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Abstract 
 

 
Decarbonization, Irrigation, and Energy System Planning:  

Analyses in New York State and Ethiopia 
 

Terence M. Conlon 
 
 
 

This dissertation contains two collections of analyses, both broadly focused on energy 

system planning, but motivated by different research objectives in distinct geographic settings. 

Part I – Chapters I-III – evaluates decarbonization strategies in New York. These studies are 

characteristic of the primary energy-related challenge faced by the Global North: How can states 

cost-effectively meet time-bound emissions reduction targets? A series of linear programs are 

developed to answer this question, culminating in the System Electrification and Capacity 

TRansition (SECTR) model, a high-fidelity representation of the New York State energy system 

that characterizes statewide emissions and allows for comparative study of various 

decarbonization pathways. SECTR simulations indicate that prioritizing heating and vehicle 

electrification alongside an expansion of instate wind and solar generation capacity allows New 

York to meet recently legislated climate goals more affordably than through approaches that 

mandate substantial low-carbon electricity targets. Additional work also explores the optimal 

distribution of energy infrastructure within New York to meet specified decarbonization targets, 

along with the value of supply-side, demand-side, and bidirectional methods of system flexibility. 

Part II of this dissertation – Chapters IV-VII – is concerned with the energy system 

challenges faced by the lowest income countries. Set in the Ethiopian Highlands, this work first 

aims to locate smallholder irrigated areas, as irrigation has attendant energy requirements that 



 

  

are larger and more likely to generate supplementary sources of revenue compared to residential 

demands. Here, a novel classification methodology is developed to collect labeled data, train a 

machine learning-based irrigation detection model, and understand the spatial extent of model 

applicability. Across isolated plots of land as small as 30m by 30m, the resulting model achieves 

>95% prediction accuracy. Further studies then explore the system planning implications of 

simulated electricity demands associated with these irrigated areas. 
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Part I: Energy System Modeling in New York State 
 
Introduction 
 

The first half of this thesis assesses decarbonization strategies in New York State (NYS) via 

a series of energy system models. In 2019, NYS passed the Climate Leadership and Community 

Protection Act, a law mandating significant, quantifiable decarbonization targets in the years 

2030, 2040, and 2050 [1]. To meet these goals, the state will need to install substantial capacities 

of renewable generation (primarily wind and solar) and convert existing heating and vehicle 

technologies to electric alternatives. As the cost-effectiveness of this transition will depend on 

NYS-specific nuances of legacy infrastructure, energy sources, and constraints, the following 

chapters introduce a set of frameworks for representing the NYS electricity grid and electrifiable 

heating and transport loads.  

While the details of each analysis differ, there are a couple common findings across 

chapters regarding decarbonization in NYS. First, NYS can meet near-term grid decarbonization 

goals – i.e., achieving low-carbon electricity percents of 50-60%, compared to a current value of 

40% – without substantial increases in per-unit electricity costs; these goals can be met by 

installing new solar and wind capacity without any supplementary integration technologies. 

However, when NYS reaches 70-80% low-carbon electricity, per-unit electricity costs increase 

significantly. Here, battery storage to shift renewable generation to hours when it can displace 

gas generation causes total system costs to rise. At percents low-carbon electricity of 70-80%, all 

types of flexibility measures – such as battery storage, pumped hydropower, increased 

transmission, or flexible electric vehicle (EV) demand – allow the state to integrate wind and solar 
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generation more cost-effectively by reducing curtailment. Lastly, flexibility measures are found 

to provide the most benefits to the grid when collocated with renewable generation, as 

collocation allows the system to avoid bottlenecks at major transmission interfaces during hours 

of plentiful low-carbon generation. 

Chapter I represents the culmination of these energy system modeling efforts in NYS.  

Building upon previously developed models, this work introduces the System Electrification and 

Capacity Transition (SECTR) model, a cost-minimizing linear program with high fidelity to the 

existing electricity system that includes anticipated electrified heating and vehicle demands. 

SECTR is a spatially explicit model defined by individual nodes representing geographical sub-

areas within the larger region of interest. To determine the least-cost infrastructure mix in future 

model scenarios, decision variables representing onshore wind, offshore wind, solar, battery 

storage, transmission, and new gas generation technologies are assigned node-specific costs; a 

full set of system costs is available in Appendix A of the chapter. Once parameterized, SECTR 

allows the investigation of trade-offs among increased low-carbon electricity generation and 

electrification of heating and vehicles for decarbonization in a regional system. It is applied to 

NYS (SECTR-NY) to deliver insights on pathways to meet state-specific climate goals.  

Independent combinations of low-carbon electricity percents (LCPs) between 40-95% and 

heating and vehicle electrification (HVE) rates between 0-100% allow for scenario-based 

comparisons of different decarbonization strategies. In a system with 18.7 GW of average 

electricity demand, full heating and vehicle electrification corresponds to an additional average 

6.7 GW  of each type of load. The study’s results are broadly consistent with previously published 

research that deep greenhouse gas (GHG) emissions reductions require both a significant LCP 
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and increases in HVE. However, results indicate that equivalent emissions reductions can be 

achieved at lower costs to the grid by prioritizing electrification with 40-70% low-carbon 

electricity supply instead of aiming for complete grid decarbonization. With 60% electrification 

and 50% low-carbon electricity, approximately 1/3 emissions reductions can be achieved at 

current supply costs; with only 20% electrification, 90% low-carbon electricity is required to 

achieve the same emissions reductions, resulting in 43% higher grid costs.  

Chapter I also provides a set of insights for a system looking to electrify liquid fuel-based 

energy demands and increase the amount of low-carbon electricity on the grid.  One finding is 

that first order GHG reductions from electrification occur due to efficiency improvements, 

regardless of whether additional low-carbon generation is brought online to support the new 

demands. At percents low-carbon electricity equivalent to current levels (approximately 40%), 

average heating emissions per unit heat delivered are 70% lower after electrification; average 

vehicle emissions are 56% lower per mile traveled. Moreover, three primary cost drivers are 

identified for a decarbonizing system: (1) decreasing per-unit costs of existing infrastructure with 

increasing electrified demand, (2) increasing in-state generation costs from low-carbon sources 

relative to gas-based and hydropower generation, and (3) increasing integration costs at high 

percentages of low-carbon electricity.  

Additional SECTR-NY results reveal a shift in optimal capacity expansion strategies as 

decarbonization progresses. First, onshore wind generation is installed due to its lowest per-unit 

generation costs. Next, the system expands offshore wind capacity, a more expensive wind 

resource that feeds into high-density downstate nodes when cheaper upstate generation options 

have high utilization. Beyond low-carbon electricity percents of 80%, solar generation combined 
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with battery storage becomes the most cost-effective method of displacing remaining fossil fuel-

based electricity generation. Further analysis demonstrates that solar is the most effective 

technology to pair with batteries, due to its regular cycling whereby generation during the day 

can meet demand and charge batteries, which in turn discharge overnight. In contrast, wind 

generation demonstrates less predictability, and can drop off considerably for multi-day periods, 

particularly in the summer.  

Lastly, Chapter I compares model results from SECTR-NY simulations to initial analyses 

presented to the New York State Climate Action Council (“NYS study”). At a high level, the two 

sets of decarbonization strategies largely agree, with similar energy resource capacities 

recommended to meet NYS’s 2030 climate goals. Deviations between the two can largely be 

attributed to differences in wind/solar potential timeseries and historical demand data, and to 

SECTR-NY’s particular attention to low-temperature effects on heat pump and EV performance. 

However, SECTR-NY simulations and the NYS study differ significantly in the calculation of GHG 

emissions. SECTR-NY includes upstream natural gas leakage factors in line with recent research 

and quantifiable GHG effects, whereas the NYS study assumes lower leakage rates. As this 

distinction has significant impacts on the amount of electrification needed to meet NYS GHG 

reduction targets, firming up GHG emissions assumptions across stakeholders in the 

decarbonization planning process should be an important priority going forward.  

Chapter II offers a more contained study compared to Chapter I, assessing only the impact 

of new transmission and battery storage in achieving low-carbon electricity percents between 

50% and 80%. This work introduces the Renewable Target Model (RTM), a mixed-integer linear 

program parameterized with NYS-specific costs and existing capacities to determine the least 
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cost method of achieving a user-defined percent renewable electricity – i.e., electricity from 

wind, solar, and hydropower generation, but not nuclear. Similar to SECTR-NY, the RTM splits the 

New York Independent System Operator (NYISO) control area into four nodes based on major 

transmission interfaces within the state. The RTM includes onshore wind, offshore wind, battery 

storage, transmission, and new gas generation capacities as decision variables; solar capacity is 

set to a fixed quantity in all model scenarios. Simulations are conducted with and without 25% 

EV adoption, as opposed to an increasing rate between 0% and 100%; heating electrification is 

not considered in this chapter.  

A primary finding of the study is that New York can achieve 50% renewable energy 

penetration at a $52/MWh levelized cost of electricity (in line with current generation costs) with 

only a buildout of new generation capacity: Onshore wind (13.7 GW), offshore wind (4.1 GW), 

and solar photovoltaics (3 GW). The presence of grid-scale battery storage, EVs, or additional 

behind-the-meter solar capacity does not markedly change the model-selected generation mix. 

Furthermore, the storage and generation requirements needed to achieve renewable generation 

targets above 70% lead to a substantial rise in total investment. Between 50% and 55% targets, 

the computed marginal levelized cost of electricity (LCOE) for new variable renewable energy is 

$94/MWh, compared to $592/MWh between 75% and 80%, suggesting alternative integration 

measures are likely necessary at such high penetration rates.  

RTM results also indicate that expanded transmission plays a minimal role in meeting 

renewable generation targets between 50-60%. Here, realistic characterization of transmission 

costs, especially those for lines connecting the New York City Metro area to nodes upstate and 

on Long Island, correspond to lower amounts of installed transmission compared to other 
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decarbonization analyses. The difference between this finding and those of other studies is 

attributable to the tendency for other models to underestimate transmission costs or assume 

deployment that does not consider that new infrastructure will handle only the marginal 

increases in transmission. Across all simulations, new transmission never contributes more than 

2% of total system costs.  

Findings from Chapter II are likely generalizable to other regional electricity systems, 

particularly those along the U.S. Atlantic Coast that contain high population density areas with 

limited local or nearby renewable resources other than offshore wind power. Moreover, this type 

of system geography is likely replicated in inland states with access to expensive local solar 

generation and cheaper, more distant onshore wind generation. RTM simulations provide a 

useful reference point for similar settings: To achieve 50% renewable generation, 3-4 times more 

inexpensive generation distant from large load pockets (onshore wind) is required compared to 

more expensive generation collocated with high demand (offshore wind); however, the total 

investments in the different generation types are roughly equal.  

Similar to results from Chapter I, Chapter II also finds that system dependence on battery 

storage increases at higher renewable generation targets. At 65% renewable electricity, the value 

of energy storage in NYS is 2.5-3 times greater than at 50%. As near-term targets transition to 

longer-term goals, the amount of computed battery capacity increases substantially: While no 

battery capacity is required at 50% renewable generation, storage equal to 2 hours of average 

demand (18.7 GW) is installed at 65%, a quantity that increases to 16 hours of storage at 80%. 

Such rapidly increasing requirements indicate that some portion of storage capacity may be met 

by alternatives to batteries, including hydrogen storage.  
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Chapter III contains a study regarding integration of up to 30 GW of wind capacity in NYS. 

First, NYS hydropower resources are characterized using publicly available generation quantities, 

rated power capacities and reservoir sizes, and available streamflow data. Through optimization 

models that minimize gas generation in NYS, Chapter III next assesses the integration benefits of 

three types of system flexibility: flexible hydropower supply, flexible electricity supply and 

demand provided by pumped hydropower storage, and flexible demand provided by EVs. 

Flexibility is measured in terms of how much additional wind generation can be integrated into 

the NYS system with either 10 GW or 30 GW of wind capacity installed; solar capacity is set to 

600 MW in all scenarios considered. To compare across the flexibility types, a novel quantity is 

introduced, “Potential Flexible Energy” (PFE), a metric that measures average energy throughput 

(in MWh/h, which reduces to MW) for each type of system flexibility.  

For flexible supply, PFE equals the average amount of energy that flows into the 

hydropower reservoir over the analyzed time period. For flexible supply and demand, PFE equals 

the product of the facility’s power generation capacity and a maximum capacity factor, equal to 

0.45 after accounting for charging and discharging efficiencies. For flexible demand, PFE is set 

equal to the average hourly EV load. Flexibility types are compared for PFE = 1440 MW, a quantity 

equal to the average hydropower generation of all NYS hydropower resources besides the four 

largest which are individually characterized in the first portion of the chapter. Flexible 

hydropower and pumped storage power capacity is set to 3.2 GW, as this quantity multiplied by 

a capacity factor of 0.45 equals 1440 MW; reservoir capacity for these two types of storage is set 

equal to 24 times maximum generation (76.8 GWh). Here, 76.8 GWh of storage represents 

approximately 4 hours of average statewide load (18.7 GW). For demand flexibility, power 
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capacity is determined to be 6 times the average hourly EV load (8.64 GW), with the system able 

to meet daily load equal to 34.56 GWh (24 times the average hourly EV load) anytime between 

7pm and 7am.  

With 30 GW of wind capacity installed in NYS – corresponding to average uncurtailed 

generation of 9.4 GW in a system with average electricity demand of 18.7 GW – flexible 

hydropower supply increases average wind utilization by 470 MW, compared to a no-flexibility 

baseline (5.3 GW). In contrast, flexible supply and demand in the form of pumped hydropower 

storage integrates an additional 660 MW of wind generation on average, an approximate 10% 

increase. Accordingly, bidirectional pumped hydropower flexibility allows for increased 

utilization compared to unidirectional supply side flexibility. Here, the costs of 76.8 GWh of 

bidirectional storage are estimated to be approximately $10B, and 10% of the 30 GW of wind 

capacity to be approximately $4.5B. Together, these numbers indicate that pumped hydropower 

storage will not be a cost-effective method of integrating wind generation in NYS. In contrast, 

flexible hydropower supply may prove a more affordable option, for while this method of 

flexibility only integrates an additional 470 MW of wind power with 30 GW of installed capacity, 

the costs of unidirectional flexibility are much lower than bidirectional flexibility.  

Flexible EV demand (roughly equivalent to the daily use of 3.4 million passenger EVs or 

25% of statewide light-duty vehicles) increases wind utilization by 840 MW, both compared to 

the no-flexibility baselines. Compared to flexible hydropower and pumped storage, an equivalent 

amount of flexibility in the form of additional EV demand yields the largest increase in wind 

utilization, as this demand provides new sinks for wind generation during hours when it would 
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otherwise be curtailed. As such, we conclude that additional EV demand creates the largest 

amount of financial value for wind integration.  
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Nomenclature 
 
Fixed variables and parameters 
 
𝐴!!,#  capital annualization rate for annualization period P, technology x, and interest 

rate j [years-1] 
𝐶$%&'(&)*+,-. total cost of existing transmission and generation capacity over entire analysis 

period [$] 
𝐶/0$1   total fuel cost for fossil fuel-based generation over entire analysis period [$] 
𝐶*$)$2-(&3) total generation cost over entire analysis period [$] 
𝐶)$4+,-. total new capacity cost over entire analysis period [$] 
𝑐5&3,&   biofuel generated electricity price at node i [$/MWh] 
𝑐$%&'(&)*+2-6. existing fossil fuel-based generation ramping cost [$/MW-h] 
𝑐//,&   fossil fuel price at node i [$/MMBTU]  
𝑐78923,&  hydropower generated electricity price at node i [$/MWh] 
𝑐&6.,&   imported electricity price at node i [$/MWh] 
𝑐)$4+2-6. new fossil fuel-based generation ramping cost [$/MW-h] 
𝑐)0,,&   nuclear generated electricity price at node i [$/MWh] 
𝐶𝐴𝑃5-((+$,&  battery storage energy capital cost at node i [$/MWh] 
𝐶𝐴𝑃5-((+.,&  battery storage power capital cost at node i [$/MW] 
𝐶𝐴𝑃//,&  new fossil fuel-based generation capital cost at node i [$/MW] 
𝐶𝐴𝑃7:+$,&  hydrogen storage energy capital cost at node i [$/MWh] 
𝐶𝐴𝑃7:+.,&  hydrogen storage power capital cost at node i [$/MW] 
𝐶𝐴𝑃3),&  onshore wind power capital cost at node i [$/MW] 
𝐶𝐴𝑃3//,&  offshore wind power capital cost at node i [$/MW] 
𝐶𝐴𝑃0'+'31-2,&  utility-scale solar generation capital cost at node i [$/MW] 
𝐶𝐴𝑃(%,&&’ capital cost of upgraded transmission from node i to adjacent node i’ [$/MW-mi] 
𝐷$1$,,&(   existing electricity demand at node i and timestep t [MWh] 
𝐷7$-(,&(   electrified heating demand at node i and timestep t [MWh] 
𝐷7$-(,&
(,/011   full electrified heating demand at node i and timestep t [MWh] 

𝐷<$7,&(    vehicle charging demand at node i and timestep t [MWh] 
𝐷<$7,&
(,/011   full electric vehicle charging demand at node i and timestep t [MWh] 

𝐷<$7+/&%,&(  vehicle fixed charging demand at node i [MWh] 
𝐷<$7,&
9-&18  daily vehicle charging demand at node i [MWh] 

𝐷<$7+/&%,&
9-&18  daily vehicle fixed charging demand at node i [MWh] 

𝐷<$7+/1$%,&
9-&18   daily vehicle flexible charging demand at node i [MWh] 

𝐷<$7+(3(,&
9-&18  total daily vehicle charging demand at node i (fixed plus flexible) [MWh] 

𝑑&&’  distance between node i and adjacent node i’ [mi] 
𝐸𝑋,-.,&   annual cost of maintaining existing generation capacity at node i [$/MW-yr] 
𝐸𝑋(%,&   annual cost of existing transmission at node i [$/MWh-yr] 
𝐹  quantity of fuel consumed [MJ] 
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𝑓,+'  cubic spline function 
𝐻/&%,&(   fixed hydropower electricity generation at node i and timestep t [MWh] 
𝐻/1$%,&6-%   flexible hydropower maximum electricity generation at node i [MWh] 
𝐻/1$%,&
9-&18  daily flexible hydropower generation at node i [MWh] 

𝐻/&%,&
63)(718 monthly fixed hydropower generation at node i [MWh] 

𝐻/1$%,&
63)(718 monthly flexible hydropower generation at node i [MWh] 

𝐻(3(,&
63)(718

 monthly total hydropower electricity generation at node i (fixed plus flexible) 
[MWh] 

ℎ<$7+'(-2( electric vehicle charging start time 
ℎ<$7+$)9  electric vehicle charging end time 
ℎ<$7+6&) minimum number of hours required for full daily electric vehicle charging [hours] 
𝐼  set of all nodes in study region 
i  single node in the study region 
i’  node adjacent to i 
j   interest rate 
𝐿&
9-&18   daily biofuel generation at node i [MWh] 
𝐿&6-%		 biofuel maximum generation at node i [MWh] 
𝑙  transmission loss rate 
𝑚  day index 
𝑁&(  nuclear-generated electricity at node i [MWh] 
nyears  number of years in the analysis [years] 
𝑜𝑚𝑓//  new fossil fuel-based generation fixed operations and management cost   
  [$/MW-yr] 
𝑜𝑚𝑓7:   hydrogen storage fixed operations and management cost [$/MW-yr] 
𝑜𝑚𝑓3)  onshore wind power fixed operations and management cost [$/MW-yr] 
𝑜𝑚𝑓3// offshore wind power fixed operations and management cost [$/MW-yr] 
𝑜𝑚𝑓0'+'31-2   utility-scale solar power fixed operations and management cost [$/MW-yr] 
𝑜𝑚𝑓(%,&&"   fixed operations and management cost of upgraded transmission from node i to 

adjacent node i’ [$/MW-yr] 
𝑜𝑚𝑣// new fossil fuel-based generation variable operations and management cost 

[$/MWh] 
𝑃  annualization period [years] 
S  full set of onshore wind capacity sites 
s  single onshore wind capacity site 
𝑇  total number of hourly time steps in analysis  
t  hourly time step 
𝑈(%+/134,&
$%&'(&)*  annual existing intranodal transmission flow at node i [MWh] 

V&6-%  maximum hourly electricity import limit at node i [MWh] 
𝑊3//,&

(   potential offshore wind-generated electricity at node i and timestep t 
[MWhgeneration/MWinstalled] 

𝑊3),&
(   potential onshore wind-generated electricity at node i and timestep t 
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[MWhgeneration/MWinstalled] 
𝑊3),',&

(   potential onshore wind-generated electricity at site s in node i and timestep t 
[MWhgeneration/MWinstalled] 

𝑊5(6+'31-2,&
(  potential behind-the-meter solar-generated electricity at node i and timestep t 

[MWhgeneration/MWinstalled] 
𝑊0'+'31-2,&

(  potential utility-scale solar-generated electricity at node i and timestep t 
[MWhgeneration/MWinstalled] 

𝑋5(6+'31-2,&	 capacity of behind-the-meter solar generation (existing and newly simulated) at 
node i [MW] 

𝑋5-((+$,&
$%&'(&)* capacity of existing battery energy at node i [MWh] 

𝑋5-((+.,&
$%&'(&)* capacity of existing battery power at node i [MW] 

𝑋5&3,&
$%&'(&)* capacity of existing biofuel generation at node i [MW] 

𝑋,-.,&
$%&'(&)* capacity of existing generation with associated maintenance costs at node i 

[MW]  
𝑋//,&
$%&'(&)* capacity of existing fossil fuel-based generation at node i [MW] 

𝑋78923,&
$%&'(&)* capacity of existing hydropower generation at node i [MW] 

𝑋3//,&
$%&'(&)* capacity of existing offshore wind generation at node i [MW] 

𝑋3),&
$%&'(&)* capacity of existing onshore wind generation at node i [MW] 

𝑋)0,,&
$%&'(&)* capacity of existing nuclear generation at node i [MW] 

𝑋.'  hydropower pumped storage power capacity [MW]  
𝑋(%,&&"
$%&'(&)* capacity of existing transmission between node i and adjacent node i’ [MW] 

𝑋0'+'31-2,&
$%&'(&)*  capacity of existing utility-scale solar generation at node i [MW] 

𝑦  fraction 
h5-((  one-way battery storage efficiency 
h78923  one-way hydropower generation efficiency 
h7:  one-way hydrogen storage efficiency 
h//+$%&'(&)* fossil fuel-based generation efficiency of existing capacity 
h//+)$4 fossil fuel-based generation efficiency of new capacity 
h<$7  electric vehicle charging efficiency 
𝜀  emissions [CO2e] 
𝜃  emissions rate [CO2e/unit energy] 
k  storage self-discharge 
s  fossil fuel-based generation reserve requirement 
j.:$+5-((+6&) minimum possible battery storage power-to-energy ratio 
j.:$+5-((+6-% maximum possible battery storage power-to-energy ratio 
j.:$+7:+6&) minimum possible hydrogen storage power-to-energy ratio 
j.:$+7:+6-% maximum possible hydrogen storage power-to-energy ratio 
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Decision variables 
All variables are constrained to be greater than or equal to 0. 
 
𝐷<$7+/1$%,&(   vehicle flexible charging demand at node i and timestep t [MWh] 
𝐻/1$%,&(   flexible hydropower electricity generation at node i and timestep t [MWh] 
𝐸5-((,&(   aggregate battery storage state of charge at node i and timestep t [MWh] 
 
𝐸7:,&(   aggregate hydrogen storage state of charge at node i [MWh] 
𝐺$%&'(&)*,&(  fossil fuel-based generation from existing capacity at node i and timestep t 

[MWh] 
𝐺!"#$%#&'()#**,#%  absolute value of the difference in fossil fuel-based generation from existing 

capacity at node i between time steps t and t-1 [MWh] 
𝐺)$4,&(   fossil fuel-based generation from new capacity at node i and timestep t [MWh] 
𝐺)$4+9&//,&(  absolute value of the difference in fossil fuel-based generation from new 

capacity at node i between time steps t and t-1 [MWh] 
𝐿&(  biofuel generation at node i and timestep t [MWh] 
𝑁𝐿&(  netload at node i and timestep t [MWh] 
𝑉&(  imported electricity at node i and timestep t [MWh] 
𝑋5-((+$,&  battery storage energy capacity installed at node i [MWh] 
𝑋5-((+.,&  battery storage power capacity installed at node i [MW] 
𝑋//,&   capacity of fossil fuel-based generation installed at node i [MW] 
𝑋7:+$,&   hydrogen storage energy capacity installed at node i [MWh] 
𝑋7:+.,&   hydrogen storage power capacity installed at node i [MW] 
𝑋3//,&    capacity of offshore wind generation installed at node i [MW] 
𝑋3),&   capacity of onshore wind generation installed at node i [MW] 
𝑥3),',&   capacity of onshore wind generation installed at site s in node i [MW] 
𝑋0'+'31-2,&  capacity of utility-scale solar generation installed at node i [MW] 
𝑋(%,&&’  capacity of new transmission from node i to adjacent node i’ [MW] 
𝑍&&>(   electricity transmitted from node i to adjacent node i’ at timestep t [MWh] 
g5-((,&
(   increase in battery storage state of charge at node i and timestep t [MWh] 
g7:,&
(   increase in hydrogen storage state of charge at node i and timestep t [MWh] 
d5-((,&
(   decrease in battery storage state of charge at node i and timestep t [MWh] 
d7:,&
(   decrease in hydrogen storage state of charge at node i and timestep t [MWh] 
𝜁&(  renewable generation curtailment at node i and timestep t [MWh] 
 
Scenario configuration parameters 
 
RGT renewable electricity generation target: Fraction of total demand that must be 

met by renewable energy (combined wind, water, and solar power) 
𝐿𝐶𝑃 low-carbon electricity generation percent: Fraction of total demand that must be 

met by low-carbon energy (combined nuclear, wind, water, and solar power) 
PFE  potential flexible electricity  
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𝑝7$-(,&   fraction of full heating electrification demand simulated at node i  
𝑝<$7,&   fraction of full vehicle electrification demand simulated at node i  
𝜔  percent reduction in total greenhouse gas emissions 
 
 
Subscripts and superscripts 
(Note: Some fixed variables and parameters defined above are used in subscripts and 
superscripts. These terms are not redefined here.) 
 
batt  battery storage 
bg  Blenheim-Gilboa  
bio  biofuel 
btm  behind-the-meter 
diff  difference 
elec  electricity 
fix  fixed 
ff  fossil-fuel 
fh  flexible hydro 
flex  flexible 
gas  motor gasoline 
heat  heating 
h2  hydrogen storage 
imp  imports 
ind  industrial sector 
lew  Lewiston 
max  maximum 
nc  new capacity 
nia  Niagara 
ng  natural gas  
off  offshore wind 
on  onshore wind 
other  out-of-scope 
ps  pumped storage 
p2e  power-to-energy 
sh  small hydro 
stl  St. Lawrence   
tot  total 
transp  transportation sector 
tx  transmission 
us  utility scale 
veh  vehicle 
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Acronyms and abbreviations 
 
CEM  capacity expansion model 
CF  capacity factor 
CFM  comparative flexibility model 
FHM  flexible hydropower model 
GHG  greenhouse gas 
HVE  heating and vehicle electrification 
ISO  independent system operator 
LCOE  levelized cost of electricity 
NYS  New York State 
NREL  National Renewable Energy Laboratory 
PFE  potential flexible electricity  
PV  photovoltaic 
RGT  renewable generation target 
RTO   regional transmission organization 
SECTR  System Electrification and Capacity TRansition 
SECTR-NY System Electrification and Capacity TRansition – applied to New York State 
VRE  variable renewable energy  
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Chapter I: Assessing trade-offs among electrification and grid decarbonization in a 
clean energy transition: Application to New York State 

 
  
Abstract 
 

A modeling framework is presented to investigate trade-offs among decarbonization from 

increased low-carbon electricity generation and electrification of heating and vehicles. The model 

is broadly applicable but relies on high-fidelity parameterization of existing infrastructure and 

anticipated electrified loads; this study applies it to New York State where detailed data is 

available. Trade-offs are investigated between end-use electrification and renewable energy 

deployment in terms of supply costs, generation and storage capacities, renewable resource mix, 

and system operation. Results indicate that equivalent emissions reductions can be achieved at 

lower costs to the grid by prioritizing electrification with 40-70% low-carbon electricity supply 

instead of aiming for complete grid decarbonization. With 60% electrification and 50% low-

carbon electricity, approximately 1/3 emissions reductions can be achieved at current supply 

costs; with only 20% electrification, 90% low-carbon electricity is required to achieve the same 

emissions reductions, resulting in 43% higher grid costs. In addition, three primary cost drivers 

are identified for a system undergoing decarbonization: (1) decreasing per-unit costs of existing 

infrastructure with increasing electrified demand, (2) higher in-state generation costs from low-

carbon sources relative to gas-based and hydropower generation, and (3) increasing integration 

costs at high percentages of low-carbon electricity.  
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1. Introduction 
 

The United States is at a clean energy crossroads. Economically, per-unit costs of new 

solar and wind generation have become lower than coal and gas generation in parts of the 

country [2]. Policy-wise, several states have recently passed major climate legislation [3]. Public 

opinion mirrors these changes: A growing consensus acknowledges that a clean energy transition 

would have numerous social [4] and economic benefits [5]. As a result, support for sweeping 

federal action has reached new heights [6]. Even so, the cost-effectiveness of this transition will 

be influenced by region-specific nuances of legacy infrastructure, energy sources, and constraints 

[7]. This chapter proposes an open-source framework that offers a means to evaluate 

decarbonizing the electricity grid while considering electrification of heating and vehicles. The 

framework is then to New York State (NYS) to highlight trade-offs among dominant 

decarbonization options emblematic of a region with a well-defined electricity system and a 

variety of climates, renewable energy resources, and existing fossil fuel end-use needs.   

There is widespread consensus that coupling electrification of heating and vehicles with 

renewable energy expansion is the best approach to reducing energy-related greenhouse gas 

(GHG) emissions [8]. In fact, it is infeasible to meet deep decarbonization targets without both 

cleaning the grid and replacing current fossil fuel transportation and heating technologies with 

low-carbon alternatives [9]. However, less well understood are how prioritizing fossil fuel end-

use electrification or the percentage of electricity from low-carbon sources influences the cost-

effectiveness of emissions reductions, electrification’s potential benefits to the electricity 

system, and how transitioning existing heating and transportation infrastructure impacts hourly 

energy system operation.  
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Many energy system models seek to determine economically optimal technology mixes 

for future electricity scenarios, including those set in NYS [10]. Modeling unit commitment and 

dispatch [11] at the scale of individual generators [12] under varying degrees of foresight [13] can 

provide detailed operational understanding for a fully defined system. Capacity expansion 

models (CEMs) generally aggregate generators with similar characteristics in order to avoid the 

significant computational requirements of high spatial and temporal resolution models with 

capacities as decision variables [14]. The improved tractability of CEMs (often called “macro-

energy system models”[15] when applied to regional systems) allows them to incorporate a 

larger number of system characteristics [16]. CEMs have expanded to include additional 

technological options, demonstrating that higher fidelity to existing systems results in more 

accurate capacity expansion scenarios [17]. By modeling resource stochasticity, other CEMs find 

that optimal system design changes under uncertainty [18]. Moreover, the inclusion of 

environmental considerations shifts the deployment of renewable generation capacity compared 

to CEMs that do not account for land use limitations [19]. CEMs that simulate interconnected 

energy systems such as transportation [20] and heating [21] have modeled sector-wide clean 

energy transitions, showing that the interplay of different energy demands is critical in 

understanding decarbonization pathways. Nevertheless, because characterizing actual systems 

can be time-consuming (if sufficient information and data is even available), CEMs often do not 

contain high-fidelity parameterizations of all existing system conditions [21]. These shortcomings 

are particularly problematic for regional energy systems (e.g. at the Regional Transmission 

Organization (RTO) or Independent System Operator (ISO) scale) with unique existing 
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infrastructure and resource mixes that are likely to affect deep decarbonization efforts, as well 

as intra-regional heterogeneity that may not be captured in larger-scale models [22]. 

While CEMs have previously been used to investigate the impact of electrified loads on 

least-cost model decisions, there remain opportunities for improvements in methods and 

applications. A group of CEM-based studies by the U.S. National Renewable Energy Laboratory 

(NREL) explores the effects of electrification and decarbonization on model-selected energy 

infrastructure capacities [23], electricity cost [24], emissions [25], variable renewable electricity 

(VRE) integration [26], and electricity demand curves [27] in the continental US. These NREL 

studies use representative time slices in place of continuous time series to solve models with high 

spatial resolution, but this approach precludes thorough investigation of system operation. 

Similarly, a recent study on achieving net-zero emissions in the continental U.S. through 

expanded low-carbon electricity and end-use electrification simulates power sector operations 

at an hourly resolution for 41 representative days [22]; as with the NREL studies, representative 

time slices prevent a full accounting for system operation over a continuous time period. Other 

studies include continuous supply and demand time series to evaluate power flow for discrete 

scenarios (i.e. with fixed infrastructure capacities rather than optimal capacity expansion 

decision-making) to evaluate the effects of electrification on VRE integration [28]. Another study 

of this type applies a grid model introduced in [29] to evaluate the effects of electrified heating 

demand in California on both GHG emissions and grid resource capacity needs. Here, resource 

mixes are exogenously defined, and electricity costs in future electrification scenarios are not 

presented [30].  
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Recent studies of NYS have found that deep decarbonization is feasible using existing 

technologies, and that different pathways exist to a carbon neutral future [31]. One such report 

issued by New York’s Climate Action Council concludes that substantial progress on heating and 

vehicle electrification is required by 2030, and that nearly 100 GW of renewable generation 

capacity is required for full energy sector decarbonization by 2050 [32]. Related work uses a 

capacity expansion model and representative timeseries to show that battery storage will be 

required to ensure electricity reliability during a low-carbon transition [33]. However, these 

studies also list areas for future research, including incorporation of an updated GHG emissions 

assumptions accounting [31].  

A gap in the literature thus remains: An evaluation of both cost-optimal capacity 

expansion and system operation for a well-characterized existing regional energy system, under 

various combinations of electrification and low-carbon electricity adoption rates, using multiple 

years of real data, with improved emissions assumptions. Chapter I addresses this gap by 

introducing an open-source System Electrification and Capacity TRansition (SECTR) modeling 

framework. To determine optimal system characteristics, SECTR computes the lowest total cost 

of electricity generation, transmission, and storage resource mix for specified combinations of: 

(a) low-carbon electricity supply percentage, (b) building end-use and vehicle electrification, and 

(c) percent GHG emissions reduction. SECTR is designed to replicate existing system 

characteristics: spatially heterogeneous hourly electricity demands, generation technologies, and 

capital and operating costs; inter-nodal transmission limits; energy storage; temperature-

dependent electric vehicle charging demands; and electrified heating demand time series [34]. 

Agriculture and industrial emissions are included in GHG computations, but SECTR does not 
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endogenously model changes in those sectors. In this chapter, the SECTR framework is applied 

to New York State’s energy system (SECTR-NY). Lastly, for the SECTR-NY application, this chapter 

includes an emissions accounting that improves upon the accounting contained in current NYS 

reports, as it incorporates methane leakage and adopts the longer duration GHG warming 

potentials specified by a recent state climate law. 

  
2. Methodology 
 

Section 2 contains a description of the SECTR model general formulation, and the 

motivation for its application to New York State.  

 
2.1 System Electrification and Capacity Transition model general formulation 
 

A SECTR model study region is defined by individual nodes, i, representing geographical 

sub-areas within the larger region of interest. Along with existing electricity demand, each node 

contains electrified heatingi and vehicle charging loads at each timestep, t, within the overall time 

period simulated, T. To determine the least-cost infrastructure mix in future model scenarios, 

decision variables are assigned node-specific costs. SECTR uses a characterization of the region’s 

energy related GHG emissions as both a reference quantity for GHG emissions reduction 

computations and to compute the emissions impact of reduced fossil fuel usage associated with 

heating and vehicle electrification; the model does not consider improved efficiency or growth 

of fossil fuel end-uses. 

 
i Note that SECTR incorporates the ability to model shifts of any fossil fuel-based building end-use, which generally 
depend on heat in some form: In US residences, 93% of natural gas, 86% of propane, and 98% of fuel oil 
consumption is used for either space or water heating [332]; in commercial buildings, 78% of natural gas and 70% 
of fuel oil consumption is used for space or water heating [333]. As such, “heating” is used for short. 
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SECTR evaluates different low-carbon electricity supply and end-use electrification 

scenarios by computing the total cost of new and existing infrastructure capacity and 

maintenance, fuels, and resource operation to estimate the total annual cost of electricity 

generation and transmission; these returned costs do not include delivery expenses (primarily 

distribution system costs). The modeling framework does not include the cost of replacing 

current fossil fuel-based building systems and vehicles or electricity distribution system costs; as 

such, SECTR cost computations can be considered those that typically constitute the “supply” 

portion of a utility customer’s bill.  

The remainder of Section I-2.1 contains a subset of the SECTR governing equations that 

establish the model configuration, along with additional equations that define how costs and 

emissions are calculated. Section I-2.2 contains SECTR equations not used in any of the presented 

analysis; these constraints allow for additional model functionality in future applications.  

 
Objective function 
 

SECTR’s objective function minimizes the total annual electricity system supply cost based 

on specification of two of the following three configuration parameters: (1) minimum percent of 

in-state electricity generated from low-carbon resources, 𝐿𝐶𝑃; 2) minimum percent 

electrification of current fossil fuel-based heating, 𝑝7$-(, and vehicle electrification, 𝑝<$7; and (3) 

minimum GHG emissions reduction requirement, 𝜔. Eqs. (I-1) – (I-4) describe the objective 

function, where 𝐶)$4+,-. is the total cost of new capacity, 𝐶*$)$2-(&3)is the total cost of 

generation, and 𝐶$%&'(&)*+,-.  is the total cost of maintaining existing capacity:  

 
𝑜𝑏𝑗 = 	𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒L𝐶)$4+,-. +	𝐶*$)$2-(&3) +	𝐶$%&'(&)*+,-.N		 
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(I-1) 
 
𝐶)$4+,-. = 𝑛8$-2'

∗PQ(𝐴!#$,# ∗ 𝐶𝐴𝑃3),& +	𝑜𝑚𝑓3)) ∗ 𝑋3),&	 +	(𝐴!#%%,# ∗ 𝐶𝐴𝑃3//,& +	𝑜𝑚𝑓3//)
&∈@

∗ 𝑋3//,&	 +	(𝐴!&'('#)*+,# ∗ 𝐶𝐴𝑃0'+'31-2,& +	𝑜𝑚𝑓0'+'31-2) ∗ 𝑋0'+'31-2,&	
+	(𝐴!,*--,# ∗ 𝐶𝐴𝑃5-((+$,&) ∗ 𝑋5-((+$,&	 +		(𝐴!,*--,# ∗ 𝐶𝐴𝑃5-((+.,&) ∗ 𝑋5-((+.,&	
+	(𝐴!%%,# ∗ 𝐶𝐴𝑃//,& 	+ 𝑜𝑚𝑓//) ∗ 𝑋//,& 	

+ 		P(𝐴!-!,# ∗ 𝐶𝐴𝑃(%,&&" ∗ 𝑑&&" + 𝑜𝑚𝑓(%,&&") ∗ 𝑋(%,&&"
&"

T		

(I-2) 
 

𝐶*$)$2-(&3) =	PPU𝑐78923,& ∗ L𝐻/&%$9,&( +	𝐻/1$%,&( N +	𝑐)0,,& ∗ 𝑁&( 	+ 	𝑐5&3,& ∗ 𝐿&( 	+ 	𝑐&6.,& ∗ 𝑉&(

(∈A&∈@

+ 	3.412 ∗ 𝑐//,& ∗ [
𝐺$%&'(&)*,&(

h//+$%&'(&)*
+

𝐺)$4,&(

h//+)$4
\ 	+	𝑜𝑚𝑣// ∗ 𝐺)$4,&( +	𝑐$%&'(&)*+2-6.

∗ 𝐺$%&'(&)*+9&//,&( +	𝑐)$4+2-6. ∗ 𝐺)$4+9&//,&( ]		 

(I-3) 
 

𝐶$%&'(&)*+,-. =	𝑛8$-2' ∗P^𝐸𝑋,-.,& ∗ 𝑋,-.,&
$%&'(&)* +	𝐸𝑋(%,& ∗ 	𝑈(%+/134,&

$%&'(&)* 	_
&∈@

 

(I-4) 
 
Levelized cost of electricity calculations 
 

The levelized cost of electricity (LCOE) is calculated per Eq. (I-5): 

 

𝐿𝐶𝑂𝐸 = 	
𝐶)$4+,-. +	𝐶*$)$2-(&3) +	𝐶$%&'(&)*+,-.

∑ ∑ ^D$1$,,&( +	D7$-(,&( +	D<$7,&( −	𝑋5(6+'31-2,&	 ∗ 	𝑊5(6+'31-2,&
( _&∈@ 	(∈A

 

(I-5) 
 

Note that the LCOE is simply the total electricity supply cost divided by the total electricity 

demand, after subtracting contributions from behind-the-meter (BTM) solar generation. LCOE is 

used as a general comparative metric between scenarios. 
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Capital cost annualization 
 

For a given technology, x, the annualization rate (𝐴!!,#) associated with the capacity cost, 

CAPx, is computed from a technology-specific annualization period (𝑃%) and a 5% interest rate (𝑗), 

per Eq. (I-6).   

 

𝐴!!,# 	=
𝑗 ∗ (1 + 𝑗)!!
((1 + 𝑗)!! − 1)	

(I-6) 
 
Heating and vehicle electrification 
 

Hourly demands for electrified heating, 𝐷7$-(,&( , are based on the nodal percentage of 

heating electrification, 𝑝7$-(,&, and user-provided nodal electricity demands for full heating 

electrification, 𝐷7$-(,&
(,/011 , per Eq. (I-7). 

 
𝐷7$-(,&( =	𝑝7$-(,& ∗ 	𝐷7$-(,&

(,/011   
(I-7) 

 
Electric vehicle demand at each time step, 𝐷<$7,&( , is based on the nodal percentage of 

vehicle electrification, 𝑝<$7,&, and user-provided nodal electricity demands for full vehicle 

electrification, 𝐷<$7,&
(,/011, per Eq. (I-8).  

 
𝐷<$7,&( =	𝑝<$7,& ∗ 𝐷<$7,&

(,/011 	
(I-8) 

  
Energy balance constraint 
 

The nodal energy balance is constrained by the following inequality, with all variables 

defined in the Nomenclature: 
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(𝑋3),&	 + 	𝑋3),&
$%&'(&)*) ∗ 	𝑊3),&

( +	(𝑋3//,&	 + 	𝑋3//,&
$%&'(&)*) ∗ 	𝑊3//,&

( +	(𝑋0'+'31-2,& + 	𝑋0'+'31-2,&
$%&'(&)* )

∗ 	𝑊0'+'31-2,&
( +	𝑋5(6+'31-2,&	 ∗ 	𝑊5(6+'31-2,&

( +	𝐻/1$%,&( + 𝐻/&%$9,&( + 𝑁&(

+ 𝐺$%&'(&)*,&( +	𝐺)$4,&	( +	𝐿&( +		𝑉&( −	𝛾5-((,&( +	𝛿5-((,&(  

+P[
&"

(1 − 𝑙) ∗ 𝑍&"&
( −	𝑍&&"

( ] 	≥ D$1$,,&( + D7$-(,&( + 𝐷<$7,&(  

(I-9) 
 

The low-carbon electricity generation curtailment is computed from the slack in this 

constraint at each node.  

 
Low-carbon electricity generation targets 
 

For certain SECTR configurations, the user selects a low-carbon percent (LCP) – a 

minimum percentage of in-state electricity supply from onshore and offshore wind, hydropower, 

solar, and nuclear power after subtracting out contributions from BTM generation; the electricity 

generated from fossil fuels and biofuels over the full simulation period is thus constrained per 

Eq. (I-10).  

 

PPL𝐺$%&'(&)*,&( +	𝐺)$4,&	( + 𝐿&	( N
&∈@(∈A

≤ (1 − 𝐿𝐶𝑃) ∗ 

	PP^D$1$,,&( +	D7$-(,&( +	D<$7,&( − 𝑉&( −	𝑋5(6+'31-2,&	 ∗ 	𝑊5(6+'31-2,&
( _

&∈@

	
(∈A

 

(I-10) 
 
 
Emission reduction calculations and assumptions 
 

In-region electricity generation emissions are calculated with emissions rate of fossil fuel-

based generation, 𝜃// , and generation from existing, 𝐺$%&'(&)*,&( , and new, 𝐺)$4,&( , fossil fuel 

plants, after accounting for their respective efficiencies, h//+$%&'(&)*	and h//+)$4. Emissions 

from imported electricity are determined by the product of the emissions rate of imports, 𝜃&6.,&, 
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and the quantity of imports, 𝑉&(. Together, emissions from in-region generated electricity and 

imports are summed over all nodes i and timesteps t to compute total electricity related GHG 

emissions, 𝜀$1$,, for each scenario, per Eq. (I-11). 

 

𝜀$1$, =	PPU𝜃// ∗ [
𝐺$%&'(&)*,&(

h//+$%&'(&)*
+	

𝐺)$4,&(

h//+)$4
\ +	𝜃&6.,& ∗ 𝑉&(	]

&∈@(∈@

 

(I-11) 
 

GHG emissions of remaining fossil fuel heating, 𝜀7$-(, are equal to product of the 

complement of the heating electrification fraction simulated, 𝑝7$-(,&; the blended emissions rate 

for heating, 𝜃7$-(; and the total quantity of heating fuel consumed 𝐹7$-(,(3(,&. This quantity is 

summed over all nodes i and is computed per Eq. (I-12): 

 

𝜀7$-( =P	L1 − 𝑝7$-(,&N ∗ 𝜃7$-( ∗ 𝐹7$-(,(3(,&
&∈@

 

(I-12) 
 
 

GHG emissions of non-electrified vehicles, 𝜀<$7,  are calculated per Eq. (I-13). This 

accounting is analogous to that for heating emissions, using the fraction of vehicle electrification 

simulated,	𝑝<$7,&; the blended emissions rate for vehicles, 𝜃<$7; and the total quantity of vehicle 

fuel consumed, 𝐹<$7,(3(,&. Total transportation sector emissions also include existing 

transportation emissions outside the scope of the current analysis, 𝜀(2-)'.,3(7$2, per Eq. (I-14): 

 

𝜀<$7 =	PL1 − 𝑝<$7,&N ∗ 𝜃<$7 ∗ 𝐹<$7,(3(,&
&∈@

 

(I-13) 
 

𝜀(2-)'. =	𝜀<$7 +	𝜀(2-)'.,3(7$2 	
(I-14) 
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Industrial sector emissions from energy consumption, 𝜀&)9, are added to compute total 

GHG emissions. Emissions from the incineration of waste are excluded from the specific 

formulations of future energy scenarios. To compute the overall percent reduction in GHG 

emissions, 𝜔, SECTR compares total computed emissions to the user-provided reference 

quantity, 𝜀2$/$2$),$  per Eq. (I-15). 

 

𝜔 =	
𝜀2$/$2$),$ 	− (𝜀$1$, +	𝜀7$-( +	𝜀(2-)'. +	𝜀&)9)

𝜀2$/$2$),$
	

(I-15) 
 
Characterization of fossil fuel generation 
 

Fossil fuel-based electricity generation from existing, 𝑋//,&
$%&'(&)*, and new, 𝑋//,&, capacity is 

modeled. In scenarios where 𝑋//,&  is selected, all new generation is provided by simple cycle gas 

turbines, because of the very low load factors of peak load increases with heating and vehicle 

electrification [35]. Existing fossil fuel-based generation efficiency, h//+$%&'(&)*, is determined 

from historical data; new gas turbine efficiency, h//+)$4, is based on advanced combustion 

turbines [36]. Fossil fuel generation costs are computed per Eq. (I-16). 

 

𝐶/0$1 =	PP3.412 ∗ 𝑐//,& ∗ [
𝐺$%&'(&)*,&(

h//+$%&'(&)*
+

𝐺)$4,&(

h//+)$4
\

&∈@(∈A

 

(I-16) 
 

A capacity reserve margin on 𝑋//,&
$%&'(&)* and 𝑋//,&  is also imposed:  

 
𝑋//,&
$%&'(&)* 	≥ (1 + 	s) ∗ 	𝐺$%&'(&)*,&( 	 

(I-17) 
 

𝑋//,& ≥ (1 + 	s) ∗ 	𝐺)$4,&(  
(I-18) 
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To avoid significant increases in computation time, fossil fuel-based generation start-up 

costs are linearized as ramping costs, 𝑐//+2-6., on a per-MW per-hour basis ($/MW-h); this 

quantity is applied to 𝐺)$4+9&//,&(  and 𝐺$%&'(&)*+9&//,&( , variables which represent the absolute 

value of the hourly change in gas generation (Eqs. (I-19 and I-20)). Ramping limitations are not 

imposed on the gas generators [37].  

 
𝐺$%&'(&)*+9&//,&( = |	𝐺$%&'(&)*,&( −	𝐺$%&'(&)*,&(+B 	|	

(I-19) 
 

𝐺)$4+9&//,&( = |	𝐺)$4,&( −	𝐺)$4,&(+B 	|	
(I-20) 

 
 
Wind capacity 
 

Both new onshore, 𝑋3),&, and offshore, 𝑋3//,&, wind capacities are simulated, and are 

limited by resource availability and maximum capacity available at each node (onshore, Eq. (I-

21)) or within the study region (offshore, Eq. (I-22)):  

 
 

𝑋3),&
$%&'(&)* + 𝑋3),& 	≤ 𝑋3),&6-%	

(I-21) 
 

PL𝑋3//,&
$%&'(&)* + 	𝑋3//,&N

&∈@

≤ 𝑋3//6-% 

(I-22)	
   
Solar capacity 
 

Node-specific BTM solar capacity, 𝑋5(6+'31-2,&, produces fixed generation at each node 

equal to the product of user-imposed capacity and the supplied generation potential time series, 

	𝑊5(6+'31-2,&
( . BTM solar is treated as must-run.  
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Utility-scale solar capacity is constrained per Eq. (I-23): 

 
𝑋0'+'31-2,&
$%&'(&)* + 𝑋0'+'31-2,& 	≤ 𝑋0'+'31-2,&6-% 	

(I-23) 
 
Internodal transmission 
 

The cost of maintaining existing transmission capacity is based on user inputs for historical 

transmission costs and flows. Costs of new transmission capacity are defined for each internodal 

interface. Transmission losses of 3% between adjacent nodes are assumed, and a nominal cost 

of transmission ($0.01/MWh) is applied. Eq. (I-24) limits internodal transmission flow,	𝑍&&"
( 	, to 

the combined capacity of existing, 𝑋(%,&&"
$%&'(&)*,and new,  𝑋(%,&&", transmission: 

 
𝑍&&"
( 	≤ 𝑋(%,&&"

$%&'(&)* + 𝑋(%,&&" 	
(I-24) 

 
Battery storage  
 

Energy storage is based on lithium-ion batteries and is modeled as bulk storage at each 

node. Modeled batteries are constrained to a power-to-energy ratio,j.:$+5-((, and a single 

efficiency, 𝜂5-((, applied on both charge and discharge. A nominal $0.01/MWh cost is attached 

to battery charge, 𝛾5-((,&( , and discharge, 𝛿5-((,&( ;	storage self-discharge, k, is also included. Battery 

storage constraints are presented in Eqs. (I-25) – (I-29). 

 
𝛿5-((,&(

𝜂5-((
−	𝜂5-(( ∗ 𝛾5-((,&( = (1 − k) ∗ 	𝐸5-((,&A − 𝐸5-((,&( 		, ∀𝑡 = 0 

(I-25a) 
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𝛿5-((,&(

𝜂5-((
−	𝜂5-(( ∗ 𝛾5-((,&( = (1 − k) ∗ 	𝐸5-((,&(+B − 𝐸5-((,&( 		, ∀𝑡 > 0 

(I-25b) 
 
 

𝐸5-((,&( ≤ 𝑋5-((+$,& + 𝑋5-((+$,&
$%&'(&)* 

(I-26) 
 

𝛾5-((,&( ≤ 𝑋5-((+.,& + 𝑋5-((+.,&
$%&'(&)* 

(I-27) 
 

𝛿5-((,&( ≤ 𝑋5-((+.,& + 𝑋5-((+.,&
$%&'(&)* 

(I-28) 
 

j.:$+5-((+6&) ∗ (𝑋5-((+.,& + 𝑋5-((+.,&
$%&'(&)*) ≤ 𝑋5-((+$,& + 𝑋5-((+$,&

$%&'(&)*

≤ j.:$+5-((+6-% ∗ (𝑋5-((+.,& + 𝑋5-((+.,&
$%&'(&)*) 

(I-29) 
 

In the SECTR formulation, storage self-discharge and nominal storage charge and 

discharge costs are included to limit the number of unique model solutions, thereby allowing the 

model to find an optimal solution more quickly. In the case where excess low-carbon generation 

is available over a period of hours, storage self-discharge reduces the number of ways to fully 

charge the storage to a single, unique schedule. As storage technologies undergo self-discharge 

in reality, the self-discharge parameter better allows SECTR to simulate likely battery operation. 

Moreover, when excess low-carbon generation is available and battery storage is fully charged, 

without nominal storage charge and discharge costs, nothing prevents the model from 

discharging the batteries, curtailing that energy, and then using the excess generation to 

recharge the batteries. Nominal charge and discharge costs prevent this type of unnecessary 

operation.  
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Nuclear generation 
 

Nodal nuclear generation, 𝑁&( is modeled as constant based on a user input value and is 

treated as must-run.  

 
Hydropower generation 
 

SECTR includes modules for both fixed and flexible hydropower operation per [10].  

Monthly hydropower generation is split into fixed, 𝐻/&%,&
63)(718, and flexible, 𝐻/1$%,&

63)(718 quantities 

based on the nodal fraction of hydropower to be considered fixed, 𝑦/&%,&, as shown in Eqs. (I-30) 

– (I-31); both monthly generation quantities are fit with cubic splines, 𝑓,+', per Eqs. (I-32) – (I-

33):  

 
𝐻/&%,&
63)(718 = 𝑦/&%,& ∗ 𝐻(3(,&

63)(718	
(I-30) 

 
𝐻/1$%,&
63)(718 = (1 − 𝑦/&%,&) ∗ 𝐻(3(,&

63)(718	
(I-31) 

 
𝐻/&%,&( = 𝑓,+'(𝐻/&%,&

63)(718)	
(I-32) 

 
𝐻/1$%,&
9-&18 = 𝑓,+'(𝐻/1$%,&

63)(718)	
(I-33) 

 

While fixed hydropower generation time series, 𝐻/&%,&( , are treated as must-run, flexible 

hydropower generation, 𝐻/1$%,&( , can vary throughout the day to meet a daily nodal total, 𝐻/1$%,&
9-&18, 

per Eqs. (I-34) – (I-35).   
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P 𝐻/1$%,&(

:C∗(6FB)

(HBF:C6

= 𝐻/1$%,&
9-&18	, 𝑚 = 0. .

𝑇
24 − 1	 

(I-34) 
 

𝐻/1$%,&( ≤ 𝐻/1$%,&6-% 		 
 (I-35) 

 
Biofuel generation 
 

Biofuel generation, 𝐿&(, is assumed to have flexible operation, and can meet up to a set 

amount of daily generation,  𝐿&
9-&18, without exceeding a nodal limit, 𝐿&6-%, at any time step per 

Eqs. (I-36) – (I-37): 

 

P 𝐿&(
:C∗(6FB)

(HBF:C6

≤ 𝐿&
9-&18	, 𝑚 = 0. .

𝑇
24 − 1	 

(I-36) 
 

𝐿&( ≤ 𝐿&6-%		 
(I-37) 

  
Interregional imports 
 

Electricity imports into the study region, 𝑉&(, are allowed at each node. All interregional 

imports are subject to a maximum limit, 𝑉&6-%, per Eq. (I-38):  

 
𝑉&( ≤ 𝑉&6-%	

(I-38) 
 

Existing generation capacity costs 
 

A fixed cost, 𝐸𝑋,-.,&, is applied to eligible existing generation capacity, 𝑋,-.,&
$%&'(&)*, per Eq. 

(I-4). All existing hydropower, nuclear, fossil-fuel, and biofuel capacity is included in this 

approach, per Eq. (I-39). 
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𝑋,-.,&
$%&'(&)* =	𝑋78923,&

$%&'(&)* +	𝑋)0,,&
$%&'(&)* +	𝑋*(,&

$%&'(&)* +	𝑋5&3,&
$%&'(&)*	

(I-39) 
 
 
2.2 Model framework additional modeling capabilities  
 

The SECTR framework has additional modeling capabilities not used in any of the SECTR-

NY results. These capabilities are detailed in the following paragraphs.  

 
Objective function  
 

With the inclusion of hydrogen storage energy and power capacity as SECTR decision 

variables, the total cost of new capacity is presented in Eq. (I-40): 

 
𝐶)$4+,-. = 𝑛8$-2'

∗PQ(𝐴!#$,# ∗ 𝐶𝐴𝑃3),& +	𝑜𝑚𝑓3)) ∗ 𝑋3),&	 +	(𝐴!#%%,# ∗ 𝐶𝐴𝑃3//,& +	𝑜𝑚𝑓3//)
&∈@

∗ 𝑋3//,&	 +	(𝐴!&'('#)*+,# ∗ 𝐶𝐴𝑃0'+'31-2,& +	𝑜𝑚𝑓0'+'31-2) ∗ 𝑋0'+'31-2,&	
+	(𝐴!,*--,# ∗ 𝐶𝐴𝑃5-((+$,&) ∗ 𝑋5-((+$,&	 +		(𝐴!,*--,# ∗ 𝐶𝐴𝑃5-((+.,&) ∗ 𝑋5-((+.,&	
+	(𝐴!./,# ∗ 𝐶𝐴𝑃7:+$,& 	+ 𝑜𝑚𝑓7:) ∗ 𝑋7:+$,&	 +		(𝐴!./,# ∗ 𝐶𝐴𝑃7:+.,& 	) ∗ 	𝑋7:+.,&	
+	(𝐴!%%,# ∗ 𝐶𝐴𝑃//,& 	+ 𝑜𝑚𝑓//) ∗ 𝑋//,& 	

+ 		P(𝐴!-!,# ∗ 𝐶𝐴𝑃(%,&&" ∗ 𝑑&&" + 𝑜𝑚𝑓(%,&&") ∗ 𝑋(%,&&"
&"

T		

(I-40) 
 
 

The second SECTR objective function minimizes the levelized cost of electricity (LCOE) 

according to Eq. (I-41), where LCOE is defined in Eq. (I-5). When this second objective function is 

applied, the user specifies a greenhouse gas (GHG) emission reduction, and SECTR determines 

the combination of low-carbon electricity percent (LCP) and heating and vehicle electrification 

rate (HVE) that allows for the lowest LCOE:   
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𝑜𝑏𝑗: = 	𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒(𝐿𝐶𝑂𝐸) 
(I-41) 

 
Energy balance constraint 
 

With the inclusion of hydrogen storage charge and discharge capabilities, nodal energy 

balance is constrained per Eq. (I-42):   

  
 
 
(𝑋3),&	 + 	𝑋3),&

$%&'(&)*) ∗ 	𝑊3),&
( +	(𝑋3//,&	 + 	𝑋3//,&

$%&'(&)*) ∗ 	𝑊3//,&
( +	(𝑋0'+'31-2,& + 	𝑋0'+'31-2,&

$%&'(&)* )
∗ 	𝑊0'+'31-2,&

( +	𝑋5(6+'31-2,&	 ∗ 	𝑊5(6+'31-2,&
( +	𝐻/1$%,&( + 𝐻/&%$9,&( + 𝑁&(

+ 𝐺$%&'(&)*,&( +	𝐺)$4,&	( +	𝐿&( +		𝑉&( −	𝛾5-((,&( +	𝛿5-((,&( −		𝛾7:,&( +	𝛿7:,&(  

+P[
&"

(1 − 𝑙) ∗ 𝑍&"&
( −	𝑍&&"

( ] 	≥ D$1$,,&( + D7$-(,&( + 𝐷<$7,&(  

(I-42) 
 
 
Renewable electricity generation targets 
 

In SECTR simulations, users can also select a renewable generation target (RGT) – a 

minimum percentage of electricity from onshore and offshore wind, hydropower, and solar. 

Accordingly, the maximum allowable electricity generated from fossil fuels, biofuels, and nuclear 

power over the full simulation period is constrained per Eq. (I-43). 

 

PPL𝐺$%&'(&)*,&( +	𝐺)$4,&	( + 𝐿&( + 𝑁&(N
&∈@(∈A

≤ (1 − 𝑅𝐺𝑇) ∗ 

	PP^D$1$,,&( +	D7$-(,&( +	𝐷$<,& − 𝑉&( −	𝑋5(6+'31-2,&	 ∗ 	𝑊5(6+'31-2,&
( _

&∈@

	
(∈A

 

(I-43)  
 
Flexible charging of electrified vehicle demand 
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SECTR includes another formulation for electric vehicle charging in which D<$7,&(  can be 

computed as the sum of a fixed electric vehicle demand, 𝐷<$7+/&%,&( , and a flexible electric vehicle 

demand, 𝐷<$7+/1$%,&( , per Eq. (I-44): 

 
D<$7,&( =	𝐷<$7+/&%,&( +	𝐷<$7+/1$%,&(  

(I-44) 
 

This formulation uses a daily nodal vehicle electricity requirement, 𝐸<$7,&
9-&18, calculated as 

the product of the nodal percentage of vehicle electrification (user-defined or computed, 

depending on model configuration),  𝑝<$7,&, and user-provided daily nodal electricity requirement 

for full vehicle electrification, 𝐸<$7,&
9-&18,/011, per Eq. (I-45). 

 
𝐸<$7,&
9-&18 =	𝑝<$7,&  * 𝐸<$7,&

9-&18,/011  
(I-45) 

 
Here, SECTR allows flexibility in meeting daily vehicle electrification energy requirements. 

Users can split daily vehicle electricity energy demand, 𝐸<$7,&
9-&18, into flexible, 𝐸<$7+/1$%,&

9-&18 , and fixed, 

𝐸<$7+/&%,&
9-&18 , portions based on a provided fraction of daily vehicle electricity requirement allowed 

to be flexible, 𝑦<$7+/1$%, as shown in Eqs. (I-46). 

 
𝐸<$7+/1$%,&
9-&18 = 𝑦<$7+/1$% ∗ 𝐸<$7,&

9-&18 
(I-46) 

 
𝐸<$7+/&%,&
9-&18 = (1 − 	𝑦<$7+/1$%) ∗ 𝐸<$7,&

9-&18 
(I-47) 

 
In determining hourly flexible vehicle charging demand, 𝐷<$7+/1$%,&( , SECTR requires that 

the user provide a timestep for the hour at which daily charging can start, ℎ<$7+'(-2( and a 
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timestep indicating the last hour at which charging is allowed,	ℎ<$7+$)9. The standard SECTR 

formulation establishes a lower limit of 4 hours, ℎ<$7+6&), for full daily flexible EV charging. The 

flexible vehicle charging and power constraints are shown below: 

 

P 𝐷<$7+/1$%,&( =
𝐸<$7+/1$%,&
9-&18

h<$7
	 , 𝑓𝑜𝑟	𝑚 = 0. .

𝑇
24 − 1

701.(1$2

(H		701.('-*+-

 

(I-48) 
 

𝐷<$7+/1$%,&( 	≤
𝐸<$7+/1$%,&
9-&18

ℎ<$7+6&)	
 

(I-49) 
 

To determine the hourly fixed vehicle charging demand, 𝐷<$7+/&%,&( , the daily fixed 

vehicle charging load is split equally across the same charging period. The fixed charging 

constraint is shown in Eq. (I-50): 

 

𝐷<$7+/&%,&( =
I01.(%3!,3
2*3)5

h01.∗	(701.(1$2+	701.('-*+-FB)
		 , 𝑓𝑜𝑟	𝑡 = (ℎ<$7+'(-2( + 24𝑚)	. . (ℎ<$7+$)9 + 24𝑚),	  

𝑓𝑜𝑟	𝑚 = 	0. . A
:C
− 1  

(I-50) 
 
Hydrogen storage 
 

Long-term energy storage capabilities are modeled based on potential future system 

costs of grid-scale power-to-gas (P2G) with hydrogen (H2) gas: H2 produced by electrolysis, 𝛾7:,&( ; 

availability of a low-cost gas storage reservoir, 𝐸7:,&( ; and electricity generated by H2 combustion 

in a gas turbine, 𝛿7:,&( . Nodal per-unit power capacity, 𝐶𝐴𝑃7:+.,&, and energy capacity, 𝐶𝐴𝑃7:+$,&, 

cost components are assigned. Hydrogen storage efficiency, 𝜂7:,  is applied on both charge and 

discharge. A self-discharge rate, k, is also included.  

 



 

 37 

SECTR places no constraints on the hydrogen storage power-to-energy ratio. Hydrogen 

storage energy balance, 𝐸7:,&( ; power capacity, 𝑋7:+.,&; energy capacity, 𝑋7:+$,&; charging, 𝛾7:,&( ; 

and discharging, 𝛿7:,&( , constraints are shown in Eqs. (I-51) – (I-54).  

 
𝛿7:,&(

𝜂7:
−	𝜂7: ∗ 𝛾7:,&( = (1 − k) ∗ 𝐸7:,&A − 𝐸7:,&( 		, ∀𝑡 = 0 

 
(I-51a) 

 
𝛿7:,&(

𝜂7:
−	𝜂7: ∗ 𝛾7:,&( = (1 − k) ∗ 𝐸7:,&(+B − 𝐸7:,&( 		, ∀𝑡 > 0 

 
(I-51b) 

 
𝐸7:,&( ≤ 𝑋7:+$,&  

(I-52) 
 

𝛾7:,&( ≤ 𝑋7:+.,&  
(I-53) 

 
𝛿7:,&( ≤ 𝑋7:+.,&  

(I-54) 
 

Identical to the treatment of battery storage, hydrogen storage self-discharge and 

nominal charging and discharging costs are included to limit the number of unique model 

solutions for a given SECTR configuration.  

 
Flowchart summary for running a SECTR model scenarios 
 

Figure I-1 presents a flowchart that summarizes the main steps for a user – broadly 

defined as anyone defining or executing a SECTR configuration – to instantiate and solve SECTR 

model scenarios. In short, after defining the fixed variables and parameters (see Nomenclature), 

specifying two of the three scenario configuration parameters – low-carbon electricity percent, 
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𝐿𝐶𝑃; heating and vehicle electrification (HVE) rates 𝑝7$-( and 𝑝<$7; and GHG reduction, 𝜔 – 

allows SECTR to determine the cost-optimal energy system design for a future decarbonization 

scenario.   

 

 
 
Figure I-1: Flowchart for instantiating and solving SECTR general formulation model scenarios.  
 
 
2.3 Application to New York State 
 

 The SECTR framework is applied to New York State (SECTR-NY), which provides a useful study 

area for several reasons, including: 

● A 2019 law [1] mandating significant, quantifiable decarbonization targets in the years 

2030, 2040, and 2050. 
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● A single electricity supply system operator and market administrator – the New York 

Independent System Operator (NYISO) – covering the extent of New York State. 

● Well-defined transmission interfaces, both internal (between NYISO zones) and external 

(imports/exports between NYISO and other load areas). 

● Diverse and geographically heterogeneous loads and potential renewable resources. 

● Definable effects of population and built environment density on current system costs 

and documented costs of new infrastructure capacity. 

● Extensive data availability for the current electricity system and statewide GHG emissions. 

 
Four nodes are defined for NYS by grouping NYISO zones based on the state’s major 

transmission interfaces (see Figure I-1). The existing system is generally defined by the most 

recent reference data available; however, load and weather time series data for 2007-2012 are 

used in the model formulation because the reference model data for hourly wind and solar 

resource potential are available for only those years. Monthly characteristics of electricity supply 

and demand time series over the six modeled years are shown in Figure I-2.  
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Figure I-2: (a) monthly averages of hourly electricity demand, (b) monthly peak of hourly 
electricity demand, and (c) monthly capacity factors for wind and solar resources in NYS. 
 
 

The subsections below detail the SECTR-NY parameterization, including descriptions of all 

data sources used and model data development. In SECTR-NY, New York State (NYS) is split into 
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four nodes based on the major transmission interfaces of the New York Independent System 

Operator (NYISO) control area; these nodes are shown in Figure I-1.  

In all simulations, low cost estimates are adopted for the technologies with multiple 

estimates available. All new generation technologies are annualized with a 20-year annualization 

period; all storage technologies are annualized with a 10-year annualization period. All model 

constraints presented in Sections I-2.1 and I-2.2 that contain variables with nodal indexing are 

applied over all nodes in the study region; constraints which contain variables with temporal 

indexing are applied over all timesteps in the study period. 

  
Nodal electricity demands 
 

The existing electricity demand used is the 2007-2012 demand in each NYISO load zone 

[38], aggregated at each node per Figure I-1; the average existing statewide demand is 18,655 

MWh/h. Table I-1 shows average and peak electricity demands at each node. Current electricity 

demands include some amount of electricity usage for heating and very limited use for passenger 

vehicles. Here, new electricity demands from converting current fossil fuel end-uses in buildings 

and on-road vehicles to electric technologies are also considered. (As discussed in the Section I-

2.1, fossil fuel end-uses in buildings are thermal and dominated by space heating, “heating” is 

used for short.) 

Nodal electricity demands for heating fossil fuel conversion to electric heat pumps (EHPs) 

are based on a nationwide building heating model described in detail in a recently published 

paper [34] and applied to 2007-2012 temperature data [39]. To convert fossil fuel demands to 

thermal loads, current average fossil fuel equipment efficiencies of 82% for space heating and 

58% for DHW are assumed based on average values for “Installed Base” equipment from the US 
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Energy Information Administration (EIA) [40]. The temperature-dependent coefficient of 

performance (COP) of new EHPs is based on the 90th percentile performance of EHPs in a regularly 

updated database of “cold climate” EHPs [41] and modeled per [39]. The COP of domestic hot 

water (DHW) EHPs was assumed to be a constant 2.32 based on the highest field-validated 

product performance from an National Renewable Energy Laboratory (NREL) study [42]. Full 

heating electrification results in a computed statewide average additional electricity load of 7573 

MWh/h; however, the conversion of existing electric resistance heating to EHPs is also 

considered, which reduces statewide average heating electricity demand to 6716 MWh/h. 

Regional and statewide computed average and peak electrified heating values are shown in Table 

I-1.  

To parameterize potential electric vehicle charging demand, the total 2018 volumetric 

sales of gasoline and diesel to New York transportation customers [43] are converted to miles 

driven using an assumed 21.0 miles per gallon (mpg). The latter assumption is based on an 

average vehicle age of 11.8 years in 2019 per the Bureau of Transportation Statistics [44] and the 

corresponding average “Real World” fuel economy of 2008 model year vehicles per the US 

Environmental Protection Agency (EPA) [45]. The nodal distribution of the fuel sales is assumed 

to be equal to the distribution of 2016 county level gasoline sales aggregated to the nodal level 

[46]. This mileage is then converted into daily temperature-dependent EV charging profiles using 

NREL’s EVI-Pro model API [47] assuming 1/3 100-mile range EVs and 2/3 250-mile range EVs 

(based on a fixed ratio of the NREL model); weekends and weekdays are treated identically, using 
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a 5:2 weighted average of weekday and weekend profiles for each dayii. This approach results in 

a computed average statewide EV demand of 6769 MWh/h. Because of the many assumptions 

involved and the closeness of this value to the net additional potential demand from heating 

electrification, the EV demand series is scaled to an equivalent 6716 MWh/h average demand to 

facilitate more direct comparison between the two. Regional and statewide computed average 

and peak electrified vehicle values are also shown in Table I-1. 

 
Table I-1: Existing and potential new nodal electricity demands. 

a NYISO [38]. 
b See the text of this section.  
 
 
Internodal transmission 
 

In SECTR-NY, both existing internodal transmission limits and costs are characterized. 

Existing transmission limits assumptions shown in Table I-2 are those assumed by NYISO for the 

year 2021 in recent system reliability simulations [48]. 

  
 
 
  

 
ii The NREL tool requires selections among fixed options for various inputs, the following of which were selected: 
80% sedans, 20% SUVs; middle option of 80% for home charging preference; middle option of 75% for home 
charging access; equal usage of Level 1 and Level 2 home charging; 80% of work charging using Level 2 chargers; 
and minimum delay in charging at both home and work locations. 

Node Existing Electricity 
Demand [MWh/h]a 

Computed Potential Net New Heating 
Electricity Demand [MWh/h]b  

Computed Potential New Electric 
Vehicle Demand [MWh/h]b 

 Average Peak Average Peak Average Peak 

1 6383 10,467 2178 20,982 2458 5471 

2 2495 4795 1059 11,347 1182 2641 

3 7211 13,623 2376 13,303 1667 3642 

4 2567 5933 1103 6601 1409 3081 

Statewide 18,655 33,876 6716 51,088 6716 14,836 
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Table I-2: SECTR internodal existing transmission limits and costs of existing and new 
transmission.  

Interface Milesa 

Existing Limits [MW]b  New Transmission 

West to East East to West 

Cost of New Transmission 
Capacity 

[$/MW-mi]c 

New 
Transmission 
O&M costs 
[$/MW-yr]d $/MW-mi $/GW 

1: Node 1 to 2 300 5000 3400 2400 720 2806 

2: Node 2 to 3 150 7000 7000 4800 720 2357 

3: Node 3 to 4 60 1613 220 12,000 720 277 
a Distance between nodes taken as the distance between the representative cities of Buffalo, Albany, New York City, 
and Brentwood, per Google Maps. 
b NYISO [48].  
c See the text of this section. 
d NREL [49]. 
 
 

Projecting costs of specific large-scale transmission upgrades is difficult. To evaluate the 

effect of transmission prices on future energy scenarios, public information on the costs of recent 

and proposed transmission projects in NYS was reviewed, as well as cost assumptions used in 

other studies of the region. References used in this assessment include: For Interface 1 (Node 1 

to 2), Table I-2 shows the approximate average of $1400/MW-mi for simulated aboveground 

High Voltage Direct Current (HVDC) [50]; and $3614/MW-mi for underground HVDC in a NYISO 

study of the region [51]. For Interface 2 (Node 2 to 3), the Table I-2 value is approximately ¾ of 

the cost of $6567/MW-mi for a recent NYS underground HVDC transmission installation [52] 

(adjusted downward due unique challenges surrounding this project). For Interface 3 (Node 3 to 

4), a transmission upgrade cost of $12,000/MW-mi is assumed based on a previous underground 

HVDC transmission project between New Jersey and Long Island [53]. With the above per-(MW-

mi) costs of upgraded transmission and the assumed distances between each node’s 

representative city, per-GW costs of new transmission are equal at every interface.  
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The NREL Jobs and Economic Development Impact (JEDI) Transmission Line Model [49] is 

used to compute internodal O&M costs for new transmission; new transmission capacity 

between Nodes 1 and 2 assumes O&M costs for 500 kVAC lines, capacity between Nodes 2 and 

3 assumes O&M costs for 345 kVAC lines, and capacity between Nodes 3 and 4 assumes O&M 

costs for HVDC reinforcements.  

The annual cost of maintaining existing transmission capacity is assumed to be the total 

costs recovered through electricity sales based on EIA data [54]: Based on the 2019 transmission 

contribution to electricity unit costs ($16.9/MWh at Nodes 1 and 2; $27.3/MWh at Nodes 3 and 

4) and 2019 total electricity sales (69.683 TWh at Nodes 1 and 2; 75.52 TWh at Nodes 3 and 4), 

total annual cost for existing transmission was computed to be approximately $3.239B. 

    
Characterization of fossil fuel-based electricity generation 
 

SECTR uses a simplified characterization of the existing NYS fossil fuel electricity 

generation fleet and new generation capacity at each node without modeling individual 

generators; relevant assumed values described in this section are summarized in Table I-3. As 

natural gas provides 96% of fossil fuel-based electricity generation in NYS [55] and generators 

that burn natural gas (alone or as part of dual fuel capabilities) produce 99% of NYS fossil fuel-

based electricity generation [56], only existing gas-fueled electricity generation capacity 

(including dual fuel generators) are considered, equal to the nameplate capacity operational at 

the end of 2019 per NYISO [57]. The assumed cost of existing electricity generation capacity – all 

existing generation modeled, including natural gas, hydropower, biofuel and nuclear – at each 

node is derived from capacity market costs used in a recent New York State Energy Research and 
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Development Authority (NYSERDA) studyiii. Generator start-up costs are assumed to be $79/MW-

h, the value for combined cycle gas turbines (CCGT) in a recent NREL study [37]. An electricity 

generation efficiency of 42.8% is assumed for existing natural gas generation based on NYS 

electric power sector total natural gas consumption [58] and natural gas-based electricity 

generation [59] for 2019. Modeled natural gas prices for electricity generation at each node are 

derived from regional natural gas avoided costs in a recent NYSERDA studyiv. 

New gas-fueled generation costs are adopted based on industrial frame gas turbines (GTs) 

per EIA’s 2020 Annual Energy Outlook [36]. These GTs have node-specific capital costs, statewide 

fixed and variable operations and maintenance costs, and constant 34.4% efficiency. New 

generator start-up costs are assumed to be $69/MW-h, the value for GTs in a recent NREL study 

[37]. Natural gas prices for new generators are assumed to be the same as those for existing 

generators at each node. Existing and new natural gas-based electricity generation capacity are 

constrained to be a minimum 1.189 times larger than peak generation, based on NYISO’s 18.9% 

statewide capacity reserve margin for the 2020-2021 capability year [60]. 

 
 
 
 
 
 
 
 
 

 
iii The reference study [61] contains capacity market costs for New York City (NYC), Long Island (LI), Lower Hudson 
Valley (LHV) and Rest of State (ROS). Here, Node 1 is assumed to be 100% ROS; Node 2 to be 50% LHV and 50% 
ROS per the approximate actual capacity distribution [57]; Node 3 to be 87% NYC and 13% LHV per the reference 
study; and Node 4 to be 100% LI. 
iv The reference study [61] contains natural gas avoided costs for Upstate/Western NY (UWNY), Hudson Valley 
(HV), and New York City and Long Island (NYC-LI). Node 1 is 100% UWNY, Node 2 is 100% HV and Node 4 is 100% 
NYC-LI. Node 3 is assumed to be 87% NYC-LI and 13% HV per the reference study. 
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Table I-3: Nodal gas-fueled electricity generation assumptions.   

a NYSERDA [61]. 
b NYISO [57]. 
c Bloom et al. [37]. 
d EIA [36]. 
 
 
Wind power capacity and generation 
 

Existing onshore wind capacities at each node are those active by the end of 2019 [57] as 

shown in Table I-4.  

Wind power potential capacity and power output are based on model data developed by 

NREL for 126,000 potential wind sites [62,63]. First, onshore wind power potential time series 

data were adjusted to account for consistent over-predictions based on historical output of 

existing sites in NYS [64]. After this adjustment, a single wind potential timeseries was produced 

for each of the two upstate nodesv by computing the capacity-weighted potential timeseries of 

all NREL-modeled sites in each node. 

To determine the offshore wind potential timeseries, potential timeseries for all NREL 

modeled wind sites within NYS maritime boundaries are collected; these timeseries are then 

weighted by modeled site capacity to return a single potential timeseries. This single timeseries 

 
v Onshore wind capacity is ignored for downstate nodes 3 and 4 due to space constraints and the likelihood of a 
large buildout of offshore wind capacity connected to these nodes.  

Node 
Wholesale Nat. 

Gas Prices 
[$/MMBTU]a  

Existing Gas-Fueled Generation New Gas-Fueled Generation 

Capacity 
[MW]b  

Capital Cost 
[$/kW-yr]a 

Start-up 
Costs 

[$/MW-h]c 

Capital 
Cost 

[$/kW]d  

Fixed 
O&M Cost 
[$/kW-yr]d 

Variable 
O&M Cost 
[$/MWh]d 

Start-up 
Costs 

[$/MW-h]c 

1 2.89 3934.2 27.640 79 772 6.97 4.48 69 

2 4.04 8622.5 53.440 79 772 6.97 4.48 69 

3 3.67 10,249.9 101.303 79 1034 6.97 4.48 69 

4 3.62 4192.7 104.600 79 1034 6.97 4.48 69 
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is adjusted based on a previously published logit transform method [64] so that the new capacity 

factor equals the estimate from a more recent NREL wind energy resource assessment [65], after 

subtracting electrical and wake lossesvi.  This adjusted timeseries is applied to both downstate 

nodes.  

High and low costs are computed for onshore (only available in upstate Nodes 1 and 2) 

and offshore (only available in downstate Nodes 3 and 4) wind capacity. Based on the average of 

costs from three recent NREL wind technology reports [66–68] and predicted cost reductions 

[69], a high cost of $1992/kW and a low cost of $1698/kW are assumed for onshore wind 

capacity. For onshore wind, fixed O&M costs of $18.10/kW-yr  are applied per the 2018 

Bloomberg New Energy Finance Wind Operations and Maintenance Pricing Index [70]; 

installations are limited to the maximum capacities given in the NREL data set [62]. Based on a 

review of the costs of wind energy [71], along with cost reduction estimates [69], the high cost 

of offshore wind capacity is set to $3583/kW; a cost curve fit to a NREL estimates of offshore 

wind LCOE in 2030 [72] (5% interest, 20 year lifetime) yields a low cost estimate of $2256/kW. A 

fixed operations and management cost of $38/kW-yr is applied for offshore wind [73], and total 

offshore wind installations are capped to 57.9 GW based on potential capacity in water depths 

less than 60m as identified by NREL [65] (See Table I-4).  

 
 
 
 
 
 

 
vi From the offshore wind resource assessment [65], the potential capacity (Appendix B) and resource energy with 
losses (Appendix D) in water depth less than 60m areas are collected, keeping electrical losses and wake losses but 
removing 6% fixed losses (Appendix J). This results in a NYS offshore wind average capacity factor of 45.9%. 
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Utility-scale solar capacity and generation 
  

Existing utility-scale solar capacities at each node are those active by the end of 2019 [57] 

as shown in Table I-4.  

The utility-scale solar potential generation time series for each node is determined by (1) 

identifying the capacity and location of all NYS potential grid-scale solar PV sites in a NREL model 

solar data set [74]; (2) computing hourly solar PV potential output using NREL’s System Advisory 

Model [75], assuming single-axis tracking, tilted at latitude; (3) adjusting the system efficiency 

according to protocols specified by the California Energy Commission [76]; and (4) aggregating 

the individual site time series at each node, weighted by each site’s capacity per the NREL data 

set. 

High costs of new utility-scale solar PV capacity of $1341/kW at Nodes 1 and 2, and 

$1593/MW at Nodes 3 and 4 are adopted based on location-specific capital cost inputs to EIA’s 

Annual Energy Outlook [36]. Low cost estimates are computed by applying a 25% cost reduction 

to high cost estimates, which is approximately the average of the cost reductions seen for 

onshore (15%) and offshore (37%) wind capacity, described above: $1006/kW in Nodes 1 and 2 

and $1195/kW in Nodes 3 and 4. A statewide $10.4/kW-yr fixed O&M cost is set for new solar 

capacity based on a recent NREL benchmark for utility-scale tracking PV [77].  To account for 

space limitations, the maximum potential utility-scale solar PV capacity is determined by county 

and then aggregated to the nodal level, per Table I-4. For each county, the maximum capacity is 

based on 1) the smaller quantity of (a) existing cropland, per the 2017 USDA Census of Agriculture 

[78], or (b) 10% of the county’s total land area; and 2) an assumed 8.5 MW/acre [79].  
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Table I-4: Nodal existing and maximum wind power and utility-scale solar capacities.  

 Existing Capacity [MW] Maximum Potential Capacity [MW] 

Node Onshore Winda Utility-scale 
Solara Onshore Windb Offshore Windc Utility-scale Solard 

1 1985.25 0 32,402 0 212,710 
2 0 0 4376 0 44,899 
3 0 0 0 

57,938 
481 

4 0 56.5 0 2743 
a NYISO [57]. 
b Draxl et al. [62]. 
c Musial et al. [65]. 

d See the text of this section.  
 
 
Behind-the-meter solar capacity and generation 
 

Nodal BTM solar capacity is imposed exogenously on the optimization based on a user-

provided year and a nodal capacity distribution, itself determined by a NYISO-projected 9 GW 

solar capacity scenario [80]. Statewide BTM solar capacity is based on a logistic growth function 

of the general form shown in Eq. (I-55) fit to historical capacity data for the years 2000-2019 [81]: 

 

P𝑋5(6+'31-2,&
&∈@

=	
𝐾

1 + 𝑄𝑒+J(8$-2+K)∗B/<
 

(I-55) 
 
where K = 10,982.023; Q = 1.680925e-4; B = 0.1202713, M = 1995.067; 𝑣 = 4.955324e-6. 
 

Existing nodal capacity as of the end of 2019 [81] and projected distribution computed 

per Eq. (I-55) for example years are shown in Table I-5.   
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Table I-5: Nodal behind-the-meter (BTM) solar capacity 
 BTM Solar capacity (MW) for given year 

Node Currenta 2030 2040 2050 

1 562 2109 3009 3348 

2 523 2364 3372 3752 

3 293 1096 1564 1740 

4 259 1039 1482 1649 
a At the end of 2019 per NYSERDA [81]. 
 
 

The BTM PV generation time series for each node is determined by (1) selecting a 

representative city for each NYISO zone from those in the NREL National Solar Radiation Database 

[82]; (2) computing hourly solar PV potential output using NREL’s System Advisory Model [75], 

assuming a fixed axis, tilted at latitude; (3) adjusting the system efficiency according to protocols 

specified by the California Energy Commission [76]; and (4) aggregating zonal time series at each 

node weighted by zonal capacities in the NYISO-projected 9 GW solar capacity scenario [80]. 

 
Energy storage 
 

Existing battery storage power capacity was extracted from the EIA energy mapping 

system [83], and existing battery storage energy capacity was determined from news reports and 

websites corresponding to recently installed projectsvii; these quantities are presented in Table I-

6. Although the SECTR General Formulation allows per-unit power capacity and per-unit energy 

capacity cost components, for the present analyses only energy capacity costs are included. High 

and low costs are set based on the “Mid” and “Low” cost projections for 2030 from NREL [84]: 

$208/kWh and $144/kWh, respectively. A power-to-energy ratio of 0.25 kW/kWh is assumed 

 
vii Node 1: East Pulaski BESS [87] and Lockheed Martin RMS [88]. Node 2: KCE NY 1 assumed to be 4 hour battery 
system [89]. Node 4: East Hampton Energy Storage Center [90] and Montauk Energy Storage Center [91]. 
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based on common 4-hour battery systems, with 94.6% charge and discharge efficiencies based 

on the 89.5% roundtrip efficiency of a commercially available battery storage system [85]. A 10-

year lifetime [86] is adopted for modeled batteries. Batteries are also assigned a self-discharge 

rate of 0.1%/hr. 

 
Table I-6: Existing nodal battery energy and power capacity. 

a Battery capacities taken from [87,88]. 
b Key Capture Energy [89]; the facility is assumed to be a 4 hour battery system.  
c Battery capacities taken from [90,91]. 
 
 

For long-term storage, the use of hydrogen electrolysis and combustion in a gas turbine 

is assumed, with model-selected deployment analogous to battery storage based on cost 

components for both power capacity and energy capacity. A power capacity cost of $3013/kW is 

adopted based on a recent study [92] for Nodes 1 and 2; the same capital cost adjustment for 

GTs is then applied for Nodes 3 and 4, resulting in $4036/kW. For hydrogen storage capital costs, 

a per-unit energy cost of $0.35/kWh is set for geologic storage in Node 1 based on an NREL study 

(and adjusting from 2008 dollars to 2020 dollars) [93]. For other nodes, hydrogen storage is 

assumed to occur in carbon fiber storage tanks given the lack of geologic formations for storage 

and higher population density; a storage cost of $8.29/kWh is applied based on annually updated 

Department of Energy hydrogen storage cost analysis [94]. A  fixed operations cost of $48.87/kW-

yr is assumed based on an earlier study [95]. Charge and discharge efficiencies of 59.2% are 

 Existing Battery Capacity 
Node Battery Energy [MWh] Battery Power [MW] 

1 5.2a 3a 
2 80 20b 
3 0 0 
4 65c 10c 
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adopted based on 35% roundtrip efficiency in a recent NREL analysis [96] referencing an earlier 

study [97]. A self-discharge rate of 0.1%/hr is set. 

 
Nuclear power 
 

The nuclear power landscape in NYS is evolving, as the last operational generator of the 

Indian Point two-generator plant in Node 3 shuttered on April 30, 2021 [98], and nuclear 

generators in Node 1 have been subsidized in recent years. To investigate the impact of capacity 

retirements, the SECTR-NY formulation can either include or ignore these nuclear generators. 

Nuclear capacity is distributed across all four model nodes per NYISO [57] as shown in Table I-7 

(which for clarity shows no nuclear at Nodes 2 and 4). Electricity generation is assumed to be 

constant throughout the simulation period and equal to the average electricity production of 

those generators in 2019 according to NYISO [57]. The price of nuclear electricity at each node is 

computed from the average 2019 day-ahead locational based marginal pricing (LBMP) [38] of 

each nuclear generator at each node, weighted by the 2019 total net electricity generation [57] 

of each of those generators. The price at Node 1 is increased to account for subsidies of the 

nuclear generators at that node, funded by Zero Emission Credits (ZECs). Per Eq. (I-56), the per 

energy unit subsidy is computed from the 2020 compliance year ZEC rate [99], NYISO’s 2020 

baseline demand forecast [57], and the constant output of nuclear electricity at Node 1 from 

Table I-7. 

 

v𝑁𝑢𝑐𝑙𝑒𝑎𝑟	𝑃𝑟𝑖𝑐𝑒	𝑆𝑢𝑏𝑠𝑖𝑑𝑦
𝑎𝑡	𝑁𝑜𝑑𝑒	1

{ =
v2020	𝐶𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒	𝑌𝑒𝑎𝑟	𝑍𝐸𝐶	𝑅𝑎𝑡𝑒 { × v𝑁𝑌𝐼𝑆𝑂	2020	𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒	𝐷𝑒𝑚𝑎𝑛𝑑	𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 {

{𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡	𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦	𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛	𝑎𝑡	𝑁𝑜𝑑𝑒	1}  

(I-56) 
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The assumed cost of existing nuclear electricity generation capacity at each node is the 

same as described above under “Characterization of fossil fuel-based electricity generation.” 

 
Table I-7: Nodal existing nuclear power characteristics  

Node Generation Capacity 
[MW]a 

Constant Electricity 
Generation [MWh/h]a  

Capacity Cost 
[$/kW-yr]b  

Electricity Price 
[$/MWh]c 

1 3536.8 3207 27.640 37.94 

2 0 0 N/A N/A 

3 2311 1906 101.303 26.82 

4 0 0 N/A N/A 
a NYISO [57]. 
b NYSERDA [61]. 
c See the text of this section. 
 
 
Hydropower  
 

The methodology for creating hydropower fixed and flexible generation time series is 

described in a recent paper [10]. Actual monthly hydropower output by facility is collected for 

2007-2012viii from EIA Form 923 [100], and then is aggregated at each node. The two largest NYS 

hydropower facilities (both located at Node 1) operate near their maximum capacity given 

available stream flows; accordingly, fixed hourly time series are provided for these generators. 

The remaining hydropower generation and capacity in Nodes 1 and 2 are considered to be flexible 

with provided daily total electric energy generation requirements. Total fixed and flexible 

hydropower capacities are computed from the nameplate capacities operational at the end of 

2019 [57]. Hourly generation is determined endogenously by the hydropower methodology 

detailed in the General Formulation. Hydropower-generated electricity prices are based on 

 
viii Monthly generation quantities for 2007-2012 are used to align with the wind, solar, and demand time series. 
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recent prices for such electricity in NYISO’s day-ahead marketix. The assumed cost of existing 

hydropower electricity generation capacity at each node is the same as described above under 

“Characterization of fossil fuel-based electricity generation.” The values described here are 

summarized in Table I-8. 

 
Table I-8: Existing hydropower characteristics  

 Average Generation 
[MWh/h]a Capacity [MW]b  

Capacity Cost 
[$/kW-yr]c  

Electricity Price 
[$/MWh]d 

Node Fixed Flexible Fixed Flexible 

1 2395 328 3948 769.4 27.640 18.47 

2 0 270 0 608.7 53.440 28.02 

3 0 0 0 0 N/A N/A 

4 0 0 0 0 N/A N/A 
a EIA [100]. 
b NYISO [57]. 
c NYSERDA [61]. 
d See footnote vii. 
 
 
Biofuel-based electricity generation 
 

SECTR-NY classifies various electricity generation feedstocks as “biofuels”: wood and 

wood waste, biogas, and solid waste. In NYS, biofuel capacity is distributed across all four model 

nodes per NYISO [57] as shown in Table I-9. Intraday biofuel electricity generation is flexible as 

described in Section I-2.1; maximum daily electricity generation is assumed to be constant 

throughout the simulation period and equal to the average daily electricity production of those 

generators in 2019 according to NYISO [57]. Biofuel-generated electricity prices are based on 

 
ix All based on 2019 hourly day-ahead LBMP [38] and weightings by total 2019 electricity production [57]: Node 1 
cost is the weighted average LBMP for Moses Niagara and St. Lawrence hydropower facilities; Node 2 is the 
weighted average LBMP of the four highest producing hydropower facilities at that node (62% of total 
hydroelectricity production at that node). 
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recent prices for such electricity in NYISO’s day-ahead marketx. The assumed cost of existing 

biofuel-based electricity generation capacity at each node is the same as described above under 

“Characterization of fossil fuel-based electricity generation.” 

 
Table I-9: Nodal existing biofuel characteristics  

Node Generation Capacity 
[MW]a 

Daily Electricity 
Generation [MWh]a 

Capacity Cost 
[$/kW-yr]b 

Electricity Price 
[$/MWh]c 

1 258.0 3289.041 27.640 20.66 

2 45.0 473.425 53.440 27.41 

3 59.7 1046.575 101.303 27.05 

4 142.2 2445.479 104.600 32.29 
a NYISO [57]. 
b NYSERDA [61]. 

c See footnote ix. 
 
 
External imports 
 

NYISO currently imports significant quantities of low-carbon electricity from Hydro-

Quebec (HQ), a net average of 1247 MWh/h in 2019 [57]; as such, electricity imported at this 

interface with Node 1 is included as a decision variable constrained to the maximum interface 

limit specified by NYISO (1.5 GW) [38]. A cost of $22.13/MWh is attributed to this imported 

electricity based on average 2019 day-ahead LBMP [101] and including capacity market payments 

for 1114 MW capacity per NYISO [102]. 

NYS regulators are nearing approval for plans for the Champlain Hudson Power Express, 

a 1250 MW HVDC transmission line that would bring hydropower-produced electricity from 

 
x All based on 2019 hourly day-ahead LBMP [38] and weightings by total 2019 electricity production [57]: Node 1 
cost is the average LBMP for the four highest producing biofuel facilities at that node (58% of total biofuel 
electricity production at that node); Node 2 is the average of Zone F and G LBMP; Node 3 is the average LBMP for 
the 1 biofuel facility at that node; Node 4 is the weighted average LBMP of all four biofuel facilities at that node. 
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Quebec to New York City [52], which is also included in recent NYC local legislation [103]. As such, 

additional electricity import into Node 3 is included in future energy system scenarios. The 

precise cost of this electricity supply is unknown; however, a price of $70/MWh is adopted based 

on publicly available information, personal and public conversations about the project, and 

various possible financing parametersxi. The line is assumed to provide 1125 MWh/h continuous 

based on the approximate 90% capacity factor of existing upstate Hydro-Quebec import lines 

[38] and an understanding of the project from public and personal conversations. 

Imports from other external control areas are ignored to avoid characterizing or modeling 

future developments in regions that currently rely largely on fossil fuel-based electricity 

generation. 

 
Greenhouse gas emissions 
 

As accounted by NYSERDA, NYS energy sector emissions constitute 84% of total statewide 

GHG emissions (measured in equivalent global warming potential of carbon dioxide, CO2e) as of 

2016 [104]. The remaining 16% of GHG emissions comes from industrial processes, agriculture, 

and waste. 

In New York’s Climate Leadership and Community Protection Act (CLCPA), statewide GHG 

emissions accounting includes GHGs produced in NYS and GHGs produced outside NYS that are 

associated with imported electricity and fossil fuels [1]. Table I-10 shows emissions factors for 

carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) compiled from a variety of sources; 

 
xi Our calculations are generally in the $65-70/MWh range based on the project website’s lower bound capital cost 
[52], higher potential upfront costs that have been discussed publicly, various annualization periods, average HQ 
export revenues ($1441M on 33.7 TWh in 2019 [334]), and the approximate 90% capacity factor of existing upstate 
Hydro-Quebec import lines [38]. 
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the table also includes values for carbon dioxide equivalent (CO2e). CO2e is a single metric that 

combines the effect of multiple GHGs based on their global warming potential (GWP). CLCPA 

requires GWP values based on the amount of warming impact relative to CO2 when integrated 

over a 20-year time frame. Here, respective GWPs of 86 for CH4 and 264 for N2O are used, in 

accordance with the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report 

(AR5) [105]. CH4 emissions, particularly for natural gas, are largely dependent on venting at 

wellheads and leakage in transmission and distribution infrastructure; understanding these 

effects is the subject of ongoing research, but recent efforts focused on New York State provide 

a reliable reference point [106].  

 
Table I-10: Emissions factors [g/MJ] for GHG contributors 

Energy source CO2
 CH4 N2Of CO2e 

Coal 92a 0.185c 1.52·10-3 108.31 

Petroleum 73b 0.093d 5.69·10-4  81.15 

Natural Gas 55a 0.641e 9.48·10-5 110.18 
a Based on high-heating values per Hayhoe et al. [107] as documented by Howarth et al. [106]. 
b CO2 emission factor for petroleum is the high-heating value from Howarth et al. [108] as reported by Howarth et 
al. [106]. 
c As computed by Howarth et al. [106] based on the ratio of total methane emissions during coal mining and total 
coal production in the U.S. in 1990 from IPCC reporting [109], with a coal heating value of 27 MJ/kg [108]. 
d Based on CH4 emissions from petroleum production from the National Energy Technology Laboratory (NETL) [110] 
as documented by Howarth et al. [106]. 
e Computed from assumptions of: CH4 emission rate of 3.6% as used for NYS in Howarth et al. [106] based on a range 
computed by Alvarez et al. [111] and Howarth et al. [108]; natural gas to be 93% CH4 [112]; and a high-heating value 
of 52.2 MJ/kg for natural gas in the U.S. market [113]. 
f EPA [114].  
 
 

Per the targets set in the CLCPA [1], emissions reductions relative to a 1990 reference 

value are computed. Reference CO2 and CH4 emissions for electricity, buildings, industrial, 

transportation are calculated by using the 1990 EIA fuel consumption estimates [43] and 

emission factors in Table I-10; CO2 and CH4 emissions for electricity imports in 1990 are taken 
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directly from Howarth et al. [106]; CO2 and CH4 emissions for waste incineration and all N2O 

emissions in 1990 are from the NYSERDA inventory of GHG in NYS [104]. Thus an 𝜀5-'$1&)$  of 

302.770 MMtCO2e/year is computed, per Table I-11. Table I-11 further delineates emissions that 

are fixed in the model and those that are variable: variable emissions can change as computed 

by the model for a given user-defined scenario and as described by Eqs. (I-11) – (I-15) in Section 

I-2.1. 

Current NYS electricity emissions are calculated by using SECTR to model a “current 

scenario”. The current scenario includes all existing NYS energy infrastructure parameterized and 

discussed above, and assumes current capacities of wind and solar power, no additional 

electrification of vehicle or heating demand, and no generation from the Indian Point nuclear 

facility. Using the natural gas emissions factors in Table I-10 and the model-returned amount of 

natural gas generation needed to meet the existing electricity demand, current electricity 

emissions of 84.889 MMtCO2e/year are computed, per Table I-11. Since SECTR-NY assumes the 

modeled electricity sector can be fully decarbonized, these emissions are considered variable.  

Total fossil fuel usage for heating, 𝐹7$-(,(3(,&, is computed from the heating model [34] 

described above; portions of this fossil fuel usage are attributed to natural gas, fuel oil, and 

propane based on the 2018 residential and commercial usage of these fuels [43]. Annual heating 

GHG emissions, 𝜀7$-(, are calculated as 110.853 MMtCO2e/year averaged over the six-year 

computation period based on the emissions factors for natural gas and petroleum (for fuel oil 

and propane) in Table I-10. As SECTR-NY assumes that NYS heating demand can be fully 

electrified, these emissions are considered variable in Table I-11.  
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Transportation sector emissions are determined from the 2018 EIA fuel consumption 

estimates [43] that are used to calculate statewide vehicle energy demand as described above. 

Gasoline and diesel consumption for transportation that can be electrified, 𝐹<$7,(3(, and the 

petroleum emissions factor in Table I-10 are used to compute 73.703 MMtCO2e/year variable 

emissions for vehicles included in the model electrification scope, 𝜀<$7. Aviation fuel, 

hydrocarbon gas liquids, jet fuel, lubricants, residual oil, and natural gas consumption for 

transportation listed in the same EIA dataset [43] are considered fixed and constitute 

transportation emissions outside the scope of the model, 𝜀(2-)'.,3(7$2. From this usage data and 

the appropriate emissions factors from Table I-10, 𝜀(2-)'.,3(7$2  is computed to be 21.956 

MMtCO2e/year, a quantity fixed in every model run.  

Industrial emissions, 𝜀&)9, are calculated from the 2018 EIA fuel consumption estimates 

[43] and the appropriate emissions factors from Table I-10. Here, coal, natural gas, and petroleum 

products result in computed total emissions of 19.365 MMtCO2e/year; this quantity is fixed in 

every model run.   

Table I-11 also displays emissions from waste incineration in New York for the current 

system. In SECTR-NY model scenarios, waste incineration is excluded per the CLCPA [1]; as this 

emissions quantity is set to 0 in all model runs, it is presented as variable. 
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Table I-11: Relevant aggregate greenhouse gas emissions (MMtCO2e/year) 

Emissions Source 1990 Reference 
Emissions 

Current Emissions as Modeled 
Variable Fixed 

Electricity 86.772 84.889a 0 

Electricity Imports 1.909 0 0b 

Heating (Buildings) 100.468 110.853 0 
Industrial 32.824 0 19.365 

Transportation 79.532 73.703 21.956 

Waste Incineration 1.265 2.784c 0 

Total 302.770 
272.229 41.321 

313.550 
a Based on SECTR-NY model of current system as described in this section.  
b Electricity imports are only considered from hydropower generation. 
c This quantity represents the 2016 value from NYSERDA inventory for waste incineration [104]. In SECTR model runs, 
it is set to zero.  
 
 
Seasonal distribution of demand and renewable generation potentials 
 

Existing electricity demand, electrified demand, and the renewable generation potentials 

of wind and solar resources used in SECTR-NY simulations all demonstrate substantial seasonal 

variability. Figure I-2 contains monthly values for the mean and maximum existing electricity 

demand; the means and maximums of existing electricity demand combined with either 

electrified heating or transport; and the means of onshore wind, offshore wind, and utility-scale 

solar generation potentials.  From the top and middle panels in Figure I-2, one observes that 

electrified heating increases average and peak electricity demands in the winter months: Full 

electrification of heating increases average load by up to 15 GWh/h and peak load by up to 52 

GWh/h. In contrast, electrification of transport has smoother effect. With 100% transport 

electrification, average load rises by 6 to 8 GWh/h in all months of the year, with the larger 

increases coming during the winter due to the inverse relationship between temperature and EV 
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charging demand. The effect on peak load is similarly consistent: Peak electricity demand 

increases by 12 to 15 GWh/h in all months.  

Wind and solar generation potentials in NYS also display a strong seasonal dependence. 

Offshore and onshore wind potentials both peak in the winter months, reaching an average of 

0.57 MWhgeneration/MWinstalled and 0.40 MWhgeneration/MWinstalled, respectively; in the summer 

months, average generation for each decreases by approximately 50%. In contrast, utility-scale 

solar capacity offers peak generation potentials during the summer months, up to an average 

0.26 MWhgeneration/MWinstalled, while winter months see this quantity drop to 0.10 

MWhgeneration/MWinstalled. 

Taking all three panels of Figure I-2 together, a clear seasonal alignment is identified 

between electrified heating demand and wind generation potential, indicating that electrified 

heating may prove effective in integrating large amounts of installed wind capacity. Moreover, 

summer-peaking solar generation is well-suited to meet summer loads in NYS, both those that 

currently exist and those that are increased by transport electrification.  

 
3. Results 
 

Section 3.1 establishes and distinguishes between a “Current” model configuration that 

mirrors existing NYS system characteristics, and a “Baseline” configuration for decarbonization 

scenario comparison. Section 3.2 presents the results of SECTR-NY Baseline configuration 

simulations for different combinations of in-state low-carbon electricity generation percentages 

(LCP) and heating and vehicle electrification rates (HVE). Section 3.3 compares SECTR-NY results 

to those published in recent NYS studies on decarbonization pathways. Section 3.4 presents 

additional results for the SECTR Baseline configuration. Section 3.5 contains results that 



 

 63 

investigate the impact of SECTR system parameterization assumptions. Section 3.6 presents 

results contained in Section 3.3 for different heating and vehicle electrification rates (HVEs) and 

low carbon electricity percents (LCPs).  

All results are presented for SECTR-NY simulations solved over the entire 6-year time 

period modeled; all specified generation and demand quantities are presented as hourly 

averages in Wh/h over the full 6-year simulation period.  

 
3.1 Current system validation and Baseline configuration 
 

The Baseline configuration deviates from the Current system configuration in three 

ways summarized in Table I-12: The Baseline configuration excludes existing nuclear power at 

Node 1, includes an additional 5 GW of solar BTM capacity corresponding to a simulation year 

of 2030, and simulates an additional planned 1.25 GW of hydropower import capacity into New 

York City (NYC). For comparative purposes, Table I-12 also includes a “Baseline with Nuclear” 

scenario. Table I-12 scenarios exclude any additional HVE beyond current electric heating and 

vehicles. 
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Table I-12: ‘Current’, ‘Baseline with Nuclear’, and ‘Baseline’ system configuration comparisons.  

  
  

Configuration 
Parameters Specified System Characteristicsa,b Model-returned System Characteristicsb 

Configuration 
% 

GHGc 
% 

HVEd 
% 

LCPe 

Instate 
Hydro 
[GW] 

Nuclear 
[GW] 

BTM 
Solar 
[GW] 

Hydro 
Imports 

[GW] 

Onshore 
Wind 
[GW] 

Utility-
Scale 
Solar 
[GW] 

Battery 
[GWh] 

Wind and 
Solar 
LCOE 

[$/MWh] 

Total 
LCOE 

[$/MWh] 

Current 3.6 0 38.2 5.3 3.5 1.6 1.5 2.0f 0.1f 0.2f 69.7 65.3 

Baseline w. 
Nuclear -2.0 0 42.4 5.3 3.5 6.6 2.8 2.0 0.1 1.1 69.3 68.6 

Baseline -1.6 0 40 5.3 0 6.6 2.8 9.1 2.6 2.0 67.8 72.1 

a See Section I-2.1 for existing system characteristics and the text of this section for any modifications for the 
specific configuration. 
b Besides LCOE values, all system characteristics presented indicate capacities. 
c ‘% GHG’ refers to the percent change in greenhouse gas emissions compared to the 1990 reference quantity. A 
positive value indicates a computed increase in emissions, a negative value indicates a reduction. 
d ‘% HVE’ refers to the percent of additional heating and vehicle electrification simulated; some heating 
electrification (and a very small amount of vehicle electrification) currently exists in NYS. 
e ‘% LCP’ refers to the percent of in-state electricity supply from low-carbon sources.   
f Indicates model capacities that are constrained to existing capacity in the ‘current’ configuration. 
 
 

The model-computed Current configuration LCOE of $65.3/MWh compares favorably to 

the actual system. An actual NYS electricity supply cost of $69.1/MWh is estimated, based on 

2019 NYS generation and transmission costs [115], electricity sales [115], and total zonal 

electricity demands; this actual cost would include ancillary service and NYISO operation costs of 

approximately $2/MWh [116] that are not included in SECTR-NY. Despite the difference between 

these two values, the close alignment in computed costs supports SECTR-NY’s applicability to the 

NYS system and its suitability for further analyses.  

  The Current configuration computes an LCP of 38.2% and a 3.6% increase in GHG 

emissions compared to the 1990 reference quantity. Total emissions increase because CO2 
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reductions from natural gas displacing coal and fuel oil combustion are offset by GHG increases 

from larger transportation energy demands, methane leakage associated with natural gas 

production and transmission, and the retirement of a large nuclear power plant; these effects 

are more pronounced due to the use of the 20-year GWP value for methane in place of 100-year 

GWP value. Moreover, the calculated LCP of 38.2% is lower than the 2019 fraction of NYS 

electricity demand met by low-carbon sources (62.3%) for two reasons: 1) per the language of 

the CLCPA, LCP only considers in-state generation, and does not account for substantial 

hydropower imports from Canada; and 2) SECTR-NY does not include nuclear generation from 

Indian Point, as this facility was fully closed on April 30, 2021xii.  

The Baseline with Nuclear configuration – adding BTM PV and NYC hydropower imports 

to the Current configuration – computes a 2% GHG reduction and $68.6/MWh LCOE; the 

$3.3/MWh higher LCOE is due to the higher cost of hydropower imported into NYC and the 

reduction of regional demands due to solar BTM (i.e., existing system capacity costs are 

distributed over less load). Removing all nuclear capacity establishes the Baseline configuration; 

a 40% LCP is set for round number comparison in subsequent sections that is close to the current 

38.2%. Approximately 10 GW of solar and wind capacity are installed to replace the nuclear 

generation, resulting in a slightly lower reduction in GHG (-1.6%) and a slightly higher LCOE 

($72.1/MWh). Given the reasonable deviations from the current system model, the Baseline 

configuration is adopted for future scenario evaluations. 

 
 

 
xii The "Current” and “Baseline with Nuclear” configurations do include generation from NYS nuclear plants besides 
Indian Point, as these plants remain operational as of this dissertation’s publication.  
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3.2 Analysis of low-carbon electricity and end-use electrification scenarios 
 

For a series of SECTR-NY simulations with different combinations of LCPs and HVEsxiii, 

relationships among LCOE, GHG emissions, HVE, LCP, and renewable energy capacity are shown 

in Figure I-3. Here, computed LCOEs represent the total costs for supply (primarily generation, 

storage, and transmission), excluding delivery costs (primarily distribution system costs). HVE 

rates refer to new heating and vehicle electrification, as some heating (and a small share of 

vehicles) currently uses electricity. Note that the 40% LCP and 0% HVE scenario presented in 

Table I-12 is located in the bottom-left of the figure; for comparison beyond NYS, 39.7% of US 

electricity generation was from low-carbon sources in 2020 [117]. 

 
Figure I-3: (a) LCOE vs. percent emissions reduction; (b) percent emissions reduction vs. installed 
wind and solar capacity. All emissions reductions are compared to 1990 levels. Marker shape 
indicates percent low-carbon electricity (LCP), and marker color indicates heating and vehicle 
electrification (HVE). All points represent independently solved SECTR-NY decarbonization 
scenarios with specified LCP + HVEs. For scenarios shown, all low-carbon electricity generation is 
from wind, solar, and hydropower.  
 
 

 
xiii In the scenarios presented, heating and vehicle electrification rates are equal. 
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Figure I-3(a) shows how computed grid supply LCOE (strictly that of the electricity utilized) 

rises sharply with increasing LCP for a specified HVE, whereas for a specified LCP, higher HVEs 

cause limited growth in LCOE. Figure I-3(b) provides a partial explanation, showing that high HVE 

scenarios achieve the same GHG reductions with lower installed wind and solar capacities. The 

results suggest that emissions reductions can be achieved with a shallower initial rise in LCOE by 

prioritizing electrification of heating and vehicles in conjunction with deployment of solar and 

wind, as opposed to the latter by itself. Added loads from HVE can even slightly reduce LCOE up 

to a point (20-40% HVE, depending on LCP), as the additional electricity demand decreases the 

per-unit cost of existing infrastructure. (The same trend holds when the system includes an 

average of 3 GWh/h of nuclear generation in Node 1, albeit at LCOEs approximately 10% lower; 

see Figure I-10.) 

It is worth noting the straightforward impact of HVE on GHG emissions: In NYS, a current 

average emissions rate for fossil fuel-based heating of 148 kgCO2e/MMBtut (i.e. per unit heat 

delivered) is computed based a recent heating model [118] and GHG emissions rate assumptions 

described in Section I-2.3; with electrified heating and 40% low-carbon electricity supplyxiv in 

SECTR-NY, this reduces to 44 kgCO2e/MMBtut. Similar reductions occur for vehicle electrification: 

A current average emissions rate for fossil fuel vehicles of 543 gCO2e/mi (per vehicle mile 

traveled) is computed, and 241 gCO2e/mi for electric vehicles with 40% LCP in SECTR-NY. 

Therefore, even with the remaining 60% of grid power being supplied by gas-based generation, 

substantial reductions in overall emissions from electrification are computed.  

 
xiv 40% LCP mirrors the current NYS fuel mix. 
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Consider two changes in system characteristics starting at the 40% LCP and 0% HVE point 

of Figure I-3(a). Approximately 10% GHG emissions reductions could be achieved without 

additional electrification and with 60% LCP at an LCOE of $80.9/MWh; this scenario represents a 

3.1 GWh/h increase in average wind and solar supply. A similar emissions reduction could be 

achieved with a 20% HVE and no LCP increase at a cost of $70.0/MWh; the average wind and 

solar supply increases by 1.1 GWh/h to maintain 40% LCP with the electrification-driven increase 

of 2.7 GWh/h average demand. Consider now two scenarios in Figure I-3(b) with approximately 

30 GW wind and solar capacity: The scenario with 50% LCP and 60% HVE has computed GHG 

emissions reductions of 31%, more than double the 14% reduction in the scenario containing 

70% LCP and 0% HVE. Here, the computed LCOE for the first scenario ($78.7/MWh) is nearly 

$10/MWh less than the second scenario ($87.2/MWh). 

These various trade-offs are demonstrated with four scenarios that all contain 

approximately 1/3 reductions in GHG, but via different combinations of LCP and HVE. For the 

lowest LCP scenario shown in Table I-2 (Scenario 1), GHG reductions require a high HVE that 

increases average load and peak load, the latter requiring larger amounts of gas turbine capacity. 

Comparatively, Scenario 3 contains 33 GW less gas generation capacity, accompanied by a drop 

in average gas generation from 15.3 GWh/h to 6.0 GWh/h.  Here, higher LCP scenarios avoid 

increases in gas capacity and generation through additional renewable generation and battery 

capacity, a tradeoff that increases supply costs by $10/MWh.  
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Table I-13: Select scenarios achieving emissions reductions of approximately 1/3 compared to the 
1990 reference quantity.  

Scenario % GHGa % HVEb % LCPc 
Avg. Load 
[GWh/h] 

Wind and 
Solar Cap. 

[GW]d 

Battery 
Cap. 
[GW] 

Gas Cap. 
[GW]e 

Avg. Gas 
Gen. 

[GWh/h]f 

LCOE 
[$/MWh] 

1 -32.9 80 40 29.4 26.6 4.7 63.0 15.3 77.2 

2 -31.3 60 50 26.7 29.8 4.2 48.9 11.4 78.7 

3 -33.6 40 70 24.0 41.8 6.9 29.9 6.0 85.5 

4 -32.8 20 90 21.3 63.0 15.0 27.0 1.8 112.8 

a ‘% GHG’ refers to the percent change in greenhouse gas emissions compared to the 1990 reference quantity. 
Negative values indicate reductions. 
b ‘% HVE’ refers to the percent of additional heating and vehicle electrification simulated; some heating 
electrification (and a very small amount of vehicle electrification) currently exists in NYS. 
c ‘% LCP’ refers to the percent of in-state electricity supply from low-carbon sources.   
d ‘Wind and Solar Cap.’ refers to installed onshore wind, offshore wind, and utility-scale solar capacity. 
e ‘Gas Cap.’ contains 27.0 GW existing gas-based generation capacity and model selected new gas turbines. 
f ‘Avg. Gas Gen.’ refers to the average generation over the entire 6-year simulation period from existing gas-based 
generation and model-selected new gas turbines. 
 
 

The synergy of renewable energy generation and electrification is further explained by 

looking at “excess low-carbon generation”: Potential electricity generation from model-selected 

wind and solar capacities exceeding demand. Excess low-carbon generation exists as an hourly 

time series of either 0 MWh (when total low-carbon generation is less than the demand) or a 

positive value equal to the amount of low-carbon electricity generation that exceeds demand. In 

model simulations, excess low carbon generation must be either 1) stored for later use, or 2) 

curtailed. Figure I-4(a) shows that despite significant growth in renewable energy capacity with 

increasing HVE, excess low-carbon electricity generation remains below 6% as long as LCP does 

not exceed 70%; at LCP of 50% or less, excess generation is below 1%. Figure I-4(b) shows the 

relationship between excess low-carbon generation and LCOE for the same scenarios in Fig. 4(a).  
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By combining the effects discussed thus far, three primary LCOE drivers are identified: (1) 

decreasing per-unit costs of existing infrastructure with increasing demand from HVE, (2) higher 

generation costs from wind and solar power relative to existing resources, and (3) increasing 

integration costs when large amounts of wind and solar power produce electricity in excess of 

demand. Figure I-4(b) shows a general linear trend of integration costs (curtailment and battery 

storage) increasing LCOE at higher percents excess low-carbon generation, but also how the 

effects of the three cost drivers change over the entire range of LCPs and HVEs simulated. At LCPs 

at or below 60%, the primary cost tradeoffs discussed earlier are observed: Higher LCOEs from 

more wind and solar are partially mitigated by higher utilization of existing infrastructure with 

HVE. In the 70-80% LCP range, a transition begins in which some spread in excess low-carbon 

generation affects LCOE, but the first two LCOE drivers prevail. Beyond 80%, the integration cost-

driven linear relationship between increasing excess low-carbon generation and computed LCOE 

dominate. 

 
Figure I-4: (a) Average percent excess low-carbon generation for the entire 6-year simulation 
period vs. installed wind and solar capacity; (b) LCOE vs. percent excess low-carbon generation. 
Results are shown for the same independent decarbonization scenarios in Figure I-3, whereby the 
low-carbon electricity percent and the rate of heating and vehicle electrification are set, and 
SECTR-NY determines the least-cost energy system. 
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The results presented thus far show how electrification accompanied by a significant 

buildout of renewable energy can keep LCOE low. On the other hand, a focus on large LCP 

fractions beyond 70% represents a major cost escalation. Competing drivers and trade-offs are 

next examined among scenarios with increasing HVE while maintaining LCP at 60% (Figure I-5(a-

d)) vs. scenarios where HVE is 40% and LCP is progressively increased (Figure I-5(e-h)). (The trends 

observed here hold for other combinations of HVE and LCP; see Figures I-15 and I-16.) Figure I-

5(a-d) demonstrates the stable buildout of generation capacity and consistency of system 

behavior and costs as electrification increases. In order to meet the increased demand, low-

carbon generation, gas generation, and battery capacity all increase with electrification, per 

Figure I-5(a); gas generation undergoes the largest capacity increase – from 27.0 GW to 67.2 GW 

at 100% HVE – in order to meet higher electrification-induced demand peaks. Here, additional 

gas capacity is selected due to its low cost relative to the model’s other dispatchable generation 

option, battery storage. With additional policy-based constraints in place, such as a limit on 

additional gas turbine capacity or demand-side strategies to mitigate peak heating loads, much 

less new gas capacity would be built out. Electricity generation trends (Figure I-5(b)) largely 

mirror the expansion in generation capacity, with the ratio of solar to wind generation (combined 

onshore and offshore) staying consistent from 0.31 at 0% HVE to 0.34 at 100% HVE, although 

with an increasing amount of wind generation coming from offshore capacity. Figure I-5(d) 

reveals the reason for consistency in system behavior: Despite increasing average uncurtailed 

low-carbon electricity generation from 9.5 GWh/h at 0% HVE to 17.7 GWh/h at 100% HVE, 

average excess low-carbon generation only increases from 177 MWh/h to 336 MWh/h. 
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Electrification thus supports renewable energy integration by keeping the LCOEs of those supply 

resources low (Figure I-5(c)).  

Conversely, optimal energy system characteristics change substantially with increasing 

LCPs. The previously noted inflection point at 70-80% LCPs is characterized by a large increase in 

battery capacity (Figure I-5(e)): Of the 33.4 GW of installed battery capacity at 95%, 26.1 GW is 

installed between 80% and 95%. As implied by Figure I-4, this buildout is due to the significant 

increase in excess low-carbon generation shown in Figure I-5(h). Furthermore, as battery capacity 

increases, battery energy throughput does not increase as much (Figure I-5(f)), resulting in 

battery LCOE growth from $117/MWh at 80% LCP to $198/MWh at 95% LCP (Figure I-5(g)). 

Similarly, gas-based generation capacity remains fairly steady even at very high LCPs, but the 

electricity generation from that capacity decreases significantly. The result is gas generation LCOE 

steadily increasing from $57/MWh at 40% LCP to $72/MWh at 70% LCP and accelerating to 

$260/MWh at 95% LCOE. It is worth noting that these results partially reflect the constraints of 

the model; they suggest that other technologies not included in SECTR-NY due to their non-

competitive costs become beneficial in pushes to eliminate emissions from electricity generation. 

Regardless, these technology costs coupled with the significant increase in wind and solar LCOEs 

due to curtailment give a strong indication of the dominance of integration costs at high LCP.  
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Figure I-5: System characteristics for scenarios with (a-d) increasing HVE at 60% LCP; and (e-h) 
increasing LCP at 40% HVE. Subplots (a, e) present installed capacity; (b, f) present average 
generation by resource; (c, g) present LCOE per MWh for the generation and storage resources; 
and (d, h) present demand and generation quantities. In (c, g), resource LCOE for onshore wind, 
offshore wind, and solar refers to the LCOE of generation; LCOE for battery storage is per-MWh 
discharge; total LCOE contains all system costs; and in (c), gas generation LCOE at 95% LCP 
($260/MWh) is cropped out to preserve y-axis resolution. 
 
 

Figure I-6 shows the monthly low-carbon electricity supply for (a) 60% LCP for HVEs of 0%, 

40% and 80%, and (b) 40% HVE for LCPs of 60%, 80% and 95%. The seasonal low-carbon supply 

in Figure I-6(a) is nearly identical regardless of HVE and is largely in line with wind supply patterns 

shown in Figure I-2; this holds despite the low-carbon generation supply increasing 68% between 

HVEs of 0% and 80%. Accordingly, low-carbon electricity supply phenomena are shown to be 
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essentially independent of HVE, despite very significant shifts in diurnal and seasonal demand 

patterns with HVE. In contrast, Figure I-6(b) shows a significant shift in seasonal low-carbon 

supply behavior reflecting the increased share of solar shown in Figure I-5(f). (Additional system 

operation characteristics were investigated on this monthly timescale to inform the findings 

here; these are included in Figures I-11 and I-13.) 

 

 
Figure I-6: Monthly average low-carbon generation as a multiple of the average annual low-
carbon generation. (a) monthly averages for 0%, 40%, 80% HVEs at 60% LCP; (b) monthly 
averages for 60%, 80%, and 95% LCPs at 40% HVE.   
 
 

Solar’s contribution to the overall supply mix increases most dramatically beyond 80% 

LCP as battery storage increases: whereas 19.2 GW of solar capacity is installed between 40% 

and 80% LCP, 24.6 GW of capacity is installed just between 80% and 95% LCP (see Figure I-5(e)). 

This reflects complex dynamics in which overall system behavior may mask unique marginal 

behaviors of individual components: the operation of the same resource at lower LCP may be 

quite different with other resources present at higher LCPs. To this end, the paired buildout of 
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solar and battery capacity at very high LCPs provides the most cost-effective method of displacing 

the remaining gas generation, as the daily cycling of solar generation allows for regular battery 

charging during the day and discharging at night even as it becomes the highest LCOE renewable 

resource (Figure I-5(g)). Figure I-7 shows how battery behavior and its relation to wind and solar 

supply changes at increasing LCPs for a given 40% HVE. (See Figures I-17 and I-18 for other HVEs, 

which show the same trends as Figure I-7.)  

 
Figure I-7: Average battery operation by hour for 60%, 80%, and 95% LCPs over the entire 6-year 
simulation period. (a) average hourly battery charging from wind (note y-axis scale is unique from 
(b) and (c)); (b) average hourly battery charging from solar; and (c) average battery discharge, all 
in GWh/h. 
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At 60% LCP in Figure I-7, when total wind supply is roughly three times total solar supply, 

battery charging from wind is approximately 5 times higher than solar with distinct overnight and 

afternoon charging periods. At 80% LCP, wind’s overnight charging reduces while both wind and 

solar charge the batteries in the afternoon; battery charging from solar becomes 1.4 times that 

from wind despite total wind supply being 2.4 times solar supply. Despite this shift between 60% 

and 80% LCP, the battery discharge remains almost entirely in the evening while total battery 

throughput increases by 38%. From 80% to 95% LCP, the maximum hourly average discharge in 

the evening doubles from 3 GWh/h to 6 GWh/h, extending throughout the night with a steady 

average 2-3 GWh/h supply resulting in a near tripling of the total throughput. The additional 

energy supply to the battery comes almost entirely from solar: While total wind supply remains 

1.8 times the solar supply, battery charging from solar is 3.5 times that from wind. Here, the 

diurnal pattern of solar generation allows for daily battery cycling and higher battery throughput, 

behavior that enables the integration of more low-carbon generation.  

While the average diurnal behavior shown in Figure I-7 is useful in understanding broad 

system behavior and the results of model decisions, decision-making is often based on complex 

dynamics occurring at hourly timescales over particular periods of time that set capacity and 

operational needs. Figures I-8 and I-9 show representative weeks in the winter and summer, 

respectively: The upper figures (Figures I-8(a) and I-9(a)) show scenarios of 80% LCP and 40% 

HVE, and the lower figures (Figures I-8(b) and I-9(b)) show scenarios of 95% LCP and 40% HVE. 

Figure I-8(a) shows that the lowest LCOE low-carbon option of wind provides much of the winter 

energy needs at 80% LCP, due to the resource’s high seasonal productivity. Conversely, there are 

higher needs for gas-based generation in the summer (Figure I-9(a)). In both figures, curtailment 
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(i.e., slack in the SECTR-NY energy balance constraint) is attributed to solar and wind in 

proportion to their hourly generation; however, as noted in the discussion around Figure I-7, the 

natural pairing of solar generation and battery storage means that more wind generation is 

curtailed relative to solar.  

As the LCP increases to 95% (Figures I-8(b) and I-9(b)), the reason for coupling more solar 

power with battery storage is revealed: Solar generation exceeding demand during the afternoon 

is used to charge battery storage, which is then discharged to meet evening demand (and 

overnight demand, if enough stored energy is available). In Figures I-8(b) and I-9(b), 

approximately 5% of demand met by gas generation occurs during extended hours of low wind 

production. Here, batteries are not as cost-effective in displacing gas generation: low wind 

generation potentials lasting a day or longer would require multi-day battery cycling periods, and 

accordingly, underutilization of storage capacity relative to its usage with solar. (For further 

exploration that reinforces this interpretation, Figures I-19 and I-20 present the same 

representative week and LCPs as Figures I-8 and I-9 but at 80% HVE.)  
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Figure I-8: Electricity generation and demand for a representative winter week with 40% HVE. (a) 
80% LCP; (b) 95% LCP. ‘Imp. + Bio. + BTM’ represents the sum of imports, biofuel, and behind-the-
meter solar generation. Average values reported in the legend are for the week shown.  
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Figure I-9: Electricity generation and demand for a representative summer week with 40% HVE. 
(a) 80% LCP; (b) 95% LCP. ‘Imp. + Bio. + BTM’ represents the sum of imports, biofuel, and behind-
the-meter solar generation.  Average values reported in the legend are for the week shown. 
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3.3 Comparison to New York State policy studies 
 

SECTR-NY model results are compared to initial analyses presented to the New York State 

Climate Action Councilxv, a committee preparing a scoping plan for CLCPA, both to validate SECTR-

NY outputs and to evaluate the effects of different model assumptions and input data. A 

comparison of select characteristics of the NYS Climate Action Council Advisory Panel (AP) 2030 

scenario and two SECTR-NY scenarios is shown in Table I-14. The AP 2030 scenario includes an 

85% LCP and approximately 15% HVExvi with a computed energy related GHG emissions reduction 

of 47.4% (relative to 1990, as are all GHG reductions discussed here); this scenario includes 28.4 

GW of total wind and solar capacity and 3 GW battery storage capacity. For the same LCP and 

HVE, SECTR-NY Scenario A computes a total wind and solar capacity of 39.2 GW, 3.2 GW battery 

storage capacity, and GHG emissions reduction of 27.7%. There are two primary drivers for the 

greater SECTR-NY capacities here: 

1. 14% higher average total wind and solar generation in SECTR-NY Scenario A (9.0 GW) than 

in AP 2030 (7.9 GW). This is due to more hydropower generation in AP 2030 than in the 

historical data used in SECTR-NY [100] and approximately 2.3 GW higher average 

statewide load in SECTR-NY Scenario A. The latter stems from a combination of SECTR-NY 

using historical electricity demand timeseries containing a higher existing average load 

(18.7 GW) than is simulated in NYS studies (18.2 GW); 15% SECTR-NY HVE likely being 

slightly higher than the estimate for AP 2030; AP 2030 considering combinations of 

 
xv NYS published studies are available at the following link: https://climate.ny.gov/Climate-Resources. Technical 
analysis of initial results [32] and of key drivers and outputs [335] last updated in November and December of 2021 
are of particular use in understanding the state’s modeling methodology and simulated decarbonization pathways.  
xvi The AP considered different electrification rates for different end-uses, so this estimate is not directly analogous 
to that of SECTR-NY presented here. See Table I-14, footnote 2 for a breakdown of the different electrification 
rates assumed in the AP recommendations.  
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population growth and efficiency savings; and SECTR-NY’s more accurate representation 

of low-temperature effects of EHPs and EVs. (These low-temperature effects also explain 

the difference in fossil fuel-based generation capacity to meet the 35.4 GW peak 

statewide load computed in SECTR compared to the 29.6 GW statewide peak in AP 2030.) 

2. 21% higher aggregate wind and solar capacity factor (CF) in AP 2030 (0.278) than in SECTR-

NY Scenario A (0.230). This is primarily driven by significantly lower solar and onshore 

wind CFs in the latter. Model wind output in SECTR-NY is less than that of most available 

wind data: SECTR-NY employs a dataset that contains adjusted model data based on 

historical output of actual wind farms in NYS [64]. A comparison of solar data series was 

not performed; however, the authors believe SECTR-NY Scenario A’s statewide solar CF 

of 0.166 represents more realistic expectations for NYS’s latitude range than AP 2030’s 

0.194. 

 
The difference in computed GHG reductions between AP 2030 and SECTR-NY Scenario A 

stems from model assumptions related to methane leakage in natural gas production and 

transport upstream of NYS. SECTR-NY relies on research on natural gas leakage [108,111] that 

estimates approximately 3.6% leakage with an associated impact on fossil fuel emissions factors 

[106]. AP 2030 reduces the leakage to approximately 2%, though the authors have not seen an 

explanation for this assumption. The implications of these assumptions can be seen in SECTR-NY 

Scenario B, in which more heating and vehicle electrification is needed to achieve the same 

percentage GHG emissions reduction as that computed for AP 2030. Here, total computed wind 

and solar capacity increases to 51.4 GW, 81% greater than that anticipated by the recent analyses 

presented to the NYS Climate Action Council. 
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Table I-14: Comparison of NYS Climate Action Council Advisory Panel (AP) recommendations and 
SECTR-NY simulation results for modeled 2030 decarbonization scenarios.  

 Modeled Scenario 

 NYS AP 2030  SECTR-NY, A SECTR-NY, B 

Low-Carbon Electricity Percent (LCP) 85% 85%1 85%1 

Heating and Vehicle Electrification (HVE) 15%2 15%1 50% 

GHG Emissions Change 
(Compared to 1990) -47.4% -27.7% -47.4%1 

Electricity Demand 
Peak [GW] | Average [GWh/h] 29.6 |18.4 35.4 | 20.7 52.7 | 25.4 

Onshore Wind 
Capacity [GW] | Average Generation [GWh/h] 5.2 | 1.7 11.2 | 2.6 14.2 | 3.4 

Offshore Wind 
Capacity [GW] | Average Generation [GWh/h] 6.2 | 2.9 8.4 | 3.8 13.2 | 5.8 

Solar 
Capacity [GW] | Average Generation [GWh/h] 17.0 | 3.3 19.6 | 2.7 24.0 | 3.9 

In-State Hydropower 
Capacity [GW] | Average Generation [GWh/h] 4.6 | 3.5 5.3 | 3.0 5.3 | 3.0 

Hydropower Imports 
Capacity [GW] | Average Generation [GWh/h] 2.7 | 2.2 2.8 | 2.0 2.8 | 2.0 

Nuclear 
Capacity [GW] | Average Generation [GWh/h] 3.4 | 3.0 3.5 | 3.2 3.5 | 3.2 

Battery Capacity [GW] 3.0 3.2 9.9 

Fossil Fuel 
Capacity [GW] | Average Generation [GWh/h] 20.8 | 2.7 27.0 | 2.5 27.6 | 3.2 

 1 Indicates configuration parameters specified for the SECTR-NY model scenario.   
 2Approximated from the following proportions of vehicle and building stock end-use equipment transitioning to 
electric alternatives in the AP 2030 scenario: 14% of light duty vehicles, 6% of heavy duty vehicles, 11% of residential 
space heating; 11% of commercial space heating, 25% of residential water heating, and 19% of commercial water 
heating. 
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3.4 Additional Baseline configuration results 
 

Figure I-10 presents an analogous plot to Fig. I-3(a), but with a continuous 3.2 GWh/h of 

upstate nuclear generation present. Here, nuclear generation allows for approximately 10% 

lower LCOEs on average at the simulated scenarios, cost savings that grow larger at higher LCPs. 

However, the addition of nuclear generation does not change the overall shape of Figure I-3(a), 

and accordingly the same conclusions are reached: 1) Emissions reductions can be achieved at 

lower LCOEs by prioritizing electrification of heating and vehicles in conjunction with deployment 

of solar and wind, as opposed to the latter by itself, and 2) system costs increase substantially 

above 70-80% LCPs.  

 
Figure I-10: LCOE vs. percent reduction in NYS GHG emissions (compared to 1990 levels). Marker 
shape indicates percent low-carbon electricity (LCP), and marker color indicates heating and 
vehicle electrification (HVE). For scenarios shown, all low-carbon electricity generation is from 
wind, solar, nuclear, and hydropower.  
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Next explored are the effects of either increased HVE or LCP on peak gas generation, 

average gas generation, low-carbon electricity generation, and battery storage throughput. In 

evaluating the peak gas generation characteristics, increasing electrification at a set LCP results 

in substantial winter peaks: Figure I-11(a) presents the monthly peak to annual average gas 

generation ratio at 60% LCP for 0%, 40% and 80% HVE. At 80% HVE, additional, peaky heating 

demand causes January gas generation peaks of 46.9 GWh/h, equal to 4.6 times the annual 

average, compared 15.9 GWh/h at 0% HVE with a peak-to-average ratio of 2.7. In contrast, the 

July peak only increases from 22.4 GWh/h at 0% HVE to 25.5 GW at 100% HVE. Figure I-11(b) 

shows that there are no equivalent seasonal effects to increasing the LCP at 40% electrification. 

However, increasing the LCP to 80% and 95% results in lower average gas generation (4.0 GWh/h 

and 1.0 GWh/h, respectively, compared to 8.0 GWh/h), quantities which result in substantial 

peak-to-average ratios (above 20 in December and January for the 95% LCP). 

 

 
Figure I-11: Monthly peak to annual average gas generation ratios for (a) scenarios containing 
60% low carbon electricity with increasing amounts of electrification; and (b) scenarios containing 
40% electrification with increasing percents low-carbon electricity.  
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Increasing electrification at a set LCP has a similar seasonal shift on average gas 

generation, shown in Figure I-12(a). For the same 60% LCP and 0%, 40%, and 80% HVEs, increased 

electrification results in higher average winter gas generation – in absolute terms and relative to 

the annual average – and lower relative generation during the summer. In January, 0% HVE 

corresponds to an average 5.3 GWh/h of gas generation, or 0.9 times the annual average; 100% 

HVE increases this to 16.3 GWh/h, or 1.6 times the annual average. Again, this increase in average 

generation is attributable to the higher amounts of peaky heating demand on the system: 

Heating demand proves difficult to meet with low-carbon electricity and is accordingly satisfied 

by dispatchable gas generation. The suitability of gas generation in meeting electrified heating 

demand also explains the relative decreases in gas generation during summer months. As the 

same LCP needs to be achieved despite increased winter gas generation, gas generation during 

the summer is reduced (1.2 times the annual average with 80% HVE compared to 1.8 times at 0% 

HVE in the month of July), as this less-peaky demand can more easily be met by a combination of 

solar generation and battery storage.  

Figure I-12(b) demonstrates that raising the LCP from 60% to 95% increases the January 

gas generation from 1.3 to 2.5 times the annual average, a shift that indicates the costliness of 

meeting electrified heating demand with only low-carbon generation and battery storage. In 

contrast, gas generation in the shoulder seasons is the first to be displaced by low-carbon 

generation, due to 1) the high productivity of onshore wind, offshore wind, and solar resources, 

and 2) the lack of peaky heating demand during these months. 
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Figure I-12: Monthly gas generation as a multiple of the annual average for scenarios containing 
(a) 60% low-carbon electricity with increasing amounts of electrification; and (b) 40% 
electrification with increasing percents low-carbon electricity.  
 
 

Evaluation of monthly battery storage behavior reinforces the findings presented in 

Section I-3.2. Increasing electrification at 60% low-carbon electricity shifts battery throughput 

towards summer months when battery storage is well-paired with the daily cycles of productive 

solar generation, per Figure I-13(a). While this relative seasonal shift is apparent in the changing 

shapes of the normalized throughput curves, the absolute seasonal difference in battery 

throughput is not as stark: Increasing HVE from 0% to 80% only raises battery throughput by an 

average 1.0 GWh/h, indicating that battery output is not utilized to meet a significant portion of 

demand at 60% LCP. In contrast, battery throughput increases substantially in the summer 

months – in both absolute and relative terms – and experiences a relative drop during the 

shoulder seasons as LCP increases from 60% to 95% at 40% HVE (Figure I-13(b)). At 95% LCP, 

battery throughput reaches an average of 3.1 GWh/h in August (1.4 times the annual average), a 
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quantity that is double the average throughput in April (1.6 GWh/h); to compare, the 60% LCP 

scenario contains average throughputs in August and April both roughly equal to the annual 

average of 0.6 GWh/h. From this figure, one concludes that pairing batteries with productive 

solar generation during summer months provides a cost-effective method of meeting additional 

load with low-carbon electricity. It is also notable that this effect is substantially greater when 

increasing the LCP at a given HVE, due to the greater amounts of excess low-carbon generation 

present in these scenarios. 

 

 
Figure I-13: Monthly battery throughput as a multiple of average annual throughput. Results are 
presented for scenarios containing (a) 60% low carbon electricity with increasing amounts of 
electrification; and (b) 40% electrification with increasing percents low-carbon electricity.  
 
 
3.5 Impact of existing system parameterization 
 

To understand the impact of SECTR baseline parameters and how different 

parameterizations affect model results, two additional configurations are evaluated: A 

‘Greenfield’ configuration and a ‘Greenfield with Constant Costs’ configuration. The Greenfield 
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configuration represents a type of parameterization often seen in the capacity expansion 

modeling literature: This configuration includes no existing solar, wind, gas, biofuel, or 

transmission capacity; and no existing biofuel generation. The Greenfield with Constant Costs 

configuration combines the greenfield parameterization with homogenous nodal costs, which 

are calculated via a weighted average of the costs associated with the returned capacity and 

generation quantities from the Greenfield configuration model solution. 

All configurations are evaluated at two scenarios, one representing a combination of a 

high LCP and a low HVE (referred to as the high LCP scenario), and the other representing a 

combination of a lower LCP and a higher HVE (referred to as the low LCP scenario). In both 

scenarios, the GHG reduction is set to 40%. For the high LCP scenario, electrification of heating 

and transport is set to 40% and the LCP is determined by the model; for the low LCP scenario, 

LCP is set to 60% and the HVE is determined by the model. To ensure equivalent LCPs across 

configurations, the efficiency of new gas turbines in a Greenfield-based configuration is set to the 

weighted average efficiency of existing and new generation in the corresponding Baseline 

scenario. 

Table I-15 presents a comparison of model-selected gas, battery, transmission, and LCOE 

characteristics. Here, both Greenfield configurations (with and without constant costs) contain 

LCOEs approximately 10% lower than in the fully parameterized Baseline configuration, 

regardless of the combination of HVE/LCP. As the Greenfield configurations do not include any 

existing gas, biofuel, or transmission capacity, the fixed costs associated with maintaining this 

infrastructure (see ‘Existing Cap. LCOE’ column) drop to nearly $0/MWh, a reduction that causes 

the total LCOE decline. Moving from the Baseline to the Greenfield configuration, an average 
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60.2% decline in total installed transmission capacity is observed across both scenarios, with 

reverse transmission being completely eliminated; moving to the Greenfield with Constant Costs 

configuration causes an average 69.2% decline.  Accordingly, the transmission capacity that is 

installed in the positive direction is utilized more frequently, a trend which is particularly 

pronounced in the Greenfield configuration results, due to lower amounts of installed downstate 

gas generation (see Figure I-14).  

 
Table I-15: Select computed characteristics of Baseline and Greenfield configurations.  

  
  

Configuration 
Parameters Model-returned Generation and Storage Capacities (Cap.) and Transmission (Tx.) Characteristics 

Configuration % 
GHGa 

% 
HVEb 

% 
LCPb 

Total 
Gas 
Cap. 
[GW] 

Total 
Upstate 
Battery 
Cap. 
[GW] 

Total 
Downstate 

Battery 
Cap. [GW] 

Total Pos. 
Tx. Cap. 
[GW-mi]c  

Total 
Rev. Tx. 

Cap. 
[GW-mi]d 

Avg. Pos. 
Tx. Util. 

%c 

Existing 
Cap. 

LCOE 
[$/MWh]e 

Total 
LCOE 

[$/MWh] 

Baseline -40 40 81.7 27.2 7.3 1.2 2646.8 2287.4 24.3 27.0 96.4 

Baseline -40 64.8 60 47.2 2.8 3.9 2646.8 2083.2 28.1 23.7 83.5 

Greenfield -40 40 81.3 26.1 8.8 3.5 2473.3 0.0 31.7 0.8 86.5 

Greenfield -40 64.3 60 48.4 2.6 3.9 1371.0 0.0 41.7 0.7 75.8 

Greenfield w. 
Constant Costs -40 40 81.3 25.7 10.9 2.2 2339.8 0.0 27.3 0.8 86.7 

Greenfield w. 
Constant Costs -40 64.4 60 48.0 5.7 2.7 629.0 5.3 29.9 0.7 75.0 

a ‘% GHG’ refers to the percent change in greenhouse gas emissions compared to the 1990 reference values. 
Negative values indicate reductions. 
b LCPs/HVEs are not identical across configurations due to slight differences in model-computed electricity imports 
given the specified GHG reduction and the HVE/LCP.  
c ‘Pos.’ refers to “positive” upstate-to-downstate transmission directionality, i.e. from Node 1 to 2, Node 2 to 3, and 
Node 3 to 4.  
d ‘Rev.’ refers to “reverse” downstate-to-upstate transmission directionality, i.e. from Node 4 to 3, Node 3 to 2, and 
Node 2 to 1.  
e The costs of maintaining existing gas, hydropower, biofuel, and transmission capacity constitute the cost portion 
of ‘Existing Capacity LCOE.’  
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For the high LCP scenarios in the two greenfield configurations, less transmission capacity 

and lower amounts of installed gas generation are compensated by increased battery capacity:  

The Greenfield configuration contains 2.8 GW additional storage capacity (a 29.4% increase), 

while the Greenfield with Constant Costs configuration contains 3.6 GW additional storage 

capacity (a 37.9% increase). This larger quantity of installed battery capacity is less prominent in 

the low LCP scenarios, due to their lower need for low-carbon electricity shifting; however, the 

low-LCP scenario in the Greenfield with Constant Cost configuration contains 1.7 GW more 

battery capacity than its Baseline analogue, an increase of 25.4% 

Figure I-14 displays the change in gas capacity and generation characteristics across the 

three configurations. Here, the spatial heterogeneity of SECTR-NY results is investigated by 

splitting NYS into upstate and downstate regionsxvii. Upstate NYS contains the state’s onshore 

wind capacity, low-cost utility-scale solar, and existing low-carbon generation, while downstate 

NYS contains substantial electricity demand in and around New York City and offshore wind 

capacity. These differences in regional characteristics results in distinct system behavior on either 

side of the interface between Nodes 2 and 3.  

Comparing results across configurations, the top row – representing the high LCP scenario 

– contains a 7.1 GW shift in gas capacity from downstate to upstate nodes when changing from 

the Baseline to the Greenfield configuration, due to the relatively higher cost of downstate gas 

capacity. Adopting constant nodal costs causes a smaller shift: When all new capacity has the 

same cost, the high LCP scenario shifts 1.8 GW gas capacity towards downstate regions compared 

to its equivalent Baseline configuration. In the low LCP scenarios (bottom row of Figure I-14), a 

 
xvii ‘Upstate’ is defined as a region containing Nodes 1 and 2; ‘downstate’ refers to a combination of Nodes 3 and 4. 
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consistent shift from upstate to downstate gas generation capacity is observed: The Greenfield 

configuration contains a shift of 5.4 GW, while the Greenfield with Constant Costs configuration 

contains a shift of 12.0 GW.  

 

 
 
Figure I-14: Existing and new gas capacity, distribution, and capacity factors (CF), shown with 
peak demand, for upstate and downstate New York State regions. The top row presents results 
for the high low-carbon electricity percent (LCP) scenario; the bottom row presents results for the 
LCP scenario.   
 
 

Both scenarios reveal the low capacity factors (CFs) of gas capacity in energy systems that 

achieve 40% GHG reduction, regardless of the configuration. In the top row, the high percent 

low-carbon electricity means that gas generation meets 19% of demand; this corresponds to 

capacity factors less than 7% upstate and less than 28% downstate. Here, CFs are lower upstate 

as this where the bulk of the renewable generation capacity is located. In comparison, gas 
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generation CFs are higher on average for the low LCP scenario despite the larger amounts of GT 

capacity required to meet the additional electrified load: The looser low-carbon electricity 

constraint means that gas generation can satisfy approximately 40% of the demand. The outlier 

to this trend is the new gas capacity installed upstate in the Baseline configuration. For this 

scenario, 18.4 GW of new upstate capacity generates an average of 62.7 MWh/h, and 1.8 GW of 

new downstate capacity generates an average of 5.7 MWh/h, both corresponding to rounded 

CFs of 0.3%.  

 
3.6 Additional figures presented at different rates of heating and vehicle electrification and 
different percents low-carbon electricity 
 

Figures I-15 and I-16 display versions of Figure I-5 at different HVEs and LCPs; Figures I-17 

ad I-18 display versions of Figure I-7 at different HVEs; and Figures I-19 and I-20 display versions 

of Figures I-8 and I-9 at different HVEs. These figures demonstrate that the results presented in 

Section I-3.2 are not unique to the selected percents low-carbon electricity or electrification rates 

therein. 
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Figure I-15: System characteristics for scenarios with (a-d) increasing HVE at 80% LCP; and (b) 
increasing HVE at 95% LCP. Subplots (a, e) present installed capacity; (b, f) present average 
generation by resource; (c, g) present LCOE per MWh for the generation and storage resources; 
and (d, h) present demand and generation quantities. In (c, g), resource LCOE for onshore wind, 
offshore wind, and solar refers to the LCOE of generation; LCOE for battery storage is per-MWh 
discharge. Note the different y-axis ranges for side-by-side panels. 
 
 



 

 94 

 
Figure I-16: System characteristics for scenarios with (a-d) increasing LCP at 0% HVE; and (b) 
increasing LCP at 80% HVE. Subplots (a, e) present installed capacity; (b, f) present average 
generation by resource; (c, g) present LCOE per MWh for the generation and storage resources; 
and (d, h) present demand and generation quantities. In (c, g), resource LCOE for onshore wind, 
offshore wind, and solar refers to the LCOE of generation; LCOE for battery storage is per-MWh 
discharge; and in (c), gas generation LCOE at 95% LCP ($338/MWh) is cropped out to preserve y-
axis resolution at lower LCOE values. Note the different y-axis ranges for side-by-side panels. 
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Figure I-17: Average battery operation by hour for 60%, 80%, and 95% LCPs at 0% HVE. (a) 
Average hourly battery charging from wind (note y-axis scale is unique from (b) and (c)); (b) 
average hourly battery charging from solar; and (c) average battery discharge, all in GWh/h. 
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Figure I-18: Average battery operation by hour for 60%, 80%, and 95% LCPs at 80% HVE. (a) 
Average hourly battery charging from wind (note y-axis scale is unique from (b) and (c)); (b) 
average hourly battery charging from solar; and (c) average battery discharge, all in GWh/h. 
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Figure I-19: Electricity generation and demand for a representative winter week with 80% HVE. 
(a) 80% LCP; (b) 95% LCP. ‘Imp. + Bio. + BTM’ represents the sum of imports, biofuel, and behind-
the-meter solar generation. Average values reported in the legend are for the week shown. 
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Figure I-20: Electricity generation and demand for a representative summer week with 80% HVE. 
(a) 80% LCP; (b) 95% LCP. ‘Imp. + Bio. + BTM’ represents the sum of imports, biofuel, and behind-
the-meter solar generation. Average values reported in the legend are for the week shown. 
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4. Discussion 
 

This study’s results are broadly consistent with previously published research that deep 

greenhouse gas (GHG) emissions reductions require both a significant low-carbon electricity 

percentage (LCP) and increases in heating and vehicle electrification (HVE); however, an 

important finding is that by prioritizing heating and vehicle electrification in conjunction with 

renewable energy deployment rather than first focusing on LCP, emissions reductions can be 

achieved with lower electricity supply costs. Through comparative scenarios, the benefits of end-

use electrification to the electricity system are emphasized: Heating and vehicle electrification 

allows the same amount of renewable energy to be installed with significantly lower electricity 

supply costs all while producing deeper reductions in GHG emissions.  

First order GHG reductions from electrification occur because of improved energy 

efficiency compared to the direct use of fossil fuels for heating and vehicles, even when the LCP 

is close to 40%, i.e. that of the existing NYS electricity grid. At this LCP, average heating emissions 

per unit heat delivered are 70% lower with current electric technologies than existing fossil fuel-

based heating; average vehicle emissions per mile traveled are 56% lower.  

For LCPs at or below 60%, higher levelized costs of electricity (LCOE) of wind and solar 

generation are mitigated by higher utilization of existing infrastructure with increased HVE (with 

LCOE even decreasing at HVEs up to 20-40%). The 70-80% LCP range represents a transition 

phase: Beyond 80%, integration costs (e.g., curtailment and battery storage) lead to rapidly rising 

LCOEs. Accordingly, three primary levelized cost of electricity (LCOE) drivers are identified from 

the range of LCPs and HVEs investigated: (1) per-unit costs of existing infrastructure decrease 

with increasing demand from HVE, (2) wind and solar power generation costs rise relative to gas-
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based and hydropower generation, and (3) costs of integration increase when large amounts of 

wind and solar power produce electricity in excess of demand.  

For LCPs below 80%, wind generation meets most of the low-carbon generation 

requirement, as onshore wind represents the lowest LCOE renewable resource, followed by 

offshore wind resources near the dense load areas of New York City and Long Island. Beyond 80% 

LCP, paired solar generation and batteries become the most cost-effective method of displacing 

fossil fuel-based electricity generation. At higher LCPs, battery cycling occurs daily, making solar 

a more appropriate paired generation resource – at least some electricity is generated from solar 

daily whereas wind can drop off considerably for multi-day periods, particularly in the summer.  

The marginal costs of lowering emissions from the limited set of electricity supply 

technologies considered here (wind, solar, battery and gas turbines) become high enough at LCPs 

larger than 80% to suggest that other nascent technologies (e.g., hydrogen storage) may play a 

role in achieving full energy sector decarbonization. Moreover, targeted deployment of other 

demand-side technologies not modeled – such as upgraded building envelopes, thermal storage 

and ground-source heat pumps – could further reduce supply costs by reducing heating-driven 

system peaks. Demand-side flexibility measures – like dual-fuel capabilities and grid-interactive 

controls – may also mitigate integration costs and reduce dispatchable capacity requirements. 

Lastly, breakthroughs in energy and emissions intensive industrial sectors could partially scale 

down emissions reductions needed in the residential, commercial, transportation, and electricity 

sectors. 
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A comparison of model results described in this chapter to initial analyses presented to 

the New York State Climate Action Council (“NYS study”) validated SECTR-NY outputs, but also 

highlighted important factors in assessing the planning implications of such models. While SECTR-

NY and the NYS study compute similar energy resource capacities for a scenario in line with the 

State’s Year 2030 targets, deviations between the two can largely be attributed to differences in 

time series data for wind/solar potential time series and historical demand data, and to this 

chapter’s particular attention to low-temperature effects on heat pump and electric vehicle 

performance. Accurately modeling the potential generation from renewable resources and new 

electrification-driven peak demands does thus affect the resource capacity required to meet the 

electric load. However, the two models do diverge significantly in the calculation of GHG 

emissions. SECTR-NY computes lower emission reductions than the NYS study for a given 

combination of LCP and HVE; SECTR-NY includes upstream natural gas leakage in line with recent 

research and its related quantifiable GHG effects, whereas the NYS study assumes a lower 

leakage rate. As detailed previously, this distinction has significant implications for the amount 

of electrification needed to meet the State’s GHG reduction targets.  

A couple of caveats surrounding this chapter’s methodology and results are also worth 

mentioning. Foremost, SECTR does not model the electricity distribution network. As there will 

be a need to upgrade distribution to incorporate end-use heating and vehicle electrification, 

future work should investigate the scale, location, and costs of this reinforced capacity. Second, 

all SECTR generation is considered to be lumped. While this assumption substantially increases 

model tractability, it masks operating practices at the individual generator level where decisions 

are made. Third, LCPs are imposed on the amount of instate electricity generation, and do not 
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account for the carbon content of any imported electricity. Should state regulations change to 

allow clean, imported electricity to satisfy low-carbon generation targets, the SECTR general 

formulation will need to be adjusted. Lastly, this chapter presents results for a single set of cost 

assumptions. Should these assumptions prove inaccurate, rerunning the presented 

decarbonization scenarios will be required.  

As the SECTR framework is an open-source, computationally efficient, capacity transition 

and system operation framework, the energy systems research community can adapt it in a 

number of ways for future work. One possibility is parameterizing SECTR for other RTO/ISO 

settings to explore comparative lowest cost decarbonization pathways. Moreover, within an 

RTO/ISO, researchers can investigate the impact of further interconnections to external 

generation. Lastly, researchers can build upon the SECTR framework by addressing the caveats 

mentioned above, such as by adding location specific costs for upgraded distribution capacity. 

 
5. Conclusions 
 

Chapter I introduces an open-source System Electrification and Capacity Transition 

(SECTR) modeling framework; the framework is then applied to the New York State (NYS) regional 

energy system (SECTR-NY). By characterizing existing system capacities, loads, and pricing 

structures, SECTR-NY reasonably approximates current electricity supply costs, establishing a 

reliable baseline from which to investigate different combinations of low-carbon electricity 

percentages (LCP) and heating and vehicle electrification rates (HVE).  

Methodologically, SECTR addresses several shortcomings of traditional capacity 

expansion models (CEMs), including characterization of existing energy infrastructure systems, 

multi-year simulations with weather-dependent time series inputs, and spatially resolved end-
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use electrification effects. In parameterizing the model for NYS, the model incorporates improved 

emissions accounting assumptions specified by recent climate legislation but previously 

unimplemented in state decarbonization studies. This study demonstrates that overall energy 

emissions reductions can be achieved at lower electricity costs by prioritizing heating and vehicle 

electrification ahead of complete grid decarbonization; the former approach still requires a major 

buildout of wind and solar power, but at lower percentage penetration into the grid because of 

higher demands from more electrification. Moreover, three main electricity supply cost drivers 

are established for a decarbonizing energy system: (1) decreasing per-unit supply costs of existing 

infrastructure with increasing electrification (i.e., with higher demand); (2) higher wind and solar 

power supply costs relative to current hydropower and fossil fuel-based generation; and (3) 

increasing costs of integration (due to curtailment and energy storage) as solar and wind supply 

in excess of demand increase with LCP.  

 
6. Data Availability 
 

All code and data used for the SECTR-NY model formulation can be found in the following 

GitHub repository: https://github.com/SEL-Columbia/sectr-ny.   
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7. Appendix A: Full list of cost and existing capacity assumptions  
 

Table I-16 contains a full listing of all nodal cost assumptions in SECTR-NY. The 

Methodology provides a full accounting of how these assumptions were reached. Internodal 

transmission upgrade and O&M costs are presented in Table I-2.  

 
Table I-16: Cost assumptions used in SECTR-NY. 

Quantity Unit Node 1 ($) Node 2 ($) Node 3 ($) Node 4 ($) 

Onshore Wind Capacity Cost, High $/kW 1992 1992 N/A N/A 

Onshore Wind Capacity Cost, Low $/kW 1698 1698 N/A N/A 

Offshore Wind Capacity Cost, High $/kW N/A N/A 3583 3583 
Offshore Wind Capacity Cost, Low $/kW N/A N/A 2256 2256 

Utility-Scale Solar Capacity Cost, High $/kW 1341 1341 1593 1593 
Utility-Scale Solar Capacity Cost, Low $/kW 1006 1006 1195 1195 

Battery Storage Energy Cost, High $/kWh 208 208 208 208 
Battery Storage Energy Cost, High $/kWh 144 144 144 144 

Hydrogen Storage Energy Cost $/kWh 0.35 8.29 8.29 8.29 
Hydrogen Storage Power Cost $/kW 3013 3013 4036 4036 

New Fossil Fuel-Based Generation 
Capacity Cost 

$/kW 772 772 1034 1034 

Hydropower Generation Cost $/MWh 18.47 28.02 N/A N/A 
Nuclear Generation Cost $/MWh 37.94 N/A 26.82 N/A 
Biofuel Generation Cost $/MWh 20.66 27.41 27.05 32.39 
Imported Electricity Cost $/MWh 22.13 N/A 70 N/A 

Wholesale Natural Gas Price $/MMBTU 2.89 4.04 3.67 3.62 
Existing Fossil Fuel-Based Generation 

Ramping Cost 
$/MW-h 79 79 79 79 

New Fossil Fuel-Based Generation 
Ramping Cost 

$/MW-h 69 69 69 69 

New Fossil Fuel-Based Generation 
Fixed O&M Cost 

$/kW-yr 6.97 6.97 6.97 6.97 

Onshore Wind Capacity Fixed O&M 
Cost 

$/kW-yr 18.1 18.1 N/A N/A 

Offshore Wind Capacity Fixed O&M 
Cost 

$/kW-yr N/A N/A 38 38 

Utility-Scale Solar Capacity Fixed O&M 
Cost 

$/kW-yr 10.4 10.4 10.4 10.4 

Hydrogen Storage Fixed O&M Cost $/kW-yr 48.87 48.87 48.87 48.87 
New Fossil Fuel Based Generation 

Variable O&M Cost 
$/MWh 4.48 4.48 4.48 4.48 

Existing Generation Capacity 
Maintenance Cost  

$/kW-yr 27.64 53.44 101.303 104.6 

Existing Transmission Capacity 
Maintenance Cost  

$/MWh 16.9 16.9 27.3 27.3 
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Table I-17 contains a full listing of existing nodal capacities modeled in SECTR-NY. The 

Methodology provides a full accounting of how these values were reached. Internodal existing 

transmission capacities are presented in Table I-2.  

 
Table I-17: Existing capacities modeled in SECTR-NY.  

Capacity Type Node 1 (MW) Node 2 (MW) Node 3 (MW) Node 4 (MW) 

Onshore Wind  1985 0 0 0 

Offshore Wind 0 0 0 0 

Utility Scale Solar 0 0 0 56.5 
Behind-the-Meter Solar 562 523 293 259 

Gas-Fueled  3934.2 8622.5 10249.9 4192.7 

Hydropower 4717.4 608.7 0 0 
Nuclear 3536.8 0 2311 0 

Biofuel 258 45 59.7 142.2 

Interregional Import Limits  1500 0 1250 0 
Battery Storage, Energy 5.2 80 0 65 

Battery Storage, Power 3 20 0 10 
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Chapter II: Assessing new transmission and energy storage in achieving increasing 
renewable generation targets in a regional grid 

 
 
Abstract 
 

This study evaluates generation, transmission, and storage capacity needs to achieve 

deep renewable energy penetration in a regional electricity grid with an average load of 

approximately 20 GW. Increasing renewable energy targets are analyzed to evaluate the effect 

of realistic regional transmission upgrade and energy storage cost assumptions on the cost-

optimal mix of generation, transmission, and storage capacity. Contextual data is used for New 

York State’s grid to examine how electricity generation from renewable energy resources (wind, 

water, and solar power) can meet between 50% and 80% of electricity demand. A central finding 

of the study is that when realistic transmission upgrade costs are assumed, new interzonal 

transmission and battery storage are not needed to cost-effectively meet near-term renewable 

energy goals. In fact, New York can achieve 50% renewable energy penetration with only a 

buildout of new generation capacity: Onshore wind (13.7 GW), offshore wind (4.1 GW), and solar 

photovoltaics (3 GW). The presence of grid-scale battery storage, electric vehicles, or additional 

behind-the-meter solar capacity does not markedly change the model-selected generation mix. 

To achieve the 50% target, we compute a $52/MWh levelized cost of electricity for new 

renewable energy, which is in line with current generation costs. 

As the renewable generation target increases beyond 50%, the model begins to select 

transmission upgrades and new storage capacity, the latter particularly if battery costs continue 

to decline as anticipated. At deeper targets, marginal generation capacity would otherwise 

experience high curtailment primarily due to supply-demand imbalances; we calculate the value 
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of energy storage at a 65% renewable energy penetration level to be 2.5-3 times higher than its 

value at a 50% level. However, the additional storage and generation – and transmission, to a 

lesser degree – needed to achieve longer-term renewable energy goals lead to a substantial rise 

in total investment. Between 50% and 55% targets, the computed marginal levelized cost of 

electricity for new variable renewable energy is $94/MWh, compared to $592/MWh between 

75% and 80%, suggesting alternative integration measures are likely necessary at such high 

penetration rates. 

 
1. Introduction 
 

The use of variable renewable energy (VRE) technologies to decrease fossil fuel usage and 

greenhouse gas (GHG) emissions is widely accepted, e.g. [119,120]. However, the stochastic and 

intermittent nature of VRE supply is expected to require some suite of system integration 

measures at large installed capacities [121]. Such measures can include advanced grid 

monitoring, communication, and control [122]; expanded transmission capacity [50]; 

electrification of transportation and heating [123]; increased energy storage capacity [124]; and 

further interconnection among regional systems [125]. Two integration measures that could be 

achieved at large scale are the primary focus of the following chapter: expanded transmission 

and grid-scale battery storage.  

Researchers looking at transmission dynamics have shown that increased transmission is 

more effective than battery storage at lowering wind power curtailment [126]; curtailment is 

almost entirely due to transmission constraints in some studies [127]. However, to ease 

computational requirements or to standardize across large geographic regions, many energy 

system models do not account for the full set of constraints that face new transmission projects, 
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instead assuming (a) costs below historical rates [50,128], (b) idealized network topologies [129], 

or (c) unlimited interregional transmission capacity [130,131].  

Previous analyses have modeled the ability of battery storage to improve VRE integration 

[37]. Storage is shown to be a valuable balancing asset at high VRE penetration levels, but its 

deployment is often not a cost-effective method of reducing curtailment; system benefits 

diminish with increased adoption [132] and integration can become largely a seasonal issue with 

large VRE capacities, particularly in the case of wind power [133]. To date, energy storage has 

largely been used to provide energy system services other than VRE supply shifting (e.g. 

regulation services and peak load reduction) [134]. Evaluating storage adoption and transmission 

expansion together, researchers have found that in a transmission-constrained system, energy 

storage at generation sites allows for greater renewable power utilization compared to storage 

at load centers [135]. Yet while co-locating storage with transmission bottlenecks has shown to 

be an effective method of integrating VRE, such practice can also reduce the economic viability 

of the batteries [136]. A previous study further identified that large-capacity VRE supply 

variability is likely to be highest distant from the VRE resource; this finding implies distributed 

energy storage will have value for reliability services that may not be captured in capacity 

expansion models. 

In this study, we evaluate the cost-effectiveness of these two integration measures 

(energy storage and transmission) to achieve renewable generation targets (RGTs) in New York 

State’s (NYS) regional grid; the NYS grid aligns with the New York Independent System Operator 

(NYISO) control area. We perform simulations with and without electric vehicle (EV) adoption, as 

the presence of a sizable electric transportation load can influence how a system decarbonizes 
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[137]. While this analysis uses the NYS system as a case study, many states across the US have 

adopted RGTs [138], and all include some common characteristics: Spatially heterogeneous 

electricity demands, transmission line limits, potential for battery storage, and existing fossil fuel-

based transportation that may shift to some proportion of electric vehicles during a larger energy 

transition. Therefore, the approach described here can be applied to any regional electric grid 

after adjusting for domain-specific topologies.  

Previous work by two of the authors showed that up to 10 GW of onshore wind can be 

added to the NYS grid with minimal curtailment; beyond this point, curtailment is largely a 

seasonal issue with higher wind output and lower demand in the winter [139]. While this prior 

work identified transmission bottlenecks, it did not evaluate whether upgrades would be 

economical. A NYISO study evaluated the ability for NYS to integrate 8 GW of wind, finding that 

this capacity would have no adverse reliability impacts, would decrease total system costs, would 

result in less than 2% curtailment, and would create congestion only at local transmission 

facilities [140]; it remains to be seen whether these results hold at higher renewable 

penetrations. Similarly, large NREL studies investigated the integration of high levels of VRE in 

NYS as a portion of the larger Eastern Interconnection [37,131]. Yet these studies ignored intra-

NYS transmission and did not quantify the cost-effectiveness of various flexibility measures. [129] 

considered the possibility of 100% decarbonization of all NYS energy infrastructure; however, in 

modeling the state’s electricity grid, this study both ignored intrastate transmission limits and 

underestimated the costs of state-specific transmission expansion. The current chapter 

addresses the above-mentioned gaps in previous NYS-specific work, and in doing so, presents a 

modeling framework translatable to other grid topologies.  
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Chapter II makes two principal contributions to the literature on VRE integration. First, it 

examines the cost-effectiveness of transmission expansion in a regional grid with price 

assumptions based on historical projects. Related renewable penetration studies have 

understated the cost of transmission expansion, especially near high-density load zones [50]. 

Second, our work appraises the need for particular types of infrastructure along a pathway of 

near- to long-term RGTs. By evaluating cost-effective methods of meeting more immediate goals, 

and then by comparing these results to those for more distant renewable energy objectives, we 

investigate optimal energy planning decisions at various stages in the transition of an electricity 

grid. Other contributions include substantiating the value of offshore wind generation in a 

transmission-constrained system with coastal load pockets and quantifying the value of battery 

storage at increasing renewable targets. 

The structure of Chapter II is as follows: System Topology (Section 2) discusses NYS RGTs 

and relevant characteristics of the NYS electricity grid. Methodology (Section 3) details the data 

sources utilized and the development of the Renewable Target Model, the study’s primary 

analytical tool. Results (Section 4) presents relevant figures and findings. Discussion (Section 5) 

unpacks what the results mean for meeting RGTs and how policy can best support near- and long-

term goals in NYS and other regional systems. Conclusion (Section 6) summarizes the most salient 

aspects of the study.   

 
2. System Topology 
 

NYISO manages New York State’s electricity grid. The NYISO control area shares 

boundaries with NYS and is divided into 11 load zones. For the purposes of the present study, we 
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group these zones into the four regions shown in Figure I-1 based on major transmission 

interfaces. 

Region 1 (NYISO Zones A-E) produces 91% of the state’s hydropower electricity and 64% 

of its nuclear-generated electricity, while accounting for only 34% of statewide demand [38]; this 

region also contains 86% of the state’s potential onshore wind power capacity [62]. Region 2 

(NYISO Zones F and G) holds the remaining 9% of hydropower supply and 13% of the state’s 

electricity demand [38]; this region contains 10% of the state’s potential onshore wind capacity 

[13]. In contrast, the two remaining downstate regions (NYISO Zones H-J, designated Region 3, 

and Zone K, designated Region 4) account for 51% of NYS electricity demand [38] but offer little 

potential onshore renewable capacity [62]; however, there is abundant undeveloped offshore 

wind power potential adjacent to these areas, and NYS (and nearby states) has begun 

incentivizing its deployment [141]. Region 3, which includes the New York City metropolitan area 

plus Westchester County, does include one nuclear power plant; however, this plant is slated to 

be decommissioned in 2021, so we do not include it in this study.  

Bulk transmission of electricity in NYS primarily follows a west-to-east pathway from 

Buffalo to Albany, and then changes to a north-to-south orientation, connecting Region 2 to 

Region 3. Approximately 1.4 GW of transmission capacity exists at the interface of Regions 3 and 

4 [48]; however, because of high electricity demand in Region 3, these transmission lines are 

infrequently loaded.  In 2016, NYS obtained 19% of its electricity from hydropower (86% from 

instate generation, 14% from imports from Quebec and Ontario), 31% from nuclear power, and 

4% from wind and solar photovoltaic (PV), resulting in one of the lowest carbon-intensity fuel 

mixes in the country [38,142].  The fossil fuel-based generation fleet in NYS is composed of 
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primarily natural gas-fired plants that are well dispersed throughout the state, generally near the 

loads as required by NYISO [143]. Because of this distribution, in-region dispatchable generation 

generally satisfies loads not met by low-carbon resources (VRE, hydropower and nuclear power) 

[144].    

Table II-1 summarizes relevant regional data: Average demand, average generation from 

fixed capacity sources (i.e., nuclear, solar PV and hydropower), maximum potential wind capacity 

(see Section 3.3), and average EV load assuming 25% electric vehicle adoption (see Section 3.5). 

The processes for determining these quantities are detailed in Methodology. 

 
Table II-1: Summary of relevant NYISO regional data and model parameters.  

 Average Regional Electric Demand and  
Nuclear-Solar-Hydro Generation (MW) 

Maximum  
Wind Capacity (MW) 

Average EV 
Load (MW) 

Region Demand1 Nuclear2 Solar 
PV3 Hydro4 Onshore 

Wind5 
Offshore 

Wind6 
25% 

Adoption7 
    Fixed Flexible    

1 6,382 3026 120 2395 328 32,406 0 519 
2 2,495 0 167 0 270 4,376 0 249 
3 7,211 0 74 0 0 0 37,572 341 
4 2,566 0 85 0 0 0 292 

1Average 2007-2012 electricity demand [24]. 
2Average 2016 nuclear generation, excluding soon-to-be decommissioned facility [24]. 
33 GW solar capacity distribution, per [80]. 
4See Section 3.2. 
5Maximum potential onshore wind capacity, per [62]. 
6Maximum potential offshore wind capacity for installations at water depths <60 meters [65]; see Section 3.3. 
7Average EV load given 25% electric vehicle adoption as described in Section 3.5. 
 
 

To evaluate the effect of transmission prices on future energy scenarios, we reviewed the 

costs of recent and proposed transmission projects in NYS, as well as the cost assumptions used 

in other studies. The reported costs for recent NYS projects align with the high-cost estimates 

used in this study [51–53,145]. Low-cost estimates come from a combination of previous 
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integration model assumptions and comparisons to the high-cost prices. [50] estimates a cost of 

$1400/MW-mi for a line length of 300 miles. [130] assumes a cost of $4173/MW-mi for 345 kV 

cables and supporting substation and transformer improvements. None of these references 

account for the unusually high costs of large-scale transmission in densely populate areas (e.g., 

Regions 3 and 4 in the present study). Table II-2 summarizes the results of this process and shows 

transmission upgrade costs in $/MW-mi for comparison.  

In 2010, the NYS Public Service Commission established a 30% renewable energy (wind, 

water, and solar power; abbreviated as WWS) target to be met by 2015 [146]. While the state 

has not yet achieved the 30% RGT (28% of generation in 2017 [147]), [64] demonstrated that a 

build out of onshore wind power without additional integration measures would be sufficient to 

reach this level of renewable energy penetration. In 2016, NYS accelerated its clean energy goals, 

adopting a 50% RGT for 2030 [148].  

 
Table II-2: Summary of transmission interfaces. 

Regional Interface Distance1 
(miles) 

Current Limits2 Low Cost 
Estimates 
$/MW-mi 

High Cost 
Estimates 
$/MW-mi 

W->E 
(MW) 

E->W 
(MW) 

1: Region 1 -> 2 (Buffalo to 
Albany)  300 4,925 3,400 1,6003 3,2004 

2: Region 2 -> 3 (Albany to 
NYC) 150 5,750 2,000 3,2005 6,4006 

3: Region 3 -> 4 
(NYC to Long Island) 60 1,424 120 8,0007 16,0008 

1 Interregional distance (drr’) calculated via Google Maps and rounded to the nearest 10 miles. 
2 Current line limits (Lrr’) ascertained from [149]. 
3 From [50], for line length of 300 miles, approximately $1,400/MW-mi (aboveground HVDC). After conversion, 
[130] assumes a cost of $2056/MW-mi for a 300-mile line.  
4 From [51], after subtracting upgraded substation costs, approximately $3,614/MW-mi (underground HVDC).    
5 From [130], approximately $4173/MW-mi for overhead 345 kV and supporting transformer and substation 
reinforcements.   
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6 From [52], approximately $6567/MW-mi (underground HVDC). Because of the unique challenges facing the 
referenced project, we assume ½ the cost of [52] for our low-cost scenario, a quantity more closely in line with the 
cost estimate from [130] after subtracting the latter estimate’s transformer and substation reinforcement costs. 
7 Because of the unique challenges facing transmission projects in densely populated areas and the lack of low cost 
estimate for such projects, we assume ½ the cost for the Region 3-4 transmission high cost scenario 
8 From [53,145], approximately $13,986/MW-mi (underground HVDC). 
 
 
3. Methodology 
 

This section describes the formulation and assumptions of the Renewable Target Model 

(RTM), a mixed integer linear program (MILP) that minimizes the total system capital investment 

necessary to meet an RGT. The model is optimized over a 6-year time period (2007-2012) 

selected based on data availability; unless otherwise noted, all data described here applies to this 

time period. The RTM is formulated in Python and solved in Gurobi on a 16C GeForce GTX Titan 

Black GPU with 32 GB of RAM. 

 
3.1 Objective function and net load constraints  
 

The objective function for the RTM (Eq. II-1) minimizes total system investment based on 

the per-unit capacity cost, CAP, and installed capacity, X, of onshore wind generation (“on”), 

offshore wind generation (“off”), grid-scale battery storage (“batt”), and new interregional 

transmission capacity (“trans”) between each region i and adjacent region ii’. The distance 

between each region i and i’ is defined by dii’. All costs, CAP, are annualized over with their 

respective capital annualization rates and then summed over the 6-year optimization period. 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒PQ𝐶𝐴𝑃3),& ∗ 𝑋3),&	 +	𝐶𝐴𝑃3//,& ∗ 𝑋3//,&		 + 𝐶𝐴𝑃5-((+$ ∗ 𝑋5-((+$,&
&∈@

+		P𝐶𝐴𝑃(%,&&> ∗ 𝑑&&" ∗ 𝑋(%,&&"
2"

T	 

(II-1) 
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Model constraints for regional net load, onshore and offshore wind utilization, and 

interregional transmission are shown in equations (II-2) – (II-10). Unless otherwise stated, all 

constraints apply for all time steps, t, in T and for all regions, i, in I. 

The metric of “net load” is used throughout the analysis; the net load is the remaining 

electricity demand after using low-carbon resources (i.e., VRE, hydropower and nuclear power). 

Eq. (2), below, defines net load, 𝑁𝐿2( , for each region, i, at each time step, t. Eq. (2) includes five 

exogenously-defined variables: Existing electricity demand, D$1$,,&( ; nuclear generation, 𝑁&(; solar 

generation, computed as the product of behind-the-meter (BTM) solar capacity, 𝑋5(6+'31-2,&	, 

and generation potential,  𝑊5(6+'31-2,&
( ; fixed hydropower generation, 𝐻/&%,&( ; and fixed electric 

vehicle charging, 𝐷<$7+/&%,&( . The RTM also uses the following decision variables: Flexible 

hydropower generation, 𝐻/1$%,&( ; onshore wind generation, computed as the product of onshore 

wind capacity, 𝑋3),',&, and generation potential, 𝑊3),',&
(  at all sites s; offshore wind generation, 

computed as the product of onshore wind capacity, 𝑋3//,&, and generation potential, 𝑊3//,&
( 	; 

increase in battery state of charge (i.e. battery charge), 𝛾5-((,&( ; decrease in battery state of charge 

(i.e. battery discharge), 𝛿5-((,&( ; flexible electric vehicle charging, 𝐷<$7+/1$%,&( ; renewable 

generation curtailment, 𝜁&(;electricity exported to an adjacent region, 𝑍&&( , and electricity 

imported from an adjacent region, 𝑍&"&
( . The model assumes transmission losses, 𝑙, of 3% between 

adjacent regions and applies them to the imports; this is not meant to provide a definitive 

transmission loss model, but it ensures that electricity is first used to meet demand nearest the 

region in which it is generated. 
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𝑁𝐿&( = D$1$,,&( +	𝐷<$7+/&%,&( + 𝐷<$7+/1$%,&( − 𝑁&( −	𝑋5(6+'31-2,&	 ∗ 	𝑊5(6+'31-2,&
( − 𝐻/&%$9,&(

−		𝐻/1$%,&( 	− 	P 𝑥3),',&
'∈M3

∗ 𝑊3),',&
( − 𝑋3//,& ∗ 𝑊3//,&

( +	𝛾5-((+$,&( −	𝛿5-((+$,&( + 𝜁&(

+	P[𝑍22"
(

2"
− (1 − 𝑙) ∗ 𝑍2"2

( ] 

 (II-2) 
 

Eqs. (II-3) – (II-5) impose electricity utilization limits and site capacity constraints for the 

onshore wind generation. Onshore wind power capacity, 𝑥3),',&, is installed at individual sites, s, 

selected from all sites within a region, Si.; the aggregate regional onshore wind power capacity is 

defined as 𝑋3),&. Each onshore wind site is defined by a potential wind-generated electricity 

output at each time step, 𝑊3),#
( . 

 
𝑥3),' ≤ 𝑥3),'6-% 

(II-4) 
 

P𝑥3),'
'∈M3

= 𝑋3),&  

(II-5) 
 

Eqs. (II-6) – (II-7) constrains offshore wind capacity. The total offshore wind power 

capacity across all regions is limited by the maximum potential offshore wind capacity for the 

statexviii, 𝑋3//6-%.  

 

P𝑋3//,&
&∈@

≤ 𝑋3//6-% 

(II-7) 
 

 
xviii For all potential installations at water depths <60 meters [65]. Note that offshore wind power is only available 
for Regions 3 and 4; the total capacity is used here as it is not yet clear where offshore transmission lines will make 
landfall.  
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Eq. (II-8) restricts the amount of electricity transmitted between regions, 𝑍&&"
( , to the sum 

of existing transmission limits, 𝑋(%,&&"
$%&'(&)*, and new transmission capacity, 𝑋(%,&&": 

 
𝑍&&"
( 	≤ 𝑋(%,&&"

$%&'(&)* + 𝑋(%,&&"  
(II-8) 

 
Eq. (II-9) is the domain constraint: 

 
𝐴𝑙𝑙	𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠	 ≥ 0	 

(II-9) 
 

The RTM characterizes renewable generation as that from wind, water, and solar (WWS), 

consistent with NYS policy targets as well as generally accepted definitions of renewable energy. 

For a given renewable generation share of statewide electricity (RGT), the model requires that 

this fraction of the demand be met by WWS (accounting for transmission losses):  

 

PP�𝑆&( + 𝐻/&%$9,&( +	𝐻/1$%,&( +P𝑥3),',&
'∈M3

∗ 𝑊3),',&
( + 𝑋3//,& ∗ 𝑊3//,&

( −	𝜁&( −P𝑙 ∗ 𝑍&"&
(

&"
�

&∈@(∈A

≥ 𝑅𝐺𝑇 ∗	PP^D$1$,,&( +	𝐷<$7,&( _
&∈@

	
(∈A

 

(II-10) 
 

The model does not include capital and operational costs for fossil fuel-based electricity 

generation. While these costs may constitute a substantial portion of overall system 

expenditures, we do not expect that they would significantly affect the renewable energy 

generation mix for a particular RGT. There is a body of work, including by the present study’s 

authors, that investigates reliability services in addition to energy services; for example, our 

earlier analysis of large capacities of wind power in NYS indicated that operating reserve and 

regulation requirements could increase in magnitude and become more concentrated near load 
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centers where large dispatchable thermal generation capacity already exists [139].  By tailoring 

the focus of the RTM, we explore the primary costs and infrastructure planning challenges of 

renewable energy only, filtering out downstream concerns about how other grid actors will 

respond to system change. We therefore do not consider how the internal economics of 

individual market participants will influence future bids or retirements; we do not expect this to 

be significant for transmission or storage expansion in the context of deep VRE penetration. 

 
3.2 Hydropower 
 

We do not explicitly model hydropower reservoirs, as NYS has over 300 individual 

hydropower stations. Instead, we rely on a method we investigated in detail in a previous study 

[150]. Actual monthly hydropower output by facility [151] is aggregated at the regional level to 

produce total regional monthly hydropower output, 𝐻(3(,&
63)(718. As shown in Eq. II-2, the RTM 

includes both fixed hydropower (defined exogenously, it varies in time and by region) and flexible 

hydropower (limited regional daily energy, but with intraday flexible output limited by regional 

maxima). This basic formulation is adaptable to many approaches to hydropower; here, we 

assume that in each region some fraction of the total regional hydropower output, is fixed, 

𝐻/&%,&
63)(718. In New York, the two largest hydroelectric plants (both in Region 1) operate near their 

maximum possible outputs given available stream flows. As such, we treat these facilities as fixed 

hydro. The resulting proportion of hydropower considered fixed is 88% of 𝐻(3(,B
63)(718 (Region 1) 

and 0% of 𝐻(3(,:
63)(718 (Region 2); Regions 3 and 4 contain no hydropower at all. We fit a cubic 

spline function to 𝐻/&%,&
63)(718 to determine the regional hourly fixed hydropower output, 𝐻/&%,&( . 

The cubic spline ensures continuity and smoothness between time steps. 
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As NYS hydropower exhibits a degree of load-following behavior that is generally diurnal 

with some additional storage capabilities, we designate the remaining portion of hydropower 

output as the total regional monthly flexible hydropower generation, 𝐻/1$%,&
63)(718. The resulting 

proportion of hydropower considered flexible is 12% of 𝐻(3(,B
63)(718 (Region 1) and 100% of 

𝐻(3(,:
63)(718 (Region 2). We fit a cubic spline function to 𝐻/1$%,&

63)(718 to determine regional daily 

flexible hydropower, 𝐻/1$%,&
9-&18. As above, the cubic spline ensures continuity and smoothness 

across the time series.  

For the purposes of the present study – and as recently investigated by the authors in 

more detail in  [150] – the hourly flexible hydropower output by region, 𝐻/1$%,2( , is subject to the 

constraint that it must meet a daily total regional flexible hydropower output, 𝐻/1$%,2
9-&18 , without 

exceeding aggregate regional flexible hydropower capacity, 𝐻/1$%,26-% . Eqs. (II-11) – (II-12) impose 

these limitations. 

 

P 𝐻/1$%,&(

:C∗(6FB)

(HBF:C6

= 𝐻/1$%,&
9-&18	, 𝑚 = 0. .

𝑇
24 − 1	 

(II-11) 
 

𝐻/1$%,&( ≤ 𝐻/1$%,&6-% 		 
 (II-12) 

 
The resulting regional fixed and flexible hydropower generation averages are shown in 

Table II-1 (Section 2). 
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3.3 Variable renewable energy potentials 
 

In simulating capacities of onshore wind power far exceeding current levels, the authors 

rely on model wind power data for 126,000 potential U.S. wind sites developed by National 

Renewable Energy Laboratory (NREL) [62,63]. In a previous study, two of the authors found the 

NREL model consistently to over-predict the electricity generation at existing onshore wind 

power sites in NYS and developed a procedure to adjust the time series to reflect actual output 

[64]; the resulting hourly potential onshore wind power output by site (normalized by installed 

capacity), 𝑊3),'( , is used in the current study.  

The same NREL database provides hourly model offshore wind power outputs for two 

sites off near Regions 3 and 4. Because no method of independently verifying the offshore wind 

generation estimates exists and because the model capacity factors at those locations more 

closely reflect the performance of global offshore wind installations, we make no additional 

modifications to these time series for the hourly potential offshore wind power output by region, 

𝑊3//,&
( . We assume that generation from the westernmost site makes landfall in Region 3 and 

that generation from the easternmost site makes landfall in Region 4. As existing literature has 

only placed an upper bound on the total potential offshore wind capacity in NYS waters, the RTM 

limits the combined offshore capacity of both regions to 37.6 GW for water depths less than 60 

meters, per [65]. 

To determine the potential solar resource in each region, we first select a representative 

city for each NYISO zone from those in the NREL National Solar Radiation Database [82]. We then 

compute hourly potential solar PV output, normalized by capacity, using the NREL System Advisor 

Model (SAM) [75]. SAM simulates the performance of commercially available equipment and 
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realistic system configurations; we select PV panels with 22% efficiency, installed with fixed tilt 

equal to location latitude and with an inverter with 95.3% weighted efficiency (as determined by 

the protocols of the California Energy Commission [76]). Because of its cost and potential 

production relative to wind power in NYS, model simulations do not select any solar PV capacity 

in cost-optimal infrastructure mixes.  

To account for the reality that solar installations will almost certainly continue to grow in 

NYS, we impose behind-the-meter solar PV capacities of either 3 GW or 6 GW in all model 

optimizations. These capacities are distributed to NYISO zones in proportion to projected zonal 

capacity distributions from a recent NYISO study [80]. The products of the non-dimensional 

hourly zonal potential solar-generated electricity and the zonal solar capacity are then 

aggregated at the regional level to produce the regional hourly solar-generated electricity output, 

𝑆2(. Table II-1 (Section 2) presents the average regional generation for 3 GW of installed capacity. 

 
3.4 Battery storage treatment 
 

Standalone battery storage in the RTM is assumed to have 95% efficiency in charging and 

discharging. The battery power-to-energy ratio is (1 kW):(4.2 kWh), a specification equivalent to 

that of an available commercial-scale battery storage product [85]. As this specification is based 

on usable storage capacity, we place no limitations on the battery depth of discharge; we also do 

not constrain cycling behavior aside from the charge/discharge limits imposed by the power-to-

energy ratio and formalized in Eq. (II-13). The RTM treats regional storage as a lumped capacity, 

and at all times limits the energy stored in a standalone battery, 𝐸5-((,&( , to less than its capacity, 
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𝑋5-((+$,&. After accounting for battery efficiencies, the hourly change in battery energy level is 

equal to the battery charge or discharge. Eqs. (II-14) and (II-15) govern these relationships. 

 

𝛾5-((,&( + 	𝛿5-((,&( ≤
1
4.2 ∗ 𝑋5-((,&  

(II-13) 
 

𝐸5-((,&( ≤ 𝑋5-((+$,&  
(II-14) 

𝛿5-((,&(

h5-((
−	h5-(( ∗ 𝛾5-((,&

( = 𝐸5-((,&(+B − 𝐸5-((,&(  

(II-15) 
 

In addition to including battery storage capacity as a decision variable in the cost 

minimization, we also impose different amounts of battery storage capacity in certain model 

scenarios to investigate its distribution and value in reducing VRE capacity needs. 

 
3.5 Electric vehicle charging constraints 
 

In the RTM, EV load is specified as a percent of statewide automobile use, as determined 

by reported gasoline consumption quantities. We use 2015 NYS annual gasoline sales by county, 

aggregated by region, to determine the annual quantity of energy used for automobile transport 

[152]. After accounting for standard electric and gasoline-engine vehicle efficiencies (24.7 MPG 

[153], 0.36 kWh/mile [154]) and a charging efficiency (h<$7 = 95%), we convert the annual 

quantity of gasoline sold to average hourly regional electric loads, Dveh,i. Dveh,i for the 25% EV 

adoption scenario is shown in Table II-1 (Section 2). 

Many studies have investigated the system benefits of flexible EV charging in a variety of 

domains, each with particular constraints. Here, we look at one fairly straightforward charging 

regime, in which we investigate both fixed and flexible charging. The purpose of the current study 
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is not to determine an optimal EV charging strategy, but to evaluate how charging flexibility 

impacts VRE capacity selection and the value of other large-scale integration measures.  

In fixed charging scenarios, the RTM distributes daily EV load, 𝐷<$7.&
9-&18 (𝐷<$7.&

9-&18 = 24 ∗

𝐷<$7,&), evenly over the hours between 7pm and 6am (inclusive), leaving twice the hourly EV load 

at each. In flexible charging scenarios, the model meets the daily EV load over these same hours. 

By assuming that EV charging operates on a daily cycle, and that the model needs to meet 

charging requirements by 7am, this methodology aligns with others found in the literature, e.g. 

[155]. The RTM imposes fixed and flexible charging conditions through Eqs. (16) and (17)-(18), 

respectively. Maximum charging capacity is limited to one quarter the daily EV load.  

 

𝐷<$7+/&%,&( =
𝐷<$7,&
9-&18

12 	, 𝑓𝑜𝑟	𝑡 = 19 + 24𝑚			𝑡𝑜			6 + 24(𝑚 + 1), 𝑤ℎ𝑒𝑟𝑒	𝑚 = 	0. .
𝑇
24 − 1 

(II-16) 
 

P 𝐷<$7+/1$%,&( = 𝐷<$7,&
9-&18	, 𝑓𝑜𝑟	𝑚 = 0. .

𝑇
24 − 1

OF:C(6FB)

(HBPF:C6

 

(II-17) 
 

𝐷<$7+/1$%,&( 	≤
𝐷<$7,&
9-&18

4  

(II-18) 
 
 
3.6 Capital cost assumptions 
 

While renewable energy infrastructure cost projections abound, to limit computational 

requirements and the model solution set, we restrict the analysis to two capital cost scenarios. 

The high-cost scenario simulates prices similar to those currently available [66,156–158]. The 
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low-cost scenario assumes the presence of an accelerated learning curve for offshore wind power 

and standalone battery storage. Cost assumptions for both scenarios are shown in Table II-3.  

In both cost scenarios, the price of onshore wind power remains constant; further cost 

declines in onshore wind power are likely to be less significant than those for offshore wind 

power and batteries [53, 54]. We do not expect this assumption to alter our conclusions as these 

cost assumptions largely only influence tradeoffs between onshore and offshore wind (this may 

be analogous to onshore wind vs. solar tradeoffs in other regions of the United States). After first 

exploring optimization sensitivity to transmission costs (Section 4.1.1), we take the price of new 

transmission capacity to be the average of the low-cost and high-cost estimates presented in 

Table II-2 with an annualization period of 20 years.  

 
Table II-3: Wind and Storage RTM Capital Costs. 

 Unit Cost ($) Unit 
Capital 

Annualization 
Period (Years) 

 High Cost Scen. Low Cost Scen.   
Onshore Wind1 1,588 1,588 kW-1 20 
Offshore Wind2 4,644 3,754 kW-1 20 
Battery Storage3 250 100 kWh-1 10 

1 Onshore wind costs assembled from [66,156]. 
2 Offshore wind costs assembled from [66,156]. 
3 Battery costs assembled from [157,158].  
 
 

The RTM annualizes capital costs for technology 𝑥 based on a capital annualization rate, 

𝐴!!,#. 𝐴!!,#  is computed as follows, with a 5% interest rate, j, over a technology-specific 

annualization period, 𝑃%:  

 

𝐴!!,# 	=
𝑗 ∗ (1 + 𝑗)!!
((1 + 𝑗)!! − 1)	

(II-19) 
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3.7 Treatment of system costs, savings, and marginal LCOEs 
 

Total system costs are calculated over a 20-year period. For the types of infrastructure 

with a 20-year annualization period (wind generation and transmission), we multiply the costs 

given in Table II-3 by the capacities returned by the model. For battery storage, with an assumed 

10-year lifetime, we include twice the quantity of batteries selected by the optimization in order 

to calculate the storage costs over a 20-year horizon. To determine the marginal levelized cost of 

electricity (LCOE) for a given RGT, we take the marginal total system cost compared to the 

previous RGT and annualize this difference per Eq. (II-19). This annual value is then divided by the 

difference between the average annual renewable electricity generated at the given RGT and at 

the previous RGT to compute the marginal LCOE. 

In certain simulations, we impose a no-cost, system-wide battery storage capacity and 

compare the computed total system cost to that computed for the same RGT without battery 

storage. The difference between the two quantities, the “avoided capital cost,” is considered the 

total battery storage value. However, the battery storage lifetime is shorter than that of other 

infrastructure investments considered. To determine the value of a unit of energy storage 

($/kWh) for a given RGT, the avoided capital cost is standardized with the following equation: 

 

𝑆𝑡𝑜𝑟𝑎𝑔𝑒	𝑉𝑎𝑙𝑢𝑒 = 	
{𝐴𝑣𝑜𝑖𝑑𝑒𝑑	𝐶𝑎𝑝𝑖𝑡𝑎𝑙	𝐶𝑜𝑠𝑡}

{𝑆𝑡𝑜𝑟𝑎𝑔𝑒	𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦} ∗ � 20	𝑦𝑒𝑎𝑟𝑠
{𝑆𝑡𝑜𝑟𝑎𝑔𝑒	𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒}�

 

(II-20) 
 

In addition to the 10-year battery lifetime described above, we also considered a battery 

lifetime based on 3000 cycles equivalent usage. We present system savings in both scenarios as 

future battery lifetimes are not yet known. 



 

 126 

4. Results 
 

This section begins with a detailed investigation of the computed mix of energy 

infrastructure to meet the 50% RGT (Section 4.1). We then extend the analysis to evaluate 

continuing trends up to an 80% RGT (Section 4.2), the upper limit of electricity sector 

decarbonization that researchers believe achievable in the US without notable increases in LCOE 

[50]. 

 
4.1 The 50% renewable generation target 
 

Regional resource potentials and interregional transmission limits heavily influence the 

cost-optimal mix of energy infrastructure needed to meet the 50% RGT.  As such, it is helpful first 

to understand regional generation and interregional flow dynamics under two divergent 

scenarios: (a) one with existing transmission limits, and (b) one with nearly unlimited 

transmission. (Nearly unlimited transmission is simulated by solving the RTM with an assumed 

upgrade cost of 1/20th the low-cost transmission estimates.) Figure II-1 summarizes the average 

NYS electricity load, utilized low-carbon generation (WWS plus nuclear), and interregional 

electricity flow for these two cases. 
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Figure II-1: Select simulated system characteristics under a 50% renewable generation target: (a) 
existing transmission limits; (b) nearly unlimited transmission. Low-carbon generation averages 
include 3 GW of solar capacity. All values in regional boxes are averages. 
 
 

Figure II-1 shows that, regardless of transmission assumptions, the bulk of NYS low-

carbon energy generation occurs in Region 1. As presented in Table II-1, Region 1 contains the 

entirety of the state’s simulated nuclear generation, 91% of the state’s hydropower generation, 

and 81% of the state’s potential onshore wind power capacity. The model-selected onshore wind 

capacity in Region 2 is that region’s total potential capacity and remains constant in both 

transmission scenarios. Two factors drive this result: (1) Potential wind power in Region 2 has a 
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higher capacity factor than in Region 1, and (2) Region 2 is nearer to load centers in NYC and Long 

Island, so new generation does not congest the upstream Region 1-2 transmission interface.  

The principal difference between scenarios is the tradeoff between Region 1 onshore 

wind and offshore wind in Regions 3 and 4. Without transmission upgrades, 5076 MW of offshore 

wind capacity is installed in Regions 3 and 4, providing 91% of aggregate low-carbon electricity 

generated in those two regions. Relaxing transmission constraints results in approximately 

double the total existing statewide transmission capacity, an additional 8486 MW onshore wind 

capacity in Region 1, and no offshore wind power. The sensitivity of the onshore vs. offshore wind 

capacity selection to transmission upgrades motivates a more detailed analysis of model cost 

assumptions.  

 
4.1.1 Transmission expansion 
 

Increasing transmission costs result in the model selecting less additional transmission 

capacity to accommodate (less expensive) onshore wind power, instead calling for increasing 

amounts of (more expensive) offshore wind power. Figure II-2 shows the computed optimal mix 

of offshore wind, onshore wind, and new transmission capacity for the 50% RGT for a range of 

transmission costs and two offshore wind cost scenarios. Transition capacity expansions at each 

interface are added (in MW) even though distances between regions vary. Although transmission 

costs are generally considered in units of $/MW-mi, the assumed values in Table II-2 result in 

equivalent transmission cost upgrades in $/MW at each interface. Therefore, relative 

comparisons of new transmission capacities at different transmission cost estimates are 

equivalent to relative comparisons of total investment in transmission upgrades. 
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In all simulations, transmission capacity additions are selected only in the West-to-

Southeast direction; specifically, this means transmission capacity additions are limited to (a) 

Region 1 to 2, (b) Region 2 to 3 and (c) Region 3 to 4. For comparison, we include very low 

transmission costs, shaded gray, which are not realistic in NYS but are on the order of 

assumptions used in other studies.  

Figure II-2: Optimal wind power and new transmission capacities vs. transmission upgrade costs 
for the 50% RGT. All simulations include 3 GW of solar capacity. Transmission costs are presented 
as multiples of the low-cost estimates presented in Table II-2.  
 
 

Figure II-2 shows that the cost-optimal generation mix is highly dependent on the price 

of transmission in the unrealistic cost range (until 1x the low-cost estimates). After this point, 

when transmission costs reach more realistic levels, the computed amounts of onshore and 

offshore wind capacity plateau, as new transmission is no longer selected as a cost-effective 

integration measure. Moreover, Figure II-2 demonstrates the influence of offshore wind costs on 
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the mix of wind capacity selected to meet the 50% RGT. In the low offshore wind cost scenario, 

offshore wind capacity increases more quickly at lower transmission prices and levels out at a 

higher quantity than in the high-cost scenario. Here, an increase in offshore capacity displaces a 

larger capacity of onshore wind, due to the higher relative capacity factor of offshore wind 

turbines.    

Given that (1) we estimate new transmission in NYS to cost at least 1x the low-cost 

estimates presented in Table II-2 and (2) that offshore wind capacity costs will likely decrease to 

lower, internationally competitive rates, the model behavior shown in Figure II-2 implies that the 

most cost-effective method of meeting the NYS 50% renewable generation target may include 

no new interregional transmission.   

The analyses described below investigate several model scenarios in detail. Having 

established the cost-sensitive behavior of new transmission, all following analyses assume 

transmission costs to be the average of the low and high transmission cost estimates; this is 

equivalent to a multiple of 1.5 of the low-cost estimates per Figure II-2. 

  
4.1.2 Case-based optimal infrastructure mixes 
 

To evaluate wind power capacity and transmission expansion sensitivity to other energy 

infrastructure measures, we exogenously impose battery storage, EV adoption, or increased solar 

PV capacity in certain model simulations, as shown in Table II-4. These capacities would not be 

selected in the RTM to meet the 50% RGT due to limitations of the model’s formulation as a 

capacity expansion model. Battery storage and solar PV have quantifiable local system benefits 

beyond the scope of the model, and EV adoption is not included as a system planning-level 

decision variable with an associated cost assumption. In all cases, more qualitative considerations 
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of individuals or policymakers may also influence adoption and they are widely expected in future 

energy systems with deep VRE penetration. Table II-4 presents a summary of results for relevant 

high and low-cost scenarios.  

 
Table II-4: Meeting the 50% RGT with different amounts of imposed energy infrastructure. 

 Imposed Capacities1 High-Cost Scenario Results Low-Cost Scenario Results 

  Optimal Cap. (GW)2 Optimal Cap. (GW)2 

Case Batt. 
(GWh) EVs (%)3 Solar (GW) On. Off. Trans. On. Off. Trans. 

Base 0 0 3 15.31 3.52 0 13.74 4.11 0 

1 33.6 0 3 15.93 2.72 0 14.22 3.37 0 
2 0 25 3 16.94 3.93 0.26 14.87 4.79 0 

3 0 0 6 14.73 2.76 0 13.21 3.33 0 
Note: “On.”, “Off.”, and “Trans.” correspond to the optimal computed amounts of onshore wind, offshore wind, and 
new transmission capacity, respectively. 
1 “Imposed Capacities” refers to capacities given as inputs to the RTM. 
2 “Optimal Cap.” contains the quantities of energy infrastructure selected by the RTM. 
3 EV adoption rate refers to the percentage electrification of annual light-vehicle energy usage. 
 
 

Simulation results indicate that energy storage reduces curtailment of onshore wind 

power, thus reducing the need for more expensive offshore wind capacity. Storage is most 

effective when co-located with low-carbon generation, as shown in Figure II-3. Co-located 

storage allows electricity to be stored either for later in-region use or for export when 

transmission lines out of the region are no longer congested. Because this behavior can be driven 

by both renewable energy and nuclear power, Figure II-3 presents the optimal distribution of this 

storage and how it relates to the mix of regional all low-carbon generation.  

  In Case 2, an EV adoption rate of 25% (flexible charging assumed) leads to computed 

capacities of onshore and offshore wind larger than those in the base case (see Table II-4). This 

increase in electricity load also makes transmission upgrades cost-effective in the high-cost 
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scenario. Installing another 3 GW of solar PV capacity (Case 3) reduces the total wind power 

capacity to meet the 50% RGT but affects onshore and offshore wind power differently. The 

computed decrease in offshore wind capacity is larger than the decrease in onshore wind 

capacity in both absolute and relative terms, as the added solar first displaces this more 

expensive generation.  

 

Figure II-3: Optimal standalone storage location and the regional, average low-carbon generation 
for the 50% RGT: (a) high-cost scenario; (b) low-cost scenario. The inner pie chart shows storage 
location (33.6 GWh total); the outer pie chart shows average uncurtailed low-carbon generation 
by region (13.03 GW in Figure II-3(a); 12.74 GW in Figure II-3(b)). Results include 3 GW of solar 
PV capacity present and no new transmission. In both cost scenarios, storage is most valuable 
when spatially paired with low-carbon generation.  
 
 

Two key takeaways emerge from the results shown in Table II-4: First, at realistic prices, 

transmission expansion will not play an important role in meeting the 50% RGT, even with 

additional EV load present. Second, the optimal generation mixes in all cases, regardless of what 

background energy infrastructure is imposed, share a common characteristic: a considerable 

buildout of onshore wind capacity and a multiple-GW installation of offshore wind power. Our 

(b) (a) 
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analysis indicates that the pathways for meeting the 50% RGT vary little if storage, EVs, or 

additional solar generation is present at the scales modeled here.  

 
4.2 Renewable generation growth beyond 50% energy penetration 
 

To this point, our analysis has established that NYS may not need two planning-level 

actions to achieve a 50% RGT: Transmission capacity upgrades and standalone energy storage. 

This is largely driven by a more cost-effective strategy of utilizing local renewable generation (i.e., 

offshore wind near downstate load centers). In this section, we extend the model to deeper 

renewable energy penetration scenarios in order to investigate how longer-term considerations 

may affect planning decisions. 

Figure II-4 presents the optimal capacities of wind power, new transmission, and battery 

storage under RGTs ranging from 50% to 80% for (a) the high-cost scenario and (b) the low-cost 

scenario; 0% and 25% EV adoption rates are considered. It is worth briefly noting that the 50% 

RGT points in Figure II-4 are consistent with the values presented for the base and 25% EV cases 

in Table II-4. 
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Figure II-4: Optimal mix of energy infrastructure for RGTs between 50% and 80% and for 0% and 
25% EV adoption cases with flexible charging: (a) high-cost scenario; (b) low-cost scenario. Wind 
and new transmission capacities are shown in GW on left-hand axes; battery storage capacity is 
shown in GWh on right-hand axes. Results include 3 GW solar capacity.  
 
 

The initial observation is that, as the scenarios extend beyond the 50% target, some level 

of system flexibility in the form of storage or transmission buildout is necessary to meet RGTs 

cost-effectively. The interplay observed in Section 4.1 continues between (1) onshore wind with 

transmission upgrades and (2) offshore wind power: With an accelerated offshore wind learning 

curve leading to lower costs, more installed offshore wind power reduces the computed amounts 

of onshore wind power and new transmission capacity. 

Comparing Figures II-4(a) and II-4(b), up to approximately 70% renewable energy 

penetration, there is a tradeoff between investments in storage or transmission that appears 

highly dependent on the offshore wind and battery storage costs. Beyond 70%, the simulations 

predict sizable storage value regardless of the cost assumptions. For example, under the low-cost 

scenario, no storage is built to meet the 50% target; however, at the 65% target with 0% EV 

adoption, the model selects storage equivalent to 2.1 hours average demand, a quantity that 

(a) (b) 
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jumps to 15.7 hours average demand to meet the 80% target. At the same time, transmission 

upgrades remain relatively flat, indicating limited additional cost-effectiveness at deep 

renewable energy penetrations.  

The effect of EVs on the overall results is relatively small beyond requiring some additional 

generation to meet a portion of the new electricity demand. Electric vehicle adoption decreases 

the amount of storage needed to meet all renewable generation targets, a result which implies 

that battery storage and flexible EV charging provide a similar service to the system – time 

shifting demand in order to aid integration – and thus act somewhat competitively. However, the 

limited scale of this reduction in computed standalone storage indicates a significant role for 

batteries to play in shifting supply even with EV flexibility present. As a point of comparison, at 

the 65% RGT in the low-cost scenario, the addition of EVs with a daily load equivalent to 33.6 

GWh reduces the cost-optimal standalone storage by 9.47 GWh (24.7% of battery capacity). 

These results motivate additional investigation of the energy storage value. 

 
4.2.1 Value to system of standalone energy storage 
 

To simplify the discussion of results in this section, we consider only the low offshore wind 

and battery cost scenario based on the following:  

1. The analysis presented in Section 4.1 and corroborated in Section 4.2 indicates that, 

regardless of cost assumptions, some substantial buildout of offshore wind power 

capacity is needed to meet a 50% RGT, suggesting offshore wind costs are likely to 

decrease in that time period. 

2. Battery storage costs have rapidly decreased in recent years with projections expecting 

further reduction, particularly if EV adoption accelerates. 
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The value of a range of storage capacities – defined here as the avoided capital costs of 

renewable generation capacity and transmission upgrades – is computed for two representative 

RGTs: 50% (NYS 2030 goal) and 64% (together with 16% nuclear generation by energy, this yields 

80% low-carbon electricity generation). We consider two scenarios for computing the system’s 

avoided capital cost per kWh of storage: An assumed 3000-cycle battery life (Figure II-5(a)) and 

an assumed 10-year battery life (Figure II-5(b)). We offer these comparisons as it is unclear, at 

present, how long such batteries will operate; this is not meant to be a detailed analysis of battery 

operational effects or chemistries.  

Figure II-5: Avoided capital costs per kWh storage ($/kWh) for storage capacities between 1 and 
60 GWh. Results shown for 50% and 64% RGTs under the low-cost offshore wind assumption: (a) 
battery lifetime of 3000 cycles; (b) battery lifetime of 10 years. No electric vehicle adoption. 
Results include 3 GW of solar capacity. 
 
 

In no simulations did a battery go through more than 3000 cycles in a 10-year period; as 

such, all simulations indicate higher battery value over 3000 cycles than over 10 years. We note 

a general trend of the computed storage values in the 64% target scenario being 2.5-3 times the 

computed values in the 50% target scenario, a difference which explains the large-scale storage 

(a) (b) 



 

 137 

buildout observed at higher renewable energy targets: For a 10-year lifetime, the marginal value 

of energy storage exceeds its $100/kWh cost in the 64% target scenario up to approximately 35 

GWh, whereas the energy storage value is less than its cost in the 50% target scenario. This 

general trend holds when EVs are introduced, but we can observe additional effects when 

including both EVs and 5 GWh of battery storage in our simulations, as shown in Figure II-6. 

By comparing the results of flexible and inflexible EV charging for a 10-year standalone 

battery lifespan (Figure II-6), we note that flexible charging displaces some of the benefits from 

standalone storage for a 64% RGT, but there is a point of diminishing effect: The reduction in 

standalone storage value caused by flexible EV charging remains relatively stable beyond 

approximately 20% EV adoption. Perhaps counterintuitively, the value of standalone energy 

storage increases slightly in the 50% renewable target scenario. These effects imply that there is 

value in shifting supply to the time periods in which EV charging occurs even if that charging 

schedule is flexible.  

Figure II-6: Avoided capital costs per kWh storage ($/kWh) for EV adoption rates between 0% and 
50% due to 5 GWh of storage. Results are shown for flexible and inflexible EV charging scenarios 
for 50% and 64% RGTs under the low-cost offshore wind assumption: (a) battery lifetime of 3000 
cycles; (b) battery lifetime of 10 years. Results include 3 GW of solar capacity. 

(a) (b) (a) (b) 
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4.2.2 Total system cost breakdown  
 

Figure II-7 presents the total capital cost breakdown for a NYS electricity system that 

achieves 50-80% RGTs for (a) high-cost and (b) low-cost scenarios. Comparing the two figures 

side-by-side, it is helpful to divide the RGTs into two sections: medium-term goals, consisting of 

targets between 50 and 65%, and long-term goals, represented by targets between 65% and 80%. 

In meeting the medium-term goals, the scale and distribution of investments are similar 

regardless of the cost scenario. At these levels of VRE integration, the RTM selects simultaneous, 

near-equal investments in onshore and offshore wind power, investments which make up the 

bulk of all system costs; computed expenditures on new transmission and battery storage are 

minor. To achieve the 65% RGT under a low-cost scenario, the state needs $84.3B (annualized 

cost of $6.0B, 0.39% of NYS 2017 GDP  [159]); high cost assumptions increase this quantity to 

$91.7B (annualized cost of 6.5B, 0.42% of NYS 2017 GDP).  

In both cost scenarios, wind power capacity (both onshore and offshore) contributes the 

vast majority of the total system cost until the deepest penetration rates, when marginal 

investments in both offshore wind power and battery storage are similar (and all onshore wind 

power sites have already been utilized fully). By comparing the cost breakdown results in Figure 

II-7 to the capacity optimizations in Figure II-4, we can see that while more investment is made 

in batteries in the high-cost scenario, the state would install more battery capacity in the low 

cost-scenario. If battery prices reach the lower estimate of $100/kWh, the increased amount of 

storage present allows the system to install less offshore wind power capacity and new 

transmission at all RGTs modeled; the model also selects less onshore wind power capacity at 

RGTs less than 75%. To meet the 80% RGT under low cost assumptions, the state needs $209.5B 
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(annualized cost of $14.9B, 0.96% of NYS 2017 GDP); high cost assumptions increase this quantity 

to $295.4B (annualized cost of $21.0B, 1.36% of NYS 2017 GDP).  

Figure II-7: Total system costs ($Billion) and marginal LCOEs ($/MWh) for RGTs between 50-80%: 
(a) high-cost scenario; (b) low-cost scenario. Both scenarios include 3 GW of solar PV capacity and 
25% EV adoption with flexible charging. Total system costs are calculated over a 20-year lifespan; 
battery costs are accordingly adjusted based on an assumed 10-year lifespan. 
 
 

By comparing the marginal LCOEs at a range of RGTs, we see that the price of additional 

utilized renewable energy accelerates as VRE penetration increases. For the low-cost scenario, 

our calculations indicate that a 50% RGT can be achieved with LCOE of $52/MWh for new VRE. 

Between the 50-55% RGTs, the marginal LCOE of utilized VRE increases to $94/MWh; between 

75-80%, the marginal LCOE rises sharply to $592/MWh. For RGTs through 65%, the high-cost 

scenario marginal LCOE is computed to be less than 10% greater than the low-cost scenario 

marginal LCOE. Beyond this point, the computed marginal LCOE values diverge: The high-cost 

scenario LCOE is 27% higher at the 70% RGT and 70% higher at the 80% RGT.  

 
 
 

(a) (b) 
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5. Discussion 
 

At different points along a pathway to deep energy decarbonization, the value of 

particular resources is likely to vary. Because such considerations have not permeated renewable 

energy integration studies, Chapter II investigates several likely large-scale energy planning 

decisions in the context of near-to-long-term renewable generation targets (RGTs): Whether to 

build new intrastate transmission to connect high wind areas to load centers, whether to invest 

in dedicated energy storage to align supply and demand, and which generation resources to 

prioritize in a geographically heterogeneous region. The effects of wide-scale adoption of EVs on 

these decisions is also investigated. Electricity grid regions at the state or multiple-state level can 

generally contain large distances between the most economical variable renewable energy (VRE) 

resources and the largest load centers; more expensive local or nearby resources may make up 

a sizable part of a pathway to deep VRE penetration. To complete an analysis at this scale, we 

simulate New York State’s (NYS) regional electricity system, which is representative of regions 

with transmission-linked zones and heterogeneous demand and potential supply.  

When we adopt existing interzonal transmission constraints and realistic transmission 

cost assumptions, we find that the computed cost-optimal buildout of new transmission capacity 

is less than what other analyses propose. In fact, we demonstrate that NYS can most cost-

effectively meet a 50% renewable generation target (RGT) with no new interzonal transmission 

capacity. (We do not investigate smaller-scale transmission that may be needed to connect wind 

power sites themselves to the larger grid.) We attribute the difference between our results and 

those of other studies to the tendency for other models to underestimate transmission costs or 

assume deployment that does not consider that new infrastructure will handle only the marginal 
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increases in transmission; if this new transmission comes solely at times of very high VRE 

production, the low utilization rate may render new capacity uneconomical even if it appears 

inexpensive compared to other renewable integration measures. It is not necessarily given that 

considerations of dispatchable generation to meet net loads would not affect the results of this 

type of analysis; however, NYS’s existing regime of well-dispersed gas-fired generation is unlikely 

to transform into one in which net loads are met by distant fossil fuel-based generation. 

  A central result of the analysis is a cost-minimal solution to meeting a 50% renewable 

energy penetration level that includes only a large buildout of onshore wind generation (~15 GW) 

and a multi-GW expansion of offshore wind capacity; the inclusion of energy storage, electric 

vehicles, or additional solar capacity do not meaningfully change this infrastructure mix. At this 

renewable penetration level, the value of battery storage remains below even the most 

optimistic cost assumptions. Similarly, the scale of electric vehicles modelled here – 25% 

adoption – does not provide enough system flexibility to substantively change the computed 

optimal generation mix. Alongside our transmission findings, this suggests that a 50% RGT can be 

achieved solely through a cost-effective buildout of VRE generation capacity; further, our 

computed LCOE of new renewables to achieve this target ($52/MWh) is in line with reasonable 

current generation costs.  

While co-locating dedicated energy storage with variable supply improves VRE 

integration, the computed optimal resource mix to achieve the 50% RGT includes no standalone 

energy storage, even with costs as low as $100/kWh. Though storage is already proving to have 

other value (e.g., grid frequency regulation services and peak demand reductions), it is unlikely 

to be cost-effective for shifting energy supply to times of higher demand in achieving near-term 
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RGTs. Since battery storage capacities are aggregated at the regional level, we note that further 

study is needed to investigate how the intraregional distribution of these resources and local 

conditions would affect operation. 

In exogenously doubling the amount of solar PV capacity in our model (6 GW vs. 3 GW), 

we find limited effects on our overall findings. The additional solar tends to displace local 

resources: Onshore wind power in less densely populated western regions and offshore wind 

power in high load centers along the coast. That said, even though the regional distribution of 

solar PV capacity is similar to the regional distribution of demand, the absolute and relative 

reductions of offshore wind power capacity are greater than the reductions of onshore wind 

power capacity. 

These findings are likely generalizable to other regional grids, particularly those along the 

U.S. Atlantic coast that contain high population density areas with limited local or nearby VRE 

resources other than offshore wind power. Similar findings may also apply to inland areas with 

access to distant onshore wind resources and more expensive local solar potential. A useful 

metric from our analysis is that, although 3-4 times more onshore wind than offshore wind 

capacity is built to reach the 50% RGT, the total financial investments of onshore and offshore 

wind are roughly equal.  

Moving next to RGTs in the 50-65% target range, we compute growth in both transmission 

and storage capacity, although the infrastructure mix is dependent on assumed offshore wind 

and battery costs. If battery and offshore wind costs remain high, additional transmission to 

better utilize onshore wind power will become necessary; however, if battery and offshore wind 

costs drop as predicted, battery storage will provide the system flexibility necessary to integrate 



 

 143 

additional VRE. The increased reliance on energy storage as NYS approaches the 65% target is 

primarily a result of the computed value of storage increasing to 2.5-3 times greater than its value 

at the 50% target. As near-term targets transition to longer-term goals, model-selected energy 

storage capacities increase from no storage at the 50% RGT to storage equivalent to 

approximately 2 hours average demand at the 65% RGT, and finally to 16 hours-equivalent 

storage at the 80% RGT. Such scales indicate that some portion of the storage requirement may 

be met by alternatives to batteries, a hypothesis that deserves further study.  

At a 64% target (with 16% nuclear power, a total of 80% electricity generation by low-

carbon sources), the value of dedicated energy storage holds relatively steady even with up to 

50% adoption of flexible charging EVs. While flexible charging does decrease the value of the 

energy storage, all reduction in value occurs within the first 20% of EV adoption. These effects 

imply that there is value in shifting VRE supply to the time periods in which EV charging occurs 

even if that charging schedule is itself flexible. This explains why our analysis shows that large-

scale adoption of EVs, even with flexible charging operation, is unlikely to alter the overall 

approach to meet RGTs, aside from the self-evident need for additional capacity to meet the 

demand. 

Overall, our calculations indicate that a 50% RGT can be achieved with a LCOE largely in 

line with current reasonable generation prices that gradually increases at deeper penetration 

rates. Between the 50-55% RGTs, the marginal LCOE nearly doubles, but this reflects an increased 

share of offshore wind-generated electricity utilization and would not necessarily represent a 

large electricity price increase for the urban areas making most use of the offshore wind resource. 

Between the 75% and 80% RGTs, the marginal LCOE of utilized VRE rises sharply. This surge in 
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price can be attributed to the large amounts of wind and storage capacity needed to meet long-

term targets. As these cost estimates would prove prohibitive from an investment standpoint, 

NYS will likely turn to other integration measures or future technologies not analyzed here to 

achieve long-term renewable energy goals. These measures could also include further 

connections to neighboring grids and large-scale electrification of heating. 

In general, this study demonstrates that near-term renewable energy goals can be 

achieved most cost-effectively through VRE capacity buildout alone. Beyond this point, policy and 

investments that bring down the costs of nascent energy technologies – here, offshore wind and 

battery storage – will be particularly important. Even at high costs, significant shares of such 

technologies would be required to achieve deep energy decarbonization; an approach that 

incorporates them into near-term planning may make the longer-term transition more 

affordable. 

 
6. Conclusion 
 

Chapter II presents an optimization model for a regional electricity grid to assess cost-

minimal generation, transmission and storage capacities required to meet a series of renewable 

generation targets. We compare results for a range of transmission costs and for two broader 

technology cost assumption scenarios. Additional insight is gleaned from exogenously varying 

standalone energy storage capacity, adoption levels of electric vehicles, and solar photovoltaic 

capacities. The first half of this chapter investigates a 50% target in detail; the second half extends 

the analysis to targets up to 80%.   
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It is first demonstrated that New York can most cost-effectively realize a 50% renewable 

generation target with no new transmission or large-scale storage. Assuming offshore wind 

generation costs decrease to internationally competitive levels, the optimal generation mix 

includes 13.7 GW of onshore and 4.1 GW of offshore wind power capacity; despite its high capital 

costs, offshore wind’s high capacity factor, proximity to load centers and lack of reliance on long-

distance transmission upgrades result in its selection. Here, the contribution of 4.1 GW of 

offshore wind represents 28% of new potential renewable energy production. Even with 33 GWh 

of storage or 6 GW of solar exogenously imposed, optimal offshore wind capacity does not fall 

below 3.3 GW.  

As renewable energy penetration increases from 50% to 80%, the model builds out all of 

New York’s available 37 GW of onshore wind capacity and dramatically increases offshore wind 

capacity to 25 GW. At the 80% target, offshore wind contributes 48% of new potential renewable 

energy generation in the state, and as this generation connects directly to downstate load 

centers, additional statewide transmission buildout is limited to 5 GW and 1% of the total 

financial investments in generation, storage and transmission. This overall picture is largely 

insensitive to the cost of offshore wind capacity, or the presence of electric vehicles. 

  Storage plays an increasingly important role at higher renewable energy targets. In our 

results, we compute no storage at the 50% target, storage equivalent to about 2 hours average 

demand at the 65% target (7% of investment), and 16 hours average demand at the 80% target 

(27% of investment). The rising value of storage drives this growth: the avoided capital cost per 

kWh of storage is nearly 3 times greater at 65% renewable penetration than at the 50% 

penetration level.  At deeper renewable energy targets, large computed battery capacities with 
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relatively low annual cycling suggest that some proportion of alternative forms of storage may 

be effective. 

Evaluating the marginal costs of utilized renewable electricity between the 50% and 80% 

targets, we observe a marked increase in price as New York requires more capital to build out 

and integrate additional generation capacity. To achieve a 50% target, we compute a levelized 

cost of electricity of $52/MWh for new renewable energy, a quantity in line with current 

reasonable generation prices. Between 50-55%, the marginal cost of electricity nearly doubles to 

$94/MWh, which may be reasonable for the urban areas considered in this study. To reach the 

80% target, this marginal cost increases sharply to $592/MWh. In the 70-80% target range, the 

rapidly increasing marginal costs are largely driven by energy storage costs.  

It is important to understand a couple limitations of the study. We have not modelled 

interconnections to adjacent grids, and these may play an important role in lowering costs at 

higher renewable energy penetration levels.  We have also not simulated unit commitment or 

dispatch with deep penetration of renewables; transmission and storage may affect the internal 

economics of dispatchable generators, market prices and dispatchable capacity needs, 

warranting further study. Lastly, we do not model anticipated heating electrification, which is 

likely to reduce wind power curtailment in winter months.    
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Chapter III: The value of energy flexibility: Integrating wind resources in New York 
State 

 
 
Abstract 
 

The following chapter explores the effects of energy system flexibility on the contribution 

of wind to the New York State (NYS) electricity generation mix. First, the benefits of NYS-specific 

flexible hydropower are investigated. For all simulations, a mixed integer linear program 

minimizes net load to determine the maximum aggregate capacity factor for the installed wind 

power. The benefits of three different types of energy flexibility are then explored: flexible 

supply, flexible demand, and bidirectional flexibility (i.e., energy storage). To compare across 

technologies, a novel method of standardizing flexibility inputs, Potential Flexible Energy (PFE), 

is introduced.   

With 30 GW wind capacity in NYS (average electricity demand of 18.7 GW), introducing 

electric vehicles with an average load of 1.44 GW and daily available battery capacity of 34.5 GWh 

(roughly equivalent to the daily use of 3.4 million passenger EVs) increases statewide wind 

utilization by 840 MW (9.0% of wind potential and 4.5% of average load). Added flexibility in the 

form of energy storage yields similar results: with 3.2 GW charge/discharge capability and 76.8 

GWh storage capacity, statewide wind utilization increases by an average of 660 MW (7.0% of 

wind potential and 3.5% of average load). 

Because of transmission constraints and the geographic distribution of high-potential 

wind resources, increased wind utilization is only achieved when flexibility is added in the region 

where 86% of the 30 GW simulated wind capacity is located. 
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1. Introduction 
 

The use of renewable energy technologies to decrease fossil fuel emissions and mitigate 

the effects of climate change are well known [119]. Driven by decreasing costs and growing 

societal awareness of the hazards of burning carbon fuels, solar and wind power penetration will 

increase throughout next century, as will the challenges of integrating these inflexible, low 

carbon resources [121,160]. Among energy system planners, there is much debate over how to 

meet these challenges, which arise from the intermittent and stochastic nature of wind and solar 

generation [50,161,162]. The technologies and methods under discussion enable renewable 

energy integration in various ways, and include: carbon pricing; a well dispersed portfolio of 

energy sources [12]; advanced grid monitoring and communication [122]; expanded transmission 

capabilities [163]; interconnection between regional systems [124]; and increased system 

flexibility [125]. Previous research has focused on the benefits and challenges of deep 

penetration of Variable Renewable Energy (VRE) resources in New York State by significantly 

increasing the modeled capacity of wind and solar installations [64,129]. This chapter will 

investigate the effects of expanded wind capacities with varied amounts of complementary 

flexibility. Here, flexibility is defined as “the extent to which a power system can modify its 

electricity production and consumption in response to variability, expected or otherwise”. First, 

the potential of hydropower to offer system flexibility and to increase consumption of wind 

generated energy is explored, as flexible use of hydroelectric resources offers clear benefits to 

power systems [164–166]. The authors conducted a comprehensive review of the state's 

hydropower resources in order to create a mixed-integer linear program (MILP), the Flexible 

Hydropower Model (FHM), which optimizes NYS system response to up to 30 GW of wind capacity 
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by minimizing net load. The simulated hydropower flexibility reflects current load-following 

capabilities of NYS hydro resources.  To accurately assess the benefits of hydropower flexibility, 

solutions from the MILP are compared to a baseline case in which the state's hydroelectric 

generation is the result of smoothing reported generation values over two weeks. Expanding the 

scope of study, this chapter next evaluates the impact of three different types of power system 

flexibility: supply-side flexibility, demand-side flexibility, and bidirectional flexibility. A similar 

MILP, the Comparative Flexibility Model (CFM), was created to complete this analysis, where 

results are again compared to a baseline case without flexibility. 

The structure of Chapter III is as follows: Section 2 presents background information on 

hydropower resources in NYS. Section 3 details the FHM and CFM methodologies and the data 

inputs used to parameterize and run the models. Section 4 discusses the FHM and CFM results. 

Section 5 restates the chapter's most salient conclusions and offers directions for future work. 

 
2. Background 
 
2.1 NYS hydropower 
 

In New York State, four hydroelectric power plants constitute 80% of the state's total 

hydropower capacity and 83.2% of all hydro generation, providing 13.3% of total statewide 

electricity generation. The largest of these generation facilities is the Robert Moses Niagara 

Hydroelectric Power Station. The Moses-Niagara plant has a rated capacity of 2460 MW, and in 

2016, generated 54% of the state's hydropower [151]. In accordance with the 1950 Niagara 

Treaty between the United States and Canada, a portion of the Niagara River is diverted into the 

Moses-Niagara forebay after allowing for the necessary flow of water over Niagara Falls and into 
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the Sir Adam Beck Hydroelectric Generation Facility, a hydro-plant on the Canadian side of the 

river [167]. 

The Moses-Niagara forebay also serves as the lower reservoir of the Lewiston Pumped 

Hydro Energy Storage (PHES) plant. During periods of low statewide electricity consumption, the 

Lewiston Plant pumps water from the Moses-Niagara forebay into its upper reservoir. During 

periods of high statewide demand, the Lewiston Plant generates electricity by allowing water to 

flow from its upper reservoir back into the Moses-Niagara forebay. The generating capacity of 

Lewiston is 240 MW. In 2016, the Lewiston plant generated 1.7% of NYS hydropower [151]. 

The Moses-Saunders Power Dam provides the second most hydropower to the state. The 

dam straddles the St. Lawrence River and diverts water to two adjacent power stations, the 

American St. Lawrence-Franklin D. Roosevelt Power Project and the Canadian R.H. Saunders 

Generating Station. Both facilities operate as run-of-the-river plants with limited storage 

capability. The St. Lawrence-FDR facility has a total rated power capacity of 912 MW. Because of 

reliable flow, St. Lawrence-FDR operates near its maximum generation capacity nearly all year 

long. In 2016, St. Lawrence-FDR generated 26.0% of NYS hydropower [151]. 

The last of the four large hydroelectric power plants is the Blenheim-Gilboa PHES facility, 

which has the second largest total rated turbine capacity in the state at 1160 MW [168]. Its upper 

reservoir has a capacity of 18 million cubic meters, which corresponds to approximately 14 hours 

of peak generating capability. In effect, Blenheim-Gilboa operates as a closed system with 73% 

efficiency, as the Schoharie Creek water replenishes water lost or evaporated. The Blenheim-

Gilboa plant supplies the New York Independent System Operator (NYISO) with black-start 

capability; in 2016, it supplied 1.4% of NYS hydropower [151]. 
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Smaller hydropower facilities constitute the remaining 20% of hydroelectric resources in 

New York, supplying 16.8% of the state's hydroelectric power [151]. Throughout the following 

analysis, these plants are lumped together to yield one representative facility, subsequently 

referred to as `Small Hydro', with a rated power capacity of 1230 MW. 

 
2.2 Moses-Niagara energy inflow 
 

This study computes energy inflow to the Moses-Niagara forebay based on flow 

measurements of the Niagara River [169] and the specifics of the 1950 Niagara Treaty between 

the US and Canada [167]. The Niagara Treaty establishes that 100,000 cubic feet per second of 

water must pass over Niagara Falls, downstream of the hydropower facility intakes, between the 

hours of 8am and 10pm EST from April 1st to September 15th, inclusive; and each day between 

8am and 8pm EST from September 16th to October 31st, inclusive. The flow over the falls should 

never drop below 50,000 cubic feet per second at any other time. On the American side, the 

drawing capacity of the Moses-Niagara plant is limited to 109,000 cubic feet per second by the 

size of the canal that diverts water from the Niagara River to the forebay.  

After applying these constraints to the river flow readings, the authors determine the 

time series for water inflow to the Niagara-Moses facility. With assumed turbine efficiency of 

0.90, generator efficiency of 0.96, and a 91.44m head, the yearly energy inflow to Moses-Niagara 

was calculated to be 14.409 TWh in 2016, nearly equal to the EIA-reported energy generation of 

14.410 TWh that year  [151]. As such, the authors feel justified using this method to determine 

the Niagara-Moses energy inflow time series.   
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2.3 St. Lawrence-FDR energy inflow 
 

The Ontario ISO, IESO, publishes hourly generation and generation capacity data for every 

plant larger than 20 MW in the region [170]. Because of the twin nature of the St. Lawrence-FDR 

and the R.H. Saunders hydroelectric facilities – both facilities are supplied by the Moses-Saunders 

Power Dam and are therefore subject to the same water inflows and weather conditions – the 

authors assume that the IESO-reported hourly generation capacity for 2016 applied similarly to 

the St. Lawrence-FDR plant after scaling for differences in rated power capacity (912 MW for St. 

Lawrence-FDR and 1045 MW for R.H. Saunders). On account of the St. Lawrence-FDR facility's 

operation as a run-of-the-river hydroelectric plant, no storage capacity is assumed to exist. With 

a generator efficiency of 0.96, the yearly energy inflow to St. Lawrence-FDR is calculated to be 

7.05 TWh in 2016, slightly less than the EIA-reported generation of 7.10 TWh that year. 

 
2.4 Small Hydro energy inflow and storage 
 

The energy inflow to the representative Small Hydro facility, 𝐻&),'7( , is determined by 

smoothing the difference of the NYISO-reported hydropower generation (𝐻)8&'3Q ) and the 

calculated energy inflow to both the Moses-Niagara (𝐻&),)&-Q ) and St. Lawrence-FDR (𝐻&),'(1Q ) 

generation facilities with a smoothing factor 𝜏 = 336 hours (2 weeks):  

 

𝐻&),'7( =	
1

𝜏 + 1 P 𝐻)8&'3Q − 𝐻&),)&-Q −

(FR:

QH(+R:

𝐻&),'(1Q  

(III-1) 
 

We believe the approximation is justified: the large generation facilities not accounted 

for in this equation (Lewiston, Blenheim-Gilboa) are pumped storage plants and accordingly have 
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no significant energy influxes. Therefore, all other hydro inflows must be captured by the 

remaining Small Hydro plant. To ensure that the Small Hydro inflow is not a direct response to 

the Moses-Niagara and St. Lawrence-FDR inflows, a smoothing factor 𝜏-value of 2 weeks was 

used to smooth the difference of the hydro production and hydro inflows without allowing for 

the possibility of long-term storage. Smoothing the difference between hydropower production 

and known inflows ensures that the scale of the Small Hydro energy inflow is appropriate. Such 

an approach also ensures that 𝐻&),'7(  responds to macro-trends in water availability but not to 

small fluctuations in the flow of disconnected rivers. For the Small Hydro representative facility, 

the energy from 24 hours of maximum generation was assumed as storage capacity. 

 
2.5 No flexibility baseline 
 

To compare the results of flexible hydropower operation, we analyze a baseline, fixed 

hydropower simulation. For this control scenario, fixed hydropower generation at time t, 𝐻/&%( , 

was set equal to the amount of hydropower reported by NYISO for that time step, 𝐻)8&'3Q , 

smoothed over 𝜏 = 336 hours: 

 

𝐻/&%( =	
1

𝜏 + 1 P 𝐻)8&'3Q

(FR:

QH(+R:

 

(III-2) 
 
3. Methodology 
 
3.1 Flexible hydropower model overview 
 

The Flexible Hydropower Model uses the parameters of NYS hydropower facilities 

described in Section 2 to produce a MILP that minimizes net load in New York given capacities of 
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installed wind generation and available PHES. Minimizing the sum of statewide net load achieves 

the highest degree of wind energy utilization for the assumed set of constraints. The MILP is 

solved at an hourly time resolution and ignores interzonal transmission constraints. The objective 

function for the FHM is presented below:  

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒											P𝑁𝐿(
(∈A

 

(III-3) 
 
where, 
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− (𝑋5(6+'31-2 ∗ 	𝑊5(6+'31-2
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(III-4) 
 

Here, the net load, 𝑁𝐿(, is defined by the exogenously determined statewide electricity 

demand, 𝐷$1$,( ; and baseload renewable generation, equal to the sum of (1) nuclear generation, 

𝑁(; (2) behind-the-meter solar generation, 𝑋5(6+'31-2 ∗ 	𝑊5(6+'31-2
( ; and (3) generation at the 

St. Lawrence-FDR facility, 𝐻&),'(1( . It is also defined by the following state variables: generation at 

Moses-Niagara, 𝐻)&-( ; generation at Lewiston, 𝐻1$4( ; generation at Blenheim-Gilboa, 𝐻5*( ; 

generation from the Small Hydro facility, 𝐻'7( ; generation from any new, simulated PHES,  𝐻),( ; 

and utilized wind energy, 𝑋3) ∗ 	𝑊3)( +	𝑋3// ∗ 	𝑊3//
( . A full list of constraints can be found in 

Appendix B. The model is formulated in MATLAB [171] and solved in Gurobi, a commercial 

optimization solver [172].  

Beginning December 2015, NYISO has published fuel mix data for the NYS electricity grid 

at 5-minute intervals [38]. The fuel mix data present the amount of total power supplied by 

generators classified as: nuclear, hydro, natural gas, dual fuel, wind, other renewables, and other 
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fossil fuels. Five minute reported hydro data for 2016 – along with Niagara River streamflow and 

St. Lawrence rated generation capacities – are used to determine the Small Hydro energy inflow. 

After parameterizing the state's hydro resources, we use 6 years of NYISO-reported hourly 

demand data (2007-2012) to run the FHM. Nuclear generation in the state was taken as a 

constant 3026 MW, based on the annual nuclear energy reported by NYISO after removing the 

contribution from Indian Point Energy Center, as this plant is slated to be decommissioned as 

soon as 2021.  

For some scenarios, the FHM simulates additional PHES in NYS. This additional storage is 

scaled in reference to the Blenheim-Gilboa facility: a scenario denoted “Flex Hydro + 3 PS” 

indicates statewide flexible hydro generation with additional PHES three times the size of 

Blenheim-Gilboa in both generation and reservoir capacity. Energy generated by this simulated 

plant, 𝐻),( , allows the FHM to interrogate the benefits to an energy system when supplementary 

flexibility is present. 

To simulate capacities of wind power far exceeding current levels, the FHM relies on 

model wind power data for 126,000 potential wind sites developed by the National Renewable 

Energy Laboratory (NREL) [62,63]. A previous study found the NREL model to significantly 

overpredict the electricity generated at actual sites in NYS and developed a procedure to adjust 

the time series to reflect actual output [64]. For the current study, we employ the modified wind 

generation time series from this earlier study. In simulating increased wind power capacity, it 

was assumed that wind turbines are first installed at locations with the highest potential 

electricity generation, with additional turbines installed at progressively less productive sites.  
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The NYSERDA Distributed Generation Integrated Data System is used in order to 

determine solar potential in NYS [173]. This resource reports the hourly generation time series 

of solar facilities in New York. With the rated capacities of these facilities, the hourly solar 

generation potential is calculated for the 10 largest plants in New York State that were 

operational for the entirety of 2016. These time series were averaged to yield the generation 

potential of a representative plant, which is then scaled by the installed solar capacity. We 

assume that 600 MW of solar capacity exists in NYS when running the FHM. 

 
3.2 Comparative flexibility model overview 
 

The CFM also utilizes a MILP to minimize the sum of statewide net load given the presence 

of varying levels of VRE capacity and system flexibility. The objective function for the CFM is given 

as: 
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(III-6) 
For every region i, at each time step t, the net load 𝑁𝐿&( is partly defined by two exogenous 

variables: electricity demand, 𝐷$1$,,&( ; and baseload renewable generation, equal to the sum of 

(1) nuclear generation, 𝑁&(; (2) solar generation, 𝑋5(6+'31-2,& ∗ 	𝑊5(6+'31-2,&
( ; and (3) fixed 

hydropower generation, 𝐻/&%,&( . The following decision variables are also used: flexible demand, 

𝐷/1$%,&( ; generation from flexible hydropower, 𝐻/1$%,&( ; pumped storage generation, 𝛿.',&( ; pumped 
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storage pumping, 𝛾.',&( ; utilized wind energy, 𝑋3),& ∗ 	𝑊3),&
( +	𝑋3//,& ∗ 	𝑊3//,&

( ; and net imports 

from adjacent regions after accounting for transmission losses, ∑ [&"∈@ (1 − 𝑙) ∗ 𝑍&"&
( −	𝑍&&"

( ]. A list 

of model constraints can be found in Appendix B. By minimizing the sum of the statewide net 

load, the CFM minimizes the amount of electricity generated by fossil fuel-based sources. The 

CFM is also formulated in MATLAB and solved using Gurobi.   

To simulate the spatial characteristics of load and generation in New York, this study 

condenses the 11 NYISO load zones (A-K) into four regions (1-4) with interregional transmission 

limits equivalent to those given in [48]. The boundaries of these regions align with the main NYISO 

transmission system interfaces. Figure III-1 shows the 11 NYISO load zones. The load zones, wind 

capacity (in the 30 GW wind scenario), and average electricity demand of each region are 

presented in Table III-1. Transmission losses are assumed to be 3% between adjacent regions, 

ensuring that wind electricity is first used to meet demand nearest the region in which it was 

generated.  

In the CFM, nuclear generation in the state is taken as a constant 3026 MW (all in Region 

1), and solar and wind generation are calculated as described for the FHM (150 MW solar in each 

region). The daily hydro output is estimated based on the actual 2007-2012 monthly output for 

facilities in each zone [38] and a cubic spline function constrained to be continuous and smooth 

from month to month. In the flexible scenarios, a fraction 𝑥/1$% of the total hydro generation, 

𝐻(3(,& , is assumed flexible, able to be dispatched with a degree of control; the balance of the 

hydro generation is simulated as non-flexible and needs to be consumed during the time-step it 

becomes available.  
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Figure III-1: NYISO control area load zones [174]. 
 
 
Table III-1: Spatial grouping of NYISO load zones; Distribution of wind capacity in 30 GW scenario 
[64] ; Average 2007 -- 2012 electricity demand [38]. 

Region NYISO Zones Wind Cap. (30 GW) Avg. Demand 
1 A, B, C, D, E 25814 MW 6382 MW 
2 F, G 3358 MW 2495 MW 
3 H, I, J 16 MW 7211 MW 
4 K 812 MW 2567 MW 

 
3.3 Modes of flexibility 
 

In the Comparative Flexibility Model, three different modes of flexibility are analyzed. The 

first is supply-side flexibility, of which a traditional hydroelectric plant is an example. Such a 

facility maintains a degree of control over when it generates electricity based on its ability to 
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store water in its reservoir. The second is demand-side flexibility (e.g., a fleet of electric vehicles 

with some discretion over when it can charge); this type of flexibility offers a degree of control 

over when certain electric loads can be met. The third type of flexibility is bidirectional energy 

storage; a plant with bidirectional flexibility can both absorb and deliver power, and thus has one 

greater degree of control than either flexible supply or flexible demand facilities. 

 
3.4 Potential flexible energy 
 

In order to compare the effects of the three types of flexibility, this study proposes a metric 

called Potential Flexible Energy (PFE). PFE is defined as the potential amount of energy a flexible 

resource can generate or absorb over a period of time. By equating PFE in all three flexibility 

cases, the authors ensure that no mode of flexibility allows the system to utilize more flexible 

energy over the analyzed time period. Because the analysis is performed hourly over 6 years 

(T=52608) and the different modes of flexibility operate on different time scales, PFE is presented 

as an average hourly quantity. This has the units MWh/h; for simplicity, the authors use units 

MW. In this analysis, PFE is calculated before efficiency losses (𝜂78923 = 0.894; 𝜂<$7 = 0.95). 

PFE is determined in the following ways for the three modes of flexibility: 

1. For flexible supply (traditional hydropower), PFE is equated to the average amount of 

energy that flows into the reservoir, 𝐻&)( , over the analyzed time period:  

 

𝑃𝐹𝐸/7 =	
1
𝑇P𝐻&)(

(∈A

 

(III-7) 
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The power of the supply-side facility is determined by dividing the average inflow power 

by an assumed capacity factor (CF) equal to 0.45; the reservoir is sized to hold 24 hours 

of max generation. 

2. For flexible demand (electric vehicles), PFE is equated to the constant hourly EV load, 

𝐷<$7: 

 
𝑃𝐹𝐸<$7 =	𝐷<$7 

(III-8) 
 
It is assumed that the daily EV load – 24*𝐷<$7 – can be met anytime between 7pm and 

7am.  The power absorption capacity (i.e., maximum rate of charge) for the EVs is set to 

6*𝐷<$7. 

3. For energy storage (i.e., PHES), PFE is computed from the facility's power generation 

capacity, 𝑋.', and a maximum capacity factor:  

 
𝑃𝐹𝐸.' = 𝐶𝐹6-% ∗ 	𝑋.' 

(III-9) 
 
If we were to ignore charging and discharging efficiencies, the maximum possible capacity 

factor would be 0.5, since all energy provided in discharge must be stored by charging; 

however, we consider these efficiencies and arrive at 𝐶𝐹6-% = 0.45. The energy storage 

capacity of the resource is 24 hours of peak discharge capability. Therefore, with 𝐶𝐹6-% = 

0.45, the energy storage capacity and discharge capability equal those of the traditional 

hydropower model for a given quantity of PFE. 
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For PFE = 1440 MW, the power and energy characteristics for the three different types of 

flexibility are given in Table III-2. PFE equal to 1440 MW represents approximately one-half the 

average state-wide hydropower production over the six-year time horizon (2.99 GW), and in the 

opinion of the authors, offers a degree of flexibility reasonable for an energy system the size of 

New York State's. 

 
Table III-2: Generation/absorption and energy storage capacities for different flexibility types for 
1440 MW PFE. 

Flexibility Type Power Capacity [GW] Energy Capacity [GWh] 
Flexible Supply 3.2 76.8 

Pumped Hydro Energy 
Storage 3.2 76.8 

EV Flexibility 8.64 34.56 
 
 
4. Results 
 
4.1 Flexible Hydropower Model 
 

Results from the FHM indicate that flexible hydropower allows for greater utilization of 

wind-generated electricity at deep penetrations; additional PHES capacity further increases 

utilization. Figure III-2 presents the statewide energy mix with wind capacities of 10 GW and 30 

GW, each for the following flexibility scenarios: no flexibility (“No Flex”), hydropower supply 

flexibility (“Flex Hydro”), and hydropower supply flexibility plus energy storage equivalent to 

three times the size of Blenheim-Gilboa (“Flex Hydro + 3PS”).  

With 10 GW wind capacity, the “Flex Hydro" and “Flex Hydro + 3PS" scenarios have 

minimal effect on the statewide energy mix (<0.5%); because curtailment is low at this wind 

capacity, flexibility measures have little impact. However, with 30 GW wind capacity, the 

simulated flexibility allows for a higher degree of wind power utilization. At this capacity, the 
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“Flex Hydro + 3PS" scenario increases wind utilization by 1.2 GW (12.7% of potential wind 

generation and 6.4% of average load) compared to the scenario without flexibility. 

 

 
Figure III-2: FHM-computed statewide energy mix for flexibility type for 10 GW and 30 GW wind 
scenarios; each grouping of columns corresponds to implementations of flexibility for the given 
wind capacity. 
 
 
4.2 Comparative Flexibility Model 
 

In the CFM, we expand on the FHM by (a) investigating additional degrees of flexibility and 

(b) including the effects of interregional transmission limits. Five scenarios are considered: 

1. No flexibility (“No Flex.”). 

2. Flexible hydropower supply (“Flex. Hydro”).  
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3. Energy storage simulated as PHES. 

4. Demand flexibility simulated as electric vehicles (“EV Demand Flex.”).  

5. A comparison to an equivalent system with no transmission limits (“No Trans. Lim.”). 

 
For each of these scenarios, the different types of flexibility are (a) simulated alone without 

other flexibility measures and (b) within single geographical areas corresponding to the Regions 

defined in Table III-1. To clearly illustrate our findings, only the 30 GW statewide wind capacity 

scenario is presented, and a single Potential Flexible Energy (PFE) amount of 1440 MW was used 

for all simulations. We retain the metric of computing the share of statewide electricity demand 

met by wind. 

 
Figure III-3: CFM-computed statewide energy mix for flexibility type by region; each grouping of 
columns corresponds to implementations of flexibility in the noted region; 30 GW of statewide 
wind capacity. 



 

 164 

Flexibility in Region 1 has the largest effect on statewide consumption of wind energy, 

while flexibility in Region 2 has only marginal effects, and flexibility in Regions 3 and 4 has 

negligible impact on the amount of wind power utilized. Figure III-3 – with columns grouped by 

region showing each of the five flexibility scenarios simulated in the indicated region – shows the 

share of statewide demand met by low carbon baseload generation (nuclear and hydropower) 

and wind power, with the balance assumed to be met by fossil fuel-based generation.  

Without flexibility, wind-generated electricity contributes a computed average 5300 MW 

(28.4% of total electricity demand). Flexibility measures placed in Region 1 increase the 

contribution from wind by an average 470 MW (5.0% of potential wind generation and 2.5% of 

average load) with hydropower supply flexibility, an average 660 MW (7.0% of potential wind 

generation and 3.5% of average load) with PHES, and an average 840 MW (9.0% of potential wind 

generation and 4.5% of average load) with EV demand flexibility. It should be noted that the 

increase in wind-generated electricity utilization with EVs is a result of both additional demand 

and the flexibility of that demand: An average 720 MW increase in wind utilization is the result 

of the additional demand and an average 120 MW is due to its flexibility. Removing all 

transmission limits results in 37.0% of demand being met by wind, a result which is consistent 

with the FHM results in Figure III-2.  
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Figure III-4: Regional energy mixes for 3 different flexibility scenarios, normalized by state load. 
Each breakdown is juxtaposed with the energy mix breakdown from the no flexibility scenario. 
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As noted, flexibility in Regions 2, 3, and 4 has little effect on wind utilization. This outcome 

indicates that flexibility in New York's downstate regions would have little impact on reducing 

curtailment of wind-generated electricity – predominantly located at high-potential sites in 

Region 1 – due to the existing transmission limits. A wider implication beyond this specific case 

study is that VRE integration measures in a transmission-constrained energy system are likely to 

have the most impact if located near the VRE resource. By investigating a few select scenarios in 

detail, the overall effects described above become clearer. Figure III-4 shows the regional 

contribution of low carbon baseload generation, wind, and fossil fuels for three scenarios 

compared to the no-flexibility baseline: (a) energy storage, PHES, in Region 1; (b) demand 

flexibility, EVs, in Region 1; and (c) demand flexibility, EVs, in Region 2.  

Outlining the results of the no-flexibility scenario defines the general topology of energy 

utilization in the system: Region 1, which contains 86% of the state's 30 GW wind power capacity, 

91% of the state's hydropower generation, and 100% of the state's simulated nuclear generation, 

meets nearly its entire electricity load with low-carbon energy. Region 2, which benefits from its 

proximity to Region 1, meets a majority of its statewide demand from wind energy generated in 

the two regions. Region 3, which includes much of the New York City metropolitan area, has no 

low-carbon baseload energy generation within its boundaries; in the 30 GW wind power scenario, 

a significant portion of Region 3's load is met by wind generation from the west, but more than 

half of the region's demand is provided by fossil fuel generators. Region 4, at the grid “edge” and 

distant from wind-rich regions, has the highest portion of load met by high-carbon sources.  

Figure III-4(a) compares the computed regional energy mix for the “PHES, Region 1” 

scenario to that of the no flexibility scenario. As PHES increases the wind energy utilized overall, 
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increases in demand met by wind are computed for Regions 1-3 with no effect on Region 4. This 

suggests that storage is effective at retaining the electricity generated by wind for discharge to 

other regions when transmission capacity becomes available.  

Figure III-4(b) shows that with EV demand flexibility in Region 1, the increase in electricity 

demand (and the flexibility of that demand) allows for significantly more wind to be used to meet 

loads in that region. However, some decrease in wind-generated electricity used to meet loads 

in Regions 2 and 3 results from this electricity being used nearer the wind resource in Region 1. 

On balance, as is shown in Figure III-3, EVs in this region significantly increase overall wind 

utilization. 

Figure III-4(c) shows that increased EV demand in Region 2 results in (a) an increase in 

wind utilization in Region 2, and (b) a similarly sized reduction in wind utilization in Region 3. 

Therefore, increased wind utilization in Region 2 displaces wind utilization in Region 3. The 

aggregate effect is a negligible increase in overall wind utilization shown in Figure III-3, above. 

The inference related to the transmission effects on the results shown in Figure III-4(a) is 

further supported by computing the loading of interregional transmission interfaces. Figure III-5 

shows the amount of electricity transmitted at the interregional interfaces with and without PHES 

in Region 1. With an uptick in wind-generated electricity utilization in Regions 2 and 3, increased 

utilization of transmission capacity at Region 1-2 and Region 2-3 interfaces are also computed; 

the Region 3-4 interface displays no such effect. Without flexibility, the Region 1-2 transmission 

line is full more than half the simulation time period. Some increase in times of full loading is 

computed with PHES; however, most of the increased energy flow (entirely constituted of 
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additional wind-generated electricity) occurs at times of lower transmission loading, supporting 

our earlier conclusion.   

 
Figure III-5: Normalized transmission loading duration curve vs. time; PHES in Region 1, PFE = 
1440 MW. 
 
 
5. Conclusion 
 

Chapter III presents two models, both of which seek to quantify the benefits of power 

system flexibility to New York State under different considerations. The Flexible Hydropower 

Model (FHM) investigates different levels of hydropower flexibility compared to a fixed 

hydropower baseline to simulate the state's current load-following hydropower capability in the 

context of deep VRE penetration. Simulated flexibility offers system benefits only at installed 
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wind capacities above 10 GW; at 30 GW wind capacity, flexible hydropower with additional PHES 

increases average wind utilization by 1.2 GW (12.7% of wind potential and 6.4% of average load).  

The Comparative Flexibility Model (CFM) explores different types of system flexibility. 

Results show that energy storage (in the form of PHES) and demand-side flexibility (in the form 

of electric vehicles) have the largest effect on integrating substantial capacities of renewable 

generation when located near the VRE resource. The adoption of electric vehicles in Region 1 

with an average load of 1.44 GW and daily available battery capacity of 34.5 GWh increases 

average statewide wind utilization by 840 MW (9.0% of potential wind generation and 4.5% of 

average load) in a 30 GW wind capacity scenario; PHES in Region 1 with 3.2 GW charge/discharge 

capability and 76.8 GWh storage capacity expands statewide wind utilization by an average of 

660 MW (7.0% of wind potential and 3.5% of average load).  

A central finding of this study is that in the transmission-constrained system simulated, 

flexibility only increases wind-generated electricity utilization when located near the wind 

resource, which is primarily in Region 1. All types of flexibility in Regions 2-4 have negligible 

impact on increasing wind-generated electricity utilization. Therefore, energy systems planners 

should prioritize siting large-scale flexibility measures near renewable generation.  

Further research is needed to generalize the results of this analysis for other VRE 

resources, namely solar photovoltaics and offshore wind power. Offshore wind power is often 

nearer transmission-constrained load centers that are distant from onshore wind resources. 

Tradeoffs between these effects and the costs and opportunities for expanded transmission 

capacity also require investigation.  
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Appendix A: NYS Flexible Hydropower Model 
 
Additional Model Constraints 
 

All equations hold ∀t unless otherwise mentioned.  

Generation at each hydroelectric facility is limited to the max generation capacity at the 

facility. Reservoir level is similarly limited to reservoir capacity at every facility. All variables are 

greater than zero. For all PHES facilities, pumping and generation do not both occur in a single 

time step. In all equations, 𝛾 refers to pumped storage charging, 𝛿 refers to hydropower 

generation discharge, and 𝐸 refers to aggregate storage state of charge; all variables are indexed 

to the hydroelectric facility in question. 
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Appendix B: NYS Comparative Flexibility Model 
 
Additional Model Constraints 
 

All equations hold ∀t, ∀r unless otherwise mentioned. 

Generation at each hydroelectric facility is limited to the max generation capacity at the 

facility. Reservoir level is similarly limited to reservoir capacity at every facility. All variables are 

greater than zero. For the PHES facility, pumping and generation do not both occur in a single 

time step. In all equations, 𝛾 refers to pumped storage charging, 𝛿 refers to hydropower 

generation discharge, and 𝐸 refers to aggregate storage state of charge; all variables are indexed 

to the hydroelectric facility in question. 
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Part II: Irrigation and Energy System Modeling in Ethiopia 
 
 
Introduction 
 

The second half of this dissertation focuses on detecting smallholder irrigation presence, 

ultimately connecting predicted irrigated area back to its energy system planning implications. 

The geographical context of this effort is Ethiopia, a country of 110m where current use of 

irrigation is very low – approximately 2.1% of all agricultural land [175] – and 51% of the 

population has access to electricity [176].  

While electrification of households is nearly complete in Asia, approximately 700 million 

people in sub-Saharan Africa still live without residential access to electricity [177]. Addressing 

household level access requires planners to know where households are located; fortunately, 

given advances in satellite imagery-based techniques of locating buildings and improved 

administrative capacity in many countries, this challenge has been resolved in the last 5 years. 

Previous work from the Sustainable Engineering Lab (SEL) has estimated moderate levels of 

residential electricity consumption in sub-Saharan Africa to be between 20 and 50 kWh/month 

[178]. At prices approximately equal to $0.10/kWh, this level of consumption returns between 

$24 and $60 per year in electricity payments. Given average per-connection costs of $1000, the 

economics of the new consumers means that expanding electricity access is often a loss-making 

proposition for utilities [179].  

In comparison to residential demand, electricity demand for productive uses – i.e., for 

agricultural, commercial, or industrial activities – can be much larger in scale. For example, given 

a one-hectare farm plot, extracting 7mm of water per day from a groundwater reservoir 25m 
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below the surface results in a monthly electricity demand of 286 kWh for irrigation, assuming 

50% pump efficiency. Given their scale, such levels of demand must be affordable on a per-unit 

basis, or else the cost requirements will subsume all benefits of the irrigation itself. In Asia, grid 

extensions provided this affordable power. In Africa, with emerging levels of irrigation and low 

densities of demand, energy is often provided manually or via liquid fuels – both expensive 

options.   

Moreover, unlike residential electricity demands, demand for irrigation has the potential 

for flexibility. Most crops need approximately 35mm of water in a 5-day period to maintain 

healthy growth; these water requirements can be supplied at any time during the 5-day period 

[180]. Accordingly, electricity demands for irrigation can be met when energy is particularly 

cheap, such as during the middle of a sunny day for a system with solar generation capacity. This 

flexibility lowers overall costs, as batteries or dispatchable generation are not needed to meet 

immediate power needs, as is the case with residential loads.  

Many researchers have demonstrated the economic benefits of productive electricity 

demand. In Ethiopia, one study found that the average income of irrigating households was 

double that of non-irrigating households [181]. Revenues from secondary crops during non-rainy 

portions of the year provide supplementary sources of income that stimulate local economies 

and fully pay off the costs of a grid connection or minigrid installation, in turn generating capital 

for further electrification efforts [182]. Based on numbers gleaned from previous SEL experience, 

the incorporation of productive electricity demand can reduce the time required to pay off an 

investment in a grid connection from 20 to 8.5 years.  
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National planners recognize that providing electricity services to farmers who are 

currently using manual or diesel power to satisfy energy demands for irrigation first requires 

knowing where these farmers are. In high income countries where farms are often on the scale 

of tens to hundreds of hectares, this is not an issue; however, in sub-Saharan Africa, farmers are 

likely to be irrigating plots between a fraction of a hectare and a couple hectares in size. Locating 

farmers who are currently irrigating also provides information about nearby areas where 

irrigation can expand: If irrigation is possible on one plot, there are no barriers to expansion – 

e.g., excessively deep water tables, lack of local know-how, no market access – on a neighboring 

plot.  

With a basis established for the importance of locating and promoting smallholder 

irrigation, Part II of this dissertation introduces methods for irrigation detection; these methods 

are followed by an exploration of the impacts of productive electricity demands on energy system 

planning. To build upon existing efforts in the agricultural monitoring space, the literature on 

land cover mapping and irrigation detection is first surveyed, a discussion that leads to the 

development of an irrigation detection methodology for the Ethiopian Highlands. After 

demonstrating the applicability and accuracy of this methodology for Tigray and Amhara, two 

Ethiopian states in the Northwest portion of the country, extensions of this approach are 

explored. These extensions include investigating the spatial limits of trained irrigation detection 

models; a method of filtering out false positive predictions; a longitudinal assessment of irrigation 

growth within Tigray; and an application of the irrigation detection model in a separate region of 

Ethiopia that demonstrates a similar vegetation characterization to that of the Ethiopian 

Highlands. After a thorough exploration of the irrigation detection model in Ethiopia, predicted 
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irrigated areas are used in the development of a new optimization model that finds the lowest 

cost method of providing electricity for various systems configurations with simulated productive 

electricity demand. Accordingly, a common through-line exists throughout Chapters IV-VII, with 

the following paragraphs giving a more complete, chapter-by-chapter summary of the second 

part of this dissertation.  

For the task of irrigation detection in sub-Saharan Africa, Chapter IV summarizes relevant 

literature on land cover and irrigation mapping. Here, a 2012 paper by Professor Christopher 

Small is particularly germane, as it introduces a method of characterizing dominant regional 

phenologies in an area of interest, a characterization which provides the spatial boundaries for 

developed irrigation detection models. This method of spatiotemporal vegetation 

characterization is then implemented for a small subset of Amhara to visualize areas in the state 

that contain vegetation cycles in-phase and out-of-phase with rainfall. A separate method of 

characterizing the alignment of rainfall and vegetation cycles is also presented, whereby MODIS 

imagery and Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) 

precipitation estimates are used to identify areas where vegetation growth cannot be attributed 

to rainfall. Here, locations with rainfall-vegetation misalignment offer insight into where 

irrigation is occurring in Ethiopia, as the water necessary to sustain crop growth must be provided 

via some other mechanism; these locations also provide a point of comparison for subsequent 

predictions from irrigation detection models.  

Chapter V contains a novel, multiscale spatiotemporal approach for smallholder irrigation 

detection. A fundamental problem with irrigation detection in sub-Saharan Africa generally and 

Ethiopia specifically is a lack of labeled data – there are no publicly available datasets that 



 

 176 

demarcate irrigated areas. To remedy this gap, Chapter V details a process to supplement limited 

ground-collected labels and ensure classifier applicability in an area of interest. Adapting the 

spatiotemporal vegetation characterization methodology introduced by Professor Small, the first 

portion of this chapter presents a continuous phenology map that guides supplementary label 

collection and irrigation prediction model applicability. After acquisition of labeled data from 

seven distinct regions in the Ethiopian Highlands, timeseries of Sentinel-2 imagery are collected 

and cleaned to provide features for classifier training. Here, the efficacy of different training 

strategies and model architectures are assessed. Results indicate that enhanced vegetation index 

(EVI) timeseries – created using the Sentinel-2 blue, red, and near-infrared spectral bands – 

randomly shifted by up to ±30 days yield the highest prediction accuracies. After training over 

visually collected samples, the irrigation detection model is evaluated over reserved ground-

collected labels, achieving 96.7% accuracy over non-irrigated samples and 95.9% accuracy over 

irrigated samples. Similar performance is realized over a series of samples independently 

collected via the introduced method of label supplementation. Lastly, the prediction model is 

deployed over the entirety of Tigray and Amhara, finding that irrigated area in these two states 

has decreased by 40% from 2020 to 2021, likely due to ongoing civil conflict in the area.  

Chapter VI extends the methodology contained in Chapter V to explore other irrigation 

prediction dynamics in Ethiopia. First, the size distribution of predicted irrigated areas in Tigray 

and Amhara is explored, finding significant similarities between irrigated segments in the two 

regions except for the largest 1% of plots, which are substantially larger in Amhara. Next, 

misclassified predictions along the Amhara/Afar border are investigated, revealing that the 2020 

dry season contained precipitation and vegetation cycles anomalous within the 10 years of data 
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inspected. To control for irrigation misclassification, predictions are then filtered by an auxiliary 

10m land cover map. While this filtering method reduces the number of false positive predictions, 

it also likely eliminates many true positive predictions, a tradeoff that must be considered in 

producing final predicted maps. Next, Chapter VI presents an application of the irrigation 

detection model to an area in Oromia with similar climatological and phenological patterns to 

those in Tigray and Amhara, finding that irrigated areas surrounding a reservoir near Asasa can 

be identified. Moreover, longitudinal studies of irrigation in Tigray show that the plot-level 

location of irrigated areas changes substantially from year to year, and that the 40% decline in 

irrigated area from 2020 to 2021 identified in Chapter V is not due to excessive positive 

predictions in 2020, as irrigated area in 2020 represents a 6% increase over predicted area in 

2019. Another extension in Chapter VI assesses prediction performance over a set of labels 

collected in Tigray in 2020,  demonstrating that the irrigation prediction model is robust in years 

and regions for which no training data was acquired. Lastly, the addendum to Chapter VI contains 

details about a fully open-source implementation of all methodology introduced in Chapter V 

using Google Earth Engine. 

Chapter VII further details the theoretical underpinnings of the importance of productive 

electricity demand for energy system planning. While the shape and nature of all types of 

electricity demand are relevant during planning, the substantial potential for growth of electricity 

for irrigation, along with the size and flexibility of these loads, make them essential 

considerations for electrification efforts. This chapter then incorporates predicted irrigated areas 

in energy system planning via the introduced Irrigated System Electrification (ISE) model. 

Through its formulation as a linear program, ISE computes the least-cost method of satisfying 
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combined residential and productive electricity. ISE is parametrized from previous SEL experience 

and applied to a case study near Gebedge, Ethiopia. Model simulations reveal that grid power 

offers the cheapest method of meeting residential and productive demand at a cost of 

$0.164/kWh. In contrast, isolated solar/battery/diesel systems offer more costly alternatives 

when a grid network is not present: If all 0.2 hectare plots within a 300m radius are connected 

to the same system, the cost of electricity is $0.272/kWh; however, if all 0.2 hectare plots are 

independent, the electricity cost rises to $0.397/kWh.  
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Chapter IV: Review of previous approaches for irrigation detection and vegetation 
mapping 

 
  
Abstract 

To estimate productive electricity demand for irrigation, it is first necessary to locate 

areas that support dry season vegetation growth, as these sites are likely to contain additional 

cropping seasons with corresponding energy demands. Identifying these areas will require 

pulling from existing literature on vegetation characterization and land use monitoring. Of 

particular interest are methods developed in [183], whereby a temporal mixture model is applied 

to timeseries of vegetation abundance layers to create a regional phenology map. Accurate 

characterization of vegetation phenologies in an area of interest informs the extent to which an 

irrigation detection model will prove applicable. The following sections provide background and 

a literature review for 1) vegetation characterization via satellite imagery; and 2) irrigation 

detection efforts, both globally and specifically in Ethiopia.  

  
1. Literature Review 
 

There are a number of existing publications particularly germane to our task of irrigation 

detection in Ethiopia. At a high-level, detecting irrigation extent and land cover change via 

satellite imagery is a well-established methodological approach, consisting of many previous 

efforts that are detailed here in Chapter IV. Before reviewing this literature, we foreground the 

five novelties that separate the proposed method of irrigation detection contained in Chapter V 

from previously published work and qualify as original contributions to the field.  
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1. A method of label collection that allows 1) labeling at scaling, and 2) verification of 

timeseries of EVI signatures for new samples. This method includes a process called 

“cluster cleaning”, which allows users to draw larger labeled polygons – i.e., label 

faster – and confirm that newly labeled samples demonstrate phenologies consistent 

with our definition of irrigation/non-irrigation. Other labeling processes typically use 

a single timestep of imagery for labeling. For the case of Ethiopia, it’s easy to confuse 

non-irrigated, evergreen cropland with irrigated areas using only Sentinel-2 imagery 

at a single timestep. As our labeling process verifies annual vegetation phenologies in 

making an irrigation/non-irrigation class decision, it avoids this issue.  

2. A method of applying a random phase shift to input timeseries during training to 

increase classifier robustness. Data augmentation techniques are well-established in 

the computer vision literature, but this particular method has never been deployed 

for remote sensing classification tasks.  

3. Use of a spatiotemporal phenology map to govern the applicability of a classifier 

model. While methods for creating a phenology map are not new, using one to 

understand and visualize irrigation model transferability is. Given the tendency of 

other irrigation products to be generated over a large spatial extent with little, if any, 

justification for using the same model across different agro-ecological settings, this 

aspect of our work sets it apart.  

4. A 10m irrigation map is produced for 2020 and 2021, covering 205,000 km2 at >95% 

accuracy. There is no other product that exists for Ethiopia for these years at 10m 

scale with this level of accuracy.  



 

 181 

5. A 40% decline in irrigated area from 2020-2021 is computed, a new finding regarding 

how recent irrigation patterns have changed in Ethiopia, one that is still relevant given 

the ongoing civil conflict in the country.  

  

The following literature review is split into subsections based on the key methodological 

assumptions of the work in question. First, literature most closely related to this thesis work is 

discussed. The next subsections cover irrigation mapping via data fusion-based approaches; 

irrigation mapping using advanced computed vision methods; irrigation mapping across the 

continental US; irrigation mapping efforts at decameter resolution; global irrigation mapping at 

hectometer and kilometer resolution; and various relevant land cover mapping efforts. As an 

entry into this discussion, Ozdogan et al. present a review of opportunities and challenges in using 

remote sensing for irrigated agriculture monitoring [184]. Specific findings from this paper posit 

that single date imagery acquired during the peak of the growing season can hold sufficient 

information for irrigation classification, but multitemporal imagery is preferred. The authors also 

find that at larger scales, more work is required to identify the best spectral indices, best 

observed time periods, and best classification methods under different climatological and 

agroecological environments. Lastly, the paper concludes that further model refinement is 

necessary as additional labeled data is folded into the training process.  

 
1.1 Literature most closely related to the proposed irrigation detection methodology 
 

The two papers most relevant to our irrigation detection work were produced by Vogels 

et al. [185,186]. The first paper has two goals: 1) evaluate Geographic Object-Based Image 

Analysis (GEOBIA), an object based approach for field segmentation, for irrigation mapping; and 
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2) discriminate between large-scale and smallholder agriculture in the Ethiopian Rift  [185].  For 

this task, three 1.5m resolution SPOT6 scenes from November 2013, December 2013, and 

February 2014 are used as imagery. An image segmentation software (eCognition*) is applied on 

NDVI difference maps to generate 3000 labeled polygons; these polygons are then labeled via 

visual inspection as irrigated, non-irrigated, or non-cropped. Here, the presence of irrigation is 

determined based on vegetation content in the segmented objects. As the three SPOT6 scenes 

are all collected during the dry season of this part of Ethiopia, visual confirmation of vegetation 

is assumed to be indicative of irrigation presence.  Of the 3000 labeled objects, 596 were labeled 

as traditional smallholder and 549 were labeled as modern large-scale agriculture. Lastly, labeled 

objects are filtered using ancillary land-use/land-cover (LULC) maps and cloud cover masks to 

result in a final dataset of 2636 objects.  

For each object, 57 variables are derived in total: 17 spectral variables, 8 shape variables, 

22 texture variables, and 2 location variables (x and y coordinates). These variables are used as 

inputs to a series of random forest classifiers. The first model classifies each object as cropland 

or non-cropland. The second model classifies the cropland predictions from the first model as 

irrigated or non-irrigated for each of the 3 scenes. The third and final model classifies smallholder 

and large-scale agriculture. 

Overall, this approach achieves 94% accuracy in predicting irrigation presence. While this 

performance is impressive, there are a number of limitations to the methodology. First, no 

ground truth is leveraged in this effort, making the visually labeled cropland objects the only data 

points for assessing performance. Second, this approach is limited to where meter resolution 

imagery is available; as most of this imagery comes from commercial sources, it is not available 
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to researchers over a wide extent or time period. Third, since model inputs consist of a single 

red-green-blue-near infrared (RGBN) image, no temporal information is incorporated. Irrigation 

is a land cover process that involves greening and senescence periods that extend over multiple 

months, and timeseries of imagery provide insight into irrigation presence that is impossible to 

acquire from single timestep snapshots.  

 The second Vogels et al. paper [186] extends the methodology of [185], using GEOBIA and 

Sentinel-2 imagery for differentiating irrigated and non-irrigated agriculture across the entirety 

of the Horn of Africa: Ethiopia, Eritrea, Djibouti, Somalia, and Kenya. This methdology produces 

monthly maps of irrigated agriculture between September 2016 and August 2017. First, 

croplands are segmented using a dry-season (October 2016 – March 2017) Sentinel-2 NDVI 

mosaic and the eCognition Developer. Statistical quantities for these cropland objects – e.g. 

mean NDVI, mean NDVI in February, texture, size – were used as features in a random forest 

classfier to distinguish cropland from non-cropland. Ultimately, 9632 objects were labeled as 

cropland and 34,695 were labeled as other LULC classes, with the resultant cropland classifier 1) 

reporting 96% accuracy, and 2) determining that 17% of the total land area in the Horn is 

cropland.  

After determining cropland extent, irrigation presence was predicted using process-based 

rules on field object NDVI timeseries. Here, NDVI timeseries are created using monthly Sentinel-

2 mosaics between September 2016 and August 2017. For each object, the NDVI differences on 

a monthly basis are calculated to determine whether crop growth is happening (i.e., if the NDVI 

different was positive). Then, the portion of vegetated objects (i.e. not roads, water bodies, or 

villages) within a 5km radius that also demonstrate growth is determined. If this portion is less 
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than a specified threshold – either 15%, 25%, or 35% – the object is determined to be irrigated. 

In contrast, if this portion is larger than the threshold, the object is determined to be rainfed. This 

method produces 3 times (for the 3 different thresholds) 11 monthly land use maps showing the 

spatial distribution of rainfed and irrigated agriculture. By methodological design, the authors of 

[186] cannot determine an optimal threshold between 15%, 25%, and 35%. These thresholds 

correspond to a substantial difference in overall irrigated area: 17.7 Mha, 20.75 Mha, and 23.72 

MHa, respectively. These areas can be compared to existing estimates of 8.17 Mha (IAAA), 0.0004 

Mha (Globcover2009), 9.93 MHa (GFSAD1000: GIAM), 0.95 Mha (GMIA), and 1.23 Mha 

(AQUASTAT). As this approach does not use verified labels of irrigation presence, it is entirely 

dependent on selecting an accurate threshold in producing a final irrigated areas map.  

 While this paper remains a valuable contribution to the literature, there are numerous 

methodological shortcomings to its approach. First, no labeled data is collected to assess the 

accuracy of irrigation predictions, preventing readers from knowing how well the process-based 

approach performs for the task of irrigation detection. Second, the methodology treats each 

month’s Sentinel-2 imagery as independent from preceding/following images, removing all 

temporal information for irrigation process detection. This choice leads to the counterintuitive 

result that many pixels in the Horn are predicted as irrigated more than 6 times, an impossibility 

given the multi-month periodicity of irrigation cycles and the existence of a rainy season (or 

multiple rainy seasons, depending on the location) that renders supplementary crop watering 

events unnecessary. Third, the same approach to irrigation detection is deployed over the entire 

Horn of Africa regardless of substantial regional differences in climatology and agroecological 

conditions.  
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 A recent working paper from IWMI maps irrigated and rainfed agriculture in Ethiopia from 

2015-2016 using remote sensing methods [187]. This paper uses a single mosaic of Landsat 8 

images to remove non-agricultural land cover types. Subsequently, MODIS 16-day NDVI 

composites and CHIRPS data are used to assess irrigation presence. Here, classification is carried 

out by combining temporal correlation of crop growth patterns with rainfall, the number of crop 

cycles in a year, and dry season moisture status. Timeseries of MODIS imagery are paired with 

ground truth from field surveys, secondary sources, and visual interpretation of high resolution 

images; unfortunately, no further information about the amount or extent of labeled data used 

in this paper is specified. Despite being completed with 250m MODIS imagery, the final map is 

produced at 30m resolution. Given the native 250m resolution of this map, it cannot capture 

smallholder irrigation dynamics. 

 Methods of mapping cropping intensity of smallholder farms are compared by Jain et al. 

in [188]. Four methods of intensity mapping are assessed: 1) the Landsat threshold method, 

which identifies whether a Landsat pixel is cropped or uncropped in each growing season based 

on an NDVI threshold; 2) the MODIS peak method, which determines whether there is a peak 

during MODIS timeseries; 3) the MODIS temporal mixture analysis method, which quantifies 

MODIS sub-pixel phenology heterogeneity using methods from [183]; and 4) the MODIS 

hierarchical training method, which computes the sub-pixel heterogeneity of cropping intensity 

using hierarchical training techniques. All methods are assessed using four criteria: data 

availability, accuracy across different spatial scales, ease of implementation, and ability to use 

the methods over large spatial and temporal scales. This study was performed over Madhya 

Pradesh and Gujarat states in India over summer and winter seasons. In Gujarat, Quickbird and 
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Worldview-2 imagery are used for label collection and validation; in Madhya Pradesh, no high-

resolution imagery is available, so Landsat 8 is used for label collection. For each state, 25 

cropped areas of interest – i.e., polygons – and 25 non-cropped areas of interest, each 

approximately 100m x 100m, were collected for model validation via visual interpretation. 

Predictions are made for “fraction of each cell cropped” at 250m, 1km, 10km spatial resolutions; 

performance is reported as R2 values. Predictions are also validated at the district level using 

Indian census data. Altogether, this paper finds that the Landsat method is most accurate, 

particularly at smaller scales of analysis (i.e., 250m resolution); however, this method is more 

difficult to implement because of a lack of image availability. When aggregating to higher spatial 

scales (i.e., 1km and 10km resolutions), MODIS-based approaches have similar performance to 

the Landsat-based approach. 

A 2012 paper by Professor Small introduces a method of combining characterizations of 

spatial and temporal change with modeling, whereby combinations of endmembers in a 

temporal feature space are used to represent the relative presence of spatiotemporal processes 

[183]. Here, the topology of the feature space informs the hand-selection of temporal 

endmembers; this approach is applied to map the vegetation phenologies of the Ganges-

Brahmaputra delta using MODIS vegetation index timeseries. The methodology introduced in this 

paper provides the foundation for the temporal endmember extraction technique and the 

utilization of abundance maps for understanding landscape change presented in the following 

sections and Chapter V.  
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1.2 Irrigation mapping via data fusion 
 
 As remotely-sensed data become more accessible, researchers are increasingly exploring 

the benefits of data fusion – the process of combining multiple satellite imagery products, often 

across sensing domains, to extract otherwise hidden information about irrigation processes. 

Ferrant et al. leverage Sentinel-1 and Sentinel-2 to 1) detect irrigated crops, and 2) estimate 

seasonal groundwater use in South India [189]. Here, a random forest is deployed over three 

growing seasons (January to March 2016, July to November 2016, January to March 2017) to 

classify: inundated rice paddy, irrigated crops, and dynamics of other surface water areas. NDVI 

and NDWI measurements are used from the Sentinel-2 imagery, while the vv/vh ratio of Sentinel-

1 backscatter is extracted to produce ground observations in the cloudy monsoon season. Three 

seasonal surveys of land cover provide 428 plots of non-irrigated area, 286 irrigated areas, 192 

flooded rice crop areas for training and validation labels. These plots encompass 9 land-cover 

classes – inundated rice, irrigated vegetables, irrigated maize, orchards, forested area, bare 

ground and natural bushes, urban areas, surface water, and rain-fed cotton – and result in 

100,000 labeled pixels split across the 3 region-growing seasons. A model is trained 

independently for each region-growing season. 

 MODIS timeseries, Landsat imagery, and ancillary data are combined to detect irrigation 

extent, frequency and timing in northwestern China in [190]. Here, imagery timeseries are 

created at 30m by fusing Landsat and MODIS data: MODIS imagery is transformed to feature 

space, and then the first dimension of the PC transform is replaced with Landsat imagery, 

followed by application of the inverse transform. These images are paired with extensive ground 

truth: daily irrigation records of 36 villages in the experiment area for 2014, 2015; and daily 
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irrigation records at site scale for 2012, 2015, 2016 from Daman via HPSDC (Heihe Plan Science 

Data Center). Using the proposed method, the authors are able to identify water supplement 

stages with 90% accuracy.   

 A series of other papers deploy data fusion approaches for irrigation detection, combining 

sensed imagery from multiple different satellite missions. In [191], the authors distinguish 

between irrigated and rainfed crops in southwestern France using timeseries of Sentinel-1 

imagery, Sentinel-2 imagery, and meteorological variables. For classification, a labeled dataset of 

832 plots in 2017 (557 irrigated and 275 non-irrigated) and 942 plots in 2018 (680 irrigated and 

262 rainfed) are used, collected via a field campaign. Input timeseries are processed to a monthly 

time resolution, and then are inputted to a random forest model; no information is provided 

about what features are most important for classification.  

 A similar effort proposes an operational framework for mapping irrigated areas at plot 

scale using Sentinel-1 and Sentinel-2 data, which is then applied to a study site in northwestern 

France [192]. The key contribution of this paper is a method for collecting labeled data without 

in-situ observations. Here, labeled data is collected based on either 1) the output of an irrigation 

event detection model applied to Sentinel-1 timeseries, or 2) maximum Sentinel-2 NDVI during 

the crop cycle compared to a reference threshold (>=0.8 is irrigated; <= 0.7 is non-irrigated). The 

irrigation event detection model introduced in this paper compares Sentinel-1 backscatter 

measurements at the plot level to the change in backscatter measurements at the grid scale 

(10km x 10km): If the backscatter at plot level increases while backscatter at grid level remains 

constant, then the authors assess a high probability of an irrigation event. Using these labeled 
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data, a random forest classifier is trained to distinguish irrigated and non-irrigated plots, 

achieving between 73-93% accuracy across the years and areas of deployment.  

Sentinel-1 radar and Sentinel-2 optical imagery are combined to map irrigation in 

Catalonia and Italy in [193]. Labels are derived from administrative data in each country – SIGPAC 

in Catalonia [194], and iColt in Italy; 2000 labels are used in total. Here, each labeled vector plot 

reduces to a single collection of features via averaging of all timeseries within that plot. Feature 

layers also include a ratio of plot-level statistics to statistics for the surrounding 5km-by-5km area 

to determine whether plot-level attributes are uncharacteristic of the surrounding landscape.  A 

Support Vector Machine (SVM) is then trained to separate irrigated and non-irrigated plots. The 

authors produce a high accuracy – 85% – for the binary irrigation task, which they attribute to 

the benefits of data fusion. Among all feature inputs, the vv layer was found to be most predictive 

of irrigation presence. 

 Bolognesi et al. fuse two different types of optical imagery in [195], combining Landsat 8 

and Sentinel-2 timeseries to detect irrigation in southern Italy. Here, 57 Landsat 8 images and 

145 Sentinel-2 images are combined to produce a single imagery timeseries with 30m resolution 

and a timestep of 2-3 days. The ground truth for this effort comes from a field survey, with 2992 

data points from 3 main classes: bare soil and rainfed, herbaceous irrigation, and irrigated tree 

crop. Data points are taken one per field parcel in order to limit the spatial correlation among the 

training data. After organizing the imagery and labeled samples, the authors assess various 

pixelwise classifiers, achieving accuracies close to 90%.  

 Liu et al. also fuse Landsat 8 and Sentinel-2 timeseries in [196], using the two sources of 

imagery to map cropland intensity in northwestern China. The two types of optical imagery are 
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combined to create 30m, 10-day composites, with temporal gaps filled by a Savitzky-Golay filter. 

A field collection effort produces 700 pixelwise labeled samples for modeling; signal processing 

is then applied to these samples to determine whether single, double, or triple cropping was 

occurring, with max NDVI values above 0.5 required once during the crop cycle to qualify as 

cropped. This heuristic-based approach – one without any machine learning – achieves an 

accuracy of 94%. The authors also find that only NDVI and the Land Surface Water Index (LSWI) 

are necessary for classification.  

 
1.3 Irrigation mapping using advanced computer vision techniques 
 

Various advanced deep learning methods developed for computer science applications 

have also been transferred to remote sensing applications to achieve state-of-the-art 

performance for classification tasks. One such effort uses a self-supervised contrastive loss to 

learn important features in the BigEarthNet-S2 imagery dataset before tuning to an irrigation 

detection task [197]. In this self-supervised pretraining stage, a batch of images is first selected. 

For each image in this batch, two image augmentations are selected at random, with a neural 

network learning to minimize the contrastive difference between these images after a forward 

pass. Assessed over withheld samples in Europe from the BigEarthNet-S2 dataset, this pretrained 

model consistently outperforms the supervised baseline for the task of irrigation detection, 

indicating that the proposed approach produces models that generalize well on unseen data. 

 Ragettli et al. develop an unsupervised classification algorithm for multi-temporal 

irrigated area mapping in Central Asia in [198]. This process is developed in Google Earth Engine, 

where regions of interest are first identified through unsupervised object-based segmentation, 

followed by multi-temporal image analysis to distinguish productive irrigated fields from non-
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productive and non-irrigated ones. Unsupervised segmentation is achieved via a region growing 

clustering technique; as this step produces polygons covering large irrigation schemes with 

relatively homogeneous land cover, subsequent supervised classification models are trained to 

distinguish between vegetated and non-vegetated land use classes. Classification is performed 

using 1) multitemporal Landsat 7, Landsat 8, Sentinel-2, and MODIS imagery; 2) 2M labels 

collected via single-timestep photo interpretation and hand labeling of 7 available Landsat 

scenes, resampled to 80m; and 3) a random forest classifier. This approach produces monthly 

30m irrigation maps for Kyrgyzstan and Kazakhstan between 2000 and 2017, achieving accuracies 

between 77-96% based on 7 available validation scenes. 

 The literature on irrigation detection also contains transfer learning based approaches as 

well. In [199], a U-Net with a ResNet50 backbone (trained on ImageNet) yields the best detection 

performance. This approach is applied in Morocco on three cloud-free Landsat 8 scenes (October 

2015, May 2016, and August 2016); these three scenes produce 50 224 x 224 image patches in 

total, with labels collected via photointerpretation of the data. Only RGB bands are used for 

classification. The authors of this paper also find that two methods of data augmentation – 

rotating and flipping input images – improve prediction accuracy.  

Given the rapid introduction of many novel deep learning model architectures, recent 

research has focused on assessing the performance of these architectures for satellite imagery-

based applications. In [200], Zhao et al. evaluates the performance of 5 different deep learning 

models for crop type classification in Hebei Province, China. Classification is performed using 

Sentinel-2 timeseries, with missing pixel values infilled using a Savitzky-Golay filter. A mixture of 

ground truth and visually collected samples from Google Earth Engine comprise this paper’s 
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labeled data; in total, 2182 pixels are collected across 7 crop classes. The authors find that models 

that preserve temporal relationships – such as the LSTM and GRU – perform better than those 

that do not. Another finding is that 1D convolutional networks can learn from timeseries with 

missing data (i.e., those that haven’t been infilled) – the highest performing models achieve 

accuracies around 85% when the total missing rate of samples is 43.5%.  

 
1.4 Irrigation mapping across the continental United States 
 
 Transitioning to irrigation mapping efforts in the US – where croplands are larger than the 

typical smallholder scale seen across most of sub-Saharan Africa – Colligan et al. produce a deep 

learning-based approach in [201] for mapping annual irrigation in Montana from 2000-2019. 

Input imagery consists of imagery stack timeseries composed of 6 temporally averaged images 

(32 days apart) starting May 1, all containing blue, green, red, NIR, SWIR1, and SWIR2 spectral 

bands. Labeled data is provided by a novel ground truth dataset, county level stats from USDA 

on irrigation extent, and cadastral surveys. The novel ground truth dataset was introduced in 

[202] (described below), and consists of vector labels partitioned into three classes: irrigated, 

unirrigated, and uncultivated. These data are collected via manual interpretation of satellite 

images, and then are vetted with high-resolution imagery and rainfall timeseries. For the task of 

mapping irrigation in Montana, a standard U-Net is deployed. This network architecture learns 

to mask clouds and ignore Landsat-7 scan line failures without supervision, reducing the need for 

preprocessed data. 

 Ketchum et al. produce annual 30m resolution irrigation maps using Google Earth Engine 

for the years 1986-2018 for 11 Western states within the conterminous US. This paper classifies 

land into 4 classes: irrigated agriculture, dryland agriculture, uncultivated land, and wetlands  
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[202]. To do so, the authors compile an extensive labeled dataset containing 50,000 human-

verified irrigated fields, 38,000 dryland fields, and 500,000km2 of uncultivated lands and 

wetlands. These labels are the result of data aggregation from numerous state and federal 

agencies and research institutions, representing an unprecedented collection of verified irrigated 

areas. Using Google Earth Engine, Landsat imagery and auxiliary climate, meteorology, and 

terrain data, over 60,000 point samples across 28 years are then collected to train a random 

forest classifier. This method produces an overall binary irrigation vs. non-irrigated accuracy of 

98%. 

 In [203], a similar approach is taken to map annual irrigation across the entire 

conterminous US from 1997-2017 using Landsat imagery and environmental variables. The 

authors of this paper take separate approaches for the eastern and western US. In the West, 

croplands with a maximum greenness index (GI) or EVI above an optimal threshold are 

determined to be irrigated. This threshold varies by year and by county and is determined via 

regression. In the eastern US, 30,000 potential training locations are manually selected, all from 

center pivot systems. Non-irrigated training sites for the entire US are extracted from [204]. In 

both settings, annual statistics (e.g., max, mean, range) of various derived Landsat bands (e.g., 

EVI, NDVI, water greenness index (WGI), and aridity normalized greenness index (AGI)) are used 

as feature layers. Classification in the eastern US also leverages MODIS imagery that is temporally 

smoothed and aggregated to annual and late season (May 15th to October 15th) statistical 

quantities. Classifiers are trained annually by county using a random forest architecture, 

achieving >90% pixel level accuracy. After classification, irrigated area filtering is performed using 
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National Land Cover Database (NLCD) products: predicted areas less than 2 Ha in size are 

discarded.   

 An early effort to track change in irrigated areas across the conterminous US merged 

MODIS imagery and USDA county level irrigation statistics [205]. Analysis focuses on 2002 and 

2017 and uses annual peak NDVI as the primary metric in distinguishing irrigated and rainfed 

crops. Based on the assumption that irrigated crops demonstrate higher NDVI, the model assigns 

pixels to the irrigated class on a county-wide basis by ordering all pixels in descending order based 

on max NDVI. The corresponding number of pixels that align with the county wide irrigated area 

sum are deemed to be irrigated. This methodology is verified with Department of Water 

Resources data from California, revealing acceptable accuracies but large numbers of errors of 

omission.  

Irrigation dynamics in the US Northern High Plains are monitored with Landsat imagery in 

[206]. In this paper, the authors produce 30m irrigation maps for 1999-2016 by combining all 

available Landsat satellite imagery with climate and soil covariates in Google Earth Engine, 

achieving accuracies between 92-96%. For classification, 9 Landsat variables and 11 covariables 

are used to distinguish between irrigated and rainfed phenologies, which typically demonstrate 

differences in their peak greenness indices. The training dataset contains 1401 labeled samples, 

created using high resolution National Agriculture Imagery Program (NAIP) scenes, EVI 

timeseries, the US Department of Agriculture (USDA) Cropland Data Layer (CDL), and expert 

assessment. The resulting classifier identifies novel vegetation indices – the water adjusted 

greenness index (WAGI = NDWI * GI) and the aridity-normalized greenness index (AGI = 
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GI/growing season aridity) – as most important for prediction, part of a comprehensive 

evaluation of variable importance contained within the paper.  

Multiple papers have extended the methodology of [206] to map irrigation in other parts 

of the US. In [207], Xu et al. focus on southwestern Michigan between the years of 2001 and 

2016. Here, 1536 labeled pixels are collected from visual inspection of Landsat imagery on Google 

Earth Engine based on the presence of visible irrigation infrastructure, high vegetation indices, 

and center pivot systems. Annual composites of the Landsat imagery (e.g. the mean, maximum, 

minimum, and range) are then used for classification, as the full Landsat timeseries have different 

lengths and availabilities across the area of interest based on cloud cover and satellite imaging 

geometry. A random forest trained on these composite statistics then achieves between 78-85% 

accuracy, although only after the additional bands introduced in [206] (WAGI, AGI) are included. 

With irrigation extent predictions between 2001 and 2016, this paper is also able to show 

correlation between irrigated areas and commodity prices.  

Similarly, the primary author of [206] (along with a new set of coauthors) extends her 

original methodology for irrigation detection to the US High Plains Aquifer (an area covering 

portions of Nebraska and Kansas) in [208]. Here, irrigation presence is predicted from 1984 to 

2017 using statistical composites of Landsat imagery. In total, 17,276 labels are collected via the 

same approach introduced in [206] that leverages visual inspection and Google Earth Engine. A 

random forest is used to predict irrigation extent, achieving 91% accuracy. Post-processing is also 

performed after prediction to decrease errors of commission. 
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1.5 International irrigation mapping at decameter resolution 
 

Two additional studies that map irrigation in international settings at resolutions between 

10m and 30m are particularly pertinent to our proposed method of irrigation detection. In 

southeastern Turkey, Landsat timeseries reveal simultaneous expansion and intensification of 

irrigated dry season cropping from 1990 to 2018 [209]. In this setting, irrigation is essential for 

crop growth during the near-zero precipitation time between July and September (similar to dry-

season cropping dynamics in Ethiopia between December and April). The authors of this paper 

propose a binary classification approach for mapping – the two classes are irrigated and all other 

land cover types. Training data are comprised of 568 hand-drawn polygons between 9 Ha and 30 

Ha in size, all collected during 2015. These training polygons yield 10,780 pixelwise samples in 

total. Statistical quantities of the collected Landsat timeseries (i.e., 25th percentile, median, 75th 

percentile, variance)  are used as features for classification due to a lack of temporally consistent 

Landsat measurements across years. All steps in this process are performed on Google Earth 

Engine, and the final predictions achieve >90% accuracy.  

 Google Earth Engine facilitates an effort to identify irrigated paddy fields in the Philippines 

in [210]. Here, Sentinel-2 imagery is paired with a mixture of ground and visually-collected labels 

– 479 in total. For the visually collected labels, a custom GEE app was used to assess the quality 

of the referenced sample points. The Sentinel-2 imagery was then processed into 16 band 

composite images that include VI statistical quantities for each of the dry and wet seasons. The 

authors achieve 68% accuracy in the dry season and 75% accuracy in the wet season.  
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1.6 Global irrigation mapping at hectometer and kilometer resolutions 
 
 Using 250m MODIS imagery resampled to a global 25km grid, Zohaib et al. provide the 

most recent global irrigated areas map in [211]. To detect irrigation, this paper uses MODIS 

satellite imagery and three reanalysis-based irrigation-dependent variables: soil moisture, land 

surface temperature, and surface albedo; the proposed methodology assumes that irrigation is 

an unmodeled land surface process, and that satellite observations can detect this signal in near 

real-time. Compared to other previous global irrigation maps, including the Global Map of 

Irrigated Areas (GMIA) [212], the Global Irrigated Area Map (GIAM) [213], the International 

Water Management Institute Global Irrigated Area Map (IWMI-GIAM) [214],  and the Global 

Irrigated Areas product [215], this map has reasonable agreement, overlapping with 

approximately 70% of the irrigated areas. In order to consider only irrigation in areas with known 

cropland, the authors mask their spatial extent with the ESA CCI land cover product for the year 

2015 [216]. A major limitation of this study – similar to all previous global irrigated area maps – 

is the lack of ground truth required to verify performance; generation of reliable ground truth is 

difficult and expensive [217], a fact that has traditionally prevented the existence of large labeled 

datasets. Moreover, the hectometer and kilometer spatial resolutions of all global irrigated maps 

are too coarse to accurately map the distribution of smallholder irrigation, the type of which 

dominates across sub-Saharan Africa and is most relevant for the work at hand.  

Ambika et al. looks at the Indian context in [218], using 250m MODIS NDVI imagery and 

56m LULC data to develop irrigated area maps for the entirety of India for 2000-2015. Compared 

to agricultural statistics data for each state, the method achieves an R2 value of 0.95. In this 

approach, training data is a set of NDVI curves associated with each of the crops considered, 
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along with whether irrigation is present. Based on the spectral similarity of NDVI curves at 

inference, classification decisions are made; this approach is called the Spectral Correlation 

Mapper. An LULC layer is also used to remove non-cropped areas from consideration, with final 

maps produced at 250m. 

 
1.7 Land cover mapping 
 

Given their frequent revisit, multiple spectral bands, and global extent, decameter and 

hectometer satellite imaging missions such as MODIS, Landsat, and Sentinel-2 have been used 

for a variety of land cover mapping applications. A set of papers – [219] and [220] –  finds that 

land use maps are more accurate when vegetation indices are used instead of a full suite of 

spectral reflectances; moreover, they determine that when the number of endmembers are 

limited, spectral linear unmixing provides satisfactory land classification results. 

 A change-detection algorithm using 16-day MODIS normalized difference in vegetation 

index (NDVI) data is presented in [221], methodology which is used to detect and remove 

corrupted data values. Similarly, MODIS timeseries are decomposed into trend, seasonal, and 

remainder components in [222], showing that it is possible to extract features from within 

imagery time series at multiple time resolutions. 

 MODIS imagery has also been used to conduct land-use/land-cover (LULC) mapping in the 

Great Plains [223]. In this paper, the authors apply a decision tree classifier to multi-temporal 

NDVI data collected over the growing season for a series of classification problems that include 

determining: 1) crop presence, 2) general crop types, 3) specific summer crop types, and 4) 

irrigated/non-irrigated crops. All LULC predictions were compared to reported crop data, with 

overall accuracies ranging from 84% to 94%. These results were deemed satisfactory, although 
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there were some classification errors when cropped extent was smaller than the 250m resolution 

of the imagery. 

 Four sets of Landsat imagery are leveraged to determine LULC change over 25 years in 

the western Nile delta of Egypt in [224]; classification results were further augmented with visual 

interpretation. The authors also note that satellite imagery is the most appropriate data source 

for large-scaled LULC change detection, due to its repetitive acquisition, suitability for digital 

processing, and accurate georeferencing. In fact, multiple studies have shown that the 30m 

resolution of Landsat to be adequate for mapping vegetation [225,226] .  

 The authors of [227] use 10m-resolution Sentinel-2 imagery to monitor crop change 

around Barrax, Spain. The high spatial and temporal resolutions offered by Sentinel-2 allow for 

single crop fields to be distinguished, even at a relatively small size (a few hectares). Extrapolating 

this finding to settings in sub-Saharan Africa where crop fields are much smaller on average than 

those found in the US, 10m Sentinel-2 imagery is likely to provide a valuable tool for landscape 

analysis.  

Crop change in Spain is also tracked in [228], although with Sentinel-1 Synthetic Aperture 

Radar (SAR) imagery. As SAR detects radio waves which are not impeded by the presence of 

clouds, SAR imagery is always cloud-free. Both Sentinel-1 and -2 imagery are incorporated for 

crop monitoring in [229]; by pairing longer-availability Sentinel-1 data with 10m resolution, 

multispectral Sentinel-2 data, researchers can gain multi-year insights into cropping behaviors. 

In [230], Xiong et al. produce a 30m cropland extent map for continental Africa by 

integrating pixel-based and object-based algorithms on Sentinel-2 and Landsat-8 imagery with 

Google Earth Engine. The map is created from two biannual composites (July to December 2015, 
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and January to June 2016), with 9791 points of training data that was collected via visual 

inspection of 5m National Geospatial Agency (NGA) imagery by multiple analysts who are all 

country-specific experts. During training, labels are only used if they reside within a homogenous 

90m square to avoid pixel mixing. The imagery composites and labels are then used to train a 

random forest; a SVM was also trained to compensate for defects in certain areas. The resultant 

model achieves an accuracy of 94% over 1754 independent validation samples. After training and 

inference, predictions are segmented into fields using the Recursive Hierarchical Segmentation 

(RHSeg) software. Following segmentation, polygons are assigned a cropland class: If >85% of 

polygon is predicted as cropland, the polygon is determined to be cropland. If <15% are assessed 

as cropland, then entire polygon is determined to be non-cropland. Otherwise, the polygon is 

kept as mixed cropland with its pixel based classifications unchanged. The final map is called 

Global Food Security-support Analysis Data @ 30m for African Continent Cropland Extent 

(GFSAD30AFCE). 

Another paper of interest in this category is [231], whereby bimonthly Landsat 

composites, Google Earth Engine, and a random forest classifier are used for mapping croplands 

of Europe, the Middle East, Russia, and Central Europe. The resulting map contains binary 

classification of cultivated/non-cultivated land for 2015 at 30m resolution and is deemed the 

GFSAD30. For this study, training data takes the form of 64,000 3x3 sampling squares (i.e., 90m 

x 90m) that are selected across all areas of interest. Each sampling square is labeled as 

cropland/non-cropland by expert enumerators using very high resolution imagery and a double 

blind assessment. The final predictions achieve 94% accuracy, with NDVI and SRTM features 

layers being the most important for classification.  
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In a part of the world near the Ethiopian Highlands, [232] presents a method of 

differentiating fallow fields from cropland across the Sahel using Sentinel-2 imagery. For this 

work, 1M labels are collected over cropped areas only via the CGLS-L100 land cover map [233], 

and then split into two classes via unsupervised clustering. The pixels with the lowest 25% of 

NDVI values are kept as fallow samples; the pixels with the highest 25% of NDVI values are kept 

as cropped samples. From this set, 1000 cropped pixels and 1000 fallow pixels are randomly 

sampled for training, with another 100 of each class selected for validation. An accuracy of 84% 

is achieved with a random forest classifier 

 In Kenya, Sentinel-1 and Sentinel-2 imagery are combined for crop mapping over 

heterogeneous landscapes in 2018. Here, all available Sentinel-2 images are stacked, mosaiced, 

and then reduced to a median value for each of the four seasons. Various vegetation indices are 

also derived from the Sentinel-2 imagery, including NDVI, EVI, EVI2, SAVI, and GNDVI. All Sentinel-

1 images are calibrated, despeckled, terrain-corrected, stacked, and then reduced to median 

seasonal values. Labeled data comes in the form of 872 polygons collected from a field survey 

that covers 12 classes and 10,982 pixels. Using a random forest, the authors achieve between 

75% and 90% accuracy based on the crop type, and also present a comprehensive overview of 

feature importances for classification.  

 While classification methodologies abound for distinguishing land cover types, 

standardized datasets for this task are few and far between. Tsendbazar et al. address this gap in 

the literature by developing and applying a multi-purpose land cover validation dataset for Africa 

in [234]. The resultant dataset has a 100m resolution and is compiled from 3617 sample sites 

across the continent. Each sample site is annotated by one of 6 regional experts using the 
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GeoWiki platform. This dataset is then used to validate the CGLS-LC100 land cover map, which is 

assessed to have an accuracy of 75%.  

 A data fusion based approach is taken to map crop types and crop sequences in Germany 

from 2017-2019 in [235]. For this work, Sentinel-2 and Landsat 8 imagery are resampled to 10m 

and collected at 5 day timesteps; Sentinel-1 imagery is produced as monthly mean composites. 

Using the Land Parcel Identification Service (LPIS), 1000 pixels per crop type are extracted from 

administrative polygons. In total, 483 features are fed into a random forest for classification; the 

final model achieves between 78-80% accuracy. A subsequent evaluation of feature importance 

reveals that the three most important features are SAVI, then NDVI, then NIR, indicating that 

radar imagery may not provide additional value for classification when optical imagery is 

available. 

 A very similar effort maps winter crops in Germany from 2016-2019 [236]. Here, Sentinel-

2 imagery is collected between July and April, yielding between 10 and 40 different timesteps per 

year. This imagery is combined with 1000 polygons for each class – winter catch crop, or no winter 

catch crop – with each polygon yielding a single averaged pixel timeseries. Various vegetation 

indices are then derived from the Sentinel-2 data and combined with the labels and a random 

forest classifier to achieve 84% accuracy.  

In [237], Gumma et al. use Sentinel-2 imagery for crop type identification and spatial 

mapping for three districts in India. The Sentinel-2 imagery consists of NDVI measurements in 15-

day timeseries at 10m resolution. A spectral matching approach is taken for classification, 

whereby NDVI signatures are compared to ideal temporal profiles of various crops for 
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classification. The labeled data comes from a ground survey collected in 2019 and is comprised 

of 732 sample points in total.  

 
1.8 Endmember-based land cover mapping  
 

Spectral endmembers are proxy spectra for materials on the ground [238]; temporal 

endmembers are timeseries that represent phenological change in landscapes. Endmember 

modeling can quantify continuous spatial and temporal change, in contrast to classification 

approaches that focus on discrete categorization.  

 The different methods of endmember techniques and their relative advantages are 

exhaustively reviewed in [239]. While endmembers retrieved from a library are known to 

accurately represent a specific spectrum in a certain environment, these spectra are rarely 

acquired under the same conditions as airborne data. In contrast, image endmembers can be 

easily associated with features on the scene, as they occupy the same distribution as the data; 

however, image endmembers are often noisy, difficult to scale, and require domain knowledge 

to extract. The paper also notes that when unmixing images with endmembers to create 

abundance maps, two constraints are usually imposed: the abundance nonnegativity constraint, 

whereby no endmember contribution to a pixel timeseries can be negative; and the abundance 

sum-to-one constraint, whereby the contribution of individual endmembers to a pixel timeseries 

must sum to one.  This finding dovetails with others that note how nonnegativity and sum-to-

one constraints are usually implemented to ensure physically meaningful abundance estimates 

[240].  

Convex cone analysis (CCA) is a frequently used method for selecting endmembers from 

an image. Here, a user extracts endmembers from the exterior of a convex region formed by the 
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pixels in pixel space, leveraging the assumption that the timeseries of pixels residing within the 

convex region can be recreated by linear combinations of pixels that reside on the exterior of the 

space [241,242].  

In determining the appropriateness of selected endmembers, [243] proposed root mean 

square error (RMSE) as a method of comparing abundance maps to the basis imagery, coining 

the term “Multiple Endmember Spectral Mixture Analysis”  (MESMA) in the process. While much 

of the original work on MESMA focused on how best to select and combine spectral endmembers 

for a single multispectral image, researchers have also determined that endmember 

decomposition strategies can be applied to temporal image stacks. In fact, [244] found that when 

time series are used to define endmembers, subpixel classification accuracy can drastically 

increase as plant type specific phenological development cycles will be captured in different 

temporal reflectance profiles.  

 A weighted loss strategy for spectral unmixing is demonstrated in [245]. Here the authors 

apply different weights to endmember recreation losses in order to influence the resulting 

abundance map, a useful technique for recreating spectra of different scales.  

 An iterative method of extracting endmembers best able to recreate an original image, 

determined by overall residual error, is proposed in [246]. Others papers have extended this 

approach to select endmembers from among multi-temporal, seasonally-mixed spectral libraries 

[247]. While an iterative process ensures endmembers that can closely recreate the original data, 

it is a computationally intensive approach, especially when applied to hyperspectral data cubes 

[248]. A tradeoff therefore exists between accuracy and computational intensity in the 

endmember selection process [249].  
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Other more complex methods for endmember extraction exist in the literature, including 

one that takes a Bayesian approach to understand the impact of endmember variability on 

subpixel vegetation fractions in an urban environment [250]. Here, an iterative approach selects 

the best endmember signatures for an image; however, the endmembers are no longer treated 

as constants but represented by probability density functions, thus incorporating spectral 

signature probability.  

 The issue of endmember organization in high-dimensional space is addressed in [251] and 

[252] by applying a principal component analysis (PCA) to the pixel spectra. Spectra for adjacent 

pixels across a continuous land cover setting will be highly correlated, and as result, will contain 

redundant information. In lowering the dimensionality of the pixel space, the principal 

component transform organizes spectra along dimensions which capture the largest amount of 

variance in the image, making the hand-selection of endmembers an easier task.  

Urban irrigation is predicted in [253] using a combination of Landsat imagery, aerial 

imagery, climatic records, and land use maps. Methodologically, the paper uses 3 endmembers 

– representing irrigated vegetation, non-irrigated-vegetation, and impervious substrate (i.e., 

airport buildings, runway, pavement) – to estimate the fraction of each pixel covered by irrigated 

landscaping. 

 Land use change over 6 years is monitored in [254] using a collection of MODIS NDVI 16-

day composites. Three predominant land use classes are detected: orchard, non-cultivated area, 

and annual crops. Endmembers representing the typical signatures of these land classes are 

retrieved annually using an automatic extraction mechanism that selects the pixel profiles that 

most accurately capture the variance in the study area. The authors validate their results using a 
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land use map and 30m resolution Landsat imagery, achieving a minimum classification error of 

0.1 at 1km spatial resolution.  

Professor Christopher Small has published multiple papers demonstrating the robustness 

of using spectral endmembers to characterize and model landscapes. [255] demonstrates that it 

is possible to represent 98% of image variance in 30 spectrally diverse Landsat ETM+ subscenes 

with three endmembers corresponding to substrate, vegetation, and dark surface (SVD) spectra. 

Professor Small builds upon this work in a later paper, finding that dark, vegetated, and high 

albedo endmembers can faithfully recreate spectral signatures of 28 urban settings: For just 

about all urban images, the RMS error in the abundance map is less than 0.1 [256]. Moreover, 

[257] demonstrates that endmembers retrieved from Landsat ETM+ subscenes may be used to 

model mixed reflectance spectra from a Worldview-2 sensor, indicating that linear spectral 

mixture models can be standardized across spatial scales using common endmembers. Taken 

together, these results demonstrate that it is possible to represent accurately scene settings of 

multiple spatial resolutions with a limited number of endmembers, provided they enclose the 

majority of the global mixing space.  

 
2. Initial vegetation characterization applications in Ethiopia 
 
2.1 Background on irrigation in Ethiopia 
 

With 110 million people, Ethiopia is the second most populous country in Africa; it also 

has the fastest growing economy on the continent, experiencing growth averaging 9.9% a year 

between 2007 and 2018 [258]. In Ethiopia, agriculture contributes about 44% of GDP and 70% of 

export earnings, and is dominated by small land-holdings between 0.5 ha and 2 ha in size [259]. 



 

 207 

Irrigated agriculture only accounts for 5% of food crops in the country; 37% of all vegetable 

production is irrigated; and industrial crops such as sugarcane, cotton, and fruit are mostly 

irrigated [259]. However, despite its relative underdevelopment of agriculture with modern 

irrigation, Ethiopia has a large potential for growth: The Food and Agriculture Organization of the 

United Nations (FAO) estimates that the country’s potential irrigable land amounts to 2.7 million 

ha [260]. Additionally, Ethiopia has 12 river basins providing an estimated average annual runoff 

of 125 billion cubic meters, 45% of which is contributed by the Abbay basin. Estimates of 

groundwater potential vary from 2.6 to 13.5 billion m3, but as a lack of reliable data exists to 

verify these assessments, some experts suggest that the amount could be much higher [261].  

Detailed studies of existing irrigation schemes in Ethiopia are scarce, but they do exist: 

One report assesses 12 irrigation schemes, ranging in size from 1200 to 14,600 ha for medium 

and large size schemes and from 850 to 2224 ha for small-scale irrigation schemes [262]. The 

study finds that large-scale irrigation initiatives cultivate sugarcane, cotton, tobacco, and fruits 

such as oranges, mandarin, tomato, guava, grape vine; small-scale irrigation schemes commonly 

crop onion, potato, pepper, tomato, and banana. Furthermore, most of the studied irrigation 

schemes use diverted water from perennial rivers by means of a weir or direct pumping. Surface 

irrigation, usually via trapezoidal earthen canals, is the most common irrigation method; 

however, the authors have noted a gradual change from field ditches and siphons to more labor-

intensive, water-saving technology [262].  

Another published study on irrigation extents evaluates larval habitats in irrigated areas 

in the Rift Valley [263]. This study aligns with recent conversations with local partners regarding 

irrigation development in Ethiopia: many new projects are underway in the Rift.  Other authors 
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find that a lack of governance capacity and accountability are critical challenges for the 

sustainability of the irrigation projects in Ethiopia, issues which are often compounded by a lack 

of equitable access to the irrigation schemes [264]. 

 
2.2 Characterization via temporal mixture modeling 
 

The 2012 paper from Professor Small discussed in the last paragraph of Chapter IV, 

Section 1.8 provides a method of producing regional vegetation phenology maps by applying a 

temporal mixture model to timeseries of vegetation abundance layers [183]. The first step in this 

process involves transforming a timeseries stack of two-dimensional enhanced vegetation index 

(EVI) layers – also known as an image cube – into principal component (PC) space. For reference, 

EVI is calculated from the near infrared (NIR), red, and blue bands, per Eq. (IV-1): 

 

𝐸𝑉𝐼 =
2.5 ∗ (𝑁𝐼𝑅 − 𝑅𝐸𝐷)

(𝑁𝐼𝑅 + 6 ∗ 𝑅𝐸𝐷 − 7.5 ∗ 𝐵𝐿𝑈𝐸 + 1) 

(IV-1) 
 

An example EVI image cube is shown in Figure IV-1. This figure is taken directly from [183]; 

it is included here because of its clear and effective representation of the three-dimensional 

nature of a timeseries stack of single band layers.  
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Figure IV-1: Example imagery cube published in [183]. This image cube contains a 10-year stack 
of enhanced vegetation index (EVI) layers over the Ganges-Brahmaputra Delta in southern 
Bangladesh. The x- and y-dimensions of the image cube characterize spatial extent, while the z-
dimension represents time.  
 
 

Dimensionality reduction via the PC transform reduces the amount of highly correlated, 

redundant information in the EVI image cube. Next, temporal endmembers (tEMs) are extracted 

from the exterior of the PC space representation of the EVI image cube; these tEMs, representing 

unique vegetation phenologies, are selected to bound the temporal feature space of all 

vegetation phenology cycles observed in the area of interest. Figure IV-2(a) displays an example 

point cloud distribution of EVI timeseries in PC space, and (b) shows the result of fitting a convex 

hull to the feature space. In this figure, the convex hull is shown to illustrate the exterior of the 
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point cloud, i.e. from where tEMs will be extracted. Extracting tEMs from the exterior of the 

image cube point cloud leverages the assumption underlying convex cone analysis: Linear 

combinations of endmembers on the exterior of the pixel space can recreate the signatures of 

interior pixels.  

 

 
Figure IV-2: (a) Example enhanced vegetation index (EVI) point cloud for an image cube 
transformed into principal component (PC) space; and (b) a convex hull fit to the point cloud, 
indicating from where temporal endmembers will be extracted, per the temporal mixture 
modeling approach introduced in [183]. 
 
 

Extracted tEMs form the basis of a linear temporal mixture model that can be inverted to 

provide tEM fraction estimates for each pixel's vegetation phenology; these resultant estimates 

constitute an endmember abundance map. Through this inversion process, users can determine 

the degree to which select vegetation phenologies contribute to the overall pixel timeseries.  
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Figure IV-3: Extracted temporal endmembers (tEMs) in-phase and out-of-phase with precipitation 
estimates provided by Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) 
in Amhara, Ethiopia. tEMs are extracted from an image cube of 16-day MODIS enhanced 
vegetation index (EVI) layers between September 2016 and September 2019. Monthly 
precipitation values are measured on the left-hand y-axis; EVI values are measured on the right-
hand y-axis. 
 
 

Figure IV-3 shows two extracted tEMs from an EVI image cube created with 16-day MODIS 

EVI layers between September 2016 and September 2019 over the Amhara state of Ethiopia; and 

average monthly rainfall estimates for the entirety of Amhara from the Climate Hazards Group 

InfraRed Precipitation with Station data (CHIRPS) [265]. The tEM that closely follows the rainfall 

timeseries is shown in red and deemed “in-phase”; the tEM that represents vegetation growth 

that cannot be attributed to rainfall is shown in green and is deemed “out-of-phase”. Together 

with a zero-valued tEM representing non-vegetated surfaces, these tEMs are used to create an 

endmember abundance map that displays the existence of vegetation in-phase and out-of-phase 
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with rainfall in Amhara; the ensuing map is presented in Figure IV-4. For this temporal mixture 

model, sum-to-one least square unmixing is selected as the inversion strategy. 

 

 
Figure IV-4: Temporal endmember abundance map over Amhara, Ethiopia, created from 16-day 
MODIS enhanced vegetation index (EVI) layers between September 2016 and September 2019. 
Single phase endmember abundance is presented in red; evergreen endmember abundance is 
presented in green; non-vegetated endmember abundance is presented in blue.  
 
 

In Figure IV-4, in-phase vegetation abundances are shown in the red channel, out-of-

phase vegetation abundances are shown in the green channel, and non-vegetated abundances 

are shown in the blue channel. Given its red-dominant hues, Figure IV-4 demonstrates that 

vegetation in Amhara primarily cycles in-phase with the state’s main summer rains. However, 

green pixels around Lake Tana, seen in blue in the center of the figure, indicate the presence of 

out-of-phase vegetation growth. Out-of-phase vegetation growth can also be seen further south 
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around Choke Mountain, and along the Main Ethiopian Rift (MER) running north-south in the far 

right of Figure IV-4. While future work will need to assess how accurately an abundance map can 

characterize vegetation phenologies in Amhara, and whether other tEMs should be included in 

the modeling process, Figure IV-4 provides a preliminary example of how continuous, 

spatiotemporal characterization via a temporal mixture model can identify vegetation in Ethiopia 

not attributable to rainfall.  

 
2.3 Characterization via statistical analysis 
 

Another method of characterizing vegetation growth in Ethiopia assesses various 

statistical properties of vegetation and rainfall timeseries to determine misalignment between 

the two indicative of dry season crop growth. Here, vegetation phenologies are determined from 

16-day 250m MODIS EVI imagery between June 1, 2011 and June 1, 2021. Precipitation estimates 

are compiled using the CHIRPS quasi-global rainfall dataset [265]: Monthly 0.05-degree 

precipitation layers are resampled temporally and spatially to the EVI image cube resolution via 

bilinear interpolation. The CHIRPS image cube is shifted backed by 2 timesteps (32 days) to align 

with expected vegetation growth and is then normalized to be between 0 and 1.  

Figure IV-5 displays the misalignment between vegetation phenology and rainfall in 

Ethiopia. The misalignment between EVI and shifted rainfall, 𝛽, is presented in the red channel 

of Figure IV-5: the redder the image appears, the more misalignment. 𝛽 is calculated with the 

following two equations:  

 
𝛼% =	 �𝐸𝑉𝐼% −	𝜆% ∗ 𝐶𝐻𝐼𝑅𝑃𝑆)326,%� 

(IV-2) 
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𝛽% =	
𝑓PT(𝛼%)

𝑚𝑒𝑎𝑛(𝐸𝑉𝐼%)
 

(IV-3) 
 
where x indicates the pixel location in two-dimensional space; EVI and CHIRPS represent the 10-

year phenology and rainfall image cubes, respectively;  𝜆% is specified to minimize the RMS of 

timeseries 𝛼%; norm indicates an image cube normalized between 0 and 1; and 𝑓8 finds the yth 

percentile of a timeseries. In Eq. (IV-2), 𝛼% is the absolute difference between the vegetation and 

rainfall timeseries at pixel location x, after the 𝜆% multiplier scales the normalized CHIRPS 

timeseries to account for the vectors’ differing units. In Eq. (IV-3), we use the 90th percentile 

function to extract the high-end of the phenology-rainfall misalignment, as dry season crop 

phenologies will contain timesteps with high vegetation-rainfall misalignment. We then divide by 

the mean timeseries EVI to reduce the visibility of high misalignment over evergreen areas. 

The green and blue channels in Figure IV-5 both present the maximum difference in 

vegetation strength over the 10-year time period, calculated as the pixelwise difference between 

the 90th percentile and the 10th percentile of EVI image cube, per Eq. (IV-4). This quantity, termed 

𝛾, highlights parts of Ethiopia where there is substantial change in vegetation strength across the 

timeseries, as is the case with cropland (and to a lesser extent in evergreen areas). In contrast, 

sparsely vegetated and barren parts of the country will have little change in vegetation strength 

across the timeseries and will contain low values in both green and blue channels. 

 
𝛾% = 𝑓PT(𝛼%) −	𝑓BT(𝛼%) 

(IV-4) 
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Figure IV-5: Vegetation phenology-rainfall misalignment map. The red channel in the figure 
contains the misalignment between normalized rainfall and EVI, 𝛽 (see Eqs. (IV-2) and (IV-3)); 
maximum EVI difference, 𝛾, is presented in the green and blue channels (See Eq. (IV-4)). A 2% 
linear stretch is applied, with administrative boundaries outlined in white.   
 
 

From Figure IV-5, one can see that the bulk of the Western Ethiopian Highlands presents 

as cyan, indicating 1) low misalignment between vegetation phenology and rainfall; and 2) 

substantial difference between the maximum and minimum EVI values. However, pockets of 

Amhara and Tigray do contain red and pink pixels: As higher values in the red channel designate 

greater misalignment between vegetation phenology and rainfall, such coloration signals that 
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dry-season irrigation may exist in these areas. We also note that the high misalignment values in 

Somali and Afar are due to the sparse vegetation that populates much of these areas – vegetation 

which yields small denominators in Eq. (3) – and as such are of not of our concern. Accordingly, 

Figure IV-5 provides a comparison point for future dry season crop classifiers in Ethiopia: If a 

more complex classifier reveals dry season cropping in the areas of Figure IV-5 that appear 

red/pink surrounded by cyan, this statistical approach of vegetation characterization will be 

shown to identify areas of interest in a quicker, more transparent manner.  

 
3. Conclusion 
 

Locating areas that currently sustain dry season crop growth informs energy system 

planners as to where productive electricity use can be expanded: These are areas without any 

barriers to irrigation, such as excessively deep water tables, no market access, or a lack of local 

know-how. To locate areas of dry season crop growth, it is necessary to pull from the literature 

on vegetation characterization and irrigation detection, including those authored by Professors 

Small and DeFries. Chapter IV, Section 1 contains a review of relevant papers for the task of 

identifying dry season crop growth.  

While there are many endmember-based approaches to understanding vegetation 

conditions via satellite imagery, a 2012 paper by Professor Small that introduces the concept 

spatiotemporal characterization using a temporal mixture model is particularly relevant for the 

work at hand [183]. Adapting this approach to Ethiopia can characterize the main types of 

vegetation growth throughout the entire country, facilitating the detection of vegetation cycles 

in-phase and out-of-phase with rainfall. A separate strategy for detecting dry season vegetation 

curates a set of statistical properties that indicate the misalignment of rainfall and vegetation 
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growth. This second methodology provides a continuous characterization of vegetation-rainfall 

dynamics, one that informs users about areas where vegetation is likely not attributable to 

rainfall. Given the relatively straightforward manner of computing these statistical quantities, 

results from this method of characterization can also be compared to predictions from more 

complex dry season irrigation detectors to determine how closely quicker analysis can 

approximate more robust predictions.  

Altogether, a summary of relevant vegetation and irrigation mapping methods provides 

a basis for the development of a formal irrigation detection classifier for the Ethiopia highlands, 

a process contained in the following chapter.  
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Chapter V: A multiscale spatiotemporal approach for smallholder irrigation 
detection 

 
 
Abstract 
 

In presenting an irrigation detection methodology that leverages multiscale satellite 

imagery of vegetation abundance, the following chapter introduces a process to supplement 

limited ground-collected labels and ensure classifier applicability in an area of interest. 

Spatiotemporal analysis of MODIS 250m Enhanced Vegetation Index (EVI) timeseries 

characterizes native vegetation phenologies at regional scale to provide the basis for a 

continuous phenology map that guides supplementary label collection over irrigated and non-

irrigated agriculture. Subsequently, validated dry season greening and senescence cycles 

observed in 10m Sentinel-2 imagery are used to train a suite of classifiers for automated 

detection of potential smallholder irrigation. Strategies to improve model robustness are 

demonstrated, including a method of data augmentation that randomly shifts training samples; 

and an assessment of classifier types that produce the best performance in withheld target 

regions. The methodology is applied to detect smallholder irrigation in two states in the Ethiopian 

Highlands, Tigray and Amhara, where detection of irrigated smallholder farm plots is crucial for 

energy infrastructure planning. Results show that a transformer-based neural network 

architecture allows for the most robust prediction performance in withheld regions, followed 

closely by a CatBoost random forest model. Over withheld ground-collection survey labels, the 

transformer-based model achieves 96.7% accuracy over non-irrigated samples and 95.9% 

accuracy over irrigated samples. Over a larger set of samples independently collected via the 

introduced method of label supplementation, non-irrigated and irrigated labels are predicted 



 

 219 

with 98.3% and 95.5% accuracy, respectively. The detection model is then deployed over Tigray 

and Amhara, revealing crop rotation patterns and year-over-year irrigated area change. 

Predictions suggest that irrigated area in these two states has decreased by approximately 40% 

from 2020 to 2021. 

 
1. Introduction 
 

Between 1970 and 2008, global irrigated area increased from 170 million to 304 million 

hectares [185]. In sub-Saharan Africa however, as little as 4-6% of cultivated area is irrigated, 

given the lack of electric grid infrastructure and the high cost of diesel [266]. Locating isolated 

irrigation identifies areas that can support higher quality energy provision services -- e.g. a grid 

connection or minigrid installation -- as these sites can sustain higher energy demands and the 

attendant electricity costs [267]. Facilitated through informed planning, irrigation expansion has 

a direct impact on poverty reduction: In Ethiopia, one study found that the average income of 

irrigating households was double that of non-irrigating households [181].  

In data poor locations, satellite imagery provides a source of detailed synoptic 

observations of irrigated agriculture [268]. A previous irrigation mapping effort in Ethiopia used 

three 1.5m resolution SPOT6 images to distinguish between large-scale and smallholder irrigation 

in the Ethiopian rift [186]. This approach was then adapted to intake a timeseries of 10m Sentinel-

2 imagery to predict irrigation presence across the horn of Africa [185]. While both studies 

demonstrated high accuracies over collected observations, limited labels precluded a more 

rigorous performance assessment over the entire area of interest. Other studies have used 

multiscale imagery to detect irrigation, including one that fuses MODIS and Landsat imagery to 

identify irrigated extent, frequency, and timing in northwestern China [190]. Here, unique 



 

 220 

advantages of satellite imagery products at different resolutions are exploited: 250m MODIS 

imagery is valuable for characterizing vegetation over large areas [269], while decameter 

resolution imagery from Landsat or Sentinel-2 missions can better discern plot extent [270].  

Deep learning techniques have become widely used for land process classification, as they 

uncover intricate structures in large, complex datasets [271]; and provide a robust method of 

handling phenological variability [272]. Deep learning approaches using 1D and 2D convolutional 

neural networks (CNNs) have demonstrated strong performance for remotely-sensed image 

classification tasks, e.g. [273,274]. Researchers have also deployed more complex deep learning 

model architectures for improved performance on LC monitoring tasks: In lieu of a full review of 

relevant papers, [275,276] use recurrent neural networks to learn a joint spectral-spatial-

temporal feature representation; while [277,278] provide two examples of cropland mapping 

with Long Short-Term Memory (LSTM)-based networks. A few studies have also explored using 

transformer blocks – encoders that have achieved state-of-the-art performance in many natural 

language processing tasks – for LC classification: Among others, [279,280] show that transformer 

models can effectively extract temporal dependencies that contribute to high-level feature 

learning, and [281,282] demonstrate that transformer-based networks can outperform CNNs for 

classification of imagery timeseries. 

Despite increasing availability of remotely sensed imagery, computing resources, and 

advanced algorithms for information extraction, high-quality labels remain scarce and expensive 

to acquire. Methods of overcoming label scarcity generally fall into one of four categories: 1) 

using pretrained networks; 2) unsupervised and self-supervised learning; 3) data augmentation; 

or 4) additional label collection [283]. Even as pretrained networks like ImageNet [284] are highly 
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effective for true-color image classification, these networks' weights do not translate to tasks 

that intake multispectral or hyperspectral imagery [285]. Unsupervised learning techniques, 

including those that ensemble different clustering methods -- e.g. [286] -- have been shown to 

effectively organize unlabeled imagery. Existing work has also demonstrated that training a 

Generative Adversarial Network (GAN) -- itself a type of unsupervised learning -- has allowed for 

improved change detection performance on multispectral imagery, e.g. [287]. For data 

augmentation, three techniques are often implemented: image translation, rotation, and flipping 

[288,289]; however, these techniques do not have obvious analogues for pixel-based 

classification. Lastly, methods of collecting labels have included thresholding pixels based on 

normalized difference in vegetation index (NDVI) [192] and inspecting a single layer of high-

resolution imagery [186]. 

Another lingering issue in land process mapping is determining the conditions under 

which a model can be utilized in locations beyond where it was trained. Site-specific methods 

may not be easily transferable to other places or climes [184,290], and the performance of 

transferred models can often only be assessed after full implementation in a novel setting [291]. 

Therefore, processes that yield insights about model transferability before training and inference 

offer benefits to researchers seeking to understand the maximum spatial applicability of their 

approaches.  

As current methods primarily focus on already well-understood areas of interest with 

existing datasets, new techniques and products need to be developed for parts of the world 

lacking labeled data. In the realm of irrigation detection, new methodologies and mapping 

products can help identify locations for further energy system planning and investment, as these 
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areas contain latent energy demands that can make higher quality energy services cost-effective 

and increase incomes. To this end, the following chapter presents a multiscale methodology that 

leverages 250m MODIS imagery for regional phenological characterization and 10m Sentinel-2 

imagery for irrigation detection on smallholder plots. This approach is then applied to the 

205,000 km2 Ethiopian Highlands, whereby it introduces a novel method of label collection; an 

evaluation of different classifier architectures and training strategies that ensure model 

applicability within the area of interest; and an assessment of irrigated area in the Tigray and 

Amhara states of Ethiopia for 2020 and 2021. 

 
3. Background 
 

Identification of dry season greening as potentially irrigated agriculture must account for 

spatiotemporal variations in native vegetation phenological cycles. The complex topography of 

the Ethiopian Highlands and East African rift system, combined with the latitudinal movement of 

the InterTropical Convergence Zone (ITCZ) and seasonal upwelling of the Somali current in the 

Arabian Sea produces a diversity of rainfall patterns that control annual vegetation phenological 

cycles in the study areaxix. In order to provide phenological context with which to identify 

anomalous dry season greening, a regional vegetation phenology map is derived from 

spatiotemporal analysis of timeseries of vegetation abundance maps. Using the spatiotemporal 

characterization and temporal mixture modeling approach given by [183] applied to timeseries 

of MODIS enhanced vegetation index (EVI) maps, four temporal endmember (tEM) phenologies 

are identified that bound the temporal feature space of all vegetation phenology cycles observed 

 
xix See [336] for a fuller discussion of rainfall patterns in Ethiopia. 
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on the East African Sahel. These four tEM phenologies form the basis of a linear temporal mixture 

model that can be inverted to provide tEM fraction estimates for each pixel's vegetation 

phenology.  Figure V-1 presents a spatiotemporal phenological characterization for the country, 

created from 16-day 250m MODIS EVI imagery between June 1st, 2011 and June 1st, 2021. 

The four tEMs extracted for Ethiopia are as follows: a single cycle tEM, representing a 

single annual vegetation cycle per year that peaks in September/October; an evergreen tEM, 

representing perennial vegetation; a double cycle tEM, representing semiannual vegetation 

cycles observed on the Somali peninsula; and a non-vegetated tEM, representing barren or non-

existent vegetation. The ensuing phenology map in Figure V-1 contains unmixing root mean 

square (RMS) error less than 10% for 90% of the pixels; additional unmixing error statistics and 

the locations of the extracted tEMs in principal component (PC) feature space are shown in 

Figures V-2 and V-3.  

Figure V-1 roughly divides into 4 quadrants. In the northeast quadrant, Afar appears as 

dark green, indicating that none of the 4 tEMs contribute significantly to phenologies in this part 

of the country: The vegetation that does exist in this mostly barren area is represented by low 

levels of evergreen tEM abundances. In the southeast quadrant, dominated by Somali and a 

portion of Oromia, vegetation patterns cycle twice annually. This is an area with bimodal rainfall 

but low total annual precipitation that results in the double cycle tEM containing peak vegetation 

abundances lower than those of the single cycle and evergreen tEMs. It follows that southeast 

Ethiopia is more pastoral with sparser vegetation than other parts of the country.  

 

 



 

 224 

 
Figure V-1: Continuous endmember fraction map derived from a temporal mixture model of 250m 
MODIS enhanced vegetation indices (EVI). Smooth gradients and abrupt transitions in phenology 
are primarily related to topography and variations in precipitation. Region names showing 
locations of labeled polygons are italicized: The region containing ground collection (GC) labels is 
delineated in gold; the regions containing visual collection (VC) labels are delineated in blue. 
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The southwest quadrant – covering Southern Nations, Nationalities, and Peoples' (SNNP) 

Region, Sidama, and the western portion of Oromia – contains significant amounts of evergreen 

vegetation, as is demonstrated by its bright green hue. Here, evergreen vegetation is supported 

by bimodal rainfall with higher levels of annual precipitation than in eastern Ethiopia. In contrast, 

the northwest quadrant of the phenology map contains red-dominant color gradients, indicating 

phenologies similar to the single cycle tEM. This portion of the country, known as the Ethiopian 

Highlands and comprising of Amhara and Tigray, is highly agricultural; the main cropping season 

lasts from June to October and coincides with the primary kiremt rains, with some secondary 

cropping following the lighter belg rains from March to May. Accordingly, cropping that occurs 

during the dry season between November and March is likely to be irrigated.   

In presenting a map of dominant vegetation phenologies in Ethiopia, Figure V-1 provides 

a guide for land cover classification applicability within the country. For instance, a dry season 

irrigation detector trained in Amhara will perform poorly in SNNP, as phenological patterns differ 

significantly across these states, and dry season crop cycles exhibit different vegetation 

signatures. In contrast, a dry season irrigation detector developed across Amhara can be 

transferred to Tigray or Benishangul-Gamuz, due to regional phenological similarities.  

The named, italicized outlines in Figure V-1 represent the 8 areas containing labels used 

in this manuscript, referred to as regions: The yellow outline indicates a region where labels were 

collected via a ground survey, and the purple outlines indicate regions where labels were 

collected by means of visual interpretation and timeseries inspection. Full information on the 

labeled data collection process is presented in Section V-3. 
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Figure V-2 presents the locations of tEM extraction from the image cube transformed into 

principal component (PC) space. The four extracted tEMs are then used to create the phenology 

map via unconstrained least-squares linear unmixing per the methodology introduced in [183]. 

Relatedly, Figure V-3 presents the temporal mixture model inversion error and the cumulative 

error statistics for Figure V-1. Interpreting Figure V-1 and V-3 together reveals that the locations 

of highest error occur over evergreen vegetation, primarily in the southeast of Ethiopia. As the 

unmixing error remains low over Tigray and Amhara, the authors stipulate that Figure V-1 

contains an accurate assessment of vegetation cycles in the area of interest. 

 
Figure V-2: Views of the first three principal component (PC) dimensions of the transformed 10-
year Ethiopia MODIS enhanced vegetation index (EVI) imagery cube. Locations of temporal 
endmembers used to construct the phenology map in Figure V-1 via unconstrained linear 
unmixing are presented in the PC Dimension 1 vs. PC Dimension 2 plot. 
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Figure V-3: Root mean square (RMS) error of the temporal mixture model inversion for Figure V-
1. A 2% linear stretch is applied to the error map, with administrative boundaries outlined in light 
blue. The displayed cumulative density function shows the distribution of RMS errors for an 
increasing fraction of pixels in Figure V-1. 
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3. Materials and Methods 
 

The data collection portion of this manuscript’s methodology consists of pairing Sentinel-

2 imagery with labeled polygons to train an irrigation detector. Here, a pixel timeseries paired 

with a binary irrigation/non-irrigation label constitutes a sample. Irrigation is defined as such: A 

pixel is irrigated if its phenology includes at least one non-perennial vegetation cycle during the 

dry season, December 1st to April 1st for the Ethiopian Highlands. Conversely, a pixel is non-

irrigated if its phenology demonstrates only vegetation growth that can be attributed to the 

area’s known rainy seasons. Irrigated areas are only of interest if they contain dry season 

vegetation cycles; this strict definition of irrigation excludes supplemental irrigation practices and 

perennial crops that may be consistently irrigated throughout the year.  

 
3.1 Sentinel-2 imagery collection 
 

The following analysis uses bottom-of-atmosphere corrected (processing level L2A) 

Sentinel-2 temporal stacks – four dimensional arrays created by stacking a set spatial extent of 

imagery bands over multiple timesteps – using the Descartes Labs (DL) platform, a commercial 

environment for planet-scale geospatial analysis. Images are collected at a 10-day time 

resolution. To focus on the 2020 and 2021 dry seasons, the time period of interest is defined as 

between June 1st, 2019, and June 1st, 2021. Given the 10-day timestep, 72 image mosaics are 

collected – 36 per year.  

Using the Descartes Labs platform, imagery mosaics are generating by collecting all 

Sentinel-2 imagery available within a 10-day timestep that come from 100km-by-100km granules 

with less than 10% aggregate cloud cover. These images are then sorted by cloud cover and 

masked using the cloud masks provided by the Sen2Cor algorithm [292]. Given the 5-day revisit 
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period of Sentinel-2 near the equator, a 10-day timestep ensures that there are two separate 

satellite passes per image mosaic.  

Once imagery is collected for each timestep, values are assigned to individual pixels, 

pulling first from the image with the lowest amount of cloud cover. If there are masked pixels in 

this image, pixel values are determined for these locations using the image with the next lowest 

amount of cloud cover; this process repeats until either all the images available at a timestep are 

cycled through or each pixel in the 10-day mosaic is filled with valid, non-clouded values. For 

mosaics that retain invalid pixels due to persistent cloud cover across the timestep (often during 

the rainy season in Ethiopia, which stretches from June to September), pixel values are assigned 

via temporal interpolation: Each invalid pixel is given a linearly interpolated value based on the 

nearest preceding and subsequent image mosaic with a non-clouded value for that pixel. 

Image mosaicking is performed bandwise. All 10m and 20m Sentinel-2 bands are 

extracted (10 bands in total); the 60m coastal aerosol and water vapor bands are ignored, as 

these bands contain atmospheric information not relevant for the land process monitoring task 

at hand. The final image processing step involves temporal smoothing of all timeseries using a 3rd 

order polynomial Savitzky-Golay filter with a window length of 5.  

To assist with temporal interpolation of clouded pixels at the start and end of the specified 

time period, 82 image mosaics are collected in total – the 72 image mosaics that make up the 2 

years of imagery (June 1, 2019 – June 1, 2020, and June 1, 2020 – June 1, 2021), plus 5 additional 

timesteps before and after the beginning and end of full time period. After interpolation and 

smoothing, these additional image mosaics are discarded to leave cloud-free, smoothed, 10 band 
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Sentinel-2 imagery for only the desired 72 timesteps. The imagery is then split into annual 

temporal stacks, with all training and inference done on a single year’s 36 timesteps of imagery. 

 
3.2 Label collection 
 

Two types of labeled data are leveraged for irrigation mapping: ground collection (GC) 

labels, acquired via an in-person survey; and visual collection (VC) labels, acquired via visual 

identification of dry season vegetation from Sentinel-2 imagery using the DL platform and 

subsequent cleaning via timeseries clustering. The locations of these GC and VC regions are 

shown in italics in Figure V-1, with all labels collected for the 2021 dry season. As the GC labels 

constitute our highest quality irrigation observations, verified by in-situ visits to individual plots, 

we do not use them for training during the model sensitivity analysis, instead reserving them for 

validation of classifier performance. 

 
3.2.1 Ground collection 
 

The ground collection survey was conducted during the months of March and April 2021. 

Enumerators collected labels across an area north and east of Lake Tana (referred to as “Tana”; 

see Figure V-1) in a process that involved traveling to individual plots of lands, collecting four 

coordinate points corresponding to the corners of the plot, and specifying whether irrigation was 

present on the plot during the visit. The ground collection survey team collected 2002 polygons 

in Tana: 1500 were labeled non-irrigated and 502 were labeled irrigated. In total, these polygons 

cover 1867 Ha, 78% of which was designated as non-irrigated. 
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3.2.2 Visual label collection 
 

To supplement the GC labels located in Tana, visually collected labels are acquired for 

seven separate regions via a three-step process of 1) visual inspection, 2) EVI timeseries 

confirmation, and 3) cluster cleaning. Each of these steps is described in its eponymous 

subsection below. 

 
Visual inspection 
 

The first step in the VC labeling process involves drawing polygons around locations that 

either: a) present as cropland with visible vegetation growth (for the collection of irrigated 

samples), or b) present as cropland with no visible vegetation growth (for the collection of non-

irrigated samples), based on dry-season, false-color Sentinel-2 imagery presented on the DL 

platform. Sub-meter resolution commercial satellite imagery from Google Earth Pro is also used 

to confirm the existence of cropland in the viewing window. For the collection of non-irrigated 

labels, polygons are restricted to areas that contain non-perennial cropland; however, because 

only phenologies that contain dry season vegetation cycles are considered irrigated, non-

irrigated polygons occasionally overlap other types of land cover – e.g., perennial crops, fallow 

cropland, or areas with human settlement – with any overlap likely to improve training 

robustness. 

 
EVI timeseries confirmation 
 

After drawing a polygon around a suspected irrigated or non-irrigated area, the second 

step in the VC label acquisition process entails inspection of the median Sentinel-2 EVI timeseries 

of all pixels contained within the polygon; this step is shown in the plot windows of Figure V-4. 
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Here, all available Sentinel-2 imagery with less than 20% cloud cover between June 1, 2020, and 

June 1, 2021 is retrieved; a cubic spline is then fit to all available data to generate continuous EVI 

timeseries. For potential irrigated polygons, if the EVI timeseries shows a clear peak above 0.2 

during the dry season, it is confirmed as irrigated. Similarly, for potential non-irrigated polygons, 

an EVI timeseries that demonstrates a single vegetation cycle attributable to Ethiopia’s June to 

September rains is taken as confirmation of a non-irrigated VC polygon. However, if the EVI 

timeseries does not confirm the expected irrigated/non-irrigated class, or if the plotted EVI error 

bars (representing ±one standard deviation of the EVI values at that timestep) indicate a level of 

signal noise within the polygon that prevents the identification of a clear vegetation phenology, 

the polygon is discarded. 

Figure V-4(a) demonstrates an example of irrigated VC label collection in the Koga region 

– here, the double vegetation peak present in the EVI timeseries confirms the purple polygon in 

the center of the window as irrigated (blue polygons indicate areas already saved as irrigated VC 

labels). Figure V-4(b) demonstrates the same process for non-irrigated VC labels, also in Koga: 

The single EVI peak in October 2020 confirms the pink polygon in the top left of the window as 

non-irrigated (red polygons indicate areas already saved as non-irrigated VC labels).   
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Figure V-4: Example of the visual collection (VC) labeling process in Koga using the Descartes Labs 
platform. Blue polygons denote areas determined to be irrigated; red polygons are determined to 
be non-irrigated. Background imagery is a false-color Sentinel-2 image taken in March 2021: red, 
near-infrared, and blue bands are presented in the RGB channels, respectively. In (a), the Sentinel-
2 enhanced vegetation index (EVI) timeseries is shown for the drawn purple rectangle in the 
middle of the window; in (b), the Sentinel-2 EVI timeseries is shown for the drawn pink, semi-
octagonal polygon in the top left of the window. Both timeseries present the median EVI values 
for all pixels contained within the drawn polygon; the error bars show one standard deviation of 
these values above and below the median. In both figures, the drawn polygons are confirmed as 
VC labels, since they meet the definitions of irrigation/non-irrigation, respectively. 
 
 
Cluster cleaning 
 

The third step in the VC label acquisition process involves bulk verification of the collected 

timeseries by means of cluster cleaning. For each VC region, all pixels that reside within labeled 
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polygons are collected and split based on the irrigated/non-irrigated class labels of the polygons. 

Fifteen-component Gaussian mixture models are fit to each class’s data to extract the dominant 

phenologies contained within the region’s samples; the EVI timeseries representing the cluster 

centroids are then plotted, with the plot legend displaying the number of samples per cluster. 

Figure V-5(a) presents the results of this initial clustering for the Koga region. 

 
Figure V-5: Clustered enhanced vegetation index (EVI) timeseries before and after cluster cleaning 
for the Koga visual collection (VC) region. Before and after cleaning, pixels are grouped into one 
of 15 randomly indexed clusters. In (a), Clusters 12, 13, and 14 of the irrigated samples do not 
achieve an EVI peak of 0.2 during the dry season (December 1st to April 1st) or do not contain 
multiple successive values below 0.2 and are discarded. All non-irrigated clusters display a single 
vegetation peak aligned with the main rainy season, and the irrigated clusters after cleaning (b) 
all display a vegetation cycle during the dry season. 
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From the initial cluster timeseries, an iterative process begins to ensure that all cluster 

timeseries align with the specified class label. For an irrigated cluster timeseries to be kept, it 

must contain multiple successive EVI values above and below 0.2, and it must contain a clear EVI 

peak above 0.2 during the dry season. Analogously, non-irrigated cluster timeseries are discarded 

if they display a clear dry-season EVI peak above 0.2. If these conditions are not met – as is the 

case for Clusters 12, 13, and 14 of the Koga irrigated samples, which do not contain a clear EVI 

peak above 0.2 between December 1, 2020 and April 1, 2021 and/or do not senesce below an 

EVI threshold of 0.2 for successive timesteps – all pixels associated with that cluster are discarded 

from the labeled data. This process is repeated until all 15 clusters for both classes demonstrate 

EVI signals that meet the non-irrigated/irrigated class definitions. The final, cleaned cluster 

timeseries for the Koga region are shown in Figure V-5(b).   

Cluster-cleaning is performed for all regions’ labeled data, including labeled data collected 

from the GC region, Tana. For increased visibility into the labeled data collected and used for 

training, these regions’ clusters before and after cleaning are included in Appendix A in Section 

V-6.  
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Table V-1: Summary of labeled polygons, split by region and model training configuration. GC 
stands for ground collection labels; VC stands for visual collection labels. 
  
    Number of Labeled Polygons 

Region Type of 
Labels Training Validation Testing Total 

    Non- 
Irrigated Irrigated Non- 

Irrigated Irrigated Non- 
Irrigated Irrigated Non- 

Irrigated Irrigated 

Tana GC 1050 351 225 76 225 75 1500 502 

Rift VC 12 25 3 6 3 6 18 37 

Koga VC 27 46 6 10 6 10 39 66 

Kobo VC 26 28 6 6 6 7 38 41 

Alamata VC 17 16 4 4 4 4 25 24 

Liben VC 24 25 5 5 6 6 35 36 

Jiga VC 15 13 4 3 3 3 22 19 

Motta VC 17 17 4 4 4 4 25 25 

Total GC + VC 1188 521 257 114 257 115 1702 750 

 
 

A summary of the number of collected polygons and cleaned pixel timeseries samples in 

each region is shown in Tables V-1 and V-2: In total, 1,207,233 non-irrigated samples and 907,887 

irrigated samples are used, taken from 1702 and 750 labeled polygons, respectively. For model 

training and evaluation, data are divided among training, validation, and test splitsxx. Here, 

polygons in each labeled region are split according to a 70/15/15 training/validation/test ratio; 

this method ensures that highly similar pixels from within the same polygon do not exist across 

training configurations, a division of data that would artificially inflate model performance for 

 
xx In splitting the labeled data, the training/validation/testing terminology standard in machine and deep learning 
literature is adopted. 
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the task of predicting irrigation over pixel timeseries unseen by the model. All training, validation, 

and testing is performed pixelwise (i.e., having removed the spatial relationships of samples). 

Table V-2: Summary of labeled polygons, split by region and model training configuration. GC 
stands for ground collection labels; VC stands for visual collection labels. 

  
    Number of Labeled Pixels 

Region Type of 
Labels Training Validation Testing Total 

    Non- 
Irrigated Irrigated Non- 

Irrigated Irrigated Non- 
Irrigated Irrigated Non- 

Irrigated Irrigated 

Tana GC 63,729 24,675 14,283 5089 13,910 5361 91,922 35,125 

Rift VC 92,157 104,682 19,149 19,269 20,378 20,286 131,684 144,237 

Koga VC 150,378 98,697 29,661 23,015 27,953 24,401 207,992 146,113 

Kobo VC 93,838 123,946 30,549 36,494 31,473 48,077 155,860 208,517 

Alamata VC 58,310 21,176 14,356 4601 11,083 6447 83,749 32,224 

Liben VC 132,999 113,733 26,027 31,212 35,394 21,895 194,420 166,840 

Jiga VC 113,640 79,143 33,244 15,368 38,734 12,204 185,618 106,715 

Motta VC 94,153 47,915 34,267 11,127 27,568 9074 155,988 68,116 

Total GC + VC 799,204 613,967 201,536 146,175 206,493 147,745 1,207,233 907,887 

 
 
3.2.3 Labeled data exploration 
 

To better understand the vegetation phenologies contained within this study’s labeled 

data, the similarities of EVI timeseries of the same class are explored across regions. This process 

first involves applying a PC transform to all labeled training data. The samples’ dimensionality is 

then reduced by using only the first 10 dimensions of the transformed data; these first 10 

dimensions explain 91% of the variance contained within the samples’ EVI timeseries. 
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After dimensionality reduction via the PC transform, the two sample Kolmogorov-Smirnov 

(KS) test statistic is calculated between sample distributions of the same class across regions. The 

two-sample KS statistic determines the largest absolute distance between two 1D empirical 

distributions, and is presented in Eq. (V-1):  

 
𝐷UM = 𝑠𝑢𝑝%|𝐹B(𝑥) −	𝐹:(𝑥)| 

(V-1) 
 
where 𝐹B(𝑥) and 𝐹:(𝑥) are the two empirical distribution functions of 1D variable x, and sup is 

the supremum function. The KS statistic is assessed for two reasons: 1) the statistic depends on 

no assumptions about the underlying data distributions; and 2) the statistic has been adapted for 

multivariate distributions via the pseudo-1D KS metric [293]. In this adaptation, the pseudo-1D 

KS metric, 𝐷UM,!BV, is the Euclidean KS statistic calculated between successive orthogonal 

dimensions of two multivariate distributions:  

 

𝐷UM,!BV =	�(𝐷UM,B): + (𝐷UM,:): +	⋯	+	(𝐷UM,)):	 

(V-2) 
 

where 

 
𝐷UM,) = 𝑠𝑢𝑝8$|𝐹B(𝑦)) −	𝐹:(𝑦))| 

(V-3) 
 

Here, Eq. (V-3) represents the KS statistic between the empirical distribution functions 

𝐹B and 𝐹: of the nth dimension of multivariate variable y. As only the first 10 PC dimensions of 

the transformed data are used, n ranges between 1 and 10.  

Table V-3 presents pairwise pseuso-1D KS statistics between regions’ non-irrigated 

samples; Table V-4 presents pairwise pseuso-1D KS distances between regions’ irrigated samples. 
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In these tables, the relative statistics between distributions are compared, as the absolute 

statistics cannot be interpreted in a physically meaningful way. The cells with typographical 

marks in the two tables indicate statistics to be interpreted with the results in Table V-7, 

discussed alongside that table. Tables V-3 and V-4 show that the relative pairwise statistic 

between regional distributions is larger among the irrigated sample sets, indicating that irrigated 

samples are more dissimilar across regions compared to the non-irrigated samples. This 

takeaway reflects the varying nature of irrigation practices across Ethiopia – irrigation can occur 

at different parts of the dry season for a variety of different crops. In contrast, the phenologies 

of non-irrigated cropland must mirror Ethiopia’s primary rains, which are consistent in time for 

the regions included in this analysis. 

 
Table V-3: Pairwise pseudo-1D KS metric between regions’ non-irrigated training samples. Values 
with typographical symbols are to be interpreted alongside Table V-7.  

  
  Tana Rift Koga Kobo Alamata Liben Jiga Motta Mean 

Tana 0.00 1.13 1.85 1.00 1.25 1.69 1.50 1.33 1.39 

Rift 1.13 0.00 1.48 0.62 0.71 1.43 0.95 0.57 0.98 

Koga 1.85* 1.48 0.00 1.48 1.33 0.41 1.02 1.26 1.26 

Kobo 1.00 0.62 1.48 0.00 0.76 1.45 1.16 0.91 1.05 

Alamata 1.25 0.71 1.33 0.76 0.00 1.33 0.97 0.72 1.01† 

Liben 1.69 1.43 0.41 1.45 1.33 0.00 0.91 1.23 1.21 

Jiga 1.50** 0.95 1.02 1.16 0.97 0.91 0.00 0.51 1.00 

Motta 1.33 0.57 1.26 0.91 0.72 1.23 0.51 0.00 0.93‡ 

                  1.11 
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Table V-4: Pairwise pseudo-1D KS metric between regions’ irrigated training samples. Values with 
typographical symbols are to be interpreted alongside Table V-7. 

  
  Tana Rift Koga Kobo Alamata Liben Jiga Motta Mean 

Tana 0.00 1.88 2.25 1.73 1.65 1.13 1.60 1.27 1.64 

Rift 1.88 0.00 1.48 0.61 0.37 2.01 1.30 1.51 1.31 

Koga 2.25* 1.48 0.00 1.37 1.45 2.46 1.98 2.20 1.88 

Kobo 1.73 0.61 1.37 0.00 0.65 1.98 1.51 1.57 1.35 

Alamata 1.65 0.37 1.45 0.65 0.00 1.78 1.11 1.31 1.19† 

Liben 1.13 2.01 2.46 1.98 1.78 0.00 1.41 0.98 1.68 

Jiga 1.60** 1.30 1.98 1.51 1.11 1.41 0.00 0.89 1.40 

Motta 1.27 1.51 2.20 1.57 1.31 0.98 0.89 0.00 1.39‡ 

                  1.48 

 
 
3.3 Prediction admissibility criteria 
 

Given that irrigated phenologies exist over a small fraction of the total land area of the 

Ethiopian Highlands, and that there are many types of land cover that do not fall within this 

manuscript's non-irrigated/irrigated cropland dichotomy, a set of criteria are imposed to exclude 

pixel phenologies that are not cropland or are highly unlikely to be irrigated. Table V-5 presents 

five criteria that must all be met for a pixel timeseries to be potentially irrigated and the 

motivation behind each. 

The criteria in Table V-5 are also used to create a reference irrigation classifier that does 

not rely on machine learning. For this reference classifier, if all 5 conditions are met, the sample 

is deemed irrigated; if any of the conditions is not satisfied, the sample is deemed non-irrigated. 

 

  



 

 241 

Table V-5: Prediction admissibility criteria. All criteria need to be satisfied for a prediction to be 
admitted as irrigated. 

Admissibility Criteria Motivation 
10th percentile of EVI timeseries < 0.2 Filter out evergreen pixels 
90th percentile of EVI timeseries > 0.2 Filter out barren/non-vegetated pixels 
Maximum of the EVI timeseries during the 
dry season (Dec 1 – Apr 1) > 0.2 

Filter out pixels with no vegetation growth in 
the dry season 

Ratio of the 90th:10th percentile of the EVI 
timeseries > 2 Filter out evergreen pixels 

Shuttle Radar Topography Mission slope 
measurement < 8% 

Filter out highly sloped settings where 
cropping is impractical 

 
 
 

 
Figure V-6: Cumulative distribution functions (CDFs) for the (a) 10th and (b) 90th EVI timeseries 
percentiles; (c) the 90th:10th EVI timeseries percentile ratio; and (d) the maximum EVI value during 
the dry season (December 1st, 2020, to April 1st , 2020). 
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The vegetation-specific criteria in Table V-5 are informed by the EVI distributions of 

labeled irrigated samples for all label collection regions: Figure V-6 contains cumulative 

distribution functions (CDFs) for the 10th and 90th EVI timeseries percentiles, the 90th:10th EVI 

timeseries percentile ratio, and the maximum EVI value during the dry season. CDFs are 

presented for all regions’ irrigated samples, including for a set of polygons collected over 

evergreen land cover areas. 

Figure V-6(a) shows that a maximum of 0.2 for the 10th percentile of the EVI timeseries is 

achieved by nearly all irrigated samples, and how this ceiling filters out 85% of all evergreen 

samples. Similarly, a minimum 90th:10th percentile EVI ratio of 2 is satisfied by nearly all irrigated 

samples and excludes 60% of evergreen samples (Figure V-6(c)). While no EVI timeseries for 

barren or non-vegetated areas are shown in this figure, the criteria specifying a 90th percentile 

EVI value above 0.2 and a dry season max EVI value above 0.2 are met by the vast majority of 

irrigated samples (Figure V-6(b,d)), and would filter out many of these non-cropped pixels. 

 
3.4 Model training 
 
3.4.1 Model architectures 
 

Five separate classifier types are compared to determine the model architecture with the 

most robust irrigation detection performance across regions. The first two classifiers are decision 

tree-based: A random forest with 1000 trees [294]; and a CatBoost model that uses gradient 

boosting on up to 1000 trees [295]. The other three classifiers are neural networks (NN): A 

baseline network, an LSTM-based network, and a transformer-based network. For comparability, 

these three classifier architectures are designed to have similar structures, based on the strong 
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baseline model structure proposed in [296]; as seen in Figure V-7, they differ only in the type of 

encoding blocks used. 

 

 
Figure V-7: Neural network (NN) model architectures tested as irrigation detection classifiers. 
Model architectures are consistent by design; only encoding blocks differ across networks. 
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3.4.2 Model training strategies 
 

The implemented model training strategy addresses two potential pitfalls among training 

processes: 1) imbalanced samples across region and class; and 2) high similarity among samples 

within a region that may not reflect the sample distributions across all regions. Consistent with 

best practices in dealing with imbalanced data, this first issue is addressed with a) class balancing 

weights specific to each region, based on the “balanced” heuristic inspired by [297]; and b) a 

region-specific weight equal to the ratio of the maximum number of samples in any region to the 

number of samples for the region in question. Both class-balancing and region-balancing weights 

are used in all training configurations.  

To address potential redundancy and time-specificity among samples within a region, 

random shifts are applied to all input timeseries. The sizes of these random shifts vary between 

-3 and +3 timesteps (corresponding to between -30 and +30 days), with an equal probability of 

each shift occurring (including a shift by 0 timesteps). Random shifts are applied to all samples in 

the training and validation sets and differ for each sample every time it’s seen by the model. No 

shifts are applied to the samples in the testing sets.  

The primary metric for performance evaluation is the F1 score on the test datasets of 

regions withheld from training. Accordingly, performance is assessed in a manner that prioritizes 

classifier robustness – i.e., performance in regions unseen during training – and not in a manner 

that could be inflated by close similarity of samples within a region. For reference, the F1 score 

balances prediction precision and recall, and is calculated per Eq. (V-4). 

 

𝐹B =	
𝑇𝑃

𝑇𝑃 + 12 (𝐹𝑃 + 𝐹𝑁)
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(V-4) 
 
where TP indicated true positive predictions, FP indicates false positive predictions, and FN 

indicates false negative predictions.     

The training strategy differs for the tree-based classifiers and for the neural network-

based classifiers. As training the tree-based classifiers occurs across a single batch with no 

iteration across epochs, there is no need for separate validation and testing datasets: The training 

and validation datasets of all included regions are therefore combined to create a single training 

dataset. After training on this combined dataset, performance is evaluated across the test 

datasets.  

In contrast, training neural network-based models takes place by batch across epochs, 

and a validation set is required to guide the training process. For a given training step, one batch 

from each region is concatenated, with the combined output shuffled before model intake. After 

the epoch is finished, performance is assessed on the validation set of each region included in 

training. If the minimum F1 score among all regions’ validation sets has increased from its 

previous maximum, the model weights are saved; however, if the minimum F1 score has not 

increased from its previous high point, the model weights are discarded. Minimum F1 score across 

all validation regions is selected as the weight update criteria to ensure model robustness: 

Consistent performance across the entire area of interest is desired, not high performance in one 

set of regions and poor performance in another. Training concludes once the minimum validation 

region F1 score has not improved for 10 training epochs, or after 30 epochs have been completed. 

After training, model weights are loaded from the epoch with the highest minimum validation 

region F1 score; performance of this model on the test datasets of all regions is then reported. 



 

 246 

For all training runs, a binary cross-entropy loss, a learning rate of 1e-4, and an Adam optimizer 

[298] are specified. Inputs are standardized to a mean of 0 and standard deviation of 1 using 

statistics from the entire set of labeled samples. 

 
4. Results 
 
4.1 Model sensitivity 
 

Figure V-8 presents withheld VC region test dataset F1 scores for three different types of 

model input – one that includes all spectral bands for all timesteps; one that includes only the 

EVI layer for all timesteps; and one that includes only the EVI layer for all timesteps with the 

random sample shift applied. Here, the performance of models trained on all combinations of VC 

regions is evaluated; these results are organized along the x-axis by the number of VC regions 

included during training. Each x-axis tick label also includes in parentheses the number of 

withheld VC region test dataset evaluations for all models trained on x included VC regions. All 

results are presented for the transformer model architecture; however, these findings are 

agnostic to the classifier architecture selected. 

Figure V-8 demonstrates that models trained on samples containing only EVI timeseries 

outperform those that include all spectral bands at all timesteps, both on average (a) and in low 

performing regions (b). The 10th percentile of withheld regions’ F1 scores is shown in order to 

understand the low-end of model performance without accounting for outliers. For reference, 

classifier performance based on the prediction admissibility criteria is also included. Figure V-8 

shows that explicitly feeding classification models information about samples’ vegetation 

content – i.e., feature engineering – allows for better performance compared to models that 



 

 247 

intake 10 Sentinel-2 spectral bands. Introducing a random temporal shift to the EVI timeseries 

further increases performance; by increasing the sample variance seen by the model, randomly 

shifting the input timeseries improves model transferability. 

Taken together, randomly shifted EVI timeseries increase withheld region F1 scores by an 

average of 0.22 when only 2 VC regions are included in the training data, compared to models 

that use all spectral bands. As performance begins to plateau with 4 or more VC regions included 

in the training data, this gap shrinks to an improvement of 0.10. Similar results can be seen in 

Figure V-8(b) for the low-end of performance: Extracting and randomly shifting EVI timeseries 

increase the 10th percentile of withheld region F1 scores by 0.40 when 2 VC regions are included 

in the training data, a difference that shrinks to approximately 0.14 with 5 or more VC regions in 

the training data. Two additional findings are gleaned from the results for the models trained on 

randomly shifted EVI timeseries (i.e., the grey curve). First, a classifier trained on data from 2 VC 

regions or more outperforms the pixel filtering baseline. Second, increasing the number of VC 

regions included in the training set improves withheld region prediction performance up until 4 

VC regions before tapering off. 
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Figure V-8: Withheld region test dataset performance for different types of model input, 
organized along the x-axis by the number of regions included during training. (a) presents mean 
F1 score over the withheld regions; (b) presents the 10th percentile F1 score over the withheld 
regions. Results indicate that model inputs of randomly shifted enhanced vegetation index (EVI) 
timeseries yield the best classifier performance. F1 scores from classification based on the 
prediction admissibility criteria are presented for reference. 
 
 

Implementing a modified Gradient-Class Activation Map (Grad-CAM) for visual prediction 

explanation provides further evidence for improved prediction robustness from randomly 

shifting input EVI timeseries. A Grad-CAM uses the gradients flowing into the final layer of a 
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neural network to produce a localization map highlighting important portions of the input for 

predicting a concept. Originally developed for images in [299], this technique can be applied 

analogously to timeseries. To do so, a transformer-based classifier model with its 32-node 

penultimate dense layer removed is trained on all VC regions’ training datasets; by removing this 

fully connected layer, the importance of each timestep input for prediction can be visualized, as 

there is no longer a layer obscuring the gradient flow into the final prediction nodes. Figure V-9 

displays the normalized timestep prediction importances for 16 randomly selected non-irrigated 

and irrigated EVI timeseries from the Koga region. Results are presented for two models: the first 

trained without randomly shifting input timeseries, and the second trained with the random shift 

applied.  

 

 
Figure V-9: Modified Grad-CAM timestep importances for 16 randomly selected non-irrigated and 
irrigated enhanced vegetation index (EVI) timeseries from Koga, before and after the timeseries 
shift is applied. 
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Figure V-9 demonstrates that the input timesteps most important for prediction – 

displayed in red per the Normalized Logit Importance colorbar – are more continuous and better 

reflect a common understanding of what portions of a phenology should be predictive once the 

model is trained on randomly shifted input timeseries. For the non-irrigated samples, the model 

trained on the randomly shifted timeseries identifies a larger portion of the timesteps during the 

rainy season as highly predictive (Figure V-9(c)); this model also correctly identifies vegetation 

growth during dry season timesteps as important for identifying irrigated samples (Figure V-9(d)). 

In comparison, the model trained on the non-shifted timeseries identifies scattered timesteps as 

predictive for both non-irrigated and irrigated samples (Figure V-9(a,b)); it does not emphasize 

dry season vegetation growth as predictive of irrigation presence (Figure V-9(b)). Instead, this 

model learns to identify isolated, non-intuitive timesteps, and as a consequence is more likely to 

misclassify input timeseries that differ slightly from those in the training data. 
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Figure V-10: Withheld region test dataset performance for different classifier models, organized 
along the x-axis by the number of regions included during training. (a) presents mean F1 score 
over the withheld regions; (b) presents the 10th percentile F1 score over the withheld regions. 
Results indicate that the transformer-based classifier yields the best performance, followed 
closely by the CatBoost model. F1 scores from classification based on the prediction admissibility 
criteria are presented for reference. 
 
 

Figure V-10 displays (a) mean and (b) 10th percentile F1 score for all combinations of VC 

regions included in training for the 5 classification models tested, along with the reference 

classifier based on the prediction admissibility criteria. Figure V-10 demonstrates that the 
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transformer architecture is most robust for all combinations of VC training regions, followed 

closely by the CatBoost architecture for all training configurations with 2 or more VC regions. 

Moreover, for models with 5 or 6 VC regions included in training, mean and low-end F1 scores for 

these two architectures are practically indistinguishable at 0.97 and 0.92, respectively. Lastly, 

Figure V-10 shows that the LSTM architecture does not noticeably improve performance 

compared to the baseline neural network, and that the trained Random Forest models yield the 

worst performance in withheld regions. 

 
Table V-6: Comparison between Transformer and CatBoost model predictions for models trained 
on all 7 visual collection (VC) regions’ training datasets.  

Region Type of 
Labels Comparison between Transformer and CatBoost model predictions  

  Number of aligned sample 
predictions Number of misaligned sample predictions Fraction of 

predictions 
aligned 
across 
models 

  Non- 
irrigated Irrigated 

Transformer: non-
irrigated, 

Catboost: irrigated 

Transformer irrigated, 
CatBoost non-

irrigated 

Tana GC 88,587 35,035 728 2690 0.973 

Rift VC 130,399 142,114 2367 1024 0.988 

Koga VC 207,536 144,284 1401 827 0.994 

Kobo VC 156,946 203,510 2313 583 0.992 

Alamata VC 84024 31,978 615 251 0.993 

Liben VC 193,428 165,933 884 971 0.995 

Jiga VC 184,116 106,384 955 833 0.994 

Motta VC 155056 65,956 1689 1363 0.986 

 
 

To ensure that different irrigation detection architectures converge on similar decision 

boundaries, the alignment of predictions across the transformer based and CatBoost models is 
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investigated. Here, both architectures are training on the randomly shifted EVI timeseries of all 7 

VC regions’ training datasets; predictions are then made over all labeled samples. Table V-6 

presents the alignment of these predictions, showing a high degree of prediction similarity: An 

average regional prediction alignment of 98.9% is calculated. The close alignment of predictions 

made by both these models expands the basis for the solution set. 

Moreover, to understand the impact of the amount of training data on model 

performance, an ablation study is conducted where the fraction of labeled polygons included in 

each region’s training dataset is varied between 0.15 and 0.85; the complementary fraction of 

each region’s polygons comprises the test dataset. For each fraction of training polygons, the 

CatBoost model architecture is trained on all combinations of all 7 visual collection (VC) regions’ 

training datasets; performance is assessed on the withheld VC regions in a process identical to 

the one described for Figures V-8 and V-10. All models are trained on randomly shifted EVI 

timeseries. 

Figure V-11 presents the results of this ablation study, in which minimal impact is 

observed when varying the fraction of polygons included in each region’s training dataset 

between 0.15 and 0.85.  On average, withheld region F1 score decreases by approximately 0.05 

as the fraction of training polygons drops from 0.85 to 0.15 when 1 VC region is included in the 

training data; this gap shrinks as additional VC regions are incorporated during training, becoming 

negligible for all models trained on 3 or more VC regions’ data. A larger performance delta among 

the 10th percentile of withheld regions’ F1 scores exists when fewer than 3 VC regions are 

included during training; similar to the average performance metrics, this gap collapses when the 

classification model is trained on labeled data from 3 or more VC regions.  
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Figure V-11: Withheld region test dataset performance for different fractions of labeled polygons 
included in the training datasets; the complementary fractions of labeled polygons constitute the 
test datasets. Predictions are made using a CatBoost model architecture. (a) presents mean F1 
score over the withheld regions; (b) presents the 10th percentile F1 score over the withheld 
regions. 
 
 

Figure V-11 demonstrates that the irrigation prediction models are robust even when 

limiting the fraction of polygons included in training datasets to 15% of the total. Here, the 

inclusion of labeled data from multiple regions and randomly shifting the EVI timeseries inputs 
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introduces enough variance to the classification model during training so that performance over 

regions unseen by the classifier remains high. 

Next, prediction performance over the unseen ground-collected labels in Tana is 

assessed. As the transformer model demonstrates the most robust performance over withheld 

regions' samples, it is selected for prediction, achieving 96.7% accuracy over irrigated samples 

(88,128/91,898) and 95.9% accuracy over non-irrigated samples (33,954/35,121) for an F1 score 

of 0.932. 

Lastly, through a pair of ordinary least-squares (OLS) regressions, the contribution of each 

VC region to target region performance can be assessed. Table V-7 presents OLS regression 

coefficients and P-values on target region F1 scores for the 7 VC regions used during training, 

where the F1 scores are collected over all withheld regions for all transformer classifier models 

presented in Figure V-10. In interpreting the regression results, variables with P-values above 

0.05 are considered not statistically significant.  

Table V-7 shows that training data from the regions of Alamata or Kobo have the largest 

impact on Tana test dataset performance, increasing F1 score on average by 0.032 or 0.024, 

respectively. The non-statistically significant contributions of Koga and Jiga’s training data to Tana 

test dataset performance are highlighted, shown by the values marked with * and **. Comparing 

these non-statistically significant results with the relevant cells in Tables V-3 and V-4 – also 

marked with * and ** – reveals that non-irrigated and irrigated samples from both Koga and Jiga 

are more dissimilar from Tana labeled samples compared to the regional average, determined by 

the KS distance between the regions’ data. 
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Table V-7: Ordinary least squares regression on withheld target region F1 scores. F1 scores are 
collected over all withheld regions for all transformer classifier models presented in Figure V-10. 
Values with typographical symbols are to be interpreted alongside Tables V-3 and V-4. 

  
  

Ordinary Least Squares Regressions on Withheld Region F1 Scores 

  Tana  
(R2=0.317, n=127) 

Excluded VC Regions 
(R2=0.18, n=441) 

Source VC Region Coefficient P-value Coefficient P-value 
Rift 0.018 0.008 -0.012 0.327 

Koga 0.013* 0.056* 0.016 0.172 

Kobo 0.024 0.001 0.029 0.016 
Alamata 0.032 0.000 0.071† 0.000† 

Liben -0.011 0.122 0.028 0.019 
Jiga 0.013** 0.063** 0.047 0.000 

Motta 0.016 0.024 0.080‡ 0.000‡ 
 

 
Table V-7 also shows that the inclusion of labeled samples from Motta and Alamata during 

training causes the largest increase in F1 score over the withheld VC regions; these increases, 

shown by values marked with † and ‡, amount to 0.08 and 0.071, respectively.  Again, comparing 

these data points to the KS distances marked with † and ‡ in Tables V-3 and V-4 demonstrates 

that non-irrigated and irrigated samples from Motta and Alamata are more similar to withheld 

VC regions’ labeled data on average, as compared to samples from other VC regions. 

  Taken together, the results from Tables V-3, V-4, and V-7 yield the intuitive finding that 

labeled samples more similar to those in a target region have a greater positive impact on 

performance, while more dissimilar labeled samples have a weaker effect on performance. 

 
4.2 Model inference 
 

For model inference, the transformer architecture is trained on the randomly shifted EVI 

timeseries of the labeled data from the 7 VC and one GC regions. The trained model is then 
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deployed over Tigray and Amhara for the 2020 and 2021 dry seasons (using imagery collected 

between June 1, 2019 and June 1, 2020; and between June 1, 2020 and June 1, 2021, 

respectively). Two post-processing steps are then taken: 1) the prediction admissibility criteria 

are applied, and 2) contiguous groups of predicted irrigated pixels smaller than 0.1 Ha are 

removed in order to ignore isolated, outlier predictions.  

During inference, another step is taken to verify the accuracy of irrigation predictions. 

Here, five additional enumerators collect 1601 labeled polygons for the 2020 and 2021 dry 

seasons – 1082 non-irrigated polygons covering 3807 Ha and 519 irrigated polygons covering 582 

Ha – across the extent of Amhara via the same labeling methodology used to collect the training, 

validation, and testing data. The locations of these independently labeled polygons are shown in 

Figure V-12 After cluster cleaning and applying the prediction admissibility criteria, these 

polygons yield 361,451 non-irrigated samples and 48,465 irrigated samples. An F1 score of 0.917 

is achieved over these samples – 98.3% accuracy over non-irrigated samples and 95.5% accuracy 

over irrigated samples, performance that remains in line with the reported test dataset metrics 

from Figure V-10 and accuracies over the withheld Tana ground-collected labels. 

 



 

 258 

 
Figure V-12: Locations of independently labeled polygons for additional model performance 
assessment. The centroids of non-irrigated polygons are shown in red, 1082 in total; the centroids 
of irrigated polygons are shown in blue, 519 in total. These polygons produce 361,451 non-
irrigated samples and 48,465 irrigated timeseries samples. 
 
 
4.2.1 Tigray 
 

Figure V-13 presents predicted irrigated areas in Tigray for 2020 and 2021, with 2020 

irrigation predictions in red and 2021 irrigation predictions in cyan. To better understand the 
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nature of changing vegetation phenologies across this time period, the inset of Figure V-13 

contains example timeseries that produced an irrigation prediction in one of 2020 or 2021. These 

example timeseries show that a second crop cycle with vegetation growth peaking in January is 

associated with a positive irrigation prediction; in contrast, the non-existence of this cycle is 

associated with non-irrigated prediction. Table V-8 displays the total predicted irrigated area for 

Tigray for 2020 and 2021, along with the total land area, organized by zone. Between 2020 and 

2021, Table V-8 quantifies a 39.8% decline in irrigated area in Tigray. 
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Figure V-13: Bitemporal irrigation map for Tigray. Figure inset contains example EVI timeseries 
predicted as irrigated in either 2020 or 2021. A predominance of red indicates that many parts of 
Tigray contain irrigation detected in 2020 but not in 2021. 
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Table V-8: Predicted irrigated area statistics in Tigray for 2020 and 2021, organized by zone.  

Zone Irrigated Ha., 
2020 

Irrigated Ha., 
2021 Total Ha. Percent Change, 

2020 to 2021 

Percent Change as 
Fraction of Total 

Area, 2020 to 2021 

Central 3710 3554 954,616 -4.2% 0.0% 

Eastern 3068 2863 635,670 -6.7% 0.0% 

Mekelle 556 397 52,313 -28.5% -0.3% 

Northwestern 7439 2062 1,246,715 -72.3% -0.4% 

Southeastern 2658 2301 533,334 -13.4% -0.1% 

Southern 16,474 8064 506,151 -51.1% -1.7% 

Western 2278 2557 1,331,652 12.3% 0.0% 

Total 36,181 21,799 5,260,451 -39.8% -0.3% 

 
 
4.2.2 Amhara 
 

Figure V-14 presents a bitemporal irrigation map for Amhara, also with 2020 irrigation 

predictions in red and 2021 irrigation predictions in cyan. This map contains large clusters of 

irrigated predictions around Lake Tana in the zones of Central Gondar, South Gondar, and West 

Gojjam, an intuitive finding given the availability of water from Lake Tana and the rivers that 

extend off it. Irrigation is also detected in the portions of Amhara’s easternmost zones that fall 

within the Main Ethiopian Rift (MER); as the valley formed by the MER extends north into Tigray, 

irrigation predictions in the North Wello, Oromia, and North Shewa zones align with irrigation 

predictions in the Southern zone of Tigray shown in Figure V-13. Table V-9 displays the total 

predicted irrigated area for Amhara for 2020 and 2021, along with the total land area, organized 

by zone. From 2020 to 2021, Table V-9 quantifies a 41.6% decline in irrigated area in Amhara. 
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Figure V-14: Bitemporal irrigation map for Amhara. Figure inset contains example predictions 
around Choke Mountain displaying interannual irrigation patterns. A predominance of red 
indicates that many parts of Amhara contain irrigation detected in 2020 but not in 2021. 
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The inset of Figure V-14 presents interannual irrigated cropping patterns for an area 

southwest of Choke Mountain. Interlocking red and cyan plots indicate the spatial rotation of 

irrigated crops from 2020 to 2021; no white plots are observed, which would signify dry season 

crop growth in both years. 

 
Table V-9: Predicted irrigated area for Amhara in 2020 and 2021, organized by zone.  

Zone Irrigated Ha., 
2020 

Irrigated Ha., 
2021 Total Ha. Percent Change, 

2020 to 2021 

Percent Change as 
Fraction of Total 

Area, 2020 to 2021 

Awi 27,443 20,547 906,682 -25.1% -0.8% 

Central Gondar 73,450 50,954 2,095,018 -30.6% -1.1% 

East Gojam 44,975 33,888 1,405,689 -24.7% -0.8% 

North Gondar 7381 3367 684,247 -54.4% -0.6% 

North Shewa 
(AM) 62,933 21,362 1,622,197 -66.1% -2.6% 

North Wello 21,367 8250 1,110,856 -61.4% -1.2% 

Oromia 30,875 5285 380,773 -82.9% -6.7% 

South Gondar 72,682 43,046 1,406,698 -40.8% -2.1% 

South Wello 28,215 16,302 1,849,812 -42.2% -0.6% 

Wag Hamra 447 698 890,004 56.4% 0.0% 

West Gojam 97,206 71,052 1,348,158 -26.9% -1.9% 

West Gondar 6180 1342 1,529,197 -78.3 -0.3% 

Total 473,155 276,093 15,229,329 -41.6% -1.3% 
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5. Discussion 
 

This manuscript makes a set of contributions to the literature for learning from limited 

labels. First, it demonstrates a process of collecting training data to supplement ground-collected 

labels that improves on previous methods of sample collection -- such as using imagery from a 

single timestep or simple vegetation content heuristics -- as it verifies the existence or non-

existence of full vegetation cycles during the dry season. Second, an evaluation of inputs, 

classifier architectures, and training strategies is presented for achieving irrigation classifier 

applicability to a larger area. Results indicate that enhanced vegetation (EVI) timeseries 

outperform a full set of spectral bands as inputs; that randomly shifting input timeseries prevents 

classifier models from overfitting to region-specific input features; and that a transformer-based 

neural network produces the highest prediction accuracies in unseen target regions. Due to the 

close similarity of performance metrics and alignment of predictions, the faster training, more 

easily interpretable CatBoost architecture is also shown as a suitable alternative for irrigation 

mapping efforts. 

Prediction results indicate strong classifier performance over sample timeseries from 

regions not seen during training. On data from withheld target regions, transformer-based 

classifiers achieve mean F1 scores above 0.95 when four or more regions' data are included during 

training; using labels from all 7 visual collection (VC) regions, the transformer-based classifier 

achieves an F1 score of 0.932 on the ground collection (GC) labels around Lake Tana. Over an 

independently collected set of more than 400,000 samples collected for performance 

assessment, the same classifier achieves 98.3% accuracy over non-irrigated samples and 95.5% 
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accuracy over irrigated samples, demonstrating strong performance throughout the entire 

Ethiopian Highlands. 

Deploying a transformer-based classifier trained on samples from all 8 label collection 

regions yields insight into changing irrigation patterns. Results suggest that from 2020 to 2021, 

irrigation in Tigray and Amhara decreased by 40%. In Tigray, this decline was most precipitous in 

the Northwest and Southern zones, which saw percent changes in irrigated area of -72.3% and -

51.1%, respectively. The Western zone of Tigray was the only zone to see an increase in irrigated 

area from 2020 to 2021; even so, this increase amounted to 279 Ha in a zone with a total area of 

1,331,652 Ha. Amhara is predicted to have had similar decreases in irrigated area: Apart from the 

Wag Hamra zone, which was predicted to have less than 0.08% of its area irrigated in 2020 or 

2021, all zones in Amhara experienced a change in irrigated area between -25.0% and -82.3%. 

The largest declines by area occurred in North Shewa (-41,572 Ha), South Gondar (-29,636 Ha), 

and West Gojam (-26,154 Ha). Combined, results for Tigray and Amhara predict severe reductions 

in dry season crop growth from 2020 to 2021, findings that that align with recent reports of food 

insecurity following the eruption of civil conflict in Ethiopia in late 2020.  

Despite presented performance metrics indicating high levels of prediction accuracy, 

there are a few limitations to the proposed methodology that are important to mention. First, 

the study area is limited to the Ethiopian Highlands, a highly agricultural, climatologically 

consistent area that is dominated by rainfed cropped phenologies. As the irrigation classifiers are 

only trained to separate dry season crop cycles from rainfed vegetation cycles -- associating 

identified dry-season cropping with irrigation presence -- they will perform poorly in settings with 

different rainfall and phenological patterns. Relatedly, the trained irrigation classifiers do not 
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identify irrigation used to supplement rainy season precipitation, irrigation of perennial tree 

crops, evergreen vegetation in riparian areas, or irrigation that supports continuous cropping, as 

the phenological signatures of these types of vegetation are difficult to distinguish from 

evergreen, non-cropped signatures. This discrimination task is left for future work. Lastly, 

classifiers are trained only on cropped phenologies, which constitute a portion of the vegetation 

signatures that exist in the area of interest. To manage the other phenologies present at model 

inference, prediction admissibility criteria are implemented. Nevertheless, these criteria are 

imperfect: There are surely irrigated pixels which have been mistakenly assigned a non-irrigated 

class label, along with non-cropped pixels which have evaded the admissibility criteria. 

While the presented methodology is applied only for the task of irrigation identification 

in the Ethiopian Highlands, the strategy of regional phenological characterization to provide 

context for geographically informed selection of training samples and model applicability can be 

transferred more broadly to a range of land process mapping objectives. The suitability of this 

approach in the field of machine learning with limited labels is supported by results comparing 

classifier architectures and hyperparameter choice to assess the question of result uniqueness 

that overshadows all land cover classifications. As discussed by [300], what is presented as the 

map is often just a map -- one of many different products that can be obtained from the same 

set of inputs with different classifiers and hyperparameter settings. By assessing multiple 

classifier architectures and quantifying prediction sensitivity, this approach demonstrates 

consistency in results and indicates the uncertainty that can be expected of the resulting 

irrigation maps; as such, it provides a process for building robust classifiers in settings with scarce 

labeled data.  
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6. Appendix A 
 

Appendix A presents labeled samples before and after cluster cleaning for all label 

collection regions except Koga, which is presented in Figure V-5. 

 

 
Figure V-15: Clustered enhanced vegetation index (EVI) timeseries before and after cluster 
cleaning for the Alamata region. After cleaning, all non-irrigated clusters display a single 
vegetation peak aligned with the main rainy season, and the irrigated clusters all display a 
vegetation cycle during the dry season. 
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Figure V-16: Clustered enhanced vegetation index (EVI) timeseries before and after cluster 
cleaning for the Jiga region. After cleaning, all non-irrigated clusters display a single vegetation 
peak aligned with the main rainy season, and the irrigated clusters all display a vegetation cycle 
during the dry season. 
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Figure V-17: Clustered enhanced vegetation index (EVI) timeseries before and after cluster 
cleaning for the Kobo region. After cleaning, all non-irrigated clusters display a single vegetation 
peak aligned with the main rainy season, and the irrigated clusters all display a vegetation cycle 
during the dry season. 
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Figure V-18: Clustered enhanced vegetation index (EVI) timeseries before and after cluster 
cleaning for the Liben region. After cleaning, all non-irrigated clusters display a single vegetation 
peak aligned with the main rainy season, and the irrigated clusters all display a vegetation cycle 
during the dry season. 
 
  



 

 271 

 
Figure V-19: Clustered enhanced vegetation index (EVI) timeseries before and after cluster 
cleaning for the Motta region. After cleaning, all non-irrigated clusters display a single vegetation 
peak aligned with the main rainy season, and the irrigated clusters all display a vegetation cycle 
during the dry season. 
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Figure V-20: Clustered enhanced vegetation index (EVI) timeseries before and after cluster 
cleaning for the Rift region. After cleaning, all non-irrigated clusters display a single vegetation 
peak aligned with the main rainy season, and the irrigated clusters all display a vegetation cycle 
during the dry season. 
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Figure V-21: Clustered enhanced vegetation index (EVI) timeseries before and after cluster 
cleaning for the Tana region. After cleaning, all non-irrigated clusters display a single vegetation 
peak aligned with the main rainy season, and the irrigated clusters all display a vegetation cycle 
during the dry season. 
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Chapter VI: Extensions of irrigation detection efforts in Ethiopia 
 
 
Abstract 
 

Following the development of an irrigation detection methodology for the Ethiopian 

Highlands, further irrigation prediction extensions are explored. First, segment area of irrigated 

predictions is quantified, revealing that while the area distribution of segments is highly similar 

across Tigray and Amhara – 99% of predicted segments in both states are smaller than 10 Ha – 

the largest 1% of predictions in Amhara are substantially larger than the largest 1% in Tigray. 

Next, anomalous predictions of irrigation over non-cropped land from Chapter V are investigated. 

Inspection of these predictions uncovers atypical rains and vegetation growth during the 2020 

dry season, phenomena that occur once during the 10-year span examined and cause the 

erroneous predictions in question. Additional analysis leverages the 10m European Space Agency 

(ESA) WorldCover v100 land cover map to filter out all predictions that don’t fall on estimated 

cropland. Restricting irrigation predictions per the ESA land cover map eliminates many of the 

previously identified false positive predictions, in total removing approximately 8% of predicted 

irrigated area across Tigray and Amhara in 2020 and 2021.  

Another research extension involves irrigation mapping throughout Tigray for the 2019 

dry season, predictions that reveal a 6% increase in irrigated area from 2019 to 2020 and 

substantial year-to-year change in the plot-level locations of irrigation. As irrigated area in Tigray 

sees moderate annual growth from 2019 to 2020, we can further conclude that the sharp decline 

in irrigated area from 2020 to 2021 posited in Chapter V is not due to excessive false positive 

predictions for the region in the 2020 dry season. Irrigation predictions are also made for a part 
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of southern Oromia with vegetation patterns highly similar to those in the Ethiopian Highlands. 

These predictions identify dry season crop growth along a reservoir near the city of Asasa, 

demonstrating that the developed irrigation prediction model is not bound by any administrative 

borders and can be applied where background phenological cycles are similar to those in regions 

where the model is trained.  

Two additional irrigation detection extensions contained in this chapter involve first 

predicting longitudinal irrigation growth from 2017 to 2021 near Hawzen, Tigray, to compute 

irrigation expansion over a five-year period. Next, prediction accuracy for the 2020 irrigation 

season in Tigray is assessed using the method of visual label collection introduced in Chapter V. 

Here, we determine that irrigation predictions for a year and spatial extent where the irrigation 

prediction model was not trained maintain levels of accuracy above 95%, proving the robustness 

of our detection methodology.  

Lastly, the addendum to this chapter contains a fully open-source implementation of the 

methodology introduced in Chapter V. In Chapter V, the Descartes Labs platform was used to 

generate Sentinel-2 imagery timeseries for irrigation detection. Here, I replicate that 

functionality using Google Earth Engine, a platform freely available to researchers. To prove its 

utility, this new open-source code is deployed for end-to-end model training and prediction for 

a region near Lake Tana in Amhara for the 2020 irrigation season. These new predictions 

demonstrate up to 99% agreement with the 2020 predictions introduced in Chapter V, revealing 

the robustness of the introduced irrigation detection methodology. 
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1. Irrigation detection extensions 
 
1.1 Irrigated segment evaluation 
 

Chapter V contains maps for predicted irrigation presence throughout Tigray and Amhara 

for 2020 and 2021. Evaluating the geometric distributions of these predictions yields insights 

about the sizes of predicted irrigated segments. Figure VI-1 contains cumulative density functions 

(CDFs) for total irrigated area and total irrigated segments, both plotted against the logarithm of 

the total irrigated segment area. Here, segments are defined as contiguous pixels predicted as 

irrigated surrounded by non-irrigated predictions. Positive predictions are linked using queen’s 

casexxi adjacency: If two positive (i.e., irrigated) predicted pixels are connected along corners or 

edges, they are considered part of the same segment.  

Figure VI-1(a) reveals that total predicted irrigated area in Amhara is constituted by larger 

segments compared to Tigray. In Amhara in 2020, segments less that 10 Ha and 100 Ha make up 

54% and 71% of irrigated area, respectively; segments smaller than the same thresholds in Tigray 

in 2020 make up 63% and 88% of irrigated area, respectively. For both Tigray and Amhara, 

predicted irrigated area in 2021 is constituted by smaller segments compared to 2020. This gap 

appears for all segments larger than 1 Ha, as an equal proportion of the states’ predicted irrigated 

areas is made up of segments less than 1 Ha for both regions in 2020 and 2021. However above 

1 Ha, both states contain larger predicted irrigated segments in 2020 compared to 2021. This 

finding mirrors the annual quantities of predicted irrigated areas in Tigray and Amhara, presented 

first in Chapter V and displayed in the legend of Figure VI-1(a), which determine an overall 

reduction in irrigated area from 2020 to 2021.  

 
xxi Queens case adjacency is named in reference to the movement pattern of a queen in chess.  



 

 277 

In contrast, Figure VI-1(b) shows minimal differences in segment area across years and 

regions for all predicted irrigated segments. For both years and states, approximately 99% of 

segments are less than 10 Ha in size. Where the distributions diverge is in the largest 1% of 

segments: For Amhara, these largest segments reach a size of 22,155 Ha in 2020 and 8844 Ha in 

2021; for Tigray, these largest segment areas are 883 Ha in 2020 and 235 in 2021. Comparing to 

Figure VI-1(b), one observes that the largest 1% of segments – i.e., those over 10 ha – makes up 

either a plurality or a majority of predicted irrigated areas, as is quantified in the preceding 

paragraph.  

The results contained in Figure VI-1 present characterizations of irrigated area segments 

larger than or equal to 0.1 ha. Per an assumption introduced in Chapter V, all predicted irrigated 

segments smaller than 0.1 ha are ignored, as these are likely isolated, anomalous predictions. 

Moreover, since the irrigation detection model utilized operates in a pixelwise fashion, no spatial 

relationships are considered during model inference. By limiting final predictions to only those 

residing in segments larger than or equal to 0.1 Ha, spatial relationships between adjacent pixels 

are incorporated and many false positive predictions are removed.  
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Figure VI-1: Cumulative distribution functions (CDFs) of (a) total irrigated area, and (b) total 
irrigated segments, plotted against logarithm base 10 of the irrigated segment area in hectares.   
 
 

Table VI-1 presents an accounting of the number and cumulative size of irrigated 

segments less than 0.1 Ha that are removed in this filtering process. This table shows that greater 

than 82% of all predicted irrigated segments in both Tigray and Amhara in 2020 and 2021 are 

smaller than 0.1 Ha, but that less than 18% of predicted irrigated area is ignored by removing 

these predictions. Here, the large quantity of small predicted irrigated segments underlines the 
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importance of filtering final predictions by a lowest allowable segment area. Without this 

filtering, the large number of small predicted irrigated segments causes substantial speckle in 

predicted irrigation maps, distracting from areas with more likely irrigation presence.  

 
Table VI-1: Effects of removing all predicted irrigated area segments less than 0.1 Ha.   

 Fraction of irrigated segments 
removed  

Fraction of irrigated area 
removed  

Tigray, 2020 0.86 0.17 
Tigray, 2021 0.88 0.18 

Amhara, 2020 0.82 0.12 
Amhara, 2021 0.84 0.14 

 
 
1.2 Prediction confusion due to varying background vegetation phenologies  
 

A key insight of the methodology presented in Chapter V is that there are spatial limits on 

the applicability of any model trained to detect dry season crop growth as an indication of 

irrigation presence. This insight is summarized in the spatiotemporal mixture map in Figure V-1, 

which presents the contribution of four distinct phenologies to background vegetation cycles for 

the entirety of Ethiopia. Here, areas of Ethiopia that appear red have vegetation cycles that 

closely match the red temporal endmember (tEM) shown in the bottom of Figure V-1; the same 

applies for blue and green areas of Ethiopia, while secondary colors indicates that the background 

phenology is best represented by a combination of multiple tEMs.  

As different dominant vegetation patterns are driven by different climatological 

conditions, one can assume that areas in a spatiotemporal mixture map that present in similar 

color gradients have similar weather patterns. The inverse statement also holds: Areas that 

present in different colors will contain distinct weather patterns. In Figure V-1, the Amhara and 

Tigray states are dominated by red hues and can be said to largely follow a single vegetation cycle 
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that aligns with the long rains during the months of June through August. Accordingly, both rainy 

and dry season vegetation will look similar across these areas; this is the assumption that 

underpins the applicability of the presented irrigation detection model throughout the entirety 

of both states.  

Outside the boundaries of Amhara and Tigray, divergent climatological conditions will 

yield vegetation cycles that will confuse trained irrigation detectors. For example, in the 

southeast of Ethiopia, persistent rains produce evergreen vegetation throughout most of the 

Southern Nations, Nationalities, and Peoples (SNNP) region. In such a rainy, evergreen 

vegetation-dominated area, a dry season crop detector trained to identify clear vegetation cycles 

will struggle. This confusion can also occur near the borders of Amhara and Afar, as Ethiopia’s 

regional borders often align with dominant climatological patternsxxii. In particular, the Oromia 

zone of Amhara – not to be confused with the Oromia region of Ethiopia – that abuts Afar 

presents as magenta in Figure V-1, indicating that vegetation cycles in this zone can be modeled 

through combinations of red (single) and blue (double) tEMs, also shown in Figure V-1.  

 

 
xxii Evidence of this alignment can be seen on the borders of Oromia-Amhara, Amhara-Afar, and Somali-Oromia in 
Figure V-1, where white administrative boundaries separate distinct color gradients.  
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Figure VI-2: Bitemporal irrigation map for Amhara, identical to the map presented in Figure V-13. 
A portion of the Oromia zone in eastern Amhara containing predicted irrigation in 2020 – signified 
in red – is outlined with a yellow rectangle.  
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Figure VI-2 shows the same bitemporal irrigation map introduced in Figure V-13, with a 

yellow rectangle outlining a portion of the Oromia zone in eastern Amhara. Contained within this 

yellow rectangle are a number of pixels predicted as irrigated in 2020, but not 2021, as is 

evidenced by the red hue. Henceforth, this area is referred to as “Bati”, the name of a nearby 

town.   

A closer look into the underlying land cover reveals a degree of irrigation misclassification. 

Figure VI-3 presents a high-resolution image of an area near Bati containing predicted irrigated 

pixels; this image is collected from Google Earth Pro. No cropland is immediately evident in Figure 

VI-3, and the vegetation that does exist appears to be either 1) evergreen riparian vegetation 

along the two East-West oriented stream banks; or 2) shrub vegetation in the triangular area in 

between. Why then were many pixels in this area of interest predicted as irrigated? 
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Figure VI-3: High resolution image near the town of Bati revealing non-cropped land cover for 
pixels that were predicted as irrigated during 2020. The image was collected in January 2019 and 
is located at 10.81°N, 40.15°E; the purple line indicates the border between Amhara and Afar. The 
image was retrieved from Google Earth Pro.  
 
 

Figure VI-4 presents MODIS enhanced vegetation index (EVI) timeseries containing annual 

vegetation cycling for a 250m pixel that overlaps many 10m positive irrigation predictions for 

2020 near the town of Bati. EVI timeseries are collected at a 16-day timestep from June 1, 2011 

to June 1, 2021; these timeseries are then grouped by year. Figure VI-4 shows primary July – 

September vegetation cycles that align with those contained throughout Amhara and Tigray. 

Moreover, secondary vegetation cycles during the smaller April – May belg rains are present in 
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most years. These secondary cycles are the reason for the magenta hue of this area in the Figure 

V-1: The red single cycle tEM needs to combine with the blue double cycle tEM to represent this 

secondary greening and senescence. Differences between the magenta hue along the 

Amhara/Afar border and the solid red hue throughout most of Tigray and Amhara indicate this 

difference in background vegetation patterns. 

Figure VI-4: Annual MODIS enhanced vegetation index (EVI) cycles collected near the town of Bati. 
Vegetation phenologies indicate greening and senescence that align with the primary cropping 
season from July – October, along with secondary vegetation cycles during the smaller rains of 
April and May. Anomalous winter vegetation during the 2019-2020 dry season is shown by the 
salmon-colored line.  
 
 

While these secondary vegetation cycles indicate growth not seen throughout most of 

Amhara and Tigray, they do not explain why the detection model predicted dry season 

(December – April) irrigation presence over non-cropped land near Bati in 2020. Figure VI-4 
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uncovers the reason for these positive predictions: The 2019-2020 dry season contains an 

anomalous vegetation cycle from November to January, as is indicated by the salmon-colored 

line. Here, this additional vegetation cycle is confused with irrigation, as many irrigated areas 

throughout Amhara and Tigray display a similar phenology. 

Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) precipitation 

estimates explain this anomalous vegetation cycle [265]. Figure VI-5 presents monthly CHIRPS 

precipitation data for June 2011 to June 2011, grouped by month. In all 10 years, primary July – 

September and secondary March – April rains are evident. However, from 2019-2020, additional 

rainfall events are predicted from October to December, culminating in an estimated 100mm of 

rain in November 2019. The 2019-2020 dry season vegetation cycle presented in Figure VI-4 can 

thus be attributed to these additional rains. Given the fact that dry season rainfall/vegetation 

cycles are present in only one of 10 years assessed, they are deemed uncharacteristic for the area 

of interest near Bati. 
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Figure VI-5: Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) monthly 
rainfall estimates near the town of Bati, grouped by year. Timeseries demonstrate primary rains 
from July – September, with secondary rains during March and April. Anomalous winter rains 
during the 2019-2020 dry season are shown in the salmon-colored line. 
 
 
1.3 Filtering irrigation predictions using an ESA land cover layer  
 

Chapter VI, Section 1.2 provides examples of misclassified irrigation predictions over non-

cropped areas. A certain level of this type of misclassification is expected since the irrigation 

detection classifier does not see any non-cropped land cover samples during training, and 

because the imposed prediction admissibility criteria will be imperfect. However, every effort 

should be made to filter out these misclassifications in the final irrigation prediction maps. As 
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such, this subsection explores the use of a European Space Agency (ESA) land cover (LC) map to 

restrict positive irrigation predictions to only areas assessed to be cropland. 

ESA recently published the WorldCover 2020 Map v100, a global LC map [301]. With its 

10m resolution, the map joins another recent product from ESRI and Impact Observatory [302] 

to offer the highest resolution of any publicly available global LC map. To create the ESA LC 

product, researchers generated labeled pixels using GEOWIKI. These training labels were paired 

with Sentinel-2 (S2) Level-2A (L2A) multispectral and Sentinel-1 (S1) radiometric terrain corrected 

(RTC) backscatter timeseries. Cloudy, saturated, or shadowed S2 pixels are removed using the 

scene classification layer of the L2A product. A gradient boosted decision tree algorithm – 

CatBoost –  is then used for model training [295].  As a final step, OpenStreetMaps [303], Global 

Human Settlement Layer [304,305], and Global Surface Water Explorer [306] auxiliary datasets 

are used in the determination of expert rules for improving prediction quality. The ESA 

WorldCover 2020 Map v100 achieves an overall accuracy of 74.4% across the 11 classes 

simulatedxxiii on the holdout validation tiles. In Africa, the map achieves 73.6% overall accuracy. 

Given the map’s extent, spatial resolution, and accuracy, its LC classifications are used to filter 

out positive irrigation predictions in the Ethiopian Highlands that fall on land not deemed to be 

cropland. In practical terms, this means changing all irrigated predictions over non-cropland to 

non-irrigated predictions.  

 
  

 
xxiii The 11 classes simulated in the ESA WorldCover 2020 v100 map are: tree cover, shrubland, grassland, cropland, 
built-up, bare/sparse vegetation, snow and ice, permanent water bodies, herbaceous wetland, mangroves, and 
moss and lichen.  
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Table VI-2: Effects of filtering positive irrigation predictions in Tigray with the 2020 ESA 
WorldCover v100 land cover layer.  

Zone Total Ha. Total 
Cropped Ha. 

Irrigated Ha., 
2020 

Filtered 
Irrigated Ha., 

2020 

Percent 
Filtered Out, 

2020 

Irrigated 
Ha., 
2021 

Filtered 
Irrigated Ha., 

2021 

Percent 
Filtered Out, 

2021 

Central 954,616 239,732 3710 3517 5% 3554 3382 5% 

Eastern 635,670 214,153 3068 2846 7% 2863 2679 6% 

Mekelle 52,313 33,243 556 505 9% 397 367 8% 

Northwestern 1,246,715 160,054 7439 6890 7% 2062 1805 12% 

Southeastern 533,334 199,714 2658 2475 7% 2301 2219 4% 

Southern 506,151 194,463 16,474 14,894 10% 8064 7898 2% 

Western 1,331,652 263,993 2278 1720 24% 2557 1800 30% 

Total 5,260,451 1,305,351 36,181 32,848 9% 21,799 20,149 8% 

 
 

Table VI-2 presents the impact of cropland filtering on positive irrigation predictions in 

Tigray. Overall, 8-9% of irrigation predictions are filtered out in both 2020 and 2021. These 

prediction removals are evenly distributed across all zones in Tigray except for the sparsely 

cropped Western Zone, which sees 24% of predicted irrigated pixels removed in 2020 and 30% 

removed in 2021.   
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Table VI-3: Effects of filtering positive irrigation predictions in Amhara with the 2020 ESA 
WorldCover v100 land cover layer. 

Zone Total Ha. Total 
Cropped Ha. 

Irrigated Ha., 
2020 

Filtered 
Irrigated Ha., 

2020 

Percent 
Filtered Out, 

2020 

Irrigated 
Ha., 2021 

Filtered 
Irrigated Ha., 

2021 

Percent 
Filtered Out, 

2021 

Awi 906,682 445,190 27,443 25,552 7% 20,547 17,388 16% 

Central 
Gondar 2,095,018 869,274 73,450 72,671 1% 50,954 50,278 1% 

East Gojjam 1,405,689 868,749 44,975 43,170 4% 33,888 32,831 3% 

North 
Gondar 684,247 199,760 7381 6752 9% 3367 3241 4% 

North Shewa 
(AM) 1,622,197 796,398 62,933 49,301 22% 21,362 18,709 12% 

North Wello 1,110,856 421,103 21,367 17,761 17% 8250 7829 5% 

Oromia 380,773 67,073 30,875 9877 68% 5285 3405 36% 

South 
Gondar 1,406,698 860,380 72,682 71,704 1% 43,046 42,375 2% 

South Wello 1,849,812 850,898 28,215 25,686 9% 16,302 15,403 6% 

Wag Hamra 890,004 182,373 447 339 24% 698 601 14% 

West Gojjam 1,348,158 955,505 97,206 94,429 3% 71,052 69,116 3% 

West 
Gondar 1,529,197 74,060 6180 681 89% 1342 203 85% 

Total 15,229,329 6,590,762 473,155 417,923 12% 276,093 261,350 5% 

 
 

The effects of cropland filtering on irrigation predictions in Amhara is more asymmetrical, 

per Table VI-3. In 2020, 12% of positive irrigation predictions are filtered out; only 5% of 

predictions in 2021 are filtered out. A number of highly agricultural zones – such as Central 

Gondar, East Gojjam, and West Gojjam – experience very little prediction filtering, on the order 

of 1-3%. In contrast, the zones with the least amount of cropland (as determined by ESA) see 
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large reductions in predicted irrigated area, due to a stricter filtering mask: the Oromia zone sees 

a 68% reduction in positive irrigations predictions in 2020 and a 36% reduction in 2021, while the 

Wag Hamra zone sees an 89% reduction in 2020 and an 85% reduction in 2021.  

Figure VI-6: Effects of prediction filtering using the European Space Agency WorldCover 2020 v100 
map. Many 2020 irrigation predictions in the Oromia and North Shewa zones are removed after 
filtering.  
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Figure VI-6 displays the distribution of filtered predictions in Amhara. While image 

resolution limitations occlude the locations of many filtered predictions, removed positive 

predictions in the Oromia and North Shewa zones on the Amhara/Afar border are clearly visible. 

As a reminder, the portion of the Oromia zone that appears as red in Figure VI-6 was the area 

explored in Chapter VI, Section 1.2. Accordingly, a method of removing these previously 

discussed misclassified positive predictions is demonstrated. However, a tradeoff will always 

remain when using auxiliary LC products for irrigation prediction filtering.  While cropland 

filtering can increase user confidence in predictions over diverse land cover types not seen by a 

classification model, filtered predictions will only be as accurate as the LC products. If an LC map 

used for filtering has very low accuracy for the classes in question, the resultant filtered 

predictions will be highly inaccurate themselves.  

 
1.4 Extension of irrigation predictions for Tigray in 2019 
 

To assess whether the significant decrease in irrigated area in Tigray from 2020 to 2021 

was in part due to inflated irrigated area predictions in 2020, the transformer-based irrigation 

detection model from Chapter V is deployed for Tigray in 2019.  An identical image collection and 

prediction process was deployed: S2 enhanced vegetation index (EVI) imagery for the entirety of 

Tigray was collected at a 10-day timestep between June 1, 2018 and June 1, 2019. The resultant 

imagery timeseries were then inputted to the trained classifier model to predict irrigation 

presence. All predicted values above 0.5 are considered irrigated; all those below are considered 

non-irrigated. Irrigated segments less than 0.1 Ha in size are similarly discarded.  

Figure VI-7 contains a tritemporal irrigation map for Tigray, with the new 2019 dry-season 

predicted irrigation map presented in the red channel of the map, the 2020 predicted irrigation 
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map in the green channel, and the 2021 predicted irrigation map in the blue channel. This 

tritemporal map contains substantial color, indicating that the locations of irrigation change 

across the three years modeledxxiv. Yellow and green pixels in the Northwest zone reveal 

irrigation around the city of Shire, particularly in the 2020 dry season. Red pixels in the South and 

East zones indicate areas where irrigation existed in 2019 and then shifted to other locations in 

2020 and 2021. In fact, the only part of Tigray with consistent irrigation from 2019 to 2021 is an 

area near the large-scale irrigation project outside of Rama in the north part of the Central zone.   

 

 
xxiv If the locations of irrigation remained constant throughout 2019-2021, predictions would appear as white.  
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Figure VI-7: Tritemporal irrigation map for Tigray. Irrigation predictions for 2019 are shown in the 
red channel; predictions for 2020 are shown in the green channel; and predictions for 2021 are 
shown in the blue channel. Secondary colors indicate positive predictions in two of the three 
presented years.  
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Table VI-4: Predicted irrigated area statistics in Tigray for 2019-2021, organized by zone.  

Zone Irrigated Ha., 
2019 

Irrigated Ha., 
2020 

Irrigated Ha., 
2021 Total Ha. Percent Change, 

2019 to 2020 
Percent Change, 

2020 to 2021 

Central 3454 3710 3554 954,616 7.4% -4.2% 

Eastern 5808 3068 2863 635,670 -47.2% -6.7% 

Mekelle 627 556 397 52,313 -11.4% -28.5% 

Northwestern 3291 7439 2062 1,246,715 126.0% -72.3% 

Southeastern 2876 2658 2301 533,334 -7.6% -13.4% 

Southern 16,625 16,474 8064 506,151 -1.0% -51.1% 

Western 1452 2278 2557 1,331,652 56.9% 12.3% 

Total 34,133 36,181 21,799 5,260,451 6.0% -39.8% 

 
 

To quantify the amount of irrigated area in Tigray from 2019 to 2021, Table VI-4 presents 

predicted irrigated areas statistics for the three years modeled. Table VI-4 shows that irrigated 

area in Tigray increased 6.0% from 2019 to 2020, followed by a -39.8% decline from 2020 to 2021. 

The quantities contained in Table IV-4 supports insights gleaned from interpreting the 

predominance of color in Figure VI-6: many zones in Tigray see marked change in irrigated area 

from 2019 to 2020, and then again from 2020 to 2021. Together, Table IV-4 and Figure VI-6 

support the finding that the location of irrigation in Tigray shifts from dry-season to dry-season, 

similar to the crop rotation patterns shown in the inset of Figure V-13. 

Lastly, the modest 6% increase in total irrigated area from 2019 to 2020 corroborates the 

conclusion that the substantial decrease in irrigated area in Tigray from 2020 to 2021 was not a 

result of excessive positive predictions in 2020.  While the locations of irrigated area changes 

significantly from 2020 to 2021, the similarity in total statewide quantities implies that these 
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estimates are closer to the expected amount of irrigation during years when Tigray is not wracked 

by civil conflict, as was the case in 2021 (and remains to this day). 

 
1.5 Irrigation predictions outside Amhara and Tigray 
 

Spatiotemporal characterization of dominant vegetation phenologies in Ethiopia per the 

methodology first introduced in [183] yields a map of dry-season irrigation detector applicability. 

Due to different input vegetation timeseries, a dry-season irrigation classifier trained in the 

Ethiopian Highlands (Amhara and Tigray states) will not perform well in areas dominated by other 

types of native vegetation patterns, such as in the Southern Nations, Nationalities, and People’s 

(SNNP) region, which is primarily covered by evergreen vegetation. A straightforward way of 

summarizing this assumption is to say that irrigation detectors trained over areas in Ethiopia’s 

phenology map that appear as one set of color gradients will only perform well over other areas 

that present in those same color gradients.  

Figure VI-8 displays the same phenology map first presented in Figure V-1. As a reminder, 

this phenology map is produced by extracting single cycle, double cycle, evergreen, and non-

vegetated temporal endmembers (tEMs) from a feature space representation of 250m MODIS 

EVI imagery collected between 2011 and 2021. A temporal mixture model is then applied using 

these four tEMs, a process that yields tEM abundances that are presented as the phenology map. 

Figure VI-8 also highlights a valley in southern Oromia near the town of Asasa that contains red 

color gradients, similar to those in Amhara and Tigray where the previously discussed irrigation 

detection model was trained, indicating that this area contains vegetation phenologies that 

approximate the single cycle tEM shown in Figure V-1. The inset of Figure VI-8 presents a 

magnified view of this part of the country: red gradients are clearly visible throughout much of 
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the valley that is formed by Mount Batu to the south and K’ech’a Terara to the north, with the 

exception of green pixels surrounding a reservoir directly east of Asasa.  

 
Figure VI-8: Phenology map for Ethiopia, identical to the one first introduced in Figure V-1. Figure 
inset contains a magnified look at an area near Asasa, Oromia, which primarily contains 
vegetation cycles that align with the single cycle temporal endmember shown in Figure V-1, as is 
the case in Amhara and Tigray. Administrative boundaries are shown in white.  
 
 

Figure VI-9 shows the CHIRPS rainfall and MODIS EVI timeseries for the area contained 

within the inset of Figure VI-8. Here, CHIRPS rainfall is presented as the average of all values 

within the inset, and EVI is presented for a single 250m pixel that appears bright redxxv. Figure VI-

 
xxv Inspection of other EVI timeseries near Asasa confirms that all pixels that appear red in the inset of Figure VI-8 
demonstrate similar phenologies to the one presented in Figure VI-9.  
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9 displays that the vegetation and precipitation conditions near Asasa are highly similar to those 

in Tigray and Amhara: Background vegetation cycles once annually with the long belg rains that 

occur from July to September, with smaller kiremt rains taking place beforehand in April and 

May. As such, the area near Asasa provides another part of Ethiopia in which the irrigation 

detection classifier can be deployed.  

 
Figure VI-9: (a) Monthly Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) 
rainfall estimates, and (b) 16-day MODIS enhanced vegetation index (EVI) timeseries for an area 
near Asasa, Ethiopia, shown in the inset of Figure IV-8. The CHIRPS rainfall timeseries are 
calculated as the average of the full spatial extent shown in the inset of Figure IV-8, while the 
MODIS EVI timeseries is presented for a single 250m pixel in the inset that appears bright red.  
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Figure VI-10(a) presents irrigation predictions for the area contained in the inset of Figure 

VI-8 for the 2021 dry season. Predictions are made on S2 EVI timeseries with the same irrigation 

detection model that was 1) introduced in Chapter V and used for inference across Tigray and 

Amhara, and 2) used to predict irrigation across Tigray in 2019 per Section VI-1.4. In this figure, 

one can see predicted irrigation along the extent of the Asasa reservoir, and along canals that 

extend to the south of the reservoir. Such spatial distribution of irrigation is highly similar to that 

predicted around Lake Tana (see Figure V-13). Figure VI-10(b) plots a series of 8 Sentinel-2 EVI 

timeseries predicted as irrigation. These plots reveal phenologies highly similar to those 

predicted as irrigated in Tigray and Amhara, as they contain a full vegetation cycle during the dry 

months February – April.  

Despite the promising initial results, one caveat about applying the irrigation detection 

model to this part of Ethiopia should be mentioned. Asasa experiences substantial cloud cover 

for most of the year. Persistent cloud cover prevented any irrigation predictions for the 2020 dry 

season, as not enough cloud-free imagery could be collected to create the classifier inputs. 

Moreover, the nearly straight portions of the plots in Figure VI-10(b) from June to December 

2020 indicate that many of the 10-day timestep values in this time range were interpolated from 

a few cloud-free images. These findings serve as a helpful reminder that despite algorithmic 

sophistication and increasing access to computational resources, any machine learning model 

that relies on optical imagery will always depend on the availability of cloud-free imagery.  
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Figure VI-10: (a) Irrigation predictions during the 2021 dry season near Asasa, Oromia. (b) Eight 
sample EVI timeseries for pixels predicted as irrigated in (a).  
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1.6 Expansion of irrigation from 2017 to 2021 near Hawzen, Tigray 
 

The S2 mission started collecting imagery in June 2015 after operationalization of the S2A 

satellite; with the launch of the S2B satellite, dual imaging operations began in June 2017. As 

such, S2 EVI timeseries can be constructed for the 2017-2021 dry seasons in Ethiopia, providing 

insight into 5 years of irrigation conditions. It is worth noting that despite imaging capabilities 

beginning in June 2015, creation of June 2015 – June 2016 EVI timeseries for 2016 dry season 

irrigation detection in Ethiopia is not possible due to a lack of collected imagery during the first 

months of operation. Figure VI-11 presents a timeseries of S2 imagery availability, courtesy of 

Descartes Labs.  

 
 

 
Figure VI-11: Sentinel-2 (S2) image availability as of March 3, 2022, per Descartes Labs.  
 
 

Given that the developed irrigation detection model requires only EVI timeseries as 

inputs, imagery from other satellite missions could be used for detection, after interpolation to 

the correct timesteps. The Landsat missions are of particular interest for this purpose, as their 

30m resolution and regular revisit closely approximate the spatial and temporal resolution of the 

S2 mission. However, Landsat-5, Landsat-7, and Landsat-8 each have unique limitations that 

preclude them from being used alongside S2 imagery to construct a longer analysis of irrigation 

presence in Ethiopia. In the case of Landsat-5, a longer gap between image collection timesteps 

and a lack of regular collection over Ethiopia prevents the download of EVI timeseries at a 10-day 
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timestep over Tigray or Amhara. Scan line corrector failure on the Landsat-7 missions means that 

22% of each collected scene contains invalid information, making the task of pixel interpolation 

between timesteps even more difficult. Lastly, the Landsat-8 mission began collecting imagery in 

March 2017, meaning that it provides no new temporal information compared to S2.  

Previously established methodology can therefore be applied to assess irrigation change 

in the Ethiopian Highlands between 2017 and 2021 using S2 imagery. To this end, a 14km-by-

22km location near Hawzen in Tigray is selected for longitudinal analysis of irrigation presence. 

Figure VI-12(a) presents a tritemporal irrigation map for this area, with predicted 2017 irrigation 

in the red channel, predicted 2019 irrigation in the green channel, and 2021 irrigation in the blue 

channel; Figure VI-12(b) shows a high-resolution true color image of the landscape taken from 

Google Satellite Hybrid in QGIS. Table VI-5 contains the predicted irrigated hectares for this area 

for the 5 dry seasons modeled, demonstrating a general increase in irrigated area from 482.1 Ha 

in 2017 to 613.3 Ha in 2021. 
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Figure VI-12: (a) Tritemporal irrigation map near Hawzen, Tigray, with 2017 predictions in the red 
channel, 2019 predictions in the green channel, and 2021 predictions in the blue channel. (b) 
Background Google Satellite Hybrid imagery collected from QGIS for the same area. 
 
 
Table VI-5: Predicted annual irrigated hectares for the specified 14km-by-22km area outside 
Hawzen, Ethiopia.  

 2017 2018 2019 2020 2021 

Irrigated 
Hectares 482.1 479.8 523.7 543.2 613.3 
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While Figure VI-12(a) and Table VI-6 communicate an overall increase in irrigated area 

outside of Hawzen, a couple caveats should be mentioned. First, as indicated by the 

predominance of color in Figure VI-12(a), the locations of irrigation in Tigray shift substantially 

from year to year. It is therefore possible, albeit unlikely, that the increase in irrigation seen in 

Table VI-5 is not representative of irrigation conditions throughout the entirety of Tigray for this 

period of time, and instead represent the migration of irrigation from external areas to land 

nearer to Hawzen. In fact, there are only two portions of Figure VI-12(a) that demonstrate 

consistent irrigation across the 5 years modeled. The first area is just south of the reservoir in the 

Northwest of the area of interest, an intuitive finding given that the reservoir will likely ensure 

water availability for nearby plots year over year. The second area is south of the city Adi Mocada 

and is much smaller, with no apparent standing body of water nearby. Altogether, Figure VI-12 

reinforces a finding first communicated by Figure VI-7: Ignoring the steep decline in irrigated area 

in 2021 that was likely due to ongoing civil conflict, irrigation in Tigray has generally increased 

over the modeled years, with large interannual shifts in the locations of irrigation. 

 
1.7 Confirmation of prediction performance in the 2020 irrigation season in Tigray 
 

As model training data and validation polygons collected by independent enumerators 

are both gathered across Amhara for the 2021 irrigation season, the same irrigation detection 

classifier first introduced in Chapter V needs to be separately evaluated for the 2020 irrigation 

season, ideally for a different part of the Ethiopian Highlands. While growing seasons in Ethiopia 

demonstrate interannual consistency, with irrigated crops being reliably grown during the 

December through April dry months, confirmation of model performance in another year will 

further reinforce our findings.   
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Accordingly, 159 new labeled polygons are collected across Tigray, denoting the presence 

or absence of irrigation in 2020. Of these 159 polygons, 93 cover irrigated areas and 66 cover 

non-irrigated areas. These new labeled polygons are not used for model training, but to assess 

the performance of the existing, trained irrigation detection model. Table VI-6 presents an 

overview of these polygons.  

 
Table VI-6: Overview of labeled 2020 irrigation polygons in Tigray.  

Class Polygon Count Total Area Average Polygon Size 

Non-Irrigated 66 13473 Ha 204.8 Ha 

Irrigated 93 1399 Ha 15.0 Ha 

 
 
Table VI-6 shows that while there are fewer collected non-irrigated polygons, these 

polygons cover nearly an order of magnitude more area. This is due to the nature of non-irrigated 

agriculture being the dominant method of crop cultivation in Tigray: there is simply more 

adjacent, non-irrigated cropland in the state than irrigated cropland, thus facilitating the 

collection of larger non-irrigated polygons.  

Figure VI-13 shows the distribution of the collected polygons throughout Tigray. Many of 

the polygons are gathered in the highly agricultural region of the Northwest Zone near Shire. 

Other polygons are collected near a large-scale irrigation scheme north of Axum in the Central 

Zone, and still others are acquired in portion of the rift valley in Tigray’s Southern Zone, near the 

borders with Amhara and Afar.  
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Figure VI-13: Distribution of collected polygons for model validation in 2020. Colored points show 
the centroids of each polygon, red for non-irrigated and blue for irrigated.  
 
 

After collecting the labeled polygons, the contained 10m Sentinel-2 EVI timeseries are 

cluster-cleaned. This process is completed in a manner identical to that introduced in Chapter V. 

The resulting, cleaned timeseries are presented in Figure VI-14, split into each class’s 20 dominant 

clusters. As a result of the cluster cleaning, 0.2% and 9.5% of the pixel samples in the non-irrigated 

and irrigated polygons are removed, respectively.  

 



 

 306 

 
Figure VI-14: Cluster cleaner non-irrigated (left) and irrigated (right) timeseries for the model 
validation in 2020 across Tigray. 
 

 
Performance is then assessed over the cluster-cleaned samples for the same model used 

for inference over Tigray and Amhara in Chapter V, a model which is only trained on labeled data 

collected across Amhara in 2021. For irrigated samples, the model achieves 96.8% accuracy 

(122387/126476); for non-irrigated samples, it achieves 98.7% accuracy (1327069/1344554). 

These performance metrics are consistent with other reported metrics for the model, both over 

held-out regions during training and over the validation set collected by independent 

enumerators across the entirety of Amhara. From this additional test, we can conclude that the 

presented irrigation detection model performs well across Tigray and in the 2020 irrigation 

season – a year from which no training data was derived. Here, the interannual consistency of 

irrigated and non-irrigated signatures across Amhara and Tigray (as evidenced by similar red 

gradients across these states in the phenological map presented in Figure V-1) result in an 

irrigation detection model that is robust across the Ethiopian Highlands from year to year.  
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2. Addendum 
 

To ensure replicability and accessibility, I have created open-source alternatives for all 

portions of the irrigation detection methodology first introduced in Chapter V. In Chapter V, the 

Descartes Labs platform was used to create the raw imagery timeseries for model training and 

inference. Subsequently, I replicated this functionality using Google Earth Engine, a platform that 

is freely available to researchers. To test this new functionality, I performed an end-to-end 

training and prediction process for a region near Lake Tana in Amhara for the 2020 irrigation 

season. This process is detailed below, with the resultant irrigation detection models 

demonstrating up to 99% alignment with predictions introduced in Chapter V. While some 

prediction variance is expected – the models are trained on different samples – the similarity 

between predictions 1) on imagery acquired from the Descartes Labs Platform using a model 

trained on 2021 irrigation data (Chapter V), and 2) on imagery acquired from Google Earth Engine 

using a model trained on 2020 irrigation data (this addendum) indicates that our irrigation 

detection methodology remains robust over differences in training data and imagery collection 

platform. 

 
Application in Amhara for the 2020 irrigation season 
 

To demonstrate the utility of the fully open-source alternative code, irrigation detection 

is performed for an AOI measuring approximately 100km-by-100km just east of Lake Tana. This 

AOI is shown in Figure VI-15.  
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Figure VI-15: AOI for deploying open-source irrigation detection methodology. Imagery provided 
by Google Satellite Hybrid. 
 

Another member of the Sustainable Engineering Lab collected polygons for model 

training within this AOI. Here, all polygons were collected for the 2020 irrigation season 

(December 1, 2019, to April 1, 2020). In total, 122 irrigated polygons measuring an average 0.95 

Ha and 101 non-irrigated polygons measuring an average 5.15 Ha are acquired. After generating 

Sentinel-2 (S2) imagery for these polygons and then cluster-cleaning the resultant timeseries, we 

are left with 7099 irrigated pixel timeseries and 52,095 non-irrigated pixel timeseries for model 

training. Figures VI-16 and VI-17 present the clusters for the non-irrigated and irrigated cleaned 

timeseries. Readers are referred to Chapter V, Section 3.3.2 for full details on the cluster-cleaning 

process.  
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Figure VI-16: Cluster-cleaned non-irrigated EVI timeseries derived from 101 hand-labeled 
polygons.  

 
Figure VI-17: Cluster-cleaned irrigated EVI timeseries derived from 122 hand-labeled polygons. 
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The breakdown of polygons and pixels across model training/validation/testing 

configurations is presented in Table VI-7. Here, polygons are split by a 70/15/15 ratio, with each 

configuration’s polygons yielding the cleaned pixel timeseries for that grouping.   

 
Table VI-7: Summary of labeled data, split by model training configuration. Pixel data is derived 
from cluster cleaning the labeled polygons.  

  Number of Labeled Polygons 

Label Type Training Validation Testing Total 

  Non- 
Irrigated Irrigated Non- 

Irrigated Irrigated Non- 
Irrigated Irrigated Non- 

Irrigated Irrigated 

Polygons 70 85 16 19 15 18 101 122 

Cleaned 
Pixels 37580 4363 6751 1633 7764 1103 52095 7099 

 
 
 The cleaned pixels are then used for model training. Training is performed on both the 

Catboost and Transformer architectures, the two highest performing model types explored in 

Chapter V. As in Chapter V, each model is trained for 30 epochs, with validation and test accuracy 

assessed over pixel timeseries from polygons withheld from the training set. Only data from the 

new Tana AOI are used for model training and evaluation. Table VI-8 presents the training results 

from for these two model architectures.  

 
Table VI-8: Model training performance over the new Tana AOI.  

 Testing Dataset Performance 

  Non- 
Irrigated Sample Accuracy Irrigated Sample Accuracy F1 Score 

Catboost 0.99 (7662/7764) 0.98 (1081/1103) 0.95 

Transformer 0.97 (7545/7764) 0.97 (1071/1103) 0.90 



 

 311 

From Table VI-8, we see that both models accurately predict irrigation presence over the 

reserved test samples, with all class accuracies above 0.97. The Catboost model performs slightly 

better than the Transformer model, although this margin is small.  

 Once trained, we deploy these irrigation detection models over the entirety of the new 

Tana AOI and compare predictions to those generated for the 2020 irrigation season in Figure V-

14. Here we observe that Catboost predictions have 94.5% agreement over all pixels 

(114.7M/121.4M) and that Transformer predictions have 99.1% agreement (120.3M/121.4M). 

This finding reveals that the transformer predictions will be more robust over a wider extent, as 

they are more similar to predictions made by a model trained on data from across the Ethiopian 

Highlands (Chapter V).  

Figure VI-18 shows the 2020 irrigation predictions from this addendum’s Transformer 

model next to a high-resolution image of the AOI from Bing Aerial. This figure reveals a high 

concentration of irrigation predictions in the flood plains directly east of Lake Tana, as is 

expected.  
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Figure VI-18: (a) Bing Aerial high resolution imagery, and (b) 2020 irrigation predictions from this 
addendum’s Transformer model for the new Tana AOI.   



 

 313 

Summary of new scripts 
 

There are five new Google Colaboratory notebooks that contain the code necessary to 

replicate the irrigation detection methodology in a fully open-source manner. All code, imagery, 

predictions, and saved model files are stored at gs://gee_irrigation_detection.xxvi  

The first notebook – 0_s2_imagery_upload – creates the 36-timestep timeseries of S2 

imagery using Google Earth Engine. These uploaded images are neither smoothed nor 

interpolated, and accordingly have many missing pixels due to cloud cover. This notebook 

generated imagery for both training (i.e., for smaller, hand-labeled polygons), and for inference 

(i.e., for a larger continuous extent). For inference, the notebook will split a larger AOI into tiles 

approximately 2500px by 2500px.   

The second notebook – 1_clean_labeled_data – takes imagery uploaded over hand-

labeled polygons for training, converts the S2 timeseries within the polygons to CSVs, and then 

performs cluster-cleaning. There is also a function at the end of the notebook for converting 

these cleaned CSVs to tfrecords for model training. Next, 2_smooth_inference_imagery smooths 

and interpolates the S2 imagery timeseries uploaded for inference.  

Model inference is performed by 3_irrigation_detection_inference. This notebook loads 

a pretrained model, and then uses it to predict over the smoothed, interpolated inference 

timeseries. Lastly, 4_utils contains helper functions for the prediction process, including 1) a 

function that converts saved Transformer models to a format that can be more easily uploaded 

and accessed, and 2) a function that compares model predictions.  

 
xxvi As this is a Google Storage Bucket affiliated with a Columbia project, it cannot be made public. However, access 
to this bucket can be granted upon request.  
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Together with the training scripts on a Google Cloud Platform virtual machine and the 

Earth Engine script for collecting hand-labeled polygons (also saved in 

gs://gee_irrigation_detection), these 5 notebooks provide all the functionality necessary for 

replicating the irrigation detection methodology in an open-source manner.  

 
Notes on Google Earth Engine compute timing 
 

Google Earth Engine has internal compute restrictions to ensure that resources are 

distributed fairly across users. Unfortunately, these restrictions are opaque, and it is difficult to 

accurately estimate the time jobs will take. To provide timing estimates to future researchers, I 

recorded how long portions of the new GEE methodology took for this addendum’s application: 

• Generating 0.25 degree by 0.25 degree (approx. 2500px by 2500px) Sentinel-2 EVI 

timeseries for inference takes approximately 45 minutes each. 

• Generating Sentinel-2 EVI timeseries over hand-labeled polygons for training 

takes approximately 1:40 minutes per polygon.  

• Predicting over a 0.25 degree by 0.25 degree Sentinel-2 EVI timeseries using the 

Catboost model takes approximately 1:20 minutes each.  

• Predicting over a 0.25 degree by 0.25 degree Sentinel-2 EVI timeseries using the  

Transformer model (with GPU acceleration enabled on Google Colaboratory) 

takes approximately 11 minutes each (without the GPU, this takes 5x as long).  
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Chapter VII: Contextualizing the impact of productive electricity demand on energy 
system planning 

 
 
Abstract 

In all electricity system planning efforts, the shape and nature of electricity demands 

remain paramount. Among the different types of electricity demand, productive demand – 

demand for agricultural, commercial, or industrial activities – has substantial potential for growth 

across sub-Saharan Africa generally and Ethiopia specifically. Moreover, the size and potential 

flexibility of this productive demand ensures its importance for future electrification efforts. 

To connect predicted irrigated area back to its energy system planning implications, a 

linear program called the Irrigated System Electrification (ISE) model is introduced for exploring 

least-cost methods of satisfying combined residential and productive electricity demand for 

various system configurations. Model simulations indicate that interconnected systems with 

access to grid power yield the lowest levelized costs of electricity at $0.164/kWh. In the absence 

of grid power, a system of solar, battery, and diesel that facilitates irrigation over a 300m radius 

area corresponds to a levelized cost of electricity of $0.272/kWh; analogous plot-level (0.2 ha) 

systems can meet demand at a cost of $0.397/kWh.   

 
1. Electricity demand types and energy system planning 
 

Energy services, the benefits that energy carriers produce for human well-being, are a 

critical foundation for sustainable growth and the maintenance of social welfare [307]. Higher 

quality, more accessible energy services provide significant benefits on an individual level and in 

the aggregate: A 2002 study found the total benefit of providing electricity to a typical, 
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nonelectrified Philippine household to be $105–$195 (USD 2019) per month [308], while higher 

annual electricity consumption correlates to increased national GDP per-capita, as is shown in 

Figure VII-1 [309].  

 
Figure VII-1: Log-log plot of GDP per capita (USD) vs. annual electricity consumption (kWh), 2014  
[309]. 
 
 

Energy systems – defined as all components related to the production, conversion, 

delivery, and use of energy – provide energy services [310]. Electricity systems, components of 

energy systems more broadly, are of particular importance in delivering energy services: 

Electricity grids supply consumers with affordable energy, which, depending on the modernity of 

the system and the fuel mix of grid-connected generators, can be clean, reliable, and delivered 

at the flick of a switch. Given that electricity systems are complex, massive organisms upon whose 

reliable function billions of people depend, they cannot be experimented upon in real time; as a 
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result, computational models provide a valuable tool to assess future energy system scenarios 

under a wide range of assumptions [311]. However, electricity system modeling necessarily 

involves a large amount of simplification, and one must be careful that at the end of the modeling 

process, the model faithfully represents the original system [312]. Because models will, at best, 

accurately simulate a version of real-life electricity systems, their value must be in giving insights, 

not strict quantitative predictions.  

Nevertheless, system models can facilitate informed policy and planning strategies, a 

prerequisite for sustainable development. Electricity models have been created for a vast array 

of settings; they vary in terms of their overall objective, considered available technologies, 

temporal and spatial resolutions, time-periods modeled, inclusion of existing infrastructure and 

physical constraints, and considered costs [313]. As a result of differences in scoping and intent, 

there exists a significant gulf in electricity system planning approaches and tools used in higher-

income and lower-income settings, distinctions which are discussed below.  

 
1.1 Electricity system planning in higher-income settings 
 

As explored in Part I of this dissertation, electricity system planning in higher-income 

settings is focused primarily on decarbonization [314]. More specifically, this means realizing 

ambitious renewable electricity targets [1], meeting renewable generation capacity goals [141], 

and prioritizing electrification of liquid fuel-intensive energy end-uses, including heating and 

transport [315]. In planned transitions away from carbon-intensive electricity systems, 

researchers have identified the crucial role of system flexibility [316]. Future systems will likely 

depend on non-dispatchable energy sources such as wind and solar generation; accordingly, 

there will be a need for battery storage, demand response, fast-ramping generation capacity, and 
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other flexibility measures to integrate these low-carbon alternatives [317]. As a result of the 

efforts of planners, researchers, policy-makers, business leaders, and a suite of other engaged 

individuals, there has been a rich, public dialogue over the tradeoffs of certain decarbonization 

strategies, one that is currently shaping energy system policy in higher-income settings: In the US 

alone, seven states have recently passed major climate legislation [3]. 

 
1.2 Electricity system planning in lower-income settings 
 

Electricity system development will have a significant impact on the growth of lower-

income settings. Despite many parts of the world requiring better access to electricity, the 

following discussion of system planning in lower-income settings will focus on the African 

context, as this is where Professor Modi and the Sustainable Engineering Lab’s (SEL) recent work 

has focused. With 20% of the world’s population, Africa accounts for only 6% of global energy 

consumption and 3% of electricity demand [177]. In the coming decades, electricity networks are 

likely to undergo wholesale transformation, as they will both need to provide power to the 700 

million people across sub-Saharan Africa currently living without electricity access and to 

accommodate the 4-fold increase in overall demand that is predicted for 2040 [177]. 

Excluding South Africa, the entire installed electricity generation capacity of sub-Saharan 

Africa is 28 GW, equivalent to that of Argentina [318]. Electricity access also lags stated goals: As 

of 2018, sub-Saharan Africa has an electrification rate of 45% [177] and an average per-capita 

electricity consumption of 488 kWh per year, or 5% of average US consumption [319]. While this 

is a comparatively low access rate – 94% of the population in developing countries in Asia has an 

electricity connection – significant progress has been made in recent years: The number of people 
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gaining access to electricity has doubled from 9 million per year between 2000 and 2013 to 20 

million per year between 2014 and 2018.  

The reasons for incomplete electricity access in Africa include a lack of generation 

capacity; an absence of proper grid infrastructure; regulatory impediments to maintaining and 

investing in infrastructure; and a large portion of the population living in remote areas [319]. An 

inability to provide reliable electricity has also led to the growth of expensive, on-site diesel 

generators for commercial, industrial, and even residential end-uses. On the grid side, a lack of 

planning and operational maintenance has resulted in power systems that average 18% 

transmission and distribution losses, which in turn has increased dependence on large dams and 

expensive diesel plants. Furthermore, growing demand for transport fuels and inefficient 

refineries have made Africa the largest importer of refined fuel products in the world; despite 

recent discoveries of substantial natural gas reserves, especially in East Africa, African natural gas 

production remains 6% of the global total [177]. This high dependence on imported fuel creates 

the dual problems of supply and price variability: Electricity producers will curtail supply under 

low-price conditions, while consumers will suffer economic losses during high-price periods 

[319].  

 
1.3 Types of electricity demand by end-use 
 

Electricity demand is usually divided into residential, commercial, industrial, and 

transportation sector contributions. Within these sectors, multiple electricity end-uses exist that 

differ in terms of their scale, shape, flexibility, and penetration in various regions of the world. 

We can also subdivide types of electricity consumption into existing and latent demands: Existing 

demand, representing current consumption; and latent demand, a quantification of future 
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electricity consumption that will exist once other energy end-uses are electrified, or electricity 

access is improved.  Some electricity end-uses are particularly relevant to this dissertation are 

characterized below.  

 
1.3.1 Lighting, refrigeration, and household appliances 
 

Lighting, refrigeration, and household appliances make up a significant portion of 

residential and commercial electricity consumption. In the US, the EIA estimates that lighting 

accounts for 8% of total electricity consumption [320]; refrigeration accounts for 6% of 

residential electricity, which as a sector, constitutes 38% of total electricity consumption [321]. 

In the absence of the rapid advancement of appliance and demand-side management 

technologies, these electricity demands will remain non-schedulable, requiring other portions of 

the electricity system to respond flexibly to their presence. 

In lower-income settings, these basic energy services are often the first met by a new 

electricity connection, as Professor Modi has shown in previous projects [322,323]. Accordingly, 

substantial latent demand is predicted for residential electricity exists in sub-Saharan Africa; 

however, until adoption of high-consumption household appliances like air-conditioners is 

widespread, residential demand will likely remain relatively small, and in many cases, will not 

economically justify a grid connection. 

 
1.3.2 Heating and cooling  
 

A recent report from SEL alumnus Mike Waite and Professor Modi found that 30% of US 

heating energy demands are being satisfied by electricity, either through resistive space heating 

or high-efficiency electric heat pumps; fossil fuels supply the remaining 70% of demand [324]. 
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Given that emissions from electric heating will track the overall emissions rate of the grid, pairing 

renewable electricity generation with heat pumps offers the only realistic path to substantial 

decarbonization of the heating sector. Transitioning current heating infrastructure to electric 

options will require significant capital investments; managing the shape of the demand profile 

will also be critical for system planning considerations, as a large increase in peak demand will 

require significant buildouts of peaker plants and grid infrastructure. In the US, full electrification 

will increase aggregate peak loads by 70%, while retaining some fossil fuel backup supports 97% 

of heating electrification without new peak loads [324].  

In 2019, electricity use for space cooling in US residential and commercial sectors was 

10% of overall electricity consumption [320]. Cooling demand is climate and weather-driven: 

Hotter regions of the world measure more cooling degree days (CDDs), an index for overall 

cooling energy requirements. While the number of annual population-weighted CDDs in the US 

has generally increased since 1950, in part due to a warming planet, electricity use for cooling 

has skyrocketed in tropical countries that have recently achieved middle-income status: 

Residential electricity consumption has increased 2500% since 1990 [309], while air conditioners 

sales grew by 160% from just 2012-2016 [325]. It is likely that sub-Saharan Africa will see similar 

increases in electricity demand for cooling in the coming decades as economic growth continues 

and the region becomes even warmer.   

 
1.3.3 Productive uses 
 

Productive demand refers to electricity requirements for agricultural, commercial, or 

industrial activities. More than other types of electricity load, productive demand is used to 

enhance health and income [326]. In sub-Saharan Africa, where there is substantial need for 
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modern energy services to improve health outcomes and provide economic opportunity, the IEA 

predicts productive demand will quadruple by 2040, growth which has serious implications for 

future electricity systems.  

Of the many productive electricity end-uses, Part II of this dissertation focuses on 

electricity demand for irrigation, which plays an important role in improving agricultural 

productivity and increasing incomes [177]. As expected, irrigation is more beneficial during 

periods of drought or inconsistent rainfall; as climate conditions continue to become more 

extreme and variable, reliable access to water is an important step in improving food security 

[327]. A study in India found that agricultural electricity demand is price elastic: Affordable, grid-

priced power can facilitate a large increase in consumption, while higher cost, less reliable 

options can severely depress the adoption and use of electricity for productive purposes [328]. 

Relatedly, researchers in Ethiopia founds that the average income of non-irrigating households 

was half that of irrigating households [181]. These studies reinforce the need for rigorous 

planning of grid extensions and other modern energy services that deliver electricity 

inexpensively, for only then will individuals be able to realize health and income gains from 

increased productive electricity consumption. 

 
1.4 Impact of productive electricity demand on energy system economics 
 

A more concrete example illustrates how productive demand impacts the viability of 

electricity provision services. Figure VII-2 presents a representative residential electricity demand 

curve for a consumer in a lower-income setting – this is not a formal electricity demand curve, 

but an estimated one based on previous SEL experience. Here, the intersections of the dashed 

lines represent costs and consumptions associated with various electrification technologies. At 
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the top of the figure, a small solar home system can produce 1 kWh of electricity per month at a 

cost of 4 dollars. Consumption increases as price drops along the curve until the last displayed 

point, which shows the consumption and cost associated with a grid connection.  

 

 
Figure VII-2: Simulated residential electricity demand curve. Likely electricity service mechanisms 
for paired electricity costs ($/kWh) and electricity consumption quantities ($/kWh) are shown next 
to the demand curve, along with estimated consumer surplus, grid connection costs, and annual 
payments to the utility.  
 
 

From Figure VII-2, the consumer surplus of having grid-price electricity available is 

$168/year. This quantity can be compared to a grid connection cost of approximately 

$1000/customer, and the electricity payments received by the utility, $48 dollars per customer 

per year. As such, extending the grid to a consumer with this electricity demand profile is a risky 

proposition for utilities, who under the best of circumstances, will recoup their investment in 20 

years.   
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In contrast, Figure VII-3 displays the demand curve for a customer with both residential 

and productive electricity requirements. Compared to a hypothetical customer with only a 

residential electricity load, this demand curve shows that consumption increases more quickly as 

electricity cost decreases. With increased demand, grid-priced electricity results in a consumer 

surplus of $288/year and payments to the utility of $120/customer-year, quantities that are 2x 

and 2.5x larger than their respective values in Figure VII-2. Accordingly, the utility’s initial $1000 

investment in a grid-connection will be repaid in approximately 8-9 years instead of 20. By first 

providing grid connections to areas with productive demand, utilities can recover investments 

more quickly, a process that allows for continued grid expansion. 

 

 
Figure VII-3: Simulated residential and productive electricity demand curve. Estimated consumer 
surplus, grid connection costs, and annual payments to the utility are presented alongside the 
demand curve.  
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2. The Effects of Productive Electricity Demand on Energy System Design 
 

As previous chapters have established methods of detecting irrigation in the Ethiopian 

Highlands, predicted irrigated areas can now be inputted to energy system planning models to 

understand the effect of productive electricity demand. To this end, the Irrigated System 

Electrification (ISE) model is introduced, a linear program that solves for lowest-cost 

combinations of energy capacity and dispatch required to meet combined household and 

productive demand. The ISE model is parameterized based on SEL experience with sub-Saharan 

energy system costs and constraints, and applied to a case study near Gebedge, Ethiopia, where 

a specific orientation of irrigated area is predicted. The following subsections detail the irrigated 

area prediction process, ISE assumptions and governing constraints, and model results for a 

series of configurations that range from isolated household to grid-connected systems. 

 
2.1 Predicting irrigation presence near Gebedge, Ethiopia and defining grid network topology 
 

The irrigation detection model introduced in Chapter V is deployed over a 5.12km-by-

2.56km area near Gebedge, Ethiopia, located at 12.87°N, 37.74°E. Irrigation predictions are made 

at 10m using Sentinel-2 (S2) imagery, and the resulting predictions are polygonized with all 

polygons smaller than 3 Ha being removed. Figure VII-4(a) shows the polygonized predictions in 

red for the area of interest on top of high-resolution Airbus imagery collected during the 2019 

dry season. For the most part, these polygons outline vegetated areas among a largely 

barren/non-vegetated background. In total, 257 Ha of the 1310 ha are predicted as irrigated.  

Next, predicted irrigated areas are split into 300m radius irrigation zones. Here, 300m 

represents the longest distance that can be connected with low-cost low voltage (LV) wire. The 

exact locations of the 300m irrigation zones are determined to maximize the overlap between 
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zones and predicted irrigated areas; 19 zones are selected, as any additional zone will not cover 

more than 3 ha in supplementary predicted irrigated area. Figure VII-4(b) shows the orientation 

of irrigation zones for the case study, with zonal centroids assumed to be the locations of on farm 

electricity generation/storage systems as well as the sites of interzonal grid connection.  

Figure VII-4(c) displays a grid network topology that connects the predicted irrigation 

zones through a combination of medium voltage (MV) and LV wire, shown in orange and blue, 

respectively. The grid network is determined by a two-level network design algorithm, a SEL-

developed tool that has been deployed to estimate optimal electrification strategies in Kenya 

[329]. From the modeled grid network, total MV and LV wire lengths are calculated, which 

contribute to overall system cost in specific simulated energy system configurations.  
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Figure VII-4: (a) Polygonized irrigation predictions (red) near Gedebge, Ethiopia (12.87°N, 
37.74°E). Predictions span a 2.56km x 5.12km rectangle and are presented on top of Airbus 
imagery from December 21, 2018, hosted in Google Earth Pro. (b) Irrigation zones (300m radius 
orange circles) for polygonized irrigation predictions. (c) Proposed electric grid network with MV 
(orange) and LV (blue) lines serving irrigation zone centroids (yellow).  
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2.2 Energy system configurations and modeling assumptions 
 

To understand the cost-effectiveness of various methods of meeting combined domestic and 

productive demand, four separate energy system configurations are tested. 

1. Each farm, assumed to be 0.2 Ha in size, has its own generation system (solar, diesel, and 

battery), with no LV wire requirements.  

2. Each irrigation zone has its own generation system (solar, diesel, and battery) shared by all 

farms in the zone. Additional wiring is required within the zone to connect all farms to the 

central generation system.  

3. Configuration (2), plus zones are connected by the MV and LV network shown in Figure VII-4. 

4. Configuration (3), with grid electricity available to the network.  

 

The network topology introduced in Figure VII-4 contains 19 unique irrigation zones that 

cover 257 ha. Of this total area, 10% is considered irrigated. Moreover, for zone-level systems 

(Configurations (2), (3), and (4)), 150m of LV wire per irrigated hectare is assumed for connecting 

boreholes located at each farm to centralized solar generation. Given 10% irrigation, this 

corresponds to 3855m of LV wire. Connecting all irrigation zones via a grid network, as is the case 

in Configurations (3) and (4), requires an additional 7904m of MV wire and 4691m of LV wire.  

In parameterizing ISE, assumptions are drawn from previous SEL experience. These values are 

found to be roughly in line with recent development reports and values specified by lab 

collaborators; however, a full sourcing of system assumptions is left for future work.  

ISE is formulated as a mixed integer linear program, where optimal power flow and solar, 

diesel, and battery capacities are determined over a rain-free 5-day period, T.  The model has an 

hourly time resolution, is programmed in Python, and is solved with Gurobi. Similar to the energy 
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system models introduced in Part I, ISE is spatially heterogenous, with the definition of spatial 

nodes depending on the configuration: For configuration 1, nodes are defined as individual farms 

plots and are not connected. For configurations (2)-(4), nodes are defined as the 300m radius 

irrigation zones pictured in Figure VII-4; in configurations (3) and (4), these zones are connected 

via an LV and MV grid network.  

 
2.2.1 Objective function 
 
The objective function of ISE is defined as follows: 

  

𝑜𝑏𝑗 = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒(PQ𝐶'31-2 ∗ 𝑋'31-2,& + 𝐶5-(( ∗ 𝑋5-((,& +	𝐶9&$'$1 ∗ 𝑋9&$'$1,&
&∈@

+	P𝑐9&$'$1 ∗ 𝐺9&$'$1,&( + 	𝑐*2&9 ∗ 𝐺*2&9,&(
A

(HT

T 

(VII-1) 
 
where 𝐶W is the annualized cost of technology Y;  𝑋W,&  is the capacity of technology Y installed at 

node i; 𝑐9&$'$1  is the cost of diesel fuel; 𝐺9&$'$1,&(  is diesel-generated electricity;   𝑐*2&9  is the grid 

electricity tariff; and 𝐺*2&9,&(  is the amount of grid electricity consumed at time t in node i. 

Annualized costs for technology Y, 𝐶W, are determined for interest rate j; technology-

specific annualization period 𝑃W, and per-unit capacity cost 𝐶𝐴𝑃W. Eq. (VII-2) presents this 

formulation, where the X
YOX

 coefficient represents the adjustment of annual costs to those for a 

5-day simulation period: 

 

𝐶W =	
5
365 ∗

𝑗 ∗ (1 + 𝑗)!6
((1 + 𝑗)!6 − 1) ∗ 	𝐶𝐴𝑃W 

(VII-2) 
 



 

 330 

We note that adjustment of the annualized capacity costs for the 5-day simulation period 

will result in the lowest possible LCOEs for generated electricity, as these costs are being spread 

over a period of time in which all capacities will be utilized. If instead the ISE optimization model 

is solved and costed over the entire year, LCOE will increase, as there will be times during the 

simulation period when the solar/diesel/battery system is not fully utilized, as will be the case in 

the rainy season. 

 
2.2.2 Energy balance 
 

Each node in the system contains hourly timeseries of fixed domestic electricity load, 

𝐷/&%$9,&( , and a productive electricity load, 𝐷&22&*,&( , both proportional to the amount of irrigated 

land present in the node. Each node also contains an identical solar potential timeseries, 𝑊'31-2
( . 

The fixed domestic load and solar potential timeseries are presented in Figure VII-5; these 

timeseries repeat for every day in the 5-day simulation period. In contrast, nodal hourly 

productive electricity demand is a flexible quantity, constrained to sum to the full nodal 

productive electricity demand, 𝐷&22&*,&
/011 , over the entire simulation period per Eq. (VII-3). This 

designed flexibility allows the model to meet the productive electricity demand during times 

when energy is abundant, as is the case during afternoon hours when fixed demand is low but 

solar generation potential is high. 

 

P𝐷&22&*,&( =	𝐷&22&*,&
/011

A

(HT

 

(VII-3) 
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Eq. (VII-4) presents the full ISE energy balance equation:  
 

 
𝑋0'+'31-2,& ∗ 𝑊'31-2

( + d5-((,&
( −	g5-((,&

( + 𝐺9&$'$1,&( + 𝐺*2&9,&( 	≥ 𝐷/&%$9,&( + 𝐷&22&*,&(  
(VII-4) 

 
where d5-((,&

(  is battery discharge, and g5-((,&
(  is battery charge. Excess generation in Eq. VII-4 is 

attributed to solar generation and is calculated by the slack in the constraint. 𝐺*2&9,&(  is only 

available for Configuration (4) simulations.  

 

 
Figure VII-5: Daily timeseries of solar generation potential and normalized fixed household 
demand for the ISE optimization model. Daily timeseries are repeated every day within the 5-day 
simulation period.  
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2.2.3 Solar 
 

Solar power is a decision variable in the optimization model. It is assumed to have an 

annualization rate of 0.171 – corresponding to 15% interest paid over 15 years – with decreasing, 

piecewise per-unit capacity costs, as is shown in Table VII-1:   

 
Table VII-1: Piecewise solar capacity costs. 

kW 0-1 1-3 3-10 10-100 >100 
$ 3000 2500 2000 1500 1000 

 
 

The solar generation potential timeseries is extracted for North Gorda, Ethiopia, from the 

European Commission Photovoltaic Geographic Information System [330]. The timeseries is 

scaled to have a capacity factor of 25%, and is repeated for each of the 5 days in the simulation 

period T. 

 
2.2.4 Battery storage 
 

The optimization model also includes storage capacity as a decision variable, 𝐸5-((,&( . Here, 

storage characteristics are loosely based on available lithium-ion battery capabilities. The 

following assumptions are specified:  An annualization rate of 0.298 – corresponding to 15% 

interest paid over 5 years; a $250/kWh per-unit cost; a power-to-energy ratio of 1:4; and a one-

way efficiency, 𝜂5-((, of 95%. Battery storage constraints are presented in Eqs. (VII-5) – (VII-8). 

 
𝛿5-((,&(

𝜂5-((
−	𝜂5-(( ∗ 𝛾5-((,&( = 𝐸5-((,&A − 𝐸5-((,&( 		, ∀𝑡 = 0 

(VII-5a) 
 

𝛿5-((,&(

𝜂5-((
−	𝜂5-(( ∗ 𝛾5-((,&( =	𝐸5-((,&(+B − 𝐸5-((,&( 		, ∀𝑡 > 0 

(VII-5b) 
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𝐸5-((,&( ≤ 𝑋5-((,&  
(VII-6) 

 

𝛾5-((,&( ≤
𝑋5-((,&
4  

(VII-7) 
 

𝛿5-((,&( ≤
𝑋5-((,&
4  

(VII-8) 
 
 
2.2.5 Diesel generation  
 

In the absence of grid power or battery dispatch, diesel generation is used to meet 

electricity demand for the simulated energy systems. Here, the following assumptions are 

stipulated: An annualization rate of 0.199 – corresponding to 15% interest paid over 10 years; a 

per-unit cost of $400/kW; a fuel cost, 𝑐/0$1  of $1.25/L; a fuel energy content of 10.6 kWh/L; and 

an efficiency,	𝜂9&$'$1, of 30%. Eq. (VII-9) presents the relationship between 𝑐/0$1  and the per-kWh 

cost of diesel-generation electricity, 𝑐9&$'$1:  

 

𝑐9&$'$1 =	
1

10.6 ∗ 𝜂9&$'$1
∗ 𝑐/0$1 	 

 
(VII-9) 

 
2.2.6 Grid costs 
 

For model configurations in which either low voltage (LV) or medium voltage (MV) wiring 

is required, the following assumptions are used: An annualization rate of 0.16 – corresponding to 

15% interest paid over 20 years; a per-unit MV cost of $10/m; a per-unit LV cost of $5/m, and a 

grid electricity tariff of $0.06/kWh.  



 

 334 

2.2.7 Irrigation and pumping system  
 

To characterize the irrigation and pumping systems that deliver water to the irrigated 

areas, a 5-day water requirement of 35mm/m2 is adopted. Each farm is assumed to have a size 

of 0.2 ha. On-site pumps are specified to have a head of 50m, an efficiency of 60%, a minimum 

pump operation time of 2 hours, and a minimum pump size of 1 kW. Altogether, these 

assumptions yield an electricity load for irrigation equivalent to 15.89 kWh/ha/day; over the 5-

day simulation period, the full flexible productive load, 𝐷&22&*,&
/011 , equals 79.45 kWh/ha.   

 
2.2.8 Fixed household load 
 

Fixed household load, 𝐷/&%$9,&( , is determined based on the average of the daily energy 

patterns for the 45 lowest usage circuits in [331]. Figure VII-6 shows the household demand 

timeseries for these lowest 45 consumers, with the average in bold. 𝐷/&%$9,&(  is repeated for each 

of the 5 days in the simulation period T.  

 
Figure VII-6: Daily energy consumption timeseries for the 45 lowest consumers in [331]. The 
average timeseries in bold constitutes the fixed household load timeseries in ISE simulations.   
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2.3 Energy system optimization results 
 

Table VII-2 contains results for the four configurations considered in the case study.  The 

table details the configuration description, the average electricity demand, the amount of 

medium and low voltage wire present, and in the final four columns, results returned by the least-

cost optimization model. The last column presents the levelized cost of electricity, or LCOE, for 

each configuration, which can be understood as the all-in cost of electricity generation and 

distribution divided by the total electricity produced. 

Table VII-2 shows that Configuration (1) – with farm level generation systems – offers the 

most expensive method of meeting the combined electricity demand with an LCOE of 

$0.397/kWh. Transitioning to an irrigation-zone based generation system, as is achieved in 

Configuration (2), brings cost savings of nearly 30% ($0.272/kWh), as 177 kWh less battery 

capacity is needed to meet the electricity demand, along with a 12 kW reduction in the required 

solar capacity. Configuration (3) does not result in any cost reductions; in fact, the cost of 

interconnecting the independent irrigation zones increases LCOE to $0.289/kWh, as the 

interconnections do not bring enough load balancing benefits to offset the increased wiring costs. 

Lastly, Configuration (4) demonstrates the value of irrigation zone interconnection if grid power 

is available: Connecting all zones with grid power results in the lowest LCOE of $0.164/kWh, as 

no solar, diesel, or battery capacity is required. 

While presented results apply only to a single batch of tests, this case study provides a 

framework for future energy system modelling of productive and non-productive demands. 

Many additional questions remain for future work – e.g., determining the value of productive 



 

 336 

demand flexibility – however these efforts are left the next generation of SEL energy system 

researchers.  

 
Table VII-2: Energy system optimization results for the 4 different configurations modeled.  

  Additional configuration details Optimal model-returned capacities1  

Configuration Description 
Total Avg. 
Demand 

[kW] 

MV line 
[m] LV line [m] Solar [kW] 

Diesel 
[kW] 

Battery 
[kWh] 

LCOE 
[$/kWh]2,3 

1 

Each farm has its own 
generation system 
(solar, diesel, and 

battery) 

21.27 0 0 89 8 208 0.397 

2 

Each irrigation zone 
has its own generation 

system shared by all 
farms in the zone. 
Addl. LV wiring is 

required within the 
zone.  

21.27 0 3855 77 9 31 0.272 

3 

Configuration (2), plus 
irrigation zones are 

connected with an MV 
and LV network. 

21.27 7904 8546 75 9 191 0.289 

4 

Configuration (3), plus 
grid electricity is 
available to the 

network. 

21.27 7904 8546 0 0 0 0.164 

1 Returned quantities are rounded to their nearest unit. 
2 Levelized cost of electricity (LCOE): the all-in costs of electricity generation and distribution divided by the total 
electricity produced. 
3 The presented LCOEs represent the cost of electricity during the 5-day irrigation period only. If costs are considered 
on an annual basis – i.e., over a period of time when the irrigation system is not in operation – the LCOE will increase, 
especially in capital-intensive scenarios 1, 2, and 3. 
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Conclusions 
 
 

This dissertation presents two series of analyses focused on energy system planning, the 

first set in New York State and second set in Ethiopia. In New York State, a collection of linear 

programs is produced to evaluate methods of energy-sector decarbonization. In Ethiopia, 

approaches are introduced to first detect smallholder irrigation at a spatial resolution of 

approximately 30m by 30m, and then to tie these irrigated areas and their attendant energy 

demands back to system planning considerations.   

The culmination of developed energy system models for New York State, the System 

Electrification and Capacity Transition (SECTR) model, is described in Chapter I. SECTR is spatially 

explicit, and includes decision variables for onshore wind, offshore wind, solar, battery storage, 

and transmission capacities. Once parameterized with realistic costs for these decision variables, 

SECTR enables the investigation of decarbonization pathways with varying percentages of low-

carbon electricity (LCPs) and heating and vehicle electrification (HVE) rates.  

Applying SECTR to the NYS setting (SECTR-NY) reveals a series of findings regarding 

optimal transitions to a low-carbon economy. In a system with 18.7 GW of electricity demand, 

deep decarbonization targets are only feasible with both significant LCPs and large increases in 

HVE. However, on the path to these deep targets, results indicate that intermediary climate goals 

(corresponding to those defined for 2030 to 2040) can be met more affordably by prioritizing 

electrification with 40-70% low-carbon electricity supply instead of aiming for full grid 

decarbonization. Furthermore, as decarbonization progresses, SECTR-NY results identify a shift 

in optimal energy infrastructure expansion strategies. First, low-cost onshore generation is built, 

followed by higher cost offshore wind generation that feeds directly into downstate load pockets. 
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Beyond 80% low-carbon electricity, paired solar and batteries are shown to be the most cost-

effective method of displacing remaining fossil fuel-based generation, due to the natural cycling 

of solar that facilitates regular battery charging and discharging.   

Altogether, SECTR-NY pathways reveal three primary cost drivers for a decarbonizing 

regional energy system: (1) decreasing per-unit costs of existing infrastructure with increasing 

electrified demand, (2) increasing in-state generation costs from low-carbon sources relative to 

gas-based and hydropower generation, and (3) increasing integration costs at high percentages 

of low-carbon electricity. Comparison of these pathway results to analyses presented to the New 

York State Climate Action council lends further confidence to our findings: After accounting for 

differences in upstream natural gas leakage assumptions and among timeseries used to 

represent wind/solar generation and electricity demand, the two sets of proposed 

decarbonization strategies largely agree, with similar energy resource capacities recommended 

to meet the state’s 2030 climate goals. 

Chapters II and III present more contained studies of decarbonization in New York State, 

with more limited simulation of electrified vehicle loads and no inclusion of heating 

electrification. The Renewable Target Model (RTM) introduced in Chapter II also parameterizes 

the NYS grid with realistic costs and existing capacities, although it only assesses the least cost 

methods of achieving renewable generation targets between 50% and 80%. Here, achieving 50% 

renewable energy supply requires only a buildout of new generation capacity – approximately 20 

GW in total – at a levelized cost of electricity in line with current supply values ($52/MWh).  

RTM results yield a series of other insights regarding the NYS energy transition. First, 

expanded transmission will play a minimal role in meeting renewable generation targets between 
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50-60%, and the costs of expanding transmission to reach higher percentages of renewable 

electricity supply will be dwarfed by the costs of new renewable generation and battery storage 

at these stages in the decarbonization pathway. Second, similar to findings from SECTR-NY, the 

need for battery storage increases substantially at higher proportions of renewable electricity 

supply: No battery storage is required to meet a 50% target, while storage equal to 2 hours of 

average demand (37.4 GWh) is installed at 65%, a quantity that increases to 16 hours of storage 

at 80%.  

 Exploration of different types of energy system flexibility in New York (Chapter III) 

illustrates the comparative advantages of additional hydropower reservoirs (supply-side 

flexibility), pumped hydropower storage (bidirectional flexibility), and electric vehicle (EV) 

demand (demand-side flexibility). Flexibility is measured in terms of additional wind generation 

integration, with either 10 GW or 30 GW of capacity simulated. After devising a method to 

compare similar amounts of these flexibility measures, a linear program developed to represent 

a simplified version of the NYS grid determines that additional EV demand allows for the greatest 

increase in wind utilization (16% increase over a baseline of 5.3 GW) when 30 GW of wind 

capacity is installed, followed by bidirectional storage (12% increase over the baseline), and then 

supply-side flexibility (9% increase over the baseline).  

 Energy system planning considerations in Ethiopia vary significantly from those in New 

York, as the second half of this dissertation makes clear. In Ethiopia, additional electricity loads 

facilitate the expansion of higher-quality energy provision services, namely expansion of the grid. 

Electricity demands for irrigation – a type of productive energy demand – are of particular 

importance due to 1) their scale, and 2) flexibility in when they can be met across a period of 
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days. Accordingly, methodologies that locate irrigation in Ethiopia can provide substantial value 

to energy system planners, as these are areas that either already contain productive electricity 

demands or can sustain additional demand through the expansion of existing irrigation.  

Chapter IV summarizes relevant literature on land cover mapping and irrigation detection, 

in particular diving deep into a 2012 paper by Professor Christopher Small that introduces a 

method of characterizing dominant vegetation phenologies within a region of interest. This 

method is then applied to the Amhara state in the Ethiopian Highlands to visualize areas that 

contain vegetation cycles in-phase and out-of-phase with rainfall. A separate approach then 

calculates the misalignment between timeseries of Moderate Resolution Imaging 

Spectroradiometer (MODIS) imagery and Climate Hazards Group InfraRed Precipitation with 

Station Data (CHIRPS) estimates to offer insight into where vegetation growth cannot be 

attributed to rainfall and must be enabled through some other mechanism, potentially irrigation.  

 Like many other parts of sub-Saharan Africa, Ethiopia lacks public data on the locations of 

irrigation within the country. Because any irrigation prediction model will only perform as well as 

the quality of data used to train it, methods that collect high-accuracy, verifiable, spatially diverse 

irrigation labels provide immense value to researchers. Chapter V presents such an approach, 

whereby limited ground-collected labels from a 2021 survey effort are supplemented by visually 

collected labels derived from enhanced vegetation index (EVI) timeseries inspection on the 

Descartes Labs platform, a commercial geospatial analytics tool. Given the immense agrological 

and climatological diversity within Ethiopia, the previously introduced method of spatiotemporal 

vegetation characterization is applied to guide supplementary label collection and indicate the 

extent of classifier applicability.  
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To develop a robust irrigation classifier, many neural network architectures and training 

strategies are tested, all for input Sentinel-2 imagery with a spatial resolution of 10m. These 

experiments reveal the insight that EVI timeseries allow for greater classification accuracy 

compared to a full suite of spectral bands; and that randomly shifting inputs by up to ±30 days 

improves classifier performance. The highest performing irrigation detection model achieves a 

>95% accuracy across samples withheld for testing, and across a series of samples independently 

collected via the introduced method of label supplementation. This model is then deployed over 

the entirety of Tigray and Amhara, finding that irrigated area in these two states has decreased 

by 40% from 2020 to 2021, likely due to ongoing civil conflict in the region.  

Chapter VI extends the introduced irrigation detection methodology across a number of 

separate applications. First, the size distribution of predicted irrigated areas in Chapter V is 

assessed, followed by an investigation into regions that contain model misclassification of 

irrigation presence. These results show that erroneous irrigation predictions over non-cropped 

areas near the Amhara/Afar border can be attributed to anomalous rains during the 2020 dry 

season; an auxiliary 10m land cover map provided by the European Space Agency (ESA) is then 

used to filter out irrigation predictions that do not fall on cropped areas. Furthermore, a 

longitudinal study of irrigation in Tigray reveals that the plot-level location of irrigated areas 

changes substantially from year to year, and that the 40% decline in irrigated area from 2020 to 

2021 is not due to excessive positive predictions in 2020, as irrigation increases marginally from 

2019 to 2020 in the state. Lastly, performance evaluation over additional collected labels in 2020 

in Tigray show that the presented irrigation detection model remains robust even when applied 

across a year and region not included in the training process.  
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Further theoretical grounding for the importance of considering productive electricity 

demands – especially those for irrigation – is provided in Chapter VII. In tying irrigation 

predictions back to the original goal of informed energy system planning, Chapter VII also 

presents the Irrigated System Electrification (ISE) model, developed to determine least-cost 

methods of satisfying combined residential and productive electricity demands. Using irrigation 

predictions from an area near Gebedge, Ethiopia, and model parameters gleaned from previous 

Sustainability Engineering Lab (SEL) experience, simulations indicate that grid power offers the 

cheapest method of meeting residential and productive demand at a cost of $0.16/kWh; if a grid 

network is not present, a minigrid produces an electricity cost of $0.27/kWh, while a system 

configuration with plot level generators results in a cost of $0.40/kWh.  

 The pages herein contain a variety of studies across many different locations and research 

directions. While these efforts comprise a great deal of work – six years to be exact – there are 

many natural extensions and related questions that have not been addressed. These applications 

are discussed briefly below and are left to the next cohort of SEL PhD students. I wish them the 

best of luck.   

 Understanding distribution system needs in New York State during the decarbonization 

transition. Simulated cost-optimal decarbonization strategies in New York include substantial 

amounts of heating and vehicle electrification. These electrified loads will have significant impact 

on distribution system needs, and the System Electrification and Capacity Transition model for 

New York (SECTR-NY) should be expanded to account for these considerations.    

 Higher spatial resolution for energy system modeling efforts in New York. Currently, 

SECTR-NY splits the NYS electricity grid into four nodes that align with major transmission lines 
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within the state. To achieve a finer-grained understanding of transmission bottlenecks and 

upgraded network needs, future work should improve the spatial resolution of SECTR-NY by 

increasing the number of modeled nodes, particularly in densely populated downstate node 

pockets.    

 Further evaluation of the methods and value of managing increased demand peaks due 

to electrification, primarily those from heating. New electrified demands will induce significant 

increases in peak electricity demand in New York State, mostly due to electrified heating 

requirements during cold weather events. Managing these peaks will be crucially important to 

controlling distribution system upgrade requirements; future work should explore the various 

methods of peak shaving, their costs, and the feasibility of their implementation at scale.  

Understanding the transferability of the irrigation detection methodology developed for 

Ethiopia. The irrigation detection methodology introduced in Chapter V demonstrated excellent 

performance across the Ethiopian Highlands, a highly cropped region dominated by a single main 

rainy season with clear vegetation phenologies. It remains to be seen whether this approach is 

applicable in other parts of sub-Saharan Africa, particularly those like Uganda with persistent 

rains and cloud cover that do not contain easily differentiable phenologies. 

Determining the plot-level boundaries of irrigated areas. Irrigation predictions for the 

Ethiopian Highlands are generated pixelwise. Although this approach is methodologically simpler 

than convolutional or object-based alternatives, it does not account for spatial context and 

accordingly cannot generate field boundaries for individual plots. Additional work should look 

into filling this gap, potentially via sub-meter resolution imagery.  
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Developing an irrigation detection model with leaner imagery requirements. The trained 

classifier produced for irrigation detection in Ethiopia intakes 36-timestep timeseries, each 

representing the annual vegetation cycle for a single 10m by 10m pixel. These timeseries are 

likely oversampled in time: yearly vegetation phenologies can be represented with fewer 

timesteps. Moreover, methods that do not require input imagery to be collected at the exact 

same timesteps, instead encoding temporal information along with the input timeseries, will save 

researchers substantial time spent preprocessing data.  

 Assessing the value of flexible electricity demands for irrigation. Model simulations in 

Chapter VII produce electricity cost estimates for an energy system with combined residential 

and productive electricity demands. In these scenarios, productive electricity demand can be 

flexibly met across the 5-day simulation period. Determining the value of this flexibility, 

compared to baselines where the productive electricity load is fixed in time, is another useful 

direction of research.  

 Determining the likely extent of future irrigated areas. The predicted irrigated areas in 

Chapter V represent the best-known extent of current irrigation within the Ethiopian Highlands. 

While these predictions yield insights into where productive energy demands presently exist, 

efforts to estimate the distribution of future irrigated areas within the country will have 

substantial value for energy system planners.   

 Incorporating electricity demands for irrigation in regional or national planning strategies. 

Lastly, predicted irrigated areas and their attendant energy demands are fed into the Irrigated 

System Electrification (ISE) model in Chapter VII. The extent of the system area considered is 

2.5km-by-5 km, and model results produce insights relevant to the portion of Ethiopia in question 
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and to other similarly oriented groups of irrigated plots. However, productive demands for 

irrigation should be considered for the entire country, and then fed into regional and national 

planning strategies that can assess infrastructure expansion decisions in a wholistic manner.   
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