) ≤ P(1(3) − 2(2) ≤ −𝑁1/3) + P(1(3) ≥ (𝑀 − 1)𝑁1/3).

By Theorem 7.3.1 the first term on the r.h.s. of the above equation can be made arbitrarily small

by choosing 𝑁 large enough. As for the second term, recall the point-to-line partition function

𝑍 line
𝑁
(·) from (7.1.5). From Theorem 7.1.4 we know 𝑁−1/3 [log 𝑍 line

𝑁
(1) + 2Ψ(𝜃)𝑁] is tight. Since

𝑁
1 (3) ≤ log 𝑍 line

𝑁
(1) +2Ψ(𝜃)𝑁 (see (7.1.4)), one can make the second term arbitrarily small enough

by choosing 𝑀, 𝑁 large enough. This completes the proof of (7.3.32).

Part II: 𝑣 = 3 case. Fix 𝑘 > 0. Let us define

E :=
{

sup
𝑠∈J1,𝑘𝑁2/3K

3(𝑠) ≥ 𝑀𝑁1/3
}
, F :=

{
sup

𝑠∈J1,𝑘𝑁2/3K
2(𝑠) ≥ 1

2𝑀𝑁
1/3

}
.

By repeated application of the union bound we have

P(E) ≤ P(F) + P(E ∩ ¬F)

≤ P(F) + P
(
2(𝑠) − 3(𝑠) ≤ −1

2𝑀𝑁
1/3, for some 𝑠 ∈ J1, 𝑘𝑁2/3K

)
≤ P(F) +

∑︁
J1,𝑘𝑁2/3K

P
(
2(𝑠) − 3(𝑠) ≤ −1

2𝑀𝑁
1/3) . (7.3.36)

By Theorem 7.3.1, there exists an absolute constant 𝑁0 such that for all 𝑠 ≥ 1, and 𝑀 ≥ 1, we have

P
(
2(𝑠) − 3(𝑠) < −1

2𝑀𝑁
1/3

)
≤ 2−𝑁 . Since we have established 𝑣 = 2 case of Theorem 7.3.7, we
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may directed use (7.3.26) with 𝑣 ↦→ 2, 𝑀 ↦→ 1
2𝑀 and 𝜀 ↦→ 1

2𝜀, to get that P(F) ≤ 1
2𝜀 for all large

enough 𝑁, 𝑀 . Thus for all 𝑁, 𝑀 large enough we have (7.3.36) ≤ 1
2𝜀 + 𝑘𝑁

2/32−𝑁 ≤ 𝜀. 𝑁 ≥ 𝑁0.

This completes the proof.

Theorem 7.3.7 and Lemma 7.3.8 can be used to deduce left boundary tightness for the HSLG

line ensemble. We shall refer to this property as endpoint tightness.

Theorem 7.3.9 (Endpoint Tightness). Fix any 𝑝 ∈ {1, 2}. Set 𝛼 := 𝛼𝑝 according to (7.3.11).

Recall the HSLG line ensemble from Definition 7.2.7 with parameters (𝛼, 𝜃). The sequences

{𝑁−1/3𝑁
1 (1)}𝑁 and {𝑁−1/3𝑁

2 (2)}𝑁 are tight.

Again the proof can be extended to include tightness of 𝑁−1/3𝑁
2 (1) as well, once we have the

corresponding version in Lemma 7.3.8. We again refrain from doing so, as it is inconsequential to

the proofs of our main theorem.

Remark 7.3.10. In [205], the authors computed the distributional limit of 𝑁−1/3𝑁
1 (1) which im-

plies tightness as well. Currently, their approach does not give access to information we need about

the behavior of 𝑁2 (2).

Proof of Theorem 7.3.9. Fix an 𝜀 > 0. We shall show that for all large enough 𝑁, 𝑀 we have

P(𝑁1 (1) ≤ 𝑀𝑁
1/3) ≥ 1 − 3𝜀, P(𝑁2 (2) ≤ −𝑀𝑁

1/3) ≤ 3𝜀. (7.3.37)

In view of the ordering of points in the line ensemble (Theorem 7.3.1), we know 𝑁
1 (1) ≥

𝑁
2 (2) −

(log 𝑁)7/6 with probability at least 1 − 2−𝑁 . This along with the above equation ensures endpoint

tightness. We thus focus on proving (7.3.37).

Proof of the first inequality in (7.3.37). Recall the point-to-line partition function 𝑍 line
𝑁
(·) from

(7.1.5). From Theorem 7.1.4, we know 𝑁−1/3 [log 𝑍 line
𝑁
(1) + 2Ψ(𝜃)𝑁] is tight. Since 𝑁

1 (3) ≤

log 𝑍 line
𝑁
(1) + 2Ψ(𝜃)𝑁 , there exists 𝑀1(𝜀) > 0 such that for all 𝑁 ≥ 3 we have P(𝑁1 (3) ≤
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𝑀1𝑁
1/3) ≥ 1 − 𝜀. Thanks to Theorem 7.3.1, there exists 𝑀2(𝜀) > 𝑀1(𝜀) such that for all 𝑁 ≥ 3

P(A) ≥ 1 − 2𝜀, A :=
{
𝑁
1 (3) ≤ 𝑀1𝑁

1/3, sup
𝑗∈J1,4K

𝑁
2 ( 𝑗) ≤ 𝑀2𝑁

1/3
}
.

Define F := 𝜎{(𝑁1 ( 𝑗)) 𝑗≥3, ((𝑁𝑖 J1, 2𝑁 − 2𝑖 + 2K)𝑖≥2}. By the union bound and tower property of the

conditional expectation, for any 𝑀3 > 0 we have

P(𝑁1 (1) ≥ 𝑀2𝑁
1/3 + 𝑀3) ≤ 2𝜀 + E

[
1AE

(
1𝑁

1 (1)≥𝑀2𝑁1/3+𝑀3
| F

) ]
Using Theorem 7.1.3 we have

E
(
1𝑁

1 (1)≥𝑀2𝑁1/3+𝑀3
| F

)
= P

𝑁
1 (3),(

𝑁
2 (2),

𝑁
2 (4));1,2

𝛼𝑝 (𝐿1(1) ≥ 𝑀2𝑁
1/3 + 𝑀3)

On event A, the boundary data are at most 𝑀2𝑁
1/3. By stochastic monotonicity (Proposition 8.2.3)

and translation invariance of the Gibbs measure (Observation 7.2.1 (a)), under event A we have

1A · P
𝑁
1 (3),(

𝑁
2 ( 𝑗)) 𝑗∈J1,4K;1,2

𝛼𝑝 (𝐿1(1) ≥ 𝑀2𝑁
1/3 + 𝑀3) ≤ 1A · P0,(0,0,0,0);1,2

𝛼𝑝 (𝐿1(1) ≥ 𝑀3).

The last probability can be made less than 𝜀 by taking 𝑀3 large enough. Thus setting 𝑀4 =

𝑀4(𝜀) := 𝑀3 + 𝑀2, we see that for all 𝑁 ≥ 3, the first inequality in (7.3.37) holds with 𝑀 = 𝑀4.

Proof of the second inequality in (7.3.37). We start by defining two high probability events B1

and B2. The idea is to then show P
(
{𝑁2 (2) ≤ −𝑀𝑁

1/3} ∩ B1 ∩ B2
)

can be made arbitrarily small

by choosing 𝑁, 𝑀 large enough.

We shall use Theorem 7.3.3 (high point on the second curve) with 𝑘 ↦→ 1. Consider 𝑅0 =

𝑅0(1, 𝜀) > 0 from Theorem 7.3.3. Set 𝑅 = max{𝑅0, 1}. By Theorem 7.3.3 with 𝑘 ↦→ 1, there

exists 𝑀5(𝜀) > 0 such that for all large enough 𝑁

P(B1) ≥ 1 − 𝜀, B1 :=
𝑅𝑁2/3⋃
𝑞=𝑁2/3

B1(𝑝), B1(𝑞) :=
{
𝑁
2 (2𝑞) ≥ −𝑀5𝑁

1/3}.
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We write the set B1 as union of disjoint sets as follows:

C1(𝑞) := B1(𝑞) ∩
𝑅𝑁2/3⋂
𝑠=𝑞+1

¬B1(𝑠), C1 :=
𝑅𝑁2/3⊔
𝑞=𝑁2/3

C1(𝑞) = B1.

By Theorem 7.3.1, for large enough 𝑁 we have

P(B2) ≥ 1 − 𝜀, B2 :=
𝑅𝑁2/3⋂
𝑞=𝑁2/3

B2(𝑞), B2(𝑞) :=
{
𝑁
2 (2𝑞) −

𝑁
1 (2𝑞 − 1) ≤ 𝑁1/3}.

Set F𝑞 := 𝜎{(𝑁1 ( 𝑗−1), 𝑁2 ( 𝑗)) 𝑗≥2𝑞, (𝑁𝑖 J1, 2𝑁−2𝑖+2K)𝑖≥3}. Observe that B2(𝑞)∩C1(𝑞) is measurable

with respect to F𝑞. Note that for any 𝑀6 > 0 we have

P
( {

𝑁
2 (2) ≤ −𝑀6𝑁

1/3
}
∩ B1 ∩ B2

)
≤

𝑅𝑁2/3∑︁
𝑞=𝑁2/3

P
( {

𝑁
2 (2) ≤ −𝑀6𝑁

1/3
}
∩ C1(𝑝) ∩ B2(𝑝)

)
=

𝑅𝑁2/3∑︁
𝑞=𝑁2/3

E
[
1B2 (𝑞)∩C1 (𝑞)E

[
1𝑁

2 (2)≤−𝑀6𝑁1/3 | F𝑞
] ]
. (7.3.38)

By the Gibbs property (Theorem 7.1.3) we have

1B2 (𝑞)∩C1 (𝑞) · E
[
1𝑁

2 (2)≤−𝑀6𝑁1/3 | F𝑞
]
= 1B2 (𝑞)∩C1 (𝑞) · P

(𝑁1 (2𝑞−1),𝑁2 (2𝑞)),(
𝑁
3 (2𝑖))

𝑞

𝑖=1;2,𝑞
𝛼𝑝 (𝐿2(2) ≤ −𝑀6𝑁

1/3)

≤ 1B2 (𝑞)∩C1 (𝑞) · P
(𝑦1,𝑦2),(−∞)𝑞 ;2,𝑞
𝛼𝑝 (𝐿2(2) ≤ −𝑀6𝑁

1/3),

where 𝑦1 = −(𝑀5 + 1)𝑁1/3, 𝑦2 = −𝑀5𝑁
1/3. The last inequality follows due to stochastic mono-

tonicity (Proposition 8.2.3) as on the event B2(𝑞) ∩ C1(𝑞) we have 𝑁
2 (2𝑞) ≥ −𝑀5𝑁

1/3 and

𝑁
1 (2𝑞 − 1) ≥ −(𝑀5 + 1)𝑁1/3. By translation invariance and stochastic monotonicity we have

P(𝑦1,𝑦2),(−∞)𝑞 ;2,𝑞
𝛼𝑝 (𝐿2(2) ≤ −𝑀6𝑁

1/3) ≤ P(0,−𝐴
√
𝑞),(−∞)𝑞 ;2,𝑞

𝛼𝑝 (𝐿2(2) ≤ (𝑀5 + 1 − 𝑀6)𝑁1/3) ≤ 𝜀,

where the last inequality is uniform over 𝑞 ∈ J𝑁2/3, 𝑅𝑁2/3K and follows from Lemma 7.3.8 by

taking 𝑀6 large enough (𝐴 ≥ 1 is defined in (7.3.27)). Plugging the above bound back in (7.3.38),
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and noting that (B2(𝑞))𝑅𝑁
2/3

𝑞=𝑁2/3 forms a disjoint collection of events we have that (7.3.38) ≤ 𝜀. Using

the fact that P(¬B𝑖) ≤ 𝜀 for 𝑖 = 1, 2, an application of the union bound yields the second inequality

in (7.3.37) with 𝑀 = 𝑀6. This completes the proof.

7.4 Proof of Lemma 7.3.8

In this section, we prove Lemma 7.3.8 that asserts endpoint tightness of bottom-free measures

defined in Definition 7.2.3. Along with Lemma 7.3.8, we also study probabilities of a certain event

which we call region pass event under bottom-free measure.

Fix any 𝑟, 𝑀 > 0 and 𝑝 ∈ {1, 2}. Set 𝑇 = b𝑟𝑁2/3c. We define the region pass event as

RP𝑝,𝑀 :=
{

inf
𝑖∈J1,2𝑇+𝑝−2K

𝐿𝑝 (𝑖) ≥ 2𝑀𝑁1/3
}
. (7.4.1)

Informally speaking, region pass event requires the first 2𝑇 + 𝑝 − 2 points of the 𝑝-th curve to lie

above 2𝑀𝑁1/3 . Although this is a low probability event, in the following lemma we claim that

one has a uniform lower bound on this event.

Lemma 7.4.1. Fix any 𝑟, 𝑀 > 0 and 𝑝 ∈ {1, 2}. Set 𝑇 = b𝑟𝑁2/3c. We set 𝛼 = 𝛼𝑝 according to

(7.3.11). Recall the bottom-free measure from Definition 7.2.3. Let ®𝑦 ∈ R𝑝 with 𝑦𝑖 = −(𝑀 + 𝑖 −

1)𝑁1/3. There exists 𝜙 = 𝜙(𝑟, 𝑀) > 0 and 𝑁0(𝑟, 𝑀) > 0 such that for all 𝑁 ≥ 𝑁0 we have

P®𝑦,(−∞)
2𝑇 ;𝑝,2𝑇

𝛼𝑝 (RP𝑝,𝑀) ≥ 𝜙. (7.4.2)

In plain words, Lemma 7.4.1 says there is always positive probability that the first half of the

points in second curve are higher than a given threshold (see Figure 7.13).

Recall that 𝛼1 and 𝛼2 are the boundary parameters corresponding to critical and supercritical

phases respectively. Depending on the phase being supercritical or critical, the arguments for

proving Lemma 7.3.8 and Lemma 7.4.1 are markedly different. We first give interpretation of the

bottom-free laws under the two phases in Section 7.4.1. In Section 7.4.2 and 7.4.3, we provide
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2𝑀𝑁1/3

−𝑀𝑁1/3

−(𝑀 + 1)𝑁1/3

2𝑇 4𝑇

Figure 7.13: The above figure depicts the event RP2,𝑀 under the law P®𝑦,(−∞)
2𝑇 ;2,2𝑇

𝛼2 .

proofs of the aforementioned lemmas for critical and supercritical phases respectively.

7.4.1 Interpretation of the bottom-free laws under critical and supercritical phase

In this section, we provide convenient interpretations of the bottom-free laws. We begin with

the following observation where we mention how the bottom-free measure on the domain K𝑘,𝑇

with boundary condition ®𝑦 is well defined under certain cases.

Observation 7.4.2 (Well-definedness of bottom-free measures). Take ®𝑦 ∈ R𝑘 . When 𝑘 is even and

𝛼 > 0 or When 𝑘 ≥ 1 and 𝛼 ∈ (−𝜃, 𝜃), the bottom-free measure on the domainK𝑘,𝑇 with boundary

condition ®𝑦 is well defined. Indeed, for 𝑘 ≥ 1 and 𝛼 ∈ (−𝜃, 𝜃), 𝑓 ®𝑦,(−∞)
𝑇

𝑘,𝑇
(u) is proportional to

𝑘−1∏
𝑖=1

𝑇−1𝑖=1∏
𝑗=1

𝑊 (𝑢𝑖+1,2 𝑗 ; 𝑢𝑖,2 𝑗+1, 𝑢𝑖,2 𝑗−1)
𝑘∏
𝑖=1

2𝑇−1−1𝑖=1∏
𝑗=1

𝐺𝜃+(−1)𝑖+ 𝑗−1𝛼,(−1) 𝑗+1 (𝑢𝑖, 𝑗 − 𝑢𝑖, 𝑗+1). (7.4.3)
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where 𝑊 (𝑎; 𝑏, 𝑐) := exp(−𝑒𝑎−𝑏 − 𝑒𝑎−𝑐) and 𝐺 is defined in (7.2.3). The above form follows from

(7.2.2) by redistributing the edge weights cleverly. See Figure 7.14 A. For the case when 𝑘 is even

and 𝛼 > 0, we redistribute according to Figure 7.14 B. One can compute the explicit density for

the corresponding bottom-free measure from the figure. For our later proofs, we record it only for

𝑘 = 2. 𝑓 ®𝑦,(−∞)
2𝑇

2,𝑇 (u) is proportional to

exp (−𝑒𝑢2,2−𝑢1,3)𝐺𝛼,1(𝑢2,2 − 𝑢1,1)𝐺𝜃,1(𝑢1,1 − 𝑢1,2)𝐺𝛼+𝜃,1(𝑢2,1 − 𝑢2,2)
𝑇−1∏
𝑗=2
𝑊 (𝑢2,2 𝑗 ; 𝑢1,2 𝑗+1, 𝑢1,2 𝑗−1)

2∏
𝑖=1

2𝑇−1−1𝑖=1∏
𝑗=2

𝐺𝜃,(−1) 𝑗+1 (𝑢𝑖, 𝑗 − 𝑢𝑖, 𝑗+1).
(7.4.4)

From the form of the densities in (7.4.3) and (7.4.4), it is clear that they are integrable.

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

(a)

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

(b)

Figure 7.14: Redistribution of edge weights for 𝛼 ∈ (−𝜃, 𝜃) (Figure A) and for 𝛼 > 0 and 𝑘 even
(Figure B). The weights of green, teal, and purple edges are 𝑒(𝜃−𝛼)𝑥−𝑒

𝑥

, 𝑒𝛼𝑥−𝑒
𝑥

, and 𝑒(𝜃+𝛼)𝑥−𝑒
𝑥

respectively.

This observation allows us to interpret the bottom free laws in terms of random walks.

Critical phase

In this section, we give the interpretation of the bottom-free law under critical phase. We

first give an informal interpretation based on the Figure 7.15. Towards this end, we introduce 𝜉-

distributions. Given 𝜃1, 𝜃2 > 0 and 𝑎, 𝑏 ∈ R, we consider the following two probability density
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functions

𝜉
(𝑎,𝑏)
𝜃1,𝜃2;±1(𝑥) ∝ 𝐺𝜃1,±1(𝑎 − 𝑥)𝐺𝜃2,±1(𝑏 − 𝑥). (7.4.5)

The graphical representation of the above two distributions are given in Figure 7.15 B.

𝑦1

(a) P𝑦1, (−∞)4;1,4
𝛼1

𝑏𝑎
𝜃1 𝜃2 𝑏𝑎

𝜃1 𝜃2

(b) 𝜉 (𝑎,𝑏)
𝜃1, 𝜃2;+1 and 𝜉 (𝑎,𝑏)

𝜃1, 𝜃2;−1

𝑦1
𝑦2

𝑦1
𝑦2

𝑦1
𝑦2·=

(c) P(𝑦1,𝑦2 ) , (−∞)3;2,3
𝛼1

Figure 7.15: Figures (A) and (B) are graphical representations of probability distributions
P𝑦1,(−∞)4;1,4
𝛼1 and 𝜉 (𝑎,𝑏)

𝜃1,𝜃2;±1 respectively. Figure (C) shows decomposition of P(𝑦1,𝑦2),(−∞)4;2,4
𝛼1 into

P̃(𝑦1,𝑦2) (middle figure) and𝑊cr (right figure). The marginal law of the gray (blue resp.) shaded re-
gion is a random walk started at 𝑦1 (𝑦2 resp.) with increment𝐺𝜃+𝛼1,−1∗𝐺𝜃−𝛼1,+1 (𝐺𝜃+𝛼1,+1∗𝐺𝜃−𝛼1,−1
resp.).

• Let us consider (𝑋 (𝑖))𝑖∈J1,2𝑆−1K ∼ P𝑦1,(−∞)𝑆 ;1,𝑆
𝛼1 . See Figure 7.15 (A) for the graphical represen-

tation of the law. We focus on the odd points (shaded inside the gray box in the figure). Note

that (𝑋 (2𝑆−1−2𝑘))𝑆−1
𝑘=0 is a random walk starting at 𝑋 (2𝑆−1) = 𝑦1 with increments distributed

as 𝐺𝜃+𝛼,1 ∗ 𝐺𝜃−𝛼,−1. Conditioned on the odd points, we have 𝑋 (2𝑘) ∼ 𝜉 (𝑋 (2𝑘−1),𝑋 (2𝑘+1))
𝜃−𝛼1,𝜃+𝛼1;1 .

• Let us now consider the P(𝑦1,𝑦2),(−∞)𝑆 ;2,𝑆
𝛼1 law whose graphical representation is given in Figure

7.15 (C). We view the graph as superimposition of two graphs where in one graph we collect

all the non-black edges and the other graph we include only the black edges (see Figure 7.15

(C)). We denote the law of the Gibbs measure formed by deleting the black edges as P̃(𝑦1,𝑦2)

(middle figure in Figure 7.15 (C)). The law P(𝑦1,𝑦2),(−∞)𝑆 ;2,𝑆
𝛼1 can be recovered from P̃(𝑦1,𝑦2) by

viewing the black edges as a Radon-Nikodym derivative.

• If (𝑋1(𝑖))𝑖∈J1,2𝑆−1K, (𝑋2(𝑖))𝑖∈J1,2𝑆K ∼ P̃(𝑦1,𝑦2) , we have 𝑋1(·) independent of 𝑋2(·) and 𝑋1 is
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distributed as P𝑦1,(−∞)𝑆 ;1,𝑆
𝛼1 . 𝑋2 has a similar representation with even points (𝑋2(2𝑆 − 2𝑘))𝑆−1

𝑘=0

forming a random walk starting at 𝑦2 with increments distributed as 𝐺𝜃+𝛼,−1 ∗ 𝐺𝜃−𝛼,1. Condi-

tioned on the even points, we have 𝑋2(2𝑘 + 1) ∼ 𝜉 (𝑋 (2𝑘),𝑋 (2𝑘+2))
𝜃−𝛼1,𝜃+𝛼1;−1 and 𝑋2(1) ∼ 𝐺𝜃+𝛼1,1 + 𝑋2(2).

All the above bullet points are direct consequences of the graphical representations of distribu-

tions in Figure 7.15. We now summarize our findings in the following observation.

Observation 7.4.3. Consider an independent collection of random variables 𝑌𝑖, 𝑗
𝑖.𝑖.𝑑.∼ 𝐺𝜃+𝛼1,1 and

𝑈𝑖, 𝑗
𝑖.𝑖.𝑑.∼ Beta(𝜃 − 𝛼1, 2𝛼1) for 𝑖 = 1, 2 and 𝑗 ∈ Z>0. Define

𝑉𝑖, 𝑗 := 𝑌𝑖,2 𝑗 + log𝑈𝑖,2 𝑗 − E[log𝑈𝑖,2 𝑗 ] − 𝑌𝑖,2 𝑗−1. (7.4.6)

so that 𝑉𝑖, 𝑗 form an i.i.d. collection of mean zero random variables. Set 𝑋𝑖 (2𝑆 + 𝑖 − 2) = 𝑦𝑖 and

for 𝑘 ∈ J1, 𝑆 − 1K define

𝑋𝑖 (2𝑆 + 𝑖 − 2𝑘 − 2) :=
(
𝑦𝑖 + (−1)𝑖+1(𝑘 − 1)E[log𝑈1,1]

)
+ (−1)𝑖+1

𝑘−1∑︁
𝑗=1
𝑉𝑖, 𝑗 , (7.4.7)

and set

𝑊cr := exp

(
−
𝑆−1∑︁
𝑘=1

(
𝑒𝑋2 (2𝑘)−𝑋1 (2𝑘−1) + 𝑒𝑋2 (2𝑘)−𝑋1 (2𝑘+1)

))
. (7.4.8)

Conditioned on (𝑋𝑖 (2 𝑗 + 𝑖 − 2))𝑖∈{1,2}, 𝑗∈J1,𝑆K, we set 𝑋𝑖 (2𝑘 + 𝑖 − 1) ∼ 𝜉𝑋𝑖 (2𝑘+𝑖−2),𝑋𝑖 (2𝑘+𝑖)
𝜃−𝛼1,𝜃+𝛼1,(−1)𝑖+1 for 𝑖 ∈

{1, 2}, 𝑘 ∈ J1, 𝑆 − 1K and 𝑋2(1) ∼ 𝐺𝜃+𝛼,1 + 𝑋2(2). We have

(a) (𝑋1(𝑖))𝑖∈J1,2𝑆−1K is distributed as P𝑦1,(−∞)𝑆 ;1,𝑆
𝛼1 .

(b) Let P̃(𝑦1,𝑦2) denotes the joint law of {(𝑋1(𝑖))𝑖∈J1,2𝑆−1K, (𝑋2(𝑖))𝑖∈J1,2𝑆K}. This law has graphi-

cal representation given by the middle figure in Figure 7.15 (C). The law P(𝑦1,𝑦2),(−∞)𝑆 ;2,𝑆
𝛼1 is
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absolutely continuous with respect to P̃(𝑦1,𝑦2) with

𝑑P(𝑦1,𝑦2),(−∞)𝑆 ;2,𝑆
𝛼1

𝑑P̃(𝑦1,𝑦2)
= 𝑊cr.

Observation 7.4.3 follows from the three bullet points above and noting that𝑉𝑖, 𝑗 +E[log𝑈1,1] ∼

𝐺𝜃+𝛼,1 ∗ 𝐺𝜃−𝛼,−1. Note that 𝑊cr precisely contains all the effect of the black edges in the Gibbs

measure.

Supercritical phase

In the supercritical phase, the P®𝑦,(−∞)
𝑆 ;1,𝑆

𝛼2 law is a bit more complicated. To describe it, we first

introduce paired random walk and weighted paired random walk (WPRW) below.

Definition 7.4.4 (Paired Random Walk and Weighted Paired Random Walk). We fix two densities

𝑓 and 𝑔. A paired random walk (PRW) (𝑆(𝑛,1)
𝑘

, 𝑆
(𝑛,2)
𝑘
)𝑛
𝑘=0 with endpoints 𝑆(𝑛,1)𝑛 = 𝑥𝑛 and 𝑆(𝑛,2)𝑛 = 𝑦𝑛

is a distribution on 2𝑛 points with density

P

(
𝑛−1⋂
𝑘=0
{𝑆(𝑛,1)

𝑘
∈ d𝑥𝑘 , 𝑆(𝑛,2)𝑘

∈ d𝑦𝑘 }
)
∝ 𝑔(𝑦0 − 𝑥0)

𝑛∏
𝑖=1
[ 𝑓 (𝑥𝑖 − 𝑥𝑖−1) 𝑓 (𝑦𝑖 − 𝑦𝑖−1)]

𝑛−1∏
𝑘=0

𝑑𝑥𝑘 𝑑𝑦𝑘 .

We will denote the law of the above measure as P𝑛;(𝑥𝑛,𝑦𝑛); 𝑓 ,𝑔. We define the random variable:

𝑊sc := exp

(
−𝑒𝑆

(𝑛,2)
0 −𝑆 (𝑛,1)1 −

𝑛−1∑︁
𝑘=1

(
𝑒𝑆
(𝑛,2)
𝑘
−𝑆 (𝑛,1)

𝑘+1 + 𝑒𝑆
(𝑛,2)
𝑘
−𝑆 (𝑛,1)

𝑘

))
(7.4.9)

Using𝑊sc we define a new measure on 2𝑛 points as follows:

P(𝑥𝑛,𝑦𝑛); 𝑓 ,𝑔
𝑊sc

(A) = E[𝑊sc1A]
E[𝑊sc]

We call the above measure as weighted paired random walk (WPRW).

With the above definition in place we now give the following interpretation of the P®𝑦,(−∞)
𝑆 ;1,𝑆

𝛼2

law.
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Observation 7.4.5. Fix any ®𝑦 ∈ R2 and 𝑆 ∈ Z>0. Suppose (𝐿1(2 𝑗−1), 𝐿2(2 𝑗)) 𝑗∈J1,𝑆K ∼ P®𝑦; 𝑓 ,𝑔
𝑊sc

with

𝑓 := 𝐺𝜃,1∗𝐺𝜃,−1 and 𝑔 := 𝐺𝛼2 , with𝐺 defined in (7.2.3). Conditioned on (𝐿1(2𝑖−1), 𝐿2(2𝑖))𝑖∈J1,𝑆K,

set 𝐿2(1) ∼ 𝐺𝛼2+𝜃,1 + 𝐿2(2) and 𝐿1(2𝑘) ∼ 𝜉 (𝐿1 (2𝑘−1),𝐿1 (2𝑘+1))
𝜃,𝜃;1 , 𝐿2(2𝑘 + 1) ∼ 𝜉 (𝐿2 (2𝑘),𝐿2 (2𝑘+2))

𝜃,𝜃;−1 for

𝑘 = 1, 2, . . . , 𝑆 − 1. Then (𝐿𝑖 ( 𝑗))𝑖∈J1,2K, 𝑗∈J1,2𝑆+𝑖−2K is distributed as P®𝑦,(−∞)
𝑆 ;2,𝑆

𝛼2 .

To see that the above observation holds, we again decompose its graph into two graphs: one

with black edges, say 𝐺1, and one without black edges, say 𝐺2 (see Figure 7.16). However, unlike

the critical phase, the Gibbs measure corresponding to𝐺2 does not split into two independent parts

because of the teal edge. For this measure, the marginal law of the odd points of the first curve

and even points of the second curve together form the paired random walk. Upon taking the black

edges into consideration, the odd points of the first curve and even points of the second curve

jointly follows precisely the WPRW law.

𝑦1
𝑦2

𝑦1
𝑦2

𝑦1
𝑦2·=

Figure 7.16: P(𝑦1,𝑦2),(−∞)3;2,3
𝛼2 law is decomposed into two parts. The first part (middle figure)

shaded region corresponds to a paired random walk. The second part (right figure) corresponds to
𝑊sc.

7.4.2 Proof of Lemma 7.3.8 and Lemma 7.4.1 in critical phase

We continue with the notations from Observation 7.4.3. By KMT coupling for random walks

[227] there exists an absolute constant C depending only on 𝜃 and 𝜇 such that for all 𝑆 large

enough,

P̃ ©­« max
𝑘≤𝑆−2

�� 𝑘∑︁
𝑗=1
𝑉𝑖, 𝑗 − 𝜎𝐵(𝑖)𝑘

�� ≥ C log 𝑆ª®¬ ≤ 1/𝑆. (7.4.10)

where 𝜎2 = Var(𝑉1,1) with 𝑉1,1 defined in (7.4.6). Here 𝐵(𝑖) are independent standard Brownian

motions. Recall that 𝛼1 = 𝑁−1/3𝜇. Set 𝜅 := 1
4 |𝜇 |Ψ

′( 12𝜃) ≥ 0. As Ψ′ is a decreasing nonnegative

427



function on [0,∞), for large enough 𝑁 we have

|E[log𝑈1] | = |Ψ(𝜃 − 𝛼1) − Ψ(𝜃 + 𝛼1) | ≤ 2|𝛼1 |Ψ′( 12𝜃) =
1
2𝜅𝑁

−1/3. (7.4.11)

Lemma 7.3.8 and Lemma 7.4.1 can now be proven using the above coupling and the estimate for

|E[log𝑈1] |.

Proof of Lemma 7.3.8 in the case 𝑝 = 1. Fix 𝜀 ∈ (0, 1). Set

𝛽1 := P( sup
𝑥∈[0,1]

𝐵
(1)
𝑥 ≤ 1

8 ) > 0, 𝛽2 := inf
𝑛∈N

exp(−2(𝑛 − 1)𝑒− 1
2
√
𝑛) > 0.

Set 𝑆 = 𝑇 := b𝑟𝑁2/3c. Continuing with the notations from Observation 7.4.3, let us assume

(𝑋1(𝑖))𝑖∈J1,2𝑇−1K, (𝑋2(𝑖))𝑖∈J1,2𝑇K has the law P̃(0,−𝐴
√
𝑇) . Observe that | (𝑇 − 1)E[log𝑈1] | ≤

√
𝑟𝜅
√
𝑇 .

Following the relation in (7.4.7) and the estimate in (7.4.10) we get that with probability at least

𝛽2
1 −

2
𝑇

we have

𝑋1(2𝑘 − 1) ≥ −1
8

√
𝑇 −
√
𝑟𝜅
√
𝑇 − C log𝑇, for all 𝑘 ∈ J1, 𝑇K, and

𝑋2(2𝑘) ≤ −𝐴
√
𝑇 + 1

8

√
𝑇 +
√
𝑟𝜅
√
𝑇 + C log𝑇, for all 𝑘 ∈ J1, 𝑇K.

Recall that 𝐴 = 1 + 2
√
𝑟𝜅 from (7.3.27). Thus for large enough 𝑇 we have

P̃(0,−𝐴
√
𝑇) (𝑋1(2𝑘 − 1) ∧ 𝑋1(2𝑘 + 1) ≥ 𝑋2(2𝑘) + 1

2

√
𝑇, for all 𝑘 ∈ J1, 𝑇 − 1K) ≥ 1

2 𝛽
2
1.

Following the definition of𝑊cr from (7.4.8) we thus get

Ẽ[𝑊cr] ≥ 1
2 𝛽

2
1 · exp(−2(𝑇 − 1)𝑒− 1

2
√
𝑇 ) ≥ 1

2 𝛽
2
1𝛽2.
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By Observation 7.4.3, this forces

P(0,−𝐴
√
𝑇),(−∞)𝑇 ;2,𝑇

𝛼1 ( |𝐿2(2) | ≥ 𝑀
√
𝑇) =

Ẽ(0,−𝐴
√
𝑇) [𝑊cr1|𝑋2 (2) |≥𝑀

√
𝑇
]

Ẽ(0,−𝐴
√
𝑇) [𝑊cr]

≤ 2𝛽−2
1 𝛽−1

2 · P̃
(0,−𝐴

√
𝑇) ( |𝑋2(2) | ≥ 𝑀

√
𝑇).

Under P̃(0,−𝐴
√
𝑇) , 𝑋2(2) has variance 𝑇 ·Var(𝑉1,1) and mean −𝐴

√
𝑇 + (𝑇 − 1)E[log𝑈1,1]. One can

thus choose 𝑀 large enough so that the last term in the above equation is at most 𝜀. Similarly one

can show P(0,−𝐴
√
𝑇),(−∞)𝑇 ;2,𝑇

𝛼2 ( |𝐿1(1) | ≥ 𝑀
√
𝑇) ≤ 𝜀 for all large enough 𝑀 . This proves (7.3.28)

for 𝑝 = 1. For (7.3.29), observe that by Observation 7.4.3 (a) and Markov inequality one can take

𝑀 large enough so that have

P0,(−∞)𝑇 ;1,𝑇
𝛼1

(
|𝐿1(1) | ≥ 𝑀

√
𝑇
)
= P

(
|𝑋1(1) | ≥ 𝑀

√
𝑇
)

≤ 1
𝑀2𝑇

(
𝑇 · Var(𝑉1,1) + (|(𝑇 − 1)E[log𝑈1])2

)
≤ 𝜀.

This completes the proof.

Proof of Lemma 7.4.1 in the case 𝑝 = 1. We continue with the same notations as in Observation

7.4.3. Set 𝑆 = 2𝑇 := 2b𝑟𝑁2/3c. Let us take 𝐿 (·) = 𝑋1(·) where 𝑋1 is defined in Observation

7.4.3. By Observation 7.4.3, we get that (𝐿 (𝑖))4𝑇−1
𝑖=1 ∼ P−𝑀𝑁

1/3;(−∞)2𝑇 ;1,2𝑇
𝛼1 . We may assume 𝑉1, 𝑗

are defined in a probability space that includes a Brownian motion 𝐵 = 𝐵(1) such that (7.4.10)

holds. Recall that given a standard Brownian motion 𝐵 and an open set U ⊂ 𝐶 ( [0, 1]) with

{ 𝑓 : 𝑓 (0) = 0} ⊂ U, we have P(𝐵 | [0,1] ∈ U) > 0. Thus by the scale invariance of Brownian

motion, there exists 𝜙(𝜃, 𝜇, 𝑟, 𝑀) > 0 such that

P
(
0 ≤ 𝜎𝐵𝑥 − (16𝑀 + 5𝜅𝑟)𝑁1/3 ≤ 𝑀𝑁1/3 for all 𝑥 ∈ [𝑇2 , 2𝑇]

)
≥ 2𝜙.

Here 𝜅 = 1
4 |𝜇 |Ψ

′( 12𝜃) ≥ 0. Now for 𝑦 = −𝑀𝑁1/3 we have |𝑦 + (𝑘 − 1)E[log𝑈1] | ≤ (𝑀 + 𝜅𝑟)𝑁1/3

for all 𝑘 ≤ 2𝑇 . For large enough 𝑁 we also have C log 2𝑇 ≤ 𝑀𝑁1/3 where C comes from (7.4.10).
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Thus in view of (7.4.7) and (7.4.10) we have

P1

[
(14𝑀 + 4𝜅𝑟)𝑁 1

3 ≤ 𝐿 (4𝑇 − 1 − 2𝑘)

≤ (19𝑀 + 6𝜅𝑟)𝑁 1
3 for all 𝑘 ∈ J𝑇2 , 2𝑇 − 1K

]
≥ 2𝜙 − 1

2𝑇 ,

(7.4.12)

where for simplicity we use P1 := P−𝑀𝑁
1
3 ,(−∞)2𝑇 ;1,2𝑇

𝛼1 . Let us set

A :=
{
(14𝑀 + 4𝜅𝑟)𝑁 1

3 ≤ 𝐿 (4𝑇 − 1 − 2𝑘) ≤ (19𝑀 + 6𝜅𝑟)𝑁 1
3 for all 𝑘 ∈ J𝑇2 , 2𝑇 − 1K

}
,

B(𝑘) :=
{
|𝐿 (2𝑘 − 1) − 𝐿 (2𝑘) |, |𝐿 (2𝑘 + 1) − 𝐿 (2𝑘) | ≥ 2(5𝑀 + 2𝜅𝑟)𝑁 1

3

}
.

Recall the event RP1,𝑀 from (7.4.1). Observe that

RP1,𝑀 ⊃ A ∩
⋂

𝑘∈J1,3𝑇/2−1K

B(𝑘)

Thus by applying the union bound we get

P1(RP1,𝑀) ≥ P1

(
A ∩

⋂
𝑘∈J1,3𝑇/2−1K

B(𝑘)
)
≥ P1(A) −

∑︁
𝑘∈J1,3𝑇/2−1K

P1

(
A ∩ ¬B(𝑘)

)
(7.4.13)

Let us denote Fodd := 𝜎{(𝐿 (2𝑘 − 1))2𝑇
𝑘=1}. Note that the event A is measurable with respect to F .

On the event A, |𝐿 (2𝑘 + 1) − 𝐿 (2𝑘 − 1) | ≤ (5𝑀 + 2𝜅𝑟)𝑁 1
3 for all 𝑘 ∈ J1, 3𝑇/2− 1K. Recall that the

distribution of even points of 𝐿 conditioned on Fodd are given by the 𝜉-distributions (see (7.4.5)

and Observation 7.4.3). Applying the tail bound for 𝜉-distribution from Lemma 7.6.5 we have

1AE1
(
1¬B(𝑘) | Fodd

)
≤ 1A · exp

(
−C(5𝑀 + 2𝜅𝑟)𝑁 1

3

)
,

for all 𝑘 ∈ J1, 3𝑇/2 − 1K. Taking another expectation above and then plugging the bound back in
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(7.4.13), along with the lower bound of P1(A) from (7.4.12) we get that

P1(RP1,𝑀) ≥ 2𝜙 − 1
2𝑇 − 3𝑟𝑁

2
3 exp

(
−C(5𝑀 + 2𝜅𝑟)𝑁 1

3

)
.

Clearly for large enough 𝑁 , the right side of above equation is always larger than 𝜙. This completes

the proof.

7.4.3 Proof of Lemma 7.4.1 in the Supercritical phase

Recall that Observation 7.4.5 establishes that the law of P®𝑦,(−∞)
𝑆 ;1,𝑆

𝛼2 is related to the law of

weighted paired random walk (WPRW) defined in Definition 7.4.4. We thus first discuss few

important properties of paired random walk and weighted paired random walk before going into

the proof of Lemmas 7.3.8 and 7.4.1 in the supercritical phase.

Basic properties for paired random walk

In this subsection we study the law of paired random walk defined in Definition 7.4.4. We will

work with PRWs whose increments are given by 𝑓 := 𝐺𝜃,+1 ∗𝐺𝜃,−1 and 𝑔 := 𝐺𝛼2 . We record some

of its key properties below.

Lemma 7.4.6 (Properties of the increments). 𝑓 and 𝑔 enjoy the following properties.

1. The density 𝑓 is symmetric.

2. Let 𝜓 denote the characteristic function corresponding to 𝑓 . Given any 𝛿 > 0, there exists 𝜂

such that sup𝑡≥𝛿 |𝜓(𝑡) | = 𝜂 < 1.

3. For any 𝑎 < 𝑏, inf𝑥∈[𝑎,𝑏] 𝑓 (𝑥) > 0 and inf𝑥∈[𝑎,𝑏] 𝑔(𝑥) > 0.

4. There exists a constant C > 0 such that 𝑓 (𝑥) ≤ C𝑒−|𝑥 |/C and 𝑔(𝑥) ≤ C𝑒−|𝑥 |/C. In particular,

this implies that if 𝑋 ∼ 𝑓 and 𝑌 ∼ 𝑔, there exists 𝑣 > 0 such that and

sup
|𝑡 |≤𝑣

[
E[𝑒𝑡𝑋] + E[𝑒𝑡𝑌 ]

]
< ∞.
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In other words 𝑋 and 𝑌 are subexponential random variables.

For the characteristic function from [2, Formula 6.1.25] one has

𝜓(𝑡) =
����Γ(𝜃 + 𝑖𝑡)Γ(𝜃)

����2 =

∞∏
𝑛=0

[
1 + 𝑡2

(𝜃 + 𝑛)2

]−1

.

From here, one can verify part (2) of the above lemma. Remaining parts of the lemma are all

standard to check and hence its proof is skipped. For the rest of this section, we reserve the

notation 𝑓 and 𝑔 for 𝐺𝜃,+1 ∗ 𝐺𝜃,−1 and 𝐺𝛼2 respectively.

Fix any 𝑀 > 0, 𝑛 ≥ 1, and consider 𝑥𝑛, 𝑦𝑛 ∈ R with |𝑥𝑛 |, |𝑦𝑛 | ≤ 𝑀 . Suppose

(𝑆(𝑛,𝑖)
𝑘
)𝑘∈J0,𝑛K,𝑖=1,2 ∼ P𝑛;(

√
𝑛𝑥𝑛,
√
𝑛𝑦𝑛); 𝑓 ,𝑔

be a PRW. Let 𝑓𝑛 be the density of 𝑋1+···+𝑋𝑛√
𝑛

where 𝑋𝑖’s are i.i.d. drawn from 𝑓 . Assume𝑈𝑛, 𝑉𝑛
𝑖.𝑖.𝑑.∼

𝑓𝑛. Observe that any event based on (𝑆(𝑛,1)0 , 𝑆
(𝑛,2)
0 ) can be written as

P(𝑆(𝑛,1)0 , 𝑆
(𝑛,2)
0 ∈ 𝐴) =

E[𝑔(
√
𝑛(𝑉𝑛 −𝑈𝑛 − 𝑥𝑛 + 𝑦𝑛))1(𝑈𝑛+𝑥𝑛,𝑉𝑛+𝑦𝑛)∈𝑛−1/2𝐴]

E[𝑔(
√
𝑛(𝑉𝑛 −𝑈𝑛 − 𝑥𝑛 + 𝑦𝑛))]

. (7.4.14)

The above formula is the guiding principle for extracting tail estimates of various kinds of functions

of (𝑆(𝑛,1)0 , 𝑆
(𝑛,2)
0 ). We list few of them that are indispensable for our later analysis.

Lemma 7.4.7 (Tail estimates for the Entrance Law). Fix two open intervals 𝐼1, 𝐼2 > 0. Under the

above setup, there exists a constant C = C(𝑀) > 1 such that for all 𝑛 ≥ 1 and 𝜏 ≥ 1, we have

P( |𝑆(𝑛,1)0 | ≥ 𝜏
√
𝑛) ≤ C𝑒−

1
C 𝜏, (7.4.15)

P( |𝑆(𝑛,1)0 − 𝑆(𝑛,2)0 | ≥ 𝜏) ≤ C𝑒−
1
C 𝜏, (7.4.16)

P(𝑆(𝑛,1)0 − 𝑆(𝑛,2)0 ∈ 𝐼1, 𝑆(𝑛,1)0 ∈
√
𝑛𝐼2) ≥ 1

C . (7.4.17)

Proof of Lemma 7.4.7. For simplicity let us write 𝑧𝑛 := 𝑥𝑛 − 𝑦𝑛. It is enough to prove the Lemma

7.4.7 for large enough 𝑛. So, throughout the proof we will assume 𝑛 is large enough. We first claim
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that the denominator of the r.h.s. of (7.4.14), E[𝑔(
√
𝑛(𝑉𝑛 −𝑈𝑛 − 𝑥𝑛 + 𝑦𝑛))], is of the order 𝑛−1/2.

To show this, we rely on certain Gaussian approximation from Lemma 7.6.3. Indeed, the estimate

from Lemma 7.6.3 ensures that given any interval 𝐵 := [ 𝑝√
𝑛
,
𝑝+1√
𝑛
] ⊂ [−2, 2], for all large enough

𝑛, we have
√
𝑛P((𝑉𝑛 −𝑈𝑛 − 𝑥𝑛 + 𝑦𝑛) ∈ 𝐵) ∈ [𝑅−1, 𝑅] for some 𝑅 > 1 depending only on 𝑀 . Thus,

using the exponential tails of 𝑔 we have

E[𝑔(
√
𝑛(𝑉𝑛 −𝑈𝑛 − 𝑧𝑛))] ≤ C𝑒−

1
C
√
𝑛 +

√
𝑛∑︁

𝑝=0
C𝑒−

1
C 𝑝P

( 𝑝√
𝑛
≤ |𝑉𝑛 −𝑈𝑛 − 𝑧𝑛 | ≤ 𝑝+1√

𝑛

)
≤ C𝑒−

1
C
√
𝑛 + 𝑅
√
𝑛

√
𝑛∑︁

𝑝=0
C𝑒−

1
C 𝑝 ≤ C1√

𝑛
.

(7.4.18)

On the other hand,

E[𝑔(
√
𝑛(𝑉𝑛 −𝑈𝑛 − 𝑧𝑛))] ≥ E[𝑔(

√
𝑛(𝑉𝑛 −𝑈𝑛 − 𝑧𝑛))1𝑉𝑛−𝑈𝑛−𝑥𝑛+𝑦𝑛∈( 1√

𝑛
, 2√
𝑛
)]

≥ P
(
𝑉𝑛 −𝑈𝑛 − 𝑧𝑛 ∈ ( 1√

𝑛
, 2√

𝑛
)
)
· inf
𝑥∈[1,2]

𝑔(𝑥)

≥ 𝑅−1
√
𝑛
· inf
𝑥∈[1,2]

𝑔(𝑥),

(7.4.19)

which is bounded below by 𝑐′/
√
𝑛, by the property of 𝑔 from Lemma 7.4.6. This proves the 𝑛−1/2

order of the E[𝑔(
√
𝑛(𝑉𝑛 −𝑈𝑛 − 𝑧𝑛))].

Let us now prove the inequalities in Lemma 7.4.7 one by one. Clearly (7.4.18) can be modified

to show E[𝑔(
√
𝑛(𝑉𝑛 −𝑈𝑛 − 𝑧𝑛))1|√𝑛(𝑉𝑛−𝑈𝑛−𝑧𝑛) |≥𝜏] ≤

C√
𝑛
𝑒−

1
C 𝜏. In view of (7.4.14) and (7.4.19), this

leads to (7.4.16). For (7.4.17) notice that due to (7.4.14) and (7.4.19) we have

P(𝑆(𝑛,1)0 − 𝑆(𝑛,2)0 ∈ 𝐼1, 𝑆(𝑛,1)0 ∈
√
𝑛𝐼2)

≥ C−1
1
√
𝑛 · inf

𝑥∈𝐼1
𝑔(−𝑥) · P(𝑈𝑛 + 𝑥𝑛 ∈

√
𝑛𝐼2,𝑈𝑛 + 𝑥𝑛 −𝑉𝑛 − 𝑦𝑛 ∈ 𝑛−1/2𝐼1).

Using Lemma 7.6.3, the probability above can be shown lower bounded by
C−1

2√
𝑛

for some C2 de-
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pending on 𝑀, 𝐼1, 𝐼2 but free of 𝑛. This proves (7.4.17). Finally, for (7.4.15) we observe

E[𝑔(
√
𝑛(𝑉𝑛 −𝑈𝑛 − 𝑧𝑛))1|𝑈𝑛 |≥𝜏] ≤ C𝑒−

√
𝑛

C +

√
𝑛∑︁

𝑝=1
C𝑒−

𝑝

C P
( 𝑝√
𝑛
≤ |𝑉𝑛 −𝑈𝑛 − 𝑧𝑛 | ≤ 𝑝+1√

𝑛
, |𝑈𝑛 | ≥ 𝜏

)
.

We focus on the estimation of the probability that appears on r.h.s. of the above equation. We have

P( 𝑝√
𝑛
≤ |𝑉𝑛 −𝑈𝑛 − 𝑧𝑛 | ≤ 𝑝+1√

𝑛
, |𝑈𝑛 | ≥ 𝜏) ≤ E

[
1𝜏≤|𝑈𝑛 |≤(log 𝑛)3/2P

(
𝑝√
𝑛
≤ |𝑉𝑛 −𝑈𝑛 − 𝑧𝑛 | ≤ 𝑝+1√

𝑛
| 𝑈𝑛

)]
+ P( |𝑈𝑛 | ≥ (log 𝑛)3/2).

By Lemma 7.6.3, the conditional probability above can be uniformly bounded above by C3√
𝑛

for

some C3 free of 𝑝 and 𝑛. Tail estimates of 𝑈𝑛, which follows from sub-exponential property of

𝑓 (see Theorem 2.8.1 from [314]), show that the r.h.s. of the above equation is at most C√
𝑛
𝑒−

1
C 𝜏.

Plugging all the estimates back we get

E
[
𝑔(
√
𝑛(𝑉𝑛 −𝑈𝑛 − 𝑧𝑛))1|𝑈𝑛 |≥𝜏

]
≤ C√

𝑛
𝑒−

1
C 𝜏 .

Using the lower bound for the denominator from (7.4.19), in view of (7.4.14), we get (7.4.15).

This completes the proof.

In order to deal with WPRW law, the weighted version of the PRW law (see Definition 7.4.4),

we next analyze 𝑊sc weight defined in (7.4.9). We record a convenient lower bound for 𝑊sc that

will be useful in our later analysis. Fix any 𝑝, 𝑞 ≥ 1 with 𝑝 + 𝑞 ≤ 𝑛 − 1. Given any 𝛽 > 0, we

consider several ‘Gap’ events:

Gap1,𝛽 := {𝑆(𝑛,1)
𝑘
− 𝑆(𝑛,2)

𝑘
≥ 𝛽𝑘1/4 for all 𝑘 ∈ J1, 𝑝K},

Gap2,𝛽 := {𝑆(𝑛,1)
𝑘
− 𝑆(𝑛,2)

𝑘
≥ 𝛽(𝑛 − 𝑘)1/4 for all 𝑘 ∈ J𝑛 − 𝑞, 𝑛 − 1K},

Gap3,𝛽 := {𝑆(𝑛,1)
𝑘
− 𝑆(𝑛,2)

𝑘
≥ 𝑛1/4 for all 𝑘 ∈ J𝑝 + 1, 𝑛 − 𝑞K},
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Gap4,𝛽 := {𝑆(𝑛,1)
𝑘
− 𝑆(𝑛,1)

𝑘−1 ≤ 𝛽
−1𝑘1/8 for all 𝑘 ∈ J1, 𝑝K},

Gap5,𝛽 := {𝑆(𝑛,1)
𝑘
− 𝑆(𝑛,1)

𝑘−1 ≤ 𝛽
−1(𝑛 − 𝑘 + 1)1/8 for all 𝑘 ∈ J𝑛 − 𝑞 + 1, 𝑛K},

Gap6,𝛽 := {|𝑆(𝑛,1)
𝑘
− 𝑆(𝑛,1)

𝑘−1 | ≤ 𝛽
−1(log 𝑛) for all 𝑘 ∈ J𝑝 + 1, 𝑛 − 𝑞K}.

Gap1,𝛽,Gap2,𝛽, and Gap3,𝛽 requires the first walk of the PRW, 𝑆(𝑛,1)
𝑘

, to be bigger than a threshold

plus the second walk of the PRW, 𝑆(𝑛,2)
𝑘

pointwise in the left (J1, 𝑝K), right (J𝑛 − 𝑞, 𝑛 − 1K),

and middle (J𝑝 + 1, 𝑛 − 𝑞K) region respectively. The type of threshold depends on the region.

Gap4,𝛽,Gap5,𝛽, and Gap6,𝛽 controls the increments of first walk of the PRW. Set

Gap𝛽 :=
6⋂
𝑖=1

Gap𝑖,𝛽. (7.4.20)

We have the following deterministic inequality for𝑊sc.

Lemma 7.4.8. Recall 𝑊sc from (7.4.9). Given any 𝛽 > 0, there exists 𝑎𝛽 > 0 such that for all

𝑛 ≥ 1,

𝑊sc ≥ 𝑎𝛽 · 1Gap𝛽∩{|𝑆
(𝑛,1)
0 −𝑆 (𝑛,2)0 |≤𝛽−1} .

where𝑊sc is defined in (7.4.9).

Proof. Assume Gap𝛽 holds. For 𝑘 ∈ J1, 𝑛 − 1K we have

𝑆
(𝑛,2)
𝑘
− 𝑆(𝑛,1)

𝑘
≤ −min(𝛽𝑘1/4, 𝛽(𝑛 − 𝑘)1/4, 𝑛1/4) =: 𝜏(1)𝑛 (𝑘).

Clearly
∑𝑛−1
𝑘=1 𝑒

𝑆
(𝑛,2)
𝑘
−𝑆 (𝑛,1)

𝑘 ≤ ∑𝑛−1
𝑘=1 exp(𝜏(1)𝑛 (𝑘)) is uniformly bounded in 𝑛 and hence can be bounded

by some constant 𝑇1(𝛽) ∈ (0,∞). Similarly for 𝑘 ∈ J1, 𝑛 − 1K we have

𝑆
(𝑛,2)
𝑘
− 𝑆(𝑛,1)

𝑘+1 = 𝑆
(𝑛,2)
𝑘
− 𝑆(𝑛,1)

𝑘
+ 𝑆(𝑛,1)

𝑘
− 𝑆(𝑛,1)

𝑘+1

≤ −min(𝛽𝑘1/4, 𝛽(𝑛 − 𝑘)1/4, 𝑛1/4) + 𝛽−1 max((𝑘 + 1)1/8, (𝑛 − 𝑘)1/8, (log 𝑛))

=: 𝜏(2)𝑛 (𝑘).
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Clearly
∑𝑛−1
𝑘=1 𝑒

𝑆
(𝑛,2)
𝑘
−𝑆 (𝑛,1)

𝑘+1 ≤ ∑𝑛−1
𝑘=1 exp(𝜏(2)𝑛 (𝑘)) is uniformly bounded in 𝑛 and hence can be bounded

by some constant 𝑇2(𝛽) ∈ (0,∞). Thus from the definition of𝑊sc in (7.4.9) we have

𝑊sc ≥ 1Gap𝛽∩{|𝑆
(𝑛,1)
0 −𝑆 (𝑛,2)0 |≤𝛽−1} · exp(−𝑒2𝛽−1 − 𝑇1(𝛽) − 𝑇2(𝛽)).

Taking 𝑎𝛽 := exp(−𝑒2𝛽−1 − 𝑇1(𝛽) − 𝑇2(𝛽)) completes the proof.

We end this section by recording a technical lemma that allows us to compare random bridges

with modified random bridges. In what follows, we use the notation P𝑛
𝑎→𝑏 to denote the law of a

𝑛-step random bridge starting at 𝑎 and ending at 𝑏 with increments drawn from 𝑓 .

Definition 7.4.9 ((𝑛; 𝑝, 𝑞)-modified random bridge). Fix 𝑛 ≥ 1, and 𝑝, 𝑞 ∈ J0, 𝑛K with 𝑝 + 𝑞 ≤

𝑛. Take any 𝑎, 𝑏 ∈ R. Let 𝑋𝑖, 𝑌𝑖
𝑖.𝑖.𝑑.∼ 𝑓 . Set 𝑆(𝑛)0 := 𝑎 and 𝑆

(𝑛)
𝑛 := 𝑏. For 𝑘 ∈ J1, 𝑝K, set

𝑆
(𝑛)
𝑘

:= 𝑎 + ∑𝑘
𝑗=1 𝑋 𝑗 , and for 𝑘 ∈ J1, 𝑞K, 𝑆(𝑛)

𝑛−𝑘 = 𝑏 − ∑𝑘
𝑗=1𝑌 𝑗 . Conditioned on (𝑆(𝑛)

𝑘
)𝑘∈J1,𝑝K and

(𝑆(𝑛)
𝑛−𝑘 )𝑘∈J1,𝑞K, set (𝑆(𝑛)

𝑘
)𝑛−𝑞
𝑘=𝑝
∼ P𝑛−𝑝−𝑞

𝑎̃→𝑏̃
where 𝑎̃ := 𝑆

(𝑛)
𝑝 and 𝑏̃ := 𝑆

(𝑛)
𝑛−𝑞. We call the (𝑆(𝑛)

𝑘
)𝑘∈J0,𝑛K as

(𝑛; 𝑝, 𝑞)-modified random bridge of length 𝑛 starting at 𝑎 and ending at 𝑏.

The usual random bridge from 𝑎 to 𝑏, is a random walk of length 𝑛 started from 𝑎 conditioned

to end at 𝑏. In case of the modified random bridge, we start two random walks of length 𝑝 and

𝑞 from 𝑎 and 𝑏 respectively where the second one is viewed in reverse direction. Conditioned on

these two walks, we connect their endpoints by a random bridge of length 𝑛 − 𝑝 − 𝑞. See Figure

7.17.

The laws of random bridge and modified random bridge can be compared with the help of the

following lemma.

Lemma 7.4.10 (Comparison Lemma). Fix any 𝑀 > 0 and 𝛿 ∈ (0, 1/2), and 𝑛 ≥ 1. Set 𝑝 = b𝑛𝛿c

and 𝑞 = b𝑛 − 𝑛𝛿c. Suppose 𝑎, 𝑏 ∈ R with |𝑎 − 𝑏 | ≤ 𝑀
√
𝑛. Let 𝑉 (®𝑥) be the joint density of

(𝑆(𝑛)
𝑘
)𝑘∈J0,𝑛K where (𝑆(𝑛)

𝑘
)𝑘∈J0,𝑛K ∼ P𝑛

𝑎→𝑏. For all ®𝑥 ∈ R𝑛−1 we have

𝑉 (®𝑥) .𝑀,𝛿 𝑉 (®𝑥). (7.4.21)
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𝐴

𝐵

𝐶

𝐷

𝑝 𝑛 − 𝑝 − 𝑞 𝑞

Figure 7.17: Modified random bridge. We start random walks of length 𝑝 and 𝑞 from 𝐴 and 𝐵 with
the second one viewed in the reverse direction. From their endpoints 𝐶 and 𝐷 we then consider a
random bridge of length 𝑛 − 𝑝 − 𝑞.

where 𝑉 (®𝑥) is the joint density of the (𝑛; 𝑝, 𝑞)-modified random bridge starting at 𝑎 and ending at

𝑏. Furthermore, whenever |𝑥𝑝 − 𝑥𝑛−𝑞 | ≤ 𝑀
√
𝑛 we also have

𝑉 (®𝑥) &
𝑀,𝑀,𝛿

𝑉 (®𝑥). (7.4.22)

Proof. We have

𝑉 (®𝑥) :=
∏𝑛−1

𝑗=0 𝑓 (𝑥 𝑗+1 − 𝑥 𝑗 )
𝑓 ∗𝑛 (𝑏 − 𝑎) , 𝑉 (®𝑥) :=

∏𝑛−1
𝑗=0 𝑓 (𝑥 𝑗+1 − 𝑥 𝑗 )

𝑓 ∗(𝑛−2b𝑛𝛿c) (𝑥b𝑛𝛿c − 𝑥𝑛−b𝑛𝛿c)
.

where 𝑥0 := 𝑎 and 𝑥𝑛 := 𝑏. By [163, Theorem 2, Chapter XV.5]

sup
𝑧∈R

����√𝑘 𝑓 ∗𝑘 (𝑧) − 1√
2𝜋𝜎

𝑒
− 𝑧2

2𝑘𝜎2

���� 𝑘→∞−−−−→ 0.

The above fact yields the desired result.

Proof of Lemma 7.4.1 : 𝑝 = 2 case

For clarity we split the proof into several steps.

Step 1. In this step, we reduce our work in showing (7.4.23). Fix 𝑟 > 0. Set 𝑇 := b𝑟𝑁2/3c and

𝑛 = 2𝑇 . Recall 𝑦𝑖’s and the event RP2,𝑀 from the statement of the lemma. Observe that the lemma
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is clearly true for all small values of 𝑁 . Hence it suffices to show (7.4.2) under lim inf𝑁→∞. Since

RP2,𝑀 is a monotone event, by Proposition 8.2.3 we have

P®𝑦,(−∞)
2𝑇 ;2,2𝑇

𝛼2 (RP2,𝑀) ≥ P®𝑥,(−∞)
2𝑇 ;2,2𝑇

𝛼2 (RP2,𝑀).

where 𝑥1 = −2𝑀𝑁1/3, 𝑥2 = −2𝑀𝑁1/3 −
√
𝑛. By translation, it thus suffices to show that there

exists 𝜙 = 𝜙(𝑟, 𝑀) > 0 such that

lim inf
𝑛→∞

P(0,−
√
𝑛),(−∞)𝑛;2,𝑛

𝛼2

(
inf

𝑖∈J1,𝑛K
𝐿2(𝑖) ≥ 8𝑀𝑟−1/2√𝑛

)
≥ 𝜙.

Towards this end we claim that there exists 𝜙 = 𝜙(𝑟, 𝑀) > 0 such that

lim inf
𝑛→∞

P(0,−
√
𝑛),(−∞)2𝑛;2,𝑛

𝛼2 (D𝑚) ≥ 2𝜙, (7.4.23)

where

D𝑚 :=
{
(𝐿1(2𝑖 − 1), 𝐿2(2𝑖)) ∈ (10𝑚

√
𝑛, 11𝑚

√
𝑛)2 for all 𝑖 ∈ J1, 𝑛/2K

}
,

and 𝑚 := 𝑀𝑟−1/2. Let us complete the proof assuming (7.4.23). Note that (7.4.23) controls the

even points of the second curve. By Observation 7.4.5, we know conditioned on the even points,

𝐿2(2𝑘 + 1) ∼ 𝜉𝐿2 (2𝑘),𝐿2 (2𝑘+2)
𝜃,𝜃;−1 for 𝑘 = 1, 2, . . . , 2𝑛 − 1. In view of Lemma 7.6.5, on the event D𝑚

we have

E[1𝐿2 (2𝑘+1)≤8𝑚
√
𝑛 | 𝜎(𝐿2(2𝑘), 𝐿2(2𝑘 + 2))] ≤ C𝑒−

1
C𝑚
√
𝑛.

By Observation 7.4.5, 𝐿2(1) ∼ 𝐺𝛼2+𝜃,1 + 𝐿2(2). Thus by tail estimates for 𝐺𝛼2+𝜃,1, we see that on

the event D𝑚 we have P(𝐿2(1) ≤ 8𝑚
√
𝑛 | 𝐿2(2)) ≤ C𝑒− 1

C𝑚
√
𝑛. Thus by union bound we have

P(0,−
√
𝑛),(−∞)2𝑛;2,𝑛

𝛼2

(
inf

𝑖∈J1,𝑛K
𝐿2(𝑖) ≥ 8𝑚

√
𝑛

)
≥ P(0,−

√
𝑛),(−∞)2𝑛;2,𝑛

𝛼2 (D𝑚) − C · 𝑛𝑒− 1
C𝑚
√
𝑛 ≥ 𝜙,
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for large enough 𝑛. This establishes Lemma 7.4.1 for 𝑝 = 2 modulo (7.4.23).

Step 2. In this and subsequent steps we prove (7.4.23). Recall the PRW and WPRW laws from

Definition 7.4.4. Recall from Observation 7.4.5 that (𝐿1(2𝑖−1), 𝐿2(2𝑖))𝑖∈J1,𝑛K ∼ P𝑛;(0,−
√
𝑛); 𝑓 ,𝑔

𝑊sc
with

𝑓 := 𝐺𝜃,1 ∗ 𝐺𝜃,−1, and 𝑔 := 𝐺𝛼+𝜃 . Let us take (𝑆(𝑛,𝑖)
𝑘
)𝑘∈J0,𝑛K,𝑖=1,2 ∼ P𝑛;(0,−

√
𝑛); 𝑓 ,𝑔. We can write

P𝑛;(0,−
√
𝑛); 𝑓 ,𝑔

𝑊sc
(D𝑚) =

E[𝑊sc1D𝑚]
E[𝑊sc]

(7.4.24)

where𝑊sc is defined in (7.4.9) and D𝑚 is interpreted as

D𝑚 := {(𝑆(𝑛,1)
𝑘

, 𝑆
(𝑛,2)
𝑘
) ∈ (10𝑚

√
𝑛, 11𝑚

√
𝑛)2 for all 𝑘 ∈ J1, 𝑛/2K}.

We will now provide appropriate lower and upper bounds for the numerator and denominator of

r.h.s. of (7.4.24) respectively. For the upper bound we use the following general lemma.

Lemma 7.4.11. There exists an absolute constant C > 0 such that for all Borel sets 𝐴 ⊂ R2 we

have

E
[
𝑊sc1(𝑆 (𝑛,1)0 ,𝑆

(𝑛,2)
0 )∈𝐴

]
≤ C

𝑛
+ C√

𝑛
E
[
1(𝑆 (𝑛,1)0 ,𝑆

(𝑛,2)
0 )∈𝐴 [(𝑆

(𝑛,1)
0 − 𝑆(𝑛,2)0 + 1) ∨ 1]

[ |𝑆 (𝑛,1)0 |
√
𝑛
∨ 2

]3
]
.

Proof of Lemma 7.4.11. Set A := {(𝑆(𝑛,1)0 , 𝑆
(𝑛,2)
0 ) ∈ 𝐴} and define

NI𝑝 :=
{
𝑆
(𝑛,1)
𝑘
− 𝑆(𝑛,2)

𝑘
≥ −𝑝, for all 𝑘 ∈ J0, 𝑛K

}
. (7.4.25)

We set NI := NI0. Here NI stands for non-intersection. Observe that

E[𝑊sc1A] = E[𝑊sc1{A ∩ NI𝑐log log 𝑛}] +
log log 𝑛−1∑︁

𝑝=0
E[𝑊sc1{A ∩ NI𝑝+1 ∩ NI𝑐𝑝}]

≤ 1
𝑛
+

log log 𝑛∑︁
𝑝=0

exp(−𝑒𝑝)P
(
A ∩ NI𝑝+1

)
≤ 1

𝑛
+

log log 𝑛∑︁
𝑝=0

exp(−𝑒𝑝)𝑒C𝑝 · P(A ∩ NI).
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The first inequality above follows by noting that on NI𝑐𝑝 we have 𝑊 ≤ exp(−𝑒𝑝). The second

inequality is due to Lemma 7.7.5. Thus to suffices to bound P(A ∩ NI). Towards this end, we first

define the event

B :=
{
|𝑆(𝑛,𝑖)0 | ≤ (log 𝑛)3/2

√
𝑛 for 𝑖 = 1, 2, |𝑆(𝑛,1)0 − 𝑆(𝑛,2)0 | ≤ (log 𝑛)3/2

}
.

By union bound we have P(A ∩ NI) ≤ P(A ∩ B ∩ NI) + P(B𝑐). For the second term note that by

tail estimates from Lemma 7.4.7 we have

P(B𝑐) ≤
2∑︁
𝑖=1

P( |𝑆(𝑛,𝑖)0 | ≥ (log 𝑛)3/2) + P
(
|𝑆(𝑛,1)0 − 𝑆(𝑛,2)0 | ≥ (log 𝑛)3/2

)
≤ C

𝑛
.

For the first term we condition on F := 𝜎(𝑆(𝑛,1)0 , 𝑆
(𝑛,2)
0 ) to get

P(A ∩ B ∩ NI) = E [1{A ∩ B}E[1NI | F ]] .

Now by Lemma 7.7.6, uniformly on the event B we have

E[1NI | F ] ≤ C√
𝑛
[(𝑆(𝑛,1)0 − 𝑆(𝑛,2)0 + 1) ∨ 1]

[ |𝑆 (𝑛,1)0 |
√
𝑛
∨ 2

]3

All the above estimates together establishes the lemma.

Note that taking 𝐴 = R2, and utilizing the exponential tail estimates from Lemma 7.4.7 it

follows that

E[𝑊sc] ≤ C√
𝑛
. (7.4.26)

This provides an upper bound for the denominator of r.h.s. of (7.4.24).

Step 3. In this step we prove an appropriate lower bound of the numerator in (7.4.24). Towards
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this end, consider the event

E𝑚 := {1 ≤ 𝑆(𝑛,1)0 − 𝑆(𝑛,2)0 ≤ 2, 𝑆(𝑛,1)0 , 𝑆
(𝑛,2)
0 ∈ ( 41

4 𝑚
√
𝑛, 43

4 𝑚
√
𝑛)},

and the 𝜎-field F := 𝜎(𝑆(𝑛,1)0 , 𝑆
(𝑛,2)
0 ). Fix any 𝛽 > 0 and consider the Gap𝛽 event from (7.4.20).

We have

E[𝑊sc1D𝑚] ≥ E[𝑊sc1E𝑚1D𝑚1Gap𝛽 ] ≥ 𝑎𝛽E[1E𝑚E[1D𝑚∩Gap𝛽 | F ]] (7.4.27)

where the second inequality above follows by noting that 𝑊 ≥ 𝑎𝛽 on Gap𝛽 ∩ E (Lemma 7.4.8).

Note that E[1· | F ] is the law of two independent random bridges starting at (𝑆(𝑛,1)0 , 𝑆
(𝑛,2)
0 ) and

ending at (0,−
√
𝑛) with increments drawn from 𝑓 . For simplicity set 𝑏1 = 0, 𝑏2 = −

√
𝑛. Set

𝜌 := 𝜌( 1
16 ,

𝑚∧1
8 ) from Corollary 7.7.3. By Lemma 7.4.10

1E𝑚 · E[1D𝑚∩Gap𝛽 | F ] &𝑚 1E𝑚 · P̃(𝑆 (𝑛,1)0 ,𝑆
(𝑛,2)
0 ) (D𝑚 ∩Gap𝛽) (7.4.28)

= 1E𝑚 · P̃(𝑆 (𝑛,1)0 ,𝑆
(𝑛,2)
0 ) (D𝑚 ∩Gap𝛽 | NI)P̃(𝑆 (𝑛,1)0 ,𝑆

(𝑛,2)
0 ) (NI)

where P̃(𝑆 (𝑛,1)0 ,𝑆
(𝑛,2)
0 ) is the joint law of two independent (𝑛; 𝑛𝜌, 0)-modified random bridge from

𝑆
(𝑛,𝑖)
0 to 𝑏𝑖 defined in Definition 7.4.9. Let us consider

P1 :=
{
(𝑧1, 𝑧2) ∈ ( 41

4 𝑚
√
𝑛, 43

4
√
𝑛) : 1 ≤ 𝑧1 − 𝑧2 ≤ 2

}
We now claim that there exists 𝜙 = 𝜙(𝑚) > 0 such that

P̃(𝑎1,𝑎2) (D𝑚 | NI) ≥ 2𝜙. (7.4.29)

uniformly over all (𝑎1, 𝑎2) ∈ P1. We postpone its proof to next step. Let us complete the proof

of the lemma assuming it. Note that by Lemma 7.7.1 and Lemma 7.7.2 we can get constants
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𝛿 > 0, 𝑀2 > 0 and C1 > 0 all depending on 𝑚 such that uniformly over (𝑎1, 𝑎2) ∈ P1 we have

P̃(𝑎1,𝑎2)
(
𝑆
(𝑛,1)
𝑘
≥ 𝑆(𝑛,2)

𝑘
for all 𝑘 ∈ J1, 𝑛𝜌K, 𝑆(𝑛,1)𝑛𝜌 − 𝑆(𝑛,2)𝑛𝜌 ≥ 𝛿

√
𝑛, |𝑆(𝑛,𝑖)𝑛𝜌 | ≤ 𝑀2

√
𝑛
)
≥ C−1

1√
𝑛
.

Set G := 𝑆(𝑛,1)𝑛𝜌 − 𝑆(𝑛,2)𝑛𝜌 ≥ 𝛿
√
𝑛, |𝑆(𝑛,𝑖)𝑛𝜌 | ≤ 𝑀2

√
𝑛. Recall from the definition of (𝑛; 𝑛𝜌, 0)-modified

random bridge that on J𝑛𝜌, 𝑛K the modified random bridge is just a random bridge from 𝑆
(𝑛,𝑖)
𝑛𝜌 to 𝑏𝑖.

Applying Lemma 7.7.4 it follows that

1G · P̃(𝑎1,𝑎2)
(
𝑆
(𝑛,1)
𝑘
≥ 𝑆(𝑛,2)

𝑘
for all 𝑘 ∈ J𝑛𝜌, 𝑛K

)
≥ 1G · C−1

2 ,

for some constant C2 > 0 depending on 𝑚 only. Thus we get P̃(NI) ≥ C−1
4√
𝑛

uniformly on E𝑚 for

some deterministic constant C4 depending on 𝑚 only. By Lemma 7.7.8, we may choose 𝛽 small

enough depending on 𝑚 such that P̃(𝑎1,𝑎2) (Gap𝛽 | NI) ≥ 1 − 𝜙 uniformly over (𝑎1, 𝑎2) ∈ P1.

Plugging this estimates back in (7.4.28), we see that 1E𝑚 · E[1D𝑚∩Gap𝛽 | F ] ≥ 1E𝑚𝜙
C−1

4√
𝑛

. Now, by

Lemma 7.4.7 ((7.4.17) in particular) we know that P(E𝑚) ≥ C−1
5 > 0 for some C5 depending on

𝑚. Plugging this back in (7.4.27) we see that

E[𝑊sc1D𝑚] ≥ 𝑎𝛽 · P(E𝑚) · 𝜙 ·
C−1

4√
𝑛
=: C̃−1
√
𝑛
. (7.4.30)

where C̃ > 0 is a constant depending only on 𝑚. In view of the formula (7.4.24) and the upper

bound from (7.4.26), setting 𝜙 := 1
2C−1 · C̃−1, we thus arrive at (7.4.23).

Step 4. In this step we prove (7.4.29). By Lemma 7.7.2 ((7.7.1) in particular), we know there

exists 𝛿 ∈ (0, 1
8 (𝑚 ∧ 1)) small enough depending only on 𝜌 such that P̃(𝑎1,𝑎2) (𝑆

(𝑛,1)
𝑛𝜌 − 𝑆(𝑛,2)𝑛𝜌 ≥

𝛿
√
𝑛 | NI) ≥ 15

16 uniformly over (𝑎1, 𝑎2) ∈ P1. Recall that 𝜌 = 𝜌( 1
16 ,

𝑚∧1
8 ) comes from Corollary

7.7.3. In view of this choice of 𝜌 from Corollary 7.7.3, uniformly over (𝑎1, 𝑎2) ∈ P1 we have

P̃(𝑎1,𝑎2)

(
sup

𝑘∈J0,𝑛𝜌K
|𝑆(𝑛,𝑖)
𝑘
− 𝑆(𝑛,𝑖)0 | ≤ 𝑚∧1

8
√
𝑛 | NI

)
≥ 15

16 .
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Since on P1 we also have 𝑆(𝑛,1)0 , 𝑆
(𝑛,2)
0 ∈ ( 41

4 𝑚
√
𝑛, 43

4 𝑚
√
𝑛), combining the last two probability

estimates we get

P̃(𝑎1,𝑎2)

({
𝑆
(𝑛,1)
𝑛𝜌 − 𝑆(𝑛,2)𝑛𝜌 ≥ 𝛿

√
𝑛
}
∩ K1 | NI

)
≥ 7

8 ,

where

K1 :=
{
𝑆
(𝑛,1)
𝑘

, 𝑆
(𝑛,2)
𝑘
∈ ( 81

8 𝑚
√
𝑛, 87

8 𝑚
√
𝑛) for all 𝑘 ∈ J1, 𝑛𝜌K, |𝑆(𝑛,1)𝑛𝜌 − 𝑆(𝑛,2)𝑛𝜌 | ≤

√
𝑛

2

}
.

Following the definition of (𝑛; 𝑛𝜌, 0)-modified random bridge, to prove (7.4.29) it suffices to show

P𝑛−𝑛𝜌;(𝑏1,𝑏2)
(𝑐1,𝑐2)

({
𝑉
(1)
𝑘
, 𝑉
(2)
𝑘
∈ (10𝑚

√
𝑛, 11𝑚

√
𝑛) for all 𝑘 ∈ J1, 𝑛/2K

}
∩ NI

)
≥ 16

7 𝜙, (7.4.31)

uniformly over (𝑐1, 𝑐2) ∈ P2 where

P2 := {(𝑧1, 𝑧2) ∈ R2 : 𝑧𝑖 ∈ ( 81
8 𝑚
√
𝑛, 87

8 𝑚
√
𝑛), 1

2
√
𝑛 ≥ 𝑧1 − 𝑧2 ≥ 𝛿

√
𝑛}.

Here 𝑉 (1)
𝑘
, 𝑉
(2)
𝑘
)𝑛−𝑛𝜌
𝑘=0 are two independent random bridges from 𝑐𝑖 to 𝑏𝑖. Its law is denoted as

P𝑛−𝑛𝜌;(𝑏1,𝑏2)
(𝑐1,𝑐2) . For simplicity set 𝑢 := 𝑛 − 𝑛𝜌 ≥ 3

4𝑛. By KMT coupling of random bridges [153]

we may assume 𝑉 (𝑖)
𝑘

’s are defined on a common probability space that supports two independent

Brownian bridges (with certain explicit variance depending on the distribution of the increment

𝑓 = 𝐺𝜃,1 ∗ 𝐺𝜃,−1) such that

P𝑢;(𝑑1,𝑑2)
(𝑐1,𝑐2)

(
sup

𝑘∈J0,𝑢K,𝑖=1,2
|𝑉 (𝑖)
𝑘
−
√
𝑢𝐵
(𝑖)
𝑘/𝑢 − 𝑐𝑖 −

𝑘
𝑢
(𝑑𝑖 − 𝑐𝑖) | ≥ C log 𝑛

)
≤ 1

𝑛
. (7.4.32)

Let 𝑟𝑛,𝑖 (𝑥) be the piece-wise linear function interpolated by three points: 𝑟𝑛,𝑖 (0) = 𝑟𝑛,𝑖 (1) = 0 and

𝑟𝑛,𝑖 (3/4) = 3
4
√
𝑢
(𝑑𝑖 − 𝑐𝑖). Let U𝑖 := B(𝑟𝑛,𝑖, 1

4𝛿) be the 𝐿∞ open ball of 𝑟𝑛,𝑖 (𝑥) of radius 1
4𝛿. By
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properties of Brownian bridge, there exists a 𝜙 = 𝜙(𝑚) > 0 such that for all (𝑐1, 𝑐2) ∈ P2, we have

P(𝐵(𝑖) ∈ U𝑖 for 𝑖 = 1, 2) ≥ 32
7 𝜙.

Note that the above equation along with (7.4.32) implies that with probability 32
7 𝜙 −

1
𝑛
, for all 𝑛

large enough (and hence 𝑢 large enough) we have the following items simultaneously.

• For all 𝑘 ∈ J0, 3/4𝑢K

|𝑉 (𝑖)
𝑘
− 𝑐𝑖 | ≤ C log 𝑛 + 1

4
√
𝑢𝛿 ≤ 𝑚

8
√
𝑢 < 𝑚

8
√
𝑛,

• For all 𝑘 ∈ J0, 𝑢K we have

𝑆
(𝑢,1)
𝑘
≥
√
𝑢𝑟𝑛,1( 𝑘𝑢 ) + 𝑐1 + 𝑘

𝑢
(𝑑1 − 𝑐1) − 1

4
√
𝑢𝛿 − C log 𝑛

≥ 𝑆(𝑢,2)
𝑘
+
√
𝑢(𝑟𝑛,1( 𝑘𝑢 ) − 𝑟𝑛,2(

𝑘
𝑢
)) − 1

2
√
𝑢𝛿 + 𝑐1 − 𝑐2 + 𝑘

𝑢
(𝑑1 − 𝑑2 − 𝑐1 + 𝑐2) − 2C log 𝑛

≥
√
𝑢(𝑟𝑛,1(𝑘/𝑢) − 𝑟𝑛,2(𝑘/𝑢)) +

√
𝑢/2𝛿 − 2C log 𝑛 + 𝑆(𝑢,2)

𝑘

We have 𝑟𝑛,1(𝑥) ≥ 𝑟𝑛,2(𝑥) by construction, and 𝑐1 − 𝑐2 + 𝑘
𝑢
(𝑑1 − 𝑑2 − 𝑐1 + 𝑐2) ≥

√
𝑢𝛿 for all

(𝑐1, 𝑐2) ∈ P. Thus for all large enough 𝑛, 𝑆(𝑢,1)
𝑘

> 𝑆
(𝑢,2)
𝑘

for all 𝑘 ∈ J0, 𝑢K.

Thus, taking 𝑛 large enough we have 32
7 𝜙 −

1
𝑛
≥ 16

7 𝜙. This establishes (7.4.31) completing the

proof of Lemma 7.4.1.

Corollary 7.4.12. There exists an absolute constant C > 0 such that for all 𝑛 ≥ 1.

E𝑛;(0,−
√
𝑛); 𝑓 ,𝑔 [𝑊sc] ≥ C−1

√
𝑛
.

The above corollary follows from (7.4.30) as E𝑛;(0,−
√
𝑛); 𝑓 ,𝑔 [𝑊sc] ≥ E𝑛;(0,−

√
𝑛); 𝑓 ,𝑔 [𝑊sc1D1]. We

remark that here it is important that the endpoints are 𝑂 (
√
𝑛) apart to get the precise order of

E[𝑊sc]. We expect a different order if the endpoints are closer or lie in a reversed order. Later, in
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Lemma 7.5.6, we shall prove a different lower bound for E[𝑊sc] that is uniform over all possible

endpoints in a specific window.

Proof of Lemma 7.3.8: 𝑝 = 2 case

Given the machinery developed in the above proof, proof of Lemma 7.3.8 follows easily. By

Observation 7.4.5 we have

P(0,−
√
𝑇),(−∞)𝑇 ;2,𝑇

𝛼2 ( |𝐿𝑖 (𝑖) | ≥ 𝑀
√
𝑇) = P𝑇 ;(0,−

√
𝑇); 𝑓 ,𝑔

𝑊
( |𝑆(𝑇,𝑖)0 | ≥ 𝑀

√
𝑇)

=
E[𝑊sc1{|𝑆(𝑇,𝑖)0 | ≥ 𝑀

√
𝑇}]

E[𝑊sc]
. (7.4.33)

Now by Corollary 7.4.12 we have E[𝑊sc] ≥ C√
𝑇

and by Lemma 7.4.11 we have

E[𝑊sc1|𝑆 (𝑇,𝑖)0 |≥𝑀
√
𝑇
] ≤ 1

𝑇
+ C√

𝑇
E
[
1|𝑆 (𝑇,𝑖)0 |≥𝑀

√
𝑇
[(𝑆(𝑇,1)0 − 𝑆(𝑇,2)0 + 1) ∨ 1]

[ |𝑆 (𝑇,1)0 |
√
𝑇
∨ 2

]3
]

≤ 1
𝑇
+ C√

𝑇

√︃
E[(𝑆(𝑇,1)0 − 𝑆(𝑇,2)0 + 1) ∨ 1]2]

√︄
E
[
1|𝑆 (𝑇,𝑖)0 |≥𝑀

√
𝑇

[ |𝑆 (𝑇,1)0 |
√
𝑇
∨ 2

]6
]
.

Taking 𝑇 and 𝑀 large enough, in view of the tail estimates from Lemma 7.4.7, it follows that

(7.4.33) can be made arbitrarily small. This completes the proof.

7.5 Modulus of continuity: proof of Theorem 7.1.1

In this section we prove our main theorem, Theorem 7.1.1, about spatial tightness of HSLG

polymers. Due to the relation in (7.1.4), Theorem 7.1.1 essentially follows by controlling modulus

of continuity of the first curve of log-gamma line ensemble. Towards this end, we recall the

definition of modulus of continuity function.

Given continuous functions 𝑓 : Z>0 → R and 𝑈 > 1, we define the modulus of continuity
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function as

𝜔𝑁𝛿 ( 𝑓 ; J1,𝑈K) := sup
𝑖1,𝑖2∈J1,𝑈K
|𝑖1−𝑖2 |≤𝛿𝑁2/3

sup
𝑖∈J1,𝑘K

| 𝑓 (𝑖1) − 𝑓 (𝑖2) |.

We have the following result.

Proposition 7.5.1. Fix 𝑟, 𝛾 > 0 and 𝑝 ∈ {1, 2}. Set 𝛼 = 𝛼𝑝 according to (7.3.11). We have

lim
𝛿↓0

lim sup
𝑁→∞

P𝛼𝑝
(
𝜔𝑁𝛿 (

𝑁
1 , J1, 2b𝑟𝑁

2/3c − 1K) ≥ 𝛾𝑁1/3
)
= 0. (7.5.1)

By standard criterion for functional tightness (see [58, Theorem 7.3]), the above result along

with endpoint tightness from Theorem 7.3.9 leads to the tightness of 𝑁−1/3𝑁
1 (J1, 2b𝑟𝑁

2/3c − 1K).

This proves Theorem 7.1.1. The rest of this section is devoted to proving Proposition 7.5.1.

Proof of Proposition 7.5.1 relies on the following technical lemma which deals with the mod-

ulus of continuity for the bottom-free measure.

Lemma 7.5.2. Fix any 𝑀, 𝑆, 𝑘1, 𝑘2, 𝛾 > 0 with 𝑘2 > 𝑘1. For each 𝑁 > 0, define the sets 𝐼1,𝑀 :=

{𝑦 ∈ R, |𝑦 | ≤ 2𝑀𝑁1/3}, and

𝐼2,𝑀 := {(𝑦1, 𝑦2) ∈ R2 : 𝑦𝑖 ∈ 𝐼1,𝑀/2, 𝑦1 − 𝑦2 ≥ −(log 𝑁)7/6}

For each 𝑝 ∈ {1, 2}, there exist 𝛿 = 𝛿(𝑀, 𝑆, 𝑘1, 𝑘2, 𝛾, 𝜀) > 0 and 𝑁0 = 𝑁0(𝑀, 𝑆, 𝑘1, 𝑘2, 𝛾, 𝜀) > 0

such that for all ®𝑥 ∈ 𝐼𝑝,𝑀 , 𝑇 ∈ J𝑘1𝑁
2/3, 𝑘2𝑁

2/3K, and 𝑁 ≥ 𝑁0 we have

𝑝∑︁
𝑖=1

P®𝑥,(−∞)
𝑇 ;𝑝,𝑇

𝛼𝑝

(
𝑖∑︁
𝑘=1
|𝐿𝑘 (𝑘) | ≤ 𝑆𝑁1/3, 𝜔𝑁𝛿 (𝐿𝑖, J1, 𝑇/4 + 𝑖 − 2K) ≥ 𝛾𝑁1/3

)
≤ 𝜀.

We postpone the proof of Lemma 7.5.2 to Section 7.5.3. In the next subsection, Section 7.5.1,

we prepare a few lemmas that are used in the proof of Proposition 7.5.1. Proof of Proposition 7.5.1

appears in Section 7.5.2
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7.5.1 Preparatory Lemmas

We first discuss a few consequences of Lemma 7.3.8 that form preparatory tools for our mod-

ulus of continuity analysis.

Lemma 7.5.3. Fix any 𝜀 ∈ (0, 1
2 ) and 𝑇 ≥ 2. Let (𝑋 (𝑖))2𝑇−1

𝑖=1 and 𝑌 (𝑖))2𝑇−1
𝑖=1 be two independent

random vectors with density proportional to

2𝑇−2∏
𝑖=1

𝐺𝜃,(−1)𝑖+1 (𝑢𝑖 − 𝑢𝑖+1) and
2𝑇−2∏
𝑖=1

𝐺𝜃,(−1)𝑖 (𝑢𝑖 − 𝑢𝑖+1)

respectively where 𝑢1 = 0 and 𝑢2𝑇−1 = 0. There exists 𝑀0(𝜀) > 0 such that for all 𝑇 ≥ 2 we have

P
(

sup
𝑖∈J1,2𝑇−1K

[|𝑋 (𝑖) | + |𝑌 (𝑖) |] ≥ 𝑀0
√
𝑇

)
≤ 𝜀. (7.5.2)

We refer to Figure 7.18 for graphical representation of the distributions appearing in Lemma

7.5.3.

0 0
0 0

Figure 7.18: Graphical representation of 𝑋 (left) and 𝑌 (right) distribution from Lemma 7.5.3.

Proof. Fix 𝜀 ∈ (0, 1). Note that (𝑋 (2𝑖 − 1))𝑇
𝑖=1 forms a random bridge from 0 to 0 with increment

from 𝐺𝜃,+1 ∗ 𝐺𝜃,−1. By KMT coupling for random bridges [153] along with Brownian bridge

estimates, one can ensure there exists a constant 𝑀 > 0 such that

P(A) ≤ 𝜀
4 , where A :=

{
sup
𝑖∈J1,𝑇K

|𝑋 (2𝑖 − 1) | ≥ 𝑀
√
𝑇

}
.

Let us write F := 𝜎((𝑋 (2𝑖 − 1))𝑇
𝑖=1). By a union bound we have

P( sup
𝑖∈J1,2𝑇−1K

|𝑋 (𝑖) | ≥ 5𝑀
√
𝑇) ≤ 𝜀

4
+
𝑇−1∑︁
𝑖=1

E
[
1¬A · E

[
1|𝑋 (2𝑖) |≥5𝑀

√
𝑇
| F

] ]
(7.5.3)
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Note that the distribution of even points given the odd points are given by the 𝜉-distribution intro-

duced in (7.4.5). Observe that by Lemma 7.6.5,

1
𝑋 (2𝑖−1),𝑋 (2𝑖+1)∈(−𝑀

√
𝑇,𝑀
√
𝑇) · E

[
1|𝑋 (2𝑖) |≥5𝑀

√
𝑇
| F

]
≤ C exp(− 1

C

√
𝑇),

for some absolute constant C > 0. Plugging the above bound back in (7.5.3) and taking 𝑇 large

enough we get the r.h.s. of (7.5.3) is at most 𝜀
2 . Similarly one can show P(sup𝑖∈J1,2𝑇−1K |𝑌 (𝑖) | ≥

5𝑀
√
𝑇) ≤ 𝜀

2 . Adjusting 𝑀 , we arrive at (7.5.6). This completes the proof.

Lemma 7.5.4. Fix any 𝑝 ∈ {1, 2}. Set 𝛼 := 𝛼𝑝 according to (7.3.11). Fix any 𝑟 ≥ 1 and 𝜀 > 0.

Set 𝑇 = b𝑟𝑁2/3c. There exists 𝑀 = 𝑀 (𝜀) > 0 and 𝑁0(𝜀) > 0 such that for all 𝑁 ≥ 𝑁0 we have

P0,(−∞)𝑇 ;1,𝑇
𝛼1

(
sup

𝑖∈J1,2𝑇−1K
|𝐿1(𝑖) | ≥ 𝑀

√
𝑇

)
≤ 𝜀, (7.5.4)

P(0,−
√
𝑇),(−∞)𝑇 ;2,𝑇

𝛼2

(
sup

𝑖∈J1,2𝑇−1K
|𝐿1(𝑖) | + sup

𝑗∈J1,2𝑇
|𝐿2( 𝑗) | ≥ 𝑀

√
𝑇

)
≤ 𝜀, (7.5.5)

where the law P®𝑥,(−∞)
2𝑇 ;2,𝑇

𝛼𝑝 is defined in Definition 7.2.3.

Proof. For clarity we divide the proof into two steps.

Step 1. Fix any 𝜀 ∈ (0, 1
2 ) and consider 𝑀0(𝜀) from Lemma 7.5.3. In this step we prove (7.5.4).

From Lemma 7.3.8 choose 𝑀1(𝜀) > 0 such that for all large enough 𝑇 we have

P0,(−∞)𝑇 ;1,𝑇
𝛼1 ( |𝐿1(1) | ≥ 𝑀1

√
𝑇) ≥ 𝜀, P(0,−

√
𝑇),(−∞)𝑇 ;2,𝑇

𝛼2 ( |𝐿1(1) | + |𝐿2(2) | ≥ 𝑀1
√
𝑇) ≥ 𝜀.

(7.5.6)

Set 𝑀3 := 2𝑀0 + 𝑀1 + 1. Consider the events

A :=

{
sup

𝑖∈J2,2𝑇K
𝐿2(𝑖) ≥ (𝑀0 + 𝑀1)

√
𝑇

}
, B :=

{
sup

𝑖∈J1,2𝑇−1K
𝐿1(𝑖) ≥ (𝑀3 + 𝑀0)

√
𝑇

}
.
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In view of (7.5.6), by a union bound we have

P0,(−∞)𝑇 ;1,𝑇
𝛼1 (B) ≤ 𝜀 + E

[
1
𝐿1 (1)≤𝑀1

√
𝑇
E [1B | 𝜎(𝐿1(1))]

]
As B is an increasing event with respect to the boundary data, to get an upper bound, we may

assume 𝐿1(1) = 𝐿1(2𝑇 − 1) = 𝑀1
√
𝑇 . But note that under this boundary condition we have

(𝐿1(𝑖) − 𝑀1
√
𝑇)2𝑇−1

𝑖=1
𝑑
= (𝑋 (𝑖))2𝑇−1

𝑖=1 . Thus, owing to (7.5.2), almost surely we have

1
𝐿1 (1)≤𝑀1

√
𝑇
E [1B | 𝜎(𝐿1(1))] ≤ P

(
sup

𝑖∈J1,2𝑇−1K
|𝑋 (𝑖) | ≥ (2𝑀0 + 𝑀)

√
𝑇

)
≤ 𝜀.

This implies P0,(−∞)𝑇 ;1,𝑇
𝛼1 (B) ≤ 2𝜀. Following similar calculations one can show

P0,(−∞)𝑇 ;1,𝑇
𝛼1

(
inf

𝑖∈J1,2𝑇−1K
𝐿1(𝑖) ≤ −(𝑀3 + 𝑀0)

√
𝑇

)
≤ 2𝜀.

This proves (7.5.4) with 𝑀 = 𝑀3 for 𝜀 ↦→ 2𝜀.

Step 2. In this step we prove (7.5.5). At this point we encourage the readers to look at Figure 7.19

and its caption for an overview of the proof idea.

Let us set F1 = 𝜎(𝐿2(2), (𝐿1(𝑖))2𝑇−1
𝑖=1 ) and F2 = 𝜎(𝐿1(1), (𝐿2(𝑖))2𝑇𝑖=2). We use the shorthand

notation P2 for P(0,−
√
𝑇),(−∞)𝑇 ;2,𝑇

𝛼2 . In view of (7.5.6), by a union bound

P2(A) ≤ 𝜀 + P2

(
{𝐿2(2) ≤ 𝑀0

√
𝑇} ∩ A

)
≤ 𝜀 + E2

[
1
𝐿2 (2)≤𝑀0

√
𝑇
E2 [1A | F1]

]
.

As A is an increasing event with respect to the boundary data, to get an upper bound, we may

assume 𝐿2(2𝑇) = 𝐿2(2) = 𝑀1
√
𝑇 , and 𝐿1(𝑖) = +∞ for all 𝑖 ∈ J1, 2𝑇 − 1K. But note that under this

boundary condition we have (𝐿2(𝑖 + 1) − 𝑀1
√
𝑇)2𝑇−1

𝑖=1
𝑑
= (𝑌 (𝑖))2𝑇−1

𝑖=1 . Thus, almost surely we have

1
𝐿2 (2)≤𝑀0

√
𝑇
· E2 [1A | F1] ≤ P

(
sup

𝑖∈J1,2𝑇−1K
|𝑋 (𝑖) | ≥ 𝑀0

√
𝑇

)
≤ 𝜀.
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Figure 7.19: In the above figure, we have plotted 𝐿1J1, 2𝑇 − 1K (black curve) and 𝐿2J2, 2𝑇K (blue
curve).Due to endpoint tightness, Lemma 7.3.8 ensure 𝐿1(1), 𝐿2(2) ∈ (−𝑀0

√
𝑇, 𝑀0

√
𝑇). Assum-

ing this, in order to seek an uniform upper bound for the blue curve, by stochastic monotonicity
we may push the black curve all the way to +∞. The resulting law for the blue curve is given by
𝑌 introduced in Lemma 7.5.3. Uniform upper bound for the resulting law for the blue curve law
can then be estimated by Lemma 7.5.3. The upper bound is shown in the dashed line above. Once
we have an uniform upper bound for the blue curve, we may elevate the endpoints of black curve
much higher (from black points to red points in the above right figure) so that the curve no longer
feels the effect of the blue curve. The red curve above denotes a sample for 𝐿1 from this elevated
end points. Without the blue curve its law (upto a translation) equals to 𝑋 in Lemma 7.5.3. An
uniform upper bound for the red curve can then be estimated by Lemma 7.5.3.

Thus P2(A) ≤ 2𝜀. In view of this bound, applying a union bound we have

P2(B) ≤ 3𝜀 + E2

[
1{𝐿1 (1)≤𝑀1

√
𝑇}∩¬AE2 [1B | F2]

]
As B is an increasing event with respect to the boundary data, by stochastic monotonicity, to get

an upper bound we may assume 𝐿1(1) = 𝐿1(2𝑇 − 1) = 𝑀3
√
𝑇 and 𝐿2(𝑖) = (𝑀0 + 𝑀1)

√
𝑇 for all

𝑖 ∈ J2, 2𝑇K. From the definition of the Gibbs measure, almost surely we have

1{𝐿1 (1)≤𝑀1
√
𝑇}∩¬AE2 [1B | F2] ≤

1
E[Δ]E [Δ · 1B] .
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where B is now interpreted as {sup𝑖∈J1,2𝑇−1K 𝑋 (𝑖) ≥ 𝑀0
√
𝑇} and

Δ = exp

(
−
𝑇−1∑︁
𝑖=1
[𝑒−(𝑀0+1)

√
𝑇−𝑋1 (2𝑖−1) + 𝑒−(𝑀0+1)

√
𝑇−𝑋1 (2𝑖+1)]

)
.

As Δ ≤ 1, by (7.5.2), E [Δ · 1B] ≤ E[1B] ≤ 𝜀. By (7.5.2) we have E[Δ] ≥ (1 − 𝜀) · exp(−2(𝑇 −

1)𝑒−
√
𝑇 ) ≥ 𝛽 for some absolute constant 𝛽 > 0. Thus, P2(B) ≤ (3+ 𝛽−1)𝜀. Similarly one can show

P2

(
inf

𝑖∈J2,2𝑇K
𝐿2(𝑖) ≤ −(𝑀3 + 𝑀0)

√
𝑇

)
≤ (3 + 𝛽−1)𝜀

P2

(
inf

𝑖∈J1,2𝑇−1K
𝐿1(𝑖) ≤ −(𝑀0 + 𝑀1)

√
𝑇

)
≤ 2𝜀.

Thus adjusting the constants we can find 𝑀 such that

P2

(
sup

𝑖∈J1,2𝑇−1K
|𝐿1(𝑖) | + sup

𝑗∈J2,2𝑇K
|𝐿2( 𝑗) | ≥ (𝑀 − 1)

√
𝑇

)
≤ 𝜀/3.

Finally via Observation 7.4.5 we know 𝐿2(1) − 𝐿2(2) ∼ 𝐺𝛼2 . Thus, by a union bound, for all

𝑇 large enough we have P2( |𝐿2(1) | ≥ 𝑀
√
𝑇) ≤ 𝜀/3 + P2( |𝐿2(1) − 𝐿2(2) | ≥

√
𝑇) ≤ 2𝜀/3. By

another union bound, we arrive at (7.5.5).

Recall the normalizing constant 𝑉𝑇𝑝 (®𝑦, ®𝑧) from (7.2.5) and (7.2.6). One can easily obtain a

lower bound for this normalizing constant as a consequence of the Lemma 7.5.4.

Corollary 7.5.5. Fix any 𝑟 > 0 and for each 𝑁 > 0 set 𝑇 = b𝑟𝑁2/3c. Fix any 𝑝 ∈ {1, 2} and

set 𝛼 = 𝛼𝑝 according to (7.3.11). There exists 𝑄0 = 𝑄0(𝑟) > 0, 𝑁 = 𝑁0(𝑟) > 0 such that for all

𝑄 ≥ 𝑄0 and 𝑁 ≥ 𝑁0

𝑉𝑇𝑝 (®𝑦, ®𝑧) := E®𝑦,(−∞)
𝑇 ;𝑝,𝑇

𝛼𝑝

©­«
𝑇∏
𝑗=1
𝑊 (𝑧 𝑗 ; 𝐿𝑝 (2 𝑗 + 1), 𝐿𝑝 (2 𝑗 − 1))ª®¬ ≥ 1

2 ,

for all ®𝑧 ∈ R𝑇 with 𝑧𝑖 ≤ 𝑄𝑁1/3 and ®𝑦 ∈ R𝑝 with 𝑦𝑖 ≥ (2𝑄−1)𝑁1/3. Here𝑊 (𝑎; 𝑏, 𝑐) := 𝑒−𝑒𝑎−𝑏−𝑒𝑎−𝑐

and in above equation 𝐿𝑝 (2𝑇 + 1) = ∞.
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Proof. Consider the event

A :=
{

inf
𝑗∈J1,𝑇K

𝐿𝑝 (2 𝑗 − 1) ≥ (𝑄 + 1)𝑁1/3
}
.

Observe that

𝑉𝑇𝑝 ≥ E®𝑦,(−∞)
𝑇 ;𝑝,𝑇

𝛼𝑝

©­«1A

𝑇∏
𝑗=1
𝑊 (𝑧 𝑗 ; 𝐿𝑝 (2 𝑗 + 1), 𝐿𝑝 (2 𝑗 − 1))ª®¬ ≥ exp(−2𝑇𝑒−𝑁

1/3) · P®𝑦,(−∞)
𝑇 ;𝑝,𝑇

𝛼𝑝 (A)

Taking 𝑁 large enough ensures exp(−2𝑇𝑒−𝑁1/3) ≥ 1/
√

2. Since A is an increasing event with

respect to the boundary data, applying stochastic monotonicity and translation invariance we have

P®𝑦,(−∞)
𝑇 ;𝑝,𝑇

𝛼𝑝 (A) = P®𝑥,(−∞)
𝑇 ;𝑝,𝑇

𝛼𝑝

(
inf

𝑗∈J1,𝑇K
𝐿𝑝 (2 𝑗 − 1) ≥ −(𝑄 − 2)𝑁1/3

)
where ®𝑥 = 0 if 𝑝 = 1 and ®𝑥 = (0,−

√
𝑇) if 𝑝 = 2. Appealing to Lemma 7.5.4 we may choose 𝑄

large enough so that the above probability is at least 1/
√

2. This completes the proof.

7.5.2 Proof of Proposition 7.5.1

For clarity we divide the proof into three steps.

Step 1. In this step, we give the roadmap of the proof of (7.5.1) leaving the technical details to

later steps.

Fix 𝑟, 𝜀, 𝛿 > 0 and 𝑝 ∈ {1, 2}. Fix 𝑁 ≥ 3 large enough so that 𝑇 = 8b𝑟𝑁2/3c ≥ 24. Set

𝛼 = 𝛼𝑝 according to (7.3.11) and consider the HSLG line ensemble 𝑁 from Definition 7.2.7 with

parameters (𝛼, 𝜃). Consider the event

MC𝛿 :=
{
𝜔𝑁𝛿 (

𝑁
1 , J1, 𝑇/4 − 1K) ≥ 𝛾𝑁1/3}.
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By Theorem 7.3.9, there exists 𝑆(𝜀) > 0 such that

P(A1) ≥ 1 − 𝜀, where A1 :=
{
𝑁−1/3 |𝑁1 (1) | + 𝑁

−1/3 |𝑁2 (2) | ≤ 𝑆
}
. (7.5.7)

By Proposition 7.3.4, there exists 𝑀1(𝜀) > 0 such that for all large enough 𝑁

P
(
𝑁
1 (2𝑇 − 1) ≥ 𝑀1𝑁

1/3
)
≤ 𝜀. (7.5.8)

We claim that there exists 𝑀2(𝑟, 𝜀) > 0 such that for all large enough 𝑁

P
(
𝑁
𝑝 (2𝑇 + 𝑝 − 2) ≤ −𝑀2𝑁

1/3
)
≤ 𝜀. (7.5.9)

We shall prove (7.5.9) in Step 2. Let us assume it for now. Set 𝑀 = max{𝑀1, 𝑀2, 4} and consider

the event

B1 := {|𝑁1 (2𝑇 − 1) | ≤ 2𝑀𝑁1/3},

B2 := {𝑁2 (2𝑇) ≥ −𝑀𝑁
1
3 , 𝑁1 (2𝑇 − 1) ≤ 𝑀𝑁 1

3 , 𝑁1 (2𝑇 − 1) ≥ 𝑁
1 (2𝑇) − (log 𝑁)7/6},

For each 𝛽 > 0 we define

C(𝑝, 𝛽) := {𝑉𝑇𝑝
(
(𝑁𝑗 (2𝑇 + 𝑗 − 2)) 𝑗∈J1,𝑝K; (𝑁𝑝+1(2𝑘))

𝑇
𝑘=1

)
≥ 𝛽}, (7.5.10)

where 𝑉𝑇𝑝 (·, ·) is defined in (7.2.6). We now claim that there exists 𝛽(𝑟, 𝜀) > 0 such that

P (¬C(𝑝, 𝛽)) ≤ 𝜀. (7.5.11)

We work with this choice of 𝛽 for the rest of this step. We postpone the proof of (7.5.11) to Step 3.
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Let us now complete the proof of Proposition 7.5.1 assuming it. Consider the following 𝜎-algebra:

F𝑝,𝑘 := 𝜎
{
(𝑁𝑖 J1, 2𝑁 − 2𝑖 + 2K)𝑖≥𝑝+1, (𝑁𝑖 ( 𝑗)) 𝑗≥2𝑘+𝑖−2,𝑖∈J1,𝑝K

}
. (7.5.12)

Clearly B𝑝 ∩ C(𝑝, 𝛽) is measurable with respect to F𝑝,𝑇 . By union bound and tower property of

conditional expectation we have

P(MC𝛿) ≤ P(¬A1) + P
(
¬B𝑝

)
+ P (¬C(𝑝, 𝛽))

+ E
[
1B𝑝∩C (𝑝,𝛽)E

(
1A1∩MC𝛿

| F𝑝,𝑇
) ]
.

(7.5.13)

Let us bound the four terms on the r.h.s. of the above equation separately.

(a) A1 event: We have P(¬A1) ≤ 𝜀 due to (7.5.7).

(b) B𝑝 event: Note that for large enough 𝑁 , B2 ⊂ B1. Combining (7.5.8), (7.5.9), and Theorem

7.3.1 (with 𝜌 ↦→ 1
2 , 𝑀 ↦→ 𝑀), by a union bound we see that for all large enough 𝑁 ,

P(¬B𝑝) ≤ P(¬B2)

≤ P(A1,
𝑁
2 (2𝑇) ≤ −𝑀𝑁

1/3) + P(𝑁1 (2𝑇 − 1) ≥ 𝑀𝑁1/3)

+ P
(
𝑁
1 (2𝑇 − 1) ≤ 𝑁

1 (2𝑇) − (log 𝑁)7/6
)

≤ 2𝜀 + 2−𝑁 ≤ 3𝜀.

(c) C(𝑝, 𝛽) event: We have P(¬C(𝑝, 𝛽)) ≤ 𝜀 due to (7.5.11).

(d) Conditional probability: By Theorem 7.1.3 and (7.2.5) we have

E
(
1A1∩MC𝛿

| F𝑝,𝑇
)
=

E𝜃;®𝑦,(−∞)
2𝑇 ;𝑝,𝑇

𝛼𝑝

[
𝑉𝑇𝑝

(
®𝑦; (𝑁

𝑝+1(2𝑖))
𝑇
𝑖=1

)
· 1A1∩MC𝛿

]
𝑉𝑇𝑝

(
®𝑦; (𝑁

𝑝+1(2𝑖))
𝑇
𝑖=1

) (7.5.14)

where ®𝑦 := (𝑁
𝑗
(2𝑇 + 𝑗 − 2)) 𝑗∈J1,𝑝K and 𝑉𝑇𝑝 (·; ·) is defined in (7.2.6). From definition we have
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𝑉𝑇𝑝

(
®𝑦; (𝑁

𝑝+1(2𝑖))
𝑇
𝑖=1

)
∈ [0, 1]. On C(𝑝, 𝛽) we have

1C (𝑝,𝛽) · r.h.s. of (7.5.14) ≤ 1C (𝑝,𝛽) · 𝛽−1 · P𝜃;®𝑦,(−∞)
2𝑇 ;𝑝,𝑇

𝛼𝑝 (A1 ∩MC𝛿) .

Observe that the event B𝑝 ensures ®𝑦 ∈ 𝐼𝑝,𝑀 where the set 𝐼𝑝,𝑀 is defined in the statement of

Lemma 7.5.2. We can thus apply Lemma 7.5.2 with 𝑀 ↦→ 𝑀, 𝑢 ↦→ 𝑆, 𝑘 ↦→ 𝑘, 𝛾 ↦→ 𝛾, 𝜀 ↦→

𝛽 · 𝜀, to get a 𝛿 > 0 such that

1B𝑝 · P
𝜃;®𝑦,(−∞)2𝑇 ;𝑝,𝑇
𝛼𝑝 (A1 ∩MC𝛿) ≤ 1B𝑝 · 𝜀,

for all large enough 𝑁 . Thus overall we have

E
[
1B𝑝∩C (𝑝,𝛽)E

(
1A1∩MC𝛿

| F𝑝,𝑇
) ]
≤ 𝜀.

Plugging in the above four estimates back in r.h.s. of (7.5.13) and taking limit superior 𝑁 → ∞,

followed by 𝛿 ↓ 0, yields

lim sup
𝛿↓0

lim sup
𝑁→∞

P(MC𝛿) ≤ 6𝜀.

As 𝜀 is arbitrary, we thus have (7.5.1), completing the proof.

Step 2. In this step we prove (7.5.9). We write P𝛼𝑝 instead of P to stress on the fact that the HSLG

line ensemble has boundary parameter 𝛼𝑝, defined in (7.3.11). We claim that there exists 𝑀2(𝑟, 𝜀)

such that for all large enough 𝑁

P𝛼𝑝
(
Fall(𝑝)

𝑀2

)
≤ 𝜀

4 , Fall(𝑝)
𝑀2

:=
{

inf
𝑗∈J1,4𝑇+4K,𝑖∈J1,𝑝K

𝑁
𝑖 ( 𝑗) ≤ −𝑀2𝑁

1/3
}
. (7.5.15)

Note that as {𝑁𝑝 (2𝑇 + 𝑝 − 2) ≤ −𝑀2𝑁
1/3} ⊂ Fall(𝑝)

𝑀2
, (7.5.15) implies (7.5.9). To show (7.5.15), we
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first define a few more necessary events. For each 𝑅 ≥ 32𝑟 + 1 we define

B(𝑖)
𝑅, 𝑗

:=
{
𝑁
𝑖 (2 𝑗 + 𝑖 − 2) ≥ −𝑅2𝑁1/3

}
, B̃(𝑖)

𝑅, 𝑗
:= B(𝑖)

𝑅, 𝑗
∩

⋃
𝑘∈J 𝑗+1,𝑅𝑁2/3K

¬B(𝑖)
𝑅,𝑘
,

B(𝑖)
𝑅

:=
⋃

𝑗∈J4𝑇+4,𝑅𝑁2/3K

B(𝑖)
𝑅, 𝑗

=
⊔

𝑗∈J4𝑇+4,𝑅𝑁2/3K

B̃(𝑖)
𝑅, 𝑗

=

{
sup

𝑗∈J4𝑇+4,𝑅𝑁2/3K

𝑁
𝑖 (2 𝑗 + 𝑖 − 2) ≥ −𝑅2𝑁1/3

}
,

Dif𝑅 :=
{
𝑁
1 (2 𝑗 − 1) ≥ 𝑁

2 (2 𝑗) + (log 𝑁)2 for all 𝑗 ∈ J1, 𝑅𝑁2/3K
}
.

By Theorem 7.3.1, Theorem 7.3.3, and Proposition 7.3.4, we can find a 𝑅 = 𝑅(𝑟, 𝜀) ≥ 1 such that

for all large enough 𝑁 , and for 𝑣 ∈ {1, 2}

P𝛼𝑣
(
¬B(1)

𝑅

)
+ P𝛼𝑣

(
¬B(2)

𝑅

)
+ P𝛼𝑣 (¬Dif𝑅) ≤ 𝜀

8 . (7.5.16)

We fix this choice of 𝑅. Observe that for large enough 𝑁 , we have

B̃(2)
𝑅,𝑖
∩ Dif𝑅 ⊂ B̃(2)

𝑅,𝑖
∩ B(1)2𝑅,𝑖,

uniformly for all 𝑖 ∈ J4𝑇 + 4, 𝑅𝑁2/3K. For 𝑝 = 2, by the union bound and the tower property of

conditional expectation, in view of (7.5.16), we have

P𝛼2

(
Fall(2)

𝑀2

)
≤ P𝛼2

(
¬B(2)

𝑅

)
+ P (¬Dif𝑅) +

∑︁
𝑗∈J4𝑇+4,𝑅𝑁2/3K

P𝛼2

(
B̃(2)
𝑅, 𝑗
∩ B(1)2𝑅, 𝑗 ∩ Fall(2)

𝑀2

)
≤ 𝜀

8 +
∑︁

𝑗∈J4𝑇+4,𝑅𝑁2/3K

E
[
1B̃(2)

𝑅, 𝑗
∩B(1)2𝑅, 𝑗

E𝛼2

(
1Fall(2)

𝑀2
| F2, 𝑗

)]
,

(7.5.17)

where F𝑝,𝑘 is defined in (7.5.12). For 𝑝 = 1, applying union bound and using (7.5.16) we have

P𝛼1

(
Fall(1)

𝑀2

)
≤ P𝛼1

(
¬B(1)

𝑅

)
+

∑︁
𝑗∈J4𝑇,𝑅𝑁2/3K

P𝛼1

(
B̃(1)
𝑅, 𝑗
∩ Fall(1)

𝑀2

)
≤ 𝜀

8 +
∑︁

𝑗∈J4𝑇+4,𝑅𝑁2/3K

E
[
1B̃(1)

𝑅, 𝑗

E𝛼1

(
1Fall(1)

𝑀2
| F1, 𝑗

)]
.

(7.5.18)
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We now proceed to control the conditional expectation P𝛼𝑝
(
Fall(𝑝)

𝑀2
| F𝑝, 𝑗

)
separately for 𝑝 = 1

and 𝑝 = 2. Applying the Gibbs property (Theorem 7.1.3), we have

1B̃(2)
𝑅, 𝑗
∩B(1)2𝑅, 𝑗

· E𝛼2

(
Fall(2)

𝑀2
| F2, 𝑗

)
= 1B̃(2)

𝑅, 𝑗
∩B(1)2𝑅, 𝑗

· E®𝑦,®𝑧;2, 𝑗𝛼2 (Fall(2)
𝑀2
)

≤ 1B̃(2)
𝑅, 𝑗
∩B(1)2𝑅, 𝑗

· P(0,−
√
𝑗),(−∞) 𝑗 ;2, 𝑗

𝛼2 (Fall(2)
𝑀2−4𝑅2).

Here ®𝑦 = (𝑁1 (2 𝑗−1), 𝑁2 (2 𝑗)) and ®𝑧 = (𝑁3 (2𝑚))
𝑗

𝑚=1. Let us briefly explain the above inequality. Note

that on B̃(2)
𝑅, 𝑗
∩ B(1)2𝑅, 𝑗 we have 𝑦𝑖 ≥ (−4𝑅2𝑁1/3 − (𝑖 − 1)

√
𝑗) for 𝑖 = 1, 2. Furthermore Fall(2)

𝑀2
is an

event which decreases with respect to boundary data. Thus to obtain an upper bound, by stochastic

monotonicty, we may take the boundary data from (𝑦1, 𝑦2) to (−4𝑅2𝑁1/3,−4𝑅2𝑁1/3 −
√
𝑗) and ®𝑧

to (−∞) 𝑗 . The above inequality then follows by translation invariance (see Observation 7.2.1 (a)).

Similar applications of the Gibbs property and stochastic monotonicity yield that on B̃(1)
𝑅, 𝑗

we have

E𝛼1

(
1Fall(1)

𝑀2
| F2, 𝑗

)
≤ P0,(−∞) 𝑗 ;1, 𝑗

𝛼1 (Fall(1)
𝑀2−4𝑅2).

We now claim that one can choose 𝑀2(𝑟, 𝜀) > 0 large enough such that for all 𝑗 ∈ J4𝑇 +4, 𝑅𝑁2/3K,

P®𝑥,(−∞)
𝑗 ;𝑝, 𝑗

𝛼𝑝 (Fall(𝑝)
𝑀2−4𝑅2) ≤ 𝜀

8 , (7.5.19)

where ®𝑥 := 0 (if 𝑝 = 1) or ®𝑥 := (0,−
√
𝑗) (if 𝑝 = 2). Plugging the above bound back in (7.5.18)

and (7.5.17) and using the fact that {B̃(𝑝)
𝑅, 𝑗
} 𝑗∈J4𝑇+4,𝑅𝑁2/3K is a disjoint collection of events we arrive

at the bound in (7.5.15). Thus we are left to verify (7.5.19) in this step. But observe that

P®𝑥,(−∞)
𝑗 ;𝑝, 𝑗

𝛼𝑝 (Fall(𝑝)
𝑀2−4𝑅2) ≤ P®𝑥,(−∞)

𝑗 ;𝑝, 𝑗
𝛼𝑝

(
inf

𝑘∈J1,2 𝑗+𝑖−2K,𝑖∈J1,𝑝K
𝐿𝑖 (𝑘) ≤ −(𝑀2 − 4𝑅2)𝑁1/3

)
By Lemma 7.5.4, one can choose 𝑀2 large enough such that the above expression is bounded

above by 𝜀/8 for all 𝑗 ∈ J4𝑇, 𝑅𝑁2/3K. This proves (7.5.19) completing our work for this step.
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Step 3. In this step we prove (7.5.11). For each 𝑄 > 0 consider the event

D𝑄 :=

{
sup

𝑖∈J1,4𝑇+4K

𝑁
𝑝+1(𝑖) ≤ 𝑄𝑁

1/3, inf
𝑗∈J1,𝑝K

𝑁
𝑗 (4𝑇 + 𝑗 + 2) ≥ −𝑄𝑁1/3 +

√
2𝑇 + 1

}
. (7.5.20)

By Theorem 7.3.1, Proposition 7.3.7, and (7.5.15) there exists 𝑄(𝑟, 𝜀) > 0 large enough such that

P(¬D𝑝,𝑄) ≤ 𝜀
2 . Consider F𝑝,2𝑇+2 from (7.5.12). Recall the event C(𝑝, 𝛽) from (7.5.10). By union

bound and the tower-property of the expectation, we have

P(¬C(𝑝, 𝛽)) ≤ P(¬C(𝑝, 𝛽) ∩ D𝑄) + 𝜀
2 = E

[
1D𝑄E[1C (𝑝,𝛽) | F𝑝,2𝑇+2]

]
+ 𝜀

2 . (7.5.21)

Applying the Gibbs property and (7.2.5) we have

E[1¬C (𝑝,𝛽) | F𝑝,2𝑇+2] = P®𝑦;®𝑧;𝑝,2𝑇+2𝛼𝑝

(
¬C(𝑝, 𝛽)

)
with ®𝑦 = (𝑦1, . . . , 𝑦𝑝) and 𝑦 𝑗 = 𝑁

𝑗
(4𝑇 + 𝑗 + 2) for 𝑗 ∈ J1, 𝑝K, and ®𝑧 = (𝑁

𝑝+1(2𝑘))
2𝑇+2
𝑘=1 . Let us

set ®𝑥 = (−𝑄𝑁1/3 +
√

2𝑇 + 1)𝑝. We now claim that there exists 𝑄0(𝑟, 𝜀) > 0, 𝑁0(𝑟, 𝜀) > 0 and

𝛽(𝑟, 𝜀) > 0, such that for all 𝑁 ≥ 𝑁0, 𝑄 ≥ 𝑄0, 𝑦𝑖 ≥ 𝑥𝑖 and ®𝑧 ∈ R2𝑇+2 with sup𝑖∈J1,2𝑇+2K 𝑧𝑖 ≤ 𝑄𝑁1/3

we have

P®𝑦;®𝑧;𝑝,2𝑇+2𝛼𝑝 (C̃(𝑝, 𝛽)) ≤ 𝜀
2 , where C̃(𝑝, 𝛽) :=

{
V𝑝 < 𝛽

}
, (7.5.22)

whereV𝑝 := 𝑉𝑇𝑝
(
(𝐿𝑖 (2𝑇 + 𝑖−2))𝑖∈J1,𝑝K, (𝑧1, . . . , 𝑧𝑇 )

)
(see (7.2.6)). Clearly in view of the definition

of D𝑄 from (7.5.20), the above claim shows that r.h.s. of (7.5.21) is at most 𝜀. Thus it suffices to

check (7.5.22). Towards this end, we first claim that

P®𝑦;®𝑧;𝑝,2𝑇+2𝛼𝑝 (C̃(𝑝, 𝛽)) =
E®𝑦; ®𝑤;𝑝,2𝑇+2
𝛼𝑝

[
1C̃ (𝑝,𝛽) · R · V𝑝

]
E®𝑦; ®𝑤;𝑝,2𝑇+2
𝛼𝑝

[
R · V𝑝

] , (7.5.23)

where ®𝑤 ∈ [−∞,∞)2𝑇+2 defined as 𝑤𝑖 = −∞ for 𝑖 ≤ 𝑇 and 𝑤𝑖 = 𝑧𝑖 for 𝑖 > 𝑇 , and R :=
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exp(−𝑒𝑧𝑇−𝐿2 (2𝑇+1)1𝑝=2). We postpone the proof of (7.5.23) to the next step.

Assuming (7.5.23), to prove (7.5.22), we provide upper and lower bounds for the numerator

and denominator of the r.h.s. of (7.5.23) respectively. Consider the events

R1 :=
{
𝐿1(2𝑇 − 1) ≥ 2𝑄𝑁1/3

}
,

R2 :=
{
𝐿2(2𝑇) ≥ 2𝑄𝑁1/3, 𝐿2(2𝑇 + 1) ≥ 2𝑄𝑁1/3, 𝐿1(2𝑇 − 1) ≥ (2𝑄 − 1)𝑁1/3

}
Note that

E®𝑦, ®𝑤;𝑝,2𝑇+2
𝛼𝑝

[
R · V𝑝

]
≥ E®𝑦, ®𝑤;𝑝,2𝑇+2

𝛼𝑝

[
1R𝑝
· R · V𝑝

]
≥ 1

2 exp(−𝑒−𝑄𝑁1/3) · P®𝑦, ®𝑤;𝑝,2𝑇+2
𝛼𝑝

(
R𝑝

)
≥ 1

2 exp(−𝑒−𝑄𝑁1/3) · P®𝑥,(−∞)
2𝑇+2;𝑝,2𝑇+2

𝛼𝑝

(
R𝑝

)
. (7.5.24)

where the penultimate inequality follows from the definition of R and Corollary 7.5.5 and the final

inequality follows via stochastic monotonicity as R𝑝 is an increasing event with respect to the

boundary data (recall 𝑦𝑖 ≥ 𝑥𝑖). To lower bound the above expression, we proceed into two cases

depending on the value of 𝑝.

Case 1. 𝑝 = 1. Note that R1 ⊃ RP1,𝑄 event defined in (7.4.1). By Lemma 7.4.1, we have

P®𝑥,(−∞)
2𝑇+2;1,2𝑇+2

𝛼1 (R1) ≥ P−𝑄𝑁
1/3,(−∞)2𝑇+2;1,2𝑇+2

𝛼1 (RP1,𝑄) ≥ 𝜙1 > 0 for some 𝜙1 free of 𝑁 .

Case 2. 𝑝 = 2. Let ®𝑢 := (−𝑄𝑁1/3 +
√

2𝑇 + 2,−𝑄𝑁1/3). Let us use the shorthand notation

P𝛾1,𝛾2
2 for P(𝛾1,𝛾2),(−∞)2𝑇+2;2,2𝑇+2

𝛼2 . Note that by stochastic monotonicity and union bound we have

P®𝑥2(R2) ≥ P®𝑢2
(
{𝐿2(2𝑇) ≥ 2𝑄𝑁1/3} ∩ {𝐿2(2𝑇 + 1) ≥ 2𝑄𝑁1/3}

)
− P®𝑢2

(
𝐿1(2𝑇 − 1) ≤ 𝐿2(2𝑇) − 𝑁1/3)

Note that RP2,𝑄 ⊂ {𝐿2(2𝑇) ≥ 2𝑄𝑁1/3} ∩ {𝐿2(2𝑇 + 1) ≥ 2𝑄𝑁1/3} (with 𝑇 replaced by 𝑇 + 1 in

(7.4.1)). Applying stochastic monotonicity and Lemma 7.4.1 with 𝑝 ↦→ 2 and 𝑇 ↦→ 𝑇 + 1, we see
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that the first term in the above equation can be bounded as

P®𝑢2
(
{𝐿2(2𝑇) ≥ 2𝑄𝑁1/3} ∩ {𝐿2(2𝑇 + 1) ≥ 2𝑄𝑁1/3}

)
≥ P(−𝑄𝑁

1/3,−(𝑄+1)𝑁1/3)
2

(
RP2,𝑄

)
≥ 𝜙2,

for some 𝜙2 > 0 free of 𝑁 . As for the second term, by translation invariance we have

P®𝑢2
(
𝐿1(2𝑇 − 1) ≤ 𝐿2(2𝑇) − 𝑁1/3) = P(0,−

√
2𝑇+1)

2
(
𝐿1(2𝑇 − 1) ≤ 𝐿2(2𝑇) − 𝑁1/3)

=
1

E[𝑊sc]
E

[
𝑊sc1𝑆 (2𝑇+1,1)

𝑇−1 ≤𝑆 (2𝑇+1,2)
𝑇−1 −𝑁1/3

]
.

where the last equality follows from Observation 7.4.5. Here (𝑆(2𝑇+1,𝑖)
𝑘

)𝑖∈{1,2},𝑘∈J0,2𝑇+1K ∼ P(0,−
√

2𝑇+1; 𝑓 ,𝑔)
𝑊sc

is a WPRW defined in Definition 7.4.4 with 𝑓 = 𝐺𝜃,1 ∗ 𝐺𝜃−1 and 𝑔 = 𝐺𝛼2 . Now by Corol-

lary (7.4.12), E[𝑊sc] ≥ C/
√

2𝑇 + 1 for some absolute constant C > 0. However on the event

{𝑆(2𝑇+1,1)
𝑇−1 ≤ 𝑆(2𝑇+1,2)

𝑇−1 − 𝑁1/3},𝑊sc ≤ exp(−𝑒𝑁1/3) (recall𝑊sc from (7.4.9)). Thus,

P®𝑢2
(
𝐿1(2𝑇 − 1) ≤ 𝐿2(2𝑇) − 𝑁1/3) → 0

as 𝑁 →∞. Hence for all large enough 𝑁 we have P®𝑥2(R2) ≥ 1
2𝜙.

Summarizing the above two cases, for all large enough 𝑁 , (7.5.24) is lower bounded by some

𝜙 > 0 free of 𝑁 . For the numerator in r.h.s. of (7.5.23) observe that as R ≤ 1, by definition of the

event C̃(𝑝, 𝛽), we have 1C̃ (𝑝,𝛽) · R · V𝑝 ≤ 𝛽. Let us now choose 𝛽 = 𝜙𝜀. Plugging these bounds

back in r.h.s. of (7.5.23) yields (7.5.22). This completes the proof.

Step 5. We shall prove (7.5.23) for 𝑝 = 2. The 𝑝 = 1 case proof is analogous. Assume (𝐿1J1, 4𝑇 +

3K, 𝐿2J1, 4𝑇 + 4K) ∼ P®𝑦,®𝑧;2,2𝑇+2𝛼2 . Let G := 𝜎(𝐿𝑖J2𝑇 + 𝑖 − 2, 4𝑇 + 𝑖 + 2K)𝑖∈J1,2K. Fix any event F

which is measurable with respect to G. Set 𝐿2(4𝑇 + 1) = ∞ and recall the function 𝑊 (𝑎; 𝑏, 𝑐) =
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exp(−𝑒𝑎−𝑏 − 𝑒𝑎−𝑐). We claim that

E®𝑦,(−∞)
2𝑇+2;𝑝,2𝑇+1

𝛼𝑝

1F ·
2𝑇+2∏
𝑗=1

𝑊 (𝑧 𝑗 ; 𝐿2(2 𝑗 + 1), 𝐿2(2 𝑗 − 1))


= E®𝑦,(−∞)
2𝑇+2;2,2𝑇

𝛼𝑝

1F · exp(−𝑒𝑧𝑇−𝐿2 (2𝑇+1))
2𝑇+2∏
𝑗=1

𝑊 (𝑤 𝑗 ; 𝐿2(2 𝑗 + 1), 𝐿2(2 𝑗 − 1)) · V2


(7.5.25)

Clearly (7.5.23) follows from the above identity and (7.2.5) by taking F = Ω (the full set, i.e.,

1F = 1) and F = ¬C(𝑝, 𝛽). To see (7.5.25), notice that

E®𝑦,(−∞)
2𝑇+2;2,2𝑇+2

𝛼2

1F ·
2𝑇+2∏
𝑗=1

𝑊 (𝑧 𝑗 ; 𝐿2(2 𝑗 + 1), 𝐿2(2 𝑗 − 1))


= E®𝑦,(−∞)
2𝑇+2;2,2𝑇+2

𝛼2

1F · exp(−𝑒𝑧𝑇−𝐿2 (2𝑇+1))
2𝑇+2∏
𝑗=𝑇+1

𝑊 (𝑧 𝑗 ; 𝐿2(2 𝑗 + 1), 𝐿2(2 𝑗 − 1))·

E®𝑦,(−∞)
2𝑇+2;2,2𝑇+2

𝛼2
©­«exp(−𝑒𝑧𝑇−𝐿2 (2𝑇−1))

𝑇−1∏
𝑗=1
𝑊 (𝑧 𝑗 ; 𝐿2(2 𝑗 + 1), 𝐿2(2 𝑗 − 1)) | Gª®¬

 .
Observe that by the Gibbs property the inner expectation when viewed as a random variable is

almost surely equals to 𝑉𝑇2 ((𝐿𝑖 (2𝑇 − 1), 𝐿2(2𝑇)), (𝑧1, 𝑧2, . . . , 𝑧𝑇 )) = V2 defined in (7.2.6). On the

other hand we have

2𝑇+2∏
𝑗=𝑇+1

𝑊 (𝑧 𝑗 ; 𝐿2(2 𝑗 + 1), 𝐿2(2 𝑗 − 1)) =
2𝑇+2∏
𝑗=1

𝑊 (𝑤 𝑗 ; 𝐿2(2 𝑗 + 1), 𝐿2(2 𝑗 − 1)).

Combining the above two observations, leads to (7.5.25) completing the proof.

7.5.3 Proof of Lemma 7.5.2

As with the proof of Lemma 7.3.8 and Lemma 7.4.1, we divide the proof of Lemma 7.5.2 into

two parts depending on 𝑝 = 1 or 𝑝 = 2.

Proof of Lemma 7.5.2 in the case 𝑝 = 1. Fix any 𝑇 ∈ J𝑘1𝑁
2
3 , 𝑘2𝑁

2
3 K. Fix any 𝛿 ≤ 𝛾/6𝜅. For

461



simplicity we write 𝐿 := 𝐿1. We recall the representation of bottom-free law in 𝑝 = 1 case from

Observation 7.4.3. Consider the Brownian motion 𝐵 := 𝐵(1) obtained via KMT coupling that

satisfies (7.4.10) with 𝑆 = 𝑇 . Define

A𝛿 :=
{

sup
𝑖1,𝑖2∈J1,𝑇K
|𝑖1−𝑖2 |≤ 𝛿2 𝑁

2/3

|𝐿 (2𝑖1 − 1) − 𝐿 (2𝑖2 − 1) | ≥ 1
6𝛾𝑁

1
3

}
,

B(𝑘) :=
{
|𝐿 (2𝑘 − 1) − 𝐿 (2𝑘) |, |𝐿 (2𝑘 + 1) − 𝐿 (2𝑘) | ≥ 1

3𝛾𝑁
1
3

}
.

Fix any 𝑥 ∈ R and set P𝑇1 := P𝑥,(−∞)
2𝑇 ;1,𝑇

𝛼1 . Observe that by union bound we have

P𝑇1
(
𝜔𝑁𝛿 (𝐿, J1, 2𝑇 − 1K) ≥ 𝛾𝑁1/3

)
≤ P𝑇1 (A𝛿) +

𝑇−1∑︁
𝑘=1

P𝑇1 (¬A𝛿 ∩ B(𝑘)). (7.5.26)

We now proceed to bound each of the above term separately. For the first term, by (7.4.7) and

(7.4.10), in view of the estimate in (7.4.11) we have for all large enough 𝑁 we have

P𝑇1 (A𝛿) ≤ P
(

sup
𝑖1,𝑖2∈J1,𝑇K
|𝑖1−𝑖2 |≤ 𝛿2 𝑁

2/3

𝜎 |𝐵𝑇−𝑖1−1 − 𝐵𝑇−𝑖2−1 | ≥ 𝛾

12𝑁
1/3 − 2C log𝑇

)
≤ P

(
sup

𝑖1,𝑖2∈J1,𝑇K
|𝑖1−𝑖2 |≤ 𝛿2 𝑁

2/3

𝜎 |𝐵𝑖2 − 𝐵𝑖2 | ≥
𝛾

24𝑁
1/3

)
.

By modulus of continuity of Brownian motion, the r.h.s. of the above equation can be made smaller

than 1
2𝜀 by choosing 𝛿 small enough depending on 𝜇, 𝜃, 𝛾, 𝑘1, 𝑘2. For the second term on the

r.h.s. of (7.5.26) we use Lemma 7.6.5 to get

P𝑇1 (¬A𝛿 ∩ B(𝑘)) ≤ C𝑒−
1
C𝛾𝑁

1
3
.

Plugging the bounds back in (7.5.26) and taking 𝑁 large enough we get the desired result. This

completes the proof.

Proof of Lemma 7.5.2 in the case 𝑝 = 2. Fix any (𝑥1, 𝑥2) ∈ 𝐼2,𝑀 , and 𝑇 ∈ J𝑘1𝑁
2/3, 𝑘2𝑁

2/3K. Set
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𝑛 := 𝑇 − 1. Let (𝑆(𝑛,1)
𝑘

, 𝑆
(𝑛,2)
𝑘
)𝑛
𝑘=0 be a paired random bridge defined in Definition 7.4.4 with

endpoints (𝑥1, 𝑥2) and 𝑓 = 𝐺𝜃,−1 ∗ 𝐺𝜃,+1 and 𝑔 = 𝐺𝛼2 . We recall from Observation 7.4.5 that

bottom-free law is given by appropriate WPRW for the supercritical case. To proceed with our

analysis for the weighted case, we first need an estimate for E[𝑊sc] where𝑊sc is the weight defined

in (7.4.9).

Lemma 7.5.6. There exist constants C1,C2 > 0, depending on 𝑀 , such that for all (𝑥1, 𝑥2) ∈ 𝐼2,𝑀

we have

E[𝑊sc] ≥ 1√
𝑛
C−1

1 · P
𝑛/4
(𝑥1,𝑥2) (NI) ≥ C−1

2 𝑒−C2 (log 𝑛)5/4 , (7.5.27)

where P𝑛/4(𝑥1,𝑥2) (NI) denotes the non-intersection probability of two independent random walks of

length 𝑛/4 starting at (𝑥1, 𝑥2).

We postpone the proof of Lemma 7.5.6 and complete the proof of Lemma 7.5.2 in the following

two steps.

Step 1. Fix any 𝑆, 𝛾 > 0. Set 𝑣 = 𝛾/
√
𝑘2, 𝑢 = 𝑆/

√
𝑘1, and 𝑡 = 2 log log 𝑛. Let F := 𝜎(𝑆(𝑛,1)0 , 𝑆

(𝑛,2)
0 ).

Consider the events

MC𝛿 :=
{
|𝑆(𝑛,1)0 | + |𝑆(𝑛,2)0 | ≤ 𝑢

√
𝑛, 𝜔𝑁𝛿 (𝑆

(𝑛,𝑖)
· , J0, 𝑛8K) ≥ 1

6𝑣
√
𝑛, for 𝑖 = 1, 2

}
, for 𝛿 > 0.

We claim that given 𝜀 > 0, there exists 𝛿 small enough and 𝑁 large enough such that

P𝑊sc (MC𝛿) :=
E[𝑊sc1MC𝛿

]
E[𝑊sc]

≤ 𝜀. (7.5.28)

where 𝑊sc is defined in (7.4.9). We finish the proof of the lemma assuming (7.5.28). Indeed from

Observation 7.4.5 we know that (𝐿1(2 𝑗 +1), 𝐿2(2 𝑗 +2))𝑛
𝑗=0 is distributed as WPRW. Observe that
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by Lemma 7.6.5 and tail estimates for 𝐺 (defined in (7.2.3)) for all 𝑘 ≥ 1 we have

P2

(
|𝐿1(2𝑘) − 𝐿1(2𝑘 − 1) |, |𝐿1(2𝑘) − 𝐿1(2𝑘 + 1) | ≥ 1

3𝛾𝑁
1/3

| |𝐿1(2𝑘 − 1) − 𝐿1(2𝑘 + 1) | ≤ 1
6𝛾𝑁

1/3
)
≤ C exp(− 1

C𝛾𝑁
1/3),

P2

(
|𝐿2(2𝑘 + 1) − 𝐿2(2𝑘) |, |𝐿2(2𝑘 + 1) − 𝐿2(2𝑘 + 2) | ≥ 1

3𝛾𝑁
1/3

| |𝐿2(2𝑘) − 𝐿2(2𝑘 + 2) | ≤ 1
6𝛾𝑁

1/3
)
≤ C exp(− 1

C𝛾𝑁
1/3),

P2

(
|𝐿2(1) − 𝐿2(2) | ≤ 1

6𝛾𝑁
1/3

)
≤ C exp(− 1

C𝛾𝑁
1/3),

where P2 := P®𝑥,(−∞)
2𝑇 ;2,𝑇

𝛼2 . Thus, in view of (7.5.28), by union bound

2∑︁
𝑗=1

P2

(
|𝐿1(1) | + |𝐿2(2) | ≤ 𝑆𝑁

1
3 , 𝜔𝑁𝛿 (

𝑁
𝑗 , J1, 𝑇/4 + 𝑗 − 2K) ≥ 𝛾𝑁 1

3

)
≤ 𝜀 + C · 2𝑘2𝑁

2
3 exp(− 1

C𝛾𝑁
1
3 )

which can be made arbitrarily small taking 𝑁 large enough. This completes the proof.

Step 2. In this step we prove (7.5.28). We first define a few more necessary events.

G1 := {|𝑆(𝑛,1)0 | + |𝑆(𝑛,2)0 | ≤ 𝑢
√
𝑛, |𝑆(𝑛,1)0 − 𝑆(𝑛,2)0 | ≤ (log 𝑛)3/2},

G2 := {|𝑆(𝑛,1)0 | + |𝑆(𝑛,2)0 | ≤ 𝑢
√
𝑛, 1 ≤ 𝑆(𝑛,1)0 − 𝑆(𝑛,2)0 ≤ 2}.

Recall the non-intersection event NI𝑝 from (7.4.25). As𝑊sc ≤ 1, we write

E[𝑊sc1MC𝛿
] ≤ E[𝑊sc1MC𝛿∩G1∩NI𝑡 ]︸                   ︷︷                   ︸

(I)

+E[1¬NI𝑡 ] + E[1¬G1]︸                   ︷︷                   ︸
(II)

.

For (II), note that on ¬NI𝑡 , we have 𝑊sc ≤ 𝑒−𝑒
𝑡

= 𝑒−(log 𝑛)2 and by Lemma 7.4.7, P(¬G1) ≤

C𝑒−C−1 (log 𝑛)3/2 . Thus, (II) ≤ C𝑒−C−1 (log 𝑛)3/2 . In view of Lemma 7.5.6, (E[𝑊sc])−1 · (II) → 0. For
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(I), note that

(I) =
𝑡∑︁
𝑝=1

E[𝑊sc1MC𝛿∩G1∩NI𝑝∩¬NI𝑝−1] ≤
𝑡∑︁
𝑝=1

𝑒−𝑒
𝑝

E[1G1E[1MC𝛿∩NI𝑝 | F ]]

≤
𝑡∑︁
𝑝=1

C𝑒−𝑒
𝑝 · E[1G1 sup

𝑝∈J0,𝑡K
P̃𝑝 (MC𝛿 ∩ NI)],

where P̃𝑝 denote the law of (𝑛; 𝑛/4, 𝑛/4)-modified random bridge defined in Definition 7.4.9 start-

ing from (𝑆(𝑛,1)0 + 𝑝, 𝑆(𝑛,2)0 ) to (𝑥1 + 𝑝, 𝑥2). The last inequality follows from Lemma 7.4.10. Here

the constant C depends on 𝑢. By Lemma 7.7.1 and Lemma 7.7.5, on G1 we have

P̃𝑝 (NI) ≤ C√
𝑛
· 𝑒C𝑝 ·max{𝑆(𝑛,1)0 − 𝑆(𝑛,2)0 , 1} · P𝑛/4(𝑥1,𝑥2) (NI).

Thus setting C3 :=
∑∞
𝑟=1 2C1C3𝑒C𝑟𝑒−𝑒

𝑟

(with C1 coming from Lemma 7.5.6) we have

(E[𝑊sc])−1 · (I) ≤ C3 · E
[
1G1 ·max{𝑆(𝑛,1)0 − 𝑆(𝑛,2)0 , 1} · sup

𝑝∈J0,𝑡K
P̃𝑝 (MC𝛿 | NI)

]
Now we claim that one can choose 𝛿 sufficiently small such that

E

[
1G1 ·max{𝑆(𝑛,1)0 − 𝑆(𝑛,2)0 , 1} · sup

𝑝∈J0,𝑡K
P̃𝑝 (MC𝛿 | NI)

]
≤ 1

2C−1
1 𝜀.

We write G1 = G1,𝑀2 ∪ G̃1,𝑀2 , where

G1,𝑀2 := {|𝑆(𝑛,1)0 | + |𝑆(𝑛,2)0 | ≤ 𝑢
√
𝑛, |𝑆(𝑛,1)0 − 𝑆(𝑛,2)0 | ≤ 𝑀2}, G̃1,𝑀2 := G1 ∩ ¬G1,𝑀2 .

Given the tail estimates, one can choose 𝑀2 large enough such that

E
[
1G̃1,𝑀2

·max{𝑆(𝑛,1)0 − 𝑆(𝑛,2)0 , 1}
]
≤ 1

4C−1
1 𝜀.

This fixes our choice for 𝑀2. Now note that the event MC𝛿 depends only on the first 𝑛/8 points of
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the two (𝑛; 𝑛/4, 𝑛/4)-modified random bridges. By definition, the first 𝑛/4 points of a (𝑛; 𝑛/4, 𝑛/4)-

modified random bridge is just a random walk. Thus, in view of Lemma 7.7.9, one can then choose

𝛿 small enough and 𝑁 large enough such that on uniformly on G1,𝑀2 we have

sup
𝑝∈J0,𝑡K

P̃𝑝 (MC𝛿 | NI) ≤ 1
4C−1

1 𝑀−1
2 𝜀.

This completes the proof.

Proof of Lemma 7.5.6. Recall the definition of (𝑛, 𝑝, 𝑞)-modified random bridge from Definition

7.4.9. Let P̃(𝑎1,𝑎2) denote the law of two independent (𝑛, 𝑝, 𝑞)-modified random bridge starting at

(𝑎1, 𝑎2) and ending at (𝑥1, 𝑥2) with increments from 𝐺𝜃,+1 ∗ 𝐺𝜃,−1. We write (𝑆(𝑛,𝑖)
𝑘
)𝑘∈J1,𝑛K,𝑖∈J1,2K

for the corresponding random variable. We also use the notation P𝑚(𝑏1,𝑏2) to denote the law of

two independent random walks of length 𝑚 starting at (𝑏1, 𝑏2) with same increment law. We use

(𝑈𝑘 , 𝑉𝑘 )𝑛𝑘=0 for the corresponding random variable.

Recall the event Gap𝛽 from (7.4.20). Invoking Lemma 7.7.8 we first fix a 𝛽 = 𝛽(𝑀) ≤ 1
2 small

enough so that it satisfies

P̃(𝑎1,𝑎2) (Gap𝛽 | NI) ≥ 3
4 ,

for all |𝑎𝑖 | ≤
√
𝑛 with 1 ≤ 𝑎1 − 𝑎2 ≤ 2. Next by Lemma 7.7.2, we fix 𝜉 = 𝜉 (𝑀) > 0 so that

P𝑛/4(𝑏1,𝑏2) ( |𝑈𝑛/4 |, |𝑉𝑛/4 | ≤ 𝜉
√
𝑛 | NI) ≥

√︃
3
4

for all |𝑏𝑖 | ≤ (𝑀 + 1)
√
𝑛.

We consider the following events

G3 :=
{
|𝑆(𝑛,𝑖)0 | ≤

√
𝑛 for 𝑖 = 1, 2, 1 ≤ 𝑆(𝑛,1)0 − 𝑆(𝑛,2)0 ≤ 2

}
,

Tgt𝜉 :=
{
|𝑆(𝑛,𝑖)
𝑛/4 |, |𝑆

(𝑛,𝑖)
3𝑛/4 | ≤ 𝜉

√
𝑛 for 𝑖 = 1, 2

}
,
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where Tgt stands for tightness. Observe that by Lemma 7.4.8 we have

E[𝑊sc] ≥ E[𝑊sc1Gap𝛽∩G3∩Tgt𝜉 ] ≥
1
CP(Gap𝛽 ∩G3 ∩ Tgt𝜉) = 1

CE
[
1G3E[1Gap𝛽 ,Tgt𝜉 | F ]

]
(7.5.29)

where F := 𝜎(𝑆(𝑛,1)0 , 𝑆
(𝑛,2)
0 ). Under the event G3 and Tgt𝜉 we may invoke Lemma 7.4.10 to get

1G3 · E[1Gap𝛽∩Tgt𝜉 | F ] ≥ C−1 · 1G3 · P̃(𝑎1,𝑎2) [Gap𝛽 ∩ Tgt𝜉] (7.5.30)

almost surely, where 𝑎𝑖 = 𝑆
(𝑛,𝑖)
0 . By Corollary 7.7.7

P̃(𝑎1,𝑎2) (Gap𝛽 ∩ Tgt𝜉) = P̃(𝑎1,𝑎2) (Gap𝛽 ∩ Tgt𝜉 | NI)P̃(𝑎1,𝑎2) (NI)

≥ C−1P̃(𝑎1,𝑎2) (Gap𝛽 ∩ Tgt𝜉 | NI) · P𝑛/4(𝑎1,𝑎2) (NI)P𝑛/4(𝑥1,𝑥2) (NI).
(7.5.31)

By our choice of 𝛽 and 𝜉, we have P̃(𝑎1,𝑎2) (Gap𝛽,Tgt𝜉 | NI) ≥ 1
2 uniformly over the event G3. By

Lemma 7.7.1, we have P𝑛/4(𝑎1,𝑎2) (NI) ≥ C−1
√
𝑛

uniformly over the event G3. Thus combining (7.5.29),

(7.5.30), and (7.5.31) we have

E[𝑊sc] ≥ 1√
𝑛
C−1 · P𝑛/4(𝑥1,𝑥2) (NI) · P(G3)

By Lemma 7.4.7 ((7.4.17) in particular), P(G3) ≥ C−1. Plugging this back in the above equation

we get the first inequality in (7.5.27). For the second inequality, we consider the event:

G4 := {|𝑈1 − 𝑥1 | ≤ 1, |𝑉𝑖 −min{𝑥1 − 3, 𝑥2}| ≤ 1}.

Observe that

P𝑛/4(𝑥1,𝑥2) (NI) ≥ P𝑛/4(𝑥1,𝑥2)

(
G4 ∩ {𝑈 𝑗 ≥ 𝑉 𝑗 for all 𝑗 ∈ J2, 𝑛/4K}

)
.
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By the tail bounds of the increments from Lemma 7.6.4, and given the condition 𝑥1 − 𝑥2 ≥

−(log 𝑁)7/6, we have P(G4) ≥ C−1 exp(−C(log 𝑛)7/6) (recall 𝑛 ≥ 𝑘1𝑁
2/3 − 1). Furthermore,

on 𝐺4 we must have 𝑈1 ≥ 𝑉1. By Lemma 7.7.1, we have P𝑛/4−1
(𝑎1,𝑎2) (NI) ≥ C−1/

√
𝑛 for all 𝑎1 ≥ 𝑎2.

Thus we have

P(𝑛/4)(𝑥1,𝑥2)

(
G4 ∩ {𝑈 𝑗 ≥ 𝑉 𝑗 for all 𝑗 ∈ J2, 𝑛/4K}

)
≥ C−1 exp(−C(log 𝑛)7/6) · 1√

𝑛
.

Adjusting the constant we get the second inequality in (7.5.27). This completes the proof.

7.6 Basic properties of log-gamma type random variables

In this section we collect some basic facts about log-gamma type random variables. Towards

this end, for each 𝜃, 𝜅 > 0, and 𝑚 ∈ Z>0 we consider the following function:

𝐻𝜃,𝜅,(−1)𝑚 (𝑦) :=
𝜅𝜃

Γ(𝜃) exp(𝜃 (−1)𝑚𝑦 − 𝜅𝑒(−1)𝑚𝑦).

It is plain to check 𝐻 is a valid probability density function. Observe that 𝐻𝜃,1,(−1)𝑚 ≡ 𝐺𝜃,(−1)𝑚

where 𝐺 is defined in (7.2.3). The following lemma collects some useful properties of 𝐻. Its proof

follows via straightforward computations and is hence omitted.

Lemma 7.6.1. Suppose 𝑋 ∼ 𝐻𝜃,𝜅,1. We have the following.

(a) −𝑋 ∼ 𝐻𝜃,𝜅,−1.

(b) For every 𝛼 > −𝜃 we have E[𝑒𝛼𝑋] = Γ(𝛼+𝜃)
𝜅𝛼Γ(𝜃) .

We next define generalized HSLG Gibbs measures in the same vein as HSLG Gibbs measures
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(see Definition 7.1.2) but by considering the weight function

𝑊𝑒 (𝑥) =



exp(𝜃𝑥 − 𝜅𝑒𝑥) if 𝑒 is blue

exp(−𝛾𝑒𝑥) if 𝑒 is black

exp(−𝛼𝑥) if 𝑒 is red.

instead of𝑊 defined in (7.1.3). 𝜅 = 𝛾 = 1 in above weights lead to the usual Gibbs measures. The

following result ensures that generalized HSLG Gibbs measures (and hence the usual ones from

Definition 7.1.2) are well defined.

Lemma 7.6.2. Fix any 𝛾, 𝜅, 𝜃 > 0, and 𝛼 > −𝜃. Recall the graph 𝐺 from Section 7.1.3 used in

defining HSLG Gibbs measures. Given a domain Λ and a boundary condition {𝑢𝑖, 𝑗 : (𝑖, 𝑗) ∈ 𝜕Λ},

we have

∫
R |Λ |

∏
𝑒={𝑣1→𝑣2}∈𝐸 (Λ∪𝜕Λ)

𝑊𝑒 (𝑢𝑣1 − 𝑢𝑣2)
∏
𝑣∈Λ

𝑑𝑢𝑣 < ∞.

Let us suppose |𝑢𝑖, 𝑗 | ≤ 𝑅 for all (𝑖, 𝑗) ∈ Λ. Let us assume Λ = K𝑘,𝑇 or K′
𝑘,𝑇

defined in (7.2.1).

There exists a constant C that depends only on 𝛾, 𝜅, 𝜃, and 𝛼 such that

∫
R |Λ |

∏
𝑒={𝑣1→𝑣2}∈𝐸 (Λ∪𝜕Λ)

𝑊𝑒 (𝑢𝑣1 − 𝑢𝑣2)
∏
𝑣∈Λ

𝑑𝑢𝑣 ≤ C𝑘𝑇+𝑅 .

Proof. First note that, for red edges {𝑣1 → 𝑣2}, the corresponding weight function 𝑊𝑒 (𝑢𝑣1 − 𝑢𝑣2)

factors out as 𝑒−𝛼𝑢𝑣1 ·𝑒𝛼𝑢𝑣2 . Hence they can be viewed as vertex weight functions. More specifically,

at each vertex (𝑘, 1) we can associate the vertex weight function 𝑉𝑘 (𝑢) := 𝑒(−1)𝑘𝛼𝑢. They replace

the role of red edge weights. We denote this vertex weights as red circles in Figure 7.20. We now

divide our analysis into two cases based on the value of 𝛼.

Suppose 𝛼 ∈ (−𝜃, 𝜃). As black edge weights are less than 1, we may drop all of them to get

a Gibbs measure based on the blue and red edge weights only (see Figure 7.20 B). The integral
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(a) (b)

(c)

𝑢0 𝑢𝑘

𝑢0 𝑢𝑘

(d)

𝑢𝑘

(e)

𝑐

𝑢

(f)

Figure 7.20: (A) A possible domain Λ. (B) Reduction in the case of 𝛼 ∈ (−𝜃, 𝜃). (C) Reduction
in the case of 𝛼 > 0. (D) Type I Gibbs measures. The figure shows two of them of even length. It
may also have odd length with one edge at either of the end removed. (E) Type II Gibbs measures.
It may also have odd length with one edge at right end removed. (F) Few examples of Type III
Gibbs measures.

of the reduced Gibbs measure can be viewed as a product of integrals of several smaller Gibbs

measures that are two types: Type I and Type II (see Figure 7.20 D and E). Type I Gibbs measures

are the ones where red vertex weights does not appear. The integral corresponding to Type I takes
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the following form:

[
𝜅𝜃 (Γ(𝜃))−1] 𝑘 ∫

R𝑘−1

𝑘∏
𝑖=1

𝐻𝜃,𝜅,(−1)𝑖+𝑚 (𝑢𝑖−1 − 𝑢𝑖)
𝑘−1∏
𝑖=1

𝑑𝑢𝑖

where 𝑢0 and 𝑢𝑘 are in 𝜕Λ. In this case, we may use 𝐻𝜃,𝜅,(−1)𝑖+𝑚 (𝑢𝑘−1 − 𝑢𝑘 ) ≤ C and the fact that

𝐻 is a pdf to get that the integral is bounded by C ·
[
𝜅𝜃 (Γ(𝜃))−1] 𝑘 . Type II Gibbs measures are

the ones where red vertex weights are present. The integral corresponding to the Type II Gibbs

measures takes the form

∫
R𝑘

𝑘∏
𝑖=1

𝑒(−1)𝑚𝛼𝑢0 · 𝑒(−1)𝑖+𝑚𝜃 (𝑢𝑖−1−𝑢𝑖)−𝜅𝑒 (−1)𝑖+𝑚 (𝑢𝑖−1−𝑢𝑖 )
𝑘∏
𝑖=1

𝑑𝑢𝑖 .

The integrand can be manipulated to show that the above integral is equal to

𝑒(−1)𝑚+𝑘−1𝛼𝑢𝑘

𝑘−1∏
𝑖=1
(Γ(𝜃 + (−1)𝑚+𝑖+1𝛼))𝜅−𝜃+(−1)𝑚+𝑖𝛼

∫
R𝑘

𝑘∏
𝑖=1

𝐻𝜃+(−1)𝑚+𝑖+1𝛼,𝜅,(−1)𝑖−1 (𝑥𝑖)
𝑘∏
𝑖=1

𝑑𝑥𝑖

= 𝑒(−1)𝑚+𝑘−1𝛼𝑢𝑘

𝑘−1∏
𝑖=1
(Γ(𝜃 + (−1)𝑚+𝑖+1𝛼))𝜅−𝜃+(−1)𝑚+𝑖𝛼 .

This verifies the lemma for 𝛼 ∈ (−𝜃, 𝜃).

For 𝛼 > 0, we remove all the black edges except the ones connecting (2𝑖 − 1, 1) to (2𝑖, 1).

This leads to a reduced Gibbs measures shown in Figure 7.20 C. The reduced Gibbs measure

decomposes into several Type I Gibbs measures and Type III Gibbs measures. Type III Gibbs

measures are the ones that has the red vertex weights. Few of the possible Type III Gibbs measures

are shown in Figure 7.20.

• If a Type III Gibbs measure has two red vertices in its domain∪ boundary, we may use the fact

that the weight of the figure

𝑎

𝑏

𝑐
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is 𝑒(𝜃+𝛼) (𝑏−𝑐)−𝜅𝑒
𝑏−𝑐 · 𝑒𝛼(𝑐−𝑎)−𝛾𝑒𝑐−𝑎 ≤ C𝑒(𝜃+𝛼) (𝑏−𝑐)−𝜅𝑒𝑏−𝑐 .

• If a Type III Gibbs measure has only one red vertex in its domain ∪ boundary, then it must

contain either of the two following figures

𝑏

𝑐 𝑎

𝑐

with 𝑐 ∈ 𝜕Λ. The corresponding weights are 𝑒𝛼𝑐 · 𝑒(𝜃+𝛼) (𝑏−𝑐)−𝜅𝑒𝑏−𝑐 ≤ C𝑒𝛼𝑐 and 𝑒−𝛼𝑐 ·

𝑒𝛼(𝑐−𝑎)−𝛾𝑒
𝑐−𝑎 ≤ C𝑒−𝛼𝑐 respectively.

Based on the kind of Type III Gibbs measures, we may insert the above obtained bound in the

integrand of this type of Gibbs measures. The resulting integral can then be computed explicitly

to yield a bound of the form C𝑉𝑒 |𝛼𝑐 | where 𝑉 is the number of vertices in the Gibbs measures. For

example, for the middle figure in Figure 7.20 we have (with 𝑢4 := 𝑢)

[
𝜅−𝜃Γ(𝜃)

]4
∫
R4
𝑒−𝛼𝑢0𝑒−𝛾𝑒

𝑐−𝑢0
3∏
𝑖=0

𝐻𝜃,𝜅,(−1)𝑖 (𝑢𝑖 − 𝑢𝑖+1)𝑑𝑢𝑖

≤
[
𝜅−𝜃Γ(𝜃)

]4 · C𝑒−𝛼𝑐
∫
R4

3∏
𝑖=0

𝐻𝜃,𝜅,(−1)𝑖 (𝑢𝑖 − 𝑢𝑖+1)𝑑𝑢𝑖 ≤
[
𝜅−𝜃Γ(𝜃)

]4 · C𝑒 |𝛼𝑐 | .

This establishes the lemma for 𝛼 > 0.

For the rest of the appendix we fix some 𝜃 > 0 and reserve the notation 𝑓 for the function

𝑓 (𝑥) := 𝐺𝜃,+1 ∗ 𝐺𝜃,−1(𝑥) (7.6.1)

Note that 𝑓 is symmetric. We set the variance of 𝑓 to be 𝜎2(𝜃) > 0. All the constants appearing

in the subsequent lemmas of the appendix may depend on 𝜃. We will not mention this further.

We first state a few properties of 𝑓 useful for our later analysis. The following lemma concerns

with sharp rate of convergence of pdf of (𝑋1 + 𝑋2 + · · · + 𝑋𝑛)/
√
𝑛, where 𝑋𝑖

𝑖.𝑖.𝑑.∼ 𝑓 , to normal

density with appropriate variance.
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Lemma 7.6.3. Let 𝑓 ∗𝑛 be the 𝑛-fold convolution of 𝑓 . We have

sup
|𝑥 |≤(log 𝑛)2

����√𝑛 𝑓 ∗𝑛 (𝑥√𝑛)𝜙𝜎 (𝑥)
− 1

���� = 𝑂 (𝑛−3/4).

where 𝜙𝜎 (𝑥) = 1√
2𝜋𝜎2 𝑒

− 𝑥2
2𝜎2 .

Proof. The proof below is adapted from Theorem 5 in Chapter XV in [163]. Let 𝜓 denote the

Fourier transform (characteristic function) of 𝑓 . We will prove the lemma for general 𝑓 satisfying

the following two assumptions:

• 𝑓 is symmetric and

• given any 𝛿 > 0, sup𝑡≥𝛿 |𝜓(𝑡) | = 𝜂 < 1.

Clearly 𝑓 in (7.6.1) satisfies the above two assumptions. In what follows, for simplicity we will

assume 𝜎2 = 1.

Set 𝑓𝑛 (𝑥) :=
∫
R
𝑒𝑖𝑡𝑥𝜓𝑛 (𝑡/

√
𝑛)𝑑𝑡. We have

√
𝑛 𝑓 ∗𝑛 (𝑥/

√
𝑛) = 𝑓𝑛 (𝑥). Set 𝛼 = 1/16. Under the

assumption on 𝑓 , we have

𝜓(𝑡/
√
𝑛) = 1 − 𝑡2

2𝑛 +𝑂 (
𝑡4

𝑛2 ).

Thus for |𝑡 | ≤ 𝑛𝛼, we have 𝜓(𝑡/
√
𝑛) = 1 − 𝑡2

2𝑛 + 𝑂 (𝑛
4𝛼−2) = 𝑒−𝑡

2/2𝑛+𝑂 (𝑛4𝛼−2) . Thus 𝜓𝑛 (𝑡/
√
𝑛) =

𝑒−𝑡
2/2(1 +𝑂 (𝑛−3/4)), where the 𝑂 term is free of 𝑡 in that specified range. Thus,

𝑓𝑛 (𝑥) = (1 +𝑂 (𝑛−3/4))
∫
|𝑡 |≤𝑛𝛼

𝑒𝑖𝑡𝑥𝑒−𝑡
2/2𝑑𝑡 +

∫
|𝑡 |≥𝑛𝛼

𝑒𝑖𝑡𝑥𝜓𝑛 (𝑡/
√
𝑛)𝑑𝑡

= (1 +𝑂 (𝑛−3/4))
∫
R
𝑒𝑖𝑡𝑥𝑒−𝑡

2/2𝑑𝑡 +
∫
|𝑡 |≥𝑛𝛼

𝑒𝑖𝑡𝑥𝜓𝑛 (𝑡/
√
𝑛)𝑑𝑡 − (1 +𝑂 (𝑛−3/4))

∫
|𝑡 |≥𝑛𝛼

𝑒𝑖𝑡𝑥𝑒−𝑡
2/2𝑑𝑡.

We next compute the order of the last two integrals above. Clearly
∫
|𝑡 |≥𝑛𝛼 𝑒

−𝑡2/2𝑑𝑡 ≤ C𝑒−𝑐𝑛2𝛼
. For

the second one, we choose 𝛿 > 0 small enough such that |𝜓(𝑡) | ≤ 𝑒−𝑡
2/4 for all |𝑡 | ≤ 𝛿. This
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implies

∫
𝑛𝛼≤𝑡≤

√
𝑛𝛿

|𝜓𝑛 (𝑡/
√
𝑛) |𝑑𝑡 ≤ C𝑒−𝑐𝑛

2𝛼
.

For |𝑡 | ≥
√
𝑛𝛿, we know sup𝑡≥𝛿 |𝜓(𝑡) | = 𝜂 < 1. This forces

∫
|𝑡 |≥
√
𝑛𝛿

|𝜓𝑛 (𝑡/
√
𝑛) |𝑑𝑡 ≤ 𝜂𝑛−1√𝑛

∫
R
𝜓(𝑡)𝑑𝑡.

Thus the error integrals are at most C𝜌−𝑛1/8
in absolute value uniform in 𝑥. Furthermore if we as-

sume |𝑥 | ≤ (log 𝑛)2, 𝜙1(𝑥) ≥ 1√
2𝜋
𝑒−(log 𝑛)2/2, which dominates the error coming from the integrals.

Hence we may divide 𝜙1(𝑥) and still obtain that the errors are going to zero. This completes the

proof of the lemma.

The next lemma concerns with the uniform tail behavior 𝑓 .

Lemma 7.6.4. For all 𝑥 ∈ R we have

𝑒−2𝑒 ≤ 𝑓 (𝑥)𝑒𝜃 |𝑥 | ≤ Γ(2𝜃).

Proof. Since 𝑓 is symmetric, it suffices to show the lemma for 𝑥 > 0. We have

𝑓 (𝑥) =
∫
R
𝑒𝜃𝑦−𝑒

𝑦+𝜃 (𝑦−𝑥)−𝑒𝑦−𝑥𝑑𝑦 = 𝑒−𝜃𝑥
∫
R
𝑒2𝜃𝑦−𝑒𝑦−𝑒𝑦−𝑥𝑑𝑦

Now for the lower bound we observe

∫
R
𝑒2𝜃𝑦−𝑒𝑦−𝑒𝑦−𝑥𝑑𝑦 ≥

∫ 1

0
𝑒2𝜃𝑦−𝑒𝑦−𝑒𝑦−𝑥𝑑𝑦 ≥ 𝑒−2𝑒,

whereas for the upper bound we have

∫
R
𝑒2𝜃𝑦−𝑒𝑦−𝑒𝑦−𝑥𝑑𝑦 ≤

∫
R
𝑒2𝜃𝑦−𝑒𝑦𝑑𝑦 ≥ Γ(2𝜃).
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This establishes the lemma.

We end this section by recording a tail estimate for the 𝜉-distributions introduced in (7.4.5).

Lemma 7.6.5. Fix any 𝑎, 𝑏 ∈ R and 𝜃0 > 1. Consider 𝑋 ∼ 𝜉 (𝑎,𝑏)
𝜃1,𝜃2;±1 where 𝜉 (𝑎,𝑏)

𝜃1,𝜃2;±1 is defined in

(7.4.5). There exists a constant C > 0 depending on 𝜃0 such that for all 𝜃1, 𝜃2 ∈ [𝜃−1
0 , 𝜃0] and for

all 𝑟 ≥ |𝑎 − 𝑏 | we have

P(𝑋 ∉ [min{𝑎, 𝑏} − 2𝑟,max{𝑎, 𝑏} + 2𝑟]) ≤ C𝑒−
1
C 𝑟 .

Proof. Fix any 𝜃1, 𝜃2 ∈ [𝜃−1
0 , 𝜃0]. We prove the bound for 𝜉 (𝑎,𝑏)

𝜃1,𝜃2;1. The proof for the case 𝜉 (𝑎,𝑏)
𝜃1,𝜃2;−1

is analogous. Without loss of generality assume 𝑏 ≤ 𝑎. Observe that

∫ 𝑎+1

𝑎

𝐺𝜃1,1(𝑎 − 𝑥)𝐺𝜃2,1(𝑏 − 𝑥) ≥ 1
C · 𝑒

−max{𝜃1,𝜃2}·(𝑎−𝑏) ,

where in above we used the fact that 𝐺𝛽,1(−𝑦) ≥ C−1𝑒−𝛽𝑦 (recall 𝐺 from (7.2.3)). Similarly one

has

∫
𝑥≤𝑏−2𝑟

𝐺𝜃1,1(𝑎 − 𝑥)𝐺𝜃2,1(𝑏 − 𝑥)d𝑥 +
∫
𝑥≥𝑎+2𝑟

𝐺𝜃1,1(𝑎 − 𝑥)𝐺𝜃2,1(𝑏 − 𝑥)d𝑥 ≤ C · 𝑒−2(𝜃1+𝜃2)𝑟 .

Thus as long as 𝑟 ≥ 𝑎 − 𝑏 adjusting the constant C we get the desired result.

7.7 Estimates for non-intersection probability

In this section, we study non-intersection probability of random walks, random bridges, and

modified random bridges defined in Definition 7.4.9.

Let 𝑋𝑖 ∼ 𝑓 where 𝑓 is defined in (7.6.1). Set 𝑆(𝑛)0 := 𝑎 and 𝑆(𝑛)
𝑘

:= 𝑎 +∑𝑘
𝑖=1 𝑋𝑖 for 𝑘 ∈ J1, 𝑛K.

We denote the law of (𝑆(𝑛)
𝑘
)𝑛
𝑘=0, the random walk of size 𝑛 starting at 𝑎, to be P𝑛𝑎. Given two

independent random walks of size 𝑛 starting at 𝑎1 and 𝑎2, we denote their joint law to be P𝑛(𝑎1,𝑎2) .
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Given (𝑈𝑘 , 𝑉𝑘 )𝑛𝑘=0 ∼ P𝑛(𝑎1,𝑎2) , we define the weak non-intersection event as

NI𝑝 := {𝑈𝑘 −𝑉𝑘 ≥ −𝑝 for all 𝑘 ∈ J1, 𝑛K},

and NI := NI0 (the true non-intersection event). When 𝑎1 − 𝑎2 = 𝑂 (1), it is well known that

P𝑛(𝑎1,𝑎2) (NI) = 𝑂 (𝑛−1/2). We record this classical fact in the following lemma.

Lemma 7.7.1. For all (𝑎1, 𝑎2) ∈ R2 we have P𝑛(𝑎1,𝑎2) (NI) ≤ Cmax{𝑎1−𝑎2,1}√
𝑛

for some absolute

constant C > 0. If in addition 𝑎1 ≥ 𝑎2, we have P𝑛(𝑎1,𝑎2) (NI) ≥ C−1
√
𝑛

.

Proof. The first part is [228, Theorem A] and the second part is [297, Theorem 3.5].

Next we study diffusive properties of the random walks under the non-intersecting event.

Lemma 7.7.2. Given any 𝜀 > 0 there exists a constant 𝛿(𝜀) > 0 such that for all 𝑛 ≥ 1 and

(𝑎1, 𝑎2) ∈ R2 we have

P𝑛(𝑎1,𝑎2)

(
𝑈𝑛 −𝑉𝑛 ≥ 𝛿

√
𝑛 | NI

)
≥ 1 − 𝜀, (7.7.1)

P𝑛(𝑎1,𝑎2)

(
sup
𝑘∈J0,𝑛K

(𝑈𝑘 −𝑉𝑘 ) ≤ 𝛿−1√𝑛 +max{𝑎1 − 𝑎2, 0} | NI
)
≥ 1 − 𝜀, (7.7.2)

P𝑛(𝑎1,𝑎2)

(
inf

𝑘∈J0,𝑛K
𝑈𝑘 − 𝑎1 ≥ −𝛿−1√𝑛 | NI

)
≥ 1 − 𝜀, (7.7.3)

P𝑛(𝑎1,𝑎2)

(
sup
𝑘∈J0,𝑛K

𝑉𝑘 − 𝑎2 ≤ 𝛿−1√𝑛 | NI
)
≥ 1 − 𝜀, (7.7.4)

where (𝑈𝑘 , 𝑉𝑘 )𝑛𝑘=1 ∼ P𝑛(𝑎1,𝑎2) .

Proof. Proof of (7.7.1). Set 𝑆𝑘 := 𝑈𝑘 − 𝑉𝑘 . Note that under the event NI we have 𝑈1 ≥ 𝑉1. Thus

it suffices to study

P𝑛−1
(𝑏1,𝑏2) (𝑆𝑛−1 ≥ 𝛿

√
𝑛 | NI)

with 𝑏1 ≥ 𝑏2. Note that (𝑆𝑘 )𝑛−1
𝑘=1 is itself a random walk starting at 𝑏1 − 𝑏2 ≥ 0 conditioned to stay
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non-negative. Thus by stochastic monotonicity we have

P𝑛−1
(𝑏1,𝑏2) (𝑆𝑛−1 ≥ 𝛿

√
𝑛 | NI) ≥ P𝑛−1

(0,0) (𝑆𝑛−1 ≥ 𝛿
√
𝑛 | NI).

But under P𝑛−1
(0,0) , it is known from [204] that the random walk (𝑈𝑘 − 𝑉𝑘 )𝑛−1

𝑘=1, conditioned to stay

non-negative converges weakly to a Brownian meander with appropriate diffusion coefficient un-

der diffusive scaling. Since the endpoint of a Brownian meander is a strictly positive continuous

random variable, we thus have (7.7.1).

Proof of (7.7.2). Let 𝑆𝑘 = 𝑈𝑘−𝑉𝑘 . To obtain (7.7.2), we observe the following string of inequalities

P𝑛𝑎1−𝑎2

(
sup
𝑘∈J0,𝑛K

𝑆𝑘 ≤ 𝛿−1√𝑛 +max{𝑎1 − 𝑎2, 0} |
𝑛⋂
𝑘=1
{𝑆𝑘 ≥ 0}

)
≥ P𝑛max{𝑎1−𝑎2,0}

(
sup
𝑘∈J0,𝑛K

𝑆𝑘 ≤ 𝛿−1√𝑛 +max{𝑎1 − 𝑎2, 0} |
𝑛⋂
𝑘=1
{𝑆𝑘 ≥ 0}

)
≥ P𝑛max{𝑎1−𝑎2,0}

(
sup
𝑘∈J0,𝑛K

𝑆𝑘 ≤ 𝛿−1√𝑛 +max{𝑎1 − 𝑎2, 0} |
𝑛⋂
𝑘=1
{𝑆𝑘 ≥ max{𝑎1 − 𝑎2, 0}}

)
= P𝑛0

(
sup
𝑘∈J0,𝑛K

𝑆𝑘 ≤ 𝛿−1√𝑛 |
𝑛⋂
𝑘=1
{𝑆𝑘 ≥ 0}

)
≥ 1 − 𝜀.

Let us briefly explain the above inequalities. The first two inequalities follows from stochastic

monotonicity applied to the boundary point and then to the bottom curve. The equality in the

last line follows by translating the random walk. The final inequality follows by taking 𝛿 small

enough due to the tightness of the random walk paths conditioned to stay positive (when scaled by

diffusively). This completes the proof.

Proof of (7.7.3) and (7.7.4) Note that due to stochastic monotonicity, the non-intersecting condi-

tion makes𝑈 stochastically larger than a usual random walk. Thus,

P𝑛(𝑎1,𝑎2)
(

inf
𝑘∈J0,𝑛K

𝑈𝑘 − 𝑎1 ≥ −𝛿−1√𝑛 | NI
)
≥ P𝑛𝑎1 ( inf

𝑘∈J0,𝑛K
𝑈𝑘 − 𝑎1 ≥ −𝛿−1√𝑛).

By diffusive behavior of random walks one can choose 𝛿 small enough so that the above quantity is
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at most 1− 𝜀. Similarly one can take 𝛿 even smaller so that P𝑛(𝑎1,𝑎2)
(
sup𝑘∈J0,𝑛K𝑉𝑘 − 𝑎2 ≤ 𝛿−1√𝑛

)
≥

1 − 𝜀.

Corollary 7.7.3. Fix any 𝑛 ≥ 1. 𝑎1, 𝑎2 with |𝑎1 − 𝑎2 | = 𝑜(
√
𝑛). Given any 𝜀, 𝛾 > 0 there exists a

constant 𝜌(𝜀, 𝛾) ∈ (0, 1
4 ] such that

P𝑛(𝑎1,𝑎2)

(
sup

𝑘∈J0,𝑛𝜌K,𝑖=1,2

��𝑆(𝑛,𝑖)
𝑘
− 𝑎𝑖

�� ≥ 𝛾√𝑛 | NI
)
≥ 1 − 𝜀

where (𝑆𝑘,𝑖)𝑛𝜌𝑘=1 ∼ P𝑛(𝑎1,𝑎2) .

We now study non-intersecting probabilities for random bridges. We use the notation P𝑛;(𝑏1,𝑏2)
(𝑎1,𝑎2)

to denote the law of two independent random bridges of size 𝑛 starting at (𝑎1, 𝑎2) and ending at

(𝑏1, 𝑏2) with increments drawn from 𝑓 . The following lemma shows when the starting points and

endpoints are far apart in diffusive scale, non-intersection probability is bounded away from zero.

Lemma 7.7.4. Fix 𝛿 > 0. For each 𝑛 ≥ 4, consider the set

𝑅𝑛,𝛿 := {(𝑥1, 𝑥2) : |𝑥𝑖 | ≤ 2
√
𝑛(log 𝑛)3/2, 𝑥1 − 𝑥2 ≥ 𝛿

√
𝑛} (7.7.5)

There exists 𝜙 = 𝜙(𝛿) > 0 such that for all 𝑛 ≥ 4 and for all (𝑎1, 𝑎2), (𝑏1, 𝑏2) ∈ 𝑅𝑛,𝛿 we have

P𝑛;(𝑏1,𝑏2)
(𝑎1,𝑎2)

(
inf

𝑘∈J0,𝑛K

[
𝑆
(𝑛,1)
𝑘
− 𝑆(𝑛,2)

𝑘

]
≥ 1

4𝛿
√
𝑛

)
≥ 𝜙.

Proof. Fix any (𝑎1, 𝑎2), (𝑏1, 𝑏2) ∈ 𝑅𝑛,𝛿. It suffices to prove the lemma for large enough 𝑛. Note

that |𝑏𝑖 − 𝑎𝑖 | ≤ 4
√
𝑛(log 𝑛)3/2. By KMT coupling for Brownian bridges (Theorem 2.3 in [153]

with 𝑧 = 𝑏𝑖 − 𝑎𝑖 and 𝑝 = 0), there exists an absolute constant C > 0 such that for all 𝑛 ≥ 1 and

𝑖 = 1, 2 we have

P𝑛𝑎𝑖→𝑏𝑖
(
¬CL(𝑏1,𝑏2)

(𝑎1,𝑎2)
)
≤ 1

𝑛
, CL(𝑏1,𝑏2)

(𝑎1,𝑎2) :=
{

sup
0≤𝑘≤𝑛

����𝑆(𝑛,𝑖)𝑘
−
√
𝑛𝐵
(𝑖)
𝑘
𝑛

− 𝑎𝑖 − 𝑘
𝑛
(𝑏𝑖 − 𝑎𝑖)

���� ≤ C log3 𝑛

}
(7.7.6)
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where 𝐵(1) , 𝐵(2) are Brownian bridges with appropriate fixed diffusion coefficient. There exists

𝜙 = 𝜙(𝛿) > 0 such that

P
(

sup
𝑥∈[0,1]

( |𝐵(1) (𝑥) | + |𝐵2(𝑥) |) ≤ 1
8𝛿

)
≥ 2𝜙.

Combining the previous two math displays we see that with probability 2𝜙 − 1
𝑛

we have

𝑆
(𝑛,1)
𝑘
− 𝑆(𝑛,2)

𝑘
≥ 𝑎1 − 𝑎2 + 𝑘

𝑛
(𝑏1 − 𝑎1 − 𝑏2 + 𝑎2) − 2C(log 𝑛)3 − 1

4𝛿
√
𝑛

= 𝑛−𝑘
𝑛
𝑎1 − 𝑎2 + 𝑘

𝑛
(𝑏1 − 𝑏2) − 2C(log 𝑛)3 − 1

4𝛿
√
𝑛

≥ −2C(log 𝑛)3 + 1
2𝛿
√
𝑛 > 0

for all large enough 𝑛. This forces non-intersection. Thus P𝑛;(𝑏1,𝑏2)
(𝑎1,𝑎2) (NI) ≥ 2𝜙 − 1

𝑛
≥ 𝜙 for all large

enough 𝑛. This completes the proof.

Our next lemma gives a crude bound for the weak non-intersection probability in terms of true

non-intersection probability.

Lemma 7.7.5. There exists a constant C > 0 such that for all 𝑝 ≥ 0, (𝑎1, 𝑎2), (𝑏1, 𝑏2) ∈ R2, 𝑛 ≥ 1

P𝑛;(𝑏1,𝑏2)
(𝑎1,𝑎2) (NI𝑝) ≤ 𝑒C𝑝 · P𝑛;(𝑏1,𝑏2)

(𝑎1,𝑎2) (NI).

Proof. By lifting the first random bridge by 𝑝 units we see that

P𝑛;(𝑏1,𝑏2)
(𝑎1,𝑎2) (NI𝑝) = P𝑛;(𝑏1+𝑝,𝑏2)

(𝑎1+𝑝,𝑎2) (NI).

Conditioning on the second point and the penultimate point of both the random bridges we get

P𝑛;(𝑏1+𝑝,𝑏2)
𝑎1+𝑝,𝑎2 (NI) =

∫
𝑥1≥𝑥2,𝑦1≥𝑦2

Λ
𝑛;(𝑦1,𝑦2)
𝑥1,𝑥2 (NI)Υ𝑝 (𝑥1, 𝑥2; 𝑦1, 𝑦2)𝑑𝑥1𝑑𝑥2𝑑𝑦1𝑑𝑦2

𝑓 ∗𝑛 (𝑎1 − 𝑏1) 𝑓 ∗𝑛 (𝑎2 − 𝑏2)
. (7.7.7)
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where

Υ𝑝 (𝑥1, 𝑥2; 𝑦1, 𝑦2) := 𝑓 (𝑎1 + 𝑝 − 𝑥1) 𝑓 (𝑎2 − 𝑥2) 𝑓 (𝑦1 − 𝑏1 − 𝑝) 𝑓 (𝑦2 − 𝑏2),

Λ
𝑛;(𝑦1,𝑦2)
𝑥1,𝑥2 (NI) :=

∫
𝑥 𝑗 ,1≥𝑥 𝑗 ,2, 𝑗∈J2,𝑛−2K

𝑛−2∏
𝑗=1

𝑓 (𝑥 𝑗 ,1 − 𝑥 𝑗+1,1) 𝑓 (𝑥 𝑗 ,2 − 𝑥 𝑗+1,2)
𝑛−2∏
𝑗=2

𝑑𝑥 𝑗 ,1𝑑𝑥 𝑗 ,2.

Here in the above integration we set 𝑥1,1 := 𝑥1, 𝑥1,2 := 𝑥2, 𝑥𝑛−1,1 := 𝑦1, 𝑥𝑛−1,2 := 𝑦2. From Lemma

7.6.4, we have that Υ𝑝 (𝑥1, 𝑥2; 𝑦1, 𝑦2) ≤ 𝑒C𝑝Υ0(𝑥1, 𝑥2; 𝑦1, 𝑦2), where the C > 0 depends only on 𝜃.

Plugging this bound back in (7.7.7) we get the desired result.

The following technical lemma, which can be thought of as the bridge analog of Lemma 7.7.1,

studies the non-intersection probability for random bridges when the starting points are close.

Lemma 7.7.6. Fix 𝑀 > 0 and 𝑛 ≥ 1. Suppose |𝑎𝑖 | ≤
√
𝑛(log 𝑛)3/2, |𝑏𝑖 | ≤ 𝑀

√
𝑛, with 𝑏1 ≥ 𝑏2,

and |𝑎1 − 𝑎2 | ≤ (log 𝑛)3/2. There exist a constant C = C(𝑀) > 0 such that

P𝑛;(𝑏1,𝑏2)
(𝑎1,𝑎2) (NI) ≤ C 1√

𝑛
(max{𝑎1 − 𝑎2, 0} + 1) ·max

{
1√
𝑛
|𝑎1 − 𝑏1 |, 2

}3/2
.

Proof. It suffices to prove the lemma only for large enough 𝑛. Set 𝑟 = max{ 1√
𝑛
|𝑎1 − 𝑏1 |, 2} and

𝑝 = 𝑛𝑟−3. We first claim that there exists 𝑚(𝑀) > 0 such that

P(NI) ≤ 2P
(
|𝑆(𝑛,𝑖)𝑝 − 𝑎𝑖 | ≤ 𝑚

√
𝑛𝑟−1 for 𝑖 = 1, 2, NI

)
. (7.7.8)

Note that the density of 𝑆(𝑛,𝑖)𝑝 at 𝑥 is given by 𝑓 ∗𝑝 (𝑥−𝑎𝑖) 𝑓 ∗(𝑛−𝑝) (𝑏𝑖−𝑥)
𝑓 ∗𝑛 (𝑏𝑖−𝑎𝑖) . By Lemma 7.6.3, we have

sup
|𝑥−𝑎𝑖 |≤𝑚

√
𝑛𝑟−1

𝑓 ∗(𝑛−𝑝) (𝑏𝑖 − 𝑥)
𝑓 ∗𝑛 (𝑏𝑖 − 𝑎𝑖)

= (1 + 𝑜(1)) exp
(

1
2𝜎2

[
𝑟2 − (𝑟−𝑚𝑟

−1)2
1−𝑟−3

] )
= (1 + 𝑜(1)) exp

(
1

2𝜎2 (1−𝑟−3)
[
−𝑟−1 − 𝑚2𝑟−2 + 2𝑚

] )
≤ 2𝑒2𝑚/𝜎2

.

Thus 𝑓 ∗𝑝 (𝑥−𝑎𝑖) 𝑓 ∗(𝑛−𝑝) (𝑏𝑖−𝑥)
𝑓 ∗𝑛 (𝑏𝑖−𝑎𝑖) ≤ 2𝑒2𝑚/𝜎2 · 𝑓 ∗𝑝 (𝑥 − 𝑎𝑖) whenever |𝑥 − 𝑎𝑖 | ≤ 𝑚

√
𝑛𝑟−1. This allows us to

480



go from random bridge laws to random walk laws. Indeed, we have

P𝑛;(𝑏1,𝑏2)
(𝑎1,𝑎2)

(
|𝑆(𝑛,𝑖)𝑝 − 𝑎𝑖 | ≤ 𝑚

√
𝑛𝑟−1 for 𝑖 = 1, 2, NI

)
≤ P𝑛;(𝑏1,𝑏2)

(𝑎1,𝑎2)

(
|𝑆(𝑛,𝑖)𝑝 − 𝑎𝑖 | ≤ 𝑚

√
𝑛𝑟−1 for 𝑖 = 1, 2,

𝑝⋂
𝑘=1
{𝑆(𝑛,1)

𝑘
≥ 𝑆(𝑛,2)

𝑘
}
)

≤ 2𝑒2𝑚/𝜎2 · P𝑛(𝑎1,𝑎2)

(
|𝑆(𝑛,𝑖)𝑝 − 𝑎𝑖 | ≤ 𝑚

√
𝑛𝑟−1 for 𝑖 = 1, 2,

𝑝⋂
𝑘=1
{𝑆(𝑛,1)

𝑘
≥ 𝑆(𝑛,2)

𝑘
}
)

≤ P𝑝(𝑎1,𝑎2) (NI) ≤ C√
𝑛
𝑟3/2 · (max{𝑎1 − 𝑎2, 0} + 1).

where the last inequality uses Lemma 7.7.1. This completes the proof modulo (7.7.8). The rest of

the proof is devoted to showing (7.7.8).

Similar to the proof of (7.7.3) and (7.7.4), by stochastic monotonicity we have

P𝑛;(𝑏1,𝑏2)
(𝑎1,𝑎2) (𝑆

(𝑛,1)
𝑝 − 𝑎1 ≤ −𝑚

√
𝑛𝑟−1 | NI) ≤ P𝑛𝑎1→𝑏1

(𝑆(𝑛,1)𝑝 − 𝑎1 ≤ −𝑚
√
𝑛𝑟−1) (7.7.9)

Now by KMT coupling for random bridges (see (7.7.6)) with probability 1 − 1
𝑛
,

𝑆
(𝑛,1)
𝑝 − 𝑎1 ≥

√
𝑛𝐵𝑝/𝑛 + 𝑝

𝑛
(𝑏1 − 𝑎1) − C log3 𝑛 =

√
𝑛𝐵𝑝/𝑛 −

√
𝑛𝑟−2 − C log3 𝑛 ≥

√
𝑛𝐵𝑝/𝑛 − 2

√
𝑛𝑟−1.

Here 𝐵𝑝/𝑛 is a standard Brownian bridge on [0, 1]. By Brownian bridge calculations, there exists

an absolute constant 𝑐 > 0 such that P(𝐵𝑝/𝑛 = 𝐵𝑟−3 ≥ −(𝑚 − 2)𝑟−1) ≥ 1 − 𝑒−𝑐𝑚2𝑟 . For this choice

of 𝑚 we see that r.h.s. of (7.7.9) ≤ 1
8 for large enough 𝑛.

For the other inequality we use stochastic monotonicity at the starting points to get

P𝑛;(𝑏1,𝑏2)
(𝑎1,𝑎2) (𝑆

(𝑛,1)
𝑝 − 𝑎1 ≥ 𝑚

√
𝑛𝑟−1 | NI) ≤ P𝑛;(𝑏1,𝑏2)

(𝑎1+
√
𝑛𝑟−1,𝑎2)

(𝑆(𝑛,1)𝑝 − 𝑎1 ≥ 𝑚
√
𝑛𝑟−1 | NI)

≤
P𝑛;(𝑏1,𝑏2)
(𝑎1+
√
𝑛𝑟−1,𝑎2)

(𝑆(𝑛,1)𝑝 − 𝑎1 ≥ 𝑚
√
𝑛𝑟−1)

P𝑛;(𝑏1,𝑏2)
(𝑎1+
√
𝑛𝑟−1,𝑎2)

(NI)
. (7.7.10)

We now proceed to show appropriate upper and lower bounds for the numerator and denominator

481



of r.h.s. of (7.7.10) respectively. We apply (7.7.6) with 𝑎1 ↦→ 𝑎1 +
√
𝑛𝑟−1, 𝑎2 ↦→ 𝑎2, and 𝑏𝑖 ↦→ 𝑏𝑖

for 𝑖 = 1, 2. Following the same above Brownian calculations for large enough 𝑛 and 𝑚 we have

P𝑛;(𝑏1,𝑏2)
(𝑎1+
√
𝑛𝑟−1,𝑎2)

(𝑆(𝑛,1)𝑝 − 𝑎1 ≥ 𝑚
√
𝑛𝑟−1) ≤ 1

𝑛
+ 𝑒−𝑐𝑚2𝑟 . (7.7.11)

This gives an upper bound for the numerator. For the denominator, recall the event CL(𝑏1,𝑏2)
(𝑎1,𝑎2) and the

Brownian bridges 𝐵(1) , 𝐵(2) from (7.7.6). Note that on the event CL(𝑏1,𝑏2)
(𝑎1+
√
𝑛𝑟−1,𝑎2)

∩{inf𝑥∈[0,1] (𝐵(1)𝑥 −

𝐵
(2)
𝑥 ) ≥ −1

2𝑟
−1}, for large enough 𝑛 we have

𝑆
(𝑛,1)
𝑘
≥
√
𝑛𝐵
(1)
𝑘/𝑛 + 𝑎1 +

√
𝑛𝑟−1 + 𝑘

𝑛
(𝑏1 − 𝑎1) − C(log 𝑛)3

≥
√
𝑛𝐵
(2)
𝑘/𝑛 +

1
2
√
𝑛𝑟−1 + 𝑎2 + 𝑘

𝑛
(𝑏2 − 𝑎2) − 2C(log 𝑛)3

≥ 𝑆(𝑛,2)
𝑘
+ 1

2
√
𝑛𝑟−1 − 3C(log 𝑛)3 ≥ 𝑆(𝑛,2)

𝑘
.

where in above lines we use the fact |𝑎1 − 𝑎2 | ≤ (log 𝑛)3/2, 𝑏1 ≥ 𝑏2, and 𝑟 ≤ (log 𝑛)3/2. Thus for

large enough 𝑛,

P𝑛;(𝑏1,𝑏2)
(𝑎1+
√
𝑛𝑟−1,𝑎2)

(NI) ≥ P
(

inf
𝑥∈[0,1]

(𝐵(1)𝑥 − 𝐵(2)𝑥 ) ≥ −1
2𝑟
−1

)
− P𝑛;(𝑏1,𝑏2)

(𝑎1+
√
𝑛𝑟−1,𝑎2)

(
¬CL(𝑏1,𝑏2)

(𝑎1+
√
𝑛𝑟−1,𝑎2)

)
≥ C𝑟−2 − 1

𝑛
≥ 1

2C𝑟−2,

where the penultimate inequality follows from (7.7.6) and Brownian bridge calculations (see Lemma

2.11 in [110] for example). Combining (7.7.11) and the above lower bound we have

r.h.s. of (7.7.10) ≤ 2
C

[
𝑟2

𝑛
+ 𝑟2𝑒−𝑐𝑚

2𝑟
]
≤ 1

8 ,

for all large enough 𝑛 and 𝑚. Thus in conclusion we have

P𝑛;(𝑏1,𝑏2)
(𝑎1,𝑎2) ( |𝑆

(𝑛,1)
𝑝 − 𝑎1 | ≥ 𝑚

√
𝑛𝑟−1 | NI) ≤ 1

4
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for all large enough 𝑛 and 𝑚. Similar for all large enough 𝑛 and 𝑚 one has

P𝑛;(𝑏1,𝑏2)
(𝑎1,𝑎2) ( |𝑆

(𝑛,2)
𝑝 − 𝑎2 | ≥ 𝑚

√
𝑛𝑟−1 | NI) ≤ 1

4 .

The last two math displays imply (7.7.8), thus completing the proof.

Corollary 7.7.7. Fix any 𝑀 > 0 and 𝑛 ≥ 1. Suppose |𝑎𝑖 |, |𝑏𝑖 | ≤ 𝑀
√
𝑛 for 𝑖 = 1, 2. We have that

P𝑛,(𝑏1,𝑏2)
(𝑎1,𝑎2) (NI) �𝑀 Pb𝑛/4c(𝑎1,𝑎2) (NI)Pb𝑛/4c(𝑏1,𝑏2) (NI).

Proof. The upper bound follows by applying (7.4.21) with 𝛿 = 1
4 and integrating over the non-

intersection event. Let us focus on the lower bound. Set 𝑈 (𝑛,𝑖)
𝑘
∼ Pb𝑛/4c(𝑎1,𝑎2) and 𝑉 (𝑛,𝑖)

𝑘
∼ Pb𝑛/4c(𝑏1,𝑏2) . By

Lemma 7.7.2, we choose a constant 𝑀 depending only on 𝑀 such that for all (𝑥1, 𝑥2) ∈ R2 with

|𝑥𝑖 | ≤ 𝑀
√
𝑛, we have

P
(
|𝑈 (𝑛,𝑖)b𝑛/4c | ≤ 𝑀

√
𝑛, for 𝑖 = 1, 2 | NI

)
≥ 3

4 , P
(
|𝑉 (𝑛,𝑖)b𝑛/4c | ≤ 𝑀

√
𝑛, for 𝑖 = 1, 2 | NI

)
≥ 3

4 . (7.7.12)

By Lemma 7.7.2 we next choose a 𝛿 = 𝛿(𝑀) > 0 small enough such that

P
(
(𝑈 (𝑛,1)b𝑛/4c ,𝑈

(𝑛,2)
b𝑛/4c) ∈ 𝑅𝑛,𝛿 | NI

)
≥ 3

4 , P
(
(𝑉 (𝑛,1)b𝑛/4c , 𝑉

(𝑛,2)
b𝑛/4c) ∈ 𝑅𝑛,𝛿 | NI

)
≥ 3

4 . (7.7.13)

where 𝑅𝑛,𝛿 is defined in (7.7.5). By Lemma 7.7.4 there exists 𝜙(𝛿) > 0 such that for all (𝑥1, 𝑥2), (𝑦1, 𝑦2) ∈

𝑅𝑛,𝛿 we have

P𝑛−2b𝑛/4c,(𝑦1,𝑦2)
(𝑥1,𝑥2) (NI) ≥ 𝜙. (7.7.14)

We next consider the events

E1 :=
{
|𝑆(𝑛,𝑖)b𝑛/4c | ≤ 𝑀

√
𝑛

}
, E2 :=

{
|𝑆(𝑛,𝑖)b𝑛/4c | ≤ 𝑀

√
𝑛

}
.
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Using (7.4.22) with 𝛿 = 1
4 we have

P𝑛,(𝑏1,𝑏2)
(𝑎1,𝑎2) (NI) ≥ P𝑛,(𝑏1,𝑏2)

(𝑎1,𝑎2) (E1 ∩ E2 ∩ NI) &𝑀 P̃(E1 ∩ E2 ∩ NI).

where P̃ denotes the joint law of two independent (𝑛; 𝑛/4, 𝑛/4)-modified random bridges of length

𝑛 starting at (𝑎1, 𝑎2) and ending at (𝑏1, 𝑏2) (see Definition 7.4.9). In view of the of our 𝑀 choice,

we have P̃(E𝑖) ≥ 3
4 for 𝑖 = 1, 2 from (7.7.12) and (7.7.13). Furthermore, in view of (7.7.14), we

have

P(NI) ≥ 𝜙 · Pb𝑛/4c(𝑎1,𝑎2) (NI)Pb𝑛/4c(𝑏1,𝑏2) (NI).

We thus have the desired lower bound.

Fix any 𝑀 > 0, 𝑛 ≥ 1, 𝜀 > 0 and (𝑎1, 𝑎2), (𝑏1, 𝑏2) ∈ R. Suppose |𝑎𝑖 |, |𝑏𝑖 | ≤ 𝑀
√
𝑛 and

𝑎1 ≥ 𝑎2. Take 𝑝, 𝑞 ∈ J0, 𝑛K with 𝑝 + 𝑞 ≤ 𝑛/2. Suppose further that there exists 𝛿 > 0 such that

either 𝑞 ≥ 𝑛𝜌 or 𝑏1 − 𝑏2 ≥ 𝜌
√
𝑛. Consider two independent (𝑛; 𝑝, 𝑞)- modified random bridges

(𝑆(𝑛,𝑖)
𝑘
)𝑘∈J0,𝑛K,𝑖=1,2 starting and ending at (𝑎1, 𝑎2) and (𝑏1, 𝑏2) respectively. For 𝛽 > 0 recall the

event Gap𝛽 defined in (7.4.20). The following lemma asserts Gap𝛽 event is very likely under

non-intersection.

Lemma 7.7.8. Given an 𝜀 > 0, there exists 𝛽(𝜀, 𝜌, 𝑀) > 0, 𝑁0(𝜀, 𝜌, 𝑀) > 0, such that for all

𝑁 ≥ 𝑁0 we have

P
(
Gap𝛽 | NI

)
≥ 1 − 𝜀.

Proof. We assume 𝑛 is large enough throughout the proof. Recall from Section 7.4.3 that Gap𝛽

event is intersection of six smaller ‘Gap’ events: Gap𝑖,𝛽. In what follows, we analyze each ‘Gap’

event separately.

• Gap1,𝛽 and Gap2,𝛽. Note that for 𝑘 ∈ J1, 𝑝K, 𝑆(𝑛,1)
𝑘
− 𝑆(𝑛,2)

𝑘
is itself a random walk. The NI

event corresponds to the event of this random walk being non-negative. By classical result

484



about growth of random walks conditioned to stay non-negative (see [285, Theorem 2]) it

follows that one can choose 𝛽 small enough such that P(Gap1,𝛽) ≥ 1 − 𝜀
6 . By same argument

one has P(Gap1,𝛽) ≥ 1 − 𝜀
6 for all large enough 𝑛 by choosing 𝛽 small enough.

• Gap3,𝛽. Applying Lemma 7.7.2, one can choose 𝛾 small enough such that

P
(
(𝑆(𝑛,1)𝑝 , 𝑆

(𝑛,2)
𝑝 ), (𝑆(𝑛,1)𝑛−𝑞 , 𝑆

(𝑛,2)
𝑛−𝑞 ) ∈ P𝑛,𝛾

)
≥ 1 − 𝜀

12 , (7.7.15)

where

P𝑛,𝛾 := {(𝑧1, 𝑧2) ∈ R2 : |𝑧𝑖 | ≤ 𝛾−1√𝑛, 𝑧1 − 𝑧2 ≥ 𝛾
√
𝑛}.

In other words, with probability 1 − 𝜀
12 , the endpoints of the middle portions of the modified

random bridges are in P𝛾. Thus,

P(Gap3,𝛽) ≥ (1 − 𝜀
12 ) · inf

(𝑎1,𝑎2),(𝑏1,𝑏2)∈P𝑛,𝛾
P𝑛−𝑝−𝑞;(𝑏1,𝑏2)
(𝑎1,𝑎2) (Gap3,𝛽 | NI) (7.7.16)

By continuity with respect to the boundary data, the infimum is attained at some point (𝑎∗1, 𝑎
∗
2), (𝑏

∗
1, 𝑏
∗
2) ∈

P𝑛,𝛾. Take any subsequential limit of 1√
𝑛
(𝑎∗1, 𝑎

∗
2),

1√
𝑛
(𝑏∗1, 𝑏

∗
2) say (𝑢1, 𝑢2), (𝑣1, 𝑣2). Then |𝑢𝑖 |, |𝑣𝑖 | ≤

𝛾−1 and 𝑢1 − 𝑢2, 𝑣1 − 𝑣2 ≥ 𝛾. By Lemma 3.10 from [295], this conditional law under diffusive

scaling converges to non-intersecting Brownian bridges (with appropriate variance) (𝐵1, 𝐵2)

starting at (𝑢1, 𝑢2) ending at (𝑣1, 𝑣2). We have P(inf𝑥∈[0,1] (𝐵1(𝑥) − 𝐵2(𝑥)) > 0) = 1. This

implies along this subsequence the limit of P𝑛−𝑝−𝑞;(𝑏∗1,𝑏
∗
2)

(𝑎∗1,𝑎
∗
2)

(Gap3,𝛽 | NI) is 1. Since this holds

for all subsequence, we thus see that for all large enough 𝑛, the r.h.s. of (7.7.16) can be made

at least 1 − 𝜀
6 .

• Gap4,𝛽 and Gap5,𝛽. Given 𝛽0, we consider the event

A𝑖 (𝛽0) :=
𝑝⋂
𝑘=1

{
𝑆
(𝑛,𝑖)
𝑘
− 𝑆(𝑛,𝑖)

𝑘−1 ≤ 𝛽
−1
0 𝑘1/8

}
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We first claim that we have

P(𝑆(𝑛,2)
𝑘
− 𝑆(𝑛,2)

𝑘−1 ≥ 𝜏 | NI) ≤ P( |𝑆(𝑛,2)
𝑘
− 𝑆(𝑛,2)

𝑘−1 ≥ 𝜏). (7.7.17)

for all 𝑘 ∈ J1, 𝑝K. Recall that this part of the modified random bridges corresponds to random

walks. The non-intersection condition forces the increments of the lower random walk to be

stochastically smaller than that of a usual random walk. Thus by stochastic monotonicity we

have (7.7.17).

Let us suppose 𝑋 ∼ 𝑓 . By Lemma 7.6.4, we may choose 𝛽0 small enough that

𝑝∑︁
𝑘=1

P(𝑋 ≥ 𝛽−1
0 𝑘1/8) ≤ 𝜀

12 ,

𝑝∑︁
𝑘=1

P(𝑋 ≥ 2𝛽−1
0 𝑘1/8 | 𝑋 ≥ 𝛽−1

0 𝑘1/8) ≤ 𝜀
12 , (7.7.18)

By the above choice of 𝛽0, in view of (7.7.17), we have P(A2(𝛽0)) ≥ 1 − 𝜀
12 .

We have

P(¬A1(2𝛽0) | NI) ≤ 𝜀
12 +

𝑝∑︁
𝑘=1

P
(
A2(𝛽0) ∩ {𝑆(𝑛,1)𝑘

− 𝑆(𝑛,1)
𝑘−1 ≥ 2𝛽−1

0 𝑘1/8} | NI
)
. (7.7.19)

Note that non-intersection forces 𝑆(𝑛,1)
𝑘
−𝑆(𝑛,1)

𝑘−1 ≥ 𝑆
(𝑛,2)
𝑘
−𝑆(𝑛,2)

𝑘−1 +𝑆
(𝑛,2)
𝑘−1 −𝑆

(𝑛,1)
𝑘−1 . Under NI∩A2(𝛽),

this lower bound is at most 𝛽−1
0 𝑘1/8. Thus by stochastic monotonicity

P
(
A2(𝛽0) ∩ {𝑆(𝑛,1)𝑘

− 𝑆(𝑛,1)
𝑘−1 ≥ 2𝛽−1

0 𝑘1/8} | NI
)
≤ P(𝑋 ≥ 2𝛽−1

0 𝑘1/8 | 𝑋 ≥ 𝛽−1
0 𝑘1/8).

Inserting this bound in (7.7.19) leads to P(A1(2𝛽0)) | NI) ≥ 1 − 𝜀
6 . Here we also used the fact

that 𝑆(𝑛,1)0 = 𝑎1 > 𝑎2 = 𝑆
(𝑛,2)
0 . Thus we have P(Gap4,𝛽 | NI) ≥ 1 − 𝜀

6 for 𝛽 = 𝛽0/2.

For Gap5,𝛽 we are interested in the increment of end part of the modified random bridge.

Since this part is time-reversed random walk, requiring an upper bound for the increments of

the modified random bridge corresponds to requiring a lower bound for the increments of the
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random walk. In the same spirit as (7.7.17) one has

P(𝑆(𝑛,1)
𝑘
− 𝑆(𝑛,1)

𝑘−1 ≥ 𝜏 | NI) ≤ P( |𝑆(𝑛,1)
𝑘
− 𝑆(𝑛,1)

𝑘−1 ≥ 𝜏). (7.7.20)

for 𝑘 ∈ J𝑛 − 𝑞 + 1, 𝑛K. Here we do not need the endpoints 𝑏1 and 𝑏2 to be ordered. In view of

(7.7.18), this leads to P(Gap5,𝛽0) ≥ 1 − 𝜀
12 .

• Gap6,𝛽. From (7.7.15), we get that the end points are in P𝑛,𝛾 with probability 1− 𝜀
12 . Under this

event, we apply KMT coupling on the middle portion bridge of the modified random bridge to

get a Brownian bridge 𝐵 such that for large enough 𝑛

P( |𝑆(𝑛,1)
𝑘
− 𝑆(𝑛,1)

𝑘−1 | ≥ 𝛽
−1 log 𝑛) ≤ P(

√
𝑛|𝐵𝑘/𝑛 − 𝐵(𝑘−1)/𝑛 | ≥ 1

2 𝛽
−1 log 𝑛 − 𝛾√

𝑛
) ≤ 1

𝑛2 .

By union bound we have the desired result.

This completes the proof.

We end this section by proving a modulus of continuity estimate for non-intersecting random

walks.

Lemma 7.7.9. Fix 𝑀, 𝛾 > 0. Let 𝑆(𝑛,1)
𝑘

, 𝑆
(𝑛,2)
𝑘

be two independent 𝑛-step random walk with incre-

ments from 𝑓 := 𝐺𝜃,1 ∗ 𝐺𝜃,−1 starting at 𝑎1 and 𝑎2. Assume 0 ≤ 𝑎1 − 𝑎2 ≤ 𝑀 + 2 log log 𝑛. There

exists 𝑛0(𝑀, 𝛾) and 𝛿(𝑀, 𝛾) such that for all 𝑛 ≥ 𝑛0 we have

2∑︁
𝑖=1

P(𝜔𝛿 (𝑆(𝑛,𝑖)· , J0, 𝑛K) ≥ 𝛾
√
𝑛 | NI) ≤ 𝜀.

where NI := {𝑆(𝑛,1)
𝑘
≥ 𝑆(𝑛,2)

𝑘
for all 𝑘 ≥ 0}.

Proof. Fix 𝛾 > 0. We first control modulus of continuity near zero. Note that by stochastic

monotonicity and modulus of continuity of single random walk, we can choose 𝜌 small enough
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such that

P
(

sup
𝑘≤𝑛𝜌
[𝑆(𝑛,1)0 − 𝑆(𝑛,1)

𝑘
] ≥ 𝛾

√
𝑛 | NI

)
≤ P

(
sup
𝑘≤𝑛𝜌
[𝑆(𝑛,1)0 − 𝑆(𝑛,1)

𝑘
] ≥ 𝛾

√
𝑛

)
≤ 𝜀.

Similarly one has P(sup𝑘≤𝑛𝜌 [𝑆
(𝑛,2)
𝑘
−𝑆(𝑛,2)0 ] ≥ 𝛾

√
𝑛 | NI) ≤ 𝜀 Note that the difference 𝑆(𝑛,1)

𝑘
−𝑆(𝑛,2)

𝑘

is a random walk conditioned to stay nonnegative. By classical result from [204] we can choose 𝜌

such that P(sup𝑘≤𝑛𝜌 [𝑆
(𝑛,1)
𝑘
− 𝑆(𝑛,2)

𝑘
] ≥ 𝛾

√
𝑛 | NI) ≤ 𝜀 for all large enough 𝑛.

We next control modulus of continuity away from zero. Towards this end let 𝐼𝑣 := {(𝑥1, 𝑥2) :

|𝑥𝑖 | ≤ 𝑣−1√𝑛, 𝑥1−𝑥2 ≥ 𝑣
√
𝑛}. By Lemma 7.7.2, one can choose 𝑣 small enough to get P(A𝑣) ≥ 1−𝜀

where A𝑣 := {(𝑆(𝑛,1)𝑛𝜌 , 𝑆
(𝑛,2)
𝑛𝜌 ) ∈ 𝐼𝑣}. Let F := 𝜎{𝑆(𝑛,1)𝑛𝜌 , 𝑆

(𝑛,2)
𝑛𝜌 }. Note that

P
(
𝜔𝛿 (𝑆(𝑛,𝑖)· , J𝑛𝜌, 𝑛K) ≥ 𝛾

√
𝑛 | NI

)
≤ 𝜀 + E

[
1A𝑣P

(
𝜔𝛿 (𝑆(𝑛,𝑖)· , J𝑛𝜌, 𝑛K) ≥ 𝛾

√
𝑛 | NI, F

)]
(7.7.21)

Under A𝑣, by Lemma 7.7.4, P(𝑆(𝑛,1)
𝑘
≥ 𝑆(𝑛,2)

𝑘
for all 𝑘 ≥ 𝑛𝜌 | F ) ≥ 𝜙. By modulus of continuity of

random walks [29, Lemma 2.25] we can choose 𝛿 small enough such that P(𝜔𝛿 (𝑆(𝑛,𝑖)· , J𝑛𝜌, 𝑛K) ≥

𝛾
√
𝑛 | F ) is at most 𝜀𝜙−1 uniformly over A𝑣. Thus, the r.h.s. of (7.7.21) is at most 2𝜀. Hence com-

bining the near zero and away zero modulus of continuity we get the desired result by appropriately

changing 𝛾 and 𝜀.

7.8 Stochastic monotonicity

The goal of this section is to prove the stochastic monotonicity of HSLG Gibbs measure (Propo-

sition 8.2.3). Let Λ = {(𝑖, 𝑗) : 𝑘1 ≤ 𝑖 ≤ 𝑘2, 𝑎𝑖 ≤ 𝑗 ≤ 𝑏𝑖}. Let 𝑤1, . . . , 𝑤 |Λ| be the enumeration

of points in Λ in the lexicographic order. Set Λ𝑟 = {𝑤1, 𝑤2, . . . , 𝑤𝑟}, so that Λ|Λ| = Λ. Let

𝐸𝑟 := 𝐸 (Λ𝑟 ∪ 𝜕Λ𝑟), and, recalling the weights𝑊𝑒 from (7.1.3), let

𝐻𝑟 (𝑥; (𝑢𝑣)𝑣∈𝜕Λ𝑟 ) :=
∫
R |Λ𝑟−1 |

∏
𝑒={𝑣1→𝑣2}∈𝐸𝑟

𝑊𝑒 (𝑢𝑣1 − 𝑢𝑣2)
∏
𝑣∈Λ𝑟−1

𝑑𝑢𝑣, (7.8.1)

where 𝑢𝑤𝑟 = 𝑥. The proof of Proposition 8.2.3 relies on the following technical lemma.

488



Lemma 7.8.1. Fix 𝑟 ∈ J1, |Λ|K. For each 𝑣 ∈ 𝜕Λ𝑟 , fix any 𝑢𝑣, 𝑢′𝑣 ∈ R with 𝑢𝑣 ≤ 𝑢′𝑣. For all 𝑠 ≥ 𝑡

𝐻𝑟
(
𝑠; (𝑢𝑣)𝑣∈𝜕Λ𝑟

)
𝐻𝑟

(
𝑡; (𝑢′𝑣)𝑣∈𝜕Λ𝑟

)
≤ 𝐻𝑟

(
𝑠; (𝑢′𝑣)𝑣∈𝜕Λ𝑟

)
𝐻𝑟

(
𝑡; (𝑢𝑣)𝑣∈𝜕Λ𝑟

)
(7.8.2)

We prove Lemma 7.8.1 at the end of this section and now complete the proof of Proposition

8.2.3.

Proof of Proposition 8.2.3. Fix 𝑟 ∈ J1, |Λ|K. We first claim that for all boundary conditions (𝑢𝑣)𝑣∈𝜕Λ𝑟
and (𝑢′𝑣)𝑣∈𝜕Λ𝑟 with 𝑢𝑣 ≤ 𝑢′𝑣 for all 𝑣 ∈ 𝜕Λ𝑟 , and 𝑠 ∈ R,

P
(
𝐿 (𝑤𝑟) ≤ 𝑠 | 𝐿 (𝑣) = 𝑢𝑣 for all 𝑣 ∈ 𝜕Λ𝑟

)
≥ P

(
𝐿 (𝑤𝑟) ≤ 𝑠 | 𝐿 (𝑣) = 𝑢′𝑣 for all 𝑣 ∈ 𝜕Λ𝑟

)
. (7.8.3)

To show this, observe that 𝐻𝑟 (𝑥; (𝑢𝑣)𝑣∈𝜕Λ𝑟 ) in (7.8.1) is proportional to the conditional density at

𝑥 of 𝐿 (𝑤𝑟) given
(
𝐿 (𝑣)

)
𝑣∈𝜕Λ𝑟 = (𝑢𝑣)𝑣∈𝜕Λ𝑟 . Thus,

P
(
𝐿 (𝑤𝑟) ≤ 𝑠 | 𝐿 (𝑣) = 𝑢𝑣 for all 𝑣 ∈ 𝜕Λ𝑟

)
= 𝐹𝑟

(
𝑠; (𝑢𝑣)𝑣∈𝜕Λ𝑟

)
:=

∫ 𝑠

−∞ 𝐻𝑟 (𝑥; (𝑢𝑣)𝑣∈𝜕Λ𝑟 )𝑑𝑥∫ ∞
−∞ 𝐻𝑟 (𝑥; (𝑢𝑣)𝑣∈𝜕Λ𝑟 )𝑑𝑥

(7.8.4)

To prove (7.8.3) observe that owing to Lemma 7.8.1, the derivative of

log
∫ 𝑠

−∞
𝐻𝑟 (𝑥; (𝑢𝑣)𝑣∈𝜕Λ𝑟 )𝑑𝑥 − log

∫ 𝑠

−∞
𝐻𝑟 (𝑥; (𝑢′𝑣)𝑣∈𝜕Λ𝑟 )𝑑𝑥.

is non-positive for all 𝑠. This implies for 𝑠′ ≥ 𝑠 we have∫ 𝑠

−∞ 𝐻𝑟 (𝑥; (𝑢𝑣)𝑣∈𝜕Λ𝑟 )𝑑𝑥∫ 𝑠

−∞ 𝐻𝑟 (𝑥; (𝑢
′
𝑣)𝑣∈𝜕Λ𝑟 )𝑑𝑥

≥
∫ 𝑠′

−∞ 𝐻𝑟 (𝑥; (𝑢𝑣)𝑣∈𝜕Λ𝑟 )𝑑𝑥∫ 𝑠′

−∞ 𝐻𝑟 (𝑥; (𝑢
′
𝑣)𝑣∈𝜕Λ𝑟 )𝑑𝑥

Taking 𝑠′→∞ and cross-multiplying yields the desired inequality (7.8.3), in light of (7.8.4).

Given (𝑢𝑣)𝑣∈𝜕Λ ∈ R|𝜕Λ|, we now define a sequence of random variables according to the fol-

lowing algorithm. Note that below, 𝑥 ← 𝑦 means to assign the value 𝑦 to the variable 𝑥.
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Algorithm 1 Defining the random vectors
Generate𝑈1, . . . ,𝑈|Λ| i.i.d. random variables from𝑈 [0, 1]

𝑌|Λ| ← (𝑢𝑣)𝑣∈𝜕Λ

𝑟 ← |Λ|

while 𝑟 ≥ 1 do

𝐿 (𝑤𝑟 ; (𝑢𝑤)𝑣∈𝜕Λ) ← 𝐹−1
𝑟 (𝑈1;𝑌𝑟)

𝑢̃𝑣 ← 𝑢𝑣 for all 𝑣 ∈ 𝜕Λ𝑟−1 ∩ 𝜕Λ𝑟

𝑢̃𝑤𝑟 ← 𝐿 (𝑤𝑟 ; (𝑢𝑤)𝑣∈𝜕Λ)

𝑌𝑟−1 ← (𝑢̃𝑣)𝑣∈𝜕Λ𝑟−1

𝑟 ← 𝑟 − 1

end while

This defines a collection of random variables 𝐿 (𝑤𝑖; (𝑢𝑣)𝑣∈𝜕Λ) indexed by 𝑖 ∈ J1, |Λ|K and

(𝑢𝑣)𝑣∈𝜕Λ ∈ R|𝜕Λ|, all on the common probability space on which 𝑈1, . . . ,𝑈|Λ| are defined. It is

clear from the definition that for each (𝑢𝑣)𝑣∈𝜕Λ ∈ R|𝜕Λ|, the law of
(
𝐿 (𝑤𝑖; (𝑢𝑣)𝑣∈𝜕Λ)

)
𝑖∈J1,|Λ|K is

given by the HSLG Gibbs measure on the domain Λ with boundary condition (𝑢𝑣)𝑣∈𝜕Λ. Take two

boundary conditions (𝑢𝑣)𝑣∈𝜕Λ and (𝑢′𝑣)𝑣∈𝜕Λ with 𝑢𝑣 ≤ 𝑢′𝑣 for all 𝑣 ∈ 𝜕Λ. As each 𝐹𝑟 is stochas-

tically increasing with respect to the boundary condition, i.e., (7.8.3), sequentially we obtain that

with probability 1 on our probability space 𝐿 (𝑤𝑟 ; (𝑢𝑣)𝑣∈𝜕Λ) ≤ 𝐿 (𝑤𝑟 ; (𝑢′𝑣)𝑣∈𝜕Λ) for all 𝑟, thus

completing the proof.

Proof of Lemma 7.8.1. Let us begin with a few pieces of notations. Fix any 1 ≤ 𝑟 ≤ |Λ|. Set

𝑒𝑟 := {𝑤𝑟 → (𝑤𝑟 + (0, 1)), (𝑤𝑟 + (0, 1)) → 𝑤𝑟} ∩ 𝐸𝑟 . In words, this is the directed blue edge (see

Figure 7.21 A) with 𝑤𝑟 as the left point of 𝑒𝑟 .

Define

ℎ𝑟
(
𝑥; (𝑢𝑣)𝑣∈𝜕Λ𝑟

)
:=

∫
R |Λ𝑟−1 |

∏
𝑒={𝑣1→𝑣2}∈𝐸𝑟\{𝑒𝑟 }

𝑊𝑒 (𝑢𝑣1 − 𝑢𝑣2)
∏
𝑣∈Λ𝑟−1

𝑑𝑢𝑣

with the convention 𝑢𝑤𝑟 = 𝑥. Observe that the difference between 𝐻𝑟 from (7.8.1) and ℎ𝑟 above
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𝑤1 𝑤2
𝑤3

𝑤4 𝑤5
𝑤6 𝑤7

𝑤8

𝑤9 𝑤10
𝑤11 𝑤12

𝑒5
𝑒8

(a)

𝑒5

𝑤1 𝑤2
𝑤3

𝑤4 𝑤5
𝑤6

(b)

Figure 7.21: (A) A possible domain Λ includes all the vertices in the shaded region. 𝑤𝑖’s are the
vertices of Λ enumerated in lexicographic order. Directed edges 𝑒𝑟 going are shown above for
𝑟 = 5 and 𝑟 = 8. These are the blue edges with 𝑤𝑟 as the left point of 𝑒𝑟 . (B) The domain Λ5
includes the vertices in the shaded region. 𝑄5 is the set of all red and black edges that have one
vertex as 𝑤6 and one vertex in 𝜕Λ6. In the above figure, 𝑄5 is composed of two black edges that
points toward 𝑤6.

is that the weight of the directed blue edge 𝑒𝑟 is included in the former but not in the latter. Note

that the vertices of 𝑒𝑟 are not in Λ𝑟−1. Thus in the definition of 𝐻𝑟 , the edge weight function

corresponding to 𝑒𝑟 can be pulled out of the integrand leading to

𝐻𝑟
(
𝑥; (𝑢𝑣)𝑣∈𝜕Λ𝑟

)
= ℎ𝑟

(
𝑥; (𝑢𝑣)𝑣∈𝜕Λ𝑟

)
· 𝐹𝑟 (𝑢𝑤𝑟+(0,1) − 𝑥) (7.8.5)

where 𝐹𝑟 (𝑦) is the directed blue edge weight corresponding to 𝑒𝑟 , i.e., 𝐹𝑟 (𝑦) := 𝑒𝜃𝑦−𝑒𝑦 or 𝐹𝑟 (𝑦) =

𝑒−𝜃𝑦−𝑒
−𝑦

depending on the direction of the 𝑒𝑟 edge between 𝑤𝑟 and 𝑤𝑟 + (0, 1).

With the above introduced notation, we now turn towards the proof of (7.8.2). Note that given

a function 𝑃(𝑥) = 𝑒−𝑅(𝑥) with 𝑅 being convex, we have

𝑃(𝛿 − 𝛽)𝑃(𝛾 − 𝛼) ≥ 𝑃(𝛿 − 𝛼)𝑃(𝛾 − 𝛽) (7.8.6)

for all 𝛼, 𝛽, 𝛾, 𝛿 ∈ R with 𝛼 ≤ 𝛽 and 𝛾 ≤ 𝛿. All our weight functions in (7.1.3) are of this type.

In particular, this implies that (7.8.6) holds for 𝑃 = 𝐹𝑟 . In view of this and the relation (7.8.5), to

show (7.8.2) it suffices to show the same holds for ℎ𝑟 replacing 𝐻𝑟 , i.e.,

ℎ𝑟
(
𝑠; (𝑢𝑣)𝑣∈𝜕Λ𝑟

)
ℎ𝑟

(
𝑡; (𝑢′𝑣)𝑣∈𝜕Λ𝑟

)
≤ ℎ𝑟

(
𝑠; (𝑢′𝑣)𝑣∈𝜕Λ𝑟

)
ℎ𝑟

(
𝑡; (𝑢𝑣)𝑣∈𝜕Λ𝑟

)
. (7.8.7)
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We shall prove (7.8.7) via induction. Note that

ℎ1(𝑥; (𝑢𝑣)𝑣∈𝜕{𝑤1}) =
∏

𝑒={𝑣1→𝑣2}∈𝐸1\{𝑒1}
𝑊𝑒 (𝑢𝑣1 − 𝑢𝑣2)

is the product of edge weights without any integration and with the convention 𝑢𝑤1 = 𝑥. Applying

(7.8.6) to each such weight function yields (7.8.7) for 𝑟 = 1. Observe the recursion relation for ℎ𝑟 :

ℎ𝑟+1
(
𝑥; (𝑢𝑣)𝑣∈𝜕Λ𝑟+1

)
= 𝑑𝑟

(
𝑥; (𝑢𝑣)𝑣∈𝜕Λ𝑟+1

)
·
∫
R
ℎ𝑟

(
𝑦; (𝑢𝑣)𝑣∈𝜕Λ𝑟

)
𝐹𝑟 (𝑥 − 𝑦)𝑑𝑦

where by convention we set 𝑢𝑤𝑟+1 = 𝑥 and where we define

𝑑𝑟 (𝑥; (𝑢𝑣)𝑣∈𝜕Λ𝑟+1) =
∏

𝑒={𝑣1→𝑣2}∈𝑄𝑟

𝑊𝑒 (𝑢𝑣1 − 𝑢𝑣2)

with 𝑄𝑟 being the set of all red and black edges that have one vertex as 𝑤𝑟+1 and another vertex in

𝜕Λ𝑟+1, see Figure 7.21 (B). Note that the blue edge 𝑒𝑟+1 between 𝑤𝑟+1 and 𝑤𝑟+1+ (0, 1) is excluded

from 𝑄𝑟 . Appealing to (7.8.6) again, we have

𝑑𝑟 (𝑠; (𝑢𝑣)𝑣∈𝜕Λ𝑟+1)𝑑𝑟 (𝑡; (𝑢′𝑣)𝑣∈𝜕Λ𝑟+1) ≤ 𝑑𝑟 (𝑠; (𝑢′𝑣)𝑣∈𝜕Λ𝑟+1)𝑑𝑟 (𝑡; (𝑢𝑣)𝑣∈𝜕Λ𝑟+1) (7.8.8)

for all 𝑠 ≥ 𝑡 and for all 𝑢′𝑣 ≥ 𝑢𝑣 with 𝑣 ∈ 𝜕Λ𝑟+1. Under same conditions we claim that∫
R2
ℎ𝑟 (𝑦; (𝑢𝑣)𝑣∈𝜕Λ𝑟 )𝐹𝑟 (𝑠 − 𝑦)ℎ𝑟 (𝑥; (𝑢′𝑣)𝑣∈𝜕Λ𝑟 )𝐹𝑟 (𝑡 − 𝑥)𝑑𝑥𝑑𝑦

≤
∫
R2
ℎ𝑟 (𝑦; (𝑢′𝑣)𝑣∈𝜕Λ𝑟 )𝐹𝑟 (𝑠 − 𝑦)ℎ𝑟 (𝑥; (𝑢𝑣)𝑣∈𝜕Λ𝑟 )𝐹𝑟 (𝑡 − 𝑥)𝑑𝑥𝑑𝑦.

(7.8.9)

Combining the above inequality with (7.8.8) we have (7.8.7) completing the proof. To see why

(7.8.9) holds, we split the integrals in (7.8.9) over {𝑥 < 𝑦} and {𝑦 < 𝑥} and swap the 𝑥, 𝑦 labels in

the region {𝑦 < 𝑥} to get that (7.8.9) is equivalent to

∫
𝑥<𝑦

𝐴(𝑦)𝑌 (𝑦)𝐵(𝑥)𝑋 (𝑥)+𝐶 (𝑥)𝑍 (𝑥)𝐷 (𝑦)𝑊 (𝑦) ≤
∫
𝑥<𝑦

𝐷 (𝑦)𝑌 (𝑦)𝐶 (𝑥)𝑋 (𝑥)+𝐵(𝑥)𝑍 (𝑥)𝐴(𝑦)𝑍 (𝑦)
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where we let

𝐴(𝑦) = ℎ𝑟 (𝑦; (𝑢𝑣)𝑣∈𝜕Λ𝑟 ), 𝐵(𝑥) = ℎ𝑟 (𝑥; (𝑢′𝑣)𝑣∈𝜕Λ𝑟 ), 𝐶 (𝑥) = ℎ𝑟 (𝑥; (𝑢𝑣)𝑣∈𝜕Λ𝑟 ), 𝐷 (𝑦) = ℎ𝑟 (𝑦; (𝑢′𝑣)𝑣∈𝜕Λ𝑟 ),

𝑋 (𝑥) = 𝐹𝑟 (𝑡 − 𝑥), 𝑌 (𝑦) = 𝐹𝑟 (𝑠 − 𝑦),𝑊 (𝑦) = 𝐹𝑟 (𝑡 − 𝑦), 𝑍 (𝑥) = 𝐹𝑟 (𝑠 − 𝑥).

The integral above can be rewritten as
∫
𝑥<𝑦

(
𝐴(𝑦)𝐵(𝑥) − 𝐶 (𝑥)𝐷 (𝑦)

) (
𝑋 (𝑥)𝑌 (𝑦) −𝑊 (𝑦)𝑍 (𝑥)

)
and

thus it suffices to show for each 𝑥 ≤ 𝑦 the integrand is non-positive. By induction hypothesis,

𝐴(𝑦)𝐵(𝑥) ≤ 𝐶 (𝑥)𝐷 (𝑦) for all 𝑥 ≤ 𝑦 and since the weight function 𝐹𝑟 satisfies (7.8.6) (with

𝑃 = 𝐹𝑟), we also have 𝑋 (𝑥)𝑌 (𝑦) ≥ 𝑊 (𝑦)𝑍 (𝑥). This proves (7.8.9), completing the proof of the

lemma.

7.9 Supporting calculations

In this section, we provide a detailed verification of the relations (7.2.13), (7.2.14), and (7.2.15).

We continue with the same notations as in the proof of Theorem 7.1.3.

Verification of (7.2.13). Note that from the transformation we have

𝑒𝑢 𝑗−𝑖+1,2𝑁−2 𝑗+1 = 𝑡𝑖+2𝑁−2 𝑗 ,𝑖 𝑒𝑢 𝑗−𝑖+1,2𝑁−2 𝑗+2 = 𝑡𝑖+2𝑁−2 𝑗+1,𝑖 .

This yields

𝜏𝜃2𝑁−2 𝑗 =

𝑗∏
𝑖=1

𝑡𝜃𝑖+2𝑁−2 𝑗 ,𝑖 =

𝑗∏
𝑖=1

𝑒𝜃𝑢 𝑗−𝑖+1,2𝑁−2 𝑗+1 =

𝑗∏
𝑖=1

𝑒𝜃𝑢𝑖,2𝑁−2 𝑗+1 .

Similarly we have

𝜏𝜃2𝑁−2 𝑗+2 = 𝑒−𝜃𝑢 𝑗 ,2𝑁−2 𝑗+3

𝑗∏
𝑖=1

𝑒𝜃𝑢𝑖,2𝑁−2 𝑗+3 , 𝜏𝜃2𝑁−2 𝑗+1 =

𝑗∏
𝑖=1

𝑒𝜃𝑢𝑖,2𝑁−2 𝑗+2 .
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Thus,

𝑁∏
𝑗=1

(
𝜏2𝑁−2 𝑗+2𝜏2𝑁−2 𝑗

𝜏2
2𝑁−2 𝑗+1

)𝜃
=

𝑁∏
𝑗=1

[
𝑒−𝜃𝑢 𝑗 ,2𝑁−2 𝑗+3

𝑗∏
𝑖=1

𝑒𝜃 [𝑢𝑖,2𝑁−2 𝑗+1+𝑢𝑖,2𝑁−2 𝑗+3−2𝑢𝑖,2𝑁−2 𝑗+2]
]

=

[
𝑁∏
𝑖=1

𝑒−𝜃𝑢𝑖,2𝑁−2𝑖+3

]
·
[
𝑁∏
𝑖=1

𝑁∏
𝑗=𝑖

𝑒𝜃 [𝑢𝑖,2𝑁−2 𝑗+1+𝑢𝑖,2𝑁−2 𝑗+3−2𝑢𝑖,2𝑁−2 𝑗+2]
]

=

[
𝑁∏
𝑖=1

𝑒−𝜃𝑢𝑖,2𝑁−2𝑖+3

]
·
·

𝑁∏
𝑖=1

𝑁−𝑖+1∏
𝑗=1

𝑒𝜃 [𝑢𝑖,2 𝑗−1+𝑢𝑖,2 𝑗+1−2𝑢𝑖,2 𝑗 ]
 ( 𝑗 ↦→ 𝑁 − 𝑗 + 1).

The last term above is clearly equal to the right-hand side of (7.2.13).

Verification of (7.2.14). Let us write

∑︁
𝑖> 𝑗

𝑡𝑖−1, 𝑗

𝑡𝑖, 𝑗
=

𝑁∑︁
𝑗=1

2𝑁− 𝑗+1∑︁
𝑖= 𝑗+1

𝑡𝑖−1, 𝑗

𝑡𝑖, 𝑗
=

𝑁∑︁
𝑗=1

2𝑁−2 𝑗+1∑︁
𝑟=1

𝑡 𝑗+𝑟−1, 𝑗

𝑡 𝑗+𝑟, 𝑗

=

𝑁∑︁
𝑗=1

𝑁− 𝑗∑︁
𝑟=1

𝑡 𝑗+2𝑟−1, 𝑗

𝑡 𝑗+2𝑟, 𝑗
+

𝑁∑︁
𝑗=1

𝑁− 𝑗+1∑︁
𝑟=1

𝑡 𝑗+2𝑟−2, 𝑗

𝑡 𝑗+2𝑟−1, 𝑗
. (7.9.1)

Observe that

𝑒𝑢𝑁−𝑟− 𝑗+1,2𝑟+1 = 𝑡 𝑗+2𝑟, 𝑗 , 𝑒𝑢𝑁−𝑟− 𝑗+2,2𝑟 = 𝑡 𝑗+2𝑟−1, 𝑗 . (7.9.2)

Thus we have

(7.9.1) =
𝑁∑︁
𝑗=1

𝑁− 𝑗∑︁
𝑟=1

𝑒𝑢𝑁−𝑟− 𝑗+2,2𝑟−𝑢𝑁−𝑟− 𝑗+1,2𝑟+1 +
𝑁∑︁
𝑗=1

𝑁− 𝑗+1∑︁
𝑟=1

𝑒𝑢𝑁−𝑟− 𝑗+2,2𝑟−1−𝑢𝑁−𝑟− 𝑗+2,2𝑟

=

𝑁∑︁
𝑗=1

𝑗−1∑︁
𝑟=1

𝑒𝑢 𝑗−𝑟+1,2𝑟−𝑢 𝑗−𝑟 ,2𝑟+1 +
𝑁∑︁
𝑗=1

𝑗∑︁
𝑟=1

𝑒𝑢 𝑗−𝑟+1,2𝑟−1−𝑢 𝑗−𝑟+1,2𝑟 ( 𝑗 ↦→ 𝑁 − 𝑗 + 1)

=

𝑁−1∑︁
𝑟=1

𝑁∑︁
𝑗=𝑟+1

𝑒𝑢 𝑗−𝑟+1,2𝑟−𝑢 𝑗−𝑟 ,2𝑟+1 +
𝑁∑︁
𝑟=1

𝑁∑︁
𝑗=𝑟

𝑒𝑢 𝑗−𝑟+1,2𝑟−1−𝑢 𝑗−𝑟+1,2𝑟

=

𝑁−1∑︁
𝑟=1

𝑁−𝑟∑︁
𝑖=1

𝑒𝑢𝑖+1,2𝑟−𝑢𝑖,2𝑟+1 +
𝑁∑︁
𝑟=1

𝑁−𝑟+1∑︁
𝑖=1

𝑒𝑢𝑖,2𝑟−1−𝑢𝑖,2𝑟
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where the last equality follows by setting 𝑗 − 𝑟 ↦→ 𝑖 and 𝑗 − 𝑟 ↦→ 𝑖 − 1 in the first and second sum

respectively. A final interchange of sum in each of the two terms leads to the right hand side of

(7.2.14).

Verification of (7.2.15). We follow the same above strategy and write

∑︁
𝑖≥ 𝑗>1

𝑡𝑖, 𝑗−1

𝑡𝑖, 𝑗
=

𝑁∑︁
𝑗=2

2𝑁− 𝑗+1∑︁
𝑖= 𝑗

𝑡𝑖, 𝑗−1

𝑡𝑖, 𝑗
=

𝑁∑︁
𝑗=2

2𝑁−2 𝑗+2∑︁
𝑟=1

𝑡 𝑗+𝑟−1, 𝑗−1

𝑡 𝑗+𝑟−1, 𝑗

=

𝑁∑︁
𝑗=2

𝑁− 𝑗+1∑︁
𝑟=1

𝑡 𝑗+2𝑟−1, 𝑗−1

𝑡 𝑗+2𝑟−1, 𝑗
+

𝑁∑︁
𝑗=2

𝑁− 𝑗+1∑︁
𝑟=1

𝑡 𝑗+2𝑟−2, 𝑗−1

𝑡 𝑗+2𝑟−2, 𝑗
(7.9.3)

Due to (7.9.2) we have

(7.9.3) =
𝑁∑︁
𝑗=2

𝑁− 𝑗+1∑︁
𝑟=1

𝑒𝑢𝑁−𝑟− 𝑗+2,2𝑟+1−𝑢𝑁−𝑟− 𝑗+2,2𝑟 +
𝑁∑︁
𝑗=2

𝑁− 𝑗+1∑︁
𝑟=1

𝑒𝑢𝑁−𝑟− 𝑗+3,2𝑟−𝑢𝑁−𝑟− 𝑗+2,2𝑟−1

=

𝑁−1∑︁
𝑗=1

𝑗∑︁
𝑟=1

𝑒𝑢 𝑗−𝑟+1,2𝑟+1−𝑢 𝑗−𝑟+1,2𝑟 +
𝑁−1∑︁
𝑗=1

𝑗∑︁
𝑟=1

𝑒𝑢 𝑗−𝑟+2,2𝑟−𝑢 𝑗−𝑟+1,2𝑟−1 ( 𝑗 ↦→ 𝑁 − 𝑗 + 1)

=

𝑁−1∑︁
𝑟=1

𝑁−1∑︁
𝑗=𝑟

𝑒𝑢 𝑗−𝑟+1,2𝑟+1−𝑢 𝑗−𝑟+1,2𝑟 +
𝑁−1∑︁
𝑟=1

𝑁−1∑︁
𝑗=𝑟

𝑒𝑢 𝑗−𝑟+2,2𝑟−𝑢 𝑗−𝑟+1,2𝑟−1

=

𝑁−1∑︁
𝑟=1

𝑁−𝑟∑︁
𝑖=1

𝑒𝑢𝑖,2𝑟+1−𝑢𝑖,2𝑟 +
𝑁−1∑︁
𝑟=1

𝑁−𝑟∑︁
𝑖=1

𝑒𝑢𝑖+1,2𝑟−𝑢𝑖,2𝑟−1 ( 𝑗 − 𝑟 ↦→ 𝑖 − 1).

A final interchange of sum in each of the two terms leads to the right hand side of (7.2.15). This

completes the verification of all three equalities.
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Chapter 8: The half-space log-gamma polymer in the bound phase

8.1 Introduction

Directed polymers in random environments, first appeared in [203, 206, 61], are a rich class

of mathematical physics models that have been extensively studied over the last several decades

(see books [303, 181, 143, 99] and the references therein). More recently, a particular variant of

the polymer models, the half-space polymers, has garnered considerable attention. The structure

of the half-space polymers resembles the behavior of an interface in the presence of an attractive

wall and their understanding renders importance to the studies of the wetting phenomena ([1,

269, 76]). Depending on the attraction force of the wall, it was conjectured in [215] that these

models exhibit a “depinning" phase transition. When the attraction force exceeds a certain critical

threshold (colloquially known as the bound phase), [215] conjectured that the endpoint of the

polymer stays within a 𝑂 (1) window around the wall, i.e., it gets pinned to the wall. In this paper,

we focus on the half-space polymers with log-gamma weights which make the model integrable

and resolve Kardar’s 𝑂 (1) conjecture in the bound phase. Our work is the first rigorous instance

that positively solves Kardar’s 𝑂 (1) conjecture.

Presently, we begin with an introduction to the model and the statements of our main results.

8.1.1 The model and the main results

Fix any 𝜃 > 0 and 𝛼 > −𝜃 and define the half-space index set: I− = {(𝑖, 𝑗) ∈ Z2
>0 | 𝑗 ≤ 𝑖}. We

consider a family of independent variables (𝑊𝑖, 𝑗 )(𝑖, 𝑗)∈I− :

𝑊𝑖,𝑖 ∼ Gamma−1(𝛼 + 𝜃) 𝑊𝑖, 𝑗 ∼ Gamma−1(2𝜃) for 𝑖 < 𝑗 , (8.1.1)
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Figure 8.1: The bound and the unbound phase.

where Gamma(𝛽) denotes a random variable with density 1{𝑥 > 0}[Γ(𝛽)]−1𝑥𝛽−1𝑒−𝑥 . Let Πhalf
𝑁

be the set of all upright lattice paths of length 2𝑁 − 2 starting from (1, 1) that are confined to the

half-space I− (see Figure 8.2). Given the weights in (8.1.1), the half-space log-gamma (HSLG)

polymer is a random measure on Πhalf
𝑁

defined as

P𝑊 (𝜋) = 1
𝑍 (𝑁)

∏
(𝑖, 𝑗)∈𝜋

𝑊𝑖, 𝑗 · 1𝜋∈Πhalf
𝑁
, (8.1.2)

where 𝑍 (𝑁) is the normalizing constant.

(1, 1)

(11, 5)

(9, 7)
Gamma−1 (𝛼 + 𝜃 )

Gamma−1 (2𝜃 )

Figure 8.2: Two possible paths of length 14 in Πhalf
8 are shown in the figure.

The parameter 𝛼 controls the strength of the boundary weights, i.e. the attractiveness of the

wall, and a “depinning" phase transition occurs when 𝛼 = 0 (see [215, 275, 25]). When 𝛼 ≥ 0,

[34, 28] showed that the polymer measure is unpinned and the endpoint lies in a 𝑂 (𝑁2/3) window.
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For 𝛼 < 0, the conjecture is that the attraction is strong enough so that the polymer measure is

pinned to the diagonal (see Figure 8.1). Indeed, our first main result below confirms that in the

bound phase, i.e., when 𝛼 ∈ (−𝜃, 0), the endpoint of the HSLG polymer is within 𝑂 (1) window

of the diagonal and is the first such result to capture the “pinning" phenomenon of the half-space

polymer measure to the diagonal.

Theorem 8.1.1 (Bounded endpoint). Fix 𝜃 > 0 and 𝛼 ∈ (−𝜃, 0) and consider the random measure

P𝑊 from (8.1.2). For a path 𝜋 ∈ Πhalf
𝑁

, we denote 𝜋(2𝑁 − 2) as the height (i.e., 𝑦-coordinate) of

the endpoint of the polymer. We have

lim sup
𝑘→∞

lim sup
𝑁→∞

P𝑊 (𝜋(2𝑁 − 2) ≤ 𝑁 − 𝑘) = 0, in probability. (8.1.3)

Theorem 8.1.1 is a quenched result and naturally implies its annealed version. Following the

above theorem, our next point of inquiry is the limiting behavior of the quenched distribution of

the endpoints around the diagonal. We introduce and clarify a few more notations below before

stating our results in this direction. Let Πhalf
𝑚,𝑛 is the set of all upright lattice paths starting from

(1, 1) and ending at (𝑚, 𝑛) that reside solely in the half-space I−. We define the point-to-point

partition function as

𝑍 (𝑚, 𝑛) :=
∑︁

𝜋∈Πhalf
𝑚,𝑛

∏
(𝑖, 𝑗)∈𝜋

𝑊𝑖, 𝑗 . (8.1.4)

Under the above definition, the normalizing constant 𝑍 (𝑁) in (8.1.2), can also be viewed as the

point-to-line partition function, i.e.

𝑍 (𝑁) =
𝑁−1∑︁
𝑝=0

𝑍 (𝑁 + 𝑝, 𝑁 − 𝑝).

The natural logarithm of the partition function is termed as the free energy of the polymer. The

aforementioned depinning phase transition can be observed by studying the fluctuations of the free

energy of the polymer. In this context, [34] obtained precise one-point fluctuations for the point-
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to-line free energy log 𝑍 (𝑁) in both the bound and unbound phases and observed the BBP phase

transition. A similar fluctuation result and Baik-Rains phase transition were later shown in [205]

for the point-to-point free energy log 𝑍 (𝑁, 𝑁) on the diagonal. For 𝛼 ≥ 0, it was recently proven

in [28] that the point-to-point free energy process

(
log 𝑍 (𝑁 + 𝑝𝑁2/3, 𝑁 − 𝑝𝑁2/3)

)
𝑝∈[0,𝑟]

after appropriate centering and scaling by 𝑁1/3 is functionally tight. This result captures the char-

acteristic KPZ 1/3 fluctuation and 2/3 transversal scaling exponents. In our present work, we

study the point-to-point free energy process under 𝛼 < 0 case. Our second main result below ob-

tains precise fluctuations for the increments of the point-to-point free energy process when 𝛼 < 0.

To state the result, we introduce the definition of the log-gamma random walk.

Definition 8.1.2. Fix 𝜃 > 0 and 𝛼 ∈ (−𝜃, 0]. Let 𝑌1 ∼ Gamma(𝜃 + 𝛼) and 𝑌2 ∼ Gamma(𝜃 − 𝛼) be

independent random variables. We refer to 𝑋 := log𝑌2 − log𝑌1 as a log-gamma random variable.

It has a density given by

𝑝(𝑥) :=
1

Γ(𝜃 + 𝛼)Γ(𝜃 − 𝛼)

∫
R

exp ((𝜃 − 𝛼)𝑦 − 𝑒𝑦 + (𝜃 + 𝛼) (𝑦 − 𝑥) − 𝑒𝑦−𝑥) 𝑑𝑦. (8.1.5)

Let (𝑋𝑖)𝑖≥0 be a sequence of such iid log-gamma random variables. Set 𝑆0 = 0 and 𝑆𝑘 =
∑𝑘
𝑖=1 𝑋𝑖.

We refer to (𝑆𝑘 )𝑘≥0 as a log-gamma random walk.

Our next result states that in the bound phase, the above random walk is an attractor for the

increments of the half-space log-partition function.

Theorem 8.1.3. Fix 𝜃 > 0 and 𝛼 ∈ (−𝜃, 0). For each 𝑘 ≥ 1, as 𝑁 → ∞, we have the following

multi-point convergence in distribution

(
𝑍 (𝑁 + 𝑟, 𝑁 − 𝑟)

𝑍 (𝑁, 𝑁)

)
𝑟∈J0,𝑘K

𝑑→
(
𝑒−𝑆𝑟

)
𝑟∈J0,𝑘K

, (8.1.6)

where (𝑆𝑟)𝑟≥0 is a log-gamma random walk from Definition 8.1.2.
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From the above result, we deduce the following limiting quenched distribution of the endpoint

when viewed around the diagonal.

Theorem 8.1.4. Fix 𝜃 > 0 and 𝛼 ∈ (−𝜃, 0) and consider the random measure P𝑊 from (8.1.2).

Let (𝑆𝑘 )𝑘≥0 be a log-gamma random walk from Definition 8.1.2. Set 𝑄 :=
∑
𝑝≥0 𝑒

−𝑆𝑝 . For a path

𝜋 ∈ Πhalf
𝑁

, we denote 𝜋(2𝑁 − 2) as the height (i.e., 𝑦-coordinate) of the endpoint of the polymer.

Then for each 𝑘 ≥ 1, as 𝑁 →∞, we have the following multi-point convergence in distribution

(
P𝑊 (𝜋(2𝑁 − 2) = 𝑁 − 𝑟)

)
𝑟∈J0,𝑘K

𝑑→
(
𝑄−1 · 𝑒−𝑆𝑟

)
𝑟∈J0,𝑘K

. (8.1.7)

Beyond proving the 𝑂 (1) transversal fluctuation around the point (𝑁, 𝑁) and pinning down

the exact density within this region, our main theorems above also shed light on the attractive

properties of half-space log-gamma stationary measures. In [30] a stationary version of the half-

space log-gamma polymer was considered for 𝛼 ∈ (−𝜃, 𝜃), where the horizontal weights along the

first row are assumed to be distributed as Gamma−1(𝜃 − 𝛼) (i.e.,𝑊𝑖,1 ∼ Gamma−1(𝜃 − 𝛼)). Let us

denote 𝑍stat(𝑛, 𝑚) to be the point-to-point HSLG partition function computed using these weights.

It was shown in [30, Proposition 4.5], that this model is stationary in the sense that for all 𝑘 ≥ 1,

and 𝑁 ≥ 𝑘 + 1

(log 𝑍stat(𝑁, 𝑁) − log 𝑍stat(𝑁 + 𝑟, 𝑁 − 𝑟))𝑟∈J0,𝑘K
𝑑
= (𝑆𝑟)𝑟∈J0,𝑘K.

where (𝑆𝑟)𝑟≥0 is a log-gamma random walk defined in Definition 8.1.2.

Remark 8.1.5. Using the above stationary weights, one can define an associated polymer measure

P𝑊stat in the spirit of (8.1.2). We remark that both Theorem 8.1.1 and Theorem 8.1.4 continue to

hold under P𝑊stat. This is not hard to check from our log-gamma random walk results presented in

Appendix 8.6.

Theorem 8.1.3 shows that for 𝛼 < 0 the above log-gamma random walk measure is an attractor

for the original polymer model in the sense that the increment of the log-partition function of the
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original model converges to the same log-gamma random walk measure. We believe that our

broad techniques should also lead to a similar convergence result for 𝛼 ≥ 0. We leave this for

future consideration.

We end this section by mentioning a recent work [27] on the stationary measures for the HSLG

polymer. The point-to-point log-gamma polymer partition function 𝑍 (𝑛, 𝑚) satisfies a recurrence

relation

𝑍 (𝑛, 𝑚) = 𝑊𝑛,𝑚 · (𝑍 (𝑛 − 1, 𝑚) + 𝑍 (𝑛, 𝑚 − 1)) for 𝑛 > 𝑚 ≥ 1,

𝑍 (𝑛, 𝑛) = 𝑊𝑛,𝑛 · 𝑍 (𝑛, 𝑛 − 1) for 𝑛 ≥ 1,

We refer to a process (ℎ(𝑘))𝑘≥0 as horizontal-stationary for the HSLG polymer if the solution to

the above recurrence relation with initial data 𝑧(·, 0) = 𝑒ℎ(·) has stationary horizontal increments.

For instance, the distribution of horizontal increments (log 𝑍 (𝑁 + 𝑘, 𝑁) − log 𝑍 (𝑁, 𝑁))𝑘≥0 is same

for all 𝑁 ≥ 0 (and equal to that of the initial data). Recently, [27] posited a one-parameter family

of horizontal-stationary measures for the HSLG polymer model and conjectured that these station-

ary measures are attractors for a large class of initial data (𝑍 (𝑛, 0))𝑛≥0 subject to the condition

lim𝑘→∞ log 𝑍 (𝑘, 0)/𝑘 = 𝑑 ∈ R. However, the initial data relevant to our polymer model corre-

sponds to 𝑍 (𝑘, 0) = 1𝑘=1 and is not covered in [27].

8.1.2 Proof Ideas

In this section we sketch the key ideas behind the proofs of our main results. Our proof relies

on inputs from the recently developed HSLG Gibbsian line ensemble in [28], one-point fluctuation

results for point-to-(partial)line half-space log-partition functions from [34] and the localization

techniques from [132]. At the heart of our argument lies an innovative combinatorial argument

that bridges the aforementioned inputs and enables our proof.

The starting point of our analysis is the HSLG Gibbsian line ensemble in [28], which allows us

to embed the free energy log 𝑍 (𝑁 + 𝑟, 𝑁 − 𝑟) of the HSLG polymer as the top curve of a Gibbsian
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𝐻
(1)
𝑁
( ·)

𝐻
(2)
𝑁
( ·)

𝐻
(3)
𝑁
( ·)

𝑀1
√
𝑁

√
𝑁

Figure 8.3: First three curves of the HSLG line ensemble. There is a high probability uniform
separation of length

√
𝑁 between the first two curves in the above 𝑀1

√
𝑁 window.

line ensemble (𝐻 (𝑘)
𝑁
(·))𝑘∈J1,𝑁K of log-gamma increment random walks interacting through a soft

version of non-intersection (Theorem 8.2.4) conditioning and subject to an energetic interaction at

the left boundary (where 𝑟 = 0) depending on the value of 𝛼. This fact is due to the geometric

RSK correspondence ([121, 263, 260, 59]) and the half-space Whittaker process ([25]). The key

idea of our proof is to show that with high probability, the first and the second curves in our

line ensemble ensemble (see Figure 8.3) are sufficiently uniformly separated. Then the separation

allows us to conclude that the first curve indeed behaves similarly to a log-gamma random walk by

a localization analysis.

The existing literature contains some information about the locations of the top two curves.

When 𝛼 < 0, one can deduce from the line ensemble description in [28] that the first and the second

curves are repulsed from each other at the left boundary. Results in [34] also supply information

about the location for the first curve. However, one cannot deduce that the entire second curve lies

uniformly much lower than the first curve from the above two inputs and line ensemble techniques

alone.
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Intuition behind the separation

Before we proceed to further break down our argument about the separation, it is worth dwelling

on the mathematical intuition behind the separation between the first and second curves, which

originates from the definition of the line ensemble defined in Section 8.2.1. For simplicity, let us

focus only on the left boundary. By Definition 8.2.1, we have 𝐻 (1)
𝑁
(1) = log 𝑍 (𝑁, 𝑁), and

𝐻
(1)
𝑁
(1) + 𝐻 (2)

𝑁
(1) := log

2
∑︁
𝜋1,𝜋2

∏
(𝑖, 𝑗)∈𝜋1∪𝜋2

𝑊𝑖, 𝑗

 , (8.1.8)

where the above sum is over all pair of non-intersecting upright paths 𝜋1, 𝜋2 from (1, 1) to (𝑁, 𝑁 −

1) and from (1, 2) to (𝑁, 𝑁) confined in the entire quadrant Z2
≥1 (instead of octant). Here 𝑊𝑖, 𝑗 is

the symmetrized version of the weights defined in (8.1.1) on the entire quadrant as:

𝑊𝑖,𝑖 = 𝑊𝑖,𝑖/2 for 𝑖 ≥ 1, 𝑊𝑖, 𝑗 = 𝑊 𝑗 ,𝑖 = 𝑊𝑖, 𝑗 for 𝑖 > 𝑗 . (8.1.9)

Using point-to-(partial)line log-partition function fluctuation results from [34] and line ensemble

techniques, it is not hard to deduce that 1
𝑁
𝐻
(1)
𝑁
(1) → 𝑅 := −Ψ(𝜃 + 𝛼) − Ψ(𝜃 − 𝛼), where Ψ

is the digamma function defined in (8.2.8). However, 𝐻 (2)
𝑁
(1) should follow a different law of

large numbers. This can be understood intuitively from (8.1.8) as follows. For 𝛼 close to −𝜃, the

weights on the diagonal are huge and stochastically dominate all the other weights. The sum in

(8.1.8) then concentrates on the pair of paths 𝜋∗1, 𝜋
∗
2 which jointly have the maximal numbers of

diagonal points. This occurs when one of the paths carries all the diagonal weights and the other

path has no diagonal weights. Thus we expect,

∑︁
𝜋1,𝜋2

∏
(𝑖, 𝑗)∈𝜋1∪𝜋2

𝑊𝑖, 𝑗 �

∑︁
𝜋1

∏
(𝑖, 𝑗)∈𝜋1

𝑊𝑖, 𝑗

 ·


∑︁
𝜋2 |diag(𝜋2)=∅

∏
(𝑖, 𝑗)∈𝜋2

𝑊𝑖, 𝑗

 (8.1.10)

Upon taking logarithms and dividing by 𝑁 , the first term goes to 𝑅. However, the second term does

not feel the effect of the diagonal and hence should follow the law of large numbers corresponding
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to the unbound phase, i.e., 𝛼 > 0. The unbound phase law of large numbers is given by −Ψ(𝜃)

noted in [34, 28]. Thus overall, we expect 1
𝑁
(𝐻 (1)

𝑁
(1) + 𝐻 (2)

𝑁
(1)) → 𝑅 − Ψ(𝜃). As Ψ is concave,

the above heuristics suggests 𝐻 (2)
𝑁
(1) follow a lower law of large numbers. While our technical

arguments to be presented later do not yield exactly (8.1.10), we utilize the above idea to obtain a

large enough separation between the two curves, which turns out to be sufficient for proving our

main theorems.

The𝑈 map and its consequences

We now describe the key idea that makes the above intuition work. All the statements men-

tioned in this subsection should be understood as high probability statements. The above idea of

having one path having all diagonal weights is made precise in Section 8.3, where we develop a

combinatorial map in Lemma 8.3.1, referred to as the𝑈 map.

𝜋1

𝜋2

(a)

𝜋′1

𝜋′2

(b)

Figure 8.4: The 𝑈 map takes 𝜋1, 𝜋2 from (A) and returns 𝜋′1, 𝜋
′
2 in (B). The precise description of

the map is given in the proof of Lemma 8.3.1

The 𝑈 map takes every pair of paths 𝜋1, 𝜋2 in the sum in (8.1.8) and returns a pair of non-

intersecting paths 𝜋′1, 𝜋
′
2 while preserving their shared weights up to reflections (see Figure 8.4).

Moreover, the diagonal weights collectively carried by the pair will only rest on one of the paths

among 𝜋′1, 𝜋
′
2. The 𝑈 map is not injective but has at most 2𝑁 many inverses for each pair in its
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image. When we apply the𝑈 map to a single pair of adjacent paths, we get that

1
𝑁
(𝐻 (1)

𝑁
(1) + 𝐻 (2)

𝑁
(1)) ≤ log 2 + 𝑅 − Ψ(𝜃).

The log 2 is an entropy factor that comes from overcounting the number of inverses of our𝑈 map.

To remove its influence, we rely on the definition of the lower curves of the line ensemble. Indeed,

similar to (8.1.8),
∑2𝑘
𝑖=1 𝐻

(𝑖)
𝑁
(1) admits a representation in terms of 2𝑘-many non-intersecting paths.

When we apply the 𝑈 map to 𝑘 pairs of adjacent paths simultaneously, it leads to the following

average law of large numbers of the top 2𝑘 curves:

1
2𝑘𝑁

2𝑘∑︁
𝑖=1

𝐻
(𝑖)
𝑁
(1) ≤ 1

2𝑘 log 2 − 1
2Ψ(𝜃) −

1
2Ψ(𝜃 + 𝛼) −

1
2Ψ(𝜃 − 𝛼).

Taking 𝑘 large enough, one can ensure the right-hand side constant is strictly less than 𝑅. In fact,

the above argument can be strengthened to conclude that for large enough 𝑘

sup
𝑝∈J1,2𝑁−4𝑘+2K

1
2𝑘𝑁

2𝑘∑︁
𝑖=1

𝐻
(𝑖)
𝑁
(𝑝) ≤ 𝑅 − 𝛿,

for some 𝛿 > 0. This is obtained in Proposition 8.3.4.

As a consequence of this result, using soft non-intersection property of the line ensemble (The-

orem 8.2.4), we derive that with high probability, the (2𝑘 + 2)-th curve 𝐻2𝑘+2
𝑁
(·) is uniformly

Const · 𝑁 below 𝑅𝑁 over J1, 𝑁K in Section 8.4. Employing one-point results from [34], one can

ensures the point 𝐻 (1)
𝑁
(𝑀1
√
𝑁) on the top curve is (𝑀2 +1)

√
𝑁 below 𝑅𝑁. Combining the last two

results and line ensemble techniques we are able to benchmark the second curve from above:

sup
𝑝∈J1,𝑀1

√
𝑁K
𝐻
(2)
𝑁
(𝑝) ≤ 𝑅𝑁 − 𝑀2

√
𝑁 (8.1.11)

in Proposition 8.4.2. The details of the argument are presented in Section 8.4. While we are unable

to obtain a mismatch in the laws of large numbers for the first two curves following the above
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procedures, the fact that the second curve is below the diffusive regime of the first curve (since 𝑀2

can be chosen as large as possible) over an interval of length 𝑀1
√
𝑁 is sufficient for our next step

of the analysis.

Localization analysis

The remaining piece of our proof of main theorems boils down to a localization analysis of the

first curve in Section 8.5. Our proof roughly follows the techniques developed in our paper [132].

First, to prove Theorem 8.1.1 we divide the tail into a deep and a shallow tail depending on the

distance away from (𝑁, 𝑁), see Figure 8.5.

𝑦 = 𝑁 − 𝑀
√
𝑁

𝑦 = 𝑁 − 𝑘

(𝑁, 𝑁)

(1, 1) (2𝑁 − 1, 1)

deep tail starting point

deep tail

shallow tail

Figure 8.5: If the height of the endpoint of the polymer is less than 𝑁 − 𝑘 , it either lies in the
shallow tail or in the deep tail (illustrated above). Lemma 8.5.1 shows it is exponentially unlikely
to lie in the deep tail.

Our argument in Lemma 8.5.1 uses one-point fluctuations results of point-to-(partial)line log-

partition function from [34] as input and shows that the probability of the endpoint living in the

deep tail region is exponentially small. To show that the shallow tail contribution is also small

and to prove our remaining theorems, we establish the following strong convergence result in

Proposition 8.5.3:

(a) the law of the top curve within the [1, 𝑀
√
𝑁] window is arbitrarily close to that of a log-gamma

random walk for large enough 𝑁 (Proposition 8.5.3).
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In light of (a), the conclusion that the shallow tail contribution is small follows from estimating the

probability of the same event under the log-gamma random walk law. Theorem 8.1.3 is immediate

from (a) and Theorem 8.1.4 also follows from (a) after some calculations. The details are presented

in Section 8.5.2.

Finally, we briefly explain how we establish (a). A detailed discussion appears in the Step 1

of the proof of Proposition 8.5.3. As 𝐻 (1)
𝑁
(·) is a log-gamma random walk subject to soft non-

intersecting condition with 𝐻 (2)
𝑁
(·), it suffices to show that there’s sufficient distance between the

first and the second curves. Indeed, this will imply 𝐻 (1)
𝑁

behaves like a true log-gamma random

walk. As we have already benchmarked the second curve in (8.1.11), it remains to determine a

suitable lower bound for the first curve. The key idea here is to find a point 𝑝 = 𝑂 (
√
𝑁) on the first

curve in the deep tail region such that with high probability

𝐻
(1)
𝑁
(𝑝) ≥ 𝑅𝑁 − 𝑀′

√
𝑁

for some 𝑀′. This is achieved in Lemma 8.5.2 using fluctuation results from [34]. Then using

standard random walk tools such as Kolmogorov’s maximal inequality, we derive that with high

probability 𝐻 (1)
𝑁
(𝑞) ≥ 𝑅𝑁 − (𝑀′ + 1)

√
𝑁 for all 𝑞 ∈ J1, 𝑝K. Choosing 𝑀2 = 𝑀′ + 2 in (8.1.11) im-

plies that with high probability the first curve is at least
√
𝑁 above the second curve, This completes

our deduction and consequently establishes (a).

8.1.3 Related works and future directions

Our study of half-space polymers succeeds an extensive history of endeavors that attempt to

unravel their full-space variant. These full-space polymer models have rich connections with sym-

metric functions, random matrices, stochastic PDEs and integrable systems and are believed to

belong to the KPZ universality class (see [99, 181, 44]). Yet in spite of intense efforts in the past

decade, rigorous results proving either the 1/3 fluctuation exponent or the 2/3 transversal exponent

for general polymers have been scarce outside a few integrable cases (see [99, 294, 44, 29, 132,
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133] and the references therein).

In the half-space geometry, a wealth of literature has focused on the phase diagram for limiting

distributions based on the diagonal strength. One of the first mathematical works goes to the series

of joint works [15, 17, 16] on the geometric last passage percolation (LPP), i.e. polymers with

zero temperature. Their multi-point fluctuations were studied in [289] and similar results were

later proved for exponential LPP in [11, 12] using Pfaffian Schur processes. For further recent

works on half-space LPP, we refer to [50, 51, 52, 165] and the references therein.

For positive temperature models, i.e., polymers, as they are no longer directly related to the

Pfaffian point processes, the first rigorous proof of the depinning transition appeared much later in

[34]. Here the authors also included precise fluctuation results such as the BBP phase transition

[13] for the point-to-line log-gamma free energy. For the point-to-point log-gamma free energy,

the limit theorem as well as the Baik-Rains phase transition were conjectured in [25] based on

steepest descent analysis of half-space Macdonald processes. This result has been recently proved

in [205] by relating the half- space model to a free boundary version of the Schur process.

Similar to their full-space counterparts, in addition to fluctuations, another dimension of in-

terest to half-space polymers is their localization behaviors, which refer to the concentration of

polymers in a very small region given the environment. Figure 8.1 is a simulation of 30 samples

of HSLG polymers of length 120 sampled from the same environment with 𝜃 = 1, 𝛼 = −0.2 and

𝛼 = +0.2. The simulation suggests that even in the unbound phase, we expect a localization phe-

nomenon around a favorite site given by the environment. Localization is a unique behavior of

the polymer path in the strong disorder regime. In the full space, various levels of localization

results have been established for discrete and continuous polymers. The mathematical work began

with the strong localization result of [84] that confirmed the existence of the favorite sites for the

endpoint distributions of point-to-line polymers and has been upgraded to the notion of atomic

and geometric localization for general reference random walks in a series of joint works [42, 44,

20, 19]. An even stronger notion, the “favorite region conjecture", which conjectures the favorite

corridor of a polymer to be stochastically bounded, has been proved for two integrable models:
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the stationary log-gamma polymer in the discrete case ([101]) and the continuous directed random

polymer (CDRP) in the continuous case ([132]). In this direction, building up on [132] work,

recently [160] have studied the localization distance of the CDRP.

Investigating the geometry of the half-space CDRP is an interesting question to consider next.

Recently, a number of new results have appeared on the half-space KPZ equation, which arises

as the free energy of the half-space CDRP [320, 27], in both the mathematics [123, 26, 25, 272,

271, 27, 205] and the physics literature [189, 67, 207, 142, 231, 30, 32, 31]. These results on

the free energy render the half-space continuous polymers amenable to analysis. However, the

challenge with further studying the geometry of the half-space CDRP remains, due to the lack of

an analogous half-space KPZ line ensemble.

Outline

The rest of the paper is organized as follows. Section 8.2 reviews some of the existing results

related to HSLG line ensemble and one-point fluctuations of point-to-(partial)line free energy of

HSLG polymer. In Section 8.3 we prove our key combinatorial lemma and use it to control the

average law of large numbers for the top curves of the line ensemble. In Section 8.4, we establish

control over the second curve of the line ensemble. Finally, in Section 8.5, we complete the proofs

of our main theorems. Appendix 8.6 contains basic properties of log-gamma random walks.

Notation

Throughout this paper, we will assume 𝜃 > 0 and 𝛼 ∈ (−𝜃, 0) are fixed parameters. We write

J𝑎, 𝑏K := [𝑎, 𝑏] ∩ Z to denote the set of integers between 𝑎 and 𝑏. We will use serif fonts such as

A,B, . . . to denote events. The complement of an event A will be denoted as ¬A.
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8.2 Basic framework and tools

In this section, we present the necessary background on the half-space log-gamma (HSLG) line

ensemble and point-to-(partial) line partition function. From [28] and [34] we gather a few of the

known results on these objects that are crucial in our proofs.

8.2.1 The HSLG line ensemble and its Gibbs property

We begin with the description of the HSLG line ensemble and its Gibbs property. The def-

inition of the HSLG line ensemble is based on the point-to-point symmetrized partition func-

tion for multiple paths defined in (8.2.1). These are sum over multiple non-intersecting upright

paths on the entire quadrant Z2
>0 of products of the symmetrized version defined in (8.1.9) of

the weights defined in (8.1.1). Fix 𝑚, 𝑛, 𝑟 ∈ Z>0 with 𝑛 ≥ 𝑟, let Π (𝑟)𝑚,𝑛 be the set of all 𝑟-tuples

of non-intersecting upright paths in Z2
>0 starting from (1, 𝑟), (1, 𝑟 − 1), . . . , (1, 1) and going to

(𝑚, 𝑛), (𝑚, 𝑛 − 1), . . . , (𝑚, 𝑛 − 𝑟 + 1) respectively. We define the point-to-point symmetrized par-

tition function for 𝑟 paths as

𝑍
(𝑟)
sym(𝑚, 𝑛) :=

∑︁
(𝜋1,...,𝜋𝑟 )∈Π (𝑟 )𝑚,𝑛

∏
(𝑖, 𝑗)∈𝜋1∪···∪𝜋𝑟

𝑊𝑖, 𝑗 . (8.2.1)

where 𝑊𝑖, 𝑗 are defined in (8.1.9). We write 𝑍sym(𝑚, 𝑛) := 𝑍 (1)sym(𝑚, 𝑛) and use the convention that

𝑍
(0)
sym(𝑚, 𝑛) ≡ 1. One can recover HSLG partition function from symmetrized partition function via

the following identity. For each (𝑚, 𝑛) ∈ I− we have

2𝑍sym(𝑚, 𝑛) = 𝑍 (𝑚, 𝑛). (8.2.2)

The above identity appears in Section 2.1 of [34] and follows easily due to the symmetry of the

weights. We stress that the above relation is an exact equality not just in distribution.
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Definition 8.2.1 (HSLG line ensemble). Fix 𝑁 > 1. For each 𝑘 ∈ J1, 𝑁−1K and 𝑝 ∈ J1, 2𝑁−2𝑘+2K

set

𝐻
(𝑘)
𝑁
(𝑝) := log

(
2𝑍 (𝑘)sym(𝑁 + b𝑝/2c, 𝑁 − d𝑝/2e + 1)

𝑍
(𝑘−1)
sym (𝑁 + b𝑝/2c, 𝑁 − d𝑝/2e + 1)

)
(8.2.3)

We view the 𝑘-th curve 𝐻 (𝑘)
𝑁

as a random continuous function 𝐻 (𝑘)
𝑁

: [1, 2(𝑁 − 𝑘 + 1)] → R

by linearly interpolating its values on integer points. We call the collection of curves 𝐻𝑁 :=

(𝐻 (1)
𝑁
, 𝐻
(2)
𝑁
, . . . , 𝐻

(𝑁)
𝑁
) as the HSLG line ensemble.

We remark that in Definition 2.7 in [28], the authors defined the HSLG line ensemble by defin-

ing L𝑁
𝑖
( 𝑗) = 𝐻 (𝑖)

𝑁
( 𝑗) +Const ·𝑁 where the ‘Const’ is explicit and encodes the law of large numbers

for the HSLG free energy process (as well as the entire line ensemble) in the unbound phase. Since

the law of large numbers for the first curve and the second curve in the bound phase are possibly

different (recall our discussion of the proof idea in the introduction), we choose to not add this

constant in our definition of line ensemble. All the results from [28] can be easily translated to

results in our setting by adding this appropriate constant.

In view of (8.2.2), for all 𝑝 ≤ 2𝑁 we have

𝐻
(1)
𝑁
(𝑝) = log 𝑍 (𝑁 + b𝑝/2c, 𝑁 − d𝑝/2e + 1). (8.2.4)

The HSLG line ensemble enjoys a property that is known as the HSLG Gibbs property. To state

theHSLG Gibbs property, we introduce the HSLG Gibbs measures via graphical representation.

We consider a diamond lattice on the lower-right quadrant with vertices {(𝑚,−𝑛), (𝑚 + 1
2 ,−𝑛 +

1
2 ) | 𝑚, 𝑛 ∈ Z

2
>0} and nearest neighbor edges as shown in Figure 8.6. We label the vertices by

setting 𝜙((𝑚, 𝑛)) = (−b𝑛c, 2𝑚 − 1). We shall always use this labeling to identify a vertex in this

lattice and will not mention its actual coordinates further.

On the diamond lattice domain, we add potential directed-colored edges. A directed-colored

edge ®𝑒 = {𝑣1 → 𝑣2} on this lattice is a directed edge from 𝑣1 to 𝑣2 that has three choices of colors:
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blue, red, and black. Given a directed-colored edge, we associate a weight function based on the

color of the edge defined as follows:

𝑊®𝑒 (𝑥) =



exp((𝜃 − 𝛼)𝑥 − 𝑒𝑥) if ®𝑒 is blue

exp((𝜃 + 𝛼)𝑥 − 𝑒𝑥) if ®𝑒 is red

exp(−𝑒𝑥) if ®𝑒 is black.

(8.2.5)

We consider a graph 𝐺𝑁 on the diamond lattice with vertex set

𝐾𝑁 := {(𝑖, 𝑗) | 𝑖 ∈ J1, 𝑁K, 𝑗 ∈ J1, 2𝑁 − 2𝑖 + 2K}.

with directed-colored edges described below. For each (𝑝, 𝑞) ∈ 𝐾𝑁 ,

• If 𝑞 is odd and 𝑝 is odd (even resp.), we put a blue (red resp.) edge: (𝑝, 𝑞) → (𝑝, 𝑞 + 1).

• If 𝑞 ≥ 3 is odd and 𝑝 is odd (even resp.), we put a red (blue resp.) edge: (𝑝, 𝑞) → (𝑝, 𝑞 − 1).

• If 𝑞 is even, we put two black edges: (𝑝, 𝑞) → (𝑝 − 1, 𝑞) and (𝑝, 𝑞) → (𝑝 + 1, 𝑞).

The corresponding graph is shown in Figure 8.6. We write 𝐸 (𝐹) for the set of edges of any graph

𝐹 ⊂ 𝐺𝑁 .

The following result from [28] shows how the conditional distribution of the HSLG line ensem-

ble is given by certain measures called HSLG Gibbs measures.

Theorem 8.2.2 (Gibbs property). Consider the directed-colored graph 𝐺𝑁 described above. Set

Λ be a connected subset of the graph 𝐺𝑁 on the diamond lattice 𝐾𝑁

Λ∗𝑁 = {(𝑖, 𝑗) | 𝑖 ∈ J1, 𝑁 − 1K, 𝑗 ∈ J1, 2𝑁 − 2𝑖 + 1K}.

Let Λ be a connected subset of Λ𝑁 . Recall the HSLG line ensemble 𝐻𝑁 from Theorem 8.2.1. The

law of {𝐻𝑁
𝑖
( 𝑗) | (𝑖, 𝑗) ∈ Λ} conditioned on {𝐻𝑁

𝑖
( 𝑗) | (𝑖, 𝑗) ∈ Λ𝑐} is a measure on R|Λ| with
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· · ·

...

· · ·
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· · ·
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· · ·

(1, 1)

(2, 1)

(3, 1)

(1, 2) (1, 4)

(3, 4)

(3, 5)

(3, 6)

(3, 7)

(a) (b)

Figure 8.6: (A) Diamond lattice with a few of the labeling of the vertices shown in the figure. The
𝑚-th gray-shaded region have vertices with labels of the form {(𝑚, 𝑛) | 𝑛 ∈ Z2

>0}. Thus each such
region consists of vertices with the same first coordinate labeling. Potential directed-colored edges
on the lattice are also drawn above. (B) 𝐾𝑁 with 𝑁 = 4. Λ∗

𝑁
consists of all vertices in the shaded

region.

density at (𝑢𝑖, 𝑗 )(𝑖, 𝑗)∈Λ proportional to

∏
®𝑒={𝑣1→𝑣2}∈𝐸 (Λ∪𝜕Λ)

𝑊®𝑒 (𝑢𝑣1 − 𝑢𝑣2), (8.2.6)

where 𝑢𝑖, 𝑗 = 𝐻𝑁
𝑖
( 𝑗) for (𝑖, 𝑗) ∈ 𝜕Λ.

We call the above conditional law as the HSLG Gibbs measure with boundary condition ®𝑢 =

(𝑢𝑖, 𝑗 )(𝑖, 𝑗)∈𝜕Λ and denote this measure as P®𝑢gibbs(·). The above theorem follows directly from the

results in [28]). Theorem 1.3 in [28] specifies the Gibbs property for the centered line ensemble

𝐿𝑁
𝑖
( 𝑗). The same Gibbs property holds for 𝐻 (𝑖)

𝑁
( 𝑗) as HSLG Gibbs measures are translation invari-

ant (Observation 2.1 (b) in [28]. The Gibbs property stated in Theorem 1.3 is different and valid

for all 𝛼 > −𝜃. When 𝛼 ∈ (−𝜃, 𝜃), one can redistribute the edge-weights (see Observation 4.2 in

[28]) to obtain the above stated Gibbs property.

The HSLG Gibbs measures satisfy stochastic monotonicity w.r.t. the boundary data.

Proposition 8.2.3 (Stochastic monotonicity, Proposition 2.6 in [28]). Fix 𝑘1 ≤ 𝑘2, 𝑎𝑖 ≤ 𝑏𝑖 for
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𝑘1 ≤ 𝑖 ≤ 𝑘2 and 𝛼 > −𝜃. Let

Λ := {(𝑖, 𝑗) | 𝑘1 ≤ 𝑖 ≤ 𝑘2, 𝑎𝑖 ≤ 𝑗 ≤ 𝑏𝑖}.

There exists a probability space consisting of a collection of random variables

{𝐿 (𝑣; (𝑢𝑤)𝑤∈𝜕Λ) | 𝑣 ∈ Λ, (𝑢𝑤)𝑤∈𝜕Λ ∈ R|𝜕Λ|}

such that

1. For each (𝑢𝑤)𝑤∈𝜕Λ ∈ R|𝜕Λ|, the law of {𝐿 (𝑣; (𝑢𝑤)𝑤∈𝜕Λ) | 𝑣 ∈ Λ} is given by the HSLG Gibbs

measure for the domain Λ with boundary condition (𝑢𝑤)𝑤∈𝜕Λ ∈ R|𝜕Λ|.

2. With probability 1, for all 𝑣 ∈ Λ we have

𝐿 (𝑣; (𝑢𝑤)𝑤∈𝜕Λ) ≤ 𝐿 (𝑣; (𝑢′𝑤)𝑤∈𝜕Λ) whenever 𝑢𝑤 ≤ 𝑢′𝑤 for all 𝑤 ∈ 𝜕Λ.

As mentioned in the introduction, the HSLG line ensemble enjoys a certain soft non-intersection

property. This property is captured in our next theorem.

Theorem 8.2.4 (Ordering of points, Theorem 3.1 in [28]). Fix any 𝑘 ∈ Z>0 and 𝜌 ∈ (0, 1). There

exists 𝑁0 = 𝑁0(𝜌, 𝑘) > 0 such that for all 𝑁 ≥ 𝑁0, 𝑖 ∈ J1, 𝑘K and 𝑝 ∈ J1, 𝑁 − 𝑖K the following

inequalities holds:

P(𝐻 (𝑖)
𝑁
(2𝑝 + 1) ≤ 𝐻 (𝑖)

𝑁
(2𝑝) + log2 𝑁) ≥ 1 − 𝜌𝑁 ,

P(𝐻 (𝑖)
𝑁
(2𝑝 − 1) ≤ 𝐻 (𝑖)

𝑁
(2𝑝) + log2 𝑁) ≥ 1 − 𝜌𝑁 ,

P(𝐻 (𝑖+1)
𝑁
(2𝑝) ≤ 𝐻 (𝑖)

𝑁
(2𝑝 + 1) + log2 𝑁) ≥ 1 − 𝜌𝑁 ,

P(𝐻 (𝑖+1)
𝑁
(2𝑝) ≤ 𝐻 (𝑖)

𝑁
(2𝑝 − 1) + log2 𝑁) ≥ 1 − 𝜌𝑁 .

We remark that the above theorem is true in the unbound phase as well (i.e., for all 𝛼 > −𝜃).

We now introduce the interacting random walks which are a specialized version of HSLG Gibbs

measures (see Figure 8.7).
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Definition 8.2.5 (Interacting random walk). We say (𝐿1, 𝐿2) = (𝐿1J1, 2𝑇 −2K, 𝐿2J1, 2𝑇 −1K) is an

interacting random walk (IRW) of length 𝑇 with boundary condition (𝑎, 𝑏) if its law is a measure

on R4𝑇−3 with density at (𝑢1, 𝑗 )2𝑇−2
𝑗=1 , (𝑢2, 𝑗 )2𝑇−1

𝑗=1 proportional to

𝑇−1∏
𝑗=1

exp(−𝑒𝑢2,2 𝑗−𝑢1,2 𝑗−1 − 𝑒𝑢2,2 𝑗−𝑢1,2 𝑗+1)
2∏
𝑖=1

2𝑇−1∏
𝑗=1

𝐺𝜃+(−1)𝑖+ 𝑗𝛼
(
(−1) 𝑗+1(𝑢𝑖, 𝑗 − 𝑢𝑖, 𝑗+1)

)
where 𝐺𝛽 (𝑥) = [Γ(𝛽)]−1 exp(𝛽𝑥 − 𝑒𝑥), 𝑢1,2𝑇−1 = 𝑎, 𝑢2,2𝑇 = 𝑏, and 𝑢1,2𝑇 = 0 (which forces

𝐺𝜃+𝛼 (𝑢1,2𝑇−1 − 𝑢1,2𝑇 ) to be a constant). Figure 8.7 provides the graphical representation of IRW.

𝑏

𝑎

Figure 8.7: IRW of length 6 with boundary condition 𝑎 and 𝑏.

Note that the directed-colored graph associated to IRW can be viewed as a subset of 𝐺𝑁 (in-

troduced above). Specifically, for each 𝑖 ≥ 1, if we consider the vertex set

𝑉𝑖,𝑇 := {(2𝑖, 𝑗), (2𝑖 + 1, 𝑗) | 𝑗 ∈ J1, 2𝑇 − 1K} ∪ {(2𝑖 + 1, 2𝑇)},

the subgraph induced by 𝑉𝑖,𝑇 , 𝐸 (𝑉𝑖,𝑇 ) corresponds to the graph associated to IRW. Note that the

graph associated to IRW can also be viewed as the subgraph induced by 𝑉𝑇 , 𝐸 (𝑉𝑇 ) where

𝑉𝑇 := {(1, 𝑗), (2, 𝑗) | 𝑗 ∈ J1, 2𝑇 − 1K} ∪ {(2, 2𝑇)},

provided we switch 𝛼 to −𝛼 in (8.2.5) (i.e., switching red and blue edges). Since we have restricted

𝛼 ∈ (−𝜃, 0) (bound phase), under this switching IRW can be viewed as certain HSLG Gibbs

measures in the unbound phase. Indeed, after switching 𝛼 to −𝛼, in the language of [28], IRW

precisely corresponds to bottom-free measure on the domain K2,𝑇 with boundary condition (𝑎, 𝑏)

(see Definition 2.3 in [28]). This allows us to use the unbound phase estimates developed in [28].
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We end this section by recording one such estimate.

Proposition 8.2.6 (Lemma 5.3 in [28]). Fix any 𝑇 ≥ 2. Let (𝐿1, 𝐿2) be a IRW of length 𝑇 with

boundary condition (0,−
√
𝑇). Fix 𝜀 ∈ (0, 1). There exists 𝑀0 = 𝑀0(𝜀) > 0 such that

P

(
sup

𝑝∈J1,2𝑇−1K
|𝐿1(𝑝) | + sup

𝑞∈J1,2𝑇K
|𝐿2(𝑞) | ≥ 𝑀0

√
𝑇

)
≤ 𝜀.

8.2.2 One-point fluctuations of point-to-(partial)line free energy

In this section, we gather the point-to-(partial)line free energy fluctuation results from [34]. To

state the theorem, we introduce a few necessary objects first.

Recall the point-to-point half-space partition function 𝑍 (𝑚, 𝑛) from (8.1.4). For 𝑘 ∈ J0, 𝑁−1K,

we define the point-to-(partial)line half-space partition function as

ZPL
𝑁 (𝑚) =

𝑁−1∑︁
𝑝=𝑚

𝑍 (𝑁 + 𝑝, 𝑁 − 𝑝) =
𝑁−1∑︁
𝑝=𝑚

𝑒𝐻
(1)
𝑁
(2𝑝+1) . (8.2.7)

For the second equality, note that by (8.2.4) we have 𝐻 (1)
𝑁
(2𝑝 + 1) = log 𝑍 (𝑁 + 𝑝, 𝑁 − 𝑝) and

thus we can translate the point-to-(partial)line partition function in Definition 1.8 (or equivalently

in Definition 1.3) of [34] into sums of 𝑒𝐻
(1)
𝑁
(2𝑝+1) by way of the full-space point-to-point partition

function 𝑍 (𝑛 + 𝑝, 𝑛 − 𝑝).

Let Ψ(·) denote the digamma function defined on R>0 by

Ψ(𝑧) = 𝜕𝑧 log Γ(𝑧) = −𝛾 +
∞∑︁
𝑛=0

(
1

𝑛 + 1
− 1
𝑛 + 𝑧

)
, (8.2.8)
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where 𝛾 is the Euler-Mascheroni constant. For any 𝑘 ∈ Z>0, we set

𝑅(𝜃, 𝛼) := −Ψ(𝜃 + 𝛼) − Ψ(𝜃 − 𝛼),

𝜏(𝜃, 𝛼) := Ψ(𝜃 − 𝛼) − Ψ(𝜃 + 𝛼),

𝜎2(𝜃, 𝛼) := Ψ′(𝜃 + 𝛼) − Ψ′(𝜃 − 𝛼),

Δ𝑘 (𝜃, 𝛼) := Ψ(𝜃) − 1
2 [Ψ(𝜃 + 𝛼) + Ψ(𝜃 − 𝛼)] −

1
2𝑘 log 2.

(8.2.9)

For the remainder of the paper, we will make use of the above notation repeatedly. As Ψ is a strictly

concave function, for all large enough 𝑘 (depending on 𝛼, 𝜃) we have Δ𝑘 > 0. For the results and

proofs in the remainder of the paper, we always choose 𝑘 large enough such that Δ𝑘 > 0.

We now state the necessary results from [34] about the point-to-(partial)line partition function

ZPL
𝑁
(𝑚) that we need in our subsequent analysis.

Theorem 8.2.7. Suppose 𝑔 : Z>0 → Z>0. Suppose further that 𝑁 is an integer that tends to infinity

in such a way that 𝑔(𝑁)
𝑁
→ 0. We have

1
𝑁1/2𝜎

[
log ZPL

𝑁 (𝑔(𝑁)) − 𝑅𝑁 + 𝑔(𝑁)𝜏
]

𝑑→ N(0, 1). (8.2.10)

where 𝑅, 𝜏, 𝜎 are defined in (8.2.9). We have the following law of large numbers

1
𝑁

log

𝑁−1∑︁
𝑝=1

𝑍 (𝑁 + 𝑝, 𝑁 − 𝑝)


𝑝
→ 𝑅

1
𝑁

log

𝑁∑︁
𝑝=1

𝑍 (𝑁 + 𝑝, 𝑁 − 𝑝 + 1)


𝑝
→ 𝑅. (8.2.11)

Furthermore, the above law of large numbers continues to hold when 𝛼 = 0, i.e., the diagonal

weights are assumed to be distributed as Gamma−1(𝜃). In that case 𝑅(𝜃, 𝛼) is interpreted as

𝑅(𝜃, 0) = −2Ψ(𝜃).

Proof. Theorem 1.10 in [34] discusses several fluctuation results for point-to-(partial)line partition

function for the HSLG polymer, of which Theorem 1.10(3) applies to the bound phase in this paper.
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Letting 𝑛 = 𝑁 − 𝑔(𝑁) and 𝑚 = 𝑁 + 𝑔(𝑁) in (1.12) of [34] yields

1
(𝑁 − 𝑔(𝑁))1/2𝜎𝑝

[
log ZPL

𝑁 (𝑔(𝑁)) + (𝑁 − 𝑔(𝑁))𝜇𝑝
]

𝑑→ N(0, 1).

where 𝜇𝑝 := Ψ(𝜃 + 𝛼) + 𝑝Ψ(𝜃 − 𝛼) and 𝜎2
𝑝 := Ψ′(𝜃 + 𝛼) − 𝑝Ψ′(𝜃 − 𝛼) with 𝑝 =

𝑁+𝑔(𝑁)
𝑁−𝑔(𝑁) . Observe

that (𝑁 − 𝑔(𝑁))𝜇𝑝 = −𝑅𝑁 + 𝑔(𝑁)𝜏. As 𝑔(𝑁)/𝑁 → 0, we have that

(𝑁 − 𝑔(𝑁))1/2𝜎𝑝
𝑁1/2𝜎

→ 1.

Therefore the above fluctuation result implies (8.2.10). For the law of large numbers, the first one

in (8.2.11) follows by taking 𝑔(𝑁) ≡ 1 and appealing to (8.2.10). The second law of large numbers

also follows from Theorem 1.10(3) in [34] as their result also gives fluctuation results for point-to-

(partial)line free energy of that form with the same law of large numbers. Finally, the last point of

Theorem 8.2.7 follows by from Theorem 1.10(2) in [34] which deals with the 𝛼 = 0 case.

8.3 Controlling the average law of large numbers of the top curves

In this section, we control the average law of large numbers of the top 2𝑘 curves for large

enough 𝑘 (Proposition 8.3.4). As explained in the introduction, the key idea behind this proposition

is to show that the contribution of diagonal weights in the 2𝑘 many non-intersecting paths of

𝑍
(2𝑘)
sym (𝑚, 𝑛) (defined in (8.2.1)) essentially comes from 𝑘 many paths. The starting point of this

idea is Lemma 8.3.1. Given a pair of non-intersecting paths (𝜋1, 𝜋2) starting and ending at adjacent

locations with the same 𝑥-coordinate, Lemma 8.3.1 constructs two new non-intersecting paths

(𝜋′1, 𝜋
′
2) from (𝜋1, 𝜋2) such that the new paths collectively carry the same weight variables but

the diagonal weights only rest on the lower path. This combinatorial result proceeds to help us

decompose the symmetrized multilayer partition function 𝑍
(2𝑘)
sym (𝑚, 𝑛) into pairs of single-layer

ones in Lemmas 8.3.2 and 8.3.3 before culminating into the final result in Proposition 8.3.4.

Let Π(𝑣1 → 𝑣2, 𝑢1 → 𝑢2) denote the set of pairs of non-intersecting upright paths in Z2
>0
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starting from 𝑢1, 𝑣1 and ending at 𝑢2, 𝑣2 respectively. Recall that I− =
{
(𝑖, 𝑗) ∈ Z2

>0 | 𝑗 ≤ 𝑖
}
. Define

I+ :=
{
(𝑖, 𝑗) ∈ Z2

>0 | 𝑗 ≥ 𝑖
}

which represents the half-space index set that includes points on and

above the diagonal. The first lemma constructs the𝑈 map.

Lemma 8.3.1 (Construction of 𝑈 map). Fix 𝑥 ∈ Z>0 and any (𝑚, 𝑛) ∈ I− with 𝑛 ≥ 2. Then there

exists a map𝑈 : Π1 → Π2 where

Π1 := Π((1, 𝑥 + 1) → (𝑚, 𝑛), (1, 𝑥) → (𝑚, 𝑛 − 1))

Π2 := Π((1, 𝑥 + 1) → (𝑛 − 1, 𝑚), (1, 𝑥) → (𝑛, 𝑚)),

such that the following properties hold (let (𝜋′1, 𝜋
′
2) := 𝑈 (𝜋1, 𝜋2)):

(a) 𝜋′1 has no diagonal points, i.e., {(𝑖, 𝑖) ∈ Z2
>0} ∩ 𝜋

′
1 is empty and

{(𝑖, 𝑖) ∈ Z2
>0} ∩ 𝜋

′
2 = {(𝑖, 𝑖) ∈ Z2

>0} ∩ {𝜋1 ∪ 𝜋2}.

(b) Recall the symmetrized weights (𝑊𝑖, 𝑗 )(𝑖, 𝑗)∈Z2
>0

from (8.1.9). We have

∏
(𝑖, 𝑗)∈𝜋1∪𝜋2

𝑊𝑖, 𝑗
𝑎.𝑠.
=

∏
(𝑖, 𝑗)∈𝜋′1∪𝜋

′
2

𝑊𝑖, 𝑗 .

(c) For each (𝜋′1, 𝜋
′
2) ∈ Π2 we have

��𝑈−1({(𝜋′1, 𝜋
′
2)})

�� ≤ 2|{(𝑖,𝑖)∈𝜋1∪𝜋2}| .

We remark that Lemma 8.3.1 is entirely combinatorial and does not use any results about the

integrability of the model. Lemma 8.3.1 continues to hold for any collection of symmetrized

weights that are not necessarily distributed as inverse-Gamma random variables.

Proof. We define a partial order < on the points Z2
>0 by requiring 𝑃1 = (𝑎1, 𝑏1) < 𝑃2 = (𝑎2, 𝑏2)

whenever 𝑎1 + 𝑏1 < 𝑎2 + 𝑏2. Let 𝜋1 denote the path from (1, 𝑥 + 1) to (𝑚, 𝑛) and 𝜋2 the path
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(a) (b)

Figure 8.8: The𝑈 map takes (A) to (B).

from (1, 𝑥) to (𝑚, 𝑛 − 1). We denote diag(𝜋𝑖) as the set of points on 𝜋𝑖 that lie on the diagonal set

𝐷 := {(𝑖, 𝑖) ∈ Z2
>0}. Recall that I+ = {(𝑖, 𝑗) ∈ Z2

>0 | 𝑖 ≤ 𝑗} and I− = {(𝑖, 𝑗) ∈ Z2
>0 | 𝑗 ≤ 𝑖}.

We first define a special collection of points, SPDiag from diag(𝜋2). Let 𝐷1 < 𝐷2 < 𝐷3 <

· · · < 𝐷𝑠 be all the points in diag(𝜋1 ∪ 𝜋2) arranged in the increasing order. We put the point

𝐷 𝑗 ∈ diag(𝜋2) in the set SPDiag if 𝐷 𝑗−1 ∈ diag(𝜋1) or 𝐷 𝑗+1 ∈ diag(𝜋1). In other words, SPDiag

consists of the diagonal points in 𝜋2 that bookend contiguous clusters of diag(𝜋1) in diag(𝜋1∪𝜋2).

We enumerate the points in SPDiag as 𝐴1 < 𝐴2 < · · · < 𝐴𝑟 . Let 𝐵 𝑗 be the first point on 𝜋1 that has

the same 𝑥-coordinate as 𝐴 𝑗 . Note that by construction, either only 𝜋1 intersects the diagonal or

only 𝜋2 intersects the diagonal between 𝐴 𝑗 and 𝐴 𝑗+1, 𝑗 = 1, . . . , 𝑟 . Let us denote 𝐴𝑟+1 := (𝑚, 𝑛−1)

and 𝐵𝑟+1 := (𝑚, 𝑛).

We now construct new paths 𝜋′2 and 𝜋′1 from 𝜋2 and 𝜋1 by reconstructing each segment between

𝐴 𝑗 and 𝐴 𝑗+1 (and 𝐵 𝑗 and 𝐵 𝑗+1 for 𝜋1 respectively), 𝑗 = 1, . . . , 𝑟 . We separate the reconstruction

procedures for each segment into the following cases: if only 𝜋2 intersects the diagonal and 𝑗 ≤

𝑟 − 1, if only 𝜋1 intersects the diagonal and 𝑗 ≤ 𝑟 − 1, or if 𝑗 = 𝑟.

1. When 1 ≤ 𝑗 ≤ 𝑟 − 1 and only 𝜋2 intersects the diagonal, we keep the original paths. We set

𝜋′1 and 𝜋′2 on these segments to be the same as those on 𝜋1 and 𝜋2 respectively.

2. When 1 ≤ 𝑗 ≤ 𝑟 − 1 and only 𝜋1 intersects the diagonal between 𝐴 𝑗 and 𝐴 𝑗+1 (see Figure
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𝐴 𝑗

𝐵 𝑗

𝐴 𝑗+1

𝐵 𝑗+1

𝑄

𝑄′

𝑃1

𝑃2

𝜋3

𝜋1

𝜋2

(a)

𝐴 𝑗

𝐵 𝑗

𝐴 𝑗+1

𝐵 𝑗+1

𝑃1

𝑃2

𝑃′1

𝑃′2

𝜋′2

𝜋′1

(b)

Figure 8.9: The second case when 𝑗 ≤ 𝑟 − 1 and only 𝜋1 intersects with the diagonal. 𝜋1 and 𝜋2
are black and blue paths in Figure (A) respectively. 𝜋3 is the black dashed path in Figure (A). 𝜋′1
is the path in Figure (B) which is formed by the concatenation of solid blue paths and the black
dashed path. 𝜋′2 is the path in Figure (B) which is formed by the concatenation of solid black paths
and the blue dashed path. The𝑈 map takes 𝜋1, 𝜋2 and spits out 𝜋′1, 𝜋

′
2.

8.9), the portion of the path 𝜋2 from 𝐴 𝑗 to 𝐴 𝑗+1 (excluding 𝐴 𝑗 and 𝐴 𝑗+1) lies in I− \ 𝐷.

Reflecting the portion of the path 𝜋2 from 𝐴 𝑗 to 𝐴 𝑗+1 (black path in Figure 8.9) across the

diagonal yields a path 𝜋3 (black dashed path in Figure 8.9). Let𝑄 be the first point on diag(𝜋1)

that lies between 𝐴 𝑗 and 𝐴 𝑗+1 and 𝑄′ be the last, which exist by construction of the SPdiag

set (𝑄 and 𝑄′ may overlap). As the 𝑦-coordinate of 𝐴𝑖 is strictly smaller than that of 𝐵𝑖 and

𝑄,𝑄′ are on the diag(𝜋1), 𝜋1 and 𝜋3 must intersect on the segments between 𝐴 𝑗 and 𝑄 and 𝑄′

and 𝐴 𝑗+1. Let 𝑃1 be the first point of intersection and 𝑃2 the last point of intersection. Clearly

𝑃1 ≠ 𝑃2 as the former is between 𝐴 𝑗 and 𝑄 and the latter lies between 𝑄′ and 𝐴 𝑗+1. Replacing

the portion of 𝜋1 between 𝑃1 and 𝑃2 with that of 𝜋3 yields a path 𝜋′1 from 𝐵 𝑗 to 𝐵 𝑗+1. As

the part of 𝜋3 between 𝑃1 and 𝑃2 lies in I+ \ 𝐷, 𝜋′1 lies entirely in I+ \ 𝐷. We denote the

reflections of 𝑃1 and 𝑃2 across the diagonal as 𝑃′1 and 𝑃′2, which must lie on the original 𝜋2

by construction. Similarly replacing the portion of 𝜋2 between 𝑃′1 and 𝑃′2 with the reflection of
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𝜋1 between 𝑃1 and 𝑃2 across the diagonal yields a path 𝜋′2 from 𝐴 𝑗 to 𝐴 𝑗+1. As 𝜋1 and 𝜋2 are

non-intersecting, the reflected paths are also non-intersecting. Thus the new paths 𝜋′1 and 𝜋′2

are non-intersecting.

3. When 𝑗 = 𝑟, consider the portion of the path 𝜋2 from 𝐴𝑟 to 𝐴𝑟+1 (see Figure 8.10). Note that

in this segment, all the diagonal points belong to 𝜋1. Reflecting this portion of 𝜋2 across the

diagonal gives us 𝜋3 (black dashed path in Figure 8.10). Let 𝑄 be the first point on diag(𝜋1)

that lies between 𝐴 𝑗 and 𝐴 𝑗+1 and 𝑄 exists as 𝜋1 ends at 𝐵𝑟+1 := (𝑚, 𝑛) ∈ I−. Note that 𝜋3

lies entirely in I+ \ 𝐷, excluding 𝐴𝑟 . Thus 𝜋1 and 𝜋3 necessarily intersect in I+ \ 𝐷. Again,

we locate the first point intersection 𝑃 and replace the portion of 𝜋1 from 𝑃 to 𝐵𝑟+1 with the

portion of 𝜋3 from 𝑃 to 𝐴′
𝑟+1 := (𝑛 − 1, 𝑚). Similarly, reflecting the portion of 𝜋1 from 𝑃 and

𝐵𝑟+1 across the diagonal and replacing the portions of 𝜋2 between 𝑃′ and 𝐴𝑟+1 with the portion

of reflection between 𝑃 and 𝐵′
𝑟+1 := (𝑛, 𝑚) yields a path 𝜋′2 from 𝐴𝑟 to 𝐵′

𝑟+1. Clearly, the new

path 𝜋′1 lies in I+ \ 𝐷 and the paths 𝜋′1 and 𝜋′2 are non-intersecting as the reflected portions are

non-intersecting.

As 𝐴 𝑗 and 𝐵 𝑗 remain unchanged, connecting all the segments between 𝐴 𝑗 ’s (and 𝐵 𝑗 ’s respec-

tively) for 𝑗 ≤ 𝑟 and 𝐴𝑟 and 𝐵′
𝑟+1 (and 𝐵𝑟 and 𝐴′

𝑟+1) yields the new path 𝜋′2 from (1, 𝑥) to (𝑛, 𝑚)

and the new path 𝜋′1 from (1, 𝑥 + 1) to (𝑛 − 1, 𝑚) (see Figure 8.8). At each step of the above con-

struction, the paths remain non-intersecting. Thus (𝜋′1, 𝜋
′
2) form a non-intersecting pair. We call

this explicitly constructed map 𝑈. By construction, 𝜋′1 lies entirely in I+ \ 𝐷 and has no diagonal

points. This proves (a). Since the construction involves only exchanges of reflected portions, due

to the symmetry of the weights 𝑊𝑖, 𝑗 across the diagonal, we have (b). Finally to verify (c), note

that there are at most 2diag(𝜋′1∪𝜋
′
2) possible choices of diag(𝜋1) and diag(𝜋2) for a given pair of two

paths (𝜋′1, 𝜋
′
2) in the pre-image of𝑈. As diag(𝜋1) and diag(𝜋2) uniquely determine SPDiag where

reflections are performed, reverting the same operations on 𝜋′1 and 𝜋′2 between consecutive points

in SPDiag leads to original 𝜋1 and 𝜋2. Thus the map has at most 2diag(𝜋′1∪𝜋
′
2) inverses for (𝜋′1, 𝜋

′
2),

which completes the proof.
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𝐴𝑟

𝐵𝑟

𝐴𝑟+1

𝐵𝑟+1

𝑄𝑃𝜋1

𝜋2

𝜋3

(a)

𝐴𝑟

𝐵𝑟

𝐴′
𝑟+1 𝐵′

𝑟+1

𝑃

𝑃′

𝜋′2

𝜋′1

(b)

Figure 8.10: The 𝑗 = 𝑟 case. 𝜋1 and 𝜋2 are black and blue paths in Figure (A) respectively. 𝜋3 is the
black dashed path in Figure (A). 𝜋′1 is the path in Figure (B) which is formed by the concatenation
of the solid blue path and the black dashed path. 𝜋′2 is the path in Figure (B) which is formed by
the concatenation of the solid black path and the blue dashed path. The 𝑈 map takes 𝜋1, 𝜋2 and
spits out 𝜋′1, 𝜋

′
2.

Note that the𝑈 map in Lemma 8.3.1 gives us a path that does not contain any diagonal vertex.

To capture the contribution of this path, we now introduce diagonal-avoiding symmetrized partition

function. Let Π̃ (1)𝑚,𝑛 be the collection of all upright paths from (1, 1) to (𝑚, 𝑛) that do not touch the

diagonal after (1, 1). Set

𝑍sym(𝑚, 𝑛) :=
∑︁

𝜋∈Π̃ (1)𝑚,𝑛

∏
(𝑖, 𝑗)∈𝜋

𝑊𝑖, 𝑗 , 𝑉𝑞 :=
∑︁

(𝑖, 𝑗) |𝑖+ 𝑗=𝑞
𝑍sym(𝑖, 𝑗) (8.3.1)

where 𝑊𝑖, 𝑗 is defined in (8.1.9). We call 𝑍sym(𝑚, 𝑛) the diagonal-avoiding symmetrized partition

function. Let us recall 𝑍sym(𝑚, 𝑛) from (8.2.1) and we similarly define

𝑉𝑞 :=
∑︁

(𝑖, 𝑗) |𝑖+ 𝑗=𝑞
𝑍sym(𝑖, 𝑗) (8.3.2)

The next lemma establishes a relation between 𝑍 (2𝑘)sym (𝑚, 𝑛), 𝑉𝑚+𝑛 and 𝑉𝑚+𝑛.
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Lemma 8.3.2. For all (𝑚, 𝑛) ∈ I−, almost surely we have

𝑍
(2𝑘)
sym (𝑚, 𝑛) ≤ 2𝑛 ·

2𝑘∏
𝑖=2

𝑖−1∏
𝑗=1
(𝑊1, 𝑗 )−1 ·

𝑘∏
𝑖=1

[
𝑉𝑚+𝑛+2−2𝑖𝑉𝑚+𝑛+1−2𝑖

]
(8.3.3)

where 𝑍 (𝑖)sym(𝑚, 𝑛), 𝑉𝑚+𝑛+2−2𝑖 and 𝑉𝑚+𝑛+1−2𝑖 are defined in (8.2.1), (8.3.2) and (8.3.1) respectively.

Proof. We extend our definition of 𝑈 map from Lemma 8.3.1 to the domain Π
(2𝑘)
𝑚,𝑛 by defining

𝑈 (𝜋1, . . . , 𝜋2𝑘 ) := (𝑈 (𝜋1, 𝜋2), . . . ,𝑈 (𝜋2𝑘−1, 𝜋2𝑘 )). Let 𝑅𝑖,𝑘𝑚,𝑛 be the collection of all upright paths

from (1, 2𝑘 − 2𝑖 + 1) to (𝑛 − 2𝑖 + 2, 𝑚). Let 𝑅𝑖,𝑘𝑚,𝑛 be the collection of all upright paths from

(1, 2𝑘 − 2𝑖 + 2) to (𝑛 − 2𝑖 + 1, 𝑚) that avoid the diagonal. Given any (𝜋′1, . . . , 𝜋
′
2𝑘 ) ∈ 𝑈 (Π

(2𝑘)
𝑚,𝑛 ), by

(c), there are at most

𝑘∏
𝑖=1

2| ( 𝑗 , 𝑗)∈𝜋
′
2𝑖−1∪𝜋

′
2𝑖 |

many inverses in the pre-image of the𝑈 map. The𝑈 map preserves the number of diagonal vertices

by (a). Furthermore by non-intersection, a 2𝑘-tuple of paths in Π
(2𝑘)
𝑚,𝑛 has at most 𝑛 many diagonal

vertices. Thus there are at most 2𝑛 many inverses. Hence by (a) we have

𝑍
(2𝑘)
sym (𝑚, 𝑛) ≤ 2𝑛 ·

𝑘∏
𝑖=1


∑︁

𝜋1∈𝑅𝑖,𝑘𝑚,𝑛

∏
(𝑖, 𝑗)∈𝜋1

𝑊𝑖, 𝑗

 ·
𝑘∏
𝑖=1


∑︁

𝜋2∈𝑅𝑖,𝑘𝑚,𝑛

∏
(𝑖, 𝑗)∈𝜋2

𝑊𝑖, 𝑗

 . (8.3.4)

We may elongate each of the path in 𝑅𝑖,𝑘𝑚,𝑛 and 𝑅𝑖,𝑘𝑚,𝑛 by appending an up-path from (1, 1) to (1, 2𝑘−

2𝑖 + 2) and from (1, 1) to (1, 2𝑘 − 2𝑖 + 1) respectively. This produces elongated paths in Π̃
(1)
𝑛−2𝑖+2,𝑚

and Π𝑛−2𝑖+1,𝑚 respectively. In terms of weights, we need to multiply the existing weights in (8.3.4)

by
∏2𝑘−2𝑖+1

𝑗=1 𝑊1, 𝑗 and
∏2𝑘−2𝑖

𝑗=1 𝑊1, 𝑗 respectively to get the corresponding weights of elongated paths.

After doing precisely the above, we have

𝑍
(2𝑘)
sym (𝑚, 𝑛) ≤ 2𝑛 ·

2𝑘∏
𝑖=2

𝑖−1∏
𝑗=1
(𝑊1, 𝑗 )−1 ·

𝑘∏
𝑖=1

[
𝑍sym(𝑛 − 2𝑖 + 2, 𝑚)𝑍sym(𝑛 − 2𝑖 + 1, 𝑚)

]
. (8.3.5)
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We get (8.3.3) from the above inequality in (8.3.5) by observing the definition of 𝑉𝑞 and 𝑉𝑞 from

(8.3.2). This completes the proof.

The next lemma bounds log𝑉𝑞 and log𝑉𝑞 from above with high probability.

Lemma 8.3.3. Recall 𝑅 from (8.2.9). For every 𝛿 > 0 and 1 ≤ 𝑝 < 𝑛, we have

lim
𝑞→∞

P
(
log𝑉𝑞 ≤ (𝑅 + 𝛿) 𝑞2

)
= 1, lim

𝑞→∞
P

(
log𝑉𝑞 ≤ (−2Ψ(𝜃) + 𝛿) 𝑞2

)
= 1. (8.3.6)

Proof. Fix any 𝛿 > 0. By Lemma 8.2.2 we have

𝑉2𝑁 =

𝑁−1∑︁
𝑝=0

𝑍 (𝑁 + 𝑝, 𝑁 − 𝑝), 𝑉2𝑁+1 =

𝑁∑︁
𝑝=1

𝑍 (𝑁 + 𝑝, 𝑁 − 𝑝 + 1).

From Theorem 8.2.7 ((8.2.11) in particular) we have that

1
𝑁

log

𝑁∑︁
𝑝=1

𝑍 (𝑁 + 𝑝, 𝑁 − 𝑝 + 1)


𝑝
→ 𝑅,

1
𝑁

log

𝑁−1∑︁
𝑝=1

𝑍 (𝑁 + 𝑝, 𝑁 − 𝑝)


𝑝
→ 𝑅, (8.3.7)

Note that in the above equation, we have excluded 𝑍 (𝑁, 𝑁) as their result does not contain 𝑍 (𝑁, 𝑁)

in the sum. However, in our case, we may include 𝑍 (𝑁, 𝑁) by appealing to Theorem 8.2.4. First,

in view of the above law of large numbers in (8.3.7), we have

P(log𝑉2𝑁+1 ≤ (𝑅 + 1
2𝛿)𝑁) → 1. (8.3.8)

On the other hand, by (8.2.4) we have
∑𝑁
𝑝=1 𝑒

𝐻
(1)
𝑁
(2𝑝) =

∑𝑁
𝑝=1 𝑍 (𝑁 + 𝑝, 𝑁 − 𝑝 +1). Since 𝐻 (1)

𝑁
(2) ≤

log
∑𝑁
𝑝=1 𝑒

𝐻
(1)
𝑁
(2𝑝) = log𝑉2𝑁+1, (8.3.8) implies

P(𝐻 (1)
𝑁
(2) ≤ (𝑅 + 1

2𝛿)𝑁) → 1,

as 𝑁 → ∞. In addition, by ordering of points in the line ensemble (Theorem 8.2.4) we know that
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with probability at least 1 − 2−𝑁 , 𝐻 (1)
𝑁
(1) ≤ 𝐻 (2)

𝑁
(2) + log2 𝑁 . Thus we have

P(𝐻 (1)
𝑁
(1) ≤ (𝑅 + 𝛿)𝑁) → 1, (8.3.9)

as 𝑁 → ∞. Given that 𝐻 (1)
𝑁
(1) = 𝑍 (𝑁, 𝑁), combining (8.3.9) and the second convergence in

(8.3.7) yields P(log𝑉2𝑁 ≤ (𝑅 + 𝛿)𝑁) → 1 and together with (8.3.8) this concludes the proof of

the first convergence in (8.3.6).

Next, for the diagonal-avoiding case, let (𝑊𝛼=0
𝑖,𝑖
)𝑖≥1 be a family of weights distributed as

Gamma(𝜃) independent of (𝑊𝑖, 𝑗 ). We set 𝑊𝛼=0
𝑖, 𝑗

:= 𝑊𝑖, 𝑗 for 𝑖 ≠ 𝑗 . This gives us a new collec-

tion of symmetrized weights. We denote the corresponding symmetrized partition function and the

diagonal-avoiding symmetrized partition function as 𝑍𝛼=0
sym and 𝑍𝛼=0

sym respectively. Observe that

𝑍sym(𝑖, 𝑗) ≤
𝑊1,1

𝑊𝛼=0
1,1
· 𝑍𝛼=0

sym (𝑖, 𝑗) ≤
𝑊1,1

𝑊𝛼=0
1,1
· 𝑍𝛼=0

sym (𝑖, 𝑗). (8.3.10)

The first equality in (8.3.10) is due to the fact that the weight corresponding (1, 1) is common in

all paths and that is the only diagonal weight that appears in the diagonal avoiding symmetrized

partition functions. The next inequality is obvious as we have just removed the diagonal avoiding

restriction. This leads to

log𝑉𝑞 ≤ log𝑊1,1 − log𝑊𝛼=0
1,1 + log


∑︁

(𝑖, 𝑗) |𝑖+ 𝑗=𝑞
𝑍𝛼=0

sym (𝑖, 𝑗)
 .

The first two terms on the right-hand side of the above display are tight. An upper bound on the

third term can be computed by the exact same analysis as 𝑉𝑞. Indeed, the law of large numbers and

Theorem 8.2.4 continue to hold for 𝛼 = 0 when 𝑅 becomes −2Ψ(𝜃) (see the last point in Theorem

8.2.7). This concludes the proof of (8.3.6).

Finally, with Lemmas 8.3.2 and 8.3.3 in place, we are ready to control the average law of large

numbers of the top curves of the HSLG line ensemble.
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Proposition 8.3.4. Recall Δ𝑘 , 𝑅 in (8.2.9). Fix any 𝜀 > 0 and 𝑘 ∈ Z>0 large such that Δ𝑘 > 0.

Then there exists 𝑁0(𝑘, 𝜀) > 2𝑘 + 1 such that for all 𝑁 ≥ 𝑁0 we have

P

(
sup

𝑝∈J1,2𝑁−4𝑘+2K

1
2𝑘

2𝑘∑︁
𝑖=1

𝐻
(𝑖)
𝑁
(𝑝) ≤ (𝑅 − 1

2Δ𝑘 )𝑁
)
≥ 1 − 𝜀.

In plain words, Proposition 8.3.4 claims that when 𝑘 is taken large enough so that Δ𝑘 > 0, the

average law of large numbers of top 2𝑘 curves is strictly less than 𝑅, which is the law of large

numbers for point-to-(partial)line free energy process (see Theorem 8.2.7).

Proof. Fix any 𝜀 > 0. The definition of the HSLG line ensemble in (8.2.3) and (8.3.3) collectively

yield that, for all 𝑝 ∈ J1, 𝑁 − 2𝑘 + 1K,

2𝑘∑︁
𝑖=1

𝐻
(𝑖)
𝑁
(2𝑝) = 2𝑘 log 2 + log 𝑍 (2𝑘)sym (𝑁 + 𝑝, 𝑁 − 𝑝 + 1)

≤ 2𝑘 log 2 + 𝑁 log 2 − log


2𝑘∏
𝑖=2

𝑖−1∏
𝑗=1
𝑊1, 𝑗

 + log
𝑘∏
𝑖=1

[
𝑉2𝑁+3−2𝑖𝑉2𝑁+2−2𝑖

]
,

where the r.h.s. is free of 𝑝. Hence we may take supremum over 𝑝 ∈ J1, 𝑁 − 2𝑘 + 1K over both

sides of the above display to get

sup
𝑝∈J1,𝑁−2𝑘+1K

2𝑘∑︁
𝑖=1

𝐻
(𝑖)
𝑁
(2𝑝) ≤ (2𝑘 + 𝑁) log 2 − log


2𝑘∏
𝑖=2

𝑖−1∏
𝑗=1
𝑊1, 𝑗


+ log

𝑘∏
𝑖=1

[
𝑉2𝑁+3−2𝑖𝑉2𝑁+2−2𝑖

]
.

(8.3.11)

We now provide high probability upper bounds for each of the terms on the r.h.s. of (8.3.11). Let

us take 𝛿 := Δ𝑘
4 . By Lemma 8.3.3, we may choose 𝑁0(𝑘, 𝜀) > 2𝑘 + 1 large enough such that for all

𝑁 ≥ 𝑁0

P(log𝑉𝑁 ≤ (𝑅 + 𝛿) 𝑁2 ) ≥ 1 − 𝜀
8𝑘 , P(log𝑉𝑁 ≤ (−2Ψ(𝜃) + 𝛿) 𝑁2 ) ≥ 1 − 𝜀

8𝑘 .
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Thus applying a union bound we see that for all large enough 𝑁 , with probability 1 − 𝜀
4 ,

log
𝑘∏
𝑖=1

[
𝑉𝑁+3−2𝑖𝑉𝑁+2−2𝑖

]
≤ 𝑅𝑘𝑁 − 2Ψ(𝜃)𝑘𝑁 + 2𝑘𝛿𝑁. (8.3.12)

Note that the random variable log
[∏2𝑘

𝑖=2
∏𝑖−1

𝑗=1𝑊1, 𝑗

]
is tight and free of 𝑁 . Hence with probability

1 − 𝜀
4 one can ensure that

(2𝑘 + 𝑁) log 2 − log


2𝑘∏
𝑖=2

𝑖−1∏
𝑗=1
𝑊1, 𝑗

 ≤ 𝑁 log 2 + 2𝑘𝛿𝑁. (8.3.13)

holds for all large enough 𝑁 . Inserting the above two bounds in (8.3.12) and (8.3.13) back in

(8.3.11), we have that with probability at least 1 − 𝜀
2 ,

sup
𝑝∈J1,𝑁−2𝑘+1K

1
2𝑘

2𝑘∑︁
𝑖=1

𝐻
(𝑖)
𝑁
(2𝑝) ≤

[ 1
2𝑘 log 2 + 2𝛿 + 𝑅

2 − Ψ(𝜃)
]
𝑁, (8.3.14)

for all large enough 𝑁 . As 𝛿 =
Δ𝑘
4 , the r.h.s. of (8.3.14) is precisely (𝑅 − 1

2Δ𝑘 )𝑁 . By the exact

same argument, one can check that with probability at least 1 − 𝜀
2 we have

sup
𝑝∈J0,𝑁−2𝑘K

1
2𝑘

2𝑘∑︁
𝑖=1

𝐻
(𝑖)
𝑁
(2𝑝 + 1) ≤ (𝑅 − 1

2Δ𝑘 )𝑁, (8.3.15)

for all large enough 𝑁 . Taking another union bound of (8.3.14) and (8.3.15), we get the desired

result.

8.4 Controlling the second curve

In this section, we establish the separation between the first and the second curve of our HSLG

line ensemble. Appealing to Proposition 8.3.4, Lemma 8.4.1 first establishes that for large enough

𝑘 with high probability the (2𝑘 + 2)-th curve 𝐻 (2𝑘+2)
𝑁

(·) is uniformly const · 𝑁 below than 𝑅𝑁

over an interval of J1, 𝑁K, where 𝑅 defined in (8.2.9) is the law of large numbers for point-to-
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(partial)line free energy process (Theorem 8.2.7). This helps us show that with high probability

the second curve 𝐻 (2)
𝑁
(·) over an interval of length 𝑂 (

√
𝑁) is 𝑀

√
𝑁 below 𝑅𝑁 next in Proposition

8.4.2 for any 𝑀 > 0.

Lemma 8.4.1. Recall 𝑅 in (8.2.9). Fix any 𝜀 > 0 and 𝑘 ∈ Z>0 large enough such that Δ𝑘 > 0.

Then there exists 𝑁0(𝑘, 𝜀) such that for all 𝑁 ≥ 𝑁0 we have

P

(
sup

𝑝∈J1,𝑁K
𝐻
(2𝑘+2)
𝑁

(𝑝) ≤ (𝑅 − 1
4Δ𝑘 )𝑁

)
≥ 1 − 𝜀. (8.4.1)

Proof. Let us consider the following events

A :=

{
sup

𝑝∈J1,𝑁K
𝐻
(2𝑘+2)
𝑁

(𝑝) ≤ (𝑅 − 1
4Δ𝑘 )𝑁

}
,

B :=
{
𝐻
(𝑖+1)
𝑁
(𝑝) ≤ 𝐻 (𝑖)

𝑁
(𝑝) + 2 log2 𝑁, for all 𝑖 ∈ J1, 2𝑘 + 1K, 𝑝 ∈ J1, 𝑁K

}
,

C :=

{
sup

𝑝∈J1,𝑁K

1
2𝑘

2𝑘∑︁
𝑖=1

𝐻
(𝑖)
𝑁
(𝑝) ≤ (𝑅 − 1

2Δ𝑘 )𝑁
}
.

We claim that for all large enough 𝑁 , we have (B ∩ ¬A) ⊂ ¬C. To see this, note that on B ∩ ¬A,

there exists a point 𝑝∗ ∈ J1, 𝑁K such that 𝐻 (2𝑘+2)
𝑁

(𝑝∗) > (𝑅 − 1
4Δ𝑘 )𝑁) and hence (as B holds)

𝐻
(𝑖)
𝑁
(𝑝∗) > (𝑅 − 1

4Δ𝑘 )𝑁 − (4𝑘 + 4) log2 𝑁,

for all 𝑖 ∈ J1, 2𝑘 + 1K. However, the above display also implies that

sup
𝑝∈J1,𝑁K

1
2𝑘

2𝑘∑︁
𝑖=1

𝐻
(𝑖)
𝑁
(𝑝) > (𝑅 − 1

4Δ𝑘 )𝑁 − (4𝑘 + 4) log2 𝑁

which is strictly bigger than (𝑅 − 1
2𝜏)𝑁 and implies ¬C. Thus by a union bound, we have

P(¬A) ≤ P(¬B) + P(B ∩ ¬A) ≤ P(¬B) + P(¬C). (8.4.2)

Note that for fixed 𝑘 , by Theorem 8.2.4 with 𝜌 = 1
2 and a union bound, we have P(¬B) ≤ 𝑁 ·
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(2𝑘 + 1) · 2−𝑁 ≤ 𝜀
2 for all 𝑁 ≥ 𝑁1(𝑘, 𝜀). On the other hand, Proposition 8.3.4 yields that for fixed

𝑘 and 𝜀, P(¬C) ≤ 𝜀
2 for all 𝑁 greater than some 𝑁2(𝑘, 𝜀2 ). Letting 𝑁0(𝑘, 𝜀) = max{𝑁1, 𝑁2} and

inserting these two bounds in (8.4.2) leads to (8.4.1).

Building on Lemma 8.4.1, the next result demonstrates that on a given interval of length𝑂 (
√
𝑁)

starting from 1 and any 𝑀2 > 0, the second curve 𝐻 (2)
𝑁
(·) is uniformly lower than 𝑅𝑁 − 𝑀2

√
𝑁

with high probability (see Figure 8.11).

Proposition 8.4.2. Recall Δ𝑘 , 𝑅 in (8.2.9). Fix 𝜀 ∈ (0, 1), 𝑀1, 𝑀2 ≥ 1 and 𝑘 ∈ Z>0 such that

Δ𝑘 > 0. Then there exists a constant 𝑁2(𝜀, 𝑀1, 𝑀2) > 0 such that for all 𝑁 ≥ 𝑁2 we have

P

(
sup

𝑝∈[1,2b𝑀1
√
𝑁c+1]

𝐻
(2)
𝑁
(𝑝) ≤ 𝑅𝑁 − 𝑀2

√
𝑁

)
≥ 1 − 1

2𝜖 . (8.4.3)

𝑦 = 𝑅𝑁 − 𝑀2
√
𝑁

𝐻
(2)
𝑁
(·)

𝑥 = 1 𝑥 = 2b𝑀1
√
𝑁c + 1

Figure 8.11: The high probability event in Proposition 8.4.2.

Proof. The proof of Proposition 8.4.2 is conducted in the following stages:

• Using Theorem 8.2.7 and Lemma 8.4.1, we determine high probability locations of𝐻 (1)
𝑁
(2𝑀
√
𝑁+

1) and 𝐻 (2𝑘+2)
𝑁

(·). Using the ordering of points in Theorem 8.2.4, we then bound the end-

points 𝐻 (𝑖)
𝑁
(2𝑀
√
𝑁 + 1), 𝑖 ∈ J1, 2𝑘 + 1K from above based on the high probability locations of

𝐻
(1)
𝑁
(2𝑀
√
𝑁 + 1) and the (2𝑘 + 2)-th curve.
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• We next consider the conditional law of (𝐻 (𝑖)
𝑁

J1, 2𝑀
√
𝑁K)𝑖∈J1,2𝑘+1K given the above bound-

ary conditions. By Theorem 8.2.2, this law is given by an appropriate HSLG Gibbs mea-

sure. Applying stochastic monotonicity, we may also assume that the 𝐻 (2𝑖−1)
𝑁

(2𝑀
√
𝑁 + 1)

and 𝐻 (2𝑖)
𝑁
(2𝑀
√
𝑁 + 1) are sufficiently far apart. This will allow us to approximate the Gibbs

measure as a product of interacting random walks defined in Definition 8.2.5.

• Lastly, we use the associated estimates of interacting random walks from Proposition 8.2.6 to

dissect the Gibbs measure and yield a quantitative bound in our favor.

Let us begin by fleshing out the technical details of the above stages. In the following proof,

we assume all the multiples of
√
𝑁 appearing below are integers for convenience in notation. The

general case follows verbatim by considering the floor function. For clarity, we split our proof into

several steps.

Step 1. In this step, we reduce our proof of (8.4.3) to (8.4.7). Let us consider the HSLG line

ensemble 𝐻𝑁 = (𝐻 (1)
𝑁
, . . . , 𝐻

(𝑁)
𝑁
). Fix any 𝜀 ∈ (0, 1), 𝑀1, 𝑀2 ≥ 1 and any 𝑘 ∈ Z>0 such that

Δ𝑘 > 0. Let Φ(𝑥) be the cumulative distribution function of a standard Gaussian random variable.

Set 𝜏 := |Ψ(𝜃 − 𝛼) − Ψ(𝜃 + 𝛼) |. Let 𝑀 ∈ Z>0 whose precise value is to be determined. Taking

𝑔(𝑁) = 𝑀
√
𝑁 in Theorem 8.2.7 yields

1
𝜎
√
𝑁

[
log ZPL

𝑁 (𝑀
√
𝑁) − 𝑅𝑁 + 𝑀𝜏

√
𝑁

]
𝑑→ N

(
0, 1

)
. (8.4.4)

Note that (8.4.4) implies

P
(

1
𝜎
√
𝑁

[
log

[
ZPL
𝑁 (𝑀

√
𝑁)

]
− 𝑅𝑁 + 𝑀𝜏

√
𝑁

]
≤ Φ(1 − 𝜀

2
)
)
→ 1 − 𝜀

2
.

Thus for 𝑁 large enough, we have that with probability greater than 1 − 𝜀,

log
[
ZPL
𝑁 (𝑀

√
𝑁)

]
≤ 𝑅𝑁 −

(
𝑀𝜏 −Φ(1 − 𝜀

2 )𝜎
)√
𝑁. (8.4.5)
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Set 𝑀 ≥ max{𝑀1,
1
𝜏
(𝑀2 + 𝑘 + 1 + Φ(1 − 𝜀

2 )𝜎)}. Note that by definition, 𝐻 (1)
𝑁
(2𝑀
√
𝑁 + 1) ≤

log ZPL
𝑁
(𝑀
√
𝑁) and as 𝑀𝜏 −Φ(1 − 𝜀

2 )𝜎 > 𝑀2 + 𝑘 + 1, (8.4.5) yields that

P(A) ≥ 1 − 𝜀, where A :=
{
𝐻
(1)
𝑁
(2𝑀
√
𝑁 + 1) ≤ 𝑅𝑁 − (𝑀2 + 𝑘 + 1)

√
𝑁

}
(8.4.6)

for all large enough 𝑁 . Set 𝑇 = 𝑀
√
𝑁 + 1. We claim that

P(¬E) ≤ 3𝜀 + 𝑘𝜀

(1 − 𝜀)𝑘+1
, where E :=

{
sup

𝑝∈J1,2𝑇−1K
𝐻
(2)
𝑁
(𝑝) ≤ 𝑅𝑁 − 𝑀2

√
𝑁

}
. (8.4.7)

Since 2𝑇 − 1 ≥ 2𝑀1
√
𝑁 + 1, assuming (8.4.7) and adjusting 𝜀 yield (8.4.3).

Step 2. In this step we prove (8.4.7). To begin with, we consider several events:

B :=
2𝑘⋂
𝑖=1

{
𝐻
(𝑖+1)
𝑁
(2𝑇) ≤ 𝐻 (𝑖)

𝑁
(2𝑇 − 1) + log2 𝑁,

𝐻
(𝑖+1)
𝑁
(2𝑇 − 1) ≤ 𝐻 (𝑖+1)

𝑁
(2𝑇) + log2 𝑁

}
,

C :=

{
sup

𝑝∈J1,𝑁K
𝐻
(2𝑘+2)
𝑁

(𝑝) ≤ (𝑅 − 1
4Δ𝑘 )𝑁

}
,

D :=
𝑘⋂
𝑖=1

{
max

{
𝐻
(2𝑖)
𝑁
(2𝑇 − 1), 𝐻 (2𝑖)

𝑁
(2𝑇), 𝐻 (2𝑖+1)

𝑁
(2𝑇)

}
≤ 𝑅𝑁 − (𝑀2 + 𝑘 + 1)

√
𝑁 + 2𝑘 log2 𝑁

}
.

Let us consider the 𝜎-field

F := 𝜎
{
𝐻
(2𝑖)
𝑁

J2𝑇 − 1, 2𝑁 − 4𝑖 + 2K, 𝐻 (2𝑖+1)
𝑁

J2𝑇, 2𝑁 − 4𝑖K, 𝑖 ∈ J1, 𝑘K,

𝐻
(1)
𝑁

J1, 2𝑁K, 𝐻 ( 𝑗)
𝑁

J1, 2𝑁 − 2 𝑗 + 2K, 𝑗 ∈ J2𝑘 + 2, 𝑁K
}
.

By Theorem 8.2.4 with 𝜌 = 1
2 , we have P(¬B) ≤ 4𝑘2−𝑁 ≤ 𝜀 for all large enough 𝑁 . Observe that

A ∩ B ⊂ D and recall that P(¬A) < 𝜀 in (8.4.6). Thus via the union bound, we have P(¬D) ≤

P(¬A) + P(¬B) ≤ 2𝜀. Note that C ∩ D is measurable w.r.t. F . Applying the union bound and
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tower property of conditional expectation we get

P(¬E) ≤ P(¬C) + P(¬D) + P(C ∩ D ∩ ¬E) ≤ 3𝜀 + E [1C∩D · E [1¬E | F ]] . (8.4.8)

where in the last inequality we have used Lemma 8.4.1 to get that P(¬C) ≤ 𝜀 for all large enough

𝑁 . We claim that

E [1C∩D · E [1¬E | F ]] ≤
𝑘𝜀

(1 − 𝜀)𝑘+1
. (8.4.9)

We will demonstrate (8.4.9) in the Steps 3-4. Currently, assuming the validity of (8.4.9) and

appealing to (8.4.8) prove (8.4.7).

Step 3. In this step we study 1C∩DE [1¬E | F ] by invoking the Gibbs property (Theorem 8.2.2).

Let us consider the domain

Θ𝑘,𝑇 := {(𝑖, 𝑗) | 𝑖 ∈ J2, 2𝑘 + 1K, 𝑗 ∈ J1, 2𝑇 − 1 − 1𝑖=evenK}.

By Theorem 8.2.2, the distribution of the line ensemble conditioned on F is given by P®𝑢gibbs, i.e.

Figure 8.12: Θ𝑘,𝑇 for 𝑘 = 3, 𝑇 = 4 shown in the shaded region. The HSLG Gibbs measure on Θ3,4
with boundary condition (𝑢𝑖, 𝑗 )(𝑖, 𝑗)∈𝜕Θ3,4 .
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the HSLG Gibbs measure on the domain Θ𝑘,𝑇 with boundary condition ®𝑢 := (𝐻 (𝑖)
𝑁
( 𝑗))(𝑖, 𝑗)∈𝜕Θ𝑘,𝑇

and the boundary set of Θ𝑘,𝑇 is given by

𝜕Θ𝑘,𝑇 :=
{
(1, 2 𝑗 − 1), (2, 2𝑇 − 1), (3, 2𝑇), (2𝑖, 2𝑇 − 1), (2𝑖, 2𝑇), (2𝑖 + 1, 2𝑇) | 𝑖 ∈ J2, 𝑘K, 𝑗 ∈ J1, 𝑇K

}
.

Note that for large enough 𝑁 , on the event C ∩ D we have

𝐻
(1)
𝑁
(2 𝑗 − 1) ≤ 𝑥1,2 𝑗−1 := ∞, 𝑗 ∈ J1, 𝑇K, (8.4.10)

𝐻
(2𝑖)
𝑁
(2𝑇 − 1) ≤ 𝑥2𝑖,2𝑇−1 = 𝑅𝑁 − (𝑀2 + 𝑖)

√
𝑁, 𝑖 ∈ J1, 𝑘K,

𝐻
(2𝑖)
𝑁
(2𝑇) ≤ 𝑥2𝑖,2𝑇 := 𝑅𝑁 − (𝑀2 + 𝑖)

√
𝑁, 𝑖 ∈ J2, 𝑘K,

𝐻
(2𝑖+1)
𝑁

(2𝑇) ≤ 𝑥2𝑖+1,2𝑇 := 𝑅𝑁 − (𝑀2 + 𝑖)
√
𝑁 −
√
𝑇, 𝑖 ∈ J1, 𝑘K,

𝐻
(2𝑘+2)
𝑁

(2 𝑗) ≤ 𝑥2𝑘+2,2 𝑗 := 𝑅𝑁 − (𝑀2 + 𝑘 + 1)
√
𝑁, 𝑗 ∈ J1, 𝑇K.

where C holds only in the last inequality. Since ¬E event is increasing with respect to the boundary

data, by stochastic monotonicity we have

1C∩D · E [1¬E | F ] ≤ 1C∩D · P®𝑢gibbs(¬E) ≤ P®𝑥gibbs(¬E). (8.4.11)

To bound P®𝑥gibbs(¬E) we seek for a convenient alternative representation for the P®𝑥gibbs measure. To-

wards this end, by carefully studying the Gibbs measure, we dissect the P®𝑥gibbs measure into blocks

of independent interacting random walks (Definition 8.2.5) and the Radon-Nikodym derivatives

interleaved between adjacent blocks (see Figure 8.13). Let us now describe this decomposition.

Recall the interacting random walk (IRW) from Definition 8.2.5. Let (𝐿2𝑖J1, 2𝑇−2K, 𝐿2𝑖+1J1, 2𝑇−

1K)𝑘
𝑖=1 be 𝑘 independent IRWs of length 𝑇 with boundary condition (𝑥2𝑖,2𝑇−1, 𝑥2𝑖+1,2𝑇 ). Let us de-

note the joint law and expectation of 𝐿 as P®𝑥block and E®𝑥block respectively. Set

𝑊br := exp ©­«−
𝑘∑︁
𝑖=1

𝑇∑︁
𝑗=1

[
𝑒𝐿2𝑖+2 (2 𝑗)−𝐿2𝑖+1 (2 𝑗+1) + 𝑒𝐿2𝑖+2 (2 𝑗)−𝐿2𝑖+1 (2 𝑗−1)

]ª®¬ (8.4.12)
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with the convention 𝐿2𝑖+1(2𝑇 + 1) = ∞ for 𝑖 ∈ J1, 𝑘K and 𝐿𝑖 ( 𝑗) = 𝑥𝑖, 𝑗 for all (𝑖, 𝑗) ∈ 𝜕Θ𝑘,𝑇 . Note

that here only 𝐻 (1)
𝑁
(2 𝑗 + 1), 𝑗 ∈ J1, 𝑇K are in the boundary and are set to∞ in (8.4.10). Thus, their

contributions to the Radon-Nikodym derivative 𝑊br would be
∏2𝑇−2

𝑗=1 exp(−𝑒𝐻
(2)
𝑁
( 𝑗)−∞) = 1. From

the description of the HSLG Gibbs measure, we have

P®𝑥gibbs(¬E) =
E®𝑥block [𝑊br1¬E]

E®𝑥block [𝑊br]
, (8.4.13)

= ×

Figure 8.13: Proof Scheme: The Gibbs measure on Θ2,4 domain (left figure) can be decomposed
into two parts: One is the combination of the top colored row and 2 IRWs (middle figure) and
two are the remaining black weights (right figure) which will be viewed as a Radon-Nikodym
derivative. Here note that in the middle figure, the only contribution from the top row comes from
the odd points, 𝐻 (1)

𝑁
(2 𝑗 − 1) for 𝑗 ∈ J1, 𝑇K, which are set to∞. Thus, their contribution to (8.4.12)

from (8.2.6) would be exp(−𝑒−∞) = 1.

Step 4. Finally in this step, we provide an upper bound for the right-hand side of (8.4.13) by

bounding its numerator and denominator separately. Let us consider the event:

G :=
𝑘⋂
𝑖=1

{
sup

𝑝∈J1,2𝑇−1K
|𝐿2𝑖 (𝑝) − 𝑥2𝑖,2𝑇−1 | + sup

𝑞∈J1,2𝑇K
|𝐿2𝑖+1(𝑞) − 𝑥2𝑖,2𝑇−1 | ≤ 𝑀0

√
𝑇

}
.

where 𝑀0 comes from Proposition 8.2.6. From the description of the Gibbs measure, it is clear

that if (𝐿2𝑖 (·), 𝐿2𝑖+1(·)) is an IRW with boundary condition (𝑥2𝑖,2𝑇−1, 𝑥2𝑖,2𝑇−1 −
√
𝑇), then (𝐿2𝑖 (·) −

𝑥2𝑖,2𝑇−1, 𝐿2𝑖+1(·) − 𝑥2𝑖,2𝑇−1) is an IRW with boundary condition (0,−
√
𝑇). Thus, appealing to
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Proposition 8.2.6, we see that

P®𝑥block(G) ≥ (1 − 𝜀)
𝑘 ≥ 1 − 𝑘𝜀.

Let us assume 𝑁 is large enough so that
√
𝑁 − 2𝑀0

√
𝑇 ≥ 1

2
√
𝑁 (recall 𝑇 = 𝑂 (

√
𝑁)). Observe that

under the event G, we have for all 𝑝 ≤ 2𝑇 − 1

𝐿2𝑖 (𝑝) ≤ 𝑥2,2𝑇−1 + 𝑀0
√
𝑇 = 𝑅𝑁 − (𝑀2 + 1)

√
𝑁 + 𝑀0

√
𝑇 ≤ 𝑅𝑁 − 𝑀2

√
𝑁.

Thus, E defined in (8.4.7) holds. This implies ¬E ⊂ ¬G. Hence

E®𝑥block [𝑊br1¬E] ≤ P®𝑥block(¬E) ≤ P®𝑥block(¬G) ≤ 𝑘𝜀. (8.4.14)

1G ·𝑊br ≥ 1G · exp
(
−𝑘 (2𝑇 − 1)𝑒

√
𝑁−2𝑀0

√
𝑇
)
≥ (1 − 𝜀).

where the last one follows by taking 𝑁 large enough (recall 𝑇 = 𝑂 (
√
𝑁)). Thus, Eblock [𝑊br] ≥

(1 − 𝜀)Pblock(G) ≥ (1 − 𝜀)𝑘+1. Inserting this bound and the bound in (8.4.14) back in (8.4.13) we

get that P®𝑥gibbs(¬E) ≤ 𝑘𝜀

(1−𝜀)𝑘+1 . Combining this bound with (8.4.11) yields (8.4.9). This completes

the proof.

8.5 Proof of main theorems

In this section, we prove our main theorems, Theorems 8.1.1, 8.1.3, and 8.1.4. This section

is structured as follows: In Section 8.5.1 we first present a few supporting technical results. In

Section 8.5.2 we complete the proof of our main theorems by assuming a technical proposition

(Proposition 8.5.3) which in turn is proved in Section 8.5.3.
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8.5.1 Preparatory lemmas

In this section, we prove two preparatory lemmas that will serve as necessary ingredients in

proving our main theorems. Recall the polymer measure P𝑊 from (8.1.2), the partition func-

tion 𝑍 (𝑚, 𝑛) from (8.1.4), and the HSLG line ensemble 𝐻𝑁 from Definition 8.2.1. Note that the

quenched distribution of the endpoint of the polymer is related via

P𝑊 (𝜋(2𝑁 − 2) = 𝑁 − 𝑟) = 𝑍 (𝑁 + 𝑟, 𝑁 − 𝑟)∑𝑁−1
𝑝=0 𝑍 (𝑁 + 𝑝, 𝑁 − 𝑝)

=
𝑒𝐻
(1)
𝑁
(2𝑟+1)∑𝑁−1

𝑝=0 𝑒
𝐻
(1)
𝑁
(2𝑝+1)

. (8.5.1)

where the second equality follows from the relation (8.2.4). Recalling ZPL
𝑁
(𝑘) = ∑𝑁−1

𝑝=𝑘 𝑒
𝐻
(1)
𝑁
(2𝑝+1)

from (8.2.7), we obtain

P𝑊 (𝜋(2𝑁 − 2) ≤ 𝑁 − 𝑘) =
ZPL
𝑁
(𝑘)

ZPL
𝑁
(0)

.

Theorem 8.1.1 claims that this quenched probability decays as 𝑁 → ∞ followed by 𝑘 → ∞.

The following lemma settles a weaker version of Theorem 8.1.1 where we take 𝑘 = b𝑀
√
𝑁c. For

notational convenience, we assume all the multiples of
√
𝑁 appearing in the proofs in this section

are integers. The general case follows verbatim by considering the floor function.

Lemma 8.5.1. Fix 𝜀 > 0 and recall ZPL
𝑁
(·) from Theorem 8.2.7. There exist constants 𝑀 (𝜀) >

0, 𝑁1(𝜀) > 0 such that for all 𝑁 ≥ 𝑁1,

P

(
ZPL
𝑁
(𝑀
√
𝑁)

ZPL
𝑁
(1)

≤ 𝑒−
√
𝑁

)
≥ 1 − 1

2𝜀. (8.5.2)

Proof. Fix 𝜀 ∈ (0, 1). Recall 𝜎 from (8.2.9) Taking 𝑔 = 1 and 𝑔 = 𝑀
√
𝑁 in Theorem 8.2.7 yields

1
𝜎
√
𝑁

[
log ZPL

𝑁 (1) − 𝑅𝑁
]

𝑑→ N
(
0, 1

)
,

1
𝜎
√
𝑁

[
log ZPL

𝑁 (𝑀
√
𝑁) − 𝑅𝑁 + 𝑀𝜏

√
𝑁

]
𝑑→ N

(
0, 1

)
(8.5.3)
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respectively, where 𝑅, 𝜎, 𝜏 are defined in (8.2.9). Let us set 𝑃 := 𝑃(𝜀) = Φ−1(1 − 𝜀
8 ) + 1, where

Φ(·) is the cumulative distribution function of N(0, 1). For all large enough 𝑁 we have

P
(
log ZPL

𝑁 (1) ≥ 𝑅𝑁 − 𝑃𝜎
√
𝑁

)
≥ 1 − 𝜀

4 ,

P
(
log ZPL

𝑁 (𝑀
√
𝑁) ≤ 𝑅𝑁 − 𝑀𝜏

√
𝑁 + 𝑃𝜎

√
𝑁

)
≥ 1 − 𝜀

4 .

Applying a union bound gives us

P
(
log ZPL

𝑁 (𝑀
√
𝑁) + (𝑀𝜏 − 2𝑃𝜎)

√
𝑁 ≤ log ZPL

𝑁 (1)
)
≥ 1 − 𝜀

2 ,

for all large enough 𝑁 . Taking 𝑀 := 1
𝜏
(2𝑃𝜎+1) in above equation leads to (8.5.2). This completes

the proof.

Let us recall our discussion in Section 8.1.2 and Figure 8.5. Let us call the region J𝑁 −

𝑀
√
𝑁, 𝑁 − 𝑘K and the region J1, 𝑁 − 𝑀

√
𝑁K as shallow tail and deep tail respectively (see Figure

8.5). Lemma 8.5.1 implies that with high probability the quenched probability of 𝜋(2𝑁 − 2) living

in the deep tail region is exponentially small. Thus the mass accumulates in the window of 𝑀
√
𝑁

below the point (𝑁, 𝑁). To establish Theorem 8.1.1, we thus have to show the mass in the shal-

low tail also goes to zero. For convenience, in our proofs below we shall often refer to the point

(𝑁 + 𝑀
√
𝑁, 𝑁 − 𝑀

√
𝑁) as the deep tail starting point. Given the connection in (8.2.4), the deep

tail starting point corresponds to (2𝑀
√
𝑁 + 1)-th point for the top curve 𝐻 (1)

𝑁
(·) of the HSLG line

ensemble. So, in the coordinates of the HSLG line ensemble, we shall refer 2𝑀
√
𝑁 + 1 as the deep

tail starting point.

Below, we record another important preparatory lemma which claims the existence of a “high

point" in 𝐻 (1)
𝑁
(·) not far after the deep tail starting point (see Figure 8.14).

Lemma 8.5.2. Fix any 𝜀 > 0 and recall 𝑅, 𝜏 from (8.2.9). There exists a constant 𝑀0(𝜀) > 0 such
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that for all 𝑀 ≥ 𝑀0, there exists 𝑁0(𝜀, 𝑀) such that for all 𝑁 ≥ 𝑁0,

P

(
sup

𝑝∈J𝑀
√
𝑁,2𝑀

√
𝑁K
𝐻
(1)
𝑁
(2𝑝 + 1) ≥ 𝑅𝑁 − 5

2𝑀𝜏
√
𝑁

)
≥ 1 − 1

2𝜀, (8.5.4)

where 𝜏 := Ψ(𝜃 − 𝛼) − Ψ(𝜃 + 𝛼).

Proof. Let us set 𝑃 := 𝑃(𝜀) = Φ−1(1 − 𝜀
6 ) + 1, where Φ(·) is the cumulative distribution function

of N(0, 1). In view of (8.5.3), for all large enough 𝑁 we have

P
(
log ZPL

𝑁 (𝑀
√
𝑁) ≥ 𝑅𝑁 − 𝑀𝜏

√
𝑁 − 𝑃𝜎

√
𝑁

)
≥ 1 − 𝜀

6 , (8.5.5)

P
(
log ZPL

𝑁 (2𝑀
√
𝑁) ≤ 𝑅𝑁 − 2𝑀𝜏

√
𝑁 + 𝑃𝜎

√
𝑁

)
≥ 1 − 𝜀

6 .

Applying a union bound gives us

P
(
log ZPL

𝑁 (2𝑀
√
𝑁) + (𝑀𝜏 − 2𝑃𝜎)

√
𝑁 ≤ log ZPL

𝑁 (𝑀
√
𝑁)

)
≥ 1 − 𝜀

3 .

Thus for any 𝑀 ≥ 2𝑃𝜎+1
𝜏

, we have that with probability at least 1 − 𝜀
3 , log ZPL

𝑁
(2𝑀
√
𝑁) ≤

log ZPL
𝑁
(𝑀
√
𝑁) −

√
𝑁 , which implies

2ZPL
𝑁 (2𝑀

√
𝑁) ≤ ZPL

𝑁 (𝑀
√
𝑁).

However, by definition of ZPL
𝑁
(·), the above display implies that with probability at least 1 − 𝜀

3 ,

sup
𝑝∈J𝑀

√
𝑁,2𝑀

√
𝑁K
𝐻
(1)
𝑁
(2𝑝 + 1) ≥ log ZPL

𝑁 (𝑀
√
𝑁) − log ZPL

𝑁 (2𝑀
√
𝑁) − log(2𝑀

√
𝑁)

≥ log ZPL
𝑁 (2𝑀

√
𝑁) − log(2𝑀

√
𝑁).

Note that by the first entry in (8.5.5) with 𝑀 substituted by 2𝑀 , with probability at least 1 − 𝜀
6 ,

539



we have log ZPL
𝑁
(2𝑀
√
𝑁) ≥ 𝑅𝑁 − 2𝑀𝜏

√
𝑁 − 𝑃𝜎

√
𝑁 . Since for all large enough 𝑁 , we have

𝑅𝑁 − (2𝑀𝜏 +𝑃𝜎)
√
𝑁 − log(2𝑀

√
𝑁) ≥ 𝑅𝑁 − 5

2𝑀𝜏
√
𝑁 . Thus applying another union bound helps

us arrive at (8.5.4) and complete the proof.

8.5.2 Proof of Theorems 8.1.1, 8.1.3, and 8.1.4

In this section, we prove our main theorems assuming a technical proposition. Let us first begin

by describing the proposition. Fix any 𝑀, 𝑁 ≥ 1 and assume 𝑀
√
𝑁 ∈ Z>0. For any Borel set 𝐴 of

R𝑀
√
𝑁 we consider the event

A =

{
(𝐻 (1)

𝑁
(1) − 𝐻 (1)

𝑁
(2𝑟 + 1))𝑀

√
𝑁

𝑟=1 ∈ 𝐴
}
. (8.5.6)

for 𝑁 > 𝑀2 + 1. Let (𝑆𝑟)𝑀
√
𝑁

𝑟=0 be the log-gamma random walk defined in Definition 8.1.2. We

write

P𝑅𝑊 (A) := P
(
(𝑆𝑟)𝑀

√
𝑁

𝑟=1 ∈ 𝐴
)

(8.5.7)

Finally, the last technical proposition below is the main crux of the proof. It claims that P and

P𝑅𝑊 are close to each other when 𝑁 is large and we postpone its proof to Section 8.5.3.

Proposition 8.5.3. Fix any 𝜀 ∈ (0, 1
2 ). Set 𝑀 (𝜀) > 0, 𝑁1(𝜀) > 0 such that Lemma 8.5.1 and

Lemma 8.5.2 hold simultaneously for all 𝑁 ≥ 𝑁1 for this fixed choice of 𝑀 . Then there exists

𝑁0(𝜀) > 0 such that for all 𝑁 ≥ 𝑁0,

|P(A) − P𝑅𝑊 (A) | ≤ 9𝜀, (8.5.8)

where A and P𝑅𝑊 (A) are defined in (8.5.6) and (8.5.7).

In lieu of these results, we are ready to prove our main theorems. Theorems 8.1.3 and 8.1.1

are direct applications of the supporting lemmas. For convenience, we shall assume in the proofs

below 𝑀
√
𝑁 is an integer. The general case follows verbatim by considering floor functions.
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Proof of Theorem 8.1.3. Take the set 𝐴 as (−∞, 𝑥1] × (−∞, 𝑥2] × · · · × (−∞, 𝑥𝑘 ] × R𝑀
√
𝑁−𝑘 in

(8.5.6). By Proposition 8.5.3,

lim sup
𝑁→∞

�����P
(
𝑘⋂
𝑟=1
{𝐻 (1)

𝑁
(1) − 𝐻 (1)

𝑁
(2𝑟 + 1) ∈ (−∞, 𝑥𝑟]}

)
− P𝑅𝑊

(
𝑘⋂
𝑟=1
{𝑆𝑟 ∈ (−∞, 𝑥𝑟]}

)����� ≤ 9𝜀,

where (𝑆𝑟)𝑘𝑟=0 is defined in Definition (8.1.2). As 𝜀 is arbitrary, this implies

(
𝐻
(1)
𝑁
(1) − 𝐻 (1)

𝑁
(2𝑟 + 1)

) 𝑘
𝑟=0

𝑑→ (𝑆𝑟)𝑘𝑟=0.

In conjunction with relation (8.2.4), we get the desired convergence in Theorem 8.1.3.

Proof of Theorem 8.1.1. Fix any 𝜀 > 0. Get 𝑀 (𝜀), 𝑁1(𝜀) > 0 such that Lemma 8.5.1 and Lemma

8.5.2 hold simultaneously for all 𝑁 ≥ 𝑁1 for this fixed choice of 𝑀 . Using this 𝑀 we split the

probability as follows

P𝑊 (𝜋(2𝑁 − 2) ≤ 𝑁 − 𝑘)

= P𝑊
(
𝜋(2𝑁 − 2) ∈ (𝑁 − 𝑀

√
𝑁, 𝑁 − 𝑘]

)
+ P𝑊

(
𝜋(2𝑁 − 2) ≤ 𝑁 − 𝑀

√
𝑁

)
.

For the first term observe that by (8.5.1)

P𝑊
(
𝜋(2𝑁 − 2) ∈ (𝑁 − 𝑀

√
𝑁, 𝑁 − 𝑘]

)
=

∑𝑀
√
𝑁−1

𝑝=𝑘
𝑒𝐻
(1)
𝑁
(2𝑝+1)∑𝑁−1

𝑝=0 𝑒
𝐻
(1)
𝑁
(2𝑝+1)

≤
∑𝑀

√
𝑁

𝑝=𝑘
𝑒𝐻
(1)
𝑁
(2𝑝+1)∑𝑀

√
𝑁

𝑝=1 𝑒𝐻
(1)
𝑁
(2𝑝+1)

=

∑𝑀
√
𝑁

𝑝=𝑘
𝑒𝐻
(1)
𝑁
(2𝑝+1)−𝐻 (1)

𝑁
(1)∑𝑀

√
𝑁

𝑝=1 𝑒𝐻
(1)
𝑁
(2𝑝+1)−𝐻 (1)

𝑁
(1)
.

Fix any 𝛿 > 0 and consider the set

A𝛿 :=

∑𝑀

√
𝑁

𝑝=𝐾
𝑒𝐻
(1)
𝑁
(2𝑝+1)−𝐻 (1)

𝑁
(1)∑𝑀

√
𝑁

𝑝=1 𝑒𝐻
(1)
𝑁
(2𝑝+1)−𝐻 (1)

𝑁
(1)
≥ 𝛿

 .
By Proposition 8.5.3, P(A𝛿) ≤ P𝑅𝑊 (A𝛿) + 9𝜀 for all large enough 𝑁 . On the other hand, by
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Corollary 8.6.3 we see that lim𝑘→∞ lim𝑁→∞ P𝑅𝑊 (A𝛿) = 0. Thus, as 𝜀 is arbitrary,

lim
𝑘→∞

lim
𝑁→∞

P𝑊
(
𝜋(2𝑁 − 2) ∈ (𝑁 − 𝑀

√
𝑁, 𝑁 − 𝑘]

)
= 0, in probability. (8.5.9)

For the second term by Lemma 8.5.1, we see that with probability 1 − 𝜀
2

P𝑊
(
𝜋(2𝑁 − 2) ≤ 𝑁 − 𝑀

√
𝑁

)
≤

∑𝑁−1
𝑝=𝑀

√
𝑁
𝑒𝐻
(1)
𝑁
(2𝑝+1)∑𝑁−1

𝑝=1 𝑒
𝐻
(1)
𝑁
(2𝑝+1)

=
ZPL
𝑁
(𝑀
√
𝑁)

ZPL
𝑁
(1)

≤ 𝑒−
√
𝑁 .

Again, as 𝜀 is arbitrary, we have that as 𝑁 →∞, P𝑊 (𝜋(2𝑁 − 2) ≤ 𝑁 −𝑀
√
𝑁) → 0 in probability.

This completes the proof together with (8.5.9).

Lastly, with Theorems 8.1.1 and 8.1.3 established, we present the proof of the limiting quenched

distribution of the endpoint viewed from around the diagonal.

Proof of Theorem 8.1.4. Fixed 𝜃 > 0 and 𝛼 ∈ (−𝜃, 0). Recall from (8.5.1) that

P𝜃,𝛼;𝑁 (𝜋(2𝑁 − 2) = 𝑁 − 𝑟) = 𝑒𝐻
(1)
𝑁
(2𝑟+1)∑𝑁−1

𝑝=0 𝑒
𝐻
(1)
𝑁
(2𝑝+1)

=
𝑒𝐻
(1)
𝑁
(2𝑟+1)−𝐻 (1)

𝑁
(1)∑𝑁−1

𝑝=0 𝑒
𝐻
(1)
𝑁
(2𝑝+1)−𝐻 (1)

𝑁
(1)

(8.5.10)

where the second equality is derived through (8.2.4). Note that by Theorem 8.1.3, a continuous

mapping theorem immediately implies that for a positive integer 𝑘 < ∞,

©­«
exp(𝐻 (1)

𝑁
(2𝑟 + 1) − 𝐻 (1)

𝑁
(1))∑𝑘

𝑝=0 exp(𝐻 (1)
𝑁
(2𝑝 + 1) − 𝐻 (1)

𝑁
(1))

ª®¬𝑟∈J0,𝑘K 𝑑→
(

𝑒−𝑆𝑟∑𝑘
𝑝=0 𝑒

−𝑆𝑝

)
𝑟∈J0,𝑘K

(8.5.11)

Here (𝑆𝑖)𝑖≥0 denotes a log-gamma random walk. For simplicity, we denote

Λ𝑁 (𝑝) := exp(𝐻 (1)
𝑁
(2𝑝 + 1) − 𝐻 (1)

𝑁
(1)).
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We can then rewrite (8.5.10) as

P𝜃,𝛼;𝑁 (𝜋(2𝑁 − 2) = 𝑁 − 𝑟) = Λ𝑁 (𝑟)∑𝑁−1
𝑝=0 Λ𝑁 (𝑝)

=

∑𝑘
𝑝=0 Λ𝑁 (𝑝)∑𝑁−1
𝑝=0 Λ𝑁 (𝑝)

·
∑∞
𝑝=0 𝑒

−𝑆𝑝∑𝑘
𝑝=0 𝑒

−𝑆𝑝
·
∑𝑘
𝑝=0 𝑒

−𝑆𝑝∑∞
𝑝=0 𝑒

−𝑆𝑝
· Λ𝑁 (𝑟)∑𝑘

𝑝=0 Λ𝑁 (𝑝)
.

Theorem 8.1.1 ensures that∑𝑘
𝑝=0 Λ𝑁 (𝑝)∑𝑁−1
𝑝=0 Λ𝑁 (𝑝)

= P𝜃,𝛼;𝑁 (𝜋(2𝑁 − 2) ≥ 𝑁 − 𝑘) = 1 − P𝜃,𝛼;𝑁 (𝜋(2𝑁 − 2) < 𝑁 − 𝑘)
𝑝
→ 1

as 𝑁 →∞ followed by 𝑘 →∞. By Lemma 8.6.2 we have

lim
𝑘→∞

∑∞
𝑝=0 𝑒

−𝑆𝑝∑𝑘
𝑝=0 𝑒

−𝑆𝑝

𝑝
→ 1.

Meanwhile, (8.5.11) yields that as 𝑁 →∞,(∑𝑘
𝑝=0 𝑒

−𝑆𝑝∑∞
𝑝=0 𝑒

−𝑆𝑝
· Λ𝑁 (𝑟)∑𝑘

𝑝=0 Λ𝑁 (𝑝)

)
𝑟∈J0,𝑘K

𝑑→
(∑𝑘

𝑝=0 𝑒
−𝑆𝑝∑∞

𝑝=0 𝑒
−𝑆𝑝
· Λ(𝑟)∑𝑘

𝑝=0 𝑒
−𝑆𝑝

)
𝑟∈J0,𝑘K

=

(
𝑒−𝑆𝑟∑∞
𝑝=𝑜 𝑒

−𝑆𝑝

)
𝑟∈J0,𝑘K

.

Thus we establish (8.1.7) and complete the proof of Theorem 8.1.4.

8.5.3 Proof of Proposition 8.5.3

For clarity, we divide the proof into several steps.

Step 1. In this step we sketch the main ideas behind the proof. At this point, we encourage the

readers to consult with Figure 8.14. Recall the event A defined in (8.5.6).

• Let us take 𝑀 and 𝑁1 as described in the statement of the Proposition 8.5.3. In the language

introduced in Figure 8.5 and the text before Lemma 8.5.2, 2𝑀
√
𝑁 + 1 serves as the deep tail

starting point. As we have assumed Lemma 8.5.2 holds, we thus have a point in 2𝑝∗ + 1 ∈

J2𝑀
√
𝑁 + 1, 4𝑀

√
𝑁 + 1K where 𝐻 (1)

𝑁
(2𝑝∗ + 1) is ‘high’ enough (see Figure 8.14). This high

point event is denoted as event B in Step 2 which has a probability of at least 1− 1
2𝜀 by Lemma

8.5.2.
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𝑦 = 𝑅𝑁 − (3𝑀𝜏 + 1)
√
𝑁

𝐻
(2)
𝑁
(·)

𝐻
(1)
𝑁
(·)

𝑦 = 𝑅𝑁 − 3𝑀𝜏
√
𝑁

2𝑀
√
𝑁 + 1 4𝑀

√
𝑁 + 1

Deep tail starting point

High point

Figure 8.14: Illustration of the proof of Proposition 8.5.3. As claimed by Lemma 8.5.2, there
exists a high point in J2𝑀

√
𝑁 + 1, 4𝑀

√
𝑁 + 1K such that 𝐻 (1)

𝑁
(2𝑝∗ + 1) lies above 𝑅𝑁 − 5

2𝑀𝜏
√
𝑁

with high probability. This high point is illustrated as the blue point in the figure. This high point
between J2𝑀

√
𝑁+1, 4𝑀

√
𝑁+1K helps us show that 𝐻 (1)

𝑁
(·) ≥ 𝑅𝑁−3𝑀𝜏

√
𝑁 between J1, 2𝑝∗+1K.

However, invoking Proposition 8.4.2, we can ensure the second curve stays below the benchmark
of 𝑅𝑁 − (3𝑀𝜏 + 1)

√
𝑁 on the interval J1, 4𝑀

√
𝑁 + 1K with high probability. Thus there is a

√
𝑁

separation (with high probability) between the two curves. By the Gibbs property, this separation
ensures that the top curve is close to a log-gamma random walk.

• Invoking Proposition 8.4.2 with high probability we can take the second curve of the line

ensemble to be lower than a certain benchmark. More precisely, Proposition 8.4.2 with 𝑀1 =

2𝑀 and 𝑀2 = 3𝑀𝜏 + 1 implies that

sup
𝑝∈J1,4𝑀

√
𝑁+1K

𝐻
(2)
𝑁
(𝑝) ≤ 𝑅𝑁 − (3𝑀𝜏 + 1)

√
𝑁

with probability at least 1 − 𝜀
2 . We denote this phenomenon as the Fluc event. As B and Fluc

are high probability events, to prove our desired estimate in (8.5.8), it suffices to show that

|P(A∩B∩Fluc) −P𝑅𝑊 (A) | is small. This is achieved by considering the measure conditioned

on the entire second curve and the first curve beyond 2𝑝∗ + 1. We remark that in reality, this is

not exactly how we do it. But for the sketch of the proof, we present it in this way. We refer to

the last bullet point for details.
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• From the Gibbs property in Theorem 8.2.2, we deduce a key observation regarding the con-

ditional measure in Step 3. In colloquial terms, we note that the conditional measure is ab-

solutely continuous w.r.t. a log-gamma random walk (𝑆𝑘 )𝑘≥0 from Definition 8.1.2 starting at

𝐻
(1)
𝑁
(2𝑝∗ + 1) and an explicit Radon-Nikodym derivative𝑊𝑝∗ . As the free law is precisely the

limiting law we are interested in, it suffices to prove that the Radon-Nikodym derivative 𝑊𝑝∗

over this interval [1, 2𝑝∗ + 1] is approximately 1.

• Loosely speaking, 𝑊𝑝∗ is close to 1 whenever there is a wide enough separation between the

two curves. Due to the diffusive nature of the random walk (with positive drift), under the free

law, the walk does not become too low. This guarantees that under B ∩ Fluc event we have a

uniform separation of
√
𝑁 between the top two curves between J1, 2𝑝∗ + 1J. Thus, we deduce

that 𝑊𝑝∗ ≈ 1 when 𝑁 is large. The details are presented in Step 5. This shows that the law of

the 𝐻 (1)
𝑁
(·) is close to the free law of a log-gamma random walk starting at 𝐻 (1)

𝑁
(2𝑝∗ + 1).

• One issue in carrying out the arguments in the last two bullet points is that 𝑝∗ is random. The

Gibbs property cannot be applied at 𝑝∗, as the property is formulated for fixed boundary points.

This issue can be circumvented easily by a graining argument. We write B as B =
⊔

Bi with B𝑖

being a disjoint collection of events with B𝑖 ⊂ {𝐻 (1)𝑁 (2𝑖 + 1) ≥ 𝑅𝑁 − 5
2𝑀
√
𝑁} and then apply

the Gibbs property for each 𝑖.

Step 2. Take 𝑀1 = 2𝑀 and 𝑀2 = 3𝑀𝜏 + 1 in Proposition 8.4.2. Taking 𝑁2(𝜀, 𝑀1, 𝑀2) > 0

(which depends only on 𝜀 as 𝑀1, 𝑀2 depends only on 𝜀) from Proposition 8.4.2, we see that

P(Fluc) ≥ 1 − 𝜀
2 , where Fluc :=

{
sup

𝑝∈J1,4𝑀
√
𝑁+1K

𝐻
(2)
𝑁
(𝑝) ≤ 𝑅𝑁 − (3𝑀𝜏 + 1)

√
𝑁

}
(8.5.12)

for all 𝑁 ≥ 𝑁2. Next we consider the events

G𝑖 :=
{
𝐻
(1)
𝑁
(2𝑖 + 1) ≥ 𝑅𝑁 − 5

2
𝑀𝜏
√
𝑁

}
and B𝑖 :=

2𝑀
√
𝑁⋂

𝑗=𝑖+1
G𝑐
𝑗 ∩G𝑖 .
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Note that (B𝑖)𝑖∈J𝑀√𝑁,2𝑀√𝑁K forms a disjoint collection of events. Define

B :=
⊔

𝑖∈J𝑀
√
𝑁,2𝑀

√
𝑁K

B𝑖

=
⋃

𝑖∈J𝑀
√
𝑁,2𝑀

√
𝑁K

G𝑖 =

{
sup

𝑝∈J𝑀
√
𝑁,2𝑀

√
𝑁K
𝐻
(1)
𝑁
(2𝑝 + 1) ≥ 𝑅𝑁 − 5

2𝑀𝜏
√
𝑁

}
,

where we write t to stress that the events are disjoint in the union. In particular, as Lemma 8.5.2

holds, we have P(B) ≥ 1 − 1
2𝜀. Thus for all 𝑁 ≥ 𝑁1 + 𝑁2, by a union bound we have

|P(A) − P(A ∩ B ∩ Fluc) | ≤ P(¬B) + P(¬Fluc) ≤ 𝜀.

Hence to prove (8.5.8) it suffices to show

|P(A ∩ B ∩ Fluc) − P𝑅𝑊 (A) | ≤ 8𝜀. (8.5.13)

Define F𝑖 as the 𝜎-field 𝜎
(
𝐻
(1)
𝑁
(𝑥)

𝑥≥2𝑖+1, 𝐻
( 𝑗)
𝑁
(𝑥) 𝑗≥2,𝑥≥1

)
. Note that B𝑖,Fluc are both measurable

w.r.t. F𝑖 . Exploiting the fact that 𝐵𝑖’s are disjoint yields

P(A ∩ B ∩ Fluc) =
2𝑀
√
𝑁∑︁

𝑖=𝑀
√
𝑁

E
[
1B𝑖∩FlucE [1A | F𝑖]

]
(8.5.14)

where the last equality is due to the tower property of the conditional expectation. Thus we are left

to estimate E [1A | F𝑖] for each 𝑖.

Step 3. Gibbs law. To analyze E [1A | F𝑖], we invoke the Gibbs property (Theorem 8.2.2) for the

HSLG line ensemble. By Theorem 8.2.2, the distribution of (𝐻 (1)
𝑁
( 𝑗))2𝑖

𝑗=1 conditioned on F𝑖 has a

density at (𝑢 𝑗 )2𝑖𝑗=1

exp ©­«−
𝑖∑︁
𝑗=1

[
𝑒𝐻
(2)
𝑁
(2 𝑗)−𝑢2 𝑗+1 + 𝑒𝐻

(2)
𝑁
(2 𝑗)−𝑢2 𝑗−1

]ª®¬ (8.5.15)
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·
𝑖∏
𝑗=1

exp
(
(𝜃 + 𝛼) (𝑢2 𝑗+1 − 𝑢2 𝑗 ) − 𝑒𝑢2 𝑗+1−𝑢2 𝑗

)
(8.5.16)

·
𝑖∏
𝑗=1

exp
(
(𝜃 − 𝛼) (𝑢2 𝑗−1 − 𝑢2 𝑗 ) − 𝑒𝑢2 𝑗−1−𝑢2 𝑗

)
(8.5.17)

with 𝑢2𝑖+1 = 𝐻
(1)
𝑁
(2𝑖 + 1). The above explicit expression is obtained from (8.2.6) and (8.2.5). Note

that the terms in (8.5.15), (8.5.16), and (8.5.17) correspond to weights of black, red, and blue edges

in the graphical representation (see left figure of Figure 8.15) respectively.

Based on the above decomposition, we define a free law Pfree,𝑖 that depends only on𝐻 (1)
𝑁
(2𝑖 + 1).

We define that under the law Pfree,𝑖, the distribution of (𝐻 (1)
𝑁
( 𝑗))2𝑖

𝑗=1 has a density at (𝑢 𝑗 )2𝑖𝑗=1 pro-

portional to

𝑖∏
𝑗=1

exp
(
(𝜃 + 𝛼) (𝑢2 𝑗+1 − 𝑢2 𝑗 ) − 𝑒𝑢2 𝑗+1−𝑢2 𝑗

)
·

𝑖∏
𝑗=1

exp
(
(𝜃 − 𝛼) (𝑢2 𝑗−1 − 𝑢2 𝑗 ) − 𝑒𝑢2 𝑗−1−𝑢2 𝑗

)
with 𝑢2𝑖+1 = 𝐻

(1)
𝑁
(2𝑖 + 1). Note that free law collects all the blue and red edge weights only. A

quick comparison of the above formula with (8.1.5) shows that under the free law, (𝐻 (1)
𝑁
(1) −

𝐻
(1)
𝑁
(2𝑟 + 1))𝑖

𝑟=0 is precisely distributed as log-gamma random walk defined in Definition 8.1.2.

In order to obtain the original conditional distribution from the free law, we may introduce the

black weights as a Radon-Nikodym derivative (see the decomposition in Figure 8.15). Indeed, we

have

E [1A | F𝑖] =
Efree,𝑖 [𝑊𝑖1A]
Efree,𝑖 [𝑊𝑖]

(8.5.18)

where

𝑊𝑖 := exp ©­«−
𝑖∑︁
𝑗=1

[
𝑒𝐻
(2)
𝑁
(2 𝑗)−𝐻 (1)

𝑁
(2 𝑗+1) + 𝑒𝐻

(2)
𝑁
(2 𝑗)−𝐻 (1)

𝑁
(2 𝑗−1)

]ª®¬ (8.5.19)

We notice that 𝑊𝑖 has a trivial upper bound: 𝑊𝑖 ≤ 1. For the lower bound, we claim that there
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= × 𝑎
𝑎 𝑎

𝑧1 𝑧2 𝑧3 𝑧1 𝑧2 𝑧3 𝑧1 𝑧2 𝑧3

Figure 8.15: Gibbs decomposition. The left figure shows the gibbs measure corresponding to
conditioned on F𝑖 with 𝑖 = 3. Here 𝑎 = 𝐻

(1)
𝑁
(2𝑖+1), and 𝑧 𝑗 := 𝐻 (2)

𝑁
(2 𝑗) for 𝑗 ∈ J1, 𝑖K. The measure

has been decomposed into two parts. The free law (middle) and a Radon-Nikodym derivative
(right).

exists 𝑁0(𝜀) > 0 such that for all 𝑁 ≥ 𝑁0 we have

1Fluc∩B𝑖Pfree,𝑖 (𝑊𝑖 ≥ 1 − 𝜀) ≥ 1Fluc∩B𝑖 · (1 − 𝜀). (8.5.20)

Thus, (8.5.20) implies that 𝑊𝑖 is close to 1 with high probability under Fluc ∩ B𝑖. Thus, going

back to (8.5.18), we expect E [1A | F𝑖] to be close to Pfree,𝑖 (A). As under the free law Pfree,𝑖 (A) =

P𝑅𝑊 (A), for all 𝑖 ∈ J𝑀
√
𝑁, 2𝑀

√
𝑁K, (8.5.14) eventually leads to (8.5.13), which we make precise

in the next step.

Step 4. Assuming (8.5.20), we complete the proof of (8.5.13) in this step. As𝑊𝑖 ≤ 1, we have

1Fluc∩B𝑖
Efree,𝑖 [𝑊𝑖1A]

Efree,𝑖 [𝑊]
≥ 1Fluc∩B𝑖Efree,𝑖 [𝑊𝑖1A] ≥ (1 − 𝜀) · 1Fluc∩B𝑖Pfree,𝑖 (A ∩ {𝑊 ≥ 1 − 𝜀})

≥ (1 − 𝜀) · 1Fluc∩B𝑖
[
Pfree,𝑖 (A) − Pfree,𝑖 (𝑊𝑖 < 1 − 𝜀)

]
≥ (1 − 𝜀) · 1Fluc∩B𝑖

[
Pfree,𝑖 (A) − 𝜀

]
where we use (8.5.20) in the last inequality. Recall Pfree,𝑖 (A) = P𝑅𝑊 (A). Inserting this bound in

(8.5.18) and then going back to (8.5.14) yields

P(A ∩ B ∩ Fluc) ≥ (1 − 𝜀) · [P𝑅𝑊 (A) − 𝜀]
2𝑀
√
𝑁∑︁

𝑖=𝑀
√
𝑁

P(B𝑖 ∩ Fluc)

= (1 − 𝜀) · [P𝑅𝑊 (A) − 𝜀] P(B ∩ Fluc) ≥ (1 − 𝜀)2 [P𝑅𝑊 (A) − 𝜀] .

for all large enough 𝑁 . The equality in the above equation follows by recalling that B𝑖’s form a
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disjoint collection of events and the result implies that P(A ∩ B ∩ Fluc) − P𝑅𝑊 (A) ≥ −3𝜀. This

proves the lower bound inequality in (8.5.13). Similarly for the upper bound, as𝑊𝑖 ≤ 1, we have

1Fluc∩B𝑖 ·
Efree,𝑖 [𝑊𝑖1A]
Efree,𝑖 [𝑊𝑖]

≤ 1Fluc∩B𝑖 ·
Pfree,𝑖 (A)

(1 − 𝜀)Pfree,𝑖 (𝑊𝑖 ≥ 1 − 𝜀) ≤ 1Fluc∩B𝑖 ·
Pfree,𝑖 (A)
(1 − 𝜀)2

where the last inequality stems from (8.5.20). Again, Inserting this bound in (8.5.18) and then

going back to (8.5.14) gives us

P(A ∩ B ∩ Fluc) ≤ P𝑅𝑊 (A)
(1 − 𝜀)2

2𝑀
√
𝑁∑︁

𝑖=𝑀
√
𝑁

P(B𝑖 ∩ Fluc) = P𝑅𝑊 (A)
(1 − 𝜀)2

P(B ∩ Fluc) ≤ P𝑅𝑊 (A)
(1 − 𝜀)2

where again the equality comes from the disjointness of B𝑖’s. As 𝜀 ≤ 1
2 , this implies

P(A ∩ B ∩ Fluc) − P𝑅𝑊 (A) ≤
1 − (1 − 𝜀)2
(1 − 𝜀)2

≤ 8𝜀

which proves the upper bound in (8.5.13). The proof of Theorem 8.1.3 modulo (8.5.20) is thus

complete.

Step 5. Finally in this step we prove (8.5.20). We define the event

Sink(𝑖) :=
{

inf
𝑝∈J0,𝑖K

𝐻
(1)
𝑁
(2𝑝 + 1) ≥ 𝑅𝑁 − 3𝑀𝜏

√
𝑁

}
.

We claim that there exists 𝑁0(𝜀) > 0 such that for all 𝑁 ≥ 𝑁0, we have

1B𝑖Pfree,𝑖 (Sink(𝑖)) ≥ 1B𝑖 (1 − 𝜀), (8.5.21)

for all 𝑖 ∈ J𝑀
√
𝑁, 2𝑀

√
𝑁K.

Recall that the event Fluc in (8.5.12) requires the second curve 𝐻 (2)
𝑁
(𝑝) to lie below certain

threshold within the range 𝑝 ∈ J1, 4𝑀
√
𝑁 + 1K. Recall the definition of 𝑊 𝑗 from (8.5.19). Note
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that on Sink( 𝑗) ∩ Fluc we have

𝑊 𝑗 ≥ exp(−2 𝑗 𝑒−
√
𝑁 ) ≥ exp(−4𝑀

√
𝑁𝑒−

√
𝑁 )

as 𝑗 ≤ 2𝑀
√
𝑁 . Note that exp(−4𝑀

√
𝑁𝑒−

√
𝑁 ) ≥ 1 − 𝜀 for all large enough 𝑁 . Therefore, in view

of (8.5.21) we have

1Fluc∩B𝑖Pfree,𝑖 (𝑊𝑖 ≥ 1 − 𝜀) ≥ 1Fluc∩B𝑖Pfree,𝑖 (Sink(𝑖)) ≥ 1Fluc∩B𝑖 · (1 − 𝜀)

for all large enough 𝑁 . This verifies (8.5.20). We are left to show (8.5.21). Towards this end, note

that on the event B𝑖, we have 𝐻 (1)
𝑁
(2𝑖 + 1) ≥ 𝑅𝑁 − 5

2𝑀𝜏
√
𝑁 . Thus,

1B𝑖Pfree,𝑖 (Sink(𝑖)) ≥ 1B𝑖Pfree,𝑖

(
inf

𝑥∈J0,𝑖K
𝐻
(1)
𝑁
(2𝑥 + 1) − 𝐻 (1)

𝑁
(2𝑖 + 1) ≥ −1

2𝑀𝜏
√
𝑁

)
. (8.5.22)

Recall from our discussion in Step 2 that under the law Pfree,𝑖, (𝐻 (1)𝑁 (1) − 𝐻
(1)
𝑁
(2𝑟 + 1))𝑖

𝑟=0 is

distributed as a log-gamma random walk. Let us use (𝑆𝑘 )𝑖𝑘=0 to denote a log-gamma random walk.

We have

Pfree,𝑖

(
inf

𝑝∈J0,𝑖K
𝐻
(1)
𝑁
(2𝑝 + 1) − 𝐻 (1)

𝑁
(2𝑖 + 1) ≥ −1

2𝑀𝜏
√
𝑁

)
= P

(
inf

𝑝∈J0,𝑖K
(𝑆𝑖 − 𝑆𝑝) ≥ −1

2𝑀𝜏
√
𝑁

)
.

(8.5.23)

Note that (𝑆𝑖−𝑆𝑝)𝑖𝑝≥0 is again a time-reversed log-gamma random walk. As 𝑖 ≤ 2𝑀
√
𝑁 , appealing

to Lemma 8.6.1 yields that

1B𝑖Pfree,𝑖 (Sink(𝑖)) ≥ P
(

inf
𝑝∈J0,𝑖K

(𝑆𝑖 − 𝑆𝑝) ≥ −1
2𝑀𝜏
√
𝑁

)
≥ 1 − 8 Var(𝑆1)

𝑀𝜏2
√
𝑁
≥ 1 − 𝜀

for all large enough 𝑁 (uniformly over 𝑖 ∈ J𝑀
√
𝑁, 2𝑀

√
𝑁K. Inserting this bound in (8.5.23), in

view of the lower bound in (8.5.22), leads to (8.5.21). This completes the proof of Proposition

8.5.3.
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8.6 Properties of random walks with positive drift

In this section, we collect some useful properties of random walks with positive drift whose

proofs follow by classical analysis. Note that the log-gamma random walk introduced in Definition

8.1.2 is a random walk with positive drift. This is because the density 𝑝(𝑥) introduced in (8.1.5)

has mean:

∫
R
𝑥𝑝(𝑥)𝑑𝑥 = Ψ(𝜃 − 𝛼) − Ψ(𝜃 + 𝛼),

which is positive as the digamma function Ψ is strictly increasing (recall 𝛼 < 0).

Lemma 8.6.1. Let (𝑋𝑖)𝑖≥0 be a sequence of iid random variables with E[𝑋1] = 𝛽 > 0 and

Var[𝑋1] = 𝛾 < ∞. Set 𝑆0 = 0 and 𝑆𝑘 =
∑𝑘
𝑖=1 𝑋𝑖. For all 𝑀, 𝑁, 𝜆 > 0 we have

P

(
inf

𝑘∈J1,𝑀
√
𝑁K
𝑆𝑘 ≤ −𝜆

)
≤ 𝑀
√
𝑁𝛾

𝜆2 .

Proof. As 𝛽 > 0, by Kolmogorov’s maximal inequality, we have

P

(
inf

𝑘∈J1,𝑀
√
𝑁K
𝑆𝑘 ≤ −𝜆

)
= P

(
sup

𝑘∈J1,𝑀
√
𝑁K
|𝑆𝑘 − 𝑘𝛽 | ≥ 𝜆

)
≤ 1
𝜆2

𝑀
√
𝑁∑︁

𝑖=1
Var(𝑋𝑖) =

𝑀
√
𝑁𝛾

𝜆2 ,

which is precisely what we want to show.

Lemma 8.6.2. Let (𝑋𝑖)𝑖≥0 be a sequence of iid random variables with E[𝑋1] = 𝛽 > 0 and

Var[𝑋1] = 𝛾 < ∞. Set 𝑆0 = 0 and 𝑆𝑛 =
∑𝑛
𝑖=1 𝑋𝑖. We have

P

( ∞∑︁
𝑟=0

𝑒−𝑆𝑟 < ∞
)
= 1

Proof. By Kolmogorov’s maximal inequality

P
(

sup
1≤𝑖≤𝑛2

|𝑆𝑖 − 𝑖𝛽 | ≥ 𝑛2

2 𝛽
)
≤ 4
𝑛4𝛽2

𝑛2∑︁
𝑖=1

Var(𝑋𝑖) =
4𝛾
𝑛2𝛽2 .
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The last bound is summable in 𝑛. Thus invoking Borel-Cantelli’s lemma we have that there exists

a random 𝑁 with 𝑃(7 ≤ 𝑁 < ∞) = 1 such that

𝑆𝑖 ≥ 𝑖𝛽 − (𝑁2/2)𝛽 ≥ −(𝑁2/2)𝛽, for all 1 ≤ 𝑖 ≤ 𝑁2,

and for all 𝑛 ≥ 𝑁 + 1 we have

𝑆𝑖 ≥ (𝑛 − 1)2𝛽 − (𝑛2/2)𝛽 ≥ (𝑛2/4)𝛽, for all (𝑛 − 1)2 + 1 ≤ 𝑖 ≤ 𝑛2,

where above we used the fact that 𝑛 ≥ 𝑁 + 1 ≥ 8. Thus with probability 1, we have

∞∑︁
𝑟=0

𝑒−𝑆𝑟 =
𝑁2∑︁
𝑟=0

𝑒−𝑆𝑟 +
∞∑︁

𝑛=𝑁+1

𝑛2∑︁
𝑖=(𝑛−1)2+1

𝑒−𝑆𝑖

≤ 𝑁2𝑒(𝑁
2/2)𝛽 +

∞∑︁
𝑛=𝑁+1

𝑛2∑︁
𝑖=(𝑛−1)2+1

𝑒−(𝑛
2/4)𝛽 ≤ 𝑁2𝑒(𝑁

2/2)𝛽 +
∞∑︁

𝑛=𝑁+1
𝑛2𝑒−(𝑛

2/4)𝛽 < ∞.

This completes the proof.

As a corollary, we have the following double-limit result.

Corollary 8.6.3. Under the setup of Lemma 8.6.2, almost surely we have

lim
𝑘→∞

lim
𝑛→∞

∑∞
𝑟=𝑘 𝑒

−𝑆𝑟∑𝑛
𝑟=0 𝑒

−𝑆𝑟
= 0.

Proof. Note that
∑𝑛
𝑟=0 𝑒

𝑆𝑟 is a monotone sequence in 𝑛 which converges to a random variable that

is almost surely finite by Lemma 8.6.2. Thus,∑∞
𝑟=𝑘 𝑒

𝑆𝑟∑𝑛
𝑟=0 𝑒

𝑆𝑟
= 1 −

∑𝑘−1
𝑟=0 𝑒

𝑆𝑟∑𝑛
𝑟=0 𝑒

𝑆𝑟

𝑛→∞→ 1 −
∑𝑘−1
𝑟=0 𝑒

𝑆𝑟∑∞
𝑟=0 𝑒

𝑆𝑟
.

Taking 𝑘 →∞ yields the desired result.
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