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Objectives: The purpose of this study was to evaluate whether preoperative

radiomics features could meliorate risk stratification for the overall survival (OS)

of non-small cell lung cancer (NSCLC) patients.

Methods: After rigorous screening, the 208 NSCLC patients without any pre-

operative adjuvant therapy were eventually enrolled. We segmented the 3D

volume of interest (VOI) based on malignant lesion of computed tomography

(CT) imaging and extracted 1542 radiomics features. Interclass correlation

coefficients (ICC) and LASSO Cox regression analysis were utilized to perform

feature selection and radiomics model building. In the model evaluation phase,

we carried out stratified analysis, receiver operating characteristic (ROC) curve,

concordance index (C-index), and decision curve analysis (DCA). In addition,

integrating the clinicopathological trait and radiomics score, we developed a

nomogram to predict the OS at 1 year, 2 years, and 3 years, respectively.

Results: Six radiomics features, including gradient_glcm_InverseVariance,

logarithm_firstorder_Median, logarithm_firstorder_RobustMeanAbsoluteDeviation,

square_gldm_LargeDependenceEmphasis, wavelet_HLL_firstorder_Kurtosis, and

wavelet_LLL_firstorder_Maximum, were selected to construct the radiomics

signature, whose areas under the curve (AUCs) for 3-year prediction reached

0.857 in the training set (n=146) and 0.871 in the testing set (n=62). The results of

multivariate analysis revealed that the radiomics score, radiological sign, and N stage

were independent prognostic factors in NSCLC. Moreover, compared with clinical

factors and the separate radiomics model, the established nomogram exhibited a

better performance in predicting 3-year OS.

Conclusions: Our radiomics model may provide a promising non-invasive

approach for preoperative risk stratification and personalized postoperative

surveillance for resectable NSCLC patients.
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Introduction

Non-small cell lung cancer (NSCLC), the most essential subtype

of lung cancer, represents a prevalent malignant tumor with an

unsatisfactory prognosis (1). In recent years, an expanding

availabilities of targeted therapy and immune checkpoint inhibitors

(ICIs), has been approved for lung cancer and improved the long-

term prognosis of NSCLC patients. However, due to the secondary

mutations and low response rate to ICIs, only a limited number of

patients can benefit from those therapeutic approaches (2, 3). Thus,

precision diagnose and comprehensive prognostic evaluation are

essential steps when dealing with resectable NSCLC patients, in

order to select the most appropriate treatment. The tumor node

metastasis (TNM) staging system is still a classic evaluation approach

which can assist in adjuvant therapy choices and predict the outcome

of NSCLC (4). Nonetheless, patients with the same TNM stage

typically manifest different clinical outcomes, which is largely

attributed to tumor heterogeneity and anatomical factors (5). With

the advent of multi-omics, evaluation of prognostic features based on

multidisciplinary methods make personalized medicine possible.

Medical imaging has been long regarded as standard procedure

for early screening, treatment decision-making, and postoperative

surveillance of cancer patients. Computed tomography (CT)

imaging, commonly stored in the form of Digital Imaging and

Communications in Medicine (DICOM), can be conveniently

obtained and utilized for quantitative assessment. Over the last

decade, radiomics has emerged as a hot research field that provides

massive high-dimensional feature space derived from raw imaging

data by automatically high-throughput algorithm (6). There is

growing evidence that quantitative parameters and features mined

from functional and morphological images offer a new perspective

for tumor phenotypes and microenvironment, which also have a

significant complementary interrelation with other omics

approaches such as genomics, hematology, and proteomics (7–9).

Radiomics analyses based on intratumoral and peritumoral regions

have been extensively used for exploring underlying biological

process, predicting pathological characteristics, evaluating the

drug treatment response, and assisting therapeutic decision-

making in several human carcinomas (10–14).

As a novelly emerging tool, radiomics provides a new direction

of exploring intratumor heterogeneity and predictive markers using

a noninvasive evaluation in lung cancer. Using three machine-

learning (ML) classifiers derived from radiomics, Liu et al.

estimated the benefit from Nivolumab treatment and progression

probability in patients with stage IIIB/IV NSCLC (15). In terms of

histological subtypes, an automatic deep-learning radiomics model

showed satisfactory performance to distinguish lung squamous cell

carcinoma (LUSC), lung adenocarcinoma (LUAD), and small cell

lung cancer (SCLC) on CT images (16). However, there are limited

studies investigating the contingent value of radiomics in improving

prognosis stratification of resectable NSCLC patients.

Accordingly, the current study aimed to analyze the association

of radiomics features with 3-year overall survival (OS) in enrolled

patient cohort. Furthermore, the integration of radiomics model

and clinicopathological traits was conducted to establish a

comprehensive nomogram, which strengthen the prediction
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ability and may provide assistance in improving follow-up plans

and individualized treatment in clinical practice.
Materials and methods

Patient data and study design

This study was approved by the Ethics and Scientific

Committees of the Second Affiliated Hospital of Harbin Medical

University (Approval Number: KY2022-144), due to the

retrospective nature of this study, written informed consent for

CT images was waived. The study design is illustrated in Figure 1.

493 consecutive NSCLC patients who underwent radical surgery

(segmental resection, wedge resection, and lobectomy) at our institute

from March 2015 to May 2019 were preliminarily included. All

patients fulfilled the following inclusion criteria: (1) CT performed

within 2 weeks before surgery; (2) Available CT images stored in

DICOM format; and (3) Primary NSCLC confirmed by

histopathology. The subsequent patient selection and exclusion

criteria were visualized in Figure 1A. Consequently, we finally

recruited 208 consecutive patients, including 167 cases with LUAD,

35 cases with LUSC, 3 cases with large cell carcinoma (LCC), 2 cases

with adenosquamous carcinoma (ASC), and 1 case with carcinoid.

According to the random allocation scheme and a ratio of 7:3, all

patients were separated into two individual cohorts: 146 for training

and 62 for testing. Patient grouping and corresponding

clinicopathological traits are recapitulated in Table 1.
Follow-up

After radical surgery, all enrolled subjects were followed up by

outpatient review or telephone every 3 months for the first year and

every 6 months thereafter. We applied 3-year OS as the primary

study endpoint, which is construed as the time between the

operation and the date of all-cause death.
CT image acquisition and pre-processing

Helical CT images of all enrolled subjects were acquired by 64-channel

CT (Discovery 750,GEHealthcare,Milwaukee, USA) and 256-channel CT

(Revolution CT, GE Healthcare, Waukesha, WI, USA). Detailed scanning

parameters were as follows: tube voltage, 120 kV; tube current, 100-250

mAs; slice thickness, 0.625-5 mm; field of view (FOV), 350-400mm; 512 x

512 matrix; and reconstructed slice thickness, 0.625-3mm. Filtered back

projection (FBP) and adaptive statistical iterative reconstruction (ASIR)

level 40% were utilized to reconstruct all enrolled CT images. A standard

kernel was also used in the reconstruction procedure.

Due to the potential differences in specifications caused by distinct

reconstruction slice thickness and voxel spacing, we performed image

pre-processing before radiomics feature extracting. Specifically, we

chose to resample the raw data to a standard voxel spacing of 1x1x1

mm3 by near interpolation algorithm (17). Moreover, we adopted 25

HU as the fixed bin width to perform gray level discretization (18).
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Tumor segmentation and radiomics
feature extraction

CT images stored in DICOM format were loaded to 3D slicer

(Version 4.1.1) software to perform tumor segmentation. As an

open source platform, 3D slicer software has superiority in image

interactive segmentation and medical raw data processing (19). A

thoracic surgeon with 5 years of experience first manually

delineated all lesions slice by slice in the lung window of CT

images, the volumes of interest (VOIs) were then inspected and

revised by an experienced radiologist. They were blinded to the

clinical outcome and medical records of enrolled patients, in

parallel, intratumoral or tumor-adjacent vessels, bronchi, and air

spaces were carefully avoided during delineation of the tumor

volume. To improve the reproducibility of radiomics features, the

VOIs of 50 randomly selected CT images were repetitively

delineated by another experienced thoracic surgeon, which were

used for subsequent interclass correlation coefficient (ICC) analysis.

In our study, 1542 radiomics features were extracted from each

manually-defined VOI using “pyradiomics” python package,

the detailed definitions of which are congruity with Imaging

Biomarker Standardization Initiative (IBSI). The extracted radiomics

features can be assigned to the following categories: (1) Gray level
Frontiers in Oncology 03
dependence matrix-based features (GLDM); (2) neighboring gray tone

difference matrix-based features (NGTDM); (3) gray level co-

occurrence matrix-based features (GLCM); (4) gray level run-length

matrix-based features (GLRLM); (5) gray level size zone matrix-based

features (GLSZM); (6) first-order statistics features; (7) shape-based

features, and (8) transformed features: features extracted from images

pre-processed with several built-in filters including laplacian of

gaussian (LoG), wavelet, logarithm, square, square root, and

gradient. Detailed mathematic definitions and feature explanations

can be acquired from the previous literature (20, 21).
Feature selection and radiomics
model construction

To assess the consistency and robustness of extracted radiomics

features between the two thoracic surgeons, we calculated the

interclass correlation coefficient (ICC) value for each radiomics

feature. The radiomics features with ICC values > 0.75 were retained

for deeper analysis. Next, we performed data pre-processing using

Z-score transformation by “caret” R package. Least absolute

shrinkage and selection operator (LASSO) Cox regression analysis

were utilized for further feature selection and model construction.
A

B

FIGURE 1

The flowchart of this study. (A) Patient selection and exclusion criteria of this work. (B) Tumor segmentation, radiomics feature extraction, feature
selection, and radiomics model construction.
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In the training set, LASSO with ten-fold cross-validation effectively

avoided over-fitting and identified optimal features with nonzero

coefficients by applying a constraint on the model hyperparameter

(l). Finally, we obtained a linear combination of optimal radiomics

features weighted with the regression coefficients during multiple

computing. All the selected features for model construction are

detailed in Table 2.
Frontiers in Oncology 04
Radiomics model validation and evaluation

The prognostic efficacy of radiomics model established in the

training set was subsequently verified in the testing set and the total

enrolled subjects. Patients in these three sets were respectively

dichotomized into low- and high-risk groups based on the

median radiomics score threshold. To appraise diversities in the
TABLE 1 Patient grouping and corresponding clinicopathological traits.

Covariates Training set
(n=146)

Testing set
(n=62)

Total set
(n=208)

P-value

Age, no (%) ≤ 65 99(67.81) 48(77.42) 147(70.67) 0.220

> 65 47(32.19) 14(22.58) 61(29.33)

Gender, no (%) Female 77(52.74) 35(56.45) 112(53.85) 0.735

Male 69(47.26) 27(43.55) 96(46.15)

Smoking history, no (%) No 89(60.96) 41(66.13) 130(62.50) 0.584

Yes 57(39.04) 21(33.87) 78(37.50)

T stage, no (%) T1-2 131(89.73) 56(90.32) 187(89.90) 1.000

T3-4 15(10.27) 6(9.68) 21(10.10)

N stage, no (%) N0 115(78.77) 48(77.42) 163(78.37) 0.975

N1-2 31(21.23) 14(22.58) 45(21.63)

Pathologic TNM stage, no (%) Stage I 101(69.18) 46(74.19) 147(70.67) 0.754

Stage II 21(14.38) 7(11.29) 28(13.46)

Stage III 24(16.44) 9(14.52) 33(15.87)

Lateral location, no (%) Left 60(41.10) 30(48.39) 90(43.27) 0.413

Right 86(58.90) 32(51.61) 118(56.73)

Lobe location, no (%) Mid-lower 65(44.52) 32(51.61) 97(46.63) 0.432

Upper 81(55.48) 30(48.39) 111(53.37)

Location classification, no (%) Central 29(19.86) 7(11.29) 36(17.31) 0.196

Peripheral 117(80.14) 55(88.71) 172(82.69)

Max diameter, no (%) ≤3cm 112(76.71) 49(79.03) 161(77.40) 0.854

>3cm 34(23.29) 13(20.97) 47(22.60)

Pathological type, no (%) LUAD 112(76.71) 55(88.71) 167(80.29) 0.138

LUSC 29(19.86) 6(9.68) 35(16.83)

Other 5(3.42) 1(1.61) 6(2.88)

Histological grade, no (%) Well 24(16.44) 8(12.9) 32(15.38) 0.644

Moderate 44(30.14) 15(24.19) 59(28.37)

Poor 50(34.25) 26(41.94) 76(36.54)

Unknown 28(19.18) 13(20.97) 41(19.71)

Radiological sign, no (%) Cavitary appearance 30(20.55) 21(33.87) 51(24.52) 0.091

Part-solid appearance 40(27.4) 12(19.35) 52(25)

Pure ground-glass appearance 16(10.96) 10(16.13) 26(12.5)

Pure solid appearance 60(41.1) 19(30.65) 79(37.98)
fron
LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma.
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overall survival between two cohorts with different radiomics score,

R packages survival and survMiner were used to perform Kaplan-

Meier survival analysis. We utilized receiver operating characteristic

(ROC) curve analysis and calculated the area under the curve

(AUC) to access the sensitivity and specificity of the prognostic

model. The R packages survminer, survival, and timeROC were

employed to enable this process. Moreover, Harrell’s concordance

index (C-index) was applied to estimate the predictive accuracy of

the signature. AUC and C-index both ranges from 0.5 (poor

predictive performance) to 1 (perfect predictive performance).

A nomogram comprising of radiomics score and clinicopathological

parameters (age, gender, smoking history, pathological type, lobe

location, location classification, lateral location, max diameter, T stage,

N stage, and TNM stage) was set up to predict the 1-, 2-, and 3-year OS

of resectable NSCLC patients. Correction curve analysis, ROC curve

analysis, and C-index were applied to evaluate the predictive

performance of the nomogram. In addition, we performed decision

curve analysis (DCA) to compare the clinical benefit of the classical

TNM stage, established radiomics model, and the nomogram by

quantifying the net benefits (22).
Statistical analyses

All statistical analyses were carried out by R software (version

4.1.2) and Python software (version 3.4.3). The statistically

significant threshold was set to p value < 0.05 (*p < 0.05, **p <

0.01, ***p < 0.001).
Results

Construction of the radiomics model

All enrolled 208 subjects were randomly divided into training set

(n=146) and testing set (n=62) with a ratio of 7:3, and there was no

statistical difference in terms of clinical features (Table 1). The training

set was applied to create the prognostic radiomics model, we then used

the testing set and the total set to validate the constructed model.

According to the 1542 radiomics features extracted by two

experienced thoracic surgeons, The ICC analysis indicated good

consistency in 1178 (76.39%) radiomics features, moderate

consistency in 266 (17.25%) radiomics features, and poor consistency
Frontiers in Oncology 05
in 98 (6.36%) radiomics features. We ultimately included the 1178

most stable features in the subsequent model construction. LASSO Cox

regression analysis is widely used in multiple regression analysis,

which not only optimize the selection of characteristics with a

deficient correlation and prominent predicted value from high-

dimensional data, but also improve the forecast accuracy. We

performed tenfold cross-validation to select the minimal penalty

term (l) (Figures 2A, B).
Afterwards, we established a prognostic radiomicsmodel implicating

six selected features for resectable NSCLC patients. The formula was

constructed as follows: Radiomics score = 0.068 × gradient_glcm_

InverseVariance + 0.096 × logarithm_firstorder_Median + 0.181 ×

logarithm_firstorder_RobustMeanAbsoluteDeviation + 0.375 ×

square_gldm_LargeDependenceEmphasis + 0.016 × wavelet_HLL_

firstorder_Kurtosis + 0.269 × wavelet_LLL_firstorder_Maximum.
Survival analyses in the training set, testing
set, and the entire NSCLC set

We first dichotomize 146 NSCLC patients of training set into

low- and high-risk groups based on the median radiomics score.

Kaplan-Meier analysis showed significantly distinct prognoses

between the two risk groups (Figure 2C). In addition, the

distributions of the radiomics score, survival time, and survival

status of each NSCLC patient in the training set were shown in

Figure 2D. To further verify the prognostic performance of the

constructed radiomics model, we acquired the radiomics score of

each NSCLC patient in the testing set and the total NSCLC set using

the radiomics score formula. Employing similar segmentation

method, we divided the testing set and the total NSCLC set into

subgroups with different risk level. The Kaplan-Meier analysis

demonstrated that the patients in the high-risk group had

significantly poorer outcome (Figures 2F, 3A). The distribution

patterns of the radiomics score, survival time, and survival status of

both sets were illustrated in Figures 2G, 3B.
Performance evaluation of the
radiomics model

ROC curve analysis indicated that the AUC of established

radiomics model reached 0.857 and 0.871 at 3 years in the
TABLE 2 Six selected radiomics features.

Selected radiomics feature Radiomics group Filter associated Regression coefficient

R1 InverseVariance GLCM gradient 0.068

R2 Median First order logarithm 0.096

R3 RobustMeanAbsoluteDeviation First order logarithm 0.181

R4 LargeDependenceEmphasis GLDM square 0.375

R5 Kurtosis First order wavelet_HLL 0.016

R6 Maximum First order wavelet_LLL 0.269
GLCM, gray level co-occurrence matrix; GLDM, Gray level dependence matrix.
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training set and the testing set (Figures 2E, H). Notably, the AUC of

our model in total NSCLC set reached 0.792, 0.839, and 0.861 at 1

year, 2 years, and 3 years, respectively (Figure 3C). When compared

with other clinicopathological variables in terms of ROC analysis,

the radiomics model still had an advantage in evaluating precision

and sensitivity (Figure 3D). Furthermore, The C-index curve

showed promising predictive accuracy of the radiomics model

from another dimension (Figure 3E).

To assess the independent prognostic value of the radiomics

model, we incorporated age, gender, smoking history, pathological

type, lobe location, location classification, lateral location, max

diameter, T stage, N stage, TNM stage, radiological sign, and

radiomics score into the univariate and multivariate Cox
Frontiers in Oncology 06
regression analyses. The results suggested that the established

radiomics model, N stage, and radiological sign could act as

independent predictors for overall survival in resectable NSCLC

patients (Figure 4, p < 0.001, p < 0.05, and p < 0.05).

To examine the applicability of our radiomics model in

subgroups stratified by different clinicopathological traits, the

total 208 NSCLC subjects were dichotomized into disparate

subgroups by age, gender, smoking history, histological grade,

lobe location, location classification, lateral location, max

diameter, T stage, N stage, TNM stage, and radiological sign. In

the overwhelming majority of subgroups, our radiomics model

could accurately distinguish those high-risk patients with worse

outcome (Figure 5 and Supplementary Figure S1).
D

A B

E

F G H

C

FIGURE 2

Construction of the prognostic radiomics model. (A) Selection of the tuning parameter (log l) based on minimum criteria in the LASSO analysis.
(B) LASSO coefficient profiles. (C, F) Kaplan-Meier analysis in the training set and the testing set. (D, G) The distribution patterns of radiomics score,
survival time, and survival status of NSCLC patients in the training set and the testing set. (E, H) ROC curves of the radiomics model at 3 years in the
training set and the testing set.
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Correlation between constructed
radiomics model and clinicopathological
features

We next performed correlation analysis to dig deeper

connections between radiomics score and the clinicopathological

traits obtained from the electronic medical record. The results

revealed that higher radiomics score with worse survival was

significantly associated with age > 65 (p < 0.05), male (p < 0.001),

smoking history (p < 0.001), T2-4 (p < 0.001), N1-2 (p < 0.001),

TNM stage II-III (p < 0.001), max diameter > 3cm (p < 0.001), poor

differentiation grade (p < 0.001), central-type NSCLC (p < 0.001),

LUSC and other pathological types (p < 0.01), middle and lower

lobes (p < 0.01), and pure solid appearance (p < 0.001), which is

similar to previous experiences acquired from clinical practice and

may provide additional clues to clinical management of NSCLC

(Figure 6A and Supplementary Figure S2).
Development and assessment of the
prognostic nomogram

In order to furnish a comprehensive prognostic tool to predict

the survivability of resectable NSCLC patients at 1, 2, and 3 years,

we constructed a nomogram integrating the radiomics model and

clinicopathological parameters (Figure 6B). In terms of predicting

OS at 1 year, 2 years, and 3 years, calibration plot displayed that

there is a decent consistency between the prediction curve and the
Frontiers in Oncology 07
ideal curve (Figure 7A). The AUC values of the prognostic

nomogram were 0.863, 0.870, and 0.898 at 1-, 2−, and 3−year,

respectively, which exhibited better performance than radiomics

model and other clinicopathological parameters (Figures 7B, C).

Moreover, the C-index values of the comprehensive nomogram and

established radiomics model reached 0.854 and 0.814 at 3 years,

respectively. Clinical utility is commonly utilized to measure the

practical clinical value of prognostic models. Subsequent DCA

curves revealed that the appropriate combination of radiomics

model and the comprehensive nomogram may bring significantly

more benefit than TNM staging system in clinical work (Figure 7D).
Discussion

In this retrospective study, we explored the potential value of

radiomics features in predicting 3-year OS for resectable NSCLC

patients varied from pathologic stage IA to stage IIIA. The established

radiomics model exhibited good prediction accuracy with an AUC of

0.857 in the training set (n = 146) and an AUC of 0.871 in the testing

set (n = 62). The stratified analysis indicated that our radiomics

model could distinguish those patients with worse prognosis in the

vast majority of subgroups. Subsequently, a comprehensive

nomogram incorporating radiomics model and clinical parameters

further enhanced the prognostic performance of the single radiomics

model with an AUC of 0.898. Thus, this radiomics classifier could be

an advantageous noninvasive biomarker in the whole-course clinical

management of resectable NSCLC patients.
D

A B

E

C

FIGURE 3

Performance evaluation of the radiomics model. (A) Kaplan-Meier analysis in entire NSCLC set. (B) The distribution patterns of radiomics score,
survival time, and survival status of NSCLC patients in entire NSCLC set. (C) ROC analysis of the radiomics model in entire NSCLC set at 1 year, 2
years, and 3 years, respectively. (D, E) ROC and C-index curves comparing the radiomics model and other clinical characteristics.
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FIGURE 5

Stratification analyses of the radiomics model in different subgroups stratified by age (A, B), gender (C, D), smoking history (E, F), T stage (G, H), N
stage (I, J), and pathological TNM stage (K, L).
A

B

FIGURE 4

The univariate (A) and multivariate (B) Cox regression analyses of radiomics score and other clinical traits.
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The generic workflow of NSCLC biomarkers comprises various

prognostic models reliant on clinical elements including lserum

tumor markers, specific gene expression, next-generation

sequencing, and circulating tumor DNA (ctDNA) (23–25). For

instance, lu et al. constructed the tumor mutation index (TMI)

model based on ctDNA sequencing to predict OS and recognize

NSCLC patients who may respond well to monotherapy with

atezolizumab or docetaxel (26). To improve NSCLC treatment in

terms of chemotherapy and immunotherapy, Guo et al. developed a

7-gene predictive signature using qRT-PCR assays based on 337

snap-frozen NSCLC tissues. Patients receiving adjuvant

chemotherapy were precisely identified with significantly better

disease-specific survival in the predicted benefit group via the

multi-gene prognostic signature (27). However, the few available

predictive models based on quantitative gene expression levels in
Frontiers in Oncology 09
the clinical practice have usual limitations such as invasive

procedures, time-consuming, cost-effectiveness, and some degree

of interference to clinical workflow.

In contrast, radiomics have exhibited a bright prospect for

prognosis, diagnosis, and treatment response prediction, as well

as long-term health surveillance of NSCLC treatment in a non-

invasive modality. Several studies focused on exploring potential

combined signature based on radiomics features for NSCLC

patients at specific pathologic stage. Huang et al. extracted 132

texture features from CT images of early stage NSCLC (stage I or II)

and obtained a better performance for disease-free survival (DFS)

prediction (C-index = 0.72) when incorporating the radiomics

signature into a comprehensive nomogram (28). Xie et al.

enrolled 554 candidates with resected stage I LUAD from three

multicenter cohorts and further recognized potential subjects who
A

B

FIGURE 6

Correlation analyses (A) between radiomics score and clinicopathological features. A comprehensive nomogram (B) integrating the radiomics model
and clinicopathological parameters to predict the 1-, 2-, and 3-year OS of resectable NSCLC patients.
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may benefit from adjuvant chemotherapy (29). Moreover, a number

of studies mined high-dimensional clues from functional and

metabolic images of 18F-FDG-PET/CT, aiming to improve clinical

decision of epidermal growth factor receptor (EGFR) tyrosine

kinase inhibitors (TKIs) or immune checkpoint inhibitors (ICIs)

treatments for specific NSCLC patient populations (30–34). In this

study, we restricted the entrance criteria to preoperative CT scans,

since CT scans serve as the major approaches for lung cancer

screening and whole-course monitoring in a real-world clinical

environment, especially in relatively early stages of NSCLC.

Six screened radiomics features used in our prediction model

consisted of four first-order-based features (Maximum, Median,

Kurtosis, and RobustMeanAbsoluteDeviation), one GLDM-based

feature (LargeDependenceEmphasis), and one GLCM-based feature

(InverseVariance), which were extracted from CT images pre-

processed with built-in fi lters including wavelet_HLL,

wavelet_LLL, logarithm, square, and gradient. First-order statistics

features are generally acquired by measuring the gray values of

region of interest (ROI) cropping, which reflects the intratumoral

distribution of grayscale intensity (20). Previous literature indicated

that two First-order statistics features may serve as radiomics

predictors for identifying invasive phenotype of solitary

pulmonary nodule (35). Moreover, GLDM-based features

manifest the intrinsic grayscale associations of central voxel with

neighboring voxels, which may be a reflection of heterogeneity and

homogeneity of tumors. Padmakumari et al. demonstrated that
Frontiers in Oncology 10
LargeDependenceEmphasis, a radiomics feature from GLDM, can

exhibit robust performance in discriminating lung cancer from

tuberculosis with an AUC of 0.92 (36). GLCM describes the

integrated information about spatial correlation characteristics of

pixel pairs in terms of the pattern of grayscale arrangement,

direction, distance, and gray value (37). Notably, textural features

derived from GLCM have been demonstrated to have pathological

association and can be applied to the diagnosis of malignant lesion

in breast cancer (38). Granata et al. identified Correlation from

GLCM as a reliable predictor for recognizing tumor recurrence in

colorectal liver metastases patients (39).

In our study, we identified the established radiomics model, N

stage, and radiological sign as independent predicting indicators for

OS in in resectable NSCLC patients. Indeed, several studies have

confirmed the accuracy and reliability of radiomics signature in

predicting prognosis in NSCLC (40–42). Yang et al. incorporated

the radiomics signatures and four clinicopathological features (N

stage, T stage, age, and sex) to construct a comprehensive

nomogram for survival prediction in NSCLC patients at stage I/II,

the performance of which was measured by a C-index of 0.710 (41).

The radiomics model and corresponding nomogram in this study

showed more satisfactory performance with C-index values of 0.814

and 0.854, respectively. Subsequent DCA and calibration analyses

further supported their clinical utility. In the current clinical

practice, adjuvant chemotherapy after surgery is not

recommended for patients with pathologic stage IA and there is a
D

A B

C

FIGURE 7

Assessment of the prognostic nomogram. (A, B) calibration curve and ROC analyses of the established nomogram at 1 year, 2 years, and 3 years,
respectively. (C) Comparison of the comprehensive nomogram, radiomics model, and other clinical characteristics by ROC curves. (D) DCA curves
of the nomogram, radiomics model, and pathological TNM stage.
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controversial debate regarding its potential benefit for stage IB (43).

In the model evaluation section, our radiomics model seemed to be

more robust than traditional TNM staging system. In stratified

analyses, the established radiomics model could dichotomize

participants with pathologic stage I into high- and low-risk

groups by Kaplan-Meier method, which would be helpful to

performed personalized treatment interventions on these high-

risk patients with worse prognosis.

Some limitations of this study have to be acknowledged. First,

due to the relatively small sample size from single center and the

retrospective nature, potential selection bias may obstruct the

robustness and generalizability of our radiomics model.

Therefore, it is necessary to recruit more subjects and perform

multicentric external verification in future research. Second, the 3-

year follow-up period of included subjects was relatively short, we

will conduct the remaining follow-up until 5 years in the next work.

Third, we delineated all lesions manually, which was laborious and

time-consuming. Automatic delineation based on deep learning

method is worth further study to improve the workflow of

radiomics in busy clinical practice.

In summary, the current study proposed a novel non-invasive

approach based on preoperative CT scans that can predict OS in

patients with NSCLC after radical surgery, which may provide clues

to help clinicians improve clinical decisions and guide personalized

treatment. However, further external validation is warranted before

its widespread application in clinical practice.
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