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Abstract

Efficient Adoption of Residential Energy Technologies

Through Improved Electric Retail Rate Design

Noah Rauschkolb

This dissertation combines methods from engineering, operations research, and economics

to analyze how emerging residential energy technologies can be effectively used to reduce both

energy costs and carbon emissions. Our most important finding is that air-source heat pumps

can be used to reduce both energy costs and carbon emissions in four out of the five major

climate regions studied, but that electric retail rate reform is needed to provide customers with

appropriate incentives. In cold climates, it may be advantageous to use heat pumps in tandem

with fossil fuel-powered furnaces; in warmer regions, furnaces can be cost-effectively abandoned

altogether. We do not find that distributed rooftop solar panels or distributed battery storage

are effective tools for reducing the cost of energy services. Rather, in our simulations, customers

adopt these technologies in response to poor price signaling by electric utilities. By reforming

electric retail rates so that the prices paid by consumers better reflect the cost of energy services,

utilities can promote the adoption of technologies that reduce both aggregate costs and carbon

emissions.
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Executive Summary

The energy system is experiencing the confluence of a number of important changes. Utility-

scale electricity production from renewable energy resources has nearly doubled in the past

decade, with projections that renewables will be the largest source of electricity generation

by 2050 (Energy Information Administration, 2020). Simultaneously, customers are exploring

opportunities to further reduce their emissions at home by adopting rooftop solar photovoltaic

panels and distributed storage, and by electrifying end use technologies traditionally powered

directly with fossil fuels (including vehicles and heating).

A significant barrier to the efficient adoption of customer-side technologies is the design

of electric retail tariffs. Most residential customers pay their utility bills through volumetric

tariffs that are based on the average cost of energy services, rather than the marginal cost of

an additional unit of energy. This deprives them of the appropriate price signals required to

incentivize efficient adoption and use of emerging technologies.

This thesis draws on methods from engineering and economics to make several important

contributions. These include: providing the first data-driven model of distribution system costs

that explicitly disentangles the cost of sustaining distribution capacity with the cost of growth;

using optimization to identify the least-cost portfolio of technologies for satisfying a collection

of customers’ energy needs and using it to compare optimal portfolios across multiple climate

regions; and analyzing how to adapt electricity tariffs to incentivize customers to make more

efficient decisions about technology adoption and use.

The thesis proceeds as follows. In Chapter 1, we analyze electric utility distribution costs
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and build an econometric model that describes the main determinants of electric distribution

costs using data reported by 101 major U.S. investor-owned utilities. We find that the fraction

of a utility’s capital expenses that is attributable to load growth is relatively small, representing

less than 10% of distribution capital expenses for a typical utility. This is visualized in Figure

1.3, which plots per-kW capital expenses vs. the compounding annual growth rate (CAGR) of

distribution capacity. While it is evident that utilities that are quickly expanding their capacity

spend more on distribution than utilities with constant (or declining) peaks, distribution costs are

better-explained by other factors, such as the density of customers within the service territory, the

fraction of energy sales to residential customers, and the fraction of distribution assets installed

underground.

Figure 1: Relationship between per-kW-capacity distribution capital costs and growth rate for
major U.S. utilities. 808 points representing 101 utilities over eight years. The best-fit line
represents the univariate regression of capital expenses (in $ per-kW) on the compounding annual
growth rate of distribution capacity, weighted by the utility’s proven capacity. The shaded region
covers a level 0.95 confidence interval.

Insofar as past trends are predictive of the future, this indicates that a well-planned capacity

expansion strategy – as would be required to accommodate heating and transportation electrifi-

2



cation – could be incorporated into existing capital projects while only raising the average cost

of electricity by a fraction of a cent.

In Chapter 2, we discuss the drivers of residential energy demands and use an open source

building energy simulation tool to simulate hourly energy demands for 75 residences in five

climate regions throughout the continental United States. We observe that there is significant

variation in annual demands for space heating and cooling energy both between regions and

among residences within a region. The annual profiles of heating and cooling loads (aggregated

across 15 residences) for the five regions are represented in Figure 2. The variation in annual

heating and cooling demands has important implications on energy consumption, the sizing of

heating and cooling equipment, and the requirements for utility infrastructure.
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Figure 2: Annual profile of daily heating and cooling demands in each of the five climates,
aggregated across the 15 residences. The solid black line represents the average demand for
each day of the year. The ribbon shows the range between the minimum and maximum hourly
demands on each day. The y-axis is in units of kW on the left and kBTUh on the right. This is
computed through a direct conversion of 3.412 kBTUh = 1 kW.

In Chapter 3, we provide background on several emerging customer-side technologies and

discuss how their adoption could impact electric loads. These include heating electrification,

rooftop solar photovoltaic panels, distributed battery storage, energy efficiency investments, and
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electric vehicles. We observe that the impact that a given technology has on electric load can

vary tremendously depending on the local climate and system conditions. In particular, when the

temperature falls, the efficiency of air-source heat pumps declines as the heating load increases.

This creates a non-linear relationship between the outdoor temperature and electricity demand

for heating, which makes an “electrify everything” strategy very energy-intensive in cold climates.

In Chapter 4, we develop a mixed-integer linear programming model capable of identifying

the least-cost portfolio of technologies for satisfying a collection of residential customers’ energy

needs. This model is used to test how the optimal configuration of customer-side technologies

varies with the local climate region, distribution system conditions, and varying assumptions

about technology cost and performance.

The number of residences adopting each technology in each region is summarized in Figure

4.2. We find that distributed rooftop solar panels are generally not part of a least-cost portfolio

of technologies because (1) their high capital cost outweighs the value of the electricity they

produce and (2) they are generally ineffective at deferring infrastructure upgrades. While rooftop

solar is not found to reduce costs, electric heat pumps can be adopted as a cost-savings measure

in four out of the five climates studied due to their high efficiencies and ability to serve both

heating and cooling needs. This result holds even when the social cost of carbon is neglected.
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Figure 3: Number of residences adopting a given technology in each climate in the optimized
models. “AC” and “HP” denote space cooling and heating energy. “EE” denotes energy efficiency.

In Chapter 5, we adapt the model from Chapter 4 to simulate how different designs for

residential retail tariffs influence customers’ decisions about adoption and use of various tech-

nologies, including electric heat pumps, distributed solar, and battery storage. This allows us to

understand the conditions under which inaccurate pricing can increase costs.

We find that the design of the residential rate tariff can have a significant influence on

customers’ decisions about technology adoption and use. In particular, electric tariffs that are

set significantly above the cost of energy tend to over-incentivize the installation of technologies

that reduce demand (such as rooftop solar panels) while discouraging the adoption of some

beneficial technologies that increase demand (such as heat pumps). This leads to significant

increases in the total cost of energy services and, in some cases, carbon emissions. We note that

the thresholds at which non-cost-reflective tariffs become problematic vary with both the climate

region and assumptions about the cost of technologies. This suggests that a pragmatic strategy

for tariff reform should encompass considerations about the specific climate characteristics and

the technologies in play.
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Chapter 1

A Data-Driven Model of Electric

Distribution Costs

Households in the United States consume over 1.4 trillion kilowatt-hours of electricity

each year, costing them nearly $200 billion (U.S. Energy Information Administration, 2021a).

Residential customers also consume between four and five trillion cubic feet of natural gas each

year, costing another $45 to $55 billion (U.S. Energy Information Administration, 2022b). Over

one-quarter of U.S. households experience some form of energy insecurity, such as forgoing basic

necessities in order to pay their energy bills, receiving a disconnection notice from their utility,

or keeping their homes at unsafe temperatures to reduce their energy burden (U.S. Energy

Information Administration, 2022a).

This chapter breaks down the various expenses that contribute to residential customer

energy costs in the United States, focusing on the electricity sector. Additionally, we contribute

to the literature by developing a novel data-driven model of electric distribution costs, which

is used understand how large-scale electrification of heating and transportation could impact

infrastructure costs. To do this, we separately examine annual capital investments and operations

and maintenance (O&M) expenses for 101 major investor-owned utilities (IOUs) in the United

States over eight years. We employ econometric methods to study how utility costs vary with
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the growth rate of the distribution system’s peak capacity, the proportion of distribution assets

installed underground, the geographic density of customers within the utility’s service territory,

and the share of sales to residential customers.

We find that all of the attributes described above are significant in explaining a utility’s

per-kW capital costs (p<0.05). Notably, while the growth rate of a distribution system’s proven

capacity1 is significant in explaining capital investments, it only accounts for a small fraction

of recent investment (less than 10% for a utility with median characteristics). However, if the

annual growth in peak loads increases significantly in response to electrification of heating and

transportation, growth-related costs could come to represent a larger share of utility costs and

ratepayers’ bills.

None of the variables described above are significant in explaining O&M costs. The best

indicator of a utility’s per-kW O&M expenses is the region in which it is located, but this likely

serves as a proxy for unobserved variables such as labor and regulatory compliance costs.

Section 5.1 discusses distribution system costs and reviews the relevant literature. Section

1.2 describes the sources of public data used in this analysis and the development of explanatory

variables. Section 4.2 discusses empirical methods, including univariate, multivariate, and

fixed effects regression. Section 4.5 summarizes the estimated coefficients and addresses their

significance. Section 1.5 discusses the results and uncertainties. Section 1.6 outlines potential

policy implications and highlights opportunities for future work.

1.1 Background and Literature Review

The U.S. Energy Information Administration breaks down the cost electricity into three

components, plotted in Figure 1.1. The blue region describes the cost of generation, the brown

region the cost of transmission, and the green region the cost of distribution.

Most studies focused on decarbonizing the energy system limit their focus to the generation

1"Distribution system capacity" refers to the aggregate peak load that can be accommodated by a distribution
utility across its entire system. Because this is difficult to measure (it is not simply equal to the sum of transformer
capacities), we use the term "proven capacity" to refer to the maximum peak load ever observed on a utility’s
distribution system.
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Figure 1.1: Major components of the average price of electricity, as categorized by the Energy
Information Administration.

and transmission systems. EPRI’s U.S. National Electrification Assessment (Electric Power

Research Institute, 2018a) predicts that efficient electrification could cause load to increase

by 24–52% by 2050. However, this work is based on EPRI’s US-REGEN model, which does

not impose any “constraints or expenditures related to transmission or distribution within a

region” (Electric Power Research Institute, 2018b, p. 2-15). NREL’s 2017 Electrification and

Decarbonization report concludes that electrification of end-use services across transportation,

buildings, and industrial sectors could lead to a doubling of electricity consumption by 2050

(Steinberg et al., 2017, p. vi). This analysis utilizes NREL’s Regional Energy Deployment

System, which only models the electricity system at the resolution of 134 balancing areas across

the contiguous United States (S. Cohen et al., 2019). Intra-balancing area transmission and

distribution are not modeled (S. Cohen et al., 2019, p. 57). Likewise, the EPA’s Integrated

Planning Model splits the contiguous United States into 67 model regions but does not model

power flows within them (US EPA, 2019). MacDonald et al. (2016a) represent the transmission

system with more detail but do not model local distribution systems explicitly. Instead, the

authors assume that distribution costs scale proportionally with generation and transmission

costs, composing 32% of the total levelized cost of energy (MacDonald et al., 2016b).
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A handful of papers have used empirical approaches to estimate the drivers of utilities’

distribution costs, mainly for benchmarking utilities against one another. Roberts (1986) studies

financial reporting data from 65 IOUs in 1978. Notably, the author does not find evidence

that increased customer density decreases costs, even when controlling for the percentage of

the firm’s distribution equipment installed underground. Conversely Filippini and Wild (2001),

who analyze aggregate utility expenditures (minus purchased power) for 59 Swiss utilities, find

that increased customer density significantly reduces distribution costs per unit of energy sold.

Filippini, Hrovatin, and Zorič (2004) study annual reports from five Slovenian utilities from 1991

to 2000, concluding that a 1% increase in customer density reduces costs by approximately 0.60%.

Yatchew (2001) studies data from 81 municipal distribution utilities in Ontario, concluding that a

10% increase in length of wire per customer increases the per-customer cost by 3.8%. Fenrick and

Getachew (2012) analyze financial and technical data submitted to the Rural Utilities Service by

163 Midwestern power cooperatives located in nine states. They find that increased customer

density and larger proportions of distribution lines buried underground decrease O&M costs,

while a larger proportion of deliveries to residential customers increases O&M costs.

While some of these empirical studies recognize the distribution system’s peak demand or

capacity as a driver of costs either explicitly (using system capacity as an explanatory variable) or

implicitly (normalizing costs by capacity before performing a regression against other variables),

none in our review identify increases to peak capacity as an independent driver of costs. In

contrast, utility analysts have historically characterized a large share of capital investments

as causally related to growth in peak capacity. Baughman and Bottaro (1976) assume that

all capital expenditures in the transmission and distribution systems are directly related to

growth in capacity (measured in “miles energized” for cables and new transformer capacity for

transformers), concluding that a mile of new distribution lines in some parts of the country

costs three times as much as it does in others. In their 1992 guide for electric utility cost

allocation, the National Association of Regulatory Utility Commissions (NARUC) recommends

classifying all transmission system investments as related to load growth, except those specifically

related to siting generation, interconnecting with power pools, serving specific large customers, or
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replacing existing equipment in kind (NARUC, 1992).2 ICF Consulting (2005), which develops

the methodology formerly used by many New England utilities for their avoided cost studies,

recommends assuming as a default heuristic that 50% of transmission and distribution investments

are related to load growth.3

When analysts model distribution costs as only a function of peak load, they are tacitly

assuming that new distribution capacity can be built at a cost comparable to maintaining existing

capacity. Such is the case in The Energy Information Administration’s National Energy Modeling

System, which assumes that capital expenses in the distribution system scale directly with the

sum of the non-coincident peak loads of each customer class (Energy Information Administration,

2019c). In this model, capital expenditures range from approximately $20/kW to more than

$100/kW annually, depending on the utility’s region. O&M costs are modeled similarly, but with

separate coefficients for capacity ($/kW) and volumetric sales ($/kWh) (Energy Information

Administration, 2019b). If electrification causes peaks to double, the computed distribution costs

would exactly double as well. Similarly, Vibrant Clean Energy, LLC et al. (2020) draw on the

results produced by R. L. Fares and King (2017)4 to assess the value that distributed energy

resources (DERs) could offer to the electricity system, concluding that DERs can effectively

be used to defer some distribution system reinforcements. By assuming that building new

distribution system capacity bears the same annual expense as sustaining existing capacity, the

authors risk underestimating the cost of significantly expanding capacity to accommodate new

load.

The most rigorous treatment of distribution costs in a large-scale energy systems analysis

appears to come from Larson et al. (2020), who model capital expenditures in the distribution

2NARUC’s discussion of marginal distribution costs revolves around distinguishing between customer-related
and capacity-related costs, paying relatively little attention to determining whether the costs identified as capacity-
related are incurred because of growing peaks.

3Synapse Energy Economics (2018) developed a subsequent version of the methodology described in ICF
Consulting (2005), this time recommending top-down accounting analyses to identify expense accounts that are
primarily growth-related and discounting expenses registered in these accounts by an allowance for the cost of
replacing retired equipment in kind.

4R. L. Fares and King (2017) use ordinary least squares (OLS) regressions to relate annual distribution costs
to three predictors: total number of customers, peak load, and volumetric sales. The models that regress costs
against peak loads estimate coefficients of $34/kW for capital expenditures and $18/kW for O&M.
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system as the sum of the capital invested in new capacity and the cost of replacing depreciated

assets. While this general approach to modeling distribution system costs is sound, the coefficient

used to model the cost of new capacity ($1,351/kW) is based on an estimate of the per-kW

gross capital investment already made in the distribution system, not on the marginal cost of

increasing capacity.5 This approach to estimating marginal distribution capacity costs presents

several problems that are discussed in Section 1.5.

A more common approach to estimating the cost of additional distribution system capacity –

often employed by utilities and their consultants – is the marginal cost of service (MCOS) study.

Since the late 1970s, electric utilities throughout the United States have been regularly asked to

conduct MCOS studies as part of their rate case proceedings (Parmesano & Martin, 1983). These

studies are intended to establish, among other figures, the cost in dollars of increasing distribution

system capacity by one kilowatt. While MCOS studies may appear to be a promising tool for

estimating the cost of increasing distribution system capacity to accommodate electric vehicles

and heat pumps, they are not well-suited to this purpose. Contemporary MCOS methodologies

base their cost calculation on the value of deferring a local system expansion plan by one year

(Hanser et al., 2018; Woo et al., 1994).

Because this methodology is typically based only on historical and forecast expenses (rather

than counterfactual expenses), a utility will develop very different estimates of their marginal

distribution capacity cost ($/kW) depending on whether or not there are planned growth-

related investments within the study period’s time horizon (Pérez-Arriaga & Knittel, 2016).

For example, as part of New York State’s “Value of Distributed Resources (VDER)” order, the

major utilities were directed to perform enhanced marginal cost of service studies that computed

marginal capacity costs with a high level of spatial granularity (State of New York Public Service

Commission, 2017). The responding utilities produced figures ranging from $0/kW for load areas

with no growth-related investments (Demand Side Analytics, 2018) to those exceeding $500/kW

for load areas with growth triggering costly system reinforcements (Hanser et al., 2018). While

the results produced by MCOS studies may be useful for designing time-varying electricity rates

5See (Fowlie & Callaway, 2021) for a discussion of embedded and marginal distribution costs.
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and utility-administered demand response programs, they offer little insight into what to expect

from sustained peak load growth due to electrification. Consequently, those analyses that use

the numbers produced by these MCOS studies to forecast the cost associated with sustained

load growth, such as Elmallah, Brockway, and Callaway (2022), are most likely producing biased

results.

This chapter employs a similar empirical approach to Yatchew (2001) and Fenrick and

Getachew (2012) but draws on a significantly bigger data set and includes the growth rate of

system capacity as an explanatory variable to assess the impact of load growth on distribution

costs. By drawing on data from 101 major U.S. utilities representing over 50% of domestic retail

sales, this chapter aims to establish a set of heuristics that could be used to estimate the costs

associated with a prolonged expansion of distribution system capacity, as would be required to

meet long-term decarbonization goals through end-use electrification.

1.2 Data

In this section, we discuss data sources and the development of model variables. Electric

utility data were collected from multiple public sources. Financial and operational data were

collected from FERC Form 1 (Federal Energy Regulatory Commission, 2009) for the years 2000

to 2007. These years were chosen because they are representative of a period of relatively high

sales growth in the electricity sector. For this period, sales of electric energy grew at an average

rate of 1.4% annually (Energy Information Administration, 2019d). This finding is consistent

with the estimated sales growth rate in the high electrification scenario in NREL’s Electrification

Futures Study (Mai et al., 2018). By contrast, from 2008 until 2018, electric energy sales grew at

a rate of just 0.2% annually (Davis, 2017; Energy Information Administration, 2019d).

FERC Form 1 provides financial and operating data for all major U.S. IOUs.6 Among these,

107 distribution utilities provided complete financial and system peak data for the selected years.

Four utilities were removed from the dataset because of outlier values for either growth rate

6Major utilities are defined as having: (1) one million megawatt-hours or more of sales; (2) 100 megawatt-hours
of annual sales for resale; (3) 500 megawatt-hours of annual power exchange delivered; or (4) 500 megawatt-hours
of annual wheeling for others (deliveries plus losses) (Federal Energy Regulatory Commission, 2009)
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or costs. Two more were removed because a significant change in service territory (due to a

merger or acquisition) made it impossible to track year-to-year growth in system capacity. The

remaining 101 utilities accounted for just under 2 million gigawatt-hours (GWh) of sales in

2003, which represented 55% of that year’s domestic retail electric volume (Energy Information

Administration, 2019d). Because we are using eight years of data, there are 808 data points used

in each regression.

In Figure 1.2, we reproduce Figure 1.1 using data from Federal Energy Regulatory Commission

(2009). We note that the green region, labeled “distribution” in Figure 1.2 is actually composed of

three separate cost categories. Distribution capital costs include investments in buildings, poles,

wires, transformers, and conduit. Distribution O&M includes labor, purchased maintenance, and

other recurring costs, as well as some sporadic costs such as repairs to storm damage (Lazar,

2016). Admin/General expenses include office space, customer service, and sales expenses. When

we separately categorize admin/general expenses, we observe that just 17% of the average utility’s

expenses are directly related to building and maintaining the distribution system. The central

goal of this chapter is to identify how this may change if electrification of space and water heating

precipitates the need for large reinforcements of the distribution system.

There is no known public resource that records the total distribution system capacity of

electric utilities. While FERC Form 1 includes reporting of individual substation capacities,

inconsistencies in reporting between utilities (and between consecutive years for a given utility)

make it impractical to use these data directly for our analysis. Instead, we compute the “proven

capacity,” Ci,t, for utility i in year t as the maximum of observed system peaks up to and

including that year.7 For example, if a utility achieved an all-time peak of 3 GW in 2001, but

only 2.9 GW in 2002 (perhaps due to a cooler summer), we assume the system capacity for that

year remains at 3 GW. This generates a monotonically increasing variable, Ci,t.

We separately examine capital costs and operations and maintenance (O&M) expenses for

the distribution system. All financial figures used herein represent actual outlays made in a given

7The monthly system peaks for each utility are recorded in Federal Energy Regulatory Commission (2009) on
page 401b, column e. The maximum of these monthly peaks is taken as the annual peak for each utility–year
combination.
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Figure 1.2: Reproduction of Figure 1.1 using data on utilities with regulated generation from
Federal Energy Regulatory Commission (2009).

year, not depreciation. If a utility’s capital expenses increase in a given year, this implies a real

increase in annual spending on capital assets.8

The summary statistics for proven capacity and costs are provided in Table 1.1. CapExi,t and

OpExi,t describe, respectively, the capital and O&M expenses incurred by utility i in year t. To

make comparisons between utilities of different sizes meaningful, our analysis centers on per-kW

distribution costs, defined as distribution expenses divided by proven system capacity.9 The total

per-kW distribution capital expense is denoted CapExkW
i,t and the total per-kW distribution

O&M is denoted OpExkW
i,t . All financial figures are adjusted to 2018 dollars. Though overall

costs vary by several orders of magnitude between utilities of different sizes, the per-kW capital

and O&M costs exhibit considerably less variability.

8Total Distribution Plant Additions are recorded on page 206, line 75(c) of Federal Energy Regulatory
Commission (2009). Total Distribution Expenses (O&M) are recorded on page 322, line 156(b). The copy of Form
1 data used in this analysis was accessed through S&P Global (2021).

9A similar approach is used in Kopsakangas-Savolainen and Svento (2008), except instead of normalizing by
the proven capacity, they normalize by the volume of sales (producing a figure in $/kWh).
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Table 1.1: Summary statistics of capital and O&M expenses, computed over 808 data points
(101 utilities over eight years). Ci,t is the proven capacity in MW. CapExi,t and OpExi,t are the
overall distribution capital and O&M expenses for each utility. CapExkW

i,t and OpExkW
i,t are the

per-kW (proven capacity) capital and O&M expenses.

Ci,t CapExi,t OpExi,t CapExkW
i,t OpExkW

i,t

(MW) ($) ($) ($/kW) ($/kW)

Minimum 7 83,242 85,816 0.4 0.4
5% 86 1,403,947 1,567,595 13.2 9.2
25% 1,439 35,928,049 25,050,648 20.9 13.6
Median 3,053 69,090,853 47,744,916 27.2 17.0
Mean 4,587 131,942,503 80,364,501 28.6 20.0
75% 6,261 166,369,825 93,462,371 34.5 23.4
95% 16,789 496,617,661 271,851,419 51.0 42.8
Maximum 23,613 1,114,231,772 593,461,903 81.0 92.5
Standard Deviation 4,853 172,216,133 96,372,471 11.6 11.2

The growth rate of proven capacity, Growthi,t, is computed using a 5–year rolling window.10

This is described in Equation 1.1, which is an inversion of the classic “compounding interest”

formula. This approach is similar to how Mai et al. (2018) compute the compounding annual

growth rate of electricity sales.

ri,t =
[

Ci,t+2

Ci,t−2

]1/4

− 1 (1.1)

To compute customer density, Densityi,t, the total number of customers for utility i in year

t is divided by the utility’s service territory area in square miles. This area is computed using the

Department of Homeland Security’s Electric Retail Service Territories database (Department of

Homeland Security, 2019).11 We expect a negative correlation between density and distribution

10Measuring growth only between consecutive years would produce a computed growth rate of zero for years
in which the observed system peak does not increase, even if utilities are investing in anticipation of future load
increases. Furthermore, electric utilities plan their investments over several years, and large capital expenditures
tend to either respond to anticipate significant increases in system peak. Consequently, investments associated
with load growth and a related increase in proven capacity do not necessarily occur in the same year. 1.4.4 presents
results for the regressions performed using different estimates of the growth rate. In order to compute the growth
rates for the entire 8-year window from 2000-2007 (inclusive), we include observed system peaks from 1998-2009.

11The DHS database only reports current service territory data. If a utility’s service territory changed significantly
between the study years and the most recent update of the DHS database, this would not be captured in our
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costs because higher density means more load can be served by a single length of feeder (Filippini,

Hrovatin, & Zorič, 2004; Filippini & Wild, 2001; Yatchew, 2001).

The percentage of underground assets, Undergroundi,t, is computed as the ratio of the gross

value of underground conduit and conductors divided by the gross value of all distribution assets.

Larger shares of underground assets would be expected to increase capital costs (more labor is

required to bury a line), though this may be offset in part by a reduction in O&M costs (fewer

lines are likely to be damaged in a storm) (Fenrick & Getachew, 2012).

Residentiali,t is defined as the proportion of volumetric sales (kWh) to residential cus-

tomers.12 Higher proportions of sales to residential customers are expected to increase distribution

costs (Fenrick & Getachew, 2012).

Summary statistics for the explanatory variables are provided in Table 1.2. These statistics

describe a highly heterogeneous set of observations. While the mean and median observed growth

rates of system capacity are broadly consistent with the growth rate of aggregate energy sales

projected in Mai et al. (2018), at least 5% of utility-year combinations have no observable growth

in proven capacity. Likewise, 5% of observations have annual growth rates exceeding 4.8%.

Customer density, like population density in general, is found to be exponentially distributed

in the dataset. The maximum observed value for customer density is twenty times larger than

the median. In all regressions that include customer density, a natural log transformation is used.

This method prevents a few utilities with very high densities from distorting the results.

We also note the sizable range in investments in underground assets and sales to residential

customers. There are examples of utilities with no underground conductors or conduit, as well

utilities with nearly half of their distribution assets underground. Similarly, for some utilities,

nearly three-quarters of sales are to residential customers. Others exclusively serve commercial

estimate of customer density.
12The total number of retail customers is recorded in Federal Energy Regulatory Commission (2009) on page

301, line 12f. The gross values of underground conductors and underground conduit are recorded on page 207,
lines 66g and 67g, and the gross value of all distribution assets is recorded on line 75g. The volumetric sales to
residential customers are recorded on page 301, line 2d. The total volumetric sales to all customers are recorded
on page 301, line 12d.
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Growth ln(Density) Underground Residential

Minimum 0% -1.1 0% 0%
5% 0% 1.2 5% 21%
25% 0.7% 2.9 11% 30%
Median 1.6% 3.7 18% 35%
Mean 1.9% 3.6 19% 34%
75% 2.7% 4.6 23% 39%
95% 4.8% 5.8 38% 47%
Maximum 8.3% 6.7 46% 73%
Standard Deviation 1.5% 1.4 10% 9%

Table 1.2: Summary statistics of the explanatory variables. Growth is the annual growth rate
of system peak, computed over a 5-year rolling window. Density is the density of customers
in the utility’s service territory (customers/square-mile). Underground is the proportion of
total distribution assets categorized as either underground conductors or underground conduit.
Residential is the proportion of volumetric energy sales to residential customers (compared to
commercial or industrial).

and industrial loads (Residential = 0%);

1.3 Methodology

In order to develop an empirical model of electric distribution system costs, we perform a

series of regressions relating per-kW capital and O&M expenses to various factors, including the

growth rate of proven system capacity, the proportion of distribution assets installed underground,

the natural logarithm of customer density within the utility’s service territory, and the share of

sales to residential customers.

In the first model, we run a simple regression of the per-kW capital costs on the estimated

growth rate of proven capacity. Observations are weighted by the utility’s proven capacity so

that the resulting model parameters can be understood to represent the costs associated with

an average unit of capacity across all utilities. The formulation for this model is described in

Equation 1.2, where Growthi,t is the growth rate of system capacity in percentage points, the β

terms are the estimated intercept and coefficient, Y eart is a fixed effect for the year, and ϵi,t is

an error term.
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CapExkW
i,t = β0 + βGrowthGrowthi,t + Y eart + ϵi,t (1.2)

The regression’s fit is visualized in Figure 1.3. Each point on the scatter plot of per-kW

capital cost vs. growth rate represents one utility for one year, where the size of the point is

proportional to the utility’s proven capacity. Points on the left side of the plot represent utilities

in years with low load growth, while points further to the right represent utilities that are rapidly

expanding their system capacity. The best-fit line delineates the weighted regression described

above. The intercept on the y-axis (which includes the intercept term as well as the mean of the

fixed effects) is the average per-kW distribution cost for the case of no growth. This statistic

describes the per-kW distribution capital cost associated with sustaining a given capacity level

through routine replacement of equipment. The slope of the best-fit line describes the growth

rate-coefficient, βGrowth, which is interpreted as the change in per-kW costs in response to a

one percentage point increase in the growth rate. The y-intercept, which describes the average

annual cost of maintaining an existing capacity level without growth, is estimated as β0 + Y eart.

The alternative specifications described below include additional explanatory variables but follow

the same basic architecture.
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Figure 1.3: Relationship between per-kW-capacity distribution capital costs and growth rate
for major U.S. utilities. 808 points representing 101 utilities over eight years. The best-fit line
represents the univariate regression of capital expenses (in $ per-kW) on the compounding annual
growth rate of distribution capacity, weighted by the utility’s proven capacity. The shaded region
covers a level 0.95 confidence interval.

In the second empirical model, we add controls for the previously discussed utility attributes:

the percentage of underground assets, the natural logarithm of customer density, and the share

of sales to residential customers. If any of these variables independently affect distribution

costs and are correlated with growth (e.g., if load is growing more rapidly in cities due to

urbanization), then omitting them would produce a biased estimate of βGrowth. The formulation

for this model is described in Equation 1.3, which modifies Equation 1.2 by adding X, a matrix

of the attribute variables, and β, a vector of associated coefficients to be estimated. The average

cost of maintaining an existing capacity level without growth is estimated as β0 + Xβ + Y eart.

CapExkW
i,t = β0 + Xβ + βGrowthGrowthi,t + Y eart + ϵi,t (1.3)

In addition to these characteristics, we expect distribution costs to vary with other factors,
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including the regulatory environment, the price of inputs (including labor and materials), weather,

and the geographic terrain. As some of these factors are difficult to quantify accurately, we use

indicator (dummy) variables for the utility’s region, Ri,13 as a proxy. This method is expected

to capture some of this unobserved heterogeneity without overfitting the model (as a state-level

indicator would likely do). The region variable is commonly used as an indicator of electric

system costs in energy modeling exercises (Baughman & Bottaro, 1976; Energy Information

Administration, 2019c).14 It is included in the third and fourth models.

It seems reasonable to expect that the factors that affect the cost of maintaining an existing

level of distribution capacity could also affect the cost of increasing that capacity. We address

this by including interaction terms between each of the attribute variables and the growth rate

in the fourth regression. For example, if having a large proportion of underground assets means

that it is more costly to upgrade distribution infrastructure to accommodate a higher peak, this

would be captured in the fourth regression as an interaction between Growth and Underground.

Finally, a fifth model includes fixed effects for each utility, denoted Utilityi. This approach,

described in Equation 1.3, removes the unobserved time-invariant characteristics particular to

each utility. These include the utility attributes used in the multivariate regression (which are

not perfectly constant from year to year, but exhibit little variation for a given utility) as well

any constant features that vary between utilities but do not significantly change during the study

period (such as labor and policy costs). This approach does not remove the effects caused by

time-varying heterogeneity specific to each utility, such as state-specific regulatory changes that

occur within the study period. However, because a separate fixed effect is included for the year

in all models, country-wide trends that affect costs for all utilities are captured. Of the models

discussed, this formulation provides the highest degree of confidence that the estimated growth

rate coefficient is unbiased.

13The utilities are divided into six regions: Mid–Atlantic, New England, Southeast, Southwest, Midwest, and
West. Mid-Atlantic is treated as the reference group in the regressions that include a fixed effect for the region.
Summary statistics for each individual utility, including its region, are included in Appendix A.

14Baughman and Bottaro (1976) divide the continental United States into nine regions, finding significant
differences in costs. Energy Information Administration (2019c) groups U.S. utilities into 22 different regions and
finds that the highest–cost region (New York City and Westchester, NY) has unit costs that are more than five
times those in the lowest–cost regions (Texas, Michigan, and Wisconsin).
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CapExkW
i,t = β0 + βGrowthGrowthi,t + Y eart + Utilityi + ϵi,t (1.4)

The above formulations are also used to estimate models for O&M expenses, OpExkW
i,t . The

results of these regressions are presented in Section 1.4.2.

1.4 Results

1.4.1 Capital Expenses

Table 1.3 summarizes the results of the regressions of per-kW capital costs. The rows are the

explanatory variables described in Section 1.2, the columns represent the different specifications

described in Section 4.2, and the value in each cell is the β-coefficient associated with a variable

for a given model with the standard errors in parentheses.

Column (1) presents the results from running capital costs on growth without controls. The

intercept term (which includes the average of the fixed effects) is interpreted as the per-kW

recurring cost for sustaining a given capacity level. According to this model, a utility with no load

growth will spend $26.47 per kW each year on distribution-related capital projects. These may be

incurred to improve reliability and resilience or comply with new standards. A hypothetical utility

with a 1 GW peak and zero growth would be expected to spend $26.47 ∗ (1e6kW ) = $26, 470, 000

each year on sustaining distribution capacity.

The growth rate coefficient, βGrowth, is the change in a utility’s per-kW capital expenses

15The mean of the fixed effects is included in the intercept term. For the formulation in column 5, the intercept
is computed by separately calculating the means of the fixed effects for year and utility and adding these together.
To compute the standard error for the intercept, we compute separate clustered standard errors for each year
and utility by bootstrapping, compute the mean standard error for each group, then combine these using a
root-mean-square calculation. For columns 3 and 4, the reference region described by the intercept term is the
Mid-Atlantic.

16The mean of the fixed effects is included in the intercept term. For the formulation in column 5, the intercept
is computed by separately calculating the means of the fixed effects for year and utility and adding these together.
To compute the standard error for the intercept, we compute separate clustered standard errors for each year
and utility by bootstrapping, compute the mean standard error for each group, then combine these using a
root-mean-square calculation. For columns 3 and 4, the reference region described by the intercept term is the
Mid-Atlantic.
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Table 1.3: Results from regression models of distribution capital expenses. The coefficient in the
Growth row describes the dollar-per-kW increase in distribution capital costs when the growth
rate increases by one percentage point. Values in parentheses are the standard errors clustered
by utility. 16

Annual Per-kW Distribution Capital Costs
(1) (2) (3) (4) (5)

Intercept 26.47∗∗∗ 14.30∗∗∗ 15.37∗∗∗ 12.79∗∗∗ 27.20∗∗∗

(1.41) (1.07) (0.75) (0.74) (0.54)
Growth 1.70∗∗∗ 0.74∗∗ 0.67∗∗ 2.04 0.76∗∗∗

(0.53) (0.35) (0.27) (1.52) (0.20)
Underground 0.57∗∗∗ 0.34∗∗∗ 0.34∗∗∗

(0.11) (0.10) (0.12)
ln(Density) −1.69∗∗∗ −0.27 0.02

(0.65) (0.78) (0.91)
Residential 0.23∗∗ 0.12∗ 0.17

(0.11) (0.07) (0.10)
Midwest −0.85 −0.87

(1.81) (1.83)
New England 17.40∗∗∗ 17.30∗∗∗

(2.93) (2.98)
Southeast 1.43 1.45

(2.06) (2.05)
Southwest −2.05 −2.13

(2.70) (2.70)
West 10.85∗∗∗ 10.84∗∗∗

(3.34) (3.35)
Growth*Underground 0.003

(0.03)
Growth*ln(Density) −0.17

(0.25)
Growth*Residential −0.02

(0.03)

R2 0.065 0.373 0.602 0.603 0.072
Adjusted R2 0.055 0.365 0.594 0.594 −0.071
Observations 808 808 808 808 808
Year Fixed Effects X X X X X
Utility Fixed Effects X

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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when its growth rate increases by one percentage point. In the first specification, this cost is

estimated as $1.70 per-kW-percentage-point. If the hypothetical utility described above increases

its capacity by 1% (10 MW) in a given year, it would be expected to spend an additional

$1.70 ∗ (1e6kW )∗(1 percentage point) = $1, 700, 000 on growth-related costs, which amounts to

$170 per new kilowatt of capacity. If the utility’s proven capacity stays constant in subsequent

years, then it would be expected to spend $26.47 ∗ (1.01e6kW ) = $26, 734, 700 each year in

capital expenses to sustain that capacity. In this way, an increase in capacity to accommodate

new load results in both an upfront cost as well as recurring annual costs.

It should be stressed again that because the first model does not account for some important

factors that are correlated with growth, it is likely that the estimated coefficients are biased.

Column (2) presents results for the multivariate regression that controls for the proportion of

underground assets (percentage points), the natural log of customer density per square mile,

and the share of sales to residential customers (percentage points). The regression in column (3)

includes these variables and the region dummy. Notably, the estimated coefficient for growth

rate in these formulations is only $0.67–$0.74 per-kW-percentage-point, less than half of the

value estimated in the model run without controls. This finding suggests that some part of the

correlation between high per-kW costs and the high growth rate observed in the first regression

is better explained by other features of the utility.17

The coefficient for the proportion of underground assets describes the increase in annual

per-kW capital costs for a utility when the share of underground assets increases by one percentage

point. According to column (2), utilities with a one percentage point higher proportion of their

assets underground spend $0.57 more per-kW of capacity each year on capital expenses. For

column (3), this number is estimated at $0.34 per kW.

Our results also suggest that utilities with higher customer densities have lower distribution

costs. If the natural log of customer density increases by one, distribution capital costs decrease

by $1.69 per kW according to the specification in column (2). This finding is likely because a

17The intercept coefficients are also nominally smaller because the newly-added explanatory variables capture
part of the sustaining cost. A detailed comparison of the growth vs. sustaining costs is addressed in the Section
1.5.
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given length of conduit or conductor in a dense region can serve more customers (and more load)

than the same asset in a less dense region. This effect is not significant when we add regional

dummies, perhaps in part because the region variable captures some of the same variation in the

underlying data. Per-kW capital costs also increase with a higher share of residential customers.

Results in column (3) indicate that the utility’s region is also significant in explaining

distribution capital costs. For a utility located in New England, the annual cost of maintaining

a given level of peak capacity is $17.40 per kW more than the reference utility located in the

Mid-Atlantic region. While not all regions demonstrate statistically different costs than the

Mid-Atlantic, the set of indicator variables as a whole are highly significant (a partial F-test

yields a statistic of 91). Inclusion of the region variable increases the adjusted R-squared from

0.365 to 0.594.

The multivariate regression with interaction terms (column 4) tests whether some of the

variables that impact the cost of maintaining a given capacity level also impact the cost of

growth. We find that none of the interaction coefficients computed are statistically significant

and that the inclusion of the interaction terms does not improve the adjusted R-squared over the

formulation summarized in column (3), nor does it provide a statistically different fit (F = 0.808).

Statistical interactions are challenging to prove with regression and often require a significantly

larger dataset than primary effects (Gelman, 2018). With only 808 data points, the failure of

this exercise to prove that attributes like customer density affect a utility’s growth cost does not

rule out the possibility of an underlying relationship.

Column (5) presents results from the regression that includes utility fixed effects. This

specification estimates a growth rate-coefficient of $0.76 per-kW-percentage-point, consistent

with the estimated coefficients computed in columns (2) and (3). These findings indicate that the

estimates obtained from the multivariate analyses are not likely biased by omitted time-invariant

heterogeneity between utilities. Other potential sources of bias in the estimated coefficient for

growth rate are discussed in Section 1.5.
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1.4.2 Operations and Maintenance Costs

We repeat the regression models used to explain per-kW capital expenses, this time with

per-kW O&M as the dependent variable. Regression results are summarized in Table 1.4.

Notably, we do not find any statistically significant relationships in the specifications in

columns (1) or (2). Adding the regional dummies in column (3) improves the fit, raising the

adjusted R-squared to 0.353. New England utilities have the highest O&M costs, incurring $11.60

per kW more each year than Mid-Atlantic utilities. For O&M costs, the region variable likely

serves as a proxy for labor, insurance, and other input costs that vary throughout the country.

1.4.3 Disaggregated Capital Costs

In recent years, per-capita electricity consumption has remained relatively constant (Energy

Information Administration, 2017), so most measured load growth has come from an increase in

the number of customers rather than an increase in per-customer consumption. Because load

growth and customer growth are so tightly coupled, it is difficult to distinguish between those

expenditures that are causally related to an increase in load (such as upgraded transformers)

and those that are customer-related but correlated with an increased system peak (such as the

installation of new meters). Because electrification of heating and transportation is poised to

increase per-customer load, it is valuable to separate load-related expenses from customer-related

expenses.

One approach to separating load effects and customer effects would be to include measure-

ments of both in the model formulation. However, because these two variables are highly collinear

18The mean of the fixed effects is included in the intercept term. For the formulation in column 5, the intercept
is computed by separately calculating the means of the fixed effects for year and utility and adding these together.
To compute the standard error for the intercept, we compute separate clustered standard errors for each year
and utility by bootstrapping, compute the mean standard error for each group, then combine these using a
root-mean-square calculation. For columns 3 and 4, the reference region described by the intercept term is the
Mid-Atlantic.

19The mean of the fixed effects is included in the intercept term. For the formulation in column 5, the intercept
is computed by separately calculating the means of the fixed effects for year and utility and adding these together.
To compute the standard error for the intercept, we compute separate clustered standard errors for each year
and utility by bootstrapping, compute the mean standard error for each group, then combine these using a
root-mean-square calculation. For columns 3 and 4, the reference region described by the intercept term is the
Mid-Atlantic.
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Table 1.4: Results from regression models of distribution O&M expenses. Notably, there is no
statistically significant relationship observed between O&M costs and the growth rate of system
capacity. Values in parentheses are the standard errors clustered by utility.19

Annual Per-kW Distribution O&M Costs
(1) (2) (3) (4) (5)

Intercept 17.61∗∗∗ 17.69∗∗∗ 24.12∗∗∗ 19.75∗∗∗ 19.71∗∗∗

(0.8) (0.8) (0.6) (0.7) (0.3)
Growth 0.25 0.31 0.09 2.44 0.12

(0.36) (0.33) (0.28) (1.56) (0.14)
Underground −0.03 −0.08 0.06

(0.09) (0.07) (0.08)
ln(Density) 0.35 −0.51 −0.99

(0.61) (0.74) (0.66)
Residential −0.02 0.04 0.12

(0.08) (0.08) (0.09)
Midwest −4.19∗ −3.87

(2.45) (2.41)
New England 11.56∗∗∗ 12.01∗∗∗

(3.51) (3.58)
Southeast −7.69∗∗∗ −7.36∗∗∗

(2.75) (2.70)
Southwest −9.94∗∗∗ −9.67∗∗∗

(3.08) (3.05)
West −0.61 −0.23

(4.17) (4.11)
Growth*Underground −0.06∗∗

(0.03)
Growth*ln(Density) 0.22

(0.28)
Growth*Residential −0.04

(0.03)

R2 0.003 0.006 0.366 0.392 0.006
Adjusted R2 −0.007 −0.007 0.353 0.377 −0.147
Observations 808 808 808 808 808
Year Fixed Effects X X X X X
Utility Fixed Effects X

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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(more customers produce a higher peak), coefficient estimates derived from this regression would

be unreliable. This was observed by R. L. Fares and King (2017), who chose to perform separate

regressions for each explanatory variable: system peak, number of customers, and volumetric

sales.

Sidestepping this problem, we use the disaggregated “account-level” capital expense data

from FERC Form 1, categorizing each expense into one of four categories: Load, Conductors,

Access, and Customers.20 Summary statistics for these categorized expenses are provided in

Table 1.5.

Load Conductors Access Customer
($/kW) ($/kW) ($/kW) ($/kW)

Minimum 0.09 0.16 0.00 -0.60
5% 2.80 3.62 2.13 1.13
25% 5.54 6.02 3.90 2.61
Median 7.82 8.10 5.25 3.89
Mean 8.13 9.46 5.91 4.35
75% 10.29 11.03 7.41 5.42
95% 14.20 19.88 12.38 9.32
Maximum 36.02 36.92 18.89 21.46
Standard Deviation 3.88 5.37 3.09 2.76

Table 1.5: Summary statistics of distribution capital expenses by category. For a typical utility,
investments in transformers and conductors represent over 60% of per-unit capital costs. The
aggregate per-kW costs are reported in Table 1.1.

To identify how these demand-related costs are affected by various explanatory variables,

we adapt the univariate regression that includes a fixed effect for the utility (column 5 in Table

1.3) so that the dependent variable is computed using figures from each of the four categories,

instead of the aggregate distribution capital cost data.

By disaggregating the capital expenditures data, we can see how spending patterns on different

20The “Load” category includes substation equipment (including batteries) and line transformers. The “Conduc-
tors” category includes capital investments for overhead and underground wires. The “Access” category includes
physical infrastructure required to reach a customer, including structures, poles, towers, fixtures, conduit, and land
rights. “Customer” expenses include meters, services, customer installations, and leased property on customer
premises. Lighting, which represents less than 3% of a typical utility’s annual capital expenditures, is omitted.
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asset types relate to peak growth. Table 1.6 describes the results of the disaggregated-cost fixed

effects regression.

Annual Per-kW Distribution Capital Costs

Load Conductors Access Customers

Intercept 6.8∗∗∗ 7.8∗∗∗ 5.0∗∗∗ 3.7∗∗∗

(0.3) (0.2) (0.2) (0.1)

Growth 0.13∗∗ 0.29∗∗ 0.14 0.15∗∗∗

(0.07) (0.12) (0.08) (0.05)

R2 0.014 0.048 0.018 0.029
Adjusted R2 -0.139 -0.100 -0.132 -0.121
Observations 808 808 808 808
Year Fixed Effects X X X X
Utility Fixed Effects X X X X

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 1.6: Results from the regression that includes a fixed effect for the utility (column 5 in
Table 1.3), applied to disaggregated distribution capital expenses. The results indicate that
capital spending on conductors is significantly more sensitive to the growth rate of peak capacity
than other categories. The intercept is computed by separately calculating the means of the fixed
effects for year and utility and adding these together. Values in parentheses are the standard
errors clustered by utility.

The regression estimates that per-kW spending on conductors increases by $0.29 when the

growth rate of system capacity increases by one percentage point. By comparison, spending on

load- and customer-related equipment each increase by only $0.13–0.15/kW in response to a one

percentage point increase in growth rate. In a scenario where load increases but the number of

customers and their locations stay the same, one should anticipate that the balance between

these costs may shift.

1.4.4 Alternative Estimates of the Growth Rate

In the previous sections, the growth rate of system capacity, Growth, is estimated empirically

as the compounding growth rate of a utility’s proven distribution system capacity, computed

using a 5-year rolling window. Because a utility’s proven capacity only increases in years that set
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new record peaks, it is systematically biased to underestimate the distribution system’s actual

peak capacity in years with milder weather. Consequently, using a very narrow time window to

estimate the growth rate will produce estimates of zero in the years when the distribution system

is not stressed to its capacity, even if the utility is actively expanding capacity. Conversely, using

a wider window is inherently less precise: an excessively wide window may cause the (non-zero)

growth rate in a given year to be biased down by including several years of low load-growth

in the rolling window. The aggregate effect is that there will be less observed variation in the

growth rate for a given utility. The choice of a 5-year rolling window is intended to serve as a

compromise, dampening the effects of inter-annual variation in observed peaks without flattening

out any observable variance in the growth rate for a given utility.

This section presents the results of regressions applied using two alternative estimates of

Growth, computed using a 3-year rolling window and a 7-year rolling window. These results are

then compared to the original estimates that use a 5-year rolling window. All three estimates of

the growth rate are described by Equation 1.5, where n is the width of the rolling window in

years.

ri,t =
Ci,t+ n−1

2

Ci,t− n−1
2

 1
n−1

− 1, Ci,t ≥ Ci,t−1 (1.5)

Table 1.7 provides summary statistics of the estimated growth rates. The growth rate

computed over a 3-year rolling window, Growth3, has more than 25% of estimated observations

equaling 0%. Growth3 also has a significantly higher maximum observation than Growth5 or

Growth7, likely because the effects of multiple years of capacity growth are observed in one or

two years when the proven capacity jumps, which happens whenever the distribution system

reaches its design conditions.

Table 1.8 summarizes the regression results. In columns (1)-(3), we use the multivariate

regression that controls for the three utility attributes discussed in Section 1.2. In columns

(4)-(6), we use the regression that includes a fixed effect for the utility. Columns (1) and (4)

compute Growth using a 3-year rolling window, columns (2) and (5) compute Growth using
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Table 1.7: Summary statistics of the compounding annual growth rate, estimated using a 3-year,
5-year, and 7-year rolling window. The growth rate estimated over a 3-year window has a
significantly higher standard deviation than the 5-year and 7-year estimates.

Growth3 Growth5 Growth7

Minimum 0.00% 0.00% 0.00%
5% 0.00% 0.00% 0.00%
25% 0.00% 0.67% 0.92%
Median 1.05% 1.64% 1.65%
Mean 1.82% 1.86% 1.83%
75% 3.09% 2.69% 2.53%
95% 6.15% 4.82% 4.39%
Maximum 13.91% 8.30% 6.21%
Standard Deviation 2.20% 1.53% 1.29%
Observations 808 808 606

a 5-year rolling window (the estimate used throughout the chapter), and columns (3) and (6)

compute Growth using a 7-year rolling window.

The estimated growth rate coefficients in columns (1) and (4) are significantly smaller

than the estimates in columns (2),(3),(5), and (6), indicating that the regressions that use a

3-year window to compute Growth attribute a smaller proportion of capital investments in

the distribution system to capacity growth than regressions that use a wider window. One

explanation is that because the growth rate is computed over a narrower window than the other

estimates, growth in proven capacity (which is a function of both the actual system capacity and

the weather) is not always observed in the same years that growth-related investments occur. In

other words, even if the utility is actively expanding capacity to accommodate load growth, that

growth may not be observed immediately if the network is not regularly stressed to its design

conditions.

The estimated growth rate coefficient in columns (3) and (6), which use a 7-year rolling

window, are similar to those estimated using a 5-year rolling window. The estimate in column (3)

has a higher standard error, which renders the estimated coefficient insignificant. The estimated

growth rate coefficient for the regression that uses a 7-year rolling window and includes a fixed
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Table 1.8: Regression results using three different specifications for the growth rate. Columns
(1)-(3) use the multivariate regression with controls. Columns (4)-(6) use the regression with fixed
effects for the utility. Columns (1) and (4) summarize the regression results where Growth is
computed using a 3-year rolling window, columns (2) and (5) summarize the results where Growth
is computed using a 5-year rolling window (the specification used in the previous sections), and
columns (3) and (6) summarize the results where Growth is computed using a 7-year rolling
window.

Annual Per-kW Distribution Capital Costs
(1) (2) (3) (4) (5) (6)

Intercept 14.39∗∗∗ 14.30∗∗∗ 14.24∗∗∗ 25.13∗∗∗ 23.86∗∗∗ 24.69∗∗∗

(0.99) (1.02) (0.87) (0.57) (0.49) (0.36)

Growth3 0.32 0.23∗

(0.21) (0.12)

Growth5 0.74∗∗ 0.76∗∗∗

(0.35) (0.20)

Growth7 0.70 0.78∗∗∗

(0.55) (0.28)

Underground 0.59∗∗∗ 0.57∗∗∗ 0.59∗∗∗

(10.97) (10.83) (10.92)

log(Density) −1.72∗∗∗ −1.69∗∗∗ −1.82∗∗∗

(0.66) (0.65) (0.65)

Residential 0.24∗∗ 0.23∗∗ 0.24∗∗

(10.52) (10.75) (11.30)

R2 0.366 0.373 0.386 0.019 0.019 0.044
Adjusted R2 0.358 0.365 0.376 −0.133 −0.133 −0.159
Observations 808 808 606 808 808 606
Year Fixed Effects X X X X X X
Utility Fixed Effects X X X

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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effect for the utility is similar to the coefficients produced using a 5-year rolling window.

As discussed earlier, proven capacity is an imperfect approximation of the actual distribution

system capacity, especially if one is interested in measuring changes in capacity between years.

Much of the uncertainty discussed herein would be removed if comprehensive infrastructure data

were made available for a broad sample of utilities. Until such a time, these estimates provide a

heuristic for those interested in modeling electric distribution system expansion.

1.5 Discussion

The results suggest that while increases in system capacity are significant in explaining

electric distribution capital costs, they represent a relatively small share of those costs. The

majority of a typical utility’s annual capital expenses are associated with sustaining a given

capacity level, as described by the intercept term and attribute coefficients. Figure 1.4 depicts

the proportion of capital costs related to growth for a single year for an electric utility with

median characteristics21. At a typical annual growth rate between 1–2%, less than 10% of capital

costs are explained directly by load growth. Even at an annual growth rate of 5%, less than 20%

of a generic utility’s annual distribution capital expenses are directly related to load growth.

The estimates of the increase in distribution costs from load growth are lower than many

previous estimates, such as ICF Consulting (2005), which assumes that 50% of transmission and

distribution investments are causally related to load growth. A review of infrastructure filings

from state public service commissions indicates that it is not uncommon for utilities to report

that load growth is only responsible for a small portion of their capital expenses. As part of its

2017 rate case, Central Hudson Gas & Electric Company in New York State reported a detailed

schedule of its forecasted capital expenses from 2018–2022. Only 3% of capital investments in

the distribution system were labeled as related to load growth (Central Hudson Gas & Electric

Corporation, 2017, p. 120-122).22 In California, Pacific Gas & Electric spent an average of $99

21Per table 1.2, a utility with median characteristics has a proven capacity of 3 GW, 40 customers per square
mile (ln(Density) = 3.7), 18% of distribution assets invested as either underground conductors or underground
conduit, and 35% of sales to residential customers.

22The rate case filings corresponding to the time period of this study did not include granular project data that
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Figure 1.4: Upfront growth costs as a proportion of total distribution capital expenses vs. growth
rate of system peak. For each percentage point on the x-axis, separate “growth” and “sustaining”
costs are computed for a typical utility using the specification in Table 1.3, column (2), and the
ratio of growth costs to overall distribution capital costs is plotted. Error bars are computed
using the clustered standard errors of the growth rate coefficient. There is limited data for
growth rates over 5%, so those estimates (represented with dashed lines) should be regarded as
extrapolations.

million annually on projects related to expanding electric distribution capacity in 2000 and 2001

(Pacific Gas & Electric, 2018). This amounts to just 16% of their average distribution capital

expenses for those years (Federal Energy Regulatory Commission, 2009).23

Multiplying the growth rate coefficient by a factor of 100 gives an estimate of the cost of

an incremental unit of distribution capacity.24 Our results indicate that this figure is around

$75/kW. This finding is at least an order of magnitude smaller than the estimates used in Larson

could be used to distinguish between growth-related and maintenance costs.
23We do not know of any public dataset that separately reports growth and maintenance costs incurred by a

large sample of utilities. Such a dataset would help validate the empirical conclusions of this study.
24An example of this arithmetic, applied to the univariate regression, is provided in Section 4.5
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et al. (2020), which assumes that new capacity costs $1,351/kW on average. There are several

explanations for this discrepancy. For one, the authors draw on estimated distribution costs from

Energy Information Administration (2019a), which includes administrative expenses (such as

salaries and office space) as part of the distribution charge (Energy Information Administration,

2019b, p. 17). While some of these expenses may grow over time, it is not reasonable to

assume that a doubling of per-capita electricity consumption would result in a doubling of

administrative expenses. Additionally, a large proportion of distribution expenses – including

land rights, structures, poles, towers, service drops, and meters – are not directly related to

the level of consumption. If customers were to increase their loads by electrifying their heating

and transportation needs, a utility may need to upgrade some of its transformers but would not

necessarily need to replace its poles or on-site meters. Administrative and distribution expenses

that are unlikely to increase in response to an increase in load should be excluded from an

estimate of the marginal distribution capacity cost based on accounting methods.25 Furthermore,

the accounting-based approach is very sensitive to changes in assumptions about the cost of

capital and the economic life of utility assets. Increasing the assumed discount rate used in

Zhang, Jenkins, and Larson (2020) from 4.4% to 8% and decreasing the equipment life from 40

years to 30 nearly halves the estimated per-kW cost of distribution assets. Likewise, the median

estimates used in Elmallah, Brockway, and Callaway (2022), which range from $368 per-kW to

$1,875 per-kW for circuit upgrades and from $888 to $18,863 for substation upgrades appear to

over-estimate the cost of sustained load growth.

Another important observation is that the share of underground distribution assets signif-

icantly increases recurring capital costs. Some of the fastest-growing utilities (measured by

the growth rate of proven capacity) are also engaging in the most aggressive undergrounding

campaigns. For example, Nevada Power Company, which more than doubled its proven sys-

tem capacity from 1994 to 2007, also increased the proportion of its assets invested as either

underground conductors or conduit from 33% to 44% over the same period. While burying

power lines offers myriad advantages to a utility’s customers (such as improved reliability and

25See Lazar (2016, Chapter 9.2) for a discussion of how investments in the distribution system are classified as
customer vs. load-related.
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aesthetics), those benefits should be weighed against costs and alternatives should be considered

where appropriate.

Because a utility’s peak load and the number of customers it serves are highly correlated,26

we did not attempt to distinguish between costs incurred to facilitate an increase in capacity

and those incurred to accommodate an increase in the number of customers. Thus, some of the

costs attributed to load growth in this analysis may be causally related to an increase in the

number of customers (such as expenditures on new meters and service drops). In a future where

significant load growth is caused by electrification, one would expect an increase in peak-related

infrastructure costs but not necessarily customer-related costs. The results from four separate

regressions of different categories of distribution capital costs are provided in 1.4.3.

1.5.1 Long-Term Growth Costs

When considering persistent load growth over an extended period, as would be expected from

increased electrification of heating and transportation, both the upfront cost of new distribution

capacity as well as recurring capital and O&M costs associated with that infrastructure should be

taken into account. This section presents an extrapolation exercise in which we use the estimated

parameters from Section 4.5 to compute the distribution costs for a utility from 2022 to 2035

under different growth scenarios.

This exercise uses the estimated parameters from column (2) of Tables 1.3 and 1.4 to forecast

capital and O&M expenses.27 We take the attributes of a typical 3 GW utility with 40 customers

per square mile, 18% underground assets, and 35% of volumetric sales to residential customers,

then assume five different capacity growth rates: 0%, 0.5%, 1.5%, 3%, and 5%. The resulting

distribution expenses over time are plotted in Figure 1.5.

In the zero-growth scenario, the utility spends $132m annually between capital and O&M

costs to maintain 3 GW of capacity. In the 0.5% growth rate scenario, the utility spends an

26The data used in this study indicate no statistically significant increase in proven capacity–per–customer
from 2000–2007. Proven capacity and total customer count have a correlation coefficient of 0.95, making them
functionally collinear (the logs of these variables have a correlation coefficient of 0.96).

27While the column (2) specification was used for simplicity, one would expect similar results from columns
(3-5). All of the formulations except (1) have similar growth coefficients after accounting for interactions.

36



$0

$100

$200

$300

2022 2025 2030 2035
Year

A
nn

ua
l C

om
bi

ne
d 

D
is

tr
ib

ut
io

n 
E

xp
en

se
 (

m
ill

io
n 

$)

0.0% 0.5% 1.5% 3.0% 5.0%

Figure 1.5: Annual distribution expenses (capital + O&M) for a typical 3 GW utility at five
different growth rates from 2022-2035 (inclusive). The higher growth rates represent scenarios
with aggressive electrification of heating and transportation. In the 5% growth rate case, annual
expenses nearly double between 2022 and 2035.

additional $93m over the 14-year horizon to build and maintain an additional 217 MW of capacity

by 2035. In the extreme case of 5% annual growth, the utility nearly doubles capacity while

incurring $1.19b in additional expenses over the time horizon. A comprehensive summary of

these results is provided in Table 1.9.

Since both capital and O&M costs are dominated by recurring annual expenses (rather than

the one-time cost of increasing capacity, as described by the growth rate coefficient), we find

that the growth rate has a relatively modest impact on average distribution costs. Assuming
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Table 1.9: Growth rates and associated expenses for a typical 3 GW utility over the 14-year
interval from 2022-2035 (inclusive). “Total Expenses” and “Additional Expenses” are aggregated
(undiscounted) over the entire 14-year interval. “Capacity Increase” and “Additional Expenses”
are measured in reference to the 0% growth case. “Average Electricity Cost” estimates the
average distribution cost in $/MWh, assuming a constant load factor of 60% and that all expenses
are recovered in the same year that they are incurred. If volumetric sales scale linearly with
peak, then a 5% growth rate is only expected to increase delivery expenses by about $1/MWh
($0.001/kWh) over the zero-growth scenario. If expenses are discounted at an annual rate of 8%,
the present value of distribution expenses (capital plus O&M) over the 14-year interval range
from $1,089m for 0% growth to $1,686m for 5% growth.

Growth Capacity Total Expenses Additional Average
Rate Increase (2035) Capital O&M Expenses Distribution Cost
(%) (MW) (%) (millions) (millions) (millions) (%) ($/MWh)

0.0% - - $1,113 $737 - - $8.38
0.5% 217 7% $1,172 $772 $93 5% $8.48
1.5% 695 23% $1,299 $847 $296 16% $8.68
3.0% 1538 51% $1,516 $975 $641 35% $8.98
5.0% 2940 98% $1,863 $1,178 $1,191 64% $9.37

that load factors remain constant at approximately 60%28 and that new capital costs are borne

by ratepayers in the year they are incurred, a 5% growth rate would only increase the average

distribution cost by about $1/MWh (0.1 cents/kWh) over the zero-growth scenario.

To provide a point of comparison, if one applies the methodology from ICF Consulting (2005)

(assuming that distribution capital expenses are evenly split between growth and maintenance

costs and that all O&M costs are unrelated to growth) to the complete data from 101 utilities,

the median cost of growth across all utilities is $578/kW and the median recurring cost for

sustaining capacity is $30/kW-year (capital plus O&M). If these coefficients are applied to the

typical 3 GW utility above, the forecast expenditure over the 14-year interval is $1,260m in the

zero-growth case and $3,551m in the 5% growth case, a 182% increase. This difference would

amount to an increase of over $5/MWh (0.5 cents/kWh) in distribution costs, from $5.06/MWh

in the zero-growth case to $10.30/MWh in the 5% annual growth case. Relative to the empirical

28The load factor describes the ratio of the average consumption of electricity to the observed peak. Electric
vehicles are likely to increase load factors because they can be charged off-peak, leading to flatter daily consumption
curves. Electric heating is poised to decrease load factors in areas where significant buildout is required to
accommodate winter peaks.
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model, the 50% heuristic appears to underestimate sustaining costs and overestimate the cost of

increasing capacity for new load.

Conversely, if one assumes that distribution costs are correlated only with the distribution

system’s peak capacity (as is assumed in Vibrant Clean Energy, LLC et al. (2020) and Energy

Information Administration (2019c)), then the average cost of distribution ($/MWh) would be

entirely independent of the growth rate of the system peak. This assumption could lead analysts

to underestimate how rapid growth due to electrification might impact ratepayers.

1.6 Conclusion and Policy Implications

We described the main determinants of electric distribution costs using annually-reported

financial and operating data from 101 investor-owned utilities over eight years. We found through

regression analysis that the growth rate of proven capacity, the proportion of assets installed

underground, the density of customers within the utility’s service territory, and the share of

sales to residential customers are all significant in explaining per-kW distribution capital costs.

None of the above variables were found to be useful in explaining O&M costs. The only reliable

explanatory variable we found of per-kW O&M costs is the utility’s region. Regional dummies,

which explain part of the variation in capital and O&M costs, likely serve as proxies for other

unobserved variables that change locally (such as labor or policy costs). Future work should

identify these factors and quantify their effects directly.

Based on historical system peaks, we estimate that load growth represents less than 10% of

distribution capital costs for a typical utility with an annual capacity growth rate of 1–3%. A

5% growth rate from 2021–2035 would nearly double distribution capacity while only increasing

the average distribution cost by about $1/MWh (0.1 cents/kWh) relative to the zero-growth

case. These results indicate that many of the distribution system reinforcements needed to

accommodate widespread electrification of heating and transportation are achievable without

significantly increasing costs to consumers.

Another notable result of our analysis is that distribution system costs vary widely throughout
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the country and between utilities with different attributes. This finding suggests that widespread

electrification of heating and transportation may become economical for some utilities before

others. The Southwest has the lowest distribution costs (both capital and O&M), making

Southwestern customers prime candidates for early adoption of end-use electrification as the grid

becomes cleaner.

In conducting this analysis, we found that limited centralized data on distribution infrastruc-

ture posed a significant challenge to comparing capacity and growth between utilities. While

utilities report transmission line additions to FERC, no such data are reported for distribution

infrastructure. Moreover, while substation capacity data is reported, inconsistencies in reporting

make it impractical to use these data for empirical analysis. If loads are growing in one part of a

utility’s service territory and shrinking in another, the approach used in this analysis (based only

on observed peaks) would be unable to detect changes to aggregate system capacity. Standardized

reporting of distribution line miles and aggregate transformer capacities would enable more

accurate modeling in future work.

Load growth from electrification may be faster than recent trends and will likely come from

higher per-customer consumption rather than growth in the number of customers. Because of

the speed at which heating and transportation would need to be electrified in order to meet

decarbonization goals, utilities should begin incorporating electrification into their infrastructure

planning as soon as possible. Our estimates may serve as a helpful reference for practitioners

and policymakers engaged with this effort.
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Chapter 2

Simulation of Residential Energy

Demands

In this chapter, we use the open-source building energy modeling (BEM) software packages

EnergyPlus and ResStock to simulate hourly demands for buildings in five different climate

regions across the United States. These data are then used in subsequent chapters as constraints

to the optimization algorithms.

We observe that residential energy demands vary tremendously throughout the United States.

In particular, space heating and cooling demands vary widely among regions, and between

buildings within a region due to differences in construction properties. Domestic hot water

demands and electric plug loads show considerably less variation.

2.1 Background and Literature Review

A number of factors influence residential energy demands. These include the climate in which

the residence is located, the size of the residence, various features of the building’s construction

(including the envelope properties), as well as the number of residents and their habits.

Using BEM software to model residential energy demands offers two key advantages over

a simpler model of electrical and thermal loads, such as a linear heating/cooling-degree model,
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which assumes that the thermal demand for conditioning a space is a simple linear function of the

outdoor temperature (Waite & Modi, 2020). First, it accounts for the effects of solar radiation

and latent heat gains. Radiation can offset heating loads during the heating season and amplify

cooling loads in the summer, while latent heat gains from infiltration can increase cooling loads

related to dehumidification.

Second, building energy simulations allow for heating and cooling loads to vary based on

differences specific to each building, including the underlying building physics and massing,1

variable heating and cooling preferences, and different occupancy patterns. Consequently, the

simulated heating and cooling loads better reflect the underlying building physics and diversity

found in the real building stock.

2.1.1 Space Heating and Cooling

Space heating and cooling loads in buildings are driven by differences between ambient weather

and the desired indoor conditions. According to Fourier’s Law, the instantaneous conductive heat

loss (or gain) through a building’s envelope is directly proportional to the difference between the

inside and outside temperatures. We may define the hourly “heating degrees” as the difference

between the inside and outside temperatures when the outside temperature is below the inside

temperature (e.g. if the inside temperature is 65◦F and the outside temperature is 35 F, there

are 30 heating degrees). Conversely, cooling degrees are the difference between the inside and

outside temperatures when the outside temperature is above the inside temperature.

Since at least the 1930s, engineers have been using annual “heating-degree-days” and “cooling-

degree-days” as metrics to describe the climatic drivers of heating and cooling energy demands

(Marston, 1935). The heating degree days (HDDs) for a given location are an approximate integral

of the hourly heating degrees throughout a typical year. HDDs are calculated by taking a year

of temperature data, computing the average of each day’s observed highs and lows, subtracting

this number from 65, and summing all of the positive results. Cooling degree days (CDDs) are

1Building massing shifts heating and cooling loads to later hours, which is one of the reasons why peak air
conditioning loads in the summer tend to occur in the late afternoon or evening, rather than at mid-day when the
sun is the strongest.
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computed the same way, but by summing only the negative results (reported as an absolute

value). All else being equal, a building in a region with 10,000 HDDs should lose about twice as

much heat through conduction as a building in a region with 5,000 HDDs.

Figure 2.1 plots the annual heating-degree-days and cooling-degree-days for the continental

United States. We observe that HDDs and CDDs vary widely. In southern Texas and Florida,

there are less than 1,000 annual HDDs; in the Upper Midwest, the annual HDDs can exceed

10,000. Likewise, CDDs range from near-zero in the Mountain states to over 1,800 in the South

(National Oceanic and Atmospheric Administration, 2018).

Figure 2.1: Maps of heating degree days and cooling degree days for the continental United
States. Homes in southern states have the greatest number of cooling degree days, driving up air
conditioning loads. Homes in the northern states have the greatest number of heating degree
days, driving up space heating loads (National Oceanic and Atmospheric Administration, 2018).

In addition to conductive losses through a building’s envelope, space heating and cooling

loads include the energy associated with conditioning outdoor air that enters the building, either

through controlled ventilation or unmanaged infiltration. When cold air enters a building, it

must be heated up to room temperature. Because air has a relatively constant specific heat, the

amount of energy required to bring outdoor air up to room temperature is proportional to the

difference between the indoor and outdoor temperature. For a building with a constant rate of

infiltration, the energy required to heat ambient air over the course of a year is approximately

proportional to the heating degree days.

When warm air enters a building, it is typically necessary to both cool and dehumidify it.
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Removing moisture from the air to bring the humidity down to an acceptable level is referred

to as latent cooling. To account for the effect of latent cooling needs, engineers at the Pacific

Northwest National Laboratory developed the International Energy Conservation Code (IECC)

map (Pacific Northwest National Laboratory, 2015). The IECC map, shown in Figure 2.2, uses

15 regions, each described with a number (designating the temperature regime) and a letter

(designating the humidity regime).

Figure 2.2: International Energy Conservation Code (IECC) Climate Regions. The numbers
describe the temperature regime and the letters describe the humidity regime (U.S. Department
of Energy & Pacific Northwest National Laboratory, 2015).

In 2003, the National Renewable Energy Lab simplified the IECC map into 8 climate zones,

combined into five major climate categories/regions found in the continental United States. These

are: hot-humid, hot-dry/mixed dry, mixed humid, marine, and cold/very cold. The Building

America climate regions are illustrated in Figure 2.3.

Summary statistics from homes in the five climate regions are provided in Table 2.1. We

observe that the average home in the Very Cold/Cold region uses 50% more energy for space

heating than the average home in the Hot-Humid region, and nearly twice as much space heating

energy as the average home in the Mixed-Dry/Hot-Dry region. This is due to a combination

of their colder climate and larger-than-average floor area. Conversely, the average home in the

hot-humid region uses about five times more energy for air conditioning than the average home

in the Very Cold/Cold region and twice as much cooling energy as the average home in any other
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Figure 2.3: Building America Climate Regions. In this analysis, we select representative counties
for the Cold, Hot-Dry, Hot-Humid, Mixed-Humid, and Marine regions (U.S. Department of
Energy & Pacific Northwest National Laboratory, 2015).

region.
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Table 2.1: Summary statistics of energy use in homes in each climate, as reported through U.S. Energy Information Administration
(EIA) (2015). There is considerable variation in heating and air conditioning demands between regions. Of note, the average home in
the Very Cold/Cold region uses 50% more energy for space heating than the average home in the Hot-Humid region, and nearly twice
as much space heating energy as the average home in the Mixed-Dry/Hot-Dry region.

Very Cold/Cold Mixed-Dry/Hot-Dry Hot-Humid Mixed-Humid Marine

Number of housing units (million) 42.5 12.7 22.8 33.5 6.7
Average area per housing unit (sf) 2,228 1,668 1,742 2,073 1,842
Heated area per housing unit (sf) 2,007 1,416 1,495 1,771 1,598
Cooled area per housing unit(sf) 1,334 1,256 1,483 1,530 713

Average site energy consumption (MMBTU) 94.2 51.8 59.7 80.7 57.3
Space heating consumption (MMBTU) 53.1 12.9 13.7 35.7 20.7
Water heating consumption (MMBTU) 16.5 14.5 10.9 15.1 16.2
Air conditioning consumption (MMBTU) 3.0 7.4 15.1 6.9 1.5
Refrigerator consumption (MMBTU) 2.5 2.6 2.7 2.6 2.7
Other consumption (MMBTU) 20.3 18.1 20.1 21.3 18.6
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In addition to the climate region in which a residence is located, other factors can influence

space heating and cooling demands, including the home’s vintage, size, and construction (Admin-

istration, 2022). In the Midwest, homes built from 2010 to 2015 use on average about 40% less

energy for space heating than homes built before 1960 (U.S. Energy Information Administration

(EIA), 2015, CE3.3). In the South, energy use for air conditioning peaks in homes built between

2000–2009 (U.S. Energy Information Administration (EIA), 2015, CE3.4); newer homes use

about 15% less energy, most likely due to the availability of higher-efficiency air conditioners.

2.1.2 Water Heating (DHW)

Domestic hot water (DHW) in homes is used by residents for showering, hand-washing, and

cleaning dishes. Among the major end-uses in homes, water heating demand scales most closely

with the number of household members. Table 2.2 shows the relationship between the number of

household members and the amount of energy used for space heating, air conditioning, water

heating (DHW), refrigeration, and all other end-uses. In 2015, the average two-person household

consumed 12.5 million BTUs of energy for DHW heating; the average four-person household

consumed 22.7 million BTUs. By comparison, the number of household members has only a very

modest effect on the amount of space heating energy and refrigeration energy used for households

with two or more members.

Table 2.2: Average energy demands for households of different sizes, in MMBTU (U.S. Energy
Information Administration (EIA), 2015, CE3.1). Water heating and other (plug loads) scale
most strongly with the number of households members.

Number of household members 1 2 3 4 5 6+

Space heating 29.9 36.2 37.7 37.4 38.1 39.1
Air conditioning 5.3 7.3 7.5 8.4 8.8 7.7
Water heating 7.4 12.5 17.7 22.7 24.1 28.7
Refrigerators 2.1 2.7 2.7 2.8 2.8 2.8
Other 13.1 19.9 22.1 26.4 26.6 29.4
Total 55.3 75.6 84.6 94.9 97.1 103.8
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2.1.3 Plug Loads

Plug loads include refrigeration, lighting, electronics, laundry, and all other energy uses inside

a home. Refrigeration energy tends to be relatively independent of the size of the household.

Other plug loads tend to scale with the number of household members, though not as closely as

domestic hot water. In Table 2.2, we observe that a household with 4 members uses approximately

30% more energy for lighting, electronics, etc. than a household with 2 members.

In our analysis, we simulate space heating, space cooling, water heating (DHW), and electric

plug loads for homes from all five major climate regions found in the continental United States,

as well as homes that range in size and vintage. This allows us to capture a representative range

of characteristics affecting space heating, air conditioning, hot water heating, and plug loads.

2.2 Methodology

In each of the five major Building America climate regions, we select one example county

meant to typify that particular climate. The five counties are: Erie, New York (cold); San

Diego, California (hot-dry); Houston, Texas (hot-humid); Alexandria, Virginia (mixed-humid);

and Marin, California (marine) (U.S. Department of Energy & Pacific Northwest National

Laboratory, 2015). Summary statistics for these five example counties (along with modeling

results) are provided in Table 2.6.

We use The National Renewable Energy Laboratory’s ResStock Analysis Tool to sample

construction and operational parameters that are representative of homes in each of the five

counties (National Renewable Energy Lab (NREL), 2021).2 These parameters are then used

to construct individual EnergyPlus models for 75 residences (15 in each region), which contain

detailed descriptions of all the major elements of a building that determine its energy use (wall

construction, foundation type, occupancy patterns, etc.) and a model of the heating and cooling

2ResStock contains estimated probability functions describing the distribution of building properties for every
county in the United States. By using ResStock to sample building properties, the modeled buildings can be said
to be representative of the actual building stock in each example county. We note that this does not guarantee
that the individual buildings are representative of the whole climate region
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equipment installed within a building.3. The 15 residences in each region are presumed to reside

on a single electric feeder and represent the full load on that feeder.4

Using the EnergyPlus models, we run year-long simulations using weather based on data

from a typical meteorological year (TMY3).5 From the results, we extract hourly demands

for space heating, space cooling, water heating (DHW), and electric plug loads for the fifteen

representative single-family homes in each county.

For simplicity, we exclusively model single-family detached homes with existing central

warm-air furnaces. This is the most common heating topology for single-family homes in the

U.S., found in about two-thirds of detached single-family homes that use space heating equipment

(U.S. Energy Information Administration (EIA), 2015, Table HC6.1).

Summary statistics for the modeled buildings are provided in Tables 2.3 and 2.4. Table

2.3 provides descriptive statistics for several important variables, including the year built, the

number of occupants, infiltration rates, and the areas of walls, floors, windows, and roofs. While

the sizes of modeled residences vary significantly in all five climate regions (the largest homes

have more than twice the floor area of the smallest), the mean floor area does not show a huge

amount of variation between regions. Residences in the marine climate, which are the smallest,

are only about 19% smaller on average than those in the mixed-humid climate, which are the

largest. Consequently, the total floor area modeled in each region is similar.

We note that residences in the example hot-dry and hot-humid climates are significantly

newer on average than those in the cold and mixed-humid climates, with residences in the marine

climate falling somewhere in the middle. The vintages of the sampled buildings are based on the

3EnergyPlus is a building energy simulation tool that simultaneously models thermal zone conditions and
heating/cooling system response. See (National Renewable Energy Laboratory (NREL), 2022)

4Most real feeders have many more customers than 15. Due to computational constraints, simultaneously
optimizing decisions across hundreds of homes (see Chapter 4) would have been impossible. In a separate analysis,
we found that the load factors achieved from aggregating energy demands across 15 residences were within 10% of
those observed on feeders with aggregations of many more residences.

5TMY files hold “hourly meteorological values that typify conditions at a specific location” for one year,
including ambient temperature, wind speed, and solar conditions. These files are constructed by concatenating
12 typical meteorological months from different years (Wilcox & Marion, 2008). They are commonly used by
engineers and architects to forecast the consumption of a building during the design phase.
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underlying distributions catalogued in ResStock.

The variation in building vintage also has a significant effect on the construction methods

employed in each residence. Table 2.4 summarizes the number of modeled buildings in each

climate with a specific wall construction. Despite being exposed to the coldest weather, homes

in the cold and mixed-humid climates overwhelmingly use uninsulated wood stud construction.

This construction approach, common in older buildings, allows for a large amount of heat loss in

the winter. By contrast, the newer buildings in the hot-dry and hot-humid climates are more

likely to have insulated walls, despite having much milder winters.

From the simulations, we extract one year of hourly time series for electric plug loads

(EP lugLoads
r,t ), heating energy (EHeat

r,t ), cooling energy (ECool
r,t ), and domestic hot water energy

(EDHW
r,t ). r is an index for the residence, ranging from 1 to 15, and t is an index for the hour of

the year, ranging from 1 to 8760.

2.3 Results

Table 2.5 shows the distribution of annual energy demands for the modeled residences in

each climate region. In the cold, mixed-humid, and marine climates, space heating is the single

largest energy end-use. In the hot-dry climates, plug loads are dominant. In the hot-humid

climate, air conditioning/cooling is the largest end-use.
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Table 2.3: Summary statistics for buildings modeled in EnergyPlus. Residences in the example
hot-dry and hot-humid climates are significantly newer on average than those in the cold and
mixed-humid climates, with residences in the marine climate falling somewhere in the middle.
ResStock reports the building vintage based on binned decades, rather than individual years.
We assume for simplicity that all buildings built in the 1940s are built in 1945, 1950s buildings
are built in 1955, etc. All residences built before 1940 (the first category) are assumed to have
been built in 1925.

n Min 25% Median Mean 75% Max

Year Built

Cold 15 1925 1925 1955 1950 1960 1995
Hot-Dry 15 1925 1955 1975 1968 1985 2005
Hot-Humid 15 1925 1965 1965 1976 1995 2005
Mixed-Humid 15 1925 1925 1955 1952 1965 1995
Marine 15 1925 1955 1955 1960 1965 2005

InfiltrationRate (ACH50)

Cold 15 15 15 15 18 20 25
Hot-Dry 15 10 15 15 15 15 20
Hot-Humid 15 10 15 15 18 20 40
Mixed-Humid 15 15 15 15 19 20 40
Marine 15 10 15 15 16 18 25

Exterior Wall Area (sf)

Cold 15 909 1,472 1,833 1,784 2,059 2,622
Hot-Dry 15 1,336 1,336 1,860 1,933 2,144 3,078
Hot-Humid 15 1,336 1,689 2,294 2,291 2,857 3,398
Mixed-Humid 15 1,336 1,576 1,860 2,006 2,300 3,398
Marine 15 1,116 1,607 1,860 1,889 2,309 2,756

Floor Area (sf)

Cold 15 885 1,455 1,690 1,802 2,176 2,663
Hot-Dry 15 1,220 1,220 1,690 1,910 2,176 3,301
Hot-Humid 15 1,220 1,690 1,690 2,005 2,420 3,301
Mixed-Humid 15 1,220 1,690 1,690 2,113 2,663 3,301
Marine 15 885 1,455 1,690 1,704 2,176 2,176

Window Area (sf)

Cold 15 69 92 146 169 224 434
Hot-Dry 15 103 123 138 178 222 343
Hot-Humid 15 81 121 147 190 240 389
Mixed-Humid 15 69 108 171 187 233 403
Marine 15 81 131 184 184 224 327

Roof Area (sf)

Cold 15 330 813 1,364 1,356 1,875 2,433
Hot-Dry 15 1,364 1,364 1,889 2,128 2,483 4,335
Hot-Humid 15 1,216 1,451 1,889 2,073 2,088 4,657
Mixed-Humid 15 630 1,364 1,660 1,746 2,028 3,621
Marine 15 989 1,311 1,686 1,767 2,161 3,077
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Table 2.4: Modeled residences in each region using a specific kind of wall construction. Homes
in the example cold and mixed-humid climates overwhelmingly use uninsulated wood stud
construction.

Cold Hot-Dry Hot-Humid Mixed-Humid Marine

Brick, 12-in, 3-wythe, Uninsulated 1 2 1 2 1
CMU, 6-in Hollow, Uninsulated 2 4 2 2 9
Wood Stud, R-11 1 1 2 1 1
Wood Stud, R-19 1 1 1 0 0
Wood Stud, R-7 0 1 0 0 0
Wood Stud, Uninsulated 10 1 5 10 3
CMU, 6-in Hollow, R-11 0 4 4 0 0
CMU, 6-in Hollow, R-7 0 1 0 0 0
CMU, 6-in Hollow, R-19 0 0 0 0 1
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Table 2.5: Distribution of annual energy demands for the modeled residences in each climate region. In the cold, mixed-humid, and
marine climates, space heating is the single largest energy end-use. In the hot-dry climates, plug loads are dominant. In the hot-humid
climate, air conditioning/cooling is the largest end-use.

n Min 25% Median Mean 75% Max

Space Heating
Energy,

MMBTU

Cold 15 37.57 53.92 99.91 99.93 131.15 172.23
Hot-Dry 15 0.02 5.48 13.29 16.08 22.61 50.43
Hot-Humid 15 6.24 13.50 21.80 21.51 27.66 45.37
Mixed-Humid 15 0.00 47.58 54.71 63.04 72.96 151.05
Marine 15 0.00 8.43 18.84 23.91 28.09 110.18

Cooling
Energy,

MMBTU

Cold 15 0.00 7.47 13.43 13.17 19.18 26.80
Hot-Dry 15 0.00 2.91 9.04 14.11 19.02 58.13
Hot-Humid 15 23.73 46.96 57.14 64.56 78.95 128.84
Mixed-Humid 15 0.00 28.01 38.29 35.26 44.55 55.56
Marine 15 0.00 0.00 0.00 1.72 0.00 14.99

Water
Heating Energy,

MMBTU

Cold 15 2.93 8.00 12.16 11.74 15.14 21.65
Hot-Dry 15 4.30 6.74 7.83 8.68 10.35 18.32
Hot-Humid 15 5.64 6.48 6.99 7.81 8.58 14.26
Mixed-Humid 15 3.76 6.59 10.96 10.01 12.63 18.43
Marine 15 4.55 6.70 9.19 9.71 11.44 18.96

Electric
Plug Loads,

MWh (MMBTU)

Cold 15 3.49 (11.92) 4.25 (14.52) 5.48 (18.7) 6.55 (22.35) 9.13 (31.16) 11.93 (40.69)
Hot-Dry 15 3.27 (11.16) 3.84 (13.11) 4.79 (16.36) 5.43 (18.52) 7.32 (24.97) 7.9 (26.95)
Hot-Humid 15 3.94 (13.45) 5.59 (19.07) 7.6 (25.94) 7.17 (24.46) 8.3 (28.32) 11.21 (38.27)
Mixed-Humid 15 0.97 (3.32) 4.83 (16.46) 7.02 (23.94) 6.63 (22.63) 8.7 (29.68) 10.55 (35.99)
Marine 15 1.64 (5.58) 3.87 (13.21) 4.55 (15.52) 4.68 (15.98) 5.81 (19.82) 7.24 (24.71)
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While these modeling results are broadly consistent with the survey-reported averages found

in Table 2.1, there are some notable differences. The average modeled annual demand for space

heating energy in all five climates is greater than the survey-reported values. This can be

explained because we have chosen to only model detached single-family residences, which use

about twice as much energy on average for space heating as apartments in buildings with two to

four units and more than four times as much space heating energy as apartments in buildings

with five or more units (U.S. Energy Information Administration (EIA), 2015, CE3.1).

We generally see consistency between the modeled air conditioning demands and the survey-

reported demands in Table (U.S. Energy Information Administration (EIA), 2015, CE3.1). For

example, the Residential Consumption Survey reports that the average home in the hot-humid

climate consumes 15.1 MMBTU of electricity each year for air conditioning. At an average

coefficient of performance of 4, this translates to 60.4 MMBTU of thermal energy for a single

residence. The modeled air conditioning demand for this climate region averages to 64.6 MMBTU

per-residence. Two exceptions are the marine climate and hot-dry climate, where the example

counties (Marin, CA and San Diego, CA) have significantly less air conditioning demand than

the region-wide averages.6

We see similar consistency between the modeled demands and the survey-reported demands

for water heating and other/plug loads. Note that Table 2.1 reports “other” consumption in

MMBTU but we report plug loads in Table 2.6 in MWh. To convert between them, we use a

conversion factor of 3.412 MMBTU/MWh.

Heating and cooling demands do not only vary between regions; they also vary significantly

among residences in a single region. In the cold climate, for example, the residence with the

most space heating demand uses 358% more energy than the residence with the least. In all

regions except the hot-humid climate, at least one residence has no space cooling demand at all,

despite the average space cooling demand being significantly higher. By modeling residential

energy demands using a distribution of input parameters, our modeled data better reflect the

6In this analysis, we were constrained to using counties where there were deregulated electricity markets that
could be used to estimate hourly electricity costs. In filter analysis, it would be beneficial to also model demands
in marine and hot-dry climates with more representative cooling seasons.
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range of conditions seen in the actual building stock than a simpler model.

Per Table 2.6, the inter-region variation in heating and cooling demands can be explained in

large part by the differences in heating degree and cooling degrees. Heating degrees range from

1,061 for the hot-dry climate to 6,579 for the cold climate. This approximately 6-to-1 ratio is

comparable to the ratio in modeled heating demands between these two regions.

The annual demand for space heating in each of the five example neighborhoods are plotted

in Figure 2.4. The black line represents the average load for each day (from January 1st to

December 31st) and the colored shading shows the daily range. As one would expect, heating

demand peaks in the winter in all five regions, on the first and last days of the year. The cold

and mixed-humid climate have greatest heating peaks, with the cold climate’s heating demand

exceeding 800 kBTUh on the coldest days of the year (also seen in Table 2.6). The heating peak

in the hot-dry climate is about one-fourth as large.
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Figure 2.4: Annual profile of daily heating demands in each of the five climates, aggregated
across the 15 residences. The solid black line represents the average heating demand for each day
of the year. The ribbon shows the range between the minimum and maximum hourly heating
demands on each day. The y-axis is in units of kW on the left and kBTUh on the right. This is
computed through a direct conversion of 3.412 kBTUh = 1 kW.

Figure 2.5 plots the annual profile of daily cooling demands, following the same format as
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Table 2.6: Heating and cooling information for the five climates studied. Heating, cooling, and
DHW demands are measured in thermal units, whereas plug loads and the feeder peak are
reported in electrical units. Consequently, the 66 kW cooling peak in the cold climate only draws
15-20 kW of electricity from the feeder because air conditioners have a COP of approximately 4.
COPs for heating and cooling in each climate are computed as averages, using heating/cooling
degrees (measured from 65◦F for heating and 72◦F for cooling) as weighting factors.

Erie
County,
NY

San Diego,
CA

Harris
County,
TX

Alexandria,
VA

Marin
County,
CA

Building America
Climate Region

Cold Hot-Dry Hot-Humid Mixed-
Humid

Marine

IECC Climate Region 5A 3B 2A 4A 3C

Conditioned Floor
Area, sq.-ft.

27,026 28,653 30,080 31,691 25,565

Heating Degree Days 6,579 1,061 1,471 4,806 3,012
Cooling Degree Days 479 649 2,802 1,086 30

Annual Demands, Aggregate (per-residence)
Heating, MMBTU 1,499 (100) 241 (16.1) 323 (21.5) 946 (63.1) 359 (23.9)
Cooling, MMBTU 197 (13.1) 212 (14.1) 968 (64.5) 529 (35.3) 26 (1.7)
Water (DHW),
MMBTU

176 (11.7) 130 (8.7) 117 (7.8) 150 (10) 146 (9.7)

Plug Load, MWh 98.2 (6.5) 81.4 (5.4) 107.5 (7.2) 99.4 (6.6) 70.2 (4.7)

Peak Hourly Demands
Heating Peak,
kBTUh (kW)

816 (239) 184 (54) 583 (171) 693 (203) 337 (99)

Cooling Peak,
kBTUh (kW)

224 (66) 223 (65) 553 (162) 409 (120) 33 (10)

Water (DHW) Peak,
kBTUh (kW)

79 (23) 54 (16) 49 (14) 67 (20) 58 (17)

Plug Load Peak, kW 36 25 34 37 22

Feeder Peak
(incl. thermal loads), kW

41 33 74 69 24

# Res. with Heating 15 15 15 14 14
# Res. with Cooling 12 11 15 14 2

Average Heating COP
(HSPF), Low-Eff.

3.0 (10.1) 4.2 (14.2) 3.6 (12.4) 3.1 (10.7) 4.0 (13.7)

Average Heating COP
(HSPF), High-Eff.

3.3 (11.2) 4.9 (16.8) 4.1 (14.2) 3.5 (12.0) 4.7 (15.9)

Average Cooling COP
(SEER), Low-Eff.

4.3 (14.5) 4.4 (15.0) 4.0 (13.5) 4.0 (13.8) 4.3 (14.5)

Average Cooling COP
(SEER), High-Eff.

6.8 (23.2) 7.1 (24.1) 6.3 (21.5) 6.4 (21.9) 6.8 (23.2)
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Figure 2.5. As one would expect, cooling demands are largest in the summer months. Particularly

in the hot-humid and mixed-humid environments, which have the greatest latent cooling loads.
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Figure 2.5: Annual profile of daily cooling demands in each of the five climates, aggregated across
the 15 residences. The solid black line represents the average cooling demand for each day of the
year. The ribbon shows the range between the minimum and maximum hourly cooling demands
on each day. The y-axis is in units of kW on the left and kBTUh on the right.

Figures 2.6 and 2.7 show the domestic hot water and electric plug loads for each of the five

example neighborhoods. While both demands have sizable diurnal variation (described by the

width of the band), they exhibit little annual and inter-regional variation.

Representative feeder-wide daily profiles of energy demands are plotted in Figure 2.8. These

are computed by taking all of the demand data from a given month, then computing the average

demand of each type of energy at each hour of the day (30 or 31 observations for each hour). In the

cold and mixed-humid climates, heating demands in January are relatively consistent throughout

the day. In the other climates, heating demands show a stronger diurnal variation, peaking

overnight and in the early morning. In July, the cold, hot-dry, hot-humid and mixed-humid

climates all have sizable cooling demands that peak in the afternoon. Thermal demands are

significantly milder in the shoulder seasons (April and October).
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Figure 2.6: Annual profile of daily domestic hot water (DHW) demands in each of the five
climates, aggregated across the 15 residences. The solid black line represents the average demand
for each day of the year. The ribbon shows the range between the minimum and maximum
hourly values on each day. The y-axis is in units of kW on the left and kBTUh on the right.
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Figure 2.7: Annual profile of daily plug load demands in each of the five climates, aggregated
across the 15 residences. The solid black line represents the average demand for each day of the
year. The ribbon shows the range between the minimum and maximum hourly values on each
day. The y-axis is in units of kW on the left and kBTUh on the right.
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The cold, hot-humid, and mixed-humid climates all have large heating and cooling demands,

observed in January and July, respectively. These heating and cooling loads exceed plug load

demand by an order of magnitude. Conversely, the hot-dry and marine climates are much

milder, rarely seeing feeder-wide demands exceed 50 kW. We note that these representative daily

profiles do not show the most extreme conditions observed in the typical meteorological year. For

example, the peak heating demand in the cold climate is 239 kW (see 4.2), well above the typical

heating peak observed in January.7 Figure 2.9 shows the same data, but each feeder’s demand is

represented in kBTU-per-1000sf for thermal loads and kWh-per-1000sf for electrical loads.

While heat transfer in buildings is driven by heating degrees and cooling degrees, not all

residences respond the same way to a given temperature difference. Figure 2.10 plots the hourly

heating and cooling demands (aggregated across all 15 residences) in each climate region against

the outdoor dry bulb temperature. For each of the five climates, the heating demands increase

roughly linearly as temperatures decrease below 65◦F, and cooling demands increase roughly

linearly as temperatures rise above 65◦F. Note that the temperature dependencies of heating

and cooling are not identical across climates: in the cold climate, heating demands increase more

sharply with falling temperatures than in the mixed-humid or marine climates; in the hot-humid

climate, cooling demands increase more sharply with rising temperatures than in other climates.

These differences reflect variations in other climate variables (including solar radiation, wind

speeds, and humidity) as well as differences in the housing stock and variations in heating and

cooling preferences between regions.

These temperature-dependency graphs, along with the variation in heating- and cooling-

degree days between climates, explain the variation in annual heating and cooling demands. For

example, in the hot-humid climate the total cooling load (aggregated across 15 residences) in-

creases at a rate of 13.3 kBTUh/cooling-degree8 This climate region has 2,802 cooling degree days

(2, 802∗24 = 67, 248 cooling-degree-hours), per Table 4.2, indicating that the total annual demand

7These data do not include "design day" conditions, which lay outside the data found in a typical meteorological
year.

8Cooling degrees are defined for temperatures over 65◦F as the difference between the outdoor temperature
and 65◦F.
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Figure 2.8: Typical daily profiles for heating, cooling, DHW, and electric plug loads. The cold,
hot-humid, and mixed-humid climates all have large heating and cooling demands, observed in
January and July, respectively. These heating and cooling loads exceed plug load demand by
an order of magnitude. Heating demands are relatively stable during January in the cold and
mixed-humid climates, but follow a stable diurnal trend in the hot-dry, hot-humid, and marine
climates. Cooling demands show a consistent diurnal trend in the cold, hot-dry, hot-humid, and
mixed-humid climates.
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Figure 2.9: Typical daily profiles for heating, cooling, DHW, and electric plug loads, per 1000-sf.
The cold, hot-humid, and mixed-humid climates all have large heating and cooling demands,
observed in January and July, respectively. These heating and cooling loads exceed plug load
demand by an order of magnitude.
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Figure 2.10: Temperature dependencies for heating and cooling in the five climate regions. Plots
and line fits are based on 1,500 hourly data points sampled from the five regions. In the cold
climate, heating demands increase more sharply with falling temperatures than in the mixed-
humid or marine climates. In the hot-humid climate, cooling demands increase more sharply
with rising temperatures than in other climates. These differences reflect variations in other
climate variables (including solar radiation, wind speeds, and humidity) as well as differences in
the housing stock and variations in heating and cooling preferences between regions.

for space cooling should be approximately 13.3kBTUh/F ∗ 67, 248 = 894, 400kBTU/year ≈

894MMBTU/year. This is within 10% of the computed cooling demand of 968 MMBTU in

Table 4.2.

Likewise, in the cold climate, the total heating load (again aggregated across 15 residences)

increases at a rate of 10.0 kBTUh/heating-degree. For the 6,579 heating degree days in this

climate (6, 579 ∗ 24 = 157, 896 heating-degree-hours), we would expect a total annual heating

demand of 10.0kBTUh/F ∗ 157, 896 = 1, 578, 960kBTU/year ≈ 1, 579MMBTU/year. Once

again, this estimate is within 10% of the 1,499 MMBTU reported in Table 4.2.

The temperature-dependency graphs can also be used to extrapolate the maximum heating

and cooling loads in each climate. For example, the maximum temperature observed in the

typical meteorological year in the hot-humid climate is 103F, so we would expect a maximum

cooling load of 13.3kBTU/F ∗ (103F − 65F ) = 505 kBTUh. At 103F, a 14-SEER air conditioner

can achieve a COP of approximately 3 kWthermal/kWelectric (10.2 kBTUh/kW), so the electric
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load from cooling would be approximately 505kBT Uh
10.2kBT U/kW = 49.5kW . This would be observed in

addition to any other plug loads on the feeder.

2.4 Conclusion

In this chapter, we described four categories of residential energy use, discussed their drivers,

then used open-source building energy modeling software to construct year-long hourly simulations

of these demands for 75 single-family homes across five U.S. climate regions.

Space heating and cooling loads vary significantly between regions, while domestic hot water

loads and plug loads tend to be more closely related to the number of occupants in a residence.

In three out of the five climate regions analyzed, space heating is the single largest residential

energy end-use. In the other two climates, cooling/air conditioning and plugs loads are the

largest end-uses.

Additionally, our modeling shows significant variation between residences within a region,

due to differences in size and vintage.

In the next chapter, we describe several emerging customer-side energy technologies. In the

subsequent chapters, we combine the analyses from these two chapters to produce a series of

optimization formulations that explore how to reduce energy expenses and carbon emissions by

employing emerging technologies to satisfy residential energy demands.
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Chapter 3

Overview of Customer-Side

Technologies

In this chapter, we provide background on five customer-side energy technologies: heating

electrification, rooftop solar photovoltaic panels, distributed battery storage, energy efficiency,

and electric vehicles. We observe that different technologies interact with the electric system in

different ways. Energy efficiency (EE) decreases heating and cooling loads year-round. Rooftop

solar photovoltaic (PV) panels decrease a customer’s net load in the middle of the day when the

sun is strongest, often generating excess electricity that can be injected to the grid. Distributed

battery storage allows customers to store excess solar generation for later use or buy excess

electricity from the grid at off-peak hours and use it when needed. Electrification technologies

like electric vehicles (EVs) and heat pumps (HPs) increase a customer’s electricity consumption

while reducing their direct consumption of fossil fuels.

Because of the range of ways that different emerging technologies interact with the energy

system, and the variability in demands for energy services between regions, we have good reason

to believe that different technologies will be found more- or less-suitable in different climates.
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3.1 Heating Electrification

For much of the 20th century, customers could heat their homes either using electric resistance

systems (which converts one unit of electricity into one unit of heat) or by directly combusting

natural gas or some other fossil fuel in a boiler or furnace. Because most electricity was produced

by burning fossil fuels in inefficient coal plants, natural gas furnaces generally resulted in both

lower costs and lower carbon emissions than electric heating.

Since 1990, the fraction of electricity produced by coal-fired plants has fallen from over

50% to less than 20%. These have been replaced by lower-emissions natural gas plants and

zero-carbon renewable resources, which together have grown from representing less than 45%

of the electricity supply in 1990 to over 80% today (U.S. Energy Information Administration,

2021c).

At the same time, heat pumps, also known as reverse-cycle air conditioners, have undergone

large technical advancements. By leveraging outdoor air or ground temperatures as a heat

source, these systems are able to deliver five or more units of heat to a conditioned space for

every unit of electricity consumed. A number of major studies have identified electrification of

heating, coordinated with an expansion of renewable electricity generation, as a key tool for deep

economy-wide decarbonization. EPRI’s U.S. National Electrification assessment (Electric Power

Research Institute, 2018a) predicts that efficient electrification of heating and transportation

could reduce emissions by 20–70% below 2015 levels by 2050. NREL’s 2017 Electrification and

Decarbonization report (Steinberg et al., 2017, p. vi) concludes that electrification of end-use

services could reduce emissions to 41% below 2005 levels by 2050, or by up to 74% below 2005

levels if combined with power sector decarbonization.

The efficiency of a heat pump is described by its coefficient of performance (COP), which

is the ratio of heat added to a space relative to the electric energy consumed. The COP varies

with ambient conditions: when the ambient temperature is 60°F (15.5°C) and the desired space

temperature is 68°F (20°C), the COP of an air source heat pump may be around 4.5 (Goodman,

n.d.). This means that for every unit of electricity consumed by the heat pump, 4.5 units of heat
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are added to the conditioned space.

A drawback to heat pumps is that both their efficiency and capacity degrade as ambient

temperatures drop. Air source heat pumps are particularly susceptible, as they must extract

thermal energy from the ambient air (whereas ground source heat pumps extract energy from

the soil, which tends to be warmer than the air during the heating season). To accommodate

for the degradation in capacity, most residential heat pumps are equipped with supplementary

electric resistance heaters that provide additional heat when the building’s heating demands

exceed the compressor’s capabilities. These resistance heaters can provide additional capacity for

low capital cost, but only produce one unit of heat for every unit of electricity consumed.

3.1.1 Electric Load Impacts from Heating and Cooling

Despite electrification’s promise for reducing emissions, there are persistent concerns that

some of the benefits of reduced emissions may be offset by increases in infrastructure requirements

needed to meet peak load. Navarro-Espinosa and Mancarella (2014) conclude that the highly-

correlated, inflexible electric demand required by heat pumps representing as little as 30–40%

of a region’s space heating requirements can cause overheating of transformers and feeders in

the electric distribution system. Heinen, Burke, and O’Malley (2016) find that installing heat

pump-only systems or heat pump systems with auxiliary resistance heaters in as few as 25%

of buildings could cause substantial increases in system-wide electricity peaks. Electric Power

Research Institute (2018a) estimates that peak loads across the U.S. could increase by 24–52%,

which would precipitate the need for costly system reinforcements. Baruah et al. (2014) find

that electrification of heating and transportation could increase peak loads by as much as 93% in

Great Britain.

The load impacts from broad electrification of heating are likely to vary significantly between

regions. Approximately 35% of homes in the United States already use electricity as their

main source of heating, predominantly in the hot-humid and mixed-humid climates. About

70% of these homes use some form of electric resistance heating (U.S. Energy Information

Administration (EIA), 2015, HC6.6). For these homes, adoption of heat pumps would result
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in an overall reduction in electricity demand. Of the remaining homes that use space heating

equipment, 80% use natural gas as their primary source of heating energy. For these homes, a

move toward heating electrification would increase electric loads.

Waite and Modi (2020) finds that an all-electric heating approach using current technologies

would increase peak loads by 70%, but that system peaks in colder climates could increase by

more than 300%. Navarro-Espinosa and Ochoa (2016) model random adoption and unmanaged

operation of heat pumps, electric vehicles, photovoltaic systems, and micro-CHP (combined heat

and power) units on 128 low-voltage feeders in the United Kingdom. The authors find that only

about half of the feeders they studied could accommodate broad adoption of any of the above

technologies without exhibiting electrical problems.

Steinberg et al. (2017) note that peak load increases from electrification could be mitigated

by exploiting the inherent flexibility of these new loads. This can be achieved through managed

charging of electric vehicles that avoids consumption during peak hours or using thermal storage

to shift heating loads to off-peak times. The benefits of this “smart grid” approach to demand

management has been demonstrated in a broad literature, including Callaway and Hiskens (2011),

García-Villalobos et al. (2014), Henze, Felsmann, and Knabe (2004), Pieltain Fernández et al.

(2011), Pudjianto et al. (2013), Richardson, Flynn, and Keane (2012), Risbeck et al. (2017),

Siano and Sarno (2016), Stinner, Huchtemann, and Müller (2016), and Zakariazadeh, Jadid, and

Siano (2014).

In our analysis, the minimum temperature observed in the typical meteorological year for

the cold climate is -2◦F, so we would expect a maximum heating load of 10.0kBTU/F ∗ (65◦F −

(−2◦F )) = 670 kBTUh. At this temperature, the COP of a 9 HSPF air-source heat pump

is only 1.3 kWthermal/kWelectric (4.4 kBTUh/kW), so the electric load from heating would be

approximately 670kBT Uh
4.4kBT U/kW = 152kW . This is more than double the feeder’s existing capacity,

even when we include the assumed 50% headroom over the existing peak.

Because the efficiency of a heat pump falls as the temperature decreases, the relationship

between the outdoor temperature and the electricity required to heat a home is non-linear. The

(convex) relationship between annual HDDs and the electricity required to heat a home can be
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seen in Figure 3.1, which compares the HDDs for 1020 locations in the continental United States

to the estimated electricity required to heat a single-family home with an ASHP coupled with

a backup resistance heater. In colder climates, the electricity required to heat a home with an

ASHP increases superlinearly. A home in a region with 10,000 HDDs would be expected to use

about four times as much electricity to heat as a home in a region with 5,000 HDDs.

0

5,000

10,000

15,000

20,000

25,000

0 5,000 10,000 15,000
Heating Degree Days

A
nn

ua
l H

ea
tin

g 
E

le
ct

ric
ity

 (
kW

h)

Figure 3.1: Estimated heating electricity vs. heating degree days (HDDs) for 1020 locations in
the continental United States. We assume that an ASHP with a heating seasonal performance
factor (HSPF) of 9 is backed up by an electric resistance heater, which fulfills all demands at
temperatures below 20◦F.

3.2 Rooftop Solar PV

Rooftop solar PV generates electricity directly from radiant solar energy collected in the

middle of the day. Customers with rooftop PV use the electricity they generate to offset their

own consumption, often selling excess generation back to the utility.

Figure 3.2 describes load impacts on an example feeder in Upstate New York in a situation

in which 10% of the customers have installed 10 kilowatt PV arrays. The upper plot shows the
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unmodified load, where the gray ribbon shows the daily maximum and minimum load and the

solid line represents the average load for each day. The lower plot shows the same figure, but

with the yellow band, describing the load on the feeder net of solar PV generation, superimposed

on top.

We observe that the average daily load decreases slightly with solar PV (from the dark solid

line to the dashed white line) and the minimum net load decreases significantly (the lower bound

of the yellow ribbon). However, the peak daily loads (judged by the upper bound of the two

ribbons) do not significantly change with the introduction of solar PV. This indicates that solar

generation is not well-correlated with the feeder’s peak demand, and thus does little to reduce

distribution capacity needs.

3.3 Distributed Storage

Distributed battery storage serves two main purposes. First, battery storage enables cus-

tomers exposed to wholesale electricity prices to arbitrage variations in the hourly cost of

electricity. This revenue stream is expected to be quite small, because distributed storage is

generally more expensive than utility-scale storage, so many of the arbitrage opportunities are

likely to be absorbed by market participants upstream who can install battery storage for a lower

capital expense.

Second, storage enables customers with rooftop PV to power their loads with stored energy

even when the sun is not shining. This effectively smooths the solar generation over a greater

number of hours, allowing for greater self-consumption of PV electricity and potentially deferring

some distribution capacity upgrades.

Expanding on the example from the previous section, if every residence with a solar array

also had battery storage capable of shifting the solar generation to later in the afternoon, the

combination of technologies could provide significantly more benefit to the grid. Figure 3.3

illustrates the case where all solar generation is shifted back 6 hours through the use of battery

storage. The result is a flatter load curve throughout the day in all seasons (as detailed by the
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Figure 3.2: Top: Daily electric loads on an example feeder in Upstate New York, where the dark
ribbon shows the daily maximum and minimum load and the solid line represents the average
load for each day. Bottom: Daily net load after 10% of residences have installed 10kW PV arrays,
overlaid on the original profile. The white dashed line maps the average load for each day of the
year and the yellow band describes the daily range.

dashed white line) and a modestly reduced summer peak.

In Vibrant Clean Energy, LLC et al. (2020), the authors estimate that co-optimizing

distributed PV and storage with other grid investments could result in over $115 billion in savings

between 2018 and 2035, relative to a case where choices are not optimized for the distribution

system.
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Figure 3.3: Daily net load on feeder from Figure 3.2, assuming 10% of residences have installed
10kW PV arrays and that this generation is shifted 6 hours later in the day by battery storage.
The white dashed line maps the average load for each day of the year and the yellow band
describes the daily range. In all four seasons, the inclusion of battery storage with PV produces
flatter average daily loads (the yellow band is narrower). Summer peaks are also modestly
reduced.

3.4 Energy Efficiency

Energy efficiency has historically been characterized as a “low-hanging fruit” for achieving

carbon emissions reductions, with many believing that energy efficiency retrofits will pay for

themselves.1 This raises the question: if energy efficiency is such a bargain, why are individuals

not taking it upon themselves to make these investments? In the 1980s and 1990s, a number

of popular explanations emerged for the slow adoption of efficient technologies. These include:

split-incentives (the party that adopts the technology is not always the party that pays the

energy bill); high implicit discount rates for energy efficiency investments (customers do not

value savings that are observed years in the future); and uncertainty about future energy prices

(Jaffe & Stavins, 1994).

More recent empirical work has proposed that the magnitude of profitable unexploited

investment opportunities in energy efficiency is much smaller than most engineering-accounting

1This was illustrated perhaps most famously by McKinsey and Company in 2009, with their publication of the
McKinsey Global GHG abatement cost curve (McKinsey & Company, 2009). The so-called “McKinsey Curve”
illustrates various approaches to reducing carbon emissions at different abatement costs. For energy efficiency
retrofits, these costs are negative: the intervention is proposed to result in both emissions reductions and (private)
cost savings.
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studies suggest, because these studies rely on biased engineering analyses and ignore unobserved

costs and benefits (Allcott & Greenstone, 2012). In perhaps the most comprehensive empirical

analysis to date, (Fowlie, Greenstone, & Wolfram, 2018) find that across 30,000 households in

Michigan that participated in the Weatherization Assistance Program (WAP), the upfront costs

for weatherization were about twice the cost of the actual energy savings.

3.5 Electric Vehicles

Electric vehicle (EVs) have existed in some form for over 100 years but have gained popularity

for very few use cases. Due to recent improvements in battery technology and mounting concerns

about the climate impacts of fossil fuel emissions, EVs have gained attention as an option for

replacing passenger and fleet vehicles.

EVs store electricity from the grid in on-board batteries, giving them inherent flexibility that

allows them to be charged at different times of day. “Smart charging” of EVs can be used to

mitigate and smooth peak loads, as well as respond to volatility in upstream renewable generation.

Depending on how and when EVs are charged, they can either be an asset to the grid or pose a

significant burden.

If a single customer on the example feeder chooses to adopt an EV, the marginal cost

incurred by the utility for charging the vehicle is the cost of energy plus losses (assuming the

load caused by the vehicle does not trigger infrastructure reinforcements). However, a customer

who adopts an EV under the current system of average cost volumetric tariffs will be forced to

pay a volumetric delivery charge in addition to the cost of energy. In Figure 3.4, we compare the

annual cost of charging a vehicle under volumetric delivery prices to the marginal cost incurred

by the utility for on- and off-peak charging. The inclusion of a volumetric delivery charge nearly

triples the cost of vehicle charging.

Notably, the annual cost of fueling a vehicle with gas is more than twice the cost of electricity

for charging, even if volumetric delivery charges are included. This indicates that the principal

barrier to EV adoption is not the cost of energy, but a combination of other factors, including
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Figure 3.4: Annual cost of fueling a vehicle driven 27.4 miles/day (10,000 miles/year). We assume
that gasoline costs $2.50/gallon and an internal combustion vehicle has a fuel economy of 30
mpg. The EV has a fuel economy of 3 miles/kWh. The "Electric Volumetric" bar represents the
cost of charging the vehicle at an average cost of 9.8c/kWh, which includes both supply and
delivery. The two "Electric Marginal" bars represents the costs of on- and off-peak charging,
assuming that customers only pay for the variable cost of energy plus 10% system losses.

upfront cost and range concerns.

To demonstrate the significance of peak vs. off-peak charging to distribution conditions,

Figure 3.5 models a scenario in which every home on the feeder has adopted one EV that is driven

31.5 miles/day (11,500 miles/year, which is typical of the annual mileage for a U.S. passenger

vehicle (U.S. Department of Transportation Federal Highway Administration, 2020)). At an

efficiency of 3 miles/kWh, this adds 1.3 GWh of energy sales to the feeder annually, increasing

throughput by 22%.

In both plots of Figure 3.5, the black line represents the average daily load without the

addition of EVs and the gray band (which is covered in the lower plot) represents the daily range.

The white line and green band describe these same statistics after the EV loads have been added.

In the top plot, all of the vehicles are charged at a constant power during the 16 hours of the day

with the lowest load under base case conditions (Off-Peak). We observe that the average power
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curve shifts up, the diurnal range significantly decreases, and the peak power remains mostly

unperturbed. By contrast, in the bottom plot, all of the vehicles are charged during the 8 hours

with the highest load (Peak). Under this scenario, capacity constraints are regularly violated

throughout the summer and the diurnal range in load exceeds 1000 kVA.
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Figure 3.5: Load from example feeder with peak and off-peak EV charging. For both plots the
white dashed line maps the average load for each day of the year with EV charging and the
green band describes the daily range. The black line and accompanying gray band describe
baseline conditions without additional EV charging. This scenario assumes that all 384 homes
have adopted a single EV that is driven 27.4 miles/day (10,000 miles/year) at an efficiency of 3
miles/kWh. When vehicles are charged at off-peak times, the volume of sales increases without
increasing peaks, and the diurnal range decreases.

For this feeder, charging EVs at off-peak times results in additional volumetric sales without

the need for additional distribution capacity. This would lower the average cost of a service

($/kWh), which could ultimately lower rates for customers. If utilities needed to plan for a large
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number of vehicles charging during peak periods, that would precipitate the need for costly

reinforcements, raising rates. This dichotomy underscores the importance of managed charging.

One of the reasons that this feeder can accommodate so many EVs charging off-peak is

because of its wide diurnal range: load is significantly lower at night and in the middle of the

day than during peaks, so there is ample capacity that can be filled in by EV charging (this is

sometimes referred to as “valley filling” in the literature). Commercial buildings tend to have less

peaky loads because they are used more consistently throughout the day, so one would expect

that commercial-dominated feeders have fewer opportunities for valley-filling. In the thesis,

we will explore DER impacts on predominantly residential feeders, predominantly commercial

feeders, and mixed-use feeders.
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Chapter 4

Potential For Reducing Costs Using

Customer-Side Energy Technologies

In Chapter 1, we broke down the expenses that contribute to residential customer electricity

costs and presented a novel data-driven model of distribution capacity costs. In Chapter 2, we

used EnergyPlus and ResStock to simulate hourly energy demands for 75 residences in five climate

regions throughout the continental United States. In Chapter 3, we provided background on

several important emerging customer-side technologies that are poised to disrupt the relationship

between electricity producer and consumer. In this chapter, we combine our analyses from the

previous chapters to better understand how efficient deployment of emerging technologies may

enable reductions in energy expenses and carbon emissions throughout the United States.

There is no one-size-fits-all solution to the problem of optimal customer-side technology

choice. While the research into methodologies for optimizing customer-side technologies is quite

expansive (Beck et al., 2017; Evins, 2015; Karmellos & Mavrotas, 2019; Mavromatidis, Orehounig,

& Carmeliet, 2018; Mehleri et al., 2013; Omu, Choudhary, & Boies, 2013; Risbeck et al., 2017;

Sani Hassan, Cipcigan, & Jenkins, 2017), few studies have unpacked how energy resources and

needs vary between locations that have different climate profiles and demands for energy services.

Moreover, few papers include thermal loads in their analysis, though these represent 70% of
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energy use in U.S. homes (Energy Information Administration, 2021). Today, heating energy in

single-family homes is overwhelmingly provided by natural gas, though heat pumps are emerging

as an opportunity to efficiently electrify some part of heating demand. Heating and cooling loads

vary tremendously between climates: space heating alone represents nearly 60% of residential

energy use in New England, falling to less than 30% in the Pacific and Mountain South regions.

Space cooling demand represents nearly 20% of residential energy use in the West South Central

region, but less than 5% in the Northeast and Midwest (U.S. Energy Information Administration

(EIA), 2015, Table CE3.1).

Lastly, the literature overwhelmingly isolates the customer and attempts to minimize their

individual expenses, treating the utility and its costs as exogenous. In these studies, the utility is

modeled as a “producer of last resort” that can provide electricity as needed at some predetermined

rate. By neglecting to describe the utility’s costs and capacity constraints explicitly, these models

do not minimize energy costs so much as they minimize a given customer’s bills. Several authors

have pointed out that because retail rates rarely reflect the true cost of energy services, customers

making decisions to minimize their own bills often results in a cost shift to other customers

rather than a true reduction in the cost of energy services (Schittekatte, Momber, & Meeus,

2018; Wolak, 2018).

In this chapter we construct a mixed-integer linear programming (MILP) model capable of

determining the least-cost configuration of distributed resources and traditional grid infrastructure

required to satisfy space heating demand, water heating demand, space cooling demand, and

electric plug loads for an arbitrary collection of customers. The model can choose from a wide

range of traditional and emerging technologies in order to satisfy these demands, including

furnaces, air conditioners, heat pumps, resistance heating, solar panels, distributed storage,

and energy efficiency. This model is then deployed to minimize the cost of energy services for

representative collections of single-family residential customers in five different climate regions

throughout the United States.

Additionally we conduct a number of sensitivity analyses, including scenarios that restrict

the use of certain technologies and those that change important cost coefficients and constraints.
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Using this approach, we are able to better understand how the optimal portfolio and operation

of customer-side technologies varies based on features of the customer, climate, and local energy

system.

This chapter expands on the existing literature by minimizing the total cost of energy

services, rather than simply minimizing a customer’s bill; by modeling energy demands in

multiple representative climates throughout the United States; by including thermal loads in

addition to electric plug loads (allowing for electrification of space and water heating, where

economical); and by conducting multiple sensitivity analyses to understand the driving factors

behind our results.

4.1 Background and Literature Review

The total cost of serving the energy demands for a collection of customers can be divided

into four components:

1. The private cost of energy.

2. The cost of externalities related to energy production.1

3. The cost of infrastructure required to transport electricity from the producer to the
consumer, including both large-scale transmission equipment as well as smaller distribution
infrastructure required to reach a customer’s premises. This was the focus of Chapter 1.

4. The cost of equipment installed at the residence, including heating and cooling equipment,
distributed PV, and battery storage. We are assuming that all of the existing equipment is
at the end of its life and in need of replacement.

The first and second components describe the full cost of energy. At any given time and

location, the private marginal cost and external marginal cost of an energy input can be summed

to describe its social marginal cost (SMC). If an input is priced below the SMC, customers are

incentivized to consume it wastefully because they are not paying the full cost of the input. If an

input is priced above the SMC, then customers may decline to use it even if it would be efficient

for them to do so.

In practice, the prices that retail customers pay for electricity are based not on the first and

1In this analysis we model greenhouse gas (GHG) emissions from electricity combustion and fossil fuel combustion,
but do not consider damages from particulate emissions, noise pollution, etc.
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second components of the cost of energy, but on the first and third components. These expenses

are paid by the utility and allocated to customers through a schedule of rates. The inclusion of

fixed infrastructure costs in retail rates and exclusion (or underpricing) of externalities produce

opposite, but not necessarily equal, effects on the retail rate. This causes the retail rate to

deviate from the SMC in different ways throughout the United States.

In California, which has a relatively clean and affordable wholesale electricity supply but some

of the highest retail rates in the country, the price that residential customers pay for a marginal

unit of energy can exceed the average wholesale price by nearly a factor of ten (Borenstein &

Bushnell, Forthcoming). Conversely, in much of the United States damages from GHG emissions

(component 2) are unpriced, depressing the price of energy relative to its social cost.2

Borenstein and Bushnell (2021) demonstrates that this mispricing of electricity significantly

distorts the cost of operating heat pumps and charging electric vehicles in California, discouraging

customers from adopting these emissions-reducing technologies. Wolak (2018) demonstrates that

overpricing of electricity in California also over-incentivizes investments in distributed rooftop

solar, causing a cost-shift to other customers.

Rather than minimizing aggregate system costs, most of the literature on optimal DER

adoption focuses on minimizing a single customer’s expenses based on pre-determined retail

rates, treating the utility and its expenses as exogenous. For example, Evins (2015), Mehleri

et al. (2013), and Omu, Choudhary, and Boies (2013) assume constant volumetric rates for

electricity purchased from the grid. Karmellos and Mavrotas (2019) assumes that electricity

can be purchased from the grid at a time-of-use rate that varies between 0.0647 and 0.0946

€/kWh. Beck et al. (2017) analyze several scenarios with different volumetric delivery tariffs,

but keeps the tariff constant within any scenario-year combination. Mavromatidis, Orehounig,

and Carmeliet (2018) assume that electricity prices vary stochastically between years but are

constant in any given year.

2The electricity sector produced 1.55 billion metric tonnes of CO2 in 2020 (U.S. Energy Information Adminis-
tration (EIA), 2021b), between 35-40% of which was consumed in homes (U.S. Energy Information Administration
(EIA), 2021a). At $51/tonne, this cost about $30 billion in damages. Homes in the United States also used 3,965
trillion BTUs of natural gas (U.S. Energy Information Administration (EIA), 2015), producing 210 million tonnes
of CO2 emissions and costing another $10.7 billion in damages.
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While the problem definition addressed in most of the literature (a minimization of customer

payments) is certainly useful for assessing the potential savings available to a single customer or

small group of customers, it does not tell us what configurations of technologies minimize the

total cost of energy services. If the goal of these studies is to identify an efficient combination of

traditional grid resources and DERs, then they should be evaluating the cost of energy inputs

directly, rather than relying on regulated retail rates.

A number of papers acknowledge the mismatch between retail rates and energy costs, focusing

specifically on the problem of efficient tariff design. Abdelmotteleb et al. (2018) propose a novel

methodology for efficient utility cost recovery, based on SMC pricing, a fixed monthly charge,

and a peak-coincident network charge. Relative to the case of simple volumetric tariffs, this

approach results in cost savings on the order of 9–10%, achieved through customers curtailing

their peak-hour consumption and thus deferring substation upgrades.3 Schittekatte, Momber,

and Meeus (2018) demonstrate that inefficient tariff design creates opportunities for so-called

“reactive customers” to reduce their bills by strategically shifting sunk costs in the distribution

system to “passive customers.” Hoarau and Perez (2019) formulate a non-cooperative game

between a grid operator and several groups of customers who have adopted EVs and DERs. The

authors find that the choice of network tariff design can create conflicting incentives for the

various groups.

In this chapter we sidestep the problem of efficient tariff design, instead constructing a MILP

optimization model that minimizes the total cost of serving a collection of customers’ energy

demands when the costs of all inputs are evaluated on the margin. These costs include the

private cost of energy, damages from GHG emissions, the cost of infrastructure, and the cost of

equipment. This model is then used to conduct a rigorous analysis of how the optimal portfolio of

3This approach of reducing system costs through load curtailment is only possible because the local distribution
network is assumed to be in need of an imminent capacity upgrade. Several authors note that that the optimal
tariff design (and optimal configuration of DERs) is highly dependent on the condition of the existing network.
Schittekatte and Meeus (2018) compare optimal tariff design between theoretical networks that have 100% sunk
costs, 100% prospective costs, or a mix of both. The authors demonstrate that distributed generation is effective
at reducing network costs if and only if some portion of those costs are prospective. When distribution system
capacity exceeds a network’s peak demand, distributed generation does not offer any benefit in the form of deferred
capital costs. M. A. Cohen, Kauzmann, and Callaway (2016) analyzed 2987 distribution feeders in PG&E’s service
territory, finding that only 10% of them were in need of distribution upgrades in the coming ten years, and that
distributed PV only offered deferral benefits in excess of $60/kW-year to about 1% of them.
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DERs and traditional grid resources varies between climates and based on different assumptions

about costs and constraints.

4.2 Methodology

We employ a mixed integer linear programming approach to simulate a hypothetical “energy

services utility” serving a single electrical feeder with a group of single-family residences. This

hypothetical utility is responsible for minimizing the total cost of energy, GHG emissions,

infrastructure, and equipment installed in residences while satisfying all customers’ energy

services demands (including space heating, space cooling, water heating, and electric plug load

demands). This utility may select the kinds of equipment installed in each residence, the capacity

of each piece of equipment, and its hourly operation. Options include heating and cooling

equipment (including gas furnaces, heat pumps, air conditioners, electric baseboards, and water

heaters), distributed solar PV panels, and battery storage. Additionally, the utility may provide

energy efficiency retrofits to reduce the year-round thermal demands for each residence and

expand electric distribution capacity where needed to accommodate increased peak loads from

electrification. By modeling a single entity that is responsible for minimizing the total cost of

energy services – rather than individual customers responding to prices that are set a priori – we

are able to set a lower bound on the total cost of energy services when all decisions are perfectly

coordinated.

Another distinguishing feature of this approach is the inclusion of heating electrification.

Electrification of heating is poised to dramatically increase the rate of load growth on distribution

feeders, producing very steep, highly-correlated peaks on cold days (Mai et al., 2018; Waite &

Modi, 2020). A model that does not explicitly include the utility’s distribution capacity may

prescribe electric heating options that trigger costly upstream reinforcements.

We are minimizing the total cost of energy services subject to a set of constraints governed

by energy demands and engineering constraints. The objective function that we are minimizing

is: PrivateEnergyCost + ExternalitiesCost + InfrastructureCost + EquipmentCost
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PrivateEnergyCost is the cost paid by a utility for the energy commodity. For an electric

utility in a competitive electricity market, the private cost of energy can be computed based on

the hourly location-based marginal price (LBMP or LMP). For an electric utility that generates

its own electricity, the private cost of energy is equal to the sum of all capital and O&M expenses

associated with operating its generation facilities. For states with cap-and-trade markets, some

fraction of the social cost of carbon is privatized into the cost of energy.4 The private cost of

natural gas is based on the wholesale (city gate) price.

ExternalitiesCost describes all costs associated with the utility’s operation but not borne

by the utility. We exclusively focus on greenhouse gas emissions, though this approach can easily

be extended to consider other externalities.

InfrastructureCost describes all utility investments needed to serve load, including upstream

transmission, distribution, and administration expenses that do not vary with consumption; the

cost of additional distribution capacity required to meet peak load; and generation capacity

cost.5

EquipmentCost describes the cost of equipment installed at residences, including all heating

and cooling equipment, distributed solar, and storage.

The first two terms can be combined into a single expression representing the total (social)

cost of energy. This is expressed in Equation 4.1. The first bracketed expression is the total

social cost (private plus external) of natural gas in dollars, where γGas is the social marginal cost

(SMC) of natural gas in $/kBTU, EF urnace
η,r,t is the gas consumed by a furnace of efficiency η in

residence r at time t, and EW aterHeater
UEF,r,t is the gas consumed by a natural gas water heater of

efficiency UEF in residence r at time t.

The second bracketed expression in Equation 4.1 is the total social cost of electricity in dollars

over the course of a year, where γElectric
t is the social marginal cost (SMC) of electricity in $/kWh,

4We do not factor existing cap-and-trade prices into our analysis. As of 2019 (the price data we are using),
the RGGI auction price for carbon emissions was less than $6 per-ton, barely 10% of the estimated social cost of
carbon.

5Generation capacity costs could instead be included in P rivateEnergyCost. Our decision to categorize them
as infrastructure simply allows us to better understand how peaks drive utility expenses.
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EHP
SEER,r,t is the electricity consumed for space heating by a heat pump of nominal efficiency

SEER in residence r at time t, EAC
SEER,r,t is the electricity consumed for space cooling by an air

conditioner or heat pump of nominal efficiency SEER in residence r at time t, ESupplementalRes.
r,t is

the electricity consumed by a supplemental resistance heater in residence r at time t, EW aterHeater
UEF,r,t

is the electricity consumed by an electric (resistance or heat pump) water heater of efficiency

UEF in residence r at time t, EBaseboard
r,t is the electricity consumed by baseboard resistance

heaters in residence r at time t, EP lugLoads
r,t is the electricity consumed by miscellaneous plug

loads in residence r at time t, EP V
r,t is the electricity produced by distributed solar installed

at residence r at time t, EBattery+

t is the electricity stored in a battery at time t (installed at

the feeder level), and EBattery−

t is the electricity discharged from the battery at time t. The

constraints governing the operation of these technologies are described later in this section.

PrivateEnergyCost + ExternalitiesCost =∑
t

[
γGas ∗

∑
η,UEF

∑
r

[
EF urnace

η,r,t + EW aterHeater
UEF,r,t

]]
+

∑
t

[
γElectric

t ∗
∑

η,SEER,UEF

∑
r

[
EHP

SEER,r,t + EAC
SEER,r,t + ESupplementalRes.

r,t +

EW aterHeater
UEF,r,t + EBaseboard

r,t + EP lugLoads
r,t − EP V

r,t + EBattery+

t − EBattery−

t

]]
(4.1)

The r subscript is an index for the residence. In our example, r ranges from 1 to 15. The t

subscript indexes the hours of the year, from 1 to 8760. η, UEF , and SEER are measures of

efficiency for various types of heating equipment.6 The summation over the efficiency indices

simply states that for whatever equipment is selected at each residence, its energy consumption

is included in the objective function.

InfrastructureCost is described by Equation 4.2. UpstreamGas and UpstreamElectric are

6η is the efficiency of a furnace, typically ranging from 80% to 96%. UEF is the Uniform Energy Factor for
water heaters, which ranges from less than one for conventional water heaters to greater than 3 for heat pump
water heaters. SEER is the Seasonal Energy Efficiency Ratio for air conditioners and heat pumps. The SEER
describes the typical ratio of thermal energy produced (in KBTU) to electricity consumed (in kWh). SEERs
typically range from 13 to 18.
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the upstream gas and electricity expenses that are not a function of consumption on the feeder.

Because electrification of space and water heating is poised to increase electric system peaks, we

also include a term that describes additional distribution/feeder capacity required to meet peak

loads, CF eederCap and a term that describes any negative capacity required to accommodate

injections from customers, CF eederMin. The last term, CGeneration, describes the total generation

capacity allocated to this feeder, which is assumed to be proportional to the coincident feeder-wide

electricity peak.7 CGeneration is always positive as long as there is some electricity demand from

the grid, whereas CF eederCap is positive only if the peak demand increases from the pre-optimized

loads (e.g. due to heating electrification). CF eederMin is positive only if the net load on the feeder

drops below zero due to injections exceeding consumption. We do not include capacity terms for

the natural gas system because we assume that it is already sized to meet the residences’ full

space heating and DHW loads.

InfrastructureCost = UpstreamGas + UpstreamElectric+

βF eederCap ∗ CF eederCap + βF eederMin ∗ CF eederMin + βGeneration ∗ CGeneration (4.2)

EquipmentCost is described by Equation 4.3. A key feature of customer-scale energy

optimization is that a significant fraction of investments are lumpy (e.g., installing a furnace

incurs a significant upfront cost that does not scale linearly with increasing capacity). These

non-linear cost structures are captured by using a binary variable for whether or not a piece

of equipment is installed and a separate continuous variable for the capacity of that piece of

equipment. The α terms are cost-coefficients associated with the installation of a piece of

equipment with a non-linear cost structure.8 These include annualized installation costs and

the annualized cost of a “zero-capacity” piece of equipment (i.e. the intercept term when the

7The cost coefficient for generation capacity, βGeneration, is non-zero only in the climate regions that have
separate capacity markets.

8The use of binary variables also allow us to enforce semi-continuous value constraints on equipment capacities
(e.g. a residence can forgo a furnace or install one with a capacity above 40 kBTUh, but cannot install one with a
capacity smaller than 40 kBTUh).
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non-linear costs are fitted with an OLS regression). The y terms are binary variables indicating

whether or not a given category of equipment is installed in a residence. The β terms are capital

cost-coefficients ($/kW or $/kBTUh) and the C terms are capacities installed. AP V
r is the area

of PV panel installed on the roof of residence r. For a piece of equipment with a non-linear cost

structure, such as a natural gas furnace, the annualized cost of a capacity-C unit is equal to

αF urnace
η,r ∗ yF urnace

η,r + βF urnace
η,r ∗ CF urnace

η,r . As in Equation 4.1, the summation over the efficiency

indices simply states that for whatever equipment is selected at each residence, its cost is included

in the objective function.

EquipmentCost =∑
η,SEER,UEF

∑
r

[
αF urnace

η,r ∗ yF urnace
η,r + βF urnace

η,r ∗ CF urnace
η,r + αHP

SEER,r ∗ yHP
SEER,r+

αAC
SEER,r ∗ yAC

SEER,r + βHP
SEER,r ∗ CHP

SEER,r + αSupplementalRes. ∗ ySupplementalRes.+

βBaseboard
r ∗ CBaseboard

r + αW aterHeater
UEF,r ∗ yW aterHeater

UEF,r +

βP V
r ∗ AP V

r + βBattery ∗ CBattery + βEE
r ∗ CEE

r

]
(4.3)

Table 4.1: Table of variables.

Variable Description
η Furnace efficiency

UEF Uniform Energy Factor for water heaters

SEER Seasonal Energy Efficiency Ratio for air conditioners and heat pumps

αF urnace
η,r Cost of a zero-capacity furnace of efficiency η in residence r

αHP
SEER,r Cost of a zero-capacity heat pump of efficiency SEER in residence r

yF urnace
η,r Binary variable indicating whether or not a furnace with efficiency η is installed

in residence r
yHP

SEER,r Binary variable indicating whether or not a heat pump of efficiency SEER is

installed in residence r
Continued on next page

85



Variable Description
yBaseboard

r Binary variable indicating whether or not an electric baseboard is installed in

residence r
βF urnace

η,r Furnace cost per-unit capacity ($/kBTUh)

βHP
SEER,r Heat pump cost per-unit capacity ($/kW)

βBaseboard
r Baseboard cost per-unit capacity ($/kBTUh)

βP V
r Photovoltaic panel cost per-unit capacity ($/kW)

βBattery Battery cost per-unit capacity ($/kWh)

βF eederCap New feeder capacity cost per-unit capacity ($/kW)

βEE
r Energy efficiency cost ($/sf)

CF urnace
η,r Furnace capacity (kBTU)

CHP
SEER,r Heat Pump capacity (kW)

CBaseboard
r Baseboard heater capacity (kW)

CP V
r Solar photovoltaic panel capacity (kW)

CBattery Battery capacity (kWh)

CF eederCap New feeder capacity (kW)

CF eederMin Negative feeder capacity to accommodate injections (kW)

CEE
r Energy efficiency reduction (%)

CF urnace,Min
η Minimum possible furnace capacity (kBTUh)

CF urnace,Max
η Maximum possible furnace capacity (kBTUh)

CGeneration Generation capacity allocated to feeder

CHP,Min
SEER Minimum possible heat pump capacity (kWh)

CHP,Max
SEER Maximum possible heat pump capacity (kWh)

γGas Social marginal cost (SMC) of natural gas ($/kBTU)

γElectric
t Social marginal cost (SMC) of electricity ($/kWh)

EF urnace
η,r,t Gas demanded by furnace (kBTUh)

EHP
η,r,t Electricity demanded by heat pump (kW)

EBaseboard
r,t Electricity demanded by baseboard heater (kW)

Continued on next page
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Variable Description
EP lugLoads

r,t Electricity demanded by miscellaneous plug loads (kW)

EP V
r,t Electricity produced by solar photovoltaic panels (kW)

EBattery+

t Electricity added to battery storage (kW)

EBattery−

t Electricity removed from battery storage (kW)

EEV
r,t EV charging at residence r at time t (kW)

IP V
r,t Total irradiance on a roof-mounted solar panel at residence r at time t (kW/m2)

ηStorage Battery round-trip efficiency

ηBaseboard Baseboard heating efficiency (kBTU/kWh)

COP HP
SEER,t Coefficient of heating performance of a heat pump of efficiency SEER at time

t (kBTU/kWh)
COP AC

SEER,t Coefficient of cooling performance of a heat pump or air conditioner of efficiency

SEER at time t (kBTU/kWh)
DHeat

r,t Demand for heating energy in residence r at time t (kBTUh)

DCool
r,t Demand for cooling energy in residence r at time t (kBTUh)

DDHW
r,t Demand for hot water energy in residence r at time t (kBTUh)

DEV
r,d Demand for electric vehicle charging on day d

EEr Fractional reduction in hourly heating and cooling demands due to envelope

retrofits in residence r

The MILP formulation also includes a number of constraints governed by the physical

limitations of the installed technologies. The operation of each furnace is constrained by

Equations 4.4-4.6. Equation 4.4 ensures that the fuel consumed in a furnace at time t does not

exceed the furnace’s capacity.9 Equations 4.5 and 4.6 constrain the domain of possible capacities

to those that can reasonably be procured for residential use, while also ensuring that a non-zero

capacity is only possible for a piece of equipment if the respective y-term is unity (incurring the

installation and zero-capacity costs). The operation of heat pumps are similarly constrained by

9Note that the nominal installed capacity for furnaces, heat pumps, and air conditioners is based on the
maximum amount of energy (kW or kBTUh) that can be consumed over a given interval, not the maximum
amount of heat delivered to the space. The heat delivered to the space is mediated by the system’s efficiency,
described in Equation 4.15.
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Equations 4.7-4.9, and baseboard electric heaters by 4.10.

EF urnace
η,r,t ≤ CF urnace

η,r (4.4)

CF urnace
η,r ≥ CF urnace,Min

η yF urnace
η,r (4.5)

CF urnace
η,r ≤ CF urnace,Max

η yF urnace
η,r (4.6)

EHP
SEER,r,t ≤ CHP

SEER,r (4.7)

CHP
SEER,r ≥ CHP,Min

SEER ∗ yHP
SEER,r (4.8)

CHP
SEER,r ≤ CHP,Max

SEER ∗ yHP
SEER,r (4.9)

EBaseboard
r,t ≤ CBaseboard

r (4.10)

An important quality of the heat pumps typically used in North American homes is that

they are reversible, meaning that they can serve both the heating and cooling needs of a building.

While not all single-family residences have ducting that can accommodate this, over 60% do.10

In Equation 4.14, the electricity used for air conditioning, EAC
SEER,r,t, is constrained as being no

more than the sum of the cooling and heating capacities, CAC and CHP . Furthermore, Equation

4.12 guarantees that at most one central HP or AC is installed in any residence.11 This allows

for the model to use a heat pump to fulfill a building’s heating and cooling needs, or an AC

paired with a furnace or electric resistance coil. Equations 4.11-4.14 constrain the domain of

possible capacities for air conditioners to those that can reasonably be procured for residential

use, while also ensuring that a non-zero capacity is only possible if the respective y-term is unity.

10According to U.S. Energy Information Administration (EIA) (2015), 61.5% of surveyed single-family homes
(attached or detached) have a central air conditioner for cooling and either a furnace or heat pump for heating.

11Even without this constraint, it is unlikely that the model would select multiple HPs/ACs for a single residence
because it would more expensive than reasonable alternatives.
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EAC
SEER,r,t ≤ CAC

SEER,r + CHP
SEER,r (4.11)

∑
SEER

yAC
SEER,r + yHP

SEER,r ≤ 1 (4.12)

CAC
SEER,r ≥ CAC,Min

SEER ∗ yAC
SEER,r (4.13)

CAC
SEER,r ≤ CAC,Max

SEER ∗ yAC
SEER,r (4.14)

Equations 4.15 and 4.16 guarantee that all heating and cooling demand is satisfied at each

hour in a given residence. COP HP
SEER,t is the coefficient of performance of a heat pump of rated

efficiency SEER at time t while operating in heating mode. COP AC
SEER,t is the coefficient of

performance of an air conditioner or heat pump of rated efficiency SEER at time t operating in

cooling mode. CEE
r is the percent reduction in hourly thermal demands due to energy efficiency

improvements.

∑
η

ηF urnace∗EF urnace
η,r,t +

∑
SEER

COP HP
SEER,t∗EHP

SEER,r,t+ηBaseboard∗EBaseboard
r,t = DHeat

r,t ∗(1−CEE
r )

(4.15)∑
SEER

COP AC
SEER,t ∗ EAC

SEER,r,t = DCool
r,t ∗ (1 − CEE

r ) (4.16)

Heat pump and air conditioner efficiencies vary with temperature, so the COP vectors are

computed exogenously using dry bulb temperature from the same typical meteorological year

(TMY) weather data used to model heating and cooling loads. Note that while an AC or HP’s

coefficient of performance (COP) is typically non-dimensional, the COP values we use here are

computed in kBTU/kWh. This allows us to use a single set of variables to address thermal loads

in kBTU while aggregating electrical loads in kWh.

Equation 4.17 ensures that the model can select a supplementary electric resistance coil in a

residence only if it also selects an AC or HP. Without an AC or HP, the resistance coil would

need an auxiliary blower fan to operate as an electric resistance furnace.
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ySupplementalRes. ≤
∑

SEER,η,r

yF urnace
η,r + yHP

SEER,r (4.17)

Equation 4.18 describes the hourly production from solar panels, where IP V
r,t is the total

irradiance on a south-facing roof-mounted solar panel at residence r at time t in kW/m2; ηP V is

the PV system efficiency; ϵP V
r is a variable between 0 and 1 for each residence that accounts

for losses due to shading and sub-optimal panel orientation; and AP V
r is a decision variable

describing the roof area that each customer covers with solar panels.

EP V
r,t = IP V

r,t ∗ ηP V ∗ ϵP V
r ∗ AP V

r (4.18)

The model is also able to invest in distributed battery storage to satisfy loads, manage excess

solar production, and arbitrage wholesale electricity prices. The continuity constraint for battery

charge is described by Equation 4.19. At time t, the stored energy on the battery, SBattery
t , is

equal to the energy stored from the previous time interval, SBattery
t−1 , plus the energy added to

the battery, minus the energy withdrawn. The efficiency term, ηStorage, enforces each battery’s

round-trip efficiency.

SBattery
t = SBattery

t−1 + EBattery+

t − 1
ηStorage

EBattery−

t (4.19)

Equations 4.20 and 4.21 constrain the maximum charging/discharging rate to 25% of the

battery’s capacity (Cole & Frazier, 2020).

EBattery+

t ≤ 1/4 ∗ CBattery (4.20)

EBattery−

t ≤ 1/4 ∗ CBattery (4.21)

Equation 4.22 sets the upper bound of the storage state as the battery’s installed capacity.

Equations 4.23 and 4.24 enforce that the battery must start and end the simulation at 50%
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charge.

SBattery
t ≤ CBattery (4.22)

SBattery
t=0 = 0.5 ∗ CBattery (4.23)

SBattery
t=tmax

= .5 ∗ CBattery (4.24)

Note that while most technologies are specified for each residence, the model only specifies

one battery for the entire feeder. Because loads are aggregated across the entire feeder at a single

node, there is no reason that it would be more favorable to install storage at one residence versus

another. If separate battery capacities were designated for each residence, the distribution of

that capacity between residences would be arbitrary.

Equation 4.25 ensures that the hot water produced from water heaters must satisfy the

hourly demand for hot water in each residence. Note that for electric resistance and heat pump

water heaters, because DDHW
r,t is in units of kBTU and EW aterHeater is in units of kWh, the

nominal UEF (a dimensionless unit) is adjusted to kBTU/kWh using a constant conversion factor

of 3.412 kBTU/kWh.

∑
UEF

UEF ∗ EW aterHeater
UEF,r,t = DDHW

r,t (4.25)

The feeder capacity constraint is modeled by Equations 4.26 and 4.27. Equation 4.26

guarantees that the sum of all electric loads (net of PV generation and battery withdrawals)

cannot exceed the feeder capacity. Equation 4.27 prevents the net load from dipping below zero,

which would necessitate specific reinforcements to allow for a reverse power flow.12 CF eederCap
0 is

the assumed feeder capacity before the optimization and CF eederCap is additional feeder capacity

added to accommodate increased loads.

12We do not provide an option for the feeder to be upgraded to accommodate two-way power flows. This would
only be optimal if rooftop solar were significantly less expensive on average than utility-scale power.
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∑
r

EHP
η,r,t + EBaseboard

r,t + EP lugLoads
r,t − EP V

r,t + (EBattery+

t − EBattery−

t ) + EEV
r,n,t + EW aterHeater

UEF,r,t

≤ CF eederCap
0 + CF eederCap (4.26)

∑
r

EHP
η,r,t + EBaseboard

r,t + EP lugLoads
r,t − EP V

r,t + (EBattery+

t − EBattery−

t ) + EEV
r,n,t + EW aterHeater

UEF,r,t ≥ 0

(4.27)

For the climate regions that have generation capacity markets, a constraint is used to compute

the allocated generation capacity needed to serve a feeder. The cost of this capacity is included

in the objective function.

∑
r,t

EHP
η,r,t+EBaseboard

r,t +EP lugLoads
r,t −EP V

r,t +(EBattery+

t −EBattery−

t )+EEV
r,n,t+EW aterHeater

UEF,r,t ≤ CGeneration

(4.28)

While electric vehicle charging is not modeled in the bulk of this analysis, a specialized

scenario includes EVs in each residence that must be charged overnight. For this scenario,

Equation 4.29 is used to ensure that for each day, d, the requisite amount of energy is added

to the car battery during the associated hours, t ∈ d, of the previous night. Equation 4.30

guarantees that charging can only occur overnight (when ChargeOKt is unity) and constrains

the maximum rate of charging to 1.4 kW, which is typical of a Level 1 charger.

∑
t∈d

EEV
r,t = DEV

r,d (4.29)

EEV
r,t ≤ 1.4 ∗ ChargeOKr,t (4.30)
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4.3 Data and Assumptions

We use the hourly demands simulated in Chapter 2 as inputs to the optimization. These

include hourly space heating energy, water heating energy, space cooling energy, and electric plug

loads.

The hourly SMC for electricity (in $/kWh) and constant SMC for gas (in $/kBTU) are

computed in Equations 4.31 and 4.32, where the LBMP (location-based marginal price) represents

the private costs of electricity and gas in each climate region, SCClb, is the social cost of

carbon in $/lb, EmissionsElectric
kW h is the local emissions coefficient of the grid in lb/kWh, and

EmissionsGas
kBT U is the emissions produced from stoichiometric combustion of natural gas in

lb/kBTU.1314

SMCElectric
t = LBMP Electric

kW h + SCClb ∗ EmissionsElectric
kW h (4.31)

SMCGas = LBMP Gas
kBT U + SCClb ∗ EmissionsGas

kBT U (4.32)

For both equations, the second term represents the cost of externalities. For the base

models, we estimate the social cost of carbon (SCC) as $51/tonne (Environmental Protection

Agency, 2020; Interagency Working Group on Social Cost of Greenhouse Gases, United States

Government, 2021). Because estimates of the SCC vary widely between analyses, we also include

separate optimizations that assume SCCs of $0/tonne and $200/tonne. We do not evaluate the

social cost of other chemical emissions, which are known to have localized health impacts. The

costs of energy inputs are provided in Table 4.2.

13We do not model any additional emissions due to methane leaks throughout the natural gas system. While
these leaks may be significant to the natural gas industry’s overall global warming impact, there is little reason
to believe that the quantity of methane leaked scales with the marginal consumption of an additional unit of
consumption. Additionally, we do not measure damages from local particulate emissions.

14The hourly value for the SMC of electricity and gas are taken as exogenous parameters. While modeling
the SMC as a function of load might be more accurate, it would create a large number of quadratic constraints,
dramatically increasing the computational complexity of the model
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Table 4.2: Average energy costs and emissions for each of the five locations considered. Average
LBMPs, SMCs, and standard deviations for electricity are based on 2019 hourly data and
computed using the modeled feeder load as a weighting factor. Natural gas costs are taken as
annual averages, while the LBMP for electricity varies hourly. Emissions factors for electricity are
based on Environmental Protection Agency (2020) whereas emissions from natural gas assumes
stoichiometric combustion.

Erie
County,
NY

San Diego,
CA

Harris
County,
TX

Alexandria,
VA

Marin
County,
CA

Building America
Climate Region

Cold Hot-Dry Hot-Humid Mixed-
Humid

Marine

IECC Climate Region 5A 3B 2A 4A 3C

Electricity

Carbon Emissions15,
lb/kWh

0.2539 0.4987 0.9361 0.7475 0.4987

Average Private Cost,
$/kWh (SD)

$0.02816

($0.015)
$0.04017

($0.026)
$0.05818

($0.240)
$0.02919

($0.011)
$0.04120

($0.028)

Average SMC21,
$/kWh (SD)

$0.035
($0.015)

$0.052
($0.026)

$0.082
($0.240)

$0.048
($0.011)

$0.053
($0.028)

Generation Capacity
Cost, $/kW-year

$27.6422 - - $38.6423 -

Add’l Feeder Capacity
Cost, $/kW-year

$50 $50 $50 $50 $50

Negative Feeder Capacity
Cost, $/kW-year

$50 $50 $50 $50 $50

Natural Gas

Private Cost24,
$/MMBTU

$4.25 $3.10 $3.02 $4.52 $3.10

SMC25, $/MMBTU $7.23 $6.08 $6.00 $7.50 $6.08
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We provide the model with multiple options for space heating, space cooling, and water

heating (DHW) equipment. These include both traditional and condensing furnaces (80% and

96% efficiencies, respectively), low- and high-efficiency heat pumps (14 and 18 SEER), low- and

high-efficiency air conditioners (14 and 18 SEER), electric resistance baseboard heaters (which

cannot easily be combined with other heating options), and electric resistance supplementary

coils (which must be used with a HP, AC, or furnace). Likewise, the model can choose from

multiple options for natural gas water heaters, electric resistance water heaters, and heat pump

water heaters. Each of these is assumed to have a constant efficiency consistent with its rated

UEF (universal energy factor). Data on equipment and installation costs were collected from

HVACDirect (2020) and Navigant Consulting (2018). The equipment cost assumptions are

summarized in Table 4.3.26

15Environmental Protection Agency (2020)
16NYISO (2021)
17California ISO (2021)
18ERCOT (2021)
19PJM (2021)
20California ISO (2021)
21Computed by combining private cost with damages from emissions, estimated at $51/tonne (Interagency

Working Group on Social Cost of Greenhouse Gases, United States Government, 2021).
22NYSERDA (2019, p. 40)
23PJM (2019)
24Private cost of gas based on citygate price.
25Computed by combining private cost with damages from emissions, estimated at $51/tonne (Interagency

Working Group on Social Cost of Greenhouse Gases, United States Government, 2021).
26Linear regression is used to determine separate fixed and variable costs for each piece of household equipment.

The fixed cost includes the annualized zero-intercept cost of the equipment, the annualized cost of installation,
and the recurring operations and maintenance cost. The variable cost (which scales with capacity) and the
zero-intercept cost are determined through regression using data on multiple units of comparable equipment
from HVACDirect (2020). For ACs and HPs, a single regression model is fit to 24 points using the equation:
Cost = αAC +αHP −AC ∗HPi +αSEER18 ∗SEER18i +βC ∗Ci +βSEER18,C ∗ (SEER18i ∗Ci)+ωi. αAC represents
the cost of zero-capacity AC system, αHP −AC is the cost difference between a HP and an AC of the same capacity
and SEER, HPi is a dummy variable that indicates whether the piece of equipment is a HP, αSEER18 is the cost
difference between an 18 SEER unit and a 14 SEER unit, SEER18i is a dummy variable indicating whether the
equipment is 18 SEER, βC is the variable cost per-kW for a 14 SEER unit, Ci is the equipment capacity, and
βSEER18,C is the additional per-kW cost for an 18 SEER unit (this allows the model to fit different slopes for
the 14 and 18 SEER units). The resulting model has 19 degrees of freedom and a multiple R-squared of 0.97. A
similar models is constructed for furnaces, but without the additional fixed-effect terms for ACs vs. HPs. Several
items, including water heaters and electric supplementary heating coils, have very few sizing options and are thus
represented as only having a fixed cost. Conversely, electric baseboards, which are standalone units that do not
require any central system, are presumed to only have a variable cost ($/kW).
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Table 4.3: Annualized cost coefficients for equipment installed in residences. Upfront costs are
annualized over the equipment’s lifetime using a discount rate of 10%.

Fixed Cost (α) Variable Cost (β)

Gas Furnace (80%) $ 243.87 $0.51 /kBTUh

Gas Furnace (96%) $ 277.84 $0.78 /kBTUh

Low-Eff. HP (14 SEER) $ 423.86 $58.70 /kW

High-Eff. HP (18 SEER) $ 588.04 $106.25 /kW

Low-Eff. AC (14 SEER) $ 359.52 $55.23 /kW

High-Eff. AC (18 SEER) $ 486.57 $99.98 /kW

Electric Resistance (Baseboard) $ - $22.08 /kW

Electric Resistance Supplementary Coil (20kW) $ 20.84 $ -

Gas Water Heater (UEF 0.63) $ 271.00 $ -

Gas Water Heater (UEF 0.81) $ 432.89 $ -

Electric Water Heater (UEF 0.93) $ 119.66 $ -

Electric Water Heater (UEF 0.95) $ 172.45 $ -

HP Water Heater (UEF 3.28) $ 292.12 $ -

HP Water Heater (UEF 3.55) $ 348.43 $ -

Solar PV 300 $/kW

Battery Storage 50 $/kWh
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Most types of heating and cooling equipment need to be replaced every 10–20 years (Seiders

et al., 2007). In the optimization, we assume that all residences are in need of new heating and

cooling equipment.

While the existing heating and cooling equipment does not factor into the optimization,

it is nonetheless informative to consider the types of fuels currently used for heating in each

county as a point of comparison. Figure 4.1 shows the distribution of heating equipment used in

single-family detached homes in each of the five counties studied, as estimated in the RESstock

probability mass functions. In all five counties, natural gas (burned in either boilers or furnaces)

represents the largest share of fuels. In Harris County, TX, electricity is the primary heating

fuel in about one-third of single-family homes. By contrast, in Erie County, NY (which has the

largest heating loads), electricity is used as the primary heating fuel in just 2% of homes. Up to

8% of homes in each of the counties studied use propane, fuel oil, or some other fuel (including

solar thermal and biomass).

In the base scenario, we assume that all feeders have a headroom of 50% above the existing

electric peak, inclusive of plug loads and any thermal loads already served by electricity in the

simulations (a 10 kW load is served by a 15 kW-capacity feeder). This estimate is based on an

analysis of the distribution feeders in National Grid’s New York State Service Territory. (National

Grid, 2020). The full set of National Grid feeders range in capacity from 260 kVA (kilovolt-amps)

to nearly 6.7 MVA (megavolt-amps). The National Grid dataset includes the rated capacity at

the base of each feeder as a well as historical time series of consumption. A large number of

feeders have considerable headroom at their base: the summer peak on the median feeder only

reaches 53% of its rated capacity and fewer than 25% of feeders reach summer peaks exceeding

70% of rated capacity.27 These data are provided in Table 4.4.

The solar irradiance on the roof of each residence, IP V
r,t , is estimated using procedure outlined

in Sandia National Laboratories (2018). The weather data was pulled from the same typical

meteorological year file we used to model each building’s hourly energy demands. All rooftops are

27Pillai et al. (2012) find that the overhead capacity for electrification on a low-voltage Danish distribution
system varies from 0-40%.
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Figure 4.1: Distribution of heating equipment used in single-family detached homes in each of
the five counties studied, as estimated by (National Renewable Energy Lab (NREL), 2021). In
all five counties, natural gas is the dominant heating fuel.
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Table 4.4: Summary statistics of National Grid feeder data. The median ratio of summer peak
to feeder capacity is 53%, indicating that a large number of feeders have ample headroom for
accommodating additional load.

N 1% 25% Median Mean 75% 99%

Voltage(kV) 1920 4.16 4.16 4.80 8.58 13.20 13.20

Rated Current (A) 1904 142 300 360 360 425 515

Peak Current 2018 (A) 1907 14 120 183 186 246.00 388

Peak Current 2019 (A) 1906 11 116 172 175 229 356

Peak/Capacity Ratio 1901 0.06 0.37 0.53 0.54 0.70 0.97

modeled as pointing South and have the same tilt of 26.57 degrees (per the ResStock assumptions).

All scenarios assume a solar panel efficiency of 16%. ϵP V
r , which accounts for sub-optimal panel

orientation and losses due to shading, is sampled for each residence from a uniform distribution

between 0.7 and 1 (Gagnon et al., 2016).

The battery, where installed, is assumed to have a round-trip efficiency of 80% (U.S. Energy

Information Administration, 2021d).

The annualized cost of a fractional reduction in hourly space heating/cooling demands due

to energy efficiency improvements, βEE
r , is estimated as 15¢ per-sf-percentage-point. In other

words, reducing space heating and cooling demands by 10% for a 2,000 square-foot residence

would be expected to cost $0.15 ∗ 10 ∗ 2, 000 = $3, 000-per-year. The fractional reduction in space

heating and cooling demands is capped at 40% (Urban Green Council, 2019).

We estimate that additional electric distribution capacity can be built at a long-run cost of

$50 per-kW-year. This is based on estimates produced in Rauschkolb et al. (2021), which uses

regression analysis to describe the relationship between distribution capital costs and the growth

of distribution system peaks. Additionally, if the net load on the feeder drops below zero due to

solar injections, “negative feeder capacity” can be built at the same $50 per-kW-year.

Additionally, we assume that there are certain upstream transmission, distribution, and

administrative costs that are independent of the level of consumption on the feeder. These include
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$727-per-customer for upstream electric infrastructure costs and $478-per-customer for upstream

gas infrastructure costs (R. L. Fares & King, 2017; U.S. Energy Information Administration,

2020). These costs are treated as unavoidable, except in the microgrid case wherein the collection

of customers must produce all of their own energy.

4.4 Scenarios Analyzed

We study how the least-cost configuration of distributed technologies and traditional grid

resources varies between regions and under a range of different assumptions about costs and

constraints. In the “base” scenario, we use the best available estimates for emissions factors and

the current costs of energy inputs and existing technologies. The results from this scenario provide

an estimate of the cost of serving customers’ energy demands using a least-cost configuration

of technologies, without any additional constraints. A “No HP/Solar/Storage” scenario is also

constructed that restricts the use of rooftop solar PV, distributed storage, and heat pumps.

In this scenario, the model can only choose from gas furnaces or electric resistance as heating

options, and cannot use distributed solar and/or storage to defer feeder upgrades. To complement

the “No HP/Solar/Storage” scenario, we include an “all-electric” scenario that restricts the use

of natural gas for space and water heating. This scenario simulates an “electrify everything”

policy that prohibits natural gas use.

To understand how technology development and a greener grid may impact results, the above

three scenarios are also run using a set of progress assumptions. Relative to the base scenario,

the progress scenarios assume that economies of scale result in a 30% reduction in the installed

cost of heat pumps, air conditioners, rooftop solar PV, battery storage, energy efficiency, and

feeder capacity. Additionally, we assume a 70% reduction in emissions from the electric grid

relative to 2018 coefficients. This scenario is expected to strongly favor electrification of space

and water heating.

Lastly, a number of additional scenarios are run that isolate specific variables of interest.

These include scenarios the vary the social cost of carbon and the feeder headroom; a “microgrid”

scenario that prohibits all electricity and gas imports; a scenario that includes loads from electric
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vehicle charging; and a scenario that assumes a 50% higher cost for AC/HP installation.

4.5 Results

4.5.1 Base Scenario

Figure 4.2 shows the technologies adopted in each climate in the base scenario. Electric

resistance DHW heaters are nearly ubiquitous in the least-cost portfolio in all five climates,

while gas DHW heaters – which are common today – are absent. HP DHW heaters are also

uncommon in the optimized scenarios, most likely because the capital cost cannot be justified

by operational cost savings. This explanation is borne out by a hand calculation: if a typical

residence requires 10 MMBTU of hot water energy each year, then an electric resistance water

heater with a UEF of 0.93, would require 3,151 kWh of electricity. At 5¢/kWh, this would cost

$156. A HP water heater with a UEF of 3.28 would only require 894 kWh of electricity, costing

$45 ($112 less). However, because the HP water heater has an annualized cost that is $172 higher

than the resistance heater, the savings do not justify the increased fixed costs. In order for the

HP DHW to be cost-effective, the customer would need to consume at least 15 MMBTU of heat

for hot water.

Of note is the absence of distributed solar or battery storage. Rooftop solar PV panels are

available to the model at a cost of $300/kW-year. A 1 kW solar system in the hot-dry climate

(which has the greatest potential for solar generation) can be expected to produce about 1,600

kWh of electricity each year. For this to be a cost-effective investment on its own, the full social

value of the avoided electricity must average at least $300/1, 600kWh = 19¢/kWh. However, the

electricity in this climate only has an average SMC of about 5.2¢/kWh.

Distributed battery storage is generally cost-effective if at least one of three conditions apply:

(1) solar is cost-effective and the batteries are needed to store excess generation during the day,

(2) the variability in the hourly value of electricity from the grid is great enough that the arbitrage

opportunities for storage (charging when electricity is inexpensive and discharging when the

electricity price goes up) justify its fixed costs, or (3) storage can be strategically discharged to
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Figure 4.2: Number of residences adopting a given technology in each climate in the optimized
models. “AC” and “HP” denote space cooling and heating energy. “EE” denotes energy efficiency.
Heat pumps and electric resistance water heaters are nearly ubiquitous in the optimized portfolios.

curtail peak loads on the feeder, deferring the need for costly distribution system reinforcements.

None of these conditions appear to apply in any of the five example regions.

Though neither distributed solar nor rooftop PV are found to be part of a least-cost portfolio

in any of the climates we analyzed, another emerging technology – air source electric heat pumps

– are found to be a major part of a least-cost portfolio in the mixed-humid, hot-humid, and

cold climates. In the hot-humid climate in particular, heat pumps are used to satisfy nearly the

entirety of the annual heating load. The cost-effectiveness of this choice can be borne out by a

simple calculation: if the average COP of a low-efficiency heat pump is 3.6, then the electricity

required to provide 1 MMBTU of heating energy is:

1MMBTU ∗ 293kWh

1MMBTU
∗ 1

3.6 = 81.4kWh

The cost of providing this electricity at an SMC of 5¢/kWh28 is:

28While the load-weighted SMC of electricity in the hot-humid climate is 8.2¢/kWh (per Table 4.2), this estimate
is skewed by very high prices and demands during the summer months. The unweighted average SMC is 6.2¢, and
the unweighted average during the winter months - when heating energy is required - is approximately 5¢/kWh.
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81.4kWh ∗ $0.05 = $4.07

To provide the same heating energy using an 80% efficiency furnace with natural gas at a

natural gas SMC of $6/MMBTU is:

1MMBTU ∗ $6
MMBTU

∗ 1
80% = $7.50

Moreover, because these homes all require air conditioning, the additional investment for

a heat pump of the same size as the requisite air conditioner is simply the difference in fixed-

costs plus the difference in capacity costs. For a 3 kW, 14 SEER heat pump, this amounts to

$423.86-$359.52=$64.34/year in additional fixed costs plus 3*($58.70-$55.23)=$10.41/year in

capacity costs. This is significantly less than the approximately $300/year investment required

to install and maintain a gas furnace. Thus, electrifying heating with HPs reduces both capital

and operating costs for residences in the hot-humid climate.

One potential caveat is that if the new load from heating electrification significantly raises

the feeder peak above the existing feeder capacity, the cost of upgraded capacity could offset

the operational and equipment savings realized at the household level. Additionally, for climate

regions with non-zero generation capacity prices (in our example, the cold and mixed-humid

climates), any increase to the feeder peak raises costs, even if there is already existing distribution

capacity.

Figure 4.3 plots the daily peak electric loads for each of the five climates in the least-

cost optimization. The solid red line represents the pre-existing feeder capacity (assuming

50% headroom above the pre-optimized loads) and the dashed line represents the peak after

optimization. For the hot-humid climate, there is ample headroom in the winter months for

heating electrification without increasing distribution or generation costs.

In the cold climate, the model is balancing two priorities: minimizing equipment and

operational expenses while also managing the feeder peak, which can increase generation capacity
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Figure 4.3: Annual profile of daily peak electric loads in the optimized models. The solid red
line is the existing feeder capacity before the optimization, assuming 50% headroom relative to
the incumbent peak. The dashed line is the optimized peak.

and distribution costs. This results in a “cropped” electric load in the winter months, where heat

pumps are operated such that the feeder peak is kept below 60 kW. These heat pumps provide

at most 5–6 MMBTU/day of space heating demand, with the remaining energy coming from

furnaces (Figure 4.4).

In the hot-humid climate, nearly all heating demand is provided by heat pumps. In the

mixed-humid and hot-dry climates, about 80% of heating energy is provided by electricity. In

the cold climate, about two-thirds of heating demand is satisfied by either heat pumps or electric

resistance, with the remaining load met by gas furnaces.

Heat pumps are not found to be part of the least-cost portfolio in most residences in the

marine climate. This is most likely because most of these residences do not have air conditioning

loads. Because the heat pump is only used during the heating season, the operational cost savings

do not justify the increased capital cost of transitioning from a furnace (without an AC) to a

heat pump.

We note that the distribution of heating technologies in these optimized scenarios looks
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Figure 4.4: Annual profile of daily heating energy coming from various heating technologies,
aggregated across all 15 residences for each feeder. In the cold and mixed-humid climates, which
represent an outsize share of heating energy, low-efficiency (14-SEER) heat pumps are used to
satisfy most of the residences’ heating demands on all but the coldest days.

quite different than the actual distribution of technologies used in the example counties (see

Figure 4.1). While natural gas is the dominant heating fuel used in the U.S. today, these results

indicate that an approach that includes a greater share of electric heat pump heating could

ultimately lower the cost of energy services. We note here that customers act as individuals, so

this lower-cost reality will only be achieved if customers are individually incentivized to invest in

the technologies that lower the total cost of energy services.

4.5.2 Conventional and All-Electric Scenarios

In order to understand how results from the least-cost portfolio compare to other approaches,

we also run the same set of models in two specialized scenarios. A “No HP/Solar/Storage”

scenario restricts the use of heat pumps (DHW and space heating), solar, and battery storage.

By comparing the results from this model to the unconstrained base model, we are able to better

understand the degree to which emerging technologies enable cost reductions. We also include an

“all-electric” scenario that restricts the use of natural gas for space and water heating, allowing us
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to explore how such a policy would affect the overall cost of serving residential energy demands.

Table 4.5 summarizes the major results from these scenario. Relative to the “No HP/Solar/

Storage” approach, the least-cost case results in cost reductions in all climates, ranging from

1.7–7.0%. This is achieved predominantly by using heat pumps either in lieu of, or in addition

to, traditional gas furnaces (this is known as “hybrid” or “dual-fuel” heating). For every climate

except marine, at least 65% of heating energy is satisfied by electricity in the base case.

Notably, the hybrid heating approach strategy results in reductions in both private costs and

emissions damages. Private costs (which include the private energy costs, utility infrastructure,

and equipment costs) fall between 1–5% in the least-cost case relative to the “No HP/Solar/

Storage” approach, while emissions damages fall by 9–35%. While the model formulation

guarantees that the total cost in the least-cost case must not exceed the total cost in the “No

HP/Solar/Storage” approach, it is not guaranteed that private costs will independently fall; the

model could reduce total costs by lowering emissions and at the same time increase private costs.

Nonetheless, in all five climates, HP space and water heaters enable reductions in private costs.

The role that emissions damages play in driving the model is explored in Section 4.5.4.

While the use of electric heat pumps can enable significant cost and emissions reductions,

they can also cause cost increases. For the cold climate, where full electrification of space and

water heating would require significant system reinforcements, an all-electric policy increases

the total cost of energy services by over 27% relative to the least-cost case. This is driven

predominantly by the need for additional feeder capacity, additional heat pump capacity, and

increased generation capacity to accommodate increased winter peaks (see Figure 4.5). A similar

phenomenon occurs in the mixed-humid climate, though the increased feeder peak is less severe.

Both of these scenarios also result in steep drops in the feeder load factor, from 41–57% to

17–31%.29

The marine climate sees cost increases on the order of 10% in its all-electric scenario. This

29We assume that maintaining natural gas infrastructure costs $478-per-customer ($7,170 for a 15-residence
feeder), regardless of its level of use (U.S. Energy Information Administration, 2020). If a regional strategy of
"pruning" the natural gas system reduces some of these expenses, that could significantly close the cost gap between
an all-electric heating strategy and a hybrid/dual-fuel strategy in colder climates.
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Table 4.5: Summary statistics for the optimized loads in the least-cost, "No HP/Solar/Storage",
and all-electric scenarios. Energy costs include both the private cost of energy sold in wholesale
electricity markets as well as any generation capacity costs required to serve the feeder. The
average cost of electricity (¢-per-kWh) is computed as the sum of utility infrastructure costs,
imported electricity costs, and distributed generation costs divided by the total electricity
consumption from all sources.

Cold Hot-Dry Hot-Humid Mixed-Humid Marine

Feeder
Peak (kW)

Least-Cost 56 40 99 67 33
No HP/Sol./Stor. 54 40 97 66 33
All-Electric 213 40 98 138 48

Gas Consumption
(MMBTU)

Least-Cost 607 57 3 186 348
No HP/Sol./Stor. 1,327 216 273 991 424
All-Electric - - - - -

Electricity Cons.
Total | Imports

(MWh)

Least-Cost 277 | 277 149 | 149 228 | 228 249 | 249 117 | 117
No HP/Sol./Stor. 243 | 243 156 | 156 228 | 228 193 | 193 119 | 119
All-Electric 322 | 322 152 | 152 232 | 232 253 | 253 142 | 142

Carbon
Emissions
(tonnes)

Least-Cost 71 40 107 104 49
No HP/Sol./Stor. 109 52 123 130 54
All-Electric 41 38 108 95 35

Private
Energy Cost

Least-Cost $ 10,886 $ 5,982 $ 10,915 $ 10,071 $ 5,573
No HP/Sol./Stor. $ 12,529 $ 6,717 $ 11,299 $ 11,988 $ 5,895
All-Electric $ 14,336 $ 6,007 $ 11,179 $ 12,205 $ 5,707

Emissions
Cost

Least-Cost $ 3,606 $ 2,061 $ 5,448 $ 5,306 $ 2,522
No HP/Sol./Stor. $ 5,535 $ 2,627 $ 6,268 $ 6,645 $ 2,779
All-Electric $ 2,087 $ 1,938 $ 5,531 $ 4,820 $ 1,804

Utility
Infrastructure

Cost

Least-Cost $ 18,106 $ 18,069 $ 18,069 $ 18,069 $ 18,069
No HP/Sol./Stor. $ 18,069 $ 18,069 $ 18,069 $ 18,069 $ 18,090
All-Electric $ 26,858 $ 18,069 $ 18,069 $ 20,608 $ 18,944

Equipment
Cost

Least-Cost $ 11,897 $ 8,239 $ 12,813 $ 12,430 $ 5,707
No HP/Sol./Stor. $ 11,342 $ 8,284 $ 13,042 $ 12,358 $ 5,608
All-Electric $ 13,434 $ 8,642 $ 12,828 $ 15,565 $ 8,591

Total
Cost

Least-Cost $ 44,495 $ 34,351 $ 47,246 $ 45,877 $ 31,871
No HP/Sol./Stor. $ 47,475 $ 35,697 $ 48,678 $ 49,060 $ 32,372
All-Electric $ 56,715 $ 34,657 $ 47,608 $ 53,197 $ 35,045

Feeder
Load

Factor

Least-Cost 57% 43% 26% 43% 41%
No HP/Sol./Stor. 51% 45% 27% 34% 41%
All-Electric 17% 43% 27% 21% 34%

Space Heating
Energy from

Electricity (%)

Least-Cost 64% 81% 99% 83% 17%
No HP/Sol./Stor. 17% 28% 32% 6% 7%
All-Electric 100% 100% 100% 100% 100%

Average Electricity
Cost (per-kWh)

Least-Cost 7.65 ¢ 12.52 ¢ 11.96 ¢ 10.01 ¢ 14.55 ¢
No HP/Sol./Stor. 8.11 ¢ 12.18 ¢ 11.78 ¢ 11.57 ¢ 14.39 ¢
All-Electric 11.20 ¢ 12.37 ¢ 11.92 ¢ 12.05 ¢ 13.60 ¢
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Figure 4.5: Categorization of costs in each scenario. "Electric Customer Costs" are estimated as
$727-per-customer, while "Gas Customer Costs" are estimated as $478-per-customer (R. L. Fares
& King, 2017; U.S. Energy Information Administration, 2020). These costs pay for upstream
transmission, distribution, and administrative expenses, and are treated as unavoidable. "New
Feeder" represents the cost of additional distribution capacity required to serve load that exceeds
the existing feeder capacity (including headroom). "Generation Capacity" describes the cost of
capacity payments in markets that have a separate capacity auction; this is proportional to the
feeder-wide peak, independent of the feeder capacity. All of the other cost categories ("AC", "HP
Heat", "Plug", etc.) combine equipment costs, private costs, and externalities.
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can be explained in part because this climate has very little demand for cooling, so the heat

pump is only used in the heating season and the fixed equipment cost outweighs the operational

savings. For the marine climate, the private cost of energy is comparable across the base, “No

HP/Solar/Storage,” and all-electric scenarios, and the emissions (and associated damages) fall

significantly in the all-electric scenario. However, these savings are outweighed by an additional

$2,884 in equipment costs.

The average cost of electricity, reported in Table 4.5, is computed by summing the social cost

of electric energy consumed from the grid, the cost of generation capacity allocated to the feeder,

common electric utility costs associated with the feeder (including allocated upstream costs and

the cost of additional distribution capacity) and the cost of distributed generation, then dividing

by the amount of electricity consumed. In the least-cost case, this figure ranges from less than

$0.08 per-kWh in the cold climate to over $0.14 per-kWh in the marine climate. The range in

these numbers is driven by a number of factors, including differences in the wholesale price of

electricity (per Table 4.2) and in the amount of electricity consumed by residences in different

regions.

The annual profile of daily electric peaks are plotted for the all-electric and “No HP/Solar/

Storage” scenarios in Figure 4.6. We note that for the cold climate (and to a lesser extent the

mixed-humid climate), the all-electric heating strategy produces steep winter peaks that require

additional feeder capacity. For the cold climate with all-electric heating, the feeder peak reaches

213 kW, per Table 4.5. For the hot-dry and hot-humid climates, full heating electrification can

be facilitated without exceeding existing feeder capacity.

For the “No HP/Solar/Storage” technologies scenario, a significant amount of load from

electric resistance heating appears on the feeder profiles in the cold, hot-dry, and hot-humid

climates. However, this demand only represents 18–32% of heating energy, per Table 4.5.

Across all five climates, both the least-cost and all-electric scenarios realize significant

emissions reductions relative to the “No HP/Solar/Storage” approach. For the cold climate,

the all-electric scenario results in a 62% drop in emissions, while the least-cost case results in a

35% reduction. For the hot-humid and mixed-humid environments, emissions reductions due to
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Figure 4.6: Annual profile of daily electric peak loads in the optimized models for the all-electric
case (top) and the "No HP/Solar/Storage" case (bottom). The solid red line is the existing feeder
capacity before the optimization (assuming 50% headroom relative to the incumbent peak). The
dashed line is the optimized peak. The all-electric strategy produces significant increases in the
required feeder capacity in the cold and mixed-humid climates.
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electrification range from 11–27%.

For the cold and marine climates, emissions in the all-electric scenario are 42% and 29%

lower than in the least-cost scenario, but the total costs of serving customers (including emissions

damages) are higher. This indicates that the cost of minimizing emissions by fully electrifying

space and water heating exceeds its benefit. To understand how the assumed social cost of

carbon (SCC) influences the results, two specialized scenarios are presented in section 4.5.4 that

assume SCCs of $0 and $200.

We note that the emissions results are particularly sensitive to the assumptions about

emissions coefficients. For this analysis, we assumed a constant emissions factor for each climate

region based on the 2018 average, as reported by Environmental Protection Agency (2020). For

the representative cold climate (located in Upstate New York), this amounts to 0.2539 lb/kWh

(see Table 4.2), which reflects the region’s low-carbon electricity supply, backed by an abundance

of nuclear and hydropower. By contrast, the average emissions factor in the hot-humid climate

(Texas) is nearly four times higher.

When modeling new loads, most authors will use the non-baseload emissions factor (sometimes

called “marginal emissions factor”). This coefficient, also reported in Environmental Protection

Agency (2020), estimates the average emissions of all plants with variable output that follow

variation in demand. For most regions, this coefficient is significantly higher than the average

emissions coefficient because the load-following plants are predominantly powered by natural gas.

To better understand how the grid emissions factor influences the emissions impact of heating

electrification, we construct a simple example:

Let us say that we would like to produce 1 kWh (thermal) of heating energy. If we produce

this with an electric heat pump, the electricity required is qelec = 1kW h
COP , where COP is the heat

pump’s coefficient of performance. If we produce this heat with natural gas, the natural gas

required must have a caloric value of qgas = 1kW h
η , where η is the efficiency of the furnace. The

ratio of the emissions produced from providing this heat with a heat pump to the emissions

produced from providing this heat with a gas furnace can then be expressed:
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r = Emissionselec

Emissionsgas
= eelec ∗ qelec

egas ∗ qgas
=

eelec ∗ 1kW h
COP

egas ∗ 1kW h
η

= eelec

egas
∗ η

COP

Rearranging this equation to isolate eelec and setting r equal to 1 tells us the value for eelec at

which the grid emissions for heat pump heating would equal the emissions produced by directly

combusting natural gas in a furnace. For a low-efficiency heat pump in the cold climate with an

average COP of 3, a low-efficiency furnace with an efficiency of 80%, and assuming stoichiometric

combustion of natural gas (egas = 0.117lb/kBTU = 0.4lb/kWh), this figure simplifies to:

r = eelec

0.4lb/kWh
∗ 80%

3 = 0.67 ∗ eelec

eelec = 1.50lb/kWh

In other words, for there to be no emissions benefit to heat pump heating in the cold climate,

the grid emissions would have to exceed 1.5 lb/kWh. This is 57% higher than the national

average grid emissions of 0.952 lb/kWh, but only slightly above the national average non-baseload

(load following) emissions of 1.423 lb/kWh (Environmental Protection Agency, 2020). If one

employs the non-baseload emissions factor – assuming that all of the electricity required to power

newly-electrified loads comes from existing load-following plants – then the emissions benefits of

heating electrification all but disappear.

Most advocates of heating and transportation electrification will argue that an electrification

strategy must go hand-in-hand with a major expansion of renewable electricity production.

While it is unsound to imagine that 100% of the electricity required to electrify heating and

transportation will come from zero-emissions renewables, it is equally unlikely that this new load

will be met entirely by existing thermal plants. While the historical eGrid numbers are very

precise estimates of historical emissions factors, they are merely a snapshot; they do not offer

meaningful insight into how the grid is changing.

Increased demand from electrification will spur new investments in generation, much of

which is poised to come from wind and solar. Insofar as these new demands are flexible (thanks
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to managed EV charging schedules, dual-fuel heat pump configurations, and perhaps thermal

and/or battery storage), their loads can be shaped to match the output of variable renewable

resources. This suggests that there is room for a symbiotic relationship between growth in

renewables and electrification.30

4.5.3 Progress Scenarios

As renewables are added to the grid and there is greater adoption of emerging technologies,

the emissions and cost implications of adopting various customer-side technologies can be expected

to change. To gain a better understanding of what a least-cost portfolio of technologies would be

in a lower-carbon future, we include a set of “progress” scenarios that assume a 30% reduction

in the installed cost of heat pumps, air conditioners, rooftop solar PV, battery storage, energy

efficiency, and feeder capacity, and a 70% reduction in emissions from the electric grid.

Table 4.6 summarizes the major results from these scenarios. As expected, the progress

scenarios result in significantly lower costs and emissions than the base scenarios. The largest cost

reductions in both relative and absolute terms for the least-cost cases are found in the hot-humid

and mixed-humid environments, where the total cost of serving customer loads decreases by

$6,087–$7,617 (13–16%). This appears to be driven by lower equipment costs and the reduced

(social) cost of electricity purchased from the grid. These climates also see the greatest absolute

emissions reductions, of 69–76 tonnes (66–71%).

The percentage of heating energy provided by electricity increases in all five climates. Notably,

the marine climate, which only sees 17% of heating energy satisfied by electricity in the base

case, has 50% of its heating energy satisfied by electricity in the progress case. In the cold

climate, the percentage of heating energy provided by electricity increases from 65% to 75%. Gas

consumption falls from 599 MMBTU to 445 MMBTU and emissions drop by 34 tonnes (48%).

In the progress scenario, the model selects 94 kWh of battery storage in the hot-humid

30The most-thorough approach to understanding how these technologies could spread in tandem would involve
building a generation model that is endogenous to the customer-level optimization. Rather than including emissions
and energy/generation costs as input parameters, this model would simultaneously optimize generation investments
and customer-side technology adoption.
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Table 4.6: Summary statistics for the optimized loads in the progress scenarios. Energy costs
include both the private cost of energy sold in wholesale electricity markets as well as any
generation capacity costs required to serve the feeder. The average cost of electricity (¢-per-kWh)
is computed as the sum of utility infrastructure costs, imported electricity costs, and distributed
generation costs divided by the total electricity consumption from all sources.

Cold Hot-Dry Hot-Humid Mixed-Humid Marine

Feeder
Peak (kW)

Least-Cost 55 35 99 63 31
No HP/Sol./Stor. 54 40 102 73 33
All-Electric 212 36 99 137 45

Gas Consumption
(MMBTU)

Least-Cost 450 19 - 156 233
No HP/Sol./Stor. 1,209 216 240 769 424
All-Electric - - - - -

Electricity Cons.
Total | Purchases

(MWh)

Least-Cost 266 | 266 140 | 140 220 | 226 233 | 233 106 | 106
No HP/Sol./Stor. 278 | 278 156 | 156 230 | 230 249 | 249 119 | 119
All-Electric 306 | 306 141 | 141 217 | 224 243 | 243 124 | 124

Carbon
Emissions
(tonnes)

Least-Cost 36 12 32 35 22
No HP/Sol./Stor. 81 24 46 73 34
All-Electric 12 11 31 27 9

Private
Energy Cost

Least-Cost $ 10,129 $ 5,651 $ 7,197 $ 9,665 $ 4,970
No HP/Sol./Stor. $ 12,898 $ 6,846 $ 11,190 $ 13,096 $ 5,994
All-Electric $ 14,010 $ 5,651 $ 7,059 $ 12,198 $ 5,107

Emissions
Cost

Least-Cost $ 1,857 $ 592 $ 1,619 $ 1,798 $ 1,101
No HP/Sol./Stor. $ 4,145 $ 1,239 $ 2,361 $ 3,715 $ 1,719
All-Electric $ 594 $ 538 $ 1,601 $ 1,392 $ 471

Utility
Infrastructure

Cost

Least-Cost $ 18,069 $ 18,069 $ 18,069 $ 18,069 $ 18,069
No HP/Sol./Stor. $ 18,069 $ 18,069 $ 18,162 $ 18,069 $ 18,084
All-Electric $ 24,193 $ 18,069 $ 18,069 $ 19,789 $ 18,563

Equipment
Cost

Least-Cost $ 10,709 $ 6,988 $ 13,128 $ 10,482 $ 6,063
No HP/Sol./Stor. $ 9,689 $ 6,811 $ 10,542 $ 9,468 $ 5,327
All-Electric $ 10,252 $ 7,125 $ 13,391 $ 11,526 $ 7,292

Total
Cost

Least-Cost $ 40,765 $ 31,299 $ 40,014 $ 40,014 $ 30,204
No HP/Sol./Stor. $ 44,802 $ 32,965 $ 42,255 $ 44,349 $ 31,123
All-Electric $ 49,049 $ 31,384 $ 40,121 $ 44,906 $ 31,433

Feeder
Load

Factor

Least-Cost 55% 46% 26% 42% 39%
No HP/Sol./Stor. 59% 45% 26% 39% 41%
All-Electric 16% 45% 26% 20% 31%

Space Heating
Energy from

Electricity (%)

Least-Cost 75% 94% 100% 86% 48%
No HP/Sol./Stor. 25% 28% 40% 24% 7%
All-Electric 100% 100% 100% 100% 100%

Average Electricity
Cost (per-kWh)

Least-Cost 7.44 ¢ 12.18 ¢ 10.51 ¢ 9.12 ¢ 14.68 ¢
No HP/Sol./Stor. 7.04 ¢ 11.37 ¢ 10.09 ¢ 8.91 ¢ 13.58 ¢
All-Electric 10.35 ¢ 12.11 ¢ 10.55 ¢ 10.77 ¢ 13.74 ¢
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climate. This storage is used to arbitrage wholesale electricity prices. The battery is charged at

a weighted-average SMC of 2.3¢ and discharged at a weighted-average SMC of 12.0¢.

4.5.4 Social Cost of Carbon

One important source of uncertainty is the estimated social cost of carbon (SCC). The

social cost of carbon measures the damage that one unit of carbon dioxide emissions does to

the economy through its contribution to anthropogenic climate change. At $51/tonne,31 these

damages account for 25–30% of the social cost of electricity and nearly half of the social cost of

natural gas. Other estimates of the SCC range from nearly $0/tonne to over $200/tonne, and

ongoing work is required to revise the SCC used in federal calculations (Carleton & Greenstone,

2021; Interagency Working Group on Social Cost of Greenhouse Gases, United States Government,

2021). While a broad range of policies are advisable in both low-SCC and high-SCC scenarios

(Kaufman, 2018), the precise estimate used in an optimization exercise can determine which

fuels are best utilized for various purposes. Figure 4.7 illustrates the private and emissions costs

of consuming electricity and natural gas under a range of SCC estimates. At $200/tonne, the

emissions cost becomes dominant for both electricity and gas.

For higher estimates of the SCC, the balance of technologies used for heating shifts in favor

of higher efficiency equipment and electrification. In Figure 4.8, each column describes the

equipment used to provide space heating energy in a different scenario. In the cold climate,

raising the estimated SCC from $51/tonne to $200/tonne raises the fraction of space heating

energy satisfied by electricity from 65% to 85%. Using a SCC of $0/tonne lowers the fraction of

space heating energy satisfied by electricity to 54%.

The precise value of the SCC has a modest effect on space heating equipment selection in the

cold climate: at $51/tonne, three residences use only a furnace for heating, four use only a HP,

and eight use a combination of a HP and a furnace. At $200/tonne, one residence uses only a

furnace, four use only a heat pump, and the remaining ten use both. These results indicate that

while the precise value of the SCC can determine the optimal balance of heating fuels, hybrid

31This is the central value estimated for 2020 in (Interagency Working Group on Social Cost of Greenhouse
Gases, United States Government, 2021)
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Figure 4.7: Commodity and emissions costs for electricity and gas, over a range of values for
the social cost of carbon (SCC). The commodity cost of electricity is taken as 5¢/kWh and the
emissions factor is assumed to be 0.9529 lb-CO2-equivalent/kWh. The commodity cost of gas is
taken as $3/MMBTU and we assume stoichiometric combustion (117lb/MMBTU).

HP/furnace systems appear to be a robust least-cost solution for cold climate space heating over

a range of estimates of the SCC.

In the hot-humid climate, higher estimates for the SCC incentivize adoption of higher-

efficiency HPs. If the SCC is assumed to be $51/tonne, the majority of heat is delivered by a

14-SEER HP and only about 10% is delivered by an 18-SEER HP. At $200/tonne, more than

90% of space heating energy is delivered by an 18-SEER HP. In the marine climate, higher

estimates for the SCC shift the balance of heating energy from being predominantly provided by

low-efficiency furnaces to being predominantly provided by HPs and high-efficiency furnaces.

In addition to varying the SCC using the base assumptions, we also vary the SCC in scenarios

that use the progress assumptions. For all values of the SCC in all climates, the progress scenario

has s greater fraction of space heating energy supplied by electricity. In the hot-dry and hot-

humid climates, combining the progress assumptions with a SCC of $200/tonne results in 100%

electrification of space heating as a least-cost solution. In the other three climates, electricity is

used to provide between 86–94% of space heating energy.

Table 4.7 summarizes the results from several additional optimization scenarios, including
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Figure 4.8: Breakdown of delivered heating energy in each climate in optimized models, using
different estimates for the social cost of carbon (SCC). In both the base and progress scenarios,
higher estimates for the SCC promote greater use of HPs. In the hot-humid climate, this includes
adoption of high-efficiency HPs.
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those that vary the SCC. Notably, the optimized feeder peaks in most of these scenarios rarely

exceed the existing feeder capacities, so there is no need to reinforce the distribution system.

Consequently, utility infrastructure cost is relatively constant, reflecting only upstream fixed

costs.
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Table 4.7: Summary statistics for the optimized loads in the
additional scenarios. Energy costs include both the private
cost of energy sold in wholesale electricity markets as well
as any generation capacity costs required to serve the feeder.
The average cost of electricity (¢-per-kWh) is computed as
the sum of utility infrastructure costs, purchased electricity
costs, and distributed generation costs divided by the total
electricity consumption from all sources.

Cold Hot-Dry Hot-Humid Mixed-Humid Marine

Feeder
Peak (kW)

Low HR 47 36 66 62 31
High HR 59 38 115 67 37
No SCC 56 39 99 66 33
$200/ton SCC 58 35 99 63 33
Progress, No SCC 46 35 99 64 33
Progress, $200/ton SCC 72 34 99 63 36
Microgrid - - - - -
Base + EV 56 44 99 67 33
High AC/HP Costs 55 43 101 66 33
Constant $0.05 SMC 44 36 76 66 33
Solar+Storage Favored 37 29 66 62 22

Gas Consumption
(MMBTU)

Low HR 697 57 46 218 348
High HR 596 56 - 186 325
No SCC 808 56 4 224 401
$200/ton SCC 308 19 4 149 210
Progress, No SCC 777 56 - 203 352
Progress, $200/ton SCC 162 - - 66 63
Microgrid - - - - -
Base + EV 708 56 3 190 348
High AC/HP Costs 685 47 42 203 378
Constant $0.05 SMC 971 57 2 173 336
Solar+Storage Favored 872 57 4 218 372

Continued on next page
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Cold Hot-Dry Hot-Humid Mixed-Humid Marine

Electricity Cons.
Total | Purchases

(MWh)

Low HR 255 | 255 145 | 145 220 | 220 237 | 237 111 | 111
High HR 285 | 285 148 | 148 230 | 230 249 | 249 122 | 122
No SCC 253 | 253 153 | 153 239 | 239 253 | 253 119 | 119
$200/ton SCC 271 | 271 140 | 140 196 | 196 231 | 231 110 | 110
Progress, No SCC 225 | 225 138 | 138 223 | 230 238 | 238 109 | 109
Progress, $200/ton SCC 276 | 276 133 | 133 198 | 203 238 | 238 122 | 122
Microgrid 225 | 0 120 | 0 190 | 0 185 | 0 98 | 0
Base + EV 315 | 315 203 | 203 280 | 280 303 | 303 171 | 171
High AC/HP Costs 276 | 276 156 | 156 240 | 240 253 | 253 119 | 119
Constant $0.05 SMC 209 | 209 145 | 145 238 | 238 248 | 248 119 | 119
Solar+Storage Favored 224 | 226 145 | 147 228 | 237 236 | 236 115 | 118

Carbon
Emissions

(tons)

Low HR 66 36 96 92 44
High HR 64 36 98 94 45
No SCC 72 38 102 98 48
$200/ton SCC 48 33 84 86 36
Progress, No SCC 49 12 29 35 26
Progress, $200/ton SCC 18 9 26 28 12
Microgrid - - - - -
Base + EV 74 49 119 113 57
High AC/HP Costs 68 38 104 97 47
Constant $0.05 SMC 142 66 103 116 69
Solar+Storage Favored 72 36 101 92 46

Private
Energy Cost

Low HR $ 10,815 $ 6,014 $ 11,062 $ 10,145 $ 5,586
High HR $ 11,454 $ 6,125 $ 11,461 $ 10,564 $ 5,991
No SCC $ 11,467 $ 6,336 $ 12,037 $ 10,784 $ 6,051
$200/ton SCC $ 10,135 $ 5,708 $ 9,740 $ 9,767 $ 5,144
Progress, No SCC $ 10,419 $ 5,731 $ 7,410 $ 10,212 $ 5,528
Progress, $200/ton SCC $ 10,096 $ 5,399 $ 7,108 $ 9,616 $ 5,207
Microgrid $ - $ - $ - $ - $ -
Base + EV $ 12,240 $ 8,042 $ 12,113 $ 11,713 $ 7,637
High AC/HP Costs $ 11,513 $ 6,438 $ 12,324 $ 10,721 $ 5,980
Constant $0.05 SMC $ 10,675 $ 5,349 $ 8,948 $ 9,537 $ 5,552
Solar+Storage Favored $ 10,341 $ 5,545 $ 5,943 $ 10,120 $ 5,251

Continued on next page
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Cold Hot-Dry Hot-Humid Mixed-Humid Marine

Emissions
Cost

Low HR $ 3,386 $ 1,826 $ 4,884 $ 4,686 $ 2,224
High HR $ 3,286 $ 1,860 $ 4,978 $ 4,814 $ 2,290
No SCC $ - $ - $ - $ - $ -
$200/ton SCC $ 9,507 $ 6,539 $ 16,709 $ 17,240 $ 7,189
Progress, No SCC $ - $ - $ - $ - $ -
Progress, $200/ton SCC $ 3,631 $ 1,812 $ 5,170 $ 5,552 $ 2,333
Microgrid $ - $ - $ - $ - $ -
Base + EV $ 3,770 $ 2,498 $ 6,074 $ 5,756 $ 2,916
High AC/HP Costs $ 3,478 $ 1,923 $ 5,307 $ 4,934 $ 2,392
Constant $0.05 SMC $ 7,232 $ 3,346 $ 5,244 $ 5,928 $ 3,541
Solar+Storage Favored $ 3,688 $ 1,854 $ 5,140 $ 4,671 $ 2,369

Utility
Infrastructure

Cost

Low HR $ 18,639 $ 18,455 $ 18,069 $ 18,069 $ 18,580
High HR $ 18,069 $ 18,069 $ 18,069 $ 18,069 $ 18,069
No SCC $ 18,106 $ 18,069 $ 18,069 $ 18,069 $ 18,089
$200/ton SCC $ 18,236 $ 18,069 $ 18,069 $ 18,069 $ 18,069
Progress, No SCC $ 18,069 $ 18,069 $ 18,069 $ 18,069 $ 18,091
Progress, $200/ton SCC $ 18,728 $ 18,069 $ 18,069 $ 18,069 $ 18,216
Microgrid $ - $ - $ - $ - $ -
Base + EV $ 18,106 $ 18,069 $ 18,069 $ 18,069 $ 18,069
High AC/HP Costs $ 18,096 $ 18,069 $ 18,152 $ 18,069 $ 18,089
Constant $0.05 SMC $ 18,069 $ 18,069 $ 18,069 $ 18,069 $ 18,111
Solar+Storage Favored $ 18,069 $ 18,069 $ 18,069 $ 18,069 $ 18,069

Equipment
Cost

Low HR $ 12,440 $ 8,466 $ 13,969 $ 13,091 $ 6,099
High HR $ 11,682 $ 8,314 $ 12,507 $ 12,430 $ 5,542
No SCC $ 11,513 $ 8,093 $ 12,011 $ 11,980 $ 5,415
$200/ton SCC $ 14,924 $ 9,309 $ 16,452 $ 13,956 $ 7,394
Progress, No SCC $ 10,201 $ 6,834 $ 13,149 $ 9,969 $ 5,397
Progress, $200/ton SCC $ 12,026 $ 7,494 $ 13,925 $ 11,090 $ 6,801
Microgrid $ 368,556 $ 79,315 $ 152,918 $ 256,421 $ 172,008
Base + EV $ 11,736 $ 8,244 $ 13,161 $ 12,540 $ 5,686
High AC/HP Costs $ 14,766 $ 10,777 $ 16,453 $ 16,026 $ 6,011
Constant $0.05 SMC $ 12,375 $ 8,466 $ 12,433 $ 12,444 $ 5,606
Solar+Storage Favored $ 13,510 $ 9,161 $ 16,904 $ 13,443 $ 6,846

Continued on next page
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Cold Hot-Dry Hot-Humid Mixed-Humid Marine

Total
Cost

Low HR $ 45,281 $ 34,760 $ 47,985 $ 45,991 $ 32,488
High HR $ 44,491 $ 34,368 $ 47,016 $ 45,877 $ 31,892
No SCC $ 41,086 $ 32,498 $ 42,117 $ 40,833 $ 29,555
$200/ton SCC $ 52,802 $ 39,625 $ 60,970 $ 59,032 $ 37,797
Progress, No SCC $ 38,689 $ 30,634 $ 38,628 $ 38,250 $ 29,015
Progress, $200/ton SCC $ 44,481 $ 32,774 $ 44,272 $ 44,327 $ 32,557
Microgrid $ 368,556 $ 79,315 $ 152,918 $ 256,421 $ 172,008
Base + EV $ 45,852 $ 36,853 $ 49,417 $ 48,079 $ 34,308
High AC/HP Costs $ 47,854 $ 37,207 $ 52,237 $ 49,750 $ 32,471
Constant $0.05 SMC $ 48,352 $ 35,230 $ 44,694 $ 45,978 $ 32,810
Solar+Storage Favored $ 45,608 $ 34,629 $ 46,055 $ 46,303 $ 32,536

Feeder
Load

Factor

Low HR 62% 46% 38% 44% 41%
High HR 55% 45% 23% 43% 38%
No SCC 52% 45% 27% 44% 41%
$200/ton SCC 53% 46% 23% 42% 38%
Progress, No SCC 55% 45% 26% 42% 37%
Progress, $200/ton SCC 44% 44% 23% 43% 38%
Microgrid - - - - -
Base + EV 65% 53% 32% 52% 60%
High AC/HP Costs 57% 41% 27% 44% 41%
Constant $0.05 SMC 54% 46% 36% 43% 41%
Solar+Storage Favored 70% 57% 41% 44% 62%

Space Heating
Energy from

Electricity (%)

Low HR 60% 81% 89% 83% 17%
High HR 65% 81% 100% 83% 22%
No SCC 54% 81% 99% 83% 17%
$200/ton SCC 82% 94% 99% 86% 50%
Progress, No SCC 55% 81% 100% 83% 22%
Progress, $200/ton SCC 91% 100% 100% 94% 86%
Microgrid 100% 100% 100% 100% 100%
Base + EV 59% 81% 99% 83% 17%
High AC/HP Costs 60% 84% 90% 83% 17%
Constant $0.05 SMC 43% 81% 99% 84% 20%
Solar+Storage Favored 49% 81% 99% 83% 15%

Continued on next page
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Cold Hot-Dry Hot-Humid Mixed-Humid Marine

Average Electricity
Cost (per-kWh)

Low HR 8.16 ¢ 12.97 ¢ 12.10 ¢ 10.20 ¢ 15.48 ¢
High HR 7.55 ¢ 12.54 ¢ 11.89 ¢ 10.01 ¢ 14.14 ¢
No SCC 7.51 ¢ 11.16 ¢ 9.61 ¢ 8.17 ¢ 13.24 ¢
$200/ton SCC 9.65 ¢ 16.34 ¢ 19.01 ¢ 15.44 ¢ 18.57 ¢
Progress, No SCC 8.02 ¢ 11.92 ¢ 9.75 ¢ 8.47 ¢ 14.15 ¢
Progress, $200/ton SCC 8.29 ¢ 13.57 ¢ 13.02 ¢ 10.52 ¢ 14.49 ¢
Microgrid 141.49 ¢ 54.92 ¢ 64.79 ¢ 112.85 ¢ 142.91 ¢
Base + EV 6.98 ¢ 10.39 ¢ 10.38 ¢ 8.91 ¢ 11.36 ¢
High AC/HP Costs 7.65 ¢ 12.20 ¢ 11.83 ¢ 9.90 ¢ 14.41 ¢
Constant $0.05 SMC 10.85 ¢ 13.27 ¢ 10.55 ¢ 10.20 ¢ 15.00 ¢
Solar+Storage Favored 8.77 ¢ 12.88 ¢ 11.36 ¢ 10.22 ¢ 15.17 ¢
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It is worth noting that the majority of heating is provided by heat pumps in four out of the

five climates studied even if the SCC is assumed to be $0/tonne. This indicates that heat pumps

are an essential part of a least-cost technology portfolio, independent of any considerations about

emissions damages.

4.5.5 High/Low Headroom

In the base scenarios, we assume that all feeders have a headroom of 50% over the pre-

optimized peak. Because there is considerable variability in the available headroom for electrifica-

tion between different feeders (National Grid, 2020), we include the results from two specialized

scenarios for each feeder: one with zero headroom (the feeder is fully-congested during peak

hours) and one with 100% headroom (the pre-optimization peak is half of the feeder’s capacity).

Figure 4.9 shows the daily peaks in the cold and hot-humid climates for the zero headroom,

base, and 100% headroom scenarios. Relative to the base case, the zero headroom scenario has a

lower peak in the cold climate, with less heating energy provided by heat pumps and electric

resistance heating. For the hot-humid climate, the higher headroom in the latter scenarios

appears to only affect the equipment operation a few days per-year.

Even in the zero headroom scenario – wherein the feeder’s capacity is highly-constrained –

the model does not select distributed solar PV and/or storage to supplement electricity from the

grid. For PV to be part of a least-cost portfolio of technologies, it would need to enable cost

reductions from avoided energy and capacity in excess of its cost. In the hot-dry region, the

average SMC of electricity is γElectric
t = 5.2¢, and a 1 kW PV array can be expected to produce

1,500–2,000 kWh/year, worth no more than 5.2¢∗2, 000 = $104 in avoided energy costs. This

means that the value of avoided feeder capacity would have to be nearly $200/year, approximately

four times our estimate of the cost of additional distribution capacity.32

Notably, the change in total cost between the zero headroom, 50% (base), and 100% headroom

32Some authors will estimate a locational marginal capacity cost based on the present value of deferring a
planned upgrade by a certain number of years, per the approach outlined in Woo et al. (1994). Using this approach,
an author may produce much larger estimates for the value of avoided feeder capacity value if a DER project
allows the utility to defer an expensive upgrade.
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Figure 4.9: Top: daily peaks in the cold climate for the zero headroom, 50%, and 100% headroom
scenarios. Bottom: daily peaks in the hot-humid climate for the zero headroom, 50%, and 100%
headroom scenarios.
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scenarios is relatively small in all climates. This makes sense in an optimized scenario, because the

model is able to simultaneously adjust decisions at the household and utility levels to minimize

costs. This further implies that modifying the estimate for the annualized cost of additional

distribution capacity (say, from $50 per-kW to $300 per-kW) would only have a modest impact

on cost as the model could simply refrain from increasing distribution capacity altogether.

In a model where customers are operating independently in response to pricing signals from

the utility (especially rather blunt ones like volumetric tariffs), this delicate balance would be far

more difficult to achieve. This is explored in Chapter 5.

4.5.6 Microgrid

The growing availability of inexpensive solar PV panels and battery storage raises the

possibility that it will become economical for customers to abandon their utility services altogether

and generate their own electricity. While skeptics of this decentralized approach will cite the

higher cost of residential-scale rooftop solar relative to utility-scale installations, advocates have

argued that the savings in upstream utility expenses justify the additional customer-side expenses.

To simulate a situation in which customers abandon their utilities and instead produce all of

their energy locally using solar and storage, we construct a “microgrid” scenario. To create this

scenario in our model, we simply set the upper bound of all purchases (electric and gas) to zero.

Consequently, any consumption from equipment must be concurrently produced by solar panels

or discharged from batteries.

Table 4.8 summarizes the equipment capacities chosen by the model for each region. The

cold and mixed-humid climates have the greatest generation and storage requirements, reflecting

their large heating and cooling requirements. The hot-dry climate has the smallest generation

and storage requirements, due to its high solar potential and minimal thermal loads. The average

load is computed over the course of the entire year and the storage duration is computed by

dividing the storage capacity by the average load. In the shoulder seasons, the storage duration is

significantly greater than the reported figure; in the heating and cooling seasons, it is significantly

less.
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Table 4.8: Summary of distributed energy resources in microgrid scenarios.
Cold Hot-Dry Hot-Humid Mixed-Humid Marine

Solar Cap (kW) 120 19 39 67 36
Storage Cap (kWh) 2,980 573 1,251 2,914 1,862
Average Load (kW) 32 14 24 25 12
Storage Duration (Hours) 92 42 52 114 153

To put the storage figures in perspective, we can estimate the storage duration by dividing

the storage capacity by the average feeder-wide load (including plug loads and thermal loads).

The storage duration ranges from 42 hours for the hot-dry climate to 153 hours for the marine

climate. The hot-dry climate is optimal for a solar-plus-storage arrangement because it has strong

solar potential with low inter-day variation and very consistent year-round energy requirements.

Of note is the inefficient use of energy produced by the solar PV in the microgrid scenarios.

Figure 4.10 shows the breakdown of energy potential from the solar panels. In all climates, more

than half of the energy that can be produced by the PV array is either curtailed at the panel or

dissipated by the battery. For the cold and marine climates, less than 25% of energy is utilized.
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Figure 4.10: Breakdown of energy potential at solar panel.

Due to the high cost of distributed generation and its inefficient use, the cost of operating

a microgrid system is significantly higher than the least-cost scenario in all climates, even

when accounting for the sizable reduction in fixed costs. In the hot-dry climate, which has the
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greatest solar potential and the smallest annual space-heating demand, the annual cost of serving

a collection of customers with solar and storage is $2,768 per-1000-sf (including annualized

equipment costs). This is more than twice as large as the least-cost configuration, which includes

over $630 per-1000-sf ($18,000 total) in unavoidable utility costs. In other climates, the cost is

even higher. The results of this analysis are presented in Figure 4.11.
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Figure 4.11: Breakdown of costs for microgrid scenarios. Solar and storage costs are dominant in
all five regions.

For the cold climate, which has large heating and cooling loads, the annual cost of a solar-

and-storage microgrid is approximately $17,400 per-1000-sf, more than ten times larger than

$1,656 required to provide energy services in the base scenario.

For the microgrid scenario, we assume that there is no grid connection, so the average cost

of electricity in each climate is computed by simply dividing the total expenditure on solar and
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storage by the quantity of electricity consumed by equipment onsite.33 This figure ranges from

$0.55 per-kWh for the hot-dry climate to $1.43 per-kWh for the marine climate. By comparison,

in the base case, the average cost of grid-provided electricity (including infrastructure costs)

is $0.07 to $0.15 per-kWh. Furthermore, the costs associated with the microgrid scenario are

likely underestimated, as there would be some cost to maintaining poles and conductors between

residences.

4.5.7 EV Charging

In the United States, 36% of CO2 emissions from energy consumption is associated with the

transportation sector U.S. Energy Information Administration (2021e). Historically, most of

the reduction in vehicle emissions have come from incremental improvements in fuel efficiency.

However, because most vehicles in the United States directly combust petroleum, it is impossible

to eliminate emissions from vehicles altogether without switching to non-petroleum fuels.

Electric vehicles, coupled with an expansion of zero-carbon electricity generation, have

emerged as an opportunity to reduce emissions from automobiles. Steinberg et al. (2017)

demonstrate that electrification of end uses (including transportation, buildings, and industry)

and simultaneous power sector decarbonization can achieve reductions of economy-wide fossil fuel

emissions by 74% by 2050 (relative to 2005 levels). Even without power sector decarbonization,

electrification could reduce fossil fuel emissions by 41%. Mai et al. (2018) estimate that electric

vehicles could make up between 11–81% of the light-duty fleet by 2050, depending on technology

advancement and consumer preference.

To understand how loads from electric vehicle charging affect the feeder, we include a

specialized scenario wherein each residence has one electric vehicle that must receive 10 kWh of

charging each night34.

The results of this optimization are described in Table 4.7. We find that including EV

charging in the model only increases the feeder peak in the hot-dry region, though this new peak

33This does not include electricity dissipated by the battery through the charging cycle.
34This would allow a customer to drive approximately 30 miles-per-day or 10,890 miles-per-year. Charging must

occur from 8 PM - 6 AM and assumed to be satisfied with a Level 1 Charger that has a maximum power of 1.4 kW.
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is still well below the feeder’s assumed capacity and results in no additional infrastructure costs.

EV charging results in an additional 54,450 kWh of consumption35 and increases the total energy

cost by between $1,551—$2,507. By comparison, driving the same distance in gasoline-powered

vehicles that get 40 miles-per-gallon would require 15∗10,890miles
40MP G = 4,084 gallons of gas, costing

approximately $4, 084 ∗ $3.50 = $14, 294 in private costs plus several thousand more dollars in

emissions damages.

Figure 4.12 shows the EV charging, space heating, and various other loads in the mixed-humid

climate on an example day in January. The left-hand plot shows the least-cost model without any

EV charging, while the righthand plot shows the same model with EV demands. The inclusion

of EV charging loads predominantly fills in excess capacity on the feeder and slightly depresses

the amount of space heating energy produced by the heat pump, but does not raise the feeder’s

peak.36

The competition for limited feeder capacity between EVs and heat pumps results in modest

reductions in the output from heat pumps, with the remaining space heating demand satisfied

by natural gas furnaces. In the cold climate, the fraction of space heating energy produced by

electricity falls from 65% to 60% when EVs are included. In the other climates, the difference

does not exceed 2% of annual heating demand.

4.5.8 High AC/HP Costs

In an additional scenario we assume a 50% premium on the installed cost of a new air

conditioner or heat pump. This extra allowance captures conditions where, for example, a

residence does not have all the proper ducting in place for a new central unit and needs to install

higher-cost ductless units instead. As expected, total equipment costs are higher in most climates.

The exception is the marine climate, where equipment costs are about 1.5% lower (this is most

likely due to residual error in the optimization algorithm, which, for performance, only converges

3515 residences * 10 kWh * 363 days = 54,450 kWh. No charging occurs on the first or last day because there is
not a full night over which to charge.

36Even though the feeder’s capacity, denoted by the solid red line, is well above the observed load, the model
still attempts to minimize the peak (the dashed line) in order to reduce generation capacity requirements and
associated costs
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Figure 4.12: EV charging, space heating, and various other loads in the mixed-humid climate on
an example day in January. Left: least-cost model without any EV charging. Right: the same
model with EV charging demands.

to an MIP gap of 2%).

There are modest reductions in the fraction of space heating energy coming from electricity

relative to the base case in two climates, from 64% to 60% in the cold climate and from 99%

to 90% in the hot-humid climate. Notably, the fraction of space heating energy coming from

electricity increases slightly in the hot-dry climate when we assume the higher equipment cost,

from 81% to 84%. This cannot be explained by the inputs and is most likely the result of error

in the reported solution.

4.5.9 Constant SMC

We also include a scenario in which the SMC of electricity is set to a constant $0.05 per-kWh

in all five climate regions and the cost of generation capacity is set at a constant $30 per-kW.

This allows us to isolate the effect of climate variability.

The results from this scenario are summarized in the “Constant $0.05 SMC” row of Table

4.7. While there a few notable differences between the outcomes from this scenario and the base
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case (e.g. only 43% of space heating energy is electrified in the cold climate, compared to 64% in

the base case, leading to higher gas consumption and lower electricity consumption), the results

are generally consistent. This suggests that the modeling results shown throughout this chapter

are robust to changes in the specific sample of historical electricity prices used as inputs to the

optimization.

4.5.10 Solar + Storage Favored

We have seen very limited adoption of solar and storage in most of the scenarios so far. As a

stress test, we produce a final scenario wherein the feeder is highly capacity-constrained (with

only enough capacity to satisfy the pre-optimization loads), additional feeder capacity costs $200

per-kW-year (four times larger than the estimate used elsewhere), and solar and storage are

both priced at 50% of their estimated cost in the base case ($150 per-kW-year for solar and $25

per-kWh-year for storage).

The results from this scenario are listed in row “Solar+Storage Favored” of Table 4.7. None

of the regions adopt any solar, but battery storage is used in the cold, hot-humid, hot-dry, and

marine climates, with capacities ranging from 28 kWh in the hot-dry climate to 156 kWh in the

hot-humid climate.

The battery is used for two purposes. The first is energy arbitrage: charging when power is

inexpensive and discharging when the price goes up. In Figure 4.13, we plot the battery state

of charge and SMC for a 7-day period in the hot-humid climate in the summer, which has the

greatest hour-to-hour electric price volatility. We observe that the battery is charged each day in

the early morning when the SMC is low, then discharged when the SMC is high in the afternoon

and early evening.

The battery is also used to shave peak loads. Figure 4.14 decomposes the electric loads in

the hot-humid climate for a 7-day period in the winter, when the distribution feeder is under

significant stress due to electric heating loads. Here we observe that the battery charges in

anticipation of heating peaks on the third and fourth days, then discharges during the peak event

so that the net load on the feeder (the solid black line) never exceeds 66 kW, as this would incur
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Figure 4.13: The battery state of charge and SMC for a 7-day period in the hot-humid climate in
the summer. The battery is charged each day in the early morning when the SMC is low, then
discharged when the SMC is high in the afternoon and early evening.

additional distribution costs.

We note that the use of historical hourly price data most likely creates a false sense of

precision. In a world where batteries are available at $25 per-kWh, it is likely that most of

the opportunities for energy arbitrage will be captured at the bulk power system scale (thus

smoothing the electricity prices seen by utilities). Nonetheless, it seems entirely plausible that

batteries could be advantageously deployed on certain capacity-constrained feeders to manage

peak loads and defer system reinforcements.

4.6 Generalization to Other Climate Regions

In this section, we describe the key climate variables that govern the optimal configuration

of heating and cooling systems in each of the five regions studied. This allows us to generalize

our results to other climates not directly analyzed.

In general, cooling loads increase as the ambient temperature rises above the desired indoor
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Figure 4.14: Decomposition of electric loads in the hot-humid climate for a 7-day period in the
winter. The battery is charged and discharged strategically so that the net load on the feeder
(the solid black line) never exceeds 66 kW.

temperature and heating loads increase as the ambient temperature drops. This can be seen

in Figure 4.15, which plots the space heating and cooling loads for a sample residence in each

climate against the ambient outdoor temperature. The distribution of points around the central

trend is due to other factors that impact the residence’s heating and cooling loads, including

humidity, solar radiation, and internal generation of heat within the building.

The lines on Figure 4.15 describe the maximum heating and cooling capacities of a 14-SEER

AC/HP. Due to thermodynamic constraints on the vapor-compression cycle used by these units,

the capacity decreases as the difference between the ambient temperature and the desired room

temperature (approximately 65–70◦F) grows.

The model is constrained such that heating and cooling equipment in a residence must be

able to satisfy the residence’s full respective demands at all hours of the year. Consequently, for

a heat pump to function as a standalone unit, its capacity line must exceed all of the heating

and cooling points on the plot. In the hot-dry climate, both the heating and cooling loads can

be satisfied by a 1.5 kW heat pump. In the cold climate, a 2 kW unit is capable of satisfying
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Figure 4.15: Heating and cooling loads vs. ambient outdoor temperature for representative
residences in each of the five climates. The black lines describe the heating and cooling capacities
of a 14-SEER heat pump. In order for a given heat pump to satisfy the full heating/cooling
loads in a given region, the capacity line must exceed all the points in the scatterplot.
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the residence’s full cooling load but even a 6 kW unit cannot satisfy the residence’s full heating

load. This figure helps explain why the model selects supplementary furnaces in the cold and

mixed-humid climates, as these can be used to satisfy heating load that exceeds the capacity of a

heat pump sized based on the residence’s cooling loads.

The marine climate represents an outlier: even though temperatures in this climate can

exceed 80◦F, only two of the fifteen residences use air conditioning (per the housing stock

distributions found in ResStock). The absence of demand for space cooling helps explain why

heat pumps are less-utilized in this climate: they do not serve the dual purpose of heating in the

winter and cooling in the summer. However, if increasing summer temperatures prompts more

customers in this climate to adopt air conditioning, this would significantly shift the economics

of heating to favor heat pumps.

Because the required capacity of a heat pump scales with the maximum and minimum

observed temperatures in a given climate region, it is informative to look at the relationship

between these extremes in different climates. In Figure 4.16, we plot the maximum observed

temperature in a typical meteorological year against the minimum observed temperatures for

990 locations throughout the United States, including the five analyzed in detail in the preceding

sections. We also include the maximum heating degrees (approximated as 65◦F minus the

minimum temperature) and the maximum cooling degrees (approximated as the maximum

temperature minus 65◦F).

The black line has a slope of unity, passing through locations that have symmetric heating

and cooling extremes (e.g., the coldest day of the year is 30 degrees below 65◦F and the hottest

day of the year is 30 degrees above 65◦F ).37 To a first-order approximation, a heat pump sized

to fulfill a building’s full cooling load in one of these climates should also satisfy its full heating

load. Climates further to the right have heating extremes in excess of their cooling extremes.

The maximum heating degrees, maximum cooling degrees, and difference between them

37Notably, there is much more range in the distribution of maximum heating degrees than in the distribution of
maximum cooling degrees: 80% of the surveyed stations have maximum cooling degrees between 24.1F and 40.8F
(maximum temperatures between 89.1F and 106F). The heating degrees over the same interval range from 38.4F
to 88.8F (minimum temperatures of -23.8F to 26.6F).
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Figure 4.16: Maximum heating degrees vs maximum cooling degrees for 990 climate regions
throughout the United States, including the five analyzed in this study. Climates closer to the
black line have heating extremes close to their cooling extremes. Climates further to the right
have heating extremes in excess of their cooling extremes.
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is mapped for the continental United States in Figure 4.17. As we observed in Figure 4.16,

the range in maximum cooling degrees observed in a typical meteorological year is relatively

modest compared to the range in maximum heating degrees. The difference between maximum

heating degrees and maximum cooling degrees (max heating minus max cooling) shows significant

continental variation: in much of the South and Western United States, the maximum heating

degrees do not significantly exceed the maximum cooling degrees, meaning that a heat pump

sized based on cooling needs should be able to satisfy much of a residence’s heating needs. In

New England and the Upper Midwest, the maximum number of heating degrees can exceed

the maximum number of cooling degrees by 50 degrees or more. In these climate regions,

supplementary heating equipment would be required to fulfill a residence’s full heating needs.

The load implications of different heating electrification strategies for the continental United

States are detailed in Waite and Modi (2020).

4.7 Discussion and Conclusion

The results of this chapter point toward several important findings. First, heat pump space

heaters and electric water heaters are found to be an essential part of a least-cost portfolio of

technologies in four of the five climates studied. In the cold and mixed-humid climates, which

have significantly higher space heating loads than the other climates, electric heat pumps are used

in conjunction with gas furnaces, serving between 65–83% of the residences’ heating demands.

In the hot-dry and hot-humid climates, full electrification of space and water heating can be

achieved without increasing feeder capacity or significantly raising costs relative to the base

scenario. In the marine climate, low demand causes the model to favor natural gas for heating

because of the low cost of gas furnaces.

In the progress scenarios, where we assume a 70% reduction in emissions from the electric

grid and a 30% reduction in the installed cost of heat pumps, air conditioners, rooftop solar

PV, battery storage, and feeder capacity, the mix of technologies shifts to further favor heating

electrification. The model also adopts a small amount of battery storage in the hot-humid climate,

which it uses to arbitrage wholesale electricity prices.
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Figure 4.17: Top: Maximum heating degrees. Middle: Maximum cooling degrees. Bottom:
Difference between maximum heating degrees and maximum cooling degrees. In the bottom plot,
the regions that are darker than orange have maximum heating degrees exceeding their maximum
cooling degrees. Residences in these regions will generally need some form of supplementary
heating to augment the output of a heat pump. Ordinary kriging is used to interpolate points
between the 990 observed weather stations.
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Neither solar PV nor battery storage are found to significantly reduce costs in any of the

scenarios studied. This is generally consistent with Fu, Feldman, and Margolis (2018), which

finds that distributed solar PV is more than twice as expensive as utility-scale solar as a source

of generation, and M. A. Cohen, Kauzmann, and Callaway (2016), which finds that distributed

PV can only be used to defer capacity upgrades on about 1% of feeders.

These results appear to be robust to a range of different assumptions about costs and

constraints. Even when the social cost of carbon is set to zero, effectively ignoring the cost of

externalities, the mix of technologies does not change drastically. The model shifts slightly to

favor technologies with lower capital costs, but otherwise selects similar portfolios in all five

climates. Likewise, the scenarios that modify the headroom on the feeder over the existing peak

also produce similar results to the base models.

In the microgrid scenario, which eliminates all imports of electricity and natural gas, costs

rise dramatically in all five climates. The hot-dry climate sees the smallest increase, with the

feeder-wide cost of serving customers only doubling. In the cold climate, which has large winter

heating loads, a microgrid approach would increase the cost of serving customers by a factor of

10. The inclusion of electric vehicles does not have a major effect on the optimal portfolio of

technologies, as EV charging can generally be scheduled around other loads. There appears to

be a small amount of competition for space on the feeder between EVs and heat pumps during

the winter season, resulting in modest reductions in the output from heat pumps during peak

weather events when EV charging is also required. The residual heating load is satisfied by

increased production from gas furnaces.

Lastly, we find that the presence of both heating and cooling demands is essential to the

economic viability of heat pumps. The hot-humid region, which has the largest cooling demand,

also sees the greatest level of heating electrification in the base scenario. Conversely, the marine

climate, which has almost no cooling demand, sees surprisingly little heating electrification. If

regions that have historically had very little demand for summer cooling see greater demand

in the future due to climate change, this new cooling demand may improve the economics of

heating electrification with heat pumps.
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There are a number of important sources of uncertainty in this analysis. First, we do not

treat upstream electricity or natural gas infrastructure costs as avoidable, except in the microgrid

scenarios. These upstream costs include $727-per-customer for electricity and $478-per customer

for natural gas (R. L. Fares & King, 2017; U.S. Energy Information Administration, 2020).

It is likely that if some portion of these upstream cost were avoidable, the optimization may

eliminate one of these utility connections. For example, in the hot-humid climate, the least-cost

optimization prescribes 1 MMBTU of natural gas consumption. This costs the objective function

$6. However, if eliminating natural gas entirely enabled even a modest reduction in upstream

utility costs (which amount to $478 ∗ 15 = $7, 170 per-year for the entire feeder), it is likely that

the model would abandon the natural gas connection altogether. Future work should consider

the cost reductions that could be realized if full electrification of buildings allowed for strategic

pruning of the gas distribution system in some areas. While much of the investment in the gas

system is sunk costs, the savings generated from avoiding ongoing operations and maintenance

expenses may be non-trivial.

Furthermore, we do not consider the supply side of the electricity generation system. In

order to manage the computational complexity of the model, hourly electricity prices were taken

as exogenous inputs based on historical data. However, a large increase in demand (such as

from broad electrification of space and water heating) would likely increase wholesale electricity

prices during hours of peak consumption. This is a matter of particular concern in the all-electric

scenario, where a large amount of inflexible demand for heating during cold weather events could

cause electricity prices to spike. Conversely, if electrification leads to a flatter electricity demand

profile (or more flexible demand), this is likely to put downward pressure on wholesale electricity

prices because it would reduce the need for peaker plants that only operate a few dozen hours

each year. To better understand this, future work should include simultaneous modeling of the

bulk power system and demand-side technologies.

Lastly, we do not enforce any constraints on the simultaneous operation of heat pumps and

furnaces in the hybrid arrangements, which is recommended by engineering standards to prevent

damage to the heat pump. While it would be preferable to restrict the model so that at most
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one heating system could be operated at a time, doing so with either SOS (special ordered set)

constraints or hourly binary variables was found to increase the computational complexity of

the model by several orders of magnitude. Avoiding simultaneous operation of a heat pump and

furnace would most likely necessitate modest upsizing of the furnace in hybrid arrangements.

This larger furnace would be used to fulfill the building’s full heating load in hours that are

currently met by both technologies operating concurrently.

This analysis indicates that heat pumps are a central part of a least-cost technologies portfolio

in most climates in the United States. This result is robust to various assumptions about the

local feeder capacity and different estimates of the social cost of carbon. This analysis concerns

itself only with the least-cost portfolio across a group of customers, not the individual incentives

faced by customers. Further work should investigate how to ensure that electric retail rates

incentivize customers to adopt emerging technologies – like heat pumps – that reduce both energy

costs and emissions.
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Chapter 5

Incentivizing Efficient Adoption of

Customer-Side Technologies

In the previous chapter, we constructed a mixed-integer linear optimization model to

determine what combinations of technologies would result in the least-cost provision of energy

services for collections of customers in different climate regions. In this chapter, we adapt that

model from the previous chapter to simulate how cost-minimizing customers would rationally

respond when faced with different electric tariffs set by a utility. Customers are able to invest

in solar panels, battery storage, and various options for heating and cooling equipment, and

operate these equipment strategically to minimize their costs. By examining how customer-side

investments change as the tariff is varied, we are able to observe how different strategies for cost

allocation can influence customer behavior.

This work adds to the literature in three significant ways. First, whereas most of the literature

presumes a single existing tariff structure and examines just one or two regions, we analyze how

customer choices vary over a wide range of tariff options, under different technology assumptions

and in five different climate regions. Second, we evaluate the actual cost of energy services

(described in the previous chapter) implied by a set of customer actions, rather than just the

individual customer’s expenses. Lastly, we include multiple gas and electric options for satisfying
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heating demands, which are often excluded from studies that only focus on energy demands that

are already electrified. By looking at the variability in outcomes across multiple climates, we

are able to better understand how the design of retail tariffs can influence customers decisions

about how to satisfy their energy needs and what impact these decisions have on the total cost

of energy services and associated emissions.

5.1 Background and Literature Review

The average utility spends approximately $700–800 per-customer each year ($58–67/month)

on transmission, distribution, and administrative (TD&A) expenses (R. L. Fares & King, 2017).

The overwhelming majority of these costs do not scale with increased consumption. In Rauschkolb

et al. (2021), we used linear regression to estimate the fraction of distribution costs that scale

with load growth, finding that less than 10% of distribution capital expenses could be explained

by growth in system capacity. In Borenstein, Fowlie, and Sallee (2021), the authors estimate that

for the three major California utilities, 80–88% of distribution costs and 58–94% of transmission

costs are fixed.

Even though a large portion of their costs do not scale with energy consumption, most

utilities in the United States allocate their fixed costs to residential customers as part of a

volumetric delivery charge that is proportional to each customer’s total energy consumption. The

level of this tariff is typically based on the average cost of energy sold by the utility and is used

to recover the bulk of the utility’s revenue requirement. If a utility sells 8 billion kilowatt-hours

to residential customers and needs to collect $1 billion through the volumetric tariff to recover

their fixed and variable costs, then the tariff would be set equal to 12.5 cents per-kWh. This is

called “average cost” pricing.

By allocating a large portion of their fixed costs to customers using average cost pricing,

many utilities raise the effective per-kWh rate the customers pay to well above the cost of an

additional unit of energy, discouraging consumption (Borenstein & Bushnell, Forthcoming).

While this has historically been politically acceptable because it promoted energy efficiency

and was economically progressive (wealthier customers paid more), it has also been observed
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to encourage uneconomic adoption of rooftop solar panels that enable some customers to shift

fixed costs to other customers (Biggar & Hesamzadeh, 2014; Borenstein, 2017; S. Burger et al.,

2019; Wolak, 2018). More recently, a handful of economists, including Borenstein and Bushnell

(2021), have posited that average cost pricing could also discourage customers from adopting

heat pumps and electric vehicles by raising the price of electricity.

While there are a number of competing proposals about how to improve the efficiency of

residential tariffs, most seem to agree that the price that a customer pays for an additional unit of

electricity should be set closer to the social marginal cost of producing that energy.1 Borenstein

(2016) argues that a better strategy on both efficiency and equity grounds is to combine a

time-variant electricity price with a higher fixed customer charge. Perez-Arriaga, Jenkins, and

Batlle (2017) develops a framework in which customers are charged their location-specific SMC

at all hours, future capital costs are levied on consumption during peak hours, and residual costs

are allocated in a manner that does not produce any distortion in behavior, such as increased

fixed charges or broader taxes. Rodríguez Ortega et al. (2008) proposes allocating costs through

a fixed charge, a locational demand charge, and a locational energy charge.

5.1.1 Quantifying Inefficiencies

The most common approach for estimating the inefficiency caused by average cost pricing is

to assume a fixed price elasticity for demand and then quantify the deadweight loss resulting

from under- or over-consumption of electricity services.

Most authors agree that consumers are more likely to respond to long-run changes in price

than short-run volatility.2 In a review of other literature, Gillingham, Newell, and Palmer (2009)

provide estimates of residential electricity price elasticity ranging of -0.14 to -0.44 in the short-run,

and from -0.32 to -1.89 in the long-run. Deryugina, MacKay, and Reif (2020) recently exploited a

natural experiment in Illinois to quantify customers’ short- and long-run price elasticities to price

1The social marginal cost (SMC) is the sum of private and external costs, including damages from emissions.
2Here, we use "short-run" broadly to refer to both intra-day volatility and sustained price changes over longer

periods (e.g. several months) that are still too short for customers to reasonably make changes to the technologies
installed in their homes.
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shocks. The authors produce the much more modest estimates for price elasticity of demand

ranging from -0.09 in the first 6 months after the price change to -0.27 in the period 25–30

months after the price change.

A handful of authors have questioned how technology choices impact customer elasticities.

Borenstein and Bushnell (Forthcoming) posit that emerging technologies that enable hourly

load shifting of demand may eventually increase the magnitude of short-run elasticity, so that

customers will become more responsive to short-run perturbations in price signals. Faruqui and

Wood (2008) use data from the California Statewide Pricing Pilot to develop customer-specific

elasticities. The authors observe that customers with central air conditioners are much more

willing to shift their loads to off-peak times in response to price signals (elasticity = -0.13) than

customers without these systems (elasticity = -0.05).

Among the papers focusing on short-run price volatility, Borenstein (2005) estimates that a

move toward real-time pricing for energy (while retaining a flat delivery tariff) for a theoretical

utility would result in a reduction of energy expenses by 4.2%-12% for elasticities ranging from

-0.05 to -0.50. Borenstein and Bushnell (Forthcoming) expands on this work by estimating the

deadweight loss resulting from the residential electricity price deviating from the SMC for 2,104

real utilities. In the updated model, the authors consider the social cost of emissions and do

not assume that customers face a flat delivery tariff. For a constant demand elasticity of -0.2,

the authors estimate that the average deadweight loss resulting from volumetric prices deviating

from the SMC is 0.31 cents-per-kWh.

In a quasi-experimental study of short-run price volatility, Fabra et al. (2021) analyze the

consumer response to a large-scale real-time pricing (RTP) program in Spain, – wherein customers’

electricity rates vary hourly based on the wholesale electricity market – and find no statistically

significant difference in behavior between those customers on RTP and those in the control group.

They suggest that enabling RTP to act as an effective tool for managing load would require

greater opportunities for cost reductions3 and a suite of enabling technologies. They further

3The average maximum possible savings for perfectly-elastic customers in this program was less than 2
Euros-per-month.
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suggest that time-of-use pricing (ToU), wherein different predefined rates are used during peak

and off-peak times during the day, could be a more effective alternative to RTP because of its

certainty and salience.

Pérez-Arriaga and Knittel (2016, Ch. 4) model how smart air conditioning systems installed

in homes with some innate thermal storage capacity could be used to arbitrage a dynamic

tariff. The authors find that under a cost-reflective tariff, changes in the customer’s consumption

patterns would reduce marginal system costs (including energy, generation capacity, and network

capacity) by 17–33% compared to flat rate tariffs. This would result in savings for a typical

household of as much as $400 per year.

Among those studies focusing on long-run changes in electricity prices, S. P. Burger et al.

(2020) compare the efficiency of the existing volumetric tariff for a midwestern utility to several

alternative designs. The authors study three cases: one where price elasticity for demand is

zero (alternative tariffs allocate costs differently among customers but do not result in changes

to overall consumer surplus), as well as “low” and “high” elasticity cases. Under the preferred

tariff structure, customers are billed a volumetric rate equal to the SMC and common costs are

recovered through a substantially increased monthly customer charge. In the high elasticity case

(-0.3), this structure is estimated to increase average consumer surplus for residential customers

by 29–48% of annual expenditures.

Abdelmotteleb et al. (2018) model the customer response to four different tariff structures on

a 2.5 MW distribution network, assuming that the cost of load curtailment during peak hours is

$300/MWh. The authors find that the implementation of a tariff that includes a peak-coincident

network charge decreases existing system costs (including energy, DER investments, and network

cost recovery) by 10% and future network costs by 23%, relative to the volumetric charge base

case.

Schittekatte and Meeus (2018) employ a game-theoretical approach to model how active

consumers respond to different tariff designs by investing in solar PV panels and/or batteries.

The authors illustrate that the extent to which reformed tariffs improve economic efficiency

is dependent on the constraints of the network: where network costs are entirely prospective
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(driven by peak demand rather than sunk), the move from volumetric charges to capacity charges

incentivizes customers to adopt solar PV and batteries to reduce their peak demand, decreasing

system costs by 6–7%. Where network costs are entirely sunk, the move from volumetric charges

to higher fixed charges (which are considered optimal in this case) does not reduce system costs

but significantly increases the share of network costs borne by customers with smaller demand.

The authors also note that volumetric tariffs set above the cost of energy incentivize active

customers to adopt solar PV panels to reduce their share of network costs, even if doing so does

not decrease system costs in aggregate. Though space and water heating account for 62% of

residential energy use in the United States (U.S. Energy Information Administration, 2018),

there has been very little scholarship studying how tariff design influences customers’ heating

choices. A key contribution of this work is the inclusion of thermal demands across multiple

climates.

5.2 Methodology and Assumptions

We adapt the optimization algorithm described in Chapter 4 to simulate how individual

customers respond to different electric tariff designs. Rather than simultaneously optimizing

decisions across the utility and the 15 customers, the utility sets an electric tariff and each

customer responds by making decisions to minimize their individual expenses.

After performing the separate optimizations for each customer, we evaluate the actual costs

borne by the utility to serve load, the revenue from the volumetric tariff, any residual costs that

need to be recovered through other means, and the total cost of energy services including energy,

emissions, equipment, and infrastructure. For simplicity, these analyses assume a constant SMC

of $0.05 per-kWh for electricity (borne entirely by the utility) and a constant SMC of 0.006307

per-kBTU ($6.307 per-MMBTU) for natural gas. We also assume a constant emissions factor of

0.953 lb per-kWh in all five climates in the base and “No HP/Solar/Storage” scenarios and 0.2859

lb per-kWh in the progress scenario. As before, we assume that the feeder has 50% headroom

over the existing (pre-optimization) peak. Cost assumptions are summarized in Table 5.1.

4Environmental Protection Agency (2020)
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Table 5.1: Average energy costs and emissions for each of the five locations considered. Average
LBMPs, SMCs, and standard deviations for electricity are computed using the modeled feeder
load as a weighting factor. Natural gas costs are taken as annual averages, while the LBMP for
electricity varies hourly. Emissions factors for electricity are based on Environmental Protection
Agency (2020) whereas emissions from natural gas assumes stoichiometric combustion.

Erie
County,
NY

San Diego,
CA

Harris
County,
TX

Alexandria,
VA

Marin
County,
CA

Building America
Climate Region

Cold Hot-Dry Hot-Humid Mixed-
Humid

Marine

IECC Climate Region 5A 3B 2A 4A 3C

Electricity

Carbon Emissions4,
lb/kWh

0.953 0.953 0.953 0.953 0.953

Volumetric Tariff
(Status Quo)

$0.11 $0.32 $0.12 $0.11 $0.28

Volumetric Tariff
(Experimental)

Varies from $0.01 to $0.40 per-kWh

SMC, $/kWh $0.05 $0.05 $0.05 $0.05 $0.05

Generation Capacity
Cost, $/kW-year

$30 $30 $30 $30 $30

Add’l Feeder Capacity
Cost, $/kW-year

$50 $50 $50 $50 $50

Natural Gas

Private Cost,
$/MMBTU

$10 $10 $10 $10 $10

SMC, $/MMBTU $6.307 $6.307 $6.307 $6.307 $6.307
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This accounting analysis allows us to understand the conditions under which utilities are

able to recover their full revenue requirement from customers and what kinds of tariffs lead to

more or less efficient customer decisions about technology adoption and use.

5.3 Scenarios Analyzed

We perform optimizations for sets of 15 customers residing on the five example feeders in

different climate regions throughout the United States. In order to minimize their expenses, these

customers can respond by investing in and strategically operating different heating technologies,

cooling technologies, and distributed energy resources. For each scenario, the volumetric electricity

tariff is modified in discrete values between $0.01/kWh and $0.40/kWh.5 We assume that any

residual utility costs not recovered through the volumetric tariff are recovered through a monthly

fixed charge.

In the “No HP/Solar/Storage” scenario, customers do not have access to heat pumps, solar

panels, or battery storage. For heating, customers may choose from high- and low-efficiency

furnaces, supplementary electric resistance heating, and electric resistance baseboards. For

cooling, customers can choose from high- or low-efficiency air conditioners.

In the “base” scenario, we introduce heat pumps, solar panels, and battery storage, observing

how the availability of these technologies influence customers’ responses to changing volumetric

tariffs.

In the “progress” scenario, the cost of heat pumps, air conditioners, solar panels, battery

storage, and distribution capacity are all assumed to have decreased by 30%, and the emissions

from the grid are assumed to have decreased by 70% (from 0.953 lb/kWh to 0.286 lb/kWh). This

provides insight into how the cost and emissions implications of emerging technologies might

change as the costs of these technologies decrease and the grid becomes cleaner.

Except where noted, all scenarios allow for full net-metering of solar injections.

5The precise values of the volumetric tariff in $ per-kWh are: $0.01, $0.02, $0.03, $0.04, $0.05, $0.06, $0.07,
$0.08, $0.09, $0.10, $0.11, $0.12, $0.13, $0.14, $0.16, $0.18, $0.20, $0.24, $0.28, $0.32, $0.40.
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5.4 Results and Discussion

5.4.1 Customer Response to Tariffs

In Figure 5.1, we plot the daily profiles of electricity demand in the five climate regions in

response to the existing volumetric tariff. The top plot shows an example day in the winter. We

see that residences in all five regions adopt some amount of electric heat pump heating, though

this new load is most prominent in the hot-humid and mixed-humid climates.

While we do not have comprehensive survey data of the fraction of heating load satisfied

by a given technology in each region, U.S. Energy Information Administration (EIA) (2015)

reports the fraction of customers in a given climate region use a specific fuel as their primary

heating source. In the cold climate, which has the greatest demand for space heating, electricity

provides 12.4% of annual space heating energy in the simulation (per Table 5.2); according to

U.S. Energy Information Administration (EIA) (2015, HC6.6), 18% of homes in the cold climate

use electricity as their primary source for space heating.

Table 5.2: Summary statistics for customer behaviors given the current volumetric tariffs. Notably,
there is significant electrification of space and water heating in four out of the five climates.

Cold Hot-Dry Hot-Humid Mixed-Humid Marine

Volumetric Tariff $ 0.11 $ 0.32 $ 0.12 $ 0.11 $ 0.28

Total Electric
Consumption (kWh)

151,678 67,144 203,212 227,023 47,357

Total Electric
Injections (kWh)

- 67,144 - - 47,357

Space Heating
Energy from
Electricity (%)

12% 77% 100% 80% 14%

Water Heating
Energy from
Electricity (%)

100% 20% 100% 100% 1%

By contrast, in the hot-humid climate, 100% of space heating demand is fulfilled by electricity

in the simulation; according to U.S. Energy Information Administration (EIA) (2015, HC6.6),

61% of homes in the hot-humid climate use electricity as their primary source for space heating.
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Figure 5.1: Simulated electric load profiles under the status quo tariffs for 24-hour periods in the
winter and summer. The top plot shows the winter profiles for all five climates; the bottom plot
shows the summer profiles. The black line describes the electric load net of solar generation.
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The strong correlation observed between simulated and real heating choices serve as an important

source of validation to the modeling.

Because these regions have nearly identical volumetric tariffs ($0.11 per-kWh in the cold

climate and $0.12 per-kWh in the hot-humid climate), this difference in heating electrification is

best explained by differences in the climate. In the hot-humid climate, customers need to adopt

large air conditioners to fulfill their conditioning loads. Thus it is prudent to pay the additional

cost of purchasing a heat pump and use it year-round for heating and cooling (this also obviates

the need to invest in a new furnace).

By contrast, the heating peak is the cold climate is significantly greater than the cooling

peak. In order for customers to full-electrify their heating, they would either need to invest in

a very high-capacity heat pump or supplement a smaller heat pump with electric resistance

heating. Both of these options are significantly more expensive than using a furnace to back up

a heat pump that is sized based on peak cooling demand.

Despite the high volumetric tariff in the hot-dry climate ($0.32 per-kWh), customers still

satisfy 77% of their space heating demand with electric sources in the simulation. At this tariff,

the cost of electric heating far exceeds the cost of gas heating on a per-BTU basis.6 However,

because the annual space heating demand is low, customers can still benefit from electrification

because they realize significant savings from not having to install a furnace.

Additionally, we see significant adoption of solar PV in the hot-dry and marine climates.

This is predominantly driven by high volumetric electricity prices and net-metering policies,

which incentivize customers to reduce their aggregate (year-round) electricity consumption by

producing electricity with solar and using it to offset their consumption at other hours. This

observation is consistent with reality: in the United States, California (which contains both the

example hot-dry climate and the example marine climate) is responsible for 40% of generation

from distributed solar (Energy Information Administration, 2022), despite having just 12% of

the population.

6At $0.32 per-kWh, 1 MMBTU of heat would cost $0.32
kW h

∗ 293kW h
MMBT U

∗ 1
COP

. For an average COP of 4.2, this
amounts to $22.32 per-MMBTU, more than twice the fuel cost of natural gas.
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In Figure 5.1, we see that midday electricity generation from solar panels in the hot-dry and

marine climates far exceed demand, leading to steep negative loads. In both regions, customers

optimize their adoption of solar panels to fully offset their aggregate consumption of grid-supplied

power over the course of a year. This is made possible by the assumed “annual net-metering”

policy, wherein customers are only billed based on their net consumption (total consumption

minus total injections). An alternative policy that reduces the compensation that customers

receive for solar injections would likely lead to a different outcome.

5.4.1.1 Varying the Volumetric Tariff

As we have already seen, volumetric tariffs vary widely between utilities throughout the

United States. In this section, we ask: how could changing the level of a volumetric tariff

influence customers’ decisions about what technologies to adopt and how to use them?

In the simulations, customers respond to different volumetric tariffs by choosing the equipment

with which they satisfy their thermal demands and electing whether or not to install rooftop solar

panels. Figure 5.2 plots simulated electric and gas load profiles for a 24-hour period in the cold

climate during the winter. Each box describes the customer response to a different volumetric

tariff, ranging from $0.01 per-kWh to $0.20 per-kWh. We observe that if the volumetric electricity

price is set at $0.01 per-kWh (significantly below the SMC), customers use a large amount of

electric resistance heating to satisfy their space heating needs. When the tariff is set at the SMC

($0.05 per-kWh), this electric resistance load all but disappears and the electricity consumption

(and heat generated) by heat pumps roughly doubles. A small amount of natural gas is also used

to supplement the heat pumps. As the tariff is increased to $0.10 per-kWh, much of the heat

pump load disappears, with this demand instead fulfilled by natural gas. At $0.20 per-kWh, the

full space heating load is satisfied by natural gas. Additionally, electric water heating load is

replaced by gas water heating load and there is a very small amount of solar generation.

The same data are plotted in Figure 5.3, but for an example day in the summer (July 1).

As the price varies from $0.01 per-kWh to $0.10 per-kWh, the primary customer response is to

use heat pump domestic hot water heaters in lieu of electric resistance water heaters, reducing
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Figure 5.2: Simulated electric and gas load profiles for a 24-hour period in the cold climate
during the winter. Each box describes the customer response to a different volumetric tariff,
ranging from $0.01 per-kWh to $0.20 per-kWh. The black line on the top plots describes the
electric load net of solar generation. As the tariff is raised, customers substitute natural gas
heating for electric heat pumps. 155



their aggregate electricity demand. If the tariff is set at $0.20 per-kWh, customers transition

from electric water heating to natural gas water heaters and adopt solar panels to reduce their

aggregate consumption. These panels produce significantly more energy in the summer than in

the winter months.
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Figure 5.3: Simulated electric and gas load profiles for a 24-hour period in the cold climate
during the summer. Without heating loads, customers are less responsive to changes in the
volumetric tariff for rates ranging from $0.01 per-kWh to $0.10 per-kWh.
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Figures 5.4 and 5.5 show the same set of plots for the hot-dry climates. The results are

quite similar, though the magnitude of space heating demand is much smaller and the electricity

produced by solar in the $0.20 per-kWh case is much larger.
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Figure 5.4: Simulated electric and gas load profiles for a 24-hour period in the hot-dry climate
during the winter.
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Figure 5.5: Simulated electric and gas load profiles for a 24-hour period in the hot-dry climate
during the summer.
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5.4.1.2 Space Heating

Space heating is the single largest energy use in U.S. homes, representing 43% of residential

energy use (U.S. Energy Information Administration, 2018). The choice of technology used for

space heating can have an outsize effect on both the cost of providing energy services for a home

and the associated emissions.

In Figure 5.6, we observe how the customer’s choice of space heating equipment changes

in each climate between the “No HP/Solar/Storage”, base, and progress scenarios. In the “No

HP/Solar/Storage” scenario, the majority of space heating energy is satisfied by natural gas

furnaces in the cold, mixed-humid, and marine climates for all volumetric tariffs above roughly

$0.06/kWh. This means that choosing a tariff between these two values should not motivate a

change in customers’ preferred choice of heating technologies. For the hot-dry and hot-humid

climates (which have relatively modest heating demands), customers presented with the feeder-

cost-recovery tariff are incentivized to use a combination of gas furnaces and supplementary

electric resistance heat.
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Figure 5.6: Breakdown of space heating energy choices vs. volumetric tariff in each climate
region. As the tariff is increased, customers are more likely to opt for natural gas heating instead
of electric options.
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In the base scenario, which allows customers to use heat pumps, the level of the volumetric

tariff has a much more significant effect on heating choices. In the cold climate, customers

presented with the feeder-cost-recovery tariff (about $0.08/kWh) fulfill approximately two-thirds

of their space heating demand using heat pumps. At the total-cost-recovery tariff ($0.15/kWh),

customers fulfill their entire heating demand with gas furnaces. In the mixed-humid climate, 93%

of space heating demand is fulfilled by electricity at the feeder-cost-recovery tariff ($0.08/kWh)

and just 10% of space heating demand is fulfilled by electricity at the total-cost-recovery tariff

($0.13/kWh).

As of 2015, the only climate region wherein electric heating options (heat pumps and electric

resistance) represented a majority or primary heating equipment was the hot-humid climate (U.S.

Energy Information Administration (EIA), 2017). This is consistent with our calculations for the

base scenario, which estimates that a majority of customers are likely to opt for electric heating

options in the hot-humid region for volumetric tariffs up to $0.18/kWh. The hot-humid climate

has very large cooling demands (necessitating that customers invest in large air conditioners)

and mild winter temperatures (resulting in high HSPFs for heat pumps). Consequently, it is

economical for customers in this climate to invest in large, high-efficiency heat pumps that serve

both their space heating and cooling demands, even when faced with a relatively high electricity

price.

This tipping point between electric heat pumps and natural gas furnaces can be rationalized

by a simple back-of-the envelope calculation. If a customer pays $0.01/kBTU ($10/MMBTU) for

natural gas and burns it in a furnace with an efficiency between 80-96%, they pay approximately

$10.42-$12.50 per-MMBTU of delivered space heating energy. In the five climates studied, the

weighted-average HSPF7 ranges from 10.1-16.8 kBTU/kWh (per Table 4.2). This means that

for a heat pump to be competitive with a gas furnace on operating expenses alone, electricity

would have to be available at a price point between $10.42
MMBT U ∗ 0.0101MMBT U

kW h = $0.11/kWh and
$12.50

MMBT U ∗ 0.0168MMBT U
kW h = $0.21/kWh. By allocating fixed costs to residential customers as a

volumetric delivery charge – increasing the total volumetric charge upwards of $0.15/kWh –

7The HSPF (heating seasonal performance factor) describes the ratio of heating energy produced by a heat
pump (in kBTU) to electricity consumed (in kWh) over the course of a typical year.
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electric utilities are making heat pumps less attractive to consumers.

5.4.1.3 Water Heating

In addition to studying how customers’ choices of space heating equipment responds to

different volumetric tariffs, we also consider customers’ choices of water heating (DHW) equipment.

Figure 5.7 is analogous to Figure 5.6, but plots water heating energy instead of space heating

energy. The overall trend is similar: faced with very low volumetric electricity tariffs, customers

opt for inexpensive (but inefficient) electric resistance DHW heaters. As the tariff is increased,

customers transition to using heat pumps, which carry higher upfront costs but are far more

efficient. If the tariff is raised too high, customers forgo electric water heating, instead opting to

use natural gas water heaters.
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Figure 5.7: Breakdown of water heating energy choices vs. volumetric tariff in each climate
region. As the tariff is increased, customers are more likely to opt for natural gas water heating
instead of electric options.

5.4.1.4 Space Cooling

Figure 5.8 plots the source of space cooling energy vs. the volumetric tariff for each climate

and scenario. In all three scenarios, across all five climates, customers faced with higher volumetric
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tariffs are incentivized to adopt higher-efficiency air conditioners or heat pumps to meet their

space cooling needs. The tipping point at which customers begin to shift from low-efficiency

units to high-efficiency units is not the same in each climate region. In the hot-humid region,

which has the largest space cooling demands, customers begin to shift from low-efficiency units

to high-efficiency units as the tariff rises above about $0.05/kWh. In the cold climate, it is only

cost-effective for customers to adopt high-efficiency units as the volumetric tariff rises above

$0.18-$0.20/kWh, and only in the base and progress cases where heat pumps are used for both

heating and cooling demands.8 For the marine climate, the minuscule cooling demand is fulfilled

by low-efficiency units for nearly all scenarios and values of the tariff.
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Figure 5.8: Breakdown of space cooling energy choices vs. volumetric tariff in each climate region.
As the tariff is increased, customers are incentivized to choose higher-efficiency units.

We do not assume that there is any elasticity in the quantity of cooling energy demanded.

A customer facing a lower electricity price will not respond by cooling their home to a colder

temperature. This is an important source of error that should be interrogated in future work.

8In "the No HP/Solar/Storage" scenario, customers continue to use low-efficiency air conditioners for all tested
values of the tariff.
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5.4.1.5 Solar and Storage Adoption

In addition to changing their choice of heating and cooling technologies, customers can

respond to increased electricity tariffs by adopting rooftop solar panels and battery storage. The

patterns of load defection resulting from solar and storage adoption can be observed in Figure

5.9. In the hot-dry climate, customers begin adopting solar and storage to decrease the electricity

consumption from the grid as prices rise above $0.09/kWh for the progress case and $0.13/kWh

for the base case. In the cold climate, which is less favorable for rooftop solar due to weaker

sunlight and more cloud cover, prices must rise above $0.13/kWh and $0.17/kWh respectively

to incentivize load defection through solar/storage adoption. These estimates are consistent

with a back-of-the-envelope calculation: a roof-mounted solar panel can produce approximately

200–350 kWh of electricity per-meter-squared, depending on the climate. This translates to

1300–2300 kWh per-kW of solar capacity. At an annualized cost of $300-per-kW-capacity (the

base assumption), the levelized cost of solar is $0.13-$0.23/kWh. In the progress scenario, the

cost of solar panels drops to $210 per-kW-capacity (30% decrease) and the levelized cost of solar

power falls to $0.09-$0.16/kWh.

In Figure 5.10, we plot for each feeder the gross consumption of utility-supplied electricity

(purchases), the amount of electricity sold back to the utility (injections), and the net consumption

of utility-supplied power. In the presence of a net-metering policy, injections begin to rise at

roughly the same tariff that motivates adoption of rooftop solar. In other words, there is no

significant band of tariffs that promotes self-consumption of electricity generated from rooftop

PV. In the hot-dry, mixed-humid, and marine climates, customers achieve a “net zero” status for

tariffs above $0.19 - $0.27 per-kWh. In the cold and hot-humid climates, customers adopt the

maximum amount of solar PV that can be accommodated on their rooftop, resulting in modest

net consumption of utility-supplied power.

We note that even though the customers on these feeders achieve net-zero or near-net-zero

status, their gross consumption of grid-produced power levels out around 2,500 kWh-per-1000-sf

for all feeders.
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Figure 5.9: Fraction of electricity consumption generated by rooftop solar. As the tariff is
increased, customers adopt solar panels and battery storage in order to reduce their payments to
the utility.
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Figure 5.10: Purchases, injections, and net consumption vs. the volumetric tariff. In the hot-dry,
mixed-humid, and marine climates, customers achieve a "net zero" status for tariffs above $0.19 -
$0.27 per-kWh. In the cold and hot-humid climates, customers adopt the maximum amount of
solar PV that can be accommodated on their rooftop, resulting in modest net consumption of
grid-produced power.
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5.4.1.6 Feeder Peaks

The adoption of rooftop solar does little to mitigate the feeder’s peak demand. This is

observed in Figure 5.11: as the tariff increases from $0.05 per-kWh to about $0.13 per-kWh, the

feeder peak drops due to decreased use of electric heating. In the $0.13-$0.25 per-kWh regime,

where we see large uptake of rooftop solar, the peaks plateau.
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Figure 5.11: Peak load vs. the volumetric tariff. Peaks plateau as the tariff increases above $0.13
per-kWh, even as customers adopt large amounts of rooftop PV.

In practice, the largest adoption of rooftop solar panels is found in California (U.S. Energy

Information Administration, 2021b), where volumetric electricity prices can exceed $0.40/kWh

for residential customers with the highest levels of consumption (Pacific Gas & Electric, 2022;

Southern California Edison, 2022). Under these conditions, customers are strongly incentivized

to adopt solar panels to reduce their net consumption from the grid.

Depending on the level of the volumetric tariff, customers adopt different portfolios of
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technologies that can significantly impact their feeder’s peak load. In Figure 5.12, we plot the

ratio of the simulated feeder peak to the incumbent peak (before optimization) for each of the

five climates across three scenarios. For very low tariffs, customers use electric resistance heating

to satisfy their space and water heating needs, driving very large peak loads. This is seen most

prominently in the cold climate where the electricity peak increases by a factor of six relative to

the pre-optimized loads when the tariff is decreased to $0.01 per-kWh. Surprisingly, the marine

region also sees a nearly five-fold increase in peak demand due to adoption of electric resistance

heating, despite having a relatively mild climate.
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Figure 5.12: Feeder peak vs. the volumetric tariff. For very low tariffs, customers use electric
resistance heating to satisfy their space and water heating needs, driving very large peak loads.
As the tariff is increased, the peak load drops as customers switch from electric resistance to
heat pumps and natural gas heating.

As the tariff is increased, the peak load ratio drops precipitously in all five climates and all

three scenarios as customers switch from electric resistance to heat pumps and natural gas heating.

In the cold, hot-dry, and marine climates, the peak load ratio plateaus at approximately 100%
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(that is, the simulated peak is roughly equal to the pre-optimized peak). In the mixed-humid

climate, the peak load plateaus at about 70% of the original peak in all three scenarios. In the

hot-humid climate, where electric heat pumps are used as the primary source of space heating

energy in the base and progress cases even as the tariff rises to $0.40 per-kWh, the simulated

peaks plateau at about 125% and 150% of the incumbent peak, respectively.

5.4.1.7 Emissions

Even though raising the volumetric tariff for electricity to recover fixed costs may increase

the total cost of service, this practice may be considered acceptable if it also decreases emissions.

In Figure 5.13, we plot the emissions vs. the tariff for each region and scenario. Each tile describe

a different scenario-region combination. The red area represents emissions from electricity

production, while the blue area represents emissions from gas combustion. The black function

describes total emissions net of any solar generation.9

In the “No HP/Solar/Storage” scenarios, emissions generally fall as the tariff is increased

because customers are incentivized to adopt higher-efficiency air conditioners and switch from

electric resistance heating to furnaces.

9Solar generation is assumed to reduce aggregate emissions by avoiding centralized generation. The same
emissions rate is used whether the generated electricity is consumed behind-the-meter or injected to the grid.
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Figure 5.13: Total emissions vs. the volumetric tariff. The black function describes total emissions net of any solar generation.
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In the base scenario, emissions fall sharply as the tariff is increased above $0.15-$0.20 per-

kWh, as customers adopt rooftop solar photovoltaic panels to reduce their net consumption of

grid-supplied power.

In the progress scenario, we observe a notable departure from the trend of increasing tariffs

resulting in decreasing emissions for the cold climate. At lower tariffs, customers are incentivized

to use heat pumps as their primary source of heating, resulting in significantly lower emissions

than a gas furnace. As the electricity tariff is raised, customers are encouraged to use natural gas

furnaces instead of heat pumps, increasing both emissions and the total cost of energy services.

In the mixed-humid climate, emissions are relatively constant. As the tariff is increased, the

additional emissions from gas heating are roughly canceled out by emissions reductions from

solar generation.

This is a notable exception to the dialogue that frames residential retail rate reform as a

conflict between improving economic efficiency and reducing carbon emissions. In models where

customers mainly respond to high volumetric tariffs by adopting solar panels, high volumetric

rates lead to increased aggregate energy costs but decreased emissions. As we observe here, there

are also cases where lowering retail rates could decrease both energy costs and emissions by

incentivizing economical electrification of heating.

Despite this result appearing in the “progress” case, there are already conditions in the

United States today that look quite similar to the modeled scenario. In Upstate New York, the

average carbon emissions from the grid is 0.254 lb/kWh, slightly below the assumed emissions in

the progress case. In New England, the average emissions from electricity generation is 0.528

lb/kWh (Environmental Protection Agency, 2020). In both of these regions, incentivizing even

a small fraction of customers to electrify their space and/or water heating loads through more

attractive electricity rates could result in steep emissions reductions.

5.4.2 Cost Recovery and Efficiency

Two principal functions of rate design are (1) guaranteeing that a utility is able to recover its

full costs plus a fair rate of return on capital expenses and (2) promoting efficient use of energy
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services. In this section, we analyze how changing the level of the volumetric tariff impacts the

utility’s ability to recover its costs; discuss residual costs not recovered through a given tariff, and

describe how tariff design can impact the total cost of providing energy services to a collection of

customers. Additionally, we consider how net-metering reform influences customers’ decisions

about rooftop solar adoption, the utility’s ability to recover its costs, and the total cost of energy

services.

5.4.2.1 Utility Costs and Revenues

In Figure 5.14, we report the utility’s costs and revenue for each feeder vs. the tariff. The solid

black line describes the annual revenue collected from the customers through the volumetric tariff

in $/1000-sf (each feeder has 25,000–30,000 square-feet of conditioned residential space). The

dashed black line describes the annual revenue collected from customers through the volumetric

tariff plus the financial value of the electricity injections that the utility receives.10

10Here we make the strong assumption that excess distributed generation injected into the feeder by customers
displaces wholesale generation that would otherwise cost the utility $0.05 per-kWh. In reality, energy costs are
typically lower in the middle of the day when excess solar is available and higher in the afternoon and evening,
especially in warmer climates.
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Figure 5.14: Total revenue collected from customers through the volumetric tariff (black line) and total cost of serving customers
(colored areas). In the base and progress cases, the tariff revenue converges to near-zero for sufficiently high volumetric tariffs as
customers adopt large amount of rooftop solar panels. Capacity costs first decrease as the tariff is raised because customers shift from
electric resistance heating to heat pumps and furnaces. As the tariff continues to increase in the base and progress cases, capacity costs
increase again as the utility invests in additional distribution capacity to accommodate the injections from rooftop solar. The financial
value of the energy received from solar injections (assuming it displaces generation elsewhere) is represented by the difference between
the dashed line and the solid line.
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For the “No HP/Solar/Storage” case, the solid black line is monotonically increasing on the

right side of the graph. This tells us that as the utility continues to increase the tariff, revenue

increases. When the black line exceeds the colored region, the tariff is high enough to recover

the utility’s revenue requirement. Under these circumstances, the challenge of tariff design is

simply to set a tariff that is high enough to recover the utility’s revenue requirement without

creating an undue burden for customers.

For the base and progress cases, this trend no longer holds: when the tariff is increased

above $0.20-$0.25/kWh, the utility’s revenue plateaus and begins to decrease as customers adopt

solar panels in order to decrease their volumetric charges. The revenue from the volumetric

tariff converges to near-zero for sufficiently high volumetric tariffs. In the presence of distributed

solar and net-metering, it is no longer guaranteed that raising the volumetric tariff will increase

revenue.

The colored areas describe the utility’s costs. The blue area describes fixed electric transmis-

sion, distribution, and administrative expenses that occur upstream of the feeder and are not

impacted by customer behavior, but are allocated to these residential customers. We estimate

these expenses as $727/customer ($10,905 for the feeder) (R. L. Fares & King, 2017).

The green area is the cost of capacity, including both generation capacity charges (which

are proportional to the coincident peak of loads on the feeder) and the annualized cost of any

additional feeder capacity required to meet peak loads.11 Capacity costs first decrease as the tariff

is raised because customers shift from electric resistance heating to heat pumps and furnaces. As

the tariff continues to increase in the base and progress cases, capacity costs increase again as

the utility invests in additional distribution capacity to accommodate the injections from rooftop

solar.

The red region is the cost of electricity, which is set at an average price of $0.05 per-kWh.

We assume that this represents the full social cost of electricity, which is borne in entirety by the

utility. Energy costs converge to some non-zero value, equal to the gross energy that customers

11Annualization is based on an assumed weighted-average cost of capital of 10%, which includes the cost of debt
and regulated profits on equity.
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consume from the grid to serve loads at hours when electricity from distributed solar is not

available.

The most important observation is that in the base and progress cases, the revenue that

the utility collects through the volumetric tariff does not always exceed the utility’s cost of

serving customers. In the scenarios where customers achieve net zero consumption, the difference

between the utility’s cost of serving load and the revenue collected from the volumetric tariff

is equal to the sum of: the customers’ share of the utility’s fixed costs, capacity-related costs

for the feeder, and the cost of electricity consumed by customers on the feeder when solar isn’t

available. While the utility does receive some injected electricity that may be used to displace

generation expenses elsewhere, the value of this electricity is only a fraction of the total cost of

serving these customers.

5.4.2.2 Residual Fixed Costs

In the presence of emerging technologies, it is not guaranteed that utilities can recover their

full costs from residential customers through a volumetric tariff alone. In Figure 5.15, we plot

the fraction of the utility’s revenue requirement recovered through the volumetric tariff vs. the

value of the tariff. In the “No HP/Solar/Storage” scenario, the revenue collected from customers

increases monotonically with the level of the tariff, so there is guaranteed to be a tariff such

that the utility recovers its full costs. When we introduce rooftop solar in the base and progress

cases, this trend no longer holds: as the utility raises the tariff above $0.09 to $0.17 per-kWh,

customers begin to curtail their net consumption by adopting rooftop solar. In the base case,

this load defection makes it impossible for utilities to recover their full revenue requirement using

volumetric tariffs in the marine and hot-dry climates. In the progress scenarios, full cost recovery

is impossible in all five climates using volumetric tariffs alone.

Residual costs not recovered from the volumetric tariff can be recovered through some other

means, such as through a monthly fixed charge. In Figure 5.16, we compute the fixed charge

required to allow full cost recovery given an arbitrary choice of the volumetric tariff. As the

volumetric tariff is increased to about $0.17/kWh, the required fixed charge falls in all three
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Figure 5.15: Fraction of revenue requirement recovered through the volumetric tariff.
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scenarios. Under the “No HP/Solar/Storage” assumption, this trend continues until the required

monthly fixed charge has fallen below zero. Under the base and progress assumptions, higher

tariffs incentivize customers to decrease their consumption from the grid by adopting solar and

storage. This effect ultimately causes the residual cost vs. tariff curve to slope back up. In other

words, not only would raising the volumetric tariff above roughly $0.20/kWh fail to eliminate

the need for a monthly fixed charge, it would actually increase the residual costs that need to be

recovered through such a charge.
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Figure 5.16: Required monthly fixed charge needed to recover a utility’s full revenue requirement
vs. the volumetric tariff. As the volumetric tariff is increased to about $0.17/kWh, the required
fixed charge falls in all three scenarios. Under the "No HP/Solar/Storage" assumption, this trend
continues until the required monthly fixed charge has fallen below zero. Under the base and
progress assumptions, higher tariffs incentivize customers to decrease their consumption from the
grid by adopting solar and storage, causing the residual cost vs. tariff curve to slope back up.

If all electric energy and capacity costs are recovered through a volumetric tariff (these

tariffs would range from $0.06 per-kWh to $0.09 per-kWh), the residual fixed costs would be

approximately $727 per-customer each year (R. L. Fares & King, 2017). This could be recovered
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through a monthly customer charge of approximately $61. While it is worth stressing that such

a policy would most likely reduce the total cost of energy services, it is all but guaranteed that

such a policy would create winners and losers. Several authors, including (S. P. Burger et al.,

2020).

In the progress case, the minimum monthly fixed charge that would still allow the utility to

recover its remaining costs through a volumetric tariff ranges from $2 in the mixed-humid climate

to $38 in the hot-dry and marine climates. These latter values are significantly higher than the

monthly fixed charges typically used for residential customers today (Faruqui & Leyshon, 2017).

5.4.2.3 Total Energy Services Costs

One of the principal functions of rate design is to promote efficient production and consump-

tion of energy services. In order to evaluate the extent to which different tariff design strategies

achieve this goal, we evaluate the total cost of energy services, including annualized equipment

costs, gas and electric energy costs, and capacity costs.

In Figure 5.17, we plot the total cost of providing energy services to the 15 customers

(per-1000-sf) vs. the volumetric tariff.12 The colored area plot describes the separate cost

components.

12We assume that the natural gas distribution system has adequate capacity to serve the space and water heating
loads on each feeder, so there are no marginal gas capacity costs to minimize.
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Figure 5.17: Total cost of energy services. As the tariff is increased in the base and progress cases, the total cost of energy services
increases significantly. In the "No HP/Solar/Storage" scenario, the total cost of energy services plateaus for tariffs above approximately
$0.07 per-kWh, as customers are given relatively few means to reduce their energy consumption without sacrificing energy services. In
the base and progress scenarios (i.e., in the presence of emerging technologies), there is a much more precipitous increase in costs as
customers shift from heat pumps to furnaces and adopt rooftop solar to reduce their net consumption of electricity.
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In the “No HP/Solar/Storage” scenario, we observe that the total cost of energy services

decreases in the cold and mixed-humid climates (and to a lesser extent the hot-humid and

marine climates) as the volumetric tariff is increased from $0.01 per-kWh to approximately $0.05

per-kWh. These cost-savings are achieved because customers shift their space heating equipment

from electric resistance to gas furnaces.

As the tariff continues to increase, the total cost of energy services quickly plateaus. While

customers shift from low-efficiency furnaces and air conditioners to higher-efficiency units, this

has a modest effect on the total cost of energy services. Consequently, the choice of a $0.10

per-kWh tariff vs. a $0.20 per-kWh tariff has a minimal impact on cost.

In the base and progress cases, we see much more precipitous increases in costs as the tariff

is raised. This is predominantly driven by customers adopting rooftop solar to reduce their net

consumption of utility-provided power. We note that while this does result in the total cost

of energy converging to zero as net consumption goes to zero,13 these savings are substantially

outweighed by increased equipment costs (which include solar PV). Because we have assumed an

annual net metering policy, the behavior only persists until customers have decreased their net

annual consumption of grid power to zero, after which point continuing to increase the tariff

does not have any effect on customer decisions.

The cost-minimizing tariffs are achieved at prices between $0.06-$0.13 per-kWh for the base

case and $0.06-$0.12 per-kWh for the progress case. These tariffs strike a balance between

discouraging inefficient use of electricity (load that is valued at less than the cost of energy and/or

necessitates inefficient capacity expansion) while not being so high as to encourage inefficient

solar adoption. These results are generally consistent with the recommendations produced by

Borenstein (2016) and Perez-Arriaga, Jenkins, and Batlle (2017), which advise that the price of

electricity should be set close to its social marginal cost (here assumed to be $0.05 per-kWh). The

volumetric tariffs on the higher end of these ranges discourage over-consumption of electricity

that could drive up capacity costs. This signaling could most-likely be done more efficiently by

13In evaluating total costs, we simply sum the net energy consumption over the course of a year and multiply by
the cost of energy. This is a different procedure than we used to compute the energy portion of utility costs, as the
utility still needed to purchase energy at off-peak hours to re-sell to customers.
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combining a lower energy price with a separate tariff that discourages consumption at hours

when the feeder is near its capacity.

We note that the computed electric capacity costs in Figure 5.17 are governed by our

estimate of the annualized cost of additional electric distribution capacity ($50 per-kW each

year). This estimate was informed by the econometric analysis in Chapter 1. Many analyses,

such as Elmallah, Brockway, and Callaway (2022) and Larson et al. (2020), use significantly

higher estimates for the cost of additional distribution capacity. If we estimate the annualized

cost of additional distribution capacity as $300 per-kW-year, we are given Figure 5.18.14 Here

we see that the total cost of energy services increases much more sharply for both low and high

volumetric tariffs. This makes it even more important that the tariff be set in the “goldilocks

zone” that encourages efficient electrification of heating with heat pumps, doesn’t encourage

wide-scale adoption of electric resistance heating in colder climates (which can drive up peaks),

and doesn’t incentivize load attrition through inefficient adoption of distributed rooftop solar.

14This $300 per-kW-year figure applies to both additional distribution capacity for electrified loads and "negative
distribution capacity" needed to receive excess solar injections during hours when the net feeder load is negative.
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Figure 5.18: Total cost of energy services, assuming additional distribution capacity costs $300 per-kW-year. Compared to Figure 5.17,
the total cost of energy services increases much more sharply for both low and high volumetric tariffs.
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There are a number of cost-recovery mechanisms other than volumetric tariffs that may

send more accurate price signals to customers, thus further reducing the cost of energy services.

These include time-of-use (ToU) pricing, wherein the price of electricity changes based on fixed

daily/seasonal schedule; real-time pricing (RTP), wherein the price of electricity changes at

hourly intervals in response to the wholesale market; and demand charges, wherein customers are

billed in part based on their individual peak load during a monthly period. One notable strategy,

detailed in Pérez-Arriaga and Knittel (2016, Ch. 4), separately recovers energy costs based

on the SMC of electricity, marginal capacity costs based on a forward-looking peak-coincident

charge, and the residual through a fixed customer charge. Further work should investigate how

the relative efficiency of these different strategies varies between climates and in the presence of

emerging technologies.

5.4.3 Additional Scenarios

5.4.3.1 Net-Metering

“Net energy metering” (NEM) is a policy employed by a number of states that compensates

retail customers for injected to the grid at the same rate that they pay for purchasing it. In

other words, if a residential retail tariff is $0.20 per-kWh, then $0.20 is subtracted from the bill

for every kilowatt-hour that a customer injects to the grid.

This policy has drawn sharp criticism because the retail rate often significantly exceeds the

value of a marginal unit of electricity injected to the grid. This case is particularly strong in

California, where a retail rates can exceed in $0.30 per-kWh but midday wholesale prices can

fall below zero during the middle of the day, when there is excess solar generation on the grid

California ISO (2021).

A number of states, including California, have begun implementing reforms to NEM that

reduce the level of compensation for electricity to injected to the grid. Some of these programs

also charge customers higher fixed charges and direct customers to switch to time-of-use (ToU)

billing.

Our model of volumetric retail pricing assumes NEM is used in the default case. To test
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how this policy affects customer behaviors, we also run a separate set of models that substitutes

the NEM policy with a “net billing” policy that compensates customers for injected electricity at

the assumed social marginal cost of electricity ($0.05 per-kWh), rather than the volumetric tariff.

These models are optimized across the same range of volumetric tariffs used in base models,

allowing us to understand how the presence of a NEM policy can impact customers differently

depending on the level of their tariff.

Figure 5.19 shows the 24-hour load profile for a day with high solar production in the hot-dry

climate. The black line represents the net load on the feeder, including the net effects of any

solar generation and storage injections. The colored bar plots describe the solar generation and

storage operation. The plots on the top row show the load and solar/storage operation for four

different levels of the volumetric tariff ($0.12 per-kWh, $0.16 per-kWh, $0.20 per-kWh, $0.24

per-kWh, $0.32 per-kWh) assuming net-metering. The plots on the bottom row show the same

profiles without net metering (injections to the grid are compensated at $0.05 per-kWh instead

of at the tariff).

Without net-metering, customers are far less incentivized to build out excess solar generation

because the electricity they inject to the grid is only compensated at a $0.05 per-kWh feed-in tariff

rather than the much higher retail rate. Consequently, the “No NEM” case sees less adoption of

solar at a given tariff than the base case.

In the bottom-right plot, we see adoption of distributed storage in addition to solar. This

allows customers to “bank” excess solar power generated during the middle of the day and

use it to reduce their net consumption during the nighttime and early morning. These banked

kilowatt-hours are effectively compensated at the retail rate (rather than the much lower feed-in

tariff) because they allow customers to reduce their consumption of expensive grid-supplied

power.

Because solar power generated and consumed behind the meter is effectively compensated at

the volumetric tariff, high retail tariffs over-incentivize the adoption of distributed generation

even if net-metering has been eliminated.15 This is a point frequently left out of policy debates

15See Biggar and Hesamzadeh (2014), Chapter 20 for a detailed discussion of this phenomenon.
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Figure 5.19: 24-hour load profile for a day with high solar production in the hot-dry climate. The
black line represents the net load on the feeder, including the net effects of any solar generation
and storage injections. The colored bar plots describe the solar generation and storage operation.
Without net-metering, customers are less incentivized to invest in solar generation at any given
tariff. At higher tariffs, customers are incentivized to augment their solar investments with
distributed battery storage so that they can use stored solar energy to reduce their net load in
the evening and morning hours.
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about retail rate design.

Figure 5.20 compares the amount of solar PV generation in the hot-dry climate with and

without net-metering. Without net metering, customers are far less incentivized to adopt rooftop

solar PV, producing far less electricity from solar at any given tariff than in the case with net

metering.
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Figure 5.20: Total solar generation in the hot-dry climate, with and without net metering.
Without net metering, the amount of solar generation increases much more gradually as the
tariff is increased than in a scenario with net metering. This is because customers are not as
strongly incentivized to inject excess generation to the grid.

In Figure 5.21, we see that the removal of a net metering policy discourages customers from

selling electricity back to the utility at any given tariff, decreasing total injections. However, a

corollary is that customers are much more inclined to find ways to consume their own generation

behind-the-meter, such as by adopting battery storage. Consequently, at the highest tariffs,

injections and purchases are both significantly lower in the “No NEM” case than in the base case.

Removing the net metering policy results in a modest reduction in the feeder peak for higher

tariffs relative to the base case, as seen in Figure 5.22. This is likely due to the adoption of

distributed storage in addition to solar PV, which is used to shift excess solar generation to other
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Figure 5.21: Purchases, injections, and net consumption vs. the volumetric tariff for the hot-dry
climate, with and without net metering. Removing the net-metering policy discourages customers
from injecting electricity to the grid and encourages them to consume it behind-the-meter. This
results in decreases in both injections and purchases.

hours of the day. We note that there is no direct incentive for customers to reduce their peak

load under volumetric pricing (with or without net metering). Some other tariff design that

directly incentives load reductions during peak hours, such as a peak-coincident demand charge

or time-of-use pricing, would be more effective at encouraging customers to shave their peaks

than net metering reform alone.

The utility’s costs and revenues are plotted in Figure 5.23. We observe that in the “No NEM”

case, the black line rises above the colored region. This indicates that there exists a range of

volumetric tariffs under which the utility is able to recover its full expenses. This does not hold

in the base case, where the net-metering policy makes it impossible for the utility to recover its

full costs through a volumetric tariff alone.

The total cost of energy services vs. the tariff is plotted in Figure 5.24. The left plot is

identical to the hot-dry base case plot in Figure 5.17. As the tariff increases from approximately

$0.13 per-kWh to $0.20 per-kWh, the total cost of energy services increases sharply as customers
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Figure 5.22: Peak load vs. the volumetric tariff in the hot-dry climate, with and without net
metering. Removing the net metering policy results in a modest reduction in the feeder peak for
higher tariffs relative to the base case.

189



Base Case No NEM
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Figure 5.23: Total revenue collected from customers through the volumetric tariff (black line)
and total cost of serving customers (colored areas) for the hot-dry climate in the base case
and "No NEM" scenario. In the "No NEM" case, the black line rises above the colored region,
indicating that there is a range of volumetric tariffs under which the utility is able to recover its
full expenses. This does not hold in the base case. The financial value of the energy received
from solar injections (assuming it displaces generation elsewhere) is represented by the difference
between the dashed line and the solid line.
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adopt solar panels. This adoption is a form of “inefficient bypass”: it reduces an individual

customer’s expenses but increases the total cost of energy services on the feeder. As the tariff

continues to increase above $0.20 per-kWh, there is no additional behavioral change because every

customer has adopted enough solar capacity to reduce their net consumption of grid-supplied

power to zero. At this point, all expenses associating with maintaining the utility’s infrastructure

(which is still necessary for serving load during most hours of the day) would need to be recovered

by means other than a volumetric tariff, such as through a monthly customer charge.
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Figure 5.24: Total cost of energy services vs. the volumetric tariff for the base case and "No
NEM" scenarios. For the base case (which has full net-metering) the cost of energy services
increases with the volumetric tariff until the tariff reaches $0.20 per-kWh, at which point every
customer has a net generation of zero. For the "No NEM" scenario, wherein customers are only
compensated at a rate of $0.05 per-kWh for electricity injected to the grid, the total cost of
energy services is lower for tariffs less than $0.30 per-kWh but higher for tariffs greater than
$0.30 per-kWh, as customers are incentivized to store excess solar generation using batteries.

The right plot shows the total cost of energy services for the scenarios that eliminate net-

metering. For volumetric tariffs less than $0.30 per-kWh, eliminating net-metering reduces the

total cost of energy services by discouraging customers from adopting solar panels as a form of

inefficient bypass. Nonetheless, as the volumetric tariff increases in either scenario, customers

continue to adopt more and more solar capacity, increasing the total cost of energy services.
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Notably, for tariffs above roughly $0.30 per-kWh, the total cost of energy services is actually

higher in the “No NEM” scenario than in the base case. This result is not immediately intuitive:

if the inefficiency in the system is caused by mispricing of energy services, then correcting this

pricing (even if only for injections) should reduce costs.

This surprising result can be better understood when we disaggregate the equipment costs

into separate categories. In Figure 5.25, we plot the equipment cost vs. the tariff for the base and

“No NEM” scenarios. Here we see that the as the volumetric tariff rises above $0.23 per-kWh,

customers begin adopting distributed storage in order to bank the excess electricity they generate

behind the meter. As the volumetric tariff rises above $0.30 per-kWh the aggregate cost of

equipment, including solar panels and storage, exceeds the equipment cost in the base case.
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Figure 5.25: Equipment cost vs. volumetric tariff for the "Base Case" and "No NEM" scenarios.
As the volumetric tariff rises above $0.23 per-kWh for the "No NEM" case, customers begin
adopting distributed battery storage in order to store excess electricity generated by solar panels.
This leads to a higher total cost of energy services as the tariff increases past $0.30 per-kWh.

In this example, NEM reform can be said to close a door while opening a window. Even

though it is effective in discouraging customers from inefficiently adopting rooftop solar and can

help utilities recover their expenses through a simple volumetric tariff, it also creates an arbitrage

opportunity for customers that is not grounded in substantive variations in the cost of energy.
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This leads customers to inefficiently adopt large amounts of solar and storage that ultimately

increase costs.

5.4.3.2 Demand Charges

“Demand charges” are a cost-recovery mechanism used by utilities wherein a portion of a

customer’s bill is computed based on their peak power demand (in kW) over a billing period.

While there are several different ways to implement demand charges, they generally encourage

customers to keep their consumption as flat as possible. Demand charges are typically reserved

for commercial and industrial customers, but there has been movement to implement them for

certain classes of residential customers (Hledik, 2014).

To study the impact that demand charges are likely to have on the behavior of residential

customers, we implement a separate version of the model wherein customers are faced with a

monthly demand charge ranging from $1 per-kW to $20 per-kW. This demand charge is assessed

based on each individual customer’s peak hourly consumption during the month (some other

designs for demand charges bill customers based on their peak consumption during a specific

time interval). Additionally, customers pay a volumetric energy charge of $0.05 per-kWh on

every unit of electricity consumed, which is reflective of the assumed SMC.

In Figure 5.26, we plot the coincident feeder peak for each climate regions vs. the demand

charge in two months: February and August. As the demand charge is increased, customers are

incentivized to decrease their peak consumption. Insofar as these peaks are correlated (as heating

and cooling peaks in a given location often are), this behavior reduces the total coincident peak

reported on the y-axis. The functional relationship between the feeder peak and the demand

charge is seen most prominently in the cold climate in February. As the demand charge is

increased, customers shift their heating loads from heat pumps to gas furnaces in order to reduce

their individual expenses.

In Figure 5.27 we plot the electric utility’s costs and revenues vs. the demand charge. In

general, the utility’s costs decrease as the demand charge is increased because customers are

discouraged from operating peaky loads that drive capacity costs. As the demand charge is
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Figure 5.26: Peak February and August loads vs. the demand charge in all five climate regions.
As the demand charge is increased, customers are incentivized to decrease their peak consumption,
reducing the feeder peak. This is seen most prominently in the cold climate in February.

increased from $1 to $16 per-kW, utility revenue increases. For tariffs above $16 per-kW, the

utility’s revenue drops off precipitously. Notably, in three out of the five climates, the utility’s

revenue from demand charges (plus the $0.05 per-kWh energy charge) never exceeds the utility’s

costs. In these circumstances, the utility would need to increase either the volumetric tariff or

add some other cost recovery mechanism in order to fulfill its revenue requirement.

Figures 5.28 and 5.29 plot the total cost of energy services and the equipment cost vs. the

demand charge, respectively. For the cold and mixed-humid climates, increasing the demand

charge from $1 to $16 reduces the total cost of energy services. For the other three climates, the

total cost of energy services either remains constant or slightly increases as the demand charge is

increased. In all five climates, as the demand charge is increased above $16 per-kW, customers

adopt large amounts of storage in order to reduce their peaks. While this behavior does indeed

result in modest reductions in electric capacity costs (light blue in Figure 5.28), these savings are

far outweighed by additional equipment costs.

These results indicate that while demand charges may be effective at sending an economic
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Figure 5.27: Electric utility’s costs and revenues vs. the demand charge. The utility’s costs
decrease as the demand charge is increased because customers are discouraged from operating
peaky loads that drive capacity costs. As the demand charge is increased from $1 to $16 per-kW,
utility revenue increases; for tariffs above $16 per-kW, the utility’s revenue drops off precipitously
due to adoption of battery storage.
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Figure 5.28: Total cost of energy services vs. the demand charge. For the cold and mixed-humid
climates, increasing the demand charge from $1 to $16 reduces the total cost of energy services.
For the other three climates, the total cost of energy services either remains constant or slightly
increases as the demand charge is increased.
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Figure 5.29: Equipment cost vs. the demand charge. Equipment costs increase gradually as the
demand charge is increased from $1 to $16 because customers adopt higher-efficiency equipment
and gas furnaces to reduce their peaks. As the demand charge is increased above $16, they also
adopt large amounts of battery storage in order to reduce their payments.
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signal that volumetric tariffs alone do not send (that is, that electricity peaks are a substantial

cost-driver and ought to be mitigated), they need to be properly-tuned to be effective. If demand

charges are set too low or too high, they could promote inefficient adoption and operation of

heat pumps or battery storage.

Figure 5.30 plots the total emissions from electricity and natural gas against the demand

charge for all five climate regions. While increasing the demand charge incentivizes customers

to shift their loads from electricity to gas (thus shifting the relative contribution of emissions

from each), the total emissions are relatively static. We note that these results are particular

to the specific assumptions about emissions coefficients built in to our modeling (that is, that

the electric grid has a constant emissions factor of 0.953lb per-kWh). If we assumed lower grid

emissions due to renewables adoption or greater volatility of grid emissions, the results may look

different.
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Figure 5.30: Total emissions from electricity and natural gas vs. the demand charge for all five
climate regions. While increasing the demand charge incentivizes customers to shift their loads
from electricity to gas, the total emissions are relatively static.

Another notable issue with demand charges is that because they are assessed every month,

they encourage customers to curtail their consumption even in off-peak seasons. This is illustrated
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in Figure 5.31. As the demand charge is increased, customers reduce their loads year-round,

not just during the peak season. Load reduction in the off-peak season does little to reduce

generation or distribution capacity costs.

Cold Hot−Dry Hot−Humid Mixed−Humid Marine

JanuaryApril July OctoberJanuaryApril July OctoberJanuaryApril July OctoberJanuaryApril July OctoberJanuaryApril July October

50

100

150

200

Month

F
ee

de
r 

P
ea

k 
(k

W
)

$1

$3

$6

$10

$16

$20

Figure 5.31: Feeder peaks throughout each month of the year in all five regions for the demand
charge scenarios. The color of the line represents the demand charge. As the demand charge
is increased, customers reduce their loads year-round, not just during the peak season. Load
reduction in the off-peak season does little to reduce generation or distribution capacity costs.

5.4.3.3 Historical Prices

In this chapter we evaluated the utility’s costs by assuming constant SMCs for electricity

and gas ($0.05 per-kWh and $6.307 per-MMBTU, respectively), and the same cost coefficient for

generation capacity in all five climate regions ($30 per-kW). This allowed us to focus on how the

variability in energy demands between climate regions affected the efficiency of different tariff

designs, while holding the parameters of the energy market constant.

To better understand how this choice has affected our results, we augment the “utility cost”

and “total cost of energy services” functions plotted in Figures 5.14 and 5.17 with estimates

using the region-specific historical electricity and generation capacity price data presented in

Section 4.3. Additionally, we modify the hourly electricity pricing data by keeping the mean
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constant and increasing the standard deviation by a factor of two. This allows us to evaluate the

extent to which the results hold in a more volatile electricity market with a higher dispersion of

hourly prices (as might be expected in a future with greater penetration of renewables). The

distribution of hourly prices for these two scenarios is plotted in Figure 5.32. We note that in all

cases, the median electricity price is somewhat lower than the $0.05 per-kWh used throughout

this chapter, but that the distributions have long tails.
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Figure 5.32: Distribution of electricity prices in the historical data and the "High Dispersion"
scenario. The black line in each violin plot is the median price. Note that the area of the plot is
cropped to exclude outliers.

In Figure 5.33, we report the utility’s costs for each feeder vs. the tariff. As in Figure 5.14,

the blue area describes fixed electric transmission, distribution, and administrative expenses that

occur upstream of the feeder and are not impacted by customer behavior, but are allocated to

these residential customers; the green area is the cost of capacity, including both generation

capacity costs and the annualized cost of any additional feeder capacity required to meet peak

loads; and the red region is the cost of electricity. The solid and dashed black lines (which

predominantly overlap) describe the utility’s total cost evaluated using the historical price data

from Section 4.3 and the modified “High Dispersion” data described above.
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Figure 5.33: Total cost of serving customers (colored areas). The solid and dashed black lines describe the utility’s total cost evaluated
using the historical price data from Section 4.3 and the modified "High Dispersion" data described above.
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We see that the use of region-specific historical energy cost data rather than constant energy

and capacity cost assumptions modestly decreases the evaluated utility’s costs in all five regions,

but does not change the overall shape of the utility cost plots. Additionally, the same costs

evaluated using the “High Dispersion” data nearly perfectly overlap the historical data costs,

indicating that the demand for electricity on the feeder is not correlated with the wholesale

market price. Together, these results indicate that our choice to hold the SMC and generation

capacity costs constant most likely did not bias the results of the analysis presented earlier in

this chapter.

Likewise, in Figure 5.34, we produce a modified version of Figure 5.17. As before, the stacked

colored region plots the total cost of providing energy services to the 15 customers (per-1000-sf)

vs. the volumetric tariff using the data from 5.2. The solid and dashed lines plot is the total cost

evaluated using the historical energy and capacity cost assumptions from Section 4.3 and the

“High-Dispersion” data described above.

As one would expect, the particular assumptions about energy and capacity costs do effect

the total evaluated costs, but only have a modest impact on the overall shape of these curves. The

general observation that costs can be minimized by setting the volumetric tariff in a “goldilocks

zone” (high enough to encourage efficient use of electricity for space and water heating but not

so high that it encourages load attrition through solar) still holds.
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5.5 Role of Subsidies

In Section 5.4.2, we found that keeping volumetric retail electricity tariffs close to the cost of

energy could reduce the total cost of energy services, particularly in the presence of emerging

technologies such as heat pumps, distributed rooftop solar, and battery storage. We also noted

that doing so would result in significant residual costs that would have to be recovered by some

other means, such as a monthly customer charge that could have a regressive impact on some

low-income customers.

As early as the 1930s, economists such as Hotelling (1938) proposed using public subsidies

to recover the fixed costs of businesses such as utilities so that prices for services could be set

efficiently. This proposed strategy fell out of favor with economists by the 1950s (Frischmann &

Hogendorn, 2015).

According to (R. Fares, 2021), the 191 major utilities included in their analysis spent a

combined $84.5 billion in 2019 on transmission and distribution expenses and another $50.7

billion on administration. These utilities sold 2.6 billion megawatt hours of electricity that year,

approximately 68% of total electricity sales that year.

Extrapolating from these data (and assuming that the small utilities not included in the

dataset have similar per-MWh expenses to the large regulated utilities), we can estimate that

recovering transmission, distribution, and administrative expenses for all utilities through a

public subsidy would cost approximately ($84.5 + $50.7) ∗ 1
0.68 = $200 billion each year. This

estimate serves as an upper bound of the residual fixed costs, as some amount of these costs

could be recovered from customers through forward-looking capacity charges and externality

pricing.

While using tax revenue to recover fixed transmission, distribution, and administrative

costs may be politically untenable for a wide variety of reasons, there is still substantial room

for policy interventions to lift some of the cost recovery burden from electric utilities. Many

state governments fund an array of public programs through excise taxes on electricity sales.

(Borenstein, Fowlie, & Sallee, 2021) estimated that for non-subsidized customers served by
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California’s three major utilities, these taxes raised the volumetric price of electricity by 1.26

cents-per-kWh to 1.77 cents-per-kWh. Shifting these programs to the state budget16 – and thus

lowering volumetric tariffs – could be a meaningful step toward incentivizing more efficient use

of the electricity system.

5.6 Conclusion

In this chapter, we modeled residential customers’ responses to different volumetric electricity

tariffs. We found that in the presence of emerging technologies (including heat pumps, solar

panels, and battery storage) volumetric tariffs that are set significantly above the social marginal

cost of energy can cause customers to make inefficient investments that increase the total cost of

grid services. Relative to an optimized feeder, the use of a volumetric tariff that is calibrated to

recover a utility’s full revenue requirement increases the total cost of energy services by 5–25%.

In the progress scenario – which assumes a 70% cleaner grid and a 30% reduction in the cost

of heat pumps, air conditioners, solar panels, and battery storage – raising tariffs high enough to

recover a utility’s full revenue requirement causes a near-doubling of emissions in the cold climate

as customers are discouraged from adopting heat pumps, instead relying on natural gas furnaces.

In the hot-dry and marine climates, the availability of rooftop solar panels and battery storage

make it impossible for utilities to recover their full revenue requirement through volumetric tariffs

because customers’ load defection exceeds additional revenue from the increased tariff.

We found that a policy that replaces net-metering with a $0.05 per-kWh feed-in tariff

can effectively discourage uneconomic adoption of rooftop solar photovoltaic panels when the

volumetric tariff is set at prices in the range of $0.13 to $0.30 per-kWh. This reduces the total

cost of energy services relative to a full-net metering policy. However, for tariffs set above $0.30

per-kWh, the asymmetry between the volumetric consumption tariff and the feed-in tariff actually

leads to higher system costs, as customers augment their uneconomic photovoltaic investments

with uneconomic battery storage investments.

16The government of Ontario recently shifted its renewables subsidies from the "Global Adjustment Charge,"
which is recovered from utility bills, to the general tax base.
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Chapter 6

Conclusion and Future Work

In this thesis, we described the potential for emerging customer-side technologies to reduce

the cost of residential energy services and analyzed how to adapt residential electric tariffs to

incentivize more efficient technology adoption. In these final paragraphs, we discuss a number of

outstanding questions that should be addressed in future work.

Most urgently, we need to develop a better understanding of the efficiency implications of

using cost recovery mechanisms other than volumetric pricing and demand charges, such as

time-of-use rates and real-time pricing. These tariff structures can provide more accurate price

signals, but may be too complicated for many customers to accept. One potentially valuable lane

of research would be to determine how internet-of-things (IoT) enabled devices could respond to

price signals from a utility without the need for direct customer involvement.

A major constraint of the model used in Chapters 4 and 5 (and a limitation to using it to study

hyper-accurate tariffs like real-time pricing) is that it presumes that there is a predetermined

electricity price that is independent of the activities taking place on the feeder. We know that

the electricity price is a function of both supply and demand, so a more accurate model would

determine the price endogenously. One approach would be to include a generation module that

allows for wholesale electricity prices to respond to load. A dynamic wholesale generation model

would also allow us to interrogate what kinds of generation are promoted (or discouraged) by
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the adoption of various demand-side technologies

Additionally, further work should test the efficacy of other policies, such as rebates for certain

equipment and equipment mandates (such as requiring all new air conditioners to be sold with

heat pump functionality). The approach outlined in Chapter 5 could readily be adapted to

forecast how cost-minimizing customers would respond to such incentives and policies.

In our analysis of tariffs, we hold retail natural gas prices constant while modifying electricity

rates. However, there is also reasonable uncertainty in the future retail price of natural gas. If

consumption of natural gas falls as customers adopt electric space and water heating options,

gas utilities will need to increase their rates to recover their considerable fixed costs. This will

no doubt further discourage customers form consuming natural gas, which could cause a utility

death spiral. Further work should analyze these dynamics between electricity tariffs, gas tariffs,

and customer incentives for equipment adoption and use.

Our results indicate that there may be some benefit in “pruning” the natural gas distribution

system in regions where fully-electrified heating is cost-competitive with natural gas heating.

Further work is needed to understand how retiring portions of the natural gas distribution system

would impact costs. Additionally, in colder climates that benefit from some form of hybrid or

dual-fuel heating, it would be worth exploring heating topologies that pair a heat pump with a

liquid fuel such as fuel oil or kerosene (or a green alternative to one of these). This would obviate

the need to maintain the natural gas distribution system, which may become redundant in the

future if heat pumps become significantly more popular.
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Appendix A

List of Utilities

Utility State Region Ci Growthi Undergroundi Densityi Residentiali

Alabama Power Company AL SE 11,511 1.5% 8.3% 21.6 32.6%
Alaska Electric Light and Power Company AK WE 64 2.0% 20.4% 1.5 42.0%
ALLETE (Minnesota Power) MN MW 1,515 1.4% 18.1% 26.3 11.1%
Appalachian Power Company OH MW 6,974 2.7% 9.1% 28.4 38.8%
Arizona Public Service Company AZ WE 6,501 4.7% 41.5% 19.1 45.4%

Atlantic City Electric Company DE MA 2,726 3.4% 10.8% 114.7 44.5%
Avista Corporation WA WE 1,734 0.7% 18.4% 8.7 40.6%
Baltimore Gas and Electric Company MD MA 6,808 1.6% 31.5% 309.5 40.0%
Black Hills Power, Inc. SD MW 398 1.9% 17.7% 2.1 29.5%
Central Hudson Gas & Electric Corporation NY MA 1,154 3.3% 10.0% 65.0 43.2%

Central Maine Power Company ME NE 1,633 1.8% 4.6% 24.5 23.0%
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(continued)

Utility State Region Ci Growthi Undergroundi Densityi Residentiali

Cleco Power LLC LA SW 1,915 2.0% 8.7% 23.5 39.6%
Cleveland Electric Illuminating Company OH MW 4,559 0.8% 20.4% 245.1 27.4%
Commonwealth Edison Company IL MW 22,251 1.6% 33.6% 155.2 30.6%
Connecticut Light and Power Company CT NE 5,272 1.6% 21.5% 131.7 42.2%

Consolidated Water Power Company WI MW 231 0.3% 18.8% 0.4 0.6%
Consumers Energy Company MI MW 8,277 1.6% 11.0% 30.6 35.6%
Dayton Power and Light Company OH MW 3,176 0.6% 14.4% 55.5 35.1%
Delmarva Power & Light Company DE MA 3,876 3.3% 19.3% 52.7 37.0%
DTE Electric Company MI MW 11,764 0.8% 18.0% 45.1 33.3%

Duke Energy Carolinas, LLC NC SE 17,003 0.7% 18.7% 44.8 32.8%
Duke Energy Florida, LLC FL SE 9,698 2.8% 19.0% 39.7 50.5%
Duke Energy Indiana, LLC IN MW 5,999 1.8% 15.4% 19.4 30.7%
Duke Energy Kentucky, Inc. OH MW 828 2.2% 17.3% 265.8 35.9%
Duke Energy Ohio, Inc. OH MW 5,250 0.8% 19.6% 197.3 34.3%

Duke Energy Progress, LLC NC SE 11,407 1.8% 18.9% 22.2 36.5%
Duquesne Light Company PA MA 2,897 1.6% 17.0% 417.2 28.4%
El Paso Electric Company TX SW 1,447 0.6% 22.7% 17.1 30.2%
Emera Maine ME NE 305 0.4% 2.9% 2.9 36.2%
Empire District Electric Company MO MW 1,062 2.3% 11.2% 115.0 40.4%

Entergy Arkansas, LLC AR SE 6,889 0.8% 8.7% 10.0 35.8%
Entergy Mississippi, LLC MS SE 3,216 1.3% 5.7% 12.1 39.5%
Entergy New Orleans, LLC LA SW 1,276 0.1% 29.0% 674.2 33.5%
Fitchburg Gas and Electric Light Company NH NE 98 1.6% 10.4% 6.2 33.4%
Florida Power & Light Company FL SE 20,461 2.7% 28.9% 130.1 52.9%

219



(continued)

Utility State Region Ci Growthi Undergroundi Densityi Residentiali

Georgia Power Company GA SE 15,865 2.5% 20.8% 24.9 29.4%
Green Mountain Power Corporation VT NE 364 2.2% 14.1% 7.4 29.2%
Gulf Power Company FL SE 2,459 2.0% 10.4% 40.9 47.2%
Idaho Power Company ID WE 2,996 1.3% 18.0% 6.2 34.2%
Indiana Michigan Power Company OH MW 4,778 0.0% 15.7% 66.8 30.2%

Indianapolis Power & Light Company IN MW 3,025 1.0% 22.8% 466.3 34.2%
Jersey Central Power & Light Company OH MW 6,004 3.1% 15.2% 184.6 43.4%
Kansas City Power & Light Company MO MW 3,549 1.5% 29.8% 151.6 35.3%
Kansas Gas and Electric Company KS MW 2,374 0.4% 16.4% 12.6 31.4%
Kentucky Power Company KY MW 1,636 2.5% 1.9% 28.8 34.7%

Kentucky Utilities Company KY MW 3,996 2.2% 6.3% 75.0 34.3%
Kingsport Power Company OH MW 432 2.4% 9.4% 23.5 35.4%
Lockhart Power Company SC SE 80 0.6% 0.7% 5.8 32.9%
Louisville Gas and Electric Company KY MW 2,679 1.2% 20.1% 323.7 33.8%
Madison Gas and Electric Company WI MW 715 1.6% 38.6% 214.1 25.7%

Metropolitan Edison Company OH MW 2,713 2.9% 11.9% 87.3 37.4%
MidAmerican Energy Company IA MW 3,964 1.4% 15.3% 14.0 29.4%
Mississippi Power Company MS SE 2,593 0.5% 6.9% 9.4 23.9%
Monongahela Power Company OH MW 2,062 1.4% 3.8% 19.0 29.4%
Mt. Carmel Public Utility Company IL MW 34 0.1% 1.8% 34.6 36.5%

Nevada Power Company NV WE 5,021 4.3% 43.0% 93.2 42.1%
New York State Electric & Gas Corporation NY MA 2,752 3.1% 7.8% 28.0 41.9%
Northern Indiana Public Service Company IN MW 3,089 1.3% 14.8% 39.1 19.8%
Northern States Power Company - MN MN MW 8,211 3.1% 33.0% 34.7 28.3%
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(continued)

Utility State Region Ci Growthi Undergroundi Densityi Residentiali

Northwestern Wisconsin Electric Company WI MW 36 3.0% 20.4% 3.3 45.8%

NSTAR Electric Company MA NE 3,575 4.4% 43.2% 115.4 28.1%
Ohio Edison Company OH MW 6,616 1.2% 14.9% 75.5 34.5%
Ohio Power Company OH MW 6,642 0.0% 8.7% 19.8 26.3%
Oklahoma Gas and Electric Company OK SW 5,897 2.1% 22.1% 17.0 34.6%
Orange and Rockland Utilities, Inc. NY MA 1,437 3.6% 16.9% 98.8 37.1%

Pacific Gas and Electric Company CA WE 18,977 2.0% 29.5% 44.7 35.6%
PacifiCorp OR WE 8,923 1.7% 18.5% 6.5 29.0%
Pennsylvania Electric Company OH MW 2,812 2.1% 9.4% 18.7 31.1%
Pennsylvania Power Company OH MW 1,036 2.0% 13.9% 57.3 34.9%
Pioneer Power and Light Company WI MW 7 2.2% 29.6% 12.9 72.3%

Portland General Electric Company OR WE 4,073 0.0% 23.0% 92.8 39.8%
Potomac Edison Company OH MW 3,050 3.0% 20.1% 49.7 39.3%
Potomac Electric Power Company DC MA 6,472 2.0% 41.6% 679.7 29.2%
PPL Electric Utilities Corporation PA MA 7,198 1.6% 13.1% 79.1 36.9%
Public Service Company of Colorado CO SW 6,383 3.6% 37.7% 45.6 31.3%

Public Service Company of New Hampshire NH NE 1,614 2.3% 9.6% 26.1 37.4%
Public Service Company of New Mexico NM SW 1,648 4.8% 30.1% 58.9 32.7%
Public Service Company of Oklahoma OK SW 3,952 1.3% 13.5% 8.2 34.0%
Public Service Electric and Gas Company NJ MA 10,432 1.7% 23.5% 811.3 30.2%
Puget Sound Energy, Inc. WA WE 4,847 0.1% 35.8% 43.7 49.5%

Rochester Gas and Electric Corporation NY MA 1,596 2.3% 33.8% 96.0 37.2%
Rockland Electric Company NY MA 447 2.7% 21.1% 232.3 45.1%
Sierra Pacific Power Company NV WE 1,660 1.8% 28.0% 4.4 25.5%
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(continued)

Utility State Region Ci Growthi Undergroundi Densityi Residentiali

Southern California Edison Company CA WE 20,989 1.8% 31.8% 59.3 32.7%
Southern Indiana Gas and Electric Company IN MW 1,249 1.8% 16.7% 54.3 27.6%

Southwestern Electric Power Company LA SW 4,711 1.1% 12.7% 13.7 32.0%
Southwestern Public Service Company TX SW 4,600 1.9% 9.4% 4.1 20.4%
Superior Water, Light and Power Company WI MW 93 2.7% 13.0% 97.2 14.7%
Tampa Electric Company FL SE 3,914 2.5% 19.2% 271.9 45.1%
Toledo Edison Company OH MW 2,146 1.3% 15.9% 73.0 22.8%

Tucson Electric Power Company AZ WE 2,126 4.3% 28.3% 240.7 40.0%
Union Electric Company MO MW 8,459 0.4% 18.0% 31.9 36.6%
United Illuminating Company CT NE 1,350 1.9% 20.5% 143.6 38.8%
Upper Peninsula Power Company MI MW 151 0.6% 13.4% 2.0 35.6%
Virginia Electric and Power Company VA SE 16,618 1.1% 28.3% 59.2 37.5%

West Penn Power Company OH MW 3,705 1.9% 7.3% 39.7 34.4%
Western Massachusetts Electric Company MA NE 797 1.5% 29.4% 39.3 37.4%
Wheeling Power Company OH MW 322 3.6% 12.1% 27.9 21.5%
Wisconsin Electric Power Company WI MW 6,261 0.9% 35.2% 50.2 28.5%
Wisconsin Power and Light Company WI MW 2,775 2.0% 16.8% 21.3 32.8%

Wisconsin Public Service Corporation WI MW 2,095 3.6% 12.8% 19.4 27.6%

Note: reported value for Ci, Growthi, Undergroundi, Densityi, and Residentiali is the mean of that value for utility i from

2000-2007.
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Appendix B

Uniqueness

In mixed-integer optimization, it is sometimes the case that a well-defined problem does not

have a unique solution. This is often the case when incorporating storage, as it is possible for a

battery to charge at different rates or at different hours while imposing the same cost on the

objective function. This can affect the speed at which the optimization algorithm converges on a

unique solution, as the algorithm can vacillate back and forth between multiple near-optimal

(but entirely different) solutions without significantly reducing the objective function.

In our optimizations, we do not impose any cost on keeping a battery fully charged (e.g. by

forcing the battery to leak charge over time or by having the state of charge impact the battery’s

lifespan), which creates the possibility that an optimization could have non-unique solutions. To

test how the algorithm responds in such a circumstance, we create a reduced scenario for a single

residence that only includes a battery with a fixed capacity of 1 kW and a time-variant electricity

tariff. In the first 100 hours, the tariff (which applies to both consumption from the grid and

injections to the grid from the battery) is set to $0.01 per-kWh; for all remaining hours, the tariff

is set to $1 per-kWh. The customer can charge the battery to its full capacity at any time in the

first 100 hours, then discharge at anytime thereafter, and will enjoy the same total benefit.

We run eight sample simulations using different seeds. The charging and discharging behavior

are plotted in Figure B.1. In seven of the eight simulation, the algorithm charges the battery
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close to its full capacity in the first hours of the low-price period, completes charging near the

end of the low-price period, then discharges near the end of the high-price period. The eighth

scenario follows a similar path, except that the battery discharges to 75% at the beginning of

the high-price period, then completes discharging at the end. There is no explanation for this

behavior that can be ascribed to the problem formulation; it is simply a vestige of heuristics

used in the optimizer.

Figure B.1: Charging and discharging of the battery in the eight sample simulations. The plot
on the left shows charging during the first 100 hours. The plot on the right shows discharging in
the last 100 hours. In all tests except test 8, the algorithm waits to discharge the battery until
the last 85 hours.

One way to prevent non-uniqueness from interfering with optimization performance is by

imposing a small non-zero cost on storing energy in the battery, such as by causing the state of

charge to deteriorate over time. This is achieved by adding a coefficient to the first term on the

right-hand side of Equation 4.19. In Equation , below, we set this coefficient to 0.999, meaning

that the battery charge deteriorates by one-tenth of one percent every hour.

SBattery
t = 0.999 ∗ SBattery

t−1 + EBattery+

t − 1
ηStorage

EBattery−

t (B.1)

The resulting charging behavior is plotted in Figure B.2. We see that with the degradation
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factor, the algorithm is incentivized to postpone charging the battery until the last hours of

the low-price period, then sell the electricity back to the grid immediately in the first hours of

the high-price period. This minimizes the energy lost in storage, maximizing the profit from

arbitraging the rates.

Figure B.2: Charging and discharging of the battery in the updated algorithm that includes a
small degradation factor. The algorithm postpones charging the battery until the last hours of
the low-price period, then discharges at the beginning of the high-price period.
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