Electronic
Research Archive

Research article

Persistence of the heteroclinic loop under periodic perturbation

Bin Long* and Shanshan Xu

School of Mathematics \& Data Science, Shaanxi University of Science and Technology Xi'an
710021, P. R. China

* Correspondence: Email: longbin210@126.com.

Abstract

We consider an autonomous ordinary differential equation that admits a heteroclinic loop. The unperturbed heteroclinic loop consists of two degenerate heteroclinic orbits γ_{1} and γ_{2}. We assume the variational equation along the degenerate heteroclinic orbit γ_{i} has $d_{i}\left(d_{i}>1, i=1,2\right)$ linearly independent bounded solutions. Moreover, the splitting indices of the unperturbed heteroclinic orbits are s and $-s(s \geq 0)$, respectively. In this paper, we study the persistence of the heteroclinic loop under periodic perturbation. Using the method of Lyapunov-Schmidt reduction and exponential dichotomies, we obtained the bifurcation function, which is defined from $\mathbb{R}^{d_{1}+d_{2}+2}$ to $\mathbb{R}^{d_{1}+d_{2}}$. Under some conditions, the perturbed system can have a heteroclinic loop near the unperturbed heteroclinic loop.

Keywords: heteroclinic orbit; heteroclinic loop; bifurcation; Lyapunov-Schmidt reduction; exponential dichotomies

1. Introduction

The problems in homoclinic or heteroclinic bifurcation are critical in dynamic systems because they may have some complex dynamic behavior, such as chaotic motions [1]. Homoclinic and heteroclinic orbits are important invariant sets. The homoclinic orbit tends asymptotically to the same hyperbolic equilibrium along stable and unstable manifolds. However, the heteroclinic orbit tends asymptotically to two different hyperbolic equilibria along the stable and unstable manifolds. A heteroclinic loop consists of two saddles connecting two heteroclinic orbits. A numerical simulation reveals that the Lorenz equation has a heteroclinic loop when $\sigma=10, r \approx 40.375$ and $b \approx 2.623$ [2]. The heteroclinic loop is equidimensional if the two saddles have the same dimension of the unstable manifold. Otherwise, it is heterodimensional loop [3]. This elementary phenomenon occurs in any dimension larger than two, and is one of the primary mechanisms for non-hyperbolicity. In addition, the existence of the heteroclinic loop is often related to the traveling wave solutions of the reaction-diffusion equation.

In [4], Han et al. considered quadratic Hamiltonian systems with a heteroclinic loop under polynomial perturbations. Using the Melnikov function, the authors found three limit cycles near the heteroclinic loop. Later, Sun, Han, and Yang extended the theory for a heteroclinic loop with a cusp in [5]. Chen, Oksasoglu, and Wang considered a heteroclinic loop under periodic perturbation on the plane [6]. They proved three types of dynamic behavior near the heteroclinic loop under periodic perturbation. One of which with strange attractors admitting SRB measures representing chaos. More complicated dynamic behavior, such as strange attractors and horseshoes near the heteroclinic loop with periodic perturbation see, [7] and [8].

Chow, Deng, and Terman [9] investigated the homoclinic or periodic orbit bifurcated from a heteroclinic loop based on the method developed by Shilnikov. In 1998, Zhu and Xia [10] established a coordinate system in a neighborhood of a heteroclinic loop. They studied the bifurcation of the heteroclinic loop using the coordinate systems near the heteroclinic loop. Moreover, Rademacher [11] studied the homoclinic orbit bifurcated from a codimension 1 and 2 heteroclinic loops by Lin's method [12]. In [13], Geng, Wang, and Liu investigated the bifurcation of a heterodimensional loop using the local coordinate system. They assumed the unperturbed equation has a heteroclinic loop in \mathbb{R}^{4} that the splitting indices of the unperturbed heteroclinic orbits are 1 and -1 . They obtained the persistence condition for the heterodimensional loop. For more research results regarding the bifurcation of the heteroclinic loop see [14].

We let $d, d \geq 1$, denote the number of the bounded solutions of the variational equation along the heteroclinic orbit. If $d=1$, the homoclinic or heteroclinic orbit is nondegenerate; otherwise, it is degenerate [15], which means, along the orbit, the intersection of the spaces tangent to the stable and unstable manifolds of the equilibrium has a d dimensional subspace. Hence, parameter d describes the degeneration of the homoclinic or heteroclinic orbit.

The primary purpose of this paper is to extend the theory of [13,14] for heteroclinic loop bifurcation. We consider an autonomous ordinary differential equation that admits a heteroclinic loop in \mathbb{R}^{n}. The unperturbed heteroclinic loop consists of two degenerate heteroclinic orbits. Furthermore, the splitting index of the unperturbed heteroclinic orbits can be arbitrary. We investigate the bifurcation of the heterodimensional loop under periodic perturbation using the Lyapunov-Schmidt reduction method. We start with the following equation:

$$
\begin{equation*}
\dot{x}(t)=f(x(t)), \tag{1.1}
\end{equation*}
$$

and its periodic perturbed equation is as follows:

$$
\begin{equation*}
\dot{x}(t)=f(x(t))+\Sigma_{j=1}^{2} \mu_{j} g_{j}(x(t), \mu, t), \tag{1.2}
\end{equation*}
$$

where $x \in \mathbb{R}^{n}, \mu=\left(\mu_{1}, \mu_{2}\right) \in \mathbb{R}^{2}$, and we make the following assumptions:
(H1) $f \in C^{3}$.
(H2) p_{+}and p_{-}are the two distinct hyperbolic equilibria of $\mathrm{Eq}(1.1)$. Namely, $f\left(p_{ \pm}\right)=0$ and the eigenvalues of $D f\left(p_{ \pm}\right)$lie off the imaginary axis, where D denotes the derivative operator.
(H3) Equation (1.1) has two heteroclinic solutions $\gamma_{1}(t)$ and $\gamma_{2}(t)$, which are asymptotic to the equilibrium p_{+}and p_{-}, respectively. That is, $\dot{\gamma}_{i}(t)=f\left(\gamma_{i}(t)\right), i=1,2$, and

$$
\begin{aligned}
& \lim _{t \rightarrow+\infty} \gamma_{1}(t)=p_{+}, \lim _{t \rightarrow-\infty} \gamma_{1}(t)=p_{-}, \\
& \lim _{t \rightarrow+\infty} \gamma_{2}(t)=p_{-}, \lim _{t \rightarrow-\infty} \gamma_{2}(t)=p_{+} .
\end{aligned}
$$

(H4) $g_{j} \in C^{3}, g_{j}\left(p_{ \pm}, \mu, t\right)=0, g_{j}(x, 0, t)=0$ and $g_{j}(x, \mu, t+2)=g_{j}(x, \mu, t)$.
(H5) $\operatorname{dim}\left(W^{s}\left(p_{+}\right)\right)=d_{+}$and $\operatorname{dim}\left(W^{s}\left(p_{-}\right)\right)=d_{-}$, where $W^{s}\left(p_{+}\right)$and $W^{s}\left(p_{-}\right)$are the stable manifold of the equilibrium p_{+}and p_{-}, respectively.
(H6)

$$
\operatorname{dim}\left(T_{\gamma_{1}(0)} W^{s}\left(p_{+}\right) \bigcap T_{\gamma_{1}(0)} W^{u}\left(p_{-}\right)\right)=d_{1}
$$

and

$$
\operatorname{dim}\left(T_{\gamma_{2}(0)} W^{s}\left(p_{-}\right) \bigcap T_{\gamma_{2}(0)} W^{u}\left(p_{+}\right)\right)=d_{2},
$$

where $T_{\gamma_{i}(0)} W^{s / u}\left(p_{ \pm}\right)$is the tangent spaces of the corresponding invariant manifolds at $\gamma_{i}(0)$ and $d_{i}>1, i=1,2$.
By (H3) and (H6), we know unperturbed $\mathrm{Eq}(1.1)$ has a heteroclinic loop Γ (see Figure 1), where

$$
\Gamma=\left\{p_{-}\right\} \cup\left\{\gamma_{1}(t): t \in \mathbb{R}\right\} \cup\left\{p_{+}\right\} \cup\left\{\gamma_{2}(t): t \in \mathbb{R}\right\}
$$

Figure 1. Heteroclinic loop Γ.

By (H5), we know that d_{+}and d_{-}can be arbitrary. Thus, the unperturbed Eq (1.1) has a heterodimensional loop. We provide conditions for the persistence of the heterodimensional loop under periodic perturbation. The structure of the paper is as follows. We present some background on the Lyapunov-Schmidt reduction and Lin's method in Section 2. Section 3 details the notations for the fundamental matrix of the variational equation along the heteroclinic orbit $\gamma_{i}(t)$ and the main result. Section 4 provides proof of the main result. The bifurcation function is obtained using the functional analytic method. We construct some solutions near the unperturbed heteroclinic loop, which can have a gap at $t=0$, and glue those solutions at $t=0$. Thus, the bifurcation function can be obtained. Hence, under some conditions, some solutions near the unperturbed heteroclinic loop can constitute a heteroclinic loop for a perturbed system.

2. Preliminaries

Many problems in bifurcation theory can be changed by solving the zeros of an operator equation in some Banach space. Sometimes, the corresponding operator is not invertible, making it difficult
to solve. However, this problem can equivalently transform the operator equation into an equation in a low-dimensional space using the Lyapunov-Schmidt reduction method (see [16]). Therefore, this method is very effective, especially in studying homoclinic or heteroclinic bifurcation.

Lin's method [17] is an implementation of the Lyapunov-Schmidt reduction method to construct solutions near the unperturbed heteroclinic orbit. The idea of Lin's method originated from the work by Chow, Hale, and Mallet-Paret [18] using the function space approach to construct piecewise continuous solutions approximating the unperturbed homoclinic orbit. The bifurcation function can be obtained using these solutions, and the zeros of the bifurcation function correspond to solutions in the homoclinic or heteroclinic bifurcation problems. Later, Palmer [19], Hale and Lin [20] extended the methods to \mathbb{R}^{n} and the functional differential equation. Lin used the function space approach to construct solutions near the heteroclinic chain [12]. He assumed that heteroclinic orbits in the chain all have the same index. In the 1990s, Gruendler [21, 22] generalized the method to the case of degenerate homoclinic bifurcation problems.

Next, we introduce an application of the Lyapunov-Schmidt reduction method, known as the Fredholm alternative property for linear differential equations. We consider the following nonhomogeneous linear differential equation:

$$
\begin{equation*}
\dot{y}(t)=A(t) y(t)+h(t), \tag{2.1}
\end{equation*}
$$

where $y \in \mathbb{R}^{n}, A(t)$ vary continuously with $t \in \mathbb{R}$ and $h(t)$ is bounded and continuous on $t \in \mathbb{R}$. We assume that the homogeneous differential equation $\dot{y}(t)=A(t) y(t)$ has exponential dichotomies on \mathbb{R}^{+} and \mathbb{R}^{-}, respectively. Then, $M>0, K_{0}>0$, and projections P and Q exist, such that

$$
\begin{align*}
& \left|U(t) P U^{-1}(s)\right| \leq K_{0} e^{2 M(s-t)}, 0 \leqslant s \leqslant t, \\
& \left|U(t)(I-P) U^{-1}(s)\right| \leq K_{0} e^{2 M(t-s)}, 0 \leqslant t \leqslant s, \\
& \left|U(t)(I-Q) U^{-1}(s)\right| \leq K_{0} e^{2 M(t-s)}, t \leqslant s \leqslant 0, \tag{2.2}\\
& \left|U(t) Q U^{-1}(s)\right| \leq K_{0} e^{2 M(s-t)}, s \leqslant t \leqslant 0,
\end{align*}
$$

where $U(t)$ is the fundamental matrix. We define the Banach spaces as follows:

$$
\mathcal{Z}^{r}=\left\{z \in C^{r}\left(\mathbb{R}, \mathbb{R}^{n}\right): \max _{0 \leq j \leq r}\left\{\sup _{t \in \mathbb{R}}\left|D^{j} z(t)\right| e^{M|t|}\right\}<\infty\right\},
$$

with the norm $\|z\|_{r}=\max _{0 \leq j \leq r}\left\{\sup _{t \in \mathbb{R}}\left|D^{j} z(t)\right| e^{M|t|}\right\},\left|D^{0} z(t)\right|$ indicates $|z(t)|$. We let the linear operator $L: \mathcal{Z}^{1} \rightarrow \mathcal{Z}^{0}$ be defined by

$$
\begin{equation*}
L(y):=\dot{y}-A(t) y . \tag{2.3}
\end{equation*}
$$

The adjoint operator for L is

$$
\begin{equation*}
L^{*}(\psi):=\dot{\psi}+(A(t))^{T} \psi, \tag{2.4}
\end{equation*}
$$

where $(A(t))^{T}$ denotes the transpose of matrix $\left.A(t)\right)$. By the definition of the linear operator L and the exponential dichotomy, we know that

$$
\begin{aligned}
& \operatorname{dim} \operatorname{Ker}(L)=\operatorname{dim}(\operatorname{Ran}(P) \cap \operatorname{Ran}(I-Q)) \text {, } \\
& \operatorname{dim} \operatorname{Ker}\left(L^{*}\right)=\operatorname{dim}\left(\operatorname{Ran}\left(I-P^{T}\right) \cap \operatorname{Ran}\left(Q^{T}\right)\right) .
\end{aligned}
$$

If $\operatorname{dim} \operatorname{Ker}\left(L^{*}\right)=d$ and $\psi_{1}(t), \ldots, \psi_{d}(t)$ are the orthonormal unit bases of $\operatorname{Ker}\left(L^{*}\right)$, we define a projection operator $\Pi: \mathcal{Z}^{0} \rightarrow \mathcal{Z}^{0}$ as follows

$$
\begin{equation*}
\Pi(h)(t)=\sum_{i=1}^{d} \psi_{i}(t) \int_{-\infty}^{\infty}\left\langle\psi_{i}^{T}(t), h(t)\right\rangle d t . \tag{2.5}
\end{equation*}
$$

By the method of the Lyapunov-Schmidt reduction, Eq (2.1) is equivalent to the following system

$$
\begin{align*}
& \dot{y}=A(t) y+(I-\Pi) h(t), \tag{2.6}\\
& \Pi h(t)=0 . \tag{2.7}
\end{align*}
$$

By the definition of $\Pi, \operatorname{Ran}(I-\Pi)=\operatorname{RanL}$. We can first solve $\operatorname{Eq}(2.6)$ for $y \in \mathcal{Z}^{1}$, and the bifurcation equations are obtained by Eq (2.7). That is,

$$
\begin{equation*}
\sum_{i=1}^{d} \psi_{i}(t) \int_{-\infty}^{\infty}\left\langle\psi_{i}^{T}(t), h(t)\right\rangle d t=0, \text { for all } \psi_{i} \in \operatorname{Ker}\left(L^{*}\right) \tag{2.8}
\end{equation*}
$$

Thus, Eq (2.1) has a bounded solution $y(t)$ if and only if Eq (2.8) holds.

3. Notation and main result

The variational equation of (1.1) along the heteroclinic orbit γ_{i} is:

$$
\begin{equation*}
\dot{u}(t)=D f\left(\gamma_{i}(t)\right) u(t) . \tag{3.1}
\end{equation*}
$$

From (H6), we know that Eq (3.1) has $d_{i}\left(d_{i}>1\right)$ linearly independent bounded solutions, $i=$ 1,2. Based on Sacker's definition [23], we can define the splitting index $S\left(\gamma_{i}\right)$ for the unperturbed heteroclinic orbit γ_{i}, as follows:

$$
\begin{equation*}
S\left(\gamma_{1}\right)=d_{+}-d_{-}=s, S\left(\gamma_{2}\right)=d_{-}-d_{+}=-s . \tag{3.2}
\end{equation*}
$$

By (H3) and the exponential dichotomy roughness theorem, we know that the variational Eq (3.1) has two-side exponential dichotomies. We let U_{i} be the fundamental matrix of Eq (3.1). Then, $M>0$, $K_{0}>0$, projections P_{i} and Q_{i} exist, such that

$$
\begin{align*}
& \left|U_{i}(t) P_{i} U_{i}^{-1}(s)\right| \leq K_{0} e^{2 M(s-t)}, 0 \leqslant s \leqslant t, \\
& \left|U_{i}(t)\left(I-P_{i}\right) U_{i}^{-1}(s)\right| \leq K_{0} e^{2 M(t-s)}, 0 \leqslant t \leqslant s, \\
& \left|U_{i}(t)\left(I-Q_{i}\right) U_{i}^{-1}(s)\right| \leq K_{0} e^{2 M(t-s)}, t \leqslant s \leqslant 0, \tag{3.3}\\
& \left|U_{i}(t) Q_{i} U_{i}^{-1}(s)\right| \leq K_{0} e^{2 M(s-t)}, s \leqslant t \leqslant 0,
\end{align*}
$$

where I is the $n \times n$ unit matrix. We let the linear operator $L_{i}: \mathcal{Z}^{1} \rightarrow \mathcal{Z}^{0}$ be defined by

$$
\begin{equation*}
L_{i}(u):=\dot{u}-D f\left(\gamma_{i}(t)\right) u . \tag{3.4}
\end{equation*}
$$

Further, the adjoint operator for L_{i} is

$$
\begin{equation*}
L_{i}^{*}(\psi):=\dot{\psi}+\left(D f\left(\gamma_{i}(t)\right)\right)^{T} \psi \tag{3.5}
\end{equation*}
$$

We let U_{i}^{-1} denote the inverse of U_{i}. Then we have $U_{i}^{-1} U_{i}=I$. Differentiating $U_{i}^{-1}(t) U_{i}(t)=I$ with respect to t, we obtain

$$
U_{i}^{-1} \dot{U}_{i}+\dot{U}_{i}^{-1} U_{i}=0
$$

hence,

$$
\dot{U}_{i}^{-1}=-U_{i}^{-1} \dot{U}_{i} U_{i}^{-1}=-U_{i}^{-1} D f\left(\gamma_{i}\right) .
$$

Therefore, we have

$$
\left(\dot{U}_{i}^{-1}\right)^{T}=-D f\left(\gamma_{i}\right)^{T}\left(U_{i}^{-1}\right)^{T} .
$$

We know that $\left(U_{i}^{-1}\right)^{T}$ is a matrix solution of the adjoint equation of (3.1). Taking the transpose in Eq (3.3), it is apparent that the adjoint equation of (3.1) also has exponential dichotomy on \mathbb{R}^{+}with projection $I-P_{i}^{T}$, and on \mathbb{R}^{-}with projection $I-Q_{i}^{T}$, respectively.

By the definition of the linear operator L_{i} and the exponential dichotomy, we know that

$$
\begin{aligned}
\operatorname{dim} \operatorname{Ker}\left(L_{1}\right) & =\operatorname{dim}\left(\operatorname{Ran}\left(P_{1}\right) \cap \operatorname{Ran}\left(I-Q_{1}\right)\right) \\
& =\operatorname{dim}\left(T_{\gamma_{1}(0)} W^{s}\left(p_{+}\right) \cap T_{\gamma_{1}(0)} W^{u}\left(p_{-}\right)\right) \\
& =d_{1}, \\
\operatorname{dim} \operatorname{Ker}\left(L_{2}\right) & =\operatorname{dim}\left(\operatorname{Ran}\left(P_{2}\right) \cap \operatorname{Ran}\left(I-Q_{2}\right)\right) \\
& =\operatorname{dim}\left(T_{\gamma_{2}(0)} W^{s}\left(p_{-}\right) \cap T_{\gamma_{2}(0)} W^{u}\left(p_{+}\right)\right) \\
& =d_{2}, \\
\operatorname{dim} \operatorname{Ker}\left(L_{i}^{*}\right) & =\operatorname{dim}\left(\operatorname{Ran}\left(I-P_{i}^{T}\right) \cap \operatorname{Ran}\left(Q_{i}^{T}\right)\right) .
\end{aligned}
$$

From the theory of homoclinic bifurcation, the linear operators L_{1} and L_{2} are Fredholm operators, and the index of the Fredholm operator L_{i} is

$$
\operatorname{index} L_{i}=\operatorname{dimKer}\left(L_{i}\right)-\operatorname{codimRan}\left(L_{i}\right) .
$$

If $\operatorname{dimKer}\left(L_{i}^{*}\right)=d_{i}^{*}, i=1,2$, then we have

$$
\begin{aligned}
& \text { index } L_{1}=d_{1}-d_{1}^{*}=d_{+}-d_{-}=S\left(\gamma_{1}\right)=s, \\
& \text { index } L_{2}=d_{2}-d_{2}^{*}=d_{-}-d_{+}=S\left(\gamma_{2}\right)=-s .
\end{aligned}
$$

In addition, if $u_{1}^{i}(t), \ldots, u_{d_{i}-1}^{i}(t), \dot{\gamma}_{i}(t)$ are the orthonormal unit bases of $\operatorname{Ker}\left(L_{i}\right), \varphi_{1}(t), \ldots, \varphi_{d_{1}-s}(t)$ are the orthonormal unit bases of $\operatorname{Ker}\left(L_{1}^{*}\right)$ and $\psi_{1}(t), \ldots, \psi_{d_{2}+s}(t)$ are the orthonormal unit bases of $\operatorname{Ker}\left(L_{2}^{*}\right)$, then define

$$
\begin{aligned}
& a_{i, k}^{1}\left(\alpha_{1}\right)=\int_{-\infty}^{+\infty}\left\langle\psi_{i}^{T}(s), g_{k}\left(\gamma_{1}(s), \mu, s+\alpha_{1}\right)\right\rangle d s, \\
& b_{i, p q}^{1}=\int_{-\infty}^{+\infty}\left\langle\psi_{i}^{T}(s), D_{11} f\left(\gamma_{1}(s)\right) u_{p}^{1}(s) u_{q}^{1}(s)\right\rangle d s,
\end{aligned}
$$

where $i=1, \ldots, d_{1}-s, p, q=1, \ldots, d_{1}-1$, and $k=1,2$. Moreover,

$$
a_{j, k}^{2}\left(\alpha_{2}\right)=\int_{-\infty}^{+\infty}\left\langle\varphi_{i}^{T}(s), g_{k}\left(\gamma_{2}(s), \mu, s+\alpha_{2}\right)\right\rangle d t,
$$

$$
b_{j, m n}^{2}=\int_{-\infty}^{+\infty}\left\langle\varphi_{i}^{T}(s), D_{11} f\left(\gamma_{2}(s)\right) u_{m}^{2}(s) u_{n}^{2}(s)\right\rangle d s
$$

where $j=1, \ldots, d_{2}+s, m, n=1, \ldots, d_{2}-1$, and $k=1,2$. Using those notations, we let $M^{1}: \mathbb{R}^{d_{1}-1} \times$ $\mathbb{R}^{2} \times \mathbb{R} \rightarrow \mathbb{R}^{d_{1}-s}$ be given by

$$
M^{1}\left(\beta^{1}, \mu, \alpha_{1}\right)=\left(M_{1}^{1}\left(\beta^{1}, \mu, \alpha_{1}\right), \ldots, M_{d_{1}-s}^{1}\left(\beta^{1}, \mu, \alpha_{1}\right)\right),
$$

and

$$
M_{i}^{1}\left(\beta^{1}, \mu, \alpha_{1}\right)=\sum_{k=1}^{2} a_{i, k}^{1}\left(\alpha_{1}\right) \mu_{k}+\frac{1}{2} \sum_{p=1}^{d_{1}-1} \sum_{q=1}^{d_{1}-1} b_{i, p q}^{1} \beta_{p}^{1} \beta_{q}^{1},
$$

where $i=1, \ldots, d_{1}-s, \beta^{1}=\left(\beta_{1}^{1}, \ldots, \beta_{d_{1}-1}^{1}\right)$.
We let $M^{2}: \mathbb{R}^{d_{2}-1} \times \mathbb{R}^{2} \times \mathbb{R} \rightarrow \mathbb{R}^{d_{2}+s}$ be given by

$$
M^{2}\left(\beta^{2}, \mu, \alpha_{2}\right)=\left(M_{1}^{2}\left(\beta^{2}, \mu, \alpha_{2}\right), \ldots, M_{d_{2}+s}^{2}\left(\beta^{2}, \mu, \alpha_{2}\right)\right),
$$

and

$$
M_{j}^{2}\left(\beta^{2}, \mu, \alpha_{2}\right)=\sum_{k=1}^{2} a_{j, k}^{2}\left(\alpha_{2}\right) \mu_{k}+\frac{1}{2} \sum_{m=1}^{d_{2}-1} \sum_{n=1}^{d_{2}-1} b_{j, m n}^{2} \beta_{m}^{2} \beta_{n}^{2}
$$

where $j=1, \ldots, d_{2}+s$ and $\beta^{2}=\left(\beta_{1}^{2}, \ldots, \beta_{d_{2}-1}^{2}\right)$. Further, we let $M: \mathbb{R}^{d_{1}+d_{2}-2} \times \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}^{d_{1}-s} \times \mathbb{R}^{d_{2}+s}$ be given by

$$
\begin{equation*}
M(\beta, \mu, \alpha)=\left(M^{1}\left(\beta^{1}, \mu, \alpha_{1}\right), M^{2}\left(\beta^{2}, \mu, \alpha_{2}\right)\right), \tag{3.6}
\end{equation*}
$$

where $\beta=\left(\beta^{1}, \beta^{2}\right), \alpha=\left(\alpha_{1}, \alpha_{2}\right)$.
We can state the main result as follows:
Theorem 1. Assume that $(H 1)-(H 5)$ hold. Let $M(\beta, \mu, \alpha)$ be as in Eq (3.6). If there are some points $\left(\beta_{0}, \mu_{0}, \alpha_{0}\right) \in \mathbb{R}^{d_{1}+d_{2}-2} \times \mathbb{R}^{2} \times \mathbb{R}^{2}$, such that

$$
M\left(\beta_{0}, \mu_{0}, \alpha_{0}\right)=0
$$

and

$$
D_{(\beta, \mu)} M\left(\beta_{0}, \mu_{0}, \alpha_{0}\right)
$$

is a nonsingular $\left(d_{1}+d_{2}\right) \times\left(d_{1}+d_{2}\right)$ matrix, then there exists an open interval I containing origin, the C^{1} function $\kappa_{2}: I \rightarrow \mathbb{R}^{2}$, and the heteroclinic solutions $x_{1}(\varepsilon, t), x_{2}(\varepsilon, t)$ of the $E q$ (1.2) with $\mu=$ $\varepsilon^{2}\left(\mu_{0}+\kappa_{2}(\varepsilon)\right)$, where $\varepsilon \in I \backslash\{0\}, x_{1}(\varepsilon, t)$ and $x_{2}(\varepsilon, t)$ are located near the heteroclinic orbits γ_{1} and γ_{2}, such that $x_{1}(\varepsilon, t), x_{2}(\varepsilon, t), p_{+}$and p_{-}can constitute a heteroclinic loop Γ_{ε}.

The proof of Theorem 1 is performed in Section 4. The heteroclinic loop Γ_{ε} as illustrated in Figure 2.

Figure 2. Heteroclinic loop Γ_{ε}.

4. Proof of Theorem 1

By (H2), we know the unperturbed Eq (1.1) has a heteroclinic loop Γ. In this section, we find conditions such that the perturbed Eq (1.2) have a heteroclinic loop Γ_{μ} with sufficiently small μ. For $i=1$ or $i=2$, we suppose $x_{i}(t)$ is a solution of Eq (1.2). With the change of variable

$$
\begin{equation*}
x_{i}\left(t+\alpha_{i}\right)=\gamma_{i}(t)+z_{i}(t) \tag{4.1}
\end{equation*}
$$

Equation (1.2) can be transformed into

$$
\begin{equation*}
\dot{z}_{i}=D f\left(\gamma_{i}\right) z_{i}+\widetilde{g}\left(z_{i}, \mu, \alpha_{i}\right), \tag{4.2}
\end{equation*}
$$

where

$$
\begin{align*}
\widetilde{g}\left(z_{i}, \mu, \alpha_{i}\right)(t)= & f\left(\gamma_{i}(t)+z_{i}(t)\right)-f\left(\gamma_{i}(t)\right)-D f\left(\gamma_{i}(t)\right) z_{i}(t) \\
& +\Sigma_{j=1}^{2} \mu_{j} g_{j}\left(\gamma_{i}(t)+z_{i}(t), \mu, t+\alpha_{i}\right) \tag{4.3}
\end{align*}
$$

By direct calculation, we have

$$
\begin{aligned}
& \text { (i) } \widetilde{g}\left(0,0, \alpha_{i}\right)=0 ; D_{1} \widetilde{g}\left(0,0, \alpha_{i}\right)=0 \\
& \text { (ii) } D_{11} \widetilde{g}\left(0,0, \alpha_{i}\right)=D_{11} f\left(\gamma_{i}\right) \\
& \text { (iii) } \frac{\partial \widetilde{g}}{\partial \mu_{j}}\left(0,0, \alpha_{i}\right)(t)=g_{j}\left(\gamma_{i}, 0, t+\alpha_{i}\right)
\end{aligned}
$$

where D_{i} and $D_{i j}$ denote the derivative of the multivariate function concerning its i-th and i and j-th variables, respectively.

Because we only consider the Eq (1.1) under a small periodic perturbed equation, we suppose $\mu \in \bar{B}_{1}(0, \delta) \subseteq \mathbb{R}^{2}$, where $\bar{B}_{1}(0, \delta)$ is a closed set with radius $\delta>0$ centered at the origin. Moreover, we have the following property regarding the function \widetilde{g}.

Lemma 1. The function $\widetilde{g}\left(\cdot, \mu, \alpha_{i}\right): \mathcal{Z}^{1} \times \bar{B}_{1}(0, \delta) \times \mathbb{R} \mapsto \mathcal{Z}^{0}$.

Proof. For $i=1$ or $i=2$, we let $z_{i} \in \mathcal{Z}^{1}$ be given. We can choose a closed set B such that $z_{i}(t), \gamma_{i}(t), z_{i}(t)+\gamma_{i}(t)$ and $p_{ \pm}+z_{i}(t)+\gamma_{i}(t)$ are all $\in B$ for $t \in \mathbb{R}$. According to smoothness of $f, g_{j} \in C^{3}$ and g_{j} is periodic about t. We can choose a constant M_{1} such that

$$
\left|D_{1} f(x)\right| \leq M_{1},\left|D_{1} g_{j}\left(x, \mu, t+\alpha_{i}\right)\right| \leq M_{1},
$$

for $\left(x, \mu, \alpha_{i}\right) \in B \times \bar{B}_{1}(0, \delta) \times \mathbb{R}$. If $z_{i} \in \mathcal{Z}^{1}$, because γ_{i} is a heteroclinic solution which is heteroclinic to the hyperbolic equilibrium $p_{ \pm}$, we can assign a constant M_{2} such that

$$
\left|z_{i}(t)\right| \leq M_{2} e^{-M|t|},\left|z_{i}(t)+\gamma_{i}(t)-p_{ \pm}\right| \leq M_{2} e^{-M|t|}
$$

We define $\sigma_{1}(s)=f\left(s z_{i}(t)+\gamma_{i}(t)\right)-f\left(\gamma_{i}(t)\right):[0,1] \mapsto \mathbb{R}^{n}$. By the smoothness of $f, \sigma_{1} \in C^{3}$ and for some $s^{*} \in(0,1)$,

$$
\begin{aligned}
f\left(z_{i}(t)+\gamma_{i}(t)\right)-f\left(\gamma_{i}(t)\right) & =\sigma_{1}(1)-\sigma_{1}(0)=\sigma_{1}^{\prime}\left(s^{*}\right) \\
& =D f\left(s^{*} z_{i}(t)+\gamma_{i}(t)\right) z_{i}(t) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\left|f\left(z_{i}(t)+\gamma_{i}(t)\right)-f\left(\gamma_{i}(t)\right)\right| & \leq\left|D f\left(s^{*} z_{i}(t)+\gamma_{i}(t)\right) z_{i}(t)\right| \\
& \leq M_{1}\left|z_{i}(t)\right| \\
& \leq M_{1} M_{2} e^{-M|t|} .
\end{aligned}
$$

We define a map $\sigma_{2}(s):[0,1] \mapsto \mathbb{R}^{n}$ by

$$
\left.\left.\sigma_{2}(s)=g_{j}\left(p_{ \pm}+s\left(z_{i}(t)+\gamma_{i}(t)-p_{ \pm}\right), \mu, t+\alpha_{i}\right)\right)-g_{j}\left(p_{ \pm}, \mu, t+\alpha_{i}\right)\right) .
$$

By $(H 4), \sigma_{2} \in C^{3}, \sigma_{2}(1)=g_{j}\left(\gamma_{i}(t)+z_{i}(t), \mu, t+\alpha_{i}\right)$ and $\sigma_{2}(0)=g_{j}\left(p_{ \pm}, \mu, t+\alpha_{i}\right)=0$. For some $s^{*} \in(0,1)$, we have

$$
\begin{aligned}
& g_{j}\left(\gamma_{i}(t)+z_{i}(t), \mu, t+\alpha_{i}\right)-g_{j}\left(p_{ \pm}, \mu, t+\alpha_{i}\right)=\sigma_{2}(1)-\sigma_{2}(0)=\sigma_{2}^{\prime}\left(s^{*}\right) \\
& \left.\quad=D_{1} g_{j}\left(p_{ \pm}+s^{*}\left(z_{i}(t)+\gamma_{i}(t)-p_{ \pm}\right), \mu, t+\alpha_{i}\right)\right)\left(z_{i}(t)+\gamma_{i}(t)-p_{ \pm}\right) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \left|g_{j}\left(\gamma_{i}(t)+z_{i}(t), \mu, t+\alpha_{i}\right)-g_{j}\left(p_{ \pm}, \mu, t+\alpha_{i}\right)\right| \\
& \left.\quad \leq \mid D_{1} g_{j}\left(p_{ \pm}+s^{*}\left(z_{i}(t)+\gamma_{i}(t)-p_{ \pm}\right), \mu, t+\alpha_{i}\right)\right)\left(z_{i}(t)+\gamma_{i}(t)-p_{ \pm}\right) \mid \\
& \quad \leq M_{1}\left|\left(z_{i}(t)+\gamma_{i}(t)-p_{ \pm}\right)\right| \\
& \quad \leq M_{1} M_{2} e^{-M|t|} .
\end{aligned}
$$

For any $\mu \in \mathbb{R}, g_{j}\left(p_{ \pm}, \mu, t+\alpha_{i}\right)=0$, thus

$$
\begin{aligned}
\widetilde{g}\left(z_{i}, \mu, \alpha_{i}\right)(t)= & \widetilde{g}\left(z_{i}, \mu, \alpha_{i}\right)(t)-\Sigma_{j=1}^{2} \mu_{j} g_{j}\left(p_{ \pm}, \mu, t+\alpha_{i}\right) \\
= & f\left(\gamma_{i}(t)+z_{i}(t)\right)-f\left(\gamma_{i}(t)\right)-D f\left(\gamma_{i}(t)\right) z_{i}(t) \\
& +\Sigma_{j=1}^{2} \mu_{j}\left(g_{j}\left(\gamma_{i}(t)+z(t), \mu, t+\alpha_{i}\right)-g_{j}\left(p_{ \pm}, \mu, t+\alpha_{i}\right)\right) .
\end{aligned}
$$

As a result,

$$
\begin{aligned}
\left|\widetilde{g}\left(z_{i}, \mu, \alpha_{i}\right)(t)\right|= & \left|\widetilde{g}\left(z_{i}, \mu, \alpha_{i}\right)(t)-\Sigma_{j=1}^{2} \mu_{j} g_{j}\left(p_{ \pm}, \mu, t+\alpha_{i}\right)\right| \\
\leq & \left|f\left(z_{i}(t)+\gamma_{i}(t)\right)-f\left(\gamma_{i}(t)\right)\right|+\left|D f\left(\gamma_{i}(t)\right) z_{i}(t)\right| \\
& +\left|\Sigma_{j=1}^{2} \mu_{j}\left(g_{j}\left(\gamma_{i}(t)+z(t), \mu, t+\alpha_{i}\right)-g_{j}\left(p_{ \pm}, \mu, t+\alpha_{i}\right)\right)\right| \\
\leq & \left(2 M_{1} M_{2}+|\mu| M_{1} M_{2}\right) e^{-M \mid t},
\end{aligned}
$$

that is

$$
\left\|\widetilde{g}\left(z_{i}, \mu, \alpha_{i}\right)\right\|_{0}=\sup _{t \in \mathbb{R}}\left|\widetilde{g}\left(z_{i}, \mu, \alpha_{i}\right)(t)\right| e^{M|t|} \leq\left(2 M_{1} M_{2}+\delta M_{1} M_{2}\right)
$$

Thus, for any given $z_{i} \in \mathcal{Z}^{1}, \widetilde{g}\left(z_{i}, \mu, \alpha_{i}\right) \in \mathcal{Z}^{0}$. The proof is complete.
From the variable transformation of $\mathrm{Eq}(4.1)$, if $\lim _{t \rightarrow \pm \infty}\left|z_{i}(t)\right|=0$, then $x_{i}(t)$ is a heteroclinic solution which is heteroclinic to the hyperbolic equilibrium p_{-}and p_{+}. Hence, the persistence of the heteroclinic loop Γ under the periodic perturbation of $\mathrm{Eq}(1.1)$ is equivalent to the search solution $z_{i}(t)$ of Eq (4.3) in the Banach space \mathcal{Z}^{1}. Next, we use the method of the Lyapunov-Schmidt reduction to solve the operator equations

$$
\begin{aligned}
& L_{1}\left(z_{1}\right)=\dot{z}_{1}-D f\left(\gamma_{1}\right) z_{1}=\widetilde{g}\left(z_{1}, \mu, \alpha_{1}\right), \\
& L_{2}\left(z_{2}\right)=\dot{z_{2}}-D f\left(\gamma_{2}\right) z_{2}=\widetilde{g}\left(z_{2}, \mu, \alpha_{2}\right),
\end{aligned}
$$

in the Banach space \mathcal{Z}^{1}.
We define spaces $\widetilde{\mathcal{Z}}_{1}$ and $\widetilde{\mathcal{Z}}_{2}$ which are closed linear subspaces of \mathcal{Z}^{0}, as follows

$$
\begin{align*}
& \widetilde{\mathcal{Z}}_{1}=\left\{h \in \mathcal{Z}^{0}: \int_{-\infty}^{\infty}\left\langle\varphi_{i}^{T}(t), h(t)\right\rangle d t=0, i=1, \ldots, d_{1}-s\right\}, \tag{4.4}\\
& \widetilde{\mathcal{Z}}_{2}=\left\{h \in \mathcal{Z}^{0}: \int_{-\infty}^{\infty}\left\langle\psi_{i}^{T}(t), h(t)\right\rangle d t=0, i=1, \ldots, d_{2}+s\right\},
\end{align*}
$$

where $\varphi_{1}(t), \ldots, \varphi_{d_{1}-s}(t)$ are the orthonormal unit bases of $\operatorname{Ker}\left(L_{1}^{*}\right)$ and $\psi_{1}(t), \ldots, \psi_{d_{2}+s}(t)$ are the orthonormal unit bases of $\operatorname{Ker}\left(L_{2}^{*}\right)$. We define maps Π_{1} and $\Pi_{2}: \mathcal{Z}^{0} \rightarrow \mathcal{Z}^{0}$ as follows

$$
\begin{align*}
& \Pi_{1}(z)(t)=\sum_{i=1}^{d_{1}-s} \varphi_{i}(t) \int_{-\infty}^{\infty}\left\langle\varphi_{i}^{T}(t), z(t)\right\rangle d t \tag{4.5}\\
& \Pi_{2}(z)(t)=\sum_{i=1}^{d_{2}+s} \psi_{i}(t) \int_{-\infty}^{\infty}\left\langle\psi_{i}^{T}(t), z(t)\right\rangle d t \tag{4.6}
\end{align*}
$$

where φ_{j}^{T} and ψ_{j}^{T}, satisfying $\left\langle\varphi_{i}, \varphi_{j}^{T}\right\rangle=\delta_{i j}$ and $\left\langle\psi_{i}, \psi_{j}^{T}\right\rangle=\delta_{i j}$, respectively. When $i=j, \delta_{i j}=1$, and when $i \neq j, \delta_{i j}=0$. By the definition of map Π_{1}, we have

$$
\begin{aligned}
\left(\Pi_{1}(z)\right)^{2}(t) & =\Pi_{1}\left(\Pi_{1}(z)\right)(t) \\
& =\sum_{i=1}^{d_{1}-s} \varphi_{i}(t) \int_{-\infty}^{\infty}\left\langle\varphi_{i}^{T}(t), \sum_{j=1}^{d_{1}-s} \varphi_{j}(t) \int_{-\infty}^{\infty}\left\langle\varphi_{j}^{T}(t), z(t)\right\rangle d t\right\rangle d t
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i=1}^{d_{1}-s} \varphi_{i}(t) \sum_{j=1}^{d_{1}-s} \int_{-\infty}^{\infty}\left\langle\varphi_{j}^{T}(t), z(t)\right\rangle d t \int_{-\infty}^{\infty}\left\langle\varphi_{i}^{T}(t), \varphi_{j}(t)\right\rangle d t \\
& =\sum_{i=1}^{d_{1}-s} \varphi_{i}(t) \int_{-\infty}^{\infty}\left\langle\varphi_{i}^{T}(t), z(t)\right\rangle d t \\
& =\Pi_{1}(z)(t) .
\end{aligned}
$$

For map Π_{2}, we can similarly obtain $\left(\Pi_{2}(z)\right)^{2}(t)=\Pi_{2}(z)(t)$. Hence, Π_{1} and Π_{2} are projections. For any $z_{i} \in \mathcal{Z}^{1}$, we have

$$
\Pi_{i}\left(\dot{z}_{i}-D f\left(\gamma_{i}\right) z_{i}\right)=0
$$

Next, we apply the Lyapunov-Schmidt reduction to solve Eq (4.2). Applying Π_{i} and $\left(I-\Pi_{i}\right)$ on Eq (4.2), we find that Eq (4.2) is equivalent to the following system

$$
\begin{align*}
& \dot{z}_{i}=D f\left(\gamma_{i}\right) z_{i}+\left(I-\Pi_{i}\right) \widetilde{g}\left(z_{i}, \mu, \alpha_{i}\right), \tag{4.7}\\
& \Pi_{i} \tilde{g}\left(z_{i}, \mu, \alpha_{i}\right)=0 \tag{4.8}
\end{align*}
$$

We first solve Eq (4.7) for $z_{i} \in \mathcal{Z}^{1}$. Then, the bifurcation equations are obtained by substituting the solution z_{i} into Eq (4.8).

We can define a bounded linear map $K_{i}: \operatorname{Ran}\left(L_{i}\right) \mapsto \mathcal{Z}^{1} \backslash \operatorname{Ker}\left(L_{i}\right)$. Thus $K_{i}\left(h_{i}\right)$ is a solution of the linear operator equation $L_{i}(u)=\dot{u}(t)-D f\left(\gamma_{i}\right)=h_{i}$, when $h_{i} \in \operatorname{Ran}\left(L_{i}\right)$. By (H6), we suppose $u_{1}^{i}(t), \ldots, u_{d_{i}-1}^{i}(t)$ are the orthonormal unit bases of $\operatorname{Ker}\left(L_{i}\right)$. Moreover, we solve Eq (4.7) for $z_{i} \in \mathcal{Z}^{1}$.
Lemma 2. Equation (4.7) has a unique solution $z_{i} \in \mathcal{Z}^{1}$ such that z_{i} satisfies

$$
F_{i}\left(z_{i}, \beta^{i}, \mu, \alpha_{i}\right)=\sum_{j=1}^{d_{i}-1} \beta_{j}^{i} u_{j}^{i}+K_{i}\left\{\left(I-\Pi_{i}\right) \widetilde{g}\left(z_{i}, \mu, \alpha_{i}\right)\right\}
$$

where $\left(\beta^{i}, \mu, \alpha_{i}\right) \in \mathbb{R}^{d_{i}-1} \times \mathbb{R}^{2} \times \mathbb{R}$.
Proof. We define a C^{2} map: $F_{i}: \mathcal{Z}^{1} \times \mathbb{R}^{d_{i}-1} \times \mathbb{R}^{2} \times \mathbb{R} \rightarrow \mathcal{Z}^{1}$ as follows:

$$
\begin{equation*}
F_{i}\left(z_{i}, \beta^{i}, \mu, \alpha_{i}\right)=\sum_{j=1}^{d_{i}-1} \beta_{j}^{i} u_{j}^{i}+K_{i}\left(\left(I-\Pi_{i}\right) \widetilde{g}\left(z_{i}, \mu, \alpha_{i}\right)\right\} \tag{4.9}
\end{equation*}
$$

where $\beta^{i}=\left(\beta_{1}^{i}, \ldots, \beta_{d-1}^{i}\right) \in \mathbb{R}^{d_{i}-1}$. By Eq (4.4), we obtain $\widetilde{\mathcal{Z}}_{i}=\operatorname{Ran}\left(L_{i}\right)=\operatorname{Ran}\left(I-\Pi_{i}\right), i=1,2$. By the definition of the projection operator Π_{i} and Lemma 3.1, we have $\left(I-\Pi_{i}\right) \widetilde{g}\left(z_{i}, \mu, \alpha_{i}\right) \in \operatorname{Ran}\left(L_{i}\right)$. Thus $K_{i}\left\{\left(I-\Pi_{i}\right) \widetilde{g}\left(z_{i}, \mu, \alpha_{i}\right)\right\}$ is a solution of the $\mathrm{Eq}(4.7)$. And $u_{j}^{i}(t) \in \operatorname{Ker}\left(L_{i}\right)$, then the fixed points of F_{i} are the solutions of Eq (4.7). Thus, we must demonstrate that the map F_{i} has a unique fixed point in the space \mathcal{Z}^{1}.

We let $\bar{B}\left(0, \delta_{1}\right), \bar{B}^{i}\left(0, \delta_{2}\right)$, and $\bar{B}_{1}\left(0, \delta_{2}\right)$ be a closed subset with radius $\delta_{1}>0$ and $\delta_{2}>0$ centered at the origins of $\mathcal{Z}^{1}, \mathbb{R}^{d_{i}-1}$, and \mathbb{R}^{2}. By $\widetilde{g}\left(0,0, \alpha_{i}\right)=0$ and the smoothness of f, g_{j}, we can set δ_{1} and δ_{2} to be sufficiently small such that

$$
\left\|\widetilde{g}\left(z_{i}, \mu, \alpha_{i}\right)\right\|_{0}<\delta_{2},
$$

for $\left(z_{i}, \mu, \alpha_{i}\right) \in \bar{B}\left(0, \delta_{1}\right) \times \bar{B}_{1}\left(0, \delta_{2}\right) \times \mathbb{R}$.
Further, $u_{j}^{i} \in \operatorname{Ker}\left(L_{i}\right), K_{i}$ and $\left(I-\Pi_{i}\right)$ are bounded linear operators. We can set constants $M_{3}>$ $0, M_{4}>0$ such that

$$
\left\|u_{j}^{i}\right\|_{1} \leq M_{3},\left\|K_{i}\left(I-\Pi_{i}\right)\right\| \leq M_{4},
$$

for any $i=1,2, j=1 \ldots, d_{i}-1$. We let $\delta_{2}=\min \left\{\frac{\delta_{1}}{2 M_{3}\left(d_{i}-1\right)}, \frac{\delta_{1}}{2 M_{4}}\right\}$. For any $\left(z_{i}, \beta^{i}, \mu, \alpha_{i}\right) \in \times \bar{B}\left(0, \delta_{1}\right) \times$ $\bar{B}^{i}\left(0, \delta_{2}\right) \times \bar{B}_{1}\left(0, \delta_{2}\right) \times \mathbb{R}$, we have

$$
\begin{aligned}
\left\|F_{i}\left(z_{i}, \beta^{i}, \mu, \alpha_{i}\right)\right\|_{1} & =\| \sum_{j=1}^{d_{i}-1} \beta_{j}^{i} u_{j}^{i}+K_{i}\left\{\left(I-\Pi_{i}\right) \widetilde{g}\left(z_{i}, \mu, \alpha_{i}\right) \|_{1}\right. \\
& \leq\left\|\sum_{j=1}^{d_{i}-1} \beta_{j}^{i} u_{j}^{i}\right\|_{1}+\| K_{i}\left\{\left(I-\Pi_{i}\right) \widetilde{g}\left(z_{i}, \mu, \alpha_{i}\right) \|_{1}\right. \\
& \leq \delta_{2}\left(d_{i}-1\right) M_{3}+\delta_{2} M_{4} \\
& \leq \delta_{1} .
\end{aligned}
$$

Thus, for any $\left(\beta^{i}, \mu, \alpha_{i}\right) \in \bar{B}^{i}\left(0, \delta_{2}\right) \times \bar{B}_{1}\left(0, \delta_{2}\right) \times \mathbb{R}$, we have

$$
F_{i}\left(\cdot, \beta^{i}, \mu, \alpha_{i}\right): \bar{B}\left(0, \delta_{1}\right) \mapsto \bar{B}\left(0, \delta_{1}\right) .
$$

We let

$$
h\left(z_{i}\right)(t)=f\left(\gamma_{i}(t)+z_{i}(t)\right)-f\left(\gamma_{i}(t)\right)-D f\left(\gamma_{i}(t)\right) z_{i}(t)
$$

Then $h(0)=0, D h(0)=0$, so we can choose above δ_{1} to be sufficiently small such that $\left\|D h\left(z_{i}\right)\right\| \leq$ δ_{2}, for $z_{i} \in \bar{B}\left(0, \delta_{1}\right)$. We select a constant $M_{5}>0$ such that $\left\|D_{1} g_{j}\left(\gamma_{i}(t)+z_{i}(t), \mu, t+\alpha_{i}\right)\right\| \leq M_{5}$, for $\left(z_{i}, \mu, \alpha_{i}\right) \in \times \bar{B}\left(0, \delta_{1}\right) \times \bar{B}_{1}\left(0, \delta_{2}\right) \times \mathbb{R}$.

By Eq (4.3), we have

$$
\widetilde{g}\left(z_{i}, \mu, \alpha_{i}\right)(t)=h\left(z_{i}\right)(t)+\Sigma_{j=1}^{2} \mu_{j}\left(g_{j}\left(\gamma_{i}(t)+z_{i}(t), \mu, t+\alpha_{i}\right) .\right.
$$

For $z_{i}^{1}, z_{i}^{2} \in \bar{B}\left(0, \delta_{1}\right),\left(\beta^{i}, \mu, \alpha_{i}\right) \in \bar{B}^{i}\left(0, \delta_{2}\right) \times \bar{B}_{1}\left(0, \delta_{2}\right) \times \mathbb{R}$. From Eq (4.3), we obtain the following:

$$
\begin{aligned}
& \left\|F_{i}\left(z_{i}^{1}, \beta^{i}, \mu, \alpha_{i}\right)-F_{i}\left(z_{i}^{2}, \beta^{i}, \mu, \alpha_{i}\right)\right\| \\
& \quad=\left\|K_{i}\left\{\left(I-\Pi_{i}\right)\left\{\vec{g}\left(z_{i}^{1}, \mu, \alpha_{i}\right)\right\}-K_{i}\left(I-\Pi_{i}\right) \widetilde{g}\left(z_{i}^{2}, \mu, \alpha_{i}\right)\right\}\right\| \\
& =\left\|K_{i}\left(I-\Pi_{i}\right)\left\{\widetilde{g}\left(z_{i}^{1}, \mu, \alpha_{i}\right)-\widetilde{g}\left(z_{i}^{2}, \mu, \alpha_{i}\right)\right\}\right\| \\
& =\| K_{i}\left\{(I - \Pi _ { i }) \left\{h\left(z_{i}^{1}(t)\right)-h\left(z_{i}^{2}(t)\right)\right.\right. \\
& \quad+\Sigma_{j=1}^{2} \mu_{j}\left(g_{j}\left(\gamma_{i}(t)+z_{i}^{1}(t), \mu, t+\alpha_{i}\right)-g_{j}\left(\gamma_{i}(t)+z_{i}^{2}(t), \mu, t+\alpha_{i}\right)\right) \| \\
& \quad \leq\left\|K_{i}\left(I-\Pi_{i}\right)\right\|\left\{\left|D h\left(z_{i}^{1}(t)+s\left(z_{i}^{2}(t)-z_{i}^{1}(t)\right)\right) \| z_{i}^{1}(t)-z_{i}^{2}(t)\right|\right. \\
& \left.\quad \quad+\Sigma_{j=1}^{2}\left|\mu j \|\left(g_{j}\left(\gamma_{i}(t)+z_{i}^{1}(t), \mu, t+\alpha_{i}\right)-g_{j}\left(\gamma_{i}(t)+z_{i}^{2}(t), \mu, t+\alpha_{i}\right)\right)\right|\right\} \\
& \quad \leq\left\|K_{i}\left(I-\Pi_{i}\right)\right\|\left\{D h\left(z_{i}^{1}(t)+s\left(z_{i}^{2}(t)-z_{i}^{1}(t)\right)\right)\right. \\
& \quad+\Sigma_{j=1}^{2}\left|\mu_{j}\right|\left(D_{1} g_{j}\left(\gamma_{i}(t)+z_{i}^{1}(t)+s\left(z_{i}^{1}(t)-z_{i}^{2}(t)\right), \mu, t+\alpha_{i}\right)\right\}\left\|z_{i}^{1}-z_{i}^{2}\right\|,
\end{aligned}
$$

for $s \in(0,1)$. Thus,

$$
\left\|F_{i}\left(z_{i}^{1}, \beta^{i}, \mu, \alpha_{i}\right)-F_{i}\left(z_{i}^{2}, \beta^{i}, \mu, \alpha_{i}\right)\right\| \leq \delta_{2}\left(M_{4}+2 M_{5}\right)\left\|z_{i}^{1}-z_{i}^{2}\right\| .
$$

Therefore, if we set $\delta_{2}=\min \left\{\frac{\delta_{1}}{2 M_{3}\left(d_{i}-1\right)}, \frac{\delta_{1}}{2 M_{4}}, \frac{1}{2\left(M_{4}+2 M_{5}\right)}\right\}$, then

$$
\left\|F_{i}\left(z_{i}^{1}, \beta^{i}, \mu, \alpha_{i}\right)-F_{i}\left(z_{i}^{2}, \beta^{i}, \mu, \alpha_{i}\right)\right\| \leq \frac{1}{2}\left\|z_{i}^{1}-z_{i}^{2}\right\| .
$$

As a result, F_{i} is a uniform contraction in $\bar{B}\left(0, \delta_{1}\right)$. By the contraction mapping principle, a unique C^{1} map $\omega_{i}: \bar{B}^{i}(0, \delta) \times \bar{B}_{1}(0, \delta) \times \mathbb{R} \mapsto \mathcal{Z}^{1}$ exists such that

$$
\omega_{i}\left(\beta^{i}, \mu, \alpha_{i}\right)=\sum_{j=1}^{d_{i}-1} \beta_{j}^{i} u_{j}^{i}+K_{i}\left\{\left(I-\Pi_{i}\right) \widetilde{g}\left(\omega_{i}, \mu, \alpha_{i}\right)\right\} .
$$

Moreover, $F_{i}\left(0,0,0, \alpha_{i}\right)=0$, hence, $\omega_{i}\left(0,0, \alpha_{i}\right)=0$, which implies the desired statement.
Substituting $\omega_{i}\left(\beta^{i}, \mu, \alpha_{i}\right)$ into Eq (4.8), we obtain the bifurcation function

$$
\begin{equation*}
0=\Pi_{i} \widetilde{g}\left(\omega_{i}\left(\beta^{i}, \mu, \alpha_{i}\right), \mu, \alpha_{i}\right) \tag{4.10}
\end{equation*}
$$

By the definition of projection Π_{i}, we have

$$
\begin{align*}
& \sum_{i=1}^{d_{1}-s} \psi_{i}(t) \int_{-\infty}^{+\infty}\left\langle\psi_{i}^{T}(s), \widetilde{g}\left(\omega_{1}\left(\beta^{1}, \mu, \alpha_{1}\right), \mu, \alpha_{1}\right)(s)\right\rangle d s=0 \tag{4.11}\\
& \sum_{i=1}^{d_{2}+s} \varphi_{i}(t) \int_{-\infty}^{+\infty}\left\langle\varphi_{i}^{T}(s), \widetilde{g}\left(\omega_{2}\left(\beta^{2}, \mu, \alpha_{2}\right), \mu, \alpha_{2}\right)(s)\right\rangle d s=0 \tag{4.12}
\end{align*}
$$

By the linear independence of $\varphi_{1}, \ldots, \varphi_{d_{1}-s}$ and $\psi_{1}, \ldots, \psi_{d_{2}+s}(t)$, Eqs (4.11) and (4.12) are equivalent to

$$
\begin{align*}
& H_{i}^{1}\left(\beta^{1}, \mu, \alpha_{1}\right)=\int_{-\infty}^{+\infty}\left\langle\psi_{i}^{T}(s), \widetilde{g}\left(\omega_{1}\left(\beta^{1}, \mu, \alpha_{1}\right), \mu, \alpha_{1}\right)(s)\right\rangle d s=0 \tag{4.13}\\
& H_{j}^{2}\left(\beta^{2}, \mu, \alpha_{2}\right)=\int_{-\infty}^{+\infty}\left\langle\varphi_{j}^{T}(s), \widetilde{g}\left(\omega_{2}\left(\beta^{2}, \mu, \alpha_{2}\right), \mu, \alpha_{2}\right)(s)\right\rangle d s=0 \tag{4.14}
\end{align*}
$$

where $i=1, \ldots d_{1}-s, j=1, \ldots, d_{2}+s$. We let

$$
\begin{aligned}
& H^{1}\left(\beta^{1}, \mu, \alpha_{1}\right)=\left(H_{1}^{1}\left(\beta^{1}, \mu, \alpha_{1}\right), \ldots, H_{d_{1}-s}^{1}\left(\beta^{1}, \mu, \alpha_{1}\right)\right), \\
& H^{2}\left(\beta^{2}, \mu, \alpha_{2}\right)=\left(H_{1}^{2}\left(\beta^{2}, \mu, \alpha_{2}\right), \ldots, H_{d_{2}+s}^{2}\left(\beta^{2}, \mu, \alpha_{2}\right)\right) .
\end{aligned}
$$

Therefore, by the Lyapunov-Schmidt reduction, we obtained the bifurcation function:

$$
H(\beta, \mu, \alpha)=\left(H^{1}\left(\beta^{1}, \mu, \alpha_{1}\right), H^{2}\left(\beta^{2}, \mu, \alpha_{2}\right)\right),
$$

where $\beta=\left(\beta^{1}, \beta^{2}\right), \alpha=\left(\alpha_{1}, \alpha_{2}\right)$. If there are some parameter values $(\beta, \mu, \alpha) \in \mathbb{R}^{d_{1}+d_{2}-2} \times \mathbb{R}^{2} \times \mathbb{R}^{2}$, such that

$$
H(\beta, \mu, \alpha)=0,
$$

then $z_{i}=\omega_{i}$ is a solution of Eq (4.2). Hence, the perturbed Eq (1.2) has heteroclinic solutions

$$
x_{1}\left(\beta^{1}, \mu, \alpha_{1}\right)(t)=\gamma_{1}(t)+\omega_{1}\left(\beta^{1}, \mu, \alpha_{1}\right)(t),
$$

and

$$
x_{2}\left(\beta^{2}, \mu, \alpha_{2}\right)(t)=\gamma_{2}(t)+\omega_{2}\left(\beta^{2}, \mu, \alpha_{2}\right)(t),
$$

which are asymptotic to the equilibrium p_{+}and p_{-}, that is

$$
\lim _{t \rightarrow+\infty} x_{1}\left(\beta^{1}, \mu, \alpha_{1}\right)(t)=p_{+}, \lim _{t \rightarrow-\infty} x_{1}\left(\beta^{1}, \mu, \alpha_{1}\right)(t)=p_{-}
$$

and

$$
\lim _{t \rightarrow+\infty} x_{2}\left(\beta^{2}, \mu, \alpha_{1}\right)(t)=p_{-}, \lim _{t \rightarrow-\infty} x_{2}\left(\beta^{2}, \mu, \alpha_{1}\right)(t)=p_{+},
$$

are uniform for some $\left(\beta^{1}, \beta^{2}, \mu, \alpha_{1}, \alpha_{2}\right)$. Thus, the heteroclinic orbits $x_{1}\left(\beta^{1}, \mu, \alpha_{1}\right)(t)$ and $x_{2}\left(\beta^{2}, \mu, \alpha_{2}\right)(t)$ and the equilibria p_{+}, p_{-}constitute a heteroclinic loop of the perturbed $\mathrm{Eq}(1.2)$.

Through direct calculations, the function $H(\beta, \mu, \alpha)$ has the following properties:
(i) $H^{1}\left(0,0, \alpha_{1}\right)=H^{2}\left(0,0, \alpha_{2}\right)=0, \frac{\partial H_{i}^{1}}{\partial \beta_{p}^{1}}\left(0,0, \alpha_{1}\right)=\frac{\partial H_{j}^{2}}{\partial \beta_{q}^{2}}\left(0,0, \alpha_{2}\right)=0$;
(ii) $\frac{\partial^{2} H_{i}^{1}}{\partial \beta_{p}^{1} \partial \beta_{q}^{1}}\left(0,0, \alpha_{1}\right)=\int_{-\infty}^{+\infty}\left\langle\psi_{i}^{T}(s), D_{11} f\left(\gamma_{1}(s)\right) u_{p}^{1}(s) u_{q}^{1}(s)\right\rangle d s ;$
(iii) $\frac{\partial^{2} H_{j}^{2}}{\partial \beta_{p}^{2} \partial \beta_{q}^{2}}\left(0,0, \alpha_{2}\right)=\int_{-\infty}^{+\infty}\left\langle\varphi_{i}^{T}(s), D_{11} f\left(\gamma_{2}(s)\right) u_{p}^{2}(s) u_{q}^{2}(s)\right\rangle d s ;$
(iv) $\frac{\partial H_{i}^{1}}{\partial \mu_{k}}\left(0,0, \alpha_{1}\right)=\int_{-\infty}^{+\infty}\left\langle\psi_{i}^{T}(s), g_{k}\left(\gamma_{1}(s), \mu, s+\alpha_{1}\right)\right\rangle d s$;
(v) $\frac{\partial H_{j}^{2}}{\partial \mu_{k}}\left(0,0, \alpha_{2}\right)=\int_{-\infty}^{+\infty}\left\langle\varphi_{i}^{T}(s), g_{k}\left(\gamma_{2}(s), \mu, s+\alpha_{2}\right)\right\rangle d t$.

We define $M^{1}: \mathbb{R}^{d_{1}-1} \times \mathbb{R}^{2} \times \mathbb{R} \rightarrow \mathbb{R}^{d_{1}-s}$ given by

$$
M^{1}\left(\beta^{1}, \mu, \alpha_{1}\right)=\left(M_{1}^{1}\left(\beta^{1}, \mu, \alpha_{1}\right), \ldots, M_{d_{1}-s}^{1}\left(\beta^{1}, \mu, \alpha_{1}\right)\right),
$$

and

$$
M_{i}^{1}\left(\beta^{1}, \mu, \alpha_{1}\right)=\sum_{k=1}^{2} a_{i, k}^{1}\left(\alpha_{1}\right) \mu_{k}+\frac{1}{2} \sum_{p=1}^{d_{1}-1} \sum_{q=1}^{d_{1}-1} b_{i, p q}^{1} \beta_{p}^{1} \beta_{q}^{1}, i=1, \ldots, d_{1}-s .
$$

We define $M^{2}: \mathbb{R}^{d_{2}-1} \times \mathbb{R}^{2} \times \mathbb{R} \rightarrow \mathbb{R}^{d_{2}+s}$ given by

$$
M^{2}\left(\beta^{2}, \mu, \alpha_{2}\right)=\left(M_{1}^{2}\left(\beta^{2}, \mu, \alpha_{2}\right), \ldots, M_{d_{2}+s}^{2}\left(\beta^{2}, \mu, \alpha_{2}\right)\right),
$$

and

$$
M_{j}^{2}\left(\beta^{2}, \mu, \alpha_{2}\right)=\sum_{k=1}^{2} a_{j, k}^{2}\left(\alpha_{2}\right) \mu_{k}+\frac{1}{2} \sum_{p=1}^{d_{2}-1} \sum_{q=1}^{d_{2}-1} b_{j, p q}^{2} \beta_{p}^{2} \beta_{q}^{2}, j=1, \ldots, d_{2}+s .
$$

Thus,

$$
H^{i}\left(\beta^{i}, \mu, \alpha_{i}\right)=M^{i}\left(\beta^{i}, \mu, \alpha_{i}\right)+\text { H.O.T. }
$$

Moreover, we define $M: \mathbb{R}^{d_{1}+d_{2}-2} \times \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}^{d_{1}-s} \times \mathbb{R}^{d_{2}+s}$ given by

$$
M(\beta, \mu, \alpha)=\left(M^{1}\left(\beta^{1}, \mu, \alpha_{1}\right), M^{2}\left(\beta^{2}, \mu, \alpha_{2}\right)\right),
$$

hence

$$
H(\beta, \mu, \alpha)=M(\beta, \mu, \alpha)+H . O . T .
$$

Lemma 3. If points $\left(\beta_{0}, \mu_{0}, \alpha_{0}\right) \in \mathbb{R}^{d_{1}+d_{2}-2} \times \mathbb{R}^{2} \times \mathbb{R}^{2}$ exists such that $M\left(\beta_{0}, \mu_{0}, \alpha_{0}\right)=0$, and $D_{(\beta, \mu)} M\left(\beta_{0}, \mu_{0}, \alpha_{0}\right)$ is a nonsingular $\left(d_{1}+d_{2}\right) \times\left(d_{1}+d_{2}\right)$ matrix, then an open interval $I \subset \mathbb{R}$ exists containing zero and differentiable functions, $\kappa_{1}: I \rightarrow \mathbb{R}^{d_{1}+d_{2}-2}$ and $\kappa_{2}: I \rightarrow \mathbb{R}^{2}$, such that $\kappa_{1}(0)=0$, $\kappa_{2}(0)=0$, and $H\left(\varepsilon\left(\beta_{0}+\kappa_{1}(\varepsilon)\right), \varepsilon^{2}\left(\mu_{0}+\kappa_{2}(\varepsilon)\right), \alpha_{0}\right)=0$ for $\varepsilon \in I$.

Proof. We define a C^{2} function $N: \mathbb{R}^{d_{1}+d_{2}-2} \times \mathbb{R}^{2} \times \mathbb{R}^{2} \mapsto \mathbb{R}^{d_{1}+d_{2}}$:

$$
N(x, y, \varepsilon)= \begin{cases}\frac{1}{\varepsilon^{2}} H\left(\varepsilon\left(\beta_{0}+x\right), \varepsilon^{2}\left(\mu_{0}+y\right), \alpha_{0}\right), & \text { for } \varepsilon \neq 0 \\ M\left(\beta_{0}+x, \mu_{0}+y, \alpha_{0}\right), & \text { for } \varepsilon=0\end{cases}
$$

It is clear that $H=0$ if and only if $N=0$ for $\varepsilon \neq 0$. Through direct calculations, we have $N(0,0,0)=$ 0 , and $D_{(x, y)} N(0,0,0)=D_{(\beta, \mu)} M\left(\beta_{0}, \mu_{0}, \alpha_{0}\right)$ is nonsingular matrix. Using the implicit function theorem, we know an open interval $I \subset \mathbb{R}$ exists containing the zero and differentiable functions, which are $\kappa_{1}: I \rightarrow \mathbb{R}^{d_{1}+d_{2}-2}$ and $\kappa_{2}: I \rightarrow \mathbb{R}^{2}$, satisfying $\kappa_{1}(0)=0$ and $\kappa_{2}(0)=0$, respectively, such that $N\left(\kappa_{1}(\varepsilon), \kappa_{2}(\varepsilon), \varepsilon\right)=0$ for $\varepsilon \in I$. Hence, we obtain

$$
H\left(\varepsilon\left(\beta_{0}+\kappa_{1}(\varepsilon)\right), \varepsilon^{2}\left(\mu_{0}+\kappa_{2}(\varepsilon)\right), \alpha_{0}\right)=0 \text { for } \varepsilon \in I \backslash\{0\} .
$$

The proof is complete.
Hence, the perturbed Eq (1.2) has heteroclinic orbits

$$
x_{1}(\varepsilon, t)=\gamma_{1}\left(t-\alpha_{1,0}\right)+\omega_{1}\left(\varepsilon\left(\beta_{0}^{1}+\kappa_{1}^{1}(\varepsilon)\right), \varepsilon^{2}\left(\mu_{0}+\kappa_{2}(\varepsilon)\right), \alpha_{1,0}\right)\left(t-\alpha_{1,0}\right),
$$

and

$$
x_{2}(\varepsilon, t)=\gamma_{2}\left(t-\alpha_{2,0}\right)+\omega_{2}\left(\varepsilon\left(\beta_{0}^{2}+\kappa_{1}^{2}(\varepsilon)\right), \varepsilon^{2}\left(\mu_{0}+\kappa_{2}(\varepsilon), \alpha_{2,0}\right)\left(t-\alpha_{2,0}\right),\right.
$$

where $\varepsilon \in I \backslash\{0\}, \beta_{0}=\left(\beta_{0}^{1}, \beta_{0}^{2}\right), \kappa_{1}(\varepsilon)=\left(\kappa_{1}^{1}(\varepsilon), \kappa_{1}^{2}(\varepsilon)\right), \alpha_{0}=\left(\alpha_{1,0}, \alpha_{2,0}\right)$. In addition,

$$
\begin{aligned}
& \lim _{t \rightarrow+\infty} x_{1}(\varepsilon, t)=p_{+}, \lim _{t \rightarrow-\infty} x_{1}(\varepsilon, t)=p_{-}, \\
& \lim _{t \rightarrow+\infty} x_{2}(\varepsilon, t)=p_{-}, \lim _{t \rightarrow-\infty} x_{2}(\varepsilon, t)=p_{+},
\end{aligned}
$$

for some $\varepsilon \in I \backslash\{0\}$. If we let

$$
\Gamma_{\varepsilon}=\left\{p_{-}\right\} \cup\left\{x_{1}(\varepsilon, t): t \in \mathbb{R}\right\} \cup\left\{p_{+}\right\} \cup\left\{x_{2}(\varepsilon, t): t \in \mathbb{R}\right\},
$$

then some solutions near the unperturbed heteroclinic loop Γ exist which can constitute a heteroclinic loop Γ_{ε} for perturbed Eq (1.2).

5. Discussion and conclusions

In this paper, we investigated the persistence of a heteroclinic loop under periodic perturbation in \mathbb{R}^{n}. We assumed unperturbed heteroclinic loop is a heterodimensional loop and the unperturbed heteroclinic orbits are degenerate. Using the method of Lyapunov-Schmidt reduction and exponential dichotomies, we obtained the bifurcation function, which is defined by

$$
H(\beta, \mu, \alpha)=\left(H^{1}\left(\beta^{1}, \mu, \alpha_{1}\right), H^{2}\left(\beta^{2}, \mu, \alpha_{2}\right)\right),
$$

where $\beta=\left(\beta^{1}, \beta^{2}\right), \alpha=\left(\alpha_{1}, \alpha_{2}\right)$ and $\left(\beta^{1}, \beta^{2}, \mu, \alpha_{1}, \alpha_{2}\right) \in \mathbb{R}^{d_{1}-1} \times \mathbb{R}^{d_{2}-1} \times \mathbb{R}^{2} \times \mathbb{R} \times \mathbb{R}$. Under the condition of Theorem 1, there exist some points such that $H(\beta, \mu, \alpha)=0$. Hence, there exist heteroclinic solutions $x_{1}(\varepsilon, t), x_{2}(\varepsilon, t)$ of the Eq (1.2) with $\mu=\varepsilon^{2}\left(\mu_{0}+\kappa_{2}(\varepsilon)\right)$, where $\varepsilon \in I \backslash\{0\}, x_{1}(\varepsilon, t)$ and $x_{2}(\varepsilon, t)$ are located near the heteroclinic orbits γ_{1} and γ_{2}, such that $x_{1}(\varepsilon, t), x_{2}(\varepsilon, t), p_{+}$and p_{-}can constitute a heteroclinic loop Γ_{ε}. The heteroclinic tangles is one of the primary mechanisms for non-uniformly hyperbolic dynamics. Our results extended the theory of heteroclinic loop bifurcation.

There are still many interesting and instructive issues worthy of further study. For example, the hyperbolicity of the heteroclinic solution $x_{i}(\varepsilon, t)$ and chaos motion near the heteroclinic loop Γ_{ε}.

Acknowledgments

We are grateful to the two anonymous referees for useful comments and suggestions. This work was supported by National Natural Science Foundation of China (Grant No. 11801343).

Conflict of interest

The authors declare there is no conflicts of interest.

References

1. J. R. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983.
2. K. H. Alfsen, J. Fr ϕ yland, Systematics of the Lorenz model at $\sigma=10$, Phys. Scr., 31 (1985), 15-20. https://doi.org/10.1088/0031-8949/31/1/003
3. C. Bonatti, L. J. Díaz, M. Viana, Dynamics Beyond Uniform Hyperbolicity: A Global Geometric and Probabilistic Perspective, Springer-Verlag, New York, 2005.
4. M. Han, J. Yang, A. Tarta, Y. Gao, Limit cycles near homoclinic and heteroclinic loops, J. Dyn. Differ. Equations, 20 (2008). https://doi.org/10.1007/s10884-008-9108-3
5. X. Sun, M. Han, J. Yang, Bifurcation of limit cycles from a heteroclinic loop with a cusp, Nonlinear Anal. Theory Methods Appl., 74 (2011), 2948-2965. https://doi.org/10.1016/j.na.2011.01.013
6. F. Chen, A. Oksasoglu, Q. Wang, Heteroclinic tangles in time-periodic equations, J. Differ. Equations, 254 (2013), 1137-1171. https://doi.org/10.1016/j.jde.2012.10.010
7. I. S. Labouriau, A. A. P. Rodrigues, Periodic forcing of a heteroclinic network, J. Dyn. Differ. Equations, 2021 (2021). https://doi.org/10.1007/s10884-021-10054-w
8. I. S. Labouriau, A. A. P. Rodrigues, Bifurcations from an attracting heteroclinic cycle under periodic forcing, J. Differ. Equations, 269 (2020), 4137-4174. https://doi.org/10.1016/j.jde.2020.03.024
9. S. N. Chow, B. Deng, D. Terman, The bifurcation of homoclinic and periodic orbits from two heteroclinic orbits, SIAM J. Math. Anal., 21 (1990), 179-204. https://doi.org/10.1137/0521010
10. D. Zhu, Z. Xia, Bifurcations of heteroclinic loops, Sci. China Ser. A Math., 41 (1998), 837-848. https://doi.org/10.1007/BF02871667
11. J. D. M. Rademacher, Homoclinic orbits near heteroclinic cycles with one equilibrium and one periodic orbit, J. Differ. Equations, 218 (2005), 390-443. https://doi.org/10.1016/j.jde.2005.03.016
12. X. Lin, Using Melnikov's method to solve Shilnikov's problems, Proc. R. Soc. Edinburgh Sect. A Math., 116 (1990), 295-325. https://doi.org/10.1017/S0308210500031528
13. F. Geng, T. Wang, X. Liu, Global bifurcations near a degenerate hetero-dimernsional cycle, J. Appl. Anal. Comput., 8 (2018), 123-151. https://doi.org/10.11948/2018.123
14. X. Liu, X. Wang, T. Wang, Nongeneric bifurcations near a nontransversal heterodimensional cycle, Chin. Ann. Math. Ser. B, 39 (2018), 111-128. https://doi.org/10.1007/s11401-018-1055-7
15. A. Vanderbauwhede, Bifurcation of degenerate homoclinics, Results Math., 21 (1992), 211-223. https://doi.org/10.1007/BF03323080
16. S. N. Chow, J. K. Hale, Methods of Bifurcation Theory, Springer-Verlag, New York, 1982.
17. X. Lin, Lin's method, Scholarpedia, 3 (2008), 6972.
18. S. N. Chow, J. K. Hale, J. Mallet-Parret, An example of bifurcation to homoclinic orbits, J. Differ. Equations, 37 (1980), 551-573. https://doi.org/10.1016/0022-0396(80)90104-7
19. K. J. Palmer, Transversal heteroclinic points and Cherry's example of a nonintegrable Hamiltonian system, J. Differ. Equations, 65 (1986), 321-360. 10.1016/0022-0396(86)90023-9
20. J. K. Hale, X. Lin, Heteroclinic orbits for retarded functional differential equations, J. Differ. Equations, 65 (1986), 175-202. https://doi.org/10.1016/0022-0396(86)90032-X
21. J. R. Gruendler, Homoclinic solutions for autonomous systems in arbitrary dimension, SIAM J. Math. Anal., 23 (1992), 702-721. https://doi.org/10.1137/0523036
22. J. Gruendler, Homoclinic solutions for autonomous ordinary differential equations with nonautonomous perturbation, J. Differ. Equations, 122 (1995), 1-26. https://doi.org/10.1006/jdeq.1995.1136
23. R. J. Sacker, The splitting index for linear differential systems, J. Differ. Equations, 33 (1979), 368-405. https://doi.org/10.1016/0022-0396(79)90072-X

AIMS Press
© 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

