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Purpose: During neoadjuvant chemotherapy (NACT), breast tumor

morphological and vascular characteristics are usually changed. This study

aimed to evaluate the tumor shrinkage pattern and response to NACT by

preoperative multiparametric magnetic resonance imaging (MRI), including

dynamic contrast-enhanced MRI (DCE-MRI), diffuse weighted imaging (DWI)

and T2 weighted imaging (T2WI).

Method: In this retrospective analysis, female patients with unilateral unifocal

primary breast cancer were included for predicting tumor pathologic/clinical

response to NACT (n=216, development set, n=151 and validation set, n=65) and

for discriminating the tumor concentric shrinkage (CS) pattern from the others

(n=193; development set, n=135 and validation set, n=58). Radiomic features

(n=102) of first-order statistical, morphological and textural features were

calculated on tumors from the multiparametric MRI. Single- and

multiparametric image-based features were assessed separately and were

further combined to feed into a random forest-based predictive model. The

predictive model was trained in the testing set and assessed on the testing

dataset with an area under the curve (AUC). Molecular subtype information and

radiomic features were fused to enhance the predictive performance.

Results: The DCE-MRI-based model showed higher performance (AUCs of

0.919, 0.830 and 0.825 for tumor pathologic response, clinical response and

tumor shrinkage patterns, respectively) than either the T2WI or the ADC image-

based model. An increased prediction performance was achieved by a model

with multiparametric MRI radiomic feature fusion.

Conclusions: All these results demonstrated that multiparametric MRI features

and their information fusion could be of important clinical value for the

preoperative prediction of treatment response and shrinkage pattern.

KEYWORDS

breast cancer, radiomics, multiparametric MRI, neoadjuvant chemotherapy,
concentric shrinkage
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Introduction

Neoadjuvant chemotherapy (NACT) is routinely used to treat

locally advanced tumors to be operable, allowing for breast-preserving

surgery (1, 2). Patients who achieve pathologic complete response

(pCR) to NACT tend to have improved disease-free and overall

survival compared with patients with residual invasive disease (3–5).

Nevertheless, only a subset (varying from 10% to 25%) of the patients

achieved pCR after NACT, as reported by a larger meta-analysis with

3776 patients (6). Therefore, predicting the response to NACT before

treatment is important for the accurate management of breast cancer.

During NACT, breast cancers can also show different

regression/shrinkage patterns that are associated with breast

cancer treatment outcomes (7). Tumor concentric shrinkage (CS)

is associated with good survival in low-grade breast cancer (8) and is

regarded as a more suitable marker than pCR to choose candidates

for breast-conserving surgery (1). Therefore, the preoperative

identification of patients who have a sufficient response to NACT

and how the tumor changes during treatment are indispensable in

guiding chemotherapy and surgical treatment (9).

Existing studies have attempted to predict the tumor response

to NACT before treatment using a magnetic resonance imaging

(MRI)-based predictive model (10–12). Radiomics extracted from

DCE-MRI was used to predict tumor response in breast cancer (13–

15). In addition to DCE-MRI, T2-weighted imaging (T2WI) and

apparent diffusion coefficient (ADC) derived from diffuse weighted

imaging (DWI) are also used as predictors for evaluating NACT

responses (16, 17).

To increase the prediction accuracy, multiparametric MRI (DCE-

MRI, T2WI and ADC) features were analyzed and/or combined (18–

20). Specifically, DCE-MRI and T2WI radiomics were implemented,

which showed that tumor morphologic and quantitative enhancement

kinetics can increase the specificity in predicting breast cancer

treatment responses (21). Texture analysis of tumors from T2WI

and ADC has been conducted for predicting recurrence in breast

cancer patients treated with NACT and surgery (22). The addition of

histological information of hormone receptor status, Ki-67 index, and

MRI variables with radiomics were also used, which showed enhanced

discrimination power in predicting tumor response (23).

Despite these advances, how multiparametric images correlate

with the tumor response to NACT and the shrinkage pattern still

need to be explored. In this study, we sought to enhance the

prediction of tumor shrinkage patterns and responses after full

cycles of treatment by using radiomics from multiparametric MR

image maps and to comprehensively investigate the effectiveness of

various parametric images in prediction.
Materials and methods

Patients

This retrospective study, which was approved by the

Institutional Review Board, initially included 656 female
Abbreviations: CS, Concentric shrinkage; NACT, Neoadjuvant chemotherapy.
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unilateral breast cancer patients. A total of 216 and 193 unilateral

unifocal primary breast cancer patients remained for evaluation of

response to NACT and shrinkage pattern (Figure 1) after the

selection with an exclusion criterion as follows: 1) surgery or any

other treatment before chemotherapy (n=295); 2) at least one of the

images among DCE-MRI, T2WI and DWI was missing (n=36); 3)

no preoperative image before the initial chemotherapy (n=66); and

4) histopathologic information for residual tumor size was not

available (n=43). Additionally, 23 samples were further excluded

from the tumor shrinkage pattern analysis dataset because the

follow-up data during treatment were not available for

determining the type of shrinkage.
Treatment response evaluation

All patients underwent standard NACT treatment with six to

eight cycles of taxotere–epirubicin–cyclophosphamide (TEC)

regimen (24). The duration of the NACT is about 4 or 5 months,

and the time interval between the treatments is approximately 20

days. The pCR to NACT was defined as the absence of residual

cancer in the surgical specimen. After NACT, 25 patients achieved

pCR and 191 patients were non-pCR.

Tumor clinical response was evaluated by monitoring the

changes in the longest diameter (LD) of the tumor and kinetic

features proposed in the Response Evaluation Criteria in Solid
FIGURE 1

Flow chart of patients included and excluded in tumor pathologic/
clinical response and shrinkage pattern datasets.
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Tumors (RECIST) 1.1 guidelines, which are widely used as

recommended tumor measurements (25). According to these

guidelines, patients were categorized as having a complete

response (CR), partial response (PR), stable disease (SD), or

progressive disease (PD). A PR was defined as at least a 30%

decrease in the longest tumor diameter (LD). PD indicated an

increase of less than 20% or a decrease of less than 30% in the LD.

After the completion of the whole treatment procedure, 34 patients

achieved CR, 156 achieved PR, one achieved PD and 25 achieved

SD. Similar to a previous study, clinical responders (n=190) were

defined as PR and CR, and non-clinical responders were defined as

PD and SR (n=26) (13).

For tumor shrinkage evaluation, the pattern of shrinkage by

NACT can be categorized as CS and non-CS (8). The CS pattern

was defined as 1) only reduced tumor size and no small mass

surrounding the main tumor or only small foci (less than 5 mm)

surrounding the main tumor (26) and 2) CR after treatment. The

non-CS pattern was defined as a tumor with 1) diffuse decrease; 2)

decrease in intensity only; and 3) no change or enlargement (i.e., PD

or SD). Patients in the tumor shrinkage dataset (n=193) were

grouped as CS (n=166) and non-CS (n=27).
MRI acquisition

All patients received preoperative MRI examinations in a prone

position using a 3.0 T scan system (Siemens Medical Systems,

Erlangen, Germany) with a dedicated eight-channel breast array

coil. Fat-suppressed bilateral sagittal three-dimensional T2WI, DWI

and DCE-MRI were acquired for each patient. For DCE-MRI, one

precontract image (S0) followed by five postcontrast images (from S1

to S5) was obtained after injection of contrast agent with a bolus of

0.1 mmol/kg gadobutrol at a rate of 2 mL/second. The time interval

between the precontrast and postcontrast image series was 60

seconds. ADC maps were generated from DWIs at b values of 50

and 1000 s/mm2. Detailed MR imaging parameters for DCE-MRI,

DWI and T2WI are illustrated in Supplementary Table 1.
Image preprocessing

Image normalization was performed and the pixel value was

mapped to a fixed gray area ranging from 0 to 800. A fuzzy C-mean

clustering method was used to segment the tumor region of interest

(ROI) on DCE-MRI at the intermediate postcontrast series that

usually has the highest enhancement to facilitate visual inspection

(27). To minimize segmentation errors, the obtained tumor ROI

was examined and manually corrected by our investigator.

Thereafter, the generated tumor ROI on the DCE-MRI was

aligned to the DWI with a b value of 50 and the T2WI map using

the Statistical Parametric Modeling toolbox version 12 (SPM12)

platform (http://www.fil.ion.ucl.ac.uk/spm/software/spm12). The

aligned tumor ROI in DWI was mapped to the ADC image. The

precontrast (S0) and first to fifth postcontrast images (termed S1 to

S5) were obtained. The subtraction maps, namely, the subtraction

between the first, second, third and fifth postcontrast images and S0
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(termed S10, S20, S30 and S50, respectively) and that generated by

subtraction between the fifth and second postcontrast images

(termed S52), were analyzed.
Radiomic feature analysis

Radiomic features (n=102) were extracted from each image

series using the publicly available software package pyradiomics

(28). These features include morphologic (n=14), first-order

statistics (n=18), and texture features (n=70). Specifically, texture

features include the gray level cooccurrence matrix (GLCM)

(n=24), the gray-level run-length matrix (GLRLM) (n=16), the

gray-level size-zone matrix (GLSZM) (n=16) and the gray-level

spatial dependence matrix (GLDM) (n=14)-based features. A

detailed list of the features is illustrated in Supplementary

Table 2. Tumor radiomics was extracted on the DCE-MRI series

(from S1 to S5), the subtraction maps (S10, S20, S30, S50 and S52)

and the ADC and T2W images.
Pathological examination

The status of the estrogen receptor (ER), progesterone receptor

(PR), human epidermal growth factor receptor (HER2), and Ki-67

expression level was acquired by using streptavidin-peroxidase (SP)

immunohistochemistry (29). Hormone receptor (HR) positivity

was determined as ER- or PR-positive, and negativity was defined

as both ER- and PR-negative. Ki-67 expression levels greater than

14% were determined to be positive. Breast cancer subtypes were

determined as follows: luminal A, HR positive and HER2 negative

and low Ki-67 expression level; luminal B, HR positive and either

HER2 positive or HER2 negative with high levels of Ki-67; basal

like, HR negative and HER2 negative; and HER2-enriched, HR

negative and HER2 positive.
Statistical analysis

The differences in the categorized variables, i.e., the histological

characteristics between the groups (pCR and non-pCR; CS and

non-CS groups; clinical response and non-clinical response), were

evaluated using a c2 test. The difference between the continuous

values, i.e., age, was evaluated using analysis of variance (ANOVA).

Each molecular subtype information was binarized, which was one

if it was a particular subtype and zero if it was any other subtype.

A recursive feature elimination (RFE) method was used to rank

the features that were most relevant to the target with a random

forest model used as a base classifier. The ranked features were then

sequentially added into the predictive model, in which the

parameters were tuned using a grid search method with a 10-fold

cross-validation (CV) framework. The importance of the image

features in the predictive model was assessed by using the mean

decrease in the Gini score of the random forest over all the

CV loops.
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Thereafter, the tuned model parameters with the optimal

feature subset were used to establish a predictive model using all

the samples in the training set. The model performance was

assessed on the testing set with an area under the receiver

operating characteristic (ROC) curve (AUC).

We have also provided the model performance evaluation by

using a nested five-fold CV. Specifically, the inner loop was used to

optimize model parameters of the random forest using grid search

under ten-fold CV on the training data, while the outer loop

produced a prediction score for the testing data. The DeLong test

was used to compare the AUCs. The sensitivity and specificity were

calculated for the ROC curve by using the Youden index to

maximize their summation. P values less than 0.05 were

considered significant. Statistical analysis and machine learning

methods were performed using R (version 4.0) and MATLAB

(MathWorks, Natick, Massachusetts, version 2018 b).
Results

Patient characteristics

Patient characteristics regarding the pathologic response,

clinical response and tumor shrinkage pattern are illustrated in

Table 1 and Supplementary Tables 3 and 4, respectively. For the

pathologic or clinical response dataset (n=216), samples were

separated into a development (n=151) and a validation (n=65)

set. The tumor shrinkage pattern dataset (n=193) was also separated

into development (n=135) and validation (n=58) datasets.

From Table 1 and Supplementary Table 3, there was no

significant association between tumor NACT responses

(pathologic and clinical responses) and the patient histological

characteristics, including age, family history, menopausal status,

maximum tumor diameter, PR status, ER status, HER2 status, Ki-67

status, molecular subtypes, and lymph node status. Moreover, no

significant differences in these features were observed between the

CS and non-CS groups. A significant association between the CS

pattern and the tumor response was observed with a p value of 0.02.
Individual parametric MRI radiomic analysis

Individual features associated with the tumor response and

shrinkage pattern to NACT were assessed for DCE-MRI series/

subtraction images and T2WI and ADC images. The higher voxel

volume and the maximum 2D diameter were associated with the

non-pCR and non-CS patterns of the tumor during treatment

(Figure 2; Supplementary Figure 1, respectively). For DCE-MR

image series or maps, individual radiomic features obtained from

the subtraction images, particularly the S50 and S30 maps, are

better than those obtained using the precontrast (S0) image. For

parametric images other than DCE-MRI, radiomics from T2WI is

relatively better than that from ADC images.

Figure 3 shows an example of a texture feature (dependent

variance) calculated from the subtraction image between the fifth

and second postcontrast images (S52). A high level of this feature
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was significantly (p=0.002) correlated with the CS pattern.

Moreover, a similar pattern of higher values in the clinical

responders than in the non-clinical responders (p=0.004) was

observed for this feature. In other words, a higher dependent

variance value in terms of tumor heterogeneity is associated with

a good response to NACT or CS. The T2WI-based dependence

variance feature was also significantly higher in responders than in

non-clinical responders (p=0.008) or higher in the CS pattern and

non-CS pattern (p=0.003) (Figure 4).

Examples of the distributions of multiparametric image features

in shrinkage patterns and treatment responses before treatment and

after NACT are illustrated (Figure 5). Figure 5A shows an example

of a patient with PR to NACT and a CS pattern, while Figure 5B

illustrates a patient with nonresponse to treatment and diffuse

decrease during NACT. A higher level of the difference variance

value was observed in the clinical response/CS patient (37.3 and

41.6 for DCE-MRI and ADC images, respectively) than in the

diffuse decrease/non-CS patient (31.2 and 35 for DCE-MRI and

ADC images, respectively). Additionally, the high value of the 10th

percentile tumor ADC in this patient was associated with a good

response/CS pattern to NACT.
Single parametric image-based
predictive model

Radiomics from single parametric images was combined to

establish predictive models. DCE-MRI series along with their

subtraction maps and the T2WI and ADC images were assessed

in the validation set separately (Table 2). Regarding DCE-MRI, the

image subtraction-based predictive model had overall better

prediction performance than that based on the original image

series. Among these, the predictive model using the S50 image

had the highest predictive performance for separating patients with

pCR from those with non-pCR. The predictive model using the S52

image had the highest prediction performance for tumor clinical

response (AUC=0.811, sensitivity of 0.654 at specificity of 1.0), and

for tumor shrinkage prediction (AUC = 0.805, sensitivity of 0.820 at

specificity of 0.750).

The T2WI-based model achieved an AUC of 0.741 for

predicting tumor shrinkage pattern and AUCs of 0.732 and 0.752

for the prediction of pathological and clinical responses to NACT,

respectively (Table 3). The predictive model using radiomics from

ADC had a relatively lower prediction performance, with AUCs of

0.625, 0.719 and 0.715 for the prediction of tumor pathologic

response, clinical response and shrinkage pattern to NACT,

respectively (Table 3).
Multiparametric image feature
fusion-based prediction

Radiomics from the DCE-MRI series and multiparametric

images were used and feature selection was performed. The

models were evaluated in the validation set, which generated

AUCs of 0.919, 0.830 and 0.825 for tumor pathologic response,
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TABLE 1 Patient characteristics in the tumor pathological response prediction dataset.

Characteristics All (n=216)

Development Set (n=151) Validation Set (n=65)

pCR
(n=17)

Non-pCR
(n=134)

P Value* pCR
(n=8)

Non-pCR
(n=57)

P Value*

Age (y) 0.907a 0.522a

Range 26-67 27-65 26-65 37-60 34-67

Median 49 48 49 49 51

Mean ± std 49.3 ± 8.7 48.7 ± 8.5 48.9 ± 8.3 48.3 ± 7.2 50.2 ± 9.8

Family history 0.239c 0.655c

No 167 (77%) 11 104 6 46

Yes 49 (23%) 6 30 2 11

Menopausal status 0.114b 1.000c

Pre 114 (53%) 13 71 4 31

Post 102 (47%) 4 63 4 26

Maximum tumor diameter (cm) 0.313a 0.594a

Range 0.5-14.5 1.6-7.0 1.8-14.5 2.2-7.5 0.5-8.3

Median 3.7 3.5 3.7 4.1 3.4

Mean ± std 4.1 ± 1.8 3.8 ± 1.5 4.2 ± 1.9 4.1 ± 1.9 3.7 ± 1.5

Progesterone receptor 0.370b 0.958c

Positive 111 (51%) 7 75 3 26

Negative 105 (49%) 10 59 5 31

Estrogen receptor 0.524b 1.000c

Positive 133 (62%) 9 86 5 33

Negative 83 (38%) 8 48 3 24

Human epidermal growth factor receptor 2 0.117c 1.000c

Positive 83 (38%) 10 45 4 24

Negative 117 (55%) 6 78 4 29

Unknown 16 (7%) 1 11 0 4

Ki-67 0.738c 1.000c

High 184 (85%) 15 109 8 52

Low 32 (15%) 2 25 0 5

Molecular subtypes 0.200c 1.000c

Luminal A 20 (9%) 0 18 0 2

Luminal B 119 (55%) 9 73 5 32

Basal-like 41 (19%) 3 25 2 11

HER2 36 (17%) 5 18 1 12

Lymph node 0.002c 0.372c

Positive 168 (78%) 8 110 5 45

Negative 48 (22%) 9 24 3 12
F
rontiers in Oncology
 05
 fro
*P value for clinical response versus non-clinical response comparison. aThe data were tested using a t test; bThe data were tested using the chi-squared test. cThe data were tested using Fisher’s
exact test.
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clinical response and tumor shrinkage patterns, respectively

(Table 3). When the features from the multiparametric images

were combined with feature selection, the model generated a better

performance in terms of AUCs of 0.943, 0.919 and 0.905 for these

three tasks. The multiparametric image-based predictive model was

significantly better than that based on T2WI in the prediction of

tumor pathological and clinical response to NACT (p=0.009 and
Frontiers in Oncology 06
p=0.039, respectively). Thereafter, molecular subtype information

was included as an additional feature along with features from

ADC, T2WI and DCE. For tumor pathologic response prediction,

the addition of luminal A, luminal B, HER2 and basal-like tumors

generated AUCs of 0.954, 0.934, 0.952 and 0.950, while for tumor

clinical response prediction, the AUCs were 0.948, 0.926, 0.913 and

0.914, respectively. For the tumor shrinkage pattern, the
B

C D

E

F

A

FIGURE 3

Texture feature of dependence values for discriminating concentric shrinkage (CS) pattern/response and non-CS shrinkage pattern/nonresponse
tumors. This texture feature was calculated from the image subtraction between the fifth and the second postcontrast image series (S52). A 64-
year-old woman with cancer in the left breast at (A) pretreatment and (B) posttreatment S52 image who responded well to chemotherapy with a CS
pattern. A 65-year-old woman with cancer in the right breast at (C) pretreatment and (D) posttreatment S52 who had a poor response to
chemotherapy with a non-CS pattern. The boxplot shows a significantly higher dependence variance feature value in the (E) clinical responder group
than in the non-clinical responder group, and the same higher value was observed (F) in patients who were CS than in non-CS.
FIGURE 2

Individual feature performance for predicting pathologic response to neoadjuvant chemotherapy. The bar plot is drawn on the right side if a higher
value was observed in pCR than in non-pCR, while the bar plot is drawn on the right side if the opposite was true. S10, S20, S30 and S50 represent
the subtraction map between the first, second, third and fifth postcontrast images and precontrast image. S52 represents subtraction between the
fifth and second postcontrast images.
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B

A

FIGURE 5

Illustration of the imaging features at pretreatment MRI and post NAC images. From the left to the right columns, the maximum intensity projection
(MIP) at the first and third precontrast image series of the DCE-MRI, the third postcontrast image, the T2WI and ADC images are shown. (A) An
example of a 47-year-old woman who had a good response to NACT and a concentric shrinkage (CS) pattern at preoperative and postoperative MRI
examination. (B) An example of a 42-year-old woman who had a poor response or nonconcentric shrinkage pattern during NACT. The gray level
dependence matrix (GLDM)-based dependence variance values from DCE and T2WI were 37.3 and 41.6, respectively, for the response and CS
patients and 31.2 and 35.0, respectively, for the nonresponse and non-CS patients. The ADC values of the 10th percentile were 717 and 474 for the
response/CS and the nonresponse/non-CS patients, respectively. FV, feature value.
B

C D

E

F

A

FIGURE 4

Texture feature of dependence variance feature at T2 weighting imaging (T2WI) for discriminating concentric shrinkage (CS) pattern/
response and non-CS shrinkage pattern/nonresponse tumors. A 40-year-old woman with cancer in the right breast at (A) pretreatment and
(B) posttreatment T2WI who has a good response to chemotherapy with a CS pattern. A 48-year-old woman with cancer in the left breast at
(C) pretreatment and (D) posttreatment T2WI who had a poor response to chemotherapy with a non-CS pattern. The boxplot shows a
significantly higher dependence variance feature value in the (E) clinical responder group than in the non-clinical responder group, and the
same higher value was observed (F) in patients who were CS than in non-CS.
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performances for the three tasks were improved while separately

adding the four molecular subtypes with AUCs of 0.912, 0.905,

0.893 and 0.900. Among the four molecular subtypes, the inclusion

of the luminal A subtype showed an optimal increment in the

predictive model performance (Figure 6).

Feature importance in the multivariate predictive models for

the two tasks was obtained (Table 4). Among them, 10 features were
Frontiers in Oncology 08
common in the multivariate predictive models, including the

informational measure of correlation 1, cluster shade, run length

nonuniformity normalized, short-run emphasis from S52,

dependence variance and large dependence emphasis from T2WI,

the dependence variance from S30, the 90th percentile from S10,

and the maximum 2D diameter row and autocorrelation from the

ADC. In the multivariate predictive model, the greatest number of
TABLE 3 Predictive model performance using radiomics from single- and multiparametric images.

Images AUC 95% CI Sensitivity Specificity P

Tumor pathological response prediction

T2WI 0.732 0.608-0.835 0.625 0.807 0.009

ADC 0.625 0.496-0.742 0.625 0.737 0.005

DCE-MRI 0.919 0.824-0.972 0.750 0.982 0.535

Multiparametric 0.943 0.856-0.985 0.875 0.912 –

Multiparametric +Luminal A 0.954 0.871-0.990 0.875 0.912 –

Tumor clinical response prediction

T2WI 0.741 0.571-0.897 0.483 1.000 0.039

ADC 0.719 0.458-0.926 0.586 0.857 0.127

DCE-MRI 0.830 0.604-0.978 0.862 0.857 0.387

Multiparametric 0.919 0.845-0.978 0.845 1.000 –

Multiparametric +Luminal A 0.948 0.864-0.956 0.931 0.857 –

Tumor shrinkage pattern prediction

T2WI 0.752 0.562-0.902 0.460 1.000 0.072

ADC 0.715 0.547-0.855 0.660 0.750 0.087

DCE-MRI 0.825 0.688-0.935 0.700 0.875 0.195

Multiparametric 0.905 0.792-0.985 0.800 0.875 –

Multiparametric + Luminal A 0.912 0.802-0.985 0.750 0.940 –
CI, confidence interval.
TABLE 2 DCE-MRI series-based model prediction performance evaluation.

Pathological response Clinical response Shrinkage pattern

Images AUC Sensitivity Specificity AUC Sensitivity Specificity AUC Sensitivity Specificity

S0 0.661 0.5 0.860 0.724 0.719 0.750 0.675 0.440 1.000

S1 0.766 0.875 0.684 0.715 0.842 0.625 0.740 0.420 1.000

S2 0.763 0.625 0.930 0.724 0.719 0.750 0.618 0.420 0.875

S3 0.787 0.750 0.842 0.735 0.596 0.875 0.713 0.620 0.875

S5 0.797 0.625 0.895 0.743 0.439 1.000 0.703 0.680 0.750

S10 0.792 0.625 0.947 0.772 0625 0.912 0.748 0.780 0.750

S20 0.743 0.750 0.877 0.783 0.807 0.750 0.725 0.740 0.750

S30 0.718 0.50 0.947 0.739 0.860 0.625 0.777 0.500 1.000

S50 0.821 0.750 0.860 0.783 0.632 0.875 0.657 0.820 0.500

S52 0.757 0.625 0.930 0.811 0.654 1.000 0.805 0.820 0.750
CI, confidence interval; S0, precontrast; S1, S2, S3, S5 represent the first, second, third and fifth postcontrast images in DCE-MRI. S10, S20, S30 and S50 represent the subtraction map between the
first, second, third and fifth postcontrast images and S0. S52 represents subtraction between the fifth and second postcontrast images. The rows with the highest AUC values are in bold.
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features (5 out of 16) was obtained from the subtraction image map

(i.e., S52) in DCE-MRI.

The predictive model performance was also evaluated by using

nested 5-fold CV (Supplementary Table 5). From this table, similar

results to those based on the testing dataset were observed. For

example, T2WI based predictive model showed lower prediction

performance in pathologic response, clinical response and

shrinkage pattern with AUCs of 0.758, 0.708 and 0.731,

respectively. The multiparametric image-based predictive model
Frontiers in Oncology 09
showed improved prediction performance with AUCs of 0.908,

0.868 and 0.843 for these three tasks.
Discussion

A preoperative prediction of the tumor shrinkage pattern and

the response to NACT in breast cancer was conducted using

multiparametric radiomics from DCE-MRI, T2WI and ADC.
B CA

FIGURE 6

Receiver operating characteristic (ROC) curves for the models in predicting (A) tumor pathologic (B) clinical response and (C) shrinkage pattern.
TABLE 4 Feature importance evaluation in tumor response and shrinkage pattern prediction.

Response to chemotherapy Shrinkage pattern

Feature AUC Feature AUC

IMC11 0.658 Cluster shade1 0.666

Cluster Shade4 0.611 Inverse difference normalized5 0.657

Dependence variance4 0.732 Run variance 0.665

Dependence variance3 0.723 Run length nonuniformity normalized1 0.714

Cluster shade1 0.624 IMC11 0.656

Entropy5 0.712 Autocorrelation5 0.657

90th Percentile2 0.761 Dependence nonuniformity normalized4 0.661

Skewness4 0.732 Median5 0.753

Run variance4 0.652 Dependence variance3 0.652

Root mean squared2 0.694 Large area high gray level emphasis4 0.655

Run Length nonuniformity
normalized1

0.692 Maximum 2D diameter row5 0.664

Maximum 2D diameter row5 0.712 Short run emphasis1 0.764

Large dependence emphasis4 0.588 Run percentage1 0.721

Autocorrelation5 0.713 Dependence variance4 0.657

Short run emphasis1 0.712 90Percentile2 0.678

High gray level run
emphasis1

0.663 Large dependence emphasis4 0.634

Collective features 0.919 Collective features 0.905
IMC1, Informational Measure of Correlation 1.
1Image subtraction between the fifth and second postcontrast images (S52); 2 Image subtraction between the second and precontrast images (S10); 3 Image subtraction between the third and precontrast
images (S30); 4T2 weighted image; 5Apparent diffusion coefficient image. Features that are common in the prediction model for response to chemotherapy and shrinkage pattern are in bold.
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Higher tumor heterogeneity evaluated by radiomic features,

including the dependent variance value within the tumor, was

associated with a good tumor response or CS pattern. The DCE-

MRI subtraction image series-based model showed more

discriminative power than either T2WI or ADC. Better

performance was achieved by combining the multiparametric

image features than by using a single series-based model. The

addition of luminal A subtype information into the predictive

model yields the highest performance.

A previous study used multiparametric images for the

prediction of response to NACT and survival outcomes with 38

breast cancer samples (18). Tumor morphology, such as lesion size

and volume distribution, is the most discriminative feature. A

related multiparametric MRI study identified the tumor sphericity

and mean absolute deviation feature value from T2WI and ADC,

respectively, for predicting the response to treatment and shrinkage

pattern (30). In our study, various types of features, including

statistical, morphological and texture features, were identified

from the multiparametric images. Among them, the dependence

variance value was identified as the most discriminative feature.

This feature measures the variance in gray level dependence size,

which is defined as the number of connected voxels within a given

distance that are dependent on the center voxel in the image. A high

value of this feature reflects the high spread of the dependences of

the tumor pixel value, which is correlated with a good response to

the tumor or CS pattern during NACT. In a previous study, the

addition of ER and node status into the radiomic model enhanced

the prediction results for pCR or tumor shrinkage size (31). Our

results demonstrated that the inclusion of the luminal A subtype

data enhanced the predictive power of the model, which indicates a

complementary information to imaging features. Women with

luminal A breast cancer are less likely to achieve pCR after

NACT than those with other molecular subtypes (32).

Comprehensive analysis of multiparametric images in our study

demonstrated that the DCE-MRI-based model had higher

performance (in terms of AUC) in tumor shrinkage and response

prediction than T2WI and ADC images. A related study using

multiparametric image radiomics reported a relatively lower

prediction performance for a pretreatment ADC-based model

(33), which is similar to our study. Compared with a lower

sensitivity, the T2WI and ADC images showed a higher

specificity in either the shrinkage pattern or response prediction.

The combination of ADC, T2WI and DCE-MRI radiomics

enhanced the overall model performance.

The predictive effectiveness for DCE-MRI was evaluated in

different image series and maps, including the precontrast and

subtraction images from different time points. It is interesting to

note that the subtraction image had better predictive performance

than either the precontrast or the postcontrast images. Among

these, the subtraction images (e.g., S50 and S52) have better

prediction performance than the other image series. This may be

explained by the fact that the subtraction operation enhanced

imaging evaluation of tumor angiogenesis and tumor
Frontiers in Oncology 10
heterogeneity by analyzing dynamic patterns of enhancement

(34). The results may suggest that the washout pattern (35)

calculated from the subtraction image between the last

postcontrast images and the intermediate image (usually showing

the highest enhancement) or precontrast image can be better than

that using the original images.
Limitations

Our study has several limitations. First, the number of patients

in different groups (e.g., CS and non-CS) was imbalanced, which

could have induced biased outcomes. Additional studies with larger

datasets should be conducted to refine the results. Second, the

imaging data were acquired from a single hospital/cohort with

unified imaging protocols. The predictive model is limited to these

specific imaging protocols.
Conclusions

In summary, radiomics features of multiparametric images were

used to predict tumor response and shrinkage patterns during

NACT. In addition to molecular subtypes, the high imaging

heterogeneity defined by radiomic features is associated with a

good response or CS pattern. Further investigation in a larger and

external validation dataset with different imaging protocols and

longitudinal images (36) is warranted before our method can be

used for breast cancer treatment management and decision making.
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