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Modern agriculture is primarily focused on the massive production of cereals 
and other food-based crops in a sustainable manner in order to fulfill the food 
demands of an ever-increasing global population. However, intensive agricultural 
practices, rampant use of agrochemicals, and other environmental factors result 
in soil fertility degradation, environmental pollution, disruption of soil biodiversity, 
pest resistance, and a decline in crop yields. Thus, experts are shifting their 
focus to other eco-friendly and safer methods of fertilization in order to ensure 
agricultural sustainability. Indeed, the importance of plant growth-promoting 
microorganisms, also determined as “plant probiotics (PPs),” has gained 
widespread recognition, and their usage as biofertilizers is being actively promoted 
as a means of mitigating the harmful effects of agrochemicals. As bio-elicitors, 
PPs promote plant growth and colonize soil or plant tissues when administered in 
soil, seeds, or plant surface and are used as an alternative means to avoid heavy 
use of agrochemicals. In the past few years, the use of nanotechnology has also 
brought a revolution in agriculture due to the application of various nanomaterials 
(NMs) or nano-based fertilizers to increase crop productivity. Given the beneficial 
properties of PPs and NMs, these two can be used in tandem to maximize benefits. 
However, the use of combinations of NMs and PPs, or their synergistic use, is in its 
infancy but has exhibited better crop-modulating effects in terms of improvement 
in crop productivity, mitigation of environmental stress (drought, salinity, etc.), 
restoration of soil fertility, and strengthening of the bioeconomy. In addition, a 
proper assessment of nanomaterials is necessary before their application, and 
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a safer dose of NMs should be applicable without showing any toxic impact on 
the environment and soil microbial communities. The combo of NMs and PPs 
can also be encapsulated within a suitable carrier, and this method aids in the 
controlled and targeted delivery of entrapped components and also increases 
the shelf life of PPs. However, this review highlights the functional annotation of 
the combined impact of NMs and PPs on sustainable agricultural production in 
an eco-friendly manner.
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1. Introduction

Numerous tactics dealing with the improvement of crop 
production are essentially required to meet the basic food needs of the 
rapidly growing human population. The sector of agriculture affected 
by climate change, where increasing phenomena of abiotic stresses 
such as drought, salinity, cold, flooding, and biotic stress (attacks by 
pathogens such as bacteria, fungi, oomycetes, nematodes, and 
herbivores) negatively affect agricultural production (Shahzad et al., 
2021; Upadhayay et al., 2023). In addition, the agrochemicals showed 
a significant increase in crop yield in the last few decades (Lin et al., 
2019), but later harmful effects from the over-application of chemical 
fertilizers became apparent (Upadhayay et al., 2022a,b). It led to the 
degradation of soil quality, disturbance of soil microbial ecology, 
pollution of soil and water bodies, and harmful effects on human 
health due to residues of pesticides and herbicides (Singh et al., 2020; 
Tripathi et al., 2020; Boregowda et al., 2022). Moreover, the transition 
to organic agriculture, particularly the use of biofertilizers, provided 
an environmentally friendly alternative to chemical-based agriculture, 
as well as improved crop yield and soil quality (Asghar et al., 2022; 
Elnahal et al., 2022). The term “plant probiotics (PPs)” can be used to 
decode a distinct group of microbial strains with all the necessary 
characteristics to be classified as biofertilizers that influence plant 
growth through both direct and indirect mechanisms (microbes that 
show beneficial attributes for plants in terms of growth and yield; 
Sarbani and Yahaya, 2022; Rai et al., 2023). The rhizosphere and the 
inner regions of plant tissues each serve as a special hub for their 
respective microbial communities, the rhizomicrobiome (Jiang 
G. et al., 2022), and the endophytomicrobiome (Pandey et al., 2022). 
This microbiome is a rich source of plant probiotics due to the 
multitude of traits it possesses, such as the solubilization of nutrients 
(Khan et  al., 2022), nitrogen fixation (Abdelkhalek et  al., 2022), 
production of plant hormones [indole-3-acetic acid (IAA); Nazli et al., 
2020], ammonia (Upadhayay et  al., 2022b), anti-pathogenic 
compounds (Mathur et al., 2019), hydrogen cyanide (HCN; Kashyap 
et  al., 2021), exopolysaccharides (Latif et  al., 2022), siderophore 
(Mushtaq et al., 2022), and lytic enzymes (Reddy et al., 2022). Plant 
probiotics enhance nutrient uptake and provide protection for plants 
from environmental stresses, such as biotic and abiotic stresses, and 
also improve plant health (Kenawy et al., 2021; Pandey et al., 2022). 
Plant probiotics with varying plant growth-stimulating capabilities 
provide advantages such as improved crop productivity and food 
security (Arif et al., 2020; Ghoghari et al., 2022). In contemporary 
times, the use of nanotechnology in developing countries is gaining 

more attention, especially in the field of agriculture (Neme et  al., 
2021). Due to their greater surface area and solubility, nanomaterials 
are regarded as superior to conventional agrochemicals when used as 
nanofertilizers in agriculture (Fen et  al., 2022). Nanofertilizers 
improve the nutrient uptake efficiency of plants, diminish the 
detrimental effects of environmental stresses, and increase crop 
productivity (Guleria et al., 2022). It is possible to use a combination 
of the selective plant probiotics that have been shown to be compatible 
with the nanoparticles of interest (Khati et al., 2017, 2018; Agri et al., 
2021; Chaudhary et al., 2021a,b,c). NMs and PPs together hold a great 
promise for sustainable agriculture as better alternatives to 
agrochemicals and are becoming a popular concept in the agricultural 
sector. This idea of efficient fertilization can be  preferred over 
chemical-based fertilization because of its higher efficacy in resource 
utilization, sustained and slow release of nutrients, increase in crop 
productivity with a lesser dose of fertilizer, and least negative impacts 
on soil. Moreover, the use of NMs and PPs is economically feasible and 
poses lesser toxicity to the environment. According to the literature, 
the “cocktail” of NMs and PPs can be considered a “nanobiofertilizer 
(NBF),” because it has the effectiveness of both components (i.e., NMs 
and PPs) and aids in the slow and controlled release of nutrients, 
improves nutrient use efficiency, and results in a significant increase 
in crop yield (Kumari and Singh, 2020).

The microbial part of this cocktail contributes benefits to the plant 
system due to its wide array of plant growth-stimulating traits such as 
the solubilization of nutrients, nitrogen fixation, production of plant 
hormones, EPS, siderophore, and anti-pathogenic compounds. The 
improvement in soil fertility, functional enzymatic activities, NPK 
content, organic carbon content, and soil microbial biomass are 
reflected under the influence of the effective microbial component. On 
the contrary, the second and most effective segment, “NMs,” maximize 
the benefits and contributes to plant growth through the controlled 
and sustained release of nutrients, a reduction in the fixation of 
nutrients in the soil, an increase in the bio-availability of nutrients to 
plants, making plants more tolerant to environmental stress, and the 
protection of plants from pests. The combination of nanomaterials 
and plant probiotics can be applied to plants in a variety of ways, 
including seed treatment, seedling treatment, foliar application, soil 
application, and other methods. Nanotechnology advancements have 
also led to the encapsulation of plant probiotic strains within the 
appropriate nanomaterials (Panichikkal et  al., 2019, 2021; Akhtar 
et  al., 2022) or the encapsulation of both NMs and PPs within a 
suitable carrier (Moradi Pour et al., 2022), depending on the choice of 
experiments. This concept maintains the efficacy and shelf life of the 
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microbial component (PPs) as well as the controlled and sustained 
supply of both NMs and PPs. This two-pronged strategy increases 
nutrient availability directly through the use of nanomaterials, while 
also stimulating plant growth through effective microbial treatment. 
The use of such a combination of effective doses of NMs and PPs has 
the potential to create a big difference in the agricultural sector, which 
will eventually be  fruitful in providing benefits of sustainable 
agricultural production and as well as food security (Kumari et al., 
2021; Agri et  al., 2022; Akhtar et  al., 2022). The present review 
illustrates the impact of the combined use of NM and PP, as an 
effective but two-way strategy, on food crops in terms of increased 
crop production, reducing the detrimental effects of environmental 
stress, improving soil fertility, and strengthening the bioeconomy.

2. Compendious outline of 
nanomaterials

Nanomaterials are naturally or artificially synthesized 
exceptionally tiny molecules ranging from 1 to 100 nm in size 
(Rehman and Pandey, 2022). The smaller size and high surface-to-
volume ratio of nanomaterials give them distinct and advantageous 
properties in different scientific fields compared to their bulk analog 
(Yang et al., 2022). The NM has unique physiochemical properties and 
flexible scaffolds, making them functional with biomolecules and 
unique compared to other materials (Muthukumaran et al., 2022). 
Furthermore, it has been demonstrated that some NMs, such as 
magnetic (Armenia et al., 2022), gold (Jiang et al., 2017), polymeric 
(Kamaly et al., 2016), or hybrid NMs (Ferreira Soares et al., 2020), may 
react to external stimuli, leading to a spatiotemporally regulated 
release of macromolecules. In the last few decades, synthetic NMs 
have been efficiently used in pharmacology and medicine, especially 
for therapeutic or diagnostic applications (Zain et al., 2022). These 
NMs or nanoparticles are carbon-based, inorganic, or organic. 
Inorganic nanoparticles have numerous scientific uses and are metallic 
or metal oxides. Constructive or destructive processes can synthesize 
these nanomaterials using nearly all metals (Upadhayay et al., 2019). 
Among the different elements, Cd, Au, Al, Co, Zn, Pb, Fe, Cu, and Ag 
are frequently used to synthesize nanoparticles (Ali et al., 2022). It was 
reported that the metal oxide-based nanoparticles alter the nature of 
their analog metals (Sanzari et  al., 2019). For example, iron (Fe) 
containing nanoparticles (NPs) rapidly oxidized to Fe oxide in the 
presence of oxygen (O) at room temperature, making them more 
reactive and efficient compared to their parent iron nanoparticles 
(Sanzari et al., 2019; Ezealigo et al., 2021). There are different types of 
commonly manufactured nanoparticles, such as “silicon dioxide 
(SiO2),” “zinc oxide (ZnO),” “cerium oxide (CeO2),” “aluminium oxide 
(Al2O3),” “titanium oxide (TiO2),” and “magnetite (Fe3O4)” which 
contain metal oxides (Fuskele and Sarviya, 2017). Some nanoparticles, 
viz., liposomes, dendrimers, ferritin, and micelles, are organic 
nanoparticles and eco-friendly in nature (Sanzari et  al., 2019; 
Upadhayay et al., 2019).

In addition, “carbon-based” refers to another critical group of 
nanoparticles, further classified into fullerenes, graphene, carbon 
nanotubes (CNTs), carbon nanofibers, and carbon black (Ramar and 
Balraj, 2022). Occasionally, the term “activated carbon in nanosize” is 
also used for carbon-based nanoparticles (Upadhayay et al., 2019). 
The “bottom-up” strategy and the “top-down” approach have been 

suggested as two crucial strategies for the synthesis of NPs (Gutiérrez-
Cruz et al., 2022). Among them, the bottom-up method is occasionally 
referred to as the constructive method because it involves the steady 
construction of a structure that starts from the atomic level and 
progresses up to the nanoparticle level (Upadhayay et  al., 2019). 
Different methods such as chemical vapor deposition (CVD), 
biosynthesis, sol–gel, pyrolysis, and spinning are the bottom-up 
approach for nanoparticle synthesis. The term “biosynthesis” refers to 
a sustainable process that uses plant, bacterial, and fungal extracts 
coupled with precursors to create nanoparticles (Sanzari et al., 2019).

On the other hand, the bulk material is broken down into 
nanometric-sized particles using the “top-down method” or 
“destructive process (Yin et al., 2021).” Different strategies frequently 
used for the development of nanoparticles include laser ablation, 
thermal decomposition, nanolithography, sputtering, and mechanical 
milling (Sanzari et  al., 2019; Upadhayay et  al., 2019). Currently, 
polymeric nanoparticles have sought lots of attention due to their ease 
of synthesis, biocompatibility, and responsiveness to stimuli (Zu 
et al., 2021).

However, core or shell nanoparticles are also available in different 
combinations of materials used, which are organic/organic, inorganic/
organic, and inorganic/inorganic materials. The shell of nanoparticles 
is selected based on ultimate applications and use (Sanzari et  al., 
2019). For example, it was proposed that polymeric shells enhance 
nanoparticle biocompatibility (Sharifianjazi et al., 2021). It has also 
been possible to create NPs with a nanostructured shell. Mesoporous 
silica nanoparticles (NPs) are nanoparticles with a mesoporous 
structure and a highly functionalizable surface (Zhang et al., 2022). In 
nanotechnology, a novel class of NMs known as nanogels (NGs) is 
gaining more attention due to its colloidal stability, bioconjugation, 
good physicochemical qualities, and stimuli sensitivity such as 
temperature and pH (Dalir Abdolahinia et al., 2022). Nanogels are 
made up of natural or synthetic polymer chains that are nano-sized 
ionic as well as non-ionic hydrogels. The NGs are highly porous that 
have high water content, i.e., 70–90% of the whole structure with high 
load capacity (Sanzari et al., 2019). A few examples of the nanogels are 
poly (vinyl alcohol), poly (ethyleneimine), chitosan, poly (ethylene 
oxide), poly (vinylpyrrolidone), alginate, poly (vinylpyrrolidone), and 
among them, the most frequent NGs is N-isopropyl acrylamide 
(Pinelli et al., 2022). Hybrid NGs are classified as (i) “nanomaterial–
nanogel,” which incorporates nano-sized materials such as “magnetic” 
or “carbonaceous” NPs and (ii) “polymer–nanogel composites,” which 
include “interpenetrated networks (IPNs),” “copolymer,” and “core-
shell particles” (Eslami et al., 2019; Sanzari et al., 2019).

3. Nanomaterials in agriculture: A way 
of smart delivery of nano-based 
fertilizers

The agricultural sector is highly dependent on climatic conditions, 
but in recent years, climate change has become a major concern of our 
human civilization (Qin et  al., 2020; Kasperson et  al., 2022). The 
adverse effects of climate change manifested as excessive rainfall, 
drought, extreme cold, heat wave, pest resurgence, and disease 
outbreaks caused the biological change in the crop life cycle, resulting 
in reduced grain yield, which directly affects food security on a global 
scale (Chitara et al., 2017; Liliane and Charles, 2020). Experts are 
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focusing on the development of cutting-edge technologies in the 
agricultural sector in order to mitigate the detrimental effects of 
climate change (Shahzad et al., 2021) and emphasizing the synthesis 
of various nano-based products and the assessment of safer doses of 
nano-based products prior to their application. Moreover, nano-based 
fertilizers can provide an economically feasible and ecologically safe 
option for sustainable crop production under climate change scenarios.

Nanotechnology-based synthetic fertilizer applications in 
agricultural crop production are becoming popular strategies due to 
their beneficial role in increasing crop productivity, improving 
nutrient use efficiency, and reducing the impact of environmental 
constraints on crops (Beig et al., 2022). There are certain types of NMs 
viz. inorganic-based NMs, carbon-based NMs, organic-based NMs, 
and composite-based NMs have been used in agricultural crop 
production. Using all these NMs, researchers developed site-specific, 
targeted nanofertilizers, nanoherbicides, nanopesticides, 
nanofungicides, and nanoinsecticides, which have to prove themselves 
as highly efficient nano-based agrochemicals (Bana et al., 2020; Qazi 
and Dar, 2020; Ahmed et  al., 2021; Okey-Onyesolu et  al., 2021). 
Targeted application of nanofertilizers to crops improves nutrient use 
efficiency and prevents nutrient losses, as well as reducing the over-
application of fertilizers can also help reduce fertilizer toxicity, which 
is followed by many farmers (Hofmann et  al., 2020; Mejias et  al., 
2021). In addition to the application of nano fertilizers, nano 
herbicides are also used in weed control. Weed also hampers the 
agricultural dry matter accumulation due to their high competitiveness 
with the main crop for nutrients and space. Thus, with the help of 
nanotechnology, more competent nano-based herbicides have been 
developed that give better results compared to commercially available 
conventional herbicides (Abigail and Chidambaram, 2017; Balah and 
Pudake, 2019). Conventional herbicides only kill the top of the leaves, 
resulting in weed regrowth, but in the case of nanoherbicide 
application, the targets for killing are the root of the weed. After the 
roots have died, the weed plants are unable to resist regrowth.

Applications of NMs-based nano-pesticides are helpful in the 
control of a wide variety of pests that affect crops. In general, the 
conventional application of pesticides to crops increases cultivation 
costs and causes environmental pollution (Hajji-Hedfi and Chhipa, 
2021). Nano-based pesticides have increased retention capacity with 
high efficacy, durability, good dispersion, and wettability, which makes 
them a potent pesticide compared to conventional pesticides, as well 
as their low dose release, which increases effectiveness and reduces 
environmental losses, soil degradation, and toxicity (Kumar et al., 
2019; Vignardi et al., 2020). Some examples of nano-pesticides are 
Karate® ZEON against soybeans, rice, and cotton pests; and stomach 
poison for insects sold as Gutbuster. Similarly, nanomaterial-based 
nanofungicides and antimicrobial compounds are also helpful in plant 
disease management. Due to its large surface area to volume ratio, it 
increases their contact with the microbes and easily penetrates into 
the microbial cell, making excellent contact for nano-fungicides. 
Applications of nanofungicides provide targeted delivery, improved 
bioavailability as a result of increased solubility and penetrability, 
lower dosages, and decreased dose-dependent toxic effects (Ul Haq 
and Ijaz, 2019). Recently, metal-based NPs such as Ag, Au, Cu, Cd, Al, 
Se, Zn, Ce, Ti, and Fe synthesized with plant extract have gained in 
popularity, and they are all effective in the control of phytopathogens 
(Hernández-Díaz et al., 2021). Many researchers have demonstrated 
AgNPs as potent nanometal-based pesticides with antibacterial and 

antifungal activity, successfully used in controlling plant diseases 
(Khan et al., 2021; Tariq et al., 2022).

The application of NMs such as nanochitosan, nanogypsum, 
nanourea, carbon nanotubes, and nanophosphorus also showed their 
important roles in disease suppression, improvement in soil functions 
and structure, enhancement in photosynthetic efficiency, and crop 
production. Meloidogyne incognita densities alone or in the presence 
of TMV were reduced by nano-chitosan by 45.89 to 66.61%, while root 
gall density was reduced by 10.63 to 67.8% (Khalil et al., 2022). The 
combined use of nanogypsum and Pseudomonas taiwanensis on maize 
improves the structure and function of the soil, which has a beneficial 
influence on plant health without generating toxicity (Chaudhary 
et al., 2021c). The foliar application of nano-urea to pearl millet plants 
improved plant growth metrics, dry matter accumulation, chlorophyll 
content, and NPK content (Sharma S. K. et  al., 2022). Carbon 
nanotubes have potent antibacterial properties as well as induced 
defense activation after application to tomato crops infested with 
Alternaria solani (González-García et al., 2021). The administration of 
the nanophosphorous (nP) via foliar application to plants growing in 
P-deficient soil increased plant growth and yield attributing metrics, 
leaf integrity, chlorophyll content, P contents of leaf and seed, and 
improved anatomical topographies (Abou-Sreea et al., 2022). Table 1 
depicts a recent scenario deciphering the beneficial effects of various 
NMs on plants. In addition, Table 2 shows some of the commercially 
available fertilizers based on NMs with their ingredients (Elemike 
et al., 2019; Pirzadah et al., 2020; Avila-Quezada et al., 2022).

4. Molecular insights on NMs for plant 
growth and development

The advancement of NMs in terms of plant growth is further 
embellished by illustrating their molecular mechanisms, which are 
particularly well understood at the level of relative gene expression. 
Several high-throughput studies have been conducted to investigate the 
effects of NMs on specific gene expression patterns, whether 
upregulation or downregulation, for a variety of plant activities such as 
seed germination, photosynthesis, and abiotic and biotic stress 
tolerance. Application of ZnO NPs (25 mg/L) recorded the maximum 
level of photosynthetic pigments due to the higher expression of 
photosynthesis-related genes (“CHLΙ,” “LHCa/b,” and “RSSU”; Mardi 
et al., 2022). The effect of silica nanoparticles observed in terms of 
improvement of wheat growth under filed conditions and upregulation 
of genes related to plant hormones (“TIR1” for IAA; “PYR/PYL,” 
“PP2C,” “SnRK2,” and “ABF” for abscisic acid), sugar metabolism 
(α-glucosidase, SUS, SPC), and chlorophyll (“CHLH,” “CAO,” and 
“POR”; Li et al., 2023). Foliar application of manganese ferrite NMs 
(10 mg/L) induced early flowering in tomatoes by upregulating the 
flowering induction gene SFT. A similar study also reported the 
upregulation of genes associated with gibberellin biosynthesis 
(GA20ox2, GA20ox3, and SIGAST; Yue et al., 2022). Among the genes 
involved in the photosynthetic process in Brassica chinensis L., 
ferredoxin-NADP reductase (PetH) was highly expressed under 
various concentrations (0.7, 7, and 70 mg/kg) of CeO2 NPs, while 
photosystem II lipoprotein (Psb27) was downregulated under varying 
levels of NPs (7, 70, and 350 mg/kg; Hong et al., 2023). One of the most 
important mechanisms for plant survival under stress conditions is the 
expression and regulation of abiotic stress-responsive genes (Sahil et al., 
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2021). NMs, however, showed a positive impact in terms of improving 
plant tolerance by upregulating the expression of genes involved in 
plant survival under stress conditions. Chitosan NPs upregulated 
drought-responsive genes such as “HsfA1a,” “SlAREB1,” “LeNCED1,” 
and “LePIP1” in Solanum lycopersicum (Mohamed and Abdel-Hakeem, 
2023). The genes involved in drought tolerance, such as “P5CS,” 
“CAT1,” and “DREB2,” related to “proline biosynthesis,” “catalase 
activity,” and “dehydration-responsive element-binding proteins,” 
respectively, were highly expressed in wheat by the application of zinc 
oxide NPs to mitigate the drastic effect of drought in plants (Raeisi 
Sadati et  al., 2022). Recently, Subotić et  al. (2022) reported higher 
expression of aquaporin genes (PIP1;3, PIP1;5, and PIP2;4) related to 

water and solute transportation across the plant membrane in tomatoes 
by exposing them to a nanosubstance, i.e., hyper-harmonized hydroxyl-
modified fullerene (3HFWC). Phytochemicals, such as alkaloids, have 
defensible importance in plants under stress conditions, and their 
biosynthesis is increased under drought conditions (Amirifar et al., 
2022). The further addition of nanomaterials can enhance the level of 
biosynthesis of phytochemicals in plants. The study of Ali et al. (2021) 
observed the upregulation of key genes such as STR (strictosidine 
synthase), PRX1 (peroxidase 1), GS (geissoschizine synthase), and DAT 
(deacetylvindoline-4-O-acetyltransferase) involved in the biosynthesis 
of alkaloids under the response of chitosan NMs in drought stress. In 
tomato plants, Rahmatizadeh et  al. (2021) showed the effect of 

TABLE 1 Beneficial effects of different nanomaterials on plants.

Nano- materials Concentration Crop Beneficial role Reference

Nano selenium

100 mg/L
Tomato (Solanum 

lycopersicum L.)

 • Enhanced yield and quality of tomato fruits

 • Increase in soluble solids content

 • Activation of antioxidant enzymes such as 

CAT, POX, and PPO under saline stress

Saffan et al. (2022)

-do- Banana  • Enhancement in the growth, photosynthetic 

pigments and improvement in fluorescence
Shalaby et al. (2022)

Nano- Copper

-do-
Wheat (Triticum aestivum 

L.)
 • Amelioration of DNA damage and DNA 

Methylation
Hosseinpour et al. (2022)

69.4 μM (4.444 mg/L) Maize
 • Increase in plant growth and grain yield

Van Nguyen et al. (2022)

Nano-chitosan 100 and 200 μg/ml Potato (Solanum tuberosum)  • Controlling bacterial wilt caused by Ralstonia 

solanacearum
Khairy et al. (2022)

Zinc- nanoparticle
40–160 mg/kg (soil application), 

10-40 ppm (foliar application)
maize  • Enhancement in the growth and extract yield 

of maize cultivated in Zn-deficient soils
Azam et al. (2022)

Nano-urea 500 and 1,000 mg/L Vigna radiata L.

 • Reduction in nitrate (NO3-N) leaching

 • Significant enhancement in the protein 

content, free radical scavenging activity and 

phenolic content

 • Increment in morphological growth as well as 

crop biomass

Sharma A. et al. (2022)

Zinc- and magnesium-

doped hydroxyapatite-

urea nanohybrids

50 and 25% Wheat (Triticum aestivum)

 • Improvement in the wheat growth and yield.

 • Enhancement in the nutritional element 

uptake and grain protein and 

phospholipid levels

Sharma B. et al. (2022)

Nano- gypsum 240 kg/ha Spinach
 • Mitigation of salinity-sodicity effects and 

enhancement in the spinach growth in saline-

sodic soil

Salama et al. (2022)

Nanophosphorus 0.1 g/L Fenugreek

 • Increase in deficit irrigation stress tolerance

 • Enhancement in plant growth and 

productivity by increasing water use 

efficiency, osmo-regulatory compounds 

(especially, soluble sugars and proline) and 

activation of antioxidant enzymes

Abou-Sreea et al. (2022)
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TABLE 2 List of some approved and commercially available nanomaterials-based fertilizers.

Name of fertilizer Constituents Name of manufacturer

Nano-Urea (Liquid) 4% total N (w/v) Indian Farmers Fertiliser Cooperative Ltd., India

Plant nutrition powder (green nano)

N (0.5%), P2O5 (0.7%), K2O (3.9%), Ca (2.0%), Mg 

(0.2%), S (0.8%), Fe (1.0%), Mn (49 ppm), Cu (17 ppm), 

and Zn (12 ppm)

Green Organic World Co., Ltd., Thailand

Nano Fertilizer (Eco Star; 5) gm
N (8.2%), K2O (2.3%), organic matter (75.9%), and C:N 

(5.4)
Shan Maw Myae Trading Co., Ltd., India

Nano Ultra-Fertilizer (500) g

Organic matter (5.5%), T-N (10%), T-P2O5 (9%), T-K2O 

(14%), AC-P2O5 (8%), CA-K2O (14%), and CA-MgO, 

(3%)

SMTET Eco-technologies Co., Ltd. Taiwan

Nano Calcium (Magic Green; 1) kg

CaCO3 (77.9%), MgCO3 (7.4%), SiO2 (7.47%), K 

(0.2%), Na (0.03%), P (0.02%), Fe (7.4 ppm), Al2O3 

(6.3 ppm), Sr. (804 ppm) sulfate (278 ppm), Ba 

(174 ppm), Mn (172 ppm), and Zn (10 ppm)

AC International Network Co., Ltd., Germany

Biozar Nano-Fertilizer
Combination of organic materials, micronutrients, and 

macromolecules
Fanavar NanoPazhoohesh Markazi Company, Iran

TAG NANO (NPK, PhoS, Zinc, Cal, etc.) fertilizers
Proteino-lacto-gluconate chelated with micronutrients, 

vitamins, probiotics, seaweed extracts, humic acid
Tropical Agrosystem India (P) Ltd., India

PPC Nano (120) mL
M protein (19.6%), Na2O, (0.3%), K2O (2.1%), 

(NH4)2SO4 (1.7%), and diluent (76%)
WAI International Development Co., Ltd., Malaysia

Zinc oxide (ZnO)- universal additive agent (1–50 nm) ZnO (99.9%) Land Green & Technology Co., Ltd., Taiwan

Nano green
Extracts of corn, grain, soybeans, potatoes, coconut, 

and palm
Nano Green Sciences, Inc., India

Nano max NPK fertilizer

Multiple organic acids chelated with major nutrients, 

amino acids, organic carbon, organic micro nutrients/

trace elements, vitamins, and probiotic

JU Agri Sciences Pvt. Ltd., Janakpuri, New Delhi, India

Nano-Ag Answer®
Total nitrogen (1.0%), available phosphate (0.1%), 

soluble potash (5.5%.), and other ingredients (93.4%)
Urth Agriculture, USA

nano-SiO2 (50 mg/L) as a possible mediator, stimulating the expression 
of “LeNRAMP3” and “LeFER.” The overexpression of these genes might 
enhance the nutritional status of Cd-stressed tomato plants, indicating 
that the LeFER transporter plays a vital role in alleviating the impact of 
Cd stress. Furthermore, the resultant upregulation of the several genes 
associated with various functions under the response of NMs is 
illustrated in Table 3.

5. Plant probiotics: Unraveling a long 
story in a nutshell

Current agricultural production cannot guarantee a consistent 
food supply for the rapidly expanding global population over the 
next 50 years. In addition, changes in dietary preferences and the 
increasing demand for the production of a wide variety of crop-
based food products, etc., are imposing massive pressure on the 
production of crops at a huge scale. In recent decades, excessive 
amounts of chemical-based fertilizers and pesticides have been used 
to improve agricultural output on a vast scale; this was also a 
necessary step in order to solve the food crisis. Indeed, agrochemicals 
have changed the scenario of the agricultural world in terms of 
accessing multiple crop yields even under environmental stress 
conditions, but they have also left negative environmental footprints 

(Mitra et al., 2021; Tazunoki et al., 2022). Soil quality degradation, 
disturbance of local soil microbial ecology, health hazards from 
chemical residues of agrochemicals, and contamination of local 
water bodies are the adverse consequences of heavy reliance on 
agro-based chemicals (Mandal et  al., 2020; Meena et  al., 2020; 
Tazunoki et  al., 2022). In the contemporary world, due to the 
tremendous awareness of the negative impacts of agrochemicals on 
organic farming and other chemical-free practices, people’s interest 
is shifting to reducing dependence on chemical-based products 
(Nithya et al., 2022). Fortunately, the concept of using plant growth-
promoting microbes as biofertilizers/biopesticides is favorable as a 
green technology for sustainable agriculture (Khan et  al., 2019; 
Elnahal et al., 2022). Plant growth-promoting microbes are actually 
effective or beneficial microorganisms that confer beneficial 
attributes to the host plants (Massa et al., 2022; Chaudhary et al., 
2022c). Like human probiotics, a specialized set of microbial strains 
responsible for gut health, the term “plant probiotics” has recently 
become trendy to denote beneficial microorganisms that are 
necessary for the wellbeing of host plants (Carro and Nouioui, 2017; 
Menéndez and Paço, 2020; Sarbani and Yahaya, 2022). Therefore, 
plant probiotics and plant growth-promoting microorganisms 
(bacteria, fungi, etc.) are somewhat synonymous with each other 
and are part of a complex microbial community that either colonizes 
the rhizosphere (rhizomicrobiome; Ravichandran et al., 2022) or 
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diffuse in or localizes in plant tissues (endophytes; Pandey et al., 
2022; Rai et al., 2023) and contribution to beneficial functional traits 
in favor of plants (Gosal et al., 2017). These beneficial traits include 
enhancement in plant growth and productivity (Gavelienė et al., 
2021), amelioration of abiotic and biotic stresses in plants (Santoyo 
et  al., 2021), lowering the challenges of climate changes effects 
(Fiodor et  al., 2021), and biofortification benefits via improving 
micronutrients levels in crop edibles (Upadhayay et al., 2018, 2021, 
2022a,b,c). Plant probiotics must contain some PGP traits such as 
the solubilization of elements (P, K, and Zn; Singh et al., 2022), 
nitrogen fixation (Pandey et al., 2022), production of phytohormones 
(Kurniawan and Chuang, 2022) aminocyclopropane-1-carboxylate 
(ACC) deaminase (Santos et  al., 2022; Singh et  al., 2022), 
siderophore (Upadhayay et  al., 2022a,b), and ammonia (Santos 
et  al., 2022). Production of compounds showing importance in 
killing pathogens such antibiotics, secretion of enzymes (chitinase, 
protease/elastase, cellulase, catalase, and β-(1,3)-glucanas; Duhan 
et al., 2022), volatile compounds (HCN; Vaghela and Gohel, 2022), 
and also induce systematic resistant in plants against pathogen is the 
important contribution of plant probiotics (Yin et  al., 2022; 
Chaudhary et al., 2022a). In addition, the ability of plant probiotics 
to produce exopolysaccharides and biofilms has multiple benefits, 
including protection from abiotic stress (Banerjee et al., 2019) and 
desiccation (Mandal et  al., 2022), effective root colonization 
(Naseem et  al., 2018), and improved soil aggregation and 
stabilization (Jhuma et al., 2021). Numerous microbial strains have 
been identified to possess plant probiotic properties that stimulate 
plants’ growth and improve crop yield (Das et al., 2022; Pantigoso 

et al., 2022; Khan et al., 2023). Therefore, such microorganisms can 
be utilized effectively as bioinoculants for eco-friendly agriculture 
(Daniel et al., 2022). Plant probiotics are effective “bioelicitors” or 
“biofertilizers” (Chen et al., 2022) because they improve crop yield-
related traits, such as length of shoot and root, biomass of plants, 
photosynthetic pigments, grain yield, and biological output (Khan 
et al., 2022; Upadhayay et al., 2022a,b). A remarkable increase in 
yield-attributed traits was determined for rice, wheat, and maize in 
response to plant probiotics such as Bacillus (Abd El-Mageed et al., 
2022), Azospirillum brasilense (Zaheer et  al., 2019), and 
Pseudomonas stutzeri (Jiang S. et  al., 2022), respectively. Plant 
probiotics such as Burkholderia cepacia and Pantoea rodasii having 
zinc solubilizing potential improved the overall growth of rice plants 
and provided biofortification benefits by increasing considerable Zn 
concentration in grains (Upadhayay et al., 2022b). Plant probiotics 
also ameliorate abiotic stress effects in plants via enhancing stress 
tolerance of plants which can be glimpsed by osmolyte accumulation 
(Tahiri et al., 2022), activation of antioxidant enzymes (Shultana 
et al., 2022), reduction in MDA content, reduction in electrolyte 
leakage, and improving in the activity of photosynthetic pigments 
(Zarei, 2022). Figure 1 shows schematic and beneficial outcomes 
that can result from using PPs as a green approach. Considering the 
productive effects of plant probiotics on crop wellbeing, systematic 
research is needed to identify and characterize a novel microbial 
strain or microbial consortium having multifarious plant growth-
promoting effects. Deeper studies are required to reveal the 
interaction between plants and microbes at the molecular level and 
the microbial effects on plants in terms of enhancing physiological 

TABLE 3 Upregulation of genes associated with functional attributes in plants under the influence of nanomaterials.

Nanomaterial (s) Plant Functional attributes Upregulation of related gene(s) Reference

Mesoporous silica NPs 

(50 μg/ml)
Arabidopsis thaliana

Chlorophyll and carotenoid 

biosynthesis

CAO (chlorophyll a oxygenase), CHLM 

(Magnesium-protoporphyrin), CHLG 

(chlorophyll synthase), CHLD (Mg-chelatase 

subunit D), PDS3 (phytoene desaturase), 

GGPS (geranylgeranyl pyrophosphate 

synthase), IPI (isopentenyl pyrophosphate: 

dimethyllallyl pyrophosphate isomerase) and 

LYC (lycopene cyclase)

Lu et al. (2020)

ZnO NPs (20 mg/L)
Rapeseed  

(Brassica napus L.)
Salinity stress alleviation ARP (auxin responsive proteins) Hezaveh et al. (2019)

Selenium NP (4 and 

40 mg/L) + nitric oxide (NO; 

25 μM)

Chicory  

(Cichorium intybus L.)

Production of valuable 

secondary metabolites and 

improvement in defence 

system

Phenylalanine ammonia-lyase (PAL), 

hydroxycinnamoyl-CoA quinate transferase 

(HCT1), and hydroxycinnamoyl-CoA 

Quinate/shikimate hydroxycinnamoyl 

transferase (HQT1) genes

Abedi et al. (2021)

Silicon NPs (2 mM) + methyl 

jasmonate (MeJA; 0.5 mM)
Strawberry cv. Paros

Better response of plant to 

salinity stress
cAPX, DREB, MnSOD, and GST genes Moradi et al. (2022)

Fe3O4 NPs (100 μg/ml) Nicotiana benthamiana
Enhancement in plant 

resistance against TMV

SA responsive PR (pathogenicity related 

proteins) genes (PR1 and PR2)
Cai et al. (2020)

AgNPs (0.2 and 0.5 mg/L) Rice seeds

Improvement in water uptake 

ability of aged rice during 

germination

Aquaporin genes (especially PIP2;1) Mahakham et al. (2017)

CuO NP 500 μg/ml Watermelon
Pathogen suppression and 

yield enhancement

PPO, pathogenicity-related (PR1), and 

polyamine oxidase (PAO)
Elmer et al. (2018)
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FIGURE 1

Schematic flow chart representing the prolific attributes of using plant probiotics (PPs).

phenomena. In addition, a comprehensive analysis is required to 
illustrate how the inoculation of plant probiotics has a significant 
impact on the local soil microbiota in addition to their soil-
healing properties.

6. The synergy of nanomaterials and 
plant probiotics: A green solution for 
sustainable agriculture

The harmful effects of agrochemicals are well known and occur as 
a result of the indiscriminate use of various agrochemicals. In 
addition, the application of PPs as bioinoculant faces several 
challenges, including a decline in number, a slow rate of action, a lack 
of suitable carrier materials, susceptibility to certain stress conditions, 
such as desiccation and salinity, and a loss of effectiveness in field 
conditions (Nagpal et  al., 2021; Walia et  al., 2021). Therefore, to 
overcome these problems, the potential alternative is a cocktail of 
suitable nanomaterial and PP strain. Using a combination of PPs and 
NMs can provide the benefits of both biofertilizers and nanofertilizers 
(Chaudhary et al., 2021a,b,c). Application of the cocktail of NMs and 
PPs to agricultural crops is viewed as an alternative eco-friendly 
method to reduce the use of chemical or synthetic fertilizers in crop 
management (Kumari and Singh, 2020; Akhtar et al., 2022), due to the 
risk posed by the excessive use of chemical-based fertilizer and 
pesticides (Chitara et  al., 2022). The slow-release ability of 
nanobiofertilizers makes them highly efficient, resulting in the 
accessibility of the nutrients for a longer period of time and increased 
nutrient use efficiency or vice versa, which reduces nutrient losses and 
supports agricultural development through increased crop growth 
and yield (Fazelian and Yousefzadi, 2022).

The microbial components of nanobiofertilizers include nitrogen-
fixing microorganisms such as free-living Azotobacter, symbiotic 
Rhizobium, and associative Azospirillium, phosphorous solubilizing 
microorganisms such as Pseudomonas striata, Penicillium spp., 
Bacillus sp., and Aspergillus sp., and phosphorous mobilizers 
microorganism. On the contrary, nanomaterials such as nanosilicon 
dioxide (Kukreti et al., 2020), AgNPs (Nawaz and Bano, 2020), nano-
iron oxide (Babaei et  al., 2017), ZnO-NPs (Azmat et  al., 2022), 
nanozeolite (Khati et al., 2019a,b), nanochitosan (Kumari et al., 2020), 
and nanogypsum (Kumar et al., 2019) have been employed as nano-
constituents of “NMS-PPs cocktail.” This association of 
microorganisms and nanoparticles exhibits a synergistic effect in soil 
by improving soil nutrient status through nitrogen fixation, iron 
chelation through siderophore production, phosphorus solubilization, 
phytohormone production, induces systemic resistance (ISR), 
systemically acquired resistance (SAR), and gives plants vigor against 
pests (Chitara et  al., 2021; Chaudhary et  al., 2021a,b,c,d,e, 2022b; 
Mahawer et al., 2022).

However, before using a combination of NMs and PPs, the 
impact of NMs on PPs should be assessed. The NMs should not 
be  detrimental to the microbial component; rather, they must 
support microbial growth and activity. In previous studies, NM 
such as nanozeolite and nanogypsum showed positive impacts on 
the growth of plant growth-promoting bacteria isolated from 
NM-infested soil (Chaudhary and Sharma, 2019; Khati et  al., 
2019a). The synergistic effect of the NMs and PPs could 
be  visualized in the form of enhanced physiological and 
morphological development through an increased rate of 
photosynthetic translocation in the aerial plant parts, resulting in 
improved grain quality and increased yield (Khati et al., 2018; 
Kukreti et al., 2020; Vedamurthy et al., 2021). Application of the 
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chitosan–iron nanobiofertilizer against bacterial leaf blight of rice 
caused by Xanthomonas oryzae pv. oryzae (Xoo) under in vitro and 
in vivo. Under in vitro assay against bacteria, nanobiofertilizer 
significantly inhibit the biological function such as growth, 
mobility, and biofilm formation of the bacteria and under in vivo 
condition foliar spray of the nanobiofertilizer reduced the disease 
incidence as well as modulate the enzyme system of the plants and 
improved the photosynthesis by increasing chlorophyll content 
and carotenoid (Ahmed et  al., 2022). Under drought, the 
application of the nano-Zn chelate and nano-biofertilizer 
effectively alleviate the impact of the drought stress and 
significantly augmented the plant biomass and grain yield (Farnia 
et al., 2015). In maize crops, under water scarcity, the application 
of the nanobiofertilzer improved water use efficiency and 
enhanced crop productivity (Janmohammadi et  al., 2016). 
Similarly, the NMs influence the dynamics of PPs as the report of 
Fetsiukh et al. (2021) showed that silica NPs triggered P. polymyxa 
A26 for producing EPS and increased water-holding capacity and 
osmotic pressure of biofilm and such reprogrammed bacterium 
enhanced plant biomass under drought stress. The application of 
a combo of nanogypsum and P. taiwanensis improved plant 
growth and soil health, and the metagenomic study revealed the 
dominance of beneficial microbial groups such as Acidobacteria, 
Bacteriodetes, Nitrospirae, Proteobacteria, and Planctomycetes in 
soil (Chaudhary et al., 2021c). The optimized concentration of 
TiO2 NPs with bacterial treatment increased maize plant growth, 
germination percentage, leaf area, and chlorophyll content 
(Kumari et al., 2021). Moreover, algal-based biofertilizers with 
mineral nanofertilizers can also be a game changer in agricultural 
productivity (Mahapatra et al., 2022).

Recent studies to determine the combined effect of NMs and PPs 
on plant growth and development are presented in Table  4. In 
addition, Figure 2 shows the advantageousness of using a cocktail of 
NMs and PPs to reap the benefits of agricultural production.

7. Combo of nanomaterials and plant 
probiotics in the mitigation of 
environmental stress

The agriculture sector shows its essentiality in food security as a 
human population relies on particular crop-based foods for basic 
diets. However, in the current climate change scenario, crop 
productivity is experiencing environmental stresses in form of either 
abiotic or biotic stresses (Xiong et al., 2022). The common instances 
of abiotic stresses include drought, salinity, heat stress, flood, cold 
stress, and heavy metal stress (Shikari et al., 2022). On the contrary, 
pathogens such as bacteria, fungi, and viruses that attack plants are 
categorized as biotic stressors (Barna, 2022). These categories of stress 
drastically affect crops in terms of reduction in yield (Anzano et al., 
2022). In the coming decades, if the issue of global warming is not 
solved, the measured portion of arable land might be affected due to 
various types of abiotic stresses (Shahzad et al., 2021). Therefore, a 
concept of climate-smart agriculture is in fashion to adopt the strategy 
to ameliorate the effect of various stresses on crops. The use of 
agrochemicals to combat the drastic effects of environmental stresses 
is a leading factor in the contaminating environment and posing a big 
threat to human health (Omran and Baek, 2022). From the microbial 

perspective view, the use of plant probiotics can provide an alternative 
solution for redressing the effects of abiotic and biotic stresses in 
plants (Mishra et al., 2022). Pant probiotics are a smart player that not 
only protects the plant from abiotic stress but also reduce the risk of 
biotic stress by modulating their natural defense (Bhat et al., 2022). 
Logically, plant probiotics must already be tolerant to various stresses, 
after which they may only mitigate the effect of various stresses. These 
special characteristics of tolerance to different types of stress are in fact 
conferred by the production of exopolysaccharides, the accumulation 
of osmoprotectants and the production of ACC deaminase, and the 
activation of different stress-responsive genes (Fadiji et  al., 2022). 
Moreover, when plant probiotics are used as a bioinoculant in plants, 
they improve the stress-tolerant behavior of host plants by enhancing 
photosynthetic pigments, accumulating osmolytes, accumulating high 
phenols, activating antioxidant enzymes, activating stress-responsive 
genes, and reducting in levels of malondialdehyde and electrolyte 
leakage (Gamalero and Glick, 2022). Furthermore, plant probiotics 
mitigate the biotic stress via several mechanisms such as the 
production of antimicrobial compounds (antibiotics, antifungal, etc.), 
synthesis of siderophore, volatile compounds (HCN), secretion of 
enzymes having the capacity to disintegrate pathogen cell wall, and 
induction of systematic resistance in plants (Boro et al., 2022). Second, 
the nonfertilizer application is another admirable approach for the 
fertilizer industry, as they are highly efficient in the context of 
controlled release of nutrients (Jakhar et  al., 2022). However, to 
combat the negative impact of environmental stresses a systematic 
application of various nanomaterials such as nanochitosan (Hassan 
et  al., 2021), ZnO NPs (Chanu Thounaojam et  al., 2021), nano-
selenium (Shalaby et al., 2021), AgNPs (Alabdallah and Hasan, 2021), 
and carbon nanotubes (CNTs; Faizan et  al., 2021) have shown 
appreciable contribution in improving crop endurance under abiotic 
stress conditions. Recently, Adil et al. (2022) demonstrated that the 
application of nano-ZnO (0.12 g/pot) significantly increased 
photosynthetic pigments (chlorophyll a and b) contents plant height, 
shoot and spike lengths, root fresh and dry weights, and wheat grain 
yield under salt stress. Under drought stress conditions, nano-
vermicompost application resulted in enhancement in growth, 
mineral uptake, and activation of antioxidant enzymes in tomatoes 
(Ahanger et al., 2021). The foliar spray of nanosilicon restored the 
growth and yield of essential oils of the medicinally important plant 
feverfew (Tanacetum parthenium) under drought conditions (Esmaili 
et al., 2022). Nanoparticles exhibit distinctive qualities in plants due 
to their charge-to-size ratio, such as an improvement in total 
antioxidant status, which lowers levels of harmful chemicals such as 
reactive oxygen species (Abdal Dayem et al., 2017). This, in turn, 
modulates different biochemical and molecular signal transducing 
pathways, resulting in improved signal perception and, as a result, 
increased growth and yield potential (Bhatt et al., 2020). However, 
recent evidence suggests that the coupling effect of plant probiotics 
(PPs) and NMs may play an excellent role in managing abiotic stress 
(Azmat et al., 2022; Muhammad et al., 2022; Alharbi et al., 2022a,b). 
The combo effect of NMs and PPs exhibits various stress ameliorating 
effects by improving levels of photosynthetic pigments, activities of 
antioxidant enzymes, total soluble sugars, and reducing stress markers 
such as MDA content and electrolytic leakage in plants under salt 
stress (Yasmin et al., 2021; Alharbi et al., 2022a) and drought stress 
(Akhtar et al., 2021; Azmat et al., 2022). Recently Etesami et al. (2022) 
deciphered how the combination of nanosilicon and arbuscular 
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mycorrhiza can be a prolific tactic to mitigate environmental stresses 
in crops and achieve sustainable plant productivity. Table 5 illustrates 
the combined effect of NMs and PPs in alleviating environmental 
stresses (salinity, drought, and heavy metal pollution) in plants by 
demonstrating different mechanisms.

Combined integration of NPs and PPs to help plants deal with 
heavy metals and their basic mechanisms involved in the process of 
phytoremediation and soil remediation. Collective use of 
Staphylococcus aureus and ZnO NPs detoxifies the effects of chromium 
on wheat plants and increases its growth, showing a positive impact 
on plant physiological activities and defense system (Ahmad et al., 
2022). Similarly, the joint effect of TiO2 NPs and plant probiotics 
increased T. repens growth in cadmium-contaminated soil and also 
improved the accumulation and uptake of this metal by plant 

(Daryabeigi Zand et  al., 2020a). Furthermore, the simultaneous 
application of nanoscale zero-valent iron (nZVI) and PPs contributed 
to promoting the phytoremediation of Sb (antimony)-contaminated 
soils and significantly increased the accumulation capacity of Trifolium 
repens for Sb (Daryabeigi Zand et al., 2020b). B. subtilis in combination 
with NMs (ZnO and TiO2) controlled powdery mildew disease in 
cucumber plants (Hafez et al., 2020). Moreover, nanoencapsulated 
B. subtilis (Vru1) ameliorated biotic stress by controlling the 
pathogenic fungus R. solani and decreased the severity of the disease 
by 75% (Saberi-Rise and Moradi-Pour, 2020). The nanocomposite 
biofertilizer, which consisted of inclusion complexes of acylated 
homoserine lactone (AHL)-coated Fe–carbon nanofibers and 
endospores of P. polymyxa adsorbed in activated carbon beads, 
demonstrated a good ability to ameliorating effect of biotic stress by 

TABLE 4 Role of combined effects of nanomaterials and plant probiotics in plant growth and development.

Combination of 
nanomaterials and plant 
probiotics

Plant Growth related response on plants References

PGPR (PS2 and PS10) + NMs 

(nanozeolite and nanochitosan; 50 mg/L)

Fenugreek (Trigonella 

foenum-graecum)

 • Significant increase in plant height, leaf number, leaf area and 

fresh weight

 • Enhanced level of total chlorophyll, sugar, soluble leaf protein, 

catalase activity and improvement in soil health

Kumari et al. (2020)

Bacillus spp. + nanozeolite (50 mg/L) Maize
 • Increase in plant height, dry weight, photosynthetic pigments.

 • An increment (29.80%) in maize productivity

 • Enhanced level of antioxidant enzymes, and phenols

Chaudhary et al. (2021b)

Pseudomonas taiwanensis (PC1) and 

Pantoea agglomerans (PC2) + nano-

chitosan

Zea mays  • Enhancement in seed germination

 • Improvement in plant height and photosynthetic pigments
Agri et al. (2021)

Nanochitosan (40 mg/L) + Pseudomonas 

taiwanensis and Pantoea agglomerans
Zea mays

 • Enhancement in plant height, number of leaves, and 

photosynthetic pigments

 • Prominent soil enzymatic activity and improvement in nutrient 

assimilation

Agri et al. (2022)

PGPR + nanosilicon dioxide (10 mg/L) Zea mays

 • Enhancement in average plant height and number of leaves, total 

chlorophyll, carotenoid, sugar, soluble protein, phenol and 

flavonoid content

 • An increase in the activities of fluorescein diacetate, dehydrogenase 

and alkaline phosphatase in soil

Kukreti et al. (2020)

Pseudomonas putida (KX574857) and 

Pseudomonas stutzeri + Ag NPs (5 ppm)
Cucumber  • Enhance in flavonoids level, phenolics, protein, proline, total 

chlorophyll, sugar and PAL activity
Nawaz and Bano (2020)

Nano-Zinc oxide (1 g/L) + Azosprillium Triticale  • Improvement in seed quality, increasing of grain filling period, zinc 

and protein content,
Kamari and Sharifi (2017)

CNPs (5 mg/ml) and AuNPs (100 μg/

ml) + Pseudomonas aeruginosa
Vigna unguiculata  • enhancement effect on the shoot length and fresh weight of plants

Panichikkal and 

Krishnankutty (2022)

Nanocarbon material + Biofertilizer Hordeum vulgare
 • Increment in growth parameters of plants after adding zinc ferrites 

(ZnFe2O4) nanoparticles to the nanomaterials-biofertilisers 

combination

Hadj Alouane et al. (2021)

Pseudomonas monteilii + biogenic gold 

nanoparticles (AuNPs; 50 μg/ml)
Vigna unguiculata  • Enhancement in the production of IAA by P. monteilii in presence of 

NPs and increase in seedling growth
Panichikkal et al. (2019)
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preventing Fusarium wilt of chickpea and root rot of wheat (Gahoi 
et al., 2021).

8. Soil health management through 
the cocktail of nanomaterials and 
plant probiotics

Soil is an absolute medium that supports the life of a range of flora 
and fauna, and provides a better milieu for various microbial activities. 
The belowground region of soil especially contains rhizospheric and 
non-rhizospheric environments (Orozco-Mosqueda et  al., 2022). 
Rhizosphere, on the other hand, can be described as a particularly 
vibrant region due to plant-microbial activities that take part in 
nutrient cycling (Kumawat et al., 2022). Rhizospheric soil harbors to 
a variety of beneficial microbiomes that support plants by displaying 
a range of traits including the solubilization of mineral elements, N2 
fixation, siderophore production, and phytohormone synthesis 
(Mahmud et al., 2021). In addition to this, microbes keep the soil’s 
nutrient levels balanced through processes such as nitrogen fixation, 
solubilization of complex inorganic compounds, and mineralization 
of organic materials (Kaviya et al., 2019). As a result, the soil has a 
sufficient amount of NPK to support both microbial and plant life. The 
synthesis of extracellular enzymes by soil microorganisms, such as 
dehydrogenase, fluorescein diacetate, alkaline phosphatase, and 
β-glucosidase, contributes to the smooth functioning of the soil 

environment. These enzymes also serve as a reflection of the microbial 
activity that takes place in the soil (Kleinert et al., 2018). In addition, 
the generation of EPS by microorganisms is advantageous in terms of 
improving soil structure and soil stability (Costa et al., 2018). Due to 
their extensive roles in soil formation, soil health management, and 
the remediation of contaminated soil, microorganisms are referred to 
as “soil probiotics.” In the current scenario, the application of NMs and 
PPs deciphered a positive impact on soil. Kumari et  al. (2020) 
observed that the application of a combination of NMs (nanozeolite 
and nanochitosan) and PPs increased soil enzymatic activities such as 
FDA, dehydrogenase, and alkaline phosphatase and, therefore, showed 
a growth-stimulating effect on the fenugreek plant. Khati et al. (2017) 
reported that combining two strains of Bacillus sp. with nanochitosan 
enhanced the organic carbon content, potassium content, and 
ammoniacal nitrogen in maize-grown soil. Enzymes that indicate the 
health of the soil, such as dehydrogenase and alkaline phosphatase, 
showed a 2- to 3-fold increase after the application of this combination. 
The study by Kumari et al. (2021) showed that the combination of 
10 ppm NPs (TiO2) and bacterial inoculants improved the enzymatic 
activities (fluorescein diacetate hydrolysis, dehydrogenase, and 
alkaline phosphatase) of the soil under maize cultivation. In addition, 
the combination of nanosilicon dioxide and PPs (Pseudomonas 
taiwanensis and Pantoea agglomerans) improved the pattern in the 
organic carbon, phosphorus, and potassium content of the cultivated 
soil and indicated a 1.5- to 2-fold increase in the activities of soil 
enzymes (dehydrogenase, fuorescein diacetate, and alkaline 

A B

C D

FIGURE 2

(A) Representation of NMs categorized into the following: inorganic-based (metal-based and metal oxide-based), organic NMs (dendrimers, micells, 
and liposomes), carbon-based NMs (carbon nanotubes, graphene, fullerenes, carbon nanofibers, and carbon black), and their approaches of synthesis 
(bottom-up and top-down) with their three physical, chemical, and biological ways of synthesis. (B) The schematization of PPs, especially endophytes 
and rhizospheric PPs, and their screening on various traits such as nutrient solubilization, production of siderophore, phytohormone, EPS, ammonia, 
HCN, ACC deaminase, and biocontrol activity. (C) Determination of compatibility between NMs and PPs, and preparation of their combo, either a 
cocktail of NMs and PPs or the encapsulation of NMs and PPs. Such a combo can be applied by following suitable methods such as seed treatment, 
foliar spraying, soil application, and seedling treatment. (D) Illustration of the agricultural benefits resulting from the application of a cocktail of NMs 
and PPs in terms of improvement in plant growth parameters, alleviation of environmental stresses, and prolific effects on soil health.
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TABLE 5 Prolific effects of a cocktail of nanomaterials and plant probiotics in alleviating various abiotic stresses in plants.

Combination of Nanomaterial 
and Plant probiotic

Plant Abiotic stress 
Condition

Plant responses References

ZnO nanoparticles (NPs; 

150 mg/L) + Azospirillum brasilense
Wheat Drought

 • Enhancement in growth-yield parameters and 

nutrient uptake

 • Increment in level of proline, total soluble sugar, 

photosynthetic pigments, and antioxidant enzymes

Muhammad et al. (2022)

ZnO-NPs (17 mg/L) + biofertilizer Safflower Salinity  • Improvement in the activities of antioxidant enzymes

 • Reduction in intracellular Na + accumulation

Yasmin et al. (2021)

SiO2 NPs (150 mg/kg soil) + Bacillus sp. 

Azospirillum lipoferum and Azospirillum 

brasilense

Wheat Drought

 • Improvement in relative water content (RWC), gas 

exchange attributes, nutrients uptake, and production of 

osmolytes production

 • Upregulation of antioxidant enzymes such as super oxide 

dismutase, catalase and peroxidase

Akhtar et al. (2021)

SiNPs (500 mg/L) + Azotobacter chroococcum 

SARS 10 and Pseudomonas koreensis 

MG209738

Barley Salinity

 • Enhancement in the physiological properties such as 

relative chlorophyll content relative water content 

stomatal conductance,

 • Activation of enzymes related to antioxidative defence 

(SOD, CAT, POX).

 • Mitigation of soil ESP by reducing the content of Na+ and 

oxidative stress

Alharbi et al. (2022a)

ZnO NPs (10 ppm) + Providencia vermicola Luffa acutangula Heavy metal (arsenic) stress

 • Substantial reduction in the ‘As’ bioaccumulation in 

shoots and roots

 • Reduction in the lipid peroxidation and 

electrolyte leakage

 • Increase in photosynthetic pigments, proline content, 

relative water content, total sugars content

Tanveer et al. (2022)

Biofertilizers (Azotobacter, Azosperilium, 

Pseudomonas) + nano Fe oxide (1.5 g/L)

Wheat (Triticum 

aestivum L.)
Salinity  • Improvement in grain yield, chlorophyll content, 

antioxidant enzyme activity, proline and soluble sugars

Babaei et al. (2017)

ZnO-NPs (10 ppm) and Pseudomonas sp. Wheat Heat and drought

 • Enhancement in biomass, photosynthetic pigments, 

nutrients, soluble sugars, protein and indole acetic 

acid content

 • Production of higher proline, antioxidant enzymes, and 

abscisic acid.

 • Marked reduction in electrolytic leakage and 

MDA content

Azmat et al. (2022)

Biogenic molybdenum nanoparticles (MoNPs; 

100 mg/L) + Bacillus sp. strain ZH16
Wheat Arsenic contamination

 • Improvements in morphological features, ionic balance 

and nutrient content of plant

 • Reduction in arsenic accumulation in plant

Ahmed et al. (2022)

Si-NP (12.5 mg/L) + Pseudomonas koreensis 

MG209738 and Bacillus coagulans NCAIM 

B.01123

Sugar beet (Beta 

vulgaris)
Salinity

 • Decrease in oxidative stress indicators (hydrogen 

peroxide and lipid peroxidation) and sodium ions

 • Increment in activities of superoxide dismutase (SOD), 

catalase (CAT) and peroxidase (POX) enzymes,

Alharbi et al. (2022b)

ZnO-NPs (20 mg/kg) + B. fortis IAGS-223 Cucumis melo Heavy metal (cadmium) stress
 • Modulation in the activity of antioxidant enzymes

 • Decrease in the amount of stress markers (such as H2O2, 

and MDA)

Shah et al. (2021)
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phosphatase; Kukreti et  al., 2020). As the extensive use of 
agrochemicals has led to a decline in soil quality, an alternative 
nanobiofertilizers-based strategy can restore soil quality and increase 
the population of beneficial microbiota. Recent research by Chaudhary 
et al. (2022b) demonstrated an increase in the microbial population 
in soil treated with NMs (nanozeolite and nanochitosan) and Bacillus 
sp. Application of NM should maintain adequate soil microbial 
population as microbial diversity maintains the elegance of soil 
fertility level. Through a high-throughput sequencing approach, Khati 
et al. (2019b) determined the positive impact of nanozeolite on the 
survival of bacterial populations associated with nutrient cycling and 
residue degradation.

Although microbial use is usually environmentally acceptable, the 
combined use of effective microorganisms and nanomaterials is 
beneficial for improving agricultural production. However, 
nanoconjugates have not yet been fully determined in the context of 
environmental concerns. Nanobioferilizers are comparatively less 
toxic than traditional fertilizers, and very few studies have been 
reported to decipher the risk associated with the nanomaterial portion 
of nanobiofertilizer disturbing soil structure and soil microbial 
activities. Following the nanobiofertilizer application, the 
nanocomponents are released into the environment and can reach or 
drain into the soil depending on the type of soil and its properties 
(Sambangi et al., 2022). NMs, in soil, may show toxic effects on plant 
growth-promoting microbes, especially nitrogen-fixing bacteria and 
mineral-solubilizing bacteria, and thus a consequent shift in the 
bacterial community can affect the functioning of the local soil 
ecosystem (Chavan et al., 2020). Most NPs based on metal and metal 
oxide can show the highest degradative effect against microorganisms 
due to their toxic effects by affecting cell membrane architecture, 
enzymatic and metabolic activities, and nutrient availability, which 
ultimately results in microbial death (Kumar et al., 2018; Upadhayay 
et al., 2019). Recent studies have illustrated the destructive effects of 
NMs on soil microorganisms involved in various important activities. 
Ma et al. (2023) showed that the application of elevated levels of CO2 
(590 μmol mol−1) and titanium dioxide NPs disrupted soil bacterial 
activities involved in the nitrogen and carbon cycles. The beneficial 
contribution of NMs glimpses as their application allows slow and 
sustained release of nutrients, supporting plant growth while 
conserving the diversity of the beneficial microbiome. Their toxicity 
can be attributed to their physical properties, and the ambiguous dose 
and structure of the exposed microbial community (Chhipa, 2021). 
Table 6 depicts the negative consequences of using metal and metal 
oxide-based NMs. An increasing number of researchers are focusing 

on this problem. Acquired results show contradiction; some authors 
illustrated evidence of safer use of NMs, while some researchers 
reported significant risk (Kolesnikov et  al., 2019). However, the 
following points can be considered for the safer use of NMs with lesser 
toxic effects on the environment, such as (a) an eco-nanotechnological 
study for massively producing NMs due to nanotechnological 
advancement; (b) a proper and adequate characterization of NMs on 
physical and chemical basis and evaluation of environmentally safe 
exposure doses of NMs before their widespread applications; (c) 
proper monitoring and risk assessment of NMs use; (d) a 
comprehensive assessment to decipher the impact of NM as soil 
pollutants and their potential destructive behavior on soil microbial 
diversity and their functions.

9. Nanoencapsulation of plant 
probiotics: How can it shape crop 
growth?

Nanoencapsulation research is being increased in the last few 
years in response to the rising need for PPs (Nayana et al., 2020; Saberi 
Riseh et al., 2022b). Such kind of formulation can address the issues 
of free-form formulations of PPs (Bala, 2022). Nanoencapsulation can 
improve the efficacy of PPs by extending their shelf life and providing 
a controlled release of bio-component (Pour et  al., 2019). After 
inoculation, several factors affect the competency of PPs in the natural 
environment in terms of ineffective colonization of plant roots by 
applied microbial inoculant, lesser microbial activity in the 
rhizospheric milieu, and decline in microbial population (Ahmad 
et al., 2011; Khare and Arora, 2015). Since a minimum number of 
inoculant cells (106 and 107) is a critical factor in deciding the positive 
impact on plants (de Moraes et al., 2021). Thus, PPs need suitable 
physical protection for an extended period. As a novel approach, the 
nanoencapsulated PPs is providing a better platform for enhancing 
crop growth and amelioration of abiotic and biotic stresses 
(Ravichandran et  al., 2022; Saberi Riseh et  al., 2022a). The 
nanoencapsulation provides stability and reproducibility of entrapped 
PPs by enhancing their resistance to UV radiation, heat, and 
desiccation (Balla et  al., 2022). Encapsulating nanoparticles with 
biofertilizer is a step in the production of nanobiofertilizer. The 
encapsulation of biofertilizers and biocontrol agents works well in 
biopolymer-based nanocomposites (Akhtar et al., 2022). In addition, 
nanoencapsulation prevents bacterial strains from mechanical stress 
and lowers nutrient release, which further increases the efficacy of this 

TABLE 6 Negative impacts of metal and metal oxide-based NMs on soil microbes and soil activities.

S. No. Types of Nanomaterial(s) Associated negative impact(s) References

1 CuO NPs Decline in soil microbial biomass in flooded paddy soil Xu et al. (2015)

2 ZnO NPs
Reduction in CO2 emission, carbon (130%) and nitrogen mineralization (122%) efficiency 

from the from Phoenix dactylifera leaf litter in sandy soil.
Rashid et al. (2017)

3 CuO NPs Inhibition of denitrification process and electron transport system activity Zhao S. et al. (2020)

4 Pristine and sulfidized ZnO NPs
Drastic impacts on bacterial communities and metabolite profile in rhizo-compartment of 

soybean
Chen et al. (2023)

5 High dose of ZnO NPs
Decrease in number of bacteroids and nodules, and relative abundance and diversity of the 

soil microorganisms
Sun et al. (2022)

6 Cu and Zn NPs Decrease in abundance of Azotobacter genus in soil Kolesnikov et al. (2019)
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product (Kumari et al., 2020). Biofertilizer cells are incorporated into 
the nanomaterial capsule by a process called encapsulation, and this 
involves the application of non-hazardous, biodegradable materials 
such as starch and calcium alginate (Vejan et al., 2019; Akhtar et al., 
2022). Three crucial steps are involved in the production of 
nanobiofertilizers: (1) the growth of culture for biofertilizer, (2) the 
encapsulation of culture with nanoparticles, and (3) the assessment of 
its efficacy, quality, purity, and shelf life (Akhtar et  al., 2022). 
Microcapsules can also be  used to make nanobiofertilizer. Its 
production includes mixing PGPR suspension in a 2:1 ratio with a 
solution of 1.5% sodium alginate, 3% starch, and 4% bentonite 
(Akhtar et al., 2022; Pour et al., 2022). After washing the microcapsules 
in sterile distilled water, the mixture is covered with the crosslinking 
calcium chloride solution (Adjuik et al., 2022).

Salicylic acid and nanoparticles have also been combined to form 
a nanobiofertilizer (Gupta et al., 2019). This technique involves mixing 
the biofertilizer with sodium alginate (2%), ZnO NPs (1 g/ml), and 
salicylic acid (1.5 mM). Then, 1-mm beads are prepared, shaped, and 
air-dried in the solution before incubating at 4°C with calcium 
chloride (3% solution; Panichikkal et al., 2019; Akhtar et al., 2022).

Pseudomonas sp. (DN18) entrapped in the alginate beads along with 
the salicylic acid and the ZnO NPs demonstrated antifungal activity 
against Sclerotium rolfsii and showed superior plant growth-promoting 
activity on Oryza sativa seedlings compared to the free-living bacterial 
strain (Panichikkal et  al., 2021). Nanoencapsulation of P. fluorescens 
(VUPF5) and B. subtilis (VRU1; using silica nanoparticles and carbon 
nanotubes) and their metabolites improved pistachio micropropagation 
via a significant enhancement in the root length and proliferation (Pour 
et al., 2019). Nanoencapsulated Bacillus subtilis (VRU1) prepared with 
sodium alginate, starch, and bentonite have shown effectiveness in 
controlling the proliferation of Rhizoctonia solani and increased the bean 
vegetative growth parameters (Saberi-Rise and Moradi-Pour, 2020). 
“Sodium alginate–gelatin microcapsules” containing nanomaterials (SiO2 
and carbon nanotubes) and PPs Bacillus velezensis demonstrated 
synergistic suppression of pathogens (Phytophthora drechsleri) in Pistacia 
vera L. (pistachio; Moradi Pour et al., 2022). The study by De Gregorio 
et  al. (2017) exhibited the nanofiber-immobilized rhizobacteria 
(P. agglomerans and B. caribensis) prepared by electrospinning and 
observed its efficiency as seed bioinoculant in terms of improving the 
length of root, dry weight of root and shoot, leaf, and the number of 
soybeans. The bacteria (Pseudomonas stutzeri) encapsulated in the coating 
composed of N-hydroxysuccinimide (NHS)-modified poly γ-PGA and 
Ca ions exhibited remarkable resistance against harsh conditions and 
showed better plant growth potential (Yang et al., 2021).

10. Cocktail of nanomaterials and 
plant probiotics: Understanding in the 
context of the bioeconomy

The concept of the bioeconomy is well described in the context of 
biofuel production (Zilberman et al., 2018), but the role of agriculture 
is also justified in strengthening the bioeconomy (Upadhayay et al., 
2022c). In the context of agriculture, the bioeconomy can be described 
as improving crop productivity through the use of various resources. 
Indeed, innovations in life sciences, agriculture, biotechnology, and the 
evolving wisdom in these sectors provide the ultimate ground for 
sustainable production and sustain a stable bioeconomy. The lack of 
essential nutrients in the soil poses significant problems for farmers due 

to several factors including intensive and poor farming practices 
(Elbasiouny et al., 2022). In addition to these factors, soil types and 
different agroclimatic conditions at different altitudes are common 
features that contribute to declines in crop growth and production, and 
adversely affect the socioeconomics of farmers (Sivakumar, 2021; 
Upadhayay et al., 2022c). Various ways of soil nutrient management are 
used, such as the use of chemical fertilizers, which reduces soil fertility, 
have a detrimental impact on local soil microbial ecology, and cause 
health problems for consumers. The production of agrochemicals by 
various manufacturers around the world is effective and beneficial in 
increasing crop productivity, but it is more expensive and not ideal for 
underprivileged farmers. However, a variety of techniques (agronomic, 
breeding, and genetic modifications) are used to improve the nutrient 
content and yield of plants (Ahmar et al., 2020). On the other hand, in 
areas with a predominantly rural population, these methods are seen as 
both lucrative and undesirable. In addition, these crop yield-increasing 
techniques are not consumable as they require more effort and technical 
skill. In addition, the quality of the harvested commodities must be high 
so that farmers may sell them for a reasonable price. However, the use 
of nanotechnology has advanced agriculture, and nano-based fertilizers, 
insecticides, and herbicides are being used to protect and produce crops 
in a prodigious manner (Chand Mali et al., 2020). An increase in gain 
yield has the potential to play a significant job in the improvement of 
the bioeconomy. Babaei et al. (2017) reported a 17.40% increment in 
the grain yield of wheat by the application of nano-Zn–Fe oxide in 
comparison to the control. The nano-urea treatment (3 g/kg) exhibited 
maximum biological yield (332.7 g/bag) and economic yields (283.1 g/
bag) at the third flush (Naim et al., 2020). On the other hand, PPs as 
potential biostimulators showed the highest grain yield in various crops 
such as wheat (between 9.6 and 29.29%) by Bacillus sp., (Öksel et al., 
2022), rice (3.35 t/ha) by B. subtilis and B. megatherium strain (Abd 
El-Mageed et al., 2022), and maize (5,880 kg/ha) by P. putida (Mubeen 
et al., 2021). However, in recent years, the combined application of NM 
and PP has led to a breakthrough in the agricultural sector, especially 
in terms of increasing crop yield (Akhtar et  al., 2022). Combined 
application of plant probiotics (Azotobacter) and nano-Zn–Fe oxide 
showed an 88% increase in wheat grain yield compared to water-
restricted conditions (Seyed Sharifi et al., 2020). Hafez et al. (2021) 
observed that the synergy of rhizobacteria and 500 mg SiNPs per liter 
showed an increase in maize yield (6325.4 kg/ha) and also improved 
nutrient uptake such as NPK in plants. This synergistic strategy of 
utilizing microbes and nanomaterials is described in this article as an 
ecologically sound solution to optimize plant growth and yield. The use 
of agrochemicals is reduced in this way, and the combined use of NM 
and PP will significantly increase crop yield. Thus, the detection, 
characterization, and competence of PPs as prospective bioinoculants 
and as a synergistic partner of suitable NMs for improving yield appears 
to be promising goals in order to (i) in vitro evaluation of PPs from 
rhizospheric soils of plants and selection of cultivable microorganisms 
on the basis of multifarious plant growth-promoting traits, (ii) 
determination of the compatibility of a prospective PPs strain with 
suitable nanocompounds, (iii) improvement in the overall productivity 
of crops under the application of a cocktail of PPs and NMs, (iv) 
evaluating uptake and density of nutrients in different plant parts to 
illustrate the quality of crop harvest, (v) analyzing the soil health and 
dynamics of the inoculated bacterial population from field plots and 
conserving proficient microbial pools for future use, and (vi) ultimately 
reducing reliance on agrochemicals showing harmful impacts.
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11. Future prospects for 
nano-biofertilizers: A roadmap

Sustainable agricultural practice can be  represented as the 
coordinated action of abiotic and biotic factors to maintain the 
stability of agricultural production and soil nutrient balance. 
Nonetheless, the benevolent effect of PPs supports plant growth in a 
very harmless way and, hence, it is included as a main choice for use 
in agricultural applications. The incorporation of nanotechnology is 
both modernizing agriculture and winning consumer acceptance as 
nano-based fertilizers (Xin et al., 2020). However, the coming decade 
is eagerly waiting to further design the technology of combined 
application of NMs and PPs in the agricultural sector. The 
encapsulation of both PPs and NMs has the unique property of 
showing productiveness in the context of a smart farming system to 
improve crop yield, plant-derived food quality, and nutritional value 
of plant-based products.

The core agricultural sector needs attention in the future and may 
require the following ways to effectively apply the combination of 
NMs and PPs.

 • The properties of NMs such as size, surface chemistry, structure, 
dose, and toxicity should be carefully monitored.

 • Novel analytical methods are needed to develop NMs with 
unique properties, their detection, validation, effects under field 
conditions, and associated toxicity.

 • Establish guidelines for the responsible use of NM in agriculture 
and a roadmap to reduce the risk of using nano-based products.

 • The compatibility of PPs with target NMs must be established 
when NMs are used as a synergistic component of PPs.

 • As a variety of environmental factors affect the microbial 
population in the soil, a PPs strain with the ability to survive 
under diverse stress conditions should be  selected for 
subsequent application.

 • The combined application of NMs and PPs should preserve the 
local microbial community and must not be detrimental to the 
soil ecology. The technology for the development of 
nanobiofertilizers has a significant impact on agricultural yields; 
therefore, the knowledge related to the effective application of 
nanobiofertilizer should be communicated from researchers to 
authorities and industrial sectors.

 • A new venue for discussion needs to be established, and it should 
be used to discuss the significant impact that nanobiofertilizers 
have on agriculture, the economy, and human life.

 • The performance of novel nano-based materials or products 
should be compared to that of previously formulated products.

 • Multiple field studies should be conducted at diverse sites to 
evaluate the performance of created nanobioformulations in 
terms of their efficacy and environmental impact.

12. Conclusion

Improving food-based crop production is the primary need 
for a rapidly growing world population. This goal can be achieved 
through strategies that use agriculturally important microbe and 
nanomaterial-based fertilizers without relying heavily on 

agrochemicals. The abundant scientific literature supports the 
effectiveness of using NMs and microorganisms as PPs in 
improving plant growth, ameliorating environmental stresses, 
and improving soil health. In recent years, however, scientists 
have been keenly interested in investigating the synergistic effects 
of NMs and PPs in agriculture to maximize crop yields and 
maintain soil health. In this cocktail of NMs and PPs, 
nanomaterials serve as effective sources of nutrients for plants, 
while PPs stimulate plant growth, therefore serving as natural 
crop vitalizers. According to the recent literature, the synergistic 
effect of NMs and PPs has played a promising role in achieving 
the following target: (a) maximization of crop productivity and 
crop quality, (b) assurance of food security for the rapidly 
escalating global population, (c) amelioration of the drastic 
effects of various environmental stresses such as drought, salinity, 
and cold, as well as biotic stresses, (d) maintenance of soil health, 
(e) reduction of the massive reliance on chemical-based 
fertilizers, and (f ) strengthening of the bioeconomy by improving 
grain yield, grain quality, and biomass in a sustainable way 
without showing negative impact on the environment. The 
breakthroughs in nanotechnology have also facilitated the 
inclusion of plant probiotic strains within the ideal nanomaterials 
or the entrapment of both NMs and PPs within a suitable carrier. 
In addition to the controlled and consistent supply of both NMs 
and PPs, this strategy retains the effectiveness and longevity of 
the PPs and exhibits a positive impact on crop productivity. In 
addition, the safe dose of NMs must be  determined from an 
environmental perspective, and a risk assessment must 
be conducted to ensure that NMs are not hazardous to local soil 
microbial populations. In conclusion, the application of NMs and 
PPs in a synergistic manner is demonstrated as an efficient way 
of improving the quality and production of food-based crops and 
strengthening the bioeconomy. Furthermore, detailed 
investigations are also required to develop a customized cocktail 
of NMs and PPs, understanding their controlled and targeted 
delivery as well as their molecular mechanisms in plants, to pave 
the way for sustainable agriculture.
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