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In many real, directed networks, the strongly connected component of nodes which
are mutually reachable is very small. This does not fit with current theory, based on
random graphs, according to which strong connectivity depends on mean degree and
degree–degree correlations. And it has important implications for other properties of
real networks and the dynamical behavior of many complex systems. We find that
strong connectivity depends crucially on the extent to which the network has an overall
direction or hierarchical ordering—a property measured by trophic coherence. Using
percolation theory, we find the critical point separating weakly and strongly connected
regimes and confirm our results on many real-world networks, including ecological,
neural, trade, and social networks. We show that the connectivity structure can be
disrupted with minimal effort by a targeted attack on edges which run counter to the
overall direction. This means that many dynamical processes on networks can depend
significantly on a small fraction of edges.

directed networks | feedback | percolation theory | strong connectivity | trophic incoherence

Understanding the connectivity structure of a directed network is crucial in many
different contexts. Can every node be reached in a communications network or one-
way street grid? How will a disease spread or will a dynamical system be stable and
resilient to perturbation? Whether a network will be connected has been well-studied in
the case of undirected networks through percolation theory; however, this is less well-
understood in directed networks, and hence real-world systems, which are often directed
(1, 2). We demonstrate through understanding the global directionality and hierarchical
organization of directed networks through a method known as Trophic Analysis (3) that
it is possible to construct a phase diagram which predicts if real networks are strongly
connected using only the average degree and the incoherence parameter which measures
the global directionality going beyond previous understanding based on directed random
graphs (4). The notion of global directionality provided by trophic analysis enables us
to talk meaningfully of “forward” and “backward” edges and gives us an insight into the
directed network which is not possible without this. It is the backward edges that break
the overall hierarchical structure. This hierarchical structure can be found in almost
all real-world networks, not just networks with obvious hierarchy such as food webs
where the hierarchy is number of steps from the nodes of zero in-degree such as plants.
Global directionality, Trophic Incoherence, has been linked to network nonnormality
(3) which has been shown to be ubiquitous in real directed systems (5, 6). We use
the insight that the strong connectivity is driven by edges which break the hierarchical
ordering to apply percolation theory (7) to these “backward” edges and an analytical
estimate of the number of such edges derived from the global directionality to analyze
the connectivity structure and predict the threshold for the emergence of a giant strongly
connected component. This provides an insight beyond degree (4) and explains why,
even if they have high mean degree, highly structured networks like food-webs often
have very small strongly connected components. We extend our understanding of strong
connectivity to real networks beyond previous results on directed random graphs (4)
which do not capture the complex structures of real-world systems. We demonstrate the
role the “backward” edges have in controlling the strong connectivity by conducting a
targeted attack on these edges. This removes the strongly connected component while
maintaining the weak connectivity. We show the vital role that strong connectivity plays
in dynamics, SI Appendix, by comparing the spread of an infection using SIS dynamics;
synchronization of coupled Kuramoto Oscillators and how a new state establishes itself
in the Majority Vote and Voter Models before and after the targeted attack. These
dynamics demonstrate the role of hierarchy in the dynamics as the global directionality
and “backward” edges drive feedback and how their removal creates an asymmetry in the
ability of nodes to interact with each other dependent on their position in the hierarchy.
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systems, and understanding the
percolation transition (formation
of a giant connected component)
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been understood in directed
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which the percolation threshold
for networks to be strongly
connected (every node to be able
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Trophic Analysis is a technique which is used to calculate
the global directionality and the hierarchy in directed complex
networks (3). Complex networks are graphs which represent real-
world systems. Graphs are sets of vertices (nodes) and edges
(links) which represent connections between elements in the
system. Graphs are topological objects as they do not need to
have a distance scale, they merely represent whether elements are
connected. A directed graph (or digraph) is one in which the
connections between elements go in only one direction. This is
very common in real-world systems (2) which can be intrinsically
directional like a prey–predator food web interaction or following
a profile on social media. In complex networks, it is common to
represent a graph via an adjacency matrix. For a graph consisting
of N nodes, the adjacency matrix, A, is defined such that

Aij =
{

1 if there exists an edge i→ j
0 otherwise

. [1]

As a result, the topology of the graph can be represented by
the nonzero entries of this matrix. This form is preferred for
studying complex networks as it is convenient for computer
simulations, defining dynamical systems on the network, and
network properties can easily be accessed from the properties of
this matrix. In a directed graph, this matrix is not necessarily
symmetric, Aij 6= Aji, since the interactions are only in one
direction. Undirected graphs always have symmetric adjacency
matrices. Adjacency matrices can also be weighted to capture
the strength of an interaction. However, for simplicity, we focus
here on the unweighted case. An undirected graph is connected
if and only if for any pair of distinct nodes there exists a path
connecting them. In directed graphs, the notion of connectivity
is more complex. A directed graph is weakly connected if there is
a path between all pairs of vertices when edge direction is ignored.
A digraph is strongly connected if for every pair of nodes i and
j, there is a directed path from i to j and another from j to i (in
other words, every node is reachable from every other node).

It is common for real-world directed networks to be weakly
connected, but many are not strongly connected. In such cases,
the extent to which a network approaches strong connectivity can
be quantified by the size of its largest strongly connected compo-
nent (i.e., the largest subgraph which is strongly connected).

Later on, when we talk about predicting strong connectivity
in real networks from a classification problem perspective, we
use the more general definition of α-strong connectivity, which
requires the largest strongly connected component to be larger
than α times the number of nodes (0 < α < 1). In our analysis,
we set α = 0.9.

In an undirected graph, each node has a degree, corresponding
to the number of edges connected to it. In a directed graph,
the in-degree of a node i is the number of edges which point
to it kini =

∑
j Aji and its out-degree is the number of edges

pointing to other nodes, kouti =
∑

j Aij. If the adjacency matrix
is transposed the in- and out-degrees swap.*

Trophic Analysis. Trophic Analysis first arose in the study of
food webs (8). The hierarchical organization of the network, as
measured by a property called trophic coherence, was proposed as
a solution to May’s paradox regarding the stability of food webs
(9). The name arises from the trophic level of a species in ecology
(10). This definition relies on the existence of basal nodes, that is,

*This is a point to take care with as many authors have opposite conventions for defining
the adjacency matrix. Note also that the mean in-degree is always equal to the mean
out-degree, so we can refer simply to the mean degree of a digraph.

nodes with in-degree zero. A new definition was then proposed
in ref. 3 which removed this constraint and made it applicable to
any directed network. We follow the new definition (3), although
most previous work used the original convention (8).

Trophic Analysis has been used to study many aspects of
directed networks, including the structure of food webs (11),
spreading processes such as epidemics or signals in neural
networks (12), resilience of infrastructure networks (13, 14),
control of organizations (15), and networks in economics and
finance (3).

Trophic Analysis is composed of two parts: the node level
information, Trophic Level, and the global information, Trophic
Incoherence (3). Trophic level gives a measure of where a node
sits in the hierarchy of a directed network. For example, in a food
web, plants would be the low trophic level nodes and carnivores
the high trophic level nodes, as energy flows up the food web
from low to high trophic level. This can however be generalized
to any directed network. Trophic levels are calculated by solving
the N × N matrix equation given by

3h = v, [2]

where h is the vector of trophic levels and the “imbalance” vector
is the difference between in- and out-degrees: v : i = kini − kouti .
3 is the Laplacian matrix,

3 = diag(u)− A− AT , [3]

where u is the sum of in- and out-degrees, ui = kini + kouti ,
A is the adjacency matrix and AT its transpose. These are all
quantities which can be simply evaluated from the adjacency
matrix. Note that Eq. 2 cannot be solved by inverting 3 since
this matrix is singular. However, one can use other methods, such
as LU decomposition, and for large networks, the equation can
be solved iteratively.

Moreover, Eq. 2 is invariant under the addition of a constant
vector to h. We therefore follow the convention that the lowest
level node takes the value h = 0 (3).

Trophic Incoherence measures the global directionality of the
network (3), based on the distribution of level differences across
edges. If the network is maximally coherent, the edges only
connect to nodes exactly one level above them and the network
is perfectly hierarchical and globally directed. If the network is
highly incoherent then the edges connect without respect to the
levels and there is no global directionality. This is quantified via
the trophic incoherence parameter F which is defined as

F =

∑
ij Aij(hj − hi − 1)2∑

ij Aij
. [4]

This equation measures, averaged over the system, the square of
the deviation in level difference of destination to source vertex
from 1 across the edges of the graph. This equation is bound
between 0 and 1 (3). Networks with F = 0 are perfectly coherent,
they have distinct integer levels in which all nodes are placed, and
they are acyclic. When F = 1, every node has the same level and
the network has no hierarchy. Examples of F = 1 networks
are directed cycles. Networks which have F = 1 are perfectly
balanced (kini = kouti for all nodes i) and are therefore unlikely to
come about from a fully random process. For example, random
graph models such as the Erdős-Rényi model (16, 17) lead to
networks where F is around 0.95, depending on sparsity.

The trophic levels can be thought of as the set of values, h,
which minimize F (3) for a given A. This leads to Eq. 2. It is also
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possible, equivalently, to speak in terms of Trophic Coherence,
which can be defined as 1−F . When we say “top of the hierarchy,”
we mean the nodes with high trophic level, and when we use the
phrase “bottom of the hierarchy,” we mean nodes of low trophic
level.

The definition of h as a measure of node hierarchy has
been proposed independently more than once. For example,
SpringRank (18) uses a physical argument to arrive at the same
minimization function as Trophic Analysis but without the same
quantification of the global directionality (3). It is also possible
to use a Helmholtz–Hodge decomposition to construct the idea
of levels and “circularity” (19, 20), which leads to a different set
of terms to quantify hierarchy and directedness, and it can be
shown that this method is equivalent to Trophic Analysis (3).

Generated networks. When we require numerically generated
networks to better sample the full range of Trophic Incoherence
and degrees, we use the same variant of the generalized preferen-
tial preying model as ref. 21, which was based on work from ref.
12. This model allows the Trophic Incoherence of a generated
network to be approximately controlled. This is done by a taking
an initial network structure and adding edges with a probability
which is proportional to the level difference between the nodes,
in a way which is determined by a “temperature” parameter. This
probability is defined as

Pij ∝ exp

[
−

(h̃j − h̃i − 1)2

2T 2
Gen

]
, [5]

where h̃i is the temporary trophic level assigned during the
generation. TGen is the generation temperature used to control
the incoherence. At highTGen, edges are added without respect to
the level structure so it produces an incoherent network similar
to a random graph; while at low temperature, the edges are
only added when the level difference is near one, producing a
very coherent network. Details of how to efficiently sample the
possible edges and generate networks in this way can be found in
ref. 21.

Results

Fraction of Edges Going Against the Hierarchy. It is possible to
analytically estimate the number of edges that go “backward”—
i.e., against the hierarchy. We define a backward edge as one
where the difference between the trophic level of the target vertex
minus that of the source vertex is nonpositive. As we go on to
see, these edges are important as they determine the strong
connectivity of the network, because they are needed to induce a
path back down the hierarchy. This fraction of edges is useful in
further calculation of strong connectivity.

The first part of this derivation is to assume that the edges
follow an approximately Gaussian distribution in trophic level
differences (17), where the mean is the mean level difference, z,
and the standard deviation is given by zη (3). We assume that the
level differences follow a Gaussian distribution as this assumption
was used to derive the results linking trophic coherence to
spectral radius (17), which also hold for the new definition
of trophic levels and coherence (3, 21). In addition, we have
observed that for many real networks (some examples are given
in SI Appendix), the distribution of level differences can be well-
approximated by a Gaussian. Other formulations of hierarchy
make similar assumptions, for example, when SpringRank was
first introduced (18) it was assumed that the ranks followed
a Gaussian distribution and shown that adding a quadratic
regularization term is equivalent to a Gaussian prior on the ranks.

The mean level difference can be computed from the Trophic
Incoherence,

z = 1− F, [6]

which was derived in ref. 3 by writing the function for Trophic
Incoherence as a function of the mean and SD of the level
differences and then minimizing it. The parameter η which is
the SD scaled by the mean trophic level difference can also be
expressed in terms of F (3) by similarly writing F as a function
of the SD and mean level differences

η =

√
F

1− F
. [7]

Note that Eqs. 6 and 7 hold for any digraph, and are not
dependent on the assumption of Gaussian differences.

Assuming that the edge level differences, xij = hj − hi, follow
a Gaussian distribution leads to the probability distribution,

p(xij) =
1

zη
√

2π
exp

[
−

1
2

(
xij − z
zη

)2
]
. [8]

The fraction of edges which do not go in the same direction
as the hierarchy is the integral of this distribution from negative
infinity to 0. The cumulative distribution of a Gaussian is well-
known and the result can be written in terms of the error function
as

β(F ) =
1
2

[
1 + erf

(
−

1
√

2

√
1− F
F

)]
, [9]

where we have substituted for z and η in terms of F . Hence, β(F )
can be regarded as the expected fraction of backward edges under
the assumption of Gaussian-distributed trophic differences. This
equation can be understood by looking at the limiting cases where
F equals 1 or 0. When F approaches 1, the error function goes
to zero and then half the edges go against the “hierarchy,” as
every node approaches the same level and hence there is an equal
likelihood of going forward or backward. When F = 0, the error
function goes to negative 1 so the expression cancels and no edges
go backward, which makes sense as the network is fully coherent.
Due to the fact that edges of level difference zero are counted
as backward, the approximation breaks down in the extreme
case of a perfectly balanced network such as a directed cycle or
undirected graph, as all the edge differences are zero. Hence,
the measurement labels all the edges as backward, whereas the
approximation limits to half the edges going backward.

This prediction holds well in real networks, as shown in
Fig. 1, with some small deviations. This is likely because of the
assumption that the distribution of edge differences is Gaussian.
The relationship between F and the number of backward edges
looks almost linear, but the nonlinearity at low F is important:
It is possible for a network without backward edges not to be
maximally coherent, since certain feed-forward motifs generate
some incoherence (3).

All the real networks used in this paper and the original sources
can be found in SI Appendix. For convenience, we cite the online
sources in the main text. This includes all the networks used
in ref. 17, plus a sample of networks from ref. 22. This dataset
includes metabolic networks, neural networks, trade networks,
food webs, and social networks. The number of backward edges
could also provide a rough estimate of the upper bound on the
size of a feedback arc set, the number of edges which need to
be removed to make the graph acyclic (23). The link between
hierarchy-breaking edges and a heuristic to approximate the
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Fig. 1. Number of backward edges in various real networks (symbols) and
the prediction of Eq. 9 (line), against trophic incoherence F . Data from ref. 25
and (22) (original sources in SI Appendix).

cycles has been made before (23) with different measures of the
hierarchical ordering, including PageRank (24); however, these
lack an analytical estimate of the expected number of backward
edges. The probability of a path going backward was also used to
derive various expressions in the “coherence ensemble” of random
graphs (17). However, none of these works established the link
to strong connectivity and the emergence of a giant strongly
connected component, which follows.

Derivation of Strong Connectivity Critical Point and Phase
Diagram. It is possible to derive an estimate of the percolation
transition threshold for the emergence of a giant strongly
connected component in directed networks using the insight
gained from the hierarchical structure. This can be done by
observing that if the nodes in a network are ordered in some way,
then the edges which break that ordering by going “backward”
are the important edges for strong connectivity. Adding more
edges in the forward direction will not make the network
strongly connected if it is very strictly hierarchical, as they do
not provide a way to move back down the ordering toward the
bottom of the network. In this way, the growth of the strongly
connected component in a directed network can be thought of as
a percolation process on the backward edges, where the backward
edges connect the layers of the network. This makes it possible to
move back down the hierarchy, thereby creating a giant strongly
connected component.

This can be expressed using the framework for solving perco-
lation problems set out in ref. 7. This framework decomposes the
percolation process to transitions between l-step neighborhoods,
which in our case can be thought of as steps down the hierarchy.
We assume a weakly connected network when the backward
edges are removed, which is a reasonable assumption for real
networks as the fraction of backward edges is usually small and
the networks are dense enough so that removal of the backward
edges does not result in the network being disconnected. It is
possible to find counter examples to this where the network
does become disconnected if the backward edges are removed
(Section A). This, however, only occurs when the backward
edges are calculated once and trophic level is not recalculated
after each removal. This is proven in Section A, where we
also show examples of the maintenance of weak connectivity
in real networks, justifying this assumption. We wish to find
the percolation threshold for the network to be at least weakly

connected by only backward edges and hence have a giant
strongly connected component.

We define a directed subgraph, G(V, EB), made up only of
backward edges, where the trophic level difference is less than or
equal to 0, of the larger graph H(V, E) containing all the edges
from which the trophic levels are calculated. Following the steps
laid in out in ref. 7, we introduce the l-neighborhood of a vertex,
y. This is recursively defined as

Nl (y) =
⋃

X∈V (Nl−1(X ))

N1(X ), [10]

where V (Nl−1(X )) is the set of all of the vertices within the
neighborhood Nl−1(X ). This neighborhood can be thought of
as the nodes reachable in within l steps from vertex y, illustrated
in more detail in ref. 7. The percolation transition can then be
understood by analyzing the surfaces of these neighborhoods,
which can be defined as the vertex sets

Vl := V (Nl (y)) \ V (Nl−1(y)). [11]

These are the nodes which lie exactly l steps from the origin
vertex, y. This origin vertex can in general be any vertex, but in
the case of backward connectivity, we choose the vertex with the
highest trophic level. Following the work of ref. 7, the system is
above the percolation threshold if

lim
l→∞

E[o(Vl )] > 0, [12]

where E[x] is the expectation value of x and o(Vl ) is the number
of connected nodes on the surface l . The expectation values are
taken using draws from the “coherence ensemble,” the set of all
unweighted directed networks of fixed trophic coherence, size,
and degree distribution, used in refs. 2, 17 and 3. Eq. 12 can be
understood to mean that there is a giant connected component
if the expectation value of a node being connected is greater than
zero as the surface size extends to infinity. This is analogous to the
probability of a branching process not dying out as the number
of steps tends to infinity.

Our assumption for our specific case is that in the network
of backward edges, the expected number of connected nodes
in a surface is simply the number of connected nodes in the
previous surface multiplied by the average number of backward
connections. This is

E[o(Vl+1)] = β〈k〉E[o(Vl )], [13]

where 〈k〉 is the mean total degree and β is the fraction of edges
which go backward. This equation can then be solved iteratively
assuming that E[o(V0)] = C , where C is some finite constant
representing the number of nodes at the top of the hierarchy.
This leads to

E[o(Vl )] = (β〈k〉)lC . [14]

Taking the limit l goes to infinity leads to the result

lim
l→∞

E[o(Vl )] =


∞ if β〈k〉 > 1
C if β〈k〉 = 1
0 if β〈k〉 < 1

. [15]

This means that we expect a giant strongly connected
component when β〈k〉 > 1, which means that on average each
node has at least one backward connection. This can also be
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written directly as a function of trophic incoherence using the
expected value of β,

〈k〉
2

[
1 + erf

(
−

1
√

2

√
1− F
F

)]
> 1. [16]

This estimate, which uses very little information about the
network structure (only the mean degree and trophic incoher-
ence), works well for real networks, Fig. 2 A and B. This result
shows how the understanding of hierarchy can allow insights into
the connectivity of directed networks. The result relies upon the
ability to calculate the hierarchy for any directed network, and the
realization that the backward nodes shape connectivity and that
their number can be linked to the global directionality and
analytically estimated. Other measures of hierarchy would allow
the number of “backward” edges to be enumerated numerically

but lack the link to global directionality which gives the intuition
behind these results.

The equation for the percolation threshold, under the Gaussian
edge difference assumption, in terms of F , Eq. 16, can be
expressed as an equation for the critical incoherence. This can
be written as

Fc =

[
1 + 2

(
erf−1

(
2
〈k〉
− 1

))2
]−1

. [17]

For a fixed 〈k〉, if F is greater than the predicted value, then
we expect the network to be strongly connected. This allows
the existence of a giant strongly connected component of a real
network to be predicted based only on F and the average degree.
The accuracy of this prediction for real networks is demonstrated
in Fig. 3A, where the prediction of strong connectivity is
formulated as a classification problem. We assume that the

A

B

Fig. 2. Fraction of nodes in the largest strongly connected component against �〈k〉 for several real networks. The critical point, �〈k〉 = 1, is indicated via a
vertical line, Panel A. Panel B shows only the networks with �〈k〉 ≤ 5. Data from refs. 25 and 22 (original sources in SI Appendix).
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positives in our sample are the α-strongly connected networks
which have a strongly connected component of at least 90% of
the network size, and the negatives are the networks which fall
below this value. The confusion matrix for this process reads
as True Positive Rate 0.783, True Negative Rate 0.906, False
Negative Rate 0.217, False Positive Rate 0.09375. This is quite
a good classification rate as we note and demonstrate in Fig. 3A
that all the errors lie close to the transition line where we do
not expect to be able to classify the networks with a high level
of accuracy into the two categories. We note, however, that the
classification problem approach is very sensitive to the difficulty of
the data chosen. For example, if a dataset were selected with very
few networks in the intermediate region (say, a single network
type, such as food webs), then the results would improve without
any change in the method. In our dataset, we have 64 networks

with a strongly connected component below 90% and 23 with a
strongly connected component larger than this.

The only regions where the prediction is less good are close to
the boundary; however, this is not surprising as we are not taking
account of any finite size effects or potentially heterogeneous
degree distributions and in particular how the backward edges
are distributed. These results are broken down by network type
in SI Appendix.

We can give further insight into the accuracy of the prediction
by using numerically generated networks to better sample the
parameter space and verify the results in a larger region. This is
shown in Fig. 3B. We take 1,000 networks where N = 500,
generated as in ref. 21, where each node has at least in-degree
1 which would make the trophic level impossible to calculate
in the original definition from ecology (8), and then bin them

A

B

Fig. 3. Prediction of strong connectivity using the trophic incoherence (y-axis) and mean degree (x-axis), based on the critical incoherence Fc given by Eq. 17.
Panel (A): Real networks from refs. 25 and 22 (original sources in SI Appendix). Panel (B): 1,000 Networks with N = 500 generated numerically as in ref. 21, with
varying mean degrees and binned by trophic incoherence. Error bars are one SD.
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by Trophic Incoherence and average the size of the strongly
connected component. This result agrees well with the analytical
prediction, with the networks well above the boundary being
strongly connected and a large component forming in the
networks around the boundary as expected.

These results, which hold for both real and generated networks
and are based on the assumption of Gaussian edge differences,
give a good insight into how global directionality determines
strong connectivity and the emergence of a giant strongly
connected component. Even for a very large mean degree, a
network is still unlikely to be strongly connected if F is low
enough, which demonstrates that more than just information
on node degrees is needed for estimating the connectivity of
a directed network. Why some real networks lie close to the
transition line and properties of networks at this point may be a
possible avenue for future work.

The value of this analysis can be highlighted by comparing
to the results obtained by taking this real network dataset and
trying to predict the emergence of a giant strongly connected
component without using the hierarchical structure. This can be
roughly estimated using results from refs. 4 and 17, where one
would expect the strongly connected component to grow very
quickly and the percolation to occur when the branching factor
is greater than 1,

〈kinkout
〉

〈k〉
> 1. [18]

This is demonstrated in Fig. 4, which shows how many networks
of very high branching factor nevertheless have a small strongly
connected component. The figure represents a closer look at the
critical point, and networks of very high branching factor can
be found in the supplementary information. This demonstrates
how the directional organization is a vital part of the connectivity
structure of real networks. Understanding the interplay between
global directionality (trophic incoherence) and ordering (trophic
level) provides an intuition greater than each individual notion
can.

For comparison, we also repeat the same classification exper-
iment using the branching factor to predict if a network has
a large strongly connected component. The confusion matrix
for this process is True Positive Rate 1.0, True Negative Rate

0.219, False Negative Rate 0.0, False Positive Rate, 0.781. This
is expected as such a classification technique predicts that almost
every network apart from those of very small branching factor
is strongly connected, which explains the very high true positive
rate, but also the very high rate of false positives. This further
quantifies why in order to understand how strong connectivity
arises in real directed networks, it is important to factor in the
global directionality of the system.
Targeted Attacks on Backward Edges. To demonstrate how the
strong connectivity of a network depends on the edges which
break the hierarchy, we can conduct a targeted attack on those
edges and compare the degradation of the strongly connected
component to that observed in a random attack. We remove
edges in order of their trophic difference, starting by removing the
edges with the most negative trophic difference. This only takes
into account the hierarchical organization; it may be possible
to destroy the strongly connected component faster using a
different method, for example, attacking bottleneck edges or
specifically trying to target edges breaking the hierarchy in
different components of the network. However, when all the
backward edges are removed, all cycles are destroyed and the
strongly connected component is guaranteed to vanish. This
can be demonstrated in real networks, Fig. 5A, such as the
connectome of the worm C. Elegans. The point at which we
estimate the “backward” edges to vanish, shown by the dashed
line in Fig. 5A, is analytically estimated from Eq. 9 and predicts
well the point at which the strongly connected component
vanishes completely. We compare the attack using backward
edges with two alternative attack strategies: 1) completely random
edge attack, and 2) attack based on the edge degree imbalance
differences, (kinj − koutj )− (kini − kouti ). Here, we attack the most
negative of degree imbalance differences as a proxy for trophic
level. The intuition is that we roughly expect nodes of high in-
degree and low out-degree to be high-level nodes and the inverse
to be low-level nodes. We observed in the structured network of
C. Elegans that the backward edges attack strategy is significantly
better than the random attack. The imbalance strategy is better
than random but is less successful than the trophic level strategy
as it does not encompass the range of structural information
captured in the trophic levels.

Fig. 4. Prediction of strong connectivity based on the branching factor for real networks. Contrast with Fig. 2A, based on trophic coherence as presented here.
Data from refs. 25 and 22 (original sources in SI Appendix).
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A

B

Fig. 5. Size of the strongly connect component as edges are removed randomly, in order of trophic level difference, and in order of degree imbalance
difference, for real and Erdős-Rényi networks (panels A and B, respectively). The dashed vertical lines represent the point beyond which no backward edges are
predicted by Eq. 9.

Similar results can be found for networks where there is no
expectation of this kind of organized structure, like a dense
random graph. This is shown in Fig. 5B. The figure shows
that even in networks where there is little structure expected,
there still exists a degree of directional organization that can be
exploited to break down the network, as demonstrated by the
comparison of the backward attack to the random attack. The
number of edges needed to make the network acyclic and have no
strongly connected component depends on the total number of
backward edges, which is a function of the trophic incoherence
and the mean degree, as in the percolation transition above.
This demonstrates that the strongly connected component can
be understood by focusing on the backward edges, which was the
intuition that motivated the above derivation.

In the case of a random graph, because it lacks an overall
hierarchical structure, the degree imbalances act as a good proxy

for trophic level. Hence, an attack on the imbalances performs
similarly to trophic level. A similar effect has been shown in ref.
26, where the success of different measures such as imbalance and
PageRank was compared to trophic level, as incoherence varied,
in predicting strategy choice in generalized rock–paper–scissors
dynamics.

One important thing to note about this targeted attack is that
it does not generally affect the size of the weekly connected
component until all the backward edges are removed and
then it behaves in the same way as a random attack in most
real-world cases. For more details, Section A. This could be
useful in situations where one wishes to attack the strongly
connected component without disrupting the weakly connected
component, which would happen if bottleneck edges were
attacked, for example. This means that the backward edges can
act as an approximation for the feedback arc set (23). The trophic
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level may not perform as well as specialist methods at this task
(23) but does provide an analytical estimate of how many edges
one would expect to need to remove in any large network, which
can be simply calculated from F . It also explains why certain
networks are more difficult to render acyclic based on where they
lie on the phase diagram.

Discussion and Potential Applications

There are a wide range of network applications where percolation
in networks has been observed to be important (1). We highlight
a few areas where our work may be useful, but this is not
necessarily exhaustive. Strong connectivity and percolation can
play an important role in city planning as networks of one-way
streets must be strongly connected (27).

Trophic analysis can be useful for understanding spreading
processes where the network is directed and there is some ordering
to the network structure, for instance in ecological settings (28).
A real-world example of this is the spreading of crown-of-thorns
starfish on coral reefs (29–31). These starfish are a pest which eat
coral reefs and can damage ecosystems. Outbreaks are governed
by the spread of their larvae by the ocean currents. This process
is directed as the larvae move in the direction the ocean flows.
This is the kind of process Trophic Analysis could lend itself to as
it could be used to understand the global connectivity structure
to see if the outbreak is likely to spread across the reef or in a
directed manner. It can be used to extend the existing analysis of
a region’s vulnerability to outbreaks or danger as a starting point
beyond simply the size of the out- and in-components (29), by
factoring in where reefs sit in the network hierarchy determined
by trophic level.

Our work could also relate to the growth of biological neural
networks and formation of a giant strongly connected component
of cells (32, 33). These neurons have previously been grown in
circumstances where there is limited hierarchical structure and
the degree distributions are well known. However, if the cells
were exposed to a directed gradient, or in a real-life system are
more likely to grow in a particular direction, Trophic Analysis
may play a role in explaining this percolation threshold.

Our results may also partially explain the difference in percola-
tion thresholds for dynamical processes on directed networks (34)
compared to the undirected case, due to the effect of hierarchical
ordering increasing the threshold for strong connectivity. This
will be observed even in random graphs, as trophic incoherence
does not usually reach one. The percolation of the strongly
connected component and the direction of flow and spread of
information may also play a role in communication networks
and control and decision-making in organizations (15).

In general, Trophic Analysis can be used to modify the
dynamics by understanding the hierarchical organization and
the effect of localized perturbations, as well as highlighting the
role of hierarchy-breaking edges in driving strong connectivity,
feedback, and resilience in complex systems. Trophic Analysis is
also a useful method due to the simplicity of the calculation
and its interpretability, as the notion of directionality and
place in hierarchy is quite simple and intuitive. This makes
the method attractive to be employed in many settings as the
barrier to entry is relatively low, while still providing good
intuition into the structure of a directed network. Additionally, it
provides motivation to focus on the intrinsic directional aspects
of real-world systems, which are understudied compared to the
undirected case (2).

Our results for strong connectivity, though quite robust, are
based on a very simple approximation of the percolation of
backward edges. So it may be possible to extend or repeat this
result with a different measure of hierarchy or more information
about the degree distribution, providing greater accuracy.

Conclusion

We have shown how, by using Trophic Analysis to study the
hierarchical ordering and global directionality of a directed
network, it is possible to analytically estimate the number of
“backward” edges which break this ordering and predict the
threshold for the network to be strongly connected. From this,
a phase diagram of strong connectivity in terms of trophic
incoherence and mean degree can be derived which holds well
for real directed networks. This shows that strong connectivity

Fig. 6. Lack of change in the size of the weakly connected component as the backward edges are removed from real networks (25) (original sources in
SI Appendix).
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Fig. 7. Example of network which is connected by two edges which go
backward in Trophic level.

in directed networks is driven by more than just the degrees, and
that hierarchy can play a significant role.

We highlight these results by conducting a targeted attack
on “backward” edges, revealing their crucial role in maintaining
a strongly connected component. In SI Appendix, we further
illustrate the importance of these edges by implementing several
dynamics (voter model, SIS, and Kuramoto oscillators) where the
behavior is dictated by the strongly connected component and
the trophic level of the initiating node.

A. Removal of Backward Edges and Weak
Connectivity

Backward edges are in general linked to cycles and reciprocal
edges; this means that in general, removing one backward
edge is unlikely to separate a large, real network into distinct
components. This explains why the size of the weakly connected
component is generally unaffected when the backward edges are
removed in real networks, Fig. 6.

However, there are specific structures composed of interlocked
cycles which can cause the network to become disconnected if the
trophic level is calculated only once and then all the edges which
are initially backward are removed as shown by the example in
Fig. 7 where the backward edges are highlighted in red. This
however is a specific case and does not seem to be found when

studying the connectivity of real networks. In addition, if the
trophic levels were recalculated after the first edge was removed,
the second edge would then become forward. This leads to the
property that if the trophic level is recalculated, then the network
will not become disconnected. This is proved below.

Given an initial graph G(V,E), at each step remove the
edge which is most backward in the trophic level and then
recalculate the trophic level. Stop when all the edge differences
are nonnegative. In order to break the network into separate
components via this method, there would require a situation
where the graph has been separated into two disjoint components
joined by a single edge which upon removal would break
the graph into disconnected pieces. If the trophic levels are
recalculated, then it is never optimal for this edge to go backward
in the trophic level as the levels of one of the components can
be modified by a constant which will not change the global
coherence apart from across the joining edge where it will become
positive. If the edge is backward, it is always possible to reduce
incoherence in this way so the configuration cannot exist upon
recalculation.

Data, Materials, and Software Availability. All study data are included in
the article and/or SI Appendix. Previously published data were used for this work
(25). All graph manipulations were carried out using Julia Package Graphs.jl
(35). Code and data used as part of this study can also be found on Github (36).
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