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ABSTRACT 

A Data-driven Perspective on Residential Electricity Modeling and 

Structural Health Monitoring 

Lechen Li 

 

In recent years, due to the increasing efficiency and availability of information technologies 

for collecting massive amounts of data (e.g., smart meters and sensors), a variety of advanced 

technologies and decision-making strategies in the civil engineering sector have shifted in leaps 

and bounds to a data-driven manner. While there is still no consensus in industry and academia on 

the latest advances, challenges, and trends in some innovative data-driven methods related to, e.g., 

deep learning and neural networks, it is undeniable that these techniques have been proved to be 

considerably effective in helping our academics and engineers solve many real-life tasks related 

to the smart city framework. This dissertation systematically presents the investigation and 

development of the cutting-edge data-driven methods related to two specific areas of civil 

engineering, namely, Residential Electricity Modeling (REM) and Structural Health Monitoring 

(SHM). For both components, the presentation of this dissertation starts with a brief review of 

classical data-driven methods used in particular problems, gradually progresses to an exploration 

of the related state-of-the-art technologies, and eventually lands on our proposed novel data-driven 

strategies and algorithms. In addition to the classical and state-of-the-art modeling techniques 

focused on these two areas, this dissertation also put great emphasis on the proposed effective 

feature extraction and selection approaches. These approaches are aimed to optimize model 

performance and to save computational resources, for achieving the ideal characterization of the 



 

 

information embedded in the collected raw data that is most relevant to the problem objectives, 

especially for the case of modeling deep neural networks. For the problems on REM, the proposed 

methods are validated with real recorded data from multi-family residential buildings, while for 

SHM, the algorithms are validated with data from numerically simulated systems as well as real 

bridge structures. 
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Chapter 1. Introduction 

The explosive development of big data and artificial intelligence have fully integrated the 

associated techniques into almost every aspect of our lives, and countless academic researchers 

and industrial engineers have been constantly exploring their new possibilities in a wide range of 

industries. In civil engineering, many topical problems, such as urban energy distribution, 

infrastructure system monitoring, and related technical management decisions, involve many 

uncertainties and complex theories whose solutions require not only mathematical and physical 

knowledge, but are also highly dependent on the experiential expertise from practitioners [1, 2]. 

However, such experiential expertise can be illogically incomplete and imprecise, and it 

sometimes cannot be systematically summarized with effective implementation through traditional 

operational processes due to considerable labor and time costs [1]. Fortunately, benefiting from 

the explosive growth of available data and computing resources as well as the huge advances in 

Artificial Intelligence (AI), data-driven methods such as Machine Learning (ML) algorithms, have 

evolved significantly in a range of engineering and science fields with clear advantages in 

overcoming the limitations of many traditional approaches. A major benefit is that they can solve 

complex problems by emulating experienced practitioners, i.e., through an effective learning 

process to reach the level of experts and thus gain the required expertise [1, 3]. 

As the name suggests, a data-driven method proposes a modeling framework through a data 

analysis scheme rather than simply following a classical physical or mathematical modeling 

manner, and today many scholars have developed diverse strategies to incorporate information of 

mathematical and physical principles into the data-driven mindset [4]. In recent years, these 

frameworks can be integrated with many advanced numerical analytic techniques, benefiting from 

substantial developments in areas such as digital/statistical signal processing and numerical 
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methods, allowing for great flexibility and effectiveness in modeling strategies. Data-driven 

methods can often be implemented fast with strong effectiveness and do not require great user 

expertise, related to one of the main reasons why data-driven strategies have recently become quite 

attractive to many scholars and engineers [3]. In addition, recent incredible advances in various 

sensors and computer hardware technologies have not only greatly facilitated the implementation 

of data acquisition and data fusion, but also ensured continuous computational resources for 

complex data-driven computational architectures, such as deep neural networks [5]. As a result, 

supported by these promising advances in the big data community, constantly increasing civil 

engineering scholars and engineers have commenced research and engineering implementations 

through data-driven methods that provide new case studies, algorithms, and results, while many 

technical challenges still remain [6]. 

1.1 Dissertation overview 

In this dissertation, cutting-edge data-driven methods have been systematically explored and 

developed for two specific areas in civil engineering, namely Residential Electricity Modeling 

(REM) and Structural Health Monitoring (SHM). These two areas encompass many topical 

problems that are of broad interest to both academia and industry in civil engineering today, and 

have attracted large numbers of scholars and engineers over the past decade to explore a variety of 

advanced data-driven strategies to address related challenges. 

For the REM, the recent significant growing interest in this topic is mainly due to the 

emergence of advanced smart grid technologies and various related application scenarios [7, 8]. In 

recent years, the penetration of smart meters has grown significantly and they are now becoming 

more widespread globally. Companies such as Google, Siemens, Intel, General Electric and 

Amazon have been developing end-use applications for setting up household battery-energy 
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management and load control systems based on smart meter data [8]. As the result of this progress, 

electricity utilities, governments and scholars have realized the appreciable benefits of using home 

smart meter data in energy efficiency improvement and demand response operations, since the 

high resolution and quality smart meter data can be a sufficient resource for residential electricity 

analysis and predictive modeling, alongside the data of useful exogenous variables such as weather 

condition recordings [9]. Motivated by these facts, data-driven method development for the field 

of REM has become one of the most prevalent topics related to building energy management in 

the era of smart grid technologies [8, 10]. 

For the SHM, it is gaining impressive attention in recent years as ensuring life safety and 

reducing inspection costs have become top priorities for practicing engineers and researchers [11, 

12]. Moreover, recent advancements in sensor and communication technologies (contact and 

contactless, wired and wireless, etc.) have created great opportunities for the acquisition of 

observational data at an incredible rate and amount, which have laid solid foundation for the large-

scale development and application of data-acquisition techniques and data-driven methods in SHM, 

leading to promising benefits to minimize the direct and indirect money and labor costs associated 

with the streamline periodic inspections for aging infrastructure [6]. Traditionally, SHM solutions 

tend to land on building physical models (e.g., a finite element model) to represent the dynamic 

characteristics of a real structural system, but such models typically require that the actual data 

measured have minimal noise, and also require precise control and understanding of the details for 

the model parameters, which may result in undesirable stability of the model performance due to 

the interference from the varying environmental conditions [12]. In contrast, data-driven models, 

by virtues of the large amount of heterogeneous data from sensors, can efficiently and consistently 

provide bottom-up solutions including diagnostics and prognostics (e.g., damage detection and 
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remaining life estimation) through their natural strengths in big data mining and interpretation [13]. 

Consequently, data-driven modeling nowadays has become one of the most attractive strategies 

for SHM problems [6]. 

1.2 Similarities and differences of the two areas in a data-driven perspective 

In terms of data forms and study paradigms, a wide range of classical and state-of-the-art 

research on data-driven methods for the two areas is based on the acquisition and analysis of 

dynamic data with time as the independent variable (i.e., the time-series data), with specific 

operations including data wangling and cleaning, feature extraction and selection, algorithm 

development and validation, etc. [7, 13]. Either smart meters placed in buildings to record 

residential electricity usage or various sensors placed on monitored structural systems to measure 

structural response data can provide scholars and engineers with adequate and comprehensive 

time-series data to solve relevant problems or validate their developed methods. In this 

dissertation, in addition to presenting the newly developed modeling strategies for the considered 

problems in the two areas, extensive investigations are conducted on the key intrinsic factors 

affecting the modeling performance with respect to general time-series variables. Furthermore, the 

different practical engineering challenges of the two areas presented in this dissertation show what 

flexibility and additional requirements should be met when implementing data-driven modeling in 

the face of evolving real-world scenarios.  

For residential electricity usage records, these time series data can be regarded as relatively 

normal scalar data generated in daily life. Therefore, the analysis and modeling of this data can be 

addressed by standard data-driven strategies, either through classical statistical models or through 

cutting-edge machine learning techniques. The essential objective in this case is to maximize the 

performance (accuracy) of fitting the data, such as the R-squared value in regression problems, 
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while ensuring the robustness and generalization of the model. Therefore, for the problems in 

REM, scholars have tended to dedicate more efforts to drilling down the validity, precision, and 

innovation points of the developed models in terms of data-fitting performance or to conducting 

in-depth statistical analysis/inference on the information about electricity load profiles and resident 

daily behaviors [7]. 

However, for the structural response data in SHM problems, the data-driven models developed 

should achieve a certain accuracy of data fitting while meeting the requirements of consistency 

with specific physical/mathematical principals followed by the response data. Taking the 

acceleration response of structural vibrations as an example, the modeling process must take into 

account how effectively the built model perceives the physical properties underlying the response, 

such as the natural frequencies and damping ratios of a monitored structural system, so that the 

model can be trained to provide a well-defined physical description of the monitored system. 

Therefore, this requires that the model should be highly interpretable and not like a black box 

where there are some data predictions/fittings that cannot be clearly explained by mathematical or 

physical theory (even though the resulting accuracy values may be high). This is why, in recent 

years, a growing number of scholars have worked on developing physics-informed machine 

learning techniques or novel feature engineering strategies to effectively simplify/modify complex 

structures (e.g., the deep neural networks), which allow the developed models to be not only 

functionally more stable and efficient, but also more interpretable at the theoretical level [6, 13]. 

1.3 Logics and organization of this dissertation 

As discussed above, research on data-driven methods for the problems in REF and SHM has 

yielded a number of progressive results over the past few decades. Therefore, the presentation 

framework of each chapter in this dissertation generally starts with investigating or experimenting 
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with the existing relevant data-driven methods for target problems, then explores the advantages 

and limitations of these methods through a systematical comparison, and finally presents newly 

developed methods or modified existing methods that are proposed to improve problem-solving 

performance, with various case studies conducted for the corresponding validation. With the 

purpose of optimizing the modeling process, this dissertation also highlights the effective strategies 

based on feature engineering to extract the most relevant information embedded in the raw 

measurement data to better address some common modeling challenges in the two areas. These 

strategies can usually support a more concise and rational architecture of the models in the case of 

developing complex deep neural networks, thus allowing them to gain considerable generalization 

and interpretation capabilities. 

The content of REF is presented in Chapters 2 – 3: In Chapter 2, a typical and widely followed 

REF problem, termed as short-term load forecasting [14], is systematically researched through a 

case study on the electricity usage records from a residential electricity database in New York City 

(NYC). An in-depth investigation of classical and up-to-date data-driven methods to the short-

term load forecasting problem is first presented. To maximize the exploitation of autocorrelation 

information in the time-series electricity data to perform the forecasting better, a novel modeling 

strategy is proposed, which consists of an improved recurrent neural network framework, a newly 

developed dynamic feature selection algorithm, and a "default" state configured within the model 

to address overfitting issues.  

In Chapter 3, a further analysis of the recorded electricity usage (from the same database 

considered in Chapter 2) under a special situation is performed, i.e., how the residential electricity 

consumption and load demand would change under the impact of the Covid-19 related lockdown, 

and what the potential threat to the grid is from the extreme peak load demand during this period. 
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A series of analytical methods based on mathematical modeling and statistical simulation are 

proposed, while significant factors affecting the changes in the load profiles are deeply analyzed 

and then considered as the key predictors for the modeling. The simulated scenarios with 

corresponding forecasting results drawn from the developed models can serve as timely alerts for 

electricity utilities and provide informative insights into future grid stability. 

The content of SHM is presented in Chapters 4 – 6: In Chapter 4, it focuses on the development 

of data-driven methods to address the problem of structural damage detection and quantification. 

An overview of the structural damage assessment in a vibration-based SHM framework is 

presented first, including a brief literature review of some classical modeling strategies, different 

types of Damage Sensitive Features (DSFs), and relevant state-of-the-art data-driven techniques 

emerged recently. To improve the accuracy and robustness of a Traditional Auto-Encoder (TAE)-

based modeling method for structural damage detection, a New Generalized Auto-Encoder 

(NGAE) architecture, integrated with the power cepstral coefficients of acceleration response and 

a statistical-pattern-recognition strategy, is then proposed. The proposed NGAE architecture is 

able to be well-generalized in the necessary structural physical properties of a target system thanks 

to a newly defined encoder-decoder mapping, finally resulting in excellent damage detection and 

quantification performance.  

In Chapter 5, motivated by the objective to recognize various damage scenarios rather than 

just detecting the presence of damage as in Chapter 4, the problem of structural damage 

classification is studied. To address the problem properly, a novel data augmentation strategy 

based on a Conditional Variational Autoencoder (CVAE) architecture is proposed to create a 

“balanced” training dataset of the cepstral coefficients for various structural undamaged and 

damaged conditions. This augmented training dataset of the cepstral coefficients can be employed 
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to better train a Probabilistic Linear Discriminant Analysis (PLDA) model to finally achieve 

greater accuracy and robustness in structural damage classification, compared to using the original 

“unbalanced” training dataset. 

In Chapter 6, following the analysis and findings in Chapters 4 and 5, the problems of 

structural damage localization for linear and nonlinear structural systems are systematically 

studied. By utilizing the properties of the Linear Discriminant Analysis (LDA), a novel data-driven 

method is proposed to address the structural damage localization problem in an unsupervised-

learning manner. The key intuition of this method is to highly extract and exploit the structural 

local characteristics embedded in the cepstral coefficients based on the strong capability of 

separating categorical data offered by the mechanism of the LDA. 

The last part of the dissertation (Chapter 7) sums up the findings and contributions of the 

research, while identifying possible streams of future research. 
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Chapter 2. Short-term Load Forecasting in Multi-family Residential 

Buildings 

The main part of this chapter is presented in the paper co-authored with Prof. Christoph 

Meinrenken, Prof. Vijay Modi and Prof. Patricia Culligan, and published in the Journal of Applied 

Energy [15]. 

2.1 Introduction 

In recent years, residential electricity load profiles have become increasingly varied among 

neighborhoods and homes due to modified work and leisure patterns, increased use of electronics, 

and more frequent presence of distributed generation (e.g., roof top photovoltaic) and storage (e.g., 

electric vehicles) [16]. This increases the benefit of and need for electrical networks such as 

Transactive Energy Networks (TENs) [16], which could transform homes from being a passive 

load into a smart storage and demand responsive entity for electric grids, thus enabling a dynamic 

balance of demand and deeper integration of emerging clean electricity generation. For example, 

Zheng et al. [17] introduced a model for levelized storage cost, based on storage lifetime and 

electricity tariffs, and developed a storage dispatch algorithm to optimize the storage size and the 

grid demand limits. Similarly, as reviewed by Song et al. [18], a host of novel market mechanisms 

and respective technology solutions are under consideration to improve the resiliency and reduce 

the carbon intensity of electricity grids. Most of these innovations will either require, or at least 

benefit from, the ability to forecast short-term electricity consumption patterns at the level of 

individual actors in a TEN (with “short-term” typically referring to 30 min to one-week time 

periods, but not longer) [14]. In the case of multifamily residential buildings, which are common 
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in many urban areas around the world, the level of an individual actor could include an individual 

apartment, a floor, or an entire apartment building, for example.  

Implementation of such intelligent and adaptive elements requires advanced techniques for 

accurate and precise load demand and power generation forecasting. For short-term load 

forecasting, many approaches have been studied but few have focused on the electricity load of 

individual households, for two reasons: First, electricity load profiles of individual households can 

reveal private information that often cannot be published, contributing to a lack of data availability 

for the residential sector, especially in multi-family residential buildings. Second, forecasting the 

electricity load of individual households is conventionally considered challenging due to the 

volatile nature of household load data [19]. 

A large portion of the existing work on electricity use forecasting has focused on commercial 

buildings due to the availability of datasets and the often more easily identifiable diurnal use 

patterns (reviewed in, e.g., Meinrenken and Mehmani [20]). For residential buildings, researchers 

have developed various statistical models and machine learning algorithms for load prediction. 

Many of them used datasets containing only one level of spatial aggregation (e.g., the aggregate 

load profile of an entire building). A few studies have carried out comparative experiments based 

on various scenarios to investigate the influence of different forecast granularities (e.g., load at 

level of individual apartments or their aggregates at floor or building level, and load at level of 

hourly, daily, or weekly time intervals), and some other studies have aimed at improving 

forecasting accuracy by overcoming some common challenges of machine learning algorithms 

such as overfitting (reviewed by Amasyali et al. [21]). 
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2.1.1 Load forecasting models for residential electricity use 

As noted, although many studies have focused on the forecasting of electricity load in 

residential buildings, only a few of them have been conducted on individual households [7]. One 

such study, by Ghofrani et al. [22], forecasted the electricity load of one specific household. A 

Kalman Filter estimator was applied, and the load was forecasted hourly and sub-hourly as a sum 

of two separate components: the weather-dependent component and the lifestyle component. The 

authors used mean absolute percentage error as the accuracy metric and obtained forecasting 

accuracies between 18% and 30%. Munkhammar et al. [23] employed what is referred to as a 

“Markov-chain mixture distribution model” to forecast one step ahead (half-hour resolution) 

residential electricity consumption data from Australia. 

Previous studies also addressed the problem of identifying an optimal model for residential 

load forecasting tasks by comparing the accuracies of various machine learning algorithms. For 

example, Edward et al. [9] implemented seven different models, including multiple linear 

regression, support vector machine, and deep neural networks, to forecast one-hour ahead 

electricity loads of a residential building. While the tested models showed reliable forecasts when 

considering the average coefficient of variation (CV), compared to similar work, their datasets 

were limited to only three individual households. Therefore, the need remains to validate such 

models on larger datasets of measured electricity consumption. 

In recent years, deep learning models have been shown to offer many advantages, and they 

often perform better than traditional machine learning. Both Zheng et al. [24] and Marino et al. 

[25] have succeeded in applying a Long Short-Term Memory (LSTM) Neural Network to short-

term load forecasting in residential buildings. They concluded that the LSTM neural network has 

an advantage in handling data-driven electricity consumption forecasting tasks. Andriopoulos et 
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al. [26] applied a Convolutional Neural Network (CNN) to a short-term load forecasting task for 

three individual households. They employed a statistical analysis to convert their original dataset 

to a format that facilitated leverage of the advantages of the CNN algorithm. They concluded that 

the proposed CNN can outperform conventional LSTM in cases where the number of data 

observations are limited (such as the loads in a small energy community) and the load patterns 

change dynamically. 

2.1.2 Forecasting at different spatial and temporal scales 

In addition to modeling techniques, the spatial and/or temporal scale of forecasting (or 

sometimes granularity [27]) is another factor affecting the forecasting accuracy. Electricity load 

data in multi-family residential buildings, for example, can be obtained at varying temporal 

granularity such as 15 mins, 1 h, or 1 day, and at different spatial granularities such as household, 

floor, or building level. Determining the optimal forecast granularity is an important aspect of 

improving accuracy of the forecast. 

Determining the optimal spatial and temporal granularities at the same time, Jain et al. [27] 

applied a Support Vector Regression (SVR) model to make one-step load predictions for a 

residential building at 10- min, hourly, and daily temporal granularities, as well as household, 

floor, and building spatial granularities. They found the optimal forecasting granularity to be for 

one-hour ahead and at floor level. Zheng et al. [28] developed a Kalman filter-based bottom-up 

method to increase the accuracy of household-load forecasting. They verified the advantages of 

this approach via granularity analysis at the level of appliances, rooms, and household, and found 

that the Kalman filter bottom-up method at the appliance level can improve household load 

forecasting accuracy. Xu et al. [29] applied a probability-based electricity forecasting model for 
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buildings that decomposed the load into a baseline load and an abnormal peak load. They 

concluded that such a decomposition technique can provide more granular data for forecasting 

models and hence increase forecasting accuracy. 

2.1.3 Feature selection and sparse models 

Sparse models and feature selection techniques have been shown to improve electricity load 

prediction by capturing certain key features [30]. Therefore, these approaches could be utilized to 

obtain a generalized model by lowering the risk of overfitting, as they can focus on a small amount 

of core information highly correlated with electricity use.  

Regarding the sparse coding techniques used in existing literature, Jain et al. [31] applied a 

lasso regression model, which is a shrinkage and selection approach to linear regression that 

approximates sparse coefficients, to forecast energy use in an NYC multifamily residential 

building. They concluded that the lasso regression model provides competitive performance 

compared with a support vector machine. Candanedo et al. [32] presented a data-filtering method 

by removing non-predictive parameters and unrelated features, to improve the performance of 4 

statistical models for the energy use of appliances in a low-energy house. With the method, they 

concluded that the gradient boosting machines (GBM) outperformed the other 3 used models, 

which achieved the accuracy of 57% in R2. 

More recently, with respect to forecasting electricity load and other time-series data, some 

studies have implemented feature selection by integrating advanced deep learning techniques. 

Amarasinghe et al. [33] developed a 1-D convolutional neural network (1D-CNN) performing 

energy load forecasting at individual building level. Their experimental results showed that the 

CNN outperformed SVR. However, using such an approach here is unlikely to succeed when 
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temporal load profiles have large seasonal volatility and unexpected load changes due to human 

behaviors. Regarding the recently used recurrent neural networks, Wang et al. [34] developed a 

novel short-term load forecasting method based on the attention mechanism (AM), rolling update 

(RU) and bi-directional long short-term memory (Bi-LSTM) neural network. When comparing the 

Bi-LSTM model with AM and RU to a traditional Bi-LSTM model, both the mean absolute 

percentage error (MAPE) and the root mean square error (RMSE) were shown to decrease in the 

load forecasting associated with their two data sets. Wan et al. [35] employed a temporal 

convolutional network, integrated with encoder-decoder layers by using a sequence-to-sequence 

(Seq2Seq) framework, to yield better hidden representation of features for time-series data 

forecasting. They concluded that their developed architectures outperform many multivariate 

regressions techniques. 

2.1.4 Focus of this chapter and differentiation from previous work 

The above-mentioned studies, using sparse coding techniques and advanced neural network 

techniques, usually automatically obtain the most influential hidden feature representation by 

using fixed types of features. However, this approach usually does not consider whether these 

features are always dominant under different situations such as seasonal changes and some 

idiosyncratic human behaviors. Similarly, although most of the above discussed studies applied 

past electricity load values as important features for prediction, they did not consider dynamic 

methods of continuously updating the selection to the most correlated feature types in order to 

enhance the feature representation before feeding them to the forecasting models. Such a dynamic 

feature selection process is needed when electricity consumption of an apartment (as in our dataset 

described in Section 2.2.1) could be primarily due to loads from refrigerators and standby-mode 
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electronics that are present even when a resident is not in the apartment for up to several days. This 

can lead to overfitting if this problem is addressed by using multiple previous time-step load values 

(as done by the aforementioned studies) and by relying only on the feature-selection process of the 

encoder-decoder layers of Seq2Seq and TCNN or the sum of weighted states of AM-based LSTM 

structure. Aiming to address these issues, we extend a previously introduced Convolutional LSTM 

framework (ConvLSTM) [36], whose built-in kernels allow the extraction of key information, by 

adding a dynamic feature-selection algorithm and a model-simplification approach, which enables 

timely reactions to the rapidly changing states of various load profiles in case of overfitting. The 

resulting ConvLSTM–based neural network with selected autoregressive features (henceforth 

CLSAF model) is tested as a short-term load prediction in a multifamily residential setting over 

three different season types (winter, summer, and the shoulder seasons of spring or fall) and across 

three spatial granularities (apartment, floor, and building level).  

To test the feasibility and forecasting performance of our approach, we use a residential 

apartment building in New York City, NY, USA as a case study. We use the actual, hourly 

apartment-level electricity load of 59 individual apartments across 11 floors and from three 

different seasons (2019 data) to train the forecasting models and evaluate their accuracy. This data-

rich case study allows us to systematically evaluate the effects of season, spatial granularity, and 

model choice on the forecasting accuracy. Finally, we determine two key characteristics of the 

residential load data and how these affect the forecasting accuracy for different apartments or 

floors. Based on this analysis, we discuss basic elements of a possible data screening technique, 

which could aid in providing confidence levels of load predictions to facilitate more complex 

transaction schemes within TENs. 
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2.2 Data and methods 

2.2.1 Overview of electricity data 

The considered electricity use dataset in this work is the historical electricity consumption 

records of a pre-1940 multi-story residential building in Manhattan, NYC, from an electricity 

database named MFRED (a detailed description of the database can be referred to [37].). The 

building is a pre-war construction with a steam-based, central heating system and electric window 

air conditioners for cooling. Therefore, air conditioning loads are reflected in the apartments’ 

electricity use, whereas heating loads are not (except for the occasional supplementary heating via 

personal electric space heaters or heating blankets, for example). Electricity use for every 

apartment was separately metered by a Siemens® SEM3 micro-meter system with 50-amp split 

core current transformers and ±1% accuracy. As the model training data at apartment-level, we 

used the incremental electricity consumption (kWh) from one hour to the next. For the floor and 

building level, we first aggregated the observed electricity load of the respective apartments at 

either the floor or building level, and then used the aggregated data as training data to forecast the 

aggregate level.  

The dataset contains 59 individual apartments, eleven floors, and one building, for three time 

periods in 2019, to reflect various weather conditions during the year: a period in winter when the 

use of indoor lights and possible auxiliary use of electric space heaters is highest (Jan. 7th to Feb. 

3rd); a period during a shoulder season when little or no auxiliary heating but also little or no air 

conditioning will be used (Apr. 1st to Apr. 28th); and a period in the summer when the use of air 

conditioning is high (July 15th to Aug. 11th). In order to ensure comparability of the 3 different 

time periods, each period was chosen to start on a Monday and to last exactly 28 days, such that 

the different periods would each comprise of the same number of weekdays and weekend days. 
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For convenience, we henceforth refer to these three periods simply as ‘January’, ‘April’ and ‘July’, 

respectively.  

Figure 2.1 (a) displays the diurnal load profiles averaged over all 59 apartments. Figure 2.1 

(b) shows three examples of the hourly consumption of individual apartments during a one-day 

period. Data averaged over all apartments show systematic load patterns (e.g., high in the evening 

hours, low during the night), whereas some individual apartments do not, with volatile loads, 

partially caused by residents leaving the apartment for several days at a time. As reviewed in the 

Introduction, such idiosyncratic patterns render load forecasting more challenging. In response to 

such challenges, the model approach developed here aims at extracting the most correlated 

information from daily load profiles as prediction features, in order to mitigate the interference of 

idiosyncratic human behavior with prediction accuracy. 

 

Figure 2.1: (a) Diurnal patterns of average hourly electricity use in 59 apartments. (b) Example 

daily electricity-load profiles of three sample apartments. 
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2.2.2. Metric to evaluate forecasting accuracy 

In past studies, four types of metrics have been widely used to assess forecasting accuracy 

[38]: (i) scale-dependent measures, e.g., Root Mean Square Error or Mean Absolute Error; (ii) 

normalized metrics, e.g., Mean Absolute Percent Error (MAPE) or Coefficient of Variation (CV); 

(iii) relative metrics such as Mean Relative Error; and (iv) scale-free metrics such as Mean 

Absolute Scaled Error. Since the scale-dependent measures cannot be used for comparing the 

accuracy of forecasting at different magnitudes and MAPE is not applicable when handling the 

case of zero load values, the CV is considered in this work, as applied, e.g., by Jain et al. [27]. We 

refer to CV as CV-residual, in order to distinguish it from another, similarly defined metric in the 

following sections. CV-residual is defined as follows: 

𝐶𝑉𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 =
√ 1
𝑁 − 1

∑ (𝑦𝑡 − 𝑦�̂�)2
𝑁
𝑡=1

�̅�
 

(2.1) 

where 𝑁 is the number of individual hourly load observations for which the load is forecasted. In 

our study, 𝑁 is equal to 504 (24 × 7 × 3), representing the hourly load over the last three weeks 

of each 4-week time period (the first week is used for training and the last three weeks are used 

for testing, as shown in Table 2.1). 𝑦𝑡 and �̂�𝑡 are the observed and predicted hourly load at time 

step 𝑡, respectively. 𝑦 is the mean value of the 𝑁 observations  of the hourly electricity load. 

2.2.3 Forecasting models and features used 

In this work, we firstly try 4 benchmark models and a ConvLSTM model to complete the 

forecasting task. Then, by overcoming some disadvantages of the ConvLSTM model, and 

combining it with some advantages of one benchmark model, a more accurate and robust CLSAF 

model is developed, which can carry out short-term load forecasts for all scenarios (i.e., for the 
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three spatial granularities and three seasons). Table 2.1 provides an overview of the 6 models and 

the corresponding feature types used in the present study. 

For the source and accuracy of the electricity data, please refer to Section 2.2.1. All weather 

data (i.e., both for training and for testing) are historical 2019 data as shown in Table 2.1, which 

was obtained from the National Oceanic and Atmospheric Association (NOAA), NY Central Park 

Station. The temperature data is accurate to ±0.3 ◦C, and the humidity and wind speed data to 

around ±1%. In practical applications of the forecasting, the weather conditions used as the 

exogenous features for the forecasting of each time-step will be the one-hour weather forecasts 

(however, for the initial training (“warm-up”) period, the models would still use actual, observed 

weather conditions, as shown in Table 2.1). 

Regarding the use of exogenous features shown in Table 2.1, dry-bulb temperature 

(henceforth “temperature”), absolute humidity (henceforth “humidity”), wind speed, binary 

weekday/weekend, and the sinusoid of local time were chosen as our predictors. Wind speed rather 

than wind direction was chosen as one of the features as the prevailing wind direction at a weather 

station is not indicative of the actual wind direction at a specific apartment in a dense urban setting. 

On the other hand, wind speed and solar radiation are more likely to be closely associated with 

cooling and lighting needs at the apartment in question and have been used in our analyses. 

However, when solar radiation was added as an additional exogenous feature, it was detrimental 

to accuracy; this may be because in multi-family high rise buildings, only the predominantly south 

facing apartments or the apartments on the higher floors are subjected to direct solar radiation, 

even if the sun shines. Therefore, we decided to remove irradiance from the list of exogenous 

features. 
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Table 2.1: Overview of the inputs, outputs, and training (warm-up) periods for the employed 6 

models (4 benchmark models and 2 newly employed models). 

 

2.2.3.1 Benchmark models 

As mentioned early, 4 classical benchmark models, namely a Persistence model [28], an Auto 

Regressive Integrated Moving Average (ARIMA) model [39], an Exponential Smoothing (ETS) 

model [39], and a Support Vector Regression model [27], are presented in this chapter. Their 

fundamental mechanism and applications to short-term load forecasting problems are introduced 

in the following. 

Model name 

Autoregressive 

features (hourly 

electricity load) 

Exogenous features 

(hourly granularity) 

Training (warm-up) 

period 

Output (one-step 

ahead hourly 

electricity load) 

Persistence model y[t-1] None None y[t] 

ARIMA model 

Selected by the 

default setting of 

“forecast” package in 

R 

None 
First 7 days of each 

28-day period 
y[t] 

 

ETS model 

 

Selected by the 

default setting of 

“forecast” package in 

R 

None 
First 7 days of each 

28-day period 
y[t] 

SVR model y[t-1] 

Temperature[t], 

absolute humidity[t], 

wind speed[t], 

weekday/weekend[t] 

and sin(local 

time[t]) 

First 7 days of each 

28-day period 
y[t] 

ConvLSTM model y[t-1] 

Temperature[t], 

absolute humidity[t], 

wind speed[t], 

weekday/weekend[t] 

and sin(local 

time[t]) 

First 7 days of each 

28-day period 
y[t] 

CLSAF model 

Selected y[t-pt] or  

y[t-1] 

(pt denotes a selected 

lag from time index) 

Temperature[t], 

humidity[t], 

wind speed[t], 

weekday/weekend[t] 

and sin(local 

time[t]) 

First 7 days of each 

28-day period 
y[t] 
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Persistence models can be applied as a benchmark for time-series prediction applications [44]. 

As we aim at conducting a single-step hourly forecast, the persistence model we employ uses the 

hourly load observed during the most recent time step: 

𝑆𝑖𝑛𝑔𝑙𝑒 𝑠𝑡𝑒𝑝 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖𝑛𝑔:      𝑦�̂� = 𝑦𝑡−1   (2.2) 

where 𝑦�̂� is the predicted hourly load at time step 𝑡 and 𝑦𝑡−1  is the observed hourly load at time 

step 𝑡 − 1. 

ARIMA models and ETS models are two strong, and well-established model types for time-

series forecasting [39]. Therefore, they were selected among our series of benchmark models and 

used on all the aforementioned datasets, with default parameters automatically selected by using 

the “forecast” package in R [40]. In addition, as discussed in Introduction, SVR models have 

proven to be a well-performing technique in residential load forecasting, so it was also selected as 

a benchmark model, using the same features as the ones for the employed ConvLSTM model to 

set up a SVR model, as shown in Table 2.1.  

2.2.3.2 Convolutional long short-term memory neural network (ConvLSTM) model 

Long Short-Term Memory (LSTM) Neural Networks have been proven to be an efficient and 

powerful approach to short-term residential load forecasting tasks across multiple spatial 

granularities, as shown, e.g., by Zheng et al. [24]. However, an LSTM model might not completely 

meet the requirements of our dataset, for two reasons: First, as shown in Section 2.2.1, electricity 

loads in some apartments are volatile without clear diurnal patterns. Second, the primary factors 

driving electricity load may vary between seasons. In particular, the ambient temperature will 

likely affect the electricity consumption of air conditioners during the summer time but will be 

less relevant in wintertime when a building is centrally heated. Consequently, it might be best to 
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only use the exogenous features most correlated with electricity load. For our forecasting task, we 

tried a ConvLSTM layer to capture core information of the exogenous features that are highly 

correlated with electricity load, by taking advantage of the built-in kernels. 

The ConvLSTM neural network, introduced by Xingjian et al. [38], is a variant of the LSTM 

neural network, which integrates a convolution operation into the LSTM cell. The convolution 

operation takes the place of a matrix multiplication at each of the LSTM cell’s gate, and thereby 

captures inherent spatial features by several convolution operators in multi-dimensional data. 

Xingjian et al. [36] applied their proposed ConvLSTM network to better capture the 

spatiotemporal correlations of their spatial data. They concluded that the ConvLSTM network 

outperforms an LSTM with fully connected layers for precipitation nowcasting. 

A ConvLSTM cell consists of a series of operations that can store temporal information with 

a selection process by the built-in kernels, and timely erases the cell’s memory, like an LSTM cell, 

to prevent gradient vanishing [49]. Fig. 4 displays the basic mechanism of a ConvLSTM cell whose 

operations can be formulated as six core equations: 

𝒇𝑡 = 𝜎(𝑾𝑓𝑥 ∗ 𝑰𝑡 +𝑾𝑓ℎ ∗ 𝒉𝑡−1 + 𝒃𝑓) 

𝒊𝑡 = 𝜎(𝑾𝑖𝑥 ∗ 𝑰𝑡 +𝑾𝑖ℎ ∗ 𝒉𝑡−1 + 𝒃𝑖) 

�̂�𝑡 = 𝑡𝑎𝑛ℎ(𝑾𝐶𝑥 ∗ 𝑰𝑡 +𝑾𝐶ℎ ∗ 𝒉𝑡−1 + 𝒃𝐶) 

𝒐𝑡 = 𝜎(𝑾𝑜𝑥 ∗ 𝑰𝑡 +𝑾𝑜ℎ ∗ 𝒉𝑡−1 + 𝒃𝑜) 

𝑪𝑡 = �̂�𝑡 ∙  𝒊𝑡 + 𝑪𝑡−1 ∙  𝒇𝑡 

𝒉𝑡 = 𝑡𝑎𝑛ℎ(𝑪𝑡) ∙ 𝒐𝑡 

(2.3) 

where ‘•’ denotes the Hadamard product and ‘∗’ the convolution operation. 𝑰𝑡 is the input of the 

ConvLSTM cell at time step 𝑡. 𝒉𝑡−1 and 𝑪𝑡−1 are the output and state of the ConvLSTM cell at 

time step 𝑡 − 1, respectively. Similarly, 𝒉𝑡 and 𝑪𝑡 are the output and state of the cell at time step 
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𝑡. They are generated by several joint computations based on four intermediate vectors: 𝒇𝑡, 𝒊𝑡, �̂�𝑡, 

and 𝑶𝑡 at time step 𝑡.  𝑾𝑓𝑥, 𝑾𝑓ℎ, 𝑾𝑖𝑥, 𝑾𝑖ℎ, 𝑾𝑐𝑥, 𝑾𝑐ℎ, 𝑾𝑜𝑥, and 𝑾𝑜ℎ are trainable weights that 

appear in pairs for each intermediate vector. 𝒃𝑓, 𝒃𝑖, 𝒃𝑐, and 𝒃𝑜 are corresponding trainable biases. 

As shown in Table 2.1, we employed the most recent one time-step electricity load as the only 

autoregressive feature, and temperature, local time, wind speed, and binary weekday & weekend 

information (‘1’ represents weekdays (i.e., Mon-Fri), ‘0’ represents weekends (i.e., Sat or Sun)) as 

the exogenous features for the prediction. In this case, the exogenous features vector 𝑬[𝑡], the input 

vector 𝑰[𝑡], and the predicted hourly load �̂�[𝑡] for time step t, are defined as: 

𝑬[𝑡] = [𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒[𝑡] ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦[𝑡] 𝑡𝑖𝑚𝑒[𝑡] 𝑤𝑖𝑛𝑑𝑠𝑝𝑒𝑒𝑑[𝑡] 𝑤𝑒𝑒𝑘𝑑𝑎𝑦&𝑤𝑒𝑒𝑘𝑒𝑛𝑑[𝑡]] 

𝑰[𝑡] = [𝑦[𝑡−1]  𝑬[𝑡]] 

�̂�[𝑡] = 𝐶𝑜𝑛𝑣𝐿𝑆𝑇𝑀{𝑰[𝑡]} 

(2.4) 

where 𝑦[𝑡−1] is the observed hourly load at time step 𝑡 − 1 , 𝑰[𝑡]  is composed by 𝑦[𝑡−1]  and 

exogenous vector 𝑬[𝑡], as the input vector at time step 𝑡, and �̂�[𝑡]  is the corresponding output 

(forecasted hourly load). The ConvLSTM cell expects the feature dimension of an individual input 

to be a two-dimensional array. Therefore, in our case, we take 𝑰[𝑡] as a whole, and treat it as one 

feature with a dimension of one by five. 
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Figure 2.2: Mechanism of a ConvLSTM cell. “•” denotes the Hadamard product and “*” denotes 

the convolutional operator. Adapted from Xingjian et al. [33] and Marino et al. [16]. 

As the model is employed to conduct single-step load forecasting, there is no need to separate 

the data into training vs. testing data. However, the model needs a warm-up period to be initially 

trained by backpropagation to adjust itself to the best state. Therefore, for each of the three 28-day 

periods, the first-week load data was used as the warm-up period for initial training, and after that 

the model was formally employed to make the forecast. After each time-step forecast, the observed 

hourly load at the last predicted time step was used for parameter updating. Regarding the selection 

of the previous week as the warm-up period, there are 2 reasons: First, through multiple 

experiments, we found that when the warm-up period exceeds 2 days, the accuracy of the 

subsequent forecast will converge. In addition, the forecasting accuracy will not rise if a longer 

forecasting horizon is implemented, and this is probably due to the varying load patterns as 

discussed in Section 2.2.1. Second, choosing the previous one week, instead of a longer period, as 

the warm-up period can make our developed dynamic feature-selection algorithm (to be introduced 

in Section 2.2.3.3) characterize the historical electricity diurnals of the targeted apartment quickly 
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without the requirement of significant computational resources. Table 2.2 shows the hyper 

parameters of the ConvLSTM model, and Figure 2.3 shows its un-rolled sequential architecture. 

Table 2.2: Structure and hyperparameters of the ConvLSTM model. 

 

 
Figure 2.3: The built un-rolled sequential architecture of the ConvLSTM model. 

 

2.2.3.3 ConvLSTM neural network with selected auto-regressive feature (CLSAF model) 

As shown in Figure 2.1, the load profile in some apartments is characterized by idiosyncratic 

human behavior (an apartment’s temporary vacancy, for example), which could prompt overfitting 

Properties Values 

Structure 
One ConvLSTM2D layer and two dense 

layers 

Number of filters 36 

Kernel size 1x2 

Activation function Relu 

Nodes number of first dense layer 4 

Nodes number of second dense layer 1 

Activation function of dense layers Relu 

Epoch 20 

Size of batch 1 

Loss function Mean Squared Error (MSE) 

Optimizer Adam 

Training (warm-up) period First week of each 28-day period 

Training time (over CPU) 20 seconds 
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in the traditional ConvLSTM model. To preempt such a problem, a better-suited feature 

representation was devised which selects the most correlated lagged hourly load, rather than 

locking into inflexibly by using the previous time-step value, or several time-step load values, 

without any correlation examinations. We thus extended the ConvLSTM model by two additional 

strategies: An autocorrelation-function (ACF)-based algorithm to select the most correlated lagged 

load as the autoregressive feature, and a “default” state in which the Persistence model would be 

employed for prediction whenever the algorithm fails to obtain a lagged load with sufficient 

correlation as the autoregressive feature. The “default” state, conceived as a model-simplification, 

is aimed at handling overfitting issues that are mostly caused by load profiles of the same apartment 

that changed between periods of occupancy vs. vacancy. The CLSAF model was then developed 

by a combination of the above methods, with the mechanism described in detail below. 

First, an autocorrelation function (ACF) was considered for use, which is aimed at selecting 

the lagged hourly load most correlated with the one-step-ahead load as the autoregressive feature 

for prediction. The ACF computes the correlation of the time-series lagged values with themselves, 

thus investigating the periodical nature of a time-series dataset. It is formulated as follows: 

𝑟𝑘 =
𝐶𝑜𝑣(𝑦𝑡 , 𝑦𝑡+𝑘)

√𝑉𝑎𝑟(𝑦𝑡) ∙ 𝑉𝑎𝑟(𝑦𝑡+𝑘)
 (2.5) 

where 𝐶𝑜𝑣 and 𝑉𝑎𝑟 denote covariance and variance, respectively, and 𝑦 is the observed hourly 

load at the given time step 𝑡 or 𝑡 + 𝑘. 𝑉𝑎𝑟(𝑦𝑡) and 𝑉𝑎𝑟(𝑦𝑡+𝑘) are two variances of the hourly 

loads with a separation by 𝑘 time steps. 𝑟𝑘 denotes the correlation of the hourly load values with a 

lag of 𝑘 hours apart. We set the range of lags returned by the ACF to be 24 (𝑘 = 0, 1, 2, … , 24), 

to capture diurnal patterns, and 𝑟𝑘 is measured over the previous 7 days’ hourly load data (starting 

with the one week warm-up period, which is the longest period available in the dataset prior to 
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first model employment time step). Figure 2.4 displays the ACF results of two example 

apartments. 

 

Figure 2.4: Autocorrelation rk of two example apartments with up to 24 lags (July data). 

 

The ACF is employed in the implementation of the model as follows: First, the ACF is 

employed to compute the autocorrelation in the previous week’s hourly load data to obtain the 

most correlated lag. Then, the corresponding lagged hourly load is selected as the autoregressive 

feature, but only for the next one-step-ahead hourly forecast. After moving to the next forecasting 

time step, the algorithm updates the previous one-week data by adding the latest hourly observation 

and then repeats the autocorrelation computation and selection process to update the most 

correlated lagged load for the next-step prediction. 

For example, it can be seen in Figure 2.4 that the first example apartment exhibits a regular 

pattern with about 24 hours periodicity, and the highest auto-correlation is at the smallest lag 

considered, i.e., 1 hour. (We ignore the correlation at lag 0 because it is a self-correlated result.) 

Therefore, in this case, the algorithm would select the load of the previous hour as the 

autoregressive feature for the next forecast. By comparison, the Figure 2.4 shows that the 2nd 

example apartment exhibits only a much weaker diurnal electricity load pattern, and the highest 

auto-correlation is at lag 23 hours. Therefore, the algorithm in this case would select the load at 
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lag 23 hours as the feature. However, due to the smaller correlation of the selected lag in the second 

example, overfitting may occur. This motivated us to improve the CLASF model further by 

developing a “default” state, as explained below. 

Figure 2.5 shows the role of the default state – which acts as a more robust, fall-back option 

for the load forecasting – and its dynamic implementation in the CLSAF model. We defined a new 

variable 𝜃, referred to as the autocorrelation threshold, which determines at what time steps the 

prediction model switches back and forth between the neural network-based forecasting and the 

forecasting based on the default state. The optimal value of 𝜃 was determined by a calibration 

procedure based on experiments (see next section). As shown in Figure 2.5, at every time step, 

the autocorrelation-based algorithm is employed to select the most correlated lag, as detailed 

above. Then, the neural network state of the CLSAF model (left path in Figure 2.5) is employed 

for the one-step ahead hourly forecasting by the selected lagged hourly load and the exogenous 

features stated earlier. However, the resulting model output is used as the CLSAF model’s forecast 

only if the correlation of the selected lag was larger than the threshold 𝜃. Otherwise, the CLSAF 

model’s “default” state (right path in Figure 2.5) is activated by using the Persistence model to 

obtain the forecast for the next time-step. This procedure is repeated at every time step. It is 

important to note that even after the initial “warm-up” training over the first-week hourly load 

data, the parameters related to the CLSAF’s neural network and the most correlated lag are still 

updated for each time-step during the forecasting, regardless of whether the actual forecast is taken 

from the CLSAF’s neural network or from its default state. This ensures that the model can switch 

back seamlessly to the neural network-based forecast whenever the correlation for the most 

correlated lag is above 𝜃 . The exogenous-feature vector 𝑬[𝑡] , the input vector 𝑰[𝑡] , and the 

predicted hourly load �̂�[𝑡] of the CLSAF model for time step t are defined as:    
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        𝑬[𝑡] = [𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒[𝑡]  𝑡𝑖𝑚𝑒[𝑡]  𝑤𝑖𝑛𝑑𝑠𝑝𝑒𝑒𝑑[𝑡]  𝑤𝑒𝑒𝑘𝑑𝑎𝑦&𝑤𝑒𝑒𝑘𝑒𝑛𝑑[𝑡]] 

𝑰[𝑡]  ={
[𝑦[𝑡−𝑝𝑡]  𝑬[𝑡]]     𝐶𝑎𝑠𝑒 𝑜𝑛𝑒

  𝑦[𝑡−1]                𝐶𝑎𝑠𝑒 𝑡𝑤𝑜
 

�̂�[𝑡] = {
 𝐶𝑜𝑛𝑣𝐿𝑆𝑇𝑀(𝑰[𝑡])   𝐶𝑎𝑠𝑒 𝑜𝑛𝑒

𝒚[𝑡−1]                        𝐶𝑎𝑠𝑒 𝑡𝑤𝑜
 

(2.6) 

where the input vector 𝑰[𝑡] and the predicted hourly load �̂�[𝑡] have two cases. The first case means 

the load is forecasted by the neural network of the CLSAF model. In case one, 𝑦[𝑡−𝑝𝑡] is the most 

correlated hourly load selected by the algorithm as the autoregressive feature at time step 𝑡. 𝑰[𝑡] is 

the input vector that consists of the selected lagged load 𝑦[𝑡−𝑝𝑡] and the exogenous-feature vector 

𝑬[𝑡] at time step 𝑡, and �̂�[𝑡] is the predicted hourly load for time step 𝑡. The second case means that 

the load is forecasted by the CLSAF’s default state (i.e., Persistence model). In case two, the 

predicted hourly load �̂�[𝑡] is equal to 𝑦[𝑡−1] at time step 𝑡. 
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Figure 2.5: The flowchart of CLSAF model. 

 

As shown in Figure 2.5, the threshold 𝜃 determines which state of the forecasting model is 

used at which time steps and, therefore, impacts forecasting accuracy. To determine the optimal 

value of 𝜃 , experiments were carried out to measure the average achieved CV-residual at 

apartment level (sample of randomly selected 20 of the 59 apartments, for 3 seasons). As shown 

in Figure 2.6, the best average forecasting accuracy (i.e., lowest average CV-residual) of the 

CLSAF model is achieved with 𝜃  = 0.64. As 𝜃  increases from 0.64 to 0.9, it is increasingly 

unlikely that the correlation of the selected lag is greater than 𝜃, thus resulting in the default state 

of the CLSAF being employed more frequently. Similarly, when 𝜃 is decreasing from 0.64 to 0.3, 

it is increasingly likely that the correlation of the selected lag is greater than 𝜃, thus favoring the 

neural network to produce the load forecast. 𝜃 = 0.64 was used in all subsequent analyses. 
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Figure 2.6: Threshold theta vs. average CV-residual of 20 sampled apartments. 

 

2.2.4 Fast Fourier transform (FFT) to assess strength of diurnal pattern 

We used frequency spectrum analysis to characterize the daily electricity load profiles, using 

a Fast Fourier Transform (FFT) algorithm which uses periodicity and symmetry to significantly 

reduce the computation time [41]. For a sequence of electricity loads 𝑦𝑛  at 𝑁  time steps, the 

discrete Fourier transform (DFT) is formulated as follows: 

𝑌𝑘 = ∑ 𝑦𝑛𝑒
−2𝜋𝑘𝑛𝑖

𝑁

𝑁−1

𝑛=0

 (2.7) 

where N denotes the sequence length. To reduce the computational complexity for a more 

favorable analysis of the spectrum, Eq. (2.7) can be written as: 

𝑌𝑘 = ∑ 𝑦2𝑚𝑒
−2𝜋𝑘𝑚𝑖
𝑁/2 + 𝑒

−2𝜋𝑘𝑖
𝑁 ∑ 𝑦2𝑚+1𝑒

−2𝜋𝑘𝑚𝑖
𝑁/2

𝑁
2
−1

𝑚=0

𝑁
2
−1

𝑚=0

 
(2.8) 

where 𝑘 = 0, 1, 2, … ,𝑁 − 1 , and 0 ≤ 𝑛 < 𝑀 ≡ 𝑁/2 . 𝑌𝑘  is the original amplitude by 

transformation, in terms of the frequency k. 
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Once the original amplitudes 𝑌𝑘 for all frequencies (𝑘 = 0, 1, 2, … ,𝑁 − 1) were determined, 

we used a scaling approach by standardizing the original amplitudes to generate comparable 

amplitudes of specific frequencies across the 3 spatial granularities (apartment, floor, and building 

levels). The standardization was formulated as follows: 

𝑌𝑘
𝑠 =

𝑌𝑘 − 𝜇𝑌
𝜎𝑌

+ 𝐶 (2.9) 

where 𝑌𝑘
𝑠 is the standardized amplitude of frequency k. 𝜇𝑌 and 𝜎𝑌 are the mean and the standard 

deviation of the original amplitudes. The constant C prevents negative amplitudes and was set to 

0.5. In order to quantify the strength of diurnal patterns of the load profiles, we defined a new 

variable S, as shown in Eq. (2.10), which is the mean value of the standardized amplitudes (Eq. 

(2.9)) at two specific frequencies, namely, 1 cycle per day, and 2 cycles per day: 

𝑆 =
𝑌𝑘1
𝑠 + 𝑌𝑘2

𝑠

2
 (2.10) 

where 𝑌𝑘1
𝑠  and 𝑌𝑘2

𝑠  are the standardized amplitudes as per Eq. (2.9), and 𝑘1 and 𝑘2 represent the 

specific frequencies 1 cycle per day and 2 cycles per day, respectively. 

2.2.5. Computational resource requirements 

The developed ConvLSTM and CLASF models were run on a standard computer with Intel 

(R) core (TM) 1.99GHz CPU and 16Gb of memory. The code was written in Python. No 

significant computational resource or code was needed for the Persistence model as the load 

forecast is simply executed by applying the previous observed hourly load. The ConvLSTM and 

CLSAF models require approximately the same computational resources because the CLSAF 

model is a combination of the ConvLSTM and Persistence models. The training (warm-up) period 

for each lasted about 20 seconds, and only 0.2 seconds were required for each subsequent time-
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step for parameter updating and prediction. Therefore, a standard machine with one CPU could 

easily provide the required computational power for a real-life application of the CLASF model in 

a TEN, meaning that each next hour load could be forecasted near instantaneously as soon as the 

previous time step’s load has been measured and exogenous variables have been collected. 

 2.3 Results 

2.3.1 The best performing models in the study 

As previously discussed, the principal challenge of load forecasting with respect to our dataset 

is the large volatility of loads in individual apartments. Thus, in selecting the best performing 

models, our priority was focused on the performance of all models in forecasting apartment-level 

load data. An overall summary of apartment-level forecasting accuracies by the 6 employed 

models (4 benchmark models and two newly employed models) is provided in Table 2.3. 

Table 2.3: Overall average CV-residuals of apartment-level load forecasting for all three datasets 

(January, April, and July) by the 4 benchmark models and the 2 newly employed models. 

Model name Mean value Minimum Maximum 

Persistence 61.2 6.3 141.4 

SW-ARIMA 64.1 6.4 201.5 

SW-ETS 63.7 6.4 188.4 

SW-SVR 62.0 6.3 162.3 

ConvLSTM 57.9 6.2 131.1 

CLSAF 53.3 5.9 115.8 

 

As shown in Table 2.3, the SW-ARIMA, SW-ETS, and SW-SVR models have worse 

accuracy (higher CV-residuals) than the ConvLSTM and the CLSAF models when handling the 

case of individual-apartment load forecasting. Notably, their accuracies are even lower than the 

accuracy of the persistence model. Therefore, in the following, we mainly pay attention to the 

forecasting results of the persistence model, the ConvLSTM model, and the CLSAF model. 
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2.3.2 CV-residuals by spatial granularity, models, and seasons 

The forecasting accuracies of the three models (the persistence, ConvLSTM, and CLSAF 

models), evaluated by CV-residual (Eq. (2.1)), for all scenarios (three spatial granularities and 

three seasons) are provided in Figure 2.7. The forecasting accuracy varies as a function of spatial 

granularity, model type, and season, as analyzed in more detail in the following sections. 

 

Figure 2.7: Forecasting accuracy (CV-residual, in %) of building, floor, and apartment level over 

the 3 seasons. Error bars indicate the maximum and minimum CV-residuals of each group (red 

and blue numbers, respectively); black numbers give the averages. The building level has only one 

forecast accuracy for each model and season. 

2.3.2.1 Effect of spatial granularity on forecasting accuracy 

Reviewing the results in Figure 2.7, it is easy to note that the highest average accuracy is 

achieved at the building level (lowest CV-residual), followed by floor level and then apartment 

level (highest CV-residual). To test this result for statistical significance, we carried out two-

sample t-tests (two-tailed, unequal variances).  
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For the floor vs. apartment level, nine such tests (Floor-Jan & Apt-Jan, Floor-April & Apt-

April and Floor-Jul & Apt-Jul across three models) were carried out. These showed that the 

average accuracies of all 9 combinations are significantly different (p<0.05), confirming that the 

floor level forecasting outperforms that at apartment level. 

For the building level, no further statistical tests were carried out because our dataset only 

contained one building. However, as seen in Figure 2.7, the CV-residual at the building is smaller 

than even the minimum CV-residual of any of the floors. Consequently, the building level 

produces the highest forecasting accuracy for our dataset. 

2.3.2.2 Effect of model type on forecasting accuracy 

As shown in Figure 2.7, the CLSAF model yields the highest average accuracy, followed by 

the ConvLSTM model, and then the Persistence model. To verify the statistical significance of this 

finding for floor and apartment levels, nine paired t-tests (two-tailed, unequal variances) were 

carried out (Persistence & ConvLSTM, Persistence & CLSAF and ConvLSTM & CLSAF, across 

three seasons). The results show that the averages of all 9 combinations are significantly different 

(p<0.05).  

One typical example that illustrates an advantage of the CLSAF model compared to the 

ConvLSTM model is shown in Figure 2.8: When either model is confronted with a period of 

vacancy in an apartment, the CLSAF model reacts to the change faster, regardless of whether the 

apartment changes from occupied to vacant (around August 2nd in Figure 2.8) or vice versa (after 

August 10th). This is because the CLSAF model can switch its state back and forth between the 

neural network and the Persistence model, thus mitigating overfitting due to volatile load data, as 

stated earlier. In contrast, the load forecasted by the ConvLSTM model shows a continuing diurnal 
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variation for the full period of the vacancy, because it overfits to the pre-vacancy period, thus 

leading to smaller forecasting accuracy. 

Furthermore, as can be seen in Figure 2.9 (a), the pattern of average forecasting accuracy 

shown in Figure 2.7 does not hold for all apartments individually. While the average CV-residual 

of the ConvLSTM model for all three seasons are lower than the ones of the Persistence model, 

the situation is reversed for some apartments (e.g., red circle in Figure 2.9 (a)). The reason is that 

the ConvLSTM model sometimes loses robustness leading to overfitting, as illustrated in the 

example apartment in Figure 2.8 (which shows the observed and forecasted load profiles of the 

same apartment as the one highlighted by the red circle in Figure 2.9 (a)). Overall, such possible 

overfitting is avoided by the CLSAF model which outperforms both the Persistence model and the 

ConvLSTM model, not only on average, but for every apartment, floor, building, and season, 

individually. 

 

Figure 2.8: Hourly forecasting results of the ConvLSTM and the CLSAF models for one example 

apartment from Aug 1st to Aug 10th, 2019. Exact hourly load values are not shown for privacy 

considerations. 

2.3.2.3 Effect of season on forecasting accuracy 

In addition to the above-mentioned effects, it can be noticed that, for a particular spatial 

granularity and model type, forecasting accuracies are considerably affected by the season, with 
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July consistently exhibiting the lowest (i.e., best) average CV-residual, followed by January, and 

then April. We again used two-sample t-tests (two tailed, unequal variances) to determine whether 

the exhibited differences in forecasting accuracy caused by seasonal changes are statistically 

significant. Nine pairs were set up for the floor or building level (January & April, January & July 

and April & July, across three models). The results show that the differences in the average CV-

residual of apartments [of floors] between the different seasons are not statistically significant (𝑝 >

0.05), owing to the large variation in each sample of 59 apartments [11 floors] and the limited 

sample sizes. Consistent with that, intra-group variance of CV-residual, determined via ANOVA, 

is substantially larger than inter-group variance, as evidenced by (1 − 𝜂2) = 0.98 for apartments 

[0.88 for floors]. 

Such high level of intragroup variance in CV-residual – which is not explained by the spatial 

granularity or model type – points to the possible existence of other not yet identified 

characteristics in each observed load profile. This will be explored in the next sections. 

2.3.3 Volatility of electricity consumption vs. forecasting accuracy 

The large variations in CV-residual in Figure 2.7 and Figure 2.9 (a) indicate different levels 

of forecasting-“difficulty” for different apartments and/or floors. Therefore, we searched for 

underlying characteristic of the electric load profiles that impacted forecasting accuracy. One such 

characteristic was found to be the volatility of the load data, henceforth CV-observation. The 

definition of CV-observation is as follows: 

𝐶𝑉𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 = 
√ 1
𝑁 − 1

∑ (𝑦𝑖 − �̅�)2
𝑁
𝑖=1

�̅�
 

(2.11) 
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where 𝑦𝑖 is the observed hourly load at the ith time step. �̅� denotes the mean value of the observed 

loads, and 𝑁 is the number of the observations (here 672, for hourly data over 28 days). CV-

observation can be understood as a type of normalized standard deviation and reflects a scaled 

variation of electricity load. Therefore, a load profile with a larger mean value but similar absolute 

standard deviation has a smaller CV-observation. Figure 2.9 shows the relationship between CV-

observation and forecasting accuracy, along with the respective linear correlations and p-values. 

July was randomly chosen as the example to visualize the relationship. For January and April, 

results are similar to those in July, namely all correlations are between 0.62 and 0.69, and all p-

values are smaller than 5e-6. This shows that, regardless of model type, season, or spatial 

granularity, the achieved forecasting accuracy is driven to a considerable extent by CV-observation 

of the load profile, with prediction accuracy the higher, the lower CV-observation. 

The relationship between average CV-observation and average CV-residual across the three 

seasons is shown in Figure 2.9 (b). July data yields the lowest averages of the two metrics, and 

April data the highest. Since this is consistent with the pattern in Figure 2.7, this provides a likely 

explanation for why the three seasons exhibit different average CV-residuals: As the average CV-

observation increases from July to January and April, the average achievable forecasting accuracy 

decreases accordingly. In other words, the seasonal effect on forecasting accuracy is at least 

partially explained by a concurrent difference in CV-observation between the seasons. 
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Figure 2.9: (a) CV-observation vs. CV-residual, for three models and three spatial granularities 

(July data). (b) Average CV-observation by three seasons vs. respective average CV-residual. 

2.3.4 Strength of diurnal patterns vs. forecast improvement 

Examining Figure 2.9 (a) shows another effect that, however, does not seem to be easily 

explained by CV-observation: The improvement in forecasting accuracy from the Persistence 

model (benchmark) to the CLSAF model varies between apartments (as well as between floors). 

This led us to search for a characteristic of the load profiles that affected this accuracy 

improvement. As illustrated in Section 2.2.3, the key difference between the Persistence model 

and the CLSAF model is that the latter employs a feature-selection techniques that can extract the 

core information of daily load profiles. Therefore, the difference in accuracy between these two 

models is likely due to how much of such daily-profile information is present in a particular profile. 

In order to investigate the extent to which the daily profiles aided higher forecasting accuracy 

of the CLSAF model vs. the Persistence model, we defined a new variable S to quantify the 

strength of diurnal patterns of the load profile, as defined in Methods. To illustrate graphically 

which load characteristic S is sensitive to, Figure 2.10 shows the spectral analysis of two load 

profiles, one with strong diurnal periodicity at the 12h and 24h mark, and one without. 
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Figure 2.10: Spectral analysis of two sample apartments by FFT with the standardized amplitude. 

The spectrum in (a) reflects a strong diurnal pattern, evidenced in the spikes at 1 and 2 cycles per 

day, respectively. The spectrum in (b) reflects few to none diurnal electricity patterns. 

The improvement in forecasting accuracy, i.e., reduction in CV-residual, R was defined as 

follows: 

𝑅 =
𝐶𝑉𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 (𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒) − 𝐶𝑉𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 (𝐶𝐿𝑆𝐴𝐹)

𝐶𝑉𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 (𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒)
 (2.12) 

where CV-residual is as defined in equation (1). Figure 2.11 shows the relationship between the 

strength of diurnal patterns (S) and the forecasting accuracy improvement (R) for all spatial 

granularities and seasons. 

The results demonstrate that the strength of the diurnal pattern has a statistically significant 

impact on the forecasting accuracy improvement, with an improvement of up 25% in some cases. 

The apartment-level has the smallest average improvement (R = 11%), followed by floors 

(R = 14%), and buildings (R = 23%). The result underlines that, as outlined in Section 2.3.2, it is 

inherently more difficult to predict electricity load profiles whose diurnal profiles are either not 

present or masked by high volatility. In contrast, a stronger diurnal pattern, which tends to me 

more pronounced in the aggregated loads of an entire floor or building, facilitates the information 

extraction and learning process executed by more complex models such as the CLASF model, thus 

resulting in larger forecasting accuracy improvement for such models vs. the benchmark 

Persistence model. 
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Figure 2.11: Strength of diurnal pattern (S) vs. relative reduction of CV-residual (R) from 

Persistence model to CLSAF model, covering the results of 3 spatial granularities and all 3 seasons. 

2.3.5 Combination of CV-observation & diurnal pattern strength vs. CV-residual 

Next, we sought to understand to what extent the above two underlying characteristics (CV-

observation and strength of diurnal patterns) in combination can explain the achieved forecasting 

accuracy. This is shown in Figure 2.12, which divides the parameter space of CV-observation and 

S into four areas representing four load profile categories, using the averages of CV-observation 

and S as the area separation points. We classified all 213 CV-residuals obtained by the CLSAF 

model (59 apartments, 11 floors, and 1 building; each for 3 seasons) into the four categories 

according to their corresponding CV-observation and S. 

We found that electricity load profiles with high S and low CV-observation yield the highest 

average forecasting accuracy (i.e., lowest CV-residual). The opposite is true for load profiles with 

low S and high CV-observation. Furthermore, the effect of CV-observation on forecasting 

accuracy is stronger than that of S, as seen by changes of 26 percentage points in CV-residual 

along the CV-observation dimension but only 8 percentage points in the S dimension. To test for 

statistical significance of these effects, we carried out two-sample t-tests (two-tailed, unequal 
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variances). We found statistical significance (𝑝 < 0.01) for 5 of the 6 pair-wise differences, and 

moderate statistical significance (𝑝 = 0.06) for one pair-wise difference (Table 2.4).  

 

Figure 2.12: CV-observation vs. strength of diurnal pattern (S) and average CV-residual for 4 load 

profile categories. 

 

 
Table 2.4: Results of t-tests (two-tailed, unequal variance) to determine statistical significance of the 

differences in average CV-residual per load profile category. 

 

2.4 Discussion 

Our results could serve as a starting point to set up a possible data pre-assessment method for 

time-series electricity-load datasets. The method would allow users of load forecasting models to 

make a preliminary assessment of the nature of a load profile dataset, providing two benefits: (i) 

p values for corresponding  

t-test 

High CV-

observation 

& high S 

High CV-

observation & 

low S 

Low CV-

observation & 

high S 

Low CV-

observation & 
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High CV-observation & high S 

High CV-observation & low S 

Low CV-observation & high S 

Low CV-observation & low S 

N/A 

 

 

 

p=0.06 

N/A 

 

 

p=9e-12 

p=1e-5 

N/A 

 

p=3e-21 

p=5e-10 

p=2e-3 

N/A 
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reducing the modeling complexity for some apartments; and (ii) providing confidence levels for 

the predicted electricity use.  

With regards to the first benefit, possible implementation steps would be as follows: First, one 

could use the previous 28-day electricity data of an apartment intended for forecasting to compute 

CV-observation. Using the relationship described in Figure 2.9, this would provide an 

approximation for the forecasting accuracy likely achievable by even a simple Persistence model. 

Second, one could use the spectral analysis to determine the load profile’s strength of diurnal 

pattern S, again using the previous 28-day data. Using the relationship illustrated in Figure 2.12, 

CV-observation and S together would provide an estimate of the forecasting accuracy of the 

CLASF model.  

As for the 2nd benefit, knowing not only the forecasted electricity use, for example for the 

next hour, but also the confidence levels of the prediction (inferred from CV-residual) would allow 

more sophisticated transaction schemes within the examples of TEN applications outlined in 

Introduction, as follows: Any such trading of electricity with others would carry risks – namely 

the risk of either not having enough electricity for one’s own use or, alternatively, not being able 

to honor the transaction agreed to with another user. However, the ability to evaluate how accurate 

the forecast will likely be, makes these risks more manageable. For example, user A may be able 

to determine that despite having committed to selling a certain number of kWh from their own 

storage to user B, user A can still be 90% confident to have enough electricity for themselves. 

Alternatively, the transaction could be priced such that user B knows that there is a 10% risk that 

user A will not be able to provide the full amount of electricity that they agreed on. 
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2.5 Conclusions 

In this chapter, first, we present a novel ConvLSTM neural network model with selected 

autoregressive features (CLSAF model) to improve single-step-ahead electricity load forecasting 

for three spatial granularities: apartment, floor, and building level. The CLSAF model achieves 

higher forecasting accuracy (up to 25% improvement vs. the Persistence model). The CLSAF 

model enables durable robustness by leveraging the advantages of its autocorrelation-based 

feature-selection algorithm and a model-simplification method to prevent overfitting when 

confronted with volatile load data caused by changes in resident behavior and/or temporary 

absences. 

Second, based on the prediction results of our multi-granularity dataset across the three 

seasons, we present a load-profile-identification strategy for two characteristics that are 

statistically significantly correlated with forecasting accuracy, namely CV-observation and the 

strength of the diurnal pattern S. These characteristics capture the load profile volatility and the 

degree of learnable daily-profile information, respectively. The smaller CV-observation and the 

stronger the diurnal pattern, the higher is the forecasting accuracy the CLSAF model can achieve. 

Moreover, we discuss how these conclusions can guide basic steps of a possible data pre-

assessment method for practical load forecasting applications and the associated advantages. 
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Chapter 3. COVID-19 Related Impact on Residential Load and 

Grid Stability 

The main part of this chapter is presented in the paper co-authored with Prof. Christoph 

Meinrenken, Prof. Vijay Modi and Prof. Patricia Culligan, and published in the Journal of Energy 

and Buildings [42]. 

3.1 Introduction 

3.1.1 Background and motivation  

Since early 2020, the COVID-19 pandemic has caused a global catastrophe, impacting almost 

every aspect of daily life in most countries. In early 2020, approximately one third of the world’s 

population was in “lockdown” via various types of “stay-at-home” orders or similar guidelines. 

This severe situation saw more than 80% of workplaces worldwide partially or fully closed, 

resulting in significant economic impacts, including a global recession that might rival the Great 

Depression [43]. 

Generally, how to effectively respond to global disasters is a crucial issue for local 

governments and decision-making personnel. Energy and electricity infrastructures (from energy 

supply to demand) have faced disruptions due to the COVID-19 pandemic and related shelter-in-

place orders that are believed to be the most severe in seven decades [44]. Worldwide, the partial 

or complete shutdown of many commercial and social activities has substantially reduced energy 

demand in 2020 [43]. To investigate the changes in electricity profiles due to the pandemic, 

Bahmanyar et al. [45] compared the effect of different containment policies carried out by 6 

European countries (Spain, Italy, Belgium, the Netherlands, Sweden, and the UK) on their 
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electricity consumption during the COVID-19 pandemic. They found that the weekday 

consumption of most of them considerably decreased and that the consumption profiles were close 

to pre-pandemic weekend profiles when compared to the same period in 2019. 

Although the overall energy consumption during the pandemic decreased, the decrease was 

driven by reduced commercial loads in large metropolitan areas such as NYC, London, or Paris, 

whereas residential electricity consumption increased as many residents switched to working or 

undertaking educational or other activities from home [46]. In addition, the shape of the residential 

energy demand profile shifted, with weekday diurnal profiles resembling pre-COVID-19 weekend 

diurnals [47]. Some studies showed electricity peaks disappearing during morning periods, with 

these peaks instead shifting to noon. For example, one study reported an approximate 30% increase 

in electricity use around midday in the U.K. during early April 2020, compared to pre-pandemic 

times [48]. In addition, in the NYC metropolitan area, also in early April 2020, a 23% increase 

during typical working hours (9:00 am to 5:00 pm) was observed [49]. 

Significant changes in household day-time use would lead to new load profiles that might 

produce new challenges for the consumers and for the grid. In early 2020, many settings of utilities 

and governments allowed customers to defer payments, leading to large past-due electricity bills, 

and the electricity bills in the summer months have also been higher than pre-pandemic bills [50]. 

Even in heating dominated-geographies such as New York City, one experiences hot weather, and 

during those periods the cooling demand can dominate. This need is met through the use of 

electricity, unlike much of the heating. Hence one would expect that if residents spend more time 

at home between 9 am and 5 pm on weekdays than they would have otherwise, the energy use 

during that period would be higher. One way to reduce residential summer peak load is to 

incentivize behavioral modification, e.g., encouraging residents to curb on-peak electricity-usage, 
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such as for laundry, by shifting respective activities to other times of the day [51]. For managing 

summer peaks during global crises, such as the COVID-19 pandemic – or even national-level 

crises, such as the 2011 Japan Earthquake – more factors need to be taken into account, including 

how hot it gets over the summer months, and whether more residents are allowed, willing or even 

encouraged to return to the usual place of work/school during the aftermath of a crisis [50]. 

3.1.2 Focus and objective of this chapter 

A case study is conducted to investigate Covid-19-related increases in residential electricity 

usage from 2019 to 2020, based on the electricity data recorded in the same database of multi-

family residential buildings considered in Chapter 2. For the analysis below, we focus on two 

characteristics of the electricity usage of an average apartment, (i) the electricity consumption 

(kWh) on weekdays during the 8 hours from 9am to 5pm (in order to gauge how much electricity 

use and commensurate financial burden shifts from commercial buildings and schools to the 

residential sector); and (ii) the hourly peak demand (Watt) on weekdays during the 5 hours between 

12pm and 5pm (in order to gauge possible stress on the electricity grid when increased residential 

peak demand either coincides with system-wide loads or becomes larger than the substations and/ 

or distribution lines in residential areas were designed to handle). We develop a series of robust 

predictive models and identify two key drivers of residential electricity usage, namely the severity 

of the pandemic – as measured by the Covid-19 case load – and the outdoor wet-bulb temperature. 

By performing the Monte Carlo simulation, we then use these models to predict electricity usage 

characteristics for conditions when there is a confluence of high outdoor temperatures during the 

summer with medium to high portions of residents working or studying from home. Such 

conditions might occur if COVID-19 stay-at-home orders in urban areas like NYC persist into the 
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summer months – or if there is widespread adoption of a work and study from home lifestyle that 

is non-pandemic related but part of a future, “new normal”. The predictions are used to understand 

how much residential summer electricity peaks might increase financial burdens for residents and 

the risks of grid stress or failure. 

3.2 Data and methods 

3.2.1 Dataset for apartment-level electricity usage 

3.2.1.1 Electricity related to heating and cooling 

In this work, the same electricity database of MFRED considered in Chapter 2 is used, which 

covers 390 apartments ranging in size from studios to 4-bedroom units [37]. The heating in 89% 

of the apartments is supplied centrally (burning natural gas and distributed within building, using 

steam or hot water), whereas the air conditioning is supplied by personal appliances that are 

commonly the window air conditioners mounted on windows or walls using electricity. Therefore, 

heating in most apartments does not contribute to the apartments’ own electricity usage (except 

for heating blankets or space heaters) but air conditioning does. The other 11% of apartments are 

equipped with different forms of packaged terminal air conditioners (PTACs), with the majority 

of the cooling and heating supplied centrally, such that the PTACs’ electric load does not 

materially contribute to an apartment’s electricity usage. Therefore, the vast majority of apartments 

in our dataset exhibit higher electricity use during the summer, depending on weather conditions, 

especially temperature. In contrast, the electricity usage during the winter and shoulder seasons 

depends much less on the weather. For analysis, we used the incremental electricity consumption 

(kWh) from one hour to the next from January 1st to August 31st of both 2019 and 2020. The 2019 

and 2020 data were compared to reveal modified diurnal shapes and increases in both consumption 
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(kWh) and peak demand (Watt) due to the effects of stay-at-home conditions during the pandemic 

in 2020. 

3.2.1.2 Removing vacant apartments from dataset 

Before analyzing the overall daily electricity use of apartments, we sought to eliminate the 

impact of uninhabited apartments on average electricity consumption. Therefore, apartments that 

were not occupied for a long period of time (henceforth “vacant apartments”) were removed from 

the dataset.  

To robustly identify vacant apartments, a threshold T for the 1-month average load of an 

individual apartment was set at 1.067 Watts per square meter (W/m2). The value was determined 

for the average size of studios and one-bedroom apartments of our dataset, which usually have a 

minimum consumption of 70 Watt that consists of a refrigerator (~50 Watt) plus ~20 Watt for a 

router/Wi-Fi and other electronics in standby mode. The electrical consumption of refrigerators in 

the vacant apartments can vary considerably with the changes of climate conditions. Therefore, 

such a definition of the threshold does not consider the additional load caused by weather condition 

changes, and the 1.067 W/m2 threshold thereby should be only applicable in the shoulder seasons, 

and thus was used for April only. To determine the thresholds suitable for identifying vacant 

apartments in other months, the April value was scaled in proportion to the typical electricity 

consumption of all 390 apartments in the respective month, as follows: 

        𝑇𝑚𝑜𝑛𝑡ℎ = 𝑇𝐴𝑝𝑟𝑖𝑙 ×
𝐵𝑚𝑜𝑛𝑡ℎ

𝐵𝐴𝑝𝑟𝑖𝑙
 (3.1) 

where 𝑇𝐴𝑝𝑟𝑖𝑙 is the April threshold (1.067 W/m2), 𝑇𝑚𝑜𝑛𝑡ℎ is the threshold of any month, and 𝐵𝐴𝑝𝑟𝑖𝑙 

and 𝐵𝑚𝑜𝑛𝑡ℎ are the baseline consumptions, defined as the time-averaged apartment electricity load 

during April and the targeted month, respectively. 
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 By the defined threshold, the numbers of identified temporarily vacant apartments from Jan. 

to Aug. in 2019 and 2020 are computed and shown separately in Figure 3.1. One can easily 

observe that an increase in the number occurs after February 2020, probably due to the outbreak 

of the pandemic in NYC, which prompted some residents to move out of their apartments 

temporarily. In order to maximize consistency between the 2019 and 2020 datasets (i.e., same 

apartments in both years), an apartment was removed from both datasets whether it was deemed 

vacant in 2019, in 2020, or both. Based on this approach, 84 vacant apartments were removed from 

the 2019 and 2020 data, leaving 306 apartments for all subsequent analyses. 

 

Figure 3.1: Numbers of identified vacant apartments from Jan to Aug in 2019 and 2020. 

 

3.2.1.3 Electricity consumption baseline adjustment for 2020 data  

Electricity consumption in the 306 apartments might have changed from 2019 to 2020 for 

reasons other than the pandemic. This effect was accounted for via a baseline adjustment. Since 

the residents’ work and study patterns started changing in NYC only from March 2020 onwards, 

the electricity data from Jan. 1 – Feb. 29, 2020 was not yet impacted by the pandemic. Therefore, 

this period was chosen as a benchmark to reveal any difference in electricity-use baselines between 
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2019 and 2020. The average usage in Jan. – Feb. 2020 was 2.0% lower than during Jan – Feb. 

2019. One possible reason could be the adoption of more energy-efficient devices such as LED 

light bulbs or electronics with lower stand-by power consumption. To show that the difference of 

the electricity-use baseline between 2019 and 2020 is not due to weather conditions, especially the 

temperature that is the key factor impacting electricity demand, we investigated the average 

monthly electricity consumption and the average daily wet-bulb temperature in Jan. and Feb. of 

2018, 2019 and 2020, These are shown in Table 3.1 for each year. One can observe that although 

the average temperature in Jan. – Feb. of 2019 is 0.2oC and 2.4oC lower than the ones in 2018 and 

2020, respectively, it is the monthly electricity consumption in Jan. – Feb. of 2018 that stands the 

highest, about 2.2% larger than the one in 2019, indicating that the weather condition is probably 

not the key factor leading to the decrease of the electricity-consumption baseline in Jan. and Feb. 

of 2020. Therefore, to show the difference between the electricity diurnals and use of the two years 

more accurately, the hour-to-hour electricity consumption for 2020 was increased by 2.0%. All 

subsequent analyses, results, and figures in this chapter reflect the 2020 data after this adjustment. 

Table 3.1: The monthly electricity consumption and average daily wet-bulb temperature in Jan. 

and Feb. of 2018, 2019, and 2020. 
 January February 

Years 

Monthly electricity 

consumption 

(kWh) 

Average daily 

temperature (oC) 

Monthly electricity 

consumption 

(kWh) 

Average daily 

temperature (oC) 

2018 260.91 -2.1 231.21 3.5 

2019 254.30 -2.3 226.92 -0.1 

2020 249.65 0.1 221.89 2.5 

 



52 

 

3.2.2 Choice of relevant factors and time-windows of interest 

3.2.2.1 Preliminary analysis of factors driving residential electricity usage patterns 

In order to analyze in what time-windows the residential electricity usage has changed most 

significantly due to the pandemic in 2020, an electricity-diurnal analysis was carried out. For 

brevity, we henceforth refer to the times before March 21st, 2020, as the “pre-stay-at-home” period, 

and the times after that as the “stay-at-home” period. 

First, it can be noted from Figure 3.2 (a) that there are shifts in demand during the morning 

hours on weekdays: During the pre-stay-at-home period, the early-morning load ramp-up started 

at about 6.00am and peaked at 8.30am, followed by a decline, with no second ramp-up until the 

early evening. In contrast, stay-at-home usage exhibited a smoother ramp-up that started between 

6.00am and 6.30am, reached the height of the pre-stay-at-home morning demand peak only at 

9.00am, and then continued to increase through the morning and early afternoon.  

Regarding electricity use, Figure 3.2 (a) shows that, overall, 2020 weekday electricity usage 

of apartments (24h) shows a more significant increase (7% increase) versus 2019 use than on 

weekends (4% increase). These increases became more pronounced once advancing into warmer 

weather in July, where the increase in 24h weekday-use above 2019 reached 13%, probably due 

to higher loads from air-conditioners (Figure 3.2 (b)).  

Studies for commercial buildings in the U.S. have shown that their principal electricity use is 

mostly concentrated in the worktime period (usually 9 am – 5 pm) on weekdays [52]. Focusing on 

the same time window in the residential sector, when many residents would usually be at 

work/school or otherwise outside of their homes, the stay-at-home usage increases are even larger 

than over the 24h period: Comparing 2020 to 2019 usage during 9 am to 5 pm, one can see a 22% 

increase in average electricity use in early April and an even larger increase of 27% in early July.  
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Figure 3.3 shows the overall trends in the 24-hour-electricity-use and 8-hour-electricity-use 

(9 am—5 pm) as percentage increases from 2019 to 2020, over the same period of Jan 1st – Aug 

31st. Percentage increases in the hourly peak demand on weekdays between 12pm and 5pm are 

also shown (see rationale in Section 3.2.2.3). It can be observed that the three characteristics, 

especially the hourly peak demand between 12pm and 5pm and the 8-hour electricity use, are 

correlated with two metrics, i.e., the outdoor wet-bulb temperature and the number of new 

confirmed Covid-19 cases in every month: During the stay-at-home period, the pandemic led to 

significant increases in residential electricity use, even when temperatures had not yet reached 

levels where air conditioning was required. These increases were therefore most likely due to an 

increased use of lights, appliances for food preparation, computers, and entertainment systems 

because more residents worked/studied from home. Once entering Phase 1 of the gradual 

reopening, new daily Covid-19 cases in NYC were declining, and the portion of residents 

remaining in their homes during the day was likely declining as well [43]. However, due to the 

higher outdoor temperatures now requiring increased cooling loads, the 8-hour electricity usage 

exhibits a notable further increase during the summertime in 2020. 

In summary, both the outdoor temperature and Covid-19 cases should be considered when 

explaining differences in electricity usage between 2019 and 2020. 
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Figure 3.2: (a) Stay-at-home and pre-stay-at-home electricity diurnals of one week in early April of 

2019 and 2020, respectively. (b) Same for one week in July. 

 

 

Figure 3.3: (a) Increases in 24-hour-use, 8-hour-use, and 5-hour peak-demand (weekdays) between 

2019 and 2020, by month. (b) Total monthly new confirmed Covid-19 cases in NYC in 2020, by 

month. (c) Average monthly wet-bulb temperature in 2019 and 2020, by month. 
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3.2.2.2 Choice and rationale for time windows and electricity metrics of interest 

Based on the observations in Section 3.2.2.1, for the remaining analyses, we therefore focus 

on the following two characteristics of electricity usage, which capture different time windows 

and different electricity metrics:  

(i) Average per-apartment electricity consumption (kWh) cumulatively from 9am to 5pm on 

a given weekday, for brevity also referred to as “8-hour-electricity-use”. This was analyzed in 

order to gauge the electricity usage (and associated costs) that can shift from the commercial sector 

(such as office buildings and schools) to the residential sector because of “stay-at-home” and/or 

“work-from-home” guidelines.  

(ii) Hourly peak demand (Watt) for an average apartment at any time between 12pm to 5pm 

on a given weekday, defined at 1-hour resolution, for brevity also referred to as “5-hour-peak-

demand”. “Peak demand” was defined as the highest of the hourly average load (in Watts) between 

any two consecutive full hours in the time window of interest. To establish these, first, the hourly 

average Watts between 12-1pm, 1-2pm, … and 4-5pm on a given day were determined, and then 

the “5-hour-peak-demand” on that day was taken to be the maximum of these five, hourly values. 

The peak demand during full or partial stay-at-home orders was further compared to the highest 

ever hourly residential peak in a no-pandemic condition in 2019. This peak typically occurs in the 

evenings of hot/humid days. The comparison was carried out in order to gauge whether the 

increased afternoon peak demand during widespread stay-at-home conditions could lead to black-

outs or brown-outs of the local substations and distribution system in predominantly residential 

regions of a city (because the demand is larger than what the system was designed to handle). 
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3.2.3 Model components and calibration

3.2.3.1 Model inputs and outputs 

Previous work on electricity usage forecasting for households has shown that outside 

temperature is the strongest factor driving electricity demand in the residential sector, if the cooling 

systems of the targeted households, as in our case study, comprise electrical air conditioners [51]. 

Regarding the specific type of temperature, previous work has shown that wet-bulb temperature is 

a better predictor for residential cooling loads than dry-bulb temperature, as the former captures 

both temperature and humidity [21]. Therefore, we chose wet-bulb temperature (henceforth WBT) 

as our first independent factor for modeling. WBT was available at approximately hourly time 

resolution, typically with a data point available near the full hour (National Oceanic and 

Atmospheric Association (NOAA); Central Part weather station in NYC). In the models, as the 

predictor for the 9am-5pm electricity use, the 9am-5pm average WBT (WBT9am-5pm) was then 

determined by averaging the 9 WBTs from 9am to 5pm. Similarly, the predictor for the 12pm-5pm 

peak demand is the average of the 6 temperatures from 12pm to 5pm (WBT12pm-5pm). 

Next, a 7-day moving-average of daily new confirmed Covid-19 cases (henceforth DCCAvg7Day) 

in NYC was used as another independent factor in the regression models. Specifically, for any day 

for which the electricity consumption was modeled, the factor was the average of the DCCAvg7Day 

of the previous 7 days, which was obtained from the NYC Department of Health and Mental 

Hygiene. The previous study in [44] has shown that due to the implementation of the state-level 

stay-at-home orders after the pandemic, the increased rates of the Covid-19 confirmed cases and 

time spent at home have a positive correlation of 0.526 (95% confidence interval: 0.293-0.700). 

Obviously, the implementation of the shelter-in-place restrictions with the large-scale home 

quarantine, can result in a surge of electricity demand due to more cooking (microwave) and 
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working (lights, air-conditioners, etc.) at home by residents. Therefore, the daily confirmed cases 

can be another key factor impacting electricity demand, as it reflects the probability that residents 

stay at home vs. not (whether out of caution, in response to city-wide guidelines of the “stay-at-

home” orders, or both). 

As described in Section 3.2.1, most apartments in our dataset consume more electricity in the 

summer when air conditioners are used, whereas consumption during winter depends only 

marginally on the weather. Therefore, we developed separate models for times when cooling is 

not required and times when cooling is required. The threshold temperature (dry-bulb) for 

requiring cooling versus not in NYC is commonly 18.3°C [20]. Since WBT was chosen as the 

predictor in this work, we converted 18.3°C into its approximate respective WBT by using the 

average of all hourly NOAA-reported WBTs measured at times of 18.25-18.34°C in 2019 and 

2020. The thus obtained WBT threshold (WBTthresh) is 13.8°C. 

3.2.3.2 Model structure and rationale 

Separate models were devised to forecast the 8-hour-electricity-use on one hand and the 5-

hour-peak-demand on the other. Each model was further differentiated into 2 sub-models, one for 

cooling times and one for non-cooling times, thus yielding a total of 4 separate models.  

Inputs, logical flow, and outputs of the 4 models are summarized in Figure 3.4. Each of the 

four models follows two basic steps to predict the electricity usage characteristics during stay-at-

home behavior. In step one, the electricity usage data observed in 2019 is used in order to model 

the two usage characteristics as a function of WBT only. This reflects the usage characteristics 

under a non stay-at-home scenario. In step two, the difference between the observed 2020 usage 

(observed at a certain WBT and DCCAvg7Day) and the non-pandemic 2019 usage (modeled for the 

same WBT) is used to devise models to predict the stay-at-home-related increase in electricity 
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usage. As will be shown below, this increase is a function of DCCAvg7Day, and, for outdoor 

temperatures where cooling is required, also a function of the average WBT observed in the daily 

particular time window for which the electricity usage is predicted.  

Note that for the modeling in this case, instead of more complex methods such as neural 

networks, we opted for traditional multi-factor regression models in order to retain transparency 

of the mathematical relationships. This approach was chosen in particular to retain robustness of 

the models when predicting electricity usage for parameter ranges of DCCAvg7Day and WBT that 

had not been observed (see Section 3.2.4). The optimization of coefficients was carried out 

stepwise: The coefficients for modeling 2019 data and for the single factor transformations were 

optimized first, and these coefficients were then held constant in the subsequent 2-factor linear 

regressions. The step-wise optimization of coefficients minimizes the degrees of freedom in each 

modeling step and thus further reduces any risk of overfitting. Coefficients in all regression models 

were chosen to minimize the mean squared errors between the observed and the modeled data. 

In keeping with this 2-step process, the sections below are therefore organized as follows: 

Section 3.2.3.3 illustrates the broad relationship between WBT and the 8-hour-electricity-use, 

including the impact of stay-at-home conditions from 2019 to 2020. Section 3.2.3.4 illustrates the 

same for the 5-hour-peak-demand. Based on these impacts, Sections 3.2.3.5 and 3.2.3.6 then 

illustrate the details of the modeling process for the 8-hour-electricity-use and 5-hour-peak-

demand, by employing single-factor analysis, log and exponential factor transformations, and 

multi-factor linear regression. Section 3.2.4 provides the equations for combining these models to 

forecast the 8-hour-electricity-use and 5-hour-peak-demand under a potential future scenario of 

widespread stay-at-home conditions that also coincide with warm weather. Section 3.2.5 provides 

the evaluation metric for the models’ prediction accuracy. 



59 

 

 

Figure 3.4: Flowcharts of the forecast models for weekday 8-hour-electricity-use (in kWh per 

average, occupied apartment; left) and 5-hour-peak-demand (in Watt per average, occupied 

apartment; right). 

3.2.3.3 Modeling 2019 usage: 9am-5pm (8-hour) weekday electricity-use 

As seen in Figure 3.5 (a), when cooling is not required, WBT only marginally impacts the 8-

hour-electricity-use, and a straight line with a negative slope thus provides a robust fit: 

        �̂�𝑢𝑠𝑒2019
(𝑖)

= 𝑚1𝑊𝐵𝑇9𝑎𝑚−5𝑝𝑚 +𝑚2 (3.2) 

where �̂�𝑢𝑠𝑒2019
(𝑖)

 is the modeled 8-hour-electricity-use in 2019, and WBT9am-5pm is as above. 𝑚1 and 

𝑚2 are the two coefficients of the linear regression. The superscript “(i)” represents the case where 

cooling is not required (i.e., WBT9am-5pm smaller than WBTthresh (13.8°C)). 

For times when cooling is required, as shown in Figure 3.5 (b), one choice is to model the 8-

hour-electricity-use variation with WBT to be approximately exponential. We chose an exponential 

relationship as it provided the best R2 (compared to using constant and linear regressions, or their 

combinations) in the temperature range of interest. As introduced in the dataset overview (Section 
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3.2.1), heating in most apartments does not contribute to the apartments’ electricity usage (except 

for heating blankets or space heaters) but air conditioning does. Therefore, the electricity 

consumption does not vary significantly with the increase of temperature at a lower temperature 

range (no cooling required) and implementing an exponential relationship provided a good fit. This 

fit is defined as follows: 

�̂�𝑢𝑠𝑒2019
(𝑖𝑖)

= 𝑚3𝑒
𝑚4𝑊𝐵𝑇9𝑎𝑚−5𝑝𝑚 (3.3) 

where �̂�𝑢𝑠𝑒2019
(𝑖𝑖)

 is the predicted 8-hour-electricity-use in 2019, and 𝑊𝐵𝑇9𝑎𝑚−5𝑝𝑚 is as above. 𝑚3 

and 𝑚4 are the two coefficients of the exponential regression. The superscript “(ii)” represents the 

case where cooling is required (i.e., WBT9am-5pm larger than WBTthresh (13.8°C)). 

As seen in Figure 3.5 (c) and (d), the 8-hour-electricity-use in 2020, both for when cooling is 

required and not, shows considerable increases vs. 2019, consistent with the diurnal analysis 

discussed in Section 3.2.2.1. Specifically, we can find from Figure 3.5 (c) that during low-

temperature periods (below ~5°C), there is no material difference between the 8-hour-electricity-

use of the two years. That is consistent with the fact that, in NYC, the COVID-19 pandemic, and 

thus the associated stay-at-home conditions, only started at the end of winter. In contrast, in warmer 

weather (above ~5°C), there is a difference in the 8-hour-electricity-use of the two years (indicated 

by black arrows), and this difference rises exponentially for temperatures above WBTthresh (13.8°C). 

This indicates that, during the summertime, stay-at-home conditions led to more pronounced 

increases in the 8-hour-electricity-use in 2020 due to the dominant impact of the higher 

temperature, even though DCCAvg7Day had decreased at that time and, following gradual relaxing 

of stay-at-home guidelines, presumably fewer residents were “sheltering-in-place”. Again, this is 

consistent with the result shown in Section 3.2.2.1 (Figure 3.3). 
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Figure 3.5: Weekday 8-hour apartment electricity usage vs. WBT. in 2019 and 2020. 

 

3.2.3.4 Modeling 2019 usage: 12pm-5pm (5-hour) weekday demand peaks 

A linear regression and an exponential regression, both based on WBT, were set up to model 

the 5-hour-peak-demand in 2019 (Fig. 8), as follows: 

    �̂�𝑝𝑒𝑎𝑘2019
(𝑖)

= 𝑘1𝑊𝐵𝑇12𝑝𝑚−5𝑝𝑚 + 𝑘2 (3.4) 

 

�̂�𝑝𝑒𝑎𝑘2019
(𝑖𝑖)

= 𝑘3𝑒
𝑘4𝑊𝐵𝑇12𝑝𝑚−5𝑝𝑚 (3.5) 

where 𝑊𝐵𝑇12𝑝𝑚−5𝑝𝑚 is as defined above. �̂�𝑝𝑒𝑎𝑘2019
(𝑖) 𝑜𝑟 (𝑖𝑖)

 is the modeled 5-hour-peak-demand. 𝑘1, 𝑘2, 

𝑘3 and 𝑘4 are the coefficients of the regression. Again, the superscripts “(i)” and “(ii)” denote the 

two cases of no cooling required and cooling required, respectively. As seen in Figure 3.6 (d), the 
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5-hour-peak-demand is even more sensitive to temperature fluctuations in warmer weather than 

the 8-hour-electricity-use (Figure 3.5), with implications for grid stability (see Conclusions). 

 

Figure 3.6: Weekday 5-hour apartment peak demand vs. WBT. in 2019 and 2020. 

3.2.3.5 Predicting increases in usage: 9am-5pm (8-hour) weekday electricity-use 

Next, we carried out a series of single-factor analyses to identify a robust model for the 

increase in weekday 8-hour-electricity-use (9am – 5pm) from 2019 to 2020 as a function of 

WBT9am-5pm and DCCAvg7Day. As motivated in Section 3.2.2.1, the increase was defined as follows: 

  𝑦𝑢𝑠𝑒𝑖𝑛𝑐
(𝑖)

= 𝑦𝑢𝑠𝑒2020
(𝑖)

− �̂�𝑢𝑠𝑒2019
(𝑖)

  

 

𝑦𝑢𝑠𝑒𝑖𝑛𝑐
(𝑖𝑖)

= 𝑦𝑢𝑠𝑒2020
(𝑖𝑖)

− �̂�𝑢𝑠𝑒2019
(𝑖𝑖)

 (3.6) 



63 

 

where 𝑦𝑢𝑠𝑒𝑖𝑛𝑐
(𝑖) 𝑜𝑟 (𝑖𝑖)

  denotes the increases of the 8-hour-electricity-use from 2019 to 2020, each 

determined as the difference between the observed use in 2020 𝑦𝑢𝑠𝑒2020
(𝑖) 𝑜𝑟 (𝑖𝑖)

 and the modeled use in 

2019 �̂�𝑢𝑠𝑒2019
(𝑖) 𝑜𝑟 (𝑖𝑖)

 (modeled for WBT9am-5pm observed in 2020; see Section 3.2.3.2). The superscripts 

“(i)” or “(ii)” denote the two cases of no cooling required (N=107 observations) or cooling 

required (N=67 observations), respectively.  

Through the single-factor analysis shown in Figure 3.7 (a), one can find that the increase in 

8-hour-electricity-use is logarithmically impacted by DCCAvg7Day. As seen in Figure 3.6 (b), the 

increase resembles a step function as WBT rises. However, the step is most likely not principally 

caused by the WBT change but rather by stay-at-home conditions: Figure 3.5 (c) shows that the 

average increase that corresponds to lower WBTs (around -6.7°C – 4.5°C) is zero (open blue circles 

in Figure 3.7 (b)). These lower WBTs correspond to the period pre-stay-at-home (before the 

pandemic) from January to February 2020. When the WBT reaches about 5°C, the increase in 8-

hour-electricity-use is higher (solid blue circles in Figure 3.7 (b)), but there are no additional 

noticeable trends as a function of further increasing WBT. Therefore, we set the dependence of the 

increase in 8-hour-electricity-use on WBT to zero. For temperatures when cooling was not 

required, the final regression model was thus defined as follows: 

Model 1:    {
�̂�𝑢𝑠𝑒𝑖𝑛𝑐
(𝑖) = 𝛽1.1𝑙𝑛(𝐷𝐶𝐶𝐴𝑣𝑔7𝐷𝑎𝑦 + 𝛽1.2)

�̂�𝑢𝑠𝑒2020
(𝑖) = �̂�𝑢𝑠𝑒2019

(𝑖)
+ �̂�𝑢𝑠𝑒𝑖𝑛𝑐

(𝑖)
 (3.7) 

where �̂�𝑢𝑠𝑒𝑖𝑛𝑐
(𝑖)

 denotes the predicted increase in the 8-hour-electricity-use, and �̂�𝑢𝑠𝑒2020
(𝑖)

 denotes the 

predicted 8-hour-electricity-use in 2020. 𝛽1.1and 𝛽1.2 are the two coefficients of the regression. 

The corresponding statistical metrices and modeling performance are shown in Table 3.2 and 

Table 3.6, respectively. 
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Figure 3.7: (a) Increase in weekday 8-hour-electricity-use (9 am – 5 pm) vs. DCCAvg7Day in NYC. (b) 

Same vs. WBT9am-5pm. 

 

We first analyzed the relationship between the 8-hour-electricity-use-increase and 

𝐷𝐶𝐶𝐴𝑣𝑔7𝐷𝑎𝑦 . As shown in Figure 3.8 (a), the data again shows a roughly logarithmic trend. 

Therefore, to maximize the forecasting accuracy of the subsequent regression model, a logarithmic 

transformation for the 𝐷𝐶𝐶𝐴𝑣𝑔7𝐷𝑎𝑦 was implemented, as follows: 

𝐷𝐶𝐶𝐴𝑣𝑔7𝐷𝑎𝑦
𝑙𝑜𝑔

= 𝑚𝑎𝑥 (𝑎1𝑙𝑛(𝐷𝐶𝐶𝐴𝑣𝑔7𝐷𝑎𝑦) + 𝑎2, 0)                     (3.8) 

where 𝐷𝐶𝐶𝐴𝑣𝑔7𝐷𝑎𝑦  as above and 𝐷𝐶𝐶𝐴𝑣𝑔7𝐷𝑎𝑦
𝑙𝑜𝑔

  denotes its transformation to be used in the 

subsequent regression model. 𝑎1 and 𝑎2 are the two coefficients. The maximum operator in Eq. 

(3.8) sets a zero floor to avoid negative predicted values for electricity usage. 

 As seen in Figure 3.8 (a), the employed logarithmic transformation does not match data 

observations ideally, for the following reason: By summer time 2020, 𝐷𝐶𝐶𝐴𝑣𝑔7𝐷𝑎𝑦 in NYC had 

decreased substantially. This led to the fact that at high-temperatures, when the 8-hour-electricity-

use is largely affected by cooling as displayed by the data highlighted by the black dashed circle 

in Figure 3.8 (a), the observations at high temperatures are not actually at times of high 

𝐷𝐶𝐶𝐴𝑣𝑔7𝐷𝑎𝑦. However, when 𝐷𝐶𝐶𝐴𝑣𝑔7𝐷𝑎𝑦 were higher earlier that year, as represented by the data 



65 

 

points highlighted by the black solid circle in Figure 3.8 (a), temperatures were not yet that hot 

and the corresponding 8-hour-electricity-use thus had not reached its maximum possible values. 

This re-confirms our observation in Section 3.2.2 that the final regression model for increases in 

electricity use during widespread stay-at-home conditions must consider both 𝐷𝐶𝐶𝐴𝑣𝑔7𝐷𝑎𝑦  and 

WBT. 

 As for the relationship between increases in electricity usage and WBT, Figure 3.7 (b) shows 

an approximately exponential relationship. We therefore devised an exponential transformation for 

WBT, as follows: 

𝑊𝐵𝑇9𝑎𝑚−5𝑝𝑚
𝑒𝑥𝑝 = 𝑏1𝑒

𝑏2𝑊𝐵𝑇9𝑎𝑚−5𝑝𝑚                    (3.9) 

where 𝑊𝐵𝑇9𝑎𝑚−5𝑝𝑚 in 2020 is as above, and 𝑊𝐵𝑇9𝑎𝑚−5𝑝𝑚
𝑒𝑥𝑝

 is its exponential transformation to 

be used in the subsequent linear regression. 𝑏1  and 𝑏2  are the two coefficients. The two 

transformed variables 𝐷𝐶𝐶𝐴𝑣𝑔7𝐷𝑎𝑦
𝑙𝑜𝑔

 and 𝑊𝐵𝑇9𝑎𝑚−5𝑝𝑚
𝑒𝑥𝑝

 were then used as the two independent 

variables in a two-factor linear regression model for predicting the 8-hour-use-increase when 

cooling is required, as follows: 

Model 2:    {
�̂�𝑢𝑠𝑒𝑖𝑛𝑐
(𝑖𝑖) = 𝛽2.1 + 𝛽2.2𝐷𝐶𝐶𝐴𝑣𝑔7𝐷𝑎𝑦

𝑙𝑜𝑔
+ 𝛽2.3𝑊𝐵𝑇9𝑎𝑚−5𝑝𝑚

𝑒𝑥𝑝  

�̂�𝑢𝑠𝑒2020
(𝑖𝑖) = �̂�𝑢𝑠𝑒2019

(𝑖𝑖) + �̂�𝑢𝑠𝑒𝑖𝑛𝑐
(𝑖𝑖)

 (3.10) 

where �̂�𝑢𝑠𝑒𝑖𝑛𝑐
(𝑖𝑖)

  denotes the predicted increase in 8-hour-electricity-use, and �̂�𝑢𝑠𝑒2020
(𝑖𝑖)

  denotes the 

predicted 8-hour-electricity-use in 2020. 𝐷𝐶𝐶𝐴𝑣𝑔7𝐷𝑎𝑦
𝑙𝑜𝑔

 and 𝑊𝐵𝑇9𝑎𝑚−5𝑝𝑚
𝑒𝑥𝑝

 are as defined above, and 

𝛽2.1 , 𝛽2.2 , and 𝛽2.3  are the three coefficients of the 2-factor linear regression model, whose 

statistical metrics and modeling performance are shown in Table 3.3 and Table 3.6, respectively. 
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Figure 3.8: (a) Increase in weekday 8-hour-electricity-use (9am – 5pm) vs. DCCAvg7Day. (b) Same vs. 

WBT9am-5pm. All data points are for times when cooling is required during Jan – Aug. 

 

3.2.3.6 Predicting increases in usage: 12pm-5pm (5-hour) weekday peak demands 

 Next, we used similar methods to analyze and forecast the weekday 5-hour-peak-demand 

(12pm – 5pm) as a function of the two factors (WBT12pm-5pm and DCCAvg7Day). The increase was 

defined as follows: 

𝑦𝑝𝑒𝑎𝑘𝑖𝑛𝑐
(𝑖)

= 𝑦𝑝𝑒𝑎𝑘2020
(𝑖)

− �̂�𝑝𝑒𝑎𝑘2019
(𝑖)

  

 

𝑦𝑝𝑒𝑎𝑘𝑖𝑛𝑐
(𝑖)

= 𝑦𝑝𝑒𝑎𝑘2020
(𝑖)

− �̂�𝑝𝑒𝑎𝑘2019
(𝑖)

 (3.11) 

where 𝑦𝑝𝑒𝑎𝑘𝑖𝑛𝑐
(𝑖) 𝑜𝑟 (𝑖𝑖)

  denotes the increases of the 5-hour-peak-demand from 2019 to 2020, each 

determined as the difference between the observed peak demand in 2020 𝑦𝑝𝑒𝑎𝑘2020
(𝑖) 𝑜𝑟 (𝑖𝑖)

  and the 

modeled peak demand in 2019 �̂�𝑝𝑒𝑎𝑘2019
(𝑖)𝑜𝑟 (𝑖𝑖)

  (modeled for the respective WBT12pm-5pm observed in 

2020; see Section 3.2.3.2). Again, the superscripts “(i)” or “(ii)” represent the two cases of no 

cooling required (N=105 observations) and cooling required (N=69 observations), respectively. 

For DCCAvg7Day, Figure 3.9 (a) reveals an approximately logarithmic trend, similar to the one 

for increases in 8-hour-electricity-use in Figure 3.7 (a). The relationship with WBT12pm-5pm shown 
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in Figure 3.8 (b) is similar to a step function, as above. Therefore, we chose again to set the 

dependence of the increases in 5-hour-peak-demand on WBT12pm-5pm to zero. The final model is as 

follows: 

Model 3:     {
�̂�𝑝𝑒𝑎𝑘𝑖𝑛𝑐
(𝑖)

= 𝛽3.1 𝑙𝑛(𝐷𝐶𝐶𝐴𝑣𝑔7𝐷𝑎𝑦 + 𝛽3.2)

�̂�𝑝𝑒𝑎𝑘2020
(𝑖) = 𝑦𝑝𝑒𝑎𝑘2019

(𝑖) + �̂�𝑝𝑒𝑎𝑘𝑖𝑛𝑐
(𝑖)

 (3.12) 

where �̂�𝑝𝑒𝑎𝑘𝑖𝑛𝑐
(𝑖)

 denotes the predicted increase in the 5-hour-peak-demand, and �̂�𝑝𝑒𝑎𝑘2020
(𝑖)

 denotes 

the predicted 5-hour-peak-demand in 2020. 𝛽3.1  and 𝛽3.2  are the two coefficients of the 

logarithmic regression model, and 𝐷𝐶𝐶𝐴𝑣𝑔7𝐷𝑎𝑦 is as above. The corresponding statistical metrics 

and modeling performance are shown in Table 3.4 and Table 3.6, respectively. 

 

Figure 3.9: (a) Increase in weekday 5-hour-peak-demand (12 pm – 5 pm) vs. CDDAvg7Day. (b) Same 

vs. WBT12pm-5pm. Data points are for times when cooling is not required. 

The relationships for increases in 5-hour-peak-demand in Figure 3.10 are similar to what we 

described for the increases in 8-hour-electricity-use: (i) When cooling is required, only considering 

𝐷𝐶𝐶𝐴𝑣𝑔7𝐷𝑎𝑦 is not sufficient to predict the increases. Instead, the impact of WBT12pm-5pm must be 

considered as well; (ii) a logarithmic and exponential transformation can be used to maximize the 
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forecasting accuracy of the subsequent linear regression model. The factor transformations were 

as follows: 

𝐷𝐶𝐶𝐴𝑣𝑔7𝐷𝑎𝑦
𝑙𝑜𝑔

= 𝑚𝑎𝑥 (𝑐1𝑙𝑛(𝐷𝐶𝐶𝐴𝑣𝑔7𝐷𝑎𝑦) + 𝑐2, 0)                      (3.13) 

 

𝑊𝐵𝑇12𝑝𝑚−5𝑝𝑚
𝑒𝑥𝑝 = 𝑑1𝑒

𝑑2𝑊𝐵𝑇12𝑝𝑚−5𝑝𝑚 (3.14) 

where 𝐷𝐶𝐶𝐴𝑣𝑔7𝐷𝑎𝑦 , 𝐷𝐶𝐶𝐴𝑣𝑔7𝐷𝑎𝑦
𝑙𝑜𝑔

 , 𝑊𝐵𝑇12𝑝𝑚−5𝑝𝑚  and 𝑊𝐵𝑇12𝑝𝑚−5𝑝𝑚
𝑒𝑥𝑝

  are as defined above. 𝑐1 , 

𝑐2 , 𝑑1 , and 𝑑2  are the coefficients of the log and exponential transformations. The maximum 

operator in Eq. (3.13) sets a zero floor for the transformation so that the subsequent regression 

model does not yield negative predicted values. 

 

Figure 3.10: (a) Increase in weekday 5-hour-peak-demand (12 pm – 5 pm) vs. CDDAvg7Day. (b) Same 

vs. WBT12pm-5pm. Data points are for times when cooling is required. 

 

Next, the two transformed variables 𝐷𝐶𝐶𝐴𝑣𝑔7𝐷𝑎𝑦
𝑙𝑜𝑔

 and 𝑊𝐵𝑇12𝑝𝑚−5𝑝𝑚
𝑒𝑥𝑝

 were used as 

independent variables in a two-factor linear regression model to forecast the increase in 5-hour-

peak-demand, as follows: 
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Model 4:   {
�̂�𝑝𝑒𝑎𝑘𝑖𝑛𝑐
(𝑖𝑖)

= 𝛽4.1 + 𝛽4.2𝐷𝐶𝐶𝐴𝑣𝑔7𝐷𝑎𝑦
𝑙𝑜𝑔

 + 𝛽4.3𝑊𝐵𝑇12𝑝𝑚−5𝑝𝑚
𝑒𝑥𝑝

�̂�𝑝𝑒𝑎𝑘2020
(𝑖𝑖) = 𝑦𝑝𝑒𝑎𝑘2019

(𝑖𝑖) + �̂�𝑝𝑒𝑎𝑘𝑖𝑛𝑐
(𝑖𝑖)

 (3.15) 

where, �̂�𝑝𝑒𝑎𝑘𝑖𝑛𝑐
(𝑖𝑖)

 denotes the predicted increase in the 5-hour-peak-demand, and �̂�𝑝𝑒𝑎𝑘2020
(𝑖𝑖)

 denotes 

the predicted 5-hour-peak-demand in 2020. 𝛽4.1, 𝛽4.2, and 𝛽4.3 are the three coefficients of the 2-

factor linear regression model, whose statistical metrics and modeling performance are shown in 

Table 3.5 and Table 3.6, respectively. 

3.2.4 Monte Carlo simulation for possible extreme future scenario 

 Our ultimate objective is to predict the possible values of 8-hour-electricity-use and 5-hour-

peak-demand in the future, if widespread stay-at-home behavior (due to a worsening pandemic or 

other reasons) and warm weather were to coincide in NYC. We chose a simulation for this rather 

than the directly observed data itself, for the following reason: In 2020, NYC did not experience a 

scenario when high DCCAvg7Day coincided with high WBT. Rather, in April, when the daily case 

numbers were at their highest, the WBT in NYC was still below the value of WBTthresh, and air 

conditioning did not yet take place at any material rate. When WBT rose in June and July, the 

impacts of the pandemic in NYC had eased, and people were no longer required to comply with 

the stay-at-home guidelines (known as phase one and phase two reopening). There is therefore no 

directly observable electricity usage data for the putative “worst case” scenario of high DCCAvg7Day 

(and thus a high portion of residents working/studying from home) combined with high 

temperatures. 

For such a prediction, we extracted those observed values of the two predictors (DCCAvg7Day 

and WBT) that met the assumed conditions separately and recombined them to create a new dataset 

via simulation, as follows: We selected only the subset of observed DCCAvg7Day that were greater 
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than half of its Jan.-Dec. 2020 maximum (i.e., greater than 2,651) and only the WBT that were 

greater than WBTthresh. Then, in a Monte Carlo simulation [39], we randomly sampled 1,000 times 

from the two extracted subsets to generate a new set of predictive factors consisting of 1,000 pairs 

of data (each pair with one value for DCCAvg7Day and one value for WBT). The simulated factors 

were then used in Eq. (3.10) and Eq. (3.15) to predict the corresponding 1,000 predictions for 8-

hour-electricity-usage (kWh) and the 1,000 predictions for 5-hour-peak-demand (Watt). 

3.2.5 Evaluation metric for prediction accuracy 

In order to assess the prediction accuracy of the four models (Model 1 – 4), we compared the 

predicted values of the 8-hour-electricity-use and 5-hour-peak-demand to the respective values 

observed in 2020 using the common R2 metric (coefficient of determination): 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑛
𝑖=1

∑ (𝑦𝑖 − �̅�)
𝑛
𝑖=1

2  (3.16) 

where 𝑦𝑖  is the observed 8-hour-electricity-use or 5-hour-peak-demand in 2020, and 𝑦�̂�  is the 

corresponding predicted value, and the corresponding evaluation results of the four models are 

shown in Table 3.6. It should be noted that the R2 results in Figure 3.5-Figure 3.10 are the 

intermediary evaluation results of the single-factor regressions needed in the stepwise modeling 

process, which do not reflect the accuracies of the four models as evaluated by Eq. (3.16). 

3.3 Results 

3.3.1 Model calibration and prediction accuracy 

As outlined in the section of Data and Methods, we used a set of four models to predict the 

two electricity usage characteristics we focused on in this case: (i) The cumulative 9am-5pm 
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electricity usage (in kWh) for the average apartment on weekdays (henceforth “8-hour-electricity-

use”); and (ii) the highest hourly peak demand (in Watt) for the average apartment in the hours of 

12pm-5pm (henceforth “5-hour-peak-demand”). The two independent variables used in each 

prediction are (i) the 7-day rolling average of daily confirmed Covid-19 case numbers in NYC 

prior to the day of observed electricity use (DCCAvg7Day); and (ii) the outdoor WBT averaged over 

the respective time window on the day of observed electricity use, WBT9am-5pm or WBT12pm-5pm. 

Specifically, Model 2 and Model 1 predict the 8-hour-electricity-use, separately for the two 

cases when cooling is required or not, respectively. Model 4 and Model 3 predict the 5-hour-peak-

demand for the same two cases. The regression coefficients and their 95% confidence intervals for 

all models are provided in Table 3.2-Table 3.5. Figure 3.11 displays the predicted and observed 

8-hour-electricity-use and 5-hour-peak-demand in 2020. The prediction accuracies, assessed as R2 

separately for each of the four models, are shown in Table 3.6.  

Overall, the models enable robust predictions of the two electricity usage characteristics in 

2020, with R2 from 0.56 to 0.84 (Table 3.6). However, differences in accuracy between the 4 

models exist. The prediction accuracy is higher at higher temperatures of WBT > 13.8°C (R2 of 

0.84 and 0.80 for Models 2 and 4) than the accuracy at smaller temperatures when no air 

conditioning is required (R2 of 0.57 and 0.56 for Models 1 and 3). The more accurate regime is 

key to determining whether there are potential challenges and risks for electricity grids (see 

Conclusions). Another, but less pronounced difference is that, within the high temperature regime, 

the model to predict the 8-hour-electricity-use (R2=0.84 for Model 2) is moderately more accurate 

than the model for the 5-hour-peak-demand (R2=0.80 for Model 4). This is also reflected in the 

narrower 95% confidence intervals of the respective model coefficients. It is possibly due to more 

volatile/idiosyncratic cooling loads during the summertime. For the conclusions of this paper 
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(Section 3.4), they are reached by the results of the Model 2 and Model 4 (the high-temperature 

case that cooling is required), which have promising accuracy with the R2 of 0.84 and 0.80, 

respectively. 

Table 3.2: Coefficients for Model 1 (prediction of the 8-hour-electricity-use when cooling is not 

required). 95% confidence intervals of the coefficients are reported in parentheses.  

  𝑚1 𝑚2 𝛽1.1 𝛽1.2 

Results 
 -0.019 

(-0.022, 
-0.016) 

2.535 
(2.513, 
2.557) 

0.0641 
(0.059, 
0.069) 

3.828 
(1.409, 
6.248) 

p values  4.15e-08 2.36e-10 2.21e-4 7.56e-8 

 

Table 3.3: Coefficients for Model 2 (prediction of the 8-hour-electricity-use when cooling is 

required.). 95% confidence intervals of the coefficients are reported in parentheses. 

 𝑚3 𝑚4 𝑎1 𝑎2 𝑏1 𝑏2 𝛽2.1 𝛽2.2 𝛽2.3 

Results 
0.625  
(0.447, 
0.803) 

0.088  
(0.075, 
0.101) 

1.377 
(0.911,  
1.843) 

-6.998 
(-9.744, 
-4.255) 

0.137 
(0.023,  
0.297) 

0.101  
(0.047,  
0.154) 

-1.151 
(-1.408, 
-0.883) 

0.978 
(0.839, 
1.117) 

1.058 
(0.875, 
1.241) 

p values 3.12e-5 4.11e-13 7.26e-5 1.12e-4 8.55e-4 3.24e-8 3.99e-8 8.25e-9 6.14e-9 

 

 

Table 3.4: Coefficients for Model 3 (prediction of the 5-hour-peak-demand when cooling is not 

required.). 95% confidence intervals of the coefficients are reported in parentheses. 

 𝑘1 𝑘2 𝛽3.1 𝛽3.2 

Results 

-3.578 

(-4.168, 

-2.988) 

337.6 

(333.5, 

341.6) 

13.17 

(12.11, 

14.24) 

3.556 

(1.282, 

5.830) 

p values 4.88e-6 2.71e-7 3.12e-3 4.11e-7 

 

 

Table 3.5: Coefficients for Model 4 (prediction of the 5-hour-peak-demand when cooling is 

required.). 95% confidence intervals of the coefficients are reported in parentheses.  

 𝑘3 𝑘4 𝑐1 𝑐2 𝑑1 𝑑2 𝛽4.1 𝛽4.2 𝛽4.3 

Results 

81.38 

(57.86, 

104.9) 

0.088 

(0.075, 

0.102) 

212.9 

(93.94, 

331.8) 

-1030 

(-1743, 

-325.6) 

6.426 

(9.711, 

3.451) 

0.1678 

(0.1123, 

0.2233) 

-248.9 

(-305.1, 

-192.7) 

1.0963 

(0.8973, 

1.2953) 

0.9969 

(1.1196, 

0.8742) 

p values 6.72e-5 1.19e-12 9.61e-4 4.47e-5 3.75e-3 7.22e-4 3.58e-5 6.64e-7 1.77e-11 
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Table 3.6: Model accuracy determined from the observed and predicted 8-hour-electricity-use and 

5-hour-peak-demand in 2020. N denotes the number of data points for each R2 statistic. 

 Model 1: 8-hour-

electricity-use without 

cooling 

Model 2: 8-hour-

electricity-use with 

cooling 

Model 3: 5-hour-

peak-demand without 

cooling 

Model 4: 5-hour-

peak-demand 

with cooling 

R2 0.57 0.84 0.56 0.80 

N 107 67 105 69 

 

 

Figure 3.11: Model performance. (a) Observed vs. predicted 8-hour-electricity-usage in 2020. (b) 

Same for 5-hour-peak-demand. 

3.3.2 Forecasting the two usage characteristics in a hypothetical future scenario 

Finally, the models were applied to predict the possible 8-hour-electricity-use and 5-hour-

peak-demand in a scenario in which both warm weather and widespread stay-at-home behavior – 

due to (for example) a renewed, severe level of the pandemic – might coincide in NYC or similar 

metropolitan areas in the future. As shown in the preliminary analyses in Section 3.2.2, there are 

no observed data points for the combined condition, where WBT is larger than WBTthresh (13.8oC) 

and DCCAvg7Day is larger than 2,651 (half of the maximum DCCAvg7Day observed in Jan.-Aug. 2020). 

For such a scenario, the Monte Carlo simulation (Section 3.2.4) was employed to generate new 

data satisfying the respective conditions, and there are two main advantages for using such an 
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approach. First, when it comes to the two predictors for the hypothetical scenario, namely the WBT 

larger than WBTthresh and the DCCAvg7Day larger than 2651, both of them do not follow a normal 

distribution by referring the results of the Kolmogorov-Smirnov (K-S) test [53] (both generate the 

p-value smaller than 0.05, which rejects the null hypothesis that the statistical distribution is same 

as Gaussian.). Therefore, a Monte Carlo simulation is likely to generate more realistic data for the 

two predictors, instead of simply using the averages of the two for prediction, so as to obtain a 

more reliable range of the forecasting results instead of a single predicted value. In addition, as the 

Model 2 and 4, developed through the logarithm and exponential transformations for the WBT and 

DCCAvg7Day are nonlinear, a more realistic dataset produced by the Monte Carlo simulation can 

take into account the nonlinear relationship between the two predictors and the increases, which 

thereby enables more accurate forecasting for the hypothetical scenario. 

The corresponding predicted future-possible 8-hour-electricity-use and 5-hour-peak-demands 

are shown in Table 3.7. The Monte Carlo simulations show that, for the average, occupied 

apartment, the 8-hour-electricity-use and 5-hour-peak-demand are likely to be 7.63—8.21 kWh 

and 1211—1369 Watts, respectively. Note that this is an estimate spanning a range of conditions 

where WBT is larger than 13.8oC and DCCAvg7Day is larger than 2,651. As seen in Figure 3.6, the 

highest observed 8-hour-electricity-use and 5-hour-peak-demand in 2019 were 6.61 kWh and 894 

Watts respectively. Compared to these observed values, we therefore predict that the 8-hour-

electricity-use could be 15%—24% higher than the one under normal circumstances (pre-stay-at-

home period), and the 5-hour-peak-demand could be 35% – 53% higher. 
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Table 3.7: Predicted results of the 8-hour-electricity use and 5-hour-peak-demand, generated using 

Monte Carlo simulations with Model 2 and Model 4 respectively, with values for ± 1 standard 

deviation in parentheses. 

 
Predicted results 

in 2020 
Maximum observed 

in 2019 
Estimated percentage 

increase ranges 

8-hour electricity use 

(kWh) 
7.92 (8.21, 7.63) 6.61 15%—24% 

5-hour peak demand (W) 1289 (1369, 1211) 894 35%—53% 

 

Large WBT values could lead to a potential rapid rise of the 5-hour-peak-demand, and we thus 

further explored the observed and predicted 5-hour-peak-demand under the various DCCAvg7Day 

scenarios and WBT12pm-5pm observed in Jul.-Aug., the warmest summer months (Figure 3.12). One 

observes that when WBT12pm-5pm is constant, the 5-hour-peak-demand increases logarithmically 

with the increase in the number of DCCAvg7Day, as stated in the established Model 4 (Section 

3.2.3.6). Observe that the maximum 5-hour-peak-demand in 2019 was 894 Watts at WBT12pm-5pm 

of 24.2oC and 0 cases, and the maximum observed value in 2020 was 1,188 Watts at WBT12pm-5pm 

of 24.4 oC and DCCAvg7Day of 396. The green band illustrated in Figure 3.12 corresponds to the 

projected peak for the highest-case load band of between 2,651 and 5,301 of DCCAvg7Day, if these 

cases were to occur during the hotter temperatures shown here that require cooling. The projected 

5-hour-peak-demand could certainly exceed the maximum observed one in 2019 (894 Watts), and 

at hotter temperatures could be twice as high as the corresponding 2019 peak, potentially leading 

to new risks for electrical grids in the future (see Conclusions). The peak demand for any hour in 

2019 was observed to be up to 983 Watts, which, without stay-at-home orders, commonly occurs 

only in the late evenings over the summer. The projected green band also exceeds this peak by a 

wide margin. 
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Figure 3.12: Observed and predicted weekday 5-hour-peak-deamd (12pm-5pm, per apartment) in 

Jul.-Aug. 2019 and 2020 under the scenarios of various DCCAvg7Day. 

3.4 Conclusions 

Comparing 2020 with 2019 residential electricity consumption data, a case study was 

conducted to investigate and forecast Covid-19-related increases in residential electricity usage of 

occupied apartments in NYC, based on a sample of 390 apartments. The apartments are, in size 

and vintage, representative of NYC residential building stock, and their electricity consumption is 

consistent with other multi-family settings in the same climate region. We focused on two 

characteristics of residential electricity usage, (i) the electricity consumption (kWh) of an average 

apartment on weekdays in the 8 hours from 9am to 5pm (in order to gauge shifts in energy use and 

commensurate financial burdens from commercial buildings and schools to the residential sector); 

and (ii) the hourly peak demand (Watt) of an average apartment in the 5 hours between 12pm and 

5pm (in order to gauge possible stress on the electricity grid when this peak either coincides with 

system-wide loads or becomes larger than what feeders and distribution lines in residential areas 

were designed to handle).  
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We identified two factors and built a series of regression models which can predict the above 

two characteristics with an R2 of 0.56-0.57 for days when no cooling is required and 0.80-0.84 for 

warmer days. The two factors are the severity of the pandemic (measured as a 7-day rolling average 

of daily confirmed Covid-19 cases in NYC) and the outdoor WBT (measured as the average WBT 

during the respective 8-hour or 5-hour window). The models indicate that increases in residential 

electricity usage between 2019 and 2020 were the higher, the more severe the pandemic (which 

we interpret as a proxy for the portion of residents working and studying from home). And for 

times when cooling was required, these increases were further modulated by the outdoor 

temperature. Therefore, in NYC in 2020, usage increases versus 2019 continued to grow more 

pronounced during the summer months even while lockdown measures were being partially lifted. 

In a Monte Carlo simulation, we then used the models to forecast the two usage characteristics 

for conditions which, fortunately, did not actually occur in 2020, but which could occur in the 

future in NYC, in similar regions, or indeed in future pandemics or natural catastrophes with 

comparable stay-at-home guidelines. These conditions were the combination of high outdoor wet 

bulb temperatures (such that cooling in the apartments is required) coupled with medium to high 

pandemic severity (and with it a high presumed portion of residents working or studying from 

home).  

We found that under such assumed future conditions, the weekday 8-hour-electricity-use 

(9am-5pm) could be 15%—24% higher than the one under normal circumstances (i.e., no stay-at-

home behavior), implying a corresponding substantial increase in electricity costs for residents.  

We further found that the weekday 5-hour-peak-demand (12pm-5pm) could be 35%—53% 

higher than otherwise. This suggests possible grid stress especially if substantial increases in 

residential demand coincide with recovery in commercial demand. At high daily case numbers 
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(100% of Jan-Aug. 2020 maximum) and WBT12pm-5pm above 25°C, the 5-hour hourly peak demand 

would be nearly twice that of the maximum 5-hour-peak-demand in 2019 (894 Watts). It would 

also be much higher than the largest-ever observed peak demand in 2019 (983 Watts). In 

predominantly residential network areas and feeders with no commensurate load reduction in 

commercial buildings to offset this increase, such high peaks – nearly twice as high as the prior 

year peak – could lead to loads that exceed the designed feeder capacity, possibly leading to failure 

risks of the local substation and distribution infrastructure. 

This chapter can provide a meaningful reference point for building managers and utilities to 

improve the balance of supply and demand in future grids, for example through battery storage in 

residential buildings, distributed storage, market-mechanisms to encourage the integration of grid-

efficient interactive buildings into smart grids, including via storage in electric vehicles, and 

Transactive Energy Networks [16]. In such contexts, the models introduced in this chapter could 

be integrated with emerging smart-grid management techniques, in order to improve the residential 

electricity forecasting accuracy under stay-at-home guidelines due to a pandemic or other natural 

catastrophes – or to account for the potential of a “new-normal” lifestyle, even in the absence of a 

catastrophe.  
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Chapter 4. A New Generalized Autoencoder for Structural Damage 

Assessment 

The main part of this chapter is presented in the paper co-authored with Dr. Marcello 

Morgantini and Prof. Raimondo Betti, and published in the Journal of Mechanical Systems and 

Signal Processing [54]. 

4.1 Introduction 

In recent years, advances in sensors and computer technologies have supported various 

promising developments in structural-health-monitoring (SHM) techniques. Data obtained from 

sensors installed on a structure can help engineers continuously assess the structural integrity, 

reduce the operational costs, and optimize the available resources [55]. In dealing with buildings 

and bridges, the most common measurements available for such analyses is represented by the 

time histories of the structural response, i.e., acceleration and/or displacement, recorded at 

different locations on the structure in service conditions or during particular single events (e.g., an 

earthquake or hurricane). Because of the nature of the data used, these SHM methodologies fall 

into the category of vibration-based SHM approaches. 

Among all the possible features used in damage assessment strategies that rely on the 

vibration-based SHM approaches, modal characteristics (e.g., modal frequencies, mode shapes, 

modal damping ratios, etc.), which are functions of the physical parameters of the structure (mass, 

damping, and stiffness), have been proven to be very effective and practical features for structural 

damage assessment [56]. For example, Shih et al. [57] developed a multi-criteria-based non-

destructive procedure to detect damage in a slab-on-girder bridge, by accounting for changes in 

natural frequencies, modal flexibility, and modal strain energy. They concluded that the modal 
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flexibility and the modal strain energy can reliably identify the scenarios of single and multiple 

damages in the bridge’s girders and deck. Going beyond the changes in modal characteristics, an 

alternative strategy for damage assessment is the one based on model updating [58], where the 

recorded responses of a real-life system are used to update iteratively the physical parameters of a 

mathematical model (usually a finite element model) until the model can accurately reproduce the 

recorded responses: If there are substantial variations in the physical parameters during the 

monitoring period, e.g. a noticeable drop in stiffness, it might indicate that the system has suffered 

some structural damages. 

In recent years, thanks to the advances in modern computer performances, features extracted 

directly from the structural responses through simple digital signal processing tools have become 

very appealing since their extraction is very fast and does not require large computational resources 

and great expertise by users. Among these data-based features, the ones defined in the cepstrum 

domain, extensively used in the fields of speech and speaker recognition, have been proven to be 

quite effective in SHM applications [59]. The cepstrum of a signal, originally defined as the 

“power spectrum of the logarithm of the power spectrum”, was first introduced by Bogert et al. 

[60], when they developed a method to detect echoes from time-series signals. Recently, cepstrum-

based features have been employed in structural damage assessment by Zhang et al. [61]. They 

used Mel-Frequency Cepstral Coefficients (MFCCs) to characterize the bridge deck acoustic 

response to ultrasonic pulses to study the delamination of the concrete deck. In 2014, Balsamo et 

al. [59] used the MFCCs obtained from the vibration response of buildings and bridges as Damage 

Sensitive Features (DSFs), with a novelty detection strategy integrated with statistical-pattern-

recognition analysis. In 2021, Morgantini et al. [55] presented a theoretical investigation that 

shows analytically how the power cepstral coefficients of the structural acceleration responses are 
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linked to the modal characteristics of the structure and how they can be successfully used in a 

damage assessment strategy. One of the advantages of using these cepstral coefficients is 

represented by the rapidity with which they can be extracted from the original time signal, 

compared to other features (e.g., natural frequencies) that require complex and time-consuming 

operations. This characteristic of the cepstral coefficients, together with their intrinsic connection 

with the structure’s modal characteristics, has served as the springboard for the development of 

the new generalized auto-encoder, presented in this chapter, for the rapid assessment of structural 

damage. 

With the recent explosion of Machine Learning (ML) applications in every sector of our life, 

ML and deep-learning techniques are finding fertile grounds in many civil engineering 

applications and recently have shown great potential in structural damage assessment [62], thanks 

also to an increasingly large amount of measurement data from real buildings and bridges. Among 

these techniques used in SHM problems, the convolutional neural networks (CNNs) [63], 

implemented on a supervised-learning framework, have shown promising results when used in 

damage assessment in concrete and steel structures [64, 65]. However, even though supervised 

strategies can provide fairly accurate damage assessment results, they need proper network training 

that commonly requires large datasets representative of both the undamaged structure and the 

structure in different damage conditions, a requirement that cannot be obviously satisfied when 

dealing with real-life structures [66].  

Consequently, over recent years, many studies have focused on approaches of unsupervised 

learning for the damage assessment in buildings and bridges. Pathirage et al. [67] developed an 

unsupervised-learning framework for structural damage assessment, which consists of a deep 

autoencoder for structural characteristics dimension reduction, and a simple autoencoder for a 



82 

 

regression task of predicting structural stiffness reduction. Through numerical and experimental 

investigations on steel frame structures, they concluded that the proposed framework enables 

improved accuracy and efficiency in structural damage assessment compared to the traditional 

neural network approaches. Ma et al. [68] used a Variational Auto-Encoder (VAE) to learn a 

compressed hidden representation of the structural acceleration responses to be used in damage 

detection. Through the numerical studies of a beam-like bridge, they concluded that the proposed 

method can accurately identify different types of damages that were simulated by setting various 

crack depths on the structure. Along the same line of research, Wang et al. [66] proposed an 

unsupervised approach, based on a deep auto-encoder and on a one-class support vector machine, 

to assess structural damage, using the recorded acceleration responses of the intact structures as 

training data: the proposed method enabled high assessment accuracy (91% or higher). 

Although the use of appropriate features can effectively improve the performance of ML 

models in the task of assessing damage, there are still some unavoidable bottlenecks in modeling 

with many deep-learning algorithms, e.g., the overly complicated network structure, leading to 

slow training speed and overfitting issues without reasonable model generalization [69]. In this 

chapter, a New Generalized Auto-Encoder (NGAE), integrated with a statistical-pattern-

recognition strategy and the power cepstral coefficients of the recorded structural acceleration 

responses, is proposed for structural damage assessment. This NGAE is capable of capturing the 

component of the power cepstral coefficients that is linked to the overall structural properties and, 

at the same time, of shrinking the data variance caused by different external excitations, sensor 

and actuator locations, and measurement noise. The cepstral coefficients, by virtue of a compact 

representation of the structural properties, can greatly simplify the structure of the network, and 

therefore, significantly accelerate both the training and the inference speeds, compared to an auto-
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encoder that uses the recorded acceleration responses or the traditional modal features as the 

network’s inputs and outputs [66, 67]. Based on the well-trained NGAE, two evaluation metrics 

for assessing damage are computed and integrated with a statistical-pattern-recognition approach 

for further damage detection and quantification. The effectiveness of the proposed method was 

validated by both simulated and real-life examples, comparing the NGAE’s results with those 

obtained using a Traditional Auto-Encoder (TAE) [70] and those obtained through the Principal 

Component Analysis (PCA) [71]. 

4.2 Methodology 

4.2.1 Analytical expression of the cepstral coefficients of structural acceleration  

The power cepstral coefficients, extracted from the acceleration response of a structure, 

provide an alternative and compact representation of modal properties of the structural system 

(e.g., natural frequencies, damping ratios and mode shapes) and have shown great potential in 

structural damage assessment. 

Let us consider the equations of motion of an 𝑁𝑑 degree-of-freedom (DOF) model of a linear 

time-invariant system: 

𝑴�̈�(𝑡) + 𝑪�̇�(𝑡) + 𝑲𝒚(𝑡) = 𝒖(𝑡) (4.1) 

where 𝑴 ∈ ℝ𝑁𝑑×𝑁𝑑, 𝑪 ∈ ℝ𝑁𝑑×𝑁𝑑 and 𝑲 ∈ ℝ𝑁𝑑×𝑁𝑑 are the mass, damping and stiffness matrices, 

respectively, each of dimension 𝑁𝑑 × 𝑁𝑑 . The vector 𝒚(𝑡) ∈ ℝ𝑁𝑑  is the vector of nodal 

displacement, �̇�(𝑡) ∈ ℝ𝑁𝑑  the nodal velocity vector, and �̈�(𝑡) ∈ ℝ𝑁𝑑  the nodal acceleration 

vector. 𝒖(𝑡) ∈ ℝ𝑁𝑑 is the input vector, containing the values of the nodal external excitations at 

time 𝑡.  
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For the general case where all the 𝑁𝑑  DOFs are excited by 𝑁𝑑  different input excitation, 

considering that the measured structural response comes in as a discrete time signal, the z-

transform of the acceleration time history at the 𝑑 th DOF (𝑑 = 1,… ,𝑁𝑑 ), 𝐴𝑑(𝑧), can be then 

expressed as: 

𝐴𝑑(𝑧) =∑𝐻𝑎(𝑧)𝑑,𝑗𝑈𝑗(𝑧)

𝑁𝑑

𝑗=1

 (4.2) 

where 𝐻𝑎(𝑧)𝑑,𝑗  represents the (𝑑, 𝑗)th term of the inertance matrix and 𝑈𝑗(𝑧) represents the z-

transform of the input excitation 𝒖𝑗(𝑡) applied at the 𝑗th DOF (𝑗 = 1,… ,𝑁𝑑). By expanding the 

right-hand side of Eq. (2), 𝐴𝑑(𝑧) can be rewritten in the form of products as: 

𝐴𝑑(𝑧) =
(1 − 𝑧−1)∏ (1 − 𝑍𝑙

(𝑑)
𝑧−1)𝑀

𝑙=1

∏ (1 − 𝑒𝜆𝑙∆𝑡𝑧−1)(1 − 𝑒𝜆𝑙
∗∆𝑡𝑧−1)𝑁

𝑙=1

 (4.3) 

where 𝜆𝑙 and 𝜆𝑙
∗ are the complex conjugate eigenvalues associated with the 𝑙𝑡ℎ vibrational mode 

of the system (𝑙 = 1,… ,𝑁𝑑), and ∆𝑡 represents the sampling time interval at which the structural 

acceleration has been recorded. The symbols 𝑍𝑙
(𝑑)

 for 𝑙 = 1,… ,𝑀 are the 𝑀 roots of the following 

equation: 

∑𝑈𝑗(𝑧)

𝑁𝑑

𝑗=1

∑𝜙𝑑,𝑙𝜙𝑗,𝑙(1 − 𝑃𝑎,𝑙𝑧
−1)

𝑁𝑑

𝑙=1

∏(1− 𝑒𝜆𝑘∆𝑡𝑧−1)(1 − 𝑒𝜆𝑘
∗∆𝑡𝑧−1)

𝑁𝑑

𝑘=1
𝑘≠𝑙

= 0 (4.4) 

where 𝜙𝑑,𝑙𝜙𝑗,𝑙 are the components of the 𝑙𝑡ℎ  mode shape at the corresponding 𝑑𝑡ℎ  and 𝑗𝑡ℎ 

locations. 𝑃𝑎,𝑙  indicates a function of a modal characteristics and of the type of measurements 

considered. As shown in [1], Eq. (4.4) accounts for the locations of the forcing functions and of 

the sensors, for the type of measurement as well as for the type and magnitude of the input forces. 

By taking the Inverse Discrete Fourier Transform (IDFT) of the logarithm of the squared 
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magnitude of 𝐴𝑑(𝑧), the cepstral coefficients extracted from the time history of the acceleration 

recorded at the 𝑑th DOF can be expressed as follows: 

𝑐𝑑[𝑞] =
1

𝑞
[∑2𝑒−𝜉𝑙𝜔𝑙∆𝑡𝑞 𝑐𝑜𝑠(𝜔𝑑𝑎𝑚𝑝,𝑙∆𝑡𝑞) − 1

𝑁𝑑

𝑙=1

−∑𝑍𝑙
(𝑑)𝑞

𝑀

𝑙=1

]      for  𝑞 > 0 (4.5) 

where 𝑐𝑑[𝑞] represents 𝑞𝑡ℎ cepstral coefficient for the acceleration at the 𝑑𝑡ℎ DOF (𝑑 = 1,… ,𝑁𝑑) 

with 𝑞 indicating the “quefrency” index. Only the cepstral coefficients for  𝑞 > 0 are considered, 

as the 𝑐𝑑[𝑞] at 𝑞 = 0 depends only on the sampled input while the 𝑐𝑑[𝑞] for 𝑞 < 0 are simply 

equal to zero [1]. The parameters  𝜉𝑙 and 𝜔𝑙 are the damping ratio and natural frequency associated 

with the 𝑙𝑡ℎ  vibrational mode of the system, respectively, and 𝜔𝑑𝑎𝑚𝑝,𝑙 = 𝜔𝑙√1 − 𝜉𝑙
2  is the 

corresponding damped natural frequency. For a detailed derivation of Eq. (4.5), the reader is 

referred to [1]. 

In this chapter, it is important to note that the expression of the cepstral coefficients of the 

structural acceleration recorded at the 𝑑th location (Eq. (4.5)) can be re-written as: 

𝑐𝑑[𝑞] = 𝜃[𝑞] + 𝛾𝑑[𝑞] (4.6) 

where 𝜃[𝑞] and 𝛾𝑑[𝑞] are given by: 

{
 
 

 
 
𝜃[𝑞] =

1

𝑞
∑2𝑒−𝜉𝑙𝜔𝑙∆𝑡𝑞 cos(𝜔𝑑𝑎𝑚𝑝,𝑙∆𝑡𝑞) − 1

𝑁𝑑

𝑙=1

𝛾𝑑[𝑞] = −
1

𝑞
∑𝑍𝑙

(𝑑)𝑞

𝑀

𝑙=1

 (4.7) 

Eq. (4.6) and (4.7) offer some important insights into the nature of the cepstral coefficients. It 

appears that the cepstral coefficients 𝑐𝑑[𝑞] (𝑞 = 1, 2, … , 𝑄) can be thought as composed by two 

terms, namely 𝜃[𝑞] and 𝛾𝑑[𝑞]. The term 𝜃[𝑞] only depends on the structural properties (natural 

frequencies and damping ratios) of the overall structural system and thus it is independent of the 
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location where the structural acceleration has been recorded, i.e., the same 𝜃[𝑞] is present in all 

𝑞𝑡ℎ cepstral coefficients extracted from the acceleration responses recorded at different locations 

on the structure. On the contrary, the component 𝛾𝑑[𝑞], which is completely related to the roots 

𝑍𝑙
(𝑑)

, depends on the recording location as well as on the locations where the forcing functions are 

applied (through the components of the mode shapes at those location), on the characteristics of 

the external excitations, and on the overall structural properties. Hence, it is reasonable to expect 

that, for the cepstral coefficients extracted from the recorded acceleration responses of a system, 

the larger contribution to the variance in the estimation of the cepstral coefficients comes from the 

term 𝛾𝑑[𝑞], while the contribution from 𝜃[𝑞] should remain basically constant, except for some 

inevitable measurement noise. Therefore, it would be helpful to develop an effective strategy for 

damage assessment that reduces the variance caused by the excitation-related term 𝛾𝑑[𝑞] and by 

measurement noise and enhances the weight of the term 𝜃[𝑞]. 

4.2.2 Autoencoders and the proposed framework 

4.2.2.1 The traditional autoencoder 

As shown in Section 4.2.1, the cepstral coefficients, extracted from the structural acceleration, 

might present a large variance as a result of the different external excitations and this might hide 

potential changes in the 𝜃[𝑞]  counterpart induced by damage. In order to strictly assess a 

structure’s state without considerable interference by the excitations and measurement noise, 

building an autoencoder-based model to characterize the underlying structural properties 

(embedded in the cepstral coefficients) can be an effective solution.  

The autoencoder is one type of unsupervised neural networks, which commonly sets its output 

values equal to its inputs through backpropagation of numerical optimization [70]. A wide variety 
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of autoencoder-based models have been used for representation learning and feature dimension 

reduction, handling large amounts of unlabeled recorded data [72]. The simplest structure of a 

traditional autoencoder (TAE) consists of an input layer, a hidden layer, and an output layer, where 

the input and its corresponding output should be identical to each other, as shown in Figure 4.1. 

Alternatively, a TAE can be considered as a two-part system, namely an encoder and a decoder, 

where the encoder maps an input vector into a compressed hidden representation, while the 

decoder maps the hidden representation to a reconstruction of the original input. 

Let’s first investigate the case where a single-hidden-layer TAE is set up using the power 

cepstral coefficients of the structural acceleration as its inputs and outputs. Let’s assume that a 

structure in its undamaged state is monitored at 𝑁𝑑  locations and that a training dataset 

{𝒙1,𝑑, … , 𝒙𝑁𝑡𝑟,𝑑}𝑑=1
𝑁𝑑

 has been created. Such a dataset accounts for 𝑁𝑡𝑟 × 𝑁𝑑 vectors (commonly 

called instances) 𝒙𝑖,𝑑 ∈ ℝ
𝑚  ( 𝑖 = 1, … , 𝑁𝑡𝑟  with 𝑁𝑡𝑟 > 𝑚 , and 𝑑 = 1,… ,𝑁𝑑 ), where each 𝒙𝑖,𝑑 

contains the 𝑄 cepstral coefficients extracted from the 𝑖th record of the acceleration response at the 

𝑑th recording location. Thus, the vector 𝒙𝑖,𝑑 can be expressed as: 

𝒙𝑖,𝑑 = {𝑐𝑖,𝑑[1],  𝑐𝑖,𝑑[2],  …𝑐𝑖,𝑑[𝑞], … , 𝑐𝑖,𝑑[𝑄]}
𝑇
 (4.8) 

where 𝑞  represents the 𝑞 th element in the vector 𝒙𝑖,𝑑 . Using the Mean Squared Error (MSE) 

between the input and the reconstructed output of the TAE as the loss function of the TAE, we can 

state the optimization problem of training a TAE built to model the structural response at the 𝑑th 

recording location as follows: 

[𝑾1,𝑑,  𝑾2,𝑑, 𝒃1,𝑑, 𝒃2,𝑑]

= arg min
1

𝑁𝑡𝑟
∑

1

𝑄
‖𝒙𝑖,𝑑 − 𝑔 (𝑾2,𝑑(𝑓(𝑾1,𝑑𝒙𝑖,𝑑 + 𝒃1,𝑑) + 𝒃2,𝑑))‖

𝐹

2
𝑁𝑡𝑟

𝑖=1

 

(4.9) 
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where 𝑾1,𝑑 ∈ ℝ
𝑝×𝑄 and 𝑾2,𝑑 ∈ ℝ

𝑄×𝑝 are the weights of the encoder and decoder, respectively, 

and 𝒃1,𝑑 ∈ ℝ
𝑝 and 𝒃2,𝑑 ∈ ℝ

𝑄 are the corresponding biases, with 𝑄  and 𝑝  representing the 

dimensions of the input/output (𝑄) and hidden spaces (𝑝), i.e., the input/output and hidden layer 

sizes, respectively, and generally 𝑝 < 𝑄. In Eq. (4.9), the operator ‖⋅‖𝐹
2  represents the Frobenius 

norm. The encoded hidden representation 𝒉𝑖,𝑑 ∈ ℝ
𝑝 by the encoder, and the reconstructed output 

�̂�𝑖,𝑑 ∈ ℝ
𝑄 by the decoder can be expressed by: 

𝒉𝑖,𝑑 = 𝑓(𝑾1,𝑑𝒙𝑖,𝑑 + 𝒃1,𝑑) 

𝒙𝑖,𝑑 = 𝑔(𝑾2,𝑑𝒉𝑖,𝑑 + 𝒃2,𝑑) 

(4.10) 

where 𝑓(⋅) and 𝑔(⋅) represent the element-wise activation functions for the encoder and decoder, 

respectively (usually the sigmoid function or hyperbolic tangent function [20]). Generally, the 

nonlinearity of the activation functions 𝑓(⋅) and 𝑔(∙) enables high-level computational abilities, 

but can lead to a higher level of difficulty in solving the optimization problem. In this work, the 

Adam optimization algorithm [73] has been employed in the training of the TAE. By solving the 

optimization problem of Eq. (4.9), the single-hidden-layer TAE, when incorporating a linear or a 

sigmoid activation function at the hidden layer, is able to learn the underlying information from 

the input in a similar fashion as when using the PCA [74]. Specifically, the reconstructed output 

of such a TAE is strongly related to the PCA reconstruction based on the first 𝑝  principal 

components of the covariance matrix 𝑪𝑑 = 𝑿𝑑𝑿𝑑
𝑇 ∈ ℝ𝑄×𝑄, where 𝑿𝑑 = [𝒙1,𝑑, … , 𝒙𝑁𝑡𝑟,𝑑]. 

However, this structure of the TAE does not perform sufficiently well in detecting damage 

when using the cepstral coefficients as inputs to the network (as shown in the Numerical Results). 

In fact, the nature of this TAE would aim to retain as much information as possible from the entire 

cepstral coefficients (rather than only from the most relevant information about the structural 

properties contained in 𝜃[𝑞]) and would try to fit the excitation-related variance embedded in 
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𝛾𝑑[𝑞], as well as the one caused by the measurement noise. Therefore, it is necessary to generalize 

the structure of the autoencoder to reach a better characterization of the overall structural properties 

of the system indicative of the presence of damage.  

4.2.2.2 The proposed new generalized autoencoder 

The generalized autoencoder (GAE) was first proposed by Wang et al. [75], with the aim of 

better learning the underlying structure of the original data and of obtaining a well-generalized 

compressed representation at the hidden space. As originally presented in [75], the GAE is set to 

establish a mapping that forces each input instance to reconstruct a set of instances based on a 

relational loss function, rather than reconstruct itself. However, the GAE as originally defined is 

not applicable in our case, as the defined relational loss function still cannot weaken the 

contribution to the variance by the term 𝛾𝑑[𝑞] and by the measurement noise. In addition, it is 

noteworthy that the GAE does not support a strict ground truth (desired output) for each of the 

input instances, which is different from the TAE whose desired outputs are identical to the 

corresponding inputs. Therefore, it would be difficult to reasonably assess the signal reconstruction 

error of the GAE by specific evaluation metrics. 

 

Figure 4.1: The traditional autoencoder (a) and the proposed new generalized autoencoder (b). 
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By drawing on the idea of the relational loss function of the GAE and on the advantage of the 

MSE-based signal reconstruction error, a New Generalized Auto-Encoder (NGAE) is proposed for 

improving modeling performance. Figure 4.1 offers a comparison between the fundamental 

mechanisms of the TAE and the NGAE architectures. Starting from the initial dataset, the 

optimization problem of training a NGAE built to model the structural response at the 𝑑th recording 

location can be expressed as: 

[𝑾1,𝑑
′ ,  𝑾2,𝑑

′ , 𝒃1,𝑑
′ , 𝒃2,𝑑

′ ] 

= argmin
1

𝑁𝑡𝑟
∑

1

𝑄
‖𝒙𝑖

′ − 𝑔 (𝑾2,𝑑
′ (𝑓(𝑾1,𝑑

′ 𝒙𝑖,𝑑 + 𝒃1,𝑑
′ ) + 𝒃2,𝑑

′ ))‖
𝐹

2
𝑁𝑡𝑟

𝑖=1

 

               = argmin
1

𝑁𝑡𝑟
∑

1

𝑄
‖𝒙𝑖

′ − 𝑔(𝑾2,𝑑
′ 𝒉𝑖,𝑑

′ + 𝒃2,𝑑
′ )‖

𝐹

2

𝑁𝑡𝑟

𝑖=1

 

= argmin
1

𝑁𝑡𝑟
∑

1

𝑄
‖𝒙𝑖

′ − �̂�𝑖,𝑑
′ ‖

𝐹

2

𝑁𝑡𝑟

𝑖=1

 

(4.11) 

where 𝑾1,𝑑
′ ∈ ℝ𝑝×𝑄, 𝑾2,𝑑

′ ∈ ℝ𝑄×𝑝, 𝒃1,𝑑
′ ∈ ℝ𝑝 and 𝒃2,𝑑

′ ∈ ℝ𝑄 represent the weights and biases of 

the NGAE. The vector 𝒉𝑖,𝑑
′ = 𝑓(𝑾1,𝑑

′ 𝒙𝑖,𝑑 + 𝒃1,𝑑
′ ) ∈ ℝ𝑝  represents the 𝑖 th encoded hidden 

representation by the NGAE’s encoder, i.e., the 𝑖th output of the hidden layer, with 𝑝 being the 

hidden space dimension, while the vector �̂�𝑖,𝑑
′ = 𝑔(𝑾2,𝑑

′ 𝒉𝑖,𝑑
′ + 𝒃2,𝑑

′ ) ∈ ℝ𝑄  represents the 𝑖 th 

reconstructed output by the NGAE’s decoder, where 𝑓(⋅) and 𝑔(⋅) represent the element-wise 

activation functions as introduced in Section 4.2.2.1. The vector 𝒙𝑖
′ ∈ ℝ𝑄, termed as the “new-

ground-truth” vector of the NGAE, is set to be the 𝑖th desired output of the NGAE. It is defined as 

a weighted summation of the cepstral coefficient vectors at every recording location of the system, 

expressed as: 
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𝒙𝑖
′ =∑𝑠𝑗𝒙𝑖,𝑗

𝑁𝑑

𝑗=1

 (4.12) 

where 𝑠𝑗  is a specific weighting term corresponding to the 𝑗 th location (𝑗 = 1,… ,𝑁𝑑 ). Such a 

coefficient is defined by looking at the average of the variance of the cepstral coefficients in the 

vectors 𝒙𝑖,𝑗 (𝑖 = 1,… ,𝑁𝑡𝑟) and can be expressed as: 

𝑠𝑗 =
𝐶

1
𝑄
∑

1
𝑁𝑡𝑟 − 1

∑ (𝑥𝑖,𝑗[𝑞] − �̅�𝑗[𝑞])
2𝑁𝑡𝑟

𝑖=1
𝑚
𝑞=1

 
(4.13) 

subject to the condition:  

∑𝑠𝑗

𝑁𝑑

𝑗=1

= 1 (4.14) 

where 𝑥𝑖,𝑗[𝑞]  represents the 𝑞 th element in the vector 𝒙𝑖,𝑗  ( 𝑞 = 1, . . , 𝑄 ), i.e., the cepstral 

coefficient 𝑐𝑖,𝑗[𝑞], while �̅�𝑗[𝑞] represents the mean of the elements 𝑥𝑖,𝑗[𝑞] for 𝑖 = 1,… ,𝑁𝑡𝑟 with 

respect to the 𝑗th location. The constant 𝐶 is determined by the equality constraint of Eq. (4.14). 

Using Eq. (4.6), the new-ground-truth vector 𝒙𝑖
′ can be expressed as: 

𝒙𝑖
′ = {𝜃𝑖[1] + ∑ 𝑠𝑗𝛾𝑖,𝑗

𝑁𝑑
𝑗=1 [1],…, 𝜃𝑖[𝑞] + ∑ 𝑠𝑗𝛾𝑖,𝑗

𝑁𝑑
𝑗=1 [𝑞], …, 𝜃𝑖[𝑄] + ∑ 𝑠𝑗𝛾𝑖,𝑗

𝑁𝑑
𝑗=1 [𝑄]}

𝑇

 (4.15) 

while its corresponding input 𝒙𝑖,𝑑 is: 

𝒙𝑖,𝑑 = {𝜃𝑖[1] + 𝛾𝑖,𝑑[1],…, 𝜃𝑖[𝑞] + 𝛾𝑖,𝑑[𝑞], …, 𝜃𝑖[𝑄] + 𝛾𝑖,𝑑[𝑄]}
𝑇
 (4.16) 

One can observe that the new-ground-truth vector 𝒙𝑖
′  contains 𝑄  newly-defined cepstral 

coefficients, each of which maintains intact the contribution 𝜃𝑖[𝑞] related to the overall structural 

properties, while the contribution from the excitation and sensor locations appears as a weighted 

average of all the corresponding terms at the various locations. Two important points are 

noteworthy here: First, the newly defined vector 𝒙𝑖
′  is independent of the locations where the 
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structural acceleration has been recorded. This implies that all the 𝑁𝑑 NGAEs, used to model the 

overall system, will have the same new-ground-truth vectors 𝒙𝑖
′  (𝑖 = 1, … , 𝑁𝑡𝑟 ) as the desired 

outputs for their training. Therefore, if 𝑁𝑑 NGAEs are set up for modeling the structural response 

at the 𝑁𝑑 locations in the system, they will have the same decoder mapping after a well training 

process. The other important point is about the components of 𝒙𝑖
′  representing the weighted 

summation of the excitation-related term 𝛾𝑖,𝑗[𝑞] for 𝑗 = 1, … , 𝑁𝑑. As the weight 𝑠𝑗 is set inversely 

proportional to the variance of all the cepstral coefficients extracted at the 𝑗 th location, the 

summation ∑ 𝑠𝑗𝛾𝑖,𝑗
𝑁𝑑
𝑗=1 [𝑞] can help shrink the data variance associated with the excitation and 

measurement location terms, indirectly enhancing the contribution of the term 𝜃𝑖[𝑞]: This will 

facilitate the assessment of damage. Consequently, such a mapping from an input 𝒙𝑖,𝑑  to the 

corresponding desired output 𝒙𝑖
′ can be interpreted as building a “stronger” connection between 

the input and output through their common part 𝜃𝑖[𝑞] based on the learned hidden representation 

𝒉𝑖,𝑑
′ . To visualize this effect, Figure 4.2 shows the output vector 𝒙𝑖,𝑑 (𝑑 = 1) (introduced by Eq. 

(4.16)) and the vector 𝒙𝑖
′ (introduced by Eq. (4.15)) obtained from an 8 DOF shear-type system 

that will be discussed in Section 4.3.1, subjected to an excitation applied either at the 1st or the 8th 

DOF. It directly shows that the cepstral coefficients in the vector 𝒙𝑖,𝑑 (the TAE’s desired output, 

shown in Figure 4.2 (a)) produces different trends and distributions under the two different 

excitation locations (due to different contributions of the term 𝛾𝑖,𝑑[𝑞]), while the trends and 

distributions of the modified cepstral coefficients in the vector 𝒙𝑖
′ (the NGAE’s desired output, 

shown in Figure 4.2 (b)) are very close, as the variance in each term of 𝒙𝑖
′  has been largely 

reduced. 
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Figure 4.2: Visualizations of the sampled instances xi,d (d = 1) and x’
i obtained from an 8DOF shear-

type system, with a zero-mean Gaussian white noise excitation applied at either the 1st or 8th DOF. 

 

4.2.2.3 NGAE with linear activation function 

In order to provide a more explicit intuition of the theoretical mechanism of the NGAE, let us 

now consider the case where both activation functions 𝑓(⋅) and 𝑔(⋅) in Eq. (4.11) are linear, i.e., 

𝑓(𝑾1,𝑑
′ 𝒙𝑖,𝑑 + 𝒃1,𝑑

′ ) = 𝑾1,𝑑
′ 𝒙𝑖,𝑑 + 𝒃1,𝑑

′  and 𝑔(𝑾2,𝑑
′ 𝒉𝑖,𝑑

′ + 𝒃2,𝑑
′ ) = 𝑾2,𝑑

′ 𝒉𝑖,𝑑
′ + 𝒃2,𝑑

′ . In this case, 

it is possible to derive an analytical solution for the optimization problem associated with the 

NGAE, defined in Eq. (4.11), so to better understand the mechanism behind the proposed NGAE. 

By substituting the above linear activation functions, removing the scaling terms, and applying 

the properties of the Frobenius norm, Eq. (4.11) can be expressed in a matrix form as: 

[𝑾1,𝑑
′ ,  𝑾2,𝑑

′ , 𝒃1,𝑑
′ , 𝒃2,𝑑

′ ] = arg min‖𝑿′ − (𝑾2,𝑑
′ (𝑾1,𝑑

′ 𝑿𝑑 + 𝒃1,𝑑
′ 𝟏𝑁𝑡𝑟

𝑇 ) + 𝒃2,𝑑
′ 𝟏𝑁𝑡𝑟

𝑇 )‖
𝐹

2
 (4.17) 

where the columns of the matrices 𝑿′ ∈ ℝ𝑄×𝑁𝑡𝑟 and 𝑿𝑑 ∈ ℝ
𝑄×𝑁𝑡𝑟  are the desired output vectors 

𝒙𝑖
′ ∈ ℝ𝑄 and input vectors 𝒙𝑖,𝑑 ∈ ℝ𝑄 (𝑖 = 1,… ,𝑁𝑡𝑟), respectively, and 𝟏𝑁𝑡𝑟 ∈ ℝ

𝑁𝑡𝑟  is a vector of 

ones. Let us define 𝑯𝑑
′ = 𝑾1,𝑑

′ 𝑿𝑑 + 𝒃1,𝑑
′ 𝟏𝑁𝑡𝑟

𝑇  (𝑯𝑑
′ ∈ ℝ𝑝×𝑁𝑡𝑟) as the hidden output matrix of the 
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NGAE, whose columns are the hidden outputs 𝒉𝑖,𝑑
′  (𝑖 = 1, … , 𝑁𝑡𝑟). Such a new matrix will allow 

us to express Eq. (4.17) as: 

[𝑾1,𝑑
′ ,  𝑾2,𝑑

′ , 𝒃1,𝑑
′ , 𝒃2,𝑑

′ ] = arg min ‖𝑿′ − (𝑾2,𝑑
′ 𝑯𝑑

′ + 𝒃2,𝑑
′ 𝟏𝑁𝑡𝑟

𝑇 )‖
𝐹

2
 

= arg min ‖𝑿′ − �̂�𝑑
′ ‖

𝐹

2
 

(4.18) 

where �̂�𝑑
′ = 𝑾2,𝑑

′ 𝑯𝑑
′ + 𝒃2,𝑑

′ 𝟏𝑁𝑡𝑟
𝑇  (�̂�𝑑

′ ∈ ℝ𝑄×𝑁𝑡𝑟) indicates the reconstructed output matrix of the 

NGAE at the 𝑑th location. To determine the “optimal” weights 𝑾1,𝑑
′  and 𝑾2,𝑑

′ , and biases 𝒃1,𝑑
′  and 

𝒃2,𝑑
′ , for the NGAE of the 𝑑th location, let us first set the partial derivative of Eq. (18) with respect 

to 𝒃2,𝑑
′  equal to zero: This will provide an expression for the “optimal” 𝒃2,𝑑

′  as: 

𝒃2,𝑑
′ =

1

𝑁𝑡𝑟
(𝑿′ −𝑾2,𝑑

′ 𝑯𝑑
′ )𝟏𝑁𝑡𝑟  (4.19) 

Substituting the solution of 𝒃2,𝑑
′  given by Eq. (4.19) and 𝑯𝑑

′ = 𝑾1,𝑑
′ 𝑿𝑑 + 𝒃1,𝑑

′ 𝟏𝑁𝑡𝑟
𝑇  into Eq. (18), 

the optimization problem can be re-written in a more concise form as:  

[𝑾1,𝑑
′ ,  𝑾2,𝑑

′ , 𝒃1,𝑑
′ ] = arg min‖�̃�′ −𝑾2,𝑑

′ �̃�𝑑
′ ‖

𝐹

2
 (4.20) 

where �̃�′ = 𝑿′(𝑰 − 𝟏𝑁𝑡𝑟𝟏𝑁𝑡𝑟
𝑇 /𝑁𝑡𝑟)  and �̃�𝑑

′ = 𝑯𝑑
′ (𝑰 − 𝟏𝑁𝑡𝑟𝟏𝑁𝑡𝑟

𝑇 /𝑁𝑡𝑟) , which are basically the 

matrices 𝑿′  and 𝑯𝑑
′  subtracted by their element-wise averages. It is important to note that the 

hidden space dimension 𝑝 determines the rank of 𝑾2,𝑑
′ ∈ ℝ𝑄×𝑝 because 𝑝 < 𝑄. From Eq. (20), 

the matrix multiplication 𝑾2,𝑑
′ �̃�𝑑

′  that minimizes the loss function can be obtained from the 

truncated Singular Value Decomposition (SVD) [35] of the matrix �̃�′: 

�̃�′ ≈ 𝑼𝑝
′ 𝜮𝑝

′ 𝑽′𝑝
𝑇
= 𝑾2,𝑑

′ �̃�𝑑
′  (4.21) 

where the columns of 𝑼𝑝
′ ∈ 𝑅𝑄×𝑝  and 𝑽𝑝

′ ∈ 𝑅𝑁𝑡𝑟×𝑝  are formed by the first 𝑝  normalized 

eigenvectors of the �̃�′�̃�′
𝑇

 and �̃�′
𝑇
�̃�′, respectively, associated with the first 𝑝 eigenvalues 𝜆1

′ ≥ 𝜆2
′  

≥ ⋯ ≥  𝜆𝑝
′ ≥ 0. The matrix 𝜮𝑝

′ = 𝑑𝑖𝑎𝑔[𝜎1
′, 𝜎2

′ , … , 𝜎𝑝
′ ] is a diagonal matrix that contains the first 
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𝑝 singular values of the matrix �̃�′ with 𝜎𝑠
′ = √𝜆𝑠′  (𝑠 = 1,… , 𝑝). Therefore, by setting the hidden 

layer size 𝑝 equal to the rank 𝑟𝑿′ of the desired output matrix 𝑿′, the multiplication 𝑾2,𝑑
′ �̃�𝑑

′  can 

theoretically achieve the best-rank-𝑟𝑿′ approximation of �̃�′ and, consequently, the best-rank-𝑟𝑿′ 

approximation of 𝑿′, given the relationship between �̃�′ and 𝑿′, i.e., �̃�′ = 𝑿′(𝑰 − 𝟏𝑁𝑡𝑟𝟏𝑁𝑡𝑟
𝑇 /𝑁𝑡𝑟). 

Such a property is also applicable when building a single-hidden-layer TAE [32]. The “optimal” 

solutions of 𝑾2,𝑑
′  and �̃�𝑑

′  in Eq. (4.21) can then be expressed as: 

𝑾2,𝑑
′ = 𝑼𝑝

′ 𝑻𝑝
′ −1,    �̃�𝑑

′ = 𝑻𝑝
′ 𝜮𝑝

′ 𝑽𝑝
′ 𝑇 (4.22) 

where 𝑻𝑝
′ ∈ 𝑅𝑝×𝑝  is a non-singular matrix that generally cannot be eliminated through the 

backpropagation process during the training operation, leading to a nonorthogonal learned hidden 

space for the NGAE. Finally, taking advantages of Eq. (4.19) and (4.21) and considering 𝑯𝑑 =

�̃�𝑑(𝑰 − 𝟏𝑁𝑡𝑟𝟏𝑁𝑡𝑟
𝑇 /𝑁𝑡𝑟)

−1 , the optimal reconstructed output �̂�𝑑
′ , expressed as �̂�𝑑

′ = 𝑾2,𝑑
′ 𝑯𝑑

′ +

𝒃2,𝑑
′ 𝟏𝑁𝑡𝑟

𝑇 , can be obtained as: 

�̂�𝑑
′ = 𝑼𝑝

′ 𝜮𝑝
′ 𝑽′𝑝

𝑇
+ �̅�′ (4.23) 

where �̅�′ is equal to 𝑿′𝟏𝑁𝑡𝑟𝟏𝑁𝑡𝑟
𝑇 /𝑁𝑡𝑟, representing the element-wise averages of 𝑿′.  

In conclusion, the optimal �̂�𝑑
′  allows us to derive a NGAE that can capture as much structural-

property information as possible from the cepstral coefficients in the matrix 𝑿′ , through the 

retained first 𝑝 principal components of the covariance matrix 𝑪′ = �̃�′�̃�′
𝑇

. In this way, when 

considering the cepstral coefficients from the training dataset, the optimal output values in �̂�′ will 

result in a more stable probability distribution, representative of the undamaged state of the 

structure, compared to the distribution produced by the TAE (the results will be shown in Section 

4.3). These derivations demonstrate again that the NGAE can better generalize the overall 

structural properties embedded in the cepstral coefficients by removing a large amount of the 
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variance of the cepstral coefficients contributed by the sensor and force locations, excitation and 

noise, resulting in a more robust training process with less risk of data overfitting.  

4.2.2.4 Implementation of the proposed NGAE 

In the field of deep learning, training a neural-network architecture commonly needs a series 

of ordinated steps and experiments to adjust the weights and biases of its neurons and layers [76]. 

The network hyperparameters, including both model (e.g., the numbers of layers, neuros, etc.) and 

algorithm (e.g., learning rate, mini-batch size, etc.) hyperparameters, can have significant effects 

on the network performance and are commonly determined by trial-and-error and by the rule-of-

thumb [77]. Since cepstral coefficients can provide an effective and compact representation of the 

structural properties (natural frequencies, mode shapes, etc.), we employed a very concise 

autoencoder framework that consists of one input layer, one hidden layer, and one output layer for 

both the TAE and the proposed NGAE. The reason for choosing such a simplified architecture is 

that, theoretically, additional hidden layers in the TAE and NGAE architectures can improve the 

reconstruction capabilities but, at the same time, can also increase the risk of data overfitting and 

do not improve their capabilities of detecting damage from the variation patterns of the cepstral 

coefficients (as shown in Section 4.3). It is the handling of a reduced variance ground truth that 

enhances the damage identification capabilities of the NGAE, Therefore, such a simplified 

architecture can provide appreciable damage assessment performance with a robust learning 

process and, at the same time, significantly decrease the risk of data overfitting. 

For a reasonable comparison between the results produced by the TAE and NGAE, almost 

identical sets of hyperparameters were used for both autoencoders (Table 4.2). The input and 

output layer sizes of the TAE and NGAE were both set equal to the number of the cepstral 

coefficients 𝑄 (Eq. (4.8)). For the size of hidden layer, it was set equal to rank 𝑟𝑿′ of 𝑿′ for the 
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NGAE, and equal to the rank 𝑟𝑿𝑑  of 𝑿𝑑  for the TAE, so to achieve the best-rank-𝑟𝑿′/𝑟𝑿𝑑 

approximation, as shown in Section 4.2.2.3, and at the same time to avoid the data overfitting and 

unnecessary computational burden. A sigmoid function, Φ(𝑥) = 1/(1 + 𝑒−𝑥), was chosen as the 

activation function of the hidden layers (encoders) of the both autoencoders. Such a choice can be 

justified by the following reasons: 1) Its nonlinearity supports a more complex mapping function 

that typically enables a better input reconstruction for the autoencoders when compared to those 

that use a linear activation function, 2) the sigmoid function can largely retain the truncated-SVD-

approximation mechanism for the single-hidden-layer autoencoders [74], so that the best-rank-

𝑟𝑿′/𝑟𝑿𝑑  approximation can still be achieved to a considerable extent at the hidden layer. In 

addition, other settings need to be defined before training the model (as summarized in Table 4.1): 

1) The Xavier Initialization strategy [78] was used for randomly initializing the weights and the 

biases of both autoencoders, 2) the batch size, a hyperparameter that defines the number of samples 

to work through before updating the weights and biases of the autoencoders, was chosen equal to 

32, a reasonable default value [78], 3) the number of epochs defining the number of times that the 

optimizer will work through the entire training dataset, was set equal to 1000 so to make the 

autoencoders fully converge through the training process, and 4) an Adam optimizer [73] was 

chosen to implement the training for the NGAE and TAE. 

One important advantage of the NGAE over the corresponding TAE is that the matrix of the 

desired output of the NGAE, 𝑿′, is independent of the locations where the acceleration responses 

have been recorded and this enables the selection of a constant hidden layer size for the NGAE 

when modeling the response of different locations. On the contrary, the matrix of the desired output 

of the TAE, 𝑿𝑑, depends on the target location, and thus the dimension of the hidden layer size 

needs to be varied as the target changes. Consequently, for the code implementation of the NGAE, 
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the architecture only needs to be set once, as a “class” or a “function”, at the beginning and then 

just call it multiple times for modeling every sensor location in the system. By contrast, we need 

multiple different architectures of the TAE with different hidden layer sizes to model different 

recording locations, resulting in relatively larger coding workload and lower efficiency. 

In terms of computational efficiency, the use of cepstral coefficients, in the order of 30~50 

coefficients, can largely decrease the structure complexity of the proposed NGAE, resulting in a 

significantly fast training process, compared to methods that use the recorded acceleration 

response (in the order of 10,000 data points) as input and output of autoencoders [66]. Similarly, 

during the inference process, since the cepstral coefficients can be extracted much more quickly 

than other features, e.g., AutoRegressive (AR) coefficients or natural frequencies [55, 67], the 

inference speed of the NGAE is almost instantaneous e.g., within a few seconds.  

Table 4.1: The determined hyperparameters for the considered TAE and NGAE. 

 

 

 

 

 

 

 

Table 4.2: The workflow of the TAE or NGAE modeling. 

Step 1: Given the training dataset {𝒙1,𝑑 , … , 𝒙𝑁𝑡𝑟,𝑑}𝑑=1
𝑁𝑑

, create the matrix 𝑿𝑑 for the TAE, or create 

both the matrices 𝑿𝑑 and 𝑿′ for the NGAE, as shown in Section 4.2.2.1-4.2.2.2. 

Step 2: Set up the TAE or NGAE by incorporating the model hyperparameters shown in Table 4.1: 

For the TAE, the hidden layer size is set equal to the rank 𝑟𝑿𝑑 of the matrix 𝑿𝑑; for the NGAE, the 

size is set equal to the rank 𝑟𝑿′ of the matrix 𝑿′. 

Step 3: Randomly initialize the weights and biases of the TAE or NGAE by the Xavier Initialization. 

Step 4: Train the TAE or NGAE by the input number of epochs, or until convergence. 

Property Value 

Input layer size 

Hidden layer size 

Output layer size 

Activation function (hidden layer) 

Activation function (Output layer) 

𝑄 

𝑟𝑿𝑑 (TAE) or 𝑟𝑿′ (NGAE) 

𝑄 

Sigmoid 

Identity 

Epoch 

Batch size 

Learning rate 

Loss function 

Optimizer 

1000 

32 

1e-3 

Mean Squared Error (MSE) 

Adam 
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4.2.3 Evaluation metrics for damage measurement 

After the training process is completed, the TAE or NGAE autoencoders have learned how to 

characterize the overall structural properties that are linked to the undamaged state of the system 

and that are embedded in the input cepstral coefficients. When a new set of cepstral coefficients 

{𝒙1,𝑑, … , 𝒙𝑁𝑡𝑒,𝑑}𝑑=1
𝑁𝑑

 obtained from the same system but in an unknown (damaged or undamaged) 

state becomes available, with 𝑁𝑡𝑒  being the number of the testing instances related to the 𝑑 th 

recording location, the previous undamaged-state information that the autoencoders have learned 

in the training phase can provide a reference for assessing the structural conditions in this unknown 

state. In this work, we adopted a strategy for assessing the presence of structural damage based on 

the data reconstruction error of the trained TAE or NGAE [66]: Two evaluation metrics, namely 

the Normalized Root Mean Square Error (NRMSE) and the Standard Deviation Ratio (SDR), have 

been used for the damage assessment task. The NRMSE aggregates the magnitude of the prediction 

errors for various data points into a single measure of predictive power, and can remove the effect 

of different error scales when modeling different recording locations. The SDR is an indicator 

based on the ratio of 2 standard deviations and can be an informative statistical representation of 

the signal reconstruction error: Conceptually, it can be considered as an extension of the signal-to-

noise ratio in digital signal processing, originally developed to compare the level of a desired signal 

to the level of its background noise. In this work, we adopt the following expressions for computing 

the NRMSE and SDR values of each single instance in the training set {𝒙1,𝑑, … , 𝒙𝑁𝑡𝑟,𝑑}𝑑=1
𝑁𝑑

 or in 

the testing set {𝒙1,𝑑, … , 𝒙𝑁𝑡𝑒,𝑑}𝑑=1
𝑁𝑑

: 
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𝑁𝑅𝑀𝑆𝐸𝑖,𝑑
(𝑡𝑟) 𝑜𝑟 (𝑡𝑒)

=
√
1
𝑄 ‖𝒚𝑖,𝑑 − �̂�𝑖,𝑑‖𝐹

2

max (�̅�) − min(�̅�)
 

(4.24) 

𝑆𝐷𝑅𝑖,𝑑
(𝑡𝑟) 𝑜𝑟 (𝑡𝑒)

=
𝜎𝒚𝑖,𝑑
𝜎�̂�𝑖,𝑑

 (4.25) 

where the vector 𝒚𝑖,𝑑 represents the 𝑖th desired output 𝒙𝑖,𝑑 of the TAE or 𝒙𝑖
′ of the NGAE, and the 

vector �̂�𝑖,𝑑 the 𝑖th reconstructed output �̂�𝑖,𝑑 of the TAE or �̂�𝑖,𝑑
′  of the NGAE, with the superscript 

“(𝑡𝑟)” and 𝑖 = 1,… ,𝑁𝑡𝑟 linked to the training set, and “(𝑡𝑒)” and 𝑖 = 1,… ,𝑁𝑡𝑒  for the testing set. 

The vector �̅� represents the element-wise average of all the instances in the training set, i.e., �̅� =

1

𝑁𝑑

1

𝑁𝑡𝑟
∑ ∑ 𝒙𝑖,𝑑

𝑁𝑡𝑟
𝑖=1

𝑁𝑑
𝑑=1  , and max(𝒙) and min(�̅�) represent the maximum and minimum values in 

the average vector �̅�, respectively. The notations 𝜎𝒚𝑖,𝑑  and 𝜎�̂�𝑖,𝑑  are used to represent the standard 

deviations of the elements in the desired output 𝒚𝑖,𝑑  and in the reconstructed output �̂�𝑖,𝑑 , 

respectively. 

4.2.4 Using the NGAE in a damage assessment strategy  

Once the values of the two metrics (NRMSE and SDR) have been computed, an unsupervised 

statistical-pattern-recognition strategy is proposed for damage detection and quantification among 

different recording locations. The damage detection task can be conducted through the approach 

of multivariate novelty detection by establishing a statistical distribution, based on the training 

data, that is representative of the structural system in its undamaged state and by using the Squared 

Mahalanobis Distance (SMD) [79] on the output data from the training phase. A threshold on the 

SMD needs to be defined based on the training data distribution and, when a testing set from the 

structure in a new unknown state becomes available, the SMDs of the testing set will be compared 
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with the threshold to determine whether the system is in an undamaged state or not. After the 

occurrence of damage has been detected, the damage quantification for various damage scenarios 

can be implemented by defining and using proper SMD-based damage indices. 

The results of the numerical study (discussed in Section 4.3) validated that the computed 

NRMSE follows a log-normal distribution, while the SDR follows a normal distribution. 

Therefore, the SMDs were computed on the ln(NRMSE), i.e., the natural logarithm of the NRMSE, 

and the original SDR, combined into 2-dimensional vectors 𝒗𝑖,𝑑
(𝑡𝑟)

∈ ℝ2  (𝑖 = 1,… ,𝑁𝑡𝑟)  and 

𝒗𝑖,𝑑
(𝑡𝑒)

 ∈ ℝ2 (𝑖 = 1,… ,𝑁𝑡𝑒) for the training and testing sets, respectively, as: 

𝒗𝑖,𝑑
(𝑡𝑟)

= [ln(𝑁𝑅𝑀𝑆𝐸𝑖,𝑑
(𝑡𝑟)),   𝑆𝐷𝑅𝑖,𝑑

(𝑡𝑟)
]
𝑇

 (4.26) 

𝒗𝑖,𝑑
(𝑡𝑒)

= [ln(𝑁𝑅𝑀𝑆𝐸𝑖,𝑑
(𝑡𝑒)) ,   𝑆𝐷𝑅𝑖,𝑑

(𝑡𝑒)
]
𝑇

 (4.27) 

The SMD of the vector 𝒗𝑖,𝑑
(𝑡𝑟)

 can then be expressed as: 

𝐷2(𝒗𝑖,𝑑
(𝑡𝑟)
) = (𝒗𝑖,𝑑

(𝑡𝑟)
− 𝝁𝑑

(𝑡𝑟)
)
𝑇

(𝜮𝑑
(𝑡𝑟)
)−1(𝒗𝑖,𝑑

(𝑡𝑟)
− 𝝁𝑑

(𝑡𝑟)
) (4.28) 

where 𝝁𝑑
(𝑡𝑟)

∈ ℝ2 represents the sample mean over the 𝑁𝑡𝑟 instances of 𝒗𝑖,𝑑
(𝑡𝑟)

, given by: 

𝝁𝑑
(𝑡𝑟)

=
1

𝑁𝑡𝑟
∑𝒗𝑖,𝑑

(𝑡𝑟)

𝑁𝑡𝑟

𝑖=1

 (4.29) 

and 𝜮𝑑
(𝑡𝑟)

∈ ℝ2×2 represents the covariance matrix, given by: 

𝜮𝑑
(𝑡𝑟)

=
1

(𝑁𝑡𝑟 − 1)
∑(𝒗𝑖,𝑑

(𝑡𝑟)
− 𝝁𝑑

(𝑡𝑟)
)(𝒗𝑖,𝑑

(𝑡𝑟)
− 𝝁𝑑

(𝑡𝑟)
)𝑇

𝑁𝑡𝑟

𝑖=1

 (4.30) 

When a new set of the vectors 𝒗𝑖,𝑑
(𝑡𝑒)

 (𝑖 = 1,… ,𝑁𝑡𝑒) from a testing dataset becomes available, the 

corresponding SMDs can be evaluated with respect to the established training distribution as: 
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𝐷2(𝒗𝑖,𝑑
(𝑡𝑒)
) = (𝒗𝑖,𝑑

(𝑡𝑒)
− 𝝁𝑑

(𝑡𝑟)
)
𝑇

(𝜮(𝑡𝑟))−1(𝒗𝑖,𝑑
(𝑡𝑒)

− 𝝁𝑑
(𝑡𝑟)
) (4.31) 

A study by Ververidis et al. [80] has shown that the SMD of a 𝑛𝑜-dimensional multivariate data 

sample from a testing dataset, in this case 𝐷2(𝒗𝑖,𝑑
(𝑡𝑒)) , follows a scaled 𝐹 -distribution with 

parameters of 𝑛𝑜  and 𝑁𝑡𝑟 − 𝑛𝑜 , where the distribution is defined by the 𝑁𝑡𝑟  instances of the 

training set. For our case, the SMD of 𝒗𝑖,𝑑
(𝑡𝑒)

 thus follows the scaled 𝐹-distribution that can be 

expressed by: 

𝑁𝑡𝑟(𝑁𝑡𝑟 − 𝑛𝑜)

(𝑁𝑡𝑟
2 − 1)𝑛𝑜

𝐷2(𝒗𝑖,𝑑
(𝑡𝑒)
) ∼ 𝐹𝑛𝑜,𝑁𝑡𝑟−𝑛𝑜

(𝑑)
 (4.32) 

 

 

where 𝑛𝑜 = 2 for the two-dimensional vector 𝒗𝑖,𝑑
(𝑡𝑒)

. To detect the presence of damage, a threshold 

𝜂𝑑 , for the 𝑑 th recording location, was set equal to the 0.95-quantile of the training scaled 

𝐹𝑛0,𝑁𝑡𝑟−𝑛𝑜
(𝑑)

 distribution. Consequently, the Scaled Squared Mahalanobis Distance (SSMD) of 𝒗𝑖,𝑑
(𝑡𝑒)

 

was defined as a location-dependent damage index, given by: 

𝑆𝑆𝑀𝐷(𝒗𝑖,𝑑
(𝑡𝑒)) =

𝑁𝑡𝑟(𝑁𝑡𝑟 − 𝑛𝑜)

(𝑁𝑡𝑟
2 − 1)𝑛𝑜

𝐷2(𝒗𝑖,𝑑
(𝑡𝑒)
) (4.33) 

If the SSMD of the 𝑖th instance 𝒗𝑖,𝑑
(𝑡𝑒)

 of the testing set is larger than the set threshold 𝜂𝑑, the system 

will be considered damaged over the corresponding 𝑖th monitored event, and, if the median value 

of all the SSMDs of 𝒗𝑖,𝑑
(𝑡𝑒)

 for 𝑖 = 1,… ,𝑁𝑡𝑒  is larger than 𝜂𝑑 , the system will be considered 

damaged over the entire testing period. 

Because the proposed damage-assessment strategy should be implemented for each recording 

location separately, there will be eventually 𝑁𝑑 defined thresholds 𝜂𝑑 (𝑑 = 1, … ,𝑁𝑑) and thus can 

lead to some inconsistent conclusions. To provide a consistent scale for damage quantification, 

another damage index, termed as the Relative Scaled Squared Mahalanobis Distance (RSSMD), 
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was defined to remove the dependence of the damage index at a given location from its 

corresponding threshold, expressed as: 

𝑅𝑆𝑆𝑀𝐷𝑑 = 𝑆𝑆𝑀𝐷𝑚𝑒𝑑𝑖𝑎𝑛,𝑑 − 𝜂𝑑 (4.34) 

where 𝑆𝑆𝑀𝐷𝑚𝑒𝑑𝑖𝑎𝑛,𝑑 represents the median value of the SSMDs of the testing instances 𝒗𝑖,𝑑
(𝑡𝑒)

 for 

𝑖 = 1, … ,𝑁𝑡𝑒 at the 𝑑th location of the system: a positive value of the RSSMD thus indicates that 

the system has suffered some structural damage.  

A flowchart of the entire damage assessment process is shown in Figure 4.3.  

 

Figure 4.3: A flowchart of the proposed method for structural damage assessment 

 

4.2.5 Computational requirements 

The proposed NGAE architecture, integrated with the power cepstral coefficients, by virtues 

of its concise and easy-setup structure without deep hidden layers, can be used in rapid damage 

assessment tasks (Section 4.3) with few computational requirements. The TAE and NGAE 

architectures evaluated were run on a standard computer with Intel (R) core (TM) 3.89 GHz CPU 

and 16Gb of memory. The code was written in MATLAB (for the cepstral-coefficient extraction) 

and Python 3 (for the TAE and NGAE modeling). The CPU time for the whole process of the 
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coefficient extraction and 1000-epoch training is about 120-125 seconds for the numerical case 

study of the 8 DOF system (Section 4.3.1), and 45-50 seconds for the case study of the Z24 bridge 

(Section 4.3.2). Therefore, a standard machine with one CPU could easily provide the required 

computational power needed in real-life applications in structural damage assessment 

4.3 Numerical studies and results 

Two case studies were conducted to validate the effectiveness of the proposed method for 

structural damage assessment. In the first case, the cepstral coefficients are extracted from the 

simulated time-histories of the structural acceleration from an 8 DOF shear-type discrete model 

(Section 4.3.1) considering a variety of different damage scenarios, while, in the second case, the 

cepstral coefficients are obtained from the time-histories of the acceleration response recorded by 

a network of sensors installed on a real-bridge structure (Section 4.3.2) in progressive damage 

states. 

4.3.1 Structural damage assessment of an 8DOF shear-type system 

The first case study is represented by a lumped mass model of an 8 DOF shear-type system, 

as shown in Figure 4.4. The baseline conditions of the system are: The baseline stiffness of the 

vertical elements is set to 𝑘𝑑
0 = 25,000 N/m (𝑑 = 1,… ,8) , and each mass is equal to 𝑚𝑑 =

1 𝑘𝑔 (𝑑 = 1,…8). The assumption of modal damping is used, with a damping factor of 𝜉 = 1% 

for each of the 8 vibration modes. 

To simulate different operational and damage conditions, sixteen different scenarios as shown 

in Table 3 were considered by changing the baseline stiffnesses of certain elements. The first 9 

scenarios represent the structural system in undamaged conditions, with only slight changes in the 
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stiffness at some floors, to simulate the fluctuations of the structural properties due to changing 

environmental conditions (e.g., temperature, humidity, etc.). The remaining 7 cases are 

representative of different structural damage conditions, with various types of drops in the stiffness 

of some vertical elements. 

For each scenario, the excitation is provided by an external force applied either at the bottom 

mass (the 1st DOF) or at the top mass (the 8th DOF), with the probabilities of the force to act at 

DOF 1 or DOF 8 equal to 70% and 30% respectively, to simulate different statistical distributions 

and variances of the extracted cepstral coefficients. The external force is modeled as a zero-mean 

Gaussian white noise, with the zero-order-hold (ZOH) assumption and with a magnitude of 100 

N. Each realization of the force has a duration of 500 seconds and it is sampled at 200 Hz. The 

generated acceleration time histories at the 8 DOFs are then corrupted by a 10% RMS Gaussian 

white noise to simulate measurement error. In this case study, 400 realizations of acceleration 

responses for each of the 9 undamaged scenarios shown in Table 4.3 were simulated, for a total 

of 3600 sequences of the acceleration cepstral coefficients extracted at each DOF. All these data 

were then collected together to form the “training dataset” {𝒙1,𝑑, … , 𝒙𝑁𝑡𝑟,𝑑}𝑑=1
𝑁𝑑

 with 𝑁𝑡𝑟 = 3600 

and 𝑁𝑑 = 8. The “testing dataset” consists of the cepstral coefficients extracted from 200 new 

realizations of the acceleration responses for each of the 9 undamaged and of the 7 damaged 

scenarios, producing a testing set {𝒙1,𝑑, … , 𝒙𝑁𝑡𝑒,𝑑}𝑑=1
𝑁𝑑

 with 𝑁𝑡𝑒 = 200 and 𝑁𝑑 = 8 for each of the 

16 scenarios. 
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Figure 4.4: The 8 DOF shear-type system 

 

Table 4.3: Considered undamaged and damaged scenarios of the 8 DOF shear-type system. 

 

The TAE and the proposed NGAE were implemented following the scheme presented in 

Table 4.2 and using a number of cepstral coefficients that ranged from 1 to 50, so as to check the 

sensitivity of the results to the number of coefficients considered. The evaluation metrics, namely 

the ln(NRMSE) and SDR, of the training and testing sets for each DOF were then computed and 

analyzed.  

Scenario Condition Types of anomalies 

1 Undamaged Baseline scenario 

2 Undamaged 𝑘𝑑 = 0.98𝑘𝑑
0 for 𝑑 = 5, 6, 7, 8 

3 Undamaged 𝑘𝑑 = 0.99𝑘𝑑
0 for 𝑑 = 5, 6, 7, 8 

4 Undamaged 𝑘𝑑 = 1.01𝑘𝑑
0 for 𝑑 = 5, 6, 7, 8 

5 Undamaged 𝑘𝑑 = 1.02𝑘𝑑
0 for 𝑑 = 5, 6, 7, 8 

6 Undamaged 𝑘𝑑 = 0.98𝑘𝑑
0 for 𝑑 = 1, 2, 3, 4 

7 Undamaged 𝑘𝑑 = 0.99𝑘𝑑
0 for 𝑑 = 1, 2, 3, 4 

8 Undamaged 𝑘𝑑 = 1.01𝑘𝑑
0 for 𝑑 = 1, 2, 3, 4 

9 Undamaged 𝑘𝑑 = 1.02𝑘𝑑
0 for 𝑑 = 1, 2, 3, 4 

10 Damaged 𝑘𝑑 = 0.9𝑘𝑑
0 for 𝑑 = 1 

11 Damaged 𝑘𝑑 = 0.9𝑘𝑑
0 for 𝑑 = 3 

12 Damaged 𝑘𝑑 = 0.9𝑘𝑑
0 for 𝑑 = 5 

13 Damaged 𝑘𝑑 = 0.9𝑘𝑑
0 for 𝑑 = 7 

14 Damaged 𝑘𝑑 = 0.85𝑘𝑑
0 for 𝑑 = 7 

15 Damaged 𝑘𝑑 = 0.9𝑘𝑑
0 for 𝑑 = 3, 7 

16 Damaged 𝑘𝑑 = 0.9𝑘𝑑
0 for 𝑑 = 2, 8 
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A series of normality tests, using the one-sample Kolmogorov–Smirnov (K-S) test [53], was 

then carried out over the estimated evaluation metrics and the corresponding p-values are shown 

in Table 4.4 and Table 4.5. From the analysis of the results, it appears that the p-values related to 

the NGAE for both metrics are well above the 10% significance level (𝛼 = 0.1), indicating that 

we can assume that both the ln(NRMSE) and the SDR follow a normal distribution. In addition, 

the p-values related to the NGAE are generally larger than the ones of the TAE, demonstrating 

that the NGAE, by substantially reducing the data variance attributed to the excitation and 

measurement noise, can establish a more robust 2-dimensional normal distribution as the training 

distribution for further damage detection and quantification. 

Table 4.4: The p-values of the normality tests using the one-sample KS test for the ln(NRMSE) 

produced by the TAE and NGAE (the 8DOF shear-type case study). 
 DOF 1 DOF 2 DOF 3 DOF 4 DOF 5 DOF 6 DOF 7 DOF 8 

TAE 9.07E-3 2.97E-2 6.98E-2 5.14E-2 6.33E-2 5.54E-2 4.79E-2 2.65E-2 

NGAE 4.63E-1 6.11E-1 6.72E-1 5.68E-1 6.24E-1 7.71E-1 6.03E-1 5.12E-1 

 

 

Table 4.5: The p values of the normality tests using the one-sample KS test for the SDR produced 

by the TAE and NGAE (the 8DOF shear-type case study). 
 DOF 1 DOF 2 DOF 3 DOF 4 DOF 5 DOF 6 DOF 7 DOF 8 

TAE 2.47E-4 5.92E-2 4.22E-1 4.85E-1 5.14E-1 7.29E-2 3.48E-2 5.23E-3 

NGAE 6.76E-1 7.55E-1 7.81E-1 8.98E-1 9.02E-1 7.68E-1 7.14E-1 6.06E-1 

 

The scatter plots that visualize the distributions of the two metrics (ln(NRMSE) and SDR) are 

presented in Figure 4.5, where the results obtained from both the TAE and NGAE are provided 

for comparison. One can easily observe that the distributions of the two metrics from the 

undamaged scenarios in the testing set significantly overlap the ones of the training set, indicating 

that a well-established training distribution can be obtained by both the TAE and NGAE. With 

regard to the 7 damage scenarios (Scenario 10-16), the corresponding values of the two metrics 
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deviate from the training distribution to some degree due to different settings of damage severity, 

with the ones produced by the NGAE showing larger deviation patterns than these obtained by the 

TAE. This indicates that the NGAE can better characterize the damage characteristics embedded 

in the cepstral coefficients than the TAE. 

 

Figure 4.5: The distributions of the ln(NRMSE) and SDR produced by the TAE and NGAE for the 

9 undamaged scenarios and the 7 damage scenarios, considering 50 cepstral coefficients (Q = 50). 

(a) The results of the TAE at the 3rd DOF. (b) The results of the TAE at the 7th DOF. (c) The results 

of the NGAE at the 3rd DOF. (d) The results of the NGAE at the 7th DOF. 

The damage detection for this case study was conducted for each of the 8 DOF, based on the 

8 thresholds 𝜂𝑑  (𝑑 = 1,… ,8 ) obtained from the established training distributions. Then, the 

SSMDs of {𝒗𝑖,𝑑
(𝑡𝑒)}

𝑖

𝑁𝑡𝑒
 (𝑑 = 1,… ,8  and 𝑁𝑡𝑒 = 200), related to each of the 16 scenarios, were 

computed and individually compared with the corresponding 𝜂𝑑  for a binary classification, 



109 

 

assigning ’0’ if the system was classified as undamaged or ‘1’ if damaged. The confusion matrices 

in Figure 4.6 show the classification results of the TAE and NGAE, at the 3rd and 7th DOFs, for 

all testing scenarios (200 × 16 instances), corresponding to the 5% significance level (Section 

4.2.4). The overall accuracies of both TAE and NGAE are excellent, with the NGAE performing 

slightly better than the TAE (e.g., false positive rate 0.53% – 0.66% vs. 1.94% – 2.19%). It is 

important to note that the classification results of both TAE and NGAE can provide extremely 

small Type-II errors (i.e., the damaged scenarios are misclassified as undamaged), with very low 

error rates (< 0.38% for the TAE and basically 0 for the NGAE). In addition, by comparing these 

results with those presented in [1], the proposed NGAE can also outperforms the PCA method, 

with the latter one leading to relatively larger Type-II errors (an F1 score of 96.8% (PCA) vs. over 

99.3% (NGAE)). The receiver operating characteristic (ROC) curves, as the overall classification 

performance of the TAE and NGAE, are shown in Figure 4.7, where the NGAE can provide a 

larger area under the curve (AUC) compared to the TAE (0.999 vs. 0.996), demonstrating the 

superiority of the NGAE over the TAE in the damage detection again. 
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Figure 4.6: Confusion matrices of the binary classification at the 3rd and 7th DOF of the 8 DOF 

system, for both TAE and NGAE (Q = 50), corresponding to the 5% significance level. (a) The 

results of the TAE at the 3rd DOF. (b) The results of the TAE at the 7th DOF. (c) The results of the 

NGAE at the 3rd DOF. (d) The results of the NGAE at the 7th DOF. 

 

 

Figure 4.7: ROC curves of the binary classification performance of the TAE and NGAE, produced 

by averaging the results of the 8 DOFs. 
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Since the number of the cepstral coefficients used in the analysis (𝑄) is linked to the input and 

output dimension of the TAE and NGAE, an investigation was conducted to explore the 

relationship between the number 𝑄 and the damage-detection accuracy, by recording the trends of 

the F-1 scores over varying 𝑄 as shown in Figure 4.8 (a). The results show that, for 𝑄 < 30, the 

F-1 scores rise quite rapidly and then, as 𝑄 increases, they stabilize approaching 100. This trend is 

related to the fact that the magnitude of the cepstral coefficients decreases with increasing 

quefrency. For lower 𝑄, more and more information on the structural properties become available 

to the autoencoders as 𝑄 increases but, for large 𝑄, little to no new information is acquired. This 

can also be seen by looking at the variation of the rank 𝑟 of the cepstral coefficient matrices 𝑿𝑑 

(𝑑 = 1,… ,8) and 𝑿′ as a function of 𝑄 (Figure 4.8 (b)): It is obvious that beyond a certain range 

of 𝑄 , adding more cepstral coefficients cannot further improve the performance of the 

autoencoder. 

 

Figure 4.8: (a) The average F1-score of the 8 DOF over Q. (b) The ranks of the matrices Xd (d = 1, 

…, 8) and X’ over Q. The error bars in (a) represent the minimum and maximum F1-scores of the 8 

DOF’s results. 

After obtaining the values of the damage index SSMDs for the 16 testing sets, a further step 

for damage quantification was conducted by computing the RSSMDs of the 16 testing sets (Eq. 

(4.34)) at each DOF. As a result, the RSSMD of the 8 DOF under the 16 scenarios, produced by 
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the TAE and NGAE, are shown in the Figure 4.9 and Figure 4.10, respectively. Looking at these 

plots, the following observations can be made: 1) The RSSMDs of all the undamaged scenarios 1-

9 are negative and the ones of the damaged scenarios 10-16 are positive. Such results are in perfect 

agreement with the definition of the RSSMD (Eq. (4.34)), proving that both the proposed NGAE 

and the TAE can accurately identify the damage and undamaged conditions. 2) For the damaged 

scenario 10-16, the magnitude of the RSSMDs produced by the TAE and NGAE is directly related 

to the damage severity, showing that the two autoencoder architectures can provide close results 

in indicating occurrence and severity of damage. 3) The RSSMDs produced by the NGAE for the 

different damage conditions are generally larger than the ones obtained by the TAE: this confirms 

that the proposed NGAE, by using the weighted average as the output, better characterizes the 

overall structural properties embedded in the cepstral coefficients and shows great sensitivity in 

assessing structural damage. 

 

Figure 4.9: The RSSMDs of the 8 DOF across the 16 scenarios, produced by the TAE (Q = 50). (a) 

The results of the 9 undamaged scenarios. (b) The results of the 7 damaged scenarios. 
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Figure 4.10: The RSSMDs of the 8 DOF across the 16 scenarios, produced by the NGAE (Q = 50). 

(a) The results of the 9 undamaged scenarios. (b) The results of the 7 damaged scenarios. 

4.3.2 Structural damage assessment of the Z24 bridge 

The data recorded during operation and demolition of the Z24 bridge, a well-known case 

study, were used to evaluate the performance of the proposed NGAE in dealing with data from 

real applications. The Z24 bridge was a concrete box girder bridge, with a main span of 30 m and 

two side spans of 14 m, in the canton of Bern, Switzerland. This bridge was monitored for about 

10 months (Nov. 10, 1997 – Sep. 10, 1998), with the intent to analyze the effects of some 

environmental parameters such as local temperature, rain, wind speed, humidity, traffic condition, 

etc., on the structural response. At the end of the 10-month period and prior to its final demolition, 

progressive damage in terms of lowering of a pier, spalling of concrete, etc., was induced on the 

bridge and the corresponding responses were recorded. Table 4.6 gives an overview of the various 

monitoring campaigns and damage conditions of the bridge. More detailed information about the 

bridge and its monitoring system can be found in Kramer et al. [81] and Reynders et al. [82]. 

For each damage condition, the bridge was subjected to an ambient vibration test and to a 

forced vibration test, with two vertical shakers placed on the bridge deck to provide the forced 
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excitation with a smooth and stable spectrum between 3 and 30 Hz. A network of 16 

accelerometers, positioned at strategic location on the bridge (Figure 4.11), was set up to record 

structural acceleration responses. For every hour, a total of 65,536 samples (with a sampling time 

interval of 0.01 s) were recorded by each accelerometer, using an antialiasing filter with a cutoff 

frequency of 30 Hz. 

Table 4.6: An overview of the various bridge structural conditions. 

 

 

Figure 4.11: Details of the locations of the setup sensors in Z24 bridge. The considered 

accelerometers 05, 07, 10, and 12 are circled by the 2 red circles. 

In this case study, the damage assessment operation was carried out using only the data 

recorded by the accelerometers 05, 07, 10, 12 (Figure 4.11), as the records of other accelerometers 

Date (1998) Scenario 
10-17 July Undamaged condition 
4 August Undamaged condition 
9 August Installation of pier settlement system 
10 August Lowering of pier, 20 mm 
12 August Lowering of pier, 40 mm 
17 August Lowering of pier, 80 mm 
18 August Lowering of pier, 95 mm 
19 August Lifting of pier, tilt of foundation 
20 August New reference condition 
25 August Spalling of concrete at soffit, 12 m2 
26 August Spalling of concrete at soffit, 24 m2 
27 August Landslide of 1 m at abutment 
31 August Failure of concrete hinge 

2 September Failure of 2 anchor heads 
3 September Failure of 4 anchor heads 
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were presented some abnormalities [55]. The recorded acceleration responses of the first two 

scenarios on Table 4.6 (July 10th – 17th and August 4th – 9th), representative of the undamaged 

conditions, were used for training the proposed NGAE: Although the environmental conditions 

(e.g. temperature, humidity, wind) were quite similar, the data recorded between July 10th – 17th 

were obtained from the bridge in its regular operational conditions while those from August 4th – 

9th correspond to forced vibration tests. The data corresponding to the other 5 scenarios were used 

for testing: The data from sensor 10 during the August 27th – 31st period were not available and so 

it was not considered. In order to increase the dataset size with more instances, each of the hourly 

records was framed into three 30 minutes segments, with 15 minutes overlapping. Accordingly, a 

total of 684 framed records of the two undamaged scenarios, for each of the 4 sensors, were 

available. The training dataset was created by randomly selecting 90% of the data for each of 

these two scenarios (𝑁𝑡𝑟 = 616), while the data were used as 2 undamaged testing sets. Similarly, 

the recorded acceleration responses of the 5 considered damaged scenarios were preprocessed in 

a similar fashion resulting in 5 damaged testing sets. In total, there were 7 testing datasets for a 

total of 245 available framed records. 

Similarly to the numerical study, 50 cepstral coefficients 𝑐𝑖,𝑑[𝑞], 𝑞 = 1,… , 50 (𝑄 = 50), were 

extracted from each record, with the first one of each sequence (𝑞 = 0) discarded. When dealing 

with either the training or the testing datasets, the vector 𝒙𝑖
′ (defined by Eq. (4.12)) is the weighted 

summation of the vectors 𝒙𝑖,𝑗 for 𝑗 = 1, 2, 3, 4, linked to the sensors 05, 07, 10, 12, respectively. 

The NGAE and TAE were set up and trained by using the same hyperparameters and strategy 

shown in Table 4.1 and Table 4.2.  

Figure 4.12 shows the distributions of the computed ln(NRMSE) and SDR for the data from 

sensor 12 obtained using the proposed NGAE, while Table 4.7 and Table 4.8 present the 
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comparisons of the corresponding p-values for both the TAE and the proposed NGAE. Looking at 

the p-values, one can easily observe that the p-values related to the NGAE are quite larger than 

those obtained by the TAE, and evident bias exists in the SDR of the data obtained by the TAE, 

probably due to overfitting issues caused by the large variance of the data linked to the external 

excitation and to the measurement noise. On the contrary, the proposed NGAE, by working with 

weighted averages of all the cepstral coefficients, can provide a more stable 2-dimensional normal 

distribution for the training data. The ability of the proposed NGAE in differentiating data 

corresponding to undamaged conditions from those of damaged conditions is visualized in Figure 

4.12, which shows the distributions of the ln(NRMSE) and SDR obtained by the NGAE. It is clear 

that the portion of test data corresponding to the undamaged condition perfectly fits with the 

training distribution (Figure 4.12 (a)) while, when damage occurs, the data clearly deviate from it 

(Figure 4.12 (b)). 

Table 4.7: The p values of the normality tests using the one-sample K-S test for the ln(NRMSE) 

produced by the TAE and NGAE (the Z24 bridge case study). 
 Sensor 5 Sensor 7 Sensor 10 Sensor 12 

TAE 6.49E-3 1.62E-2 8.06E-4 9.55E-3 

NGAE 1.15E-1 2.77E-1 2.42E-1 1.08E-1 

 

 

Table 4.8: The p values of the normality tests using the one-sample K-S test for the SDR produced 

by the TAE and NGAE (the Z24 bridge case study).  
Sensor 5 Sensor 7 Sensor 10 Sensor 12 

TAE 4.03E-3 7.29E-3 3.18E-6 9.88E-4 

NGAE 1.29E-1 4.98E-1 4.45E-1 3.51E-1 
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Figure 4.12: The distributions of the ln(NRMSE) and SDR obtained from sensor 12 using the 

NGAE. (a) presents the results corresponding to the training data and undamaged testing data. (b) 

presents the results corresponding to the training data and damaged testing data. 

The damage detection and quantification operations were conducted, following the proposed 

statistical-pattern-recognition strategy (Section 4.2.4). First, the damage index SSMDs (Eq. (4.33)) 

were computed for the data corresponding to each of the 4 sensors separately. Next, for the 

computed SSMD values of the 7 testing sets obtained from each of the 4 sensors, they were 

individually compared with the threshold value set for the corresponding sensor (Eq. (4.32) - 

(4.33)). The confusion matrices in Figure 4.13 present the classification accuracies obtained by 

the proposed NGAE for the data from sensor 10 and 12. It can be seen that the proposed NGAE is 

still quite accurate in detecting damage even when dealing with real data. Here, it is noted that the 

type II error in the classification is slightly larger than the type I error, mainly due to the low 

damage level of the bridge during August 25th – 27th monitoring campaign, resulting in some 

corresponding SSMD values being close to those of the undamaged scenarios and thus being 

incorrectly classified as undamaged. In addition, the median value of the SSMDs of each damage 

scenario was compared with the threshold value set for each sensor to determine whether the bridge 

was damaged or not. Figure 4.14 shows the boxplots of the distributions relative to the data from 

the sensor 12 for the 7 scenarios, obtained by the proposed NGAE: The value of the threshold has 
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been set equal to 4.39 (dash blue line in Figure 4.14) corresponding to the 5% significance level 

(Section 4.2.4). By looking at these distributions, the ones corresponding to the undamaged cases 

are well below the threshold while, when damage is present, the distributions shift above the 

threshold. From these results, it is evident that the proposed NGAE can accurately classify 

damaged and undamaged scenarios. 

In order to quantify the different levels of damage severity, the damage indices RSSMDs (Eq. 

(4.34)) for each of the 4 recording locations were computed, and the results are shown in Figure 

4.15. These results confirm that the RSSMD values obtained at the 4 sensor locations can generally 

provide accurate assessment for the undamaged and damaged conditions. For low damage levels 

as the ones on Aug 25th – 27th, the RSSMD values from sensors 05 and 07 are quite small and 

negative while those from sensor 10 and 12 are still small but positive. This difference in sign is 

due to the fact that, for low levels of damage, the deviation of the testing data from the undamaged 

training distribution is quite small and this could result in different signs of the RSSMD values. It 

is then recommended that the results from multiple locations be considered simultaneously in a 

damage assessment strategy. For more severe damage conditions, like the failure of a concrete 

hinge or the failure of anchor heads, the RSSMD values are significantly higher than the ones of 

the first two damage scenarios, indicating that the bridge was under more serious cumulative 

damaged conditions over the period of Aug. 31st – Sep. 4th. 
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Figure 4.13: Confusion matrices of the binary classification for the Z24 bridge, obtained by the 

NGAE (Q = 50). (a) The results from sensor 10. (b) The results from sensor 12. 

 

 

Figure 4.14: The distribution of the SSMDs for the 7 considered scenarios, with respect to the 

sensor 12, obtained by the NGAE. The dash blue line represents the defined threshold linked to the 

sensor 12, which is estimated equal to 4.39. 

 

 

Figure 4.15: The RSSMDs of the 4 sensors for the 7 considered undamaged and damaged scenarios, 

obtained by the NGAE. 
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4.4 Conclusions 

In this chapter, a New Generalized Autoencoder (NGAE) architecture, integrated with a 

statistical-pattern-recognition-based approach that uses power cepstral coefficients as the Damage 

Sensitive Features (DSFs), is proposed for structural damage assessment. The NGAE can be well-

generalized in terms of the component of the cepstral coefficients that represent the structural 

properties of the overall system thanks to a newly defined encoder-decoder mapping. To validate 

the proposed NGAE, two case studies have been presented, namely an 8 DOF system excited by 

an external force and the benchmark problem of the Z24 bridge in Switzerland, with various 

undamaged and damaged scenarios. From the analysis of the results, it can be concluded that the 

NGAE can successfully characterize the overall structural properties embedded in the cepstral 

coefficients by virtues of the newly defined encoder-decoder mapping, largely reducing the effects 

of the variance attributed to the external excitation and to the measurement noise. This effect will 

result in an appreciable accuracy in the assessment of damage within the structural system. The 

following are the main conclusions drawn from this chapter: 

1) Using the power cepstral coefficients as the inputs and outputs of the autoencoders, 

benefiting from their compact and effective representation of the structural modal properties, 

supports an efficient and robust damage-assessment strategy by significantly decreasing the 

network complexity. This leads to a significant reduction in overfitting the data and in the required 

computational resources, in comparison to methods that use the recorded acceleration responses 

or other traditional features (e.g., natural frequencies, mode shapes, etc.) as the inputs and outputs 

of autoencoders. 

2) The proposed NGAE has an important advantage with respect to the TAE in terms of 

implementation: When modeling multiple recording locations of a system separately, the setting 
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for the hidden layer size of the NGAE is fixed, as the desired output of the NGAE is defined to be 

consistent across different sensor locations. On the contrary, the optimal setting for the hidden 

layer size of the TAE needs to change according to the desired output, leading to a relatively large 

workload of coding implementation. 

3) For the case study of the 8 DOF shear-type system, the values of the two considered 

evaluation metrics (NRMSE and SDR) computed based on the NGAE are able to establish a more 

robust training distribution (supported by the results of the Kolmogorov–Smirnov (K-S) tests), 

leading to a higher damage detection accuracy compared to the traditional autoencoder (TAE) and 

the PCA. 

4) In the Z24 bridge case study, the NGAE considerably outperforms the TAE, successfully 

detecting the presence of the damage and quantifying the damage severity for various structural 

conditions. 
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Chapter 5. A Data Augmentation Strategy for Structural Damage 

Classification 

5.1 Introduction 

As discussed in Section 4.1, the explosive development of Machine Learning (ML) methods 

in the last decade has led to a large amount of research efforts focusing on the application of these 

techniques in structural health monitoring. Among these methods, damage assessment strategies 

based on supervised learning have been proved to be effective in identifying different damage 

types and severity levels in civil structures [62]. However, although supervised strategies can 

provide fairly accurate damage assessment results, they need a proper and systematic model 

training process that generally requires large datasets representative of both the undamaged 

structure and the structure in different damage conditions, a requirement that cannot be obviously 

satisfied when dealing with real-life civil structures (i.e., buildings and bridges) [66]. 

For this type of structures, there is an abundance of data from the undamaged condition but 

only a few data from the structures in the presence of damage. To properly train a model, the data 

from other damaged structures need to be included but this cannot be easily done when dealing 

with vibration data. For example, two bridges with similar structural properties but different soil 

conditions could have a substantially different dynamic behavior. Therefore, in ML applications 

to civil structures, many recent studies on damage assessment have turned their attention to the 

development of unsupervised learning approaches, with the vast majority of data coming from the 

structure in its undamaged condition. For example, the developed New Generalized Auto-Encoder 

(NGAE) presented in Chapter 4 has been validated as an excellent unsupervised-learning method 

to solve such problems. 
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Nevertheless, even when it is possible to bypass the real-life problem represented by the lack 

of training data from the structure in damaged conditions, unsupervised-learning strategies show 

poor performance when classifying different types of structural damage since it is challenging for 

these strategies to self-discover distinguishable hidden patterns in unlabeled data for classification 

[83]. In recent years, in order to deal with the paucity of data from damaged structural conditions, 

researchers have been exploring the strategy of Transfer Learning (TL) [84] from a rich and large 

“source” domain to a “target” domain representative of civil structural systems: The idea behind 

TL is that a numerical/statistical model can be trained to gain the ability to catch changes in a 

signal from a domain with a rich dataset, and then transfer this knowledge to a signal from a 

somehow related “target” domain with much fewer training data, e.g., a building or a bridge, in 

order to better identify its structural conditions [85]. 

Along with the development of TL strategies in SHM applications is the exploration of a 

different strategy, called “data augmentation” [86], to deal with the data deficiency problem in 

structural damage conditions. Widely used in computer vision and natural language processing 

[87, 86], data augmentation, by increasing the size and improving the quality of the training 

dataset, is considered an effective solution to the problem of limited datasets, allowing the 

identification of better ML models. In SHM applications, Zhai et al. [88] used a 3D graphics model 

to generate synthetic data for augmenting a real-world image dataset of crack bridge girders. The 

augmented image data were then used to train a convolutional neural network for identifying 

fatigue cracks in steel structures. Wan et al. [89] developed a data augmentation technique to 

generate new samples of bridge monitoring data such as traffic flow, temperature, and strain, based 

on an improved architecture of Generative Adversarial Networks (GANs). Through an 

experimental study on data collected from a real bridge, their results showed that the proposed 
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strategy was successful in augmenting the original dataset and consequently improving the 

performance of both traditional and neural-network classifiers in evaluating the bridge’s condition. 

It is within this framework that the work contained in this chapter finds its perfect fit. 

The focus of this chapter is to introduce our efforts in developing an ML strategy that can be 

used for structural damage assessment in cases where only few data are available from the structure 

in damaged conditions. In buildings, bridges, dams, etc., there is a large amount of recorded data 

available: These data are mainly in the form of time-histories of the structural response 

(accelerations and/or displacements) to some external/ambient excitations. The vast majority of 

these data are obtained from the structure in its operational (or undamaged) condition and so such 

a dataset can be used to train an automated algorithm in recognizing the structural characteristics 

in the structure’s operational state. When damage occurs, only a few data records are readily 

available and thus a ML algorithm can only perform an anomaly detection operation. To train an 

algorithm to classify different structural conditions (e.g., undamaged, small damage level, etc.), it 

is necessary to train an algorithm on a balanced dataset, where different damage classes have a 

roughly equal number of data samples.   

To achieve this objective, we develop a novel data augmentation strategy based on a 

Conditional Variational Autoencoder (CVAE) architecture [90]. Once this CVAE-based model 

has been properly trained, can be used to generate new samples of a type of DSFs which augment 

the originally unbalanced dataset. The power cepstral coefficients of the recorded structural 

acceleration (Section 4.2.1) will represent the dataset of the Damage Sensitive Features (DSFs) 

that will be augmented. A new type of the power cepstral coefficients is considered, which can 

largely boost the performance and robustness of the data augmentation and consequently of 

subsequent structural damage classification task. The robust extraction process and the stable 
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statistical distribution of these cepstral coefficients support the approach of building appropriate 

probabilistic recognition models to describe them effectively. The proposed CVAE can use several 

conditional independent Gaussian distributions simultaneously, to model the distributions of the 

power cepstral coefficients obtained in various structural damage conditions in the latent space of 

the CVAE, with the help of newly defined conditional random variables. The conditional random 

variable of the CVAE, which is traditionally considered as the class label of a target dataset for 

augmentation, is defined in this work by an unsupervised-learning approach for addressing the 

prior unknown structural conditions. 

The augmented dataset of the cepstral coefficients can then be employed to better train a 

Probabilistic Linear Discriminant Analysis (PLDA) [91] model for greater accuracy in damage 

classification. To handle the practical case of continuously updating the dataset with data coming 

from the structural system, a sliding-window strategy to timely update the classification model is 

proposed, with the corresponding results of a real bridge structure presented in this chapter. 

5.2 Methodology 

5.2.1 Cepstral coefficients of acceleration response as damage sensitive features 

The performance of the proposed data augmentation strategy is investigated using two types 

of cepstral coefficients of the structural acceleration response, i.e., 1) the original cepstral 

coefficients, which have been presented in Section 4.2.1, and 2) a new type of weighted cepstral 

coefficients.  

As a reminder, when extracting the original cepstral coefficients from a set of different time 

histories of the structural response recorded on a structural system in identical conditions (e.g., in 

the undamaged condition), the majority of the variance of the cepstral coefficients is attributed to 
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the term 𝛾𝑑[𝑞] in Eq. (4.6), while the contribution from the term 𝜃[𝑞] in Eq. (4.6) should remain 

approximately constant for the various locations on the system, except for some inevitable 

measurement noise. Such a variation can mislead a model built for structural damage classification 

and prevent it from effectively characterizing the overall structural properties embedded in the 

cepstral coefficients. To take into account such a variation of the cepstral coefficients, we consider 

to employ a new type of the cepstral coefficients, which is originally defined as the desired output 

of the NGAE (as introduced in Section 4.2.2). According to its definition in Eqs. (4.12)-(4.15), 

this new type of the cepstral coefficients is a specific weighted summation of the cepstral 

coefficients from all recording locations of the system, and thus they are named as “weighted” 

cepstral coefficients in this chapter.  

Two important points are noteworthy here: First, the weighted cepstral coefficients in 𝒙𝑖
′ , 

defined in Eq. (4.15), are independent of the locations where the structural acceleration has been 

recorded. Hence, if we have a few sets of the original cepstral coefficients in 𝒙𝑖,𝑑, defined in Eq. 

(4.8), from all the recording locations 𝑑 = 1,… ,𝑁𝑑, they will only produce one set of weighted 

cepstral coefficients in 𝒙𝑖
′. Second, the weighted summation ∑ 𝑠𝑗𝛾𝑖,𝑗

𝑁𝑑
𝑗=1 [𝑞] in Eq. (4.15) can help 

shrink the data variance associated with the excitation and measurement location terms, indirectly 

enhancing the contribution of the term 𝜃𝑖[𝑞] that is linked only to the overall structural properties. 

Consequently, the weighted cepstral coefficients provide a more stable statistical distribution, i.e., 

a Gaussian distribution as demonstrated in Section 4.3, and thus can be more easily characterized 

and fitted by a probabilistic generative model, compared to the original cepstral coefficients. 

In this work, we investigate two methods of that use both the original cepstral coefficients in 

𝒙𝑖,𝑑 and the weighted coefficients in 𝒙𝑖
′, respectively, for the next steps of data augmentation and 

damage classification, and compare the results produced by both (Section 5.3). 
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5.2.2 Overview of variational autoencoders 

The Variational Auto-Encoder (VAE) is a type of deep generative models that are aimed to 

simulate how the observed data are generated in the real world [92]; essentially, they are neural 

networks with multiple hidden layers that are trained to approximate probability distributions of 

observed data samples. The mechanism of VAEs can be interpreted as an integration of 

probabilistic graphical models [93] and deep learning techniques. The fundamental structure of a 

VAE consists of two dual parametric inference models, termed as the probabilistic encoder and 

the probabilistic decoder, with a latent space between the two for sampling a latent variable. During 

the training process of a VAE, the encoder is forced to learn a multivariate latent distribution that 

approximates the posterior distribution of its input variable. A sampling operation is then 

performed based on the approximate posterior distribution to generate latent variable samples, 

which are then passed to the decoder with the aim to reconstruct the input variable as its output. 

Once the training is completed, the trained decoder of the VAE can be then employed as a 

generative model to augment a limited dataset. 

5.2.3. Conditional variational autoencoders 

5.2.3.1 Motivation 

A key disadvantage of using the decoder of the VAE as a generative model is that there is no 

control over what kind of data will be generated, since it is difficult to define during the sampling 

operation which part of the latent space of a trained VAE corresponds to the exact type of data to 

be generated. This can be problematic in damage classification problems when we generate data 

that are representative of a particular structural damage scenario, since it would be challenging to 

define explicit boundaries for different classes of data in the learned latent space of the VAE. 
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Therefore, we develop a data-augmentation strategy based on the Conditional VAE (CVAE) 

architecture [90] to control generating specific data that correspond to particular structural damage 

scenarios. Figure 5.1 presents the fundamental mechanisms of the VAE and of the CVAE to 

intuitively visualize the difference between these two network architectures. 

 

Figure 5.1: The fundamental mechanisms of the VAE (a) and CVAE (b). 

5.2.3.2 The mechanism of the conditional variational autoencoder 

To introduce the concept of the CVAE used in this work, let us consider a dataset {𝒙𝑖}𝑖=1
𝑁  that 

accounts for 𝑁 independent and identically distributed (i.i.d.) samples of the observed variable 𝑥 ∈

𝑅𝑄, where 𝒙, in this case, is a vector containing the values of 𝑄 cepstral coefficients (the original 

ones in Eq. (4.8) or the weighted ones in Eq. (4.15)). A probabilistic framework of the CVAE can 

be established by assuming that the dataset is generated through a random process that involves a 

latent variable 𝒛 and a condition variable 𝒄. For a given condition 𝒄, the vector 𝒛 is drawn from 
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the conditional prior distribution 𝑝𝜓(𝒛|𝒄) , and 𝒙  is obtained from the conditional distribution 

𝑝𝜓(𝒙|𝒛, 𝒄), expressed as: 

𝒛 ~ 𝑝𝜓(𝒛|𝒄) 

𝒙 ~ 𝑝𝜓(𝒙|𝒛, 𝒄) 
(5.1) 

where the probability density function 𝑝𝜓(.) is parameterized by a set of parameters, termed as 𝜓. 

The objective of the CVAE is to maximize the conditional log-likelihood log 𝑝𝜓(𝒙|𝒄), i.e., to 

find the set of parameters 𝜓 that maximizes the log-likelihood of the vector 𝒙, given the condition 

variable 𝒄. This can be implemented by means of a Stochastic Gradient Variational Bayesian 

(SGVB) framework [94]. Since maximizing the conditional log-likelihood directly is generally 

intractable, the variational lower bound of the conditional log-likelihood can be used as a surrogate 

objective function to achieve a more feasible solution [95], which can be written as: 

log 𝑝𝜓(𝒙|𝒄) ≥ −KL (𝑞𝜙(𝒛|𝒙, 𝒄) ∥ 𝑝𝜓(𝒛|𝒄)) + E𝑞𝜙(𝒛|𝒙, 𝒄) [log 𝑝𝜓(𝒙|𝒄, 𝒛)] (5.2) 

where the operator KL(𝑞𝜙(. ) ∥ 𝑝𝜓(. ))  represents the Kullback–Leibler (KL) divergence [36] 

between the distributions 𝑞𝜙(. )  and 𝑝𝜓(. ) , and the operator E𝑞𝜙(.)[log 𝑝𝜓(. )]  stands for the 

expectation of log 𝑝𝜓(. )  based on the distribution 𝑞𝜙(. ) . The distribution 𝑞𝜙(𝒛|𝒙, 𝒄) , 

parameterized by 𝜙, is set to approximate the true posterior distribution 𝑝𝜓(𝒛|𝒙, 𝒄). The first term 

on the right-hand-side of Eq. (5.2), i.e., the KL divergence between the approximated posterior 

𝑞𝜙(𝒛|𝒙, 𝒄) and the conditional prior 𝑝𝜓(𝒛|𝒄), provides an indicator of how close the posterior 

distribution is to the prior distribution; the maximization for the right-hand-side of Eq. (5.2) forces 

the 2 distributions to be as close as possible, and so this term functions as a regularization term. 

The conditional prior is generally set as a standard normal distribution, i.e., 𝑝𝜓(𝒛|𝒄) = 𝑁(0,  𝐈) 

[94], so as to provide an analytical solution (marginalization) for the KL divergence term. Note 
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that, although the prior distribution of the latent variable 𝒛 is constrained by the condition 𝒄, it is 

reasonable to relax such a constraint so that the prior of 𝒛 can be modeled to be statistically 

independent of the condition 𝒄, i.e., 𝑝𝜓(𝒛|𝒄) = 𝑝𝜓(𝒛) [90]. The second term on the right-hand-

side of Eq. (5.2) can be interpreted as the reconstruction of the input 𝒙 through the log-likelihood 

log 𝑝𝜓(𝒙|𝒄, 𝒛)  based on the sampled 𝒛  from the approximated (learned) posterior distribution 

𝑞𝜙(𝒛|𝒙, 𝒄). 

With the above probabilistic framework, an architecture of the CVAE can be set up, where 

the estimation of the approximated posterior 𝑞𝜙(𝒛|𝒙, 𝒄) is considered as the encoder of the CVAE, 

while determining the likelihood 𝑝𝜓(𝒙|𝒄, 𝒛) as its decoder. Generally, the Multi-Layer Perceptions 

(MLPs) [78] can be employed to form the structure of the CVAE, which then consists of 1) an 

encoder network, 2) a decoder network, and 3) a hidden layer to generate the latent variable 𝒛 by 

sampling from the approximated posterior distribution 𝑞𝜙(𝒛|𝒙, 𝒄), as shown in Figure 5.1 (b). 

Training the CVAE is aimed to maximize the right-hand side of Eq. (5.2), i.e., to minimize 

the KL divergence between the approximated posterior 𝑞𝜙(𝒛|𝒙, 𝒄)  and the conditional prior 

𝑝𝜓(𝒛|𝒄) , while maximizing the reconstruction log-likelihood log 𝑝𝜓(𝒙|𝒄, 𝒛)  based on the 

approximated posterior 𝑞𝜙(𝒛|𝒙, 𝒄). As common practice in optimization problems, maximizing 

the right-hand side of Eq. (5.2) can be converted into a minimization problem by changing the sign 

of the entire expression. The objective loss function of the CVAE can be now expressed as: 

𝐿𝐶𝑉𝐴𝐸(𝒙, 𝒄; 𝜓, 𝜙) = KL (𝑞𝜙(𝒛|𝒙, 𝒄) ∥ 𝑝𝜓(𝒛|𝒄)) − E𝑞𝜙(𝒛|𝒙, 𝒄) [log (𝑝𝜓(𝒙|𝒛, 𝒄))] (5.3) 

Since the goal is to reconstruct the vectors of cepstral coefficients, i.e., a typical regression 

problem, the Mean Squared Error (MSE) between the input 𝒙 and the reconstructed output �̂� can 

be used to substitute the reconstruction term E𝑞𝜙(𝒛|𝒙, 𝒄) [log (𝑝𝜓(𝒙|𝒛, 𝒄))].  



131 

 

In summary, the objective of the CVAE is to jointly optimize the encoder parameter set 𝜙, to 

achieve a distribution 𝑞𝜙(𝒛|𝒙, 𝒄) as close as possible to 𝑝𝜓(𝒛|𝒄), and the decoder parameter set 𝜓, 

to reduce the reconstruction loss. Hence, the final objective loss function can be then expressed as: 

𝐿𝐶𝑉𝐴𝐸(𝒙, 𝒄; 𝜓, 𝜙) = KL (𝑞𝜙(𝒛|𝒙, 𝒄) ∥ 𝑝𝜓(𝒛|𝒄)) + MSE𝜓(𝒙, �̂�) (5.4) 

The implementation details of modeling the CVAE and the data augmentation process will be 

discussed in Section 2.5. 

5.2.3.3 A new strategy for defining the condition variable 𝒄 

The condition variable 𝒄 can be interpreted as a representation of a set of specific data samples, 

e.g., a class label of the data obtained from a specific structural condition, which is generally 

modeled as a categorical variable following a multinomial distribution, expressed as: 

𝒄 ~ 𝑀𝑘(𝑛; 𝑝1, 𝑝2, … , 𝑝𝑘) (5.5) 

where the discrete probabilities 𝑝𝑖 (for 𝑖 = 1,… , 𝑘) represent the probabilities of the occurrence 

for each of the 𝑘 classes, with 𝑛 denoting the total number of events. In the study that proposed 

the CVAE, this condition variable 𝒄 was assigned by simple categorical values (i.e., 0, 1, 2, …) to 

represent various class labels of data samples. However, in our case, when faced with data from 

real-life structural systems, we do not know all the class labels of given data samples in advance, 

because of some unknown structural conditions. Besides, it is sometimes difficult to clearly define 

the boundaries among various damage scenarios (i.e., progressive damage conditions) to explicitly 

label the collected data, leading to a mixture of different damage scenarios. 

In this work, an unsupervised learning strategy to define the condition variable vector 𝒄 is 

proposed, where 𝒄 is set equal to the mean of the samples of a dataset to be augmented. This mean 

can be representative of a specific damage scenario, or of a mixture of several consecutive damage 
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scenarios linked to the dataset. Let us consider a structure that is monitored at 𝑁𝑑 locations and 

that 𝑁 events have been monitored. Consequently, the available dataset can be represented as 

{𝒙𝑖,𝑑}𝑖=1; 𝑑=1
𝑁; 𝑁𝑑

. Such a dataset accounts for 𝑁 ∙ 𝑁𝑑  samples 𝒙𝑖,𝑑 ∈ 𝑅
𝑄  ( 𝑖 = 1,… ,𝑁 and 𝑑 =

1, … , 𝑁𝑑 ), where each sample 𝒙𝑖,𝑑  contains the 𝑄  original cepstral coefficients 𝑐𝑖,𝑑[𝑞] for 𝑞 =

1, … , 𝑄 extracted from the 𝑖th record of the acceleration response at the 𝑑th recording location. 

Then, the condition variable 𝒄 is dependent on the location 𝑑 and so it is denoted as 𝒄𝑑  (𝑑 =

1, … , 𝑁𝑑); it can be interpreted as the location-dependent mean of the vectors 𝒙𝑖,𝑑 for 𝑖 = 1, . . , 𝑁, 

defined as: 

𝒄 = 𝒄𝑑 =
1

𝑁
∑𝒙𝑖,𝑑

𝑁

𝑖=1

 (5.6) 

In such a way, the condition variable vector 𝒄𝑑  can help preserve local characteristics of the 

cepstral coefficients at the location 𝑑 when generating new data samples. 

When using the weighted cepstral coefficients in 𝒙𝑖
′ , the condition variable vector 𝒄 then 

becomes independent to the location 𝑑, which is thus termed as the simple mean of the vectors 𝒙𝑖
′ 

for 𝑖 = 1, . . , 𝑁 (i.e., the global mean of all data samples in the training set), defined as: 

𝒄 =
1

𝑁
∑𝒙𝑖

′

𝑁

𝑖=1

 (5.7) 

Accordingly, when generating new data samples for the weighted cepstral coefficients, there will 

be no consideration of the local characteristics of the cepstral coefficients from a particular 

location. 
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5.2.4 Probabilistic linear discriminant analysis 

In this work, the Probabilistic Linear Discriminant Analysis (PLDA) [91] model, built by the 

training dataset augmented by the CVAE, is employed to perform structural damage identification 

and classification. The PLDA is a probabilistic version of the Linear Discriminant Analysis (LDA) 

[96] that is a classical technique for data dimension reduction and classification in a supervised-

learning strategy (to be introduced in Section 6.2.2). Readers can refer to [91] for details about the 

derivation of the PLDA.  

An important distinction between the PLDA and the LDA is that the former can be used to 

handle classification tasks for data classes that are not present in the training dataset. This is 

extremely important in SHM analysis of civil structures because available databases are usually 

comprised of data from undamaged or from unknown structural conditions. For convenience, in 

the following illustration, classes of data that appear in the training dataset of the PLDA are 

referred to as “seen” classes, while those that are not contained in the training dataset are referred 

to as “unseen” classes. 

For parameter optimization of the PLDA model, the study in [91] has provided a closed-form 

mathematical derivation that can analytically solve the optimization problem based on a 

maximum-likelihood framework, with the prerequisite that each of the classes in the training 

dataset contains the same number of samples. As previously noted, in real-life damage 

classification problems, this is generally not the case due to limited data available for different 

structural damage conditions. Hence, the data augmentation strategy proposed in this chapter can 

help solve the problem of the unbalanced training dataset by generating additional samples for the 

limited data of various structural damage conditions, so that there is an equal number of training 

samples in each class. 
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The classification of “seen” classes is a typical supervised-learning problem that can be solved 

by determining which class the testing data should belong to. This can be done by calculating the 

likelihood that the testing data belong to each class separately and then assigning the data to the 

class with the maximum likelihood. In contrast, the classification of the “unseen” classes becomes 

an unsupervised-learning problem and can be solved through hypothesis testing [97]. Specifically, 

two likelihoods, corresponding to the probability that a testing dataset belongs and does not belong 

to a “seen” class in the training dataset, are first determined. Then the logarithm of the ratio (termed 

as log-likelihood ratio ln 𝑅) between these two likelihoods is calculated. Under the assumption 

that the prior probabilities of two datasets belonging and not belonging to the same class are equal, 

a positive value of the log-likelihood ratio ln 𝑅 indicates the two datasets belong to the same class. 

On the contrary, a negative value of ln 𝑅 represents that the testing data cannot fit within the class 

considered. If the testing data do not match with any previous classes, then the new testing data 

will be corresponding to a different structural condition, never “seen” before. 

5.2.5 Implementation of data augmentation-based damage classification strategy 

The implementation for the proposed data augmentation-based damage classification strategy 

consists of two main components: First, a CVAE architecture is built and trained for augmenting 

the original unbalanced training dataset so to obtain a well-balanced training dataset that not only 

has enough training samples for all the damage scenarios, but also contains an equal number of 

samples in each of the classes. Second, the augmented training dataset is subsequently used to 

better train a PLDA model whose parameters can be analytically optimized. In this work, a sliding-

window strategy to timely update the PLDA model is proposed so to handle the practical case 
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where the training dataset is continuously updated over time because of new data recorded by the 

monitoring system. 

5.2.5.1 CVAE hyperparameters  

As introduced in Section 2.3, the Multi-Layer Perceptrons (MLPs) were employed to build 

the CVAE architecture, with the hyperparameters shown in Table 5.1. These values were selected 

based on a series of trial-and-error calibration and on the rules of thumb in [76]. It is noteworthy 

that the cepstral coefficients, by virtue of their compact representation of the structural properties, 

greatly simplified the structure of the built CVAE architecture, thus speeding up the training and 

data generation processes with much less computationally demanding efforts compared to existing 

deep-learning methods used in vision-based structural health monitoring frameworks [88]. The 

requirements for computational resources are described in Section 5.2.6. 

Table 5.1: The calibrated hyperparameters used for building the CVAE architecture. 

Property Value 

Input/Output layer size 50 

Intermediate layer size 32 

Hidden layer size 10 

Activation function 
(intermediate/hidden layer) 

Sigmoid 

Activation function 
(Output layer) 

Identity 

Epoch 200 

Batch size 32 

Learning rate 1e-3 

Optimizer Adam 

 

5.2.5.2 CVAE training and data augmentation 

To introduce the implementation details of the training process of the CVAE and of the 

proposed data augmentation strategy, let us first consider a situation where an initial training 
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dataset {𝒙𝑖,𝑘
𝑡𝑟 }

𝑖=1; 𝑘=1

𝑁𝑘
𝑡𝑟; 𝐾

 is obtained from a structural system that has already experienced 𝐾 known 

damage scenarios (i.e., 𝐾  “seen” damage classes). This initial training dataset consists of 𝑁𝑘
𝑡𝑟 

samples 𝒙𝑖,𝑘
𝑡𝑟 ∈ 𝑅𝑄  (𝑖 = 1, … ,𝑁𝑘

𝑡𝑟 ) for each damage class 𝑘  (𝑘 = 1,… , 𝐾 ), where each vector 

sample 𝒙𝑖,𝑘
𝑡𝑟  contains the 𝑄  considered cepstral coefficients (either the original ones or the 

weighted ones). The value of the condition variable 𝒄𝑘
𝑡𝑟  corresponding to the class 𝑘 in the training 

dataset can be set by using one of the 2 strategies presented earlier, i.e., 1) using the categorical 

values or 2) using the mean vector of the samples in class 𝑘 (Section 5.2.3.3). Our goal is to 

augment this initial training dataset with additional simulated sample vectors so that each damage 

class has the same number of samples, i.e., 𝑁𝑘
𝑡𝑟  (𝑘 = 1, … , 𝐾) = 𝑁𝑡𝑟. This allowz us to better train 

the PLDA model by the analytical solution for optimizing the model parameters (Section 5.2.4). 

The CVAE-based data augmentation can be performed either for all the 𝐾  classes 

simultaneously or for each individual class separately. The former approach is adopted in this 

work. To generate new training data samples for all the 𝐾  classes, the initial training dataset 

{𝒙𝑖,𝑘
𝑡𝑟 }

𝑖=1; 𝑘=1

𝑁𝑘
𝑡𝑟; 𝐾

 is first used to train the CVAE architecture with the hyperparameters shown in Table 

5.1. Based on this initial training dataset and on the theory discussed in Section 5.2.3.2, the 

objective loss function of the CVAE can be expressed as: 

𝐿𝐶𝑉𝐴𝐸 ({𝒙𝑖,𝑘
𝑡𝑟 }

𝑖=1,   𝑘=1

𝑁𝑘
𝑡𝑟,𝐾

, {𝒄𝑘
𝑡𝑟}𝑘=1

𝐾 ; 𝜓, 𝜙)

= ∑∑{MSE𝜓(𝒙𝑖,𝑘
𝑡𝑟 , �̂�𝑖,𝑘

𝑡𝑟  ) +∑𝐾𝐿 (𝑞𝜙(𝑧𝑖,𝑘
𝑡𝑟 [ℎ]|𝒙𝑖,𝑘

𝑡𝑟 , 𝒄𝑘
𝑡𝑟) ∥ 𝑁(0,1))

𝐻

ℎ=1

}

𝑁𝑘
𝑡𝑟

𝑖=1

𝐾

𝑘=1

 

(5.8) 

where 𝐻  represents the hidden layer dimension, which is selected equal to 10 in this work. 

𝑧𝑖,𝑘
𝑡𝑟 [ℎ] represents the ℎ th element of the sample 𝒛𝑖,𝑘

𝑡𝑟  that is sampled from the approximated 

posterior distribution 𝑞𝜙(. )  by using the reparameterization trick introduced in [94], 
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corresponding to the 𝑖th data sample of the 𝑘th class. The KL loss (the second term in the curly 

brackets on the right-hand-side of Eq.(5.8)) in this case is equivalent to the sum of all KL 

divergences between each one-dimensional component 𝑞𝜙(𝑧𝑖,𝑘
𝑡𝑟 [ℎ]|𝒙𝑖,𝑘

𝑡𝑟 , 𝒄𝑘
𝑡𝑟) (ℎ = 1, . . , 𝐻) of the 

approximated posterior distribution 𝑞𝜙(. ) and the standard normal distribution 𝑁(0, 1). 

After completing the training process, the decoder of the CVAE is separated and used to 

generate 𝑁𝑡𝑟 − 𝑁𝑘
𝑡𝑟 new samples for each class 𝑘 (𝑘 = 1, … , 𝐾). For each class 𝑘, 𝑁𝑡𝑟 − 𝑁𝑘

𝑡𝑟 new 

samples of the latent variable 𝒛𝑖,𝑘
𝑛𝑒𝑤 (𝑖 = 1,… ,  (𝑁𝑡𝑟 − 𝑁𝑘

𝑡𝑟)) are sampled from the approximated 

posterior distribution 𝑞𝜙(. ).  Then, the newly generated 𝑁𝑡𝑟 − 𝑁𝑘
𝑡𝑟  samples 𝒛𝑖,𝑘

𝑛𝑒𝑤  and the 

condition term 𝒄𝑘
𝑡𝑟  are input to the decoder to generate 𝑁𝑡𝑟 − 𝑁𝑘

𝑡𝑟  new samples 𝒙𝑖,𝑘
𝑛𝑒𝑤  (𝑖 =

1, … , (𝑁𝑡𝑟 − 𝑁𝑘
𝑡𝑟)). After finishing the data generation for all the 𝐾 classes, the initial training 

dataset {𝒙𝑖,𝑘
𝑡𝑟 }

𝑖=1; 𝑘=1

𝑁𝑘
𝑡𝑟; 𝐾

 and the newly generated dataset {𝒙𝑖,𝑘
𝑛𝑒𝑤}

𝑖=1; 𝑘=1

𝑁𝑡𝑟−𝑁𝑘
𝑡𝑟; 𝐾

 are combined into a new 

augmented dataset {𝒙𝑖,𝑘
𝑡𝑟 }

𝑖=1; 𝑘=1

𝑁𝑡𝑟; 𝐾
 that will be used to train the PLDA model (Section 5.2.4). 

5.2.5.3 A sliding-window strategy for damage classification  

Let us now consider the practical implementation of the algorithm in real-life problems where 

a structural system is continuously monitored, i.e., data that may or may not represent new damage 

scenarios are continuously acquired. Hence, we propose a sliding-window strategy for damage 

identification and classification, where the CVAE and PLDA models are constantly updated with 

the latest “new” data to timely expand their knowledge of the latest structural conditions. 

The previous work in Chapter 4 have presented the novel unsupervised-learning method, 

based on the autoencoders with proper statistical-pattern-recognition strategies, for a binary 

structural damage classification (i.e., a damage-or-not classification). In this method, a training 
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distribution of the DSFs representing the undamaged state of a monitored structural system is first 

established and subsequently used to determine whether newly acquired testing samples are 

obtained from the system in a damaged state or not. In this work, we focus on the case of multi-

class damage classification problems, where the number of the known types (classes) of structural 

conditions is greater than one, i.e., including the undamaged condition and at least one class of 

damaged scenarios. The proposed sliding-window strategy can be described as follows: 

1) Consider an initial training dataset, with 𝑁1
𝑡𝑟 (𝑘 = 1) training samples obtained from the 

system in undamaged condition, denoted as {𝒙𝑖,1
𝑡𝑟 }

𝑖=1

𝑁1
𝑡𝑟

, and 𝑁2
𝑡𝑟 (𝑘 = 2) training samples from one 

known structural damage scenario, denoted as {𝒙𝑖,2
𝑡𝑟 }

𝑖=1

𝑁2
𝑡𝑟

. Let us assume the realistic case where 

there is a sufficient number of samples from the undamaged condition while the set of samples 

corresponding to the damage condition is small and need to be augmented (i.e., 𝑁2
𝑡𝑟 < 𝑁1

𝑡𝑟 = 𝑁𝑡𝑟). 

Using the proposed CVAE model, 𝑁𝑡𝑟 − 𝑁2
𝑡𝑟  new samples for the damaged scenario can be 

generated so that {𝒙𝑖,2
𝑡𝑟 }

𝑖=1

𝑁2
𝑡𝑟

 becomes {𝒙𝑖,2
𝑡𝑟 }

𝑖=1

𝑁𝑡𝑟

. At this point, the two datasets corresponding to the 

damaged and undamaged scenarios can be considered as representative of the two “seen” classes 

of data and used to train a PLDA model, with the analytical solution to optimize its parameters.  

2) When a new dataset {𝒙𝑖,𝑗}𝑖=1
𝑁𝑗

 is acquired from the system in an unknown scenario, we 

firstly check whether this new dataset belongs or not to one of the existing classes. This is done by 

computing the log-likelihood ratios between this new set and each of the previous training sets 

(Section 2.4). If the newly obtained data belong to one of the 2 existing classes, the corresponding 

class label will be assigned to them (i.e., 𝑗 = 1 or 2) and we move directly to the next stage to 

acquire the next round of new data from the system. If the current dataset does not fit in any of the 

previous ones (i.e., an “unseen” class), then a new label 𝑗 = 3 will be assigned to it, followed by 
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splitting the dataset into two subsets, namely, one {𝒙𝑖,𝑗 
𝑡𝑒 }

𝑖=1

𝑁𝑗
𝑡𝑒

 for testing, and the other {𝒙𝑖,𝑗 
𝑡𝑟 }

𝑖=1

𝑁𝑗
𝑡𝑟

 for 

generating new training samples, with 𝑁𝑗
𝑡𝑒 + 𝑁𝑗

𝑡𝑟 = 𝑁𝑗 . The set {𝒙𝑖,3 
𝑡𝑟 }

𝑖=1

𝑁3
𝑡𝑟

 will be used to retrain 

the CVAE to generate new samples so that {𝒙𝑖,3 
𝑡𝑟 }

𝑖=1

𝑁3
𝑡𝑟

 becomes {𝒙𝑖,3 
𝑡𝑟 }

𝑖=1

𝑁𝑡𝑟

. The remaining subset 

{𝒙𝑖,3 
𝑡𝑒 }

𝑖=1

𝑁3
𝑡𝑒

 will be re-tested over the augmented set {𝒙𝑖,3 
𝑡𝑟 }

𝑖=1

𝑁𝑡𝑟

 to validate the accuracy of the 

generated samples. Afterwards, the PLDA model will be re-trained over the updated training data.  

A flowchart summarizing this sliding-window strategy is given by Figure 5.2. Its 

effectiveness has been validated by the experimental data of a real bridge structure, the results of 

which are presented in Section 5.3.2. 

 

Figure 5.2: A flowchart of the proposed sliding-window strategy for structural damage 

identification and classification. 
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5.2.6 Computational requirements 

 The built CVAE architecture, for generating data samples of the cepstral coefficients, can be 

used in rapid data augmentation tasks (Section 5.3) with moderate computational requirements 

because of its concise and easy-setup structure. The built PLDA model, as a non-deep learning 

probabilistic classifier, also does not require excessive computational resources. The CVAE 

architecture and the PLDA model evaluated were run on a standard computer with Intel (R) core 

(TM) 3.89 GHz CPU and 16 Gb of memory. The code was written in MATLAB (for the cepstral-

coefficient extraction) and Python 3 (for the CVAE and PLDA modeling). The CPU time for the 

entire process of the coefficient extraction and the training for the CVAE and PLDA model is 

about 300-350 s for the numerical case study of the 8 DOF system (Section 5.3.1), and 150-200 s 

for the case study of the Z24 bridge (Section 5.3.2). Therefore, a standard machine with one CPU 

could easily provide the required computational power and speed needed in real-life damage 

assessment applications. 

5.3. Numerical and Experimental Analyses 

Two case studies were conducted to validate the effectiveness of the proposed data 

augmentation and damage classification methods. In the first case study (Section 5.3.1), cepstral 

coefficients were extracted from the simulated time histories of the structural acceleration of the 8 

DOF shear-type discrete model (Figure 4.4) considering a variety of structural conditions. In the 

second case study (Section 5.3.2), the cepstral coefficients were again obtained from the recorded 

acceleration response of the Z24 bridge (Section 4.3.2). 
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5.3.1 8 DOF shear type system – Case 1 

The lumped mass model of an 8 DOF shear-type system, shown in Figure 4.4, is again 

analyzed in this work. The baseline stiffness of the vertical elements is set to 𝑘𝑑
0 =

25,000 N/m (𝑑 = 1,… , 8), and each mass is equal to 𝑚𝑑 = 1 𝑘𝑔 (𝑑 = 1, … , 8). The assumption 

of modal damping is used, assigning a damping factor of 𝜉 = 1% for each of the 8 vibrational 

modes. To simulate different operational and damage conditions, the same sixteen different 

scenarios as shown in Table 4.3 were considered. For each scenario, the excitation is provided by 

8 different external forces applied at the 8 DOFs; these forces are all modeled as zero-mean 

Gaussian white noise signals with the zero-order-hold (ZOH) assumption. Their magnitudes are 

set to increase gradually and linearly from the bottom DOF (1st DOF) to the top DOF (8th DOF), 

with values from 100 N to 800 N. Each realization of the forces has a duration of 500 seconds with 

a sampling period of 0.005 seconds (200 Hz sampling frequency). The generated acceleration time 

histories at the 8 DOFs are then corrupted by a 10% RMS Gaussian white noise to simulate 

measurement error. 

A total of 900 realizations of the acceleration response were simulated for the 9 undamaged 

scenarios (100 ones for each of the 9 scenarios); for each scenario, 80 realizations were randomly 

selected to form the training set corresponding to the undamaged conditions (a total of 720 

realizations), while the remaining 20 realizations were used as testing set (a total of 180 

realizations). When using the original cepstral coefficients from every DOF, there were a total of 

720 × 8 = 5760 sequences of the original cepstral coefficients extracted, which thereby formed 

an undamaged training set of 5760 sample vectors 𝒙𝑖,𝑑  ( 𝑖 = 1,… ,720  and 𝑑 = 1, … ,8 ). 

Alternatively, using the weighted cepstral coefficients, a total of 720 sample vectors 𝒙𝑖
′  (𝑖 =

1, … ,720) were created to form the undamaged training set. Similarly, for the undamaged testing 
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set, a total of 180 × 8 = 1440 samples of 𝒙𝑖,𝑑 were obtained for the original cepstral coefficients, 

while this number reduces to a total of 180 samples of 𝒙𝑖
′ for the case of the weighted cepstral 

coefficients. With respect to each of the 7 damage scenarios, 100 realizations of acceleration 

responses were simulated to mimic the real-life situation where the unbalanced training data with 

limited ones in damaged scenarios are typically obtained from the monitored structural system. 

Half of those were randomly selected as the initial training dataset, while the remaining half ones 

were used for testing. 

In this analysis, the first 4 damage scenarios (i.e., scenarios 10 – 13) were selected as the 4 

“seen” damage classes, which were used to train the CVAE and to generate new samples for the 4 

damage classes. The training set of the undamaged class (i.e., scenarios 1 – 9) and the 4 augmented 

training sets of the 4 “seen” damage classes were used to train the PLDA model, which was then 

tested using the corresponding 5 testing sets. This trained PLDA model was then used to identify 

the 3 “unseen” damage classes, i.e., scenarios 14 – 16, through the hypothesis testing strategy 

(Section 5.2.4). 

Before investigating the classification performance by the PLDA model, we first checked the 

accuracy of the new samples generated by the trained CVAE, since this is essential to the 

implementation of the proposed damage classification process. Figure 5.3 provides a comparison 

between the cepstral coefficients in 𝒙𝑖,𝑑  or 𝒙𝑖
′ , and the corresponding ones generated by the 

decoder of the CVAE, for the case of scenario 10. For the original cepstral coefficients in 𝒙𝑖,𝑑 

(Figure 5.3 (a)), it can be observed that the generated cepstral coefficients differ considerably 

from the real ones when the condition variable 𝒄 is defined by the categorical values (0, 1, 2, …), 

while they are quite consistent with the real ones when 𝒄 is equal to the location-dependent mean 

vector of the training set. This is because the condition variable 𝒄 defined by categorical values 
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treats all the cepstral coefficients for each location equally, without taking into account that the 

cepstral coefficients obtained at different recording locations are different. This will end up 

generating new cepstral coefficients that are close to the global mean of all the data in the training 

set (Section 5.2.3.3). In contrast, using Eq. (5.6), it will allow us to account for such a variation, 

thus generating cepstral coefficients that are strongly correlated with the real ones, as shown in the 

Figure 5.3 (a). When using the weighted cepstral coefficients in 𝒙𝑖
′ (Figure 5.3 (b)), being already 

a specific weighted average of the coefficients from all DOFs, the real and generated coefficients 

are quite close to each other, regardless of the strategies used to define the condition variable 𝒄. 

Moreover, as discussed in Section 5.2.1.2, the weighted cepstral coefficients are an enhanced 

representation of the overall structural properties, since a large amount of variance associated with 

the excitation and measurement noise has been removed (these coefficients follow a more compact 

Gaussian distribution.). Accordingly, the data augmentation process for the weighted cepstral 

coefficients is more robust, making it easier to generate accurate new cepstral coefficient datasets. 

 

Figure 5.3: A comparison between the real cepstral coefficients and the generated cepstral 

coefficients. (a) The case with original cepstral coefficients. (b) The case with the weighted cepstral 

coefficients. 

Let us now focus on the results of the damage classification based on the augmented training 

dataset and on the PLDA model. Figure 5.4 shows the Receiver Operating Characteristic (ROC) 
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curves of the damage classification results, produced from the testing sets of the 5 “seen” classes 

by implementing the 4 introduced strategies, i.e., using the original cepstral coefficients integrated 

with data augmentation based on the condition variable 𝒄 as the categorical value (1) or as the 

location-dependent mean vector (2), and using the weighted cepstral coefficients integrated with 

augmented data from the condition 𝒄 as the categorical value (3) or as the simple mean vector (4). 

The results obtained without the implementation of the data augmentation are presented as well 

for comparison. It can be observed that the data augmentation strategy improves the classification 

performance for both types of cepstral coefficients (the original cepstral coefficients and the 

weighted ones), producing larger Area Under the Curve (AUC) values. All the 4 strategies can 

achieve excellent classification performances, as all the curves increase rapidly with the false 

positive rate (the AUC can even reach the perfect score of 1 with the weighted coefficients.). For 

better validation, we further investigated the results of two classical evaluation metrices, i.e., 

accuracy and F1-score, over the testing sets of the 5 “seen” classes, that yielded classification 

results consistent with the ROC curves, as shown in Table 5.2. One can observe that the data 

augmentation strategy integrated with the weighted cepstral coefficients can help achieve perfect 

performance of 100% accuracy when based on the categorical condition, and almost perfect 

accuracy when based on the mean-vector condition. It is demonstrated again that the data 

augmentation is clearly effective and that these weighted cepstral coefficients offer a better 

representation of the overall structural properties. 

Another important observation is that the data augmentation implemented through the 

categorical condition always produces slightly better classification results than those produced by 

using the mean-vector condition, regardless of the type of the cepstral coefficients. This is because 

the PLDA model is trained to recognize each damage scenario categorically, and such a training 
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process is close to the CVAE-based data augmentation process with the categorical condition. 

Nevertheless, the generated cepstral coefficients through the categorical condition are not 

sufficiently correlated to the real ones, as shown in Figure 5.3 as compared to those generated 

with the location-dependent condition. Moreover, the labels of the various damage scenarios of a 

structural system are usually not known explicitly in advance, making almost impossible to use 

the categorical condition in real-life SHM problems. 

 

Figure 5.4: Damage classification results of the ROC curves for the 8 DOF system. 

After completing the testing for the 5 “seen” classes, i.e., scenarios 1 – 9 (the undamaged 

class) and scenarios 10 – 13 (the first 4 damage classes), the PLDA model was then tested over 

the data of the 3 “unseen” damage scenarios, i.e., scenarios 14 – 16, by implementing the 

hypothesis testing described in Section 5.2.4. Table 5.3 provides the results of the computed log-

likelihood ratios between the testing sets of the 3 “unseen” scenarios and the training sets of all 

the 16 scenarios, based on the weighted cepstral coefficients. Note that, the training sets of these 

3 “unseen” scenarios were not used in the training of the PLDA model. The percentage values in 

parenthesis represent the percentage of samples of the target testing set that were identified as the 

same class linked to the corresponding column. The results show that negative log-likelihood ratios 
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(e.g., not-matching classes) were obtained consistently when implementing the hypothesis testing 

between each of the 3 “unseen” classes and each of the 5 “seen” classes, with almost perfect 

performance except for the 2% test samples of scenario 14 being incorrectly identified as of the 

same class as scenario 13. However, these two scenarios are almost identical, having the same 

damage location (i.e., the stiffness reduction at DOF 7) but different damage severity (15% vs. 

10%). Additionally, all the hypothesis testing between any two of the 3 “unseen” damage classes 

return negative log-likelihood ratios, indicating that the algorithm can recognize that these 3 

different damage scenarios belong to 3 different damage classes. The effectiveness of the 

generated samples for the 3 “unseen” damage classes is verified by the positive log-likelihood 

ratios generated by the hypothesis testing between the augmented training sets and the 

corresponding testing sets (the diagonal elements of the last three columns in Table 5.3). These 

results show that the proposed data augmentation strategy can help the PLDA model achieve 

excellent performance in the damage identification and classification for the 8 DOF system. 

Table 5.2: Damage classification results of the accuracy and F1-score for the 8 DOF system. 
 Accuracy (%) F1-score (%) 

Original CCs, 

no data augmentation 
91.357 90.422 

Original CCs, categorical values 

as condition 
94.605 93.561 

Original CCs, 

location-dependent mean vector  

as condition 

94.049 93.252 

Weighted CCs, 

no data augmentation 
96.316 95.863 

Weighted CCs, 

categorical values 

as condition 

100.000 100.000 

Weighted CCs, 

simple mean vector 

as condition 

99.737 99.543 
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Table 5.3: Log-likelihood ratios between the 3 “unseen” scenarios and all the 16 scenarios. 
 

Scenarios 

1-9 

(training) 

Scenario 

10 

(training) 

Scenario 

11 

(training) 

Scenario 

12 

(training) 

Scenario 

13 

(training) 

Scenario 

14 

(training) 

Scenario 

15 

(training) 

Scenario 

16 

(training) 

Scenario 

14 

(testing) 

-32154.38 

(0.00%) 

-32719.66 

(0.00%) 

-24460.82 

(0.00%) 

-32839.87 

(0.00%) 

-7212.98 

(2.00%) 

7.12 

(88.00%) 

-5949.35 

(4.00%) 

-44892.84 

(0.00%) 

Scenario 

15 

(testing) 

-29382.70 

(0.00%) 

-34008.35 

(0.00%) 

-19348.15 

(0.00%) 

-34844.83 

(0.00%) 

-17604.05 

(0.00%) 

-6181.24 

(2.00%) 

6.44 

(86.00%) 

-49924.76 

(0.00%) 

Scenario 

16 

(testing) 

-29419.22 

(0.00%) 

-36719.30 

(0.00%) 

-37869.37 

(0.00%) 

-32532.97 

(0.00%) 

-42899.40 

(0.00%) 

-45514.27 

(0.00%) 

-48953.39 

(0.00%) 

8.62 

(90.00%) 

 

5.3.2 Z24 bridge – Case 2 

The data recorded during operation and demolition of the Z24 bridge (Switzerland) were again 

used in this work to evaluate the performance of the proposed data augmentation and damage 

classification strategies in dealing with data from real applications. An overview of the various 

monitoring campaigns, the damage conditions, and the accelerometers placement of the bridge 

have been introduced in Section 4.3.2. In this analysis, the recorded acceleration responses of the 

first two scenarios in bold on Table 5.4 (July 10th – 17th and August 4th – 9th), representative of 

the undamaged conditions, were labelled as corresponding to the undamaged class: Although the 

environmental conditions (e.g., temperature and humidity) were quite similar, the data recorded 

between July 10th – 17th were obtained from the bridge in its regular operational conditions while 

those from August 4th – 9th correspond to forced vibration tests. The data of the remaining 9 

scenarios in bold between August 25 and September 9 were labelled as the ones representing 

damaged conditions. In the following descriptions, we will refer to these datasets as the data of 

damage scenarios 1 – 9 in chronological order, rather than in terms of damage severity. This is 

because the intent is to show here how the proposed sliding-window strategy (Section 5.2.5.3) can 
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be employed to handle real-life situations where the data acquired from a structure are continuously 

processed and there is no knowledge in advance of all possible damage classes. 

In order to increase the dataset size with more samples, each record was framed into three 5 

minutes segments, with 50% overlap. Accordingly, a total of 864 framed records of the undamaged 

class, for each of the 6 sensors, were available. The training set of the undamaged class was created 

by randomly selecting 80% of the records of the undamaged class, i.e., a total of 691 records, while 

the remaining 173 records were used as the undamaged testing set. The undamaged training set 

was thereby composed by 691 × 6 = 4146 samples of the vector 𝒙𝑖,𝑑  when using the original 

cepstral coefficients, or 691 samples of the vector 𝒙𝑖
′ for the weighted ones, while the undamaged 

testing sets were composed by 1038 samples 𝒙𝑖,𝑑, or 173 samples 𝒙𝑖
′. For the data corresponding 

to damage scenarios 1 – 9, the initial training set and the testing set for each scenario were created 

by evenly splitting the corresponding framed records. As a summary, Table 5.5 records the 

numbers of samples in the initial training sets and testing sets for all the considered scenarios, with 

respect to the two cases of using the original cepstral coefficients in 𝒙𝑖,𝑑 and the weighted ones in 

𝒙𝑖
′. 
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Table 5.4: An overview of the considered structural conditions (the ones in bold) in this analysis. 

Date (1998) Scenario 

10-17 July Undamaged condition 

4 August Undamaged condition 

9 August Installation of pier settlement system 

10 August Lowering of pier, 20 mm 

12 August Lowering of pier, 40 mm 

17 August Lowering of pier, 80 mm 

18 August Lowering of pier, 95 mm 

19 August Lifting of pier, tilt of foundation 

20 August New reference condition 

25 August Spalling of concrete at soffit, 12 m2 

26 August Spalling of concrete at soffit, 24 m2 

27 August Landslide of 1 m at abutment 

31 August Failure of concrete hinge 

2 September Failure of 2 anchor heads 

3 September Failure of 4 anchor heads 

7 September Rupture of 2 out of 16 tendons 

8 September Rupture of 4 out of 16 tendons 

9 September Rupture of 6 out of 16 tendons 

 

 

Table 5.5: The numbers of samples in the initial training sets and testing sets. 

 
Original cepstral coefficients Weighted cepstral coefficients 

Initial training sets Testing sets Initial training sets Testing sets 

Undamaged 

scenarios 
4146 1038 691 173 

Damage scenario 1 216 216 36 36 

Damage scenario 2 216 216 36 36 

Damage scenario 3 864 864 144 144 

Damage scenario 4 432 432 72 72 

Damage scenario 5 216 216 36 36 

Damage scenario 6 726 726 121 121 

Damage scenario 7 126 126 21 21 

Damage scenario 8 108 108 18 18 

Damage scenario 9 162 162 27 27 

 

As noted above, the sliding-window strategy was implemented to continuously train the 

CVAE and the PLDA models so that they are capable of tracking the varying structural conditions 

of the bridge. As discussed in Section 5.2.5.3, this work is focused on the multi-class damage 
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classification problem and the sliding-window strategy was performed as shown in Figure 5.2, 

starting from the point where the training sets of the undamaged scenarios and damage scenario 1 

have been acquired and their class labels have already been determined. Table 5.6 records the 

hypothesis testing results represented by the log-likelihood ratios obtained by the sliding-window 

strategy using the weighted cepstral coefficients with the condition 𝒄 defined by the simple-mean 

vector. The values in parenthesis represent the percentage of samples in the testing set of each 

damage scenario identified as belonging to the class of the scenario in the corresponding column. 

Looking at these results, the following observations can be made: 1) For the hypothesis testing 

between each of the 9 damage scenarios and the undamaged class, all the returned log-likelihood 

ratios are negative with only minor percentages of samples (ranging from 1.4% to 2.8%) 

misclassified as the undamaged class for damage scenarios 1 – 4, confirming that the sliding-

window strategy can accurately identify the presence of damage. It is also important to note that 

the first 2 damage scenarios, representing different amount of concrete spalling, have minor effects 

on the dynamic characteristics of the overall structures, and so it is expected that the mislabeling 

for that 2 cases (2.8%) is higher than those corresponding to the other cases. 2) In terms of the 

hypothesis testing as a tool to verify the accuracy of the new samples generated for each damage 

scenario, all the returned log-likelihood ratios along the diagonal are positive, indicating that the 

data augmentation strategy is effective in generating training samples for the various damage 

scenarios of the Z24 bridge, setting the stage for a better training of the PLDA model. 3) It can be 

noted that there are 2 positive log-likelihood ratios that correspond to 2 misclassification results. 

The first occurrence is when testing data from damage scenario 2 are tested against the data from 

damage scenario 1 (0.77). As previously mentioned, this may be due to the fact that the monitoring 

campaigns during August 25 – 27 (damage scenarios 1 and 2) are related to low-level damage 
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conditions of the bridge (spalling of concrete at soffit for the both), leading the PLDA model to 

identify both as the same class. For the second occurrence (when testing the data of damage 

scenario 4 against the ones of damage scenario 3), the positive log-likehood ratio (0.96) indicates 

that the algorithm fails to distinguish between those 2 damage scenarios, even though it correctly 

recognizes them as damage states. One possible explanation could be that since it is a situation of 

progressive damage, the damage induced by a 1-meter landslide at the abutment has a much greater 

impact on the structural characteristics than the failure of the concrete hinge at the support: When 

the failure of the concrete hinge occurs, its effects could be hidden by those produced by the 

landslide, and this could confuse the classification process. However, the algorithm is still capable 

of assigning to these data a different label from the other damage scenarios. 
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Table 5.6: Log-likelihood ratios produced by the sliding-window strategy over the Z24 bridge. 
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After completion of the data augmentation and damage identification for all the 9 damage 

scenarios through the unsupervised sliding-window strategy, the PLDA model was trained and 

tested again by the updated datasets to validate the performance of the supervised-learning-based 

damage classification. Based on the previous results, the datasets were re-arranged as 1 undamaged 

class and 7 damage classes: The datasets of damage scenarios 1 – 2 were both labelled as damage 

class 1 while those of damage scenarios 3 – 4 were both labelled as damage classes 2. The other 

datasets were kept the same. Figure 5.5 presents the ROC curves (with the corresponding AUC 

values), for the cases of no data augmentation and data augmentation with the 2 different condition 

variables, and Table 5.7 provides the corresponding results of the two evaluation metrices 

(accuracy and F1-score). It can be observed that the PLDA model, trained by the augmented 

training datasets, can produce higher accuracy compared to the results obtained using the initial 

training datasets without data augmentation (the F1-scores are 4.294% – 7.006% higher.). In 

addition, the use of weighted cepstral coefficients considerably improves the performance of the 

proposed strategy compared to when the original cepstral coefficients are used (a comparison of 

82.173% – 85.018% vs. 90.516% – 91.437% for the F1-score). These results again validate the 

effectiveness of the proposed data augmentation strategy in improving the classification 

performance of the PLDA model, and demonstrate the superior qualities of the weighted cepstral 

coefficients in better identifying statistical distribution patterns among data of different damage 

scenarios when dealing with real-life structural system, thanks to their enhanced and more stable 

representation of the overall structural properties. 

 

 

 

 



154 

 

Table 5.7: Damage classification results of the accuracy and F1-score for the Z24 bridge. 
 Accuracy (%) F1-score (%) 

Original CCs, 

no data augmentation 
78.983 78.012 

Original CCs,  

categorical values as condition 
86.314 85.018 

Original CCs, 

location-dependent mean vector as 

condition 

83.695 82.173 

Weighted CCs,  

no data augmentation 
88.195 87.143 

Weighted CCs, 

categorical values 

as condition 

92.522 91.437 

Weighted CCs, 

simple mean vector 

as condition 

91.642 90.516 

 

 

Figure 5.5: Damage classification results of the ROC curves for the Z24 bridge. 

5.4. Conclusions 

This chapter presents a Structural Health Monitoring (SHM) methodology that is based on a 

novel data augmentation strategy. Based on a Conditional Variational Autoencoder (CVAE) 

architecture, this strategy can create a “balanced” dataset of the cepstral coefficients of the 

structural acceleration response, and use this dataset to systematically build a Probabilistic Linear 
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Discriminant Analysis (PLDA) model for damage identification and classification. The proposed 

data augmentation strategy addresses the issue, commonly found in monitoring of real civil 

structures of limited datasets from structures in damaged conditions. The PLDA model, trained 

with the augmented balanced dataset, can be performed well for structural damage identification 

and classification in both supervised- and unsupervised-learning manners. To validate the 

proposed method, two case studies have been presented: 1) an 8 DOF system model excited by 

different random Gaussian signals, and 2) a real bridge structure (the Z24 bridge) that was 

monitored while improving progressive damage. From the analysis of the results, it can be 

concluded that the proposed data augmentation strategy is able to very effectively augment the 

training datasets of the cepstral coefficients in various structural damage conditions, and to better 

train a PLDA model, resulting in an obviously improved performance in damage identification 

and classification. The following are the main conclusions drawn from this study. 

1) Because they provide a compact and effective representation of the structural modal 

properties, the cepstral coefficients, either in their original definition or in the weighted form, can 

be efficiently used as features in the proposed data augmentation process, significantly decreasing 

the complexity of the CVAE architecture. This leads to a significant reduction in overfitting the 

data and in the required computational resources. 

2) For the CVAE modeling, the proposed unsupervised-learning strategy to define the 

condition random variable of the CVAE, i.e., using a proper mean of a target training dataset for 

augmentation as condition, can help us handle a common real-life situation where data are obtained 

from a structure in unknown damage conditions. The weighted cepstral coefficients, because of 

their enhanced representation of the overall structural properties, supports a more robust training 
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process for the CVAE that allows a better characterization of the statistical distributions of the 

cepstral coefficients in the CVAE’s encoder latent space. 

3) The PLDA-based framework can be implemented in a supervised-learning strategy for the 

classification of known damage conditions, as well as in an unsupervised strategy for damage 

conditions not seen before, thanks to a newly developed sliding-window strategy that allows us to 

identify structural damage conditions not present in the training datasets. 

4) For both case studies, the proposed data augmentation strategy is able to effectively 

augment the initial training dataset of the cepstral coefficients, leading to better performances of 

damage classification compared to the case of using only the initial training dataset. In addition, 

the results demonstrate that the data augmentation integrated with the weighted cepstral 

coefficients can yield excellent damage identification and classification results, with significant 

improvements over those produced by the original cepstral coefficients.  

5) For the Z24 bridge case study, the proposed sliding-window strategy can successfully deal 

with the common real-life situation where the structural conditions are unknown priori. 
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Chapter 6. A Discriminant Analysis Strategy for Structural Damage 

Localization 

6.1 Introduction 

In Chapters 4 and 5, the theory as well as applicability of the proposed data-driven methods 

for structural damage detection, quantification, and classification have been presented and 

extensively discussed. The key intuition of these methods is to model the data, represented by the 

cepstral coefficients of the structural acceleration response, via deep learning algorithms, i.e., 

various autoencoder architectures, to better characterize (or simulate) the statistical distribution of 

the component of the cepstral coefficients that is directly related to the overall structural properties, 

so as to optimize the damage assessment performance. In this chapter, another topical problem in 

the field of SHM, i.e., structural damage localization, is systematically studied, and new solutions 

are proposed for both linear and nonlinear problems in a data-driven perspective. 

As introduced in Sections 4.1 and 5.1, advanced data-driven methods developed within the 

vibration-based SHM framework offer great advantages by providing continuously updated 

information on the condition of the monitored structural systems. Vibration-based methods 

(VBMs) for damage quantification and localization have been widely explored in the past decades 

by analyzing the dynamic response of structures under ambient or forced vibrations [98]. Detecting 

the occurrence of damage using responses measured by sensors that are not necessarily deployed 

near the damaged areas (which are unknown a priori) is one of the main advantages of vibration-

based damage localization strategies [99]. It is well known that structural damage translates as a 

loss of stiffness, and the VBMs rely on the fact that a reduction of stiffness leads to changes in the 

structural response and in the dynamic characteristics (e.g., natural frequencies and modal shapes). 
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Localized damage can then be described by an appropriate evaluation metric (i.e., a damage index) 

defined by comparing the response or the structural characteristics in the undamaged state with the 

ones in the current inspection state of the structure for each of the monitored locations.  

Most classical strategies for damage localization fall into the category of the model-based 

methods. One of the most popular methods is the modal-updating approach using Finite Element 

(FE) models in which the parameters of the model are continuously updated to minimize an 

objective function that is a measure of the difference between the recorded structural response 

from the sensors and the simulated response of the built FE model [100]. Since such analyses can 

have a significant computational cost as the result of complex iterative optimization process, many 

scholars have turned to data-driven methods for achieving more efficient solutions while 

considerably reducing the intrinsic complexity and computational cost of the model-based methods 

[54, 6]. Data-driven methods are typically developed by directly analyzing and modeling the 

recorded structural response data. By extracting appropriate Damage Sensitive Features (DSFs) 

from the response, these methods are able to greatly accelerate the training and inference processes 

of the model as introduced in Chapters 4 and 5. 

Among the data-driven methods, one effective strategy for damage localization problems is 

to locate damage by looking at the geometric changes in structural modal characteristics induced 

by the local reduction of stiffness. Using only structural response data, various data-driven 

identification algorithms have used mode shapes and their curvature information for damage 

localization problems [101]. The mode shapes and their curvatures have the advantage that they 

provide essential structural spatial information that can be used, directly and indirectly, for damage 

localization tasks, and their effectiveness has been proven in applications with beam-like and plate-

like structures [102]. The essential idea of these methods is to define an appropriate DSF, related 
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to the identified mode shape, and then use it to determine a damage indicator/index (e.g., difference 

or ratio) to reflects local (geometric) variations in the structure due to changes in its structural 

condition. Some of the most relevant methods include the curvature method [103], the strain 

method [104] and the interpolation error method [105]; the study in [98] provide a comprehensive 

comparison on the effectiveness of these methods. 

In recent years, scholars have been developing data-driven damage localization methods 

through state-of-the-art signal processing and Machine Learning (ML) techniques. Wavelet 

analysis, as a powerful time-variant signal processing technique, has been widely used for damage 

localization in beam-like structures [106, 107]. Solis et. al [107] employed the continuous wavelet 

transform on the identified mode shape vectors to obtain information on the curvature change of 

beams between the reference undamaged state and the potentially damaged state. Besides, as 

presented in [108], the SHM techniques based on the Lamb waves [109] show great promise for 

damage localization problems in plate-like structures, such as aircraft wings, wind turbines, and 

pipeline systems, since Lamb waves can propagate over long distances and are sensitive to 

heterogeneity near the propagation path. Recently, Zhang et. al [110] developed a one-dimensional 

Convolutional Neural Network (CNN) architecture to effectively extract high-level features of the 

Lamb-wave signals from plate-like structures, and further built a mapping from these features to 

the damage locations via a regression framework. The CNN in [110] is able to effectively correlate 

temporal information embedded in wave signals with a significant generalization capability, and 

can be trained with data from a single plate and then applied (transferred) to a new plate with 

appreciable accuracy. 

However, current research in the field of damage localization, from the development of proper 

theoretical methods to their validations on structures, still suffers from many limitations. First, 
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because only a small number of sensors are usually deployed on a structure, the datasets are 

generally small and this has an impact on the training of the algorithms. Second, since many of the 

monitored structures have never experienced damage, the response datasets are usually comprised 

only by data obtained from the structure in undamaged conditions and so cannot be used for 

damage localization. Because of these reasons, most localization methods in the literature have 

been validated only with simulated data from numerical models or with tests on laboratory scale 

specimens [98]. In addition, many of the proposed damage localization methods are specific to a 

particular structure, such as the above-mentioned beam or plate structures, or even just to a 

particular case study [110]. Furthermore, many of the cutting-edge data-driven methods, especially 

ML-based damage localization modeling, still cannot separate outside a supervised-learning 

framework that enables the model to acquire structural damage information in advance, i.e., using 

the data from various damage scenarios for model training. Such supervised learning-based 

methods typically result in a damage localization procedure that is quite similar to the damage 

classification problem discussed in Chapter 5. In practice, what we would like to achieve is to train 

the model using only data from the undamaged state of the structure and when new testing data 

from an unknown damage state becomes available, the model can first determine whether damage 

has occurred or not and subsequently indicate the location of the damaged area. 

In this chapter, a novel data-driven damage localization method is proposed, which is based 

on the Linear Discriminant Analysis (LDA) [96] and uses the cepstral coefficients of the structural 

acceleration response as DSFs. The essential idea is as follows: First, an LDA-based data-driven 

model is built to emphasize the local structural characteristics embedded in the cepstral coefficients 

of the acceleration response recorded at multiple locations on the monitored structure in its 

undamaged state (i.e., an “undamaged” training dataset). These local characteristics are an 
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enhanced representation of the structural mode shape-related information within the cepstral 

coefficients. At this point, when a new (testing) set of the cepstral coefficients becomes available, 

these cepstral coefficients will be passed through the previously built LDA model so to emphasize 

the local characteristics of the cepstral coefficients of this new dataset. With the help of a properly 

defined damage index, these two enhanced representations of the two datasets are then compared 

with respect to every recording location to localize the area of potential damage within the structure. 

Since only data from the undamaged condition of the structure need to be used in the LDA 

modeling process, the proposed damage localization method can be implemented in a fully 

unsupervised-learning manner without requiring the model to access any structural damage 

information during the training process. 

Furthermore, in this chapter, it is proposed to extend this LDA-based modeling method to the 

damage localization problem for nonlinear structural systems. First, the vibration behavior of a 

single-degree-of-freedom (SDOF) nonlinear system is analyzed. Then, a validation of the 

effectiveness of the proposed LDA-based damage localization method in the case of a multi-

directional (MDOF) nonlinear system is performed. The motivation for this study rises from the 

consideration that damage can occur in a progressive fashion, making the structure a time-varying 

system exhibiting nonlinear dynamic behavior. 

6.2 Methodology 

6.2.1 Local information from the cepstral coefficients of acceleration response 

As introduced in Section 4.2.1, the power cepstral coefficients derived from the acceleration 

response can provide an alternative representation of the structural characteristics such as natural 

frequencies, damping ratios, and mode shapes.  
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As shown in Eqs. (4.6) - (4.7), the cepstral coefficients of the acceleration response, i.e., 𝑐𝑑[𝑞] 

for 𝑞 = 1,… , 𝑄 , can be decomposed into two parts, i.e., 𝜃[𝑞]  and 𝛾𝑑[𝑞] , where the index 𝑞 

represents the 𝑞th cepstral coefficient in the quefrency domain and the subscript 𝑑 represents the 

𝑑th monitoring location (𝑑 = 1,… ,𝑁𝑑). As introduced in Section 4.2.1, 𝜃[𝑞] is associated with the 

overall structural properties including the natural frequencies and damping ratios, which are 

independent of the location 𝑑, while 𝛾𝑑[𝑞] also contains local structural characteristics such as the 

modal components at the sensor and actuator locations. The local characteristics in 𝛾𝑑[𝑞] are given 

by the roots 𝑍𝑙
(𝑑)

 for 𝑙 = 1,… ,𝑀, which are the solution of the polynomial shown in Eq. (4.4). By 

observing the form of the polynomial, it is clear that the roots 𝑍𝑙
(𝑑)

 for 𝑙 = 1, … ,𝑀, with respect 

the 𝑑th location, are related to the mode-shape element term 𝜙𝑑,𝑙, which thus are distinct across the 

𝑁𝑑 locations. The solution of the polynomial for the root 𝑍𝑙
(𝑑)

 involves a large series of complex 

terms of 𝜙𝑑,𝑙𝜙𝑗,𝑙, where 𝑑 and 𝑗 represent the sensor and actuator location, respectively, while 𝑙 is 

a summation index over all the contributing modes [111].  

Consequently, implementing a proper strategy to highlight the local characteristics related to 

the mode shapes within the term 𝛾𝑑[𝑞] would be useful for the damage localization. The objective 

now turns to the development of an effective data-driven method that can enhance the information 

of the local characteristics in 𝛾𝑑[𝑞], and use it toward damage localization.  

6.2.2 A linear discriminant analysis-based strategy for damage localization 

To effectively highlight the mode shape-related (local) characteristics within the cepstral 

coefficients, the Linear Discriminant Analysis (LDA) is considered. The LDA is a robust technique 

for data analysis first proposed by R. Fisher, to discriminate different types of flowers [112]. This 

approach is driven by the idea of determining a lower dimensional latent space, compared to the 
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dimensionality of the original data samples, in which these data samples associated with various 

categories can be well separated. Figure 6.1 provides a straightforward visualization of the 

mechanism of transforming the 2-dimensional data samples with 2 classes into a 1-dimensional 

latent space through the LDA, where the separation distance between the 2 classes is maximized. 

 

Figure 6.1: A simple example for the intuition behind the LDA. The 2-dimensional data samples are 

projected in a lower 1-dimensional space, in which the separation between the 2 classes is 

maximized. 

Let us now briefly discuss the mechanism of LDA and show how it can be effectively adapted 

to the damage localization problem. Consider that a training dataset {𝒙𝑖,𝑑
𝑡𝑟 }

𝑖=1; 𝑑=1

𝑁𝑡𝑟; 𝑁𝑑
 is obtained from 

a monitored structural system in its undamaged state, with a total of 𝑁𝑑 recording locations (DOFs) 

and a total of 𝑁𝑡𝑟 data samples per location (the superscript “tr” represents the case of training 

data.). The data sample 𝒙𝑖,𝑑
𝑡𝑟 ∈ 𝑅𝑄 is a vector consisting of 𝑄 cepstral coefficients 𝑐𝑖,𝑑[𝑞] for 𝑞 =

1, … , 𝑄 with respect to the location 𝑑 (𝑑 = 1, … 𝑁𝑑). The data samples of this training set can be 

then treated as 𝑁𝑑 classes by considering each of the recording locations as one class, and each of 

the 𝑁𝑑 classes has an equal number 𝑁𝑡𝑟 of samples. For convenience, we define 𝐶𝑑
𝑡𝑟 as the set of 

the training samples of class 𝑑 (i.e., the location 𝑑), with 𝑁𝑡𝑟  representing the total number of 
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samples in the set 𝐶𝑑
𝑡𝑟.  Subsequently, an LDA model can be built through the training dataset with 

the goal of maximizing the between-class separation of the training data while minimizing the 

withing-class scatters. Mathematically, the within-class and between-class scatter matrices with 

respect to the training data are computed as follows: 

𝑺𝑤
𝑡𝑟 =

∑ ∑ (𝒙𝑖,𝑑
𝑡𝑟 − �̅�𝑑

𝑡𝑟)(𝒙𝑖,𝑑
𝑡𝑟 − �̅�𝑑

𝑡𝑟)
𝑇𝑁𝑡𝑟

𝑖=1(𝑖∈𝐶𝑑
𝑡𝑟)

𝑁𝑑
𝑑=1

𝑁𝑡𝑟 ∙ 𝑁𝑑
 (6.1) 

𝑺𝑏
𝑡𝑟 =

∑ 𝑁𝑡𝑟(�̅�𝑑
𝑡𝑟 − �̅�𝑡𝑟)(�̅�𝑑

𝑡𝑟 − �̅�𝑡𝑟)𝑇
𝑁𝑑
𝑑=1

𝑁𝑡𝑟 ∙ 𝑁𝑑
 (6.2) 

where �̅�𝑑
𝑡𝑟 =

1

𝑁𝑡𝑟
∑ 𝒙𝑖,𝑑

𝑡𝑟𝑁𝑡𝑟

𝑖=1(𝑖∈𝐶𝑑
𝑡𝑟)

 represents the mean of the training samples of class 𝑑, and 𝒙𝑡𝑟 =

1

𝑁𝑑∙𝑁
𝑡𝑟
∑ ∑ 𝒙𝑖,𝑑

𝑡𝑟𝑁𝑡𝑟

𝑖=1(𝑖∈𝐶𝑑
𝑡𝑟)

𝑁𝑑
𝑑=1  represents the global mean of all the training samples. 𝑺𝑤

𝑡𝑟 and 𝑺𝑏
𝑡𝑟 are 

the within-class and between-class scatter matrices, respectively. Under the above settings, the 

objective of the LDA model can be interpreted as to find a hyperplane, indicated as 𝒘, where the 

ratio between the between-class variance in 𝑺𝑏
𝑡𝑟  and the within-class variance in 𝑺𝑤

𝑡𝑟  of the 

projected data is maximized. Alternatively speaking, the LDA model is trying to maximize the 

distance between the class means of the 𝑁𝑑 classes and at the same time, minimize the variance in 

each class. Mathematically, this can be described by the maximization of Fisher’s criterion [112] 

as follows:  

max
𝒘
 𝐹(𝒘) = max

𝒘
 
𝒘𝑇𝑺𝑏

𝑡𝑟𝒘

𝒘𝑇𝑺𝑤
𝑡𝑟𝒘

 (6.3) 

For this optimization problem, we can replace the denominator with an equality constraint and get 

only one solution without losing any generality. Hence, the problem can be reformulated as: 

max
𝒘
  𝒘𝑇𝑺𝑏

𝑡𝑟𝒘 

s.t.  𝒘𝑇𝑺𝑤
𝑡𝑟𝒘 = 1 

(6.4) 
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The corresponding Lagrangian function for the above problem can be expressed as:  

𝐿LDA(𝒘, 𝜆) = 𝒘𝑇𝑺𝑏
𝑡𝑟𝒘− 𝜆(𝒘T𝑺𝑤

𝑡𝑟𝒘− 1) (6.5) 

where 𝜆 is the Lagrangian multiplier associated with the equality constraint in Eq. (6.5). As the 

scatter matrix 𝑺𝑏
𝑡𝑟  is positive semidefinite according to Eq. (6.2), this optimization problem is 

convex, and the global maximum can be reached by equating the derivative of 𝐿LDA(𝒘, 𝜆) to zero: 

𝜕𝐿LDA(𝒘, 𝜆)

𝜕𝒘
= 𝑺𝑏

𝑡𝑟𝒘− 𝜆𝑺𝑤
𝑡𝑟𝒘 = 𝟎 (6.6) 

By simple manipulation, Eq. (6.6) can be written as a form of the generalized eigenvalue problem 

as follows: 

𝑺𝑏
𝑡𝑟𝒘 = 𝜆𝑺𝑤

𝑡𝑟𝒘 (6.7) 

Solving the eigenvalue problem, the optimal solution of 𝒘 ∈ 𝑅𝑚 is the eigenvector corresponding 

to the largest eigenvalue, i.e., the largest  𝜆. In general, multiple eigenvectors corresponding to the 

largest few eigenvalues can be selected to formulate a multi-dimensional latent space in which the 

original data will be projected. Here, we define the letter 𝐿 as the number of the eigenvectors 

corresponding to the largest 𝐿 eigenvalues (𝐿 ≤ 𝑁𝑑). These 𝐿 eigenvectors 𝒘𝑙 (𝑙 = 1,… , 𝐿) form 

a projection matrix 𝑾 ∈ 𝑅𝑚×𝐿, which is able to transform (project) the training sample 𝒙𝑖,𝑑
𝑡𝑟  to the 

latent space where the separation between clusters of classes is maximized and the within variance 

of each class is minimized. Mathematically, this can be expressed as: 

𝒖𝑖,𝑑
𝑡𝑟 =𝑾𝒙𝑖,𝑑

𝑡𝑟  (6.8) 

where 𝒖𝑖,𝑑
𝑡𝑟 ∈ 𝑅𝐿 is the latent-space representation of the training sample 𝒙𝑖,𝑑

𝑡𝑟 . 

After completing the training phase, the LDA model can be used for localizing the areas of 

possible damage when a testing dataset {𝒙𝑖,𝑑
𝑡𝑒 }

𝑖=1; 𝑑=1

𝑁𝑡𝑒; 𝑁𝑑
 becomes available. Each of the 𝑁𝑑 locations 

(classes) has an equal number of 𝑁𝑡𝑒  testing samples, and we define 𝐶𝑑
𝑡𝑒 as the set of the testing 
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samples for class 𝑑. By projecting the new testing dataset through the previously trained LDA 

model, the latent-space representation 𝒖𝑖,𝑑
𝑡𝑒  of the testing sample 𝒙𝑖,𝑑

𝑡𝑒  can be expressed as: 

𝒖𝑖,𝑑
𝑡𝑒 =𝑾𝒙𝑖,𝑑

𝑡𝑒  (6.9) 

With regard to the projected training and testing data in the latent space, a proper metric can 

be employed as a damage index to compute the distance between the projected training and testing 

data for each of the 𝑁𝑑 locations (classes) to quantify the corresponding damage levels. In this 

work, the Euclidian distance between the class means of the projected training and testing data 

clusters for each of the 𝑁𝑑 classes, is chosen as a damage index, expressed as: 

𝐸𝑑 = √(�̅�𝑑
𝑡𝑟 − �̅�𝑑

𝑡𝑒)𝑇(�̅�𝑑
𝑡𝑟 − �̅�𝑑

𝑡𝑒) (6.10) 

where �̅�𝑑
𝑡𝑟 =

1

𝑁𝑡𝑟
∑ 𝒖𝑖,𝑑

𝑡𝑟𝑁𝑡𝑟

𝑖=1(𝑖∈𝐶𝑑
𝑡𝑟)

 and �̅�𝑑
𝑡𝑒 =

1

𝑁𝑡𝑒
∑ 𝒖𝑖,𝑑

𝑡𝑒𝑁𝑡𝑒

𝑖=1(𝑖∈𝐶𝑑
𝑡𝑒)

 are the means of the projected 

training and the testing data clusters of class 𝑑, respectively.  

In the implementation process of damage localization, the two-sample t-test is firstly 

performed to determine if the means of the projected training and testing clusters are equal, with 

respect to each of the 𝑁𝑑 classes (locations). Based on a 95% level of statistical significance, a 

returned p-value of less than 0.05 would demonstrate a significant difference between the means 

of the two clusters, thus indicating the occurrence of damage at the corresponding location. If there 

is damage to the monitored structure (at one or more locations), all the distances 𝐸𝑑  for 𝑑 =

1, … , 𝑁𝑑 will be then computed and compared. The returned maximum 𝐸𝑑 indicates the location 

with the maximum deviation between the 2 clusters, and this can be interpreted as the location 

where the largest damage has occurred. Specifically, consider a simple situation where the testing 

data comes from a structure where the stiffness reduction is at a point between two adjacent 

recording locations, e.g., a column between two adjacent monitored floors of a multi-story shear-
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type structural system. In this case, the largest values of 𝐸𝑑 will appear in correspondence of the 

two adjacent monitored floors next to the damage (the stiffness reduction point) (see Section 6.3.1).  

A flow chart of the implementation of the above procedure is given in Figure 6.2. 

 

Figure 6.2: A flowchart of the implementation steps for the proposed LDA-based damage 

localization method. 

 

6.2.3 Damage localization for nonlinear structural systems 

As discussed in Section 6.1, real-life structural systems usually experience progressive 

damage conditions which result in a nonlinear dynamic behavior; this can be generally expressed 

as a continuously varying process in terms of the structural characteristics and vibration response. 

Such nonlinear behavior of the damage state is strongly different from the damage scenarios 

previously discussed in Chapters 5 and 6, where only a constant small stiffness reduction in some 
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of the elements occurs. Now, instead, we are considering the case where the system can change its 

structural properties within a given recording. In a nonlinear system, a sudden surge of external 

excitation can cause the structural system to exhibit nonlinear behavior with damage at one or 

multiple locations (DOFs), e.g., a multi-story building subjected to an earthquake. In general, when 

the external excitation returns to normal levels, the entire system may settle and approach a linear 

state again, but there could be irreversible changes in its structural properties, resulting in 

completely different dynamic characteristics from the initial undamaged state. 

Therefore, a study is conducted to extend the previously proposed data-driven damage 

localization method to nonlinear systems to identify the location of a damage area if evaluated 

within a time history. To validate the effectiveness of the method, an analytical modeling strategy 

is employed to build nonlinear structural systems that can undergo the change in states between 

linear and nonlinear behavior. 

6.2.3.1 Analytical Modeling of Nonlinear Systems 

In this section, an analytical modeling approach for simulating the acceleration response of a 

nonlinear structural system is presented. Let us consider a non-linear 𝑁𝑑 DOF model of a general 

discrete shear-type structure, whose equation of motion can be expressed as: 

𝑴�̈� + 𝒓(𝒙(𝑡), �̇�(𝑡), 𝑡) = 𝒖(𝑡) (6.11) 

where the matrix 𝑴 ∈ ℝ𝑁𝑑×𝑁𝑑  represents the system’s diagonal mass matrix, consisting of 𝑁𝑑 

mass elements, while 𝒖(𝑡) ∈ ℝ𝑁𝑑  represents the external force vector acting on the system. 𝒙(𝑡) ∈

ℝ𝑁𝑑 , �̇�(𝑡) ∈ ℝ𝑁𝑑 and �̈�(𝑡) ∈ ℝ𝑁𝑑 are namely the displacement, velocity, and acceleration vectors 

of the system. The term 𝒓 ∈ ℝ𝑁𝑑 represents the restoring force vector that is a function of 𝒙(𝑡), 

�̇�(𝑡), and 𝑡. The displacement vector 𝒙(𝑡) and the restoring force vector 𝒓 of the 𝑁𝑑-DOF system 

can be described as: 



169 

 

𝒙(𝑡) = [𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑁𝑑(𝑡)] (6.12) 

𝒓 = [𝑟1, 𝑟2, … , 𝑟𝑁𝑑] (6.13) 

where 𝑥𝑑(𝑡) (𝑑 = 1,… ,𝑁𝑑) represents the nodal displacement at the 𝑑th mass relative to the base 

of the structural system, and 𝑟𝑑 represents the nonlinear restoring force between the 𝑑th and (𝑑 −

1)th masses. In this study, the Bouc-Wen (BW) model, originally proposed by Bouc [113] and Wen 

[114], is used to represent a smooth hysteretic restoring force of the system: This BW model can 

be generalized by adding a linear viscous damping parameter 𝑐𝑑   and a stiffness parameter 𝑙𝑑 

related to the cubic power of the displacement. The restoring force 𝑟𝑑  of this generalized BW 

model can be then expressed as: 

�̇�𝑑 = 𝑐𝑑(�̈�𝑑 − �̈�𝑑−1) + 𝑘𝑑(�̇�𝑑 − �̇�𝑑−1) + 𝑙𝑑[3(𝑥𝑑 − 𝑥𝑑−1)
2(�̇�𝑑 − �̇�𝑑−1)] 

                      +𝑏𝑑|�̇�𝑑 − �̇�𝑑−1||𝑟𝑑|
𝑝𝑜𝑤𝑒𝑟−1𝑟𝑑 + 𝑒𝑑(�̇�𝑑 − �̇�𝑑−1)|𝑟𝑑|

𝑝𝑜𝑤𝑒𝑟 

(6.14) 

where �̈�𝑑−1 = �̇�𝑑−1 = 𝑥𝑑−1 = 0 for the case of 𝑑 = 1, i.e., the bottom mass of the system. The 

structural parameters 𝑐𝑑, 𝑘𝑑, 𝑙𝑑, 𝑏𝑑, 𝑒𝑑, and power are selected by the user in accordance with the 

type of nonlinearities to be represented in the model. Once the external force 𝒖(𝑡) is known, the 

acceleration response of the nonlinear system can be simulated by solving Eq. (6.11) using, for 

example, a third-order Predictor–Corrector integration scheme [115].  

The time histories of the structural acceleration can be obtained as described below: 

1) Based on a recursive form with successive forward time steps, an observation matrix with 

respect to the 𝑑th DOF at time step 𝑘, denoted as 𝝍𝑑(𝑘) ∈ ℝ
3×5, can be firstly formed according 

to the third-order setting of the Predictor-Corrector integration and to the polynomial in Eq. (6.14) 

(only the first 2 linear components in Eq. (6.14) are shown for simplicity.): 
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𝝍𝑑(𝑘) = [

�̈�𝑑(𝑘) − �̈�𝑑−1(𝑘),  �̇�𝑑(𝑘) − �̇�𝑑−1(𝑘), … , … , …

�̈�𝑑(𝑘 − 1) − �̈�𝑑−1(𝑘 − 1),  �̇�𝑑(𝑘 − 1) − �̇�𝑑−1(𝑘 − 1), … , … , …

�̈�𝑑(𝑘 − 2) − �̈�𝑑−1(𝑘 − 2),  �̇�𝑑(𝑘 − 2) − �̇�𝑑−1(𝑘 − 2), … , … , …

] (6.15) 

and the corresponding parameter vector for the matrix 𝝍𝑑(𝑘), denoted as 𝜽𝑑(𝑘) ∈ ℝ
5, can be 

expressed as: 

𝜽𝑑(𝑘) = [𝑐𝑑, 𝑘𝑑 , 𝑙𝑑 , 𝑏𝑑, 𝑒𝑑]
𝑇 (6.16) 

2) Then, the Predictor part of the Predictor-Corrector method can be implemented to get an 

estimate of the predicted restoring force �̂�𝑑(𝑘 + 1) with respect to the 𝑑th DOF for time step 𝑘 +

1, expressed as: 

�̂�𝑑(𝑘 + 1) = 𝑟𝑑(𝑘) + ℎ𝒄𝑐𝝍𝑑(𝑘)𝜽𝑑(𝑘) (6.17) 

where ℎ represents the sampling time, and the third-order coefficient vector 𝒄𝑐 is defined as:  

𝒄𝑐 =
1

12
[5,8, −1] (6.18) 

3) The corresponding predicted acceleration �̂̈�𝑑(𝑘 + 1)  can be then easily achieved by 

substituting the predicted restoring force  �̂�𝑑(𝑘 + 1)  into Eq. (6.11), and the corresponding 

predicted velocity �̂̇�𝑑(𝑘 + 1)  and displacement �̂�𝑑(𝑘 + 1)  can be obtained by simply using a 

numerical integration method (e.g., the Newmark-beta method).  

4) The achieved �̂̈�𝑑(𝑘 + 1),  �̂̇�𝑑(𝑘 + 1), and �̂�𝑑(𝑘 + 1) can be then substituted into Eq. (6.14) 

to get the corresponding predicted first-order derivative of the restoring force, denoted as 

�̂̇�𝑑(𝑘 + 1).  

5) Next, the Corrected part of the Predictor-Corrector method is implemented to get the 

corrected restoring force 𝑟𝑑(𝑘 + 1), with respect to the 𝑑th DOF at time step 𝑘 + 1, as follows: 

𝑟𝑑(𝑘 + 1) = 𝑟𝑑(𝑘) +  ℎ𝒄𝑐[�̂̇�𝑑(𝑘 + 1), �̇�𝑑(𝑘), �̇�𝑑(𝑘 − 1)] (6.19) 
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This corrected restoring force 𝑟𝑑(𝑘 + 1)  can be substituted into Eq. (6.11) to obtain the 

corresponding corrected acceleration �̈�𝑑(𝑘 + 1),  along with the numerical integration for the 

corresponding corrected velocity �̇�𝑑(𝑘 + 1) and displacement 𝑥𝑑(𝑘 + 1).  

The above process is then repeated to simulate the acceleration response of the nonlinear 

system for the entire duration of the external force. Afterwards, the cepstral coefficients of the 

simulated acceleration response of the nonlinear system can be numerically extracted by the same 

approach of digital signal processing as introduced in Chapters 4 and 5. 

6.2.3.2 Implementation of nonlinear system damage localization 

The damage identification and localization for a nonlinear system can be performed in a 

similar way as done for linear systems. A model is first built and trained with the data obtained 

from the system in its undamaged state (still in a linear stage). Then, when processing new testing 

data, if the system starts exhibiting a nonlinear behavior, the trained model can identify potential 

local anomalies (damage) at various recording locations. 

When working on case studies of linear structural systems (as presented in Chapters 4 – 5 and 

Section 6.3.1), the damaged states of the linear systems are simulated by setting various stiffness 

reductions at different locations (DOFs) of the system. These stiffness reduction settings are made 

prior to each simulation and do not change during the simulation. On the contrary, to simulate a 

progressive damage condition, a nonlinear system shows continuous variation of its parameters 

within a single recording, mainly linked to dramatic variation of the external excitation. 

According to the above mindset, a general implementation process of the data-driven damage 

localization for nonlinear systems can be described as follows: 1) The structural acceleration 

response data of the monitored nonlinear system in an undamaged state are first obtained and, if 

necessary, appropriate framing operations are performed. 2) The acceleration response data are 
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processed by the signal processing approach introduced in Section 4.2.1 to extract the 

corresponding cepstral coefficients, which will serve as the training dataset. 3) A proper data-

driven model, e.g., the proposed New Generalized Auto-Encoder (NGAE) in Chapter 4 or the 

proposed LDA model in Section 6.2.2, is built and trained with the training dataset. 4) When new 

data is obtained from the system in an unknown state, these data will go through the same framing 

operations and cepstral coefficient extraction. 5) The trained model is finally used to locate the 

potential damage of the nonlinear system over the testing data, via the damage index of the 

Euclidian distance introduced in Section 6.2.2. 

6.3 Results 

In this section, two sets of results are discussed, corresponding to the problem of structural 

damage localization for linear and nonlinear systems, respectively. In Section 6.3.1, the results of 

a numerical case study (modeling and analysis of an 8 DOF shear type structural system) are 

presented for validating the effectiveness of the proposed damage localization method for linear 

systems. In Section 6.3.2, a single DOF nonlinear system and a 4 DOF nonlinear shear-type system, 

built upon the generalized BW model (Section 6.2.3.2), are discussed to validate the proposed 

methodology for damage localization in nonlinear systems. 

6.3.1 Results of structural damage localization for a linear 8 DOF system 

In this case study, the same lumped mass model of the 8 DOF shear-type system, introduced 

in Section 4.3.1 and shown in Figure 4.4, was used to validate the proposed damage localization 

method for linear systems. As a reminder, the baseline conditions of the system are: The baseline 

stiffness of the 8 vertical elements is set to the same value as 𝑘1
0 = 𝑘2

0 = ⋯ = 𝑘8
0 = 𝑘0 =
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25,000 N/m , and each mass is equal to 𝑚𝑑 = 1 𝑘𝑔 (𝑑 = 1,…8) . The assumption of modal 

damping is used, with a damping factor of 𝜉 = 1% for each of the 8 vibration modes. Seventeen 

different scenarios were simulated as shown in Table 6.1, for different operational and damage 

conditions; damage was introduced by changing the baseline stiffnesses of some elements. The 

first 9 scenarios in Table 6.1 represent the undamaged states of the structural system under a 

variety of different environmental conditions, while the remaining 8 scenarios (scenarios 10 – 17) 

represent the cases where damage is set to occur separately at each of the 8 DOFs with the inter-

story stiffness at each DOF reduced by 25%. Note that in this case, the damage-location setting for 

a DOF 𝑑 indicates that the stiffness reduction is at the columns between the DOF 𝑑 and the DOF 

𝑑 − 1. For the case of 𝑑 = 1, it means the stiffness reduction is at the location between the bottom 

DOF and the ground. 

For each scenario, the excitation is provided by 8 external forces applied at the 8 masses. The 

8 external forces are modeled as 8 zero-mean Gaussian white noises with the zero-order-hold 

(ZOH) assumption and with equal magnitude of 100 N. Each realization of the force has a duration 

of 500 seconds and it is sampled at 200 Hz. The generated acceleration responses at the 8 DOFs 

are then corrupted by a 10% RMS Gaussian white noise to simulate measurement error. In this 

case study, 100 realizations of acceleration responses for each of the 9 undamaged scenarios 

(scenarios 1 – 9) were simulated, for a total of 900 sequences of the acceleration cepstral 

coefficients extracted at each DOF 𝑑 (𝑑 = 1, … , 8). All these data were then collected together to 

form the training dataset {𝒙𝑖,𝑑
𝑡𝑟 }

𝑖=1; 𝑑=1

𝑁𝑡𝑟; 𝑁𝑑
 with 𝑁𝑡𝑟 = 900 and 𝑁𝑑 = 8. The testing data consist of 

the cepstral coefficients extracted from 50 new realizations of the acceleration responses for each 

of the 17 scenarios. Those produced from scenarios 1 – 9 are collected together to form one 

“undamaged” testing dataset {𝒙𝑖,𝑑
𝑡𝑒 }

𝑖=1; 𝑑=1

𝑁𝑢
𝑡𝑒; 𝑁𝑑

, with 𝑁𝑢
𝑡𝑒 = 450  and 𝑁𝑑 = 8, while the remaining 
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ones (scenarios 10 – 17) form 8 individual “damaged” testing datasets {𝒙𝑖,𝑑
𝑡𝑒 }

𝑖=1; 𝑑=1

𝑁𝑠
𝑡𝑒; 𝑁𝑑

 for 𝑠 =

1, … ,8, with 𝑁1
𝑡𝑒 = 𝑁2

𝑡𝑒 = ⋯ = 𝑁8
𝑡𝑒 = 50 and 𝑁𝑑 = 8, where 𝑠 represents the index for the 8 

damage scenarios. 

Table 6.1: Considered undamaged and damaged scenarios of the 8 DOF shear-type system. 

 

As introduced in Section 6.2.2, an LDA model was built and trained upon the training data, 

representative of the undamaged conditions, where the cepstral coefficients of the 8 DOFs were 

treated as 8 different classes. Consequently, in the latent space of the LDA model, the projected 

cepstral coefficients of the training data are separated as 8 individual clusters according to the 8 

classes (DOFs), as shown in Figure 6.3 (a). Next, this trained LDA model was used to project the 

cepstral coefficients of the testing data into the same latent space to identify the potential deviation 

pattern from the distributions of the training data to the testing ones for damage localization. To 

visualize such deviation, the scatter plots of the latent-space representation, in terms of the training 

data and the undamaged testing data (scenarios 1 – 9), as well as the training data and the testing 

Scenario Condition Types of anomalies 

1 Undamaged Baseline scenario 

2 Undamaged 𝑘𝑑 = 0.98𝑘
0 for  𝑑 = 5, 6, 7, 8 

3 Undamaged 𝑘𝑑 = 0.99𝑘
0 for  𝑑 = 5, 6, 7, 8 

4 Undamaged 𝑘𝑑 = 1.01𝑘
0 for  𝑑 = 5, 6, 7, 8 

5 Undamaged 𝑘𝑑 = 1.02𝑘
0 for  𝑑 = 5, 6, 7, 8 

6 Undamaged 𝑘𝑑 = 0.98𝑘
0 for 𝑑 = 1, 2, 3, 4 

7 Undamaged 𝑘𝑑 = 0.99𝑘
0 for 𝑑 = 1, 2, 3, 4 

8 Undamaged 𝑘𝑑 = 1.01𝑘
0 for 𝑑 = 1, 2, 3, 4 

9 Undamaged 𝑘𝑑 = 1.02𝑘
0 for 𝑑 = 1, 2, 3, 4 

10 Damaged 𝑘𝑑 = 0.75𝑘
0 for 𝑑 = 1 

11 Damaged 𝑘𝑑 = 0.75𝑘
0 for 𝑑 = 2 

12 Damaged 𝑘𝑑 = 0.75𝑘
0 for 𝑑 = 3 

13 Damaged 𝑘𝑑 = 0.75𝑘
0 for 𝑑 = 4 

14 Damaged 𝑘𝑑 = 0.75𝑘
0 for 𝑑 = 5 

15 Damaged 𝑘𝑑 = 0.75𝑘
0 for 𝑑 = 6 

16 Damaged 𝑘𝑑 = 0.75𝑘
0 for 𝑑 = 7 

17 Damaged 𝑘𝑑 = 0.75𝑘
0 for 𝑑 = 8 
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ones of the 2nd damage scenario (scenario 11), are shown in Figure 6.3 (b) and (c), respectively. 

Two important observations can be reached by looking at the scatter plots: 1) In Figure 6.3 (b) as 

expected, the testing data points corresponding to the undamaged conditions perfectly overlap with 

the training ones for all the 8 DOFs. 2) In Figure 6.3 (c), the distributions of the testing data 

(scenario 11) of DOF 1 and DOF 2 show the largest 2 deviations from the corresponding 

distributions of the training data, with the 2 deviations marked by 2 black arrows, while the 

deviations for the other DOFs are minimal. Such scatter distribution results correctly reflect the 

fact that the damage location, i.e., the stiffness reduction, is at the columns between DOF 1 and 

DOF 2. 

To quantify and summarize these deviations due to the damage, the Euclidian distance (as 

introduced in Section 6.2.2) was employed to compute the distances between the training data of 

the undamaged scenarios and the testing ones of every damaged scenario, for each of the 8 DOFs 

individually. In this case, the Euclidian distance was used to measure the distances between the 

centers of the first 2 projected cepstral coefficients (i.e., the 2 components of the LDA latent space 

linked to the largest 2 ratios of the between- and within-class variances) for the undamaged and 

the different damaged scenarios. The computed results are summarized as a bar chart shown in 

Figure 6.4. It can be easily found that for each damage case, the maximum 2 Euclidean distances 

always occur at the 2 DOFs adjacent to the location of the stiffness reduction. These results 

demonstrate the effectiveness of the proposed LDA-based modeling method in indicating the 

location with the greatest damage in a linear shear-type system, for the case when there is a only 

single location of stiffness reduction. In future work, further exploration can be carried out to verify 

the effectiveness of this approach in damage scenarios with multiple stiffness reduction locations. 
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Figure 6.3: The distributions of the projected cepstral coefficients from the 8 DOFs of the system. 

(a) Results of only training data. (b) Results of the training data and the undamaged testing data 

(scenarios 1 – 9). (c) The results of training data and the testing data of scenario 11. 

 

Figure 6.4: The Euclidian distance between the centers of the first 2 projected cepstral coefficients 

of the training data (scenarios 1 – 9) and of the testing data for each of the damage scenarios 

(scenarios 10 – 17). 
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6.3.2 Results of structural damage localization for nonlinear systems 

6.3.2.1 Nonlinear behavior detection of a single DOF system 

For the problem of the damage identification and localization in nonlinear systems, we started 

with analyzing the case of a Single-DOF (SDOF) nonlinear system. This SDOF nonlinear system 

was simulated using the generalized BW model (Section 6.3.2). The following values of the 

structural parameters, as presented in Eq. (6.14), were used as baseline settings for the SDOF 

system: 𝑚 = 1 kg, 𝑐 = 0 N ∙ s/m, 𝑘 = 5 N/m, 𝑙 = 0, 𝑏 =  − 0.1, 𝑒 =  − 1, power = 2  ( 𝑙 , 

𝑏, 𝑒, and 𝑝𝑜𝑤𝑒𝑟 are dimensionless parameters corresponding to the nonlinear restoring force term 

of the system.). As previously discussed, the process for detecting the occurrence of nonlinear 

behavior within a system can be summarized as follows: A data-driven model is first built based 

on the training data from the system in its undamaged state (i.e., linear behavior state). This is 

followed by an unsupervised-learning-based strategy to identify the abnormality in the testing data 

obtained from the system with potential nonlinear behavior due to some extreme conditions, e.g., 

a substantial increase in the magnitude of excitation forces.  

The training data of the SDOF system’s response were simulated using a baseline excitation 

force of small magnitude. By trial-and-error calibration and the rule of thumb discussed in [115], 

this baseline excitation for simulating the training data was set equal to a Random Gaussian Signal 

(RGS) with zero mean and a standard deviation of 0.1 N. Such a setting is to create a condition 

where the system, subjected to such level of excitation, is able to exhibit stable linear behavior 

throughout the entire time duration of each realization. In this case, the duration of each realization 

was set equal to 40 seconds with a sampling interval of 0.01 seconds. To get rid of the effects 

caused by initial conditions, the first 10 seconds of data of each realization were removed. 
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In order to generate testing response data that are the results of the nonlinear behavior of this 

SDOF system, in each simulation, the magnitude of excitation applied to the system was set to 

vary in three different phases. The time duration of each realization was set equal to 100 seconds 

with the sampling period of 0.01 second. The corresponding excitation, set to be an RGS, was 

divided into 3 segments: 0 – 40 seconds, 40 – 70 seconds and 70 – 100 seconds. For the first 

segment (0 – 40 seconds), the excitation had the same magnitude (zero mean and the standard 

deviation of 0.1 N) as the baseline setting used in generating the training data. For the second 

segment (40 – 70 seconds), the magnitude of the excitation was substantially increased so to have 

a standard deviation of 4 N: During this potion of the record, the magnified force is expected to 

push the SDOF into the nonlinear range and show a nonlinear behavior. Finally, for the last 

segment of 70 – 100 seconds, the excitation was set back to the initial values (zero mean and 

standard deviation of 0.1 N) so that the system can “settle down” in a new damaged condition. As 

with the training data, the first 10 seconds of the response of every realization of the testing data 

was removed to clear the effect of initial conditions. Thus, the length of the entire response for 

each realization becomes 90 seconds, and the length of the varying excitation for each of the three 

segments is 30 seconds. 

To have an intuitive sense of the difference between the linear and nonlinear behavior of the 

SDOF system, the relationship between the SDOF system displacement and the restoring force, in 

terms of the simulated training and testing data, is visualized in Figure 6.5 (a) and (b), 

respectively. Note that Figure 6.5 (a) presents the result of one sample realization of the training 

data, where the response is 30-second length, while Figure 6.5 (b) shows the results of one 90-

second sample realization from the testing data. One can observe that the displacement and the 

restoring force for the training dataset show a linear relationship, with a clear straight line between 
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the two variables as shown in (a), indicating that the system is in an undamaged state with almost 

completely linear behavior throughout the time duration. For the testing data results in (b), the 

three 30-second parts of the response produce three different restoring force – displacement 

relationships: 1) During the first 30 seconds, since the excitation in this phase has the same small 

magnitude as that of the baseline setting, the behavior of the system remains linear, with the 

displacement and the restoring force showing a linear relationship (shown as the thick, short blue 

line). 2) During the second 30 seconds, as the magnitude of the excitation has largely increased, 

the system starts behaving nonlinearly, with the relationship between the two variables showing a 

clear hysteretic behavior as shown by the orange line. 3) After moving into the last 30 seconds, 

the system largely settles down as the excitation magnitude has been tuned back to the original 

values. However, due to the irreversible stiffness change caused by the damage in the second 

phase, it cannot recover back to the original linear state, and the two variables thus still show a 

slight nonlinear relationship, as shown by the green line. 

 

Figure 6.5: Relationship between the displacement and the restoring force of the SDOF system, (a) 

results of the training data, and (b) results of the testing data. 

 

As discussed earlier, the goal is to build a data-driven model that can accurately and timely 

identify the occurrence of nonlinear behavior of the system. For this purpose, the modeling was 
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again conducted using the cepstral coefficients of the acceleration response of the system. For the 

training dataset, 500 realizations of the 30-second acceleration response with the baseline settings 

of the system’s parameters and the RGS excitation were used, from which the corresponding 

cepstral coefficients were extracted. For testing, 100 realizations of the 90-second acceleration 

response, under the condition of the three-stage excitation, were simulated first. For each 

realization, the cepstral coefficient extraction was performed on the acceleration data of the three 

phases separately. Accordingly, for each of the 100 realizations, three cepstral coefficient vectors, 

representing the three different stages (i.e., the linear – nonlinear – linear stages) of the system, 

were obtained. 

In this case, a New Generalized Auto-Encoder (NGAE) (Section 4.2.2) was built and trained 

based on the training dataset of the cepstral coefficient vectors: using the NRMSE and the SDR 

metrices in Section 4.2.3, it is possible to see that the cepstral coefficients follow a robust Gaussian 

training distribution for the values of the two metrices, and this distribution is representative of the 

undamaged linear state of the system. Subsequently, the trained NGAE was used to identify the 

nonlinear behavior present in the testing data. In this case, three distributions of the two metrices 

were generated and compared with the training distributions (Figure 6.6). It can be observed that 

the testing distribution of the metrices for the first 30 seconds, corresponding to the same 

magnitude of the applied excitation as that of the baseline setting, completely overlaps the training 

distribution, confirming that during the first 30 seconds, the system maintains a linear behavior 

and is in its undamaged state. Moving to the next 30 seconds, the corresponding testing distribution 

shows a significant deviation pattern from the training distribution as expected. This indicates that 

the system, exhibiting a nonlinear behavior, suffers damage and the NGAE can successfully 

identify such a mechanical change of the system. For the last 30 seconds, when the excitation is 
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adjusted back to the original magnitude, the corresponding testing distribution greatly differ from 

the previous two, indicating that the system is now in a completely new state and cannot operate 

as in the beginning of the record due to the irreversible changes in its structural properties, caused 

by the damage during the second phase. 

To characterize the changing behavior of this nonlinear SDOF system, the varying 

distributions of the cepstral coefficients produced under this three-stage excitation condition were 

further analyzed in a tracer manner by analyzing their evolution in time. We first randomly selected 

one realization of the response in the testing dataset, and then performed framing operations over 

the entire simulation duration, with the cepstral coefficient extraction on each frame. For these 

cepstral coefficients, a Principal Component Analysis (PCA) was subsequently performed to 

highlight how their distributions vary as result of the varying three-stage excitation. Figure 6.7 

shows the variation of the first 2 principal components of the PCA latent space, with the results 

generated by the three phases of excitation represented by three colors (blue, orange, and red). The 

black line with the arrow indicates the moving-average of these 2 components, starting from the 

center of the cluster (the blue one) corresponding to the first 30-second response. This tracking 

result clearly shows the significant difference in the system behavior from a stable linear state to 

varying nonlinear states (from the blue cluster to the orange one, then to the green one), and 

indicates that the structural properties of the system constantly change after suffering damage. 
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Figure 6.6: The distributions of the NRMSE and the SDR with respect to the training and the testing 

datasets, where the results of the test data are presented for each of the three phases. 

 

 

Figure 6.7: Tracking for the varying distribution of the projected cepstral coefficients. 

6.3.2.2 Damage localization in a 4 DOF nonlinear system 

After testing the cepstral coefficient-based damage assessment strategy for a SDOF nonlinear 

system, the proposed damage localization method (Sections 6.2.2-6.2.3) was tested on a nonlinear 

Multi-DOF (MDOF) system. In this case, a 4-DOF shear-type structural system with inter-story 
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nonlinear elements represented as the generalized BW model (Section 6.2.3.1) was analyzed 

(Figure 6.8).  

 

Figure 6.8: A 4-DOF shear type structural system. 

 

To simulate the normal operational state of the 4-DOF system, based on the results shown in 

[54, 115], the following parameters were considered as baseline settings: 𝑚𝑑 = 1000 kg, 𝑐𝑑 =

51.8 kN ∙ s m⁄ , 𝑘𝑑  = 2200 kN/m, 𝑙𝑑 = 0, 𝑏𝑑 = −200, 𝑒𝑑 = −100 for 𝑑 = 1,… ,4, where 𝑑 

represents the d th DOF (from bottom to top). Four RGS-based excitation forces, all with a 

magnitude of zero mean and a standard deviation of 0.1 kN, were applied at the 4 masses of the 

system, and the output consisted of the time histories of the acceleration of the 4 DOFs. Note that 

these baseline settings of the structural parameters and applied excitations are set so to simulate an 

undamaged state of the system with little to no nonlinear behavior since the set excitation 

magnitude is sufficiently small so to avoid nonlinearities (as shown in Figure 6.9 (a)). With these 

baseline settings, 100 realizations of the acceleration response of the 4 DOF system were 

simulated, and the cepstral coefficients were extracted from these records to form the training 

dataset.  

To induce a nonlinear behavior in the system, the magnitude of the excitation acting on the 

bottom DOF (d = 1) of the system was increased to a standard deviation of 10 kN, while the other 
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3 were maintained with a standard deviation of 0.1 kN. Under the action of these new excitations, 

the 4 DOF system is expected to exhibit nonlinear behavior at all locations, with the bottom inter-

story element being the one most affected by the large excitation (as shown in Figure 6.9 (b)). 

With this new excitation setup, 50 realizations of the acceleration response were then simulated, 

and the corresponding cepstral coefficient were extracted. This dataset represents the testing 

dataset. 

Figure 6.10 presents an intuitive comparison of the trends of the cepstral coefficients 

produced in the scenario of the baseline excitations at 4 DOFs (a) and in the damage scenario of 

the large excitation at DOF 1 (b). It can be observed that, after a substantial increase in the 

magnitude of the excitation at DOF 1, the trends of the cepstral coefficients extracted from the 

acceleration of DOF 1 show a significant discrepancy between the two different excitation 

conditions, where the trend of the DOF 1’s cepstral coefficients generated by the large excitation 

becomes highly flat (Figure 6.10 (b)). In contrast, the cepstral coefficients of the other 3 DOFs 

produce a much smaller level of the discrepancy, probably due to their milder nonlinearities. 

 

Figure 6.9: Relationships between the relative displacements and restoring forces for each of the 4 

DOFs. (a) The undamaged scenario with the baseline excitation condition. (b) The damage scenario 

with the large excitation at the DOF 1. 
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Figure 6.10: A comparison of the cepstral coefficients between the two excitation conditions. 

To localize the damaged element, an LDA model was built and trained by using the cepstral 

coefficients of the training dataset, where the cepstral coefficients were labeled as 4 individual 

classes according to their locations, i.e., DOFs 1 – 4. The latent-space distributions of the 

coefficients from the training data in this case are presented in Figure 6.11 (a). It can be observed 

that there are 4 clusters clearly separated, in terms of the first two principal components of the 

LDA models, corresponding to the 4 DOFs of the system. When this LDA model is used to project 

the coefficients of the testing data into the same latent space, it is apparent that the occurrence of 

damage induces some scattering in the projected coefficients. Figure 6.11 (b) presents the 

distributions of the projected cepstral coefficients of this damage scenario, as well as the results of 

the training data for comparison. It can be seen that the distribution of values corresponding to 

DOF 1 shows the largest deviation spreading in comparison with the other three DOFs, correctly 

indicating that the first inter-story element suffers the largest nonlinearity. 

To quantitatively verify the effectiveness of the proposed damage localization method, three 

more testing scenarios were simulated, i.e., the large excitation is applied to DOF 2, DOF 3 and 

DOF 4, respectively, to form 3 additional testing datasets (thus a total of 4). The previously trained 
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LDA model was then used to perform the cepstral coefficient projection onto the same latent space 

with respect to each of the 4 testing datasets. The Euclidian distances (Section 6.2.2) between the 

cluster means of the projected coefficients of the baseline condition (the training data) and of the 

4 testing scenarios (the testing data), for the 4 DOFs respectively, were used to quantify the 

deviations of distributions for localizing the structural damage induced by the nonlinear behavior. 

Figure 6.12 presents the Euclidian distance between the cluster means for the 4 testing scenarios. 

Two important points can be reached here: 1) Regardless of where the large excitation is applied 

to the system, the Euclidean distances of all 4 DOFs always show non-zero values, indicating that 

the entire system is damaged in all the 4 scenarios. 2) It can be easily observed that the maximum 

Euclidean distance always appears at the location where the large excitation is applied. 

Consequently, these results demonstrate that the proposed LDA-based structural damage 

localization method is able to correctly indicate the location of the inter-story element with the 

greatest level of damage. 

 

Figure 6.11: The distributions of the projected cepstral coefficients in the first two components of 

the LDA model. (a) The results of only the training data. (b) The results of the training data and the 

testing data for the scenario of damage at DOF 1. The two-way arrows indicate the deviation 

distance from the cluster means of the baseline condition in the 2-D latent space. 
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Figure 6.12: The Euclidian distances of the cluster means between the undamaged scenario and 

each of the 4 damage scenarios. 

6.4 Conclusions 

In this chapter, a new data-driven modeling methodology to address structural damage 

localization problems is proposed. This methodology is based on the Linear Discriminant Analysis 

(LDA) and uses the local characteristics embedded in the cepstral coefficients of the structural 

acceleration response. The proposed LDA-based model is able to highlight the structural local 

characteristics embedded in the cepstral coefficients through its ability to maximize the separation 

of categorical data in the LDA latent space. The projected cepstral coefficients can help perform 

the localization of structural damage by using the Euclidean distance between the means of 

distributions as damage index to quantify the damage levels at different monitoring locations. The 

effectiveness of the proposed method has been verified by two case studies of a linear and a 

nonlinear structural system, and the findings can be summarized as follows.  

1) For linear systems with data corresponding to 2 different conditions (undamaged and 

damaged), the LDA model, trained only with data obtained from the system in undamaged 
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conditions, can successfully point out the locations of stiffness reduction in an entire unsupervised-

learning manner. 

2) For nonlinear systems, when the LDA model is trained with data obtained from low-level 

vibrations (e.g., indicative of a linear behavior), such a model can correctly determine the locations 

where inter-story elements suffer large nonlinearities. Looking at the values of the Euclidean 

distances between clusters also provides an indication of how severe the nonlinearities are over 

the entire structure. 

It would be interesting to test the proposed damage localization strategy with data collected 

from real structures and to see its performance on more complex damage scenarios. 

 

 

 

 

 

 

 

 

 

 



189 

 

Chapter 7. Conclusions and future directions 

7.1 Conclusions 

In this dissertation, state-of-the-art data-driven methods have been explored for two areas in 

civil engineering, namely Residential Electrical Modeling (REM) and Structural Health 

Monitoring (SHM). More specifically, this dissertation presents detailed descriptions of the 

systematic development of novel data-driven methods to five typical problems in these two areas, 

namely, short-term electricity load forecasting and electricity load peak forecasting in REM, and 

structural damage detection, classification, and localization in SHM. 

In Chapter 2, the short-term electricity load forecasting in residential buildings, an important 

problem in REM, was fully investigated and a novel Recurrent Neural Network (RNN)-based 

model was proposed. This model is an integration of a modified Convolutional Long Short-Term 

Memory (ConvLSTM) neural network with selected autoregressive features, termed as a CLSAF 

model, which is aimed to improve single-step-ahead electricity load forecasting for three spatial 

granularities: 1) apartment, 2) floor, and 3) building level. Based on the results produced from an 

electricity database of multi-family residential buildings in New York City (NYC), the CLSAF 

model can achieve higher prediction accuracy compared to 4 classical benchmark models. The 

CLSAF model enables durable robustness by leveraging the advantages of its autocorrelation-

based feature-selection algorithm and a model-simplification method was developed to prevent 

overfitting when confronted with volatile load data caused by changes in unpredictable resident 

behaviors. 

With the same electricity database from multi-family residential buildings considered in 

Chapter 2, a further analysis was conducted in Chapter 3 to identify and predict the growth in 
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residential electricity usage in New York City associated with the Covid-19 impact. Special 

contribution was given to two characteristics of residential electricity usage: 1) the electricity use 

(kWh) of an average apartment on weekdays from 9am to 5pm, and 2) the hourly peak demand 

(Watt) of an average apartment between 12pm and 5pm. Two important factors were identified 

and considered as the essential predictors for forecasting the two characteristics, which are namely, 

the severity of the pandemic and the outdoor Wet Bulb Temperature (WBT). A series of regression 

models were built upon these two factors, which can predict the two characteristics with an R2 of 

0.56-0.57 for days when no cooling is required and 0.80-0.84 for warmer days. By performing 

Monte Carlo simulations, these regression models can be used to forecast the two usage 

characteristics for conditions which, fortunately, did not actually occur in 2020, but which could 

occur in the future in NYC, in similar regions, or indeed in future pandemics or natural catastrophes 

with comparable stay-at-home guidelines. Under such assumed future conditions, the weekday 8-

hour-electricity-use (9am-5pm) could be 15%—24% higher than the one under normal 

circumstances. The weekday 5-hour-peak-demand (12pm-5pm) under the assumed condition 

could be 35%—53% higher than otherwise, where the highest point of the simulation results could 

be twice the maximum 5-hour peak demand in 2019 (894 watts).  

Starting from Chapter 4, the focus of this dissertation turned to the newly developed data-

driven methods in SHM. In Chapter 4, a New Generalized Autoencoder (NGAE) framework, 

integrated with a statistical-pattern-recognition-based approach that uses power cepstral 

coefficients as the Damage Sensitive Features (DSFs), was developed for the problem of structural 

damage detection and quantification in an unsupervised-learning manner. The NGAE can 

effectively characterize the overall structural properties embedded in the cepstral coefficients 

thanks to a newly defined encoder-decoder mapping, largely reducing the effects of the variance 
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attributed to the external excitation and to measurement noise. This mapping results in an 

appreciable accuracy in the assessment of damage within the structural system. The effectiveness 

of the NGAE has been validated through numerical as well as experimental data, namely, an 8 

DOF shear-type system excited by an external force, and the benchmark problem of the Z24 bridge 

in Switzerland with various types of undamaged and damaged conditions. 

Driven by the motivation to recognize various damage scenarios rather than just detecting the 

presence of damage as in Chapter 4, the problem of structural damage classification was deeply 

explored in Chapter 5. For this problem, a novel data augmentation strategy based on a Conditional 

Variational Autoencoder (CVAE) architecture was developed so to create a “balanced” dataset of 

the cepstral coefficients of the structural acceleration response. This augmented dataset can be 

used to systematically build a Probabilistic Linear Discriminant Analysis (PLDA) model for 

damage identification and classification. The proposed data augmentation strategy can effectively 

address the issue, commonly found in monitoring of real civil structures, of limited datasets from 

structures in damaged conditions. The PLDA model, trained with the augmented balanced dataset, 

can performs well for structural damage identification and classification in both supervised- and 

unsupervised-learning manners. The proposed data augmentation strategy and the structural 

damage classification method have been validated through two case studies, namely, an 8 DOF 

system model excited by different random Gaussian signals, and the same real-bridge structure 

(the Z24 bridge) considered in Chapter 4. 

Finally, based on the results in Chapters 4 and 5, the problem of structural damage localization 

for both linear and nonlinear systems is studied in Chapter 6, where a novel data-driven modeling 

method is proposed. This method is based on the Linear Discriminant Analysis (LDA) and on the 

structural local characteristics embedded in the cepstral coefficients of structural acceleration 
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response. The developed LDA model is able to highlight the structural local characteristics of the 

cepstral coefficients in the LDA latent space thanks to its capability to maximize the separation 

distance between clusters. With a proper metric as a damage index to quantify the damage levels 

of individual recording locations of a monitored system, the localization of damaged areas within 

the structure can be accurately achieved by comparing the distributions of the projected cepstral 

coefficients in the LDA latent space between undamaged and damaged conditions. The 

effectiveness of the proposed method has been verified through two case studies, i.e., an 8 DOF 

linear system and a 4 DOF nonlinear system. 

In terms of the form of data used, this dissertation is focused on the acquisition, analysis, and 

modeling of recorded time-series data for different problem objectives. The main “common” 

operations include data wrangling and cleaning, feature extraction and selection, and algorithm 

development and validations. For the two REM problems covered in Chapters 2 and 3, i.e., the 

short-term electricity load forecasting and peak load demand forecasting, they can be considered 

as typical scalar-based time series forecasting problems. The key to better solving these problems 

is to improve the models so to be as accurate as possible to achieve excellent regression 

performance. This can be done through continuous improvement of data quality and modeling 

strategies, such as extensive statistical analysis to identify important factors (predictors), extracting 

the key features from raw data to enhance relevant information, and modifying model frameworks 

to better meet specific requirements of the problems (e.g., the CLSAF model developed in Chapter 

2 to address the problem of high volatility load data). For the SHM problems studied in Chapters 

4-6, the main objective of developing data-driven models is to achieve a correct description of the 

monitored structural system, i.e., to build a surrogate data-based model that represents the 

monitored structural system in its undamaged operational state and that is capable to highlight 
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anomalies when damage occurs. Therefore, the models developed for these problems must not 

only produce appreciable regression/fitting accuracies with respect to measured response data or 

related DSFs (e.g., the cepstral coefficients extracted and used in Chapters 4 – 6), but also provide 

a reasonable characterization and ideal generalization of the structural physical properties of the 

monitored system. 

7.2 Future directions 

Based on the research progress achieved so far, the following research directions for the two 

areas of REM and SHM are recommended for future investigation. 

1) For the REM area, it is suggested to explore in depth the development of higher-level 

functional modules for electricity load control and forecasting based on the previously developed 

methods and intuitions. The main motivation is that, although the electricity load modeling 

techniques (for both the short-term and the long-term forecasting problems) have been extensively 

explored by scholars over past decades, there is still much room for improvement in the electricity 

modeling of multi-step ahead forecasting strategies. It should be noted that this multi-step ahead 

forecasting is quite different from a single-step forecasting for an hour, day, or year into the future; 

it is a simultaneous forecasting of multiple time steps for hours, days, or years into the future. 

Generally, such a multi-step ahead forecasting objective is extremely challenging because of 

relatively smaller spatial granularities, especially for the individual apartments, as discussed in 

Chapters 2 – 3. This is because a sophisticate mathematical or machine learning model can easily 

overfit electricity data measured in individual households due to the associated idiosyncratic 

human behaviors (an apartment’s temporary vacancy, for example). 

A tentatively conceived, potentially effective solution for the multi-step ahead forecasting 

problem is that of employing the attention mechanism on top of the existing powerful deep learning 
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frameworks, e.g., incorporating the transformer self-attention mechanism [39] into a general 

Multi-Layer Perceptron (MLP) framework to perform the electricity modeling. The main 

advantage for using the attention mechanism is that one can maximize the extraction of the 

underlying load profiles from historical electricity load measurements in a more rational and 

intelligent way, thanks to its function of optimizing weight allocation to the key autocorrelation 

information of input sequence data. Consequently, not only can the information of residential load 

profiles be used more efficiently to achieve the primary objective of multi-step ahead load 

forecasting, but a smarter data-driven modeling method, compared to the previously proposed 

method (Chapter 2) that requires to be integrated with an additional optimal feature selection 

algorithm, can be obtained. 

This multi-step ahead electricity load forecasting method can play a crucial role in electricity 

load peak control and demand response management, which could serve as a rather useful tool for 

electric utility companies. This is because such a technology can be powerfully integrated with 

various applications of cutting-edge smart grids/batteries, helping to more accurately indicate the 

occurrence of peak demand and providing new strategies for optimizing electricity allocation. 

These possible advances in smart grid applications can indeed help address the common global 

challenge of daily unbalanced load distribution between peaks and troughs in the residential 

electricity sector, as discussed in Chapters 2-3. 

2) For the SHM area, it is proposed, in the immediate future, to refine the validation process 

of the proposed structural damage localization method (as discussed in Section 6.4) by testing the 

method with more extensive datasets collected from real structures (e.g., bridges or buildings). The 

Z-24 dataset, although still widely used, is old and quite limited. In addition, it would be interesting 
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to test the proposed method in more complex damage scenarios, such as the cases of multiple 

damage locations. 

It is also proposed to develop machine learning models that are capable to directly account for 

some physical properties of structures. Over the past few years, there have been many studies 

focused on the development of the Physics-Informed Neural Networks (PINNs) [4, 116] in the 

fields of science and engineering, e.g., re-configuring the structures of MLPs or Recurrent Neural 

Networks (RNNs), and/or customizing the associated loss functions, to fulfill the physical laws of 

the governing differential equations followed by observed data.  

A promising research direction for addressing the vibration-based SHM problems through the 

PINNs is to modify or upgrade the framework of Neural Ordinary Differential Equations (Neural 

ODEs) [117], which is an important member in the PINN community. The key intuition behind 

the original Neural ODEs is to learn the underlying governing dynamics (differential equations) 

from the measurement data of dynamical systems via the mechanism of hidden-layer-output 

transition of the Residual Neural Network (ResNet) [118]. Such a Neural ODEs framework 

provides a new paradigm and insights into the linkage of neural networks with differential 

equations. Hence, by developing a data-driven model on the basis of a Neural ODEs framework, 

the governing vibration differential equation embedded in the measured response data of a 

monitored structural system can be well described. 

An alternative strategy of the PINN modeling for the vibration-based SHM problems is to 

customize the loss functions of classical neural networks to discover the governing dynamics or to 

identify key structural parameters. The basic idea is to add the necessary "physical terms" as 

additional losses to the original loss function consisting of only regression/fitting errors (e.g., the 

mean squared error). These terms are added to satisfy the laws of the governing differential 
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equations and the associated boundary conditions (if known), with/without the unknown structural 

parameters to be identified (e.g., the natural frequencies). In this way, this PINN model can be 

trained with the measured structural response data for a system identification objective to get the 

key structural parameters of the monitored system, and the trained model can subsequently become 

a data-based surrogate model for that system. This built surrogate PINN model, for example, can 

be then incorporated into a model updating framework for various structural damage assessment 

problems. 
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