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Abstract

We present a study of density fluctuations in coronal holes. We used a reduced magnetohydrodynamic (RMHD)
model that incorporated observationally constrained density fluctuations to determine whether density fluctuations
in coronal holes can enhance Alfvén wave reflection and dissipation, thereby heating coronal holes and driving the
fast solar wind. We show results for two models of the background atmosphere. Each model is a solution of the
momentum equation and includes the effects of wave pressure on the solar wind outflow. In the first model, the
plasma density and Alfvén speed vary smoothly with height. Wave reflection is relatively weak in the smooth
model, resulting in a low energy dissipation rate. In the second model, we include additional density fluctuations
along the flux tube based on the observations. We find that density ρ fluctuations on the order of δρ/ρ∼ 0.24
increase the Alfvén wave turbulence to levels sufficient to heat the open field regions in coronal holes.

Unified Astronomy Thesaurus concepts: Solar physics (1476); The Sun (1693); Solar coronal heating (1989); Solar
coronal holes (1484); Solar corona (1483); Solar atmosphere (1477)

1. Introduction

Coronal holes are regions of the solar atmosphere where the
magnetic field is open and extends into interplanetary space.
Their temperatures and densities are lower than the surrounding
closed field regions, known as the quiet Sun, and are the
primary source of the fast solar wind, with velocities in the
range of 500–800 km s−1 (Munro & Withbroe 1972; Krieger
et al. 1973; Zirker 1977). Many physical mechanisms have
been proposed to explain the energization and the acceleration
of plasma emanating from coronal holes and the ensuing fast
solar wind. Alfvén waves, which are ubiquitous in the corona
(De Pontieu et al. 2007; Tomczyk et al. 2007; Tomczyk &
McIntosh 2009; Hahn & Savin 2013; Tian et al. 2014; Morton
et al. 2015), are one such mechanism; and Alfvén wave
turbulence is one of the major theories considered to explain
the heating of coronal holes (Parker 1965; Heinemann &
Olbert 1980; Velli 1993; Suzuki & Inutsuka 2006; Cranmer
et al. 2007; Hollweg & Isenberg 2007).

In coronal holes, Alfvén waves are believed to be generated
at the photosphere by the underlying granular convective flows
that interact with open magnetic field lines, launching waves
that travel along the field lines in the corona (Parker 1965;
Dmitruk et al. 2002; Verdini et al. 2009; Cranmer et al. 2015).
The waves are reflected in the corona by the radial gradients in
the Alfvén speed, producing inward propagating waves
(Heinemann & Olbert 1980; Velli 1993). These inward
propagating waves interact nonlinearly with the outward
propagating waves, driving turbulence, and generate heating
(Zhou & Matthaeus 1990; Matthaeus et al. 1999; Chandran
et al. 2009).

Observational studies of Alfvén waves indicate that the
waves carry and deposit enough energy at sufficiently low
heights to explain the heating of coronal holes (Bemporad &
Abbo 2012; Hahn et al. 2012; Hahn & Savin 2013; Hara 2019).
However, models that assume that the magnetic field and
particle density decrease smoothly with height predict
insufficient reflection of the Alfvén waves and correspondingly
insufficient generation of the turbulence needed to match the

energy loss inferred from the observations. A potential solution
would be if there were density fluctuations along the open field
lines. Our models indicate that these density fluctuations
increase the rate of Alfvén wave reflection and dissipation,
creating more turbulence, and thereby increasing the heating
rate (van Ballegooijen & Asgari-Targhi 2016, 2017).
There is strong observational evidence for density fluctua-

tions in coronal holes (Banerjee et al. 2011; Miyamoto et al.
2014; Hahn et al. 2018). In this paper, we use these
observations to constrain a three-dimensional (3D) RMHD
turbulence model. Incorporating these density fluctuations into
our model, we find that the observed density fluctuations
increase wave reflection and turbulent dissipation to levels
sufficient to heat the open field regions in coronal holes.
The rest of this paper is organized as follows. Section 2

describes the density fluctuation observations. In Section 3, we
present our 3D RMHD model of Alfvén wave turbulence in a
coronal hole. Some of the details, including the derivations of
the equations, are presented in the Appendix. The simulation
results for a smooth model are shown in Section 4, where the
turbulence dissipation rates are compared with those needed to
maintain and energize the background atmosphere. Section 5
implements the observed density fluctuations from Section 2
and considers their effects on the turbulence and the heating
rates. Section 6 discusses the significance of our results in
understanding the energization and acceleration of the fast
solar wind.

2. Density Fluctuation Observations in Coronal Holes

Density fluctuation observations from Hahn et al. (2018) are
shown in Figure 1(a) as a function of height in a polar coronal
hole up to a radius of≈1.3 Re. These fluctuations were inferred
from a series of images of the Sun in the 174Å bandpass using
the Sun Watcher using Active Pixel System (SWAP; Halain
et al. 2013; Seaton et al. 2013), instrument on the Project for
Onboard Autonomy (Proba2, Santandrea et al. 2013) satellite.
The coronal density fluctuation amplitudes were inferred by
obtaining the total rms intensity fluctuation amplitude at each
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pixel, and subtracting from that estimates for the photon and
detector noise. In estimating the rms fluctuation, it is necessary
to define an average value about which the fluctuations occur.
Here, we use the data of Hahn et al. (2018) calculated using a
running-difference method that measured fluctuations relative
to the average over a 20 minute window. The average SWAP
intensity is also uncertain due to instrument scattered light,
which influences the normalization of the density fluctuations.
Here, we have used the normalization based on the observed
scattered light during a solar eclipse. Additional details about
the plotted data can be found in Hahn et al. (2018). For clarity,
we have omitted the statistical uncertainties in Figure 1(a).

Observations of density fluctuations at larger heights have
been obtained by Miyamoto et al. (2014). They used the
Akatsuki spacecraft radio occultation technique to infer density
fluctuations at heights of 1.5–20.5 Re. As the spacecraft passed
behind the Sun, from 2011 June 6 to July 8, it emitted radio
waves that were detected at the Earth. Density fluctuations in
the corona caused frequency fluctuations in the detected signal.
Miyamoto et al. (2014) estimated the amplitude of the density
fluctuations using these frequency fluctuations. Their results are
illustrated in Figure 1(b). There are a number of possible
sources of systematic uncertainty in these results. Using a
different estimate of the average coronal density would change
their results by a factor of 2–3. Their analysis assumes that the
density fluctuations are outward propagating acoustic waves;
but if the waves were inward propagating, then the fluctuations
would be larger by a factor of 2–30. In addition, the
consideration of single wavelength fluctuations, the limited
frequency range measured, and the selection of statistically
significant peaks in the observations make it likely that the
inferred fluctuations are underestimated.

The density fluctuations presented here have been attributed
to compressive waves in solar wind (Kudoh & Shibata 1999;
Moriyasu et al. 2004; Matsumoto & Shibata 2010). The Hahn
et al. (2018) and Miyamoto et al. (2014) observations find that
the density fluctuation amplitude increases with height in the
corona out to several solar radii, but there appears to be a
difference in the magnitude of these fluctuations. Although, the
data sets do not overlap in height, the Hahn et al. (2018)
measurements appear to be systematically larger than those of
Miyamoto et al. (2014). Several factors may contribute to this
disparity. First, different solar structures were present in the

observations. Hahn et al. (2018) observed a coronal hole
observed near solar minimum, whereas Miyamoto et al. (2014)
observed the Sun during the rising phase of a solar cycle when
no major coronal holes were present. Second, as mentioned
above, there are several assumptions in the Miyamoto et al.
(2014) analysis that would tend to produce an underestimate of
the fluctuation amplitude. Finally, there are significant
statistical uncertainties in the Hahn et al. (2018) data at their
largest heights, which may reduce some of the apparent
disparity.
We have used these empirical measurements as the basis for

the density fluctuation amplitude input into our model, which
extends from the base of the corona at 1 Re up to 20 Re. For
this, we have combined the observations by Hahn et al. (2018)
and Miyamoto et al. (2014). We have obtained plausible curves
to connect these measurements and assess the uncertainties
based on the upper and lower bounds. All of these curves are
shown in Figure 1(c). The blue curve is an estimated lower
bound to the data of Hahn et al. (2018) and extrapolates to
heights above 1.35 Re to approximately match the results of
Miyamoto et al. (2014) at 20 Re. The green curve represents
the Miyamoto et al. (2014) observation and extrapolates the
data down to 1 Re. The dashed black curve is an estimated
upper bound to the observations of Hahn et al. (2018) and
Miyamoto et al. (2014). The red curve is an approximation
between the two data sets that falls in between the observations
by Hahn et al. (2018) and Miyamoto et al. (2014) at low
heights.

3. Alfvén Wave Turbulence Model of a Coronal Hole

Alfvén waves are transverse incompressible magnetic
oscillations (Alfvén 1947) and are ubiquitous in the solar
atmosphere (De Pontieu et al. 2007; Tomczyk et al. 2007;
Tomczyk & McIntosh 2009; Morton et al. 2015). We describe
the nonlinear dynamics of Alfvén waves in a thin flux tube
inside a coronal hole using the RMHD equations. The flux tube
is positioned at the coronal base, r base= 1.003 R☉, and
expands radially outward to r= 20 R☉. The flux tube is
assumed to have a square cross section with size 2R(r) and refer
to R(r) as the flux tube radius. We described the details of this
model in van Ballegooijen & Asgari-Targhi (2016, 2017). The
Alfvén waves are launched at the coronal base by introducing

Figure 1. (a) Estimates of density fluctuations as a function of position between 1.00 and 1.35 Re in a coronal hole based on observations from Hahn et al. (2018;
black stars). The blue curve is an estimated lower bound to the data points, the dashed black curve is an estimated upper bound, and the red curve is explained in (c).
(b) Amplitude of density fluctuations from 1.5 to 20.5 Re from the observations by Miyamoto et al. (2014; black stars) , which we incorporate into our model using the
green curve. (c) Extrapolations in the limit of 1–20 Re, from Hahn et al. (2018; blue curve), from Miyamoto et al. (2014; green curve), the two observations combined
(red curve), and the upper bound to Hahn et al. (2018) and Miyamoto et al. (2014) observations (dashed black curve). See the text for details.
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incompressible footpoint motions. The footpoint motions are
restricted to the square cross section and have a velocity
amplitude vrms≈ 40 km s−1. This velocity is in agreement with
the spectral line widths and nonthermal velocities observed at
the base of coronal holes (Wilhelm et al. 1998; McIntosh et al.
2008; Banerjee et al. 2009; Landi & Cranmer 2009; Singh et al.
2011; Bemporad & Abbo 2012; Hahn et al. 2012). The
footpoint motions have a correlation length λ⊥= 1Mm, where
λ⊥(r) is the perpendicular correlation length of the turbulence.
In the present work we use a correlation time τc≈ 48 s. We
adopted this value so that the correlation time is comparable to
the timescale of the solar granulation.

In the present model, the background atmosphere is highly
inhomogeneous, the outward propagating waves are launched
at the coronal base, and the inward propagating waves are
produced by wave reflections. We define the Alfvén waves in
terms of their effect on magnetic field B(r, t) and plasma
velocity v(r, t), both functions of position r within the flux tube
and time t. The plasma motions are expressed by the MHD
equations in 3D:
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where r denotes the position, and t is time, ρ(r, t) is the mass
density, p(r, t) is the plasma pressure, B is the magnetic field
strength, G is the gravitational constant, Me is the solar mass, r̂
is the unit vector in the radial direction, and Dv and Dm are
dissipative terms. In the heat Equation (3), γ is the ratio of
specific heat coefficients, QA(r, t) is the plasma heating rate per
unit volume and includes the viscous term and the Joule
heating term, Qrad(r, t) is the radiative loss rate, and Qcond(r, t)
is the conductive loss rate. Qcond is given by the divergence of
the conductive flux, Qcond=∇ ·Fcond, which may be positive
or negative depending on position in the corona. The
conductivity tensor is highly anisotropic and the resulting
conductive flux Fcond is nearly parallel to the magnetic field B.

We first set up a background atmosphere for wave
propagation in the expanding flux tube using the model
developed in van Ballegooijen & Asgari-Targhi (2016, 2017).
The parameters used in the set up of the background
atmosphere are introduced with the subscript 0. In addition to
the magnetic field strength B0(r), we also need the plasma
temperature T0(r), density ρ0(r), and outflow velocity u0(r). The
Appendix describes how these quantities are computed. In our
modeling, there is a distinction between the total wave energy
dissipation rate Qtot and the plasma heating rate QA. The term
Qtot is updated by solving the RMHD equations at each
time step while QA is calculated from the background
atmosphere model and does not change. If the waves provide
all the heating, these two rates should be equal, Qtot=QA. The
objective of the present work is to construct a solar wind model
for which this condition is satisfied.

Figure 2 shows the radial profile of some of the background
parameters. Figure 2(a) shows the density. The density ρ0(r)
and outflow velocity u0(r) are computed from iteratively
solving the mass flux conservation, momentum, and energy
equations. Figure 2(b) shows the temperature T0(r) computed
from Equations (A16)–(A18). Figure 2(c) shows the magnetic
field strength B0(r) as determined from Equation (A15) with
Bpole= 10 G.
Figure 2(d) shows the outflow velocity u0(r) of the solar

wind, the sound speed cs, and the Alfvén speed vA. The critical
point of the outflow or the sonic point is at rc≈ 1.8 Re with the
velocity cs≈ 168 km s−1. Above this velocity the solar wind is
supersonic. When the wave pressure force Dwp given by
Equation (A4) is absent, the sonic point is at r≈ 4.48 Re.
Therefore, the wave pressure force plays a dominant role in
creating and energizing the fast solar wind (Belcher 1971;
Hollweg 1973; Jacques 1978). The Alfvén critical point, where
the two curves u0(r) and vA(r) cross each other is at r≈ 7.2 Re,
and the velocity at this point is 624 km s−1. The Alfvén speed
reaches a maximum of vA≈ 2175 km s−1 at r≈ 1.3 Re.
Figure 2(e) displays the absolute value of the acceleration of

gravity, and the acceleration Dwp/ρ0 produced as a result of
wave pressure force. The wave pressure acceleration overtakes
the gravitational acceleration at the height r≈ 2 Re. Figure 2(f)
shows the total plasma heating rate QA(r) with contributions
from radiative losses Qrad(r) (blue curve), thermal conduction
Qcond(r), and advection Qadv(r) given by Equation (A9).

3.1. RMHD Turbulence

Using the background atmosphere presented in the
Appendix, we simulate the wave propagation in 3D using the
time-dependent RMHD approximation. The waves are
described in terms of the Elsässer variables:

( ) prºz v B 4 , 51 1 0

where B1(r, t) and v1(r, t) are the magnetic and velocity
perturbations of the waves, and ρ0(r) is the plasma density. The
term z+ describes waves propagating outward and are referred
to as “outward” waves. The term z− describes the “inward”
waves. In an inhomogeneous atmosphere, such as the solar
wind, where the Alfvén speed varies strongly with position r,
the inward waves can have both inward and outward
propagating components (Velli et al. 1989; Perez & Chandran
2013). The RMHD equations are written in terms of the
Elsässer variables, ω±, and they take the form
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where f±(r, t) are the velocity stream functions of the Elsässer
variables, w º - ^ f

2 are the vorticities, HB(r)≡ B0/(dB0/dr)
is the magnetic scale length, and Hρ(r)≡ ρ0/(dρ0/dr) is the
density scale length. Note that u0 and the radial gradients of
B0 and ρ0 cause linear coupling between the ω+ and
ω− waves. The first term on the right-hand side of this
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equation describes the effects of wave propagation, and the
second and third terms describe the linear couplings between
the outward and inward waves, respectively. The bracket
operator [L, L] is defined by

( ) [ ] ( )= º
¶
¶

¶
¶

-
¶
¶

¶
¶

b x y r t f g
f

x

g

y

f

y

g

x
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where x and y are the coordinates perpendicular to the flux tube
axis, and f (x, y, r, t) and g(x, y, r, t) are two arbitrary functions.
All nonlinearities of the RMHD model are contained within
such bracket terms. In Equation (6) we omit the dissipative
terms, which will be described in more detail below.

Most RMHD models use a spectral method in which all
functions of x and y are written in terms of a set of normalized
basis functions ˜ ( ˜ ˜)F x y,k . Here x̃ and ỹ are dimensionless
coordinates, and index k is in the range k= 1, L, kmax, where
kmax is the total number of modes. Then an arbitrary function
f (x, y, r, t) can be written as

( ) ( ) ˜ ( ˜ ˜) ( )å=f x y r t f r t F x y, , , , , , 8
k

k k

where fk (r, t) is the amplitude of the mode with index k. The
basis functions depend on the dimensionless perpendicular
coordinates ˜ ( )ºx x R r and ˜ ( )ºy y R r , where R(r) is the

radius of the cross section of the flux tube. We assume a square
cross section, ˜- + x1 1 and ˜- + y1 1, and we use
periodic boundary conditions on this square domain. Then the
basis functions are products of x̃- and ỹ-dependent parts, each
of which are sine or cosine functions with periods

˜ ˜D = D =x y 2. In this case Equation (8) is essentially the
Fourier Transform written in a compact form. The width of the
computational domain in dimensional units is Δx=Δy= 2R
(r), which increases with radial distance r from Sun center. The
basis functions have well-defined dimensionless perpendicular
wavenumbers ax,k= π nx,k and ay,k= π ny,k, where nx,k and ny,k
are integers. The total dimensionless wavenumber is

º +a a ak x k y k,
2

,
2 , and the actual wavenumber in physical

units is k⊥= ak/R(r). Inserting Equation (8) into Equation (7),
we find for the mode amplitudes of the function b(x, y, r, t):

( )
( )

( ) ( ) ( )åå=b r t
R r

M f r t g r t,
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, , , 9k
j i

kji j i2

where fj(r, t) and gi(r, t) are the mode amplitudes of the
arbitrary functions f (x, y, r, t) and g(x, y, r, t), and Mkji is a
sparse, dimensionless matrix describing the nonlinear coupling
between certain mode triples (i, j, k). For the present case of a

Figure 2. Radial dependence of various background quantities for a polar coronal hole. (a) Mass density. (b) Temperature. (c) Magnetic field strength. (d) Outflow
velocity, u0 (black curve), sound speed, cs (blue curve), and Alfvén speed, vA (red curve). (e) Absolute value of the inward acceleration due to gravity (black curve),
and outward acceleration due to wave pressure gradient (red curve). (f) Plasma heating rate per unit mass due to wave dissipation (black curve), and energy loss rates
per unit mass due to thermal conduction (red curve), advection (green curve), and radiation (blue curve). The red dashed curves indicate the region where the thermal
conduction heats the plasma by conduction from below.
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square cross section:
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In general the details of the Mkji matrix depend on whether the
flux tube has a circular or square cross section, and on the type
of boundary condition used, but the matrix is always fully
antisymmetric in its indices, as was shown for the circular case
in Appendix B of van Ballegooijen et al. (2011). Using
Equation (8), the RMHD equations can be written as
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where ν±,k are artificial damping rates for outward and inward
waves. The damping model is described in more detail in
Section 3 of van Ballegooijen & Asgari-Targhi (2017).

Multiplying Equation (11) by r f k
1

2 0 , and summing over
modes, we obtain the wave energy equations for the outward
and inward waves:
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and we use mass conservation (ρ0 u0/B0= constant). Here
U±(r, t) are the wave energy densities, UR (r, t) is the “residual”
energy density (Grappin et al. 1982, 1983), Q±(r, t) are the
wave dissipation rates, F±(r, t) are the energy fluxes, and
D±(r, t) are the contributions to the wave pressure force. The
total wave energy density is given by Utot=U++U−, and the
contributions from magnetic and kinetic energy are given by
Umag= (Utot−UR)/2 and Ukin= (Utot+UR)/2. Similarly, the
total dissipation rate Qtot=Q+ + Q−, the total energy flux
Ftot= F++ F−, and the total wave pressure force
Dwp=D+ +D−. Note that the nonlinear terms in the RMHD

equations drop out in the energy Equations (12) (also see
Appendix C of van Ballegooijen & Asgari-Targhi 2016). The
terms u0D± in the energy equations represent the work done by
the wave pressure forces on the background flow.

4. Turbulence in a Model with a Smooth Background
Atmosphere

The atmospheric model shown in Figure 2 is used as a
background for the 3D, time-dependent simulations of Alfvén
waves inside a thin flux tube described by Equation (6). The
waves are launched at the coronal base, and they produce
reflection driven turbulence at larger heights. We simulate the
waves for 30,000 s. The waves reach the outer boundary at
r= 20 Re at 10,859 s.
Figure 3 shows the wave-related parameters averaged over

the cross section of the flux tube and over time. The time
interval is t0(r)+ 300� t� 30000 (in seconds), where t0(r) is
the time when an outward propagating wave reaches a certain
height r. Figure 3(a) shows that the rms velocity amplitude of
the waves, vrms, reaches a maximum of 292 km s−1 at r≈ 5 Re.
Figure 3(a) also shows the rms values of the Elsässer variables,

( ) ∣ ∣= á ñ zZ r 2 . The inward waves, Z−(r) are much weaker
than outward waves, Z+(r). The amplitude of the inward waves
has a sharp minimum at 1.3 Re, presumably because the
Alfvén speed has a maximum near this height.
Figure 3(b) presents the total energy density Utot of the

simulated waves, with contributions from the kinetic energy
Ukin and magnetic energy density Umag. The dashed curve
shows the energy density UA used in the setup of the
background atmosphere. The figure shows that Ukin≈Umag

and Utot≈UA. Therefore, the wave simulation results are
consistent with the assumptions made in the model setup of the
background atmosphere (see the Appendix).
Figure 3(c) shows the total energy dissipation rate Qtot(r) of

the simulated turbulence, and the plasma heating rate QA(r)
used in the setup of the background atmosphere. Note that the
dissipation rate, Qtot(r) is smaller than the plasma heating QA(r)
over a wide range of heights in the smooth model. Therefore, in
the smooth model presented here the simulated wave
turbulence does not generate enough heating to raise the
temperature to the assumed level T0(r) shown in Figure 2(b).
Figure 3(d) shows the same heating rates per unit mass. The

total heating rate Qtot(r)/ρ0 drops at 1.3 Re, near the position
where the Alfvén speed reaches its maximum, and the
amplitude of the inward waves decreases. Figure 3(d) illustrates
that the heating rate Qtot (r)/ρ0 in the smooth model is
insufficient to maintain the temperature of the background
atmosphere needed to energize and accelerate the fast
solar wind.

5. Turbulence in a Model with Density Fluctuations

We showed in Section 4, that in a solar wind model with a
smooth background atmosphere, the energy dissipation rate
Qtot(r) produced from the Alfvén wave turbulence is much less
than the energy QA(r) needed to heat the plasma and accelerate
the solar wind. Therefore, the smooth model is inconsistent
from the energy point of view. A mechanism is needed that
increases the heating rate Qtot without changing QA. In the
Alfvén wave turbulence model, turbulence is generated as a
result of nonlinear interactions between counter-propagating
waves. One means to increase the wave dissipation rate would
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be the creation of more wave reflection, which would enhance
the intermixing of the waves and increase the turbulence. We
can achieve this by introducing density fluctuations δρ(r, t).
The observational evidence for density fluctuation was
discussed in Section 2.

In this section, we consider a series of models that includes
the effects of density fluctuations on the Alfvén waves. We
include the density variations in our prescribed background
atmosphere. The density fluctuations are considered to be
random in position and stationary, i.e., independent of time. We
first set up a model with spatial variations in density δρ(r). This
is obtained by taking the solution from the “smooth model”
described in Sections 3 and 4, and adding variations to some of
the physical parameters. The density is determined from

( ) ( )[ ( )] ( )r r¢ = + r r r1 , 180 0

where ρ0 (r) is the density in the smooth model and ò(r) ≡
δρ/ρ0 is a random function of position and is defined below.

The Alfvén speed is

( ) ( )[ ( )] ( )¢ = + -v r v r r1 , 19A A
1 2

where vA(r) is the Alfvén speed in the smooth model. To
conserve mass and preserve the same mass flux as in the
smooth model, we consider the outflow velocity to be

( ) ( ) [ ( )] ( )¢ = + u r u r r1 , 200 0

where u0(r) is the outflow velocity in the smooth model. We
assume that the temperature T0(r) and magnetic field strength
B0(r) are not modified by the variations in density.
The random function ò(r) is created as follows. We first

define a Fourier-filtered random function

( ) ( ) ( )( )ò òx l = l p- -r dk dl l e e; rand , 21k ik r l22 2

Figure 3. Radial dependence of wave-related quantities for a polar coronal hole model with a smooth background atmosphere. (a) Velocity amplitude of the waves
(vrms, black curve), and the rms values for the Elsässer variables for outward waves (Z+, red curve) and inward waves (Z−, green curve). (b) Wave energy densities:
total energy (Utot, black curve), kinetic energy (Ukin, red curve), magnetic energy (Umag, green curve), and the wave energy density assumed in the set up of the
background atmosphere (UA, dashed black curve). (c) Wave energy dissipation rates per unit volume: total energy dissipation rate (i.e., heating rate) of the simulated
turbulence (Qtot, solid black curve), and plasma heating rate (QA, dashed black curve), assumed in the setup of the background atmosphere (dashed black curve). (d)
Wave energy dissipation rates per unit mass: the rate derived from the turbulence simulation (Qtot/ρ0, solid black curve), and the rate assumed in the setup of the
background atmosphere (QA/ρ0, dashed curve).
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where ξ(r; λ) varies with length scale larger than λ and ( )lrand
is a random function of l. We normalize ξ(r; λ) as

( ) ( )
( )

( )x l
x l

x l
=

á ñ
r

r

r
;

;

;
, 22

rms

where 〈X〉rms denotes the rms value of X. Therefore, the rms
value of x is unity. We define the fractional density fluctuation
ò(r)= δρ/ρ as

( ) ( ) ( )dr r x l= rn r r; , 23

where n(r) represents an envelope of the fractional density
fluctuation.

A uniform density fluctuation with rms amplitude of n
(r)= 0.1 was used in van Ballegooijen & Asgari-Targhi
(2016). In this paper, we applied nonuniform density variations
based on observations described in Section 2 and presented in
Figure 1. We carried out a series of nine simulations, three for
each selected density fluctuation wavelength: λ= 0.03, 0.05,
and 0.1 R☉. We created a time-independent, one-dimensional
(1D) atmospheric model with density fluctuations and used it as
the background atmosphere for the 3D RMHD simulation of
the Alfvén waves. The boundary conditions and the method to
solve the RMHD equations are identical to the smooth model
described in Section 4.

Figure 4 shows the density fluctuation, the velocity
amplitude of different types of waves, and the heating rates
for the four curves shown in Figure 1(c) that approximate the
observations. The wavelength of the density fluctuation is
λ= 0.03 R☉. Figure 4(a) shows the density fluctuation function
n(r) represented by the red curve. This curve is an estimated
lower bound from the observations of Hahn et al. (2018) as
discussed in Section 2. The envelope function is described by

⎧
⎨⎩

⎫
⎬⎭

( )
[ ( ) ( ) ]

( )

= -
+ - + -

n r
r r

0.12
0.09

1 0.05 1 0.007 1
.

24

3 6.96

This function is plotted on the linear scale with both +n(r) and
−n(r). The amplitude of the density fluctuations (black curve)
are contained by the envelope function n(r). Note that we had
to artificially reduce the density fluctuations near the Alfvén
critical point in order to allow the waves to cross over this point
without increasing the wave reflection to the point where the
computation would break down. The physical explanation is
that without imposing this limit, the amplitude of the inward
propagating waves Z− becomes larger than the outward
propagating waves Z+ at the Alfvén critical point, resulting
in a bottle-neck effect that could terminate the computation.

Figure 4(b) shows the simulation results for the rms velocity
amplitude of the waves, the outward Z+ waves, and the inward
Z− waves. We averaged these results over the cross section of
the flux tube and over time. The Z−(r) waves show strong
spatial variations and increase significantly compared to the
smooth model shown in Figure 3(a). There are two dips in
Z−(r) apparent at two positions, one is near 1.3 R☉ where the
Alfvén speed has its maximum, which was also seen in the
smooth model in Figure 3(a). The second dip is near the Alfvén
critical point, approximately at 7 R☉. This is the point where we
introduced a lower limit on the density fluctuations. The
outward propagating waves Z+(r) shows very small spatial
variations and remains largely unchanged.

Figure 4(c) shows the plasma heating rate QA(r) introduced
in the setup of the background atmosphere, and the total
heating rate Qtot(r) arising from the simulated turbulence. The
comparison between the heating rates in this model and the
smooth model shown in Figure 3(d) demonstrates that as we
introduce density fluctuations, the total heating rate Qtot

increases.
Figure 4(d) shows the density fluctuation envelope function

describing the data set of Miyamoto et al. (2014). It smoothly
connects the results across the slight gap in the observed height
range and is defined by

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

( )
( ) ( )

( )=
+

+ -
+

- -n r
r

r
r

r
10

1 5
1

1

1 5
. 253

3

4
1

4

Figure 4(e) shows the velocity amplitude of the outward Z+
waves and inward Z− waves. Figure 4(f) shows the wave
energy dissipation rates per unit mass: the rate derived from the
turbulence simulations, and the rate assumed in the setup of the
background atmosphere.
Figure 4(g) applies the envelope function based on the

observations of Hahn et al. (2018) and Miyamoto et al. (2014)
combined. The density fluctuation is described by

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )

( )
( )

= -
-

+

-
-

+
+

-

n r
r

r r

r

0.217 exp
7

3.9
0.1452 exp

1.345

0.1

10

3.5 4.8
. 26

2

2 3 3

3

Figure 4(j) shows the envelope function that is the upper
bound to the observations of Hahn et al. (2018) and Miyamoto
et al. (2014). It is described by

( )
[ ( ) ]

( )= -
+ -

n r
r

0.237
0.217

1.0 3.86 1
. 27

3 10

The comparison between the four models in Figure 4 shows
that the density fluctuation based on the combined observa-
tions, Figure 4(g), and the upper bound to the observations,
Figure 4(j), create the largest inward propagating wave
amplitudes. This in turn results in more interactions between
inward and outward propagating waves and therefore creates
stronger turbulence that increases the energy dissipation rate, as
is shown in Figures 4(i) and (l) .
Figures 5 and 6 show the results of turbulence simulations

for the cases of λ= 0.05 and 0.1 R☉, respectively. In each
figure, the first column presents the density fluctuations and the
envelope functions based on the observations and described by
Equations (24)–(27). The second column shows the rms
velocity amplitude of the waves, and the velocity amplitude
of inward and outward propagating waves. The third column
shows the heating rate assumed in the background atmosphere
and the total heating rate from Alfvén wave turbulence due to
the modeled density fluctuations.
In the last columns of Figures 4–6, the heating rate from

turbulence mostly has a dip below 2 R☉. This may be due to
Alfvén speed having a maximum near this height, as shown in
Figure 2(d), which reduces the magnitude of the second term in
Equation (6) and as a result, the amplitude of the inward
propagating waves. The Elsässer variable of the inward waves
Z− has a dip at this height as is shown by the green curve in the
second panels of Figures 4–6 and the heating rate that is the
consequence of the interactions between inward and outward
propagating waves is therefore reduced.
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Figure 4. Radial dependence of model parameters for the case of λ = 0.03 R☉. The first column, (a), (d), (g), and (j), shows the density fluctuation function n(r)
represented by the red curve based on observations by Hahn et al. (2018), Miyamoto et al. (2014), the two combined, and the upper bound to Hahn and Miyamoto’s
observations, respectively. The black curves show the randomly generated density fluctuations used for the simulations. The second column, (b), (e), (h) and (k),
shows velocity amplitude of the waves (black curve), and the rms values of the Elsässer variables for outward Z+ waves (red curve) and inward Z− waves (green
curve) for the different density fluctuation models. The third column, (c), (f), (i) and (l), shows the wave energy dissipation rates per unit mass from the different
density fluctuation simulation (black curve), and that assumed in the setup of the background atmosphere (blue curve). Note that for each panel in each column, the y-
axes minima and maxima can vary.
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6. Discussion and Conclusions

In this paper, we considered the effects of density
fluctuations on the propagation, reflection, and dissipation of

the Alfvén waves. These fluctuations have been attributed to
compressive waves in solar wind (Kudoh & Shibata 1999;
Moriyasu et al. 2004; Matsumoto & Shibata 2010). Here, we

Figure 5. Same as Figure 4 but for λ = 0.05 R☉.
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considered nonuniform density fluctuations constrained by the
observations of Hahn et al. (2018) and Miyamoto et al. (2014).
We assumed the density fluctuations to have correlation lengths

of the order of λ= 0.03, 0.05, and 0.1 R☉. These wavelengths
are consistent with slow-mode compressive waves. The main
results of the simulations presented in Figures 4–6 confirm that

Figure 6. Same as Figure 4 but for λ = 0.1 R☉.
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the density fluctuations increase the wave reflection signifi-
cantly, and as a result, enhance the amplitude of the inward
propagating waves. The ratio of Z−/Z+ is about a factor of
10–15 larger than in the smooth model. This, in turn, increases
the interactions between the inward and outward propagating
waves and creates large wave dissipation rates. Therefore, the
heating rate, which is the time-averaged dissipation rate, is
increased significantly in all 12 models presented. All together,
we find that density fluctuations on the order of ∼0.24 increase
the turbulence to levels sufficient to heat the open field regions
in coronal holes.

In our study, we simulated the Alfvén wave propagation
from 1.003 to 20 Re. Because, there are no single observations
of density fluctuations from one instrument available within
this height range, we combined observations from different
instruments. For example, from 1 to 1.3 Re, we used
observation from SWAP instrument on board the Proba2
satellite (Hahn et al. 2018). For heights above 1.5 Re, we used
observations from Akatsuki spacecraft (Miyamoto et al. 2014).
Combining observations from two instruments has certain
disadvantages. Also, there is a gap between the heights of
1.3–1.5 Re where the SWAP instrument ended the observa-
tions, and the Akatsuki spacecraft began. Another problem with
using multiple instruments is that they each have different
resolution and systematic uncertainties that affect the reliability
of the observations. We hope to carry out a similar study with
the Parker Solar Probe when the spacecraft gets within the
range of our Alfvén wave turbulence model.

We thank the referee for comments that helped to improve
the paper. We are grateful to Dr. Takeshi Imamura from Japan
Aerospace Exploration Agency for providing us with the data
used in Miyamoto et al. (2014) from the Akatsuki mission. This
project is supported under contract 80NSSC18K1207 from the
NASA Heliophysics Supporting Research programto the
Smithsonian Astrophysical Observatory (SAO) and Columbia
University. SWAP is a project of the Centre Spatial de Liege
and the Royal Observatory of Belgium funded by the Belgian
Federal Science Policy Office (BELSPO).

Appendix
Constructing the Background Atmosphere in a

Coronal Hole

The background atmosphere is a 1D time-independent model
and is obtained by averaging the MHD equations over the cross
section of the flux tube and over time. The detailed derivations
of the equations are given in van Ballegooijen & Asgari-Targhi
(2016, 2017). The parameters in the setup of the background
atmosphere are introduced with the subscript 0. From the
conservation of magnetic flux f, we have

( )f = =BA constant, A1

where B is the magnetic field and A is the flux tube cross
section. Mass conservation along the flux tube from
Equation (1) gives

( )r =u B constant, A20 0 0

where ρ0 is the plasma mass density and u0 is the outflow
velocity. The radial component of the equation of motion,

Equation (2), is given as

( )r r= - + -u
du

dr

dp

dr
D

GM

r
. A30 0

0 0
wp 0 2

Here p0 is the plasma pressure, and Dwp(r) is the wave pressure
force. The wave-pressure force is computed from (Heinemann
& Olbert 1980; Cranmer & van Ballegooijen 2005)

( ) ( )= - +
-

D r
dU

dr

U U

H
, A4wp

mag mag kin

B

where Umag(r) and Ukin(r) are the time-averaged magnetic and
kinetic energy of the waves, and HB(r)≡ B0/(dB0/dr) is the
length scale for variations of the background field. To calculate
Umag and Ukin, we need to solve the transport equations of the
Elsässer variables (Cranmer & van Ballegooijen 2005; Verdini
& Velli 2007; Verdini et al. 2010). We use the approximation

( )» »U U U
1

2
, A5kin mag A

where UA is the total energy density of the waves (see
Appendices B and C in van Ballegooijen & Asgari-Targhi 2016
for a detailed derivation). Applying this, the transport equation
of UA is given by the wave-action conservation, which is an
approximation for the wave energy equation

( ) ( )= - +
dS

dr
M

Q

B
1 , A6A

A
A

0

where SA(r) is the wave action per unit magnetic flux,

( ) ( ) ( ) ( )
pr

º
+

= +S r
u v U

B v
M

U
1

4
, A7A

0 A
2

A

0 A
A

2 A

0

and MA(r)≡ u0/vA is the Alfvén Mach number. Here, we use
rµ -MA 0

1 2, which follows from Equation (A2) where

r»B v0 A 0
1 2, based on the definition of the Alfvén speed.

We write the energy Equation (3) as

( )= + +Q Q Q Q , A8A adv rad cond

where QA(r) is the time-averaged heating rate, Qadv(r) is the
time average of the advection terms (the left-hand side of
Equation (3)), and Qrad(r) and Qcond(r) are the energy loss rates
due to radiation and thermal conduction, respectively. The
right-hand side terms are calculated from

⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( )r
g r

r
=

-
-Q r c u

dT

dr

T d

dr

1

1
, A9adv 1 0 0

0 0

0

0

( ) ( ) ( )= LQ r n n T , A10rad e H 0

⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( )=Q r B
d

dr

F

B
, A11cond 0

cond

0

where c1= 2.3kB/(1.4mH) with kB being the Boltzmann
constant, mH is the hydrogen mass, γ is the ratio of specific
heat constants, nH(r)= ρ0/(1.4mH) is the hydrogen density,
ne(r)= 1.2nH is the electron density, Λ(T) is the radiative loss
function (based on Figure 1 in Cranmer et al. 2007), and Fcond

is the conductive flux. Since we only consider the coronal part
of the flux tube, we neglect the effects of partial ionization on
the internal energy of the plasma, and set γ= 5/3.
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To compute Fcond we apply a “bridging law” for the parallel
component of the thermal conductive flux,

( ) ( )
n n

n n
=

+

+
F r

F F
, A12cond

coll SH exp FS

coll exp

where

( ) ( )kº -F r dT dr A13SH 0

is the classical Spitzer–Harm prescription for thermal conduc-
tion, and

( ) ( )a=F r n u k T1.5 A14cFS e 0 B 0

is free-streaming heat flux that applies in the collisionless limit
(αc= 4). Also, νcoll(r) is the electron–electron collision
frequency; ∣ ∣n = ru Hexp 0 is the wind expansion rate, where
Hρ(r)≡ ρ0/(dρ0/dr) is the density scale height; and κ is the
conductivity. Note that the conductivity depends strongly on
temperature, k µ T0

5 2 (for details, see Cranmer et al. 2007).
The magnetic field B0(r) is assumed to be potential and is

described by

⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( )


å=
=

-

B r B
r

R
, A15

n
n

n

0
1

5 2

where Bn= Bpole[715, 2600, 2160, 832, 128]/6435 with
n= 1, L, 5, and Bpole is the net flux density at the pole (we use
Bpole= 10 G). The temperature T0(r) is a known function of
position (see van Ballegooijen & Asgari-Targhi 2016 for
details) and is defined as

⎜ ⎟
⎛
⎝

⎞
⎠

( )
( )

( ) ( )


å=
=

-

T r T
C

B r
B

r

R
f r , A16c

n
n

n

n0
0

0 1

5 2

where

( )


=T

GM

c R
, A17c

1

⎜ ⎟ ⎜ ⎟
⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤

⎦
⎥( )

( )
 

=
+

-
+ +

- - -

f r
n m

r

R

C

n m k

r

R

1

2 2
,

A18

n

m m k
1

with C0 and C1 as dimensionless constants. For the temperature
to decrease with r at large height, we require m> 0. To
construct the background atmosphere, we solve the equations
presented in this section iteratively. The equations are solved
numerically where the lower boundary of the model is at
r= 1.003 Re and the upper boundary is at r= 20 Re (see van
Ballegooijen & Asgari-Targhi 2016, 2017 for details).

ORCID iDs

M. Asgari-Targhi https://orcid.org/0000-0003-0204-8385

M. Hahn https://orcid.org/0000-0001-7748-4179
D. W. Savin https://orcid.org/0000-0002-1111-6610

References

Alfvén, H. 1947, MNRAS, 107, 211
Banerjee, D., Gupta, G. R., & Teriaca, L. 2011, SSRv, 158, 267
Banerjee, D., Pérez-Suárez, D., & Doyle, J. G. 2009, A&A, 501, L15
Belcher, J. W. 1971, ApJ, 168, 509
Bemporad, A., & Abbo, L. 2012, ApJ, 751, 110
Chandran, B. D. G., Quataert, E., Howes, G. G., Hollweg, J. V., & Dorland, W.

2009, ApJ, 701, 652
Cranmer, S. R., Asgari-Targhi, M., Miralles, M. P., et al. 2015, RSPTA, 373,

20140148
Cranmer, S. R., & van Ballegooijen, A. A. 2005, ApJS, 156, 265
Cranmer, S. R., van Ballegooijen, A. A., & Edgar, R. J. 2007, ApJS, 171, 520
De Pontieu, B., McIntosh, S. W., Carlsson, M., et al. 2007, Sci, 318, 1574
Dmitruk, P., Matthaeus, W. H., Milano, L. J., et al. 2002, ApJ, 575, 571
Grappin, R., Frisch, U., Léorat, J., & Pouquet, A. 1982, A&A, 105, 6
Grappin, R., Pouquet, A., & Léorat, J. 1983, A&A, 126, 51
Hahn, M., D’Huys, E., & Savin, D. W. 2018, ApJ, 860, 34
Hahn, M., Landi, E., & Savin, D. W. 2012, ApJ, 753, 36
Hahn, M., & Savin, D. W. 2013, ApJ, 763, 106
Halain, J.-P., Berghmans, D., Seaton, D. B., et al. 2013, SoPh, 286, 67
Hara, H. 2019, ApJ, 887, 122
Heinemann, M., & Olbert, S. 1980, JGR, 85, 1311
Hollweg, J. V. 1973, ApJ, 181, 547
Hollweg, J. V., & Isenberg, P. A. 2007, JGR, 112, 8102
Jacques, S. A. 1978, ApJ, 226, 632
Krieger, A. S., Timothy, A. F., & Roelof, E. C. 1973, SoPh, 29, 505
Kudoh, T., & Shibata, K. 1999, ApJ, 514, 493
Landi, E., & Cranmer, S. R. 2009, ApJ, 691, 794
Matsumoto, T., & Shibata, K. 2010, ApJ, 710, 1857
Matthaeus, W. H., Zank, G. P., Oughton, S., Mullan, D. J., & Dmitruk, P.

1999, ApJL, 523, L93
McIntosh, S. W., De Pontieu, B., & Tarbell, T. D. 2008, ApJL, 673, L219
Miyamoto, M., Imamura, T., Tokumaru, M., et al. 2014, ApJ, 797, 51
Moriyasu, S., Kudoh, T., Yokoyama, T., & Shibata, K. 2004, ApJL, 601, L107
Morton, R. J., Tomczyk, S., & Pinto, R. 2015, NatCo, 6, 7813
Munro, R. H., & Withbroe, G. L. 1972, ApJ, 176, 511
Parker, E. N. 1965, SSRv, 4, 666
Perez, J. C., & Chandran, B. D. G. 2013, ApJ, 776, 124
Santandrea, S., Gantois, K., Strauch, K., et al. 2013, SoPh, 286, 5
Seaton, D. B., Berghmans, D., Nicula, B., et al. 2013, SoPh, 286, 43
Singh, J., Hasan, S. S., Gupta, G. R., Nagaraju, K., & Banerjee, D. 2011, SoPh,

270, 213
Suzuki, T. K., & Inutsuka, S. I. 2006, JGRA, 111, A06101
Tian, H., DeLuca, E. E., Cranmer, S. R., et al. 2014, Sci, 346, 1255711
Tomczyk, S., & McIntosh, S. W. 2009, ApJ, 697, 1384
Tomczyk, S., McIntosh, S. W., Keil, S. L., et al. 2007, Sci, 317, 1192
van Ballegooijen, A. A., & Asgari-Targhi, M. 2016, ApJ, 821, 106
van Ballegooijen, A. A., & Asgari-Targhi, M. 2017, ApJ, 835, 10
van Ballegooijen, A. A., Asgari-Targhi, M., Cranmer, S. R., & DeLuca, E. E.

2011, ApJ, 736, 3
Velli, M. 1993, A&A, 270, 304
Velli, M., Grappin, R., & Mangeney, A. 1989, PhRvL, 63, 1807
Verdini, A., & Velli, M. 2007, ApJ, 662, 669
Verdini, A., Velli, M., & Buchlin, E. 2009, ApJL, 700, L39
Verdini, A., Velli, M., Matthaeus, W. H., Oughton, S., & Dmitruk, P. 2010,

ApJL, 708, L116
Wilhelm, K., Marsch, E., Dwivedi, B. N., et al. 1998, ApJ, 500, 1023
Zhou, Y., & Matthaeus, W. H. 1990, JGR, 95, 10291
Zirker, J. B. 1977, Coronal Holes and High Speed Wind Streams (Boulder, CO:

Colorado Assoc. Univ. Press)

12

The Astrophysical Journal, 911:63 (12pp), 2021 April 10 Asgari-Targhi et al.

https://orcid.org/0000-0003-0204-8385
https://orcid.org/0000-0003-0204-8385
https://orcid.org/0000-0003-0204-8385
https://orcid.org/0000-0003-0204-8385
https://orcid.org/0000-0003-0204-8385
https://orcid.org/0000-0003-0204-8385
https://orcid.org/0000-0003-0204-8385
https://orcid.org/0000-0003-0204-8385
https://orcid.org/0000-0001-7748-4179
https://orcid.org/0000-0001-7748-4179
https://orcid.org/0000-0001-7748-4179
https://orcid.org/0000-0001-7748-4179
https://orcid.org/0000-0001-7748-4179
https://orcid.org/0000-0001-7748-4179
https://orcid.org/0000-0001-7748-4179
https://orcid.org/0000-0001-7748-4179
https://orcid.org/0000-0002-1111-6610
https://orcid.org/0000-0002-1111-6610
https://orcid.org/0000-0002-1111-6610
https://orcid.org/0000-0002-1111-6610
https://orcid.org/0000-0002-1111-6610
https://orcid.org/0000-0002-1111-6610
https://orcid.org/0000-0002-1111-6610
https://orcid.org/0000-0002-1111-6610
https://doi.org/10.1093/mnras/107.2.211
https://ui.adsabs.harvard.edu/abs/1947MNRAS.107..211A/abstract
https://doi.org/10.1007/s11214-010-9698-z
https://ui.adsabs.harvard.edu/abs/2011SSRv..158..267B/abstract
https://doi.org/10.1051/0004-6361/200912242
https://ui.adsabs.harvard.edu/abs/2009A&A...501L..15B/abstract
https://doi.org/10.1086/151105
https://ui.adsabs.harvard.edu/abs/1971ApJ...168..509B/abstract
https://doi.org/10.1088/0004-637X/751/2/110
https://ui.adsabs.harvard.edu/abs/2012ApJ...751..110B/abstract
https://doi.org/10.1088/0004-637X/701/1/652
https://ui.adsabs.harvard.edu/abs/2009ApJ...701..652C/abstract
https://doi.org/10.1098/rsta.2014.0148
https://ui.adsabs.harvard.edu/abs/2015RSPTA.37340148C/abstract
https://ui.adsabs.harvard.edu/abs/2015RSPTA.37340148C/abstract
https://doi.org/10.1086/426507
https://ui.adsabs.harvard.edu/abs/2005ApJS..156..265C/abstract
https://doi.org/10.1086/518001
https://ui.adsabs.harvard.edu/abs/2007ApJS..171..520C/abstract
https://doi.org/10.1126/science.1151747
https://ui.adsabs.harvard.edu/abs/2007Sci...318.1574D/abstract
https://doi.org/10.1086/341188
https://ui.adsabs.harvard.edu/abs/2002ApJ...575..571D/abstract
https://ui.adsabs.harvard.edu/abs/1982A&A...105....6G/abstract
https://ui.adsabs.harvard.edu/abs/1983A&A...126...51G/abstract
https://doi.org/10.3847/1538-4357/aac0f3
https://ui.adsabs.harvard.edu/abs/2018ApJ...860...34H/abstract
https://doi.org/10.1088/0004-637X/753/1/36
https://ui.adsabs.harvard.edu/abs/2012ApJ...753...36H/abstract
https://doi.org/10.1088/0004-637X/763/2/106
https://ui.adsabs.harvard.edu/abs/2013ApJ...763..106H/abstract
https://doi.org/10.1007/s11207-012-0183-6
https://ui.adsabs.harvard.edu/abs/2013SoPh..286...67H/abstract
https://doi.org/10.3847/1538-4357/ab50bf
https://ui.adsabs.harvard.edu/abs/2019ApJ...887..122H/abstract
https://doi.org/10.1029/JA085iA03p01311
https://ui.adsabs.harvard.edu/abs/1980JGR....85.1311H/abstract
https://doi.org/10.1086/152072
https://ui.adsabs.harvard.edu/abs/1973ApJ...181..547H/abstract
https://doi.org/10.1029/2007JA012253
https://ui.adsabs.harvard.edu/abs/2007JGRA..112.8102H/abstract
https://doi.org/10.1086/156647
https://ui.adsabs.harvard.edu/abs/1978ApJ...226..632J/abstract
https://doi.org/10.1007/BF00150828
https://ui.adsabs.harvard.edu/abs/1973SoPh...29..505K/abstract
https://doi.org/10.1086/306930
https://ui.adsabs.harvard.edu/abs/1999ApJ...514..493K/abstract
https://doi.org/10.1088/0004-637X/691/1/794
https://ui.adsabs.harvard.edu/abs/2009ApJ...691..794L/abstract
https://doi.org/10.1088/0004-637X/710/2/1857
https://ui.adsabs.harvard.edu/abs/2010ApJ...710.1857M/abstract
https://doi.org/10.1086/312259
https://ui.adsabs.harvard.edu/abs/1999ApJ...523L..93M/abstract
https://doi.org/10.1086/528682
https://ui.adsabs.harvard.edu/abs/2008ApJ...673L.219M/abstract
https://doi.org/10.1088/0004-637X/797/1/51
https://ui.adsabs.harvard.edu/abs/2014ApJ...797...51M/abstract
https://doi.org/10.1086/381779
https://ui.adsabs.harvard.edu/abs/2004ApJ...601L.107M/abstract
https://doi.org/10.1038/ncomms8813
https://ui.adsabs.harvard.edu/abs/2015NatCo...6.7813M/abstract
https://doi.org/10.1086/151653
https://ui.adsabs.harvard.edu/abs/1972ApJ...176..511M/abstract
https://doi.org/10.1007/BF00216273
https://ui.adsabs.harvard.edu/abs/1965SSRv....4..666P/abstract
https://doi.org/10.1088/0004-637X/776/2/124
https://ui.adsabs.harvard.edu/abs/2013ApJ...776..124P/abstract
https://doi.org/10.1007/s11207-013-0289-5
https://ui.adsabs.harvard.edu/abs/2013SoPh..286....5S/abstract
https://doi.org/10.1007/s11207-012-0114-6
https://ui.adsabs.harvard.edu/abs/2013SoPh..286...43S/abstract
https://doi.org/10.1007/s11207-011-9732-7
https://ui.adsabs.harvard.edu/abs/2011SoPh..270..213S/abstract
https://ui.adsabs.harvard.edu/abs/2011SoPh..270..213S/abstract
https://doi.org/10.1029/2005JA011502
https://ui.adsabs.harvard.edu/abs/2006JGRA..111.6101S/abstract
https://doi.org/10.1126/science.1255711
https://ui.adsabs.harvard.edu/abs/2014Sci...346A.315T/abstract
https://doi.org/10.1088/0004-637X/697/2/1384
https://ui.adsabs.harvard.edu/abs/2009ApJ...697.1384T/abstract
https://doi.org/10.1126/science.1143304
https://ui.adsabs.harvard.edu/abs/2007Sci...317.1192T/abstract
https://doi.org/10.3847/0004-637X/821/2/106
https://ui.adsabs.harvard.edu/abs/2016ApJ...821..106V/abstract
https://doi.org/10.3847/1538-4357/835/1/10
https://ui.adsabs.harvard.edu/abs/2017ApJ...835...10V/abstract
https://doi.org/10.1088/0004-637X/736/1/3
https://ui.adsabs.harvard.edu/abs/2011ApJ...736....3V/abstract
https://ui.adsabs.harvard.edu/abs/1993A&A...270..304V/abstract
https://doi.org/10.1103/PhysRevLett.63.1807
https://ui.adsabs.harvard.edu/abs/1989PhRvL..63.1807V/abstract
https://doi.org/10.1086/510710
https://ui.adsabs.harvard.edu/abs/2007ApJ...662..669V/abstract
https://doi.org/10.1088/0004-637X/700/1/L39
https://ui.adsabs.harvard.edu/abs/2009ApJ...700L..39V/abstract
https://doi.org/10.1088/2041-8205/708/2/L116
https://ui.adsabs.harvard.edu/abs/2010ApJ...708L.116V/abstract
https://doi.org/10.1086/305756
https://ui.adsabs.harvard.edu/abs/1998ApJ...500.1023W/abstract
https://doi.org/10.1029/JA095iA07p10291
https://ui.adsabs.harvard.edu/abs/1990JGR....9510291Z/abstract

	1. Introduction
	2. Density Fluctuation Observations in Coronal Holes
	3. Alfvén Wave Turbulence Model of a Coronal Hole
	3.1. RMHD Turbulence

	4. Turbulence in a Model with a Smooth Background Atmosphere
	5. Turbulence in a Model with Density Fluctuations
	6. Discussion and Conclusions
	AppendixConstructing the Background Atmosphere in a Coronal Hole
	References



