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gene signature as a predictor for
outcomes and response to
Bacillus Calmette-Guerin and
immune checkpoint inhibitor
therapies in bladder carcinoma

Huiyang Yuan1, Yuchen Xiu2, Tiantian Liu2*, Yidong Fan1*

and Dawei Xu 3*

1Department of Urology, Qilu Hospital of Shandong University, Jinan, China, 2Department of
Pathology, School of Basic Medical Sciences, Shandong University, Jinan, China, 3Department of
Medicine, Division of Hematology, Bioclinicum and Center for Molecular Medicine, Karolinska
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Bladder cancer (BC) or carcinoma (BLCA) is predominantly derived from

urothelium and includes non-muscle invasive BC (NMIBC) and muscle invasive

BC (MIBC). Bacillus Calmette-Guerin (BCG) has long been applied for NMIBC to

effectively reduce disease recurrence or progression, whereas immune

checkpoint inhibitors (ICIs) were recently introduced to treat advanced BLCA

with good efficacy. For BCG and ICI applications, reliable biomarkers are required

to stratify potential responders for better personalized interventions, and ideally,

they can replace or reduce invasive examinations such as cystoscopy in

monitoring treatment efficacy. Here we developed the cuproptosis-associated

11 gene signature (CuAGS-11) model to accurately predict survival and response

to BCG and ICI regimens in BLCA patients. In both discovery and validation

cohorts where BLCA patients were divided into high- and low-risk groups based

on a median CuAGS-11 score as the cutoff, the high-risk group was associated

with significantly shortened overall survival (OS) and progression-free survival

(PFS) independently. The survival predictive accuracy was comparable between

CuAGS-11 and stage, and their combination-based nomograms showed high

consistence between predicted and observed OS/PFS. The analysis of 3 BLCA

cohorts treated with BCG unveiled lower response rates and higher frequencies

of recurrence or progression coupled with shorter survival in CuAGS-11 high-risk

groups. In contrast, almost none of patients underwent progression in low-risk

groups. In IMvigor210 cohort of 298 BLCA patients treated with ICI

Atezolizumab, complete/partial remissions were 3-fold higher accompanied by

significantly longer OS in the CuAGS-11 low- than high-risk groups (P = 7.018E-

06). Very similar results were obtained from the validation cohort (P = 8.65E-05).

Further analyses of Tumor Immune Dysfunction and Exclusion (TIDE) scores

revealed that CuAGS-11 high-risk groups displayed robustly higher T cell

exclusion scores in both discovery (P = 1.96E-05) and validation (P = 0.008)

cohorts. Collectively, the CuAGS-11 score model is a useful predictor for OS/PFS

and BCG/ICI efficacy in BLCA patients. For BCG-treated patients, reduced
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invasive examinations are suggested for monitoring the CuAGS-11 low-risk

patients. The present findings thus provide a framework to improve BLCA

patient stratification for personalized interventions and to reduce invasive

monitoring inspections.
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Introduction

Bladder cancers (BCs) or carcinomas (BLCAs) are the

commonest urological malignancy worldwide, and up to 95% of

them are originated from the urothelium (1–3). At diagnosis, the

majority of BLCAs (70% – 80%) are non-muscle invasive

(NMIBCs) while 20% - 30% present with muscle invasive BCs

(MIBCs). NMIBCs display a high frequency of recurrence, but

patients in general have a favorable outcome with long-term

survival and only a small fraction (15% - 20%) advance into

MIBCs (4, 5). Local and distant disseminations occur frequently in

MIBCs, and many patients die from aggressive or metastatic

diseases within 5 years (4, 5). During the last decades, the major

clinical interventions of BLCAs largely include surgery plus

intravesical Bacillus Calmette-Guerin (BCG) instillation for

intermediate/high-risk NMIBCs and neoadjuvant chemotherapy

for MIBCs (3, 6–9). BCG as a traditional immunotherapeutic

strategy has been very successful in NMIBC treatments and this

protocol is still recommended by the international guidelines as

the standard care to reduce BC recurrence and progression in the

present BLCA care (6–8, 10). In the recent years, promoting anti-

cancer immunity by using immune checkpoint inhibitors (ICIs) as

a novel strategy has been developed for clinical application and

totally revolutionized the therapeutic landscape of BLCAs and

other cancer types (3). By targeting PD-1/PD-L1, CTLA4, or other

immune checkpoint proteins, the ICI therapy demonstrates robust

efficacy in subsets of BLCA patients (3, 9). To improve

stratification for better immunotherapeutic applications,

numerous studies have paid great attention to biomarker

identification for response to ICIs (3, 8, 11–15). Attempts to

look for BCG treatment predictors are far behind, and the

evaluation of BCG response depends mainly on cystoscopy,

cytology and/or bladder biopsy nowadays (8), although several

molecules are shown to serve as potential factors (16). In short,

searching for reliable prognostic factors for patient survival,

recurrence, NMIBC progression to MIBCs and treatment

response are critical unmet needs, and patients with high-risk

can thus be pinpointed for active surveillance and personalized

intervention, thereby reducing BLCA-associated morbidity

and mortality.

Copper, as an essential mineral nutrient, has long been

appreciated to participate in cancer development and progression,

and the copper signaling is actively involved in cancer cell
02
proliferation, survival and metastasis (17). More recently,

Tsvetkov et al. defined a copper-dependent form of regulated cell

death named cuproptosis (18). During the cuproptotic process,

FDX1, a reductase, and copper together bring on the lipoylation and

aggregation of mitochondrial enzymes responsible for the

tricarboxylic acid (TCA) cycle, and promote Fe-S cluster protein

degradation, which consequently result in proteotoxic stress and

eventual cell death (18). It is currently unclear whether cuproptosis

plays a role in carcinogenesis or copper-mediated oncogenic

function can be targeted by inducing cuproptosis. Nevertheless,

recent clinical investigations have shown that cuproptosis-related

factors serve as predictors for outcomes and treatment response in

several cancer types (19–25). By studying patients with clear cell

renal cell carcinoma (ccRCC), we showed that the cuproptosis-

associated 13 gene signature (CuAGS-13) was a robust predictor for

outcomes and response to ICI and targeted therapies in ccRCC (19).

The association between cuproptosis and BLCA has also been

explored using 10 cuproptosis factors, or cuproptosis-related

genes and long non-coding RNAs (26–30). These different models

consistently showed their prognostic values in outcome prediction

of BLCA patients, and some of them also revealed the significant

impact of cuproptosis-related factors on invasion, drug resistance,

tumor microenvironments and immune cell infiltrations. However,

it remains elusive whether the cuproptosis-based models are

capable of predicting response to immunotherapy and survival

benefits, the key clinical-related issues. Most of the above studies

only examined the relationship between cuproptosis-based models

and immune cell infiltrations in BLCA tumors (26, 27, 29, 30), while

only in the report by Li et al, 34 BLCA patients treated with

Atezolizumab (anti-PD-L1 antibody) were analyzed for their

response rate using a 14 cuproptosis-related gene-containing

signature (28). Unfortunately, the authors ignored the

IMvigor210 cohort with 348 BLCA patients receiving

Atezolizumab. The results obtained from a small cohort of 34

patients, together with lack of survival analysis, are far from the

conclusive proof of the cuproptosis-related effect on ICI therapy. In

addition, BCG as an immunomodulator has long been successful in

NMIBC treatment as described above (7, 8), but it is currently

unclear whether cuproptosis or its associated gene signature can

predict BCG response. In the present study, we analyzed several

BLCA cohorts and developed the BLCA-specific cuproptosis-

associated 11 gene signature (CuAGS-11) as a useful predictor for

outcomes and therapeutic efficacy of BCG and ICIs.
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Materials and methods

Study workflow, data collection and
processing of BLCA tumors and bladder
nontumorous tissues (NTs)

Based on 10 cuproptosis molecules (18) (Figure 1A), we sought

to establish a cuproptosis-associated gene signature for BLCA

prognostication using the following public databases (Figure 1B).

(i) The TCGA cohort of BLCA (legacy) that includes 407 tumor

samples and 19 bladder nontumorous tissues (31). Patient

information, pathology/histology, transcriptome, mutation, and

copy number variation (CNV) data were downloaded from

https://gdc.cancer.gov/. Aneuploid score was from reference (32).

Tumor mutation burden (TMB) was calculated using Rpackage
Frontiers in Immunology 03
TCGAmutations. (ii) GSE13507 (33, 34), GSE154261 (35), and

GSE176307 (36) BC cohorts. The data in these cohorts were

obtained from the Gene Expression Omnibus database (https://

www.ncbi.nlm.nih.gov/geo/). (iii) E-MTAB-4321 cohort. The data

were downloaded from https://www.ebi.ac.uk. (iv) IMvigor210

cohort. The data were from IMvigor210CoreBiologies (37, 38).

For RNA sequencing data above, gene expression levels were

measured using Transcripts Per Kilobase Million (TPM) and log2

(x + 1) transformed. For array results (determined by 4×44K v2

microarray kit), we determined transcript abundances using probe-

set values; and when multiple probes targeted the same mRNAs, the

probes with largest mean values were chosen and then standardized

using “Limma” package (39). During RNA sequencing and array

processing, we conducted a two-step filtering. First, those genes

with undetectable expression in >75% of samples were discarded.
B

A

FIGURE 1

The Cuproptosis factors and study workflow. (A) Left panel: Ten factors involved in cuproptosis. Right panel: The cuproptosis signaling pathway.
Extracellular copper Cu++ enters cells by binding to copper chelators and elesclomol serves as the most efficient Cu++ transporter. The reductase
FDX1 reduces Cu++ to Cu+, a more toxic form, while lipoyl synthase (LIAS) catalyzes lipoylation of the pyruvate dehydrogenase (PDH) complex
proteins including dihydrolipoamide S-acetyltransferase (DLAT) and others. Cu+ and lipoylation promote the protein aggregation. DLAT is one of the
key enzymes participating in the tricarboxylic acid cycle, and its aggregation results in mitochondrial proteotoxic stress and subsequent cuproptotic
cell death. Moreover, FDX1 and Cu+ induce the destabilization of Fe–S cluster proteins, further facilitating cuproptosis. Additionally, SLC31A1 and
ATP7B function as the Cu+ importer and exporter, respectively, and regulate cuproptosis by controlling intracellular Cu+ concentrations. (B) The
schematic workflow of the present study.
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Second, we further got rid of genes with expression median absolute

deviation (MAD) ≤0.01 and at the bottom 25%. The present study

did not contain experimental analyses directly from human samples

and animals, and thus needed no ethics permission.
Identification of cuproptosis-associated
genes whose expression correlates with 10
cuproptosis factors

To identify cuproptosis-associated genes, we first conducted

single sample gene set enrichment analysis (ssGSEA) to obtain the

normalized enrichment score (NES) according to expression levels

of 10 cuproptosis genes (FDX1, LIAS, LIPT1, DLD, DLAT, PDHA1,

PDHB, MTF1, GLS and CDKN2A) in the TCGA BLCA cohort

(Figure 1A) using Rpackage “GSVA” with kcdf=Caussian and

method = ssgsea. Weighted gene co-expression network analysis

(WGCNA) and Pearson’s correlation were then performed to make

sample clustering (tree) followed by the construction of a unsigned

scale-free network, adjacency matrix and the topological overlap

matrix, which eventually formed different modules (Figure 2A).

Briefly, Pearson’s correlation was used to make sample clustering

trees and none of the TCGA samples were outliners (with height

>220) (Figure 2A left). To define the optimal soft threshold value,

we set up 1:20 as a power value, and when the scale independence

reached 0.9 while mean connectivity was <100, the soft threshold

value 12 was obtained (Figure 2A middle). Based on this soft

threshold setting, we constructed a unsigned scale-free network,

adjacency matrix and topological overlap matrix through which the

number of genes in each module was defined (maxBlockSize = 6000

and minModuleSize = 50) . The funct ion “WGCNA: :

blockwiseModules” was employed to assign genes into

appropriate modules (Figure 2A right). The correlation between

each module and cuproptosis ssGSEA-NES together with clinical

variables (stage and grade) was then evaluated, and by setting

correlation R >0.30, we acquired the yellow (R = 0.34 with 559

genes) and turquoise modules (R = 0.32 with 2525 genes)

(Figure 2A right). Further filtering out genes at bottom Rs in

these two modules (MM correlation R > 0.5, and GS correlation

R > 0.2, P < 0.05) reduced the gene numbers to 392 and 1 586 in

yellow and turquoise module, respectively. We then made COX and

LASSO regression analyses to determine effects of these genes on

patient progression-free survival (PFS) and expression differences

between tumors and NTs (Figures 2B, C). Finally, 11 genes were

obtained as the cuproptosis-associated 11 gene signature, which we

named CuAGS-11. These 11 genes include C18orf54, NEIL3,

ANLN, AHCY, PSMG1, TTC5, SRPRB, XPOT, ZC3HAV1L,

SLC25A15 and P3H4.
Construction of the CuAGS-11 risk score

Based on expression levels of 11 genes above, the CuAGS-11

score in each sample was calculated using the following formula:
Frontiers in Immunology 04
Score = S bi × RNAi, where bi is the coefficient of the i-th gene

in multivariable Cox regression analysis, and RNAi is RNA

abundance of gene i. The obtained score values were further

standardized using the scale function. Patients were classified into

the high- and low-risk groups using the median score as a cut-off

point. Differences in survival (OS, PFS and RFS) and BCG or ICI

treatment efficacy between the CuAGS-11 high- and low-risk

groups were then compared.
Time-dependent receiver operating
characteristic (ROC) curves and
construction of a survival
predictive nomogram

Time-dependent ROC curves and area under curves (AUCs) were

used to estimate the accuracy of identified survival predictors (CuAGS-

11 model and stage) in BLCA patients and made using Rpackage

“timeROC”. We performed Cox regression analysis to evaluate the

effect of the CuAGS-11 score and clinical parameters on survival in the

TCGA and GSE13507 BLCA cohorts and established a predictive

nomogram by using independent survival predictors in both cohorts to

predict 1-, 3-, and 5-year survival (OS and/or PFS). The model-based

predictive survival time against the observed one was plotted using

calibration curves. R package “regplot” was used to make nomograms

and to assess their predicative ability.
Gene set enrichment analysis (GSEA)

Based on the median CuAGS-11 score values in BLCA cohorts, we

categorized tumors into low- and high-risk groups. Reference gene

signatures required for Kyoto Encyclopedia of Genes and Genomes

(KEGG) and Hallmark analysis were downloaded from https://

www.gsea-msigdb.org/gsea/index.jsp (h.all.v2022.1.Hs.symbols.gmt’

and ‘c2.cp.kegg.v2022.1.Hs.symbols.gmt’). Differences in KEGG and

hallmark pathways between two risk groups were evaluated using

GSEA (version 4.2.1). Adjusted P value <0.05 and FDR <0.25 were

regarded as significantly over- or under-represented pathways.
Analyses for proliferation, cancer stemness,
and epithelial–mesenchymal transition
(EMT) scores

Proliferation statuses were estimated using expression levels of

Ki-67 mRNA and cell cycle scores, respectively. Cell cycle, stemness

and EMT signature scores were calculated based on ssGSEA or as

the median z-score of signature gene panels for each sample. These

signatures are as follow: Cell Cycle: CDK2, CDK4, CDK6, BUB1B,

CCNE1, POLQ, AURKA, KI-67 and CCNB2 (40). Stemness score

was assessed according to the mRNA expression-based stemness

developed by Malta et al. (41). EMT score was calculated based on

the dbEMT signature from http://dbemt.bioinfo-minzhao.org/ (42).
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Tumor immune dysfunction and exclusion
(TIDE) score analysis

TIDE score is evaluated according to myeloid-derived

suppressor cell (MDSC), macrophage M2, T cell Dysfunction and
Frontiers in Immunology 05
Exclusion (43). TIDE score for BLCA cohorts treated with

Atezolizumab was calculated online at http://tide.dfci.harvard.edu/

. mRNA abundance was standardized with use of the all sample

average expression as the normalization control prior to TIDE

score calculations.
B
C

D E

A

FIGURE 2

The construction of the cuproptosis-associated 11 gene signature (CuAGS-11) based on the TCGA cohort of BLCAs. (A) Left panel: Sample clustering
trees to detect potential outliners by Pearson’s correlation in the TCGA cohort of BLCAs. Middle panel: Soft-thresholding value selection. Based on
the scale-free fit index for various soft-thresholding powers (the scale independence, left panel) and mean connectivity for various soft-thresholding
powers (mean connectivity, right panel), 12 was selected as a soft-threshold value (Scale-free R2 = 0.90). Right panel: Gene modules correlated with
cuproptosis factors as determined using Weighted gene co-expression network analysis (WGCNA). (B) Scatter plot of module eigengenes in the
yellow (left) and turquoise (right) modules from (A). The genes in the upper right are selected for further analyses. (C) Construction of the
cuproptosis-associated 11 gene signature (CuAGS-11) for progression-free survival (PFS) prediction in BC. Left panel: LASSO coefficient profiles of
the CuAGS associated with PFS. Right panel: Plots of the cross-validation error rates. Each red dot represents a lambda value with its error bar (the
confidence interval for the cross-validated error rate). The analysis identified 11 cuproptosis-associated genes most relevant to PFS. (D) Differences
in the CuAGS-11 expression between tumors and their adjacent non-tumorous tissues in the TCGA cohort of BLCA. (E) Kaplan–Meier survival
analysis showing the impact of each gene contained in CuAGS-11 on PFS in the TCGA BLCA cohort. Patients are classified into high and low groups
based on the expression of each gene in tumors using a median value as the cutoff point. *, *** and **** indicate P values <0.05, 0.001 and 0.0001,
respectively.
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Statistical analysis

All statistical analyses in the present study were conducted by using

R package version 4.0.5. We performed Wilcox and K-W sum tests to

determine differences between two groups and among multi groups,

respectively. Spearman’s Rank-Order Correlation coefficient was used

to assess correlation coefficient R between two variables. Survival

analyses were carried out by using log-rank test, and Kaplan–Meier

survival curves for visualization of OS, PFS and RFS were done using

“Survival” and “Survminer” packages. Univariable and multivariable

Cox regression analyses were employed to measure effects (HR and

95% CI) of quantitative predictive parameters on OS, PFS or RFS. P

values < 0.05 were considered statistically significant. FDR correction

was also performed to measure a statistical significance (< 0.25)

when needed.
Results

The CuAGS-11 model establishment based
on the TCGA cohort of BLCA analysis

We first evaluated 10 cuproptosis molecules as survival

predictors but failed to set up a satisfied model in the TCGA

BLCA cohort (data not shown) (31). By analyzing cuproptosis-

correlated genes as described in Methods, we developed the

cuproptosis-associated 11 gene signature (CuAGS-11). These 11

genes include C18orf54, NEIL3, ANLN, AHCY, PSMG1, TTC5,

SRPRB, XPOT, ZC3HAV1L, SLC25A15 and P3H4. The expression

of these 11 genes was significantly higher in BLCA tumors than in

their NT counterparts (Figure 2D). Survival analyses unraveled the

significant association of PFS with each of 11 factors when patients

were categorized into high and low groups using a median

expression value as the cutoff (Figure 2E). We then calculated

CuAGS-11 score in each tumor, and divided patients into high-

and low-risk groups using the median CuAGS-11 score value as a

cut-off point. The CuAGS-11 score-based grouping of the TCGA

BLCA tumors was significantly associated with patient age, gender,

grade, stage and metastasis (Table S1).
Enrichments of BLCA basal subtype and
aggressive features in the CuAGS-11
high-risk tumors

BLCAs are in general stratified into luminal and basal subtypes

according to their featured gene expression signatures (44–48). The

luminal subtype is overrepresented by urothelium differentiation

markers and transcription factors, while the basal one is poorly

differentiated (5, 44, 48). To examine a potential association

between molecular and CuAGS-11 subtypes, we analyzed 233

BLCA tumors well characterized for their differentiation subtypes

in the TCGA cohort. As shown in Figure 3A, the basal subtype was

significantly enriched in the CuAGS-11 high-risk group (high- vs

low-risk: P = 5.193E-07).
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Because the basal BLCA subtype is enriched with cycling and

stem- and/or mesenchymal-like cells (5, 44), we further determined

proliferation, stemness and EMT markers in those tumors. For

proliferation analyses, Ki-67 was first used as the specific biomarker,

and the CuAGS-11 high-risk tumors expressed significantly higher

levels of Ki-67 mRNA (high- vs low-risk: P = 1.35E-19) (Figure 3B).

Then, cell cycle scores based on ssGSEA were evaluated and similar

results were obtained (high- vs low-risk: P = 2.21E-29) (Figure 3B).

BLCA stem cell and EMT phenotype analyses showed significantly

higher stemness and EMT scores in CuAGS-11 high-risk tumors

(high- vs low-risk: P = 9.16E-07 and 2.95E-06 for stemness and

EMT, respectively) (Figures 3C, D). Consistent with these findings,

the GSEA hallmark analysis revealed overrepresentation of G2M

checkpoint, mitotic spindle, E2F targets, glycolysis, PIK3-AKT-

MTOR signaling and among others in the CuAGS-11 high-risk

tumors (Figure 3E). GSEA KEGG analysis showed that cell cycle,

MTOR, ERBB2, basal transcription factor, TP53 and other

pathways were highly enriched in the CuAGS-11 high-risk

tumors (Figure 3F).
Genomic alterations and their association
with the CuAGS-11 model

We then probed whether there were differences in genomic

alterations between the CuAGS-11 high- and low-risk tumors. First,

global genomic aberrations including aneuploidy and TMB were

evaluated. Aneuploidy scores were significantly higher in CuAGS-

11 high- than low-risk tumors (P = 0.048) (Figure 3G), while there

was no difference in TMB (Figure 3H). Alterations of individual

genes were then compared, and we observed a significantly higher

frequency of TP53 gene aberrations in the CuAGS-11 high-risk

tumors (high- vs low-risk: 55% vs 34%, P<0.05 and FDR<0.05)

(Figures 3I, J).
The CuAGS-11 score for survival
prediction in BLCAs

Having established the CuAGS-11 score model in BLCAs, we

then evaluated whether it had impacts on patient survival (OS and

PFS) from the TCGA BLCA cohort as a discovery one (Table S1).

These patients were categorized into high- and low-risk groups

using the median CuAGS-11 score value as a cut-off point. Patients

in the high-risk group had significantly shorter OS (P = 0.0001) and

PFS (P = 0.001), as assessed by the Kaplan-Meier analysis

(Figure 4A). Univariable COX regression OS analyses of age,

gender, stage, grade, and the CuAGS-11 model showed that age

(>60 yrs), advanced stages and CuAGS-11 (high-risk) were

associated with significantly shorter OS (Figure 4B), while all

these three variables remained highly significant in the

multivariable COX regression analysis (Figure 4C). We observed

a similar association between patient age (>60 yrs), advanced stages,

and CuAGS-11 score (high-risk) and shorter PFS in the univariable

COX regression analysis (Figure 4D). Multivariable COX analyses
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FIGURE 3

The CuAGS-11 association with molecular classification, aggressive phenotypes, signaling and genomic alterations in bladder carcinoma (BLCA). The
TCGA cohort of BLCA was analyzed. Patients were divided into CuGAS-11 high- and low-risk groups using the median CuAGS-11 score value as a
cut-off point. (A) The enriched basal subtype of BLCAs in CuAGS-11 high-risk patients. Patients were classified into luminal and basal subtypes based
on their gene expression profiles shown in the figure. (B-D) Enhanced proliferation (B), stemness (C) and EMT (D) in CuAGS-11 high-risk tumors.
Proliferation was assessed using Ki-67 expression (B, left) and cell cycle scores (B, right) in BLCA tumors. Stemness and EMT evaluation was
performed based on their gene expression signatures. (C, D) Univariable and multivariable Cox regression analyses of OS and PFS in BLCA patients,
respectively. (E, F) The enriched oncogenic pathways in CuAGS-11 high-risk BLCA tumors. GSEA analyses were carried out to define the
overrepresented KEGG pathways (left) and hallmarks (right) CuAGS-11 high-risk BLCA tumors. (G, H) Increased aneuploidy score (G) but not tumor
mutation burden (TMB) (H) in CuAGS-11 high-risk BLCA tumors. (I, J) Higher frequencies of TP53 gene alterations in CuAGS-11 high-risk BLCA
tumors.
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unraveled that only stage and CuAGS-11 risk score were

independent predictive variables for patient PFS (Figure 4E).

We further determined the impact of the CuAGS-11 score on

patient survival in the GSE13507 BLCA cohort to validate the

findings obtained from the TCGA BLCA patients above. The

GSE13507 cohort included 165 patients with BLCA (33, 34), and

there were only OS data available. The patient characteristics were
Frontiers in Immunology 08
summarized in Table S2. As expected, patients in the CuAGS-11

high-risk group had significantly shorter OS (P = 0.0002)

(Figure 4F). In univariable COX regression analyses, OS was

significantly associated with age, grade, stage and CuAGS-11

score (Figure 4G), whereas age, stage and CuAGS-11 score served

as independent prognostic factors, according to multivariable Cox

regression analysis (Figure 4H).
B C

D E
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G

H

A

FIGURE 4

The CuAGS-11 model for BLCA survival prediction. (A–E) The TCGA cohort BLCA analysis. Patients were classified into high- and low-risk groups
based on the CuGAS-11 score using a median value as the cutoff. (A) Kaplan–Meier survival analysis showing the significant association of the
CuGAS-11 score with OS (left) and PFS (right) in the TCGA BLCA cohort. (B, C) Univariable and multivariable Cox regression analyses of OS in BLCA
patients, respectively. (D, E) Univariable and multivariable Cox regression analyses of PFS in BLCA patients, respectively. (F–H) GSE13507 cohort
analyses. Patients were classified into high- and low-risk groups based on the CuGAS-11 score using a median value as the cutoff. (F) The significant
association between the CuGAS-11 high-risk group and shorter OS as shown by Kaplan–Meier survival analysis. (G, H) Univariable and multivariable
Cox regression analyses of the CuGAS-11 effect on OS in GSE13507 cohort of BLCA patients, respectively.
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We then conducted time-dependent ROC and AUC analyses to

evaluate the predictive ability of the CuAGS-11 model in the TCGA

and GSE13507 BLCA cohorts. For TCGA patients, AUCs for 1, 3

and 5 year PFS by the CuAGS-11 model were 0.669, 0.634 and
Frontiers in Immunology 09
0.674, respectively (Figure 5A left panel). Like CuAGS-11 model,

the stage was also an independent prognostic factor for OS and/or

PFS in both cohorts, and moreover, the BLCA stage was a well-

established predictor for long-term survival. Thus, we made a
B
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FIGURE 5

The CuAGS-11 model accuracy for survival prediction as determined by time-dependent ROC curves and nomograms. (A) The area under curves
(AUCs) for PFS prediction using the CuAGS-11 model and/or stage in the TCGA BLCA cohort. Left: The AUCs showing the CuAGS-11 model
accuracy in predicting 1-, 3- and 5-year OS. Middle: Comparison of AUCs between CuAGS-11 model and stage in predicting 5-year PFS. Right: The
AUCs in predicting 1-, 3- and 5-year PFS by the combination of CuAGS-11 and stage. (B) The AUCs for OS prediction using the CuAGS-11 model
and/or stage in the TCGA BLCA cohort. Left: The AUCs showing the CuAGS-11 model accuracy in predicting 1-, 3- and 5-year OS. Middle:
Comparison of AUCs between CuAGS-11 model and stage in predicting 5-year OS. Right: The AUCs in predicting 1-, 3- and 5-year OS by the
combination of CuAGS-11 and stage. (C) The AUCs for OS prediction using the CuAGS-11 model and/or stage in the GSE13507 BLCA cohort. Left:
The OS prediction AUCs showing the CuAGS-11 model accuracy in predicting 1-, 3- and 5-year PFS. Middle: Comparison of AUCs between CuAGS-
11 model and stage in predicting 5-year OS. Right: The AUCs in predicting 1-, 3- and 5-year OS by the combination of CuAGS-11 and stage. (D–F)
The nomograms composed of CuAGS-11 model and stage for predicting 1-, 3- and 5-year PFS in TCGA (D), OS in TCGA (E) and GSE13507 (F) BLCA
cohorts, respectively. *** indicate P values <0.001.
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comparison of 5-year PFS prediction between CuAGS-11 model

and stage. A slightly bigger AUC was observed for the CuAGS-11

model (Figure 5A middle panel). We further combined CuAGS-11

with stage together and resulting AUCs increased substantially in

predicting all PFS time points (Figure 5A right panel). We then

conducted the same analyses for OS in both TCGA and GSE13507

BLCA cohorts, and largely similar results were obtained

(Figures 5B, C). Accordingly, we further established prognostic

nomograms composed of CuAGS-11 score and stage. In the TCGA

cohorts, the CuAGS-11/stage nomogram almost precisely predicted

the possibility of both PFS and OS at 1, 3 and 5 years (Figures 5D,

E). A highly accurate prediction of OS by the CuAGS-11/stage

nomogram was observed in the GSE13507 cohort, too (Figure 5F).
The CuAGS-11 model as a predictor for
response to BCG treatment

The clinic-pathological variables have been mainly used to

evaluate response to BCG therapy (8). We sought to determine

whether the CuAGS-11 score could serve as such a predictive

biomarker. The GSE154261 BLCA cohort (35) analysis of 73

BCG-treated patients showed that the recurrence and non-

recurrence rates were 58.3% and 41.7% in the CuAGS-11 high-

risk group, while 27.0% and 73.0% in the low-risk one, respectively

(P = 0.009) (Figure 6A top) (Table S3). In the low-risk group, all the

patients displayed stable disease status, whereas 45% of the high-

risk patients underwent progression (P = 0.027) (Figure 6A

bottom). Consistently, the recurrence-free survival (RFS) and PFS

were both significantly shorter in the CuAGS-11 high-risk group (P

= 0.003 and 0.002, respectively) (Figure 6B top and bottom). We

further analyzed the E-MTAB-4321 cohort of 88 T1 BLCA patients

who received BCG therapy (49) (Table S4). None of 44 CuAGS-11

low-risk patients had disease progression, while 4 in the high-risk

group exhibited progressive disease, although the difference was not

statistically significant (P = 0.116) (Figure 6C). Nevertheless, PFS

was significantly shorter in the CuAGS-11 high-risk patients (P =

0.042) (Figure 6C). Finally, 37 patients with MIBC in the TCGA

cohort (31) were treated with BCG, and the recurrence rates were

72.2% and 36.8% for the CuAGS-11 high- and low-risk groups,

respectively (P = 0.049) (Figure 6D) (Table S5). OS was significantly

shorter in the CuAGS-11 high-risk group (P = 0.040), whereas PFS

was also shorter in this group but did not reach a statistical level (P

= 0.092) (Figure 6E).
The CuAGS-11 model as a predictor for
response to Atezolizumab therapy

ICI therapy has been applied for MIBCs with good efficacy in

subsets of patients (3). We further assessed whether the CuAGS-11

score was able to predict patient response to ICIs. For this purpose,

IMvigor210 and GSE176307 cohorts were analyzed as the discovery

and validation sets, respectively. A total of 348 patients received

Atezolizumab (anti-PD-L1 antibody) therapy and 298 of them had

response information available in IMvigor210 cohorts (37, 38)
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(Table S6). These 298 patients were divided into the CuAGS-11

high- and low-risk groups based on the median score value. Patient

responses to Atezolizumab were categorized into complete

remission (CR), partial remission (PR), stable disease (SD) and

progressive disease (PD), respectively (38). CR, PR, SD and PD were

2.7%, 8.0%, 23.5% and 65.8% in the high-risk group, whereas 14.1%,

20.8%, 18.8% and 46.3% in the low-risk group, respectively (P =

7.018E-06) (Figure 7A). OS information was available in this cohort

and Kaplan-Meier analysis showed a dramatically shortened OS in

the CuAGS-11 high-risk group (P = 9.20E-09) (Figure 7A). The

GSE176307 cohort of 34 BLCA patients treated with Atezolizumab

(36) was then analyzed for validation (Table S7). All 17 patients in

the high-risk group underwent disease progression, while more

than half of patients in the low-risk group acquired CR (29.4%) or

PR (23.5%) and only 35.3% of them had BC progression (high- vs

low-risk, P = 8.65E-05) (Figure 7B). In accordance with their

response rates, significantly longer OS and PFS were observed in

the CuAGS-11 low-risk group (P = 8.12E-06 and 4.04E-03 for OS

and PFS, respectively) (Figure 7B).

Given these observations, we further probed potential differences in

infiltrated stroma and immune cells between the CuAGS-11 high- and

low-risk tumors. To this end, we compared their TIDE scores. TIDE

has been shown to predict ICI responses and determine mechanisms

underlying tumor immune evasion (43). In the IMvigor210 cohort, the

CuAGS-11 high-risk tumors displayed significantly higher TIDE score

than did the low-risk tumors (P = 1.95E-05), and more specifically,

robustly higher T cell exclusion score was observed in CuAGS-11 high-

risk tumors (high- vs low-risk: P = 1.96E-05) (Figure 7C). The

GSE176307 cohort analysis showed similar score differences in TIDE

(P = 0.008) and T cell exclusion (P = 0.008) between high- and low-risk

groups (Figure 7D).
Discussion

BLCAs derived from urothelial cells are heterogenous and include

NMIBCs and MIBCs with different outcomes and different clinical

interventions (4, 5). Reliable biomarkers are highly required to stratify

patient risk and to tailor treatment regimens (3). Based on the

cuproptosis-associated gene analysis, we develop the CuAGS-11

model for such a purpose. Our results presented herein demonstrate

that CuAGS-11 serves as a useful predictor for BLCA patient survival

and response to immunotherapies including BCG and ICIs.

Copper has long been appreciated to participate in oncogenesis

(17). Cuproptosis, a newly identified form of regulated cell death

(RCD), is copper-dependent cell death caused by FDX1-mediated

mitochondrial protein lipoylation (18). It is currently unclear

whether cuproptosis, like apoptosis or other types of RCD, plays

any parts in carcinogenesis. We recently developed a CuAGS-13

model to accurately predict ccRCC outcomes and patient response

to targeted and ICI therapies (19), however, this same model failed

to do so in BLCAs (data not shown). Intriguingly, the direct

application of 10 cuproptosis factors did not show any prognostic

values in either BLCAs or ccRCCs. Moreover, the genes in the

CuAGS-11 model are totally different from those in the CuAGS-13

(19) or from any other cuproptosis-related models. Thus,
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cuproptosis-based models are context-dependent and their

prognostic powers very significantly. In the present study, the

CuAGS-11 model is constructed based on 10 cuproptosis factors,

but the scores are strongly correlated with many key aggressive

characteristics in BLCAs in positive manners. Thus, the CuAGS-11

model represents a classifier integrated with pathological/molecular
Frontiers in Immunology 11
and many other BLCA features. Despite such broad connections,

the CuAGS-11 score predicts BLCA patient survival independently

of any other variables.

BCG, a live attenuated strain of Mycobacterium bovis, was first

applied for patients with NMIBC in 1976 (10), and since then,

intravesical BCG therapy has been the most effective treatment
B

C

D

A

FIGURE 6

The CuAGS-11 model to predict BCG response and survival in BLCA patients. In all analyzed BLCA cohorts, patients were classified into high- and
low-risk groups based on the CuGAS-11 score using a median value as the cutoff. (A, B) The GSE154261 cohort analyses. (A) Higher frequencies of
recurrence (Top) and progression (Bottom) in the CuAGS-11 high-risk group patients. (B) Differences in RFS (Top) and PFS (Bottom) between the
CuAGS-11 high- and low-risk group patients treated with BCG. (C) The E-MTAB-4321 cohort analyses. Left panel: All the recurred patients presented
in the CuAGS-11 high-risk group. Right panel: Shorter PFS in the CuAGS-11 high-risk group patients. (D) The analysis of 37 BCG-treated patients with
MIBC in the TCGA cohort. Left panel: Higher frequencies of recurrence in the CuAGS-11 high-risk group patients. Right panel: Differences in OS
(top) and PFS (bottom) between the CuAGS-11 high- and low-risk group patients treated with BCG.
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strategy to prevent recurrence for intermediate- and high-risk NMIBCs

(8). If without adjuvant therapies, recurrence occurs in up to 70% of

patients who received tumor resection (8). Mechanisms underlying

BCG against BLCAs remain incompletely understood, but

accumulated studies indicate that BCG as an immunomodulator

stimulates both innate and acquired immune responses, thereby

exerting a therapeutic efficacy (8, 50). Li et al. recently showed that

BCG treatment failure was associated with enhanced PD-L1 and

FGFBP1 expression (51). In addition, BCG may have direct impacts

on BLCA cells. Despite tremendous advances in next generation

sequencing and other high-throughput technologies, there is still lack

of reliable molecular predictors for response to BCG. Clinic-

pathological variables combined with cystoscopy have so far served

as major approaches to predict andmeasure potential response to BCG

(7, 8). In clinical practice nowadays, cystoscopy, cytology and/or

bladder biopsy are used to determine response at 3 months and 6

months following a BCG induction regimen (7, 8). Cystoscope

examination is invasive and costly. In the present investigations, we

showed a high accuracy of the CuAGS-11 model in prognosticating

BCG responders. Based on our analyses of 3 BLCA cohorts treated with

BCG, almost all patients with disease progression were observed in the

CuAGS-11 high-risk group. For T1 patients, no recurrence occurred in

the CuAGS-11 low-risk group. These proof-of-concept results suggest

that the invasive examination may not be required or at least reduced

for CuAGS-11 low-risk patients, which is worthy of further studies.

In the recent years, the ICI therapy has been applied for

advanced cancers including MIBCs (3). As only subsets of MIBCs

respond to ICIs, distinguishing potential responders from non-

responders should greatly contribute to personalized application of
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ICIs and the development of accurate predictive biomarkers is thus

critical. Here we found that the CuAGS-11 model was similarly

useful for stratifying ICI responders in 2 cohort patients treated

with Atezolizumab. In the IMvigor210 cohort, the CR/PR rate was >

3-fold higher in the low- than high-risk group. The GSE176307

cohort analysis showed that all 17 patients underwent progression

in the CuAGS-11 high-risk group, whereas 9 of 17 (54.7%) low-risk

patients obtained CR or PR. Consistently, patients in the low-risk

group had significantly longer PFS and/or OS. TMB has been shown

as a reliable predictor for response to ICI therapy in BLCAs (11),

but the CuAGS-11 signature was not related to TMB. TIDE analyses

of these two cohorts consistently showed that CuAGS-11 high-risk

tumors were characterized by T cell exclusion, which suggests that

the CuAGS-11 model can help identify BC tumors with an

immunologically cold phenotype. Poor response to ICIs is thus

conceivable in patients with CuAGS-11 high tumors. It is currently

unclear what is a mechanistic link between CuAGS-11 score and T

cell exclusion in BLCAs and whether cuproptosis is involved in

immune cell fate decision or T cell-mediated tumor destruction.

Elucidating these important issues should contribute to

improvement of BLCA immunotherapy.

In conclusion, we constructed the CuAGS-11 score model for

prediction of survival and response to BCG and ICI therapies in

BLCAs. This model, although derived from cuproptosis-associated

factors, is a classifier integrated with molecular and other features of

BLCA. Importantly, for patients receiving BCG, recurrence occurs

predominantly in the CuAGS-11 high-risk group, and no disease

progression was observed in the low-risk patients. Thus, it may be

unnecessary to monitor the CuAGS-11 low-risk patients using invasive
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FIGURE 7

The CuAGS-11 model to predict patient response to Atezolizumab, survival and immunologically cold phenotypes in BLCA. In analyzed BLCA
cohorts, patients were classified into high- and low-risk groups based on the CuGAS-11 score using a median value as the cutoff. (A) The CuAGS-11
model prediction of patient response to Atezolizumab (left) and OS (right) in IMvigor210 cohort. (B) GSE176307 cohort analyses of patient response
to Atezolizumab (left) and survival (OS: middle and PFS: right) based on the CuAGS-11 model. (C) TIDE score analyses of IMvigor210 cohort showing
robustly higher T cell exclusion score in the CuAGS-11 high-risk group patients. (D) TIDE score analyses of GSE176307 cohort showing robustly
higher T cell exclusion score in the CuAGS-11 high-risk group patients.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1126247
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yuan et al. 10.3389/fimmu.2023.1126247
examinations routinely. The present findings further show that the

CuAGS-11 model is helpful to identify BLCA tumors with an

immunologically cold phenotype and to distinguish between ICI

responders and non-responders. Taken together, the CuAGS-11

score model may significantly improve BLCA patient stratification

for tailored patient interventions, reducing BLCA-associated morbidity

and mortality. It is worth validating these observations in

clinical practices.
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