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Abstract 

Toward A Secure Account Recovery: Machine Learning Based User Modeling for protection of 

Account Recovery in a Managed Environment 

Amos Alubala 

 

 As a result of our heavy reliance on internet usage and running online transactions, 

authentication has become a routine part of our daily lives. So, what happens when we lose or 

cannot use our digital credentials? Can we securely recover our accounts? How do we ensure it is 

the genuine user that is attempting a recovery while at the same time not introducing too much 

friction for the user? In this dissertation, we present research results demonstrating that account 

recovery is a growing need for users as they increase their online activity and use different 

authentication factors. We highlight that the account recovery process is the weakest link in the 

authentication domain because it is vulnerable to account takeover attacks because of the less 

secure fallback authentication mechanisms usually used. To close this gap, we study user 

behavior-based machine learning (ML) modeling as a critical part of the account recovery 

process. The primary threat model for ML implementation in the context of authentication is 

poisoning and evasion attacks. Towards that end, we research randomized modeling techniques 

and present the most effective randomization strategy in the context of user behavioral 

biometrics modeling for account recovery authentication. We found that a randomization 

strategy that exclusively relied on the user’s data, such as stochastically varying the features used 

to generate an ensemble of models, outperformed a design that incorporated external data, such 

as adding gaussian noise to outputs. This dissertation asserts that account recovery process 

security posture can be vastly improved by incorporating user behavior modeling to add 



 

 

resiliency against account takeover attacks and nudging users towards voluntary adoption of 

more robust authentication factors.
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Introduction 

 Performing authentication is a routine part of our daily lives. It is even more so in the 

cyber world, where digital authentication is the precursor to most critical transactions that we 

perform online, such as financial-related transactions, healthcare, and social interactions. With 

this increased dependency on authentication to access services and accomplish routine activities 

online, users need to securely maintain access continuity even when they do not have or 

remember their nominal digital credentials. They can forget a knowledge credential such as a 

password; they can break or lose hardware with embedded credentials such as a security key or a 

phone or buy a new device and need that associated with their digital credentials. Credentials can 

also expire and require to be renewed. Account Recovery is the ability to re-establish 

authentication credentials using a fallback mechanism, thus allowing access continuity for the 

user. As a result of the many advances in the authentication domain, users have a wide variety of 

options to choose from to accomplish identification during authentication and an account 

recovery process. However, the proliferation of these different options, coupled with the fact that 

many systems implement account recovery using the weakest authentication options, such as 

security questions, has left the account recovery process vulnerable as a mechanism for account 

takeover attacks.   

 In this dissertation, our goal is to secure the account recovery process for legitimate users 

without adding friction to the user while maintaining their privacy. In the context of Account 

Recovery, the primary threat model is evasion attacks, making it possible to take over a victim’s 

account. We thus leverage resilient Machine Learning based user behavioral modeling as a 

critical part of the account recovery process protection. We achieve this resiliency by using 

principles of randomization. We investigate the most optimal and efficient randomization 
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strategies that meet the constraints and requirements of an account recovery process. Our study is 

scoped to a managed environment since our approach leverages data collected on the end user 

device that is used as the input to the machine learning user modeling. 

First, we start by reviewing the problem space. We present results from an empirical 

study against real-world authentication data covering several millions of user activity from an 

activity from a large US-based company. These results indicate that an increase in the adoption 

of multiple authentication factors exacerbates account recovery. We show that users do not 

voluntarily adopt the most secure means to protect their digital accounts and credentials. We also 

show that some secondary authentication mechanisms are less secure and often suffer usability 

challenges. All this points to the fact that user accounts are most vulnerable to account takeover 

attacks during the account recovery process. This is the weakest link in the authentication 

domain; thus, protecting this process goes a long way toward improving the overall security 

posture of the user accounts.  

Second, explore the protection mechanisms for an account recovery process. We present 

a protection scheme that leverages a randomized machine learning user behavior-based modeling 

approach resilient to evasion attacks. Randomization principles have been used for security for a 

long time. Many studies have published results using randomization to add robustness against 

different security vulnerabilities. But there are many ways of achieving randomization. Our work 

determines and presents the optimal randomization strategy under account recovery conditions. 

We investigate data-independent-based versus data-dependent strategies to determine the most 

efficient and effective account recovery in a real-world setting. Some of the challenges in an 

account recovery setting include that a user is likely to use a different end device than their 

standard device during or after an account recovery process. Thus, the user model must function 
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just as efficiently and accurately on a new device. Moreover, unlike other user authentication 

activities, the user infrequently invokes the account recovery process. Our case study 

demonstrated that, on average, a user went through the account recovery process less than five 

times a year. The model, therefore, needs to stay current between uses. A user may not invoke 

this process for an extended period. 

This dissertation presents research results demonstrating that account recovery is a 

growing need for users as they increase their online activity and use different authentication 

factors. We then discuss the current weaknesses of this process. We highlight that account 

recovery is the weakest link in the authentication domain and show an effective protection 

mechanism that can add resiliency against account takeover attacks. This work paves the way for 

closing this gap and improving the overall security posture around account recovery. 

 

1.1 Thesis 

Thesis Statement 

Machine learning-based user behavioral biometrics can effectively strengthen the security 

posture of the Account Recovery process without adding friction to the user while 

maintaining their privacy. 
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1.2 Thesis contributions 

 

This dissertation provides the following contributions: 

 

1. Advancing voluntary adoption of cyber protective behavior: By analyzing millions of 

authentication events at a large US-based company, we study the additional 

authentication factors adopted by older adult users compared to younger users. In 

enterprise settings and organizations, older users outnumber younger users an, so the 

problem of Account Recovery is a more significant threat to these organizations and their 

users. The insights from this research provide solid foundations for understanding factors 

that influence the voluntary adoption of robust alternative authentication methods that 

can be used during Account Recovery. 

2. Introduction of user behavior modeling to make Account Recovery more resilient to 

fraud. 

3. Advancing User Behavior Modeling security posture by studying randomized modeling 

for adding resiliency against model theft. 
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1.3 Thesis organization 

 

 Chapters 1 and 2 provide a background on Account Recovery, Account Recovery 

methods, Account Recovery weaknesses, and current protections against these weaknesses. 

Chapter 3 presents research results of voluntary user adoption of multiple authentication factors. 

In Chapter 4, we offer research results for randomized modeling for adding resiliency against 

model theft used for user behavior modeling. We conclude by discussing how techniques 

presented in this dissertation can be combined to provide holistic proactive and reactive 

protection for the Account Recovery process. 
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Chapter 1:  

Background 

 

This chapter will provide the necessary background information on the concepts and 

topics covered in this thesis. We will first describe what Account Recovery is and what 

mechanisms are used for achieving account recovery today and then present an overview of why 

the account recovery process needs protection. We will review some of the weaknesses in the 

current account recovery process as a motivation to why we need a new way of protecting these. 

Lastly, we will cover user behavioral modeling concepts that we will apply as a new perspective 

on the protection of account recovery.  

 

1.1 Account Recovery 

1.1.1 What is Account Recovery? 

 Account Recovery is the process of restoring account access to a legitimate account 

owner when they cannot otherwise use their primary account credentials for access. This is 

usually accomplished using a secondary or a fallback authentication method or scheme. A 

fundamental property of Account Recovery is verifying the requestor’s identity before granting 

them access to the account. In this context, identity verification is the authentication of the 

binding that asserts a name, or an identifier is pointing to the proper entity (the object or person). 

As explained in this article [2], there are two ways to achieve this; by the assertion of a trusted 

third party and through continuity, i.e., we presume that a binding between an identifier and the 
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proper entity is correct today because it was correct yesterday. This continuity can be represented 

as a timeline going back to the initial enrollment of the entity into the system when a credential is 

exchanged. Today, the predominant primary credential used is a password, and password 

forgetfulness is the leading cause of Account Recovery for this method [55, 56, 57, 58, 59, 64]. 

Account owners can also break or lose hardware with embedded credentials, such as a security 

key or a phone, or they can buy a new hardware and need that associated with their digital 

credentials. Credentials can also expire and require to be renewed.  

 

1.1.2 Why does the Account Recovery process need protection? 

 Account Recovery process is currently the weakest link for many authentication schemes 

primarily because the fallback methods used during recovery are usually not as secure as the 

primary or nominal methods [141]. This weakness is enumerated under Common Weakness 

Enumeration CWE-640 [48], which describes it as a weakness resulting from security questions 

being too easy to guess or determine answers to, such as by looking at one’s social media site. 

Other examples include an implementation weakness in the recovery mechanism code, which 

might be spoofed to send the recovery credentials to a threat actor. Moreover, an adversary can 

leverage the account recovery process to deny access to the legitimate user in a case where 

throttling is not done at the rate of the primary credential reset, thus leading to account lockout. 

 A weak Account Recovery implementation or process can compromise the overall 

security posture of the system regardless of how strong the primary authentication mechanism 

might be. Several reported Account Take Over breaches leveraged account recovery as the attack 

vector [45, 61, 62, 133,134,135,136,137]. 
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1.2 Account Recovery methods 

1.2.1 Personal Knowledge Questions 

 Personal knowledge questions, also referred to as Security questions is the most used 

method for account recovery today, despite its many usability issues and security weaknesses 

[48,49,51,52,54]. A large-scale study at Google [55] demonstrated unreliability of security 

questions primarily due to a poor memorability to secret answers. The study reported that about 

40% of the users did not recall the answers to their security questions. The study reported that 

most of the memorability issues were because of users purposely setting incorrect answers to 

their security questions to make their questions harder for others to guess. But interestingly, this 

behavior had the opposite effect as the users “hardened” their answers in a predictable way, 

making it easier for adversaries to determine the correct answers. This Account Recovery 

method assumes a threat actor's difficulty in correctly guessing the answers. 

 

1.2.2 Helpdesk 

 Using a helpdesk or service desk where users call in for assistance during account 

recovery is a standard method in enterprise settings [65]. The account recovery process typically 

involves the support staff unlocking the user’s account through an administrative interface after 

verifying the user. With an unlocked account, the user is provided a temporary credential, 

usually a password, to access their account, and is forced to reset the credential before continued 

use. The security assumption here is that the verification performed by the support staff is 

sufficient. This recovery method comes at a prohibitive cost [64]  
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1.2.3 Email 

 This is typically in the form of a credential reset link emailed to the user’s email address 

on record. This link typically has a time-to-live period within which the reset activity can 

happen. The user clicks the link to be redirected to a page where they can go through a reset 

process, such as setting up a new password or enrolling a new authentication method. The 

security assumption behind this method is that the bad actor does not have access to the user’s 

email, and the transmission of that email message is secure. 

 

1.2.4 SMS 

 This recovery method enables users to receive a one-time code (OTC) on their registered 

mobile device sent by SMS. This natively works on the phone without requiring the user to 

install anything. On the one hand, SMS is very user-friendly, but on the other hand, it is 

vulnerable to several attacks, such as SIM-swapping and certain malware [141].  

 

1.2.5 Voice call 

 This method requires a registered phone on record that the user can be called back on, 

and a temporary credential issued to. Possession of this phone is often used as a validation of the 

receiver as being the legitimate user. The voice call requires an interactive session with the user. 

The temporary credential is not left as a voicemail, instead it is delivered to the user 

interactively. 
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1.2.6 Magic links 

 This is a form of a non-password login that the user uses to access the account or the 

system, thus enabling them to recover their account. This can be sent through an email or an 

SMS message to the user’s device. This can therefore be classified as a type of a bearer token. 

 

1.2.7 Security Keys 

 These are small devices that securely store confidential information such as a private key. 

These hardware devices generate a One Time Code (OTC) for authentication.  

Hardware security tokens are more secure and phishing resistant [63] but they have some 

operational challenges such as requiring the user to carry them around. 

 

1.2.8 Trusted designated intermediaries  

 This involves a trusted intermediary vouching for the user trying to perform an account 

recovery that they are a genuine user. In some cases, the intermediary is trusted with the recovery 

codes that the user can retrieve and user to recover the account. Usage is limited as it requires the 

intermediary involved as part of the account recovery process. 

 

1.2.9 Backup Account Recovery Codes 

 Backup account recovery codes are typically provided to the user ahead of time. They 

require to be stored securely. They are available for one-time use. This method scores higher on 

usability but its highly depended on the user securely storing and retrieving them when needed. 
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1.2.10 Temporary Access Pass 

 A temporary Access Pass is a passcode that can be issued for use for a limited time. 

These passcodes are usually issued by a system admin after the user has met a minimum set of 

verification requirements. Using the temporary access pass, a user can access their account and 

enroll or set up a new authentication method option that they can use subsequently. Temporary 

access pass differs from backup account recovery codes because these are usually generated on 

demand and have a limited time to live while, backup account recovery codes are generated 

ahead of time and provided to the user for future use.  

 

 

 

1.3 Machine Learning User Behavioral Modeling in the context of Account 

Recovery 

 

 

 Today, the process of authenticating users is comprised of five distinct stages [140] as 

depicted in Figure 1.0.1 below: 
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Figure 1.0.1: Five layers that comprise the process of authenticating a user used in industry today. 

 

The outermost layer is used for providing Identity Assurance before the user provides any login 

credentials. Its purpose is to filter out bad actors by looking at an authentication request and 

comparing that to a profile of legitimate users. This profile is based on prior established 

declarative facts about the legitimate users’ past access to the system, which typically includes 

known devices, known locations, known browser versions, and operating system versions.  

This is followed by the authentication layer, which leverages the user-supplied credentials such 

as passwords to establish the identity of the user. The verification layer follows, which 

challenges the user for an additional authentication factor beyond the one supplied in the prior 

layer. This typically involves a one-time passcode sent to the legitimate user’s mobile device that 
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they have. Other factors, such as biometrics and push notifications, can be used to fulfill the 

challenge. Next is the Identity Proofing layer which sends the authorized user through a process 

that verifies their personally identifiable information or verification of a government-issued 

document such as driver’s license that the user has. The final layer under this current model is a 

form of step-up authentication that can be performed on the user with an active session 

depending on the risk level assigned to a specific activity that the user initiates within the system.  

 User Behavioral Modeling adds another dimension to this process by introducing an 

ability to predict if the logged-on user is a legitimate user or an imposter, even when the input 

corresponds to an activity that the system has not seen before. This is what differentiates the 

current widely used approach based on a declarative user profile from one that leverages 

machine learning based user behavior modeling. This means that a system incorporating user 

behavior modeling is likely to detect a zero day type attack that a system based on classic user 

profiles will not since the latter’s decisioning is primarily limited by historical information that 

the system has seen before and knows about. 
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Figure 1.0.2: The 5 layers that make up the process of authenticating a user today plus the user modeling 

layer. There is a difference between the ‘user model’ introduced with user modeling and the ‘user profile’ used in 

the assurance layer 

 

The input data used for training the user model typically comprises of events and activities that 

the user does in each period. This can involve the applications the user uses, the way the user 

interacts with a system, the duration of these interactions, a user's gait, among other events. 

Creation of this user model is done by a machine learning classifier that is trained to classify 

events corresponding to a legitimate user from an imposter. Formally, this classifier is initialized 

with n training input samples {(x1 ,  y1),   … ,  (xn,  yn)} drawn i.i.d. from a given distribution of 

user behaviors or events D, where xi ∈  R𝑑 and yi ∈ {+1,   − 1}. The objective is for the 
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classifier to make a prediction ýt given a new event xt such that the prediction is within a given 

probability margin to that of the trained output. 

  Account Recovery typically involves a user establishing access to their account using an 

alternative authentication mechanism. This alternative mechanism might involve using a new 

device, such a new mobile device or initiating the request from a different location. As a result, 

the interaction with the system or the event performed by the user might be different from any of 

the historical information that the system knows about the user. In this scenario, the declarative 

profile-based approach where the system is simply performing pattern matching between an 

activity or event with the saved profile and detecting deviations from the historical profile to 

differentiate a legitimate user from an imposter does not work well. On the other hand, a well-

trained Machine Learning based user model can still accurately predict whether the legitimate 

user is performing the new activity or the new event. This is one of the key reasons why this 

dissertation is calling out the gap in the current implementation of this process in the industry 

and proposing the use of ML-based user behavior modeling for the protection of the Account 

Recovery process, beyond just the declarative-based user profiles commonly in use today.  

 

1.4 User Privacy in the context of Account Recovery 

  

 Today, the predominant method for Account Recovery is depended on knowledge-based 

questions and data derived from a user’s Personally Identifiable Information (PII) [55]. As 

several studies have demonstrated, this is not secure since most of this information is easily 

discoverable from various sources such as social media sites. Moreover, use of a one’s PII 

information often ends up exposing their confidential information. Enterprise service desk staff 
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often gets to know a user’s confidential information when the user calls in and must provide this 

information as part of the verification step. The good news is that users are becoming more 

aware of the need to protect their private information. A study by Google revealed that about 

32% of users provided false answers to their account recovery questions for privacy reasons [55]. 

They believed that falsifying the answers would ensure that their private information such as 

their date of birth was not revealed to others during the account recovery process. In another 

example, in early 2022, IRS had to abandon a facial recognition user verification system 

administered by a private company after users, privacy activists and congress criticized the 

agency for allowing a private third party company to collect private biometric information from 

users seeking agency services as part of the verification step [139].    

 Account Recovery feedback messages to users can potentially leak the account holder’s 

private information. An example of this is the hints that some Account Recovery 

implementations provide to users. These include free text hints that the system lets users set to as 

reminders to answers for their secret questions or forgotten passwords. Moreover, some systems 

provide feedback to the user indicating a partial email address or phone number where the reset 

password is either emailed to or sent to. Some Account Recovery implementations show the last 

time a user successfully performed an account recovery. Whereas this feedback  information 

might be helpful to the user, it can also potentially leak private information of the account holder. 
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Chapter 2:  

Account Recovery - Current State 

 

2.1 Why is the need for Account Recovery increasing? 

 

2.1.1 Remote Work Style 

 COVID-19 directly contributed to an explosion of Remote Work style as described by a 

TIME report [66] and Pew Research [50]. Remote work requires a user to use several 

applications such as collaboration tools applications, remote time logging tools, and remote file 

sharing tools, among others. All these tools require some authentication which oftentimes means 

that the user will be required to maintain a set of different authentication credentials. A Dashlane 

report [53] supported this viewpoint through their survey of users and organizations, which 

showed that increased usage of password managers was the top change that organizations made 

because of remote work. The more credentials they must have, the more likely they will need to 

recover one or more. 

 

2.1.2 Increased online activity 

 A study analyzing authentication-related log data from a large US-based company 

covering a period of one year (see Chapter 3) demonstrated that Account Recovery related issues 

increased with an increasing number of users active online.  
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2.1.3 Adoption of Passwordless 

 Adoption of FIDO credentials which usually means that passwords are not commonly 

used becomes a problem when one of those FIDO credentials must be recovered and the fallback 

method, which typically is a password must be relied upon. But in most cases, when FIDO 

credentials are used, users tend to forget their passwords simply because they rarely use them 

[63].  

 

2.1.4 A variety of Authentication options 

 Single Factor Authentication using a secret such as a password is still the most prevalent 

means used for user authentication today even though there is a great deal of research 

demonstrating the weaknesses of this approach both from a security perspective and from a 

usability perspective [4]. Much published research has shown that adding a second factor during 

authentication tremendously mitigates the weaknesses evident when just a single factor is used 

[13]. 2FA raises the bar for the attacker since they not only have to compromise the victim’s 

password, but they also must compromise the second factor used, such as the user’s mobile 

device. Verizon Data Breach report approximates the number of security breaches involving a 

compromised password at 61% [21]. Microsoft reported that 99.9% of breaches are prevented by 

the introduction of 2FA [10]. In 2021 Google reported a 50% decrease in compromised within a 

few months after auto-enrolling more than 150 million users in 2FA [22]. However, an increase 

in authentication factors also implies an increase in methods that will need to be recovered. In 

Section 3.7, we demonstrate results from a study that highlighted this point. The study showed 

that account recovery reported issues increased with the increasing adoption of additional 

authentication factors.  
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2.2 Vulnerabilities and Weaknesses in current Account Recovery 

 Account Takeover happens when an adversary modifies a victim’s account credentials 

such as something a victim knows or possesses to what an adversary knows or is in possession 

of. This results into the victim losing all access to their account and the attacker taking over full 

control of that account. 

 

2.2.1 Account Takeover through MFA Bypass 

 

Knowledge Based Authentication (KBA) 

 Security questions is the most common knowledge-based Account Recovery method but 

also it is the least secure. Most security questions are derived from personal data such as 

personally identifiable information (PII) such as one’s mother’s maiden name, one’s father’s 

middle name, one’s date of birth, one’s social security number, etc. These questions can also be 

contextualized to one’s interaction with the system such as information about the bill that the 

user paid or items that a user purchased at a given time. One challenge with KBA’s is that 

typically the information is something that is known by more than just the user. Usually, the 

user’s family members or close friends will also know the answers to these questions. Moreover, 

users typically tend to expose this information on social media either intentionally or 

unintentionally, making it a major source of information harvesting by adversaries. The other 

challenge is that storage and validation of this information are not usually done securely. For 

example, a support staff that validates this information usually end up knowing the answers to 

the questions. This is unlike passwords which are typically stored as one-way hashes and are 
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usually changed upon a rest activity. Security questions based on personal information do not 

change even after the user has provided the answers to through a support staff.  

 

SIM Swapping 

 In this attack, the adversary convinces the victim’s service provider to transfer the target 

phone number to the attacker’s SIM card. The result is the SMS One Time code indented for the 

victim being received by the attacker thus bypassing the MFA challenge. 

 

Stolen One-Time Passcodes 

 This attack usually piggybacks on phishing attacks where the adversary lures the victim 

to a spoofed website. From there they can steal the victim’s knowledge factors and use those to 

initiate an OTP request. 

 

Phishing Emails 

 Phishing attacks involve tricking the victim into clicking on a link or downloading an 

attachment in an email. A click on the link usually presents the victim with a fake login 

experience that looks normal that captures the user’s credentials or authentication codes. The 

attacker can then use those captured real user credentials to recover a user’s account and modify 

it accordingly. 

 

 

 

 



21 

 

Forged recognized devices 

 To reduce friction for the end user, the application will not prompt for MFA on devices 

where the user has successfully logged on before. An adversary can use this as an attack vector 

by figuring out how the application remembers the device and thus forge the signature used for 

this remembrance. For example, if a particular cookie is used, an attacker can forge that cookie’s 

value and add it to the user’s request. 

 

Session Hijacking: 

 This attack involves an attacker taking over a victim’s web session without authenticating 

by stealing session cookies. This can be accomplished through tricking the user into clicking an 

attacker generated malicious link with a prepared session id. It can also be accomplished via pre-

installed malware on the victim’s device or through a man-in-the-middle (MiTM) attack. With 

the stolen session cookie, the attacker can access the user’s account, modify recovery options, or 

even set up a new recovery option. 

 

2.3 Account Recovery  

  

 The underlying threat model primarily drives the choice of an appropriate Account 

Recovery method. There are usually four concerns to be addressed; Ability for a user to continue 

access, the privacy of the user, security protection of the account and the cost.  
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2.3.1 Access Continuity, Security and Privacy 

 The risk underlying the service behind which the account is being used for might be low 

enough that both security and privacy concerns are of low importance to the ability for the user 

to maintain account continuity. An example of this might be a system that is open to the public 

for informational purposes only and thus an Account Recovery process for such a site will not 

require stringent user verification and authentication as part of the process. On the other hand, if 

the underlying risk is high enough, then the security and privacy requirements will outweigh the 

account continuity requirements thus delaying or discontinuing the access until the minimum 

security and privacy requirements are met. Google explains in this article [133] that they delay 

one’s account recovery to notify the user that an account recovery attempt has been made on 

their account. This gives the user an opportunity to deny that request if an adversary initiated it 

thus securing the account. 

 

2.3.2 Cost 

 The cost for implementing a particular Account Recovery mechanism directly influences 

the user’s choice of that method. For example, some roaming authenticators such as hardware 

security keys come at a cost. Whereas platform authenticators such as mobile devices or laptops 

that the user already owns will not incur an additional cost  
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Chapter 3:  

Rethinking Account Recovery 

 

There has been previous research on account recovery and an enumeration of the 

weaknesses in account recovery [48]. The suggested mitigations against these weaknesses 

include several ways to strengthen the mechanism in which the fallback credential is transmitted 

to the user and the implementation of the recovery process. These include using multiple security 

questions, avoiding weak and easily guessable answers to the questions, ensuring all input 

supplied by the user to the recovery mechanism is validated and filtered, assigning a new 

temporary password to the user instead of revealing the original password, throttling on the 

number of incorrect answers to security questions, and providing the user with backup security 

keys or authentication codes.  

The one commonality to all these mechanisms is that they rely heavily on the user 

complying with security policies or taking an action such as enrolling in an additional account 

recovery option or setting up security questions that are not guessable etc. Whereas this might 

work well in settings where users are required to enroll in multiple authentication mechanisms 

and security policies calling for that are enforced, it does not work well for most other cases 

where users are not forced to enroll or set up a recovery method. In addition, this will not work 

well for users that might not have devices capable of taking advantage of strong authentication 

schemes such as FIDO based methods. Moreover, past research has shown that a considerable 

number of breaches are caused by users who do not comply with security policies or circumvent 

these policies [124]. Given this heavy dependency on the human factor, we rethink Account 
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Recovery by studying how to make it more user-driven and more subjective to users’ different 

preferences as dictated by varying user demographics. As defined earlier, Account Recovery 

requires use of an alternative authentication mechanism when the nominal authentication method 

is not available. As such, a user with multiple authentication methods will have that alternative 

mechanism to use for authentication and thus access their account and recover or re-establish the 

primary method. So, the question is “How do we ensure that users are voluntarily enrolling in 

multiple strong authentication factors for those services that make that option available”? 

Unfortunately, voluntary 2FA adoption remains exceptionally low [9]. In 2021 Twitter 

reported that only 2.5% of their active users voluntarily signed up for 2FA [16]. In 2018, Google 

reported about 10% [17]. Other studies have shown that adoption remains low [7, 14, 15]. 

Besides the adoption challenge, there is also an increasing body of work on the 2FA usability 

issues [1, 2, 6, 7, 12, 13]. Our research corroborates these studies both on adoption as well as on 

usability. However, we contribute an entirely new perspective by focusing on the senior citizens 

user demographic. That is, US-based users aged sixty-five and above. Several studies have 

looked at adoption rates of other types of users such as university students, faculty, and staff [1, 

15, 20] or a general population of users [16, 27] and a limited number of users [5]. This is the 

first study to our knowledge that has focused on 2FA adoption rates for older adults at scale in a 

real-world setting. The Pew Research Center’s report on technology use among seniors [19] 

shows that over the last decade, the percentage of senior citizens using online services has almost 

tripled. This demographic of users represents a growing segment of internet users today. It is 

therefore imperative to understand any user perceptions towards technology adoption (in context 

of 2FA) that are specific to this segment of users. We demonstrate that older users’ adoption rate 

is on average lower than that of younger users.  
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We seek to answer the research questions below with a twofold goal; First, to understand 

plausible reasons behind the low 2FA adoption rate among older adults and secondly, to provide 

suggestions that will help drive up the rate of 2FA adoption voluntarily and thus provide users 

that strong alternative Account recovery option. 

a. RQ1: Is there a correlation between 2FA adoption and system usability? 

b. RQ2: Were there any evident patterns between users’ device types and the 

2FA method adopted by the user? 

c. RQ3: What associations can be gleaned between the login frequency and 

voluntary 2FA adoption? 

d. RQ4: Were there any noticeable user behavior patterns right after they 

were notified of the upcoming changes requiring use of 2FA? 

We addressed the above research questions by performing a detailed analysis of the 

authentication logs and help desk incidents reports. The log data contained authentication related 

transactions spanning a period of one year. A log transaction contained a user agent, a user type, 

2FA enrolment status, user preference, a session id, a timestamp, and the type of transaction e.g., 

sign-in, logout, re-authentication etc. The help desk data contained the total number of 

authentication related incidents reported in each period. 

A sure way to ensure adoption of 2FA is by making it mandatory. Our research 

corroborates this viewpoint. We demonstrate that the same users despite being aware of 2FA 

availability, did not enroll in it until when it was made mandatory. Only a small percentage of 

users opted to enroll voluntarily prior to the enforcement period. Several businesses, educational 

institutions and Government agencies have started mandating use of 2FA for their websites [17]. 

In 2021, the US Government issued an executive order requiring government agencies to adopt 
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use of 2FA [11]. Starting November of 2021, Google made it a requirement for approximately 

two million YouTube creator’s accounts to have 2FA and auto enabled it by default for more 

than 150 million users [22]. Such steps are good measures in the right direction. However, this is 

not always possible or practical. Several businesses prioritize less friction for their users and 

view adding 2FA as a way disrupting their user’s experience. Often, these businesses implement 

2FA as an optional feature and leave it up to their users to adopt it should they choose to. Thus, 

the challenge of finding a way to encourage more users to voluntarily adopt protective behavior 

such as multiple authentication factors adoption is still an open research problem. Our research 

findings contribute towards solving this challenge. 

We use an IRB approved log data with more than five hundred million records from a 

large US-based company to perform several empirical measurements towards answering this 

question. The log data covers authentication related events such as user registration, login 

methods used, device type and help desk reported incidents for hundreds of millions of unique 

authentication transactions. All the log data resided on the company’s secured devices and within 

the company’s network. No user personally identifying information was used as part of the 

analysis. The work was approved by both the company providing the data and the Columbia 

University IRB. The university IRB protocol number# IRB-AAAT9070 (Y01M00) 
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3.1 Methodology 

 

This section covers a detailed description of the approach followed in studying the research 

questions below. 

 

• RQ1: Is there a correlation between 2FA adoption and system usability? 

 

 

This research question was aimed at determining the impact of 2FA adoption on the general 

usability of the authentication process. The International Organization for Standardization (ISO): 

ISO 9241-11 [18] defines usability as a measurement of the efficiency, effectiveness, and 

satisfaction of a product from the consumer’s perspective. We used helpdesk reported 

authentication incident counts and performed an analysis of the numbers against 2FA enrollment 

and usage to quantify a usability score. For efficiency, we looked at the time it took for an 

authentication transaction to complete from start to end. For effectiveness, we looked at the ratio 

of failed logon sessions to successful sessions. Satisfaction was a little bit hard to quantify. We 

leveraged helpdesk call in numbers for login issues per number of login events. The higher rate 

indicates usability issues, which we directly mapped to a satisfaction score. This question was to 

address the concern some companies have about 2FA introducing friction on the user’s 

authentication process thus contributing to their reluctance to enforce 2FA. We therefore wanted 

to understand to what extent that was true for older users when comparing measurement values 

before 2FA enforcement to after MFA enforcement. 
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• RQ2: Were there any evident patterns between users’ device types and the 2FA method 

adopted by the user? 

 

 

This research question was aimed at looking at the correlation between device type and the type 

of 2FA that a user selected. The goal for this was to determine if there was a strong correlation 

between the type of device preferred by the user with the type of 2FA that the user chose. Having 

this insight helps towards tailoring a notification regarding 2FA adoption to different users based 

on their preferred device types. Our log data contained user agent information from which we 

were able to determine the device type that the user was using. The 2FA type chosen by the user 

was also available in the log data. Combining these two pieces of information was sufficient to 

address this question. 

 

• RQ3: What associations can be gleaned between the login frequency and voluntary 2FA 

adoption? 

 

 

This research question was aimed at determining if there was a correlation between the 

frequency of logins and the total time spent within the website for a given session with the rate of 

2FA adoption. The hypothesis was that users that logged in more frequently would also have a 

higher adoption rate. Additionally, users that spent more time per session would have a higher 

adoption rate. The login frequency was determined by counting the number of login sessions per 

user in each period. The total time spent using the web resource was determined by measuring 

the length of a unique session per user in each period. 
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• RQ4: Were there any noticeable user behavior patterns right after notification of the 

upcoming changes requiring use of 2FA? 

 

 

The goal of this research question was to uncover any noticeable user behavior patterns within a 

three-month period between 2FA enforcement notification and just before the actual 

enforcement. These user behavior patterns provide insights into older users’ mental models on 

2FA or perceptions of 2FA. An understanding of a user’s perceptions of 2FA is foundational to 

understanding the most effective way to nudge them towards voluntary adoption. User 

preferences within that 3-month period were analyzed and compared to other time periods to see 

any patterns that were distinct within this window. 

 

Data Cleaning and Analysis 

 

 Since our analysis did not require any personally identifiable information, we redacted 

this information before running analytical processes on the data. This redaction was 

accomplished by filtering out fields containing the PII such as first name, last name, email 

address and username. Secondly, we removed any data that was not related to our study such as 

transactions within the application after the authentication process. Each log entry contained a 

source attribute corresponding to the module within the system where the log data was 

generated. We used this to define the sources of interest corresponding only to the authentication 

modules. Lastly, using a timestamp attribute that was available with each log entry, we restricted 

the data to cover just the period of interest. Any incomplete log entries were also discarded. A 

complete entry was one that had at the minimum all the three main attributes that we were 

interested in, i.e., a transaction id, a session id, and a timestamp.  
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 This pre-processing resulted in 510 million records covering a period of 365 days. For 

determining associations between the different variable measurements, we used the Pearson 

Correlation Coefficient r (PCC) [43,44]. This value measures the strength of the linear 

relationship between a pair of variables. The value ranges from -1 to 1 with -1 being a perfect 

negative linear correlation, zero indicating no linear relationship and one indicating a perfect 

positive linear correlation. The analysis conducted in this work resulted in establishing the 

strength of linear associations between pairs of variables as well as produced different patterns 

and trends observed between these variables. This information was used to answer our research 

questions outlined above. 

 

Limitations: 

 

 The log data did not contain detailed demographic information such as income levels, 

gender, and race of the users. Moreover, we did not have a detailed breakdown of the users’ ages 

other than identifying whether they belonged to the 65+ years older group or younger than 65 

years. Thus, we could not perform a more in-depth analysis based on these demographics. We 

did not survey users to get a better understanding of some of the findings in the log. For example, 

to understand from the user’s perspective, the driver for some choices they made such as why 

they chose to use desktop computers, why they opted for certain 2FA options and some of the 

reasons behind the help desk calls that they made after enrolling in 2FA. In terms of 2FA 

options, our study was limited to Email and SMS as the options that were available to these users 

for receiving the one-time code used to fulfil a 2FA challenge.  
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Despite these limitations, our study contributes valuable insights towards voluntary Multiple 

Authentication Factors adoption considering the scale of the log data analyzed and the number of 

users covered under the study. 

 

3.2 Voluntary Enrollments 

Voluntary 2FA Adoption for the adult users was lower than that for the younger users. 

During the months of April, May and June, a total of 243,849 younger users voluntarily enrolled 

for 2FA compared to 84,865 older users. (Ratio: 0.35). 

Table 3.0.1: Comparison of voluntary 2FA enrollments between older users (65+ years old). April, May, 

and June represent a period when 2FA enrollment notifications were sent out to users encouraging voluntary 

enrollment 

Month Older Users Younger 

Users 

June 51,642 143,450 

May 30,132 91,309 

April 3091 9090 

December 1061 3791  

March 439 1908 

February 377 1018 

January 333 950 

   

 

The months of December through May accounted for 7,667 younger users compared to 

2,210 older adults that voluntarily enrolled for 2FA (Ratio: 0.29). The main difference between 

these two periods of time was that April through June saw an active campaign notifying users 

about availability of 2FA and encouraging them to enroll for it while December through March, 

users were not actively notified to register for it. This accounts for the lower 2FA voluntary 

enrollment numbers during this period. 
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Figure 3.0.1: 2FA option by logon frequency, users that logged on at least one hundred times preferred 

SMS (97%) to email (3%) compared to those that logged on less than 10 times with 66% that preferred SMS to 34% 

for email 

 

Our study shows a lower 2FA adoption among seniors and is consistent with prior 

literature [30, 31] findings on technology adoption rates. Among the reasons cited in these 

studies include a declined cognitive load as well as reduced physical abilities [19] for older users. 

A Pew Research study [19] reported that only 26% of senior citizens said that they felt very 

confident when using electronic devices online. 35% of these users said that they were a little bit 

confident (23%) or not confident at all (11%) using electronic devices which included 

computers, smartphones, and tablets in an online setting. 
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Table 3.0.2: Logon frequency per year showing that users that logged on most frequently (100+ in one 

year) chose SMS (97%) over email (3%) as a 2FA option. 

Logon 

Frequency 

Unique SMS 

Logons 

Unique Email 

Logons 

% Using SMS % Using Email 

100+ 69912 2089 97% 3% 

50 to 100 235395 48214 83% 17% 

10 to 50 469101 201120 70% 30% 

1 to 10 697801 358961 66% 34% 

 

 

3.3 Logon Time 

 

Table 3.0.3 shows the average logon time for different authentication activities and 

factors. For this study, the logon time represented the time it took for a user to initiate a logon 

session until when they completed that process and got redirected to the immediate resource 

following logon activity. Each logon session has a unique session id per user that was used for 

tracking the total time per user. The average is computed over a period of 365 days for all the 

users that logged on. In general, logon time increased (an average of 118 seconds) with 2FA 

adoption but decreased for sessions initiated with device remembrance enabled on the device in 

use (an average of 43 seconds). Email as a 2FA option took the most time (139 seconds) while 

SMS took 118 seconds on average. Sessions initiated before 2FA was enforced took an average 

of 96 seconds.  
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Table 3.0.3: Average logon time for all active users in the system over a period of one year as measured in 

seconds. Email as 2FA took the longest to complete (139 sec) With device remembrance the time is 43 sec. The time 

was measured from the moment the user loaded the sign-in page to when they completed all the required logon steps 

(submitting username/password/2FA challenge response etc.) 

Activity Average Time (Sec) 

Email Login Time 139 

2FA Logon Time 129 

SMS Logon Time 118 

Logon Time (Desktop) 103 

General Logon Time 96 

Logon Time (Mobile) 57 

With Device Remembrance 43 

 

These findings corroborate prior research that showed a general increase in logon time 

with 2FA adoption and a decrease in time when device remembrance is in effect [60]. From 

voluntary 2FA adoption perspective, it is imperative to encourage users to enable device 

remembrance where available as it drastically cuts down the time it takes perform a logon 

activity by not prompting the user for that second factor if they use the same device set to be 

remembered by the system. From usability perspective, this boosts the efficiency of logon 

process thus contributing to improvement of the system usability.  

 

3.4 User Device Type 

 

 Users that primarily used a desktop device tended to opt for email as a way of receiving 

the one-time code for 2FA while most users that opted for mobile device tended to use SMS. 

This observation was consistent across both demographics of older and younger users. On 

average, 51% of older adult users used a mobile device compared to 63% of younger users. 
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AARP [32] report indicates that about 62% of older adults above 65 years old adopted a 

smartphone. We hypothesize that one of the reasons why there is a higher percentage of older 

users opting for desktop computers compared to younger users is because of a predominance of 

assistive technologies available on the desktop computers [40]. Desktop devices have larger 

screens and ergonomically designed keyboards to accommodate some of the challenges 

experienced by older generations.  

 In general, desktop devices can be easily upgraded and thus have a longer lifespan. 

Mobile devices have some drawbacks when it comes to these technologies, e.g., their smaller 

screens and limited disk storage space [42]. What this means from 2FA adoption perspective is 

that options optimized for desktop devices need to be made available by service providers to 

encourage voluntary adoption by this segment of users that use desktop devices. Figure 3.0.2 

shows that most older users using desktop devices opted for email as their 2FA choice when 

compared to users in the same demographic that opted for mobile devices. On average, 42% of 

older desktop users chose Email as their 2FA option compared to just 25.3% of younger desktop 

users. This finding of a preference of email over SMS aligns with a Gallop study [41] that 

reported most adult Americans preferred communicating through phone calls (cellphone or 

landline) followed by email ahead of text messages. Within this demographic, they reported 

about 16% used email compared to 6% that read or sent a text message. The strong correlation 

between older desktop users and their preference of email as a 2FA option coupled with the 

correlation between mobile device users with their preference of SMS as the 2FA choice 

reinforces our conjecture that the type of device influenced the choice of 2FA option chosen by 

the users. 
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Figure 3.0.2: A comparison of the older desktop users to younger desktop users’ choice of email as the 

option for receiving one time code used as part of 2FA. Throughout the year, a larger of percentage of desktop users 

were older users. Moreover, percentagewise more older users used email as a 2FA option compared to younger users 

 

 

Figure 3.0.3: A comparison of device type between older users and younger users. On average, 63% of 

younger users used a mobile device compared to 51% of senior citizens while only 37% of younger users used a 

desktop device, compared to 49% of senior citizens 
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Figure 3.0.4: A comparison of 2FA option choice between younger users and older users. In general, a 

larger percentage of younger users opted for SMS compared to the percentage of older users that opted for the same. 

On the contrary, a larger percentage of older users opted for email as a 2FA option compared to the percentage of 

younger users accessing the same system during the same period 

 

3.5 Logon Frequency 

 

 The logon frequency measurements in Table 3.0.1 and Figure 3.0.1 below show that 

users that logged on more frequently tended to use SMS as the 2FA option. 97% of all users that 

logged on at least one hundred times in one year had SMS set as their 2FA option compared to 

just 66% for those that logged in less than ten times during the same period.  

 The largest percentage of users (34%) that selected use of email as a 2FA option were 

those that logged in less than 10 times in a year (compared to just 3% for those users that logged 

in more than one hundred times a year). It is not surprising that SMS is the most used method 

and even more so for those users that frequently sign in. The 2021 Pew Mobile Fact Sheet report 
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[39] indicates that 92% of senior citizens use a cellphone and 61% use a smartphone. About 30% 

can only receive SMS messages or voice calls (i.e., cellphones that are not smartphones). 

 

Table 3.0.4: Logon frequency per year showing that users that logged on most frequently (100+ in one 

year) chose SMS (97%) over email 

Logon Frequency Unique SMS Logons Unique Email 

Logons 

% Using SMS % Using Email 

100+ 69912 2089 97% 3% 

50 to 100 235395 48214 83% 17% 

10 to 50 469101 201120 70% 30% 

1 to 10 697801 358961 66% 34% 

 

 

Besides the fact that SMS is the most common method, we believe that the other reason users 

that frequently signed-in chose SMS was because it is easier to enroll in and use. For those users 

that logged in multiple times in a year, they are likely to have opted for what they considered as 

an easier option to use. This viewpoint is supported by [60] in which the researchers 

demonstrated that besides pre-generated codes and push notification; SMS was the fasted 2FA 

method to set up. Our results show a strong correlation between login frequency and the type of 

2FA option chosen by the user. 

 

3.6 Noticeable User Behavior Patterns 

 

 There was a larger spike in the number of older adults opting for paper-based 

communication preference when notifications were sent out alerting them of the coming 2FA 

enforcement requirement after July of that year. These notifications started going out in April 

and that month the percentage of senior citizens that opted for paper-based communications 

jumped from 37% to 65%. This contrasts to younger users where the percentage went from 
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35.2% to 42%. There are several plausible reasons for this spike seen in older adults as compared 

to younger users. One conjecture is that the users opting for paper-based communication channel 

wanted a fall back means of receiving the service were they to get locked out of the online 

channel after the 2FA enforcement period.  

 A fear of account lockout was reported by authors in this study [26] as one of the barriers 

towards adoption of a new way of authenticating to a web resource. Majority of users that opted 

for paper-based communication preference did not sign up for 2FA until when it was made 

mandatory for them. Moreover, the lowest voluntary 2FA adoption rate among older users was 

for those that opted for a paper-based communication channel. A plausible explanation is that 

senior citizen users simply did not use the technology as much as younger users did. 

This infrequent use of technology contributed to these older users seeing lower 2FA enrollment 

numbers when compared to the younger users. This viewpoint aligns with findings from several 

studies that demonstrated that older adults used technology less frequently when compared to 

younger users [33, 34, 35, 36].  

Table 3.0.5: Pearson Correlation Coefficients r (PCC) for voluntary 2FA enrollment against paper-based 

communication preference, online communication preference, percent of seniors and younger users that opted for 

paper-based communication. There was a high positive correlation (r=0.863) between the   percentage of seniors that 

opted for paper-based communication preference and 2FA enrollment, compared to that of younger users (r=0.304). 

This implies that during this period of 2FA enrollment, more seniors opted to use paper-based communication (i.e., 

both variables positively increased, with seniors increasing much more than was seen in younger users) 

 

2FA 

enrollments 

Online 

preference 

Paper-based 

Preference 

% Seniors’ 

paper-based 

% Younger users’ 

paper-based 

2FA enrollments 1     

Online Preference 0.9972194 1    

Paper-based 

Preference 0.9991193 0.9932143 1   

% Seniors’ paper-

based 0.8634699 0.8758532 0.854385275 1  

% Younger users’ 

paper-based 0.3041515 0.3232858 0.292633928 0.656115889 1 
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 Table 3.0.1 shows the voluntary 2FA registrations between the months of December and 

June. During this period, an average of 34% of users that preferred a paper-based communication 

enrolled for 2FA compared to 66% that preferred only online-based communication. This points 

to a stronger association between a preference for paper-based communication channel and a 

lower adoption of 2FA. Table 3.0.5 shows a strong Pearson Correlation Coefficient (r=0.99) 

between paper-based communication preference and 2FA enrollment. This means that as 2FA 

enrollment increased so did paper-based communication preference. This rate of increase was 

mostly seen on the senior users (r=0.863) as compared to younger users (r=0.304). In general, 

there was not a high correlation between younger users’ communication preferences (paper-

based or online based) to the rate of 2FA adoption. This means that unlike the older users, no 

strong association could be drawn between these younger users’ communication preferences and 

the awareness of the oncoming changes involving 2FA enforcement.  

 From voluntary adoption perspective, the implication for this is that the messaging 

targeted at older adults needs to build up their confidence in the system availability and 

reliability after a technological change. It also needs to address the fact that these older users 

infrequently access the web resources and thus it should simplify the enrolment process so that it 

can be completed with minimal steps and within a single session. It should also target a period 

when most users tend to use the system to maximum coverage. 

 

3.7 User Reported Usability Issues 

 

 We analyzed help desk authentication related incidents reported by users during the same 

period as the log data analyzed in this study. These incidents were divided between generic logon 
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related incidents and account recovery related incidents. The graph in Figure 3.0.5 shows that the 

logon failure rate increased with the increasing 2FA adoption, meaning that on a percentage 

basis, the number of failed logons went up. During the period before 2FA enforcement, the rate 

of failed logons was an average of 1.6% compared to the period after 2FA enforcement (2.88%). 

This rate was calculated as the percentage of failed logon attempts out of all logons attempts per 

month. From the available log data, we could not determine all the causes of failed logon 

attempts but this involved either incorrect user credentials submitted, or abandoned logon 

attempts after the second factor prompt. Using this ratio as a measure of effectiveness, we can 

conclude that the effectiveness of the overall logon process diminished slightly thus contributing 

negatively towards overall system usability. 

 We also calculated the ratio representing the number of reported issues per month 

compared to the number of total logons in the same period. In this context, reported issues did 

not necessarily mean that the user was unable to logon, it was any issue reported regardless of 

the outcome of the logon. This could have included users reporting difficulty in logging in or a 

logon session taking longer than they anticipated etc. We loosely used this number of reported 

issues as a measure of satisfaction with the system. The rational being that users reporting an 

issue with the logon process were not satisfied with the logon experience in one way or another.  
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Figure 3.0.5: The rate of failed logons over a period of 1 year covering the period of voluntary 2FA 

enrollment as well as the period during mandatory 2FA enrollment. The failure rate was highest during the period of 

mandatory 2FA enrollment. The rate was lowest in February matching the period of least 2FA enrollment. 

 

 The graph in Figure 3.0.6 shows that between July and August, the rate of reported issues 

was highest (38%) compared to the lowest percentage in February (13%). This is the period 

when most users enrolled for 2FA. This means that during the period of most 2FA enrollments 

corresponded with a period of most dissatisfaction with the system and thus a lower usability 

score as per the ISO 9241-11 definition of a system usability [18]. 

 Table 3.0.6 shows a correlation matrix between 2FA Adoption rate, 2FA account 

recovery incidents, 2FA login related incidents and the total help desk incidents. The lowest 

Pearson Correlation Coefficient (PCC) (r= -0.979) was between the percentage of incidents 

representing 2FA account recovery and the percentage representing general login incidents. This 

negative coefficient indicates that as one variable increased, the other one decreased at a high 

rate. It is not surprising that 2FA recovery related incidents will increase as more users adopt 

2FA.  
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Table 3.0.6: A Pearson Correlation Coefficient matrix between the total help desk incidents, 2FA adoption 

rate, percentage login related incidents and percentage of incidents representing 2FA recovery related. The negative 

correlation (r= -0.979) between the percentage of incidents representing 2FA account recovery and the percentage of 

generic login related incidents indicates that as one increased, the other decreased. Conversely, the positive 

correlation (r=0.882) between 2FA adoption and the total helpdesk incidents indicates that they both increased 

positively. 

 Total Helpdesk 

incidents 

2FA Adoption 

rate 

% Login 

incidents 

% 2FA Recovery 

incidents 

Total Helpdesk incidents 1 
   

2FA Adoption rate 0.882384022 1 
  

% Login incidents -0.706106496 -0.782172379 1 
 

% 2FA Recovery 

incidents 
0.644256946 0.720497216 -0.979694131 1 

 

 

 The importance of understanding this association between these 2 types of incidents is 

that the support staff needs to be well trained and equipped to handle more account recovery 

incidents over time as those tend to increase over time as users adopt 2FA compared to general 

logon related issues e.g., how to login using a second factor or how to enroll a second factor. It 

also underscores the importance of training users on self-remediation steps especially for those 

systems that enable use of more than one option for 2FA. 
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Figure 3.0.6: Reported issues versus total logons per month showing that there was a spike in the reported 

issues between July and August. This corresponds to the period when most users enrolled for MFA 

 

 Users become better at using the system over time, but the rate of account recovery 

related incidents does not necessarily reduce, that rate increases with time. The highest PCC (r= 

0.882) was between 2FA adoption rate and the total help desk incidents. This means that the rate 

of increase of 2FA adoption closely matched that rate of increase in help desk incidents. This 

association between the 2FA adoption rate and the total number of help desk incidents was 

illustrated further by Figure 3.0.8 which shows an increase in the total number of help desk 

incidents with the increased 2FA adoption. This finding corroborates previous studies that 

showed an increase in helpdesk incidents with increasing 2FA adoption [138]. There is a higher 

positive correlation between the 2FA adoption rate, and 2FA account recovery incidents 

(r=0.816) compared to 2FA adoption rate and 2FA login related incidents (r=0.631).  
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Figure 3.0.7: Generic logon related incidents compared to 2FA recovery incidents as a function of 2FA 

adoption. 2FA recovery issues increased over time while generic logon related issues tended downwards. 

 

 

Figure 3.0.8: Illustration of a strong Pearson Correlation between total help desk incidents and 2FA 

adoption rate increase 
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Figure 3.0.9: A positive Pearson Correlation between 2FA account recovery incidents and an increasing 

2FA adoption 

 

 

  Intuitively, Account Recovery related incidents will increase with increasing 2FA 

adoption. However, this rate of increase is not uniform across the period. This is illustrated in 

Figure 3.0.10 below which shows that the largest percentage increase was observed in the month 

of December (65% of authentication related incidents were related to account recovery events 

compared to just 35% related to logon events) This contrasts to average of 17% for the months of 

March through July of the same year.  
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Figure 3.0.10: 2FA account recovery related incidents per month. December had the highest number of 

such incidents. 

 

 The considerable number of recovery related incidents in the months of November and 

December can be attributed to the likelihood of users getting new devices during the holiday 

season thus needing to update their 2FA phone number or devices. Moreover, there is an 

increased usage of the system during this time of the year as users complete the end of the year 

activities. This implies that the best time to target users for voluntary 2FA adoption is during this 

time when more users are likely to use the system as illustrated in Figures 3.0.5 and 3.0.6 that 

shows an increased total system logon during this period. 
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Conclusion 

 

 This chapter provides a new perspective and insights to plausible factors that influence 

user’s voluntary adoption of protective cyber behavior. We use an IRB approved log data with 

millions of real-world authentication events from a large US-based company to perform several 

empirical measurements of different events as part of this study. The log data covered 

authentication transactions spanning a period of one year which totaled to more than five 

hundred million records. Using Pearson Correlation Coefficient (PCC), we showed associations 

between 2FA adoption and different variables such as helpdesk incident categories, user 

communication preferences and user demographics. We saw a high negative PCC (r= -0.979) 

between account recovery incidents and generic logon incidents which meant that with the 

adoption of 2FA and continued system usage, general logon incidents went down but account 

recovery related incidents increased. A high positive PCC between total helpdesk incidents and 

2FA adoption meant that incidents increased as 2FA adoption went up. We saw a decrease in 

system efficiency (overall logon time went up by an average of 34%), a decrease in satisfaction 

as measured by the number of issues reported to the helpdesk during this period and a decrease 

in effectiveness as measured by an increase in the rate of failed logon attempts (from 1.6% to 

2.9%). A combination of these three measures meant that the overall system usability decreased 

during this 2FA enablement period. We found a pattern of increased paper-based 

communications opt-in corresponding with a period just prior to a 2FA enforcement which 

indicated that users wanted an alternative means of accessing information in an event of a 

lockout from their online accounts. We also found that older desktop users that opted for paper-

based communication preference also preferred use of Email as a 2FA option more than when 
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compared to younger desktop users accessing the same system during the same period. We 

corroborated results from previous studies confirming that voluntary 2FA adoption is still 

extremely low and that there is a general increase in helpdesk tickets with an increase in 2FA 

adoption. We conclude that driving 2FA adoption for older users requires a different approach 

that assures them of system availability and usable Account Recovery options. The most 

effective time to target voluntary 2FA enrollment for older adults is during the period when they 

use the system the most which in this study was towards the end of the year. Lastly, the 

correlations and patterns uncovered during this research between 2FA adoption and other related 

variables provide a rich foundation for guiding future work into understanding the causation 

behind the observed associations. These results also provide useful insights towards the planning 

and executing of a successful 2FA rollout strategy that can lead to a higher voluntary 2FA 

adoption outcome. Voluntary adoption of multiple authentication factors means that the user has 

stronger fallback authentication methods enrolled that they can use in an event that their primary 

authentication method is unavailable for their use. 
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Chapter 4:  

Resilient User Behavioral Modeling for Account Recovery 

 

4.1 Introduction 

Account Recovery process involves a means to provide a user with an alternative 

authentication mechanism that enables them to regain their nominal authentication credentials. 

To avoid a legitimate user’s account from being taken over by an imposter, it is critical that this 

process incorporates holistic protection from adversaries both proactively and reactively. In 

Chapter 3, we studied proactive protection mechanisms that investigated ways of getting users to 

voluntarily adopt stronger alternative authentication methods that they can use as secondary 

authentication during account recovery process. But what happens if an impostor still manages to 

take over a user’s account? This chapter studies the reactive protection mechanism based on 

Machine Learning-based user behavioral modeling for active authentication of the user that can 

happen during and right after the Account Recovery process. Active Authentication implemented 

through user behavior modeling and validation seeks to mitigate some attacks resulting from 

account takeover by augmenting existing user authentication paradigms that traditionally 

authenticate a user only once, at the beginning of the session. These traditional modalities, 

regardless of how many factors are used, only validate the user at one time. Once the session is 

initiated the user is vulnerable to other attacks such as account take over by a masquerader or a 

malware on the system. The threat is even more profound in mobile devices which are vulnerable 

to being stolen or lost and compounded by their being widely used across the globe [108]. If 



51 

 

employed, Active authentication can mitigate these types of attacks by continuously validating 

the user via behavior analysis [74],[116],[114]. However, an adversary can evade this validation 

by compromising the machine learning implementation behind the active authentication. 

Moreover, in this context, a user’s trained ML model is synonymous with their identity. We 

argue that stealing this trained ML model through techniques such as reverse engineering is 

another form of account takeover since that can be later used by an impostor to access an active 

authentication protected system conceptually like how an adversary can use a stolen traditional 

credential to access a username and password protected system. One potential way this can be 

accomplished is through the concept of model transferability [115]. A user’s trained ML model 

should thus be deemed as confidential information. This study makes a novel contribution 

towards defending against model stealing by adversaries using principles of randomization in the 

context of user authentication. 

 

4.2 Machine Learning Vulnerabilities in the context of Account Recovery 

 

 Model stealing through extraction involves an attacker obtaining a new model that can 

produce predictions equivalent to the original model, usually through formulating targeted 

queries and then using those to query the original model efficiently. ML Model stealing was 

demonstrated by [97] through the reverse-engineering technique of linear spam classification 

models more than a decade ago. The authors presented their model extraction attack by making 

membership queries via API calls. Over that period, several studies have been conducted and 

demonstrated that model stealing indeed poses a severe risk across numerous domains due to 

pervasive use of Machine learning in many real-world solutions. The authors in [98] presented 
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model stealing via prediction APIs using ML-as-a-service implementations such online services 

of BigML and Amazon Machine Learning as examples. Their research was focused on model 

extraction attacks where an adversary’s goal was to reproduce the model’s functionality without 

prior knowledge of the training data or parameters used in the ML model. To make this happen, 

they leveraged the confidence scores for class labels to get more accurate attacks. In [82], the 

researchers demonstrated how to infer useful information from ML classifiers using a meta-

classifier designed to exploit other classifiers. In [102], the authors demonstrated stealing the 

model hyperparameters that are learned by a learner using Amazon Machine Learning platform. 

Their attacks affect several machine learning algorithms including support vector machines, 

neural networks and logistic regression. In this attack, the researchers assume that the attacker 

knows the training dataset and can obtain unknown model parameters using prediction APIs 

technique [98]. As demonstrated by [98], even protecting models using Secure Multi-Party 

Computation (SMPC) protocol [101] is not enough for thwarting model extraction attacks. 

Leveraging a MLaaS platform, the authors show Support Vector Machines (SVMs) and Support 

Vector Regression Machines (SVRs) based models can be efficiently stolen using a few hundred 

queries and for an extremely low cost. Model stealing has also been achieved in a setup where 

the adversary has no knowledge of the target’s architecture or training data [85]. More recently, 

model extraction has been successfully demonstrated on Deep Neural Networks (DNN) [105, 

106, 107] and based on features of Recurrent Neural Networks (RNN) [109]. Researchers have 

demonstrated an even more advanced technique for stealing ML models through side channels 

[77], [94]. 

 All this research reinforces the fact that model stealing is indeed a realistic threat 
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especially in cases where the machine learning implementation is used in a critical security 

function such as access control. A stolen model can then be used to carry out other attacks like 

mimicry attacks [108] and evasion attacks [102] among others.  In Active Authentication 

context, a user trained model is that user's one form of identity. Thus, a stolen model is indeed 

another form of that user's identity being stolen. Using a technique like model transferability 

[119], an extracted model from one user's device can be used to gain access to a different device 

This realization motivates our investigation of use of randomization at application time to add 

robustness to the ML implementation. 

 

4.3 Threat Model 

 In our threat model, we assume an adversary in possession of a victim’s device as well as 

their traditional credentials such as username and password (taken over through an account 

recovery process). The device is protected by a continuous authentication mechanism 

implemented by modeling user behavior through machine learning. The adversary’s goal is to 

evade being detected by this system. To make the detection even more challenging, we assume 

that the adversary has some limited knowledge about the victim’s behavior. The adversary starts 

off by recreating those known actions and observes how the user behavior model through the 

sensor responds after a given period. They build on those observations to determine the next set 

of actions to take. After a given period, the adversary uses the observed responses to build a 

profile that can be used later to mimic the victim. This activity entails model stealing through 

extraction [32]. The attacker’s strategy is aimed at reproduction of predictive behavior that 

mimics the victim’s behavior [43] to be used for fooling the original machine learning model. 

This setup is synonymous to the active learning [51] scenario where the learner draws unlabeled 
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samples and sends to an oracle via a query mechanism for a response in an interactive manner. In 

our case, the adversary is equivalent to the learner and the sensor that is implementing the 

continuous authentication on a system is the oracle. The adversary fires off certain events in each 

time epoch and observes responses in form of whether the sensor detects anomalous behavior or 

not. The goal being to steal (learn) the model, and once learnt (i.e., stolen), use that knowledge to 

successfully evade the sensor from detecting when the adversary is accessing the system. 

 Formally, the Adversary 𝐀 queries the sensor implementing continuous authentication 

through a model 𝐟 that is trained to the legitimate user 𝐔 and safely stored by the sensor 𝐒. The 

Adversary queries the sensor by triggering off several events 𝐱∈𝐗 in a given time epoch. After 

the time epoch, the adversary's output can be represented as �́�(𝐱). This is considered successful if 

it is close to the real 𝐟(𝐱) within a given error margin 𝛆. This margin is represented as an error 

function.  

 In summary, 𝐀 sends 𝐱 ∈ 𝐗 to 𝐒 and receives 𝐲 = 𝐟(𝐱). After the time epoch, 𝐀 generates 

�́�. Using an error function, 𝐀's output is compared to the legitimate user's output 𝐟. It is 

successful if it is within a predetermined error margin, i.e., if 𝐄𝐫𝐫 (�́�(𝐱)) ≤  𝛆  (that is with a 

high enough probability exceeding a predetermined threshold)  

Putting this together, we can represent this as:  𝐩𝐫 [𝐀 𝐨𝐮𝐭𝐩𝐮𝐭𝐬 �́� 𝐚𝐧𝐝 𝐄𝐫𝐫 (�́�(𝐱)) ≤  𝛆 ].  

Given 𝛆,  𝛅 > 𝟎, the adversary seeks to 

i) adaptively select events 𝐱𝟏,  𝐱𝟐,   …   ∈ 𝐗 

ii) observe the responses from the sensor to the events in a given time epoch 

iii) and generate an output �́� of 𝐟(𝐱) such that |𝐟- ́ 𝐟(𝐱)|𝟐 < 𝛆  with probability at least 𝟏 − 𝛅. 
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 There are several techniques for sampling the data formally developed in active learning 

discipline [112]. We will leverage these techniques for deriving the data used by our adversary in 

this study. We will use Random sampling, Uncertainty sampling and Query synthesis techniques 

[88]. Random sampling involves the adversary picking their next queries uniformly at random 

out of a given pool. Uncertainty sampling on the other hand involves the adversary selecting the 

samples from the pool that have the least confidence or with smallest margin. Query synthesis 

differs from random and uncertainty sampling techniques in that unlike these two which are 

based on existing events in each pool, it generates new samples or queries. Probabilistic 

clustering-based algorithms such as Gaussian Mixture Models used in this study are usually 

applied in unsupervised environments such as [1],[67] where there is not a tainted training 

dataset [69,77,78] that the attacker can leverage. So, for our threat model, this technique closely 

represents the way the adversary will generate the attack events (i.e., by adaptively synthesizing 

the events based on observations and other knowledge of the system). To implement uncertainty 

sampling technique, we propose using Silhouette measurements to determine events with the 

least confidence. Silhouette information evaluates clusters based on the comparison of a distance 

measure of each element in the cluster to a measure of the separation from the closest alternative 

cluster. In this work, we use a modified Silhouette measurement as defined in [92].  

 The idea being, rather than using distance measures, we build on the concept of intra-

group similarity and inter-group dissimilarity as defined by the degree of confidence that we 

allocate to the cluster membership of the elements with high density points getting maximum 

confidence and the least dense getting assigned least confidence. 
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From the Gaussian Mixture Models equation (4), we have 𝐱𝐢 ∈  𝐗 drawn from a probability 

density function 𝐠(𝐱) we can evaluate the posterior probability that it belongs to cluster 𝐜𝐢,  𝐢 =

𝟏,   … 𝐍 as: 

 

τn(xi) =  
πngn(xi)

∑ πngn(xi)
N
n=1

 

 

In this equation, the prior probability of cluster 𝐜𝐧 is represented by 𝛑𝐧 and 𝐠𝐧 represents the 

probability density at element 𝐱𝐢 which is obtained after creating the cluster with elements only 

from that specific cluster (𝐜𝐧). Given this, we can represent the density-based silhouette 

information (𝐝𝐛𝐬) of element 𝐱𝐢 as: 

 

dbsi =  

loglog 
τn0

(xi)

τn1
(xi)

 

maxj=1,…,m |loglog 
τn0

(xi)

τn1
(xi)

 |

 

 

The 𝐝𝐛𝐬 information for each observation or element is thus proportional to the log ratio 

between the posterior probability that it belongs to the cluster it has been assigned to and the 

maximum posterior probability that it belongs to a different cluster. It follows that small 𝐝𝐛𝐬 

values correspond to low confidence in the clustering while large values indicate a high 

confidence level [92]. In our experiments, we will determine 𝐝𝐛𝐬 values for each value and 

select all the events with least confidence and then use those as our input representing 

adversary's queries. We can formally represent this as an optimization problem: 
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𝑎𝑟𝑔𝑚𝑖𝑛
(x)

 𝑔(𝑥) 𝑠. 𝑡.  𝐴  ϵ 

{{a′i}i=1
m ⊂  Rd ∣ xl ≤ a′

i ≤ xu  for  i = 1, … , m}  

where g(x) is the dbsi 

 

Where 𝐀 is the vector of events that the adversary will be sending as queries in each time epoch. 

For the uncertainty sampling, these are bounded to some interval corresponding to the input that 

the adversary can control. Regardless of the technique used, the adversary's objective is to 

produce meaningful queries or events within this time epoch that will minimize the error i.e., 

𝐄𝐫𝐫 (�́�(𝐱)) as defined in this section.  

 

 

Figure 4.0.1: The threat model architecture showing the ML models stored in the device’s TEE zone and 

the attack vector and surface that the adversary has access to. 

 

Figure 4.0.1 shows a high-level architecture of the threat model. The device user interface 

represents the local attack vector through which the adversary (impostor who seeks to 

masquerade as the real user in this case) interacts with the device. For our study, the interaction 

involves activities performed on the device such accessing specific apps, reading specific data, 
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browsing the web, etc. An active authentication sensor tracks all those events including a system 

time stamp corresponding to each activity. The ML models and the decision processing sensor 

are protected in the device's isolated trusted execution environment (TEE). The adversary seeks 

to accomplish their goal by extracting the model and determining its decision boundary. The 

aggregated events and data fed to the ML model and decision engine is the attack surface that the 

impostor has control over. We assume that the adversary will not have ability to breach the 

device's TEE zone. Attacks where the adversary can compromise the device's TEE are beyond 

the scope of this study. The primary focus for this research is on evading the machine learning 

based security techniques. The decision processing sensor securely stores the model, represented 

as f that it uses to compute the prediction f(x) used to determine normal activity from abnormal 

ones. The conjecture is that if this sensor uses one fixed model that returns f(x) corresponding to 

a fixed threshold or boundary used to delineate normal from abnormal then it is easier for the 

adversary to compute events that satisfy this threshold compared to if the sensor uses multiple 

randomly generated models drawn from a pool 𝐟 ∈ 𝐅 determined by some random routine and 

thus multiple thresholds used that depend on which model is used.  The uncertainty introduced 

by the random routines employed makes it a more difficult problem for the adversary. 

Intuitively, we thus define robustness in this context as the ability of the active authentication 

system resisting ability for an adversary to determine the decision boundary used to delineate 

legitimate user from an impostor. We do this by varying this decision boundary for each time 

epoch, thus presenting a varying target that the adversary is challenged to determine during each 

time epoch. We validate this through extensive experiments. 
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4.4 Randomness as a defense 

 

4.4.1  Defenses 

 A few techniques have been proposed for countering model stealing attacks. An 

interesting approach based on boundary differential privacy was proposed by [11]. Their 

approach protected against model stealing by obfuscating the prediction responses near the 

decision boundary, making it difficult for an adversary to learn predefined precision regardless of 

the number of queries sent to the prediction API. The downside of this approach however is the 

potential performance degradation it is likely to have on the original model. For model extraction 

attacks using prediction APIs that leverage confidence scores, the authors in [33] proposed 

rounding confidence values returned by machine learning service providers. This technique 

lessened the effect of the attack but did not completely mitigate it. Building on this, the 

researchers in [41] proposed a technique for monitoring extraction by observing the queries 

issued by multiple users of the machine learning service and provided a warning if a given 

threshold was crossed for the informed extracted by a given user or subset of users. This 

technique however posed a challenge to an ML service provider since the clients with more 

queries did not all translate to adversaries trying to extract models. These could be legitimate 

clients using the service extensively and in fact bringing in more revenue for the ML service 

provider. The authors in [45] proposed a defense based on embedding of digital watermarks 

during model training that the model owner could use afterwards for identifying their models in 

case they are stolen or misused. However, this defense is insufficient since it only detects a 

stolen model. It does not prevent the model from being stolen as demonstrated by [46]. There are 

defenses that aim to make the work of the adversary harder. For example, the authors in [42] 
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proposed a technique that aims to amplify the attackers error rate while minimally impacting the 

legitimate user. 

 

4.4.2 Randomization  

 One promising defense strategy that researchers have studied for a long time is use of 

randomization techniques. For example, more than a decade ago the researchers in [5] leveraged 

randomization technique in their design of anagram, an anomaly detector that was based on n-

gram analysis using binary-based modeling techniques. Barreno et al [27] in their work proposed 

a taxonomy of attacks and listed three general strategies: randomization, disinformation, and 

increased complexity of hypothesis space. The authors acknowledged that while randomization 

made it difficult for the adversary it also negatively affected the accuracy of the system and thus 

the key was to find a right balance between the system accuracy and the level or technique of 

randomization. The authors in [15] proposed a machine learning as a service implementation that 

used randomization technique to mitigate reverse engineering attacks. An important finding that 

they demonstrated was that randomization with large variance could be employed without the 

system incurring a loss in accuracy. Randomization techniques have also been applied at 

algorithm level. The researchers in [11] designed a perturbation algorithm that they referred to as 

randomized response. The objective was to make it difficult for the adversary to learn decision 

boundaries by predefined precisions. 

 Our study evaluates use of randomized modeling strategy as a mitigation against model 

stealing in continuous authentication implementation. Through extensive experiments, we show 

that randomization effectively mitigates these attacks by raising the bar for the attacker. We 

leverage continuous authentication work done by [1], [67]. We use their dataset and extend their 
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feature selection criteria in devising how to construct a randomized pool of models based on 

distinctive features. 

 

4.5 Overview and Methodology 

 

 This study is designed to validate our claim that use of multiple randomized ML models 

from which one is selected randomly during run-time for a given time epoch offers robustness 

against model stealing in a continuous authentication implementation compared to when one 

fixed ML model is used. We also seek to determine which randomization technique is most 

effective. Precisely, we answer the question: “which randomization approach is most effective: 

data-dependent randomization or data independent randomization?” We define data dependent 

randomization as utilizing the input data (features in our case) in implementing the 

randomization scheme, while data independent as appending noise to the output label, i.e.  

y = f(x) + n where n is the random noise added as part of the response. This appended noise is 

not part of the input data. In our study, this will mean that the sensor can modify the prediction 

from the model before acting (or responding to the user). 

 

Dataset and Model 

 We use RUU [1] dataset in our experiments. Figure 4.0.2 shows a snippet of this dataset 

to illustrate the format which includes a time stamp, an event id, a category, an action and a 

description or detail information of the activity. The categories get converted into dataset 

features. Figure 4.0.3 shows a snippet of pre-processed dataset. This is accomplished by 

chunking the input into 5-minute time epochs from which the selected features are aggregated. 
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These features are represented as the columns in this figure. For example, the first row in Figure 

4.0.3 indicates six unique activities of a particular feature in the first-time epoch. We choose 

activities from two different users as our baseline. Each has at least 150-time epochs where each 

epoch or time slice comprises of activity for 5 minutes, meaning that each sample has a total of 

more than 12 hours of activity or events. The features selected for use from the dataset are based 

on Fischer scores as determined in [1, 67]. This is a discriminant analysis technique that 

evaluates the value of each feature independently via a ratio of their inter-class and intra-class 

variance. So, a feature with both low within-class variance thus very stable and predictable and 

with a high between-class variance, i.e., appears vastly different for every class with a high 

score. Log-squashing technique was employed for smoothing out the measurements hence 

removing bias of a given feature dominating the others. 

 

 

Figure 4.0.2: Dataset snippet showing input collected. This example shows the time stamp, event id, 

category, action, and the activity detail 
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Figure 4.0.3: Snippet of aggregated events for each feature in each time epoch. The rows represent 5-

minute time epochs, and the columns represent each feature 

 

For the experiments below, we used clustering technique to represent the machine learning 

classifier for classifying events corresponding to a legitimate user from an imposter. This will be 

based on Gaussian Mixture Model (GMM) algorithm. GMM attempts to find a mixture of multi-

dimensional Gaussian probability distributions that best model a given input dataset. It is a 

parametric probability density function which is represented as a weighted sum of Gaussian 

component densities. It uses an Expectation-Maximization (E-M) approach with two steps: The 

E-step looks at each point and finds weights encoding the probability of membership in each 

cluster. The M-step looks at each cluster, updates its location, normalizes, and shapes it based on 

all data points leveraging the weights which results into a smooth Gaussian model. It is worth 

noting that GMM is fundamentally a density estimation algorithm because the result of a GMM 
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fit to a given input data is a generative probabilistic model describing the distribution of that 

data. 

More formally, given a feature space, f ⊂ Rd  a Gaussian Mixture Model g: f → R with n 

components is defined as: 

g(x) = ∑ wiNμi ∑ i
(x)

n

i=1

 

 

Nμi ∑ i
(x) =  

1

√(2π)d|∑ i|

e−
1
2

(x−μi) ∑ (x−μi )−1
i

T

 

 

In the equations above, 𝛍𝐢 is the center of the 𝒊𝐭𝐡 GMM component, this is set to the mean of 

samples from the same cluster for that given iteration, i.e., 𝛍𝐢 = 𝐜𝐢. The covariance is set to 

covariance of the samples in the current cluster, i.e., ∑ 𝐢 and 𝐰𝐢 that is calculated based on the 

number of samples that are placed in each cluster. So, each component for GMM is created using 

the mean, the covariance, and the weights for each cluster from prior iteration. 

Intuitively, similar distributions would imply similarity between the input data generated 

following similar patterns. In our RUU Active Authentication dataset [1], [138], this means that 

the activities or events indicating user behavior or habits from independent time slots will have a 

similarity in distributions and hence indicate the input belongs to the same user. A different user 

will be expected to produce a different distribution pattern. Input data corresponding to an outlier 

in either case would have those data points corresponding with smallest likelihood or probability 

values hence standing out as outliers. We are defining a boundary around normal events so that 

those can be distinguishable from abnormal events i.e., from the adversary. The adversary aims 
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to find out where this boundary lays. A fixed model with the same number of features implies a 

fixed boundary or threshold. While a pool of randomly generated models where one is randomly 

picked for a given time epoch implies a varying boundary thus a varying target that the adversary 

is challenged to determine during each time epoch. Intuitively, this makes the problem harder. 

Our experiments seek to validate this hypothesis. 

 

4.6 Experiments and Results 

 

Randomization Strategy 

 The first experiment that we ran was for determination of the randomization strategy. We 

sought to find out if using an input data-depended strategy was more effective than using a data 

independent approach. For the former approach, we used distinctive features to produce different 

trained models (see Algorithm 1 below). The testing dataset had about 17% of events from a 

different user. This was to act as our baseline for what we expected to be classified as outlier for 

the most accurate model. For each experiment, we only varied the number of features used, but 

kept everything else constant. The objective was to determine a methodology for varying the 

features without impacting accuracy. We approached this by first determining the top twenty 

Features with the highest Fisher scores. From these top features, we then ran experiments with 

different numbers of features varying the total features per model from 50% to 100% (of the top 

fisher scored features) and observed the performance scores. We defined our performance in 

terms of percentage of events that were categorized under an outlier cluster plus the highest 

density-based silhouette (dbs) coefficient measurement. Results summarized under Table 4.0.1 

and Figure 4.0.4 show that at 80% features, we saw the highest median dbs score of 0.63. At this 
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same percentage, it had the second lowest percentage of events classified under outlier cluster at 

25%. This was the closest number in terms of accuracy to expected given that the test data had 

17% events from a different user. Based on this we determined that between 80% and 85% of the 

top features per model produced optimal results. So, our data-dependent randomization strategy 

simply selected 80% of the top features randomly out of the top scored features for each model 

instance. The data independent strategy was accomplished by selecting one of the model 

instances (as described above) and simply appending noise to the output. The same model was 

used for each experiment ran but only the output was slightly perturbed each time. The 

summarized results in Figure 4.0.5 and Figure 4.0.6 below show a comparison of these two 

approaches. For the estimation error, we used geometric error as the key metric for comparison. 

This estimation error was defined as |f- ́ f(x)|2 where f(x) is the probability output for the base 

model representing ground truth, while f́represented the output using the testing data with the 

specific randomization performed accordingly. The smaller the estimation error, the closer is the 

output to the ground truth. In other words, the nearer the adversary is to producing events that 

mimic the legitimate user. 

 

ALGORITHM 1: Algorithm for generating randomized models 

Input:    Training dataset 

Output:    Pool of trained models 

Initialization:  Set appropriate X as total number of models in the pool 

Select the top features using Fisher's criteria scores 

for  𝑖 = 𝑋  to 0  do 

 Randomly pick 80% of the features from above 

 Train one model using these features 

 Add the trained model 𝑓𝑖  to the pool: 𝐹  =  𝐹  ⋃ 𝑓𝑖  

 end for 

return 𝐹      
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 From the results in Figure 4.0.5 and Figure 4.0.6, we can see that with more testing 

rounds, the estimation error for the data independent approach reduced at a faster rate than for 

the data-depended approach. The estimation error in this case indicates how close the prediction 

is to the ground truth. Based on these results we conclude that data dependent randomization 

strategy is more effective. For the subsequent experiments below, we employ a data dependent 

randomization strategy. 

 

Randomized Modeling: 

 Having determined our randomization strategy, the subsequent experiments involved 

comparing the performance of randomized models to fixed models over several queries. The first 

step was determining the methodology for generating the samples or queries for each round. We 

leverage active learning established query selection techniques [112]. Specifically, we use 

random sampling, uncertainty sampling, and query synthesis techniques. Random sampling 

involves selecting the queries uniformly at random from a given data source [85]. Uncertainty 

sampling involves drawing events with the least confidence scores from the classifier, which 

translates to regions closer to the classifier’s decision boundary. In our case, this means events 

closer to the edge of a given cluster. Regarding DBS measures, these are activities with DBS 

scores at or close to zero (refer to the model theft threat model section). Query Synthesis 

[71,113] involves generating samples de novo, that is, samples that do not necessarily conform to 

a distribution or are not all part of a given pool. To simulate this technique, we start by using 

DBS measures to obtain events with the lowest confidence scores (as described in the model 

theft threat model). Then we employ a technique used by the authors in [113] to generate new 
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events that are similar or closer to these low-confidence events. For our study, we increment the 

user activity counts per time epoch by at least ten events or more. This will represent the new 

queries generated for the next round of adversary testing. In practice, the starting events 

represent the adversary’s limited knowledge about the system and the victim. In our threat 

model, we assume the adversary has the user's mobile device and potentially has limited 

knowledge of the activities that the legitimate user performs on the device during specific times 

of the day. We summarized results after ten rounds of testing, where each round had an average 

of about one hundred tests. The three different probing techniques (random sampling, uncertainty 

sampling, and query synthesis) used for comparing the estimation errors between a fixed model 

and a pool of models where one was randomly selected for a given time epoch are each 

summarized in Figures 4.0.7, 4.0.8, and 4.0.9, respectively. 

 Query synthesis sampling technique best resembles the threat model where the adversary 

is in possession of the victim's device and their traditional credentials such as PIN, but 

potentially has no other additional information. The device in this case is protected by user 

behavior analysis based active authentication. The adversary can generate arbitrary queries that 

do not have to conform to any distribution in this scenario. This also allows us to relax any 

assumptions regarding the adversary's knowledge. Figure 4.0.9 summarizes the query synthesis-

based results comparing when a fixed model is used to when a randomized pool of models’ 

strategy is used. The trend line for both graphs shows a gradient of 0.0084 for the randomized 

models and 0.0194 for the fixed model. This implies that when a pool of randomized models is 

used with query synthesis, the rate of estimation error converging to the baseline is more than 

twice as fast when just one fixed model is used. What this means is that an adversary in 

possession of a victim’s device would take more than twice as much time before they can 
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potentially extract the model. Uncertainty sampling trend lines (see Figure 4.0.8) are like query 

synthesis with gradients of 0.0183 and 0.0066 for fixed model approach and randomized model 

approach, respectively. Just like in query synthesis, the rate of convergence of the estimation 

error for randomized models is more than twice that of fixed models’ approach. The largest 

difference is observed for the random sampling approach where the trend line gradients are 

0.00007 when randomized models’ approach is employed, and 0.0186 when a fixed model is 

used (see Figure 4.0.7). In practice, this sampling technique represents an adversary that has zero 

knowledge of the victim and device and are generating events randomly. Given that the 

adversary has no knowledge of the victim, it will take a much longer time or an extremely 

substantial number of queries before they can start seeing the estimation error start to converge. 

A realistic example of this is a case where an adversary recovers a victim's lost mobile device 

and have no prior knowledge of the victim or the device. On the other hand, uncertainty 

sampling technique would represent a case where an adversary steals a mobile device from a 

victim that they potentially have limited knowledge about. 

Table 4.0.1: Median Density Based Silhouette (DBS) and Percentage of Events in the outlier cluster 
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 Figure 4.0.9 represents results for all the three probing techniques on the same graph for 

comparison purposes. Overall, it is evident that the fixed model had a lower estimation error that 

decreased faster on average compared to the randomized pools approach regardless of the 

probing technique used. The lower the estimation error, the closer the adversary is to estimating 

the prediction (extracting the ground truth model). Similarly, the rate of change of the estimation 

error is related to the time it takes to estimate the ground truth model's prediction. So, a lower 

rate of change means that the adversary will take a longer time before extracting the model. 

These observations lead to our conclusion that randomized modeling increases robustness 

against model theft attacks through extraction. We attribute this to the fact that strategic varying 

of features (as employed in this study as a technique for generating the randomized models - see 

algorithm 1) leads to varying the mean and covariance of the GMM which means that the 

decision threshold will vary from model to model but still fit with the legitimate user’s profile 

that the model was trained on. This variance of the threshold raises the bar for the adversary that 

is trying to determine the threshold or the decision boundary. The adversary is challenged to 

determine which features are used for a given model at a given time. If a fixed model is used, the 

adversary has a fixed threshold target that they can compute through the probing queries by 

zeroing in on a fixed set of features. 
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Figure 4.0.4: Median density-based silhouette (DBS) and % of events in outlier cluster values as a function 

of different numbers of features. Between 80% and 85% of the top fisher scored features produce optimal results. 

 
Table 4.0.2: Results showing estimation errors when two different randomization strategies are used. Each 

testing round comprised of an average of 100 tests, so the reported error rate is the average value over those tests. 

On average, the data dependent strategy produced a higher estimation error compared to the data independent 

strategy meaning that data dependent strategy is more effective 
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Figure 4.0.5: The estimation error against the probing rounds. Each round consists of an average of 100 

tests. The data dependent strategy had a higher estimation rate compared to the data independent strategy. This 

translated into the data dependent strategy being more effective at mitigating the adversary extracting the model 

(i.e., synthesizing events leading to a closer estimate to the legitimate user’s events) 

 

 

Figure 4.0.6: Estimation errors comparing a fixed model approach to a randomized model approach. 

Random sampling used to generate input data. Fixed models trend line has a gradient of 0.0186 compared to 

0.00007 for randomized models. Implies that when using fixed model, normalized error converged at a much faster 

rate while randomized models the error rate was almost constant 
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Figure 4.0.7: Estimation errors when uncertain querying technique is used to generate input data. The 

randomized modeling approach with a gradient of 0.0066 performed better than a fixed model approach with a 

gradient of 0.0183 

 

 

 

Figure 4.0.8:  Estimation errors when query synthesis technique is used to generate input data. Fixed model 

approach had a gradient of 0.0194 compared to 0.0084 for a randomized approach 
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Figure 4.0.9: Results showing estimation errors when three different probing techniques are used i.e., 

random Sampling, Uncertainty sampling and Query synthesis. For each technique, we test the fixed model and the 

multiple models randomly selected. In all cases, the randomized approach leads to higher estimation error indicating 

that the adversary will take longer to extract the model compared to when the fixed model is used. 
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Conclusions 

 

 Protection of Account Recovery process requires a comprehensive approach that 

accounts for both proactive and reactive mechanisms. In Chapter 3, we covered several proactive 

mechanisms including insights derived from empirical measurements of voluntary multi-factor 

authentication adoption. This chapter covers a reactive mechanism that relies on user behavioral 

modeling to ensure that it is the legitimate user that performed the Account Recovery. In 

specific, the chapter demonstrated use of randomized modeling as an effective mitigation 

strategy against ML model stealing in context of user behavior based active authentication. We 

linked ML model stealing in this context to an evasion attack for achieving account takeover. To 

implement our randomized modeling, we started by determining an effective randomization 

strategy by comparing performance of a data dependent randomization approach versus a data 

independent approach. From this, we determined that using data dependent randomization was 

more effective in our context. Thus, we employed this strategy in generating the pool of models 

from which one was selected uniformly at random for each time epoch during the experiment. 

Using an estimation error, we compared performance of fixed model approach to randomized 

modeling approach. Based on the observed results, we confirmed that the randomized modeling 

approach was more robust against ML model stealing compared to a fixed modeling approach. 

We thus concluded that an adversary in possession of a mobile device protected by an active 

authentication implementation using randomized modeling would be more robust against being 

breached compared to the current state of the art where typically a fixed model is used. For 

future work, the authors will be testing this approach against a variety of different Active 

Authentication implementations and datasets. One key to improving robustness against ML 
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model theft is understanding the tradeoff dynamics between prediction accuracy and gained ML 

model robustness when different adversary query strategies are employed. To that end, as part of 

future work, the authors plan to study this dynamic in detail using a variety of datasets, Active 

Authentication implementations and querying strategies. 
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Chapter 5:  

Comparison to prior work 

 

5.1  Voluntary Multiple Authentication Factors Adoption 

 

 There have been several studies done in the past on the 2FA adoption [3, 7, 14, 15] and 

on usability [1, 2, 6, 7, 12, 13]. However, these studies focused more on the general users’ 

demographics that tended to be younger users e.g., college setting or employees in a company 

setting, or younger active users on social media platforms.  

 Our study focused on the older adults thus offering a new and different perspective on 

this topic of voluntary 2FA adoption. Previous research investigated understanding the 

motivations as well as processes others employ when helping older users, especially relatives, 

with mobile technology and security issues [27]. The authors in [28] studied the privacy and 

security concerns that older users had with emerging technologies and recommended educational 

approaches and technical protections that incorporated these users’ needs and preferences. 

 

 

5.2  Resilient User Behavioral Modelling 

 

 There is a significant body of work on user behavior-based machine learning 

implementation of Active Authentication and on the use of randomization principles in designing 

secure computer systems. Our work combined these two domains by using the later 
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(randomization principles) to add robustness against model stealing attacks in the former (Active 

Authentication). Many researchers have proposed mitigation strategies against ML model 

stealing. However, most of this work has targeted generic machine learning as a service (MLaaS) 

implementations [75,79,95,102,103,106]. Our work on the other hand targeted and focused on 

Active Authentication domain. Use of randomization as a defense against adversarial attacks on 

machine learning has been covered in literature [68,70,75,79,87,89] but most studies thus far 

have focused on applying this technique at model training time or using synthetic datasets. Our 

work applied randomization principles during both model training time (by varying the input 

features) as well as during model application time (by randomly selecting a given model from a 

pool for each time epoch). Moreover, our experiments were run using a real-world dataset. 

Our work made a direct link between a trained user ML model theft and evasion attack leading to 

an account takeover. We did this by drawing a parallel between a traditional credential such as 

username/password combination, and a trained user behavior ML model in Active 

Authentication context. Using a stolen traditional credential, an adversary can access a victim's 

resource that is protected by that credential whether it is on the same device or on a different 

device. Similarly, in this context, a stolen user trained ML model can be used to access that 

user's device protected by active authentication. This differentiated our work from other related 

research that focused on ML model theft attacks in general classification problems such spam 

filtering, malware detection and image classification [68,75,105,107,111].  
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Conclusion  

 Today, digital authentication has become a routine part of our daily lives. This means that 

Account Recovery process is critical for enabling that continued access to our accounts. But, 

Account Recovery, if not secured properly, can become an attack vector for adversaries looking 

to take over a legitimate user’s account.  

 This dissertation presented a seamless approach to the protection of Account Recovery 

process leveraging Machine Learning based user behavioral analysis. First, we presented a 

background on Account Recovery and the methods currently used for achieving this process. We 

then studied the proactive mechanisms in use today and noted that the human element is the one 

commonality factor among all the proactive mechanisms in use. Solving the human behavior 

problem was just as important as solving the technical Account Recovery problem. To that end, 

we performed a study on the user voluntary adoption of multiple authentication factors that can 

be used as fallback mechanisms during Account Recovery process. Next, we proposed the 

addition of user behavioral modeling based active authentication as a critical part of the Account 

Recovery process. This accounted for the reactive protection mechanism that was aimed at 

flagging out an imposter should they circumvent the proactive mechanisms in place. Finally, to 

ensure resiliency against evasion attacks resulting from model theft, we studied use of 

randomized modeling techniques to determine which randomization strategy was most effective 

for providing this resiliency and privacy protection in the context of active authentication for 

Account Recovery. 
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