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Abstract

We have explored the effectiveness of a longitudinal gradient in Alfvén speed in reducing the energy of
propagating Alfvén waves under conditions scaled to match solar coronal holes. The experiments were conducted
in the Large Plasma Device at the University of California, Los Angeles. Our results show that the energy of the
transmitted Alfvén wave decreases as the inhomogeneity parameter, λ/LA, increases. Here, λ is the wavelength of
the Alfvén wave and LA is the scale length of the gradient in Alfvén speed. For gradients similar to those in coronal
holes, the waves are observed to lose a factor of ≈5 more energy than they do when propagating through a uniform
plasma without a gradient. We have carried out further experiments and analyses to constrain the cause of wave
energy reduction in the gradient. The loss of Alfvén wave energy from mode coupling is unlikely, as we have not
detected any other modes. Contrary to theoretical expectations, the reduction in the energy of the transmitted wave
is not accompanied by a detectable reflected wave. Nonlinear effects are ruled out because the amplitude of the
initial wave is too small and the wave frequency well below the ion cyclotron frequency. Since the total energy
must be conserved, it is possible that the lost wave energy is being deposited in the plasma. Further studies are
needed to explore where the energy is going.
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1. Introduction

Coronal holes are regions of the Sun’s atmosphere with open
magnetic field lines that extend into interplanetary space. These
regions are ∼200 times hotter than the underlying photosphere.
It is widely established that the fast solar wind originates from
coronal holes; but the mechanism responsible for heating
coronal holes and accelerating the fast solar wind remains a
mystery (Cranmer 2009).

Recent observations at the base of coronal holes have
detected Alfvénic waves with sufficient energy to heat coronal
holes and accelerate the fast solar wind (McIntosh et al. 2011;
Morton et al. 2015). Furthermore, strong damping of Alfvénic
waves has been seen at a height of ≈0.15 Re, where Re is the
solar radius, implying that coronal holes are predominantly
heated by wave-driven processes (Bemporad & Abbo 2012;
Hahn et al. 2012; Hahn & Savin 2013). Here and throughout,
all distances in coronal holes are measured from the surface of
the Sun. The term Alfvénic is used to highlight that some of the
observed waves may not be pure torsional Alfvén waves.
Transverse kink waves may also be present (Van Doorsselaere
et al. 2008; Goossens et al. 2009, 2012). Studies of chromo-
spheric spicules by De Pontieu et al. (2012) suggest that both
modes contribute to the coronal wave energy.

Different models have been put forward to explain the
damping of wave energy in coronal holes (Moore et al.
1991a, 1991b; Ofman & Davila 1995; Hood et al. 1997;
Matthaeus et al. 1999; Dmitruk et al. 2001; Oughton et al.
2001). A number of these models invoke partial reflection of
the upward propagating torsional Alfvén waves (Moore et al.
1991a, 1991b; Matthaeus et al. 1999; Dmitruk et al. 2001;
Oughton et al. 2001). This wave reflection is thought to be
caused by a strong longitudinal gradient in Alfvén speed along
the magnetic field lines at low heights in coronal holes (Moore
et al. 1991a; Musielak et al. 1992).

Most of the experiments to date on the propagation of
torsional Alfvén waves through a longitudinal gradient in
Alfvén speed were motivated by the needs of fusion devices,
such as mirror machines. Gradients in Alfvén speed were
produced by introducing a non-uniformity in the magnetic field
of the machine. Torsional Alfvén waves were excited in the
high magnetic field region. These waves propagated along the
field lines into a region of decreasing magnetic field to the point
where the wave frequency matched the local ion cyclotron
frequency, a configuration known as a magnetic beach, causing
ion heating. The efficiency of this wave-driven heating was
studied in mirror machines (Swanson et al. 1972; Breun et al.
1987; Roberts et al. 1989) using different types of antennas
(Stix & Palladino 1958; Yasaka et al. 1988). A few basic
plasma physics experiments have also been carried out to study
the characteristics of a torsional Alfvén wave through a
longitudinal gradient (Vincena et al. 2001; Mitchell et al.
2002). Propagation of Alfvén waves through gradients
produced by periodically arranged multiple magnetic wells
was studied by Zhang et al. (2008). However, in all the above-
mentioned experiments, either the gradient was too weak or the
geometry of the gradient was different from that in coronal
holes.
Here we report new laboratory experiments to study the

propagation of torsional Alfvén waves through a longitudinal
gradient in Alfvén speed under conditions scaled to match
those of coronal holes. The wave experiments were carried out
in the Large Plasma Device (LAPD), located at the University
of California, Los Angeles (Gekelman et al. 2016).
The rest of the paper is organized as follows: in Section 2 we

describe the basic physics of torsional Alfvén waves and
compare the plasma conditions and properties of Alfvén waves
in a coronal hole with those in LAPD. The experimental setup
is described in Section 3. The results of our wave experiments
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are presented in Section 4 and analyzed in Section 5. This is
followed by a discussion and summary in Section 6.

2. Alfvén Waves

2.1. Overview

Alfvén waves are one of the fundamental wave modes of
magnetized plasmas. These waves were first predicted by
Alfvén (1942) using ideal magnetohydrodynamics (MHD). In
cylindrical geometry they are commonly referred to as torsional
Alfvén waves, while in Cartesian coordinates they are often
referred to as shear Alfvén waves. From hereon we will use the
term shear Alfvén waves. These waves cause shearing and
twisting of magnetic field lines. The resulting magnetic tension
provides the restoring force for the waves.

Shear Alfvén waves are low-frequency electromagnetic
waves that propagate below the ion cyclotron frequency,
w = qB mci 0 i, where q is the ion charge, B0 is the magnitude of
the ambient magnetic field, and mi is the ion mass. In the ideal
MHD limit, these waves transport energy along the ambient
magnetic field lines and follow the linear dispersion relation,

( )w = v k . 1A

Here, ω is the frequency of the wave in units of rad s−1, vA is
the Alfvén speed, and kP is the wavenumber parallel to the
ambient magnetic field. The Alfvén speed is given by

m r=v BA 0 0 , where m0 is the permeability of free space,
r = +n m n mi i e e is the mass density of the plasma, ni is the
ion number density, ne is the electron number density, and me

is the electron mass (Alfvén 1942; Cross 1988; Priest 2014).
For quasineutral plasmas,  n n ni e , and n is usually
referred to as the plasma density.

Shear Alfvén waves interact with the plasma and drive ion and
electron currents. Ideal MHD includes the perpendicular motion
of the ions in the wave dynamics, but this theory does not
explicitly describe the parallel response of electrons. This aspect
of shear Alfvén wave dynamics is considered by more advanced
theories, such as two-fluid theory, plasma kinetic theory, etc. A
commonly used dimensionless parameter to describe the parallel
response of an electron is ¯ ( )/ / /b wº »v k v v2 2te

2 2
te
2

A
2, where

=v T mte e e is the electron thermal velocity and Te is the
electron temperature. In this paper, Te is expressed in joules in all
the formulae unless stated otherwise.

For ¯ b 1, the electrons respond adiabatically to the wave
field and the wave is called a kinetic Alfvén wave (KAW). The
term KAW is also used by some authors for shear Alfvén
waves influenced by the ion gyroradius, but we refer
specifically to the ¯ b 1 regime. The dispersion relation of a
KAW is given by (Stasiewicz et al. 2000)

¯ ( ) ( ) ( )


w
w r r r= - + + +^ ^

k
v k k1 1 , 2A

2 2
i
2 2

s
2

i
2

where w̄ w w= ci, r w= vi ti ci is the ion gyroradius,

=v T mti i i is the ion thermal velocity, r w= cs s ci is the

ion sound gyroradius, =c T ms e i is the ion sound speed, k is
the wavenumber, and Pand ⊥denote the components parallel
and perpendicular to the background magnetic field, respec-
tively. The terms rk̂2

s
2 and rk̂2

i
2 incorporate the effect of the

finite perpendicular wavelength into the KAW dispersion
relation.

For a typical low-temperature laboratory plasma, Ti is small
and T Te i, resulting in rk̂ 12

i
2 and r r^ ^k k2

s
2 2

i
2. Under

such conditions, Equation (2) reduces to (Gekelman et al.
1997, 2011)
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w
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2

The term w̄-1 2 represents the finite-frequency correction. It
causes the parallel phase velocity,  w=v kph, , of a shear
Alfvén wave to decrease as ω approaches wci. When ¯ w 12

and rk̂ 12
s
2 , the KAW dispersion relation given by

Equation (3) reduces to the ideal MHD shear Alfvén wave
dispersion relation.
For ¯ b 1, the inertia of the electrons becomes important and

the wave is called an inertial Alfvén wave (IAW). The dispersion
relation of an IAW is given by (Stasiewicz et al. 2000)
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Here d w= c pe is the collisionless electron skin depth, c is the

speed of light, and w = ne mpe
2

e 0 is the electron plasma
frequency, where e is the fundamental unit of electrical charge
and 0 is the permittivity of free space. The IAW dispersion
relation reduces to ideal MHD shear Alfvén wave dispersion
relation when w̄2, rk̂2

i
2, and dk̂2 2 are all =1.

KAWs and IAWs propagate both parallel and perpendicular to
the ambient magnetic field with finite parallel and perpendicular
group velocities given by  w= ¶ ¶v kg, and w= ¶ ¶^ ^v kg, ,
respectively. Typically,  ^v vg, g, . As a result, energy is
transported by these waves predominantly along the magnetic
field lines. We also remind the reader that phase velocity refers to
velocity of the crest or trough of the wave, while group velocity
is the propagation velocity of the total wave envelope.

2.2. Alfvén Waves in Coronal Holes and in LAPD

Shear Alfvén waves are excited by sloshing of the plasma in
the photosphere (Narain & Ulmschneider 1996; Priest 2014).
They propagate upward through coronal holes along the
ambient magnetic field lines. These waves are in the ¯ b 1
regime at low heights, and hence are referred to as KAWs. We
match this in LAPD in the region where we excite the waves by

Table 1
Dimensionless Parameters for Coronal Holes and LAPD

Parameter Coronal Hole LAPD

b̄ 3–18 1–16
w̄ 1.5×10−5 0.3–0.5
rk̂2

i
2 =1a =1

rk̂2
s
2 =1a =1

( )w k vA 1 ≈1

βe (1.5–9.6)×10−3 (0.1–2.1)×10−3

λ/LA 4.5 ≈0.27–6.3
LA/λmfp,e ∼13 8–20
b/B0 0.02 8×10−5

Note.
a Based on the assumption that shear Alfvén waves in coronal holes satisfy
nearly ideal MHD conditions.
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setting the parameters such as n, Te, and B0 to satisfy the
condition ¯ b 1 (see Table 1).

In coronal holes, most of the wave energy occurs at w wci.
For example, Morton et al. (2015) reported frequencies

w p=f 2 of between 0.2 and 16 mHz. The ambient magnetic
field in a coronal hole is~0.7 G at a height of R0.15 (Morton
et al. 2015). At this height, w̄ ranges from ≈1.9×10−7 to
1.5×10−5.

To the best of our knowledge there are no measurements of
k⊥ for KAWs in coronal holes. But for the nearly ideal MHD
conditions commonly used to model coronal holes, it is
typically assumed that both rk̂2

i
2 and rk̂2

s
2 are =1. As a

consequence of w̄2, rk̂2
i
2, and rk̂2

s
2 all being =1, shear Alfvén

waves in coronal holes are treated as dispersionless, i.e., their
frequency varies as w = v kA .

We have designed our shear Alfvén wave experiments in
LAPD so that kP varies almost linearly with ω, giving
( )w »k v 1A . We also excite shear Alfvén waves with
dominant perpendicular wavelengths much greater than ri

and rs. This ensures that both rk̂2
i
2 and rk̂2

s
2 are =1.

Additionally, we limit the range of w̄ from 0.3 to 0.5 in order to
keep the finite-frequency correction as small as possible.

~T Te i in coronal holes, whereas >T Te i in LAPD. This
minor difference does not affect the wave dispersion either in
coronal holes or LAPD because the term containing the effect
of finite ion temperature in KAW dispersion, rk̂2

i
2, is

negligibly small in both cases.
In coronal holes, magnetic pressure dominates over thermal

pressure. This is represented by the dimensionless parameter
b m= nT B2e 0 e 0

2, where m0 is the permeability of free space.
The value of βe varies from ≈9.6×10−3 at the surface of the
Sun to ´ -1.5 10 3 at a height of R0.5 . To match this in
LAPD, we adjusted B0, n, and Te to produce a value of βe
ranging from ≈2.1×10−3 where the waves are excited to
≈0.1×10−3 after the vA gradient.

In coronal holes, the plasma density and magnetic field are
highly non-uniform at low heights. This results in a strong
spatial inhomogeneity in vA. The predicted spatial variation is
shown in Figure 1. The density and magnetic field used here to
calculate vA are from the approximate fits given by Cranmer &
Van Ballegooijen (2005).

For a shear Alfvén wave propagating through a longitudinal
gradient in vA, inhomogeneity-driven effects are predicted to be
strong if vA changes substantially over a single wavelength
(Campos 1988; Musielak et al. 1992). Here, the inhomogeneity
parameter can be written as λ/LA, where λ is the wavelength of
the shear Alfvén wave and LA is the minimum scale length of
vA in the gradient. This scale length is defined as ¢v vA A, where
¢vA is the first spatial derivative of vA. The plasma medium is
considered to be homogeneous for l L 1A and inhomoge-
neous for l L 1A .

In coronal holes, LA is ≈0.1 Re (see Figure 1). Alfvénic
waves have a broad wavelength spectrum with substantial
power in the region of l  R0.45 (Morton et al. 2015). As a
result, the inhomogeneity parameter in coronal holes is
predicted to be l L 4.5A .

Using LAPD, we have varied l LA from ≈0.27 to 6.3. The
wavelength of the shear Alfvén wave was increased by
reducing the frequency of the excited wave. LA was controlled
by varying the magnetic field gradient in LAPD. We also note
that l »L 0.23A corresponds to wave data acquired in the
case of a uniform magnetic field. In a uniform magnetic field

and uniform plasma, LA should be infinite and l LA should be
zero. However, in LAPD, there is a weak variation in density
along the axis of the machine that gives rise to an even weaker
gradient in vA. This effect produces a large but finite value of
LA that sets the lower limit for the achievable values of λ/LA.
However, this weak background variation in density along
LAPD is negligible compared to that due to the magnetic fields
applied to generate the vA gradient, as we show below. Lower
values of LA are achieved by increasing the slope of this
applied gradient.
In coronal holes, a consequence of the spatial variation of vA

is that b̄ also varies with height. The value varies from ≈18 at
the base of a coronal hole to ≈3 at a height of R0.5 . Thus,
shear Alfvén waves are kinetic at low heights; but the waves
are expected to exhibit properties between kinetic and inertial
with increasing heights. We have mimicked coronal hole
conditions in LAPD by exciting the shear Alfvén wave in a
region with b̄ = 16. The value of b̄ then approaches 1 as the
wave propagates through the gradient in vA.
Shear Alfvén waves are also known to be damped by

Coulomb collisions (Cramer 2001). This damping is predicted
to affect shear Alfvén waves at low heights in coronal holes
(Cranmer 2002). The effect of electron–ion collisions on the
wave damping in the gradient can be estimated from the ratio
of the mean free path of the electrons, λmfp,e, to the scale length
of the gradient, LA. This ratio gives a measure of the number of
electron mean free paths within the vA gradient. The value of
λmfp,e was calculated using

( )l t= = ´
L

v
T

nZ
1.46 10

ln
, 5mfp,e te ei

11 e
2

ch

where tei is the electron–ion collision time (Braginskii 1965),
Zch is the charge state of the ion, and Lln is the Coulomb
logarithm (Huba & Naval Research Laboratory 2018). Here,
λmfp,e is in meters, for n in cm−3 and Te in eV. For coronal hole
conditions of ~ -n 10 cm7 3 and ~T 86 eVe (10 K6 ) at 0.2 Re,
we find λmfp,e is ~ ´ = R5.3 10 m 0.0086 . Therefore,

l ~L 13A mfp,e in coronal holes. In LAPD, we have set the
values of n, Te, and LA such that LA/λmfp,e varied from 8 to 20.
Coronal holes extend from the surface of the Sun to

interplanetary space, but LAPD is of finite length. However,
the magnetic field profile in LAPD is tailored to avoid finite
boundary effects. A magnetic beach (Stix 1992) is located

Figure 1. Variation of the Alfvén speed, vA, in a coronal hole vs. height above
the solar surface.
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between the region where we have performed the experiments
and the mechanical boundary of LAPD. Shear Alfvén waves
are known to be damped very strongly in a magnetic beach due
to ion cyclotron resonance, thereby preventing the waves from
reaching the mechanical boundary of LAPD. Thus, from the
perspective of the wave, LAPD looks infinite.

Lastly, Alfvénic waves in coronal holes have a range of
amplitudes depending on ω and kP (Morton et al. 2015). Waves
having normalized amplitude as high as ~b B 0.020 were
reported by McIntosh et al. (2011). In LAPD, our experiments
were restricted to ´ -b B 8 100

5. This low-amplitude regime
enabled us to avoid known nonlinear effects associated with
large-amplitude shear Alfvén waves. In the future, we hope to
carry out similar experiments in the large-amplitude regime.

3. Experimental Overview

3.1. Experimental Setup

LAPD houses a 19 m long magnetized plasma column in a
cylindrical vacuum chamber of length 24.4 m (Gekelman et al.
2016). The plasma was produced by applying a voltage
between a 60 cm diameter hot barium oxide cathode (Leneman
et al. 2006) and a mesh anode located 0.5m away, as shown in
Figure 2. Each plasma discharge was pulsed with a 1Hz
repetition rate. The duration of each discharge or shot was
≈10 ms. The experiments were performed in a helium plasma.
The neutral helium pressure was held constant at ∼10−4 Torr.

Ten sets of electromagnets are arranged coaxially with the
vacuum chamber in order to produce the axial magnetic field. The
axial magnetic field points in the ˆ-z direction for the coordinate
system adopted in this paper. We controlled λ/LA, in part, by
creating a gradient in the axial magnetic field. On the low-field
side of the machine, we set the magnetic field, Blo, to 500 G. LA
was varied by setting the field strength on the high-field side, Bhi,
to one of five different values: 500, 800, 1000, 1200, and 1600G.
These magnetic field profiles are shown in Figure 2.

Shear Alfvén waves were excited using an orthogonal ring
antenna located on the axis of LAPD at x=y=z=0
(Gigliotti et al. 2009; Karavaev et al. 2011). The diameter of
the ring is 9cm. The dominant perpendicular wavelength, λ⊥,
excited by the orthogonal antenna was typically ∼28 cm. This
value of λ⊥ was determined from the wave data using a
Fourier–Bessel analysis (Churchill & Brown 1987) as illu-
strated by Vincena (1999). In our experiments the dominant λ⊥
was large enough to ensure that rk̂2

i
2, rk̂2

s
2, and dk̂2 2 are

all =1.

The Alfvén wave magnetic fields were measured using
triaxial B-dot probes. Each probe consists of three oppositely
wound, orthogonally oriented coils. The signals from each pair
of coils were amplified using a differential amplifier to avoid
electrostatic pickup. The amplified signal was averaged over 14
shots and digitized using a 16 bit data acquisition system. This
allows us to detect wave magnetic fields as small as 0.5mG.
The probes are mounted on computer-controlled xy translators
that enabled us to map out the wave magnetic field along a
cross section of LAPD. The B-dot probes used for most of the
measurements reported here were located at axial distances of
=z 4.47 m1 , =z 5.75 m2 , =z 9.59 m3 , and =z 11.18 m4 .

3.2. Equilibrium Plasma Parameters

Plasma parameters, such as Te and n, were measured using a
Langmuir probe. Te was determined from the slope of the linear
region of the ( )Iln pr,e versusVpr curve, where Ipr,e is the electron

Figure 2. Schematic of the experimental arrangement. The various axial magnetic field profiles used are represented by the different colors. The magnetic field on the
low-field side, Blo, was set to 500 G for all cases. That on the high-field side, Bhi, was set to 500G (maroon), 800G (green), 1000 G (magenta), 1200G (red), and
1600G (blue). The orthogonal ring antenna used to excite shear Alfvén waves is centered on the cylindrical axis of LAPD at x=y=z=0. The vertical ring of the
antenna lies in the yz plane, while the horizontal ring lies in the xz plane. The first and second gradients in vA encountered by the excited Alfvén waves are labeled as I
and II, respectively. Also shown are the diagnostics that were used to measure the plasma parameters and the wave magnetic field. See the text for additional details.

Figure 3. Variation of the plasma density for y=0 along the x axis for the
applied axial magnetic field configurations. The different colors represent
the magnetic field profiles shown in Figure 2. The open and filled circles show
the data acquired by the Langmuir probe before the magnetic field gradient at
z=3.50m and after at 9.59m, respectively.
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current collected by the probe and Vpr is the probe potential.
The ion saturation current collected by the probe was used to
determine n after calibrating the probe with a heterodyne
microwave interferometer.

The variation of n along the x axis in the y=0 plane was
measured at =z 3.50 m before the gradient and at =z 9.59 m
after the gradient. Figure 3 shows our measurements for
different magnetic field profiles. The uncertainty in each
measurement is typically equal to the size of the symbol. Here
and throughout the paper, all uncertainties are given at an
estimated statistical confidence level of 1σ.

For our analysis of the wave data, we used the spatial
average of n over the region sampled by the wave. On the low-
field side, at =z 3.50 m, this region spans - 20 cm
x 20 cm (as shown later in Section 4). On the high-field

side, the cross section of the plasma sampled by the Alfvén
waves decreases due to the convergence of magnetic field lines.
This decreased sample region is determined using the flux

conservation equation, =x B x Bhi lo lo
2

hi , where Blo=500G,
xlo=20cm, and Bhi is the value of the magnetic field at
z=9.59 m. The averaged n and Te before and after the
gradient for different magnetic field configurations are given in
Table 2. The ion temperature in LAPD was typically ~1 eV.

4. Results of Wave Experiments

4.1. Excitation of Shear Alfvén Waves

Linearly polarized shear Alfvén waves were excited by
applying a sinusoidal wave train of 10 cycles to the horizontal
ring of the antenna. The dispersion relation of the excited shear
Alfvén wave is shown in Figure 4. The quantity kP was
measured from the phase difference in the wave magnetic field
between z1 and z2.

The measured value of kP varies nearly linearly with f for
f f0.5 ci. Following the predictions of ideal MHD, we have fit

a straight line to the data for f f0.5 ci. The value of vA
determined from the slope of the fitted line is found to be
within 14% of that calculated using n measured with
the Langmuir probe. This minor disagreement we attribute to
the cumulative uncertainties in the kP and Langmuir probe
measurements.

The theoretical KAW dispersion relation given by
Equation (2) is shown by the dashed curve in Figure 4. The
value of vA obtained from the fitted straight line is used to
calculate this dashed curve. The measured variation of f with kP
is found to be in good agreement with Equation (2), confirming
that the waves excited are indeed KAWs.

4.2. Propagation through a Longitudinal Gradient in the
Alfvén Speed

4.2.1. Wave Properties before and after the Gradient

The value of b̄ is?1 in the low-field region, where the shear
Alfvén waves are excited, and decreases to 1 in the high-field
region (see Table 2). As a result, the excited shear Alfvén
waves do not strictly match the definition of KAWs at all points
in space. Hence, we use the more general term shear Alfvén
waves to refer to the waves excited by the antenna.
The measured y component of the wave magnetic field is

shown in Figure 5 before (a) and after (b) the vA gradient. The
data are shown for x=y=0, f=57.6 kHz, and =B 1600hi G.
Figures 5(c) and (d) show the structure of the shear Alfvén wave
on each side of the magnetic field gradient. Two well formed
current channels are observed, with the separation between the
current channels being smaller on the high-field side of the
gradient, as is expected for shear Alfvén waves propagating
along converging magnetic field lines.
In order to confirm that the measured property of the shear

Alfvén wave is in agreement with the expected theoretical
value, we have tried to measure the parallel component of the
wave magnetic field, bP, on the axis of LAPD before and after
the gradient. According to theory (Hollweg 1999), before the
gradient for the dominant rk̂ s of ≈0.21 the predicted value of

Table 2
Equilibrium Plasma Parameters before and after the Magnetic Field Gradient

Magnetic Field Strength Before Gradient After Gradient

Blo Bhi n Te b̄ n Te b̄
(G) (G) (1012 cm−3) (eV) (1012 cm−3) (eV)

500 500 2.6±0.3 5.0±0.5 15 1.2±0.2 3.4±0.4 5
500 800 2.6±0.3 5.1±0.5 16 1.8±0.3 3.3±0.5 3
500 1000 2.4±0.2 4.9±0.5 14 2.3±0.3 3.3±0.5 2
500 1200 2.8±0.3 4.9±0.5 16 2.6±0.4 3.2±0.5 2
500 1600 2.8±0.3 4.9±0.5 16 2.3±0.3 3.1±0.5 1

Figure 4. Dispersion relation of the shear Alfvén waves in a uniform 500 G
axial magnetic field. The blue symbols represent the experimental data. The
green solid and red dashed lines plot the dispersion relation for ideal MHD
shear Alfvén waves and for KAWs, respectively. The y axis on the left gives
the wave frequency and that on the right shows the wave frequency as a
fraction of the ion cyclotron frequency. The lower x axis is the parallel
wavenumber while the upper x axis shows the parallel wavenumber in terms of
the dimensionless quantity dk .
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bP is ≈0.22mG, while after the gradient for the dominant rk̂ s
of ≈0.08 the predicted value of bP is ≈0.01mG. These values
of bP are below our measurement threshold of 0.5mG.
Therefore, the lack of detection of bP is consistent with the
theoretical prediction.

4.2.2. Determination of Wave Energy

The energy of the shear Alfvén wave is obtained using the
Poynting vector, S, crossing a plane perpendicular to the
ambient magnetic field. This is given by (Karavaev et al. 2011)

( ) 
m m

= =S b v b v
1 1

. 6
0

2
g,

0

2
ph,

S is the energy flux. In Equation (6), vg, is considered to be
equal to vph, because the experiments are limited to
w w 0.5 ,ci where the dispersion relation for shear Alfvén
waves is nearly linear. Hence, the total wave energy,  , passing
through the cross section of LAPD perpendicular to the
ambient magnetic field can be expressed as

( ) ( )∬ ∬ ( )
ò òp

= = S dx dy dt
v

b dx dy dt
4

. 7
ph, 2

The spatial integration is carried out over the cross section of
LAPD and the integration in time is carried out over the
duration of the wave train, examples of which are shown in
Figure 5. The wave power, G , is related to the total wave

Figure 5. The time variation of the y component of the shear Alfvén wave magnetic field on the axis of LAPD at (a) z2 and (b) z4. Also shown are the spatial variation
of the wave magnetic vector fields in the xy cross section of LAPD at (c) z2 and (d) z4 at times of t=161.8 and 169.2 μs, respectively, corresponding to the third peak
of the applied wave train. The direction of the arrows represents that of the wave magnetic field and the colors give the magnitude of the field using the color bar
shown. The arrow lengths are normalized by the maximum value of the magnetic field in each panel. For these measurements Blo was held at 500G and Bhi was
1600 G. See text for additional details.

Figure 6. The ratio of the wave powers, /G G3 2, passing through the cross
section of LAPD at z3 and z2, respectively, is shown vs. λ/LA. LA was varied
by increasing the value of Bhi. The different colors indicate the different values
of Bhi as given in Figure 2. The wave frequency was held constant at 57.6 kHz.

Figure 7. Same as Figure 6, but here λ/LA was varied by changing λ, while LA
was kept fixed with =B 1000 Ghi . Results are shown for f=57.6kHz
(pentagon), 67.2kHz (diamond), 76.8kHz (triangle), 86.4kHz (square), and
96.0kHz (star).
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energy by the relation

( )G =
E

t
, 8

dur

where tdur is the duration of the wave train. The value of vph,

used in Equation (7) was determined by simultaneously
measuring the wave magnetic field using two axially separated
B-dot probes. The probes were carefully aligned to ensure that
both intersected the same axial magnetic field line. To calculate

vph, , the axial distance between the probes was divided by
the time lag between the phases of the wave magnetic field. The
time lag was determined by a cross-correlation analysis of
the time variation of the data acquired by the two probes. The
probes located at z1 and z2 were used to measure vph, on the
low-field side, while the probes located at z3 and z4 were used
to measure vph, on the high-field side.

4.2.3. Reduction in Power of the Transmitted Alfvén Wave

The reduction in power of the wave propagating through the
gradient was measured using the ratio of the transmitted wave
power G3 at z3 to the incident wave power G2 at z2. Since G is
related to  by a constant factor, the reduction in wave power is
equal to the decrease in wave energy, i.e., / /G G = E E3 2 3 2. The
dependence of /G G3 2 on λ/LA was studied by varying λ/LA in
two ways. In the first set of experiments, LA was changed while
holding λ constant. In the second set, λ was varied and LA was
kept constant.

For the first set of experiments, the values of LA were varied
by increasing Bhi from 500 G to 800, 1000, 1200, and 1600G.
The increase in the value of Bhi enhances the steepness of the
gradient in vA. This, in turn, decreases LA.

The variation of /G G3 2 with λ/LA while varying LA is shown
in Figure 6. Waves of frequency f=57.6 kHz were excited
to keep λ fixed. For the nearly homogeneous case of
l »L 0.49A , we find /G G » 0.523 2 . For a large non-
uniformity ofl »L 6.3A , we find /G G » 0.083 2 . These results
show that the wave power propagating through the gradient
decreases as the steepness of the gradient increases.

In the second set of measurements, λ was varied by changing
f from 57.6 to 96 kHz in steps of 9.6 kHz. We confined f to this
range so that the shear Alfvén waves followed the linear
dispersion relation to a good approximation. LA was kept fixed

by setting Bhi=1000 G. Figure 7 shows that /G G3 2 decreases
with increasing λ/LA while varying λ. For example,
/G G » 0.403 2 for l »L 2.38A , while /G G » 0.263 2 for

l »L 4.17A . This shows that a wave with a longer wavelength
loses more energy than one with a shorter wavelength while
propagating through a constant gradient.
The decrease in /G G3 2 with increasing λ/LA presented in

Figure 7 shows the same quantitative behavior as seen in
Figure 6. This confirms that it is neither λ nor LA but rather
λ/LA that is the independent parameter describing the effect of
inhomogeneity on the shear Alfvén waves.
The variation of /G G3 2 for all measured values of λ/LA is

shown in Figure 8 and given in Table 3. Here, λ/LA was varied
by changing f from 57.6 to 96 kHz for each of the five values of
Bhi given in Figure 2. The data in Figure 8 include all of the
data plotted in Figures 6 and 7, as well as the additional values
listed in Table 3 but not included in Figures 6 and 7.
The =B 500hi G data points in Figure 8 correspond to the

case of a flat magnetic field, where the inhomogeneity in vA is
small with l <L 0.5A . /G G » 0.543 2 for the three lower
frequency measurements and ≈0.41 for the two higher
frequencies. The vertical error bars for all five frequencies
nearly overlap. We attribute these minor differences to
damping mechanisms that are most readily observable in a
uniform plasma. No such similar differences versus frequency
were seen in our gradient-driven results, which show an almost
monotonic reduction in /G G3 2 with increasing λ/LA. For the
gradient cases, the observed energy reduction relative to the
non-gradient cases is substantial, with a decrease by a factor of
≈5. Moreover, the monotonic nature of the decrease strongly
suggests that the energy reduction is due to a gradient-driven
effect.

Figure 8. /G G3 2 vs. l LA when either λ or LA is varied. The colors and
symbols are defined in Figures 2 and 7, respectively. The plotted data are also
given in Table 3.

Table 3
Γ3/Γ2 vs. λ/LA

Bhi (G) f (kHz) λ/LA Γ3/Γ2

500 57.6 0.49±0.15 0.52±0.06
500 67.2 0.41±0.12 0.56±0.08
500 76.8 0.36±0.11 0.54±0.07
500 86.4 0.32±0.10 0.42±0.05
500 96.0 0.27±0.08 0.40±0.05
800 57.6 2.73±0.41 0.38±0.05
800 67.2 2.27±0.35 0.39±0.06
800 76.8 1.88±0.28 0.42±0.06
800 86.4 1.69±0.24 0.41±0.05
800 96.0 1.54±0.22 0.43±0.06
1000 57.6 4.17±0.53 0.26±0.03
1000 67.2 3.67±0.47 0.28±0.04
1000 76.8 3.10±0.35 0.31±0.04
1000 86.4 2.71±0.29 0.32±0.04
1000 96.0 2.38±0.26 0.40±0.05
1200 57.6 4.85±0.64 0.18±0.03
1200 67.2 4.27±0.53 0.22±0.03
1200 76.8 3.80±0.49 0.23±0.03
1200 86.4 3.25±0.35 0.27±0.04
1200 96.0 2.87±0.33 0.38±0.05
1600 57.6 6.34±0.83 0.08±0.02
1600 67.2 4.87±0.61 0.12±0.03
1600 76.8 4.66±0.59 0.15±0.04
1600 86.4 4.24±0.46 0.17±0.03
1600 96.0 3.69±0.43 0.21±0.04
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5. Analysis

In this section we first develop a model for the damping of
shear Alfvén waves in a uniform magnetic field in order to
understand the reduction in wave energy for the homogeneous
case. We then move on to explore the cause of the observed
reduction in energy of waves propagating through a vA gradient
for the inhomogeneous case.

5.1. Reduction of Wave Energy in a Uniform Magnetic Field

The flat-field data in Figure 8 show that shear Alfvén waves
are damped in LAPD while propagating in a uniform 500 G
magnetic field. Shear Alfvén waves propagating in a uniform
plasma are known to lose energy due to Landau damping and
collisions (Cramer 2001). Below we present numerical
calculations quantifying the contribution of these two processes
to the observed wave energy reduction.

5.1.1. Antenna Model

The two-dimensional structure of the wave magnetic field in
Figure 5 suggests that the ring antenna was in effect was
driving two counterpropagating current channels along the
axial magnetic field lines of LAPD. Field-aligned time-varying
currents with frequencies below fci are known to radiate shear
Alfvén waves (Morales et al. 1994; Gekelman et al. 1994;
Morales & Maggs 1997). Hence, we have modeled the antenna
as two current sources driving field-aligned currents that are
180° out of phase with one another.

More specifically, the ring antenna located at x=y=z=0
is modeled as two disks separated by a distance equal to the
diameter of the ring, which is ≈9 cm. The current density
across the surface of each disk is assumed to have a Gaussian
profile, [ ]-j r aexp0

2 2 , where j0 is the amplitude of the surface
current density, r is radial the distance from the center of
the disk, and a is a measure of the width of the current source.
The wave magnetic field due to each current source lies in the
azimuthal plane. This azimuthal wave magnetic field, bf, due to
each disk is given by (Morales & Maggs 1997; Vincena 1999)

⎡
⎣⎢

⎤
⎦⎥ ( ) [ ( ) ]

( )

ò
p

= -f
¥

^
^ ^ ^b

j a a k
J k r ik k z dk

2
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exp

4
exp .

9

0
2

0
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1

Here, z is the axial distance from the antenna at which the wave
magnetic field is calculated, = -i 1 , J1 is the Bessel function
of the first kind of order one, and   = +k k ikr, i, is a complex
quantity where the real and imaginary parts are inversely
proportional to the wavelength and damping length, respec-
tively. Note that k is a complex quantity only in the formulas
mentioned here in Section 5.1. In all other sections and
subsections in this paper, kP is a real quantity as defined in
Section 2.

In order to simplify the calculation, we have normalized bf
by the constant factor pj a c2 0

2 to obtain

( )
p

=f
f

b
b c

j a2
. 10n,

0
2

The sole purpose of developing this model is to determine the
damping length of the wave energy, which depends on
the relative decrease in wave energy versus the distance from

the antenna. Our results for damping length are not affected by
this normalization.

5.1.2. Landau and Collisional Damping

Landau damping is described by the warm plasma
collisionless dispersion relation of shear Alfvén waves derived
from the linearized Vlasov equation and Maxwell’s equations
(Swanson 1989). This relation is given by (Stasiewicz et al.
2000; Lysak 2008; Thuecks et al. 2009)

⎡
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w m
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, 11A

2

te
2

2
i

0 i
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where ( )x w= k v2 te , ( ) { ( )}x x x¢ = - +Z Z2 1 is the deri-
vative of the plasma dispersion function, Z, (Fried &
Conte 1961) with respect to ξ, m r= k̂i

2
i
2, r = m v qBi i ti 0 is

the ion gyroradius, ( ) ( )m mG = m-e I0 i 0 i
i , and I0 is the modified

Bessel function of order zero.
Collisional damping is modeled in the wave dispersion by

including the Krook collision operator in the linearized Vlasov
equation (Gross 1951; Swanson 1989). The resulting dispersion
relation is given by (Gekelman et al. 1997; Thuecks et al. 2009)
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where ( )h x n w= + i1 e and ne is the collision frequency for
electrons. The collision frequency is n n n= +e ei en, where νei
and nen are the electron–ion and electron–neutral collision
frequencies, respectively. From this dispersion relation we
determine kP as a function of k⊥, which we then substitute into
Equation (10) to include the effect of Landau and collisional
damping in the model.
The electron–ion collision frequency is calculated in units of

hertz using the expression (Braginskii 1965)

( )n = ´
L- Z n

T
2.9 10

ln
, 13ei

6 ch

e
3 2

where n is in cm−3 and Te is in eV. The electron–neutral
collision frequency is determined using the formula given by
Baille et al. (1981). For our experimental parameters of

= ´ -n 2.6 10 cm12 3, neutral pressure of 10−4 Torr, and
=T 5 eVe in a He+ plasma, n » ´7.5 10ei

6 Hz and n »en

´4 105 Hz.
Equation (12) gives the dispersion relation of shear Alfvén

waves in the presence of Landau and collisional damping. In
order to determine the damping due to collisions only, we have
used the collisional dispersion relation of shear Alfvén waves
derived using the two-fluid theory in the ¯ b 1 limit (Vranjes
et al. 2006; Gigliotti et al. 2009),

( ¯ ) ( )w w r w d n- - + + =^ ^k v k i k1 0. 142 2
A
2 2 2

s
2 2 2

e

This two-fluid dispersion relation can be solved algebrai-
cally, where kr, and ki, are given by
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Using Equations (15) and (16), we have determined kP as a
function of k⊥, and substituted ( ) ^k k in Equation (10) to
include the effect of only collisional damping in the model.

5.1.3. Wave Propagation Model

In order to compare the structure of the experimentally
measured wave magnetic field with that predicted by the model
we first calculated bf in a cylindrical coordinate system due to
each current source using Equation (10). The value of bf for
each source is then converted from the cylindrical coordinates
to Cartesian coordinates as ˆ ˆ= +fb b x b yx y . The total wave
magnetic field produced by the ring antenna can then be
modeled by a linear superposition of ˆ ˆ+b x b yx y produced by
the two disk sources. We refer to this total wave magnetic field
as b⊥.

The experimentally measured b⊥ is compared in Figure 9 to
the field calculated at z2 for =B 500 G0 and f=57.6 kHz. The
measured and calculated b⊥, normalized by their maximum
values, are denoted as b̂ ,n. In the antenna model we set
a=0.25 cm, which is the thickness of the ring antenna. The
average values of n and Te given in Table 2 were used for the
numerical calculation. Figure 9 shows the wave structure
predicted by the model using Equation (12). This structure is in
excellent agreement with the measured wave magnetic field.
The difference in the total wave energy, G , in the xy plane
calculated from the experimental and numerical data is
typically ∼4%.

The damping of wave energy in the model was determined
by calculating Equation (10) at multiple z locations along the

LAPD axis. Figure 10 presents the calculated damping of the
shear Alfvén wave shown in Figure 9. The energy decay
follows an exponential curve to a good approximation. The
damping length, d, is obtained by fitting a function of the form

[ ]-A z dexp to the numerically calculated data, where A is a
constant.
The reason that the energy damping curve of the shear

Alfvén wave approximately follows an exponential curve may
be understood as follows. The wave magnetic field is obtained
by integrating over a number of k⊥ as discussed by Morales &
Maggs (1997). For a shear Alfvén wave of a given frequency,
different values of k⊥ have different damping lengths as shown
by Gekelman et al. (1997), Kletzing et al. (2003), and Lysak
(2008). The cumulative effect of these multiple k⊥ results in the
energy decay being approximately exponential.
The measured and modeled results for /G G3 2 are shown in

Figure 11. The errors in the numerically calculated data were
determined using a Monte Carlo method, by considering the
uncertainties in n and Te given in Table 2, and are of the order
of the size of the plotted symbols.

Figure 9. Comparison of the two-dimensional wave structure of a 57.6 kHz
shear Alfvén wave at z2 in a uniform 500 G magnetic field: (a) as measured by
the B-dot probe and (b) as predicted by the antenna and wave propagation
model. See the text for additional details.

Figure 10. Damping of the modeled shear Alfvén wave energy vs. distance
along the LAPD axis. The wave energy values calculated using the model are
given by red circles. The blue line is obtained by fitting a function of the
form [ ]-A z dexp .

Figure 11. Comparison of the experimentally measured reduction in wave
energy, /G G3 2, between z2 and z3 and the theoretically calculated decrease in
wave energy, using the antenna wave propagation model for = =B B 500lo hi

G. The maroon symbols represent the experimental data. The black and orange
symbols respectively represent the energy reduction due to collisional damping
only and due to the combined effects of Landau and collisional damping.
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Comparing our observed damping for the flat 500G case to
our model results, we find that the reduction in wave energy
predicted by the model by considering both Landau and
collisional damping is in good agreement with the experiment.
The comparison shown in Figure 11 of the modeled results due
to Landau and collisional damping, and to collisional damping
alone, shows that collisional damping is dominant. Landau
damping, while present, is very weak.

5.2. Reduction of Wave Energy in the Gradient

5.2.1. Wave Reflection

Light and other electromagnetic waves undergo reflection while
propagating across a change in refractive index, corresponding to
a change in the propagation velocity of the wave. Similarly,
according to both theoretical studies and numerical simulations,
shear Alfvén waves propagating through a strong longitudinal vA
gradient are predicted to undergo reflection (Moore et al. 1991a;
Musielak et al. 1992; Perez & Chandran 2013).

According to the theory of Musielak et al. (1992), a shear
Alfvén wave incident on a longitudinal vA gradient is expected
to undergo strong reflection when the frequency of the wave is
less than the critical frequency fcr given by

( ) ∣ ∣ ( )= ¢ + f v v v
1

2
2 . 17cr A

2
A A

Here, the double prime indicates the second spatial derivative.
This expression was deduced for gradients in n and B0 in one
dimension.

In the wave experiments described in Section 4.2, the shear
Alfvén waves passes through two gradients in vA, labeled as I
and II in Figure 2. The difference between these gradients is
that vA increases with distance in gradient I, while it decreases
with distance in gradient II. In order to constrain the role of
reflected waves in the observed reduction in the transmitted
wave energy versus λ/LA, we performed several measurements
to measure the magnitude of any reflected waves.

The first two sets of wave-reflection experiments were
carried out to search for reflection from gradient I. B-dot probes
were positioned at z1 and z2 as indicated in Figure 12. Shear
Alfvén waves were excited by applying a sinusoidal wave train
of two cycles to the antenna. This reduced the temporal length
of the wave train compared to the previously excited ten-cycle
wave train. The gradient was also moved to the far end of the
machine, as shown in Figure 12. This ensured that the time
required for a wave to traverse the distance from the B-dot
probe at z1 to gradient I and return to z1 was greater than twice
the time period of the lowest wave frequency investigated. As a
result, the incident wave and any reflected wave would be
separated in time in the B-dot probe data. Lastly, the range of
frequencies was selected to satisfy the criteria: (a) the wave was
predicted to be strongly reflected by theory and (b) there was an
overlap in the values of l LA with the inhomogeneity observed
in coronal holes of l L 4.5A .

The magnetic field profile used in the first set of wave-
reflection experiments is shown by the solid curve in Figure 12.
This curve was obtained by increasing Bhi to ≈1382 G. The
value of fcr varied axially with the magnetic field variation and
reached a maximum value of ≈724 kHz at z=12.14 m within
gradient I. In order to satisfy the theoretical criteria for strong
reflection we excited wave frequencies below 724 kHz.

Figure 13 shows the y component of the wave magnetic field
detected for f=65 kHz (i.e., =f f 0.09cr ). A well formed
two-cycle incident wave was detected by probes at z1 and z2
between ≈112 and 148 ms. For this wave /l »L 5.6A . If the
shear Alfvén wave were strongly reflected by gradient I, then
the reflected wave would reach z1 at 39 μs after the incident
wave has passed it. Hence, a reflected wave is predicted to be
observed in Figure 13 between ≈151 and 187 μs. However,
we do not observe any reflected wave in this time window. The
wave signal at z1 always leads the signal at z2, implying that the
B-dot probes did not detect any waves reflected by gradient I.
We also find no detectable reflected wave in the bx and bz
directions
There are some small-amplitude fluctuations trailing the

applied two-cycle wave train, but these features have a
frequency twice that of the applied waveform. We believe that
these are excited by the second harmonic present in the antenna
signal and are unrelated to reflection from gradient I.
We have also considered the possibility that waves did not

reflect exactly along the axis, but found no evidence for
reflected waves at any location in the LAPD cross section. The
B-dot probes were scanned through a cross section in LAPD
and the results were always similar to those shown in
Figure 13.
We repeated all of these measurements while increasing f to

190kHz in steps of 5 kHz. This caused f fcr to increase to 0.3.

Figure 12. Magnetic field profile used for studying reflection of wave energy
from the vA gradient labeled as I. The locations z1 and z2 are the same as in
Figure 2.

Figure 13. Time variation of by as measured on the axis of LAPD at z1 and z2
for f=65 kHz. The magnetic field profile corresponding to these wave data is
given by the solid line in Figure 12.
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As before, we did not observe a detectable reflected wave at
any of the measured frequencies.

We then carried out a second set of experiments to study the
possible effects of tunneling through the high vA region. For the
above wave-reflection studies, λ was greater than the width, w,
of the high-field region. For example, /l »w 2.1 for

=f f 0.1cr . To rule out the possibility that the shear Alfvén
wave could be tunneling through the high vA region, instead of
undergoing reflection, we moved gradient I closer to the
antenna, as represented by the dashed line in Figure 12. This
resulted in l »w 1.1. We then repeated the wave-reflection
experiments described above and again did not observe any
detectable reflected waves.

The lack of an observable reflected wave from gradient I
may imply that the amplitude of the reflected wave is too weak
to be detected. For example, using the measured initial wave
amplitude at z1 and taking into account Landau and collisional
damping as the wave propagates from z1 to gradient I and back,
we estimate that if there were 100% reflection at gradient I then
we would measure a reflected wave signal at z1 with an
amplitude of 11mG. This is much larger than the ≈1.5 mG
fluctuations in Figure 13 trailing the applied two-cycle wave
train and should be readily observable. The lack of an observed
reflected signal indicates that the efficiency of any reflection by
the gradient is much less than 100%. Taking 3mG as a
reasonable detectable level over the 1.5mG fluctuations
trailing the applied wave train, and taking into account Landau
and collisional damping between z1 and gradient I and back to
z1, we can put an upper limit on the reflected wave energy of
≈7.4% for λ/LA≈5.6 and f/fcr=0.09. This reflectance is too
small to account for the observed loss of wave energy.

Finally, in the third set of wave-reflection experiments, we
investigated the effects of gradient II. For this we set

= =B B 500lo hi G, the flat-field case shown in Figure 2. Here,
fcr had a maximum value of ≈364 kHz within gradient II at
z=13 m. As before, shear Alfvén waves were excited by
applying a sinusoidal wave train comprising two cycles to the
antenna located at z=0. The corresponding variation of by at
z1 and z2 for f=65 kHz is shown in Figure 14. Similar to the
results from the first two sets of wave-reflection measurements,
the phase of the wave signal at z1 always leads the wave signal
at z2, indicating that the B-dot probes did not detect any
reflection from the gradient.

5.2.2. Mode Coupling

The energy of a shear Alfvén wave traveling through a vA
gradient may decrease if a part of the wave energy is converted
into another mode. Inhomogeneity in the magnetic field can
enable the propagation of compressible surface magneto-
acoustic waves and incompressible surface Alfvén waves
(Roberts 1981). A gradient in the magnetic field may convert
some of the shear Alfvén wave energy to a slow wave
(Southwood & Saunders 1985). A fast wave may get excited.
All of these modes induce a parallel perturbation, which we
have tried to detect using B-dot probes. The ratio  ^b b was
measured before, within, and after the gradient. Mode
conversion into these modes would produce an amplification of
bP, but we did not detect any bP above the noise level of
≈0.5mG. This implies that mode conversion is unlikely.
In order to further confirm that the only mode propagating in

the gradient is a shear Alfvén wave, we have measured the
wave magnetic fields before, within, and after the gradient.
Figures 15(a)–(c) show the structure of the wave before, within,
and after the magnetic field gradient, respectively. Two well
formed current channels are observed, with the separation
between the current channels decreasing in the gradient and on
the high-field side, as is expected for shear Alfvén waves
propagating along converging magnetic field lines. Considering
that we have not detected any wave other than the shear Alfvén
wave in the gradient, and that the structure of the shear Alfvén
wave within the gradient is consistent with that before and after
the gradient, energy reduction due to mode conversion is
unlikely.

Figure 14. Same as Figure 13 but for = =B B 500lo hi G.

Figure 15. Wave magnetic field in the xy cross section of LAPD (a) before the
gradient at z=z2, (b) within the gradient at z=8m, and (c) after the gradient
at z=z3. The direction of the arrows represents that of the wave magnetic field
and the colors give the magnitude of the field using the color bar shown. The
arrow lengths are normalized by the maximum value of the magnetic field in
each panel. For these measurements Blo was 500G, Bhi was 1600G, and the
wave frequency was 76.8 kHz. Note that the x and y spacing of the data points
here is 2cm as opposed to 1.5cm in Figure 5.
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5.2.3. Nonlinear Effects and Transit-time Damping

Large-amplitude shear Alfvén waves can lose energy due to
nonlinear effects. The experiments reported in this paper were
carried out using very low-amplitude waves of b B0

´ -8 10 5. Nonlinear effects associated with shear Alfvén
waves, such as parametric instability, have been found to occur
only for relatively large-amplitude waves. For example,
Dorfman & Carter (2016) reported the threshold for observa-
tion of parametric instability of shear Alfvén waves to be

´ -b B 2 100
3. This is over 10 times greater than our wave

amplitude. Low-amplitude shear Alfvén waves also exhibit
nonlinear effects in a narrow band of frequencies around the
ion cyclotron frequency due to ion cyclotron resonance. As the
range of wave frequencies excited here is f 2ci , nonlinear
effects due to ion cyclotron resonance are expected to be
absent.

A shear Alfvén wave may exert a mirror force on the
electrons and ions, and contribute to additional damping of the
wave. This damping mechanism is called transit-time damping.
For uniform plasmas with v vti

2
A
2 and <T Ti e, the mirror

force experienced by an electron is greater than that for an ion,
and is given by ∣ ∣ ( )  ~F m v B k b2Me e te

2
0 (Hollweg 1999). In

order to estimate the relative importance of transit-time
damping with respect to collisional damping, we have
compared ∣ ∣FMe with the frictional force experienced by an
electron, ∣ ∣ n~F m vfric,e e te e (Swanson 1989). For our exper-
imental parameters of = ´ -n 2.8 10 cm12 3, neutral pressure
of 10−4 Torr, =T 4.9 eVe , maximum value for bP of 0.5 mG,
B0=500G, and  =k 0.014m, the estimated ∣ ∣ ∣ ∣/F FMe fric,e is
~ ´ -8 10 8. This is extremely small, mainly because
 < -b B 100

6 in the gradient. Hence, the transit-time damping
due to the mirror force is inconsequential when compared to
collisional damping and cannot account for the reduction in
wave energy.

6. Discussion and Summary

We have studied the reduction in energy of shear Alfvén
waves propagating through vA gradients in a laboratory
experiment under conditions scaled to match solar coronal
holes. We have experimentally established that λ/LA is the
independent parameter that describes the decrease in energy of
shear Alfvén waves passing through vA gradients. For values of
λ/LA similar to those in coronal holes, the waves are observed
to lose energy by a factor of ≈5 more than they do when
propagating through a plasma without a gradient, where the
energy reduction is by a factor of ≈2.

In the absence of a magnetic field gradient, we have used a
model to show that the wave energy reduction is caused by
collisional and Landau damping. Collisions are found to
dominate the wave damping, while the contribution of Landau
damping is small.

The cause of the additional damping in the presence of a
gradient is unknown. We have constrained the cause of this
energy reduction in the gradient by ruling out wave reflection,
mode coupling, nonlinear effects, and transit-time damping.
Landau and collisional damping may reduce the energy of the
shear Alfvén wave in the gradient and deposit the wave energy
in the plasma. However, a detailed theoretical analysis to
accurately determine their contribution using plasma kinetic
theory in the non-WKB regime relevant to our experiments is
beyond the scope of this paper.

Since the most probable mechanisms that can reduce the
energy of the incident shear Alfvén wave without transferring
the energy to the plasma do not account for the observed
energy reduction, and as the total energy must be conserved, it
is likely that the waves deposit their energy in the plasma,
thereby contributing to plasma heating or generating a bulk
flow. If the total energy lost by the wave contributed to electron
heating, then the maximum increase in Te would be ∼23 μeV.
Unfortunately this is too small an increment to measure with a
Langmuir probe. If the total wave energy gave rise to a bulk
flow, then the flow velocity would be ~v c0.003f s, which is
too weak to be detected with a Mach probe. The reason for the
expected small rise in Te or weak vf is due to the low amplitude
of the shear Alfvén wave. The energy lost by the shear Alfvén
wave is only ∼55 μJ. This is a tiny fraction of the ∼1 J thermal
energy of the plasma in the longitudinal gradient. In future
experiments we hope to determine the location where the wave
energy is being deposited. In order to detectDTe or vf, we plan
to excite large-amplitude shear Alfvén waves and carry out
simultaneous Te and vf measurements as the wave propagates
through the gradient.
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U.S. Department of Energy, Office of Science, Office of Fusion
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