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Experimental craniotomies are a common surgical procedure in neuroscience.

Because inadequate analgesia appears to be a problem in animal-based research,

we conducted this review and collected information on management of

craniotomy-associated pain in laboratory mice and rats. A comprehensive search

and screening resulted in the identification of 2235 studies, published in 2009

and 2019, describing craniotomy in mice and/or rats. While key features were

extracted from all studies, detailed information was extracted from a random

subset of 100 studies/year. Reporting of perioperative analgesia increased from

2009 to 2019. However, the majority of studies from both years did not report

pharmacologic pain management. Moreover, reporting of multimodal treatments

remained at a low level, and monotherapeutic approaches were more common.

Among drug groups, reporting of pre- and postoperative administration of

non-steroidal anti-inflammatory drugs, opioids, and local anesthetics in 2019

exceeded that of 2009. In summary, these results suggest that inadequate

analgesia and oligoanalgesia are persistent issues associated with experimental

intracranial surgery. This underscores the need for intensified training of those

working with laboratory rodents subjected to craniotomies.

Systematic review registration: https://osf.io/7d4qe.
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1. Introduction

Lack of analgesia and oligoanalgesia (failure to provide
adequate analgesia in patients) remains a persistent problem in
animal-based research (Richardson and Flecknell, 2005; Stokes
et al., 2009; Jirkof, 2017; Flecknell, 2018; Foley et al., 2019). While
the type and severity of pain can be anticipated in the context
of surgical interventions in experimental animals, scientists often
refrain from the application of an adequate analgesia regimen
because of concerns about an effect of analgesic drugs on readout
parameters (Jirkof, 2017; Peterson et al., 2017; Jirkof and Potschka,
2021). However, it needs to be considered that there is a multitude
of analgesic compounds from different drug classes, providing the
option to carefully choose the regimen based on the expected
interfering effects (Vadivelu et al., 2016; Jirkof, 2017; Jirkof and
Potschka, 2021). Moreover, study design can be adjusted to prevent
interference, for example with an extension of recovery phases or
the inclusion of respective control groups (Jirkof, 2017; Moser,
2020; Jirkof and Potschka, 2021). Most importantly, it should be
kept in mind that uncontrolled or insufficiently controlled pain
itself, with all its physiological consequences, can have a major
impact on research parameters, thereby limiting study quality and
rigor of research data (Jirkof, 2017; Peterson et al., 2017; Flecknell,
2018; Jirkof and Potschka, 2021). Thus, with lack of adequate
analgesia and oligoanalgesia scientists on one hand violate the
3R principle, which calls for refinement, i.e., a minimization of
suffering and pain. On the other hand, they also risk poor data
quality, which in turn might affect subsequent planning of animal-
based studies.

In neuroscientific research, mice and rats represent the most
widely used species. Intracranial implants are often required for
recordings, stimulations, or local administration procedures. In
this context, reports about undertreatment of pain associated with
craniotomy in human patients raise concerns about respective pain
management in laboratory rodents with central nervous system
(CNS) implants (Dunn et al., 2016; Lutman et al., 2018; Bello
et al., 2022). In human patients, oligoanalgesia for neurosurgical
procedures is related to concerns about an impact of analgesic
drugs on hemorrhage risks and intracranial pressure (Basali et al.,
2000; Vadivelu et al., 2016; Bello et al., 2022). Different reviews
have discussed to what extent these concerns are justified and
how one can optimize the analgesic regimen without an increased
risk of postsurgical complications (Dunn et al., 2016; Lutman
et al., 2018; Bello et al., 2022). A systematic review from 2017
revealed that there is a significant divergence in studies conducted
to explore the efficacy of different regimens, concluding that it is
difficult to provide recommendations except for the application of
a regional scalp block with local anesthetics (Tsaousi et al., 2017). It
has been emphasized that undertreatment of pain in the context
of craniotomy procedures can result in prolonged postsurgical
pain including headache (Dunn et al., 2016; Lutman et al., 2018;
Thapa and Euasobhon, 2018), a risk that has been previously
underestimated (Kaur et al., 2000; Gottschalk et al., 2007). Experts
of the American College of Laboratory Animal Medicine (ACLAM)
Task Force have stated that intracerebral electrode implantation
in laboratory rodents is associated with minimal to mild pain
only (Kohn et al., 2007). Considering the experience from human

patients, this expert opinion might have underestimated the risk of
postsurgical pain associated with intracranial procedures.

Stokes et al. (2009) analyzed the literature of analgesic
and anesthetic procedures in rodents undergoing surgical
interventions. They used a structured multiphase search approach
and included 172 papers. While they found improvements
from 2000–2001 to 2005–2006, their findings suggest that less
than 25% of laboratory rodents receive analgesic drugs in the
perioperative phase (Stokes et al., 2009). Since then, several
authors and groups have emphasized the need for adequate
analgesia in laboratory rodents, have discussed the negative
implications of oligoanalgesia for animal welfare and study quality,
and have provided guidelines and recommendations for choice
of analgesic regimen for different experimental procedures in
mice and rats (Gargiulo et al., 2012; Jirkof et al., 2013; Carbone
and Austin, 2016; Jirkof, 2017; Flecknell, 2018; Cho et al., 2019;
Foley et al., 2019; Jirkof and Potschka, 2021). We hypothesized
that these publications and recommendations contributed to an
improvement of perioperative pain management in experimental
animals and tested this hypothesis with a systematic scoping
review. Perioperative anesthetic and analgesic management must
be planned as a whole, and the analgesic regimen should take the
anesthesia into account. Thus, we decided to assess the complete
anesthetic and perioperative pain management approaches in mice
and rats undergoing craniotomy described in literature. To allow
for completion of our analyses in a reasonable time span, we used a
partial literature sample from the years 2009 and 2019. These years
allow for analyses of the development during the decade following
the report by Stokes et al. (2009).

2. Materials and methods

2.1. Protocol registration

The study protocol was published on the Open Science
Framework database (doi: 10.17605/OSF.IO/G5F6K)1 on
December 3rd, 2020, prior to starting the screening process.
The SYRCLE (Systematic Review Centre for Laboratory animal
Experimentation’s) protocol template was used to create the
study protocol (de Vries, 2015). The study protocol can also be
found in Supplementary Methods 1. This publication follows the
PRISMA (Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) guidelines; the checklist, including the extension
for scoping reviews can be found in Supplementary Methods 2.
The review question was: What are the common approaches to
analgesic and anesthetic management for experimental craniotomy
in mice and rats?

2.2. Data source and search strategy

A comprehensive search string was constructed for PubMed
and used to identify relevant studies (M.R. under supervision from
H.P. and C.L.). The search string consisted of two main elements,

1 https://osf.io/7d4qe
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the investigated population, mice and rats, and the investigated
procedure, craniotomy. The search string was constructed to
include relevant plural terms, alternative spellings and relevant
synonyms for terms, combined with “OR” for each element. The
elements population and procedure were combined with “AND.”
The final search string and a full overview of all included terms can
be found in Supplementary Methods 3.

The final PubMed search was performed on October 19th,
2020. All retrieved studies were saved in a bibliographic reference
manager (EndNoteTM X9.3.3). The review focused on the years
2009 and 2019, with the latter selected as the most recent completed
year prior to the search. The year 2009 was selected so that
differences and changes in the approach could be assessed over one
decade. The retrieved references from these years were uploaded to
Rayyan, an online tool supporting systematic reference screening
(Ouzzani et al., 2016).

2.3. Study selection

Study screening was performed in two separate phases: first
screening of titles and abstracts, then screening of full texts.
Inclusion and exclusion criteria were predefined in the study
protocol and are listed in Table 1. Both phases were completed
by two independent reviewers. Before screening, reviewers were
trained with SYRCLE’s e-learning for preclinical systematic reviews
and by completing a pre-screened training set of 50 abstracts, of
which 95% had to be screened according to requirements.

For title and abstract screening, H.K. screened all studies,
while the reference set was divided among six reviewers as the
second screener (K.A., M.R., M.B., A.G., H.S., P.J.). During title
and abstract screening, we included studies published in English
language describing craniotomy and/or any type of surgery or other
procedure indicating craniotomy in mice and/or rats. For full-text
screening, H.K. screened all studies, while the reference set was
divided among eight scientists (N.M., H.S., K.A., P.J., M.B., A.G.,
L.S. and K.S.). During full text screening, we included primary
in vivo studies, published in English, and describing craniotomy
in mice and/or rats. For both screening phases, discrepancies were
discussed and solved without the need for a third reviewer.

2.4. Data extraction

Data extraction was carried out in two phases. First,
comprehensive data were extracted from a random subset of 200
out of 2235 references (Supplementary Tables 1, 2). Studies were
initially sorted by year and then by alphabet (for first author)
before import to Excel. Using a randomization tool,2 a sequence
was generated with the length corresponding to the number of
included studies from each year. The first 100 numbers from each
sequence determined the random sample. Study characteristics
to be extracted (Table 2) were predefined in the study protocol.
Prior to data extraction, a test extraction of ten studies per year
was performed, which served as the basis for the extensions and

2 https://randomizer.org/

TABLE 1 Exclusion criteria for selection phases.

Exclusion criteria prioritized per selection phase

Title-abstract-screening
No English language
No mice and/or rats used
No craniotomy

Full-text-screening
No English language
No mice and/or rats used
No craniotomy
No original in vivo data

Exclusion criteria defined in the study protocol. Please refer to Supplementary Methods 1
for the study protocol.

adjustment of the features to be extracted (H.K. with support
of C.L. and H.P). Data were extracted from included references
in alphabetical (for first author) order from text and graph,
alternating between 2009 and 2019 to prevent confounding by
extractor learning effects. The final extraction sheet can be found in
Supplementary Tables 1, 2. Relevant information from referencing
to another publication were tracked and included for one level i.e.,
if a referenced publication referenced yet another publication the
latter was not retrieved. If information was not provided in the
original or directly referenced publication, it was recorded as not
reported.

During data extraction, we identified a study that was
erroneously included during screening (it had no craniotomy, only
subcutaneous electroencephalography electrodes were implanted)
(Elmorsy et al., 2019). This study was subsequently excluded,
and the next number from the random number sequence of the
respective year (the 101st) was substituted.

The second part of data extraction was restricted to a smaller set
of key study characteristics, which was extracted from all included
studies (2235 studies) (Supplementary Table 3). This second phase
was later added to our original plans and has not been described
in our protocol. The characteristics extracted can be found in
Table 3. Data were extracted from text and graphs and recorded
in the Excel spreadsheet. Relevant information from referencing to
another publication was again tracked, as described above.

Extracted data from a random subset of 5% of all included
studies were quality checked by a second reviewer; ten studies
for the first part by A.G., 112 for the second part by L.S.
The random subsets for quality checking were again generated
using random.org.

2.5. Data synthesis and analysis

The unit of analysis for this review was the reported analgesic
and anesthetic treatment per paper; if a paper described different
analgesic or anesthetic procedures for different groups of animals,
these were separately included in our analyses. For our review,
we separated analgesic-antipyretic agents into analgesic-antipyretic
agents with and without an anti-inflammatory effect. In the
following, we refer to analgesic-antipyretic agents with an anti-
inflammatory effect as non-steroidal anti-inflammatory drugs
(NSAIDs) and to analgesic-antipyretic agents without a relevant
anti-inflammatory effect as antipyretic analgesics.
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TABLE 2 Study characteristics for subset of 200 studies.

Study ID Study ID, name of pdf-file, first author, title, year of publication, journal, issue, pages, country of origin

Study design characteristics Number of animals per group (minimum and maximum numbers of animals per group), total number of animals used,
background/purpose of craniotomy/field of research

Animal model characteristics Species, sex, breeder, strain, age at surgery, weight at surgery, housing condition, housing temperature, housing humidity, type of cage,
enrichment, light schedule, handling technique

Intervention characteristics Duration of surgery, survival surgery, how long did animals live after surgery approximately, mortality during surgery, fate of used animals,
type of surgical procedure, implantation site, insult size, trepanning size, model used, general anesthesia scheme, compound name/names,
route of administration, dosage (mg/kg BW) or concentration (vol.%), how many times administered, administration interval, local
anesthesia administered, compound name/names, dosage (mg/kg BW), injection volume (ml/animal), route of administration, timepoint of
first administration, administered how many times in total, administration interval, pharmaceutical formulation, analgesic antipyretic
agents administered, compound name/names, dosage (mg/kg BW), route of administration, timepoint of first administration, administered
how many times in total, administration interval, pharmaceutical formulation, opioid administered, compound name, dosage (mg/kg BW),
route of administration, timepoint of first administration, administered how many times in total, administration interval, pharmaceutical
formulation, other analgesics used, if so compound name, multimodal approaches used [total number of used compound groups (analgesics
and local anesthetics)], other drugs (other than analgesics) used, antibiotic agent used, compound name, route of administration, specific
monitoring during surgery, peri-operative care, non-pharmacological measures for pain management, refinement measures

Outcome measures Assessment of the efficacy of pain alleviating measures, assessment of the analgesic efficacy post-surgery, parameters testing efficacy of
pain/stress reducing measures post-surgery, blinding, randomization, power analysis

Study characteristics extracted from subset of 200 studies, defined in the pre-published study protocol and additional study characteristics added during the process of designing the extraction
table. Written in black: characteristics specified in the study protocol. Written in gray: characteristics documented in addition to characteristics specified in the study protocol. ID, identity; mg,
milligram; BW, body weight; Vol. %, volume percent.

Extracted data were tabulated using Excel and Word,
and evaluated for the descriptive overview in the section “3.
Results.” Data were quantitatively analyzed and plotted using
Excel’s Pivot table tool. Graphs and figures were created using
Excel and PowerPoint.

Differences between the years were analyzed using Fisher’s
exact test and Chi-square test. Two-sided testing, with confidence
intervals of 95%, was performed using GraphPad PRISM
(GraphPad Software version 5.04, San Diego, USA). Complete
information on all calculations performed can be found in
Supplementary Methods 4.

3. Results

3.1. Identification of relevant references

Our search identified a total of 65,507 references. After
removing all references that were not published in the years of
2009 or 2019 (k = 61314), a total of 4,193 references remained for
screening. Following title and abstract screening, 2,925 references
remained that were subjected to full-text screening. In the end, full-
text screening resulted in 2,234 relevant references. Information
about key study characteristics was extracted from all these
included references; 911 from 2009 and 1323 from 2019 (which
described 2,247 treatment regimens). As per protocol, more in
depth data extraction was restricted to a random subset of 200

TABLE 3 Study characteristics for all included studies.

Study ID First author, title, year of publication, journal, issue, pages

Intervention
characteristics

General anesthesia scheme, analgesics or local anesthetics
administered preoperatively, analgesics or local anesthetics
administered intraoperatively, analgesics or local anesthetics
administered postoperatively

Study characteristics extracted from all included studies. ID, identity.

references (100 per year). An overview of the study flow can be
found in Figure 1. A list of all included references and extracted
parameters can be found in Supplementary Tables 1–3.

3.2. Key characteristics from all 2235
references

3.2.1. General study characteristics
In total, 911 references were published in 2009, and 1,324

references were published in 2019, which were included in
our review. Seven of the 2019 references described multiple
experimental groups in which animals received different
compounds for pain management, or one group received a
compound, and the other group did not. These groups were
separately included in our analyses.

3.2.2. Analgesia in 2009 and 2019 – key
characteristics

The perioperative use of analgesics or local anesthetics was
reported in 111 of 911 studies from 2009 and in 335 of 1,333
studies from 2019 (Figures 2A, B). Perioperative administration of
analgesics or local anesthetics was more frequently reported in 2019
than 2009 (X2 (1) = 56.15, p < 0.001).

The number of studies not reporting administration of
analgesics or local anesthetics amounted to 87.8% (800/911) in 2009
and 74.8% (998/1333) in 2019.

While 95 of 911 studies from 2009 described the use of a single
analgesic drug, only 16 of 911 studies from this year reported
using two drugs. There was an increase in the relative number
of studies reporting administration of more than one analgesic or
local anesthetic from 2009 to 2019 (X2 (1) = 20.43, p < 0.001).
259 out of 1,333 studies described the use of a single drug, 65
out of 1,333 studies described use of two drugs, ten out of 1333
studies described use of three drugs, and one out of 1,333 studies
described use of four drugs (Figures 2A, B). Please note that the
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FIGURE 1

Study flow chart.

number of drugs provided refers to the type of drug administered,
and not the number of drug administrations, i.e., if the same drug
was repeatedly applied, (e.g., once before and once after surgery), it
was counted as one drug.

In 2009, two of 911 studies reported administering either
an analgesic or local anesthetic, but the authors did not report
which substance was used. The same applied to seven of 1,333
studies from 2019.

3.2.2.1. Preoperative analgesia - key characteristics

The number of studies reporting administration of analgesics
or local anesthetics before surgery increased from 2009 to 2019 (X2

(1) = 21.38, p < 0.001). In the studies describing administration of
local anesthetics prior to surgery, lidocaine was the most commonly
used local anesthetic (2009: 28/911 studies; 2019: 51/1333 studies),

and bupivacaine the second most commonly used (2009: 5/911
studies; 2019: 30/1333 studies) (Figures 2E, F). The comparison
between data sets from 2009 and 2019 indicated an increase in the
use of local anesthetics before surgery (X2 (1) = 7.85, p = 0.005).

The two most common NSAIDs administered before surgery
in both years of interest were carprofen (2009: 5/911 studies;
2019: 25/1333 studies) and meloxicam (2009: 1/911 studies; 2019:
21/1333 studies) (Figures 2G, H). The reporting of preoperative
administration of NSAIDs reached higher levels in 2019 than in
2009 (X2 (1) = 23.31, p < 0.001). One of 1333 studies in 2019
reported use of the antipyretic analgesic metamizole/dipyrone.

The most common opioids administered before surgery
were buprenorphine (2009: 8/911 studies; 2019: 59/1333
studies), fentanyl (2009: 7/911 studies; 2019: 7/1333 studies),
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FIGURE 2

Analgesics and local anesthetics administered perioperatively and preoperatively (k = 2244 studies). (A,B) Number of drugs (analgesics and local
anesthetics) administered perioperatively in 2009 (A) and 2019 (B). (C,D) Drugs (analgesics and local anesthetics) administered preoperatively in
2009 (C) and 2019 (D). (E,F) Local anesthetics administered preoperatively in 2009 (E) and 2019 (F). Other = drugs used in up to four studies. (G,H)
Analgesic antipyretic agents administered preoperatively in 2009 (G) and 2019 (H). Other = drugs used in up to seven studies. (I,J) Opioids
administered preoperatively in 2009 (I) and 2019 (J). Other = drugs used in up to two studies. “Preoperatively” was defined as all timepoints before
skin incision.

and butorphanol (2009: 3/911 studies; 2019: 12/1333 studies)
(Figures 2I, J). Preoperative opioid administration significantly
increased from 2009 to 2019 (X2 (1) = 17.53, p < 0.001).

Full information on all drugs used for pain management before
surgery is provided in Table 4 and Supplementary Table 3.

3.2.2.2. Intraoperative analgesia - key characteristics

Only two studies from each year reported administering
analgesics or local anesthetics during surgery. The drugs
administered during surgery comprised bupivacaine and fentanyl
(one study each of 911 studies in 2009), as well as buprenorphine
and meloxicam (one study each of 1333 studies in 2019) (Table 4).
Please note that the information provided here focused on
administration during the actual surgical procedure [infusion
or injection from the first incision through wound closure
by primary intention (edges of wound are brought and held
together by e.g., suturing, gluing, or stapling)]. In this context, it
should be remembered that the duration of action of some drugs
administered before surgery extends into the surgical phase.

3.2.2.3. Postoperative analgesia - key characteristics

The use of local anesthetics or analgesics after surgery was
reported in 61 of 911 studies in 2009 and 201 of 1333 studies in
2019 (Figures 3A, B). The most commonly used local anesthetics
in 2009 were bupivacaine (2009: 5/911 studies; 2019: 8/1333
studies) and lidocaine (2009: 5/911 studies; 2019: 12/1333 studies)
(Figures 3C, D). We did not observe a significant change in
the postoperative use of local anesthetics from 2009 to 2019 (X2

(1) = 0.46, p = 0.498). Among NSAIDs, the most commonly used

substances in 2009 and 2019 were carprofen (2009: 10/911 studies;
2019: 38/1333 studies), ketoprofen (2009: 7/911 studies; 2019:
22/1333 studies, and meloxicam (2009: 2/911 studies; 2019: 32/1333
studies) (Figures 3E, F). Acetaminophen/paracetamol was the most
frequently reported antipyretic analgesic in both years (2009: 3/911
studies; 2019: 8/1333 studies). One of 911 studies in 2009 and
four of 1333 studies in 2019 reported use of metamizole/dipyrone.
We found evidence for a significant increase in the postoperative
use of NSAIDs from 2009 to 2019 (X2 (1) = 17.30, p < 0.001),
but no change in the postoperative use of antipyretic analgesics
(X2 (1) = 1.04, p = 0.308). Postsurgical administration of opioids
comprised the use of buprenorphine (2009: 17/911 studies; 2019:
77/1333 studies), butorphanol (2009: 2/911 studies; 2019: 1/1333
study) and tramadol (2019: 3/1333 studies) (Figures 3G, H). The
postoperative administration of opioids increased from 2009 to
2019 (X2 (1) = 19.32, p < 0.001).

For an overview of all drugs administered after surgery as
reported in the 2009 and 2019 references, please see Table 4 and
Supplementary Table 3.

3.2.3. Multimodal approaches - key
characteristics

Multimodal approaches (use of >2 substances) for
perioperative pain management were reported in 16 of 911
studies in 2009 (two substances) and 76 of 1,333 studies (two
substances: 65/1333 studies; three substances: 10/1333 studies; four
substances: 1/1333 studies) in 2019 (Figures 2A, B and Table 4).
The reporting of multimodal approaches increased from 2009 to
2019 (X2 (1) = 20.43, p < 0.001).
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TABLE 4 Analgesics and local anesthetics reported in all included studies in 2009 and 2019.

Drug 2009 2009 2019 2019

Preoperatively Postoperatively Preoperatively Postoperatively

Acetaminophen n.a. 2 n.a. 6

Acetaminophen, bupivacaine n.a. 1 n.a. n.a.

Bupivacaine 5 4 16 5

Bupivacaine, carprofen n.a. n.a. n.a. 1

Bupivacaine, ketoprofen n.a. n.a. 2 n.a.

Bupivacaine, meloxicam n.a. n.a. 2 1

Buprenorphine 8 15 33 64

Buprenorphine, acetaminophen n.a. n.a. n.a. 1

Buprenorphine, bupivacaine n.a. n.a. 6 n.a.

Buprenorphine, carprofen n.a. n.a. 5 4

Buprenorphine, ketoprofen n.a. n.a. 1 n.a.

Buprenorphine, meloxicam, bupivacaine n.a. n.a. 1 1

Butorphanol 3 2 12 1

Carprofen 4 10 14 30

Carprofen, lidocaine 1 n.a. 4 1

Diclofenac n.a. 1 n.a. n.a.

Fentanyl 6 n.a. 6 n.a.

Fentanyl, buprenorphine n.a. n.a. 1 n.a.

Fentanyl, lidocaine 1 n.a. n.a. n.a.

Flunixin n.a. 3 1 3

Flunixin, meglumine n.a. 2 n.a. 2

Ibuprofen n.a. 3 n.a. 3

Ibuprofen, acetaminophen n.a. n.a. n.a. 1

Ketoprofen n.a. 6 4 22

Ketoprofen, buprenorphine n.a. 1 n.a. n.a.

Lidocaine 26 4 30 6

Lidocaine, bupivacaine n.a. n.a. 2 n.a.

Lidocaine, buprenorphine n.a. 1 9 1

Lidocaine, carprofen, buprenorphine n.a. n.a. n.a. 2

Lidocaine, marcaine, carprofen n.a. n.a. 1 n.a.

Lidocaine, meloxicam n.a. n.a. 2 2

Lignocaine n.a. n.a. n.a. 1

Marcaine n.a. n.a. 1 n.a.

Marcaine, carprofen n.a. n.a. 1 n.a.

Meloxicam 1 2 11 23

Meloxicam, acetaminophen n.a. n.a. n.a. 1

Meloxicam, bupivacaine, lidocaine n.a. n.a. 1 n.a.

Meloxicam, buprenorphine n.a. n.a. 3 4

Meloxicam, buprenorphine, lidocaine n.a. n.a. 1 n.a.

Metamizole n.a. 1 1 4

n.a. 853 850 1153 1132

n.r. n.a. 2 n.a. 7

Piritramide n.a. n.a. 2 n.a.

(Continued)
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TABLE 4 (Continued)

Drug 2009 2009 2019 2019

Preoperatively Postoperatively Preoperatively Postoperatively

Prilocaine n.a. n.a. 1 n.a.

Prilocaine, lidocaine n.a. n.a. 1 n.a.

Procaine 3 1 1 n.a.

Ropivacaine n.a. n.a. 3 n.a.

Ropivacaine, lidocaine n.a. n.a. n.a. 1

Ropivacaine, metamizole n.a. n.a. 1 n.a.

Tramadol n.a. n.a. n.a. 3

Analgesics and local anesthetics reported in all included studies from 2009 (k = 911) and 2019 (k = 1333). Two studies from each year reported an intraoperative administration of analgesics or
local anesthetics (2009: bupivacaine, fentanyl; 2019: buprenorphine, meloxicam). N.a., not applicable, this drug was not administered; n.r., drug administered but no information on substance
used was provided; preoperatively, all timepoints before skin incision; postoperatively, all timepoints after end of surgery; intraoperatively, all timepoints between skin incision and end of
surgery. Summary measures of tabulated analgesics and local anesthetics can also be found in Figures 2, 3.

FIGURE 3

Analgesics and local anesthetics administered postoperatively (k = 2244 studies). (A,B) Drugs (analgesics and local anesthetics) administered
postoperatively in 2009 (A) and 2019 (B). (C,D) Local anesthetics administered postoperatively in 2009 (C) and 2019 (D). Other = drugs used in up to
two studies. (E,F) Analgesic antipyretic agents administered postoperatively in 2009 (E) and 2019 (F). Other = drugs used in up to five studies. (G,H)
Opioids administered postoperatively in 2009 (G) and 2019 (H). “Postoperatively” was defined as all timepoints after finishing surgery and closing of
incision.

In 2009, six of 911 studies reported administering a local
anesthetic in combination with an opioid. Another four of 911
studies reported administering an opioid and an NSAID, whereas
two of 911 studies reported the administration of a local anesthetic
and an NSAID and one of 911 studies reported the administration
of a local anesthetic and an antipyretic analgesic. Two of 911
studies reported administering two different NSAIDs and one study
reported administering two opioids.

In 2019, the most commonly reported combinations of two
substances were a local anesthetic with an NSAID (24/1333
studies), followed by opioid plus NSAID (16/1333 studies), and
local anesthetic plus opioid (16/1333 studies). Two further studies
reported the administration of an antipyretic analgesic and an

NSAID, while another study reported the administration of an
antipyretic analgesic and an opioid. The majority of studies
reporting the administration of three substances (7/10 studies)
described using a local anesthetic, an NSAID and an opioid.

3.2.4. Anesthesia in 2009 and 2019 - key
characteristics

The administration of anesthetic drugs was reported in all
912 studies in 2009 and in 1,329 of 1,330 studies in 2019
(Figure 4). For these analyses, experimental groups receiving
different anesthetics, described within publications, were separately
analyzed; the treatment regime was our unit of analysis. Because
one reference in 2009 described two experimental groups, and five
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FIGURE 4

Anesthetics drugs (k = 2241 studies). Administration of anesthetic drugs in 2009 (k = 911) and 2019 (k = 1330). N.r., not reported. Note that one of
the included papers from 2019 did not use anesthesia; the surgeries were performed on conscious animals.

references in 2019 described two or more experimental groups, we
now refer to 912 studies in 2009 and 1,330 studies in 2019.

In 2009, three of 912 studies reported inducing hypothermia in
neonatal pups instead of using an anesthetic drug. Another study
reported using either hypothermia in neonatal pups or a mixture of
ketamine and xylazine. In 2019, two of 1330 publications described
using hypothermia in neonatal pups. One additional manuscript
reported not administering any substances to induce anesthesia;
the animals remained conscious for the duration of the surgery.
No explanation was provided as to why the animals remained
conscious during the surgical procedure. In 2009, 91 of 912 studies
did not report which drug was used to induce general anesthesia. In
2019, this was the case for 154 of 1330 studies.

The most commonly used drug to induce general anesthesia in
both years of interest was isoflurane. It was administered in 184 of
912 studies in 2009 and in 515 of 1330 studies in 2019 (Figure 4).
In both years, isoflurane was used in combination with ketamine
and xylazine in several studies (2009: 7/912 studies; 2019: 17/1330
studies). Use of isoflurane was more frequently reported in 2019
than in 2009 (X2 (1) = 85.65, p < 0.001). Moreover, there was
a general increase in the use of inhalational anesthesia compared
to the use of injectable anesthesia (X2 (1) = 22.70, p < 0.001).
Full information on all calculations is provided in Supplementary
Methods 4.

The combination of ketamine and xylazine was the second most
commonly used form for induction of general anesthesia. Use of
this combination was reported in 169 of 912 studies in 2009 and
230 of 1330 studies in 2019 (Figure 4). There was no significant
difference between 2009 and 2019 (X2 (1) = 0.33, p = 0.564).
Full information on all calculations is provided in Supplementary
Methods 4. Ketamine and xylazine were also combined with
further drugs, the most frequently reported combination being

ketamine, xylazine, and acepromazine (2009: 24/912 studies; 2019:
13/1330 studies).

The third most commonly used substance for general
anesthesia in both years was pentobarbital (2009: 140/912 studies;
2019: 118/1330 studies). There was a significant decrease in the use
of pentobarbital from 2009 to 2019 (X2 (1) = 21.67, p < 0.001).
Combinations of pentobarbital with other substances were
reported by 30 of 912 studies in 2009 and twelve of 1330 studies
in 2019. Drugs used for combination with pentobarbital comprised
chloral hydrate, diethyl ether, isoflurane, ketamine, and xylazine.

Other drugs used to induce anesthesia included chloral hydrate
(2009: 62/912 studies; 2019: 102/1330 studies), halothane (2009:
38/911 studies; 2019: 4/1330 studies), urethane (2009: 54/912
studies) urethane in combination with chloralose (2009: 8/912
studies; 2019: 37/1330 studies), and tribromoethanol (2009: 17/912
studies; 2019: 7/1330 studies).

Full information on all anesthetic drugs used is provided in
Table 5 and Supplementary Table 3.

3.2.5. Anesthesia and analgesia in combination -
key characteristics

Conclusions about pain management need to consider that
some drugs used for general anesthesia can exert analgesic
effects themselves (e.g., ketamine, alpha-sympathomimetic drugs
including xylazine, and urethane). Thus, we additionally analyzed
the combination of specific drugs used for general anesthesia with
analgesics or local anesthetics.

In 2009, 184 of 912 studies reported administering isoflurane
as the only drug used to induce general anesthesia. Here, 35
studies described the additional perioperative administration of
one or more drugs used for pain management. The list of added
drugs comprised: lidocaine, bupivacaine, meloxicam, carprofen,
ketoprofen, ibuprofen, flunixin, acetaminophen/paracetamol,
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TABLE 5 Type of anesthesia reported in all included studies from 2009
and 2019.

Type of anesthesia Studies in 2009
(k = 912)

Studies in 2019
(k = 1330)

Alfaxalon, diazepam n.a. 1

Amobarbital n.a. 1

Benzodiazepam/ketamine n.a. 1

Chloral hydrate 62 102

Chloral hydrate/gallamine
triethiodide

1 n.a.

Chloral
hydrate/isoflurane/ketamine

1 n.a.

Chloralose n.a. 1

Chloralose/halothane 1 n.a.

Desflurane 1 n.a.

Diethyl ether 1 1

Diethyl ether/pentobarbital 1 n.a.

Ethanol n.a. 1

Ethanol/pentobarbital/chloral
hydrate/propylene glycol

2 3

Ether 9 2

Ether/sevoflurane 1 n.a.

Fluanisone 1 n.a.

Halothane 38 4

Halothane/urethane 1 2

Hexenal OR chloral hydrate 1 n.a.

Hypothermia 3 2

Hypothermia/ketamine/xylazine 1 n.a.

Isoflurane 184 515

Isoflurane/chloralose n.a. 1

Isoflurane/pentobarbital 3 n.a.

Isoflurane/dexmedetomidine n.a. 1

Isoflurane/ketamine/medetomidine
/acepromazine

n.a. 1

Isoflurane/urethane/ketamine/
xylazine

n.a. 1

Isoflurane/urethane/chloralose 1 n.a.

Isoflurane/urethane/
pancuronium bromide

1 n.a.

Isoflurane OR urethane 1 n.a.

Ketamine 5 7

Ketamine/acepromazine 3 n.a.

Ketamine/benzodiazepine n.a. 1

Ketamine/chlorpromazine 3 n.a.

Ketamine/climazolam 1 n.a.

Ketamine/dexmedetomidine n.a. 1

Ketamine/diazepam 3 3

Ketamine/medetomidine 13 12

Ketamine/medetomidine/
diazepam

2 n.a.

(Continued)

TABLE 5 (Continued)

Type of anesthesia Studies in 2009
(k = 912)

Studies in 2019
(k = 1330)

Ketamine/medetomidine/
isoflurane

n.a. 2

Ketamine/midazolam 1 n.a.

Ketamine/xylazine 169 230

Ketamine/xylazine/acepromazine 24 13

Ketamine/xylazine/acepromazine/
isoflurane

1 1

Ketamine/xylazine/chloralose n.a. 1

Ketamine/xylazine/halothane 1 n.a.

Ketamine/xylazine/isoflurane 7 17

Ketamine/xylazine/pentobarbital 4 n.a.

Ketamine/xylazine OR isoflurane 1 1

Ketamine/xylazine OR
pentobarbital OR tribromoethanol
OR chloralose OR isoflurane

n.a. 1

Medetomidine/midazolam 1 9

Medetomidine/midazolam/
isoflurane

n.a. 1

Medetomidine/midazolam OR
ketamine/xylazine OR
pentobarbital

n.a. 1

Medetomidine/tiletamine/
zolazepam

1 n.a.

Methylbutanol/tribromoethanol 1 n.a.

Midazolam/fluanisone 4 4

Midazolam/isoflurane n.a. 1

n.r. 91 154

None n.a. 1

Pentobarbital 140 118

Pentobarbital/chloral hydrate 12 11

Pentobarbital/fluanisone 1 n.a.

Pentobarbital/halothane 2 n.a.

Pentobarbital/ketamine 4 1

Pentobarbital/xylazine OR
isoflurane OR urethane

n.a. 1

Pentobarbital OR isoflurane n.a. 1

Phenobarbital 1 n.a.

Propofol n.a. 1

Sevoflurane 3 7

Sevoflurane/halothane n.a. 2

Sevoflurane/ketamine/xylazine n.a. 1

Thiobutabarbital 2 1

Thiopental 4 5

Thiopental/chloral
hydrate/pentobarbital

1 n.a.

Tiletamine/xylazine n.a. 1

Tiletamine/zolazepam 4 8

(Continued)
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TABLE 5 (Continued)

Type of anesthesia Studies in 2009
(k = 912)

Studies in 2019
(k = 1330)

Tribromoethanol 17 7

Tribromoethanol/isoflurane 1 14

Tubocurarine 1 n.a.

Urethane 54 n.a.

Urethane/chloralose 8 37

Urethane/isoflurane 2 6

Urethane/ketamine n.a. 2

Urethane/ketamine/xylazine 2 1

Urethane/medetomidine/ketamine 1 1

Xylazine 1 n.a.

Zolazepam/xylazine n.a. 1

Type of anesthesia reported in all included studies from 2009 (k = 912) and 2019 (k = 1330);
n.r., anesthetic drug not reported; None, no anesthesia reported; n.a., not applicable, this
drug or combination of drugs were not administered. Summary measures of tabulated
anesthetics can also be found in Figure 4.

buprenorphine, and butorphanol. The remaining 149 of 184 studies
did not mention administering any analgesics or local anesthetics.

For 2019, 515 of 1330 studies reported administering isoflurane
as the only drug used to induce general anesthesia. Here, 188
studies reported the additional perioperative administration of
one or more analgesics or local anesthetics (including lidocaine,
bupivacaine, ropivacaine, marcaine, meloxicam, carprofen,
ketoprofen, ibuprofen, flunixin, acetaminophen/paracetamol,
metamizole/dipyrone, buprenorphine, butorphanol, fentanyl, and
piritramide). The remaining 327 of 515 studies using isoflurane as
the only substance to induce general anesthesia did not mention
administering any additional analgesics or local anesthetics.

In 2009, 169 of 912 studies reported use of a ketamine and
xylazine combination to induce general anesthesia. Twenty-five of
these studies reported the additional perioperative administration
of one or more analgesics or local anesthetics (including
lidocaine, procaine, carprofen, ketoprofen, metamizole/dipyrone,
buprenorphine, and butorphanol). In 2019, 230 of 1330 studies
reported use of a combination of ketamine and xylazine to
induce general anesthesia. Sixty-three of these studies reported
the additional perioperative administration of one or more
analgesics or local anesthetics (including lidocaine, bupivacaine,
procaine, ropivacaine, carprofen, meloxicam, ketoprofen,
flunixin, metamizole/dipyrone, buprenorphine, butorphanol,
fentanyl, and tramadol).

Among studies using pentobarbital to induce anesthesia,
in 2009, three of 140 studies reported additional pre- and/or
postoperative analgesia. In 2019, ten of 118 studies described pre-
or postoperative administration of an analgesic.

In 2009, 62 of 912 studies reported using chloral hydrate
to induce anesthesia. Only three of these studies reported an
additional pre- or postoperative use of an analgesic or local
anesthetic. In 2019, five of 102 studies using chloral hydrate
described additional pre- and/or postoperative administration of an
analgesic or local anesthetic.

Urethane was used in 54 of 912 studies in 2009. Five of
these studies reported the administration of an analgesic or local

anesthetic before surgery. In 2019, four studies from a total
of 37 studies using urethane described the use of an analgesic
drug before surgery.

Among studies using halothane (2009: 38/912 studies; 2019:
4/1330 studies) to induce anesthesia, in 2009, three studies reported
administering an analgesic or local anesthetic before or following
surgery. In 2019 one of the studies described administering two
local anesthetics before surgery.

Please note that information on drugs used to induce anesthesia
reported in 24 or fewer studies were not considered in this
paragraph. Full information about all drugs and combinations used
can be found in Supplementary Table 3.

3.3. Detailed data for the random subset
of 200 references

For the purpose of feasibility, more detailed information
was only collected from a random subset of 200 references
(100 references/year). The additional information described below
comprises study, animal and intervention characteristics, treatment
protocols, outcome measures and risk of bias parameters.
These additional data for the random subset allowed us to
get an impression of dosage and frequency of the described
anesthetics and analgesics.

Full information on all extracted parameters is provided in
Supplementary Tables 1, 2.

3.3.1. General study-/animal characteristics –
detailed analysis of random subset of 200 studies

From the subset of 200 studies, for 2009, 22 of 100 studies
using mice and 79 of 100 studies using rats were identified. In one
reference from 2009 (Merkler et al., 2009), both mice and rats were
used. In 2019, the number of studies using mice was 43 of 100, and
57 of 100 used rats (Figures 5A, B). The list of studies using mice
indicated that the most commonly used strain was C57BL/6 in both
years of interest (2009: 4/100 studies; 2019: 13/100 studies). Further
information regarding the substrains were generally not reported
in these studies. An exception was the C57BL/6J strain, which was
specifically mentioned in selected studies from both years (2009:
2/100 studies; 2019: 5/100 studies). The list of studies using rats
indicated that the most commonly used strain was Sprague–Dawley
in both years of interest (2009: 36/100 studies; 2019: 33/100 studies).
The second most commonly used strain was Wistar in both years
(2009: 24/100 studies; 2019: 15/100 studies). Further information
on strain specificity was not reported.

In both years, the majority of studies focused on male animals
(2009: 71/101 studies; 2019: 68/100 studies). Female animals were
used much less frequently (2009: 8/101 studies; 2019: 10/100
studies) (Figures 5C, D). Studies reporting both sexes were
relatively uncommon in both years (2009: 6/101 studies; 2019:
8/100 studies). In 2009, 16 of 101 studies did not report the sex of
the used animals; in 2019 this was 14 of 100 studies. Please note that
we here refer to 101 studies from 2009, since one reference reported
using mice and rats, but only provided information about the sex
for rats.

For detailed information on further animals’ characteristics,
housing, and husbandry see Supplementary Tables 1, 2.
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FIGURE 5

Animal model characteristics: species and sex and intervention characteristic survival surgery in the subset of 200 studies. (A) Studies using mice and
rats in 2009 (k = 101 studies). (B) Studies using mice and rats in 2019 (k = 100 studies). (C,D) Studies reporting sex in 2009 (C; k = 101 studies) and
2019 (D; k = 100 studies). (E,F) Studies reporting if animals survived surgery in 2009 (E; k = 100 studies) and 2019 (F; k = 100 studies). n.r., not
reported.

For the purpose of this study, country of origin was defined
as the country of the institute associated with the first author at
the time of publication. The majority of the studies were from
the United States of America (2009: 37/100 studies; 2019: 28/100
studies). There were no major differences in analgesic or anesthetic
approaches between countries or continents. Full information on
all countries of origin can be found in Supplementary Tables 1, 2.

3.3.2. Intervention characteristics – detailed
analysis of random subset of 200 studies

Deep electrode implantations were the most common surgical
procedure reported in both years of interest (2009: 19/102 studies;
2019: 17/102 studies). Please note that we here refer to 102 studies
from each year, since in two references from each year, two groups
with different surgical procedures were reported.

For both years, the second most commonly reported surgical
intervention was the transient insertion of an intracerebral
injection cannula (2009: 16/102 studies; 2019: 16/102 studies).
For further information on other surgical procedures, see
Supplementary Tables 1, 2.

There were no major differences between years in analgesic or
anesthetic approaches for different surgical interventions. Almost
all studies from both years reported survival surgeries (2009: 87/100
studies; 2019: 91/100 studies) (Figures 5E, F). Further studies either
reported experiments during surgery, killing the animals directly
afterward, or survival for less than 24 h post-surgery.

Specific monitoring during surgery was reported in 25 of 100
studies from 2009 and 24 of 100 studies from 2019. Monitoring
during surgery comprised any monitoring measure, such as
vital parameters (heart rate, breathing, blood pressure, body
temperature, blood oxygen), reflexes (e.g., corneal reflex, pedal
reflex), movements of the animal, and ECG (Electrocardiogram).

Perioperative care was reported for 23 of 100 studies from 2009
and 30 of 100 studies from 2019. Perioperative care was defined as
any measure during surgery aimed at improving animal wellbeing
or the outcome of surgery. These measures comprised maintaining
of body temperature and application of eye ointment.

Non-pharmacological measures for pain management (e.g.,
cooling of incision to aid healing, massage, physical therapy) were
reported neither for the year 2009 nor for 2019.

3.3.3. Pain-related outcome measures – detailed
analysis of random subset of 200 studies

None of the studies published in 2009 reported an assessment
of analgesic efficacy. In 2019, only one of 100 studies (Stanchi et al.,
2019) reported assessing the analgesic efficacy post-surgery. Here,
the well-being of mice was assessed daily by inspecting the animals.
Parameters testing the efficacy of pain-reducing measures post-
surgery, such as the mouse grimace score, were not reported within
the sample.

3.3.4. Analgesia – detailed analysis of random
subset of 200 studies

The use of analgesics or local anesthetics was reported in twelve
of 100 studies in 2009 and 33 of 103 studies in 2019. For the subset
of 200 studies, data regarding characteristics of the analgesic and
anesthetic treatment protocol, e.g., dosage, administration interval,
route of application, were extracted.

3.3.4.1. Local anesthetics

In 2009, six studies from the subset of 100 reported using local
anesthetics (seeTable 6). The substances used were lidocaine (2/100
studies), procaine (2/100 studies), and bupivacaine (1/100 studies).
One study did not report which substance was used. Information
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about dosing was not provided in the majority (4/6 studies) of
studies (Table 6 and Supplementary Tables 1, 2). For all local
anesthetics, a single application was reported.

In 2019, 14 of 103 studies reported administration of a
local anesthetic (see Table 6), with seven studies reporting
administration before, four studies after surgery, and three studies
not providing information on the time of administration. The
most used local anesthetic was lidocaine, with eight of 103
studies reporting its use, whereas the second most used drug
was bupivacaine, being used in two of 103 studies. Further local
anesthetics used were ropivacaine, lignocaine, and prilocaine, all
three substances being used in one study each. One study did
not provide information on which local anesthetic was used and
one study reported administering a combination of bupivacaine
and lidocaine. None of the studies provided dosing information.
Most studies (12/14) reported administering the local anesthetic
once. Only two studies reported multiple applications with either
lidocaine or lignocaine administered four times every 24 h.

For complete information on all drugs used, please refer to
Table 6 and Supplementary Tables 1, 2.

3.3.4.2. Analgesic antipyretic agents administered
The administration of analgesic antipyretic agents was reported

in five of 100 studies from 2009 and 16 of 103 studies from 2019
(see Table 7). Most studies (4/5) in 2009 and all (Kaur et al., 2000)
studies in 2019 reported use of NSAIDs. The remaining study in
2009 used an antipyretic analgesic. In one reference from 2019,
two experimental subgroups were described with animals receiving
either an NSAID or an opioid.

For 2009, one study reported administering an NSAID
during, and three studies after surgery, with flunixin being
administered in two of 100 studies. The dose used in both studies
was 1.1 mg/kg body weight (BW). One study administered
the substance once subcutaneously, whereas the second study
reported administering the substance three times with an
application interval of 24 h but provided no information on
the administration route. Other NSAIDs used were carprofen
and ketoprofen. One study reported using the antipyretic
analgesic acetaminophen/paracetamol. All substances were
reported once, with no information on used doses for
acetaminophen and ketoprofen. Carprofen was administered
intraperitoneally at a dose of 5 mg/kg BW. All three analgesics
were administered once.

In 2019, seven studies reported administering the NSAID
before, one study during and eight studies after surgery. The
most commonly used NSAID was meloxicam. Eight of 103
studies reported using it, with doses ranging from 0.03 to
5 mg/kg BW. Two studies administered the substance twice
with an interval of 24 h and one study administered it four
times with an interval of 24 h. The remaining studies reported
administering meloxicam once. Of these eight studies, three
did not report how the NSAID was administered. Four studies
reported a subcutaneous administration. Here, doses ranged
from 1 to 5 mg/kg BW. One study reported intraperitoneal
administration at a dose of 0.03 to 0.05 mg/kg BW. The second
most commonly used NSAID was ketoprofen, being used in
five of 103 studies, with two studies both reporting application
four times with an interval of 24 h. The remaining studies
reported administering ketoprofen once. Four studies reported a

subcutaneous administration of doses ranging from 3 to 5 mg/kg
BW. The fifth study reported intraperitoneal administration of
a dose of 5 mg/kg BW. Carprofen was used in three of 103
studies with doses ranging from 2 to 20 mg/kg BW, being
administered seven times with an interval of 12 h in one study,
and four times with an interval of 24 h in another study.
The third study did not provide information on how often the
substance was administered. Of these three studies, one reported
subcutaneous administration of 20 mg/kg BW, another study
reported intraperitoneal administration of 2 to 4 mg/kg BW while
the third study did not provide information on how the substance
was administered.

For complete information on all drugs used, please refer to
Table 7 and Supplementary Tables 1, 2.

3.3.4.3. Opioids

Two of the 100 studies from 2009, and 14 of the 103 studies
from 2019, reported opioid administration. In one reference from
2019, animals were allocated to two groups receiving either an
NSAID or an opioid.

The opioid administered in both studies from 2009 and
almost all studies from 2019 (13/14 studies) was buprenorphine
(2009: doses ranged from 0.02 to 1 mg/kg BW applied
subcutaneously; 2019: doses ranged from 0.01 to 2 mg/kg BW
applied subcutaneously and 0.01 to 0.1 mg/kg BW applied
intraperitoneally). In three of 14 studies from 2019, doses were
reported without information about the route of administration.
One additional study reported neither dose nor route of
administration. Buprenorphine was administered once in all
studies from 2009 and the majority of studies from 2019 (10/13
studies). Two studies from 2019 described repeated administration
with either seven administrations every 12 h, or ten administrations
every 8 h. One study reported a postoperative administration
every 6–12 h but provided no information on how often the
opioid was administered. Use of butorphanol was reported in one
study in 2019, with an intraperitoneal administration of a dose
of 2.5 mg/kg BW.

For complete information on all drugs used, please refer to
Table 8 and Supplementary Tables 1, 2.

3.3.5. Anesthesia – detailed analysis of random
subset of 200 studies

In this section, we refer to 103 studies from 2009 and
101 studies from 2019, as several references reported forming
groups with animals receiving different approaches to induce
general anesthesia.

In 2009, the most frequently applied general anesthesia
approach was a combination of ketamine and xylazine (25/103
studies), with the following dose ranges: 25 to 120 mg/kg BW for
ketamine and 2.5 to 110 mg/kg BW for xylazine. Two studies did
not report the doses used.

The second most common substance to induce general
anesthesia in 2009 was isoflurane (19/103 studies). Six studies
provided information about the concentrations used, which ranged
from 1 to 3.5 vol.%. Another six studies reported administering
different concentrations for induction (range: 2.5–5 vol.%) and
maintenance (range: 1–3 vol.%) of anesthesia. Seven studies did not
provide information on concentrations. Other drugs used to induce
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TABLE 6 Studies reporting use of local anesthesia from 2009 and 2019 included in the subset of 200 studies.

References Species
used

Drug Administration
route

Dosage
(mg/kg)

Injection
volume
(ml/
animal)

Timepoint of
first
administration

Administered
how many
times in total

Administration
interval
(h post first
administration)

Griesbach et al., 2009 Rats Bupivacaine s.c. 0.25 n.r. Postsurgically 1 n.a.

Hart et al., 2009 Rats Procaine i.p. 300 0.3 Postsurgically 1 n.a.

Meeren et al., 2009 Rats Lidocaine s.c. n.r. n.r. Presurgically 1 n.a.

Mohammadi et al.,
2009

Rats Lidocaine s.c. n.r. 0.2 Presurgically 1 n.a.

Schei et al., 2009 Rats n.r. n.r. n.r. n.r. n.a. 1 n.a.

Tchekalarova et al.,
2009

Rats Procaine n.r. n.r. n.r. Presurgically 1 n.a.

Aldehri et al., 2019 Rats Lidocaine s.c. n.r. n.r. Presurgically 1 n.a.

Bazzu et al., 2019 Mice Lidocaine n.r. n.r. n.r. Presurgically n.r. n.r.

Bertoglio et al., 2019 Rats Lidocaine Applied topically n.r. n.r. Postsurgically 1 n.a.

Bukhtiyarova et al.,
2019

Mice Bupivacaine
+ lidocaine

s.c. n.r. n.r. Presurgically 1 n.a.

Christiaen et al.,
2019

Rats Lidocaine Applied topically n.r. n.r. Postsurgically 1 n.a.

Colangeli et al., 2019 Rats Lidocaine s.c. n.r. n.r. n.r. n.r. n.r.

Farakhor et al., 2019 Rats Lidocaine n.r. n.r. n.r. n.r. n.r. n.r.

Levata et al., 2019 Mice Lidocaine +
prilocaine

Applied topically n.r. n.a. Presurgically 1 n.a.

Moller et al., 2019 Rats Bupivacaine Applied topically n.r. n.r. Presurgically 1 n.a.

Russell et al., 2019 Rats n.r. n.r. n.r. n.r. n.a. 1 n.a.

Sharma et al., 2019 Rats Lignocaine Applied topically n.r. n.r. Postsurgically 4 24

Shaver et al., 2019 Rats Bupivacaine s.c. n.r. n.r. Presurgically 1 n.a.

Slezia et al., 2019 Mice Ropivacaine s.c. n.r. 0,005 Presurgically 1 n.a.

Wang et al., 2019f Mice Lidocaine Applied topically n.r. n.r. Postsurgically 4 24

Information on studies reporting use of local anesthetics (5 studies in 2009; 14 studies in 2019) included in the subset of 200 studies. n.r., not reported, parameter was not reported; n.a., not
applicable, extraction of this parameter was not feasible; i.p., intraperitoneal; i.m., intramuscular; s.c., subcutaneous.

anesthesia were: pentobarbital (15/103 studies), halothane (5/103
studies), and urethane (5/103 studies).

Full information on all substances used to induce general
anesthesia can be found in Table 9 and Supplementary
Tables 1, 2.

Isoflurane was the most frequently reported substance used for
anesthesia in 2019 (44/101 studies). Twenty-four studies reported
a different concentration for induction (range 2.5–5 vol.%) and
maintenance (range 0.5–5 vol.%) of general anesthesia, whereas
15 studies did not specify separate concentrations for induction
and maintenance of general anesthesia (concentrations ranging
from 0.5 to 4 vol.%). Five studies did not provide information on
concentration at all.

In 2019, the second most common approach was the
combination of ketamine and xylazine with 19 of 101 studies
reporting this combination. The doses ranged from 7.5 to
120 mg/kg BW for ketamine and 3–100 mg/kg BW for xylazine.
Further anesthetic drugs comprised pentobarbital (7/101 studies)
and chloral hydrate (5/101 studies).

Full information on all substances used to induce general
anesthesia can be found in Table 9 and Supplementary Tables 1, 2.

3.3.6. Risk of bias – detailed analysis of random
subset of 200 studies

Blinding was reported in 16 of 100 studies in 2009 (blinding
of data analysis: 13 studies; during experimental procedure: two
studies; during experimental procedure and data analysis: one
study) and 16 of 100 studies in 2019 (of data analysis: 13 studies;
during experimental procedure and data analysis: three studies).
Randomization was reported in 14 of 100 studies published in
2009 (randomized group allocation: twelve studies; randomized
data analysis: two studies) and 38 of 100 studies published in
2019 (group allocation: 36 studies; conducting of experimental
procedure: one study; randomized data analysis: one study). In
2009, two of 100 studies reported conducting a power analysis, but
none reported doing so in 2019. Reporting of doses and routes
of application from studies reporting use of analgesics or local
anesthetics was incomplete (no dose and/or route of application
reported) in seven of eleven studies from 2009 and 23 of 32 studies
from 2019. Regarding used anesthetics, 32 of 103 studies from 2009
and 30 of 101 studies from 2019 provided insufficient information
on used doses or routes of application. To conclude, the majority of
our sample did not report adequate blinding and randomization to
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TABLE 7 Studies reporting use of analgesic antipyretic agents from 2009 (k = 100) and 2019 (k = 100) included in the subset of 200 studies.

References Species
used

Drug Administration
route

Dosage
(mg/kg)

Timepoint of
first
administration

Administered
how many

times in total

Administration
interval (h post first

administration)

Gurevicius et al., 2009 Mice Carprofen i.p. 5 Postsurgically 1 n.a.

Magloire and Cattarelli,
2009

Rats Acetaminophen per os n.r. Postsurgically n.a. n.a.

Schei et al., 2009 Rats Flunixin s.c. 1,1 Intrasurgically 1 n.a.

Shultz et al., 2009 Rats Ketoprofen s.c. n.r. Postsurgically 1 n.a.

Topchiy et al., 2009 Rats Flunixin n.r. 1,1 Postsurgically 3 24

Bazzu et al., 2019 Mice Meloxicam s.c. 1 Presurgically 1 n.a.

Christiaen et al., 2019 Rats Meloxicam s.c. 1 Postsurgically 2 n.a.

Farakhor et al., 2019 Rats Meloxicam n.r. 0,2 Postsurgically 4 24h post-surgery

Kaefer et al., 2019 Rats Meloxicam n.r. 5 Intrasurgically 1 n.a.

Mastrella et al., 2019 Mice Carprofen i.p. 2 to 4 Presurgically 7 n.a.

Mohammad et al., 2019 Rats Ketoprofen s.c. 5 Presurgically 4 n.a.

Moller et al., 2019 Rats Meloxicam s.c. 1 Presurgically 2 24h post-surgery

O’Brien et al., 2019 Mice Carprofen n.r. n.r. Postsurgically n.r. n.r.

Park et al., 2019 Mice Meloxicam +
acetaminophen

Meloxicam s.c.
acetaminophen per os

Meloxicam 1
acetaminophen

n.r.

Postsurgically 1 n.a.

Sa et al., 2019 Rats Ketoprofen s.c. n.r. Postsurgically 1 n.a.

Shaver et al., 2019 Rats Ketoprofen s.c. 5 Presurgically 1 n.a.

Souza et al., 2019 Rats Ketoprofen s.c. 3 to 5 Postsurgically 4 n.a.

Sun et al., 2019 Mice Ketoprofen i.p. 5 Presurgically 1 n.a.

Szonyi et al., 2019 Mice Meloxicam i.p. 0,03 to 0,05 Postsurgically 1 n.a.

Wang et al., 2019f Mice Carprofen s.c. 20 Postsurgically 4 n.a.

Wen et al., 2019 Rats Meloxicam n.r. 2 Presurgically 1 n.a.

Information on studies reporting use of analgesic antipyretic agents [non-steroidal anti-inflammatory drugs (NSAIDs) and antipyretic analgesics] (5 studies in 2009; 16 studies in 2019)
included in the subset of 200 studies. n.r., not reported, parameter was not reported; n.a., not applicable, extraction of this parameter was not feasible; i.p., intraperitoneal; i.m., intramuscular;
s.c., subcutaneous; numbers in the study ID (e.g., Souza et al., 2019) indicate animal groups within individual studies.

prevent bias affecting their outcomes. Underreporting of doses and
routes of administration was also common.

4. Discussion

This systematic scoping review provides representative
information about common anesthetic and analgesic regimens
applied perioperatively for craniotomy in mice and rats in 2009
and 2019. The extracted data inform us about the development
of analgesic approaches over a decade since the report by Stokes
et al. (2009), which described the lack of adequate analgesic
regimens in the vast majority of mouse and rat studies with
surgical interventions. While our analyses showed an increase in
the application of analgesic drugs and local anesthetics in mouse
and rat studies with intracranial surgery in 2019 versus 2009, the
issue of undertreatment of surgical pain seems to persist, at least in
the context of craniotomies. Moreover, the proportion of studies
reporting multimodal analgesic regimens remains low. Please note
that our data does not allow a conclusion on whether an analgesic
regimen was sufficient or insufficient in specific studies, as neither

a low nor high number of analgesics alone aligns with sufficient or
insufficient analgesia. Aspects like dosage, administration interval
and frequency of administration also have to be considered for
the interpretation regarding sufficiency of the used analgesic
regimen. The majority of studies from both years did not report
the administration of any analgesic or local anesthetic, which
suggests a lack of efforts to control postsurgical pain in the majority
of experimental mice and rats undergoing craniotomy. This
finding confirms recent statements by laboratory animal science
experts (Jirkof, 2017; Flecknell, 2018; Foley et al., 2019). The high
number of studies without description of analgesic regimen is
alarming. Adequate treatment and prevention of pain is an ethical
and, with most national regulations, also a legal requirement
for any intervention in experimental animals (European Union,
2010; Jirkof, 2017; Prescott and Lidster, 2017). It is well known
from human patients that uncontrolled pain can, among others,
contribute to distress, negatively impact the affective state, disturb
sleep patterns, prolong post-surgical recovery and healing phases,
and increase risk of post-surgical complications and morbidity
(Basali et al., 2000; Ortiz-Cardona and Bendo, 2007; Flexman et al.,
2010; Dahl and Kehlet, 2011; Hansen et al., 2013). Studies focusing
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TABLE 8 Studies reporting use of opioids from 2009 (k = 100) and 2019 (k = 100) included in the subset of 200 studies.

References Species
used

Drug Administration
route

Dosage
(mg/kg)

Timepoint of
first
administration

Administered
how many

times in total

Administration
interval (h post first

administration)

Holtmaat et al., 2009 Mice Buprenorphine s.c. 1 Postsurgically n.r. 12

Jafri et al., 2009 Rats Buprenorphine s.c. 0.02 to 0.05 Presurgically 1 n.a.

Aldehri et al., 2019 Rats Buprenorphine s.c. 0.1 Presurgically 1 n.a.

Bertoglio et al., 2019 Rats Buprenorphine s.c. 0.01 Postsurgically 1 n.a.

Bukhtiyarova et al., 2019 Mice Buprenorphine s.c. 0.1 Presurgically 1 n.a.

Duveau et al., 2019 Rats Buprenorphine i.p. 0.01 Postsurgically 1 n.a.

Jackson et al., 2019 Rats Buprenorphine s.c. 0.05 Postsurgically 1 n.a.

Jakkamsetti et al., 2019 Mice Buprenorphine n.r. 0.05 Postsurgically 1 n.a.

Jermakowicz et al., 2019 Rats Buprenorphine s.c. 0.2 Postsurgically 7 12

Kaefer et al., 2019 Rats Buprenorphine n.r. 0.1 Presurgically 1 n.a.

Mazza et al., 2019 Mice Buprenorphine n.r. 0.05 Presurgically 1 n.a.

Okada et al., 2019 Rats Butorphanol i.p. 2.5 Presurgically 1 n.a.

Szonyi et al., 2019 Mice Buprenorphine i.p. 0.1 Postsurgically 1 n.a.

Wang et al., 2019f Mice Buprenorphine s.c. 0.1 Postsurgically 10 8

Wen L. et al., 2019 Mice Buprenorphine s.c. 2 Intrasurgically n.r. 6 to 12

Zhao et al., 2019 Rats Buprenorphine n.r. n.r. Presurgically 1 n.a.

Information on studies reporting use of opioids from 2009 (k = 100) and 2019 (k = 100) included in the subset of 200 studies. n.r., not reported, parameter was not reported; n.a., not applicable,
extraction of this parameter was not feasible; i.p., intraperitoneal; i.m., intramuscular; s.c., subcutaneous; numbers in the study ID (e.g., Jakkamsetti et al., 2019) indicate animal groups within
individual studies.

on rodents demonstrated that pain can for instance affect activity,
behavioral patterns, circadian rhythmicity, and sleep duration
(Carstens and Moberg, 2000; Jirkof et al., 2010, 2012, 2013). In the
context of surgical procedures, it is of particular relevance that the
uncontrolled activation of the nociceptive system can result in its
sensitization at different levels, thereby contributing to prolonged
and more severe post-surgical pain states with hyperalgesia and
allodynia, and a risk for chronic pain (Kaur et al., 2000; Joshi and
Ogunnaike, 2005; Latremoliere and Woolf, 2009; Dahl and Kehlet,
2011; Thapa and Euasobhon, 2018). Thus, the high number of
publications not reporting the use of analgesics raises particular
concerns regarding animal welfare. While exceptions might be
defendable under very exceptional circumstances, the available
multitude of analgesic drugs and local anesthetics should allow
for an optimal analgesic regimen for the vast majority of studies
without confounding the readout parameters (Peterson et al.,
2017; Flecknell, 2018). In addition, an adjusted study design
with longer post-surgical recovery phases and comparisons with
substance-control groups can help to ensure data quality and
correct interpretation (Moser, 2020; Jirkof and Potschka, 2021).

It can obviously not be emphasized enough that uncontrolled
or insufficiently controlled pain and excessive activation of the
nociceptive system exerts a multitude of effects. For instance, it
can result in alterations of neurotransmitters, hormones, enzymes,
metabolites, an impact on immune responses, and on sympathetic
activity with a pronounced influence on cardiovascular function
(Carstens and Moberg, 2000; Page, 2003; Arras et al., 2007; Jirkof,
2017; Jirkof and Potschka, 2021). These examples indicate that
insufficiently controlled pain can influence a multitude of scientific
readout parameters, with a detrimental impact on precision,

reproducibility and external validity of the data (Jirkof, 2017;
Peterson et al., 2017; Jirkof and Potschka, 2021).

As already mentioned, undertreatment of craniotomy-
associated pain has also been reported in humans, and related
to concerns about adverse effects comprising hypercapnia,
hypertension, nausea and vomiting, sedation, and reduced blood
coagulation, which might compromise neurological assessment
or contribute to complications in the post-surgical phase (Leslie
and Williams, 2005; Vadivelu et al., 2016). It should be taken into
account that uncontrolled pain will also result in effects which can
increase the risks in the post-craniotomy phase (Basali et al., 2000).
The undertreatment of human patients undergoing craniotomy
results from the idea that intracranial procedures are less painful
than other surgeries (Dunbar et al., 1999). However, recent studies
have demonstrated otherwise. Many patients reported moderate
to severe pain in the early post-surgical phase (De Benedittis
et al., 1996; Gottschalk et al., 2007; Mordhorst et al., 2010; Dunn
et al., 2016; Bello et al., 2022), and acute post-surgical headache
may persist or recur chronically in a subgroup of patients (Kaur
et al., 2000; Vadivelu et al., 2016; Lutman et al., 2018). Thus,
classifying the pain potentially associated with intracerebral
electrode implantation in laboratory rodents as minimal to mild,
as previously suggested in 2007 by ACLAM Task Force members
(Kohn et al., 2007), is questionable. However, the expert group
did already emphasize that the suggested categories should be
considered as movable sliding scales. While previous findings from
our group following implantation of electrodes in sham control
groups argued against any long-term pain states and chronic issues,
assessment in the early post-surgical phase confirmed the need for
an efficacious analgesic regimen following craniotomy in mice and
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TABLE 9 Type of anesthesia reported in studies from 2009 (k = 100) and 2019 (k = 100) included in the subset of 200 studies.

References Species
used

Type of
anesthesia

Administration
route

Concentration
(Vol. %)

Dosage
(mg/kg)

Administered how
many times in total

Bartolomucci et al., 2009 Mice Ketamine/xylazine i.p. injection n.a. Ketamine 100
xylazine 5

1

Behrend et al., 2009 Rats Ketamine/xylazine n.r. n.a. Ketamine 90
xylazine 10

1

Biella et al., 2009 Rats Isoflurane/pentobarbital Isoflurane inhalation
pentobarbital injection

Isoflurane 2,5 Pentobarbital 2,5 n.a.

Boni et al., 2009 Rats Pentobarbital i.p. injection n.a. 50 Once i.p. then
continuously i.v.

Bramlett et al., 2009 Rats Halothane Inhalation 0,5 to 1 n.a. n.a.

Byun et al., 2009 Mice Ether Inhalation n.r. n.a. n.a.

Caltana et al., 2009 Rats Sevoflurane Inhalation 8 n.a. n.a.

Carcak et al., 2009 Rats Ketamine/xylazine i.p. injection n.a. Ketamine 100
xylazine 10

1

Cemil et al., 2009 Rats n.r. n.a. n.a. n.a. n.a.

Chen et al., 2009 Rats Chloral hydrate i.p. injection n.a. 300 1

Cifani et al., 2009 Rats Tiletamine/zolazepam i.m. injection n.a. Tiletamine 200
zolazepam 200

1

Cunningham et al., 2009 Mice n.r. n.a. n.a. n.a. n.a.

Datta et al., 2009 Rats Pentobarbital i.p. injection n.a. 40 1

Diesch et al., 2009 Rats Halothane Inhalation 2 n.a. n.a.

Diguet et al., 2009 Rats Ketamine/xylazine i.p. injection n.a. Ketamine 75
xylazine 10

1

Ding et al., 2009 Rats Isoflurane Inhalation 2 n.a. n.a.

Doan et al., 2009 Rats Isoflurane Inhalation 1 n.a. n.a.

Doretto et al., 2009 Rats Tribromoethanol i.p. injection n.a. n.r. 1

Dux et al., 2009 Rats Thiopental i.p. injection n.a. 150 n.r.

Echegoyen et al., 2009 Rats n.r. n.a. n.a. n.a. n.a.

Ehrlichman et al., 2009 Mice Isoflurane Inhalation n.r. n.a. n.a.

Etholm and Heggelund,
2009

Mice n.r. n.a. n.a. n.a. n.a.

Farias et al., 2009 Rats Isoflurane Inhalation 3 to 3,5 n.a. n.a.

Foti et al., 2009 Rats Pentobarbital i.p. injection n.a. 50 1

Francois et al., 2009 Rats Isoflurane Inhalation 2 to 5 n.a. n.a.

Francois et al., 2009 Rats Ketamine/xylazine i.p. injection n.a. Ketamine 37
xylazine 5,5

1

Fritsch et al., 2009 Rats Ketamine/medetomidine i.p. injection n.a. Ketamine 60
medetomidine 0,5

1

Good et al., 2009 Rats Ketamine/xylazine/
acepromazine

i.m. injection n.a. Ketamine 50
xylazine 10
acepromazine 1

20% booster of cocktail every
45 min or as needed

Griesbach et al., 2009 Rats Isoflurane Inhalation 2 to 4 n.a. n.a.

Guidine et al., 2009 Rats Halothane Inhalation 2 to 4 n.a. n.a.

Gurevicius et al., 2009 Mice Pentobarbital/chloral
hydrate

i.p. injection n.a. Pentobarbital 50
chloral hydrate 50

1

Hart et al., 2009 Rats Ketamine/xylazine i.p. injection n.a. Ketamine 100
xylazine 20

1

Harvey et al., 2009 Mice n.r. n.a. n.a. n.a. n.a.

Hernandez-Gonzalez et al.,
2009

Rats Pentobarbital i.p. injection n.a. 35 1

(Continued)
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TABLE 9 (Continued)

References Species
used

Type of
anesthesia

Administration
route

Concentration
(Vol. %)

Dosage
(mg/kg)

Administered how
many times in total

Ho et al., 2009 Mice Tribromoethanol i.p. injection n.a. n.r. 1

Holtmaat et al., 2009 Mice Ketamine/xylazine i.p. injection n.a. Ketamine 100
xylazine 10

1

Hrncic et al., 2009 Rats Pentobarbital i.p. injection n.a. 50 1

Huguet et al., 2009 Rats Ketamine/xylazine i.p. injection n.a. Ketamine 110
xylazine n.r.

1

Ishida et al., 2009 Rats Pentobarbital i.p. injection n.a. 35 1

Ito et al., 2009 Mice Pentobarbital i.p. injection n.a. 35 1

Itoh et al., 2009b Rats Pentobarbital i.p. injection n.a. 50 1

Itoh et al., 2009a Rats Pentobarbital i.p. injection n.a. 50 1

Jafri et al., 2009 Rats Ketamine/xylazine i.p. injection n.a. Ketamine 40 to 80
xylazine 5 to 10

1

Kalauzi et al., 2009 Rats Ketamine/xylazine i.p. injection n.a. Ketamine 80
xylazine 5

1

Katz et al., 2009 Rats Isoflurane Inhalation 2 n.a. n.a.

Kim and Ong, 2009 Rats Ketamine/xylazine n.r. n.a. Ketamine n.r.
xylazine n.r.

1

Lackovic et al., 2009 Rats Chloral hydrate i.p. injection n.a. 300 1

Lee et al., 2009 Mice Ketamine/xylazine n.r. n.a. Ketamine 120
xylazine 6

1

Lee and Agoston, 2009 Rats Isoflurane Inhalation n.r. n.a. n.a.

Li et al., 2009 Rats Diethyl
ether/pentobarbital

Diethyl ether
inhalation
pentobarbital injection

Diethyl ether n.r. Pentobarbital 30 n.a.

Liu et al., 2009 Rats Ketamine/xylazine i.p. injection n.a. Ketamine 75
xylazine 10

1

Lopez-Martin et al., 2009 Rats Pentobarbital i.p. injection n.a. 30 1

Lu et al., 2009 Rats Isoflurane Inhalation n.r. n.a. n.a.

Lundblad et al., 2009 Mice Pentobarbital/ketamine i.p. injection n.a. Pentobarbital 50
ketamine 50

1

Magloire and Cattarelli,
2009

Rats Pentobarbital/chloral
hydrate

i.p. injection n.a. Pentobarbital n.r.
chloral hydrate n.r.

1

Mark et al., 2009 Rats Ketamine/xylazine i.p. injection n.a. Ketamine 91
xylazine 9,1

1

McCracken and Grace, 2009 Rats Urethane i.p. injection n.a. 1,5 1

Meeren et al., 2009 Rats Isoflurane Inhalation n.r. n.a. n.a.

Merkler et al., 2009 Mice Urethane/chloralose n.r. n.a. Urethane 1000
chloralose 400

1

Merkler et al., 2009 Rats Isoflurane Inhalation n.r. n.a. n.a.

Mian et al., 2009 Rats n.r. n.a. n.a. n.a. n.a.

Mohammadi et al., 2009 Rats Urethane i.p. injection n.a. 1500 1

Mollazadeh et al., 2009 Rats n.r. n.a. n.a. n.a. n.a.

Mukherjee and Simasko,
2009

Rats Ketamine/xylazine n.r. n.a. Ketamine 87
xylazine 13

1

Nehlig et al., 2009 Rats n.r. n.a. n.a. n.a. n.a.

Nuki et al., 2009 Mice Ketamine/xylazine i.p. injection n.a. Ketamine 100
xylazine 10

1

Onyszchuk et al., 2009 Mice Isoflurane Inhalation 1 to 2,5 n.a. n.a.

Oshima et al., 2009 Mice Pentobarbital i.p. injection n.a. 60 1

(Continued)
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TABLE 9 (Continued)

References Species
used

Type of
anesthesia

Administration
route

Concentration
(Vol. %)

Dosage
(mg/kg)

Administered how
many times in total

Potts et al., 2009 Mice Tribromoethanol n.r. n.a. n.r. 1

Qing et al., 2009 Rats Chloral hydrate i.p. injection n.a. 300 to 350 1

Rahim et al., 2009 Rats Isoflurane Inhalation n.r. n.a. n.a.

Rimoli et al., 2009 Rats Chloral hydrate i.p. injection n.a. 400 1

Roiko et al., 2009 Rats Ketamine/xylazine i.m. injection n.a. Ketamine 75
xylazine 7,5

1

Rudnick et al., 2009 Mice Isoflurane Inhalation n.r. n.a. n.a.

Sahin et al., 2009 Rats Ketamine/
chlorpromazine

i.p. injection n.a. Ketamine 100
chlorpromazine 1

1

Samnick et al., 2009 Rats Ketamine/xylazine i.p. injection n.a. Ketamine 70
xylazine 20

1

Sasaki et al., 2009 Rats Halothane Inhalation 1 to 5 n.a. n.a.

Schei et al., 2009 Rats Isoflurane Inhalation 2,3 to 5 n.a. n.a.

Schmid et al., 2009 Rats Urethane n.r. n.a. 1,5 1

Sekiya et al., 2009 Rats Ketamine/xylazine i.p. injection n.a. Ketamine 100
xylazine 9

1

Sher et al., 2009 Mice Ketamine n.r. n.a. n.r. n.r.

Shultz et al., 2009 Rats Isoflurane Inhalation 2 to 4 n.a. n.a.

Silvani et al., 2009 Mice Isoflurane Inhalation 1 to 2 n.a. n.a.

Sinton et al., 2009 Mice Ketamine/xylazine i.p. injection n.a. Ketamine 25
xylazine 2,5

1

Song and Poon, 2009 Rats Urethane i.p. injection n.a. 1500 1

Takahashi et al., 2009 Rats Hypothermia or
isoflurane

Inhalation n.r. n.a. n.a.

Takahashi et al., 2009 Rats Ketamine/xylazine n.r. n.a. Ketamine 60
xylazine 100

1

Tanida et al., 2009 Rats Pentobarbital i.p. injection n.a. 35 1

Tchekalarova et al., 2009 Rats Ketamine/xylazine i.p. injection n.a. Ketamine 80
xylazine 20

1

Thomas et al., 2009 Rats Halothane Inhalation n.r. n.a. n.a.

Topchiy et al., 2009 Rats Ketamine/xylazine/
isoflurane

Ketamine + xylazine
i.m. injection
isoflurane inhalation

n.r. Ketamine 100
xylazine 10

n.r.

Touzani et al., 2009 Rats Ketamine/xylazine i.p. injection n.a. Ketamine 63
xylazine 9,4

1

Tsanov and
Manahan-Vaughan, 2009

Rats Pentobarbital i.p. injection n.a. 40 1

Wagner et al., 2009 Rats Isoflurane Inhalation 1 to 4 n.a. n.a.

Wan et al., 2009 Rats Pentobarbital i.p. injection n.a. 45 n.r.

Wigren et al., 2009 Rats Diazepam/medetomidine
/ketamine

i.p. injection n.a. Diazepam 2,5
medetomidine 0,4
ketamine 60

1

Worthen et al., 2009 Rats n.r. n.a. n.a. n.a. n.a.

Xue et al., 2009 Mice Ketamine/xylazine n.r. n.a. Ketamine n.r.
xylazine n.r.

n.r.

Yoon et al., 2009 Rats Pentobarbital i.p. injection n.a. 45 1

Young et al., 2009 Rats Ketamine/xylazine i.m. injection n.a. Ketamine 85
xylazine 15

1

(Continued)

Frontiers in Neuroscience 19 frontiersin.org

https://doi.org/10.3389/fnins.2023.1143109
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1143109 April 27, 2023 Time: 13:10 # 20

King et al. 10.3389/fnins.2023.1143109

TABLE 9 (Continued)

References Species
used

Type of
anesthesia

Administration
route

Concentration
(Vol. %)

Dosage
(mg/kg)

Administered how
many times in total

Yu et al., 2009 Rats Urethane i.p. injection n.a. 1750 1

Yurek et al., 2009 Rats n.r. n.a. n.a. n.a. n.a.

Zeng et al., 2009 Rats Isoflurane Inhalation 1 to 2 n.a. n.a.

Aldehri et al., 2019 Rats Isoflurane Inhalation n.r. n.a. n.a.

Asan and Sahin, 2019 Rats Isoflurane/ketamine/
xylazine

Isoflurane inhalation
ketamine + xylazine
i.p. injection

Isoflurane 1 to 5 Ketamine 80
xylazine 12

n.a.

Baud et al., 2019 Rats n.r. n.r. n.r. n.r. n.r.

Bazzu et al., 2019 Mice Isoflurane Inhalation 1 to 3 n.a. n.a.

Bertoglio et al., 2019 Rats Isoflurane Inhalation 2 to 5 n.a. n.a.

Bleimeister et al., 2019 Rats Isoflurane Inhalation 2 to 4 n.a. n.a.

Bukhtiyarova et al., 2019 Mice Isoflurane Inhalation 1 to 2 n.a. n.a.

Burgdorf et al., 2019 Rats Isoflurane Inhalation 2 to 5 n.a. n.a.

Casanova-Carvajal et al.,
2019

Mice n.r. n.a. n.a. n.a. n.a.

Chen G. et al., 2019 Mice Chloral hydrate n.r. n.a. 350 1

Chen and Bi, 2019 Mice Ketamine/xylazine i.p. injection n.a. Ketamine 100
xylazine 10

1

Chen G. et al., 2019 Mice n.r. n.a. n.a. n.a. n.a.

Chen G. et al., 2019 Mice Isoflurane Inhalation 1.5 n.a. n.a.

Chen T. et al., 2019 Rats Pentobarbital i.p. injection n.a. 50 1

Chitturi et al., 2019 Rats Ketamine/xylazine i.p. injection n.a. Ketamine 80
xylazine 10

1

Christiaen et al., 2019 Rats Isoflurane Inhalation 2 to 5 n.a. n.a.

Colangeli et al., 2019 Rats Isoflurane Inhalation 1 to 5 n.a. n.a.

da Silva Pacheco et al., 2019 Rats Ketamine/xylazine/
acepromazine

s.c. injection n.a. Ketamine n.r.
xylazine n.r.
acepromazine n.r.

1

Daglas et al., 2019 Mice Tribromoethanol i.p. injection n.a. 0.5 1

Dal-Pont et al., 2019 Rats Ketamine/xylazine i.m. injection n.a. Ketamine 80
xylazine 10

1

Delaney et al., 2019 Mice n.r. n.a. n.a. n.a. n.a.

Dreier et al., 2019 Rats Thiopental i.p. injection n.a. 100 1

Du et al., 2019 Rats Isoflurane Inhalation 2 n.a. n.a.

Duveau et al., 2019 Rats Isoflurane Inhalation 2 to 2,5 n.a. n.a.

Etter et al., 2019 Mice Isoflurane Inhalation 0.5 to 5 n.a. n.a.

Ewell et al., 2019 Rats Isoflurane Inhalation 2 to 2.5 n.a. n.a.

Farakhor et al., 2019 Rats Ketamine/xylazine n.r. n.a. Ketamine 100
xylazine 10

1

Farooq and Dragoi, 2019 Rats Isoflurane Inhalation 1 to 2 n.a. n.a.

Fiath et al., 2019 Rats Ketamine/xylazine i.m. injection n.a. Ketamine 75
xylazine 10

n.r.

Fortress et al., 2019 Rats Ketamine/xylazine i.p. injection n.a. Ketamine 60
xylazine 7

1

Hu et al., 2019 Mice Chloral hydrate n.r. n.a. n.r. 1

Ilieva et al., 2019 Rats Ketamine/xylazine i.p. injection n.a. Ketamine 80
xylazine 20

1

Jackson et al., 2019 Rats Isoflurane Inhalation 2 to 5 n.a. n.a.

(Continued)

Frontiers in Neuroscience 20 frontiersin.org

https://doi.org/10.3389/fnins.2023.1143109
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1143109 April 27, 2023 Time: 13:10 # 21

King et al. 10.3389/fnins.2023.1143109

TABLE 9 (Continued)
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(Vol. %)

Dosage
(mg/kg)
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Jakkamsetti et al., 2019 Mice Ketamine/xylazine/
acepromazine

i.p. injection n.a. Ketamine 100
xylazine 10
acepromazine 2

n.r.

Jakkamsetti et al., 2019 Mice Isoflurane Inhalation 1 to 2 n.a. n.a.

Jermakowicz et al., 2019 Rats Isoflurane Inhalation 1.2 n.a. n.a.

Kaefer et al., 2019 Rats Isoflurane Inhalation 0.5 to 3 n.a. n.a.

Katagiri et al., 2019 Rats Pentobarbital i.p. injection n.a. 50 1

Kenny et al., 2019 Mice Isoflurane Inhalation 1.5 to 3 n.a. n.a.

Kim and Narayanan, 2019 Mice n.r. n.a. n.a. n.a. n.a.

Kunori and Takashima, 2019 Rats Isoflurane Inhalation 1.25 to 3 n.a. n.a.

Kyyriainen et al., 2019 Mice Pentobarbital i.p. injection n.a. 60 1

Lee et al., 2019 Rats Ketamine/xylazine i.p. injection n.a. Ketamine 7.5 to 8.75
xylazine 3 to 3.5

n.r.

Levata et al., 2019 Mice Ketamine/xylazine i.p. injection n.a. Ketamine 80
xylazine 12

1

Li F. et al., 2019 Rats Isoflurane Inhalation n.r. n.a. n.a.

Li Y. T. et al., 2019 Rats Urethane n.r. n.a. 1200 1

Li Q. et al., 2019 Rats Urethane i.p. injection n.a. n.r. 1

Luo et al., 2019 Mice n.r. n.a. n.a. n.a. n.a.

Lv et al., 2019 Rats Isoflurane Inhalation 2 n.a. n.a.

Ma et al., 2019 Mice Isoflurane Inhalation 2 to 3 n.a. n.a.

Mastrella et al., 2019 Mice Ketamine/xylazine n.r. n.a. Ketamine 100
xylazine 10

1

Mazza et al., 2019 Mice Isoflurane Inhalation n.r. n.a. n.a.

Mittal et al., 2019 Mice Isoflurane Inhalation n.r. n.a. n.a.

Mo et al., 2019 Mice n.r. n.a. n.a. n.a. n.a.

Mohammad et al., 2019 Rats Isoflurane Inhalation 2 to 5 n.a. n.a.

Mohammadipoor-
Ghasemabad et al.,
2019

Rats Ketamine/xylazine i.p. injection n.a. Ketamine 80
xylazine 10

1

Mohammadpoory et al.,
2019

Rats Ketamine/xylazine i.p. injection n.a. Ketamine 60
xylazine 10

1

Moller et al., 2019 Rats Chloral hydrate i.p. injection n.a. 360 1

Murai et al., 2019 Rats Isoflurane Inhalation n.r. n.a. n.a.

Njoku et al., 2019 Rats Isoflurane Inhalation 2 to 4 n.a. n.a.

O’Brien et al., 2019 Mice Isoflurane n.a. n.r. n.a. n.a.

Ogun et al., 2019 Rats Ketamine/xylazine i.m. injection n.a. Ketamine 90
xylazine 10

1

Okada et al., 2019 Rats Medetomidine/
midazolam

i.p. injection n.a. Medetomidine 0.375
midazolam 2

1

Park et al., 2019 Mice Isoflurane Inhalation 1.5 to 3 n.a. n.a.

Pettibone et al., 2019 Rats n.r. n.a. n.a. n.a. n.a.

Pfluger et al., 2019 Rats Isoflurane Inhalation 1.5 to 4 n.a. n.a.

Qiao et al., 2019 Mice n.r. n.a. n.a. n.a. n.a.

Romoli et al., 2019 Mice Tiletamine/zolazepam/
xylazine

n.r. n.a. Tiletamine n.r.
zolazepam n.r.
xylazine n.r.

1
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Russell et al., 2019 Rats Isoflurane Inhalation 2 to 4 n.a. n.a.

Sa et al., 2019 Rats Ketamine/xylazine n.r. n.a. Ketamine n.r.
xylazine n.r.

1

Sharma et al., 2019 Rats Ketamine i.p. injection n.a. 75 1

Shaver et al., 2019 Rats Isoflurane Inhalation 2 to 5 n.a. n.a.

Shiuchi et al., 2019 Mice Ketamine/xylazine i.p. injection n.a. Ketamine 100
xylazine 10

1

Simader et al., 2019 Rats Ketamine/xylazine/
isoflurane

Ketamine + xylazine
i.p. injection
isoflurane inhalation

Isoflurane 1.5 Ketamine 100
xylazine 10

1

Slezia et al., 2019 Mice Ketamine/xylazine i.p. injection n.a. Ketamine 100
xylazine 10

n.r.

Souza et al., 2019 Rats Ketamine/xylazine/
acepromazine

i.m. injection n.a. Ketamine 75
xylazine 5
acepromazine 1

n.r.

Souza et al., 2019 Rats Ketamine/xylazine/
acepromazine

n.r. n.a. Ketamine n.r.
xylazine n.r.
acepromazine n.r.

n.r.

Stanchi et al., 2019 Mice Ketamine/xylazine i.p. injection n.a. Ketamine 100
xylazine 10

n.r.

Stanojlovic et al., 2019 Mice Isoflurane Inhalation 1 to 4 n.a. n.a.

Sun et al., 2019 Mice Isoflurane Inhalation 1,5 to 4 n.a. n.a.

Suzuki et al., 2019 Mice Isoflurane Inhalation 1 to 3 n.a. n.a.

Szonyi et al., 2019 Mice Ketamine/xylazine/
isoflurane

Ketamine + xylazine
i.p. injection
isoflurane inhalation

Isoflurane 2 Ketamine n.r.
xylazine n.r.

n.r.

Szonyi et al., 2019 Mice Ketamine/xylazine/
isoflurane

Ketamine + xylazine
i.p. injection
isoflurane inhalation

Isoflurane 2 Ketamine n.r.
xylazine n.r.

n.r.

Tomov et al., 2019 Rats Isoflurane Inhalation 2 to 4 n.a. n.a.

Villa-Cedillo et al., 2019 Mice Tribromoethanol n.r. n.a. 125 to 150 1

Villasana et al., 2019 Mice Isoflurane Inhalation 2 n.a. n.a.

Wang et al., 2019f Mice Isoflurane Inhalation 3 n.a. n.a.

Wang et al., 2019g Mice Pentobarbital i.p. injection n.a. 100 1

Wang et al., 2019a Mice Isoflurane Inhalation 1.5 n.a. n.a.

Wang et al., 2019h Mice n.r. n.a. n.a. n.a. n.a.

Wang et al., 2019b Rats n.r. n.a. n.a. n.a. n.a.

Wang et al., 2019c Rats Chloral hydrate i.p. injection n.a. n.r. 1

Wang et al., 2019d Rats Isoflurane Inhalation 2 to 5 n.a. n.a.

Wang et al., 2019e Rats Chloral hydrate i.p. injection n.a. 1 1

Wen L. et al., 2019 Mice Ketamine/xylazine i.p. injection n.a. Ketamine 80 to 100
xylazine 10

1

Wen et al., 2019 Rats Ketamine/xylazine/
acepromazine

n.r. n.a. Ketamine 90
xylazine 2.7
acepromazine 0.64

1

Xu et al., 2019 Mice Pentobarbital i.p. injection n.a. 65 1

Yang et al., 2019 Rats Isoflurane Inhalation 2 to 5 n.a. n.a.

Yeung et al., 2019 Mice Ketamine/medetomidine s.c. injection n.a. Ketamine 75
medetomidine 1

1
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Zhang et al., 2019c Mice Pentobarbital n.r. n.a. 50 1

Zhang et al., 2019b Rats Ketamine/xylazine i.p. injection n.a. Ketamine 100
xylazine 10

1

Zhang et al., 2019a Rats Isoflurane Inhalation 2 to 5 n.a. n.a.

Zhao et al., 2019 Rats Pentobarbital n.r. n.a. 35 1

Information on type of anesthesia reported in studies from 2009 (k = 100) and 2019 (k = 100) included in the subset of 200 studies. Year of pub., year of publication; n.r., not reported, parameter
was not reported; n.a., not applicable, extraction of this parameter was not feasible; i.p., intraperitoneal; i.m., intramuscular; numbers in the study ID (e.g., Francois et al., 2009) indicate animal
groups within individual studies.

rats (Moller et al., 2018; Koska et al., 2019; Seiffert et al., 2019; Boldt
et al., 2021; Buchecker et al., 2022). The need for analgesia has been
further supported by Cho et al. (2019), who assessed the efficacy
of meloxicam, carprofen and buprenorphine in comparison with
a control group without analgesia in mice following craniotomy
using the mouse grimace scale (MGS). In that study, all analgesics
and routes of administration led to significant reductions in MGS
scores compared to the control group.

The use of analgesic drugs increased from 2009 to 2019.
There was no evidence for a preference of non-opioid analgesics
versus opioid analgesics. The group of non-opioid analgesics
comprised various drugs including antipyretic analgesics without a
relevant anti-inflammatory effect, such as metamizole/dipyrone or
acetaminophen/paracetamol, as well as NSAIDs such as carprofen,
meloxicam and ketoprofen. While the choice of drugs with an
anti-inflammatory effect can be advantageous in the postsurgical
phase, as the limitation of inflammatory signaling will limit
the activation of nociceptors, the specific risks associated with
craniotomy procedures need to be taken into account. In this
context, it is of interest that the additional use of paracetamol is
also recommended to control post-craniotomy headache in human
patients by different experts (Kotak et al., 2009; Dunn et al.,
2016; Lutman et al., 2018). While NSAIDs are routinely used by
different neurosurgeons, the avoidance of NSAIDs and preference
of antipyretic analgesics might offer advantages concerning the
risk for intracranial hemorrhage (Palmer et al., 1994; Vadivelu
et al., 2016; Lutman et al., 2018). Thus, the use of antipyretic
analgesics might also be justified in the context of craniotomies
in mice and rats despite the lack of anti-inflammatory effects. On
the other hand, the efficacy of the different drugs for different
types of pain should be considered. For instance, it should
be questioned whether metamizole/dipyrone achieves opioid-like
efficacy in animals undergoing craniotomy, as the spasmolytic
effect could contribute to a favorable efficacy profile in laparotomy
procedures but may not reach an analgesic effect in craniotomy-
associated pain as, for example, an opioid would.

The selection of NSAIDs used in studies from 2009 and
2019 was limited to traditional NSAIDs, without reported use of
cyclooxygenase-2 inhibitors, i.e., coxibs. While these increase the
risks for cardio- and cerebrovascular events in human patients
(Kearney et al., 2006; Arfè et al., 2016; Fanelli et al., 2017; Gunter
et al., 2017), coxibs are frequently used in veterinary medicine,
and they might offer advantages for craniotomy procedures in
experimental animals as they are not associated with enhanced
bleeding risk (Lutman et al., 2018). Thus, it would be of particular

future interest to conduct studies directly comparing traditional
NSAIDs with coxibs.

The most common opioid used in mice and rats with
craniotomy was buprenorphine. Other opioids administered were
butorphanol, tramadol, fentanyl and piritramide. In comparison
with buprenorphine, butorphanol and tramadol both have a lower
efficacy. While adverse effects of opioids have limited their use in
human patients with craniotomy (Leslie and Williams, 2005; Ortiz-
Cardona and Bendo, 2007; Dunn et al., 2016; Vadivelu et al., 2016;
Ban et al., 2019), it is nevertheless surprising to see that only one
of the studies reported the use of intrasurgical administration of
fentanyl, and only 14 out of 2234 studies across both years reported
its presurgical administration. Likewise, only a handful of studies
reported the perioperative administration of tramadol, piritramide
and other full µ receptor agonists.

In laboratory rodents, one major issue with opioid use is
nausea, pica behavior, loss of appetite, and weight loss (Tallett et al.,
2009; Sarabia-Estrada et al., 2017). In this respect, slow-release
preparations might be superior to regular formulations (Foley,
2014), which are unfortunately not yet licensed at a global level.

Intraoperative skin infiltration and scalp blockade by injecting
local anesthetics into the skin surrounding the area of incision
or near nerves innervating the operating field are considered as
highly efficacious measures in human patients with craniotomy;
their efficacy has been confirmed in several clinical studies and a
meta-analysis (Guilfoyle et al., 2013; Vallapu et al., 2018). Thus, it is
promising that the number of studies reporting the application of
local anesthesia for intracranial surgery in mice and rats was higher
in 2019 than in 2009. On the other hand, the overall rate of local
anesthesia use still seems to be very low. This is unfortunate, as
local anesthetics can efficaciously block transmission of nociceptive
signals and can therefore prevent sensitization of the nociceptive
system (Haldar et al., 2015; Vadivelu et al., 2016).

In human patients, a relatively new approach to perioperative
analgesia is the administration of gabapentinoids (e.g., gabapentin,
pregabalin) in addition to other opioid or non-opioid analgesics.
These gabapentinoids are antiseizure medications which also exert
antihyperalgesic and antinociceptive effects, and thereby decrease
opioid requirements (Vadivelu et al., 2016; Tsaousi et al., 2017). In
our data set, the administration of gabapentinoids for perioperative
pain-management was not reported. This indicates that the use of
these drugs in rodent models of craniotomy is not yet common
practice.

The timing of the administration of analgesics and local
anesthetics is of particular relevance for efficacy. It is strongly
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recommended to guarantee a continuous limitation of the
activation of the nociceptive system throughout the surgical and
post-surgical phase, to avoid any breakthrough pain and reduce
sensitization processes contributing to hyperalgesia and allodynia
(Joshi and Ogunnaike, 2005; Latremoliere and Woolf, 2009).
Intrasurgical administration of opioids and non-opioid analgesics
was only reported by very few studies (k = 4). It is emphasized
that their administration during surgery can imply the risk that
the nociceptive system has already been activated prior to analgesic
drug exposure if no analgesic management has been applied before
surgery. A preventive application of analgesics or local anesthetics
can inhibit the activation of the nociceptive system, as an analgesic
treatment is started before onset of the first painful stimulus,
which leads to an inhibited nociceptive transmission and thereby
contributes to a reduced central sensitization (Dahl and Kehlet,
2011; Vadivelu et al., 2014).

Multimodal analgesia regimens are strongly recommended
in human and veterinary medicine for several reasons. In line
with this, scientists have also been encouraged to implement the
multimodal analgesia regimen in experimental studies (White and
Kehlet, 2010; Barazanchi et al., 2018; Flecknell, 2018; Foley et al.,
2019). The combination of different analgesics from different drug
classes allows interference with nociceptive signaling at different
levels of the nociceptive system (Kehlet and Dahl, 1993; Corletto,
2007). This renders multimodal approaches more efficacious based
on additive or synergistic effects (Kehlet and Dahl, 1993; Schug,
2006; Girard et al., 2016). In addition, the doses of the different
components of a multimodal regimen can often be reduced, thereby
resulting in an advantageous tolerability profile of multimodal pain
management approaches (White, 2008; Gritsenko et al., 2014; Rafiq
et al., 2014; Foley et al., 2019). The advantage of the minimization
of opioid doses by multimodal regimens has also been specifically
discussed for craniotomy procedures in humans (Ban et al., 2019).
Thus, it seems unfortunate that this has not yet been widely
implemented for intracranial surgery in mice and rats. However,
it is encouraging to see that there is an increase from 2009 to 2019
in using more than one analgesic drug.

Careful monitoring of vital functions during surgery,
perioperative care comprising maintenance of body temperature
and application of eye ointment, as well as non-pharmacological
measures to control pain, can improve surgical outcomes and
recovery, and can limit distress and pain (Schuler et al., 2009).
However, the detailed assessment of a random sample of studies
from 2009 and 2019 confirmed a low reporting rate for these
adjunctive measures.

The design of an optimal analgesic regimen needs to go
hand in hand with the selection of the anesthetic drugs. The
comparison between data from 2009 and 2019 revealed an increase
in the use of inhalational anesthesia, with isoflurane being the
most commonly used anesthetic. Inhalational anesthesia offers
several advantages compared to systemic anesthesia, including
excellent controllability associated with good tolerability and low
anesthesia risks (Hildebrandt et al., 2008; Lerman and Jöhr,
2009; Jedlicka et al., 2021). Unfortunately, the commonly used
vaporous inhalation anesthetics do not exert relevant analgesic
effects themselves. While this is not of immediate relevance during
surgery, when the animals have lost consciousness and are in a
tolerance state, the lack of antinociceptive impact raises the chance

of sensitization, which can result in increased severity of post-
surgical pain (Latremoliere and Woolf, 2009). While the same
considerations apply for pentobarbital, which has still been used
in some studies in 2009 and 2019, any combination comprising
ketamine and an alpha2-sympathomimetic (such as xylazine or
medetomidine) might benefit from the analgesic effects of the
two drugs. On the other hand, these systemic combinations have
clear disadvantages regarding controllability and anesthesia risks in
comparison with inhalation anesthesia.

The selection of an appropriate anesthesia and analgesia
regimen also needs to take the type of surgery into account.
A different level of invasiveness, as well as the specific
characteristics of the intervention, might result in different
levels and types of post-surgical pain. For example, surgical
procedures in the context of traumatic brain injury and ischemic
or hemorrhagic stroke may put the animals at risk for higher
levels of pain related to increases in intracranial pressure. Our data
sets did not show a clear relationship between pain management
approaches and interventions. However, a conclusive focused
analysis would require a larger sample of studies.

Our work included an assessment of a small subset of
parameters associated with study quality and the risk of bias. In line
with various previous studies (Haahr and Hróbjartsson, 2006; Moja
et al., 2014; Barcot et al., 2019), in our sample the risk of bias seemed
to be poorly controlled, with basic principles such as blinding and
randomization only reported for a small number of studies. While
this is not directly relevant to our description of anesthetic and
analgesic procedures, it raises concerns because there is evidence
that the lack of randomization and blinding can result in inflated
effect sizes (McCann et al., 2014; Saltaji et al., 2018).

As we extracted data from literature, our results are limited by
the incomplete reporting by the original authors; their descriptions
of the experimental methods could lack details. Thus, additional
anesthetic and analgesic drugs may have been used compared to
our findings. In spite of the introduction of the ARRIVE guidelines
(Animal Research: Reporting of In Vivo Experiments), reporting
of experimental details for primary studies is often far from
complete. With our results, we cannot distinguish underreporting
from undertreatment. Moreover, the preference for male animals is
still evident in our sample of studies from 2019. Thus, the majority
of the here included studies seem to ignore the National Institutes
of Health recommendations from 2014 to perform studies in both
sexes, as long as both are relevant for the research question (Clayton
and Collins, 2014). While there is a lag between performing
and publishing studies, and while recommendations cannot be
applied retrospectively, we would still have expected to see some
improvement in 2019. Lastly, it must be noted that we performed a
scoping review; not a full systematic review. In line with the scoping
approach, we only searched a single database; PubMed, and did
not aim to include all relevant literature. It is likely that studies
not indexed in PubMed were not retrieved by our search, but as
PubMed is one of the largest medical databases, we do not expect
our sample to be biased.

In conclusion, analysis of studies with craniotomy in mice
and rats published in 2009 and 2019 revealed a slight increase
in the reporting of perioperative administration of analgesics
and local anesthetics. However, the high number of studies
without any description of efforts to control pain suggests that
inadequate analgesia is a persistent issue in the context of
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intracranial surgery in laboratory rodents. The persistently rare
reporting of multimodal approaches, local anesthetic procedures,
and adjunctive care measures, underscores the need for an
intensified training and education of those working with animals
subjected to craniotomies in the adequate application and reporting
of anesthesia and analgesia.
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