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Abstract

Essays in Macroeconomics

Rui Duarte Mascarenhas

This dissertation consists of three chapters, each containing a distinct research paper in the

field of macroeconomics. In the first chapter, I estimate the impact of mutual fund flows on

corporate bond prices, issuance and firm investment. I leverage variation caused by the

COVID-19 induced financial panic of March 2020 and find that safer firms suffered a larger

impact in the component of bond spreads that does not compensate for expected default risk.

However, I do not detect impacts of fund flows on issuance or investment. A simple model

predicts liquidation decisions and price responses as being driven by demand and liquidation

elasticities, which depend on the characteristics of the bond return processes. In the second

chapter, we ask: what is the importance of firm and bank credit factors in determining investment

responses to monetary policy? We decompose variation in corporate loan growth rates into purely

firm-level and bank-level variation. The estimated factors are correlated with a set of variables

that proxy for the firm’s and bank’s financial health. Firms with a higher borrowing factor

experience relatively larger investment responses to an unexpected interest rate shock; the effect

is muted when the shock is the reveal of central bank information. The bank factor does not

induce similar heterogeneity in investment responses. In the third chapter, we ask: what is the

nature of optimal monetary policy and central bank disclosure when the monetary authority is

uncertain about the economic state? We consider a model in which firms make nominal pricing

decisions and the central bank sets the nominal interest rate under incomplete information. We



find that implementing flexible-price allocations is both feasible and optimal despite the existence

of numerous measurability constraints; we explore a series of different implementations. When

monetary policy is sub-optimal, public information disclosure by the central bank is

welfare-improving as long as either firm or central bank information is sufficiently precise.
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Chapter 1: The Impact of Mutual Fund Flows on Corporate Bond Debt

1.1 Introduction

In March 2020, the outbreak of the COVID-19 pandemic lead to turmoil in financial markets,

as the uncertainty surrounding the economic impacts of lockdown measures drove institutional in-

vestors to sell out of various asset categories. In this time period, a significant amount of selling

was caused by open-end fixed income mutual funds, as they tried to satisfy increasing redemptions

(Haddad, Moreira, & Muir, 2021). However, in contrast to previous periods of financial turmoil,

selling pressures were concentrated in relatively safer assets, such as Treasuries and safer corpo-

rate bonds. This lead to a relatively larger price drop for these assets, relatively to riskier debt

instruments such as high-yielding corporate debt (Falato, Goldstein, & Hortaçsu, 2021).

In this paper, I evaluate the magnitude of these mutual fund sell-offs on corporate debt prices,

as well as their effect on firms’ bond issuance and investment in the months following the COVID

episode. Following up on previous research, I verify that these fund flows were of significant

size and positively correlated with the fund’s measured asset liquidity. My empirical specification

leverages two different sources of variation to estimate the immediate and subsequent effects of

fund flows (aggregated to the firm level) on firm-level outcomes. I find that while fund flows

don’t have a detectable impact on bond spreads for the entire sample of firms, they do predict

a significant bond-CDS spread increase (relative to baseline) for investment-grade nonfinancial

firms, which indicates that these impacts do not reflect compensation for expected default risk.

These fund flows have a negative impact on subsequent firm bond spreads at a 4-month horizon,

but no detectable impacts on firm bond issuance and investment. To explain the mechanism behind

these findings, I build a stylized model of fund liquidation decisions and show that under reasonable

conditions on demand and liquidation elasticities, liquidations of safer bonds are greater than those
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of riskier bonds in response to an unanticipated withdrawal shock, and that the price response of

the safer security is relatively larger.

The traditional understanding of financial intermediation does not contemplate a large role for

particular nonbank actors – such as fixed-income mutual funds – in determining a firm’s cost of

debt, for two main reasons. Firstly, most macroeconomic models of financial shock generation

and magnification rely on intermediary leverage to produce the observed dynamics (Bernanke,

Gertler, & Gilchrist, 1999); since mutual funds are funded solely with equity shares, they cannot

be the source nor the amplifier of such events. Secondly, corporate bonds are usually modelled as

being held by a dispersed group of investors, and are also thought to be a small part of firm debt

relative to term loans and bank lines of credit.1 This paper represents a two-folded contribution

to this common understanding, as I show that not only do mutual fund flows have a statistically

measurable effect on firm debt prices, but their impact can also be rationalized in a simple model

of financial intermediation.

In my empirical analysis, I use data on fixed-income mutual funds’ holdings of corporate bonds,

as well as their investor flows. I combine this with data on outstanding corporate bonds and their

issuers to construct firm-level weighted average flows into and out of certain issuers. The weights

utilize holdings from year-end 2019, with the assumption that most of these funds did not anticipate

the extent of financial upheaval caused by the pandemic (if they predicted the pandemic at all).

The variable of interest are bond-level spreads over a maturity-matched Treasury bill (assumed

to be the safe asset), as a deviation from previous spreads so as to control for baseline bond risk

premium. I further decompose these spread deviations into compensation for default risk and a

residual component by using data on CDS contracts for the corresponding bonds. It is this residual

component that responds more to fund flows in the period of March 2020, indicating an impact on

prices due to considerations other than default risk.

Estimating the impact of fund flows on spreads after March 2020 is more complex, since after

1Recent work by Gabaix and Koijen (2022) explores deviations from this understanding by pointing to the role of
investor mandates in explaining the impact of financial flows on equity prices. Although I do not adopt fund mandates
as the mechanism of interest, the empirical and theoretical results are in the same vein.
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the initial shock, there can be a number of confounding factors driving both fund-level redemptions

and bond spread deviations. To account for this, I exploit the Federal Reserve’s Secondary Market

Corporate Credit Facility, announced at the end of March. This facility allowed the Fed to outright

purchase corporate bonds according to certain criteria, one of which was that the outstanding ma-

turity of those bonds was under 5 years. Following Falato et al. (2021), I exploit the presumably

exogenous discontinuity at the 5 year mark to evaluate the impact of fund flows, and find that al-

though eligible bond spreads are markedly lower at the 4-year mark, there is no discernible impact

on firm bond issuance or investment.

To make sense of these results, I build a stylized model of fund liquidation decisions. In

this model, there are two bonds with correlated random returns and different degrees of volatility,

making one “safer” and another one “riskier”. The investment fund invests on behalf of households,

but before these returns are realized, it suffers an unexpected redemption shock, which it must

satisfy by liquidating either or both of its existing positions in each bond and/or its cash holdings,

given a general demand for these assets. Within this framework, I derive sufficient conditions on

demand and on liquidation elasticities (in terms of the underlying bond return processes) such that

funds liquidate more of the safer bond than of the riskier bond, and that the price response of the

former exceeds that of the latter.2

This paper is organized into six sections, with the rest of Section 1.1 reviewing relevant lit-

erature. Section 1.2 presents data sources and a descriptive view into the sample. Section 1.3

describes the empirical specification for the March 2020 results, while section 1.4 does the same

for the dynamic estimates. Section 1.5 presents the theoretical framework, and section 1.6 con-

cludes.

1.1.1 Literature Review

The work developed in this paper relates to two major categories of literature at the intersection

of macroeconomics and finance. The first category evaluates the role of financial intermediation

2The model abstracts from real variables or from default risk, as I am not able to detect impacts of fund flows on
these outcomes in my sample.

3



in generating and amplifying macroeconomic shocks, the seminal paper within this group be-

ing Bernanke et al. (1999).3 This subgroup of literature has established that financial institutions

such as deposit-taking banks can assume a great deal of importance in strenghtening or weaken-

ing aggregate fluctuations through changes in the quantity and price of corporate and household

credit. This paper adds to this literature by considering an alternative financial intermediary: the

fixed-income mutual fund. While previous contributions attributed the importance of financial in-

termediaries to their ability to (over)lever themselves on the liability side of their balance sheet,

mutual funds are instead fully funded by equity. In keeping with recent papers such as Yiming Ma,

Xiao, and Zeng (2022a), I endeavor to show that these funds can still be responsible for affecting

the price and the quantity of borrowing of nonfinancial firms.

The second category of literature within which this paper can be understood pertains to the

work done to understood the drivers of nonbank financial intermediation – that is, the supply of

credit outside of regulated depository banking institution and how it compares to regular bank

credit provision. A crucial contribution to understand this area is Becker and Ivashina (2014), who

document the leading factors explaining how firms substitute between bank debt and corporate

bonds. More recently, Berg, Saunders, and Steffen (2021) presents observable patterns in corpo-

rate borrowing since the financial crisis of 2007-08, and finds that institutional investors (such as

mutual funds) have increased their participation in lending to nonfinancial firms. These patterns

have been analyzed by a wealth of recent contributions, who have pointed to a confluence of over-

arching factors such as lower interest rates and the changing nature of financial regulation as being

key contributors to these sea changes in corporate credit.4 Relative to this literature, I attempt

to evaluate whether the micro-level impacts identified here have any macroeconomic relevance

through their effects on corporate leverage and investment.

The closest paper within this strand of literature is Yiming Ma, Xiao, and Zeng (2022b). The

authors focus on the COVID period of March 2020 to show that in response to investor drawdowns,

3More recent contributions include M. Gertler, Kiyotaki, and Prestipino (2016), Coimbra and Rey (2021), Ottonello
and Winberry (2020) and Begenau and Landvoigt (2022).

4These papers include Roberts (2015), Schwert (2020), Chodorow-Reich, Darmouni, Luck, and Plosser (2022),
Irani, Iyer, Meisenzahl, and Peydró (2021), among others.
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fixed income mutual funds sold Treasuries and safer corporate bonds more quickly and in higher

quantities.5 They point to the liquidity premium that these assets commanded in the financial panic

as being the key driver of these decisions. Relative to their work, I switch focus from a bond-level

analysis to a firm-level analysis by aggregating at the issuer level. I also inspect whether these fund

flows had any detectable impact on firm variables such as debt issuance and investment.

1.2 Data

1.2.1 Data sources

I use the CRSP Mutual Fund database to obtain monthly data on mutual funds’ asset holdings,

total net assets and returns.6 These data allow me to compute monthly fund flows and assess the

magnitude of investor redemptions. I combine these data with the TRACE corporate bond trade

dataset, which contains daily prices and yields, and with the Mergent-FISD database, which reports

characteristics of corporate bonds such as ratings, coupon structure and maturity. A drawback of

these sources is the combined dataset doesn’t cover the universe of corporate bonds held by mutual

funds during the time period of interest.

To obtain financial information on corporate bond issuers, I use the Compustat-Capital IQ

quarterly dataset, which provides data on those firms’ sector classification, leverage and investment

rates. I also resort to this dataset to obtain daily CDS prices for 5-year contracts, which is available

for a small subset of these firms. Lastly, I collect data on average asset class repo haircut rates

from the Federal Reserve Bank of New York and data on zero-coupon Treasury bond yields.

1.2.2 Descriptive Statistics

Table 1.1 presents summary statistic for the main variables of interest during the period of

March 2020. The average fund flow into and out of a firm’s bonds is negative during this period,

5Other papers evaluating the same episode’s effect on corporate bond features include Falato et al. (2021) and
Haddad et al. (2021).

6I restrict these data to include only taxable fixed-income mutual funds, as those were the type of funds with
substantial outflows during March 2020.
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Table 1.1: Summary statistics, firms

N Mean SD Min Median Max

Fund Flow 03/2020 851 −1.00 3.55 −65.19 −0.03 16.86
Bond Spread 03/2020 834 14.84 206.62 0.09 2.72 5750.78
CDS Spread 03/2020 92 2.04 4.33 −0.03 1.14 34.79
Bond Spread Deviation 834 11.37 184.01 −13.19 1.20 5141.09
Bond-CDS Spread Deviation 92 1.22 3.14 −0.41 0.61 22.20
Average Bond Maturity 880 3.84 7.64 0.00 1.68 92.56
Size 311 9.24 1.37 6.04 9.01 13.81
Leverage 293 0.39 0.21 0.02 0.36 1.32
Real Sales Growth 311 −0.01 0.27 −3.29 0.01 1.23
Investment Q1 2020 250 −0.03 0.32 −2.69 −0.01 1.84

The table above shows summary statistics for firm-level variables of interest. "Fund Flow 03/2020" shows
the weighted average investor flow into firm-issued bonds, measured as a percentage of the outstanding face
value of firm corporate bond debt, in March 2020. The "Spread" variables are presented in percentage points,
and the "Deviation" variables represent differences between the March 2020 values of these spreads and the
average values for the three preceding months. "Average Bond Maturity" is measured in years, while size
corresponds to the natural log of book assets in $M. "Leverage" is the ratio of debt to assets, where debt is
constructed as short-term liabilities plus half of long-term liabilities. "Real Sales Growth" and "Investment
Q1 2020" are measured as quarterly growth rates from previous values.

corresponding to the sell-off tendency that was identified in Yiming Ma et al. (2022b).7 However,

when aggregating the mutual fund flows using the weight of each bond on the firms’ total out-

standing bond debt, the average flow turns out to only measure about 1% of the latter value. This

attenuation can be explained by the variety of debt securities that firms hold: for many companies,

outstanding corporate debt represents a fraction of their liabities.

The average spread on corporate bonds in March 2020 was 14.84 percentage points, a full 11

points higher than the spread firms experienced in the 3 prior months. The relative mutedness of

the CDS spread response (only 1.22 percentage points above its prior average value) suggests that

this spike in bond spreads is not directly related to perceptions of increased default risk. The em-

pirical specification in section 1.3 attempts to relate these spikes to movements in fund flows, while

incorporating firm-level financial variables such as size, leverage, sales growth and investment.

7Note that the flows capture the entirety of the month of March 2020, and as such are contaminated by the average
positive inflows after the Federal Reserve’s credit facilities announcements in March 23rd. Still, the general tendency
of flows is negative during the whole month.
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What drives variation in fund flows?

Figure 1.1: Average asset haircut and fund flows in March 2020

This figure plots the cross-section of mutual fund flows in March 2020, ordered by the average asset haircut
each fund had according to its holdings. The colors correspond to the fund’s net asset quartile.

A common assertion in recent literature studying the COVID-19 financial panic episode is that

most of the outflows from corporate bonds were mainly driven by concerns about the liquidity of

mutual fund assets. I investigate whether this story holds true in my sample. Figure 1.1 plots the

measured mutual fund flows against a measure of asset illiquidity, which is the average repo hair-

cut by asset category obtained from the Federal Reserve Bank of New York. While this measure

does not capture liquidity during March 2020 directly, it nevertheless proxies part of the loss in-

curred when selling an asset, and to the extent that it is an imprecise measure of said loss, it likely

underestimates it during a time of financial turmoil and broad-based selling pressures.

We can see that funds with larger average asset haircuts also experienced larger outflows during
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March 2020. The correlation is stronger when focusing on larger funds – in the 4th quartile of net

assets – which are possibly more important in determining the price impact of bond sales. While

there is still a significant degree of variation beyond that which asset haircut can explain alone, the

figure still suggests that asset illiquidity was important in explaining fund flows during this period.

1.3 Empirical Effects of Mutual Fund Flows on Corporate Bond Spreads in March 2020

1.3.1 Statistical Specification

The baseline specification for evaluating the impact of mutual fund flows on corporate bond

spreads is given by

∆Spreadsi = α + βWeightedFlowi + Γ′Zi + ei (1.1)

where the coefficient of interest to be estimated is β. The vector Zi includes a variety of firm-

level controls, to wit: firm size as proxied by the natural logarithm of assets; firm leverage; real

quarterly sales growth; weighted fund size as proxied by the fund’s net assets; and weighted fund

return.8

To construct ∆Spreadsi, I take the median difference between the daily corporate bond yields

issued by firm i and the zero-coupon continously-compounded Treasury yield of the same maturity,

between March 1st 2020 and March 22nd 2020; I then average these bond spreads at the firm level,

weighing each by the proportion of firm outstanding corporate bond debt each bond represents.

I then calculate the difference between this measure and the average firm-level spreads in the

previous 3 months (that is, between December 2019 and February 2020).

The regressor of interest WeightedFlowi is a weighted average of the fund flows for funds that

hold a firm’s bonds, constructed as
8The measurement of the firm-level variables follows Ottonello and Winberry (2020). The firm-level fund-related

controls are weighted in the same way as the fund flow, following (1.2).
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WeightedFlowi ≡
∑
b(i)

(∑
f

Flowf

Holdingsf,b(i)
Holdingsf

)
FaceValueb(i)
FaceValuei

(1.2)

The variable Flowf is the March 2020 investor flow for fund f , measured using the change

in monthly fund net assets. The weighting variable Holdingsf,b(i) is measured as of December

2019, to alleviate concerns that a fund’s position in specific corporate bonds is correlated with an

unobserved determinant of firm-level spread deviations during the COVID-19 financial episode.9

This makes this an imputed flow, which is common practice in the literature studying this episode

(Coval & Stafford, 2007; Lou, 2012) as daily security-level flows are not observed for mutual

funds.

1.3.2 Main results

Table 1.2 shows the estimation results of the statistical specification in (1.1). Focusing first

on the full sample estimation, the univariate case shows a negative (not statistically significant)

effect of fund flows on bond spread deviations, but this effect changes sign once firm level financial

variables such as size and leverage are introduced. Compared to these variables, the impact of fund

flows is both less economically and statistically significant. The following two columns restrict the

sample to only firms which are rated as investment-grade issuers and that are classified as not

belonging to the finance sector. The estimated effects of fund flows still follow a similar pattern,

although it is worth noticing how firm leverage loses its explanatory power for the deviation in

bond spreads in March 2020 relative to their previous levels.

While there is a lack of statistical evidence pointing to a detectable effect of mutual fund flows

on overall corporate bond spreads, the situation changes once I analyze the components of those

spreads. The last two columns look at the bond-CDS spread deviation during the same time period,

restricting analysis to the same subsample of investment-grade non-financial issuing firms. While

the sample size becomes quite small, there is a noticeable negative impact of fund flows on the

9The maintained hypothesis here is that the pandemic’s heterogeneous firm effects were unanticipated by funds as
of December 2019, and as such their positions at the time are not dependent on unobserved spread shifters that would
be lumped into the error term ei.
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Table 1.2: Effect of Flows on Bond Spreads

(1) (2) (3) (4) (5) (6)

Fund Flow −0.026 0.116+ −0.070 0.157* 0.134 −5.007***
(0.084) (0.046) (0.075) (0.045) (0.079) (0.000)

Size (Log Assets) −0.582*** −0.063* 0.059***
(0.010) (0.015) (0.000)

Leverage 4.638*** 0.131 −0.916***
(0.522) (0.193) (0.000)

Sales Growth 0.035 0.140 −1.095***
(0.021) (0.333) (0.000)

Fund Size (Net Assets) 0.024 −0.005
(0.024) (0.004)

Fund Return −64.020 −318.707
(76.576) (211.060)

Num.Obs. 777 268 155 97 22 18
R2 0.000 0.099 0.006 0.087 0.125 0.532
R2 Adj. −0.001 0.064 −0.001 −0.020 0.081 0.337

P-values: +→ 0.1; ∗ → 0.05; ∗ ∗ ∗ → 0.01. The table shows the results of the main specification in (1.1).
Columns (1) and (2) show the coefficient estimates in the full sample, while columns (3) and (4) do the
same for the subsample of firms in nonfinancial sectors rated as investment-grade bond issuers. For columns
(1)-(4), the dependent variable is the bond spread deviation ∆Spreadsi. Columns (5) and (6) keep the same
subsample as the previous two columns, but their dependent variable is the deviation in bond-CDS spreads.

deviations of the component of bond spreads that is not compensation for expected default risk.

In fact, a $1M weighted fund outflow is estimated to lead to an 5 percentage point increase in the

bond-CDS spread in March 2020, relative to its value in the previous 3 months.

1.4 Empirical Effects of Mutual Fund Flows on Corporate Bond Issuance and Investment

While evidence from the COVID-19 induced financial upheaval of March 2020 points to a

larger impact of mutual fund flows on investment-grade bond issuing firms’ spreads, it remains to

be seen whether this translated into changes in firms’ debt and investment choices. In this section,

I investigate whether subsequent corporate bond issuance and investment were affected by these

flows, as well as the magnitude and persistence of such effects.
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1.4.1 Empirical Specification

The baseline specification for evaluating the impact of mutual fund flows on corporate bond

spreads is given by

Yi,h = α + βhWeightedFlowi,h + Γ′Zi + ui,h (1.3)

where Yi,h is one of {Spreadsi,h, Issuancei,h, Investmenti,h}. The coefficients of interest are

βh, which reflect the impact of flows on the left-hand side variable for each time horizon h.

The variable Issuancei,h corresponds to the face value amount of bonds issued on and after

April 2020, with the same bond weights as in (1.1). Investmenti,h corresponds to the (intensive

margin) firm investment rate, and is constructed using the perpetual inventory method outlined

in Ottonello and Winberry (2020), with similar adjustments. While the time horizon frequency

for the Spreadsi,h and Issuancei,h variables is month-to-month, data availability constrains the

Investmenti,h variable frequency to quarterly.

A valid concern is that fund flows post-March 2020 are driven by unobserved factors that deter-

mine the firm-level borrowing and investment response. To address this, I leverage the structure of

the Secondary Market Corporate Credit Facility (SMCCF), announced on March 23, 2020.10 This

credit market intervention stipulated that corporate bonds fulfilling certain criteria were eligible for

purchase by the Federal Reserve. Crucially, one of the criteria for purchase eligibility was a bond

maturity of 5 years or fewer.11

This brings about two possible approaches to addressing the endogeneity concern above. Naïvely,

one could instrument the WeightedFlowi,h with a weighted binary variable determining whether a

given bond was eligible for purchase within this program. The problem with this approach is that

it is plausible that this eligibility is itself correlated with the same unobserved factors mentioned

earlier, and thus does not solve the omitted variable problem. To account for this possibility, I

10I follow Falato et al. (2021) in exploiting this intervention.
11The other main criteria were: the issuer had to be created or organized in the U.S.; the issuer had to be rated

investment-grade or above before March 22, 2020 and not lower than BB+ (or equivalent rating) afterwards; the issuer
couldn’t be an insured depository institution.
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exploit the discontinuity around the 6-year maturity criterion in the SMCCF, and compare bonds

that were just under that eligibility threshold to bonds that were just over it. Specifically, I first

compute the eligibility variable using the same weights as in (1.2):

Eligiblei ≡
∑
b(i)

1{b(i) ∈ S}
FaceValueb(i)
FaceValuei

(1.4)

where S is the set of bonds eligible for the credit facility. I compute Treatedi using an indicator

for bonds in S that also have a maturity between 4 and 5 years, and Controli for bonds that fit

all other SMCCF criteria but have a maturity between 5 and 6 years, using the same weighting

variable. I then restrict attention to firms for which only one of {Controli,Treatedi} are strictly

positive.

1.4.2 Main results

Figure 1.2: Response of firm bond spread deviation to instrumented fund flows

This figure plots the response of firm spreads to mutual fund flows in the 5 months following March 2020,
where these flows are instrumented by the SMCCF eligibility criteria discontinuity. The coefficient estimates
are shown along with 95% confidence intervals.

Figure 1.2 shows the estimated βh from 1.3 with the dependent variable being bond spread
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deviations, up to a 5 month range from March 2020, along with 95% confidence intervals. The

instrumented flows have a slight but statistically significant positive effect on bond spread deviation

2-4 months out, before turning sharply negative at the 5 month horizon. In fact, this last negative

impact is similar in magnitude to the point estimate from the static specification in section 1.3. This

points to a meaningful price effect of mutual fund flows, both when they correspond to investor

redemptions and to investor funding.

Figure 1.3: Response of firm variables to instrumented fund flows

(a) Bond issuance (b) Investment

This figure plots the response of firm bond issuance in panel (a) and investment in panel (b) to mutual
fund flows in the 5 months following March 2020, where these flows are instrumented by the SMCCF
eligibility criteria discontinuity. The former is available at the monthly frequency and the latter at the
quarterly frequency. The coefficient estimates are shown along with 95% confidence intervals.

Figure 1.3 shows the estimated βh from 1.3 with the dependent variable being firm bond is-

suance in panel (a) and firm level investment in panel (b). Both of these estimates are statistically

insignficant at all time horizons (with the exception of a slight negative effect on bond issuance

at the 3 month horizon). With these statistical specifications, I find no evidence of real effects

on corporate borrowing through bond issuance or corporate investment at these frequencies. This

could be explained by the fact that firms hold alternative sources of funding, namely cash and bank

funding through credit lines and term loans, making a firm unresponsive to changes in its outstand-

ing bond prices. An alternative explanation for these findings could be the shortened timespan at
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which I obtained these estimates; since the negative bond spread effect happen at the very end of

the 5-month horizon, it could be the case that firms issue more bonds and increase investment with

a lag relative to these events.

1.5 Theoretical Framework

Given the empirical findings of the previous sections, there is some scope for explaining how

flows into and out of mutual funds can affect the prices of corporate bonds. In this section, I build

out a stylized model to exemplify such a mechanism.

1.5.1 Model setup

There are three time periods t = 0, 1, 2. Households are endowed with one unit of savings at

t = 0, which they allocate to the investment fund. The fund can then choose to invest into two

different opportunities i = {r, s} by allocating household savings between bondsBr, Bs. The fund

can also choose to keep some of its funding as cash V . The bonds yield random returns zs, zr at

t = 2, but they cannot be redeemed at t = 1; cash yields a riskless return of 1 and can be redeemed

in the intermediate time period. The fund then distributes its realized returns back to households

at t = 2, who enjoy use them to consume a final good.

At t = 1 the fund suffers a random withdrawal shock w, which it must meet by liquidating

some or all of its bond and/or cash holdings. These asset liquidations are sold to an outside investor

endowed with exogenous wealth WO. To keep the model simple, I abstract from the investment

and savings allocation choice at t = 0 and instead focus solely on the liquidation choice that funds

face at t = 1.

The investment fund’s problem

At t = 1, the fund faces the following problem:

14



max
Ls,Lr,Lv

E {u [zs(Bs − Ls) + zr(Br − Lr) + V − Lv]}

s. to PsLs + PrLr + Lv ≥ w

Lv ≤ V

(1.5)

Since utility u[.] decreases with each of the liquidation amounts, it follows that the first con-

straint must hold with equality; otherwise the fund would just reduce one of the liquidation amounts

while still meeting redemptions. It is less clear that the second constraint holds with equality; that

depends on the degree of risk aversion and expected returns that the two projects have relative

to cash. Based on the behavior of mutual funds during the COVID period, I abstract from these

concerns and instead impose that the constraint binds, which allows me to reformulate (1.5) as

max
Ls,Lr

E {u [zs(Bs − Ls) + zr(Br − Lr)]}

s. to PsLs + PrLr ≥ w̄, w̄ ≡ w − V
(1.6)

For simplicity, I assume that bond returns s, r are jointly normally distributed, with means

[zes , z
e
r ], diagonal elements of the covariance matrix σ2

s , σ
2
r and covariance ρσsσr. I also impose the

following CARA functional form on the utility function:

u[x] = 1− exp{−ωx} (1.7)

Under this specification, the first order conditions from (1.6) yield

z̃es − σs[(Bs − Ls)σs + (Br − Lr)ρσr]
z̃er − σr[(Bs − Ls)ρσs + (Br − Lr)σr]

=
Ps
Pr
, z̃ei ≡ ω−1E[zi]

which yield the following liquidation functions:
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Ls = w̄
σr(Psσr − Prσsρ)

P 2
s σ

2
r + P 2

r σ
2
s − 2PsPrσrσsρ

+ Pr
Bsσs(Prσs − Psσrρ) +Brσr(Prσsρ− Psσr) + Psz̃

e
r − Prz̃es

P 2
s σ

2
r + P 2

r σ
2
s − 2PsPrσrσsρ

Lr = w̄
σs(Prσs − Psσrρ)

P 2
s σ

2
r + P 2

r σ
2
s − 2PsPrσrσsρ

+ Ps
Bsσs(Psσrρ− Prσs) +Brσr(Psσr − Prσsρ)− Psz̃er + Prz̃

e
s

P 2
s σ

2
r + P 2

r σ
2
s − 2PsPrσrσsρ

(1.8)

The following lemma establishes a sufficient condition for the response of Ls to the after-cash

redemption w̄ to exceed that of Lr.

Lemma 1. The response of Ls to a marginal increase in w̄ is greater than the response of Lr if the

correlation between the project’s returns is below a specific bound: ρ < Prσs/Psσr.

Proof. Computing the partial derivatives of the liquidation functions, we have that

∂Ls
∂w̄

/
∂Lr
∂w̄

=
σr(Psσr − Prσsρ)

σs(Prσs − Psσrρ)

which is above 1 so long as

ρ <
Prσs
Psσr

The demand for liquidated assets

Rather than taking a stance on the functional form of investor demand for Ls and Lr, I instead

assume this demand is of the following general nature:

Ds(Ps, Pr; Θ), Dr(Ps, Pr; Θ) (1.9)

where Θ ≡ {zes , zer , ω, σs, σr, ρ}. I further assume that these demand function have positive

partial own-derivatives and negative partial cross-derivatives: dr,r, ds,s < 0 and dr,s, ds,r > 0. The
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following lemma establishes sufficient conditions on Ds,Dr and on the responses of Ls, Lr for the

price response of the safe asset to exceed that of the risky asset.

Lemma 2. The response of Ps to a marginal increase in w̄ is greater than the response of Pr if the

following conditions are satisfied:

1.
∂Dr
∂Ps

+
∂Dr
∂Pr

>
∂Ds
∂Ps

+
∂Ds
∂Pr

2.
∂Lr
∂Ps

+
∂Lr
∂Pr

<
∂Ls
∂Ps

+
∂Ls
∂Pr

3.
∂Lr
∂Ps

< 0,
∂Ls
∂Pr

< 0,
∂Lr
∂Pr

> 0,
∂Ls
∂Ps

> 0

4. dr,r > ds,s

Proof. The market clearing conditions for assets s, r are

Rs(Ps, Pr, w̄,Θ) = Ds(Ps, Pr; Θ)− Ls(Ps, Pr, w̄; Θ) = 0

Rr(Ps, Pr, w̄,Θ) = Dr(Ps, Pr; Θ)− Lr(Ps, Pr, w̄; Θ) = 0

where Ls(.), Lr(.) are the liquidation policy functions in (1.8). By the implicit function theo-

rem, we have that in a neighborhood of equilibrium prices:


∂Ps
∂w̄

∂Pr
∂w̄

 = −


∂Rs

∂Ps

∂Rs

∂Pr

∂Rr

∂Ps

∂Rr

∂Pr


−1 

∂Rs

∂w̄

∂Rr

∂w̄


Therefore, in order to have |∂Ps/∂w̄| > |∂Pr/∂w̄|, we require

∣∣∣∣∣∣∣∣
∂Rr

∂w̄

∂Rs

∂Ps
− ∂Rs

∂w̄

∂Rr

∂Ps
∂Rs

∂w̄

∂Rr

∂Pr
− ∂Rr

∂w̄

∂Rs

∂Pr

∣∣∣∣∣∣∣∣ > 1

which implies
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∣∣∣∣∂Ls∂w̄

(
dr,s −

∂Lr
∂Ps

)
− ∂Lr
∂w̄

(
ds,s −

∂Ls
∂Ps

)∣∣∣∣ > ∣∣∣∣∂Lr∂w̄

(
ds,r −

∂Ls
∂Pr

)
− ∂Ls
∂w̄

(
dr,r −

∂Lr
∂Pr

)∣∣∣∣
Due to the assumptions on the demand function partial derivatives and to condition 3 in the

lemma, we can takeaway the absolute values and rearrange the above to get

∂Ls
∂w̄

[
dr,s + dr,r −

(
∂Lr
∂Ps

+
∂Lr
∂Pr

)]
>
∂Lr
∂w̄

[
ds,r + ds,s −

(
∂Lr
∂Ps

+
∂Lr
∂Pr

)]
From lemma (1), we have that the first term on the left side side of the inequality exceeds the

first term on the right side of the inequality. Conditions 1, 2 and 4 in this lemma thus establish that

the inequality holds.

1.6 Conclusion

This paper estimates the impact of fixed income mutual fund flows on corporate bond prices,

issuance and firm investment. Focusing on the March 2020 financial turmoil induced by the out-

break of the COVID-19 pandemic, we can see that these mutual funds experienced large investor

redemptions, which they met by selling out of their positions in corporate bonds. I estimate that

within relatively safer corporate bonds experienced an increase in bond-CDS spreads relative to

baseline, which indicates that most of the price impact was not due to compensation for expected

default. Although there is a similar significant response at the 4 month horizon for total bond

spreads, there are no detectable effects on corporate bond issuance or investment. The stylized

model points to demand and liquidation elasticities - which depend on the bond return processes -

as being the key drivers of different price responses between safer and riskier bonds.

Future work in this context would benefit from addressing three key limitations of this pa-

per. Firstly, increased data coverage on the universe of corporate bonds and mutual fund positions

would allow for more precise estimates of the bonds price impact of mutual funds. Secondly, in-
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vestigating the patterns of firm substitution between corporate bonds and other forms of bank debt

and/or equity is beyond the scope of this paper, but it could be relevant to understanding the broader

picture of how firms finance themselves. Lastly, an understanding of how mutual funds interact

with the rest of the institutional investor industry is crucial to painting a more complete picture of

nonbank financial intermediation, and more research towards this understanding is necessary.
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Chapter 2: Monetary Policy and Investment: The Role of Firm and Bank

Loan Factors

This chapter was co-authored with Felipe Netto (Bank of England).

2.1 Introduction

The conduct of monetary policy by central banks is widely considered to have potentially

large impacts in the evolution of firm-level investment. Changes in interest rates affect both the

marginal benefit and the marginal cost of credit for firms that need to borrow in order to increase

their capital stock, as well as for banks that are involved in extending corporate credit. However,

both firms and banks differ in their individual marginal benefits and costs of borrowing/lending,

which implies that their investment responses to monetary policy changes also diverge. Given

that credit extended by banks to firms remains one of the main avenues for financing investment

choices, it becomes relevant to estimate and quantify this heterogeneity, in order to understand the

distributional consequences of central bank actions.

In this paper, we decompose the variation in corporate loan growth into a firm-specific and

a bank-specific factor. Using data on syndicated loan growth from 1990 to 2015, we estimate

the proportion of loan growth that is attributable to factors that vary only at the firm-level and at

the bank-level. We then validate the estimated factors using measures of firm and bank financial

stability. Leveraging other estimates of plausibly exogenous variation in monetary policy, we

then estimate the differential investment responses of different firms to the same monetary shock,

according to the magnitude of their firm-specific and average bank-specific factors. We find that

firms with higher borrowing factors experience relatively larger investment at a 3-5 year horizon

when faced with a “pure” interest rate tightening, but that the effect is muted when the shock
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represents disclosure of central bank information about increased future tightening probabilities.

In contrast, we find no evidence that a firm exposed to a greater amount of bank lending factors

experiences a differential investment response.

To obtain the firm and bank factors, we leverage a syndicated loan dataset containing outstand-

ing credit amounts for a number of firm-bank pairs. We estimate a fixed effect weighted least

squares regression on the pairwise loan growth from this dataset, which correctly recovers the

firm- and bank-specific variation from a linear loan growth model. These fixed effect estimates are

the firm and bank factors we use throughout the paper, and represent the portion of loan growth

that can be attributed to forces that vary exclusively at the firm and bank level, respectively. The

firm factor is consistently more variable than the bank factor throughout the sample period, which

supports the idea that firm-level borrowing determinants exhibit higher dispersion than bank-level

corporate lending determinants.

We validate these estimated factors by projecting them on a set of financial variables that have

been used as proxies for the firm and the bank’s financial health. We find that variables such as the

firm’s leverage and the bank’s income gap are significantly correlated with the factors we obtain,

but that the group of variables does not explain a large proportion of the variation in these factors.

We also interact some of these variables with two monetary policy series: the first represents

the component of monetary policy changes that can be attributed to changes in the policy rate

absent any informational content of the central bank’s action, while the second represents just

that informational content stripped of the actual change in the policy rate. We again find that this

interaction variable does correlate with the factors we estimated.

Adopting the local projection specification that has been used in related work, we proceed to

estimate how these two sets of monetary policy shocks affect the heterogeneity of investment rates

of firms in our sample. We do so by interacting the firm factor and a weighted average of bank

factors with the monetary policy series we described previously, and estimating the impact of this

shock up to 6 years after the shock takes place. We find that in response to the isolated interest

rate tightening shock, firms with higher borrowing factors invest relatively more after a 3 year lag;
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however, this difference is muted when the shock is the disclosure of central bank information

indicating that economic conditions are expanding to the point where future tightening is more

likely. This is indicative of the firm factors representing a lack of financial constraints, allowing

the firm to lever up and take advantage of investment opportunities. Results for the bank factor

specification do not indicate that it induces any heterogeneity in investment responses following

a monetary shock. We believe this is due to the reduced size of the factor itself, which can be in

part caused by the fact that banks have at their disposal many other lending opportunities besides

corporate loans.

This paper is organized into six sections, with the rest of the present section reviewing relevant

literature. Section 2.2 presents data sources used in this paper. Section 2.3 describes the empir-

ical specification for estimating the firm and bank factors, as well as descriptive statistics on the

obtained estimates. Section 2.4 follows this by validating the obtained factors using the set of fi-

nancial explanatory variables, including the monetary policy series. Section 2.5 presents the main

results from the investment response specification, and section 2.6 concludes the paper.

2.1.1 Literature Review

The financial sector has long been considered to be of crucial importance in determining the

response of nonfinancial investment to changes in monetary policy. The seminal paper of Bernanke

et al. (1999) established the role of financial intermediaries as an “accelerator” for the transmission

on monetary shocks into the real economy. More recently, recent research has explored the role of

firm heterogeneity in explaining differences in investment response to variations in interest rates,

the work of Ottonello and Winberry (2020) being one notable contribution.1 We add to this strand

of literature by evaluating how this firm heterogeneity can be proxied via estimated firm borrowing

factors obtained from loan growth rates.

While the aforementioned papers analyze the firm determinants of investment response to mon-

etary policy, there is a separate body of work that examines what are the particularities of bank

1Other contributions include Cloyne, Ferreira, Froemel, and Surico (2021), Jeenas (2019), Lian and Ma (2020),
Buera and Karmakar (2022) and Drechsel (2022 (forthcoming)).

22



lending that help determine investment rates. Within this work, we are particularly indebted to

Amiti and Weinstein (2018), as we adopt their method for estimating our bank and firm factors.2

Our own contribution to this strand of literature is to evaluate how corporate loan determinants

matter, if at all, for the impacts that monetary policy shocks play in determining firm-level real

outcomes.

Lastly, researchers have looked into the issue of monetary policy and how to extract plausibly

exogenous movements from changes in interest rates that are correlated with the economic envi-

ronment. The works by Romer and Romer (2004) and Gürkaynak, Sack, and Swanson (2005) are

seen as the key contributions in this space, with many other emerging since these. Rather than add

a marginal contribution to this area of work, we opt to use the shocks identified by Jarociński and

Karadi (2020) and instead evaluate how the firm and bank factors we estimate interact with these

shocks.

2.2 Data

2.2.1 DealScan - Syndicated loans

The first source of data we explore is the DealScan dataset, which contains information on

commercial loan origination such as pricing, covenants, and other contract details. This dataset

allows us to obtain a sample of monthly syndicated loan deals from 1990 through 2017, with

corresponding tranche outstanding amounts and information on both the borrower and the lenders

for each deal.3 This is what we use to construct loan growth rates for each firm-bank pair in our

sample.

One drawback of this source is that DealScan only contains information on loan origination

amounts; it does not actually track the outstanding values over time. Repayment schedules are

not observed, and any imputation scheme has material impacts on measured loan growth, which

2Other work within this group of papers include Acharya, Almeida, Ippolito, and Perez (2014), Wang (2022),
Greenwald (2019) and Blattner, Farinha, and Rebelo (2019).

3In a syndicated loan, a selection of lenders provide funding to a borrower. The bank who organizes the syndicate
and coordinates the operation is called the “lead arranger”.
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is one of our variables of interest. Furthermore, DealScan does not inform us as to whether the

banks who originated those loan tranches later on sell them to other financial actors. While this is

a drawback for identifying firm and bank-specific variation in the lending relationship, we can still

glean some valuable information from observations with positive loan growth. This information is

all the more valuable if most of the bank-specific factors influence the nonfinancial firm’s ability

to borrow only at origination and at maturity.

Although firms can borrow through the issuance of corporate loans, it nevertheless remains

the case that firm borrowing through syndicated loans is a significant fraction of a firm’s total

borrowing. The median fraction of firm’s total debt in the form of syndicated loans is 30%, at the

date of tranche origination.

2.2.2 Compustat - firm financials

We combine the above data with quarterly information on the firm’s financial situation provided

by Compustat. We match the two datasets using the linking table provided by Chava and Roberts

(2008). We utilize the same sample selection and variable building methods described in Ottonello

and Winberry (2020), namely in what concerns the construction of the investment variable.

When matching lenders from DealScan to the Compustat dataset, the issue of corporation struc-

ture becomes relevant. If syndication lending decisions are take at the bank holding corporation

(BHC) level, then the researcher should use the identifier corresponding to the respective BHC. We

take this approach and use the table provided by Schwert (2018).

The outcome of the matching process between the DealScan dataset and the Compustat dataset

produce an average of about 4200 distinct firm-bank matches per year during the sample period,

with the number of matches increasing in the middle of the sample period and decreasing at the

endpoints. We have purposely adopted a conservative approach in assigning firm identifiers to the

borrower information in DealScan, as well as bank identifiers to the lender information in that

same dataset. The downside to this approach is the reduced sample size that this low number of

firm-bank matches represents, which hampers our ability to detect statistically significant effects.
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2.2.3 Monetary policy shocks

Estimating the impact of a change of interest rates on firm-level and bank-level variables suf-

fers from the same set of issues that have plagued causal inference in macroeconomics, as reverse

causality and omitted variable bias can introduce problems in estimating causal impacts of interest.

In particular, a central bank’s decision to change the course of its monetary policy can potentially

be correlated with the performance of the economy, which in turn influences the decisions by both

nonfinancial firms and banks to open and extend credit. Recently, however, the empirical macroe-

conomics literature has developed a set of approaches that aim at extricating the endogeneity from

the movements in the policy rate. These approaches often include what is known as high-frequency

identification, where the co-movement of interest rates and stock prices around a central bank an-

nouncement is used to isolate the exogenous shock of interest.

Since the issue of monetary policy endogeneity and identification is beyond the scope of this

paper, we opt to use off-the-shelf shocks from Jarociński and Karadi (2020). The estimates in this

paper consist of two shock series: a “monetary policy shock” series, which isolate the impact of

interest rate changes without the communication of central bank information, and a “central bank

information shock” series, which instead isolates the impact of central bank communication absent

the corresponding change in the policy rate. In our empirical setting, we will use both of the shock

series and evaluate which type of exogenous movements has a larger impact on our variables of

interest (if any).

2.3 Estimating bank and firm factors

Let Lfbt be the outstanding amount of syndicated loans between firm f and bank b in period t.

Define Dfbt to be the symmetric growth rate of loans:

Dfbt ≡
Lfbt − Lfb,t−1

0.5× (Lfbt + Lfb,t−1)

Following Gomez, Landier, Sraer, and Thesmar (2021), we use the symmetric growth rate
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measure instead of the more traditional one, since it is well-defined when lending relationships are

formed (Lfb,t−1 = 0⇒ Dfbt = 2) and terminated (Lfbt = 0⇒ Dfbt = −2).

To decompose the variation in loan growth rates into a firm-level component and a bank-level

component, we estimate the following specification:

Dfbt = αft + βbt + εfbt (2.1)

In this setting, the fixed effects αft capture the variation in lending growth that is idiosyncratic

to a given firm over time, and the βbt do the same for a given bank. We can therefore interpret them

as movements in firm borrowing and bank lending that are purged from any variation specific to

the firm-bank match or any aggregate variation affecting all firm-bank pairs equally.

It is reasonable to think, however, that bank-firm loan growth might be best modeled by also

include factors that are specific to the firm-bank match, such as relationship concerns. Amiti and

Weinstein (2018) show that estimating (2.1) using weighted least squares returns correct fixed-

effect estimates α̂ft and β̂bt, so long as these fixed effects are defined to also include components

of any bank-firm interaction term that vary only at the bank or firm level. In our setting, the

appropriate vector of weights is the average loan amount between two quarters: L̄fbt ≡ 0.5 ×

(Lfbt + Lfb,t−1).

Figure 2.1 shows the cross-sectional averages and dispersions of the firm and bank fixed effects

over time.4 The average firm factor of loan growth rates is predominantly positive up until the great

financial crisis, turning sharply negative thereafter; no such pattern can be observed for the bank

factor. Throughout the whole sample period the dispersion of the firm fixed effect exceeds that of

the bank fixed effect. This can be rationalized by observing that banks generally lend to a variety of

firms (either directly or through syndication), while firms generally tend to borrow from a reduced

set of lenders, which would explain why loan growth rates are more variable in the latter’s cross

section.

Table 2.1 features the contemporaneous correlations between the average firm and bank firm

4The sample period here extends no further than 2015, due to decreasing data coverage in 2016 and 2017.
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Figure 2.1: Summary statistics for estimated fixed effects.

factors, the federal funds rate, and the identified monetary policy and central bank information

shocks from Jarociński and Karadi (2020).5 We can see the importance of distinguish between

movements in the policy rate and the estimated shocks, as the former exhibit a positive correlation

with the firm factor while the latter show a negative correlation. Interestingly, all of the monetary

policy series exhibit a weak correlation with the estimated bank fixed effects.

2.4 Relationship with determinants of firm/bank credit

Previous literature has identified a set of financial variables that constitute determinants of a

firm’s willingness and ability to borrow, as well as another set that determine bank’s propensity to

5For each year, we take the last month’s value of the federal funds rate and the median value of the monetary policy
and central bank information shocks in the last quarter.
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Avg. Firm F.E Avg. Bank F.E. FFR MP Shock CBI Shock

Average Firm F.E. 1 . . . .
Average Bank F.E. −0.22 1 . . .
Federal Funds Rate 0.58 0.08 1 . .
Monetary Policy Shock −0.29 0.10 0.07 1 .
Central Bank Info Shock −0.42 0.16 0.12 0.28 1

Table 2.1: Correlation between estimated factors and monetary policy series.

lend. We are therefore interested in knowing how the bank and firm factors estimated in the previ-

ous section relate to these financial shocks. While we do not expect that the estimated factors are

perfectly explained by the literature variables, the extent to which the variation in these factors is

explained by the latter can be informative as to their validity in determining the impact of monetary

policy on firm/bank credit.

Table 2.2 shows regression results from a linear projection of the estimated firm factors on a set

of variables related to the firm’s financial health. The financial variables are measured according

to standard practice.6 Column (1) shows that a firm’s leverage is positively related with the firm

factor, albeit with little power to explain much of it’s variation. Column (2) shows that firm size,

liquidity, sales growth and valuation all have a statistically significant relationship with the firm

factor. Interestingly, a larger firm size is associated with a lower estimated fixed effect, which can

point to larger firms being able to resort to bond issuance and alternate sources of financing. The

explanatory power of these variables with regards to the factor’s variation, however, remains low.

Columns (3) through (5) show the results from regressing the firm factor on an interaction of

leverage with the monetary policy variables, following Ottonello and Winberry (2020). We can

observe that using the federal funds rate in this interaction yields a coefficient with the opposite

sign to the one we get when using the monetary policy and central bank information shocks, again

pointing to the issues with estimating impacts of interest rate changes. In column (4) we can see

6The dependent variable is the firm factor estimated from (2.1). Leverage is defined as debt over total assets. Size
is defined as the natural log of total assets. Liquidity ratio is measured as cash and short-term investments over total
assets. Real sales growth is computed as the log difference in real sales using the implicit sector deflator from NIPA.
Tobin’s Q is computed as (assets + outstanding market value minus book value of equity plus deferred taxes and
investment tax credit) over total assets.
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that while a more levered firm tends to also have a larger estimated firm factor in loan growth, an

unexpected tightening is associated with a lower firm factor for firms that exhibit greater leverage,

which points to the role that excessive debt might play in loan growth responses to monetary policy

changes.

(1) (2) (3) (4) (5)

(Intercept) 0.037*** 0.283*** −0.096*** 0.034*** 0.003*
(0.001) (0.007) (0.002) (0.001) (0.001)

Leverage 0.004** 0.012* −0.003* 0.002+ 0.003*
(0.001) (0.006) (0.001) (0.001) (0.001)

Size −0.032***
(0.001)

Liquidity Ratio −0.264***
(0.014)

Real Sales Growth 0.121***
(0.006)

Tobin’s Q 0.009***
(0.001)

Fed. Funds Rate 4.991***
(0.076)

Leverage x FFR 2.001***
(0.147)

M.P. Shock −0.223***
(0.016)

Leverage x MP Shock −0.145***
(0.028)

C.B. Info Shock −0.854***
(0.020)

Leverage x CBI Shock 0.020
(0.035)

Num.Obs. 327 200 267 753 327 200 327 200 327 200
R2 0.000 0.010 0.034 0.002 0.009

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

Table 2.2: Regression of firm factor on firm financial variables.

Table 2.3 shows similar regression results of the bank factor on bank financial variables.7 Col-

umn (1) indicates that a larger income gap is associated with a lower bank fixed effect in loan

7The dependent variable is the bank factor estimated from 2.1. Income gap and the other bank financial variables
are defined as in Gomez et al. (2021). The monetary policy variables follow the same definitions as before.
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growth rates, while column (2) indicates that larger bank factors are associated with greater earn-

ings growth, smaller bank sizes and larger liquidity ratios. In contrast to the firm factor regressions,

the set of variables in column (2) has a considerable degree of explanatory power (R2 = 0.77).

Columns (3) through (5) again interact the monetary policy series with a measure of bank

financial health, the bank’s income gap. While there aren’t any detectable impacts of either the

federal funds rate and its interaction term, we can see that there are statistically significant estimates

of the shock series on the bank factor. Furthermore, these estimates have opposing signs; bank

with larger income gaps experience lower bank factors when faced with a positive monetary policy

shock, whereas these banks experience larger bank factors when faced with a positive central bank

information shock. This agrees with the findings Jarociński and Karadi (2020) that these shocks are

in fact indicative of different macroeconomic contexts; the former being closer a pure interest rate

change while the latter signifying a release of previously private central bank information about

the economy.

2.5 Impacts of monetary policy shocks with firm/bank factor interaction

In the previous section, we saw how the firm and bank fixed effects related to the sets of

financial variables that plausibly co-determine corporate loan growth. We are now interested in

understanding whether these estimated factors play a role in determining firm-level investment

responses to an identified monetary policy shock. To the extent that we find heterogeneity in firm

responses to unanticipated central bank actions that is attributable to variation in the firm and bank

factors, we can argue that it is attributable to firm- and bank- specific variation in loan growth rates.

To estimate heterogeneity in the dynamic response of firm investment, we use the following

empirical specification:

log kf,t+h − log kf,t = αs + λh{xf,t ×mi
t}+ Γ′Zf,t + uf,t+h (2.2)

where xf,t represents the factor variable used in the estimation, Zf,t represents a vector of firm-
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(1) (2) (3) (4) (5)

(Intercept) 0.057** 4.387*** 0.020 0.177*** 0.146***
(0.020) (0.489) (0.050) (0.018) (0.018)

Income Gap −0.602*** −0.015 −0.783*** −1.056*** −0.917***
(0.069) (0.080) (0.167) (0.063) (0.063)

∆ Int. Income −1.982*
(0.806)

∆ Earnings 0.841***
(0.165)

∆ log Loans −0.448***
(0.060)

Bank Size −0.264***
(0.029)

Liquidity Ratio 1.049***
(0.034)

Fed. Funds Rate 47.801
(40.497)

Income Gap x FFR 62.355
(132.879)

M.P. Shock 6.956***
(0.450)

Income Gap x MP Shock −18.450***
(1.485)

C.B. Info Shock −10.663***
(0.581)

Income Gap x CBI Shock 32.357***
(2.021)

Num.Obs. 1661 1661 1661 1661 1661
R2 0.044 0.767 0.130 0.322 0.272

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

Table 2.3: Regression of bank factor on bank financial variables.

level controls (including the factor variable xf,t and the monetary variable mi
t) and αs represents

sector fixed effects.

We use three different series for the monetary shock variable mi
t ∈ {mPCI

t ,mMP
t ,mCBI

t }.

The first variable mPCI
t represents the sum of the first principal components from the surprises in

interest rate derivatives with maturities from 1 month to 1 year following FOMC announcements

in the last quarter of each calendar year. This represents the monetary policy surprise before its
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decomposition into an interest rate effect and an informational effect, and provides a baseline from

which we can then evaluate how the firm and bank factors mediate the impacts of these latter

shocks, mMP
t and mCBI

t .

2.5.1 Baseline estimates: both factors

Figure 2.2 shows the local projection estimates for λh, where the time horizon extends from 1

to 6 years after the shock and the monetary shock variable is the aggregated principal component

surprise variable mPCI
t . The left panel shows the estimates when using the firm factor in the

interaction term of the regression. We can observe that firms that have higher firm borrowing

factors experience higher relative investment rates in response to a contractionary monetary shock,

4 to 5 years after it takes place. The point estimate for the 4 year horizon implies that a firm

borrowing factor that is 10 percentage points higher leads to an investment rate that is about 0.8

percentage points higher, in response to a unit contraction in monetary policy.

To evaluate the impact of the interaction between a bank factor and a monetary variable on firm

level investment, it is necessary to aggregate the bank-level variable to the firm level. We do this

by averaging the bank fixed effects at the firm level, with the weights being the proportion of the

firm’s outstanding corporate debt each bank holds in our sample:

xBank
f,t ≡

∑
b

xb,t ×
Outstandf,b,t
Outstandf,t

(2.3)

The right panel of figure 2.2 shows the estimates when using the weighted bank factor as in

(2.3), where the time horizon extends from 1 to 6 years after the shock and the monetary shock

variable is the aggregated principal component surprise variable mPCI
t . Although the confidence

intervals for the estimates do not include 0 at any time horizon, the point estimates themselves for

the impact on investment are of negligible magnitude, implying that there aren’t economically sig-

nificant differences in investment rates across firms exposed to variable bank lending factors. This

pattern will remain even when the monetary shock itself is disaggregated into its two components,

as we will observe later on.
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(a) Firm factor (b) Bank factor

Figure 2.2: Response of firm investment to interaction of firm/bank factor with monetary shock

This figure plots the estimated λh from specification (2.2), where xf,t corresponds to the estimated firm and
bank factors from loan growth rates, and mi

t corresponds to the principal component of monetary surprises
mPCI
t . The coefficient estimates are shown along with 95% confidence intervals. Panel (a) shows the

estimates for the estimated firm factor and panel (b) shows the estimates for the estimated bank factor.

2.5.2 Decomposition estimates: firm factor

Figure 2.3 shows the local projection estimates for λh, where the time horizon extends from 1

to 6 years after the shock. The left panel shows the estimates for the interaction term of the firm

factor with the interest rate shock mMP
t , for which a positive value represents a policy movement

consistent with monetary tightening. We can see that for the same value of the monetary shock, a

firm with a higher firm borrowing factor before the shock experiences higher investment rates, on

average, relative to firms with lower borrowing factors. This response is statistically significant at

the 3 to 5 year horizon, although the coefficient estimates are all positive. The right panel shows

estimates for the interaction term of the firm factor with the central bank information shock mCBI
t ,

for which a positive value indicates a policy movement consistent with a release of central bank

expectations of expanding demand conditions. In this specification, firms with higher borrowing

factors still have greater investment responses, but these responses are only significant at the 1 to

2 year horizon; furthermore, the estimates at the 5 and 6 year mark turn negative, although the

corresponding confidence intervals include zero.
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(a) Monetary policy shock (b) Central bank information shock

Figure 2.3: Response of firm investment to interaction of firm factor with monetary variable

This figure plots the estimated λh from specification (2.2), where xf,t corresponds to the estimated firm
factor from loan growth rates. The coefficient estimates are shown along with 95% confidence intervals.
Panel (a) shows the estimates when the monetary variable is the monetary policy shock mMP

t and panel (b)
shows the estimates when the monetary variable is the central bank information shock mCBI

t .

One way to understand the estimate results represented in figure (2.3) is to look at the firm

borrowing factor as being an indicator for the firm’s financial health. As section 2.4 indicates, the

estimated fixed effects correlate with determinants of firm/bank credit that have been put forward in

the literature. Given that the monetary policy shockmMP
t represents a “pure” monetary tightening,

from which all informational content present in a policy change has been extracted, we would

expect that healthier firms – as proxied by their borrowing factors – are relatively more able to

expand their capital stock, but only after enough time has elapsed for the increased in interest

rates to take effect. This contrasts with what we observe in the case of the response to a central

bank information shockmCBI
t ; given that this shock stands in for a communication of expansionary

economic conditions that are to be met with future monetary tightening, it follows that the increased

relative investment from firms with greater borrowing factors should happen earlier rather than later

on.
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2.5.3 Decomposition estimates: bank factor

Figure 2.4 shows the local projection estimates for λh, where the time horizon extends from 1

to 4 years after the shock. As before, the left panel shows the estimated impact when the monetary

variable is mMP
t , while the right panel shows the impact when the monetary variable is mCBI

t .

We can observe that in the case of the monetary policy shock, firms that borrow from banks with

a larger bank lending factor do experience relatively greater investment 3 and 4 years out. This

contrasts with the estimates for the central bank information shock interaction, where these firms

experience relatively smaller investment 3 and 4 years out.

(a) Monetary policy shock (b) Central bank information shock

Figure 2.4: Response of firm investment to interaction of bank factor with monetary variable

This figure plots the estimated λh from specification (2.2), where xf,t corresponds to the estimated bank
factor from loan growth rates, weighted and averaged up to the firm level as described in (2.3). The coef-
ficient estimates are shown along with 95% confidence intervals. Panel (a) shows the estimates when the
monetary variable is the monetary policy shock mMP

t and panel (b) shows the estimates when the monetary
variable is the central bank information shock mCBI

t .

Again, the coefficient estimates themselves are incredibly small, being several orders of magni-

tude below those estimated for the firm factor. We therefore can see that despite the statistical sig-

nificance of these estimates, there is no evidence of economically significant heterogeneity across

firms with different bank lending factors. This is more easily understood if we remember that the

estimated bank factor is itself on average closer to zero than the firm factor. One possible explana-
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tion for this is that a bank’s lending activity is usually highly diversified, and does not depend on

commercial syndicated loans alone. By estimating the bank fixed effects only on a subset of these

loans, we might be missing out on possible substitution between lending categories that banks may

undertake when faced with a monetary policy surprise.

2.6 Conclusion

In this paper, we decompose the variation in corporate loan growth rates into a firm borrowing

factor and a bank lending factor, which allows us to explore whether these factors help explain

heterogeneity in firm-level investment responses to monetary policy movements. The fixed-effects

estimates of the firm and bank factors are positively correlated with determinants of the firm’s

financial health (as established by previous literature); the firm factor is consistently higher and

more variable than the bank factor during our sample period. Firms with higher borrowing factors

tend to have relatively higher investment rates 3 to 5 years following an unanticipated shock in the

policy rate, but this effect is not present at this time horizon following an unanticipated disclosure

of central bank information. In contrast, firms with a greater exposure to higher bank lending

factors don’t seem to have economically significant investment rate differences, following either

of the preceding monetary shocks.

The work conducted in this paper suffers from a few constraints, which future work in this

topic could address. The coverage afforded by the datasets used in this project is limited to a

subset of corporate and bank loans; increasing the percentage of these loans covered in a future

project not only allows for more precise estimates, it also would allow for easier aggregation of the

firm-level and bank-level factors to the industry and country level. It would also be enlightening to

understand the mechanisms by which firms and banks alter their credit demand and supply choices,

following different types of monetary policy shocks. A theoretical model, coupled with empirical

analysis in the style of this paper, could prove useful in understanding these issues.
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Chapter 3: Optimal Monetary Policy and Disclosure with an

Informationally-Constrained Central Banker

This chapter was co-authored with Jennifer La’O (Columbia University) and Luigi Iovino

(Bocconi University). It was originally published in the Journal of Monetary Economics, Volume

125, January 2022, in pages 151-172.1

3.1 Introduction

What is the nature of optimal monetary policy when the central bank is uncertain about the

underlying state of the economy? Furthermore, should the monetary authority disclose its imper-

fect information to the public? In this paper we study the monetary policy and public disclosure

decisions of a central bank that observes only a noisy, private signal of the economic state each

period.

There are two broad motivations for introducing central bank incomplete information when

considering questions of monetary policy. The first is realism. A large macroeconomic litera-

ture emphasizes the importance of firm informational frictions for business cycle fluctuations and

policy; see e.g. Angeletos and La’O (2020), Angeletos and Lian (2018), Coibion and Gorod-

nichenko (2012, 2015), Mackowiak and Wiederholt (2009), Mankiw and Reis (2002), Woodford

(2003). While it is typical in these models to assume that the monetary authority sets its policy

under complete information of the aggregate state, doing so places the central bank at an enormous

informational advantage relative to the public.

Given the vast amount of resources that central banks devote to estimating current economic

conditions and forecasting future ones, one might question the realism of this assumption. The

1Link to published version: https://doi.org/10.1016/j.jmoneco.2021.10.008
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central bank might pay more attention to the economy than, say, the average firm or household; it

is unlikely, however, that the central bank knows the underlying state of the economy with infinite

precision.

A second motivation for considering an informationally-constrained central banker is to pro-

vide a coherent microfoundation for what many in the New Keynesian literature call monetary

policy “shocks.” Monetary shocks are broadly defined as unanticipated shocks to either the nom-

inal interest rate or the money supply that are orthogonal to the underlying state of the economy.

An extensive empirical literature attempts to isolate and estimate the effects of these shocks; see,

e.g. L. J. Christiano, Eichenbaum, and Evans (2005), Mark Gertler and Karadi (2015), Gürkaynak

et al. (2005), Nakamura and Steinsson (2018), Romer and Romer (2004)

But what are monetary policy “shocks” in the real world? Certainly the FOMC does not choose

an interest rate then, ex post, adds random noise. One rationalization for these shocks is that they

are the byproduct of the central bank’s incomplete information about the underlying economic

state. That is, suppose the monetary authority receives a noisy, private signal about the aggregate

state and fashions the nominal interest rate upon its observation. Any noise in the central banker’s

signal would result in variation in the interest rate that is orthogonal to the underlying state—

variation that would appear to the econometrician, ex post, as the product of monetary “shocks.”

However, under this interpretation, while monetary policy shocks are unanticipated from the

point of view of the public, they are not at all random from the point of view of the central banker.

If, for example, the central bank were to disclose its private information to the public, monetary

policy shocks would all but disappear.

In order to tell whether or not it is socially desirable for the central bank to disclose its infor-

mation, as well as understand how the central bank’s incomplete information constrains optimal

policy, one must explicitly model this friction.

Our framework. The economy we study is a relatively standard, micro-founded, general equi-

librium model with nominal rigidities. There is a representative household that consumes, saves,
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and supplies labor. Production takes place within a unit mass of differentiated, intermediate-good

firms. Firms face a common productivity shock. Productivity is the only real shock in the model;

it follows that the underlying flexible-price allocations are efficient.

Firms set nominal prices; we assume that the nominal rigidity takes the form of an informa-

tional friction along the lines of Angeletos and La’O (2020), Mackowiak and Wiederholt (2009),

Mankiw and Reis (2002), Woodford (2003). Specifically, firms make their nominal pricing deci-

sions under incomplete information of the aggregate state. The household, on the other hand, faces

no frictions and makes its decisions under complete information.

Finally, there is a consolidated fiscal and monetary authority with full commitment. The tool

of the fiscal authority is a constant revenue tax or subsidy; the tool of the monetary authority is the

nominal interest rate. At the end of each period, the aggregate state is revealed to all agents—the

firms, the household, and the policymaker—and markets clear.

We introduce two non-standard features into this model. The first is an informational constraint

on the central banker. In each period, the central banker, like any firm, has only incomplete in-

formation about the current state. Specifically, we assume that the central banker receives a noisy,

private signal about current productivity and that the nominal interest rate can be contingent only

on the central banker’s incomplete information at that point in time.

The second non-standard, but related, feature of our model is an accommodation of a form

of “policy uncertainty.” When monetary policy is contingent on the central bank’s private infor-

mation, firms become uncertain about current and future interest rates—i.e., there exist monetary

policy “shocks.” Firms, in making their nominal pricing decisions, must form beliefs not only over

fundamentals but also over these contingencies of monetary policy.

We allow firms to have private information not only about aggregate productivity but also about

the information of the central banker. We model this as a correlation, conditional on fundamentals,

between the private signals of the firms and the private signal of the central banker. One can

interpret this conditional correlation as firm optimism or pessimism about monetary policy that is

orthogonal to firm beliefs about fundamentals.
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Optimal Monetary Policy. Our first set of results characterizes optimal monetary policy tak-

ing as given the informational constraints on the firms and on the central banker. We adhere

to the classic Ramsey approach but adapt it to our setting by specifying the monetary policy

instrument—here, the nominal interest rate—as a function of the exogenous information set of

the central banker.

Our analysis follows in the spirit of Correia, Nicolini, and Teles (2008), Correia, Farhi, Nicol-

ini, and Teles (2013), and Angeletos and La’O (2020). That is, we first show that the first best

efficient allocation is implementable under flexible prices with a subsidy that offsets the monopo-

listic mark-up. We then prove that the set of flexible-price allocations can be implemented under

sticky prices.

While it may not be surprising that replicating flexible-price allocations under sticky prices is

a desirable goal for policy, it might come as a surprise that replication is feasible. We show that

there exists paths for the nominal interest rate and prices that satisfy all measurability constraints

imposed on the firms and the central banker yet implement allocations as if the firms and the

central banker made their respective decisions under complete information.

We focus on two classes of implementations. The first class of implementations are ones in

which the nominal interest rate does not condition on the central banker’s private signal about

current fundamentals. The second class of implementations are ones in which nominal interest

rates do. Finally, we provide a characterization of the full set of flexible-price implementations.

We find that all flexible-price implementations share a common feature: price levels must

respond to past economic fundamentals. In fact, it is precisely the contingencies of future price

levels that are essential for circumventing the measurability constraints of today.

It follows that an optimal policy in our model is any monetary policy that implements flexible-

price allocations coupled with a subsidy that offsets the constant mark-up—such a policy imple-

ments the first best. Furthermore, the necessity of price contingencies on past economic funda-

mentals implies that price stability is never optimal.
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Welfare Effects of Central Bank Disclosure. The frictions we introduce allow us to study an-

other question of interest: what is the social value of central bank information disclosure?

For this analysis we follow in the tradition of Morris and Shin (2002), Hellwig (2005), An-

geletos, Iovino, and La’O (2016) and others that model central bank disclosure as public signals

about macroeconomic conditions. Our model differs from all of these previous works in that the

noisy information disclosed by the central bank is itself the same noisy information upon which

the central bank sets monetary policy.

To answer this question, we restrict attention to a particular class of equilibria which admits a

unique interest rate rule that implements flexible-price allocations. We then consider the case in

which monetary policy is sub-optimal; in particular, we let the interest rate rule deviate from this

optimum.

We find that the welfare effect of central bank information disclosure in this context is gener-

ally ambiguous. We provide sufficient conditions under which central bank disclosure is welfare-

improving—these are joint conditions on the preference structure of the household, the elasticity of

substitution across goods, and the precisions of the firms’ and central bank’s private information.

By publicly disclosing its signal about current economic conditions, the central bank reduces

the uncertainty firms face about aggregate productivity. Disclosure of central bank information

furthermore eliminates all monetary policy “shocks,” as firms can perfectly anticipate the interest

rate. These reductions in fundamental and interest rate uncertainty contribute to greater equilib-

rium welfare. However, central bank disclosure also brings about greater coordination of pricing

decisions on a noisy public signal—a force that contributes to lower welfare. If this adverse welfare

effect is sufficiently strong, then public disclosure can be detrimental.

We find that as long as either firm information or central bank information is sufficiently pre-

cise, the benefits of central bank disclosure outweigh the costs. In this case, central bank disclosure

is socially desirable.
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Related Literature. Methodologically, we analyze optimal monetary policy following the pri-

mal approach. We thereby follow in the tradition of the primal approach conceived in public fi-

nance (Atkinson & Stiglitz, 1980), then imported into macro and adapted for studying the Ramsey

problem (V. Chari, Christiano, & Kehoe, 1991; V. Chari, Christiano, & Kehoe, 1994; V. V. Chari

& Kehoe, 1999; Lucas & Stokey, 1983). In particular, our analysis of optimal monetary policy

closely mirrors those found in Angeletos and La’O (2020), Correia et al. (2013), Correia et al.

(2008); these papers consider optimal policy in economies featuring nominal rigidity. Angeletos

and La’O (2020) in particular study an economy in which firms face informational frictions. Our

model differs from all of these previous works in that we explicitly model and study the implica-

tions of an informational constraint on the policymaker.2

In terms of the questions we address, this paper contributes to two literatures. One is the

literature that considers how nominal rigidities that originate in firm informational frictions affect

the optimal conduct of monetary policy (Adam, 2007; Angeletos & La’O, 2020; Ball, Mankiw, &

Reis, 2005; Lorenzoni, 2010; Paciello & Wiederholt, 2014). The other is the literature that studies,

in similar microfounded, general equilibrium models with nominal informational rigidities, the

welfare effects of public information disclosures (Angeletos et al., 2016; Baeriswyl & Cornand,

2010; Hellwig, 2005; Lorenzoni, 2010; Walsh, 2007).3

Relative to both of these literatures, our contribution is to revisit these questions in a setting in

which the central banker is informationally-constrained but at the same time controls the nominal

interest rate. This implies that any information the central banker chooses to disclose to the public

is the same information upon which monetary policy is based.

A closely related paper, in this respect, is Kohlhas (2020). Kohlhas (2020) likewise considers

the problem of a policymaker with incomplete information but in a reduced-form, static, linear-

2Our framework furthermore differs from Angeletos and La’O (2020) in that we abstract from any real informa-
tional rigidities.

3In an earlier, extremely influential paper, Morris and Shin (2002) consider the welfare effects of public information
disclosure in an abstract, linear-quadratic “beauty contest” game featuring strategic complementarities; see also the
follow-up work by James and Lawler (2011), Morris, Shin, and Tong (2006), Svensson (2006). While Morris and
Shin (2002) has been pivotal in introducing these concepts and setting in motion the literature on public information
disclosure, its reduced-form framework lacks explicit microfoundations and therefore has limited power in answering
applied, macroeconomic policy questions.
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quadratic “beauty contest” game in the spirit of Morris and Shin (2002). Similar to our setting,

the policymaker in Kohlhas (2020) can fashion its policy instrument to be contingent on its own

information; it can also choose to disclose its information to the agents. Kohlhas (2020) further-

more presents a business cycle application based on the model of Hellwig (2005) in which firms

set nominal prices, the household faces a cash-in-advance constraint, and the monetary authority

sets the money supply.4

Relative to Kohlhas (2020), we study a fully microfounded, dynamic, general equilibrium

model with nominal rigidities and assume that the policy instrument of the central banker is the

nominal interest rate. We find that the conclusions of the business cycle application of Kohlhas

(2020) do not apply in our context. The primary reason our results diverge is the difference in mi-

crofoundations, particularly the choice of tool of the central banker. In Kohlhas (2020), the money

supply is constrained to be contingent on the central banker’s information set. That paper finds

that the complete-information first best cannot be implemented, and optimal policy achieves only

a second best.

In our framework, we likewise assume that the tool of the central banker is constrained to

be contingent on the central banker’s information set. However, this tool is the nominal interest

rate. By leveraging the dynamic nature of the Euler equation, we find that there exists paths for

the nominal interest rate and prices that effectively circumvent the central banker’s informational

constraint and implement flexible-price allocations. By implication, the complete-information first

best can be achieved. We furthermore show that for all possible implementations of flexible-price

allocations, the money supply varies with the current economic state; it therefore does not satisfy

the measurability restriction investigated in Kohlhas (2020).

Layout. This paper is organized as follows. In Section 3.2 we describe the model. In Section

3.3 we characterize the set of allocations that may be implemented in this economy as competi-

tive equilibria under flexible prices; in Section 3.4 we characterize equilibria under sticky prices.

Section 3.5 studies optimal monetary policy. In Section 3.6 we analyze the welfare implications of

4See Section 6.3 of Kohlhas (2020).
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central bank disclosure. Section 3.7 concludes. All proofs, except for those explicitly provided in

the text, can be found in the appendix.

3.2 The Model

Time is discrete, indexed by t = {0, 1, . . .}.

Production. There is a unit mass continuum of intermediate-good producers, indexed by i ∈ I ≡

[0, 1]. Intermediate good firm i ∈ I produces output yit in period t according to the following

constant returns-to-scale technology:

yit = At`it,

where `it is the labor input of firm i at time t, and At > 0 is an aggregate productivity shock. The

profits of firm i at time t are given by

πit = (1− τ)pityit −Wt`it,

where pit is the nominal price charged by firm i at time t, Wt is the nominal wage, and τ is a

constant revenue tax.

There is a perfectly-competitive final good firm that aggregates intermediate goods according

to the following CES production function:

Yt =

(∫
i

y
θ−1
θ

it di

) θ
θ−1

, (3.1)

where θ > 1 is the elasticity of substitution across intermediate goods. The output of the final good

firm is consumed by the household.

The Household. There is a representative household with time-separable utility:

∞∑
t=0

βt [U(Ct)− V (Lt)] ,
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where the scalar β ∈ (0, 1) is the household’s discount factor. At time t, the household draws

utility from consumption Ct and disutility from labor Lt. We assume typical regularity conditions

on the functions U : R+ → R+ and V : R+ → R+: they are twice continuously-differentiable

with U ′, V ′ > 0, U ′′ < 0, V ′′ > 0, and satisfy the Inada conditions.

The household’s budget constraint at time t is given, in nominal terms, by:

PtCt +Bt ≤ WtLt + (1 + ιt−1)Bt−1 +

∫
i

πitdi+ Tt,

where Pt is the nominal price of the final consumption good at time t, Wt is the nominal wage, and

Bt are risk free nominal bonds that pay (1 + ιt)Bt one period later. The household furthermore

receives dividends (profits) from owning all firms and collects lump-sum transfers Tt from the

government.

The monetary and fiscal authority. The government consists of a consolidated monetary and

fiscal authority with commitment. The government’s budget constraint is given by:

∫
i

τpityitdi+Bt = Tt + (1 + ιt−1)Bt−1.

We assume that the government can set the constant revenue tax τ and the gross nominal interest

rate 1 + ιt. We abstract from the zero lower bound on the nominal interest rate.

Market clearing. In any period t, the quantity consumed by the household must equal the total

production of the final good, Ct = Yt, and aggregate labor supply must equal aggregate labor

demand, Lt =
∫
i
`itdi. Nominal bonds are in zero net supply: Bt = 0.

3.2.1 Shocks and Signals

The central banker and firms make their decisions under uncertainty. We model this uncertainty

as follows.
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The fundamental state. In each period t, Nature draws a random variable st from a finite set S.

This random variable determines period t fundamentals, namely TFP. In particular, we write TFP

at time t as a function, A : S → R+, measurable in the current state: At = A(st).

We call st the “fundamental state” and we assume st is Markov and evolves according to

probability distribution µ(st|st−1). We denote a history of states by st = {s0, ..., st} ∈ St and the

unconditional probability of history st by µ(st).

Information of the Central Banker. In each period, the central banker observes a noisy, private

signal about the current fundamental state. We model this as follows.

In each period t, Nature draws a random variable ωpt from a finite set Ωp according to a prob-

ability distribution ϕp. We let ϕp(ωpt|st) denote the probability of ωpt conditional on st.5 The

variable ωpt represents the “signal” the central banker observes in period t about the current fun-

damental state, st.

Information of the firms. Similarly, in each period, every firm observes a noisy, private signal

about the current fundamental state and the information of the central banker. We model this as

follows.

For every i, in each period t, Nature draws a random variable ωit from a finite set Ω according

to a probability distribution ϕ. We let ϕ(ωit|st, ωpt) denote the probability of ωit conditional on

(st, ωpt). The variable ωit represents the “signal” that firm i observes in period t; note that it

can contain information about the fundamental state, st, as well as about the signal of the central

banker, ωpt.

Conditional on (st, ωpt), we assume that the draws of ωit are i.i.d. across firms and a law of

large number applies so that ϕ(ωit|st, ωpt) is also the fraction of the population that receives the

signal ωit.6

5We use the subscript p to indicate the signal observed by the policymaker.
6See Uhlig (1996) for an applicable law of large numbers with a continuum of draws.
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The full aggregate state. The random variable st represents the fundamental state of the econ-

omy, namely aggregate TFP. However, we will soon impose measurability constraints such that

the information of the central banker and the firms may affect their policy and nominal pricing

decisions. As a result, these signals have the potential to affect equilibrium outcomes.

We therefore denote the true, full aggregate state by s̄t ∈ S̄ and assume it is given by the set:

s̄t = {st, ωpt, ϕ(ωit|st, ωpt)}.

That is, the full aggregate state in this economy includes not only current economic fundamentals,

st, but also the private signal of the central banker, ωpt, as well as the realized cross-sectional distri-

bution of firm signals ωit at time t. We denote a history of aggregate states by s̄t = {s̄0, . . . , s̄t} ∈

S̄t.

We assume that the central banker and the firms learn the full aggregate state s̄t at the end of

the period. At that point, s̄t becomes common knowledge.

3.2.2 Informational Constraints and Nominal Rigidities

We denote the monetary authority’s information set at time t by ωtp and each firm i’s information

set at time t by ωti . Following our previous discussion, these sets include the following objects:

ωtp ≡ {ωpt, s̄t−1} and ωti ≡ {ωit, s̄t−1}.

That is, at time t, the central banker and every firm has incomplete information about the current

economic state but complete information about the history of past states.

We impose the following two measurability restrictions.

Assumption 1. (i) The nominal price of intermediate good firm i at time t is constrained to be

measurable in the firm’s information set at time t:

pit(ω
t
i), ∀ωti ∈ Ωt ≡ Ω× S̄t−1. (3.2)
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(ii) The nominal interest rate at time t is constrained to be measurable in the central banker’s

information set at time t:

ιt(ω
t
p), ∀ωtp ∈ Ωt

p ≡ Ωp × S̄t−1. (3.3)

Assumption 1 constitutes the two informational constraints in our model. Part (i) is a mea-

surability constraint on the nominal price for each firm. This constraint encompasses the nominal

rigidity in our model by imposing that each firm make its nominal pricing decision based on the

firm’s incomplete private information. Part (ii) is a measurability constraint on the nominal interest

rate; it similarly imposes that the central banker must set the nominal interest rate based on its own

incomplete private information about current economic conditions.

Timing and the household. The measurability constraints imposed by Assumption 1 boil down

to an implicit “timing” assumption. Nature draws the full aggregate state, s̄t ∈ S̄, at the beginning

of the period. The central banker and firms observe their private signals and make their respective

decisions within the period, under incomplete information about the aggregate state. Once the

nominal interest rate and nominal prices are set, the aggregate state is revealed.

The household, on the other hand, makes its consumption, savings, and labor supply decisions

at the end of the period. At this point, s̄t is common knowledge and all real allocations adjust so

that supply equals demand and markets clear. We thereby denote the household’s information set

at time t by the history s̄t.

We make the assumption that the central banker and the firms learn the aggregate state at the

end of each period for simplicity. However, this assumption is compatible with the notion that these

agents can observe equilibrium outcomes—aggregate prices and market-clearing quantities—at the

end of each period, and from these endogenous objects they can infer the realized state.

3.2.3 Examples and Interpretation

The measurability constraints described above may appear abstract. In what follows we provide

examples of the nominal rigidity featured in our paper that may be more familiar to certain readers.
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We furthermore provide some interpretation of the new elements introduced by our framework.

The nominal rigidity. Consider part (i) of Assumption 1. This constraint, which requires pit to

be measurable in ωti rather than st, introduces the same type of nominal rigidity as the one featured

in Woodford (2003), Lorenzoni (2010), Angeletos and La’O (2020), and a large, growing literature

that replaces Calvo-like sticky prices with an informational friction.7

Take, for example, the model of Correia et al. (2008) featuring a one-period version of sticky

prices. In that economy, there are two types of firms: a fraction α ∈ (0, 1) of “sticky-price”

firms set prices one period in advance; the remaining 1 − α are “flexible-price” firms that choose

prices contemporaneously. This setting can be directly nested in our framework by letting ϕ assign

probability α to ωti = s̄t−1 and probability 1−α to ωti = s̄t. In this case, a fraction α of sticky-price

firms know the previous period’s state with certainty but cannot react to the current economic state.

On the other hand, a fraction 1−α of firms perfectly observe the state at time t and set their prices

accordingly.

Alternatively, consider models with “sticky information” as in Mankiw and Reis (2002) and

Ball et al. (2005). In each period a fraction λ ∈ (0, 1) of randomly-selected firms observe perfectly

the state of the economy while the remaining 1−λ firms continue to set their prices based on their

past information. This setting can be nested in our framework by first dropping the assumption that

the aggregate state is observed by all firms at the end of the period, and second by letting ϕ assign

probability λ to ωti = s̄t and probability 1− λ to ωti = ωt−1
i . In this case, λ is the probability with

which a firm updates its information in any given period, while 1−λ is the probability with which

the firm is stuck with its previous information set.8

Finally, consider models with noisy Gaussian signals, as in Angeletos et al. (2016), Hellwig

(2005), Lorenzoni (2010), Morris and Shin (2002), Nimark (2008), Woodford (2003). These mod-
7See, for example, Adam (2007), Angeletos et al. (2016), Angeletos and La’O (2020), Angeletos and Lian (2018),

Ball et al. (2005), Hellwig (2005), Mackowiak and Wiederholt (2009), Mankiw and Reis (2002), Nimark (2008),
Paciello and Wiederholt (2014).

8In order to strictly nest sticky information models, it is necessary that we drop our assumption that the aggregate
state is observed by all firms at the end of period. However, underlying this is the implicit assumption that firms
cannot observe or learn from their own market clearing quantities at the end of the period—an arguably unpalatable
assumption.
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els may be nested in our setting by specifying aggregate TFP as a Gaussian random variable and

letting each firm observe a private noisy Gaussian signal about it. In Section 3.6, we consider an

explicit example along these lines.9

The constraint on the central banker. We have argued that the nominal rigidity imposed in

part (i) of Assumption 1 is essentially the same friction that appears throughout the broad literature

incorporating informational frictions as a form of nominal rigidity. Relative to this literature, the

key novelty of our framework is part (ii). This is the measurability constraint on the central banker:

the central banker must set the nominal interest rate each period under incomplete information

about current economic fundamentals.

As a concrete example, consider a simple setting in which log productivity, logA(st), is a

Gaussian random variable. In each period t, the central banker observes a noisy private signal

about log productivity given by:

ωpt = logA(st) + εpt, (3.4)

where εpt ∼ N (0, σ2
p) is pure Gaussian noise. Part (ii) of Assumption 1 dictates that the central

banker sets the nominal interest rate at time t based only on its incomplete information set ωtp =

(ωpt, s̄
t−1). An implication of this measurability constraint is that if the nominal interest rate is

chosen to vary with the central banker’s signal, ωpt, then it varies with the noise, εpt.

Policy uncertainty. Finally, our model accommodates a form of “policy uncertainty.” Firms face

uncertainty not only over fundamentals, but also over the information of the central banker. If the

central banker relies on its private signal ωpt when setting nominal interest rates, then firms will

form beliefs over these policy contingencies.

The information of each firm is embedded in its signal ωit. Our framework allows these signals

9In order to strictly nest Gaussian settings, we must of course move from a discrete to a continuous state space
and define states and signals as continuous random variables with associated probability density functions. At this
level of generality, this adds unnecessary complication without delivering anything more in terms of results. We thus
choose to work with discrete random variables for the majority of our analysis. It is only in Section 3.6 that we impose
a continuous, Gaussian information structure and leverage this structure to obtain explicit, closed-form solutions for
equilibrium prices and allocations.
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be correlated with the central banker’s signal ωpt even conditional on current fundamentals st. One

can interpret this conditional correlation as public optimism or pessimism about monetary policy

that is orthogonal to firm beliefs about fundamentals.

Take, for example, the Gaussian setting described above in which the central banker receives

a noisy private signal given by (3.4). In this example, the noise in the central banker’s signal, εpt,

could be interpreted as an error or bias in the central bank’s perception of the economy. Variation

in εpt could be driven by new appointments to the Federal Reserve Board of Governors, a fresh

rotation of Federal Reserve Bank presidents on the FOMC, or simply noise in the bank’s research

department’s forecast of the economy.

Next, suppose each firm observes two Gaussian signals: the first is a private signal about TFP,

and the second is a private signal about the signal error of the central banker:

zit = εpt + ζzit,

where ζzit ∼ N (0, σ2
z) is idiosyncratic Gaussian noise. The signal zit contains no information about

economic fundamentals st. Nevertheless, variation in zit affects the firm’s beliefs about the Fed’s

perception of the economy and can thereby influence the firm’s nominal pricing decision. One

could interpret this process as the formation of the firm’s perception of the “hawkish” or “dovish”

nature of FOMC members.

We return to this specific Gaussian example in Section 3.6. Regardless, these signals need not

be taken so literally. They are simply modeling devices that allow us to introduce a form of policy

uncertainty that is orthogonal to public uncertainty about economic fundamentals.

3.2.4 Equilibrium Definitions

We close this section with formal definitions of equilibria. We denote a price system in this

economy by the following set of producer prices, the price of the final consumption good, and the
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nominal wage:

% =
{{
pit(ω

t
i)
}
ωti∈Ωt

, Pt(s̄
t),Wt(s̄

t)
}
s̄t∈S̄t

.

Given nominal prices, the Dixit-Stiglitz final good aggregator in (3.1), implies the typical downward-

sloping CES demand function for intermediate goods given by:

yit(ω
t
i , s̄

t) =

(
pit(ω

t
i)

Pt(s̄t)

)−θ
Yt(s̄

t), ∀ωti ∈ Ωt, s̄t ∈ S̄t, (3.5)

with elasticity of substitution θ. Therefore, firm output (and labor) depends not only on its pre-set

nominal price, but also on the aggregate state s̄t.

We denote an allocation in this economy by the following set:

ξ =
{{
`it(ω

t
i , s̄

t), yit(ω
t
i , s̄

t)
}
ωti∈Ωt

, Yt(s̄
t), Ct(s̄

t), Lt(s̄
t)
}
s̄t∈S̄t

where individual firm output and labor input satisfy the technological constraint:

yit(ω
t
i , s̄

t) = A(st)`it(ω
t
i , s̄

t), ∀ωti ∈ Ωt, s̄t ∈ S̄t, (3.6)

aggregate output and consumption is given by:

Ct(s̄
t) = Yt(s̄

t) =

[∑
ωit∈Ω

yit(ω
t
i , s̄

t)
θ−1
θ ϕ(ωit|st, ωpt)

] θ
θ−1

, ∀s̄t ∈ S̄t, (3.7)

and aggregate labor is given by:

Lt(s̄
t) =

∑
ωit∈Ω

`it(ω
t
i , s̄

t)ϕ(ωit|st, ωpt), ∀s̄t ∈ S̄t. (3.8)

Finally, we denote a policy in this economy by the following set of nominal interest rates and taxes:

ϑ =
{
τ, ιt(ω

t
p), Tt(s̄

t), Bt(s̄
t)
}
s̄t∈S̄t ,
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where Tt(s̄t) = τ
∑

ωit∈Ω pit(ω
t
i)yit(ω

t
i , s̄

t)ϕ(ωit|st, ωpt) and bonds are in zero net supply,Bt(s̄
t) =

0, for all dates and histories s̄t ∈ S̄t.

With these sets so defined, we define a competitive equilibrium in this economy as follows.

Definition 1. A sticky-price equilibrium is a triplet (ξ, %, ϑ) of allocations, prices, and policies

such that: (i) prices and allocations jointly satisfy the CES demand function (3.5); (ii) given de-

mand function (3.5) and policy, intermediate good nominal prices pit(ωti) maximize the firm’s

expected value of profits, conditional on its information set ωti; (iii) given prices and policies,

aggregate consumption, savings, and labor supply maximize the household’s expected utility, con-

ditional on its information set s̄t, subject to its budget set; (iv) the household’s and government

budget sets are both satisfied; (v) given prices, labor adjusts according to (3.6) in order to meet

realized demand; and (vi) final goods and labor markets clear: (3.7) and (3.8).

In addition to sticky-price equilibria, we will also consider a hypothetical benchmark economy

without frictions. That is, we drop Assumption 1 and relax all measurability constraints on the

firms and central banker so that they have complete information about current fundamentals st

when making their respective decisions. Formally we call this the “flexible-price” environment

and define equilibria in this environment accordingly.

Definition 2. A flexible-price equilibrium is a triplet (ξ, %, ϑ) of allocations, prices, and policies

such that in all periods t, intermediate good prices and the nominal interest rate are measurable

in the fundamental state:

ιt(s
t) and pit(s

t),

for all i ∈ I , and (ξ, %, ϑ) satisfy the conditions stated in Definition 1.

The flexible-price economy provides a useful benchmark for our subsequent analysis.

3.3 Flexible-Price Equilibrium

In this section we characterize the set of allocations that can be implemented as a competitive

equilibrium under flexible prices. Recall that under flexible prices, the full aggregate state reduces
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to st. The household’s intratemporal optimality condition is given by

V ′(Lt(s
t))

U ′(Ct(st))
=
Wt(s

t)

Pt(st)
, ∀st ∈ St, (3.9)

which sets the household’s marginal rate of substitution between labor and consumption equal to

the real wage. Under flexible prices, the firm faces no informational constraints and thereby sets

its price equal to a constant markup over marginal cost:

pit(s
t) = Pt(s

t) =

(
θ − 1

θ

)−1
1

1− τ
Wt(s

t)

A(st)
, ∀st ∈ St. (3.10)

Note that the firm’s nominal marginal cost is equal to the nominal wage over aggregate produc-

tivity. Combining this condition with the household’s optimality condition in (3.9), we obtain the

following result.

Lemma 3. An allocation is implementable as a flexible-price equilibrium if and only if there exists

a strictly positive constant χ ∈ R+ and two functions C : S → R+ and L : S → R+ such that the

allocation is given by:

`it(s
t) = Lt(s

t) = L(st), and yit(s
t) = Yt(s

t) = Ct(s
t) = C(st), ∀i ∈ I, st,

(3.11)

and χ, C(·),L(·) jointly satisfy:

U ′(C(st)) = χV ′(L(st))
1

A(st)
, and C(st) = A(st)L(st) ∀st ∈ St, (3.12)

Condition (3.11) states that in any flexible-price equilibrium, there is zero dispersion in output

and labor inputs across intermediate good firms i ∈ I . All firms are ex-ante identical in their tech-

nology and, under flexible prices, they have common knowledge of productivity. As a result, all

firms set the same nominal price (3.10). It follows that intermediate-good production is equalized

across firms, as is intermediate good labor.
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Furthermore, any flexible-price allocation ξ may be summarized by two functions {C(st),L(st)},

one for aggregate output and one for aggregate labor, that are jointly determined by the two con-

ditions in (3.12). The first is the equilibrium intratemporal condition. In any state, the marginal

rate of substitution between consumption and labor is equal to the marginal rate of transformation,

modulo a constant wedge due to the constant revenue tax and the constant monopolistic markup:

χ =
1

1− τ

(
θ − 1

θ

)−1

> 0. (3.13)

The wedge χ characterizes the power of the fiscal authority to move around the equilibrium allo-

cation (with its choice of τ ). The second condition in (3.12) is simply the aggregate production

function.

It is clear from condition (3.12) that it is only the current aggregate productivity shock A(st)

that moves around the aggregate allocation. As a result, the functions {C(st),L(st)} are both

history-independent and time-invariant. They are history-independent in the sense that they are

functions of the current fundamental state, st, but not of the entire history of previous shocks, st−1.

The functions {C(·),L(·)}, moreover, do not change over time and hence bear no time t subscript.

Finally, the nominal interest rate function ι(st) and the path of prices P (st) in equilibrium must

satisfy the following Euler equation:

U ′(Ct(s
t))

Pt(st)
= β(1 + ι(st))E

[
U ′(Ct+1(st+1))

Pt+1(st+1)

∣∣∣∣ st] , ∀st ∈ St.

Therefore, unlike the fiscal authority, in the flexible-price benchmark the monetary authority has

no power to alter equilibrium allocations.

The first best efficient allocation. We now characterize another benchmark: efficiency. We con-

sider the problem of a planner who chooses the welfare-maximizing allocation among all feasible

allocations. By feasibility, we mean allocations that satisfy technology and resource constraints

(3.6)-(3.8).
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Lemma 4. Let ξ∗ denote the first best efficient allocation. The first best allocation ξ∗ is the unique

allocation that satisfies conditions (3.11) and (3.12) with χ = 1.

The following result is then immediate.

Theorem 1. Let X f denote the set of all flexible-price allocations; ξ∗ ∈ X f .

Proof. The result follows from Lemmas 3 and 4.

As in the flexible-price equilibrium, the planner dictates zero dispersion in output and labor

across intermediate good firms i ∈ I . Given the CES final good technology, any dispersion in inter-

mediate good production is welfare-decreasing. Furthermore, it is optimal to equate the marginal

rate of substitution between consumption and labor with the marginal rate of transformation. It

follows that in our setting there are no missing tax instruments: the first best efficient allocation

can be implemented under flexible prices with a revenue subsidy that exactly offsets the markup

(χ = 1).

3.4 Sticky-Price Equilibrium

We now reinstate Assumption 1—the measurability constraints on the firms and on the central

banker—and consider the set of sticky-price equilibria in our environment.

Consider the firm’s problem. The measurability constraint on the firm’s pricing decision im-

plies that the firm solves the following maximization problem:

max
p′i

E
[

Λt(s̄
t)

{
(1− τ)p′iyit(ω

t
i , s̄

t)−Wt(s̄
t)
yit(ω

t
i , s̄

t)

A(st)

}∣∣∣∣ωti] ,
subject to the CES demand function (3.5), where we let Λt(s̄

t) ≡ U ′(Ct(s̄
t))/Pt(s̄

t) denote the

household’s marginal value of nominal wealth in history s̄t. That is, the firm sets a price that

maximizes the expected value of the firm, conditional on its information set ωti at time t. Given
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ωti ∈ Ωt, the firm’s optimal price is given by:

pit(ω
t
i) =

(
θ − 1

θ

)−1
1

1− τ
E
[
qit(ω

t
i , s̄

t)

{
Wt(s̄

t)

A(st)

}∣∣∣∣ωti] ,
where we let

qit(ω
t
i , s̄

t) ≡ Λt(s̄
t)yit(ω

t
i , s̄

t)

E [Λt(s̄t)yit(ωti , s̄
t)|ωti ]

(3.14)

denote the firm’s risk weights. Therefore, the firm’s optimal price is equal to its risk-weighted

expectation of a constant markup over marginal cost, Wt(s̄
t)/A(st), conditional on information set

ωti . The net markup is again the result of the revenue tax and the monopolistic markup. Note that

the risk weights defined in (3.14) satisfy E[qit(ω
t
i , s̄

t)|ωti ] = 1 for all information sets ωti ∈ Ωt.10

The following lemma provides a complete characterization of the set of sticky-price equilibria.

Lemma 5. An allocation ξ, a policy ϑ, and price system % constitute a sticky-price equilibrium if

and only if the following four properties hold:

(i) the following household optimality conditions are satisfied:

V ′(Lt(s̄
t))

U ′(Ct(s̄t))
=
Wt(s̄

t)

Pt(s̄t)
, ∀s̄t ∈ S̄t, (3.15)

U ′(Ct(s̄
t))

Pt(s̄t)
= β(1 + ιt(ω

t
p))E

[
U ′(Ct+1(s̄t+1))

Pt+1(s̄t+1)

∣∣∣∣ s̄t] , ∀s̄t ∈ S̄t, (3.16)

along with the transversality condition:

lim
t→∞

βtE
[
U ′(Ct(s̄

t))Bt(s̄
t)
]

= 0; (3.17)

(ii) the following firm optimality condition is satisfied:

pit(ω
t
i) = χE

[
qit(ω

t
i , s̄

t)

{
Wt(s̄

t)

A(st)

}∣∣∣∣ωti] , ∀ωti ∈ Ωt, (3.18)

10The firm’s risk weights are the result of curvature in the household-owner’s utility function and curvature in the
demand function; see also Correia et al. (2008) and Angeletos and La’O (2020).
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with qit(ωti , s̄
t) defined in (3.14),

(iii) prices and allocations jointly satisfy the CES demand function (3.5);

(iv) the household and government budget sets are satisfied;

(v) all markets clear, namely, conditions (3.6)-(3.8) are satisfied.

The household optimality conditions are given by equations (3.15)-(3.17). Condition (3.15) is

the household’s intratemporal optimality condition, condition (3.16) is the household’s intertem-

poral Euler equation, and condition (3.17) is the transversality condition. Note that in the Euler

equation, the expectation is taken conditional on s̄t, the household’s information set at time t.

In contrast, the intermediate good firms make their nominal pricing decisions under incomplete

information about nominal marginal costs. Differences in information sets, ωti , may lead to dif-

ferences in nominal prices. Price dispersion, in turn, translates into production dispersion, as firm

output is determined according to the CES demand function (3.5).

Finally, recall that under flexible prices, the monetary authority has no power to vary the al-

location. Under sticky prices, this is no longer the case: the monetary authority has some power

to control real allocations via the nominal interest rate ιt in the household’s Euler equation (3.16).

This power, however, may be limited by the measurability constraint on the central banker’s policy

tool.

3.5 Optimal Monetary Policy

In this section we consider the question of optimal monetary policy. Throughout this section

we will maintain the assumption that the central bank does not share its private information with

the public; we will relax this assumption in the following section, Section 3.6, when we consider

central bank disclosure.

Recall from Lemma 4 that the first best allocation is implementable under flexible prices. In

this section we will show that all flexible-price allocations are implementable under sticky prices.

As a result, an “optimal” policy is any monetary policy that implements flexible-price allocations

coupled with a subsidy that offsets the monopolistic markup—such a policy implements the first
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best.

We focus our discussion on two classes of implementations. The first class of implementations

are ones in which nominal interest rates do not condition on the central banker’s private signal at

time t. The second class of implementations are ones in which nominal interest rates do condition

on the central banker’s private signal at time t. We close our discussion with a characterization of

the full set of flexible-price implementations.

3.5.1 Implementations that ignore central bank information

The following result shows that the set of flexible-price allocations can be implemented under

sticky prices.

Proposition 1. Take any flexible-price allocation ξ ∈ X f with corresponding functions {C(·),L(·)}

and let g : S → R+ be the function defined by g(st) ≡
∑

st+1∈S U
′(C(st+1))µ(st+1|st).

The following paths of nominal interest rates and aggregate prices implement ξ under sticky

prices:

1 + ιt(ω
t
p) = I(st−1) and Pt(s̄

t) = P(st−1), (3.19)

where I : S → R+ and P : S → R+ are two functions defined by:

I(st−1) ≡ 1

β
U ′(C(st−1))g(st−1)−1, (3.20)

P(st−1) ≡ [U ′(C(st−1))]−1g(st−1). (3.21)

Proof. The nominal interest rate and prices must satisfy the Euler equation of the household under

sticky prices at the flexible-price allocation at all dates and histories:

U ′(C(st))
Pt(s̄t)

= β(1 + ιt(ω
t
p))E

[
U ′(C(st+1))

Pt+1(s̄t+1)

∣∣∣∣ s̄t] , ∀s̄t ∈ S̄t. (3.22)

With the paths of nominal interest rates and prices proposed in (3.19), we may rewrite the Euler
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equation as follows:

U ′(C(st)) = βI(st−1)
P(st−1)

P(st)

∑
st+1∈S

U ′(C(st+1))µ(st+1|st), ∀s̄t ∈ S̄t.

The above equation is satisfied by the functions I and P defined in (3.20) and (3.21) at all dates

and histories.

What remains to be shown is that there is no dispersion in nominal prices across intermediate-

good firms. In any sticky-price equilibrium, the nominal wage satisfies the intratemporal equation

(3.15). From Lemma 3, the following condition holds at the flexible-price allocation:

V ′(L(st))

U ′(C(st))
= A(st)χ

−1.

Combining this with (3.15) implies that the nominal wage at the flexible-price allocation satisfies:

Wt(s̄
t) = A(st)χ

−1Pt(s̄
t), ∀s̄t ∈ S̄t. (3.23)

The firm’s optimality condition under sticky prices is given by (3.18). Substituting in for the

nominal wage in (3.23) yields

pit(ω
t
i) = E

[
qit(ω

t
i , s̄

t)Pt(s̄
t)
∣∣ωti] ,

where, under the proposed implementation, Pt(s̄t) = P(st−1). It follows that pit(ωti) = P(st−1)

for all ωti ∈ Ωt.

Proposition 1 establishes that any flexible-price allocation can be implemented under sticky

prices. Recall that under flexible prices, there is no dispersion in output across firms, and ag-

gregate output and labor vary with TFP, A(st). How can such properties be preserved when the

central banker and all firms make their respective decisions under incomplete information about

the fundamental state?
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Let us tackle the first property: the absence of output dispersion across firms. In order for this

to hold under sticky prices, it is necessary that all firms set the same nominal price—this follows

from the intermediate good demand function. However, recall that it is individually optimal for

each firm to set its price equal to its expected nominal marginal cost:

pit(ω
t
i) = χE

[
qit(ω

t
i , s̄

t)

{
Wt(s̄

t)

A(st)

}∣∣∣∣ωti] .
Given that private signals differ across firms, the only way to ensure that all firms set the same

nominal price is to make the nominal marginal cost, Wt(s̄
t)/A(st), measurable in each and every

firm’s information set, ωti .

The aggregate price level presented in Proposition 1 accomplishes this task. In particular, at the

proposed implementation, Wt(s̄
t)/A(st) = Pt(s̄

t) = P(st−1). The aggregate price level at time t

depends only on the past fundamental state, st−1. Because the past state is common knowledge,

firms can optimally disregard their private signal ωit and set prices according to:

pit(ω
t
i) = P(st−1), ∀ωti ∈ Ωt.

In sum, when the firm’s optimal price is common knowledge, there is no dispersion in prices across

firms and, consequently, no output dispersion.

While this argument explains how all firms can set the same nominal price, it does not yet

explain how the aggregate allocation can vary in the appropriate way with the fundamental state.

Note that at the flexible-price allocation, the Euler equation satisfies:

U ′(C(st)) = βR(st)
∑
st+1∈S

U ′(C(st+1))µ(st+1|st), (3.24)

where R(st) denotes the (gross) real risk-free interest rate. From the Euler equation, it is clear that

the real interest rate at the flexible-price allocation is contingent on the current fundamental, st,

and the current fundamental alone.

61



In our framework, the nominal interest rate cannot be measurable in the fundamental st at time

t; it can be at most contingent on the central banker’s incomplete information set, ωtp. Proposition

1 demonstrates that this measurability constraint on the nominal interest rate can, in fact, be cir-

cumvented. The real interest rate at any flexible-price allocation can be replicated with a nominal

interest rate that is contingent only on the past fundamental state, st−1—which is known to the

central banker at time t—and the path of prices described in (3.19).

With the nominal interest rate and the path of prices proposed in (3.19), the real interest rate

between periods t and t+ 1 is given by:

R(st) = I(st−1)
P(st−1)

P(st)
.

Therefore, in order to generate the appropriate contingency of the real interest rate on the current

fundamental, st, the future price must react to today’s state. This is possible, as we have proposed

a path of prices such that the following period’s price is contingent on the current fundamental:

Pt+1(s̄t+1) = P(st). Furthermore, by the following period, all firms will have learned today’s state

and hence will be able to set the “correct” nominal price.

In sum, the interest rate and price path proposed in Proposition 1 implement flexible-price

allocations under sticky prices despite the measurability constraints on both the firms’ nominal

pricing decisions and the monetary policy tool. The following result is then immediate.

Theorem 2. Let X s denote the set of allocations that can be implemented as an equilibrium under

sticky prices;

ξ∗ ∈ X f ⊂ X s.

Therefore, an optimal policy is a monetary policy that implements flexible-price allocations and a

constant subsidy that offsets the markup.

Proof. The statement that X f ⊂ X s follows from Proposition 1. Combining this with Theorem 1

provides the result.
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Proposition 1 provides only one possible implementation of flexible-price allocations—it is

not a unique implementation. That said, the implementation presented in Proposition 1 may be

desirable for its simplicity. We note the following features.

First and foremost, the proposed implementation features a nominal interest rate that is not

contingent on the private information of the central banker, ωpt. The central banker commits to set

the interest rate based solely on past states that are, as of time t, common knowledge. As a result,

from the point of view of firms at time t, there are no monetary policy “shocks.”

Second, the functions {I(st−1),P(st−1)} that characterize the nominal interest rate and the ag-

gregate price level inherit two convenient properties of the functions {C(st),L(st)}. In particular,

these functions are time-invariant and history-independent. The nominal interest rate and aggre-

gate price level at time t depend only on the past fundamental st−1 and not on the entire history of

previous shocks; furthermore, this relationship does not change over time.

The full set of implementations that condition only on past fundamentals. Finally, the price

function P(·) in (3.21) is contingent on the minimal number of state variables needed to implement

flexible-price allocations: one.11 As noted above, in order to generate the appropriate contingen-

cies of the real interest rate on current fundamentals, the future price level must vary with these

fundamentals. It is therefore necessary that the price level be contingent on at least one state

variable—the previous period’s fundamental, st−1. Proposition 1 demonstrates that it need not be

contingent on more states.

However, one could allow for the aggregate price level and the nominal interest rate at time t

to be measurable in additional, past fundamental states, e.g. st−2, st−3, . . ., without affecting their

ability to implement flexible-price allocations. This is simply because all past states are common

knowledge and can thereby be incorporated into prices without any real effects. We demonstrate

this through the following proposition.

Proposition 2. Take any flexible-price allocation ξ ∈ X f with corresponding functions {C(·),L(·)}
11We formalize this statement in Theorem 3 below.
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and let g : S → R+ be the function defined by g(st) ≡
∑

st+1∈S U
′(C(st+1))µ(st+1|st).

The following paths of nominal interest rates and aggregate prices implement ξ under sticky

prices:

1 + ιt(ω
t
p) = It(st−1) and Pt(s̄

t) = Pt(st−1), (3.25)

where It : St−1 → R+ is a sequence of positive-valued functions defined on St−1, andPt : St−1 →

R+ is a sequence of positive-valued functions defined recursively by:

Pt+1(st) = βIt(st−1)Pt(st−1)
g(st)

U ′(C(st))
. (3.26)

where P0 > 0 is a known constant.

Proof. The nominal interest rate and prices must satisfy the Euler equation of the household under

sticky prices at the flexible-price allocation at all dates and histories: (3.22). With the paths of

nominal interest rates and prices proposed in (3.25), we may rewrite this Euler equation as follows:

U ′(C(st)) = βIt(st−1)
Pt(st−1)

Pt+1(st)
g(st).

For any sequence of positive-valued functions for the nominal interest rate, It(·), the above equa-

tion is satisfied by the sequence of functions Pt(·) defined in (3.26) at all dates and histories.

What remains to be shown is that there is no dispersion in nominal prices across intermediate-

good firms. The proof of this statement mirrors the corresponding proof for Proposition 1, and

follows from the fact that st−1 ∈ ωti for all ωti ∈ Ωt.

Proposition 2 provides a characterization of all possible implementations of flexible-price al-

locations such that the nominal interest rate and the aggregate price level condition only on past

fundamentals. The implementation provided in Proposition 1 is thereby nested in this class. Propo-

sition 2 is more general in that it only requires that the sequence of functions {It(·),Pt(·)} describ-

ing the nominal interest rate and price level satisfy condition (3.26) at all dates and histories.

Therefore, the price level and the nominal interest rate at time t can depend on the entire
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history of fundamental shocks, st−1, yet still implement flexible-price allocations. This is due to

the simple, but powerful property that in this class of models, common knowledge states can be

incorporated into nominal variables without affecting real economic outcomes.

3.5.2 Implementations that incorporate central bank information

Section 3.5.1 restricts attention to implementations that do not rely on the central banker’s pri-

vate information. We now explore implementations in which the nominal interest rate is contingent

on the private signal of the central banker, ωpt. From the point of view of firms at time t, these

interest rates feature monetary policy “shocks.” Nevertheless, flexible-price allocations can still be

implemented.12

We begin by presenting an implementation that is similar to the one presented in Proposition 1

in that the nominal interest rate and the aggregate price level can be represented by time-invariant,

history-independent functions, I(·) and P(·).

Proposition 3. Take any flexible-price allocation ξ ∈ X f with corresponding functions {C(·),L(·)}

and let g : S → R+ be the function defined by g(st) ≡
∑

st+1∈S U
′(C(st+1))µ(st+1|st).

Let f : Ωp → R+ be a positive-valued function defined on Ωp. The following paths of nominal

interest rates and aggregate prices implement ξ under sticky prices:

1 + ιt(ω
t
p) = I(ωpt, ωpt−1, st−1) and Pt(s̄

t) = P(ωpt−1, st−1), (3.27)

where I : Ω2
p × S → R+ and P : Ωp × S → R+ are the two functions defined by:

I(ωpt, ωpt−1, st−1) ≡ 1

β
U ′(C(st−1))g(st−1)−1f(ωpt)f(ωpt−1)−1, (3.28)

P(ωpt−1, st−1) ≡ [U ′(C(st−1))]−1g(st−1)f(ωpt−1). (3.29)

12We are deeply indebted to V.V. Chari and Luis Perez for making us aware of this possibility and pushing us
towards these results. Our understanding of many of the implementation issues presented in this section has benefited
greatly from our discussions with them.
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Proof. The nominal interest rate and prices must satisfy the Euler equation of the household under

sticky prices at the flexible-price allocation at all dates and histories: (3.22). With the paths of

nominal interest rates and prices proposed in (3.27), we may rewrite the Euler equation as follows:

U ′(C(st)) = βI(ωpt, ωpt−1, st−1)
P(ωpt−1, st−1)

P(ωpt, st)
g(st).

The above equation is satisfied by the functions I(·) and P(·) defined in (3.28) and (3.29) at all

dates and histories.

What remains to be shown is that there is no dispersion in nominal prices across intermediate-

good firms. The proof of this statement mirrors the corresponding proof for Proposition 1, and

follows from the fact that (ωpt−1, st−1) ∈ ωti for all ωti ∈ Ωt.

Proposition 3 demonstrates how one can augment the implementation in Proposition 1 to in-

clude arbitrary contingencies of the nominal interest rate on the central banker’s private signal, ωpt.

These contingencies are summarized by the positive-valued function f(·).

Recall that the real interest rate at the flexible-price allocation is contingent on the current

fundamental, st, and the current fundamental alone; see equation (3.24). The flexible-price real

interest rate can be replicated with the nominal interest rate and path of prices defined in (3.27) as

follows:

R(st) = I(ωpt, ωpt−1, st−1)
P(ωpt−1, st−1)

P(ωpt, st)
=

1

β
U ′(C(st))g(st)

−1,

where the second equality follows from (3.28) and (3.29).

As with the implementation in Proposition 1, in order to generate the appropriate contingency

of the real interest rate on the current fundamental, the future price, Pt+1, must react to today’s

fundamental, st. Under this implementation the future price must not only vary with the current

fundamental in the appropriate way, but it must also vary with ωpt, the private signal of the central

banker. Specifically, the future price must “correct” for the contingency on ωpt introduced through

the nominal interest rate. This is possible without introducing price dispersion: by period t+ 1, all

agents will know not only the fundamental at time t but also the central banker’s private signal. It
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follows that all firms will be able to set the appropriate price.

The persistence of central bank signal “errors.” Proposition 3 provides an implementation in

which the nominal interest rate and the aggregate price level are represented by time-invariant,

history-independent functions, I(·) and P(·), and the nominal interest rate is measurable in the

central banker’s private signal.

The nominal interest rate in (3.28), however, has a peculiar feature. In particular, it is contingent

not only on the current realization of the central banker’s signal, ωpt, but also on the past realization

of their signal, ωpt−1.

The latter contingency arises for the following reason. As noted above, in order to imple-

ment flexible-price allocations, the following period price level must vary with ωpt. However, in

order for the price level to not inherit the effect of this signal forever—and hence remain history-

independent—the following period’s nominal interest rate must also vary with ωpt in order to “cor-

rect” for the added contingency introduced by Pt+1. It follows that, in any period t, the nominal

interest rate is contingent on ωpt−1.

This particular property may or may not be desirable. It implies that the nominal interest rate

must vary with the “noise” or “error” inherent in the central banker’s past private signal even after

the past fundamental state st−1 has become common knowledge.

One might find it preferable to eliminate this feature. In what follows, we restrict attention

to implementations in which the interest rate does not exhibit this property. Specifically, we let

the nominal interest rate at time t be measurable in the current realization of the central banker’s

private signal, ωpt, but not on past signal realizations, ωpt−1, ωpt−2, . . ..

Proposition 4. Take any flexible-price allocation ξ ∈ X f with corresponding functions {C(·),L(·)}

and let g : S → R+ be the function defined by g(st) ≡
∑

st+1∈S U
′(C(st+1))µ(st+1|st).

The following paths of nominal interest rates and aggregate prices implement ξ under sticky

prices:

1 + ιt(ω
t
p) = It(ωpt, st−1) and Pt(s̄

t) = Pt(s̄t−1), (3.30)
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where It : Ωp × St−1 → R+ is a sequence of positive-valued functions defined on Ωp × St−1, and

Pt : S̄t−1 → R+ is a sequence of positive-valued functions defined recursively by:

Pt+1(s̄t) = βIt(ωpt, st−1)Pt(s̄t−1)
g(st)

U ′(C(st))
. (3.31)

where P0 > 0 is a known constant.

Proof. The nominal interest rate and prices must satisfy the Euler equation of the household under

sticky prices at the flexible-price allocation at all dates and histories: (3.22). With the paths of

nominal interest rates and prices proposed in (3.30), we may write the Euler equation as follows:

U ′(C(st)) = βIt(ωpt, st−1)
Pt(s̄t−1)

Pt+1(s̄t)
g(st).

For any sequence of positive-valued functions for the nominal interest rate, It(·), the above equa-

tion is satisfied by the sequence of functions Pt defined in (3.31) at all dates and histories.

What remains to be shown is that there is no dispersion in nominal prices across intermediate-

good firms. The proof of this statement mirrors the corresponding proof for Proposition 1, and

follows from the fact that s̄t−1 ∈ ωti for all ωti ∈ Ωt.

Proposition 4 characterizes paths for the nominal interest rate and the aggregate price level

that jointly implement flexible-price allocations and in which the nominal interest rate is mea-

surable only in the central banker’s current private signal, ωpt, and past fundamentals. Impor-

tantly, we restrict the nominal interest rate to not condition on past central bank signal realizations,

ωpt−1, ωpt−2, . . ..

When we restrict the nominal interest rate in this fashion, past central bank signal realizations

instead pop up in the nominal price level. As a result, prices become history-dependent: the price

level at time t+1 depends on the entire history of central bank signals (ωpt, ωpt−1, ωpt−2, . . .). That

is, with this restriction on the nominal interest rate, the price level inherits the effects of central

bank signal noise forever.
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The bottom line. The main lesson here relative to Section 3.5.1 is that there exist implementa-

tions of flexible-price allocations which feature nominal interest rates that condition on the central

banker’s private signal. However, the central banker’s private signal by definition contains noise,

or “errors,” that are absent in real allocations (under flexible prices).

In order to implement flexible-price allocations, then, central bank signal noise must reappear

in future nominal variables. The implementations presented in this section feature a persistent

effect of central bank signal noise on either future interest rates or future price levels—in some

cases long after contemporaneous fundamentals have become common knowledge. Whether or

not this is an undesirable property of these implementations we leave up to the reader.

3.5.3 The full set of implementations and remarks

We have thus far focused on two classes of implementations. The implementations in Section

3.5.1 feature a nominal interest rate that is contingent only on past fundamentals, but not on the

central banker’s private signal; in contrast, the implementations presented in Section 3.5.2 allow

the nominal interest rate to vary with the central banker’s private signal.

We close our discussion with a characterization of the full set of flexible-price implementations.

This is followed by a set of remarks.

Proposition 5. Take any flexible-price allocation ξ ∈ X f with corresponding functions {C(·),L(·)}

and let g : S → R+ be the function defined by g(st) ≡
∑

st+1∈S U
′(C(st+1))µ(st+1|st).

The following paths of nominal interest rates and aggregate prices implement ξ under sticky

prices:

1 + ιt(ω
t
p) = It(ωtp) and Pt(s̄

t) = Pt(s̄t−1), (3.32)

where It : Ωt
p → R+ is a sequence of positive-valued functions defined on Ωt

p, andPt : S̄t−1 → R+

is a sequence of positive-valued functions defined recursively by:

Pt+1(s̄t) = βIt(ωtp)Pt(s̄t−1)
g(st)

U ′(C(st))
, (3.33)
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where P0 > 0 is a known constant.

Proof. The nominal interest rate and prices must satisfy the Euler equation of the household under

sticky prices at the flexible-price allocation at all dates and histories: (3.22). With the paths of

nominal interest rates and prices proposed in (3.32), we may rewrite the Euler equation as follows:

U ′(C(st)) = βIt(ωtp)
Pt(s̄t−1)

Pt+1(s̄t)
g(st)

For any given sequence of functions, It(·) and ht(·), the above equation is satisfied at all dates and

histories by the sequence of functions Pt(·) defined in (3.33) at all dates and histories.

What remains to be shown is that there is no dispersion in nominal prices across intermediate-

good firms. The proof of this statement mirrors the corresponding proof for Proposition 1, and

follows from the fact that s̄t−1 ∈ ωti for all ωti ∈ Ωt.

Proposition 5 characterizes the full set of flexible-price implementations in our setting; it

thereby nests the implementations presented in Propositions 1-4.

Proposition 5 places no restrictions on the nominal interest rate apart from the measurability

constraint on the central banker. It likewise places almost no restrictions on the aggregate price

level: the price level at time t is allowed to be contingent on the largest information set that is

common knowledge to all firms at time t—specifically, s̄t−1. By restricting the aggregate price

to be contingent on at most s̄t−1, we ensure that all firms can set the appropriate nominal price at

every date and every history.

Finally, these implementations only require that the sequence of nominal interest rates and

prices satisfy condition (3.33). This condition ensures that the Euler equation at the flexible-price

allocation holds at all dates and histories. We conclude this section with a few remarks.

The zero persistence special case. None of the implementations presented in this section rely

on the assumption that productivity is persistent. In the special case that TFP is i.i.d., the function

g(st) is equal to a constant and Propositions 1-5 continue to hold.
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Public signals. The largest information set that is common knowledge to all firms at time t is

s̄t−1. This is because we have defined all firm signals ωit to be purely private signals.13

One could instead imagine a setting in which firms observe not only their private signals but

also what are known as “public signals.” Public signals are signals about the fundamental that are

observed by all firms at time t and are therefore common knowledge at time t (in addition to the

history of past states).

Proposition 5 can readily be extended to allow for public signals; we provide this extension

in the appendix. We show how the price level can vary with both the history of past states and

the current realization of public signals, and yet remain compatible with flexible-price allocations.

This echoes our earlier point that in this class of models, common knowledge variables—including

public signals—can be incorporated into prices without any real effects.

Drivers of the business cycle. Our setting assumes that the business cycle is driven entirely by

productivity shocks. By implication, flexible-price allocations are efficient. The best that monetary

policy can do is to maintain productive efficiency and replicate flexible-price allocations (Correia

et al., 2008). We expect the lessons delivered in this section—specifically, that implementation of

flexible-price allocations is both desirable and feasible—to be robust to alternative specifications

of the economic environment in which flexible-price allocations remain efficient.14

These lessons, however, hinge on the desirability of implementing flexible-price outcomes. If

instead the business cycle were driven by cost-push, or mark-up, shocks, these lessons would no

longer apply. In the absence of appropriate state-contingent taxes, mark-up shocks render flexible-

price allocations inefficient. Unconstrained monetary policy then faces a trade-off between main-

taining productive efficiency and substituting for missing tax contingencies.

In our setting, however, there is an additional constraint: the informational constraint on the

13Specifically, our setting assumes that the draws of ωit are i.i.d. across firms conditional on (st, ωpt). This as-
sumption was made for simplicity as well as to ensure that a law of large number applies.

14For example, nothing of substance would change if we were to let st map to shocks to the household’s discount
factor, βt = β(st), or shocks to the household’s marginal rate of substitution between consumption and labor. The
first best allocation would remain implementable under flexible prices, and all flexible-price allocations would remain
implementable under sticky prices (Theorems 1 and 2).
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nominal interest rate. How this constraint interacts with the assumed absence of state-contingent

tax instruments—another form of measurability constraint on policy—is a question that we leave

open for future research.

Relation to the divine coincidence. If one interprets the “divine coincidence” to mean that mon-

etary policy should maintain productive efficiency and implement flexible-price allocations as in

Correia et al. (2008), then divine coincidence holds in our model.

On the other hand, there are some who interpret the “divine coincidence” to mean that price

stability is optimal: price stability minimizes both inflation and the output gap in certain models.

This particular interpretation of divine coincidence does not hold in our model: a stable price level

is never optimal. We state this formally as follows.

Theorem 3. In any sticky-price equilibrium that implements a flexible-price allocation, the aggre-

gate price level at time t varies with the time t− 1 fundamental, st−1.

Proof. Take any sticky-price equilibrium that implements a flexible-price allocation. By Propo-

sition 5, prices must satisfy equation (3.33). For any t, the functions It(·) and Pt(·) cannot be

measurable in st. It is therefore necessary that the function Pt+1(·) is contingent on st in order for

(3.33) to hold.

Theorem 3 formalizes what we had previously asserted: that in order for monetary policy to

implement flexible-price allocations, the equilibrium price level must be contingent on at least one

state variable—the previous period’s fundamental. Proposition 1 demonstrates that the contingency

of prices on that one particular state is also sufficient.

A direct implication of Theorem 3 is that a stable price path—a price level that is invariant to

current and past states—can never be optimal in our context.

The monetary policy tool. Throughout we have assumed that the monetary policy instrument is

the nominal interest rate. Kohlhas (2020) likewise studies a model in which the central banker’s
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tool is constrained to be measurable in the central banker’s information set, but in contrast to our

setting, the tool is assumed to be the money supply.

We now ask whether the choice of the monetary policy tool is relevant. LetMt(s̄
t) ≡ Pt(s̄

t)Ct(s̄
t)

denote aggregate nominal demand, or money supply, at time t in history s̄t. We consider the equi-

librium path of money supply along any flexible-price implementation.

Theorem 4. In any sticky-price equilibrium that implements a flexible-price allocation, the money

supply at time t is contingent on the time t fundamental, st.

Proof. Take any sticky-price equilibrium that implements a flexible-price allocation. By Lemma 3,

real output at time t is contingent only on the time t fundamental: Ct(st) = C(st). By Proposition

5, the aggregate price level is contingent on at most s̄t−1: Pt(s̄t) = Pt(s̄t−1). Therefore, money

supply at time t is contingent on the time t fundamental: Mt(s̄
t) = Pt(s̄t−1)C(st).

For all possible implementations of flexible-price allocations, the money supply in our context

varies with the current economic fundamental. It therefore violates the measurability restriction

imposed in Kohlhas (2020). This explains why the first best cannot be achieved in their setting,

and optimal policy implements only a second best.

The time-consistency of forward guidance. The implementations presented in this section fea-

ture nominal interest rates and price levels that respond to past states. One can think of these

contingencies as a form of forward guidance in the sense that the central banker commits to future

interest rates that are contingent on current economic fundamentals. These future contingencies are

essential for circumventing measurability constraints and implementing flexible-price allocations

today.

In typical forward-guidance settings, a time-inconsistency problem emerges. While the poli-

cymaker today would like to use future interest rates to, say, escape the zero lower bound, forward

guidance comes at the cost of distorting future allocations. Therefore, if given the opportunity, the

future central banker would be tempted to renege on past promises.
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In our setting there exists no such trade-off. The paths for interest rates and prices described in

Propositions 1-5, when combined with an appropriate subsidy, implement the first best. They are,

therefore, time-consistent: future central bankers would have no incentive to deviate.

The reason for time-consistency in our model lies in the form of nominal rigidity we assume:

an informational friction. Firms are free to set prices every period, but they do so under incomplete

information about the current aggregate state. However, past states are common knowledge. Thus,

if the price level varies only with past states, firms can perfectly adjust their prices to reflect such

states. As a result, contingencies of policy or prices on past states have no real effect on current

allocations. At the same time, it is precisely these contingencies of prices and interest rates in the

future that implement flexible-price allocations today.

Indeterminacy. Our analysis has followed the classic Ramsey approach by specifying the policy

instruments as functions of the exogenous states. We have provided multiple paths for the nominal

interest rate and prices that are consistent with flexible-price allocations. However, we have said

nothing about determinacy and unique implementation.

It is well known that in monetary models in which the interest rate is the policy instrument,

multiple equilibrium paths for inflation and output can be consistent with the same path for the

nominal interest rate (Sargent & Wallace, 1975). Eliminating indeterminacy and achieving unique

implementation of flexible-price allocations in our setting is of course desirable, but to do so one

would need to specify more sophisticated monetary policy, for example along the lines of Atkeson,

Chari, and Kehoe (2010). We leave this analysis for future work.

3.6 The Welfare Effects of Central Bank Disclosure

Is it socially desirable for the central bank to publicly disclose its private information? In this

section we consider the welfare implications of central bank information disclosure. Formally,

we compare equilibrium welfare across two cases: the case in which the central banker publicly
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discloses its private signal every period, i.e.

ωtp ⊆ ωti , ∀i ∈ I, t ∈ {0, 1, . . .}, (3.34)

and the case in which the central banker never discloses its private signal.

This question cannot be answered without taking a stand on monetary policy. In the previous

section we demonstrated that optimal monetary policy implements flexible-price allocations. But

note that at any flexible-price allocation, central bank disclosure has no real effect: it is already

as if firms have complete information about the underlying fundamental. Therefore, in order to

make this question meaningful in our context, we will assume that for some (unmodeled) reason,

the central bank follows a sub-optimal interest rate rule. In this case, the equilibrium moves away

from flexible-price allocations and central bank information disclosure can have real effects.

3.6.1 The log-linear Gaussian setting

We first restrict attention to a particular family of models that yield explicit, closed-form solu-

tions for equilibrium prices and allocations. This requires making the following functional form

assumptions.

First, we let household preferences be homothetic and given by:

U(C) =
C1−γ

1− γ
and V (L) =

L1+1/η

1 + 1/η
, (3.35)

where γ > 0 is the inverse elasticity of intertemporal substitution and η > 0 is the Frisch elasticity

of labor supply.

Second, we modify our earlier specification and assume that all states and signals are contin-

uous Gaussian random variables. In particular, we assume that log productivity follows an AR(1)

process given by:

logAt = ρ logAt−1 + ut,
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where ρ ∈ (0, 1) is the persistence parameter and ut ∼ N (0, σ2
0) is the period t innovation; we let

κ0 ≡ 1/σ2
0 . For shorthand we will use at ≡ logAt to denote the log of aggregate productivity.

Gaussian Signals and Information Sets. We model the private information of firms and the

central banker as follows. In each period t, firm i observes a noisy private signal xit about current

productivity given by:

xit = at + ζait,

where ζait ∼ N (0, σ2
x) is idiosyncratic noise. Similarly, in each period t, the central banker observes

a noisy private signal xpt about current productivity given by:

xpt = at + εpt,

where εpt ∼ N (0, σ2
p) is the noise in the policymaker’s signal. For future reference, we let κx ≡

1/σ2
x denote the precision of the firm’s private signal about the fundamental, and likewise we let

κp ≡ 1/σ2
p denote the precision of the policymaker’s signal.

In addition, we assume that in each period t, firm i observes a noisy private signal zit about the

central banker’s signal private noise given by:

zit = εpt + ζzit,

where ζzit ∼ N (0, σ2
z) is idiosyncratic noise. For future reference, we let κz ≡ 1/σ2

z . Variation in

this signal directly affects the firm’s beliefs about monetary policy in a manner orthogonal to its

beliefs about economic fundamentals.

In terms of our previous notation, the central bank and the firm’s private signals at time t can

be collected into ωpt = xpt and ωit = (xit, zit), respectively. It follows that the central banker’s

information set at time t is given by ωtp = {ωpt, s̄t−1}. For the firms, the information set of

firm i at time t is given by ωti = {ωit, s̄t−1} under the central bank’s “no disclosure” policy and

ωti = {ωpt, ωit, s̄t−1} under the central bank’s “public disclosure” policy. In the latter case, ωtp ⊆ ωti
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for all i ∈ I at all dates t.

3.6.2 Log-linear monetary policy and equilibria

Next, we focus on a restricted class of equilibria that satisfy the following log-linear structure

for the nominal interest rate and the household’s marginal value of wealth Λ(s̄t).

Lemma 6. Let the nominal interest rate satisfy:

log(1 + ιt(ω
t
p)) = ψ0at−1 + ψpxpt, (3.36)

with arbitrary coefficients (ψ0, ψp) ∈ R2, and let the household’s marginal value of wealth at time

t satisfy:

log Λ(s̄t) = ψpxpt + ψ0at−1 + ψaat. (3.37)

with ψa ∈ R. The household’s Euler equation implies:

ψa =
1

1− ρ
(ψ0 + ρψp). (3.38)

Condition (3.36) specifies a log-linear nominal interest rate that is measurable with respect to

the central banker’s information set. The monetary authority can freely choose the interest rate

coefficients (ψ0, ψp) ∈ R2. The coefficient ψ0 denotes the loading of the nominal interest rate on

last period’s productivity, while ψp denotes the loading of the interest rate on the central banker’s

noisy private signal of current productivity, xpt.

Lemma 6 furthermore specifies the household’s equilibrium marginal value of wealth. We

restrict attention to the particular log-linear, time-invariant, and history-independent specification

for the marginal value of wealth Λ(s̄t) given by (3.37). For any combination of (ψ0, ψp) ∈ R2, the

household’s marginal value of wealth Λ(s̄t) satisfies a fixed point in the Euler equation; this fixed

point pins down the coefficient ψa according to (3.38).

These restrictions, along with the homothetic and Gaussian specification, allow us to obtain
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explicit closed-form, log-linear solutions for equilibrium allocations and prices for any log-linear

policy in (3.36). The following proposition furthermore demonstrates that the class of interest rate

rules described by (3.36) is sufficiently rich to implement the efficient allocation.

Proposition 6. Within the class of equilibria that satisfy the conditions stated in Lemma 6, the

first best allocation ξ∗ can be uniquely implemented with a subsidy that offsets the monopolistic

mark-up and an interest rate rule as in (3.36) given by:

ψ∗0 = −γ(1/η + 1)

1/η + γ
(1− ρ) and ψ∗p = 0. (3.39)

Within the class of equilibria that satisfy the conditions stated in Lemma 6, there is a unique

nominal interest rate that implements flexible-price allocations. The implementation provided here

directly corresponds to that proposed in Proposition 1; in particular, the interest rate in (3.39) is

time-invariant, history-independent, and places zero weight on the private signal of the central

banker: ψ∗p = 0. Uniqueness holds only up to the restricted class of equilibria described in Lemma

6; this class, for example, directly rules out the larger classes of implementations proposed in

Propositions 2-5. We impose this restriction mainly for tractability: it allows us to study how

equilibrium allocations respond as monetary policy moves away from its optimum (ψ∗0, ψ
∗
p).

3.6.3 Welfare loss decomposition

To determine the welfare effects of central bank information disclosure, we begin with a general

characterization of equilibrium welfare. We define welfare to be the unconditional expectation of

the representative household’s utility:

W ≡ E

[
∞∑
t=0

βt
{
C(s̄t)1−γ

1− γ
− L(s̄t)1+1/η

1 + 1/η

}]
.

The following proposition provides a decomposition of equilibrium welfare relative to its first best

level.
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Proposition 7. Let W∗ denote the level of welfare at the first best allocation ξ∗ and suppose the

constant tax τ is chosen optimally. Then, welfare at any equilibrium allocation is given by

W =W∗ exp

{
−1

2

(1− γ)(1 + 1/η)

1/η + γ
L
}
, (3.40)

where L denotes the welfare loss from first best. Welfare loss may be decomposed as follows:

L ≡ D + (1/η + γ)V ,

where

D ≡ θvarω[log pit(ω
t
i)|s̄t] and V ≡ var[log Yt(s̄

t)− log Y ∗t (st)], (3.41)

where varω[·|s̄t] denotes cross-sectional dispersion and var[·] denotes the unconditional variance.

Before discussing this welfare decomposition, let us comment on the optimal tax τ . In the com-

plete information first best, the tax is set to offset firms’ monopoly power which requires χ = 1.

Away from this benchmark, informational frictions are an additional source of distortions affecting

firms’ price-setting decisions. These frictions result in an aggregate labor wedge that covaries with

aggregate productivity. At the optimum, the non-state-contingent tax τ must counteract both types

of distortions—those arising out of monopoly power and those due to informational frictions. We

characterize the optimal tax in the proof of the proposition.

With this constant tax in place, Proposition 7 states that the welfare loss relative to the com-

plete information first best can be summarized by two components, D and V . The former captures

productive inefficiency due to dispersion in prices, while the latter represents volatility of the ag-

gregate labor wedge, or volatility of the output gap.

Consider first productive inefficiency. Cross-sectional dispersion in prices leads to misalloca-

tion of inputs across intermediate-good firms. This misallocation manifests as a loss in total factor

productivity relative to the first best, also known as the “efficiency wedge.” Lower TFP has a di-

rect, negative impact on equilibrium welfare represented by D. Furthermore, D is an increasing
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function of θ, the elasticity of substitution across intermediate goods. When intermediate goods

are more substitutable, a given level of price dispersion translates into greater misallocation of

production across firms and, hence, greater welfare loss.

Consider now the second component of welfare loss, V . Away from the first best, there exists a

state-dependent wedge between the equilibrium real wage Wt(s̄
t)/Pt(s̄

t) and the marginal product

of labor. This labor wedge is the result of a state-dependent average pricing error.15 What is more,

in the proof of Proposition 7 we show that the labor wedge is proportional to the difference between

equilibrium (log) aggregate output and its first best counterpart—what is sometimes referred to as

the “output gap”. While the constant tax τ removes the average output gap, it cannot remove the

volatility of the output gap which itself contributes to equilibrium welfare loss represented by V .

Finally, note that the size of welfare loss depends on the parameters γ and η. These parameters

govern the curvature of the household’s utility with respect to movements in consumption and

labor, respectively, and therefore determine to what extent movements in the labor wedge translate

into welfare loss.

3.6.4 The social value of disclosure

We now consider the question of whether central bank disclosure is welfare improving. As

noted previously, the answer to this question depends on the interest rate policy set by the central

bank; we will consider interest rate policies that satisfy condition (3.36) but deviate from the

optimum (ψ∗0, ψ
∗
p). Specifically, we use the characterization in Proposition 7 to compare welfare

across two scenarios: under central bank disclosure and under no disclosure. With slight abuse of

notation, we let Ld(ψ0, ψp) and L0(ψ0, ψp) denote welfare loss under central bank disclosure and

no disclosure, respectively, as functions of the policy parameters (ψ0, ψp).

Lemma 7. Take any interest rate policy (ψ0, ψp) ∈ R2 and define

∆(ψ0, ψp) ≡ L0(ψ0, ψp)− Ld(ψ0, ψp)

15The household in our model is always on its intratemporal condition, so that the marginal rate of substitution
between labor and consumption is equal to the real wage. Therefore, a labor wedge arises only on the production side.
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to be the difference in welfare loss across the two disclosure policies. This difference satisfies

∆(ψ0, ψp) = a0(ψ0 − ψ∗0 + ψp)
2 + b0ψ

2
p + c0(ψ0 − ψ∗0 + ρψp)

2,

where a0 > 0, b0 > 0, and c0 < 0 are combinations of model parameters.

First, note that at the optimal interest rate policy, ∆(ψ∗0, ψ
∗
p) = 0. This is a direct consequence

of the fact that the optimal policy implements the complete-information first best. At the optimal

allocation, any additional information provided to firms has no effect whatsoever on allocations

and, hence, welfare.

Suppose now that the interest rate rule moves away from its optimum. The difference ∆(ψ0, ψp)

can be either positive or negative. When it is positive, central bank disclosure is welfare-improving.

On the contrary, when ∆(ψ0, ψp) < 0, central bank disclosure reduces welfare. The following

theorem leverages the decomposition in Lemma 7 to provide a characterization of the welfare

effects of central bank disclosure.

Theorem 5. There exists a constant Kx > 0 and a decreasing, positive function Kp : R+ → R+

such that ∆(ψ0, ψ
∗
p) > 0 for all ψ0 6= ψ∗0 , and ∆(ψ∗0, ψp) > 0 for all ψp 6= ψ∗p , if

(i) 1/2 ≤ θγ ≤ 2; or if

(ii) θγ > 2 and κx ≥ Kx; or if

(iii) θγ > 2 , κx < Kx, and κp > Kp(κx).

Theorem 5 provides sufficient conditions under which central bank disclosure is welfare-improving.

In Theorem 5, we let the interest rate rule deviate from its optimum along each of its dimensions.

Specifically, we set ψp = ψ∗p and allow the interest rate loading on past productivity to vary, and

we set ψ0 = ψ∗0 and allow the interest rate sensitivity to the central banker’s signal to vary. In either

case, public disclosure of the central banker’s signal is welfare-improving if parameters satisfy the

conditions stated in the theorem: joint conditions on the preferences of the household, the elasticity

of substitution across goods, and the precision of firm and central bank private information.
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Consider first part (i). The typical range for the value of the elasticity of substitution used in

the New Keynesian literature is θ ∈ [4, 8].16 Even setting θ to the lowest value in this range, 4,

the condition γθ ≥ 1/2 is met as long as γ > 1/8, which holds for typical parameter estimates of

the inverse elasticity of substitution and of the coefficient of relative risk aversion. For the same

reason, however, it is unlikely that the condition γθ ≤ 2 is met.

We thereby conclude that whether or not central bank disclosure is welfare-improving depends

on the precision of available information (parts ii and iii). More precisely, Theorem 5 states that as

long as either the firms’ information (part ii) or the central banker’s information (part iii) is suffi-

ciently precise, then central bank disclosure improves welfare. Central bank disclosure can lower

welfare only in the case in which both the firms’ and the central banker’s signals are sufficiently

noisy.

Figure 3.1 provides a numerical illustration of the latter scenario. Specifically, we set ψp = ψ∗p

and consider an arbitrary ψ0; Figure 3.1 plots ∆(ψ0, ψ
∗
p) as a function of κz, for three different

values of κp, the precision of central bank information. We choose parameters so that the relevant

case is part (iii) of Theorem 5; in particular, γθ > 2 and κx < Kx. The theorem states that for

central bank disclosure to be detrimental to welfare, it is necessary that κp be sufficiently low:

below the threshold Kp(κx). This is illustrated in Figure 3.1: for sufficiently low values of κp,

there exists an interval for κz for which ∆(ψ0, ψ
∗
p) < 0 and disclosure reduces welfare.17

Together, Theorem 5 and Figure 3.1 indicate that the welfare effects of central bank disclo-

sure are, in general, ambiguous. However, as long as either firm or central bank information is

sufficiently precise, central bank disclosure is socially desirable.

Intuition. Central bank disclosure has two opposing effects on welfare. On the one hand, by

publicly disclosing its private information, the central bank provides firms with not only more in-

formation about aggregate productivity but also more information about the specific forecast of

16The modal values used in New Keynesian literature appear to be θ = 6 and θ = 7; see e.g. McKay, Nakamura,
and Steinsson (2016) and L. Christiano, Eichenbaum, and Rebelo (2011).

17This statement can be proved formally: in the proof of part (iii) of Theorem 5, we show that if κp < Kp(κx),
there exists a subset of (κz, κp) for which ∆(ψ0, ψ

∗
p) < 0 for all ψ0 6= ψ∗

0 .
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Figure 3.1: The welfare effects of central bank disclosure.

This figure plots ∆(ψ0, ψ
∗
p) as a function of κz , for different values of κp and for an arbitrary ψ0 6= ψ∗0 .

Parameters are such that γθ > 2 and κx < Kx.

the central bank. It follows that, even under a sub-optimal interest rate policy, central bank dis-

closure eliminates all monetary policy “shocks;” firms can anticipate the current interest rate with

certainty. This reduction in fundamental and policy uncertainty leads to a decline in equilibrium

price dispersion, a fall in average pricing errors, and hence an improvement in equilibrium welfare.

On the other hand, central bank disclosure gives rise to greater correlation in firm pricing errors.

The central banker’s signal, once publicly disclosed, acts as a noisy public signal on which firms

can coordinate. Coordination of pricing decisions on a noisy public signal generates an increase in

output gap volatility—a force that works in opposition to the socially beneficial welfare effects of

central bank disclosure.18

Therefore, depending on the relative strength of these opposing effects, disclosure can either

increase or reduce welfare. If firms possess very precise information about the aggregate funda-

mental, they coordinate less on the public signal disclosed by the central bank. In this case, the

benefits of central bank disclosure outweigh the costs. Similarly, if the central banker’s information

is sufficiently precise relative to the firms’ private information, disclosure significantly reduces the

18The detrimental welfare effect of public information disclosure due to inefficiently-high coordination is an idea
that was first formally introduced by Morris and Shin (2002) and studied at length in Angeletos and Pavan (2007)
in abstract, reduced-form games. Here we show that this force can arise in a micro-founded, general equilibrium
environment with nominal rigidities, even when the information disclosed is the same information upon which the
central bank sets its nominal interest rate.

83



public’s fundamental and policy uncertainty. In this case, too, the benefits outweigh the costs, and

central bank disclosure is socially desirable.

We illustrate the latter argument by considering the particular limit in which the central bank

signal becomes infinitely precise. Formally, when κp → ∞, the coefficients in Lemma 7 are such

that b0 → 0 and c0 → 0 and a0 is independent of κp. Therefore,

∆(ψ0, ψp)→ a0(ψ0 − ψ∗0 + ψp)
2.

Since a0 > 0, it follows that central bank disclosure is always desirable if the central bank’s

information is infinitely precise. When the central bank discloses its infinitely precise signal, the

firms’ information becomes infinitely precise. At this limit, disclosure implements flexible-price

allocations (under any monetary policy), which we know to be efficient.

3.7 Conclusion

What is the nature of optimal monetary policy and central bank disclosure when the monetary

authority is uncertain about the economic state? We study this question in a relatively standard,

micro-founded, general equilibrium macro model of nominal price rigidities that originate in in-

formational frictions. The model departs from most of the previous literature by imposing an

additional measurability constraint on the central banker. In particular, the central banker sets the

nominal interest rate under incomplete information about current economic conditions.

Our first set of results concerns optimal monetary policy in this context. We find that there

exists paths for nominal interest rates and prices that implement flexible-price allocations and,

by implication, the complete-information first best. We characterize the full set of flexible-price

implementations. All implementations share a common feature: the aggregate price level responds

to the past period’s economic fundamental. It follows that price stability is never optimal in this

context.

Our second set of results analyzes the welfare effects of central bank disclosure when monetary
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policy is assumed to be sub-optimal. We focus on a particular class of equilibria and find that as

long as either firm or central bank information is sufficiently precise, central bank disclosure is

welfare-improving.

Our model excludes some features that may be relevant for monetary policy considerations.

First, we abstract from the zero lower bound on the nominal interest rate. Second, we rule out all

frictions that are known to mitigate the power of future contingencies of monetary policy. This

includes forms of bounded rationality (Farhi & Werning, 2017; Gabaix, 2020; Woodford, 2018),

dispersion in household beliefs (Angeletos & Lian, 2018), and household liquidity constraints

(McKay et al., 2016). Finally, we say nothing about price level determinacy. In order to rule out

indeterminacy and achieve unique implementation, one might consider the strategies proposed by

Atkeson et al. (2010) and Bassetto (2002). We leave these avenues in our model open for future

research.
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Appendix A: Optimal Monetary Policy and Disclosure with an

Informationally-Constrained Central Banker

A.1 Proofs for Sections 3.3 and 3.4

A.1.1 Auxiliary Problem: the household’s problem

We first present and solve the household’s problem which will be used in subsequent proofs.

The household chooses a plan for consumption, savings, and labor in order to maximize lifetime

expected utility:

max
{C,L,B}

∞∑
t=0

βt
∑
s̄t

µ(s̄t)
[
U(Ct(s̄

t))− V (Lt(s̄
t))
]
,

subject to its sequence of budget constraints:

Pt(s̄
t)Ct(s̄

t) +Bt(s̄
t) ≤ Wt(s̄

t)Lt(s̄
t) + (1 + ιt(ωpt, s̄

t−1))Bt−1(s̄t−1) + Πt(s̄
t) + Tt(s̄

t).

where Πt(s̄
t) =

∑
ωit∈Ω πit(ωit, s̄

t)ϕ(ωit|s̄t) denotes nominal profits.

We write the Lagrangian as follows:

L =
∞∑
t=0

βt
∑
s̄t

µ(s̄t)
[
U(Ct(s̄

t))− V (Lt(s̄
t))
]

−
∞∑
t=0

βt
∑
s̄t

µ(s̄t)Λt(s̄
t)(Pt(s̄

t)Ct(s̄
t) +Bt(s̄

t)−Wt(s̄
t)Lt(s̄

t)− (1 + ιt(ωpt, s̄
t−1))Bt−1(s̄t−1))

+
∞∑
t=0

βt
∑
s̄t

µ(s̄t)Λt(s̄
t)(Πt(s̄

t) + Tt(s̄
t)).

The household’s first-order conditions with respect to consumption and labor are, respectively,
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given by:

µ(s̄t)U ′(Ct(s̄
t))− µ(s̄t)Λt(s̄

t)Pt(s̄
t) = 0, (A.1)

−µ(s̄t)V ′(Lt(s̄
t)) + µ(s̄t)Λt(s̄

t)Wt(s̄
t) = 0, (A.2)

the household’s first-order condition with respect to bonds is given by:

βtµ(s̄t)Λt(s̄
t)− βt+1

∑
s̄t+1|s̄t

µ(s̄t+1)Λt(s̄
t+1)(1 + ιt(ωpt, s̄

t−1)) = 0,

and the transversality condition is given by:

lim
t→∞

∑
s̄t

βtµ(s̄t)U ′(Ct(s̄
t))Bt(s̄

t) = 0. (A.3)

The regularity conditions on preferences ensure that the second-order conditions for a maximum

are satisfied.

Therefore, the household’s intratemporal condition is given by

V ′(Lt(s̄
t))

U ′(Ct(s̄t))
=
Wt(s̄

t)

Pt(s̄t)
(A.4)

and the household’s Euler equation is given by

Λt(s̄
t) = β(1 + ιt(ωpt, s̄

t−1))
∑
s̄t+1|s̄t

Λt(s̄
t+1)µ(s̄t+1|s̄t).

Using the fact that U ′(Ct(s̄t)) = Λt(s̄
t)Pt(s̄

t), we may rewrite the Euler equation as follows:

U ′(Ct(s̄
t))

Pt(s̄t)
= β(1 + ιt(ωpt, s̄

t−1))
∑
s̄t+1|s̄t

U ′(Ct(s̄
t+1))

Pt(s̄t+1)
µ(s̄t+1|s̄t),
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or alternatively:

U ′(Ct(s̄
t))

Pt(s̄t)
= β(1 + ιt(ωpt, s̄

t−1))E
[
U ′(Ct(s̄

t+1))

Pt(s̄t+1)

∣∣∣∣ s̄t] . (A.5)

A.1.2 Proof of Lemma 3.

Under flexible prices, the firm’s problem at time t is given by

max
p′i

(1− τ)p′iyit(s
t)−Wt(s

t)
yit(s

t)

A(st)
,

subject to the CES demand function:

yit(ω
t
i , s̄

t) =

(
pit(ω

t
i)

Pt(s̄t)

)−θ
Yt(s̄

t), ∀ωti ∈ Ωt, s̄t ∈ S̄t. (A.6)

The firm’s first-order condition is given by

(θ − 1)(1− τ)(pit(s
t))−θ − θWt(s

t)

A(st)
(pit(s

t))−θ−1 = 0.

Solving the latter for pit(st) gives

pit(s
t) =

(
θ − 1

θ

)−1(
1

1− τ

)
Wt(s

t)

A(st)
. (A.7)

Therefore, an allocation ξ, a policy ϑ, and price system %, are part of a flexible-price equilibrium

if and only if the following four properties hold: (i) the following household optimality conditions

are satisfied:

V ′(Lt(s
t))

U ′(Ct(st))
=
Wt(s

t)

Pt(st)
, ∀st ∈ St, (A.8)

U ′(Ct(s
t))

Pt(st)
= β(1 + ι(st))E

[
U ′(Ct+1(st+1))

Pt+1(st+1)

∣∣∣∣ st] , ∀st ∈ St, (A.9)
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along with the transversality condition:

lim
t→∞

βtE
[
U ′(Ct(s

t))Bt(s
t)
]

= 0;

(ii) the following firm optimality condition is satisfied:

pit(s
t) =

(
θ − 1

θ

)−1(
1

1− τ

)
Wt(s

t)

A(st)
, ∀st ∈ St;

(iii) prices and allocations jointly satisfy the CES demand function (A.6); (iv) the household and

government budget sets are satisfied; and (v) markets clear:

yit(ω
t
i , s̄

t) = A(st)`it(ω
t
i , s̄

t), ∀ωti ∈ Ωt, s̄t ∈ S̄t, (A.10)

Ct(s̄
t) = Yt(s̄

t) =

[∑
ωit∈Ω

yit(ω
t
i , s̄

t)
θ−1
θ ϕ(ωit|st, ωpt)

] θ
θ−1

, ∀s̄t ∈ S̄t, (A.11)

and

Lt(s̄
t) =

∑
ωit∈Ω

`it(ω
t
i , s̄

t)ϕ(ωit|st, ωpt), ∀s̄t ∈ S̄t. (A.12)

We will now use this equilibrium characterization to prove necessity and sufficiency of the

conditions stated in the lemma.

Necessity. The firms’ optimality condition (A.7) implies that all firms set the same nominal price,

pit(s
t) = Pt(s

t) for all i ∈ I . We may therefore rewrite (A.7) as follows:

1 =

(
θ − 1

θ

)−1(
1

1− τ

)
Wt(s

t)

A(st)Pt(st)
.

Combining this with the household’s intratemporal optimality condition,

V ′(Lt(s
t))

U ′(Ct(st))
=
Wt(s

t)

Pt(st)
, ∀st ∈ St, (A.13)
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yields

1 =

(
θ − 1

θ

)−1(
1

1− τ

)
V ′(Lt(s

t))

A(st)U ′(Ct(st))
.

This proves necessity of the intratemporal condition stated in Lemma 1, with χ ≡
(
θ−1
θ

)−1 1
1−τ .

Finally, note that if pit(st) = Pt(s
t) for all i ∈ I , then by (A.6) it follows that production is

identical across all intermediate good producers: yit(st) = Yt(s
t) for all i ∈ I , and similarly by the

production function (A.10), that labor is identical across producers: `it(st) = Lt(s
t) for all i ∈ I .

The aggregate production function, C(st) = A(st)L(st), then follows.

Sufficiency. We now prove that the conditions stated in the lemma are furthermore sufficient. To

do so, we take any strictly positive constant χ ∈ R+ and allocation ξ that satisfies conditions:

`it(s
t) = Lt(s

t) = L(st), and yit(s
t) = Yt(s

t) = Ct(s
t) = C(st), ∀i ∈ I, st,

(A.14)

and

U ′(C(st)) = χV ′(L(st))
1

A(st)
, and C(st) = A(st)L(st) ∀st ∈ St, (A.15)

We now show that there exists a price system % and a policy ϑ that supports this allocation as a

flexible-price equilibrium.

First, set the tax rate so that 1 − τ =
(
θ−1
θ

)−1
χ−1. For any strictly positive χ, such a tax rate

exists. This implies that condition (A.15) may be rewritten as

U ′(Ct(s
t)) =

(
θ − 1

θ

)−1(
1

1− τ

)
V ′(Lt(s

t))

A(st)
. (A.16)

Next, we set the real wage Wt(s
t)/Pt(s

t) in order to satisfy the household’s intratemporal condi-

tion:

Wt(s
t)

Pt(st)
=
V ′(Lt(s

t))

U ′(Ct(st))
.
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Substituting the real wage into (A.16) gives us

1 =

(
θ − 1

θ

)−1(
1

1− τ

)
Wt(s

t)

A(st)Pt(st)
. (A.17)

Next, note that zero dispersion in output (A.14) along with the CES demand function (A.6) implies

that there must be zero price dispersion in equilibrium: pit(st) = P (st) for all i ∈ I . Therefore,

equation (A.17) must hold for at every price pit(st):

1 =

(
θ − 1

θ

)−1(
1

1− τ

)
Wt(s

t)

A(st)pit(st)
,

and, as a result, individual firm’s optimality condition (A.7) is satisfied. Finally, the nominal

interest rate and the sequence of prices must jointly satisfy the household’s Euler equation for bond

holdings in (A.13). The transversality condition holds trivially since, in equilibrium, Bt(s
t) = 0

and Ct(st) > 0 in all states and periods.

What remains to be shown is that the household’s budget constraint and the government’s

budget constrained are satisfied at this allocation. First, note that the government’s budget set

holds by the assumption that Tt(st) = τ
∫
pit(s

t)yit(s
t)di and that bonds are in zero net supply:

Bt(s
t) = 0 in all states and periods. The household’s budget set is given by

Pt(s
t)Ct(s

t) ≤ Wt(s
t)Lt(s

t) +

∫
πit(s

t)di+ Tt(s
t).

Substituting in for profits and lump-sum taxes, this constraint becomes

Pt(s
t)Ct(s

t) ≤ Wt(s
t)Lt(s

t)+

∫ [
(1− τ)pit(s

t)yit(s
t)−Wt(s

t)`it(s
t)
]
di+τ

∫
pit(s

t)yit(s
t)di,

which is automatically satisfied via the resource constraints in (A.11) and (A.12). QED.
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A.1.3 Proof of Lemma 4.

The planner’s problem is to maximize utility subject to technology and resource constraints

(A.10)-(A.12). Note that there is no capital in this model, nor any other type of dynamic consider-

ation in terms of allocations. It follows that the planner’s problem can be solved period-by-period

and state-by-state.

At any time t and history st, the planner’s problem can be split into an inner and outer problem.

The inner problem is to maximize final good output for given labor supply. We define a function

Y : S × R+ → R+ such that it solves:

Y(st, L) = max
{`i}

(∫
i

(A(st)`i)
θ−1
θ di

) θ
θ−1

subject to the labor resource constraint
∑

i∈I `i = L, where aggregate labor is fixed at some arbi-

trary level L. The first-order conditions for this problem yield: `i = `j = L for all i, j ∈ I , which

implies that we may write:

Y(st, L) = A(st)L.

The outer problem, then, is to maximize utility of the representative household given the ag-

gregate production function Ct(st) = Y(st, Lt(s
t)); that is,

max
C,L

U(Ct(s
t))− V (Lt(s

t)),

subject to

Ct(s
t) = A(st)Lt(s

t). (A.18)

The planner’s first-order conditions yield

V ′(Lt(s
t)) = U ′(Ct(s

t))A(st), ∀st ∈ St.

The regularity conditions on preferences ensure that the second-order conditions for a maximum
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are satisfied. It follows that the efficient allocation ξ∗ can be implemented under flexible prices

with χ = 1. QED.

A.1.4 Proof of Lemma 5.

Under sticky prices, the firm’s problem at time t is given by

max
p′i

E
[

Λt(s̄
t)

{
(1− τ)p′iyit(ω

t
i , s̄

t)−Wt(s̄
t)
yit(ω

t
i , s̄

t)

A(st)

}∣∣∣∣ωti] ,
subject to the CES demand function (A.6). Substituting in the demand function gives us the fol-

lowing objective function:

max
p′i

E
[

Λt(s̄
t)

{
(1− τ)(p′i)

1−θPt(s̄
t)θYt(s̄

t)− Wt(s̄
t)

A(st)
(p′i)

−θPt(s̄
t)θYt(s̄

t)

}∣∣∣∣ωti] .
The firm’s first order condition is given by

E
[

Λt(s̄
t)

{
(θ − 1)(1− τ)(pit(ω

t
i))
−θPt(s̄

t)θYt(s̄
t)− θWt(s̄

t)

A(st)
(pit(ω

t
i))
−θ−1Pt(s̄

t)θYt(s̄
t)

}∣∣∣∣ωti] = 0,

which, using (A.6), may be rewritten as

E
[

Λt(s̄
t)

{
(θ − 1)(1− τ)yit(ω

t
i , s̄

t)− θWt(s̄
t)

A(st)
pit(ω

t
i)
−1yit(ω

t
i , s̄

t)

}∣∣∣∣ωti] = 0.

Therefore, the firm’s optimal price satisfies

E

[
Λt(s̄

t)yit(ω
t
i , s̄

t)

{
pit(ω

t
i)−

(
θ − 1

θ

)−1
1

1− τ
Wt(s̄

t)

A(st)

}∣∣∣∣∣ωti
]

= 0.

Solving the latter for pit(ωti) provides the following expression:

pit(ω
t
i) =

(
θ − 1

θ

)−1
1

1− τ
E
[

Λt(s̄
t)yit(ω

t
i , s̄

t)

E [Λt(s̄t)yit(ωti , s̄
t)|ωti ]

{
Wt(s̄

t)

A(st)

}∣∣∣∣ωti] . (A.19)
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This coincides with the pricing equation stated in Lemma 3, with the function qit(ωti , s̄
t) appropri-

ately defined.

The household’s optimality conditions are given by (A.4) and (A.5), along with the transver-

sality condition (A.3). QED.

A.2 Implementations with Public Signals

In this appendix we allow for the existence of public signals. The central banker’s information

structure described in Section 2 of the main text remains unchanged. In contrast, on the production

side we assume that firms in each period observe their private signal ωit (modeled as before) as

well as a public signal. We model the public signal as follows.

In each period t, Nature draws a random variable ςt from a finite set Ως according to a proba-

bility distribution ϕς . We let ϕς(ςt|st, ωpt) denote the probability of ςt conditional on (st, ωpt). All

firms observe ςt in addition to their private signal; ςt thus represents public information in period

t. Note that we allow the public signal to contain information about both the fundamental state, st,

as well as the private signal of the central banker, ωpt.

The information set of firm i at time t is thus given by ωti = (ωit, ςt, s̄
t−1). We augment our

definition of the aggregate state to include the realization of the public signal:

s̄t = {st, ωpt, ςt, ϕ(ωit|st, ωpt)}.

With these slight modifications, all other definitions in Section 2 of the main text are unchanged.

The set of flexible-price allocations is unaltered (Lemma 3). This is due to the fact that all

flexible-price allocations are functions only of the fundamental state, st, and are therefore invariant

to the firms’ information structure. With this in mind, the following proposition demonstrates how

one may extend the implementations presented in Proposition 5 to settings with public signals.

Proposition 8. Take any flexible-price allocation ξ ∈ X f with corresponding functions {C(·),L(·)}.

The following paths of nominal interest rates and aggregate prices implement ξ under sticky
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prices:

1 + ιt(ω
t
p) = It(ωtp) and Pt(s̄

t) = ht(ςt)Pt(s̄t−1), (A.20)

where It : Ωt
p → R+ is a sequence of positive-valued functions defined on Ωt

p, ht : Ως → R+

is a sequence of positive-valued functions defined on Ως , and Pt : S̄t−1 → R+ is a sequence of

positive-valued functions defined recursively by:

Pt+1(s̄t) = βIt(ωtp)
ht(ςt)Pt(s̄t−1)

U ′(C(st))
E
[
U ′(C(st+1))

ht+1(ςt+1)

∣∣∣∣ st] , (A.21)

where P0 > 0 is a known constant.

Proof. The nominal interest rate and prices must satisfy the Euler equation of the household under

sticky prices at the flexible-price allocation at all dates and histories. With the paths of nominal

interest rates and prices proposed in (A.20), we may rewrite the Euler equation as follows:

U ′(C(st))
ht(ςt)Pt(s̄t−1)

= βIt(ωtp)
1

Pt+1(s̄t)
E
[
U ′(C(st+1))

ht+1(ςt+1)

∣∣∣∣ st] (A.22)

For any given sequence of functions, It(·) and ht(·), the above equation is satisfied at all dates and

histories by the sequence of functions Pt(·) defined in (A.21).

What remains to be shown is that there is no dispersion in nominal prices across intermediate-

good firms. The proof of this statement mirrors the corresponding proof for Proposition 1 in the

main text, and follows from the fact that (ςt, s̄
t−1) ∈ ωti for all ωti ∈ Ωt.

Proposition 8 extends Proposition 5 in the main text to our modified setting; it characterizes a

large set of implementations of flexible-price allocations in the presence of public signals.

This set is “large” in the following sense. First, it places no restrictions on the nominal interest

rate aside from the measurability constraint imposed in part (ii) of Assumption 1. It likewise

places almost no restrictions on the aggregate price level. The price level at time t is allowed to be

contingent on the largest set that is common knowledge to firms at time t, specifically (ςt, s̄
t−1).

Note that this set includes not only past aggregate states, but also public signals at time t. By
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restricting the aggregate price level to be contingent on at most (ςt, s̄
t−1), we ensure that all firms

can set the appropriate nominal price at every date and history.

Finally, Proposition 8 requires that the sequence of nominal interest rates and prices satisfy

condition (A.21); this ensures that the Euler equation at the flexible-price allocation holds at all

dates and histories.

Why is this set not necessarily the full set of flexible-price implementations in the modified

setting with public signals? The reason we cannot be fully sure that this is the entire set of flexible-

price implementations is that there is one more restriction placed on the aggregate price level that

may or may not be innocuous. In particular, in (A.20) we impose that the price level be log-

separable in (ςt, s̄
t−1); that is:

logPt(s̄
t) = log ht(ςt) + logPt(s̄t−1) (A.23)

where ht(·) is the component of prices measurable in ςt and Pt(·) is the component of prices

measurable in s̄t−1. The log-separability of the aggregate price level in past states and in current

public signals allows for a relatively clean characterization of the price level: the component of the

future price level that is contingent on the past history, Pt+1(s̄t), can be taken out of the expectation

in the household’s Euler equation, as seen in (A.22), and be given an explicit recursive definition

in (A.21).

Therefore, Proposition 8 characterizes the full set of flexible-price implementations in which

the aggregate price level is log-separable (A.23). There could in theory be more implementa-

tions of flexible-price allocations in which the price level does not satisfy the aforementioned

log-separability property; whether or not these implementations exist is beyond the scope of this

paper.1

1Note that the vast majority of the New Keynesian literature focuses on log-linearized equilibrium solutions. In
these equilibria, the log-separability property (A.23) holds by construction.
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A.3 Proofs for Section 3.6 of the main text

A.3.1 Proof of Lemma 6.

The household’s intertemporal Euler equation implies that the household’s marginal value of

wealth at time t, given by

log Λ(s̄t) = ψpxpt + ψ0at−1 + ψaat, (A.24)

satisfies:

ψpxpt + ψ0at−1 + ψaat =ψpxpt + ψ0at−1

+ E[ψpxp,t+1 + ψ0at + ψaat+1|s̄t].

Note that at ∈ s̄t. Furthermore, recall that the planner’s signal is given by xpt = at + εpt. The

above condition thereby reduces to

ψaat = ψ0at + (ψa + ψp)E[at+1|s̄t],

where E[at+1|s̄t] = ρat. Substituting this expression into the above condition yields: ψaat =

ψ0at + (ψa + ψp)ρat. We therefore obtain:

ψa = ψ0 + (ψa + ψp)ρ.

Solving this equation for ψa yields the expression in Lemma 6. QED.

A.3.2 Auxiliary Result: Implementable Allocations

The following lemma characterizes the set of implementable allocations in the setting with

sticky prices. This result will be used in subsequent proofs.

Lemma 8. An allocation is implementable as a sticky-price equilibrium in the restricted class
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characterized by Lemma 6 if and only if the following conditions hold:

U ′(Ct(s̄
t)) = χ

V ′(Lt(s̄
t))

A(st)

(
yit(ω

t
i , s̄

t)

Yt(s̄t)

) 1
θ

εit(ω
t
i , s̄

t)−1, (A.25)

where

εit(ω
t
i , s̄

t) ≡ V ′(Lt(s̄
t))A(st)

−1Λ(s̄t)−1

E [qit(ωti , s̄
t) {V ′(Lt(s̄t))A(st)−1Λ(s̄t)−1}|ωti ]

> 0, (A.26)

the Lagrange multiplier satisfies the conditions stated in Lemma 4:

log Λ(s̄t) = ψpxpt + ψ0at−1 + ψaat, (A.27)

and the technology and resource constraints, (A.10)-(A.12), hold.

Proof. Lemma 5 in the main text provides a complete characterization of sticky-price equilib-

ria. We use this characterization to prove the necessity and sufficiency of the conditions stated in

Lemma 8.

Necessity. First, combining (A.26) with the household’s intratemporal optimality condition,

V ′(Lt(s̄
t))

U ′(Ct(s̄t))
=
Wt(s̄

t)

Pt(s̄t)
, ∀s̄t ∈ S̄t, (A.28)

and using the definition of Λ(s̄t), we can rewrite the functions εit(ωti , s̄
t) as follows:

εit(ω
t
i , s̄

t) =
Wt(s̄

t)A(st)
−1

E [qit(ωti , s̄
t) {Wt(s̄t)A(st)−1}|ωti ]

. (A.29)

Next, we take the firm’s optimality condition,

pit(ω
t
i) = χE

[
qit(ω

t
i , s̄

t)

{
Wt(s̄

t)

A(st)

}∣∣∣∣ωti] , ∀ωti ∈ Ωt, (A.30)
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and multiply both sides by εit(ωti , s̄
t); this yields

pit(ω
t
i)εit(ω

t
i , s̄

t) =

(
θ − 1

θ

)−1
1

1− τ
Wt(s̄

t)

A(st)
.

Using the household’s intratemporal optimality condition (A.28), we can rewrite the above equa-

tion as follows:
pit(ω

t
i)

Pt(s̄t)
εit(ω

t
i , s̄

t) =

(
θ − 1

θ

)−1
1

1− τ
V ′(Lt(s̄

t))

A(st)U ′(Ct(s̄t))
.

Finally, combining this with the CES demand function (A.6), we find that the above condition can

be written in terms of allocations and wedges alone:

εit(ω
t
i , s̄

t) =

(
θ − 1

θ

)−1
1

1− τ
V ′(Lt(s̄

t))

A(st)U ′(Ct(s̄t))

(
yit(ω

t
i , s̄

t)

Yt(s̄t)

) 1
θ

. (A.31)

This proves necessity of condition (A.25) with χ ≡
(
θ−1
θ

)−1 1
1−τ . Finally, condition (A.27) follows

from Lemma 6.

Sufficiency. We now prove that the conditions stated in the lemma are also sufficient. To do

so, we take any allocation ξ that satisfies conditions (A.25)-(A.27), Lemma 4, and technology and

resource constraints (A.10)-(A.12), and show that there exists a price system % that supports this

allocation as a sticky-price equilibrium.

First, we set the nominal wage as follows:

Wt(s̄
t) =

V ′(Lt(s̄
t))

Λt(s̄t)
. (A.32)

Letting the function Λ(s̄t) denote the household’s marginal utility of wealth, the household’s in-

tratemporal optimality condition (A.28) is satisfied. Second, by Lemma 4, the household’s in-
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tertemporal Euler equation is automatically satisfied. Third, we define two functions

εωit(ω
t
i) ≡ E

[
qit(ω

t
i , s̄

t)
{
V ′(Lt(s̄

t))A(st)
−1Λ(s̄t)−1

}∣∣ωti] , (A.33)

εst(s̄
t) ≡ V ′(Lt(s̄

t))A(st)
−1Λ(s̄t)−1,

so that we may decompose the wedge defined in (A.26) as follows:

εit(ω
t
i , s̄

t) = εωit(ω
t
i)
−1εst(s̄

t). (A.34)

We then set the nominal price of each firm to the part that is measurable only in ωti :

pit(ω
t
i) = χεωit(ω

t
i). (A.35)

Thus, the aggregate price level is given by

Pt(s̄
t) = χ

[∫
εωit(ω

t
i)
θ−1ϕ(ω|s̄t)dω

] 1
θ−1

.

Fourth, we set the tax rate so that 1 − τ =
(
θ−1
θ

)−1
χ−1. For any strictly positive χ, such a tax

rate exists. Plugging this tax rate and the nominal wage (A.32) into our expression for the nominal

price, (A.35), we get

pit(ω
t
i) =

(
θ − 1

θ

)−1
1

1− τ
E
[
qit(ω

t
i , s̄

t)
{
Wt(s̄

t)A(st)
−1
}∣∣ωti] .

The firm’s optimality condition (A.30) is therefore satisfied at these nominal prices.

Finally, we take condition (A.25). Using the decomposition of the wedge in (A.34) and the

CES demand function (A.6), we rewrite condition (A.25) as follows:

U ′(Ct(s̄
t))

εst(s̄
t)

εωit(ω
t
i)

pit(ω
t
i)

Pt(s̄t)
= χ

V ′(Lt(s̄
t))

A(st)
.
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Using the nominal price set in (A.35), the above condition can be rewritten as

U ′(Ct(s̄
t))
εst(s̄

t)

Pt(s̄t)
=
V ′(Lt(s̄

t))

A(st)
. (A.36)

Substituting the definition of εst(·) from (A.33) into (A.36), we get thatU ′(Ct(s̄t))/Pt(s̄t) = Λt(s̄
t).

To conclude our proof of sufficiency, note that it is trivial to show that both the household’s

budget constraint and the government’s budget constrained are satisfied at the proposed allocation.

The proof follows the same logic as the sufficiency portion of the proof of Lemma 3.

A.3.3 Proof of Proposition 6.

In order to implement flexible-price allocations under sticky prices, the following conditions

must hold:

εit(ω
t
i , s̄

t) = 1, ∀ωti , s̄t. (A.37)

That is, firms must make zero pricing errors. From (A.26), this is equivalent to the following

statement:

E
[
qit(ω

t
i , s̄

t)
{
V ′(Lt(s̄

t))A(st)
−1Λ(s̄t)−1

}∣∣ωti] = V ′(Lt(s̄
t))A(st)

−1Λ(s̄t)−1, ∀ωti , s̄t. (A.38)

From Lemma 4 in the main text, the Lagrange multiplier associated with the household’s problem

satisfies:

log Λ(s̄t)−1 = −ψpxpt − ψ0at−1 − ψaat.

Substituting this expression into (A.38) yields the following:

E
[
qit(ω

t
i , s̄

t)
{
V ′(Lt(s̄

t))A(st)
−1 exp(−ψpxpt − ψaat)A(st−1)−ψ0

}∣∣ωti]
= V ′(Lt(s̄

t))A(st)
−1 exp(−ψpxpt − ψaat)A(st−1)−ψ0 , ∀ωti , s̄t.
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Next, note that s̄t−1 is known at time t. Therefore, the term A(st−1) can be taken out of the

expectation operator, hence the above condition reduces to

E
[
qit(ω

t
i , s̄

t)gt(s̄
t)
∣∣ωti] = gt(s̄

t), ∀ωti , s̄t, (A.39)

where we let

gt(s̄
t) ≡ V ′(Lt(s̄

t))A(st)
−1 exp(−ψpxpt − ψaat), ∀s̄t. (A.40)

In order for (A.39) to hold for all ωti , it must be the case that

E[qit(ω
t
i , s̄

t)gt(s̄
t)|ωti ] = E[qit(ω

t
j, s̄

t)g(s̄t)|ωtj], ∀ωti , ωtj.

Note, however, that E[expxpt|ωti ] 6= E[expxpt|ωtj] due to the fact that zit 6= zjt. Therefore, (A.39)

holds for all ωti if and only if ψ∗p = 0.

With ψ∗p = 0, the function gt(s̄t) defined in (A.40) reduces to

gt(s̄
t) = V ′(Lt(s̄

t))A(st)
−1A(st)

−ψa .

In order for (A.39) to hold for all ωit, it must be the case that gt(s̄t) ∈ ωti , for all ωti . This is true if

and only if

V ′(Lt(s̄
t))A(st)

−1A(st)
−ψa = G, ∀s̄t,

where G is an arbitrary constant. Homothetic preferences imply V ′(Lt(s̄t)) = Lt(s̄
t)1/η. Further-

more, under flexible-price allocations, Lt(s̄t) = A(st)
1−γ

1/η+γ . We can therefore rewrite the above

equation as

A(st)
1−γ

1/η+γ
(1/η)A(st)

−1A(st)
−ψa = G, ∀s̄t.

The unique ψa that satisfies this condition in all states is given by

ψ∗a = −γ 1/η + 1

1/η + γ
.
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Finally, by Lemma 4, the unique interest rate rule that implements ψ∗a must satisfy:

ψ∗a =
1

1− ρ
ψ∗0,

where we have used the fact that ψ∗p = 0. Therefore,

ψ∗0 = −γ 1/η + 1

1/η + γ
(1− ρ),

as was to be shown. QED.

A.3.4 Auxiliary Result: Aggregate Consumption and Labor

The following lemma provides expressions for aggregate output and labor. This result will be

used in subsequent proofs.

Lemma 9. Equilibrium aggregate output and labor satisfy the following system of two equations

in two unknowns:

χV ′(Lt(s̄
t)) = ε̄t(s̄

t)U ′(Yt(s̄
t))
Yt(s̄

t)

Lt(s̄t)
and Yt(s̄

t) = δA(st)Lt(s̄
t), (A.41)

where

δ ≡ exp

{
−θ

2
varω

[
log εit(ω

t
i , s̄

t)|s̄t
]}

, ε̄t(s̄
t) ≡ κ exp

{∫
ω

log εit(ω
t
i , s̄

t)ϕ(ω|s̄t)dω
}
,

(A.42)

and κ ∈ R+ is a strictly-positive constant scalar.

Proof. Aggregate output is given by:2

Yt(s̄
t) =

[∫
ω

yit(ω
t
i , s̄

t)
θ−1
θ ϕ(ω|s̄t)dω

] θ
θ−1

. (A.43)

2Note that with slight abuse of notation, we now allow ϕ(·|s̄t) to denote a conditional probability density function
(as we are now working with continuous random variables on a continuous state space).
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By log-Normality of yit(ωti , s̄
t) and using the moment-generating function for the Normal distri-

bution, we have that

∫
ω

yit(ω
t
i , s̄

t)
θ−1
θ ϕ(ω|s̄t)dω = exp

{(
θ − 1

θ

)∫
ω

log yit(ω
t
i , s̄

t)ϕ(ω|s̄t)dω +
1

2

(
θ − 1

θ

)2

varω
[
log yit(ω

t
i , s̄

t)|s̄t
]}

.

Rearranging, this becomes

∫
ω

yit(ω
t
i , s̄

t)
θ−1
θ ϕ(ω|s̄t)dω = exp

{(
θ − 1

θ

)[∫
ω

log yit(ω
t
i , s̄

t)ϕ(ω|s̄t)dω +
1

2
varω

[
log yit(ω

t
i , s̄

t)|s̄t
]]}

× exp

{
1

2

(
θ − 1

θ

)(
−1

θ

)
varω

[
yit(ω

t
i , s̄

t)|s̄t
]}

,

which may be rewritten as

∫
ω

yit(ω
t
i , s̄

t)
θ−1
θ ϕ(ω|s̄t)dω =

[∫
ω

yit(ω
t
i , s̄

t)
θ−1
θ ϕ(ω|s̄t)dω

] θ−1
θ

exp

{
−1

2

(
θ − 1

θ

)(
1

θ

)
varω

[
yit(ω

t
i , s̄

t)|s̄t
]}

.

Aggregate output can thus be written as

Yt(s̄
t) =

[∫
ω

yit(ω
t
i , s̄

t)
θ−1
θ ϕ(ω|s̄t)dω

]
exp

{
−1

2

1

θ
varω

[
log yit(ω

t
i , s̄

t)|s̄t
]}

,

where yit(ωti , s̄
t) = A(st)`it(ω

t
i , s̄

t). Recall that aggregate labor is given byLt(s̄t) =
∫
ω
`it(ω

t
i , s̄

t)ϕ(ω|s̄t)dω.

As a result,

Yt(s̄
t) = A(st)Lt(s̄

t) exp

{
−1

2

1

θ
varω

[
log yit(ω

t
i , s̄

t)|s̄t
]}

.

Finally, from equilibrium conditions (A.31), it must be the case that cross-sectional dispersion

in output satisfies

varω
[
log yit(ω

t
i , s̄

t)|s̄t
]

= varω
[
θ log εit(ω

t
i , s̄

t)|s̄t
]

= θ2varω
[
log εit(ω

t
i , s̄

t)|s̄t
]
.
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Therefore, the aggregate production function may be written as follows:

Yt(s̄
t) = A(st)Lt(s̄

t) exp

{
−θ

2
varω

[
log εit(ω

t
i , s̄

t)|s̄t
]}

,

as was to be shown.

Next, we take the equilibrium intratemporal condition in (A.25) and rewrite it as

yit(ω
t
i , s̄

t)
1
θ = εit(ω

t
i , s̄

t)
U ′(Ct(s̄

t))

χV ′(Lt(s̄t))
A(st)Yt(s̄

t)
1
θ .

Raising both sides to the power θ − 1 yields

yit(ω
t
i , s̄

t)
θ−1
θ = εit(ω

t
i , s̄

t)θ−1

[
U ′(Ct(s̄

t))

χV ′(Lt(s̄t))
A(st)

]θ−1

Yt(s̄
t)
θ−1
θ .

Integrating the latter over ω gives

∫
ω

yit(ω
t
i , s̄

t)
θ−1
θ ϕ(ω|s̄t)dω =

∫
εit(ω

t
i , s̄

t)θ−1ϕ(ω|s̄t)dω
[
U ′(Ct(s̄

t))

χV ′(Lt(s̄t))
A(st)

]θ−1

Yt(s̄
t)
θ−1
θ ,

which, together with (A.43), implies

1 =

[∫
εit(ω

t
i , s̄

t)θ−1ϕ(ω|s̄t)dω
] 1
θ−1 U ′(Ct(s̄

t))

χV ′(Lt(s̄t))
A(st).

Therefore, the intratemporal condition in (A.41) is satisfied with the labor wedge defined as fol-

lows:

ε̄t(s̄
t) ≡

[∫
εit(ω

t
i , s̄

t)θ−1ϕ(ω|s̄t)dω
] 1
θ−1

δ−1.

Again, using the log-Normality of εit(ωti , s̄
t), we can rewrite the latter as

log ε̄t(s̄
t) =

1

θ − 1

{
(θ − 1)

∫
ω

log εit(ω
t
i , s̄

t)ϕ(ω|s̄t)dω +
1

2
(θ − 1)2 varω

[
log εit(ω

t
i , s̄

t)|s̄t
]}

+
θ

2
varω

[
log εit(ω

t
i , s̄

t)|s̄t
]
.
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Therefore,

log ε̄t(s̄
t) =

∫
ω

log εit(ω
t
i , s̄

t)ϕ(ω|s̄t)dω+
1

2
(θ − 1) varω

[
log εit(ω

t
i , s̄

t)|s̄t
]
+
θ

2
varω

[
log εit(ω

t
i , s̄

t)|s̄t
]

and, as a result,

ε̄t(s̄
t) = κ exp

{∫
ω

log εit(ω
t
i , s̄

t)ϕ(ω|s̄t)dω
}
,

where κ ≡ exp
{(
θ − 1

2

)
varω [log εit(ω

t
i , s̄

t)|s̄t]
}

is a strictly-positive constant, as was to be

shown.

A.3.5 Proof of Proposition 7.

We first use Lemma 9 to solve for equilibrium aggregate output and labor as functions of TFP

and the labor wedge. Homothetic preferences imply the following solution for equilibrium output

and labor:

Yt(s̄
t) = (χ−1ε̄t(s̄

t))
1

1/η+γ (δA(st))
1/η+1
1/η+γ and Lt(s̄

t) = (χ−1ε̄t(s̄
t))

1
1/η+γ (δA(st))

1−γ
1/η+γ .

(A.44)

Furthermore, at the first best,

Y ∗t (st) = A(st)
1/η+1
1/η+γ and L∗t (st) = A(st)

1−γ
1/η+γ .

We use the latter expressions to first characterize first best realized utility. Realized per-period

utility in state s̄t is given by

Ut(s̄t) ≡
Yt(s̄

t)1−γ

1− γ
− Lt(s̄

t)1+1/η

1 + 1/η
. (A.45)

Thus, first best realized per-period utility U∗(st) is given by

U∗(st) =
1

1− γ
A(st)

1/η+1
1/η+γ

(1−γ) − 1

1 + 1/η
A(st)

1−γ
1/η+γ

(1+1/η)
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or

U∗(st) =
1/η + γ

(1− γ)(1 + 1/η)
A(st)

(1−γ)(1+1/η)
1/η+γ . (A.46)

Now, consider realized utility away from the first best. Substituting equilibrium output and

labor from (A.44) into (A.45), we get

Ut(s̄t) =
1

1− γ
(χ−1ε̄t(s̄

t))
1−γ

1/η+γ (δA(st))
(1/η+1)(1−γ)

1/η+γ − 1

1 + 1/η
(χ−1ε̄t(s̄

t))
1+1/η
1/η+γ (δA(st))

(1/η+1)(1−γ)
1/η+γ .

Taking the unconditional expectation of both sides and summing over time yields expected welfare:

W =
∞∑
t=0

βtδ
(1/η+1)(1−γ)

1/η+γ E
[

1

1− γ
(χ−1ε̄t(s̄

t))
1−γ

1/η+γA(st)
(1/η+1)(1−γ)

1/η+γ − 1

1 + 1/η
(χ−1ε̄t(s̄

t))
1+1/η
1/η+γA(st)

(1/η+1)(1−γ)
1/η+γ

]
.

Consider now the expectation E[ε̄t(s̄
t)κ1A(st)

κ2 ], for some scalars κ1, κ2. Properties of log-Normal

distributions yield

E[ε̄t(s̄
t)κ1A(st)

κ2 ] = exp


κ1E[log ε̄t(s̄

t)] + κ2E[logA(st)] + 1
2
κ2

1var(log ε̄t(s̄
t))

+1
2
κ2

2var(logA(st)) + κ1κ2cov(log ε̄t(s̄
t), logA(st))

 ,

hence,

E[ε̄t(s̄
t)κ1A(st)

κ2 ] = E[ε̄t(s̄
t)]κ1E[A(st)]

κ2 exp


1
2
κ1(κ1 − 1)var(log ε̄t(s̄

t)) + 1
2
κ2(κ2 − 1)var(logA(st))

+κ1κ2cov(log ε̄t(s̄
t), logA(st))

 .

Applying the latter to our case yields

Wδ−
(1/η+1)(1−γ)

1/η+γ =
∞∑
t=0

βt
(

1

1− γ
E[χ−1ε̄t(s̄

t)]
1−γ

1/η+γE[A(st)]
(1/η+1)(1−γ)

1/η+γ expG1

− 1

1 + 1/η
E[χ−1ε̄t(s̄

t)]
1+1/η
1/η+γE[A(st)]

(1/η+1)(1−γ)
1/η+γ expG2

)
,
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where we define

G1 ≡
1

2

1− γ
1/η + γ

(
1− γ

1/η + γ
− 1

)
var(log ε̄t(s̄

t)) + Φ +
1− γ

1/η + γ

(1/η + 1) (1− γ)

1/η + γ
cov(log ε̄t(s̄

t), logA(st)),

G2 ≡
1

2

1 + 1/η

1/η + γ

(
1 + 1/η

1/η + γ
− 1

)
var(log ε̄t(s̄

t)) + Φ +
1 + 1/η

1/η + γ

(1/η + 1) (1− γ)

1/η + γ
cov(log ε̄t(s̄

t), logA(st)),

Φ ≡1

2

(1/η + 1) (1− γ)

1/η + γ

(
(1/η + 1) (1− γ)

1/η + γ
− 1

)
var(logA(st)).

Furthermore, in subsections A.3.6 and A.3.6 of this appendix (specifically Lemmas 11 and 13),

we compute the log-linear equilibrium in closed-form and show that the moments of ε̄t(s̄t) are

independent of time.

To further simplify the expression above, consider the value E[χ−1ε̄t(s̄
t)] that maximizesW .

This value, which we denote this value with ε̄∗, satisfies the first-order condition

(ε̄∗)
1−γ

1/η+γ expG1 − (ε̄∗)
1+1/η
1/η+γ expG2 = 0. (A.47)

Also, let Ŵ denote the value ofW when E[χ−1ε̄t(s̄
t)] = ε̄∗. Then,

Ŵ =δ
(1/η+1)(1−γ)

1/η+γ

(
1

1− γ
− 1

1 + 1/η

)
E[A(st)]

(1/η+1)(1−γ)
1/η+γ (ε̄∗)

1−γ
1/η+γ expG1

and, therefore,

W =
1

1− β
· 1

1
1−γ −

1
1+1/η

 1

1− γ

(
E[χ−1ε̄t(s̄

t)]

ε̄∗

) 1−γ
1/η+γ

− 1

1 + 1/η

(
E[χ−1ε̄t(s̄

t)]

ε̄∗

) 1+1/η
1/η+γ

 Ŵ .

In addition, from equation (A.47),

ε̄∗ = exp(G1 −G2).
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Thus,

Ŵ = δ
(1/η+1)(1−γ)

1/η+γ
γ + 1/η

(1− γ)(1 + 1/η)
E[A(st)]

(1/η+1)(1−γ)
1/η+γ exp

{
1 + 1/η

1/η + γ
G1 −

1− γ
1/η + γ

G2

}
.

The function

w(x) ≡ (1− γ)(1 + 1/η)

γ + 1/η

(
1

1− γ
x

1−γ
1/η+γ − 1

1 + 1/η
x

1+1/η
1/η+γ

)
is strictly concave and achieves its maximum at x = 1 when γ < 1, and it is strictly convex

and achieves its minimum at x = 1 when γ > 1. Since Ŵ is strictly positive when γ < 1,

while it is strictly negative when γ > 1, it follows that W is maximized when the tax τ satisfies

E[χ−1ε̄t(s̄
t)] = ε̄∗.

Finally, using the definition of G1 and G2 above together with (A.42),

Ŵ =

(
1

1− γ
− 1

1 + 1/η

)
E[A(st)]

(1/η+1)(1−γ)
1/η+γ exp(Φ) exp

{
−1

2

(1− γ)(1 + 1/η)

1/η + γ
L
}
.

where

L ≡ θvarω
[
log εi(ω

t
i , s̄

t)|s̄t
]

+
1

1/η + γ
var(log ε̄t(s̄

t)).

The proof of the statement follows from the fact that

W∗ ≡ 1

1− β
· 1/η + γ

(1− γ)(1 + 1/η)
E
[
A(st)

(1−γ)(1+1/η)
1/η+γ

]

and, using properties of log-Normal distributions,

1/η + γ

(1− γ)(1 + 1/η)
E
[
A(st)

(1−γ)(1+1/η)
1/η+γ

]
=

1/η + γ

(1− γ)(1 + 1/η)
E
[
A(st)

(1−γ)(1+1/η)
1/η+γ

]
=

1/η + γ

(1− γ)(1 + 1/η)
E[A(st)]

(1−γ)(1+1/η)
1/η+γ exp(Φ).

Finally, one can reinterpret the welfare loss L in terms of prices and output gaps. From the

sufficiency portion of the proof of Lemma 8, any sticky-price allocation can be implemented with
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a price system that satisfies:

varω[log pit(ω
t
i)|s̄t] = varω[log εi(ω

t
i , s̄

t)|s̄t];

see the online appendix for details.

Furthermore, note that from (A.44), equilibrium and first best output satisfy, respectively:

Yt(s̄
t) = (χ−1ε̄t(s̄

t))
1

1/η+γ (δA(st))
1/η+1
1/η+γ and Y ∗t (st) = A(st)

1/η+1
1/η+γ .

Therefore, the log output gap can be written as:

log Yt(s̄
t)− log Y ∗t (st) =

1

1/η + γ
log ε̄t(s̄

t)− 1

1/η + γ
logχ+

1/η + 1

1/η + γ
log δ,

which implies

var(log ε̄t(s̄
t)) = (1/η + γ)2var(log Yt(s̄

t)− log Y ∗t (st)).

As a result,

L = θvarω[log pit(ω
t
i)|s̄t] + (1/η + γ)var[log Yt(s̄

t)− log Y ∗t (st)].

as was to be shown. QED.

A.3.6 Auxiliary Results: Equilibrium under no disclosure

The following two lemmas provide closed-form characterizations of the equilibrium in the

economy with no disclosure. These results will be used in subsequent proofs.

Lemma 10. In the economy without central bank disclosure, the firm’s equilibrium output strategy

is log-linear and given by:

log yit(ω
t
i , s̄

t) = φ′aρat−1 + φxxit + φaat + φpxpt + φzzit, (A.48)
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where

φ′a =
η

1 + γη
· κ0 [(ψa + ψp)(1 + γη) + γ(1 + η)]

κx(1 + γη) + κ0γη
,

φx =
θκx [(ψa + ψp)(1 + γη) + γ(1 + η)]

κx(1 + γη) + κ0γη
,

φa = −(η + 1)(γθ − 1)κx
γη (κ0 + κx) + κx

+
η(γη + 1)(γθ − 1) (κ0κz − κpκx)

(γη (κ0 + κx) + κx) (γη (κp + κz) + κz)
ψp −

ηκ0 + θ(γη + 1)κx
γη (κ0 + κx) + κx

ψa,

φp = − θκz(1 + γη) + κpη

κz(1 + γη) + κpγη
ψp,

φz =
θκz(1 + γη)

κz(1 + γη) + κpγη
ψp.

Proof. We guess and verify that the equilibrium is log-linear. We propose the following log-linear

strategy for the price:

log pit(ω
t
i) = g′aρat−1 + gxxit + gzzit, (A.49)

which implies that the aggregate price must satisfy

logPt(s̄
t) = g′aρat−1 + gxat + gzεpt. (A.50)

We propose the following log-linear strategy for individual firm output:

log yit(ω
t
i , s̄

t) = φ′aρat−1 + φxxit + φaat + φpxpt + φzzit, (A.51)

which implies that aggregate output must satisfy

log Yt(s̄
t) = φ′aρat−1 + (φx + φa)at + φpxpt + φzεpt. (A.52)

Therefore, there are eight unknown coefficients:

{g′a, gx, gz, φ′a, φx, φa, φp, φz}.
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First, the CES demand function (A.6) implies:

log yit(ω
t
i , s̄

t)− log Yt(s̄
t) = −θ(log pit(ω

t
i)− logPt(s̄

t)).

Using (A.49)-(A.52), the difference can be written as

log yit(ω
t
i , s̄

t)− log Yt(s̄
t) = φx(xit − at) + φz(zit − εpt)

and, similarly,

log pit(ω
t
i)− logPt(s̄

t) = gx(xit − at) + gz(zit − εpt).

Therefore, this gives us the following three coefficient restrictions:

φx = −θgx,

φz = −θgz.

By Proposition 2 in the main text, the price satisfies the firm’s optimality condition (A.30).

Taking logs of both sides, using the household’s intratemporal optimality condition (A.28), the

definition of Λt(s̄
t), and the properties of log-normal distributions, we have that the optimal price

satisfies the following condition:

log pit(ω
t
i) = E

[
log
{
V ′(Lt(s̄

t))A(st)
−1Λt(s̄

t)−1
}∣∣ωti] ,

up to a constant, where V ′(Lt(s̄t)) = Lt(s̄
t)1/η. We can thus rewrite the latter as

log pit(ω
t
i) = E

[
1

η
logLt(s̄

t)− logA(st)− log Λt(s̄
t)

∣∣∣∣ωti] .
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Next, note that from Lemma 9, log Yt(s
t) = logA(st) + logLt(s̄

t) + const. Therefore,

log pit(ω
t
i) = E

[
1

η
log Yt(s̄

t)−
(

1 +
1

η

)
logA(st)− log Λt(s̄

t)

∣∣∣∣ωti] . (A.53)

Substituting in for output and and the policy variable using Lemma 4,

log pit(ω
t
i) =E

[
1

η
(φ′aρat−1 + (φx + φa)at + φpxpt + φzεpt)

−
(

1 +
1

η

)
at − (ψpxpt + ψ0at−1 + ψaat)

∣∣∣∣ωti] .
This can be written as

log pit(ω
t
i) =

(
1

η
ρφ′a − ψ0

)
at−1 +

(
1

η
φp − ψp

)
E
[
xpt|ωti

]
+

[
1

η
(φx + φa)−

(
1 +

1

η

)
− ψa

]
E
[
at|ωti

]
+

1

η
φzE

[
εpt|ωti

]
.

Note that xpt = at + εpt, thus,

log pit(ω
t
i) =

(
1

η
ρφ′a − ψ0

)
at−1 +

[
1

η
(φp + φz)− ψp

]
E
[
εpt|ωti

]
+

[
1

η
φp − ψp +

1

η
(φx + φa)−

(
1 +

1

η

)
− ψa

]
E
[
at|ωti

]
.

Standard properties of Normal distributions imply

E
[
at|ωti

]
=

κ0

κ0 + κx
ρat−1 +

κx
κ0 + κx

xit,

E
[
εpt|ωti

]
=

κz
κp + κz

zit

.
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As a result,

log pit(ω
t
i) =

(
1

η
ρφ′a − ψ0

)
at−1 +

[
1

η
(φp + φz)− ψp

]
κz

κp + κz
zit

+

[
1

η
φp − ψp +

1

η
(φx + φa)−

(
1 +

1

η

)
− ψa

](
κ0

κ0 + κx
ρat−1 +

κx
κ0 + κx

xit

)
.

The latter needs to match our conjecture (A.49). Therefore,

g′a =

(
1

η
φ′a − ψ0ρ

−1

)
+

[
1

η
φp − ψp +

1

η
(φx + φa)−

(
1 +

1

η

)
− ψa

]
κ0

κ0 + κx
,

gx =

[
1

η
φp − ψp +

1

η
(φx + φa)−

(
1 +

1

η

)
− ψa

]
κx

κ0 + κx
,

gz =

[
1

η
(φp + φz)− ψp

]
κz

κp + κz
.

By definition, Λt(s̄
t) ≡ U ′(Ct(s̄

t))/Pt(s̄
t). Combining this equation with (A.50) and (A.52),

we have:

ψpxpt + ψ0at−1 + ψaat + g′aρat−1 + gxat + gzεpt

= −γ (φ′aρat−1 + (φx + φa)at + φpxpt + φzεpt) .

Therefore, the following equations must hold:

ψ0ρ
−1 + g′a = −γφ′a,

ψp + ψa + gx = −γ(φx + φa + φp),

ψp + gz = −γ(φp + φz).

To sum up, the equilibrium is the solution to the following system of eight equations in eight
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unknowns:

φx = −θgx,

φz = −θgz,

g′a =

(
1

η
φ′a − ψ0ρ

−1

)
+

[
1

η
φp − ψp +

1

η
(φx + φa)−

(
1 +

1

η

)
− ψa

]
κ0

κ0 + κx
,

gx =

[
1

η
φp − ψp +

1

η
(φx + φa)−

(
1 +

1

η

)
− ψa

]
κx

κ0 + κx
,

gz =

[
1

η
(φp + φz)− ψp

]
κz

κp + κz
.

ψ0ρ
−1 + g′a = −γφ′a,

ψp + ψa + gx = −γ(φx + φa + φp),

ψp + gz = −γ(φp + φz).

Note that we can partition the above equations into three groups. The equations in the first

group are

φz = −θgz,

ψp + gz = −γ(φp + φz),

gz =

[
1

η
(φp + φz)− ψp

]
κz

κp + κz
.

By replacing the second equation into the third, we obtain an equation for gz:

gz =

(
− 1

γη
(ψp + gz)− ψp

)
κz

κp + κz
,

whose solution is given by

gz = − κz(1 + γη)

κz(1 + γη) + κpγη
ψp.
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Replacing this back into the other two equations, we obtain solutions for φzand φh:

φz =
θκz(1 + γη)

κz(1 + γη) + κpγη
ψp,

φp = − θκz(1 + γη) + κpη

κz(1 + γη) + κpγη
ψp.

The second group of equations is given by

φx = −θgx,

ψp + ψa + gx = −γ(φx + φa + φp),

gx =

[
1

η
φp − ψp +

1

η
(φx + φa)−

(
1 +

1

η

)
− ψa

]
κx

κ0 + κx
,

Simple steps of algebra give the following solutions for gx, φx,φa:

gx = −κx [(ψa + ψp)(1 + γη) + γ(1 + η)]

κx(1 + γη) + κ0γη
,

φx =
θκx [(ψa + ψp)(1 + γη) + γ(1 + η)]

κx(1 + γη) + κ0γη
,

φa = −(η + 1)(γθ − 1)κx
γη (κ0 + κx) + κx

+
η(γη + 1)(γθ − 1) (κ0κz − κpκx)

(γη (κ0 + κx) + κx) (γη (κp + κz) + κz)
ψp −

ηκ0 + θ(γη + 1)κx
γη (κ0 + κx) + κx

ψa.

The remaining two equations are

ψ0ρ
−1 + g′a = −γφ′a,

g′a =

(
1

η
φ′a − ψ0ρ

−1

)
+

[
1

η
φp − ψp +

1

η
(φx + φa)−

(
1 +

1

η

)
− ψa

]
κ0

κ0 + κx
,

To solve this, note that we can write

g′a =
κ0

κx
gx

γη

1 + γη
− ψ0ρ

−1.

116



Using the previous solution for gx, we obtain the following solutions for g′a and φ′a:

g′a = − γη

1 + γη
· κ0 [(ψa + ψp)(1 + γη) + γ(1 + η)]

κx(1 + γη) + κ0γη
− ψ0ρ

−1,

φ′a =
η

1 + γη
· κ0 [(ψa + ψp)(1 + γη) + γ(1 + η)]

κx(1 + γη) + κ0γη
.

Therefore, the solution to the system of equations is given by:

g′a = − γη

1 + γη
· κ0 [(ψa + ψp)(1 + γη) + γ(1 + η)]

κx(1 + γη) + κ0γη
− ψ0ρ

−1,

gx = −κx [(ψa + ψp)(1 + γη) + γ(1 + η)]

κx(1 + γη) + κ0γη
,

gz = − κz(1 + γη)

κz(1 + γη) + κpγη
ψp,

φ′a =
η

1 + γη
· κ0 [(ψa + ψp)(1 + γη) + γ(1 + η)]

κx(1 + γη) + κ0γη
,

φx =
θκx [(ψa + ψp)(1 + γη) + γ(1 + η)]

κx(1 + γη) + κ0γη
,

φa = −(η + 1)(γθ − 1)κx
γη (κ0 + κx) + κx

+
η(γη + 1)(γθ − 1) (κ0κz − κpκx)

(γη (κ0 + κx) + κx) (γη (κp + κz) + κz)
ψp −

ηκ0 + θ(γη + 1)κx
γη (κ0 + κx) + κx

ψa,

φp = − θκz(1 + γη) + κpη

κz(1 + γη) + κpγη
ψp,

φz =
θκz(1 + γη)

κz(1 + γη) + κpγη
ψp.

Lemma 11. In the economy without central bank disclosure: (i) equilibrium aggregate output

satisfies

log Yt(s̄
t) = φ′aρat−1 + Φaat + Φεεpt, (A.54)

where

Φa =
(η + 1)κx − ηκ0 (ψa + ψp)

γη (κ0 + κx) + κx
,

Φε = − ηκp
γη (κp + κz) + κz

ψp,

117



and (ii) the equilibrium labor wedge satisfies

log ε̄t(s̄
t) = M ′

aρat−1 +Maat +Mεεpt, (A.55)

where

Ma =
1

η
[(1 + γη)Φa − (1 + η)] ,

Mε =
1

η
(1 + γη)Φε,

M ′
a =

1

η
(1 + γη)φ′a.

Proof. Part (i). Individual firm’s output is given in (A.48). Aggregating across firms, we obtain

the following expression for aggregate output:

log Yt(s̄
t) = φ′aρat−1 + (φx + φa)at + φpxpt + φzεpt.

Noting that the central bank’s signal is given by xpt = at + εpt, we can rewrite the latter as

log Yt(s̄
t) = φ′aρat−1 + (φx + φa + φp)at + (φp + φz)εpt.

which allows us to write aggregate output as in (A.54), with

Φa = φx + φa + φp,

Φε = φp + φz.

The proof then follows from Lemma 10.

Part (ii). First, from Lemma 9,

Yt(s̄
t) = (χ−1ε̄t(s̄

t))
1

1/η+γ (δA(st))
1/η+1
1/η+γ .
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Writing the latter in logs and rearranging,

log ε̄t(s̄
t) =

1

η

{
(1 + γη) log Yt(s̄

t)− (1 + η) logA(st)
}
,

where we abstract from the constant. Therefore,

log ε̄t(s̄
t) =

1

η
(1 + γη)φ′aρat−1 +

1

η
[(1 + γη)Φa − (1 + η)] at +

1

η
(1 + γη)Φεεpt

and the proof follows by matching coefficients.

A.3.7 Auxiliary Results: Equilibrium under disclosure

The following two lemmas provide closed-form characterizations of the equilibrium in the

economy with central bank disclosure. These results will be used in subsequent proofs.

Lemma 12. In the economy with central bank disclosure, the firm’s equilibrium output strategy is

log-linear and given by:

log yit(ω
t
i , s̄

t) = φ′aρat−1 + φxxit + φaat + φpxpt + φzzit, (A.56)

where

φ′a =
η

1 + γη
· κ0[ψa(1 + γη) + γ(1 + η)]

(1 + γη)(κx + κz) + (κp + κ0)γη
,

φx =
θκx[ψa(1 + γη) + γ(1 + η)]

(1 + γη)(κx + κz) + (κp + κ0)γη
,

φa = −ψa[ηκ0 + ηκp + θ(1 + γη)(κx + κz)] + (η + 1)(γθ − 1)(κx + κz)

(1 + γη)(κx + κz) + (κp + κ0)γη
,

φp =
ηκp + θ(γη + 1)κz

1 + γη
· ψa(1 + γη) + γ(1 + η)

(1 + γη)(κx + κz) + (κp + κ0)γη
,

φz = − θκz[ψa(1 + γη) + γ(1 + η)]

(1 + γη)(κx + κz) + (κp + κ0)γη
.

Proof. We guess and verify that equilibrium variables are log-linear. We propose the following
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log-linear strategy for the price:

log pit(ω
t
i) = g′aρat−1 + gxxit + gzzit + gpxpt, (A.57)

which implies that the aggregate price must satisfy

logPt(s̄
t) = g′aρat−1 + gxat + gzεpt + gpxpt, (A.58)

We propose the following log-linear strategy for individual firm output:

log yit(ω
t
i , s̄

t) = φ′aρat−1 + φxxit + φaat + φpxpt + φzzit, (A.59)

which implies that aggregate output must satisfy

log Yt(s̄
t) = φ′aρat−1 + (φx + φa)at + φpxpt + φzεpt. (A.60)

There are nine unknown coefficients:

{g′a, gx, gz, gp, φ′a, φx, φa, φp, φz}.

First, the CES demand function (A.6) implies:

log yit(ω
t
i , s̄

t)− log Yt(s̄
t) = −θ(log pit(ω

t
i)− logPt(s̄

t)).

Using (A.57)-(A.60), the difference can be written as:

log yit(ω
t
i , s̄

t)− log Yt(s̄
t) = φx(xit − at) + φz(zit − εpt)

and, similarly,

log pit(ω
t
i)− logPt(s̄

t) = gx(xit − at) + gz(zit − εpt).
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Therefore, this gives us the following two coefficient restrictions:

φx = −θgx,

φz = −θgz.

The price is given by equation (A.53):

log pit(ω
t
i) = E

[
1

η
log Yt(s̄

t)−
(

1 +
1

η

)
logA(st)− log Λt(s̄

t)

∣∣∣∣ωti] .
Substituting in for output and and the policy variable using Lemma 4,

log pit(ω
t
i) =E

[
1

η
(φ′aρat−1 + (φx + φa)at + φpxpt + φzεpt)

−
(

1 +
1

η

)
at − (ψpxpt + ψ0at−1 + ψaat)

∣∣∣∣ωti] .
Since xpt = at + εpt, the latter can be rewritten as

log pit(ω
t
i) =

(
1

η
ρφ′a − ψ0

)
at−1 +

[
1

η
(φp + φz)− ψp

]
xpt

+

[
1

η
(φx + φa − φz)−

(
1 +

1

η

)
− ψa

]
E
[
at|ωti

]
.

Standard properties of Normal distributions imply

E
[
at|ωti

]
=
κ0

κ
ρat−1 +

κx
κ
xit −

κz
κ
zit +

κp + κz
κ

xpt,

where κ ≡ κ0 + κx + κp + κz. As a result,

log pit(ω
t
i) =

(
1

η
ρφ′a − ψ0

)
at−1 +

[
1

η
(φp + φz)− ψp

]
xpt

+

[
1

η
(φx + φa − φz)−

(
1 +

1

η

)
− ψa

](
κ0

κ
ρat−1 +

κx
κ
xit −

κz
κ
zit +

κp + κz
κ

xpt

)
.
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The latter needs to match our conjecture (A.57). Therefore,

gz =−
[

1

η
(φx + φa − φz)−

(
1 +

1

η

)
− ψa

]
κz
κ
,

g′a =

(
1

η
φ′a − ψ0ρ

−1

)
+

[
1

η
(φx + φa − φz)−

(
1 +

1

η

)
− ψa

]
κ0

κ
,

gp =

[
1

η
(φp + φz)− ψp

]
+

[
1

η
(φx + φa − φz)−

(
1 +

1

η

)
− ψa

]
κp + κz

κ
,

gx =

[
1

η
(φx + φa − φz)−

(
1 +

1

η

)
− ψa

]
κx
κ
.

By definition, Λt(s̄
t) ≡ U ′(Ct(s̄

t))/Pt(s̄
t). Combining this equation with (A.58) and (A.60),

we have:

ψpxpt + ψ0at−1 + ψaat + g′aρat−1 + gxat + gzεpt + gpxpt

=− γ (φ′aρat−1 + (φx + φa)at + φpxpt + φzεpt)

or

ψp(at + εpt) + ψ0at−1 + ψaat + g′aρat−1 + gxat + gzεpt + gp(at + εpt)

=− γ (φ′aρat−1 + (φx + φa)at + φp(at + εpt) + φzεpt)

Therefore, the following equations must hold:

ψp + gz + gp = −γ(φp + φz),

ψ0ρ
−1 + g′a = −γφ′a,

ψp + ψa + gx + gp = −γ(φx + φa + φp).

To sum up, log-linear equilibrium is the solution to the following system of nine equations in

nine unknowns:
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φx =− θgx,

φz =− θgz,

gz =−
[

1

η
(φx + φa − φz)−

(
1 +

1

η

)
− ψa

]
κz
κ
,

g′a =

(
1

η
φ′a − ψ0ρ

−1

)
+

[
1

η
(φx + φa − φz)−

(
1 +

1

η

)
− ψa

]
κ0

κ
,

gp =

[
1

η
(φp + φz)− ψp

]
+

[
1

η
(φx + φa − φz)−

(
1 +

1

η

)
− ψa

]
κp + κz

κ
,

gx =

[
1

η
(φx + φa − φz)−

(
1 +

1

η

)
− ψa

]
κx
κ
,

ψp + gz + gp =− γ(φp + φz),

ψ0ρ
−1 + g′a =− γφ′a,

ψp + ψa + gx + gp =− γ(φx + φa + φp).
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Steps of algebra analogous to those in the no-disclosure case yield the following solution:

g′a = − γη

1 + γη
· κ0[ψa(1 + γη) + γ(1 + η)]

(1 + γη)(κx + κz) + γη(κp + κ0)
− ψ0ρ

−1,

gx = − κx[ψa(1 + γη) + γ(1 + η)]

(1 + γη)(κx + κz) + γη(κ0 + κp)
,

gz =
κz[ψa(1 + γη) + γ(1 + η)]

(1 + γη)(κx + κz) + γη(κ0 + κp)
,

gp = −γη (κp + κz) + κz
1 + γη

· ψa(1 + γη) + γ(1 + η)

(1 + γη)(κx + κz) + (κp + κ0)γη
− ψp,

φ′a =
η

1 + γη
· κ0[ψa(1 + γη) + γ(1 + η)]

(1 + γη)(κx + κz) + (κp + κ0)γη
,

φx =
θκx[ψa(1 + γη) + γ(1 + η)]

(1 + γη)(κx + κz) + (κp + κ0)γη
,

φa = −ψa[ηκ0 + ηκp + θ(1 + γη)(κx + κz)] + (η + 1)(γθ − 1)(κx + κz)

(1 + γη)(κx + κz) + (κp + κ0)γη
,

φp =
ηκp + θ(γη + 1)κz

1 + γη
· ψa(1 + γη) + γ(1 + η)

(1 + γη)(κx + κz) + (κp + κ0)γη
,

φz = − θκz[ψa(1 + γη) + γ(1 + η)]

(1 + γη)(κx + κz) + (κp + κ0)γη
.

Lemma 13. In the economy with central bank disclosure: (i) equilibrium aggregate output satisfies

log Yt(s̄
t) = φ′aρat−1 + Φaat + Φεεpt, (A.61)

where

Φa =
1

(1 + γη)(κx + κz) + (κp + κ0)γη

{
(η + 1)(κx + κz)− ηκ0ψa + γη

1 + η

1 + γη
κp

}
,

Φε =
1

(1 + γη)(κx + κz) + (κp + κ0)γη

{
ηκpψa + γ

1 + η

1 + γη
ηκp

}
,

and (ii) the equilibrium labor wedge satisfies

log ε̄t(s̄
t) = M ′

aρat−1 +Maat +Mεεpt, (A.62)
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where

Ma =
1

η
[(1 + γη)Φa − (1 + η)] ,

Mε =
1

η
(1 + γη)Φε,

M ′
a =

1

η
(1 + γη)φ′a.

Proof. Part (i). Individual firm’s output is given in (A.56). Aggregating across firms, we obtain

the following expression for aggregate output:

log Yt(s̄
t) = φ′aρat−1 + (φx + φa)at + φpxpt + φzεpt.

We can rewrite this as

log Yt(s̄
t) = φ′aρat−1 + (φx + φa + φp)at + (φp + φz)εpt,

which allows us to write aggregate output as in (A.61), with

Φa = φx + φa + φp,

Φε = φp + φz.

The proof then follows from Lemma 12.

Part (ii). As in the proof of Lemma 11,

log ε̄t(s̄
t) =

1

η

{
(1 + γη) log Y (s̄t)− (1 + η) logA(st)

}
,

where we abstract from the constant. Therefore,

log ε̄t(s̄
t) =

1

η
(1 + γη)φ′aρat−1 +

1

η
[(1 + γη)Φa − (1 + η)] at +

1

η
(1 + γη)Φεεpt
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and the proof follows by matching coefficients.

A.3.8 Proof of Lemma 7.

Consider first the no disclosure case. We compute each term of L separately. First, from the

proof of Lemma 9, we have that

varω
[
log εit(ωit, s̄

t)|s̄t
]

= varω

[
1

θ
log yit(ω

t
i , s̄

t)|s̄t
]
.

Thus,

D0 ≡ θvarω
[
log εit(ωit, s̄

t)|s̄t
]

=
1

θ
varω

[
log yit(ω

t
i , s̄

t)|s̄t
]
,

where we use the subscript “0” to denote variables under no disclosure. Using (A.48),

D0 =
1

θ
φ2
x0

1

κx
+

1

θ
φ2
z0

1

κz
.

Straightforward steps of algebra then imply

D0 =
θκx(γη + 1)2

(1− ρ)2 (γη (κ0 + κx) + κx)
2 (ψ0 − ψ∗0 + ψp)

2 +
θ(γη + 1)2κz

(γη (κp + κz) + κz)
2ψ

2
p.

Similarly, using (A.55),

V0 ≡ var
[
log ε̄(s̄t)

]
= (M ′

a0 +Ma0)
2 ρ2

1− ρ2
· 1

κ0

+M2
a0

1

κ0

+M2
ε0

1

κp
.

It follows that

V0 =
κ0(γη + 1)2

(1− ρ)2 (γη (κ0 + κx) + κx)
2 (ψ0 − ψ∗0 + ψp)

2 +
(γη + 1)2κp

(γη (κp + κz) + κz)
2ψ

2
p.
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Consider now the case with disclosure. First, using (A.56),

Dd =
1

θ
φ2
xd

1

κx
+

1

θ
φ2
zd

1

κz
.

Straightforward steps of algebra then imply

Dd =
θ (κx + κz) (γη + 1)2

(1− ρ)2 (γη (κ0 + κp + κx + κz) + κx + κz)
2 (ψ0 − ψ∗0 + ρψp)

2 .

Similarly, using (A.62),

Vd = (M ′
ad +Mad)

2 ρ2

1− ρ2
· 1

κ0

+M2
ad

1

κ0

+M2
εd

1

κp
.

It follows that

Vd =
(κ0 + κp) (γη + 1)2

(1− ρ)2κp (γη (κ0 + κp + κx + κz) + κx + κz)
2 (ψ0 − ψ∗0 + ρψp)

2 .

To complete the proof, we compute:

∆(ψ0, ψp) ≡ D0 −Dd +
1

1/η + γ
(V0 − Vd) .

We have

D0 −Dd =
θκx(γη + 1)2

(1− ρ)2 (γη (κ0 + κx) + κx)
2 (ψ0 − ψ∗0 + ψp)

2 +
θ(γη + 1)2κz

(γη (κp + κz) + κz)
2ψ

2
p

− θ (κx + κz) (γη + 1)2

(1− ρ)2 (γη (κ0 + κp + κx + κz) + κx + κz)
2 (ψ0 − ψ∗0 + ρψp)

2
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and

V0 − Vd =
κ0(γη + 1)2

(1− ρ)2 (γη (κ0 + κx) + κx)
2 (ψ0 − ψ∗0 + ψp)

2 +
(γη + 1)2κp

(γη (κp + κz) + κz)
2ψ

2
p

− (κ0 + κp) (γη + 1)2

(1− ρ)2κp (γη (κ0 + κp + κx + κz) + κx + κz)
2 (ψ0 − ψ∗0 + ρψp)

2 .

Therefore,

a0 ≡
θ(γη + 1)κx + ηκ0

(1− ρ)2 (γη (κ0 + κx) + κx)
2 (γη + 1),

b0 ≡
θ(γη + 1)κz + ηκp

(γη (κp + κz) + κz)
2 (γη + 1),

c0 ≡−
θ(γη + 1)(κx + κz) + η(κ0 + κp)

(1− ρ)2 (γη (κ0 + κp + κx + κz) + κx + κz)
2 (γη + 1).

QED.

A.3.9 Proof of Theorem 5.

We begin with ∆(ψ0, ψ
∗
p), for all ψ0. From Lemma 7, we have

∆(ψ0, ψ
∗
p) = (a0 + c0) (ψ0 − ψ∗0)2

=
γη + 1

(1− ρ)2

[
θ(γη + 1)κx + ηκ0

(γη(κ0 + κx) + κx)
2 −

θ(γη + 1)(κx + κz) + η(κ0 + κp)

(γη(κ0 + κp + κx + κz) + κx + κz)
2

]
(ψ0 − ψ∗0)2

≡ γη + 1

(1− ρ)2
Γ(κz, κp) (ψ0 − ψ∗0)2 .

The sign of ∆(ψ0, ψ
∗
p) is the same as the sign of Γ(κz, κp). Take any κp > 0 and consider the

derivative

∂

∂κz
Γ(κz, κp) = (γη + 1)

ηκ0(2− γθ) + η(2− γθ)κp + θ(γη + 1)(κx + κz)

[γηκ0 + γηκp + (γη + 1)(κx + κz)]3
. (A.63)

Suppose first that γθ ≤ 2. In this case, (A.63) is always positive, thus, κz = 0 is a global
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minimum for Γ(·, κp). Letting Γ̂(κp) denote the minimum value of Γ(·, κp), we have

Γ(κz, κp) ≥ Γ̂(κp) = Γ(0, κp) =
θ(γη + 1)κx + ηκ0

[γη(κ0 + κx) + κx]2
− θ(γη + 1)κx + η(κ0 + κp)

[γη(κ0 + κp + κx) + κx]2
. (A.64)

Also,

Γ̂′(κp) = η
γη(κ0 + κp) + (γη + 1)(2γθ − 1)κx

[γη(κ0 + κp + κx) + κx]3
> 0.

We conclude that Γ(κz, κp) ≥ Γ̂(κp) > Γ̂(0) = 0.

Suppose now that γθ > 2. From (A.63), we have max{0, Kz(κp)} = arg minκz Γ(κz, κp),

where

Kz(κp) ≡
η(γθ − 2)

θ(1 + γη)
(κ0 + κp)− κx.

Note that Kz(κp) ≤ 0 only if κx ≥ Kx ≡ κ0η(γθ − 2)/[θ(1 + γη)].

Consider the case κx < Kx. Then Kz(κp) = arg minκz Γ(κz, κp), for all κp. The latter is

a global minimum for Γ(·, κp) since ∂Γ(κz, κp)/∂κz is negative for κz < Kz(κp) and positive

otherwise. Thus,

Γ(κz, κp) ≥ Γ̂(κp) = Γ(Kz(κp), κp) =
ηκ0 + θ(γη + 1)κx
[γη(κ0 + κx) + κx]2

− θ2

4η(γθ − 1)(κ0 + κp)
. (A.65)

We have,

Γ̂′(κp) =
θ2

4η(γθ − 1)(κ0 + κp)2
> 0.

Also,

Γ̂(0) = − [ηκ0(2− γθ) + θ(γη + 1)κx]
2

4ηκ0(γθ − 1)[γη(κ0 + κx) + κx]2
< 0

and

lim
κp→∞

Γ̂(κp) =
ηκ0 + θ(γη + 1)κx
[γη(κ0 + κx) + κx]2

> 0.
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It follows that there exists a threshold Kp(κx), defined by Γ(Kz(Kp(κx)), Kp(κx)) = 0 or

Kp(κx) =
(ηκ0(γθ − 2)− θ(γη + 1)κx)

2

4η(γθ − 1)(ηκ0 + θ(γη + 1)κx)
,

such that Γ(κz, κp) > 0 for κp > Kp(κx). Moreover, if κp < Kp(κx), there is an neighborhood of

(Kz(Kp(κx)), Kp(κx)) such that Γ(κz, κp) < 0. The derivative of Kp(κx) is

K
′
p(κx) =

θ(γη + 1)

4η(γθ − 1)

(
1− η2κ2

0(γθ − 1)2

(ηκ0 + θ(γη + 1)κx)2

)
,

which is negative since κx < Kx.

Finally, suppose κx ≥ Kx. We have to consider two cases, depending on whether 0 =

arg minκz Γ(κz, κp) or Kz(κp) = arg minκz Γ(κz, κp). The former case occurs for all values

of κp such that Kz(κp) ≤ 0, i.e. κp ≤ (κx − Kx)[θ(1 + γη)]/η(γθ − 2). For such values,

Γ(κz, κp) ≥ Γ̂(κp), where Γ̂(·) is given by (A.64), which is positive and increasing in κp. The lat-

ter case occurs when κp > (κx −Kx)[θ(1 + γη)]/η(γθ − 2). For such values, Γ(κz, κp) ≥ Γ̂(κp),

where Γ̂(·) is given by (A.65), which is positive and increasing in κp for κp ≥ Kp(κx). Simple

steps of algebra prove that (κx −Kx)[θ(1 + γη)]/η(γθ − 2) > Kp(κx) (as long as κx ≥ Kx and

γθ > 2), thus, the inequality κp ≥ Kp(κx) is implied by κp > (κx −Kx)[θ(1 + γη)]/η(γθ − 2).

We conclude that Γ(κz, κp) ≥ Γ̂(κp) > 0 for all κp.

Consider now ∆(ψ∗0, ψp), for all ψ∗0 . From Lemma 7, we have

∆(ψ∗0, ψp) =
(
a0 + b0 + c0ρ

2
)
ψ2
p

=
γη + 1

(1− ρ)2

[
θ(γη + 1)κx + ηκ0

(γη(κ0 + κx) + κx)
2 − ρ

2 θ(γη + 1)(κx + κz) + η(κ0 + κp)

(γη(κ0 + κp + κx + κz) + κx + κz)
2

]
ψ2
p + b0ψ

2
p

>
γη + 1

(1− ρ)2

[
θ(γη + 1)κx + ηκ0

(γη(κ0 + κx) + κx)
2 −

θ(γη + 1)(κx + κz) + η(κ0 + κp)

(γη(κ0 + κp + κx + κz) + κx + κz)
2

]
ψ2
p + b0ψ

2
p

=
γη + 1

(1− ρ)2
Γ(κz, κp)ψ

2
p + b0ψ

2
p.

Since b0 > 0, a sufficient condition for ∆(ψ∗0, ψp) > 0, for all ψp 6= 0, is Γ(κz, κp) ≥ 0 and the
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proof follows from the arguments above.

Finally, from the expressions for the coefficients a0, b0 and c0 in Lemma 7, it is immediate to

see that b0 → 0 and c0 → 0 as κp →∞ and, therefore,

∆(ψ0, ψp)→ a0 (ψ0 − ψ∗0 + ρψp)
2 .

QED.
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